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Abstract — A linear code can be thought of as a 
vector matroid represented by the columns of code's 
generator matrix; a well-known result in this context 
is Greene's theorem on a connection of the weight 
polynomial of the code and the Tutte polynomial of 
the matroid. We examine this connection from the 
coding-theoretic viewpoint, building upon the rank 
polynomial of the code. This enables us 

• to relate the weight polynomial of codes and the 
reliability polynomial of linear matroids and to 
prove new bounds on the latter; 

• to prove that the partition polynomial of the 
Potts model equals the weight polynomial of the 
cocycle code of the underlying graph, and 

• to give a simple proof of Greene's theorem and 
its generalization. 

I. INTRODUCTION 

Let C be a linear code of length n and let E = {1,2,..., n} be 
its coordinate set. The weight polynomial of C is defined as 
A(x,y) = 52™_o AiXn~ly', where Ai is the number of vectors 
of Hamming weight i in C. Let G be a generator matrix of C. 
By G(F) we denote the submatrix of G formed by the columns 
with numbers in F C E. The rank polynomial of C is defined 

as U(x, y) = E:=o E*=O^*V, where 

lG = \{FQE\\F\=u,*(G{F)) = v}\ 

The polynomials A(x,y) and U(x,y) are connected by the 
following relation, equivalent to Greene's theorem [3]. 

Theorem 1: 

A(x,y) = y»\C\u(^-,1-) (1) 

The code C can be also thought of as a (vector) matroid M 
represented by the column space of G; so given M, we call C 
the code of M, denoted C(M). 

II. RELIABILITY POLYNOMIAL 

Let M be a linear matroid of rank k on the ground set E 
of size n defined by its representation over F9 and let U\ be 
its number of independent sets of size i. The (all-terminal) 
reliability polynomial of M, by definition, is 

■RiM^^-.^Y^Ulx^j. (2) 

The terminology is motivated by the special case of cographic 
matroids. Namely, let G{V, E) be a connected graph and let 

M be a matroid whose independent sets are given by subsets of 
edges whose removal does not make G disconnected. Suppose 
that each edge in E is removed with probability p. Then the 
probability that upon completion of this process the graph 
remains connected is given by TZ(M;p, 1 — p). Reliability of 
graphs and matroids has been a subject of continued interest 
in combinatorics [2]. The main result of this section is: 

Theorem 2: Let A(x,y) be the weight polynomial of the lin- 
ear code C(M). Then 

■R(M;p,\-p)<lt£pn-k(l -p)k+A(l,p) - 1.       (3) 

In this way the reliability polynomial can be related to the 
probability of undetected error for linear codes; the upper 
bounds on the latter are used in the paper to derive new upper 
bounds on TZ(M;p, 1 — p). 

III. PARTITION FUNCTION 

Let r = (V, E) be a finite graph with \E\ = n edges and 
c(r) connected components. Consider the Potts model of in- 
teraction for a physical system represented by V [4]. Under 
this model each vertex in V can be in one of q possible states; 
an allocation of states to all the vertices defines a state a of 
the system or a coloring of V with q colors. The partition 
function of the Potts model is defined as follows: 

where the sum is over all possible states a of the system and 
U(a) is the subset of edges with both ends of the same color. 

Theorem 3: Let A(x, y) be the weight polynomial of the q-ary 
cocycle code of F. Then 

A{\,y) = q-c{T)ynZ{y). 

Further details are found in [1] 
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Abstract — Denote by R the Galois ring of charac- 
teristic pe and cardinality pem, where p is a prime and 
e and m are positive integers. Let g(x) be a monic 
polynomial over Fpm. A polynomial /(x) over R is de- 
fined to be a Hensel lift of g(x) in R[x] if /(x) = g(x), 
where — is the natural homomorphism from R onto 
Fpm, and there is a positive integer n not divisible by 
p such that f(x) divides xn — 1 in R[x]. It is proved that 
g(x) has a unique Hensel lift in R[x] if and only if g(x) 
has no multiple roots and a; J{ g(x). An algorithm to 
compute the Hensel lift is also given. 

I. DEFINITION 

In 1995 the following definition of the Hensel lift of a polyno- 
mial appeared in [1]. 

Let /12 € F2 [x] be of degree m > 0 and assume that /121 (xl — 
1) and I is minimal subject to this property. There is a unique 
monic polynomial h € Z4x] of degree m such that h — h2 and 
h\(xl — 1) in Z^x]. This polynomial is called the Hensel lift 
of h2(x). 

In the above definition the condition that I is odd should 
be added. A counter-example when I is even is: h2(x) = 
(x-l)2(x2+x+l), h2 | (x6-l) inF2[x], h = (x2-l)(x2+x+1) 
and b! = (x2 - l){x2 -x+1). 

The formulation of the above definition involves some state- 
ments which should be proved. Now we suggest a simpler def- 
inition which can be formulated for an arbitrary Galois ring. 
For Galois rings, see [2] and [3]. 

Let g(x) be a monic polynomial over Fpm . A monic polyno- 
mial f(x) over R is called a Hensel lift of g(x) if f(x) = g(x) 
and there is a positive integer n not divisible by p such that 
/(x)|(xn - 1) in R[x]. 

II. EXISTENCE AND UNIQUENESS 

Proposition 1. A monic polynomial g(x) over Fpm has a 
Hensel lift /(x) over R if and only if g(x) has no multiple 
roots and x j( g{x) in Fpm [x]. 

Lemma 2. Let n\ and n2 be positive integers and n = 
gcd(m,n2). Then xn - 1 = gcd(xni - l,x"2 - 1) in Fpm [x], 
(xn - l)|(xni - 1) in R[x], and (xn - l)|(x"2 - 1) in R[x\. 

Proposition 3. Let g(x) be a monic polynomial over Fpm 
without multiple roots and x / g(x) in Fpm [x]. Then g(x) has 
a unique Hensel lift in R[x]. 

III. AN ALGORITHM TO COMPUTE THE HENSEL LIFT 

Based on Propositions 1 and 3 of the proceeding section we 
formulate the following algorithm for computing the Hensel 
lift of a monic polynomial over Fpm in R[x\. 

Algorithm Given a monic polynomial g(x) of degree 
> 0 over Fp"> to compute the Hensel lift of g(x) in R[x] we 
proceed in the following steps. 

1. Test whether x\g(x) in Fpm [x]. 
If yes, we are finished and g(x) has no Hensel lift in 
R[x}. 
If no, go to step 2. 

2. Compute gcd(g(x),g'(x)) and let it be d(x). 
If degd(x) > 0, we are finished and g(x) has no Hensel 
lift in R\x\. 
If deg d(x) = 0, go to step 3. 

3. Factorize g(x) into a product of distinct monic irre- 
ducible polynomials over Fpm by Berlekamp's Algo- 
rithm. Let the result be 

9(x) =gi(x)g2(x)...gr(x), 

where gi(x),g2(x),... ,gr(x) are distinct monic irre- 
ducible polynomial over Fpm . Let deg <?i (x) = n;, i = 
1,2,..., r and go to step 4. 

4. Compute lcm[pmni - l,pm"2 - 1,... ,pmnr - 1]. Let the 
result be n, then p does not divide n and g(x)\(xn — 1). 
Go to step 5. 

5. Divide xn — 1 by g(x) by division algorithm. Let the 
quotient be 51 (x). Then xn — 1 = g(x)gi(x) and 
gcd(g(x),gi(x)) = 1. Go to step 6. 

6. By the constructive proof of Hensel's Lemma construct 
two coprime monic polynomials /(x), /i(x) € R[x] 
such that xn — 1 = /(x)/i(x) in R[x] and f(x) = 
p(x),/1(x) = <7i(x). Then f(x) is the Hensel lift of 
g(x) in R[x\. Ü 

When Fpm = F2 and R = Z4, the Hensel lift of a polyno- 
mial g(x) over F2 without multiple roots and not divisible by 
x can be calculated by using Graeffe's method for finding a 
polynomial whose roots are the squares of the roots of g(x), 
see [4] and [5]. 
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Abstract — Binary superimposed codes were intro- 

duced by W.H.Kauts and R.C.Singleton in 1964 [1]. 

In [2] a concept of superimposed code distance was 

suggested. In 1996 a new construction based on the 

incidence of the finite sets was suggested [3]. It was 

studied and generalized in [4, 5]. We consider the 

further extension of this construction, which allows 

to create new superimposed codes from the existing 

ones. We also find the superimposed distance for this 

construction. Part of this work was presented in [6]. 

I. NOTATIONS AND DEFINITIONS 

Definition 1. An incidence system is a triplet X = 
(A, B, -<), where A and B are finite sets and -< is an incidence 
relation between them, i.e. for any a € A and bgß either 
a -; b, or a / b. Put N = N(X) = \A\ and t = t{T) = \B\. 
An incidence matrix of X is binary N x t matrix X{X), which 
rows and columns are indexed by elements a G A and bgß, 
respectively, and an element xa(b) = 1 iff a -< b. 

For an incidence system X and an integer s > 0 put 

VS{1) Ä {(r,b) : T C B, \T\ < s, b G B\T} . 

Definition 2. A pair (r, b) G VS(X) is called disjunctive if 
the disjunctive set of this pair D(r, b) ■£ 0, where 

D(r, b) = {a G A : a -< b, a / b' for b' G r} . 

Definition 3. For a system X and an integer s > 0 the 
value 

VS{X) min      |D(r,b)| 
■,b)€P,(I) 

is called the superimposed s-distance of I. 
Definition 4. If a superimposed s-distance VS(X) > 0 

(i.e. all pairs (r,b) € VS(X) are disjunctive) then X is called 
an s-disjoint system. In this case the incidence matrix X(X) 
is called a superimposed code of strength s, size t(X) and length 
N(I) [1, 2], The value VS(X) is called the superimposed dis- 
tance of this code [2]. 

II. DESCRIPTION OF THE CONSTRUCTION 

Let n > m > /i > 1 be integers and h — (Ak,Bk, -<k) be 
arbitrary incidence systems, 1 < k < n. In this section we 
define a new incidence system X = X{n,m,h,h,... ,I„). 

Consider a new zero symbol "0". For each k = l,...,n 
define the new incidence system 1° = (A°,B°,-<°), where 
A°k = Ak U {0}, Bl = BkU {0}, and the relation -<°k is defined 
as follows: 1) 0 -<l b for any b 6 B°k\ 2) a -$. 0 for any a G Ak\ 
3) at the sets Ak and Bk relation -<° is the same as -<*,. 

Put X(n,m,h,Ii,... ,In) = {A,B, -<), where the sets 

A = {&= (oi,...,an) : ak G A°, |a| = h) , 

B4{b = (&!,... ,6») = h 6 B°k, |b| = m} , 

where |a| and |b| denote the number of non-zero components 
in vectors a and b, respectively, and the incidence relation -< 
between A and B is defined component-wise, i.e. a -< b if and 
only if a*, -<° bk for all k = 1,..., n. 

This construction generalizes those which were considered 
before [3, 4, 5]. 

III. PROPERTIES OF 1 = l(n, m, h, Ii,..., In) 
Theorem 1. Assume that 1 < s < h and the system Ik is 

s-disjunct for all k G {1,..., n}. Then X is also s-disjunct. 
Theorem 2. Assume that s > 1 and the system X is s- 

disjunct. Then h is also s-disjunct for each fc G {1,..., n}. 

For positive integers s and h denote by Vh(s) the set of vec- 
tors v = (i>i,..., w/i), which components Vk are non-negative 
integers, and the sum vi + ■ ■ ■ + Vh = s. For each vector v 
denote by |v| the number of positive components vk- 

Theorem 3. Let n > m > h > 1 be integers and I be an 
arbitrary incidence system. For any s > 1 the superimposed 
s-distance of the incidence system X = X(n, m, h, I, ■ ■ ■, I) has 
the form 

Vs (I) = min 
m — |v| 

t[VvM), 
k=l 

JThe work of P. Vilenkin was supported by the Russian Founda- 
tion of Basic Research, grant 98-01-00241. 

where the minimum is taken over all vectors v G Vh{s), for 
which |v| < s. 

In general case, when the systems Ik are not the same, the 
formula for VS(X) can be found in [6]. 
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I. INTRODUCTION 

Let Do,... ,Dn be the {0, l}-matrices forming an associ- 

ation scheme. Since Y11=o ®k ls tne a"-°ne matrix, a lin- 
ear combination Y2k=oCk^>k can DC regarded as the matrix 
(/(i, y))x,y representing the function / defined by f(x, y) = c^ 
if (x,y) is in relation corresponding to matrix Di,-- Parame- 
ters of functions thus obtained may now be studied exploiting 
properties of the association scheme. 

One such parameter is the communication complexity 
C(f), which is the number of bits that two persons have to ex- 
change in order to evaluate f(x,y), when initially one person 
only knows x and the other person only knows y. Commu- 
nication complexity turned out to be an important topic in 
computer science, cf. [4]. Connections between communica- 
tion complexity and information theory are discussed in [2] 
and [3]. The function under consideration is the function 

f(x,y) = 
1      if x,y are in relation k, k odd 
0      if x, y are in relation k, k even 

The communication complexity can be excatly determined 
if for z = 0, 1 all eigenvalues of the matrices 

MzU) =   Y,   Dk 

k=z mod 2 

are different from 0. Already in [5] we derived the following 
identity for the Krawtchouk polynomials Kk{i,q,n). 

Theorem 1 [5]: For z = 0, 1 it is 

k=z(mod 2) 

Kk{i,q,n) = 
I(9» + (-l)*(2-9)")     i = 0 
{-l)z2i-\2-q)n-'+l     i>\ 

The idea of proof in [6] is to exploit the simultaneous di- 
agonalizability of the matrices Do. • • • • Dn of the association 
scheme and a recurrence formula for their eigenvalues due to 
Delsarte [1] 

F(i,k,n) = bkF(i - l,k,n- 1) - f/'-1F(i - 1, Jfc - l,n - 1) 

The Krawtchouk polynomials and also the Eberlein polv- 
nomials Ek(i,n,l) = I]*=0(-1)J"(}) (^Zj) ('^"J4) obey this re- 
cursion with 6=1 

If the function / is defined on the Johnson scheme, then 
the eigenvalues of Mz{f) for z = 0, 1 are linear combinations 
of the Eberlein polynomials 

e,(z,n,q) —        > Ek(i,n,l),    i = 0. 

k = :mod 2 

Theorem   2:    For  the function  / when  defined on  the 
Johnson  scheme  the  matrices  AF(f),   z   =   0,1,   have  full 

rank  if for  all  i   =   l,---,n  the  Krawtchouk  polynomials 
A'„_i + i(n - i + 1, / + 1i - 2, 2) are different from 0. 

Proof: First observe that the eigenvalues eo(z,n,l) (and 
n > 1) are both positive for z = 0, 1 as the sum of positive 
terms and hence different from 0. 

e,(0,7J,/)  = 6,-1(0,71 

= 2! 

n-! + l 

k = Q 

1,1 + 2) -et-x{l,n- 1,1 + 2) 

i + l,l + 2i-2) 

-l)"-'-^'-1 A'„-, + i(n -i + l,l + 2i- 2,2) 

So the problem here is to determine, when a Krawtchouk 
polynomial K'k(k, in, 2) (the degree and the first variable being 
the same) can be 0. This is possible for m even and k = y. We 
didn't find any other parameter pair (k, m) with this property. 

A third family of orthogonal polynomials obeying the above 
recursion arc the 6-analogues of the Krawtchouk polynomials 

where ('"), denotes the Gaussian binomial coefficient. The 
\ s ' b 

eigenvalues of the association schemes of bilinear forms over 
GF(b) have as parameters a prime power 6 and c. = br for 
some nonnegative integer r. The eigenvalues of the association 
schemes of alternating bilinear forms have as parameters b = 
p2 the square of a prime p and c = p or c. = - (cf.   [1]).   By 
calculation modulo 2 it can be derived 

Theorem 3: Let a function / be defined as above on the 
association scheme of bilinear forms over GF(b) or on the 
association scheme of alternating bilinear forms. Further let 
the prime p defining the parameters b and c be odd. Then the 
matrices A/-(/), z = 0,1, have full rank if b - 1 is not a power 
of 2. 
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Abstract — The design of practical and powerful 
codes for protection against erasures can be reduced 
to optimizing solutions of a highly nonlinear con- 
straint satisfaction problem. In this paper we will 
attack this problem using the Differential Evolution 
approach and significantly improve results previously 
obtained using classical optimization procedures. 

I. INTRODUCTION 

Based on the theoretical results proved in [1], we will in this 
paper attack a nonlinear constrained satisfaction problem the 
solutions of which correspond to highly efficient codes. The 
optimization problem involved will be attacked by Differential 
Evolution, a robust optimizer which has proved quite effective 
for similar types of problems. 

The codes from [1] are built from sparse bipartite graphs 
and generalize a classic construction of Gallager [3]. After 
collecting the information contained in the received bits, the 
algorithm removes the corresponding variable nodes from the 
graph together with all edges emanating from them. Then, 
at each round, it looks for a check-node of degree one, copies 
its content into its unique neighbor, updates the values, and 
removes the variable node and all edges emanating from it 
from the graph. The decoder is successful if the final graph 
is empty. It was shown in [1] that if the graph is sampled 
uniformly at random from the ensemble of graphs with de- 
gree distributions (\,p) (see below for a definition), then the 
algorithm successfully recovers from a random J-fraction of 
erasures with high probability iff SX(1 — p(\ — x)) < x for 
x £ (0,5). If X(x) = £\ Xix'-1 and p(x) = E^^-1, then 
we say that the graph has degree distribution (A,p) if the frac- 
tion of edges connected to a variable (check) node of degree i 
is A, (pi). The task at hand is now to find appropriate polyno- 
mials A and p with nonnegative coefficients that give rise to a 
code of a given rate such that the above inequality is satisfied 
for a large value of 6. 

II. DIFFERENTIAL EVOLUTION 

The code design problem as described above is a nonlinear 
constraint satisfaction problem with continuous space param- 
eters, a problem class where Differential Evolution (DE) [2] 
has proven to be very effective. The main properties of DE are 
(1) Initialization in which, similar to evolutionay strategies, a 
random first generation of vectors is created which changes 
over time according to (2) mutation, and (3) recombination, 
(4) selection of the survivors, and (5) the stopping criterion. 
What gives DE its name is the differential nature of the muta- 
tion step, in which at each round random pairwise differences 
of two pairs of population vectors are added to population 

members. The recombination scheme follows usual evolution- 
ary algorithms. The reader is invited to consult [2] for more 
information on DE. 

III. CODE DESIGN 

For designing the code, we started by fixing the rate of the 
code and randomly producing degree distributions giving rise 
to codes of that rate. For doing this, note first that the con- 
ditions relating the coefficients of A(x) and p(x) force the free 
coefficients of these polynomials to lie in a finite polytope. Our 
first task is then to choose random elements from this poly- 
tope. To achieve this, we implemented a different strategy, 
known as the "Queen's move":we started with some point in- 
side the polytope constructed deterministically, and repeated 
the following procedure between 50 and 100 times: we ran- 
domly selected a line through the point, and randomly se- 
lected a point on that line inside the polytope. This gave 
us one population member. For the next members, we re- 
peated the whole procedure again, until all the (initial) popu- 
lation members were generated. To reduce the dimensionality 
of the problem, we did not let the node degrees on the left 
and the right take on all possible node degrees in a given 
range. Rather, we experimented with the idea to force to 
zero those A, and pk which have small values and to not 
treat them as free parameters subject to optimization. Typ- 
ically, we chose the node degrees in the following way: on 
the left hand side, we chose the degrees 2, 3, ä highest de- 
gree (between 20 and 30) and one degree in between. On 
the right hand side, we chose two consecutive degrees, either 
7 and 8, or 8 and 9. By way of an example, we mention 
of the rate 1/2 sequences that we found with our method: 
\{x) = 0.26328i + 0.18020x2 + 0.27000x6 + 0.28649a:29, p(x) = 
0.63407z7+0.36593x8. The highest S value for this sequence is 
0.4955. It can be shown that, given the highest possible value 
attainable with the average degrees of the graphs induced by 
these distributions is 0.4985. Hence, this sequence is within 
less than 1% of the optimum. Other very good sequences will 
be presented in the talk. 
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Abstract — In this paper, new results on inser- 
tion and/or deletion correcting codes are presented. 
Firstly, new properties relating codewords to sub- 
words are investigated. Secondly, a new error cor- 
recting scheme based on convolutional coding, is pro- 

posed. 

I. CODEWORDS AND COMPUTER SEARCH 

An alternative way of representing binary words is used 
which simplifies the process of determining subwords after in- 
sertion/deletion errors. All the binary words are characterized 
by the length of runs present in the word as well as the starting 
bit, e.g. 10000100 -» 1412/1. In the case of deletion errors, all 
the subwords can be obtained by decreasing the size of each 
run present in the word. If the first run's size is 1 and it is 
deleted, the starting bit will change. If any other run of size 1 
is deleted, the two neighbouring runs will merge. For insertion 
errors, the subwords are obtained by adding bits either to the 
beginning or the end of the word, increasing the size of the 
runs or by splitting existing runs. 

Assume that binary words of length n are used and that s 
denotes the number of insertion and/or deletion errors. Since 
a binary word and its complement have complementary sub- 
words, it is only necessary to compute the subwords of 2"~1 

words. Complementing the starting bit of the already calcu- 
lated words/subwords forms the other 2n_1 words/subwords. 
This method is used to construct subword books that contain 
the subwords of all 2n binary words after s = 1 errors. Us- 
ing the s — 1 subword book and repeating the procedure on 
all the subwords, a s — 2 subword book can be formed. By 
searching the subword books, codewords can be chosen that 
do not have a common subword. Cardinalities of codebooks 
found by computer searching s = 2 subword books will be pre- 
sented and compared to known s = 2 correcting codebooks by 
Helberg [1]. 

By inspecting the subword books and using generating 
functions, it is possible to determine the number of subwords 
that a binary word will produce. The number of subwords 
after deletions is dependable on the runs in the word. Let x 
denote the binary codeword and r(x) be the number of runs 
in x. In the case of s = 1 deletions, r(x) subwords will be 
formed. Let A(a:, y) indicate the size of the t/-th run in x. For 
s = 2 deletions, the number of subwords will be given by: 

-(p2 + q2 + 2pq-p + q)-r (1) 

of X(x,y) > 2 and r the number of X(x,y) = 1, where 
2 < y < T(X) — 1. The number of new words after insertions 
is dependable on the length of the word. For s — 1 insertion 
there will be n + 2 new words. For s — 2 insertions it is given 

by: 

-(n2 + 5n + 8) (2) 

Because the number of new words for insertions is set, this 
fact can be used to establish an upperbound. According to 
Levenshtein, a code capable of correcting s deletions will also 
be able to correct s deletions and/or insertions [2]. There- 
fore this insertion upperbound provides an upperbound for 
s-correcting codes in general. 

II. NEW PROPOSED SCHEME 

We further present a new coding scheme in part based on a 
parallel convolution encoder. Insertion/deletion errors result 
in a long burst error after the error occurred. This means that 
any bits received after an insertion/deletion error can not be 
used in error correcting. For this reason it is proposed that en- 
coding proceed as normal, up to a certain length, but that the 
encoded data be sent in reverse over the channel. This results 
in an encoded data stream that is able to detect errors in the 
coming data, with the assumption that data already received 
is correct or already corrected by the decoder. Two encoders 
with rates R = | and R = | are presented. Both encoders 
are able to correct insertion, deletion or reversal errors, given 
that the channel is limited to one type of error. 

Whenever an insertion/deletion error occurs and the syn- 
drome indicates an error, a bit is deleted/inserted in a certain 
place relative to the syndrome error and the syndromes recal- 
culated. Since the inserted/deleted bit will not always be in 
the correct position, there is a possibility of a short burst of 
reversal errors. The new syndrome can then be used to cor- 
rect these errors. In the case of reversal errors, the syndrome 
can be used as is done for error correction. 
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Abstract — It is well known that Reed-Muller 
(RM) codes are not an linear unequal error protec- 
tion (LUEP) code because the set of minimum-weight 
vectors span Reed-Muller codes (punctured or not) 
[1,2]. In this paper, we showed that most of RM 
codes are LUEP codes if RM codes are encoded with 
recursively decomposed trellis oriented generator ma- 
trix (TOGM) and maximum-likelihood trellis decod- 
ing (MLTD) is used. 

I. INTRODUCTION 

Uneqaul error protection codes protect some information 
bits against a great number of errors than other information 
bits. LUEP codes were first introduced by Masnick and Wolf 
[3]. Boyarinov and Katsman [4] found conditions for linear 
codes to be LUEP. Let C be and (n,k,d) linear code. It is 
shown in [1] that if the minimum-weight vectors of a linear 
code C does not span it, then C is an LUEP code. It is well 
known that their set of minimum-weight vectors span RM 
codes (punctured or not) [2]. Therefore, RM codes are not 
LUEP codes in algebraic decoding. In the soft-decision maxi- 
mum likelihood decoding, bit-error-rate of RM code depends 
on the weight distribution of code. If non-systematic GM is 
used for encoding the RM code and soft-decision maximum 
likelohood decoding is used in decoding, different set of in- 
formation bits has a different bit-error-rate since each other 
has different weight distribution. Therefore, even though RM 
code is not an LUEP code in algebraci decoding, RM code is 
an LUEP code in soft-decision maximum likelihood decoding 
if systematic GM is not used for encoding. 

Especially, in this paper, LUEP RM codes are constructed 
by using recursively decomposed TOGM for encoding. Sim- 
ulations show that bit-error-rate of some information bits is 
almost twice better than that of the other information bits. 
By using the recursive decomposition, a simple trellis diagram 
with parallel structure for the RM code is devised. In ML 
trellis decoding, information bits are retrieved directly from 
the labeling of the trellis. 

II. RECURSIVE DECOMPOSITION OF REED-MULLER 

CODES AND ITS TRELLIS 

Let RM(r, TO) denote the r-th order binary RM code of 
length 2m[l,2]. This code has minimum Hamming distance 
d = 2m-r and the dimension 

K{r,m) = l + + ••• + 

Let T be a (2,1,2) binary linear code with following gen- 
erator matrix GT = ( 1 1 ) • And let W be a (2,2,1) 
binary linear code with following generator matrix Gw  = 1 °v 0    l) 

the set of representatives of the cosets of RM(r — 1, TO — 1) 
in RM(r, TO - 1) and G(r, r - 1, m - 1) be the generator ma- 
trix for the [RM(r, TO — l)/RM(r — l.m — 1)] coset code and 
E(r, r - 1, TO - 1) be the dimension of [RM(r, m - l)/RM(r - 
1, TO — 1)]. Then the generator matrix for RM(r, TO) is as 
following G(r, TO) = G(r, r - 1, TO - 1) (g) GT 0 G(r - 1, r - 
2, m-2) (g) GT <g) Gw © G(r-2, m-2) <g) Gw <g> Gw where 
(g) and 0 denotes the direct product and direct addition. 
Therefore, K(r, TO) = E{r, r-l,m-l) + 2x E(r, r - 2, TO - 
2) + 4xK{r-2,m-2). Let K = K(r,m) = Ky + K2 + K3 = 
E(r,r-l,m-l) + 2xE(r,r-2,m-2) + 4xK(r-2,m-2). 
Let Wi, W2, and W3 be weight distribution of G(r, r — 1, TO — 
l)<g)GT0, G(r - l,r - 2,m - 2.) <g> GT (g) Gw 0, and 
G(r — 2, TO — 2) (g) Gw (g) Gw, respectively. Then bit-error- 
rate of K\, K2, and K% information bits depend on weight 
distribution of W\, W2, and W3 respectively. 

III. EXAMPLES AND SIMULATION RESULTS 

Consider the RM(2, 5) code which is a (32, 16) RM code of 
Hamming distance 8. Let b = (61,62, • • •, 616) be the 16 infor- 
mation bits and v = (vi, v2, ■ ■ •, v32) be the the corresponding 
codeword in RM(2, 5). Then 

v    =    bG(2,5) 

=    (61,62,63,64,65,66) G(2,l,4)(g)GT0 

(&7,68,&9,&i2,6i3,614)G(2,l,3)(g)GT(g)GVv 0 

(610,611,6i5,6ie)G(O.3)0Gvir0Gwr 

where ON means N consecutive zeros. The first 6 bits, 
61,62,63,64,65,66, select one of the 64-subtrellises. For the 
left (16,5,8) code, (67,63,69) selects one of the 8-subtrellises 
which are of length 16. Then 610 selects a codeword in the 
left (8,1,8) code and 6u selects a codeword in the right (8,1,8) 
code. For the right (16,5,8) code, (612,613,614) s*elects one 
of 8 subtrellises which are of length 16. Then 615 selects a 
codeword in the left (8,1,8) code and &ie selects a codeword 
in the right (8,1,8) code. Simulation results shows that group 
of 610,611,615,616 achieves about 0.14 dB coding gain over 
groups of 61,62,63,64,65, &e and 67, 6s, 69,612,613,614. 
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Abstract — This paper presents a class of codes pro- 
tecting data on two-dimensional symbology against 
errors caused by stain, tear, scratch or blurring. 

I. INTRODUCTION 

In two-dimensional symbology [1], nonbinary character such 
as alphabet, number, etc., is two-dimensionally expressed as 
pattern of black and white pixels, denoted as binary '1' or '0', 
in the record media. These pixels are sometimes disturbed by 
stain, tear, scratch or blurring, and these make black pixels 
changed into white ones, or vice versa. These disturbances 
result in unidirectional errors[2][3] in a binary space. 

Each nonbinary character is usually expressed in a block 
of binary digits with fixed size, called byte. In some digital 
systems, 2 b-bit byte patterns are not fully assigned to q- 
ary characters, that is, the total number of g-ary characters 
used in the system, g, is less than 2h. Therefore, the remaining 
(2 — q) 6-bit byte patterns, are not used in the systems, which 
gives possibility to design efficient codes. 

This paper proposes a class of codes for g-ary data which 
can correct single unidirectional fc-bit byte errors in a binary 
space, called g-ary single unidirectional fc-bit byte error cor- 
recting (1-U6EC) codes, with q < 2h. 

II. CODE CONSTRUCTION 

Let a,c be elements in Galois field GF(pi), i.e., a,c e 
GF(pi), and b,d be elements in Galois field GF(p2), i.e., 
b,c € GF(p2). The set R(p1,p2) with p! x p2 elements de- 
fined by the following conditions is a ring: 

(1) <a,b> eR(pi,p2), 
(2) <a,b> © <c,d> = <a+! c,b+2 d>, 
(3) <a,b> <g> <c,d> = <a Xi c, 6 X2 d>, 

where +i and Xi are additive and multiplicative operations 
between two elements in GF(pi), i=l,2, respectively. 

Theorem 1 Let H, be a parity check matrix of an (ni,ni — 
r) systematic single error correcting code over GF(pi), where 
t=l,2, as shown below: 

H, = [ hihi...h^  ],H2=[ hi' hi'...hi',  ], 
where hj 

hy = (6o 
(a0 ar-i), a, e GF(Pl),  0 < I < r, 
br-i)   , b, e GF(p2), 0<l <r.  The linear code 

defined by the following parity check matrix H0 over R(pi,p2) 
is a code capable of correcting single errors with type <a,ß>. 

H0=[<h;.h;'> <h;.h'„' <h'ni,h»>...<h'ni,h»2>] 

Here, <h|,h"> (0 < t < m,  0 < j < n2) represents vector 
(<a0,b0>   ...   <ar_i,6r_i>)T. □ 

The code construction requires function / which maps from 
set V containing binary vectors with length b to ß(pi ,p2), i.e., 
/ : V —> R(pi,p2), satisfying the following three conditions: 

(i)    if/(i) = /(j),theni=j, 
(ii)   if (/(i) = <a,b» A (/(j) = <a,d» A (6 ^ d), 

then weight of i is equal to that of j, 
(iii) if (/(i) = <a,b>) A (/(j) = <c,b» A (a? c), 

then i and j are unordered, 
where i and j are binary vectors each having length b. 

Encoding Procedure: The following notations arc used 
in the algorithm to construct g-ary 1-U6EC codes. 

dr. g-Ary character, 1 < i < K. 
<a,i,bi>: Information element in i?(pi,p2), \ <i< K. 
<äj,bJ>: Check element in R(p1,p2), 1 < j < R. 
d;: Binary information vector with length 6, 1 < i < K. 
Pj: Binary check vector with length 6, 1 < j < R. 
/_1: Inverse function of /. 
g: One-to-one function from set of g-ary characters to set 

{/(x)|Vx e v}. 
h:   One-to-one function from R(pi, p2) to set of pi x p2 

binary vectors each having length b. 

Let (di,d2,... ,df;) be an input g-ary information vector. 
Under the above preparation, encoding is shown as follows: 

1) Determine the function f : V —> i?(pi,p2), where V has 
q vectors, q < 2h. 

2) Obtain information element  <a.;,6j>  by  <ai,b{>   = 
g(di), where 1 < i < K. 

3) Obtain check element <äj,bj >,  1  < j  <  R, which 
satisfies the following equation: 
0 = (<ai, fci>,..., <bK, bK>, <ai, Si>,..., <aR, bR>) ■ HT, 
where H is an R X (K + R) shortened matrix of H0, and 0 is 
a 1 x (K + R) zero matrix. 

4)_Obtain d, = /_:1(<a,,fc,>) for 1 < i < K and p, = h( 
<ä3,b}>) for 1 <j<R. Finally, (di,d2, ...,dA',pi, ...,PR) 

shows the encoded output. 

III. EVALUATION 

Fig 1. shows that the codes are more efficient than the con- 
ventional codes which can correct single unidirectional byte 
errors with q = 2b, i.e., 26-ary l-U&EC codes[3] and the single 
symmetric byte error correcting codes [2]. 

Conventional Codes Capable of Correcting 
 53S<?^64 Single Unidirectional Byte Rrrors [2][3] 

CD   12 

-36^?S52,/?(4,16) 
21S?^35,/?(2,32) 
2g9g20,R(2,32) 

«(4,16) 
161 \ 

Ä(2,32) 

.._'        511 

7,396 

5,730 

J123 

Ä(2,32) 

100 Ik 10k 
Information Byte Length (k) 

Fig.l: Relation between the information byte-length and the 
check bit-length for g-ary 1-UfcEC codes, where 6 = 6. 
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I 
Abstract — Wiberg et al. [6] proposed graphical code 

realizations using three kinds of elements: symbol 
variables, state variables and local constraints. We 
focus on normal realizations, namely Wiberg-type re- 
alizations in which all symbol variables have degree 1 
and state variables have degree 2. 

A natural graphical model of a normal realization 
represents states by leaf edges, states by ordinary 
edges, and local constraints by vertices. Any such 
graph may be decoded by message-passing (the sum- 
product algorithm). 

We show that any Wiberg-type realization may be 
put into normal form without essential change in its 
graph or its decoding complexity. 

Group or linear codes are realized by group 
or linear realizations. We show that an appropriately 
defined dual of a group or linear normal realization 
realizes the dual group or linear code. The symbol 
variables, state variables and graph topology of the 
dual realization are unchanged, while local constraints 
are replaced by their duals. 

I. SUMMARY 

Tanner [5] founded the subject of "codes on graphs," build- 
ing on Gallager's work on low-density parity-check (LDPC) 
codes [2]. A "Tanner graph" is a bipartite graph in which 
there are two types of vertices, representing symbol variables 
and local constraints (e.g., parity checks). Tanner also devel- 
oped the algorithm now generically known as the "message- 
passing" or "sum-product" algorithm for decoding codes on 
graphs, generalizing Gallager's APP (a posteriori probability) 
decoding algorithm, and proved that this algorithm performs 
exact APP decoding on arbitrary cycle-free graphs. 

Wiberg et al. [6] made an important advance by introduc- 
ing a third type of vertex, representing state variables. They 
thus made connections with trellis representations of codes, 
and with turbo codes and turbo decoding algorithms. Since 
this work, "codes on graphs" have become the common intel- 
lectual foundation for the study both of moderate-complexity 
codes such as traditional block and convolutional codes, and 
of capacity-approaching codes such as turbo codes and LDPC 
codes [1, 3]. The more powerful codes are based on graphs 
with cycles; their graph-based decoding algorithms have been 
shown empirically to work very well, even though few theo- 
rems are known for graphs with cycles. 

In this paper, we consider Wiberg-type realizations in 
which symbol variables and state variables are restricted to 
degrees 1 and 2, respectively, called normal realizations. We 
show that such a restriction involves no loss of generality nor 
increase in graphical or decoding complexity. With this re- 
striction, we are able to prove a powerful and general duality 
theorem which applies to group or linear graphical models of 
arbitrary topology— in particular, to graphs with cycles. 

A Wiberg-type realization [6] is based on a set of symbol 
variables {Ak,k S I A), a set of state variables {Sj,j € is}, 
and a set of local constraints {Ci,i S ie}, constraining some 
subset of the variables. The realization generates a code C 
consisting of all symbol configurations a that occur as part of 
some global symbol/state configuration (a, s) that satisfies all 
local constraints. In the linear or group case, each variable 
is a vector space or group, the local constraints are linear or 
group codes, and the code C is then a linear or group code. 

The degree of a variable is the number of local constraints 
in which it is involved. A Wiberg-type realization is normal 
if the degree of each symbol variable is 1 and of each state 
variable is 2. For example, a conventional state realization 
(trellis) has local constraints corresponding to trellis sections 
that involve triples (sk,o.k, Sk+i),k € Z, and thus is normal. 

A normal realization is naturally represented by a normal 
graph consisting of degree-1 leaf edges representing symbol 
variables Au, degree-2 ordinary edges representing state vari- 
ables Sj, and vertices representing local constraints CV An 
edge is connected to a vertex if the corresponding variable is 
involved in the corresponding local constraint. 

It is easy to show that any Wiberg-type realization may 
be converted to a normal realization by replicating variables. 
The normal graph of the resulting realization looks essentially 
the same as the Wiberg-type graph of the original realization, 
and may be decoded with the same complexity. 

The dual realization of a group or linear normal realiza- 
tion is the realization in which each variable is replaced by its 
character group (the same variable, if its alphabet is finite), 
each local code is replaced by its dual code, and a sign in- 
verter is inserted in each ordinary edge. We prove that a dual 
realization realizes the dual group or linear code, regardless 
of the topology of the associated normal graph. This result 
greatly generalizes Mittelholzer's result [4] for dual trellises, 
and shows that the dual of any code may be realized by use 
of the same graph and same state spaces as the primal code. 
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Abstract — The graphical representation of codes 
has opened the way to soft decoding by belief propa- 
gation (BP), which extends the usual soft Viterbi de- 
coding. This simple algorithm is most often used for 
constructing and evaluating graphical codes. We show 
that belief propagation on graphs is not always appro- 
priate and that the algorithmic resources for graphical 
models are far more extended than BP. In particu- 
lar, we propose new approximate decoders based on 
the "conditioning technique" to solve the short cycles 
problem of graphical codes. 

I. INTRODUCTION 

On graphical representations, turbo-decoding is equivalent 
to the belief propagation (BP) algorithm [1]. BP on graphs 
converges to the exact posterior marginals as long as the graph 
has a tree structure [3]. Surprisingly, the algorithm still pro- 
vides a good approximation of posterior marginals even under 
the presence of cycles, as turbo-codes have revealed. This 
holds in particular when the graph has "long" cycles since, 
around a given variable, it can be well-approximated by a 
tree: measurements too far away from a given node have lit- 
tle influence on this node. 

The graphical construction of codes and decoders looks 
very promising, but it may be somewhat misleading however, 
because the construction relies on a single algorithm, which 
induces a confusion between the properties of the code itself, 
and those of the decoding algorithm. A "good" graphical code 
can be understood as a structure providing the highest de- 
gree of protection to each bit. This suggests high correlations 
between variables of the graph, so that many measurements 
bring information on each bit. This, in turn, suggests "com- 
pact graphs" containing many short cycles. But such graphs 
are precisely those for which BP is not expected to work well. 
This may explain why good graphical codes found up to now 
usually rely on large graphs. 

However, bayesian estimation for graphical models starts 
with BP, but also provides a wide range of techniques to deal 
with cyclic graphs. In particular, exact computations can be 
performed despite the presence of cycles. The price to pay 
is an increased complexity of the algorithm. The most inter- 
esting point is that exact and approximate methods can be 
mixed, which allows us to tune the trade-off between com- 
plexity and precision. 

II. EXPERIMENTAL FRAMEWORK : TWO-SCALE CODES 

There is an easy way of augmenting the compacity of a 
graphical code at low price, without disturbing too much its 
apparent structure (cf figure): simple parity bits can be re- 
placed by an ordinary algebraic code, whence the name two- 
scale codes (cf Tanner in [2]). Re-expanding the coarse scale 
structure to evidence each bit reveals that many cycles have 
been introduced in the fine scale. The figure gives an example 

Hamming code 

of such a code, seen at two different scales. One can imagine 
two algorithms for decoding this (26, 8) code: either BP on 
the fine scale graph (-b-), or BP on the coarse scale graph (-a-), 
i.e. the tetrahedron. Simulation results show that both algo- 
rithms converge rapidly, but the second one is much better. 
This phenomenon reveals that correlation between variables 
of the graph plays a central role in the performance of an esti- 
mation algorithm, and in particular that short cycles perturbs 
BP very much. 

III. DEALING WITH SHORT CYCLES : BEYOND BELIEF 

PROPAGATION 

Conditioning. Markov field theory explains a simple and 
elegant result: conditionally to a given variable Xa in the field, 
the remaining variables still obey a Markov field, the graph 
of which is obtained simply by removing vertex Xa from the 
original graph. Let us consider a graphical model composed 
of one cycle only. Removing one vertex in the graph opens the 
cycle, which yields a simple Markov chain structure, that is 
amenable to exact estimation through BP. This is the basis of 
the conditioning method, the originality of which is to propose 
a way of properly handling the variable that has been removed. 

Approximate conditioning. One interesting aspect of 
the conditioning method is to offer an alternate solution to the 
agregation procedure, which gets back to a tree (the "junction 
tree") by grouping variables. However, the overall complexi- 
ties of both methods are similar in many cases. But condition- 
ing has another interesting point: it leads to new approximate 
decoding algorithms that mix the conditioning method with 
approximate BP on graphs with cycles. The idea is to break 
only part of the cycles, and in particular short cycles, in order 
to obtain a simplified graph on which belief propagation will 
perform well. This simple strategy gives excellent results, at 
low cost, on graphical codes that resist the BP algorithms. 
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I 

Abstract — In a graph G = (V, E), a subset of ver- 
tices C (= code) is called t-identifying if for all v G V 
the sets Bt(v)nC consisting of all elements of C within 
distance t from v are nonempty and different. We 
study some properties of these codes. 

I. INTRODUCTION 

Let G = (V, E) be an undirected connected graph (finite or 
infinite). We denote by 

Bt(v) = {xeV:d(x,v)<t} 

the ball of radius t centred at the vertex v G V, where d(x, v) 
equals the number of edges in a shortest path between v and x. 
If d(x,v) < t, then we say that x covers v (and vice versa). 

A code C is a nonempty subset of V. Its elements are 
called codewords. The code C is a t-identifying code if the 
sets Bt(v) n C, t> G V, are all nonempty and different. 

This definition is motivated by fault diagnosis in multipro- 
cessor systems: a multiprocessor system can be modeled as 
an undirected graph where the vertices are processors and the 
edges the links in the system. For testing the system and 
locating one faulty processor, a set of processors is selected 
and each selected processor is assigned the task of testing the 
vertices within distance t, for malfunction. Whenever it de- 
tects a fault of any kind, an error message is issued, specifying 
only its origin. The minimum number of selected processors 
needed is the minimum size of a t-identifying code. 

II. A NEW LOWER BOUND FOR INFINITE GRIDS 

We focus on the following four infinite 2-dimensional grids: 
- the square grid, G\; 
- the square grid with one diagonal (or triangular grid), Gi\ 
- the square grid with two diagonals, G3; 
- the hexagonal grid, G4. 

A simple lower bound (see [12]) states that the smallest 

possible density d\' of a t-identifying code in G; (»' = 1, 2,3,4) 
satisfies 

where B, denotes the size of a ball of radius t in G; (size 
independent of the centre of the ball). Since for i = 1, 2,3, 4, 
these sizes are given by polynomials of the second degree in t, 
we have a lower bound on the density in Q(t-2). For the four 
grids, we improve this to n(t-1). 

III. NONEXISTENCE OF PERFECT CODES FOR t > 1 

A perfect t-identifying code is such that all codewords are 
covered only by themselves, and all non codewords are covered 

by exactly two codewords. A perfect 1-identifying code in G2 
is given in [12]. 

We  prove   that  in  any   graph,   no  nontrivial   perfect   t- 
identifying code exists unless t = 1. 

IV. COMPLEXITY 

We prove that the following problem is NP-complete: 
INSTANCE: a graph G = (V, E), an integer k; 
QUESTION: is there a 1-identifying code G C V of size at 
most fc? 
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Abstract — Randomized constructions are presented 
for a family of linear-time encodable and decod- 
able error-correcting codes using irregular expander 
graphs. These codes can be encoded in constant time 
and decoded in at most logarithmic time if a linear 
number of processors are used. 

I. INTRODUCTION 

We construct a family of linear-time encodable and de- 
codable error-correcting codes. These codes can also be 
encoded by circuits of linear-size and constant depth and 
decoded by circuits of linear-size and at most logarithmic 
depth. The size of a circuit is defined as the number of 
vertices, while the depth of a circuit is defined as the max- 
imum length of a directed path in the circuit. The use 
of irregular expanders is motivated by a recent indication 
that irregular graphs give better decoding performance 
than regular graphs [2]. 

II. ERROR REDUCING CODES 

We refer to message nodes as left nodes and check node 
as right nodes. We will further use x and c to represent 
left and right nodes, respectively. 

Definition 1 A code 71 ofrn message bits and (1 — r)n 
check bits is an error reducing code of rate r, error reduc- 
tion e, and reducible distance 6 if there exists an algorithm 
that, given an input word that differs from a codeword 
w € 1Z in at most n < Sn message bits and v < 5n check 
bits, outputs a word that differs from w in at most tv 
messages bits. 

Definition 2 A bipartite graph is an (a,ß) expander if 
any subset S consisting of at most a fraction a of left 
nodes has at least ß\5(S)\ right node neighbors, where 
6(S) is the set of edges attached to nodes in S. 

We will sometimes refer to an (a, ß) expander of rn left 
nodes and (1 — r)n right nodes as an {rn, (1 — r)n,a,ß) 
expander. 

Theorem 3 If B is an irregular (a, f + j- expander 
where dXiTnin is the minimum degree on the left nodes of 
B, then 1Z(B) is an error reducing code of error reduc- 
tion A and reducible distance 

maximum degree on the left nodes of B. 

Theorem 4 If B is an irregular (a, j^- ■ d        ) expander 

and dx,min > |c/x,max where dXimin and dx,max are the 
the minimum, and m.aximum degrees on the left nodes of 
B, then H(B) is an error reducing code of error reduction 
| and reducible distance ^. 

III. ENCODING AND DECODING 

The cascading method that we use in our construction 
was originally developed by Luby et al. for the construc- 
tion of erasure codes [1]. Let each graph in the set {Bi} of 
irregular expander graphs have alk left nodes and al+1k 
right nodes. We associate each graph with an error re- 
ducing code TZ(Bt) that has alk message bits and al+1k 
check bits, 0 < i < m.  We also use an error correcting 

check l-a code C that has am+1k message bits and 
bits. To decode C(B0, ■ ■ ■, Bm,C), we simply decode the 
individual codes TZ(B0), ■ ■ ■ ,TZ(Bm),C in reverse order. 
By choosing a code C that can be encoded and decoded 
in quadratic time and choosing m such that am+1k « \/k, 
we insure that the code C(BQ, ■ • ■, Bm,C) can be encoded 
and decoded in linear time. 

Theorem 5 Let Bi be an irregular (alk,al+1k,a, | + 
2 —) expander where dx^min is the minimum degree of 

the left nodes of Bt, 0 < i < m. Let C be an error 
correcting code of am+1k message bits and a

1_Q
k check 

bits, vm+l k « \fk,  that can correct a random 2d, 
fraction of errors, where dX)max is the maximum degree 
of the left nodes of a Bt. Then C(B0, • • •, Bm,C) is a rate 
1 — a error-correcting code that can be encoded in linear 
time and can correct a random 

in linear time. 
2d, fraction of errors 

Theorem 6 Let Bi be an irregular (alk,at+1k,a, yjj + 
and dj mjn) expander, dx,min > ^dXtmax, where dx 

dx,max are the minimum and maximum, degrees of the left 
nodes of Bx, 0 < i < m. Let C be an error correcting code 
ofam+1k message bits and a

1'_a
k  check bits, am+1k ss 

Vk, that can. correct a random ^ fraction of errors. Then 
C(BQ, ■ ■ ■, Bm, C) is a rate 1 —Q error-correcting code that 
can be encoded by a linear-size circuit of constant depth 
and can correct a random s fraction of errors in a linear- 
size circuit of at most logarithmic depth. 

, where dx,max is the    m 

[2] 

[3] 
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Abstract — Simple algorithm constructing search 
trees for the given set of binary words is presented. 
It is shown that the average cost of result of this al- 
gorithm, and, hence, the average cost of the optimum 
search tree is near to their natural lower bound. 

I. INTRODUCTION 

The problem of construction of a binary search tree for any 
set of binary words has wide applications in computer science, 
biology, mineralogy, etc. Construction of a tree of minimum 
cost has attracted attention of many authors [1], [2], [3], It 
is known to be an NP-hard problem [4], therefore the prob- 
lem arises to find simple algorithms for constructing nearly 
optimum trees. We show in this paper that there is a simple 
algorithm to construct search trees which are sufficiently close 
to the optimum tree on average. By means of this algorithm 
we prove that for the optimum tree the average number of bits 
to be checked is near to its natural lower bound, i. e., the bi- 
nary logarithm of the number of given words: their difference 
is less than 1.04 bit. 

II. STATEMENT OF THE PROBLEM AND THE MAIN 

RESULT 

Let a set of m binary words of length n, (m > 0, n > 1) 
be given. Let us define the cost of the search tree L by the 
equality C(L) = — ^"Li Li, where Li is the number of bits 
required for identification of the i-th word. 

We denote by Sn,m the set of the initial data, i. e. the col- 
lection of all sets of m binary words of length n (n > log2 m). 

Now let us assume that an algorithm F builds a tree F(S) 
from the set S 6 Sn,m- As we will further consider randomized 
algorithms, it will be convenient to denote by C(F(S)) the 
expectation of the cost of the tree C(F(S)) related to the 
measure given by the considered algorithm. Let us define now 
the average cost tntm{F) of the algorithm F as follows: 

tn,m(F) 
Card<?n,i 

■    £   C(F(S)), 

where CardSn,m means the cardinality of the set Sn,m- 
Now we consider, perhaps, the simplest randomized algo- 

rithm of construction of a search tree, which will be denoted 
by R. Its work can be described as follows. 

Description of the algorithm R   This algorithm makes a 
binary search tree from an arbitrary set of m binary words 

^his work was supported by RFBR Grant 98-01-00772. 
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of length n. If the given set contains only one word then the 
algorithm returns the simplest tree consisting of one leaf and 
stops. 

Otherwise, the randomly chosen position is brought into 
correspondence with the root of the tree. For each of the 
parts, into which this check divides the entire set of words, 
the search tree is constructed by the same method. 

The main result of this paper is the following theorem: 

Theorem 1 For the average cost of the algorithm R the fol- 
lowing inequality holds: 

,„s     , 29      log, (2m) 
tn,m(R) < log2 m+ — -    B2^    ;- (1) 

From this result the following corollary is readily deduced: 

Corollary 1 Let Fopt be the algorithm which builds an opti- 
mum tree for each data set.  Then 

/r-,    N   • ,   ' 29      log, (2m) 
tn,m(Fopt) < log2 m + — -    52^    ;. 

The following corollary contains the estimate for the cost 
of the search tree constructed by R for almost-all data sets, 
instead of the average estimate. It is an obvious consequence 
from the Markov-Chebyshev inequality. 

Corollary 2 Let us assign equal probability to every set S 
from the set of initial data Sn,m (m > 2, n > log2 m). Then 
for every e > 0 the inequality holds: 

29/28 
P{S: C(R{S)) < (1 + e) log2 m} > 1 - 

e log2 m 

The same estimate evidently holds for the cost of the opti- 
mum search tree. 
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Abstract — Binary prefix-free codes in which all 
codewords end with "1" are considered. A recursion 
is given to construct all "optimal" 1-ended codes and 
to compute the number of such codes with n code- 
words. 

I. INTRODUCTION AND DEFINITIONS 

The problem of finding an optimal D-ary prefix-free code for 
coding a source with finite output alphabet and known output 
probabilities has been solved by Huffman [4]. In [1], Berger 
and Yeung considered the same problem restricted to binary 
codes whose codewords all end with a "1". As all codes with 
the same multiset of codeword lengths are equivalent and form 
an equivalence class, it is enough to look at only one code in 
each class. Berger and Yeung found a family of classes called 
potential classes, which contains all optimal codes. In [2], 
Capocelli et al. restricted the family of classes in which all 
optimal codes must lie to the e-potential classes. Golin and 
Chan [3] found a polynomial-time algorithm for finding the 
best one-ended code for a given probability distribution. 

Our contribution is to determine the family of optimal 
codes exactly. We also give a method to compute, for any 
n > 1, the number of optimal classes of codes with n code- 
words. 

We consider probabilities in non-increasing order and col- 
lect them into a probability vector p = (pi,.. .,pn). A code 
with codeword lengths wi < • • • < wn has length vector w = 
(wi,.. .,wn) and multiplicity vector x = (xi,.. . ,:rmax; wt), 
where x, is the number of codewords of length i. Length vec- 
tors and multiplicity vectors determine each other uniquely. 
Our optimality criterion is the following. 

For length vectors w and v with n components, w is better 

than v if J21=i WiP* — Xw=i V»P» ^or a^ probability vectors p 
and if there is at least one probability vector for which equality 
does not hold. This defines a partial ordering. A code with 
length vector w is better than a code with length vector v if 
w is better than v. A multiplicity vector x (corresponding 
to a length vector w) is better than a multiplicity vector y 
(corresponding to a length vector v) if w is better than v. 

A length vector is optimal if there is no better length vector 
of the same length. Optimal multiplicity vectors and optimal 
codes are defined accordingly. 

II. ALL OPTIMAL MULTIPLICITY VECTORS 

Theorem 1: Let f(xi,...,xn) = YZ=i xi2~* + xn2~n. A 
multiplicity vector is optimal if and only if it has one of the 
following forms (X is a binary string that can be empty): 

• (X,a,b,b,b) with b — a > 2 even and f(X,a,b) = 1; 

• (X, a, b, b, b - 1) with b - a > 2 even and f(X,a, b) = 1; 

• (X,a, a,a, b) with 1 < b < a and f(X,a) = 1. 

Theorem 2: From the optimal multiplicity vector (1,1,1,1), 
the following operations on multiplicity vectors allow to con- 
struct all optimal multiplicity vectors; moreover, the construc- 
tion is unique in the sense that every optimal multiplicity vec- 
tor can be constructed by only one sequence of operations: 

• (X, a, a, a, 6) i—> (X,a,a, a,b + 1)    (1 < 6 < a — 1); 

• (X,a,b, b, b) i—> (X,a,b,b,b,l)    and     i—► (X,a — 
1,6 + 1,6 + 1,6)    (b-a > 0 even, a > 1); 

• (X,0,b,b,b)>—*(X,0,b,b,b,l)    (6 > 2 even); 

• {X, a, 6,6,6 - 1) i—v (X, a, b,b,b) (6 - a > 2 even); 

Corollary: Denote by A(n) the number of optimal multi- 
plicity vectors whose components sum to n. Then A(n) = 

Eo<a<n/3 £i<(xn/3 9(n,a. &). where 9 behaves as follows: for 
1 < n < 4, g(n,a,b) = 1 if and only if a — b = 1 and 
g(n,a,b) = 0 otherwise. For n > 5, g satisfies the following 
recursions: 

1. g(n,b,l)=     £     g(n-l,a,b)    (6 > 1); 

b—a even 

2. g(n, a, b) = g(n - 1, a, b - 1)    (2 < 6 < a); 

3. g(n, a, b) = g(n — 1, a, 6 — 1)    (6 — a > 2 even, a > 0); 

4. g(n, a, b) = g(n — 1, a + 1, b)    (6 — a > 1 odd, a > 0). 

The table below gives the first values of A(n). 

n A(n) n A(n) n A(n) n A(n) 
1 1 11 13 21 174 31 1574 
2 1 12 17 22 219 32 1929 
3 1 13 23 23 278 33 '2362 
4 1 14 30 24 348 34 2881 
5 2 15 39 25 437 35 3511 
6 3 16 50 26 544 36 4264 
7 4 17 65 27 678 37 5174 
8 5 18 83 28 839 38 6258 
9 7 19 107 29 1039 39 7560 

10 9 20 136 30 1279 40 9107 

'This work was performed while the author was with the Sig- 
nal and Information Processing Laboratory, ETK Zürich, Zurich, 
Switzerland. 

Tab. 1: The number A(n) of optimal length vectors of length n. 
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1 
Abstract — We study the asymptotic growth of or- 

dered trees, and give important insights in coding 
of trees from the information theoretic viewpoint. 
Specifically, we give the optimal length function in a 
sense that the Kraft inequality is satisfied with equal- 
ity. It will be revealed that the commonly used pre- 
order coding for special classes of trees are asymptot- 
ically tight, but not always for many of trees. 

I. fc-ARY TREES AND GENERALIZED CATALAN NUMBERS 

For fc > 2 we define a fc-ary tree T as follows: either T is 
empty or it has a specific node called its root that is connected 
to Ti,T2,... ,Tk, each of which is a fc-ary tree. We denote by 
T^m) the set of all fc-ary trees with m internal nodes. The 

cardinality ck,m of 7^m) is known as the generalized Catalan 
number, 

_       1       /fcm+l\ ,,-. 
,m      km + 1 V     m     I 

Although each fc-ary tree having m internal nodes is often 
identified with a binary pre-order prefix sequence of length 
km + 1, the following theorem suggests the existence of more 
efficient code for fc-ary trees when fc is greater than two. 

Theorem 1  [1] For fc > 2, we have 

oo 

Y^ ck m2"{9(*')m+lo82(''"/(*'~1))> = 1, (2) 

where g(k) = fclog2fc - (fc - l)log2(fc - 1) = kh(l/k) and 
h(p) = -plog2p - (1 - p)log2(l - p) is the binary entropy 
function. 

II. k-ARY TREES 

Let us extend the results of the fc-ary tree in the previous 
section to that of the k-ary tree, where k = (fci, fc2, • • •, ks) is 
a vector of positive distinct integers. 

Thus, a k-ary tree T is recursively defined either to be a 
single node (leaf) or to have a specific node called its root that 
is connected to T\,T2,..., Tk. for some fc;, each of which is a 

k-ary tree. We denote by T^n) the set of all k-ary trees with 
n nodes, including both external and internal nodes together. 

From the symbolic consideration, it can be deduced that 
the generating function 

U = Uk(z) =   JUk.nZ" 

satisfies the following functional equation: 

U = 2 + zUk' + zUkl- + ■ 

where Uk.,i is the cardinality of Tk" , 
k-ary trees of size n. 

zU A-.- 

(3) 

(4) 

that is. the number of 

Then, the coefficient Uk,n is given by using the generalized 
Catalan numbers, 

«k,n 

)-> k:n:=n 
n \ ni,n2, ■ ,ns,n- Y^Uini 

(5) 
Each term in the above sum (5) represents the number of trees 
which have rn internal nodes having fcj outgoing branches for 
i = l,...,s. 

The next theorem answer the size of which term in the 
above sum is maximum. 

Theorem 2 

min ■ 
u>0 

=       max       e 

EL,,-1 
W(po,Pl P.-) 

where H(p0,Pu ■ ■ ■ ,ps) = £i=o -Pilogpi is the entropy. 
(6) 

III. OPTIMUM LENGTH FUNCTION FOR k-ARY TREE 

CODE 

Setting 
1       1 + M*

1
 + • + Ü' k* 

where 

1 + ükl + ÜK'2 + ■ ■ ■ + Ük"   = k!Ükl  + k2u'2 

(7) 

+ ksü
k\ (8) 

we can deduce from analytical considerations that p is the 
dominant positive singularity of Uk(z), and 

Uk{p) = U^K-
1
) = Ü. (9) 

That is, we have 

Theorem 3 

2jwk.n« -{(logK)n+log 5}   _ = 1. (10) 

Thus, the length function l^(n) = (log«)n. + logü satisfies 
the Kraft inequality with equality. This function is best possi- 
ble in a sense that the coefficient of the linear term cannot be 
made smaller than log« so far as we want to have separable 
codes for k-ary trees. 
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Abstract — A multilevel arithmetic coding algo- 
rithm is proposed to encode data sequences with large 
or unbounded source alphabets. The algorithm is uni- 
versal in the sense that it can achieve asymptotically 
the entropy rate of any independently and identically 
distributed integer source with a finite or infinite al- 
phabet, as long as the mean value is finite. 

I. INTRODUCTION 

In many data compression systems, one often has to ef- 
ficiently compress integer sequences. For example, in run- 
length coding, one has to efficiently encode a sequence of runs 
of 0's and l's, which is transformed from the original binary 
sequence; in grammar-based coding[4], one has to efficiently 
compress a sequence of integers with potentially unbounded 
number of distinct integers. 

When the size of the alphabet from which data sequences 
are drawn is large enough, however, the problem of universal 
compression of these data sequences is not as simple as it 
may look like. Due to the well-known underflow and overflow 
problems, finite precision implementations of the traditional 
adaptive arithmetic coding[2] cannot work if the size of the 
source alphabet exceeds a certain limit. On the other hand, 
although some existing coding schemes such as the Golomb 
codes, Elias codesfl], and their variants can process integer 
sequences with infinite alphabets, they are not universal in 
the sense that, for most memoryless sources, their compression 
rates are strictly above the entropy rates of these sources. 

In this study, we propose a new practical coding method, 
called multilevel arithmetic coding, to encode data sequences 
with large or even unbounded alphabets. For any data se- 
quence X = X1X2 •■■x„ to be compressed, let Sx denote the 
set that consists of all the distinct symbols appearing in X. 
In general, sis X gets longer and longer, Sx may grow without 
bound. This new method converts the dynamically changing 
set Sx into a dynamic tree, whose leaves represent small sub- 
sets of Sx and, together, form a partition of Sx- For each 
symbol a;,- in the sequence X, let y,- denote the path in the 
tree from the root to the leaf containing the symbol #,-. Let z; 
denote the index of a;; in the corresponding leaf sub-alphabet. 
The sequence X is then fully represented by the sequences 
V = J/ij/2 • • • J/n and Z = z\Zi • • • zn. From information the- 
ory, we have 

H(X) = H(Y, Z) = H{Y) + H(Z\Y), (1) 

where H(X), H(Y, Z), and H(Y) are the empirical entropy of 
the input sequence X, the path and index sequence (Y, Z), and 

1This work weis supported in part by the Natural Sci- 
ences and Engineering Research Council of Canada under Grant 
RGPIN203035-98, by the Premier's Research Excellence Awards of 
Ontarion, and by the Communications and Information Technology 
Ontario. 

the path sequence Y, respectively, and where H(Z\Y) is the 
empirical conditional entropy of the index sequence given the 
path sequence. The above equation implies that to encode X, 
one may instead encode Y first and then conditionally encode 
Z given Y. This forms the information theoretical basis for 
the proposed multilevel arithmetic coding algorithm. 

II. ALGORITHM DESCRIPTION AND OPTIMALITY 
RESULT 

Consider the general case that the alphabet may increase 
without bound, and the decoder does not know how it grows. 
To encode such a data sequence X = x\Xv-xn, we com- 
bine Elias codingfl] with a dynamically updated binary search 
tree. The proposed algorithm works as follows: For each sym- 
bol Xi in the input sequence, if it has not appeared before in 
X\ ■ ■ ■ Xi-i, use the Elias code to encode x; and then add this 
symbol to the corresponding leaf sub-alphabet and update the 
tree structure; if Xi has appeared before, then encode the cor- 
responding path in the dynamic tree and the index in the cor- 
responding leaf sub-alphabet. For the details about how the 
dynamic tree is updated, and other details of the algorithm, 
please see the full paper[3]. Here we just give the following 
theorem without proof. 

Theorem 1 For any i.i.d. integer source {a;,},^, with finite 
mean, the proposed algorithm can achieve asymptotically the 
entropy rate of the source. 

III. CONCLUSION 
The advantages of the proposed algorithm over the traditional 
adaptive arithmetic coding algorithm are two folds: (1) the 
proposed algorithm can be used to encode any data sequence 
no matter whether the corresponding source alphabet is finite 
or infinite, while the traditional adaptive arithmetic coding 
algorithm can work only for data sequences with bounded, 
small alphabets; (2) in the situation in which the traditional 
adaptive arithmetic coding algorithm can work, the proposed 
algorithm can reduce coding complexity and improve com- 
pression performance. 
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Abstract — We describe a mechanical model for rep- 

resenting discrete distributions and show that it leads 
to an efficient test for the possibility of key agreement 
unconditionally secure against active adversaries. 

I. MOTIVATION 

Assume that two parties Alice and Bob have access to 
independent realizations of the random variables X and Y, 
respectively, and that an adversary Eve knows Z. Let PXYZ 

be the joint distribution of the three random variables. Can 
Alice generate a string M such that Bob is convinced that 
M comes from Alice and not from Eve? Clearly, the answer 
to this question depends on PXYZ, more precisely, on the 
following property of PXYZ- 

Definition 1. Let X, Y, and Z be random variables. 
Then X is simulatable by Z with respect to Y, denoted by 
simy(.Z —► X), if there exists a conditional distribution Px\z 
such that PXY = PXY holds, where P^Y =Y^PYZ ■ Px\z- 

It is not surprising that Eve can impersonate Alice towards 
Bob if and only if simy(Z —> X) holds. In case of non- 
simulatability, the string M can be a sufficiently long block 
of independent realizations of X. 

Another, closely related, application of the simulatability 
condition is the following. The XFZ-scenario was consid- 
ered with respect to the question whether Alice and Bob 
can, by communication over an insecure channel, generate 
a secret key S about which the adversary has virtually no 
information. As the important quantities in this context, 
the secret-key rate S(X;Y\\Z), with respect to passive ad- 
versaries, and the robust secret-key rate S*(X;Y\\Z), secure 
against active adversaries with complete control over the com- 
munication channel, were defined [1]. It was shown that ei- 
ther S*(X;Y\\Z) = S(X;Y\\Z) or S*(X;Y\\Z) = 0 holds, 
and that the simulatability condition separates the two cases: 
If neither simy(Z -> X) nor simx(Z -* Y) holds, then secret- 
key agreement secure against active adversaries is possible at 
the same rate as against passive wire-tappers, but completely 
impossible otherwise. 

Unfortunately, the simulatability condition is a priori not 
very helpful since it is not clear how it can be verified in finite 
time, let alone efficiently. It is the goal of this note to present 
a new intuitive formalism based on a mechanical model, and 
to show that this leads to efficient criteria for simulatability. 

II. A MECHANICAL MODEL FOR DISCRETE 

DISTRIBUTIONS AND CHANNELS 

Let us consider the following representation of joint distri- 
butions of discrete random variables U and V. For simplicity, 
we assume that V is binary, i.e., V = {uo,i>i}- Then the 
constellation Mu-t-v is defined by the list of pairs Mu<-v := 
(Pu(u),Pv\u=u(vo))ueu-   The pairs of such a constellation 

M = (rrii,ai)i=i...i can be represented as mass points in the 
interval [0,1], where m; determines the mass of a point, and 
o; is its position. (This representation is one-dimensional be- 
cause V is binary.) 

nij m2 m3 m4 

. 1       •       I . 1        •        I I —« 

a, (=0)   % "3 a, (=D 

Definition 2. Let M = (rai,a;);=i...; be a constellation with 
52 mi = 1. The center of gravity of M is defined as ^rriiai. 
We say that a constellation M' = (m';,a;),=1 ,i is derived 
from M by mass splitting if it arises from M by replacing a 
pair (mi,Oi) by two pairs (pmi,cn) and ((1 — p)mi,a,i) for 
some 0 < p < 1. Furthermore, M' is derived from M by 
mass union if two pairs (rtii,ai) and (m,j,a,j) are replaced 
by the single pair (m; + mj,(miai + mjaj)/(mi + m_,)), 
corresponding to the sum mass in the center of gravity of the 
two masses. We call mass splitting and mass union basic mass 
operations. Neither of them changes the center of gravity. 
A constellation M is called stronger than M', denoted by 
M ~> M', if there exists a finite sequence of basic operations 
that transforms M into M'. 

simy (Z X)    is   equivalent   to 
The reason is that a channel Px\z 

Note   first   that 
Mzi-Y    ~»    Mxi-Y- 
can be translated into a sequence of basic mass operations 
in the mechanical model, and vice versa. However, this 
does not directly lead to an efficiently verifiable criterion for 
simulatability. It is only a reformulation of the condition. We 
now define a property of a pair of mass constellations which 
is efficiently checkable and equivalent to one constellation 
being stronger than the other. 

Definition 3. For a mass constellation M and for 0 < t < 1, 
we denote by £t(M) the leftmost masses of M of total amount 
t. A constellation M' is called more centered than M, 
denoted by M' X M, if for all t, c{et(M')) > c{lt(M)) holds, 
where c{S) stands for the center of gravity of a set S of masses. 

Given two mass constellations M and M', this condition 
can be checked in linear time. Indeed, note that M' -< M is 
equivalent to the fact that for every 1 < k < I', the center of 
the set of masses mi m'k is not left of (i.e., smaller than) 
the center of t m'+- ■+m>k{M). 
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Theorem 1. Let PXYZ be the joint distribution of ran- 
dom variables X, Y, and Z, where Y is binary. Then 
simy(Z -4 X) is equivalent to MX*-Y -< MZ*-Y ■ 

If Y is iV-ary, the distribution can be represented in an 
(N— l)-dimensional space. However, the straight-forward gen- 
eralization of the above condition is not always sufficient. It is 
an open problem to find an efficient test for the general case. 
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From Weak to Strong Information-Theoretic Key Agreement 
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Abstract — In the original definitions of information- 
theoretic secret-key agreement, the required secrecy 
condition was too weak. We show, by a generic reduc- 
tion, that it can be strengthened without any effect 
on the achievable key-generation rate. 

I. MODELS OF INFORMATION-THEORETIC 
SECRET-KEY AGREEMENT 

Motivated by Wyner's wire-tap channel [7], different set- 
tings for information-theoretic secret-key agreement have been 
proposed by Csiszär and Körner [3] and Maurer [5]. Whereas 
in the model of [3], Alice is connected to Bob and Eve by a 
noisy broadcast channel characterized by Pyz\x (Alice sends 
X and Bob and Eve receive Y and Z, respectively), only corre- 
lated information, but not insecure communication is regarded 
as a resource in the model of [5]. Here, the parties Alice and 
Bob are connected by a noiseless and authentic but otherwise 
insecure channel and have access to random variables X and 
Y, respectively, whereas the adversary knows Z. 

In both settings, the capability of generating a secret key 
has been defined asymptotically as the maximal achievable 
key-generation rate (i.e., the number of resulting key bits per 
channel use or per realization of the triple XYZ, respectively) 
such that the adversary obtains information at an arbitrar- 
ily small rate only. The corresponding quantities were called 
the secrecy capacity Cs(Pyz\x) [3] and the secret-key rate 
S(X;Y\\Z) [5], respectively. However, the secrecy condition 
which only limits the rate at which Eve obtains information 
about the key does not imply that the adversary's informa- 
tion is bounded in an absolute sense, let alone negligibly small. 
This is clearly unsatisfactory and motivated the definition of 
strong variants of secrecy capacity Cs(Pyz\x) [2] and secret- 
key rate S(X;Y\\Z) [4], requiring that the adversary's infor- 
mation about the resulting key is small in total. 

In [4], a lower bound on S(X;Y\\Z) was shown, whereas 
in [2], a result similar to Corollary 2 below was proved 
(with techniques different from ours). In this note we de- 
scribe a generic method for strengthening the security of any 
information-theoretic key agreement by using only a negligible 
amount of extra communication from Alice to Bob and such 
that the effective key-generation rate is asymptotically equal 
to the rate with respect to the weak definition. 

II. A GENERAL METHOD FOR STRENGTHENING THE 
SECURITY 

Definition 1. Let e > 0 be a real number and let TV be a 
positive integer. A weak key agreement with parameters e and 
N (KA(£,N) for short) between two parties Alice and Bob 
and with respect to an adversary Eve outputs three random 
variables SA, SB, and U, known to Alice, Bob, and Eve, re- 
spectively, such that Prob [SA # SB] < e, H(SA) >.(1 — s)N, 
and I(SA; U) < eN hold.   

Such key agreement is called strong, denoted by KA{e,N), 
if the random variables SA, SB, and U satisfy the following 

department  of Computer  Science,   ETH   Zürich,   CH-8092 
Zurich, Switzerland. E-mail: {maurer,volf}®inf .ethz.ch 

more restrictive conditions. There must exist a string S with 
Prob [S = SA = SB] > 1 - e, H(S) = log \S\ > (1 - e)N, and 
I{S;U) <e. 

Theorem 1. Assume that a noiseless channel from Alice to 
Bob is given to which Eve has perfect read access. Then weak 
key agreement can be converted into strong key agreement 
such that the key is generated asymptotically at the same 
rate and the amount of required extra communication is 
asymptotically vanishing. More precisely, for every e > 0 
there exists a > 0 such that for all sufficiently large M 
and for all sufficiently large N, KA(e, N) can be reduced to 
K — (1 + o(\))N/M realizations of KA(a,M) such that the 
length len(C) of the message C sent over the insecure channel 
by Alice is of order len(C) = o(N). 

The proof idea is as follows. First, weak key agreement 
is repeated many times. Then, error correction information is 
sent from Alice to Bob (and hence to Eve), allowing Bob to re- 
construct Alice's sequence of weak keys with high probability. 
Finally, this string is transformed into a highly secret key by 
privacy amplification. Universal hashing, as proposed in [1], is 
not a good choice for hashing the string in this situation since 
the required amount of communication, i.e., the specification 
of a particular function from the universal class, would be too 
high (thus reducing the achievable key-generation rate in the 
broadcast-channel model). As a new method in this context, 
we use extractors [6] instead. This allows for keeping the extra 
communication negligible. 

Theorem 1 directly implies that in both models described 
above, the secrecy requirements can be strengthened without 
effect on the achievable key-generation rates. 

Corollary 2. C^{PYZ\x) = Cs(PYz\x) ■ 

Corollary 3. S(X;Y\\Z) = S(X;Y\\Z) . 
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I 
Abstract — Information hiding is analyzed as a com- 

munication game between an information hider and 
an attacker, in which side information is available to 
the information hider and to the decoder. Capacity 
formulas are derived. 

I. STATEMENT OF THE PROBLEM 

Information hiding is an emerging research area which en- 
compasses applications such as watermarking, fingerprinting, 
and steganography. This paper extends results from [1]; see 
[2] for more details. 

Consider a host-data source producing random variables 
X taking values in a finite alphabet X, a cryptographic-key 
source producing random variables K G )C, and a message 
source producing a message M from a message set M. The 
host data is a sequence XN = (X\, • • •, X?j). A cryptographic 
key K = (K\, • • •, KN) is available both at the encoder and 
the decoder. In particular, KN enables the use of random- 
ized codes. The pairs (Xi,Ki) are i.i.d. p(x,k). This model 
includes K = X as a special case [1]. The message M is uni- 
formly distributed over the message set M. The information 
hider passes X , K , and the message m through an embed- 
ding function JN, producing composite data XN that are made 
publicly available1. Next, the attacker passes XN through a 
random attack channel QN(yN \xN) to produce corrupted data 
Y   , in an attempt to remove traces of M. 

Both the embedding and the attack are subject to dis- 
tortion constraints, respectively EdN(xN, JN(X

N,m,kN)) < 
Di and EdN(xN,yN) < D2, where dN(xN,yN) = 

JJ 5Zfc=i d(xk,yk) is a distortion function on TV-tuples. Here 
d : X x X —» 2R+ is a bounded, nonnegative function. 

The rate of the code is R = -^ log \M\. The average proba- 
bility of error is Pe,N = r^jy £m P(4>N(Y

S, KN) ? m | M = 
m), where 4>N is the decoding function. A rate R is achiev- 
able for distortions {D\, D2), if there is a sequence of codes 
{M,fn,<t>N) subject to distortion D\, with rates RN > R such 
that Pe,N —* 0 as N —> 00, for any attack subject to distor- 
tion £>2. The information-hiding capacity C{D\,Di) is the 
supremum of all achievable rates for distortions (Di, D2). 

II. MAIN RESULT 

Consider first memoryless attack channels. Define a covert 
channel Q(x, u\x, k) (to be designed by the information hider), 
where u G U is an auxiliary random variable, U is an arbitrary 
finite alphabet, and £x . k   d(x,x)Q(x,u\x, k)p(x, k) < Di. 

Denote by Q and Q the sets of admissible covert and attack 
channels, subject to respective distortion constraints (D\, D2). 

The proof of Theorem 1 below relies on a proof of achiev- 
ability and a converse for a fixed attack channel and is closely 
related to work by Gel'fand and Pinsker [3]. 

JP. Moulin was supported by NSF grant MIP-97-07633. 
1XN is often referred to as the watermarked signal. 

Theorem 1 Assume the attacker knows Q and the decoder 
knows Q and Q. For any attack subject to distortion D2, a 
rate R is achievable iff R < C, where 

C max min    J(Q,Q), 
Q(x,u\£,k)eQQ(ylx)€Q 

(1) 

(U,X,K) X 

J(Q,Q) = I(U;Y\K) 

—>     Y    is   a 

I(U;X\K). 

Markov   chain,    and 

If K = X (host data available at the decoder), the solution 
becomes a saddlepoint of I(X; Y\X) [1]. 

III. CONTINUOUS ALPHABETS 

The results above can be extended to the case of infinite 
alphabets X,U,IC. The case of Gaussian X (~ A/"(0, a2)) and 
squared-error distortion measure d(x,y) = (x — y) is of con- 
siderable interest. When K = X, the hiding capacity is given 
by C = \ log (l + ^) if D2 < a2 + £>i, and 0 otherwise. 

Here ß = (1 ffiD   I     .  The optimal covert channel Q is 

given by X = X + Z, where Z ~ A/^O, D\) is independent of 
X. The optimal attack is the Gaussian test channel from R/D 
theory, with distortion level min(D2,c2 + D\). 

For blind information hiding (no key), the optimal attack 
Q(y\x) is again the Gaussian test channel, and the optimal 
Q(x, u\x) is the same distribution that achieves capacity in 
a problem studied by Costa [4]. The capacity is the same 
whether or not the host data are known at the decoder. 

If X is non-Gaussian with mean zero and variance a2, C 
above is an upper bound on hiding capacity. For small D\ and 
Z?2 (typical of many information-hiding problems), a remark- 
able result arises: the hiding capacity under the squared-error 
distortion metric is equal to | log (l + 51) independently of 

the statistics of X, asymptotically as D\,D2 —+ 0. 

IV. FURTHER EXTENSIONS 

The results above have been extended to the case of block- 
wise i.i.d. (Xi,Ki) and blockwise i.i.d. attacks. If (Xi,Ki) 
are i.i.d., then the optimal attack is memoryless. The frame- 
work developed in this paper can also be used to analyze the 
performance of a variety of information-hiding systems [2]. 
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We consider a cryptographic scenario of two honest parties A and B facing an active 
eavesdropper E. They share no secrete key initially but their final goal is to generate a 
shared information-theoretically secure key. We develop the special case represented in 
[1] where a random binary string is broadcasted by some center (like a satellite) over 
binary symmetric channels and received as X, Y, Z-strings with bit error probabilities 
£

A> 
S

BI 
£

E {
£

A
<£

E> 
£

B
<£

E) by legal parties and the intruder, respectively. The 
authentication protocol is a procedure to append some bit positions of X taken in line by 
certain rule to every message being transmitted from A to B. This rule can be chosen as 
some binary block code that compares messages and code words one-to-one. Party B 
accepts the message as original if and only if the fraction of bits in the received 
authenticator that agree with the corresponding bits of his string 7 exceeds some fixed 
threshold. Otherwise B rejects the message considering it to be false. It was remarked in 
[1] that the distance property of a code used for such authentication differs from the 
Hamming distance and it should be changed to semidistance. 

A simple construction of constant weight authentication codes based on linear 
binary codes which provide fixed minimum code semidistance was given in [1]. 

Using this construction we derive the formulas to estimate the probabiity that a 
modification of the message by an intruder is not detected by party B and the 
probability that B accepts the message if an intruder has not intervened at all. We 
propose several methods how to design authentication codes based on the use of 
nonlinear codes that can be more effective in some cases. 

Unfortunately, the use of any authentication code as a part of key sharing procedure 
turns out to be inefficient because it requires so long authenticators that results in a very 
small key rate. The way out of this situation is to consider the so called hybrid 
authentication that based both on a code authentication and on a hashing in the Almost 
Strong Universal class .We proof several statements and derive the formulas to 
estimate its efficiency. 

References. 
[1] U.M.Maurer, "Information-theoretically secure secrete-key agreement by NOT 

authenticated public discussion", Lecture notes in computer science,Advances in 
Cryptology, Eurocrypt'97,No. 1233,pp.209-225. 

0-7803-5857-0/00/$! 0.00 ©2000 IEEE. 
20 



. ISIT 2000, Sorrento, Italyjune 25-30,2000 

On Point-to-Point Communication Networks 

Lihua Song Raymond W. Yeung 
Dept. of Information Engineering Dept. of Information Engineering 
The Chinese Univ. of Hong Kong The Chinese Univ. of Hong Kong 

Shatin, New Territories Shatin, New Territories 
Hong Kong, China Hong Kong, China 

e-mail: lhsong7Qie.cuhk.edu.hk e-mail: whyeungfiie.cuhk.edu.hk 

Abstract — A point-to-point communication net- 
work is represented by (G, C), where G = (V,£) is 
a directed graph with vertex set V and edge set £, 
and C = [Cij, (i, j) € £] is a nonnegative-valued vector. 
A vertex in V represents a node in the communica- 
tion network, and an edge (z, j) represents a point-to- 
point discrete memoryless channel (DMC) from node 
i to node j whose capacity is dj. We assume that 
the channels in the network are independent of each 
other. An information source with entropy rate h is 
generated at source node s and recovered at sink node 
t with arbitrarily small probability of error. We show 
that the value of a max-flow from node s to node t in 
(G, C) must be greater than or equal to h. This results 
implies a separation theorem for network coding and 
channel coding in such a communication network. 

I. INTRODUCTION 

A point-to-point communication network can be repre- 
sented by (G, C), where G = (V, £) is a directed graph with 
vertex set V and edge set £, and C = [dj, (z, j) 6 £] is a 
nonnegative-valued vector. A vertex in V represents a node 
in the communication network, and an edge (z, j) 6 £ rep- 
resents a point-to-point discrete memoryless channel (DMC) 
from node i to node j whose capacity is dj. All the channels 
in the network are independent of each other. We assume that 
there are a source node s and a sink node t in G such that 
the information source is generated at node s and recovered 
at node t. In the network, there is a dedicated encoder Eij 
at node i (i ^ t) for each output channel (i,j) € £. Each 
encoder Eij receives all the information sent to node z via the 
channels (i',t) 6 £. At the sink node t, there is a decoder 
which recovers the information source. 

A code on a network of point-to-point channels can be very 
complicated in general, especially if the network is cyclic. In 
[1], we define a realizable code which covers almost all possible 
codes on a network. A triple (G, C, h) is admissible if there 
exists a realizable code on network (G, C) such that informa- 
tion can be transmitted at rate h from node s to node t with 
arbitrarily small probability of error. Define the capacity of a 
network (G, C) as the supremum of all h such that (G, C,h) 
is admissible. 

II. MAIN RESULTS 

Suppose there exists a realizable code on G such that an 
information source with entropy rate h generated at node s 
can be recovered at node t with arbitrarily small probability 
of error. A cut in G represents a collection of channels which 
separates node s and node t. A channel across a cut is called 
a forward channel if its direction is from node s to node t, 
otherwise it is called a reverse channel. If there is no reverse 

channel across the cut, the information source, the inputs of 
the channels across the cut, the outputs of the channels across 
the cut, and the reproduction of the information source by the 
decoder at node t form a Markov chain in this order. By the 
data processing theorem, the capacity of the cut (i.e., the total 
capacity of forward channels across the cut) must be greater 
than or equal to h. 

However, a cut may contain reverse channels, even if G is 
acyclic. In this case, the Markov chain to which we applied 
the data processing theorem above does not always hold. The 
main result in [1] is that the capacity of any cut must be 
greater than or equal to h. The following theorem resembles 
the Max-flow Min-cut theorem [2] in network flow theory. 

Theorem 1 If (G, C, h) is admissible, then the value of a 
max-flow from the source to the sink is greater than or equal 
to h. 

Ahlswede et al [3] studied the problem in which for all edges 
(i, j) 6 £, information can be sent from node i to node j 
noiselessly, i.e., dj = co. This is the network coding problem 
associated with the problem we study in this work, except ' 
that they consider multicasting the information source from 
the source node to possibly more than one sink node in the 
network. Let Rij be the coding rate of encoder Eij for (i, j) 6 
E, and let R = [Rij, (z, j) £ £]■ They proved that it is possible 
to multicast information at rate h from the source node to each 
sink node if and only if the value of a max-flow from the source 
node to each sink node in (G, R) is greater than or equal to 
h. Erom this result and Theorem 1, we can determine the 
capacity of a network. 

Theorem 2 The capacity of a network (G, C) is equal to the 
value of a max-flow from node s to node t. 

It also follows from this theorem that in our problem, asymp- 
totic optimality can always be achieved by separating network 
coding and channel coding. Generalization of our problem to 
multicasting the information source from the source node to 
a number of sink nodes is straightforward. 
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Abstract — We introduce the real, discrete-time 
Gaussian parallel relay network. This simple net- 
work is theoretically important in the context of net- 
work information theory. We present upper and lower 
bounds to capacity and explain where they coincide. 

I. INTRODUCTION 

In some contexts, cooperation between terminals in a multi- 
ple terminal system can enlarge the set of reliably achievable 
rates. For systems where power is of primary importance, such 
as in wireless or ad hoc networks, terminals can cooperate by 
sending signals with a common component. This common 
component coherently combines at a receiver, resulting in an 
increased effective power. Exploiting this requires common 
information at distributed points and synchronization of the 
carriers in a wireless system. Investigating how this can be 
accomplished is important for improving both real-world sys- 
tems and theoretical understanding of networks. 

To this end, we assume that carrier synchronization is fea- 
sible and introduce the real, discrete-time Gaussian parallel 
relay network, illustrated in Figure 1. We wish to find the 
capacity of the network when the only source of extrinsic in- 
formation is encoded into the signal X. The sole purpose of 
the relays is to get the information from X to a decoder observ- 
ing Y. We assume the noise processes are independent and 
are white with variances Ni, N2, and N. Further, we assume 
the network input and relays have average power constraints 
Px, Pi, and P2.   The network is thus parametrized by four 

S3 = signal to noise ratios (SNR's): Si = £*-, S2 = ff-, 
and S4 = ^-. This network is similar to the relay channel 
introduced in [1] and studied in [2]. It differs via Relay 2, 
which provides an important separation between the source 
and destination. 

II. UPPER BOUNDS TO CAPACITY 

Due to the presence of the relays, it is not surprising that 
tight upper bounds to network capacity are difficult to deter- 
mine. The first upper bound is a result of the data processing 
theorem applied to the broadcast side of the network. 

R<-I{Xn;Y1
n,Y2

n)<hn(l+Sl+S2). (1) 
n I 

The second upper bound is more involved and can be de- 
rived almost exactly as in [2] for the physically degraded Gaus- 
sian relay channel. 

R < max min[i In ((1 + Si)(l + (1 - a)S4)), 
o€[0,l] 2 

i In (l + S3 + S4 + 2v/^S7sl)] (2) 
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A similar bound holds with S2 in place of Si and the roles of 
S3 and S4 reversed. These bounds are in general tighter than 
the data processing bound applied to the multiple access side. 

Figure 1: The Gaussian parallel relay network 

III. ACHIEVABILITY RESULTS 
We first present results for the symmetric case Si = S2 and 
S3 = S4. We do this for two reasons. First, we reduce the 
parametrization from four SNR's to two, thus making presen- 
tation easier. Second, we highlight two fundamentally differ- 
ent approaches to communicating through this network. 

We first consider a natural staggered block coding scheme. 
Both relays decode a block of observations and then trans- 
mit identical corresponding codewords (with high probabil- 
ity). The relays achieve perfect cooperation in this case, but 
the scheme is limited since each relay must decode reliably. 
This scheme results in reliably achievable rates up to 

R- -ln(l + min[Si,4S3]). (3) 

When Si > 4S3, (3) and (2) coincide, determining capacity. 
The second approach views the signals Yi and Y2 as in- 

dependent observations of the input X. Each relay acts as a 
simple transponder, amplifying both signal and noise. If X is 
Gaussian, this combines the observations optimally (and the 
core signal component X coherently) before the multiaccess 
receiver noise Z is added. We can achieve rates up to 

*=H1 + T7frs7)- <« 
As the multiaccess noise power N becomes relatively small, 

i.e., as (i+2sS'+s ) ~~* *' ^ an<^ ^ coincide, and network 
capacity is i ln(l + 2Si). 

Combining these approaches simultaneously is inferior to 
using the better of the two schemes. However, time-sharing 
between schemes at different values of Si and S3 is beneficial. 
We present these results for a typical symmetric network. For 
an asymmetric network, coding schemes can be based on more 
general broadcast and multiple access approaches. We present 
a number of these generalizations. 

IV. CONCLUSION 
Intuition and study of the symmetric network suggest that the 
converses we have derived are not tight in general. 
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Abstract — In this paper we present a different view 
on the broadcast channel that fits better an asyn- 
chronous setting, where each receiver can "listen" to 
the broadcasted data at different time intervals. In 
this scenario, there is a "static" fixed amount of data, 
that needs to be transmitted to all receivers. Each re- 
ceiver wants to minimize the receiving time, and this 
way get the static data at the highest possible rate. 

I. CONCEPT DEFINITION 

In this work we define and analyze static broadcasting. In 
this broadcasting scenario, the sender has only a fixed common 
information to transmit to all receivers. We suggest the fol- 
lowing definition of the rate - the number of reliably received 
bits divided by the number of symbols the receiver has used to 
retrieve these bits (or, divided by the information gathering 
time). Under this definition, in principle, a receiver that listen 
through a better channel, may gather less channel symbols in 
order to estimate the transmitted message, and by this to in- 
crease its rate. In the saved time it can fetch more information 
from other transmitters. The term static broadcasting comes 
from the notion that the information the transmitter sends is 
fixed, static, and the same for all receivers. 

In this work, a broadcast channel is composed of single 
transmitter and d memoryless channels Wi, 1 < i < d, with 
common input alphabet through which the transmitter broad- 
casts to d receivers. The capacity region is defined as the 
closure of the set of all possible achievable rates. A rate 
(Äi, i?2, • ■•, Rd) is said to be achievable if for any e > 0 there 
exists a code with M words such that for all i, the ith re- 
ceiver can decode, with error probability smaller than e, the 
codeword using the first [log M/Ri\ channel symbols. The 
achievable rate region is given by the following theorem. 

Theorem 1 (Ri, R2, ■ ■ ■, Rd) is in the capacity region iff, for 
any 8 > 0 there exist input priors Pi, P2, ■ ■ ■ and a number K 
such that i Yl"Li I(Pt\ Wi) > Ri — 5 for alll <i < d, where 

ni = L&j"" 
In defining the capacity region for static broadcasting we 

utilized the possibility of transmitting the information at a 
higher rate if the receivers are not forced to be synchronously 
and simultaneously connected to the transmitter. The fact 
that there are various possible definitions of the capacity for 
the broadcast channel, depending on the subset of time the 
data is received, has been pointed out in, e.g., [1]. However, 
the setting we propose is novel. 

The proposed setting was further extended in [2]. For ex- 
ample, in [2] there is a setting where the receivers start receiv- 
ing at different arbitrary times, which may fit an IP. Multicast 
scenario. Another extension corresponds to data transmission 
over an unknown channel, using infinitely long codes (to allow 
a channel with unbounded small capacity). Finally, universal 
and sequential decoding schemes were investigated. 

II. EXAMPLES OF THE CAPACITY REGION 

A general method to find the capacity region for static- 
broadcasting to 2 channels, is as follows. Assume the channels 
conditional probabilities are W\{y\x),W2{y\x) and the corre- 
sponding capacities are Ci, C2 • Using the convexity of the mu- 
tual information, we may assume that the input prior to the 
channel is changed only at time points of the form t = ni 4-1. 
Hence, in the case of 2 receivers, we start with prior P and af- 
ter one of the receivers got all the information, it will quit, and 
in order to maximize the rate to the second receiver, we shall 
change the input prior to the one that achieves its capacity. 
Assuming I(P; Wi) > I(P;W2). Then, 

I(P;Wi)C2 
R^IiP^Wr) Ä2  = 

Ci + I(P;Wi) - I(P;W2y 

Of course, any point r\ < R\,r2 < R2 is in the capacity 
region. To get the complete capacity region we should take 
the union of the region above over all possible values of the 
initial input prior, P. 

In case where the capacity achieving prior is the same for 
all channels we can achieve simultaneously their point-to-point 
capacity. For example, two binary symmetric channels noisy 
and noiseless. In that case a simple code can be shown. Take 
any good systematic code for the noisy channel. The system- 
atic part (the information bits are the prefix of each codeword) 
is sufficient, of course, for the noiseless channel and impose an 
effective rate of 1 for that channel. The noisy channel receives 
the information at a rate determined by the code. 

In static broadcasting, unlike regular broadcasting, time 
sharing between two strategies is not a valid strategy. Hence, 
the capacity region is not necessarily convex. For example, 
suppose one communicates using 31 Japanese words and 31 
Hebrew words. A Japanese listener can differentiate 32 dif- 
ferent symbols (since all Hebrew words sound the same to 
him) and the same goes to a Hebrew listener. This broadcast 
channel leads to the capacity region in the figure below. 

static broadcast region 

regular broadcast region 

Hebrew listener 
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I. INTRODUCTION 

We consider the problem of broadcasting a bandlimited white 
Gaussian source on an additive bandlimited white Gaussian 
noise channel with two receivers. Several hybrid digital-analog 
joint source-channel codes are proposed. The design principle 
is based on bandwidth/power splitting and matched tandem 
coding. The distortion regions of these codes are presented. 

II. PROBLEM STATEMENT 

Consider a memoryless Gaussian source, {zi}?^, with zero 
mean and variance a2. The source is to be encoded and trans- 
mitted over a broadcast AWGN channel modeled by Zk = 
Y + Vk, where Y is the channel input, Zk and Vjt are chan- 
nel output and noise for the k-th user, k = 1,2. We assume 
that Zk,Y, and Vk are all m-dimensional, £[||Y||2] < mP, 
the components of Vk are i.i.d. with zero mean and variance 
Nk, k = 1,2, and 0 < M < N2. 

An ri-dimensional encoder, an, is a mapping of an n- 
dimensional source vector X to an m-dimensional channel in- 
put vector Y. Here, p = m/n is the bandwidth expansion 
factor (or the rate of the system in number of channel uses 
per source sample). We assume that p is fixed while m and 
n grow large. The decoder, ß„,k, for user A; is a mapping of 
an m-dimensional vector Zk to an n-dimensional vector Xk- 

Let D(Nk) = D(an,ßn,k,Nk) be the mean-square distortion 
between X and Xk- Shannon's capacity-rate-distortion limit 
dictates that 

D(Nk) > 
(1 + P/Nky 

1,2. (1) 

We are interested in the set of all possible pair 
(D(Nl),D(Ni)). 

III. ACHIEVABLE DISTORTION REGION 

A pair (di,d,2) is an achievable distortion point if there 
exists an encoder sequence {an} and decoder sequences 
{ßii.i, ßn<2} such that an satisfies the power constraint and 
lim,,-»«, £>(<*„, £„,*, AT*) = dk for k = 1,2. The achiev- 
able, distortion region is the collection of achievable distortion 
points [1]. 

IV. MAIN RESULTS 

Several hybrid-digital analog joint source-channel coding sys- 
tems are proposed. Details of these systems can be found in 
[2]. Fig. 1 shows the encoder for one of these systems (Hy- 
brid 3). This is valid for p > 1 (bandwidth expansion). For 
p < 1 (bandwidth compression), a dual of this system can 
be used [2]. In Fig. 1, the "Linear Encoder" corresponds to 
the analog part of the system. The performance of Hybrid 
3 is shown in Fig. 2. Here, p = 2, 101og10 P/Ni = 20 dB, 
and 101ogloP/W2  = 0 dB. Points A and C correspond to 

T»nd»m E-ta<ln 

Figure 1: Encoder of Hybrid Digital-Analog System For 
p > 1 (Hybrid 3). 

Achievable Region 

A 
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Figure 2:   Distortion Performances of Hybrid Digital- 

Analog Systems. 

traditional digital coding systems optimized for noise JVi and 
AT2, respectively. The "Time-Sharing" dash-dot curve is the 
time-sharing between these two systems (in linear scale, it is a 
straight line between A and C). The "Digital" dash-dot curve 
is a purely digital system presented in [3]. Fig. 2 shows that 
Hybrid 3 is superior to both "Digital" and "Time-Sharing" 
systems. The result shows that the region above and to the 
right of the heavy solid line is achievable. 
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I 
Abstract — The chain rule of information shows that 

log densities form Cauchy sequences, convergent in 
Li, proving information limits, Markov chain conver- 
gence, and existence of information projections. 

Let D(P\\Q) = EP\ogp(X)/q(X), A = E\\ogp(X)/q(X)\, 
and V = f\p — q\ be the information divergence, absolute 
information divergence, and total variation distance between 
probability measures P and Q with density functions p, q with 
respect to a dominating measure on a measurable space. The 
chain rule and the Pinsker-type inequality A < D + v2£>, 
deduced from V < \f2D (which implies that if D tends to 
zero then so does V and A) allow one to deduce in various 
settings that log densities provide Cauchy sequences conver- 
gent in Li, thereby establishing information limits including 
Markov chain convergence and information projections. 

I. MARKOV CHAINS 
Let {Xn} be Markov with stationary transition probability on 
a general state space and let Pn be the distribution of Xn. 
Theorem 1. Markov Chain Convergence. If {Xn} is a re- 
versible Markov chain with a unique invariant probability dis- 
tribution P*, then limD(P„||P*) = 0 if and only if the se- 
quence D(Pn\\P*) is eventually finite. 
Proof: Let Dn= D(Pn\\P*). The chain rule gives Dm-Dn, 
for n > m, as a divergence (between conditional distribu- 
tions for Xm given Xn), establishing monotonicity and con- 
vergence of D„, so that Dm — Dn 4Üasn,m-> oo, and 
thus via the Pinsker-type inequality E\ \ogpm(Xm)/p*(Xm) — 
logp„(X„)/p*(X„)| -> 0, so that logpn(Xn)/p*(Xn) is a 
Cauchy sequence, convergent in Li. Fritz [4] used information 
inequalities for reversible chains to show the total variation 
convergence of P„ to P*, so that p*(Xn)/pn(Xn) converges 
to 1 in probability. Thus logpn(X„)/p*(X„), which we have 
shown to be convergent in Li, must have L\ limit equal to 0. 

II. INFORMATION LIMITS 

Let Tn be a monotone sequence of sigma-fields with limit 
Too- Let Pn and Qn denote the restrictions of P and Q to 
Tn, let p„ be the density of P„ with respect to Qn, and let 
Dn = D{Pn\\Qn) forn = 1,2,..., oo. 
Theorem 2. Information Limit. If Tn is decreasing or if Tn 

is increasing and D(Pn\\Qn) is bounded, then logp„ -¥ logp<x> 
in Li(F) andlimnD(P„||Q„) = D(Poo||Q<»). 
Proof: In the case that Tn is decreasing, for n > m we 
have Dm — Dn — J pmlogpm/p„dQ establishing monotonic- 
ity, convergence, and, hence, the Cauchy sequence property, 
so that, via the Pinsker-type inequalities, both f\pm— pn\dQ 
and E|logpm — logp„| tend to 0 as n, m —► oo. Hence pn is 
convergent in Li(Q) (denote the limit poo) and logpn is con- 
vergent in L\(P) with limit logpoo. Sets A in Too are in Tn 

for all n with P(A) = JApndQ, so by Li(Q) convergence, 

P(A) = f.pjxdQ, that is, the limit poo is indeed the density 
between the restrictions of P and Q to Too- For the increas- 
ing case one proceeds in the same manner using the chain rule 

to extract Cauchy convergence of pn in L\ (Q) and log pn in 
L\ (P) and to identify the limit. 

Theorem 2 implies Theorem 1 using the decreasing Tn gen- 
erated by {Xn,Xn+i,---}- The conclusion for the limit of 
increasing information is classical, see [1] and the references 
cited therein. Our analysis shows the convergence directly 
from the chain rule, without appeal to a martingale conver- 
gence theorem. The results for the limit of decreasing infor- 
mation and the information limit of Markov chains are new. 

III. INFORMATION PROJECTION 

Demonstrating existence of information projections for con- 
vex sets of distributions uses similar techniques. Let D(C\\p) 
and D(p\\C) denote the infimum of D(q\\p) and of D(p\\q), 
respectively, over choices of q in a convex set C. The set C 
might not admit a minimizer and one seeks a limit q* obtained 
by sequences of qn approaching the infimum. Topsoe [7], see 
also [3], resolves the D(C\\p) case. Here we state a result for 
the D(p\\C) case developed further in the Thesis of Li [6]. 
Theorem 3. Information Projection. Let C be convex and 
.D(p|jC) finite. There exists a unique q' (possibly outside of 
C) such that every sequence qn with D(p\\q„) -+ D(p\\C) has 
logg„ -> logq* in ^(p). Thus D{p\\q*) = D(p\\C). For 
all q in C, c, = Epq(X)/q*(X) < 1 and, defining the den- 
sity r = (pq/q*)/cq, we have the Pythagorean-like inequality 
^(pll?) > D(p\\q*) + D(p\\r), where via the Pinsker-type in- 
equality D(p||r) controls the L\ (P) distance between log q and 
log <jr*. Furthermore, if J q = 1 for all q in C, then J q* < 1. 

Previously, Bell and Cover [2] show characterizing proper- 
ties if q* is in C. Kieffer [5] shows if {log q : q € C} is closed 
in Li(P), then there exists q* satisfying the key properties. 

The proof identifies asequence qn in C such that D(p||?n)4. 
D(p\\C) and cm,„ = Eqm{X)/qn{X) < 1 for all n>m. With 
rm,, = (pqm/qn)/cmin, one finds Dm-Dn equals -D(p||rm>„) 
+ log l/cm,n, so by the Cauchy sequence property, log l/cm,„, 
D(p\\rm,n) and hence E\logqm{X)/\ogq„(X)\ converge to 0 
as n,m —>■ oo. Thus \ogq„ is a Cauchy sequence with limit 
denoted logq" in L\{p). Further details are in [6]. 
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Abstract — We show that the BIC estimator of 
the order of a Markov chain (with finite alphabet) 
gives the correct order, eventually almost surely as 
the sample size goes to oo, thereby strengthening ear- 
lier consistency results that assumed an apriori bound 
on the order. A key tool is a strong typicality re- 
sult for Markov sample paths. We also show that the 
Bayesian or MDL estimator, of which the BIC estima- 
tor is regarded as an approximation, fails to be con- 
sistent for the uniformly distrubuted i.i.d. process. 

I. MAIN RESULTS 

Given a set of cardinatlity |A| < oo, denote by Mk the class of 
those probability mesures on A°° which are Markov of order 
at most k, with stationary transition probabilities. Set M = 
\J^=0Mk where Mo is the i.i.d. class. 

One popular approach to model selection is the so-called 
Bayesian Information Criterion (BIC). It suggests to estimate 
the Markov order by 

fcBicKz") = arg min -log max P(x?)+I^|t(lfl     1}logn 
peMk 2 

(1) 
if the observed sample is i" = (xi,..., xn). 

Our principal result is 
Theorem 1   For any stationary ergodic Q 6 M, fcBic(z?) 
equals fco = min{fc: Q 6 Mk}, eventually almost surely. 

The hard part of the proof is to rule out "moderate over- 
estimation" fcBic(s;") G (fc*,alogn), for suitable fc* > fc0 and 
a > 0. A key tool to this is 
Theorem 2 Given a stationary ergodic Q 6 M, and 0 < ß < 
1/2, there exists a > 0 such that eventually almost surely, the 
k-block types of x\, defined by 

i+k 
1 ■■aki}\,    aUAk P(a?|*r) = n_^ + 1|{i€[0,n-fc]:4t 

satisfy for all k < a log n 

l>(oi|xr)-Q(a1)|<n-"0(a1))     a} € A*. (2) 

Theorem 2 permits us to restrict attention to "typical se- 
quences" satisfying (2); for these, the number of possible fc- 
block types does not grow too fast as n -* oo, and the method 
of types leads to suitable probability bounds. 

We also consider the Bayesian order estimator 

kKr(xi) = argmin{-logpfc - logKTt(a;?)} (3) 
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which is also a minimum description length (MDL) estimator, 
see [1]. Herepjt is a prior probability assigned to the class Mk, 
and KTjt is the Krichevsky-Trofimov distribution of order k, 
a Dirichlet mixture of measures in Mk- The expression mini- 
mized in (1) is a good approximation to -logKT*(x") when 
fc is fixed, but substantially overestimates the latter when fc 
grows with n, a fact we use in the proof of Theorem 1 to rule 
out "gross overestimation" fcBic(x") > alogn. 
Theorem 3 The estimator (3) is not consistent for the 
i.i.d. process with uniform distribution on A, if pk de- 
creases subexponentially as k -¥ oo. Rather, in this case 
kKT(xi) -¥ oo almost surely. 

The proof depends on the fact that for large fc it is likely 
that no fc-block appears more than once in x", and then 
KTk(x?) = \A\-n. 

II. DISCUSSION 

The key feature of our consistency result Theorem 1 is that 
the minimization for k in eq. (1) is unrestricted. When a prior 
bound fc* on the true order is known, and the minimization is 
retricted to fc < fc*, consistency has been proved by Finesso 
[2]. Kieffer [4] proved consistency without such restriction, for 
a modified estimator with a larger penalty term; he also raised 
the question whether the BIC estimator (1) was consistent. 

Theorem 2 appears to be the first strong typicality result 
for non-i.i.d. processes that admits block size growth of order" 
log n; see, however, Flajolet et al. [3] for coin-tossing. 

Bayesian inconsistency phenomena similar to Theorem 3 
are well-known in Statistics though in less natural settings 
than ours. Theorem 3 gives a natural example when in the 
theorem about MDL consistency for almost every choice of 
the parameter, see [1], "almost" is non-vacuous. The contrast 
of Theorems 1 and 3 suggests a deficiency in the usual inter- 
pretation of the BIC estimator as an approximation to the 
Bayesian or MDL estimator. 

We note that the (non-Bayesian) "normalized maximum 
likelihood" version of MDL, see [1], is also inconsistent for the 
uniformly distributed i.i.d. process. 
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I 
Abstract — Consider a pair of random variables 

(X, Y) with distribution P. The probability rank func- 
tion is defined so that G(x\y) = 1 for the most probable 
outcome x conditional on Y = y, G(x\y) = 2 for the sec- 
ond most probable outcome, and so on, resolving ties 
between elements with equal probabilities arbitrarily. 
The function G was considered in [1] in the context 
of finding the unknown outcome of a random experi- 
ment by asking questions of the form 'Is the outcome 
equal to x?' sequentially until the actual outcome is 
determined. The primary focus in [1], and the sub- 
sequent works [2], [3], was to find tight bounds on 
the moments E[G(X|y)9]. The present work is closely 
related to these works but focuses more directly on 
the large deviations properties of the probability rank 
function. 

I. RESULTS 

The aim of this work is to determine the large deviation ex- 
ponent of In G, 

lim n-1lnP[laG{Xn\Yn) > nL], (1) 

for a sequence of pairs of r.v.'s (Xn,Yn) under various as- 
sumptions regarding their distribution. Special instances of 
this problem correspond to finding the error exponent in 
source and channel coding problems of information theory. 
E.g., if we regard Xn as an input of length n to a noisy chan- 
nel and Yn as the channel output, P[\nG(Xn\Yn) > nL] is 
the probability of decoding error for a list decoder with list 
size enL. We begin by noting that the mean of In G is closely 
related to the Shannon entropy. 

Proposition 1 For (X, Y) a pair of jointly distributed ran- 
dom variables, 

- ln(l + In M) + H(X\Y) < E[ln G(X\Y)] < H(X\Y)    (2) 

where M is the maximum over all y of the range of X condi- 
tioned onY = y. 

We study large-deviations of lnG(Xn\Yn) under the assump- 
tion that the sequence of functions 

M6) = -toE{G(Xn\Yn)B] 
n (3) 

converges to a limit f(0). We let R^i denote the range of <p'. 
Now, the Gartner-Ellis theorem [4, p.15] gives 

Proposition 2 For any L € R^, 

Urn n_i \nP[\nG(Xn\Yn) > nL] = <p(8L) - eLip'(eL)   (4) 
n—rOO 

where 0L = iaS{9 : <p'(9) = L}. 

For the special case where (Xn,Yn) is a pair of random vectors 
with i.i.d components, we recall from [1] that for any 0 > 0 

1+8 

lim y>„(ö) = p(0) = lnV 
n->oo *—' 5>(*,») i/(i+«) (5) 

This yields the source coding error exponent (with side infor- 
mation Yn). The well-known source coding error exponent [5, 
p.37] is obtained by omitting the side information term. 

Another special case of interest is when Xn represents a 
codeword from a block code with block length n and rate R. 
Then, P(xn) = e~nR if xn is a codeword and 0 otherwise. 
This distribution is called the code's empirical distribution 
and denoted Qn below. The r.v. Yn represents the channel 
output when Xn is transmitted. We recall from [1] that for 
0>o, 

ifin(B) = 0R-n-1Eo(9,Qn) + o{n) (6) 
where Eo is is Gallager's function [6, p. 138] and o(n) is a 
quantity that goes to zero as n goes to infinity. Proposition 
2 now yields the well-known sphere-packing bound for list- 
decoding. 

In the case of L = 0, which corresponds to ordinary ML 
decoding, Proposition 2 may not apply since 0 may not belong 
in Rpi. In this case, Gärtner-Ellis theorem yields only a lower- 
bound. 

Proposition 3 Let {(Xn,Yn)} be a sequence of input-output 
pairs for a noisy channel such that {ipn} converges to a limit 
tp. Then, 

liminf n"1 lnP[lnG(Xn|Yn) > 0] > -9otp'+(0o)       (7) 
n—»oo 

where Bo = inf{0 : ip(6) > 0} and <p'+ denotes right-derivative. 

It can be shown that this bound is equivalent to the familiar 
sphere-packing lower bound [6, p. 157], except it is formulated 
in terms of code empirical distributions. 
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We present a new approach to evaluating the efficiency of 
information-divergence-type statistics for testing the goodness 
of fit. Since the Pitman approach is too weak to detect suffi- 
ciently sharply the differences in efficiency of these statistics, 
the attention is focused on the Bahadur efficiency. 

We consider the classical statistical model of goodness of fit 
with independent data (Xi : i € N) where, under a hypothesis 
H, Xi is distributed by ß on an abstract space (X, A) and, 
under an alternative A, it is distributed by v / \i. In addition 
to ß and v, we consider the standard empirical distribution 
ßn = (8x! + •■•Sxn)/n on (X,A) and the infinite product 
distributions 

P = ßN,    Q = uN    on(XN,AN). 

We also consider partitions Vn = {An\,..., Anm„} C A 
of X with mn "f oo and the discrete stochastic mn-vectors 

Pn - (Pnj), q„ = (qnj) and pn = (pnj'2 generated by these 
partitions and the distributions ß, v and ßn. We are interested 
in the statistics 

T^n = D<p(pn;pn) 

which are the ^-divergences of Csiszar for convex <j)(t), t > 0. 
Particular attention is paid to the information divergence (ID) 
statistic J(pn;pn) and the reversed ID statistic I(pn;pn), and 
to the classical Pearson statistic x2(pn;pn) and the reversed 
Pearson (Neyman) statistic X2(Pn'iPn)- 

Our results are formulated for nonatomic ß and v, under 
relatively milde restrictions on the partitions Vn- These re- 
strictions are fulfilled e.g. when pnj = l/m„, the likelihood 
ratios Pnj/qnj are bounded, and the partitions are nested in 
the sense V\ C Vi C ... and generate the cr-algebra A. More- 
over, we consider restrictions on m„ of the type 

bypn, where 

,.        T7ln Cn -. 
hm    = 0 

for nondecreasing sequences c„ > 0. 

Our main result is the formula 

B{4>il4>2) 
9fo(Dfa {v,ß))     n-too S0lin 

lim 

(1) 

(2) 

for the Bahadur relative efficiency of the test rejecting H when 
T^1<n > c^!,n with respect that rejecting when Tj,2tn > C02,n. 
Here, for (f> = cj>i and <j> = fa, D$(v\ß) is the ^-divergence of 
distributions v and ß and g^,(e) for e > 0 is the exponent in the 
well known information-theoretic formula for large deviation 
of the "types" pn in a discrete source of mn letters distributed 

g^(e) =  lim     S0,n ^   inf      I(pn;Pn) 
Pn>T*,n>t 

(3) 

cf.  Problem 1.2.11 in [2]. In (3), s^.n > 0 is an appropriate 
norming sequence leading to finite <fa(e). 

The definition (2) exploits the approach developed in [3] 
and the formula (3) has been first proposed in [1]. Obviously, 
(2) is applicable only when the limits in (2) and (3) exist, but 
(2) also assumes that 

lim EPT<tl<n=0    and      lim T^,„ = D^{v\ß)    Q-a.s.  (4) 
n—*oo n—>oo 

and that mn satisfies (1) with cn = s^.n Ian. 
We have proved that (4) follows from (1) with cn = mn Inn 

for T^,„ equal to I(pn;pn) and X2(Pn; Pn)- On tne other hand, 
the first of the conditions (4) cannot hold for T^,n equal to 
J(pn;pn) and X2(pn;pn)- We found that for their robusti- 
fied versions I{pn;anpn + (1 - a„)pn) and X2(Pn;Q»Pn + 
(1 — an)pn) with Qn 4- 0 both conditions (4) hold and the 
original nonrobustified function g$ (e) obtained from (3) re- 
mains valid. The sequences s^)n and the functions g$(e) for 
the above mentioned statistics are presented in the Table, to- 
gether with B(fa/fays for the statistic T$2 in the line and T^j 
in the preceeding line. From [3] it is known that B(cf>i/4>2) = 0 
for T*lin = X2(P„;P„) and T02 = J(p„;p„), i.e. that the ID 
test is infinitely more Bahadur efficient then the classical Pear- 
son test. The remaining results of the Table seem to be new. 
They are negative for the reversed versions of the two formerly 
mentioned statistics. 

T(t>,n 3<p,n ff* (e) B(fa/fa) 

X2(Pn;Q"Pn + (! - a„)p„) 
J(Pn;Q"Pn + (1-Qn)Pj 

X2(Pn,Pn) 
HPn'Pn) 

mn 

In mn 

l 

1 
1 

2 

£ 

1 
0 
0 
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I 

Abstract: In this paper, we will present a construction method for 
obtaining the decomposable codes that are originated from two- 
dimensional        array        codes        and       of       the       form 
\al+x\---\anl +x\ai-\ 1- am + X + y\  . Many best known 

codes can be constructed using this method 

I. INTRODUCTION 
Codes constructed by combining shorter or simpler codes are 
decomposable and can be decoded with reduced complexity. A 
new class of decomposable codes presented in this paper is 
created on the basis of two-dimensional array codes which 
themselves are decomposable. The construction of the codes, in a 
form of | a, +*|,--| am +x\ a, +•••+ am + x + y\, embraces 

many existing code structures. This is not just an extension of the 
existing code construction, but also an opportunity for finding 
more good codes or constructing the best known codes [3] in a 
simpler way. Also, because of the use of array codes, their trellis 
structure and efficient soft-decision decoding algorithm will play 
a major role in the trellis decoding of the decomposable codes 
created. 

II. CODE CONSTRUCTION 
A simple example of two-dimensional array codes is the product 
code. A product code C is formed by a direct product of two 
component codesC, = (nx,kt ,dl) and C2 = (n2,k2,d2), so it is 
a decomposable code. The generator matrix, G, of C is 
represented in the form of a Kronecker product of generator 
matrices of its component codes, G, and G2, 

i.e.: G = G^G2 = (gf]G2) orG = G2 ®G, = (g™G,) 

where G, = {gj')J),G2 =[gjj)- The new decomposable code C 

is constructed by using the generator matrix 

m=2and y=0, i.e. in a form of | a + x \b + x\ a + b + x\. 

To optimize a given code, we need to fix any two of the three 
code parameters, length n, dimension k and minimum distance 
d, and to improve the third one. In our case, for example, the 
two component codes GA and GB are used to augment the 
product code C in such a way where the length and minimum 
distance of the decomposable code C are kept the same as code 
C, and the dimension of the code C is greater than that of code 
C. This means that «'=«, cf=d and k'>k. To this end, we set up 
criteria for selecting GA and GB, as follows: 

The conditions for choosing GA and GB such that the 

augmented code, C" , has the same minimum distance as C, i.e., 
d' — d, are set up for the following cases: 

1. When GA *0, GB=0. 
dA >dln2 

d^A >dln2 

2. When GA = 0, GÄ * 0.       dB>d 

3. When GA *0, GB * 0. 

dA >dln2 

d^A >dln2 

dB>d 

duAB >dln2 

G'-- 

(G, 

GA 

G, 

G,  G, 0) 

where GA and GB are the generator matrixes of component 

codes CA =(nl,kA,d A) and CB =(«, ,kB ,dB ) respectively. 
Code C is therefore referred as a 

I a\ +x|""| am +x\a\ +•••+ am +x + y | -construction code, 

with  a, ,• • • ,am e C, ,x e CA  and  yeCB:   This construction 
can be viewed as the squaring construction [1] when m=2, x=0 
and y=0, and the Turyn [2] or cubing cons truction [1] when 

where duA and d^AB are the minimum distances of the 

union codes C, u CA and C, u CA u CB, respectively. 
An efficient search algorithm for optimum decomposable 

codes can be designed by setting the dimension-improving 
target according to the table of the best known codes [3], and 
letting C, be as small as possible.   The use of small C, may 
require large number of component codes, but reduce the 
complexity of the search algorithm. 
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Abstract — We investigate general properties 
of rectangular codes. The class of rectangular 
codes includes all linear, group, and many non- 
group codes. We define a basis of a rectangular 
code. This basis gives a universal description 
of a rectangular code. The rectangular algebra 
is defined. We show that all bases of a length- 
2 rectangular code have the same cardinality. 
Bounds on cardinality of a basis of a rectangular 
code are given. We present a simple procedure 
to get rectangular basis of a linear code from 
its generator matrix. 

A block code C is a set of words c = (c\,.. .cn) 
of length n over an alphabet Q = {0,1,..., q — 1} . 
Given t € [l,ra — 1] , split every codeword c into the 
past p = (ci,... ct) and the future f = (ct+i,...,c„) , 
i.e., c = pf . A set C C Qn is called t -rectangular 
if the following implication is true [1] (in [2] such a set 
was called t-separable): 

Pi/i,    P1/2,    P2/1 e C P2/2 G C.      (1) 

A set C C Qn is called rectangular if it is t - 
rectangular for each t. 

All group, linear, and many famous nonlinear codes 
are rectangular. Rectangular codes have the follow- 
ing nice property. The minimal trellis of a rectangular 
code is unique, biproper, and minimizes a number of 
complexity measures including the Viterbi (or APP) 
decoding complexity. In addition, the minimal code 
trellis gives a universal compact representation of a 
rectangular code. We present another universal com- 
pact description of a rectangular code using a suggested 
idea of rectangular basis. 

Given an arbitrary block code G , a rectangular set 
that includes G and has the minimum cardinality is 
called a rectangular closure of G and is denoted by 
[G] . A rectangular closure [G] is unique. We say that 
a set G generates a rectangular set C (G is a gen- 
erating set for C) if [G] = C. A set G is called 
independent if for any g 6 G g £ [G \ g] . An indepen- 
dent set B generating a rectangular set C is called 
a basis of the rectangular set C . It is known [3] how 

xThe work was supported by Russian Fundamental 
Research Foundation (project No 99-01-00840) and by 
Deutsche Forschungs Gemeinschaft. 

to get a basis of a rectangular set and how to get the 
rectangular set from its basis. 

1. Rectangular Algebra. We define over the set 
Qn of words a ternary partial operation of rectangu- 
lar complement. The set of words with this operation 
is called rectangular algebra. A rectangular code is a 
rectangular subalgebra. This allows us to use results 
of algebra. On the other hand the rectangular algebra 
is an interesting example of universal algebra. 

The following theorem gives an upper bound on car- 
dinality of the rectangular closure of the set G. 

Theorem 1   \[G}\ < 2^~\ 

An important question for any universal algebra is: 
"Have bases of a closed set the same cardinality?". 

Conjecture 2  All bases of a rectangular code have the 
same number of words. 

We show that Conjecture 2 is true for codes of length 
2. 

2. Bounds on Cardinality of a Basis. From Theo- 
rem 1 we get 

Theorem 3   Cardinality of a basis B(C)  of a binary 
rectangular code C  is bounded by 

log2 |C| + 1 < |B(C)| < |C|. 

4. Rectangular basis of a linear code. We present 
a simple procedure to get rectangular basis of a linear 
code from generator matrix of the code. This basis 
can be used as follows. Assume that a nonlinear rect- 
angular code C is a union of cosets of a linear code 
L. Using the proposed procedure we obtain a basis 
B(L) of the linear code L. A basis of a coset L + a 
is B(L) + a . So, we can construct a generating set for 
C as union of bases of the cosets of L. 
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Abstract — We construct new cocyclic generalised 
Hadamard matrices using semifleld multiplication. 
The matrices used are constructed from cocycles de- 
fined over elementary abelian groups. These construc- 
tions naturally yield generalised Hadamard codes 
meeting the Plotkin bound. 

I. INTRODUCTION 
Non-binary Hadamard codes meeting the Plotkin bound can 
be constructed using generalized Hadamard matrices [1]. 
In this paper we construct families of cocyclic generalized 
Hadamard matrix codes meeting the Plotkin bound from cocy- 
cles defined from finite fields GF(pm), commutative semifields 
such as Dickson semifields and non-commutative semifields of 
order 16. 

II. COCYCLES 

Let G be a finite group of order v and C be a finite abelian 
group of order w where w divides v (w\v). A cocycle is a map- 
ping V : G x G -> G, satisfying the following cocycle equation 
1>(9,h)rp(gh,k) = 4>(g,hk)4>{h,k), for all g,h,k e G. This 
implies xp{g,l) = ip(l,h) = V(M), for all g,h € G. We 
only consider normalized cocycles, for which ip(l, 1) = 1. 

A cocycle associated with the groups G and C is naturally 
represented as a square matrix of order v x v, whose rows 
and columns are indexed by the elements of the group G un- 
der some fixed ordering and whose entry in position (g,h) is 
i>(g,h). We call such matrices G-cocyclic matrices. We repre- 
sent a G-cocyclic matrix as Mj, = [rp(g, h)]g,heG- If the cocycle 
rp is symmetric then M^, is a symmetric matrix. 

Definition 1 When w\v, the cocycle ip : G x G -> C is 
orthogonal if the non-ihitial rows of M$ are uniformly dis- 
tributed over the elements of C. That is, for each g # 1 e G, 
\{h e G : rp(g, h) = o}| = v/w, for all a e C. 

III. GENERALIZED HADAMARD MATRICES AND 

RELATED CODES 
A generalized Hadamard matrix GH(tu, v/w) over a group 

C is a v x v matrix with entries from the group C of order tu, 
w\v, such that the list of quotients hijh^j, 1 < j < v, contains 
each element of C exactly v/w times. Let H* be a matrix with 
entries hfj — hj*, then the defining matrix equation over ZC 
is 

HH* =vIv + (v/w)(%2u)(Jv-Iv), (1) 

where /„ and Jv are the tixo identity matrix and matrix with 
all entries 1, respectively. Generalized Hadamard matrices 
can be used directly to construct codes meeting the Plotkin 
bound. We have the following result. 

xThis work was supported by Australian Research Council Large 
Grant #449701206 
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Theorem 1 [1, 2] Let * : G x G -»■ G be an orthogonal 
cocycle, where G is the additive group ofGF(pr). Let M$ be 
a G-cocyclic matrix of order pr x pr over G, 
1. the rows of M$ without the first column form a (pr — 
l,pr,pr — 1) pr-ary code meeting the Plotkin bound. 
2. the rows of the translates of a + M^,, a 6 G, of Mj, form a 
(pr,p2r,pr — 1) pr-ary code meeting the Plotkin bound. 

IV. ORTHOGONAL LINEARIZED POLYNOMIAL (LP) 
COCYCLIC MATRICES FROM SEMIFIELDS 

Throughout this section let G be an elementary abelian group 
of order p". Here we construct classes of orthogonal co- 
cyclic matrices using using linearized permutation polynomi- 
als (LPP) over GF(pr). Let L{x) = Y^Zo hx"' be a LPP over 
GF(pr), then the linearized permutation cocycle (LP cocycle) 
is given by HL(g,h) = L(g) ■ h, where • represents multipli- 
cation in a semifield whose additive group is G. We have a 
lemma. 

be a finite semifield such that G = 

If L(x) = Y^lZo lix"'  is a LPP °f 
Lemma 1 Let (F, +, • 
(F,+) SS (GF(pr),+). 
GF(pr), then the LP cocycle defined by nL(g,h) = L(g) -h, is 
orthogonal. 

The above construction with • as the field multiplication in 
GF(pr) accounts for all (symmetric and asymmetric) orthog- 
onal cocycles for groups of order 4,8 and 9 [2]. 

The first order pa for which there exist semifields which 
are not fields is 16. There are two such semifields, both non- 
commutative. These two semifields with the above construc- 
tion leads to new" classes of G-cocyclic generalised Hadamard 
matrices of order 16. 

There is a class of finite commutative semifields called the 
Dickson semifields, defined when p is odd and the prime- 
power r is even. Let F be a two-dimensional vector space 
over GF(p6), where p is odd and b > 1, so (F,+) = (Zp)

26. 
Let z be any non-square in GF(p6). Each field automor- 
phism $ of GF(p6) defines a multiplication • on F to be 
(a,b)-(c,d) — (ac+zbed9,bc+ad), which makes Fa commuta- 
tive semifield. The only field property which does not hold is 
associativity of multiplication. But this implies that the rows 
of the matrix MM for the field multiplication in GF(p26) can- 
not be permuted to give the rows for the Dickson semifields, 
and the corresponding Hadamard codes are distinct. 
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Abstract — A new class of DbEC-TbED codes over 
GF(q) is constructed. For the cases of q=3,4, the new 
codes are better than the Gilbert-Varshamov bound. 

Let r(C) = n — logg|C| be the redundancy of a linear code 
over GF(q), p(q,n,d) be min{r(D) | D is a g-ary code of 
length n and minimum distance d}. It is well known that the 
asymptotic Hamming bound p(q, n, d) y flog n holds as n —s- 

co, where t = L^^J- The Gilbert-Varshamov bound admits 
linear (q, n, d) codes which achieve the bound r(q, n, d) y (d — 
2)log9n as n —>• oo. 

In coding theory, an important problem is finding the 
sequences of (q,n,d) codes, asymptotically exceeding the 
Gilbert-Varshamov bound, i.e., 

r(q,n,d) ■< (d - 2)log,n. 

It is well-known that the single-byte error-correcting and 
double-byte error-detecting (SbEC-DbED) codes, i.e., the 
codes with minimum distances > 4, have been successfully 
used in computer memory subsystems. We are interested in 
designing some good DbEC codes and DbEC-TbED codes , 
such that the redundancies are less than Gilbert-Varshamov 
bound, and as small as possible. In a previous paper [1], we 
constructed a class of DbEC codes over GF(2'), which have 
the parameters: n = qm,r < 2m + \f\ + 1, m = 3,4,—. 
Our constructions reduce the code redundancy of [2] by one 
symbol. 

In [2, Corollary 6], a class of DbEC-TbED codes were ob- 
tained, which have the parameters: 

„ _ „L5(m- n = qL 1)/6J r < 2.5m,     m = 4,6,8,- 

Another class of DbEC-TbED codes were constructed in [2, 
Theorem 5], which have the parameters: 

m          ^ 5(m + l)      .m-,     rm, „ „ _ 
n = qm,    r<-^ '- + \ j] + \ -],     m = 3,5,7,---. 

In this paper, we will construct a new class of DbEC-TbED 
codes over GF(q) which have the parameters: 

(1) if m is odd, H =  {l,xi, • • • ,xm, (xi + x28 + ■ ■ ■ + 

+ XmS™-1 + 05m)^  1+1,   (an + x28 + ■■■ + ij"-1 

OS™)«^^, (x1+X2ß + X3ß
2y'+"+\ ■ ■ -, (*3*-2 + *S*-10 + 

X3kß2)"2+q+\ (xi+X27 + X372+X473)93+,2+,+1, •••, (X4.-3 + 

X4I-27 + i4;-i72 + x4(73)',3+,2+,+1}, where m  <  3fc and 
m < 41, and when i > m, let Xi = 0; 

(2) if m is even, H = {l,xi,-- -,xm,(xi + x2<5 + • • • + 

xmSm-1)"'f~1+\  (xi + x25 + ••• + xm5m-1r¥+1,  (xi + 
x2ß + x3ß

2)"2+q+\   •",   (xik-i + xsk-iß + x3kßy2+"+1, 

(Xl  + X27 + X372 + X473)93+,2+?+1,   • • •,   («41-3 + X4!-27 + 

X41-172 + X4i73),3+,2+9+1}, where m < 3k and m < 41, and 
when i > m, let Xi — 0. 

Let LS = F^ and let H = (fi,f2, ■ ■ -)T be a parity check 
matrix, we have a code C over GF(q). 

Theorem 1   The code C in Construction I has the parame- 
ters: 

n = qm,        d>6, 

'],     when m = 5,7,9, • ■ •, 
l],     when m = 6,8,10, • • •. 

r < 

1       J 

For g = 3 and 4, these codes are better than Gilbert- 
Varshamov bound. 

Construction II: Consider q = 3. Let H' be the sequences 
of all of the polynomials of degree < 2 in H. It is clear that 

,        f  2.5(m + l), 
|H|-\  2.5m+ 1, 

when    m = 3,5,7, • • •, 
when    m = 4,6,8, • • •. 

Let H' be parity check matrices, we obtain a class of codes 
over GF(3). 

Theorem 2   The codes in Construction II have the parame- 
ters: 

n = 3m,        d>6, 

■5(m + 1),    when m = 3,5,7, •••, 
.5m+ 1,       when m = 4,6,8,- ••. - \   2.E 

r< [   *n
2
m + \f fl + T^l,    when    m = 3,5,7, 

1 + TTI-    
when    »" = 4,6,8, 

It is clear that U5*1^111] I m = 4,6,8,---} = 
{3,4,5, 7,9,10,12,14, • • •}, and it can be verified that the in- 
tegers 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, ••■ are not in 
this set. Thus, we extend the well-known constructions for 
m = 6,8,16,18, ■■•. 

Construction I: Let m > 4 and 1,6,S2, ■ ■ • ,8m~1 be a ba- 
sis of GF(qm), when m is even; 1,6,82, ■ ■ ■, 8m be a basis of 
GF(qm+1), when m is odd, respectively. Consider the se- 
quence H = {/i, f2,- ■ ■} of polynomials in F,[xi,X2, • • • ,xm], 
where, 

Construction III: Consider q = 4. Let H" be the sequences 
, of all of the polynomials of degree < 3 in H and H" be parity 
.check matrices, we obtain a class of codes over GF(4). 

Theorem 3   The codes in Construction HI have the parame- 
ters: 

n = 4m,        d>6, 

If],    when m = 3,5,7, •••, 
+ \f 1,    when m = 4,6,8, •••. 

1This work was supported in part by the National Science Foun- 
dation under Grant NCR-9804973. 
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Abstract — The classes of convolutional codes over 
finite Abelian groups which admit minimal encoders 
or systematic encoders are first characterized and 
then compared. 

I. INTRODUCTION 

Codes over rings and groups have attracted much attention 
in recent years for their potential use in the phase modula- 
tion coding [1]. Here we study convolutional codes over finite 
Abelian groups presenting necessary and sufficient conditions 
under which they admit minimal or systematic encoders. 

II. CONVOLUTIONAL CODES AND ENCODERS 

Given a finite Abelian group V, Cv is the group of Laurent 
sequences over V (sequences definitely equal to 0 in the past). 
If V and W are finite Abelian groups, any element N(D) = 
Eio NiE>i e hom(w> V)[[D]] induces a homomorphism (shift 
operator) N(D) : Cw —» C-v by letting act D as the forward 
translation. N(D) is called rational if there exists p(D) G 
np\ such that p(D)N{D) G hom(W,V)[D]. Rational shift 
operators are exactly those which admit a state realization 
with finite state space [2]. 

A convolutional code (c.c. from now on) over V is any 
subgroup C C Cv for which there exists another finite Abelian 
group W and a rational and injective shift operator N(D) : 
Cw —> C-v such that C coincides with the image of N(D). 
The shift operator N(D) is said to be an encoder for C. A 
c.c. admits infinitely many encoders, but they all have, up to 
isomorphism, the same domain W which will be denoted by 
W(C) and called the encoding group of C [2]. 

Let C C Cv be a c.c and let C_ (resp. C+) be the subgroup 
of C consisting of the sequences which are 0 at t > 0 (resp. 
t < 0). Define the" input group of C as U(C) := {x G V : 
3v G C+, v(0) = x}, and the state group of C as the quotient 
group X(C) := C/(C~ © C+). Let N{D) : CW(C) -+ Cv be 
an encoder for C. It can be shown [2] that W(C) and U(C) 
have the same cardinality. Moreover, N(D) admits a state 
space realization with minimal state space X(N) whose size 
represents the amount of memory needed to implement N(D) 
on-line. It is a standard result that X(N) cannot be smaller 
than X(C). 

With no loss of generality we will assume in the sequel that 
for any x G V there exists v G C such that v(0) = x. 

III. MINIMAL AND SYSTEMATIC GROUP BEHAVIORS 

We now introduce two important classes of c.c. A c.c. 
C C Cv is said to be minimal if it admits an encoder (called 
minimal) N(D) such that X(N) is isomorphic to X(C). A c.c. 
C C Cv is said to be systematic if it admits an encoder (called 
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systematic) N(D) : Cw -> Cv of the following type: V can 
be split as V = W © V and there exists N(D) : Cw —> Cv 

such that N(D)w = (w, N(D)w). 

In the field case it is well known that any c.c. is system- 
atic and minimal. In the group case there are examples of 
c.c. which are not minimal. On the other hand, it can be 
shown that systematic encoders are always minimal so that 
a systematic c.c. is always minimal. The following theorem 
provides a characterization of systematic c.c. which extends a 

result given in [1]. 

Theorem 1 Let C C Cv be a c.c. The following conditions 
are equivalent. 

1. C is systematic. 

2. There exists a subgroup V ofV such that V = U(C)®V. 

Condition 2. can be checked in a very efficient way once 
we have the c.c. represented as the image of an encoder. 

The relation existing between minimal and systematic c.c. 
is clarified by the following result. First we introduce a trans- 
formation which can be performed on a code. Fix N G N and 
consider the map PN : Cv -> CVN defined by PN(v)(t) := 
v\[tN,tN+N-i]- IfCCCvisa. c.c, CN := PN(C) C CVN is a 
c.c, too. 

Theorem 2 Let C C Cv be a c.c. The following conditions 
are equivalent. 

1. C is minimal. 

2. There exists N G N such that CN is systematic. 

In certain situations the classes of minimal and systematic 
codes do coincide. 

Theorem 3 Let C C Cv be a code and assume that W(C) 
is a ILn-free module for some integer n. Then, the following 
conditions are equivalent 

1. C is minimal. 

2. C is systematic. 

3. U(C) is Zn-free. 

On the other hand, through computer search, we have 
found a minimal c.c. with W(C) = Z4 © Z2 and V = Z4, 
which is not systematic. 
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Abstract — A general methodology to analyze con- 
volutional codes over block fading channels is pre- 
sented. Starting from this approach some good gen- 
erator polynomials for different block fading channels 
are obtained. 

I. METHODOLOGY AND ASSUMPTIONS 

We assume a block fading channel [1, 2], where the fad- 
ing level is constant over B encoded bits. The number of 
blocks L is the available amount of diversity provided by the 
channel. The achievable diversity per dimension depends on 
the code-rate [1]. The codeword error probability (CEP) for 
terminated-trellis convolutional codes over block fading chan- 
nel is obtained from a suitably defined matrix A that take into 
account the trellis structure and the interleaving function. 
Let us consider, as in [3], the mxm matrix A(D) (where m is 
the number of trellis states), whose elements are Aij = Dh if 
a transition from the state i to the state j exists and produces 
an output with Hamming-weight h, and 0 otherwise. Assume 
for the sake of simplicity a rate 1/n code, if the fading level 
were constant along the codeword of N ■ n encoded bits, we 
would observe that: 

Obs. 1 The matrix k{D) = AN (D) has elements A% 
that take into account all the transitions from state i to state 
j with N input bits. Obs. 2 For zero tailing the element An 
is sufficient to obtain the code weight distribution. 

For block fading channel matrix A can be generalized as 
a combination of matrices A(Di, ..,£>„) with elements Aij = 
D^ ■.. ■ Dn", with hi = 0,1, which means that the transition 
from state i to j produces the output {h\,...,hn). Aij is equal 
to 0 if no transition exists from i to j. 

For uninterleaved convolutional codes over block fading 
channel we have 

A = l[AN^(Di,..,Di) (1) 

where N/L is the number of transitions per block. In the case 
of branch-interleaving, the expression for the matrix A is 

Ä= [JJA(A,..,DO] 
N/L 

For the bit-interleaved case the expression becomes 

L/n 

A= [jjA(Z?(i_1)n+1)..,£><„)]' 

(2) 

(3) 

The element An gives information about all sequences start- 
ing from and ending in state 0; Di is related to the / — th 

fading level. So, 

Äu-l=T(DuD2,..,DL) = Y/-^2w(i1..iL)-Dii-..-Di
L
L 

(4) 
where T{D\,Di,.., DL) is the generalized transfer function. 

Upper-bounding the complementary error function as 
erfcs/x + y < erfcy/x ■ eTv < e~(x+y) and averaging over 
fading gives the bound on CEP: 

1=2 

('l.—«L)6/a 

w(ii,..,iL) 

4 7° ( n *)■ 
1 = 1, /|*0 

(5) 

(6) 

where the sums in (5) are for (ii,.., ii) / (0, ..,0), j is the 
average signal to noise ratio and Ia is the set of (ii,..,»z,) 
with a non zero elements. This bound can be also derived 
from |(v4n — 1), which is half the generalized transfer func- 

tion T(D\,..,DL),  substituing 1 with 1;   a term D^ with 

l 

-& £=; and the other L — 1 terms £>,- with 

It is worth noting that the low degree terms in (4) give the 
diversity order, a, achievable by a given coding scheme over 
the block fading channel. Moreover, these allow an asymp- 
totical evaluation of the average CEP. As these terms can be 
directly derived from matrix A, a comparison among different 
convolutional codes is possible in order to design good codes. 
So we can find the best codes given L, the interleaving strat- 
egy and the codeword length. To perform an efficient search 
a suitable decomposition of A has been developed. As an ex- 
ample, for a rate 1/2, 64 states code with bit interleaving and 
iV = 194, the optimum generator polynomials for L = 8 are 
(127,155)g. An asymptotic gain of Q.3dB in terms of signal to 
noise ratio with respect to the optimum generator polynomials 
for AWGN has been verified by simulations. These generators 
are optimum for any TV larger than 40. Numerical results will 
be presented at the conference. 
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1 
Abstract — In this paper, we concentrate on the 

study of combining the optimality with respect to 
unequal error protection and canonicity of generator 
matrices for convolutional codes. The transformation 
which can keep the optimality of generator matrices is 
constructed, based on which a procedure for obtain- 
ing a basic and optimal generator matrix with the 
smallest external degree is also proposed. Moreover, 
necessary and sufficient conditions for a canonical gen- 
erator matrix whose separation vector is the greatest 
among all canonical generator matrices are given. Fi- 
nally, the existence of the greatest separation vector 
among all canonical generator matrices is proved for 
some convolutional codes. 

In a previous paper [1], we showed that every convolutional 
code has at least one optimal generator matrix with respect 
to unequal error protection. A procedure for converting an 
arbitrary optimal generator matrix to a basic [2] polynomial 
generator matrix (PGM) without affecting its optimality was 
also proposed. However, by a counter-example, we showed 
that not every convolutional code can have an optimal gen- 
erator matrix which is also canonical [2]. Since the external 
degree [2] of a PGM corresponds to the number of memory 
elements in direct-form realization of this PGM, to reduce the 
hardware complexity, it is desirable to generate a basic and 
optimal generator matrix of the smallest external degree. 

To obtain the transformation between optimal generator 
matrices, we first define an effectively lower-triangular matrix. 

Definition 1 Let G(D) be a generator matrix of an (n,k) 
convolutional code. Assume the components of the separation 
vector [1] B(G(D)) are nondecreasingly ordered and have a 
distinct values, each with ßi repetitions for all 1 < i < a. For 
ak x fc matrix T(D) over F(D), where F(D) is the rational 
field over a field F, let tUtV(D) be the entry in position (u,v) 
ofT(D) for all 1 < u,v < k. T(D) is called effectively lower- 
triangular with respect to G(D) if and only if 

UAD) = 0 

for all ElZj ß,<u< EL, A. « > EU A» andl<i<a. 

Based on effectively lower-triangular matrices, necessary and 
sufficient conditions for the transformation between all opti- 
mal and basic generator matrices are given as follows. 

Theorem 1 Given an (n,k) convolutional code C, let G(D) 
be an optimal and basic generator matrix of nondecreasing sep- 
aration vector. For any k x k nonsingular matrix T(D) over 
F(D), T(D) ■ G(D) is optimal and basic if and only ifT(D) 

is unimodular and effectively lower-triangular with respect to 
G(D). 

Based on Theorem 1, a procedure for obtaining a basic and 
optimal generator matrix which has the smallest external de- 
gree is proposed. 

In addition, some properties of canonical PGM's for UEP 
are discussed below. If there exists a canonical PGM of the 
greatest separation vector, the corresponding necessary and 
sufficient conditions are given in Theorem 2. 

Theorem 2 Consider an (n,k) convolutional code C. Define 
w(C) = {w(c{D)) : V c(D) g C) and C" = {c(D) : V c(£>) 6 
C and w(c(D)) < p}. Without loss of generality, assume the 
components of the separation vectors corresponding to the fol- 
lowing generator matrices are nondecreasingly ordered. A gen- 
erator matrix G(D) has the greatest separation vector among 
all canonical generator matrices if and only ifVp€ w(C), for 
any canonical generator matrix A(D) of C satisfying 

we have 

{C)C(al(D),a2(D),---,ai(D)) 

(C')C{g1(D),g2(D),~-,gi(D)) 

•This work was supported by the National Science Council of 
the Republic of China under Grant NSC-88 -2213-E-007-081. 

where G(D) and A(D) have rows g^D) 's and ca(D) 's for all 
1 < i < k, respectively. 

Although we have shown that every convolutional code has an 
optimal matrix, however, the existence of a canonical PGM 
whose separation vector is the greatest among all canonical 
PGM's is still doubtful. Instead of a general proof, in Theorem 
3, we show the existence of a canonical PGM with the greatest 
separation vector for the convolutional codes of k < 3. 

Theorem 3 Let G(D) and G'(D) be canonical generator ma- 
trices of an (n,k) convolutional code C with k < 3. Ifa{G(D)) 
and a(G'(D)) are not comparable, there exists another canon- 
ical generator matrix G* (D) and two permutations <j> and <j>' 
of vector components such that 

B(CT(D)) > <f>(a(G(D)))  and a(CT(D)) > ^'(s(G'(£>))). 

Finally, following a similar proof, the result of Theorem 3 can 
be directly extended to the convolutional codes whose optimal 
generator matrix has distinct components in the separation 
vector. 
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Abstract — Performance bounds for maximum like- 
lihood decoding of convolutional codes over memory- 
less channels are commonly measured using the first 
few terms of the series expansion of the transfer func- 
tion T(x,y). In this paper we present an efficient alge- 
braic method to obtain this truncated series without 
first computing the complete T(x,y). 

I. THE PATH WEIGHT ENUMERATORS 

Let S be the set of all paths of an 1/n-rate convolutional 
code with constraint length K, that diverge from the all-zero 
path at t = 0 and remerge into the all-zero path at some time 
later. Let ioi and 102 be weight functions such that wi (<r) and 
W2(cr) are the number of l's in the input and output sequence, 
respectively, corresponding to a state sequence a £ S. T(x, y) 
is the generating series for the set S with respect to w\ and 

u>2, that is, T(x,y) = J2a e s xwi{(7) yW2((r). The number 

of paths in S of Hamming weight d is the coefficient of yd in 
T(l,y), and the total number of nonzero information bits in 
all paths of Hamming weight d in S is the coefficient of yd in 

The first step to compute T(x, y) is to generate the adja- 
cent matrix A as follows. The (i,j)th entry of A is either 
[A]ij = X*>i(i->J) y"2(i-*»t where wi(i -> j) and 102(1' -»■ j) 
are the Hamming weights of the input and output strings on 
the branch that connects the states i and j, respectively, or 
zero, if i and j are not connected. All state sequences in S 
have the following structure: The first symbol is 0, the sec- 
ond is 1, the third is either 2 or 3, and so on, the second last 
symbol is 2K~2, and the last symbol is 0. Define a non-zero 
path as a path which does not enter or leave the zero state. 
Let T\ (x, y) be the generating series that enumerates non-zero 
paths from the initial state 1 to the terminal state 2K~2 with 
respect to w\ and W2. Thus 

T(x,y) = [A]0,1T1(x,y)[A]2K-i,0. (1) 

Let A(0) be a matrix identical to its counterpart A, except 
that the first row and the first column are set to zero. Then 

r1(x,2/)=[(i-A(o))-1]i2K. (2) 

The (l,2K_2)"1-entry of the kth power of A(0) is a bivari- 
ate polynomial whose exponents are Hamming weights u>i(<r) 
and U>2{(T) of all non-zero paths originating in state 1 and 
terminating in state 2K~2, and the coefficients are the multi- 
plicity of the weights. It is necessary to invert a 2K_1 x 2K~1 

symbolic matrix in order to find a closed form expression for 
T\(x,y). We propose next an iterative procedure for calculat- 
ing T\(x,y), called state reduction algorithm, that discards, 
at each step, all paths with Hamming weight higher than a 
given order. We need the following definitions: 

'This work was supported by CNPq under Grant 300987/96-0. 

Definition 1: Two finite state machines (FSM) are said to be 
equivalent if and only if their transfer functions are identical. 
Definition 2: Two FSM are said to be equivalent of or- 
der Lm if and only if the series expansion of T(x,y) and 
{dT(l,y)/dx}x=1 of order Lm and lower are the same for 
the two FSM. 

II. STATE REDUCTION ALGORITHM 

The algorithm creates a sequence of adjacent matrices repre- 
senting equivalent FSM of order Lm with one state less. It 
should be observed that each non-zero path is formed by con- 
catenating paths that start from state 1 and reach state 2K~2 

for the first time some time later. Call the set of all such paths 
52. For example, the path a = 124|124|1364 is the concate- 
nation of 3 paths belonging to 52- If T2(x,y) is the generating 
series for the set S2, we have: 

T1(x,y)=T2(x,y)(l-[A}2K_2AT2(x,y))-1. 

To calculate T2{x,y) we may form a sequence of equivalent 
FSM where at each step we eliminate transitions from and 
into the rth state. The 2K_1 x 2K'1 adjacent matrix for 
this equivalent FSM, denoted by A(r), is calculated from the 
adjacent matrix of the previous step A(s) (obtained from the 
elimination of the sth state) as shown in the following lemma. 

Lemma 1 Let H and C be sets of indexes /, I = 1, • • ■, 2K_1, 
I # r, such that [A(s)]i,r and [A(s)]r]( are different from zero, 
respectively. The (i,j)th entries of the matrix A(r) are: 

[A(a)]ij + [A(s)]i,r(l - [AWjV.O-'IAMlrj, if i e 11, j e C; 

0,     if i = r,j = l, •••,2*-1; 
0,     if j = r,i = l,--,2K-1; 

[A(s)]ij,   otherwise, 

where on the first row, [A(s)]<,j is due to parallel transitions, 
and (1 — [A(s)]r,r)

_1 stands for the circulation loop on the rih 

state. The state reduction algorithm is summarized below: 

• Set s = 0. Find A(0). 

• Form the sequence of equivalent FSM A(r), r = 2K_1 - 
1, • • ■, 2K"2 - 1, 2K~2 + 1, ■• •, 2, according to Lemma 1. 

. T2(x,y)= [A(2)]1I2K_2. 

We propose next a modification of the algorithm which is sig- 
nificant in practice. We will create a sequence of equivalent 
FSM of order Lm by performing the following operation: Af- 
ter calculating [A(r)]j,j, i €H,j &C, according Lemma 1, we 
compute symbolically its series expansion with respect to the 
variable y, up to order Lm. The algorithm has two new fea- 
tures. First, we defined combinatorial identities to work with 
equivalent FSM at the level of the adjacent matrix which is 
convenient for symbolic computation. Second, no matter the 
number of states, the entries of A(r) are bivariate polynomi- 
als whose powers of y are of order at most Lm, resulting in 
a truncated transfer function with considerable less storage 
requirements. 
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Two terminals, Tl and T2, wish to communicate over the 
binary multiplying channel (BMC). To this end, they choose 
sets X and Y, respectively, of (input) vectors in {0,l}n. If 
x€X and ySF are fed to the BMC, it gives as output the 
vector xy, defined by (x • y)j = x,yi for all i€{l, 2,..., n}. 
Each terminal should be able to determine unambiguously the 
vector transmitted by the other one, using its own transmit- 
ted vector and the observed channel output. We call a pair 
(X, Y) satisfying this requirement uniquely decodable, or UD 
for short. Moreover, we call a UD pair (X, Y) symmetric if 
X = Y. Note that unlike [1], we do not allow feedback, that 
is, encoding of a message does not depend on the output bits 
observed so far. 

If (X, Y) is a UD pair of length n, we define the rate pair 
(R(X),R(Y)) = (ilog|X|,ilog|y|). As usual, all loga- 
rithms have base 2. A rate pair (x,y) will be called achievable 
if for each e > 0, there exists a UD pair (X, Y) such that 
R(X) > x — e and R(Y) > y — t. The set of achievable rate 
pairs will be called the zero-error capacity region of the BMC 
without feedback, and it will be denoted by Z. 

In [2], we construct UD codepairs from cosets of binary 
linear codes with many information sets and obtain the 
following theorem, in which h denotes the binary entropy 
function. 

Theorem 
{(h(R2) + Ri -l,h(Ri)+R2-l) | ± <Ri,R2 < 1} C Z. 
For | < R < 1, the rate pair (h{R) + R- l,h(R) + R - 1) 
can be achieved with symmetric UD pairs. 

Specializing the theorem to the case R=2/3, we find 

Corollary The rate pair (log(3/2),log(3/2)) « (0.585,0.585) 
can be achieved with symmetric UD pairs. 

The rate pair of the corollary yields the largest known sum 
of the rates of pairs in Z, and clearly improves on the largest 
known sum rate so far attained by a UD pair with rate 
pair (0.548,0.548) [3]. It follows from [4, Thm. 3] that the 
rate pair (log(3/2),log(3/2)) is the largest possible that can 
be achieved with symmetric UD pairs. Stated differently, 
asymptotically our construction yields cancellative families of 
sets [4] [5, Sec. VII] of largest possible rate. 

The results are represented graphically in Figure 1. The 
rate pairs from the theorem lie on and below the curve N, 
labelled by "new rate pairs". As ({1},{0,1}) is a UD pair, 
(0,1)GZ; similarly, (1,0)€Z. With a time sharing argument 
[1, Sec. 8], it can be shown that Z is convex. Consequently, 
all rate pairs on and below the tangents to N through (1,0) 
and (0,1) are in Z.  The relevant segments of these tangents 

are drawn as well. 
The line segment "upper bound" represents the upper bound 
of [6], according to which x+y < 1.2181 for any (x, y) g Z. As 
remarked by Erik Meeuwissen in [7, Stellung 2], combination 
of this upper bound with Shannon's lower bound [1, Sec. 13] 
shows that the zero-error capacity region of the BMC without 
feedback is strictly smaller than its e-error capacity region. 

NEW HATE PAIRS — 
UPPER BOUND — 

SHEARER'S RESULT o 

Fig. 1: Graphical representation of the results.  All points 
below the solid curve or its two tangents are in Z. 

[1] 

[2] 

[3] 

[4] 

[5] 
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Abstract — The error exponent of the two-user 
Poisson multiple-access channel under peak and av- 
erage power constraints, but unlimited in bandwidth, 
is considered. First, a random coding lower bound 
on the error exponent is obtained, and an extension 
of Wyner's single-user codes [1] is shown to be expo- 
nentially optimum for this case as well. Second, the 
sphere packing bounding technique suggested in [2] is 
generalized to the case at hand and an upper bound 
on the error exponent, which coincides with the lower 
bound, is derived. 

The model studied here assumes two independent users 
that generate the inputs Am, (t) , i = 1, 2 , 0 < t < oo, which 
determine the rates of two corresponding doubly stochastic 
Poisson processes di(t). The observation is 

u(t) = f^di(t) + D(t) 

which is also a Poisson process with instantaneous rate Ao + 
X^i=i ^m.i(t). The dark current represented by D(t) is a ho- 
mogeneous Poisson process of rate Ao- It is further assumed 
that the waveforms are subject to peak and average power 

constraints - i.e. 0 < \mi(t) < A , 1/T JQ  \mi(t)dt < qtA.. 
Using a DMC decomposition for our continouos-time model 

the two-user capacity region of [3] is obtained. Furthermore, 
applying the rate-splitting technique of [4] to our discrete time 
model we conclude that in the non band limited case rate- 
splitting extends to the continuous-time Poisson channel. 

Next assuming maximum-likelihood decoding, a lower 
bound on the error exponent is computed via the random 
coding error exponent of this DMC decomposition. The ex- 
ponent consists of two terms; the successive decoding and joint 
decoding exponents defined respectively by (s = \Q/A) 

En(p,qi,q2)    =    s + qi + q2 - (1 - q2)s[l + r0qi ii-W> 

-q2(l + s)[l+Tiqi]
1+p 

(1) 

with 

ro = (1 + 1/s)^ -l  ,   n = [l + l/(s + l)]T+^-1 

and 

E\2{p,q\,q2) = 

s + qi+q2 (l-qi)(l-q2)s>+>> 

-ii+p 

+ (qi + 92 - 2qiq2)(l + s)'+» + qiq2(2 + s)»+" 

An extension of the code construction of [1, part I] to the 
case at hand is presented wherein a two-user code with non- 
equal (91 < q2) average-power cnstraint is constructed. This 
is acomplished by constructing first a (q2, M\ + M2,T) Wyner 
code and then modifying a (q2,Mi,T) subcode to conform 
with the qi constraint. The resulting code exhibits the statis- 
tical properties of a two-user "random-code" hence the corre- 
sponding upper bounds on the successive decoding and joint 
decoding error probabilities are shown to yield the exponents 
(1) and (2). 

We extend the approach outlined in [2] to the two-user case 
thereby obtaining a sphere-packing lower bound on the error 
probability. Specifically, we associate a "volume" with the 
set of all sequences representing a realization of n arrivals on 
[0, T]. Given a specific realization of n arrivals, each hypothe- 
sis of transmitted two-user message determines a configuration 
triple (ni,n2,no) consisting of the number of photon arrivals 
on the time slot where only one of the users is active, both of 
them are active and none of them is active, respectively. Now, 
each such configuration is also associated with a correspond- 
ing volume. Using these definitions we derive a lower bound 
on the error probability. 

We prove that in the non band limited regime binary sig- 
naling incurrs but a negligible loss in the error probability. 
Furthermore, it is shown that equi-energy signaling for each 
of the users is optimal from the error probability aspect. These 
conclusions lead to a sphere-packing exponent which coincides 
with the random coding lower bound. 

Using similar arguments as in [1, part II] we show that the 
straight line bound is tight for rates below the cutoff rate. 

Consequently, the two-user Poisson MAC joins its single- 
user partner as one of very few for which the reliability func- 
tion is known. 

REFERENCES 

[1] A. D. Wyner, "Capacity and error exponent for the direct detec- 
tion photon channel - parts I-II," IEEE Trans. Inform. Theory, 
vol. IT-34, pp. 1449-1471, November 1988. 

[2] M. V. Burnashev and Y. A. Kutoyants, "On sphere-packing 
bound, capacity and related results for the Poisson channel," 
Probl. Inform. Transm., vol. 35, pp. 3-22 (1999). 

[3] A. Lapidoth and S. Shamai (Shitz), "The Poisson multiple- 
access channel," IEEE Trans. Inform. Theory, vol. IT-44, pp. 
488-502, March 1998. 

[4] A. Grant, B. Rimoldi, R. Urbanke and P. Whiting, "Rate split- 
ting multiple-access for discrete memoryless channels," to ap- 
pear in IEEE Trans. Inform. Theory,. 

(2) 

0-7803-5857-0/00/$ 1 0.00 ©2000 IEEE. 
38 



. ISIT 2000, Sorrento, Italyjune 25-30,2000 

On the capacity of some uncoordinated 
multiple-access channels 

Peter Gober 
Digital Communications Group 

University of Essen 
Ellernstr. 29 

45326 Essen, Germany 

e-mail: peter.goberQieee.org 

Abstract — We consider uncoordinated multiple- 
access. Here, a number of transmitter-receiver pairs 
operate independently over a common channel and re- 
gard the transmissions of the remaining users as ran- 
dom noise. It is shown, that for the uncoordinated 
binary adder channel, the capacity is upper bounded 
by l/ln2 bits/transmission and does not grow loga- 
rithmically with the number of users as it does in the 
coordinated case. An asymptotic lower bound for the 
capacity is given. Further examples of uncoordinated 
channels are studied. 

I. INTRODUCTION 
Here, we are interested in uncoordinated multiple-access. Each 
transmitter has a dedicated receiver, that only decodes the 
messages intended for him and regards the remaining trans- 
missions as random noise (single-user detection). 

The following approach to uncoordinated multiple-access 
has been introduced by Cohen, et al. [2]: The individual 
transmissions are treated as identical single-user channels with 
identical outputs. The activity of the other users stimulates 
channel transitions. As a result, transition probabilities are 
functions of the input distribution. 

The (total) capacity of an uncoordinated multiple-access 
channel is defined by 

Cuncoord. = T • [max (H(Y) - H(Y\Xi))] . (1) 

The maximum is taken over the input distribution (which is 
common to all users). 

II. BINARY ADDER CHANNEL 
The binary adder multiple-access channel accepts binary 

input Xi € {0,1} from each of T transmitters. The channel 
output y £ {0,... ,T} is the algebraic sum of the inputs, 

y — xi + X2 H \-XT- 

For the coordinated binary adder multiple-access channel, 
Chang and Wolf [1] found that the capacity is achieved by 
P(Xi = 0) = P(Xi = 1) = |. It increases with the logarithm 
ofT. 

Figure 1 shows one of the equivalent single-user channels for 
the binary adder channel. The input probabilities are P(X = 
1) = p and P(X = 0) = 1 - p. 

We can show, that the mutual information of the single- 
user channels can be written as 

/(x;F)=5:r7V(i-p)T-1" 

l-p       0 

p   1 

Fig. 1: Binary adder channel as seen by an individual transmitter- 
receiver pair 

It can then be shown: 

Theorem 1 The capacity of the uncoordinated T user 
multiple-access binary adder channel is upper bounded by C < 
r^2 bits/transmission. 

The capacity does not grow with the number of users as it" 
does in the coordinated case. 

Theorem 2 As T —* oo, for the capacity of the uncoordinated 
T-user multiple-access binary adder channel, it holds CT->oo > 
.8371 bits/transmission. 

III. FURTHER CHANNELS 

In addition the uncoordinated XOR channel and an unco- 
ordinated continous-time channel are studied. 
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Abstract — The multiple-access relay channel 

(MARC) is introduced and capacity outer and inner 

bounds for it are derived. 

I. INTRODUCTION 

The spectral efficiency of mobile radio networks can be im- 
proved by allowing each mobile station to act as a relay for 
one other mobile station. One can expect further performance 
improvement if each relay aids not just a single mobile sta- 
tion, but many simultaneously. We attempt to quantify this 
improvement by introducing the multiple-access relay chan- 
nel (MARC) and deriving capacity results for it. Most of the 
discussion is restricted to the white Gaussian MARC. 

II. MODEL 

A white Gaussian MARC is a K + 2 terminal channel with 
K + 1 inputs X\, Xi, ■ ■., XK, XR and two outputs YD and 
YR such that 

YD YjXkj+XR + ZD,   YR=l^2xk\+ZR,   (1) 

where ZD and ZR are zero-mean Gaussian random variables 
with variances ND and NR, respectively. The terminal trans- 
mitting Xk sends a Bk bit message to the destination termi- 
nal receiving YD, fc = 1,...,ä\ A relay terminal observes 
YR and transmits XR. There are block energy constraints on 
the N transmissions: £^j E[\Xkn\2]/N < Pk, k = 1,..., K, 

and En=i E[\XR„\
2
]/N < PR. The capacity regionlZMARC 

is the closure of the set of rate-tuples (Ri,... ,RK), where 
Rk = Bk/N bits per use, at which the destination terminal 
can decode the K messages with arbitrarily small positive er- 
ror probability. 

III. AN OUTER BOUND 

One can derive the following outer bound to 7?.MARC by fol- 
lowing similar steps as in the proof of Theorem 4 in [1]. This 
outer bound applies to both discrete memoryless and white 
Gaussian MARCs. We write X{S) = {Xk : k € S} for a set S. 

Theorem 1 7?.MARC is contained within the convex hull of 
the set of rate-tuples (fli,..., RK) satisfying 

0<Ek.es
Rk < mm [l(X{s); YRYD\X(SC)XR), 

I(x(S)XR;YD\Xisc))] , 
(2) 

where S is any subset of {1, 2,... , K], Sc is the complement 
of S in {1,2,... ,K}, and P(xux2,- ■ ■ ,XK,XR) factors as 

rip^) 
.fc=i 

P(XR\XI,... ,XK) (3) 

1This work was performed while this author was with Endora 
Tech AG, Hirschgässlein 40, 4051 Basel, Switzerland. 

IV. INFORMATION RATES 

We extend the coding technique of [1, Sec. IV]. Consider 
the independent, zero mean, unit variance, Gaussian random 
variables Vk and Wk, k= 1,..., K, and set 

Xk    = 

XR     = 
Pk- (y/c^Vk + y/T^SZWk), 
pR-ELiVß^vk, (4) 

where 0 < ak < 1, ßk > 0 and Ek=i >3k = L Terminal k ran- 
domly generates a certain number 2NRko of codewords vk(i) 
of length N by using Pvk in the usual memoryless fashion. 
For each vk{i), terminal k generates 2NRk codewords wk by 
using Pwk and forms 

xk(i) = VPk- (\/ük~vk(i) + y/l- akwk). 

Eachxfc(i) is then associated with &vk{j), where j may not be 
i, by using the random partitioning technique of [1, p. 575], 

The transmission is in blocks of length N. Terminal k 
chooses that vk(i) associated with the xk of the previous block 
and lets the current block's message choose one of the 2NRk 

xk(i). The relay terminal is assumed to have decoded all xk of 
the previous block and hence knows the vk(i). He transmits 

xR = \fP~R- X^=i N/ÄÜ/CW- The resulting information rates 
suggest that the rate-tuple (ßi,. .. , RK) is approachable if, 
for all SC {!,..., A"}, 

0 < Ekes Rk < min [nXw,YR\X(sC)VHl *},), 
I
(
X

(S)V(S);YD\X(SC)V{SC))] 
(5) 

(6) 

The region of (5) can enlarge the basic A"-user multiple-access 
capacity region, and for K = 1 it is the same region as that 
in [1]. However, (5) is generally smaller than the anticipated 

0 < Ekes Rk < min [I(X(S);YR\X{SC)XR), 

I(X(S)XR;YD\X(SC))\ 

whose only difference to (2) is that YD is missing in the first 
information inside the square brackets. Note that the same 
probability distribution (3) is used for (2), (5) and (6). 

As a simple example, consider the case where the relay 
aids terminal k = 1 only, i.e., ß\ = 1. We can then set ak = 0 
for k = 2,...,K and can achieve the region (6). However, 
the probability distribution P(xi,X2, ■ ■ ■ ,XK,XR) factors as 

[riitLi P(Xk)] ■ P(XR\XI) rather than as in (3). 
It is unclear whether the region of (6) is achievable with (3). 

In any case, we show that the region of (6) differs from that 
of (2) for any sum-of-rates by at most a factor of 1 + NR/ND 

in terms of signal-to-noise ratio. This factor is at most 2 for 
the usual case where NR < ND- For K = 1 this gives a simple 
outer bound to any eventual rate increase over (6). 
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1 
Abstract — We investigate the task of compressing an image 

by using different probability models for compressing different 
regions of the image. We introduce a class of probability models 
for images, the k-rectangular tilings of an image, that is formed 
by partitioning the image into k rectangular regions and gener- 
ating the coefficients within each region by using a probability 
model selected from a finite class of N probability models. For 
an image of size n x n, we give a sequential probability assign- 
ment algorithm that codes the image with a code length which is 
within 0(k log ^) of the code length produced by the best prob- 
ability model in the class. The algorithm has a computational 
complexity of 0(A'n3). An interesting subclass of the class of k- 
rectangular tilings is the class of tilings using rectangles whose 
widths are powers of two. This class is far more flexible than 
quadtrees and yet has a sequential probability assignment algo- 
rithm that produces a code length that is within 0( k log ^) 
of the best model in the class with a computational complexity 
of 0(Nn2 log n) (similar to the computational complexity of se- 
quential probability assignment using quadtrees). 

I. INTRODUCTION 

Consider the task of compressing a wavelet subband comprising 
n x n wavelet coefficients that have been quantized using a scalar 
quantizer. For natural images, it is well known that the wavelet co- 
efficients are small in smooth areas and large in the neighbourhood 
of edges. Because ofthat, we would like to use different probability 
models for coding different parts of the subband in order to obtain 
good compression. We will restrict ourselves to a finite number Ar of 
different probability models to choose from. 

We introduce a class of probability models formed by partitioning 
the image into k rectangular regions and generating the coefficients 
within each region by using a probability model from the finite class 
of N probability models. We call the class of probability models 
that is generated in this way the class of k-rectangular tilings of the 
image. Our algorithm aims to compress as well as the best model in 
this class. 

II. RELATED WORK 

The class of A;-rectangular tilings can be considered as a natural 
extension to two dimensions of the class of piecewise-identically- 
distributed source for sequences studied in information theory [6, 4]. 
Similar methods have also been studied in computational learning 
theory [2, 5, 1]. In fact, the method described in this abstract is an 
extension of the specialist method in [1] to two dimensions. 

III. MAIN RESULTS 

In this paper, we provide a sequential probability assignment 
algorithm that codes the image with a code length that is within 

'This work was supported in part by the National University of Singapore 
Academic Research Fund grant RP3992710. 

OfA-log -^p) bits of the code length produced by the best model in 
the class of A:-rectangular tilings of the image, where k does not need 
to be known in advance. The computational complexity of the al- 
gorithm is 0(Nn3 ). If we restrict the class of probability models 
to those generated using rectangular partitions of D discrete widths, 
the computational complexity can be improved to 0(Nn2 D). This 
means that we can have a fast algorithm of computational complex- 
ity 0(Nn2W) for a probability assignment that is competitive with 
the best assignment provided by the class of A:-rectangular tilings us- 
ing rectangles of widths less than W. Another interesting class of 
models under the restriction to D discrete widths is the class of k- 
rectangular tilings with rectangles whose widths are powers of two. 
Restriction of the probability models to this class allows us to have an 
algorithm with a computational complexity of 0(Nn2 log n). This 
class is similar to the class of quadtrees but is more powerful since 
only one dimension is restricted to the log2 n discrete sizes and arbi- 
trary shifts are allowed. 

Experiments on compressing wavelet transform of images re- 
ported elsewhere [3] show that the method is practically effective. 

IV. OPEN PROBLEM 

The method described in this abstract is a sequential probability 
assignment method. We do not know how to obtain efficient two 
stage coding methods with good bounds on the redundancy for the 
class of A--rectangular tilings of an image. Such forward adaptation 
methods may allow the use of sophisticated quantization methods in 
conjunction with this class of models. 
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Abstract — In variable-length coding, the probabil- 
ity of codeword length per source letter being above 
(resp. below) a prescribed threshold is called the 
overflow (resp. the underflow) probability. In this 
study, we show that the inflmum achievable threshold 
given the overflow probability exponent r always coin- 
cides with the inflmum achievable fixed-length coding 
rate given the error exponent r, without any assump- 
tions on the source. In the case of underflow prob- 
ability, we also show the similar results. From these 
results, we can utilize various theorems and results 
on the fixed-length coding established by Han for the 
analysis of overflow and underflow probabilities. 

I. GENERAL SOURCES 

Let us define a general source as an infinite sequence X = 

{Xn = (Xj" ,---,XrT )}^=1 of n-dimensional random vari- 

ables X" where each component random variable X-"' (1 < 
i < n) takes values in a countably infinite set X which is called 
the source alphabet. It should be noted here that each com- 
ponent of X" may change depending on block length n. This 
implies that the sequence X is quite general in the sense that 
it may not satisfy even the consistency condition as usual pro- 
cesses. The class of sources thus defined covers a very wide 
range of sources including all nonstationary and/or nonergodic 
sources. 

II. OVERFLOW AND UNDERFLOW PROBABILITIES 

Let <pl : X" ->• W, xft : W -> Xn be a prefix variable- 
length encoder (a one-to-one mapping) and the decoder (the 
inverse mapping of the encoder), respectively, where U = 
{1,2, • • •, K} is called the code alphabet and W is the set of 
all (non-null) finite-length strings from U. Then, let us define 
the overflow probability of the prefix variable-length encoder 
<Pn with threshold R by 

e„(^,Ä) = Pr{i/(^(X"))>Ä}, 

where l(u) denotes the length ofuSM*. We also define the 
underflow probability of the prefix variable-length encoder tp"n 

with threshold R by 

£;(^,ß) = Pr{i/(^(X"))<ß}. 

For unifilar finite-state sources, Merhav [1] has shown that 
the optimal exponential decay rate of the overflow probability 
is equal to the optimal error exponent for fixed length coding, 
and this optimal decay rate can be universally achieved by 
using Lempel-Ziv code. 

10. Uchida is now with the Dept. of Network Engineering, Kana- 
gawa Institute of Technology, Atsugi, Kanagawa, 243-0292 Japan. 

III. MAIN RESULTS 
Definition 1 : R is called an r-achievable overflow threshold 
if there exists a prefix variable-length encoder <py„ such that 

lim inf - log v        > r. 

Moreover, we define the infimum r-achievable overflow thresh- 
old by 

Le(r|X) = inf{fl | R is an r-achievable overflow threshold}. 

Theorem 1 : For any general source X with countably infi- 
nite alphabet X and all r > 0, we have 

Le(r|X) = fle(r|X), 

where Äe(r|X) is the infimum r-achievable fixed-length cod- 
ing rate [2], and it has been shown by Han [2] that 
Ä,(r|X) = supfl>0 {R - a(R) \ a{R) < r} , where a{R) = 
liminf,,^ ± log —j- !— r. 

Definition 2 : R is called an r-achievable underflow thresh- 
old if there exists a prefix variable-length encoder tp1^ such 
that 

lim sup - log < r. 
„_,«„   n       e'r,(<pl,R) 

Moreover, we define the infimum r-achievable underflow 
threshold by 

Ll(r\X) = inf{fl | R is an r-achievable underflow threshold}. 

Theorem 2 : For any general source X with countably infi- 
nite alphabet X and all r > 0, we have 

L;(r|X) = Äe*(r|X), 

where Ä*(r|X) is the infimum r-achievable fixed-length coding 
rate [2], and it has been shown by Han [2] that #^(r|X) = 
inf{/i > 0 |inffl>o {a'(R) + [R- a'{R) - h]+} < r} , where 
o-*(R)   =   limn 

max(x,0). 

ilog- 
* rrx^r ^ ,  and  [x]+ 

Remark : In [2], Han has shown examples of the computa- 
tion for Äe(r|X) and fi*(r|X) for many kinds of sources X. 
These examples include countably infinite alphabet cases that 
can not be treated by the traditional method of types. From 
Theorems 1 and 2, we can use all of these results to derive the 
values of Le(r|X) and L'e(r\X). 
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Minimum Conditional Entropy Context Quantization 
Xiaolin Wu1 Philip A. Chou2 Xiaohui Xue3 

Abstract — We consider the problem of finding the 
quantizer Q that quantizes the AT-dimensional causal 
context d = (Xi-tt,Xi-t2,...,Xi-tK) of a source sym- 
bol Xi into one of M conditioning states such that the 
conditional entropy H(Xi\Q(Ci)) is minimized. The 
resulting minimum conditional entropy context quan- 
tizer can be used for sequential coding of the sequence 
Xo,Xi,Xi  

A key problem in sequential source coding of a discrete 
random sequence X0,Xi, X2, • • • is modeling the underlying 
conditional distribution of the source P(Xi\Xt~1), Because 
of model estimation considerations, it is not possible to di- 
rectly use all of XI_1 as the model's context. Many practical 
source coders choose a priori a model with fixed complexity, 
based on domain knowledge such as correlation structure and 
typical data length, and estimate only the model parameters. 
To avoid context dilution problem, we quantize the modeling 
context into a relatively small number of conditioning states, 
and estimate P(Xi\Q(d)) instead, where Q is a context quan- 
tizer. This approach has produced some of the best perform- 
ing signal compression algorithms such as CALIC and JPEG 
2000, despite the fact that they are not strictly universal. A 
pivotal issue for these source coders, which impacts their rate- 
distortion performance, is the design of the context quantizer 
Q. The problem is one of optimal vector quantization design 
with respect to the Kullback-Leibler distance. 

Let Y be a discrete random variable, and let C be a jointly 
distributed random vector, possibly real. Given a positive in- 
teger M, we wish to find the quantizer Q : C —¥ {1,2,..., M} 
such that H{Y\Q{C)) is minimized. Clearly, H(Y\Q(C)) > 
H(Y\C) by the convexity of H. However, we wish to make 
H(Y\Q(C)) as close to H(Y\C) as possible. Equivalently, we 
wish to minimize the non-negative "distortion" of Q 

D(Q)    =    H(Y\Q(C)) - H(Y\C) 

dP(c)D(Py]C=C\\PY]Q(C)=Q(C)), (1) 
■/' 

which is the average, over all context vectors c, of the 
Kullback-Leibler distances between the probability mass 
functions (pmfs) PY\c{-\c) and their "reproduction" pmfs 

PY\Q{C)(-\Q(C)). 

Let ßm(y) = PY\Q(C){y\m) denote the mth reproduction 
pmf. Then an optimal Q must map almost all context vectors 
c to the conditioning state m that minimizes the Kullback- 
Leibler distance D(PY\c=c\\ßm), i.e., 

Q(c) = argminZ?(Py|o=c||/3m). (2) 
m 

The quantization regions Am = {c : Q(c) = m}, m = 
1,...,M, of a minimum conditional entropy context quan- 
tizer are generally quite complex in shape, and may not even 

*Dept. of Computer Science, Univ. of Western Ontario, London, 
Ontario, Canada N6A 5B7, wu@csd.uwo.ca. 

2Microsoft Research, One Microsoft Way, Redmond, WA 98005, 
USA, pachou@microsoft.com. 

3Dept. of Computer Science, Harbin Institute of Technology, 
Harbin, China, xue@csd.uwo.ca. 

be convex or connected. However, their associated sets of 
pmfs Bm = {Py|c(-|c) : c € Am} are simple convex sets in 
the probability simplex for Y, owing to the above necessary 
condition for optimal Q. Let ßm(y) — P(y\C S Am) be the 
conditional distribution of Y given C S Am- Then by (2), for 
each c € Bm, the Kullback-Leibler distance from Py\c(y\c) 
to ßm {y) must be less than (or equal to) the Kullback-Leibler 
distance to ßm'{y), m' ^ m. Hence 

Y, p(y\c) los -A^ < E p^ic) los 'ßm (y) ßm'iv)' 
(3) 

for all m! ^ m. In other words, if c € Bm, then P(y\c) lies in 
an intersection of halfspaces. 

If Y is a binary random variable, then its probability sim- 
plex is one-dimensional. In this case, the quantization regions 
Bm are simple intervals. If the random variable Z is defined as 
■Py|c(l|C) (the posterior probability that Y = 1 as a function 
of C), then the conditional entropy H(Y\Q(C)) of the optimal 
context quantizer can be expressed 

K 

H(Y\Q(C)) = Y PiZ ^ [qm-i,qm)}H(Y\Z 6 [qm-i,qm)) 
m—1 

(4) 
for some set of thresholds {qm}- Therefore, the optimal con- 
text quantizer can be found by searching over {qm}- This is 
a scalar quantization problem, which can be solved exactly 
using dynamic programming, regardless of the dimensionality 
of the context space. Once the scalar problem is solved, the 
optimal context quantizer cells Am are given by 

{c : PY\c(l\c) € [qm-i,qm)}. (5) 

In particular, the boundaries between these cells are deter- 
mined by those vectors c for which the posterior probability 
Py|c(l|c) is a constant: For example, Py|c(l|c) = qm for c 
along the boundary between Am and Am+i. Equivalently, Am 

can be expressed in terms of the likelihood ratio 

,, . = Po|y(c|l) = PY(0)    iV|c(l|c) 
{)       PC\Y(C\0)        Py(l)l-Py|C(l|c)- 

(6) 

If both PC\Y(C\0) and Pc|y(c|l) are d-dimensional Gaus- 
sians, then optimal context quantizer cells are bounded by 
d-dimensional quadratic surfaces. 

The significance of this research is in that it offers a con- 
structive means of designing optimal source codes for mini- 
mum code length via high-order context modeling. The prob- 
lem of controlling model cost in high-order context modeling 
is addressed by designing optimal context quantizer, which 
collapses high-order contexts into any given number of coding 
states in a way to minimize the actual code length. Once 
the context quantizer Q is designed, on-line estimation of 
P(-\Q(C)) by count statistics and adaptive entropy coding 
can be done very efficiently, much faster than by context tree 
methods. We observe that our techniques often outperform 
the universal source codes of proven optimality by appreciable 
margins on real data in image, video, and audio compression. 

! 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 
43 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

On the variance and the probability of length overflow 
of lossless codes 

Ryo NOMURA1 

Waseda University 
Shinjuku-ku, Tokyo, Japan. 

ryochanflmatsu.mgmt.waseda.ac.jp 

Toshiyasu MATSUSHIMA 
Waseda University 

Shinjuku-ku, Tokyo, Japan. 

Shieeichi HIRASAWA 
VVaseda University 

Shinjuku-ku, Tokyo, Japan. 

Abstract — In this paper, we show the probability of 
length overflow of several codes by using the variance 
and the asymptotic normality of the codelength. 

I. INTRODUCTION 

Lossless source coding schemes are examined under several 
criterions. The most representative criterion is redundancy. 
Recently, Merhav[l] proposed the probability of length over- 
flow. 

In this paper we redefine the probability of length overflow. 
We consider a finite alphabet source A = {i : 0 < i < k — 1}. 
Let xn — x\X2%z • • ■ x„ £ Xn denotes a source sequence. And 
let p(xn) denotes the probability distribution of a source. Let 
i(-) be a codelength and en be a function of n. 

Definition I. 1 The probability of length overflow is defined 
by 

Pr{L(xn)>en}. (1) 

We shall evaluate a code by using the probability of length 
overflow instead of the expected codelength. 

Next we define the two quantities, that have very important 
role in this paper. First we generalize the minimal coding 
variance, which is inherent value of a source, proposed by 
Kontoyiannis[2]. 

Definition I. 2 The rth moment of self-information is de- 
fined by 

M(X)r=  lim E\\--\ogp(xn)-E[--\oSP(Xr'))y}. 
n—<x>      L I.    n n J   J 

Especially, the 2nd moment of self-information coincides with 
the minimal coding variance. 

Second we define the moment of codelength. 

Definition I. 3 Let Lc(x
n) denotes the codelength for se- 

quence i" when we use a code c. Then the rth moment of 
a code c is denoted by 

aT
c =  lim E U-Le(x

n) - E[-Lc(Xn)]Y] . (2) 
n^oo      Lin n J   J 

Especially, when r = 2 we call this the variance of codelength 
of a code c. 

When a source distribution is known, it is well known that 
a codelength — \ogp(x") minimize the expected codelength. 
We call this code Shannon code and let <x| be the variance of 
Shannon code. Obviously, the variance of Shannon codelength 
coincides with 2nd moment of self-information. Here we define 
a condition of a source as follows. 

Condition II. 1 The codelength of Shannon code with re- 
spect to a source satisfies the asymptotic normality. 

Then we have the following lemma. 

Lemma II. 2 Under Conditionll. 1 , if lime,, > nH(X) + 

\/nM(X)2, then we have 

lim  Pr{— logp(xn) > (n) = 0. (4) 

III. THE PROBABILITY OF LENGTH OVERFLOW OF 
BAYES CODE 

We consider a parameterized source distribution. Let 8 € 0 
is a Ä-dimensional parameter of a source. If 9 is unknown, 
it is known that Bayes code minimize the redundancy with 
respect to Bayes criterion. The coding probability of Bayes 
code is given by m(xn) = f p(xn\9)p(8)d9, where p(8) is a 
prior distribution of 9. We define a condition of a source. 

Condition III. 1 The codelength of Bayes code with respect 
to a source satisfies the asymptotic normality. 

Then we have the following theorem. 

Theorem III. 1 Let the variance of Bayes code denoted by 
0-%, we have 

M(Xf + - > a% > M{Xf + -- 
n n 

2kM(X) 
(5) 

From above theorem, we have the following lemma. 

Lemma III. 1    Under   Conditional. 1 ,    if  lim,, — ,^ c„     > 
nH(X) + sJnM(A')2, then we have 

lim Pr{-\ogm(xn) > („} = 0. (6) 

II. THE PROBABILITY OF LENGTH OVERFLOW 

We show the probability of length overflow of a code c. Let 
Lc(x

n) denote the codelength of a code c for xn. 

Lemma II. 1 // the codelength of a code c satisfies asymp- 
totic normality with respect to a source, the probability of 
length overflow of a code c is given by 

Mm Pr{Lc(x
n)>en} (3) 

/. . \Fii 
exp dy, 

where, Z£ _   c„-E[Lc(i")]        2 ac is the variance of a code c. 

'This work was supported by in part of Waseda University under Ihis work was supported by in part ot W 
Grant 99A-551 for Special Research Project 

IV. CONSIDERATION 
We obtained the probability of length overflow of codes, that 
minimize the expected codelength. From above lemmas nei- 
ther source distribution is known or unknown, under Condi- 
tionll. 1 ,111. 1 , if we wish the probability of length overflow 
goes to 0 then it is necessary that ,limn_oo en  > nH(X) -f 

s/nM{Xy. 
We introduce the moment of self-information and the mo- 

ment of codelength, that play very important role to analyse 
the probability of length overflow. 
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Abstract — Watermarking (WM) codes are analyzed 
from an information-theoretic viewpoint as identifi- 
cation (ID) codes with side information that is avail- 
able either at both transmitter and receiver or at the 
transmitter only. For the former case, formulas are 
provided for the ID capacity and for achievable er- 
ror exponents. For the latter case, upper and lower 
bounds to the ID capacity are derived. 

WM techniques are about embedding a message into a 
covertext dataset (say, an image) such that on the one hand, 
quality is maintained, and on the other hand, this message 
cannot be removed without access to some secret key or with- 
out rendering the data useless. The main application is for 
proving ownership of the data and for protection against forg- 
ers. 

In contrast to the vast amount of research work reported in 
the signal/image processing literature, relatively little atten- 
tion has been devoted to this problem from the information- 
theoretic perspective. A few exceptions are, e.g., [2],[3],[5],[6], 
where attempts were made to characterize capacity and/or 
error exponents of WM systems by viewing them as coded 
communication systems, where the covertext data plays the 
role of side information available at the encoder only or at 
both ends (depending on the application). 

More precisely, consider the following system: A rate- R 
block code of length n, fed by an (nR)-bit message m, and a 
n-block of a memory less covertext source V, generates an n- 
block of the watermarked version X, within small degradation 
of quality, symbolized by distortion Ed(V, X) < D\. An active 
attacker, modeled as a memoryless channel W : X —> Y may 
introduce additional distortion Ed(X, Y) < D2 in attempt to 
disrupt the watermark. Finally, Y is decoded at the receiving 
end, with or without access to the covertext V, in order to 
extract the watermark. 

In all the above-mentioned papers, WM systems were 
viewed as ordinary communication systems, where the decoder 
carries out full decoding, i.e., decides which one of 2nR pos- 
sible messages was embedded. In most of the applications, 
however, full decoding is not really necessary, as one needs 
only to detect whether or not a particular watermark resides 
in the covertext. Performance, in this case, is measured by 
the tradeoffs between rate, false-alarm probability and mis- 
detection probability. This observation guides us to view WM 
codes as ID codes [1] rather than ordinary transmission codes. 

Since in the ID setting, both false-alarm and misdetection 
probabilities (of each individual message) can be kept arbi- 
trarily small for large n even for a doubly exponential number 
of messages (when randomized encoders are allowed), the ID 
WM capacity is defined as limsup of the normalized iterated 
logarithm of the maximum achievable number of messages de- 
fined by an encoder that satisfies the distortion constraint. 

Our main results are as follows (for proofs, see [7]): 

Theorem 1 For a discrete memoryless covertext source V, 
available at both transmitter and receiver, and a given DMC 
W, the ID WM capacity C\ is given by 

Ci=H(V)+sup/(A-;y|V), (1) 

where the supremum is over all triples (V, X, Y) dis- 
tributed according to P{V,X,Y) = P(V)P(X\V)W{Y\X) 
withEd(V,X) <DL 

Theorem 2 For a discrete memoryless covertext source V, 
available at the transmitter only, and a given DMC W, the 
ID WM capacity Ci is bounded by 

sup I{U; Y) < C2 < sup /([/; Y), (2) 
B A 

where A is the set of all quadruples (U, V, X, Y) distributed 
according to P{U,V,X,Y) = P{V)P(X,U\V)W(Y\X) with 
Ed(V, X) < D\, and B is the same as A but with the addi- 
tional constraint that I(U;V) < I(U;Y). 

Two comments: (i) The direct part of Theorem 1 includes 
a more refined analysis (see [7]) that characterizes a set of 
achievable triples (R,Ei,E2), where E\ and E2 are exponen- 
tial rates of the error probabilities of the two kinds. As E\ 
and E2 tend to zero, the maximum achievable rate is R = Ci. 
(ii) It is known that in ID problems, if both transmitter and 
receiver have access to a common information source (com- 
mon experiment) Z, then the ID capacity is increased by the 
entropy of Z. In Theorem 1, obviously Z = V. In Theorem 2, 
the receiver can partially guess V with a common information 
rate of I(U; V), which when added to I(U; Y) - I(U; V) (cor- 
responding to the transmission capacity with side information 
at the transmitter only [4]), gives I(U;Y). Accordingly, the 
additional constraint of set B in Theorem 2 means that the 
transmission capacity is positive. 
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Abstract — We consider the problem of embedding 
one signal (e.g., a digital watermark), within another 
"host" signal to form a third, "composite" signal. The 
goal is to achieve efficient rate-distortion-robustness 
trade-offs. We introduce a new class of embedding 
methods called distortion-compensated quantization 
index modulation. In several different contexts in- 
volving both intentional and unintentional attacks, 
capacity-achieving methods exist within this class, 
while in other contexts these methods achieve prov- 
ably better rate-distortion-robustness performance 
than previously proposed spread-spectrum and gen- 
eralized low-bit(s) modulation methods. 

I. INTRODUCTION 

Digital watermarking and information embedding systems em- 
bed information in a host signal, which is typically an image, 
audio signal, or video signal. The host signal is not degraded 
unacceptably in the process, and one can recover the water- 
mark even if the composite host and watermark signal undergo 
a variety of attacks as long as these corruptions do not unac- 
ceptably degrade the host signal. These systems play an im- 
portant role at least three major application areas: (1) copy- 
right protection of multimedia content, (2) authentication and 
tamper-detection, and (3) backwards-compatible upgrading of 
existing legacy communication networks [1]. 

II. PROBLEM MODEL 

We wish to embed a message m € {l, 2,..., 2NRm }, some- 
times called a digital watermark, in some host signal vector 
x € 9iN, where Rm is the embedding rate in bits per host 
signal sample. Specifically, m and x are mapped onto a com- 
posite signal vector s € 5RN using some embedding function 
s(x, m), and we define a distortion measure between x and s. 
Equivalently, we can define a host-dependent distortion sig- 
nal e(x, m) that is added to x to obtain s. The composite 
signal s is subjected to unintentional attacks and possibly to 
intentional attacks inside some channel, which produces an 
output vector y € %tN • A decoder generates an estimate fh of 
m after observing y, i.e., we consider the "host-blind" case, 
where x is not available to the decoder. Ideally, the decoder 
can reliably recover the embedded information as long as the 
channel degradations are not too severe. Thus, the tolerable 
severity of the degradations is a measure of the robustness of 
the system. The goodness of s(x, m) and its corresponding de- 
coder is measured by the achievable rate-distortion-robustness 
trade-offs. 

This work has been supported in part by the Office of Naval Re- 
search under Grant No. N00014-96-1-0930, by the Air Force Office 
of Scientific Research under Grant No. F49620-96-1-0072, by the 
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Fig. 1: Quantization index modulation information embedding. 

III. DISTORTION-COMPENSATED QUANTIZATION 

INDEX MODULATION 

Quantization index modulation (QIM) embedding functions 
arise by defining an ensemble of quantizers q(; m), one quan- 
tizer in the ensemble for each possible value of m. Then, 
s(x, m) = q(x; m). An example is shown in Fig. 1 for the 
case where N = 1, Rm = 1, and the quantizers are uniform, 
scalar quantizers. One can decode, for example, by determin- 
ing whether y is closer to a o point (m = 1) or to a x point 
(m = 2). Thus, the x and o points represent both source code- 
words for representing x and channel codewords for communi- 
cating m. QIM systems reject interference from the host signal 
since x determines which o or x point is chosen but does not 
deflect s or y away from these points. Distortion-compensated 
QIM (DC-QIM) systems add back some fraction 1 — a of the 
quantization error, s(x, m) = q(x; m) + (1 — a)[x — q(x; m)], 
which can be shown [1] to improve rate-distortion-robustness 
performance with the proper choice of a. 

IV. PERFORMANCE AGAINST ATTACKS 

In fact, one can derive sufficient conditions under which 
capacity-achieving DC-QIM systems exist [1]. These condi- 
tions are satisfied in at least three cases: (1) the additive Gaus- 
sian noise channel and Gaussian host signal scenario of [2], 
(2) the case of squared error distortion-constrained attacks 
and a Gaussian host signal described in [3], and (3) the case of 
squared error distortion-constrained attacks, a non-Gaussian 
host signal, asymptotically small embedding-induced distor- 
tion, and asymptotically small attacker's distortion described 
in [3]. 

In a number of other contexts where the capacity is un- 
known, DC-QIM methods achieve provably better perfor- 
mance than previously proposed additive spread-spectrum 
methods, which do not reject interference from the host signal, 
and generalized low-bit(s) modulation methods. These cases 
are discussed in [l], along with practical implementations of 
DC-QIM and QIM systems. 
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Abstract — We consider a watermarking system 
where 2nRw distinct Gaussian watermarks are em- 
bedded in respective copies of an n-dimensional i.i.d. 
Gaussian image. Copies are distributed to customers 
in digital form, using RQ bits per image dimension. 
We establish the rate region for the pair (RQ,RW) such 
that (i) the average quadratic distortion between the 
original image and each distributed copy is no more 
than a specified level; and (ii) the error probability in 
decoding the embedded watermark in the distributed 
copy approaches zero asymptotically in n. 

I. PROBLEM FORMULATION 

Recently, there have been some information-theoretic ap- 
proaches to the analysis of watermarking systems. Of particu- 
lar interest is [1], which gives a general expression for the max- 
imum rate of the set of messages that can be hidden within a 
host data set subject to a distortion constraint, as well as the 
requirement that the message withstand a deliberate attack 
aimed to destroy it. 

In this paper, we study a related problem that combines 
source and channel coding in a watermarking framework. This 
problem is motivated by the following scenario. A data dis- 
tributor (e.g., a news agency) has to deliver an information 
sequence In (e.g., a digital image) to Af„ = 2nRw customers, 
such that each customer receives a different watermarked ver- 
sion of In. To that end, the agent creates Mn watermarks 
Xn(l),...,Xn(Mn) independently of In, and uses them to 
generate the watermarked copies Yn(k) = In + Xn{k), k = 
l,...,Mn. Due to bandwidth limitations, the agent com- 
presses the watermarked data at a rate of RQ bits per image 
dimension subject to a fidelity criterion prior to distribution. 

For security purposes as well as for maximum usability, we 
assume that both the quantization and the reconstruction of 
the image are independent of the choice of the watermark set. 
In addition, the agent who generated the image should be able 
to discern which watermark is present in a digital image with 
a low probability of error Pe (e.g., in case an authenticator 
needs to track down the initial owner of an illegally distributed 
image). Therefore, watermarks and source codewords have to 
be designed in such a way that knowledge of the watermark 
set and the original data is enough for detecting reliably the 
watermark in a compressed, watermarked image. 

The main result of this paper is the determination of 
the allowable rates RQ and Rw for the above system, un- 
der the following assumptions: (i) In is i.i.d. J\f(0,Pi), 
(ii) the watermarks Xn(l),... ,Xn(Mn) are generated i.i.d. 
A/"(0,Px) with Px < Pi, and (iii) the distortion constraint 
n~1E[\\In-Yn\\2] < D is met (Yn is the quantized version of 
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r„(r, (D),D) 

/ RQ = Rw 

nD 

Fig. 1: For any distortion constraint D, the shaded area represents 
the region TZD of achievable pairs (RQ,RW)- As D varies, the min- 
imum source coding rate rg(D) and the maximum corresponding 
watermarking rate rw(rq(D),D) parametrically define curve C. 

Yn). Unlike the case in [1], here we consider a single fidelity 
criterion, namely the resultant distortion between the original 
data sequence and the watermarked/quantized data. Also, 
while quantization degrades the original image, it cannot be 
construed as a malicious attack of the type modeled in [1]. In 
our case, data compression and watermarking are cooperative 
(not competing) schemes, and must be optimized jointly. 

II. RESULTS 

The coding theorem that establishes the bounds on RQ and 
Rw consists of two parts. The forward theorem demonstrates 
the existence of a source code for Yn and an i.i.d. Gaussian 
random code for the watermark set such that the distortion 
constraint is satisfied and the probability of error Pe is ar- 
bitrarily small, as long as (RQ,RW) belongs to some region 
TZD ■ The converse theorem shows that if an arbitrary source 
code and an i.i.d. Gaussian watermark code jointly satisfy 
the distortion constraint and yield an asymptotically vanish- 
ing Pe, then (RQ, RW) must lie in TZD- We proved that TZD 

is characterized as follows: 

RQ     >    rq(D)   ±   \^K(PI+PX)D_PIPX 

Rw    <    rw(RQ,D)   =   ÄQ-ilog(§) 

where /Vj?   < D < Pi (all distortion values of interest). The 
graphical representation of these results is given in Figure 1. 
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Abstract — We compute the value of the water- 
marking game for a Gaussian covertext and squared- 
error distortions. Both the public version of the game 
(covertext known to neither attacker nor decoder) and 
the private version of the game (covertext unknown 
to attacker but known to decoder) are treated. Sur- 
prisingly, the two versions yield identical values. 

I. INTRODUCTION 

The watermarking game [1, 2] can model a situation 
where an original source sequence ("covertext") needs to be 
copyright-protected before it is distributed to the public. 
The copyright ("message") needs to be embedded in the dis- 
tributed version ("stegotext") so that no "attacker" with ac- 
cess to the stegotext will be able produce a "forgery" that re- 
sembles the covertext and yet does not contain the embedded 
copyright message. The watermarking process ("encoding") 
should, of course, introduce little distortion so as to guaran- 
tee that the stegotext closely resembles the original covertext. 

Different messages may correspond to different possible 
owners, versions, dates, etc. of the covertext, and it is thus 
of interest to study the number of distinct messages that can 
be embedded if reliable decoding is required from any rea- 
sonable forgery. The highest exponential rate at which this 
number can grow in relation to the covertext size is the cod- 
ing value of the game. A precise statement of this problem 
and some proofs can be found in [3]. 

II. WATERMARKING MODEL 

The watermarking game can be described as follows. A 
source emits the zero-mean variance-cr2, IID length-n covertext 
sequence U. Independently of U, a copyright message W is 
drawn uniformly over the set W„ = {1,..., [2"*]}, where R 
is the rate of the system. 

Using a secret key ©i, which is independent of U and W, 
the encoder produces the stegotext X = X(U, W, ©i) G Rn. 
We require the encoder to satisfy £ ||X—U||2 < D\, a.s., where 
D\ > 0 is a given constant called the encoder distortion level, 
and a.s. stands for "almost surely". 

The attacker, which is assumed to be ignorant of U and 
©i, produces a forgery Y = Y(X,02) 6 R" based on X 
and its own attack key ©2. We similarly require the attacker 
to satisfy i||Y - X||2 < D2, a.s., where D2 > 0 is a given 
constant called the attacker distortion level. 

The decoder produces an estimate of the message W. In 
the public version of the game, the decoder only uses the en- 
coder's secret key and the forgery, so that W — W^Y.Öi). 

In the private version of the game, the decoder also uses the 
covertext, so that W = W(Y, ©i,U). We consider the prob- 
ability of error averaged over the covertext, message and both 
sources of randomness, which is written Pe(n) = Pr(W ^ W). 

We adopt a conservative approach to the watermarking 
game and assume that once the watermarking system is em- 
ployed, its details are made available to the attacker. The 
attacker can thus optimize for the encoder and decoder. This 
precludes the decoder from using the maximum-likelihood de- 
coding rule. We thus say that rate R is achievable if there ex- 
ists a sequence of allowable rate-Ä encoder and decoder pairs 
such that for any sequence of allowable attackers, Pe (n) tends 
to zero as n tends to infinity. 

The value of the game is called the coding capacity, and 
it is the supremum of all achievable rates. We write the cod- 
ing capacity as Cprw(Di,D2,al) and Cpub{Di,D2,al) for the 
private and public versions of the game, respectively. 

Theorem 1. For the Gaussian watermarking game, 

CPub(Di,D2,cru) = CPrw(Di,D2,au). 

If the interval 

A{Dl,D2,a
2

u)= [max{D2,((Tu-v/D7)2},((Tu + \/ö7)2], 

is empty, then CViw{D\,D2,a^) is zero.  Otherwise, 

CPrw(Di,D2,au) = max 
A€A(D1,D2,oZ) 

H,+Gs4)(» (A-jal + D,))' 
4«r2 )) 

'This research was supported in part by a NSF Graduate Fellow- 
ship (A. Cohen) and by the NSF Faculty Early Career Development 
(CAREER) Program (A. Lapidoth) at MIT. It was conducted in 
part at the Institute for Signal and Information Processing, ETH. 

// expected rather than a.s. distortion constraints are used, 
then the coding capacity for both versions is zero. 

Note that the optimal A is a root of a cubic equation and 
hence a closed form solution for the capacity exists. Differ- 
ent capacity results for yet another version of this game with 
expected distortion constraints and a decoder that knows the 
attack strategy (ML decoder) have been recently reported in 

[!]■ 
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1 
Abstract — A metering scheme is a method to count 

the number of clients which visit each server. Naor 
and Pinkas [1] presented metering schemes which al- 
low to identify servers which are visited by at least 
a certain number h of clients and is secure against 
attempts by servers of inflating the count of their vis- 
its. In this paper we consider secure metering schemes 
for ramp access structures. We provide lower bounds 
on the size of the information given to clients and to 
servers and present a scheme achieving these bounds. 

I. INTRODUCTION 

We consider a scenario where there are n clients, m servers 
and an audit agency A whose task is to measure the interac- 
tion between the n clients and the m servers in order to count 
the number of client visits that any server receives. Our sce- 
nario contemplates the existence of corrupt servers and cor- 
rupt clients which could cooperate in order to inflate the count 
of the visits that a corrupt server receives. Naor and Pinkas 
[1] proposed metering schemes as a mean to prevent servers 
from inflating the count of their visits. In their schemes any 
server which is visited by a number of clients larger than or 
equal to some threshold h provides A with a short proof. The 
metering scheme operates for at most r time frames and du- 
ring these time frames is supposed to be secure. A metering 
scheme is secure at a certain time frame t if any server visited 
by less than h clients at that time frame has no information 
about its proof. In our model the clients receive a certain 
amount of information from the audit agency and give part of 
this information to the servers when visiting them. Given the 
high complexity of such a distribution mechanism, a natural 
step is to trade complexity for security. Hence, we consider 
a more flexible situation where a server which receives less 
than h visits is able tö gain some partial information about 
its proof. 

II. METERING SCHEMES FOR RAMP STRUCTURES 

An (n, m, r, c, s) metering system E consists of n clients 
d,...,Cn and m servers Si,...,Sm, which are active for a 
number r of time frames and in which c clients and s servers 
can be corrupt. A corrupt server can be assisted by corrupt 
clients and other corrupt servers in order to inflate the count 
of its visits. A corrupt client can donate to a corrupt server 
the whole information it has received from A. A corrupt server 
can donate to another corrupt server the information that it 
has so far received from clients. A ramp structure indicates a 
pair of thresholds (£, h), where l<c<£<h<n. 
For i — 1,..., n, j — 1,..., m, t = 1,..., r, C, is the random 
variable associated with the information given by A to d, 
C'j- is that associated with the information given- by d to 
Sj during a visit at time frame t, X'- ,d.s is that associated 
with the information received by Sj at time frame t assuming 
it is visited by dj clients at that time frame, and P' is that 
associated with the proof generated by Sj when it is visited by 

at least h clients during time frame t and Vj- is that associated 
with the information received by Sj in time frames 1,..., t. 
Definition II.1 Let E be an (n,m,T,c,s) metering system. 
An (n, m, r, c, s) metering scheme for an (£, h) ramp structure 
is a distribution protocol of the proofs for the m servers in E 
in such a way that the following properties are satisfied: 
1. H(CyC;) = 0,i = l,...,n,j = l,...,m,t = l,...,T. 

1.....T. 

.vL'-11) 
2. H(P<|X<. (,.,) =0,dj>h,j = l,...,m,t 

3. /f(P1)...,P/3|Ci ...CcXli(dl) 

= H(p\,...,pi
ß),dj<e-c,j = i,...,ß,t 

4. tf(Pi,...)P^|C1...CcX
4
li(dl). 

•A/3,(dp)Vl 

1, 

■Ji-/3,(d/3)Vl "Zh) 
= 5^Ei=i['»-(c + dJ-)]ff(Pj-|Pi...PJ-i). »Aere X). (d.) 

is associated with a set of visits to Sj from dj clients other 
than Ci,... ,CC, £ < dj + c < h, j = 1,...,ß and t = 1,... ,r. 

Lower Bounds 
Theorem II.2 Let E be an (n, m, r, c, s) metering system. 
Let Si,...,Ss denote the corrupt servers. In any metering 
scheme' for the ramp structure (£,h) for E, it holds that 
H(Ci)>J±IZ

T
t=lH(Pt

1,...,P
t

s),fori = l,...,n. 

Theorem II.3 Let E be an (n, m, T, C, S) metering system. 
In any metering scheme for the ramp structure {£, h) for E it 
holds that H(Cjj) > -j~^H(Pj), for any i — 1,... ,n, j - 
1,... ,m, and t = 1,... , r. 

A Scheme Achieving our Lower Bounds 
Our scheme is a generalization of Shamir's scheme [2]. 
Initialization: The audit agency A chooses h — £ polynomials 
Pi(y), ■ ■ ■ ,Ph-e(y) over GF(q), where q is a prime number 
larger than n+h—£. For r = 1,..., h—£, Pr{y) has degree ST — 

1. Let /i,..., fh-t be preselected elements of GF(q) distinct 
from 1,..., n. Let Q(x, y) be a random bivariate polynomial 
over GF(q) of degree h—1 in x and degree ST—1 in y, such that 
Q{fr,y) = Pr{y), for r = 1,..., h — £ (It is easy to construct 
such a random polynomial by using Langrange polynomials.). 
Hence, A sends to each client Ci the univariate polynomial 
Q(i,y), which is of degree ST — 1. 
Regular Operation: When the client C; visits the server 
Sj in time frame t, it sends to Sj the value Q(i,j ° t). The 
argument jot denotes the concatenation of j and t, and we 
assume that j o t is in GF(q) and that no distinct two pairs 
(j, t) and (j' ,t') are mapped to the same element. 
Proof Generation: If the server Sj has been visited by 
at least h different clients in time frame t, then it can per- 
form a Lagrange interpolation and reconstruct the polynomial 
Q(x,j o t). Then, it computes Q{fT,j °t) for r = 1,... ,h — £. 
The resulting (h — ^)-tuple (Pi (jot),..., Ph-e(j ° t)) consti- 
tutes the proof that the server sends to the audit agency. 
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Abstract — We give a conceptually simple proof for 
the capacity of the exponential server queue. Our 
proof links the timing channel to the point-process 
channel with complete feedback. This point-process 
approach enables us to bound capacities of timing 
channels that arise in multiserver queues, queues in 
tandem, and other simple configurations. 

The capacity of the exponential server queue with service 
rate \i packets per second is e~lfi nats per second [1]. The 
capacity of the point-process channel with maximum input 
intensity fi points per second, and no background intensity, is 
also e~ln nats per second (cf.[2],[3]). Furthermore, in both 
channels, the capacity does not increase in the presence of 
complete feedback. In [1], the connection between both chan- 
nels in the presence of complete feedback was discussed briefly. 
In [4], this connection was further explored. It was shown 
that any strategy on the exponential server channel can be 
mapped to an equivalent strategy that uses feedback on the 
point-process channel. This observation implies that the ca- 
pacity of the exponential server channel is upperbounded by 
the capacity of the point-process channel with complete feed- 
back, i.e., e~1ß nats per second. 

Prom [1], we know that e~V nats Per second is indeed 
achievable on the exponential server queue. In other words, 
although the exponential server queue is only a particular case 
of a point-process channel with feedback, it attains the point- 
process channel capacity. In this paper, we provide insight on 
why there is no loss in capacity. 

To see the connection between the queue and the point- 
process channel, fix a sequence of arrivals denoted by the 
counting process x = (xt : t g [0,T]). Let (Yt : t g [0,T]) 
be the corresponding counting process of departures from the 
single-server queue of service rate p packets per second. Then 
the state process (Qt = xt — Yt : t g [0, T]) indicates the num- 
ber of packets in the queue as a function of time. Furthermore, 
the departure process (Yt : t g [0, T]) is a self-exciting Pois- 
son process with rate A = (At = p\{Qt- > 0} : t g (0,T]). 
Indeed, if Qt- = 0, no packet can depart at time t (g (0,T]) 
and the instantaneous rate of the departure process is 0. If 
Qt- > 0, at least one packet is in the system at t—. Due to the 
memoryless property of exponential service times, the residual 
time for the next departure is exponentially distributed with 
mean l//z seconds, independent of the past, i.e., the instanta- 
neous rate of the departure process is /i at time t. 

It is well-known that the sample function density (which 
plays the role of probability density) given input x, is p(x,y), 
where 

Furthermore, for a given probability measure on the input 
space, the normalized mutual information is 

p(x, y) = expl  I [log(At) dyt - At dt] (1) 

±iT(X;Y) = ±E I dt y>(Xt)-<p(xt)], 
J o 

(2) 

xThis work was supported in part by the National Science Foun- 
dation under Grant NCR-9523805 002 

where A( = E[Xt\ (Ys : s e [0,t))], for each t € [0,T], and 
<f>(u) = «log«, (see [2], [3], [5]). We take <j>{0) = 0. Note that 
A( is an estimate of the rate of the departure process given 
prior departures. 

We can show the existence of codes that have vanishing 
probability of error (as the observation interval T increases 
without bound) at rate e-1 \i nats per second. Here, for 
brevity, we only argue that there is an input probability mea- 
sure such that the normalized mutual information equals the 
upperbound e_1p nats per second. The input measure should 
induce the following properties to attain the upperbound. 

(a) Xt = 0 or fi. 

(6)   (1/T)/0
T dtE[Xt] = e-1

ß. 

(c)    A(    should    be    independent    of   prior    departures 
(Ys : s g [0,t)), and E[Xt] should be a constant over 
time, i.e., At = e~V- 

Let the input probability measure be a Poisson process with 
rate e~'/i packets per second. Let the queue be in equilibrium 
at t = 0. We then have an M/M/l queueing system. Property 
(a) holds because A( is p times an indicator function. Property 
(b) follows from ergodicity of the state process and the fact 
that the queue is nonempty with probability e~'. Property (c) 
holds by Burke's theorem (for e.g., [5, V.T1]); the state of the 
queue Qt is independent of prior departures (Ys : s g [0,t)) 
and therefore so is At. 

The point-process approach via (1), (2) and the filtering 
techniques of [5] (to provide estimates of queue size) can be 
used to find achievable rates of some simple networks of ex- 
ponential servers. In [6], lower bounds on the capacities of 
multiserver queues and two queues connected in tandem are 
provided. 
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I 

Abstract — This work focuses on covert timing chan- 
nels, in which information is conveyed in the timing 
of packets. Jamming strategies and coding strategies 
are developed for various timing channel models. 

I. INTRODUCTION 

Information can be conveyed covertly using the timing of 
packet transmissions, where the usage is covert because by 
design and common usage, information in packet communica- 
tion networks is conveyed only by the bits within the pack- 
ets. While there is no apparent way to completely eliminate 
covert timing channels in a reliable communications system 
(e.g. [1]), a delay device can be added to the channel to jam 
covert timing communication. With an appropriate coding 
and decoding scheme, a timing channel coder can still reliably 
communicate in the presence of a jammer. For various chan- 
nel models and delay constraints on the jammer, the game 
between the jammer and the coder is explored. 

II. ASSUMPTIONS 

We assume that the mean number of packets per unit time 
transmitted by the coder is constrained such that for a large 
fixed time, T, the total number of arrivals is at most AT with 
probability one. We take T —> oo and write I for mutual 
information per unit time. The coder is aware of the delay 
constraints placed on the jammer, but is not aware of the 
actual strategy employed by the jammer. We assume that no 
feedback is given to the coder. 

The jammer can choose any delay strategy, including 
strategies that change the packet ordering, subject to con- 
straints on the delay. However, the jammer cannot insert du- 
plicate or additional packets since this might impact the un- 
derlying packet communication system. The delay constraints 
that we consider for jammers include a Maximum-Delay-Less- 
than-D (MDLD) constraint, an Average-Delay-D (ADD) con- 
straint, and a Maximum-Buffer-Size-B (MBB) constraint. 

III. CHANNEL MODELS 

A continuous time packet model and a discrete time packet 
model are considered. 

In the continuous time packet model, there are no lower 
bounds on the spacing between initiations of packet transmis- 
sions so the coder or the jammer can send multiple packets in 
a single instant. The only restriction on the continuous time 

packet model is that neither the coder nor the jammer can 
split a packet. 

In the discrete time packet model, time is slotted and both 
the coder and the jammer can transmit zero or one packets in 
each time slot. The discrete time packet model is a tractable 
way to introduce a lower bound on the interpacket spacing. 

Two more models are introduced to facilitate analysis. 
These models have fluid flows rather than packet streams. 

IV. RESULTS 

We look for jamming strategies, Q, that satisfy 
maxx I{X, Q) = minQmaxx I{X, Q), and coding strategies 
X, that satisfy minQ I(X, Q) = maxx minQ I(X, Q) where 
I(X, Q) represents the mutual information per unit time be- 
tween X and the output of jammer Q when X is the input. 

For the set of MDLD jammers in the continuous time packet 
model, we have found a saddlepoint coding and jamming strat- 
egy, with mutual information rate j^H(Geoo(XD)). For an 
ADD jammer in the continuous time fluid model, we have 
shown that the mutual information rate for a saddlepoint is 
between 0.55/Z? bits per unit delay and 4/D bits per unit de- 
lay, if a saddlepoint exists. For a MBB jammer in the discrete 
time packet model, we have upper and lower bounds on the 
mutual information rate for a saddlepoint that are within a 
factor of 2. The min-max and max-min capacities of the fluid 
models are shown to dominate those of the packet models for 
several scenarios. 

For many of our results we assume that the coder and de- 
coder have access to a source of common randomness (they 
choose a code without the jammer's knowledge), and that the 
coder and decoder have access to a common clock. However, 
for particular constraints and models, such as a MDLD con- 
straint in the continuous time packet model, we have coding 
schemes that do not depend on these assumptions. 

V. MORE INFORMATION 

For more information and a complete paper see: 
http://www.comm.csl.uiuc.edu/~hajek. 
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Abstract — We study information transmission 
through a finite buffer channel modeled as a concate- 
nation of a discrete memoryless channel and a finite 
state erasure channel. The state of the erasure chan- 
nel is determined by the buffer occupancy upon ar- 
rival of the transmission symbol; an erasure occurs 
when an input arrives to a full buffer. We show that 
the capacity of the channel depends on the long-term 
loss probability of the buffer and the capacity of the 
DMC. Thus, even though the channel itself has mem- 
ory, the capacity apparently depends only on the sta- 
tionary loss probability of the buffer. We also show 
that delayed feedback does not help in this channel. 
We also study the channel as a deletion channel where 
we do not know where the erasures have occurred. 

I. SUMMARY 

We propose a channel abstraction for the finite-buffer channel 
and study its capacity. This model is motivated by packet- 
switched networks, where a packet is queued in a finite buffer 
on each router along its path through the network. A packet 
can be dropped because of buffer overflow, or corrupted due 
to transmission errors. We do not consider coding in inter- 
arrival times in this abstraction1. Note that the sender may 
have control over the long-term packet arrival rate, which af- 
fects the loss process at the buffer; however, there is no side 
information transmitted using the arrival process. 

We formulate this problem as transmission over a finite 
state channel where the transitions of the finite state channel 
occur due to arrivals and departures of packets to the buffer. 
The model considered resembles the problem of transmission 
through finite state channels studied extensively [2]. But one 
of the differences is that the state process need not be Marko- 
vian (see Figure I). In this paper we consider only a single 
user's packets arriving at the buffer and the buffer state is 
affected by the arrivals of that user. 

Figure 1: Finite-state channel model. 

We first consider the problem where the receiver knows 
when a packet is dropped.   In practice, this is done using a 

'This is conjectured due to the result in [1] that coding in interar- 
rival times is unnecessary when the alphabet size of the transmitted 
symbol is large (packet sizes in current networks range from a few 
tens of bytes to a few thousand). Though this was proved in the 
context of infinite buffer channels, we believe that this is true in 
our case as well. 

sequence number associated with packets. Later we study the 
channel where this is not known and model it as a deletion 
channel. Under regularity conditions on the state transition 
process we can prove a coding theorem for the proposed chan- 
nel model [3]. We show that though this channel has memory, 
the capacity is determined by the long term stationary loss 
probability of the buffer. That is, the capacity is the prod- 
uct of the capacity of the DMC and that of the long term 
probability of a packet getting through. This shows that even 
though the finite buffer channel has complicated memory, its 
capacity behavior is akin to a simple erasure channel. 

Proposition 1.1 Under mixing and asymptotic mean sta- 
tionarity conditions on the state process {Qi}, the capacity 
of the finite buffer channel is given by, 

1   " 
C = lim C„ = Co Hm - VP{Qi # B} , 

n-+oo n—*oo ft 7—J (i) 

where B denotes the full buffer state and Co is the capacity of 
the DMC. Furthermore, capacity can be achieved by an i.i.d. 
input process {Xi}. 

This capacity is expressed in bits per packet. This can 
be translated to a transmission rate (bits/second) by taking 
into account the packet arrival process, based on some ergodic 
conditions on the arrival process. Note that the average packet 
arrival rate can be chosen to maximize this transmission rate. 

We also studied the case where there is feedback available 
from the channel output to the transmitter, delayed by at least 
one symbol. We showed that feedback in this case does not 
improve the channel capacity even though the channel could 
have complicated memory2. 

Finally we study a model of transmission in the absence 
of sequence numbers on the packets. This can be studied as 
a deletion channel. Similar problems have arisen in the con- 
text of transmission in the presence of synchronization errors, 
studied in [4] among others. This is a difficult problem in gen- 
eral and we study specific deletion models and develop some 
bounds for achievable performance. 
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throughput. We have not addressed that problem here. 
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1 
Abstract — The Burrows-Wheeler transform is a 

block-sorting algorithm which has been shown empir- 
ically to be useful in compressing text data. In this 
paper we study the output distribution of the trans- 
form for i.i.d. sources, tree sources and stationary 
ergodic sources. We can also give analytic bounds 
on the performance of some universal compression 
schemes which use the Burrows-Wheeler transform. 

I. INTRODUCTION 

Burrows and Wheeler [2] proposed a lossless transformation 
which they showed (with empirical evidence) to be useful for 
the lossless compression of data. Recently there has been 
increasing interest in understanding and improving the per- 
formance of data compression algorithms using the Burrows- 
Wheeler transform (BWT). From empirical evidence [2] it ap- 
pears that compression methods using this transform achieve 
better performance than Lempel-Ziv techniques, while not be- 
ing computationally as intensive as compression methods us- 
ing statistical modeling techniques. While there has been a 
large amount of empirical evidence to show the efficacy of the 
transform (e.g., [2], [3]), the analysis of the compression ef- 
ficiency of methods based on the transform has received less 
attention. Sadakane [5], Arimura and Yamamoto [6], Balken- 
hol and Kurtz [4] and Effros [1] have provided the first steps 
in this direction. 

In this paper we investigate the joint distribution at the 
output of the Burrows-Wheeler transform. For various classes 
of input sources, we show that the output distribution of the 
transform is approximately memoryless and piecewise station- 
ary, in the sense that the normalized divergence between the 
output distribution and a memoryless and piecewise station- 
ary distribution is small. Thus coding schemes that are good 
for memoryless, piecewise stationary sources can be used to 
give good coding performance. We also derive bounds on the 
coding rate for some data compression algorithms that use 
the BWT. The schemes that we analyze were also analyzed in 
[1] where bounds were obtained on average code length. The 
bounds we give are on individual sequences. 

II. MAIN RESULT 

We now introduce some notation so that we can precisely state 
our main result. We consider a Markov process X which is a 
Markov source taking values in A and the set of states 5 is a 
complete and prefix-free subset of A*. Let \S\ = k and label 
the states si,s2, ■ ■ ■ ,Sk in lexicographic order. We assume 
that the Markov source is irreducible and aperiodic. Let the 
steady state probability of a state s 6 <S be denoted by 7r(s) 
and P(a\s) denote the probability that a £ A occurs when 

1This work was partially supported by the National Science 
Foundation under Grants NYI Award IRI-9457645 and NCR 
9523805 

we are in state s G S. Let C(i) = XT=i T(aj')- We will 
show that the divergence between the output distribution and 
a memoryless, piecewise stationary distribution with fc — 1 
transitions is small. Let Ti,T2,... ,Tk+i be integers defined 
by Ti = [C(i - l)nj + 1. Note that C(0) = 0 and so Tx = 1. 
Let us now define a memoryless distribution Qn with fc — 1 
changes in distribution, by 

Qn(j/n) = II    II    PM'i)- 
j = l    i=Tj 

We show that the output distribution is close to the distribu- 
tion Qn. 

Theorem 1 Consider a tree source for which P(a\s) > 0 for 
all a £ A, s G S with entropy rate H. Let Xn be the output of 
the tree source in steady state, Yn = <j>Bwr(H(Xn)) and Pyn 

denote the distribution ofYn.  Then 

Ji?(iV«||0")<^= 
n y/n 

for some constant c, where li. is a map from a string to its 
reverse and <J>BMVT is a map from a string to the string part of 
its Burrows-Wheeler Transform. 

The assumption that P(a\s) > 0 for all a, s can be removed 
and a result similar to the one above can be given. A re- 
sult similar in spirit to the one above can also be shown for 
stationary ergodic sources. 

Finally, we mention that we have also analyzed various 
methods to compress the the output of the BWT and obtained 
bounds on their performance. These results are like those in 
[1] except that we obtain results for individual sequences. 
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Abstract — We apply complexity regularization to 
statistical ill-posed inverse problems in imaging. We 
formulate a natural distortion measure in image space 
and develop nonasymptotic bounds on estimation per- 
formance in terms of an index of resolvability that 
characterizes the compressibility of the true image. 
These bounds extend previous results that were ob- 
tained under simpler observational models. 

I. STATEMENT OF THE PROBLEM 

In imaging problems such as tomography, astronomical 
imaging, ultrasound imaging, radar imaging, forensic science, 
and image restoration, a statistical model relating the obser- 
vations to the underlying image is often available [1]. Con- 
sider a penalized-likelihood approach to statistical imaging: 
f(y) = arg min/ [- In p(y \f) + //*(/)], where p(y\f) is the 
conditional density relating the observations y € y to the 
unknown image /£f, and $(/) is the regularization func- 
tional, which penalizes "unlikely" estimates and stabilizes the 
ML estimator. The regularization parameter p controls the 
trade-off between the log-likelihood term and the regulariza- 
tion penalty. The choice of $(/) depends on available a priori 
knowledge. L1, Besov, total-variation and robust smoothness 
penalties are state of the art in image processing. 

In this paper, we investigate the choice of complexity mea- 
sures for the regularization penalty $(/). Such penalties favor 
estimates with low complexity in a data compression sense. 

r(f*,f) = E[d(f'*,/)], where the expectation is with 
respect to p(y\f). Relative-entropy loss is the natural choice 
to characterize the performance of penalized likelihood esti- 
mators. This loss becomes a squared-error loss for additive 
white Gaussian noise (AWGN) models, and an I-divergence 
loss for Poisson noise models. If d(f,f) for some f ^ f*, 
then /* is not identifiable. For ill-posed problems, the class 
of images Ct(f) = {/ : d(f*, /) < e} is large for any e > 0. 

II. UPPER BOUNDS ON ESTIMATION PERFORMANCE 

We now give upper bounds on d(f",f). See [6] for 
more details. Define the index of resolvability Rß(f") = 

min/gr [d{f*,f) + p-jp-], f* £ T. This quantity describes 
how well /* can be approximated in the relative-entropy sense 
by a moderately-complex element of the codebook V. 

The upper bounds are essentially proportional to the index 
of resolvability, with a very small (0(l/N)) additive constant. 
For the AWGN model yt = /* + Wi, 1 < i < N, Wi ~ i.i.d. 
A/^O, er2), we have Theorem 1 below, which applies to any 
p > 1 (recall p = 1 is the MDL choice). The techniques used 
in [4], which do not require knowledge of the noise distribu- 
tion but assume that Bernstein's inequality applies to that 
distribution, provide looser bounds. 

Theorem 1 For any p. > 1 and rj > 0, the loss of the 
complexity-regularized estimator f under the AWGN model 

satisfies Pr [d(/*,/) < £±f/*„(/*) + S=Tjl]  * I - V-   The 

_2ß! Compared to the more standard L2,  L1  and Besov penal-     risk is upper-bounded by E[d(J*, /)] < ^FL^U*)-,  (^_1)N- 

For some non-Gaussian models, under certain large-sample 
ties, complexity regularization penalizes unlikely estimates in 
a more flexible way, as complexity measures may be based 
on rather sophisticated, possibly implicit, flexible probabil- 
ity models. The complexity-regularization criterion is stated 
as f{y) = argmin/er [- lnp(y|/) + pL{f)}, where T is a dis- 
crete set of candidate images, informally referred to as a code- 
book. Complexity is measured by a codelength L(f) associated 
with each / 6 T. Codewords should satisfy Kraft's inequal- 

ity J2fere~L(f) ^ L The MDL Principle [2] is a familiar 
instance of complexity regularization, where p = 1. 

The use of MDL and complexity regularization has found 
theoretical justification in a variety of inference problems 
[3, 4, 5]. Extending such analysis to problems of interest in 
imaging entails several technical difficulties. First, the data 
are not identically distributed. Second, the bounds derived 
by extension of the techniques in [3, 4, 5] are often too large 
to be useful in practical imaging problems. 

Consider      the      relative-entropy      loss      d(/*,/) = 
jfD(p(y\r)\\p(y\f)) for /',/ 6 T, where £>(p||9) = 

J p(y) In ^^4 dy. The    estimation    risk    is    defined    as 

'Work supported by the National Science Foundation under 
award MIP-9732995 (CAREER), by ARO under contract num- 
bers ARO DAAH-04-95-1-0494 and ARMY WUHT-011398-S1. and 
by DARPA under Contract F49620-98-1-0498. administered by 
AFOSR. 

assumptions, log-likelihood ratios are asymptotically normally 
distributed, and tight inequalities can be obtained again. Un- 
der some additional technical assumptions, the first bound of 
Theorem 1 still applies, provided that the inequality is re- 
placed with an asymptotic inequality. 
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I 
Abstract — Pairs of binary pilot symbol sequences 

are jointly designed to minimize an introduced merit 
factor whose minimization leads to the reduction in 
Crämer-Rao lower bound (CRLB) for the "two-sided" 
intersymbol interference channel estimation. 

I. INTRODUCTION 

It is a common approach to periodically insert known sym- 
bols in order to reliably estimate the channel parameters prior 
to detection. In the case of time-variant multi-path fading 
channels where the path delay spread is on the order of sev- 
eral symbols or larger, pilot symbol blocks that span the 
channel memory need to be inserted. In deriving optimal, 
or some decision-feedback detection and channel estimation 
algorithms, the signal is frequently assumed to be quasi-static 
in an interval encompassing a number of transmitted symbols. 

Here it is assumed that both pilot symbol blocks (pream- 
ble and postamble) that frame a block of data (see Fig. 1) are 
employed for estimation of the (quasi-static) channel coeffi- 
cients pertaining to a particular data block. This approach 
we term "two-sided" channel estimation. It is shown the con- 
structed optimal sequences for two-sided channel estimation 
require that the two pilot symbol blocks framing a data block 
almost always differ and, therefore, the optimal signaling re- 
quires alternating periodically inserted training blocks. 

Preamble Data Poslambte Data 

Figure 1: Two-sided pilot symbol block insertion. 

II. SIGNAL MODEL 

A symbol-spaced received signal is assumed and a normal- 
ized block of received samples over which the channel is (quasi- 
static can be expressed as follows: 

r = Ah + n. 

n is a sample vector of a white circular Gaussian noise process 
with a two-sided PSD No/E3, where Es is the symbol energy; 
h is a Lxl vector of channel coefficients. A is a Toeplitz 
matrix corresponding to the transmitted sequence of symbols 

from {+1, -1} of the form A = [pf DTP|']T. Pi and P2 are 
N by L pilot symbol Toeplitz submatrices consisting of only 
preamble and postamble symbol sequences of length (N + L — 
1) and no data symbols DisaD + L — 1 by L submatrix that 

1This work was supported in part by the NSF grant NCR- 
9314221. 

holds all the data symbols. N > L is assumed so that each 
pilot-symbol block spans the channel. 

III. MINI-MAX CRITERION AND OPTIMAL SEQUENCES 
The CRLB of the two-sided ML channel estimation based 

on the "two-sided" pilot-symbol matrix P = [P^P^]    is 

N°* /»-i\ ^-tr{R    }, 

where R = PHP = Pf Pi + P?P2. Instead of directly min- 
imizing tr{R-1} we suggest minimizing the largest absolute 
sum 

Pmax = max y^ \pij I, 

where py is the ij-th element of R. Minimization of pmax is 
equivalent to the minimization of the maximum Gerschgorin 
disc radius of R. Thus, it attempts a reduction in the eigen- 
value spread and forces the matrix R to have a form which is 
as close as possible to the diagonal form. 

When pmax = 0 the Grammian matrix R = 2N ■ I, where 
I is the identity matrix. The ML channel estimation achieves 
the absolute minimum variance lower bound -jf-jfc- Binary 
odd- and even-periodic complementary sequence ([1], [3]) pairs 
achieve pmax = 0 and, thus, are optimal for "two-sided" ISI 
channel estimation for even N > L. 

When N is odd, pmax = 0 (and the CRLB f^) 
cannot be achieved. For a subset of odd N "almost- 
complementary" periodic binary sequence pairs achieve the 
minimum possible pmax = 2|_^j^J. Additionally, "good" se- 
quence pairs achieve pmax = 4[L/2J < 2N which assures 
that R is non-singular and, consequently, that the CRLB is 
bounded. Given a generator sequence u = [uo, ■ ■ ■ , UJV-I], 

both almost-complementary and good sequences pairs (pi =* 

bi.o, ■ ■ ■ ,PI,N+L-2],P2 = \pi,o, ■ ■ ■ ,P2,jv+L-2j) are formed as 
follows: 

Pl.fc = UkmodN       and      P2,k = (—1)   Pl,k, 

fox 0 < k < N + L — 2. For almost complementary sequences 
the periodic autocorrelation of the periodic extension up of u 
*s I Ylk=o ukuk+i\ = 1 for 0 < Z < AT — 1. That is, they can be 
formed from m-, Barker, Legendre, and twin-prime sequences 
(see e.g. [2]). "Good" sequences are based on sequences given 
in [4] whose periodic autocorrelation has values in {1, —3}. 
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Abstract — We obtain a general form of the multi- 
variate Rayleigh and exponential probability density 
functions (p.d.f.s) when these are generated by corre- 
lated Gaussian random variables. A general expres- 
sion for the exponential characteristic function (c.f.) 
is also derived. 

I. INTRODUCTION 
Multivariate Rayleigh and exponential distributions [1] arise 
in the performance analysis of digital modulation schemes over 
correlated Rayleigh fading channels using diversity combining 
techniques. The Rayleigh distribution is a special case of the 
Nakagami distribution, while the exponential is a special case 
of the gamma. A bivariate Rayleigh case [2] has been applied 
to fading channels using dual diversity [3]. A multivariate 
gamma case has been dealt with in situations in which the c.f. 
has a specific form [4] [5]. Here we obtain a general form of the 
multivariate Rayleigh and exponential p.d.f.s when these are 
generated by correlated Gaussian random variables. We also 
derive a general expression for the exponential c.f. 

II. PROBABILITY DENSITY FUNCTIONS 

Consider zero-mean real Gaussian L x 1  random 

The p.d.f.    of the exponential random vector 7 given by 

7 — [ 7i >• • • i7i ]    = [ <XU---,<*L J    can be obtained from 
the multivariate Rayleigh p.d.f. (1). 

When 2Lc + OK, is a circular complex Gaussian random 
vector satisfying E [(Xc + jX^X^ + jXs)

T] = 0, we have, 
for i,j = l,...,L, 

Aij = Aji = Dji = Dij ,   Btj = —Bji when z / j,   Bu = 0 

in (1), and therefore 

L L 

X, Xc 

vectors 
T 

,XCL ]    , and X, =   [ X,lt---,X.L ] 
with covariance matrices K_cc and I£ss and cross-covariance 
matrix Kcs, such that 

E[4]=(U = (U = EK]. 
V[XciX.i]=(Ke.).. = 0,   i = l,...,L. 

In other words, XCi and XSi are i.i.d. Gaussian for each i. 
Define    random    variables    ai,... ,ctr,,    $!,...,$£    as 

ai±(xl+xiy $i = tan 
-&)• 

= 1,... ,L. Let 

[ ai, • • •, OCL  1    be a Rayleigh random vector. Denote 

K iC,   iL ,   K-1^ A    B 
BT    D 

such that A = [Aa]ffj=1 , B = [B«fo=1 , D = p«l£,-=1 • 
Prom the joint p.d.f. of (X_C,X_B), the p.d.f. of a, which is 
multivariate Rayleigh, is given by 

/«(«)=—— TT^-TT   /     ■•'   /     exp (--s(u,0)) d0! ■■   dc^j, , 
(detCK))« V*>    J_n       J_^        \    2        - / 

u > 0, where 

L 

fl(«>0)      =      /     [An COS   4>i + Dasm   <pi + 2Ba cos 0; sin c/>; J u; 

i=l 

(Aij cos <pi cos (fij + Dij sin (pi sin <pj £ +2Bij cos <t>i sin <t>j) UiUj 

i*3 

u = [«j,- ■ ■ ,Uh\T, 

i=l 

,*•? (1) 

where Oij — tan x [Bij/Aij). Further, if 2Cc anc^ K, axe i.i.d. 
zero-mean Gaussian random vectors, then B — 0. 

III. CHARACTERISTIC FUNCTION 
Although it is difficult to obtain a closed-form expression for 
the multivariate Rayleigh c.f., the multivariate exponential c.f. 
can be expressed in closed form as 

*20w) =   {det(/L-2jdiag(y)Kcc)}"^ 

x {det([/jr, - 2jdiag(üj)KJJ]  + 4diag(w)jrJ, 

x [/L - 2jdiag(u;)^c] "
1 diag(w)Kc^ }       ,   (2) 

where IL is the L x L identity matrix. 
If we have the condition that X_c and X, are i.i.d. random 

vectors, then the c.f. (2) simplifies to 

^(jw)  =  {detaL-2jdiag(u;)^J}-1. (3) 

The gamma c.f.s in [4][5] reduce to (3) when the gamma pa- 
rameter equals unity. 

IV. BIVARIATE CASE 

By putting L = 2 and the circularity condition in (1), we ob- 
tain the bivariate Rayleigh p.d.f. of [2j. The structure of this 
p.d.f. does not simplify further in the case of i.i.d. generating 

vectors Xc 
an<^ 2£s- 
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Abstract — Recently, Ericson and Zinoviev pre- 
sented a clever, new construction for spherical codes 
for the Gaussian channel using ideas of code concate- 
nation and set partitioning. This family of new spher- 
ical codes is generated from sets of binary codes using 
equally spaced symmetric pointsets on the real line. 
The family contains some of the best known spherical 
codes in terms of minimum distance. In this paper, 
we present a new decoding algorithm for this family of 
spherical codes which is more efficient than maximum 
likelihood decoding. At low signal to noise ratios, it is 
99% equivalent to maximum likelihood but takes just 
2% of the computational time. 

I. ERICSON AND ZINOVIEV'S CODE CONSTRUCTION 

In [1], a clever construction of spherical codes, some with op- 
timal minimum distance, for Gaussian channel is presented. 
We include those same results in a modified form for even 
alphabet size. 

The code construction begins with choosing K even and 
the code alphabet LK = {±\,±\, ■ ■ ■ ,±KfL) Let LK = 
{0,1,..., Y - 1} and form a tree with node labels, Y = 
LK U {A, *}, using the following rules. 

1. The root of the tree is A and A is adjacent only to *. 
Every internal node has exactly two children except for 
A . We will say that node A is at level — 1, * is at level 
0, the children of * are at level 1, etc. 

2. The children of * are labeled 0 and 1 with 0 being the 
left child. 

3. For succeeding levels, say level k, the left" child of a 
node at level A; — 1 is labeled the same as its parent and 
the right child is chosen from LK SO that the sum of the 
labels of the two children is 2k -1. If that is impossible, 
the node at level k — 1 is a leaf. 

We choose a binary code for each internal node of the tree. 
Codes at level k will be designated Ck where 7 is the label of 
the corresponding node on the tree. An arbitrary code, C^ 
of length n is chosen for node A. A code, C° of length n and 
constant weight w» is chosen for node *. Suppose internal 
node 7 at level k - 1, (k > 1) has internal node left child 7/ 
and internal node right child fr and code Gk~x of length n7

_1 

and constant weight w7
-1 has been chosen for node 7. Then 

code C*( of length n*( = n* 
ik 

C7 is a code in the tree}, we form a codeword x e X in the 
following manner. Suppose the tree has m + 1 levels of inter- 
nal vertices. We form a m + 1 by n matrix where the rows 
are labeled by the levels of the tree and the i— row consists 
of the codewords chosen from the codes at that level in the 
tree. We arrange the codewords in row i in a special manner 
depending on the binary codes chosen in the i— level of the 
tree. The binary sequences that are the columns of the matrix 
correspond to the components of x and there is an algorithm 
to translate each binary sequence into an element of LK ■ 

The following result relating the minimum distance of the 
spherical code X to the minimum distances of the binary codes 
{C$\k > -1} appears in [1]. 

Theorem 1 Let X be the spherical code generated by Ericson 
and Zinoviev's construction using the binary codes {C7\k > 
—1}. Let dk be the minimum Hamming distance of the code C7 

and let d2 be the (unnormalized) minimum squared distance of 
X.  Then d2 > min{dk ■ Ak+l\k > -1}. 

wk
t is chosen for node 7/ and code C7r of length n. 

and constant weight w7, is chosen for node 77-. 
The tree of binary codes and alphabet LK is used to 

form a spherical code, X, of length n for the Gaussian 
channel.     For each collection  of codewords  {c7   £   C7   | 

II. DECODING ALGORITHM 
The first step is to perform binary partitions of the alphabet 

LK which we now simply denote L. Our partitions are made 
in a tree structure and have the same properties of partitions 
of the set Z + \ in [1]. We call the elements of the partition 
subalphabets. 

Let x = (xi,X2,---,xn) € X, where xi,X2,...,xn € L, 
be the word obtained by Ericson and Zinoviev's construction 
from the code words c1,^,...,^ of C1, C2,..., Cs, respec- 
tively. Suppose di = minimum Hamming distance of C" and 
Pi = squared minimum distance of the subalphabets at level 
i. Let y = (yi, 2/2, • ■ ■, !/n), 2/j € Ä be the received word cor- 
rupted by noise. The new decoding algorithm consists of s 
steps, where each step finds c\i = 1,.. • ,s. At each step, 
the decoding algorithm is divided into an inner code decoding 
algorithm and an outer code decoding algorithm. The outer 
code decoding algorithm incorporates Forney's idea of error 
and erasure decoding and Zinoviev's idea of distance decod- 
ing. 

Theorem 2 Let x be the transmitted codeword constructed by 
the binary codewords c1, c cs  and y the received 
word corrupted by noise. Assume that the first code vectors 
cl,c2,... ,ci-1 have been found correctly, if p(x,y) < dipi/4 
then the decoding algorithm will correctly decode to codeword 

and constant weight     c' 
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Abstract — Quotients of IR2 by translation groups 
are metric spaces known as flat tori. We start from 
codes which are vertices of closed graphs on a flat 
torus and, through an identification of these with a 2- 
dimensional surface in a 3-dimensional sphere in IR4, 
we show such graph signal sets generate [M, 4] Slepian- 
type cyclic codes for M = a2 + b2; a,b€ Z, gcd(a, 6) = 1. 
The cyclic labeling of these codes corresponds to walk- 
ing step-by-step on a (a,6)-type knot on a flat torus 
and its performance is better when compared with ei- 
ther the standard M-PSK or any cartesian product of 
Mi-PSK and M2-PSK, MlM2 = M. 

Group codes introduced by D. Slepian and developed in 
subsequent articles are defined as finite sets on a n-dimensional 
sphere generated by the action of a group of orthogonal ma- 
trices. Geometrically uniform codes introduced by Forney 
[3] generalize this concept by considering also infinite sets of 
points in Euclidean space having a transitive symmetry group. 
We consider here like in [2] those codes extended to the wider 
context of metric spaces: a signal set S C X is a geomet- 
rically uniform code if and only if for s,t in S there is an 
isometry / (depending on s,t) in X such that f(s) = t and 
f(S) = S. We still have all the highly desirable properties 
that come from homogenity: same distance profile, congru- 
ent Voronoi regions and same error transmition probability 
for each codeword. The metric space considered here is the 
flat torus, obtained by identifying the opposite sides of a par- 
allelogram based on plane vectors u and v. If G is the group 
generated by translations by u and v, the correspondent flat 
torus can be defined as the quotient T(a,b) = IR2/G, what 
means that the equivalence relation in the plane is given by 

P' « P <=> P - P' = mu + nv :m,n £ Z. 

A flat torus can be visualized as a standard torus in 3- 
space, but it can distinguished from the later by being per- 
fectly homogeneous and locally like a piece of plane (flat). It 
can only be realized isometrically as a 2-dimensional surface 
in IR4 which is contained in a 3-dimensional sphere. 

Starting from the squared lattice Z2 on the plane, we induce 
a closed graph r(Q,h) of M = a2 + b2 vertices on the flat torus 
generated by the rotated square based on vectors u = (a, b) 
and v = (-6, a), a, b 6 Z. An isometry which embeds this flat 
torus in 3-dimensional sphere in IR4 can be induced by: 

vix,y) = ^E(m^ + vb)        ^ax + yb) 
2-K a2 + 62 

■ + b2 

2-K(ay - xb)    .   27r(au 
cos —V   .„     ,sin ■—^ 

+ b2 
vb) 

+ 62 

023 This work was supported by FAPESP grants 97/12269-0 
(1); 97/12270-8 (2); 95/4720-8 (3); CNPq giant 301416/85-0 (3). 

Vertical translation by one in the plane corresponds to an 
orthogonal 4x4 matrix g which is product of rotations of 
angles ö^+S7 and 27rq 

i.-fii- If.a and 6 are coprimes, this matrix 

generates a cyclic group of order a2 + b2, what means all plane 
vertices can be reached starting from any point and going 
north. This labeling can be identified with a walking step- 
by-step along a (a, b)-type knot on T. The included figure 
illustrates the homogeneous 13 vertex closed graph on the flat 
torus (right side) labeled by Zi3 through vertical translation 
walking on a (2,3)-type (trefoil) knot (left side). 

/ / 
\ 

/. 11      6 1 

10    .5      0      8\ 

4       12/ 

(0,0) 

Formally, considering the above notation for T(a,b), 
and g, we can state: 

(a,6) 

Proposition 1 The vertices of the unit squared graph r(aik) 

on the flat torus T(a,b) correspond through the isometry induced 
by (p to a Slepian-type code S of order M = a2 + b2 on the 

3-sphere of radius ^0. + 

(i)  If gcd(a,b) 
V2* in IR .  Besides: 

1,   5 generated  by  a  single point 

¥>((0,0)) =  ^^(1,0,1,0) through the action of the cyclic 

group (g) = Za2+b2 (g is the direct product of rotations whose 
angles are _|i|_ and J^y 

(ii) 7/gcd(a,6) = m > 1, S is generated by a minimal set 
<p((k,0)), 0 < k < m - 1 through the cyclic group (gi) = 
^(a2+b2)/m- that is, this subgroup of orthogonal 4x4 matrices 
that acts transitively on S is isomorphic to Z2

a2+b2>,   . 

(in) The minimal Euclidean distance, d, in IR4 between two 
Slepian-signals, considering the S-sphere re-scaled to radius 
one is given by: 

In [1] a graph metric approach for geometrically uniform 
codes of any order M on flat tori is summarized. 
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Abstract — A majority logic decoding is suitable for 
ASIC design of the proposed code. Four-dimensional 
size-five code of 625-bit length was implemented on a 
VLSI and attained an operation speed up to 50Mbps 
and 32-bit burst correction. 

I. INTRODUCTION 

Recent code requirements are to attain high-speed opera- 
tion and robust correction ability for a long burst error. The 
proposed code has been constituted on a geometric structure 
of high-dimensional cube or torus. The code properties are de- 
pendent not on the Hamming distance but on the geometric 
size and symmetry of the code. The characteristics and uncor- 
rectable symmetrical solid are discussed. This paper describes 
a majority logic decoding which is suitable for high-speed op- 
eration on an ASIC. 

II. CODE PRINCIPLE 

A code block is wound up to a small symmetrical cube with 
size m on a high n-D code space. Each digit of the cube satis- 
fies n parity check relations of each axial check line containing 
m digits. The transmission rate becomes n power of one mi- 
nus m-inverse. Both edges of each parity line are identified 
as a closed circle by way of the parity function. So, the cube 
topologically becomes an n-dimensional discrete torus. If the 
size of the cube is smaller than the geometrical mesh modeled 
by the inverse of the mean error rate of the channel, the cube 
could be transferred through the channel without serious er- 
rors. The transmission order of the code digits varies in many 
ways with the winding of the torus knot. For a high-D long- 
block code, errors introduced by a channel become random on 
each parity line, since the errors are dispersed by the winding, 
regardless of random or burst errors. The correction ability 
for both errors is roughly given as follows; correctable burst 
length versus block size or the mean error rate for random are 
equally given by a function of the inverse of the code size m. 

III. DECODING CHARACTERISTICS 

The code works efficiently on a majority logic decoding 
scheme of the number of erroneous parity lines of the said 
digit. When a digit exceeds the threshold is correctly cor- 
rected, the other erroneous digits on the connected parity line 
come up and are corrected at the next decoding, since the er- 
roneous weights becomes high by one. With this code alone, 
it is possible to iterate hard decision decoding any number of 
times because the parity line does not lose the function due to 
the preceding correction. Through iteration, error successively 

1This work was supported by the 98 NEDO project of the Min- 
istry of International Trade and Industry of Japan. 

decreases to the probabilistic limit given by the symmetrical 
error solid. The error remains uncorrected for the high-D er- 
ror solid, for example, the symmetric n-D solid is undetected 
on account of the parity function, so the n — ID solid can be 
detected but not corrected because the error position is not 
determined. The half-error symmetrical n-D solid is also un- 
corrected, since error and true digits are interchanged during 
each decoding. In order to correct the error solid perfectly, 
the dimensions of the solid should be two degrees less than 
the code space dimensions. 

IV. VLSI IMPLEMENTATION 

The code consists of a simple parity check calculation and 
the relationship between the parity and the data digits was 
clearly obtained. A large part of the encoding and decoding 
processes was built in by adopting wired connection between 
the memory cells of the VLSI. The majority logic decoding of 
each cycle in the iteration was performed with just one clock 
time, excepting one block time delay to receive a full code 
block. The VLSI architecture resulted in increased code speed. 
The encoder and decoder circuits of the four-dimensional and 
five-size 4Dm5 code whose code length is 625 bits and the rate 
is 0.41 were installed on a 50-kilogate, 0.6 micron rule ASIC. 

V. PERFORMANCE 

The code attained high-speed operation up to 50Mbps and 
robust correction ability for burst error with 7 iterations. The 
code corrected burst error up to 32 bits in length with zero 
error. The performance is much better than that of conven- 
tional codes, that is, 16 bits for Reed-Solomon code of (15, 7) 
on q = 4, and 4 bits for Viterbi decoding Convolution code 
with constrain length K = 7. The Turbo code with the Log- 
MAP decoding of 624 bits in length corrects almost 4 bits 
burst, but fails in the decoding two times out of ten thousand 
trials. It took the simulation time more than hundred times 
of that of the proposed code. When the code is evaluated for 
random errors, the performance for a low-grade decoding bit 
error rate of ten to the minus 3 to 5 is approximately the same 
as the Convolution code of rate R = 7/8, K = 7 with Viterbi 
decoding. But for higher grade performance of ten to the mi- 
nus 8 or less, the proposed code shows more coding gain than 
Viterbi decoding of Convolution code of R = 1/2, K = 7. 
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Abstract — Let Al be a polynomial metric space 
(PMS) [2] with metric d(x, y) and standard substitu- 
tion t = a(d(x,y)). Any finite nonempty subset C of 
M is called a code. A code for which a(d(x,y)) < o(d) 
(x,y 6 C) and d is the minimum distance of C is an 
(M, |C|, cr)-code. We will give some properties of the so 
called test functions for codes and we will improve the 
Levenshtein bound with polynomials of degree h(a) + 2 
and h{a) + 3. 

I. INTRODUCTION 

PMS are finite metric spaces represented by P- and Q- poly- 
nomial association schemes as well as infinite metric spaces, 
which are the real sphere, the real, complex or quaternions 
projective space and the Cayley projective plane. On the 
other hand PMS are distinguished as antipodal and non- 
antipodal. Any PMS is connected with a system of constants 
ri, a system of orthogonal polynomials {Qi(t)} and adjacent 
system of polynomials {Q^it)} with roots —1 < t^ < 1, 

% = l,...,fc, ordered in increasing order, tak'
b = <£'£. Most 

of the properties of {Qa
k' (t)} can be found in [2]. By defini- 

tion TZ'b(x,y) = £j=0r?l6Q?'6(*)Q?'6(»). Many bounds for 
the cardinality of codes and designs were obtained by using 
the Linear Programming Theorem [2, p.544]. If we denote by 
AM,a the set of real polynomials which satisfy the conditions 
of the LP Theorem, then \C\ < ü(f), for / € AM,*- We will 
investigate the Levenshtein bound L(M,a) for codes, which 
can be presented in the following form [2]: 

k-l+e 

\C\ < L(M,a) = «(/»(«)) - (l - %rr?)  V n, (1) 
v       Qk (CT)  ' f=£ 

where e = 0 if tlk'^ < a < t£'° and e = 1 if i£'° < a < t\'1, 

and f(t) = {t-a)(t+ iy{Tk%{t,o))2 of degree h(a). 

II. TEST FUNCTIONS AND NEW BOUND 

Boyvalenkov, Danev and Bumova [1] obtain necessary and 
sufficient conditions for the optimality of f{i) over AM,T, in- 
troducing the test functions Ga(M,Qj). They prove that the 
bound (1) can be improved by a polynomial in AM,<T of degree 
j if and only if Ga (M, Q3) < 0. In [3] we define analogous test 
functions GT(M,Qj) for designs. 

In this section we use the connections between codes and 
designs and the corresponding test functions. Applying analo- 
gous approach as in [3] we investigate the properties of the test 
functions for codes and derive an analytical form of the poly- 
nomials; which improve the Levenshtein bound. For fixed j, 
G<T{M,QJ) is a continuous function of a and Ga(M, Qj) = 0, 

when h{a) > j. We examine the sign of Ga(M,Qj)- Let 
us consider the interval Ih(a) = [*Jt+7-!i,tl'c) and denote 

M^+JIi) = r. We have G„{M,QK„)+l) > 0. 

Lemma 1 If GT(M,QT+2) > 0 then Ga{M,QH«)+2) > 0 
for a 6 ih(CT). // GT{M, Qr+k) < 0 for k > 2 then there exist 

zo < *£+e.fi and z\ > tlk'\_elx such that Ga{M,Qk(a)+k) < 

0 for a e [tl'l'li, zi) and Ga{M,Qh(a)+k+i) < 0 for a e 

(zo,tlk
e). 

In other words there exists an interval IT = (zo,zi) for 
<T, containing tk'+~^l in which Ga(M,Qr+k) is negative, i.e. 
the Levenshtein bound can be improved in this interval using 
polynomial of degree r + k, k > 2. 

Corollary 2 For antipodal PMS the test function 

Ga(M,Qh(<T)+2) is positive. 

As a consequence of the above using our results from [3] we 
conclude that the smallest possible degree of the improving 
polynomials is r + 2 = h(a) + 2 or h(cr) + 3 for non-antipodal 
spaces and r + 3 = h(a) + 3 or h(a) + 4 for antipodal PMS. 
Here we present the analytical form of the polynomial which 
improve the Levenshtein bound in the non-antipodal case. 

Theorem 3 Let M be non-antipodal PMS, T = ft(tfc'+7^i) 

and let us consider the interval IT ■  Then the polynomial 

r(t;r + 2)    =    (t-a)(t+iy   [«(T^^.a))2 

+    (ßtf&it,a) + ftT"* (t,a) + Tfc°'*(t,<x))2], 

of degree T + 2 belongs to AM,<? for constants a,ßi,ß2 satis- 
fying certain conditions. 

Now using the LP Theorem with the polynomial f(t; r+2) 
we derive new analytical bound V(M,a). 

Theorem 4 // the conditions of Theorem 3 are satisfied then 

\C\ < V{M,a) = il(f(t; r + 2))< L(M, a). 
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Abstract — A polynomial-time soft-decision decod- 
ing algorithm for Reed-Solomon codes is developed. 
The algorithm is algebraic in nature and builds upon 
the interpolation procedure proposed by Guruswami 
and Sudan for hard-decision decoding. Algebraic soft- 
decision decoding is achieved by means of converting 
the soft-decision reliability information into a set of 
interpolations points along with their multiplicities. 
The conversion procedure is shown to be optimal 
for a certain probabilistic model. The resulting soft- 
decoding algorithm significantly outperforms both the 
Guruswami-Sudan decoding and the generalized min- 
imum distance (GMD) decoding, while maintaining 
a complexity that is polynomial in the length of the 
code. Asymptotic analysis for a large number of in- 
terpolation points is presented, culminating in a com- 
plete geometric characterization of the decoding re- 
gions of the proposed algorithm. The algorithm easily 
extends to polynomial-time soft-decision decoding of 
BCH codes and codes from algebraic curves. 

I. INTRODUCTION 

Reed-Solomon (RS) codes are one of the most extensively used 
families of error-control codes. Since the discovery of these 
codes four decades ago, a steady stream of work has been 
devoted to their decoding. Nevertheless, soft-decision decod- 
ing of Reed-Solomon codes is still essentially out of reach of 
present-day methods. Indeed, all the known optimal soft- 
decoding algorithms for RS codes are non-algebraic and run in 
time that scales exponentially with the length of the code. On 
the other hand, all the available polynomial-time algorithms, 
except for GMD decoding [1], are based mainly on heuristics. 
Thus, in light of the ubiquity of Reed-Solomon codes, efficient 
soft-decision decoding of RS codes remains one of the most 
important problems in coding theory and practice. 

II. ALGEBRAIC SOFT-DECISION DECODING 

In the full version of this paper [3], we present an efficient soft- 
decision decoding algorithm for Reed-Solomon codes. The al- 
gorithm is algebraic in nature and, for any desired level of 
performance (within a certain fundamental bound), its com- 
plexity is bounded by a polynomial in the codeword length. 
Our algorithm significantly outperforms both the Guruswami- 
Sudan [2] decoding and the GMD-based [1] decoding methods. 
Figure 1 shows the performance of these algorithms for a sim- 
ple coding scheme: a (256,144,113) RS code over GF(256) 
concatenated with the (9, 8,2) binary code. 

Our algorithm is based on the algebraic interpolation 
techniques developed by Sudan [2,4]. To achieve soft-decision 
decoding, we translate the soft-decision reliability information 
into a set of algebraic constraints. More specifically, given the 
channel output vector (yi.ya,... ,Vn) and the a posteriori 
transition probabilities Pr(cj|j/i), we iteratively compute a set 
of interpolation points along with their multiplicities.   We 
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show that, at each step of the computation, this choice of 
interpolation points is optimal, in a certain precise sense. 
The complexity of this computation is 0(n2 logn). 

Figure 1. Performance comparison on an AWGN channel 

The algorithm of Guruswami-Sudan [2,4] is based on alge- 
braic interpolation and factorization techniques that can be 
implemented efficiently in polynomial time. Our soft-decision 
decoding procedure inherits these properties of Guruswami- 
Sudan decoding. One of its most intriguing characteristics 
of our soft-decoding algorithm is a complexity/performance 
trade-off that can be chosen freely. Thus the coding gain pro- 
vided by the Reed-Solomon code can be traded for complexity, 
in real-time, in any application. Another interesting feature 
of our algorithm is that it readily extends to the decoding 
of BCH codes and most algebraic-geometric codes. 

We also present asymptotic performance analysis, as the 
number of interpolation points approaches infinity. The 
analysis leads to a simple geometric characterization of the 
(asymptotic) decoding regions of the algorithm. We find that 
under soft-decision list-decoding, arbitrarily small probability 
of error is achievable in polynomial time, providing the rate of 
the code does not exceed a certain constant ff that depends 
on the channel. Finally, we consider modifications to our 
algorithm designed to maximize the set of correctable error 
patterns on the following channels: g-ary symmetric channel, 
g-ary symmetric channel with erasures, and a simplified 
q-PSK channel. Surprisingly, our results for the g-ary sym- 
metric channel are stronger than those reported in [2], even 
though this channel provides no soft-decision information. 

[1] 

[2] 

[3] 

[4] 
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Abstract — The paper presents a Maximum Like- 
lihood Decoding and a sub-optimum decoding algo- 
rithm for Reed-Solomon codes. The proposed algo- 
rithms are based on the algebraic structure of RS 
codes represented in GF{2). Theoretical bounds on 
the performance are derived and shown to be accu- 
rate. The proposed sub-optimum algorithm is seen to 
have better error performance compared to other sub- 
optimum decoding algorithms while the new MLD al- 
gorithm has significantly lower decoding complexity 
when compared to other MLD algorithms. 

I. INTRODUCTION 

Reed-Solomon (RS) codes are a powerful class of maximum 
separable block codes, suitable for error control on real chan- 
nels. Algebraic Hard Decision Decoding (HDD) algorithms 
are widely used for RS codes. It has been shown that Soft De- 
cision Decoding offers 2-3 dB coding gain in excess of HDD. 
Unfortunately most SDD algorithms proposed in the past have 
either been of high computational complexity or fail to demon- 
strate significant performance improvement over HDD. Hence 
the search for efficient SDD algorithms for RS codes still con- 
tinues. 

Vardy and Beery proposed a MLD algorithm [1] based on 
the structure of the generator matrix of RS codes represented 
in GF(2). RS codes can be be represented as a union of cosets. 
Such partitions into cosets allow a decoding algorithm to be 
developed. The algorithm is several orders of magnitude lower 
in complexity compared to trellis decoding for high rate codes 
up to length 15 and low rate (< 0.5) codes of any length. 

We present two SDD algorithms based on the same struc- 
tural properties the Vardy-Beery algorithm uses. Hence the 
algorithms may be considered as modifications of the Vardy- 
Beery algorithm. It is shown that a RS codeword is formed by 
interleaving words chosen (with a certain order) from either a 
binary BCH code or one of its cosets. This property is used 
to derive a computationally efficient ML SDD algorithm. The 
reduction in complexity achieved with reference to the Vardy- 
Beery algorithm is considerable. The proposed algorithm can 
be changed into a sub-optimum algorithm, thus trading-off 
complexity with performance. 

II. DECODING 

Let gRs (X) be the generator polynomial of an (N,K) RS code, 
CRS , over GF(2m). If a is a primitive element of GF(2m), 
gRSpO is given by 

it 

gRs(x)=n (*+<*') (i) 

{a, a2, a3,... ,a2t} and their cyclotomic conjugates over 
GF(2m). The message length k, is less than or equal to K. 
Define a transformation <fi : GF(2m) -» GF(2)m with basis 
{70,71,-•■ ,7m-i}. Using this transformation, a code poly- 
nomial, CRS(X) of CRS is given by: 

m-l 

CRSPO   =   £-W[
C
BCHP0 + I

0>
W] 

3=0 

m — 1 m —1 

=    E^BCHW+E^W       (2) 
3=0 j=0 

where CgCH(X) e CBCH and l^(X) is a coset leader poly- 
nomial. 

We use the above algebraic property to device an efficient 
decoding algorithm. 

III. SIMULATION RESULTS 
The proposed algorithms were applied to a range of Reed- 
Solomon codes up to length 127 and the minimum Hamming 
distance up to 7. The simulation results are obtained for an- 
tipodal signalling over an AWGN channel. Table 1 gives the 
required bit energy to noise ratio jf- to achieve 10-5 BER for 
the proposed algorithms, GMD and the Berlekemp-Massey 
HDD algorithm. It is observed that the proposed MLD algo- 
rithm requires 1.9-3dB lower SNR to achieve the target BER 
of 10~5, compared to the HDD algorithm. It is also shown 
in Table 1 that the proposed sub-optimum algorithm achieves 
near-MLD performance for all codes tested. The loss in per- 
formance at BER of 10-5 is consistently below 1.0 dB. 

RS 
Code M-min 

jfc at BER = IO-5 

MLD SOPT GMD HDD 
(31,29) 3 6.4 dB 6.6 dB 7.9 dB 8.4 dB 
(63,61) 3 6.6 dB 6.8 dB 8.1 dB 8.6 dB 

(127,125) 3 6.8 dB 7.0 dB 8.4 dB 8.8 dB 
(15,11) 5 5.3 dB 5.6 dB 7.2 dB 7.8 dB 
(31,27) 5 5.2 dB 5.3 dB 7.2 dB 7.6 dB 
(63,59) 5 5.5 dB 6.3 dB 7.6 dB 7.8 dB 
(15,9) 7 4.5 dB 5.1 dB 6.9 dB 7.6 dB 

(31,25) 7 4.2 dB 5.2 dB 6.7 dB 7.2 dB 

where 2t   =   N - K.     Now define an  (N,k) binary BCH 
code, CBCH with generator polynomial gBCH(^) with roots 

Table 1: Required ^ to achieve BER of 10 5 for various 
codes and decoding algorithms. 
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Abstract — We use the Plotkin (u, u-fi>)-construction 
for general Reed-Muller codes (m,r) and relegate de- 
coding to the two constituent RM codes. First, we 
use the better protected code (m-l,r-l) to find a sub- 
block v. Then we proceed with the block u from the 
code (m-l,r). We repeat this recursion on both halves 
and recalculate the reliabilities of the received sym- 
bols. In the end, we perform ML decoding on the 
biorthogonal codes. 

I. RECURSIVE TECHNIQUES 

Below, general Reed-Muller codes RM(r,m) are denoted 
{ m } . Plotkin construction represents these codes in the form 

(it, u + v), where u € { m~1} and v 6 j ™Zl } • % splitting 

both halves, we obtain shorter RM codes until we arrive at the 

biorthogonal codes { { } or single-parity check codes j ^_x >. 

Now consider the received block (u, u + v) corrupted by 
noise. We first try to find the better protected block v. In hard 
decision decoding, we use its corrupted version u + (u + v). In 
more general setting, we first use the left half u, and find the 
posterior probability p\, = Pr{ui = 0]_ui } of each symbol u;. 

Similarly, we use the right half u + v to find the posterior 
probability p" of any symbol Ui+Vi. Then any symbol Vi has 
posterior probability: 

pivi)=P'ip'! + {i-p'i)0--v'l)- 

In Step 1 of our algorithm, we use probabilities p(vi) to exe- 

cute soft-decision decoding of vector v into the < ™Z\ f-code. 

The result of decoding is (presumably correct) codeword v. 
After v is found, we have two corrupted copies of vector u, 

namely u in the left half, and (u + v)+v in the right half. Our 
next goal is to jointly decode both copies. Similarly to Step 
1, we use posterior probabilities p(iti) of symbols Ui. Here we 
combine the two estimates of Ui obtained on both corrupted 
copies. Finally, we perform soft decision decoding and find 
(presumably correct) subblock u € { m~  } . 

In a general scheme, decoding on the length n/2 is again rel- 
egated to the shorter codes. On all intermediate steps we only 
recalculate symbol reliabilities. Maximum likelihood decoding 

is executed at the end nodes {{} and < .£x > . Decoding re- 

quires about 0(n log n) operations. 
It can be shown that the output bit error rates significantly 

vary on different end nodes. In particular, the highest (worst) 
BER is obtained on the node { m-

i
T"+1} that is decoded first. 

An important conclusion is to set the corresponding infor- 
mation bits as zeros. In this way, we improve on the overall 
performance by taking the subcodes that eliminate a few least 
protected information bits in the original code { ™ } . 

'This work was supported by the NSF grant NCR-9703844. 

In asymptotic setting [4], our decoding increasingly outper- 
forms both the majority algorithm and the former recursive 
techniques [l]-[3] as the block length grows. In particular, for 
long RM codes of fixed rate, we increase bounded-distance 
threshold In d times and correct most error patterns of weight 
up to (dlnd)/2. Simulation results presented below show that 
this improvement starts at very short lengths. 

II. SIMULATION RESULTS 

Table 1 summarizes simulation results for the RM code { 4 } 
of length 512 and dimension 256. We also consider a subcode 
of dimension 223 and present both bit- (BER) and block 
(BLER) error rates. The results are compared with the 
former recursuve technique presented in [3]. Similar results 
are obtained in Table 2 for RM code { 3 } of dimension 130 
and its subcode of dimension 87. 

Table 1. Output error rates for code {4} • 

SNR (dB) 2 3 4 
Recursive [3] 0.9 0.5 0.2 
Recursive (new) 0.2 0.03 210_d 

BER for subcode 0.05 3-10_d 3-10-" 
BLER for subcode 0.2 0.02 2-10-4 

Table 2. Output error rates for code { 3 } . 

SNR (dB) 2 3 4 
Recursive 0.2 0.08 8-10-* 
BER for subcode 0.02 10-a 3-10-0 

BLER for subcode 0.08 3-10-d IO-4 

Further improvements of recursive techniques are presented 
below for RM code { 2 } of length 256 and dimension 37. For 
these (or similar) parameters, our decoding outperforms all 
suboptimal algorithms known to date. 

Table 3. Output bit error rates for RM code { * } • 

SNR (dB) 1 1.5 2 2.5 3 
BER 10_* 410~3 10_a 2-10-4 2-10-5 

BLER 4-10_V! io-* 3-10-" 5IO-4 8-10~5 
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Abstract — In this paper, the statistical approach 
proposed by Agrawal and Vardy to evaluate the error 
performance of the Generalized Minimum Distance 
(GMD) decoding is extended to other reliability based 
decoding algorithms for binary linear block codes, 
namely Chase-type, combined GMD and Chase-type, 
and ordered statistic decodings. In all cases, tighter 
and simplier bounds than previously proposed ones 
have been obtained with this approach. 

I. SUMMARY 

A difficult task related to suboptimum decoding algorithms 
is their error performance analysis at practical SNR values. It 
has long been believed that a good criterion to design a subop- 
timum soft decision decoding algorithm was to prove that the 
algorithm achieves bounded distance decoding (or is asymp- 
totically optimum). However, recent studies indicate that this 
simple criterion usually does not reflect the behavior of the al- 
gorithm considered at practical SNR values. In particular, an 
approach based on the union bound is highly misleading and 
more sophisticated bounding methods are needed. 

In [1], a new upper bound on the error performance of 
GMD decoding [2] has been presented. Interestingly, under 
some mild assumptions, this upper bound is tight at all SNR 
values. The error performance analysis of [1] is based on the 
probability density functions of the j'-th ordered reliability 
value among i hard-decision errors in a received sequence of 
length N for 1 < j < i, and on the probability density func- 
tions of the Z-th ordered reliability value among the remaining 
N — i correct hard-decisions in the received sequence of length 
AT, for \<1<N -i. 

In this paper, we first extend the approach of [1] to evalu- 
ate the error performance of Chase-type decoding. For the 
algorithm-2 introduced in [3] and BPSK transmission over 
an AWGN channel, the obtained bound falls on top of the 
simulated results at all SNR values, eis depicted in Fig. 1 for 
Chase-2 decoding applied to thep = 7 andp = 10 least reliable 
positions of the received sequence for the (127,64) BCH code. 
The bounding method is then applied to the combination of 
GMD and Chase-type decodings eis introduced in [4]. Tight 
bounds are obtained for the entire family of algorithms corre- 
sponding to this generalization. Finally, the bounding method 
is applied to the ordered statistic decoding (OSD) algorithm 
of [5]. The computational complexities of the corresponding 
bounds are smaller than that of the bounds derived in [5] for 
high orders of reprocessing. The new bounds are compared 
with the simulation results of OSD of the (128,64) extended 
BCH (eBCH) code in Fig. 2. The detailed derivations of these 
bounds are given in [6]. 
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Figure  1:    Word error rate for p-Chase decoding of the 
(127,64) BCH code with p = 7 and p = 10. 

: Theoretical bounds i 
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: Simulation! order-0 
: Simulations order-1 ' 
: Simulation» ordor-2 
: Simulation« ordor-3 
: Simulations ordor-4 
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Figure 2: Word error rate for each stage of order-4 OSD of 
the (128,64) eBCH code. 
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1 
Abstract — The trellis complexity of causal and non- 

causal interleavers are studied via the introduction 
of the input-output interleaver code. The "average" 
complexity of a uniform interleaver is computed. The 
trellis complexity of a turbo code is then tied to the 
complexity of the constituent interleaver. A proce- 
dure of complexity reduction by coordinate permuta- 
tion is also presented, together with some examples 
of its application. 

I. INTRODUCTION 

For a block code C(n, k), the most used trellis complexity 
parameters are: the maximum state complexity S(C) = 
maxo<;<n s(i), where s(i) = log2 |£(i)|, and E(i) is the state 
space at time 0 < i < n\ the maximum branch complex- 
ity B(C) = maxi<;<„ b(i), where b(i) = log2 \T(i, i + 1)|, and 
r(i, i+1) is the trellis section at time 0 < i < n; the average 

branch symbol complexity E(C) = (5Z"=o |r(M + l)l)A- 
It is well known that coordinate permutations p can strongly 
change the complexity parameters. In other words, given C, 
one can base a "real" measure of the complexity of C upon the 
parameters S = minp{S(p(C))}, B = minp{B(p(C))}, and 
E = mmp{E(p(C))}. 

II. INTERLEAVERS 

An interleaver I is a device characterized by a fixed 
permutation px ■ Z <-> Z. I maps bi-infinite input bi- 
nary sequences x into permuted output sequences y with 
y(i) = x(px(i)). Given an interleaver I, we introduce the 
(input-output) interleaver code Cx defined as the set of 
all input/output interleaver sequence pairs (x,y). For causal 
interleavers, it is well known and intuitive that the state space 
size is constant. When more general interleavers (non-causal, 
too) we have [1]: 
Theorem 1 
For every interleaver code C%: sx{i) = \Ai\ + \Vi\, where: Ai = 
{jeZ:j< i,p(j)> t}, Vi = {j£Z:j> i,p(j) < i}.y 

III. THE TRELLIS COMPLEXITY OF TURBO CODES 

Let us consider turbo codes of rate-1/3 obtained from 
two equal binary systematic convolutional encoders of rate- 
1/2 and constraint length v and a block interleaver (1,7r) of 
length JV. 
Theorem 2 
For a turbo code C the state profile is equal to:   sc(i) = 
sx{i) + c(i) ,    with c(i) < 2v. y 

A uniform interleaver of length JV is a probabilistic in- 
terleaver that acts as the "average" of all possible interleavers 
of length JV. 
Theorem 3 
For an uniform block interleaver of length JV: 

RECTANGULAR INTERLEAVER N=64 (16X4) 

0 10 20 30 40 50 60 70 
i 

Fig. 1: State and branch profile for the turbo code of Example 1. 

sxu(i) 
2(N-i)i 

N with 0 < i < N. Its maximum state 

:JV/2. complexity is equal to Sxu 

Theorem 4 
For a turbo code C formed by two constituent encoders of 
constraint length v and a uniform block interleaver X of length 

JV: scu{i) = 
2-{N-i)-i 

N + c(i) with c(i) < 2v. Its maximum 

state complexity is SQ(J = JV/2 + c ,    with c < 2u. y 

IV. REDUCING THE COMPLEXITY OF TURBO CODES 

Given an interleaver (I, pi) the permutations pi = (7, p_1) 
and p2 = (p, I) minimizes the complexity parameters of p(Ci) 
to S = 0, B = 1, and E = 4. Using this result, to reduce the 
complexity of a turbo code employing a block interleaver n, we 
have considered these two permutations: pmini = (7, i,7r_1) 
andpmin2 = (7r,7r, 7). 

As an example, impressive results in terms of complexity 
reduction through the application of pm;„i and pmin2 can be 
obtained for the class of turbo codes employing row-by-column 
block interleavers. It can be proved that, when JV is a power 
of two, JV/2 < S(3) < JV/2 + 2v. By applying pmin\ (j>min2, 
respectively) when NR > Nc (NR < Nc), we obtain a consis- 
tent reduction to 5(3) = v{2Nc - 1) (5(3) = ^(2JVR - 1)). 
EXAMPLE 1 
Consider a turbo code composed by two equal 4-state con- 
volutional encoders and a block rectangular interleaver with 
JV = 64, NR = 16 and Nc = 4. In Fig. 1 we report the state 
and branch profiles of the turbo code evaluated directly and 
through the permutation pmini, showing a significant com- 
plexity reduction. 
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Abstract — We show that the decoding performance 
of a simple turbo code can be improved by cross- 
entropy minimization via manipulation of the initial 
a priori probabilities. 

I. IMPROVING TURBO DECODING 

While Turbo decoding of parallel concatenated codes (PCC) 
has been shown to offer near Shannon-limit performance, it is 
known that the decoding is sub-optimal. For example it has 
been shown analytically by McEliece et al. [1] that, for certain 
received values of a (14, 3) PCC, the turbo decoding process 
does not converge . However, this does not cover all cases 
of non-convergence. Furthermore, there are also cases where 
the turbo decoding process converges to a non-maximum a 
posteriori probability (non-optimum) decision. 

We investigated the turbo decoding performance when the 
initial a priori probabilities (APRP) are biased to the op- 
timally decoded message for this (14,3) turbo code. This 
method, which assumes knowledge of the optimum decision, 
is referred to in this paper as the "Genie" Turbo Decoding 
method (GT). Figure la shows the BER surface when initial 
APRPs for the first two of the three information bits are bi- 
ased with respect to the optimum decision with values ranging 
from (Si = S2 = 0 (correctly biased) to <5i = 82 = 1 (incorrectly 
biased). The BER, which is measured for an EbjN0 of 5dB, 
shows a slight improvement when both bits are biased cor- 
rectly as opposed to the unbiased case (5i = 0.5, Vi). 

Hagenauer et al. [2] have proposed using cross-entropy be- 
tween the outputs of the component decoders to detect con- 
vergence. The similarity between the cross-entropy surface 
(figure lb) and the BER surface (figure la) suggests that the 
cross-entropy values may be used to infer initial APRP set- 
tings in order to improve decoding performance. 

We modified the turbo-decoding process by biasing the 
APRPs to the eight possible messages, each for a fixed num- 
ber of iterations. The output of the bias that yields the lowest 
cross-entropy at the final iteration is then chosen. We refer 
to this technique as Entropy Minimization Turbo Decoding 
(EMT). Table 1 compares the percentage increase in BER 
with respect to optimum decision decoding for the traditional 
turbo decoding, EMT, and GT approaches at various Eb/N0 

values. The performance for GT and the traditional turbo de- 
coding are shown for the average obtained between 50 and 100 
iterations, while the EMT performance is for just 2 iterations 
(at each of the 8 possible messages). 

II. RESULTS 
It is seen that GT always out-performs the traditional turbo 
decoder showing that there is a potential for improvement at 
all Eb/N0 by biasing the initial APRPs; further, this poten- 
tial for improvement is significantly greater at higher Eb/N0- 
Above 2 dB, EMT also performs better than traditional turbo 
decoding and nears the performance of GT at 5 dB. 

Based on these results, we believe it is possible to im- 
prove the performance of more practical turbo-decoders by 
pre-setting the initial APRPs. 

0  0 

Figure 1: BER and Cross-Entropy Surfaces 

2 dB 3 dB 4 dB 5 dB 
Turbo 6.07 8.17 10.81 14.74 
EMT 6.93 7.29 8.67 8.71 
GT 5.10 6.15 7.40 8.46 

Table 1: Percentage Increase in BER w.r.t. Optimum 
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1 
Abstract — We present a simplified method for 

combining turbo decoding and binary Markov chan- 
nels. The resulting performance is slightly worse than 
that of the best known methods using supertrellis ap- 
proaches, but it clearly outperforms traditional sys- 
tems based on channel interleaving. Moreover, the 
complexity is much lower than in the supertrellis case 
and the structure of the encoder does not depend on 
the parameters of the hidden Markov model describ- 
ing the channel. 

I. INTRODUCTION 

Many practical digital communications channels exhibit 
statistical dependencies among errors. The error pattern of 
the discrete channel (modulator-real channel-demodulator) 
can be modeled using binary Markov channels [1, 2]. It is 
intuitive that the presence of memory in these channels leads 
to increased capacity relative to memoryless channels with 
the same stationary bit error probability. In practice, many 
communications systems make use of a channel interleaver to 
distribute the errors so that codes designed for a memoryless 
channel can be used. While the application of interleaving 
does not change the capacity of the channel, the achievable 
performance of a decoder which assumes that the channel is 
memoryless is far away from the real capacity of the channel. 

Turbo coding for binary Markov channels has been previ- 
ously described in [3]. However, the methods proposed in [3] 
involve a considerable increase in complexity, since supertrel- 
lises jointly describing the constituent encoders and the hid- 
den Markov models have to be built. We propose a simpli- 
fied decoding method, which performs slightly worse than the 
method in [3] but the main advantage (besides the reduced 
complexity) is that there is no need to change the turbo en- 
coder structure depending on the channel parameters. 

II. SIMPLIFIED TURBO DECODING FOR BINARY 
MARKOV CHANNELS 

The basic idea of the proposed method is to treat the trellis 
describing the binary Markov channel as another constituent 
decoder which exchanges extrinsic information with the other 
constituent decoders in each one of the turbo decoding iter- 
ations. The channel block uses as extrinsic information the 
estimation of the probability of the error pattern that is pro- 
vided by the constituent decoder blocks. On the other hand, it 
produces a new estimation of such a probability which will be 
used as extrinsic information by the constituent convolutional 
decoders. This results in three different classes of extrinsic in- 
formation that are interchanged among the decoding blocks. 
The proposed method resembles the ones proposed in [4, 5] 
for continuous hidden Markov channels and hidden Markov 
sources, although, contrarily to [4], in this case it is necessary 
to iterate over the hidden Markov trellis. 

III. SIMULATION RESULTS 

In order to assess the performance of the proposed method, 
we consider two binary Markov channels with two states. For 
the first channel, the transition probability from the good to 
the bad state is .0486, and .0914 is the value of the transition 
probability from the bad to the good state. For the second 
channel these values are .006943 and .013057, respectively. In 
both cases, the bit error probability in the bad state is fixed to 
.5. The performance of the system is studied as a function of 
the value of the bit error probability in the good state (notice 
that, since all the other parameters are fixed, there is a one to 
one correspondence between the bit error probability in the 
good state and the stationary bit error probability, p.) 

We use a rate 1/3 turbo code that includes a systematic 
bit and two identical recursive 8-state convolutional encoders 
with generator matrix G(D) = 1t+o?+o? and ^ interleaver 
with length 16384. In order to obtain good performance it is 
necessary to use a channel interleaver which "separates" the 
Markov channel and the turbo decoder. Each simulation con- 
sisted of at least 40 million bits. For rate 1/3 codes, the bit 
error probability corresponding to the capacity of a binary 
symmetric channel is p = .174. Therefore, by using chan- 
nel interleaving and ignoring the memory of the channel (the 
usual approach to cope with bursty channels,) it is impossi- 
ble to send reliable information through any of these channels 
when the stationary bit error probability is higher than .174. 
However, using the proposed method, convergence for the first 
channel is achieved at p = .18 — .185, which is higher than the 
memoryless limit and close to the theoretical limit for this 
channel (which corresponds to a value p = .2083.) For the 
second channel convergence is achieved at p = .19 — .195. The 
theoretical limit in this case is p = .2307. 
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I. INTRODUCTION 

The weight spectrum of a turbo code [1] is useful in deriving 
its performance bounds. Due to the randomness and large 
size of the interleaver, it is extremely difficult to obtain the 
exact weight spectrum. In the past, the average weight spec- 
trum, averaged over all interleavers [2], is used in deriving the 
bounds. 

By introducing several limiting factors, we are able to de- 
rive an approximate weight spectrum for turbo codes with 
fixed interleavers. The complexity of the algorithm grows only 
linearly with the size of the interleaver. 

II. EVALUATING THE WEIGHT SPECTRUM 

A "global" turbo codeword consists of three binary vectors: 
(w, rx,r2), where u represents information bits, r_\ and r2 rep- 
resent redundant bits. A subcodeword refers to either (u, rx) 
or Güil^)- One limiting factor introduced is the maximum 
weight, Dmax, of codewords. We ignore weights greater than 
Dmax because they have little impact on the bit error rate 
(BER). We only consider low input-weight codewords since 
these codewords dominate the lower end of the weight spec- 
trum when the interleaver guarantees a minimum spreading. 
A low input-weight codeword may consist one or several Ele- 
mentary Low-weight Subcodewords (ELWSC). By definition, 
the error path of an ELWSC deviates from the zero state only 
once in a constituent code. An ELWSC, say with input weight 
2, is referred to as w2ELWSC. The weight of an ELWSC is 
less than Dmal. This implies the length of its error path must 
be less than a limit M. We define M as the span of ELWSCs. 
Special treatments are given to input weights in the "tail" 
(or last L bits) of the input sequence to account for the large 
number of ELWSCs with these input weights. 

To evaluate the weight spectrum, we need to find possi- 
ble arrangements (or error patterns) of input weights that 
result in low-weight codewords. For example, the most prob- 
able input-weight 4 error pattern involving bit a is shown in 
Fig. 1. CC1 stands for constituent code 1 and CC2 for con- 
stituent code 2. Input bit pairs {a, 6,} and {c;,d;} form two 
w2ELWSCs in CC1. In CC2, these input bits swap their po- 
sitions and form two other w2ELWSCs. Note that subscripts 
are used for bi,a, and d; to indicate that there are more than 
one set of input bits that can form such an error pattern with 
bit o. The search for these bits are conducted within the 
span of ELWSCs. For example, bi is searched in the range 
(Ia — M,Ia + M) where Ia is the index of bit a in CC1. 

This searching process is applied to error patterns of input- 
weight up to 6. 

CCI 

CC2 

-;-MxBLf- 
Interleaver Function 

II II 
... a...ci bi... di.. 

Fig. 1: Input Weight 4 Error Pattern. 
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* " ~ ~ ~ - - ^^""^^^^^^"^sas^^ 
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Fig. 2:   Union Bound Analysis and Simulation Results of Turbo 
Code with Different Interleavers. 

III. ANALYSIS OF DIFFERENT INTERLEAVERS 

In Fig. 2, the legends stand for: I: Uniform Interleaver. II: 
Modified Block Interleaver with the prime number set from [1]. 
Ill: Modified Block Interleaver with the prime number set se- 
lected from our analysis. IV: Modified S-pseudorandom Inter- 
leaver as described in [3] selected from our analysis. Over 100 
bit errors were accumulated for each simulation point. The 
union bounds plotted are calculated using the weight spec- 
trum derived from our analysis which is performed on the 
rate-1/3, (37,21) turbo code with interleaver size 4096. Due 
to the randomness of the generating process of interleavers, 
our analysis is very useful in .picking out the "best" one. Also 
the analysis provides an approximation of the error floor. 
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! 

We consider finite-alphabet sequences which are emitted by 
a stationary source with unknown statistics. 

X    =    Xi,X3,... ,Xi,...; 

XT    =    Xi,Xa,...,Xm;X|€A; |A| = J1. 

Assume that we are given a training vector YZ^ which is 
governed by the same probability law that governs X, but is 
drawn independently of X. In the case where YZ^ = X?_N+1, 
(Sliding-window case), the independence assumption is essen- 
tially replaced by the assumption the source is a finite-order 
Markov source. Given YZ},, we need to estimate P(Xi|X£t) 

(in order to predict Xi given X°t, or compress Xi given X°t, 
etc. in cases where the actual measure P(Xi |X£t) is not avail- 
able to us). 

In order to estimate P(Xi|X£t) one constructs, for any 
training-sequence YZjf, some empirical conditional probability 

measure Q* -i (Xi|X£t) of Xi given X£t, hoping that this 
-N 

empirical conditional probability measure will be "close" in 
some sense to the true P(Xi|X£t). 

One common way for generating such an empirical measure 
is to evaluate the relative frequency of appearance of each 
t + 2 vector Xit in YZ&, and use it to generate an empirical 
probability measure for t + 2 vectors, which will be denoted by 
qv-i (XLt) and from this measure to generate a conditional 

-JV 

probability measure <2*    i (Xi\Xlt)=qv-i (Xi\X°t) for any t 
Y-N -JV 

such that X£f appears in YZ^ at least once. 

For example, let YZ„ = 0101100; t - 0, Xlt = 01,X£t = 

Xg = X0 = 0.   Then, qY-i (01) = 2/6; qY-i (00) = 1/6; 

For X£t that do not appear in YZ^,, we may set 

qY-i (Xi|X£t) = q  -i (Xi|X£Ko), where X£Ko is the longest 
— N — JV 

suffix of X£t that does appear in YZJtf- {Ko is defined more 
precisely below). 

But is this choice of an empirical conditional probabil- 
ity measure optimal for relatively short training sequences? 
Our aim is to try to minimize the K-L relative entropy (di- 
vergence) between the true P(Xi|X£f) and Q*    x (Xi|X£t), 

-JV 
p(Xi \X®  ) 

namely Elog-pr-, ... ~'0 ,, where E(-) denotes expectation 

-JV 

with respect to P{YZ^,,Xlt). 
In this presentation we are treating this optimization prob- 

lem by deriving performance bounds for a restricted class of 
empirical conditional distributions(predictors). 

1This work was done in part while visiting Lucent Bell Labora- 
tories 

2 This work was supported by the Fund for the Promotion of 
Research at the Technion 

Assumption 1 Let us define a random variable Ko = 
Ko(Xlt+i;YZ}f) to be the largest integer i < t such that 

Xli = YZi_j for some l<j<N-i. (K0 = 0 if X0 does not 

appear in YZ^)- 
We assume that the discussion is limited to the class of 

empirical conditional probabilty distributions such that, for 
K0<t, 

QY-1(X1\X°_i) = QY-i(Xi\XlKo) 
-JV -JV 

(since for Ko < t the conditioning is on an event X_t that was 
never observed in YZ^: only it's suffix X£Ko was observed in 

YZl,)- 

Lemma 1   Under Assumption 1 and for any t — 0,1,2,3 • • • 

-Ey-llOgQ^-ipfllX"«) 
'-N -JV 

=    -.Ey-alogQy-^XilX^) 
-JV -JV 

>    -EY-i logP(X1|X£Ko_1) = HY-i (X1\X°_Ko_1). 
-JV -JV 

where Ev-\ (•) denotes conditional expectation given the value 
-JV 

If Y_x is drawn independently of X2-t, we have: 

-ElogQ'y-iWXlt) 
N 

> -£logP(X1|x£Ko_1) = ^XilxE^.O 

We call the reader's attention to the fact that in the "en- 
tropy" expression H(Xi\X°Ko_1) Ko is a r.v. Furthermore, 
this "entropy" may be evaluated only if the probabilistic char- 
acterization of the source is available. However, it's useful- 
ness stems from the fact that it is demonstrated that there 
indeed exist universal algorithms for generating conditional 
empirical measures <?'   i(Xi|X£t) which are members in the 

JV 

admissible class that is defined by Assumption 1, for which 
-E\ogq*   i(Xi|X£t) is close to H(Xi\XlKo^). 

JV 

It should be pointed out that, 
H(X1) > HiX^Xl^.r) > H(X1\X°_t_1) 
thus demonstrating the non-asymptotic effect of having a 

"short" training sequence. 
While these imposed restrictions are apparently intuitively 

satisfying, they also lead to new useful non-asymptotic bounds 
on the performance of universal data compression algorithms 
such as CTW, LZ and HZ [1] (where similar bounds where 
drived in the minimax sense only). 
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Abstract — The sequential decision problem is stud- 
ied for loss functions with memory and finite action 
spaces. Based on the theory of Markov decision pro- 
cesses (MDP's), off-line reference strategies are char- 
acterized. An infinite horizon on-line strategy, with 
corresponding normalized "regret" which is upper- 
bounded by an 0(n~1'3) term for an arbitrary individ- 
ual sequence of observations of length n, is derived. 

I. INTRODUCTION 

Consider a sequence of observations xn = x\X2---xn for 
which corresponding actions bn = b\b2---bn result in non- 
negative instantaneous losses £(st,bt-i,bt,xt), 1 < t < n, 
where St is a state driven by st+i = f{st,xt) in a finite set 
S, and si is fixed. The action space B is assumed finite, and 
6o S B is an initial action. While including the classical "se- 
quential decision problem" [1, 2], for which the loss at time 
t is independent of bt-i, this formulation also captures cases 
where there is a cost for switching between actions, or a long 
term effect ("memory") for actions taken at a given time. Ex- 
tensions to longer past action memories are straightforward. 

In an on-line strategy, bt is a (possibly random) function of 
a:'-1 and bt~1. For memoryless loss functions, the excess loss 
accumulated by an on-line strategy over the best off-line finite- 
state (FS) strategy (i.e., one in which bt = g{st), where g is 
optimized with full knowledge of xn) is termed the regret. An 
on-line randomized strategy is demonstrated in [1] for \S\ — 1 
(see [2] for S > 1), for which the normalized expected regret 
vanishes at an 0(\/\/n) rate, uniformly over {xn}. Here, we 
present an analogous result for loss functions with memory. 

II. THE REFERENCE OFF-LINE STRATEGY 

For memoryless loss functions, reference FS deterministic 
strategies are justified as follows: If the data are drawn from 
an FS source {p(x\s),s 6 S} (on a discrete or continuous data 
space), the expected (normalized) loss over infinite sequences 
is minimized (over all strategies bt = fj.t(xt~1 ,b'-1)) by the 
FS strategy g(s) — argmin&gs Ep£(s,b, x). Similarly, here, 
the expected loss is given by 

n 

Lp^ = lim sup — 2~]      /J      Pt(s,b',b)L(s,b' ,b) 
t=l s€S, b',beB 

where Pt(s,b',b) is the joint probability (w.r.t. {p(z|s)} 
and {fit}) that (st,bt-i,bt) = (s,b',b), and L(s,b',b) = 
Epl(s,b',b,x). The minimization of LPtll over {fit} is an av- 
erage cost per stage problem for a particular MDP. Assum- 
ing that {p(x|s)} yields an irreducible Markov chain, there 
is  [3,   Vol.  2,   Ch.  4]  a  deterministic minimizing strategy 

bt = fi(st,bt-i), independent of si and 6o- The strategy ft is 
obtained as a solution to a linear program. As {p(z|.s)} varies, 
it generates a finite set T of deterministic off-line reference 
strategies. In particular, if the state transitions are determin- 
istic (e.g., if |5| = 1), then the off-line strategies are described 
in terms of simple cycles with minimum average weight in a 
graph whose nodes are in S x B, and an edge from (s, b') to 
(f{s),b) has a weight L(s,b',b), where s transitions to f(s). 

III. ON-LINE STRATEGY 

The design of an on-line strategy is actually an instance of 
learning with expert advice [4], where T is a set of ß experts. 
However, the instantaneous loss of a strategy that follows an 
expert F € T at time t depends on bt-i, which may not agree 
with F. This memory calls for an additional block-length 
parameter that determines how long the advice of an expert 
is followed. The discrepancy between on-line and expert losses 
at the start of each block is amortized over the block. Our on- 
line strategy, inspired by [4], is first presented for the horizon- 
dependent case. For a fixed block length M, at t = Mk + 
l,/c = 0,l,--, we randomly select F according to 

exp{-7;£F,*:} 
Pk(F\{CF,k},Fef) = 

'F'er exp{-7?£F/jfc} 

where rj > 0 is a given constant and CF,IC is the cumulative 
loss of F through time t = Mk. The actions of F are followed 
through t = Nk+i- 

1Work partially done while visiting at HP Labs. 
2Work done while this author was with HP Labs. 

Theorem 1 Let M = 2 (^)1/3 and r, = ^ (^)2/3, 

where £max denotes the maximum loss l(s,b',b,x) over s 6 S, 
b',b € B, and x 6 A. Then, the normalized regret of the 
on-line strategy is < 1.5^max[(ln/3)/n]1,/3. 

For infinite horizon, time is divided into exponentially grow- 
ing super-segments of sizes {Ni}, in each of which the above 
algorithm is used with Ni replacing n in the specification of 
M and i). We show that for all n, the normalized regret is 
bounded as in Theorem 1, but with a larger constant. 
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I 

Abstract — The asymptotically optimal methods of 
prediction for Markov sources with unknown memory 
are suggested. The methods are based on modified 
twice universal scheme. 

I. INTRODUCTION 

The problem of prediction and the closely related problem 
of adaptive coding of time series is well known in Information 
Theory, Probability Theory and Statistics [1]. 

We consider a source with unknown statistics which gen- 
erates sequences x\X2 ■ ■ ■ of letters from a finite alphabet 
A = {ai,...,on}. We imagine that we have at our dis- 
posal a computer for solving the prediction problem. As 
input we consider any finite string xiX2-..xt of letters 
from A and as output we receive at each time instant 
t non-negative numbers p*(a\\x\ ... xt), ■ ■ ■ ,p*(an\xi ... xt) 
which are estimates of the unknown conditional probabili- 
ties p(ai\xi ... xt), ■ ■ ■ ,p.(a„\xi ... xt), i.e., of the probabilities 
p(xt+i = a,i\x\ .. .xt); i = 1,... ,n. The set p*(oj|xi .. .xt); 
i < n is called the prediction. 

The precision of a prediction method is measured by the 
divergence between p and p* and the complexity of a method is 
characterized by two numbers: the average time of calculation 
at each time instant in bit operations and the memory size in 
bits of the program denning the method. Let us denote the 
set of Markov sources of memory (or connectivity) k as Mk {A) 
and let MQ(A) be the set of all Bernoulli sources. 

In this report we consider the prediction problem for 
Markov sources with unknown statistics and memory. 

II. THE MAIN RESULTS 

We will use two asymptotically optimal prediction meth- 
ods for Mi(A),i = 0,1,..., which were suggested in [2]. The 
method a* is asymptotically optimal in average and ßi with 
probability one. 

According to twice universal scheme, at each time instant 
t a computer compares the average precision of all methods 
ßo,ßi,...,ßN on the interval t = 1, 2,... ,T - 1 and finds 
jo for which ßj0 gives the best precision on the interval t = 
1,2,...,T—1. Then the computer uses ßj0 in order to predict 
for the next moment T. (It looks like the likelihood principle). 

It is clear that the computer should calculate (JV + 1) pre- 
diction sets (for ßo,ßi,...,ßN) instead of one set as it does in 
case of known memory of the source. So the time of calcula- 
tion increases (JV + 1) times. Similarly, the memory space of 
the computer should be divided into (N+l) parts in order to 
store statistics for ßo, ßi,..., ßi* ■ 

The new methods are based on a simplified twice univer- 
sal scheme (STUS). According to STUS, a computer which 
is used for the implementation of the suggested method com- 
pares two methods ßix and ßi2 at each time instant t. First, 
at t = 1,2, ...,T" the computer compares ßo and ß\ which 
are optimal for M0(A) and Mi (A) ( T is a parameter of the 
method). Then the computer removes the worst method and 
includes ß2 instead of it. After that both methods are com- 
pared during the period of [T + 1,..., 2T], the worst of them 
is removed and so on. At each time instant t the computer 
uses the best method ßij for prediction. (At the first inter- 
val [1,... ,T] ßo is used). At the moment (JV + 1)T + 1 the 
computer again includes ßo instead of removed ßZj. And so 
on. It is quite obvious that.the computer will find the best 
ßi and will use it almost all time for prediction if T is quite 
large. On the other hand, this universal scheme is fast and 
space-efficient because at every moment only two methods are 
compared instead of JV in the "conventional" twice universal 
scheme. We designate this method as ß]tu and describe two 
other modifications. 

The ßjtu is effective with probability 1. We obtain the 
method ß2

stu which is simpler if the computer stops to look for 
the best method ß]tu after the moment (JV + 1)T and uses for 
prediction at the moments (JV + 1)T+ 1, (JV + 1)T2,... the ß{j 

which was the best during [NT + 1,..., (JV + 1)T]. The new 
method ß\tu is effective in average only. (For simplification of 
the method it is possible to use optimal in average aij instead 
of ßi^. The last modification ß3

stu may be used when JV is 
infinite or when it is known only that a source is ergodic. 
The method ß3

stu looks like ß2
stu but the computer includes 

randomly chosen method ßi from the ß0,ßi,— (Recall, that 
ßi is included instead of the worst method ßtj at the moments 
T + 1,2T + 1,3T + 1,...). 

The main property of the suggested STUS may be formu- 

lated as follows: if ß\tu is used with T(r) = (log ±)2 , where 

r is the precision, then for every Mi(A) its precision is asymp- 
totically equal to the precision of the method which is optimal 
for Mi(A), when r goes to 0. 
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Abstract — The prediction and probability assign- 
ment (PPA) concept is important in lossless image 
compression. We report on a new approximate tech- 
nique for PPA based on local optimization. 

I. INTRODUCTION 

The aim in universal lossless data compression is to 
achieve a performance, in terms of average redundancy, 
that asymptotically fulfills Rissanen's lower bound [1] for 
universal coding. A slightly different aim is to minimize 
the maximal individual redundancy for any sequence. 
This approach is well studied by for example Shtarkov [2]. 
An important difference between these two different mea- 
surements are that by studying individual sequences we 
get a tool for short or limited sequences, i.e., we may get 
a desired behavior from the first symbol to the last. This 
difference plays an important roll in e.g. lossless image 
compression where the data is, by nature, limited to the 
bounds of the image. 

We know that the lower bound for universal data com- 
pression depends not only on the length of the sequence 
but also on number of unknown parameters, K, roughly 
like: p(n) ss y logn. Thus it is the aim when construct- 
ing a data compression scheme for practical applications 
to find a parameterization of the source with a minimal 
number of unknown parameters without loosing any in- 
formation. It is well known, in the lossless image com- 
pression community, that (linear) prediction is an excel- 
lent tool for such reduction of the number of unknown 
parameters. Much work has focused on different strate- 
gies for universal prediction schemes. These prediction 
schemes have often some kind of connection with uni- 
versal data compression, e.g. [3]. Although the excellent 
results in the area the application in lossless image com- 
pression require some further investigation due to the fact 
that we want to minimize the resulting codeword length 
which may be a different goal compared to minimizing 
the error from the prediction scheme. 

In the way the data is treated in most image compres- 
sion schemes with independent prediction and probability 
assignment (or estimation) we cannot guarantee that it 
is possible to make a probability assignment that has an 
optimal behavior according to Rissanen's bound. For this 
reason the prediction and probability assignment (PPA) 
concept was introduced in [4]. The aim with PPA is to 
optimize the prediction and the probability assignment 

"This work was supported by TFR project 271-98-244. 

together in order to control the behavior of the redun- 
dancy in a desired way. This is also of major importance 
since we usually use some kind of context tree model for 
our data and the sequences in each node of a context tree 
tends to be very small, e.g. less than 100 samples, except 
for a few nodes at small depth. For sequences of limited 
length it could be disastrous to use a universal source 
coding scheme which only performs asymptotically cor- 
rect and have an non-optimal initial behavior. 

II. THE APPROXIMATE PPA ALGORITHM 

From a theoretical point of view we should be able 
to construct a PPA scheme with a desired behavior 
by using a weighting technique. We could calculate 
the weighted block probability according to: Pw(-) = 
f&Jga(a,6)PB(-,a,6)dad6, where PB(-,a.,6) denotes the 
block probability for the input data given the prediction 
parameters a and the probability distribution parameters 
6. The a()-function sets the behavior for the parameter 
description costs, i.e., the redundancy for not knowing 
the parameters. 

For practical use it might not be feasible to calculate 
or to find a closed form expression for the block proba- 
bility PB{). For this reason we use the local optimization 
method as a tool since it will be possible to approximate 
the block probability. The precision in the approxima- 
tion will, however, influence the performance of the re- 
dundancy. 

In our suggested scheme we find the next sym- 
bol probability distribution according to Pi0(y) = 
■PB(

X
2/)/SJ^B(

X
0 where the max-probability function 

is determined by PB(x) = maxamax9a(a,ö)PB(x,a,ö). 
For the Gaussian probability distribution we have used 
an approximate distribution function and then simplified 
the max-probability function further by finding the pa- 
rameter a by a least square criteria followed by finding 
the parameter 6, i.e., individual maximization. Our tests 
show a superior redundancy -performance compared to 
traditional methods. 
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I 
Abstract - In this short contribution we present some novel 

results about the reliable information-rates supported by point- 
to-point multiple-antenna Rayleigh-faded wireless links for 
QAM coded data-transmissions. After deriving the (symmetric) 
capacity of these links, we present fast-computable analytical 
upper and lower bounds that are asymptotically exact both for 
high and low SNR's and give rise to reliable evaluation of the 
link-capacity. The proposed bounds apply when (perfect) 
Channel-State-Information (CSI) is available at the receiver 
and allow us to understand clearly the ultimate performance of 
the considered multiple-antenna QAM systems. Furthermore, 
asymptotically exact simple upper bounds are also presented for 
a tight evaluation of the corresponding outage probability when 
quasi-static fading occurs and coded packet-transmission with 
interleaving is used. 

EXTENDED SUMMARY 

The growing demand for high-throughput wireless services 
experienced in the last years motivates the design of digital 
transmission systems able to convey increasing data-rates without 
substantial bandwidth-expansion. At the present, typical cellular 
wireless standards support data-services at about 9-10 kb/s but, 
recently, there has been interest in providing more sophisticated 
services at ISDN-compatible data-rates exceeding 100 kb/s using 
the cellular spectrum. Since the wireless channel is inherently band- 
limited by multipath phenomena, bandwidth-efficient coding with 
diversity constitutes an effective means in coping with the 
deleterious effects of fading. Although wireless systems with 
multiple antennas at the receiver are today quite common, several 
important contributions [1,2,6] have recently pointed out that space- 
diversity at the transmitter can give rise to an extraordinary 
improvement in the reliable rates conveyable by wireless 
bandwidth-limited links when CSI is available at the receiver and 
this last also employs space-diversity (see [8] for a comprehensive 
reference list on this topic). The ultimate reliable throughput 
supported by point-to-point Rayleigh-faded links with multiple 
transmit/receive antennas has been evaluated in [1,2] for continuous 
Gaussian-shaped coding alphabets and it has been found to scale 
linearly with the number of the transmit/receive antennas, becoming 
unbounded for large SNR's. Motivated by these promising 
information-theoretic results, several coding strategies suitable for 
actual implementations have been more recently presented [3,4,5,6]. 

Since the coded systems presented in the contributions provide 
data-transmissions and then rely on finite-size QAM-type 
constellations, a natural question that is still unanswered concerns 
the reliable rates effectively supported by multiple-antenna/point-to- 
point wireless systems which employ finite-size data-constellations 
and are peak-power limited (at this regard, we remark that in [1,2] 
only the case of continuous coding alphabet with an average power- 
constraint is addressed). In this contribution we attempt to give an 
answer to this question. In particular, we consider a point-to-point 
multiple-antenna link affected by flat Rayleigh-distributed fadings 

and under the assumption of perfect CSI at the receiver we compute 
the (symmetric) Shannon capacity of the coded channel for QAM 
transmissions. Since the formula for the capacity resists to a closed- 
form evaluation and its computation requires multiple nested 
numerical integrations, we present some fast-computable upper and 
lower bounds which provide reliable (and asymptotically exact) 
evaluation of the capacity. In addition, the proposed bounds also 
unveil the ultimate performance limits of peak-power-limited QAM 
multiple-antenna faded links and point out the impact on the 
capacity of some important system parameters such as, for example, 
the number of transmit/receive antennas, the constellation size and 
the employed (average) SNR. 

Finally, since actual cellular wireless systems may be impaired by 
slow-variant (i.e., quasi-static) fading that, by fact, makes 
meaningless the link-capacity [7,8], in the last part of this 
contribution we investigate on the outage probability of point-to- 
point QAM multiple-antenna systems. Being the latter not 
analytically computable in a closed form, we present some simple 
Chernoff-type upper-bounds which are asymptotically exact and can 
be utilized in practice for a reliable evaluation of the actual outages. 
In addition, these bounds directly stress the impact of the number of 
employed antennas and the interleaving depth on the performance 
of the considered QAM systems when "block-fading" phenomena 
affect the transmission link between transmit/receive antennas. 
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Abstract — The problem of data transmission over 
an unknown channel is considered and an approach to 
code design for joint channel estimation, equalization 
and error correction is proposed. In contrast to most 
traditional approaches, where the receiver is designed 
given knowledge of the code used at the transmitter, 
this paper proposes an approach where the code is 
designed based on knowledge of the receiver structure 
and the statistical properties of the channel. 

I. SYSTEM MODEL 

Consider one-shot transmission of a binary block, befil}", 
over a linear filter channel using binary modulation. Assume 
that for each transmitted block, b, a complex vector-valued 
output, y = B-h + n€CI',is measured at the receiver, 
where n G"CL is zero-mean complex Gaussian noise, and B is 
a matrix containing the transmitted bits; (B);J = (b);_J+i for 
j < i and i-j + l < N, and (B)y- = 0 otherwise. The channel 
coefficients h e Cp (with P = L-N+l, assuming P < N) 
are drawn from a complex-valued Gaussian distribution and 
are assumed constant over the transmission of one block, b, 
but are allowed to vary between blocks. Furthermore, it is 
assumed that the realization of h is unknown both at the 
transmitter and at the receiver. A detailed description of the 
system and the assumptions made can be found in [1]. 

Since the P channel coefficients in h are unknown, the 
receiver implements joint maximum likelihood (ML) estima- 
tion^ of h and detection of the transmitted bits, b, that is 
(h,b) = argminbeC]h6Cp ||y - Bh||2. Hence, 

b = b(y) = arg min ||y - BB+y||2, 
bfcC- 

where C C {±1}N is the set of allowed codewords and B+ is 
the pseudo-inverse of B. The mapping b : CL ->• {±1}* is the 
decoder of the system. The operation of this mapping includes 
(implicit) channel identification. The decoder output, b, is, 
however, a function of y only, and a particular received vector 
is always mapped into the same b(y). 

II. CODE DESIGN AND PERFORMANCE 

The problem of code design is that of choosing the set of code- 
words, C, for a given value of \C\ < 2N, such that the word 
error rate (WER), Pr(b(y) ^ b), is minimized without ex- 
plicit knowledge of the channel. Note that this implies that the 
code must allow for both estimation of the channel impulse re- 
sponse, as well as providing good error correcting capabilities. 
That is, C is to be chosen such that it provides an optimal 
combination of redundancy for channel estimation ("training 
data") and error protection. Finding the optimal set of code 
words, C, is a integer optimization problem, which, in general, 

lrThis work was partially funded by the Swedish Research Coun- 
cil for Engineering Sciences, under grant 271-99-194. 

is very hard to solve. Therefore, an approach based on sim- 
ulated annealing [2] is used herein, where the energy of the 
system is given as a function of the WER. Unfortunately, the 
WER is, in general, hard to derive and therefore a technique 
based on the union bound is used instead. The union bound 
gives an upper bound on the WER, given knowledge of the 
pairwise error probabilities. These can be calculated using a 
moment generating function approach and closed form expres- 
sions are available for both Rice and Rayleigh channels [1]. 

The proposed scheme has been used to design a rate 
log2 \C\/N = 1/2 code for a channel with P = 2 equally strong 
Rayleigh fading paths. Three reference cases are also con- 
sidered: The first scheme uses 7 pilot bits for least squares 
channel estimation, Viterbi equalization and hard decoding of 
a (15,11) Hamming code, resulting in an overall code rate of 
11/(15 + 7) = 1/2. The second scheme is identical to scheme 
one except that the equalizer is provided with genie aided 
channel estimates. Finally, the third reference scheme uses 
optimal ML decoding of the overall code defined by concate- 
nating the 7 pilot bits and the Hamming (15,11) code [1]. 

6   proposed scheme, designed at 5dB 
-e- proposed scheme, designed at 10dB 
-O- proposed scheme, designed at 15dB 
-&- estimated channel, equalization. Hamming 
-o- known channel, equalization, Hamming 
-**- ML decoding ot channel and Hamming code 

As can be seen in the figure, the proposed coding approach 
significantly outperforms the other cases, clearly illustrating 
the performance benefit of designing the code for joint channel 
estimation and error protection. Furthermore, in [1] it is illus- 
trated that the new scheme is quite insensitive to mismatch 
in the design parameters compared with their true values. 
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I 

Abstract — We give the optimal 4- and 8-state trel- 
lises for across-the-subchannels TCM for DMT sys- 
tems. 

I. INTRODUCTION 

TCM can be performed for DMT systems in two ways : 
coding parallely and coding across the subchannels. The de- 
coding delay in the latter case is M times less than that in 
the former case, where M is the number of subchannels [1]. 
We refer the latter as across-the-subchannels TCM for DMT 
systems. 

At the receiever input, the SNR's in different subchannels 
are different due to the channel impulse response. Thus, the 
minimum weighted Euclidean distance becomes the decision 
criteria for ML decoding, and hence we use weighted Viterbi 
decoding. Due to this weighting, the best trellis known for 
single carrier systems need not be the best in our case. 

II. CLASSIFICATION OF TRELLISES 

We classify all the S-state trellises into 7 classes (where 7 
= log25) as |S'2 ;p' : 1 < x < 7}, where S'2 'p' denotes an 
5-state trellis with a node at a level connected to 2X nodes in 
the next level and having 2P parallel transitions. We label the 
top most node as so and the last node as S2t-i- 
Definition 1 : A cyclic trellis is a trellis in which the branches 
diverging from a node sn at any level connect to 2 ~p nodes 
of the next level, beginning from «(„.ji-,) mod 2~i and ending 
at 5((n+1j.2i>_p_1) mod 2T, where 6 is the number of input bits 
per symbol. 

The upper bound on the convergence length of a trellis is given 

by [2] 
7 

Figure 1: Some possible 4-state trellises : (a) 4*2;0' non-cyclic 
(b) 4(2;0) cyclic (c) 4(2;1) cyclic (d) 4(4;°> cyclic 

Definition 2 : The Convergence length of a trellis is defined 
as the minimum of all lengths of pairs of paths that diverge 
from a node, excepting the parallel transitions, and converge 
at another node. 

'This work was partly supported by CSIR, India, through Re- 
search Grants (No:25(0086)/97/EMRI-II) and (22(0298)/99/EMR- 
II) to B.S.Rajan 

2This work was supported in part by DARPA Grant F49620-95- 
1-0525-P00005 during his stay at Stanford university. 

where b\ refers to that part of the input bits which affects the 
state of encoder and \x\ denotes the largest integer less than 
or equal to x. 
Theorem 1 : The convergence length of a cyclic trellis is 
equal to Lmax, i.e., cyclic trellises achieve the upper bound on 
the convergence length. 

III. OPTIMAL 4- AND 8-STATE TRELLISES 

Let bmin = min,6[o,Af-i]{fr<}> where bi is the number of input 
bits in ith subchannel and stwt = min,£[0,M-i]{s>w'}> where 
Si and u>i are the squared miniumum Euclidean distance of 
the ith subchannel symbol constellation and weighting factor 
for that subchannel, respectively. 
Theorem 2 : The best trellis for 4-state across-the- 
subchannels TCM is 
(a) the 4(2;0) cyclic trellis, for 6m,„ = 1, 
(b) the 4(4;6"""-2) cyclic trellis if 

min     {2siWi + SiQiW,®!} > 4stwt 
ie[o,M-i] 

else the 4(2;i>™--1) cyclic trellis, for bmin > 2. 
Theorem   3   :     The   best   trellis   for  8-state   across-the- 
subchannels TCM is 
(a) the 8'2;0' cyclic trellis, for bmin = 1, 
(b) the 8(4;0) cyclic trellis, for 6m,„ = 2, 
(c) the 8(8;6m,"~3) cyclic trellis if 

min      {2siWi + SkWk} > 8stwt 
i,Jfc€[0,M-l] 

else the 8(4i6m*n_2) cyclic trellis, for bmin > 3. 
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Abstract — In this paper, we consider noncoherent 
communication over a frequency nonselective chan- 
nel. Results from coherent coding theory are used 
to devise both low and high rate codes for noncoher- 
ent systems. Further, one-dimensional noncoherent 
codes with good Hamming distance properties can be 
transformed into space-time noncoherent codes which 
achieve full transmit diversity using a block transfor- 
mation. 

I. INTRODUCTION 

Noncoherent transmission is considered over a frequency non- 
selective channel. The channel gain is assumed to be un- 
known but piecewise constant over a length of time called 
the coherence interval (and denoted by TV), which lasts sev- 
eral symbol durations. In prior work [1], a noncoherent "dis- 
tance" was identified as a performance measure for noncoher- 
ent codes, analogous to the Euclidean distance in the coherent 
case. Also, a near-optimal algorithm of linear complexity was 
found for noncoherent demodulation. This work considers the 
design of one-dimensional and space-time codes for noncoher- 
ent channels, with a focus on adapting simple coherent codes 
for the noncoherent setting. 

II. ONE-DIMENSIONAL NONCOHERENT CODES 

Our results so far indicate that the vast body of knowledge 
regarding coherent codes can be leveraged, with appropriate 
modifications, to obtain noncoherent codes. First, the low rate 
case is considered. A noncoherent code S„c can be obtained 
from a linear binary code S containing the all ones codeword as 
the set of equivalence classes of S, where an equivalence class 
consists of a vector in S and its complement. In this case, the 
minimum noncoherent distance of «S„c, as formulated in [1], 
can be shown to be proportional to the minimum Hamming 
distance of S. Hence, the choice of a good coherent linear 
binary code for S yields a good low-rate noncoherent code 5nc. 
In particular, the (7,4,3) Hamming code yields an optimal 
set of 8 vectors of length N = 7 on a unit sphere, for the 
noncoherent setting. 

For the high rate case, multilevel coding can be employed to 
yield good noncoherent codes. Varying degrees of protection 
are provided to each bit position in the bit labeling of sym- 
bols, using stronger or weaker codes. The linear complexity 
algorithm for the uncoded case can be extended to the multi- 
level coding case, resulting in a low-complexity demodulation 
algorithm. Simulation results show that a (7,4,3) Hamming 
code applied to the least significant bit of an 8-PSK alphabet 
with Ungerboeck-set partitioning gives a performance 1.5 dB 
better than 8-QAM. 

III. SPACE-TIME CODES 

A space-time, code consists of matrices of size N x Nt where Nt 

is the number of transmitter antennae (known as space-time 
codewords) where the ith column denotes the symbols trans- 
mitted over antenna i from time 1 to TV. A common design 
goal for space-time codes is to achieve full diversity, which im- 
plies that the symbol error probability decays asymptotically 
as l/SNR^', where SNR denotes the signal-to-noise ratio and 
it is assumed that N > Nt. 

In the noncoherent case, full diversity gain can be shown to 
be achieved by a code, if for every pair of codewords <£, 0, the 
matrix ( $ O - $ ) has full column rank. In comparison, 
full coherent diversity gain is achieved if 0 — $ has full column 
rank. Thus, the following remark holds. 

Remark 
A space-time code that achieves full diversity in the nonco- 
herent case also achieves full diversity in the coherent case, 
although the converse does not hold. 

Space-time codes that achieve full noncoherent diversity gain 
can be derived from one-dimensional noncoherent codes, as a 
result of the following theorem. 

Theorem 
Consider a code C such that, for every codeword c = 
(c0,ci,...,c/v-i )T inC, |c,| = ^L V» = 0,1,..., AT-1, and a 
noncoherent space-time code <S,1C whose codewords are derived 
from C as 

*(C): 

V 

Co 

C\ 

CN-2 

CN-\ 

CO 

C\Z C\Z 

Co 
N,- 

CN- 

CN- 

cN-i(zN<-Y~2 

'This work was supported by the National Science Foundation 
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where z = exp (j^-) is an Nth root of unity. Then, Snc 

achieves full noncoherent diversity gain if and only if Nt < 
AT/2 and the Hamming distance dH of C satisfies Nt < dn < 
(N-Nt). 

The preceding link between one-dimensional and space-time 
codes enables us to exploit constructions for one-dimensional 
noncoherent codes (e.g., the multilevel codes of Section II) for 
the design of space-time noncoherent codes. The interested 
reader is referred to [2] for details. 
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Abstract — 
This paper establishes new criteria for stability and 

for instability of multiclass network models under a 
given sequencing or routing policy. It also extend- 
s previous results on the approximation of the solu- 
tion to the average cost optimality equations through 
an associated fluid model: It is shown that an op- 
timized network possesses a fluid limit model which 
is itself optimal with respect to a total cost crite- 
rion. A full version of the paper is available at 
http://black.csl.uiuc.edu:80/~meyn. 

I. INTRODUCTION 

A traditional academic approach to scheduling and rout- 
ing is to construct a Markov decision process model for the 
network. This involves constructing a controlled transition 
operator Pa(x, y), which gives the probability of moving from 
state x to state y when the control decision a is applied. The 
state space X where x and y live are typically taken as the 
set of all possible buffer levels at the various stations in the 
network. 

Given an MDP model, and a one step cost function c: X —> 
R+, a solution to the average cost optimal control problem 
is found by solving the resulting dynamic programming equa- 
tions. The difficulty with this approach is very well known: 
When buffers are infinite, this becomes an infinite dimensional 
optimization problem. Even when considering finite buffers, 
the complexity grows exponentially with the dimension of the 
state space. Hence some form of aggregation is necessary - 
the Markovian model is simply too detailed to be useful in 
optimization. 

An elegant approach is to consider the model in heavy traf- 
fic where a reflected Brownian motion model is appropriate. 
The paper [2], and many others, develop these ideas for the 
network scheduling or sequencing problems. One is then faced 
with optimizing a controlled stochastic differential equation 
(SDE) model. 

This paper builds upon the results of [5, 1]. We develop 
a general framework for constructing control algorithms for 
multiclass queueing networks based on a fluid model. Network 
sequencing and routing problems are considered as special cas- 
es. The following aspects of the resulting feedback regulation 
policies are developed in the paper: 

(i) The policies are stabilizing, and are in fact geometrically 
ergodic for a Markovian model. 

(ii) Numerical examples are given. In each case it is shown 
that the feedback regulation policy closely resembles the 
average-cost optimal policy. 

(iii) A method is proposed for reducing variance in simula- 
tion for a network controlled using a feedback regulation 
policy. 

The viewpoint arrived at in this paper leads to policies 
which are similar to those found through a heavy traffic anal- 
ysis using a Brownian motion approximation. In all of the net- 
work models which have been considered to date, one could 
perform designs on the fluid model, translate these policies 
as described in the paper, and arrive at the same policy that 
was obtained using a Brownian motion approximation. Giv- 
en the greater complexity of the Brownian motion model, we 
conclude.that while diffusion approximations are tremendous- 
ly useful for analysis, they appear to be less useful for the 
puposes of control design. 
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Abstract — Although of practical importance to 
managing large IP networks, measurement-based net- 
work monitoring using distributed monitors has not 
been rigorously formulated nor investigated. This 
work develops a missing data framework for dis- 
tributed monitoring based on multicast, and inves- 
tigates, through density estimation, how resources 
needed for network monitoring scale with the size 
of the network under various network (loss) condi- 
tions. The results on the scalability provide insights 
into feasibility of using only edge monitors, and pro- 
vide design guidelines for future network management 
systems. 

I. MISSING DATA FORMULATION 

To assist network managers in monitoring large and hetero- 
geneous networks in dynamic environments, network monitors 
can be allocated at either the interior or the edges of a man- 
aged network to monitor Quality of Service (QoS) measures 
such as packet loss or delay. Even if network monitors are 
deployed everywhere in the network, some of them may be 
occasionally inaccessible for various reasons. Hence, a gen- 
eral formulation of network monitoring should consider this 
missing information aspect. 

We have developed a general theoretical framework for net- 
work monitoring using distributed monitors based on missing 
data formulation [3], where (a set (U) of) missing variables 
correspond to unobservable network nodes where monitors are 
neither available nor accessible, and (a set (O) of) observable 
variables correspond to nodes with functional monitors. Our 
model is in the form of the complete likelihood on both observ- 
able and missing variables. We consider network monitoring 
in the context of multicast probing [2], where network mon- 
itors measure the number of probe packets lost at the nodes 
of a multicast tree. Define the state Xj of node j to be a 
binary random variable, where Xj = 1 if node j receives a 
probe packet, and Xj = 0, otherwise. The resulting complete 
likelihood function possesses a very simple analytical form 

Pr(Xj = Xi,Vj) = n^J^'^Kl-a^C,- '}, (1) 
j=i 

where the parameter ctj = Pr(Aj = 1 | Xj(j) = 1) with node 
f(j) being the parent of node j, Xj equals to 0 or 1, i is 
the depth of a multicast tree, and Cj is quantity which does 
not depend on a/s. As such a model belongs to an expo- 
nential parametric family, it results in a simple Expectation- 
Maximization algorithm to estimate the unknown parameters, 
a/s, corresponding to unobservable nodes. 

II. SCALABILITY ANALYSIS 

The estimation error between the true (a*'s) and estimated 
parameters (a/s) given measurements D06., (losses measured 
by monitors) can be related to the convergence rate as 

ieu\Jo j€U 

(1   -Qj)Qj 
+ e, 

(2) 
where e is an error term depending on the missing informa- 
tion, o2j corresponds to the complete information for the j'-th 

unobservable node[3], A-, is the convergence rate of the j'-th 
EM equation and n is the number of probes. 

Using the theory of density estimation[l], we define the 
scalability of measurement-based network monitoring in terms 
of how the estimation error and the convergence rate vary with 
respect to the number of probes and the size of a multicast 
tree under various network conditions. For a uniform mul- 
ticast tree1 with small packet loss (a-, = 1 — o(l),Vj) and 
assuming only edge monitors, the estimation error is O(^) 
with A4 being the total number of unobservable nodes, and 
the convergence rate \3 = 1 — o(l), Vji. This corresponds 
to the best achievable scalability suggested by density esti- 
mation. When packet losses are large across the multicast 
tree (otj  = o(l),Vj), the estimation error is O(jr^) with 

0 < ß < 1, and Xj = o(l),Vj. This corresponds to the worst 
scalability with an exponentially large number of probes in the 
depth of a multicast tree, and an exponentially slow conver- 
gence rate. When large losses occur locally, properly allocated 
distributed monitors can improve the scalability to the best 
achievable. 
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Abstract — In a computer network, the traffic ma- 
trix or the origin-destination (OD) byte counts are 
important statistics needed for design, routing, con- 
figuration debugging, monitoring and pricing. How- 
ever, they are not easily available. For a fixed routing 
scheme, a statistical inverse algorithm is proposed and 
validated to estimate the traffic matrix from the eas- 
ily collectable link counts which are aggregations of 
the origin-destination counts. 

I. INTRODUCTION 

Practical realities dictate that information needed for man- 
aging computer networks is sometimes best obtained through 
estimation. This is true even though exact measurements 
could be made by deploying specialized hardware and soft- 
ware. We consider estimation of origin-destination byte counts 
from measurements of byte counts on network links. All com- 
mercial routers can report their link counts through the Simple 
Network Management Protocol (SNMP), whereas measuring 
complete OD counts on a network is far from routine. The 
problem of estimating the OD byte counts from aggregated 
byte counts measured on links is called network tomography 
by Vardi [1]. The similarity to conventional tomography lies 
in the fact that the observed link counts are linear transforms 
of unobserved OD counts with a known transform matrix de- 
termined by the routing scheme. 

II. A MOVING IID GAUSSIAN MODEL WITH A 

MEAN-VARIANCE RELATIONSHIP 

We [2] study the inference of OD byte counts from link byte 
counts measured at router interfaces under a fixed routing 
scheme. A basic model of the OD counts assumes that they 
are independent normal over OD pairs and iid over successive 
measurement periods. The normal means and variances are 
functionally related through a power law. We deal with the 
time-varying nature of the counts by fitting the basic iid model 
locally using a moving data window. Identifiability of the 
model is proved for router link data and maximum likelihood is 
used for parameter estimation. The OD counts are estimated 
by their conditional expectations given the link counts and 
estimated parameters. OD estimates are forced to be positive 
and to harmonize with the link count measurements and the 
routing scheme. 

Simple local likelihood fitting of an iid model is not suffi- 
cient because large fitting windows over-smooth sharp changes 
in OD traffic, while a small windows cause estimates to be un- 
reliable. A refinement in which the logs of positive parameters 
are modeled as random walks, penalizes the local likelihood 
surface enough to induce smoothness in parameter estimates 
while not unduly compromising their ability to conform to 
sharp changes in traffic. We use a fully normal approximation 

xBin Yu is on leave from University of California, Berkeley. 
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to this approach and demonstrated how effectively it recovers 
OD byte counts for our chosen network. 

III. VALIDATION WITH REAL DATA 

The proposed method is applied to two simple networks 
at Lucent Technologies. OD counts are shown to be recov- 
ered with good accuracy relative to the degree of ambiguity 
that remains after marginal and positivity constraints are met. 
Furthermore, the estimates are validated in a single-router 
network for which direct measurements of origin-destination 
counts are available through special software. 

IV. A SCALABLE ALGORITHM FOR LARGE NETWORKS 
It can be seen that for a network of n origins (destinations), 

the computational cost of our proposed method will be at least 
of order 0(n5) even after taking advantage of sparse matrix 
computation. Even for a network of a moderate size (e.g. 
n = 100), this is not acceptable. 

Since the OD counts come with an estimation accuracy, 
the optimization problem in our method does not have to be 
solved exactly. This suggests that we could choose subprob- 
lems of smaller size to apply our method so that the estima- 
tion accuracy remains the same order of magnitude as the full 
problem but the computational cost is greatly reduced. 

A divide-and-conquer scalable algorithm has been devised 
based on the principle of local information - most of the in- 
formation in estimating the parameters of a particular OD 
random variable comes from links nearby. Uner this princi- 
ple, the OD pairs are clustered into groups, and for each group 
of OD pairs, links are selected. For each subproblem of an OD 
group and associated links, a parameter reduction is carried 
out to minimize the computational cost so that the compu- 
tation cost of the algorithm is of 0(n3). This algorithm can 
be used on its own or to find an initial estimate for the full 
problem. 

We are currently implementing this algorithm on a large 
Lucent network. The results will be compared against those 
using the full approach. 
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Abstract — A methodology to build interval-valued 
probability models is presented. It is shown that 
this alternative produces temporally stable models of 
Internet-generated communications variables. 

I. INTRODUCTION 

Experience with such Internet-generated communications 
variables as files sizes and packet delays suggests that they 
have variable statistical characteristics even when these char- 
acteristics are estimated from huge sample sizes. This vari- 
ation is observed over medium duration (months) time peri- 
ods and between sources of similar types. Thus the observed 
variations in the parameters of long-range dependent, heavy 
tailed models suggests the need for anothec-^lass of math- 
ematical models that can account for the observed common 
semi-quantitative behavior in a medium-range temporally sta- 
ble manner. 

To this end we turn to the foundations of probability for 
the class of interval-valued probabilities and more specifically 
to the subclass of upper and lower envelopes (an introduction 
can be found, e.g., in [2] and references therein). By doing so 
we will give up some of the ability of the standard probability 
models to describe detailed dynamics of the traffic variables 
in exchange for a more robust, temporally stable stochastic 
model. 

II. MODELING: MINIMAL EXTENSION, LOWER 
ENVELOPES 

We base our construction in the following concept (see Sadrol- 
hefazi and Fine [2]): 

Definition. A kernel (/C, p) is a pair with K. a collection of 
subsets of a set Q, that includes 0 and SI, and a set function p 
defined on K. satisfying the following four modified axioms of 
a lower probability (i) p(Q) = 1; (ii) (VA 6 K)p{A) > 0; (Hi) 
(VA,B e/C) An.B = 0=> sup{p(C):Ce/C,CC-4UB}> 
p(A)+p(B) (superadditivity); (iv) (VA,B 6 K.) l+sup{p(C) : 
C € fC, C C AB} > p(A) + p(B) (conjugacy). 

Theorem. Given a set Q, a kernel (K,p), and any algebra 
A D K., there is a unique minimal extension of p to a lower 
probability P on A, such that: (i) P agrees with p on K-; (ii) 
ifQ is any other lower probability on A agreeing with p on K, 
then (Wi € A)Q(A) > P(A). 

By partitioning the range of file sizes we find that several 
of the intervals of size contain many files, and therefore we 
are confident that a relative frequency estimate of their prob- 
ability will have high accuracy. These events then lie in K.. 
In our case, we have frequentist-based probabilities of file size 
estimated from a variety of servers.   We generate the kernel 

Table 1: File Sizes: 1993 data vs. 1999 data 
Survey Sample 

Mean 
Sample 
Median 

Sample 
Std. Dev. 

Tail 
index 

1993 21,368 1,536 1,024,534 « 1.2 
1999 49,648 2,416 792,840 «0.7 

'This work was conducted with partial support from NSF Grant 
NCR-9725251. 

Figure 1: IVP model based on the 1993 Survey accounts well 
for the 1999 data 

p for the events by taking the minima of the individual esti- 
mated probabilities. This process is guaranteed to generate a 
function p satisfying the definition of a kernel. We can then 
proceed to use minimal extension to complete the kernel to a 
lower envelope P. 

III. APPLICATION TO MODELING UNIX FILE SIZE 

DATA SETS 
Our data on Unix file sizes comes from two surveys: 

1. An extensive survey was conducted in 1993 by Irlam 
([1]): over 1,000 file systems of different organizations 
were surveyed, representing roughly 250 gigabytes dis- 
tributed in approximately 12 million files. 

2. A smaller survey was conducted in August 1999 on 
two Unix file servers, THOR and TITAN, of the Cor- 
nell Electrical Engineering department network, with 
roughly 1 million files, totaling 46.5 gigabytes. 

Table 1 reveals some significant differences between the dis- 
tributions of file sizes in both cases. However, as can be seen 
in Figure 1, an IVP model built as explained in the previous 
section and based on the 1993 Survey accounts well for the 
1999 data. 
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I 
Abstract — An approach to the problem of linear 

prediction is discussed that is based on recent devel- 
opments in the universal coding and computational 
learning theory literature. This development provides 
a novel perspective on the adaptive filtering problem, 
and represents a significant departure from traditional 
adaptive filtering methodologies. In this context, we 
demonstrate a sequential algorithm for linear predic- 
tion whose accumulated squared prediction error, for 
every possible sequence, is asymptotically as small as 
the best fixed linear predictor for that sequence. 

I. LINEAR PREDICTION 

In this work, we consider the problems of adaptive filtering 
and linear prediction in a competitive algorithm framework. 
Given a data sequence x" = {x[t]}?=i, the optimal set of 
p coefficients, Wk, k = 1,... ,p, that minimizes the total 
prediction error 

N p 

EW[N] = 53(*["] - J2 WkX^n ~ k])2' 
n=l fc=l 

is uniquely determined and certainly depends on the input se- 
quence. Recently, a linear prediction algorithm was presented 
that asymptotically achieves the minimum average sequen- 
tially accumulated prediction error over all linear predictors 
of order p, i.e. min™ EW[N], for every individual sequence [1]. 
In this work, we somewhat modify the algorithm, and as a 
result improve both the algorithm performance, in terms of 
the bound on the redundancy, and provide a more intuitive 
proof of this bound. 

II. P-TH-ORDER LINEAR PREDICTION 

We consider the problem of linear prediction with a filter of 
fixed-order p, parameterized by the vector w = [vb\,... , wp] , 
with predicted value £üj[n] = wTx[n], where x[n] = [x[n — 
1],... ,x[n — p]]T. Let x[n], n = 1,... ,7V, be a bounded, 
but otherwise arbitrary, sequence such that \x[n]\ < A, 
where A need not be known in advance. Let ln(x,xa;) be 
the running total squared prediction error, i.e. l„(x,x-a;) = 
^2"=l(x[t] — Xüi[t})2. Define a universal predictor xu[n], as 

xu[n] = wu[n - l]Tx[n], where, wu[n] = [Rxx1 + SI]     r"x, 

R** = £Li*[fcMfc]T> *•"- = ELi *[fcMfc]. and <5 > 0 is a 
positive constant. 

Theorem 1 The total squared prediction error of the p-th- 

order universal predictor, ln(x,xu) = JZtLi^M — ^«M) » 5a*~ 
isfies 

Theorem 1 states that the average squared prediction error 
of the p-th-order universal predictor is within 0(A2p\n(n)/n) 
of the best batch p-th-order linear prediction algorithm, for 
every individual sequence xn. The idea behind the univer- 
sal predictor and the proof of the Theorem is as follows. We 
define a "probability" assignment of each of the continuum 
of predictors w € Rp to the data sequence xn such that the 
probability will be an exponentially decreasing function of the 
total squared-error for that predictor. Over the continuum of 
predictors with coefficients w, we assign a Gaussian prior over 
these probabilities, and define the universal probability to be 
the Bayesian mixture of these probabilities. With the Gaus- 
sian prior, we can obtain the universal probability in closed 
form. Since the probabilities assigned by every predictor can 
also be found in closed form, we can compare the universal 
probability to that of the best batch predictor for each se- 
quence. 

We note that the conditional universal probability is Gaus- 
sian distributed about same Bayesian (time-varying) mixture 
of predictor outputs as that applied to the individual predic- 
tor probabilities, however it is not in the form of an exponen- 
tially decreasing function of the prediction error of a particu- 
lar predictor. In [1], the conditional mean of this distribution 
was used as a predictor and was shown to be universal us- 
ing a convexity argument to bound its excess prediction error. 
However, the convexity argument required construction of a 
new Gaussian, centered about the same mean, which was both 
larger than the universal probability over the range of the data 
and also in the form of an exponentially decreasing function 
of the accumulated prediction error. This led to a redundancy 
proportional to 0(4A2p\n(n)/n), four times larger than that 
achieved here. In this work, we search for a new Gaussian 
in the proper form, with a different mean and variance, that 
is larger than the universal probability over the range of the 
data. By symmetry arguments, we obtain the new mean and 
variance that minimize the resulting redundancy of the uni- 
versal predictor. The resulting predictor xu[n] can be viewed 
as the least-squares batch solution over the past, where we as- 
sume that x[n] = 0 and update r"x[0] and i?"x[0] accordingly 
before predicting x[n]. 
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—ln(x,xu) < min — {ln(x,x^) + <5||w||2} -I In ( 1 + 
n as   n n       \ 
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Abstract - For the first time it is here shown that Symbol- 
by-Symbol Maximum A Posteriori (SbS-MAP) receivers 
are able to generate Non-Linear Minimum Mean Square 
Error (NL-MMSE) estimates of the transmitted symbols. 

I. INTRODUCTION 

SbS-MAP receivers have the appealing feature of being 
able of generating a kind of soft information that can be 
considered intermediate between hard-decisions and A 
Posteriori Probabilities (APPs): the NL-MMSE estimates of 
the transmitted symbols. This result is not a surprise since 
MMSE estimation is defined through an "a posteriori" 
expectation functional. Nevertheless, the fact that one can 
generate NL-MMSE estimates through an SbS-MAP 
receiver has never been clearly pointed out in the current 
literature. 

The availability of NL-MMSE estimates of the 
transmitted symbols is very useful in many applications, 
especially in those applications where it is necessary to 
mitigate the effects of wrong hard decisions. This has been 
recently pointed out in [1], although no method for 
computing the NL-MMSE was given. 

II. A GENERAL MODEL OF THE OBSERVATIONS 

The general model of a signal transmitted over a noisy 
and dispersive time-invariant channel is here considered. 
The random data sequence {s(k)}, constituted by A/-ary 
generally complex i.i.d. equiprobable symbols, is transmitted 
over a linear channel whose time-invariant equivalent L-long 
discrete-time impulse response is denoted by {g(k)}. Thus, 
the ISI-impaired noisy sequence observed at the output of a 
baud-rate sampled whitened matched receiving filter can be 
modeled by the usual relationship: 

L-\ 

y(j) = X*(*M'"" *)+ v« s °TxW + yW ' W 
k=0 

where G is the I-long impulse response vector of the ISI 

channel, x(i) = [s(i)...s(i - L +1)] is the corresponding 

channel-state vector and {v(z')} is a complex zero mean 
Gaussian noise sequence. The I-variate random sequence 
{x(i)} is a first-order Markov chain known as "state 
sequence" of the ISI channel and may assume N^M1 distinct 
values {Q. 

III. NL-MMSE ESTIMATION AND APPS 

The MMSE estimate of the symbol s(i) on the basis of 
the observations from step 1 to step / is given by the 
following relationship: 

SMMSEV) - 4(01 y\ }s Z sk Pr('v(0=** ! ^i)'    (2) 

k=\ 
It is possible to prove that (2) can be re-written in the 
following form: 

/tsl{i-L)=^K{ili) (3) 

'-NL-MMSFM'-'L)   '
S
 

tne vector containing the NL- 

± NL-MMSE 

where  S 

MMSE estimates of the last L transmitted symbols, n(i\i) is 
the vector of the APPs of the state sequence of the ISI 

channel and 5 is a LxN matrix whose columns are 
constituted by the vectors {£,} of (2). The relationship in (3) 

shows that the NL-MMSE estimates of the last L transmitted 
symbols can be expressed as a function of the APPs of the 
state of the ISI channel. 

IV. CONCLUSIONS 

In the present contribution, we presented a new method 
for generating NL-MMSE estimation with an SbS-MAP 
receiver. This method makes the use of SbS-MAP receivers 
very appealing because they can generate three kinds of 
information: a hard-statistics based information (the hard- 
decisions), a soft-statistics based information (the APPs) and 
an intermediate case represented by the NL-MMSE 
estimates of the transmitted symbols. 

In general, the use of "estimates" in place of "decisions" 
is useful whenever the reliability of the hard-decisions is 
low. In fact, a wrong hard-decision is certainly more harmful 
(to channel estimation and tracking or to systems with 
feedback) than an imperfect estimate on the transmitted 
symbol [2, 3]. Other useful applications that may be foreseen 
for the proposed technique are in the field of multi-user 
detection. 
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Abstract — We deal with the estimation of the struc- 
ture of the covariance matrix of the noise and its appli- 
cation to adaptive radar detection of coherent pulse 
trains in compound-Gaussian clutter. Resorting to 
secondary data, free of signal components, we propose 
an estimator which, plugged into the NMF in place 
of the actual covariance matrix, leads to an adaptive 
detector CFAR with respect to the statistics of the 

I. INTRODUCTION 

The design of detection schemes optimized under non- 
Gaussian, clutter-dominated, disturbance is motivated by the 
experimental evidence that the Gaussian assumption is no 
longer met for clutter returns as viewed by high resolution 
radars. These returns are, instead, more accurately described 
in terms of compound-Gaussian processes [1, and references 
therein]. 

It is of primary concern to come up with canonical receivers, 
namely detectors whose structure as well as the distribution of 
the decision variable (under the noise-only hypothesis) is in- 
dependent of the clutter statistics. In [1] it is shown that the 
Generalized Likelihood Ratio Test admits a sufficient statistic, 
referred to in the following as NMF, independent of the clut- 
ter amplitude probability density function if the number of 
integrated pulses, N say, becomes increasingly large. In order 
to come up with a completely-adaptive detector the key point 
is to substitute into the NMF the covariance matrix M of the 
noise with a suitable estimate of the structure of M, £ say. 
We propose a new estimate of S, based upon secondary data, 
and demonstrate that the corresponding adaptive scheme is 
CFAR with respect to the clutter statistics. The performance 
assessment shows that its loss (with respect to the NMF) is al- 
ways acceptable, and often negligible, in scenarios of practical 
interest for radar applications. 

II. PROBLEM FORMULATION AND SYSTEM DESIGN 

The problem of detecting a radar signal in additive, clutter- 
dominated, disturbance can be posed in terms of the following 
binary hypotheses test: 

Ho :     r = c, Tfc cfc, k = 1,...,K; 

Hi r-ap + c,    rk = ck, k = 1,...,K; 

where r, p, c, and the c^s, k = 1,...,K, denote the 
N—dimensional complex vectors of the samples from the base- 
band equivalents of the received signal, the signature of the 
wanted target echo, the noise (all of them from the range cell 
under test), and of the secondary data, respectively, while a 
is an unknown, possibly complex, parameter accounting for 
the target radar cross section. Moreover, c and the c/ts can be 

thought of as zero-mean Spherically Invariant Random Vec- 
tors or, otherwise stated, they can be written in the form [1] 

c = sg,    cjt = sfcgt, k - 1,..., K, 

where g and the g^s are complex, zero-mean, Gaussian vec- 
tors, s and the sks are real, non-negative, random variates, 
and s and g, similarly sk and g*, k = 1,..., K, are each other 
independent. We also assume that {g,gi, • • • ,g/c} is a set 
of independent, identically-distributed, circularly-symmetric 
vectors while {s, si, • • •, SK] is a set of samples drawn from a 
non-negative, possibly correlated, wide-sense stationary ran- 
dom process with finite mean square value that, without loss 
of generality, we suppose in the sequel to be unitary. 

We cluster the K secondary data into groups of cells sharing 
the same value of the texture: each group consists of Ks cells, 
i.e., 

sk = •'r^L-i >        k — l,...,K, 

where K = Ks x KG, with KG denoting, in turn, the number 
of groups, and \x] is the minimum integer greater than or 
equal to x. Finally, we assume that the power spectral density 
of the baseband equivalent of the clutter is symmetric about 
/ = 0: it implies that M = E[rkr%] = 2M(11) = 2E[r[1)r{

k
1)T] 

with H denoting transpose conjugate, T transpose, and r^ 
the real part of the vector Tk, k = 1,... ,K. 

Notation. Let Af = {1,..., N}, V C Af with cardinality P 
and the complement of V with respect to Af be denoted as 
V. For any iV-dimensional vector x, x-p is obtained from x by 
striking out the ith component Vi G V. For any N x N matrix 
A, A-pv is obtained from A by striking out the ith row and 
the ith column Vi G V. 

We propose the following estimate of the structure E(n) of 
M(11>: 

^(ii) 1      KG V^*G Ks 
A = (fcc-l)Ks+l ** 

KG 

1(2 ■ KS _(2 
k = (kG-l)Ks+l lk 

(1) 

where | • | denotes the determinant of a square matrix and r£2) 

is the imaginary part of the vector r*;, k = 1,... , K. 
It can be shown that S(n) is well-defined when P < Ks. 

Assume also K > N. Then, it can be shown that the NMF 
with S(11), given by (1), in place of M is CFAR with respect 
to M. Obviously, such detector is also CFAR with respect to 
the statistics of the texture. Finally, not only it tends to the 
NMF as K diverges, but its loss is acceptable also for finite 
K, thus showing its effectiveness in real environments. 
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Abstract — A. two-step sub-optimal algorithm for 

decoding binary product codes is discussed. This al- 
gorithm realizes at least half the minimum Euclidean 
distance of the code. The fundamental geometric 
properties associated with the algorithm are inves- 
tigated, and bounds on the number of nearest neigh- 
bors are derived. This investigation also results with 
an improved algorithm which achieves the minimum 
effective error coefficient, the number of minimum- 
weight codewords in the product code. 

I. INTRODUCTION 

A product code Cp = Cr x Cc contains all the matrices whose 
columns are codewords in the code Cc and the rows are code- 
words in CT ■ The parameters of the product code are given by 
[np,kp,dp] = [nTnc, kTkc, drdc], where n denotes the length, 
k, the dimension, and d, the minimum Hamming distance of 
the corresponding code. 

Product (iterated) codes were introduced by Elias in 1954 
[3], and studied by many researchers until the late 70's. Sev- 
eral hard decision decoding techniques were proposed at that 
time for decoding a product code up to its guaranteed error- 
correction capability. Reddy and Robinson [6] gave a gen- 
eral decoder for any product code, with good correction ca- 
pabilities for simultaneous burst and random errors. Yu and 
Costello [8] proposed a generalized minimum distance decoder 
for Q-ary output channels. In 1993 product codes gained re- 
newed attention with the soft decision decoder of Lodge et al. 
[5], and the birth of turbo (iterative) decoding. While Lodge 
et al. [5] used the a posteriori probability as the reliability- 
measure for each bit, others, e.g. [7], employed suboptimal 
reliability measures that are less computationally involved. 

II. DECODING 

The proposed decoding technique [2] is not an iterative one, 
nor does it require explicit reliability-measure calculations for 
each bit. Rather, it is a suboptimal soft decision decoding 
scheme, more in the line of the aforementioned work [6], [8], 
operating as follows. Each of the component codes is soft- 
decision decoded separately, rows (columns) and then columns 
(rows), while passing a simple, hard-limited, reliability mea- 
sure from the rows (columns) to the columns (rows). The 
result of the columns (rows) decoders is taken as the output. 
Generally speaking, while turbo decoding reduces the proba- 
bility of bit error, the proposed technique is aimed at reducing 
the probability of codeword error. 

III. ANALYSIS AND CONCLUSIONS 

We prove [2] that if the decoders of the component codes 
realize half the minimum Euclidean distance of these codes, 

then the complete decoding scheme realizes half the minimum 
Euclidean distance of the product code. Such a scheme is 
known as bounded distance (BD) decoding. An analysis of 
the decision region associated with this decoding scheme is 
given, revealing the following phenomena: i) regardless of the 
specific choice of a BD decoder used for decoding the com- 
ponent codes, the complete decoding scheme is always better 
than strictly BD decoding; ii) The algorithm contains pseudo 
nearest neighbors [1]. Based on the above analysis, an upper 
bound on the number of conventional nearest neighbors, i.e. 
the effective error coefficient, is derived. Furthermore, it is 
shown that the minimum effective error coefficient is achiev- 
able, as in the ease of optimal decoding, by using a slightly 
modified decoding scheme. 

The proposed decoding algorithms may be attractive for 
practical implementation due to their low decoding complex- 
ities. Decoding involves an order of nT + nc applications of a 
component code decoder. For comparison, a single iteration of 
a block turbo-decoding scheme requires an order of 0(nrnc) 
such applications. Also, due to their geometrical properties, 
the algorithms can be employed as stopping-criteria (within 
the framework of block turbo-decoding) for terminating the 
iterative process. Since these algorithms aim at reducing the 
probability of word error, they are good candidates for the 
decoding of coset product codes [4]. 
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Abstract — Product codes have been an effective 
coding method for communication channels where 
both random and burst error occur. In this paper, 
we present a new approach to the structure and Max- 
imum Likelihood (ML) decoding of product codes us- 
ing Tanner graphs. For product codes having a sub- 
code which is a product of simple parity codes and 
repetition codes, we show how to obtain a sub-code 
with an acyclic Tanner graph and the largest possi- 
ble distance. We show that in all cases of interest, 
a n-dimensional product code has such a structure. 
Wagner rule decoding is used on this sub-code and its 
cosets to obtain an effective and efficient maximum- 
likelihood decoding of the given product code. 

I. INTRODUCTION 

The product codes first proposed by Elias in the 1950's 
are multi-dimensional codes constructed by combining sim- 
pler component codes. Experience has shown that product 
codes generally have good random-error-correction and burst- 
error-correction capabilities. In [1], Tanner extended ear- 
lier works by Gallager on low-density parity-check codes to 
product codes using bipartite graphs, since known as Tanner 
graphs. It is well known that using this approach one can con- 
struct convergent decoding algorithms for codes with acyclic 
graphs. The question of which codes have acyclic Tanner 
graphs was answered categorically in [2]. In [3], it was shown 
that decomposition of a code into an acyclic sub-code and 
its cosets can provide an efficient method for the maximum- 
likelihood decoding of some of the best known linear block 
codes. In the present work, we concentrate on product codes 
for which the row and column codes are based on well known 
linear block codes such as Golay code and Reed-Muller codes. 
This assumption is justified by the fact that the minimum 
distance and dimension of a given product code is directly re- 
lated to the distance and dimension of its component codes. 
For this reason, we are interested in product codes using good 
binary block codes as components. Extending the work in [3], 
we will provide a systematic way of obtaining an optimal sub- 
code with an acyclic, uniform Tanner graph with the largest 
possible distance such that the number of the corresponding 
cosets are minimized and decoding complexity is lowered. 

II. MAIN 

It is well known that the generator matrix for product 
of codes A and B is given by the Kronecker product of 
their generators, that is GA ® GB-   It is also known that if 

two matrices G and G' differ by a permutation of row and 
columns, then their corresponding Tanner graphs are isomor- 
phic. Allowing for row and column permutations, we will show 
that if C' and M' be sub-codes of codes C and M respec- 
tively, and the decomposition of corresponding generators be 
Gc = Gci + Gc/c' and GM = GM> + GM/Mi, then the prod- 
uct of C and M is equal to the union of the sub-code C" ® Af' 
and its cosets which can be easily calculated from appropriate 
products of C", M', C/C', and M/M'. 

Consider an n-dimensional product of good codes. It was 
shown in [3] that each of these codes has an acyclic sub-code 
with a generator of the form 7lm ® £„ where Um, £„ are 
matrix generators of some repetition codes and simple-parity 
check codes of length m and n, respectively. Hence, an n- 
dimensional product code will have a sub-code of the form, 

(Kit ® tix)® (nja ® eh)® • • • {njn ® ein). 

Regrouping, and using the facts the Kronecker product is as- 
sociative, and that the Kronecker product of repetition codes 
is simply another repetition code, this can be rewritten as 

TlL®({{£il ®£ia)®£ia)'--£in),      forsomeft/,. 

We will show using the results of [2] that the product code 
given by the above equation always has cycles if it includes 
more than one parity check code. The aim is to show how to 
obtain an acyclic sub-code of the form % ® £ for these cases. 
We will first show how to find an optimal acyclic sub-code for 
the case of £il ® 5;2. We use this result to find an optimal 
acyclic sub-code for £i1 ® £,-2 ® £,-, in a recursive manner, since 
this product can be considered as (£,-j ® £,-3) ® £,-, and it has a 
sub-code of the form 71® (£® £,-,). Using this approach n — 1 
times, it follows that (£,-, ® £;2 ® • • • £,-„), and consequently, the 
n-dimensional product code will have an acyclic sub-code of 
the form "R. ® £ of appropriate sizes. Finally, following earlier 
work in [3], the simple structure of H ® £ allows it to be easily 
decoded using the Wagner rule in conjunction with the trellis 
representation of the corresponding cosets. 
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Abstract — Many block codes can be represented as 
an intersection of two or more easily decoded codes. 
We present a new decoding algorithm for decoding 
product codes that utilizes this property. It will be 
shown that this algorithm is maximum likelihood de- 
coding. The complexity of the algorithm depends on 
the decoding complexity of the constituent codes and 
the quality of the channel. 

I. SUMMARY 

Let x and y be, respectively, the codeword representing the 
message and the output from the channel. Also, let c be 
the codeword in C nearest to y, i.e., the maximum likelihood 
estimation. Let C[ and C2 be, respectively, a (ni,fci,di) and 
a (n2,fc2,d2) codes over F2. Let the code C\ with parameters 

(n2ni,n2ki,di) be defined as Ci = {u\u G ¥2
l2Xn\ui,. G 

C[,i G {1,.. . ,"2}}, where u;,. is the i:th row in the n2 x m 
matrix u. In other words, C\ is the n2 fold direct sum, see 
[1, page 76] over C[. In a similar way, we can obtain the 
code C-2 with parameters (n2ni, fc2rn, d2) by the n\ fold direct 
sum over the code C2, column-wise. Let C be the product 
code obtained from C[ and C'2, see [1, page 568]. Clearly the 
following is valid C = Cif]C2. For each word u in F£2Xni, 
there might be more than one word at the same Hamming 
distance from u. Therefore, we use a metric function D(-, •) 
that solves such ties. In the case of soft decoding with high 
precision, the squared Euclidean distance can be used since 
the probability of ties would approach zero. Let S be a list of 
all the codewords in Ci with Hamming distances from y less 
than or equal to the covering radius of C listed in an ascending 
order using the distance D(-, •) mentioned above. It is easy to 
see that c will be a member of this list since c is an element in 
C\ too. The list T can also be generated in. a similar manner 
by list decoding on C2. The decoding commences by checking 
the words in S one by one beginning from the first word and 
downward to see if it is also a codeword in C2 ■ The algorithm 
stops when c is reached which is the first word that passes 
the check. An alternative method would be to jump between 
the two lists S and T checking the elements of these lists at 
increasing distance until c is reached in either one of the two 
lists. It is clear from the discussion above that the algorithm 
is maximum likelihood. The bottle-neck part of the algorithm 
is the list decoding of C\ and C2. In the case of product codes, 
however, this problem is reduced to list decoding the rows or 
the columns, assuming that there exists an algorithm for list 
decoding of C[ and C2. A list decoder for C\ can be made by the 
direct sum of members of the list decoding of C[. In a similar 
manner we can obtain the list decoding for C2 by list decoding 

the columns. Instead of generating the elements of the set S, 
the elements of the list decoder for each row are stored with 
their respective distances from their corresponding rows in y 
At iteration / the decoder searches through the rows beginning 
from the first row using L elements only from each row to 
generate the / nearest different combinations of elements and 
discarding the rest until reaching the last row in the received 
matrix and the l:th member of the list <S is thus generated to 
be checked to see if it was the required solution. 

An important note is that a limited number of list ele- 
ments in each row can generate a very large number of the 
elements in the ''St S. This is the main argument for lower 
complexity decoding for such codes. If a large product code is 
implemented on a memoryless channel with transition proba- 
bility slightly greater than di/2m, there will be, in average, 
a list of one solution for decoding each row that contains the 
correct solution, resulting in a very small list S that has to 
be checked. A GMD decoder, see [2], can not decode such 
error patterns correctly. When the transition probability ex- 
ceeds d\/n, however, the size of the list increases exponentially 
which makes the algorithm impractical. On the other hand, 
the minimal trellis complexity, taken as the maximum number 
of states in the trellis, of the same product code is of the or- 
der of 0(2min{fcl'n,~''"1''r2'"2~*;2}), see [3, page 76]. In order to 
evaluate the performance of the algorithm, many simulations 
were performed for different product codes with different rates. 
In all simulations a suboptimal algorithm that utilizes a Chase 
3 decoder, see [4, page 76], was used to generate a list of at 
most two solutions to be used in the decoding for the rows or 
columns. In each iteration the result of the previous iteration 
is list decoded instead of decoding the'original message. This 
is done in order to keep the complexity of the decoder to mini- 
mum comparable to bounded minimum distance decoding. In 
all simulations the new algorithm had a better decoding gain 
than the GMD decoder by circa 2 dB. The performance can 
be further increased with increasing complexity. 
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Abstract — This paper considers single parity check 
(SPC) product codes which are randomly interleaved 
between the encoding of each dimension. Using ran- 
dom interleaving reduces the number of low weight 
codewords and so improves performance. 

I. ENCODING AND DECODING 

The encoding process is very simple, after every parity 
check equation is encoded in a single dimension the data (and 
possibly the parity bits) are interleaved before the next di- 
mension is encoded. The component codes are equal length 
single parity check (SPC) codes and hence the code rate is 
R = K/N where JV = nd, K = (n - l)d, d is the number of di- 
mensions, and n is the length of the component codes. Unlike 
the decoding of a traditional SPC product code, a randomly 
interleaved (PJ) SPC product code must be decoded in the 
reverse order of the encoding process. Natur ally this code is 
very similar to a serially concatenated code with the appropri- 
ate interleaver size. The component decoders are maximum 
a priori (MAP) decoders in the log likelihood domain, hence 
the bit error probability in the component code is minimised. 
Furthermore the extrinsic information and received channel 
values are interleaved/de-interleaved as they are passed be- 
tween the decoders in each dimension. 

II. Low WEIGHT CODEWORDS 

In [1] RI SPC product codes have been analysed in terms of 
partial weight distributions corresponding to the input-output 
weight distributions after the encoding of a single dimension. 
Therefore the expected weight distribution of the overall code 
can be calculated over the ensemble of random interleavers 
by considering each dimension to be independently encoded 
with the input weight equal to the output weight of the pre- 
vious dimension (assuming both the data and parity checks 
are interleaved). The partial input-output weight enumerator 
function (IOWEF) for the code has been calculated by consid- 
ering invariant (under permutation) input patterns of a given 
input weight. The expected weight distribution for three di- 
mensional RI SPC product codes (interleaving both the data 
and parity bits) with n = 8 is given by 

Bo = 1,    B2= 0.3,    Ä, = 21.9,    B6 = 160.4,    B& = 2668.5 

compared to B0 = 1 and B8 = 21952 for a traditional SPC 
product code. This shows a trade-off between the reduced 
number of low weight codewords and the reduction in mini- 
mum distance. However as the number of dimensions increases 
the reduction in the number of low weight codewords more 
than offsets the possible reduction in the minimum distance 
of the code. 
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Figure 1: Performance of RI SPC Product Codes 

III. RESULTS 

Simulation results for two- to five-dimensional RI SPC 
product codes with n = 8 and n = 10 are given in Fig. 1. 
The results are shown as code rate versus Eb/N0 for a prob- 
ability of bit error equal to 10~5. The performance of these 
very simple codes is quite exceptional, especially as the size of 
the component code increases and/or the number of dimen- 
sions increases. Note the four-dimensional (20,19) SPC code 
with rate .8145. Capacity of the binary input AWGN channel 
for this rate occurs at Eb/No = 2.15dB, therefore this code is 
only 0.63dB away from capacity at Pb = 10~5. A disadvantage 
is the exponential increase in the blocklength as the number 
of dimensions (and the size of the component code) increases. 
It should be noted that the "error floor" predicted by the 
analysis typically becomes evident at Pb < 10~5 for four- and 
five-dimensional codes. No attempt was made to optimize the 
interleavers, only randomly generated interleavers were used. 
Better interleaver design should improve the error floor. 

IV. SUMMARY 

Randomly interleaved SPC product codes are extremely 
simple to encode and decode and yet perform surprisingly well 
due to the decrease in the number of low weight codewords. 
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Abstract — We present a new soft decision majority 
decoding algorithm for Reed-Muller codes RM(r,m). 
First, the reliabilities of all received symbols are recal- 
culated into the reliabilities of the parity checks that 
represent each information bit. In turn, information 
bits are obtained by the weighted majority that gives 
more weight to the more reliable parity checks. It 
is proven that for long low-rate codes RM(r,m), our 
soft decision algorithm outperforms its conventional 
hard decision counterpart by 101og10(7r/2) « 2 dB at 
any given output bit error rate e < 1/2. 

I. INTRODUCTION 

Consider general Reed-Muller codes RM(r,m) [3] of length 
n = 2m, dimension k = £<=0 (<"), and code distance d = 
2m~r. The majority algorithm [1] provides bounded distance 
decoding with complexity order of nk or less. Also, this decod- 
ing corrects many error patterns beyond the weight d/2 [2]. 
We consider majority decoding (see also [4]) for RM codes 
used over the channels with white Gaussian noise A/"(0,o-2). 
The two symbols 0 and 1 are transmitted as +1 and — 1. These 
two take arbitrary real values u at the receiver end with prob- 
ability densities g(u - 1) and g(u + 1), where 

g(u) = e' 
2/2T1 

/VZKCT. 

We wish to process further the likelihoods p(0|u) and p(l|u) 
while keeping the complexity 0(nk) of majority schemes. 
More specifically, the following questions arise: 
• Can these likelihoods improve the performance of majority 
decoding ? 
• How much can we reduce the possible S/N ratios? 
• How many "hard decision" errors can we correct? 

II. DECODING ALGORITHM 

The idea of our algorithm is as follows. Each information 
symbol of order r can be found from 2m~r independent parity 
checks defined over disjoint subsets of 2r code symbols. The 
simple majority of these checks is taken in hard-decision de- 
coding. By contrast, in soft-decision decoding we use weighted 
majority. First, we recalculate the initial reliabilities of 2r 

transmitted symbols into the reliability of the corresponding 
parity check. Second, the majority voting scheme accumu- 
lates all 2m_r, parity checks and gives more weight to the more 
reliable ones. 

To estimate performance of a given code RM(r,m), we fix 
an output bit error rate e < 1/2. Then we introduce the e- 
sustainable noise powers o-\(e) and o~l(e). These are the max- 
imum noise powers that support BER e in hard- and soft 
decision decoding, respectively. Similarly, we use the corre- 
sponding e-sustainable transition error probabilities ph and 
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ps. Our main theoretical result is that soft-decision decod- 
ing gains 101oglo(7r/2) « 2.0 dB over conventional majority 
scheme for all long low-rate RM codes at any output error 
rate e. We also keep the former complexity order of 0(nk). 
The results are summarized below. 

Theorem 1 For any output bit error probability e, soft deci- 
sion decoding of long codes RM(r,m) of fixed order r increases 
7r/2 times e-sustainable noise power over hard decision decod- 

ing: 

°ll°i. -» f/2, m -> oo. 

For any output bit error probability e, soft decision decoding 
of long codes RM(r,m) of fixed code rate R G (0,1) increases 
4/n times e-sustainable transition error probability over hard 
decision decoding: 

Pa I Ph. -» 4/7T, m -> oo. 

We also find the Euclidean weights of the error patterns cor- 
rectable by our algorithm. The statement below shows that 
this algorithm exceeds about 2r/2 times the capacity y/d of 
bounded distance decoding. 

Theorem 2 For m —* oo, soft decision majority decoding of 
codes RM(r,m) corrects virtually all error patterns of Eu- 
clidean weight: 

P < y/n{d/2m)1/'1      ,    if r = const, 

p < i/n/(mIn 2), if 0 < R < 1. 

From the practical standpoint, we obtain tight numerical 
bounds on the output bit error rate for any code RM(r,m). 
When these bounds were compared with simulation results, 
both turned out to be almost identical. 
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Abstract — The A* algorithm is applied to soft- 
decision maximum-likelihood decoding (MLD) of lin- 
ear block codes when intersymbol interference (ISI) 
is present. Results for a small set of channels and 
codes show that the chosen column permutation of 
the generator matrix for the code affects not only the 
decoding complexity, but also the error performance. 

I. INTRODUCTION 

Consider a system where codewords from a block code are 
transmitted using linear modulation on a band-limited chan- 
nel, such that ISI is present at the channel output, where white 
Gaussian noise is added. The decoding approach taken here is 
to treat the encoder and the discrete-time whitened matched 
filter (WMF) receiver [1] as a joint entity. Using finite-state 
machine (FSM) descriptions of the encoder and the channel, 
the state vector for a joint FSM describing the whole system is 
achieved by concatenating the state vectors of the component 
state machines [2]. MLD can then be stated as determining 
the most likely sequence of state transitions of the joint FSM, 
i.e., the optimal path through the joint trellis, given the re- 
ceived signal. A* is a heuristic graph algorithm [3] that can 
be used to perform that search. 

II. MAXIMUM-LIKELIHOOD DECODING 

Let dj = (ojjv,..- ,a(j+i)jv_i) be a codeword e, from a 
binary linear block code C and let a.j = (ct,;v,... ,Q(J+i)jv-i) 
be the sequence of channel symbols corresponding to a;-. The 
outputs of the WMF are then sn = Ylk=o /*Qn-* [1]. For 
simplicity, assume that a, = 0 for j'• ^ 0. 

Then «o = (so, • • • j sjv+L-2) are the only filtered symbols 
affected by ao, and therefore ao, ao and «o are mapped one- 
to-one. At the WMF output, zero-mean white Gaussian noise 
samples r)n with variance a2 = N0 are added, yielding the 
received sequence z0 = (z0,... , z/v+2,-2) = «0 + Vo- 

The task of the joint ML decoder is to determine the code- 
word a0 that maximizes the likelihood function Pz0(zo|a0). 
Due to WMF properties, this is equivalent to determining the 
codeword that minimizes the cost, the squared Euclidean dis- 
tance between z0 and s0, i.e. a0 = argmina/  c ]\z0 - «oil2- 

A coarse approximation of the word error probability for 

high SNRs is given by P„ * Q(y/dj~*eä) [i], where d2
min 

is the minimum distance between any two codewords at the 
filter output, ignoring the multiplicity of the error event. 

The state of the ISI FSM is defined by the (L - 1) most re- 
cently transmitted symbols and the state of the encoder FSM 
at time i is defined by the p{ < pmax < min(Ä", N - K) ac- 
tive information bits. Concatenating these state definitions, a 
(pmax + L — l)-bit joint state vector, <Ti, is yielded. 

A* needs an evaluation function, /(o\) = <?(<Xj) + h(o-i) 
to be defined for each trellis state, <r\, associating with it an 
underestimate of the total cost of any path passing through it. 
g(<Ti) is defined as the actual cost of the path taken from the 

initial node, er0, to reach <Xj. The definition of /I(ON) proposed 
here is the minimum cost of any length-(7V -f L — 1 - i) path 
from <Tj, not necessarily consistent with the code. This cost is 
easily determined with the Viterbi algorithm (VA). 

III. RESULTS AND CONCLUSIONS 

For simulations and <fmin-calculations, real-valued (L = 2)- 
channels characterized by /1//0 have been considered. The 
codes studied are different-complexity permutations of the ex- 
tended Golay (24,12) code and various BCH and RM codes. 

For the selected codes and channels, the lower complexity 
permutations have worse error performance than their higher- 
complexity counterparts in terms of d^in (see Fig. 1) though 
the decoding complexity in terms of expanded nodes and ex- 
amined edges is lower. Simulation results support this for 
all considered different permutations of the same code. For 
the P .„-simulation of the Golay codes on the /o = /1 chan- 
nel, the gain of the higher complexity permutation over the 
lower complexity permutation is more than 3 dB £ib/No at 
P„, « 7 x 1(T4. 

For all considered codes, the number of expanded nodes 
and considered edges approach constant values for very high 
and low SNRs. For high SNRs, the distribution of the num- 
ber of expanded nodes becomes narrow, and an average of 
(N + L — 1) nodes are expanded. Detecting and ignoring re- 
peatedly visited nodes yields only a negligible improvement 
on the decoding complexity. 

Min Ool«y(24,12) 
-B- RM(8.4) 
-0- Exl BCH(B,4) 
-*- HM(16,11) 
-t- Exl. BCH(16,11) 
-9- BCH(7.4) 
-9- BCHJ15.11) 
-*- BCH(15,7) 

BCH(15,5) 
-*- (4,3) Parity Check 
-0- (2,1) Repetition 

0 

Fig. 1: d2. min as function of f\ /fo 
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Abstract — We propose a new soft decoding algo- 
rithm for long general binary linear codes, based on 
information set decoding. Its specificity is that it is 
derived from the fastest hard decoding algorithm for 
long codes, which explores successively information 
sets close to each other, and that the search is guided 
by the reliability values thanks to a technique inspired 
by stochastic resonance. It can reach for instance a 
bit error rate of 10-6 at 3 dB in a reasonable time. 

I. INTRODUCTION 

General (random) binary linear codes provide correcting 
capacity depending on their length and rate. For a given chan- 
nel and at a given rate (lower than the channel capacity), the 
decoding error probability decreases exponentially with the 
length of the code (cf. [1]). Unfortunately, the computation 
cost of complete decoding is also exponential in this length. 

The decoding algorithms generally explore an exponential 
set (the set of codewords, of error patterns, of information sets 
of the code...), and, after an adjustable computational effort, 
return the best element they have found. When the compu- 
tational effort tends to infinity, the decoding error probability 
tends to that of complete decoding. Beyond a given compu- 
tational effort, they hence perform quasi-complete decoding. 

In this context, soft decoding has two different advantages 
over hard decoding. The first one is provided by the greater 
accuracy of the distance between a received word and the pos- 
sible codewords, which allows, for the same signal to noise ra- 
tio (SNR), to put up better performances in terms of residual 
error rate, or to decrease (by approximately 2 dB) the required 
SNR to achieve a given residual error rate. 

The second one comes from the fact that the reliability in- 
formations may offer a guideline to the algorithms in their 
exploration of the set, and may consequently reduce impor- 
tantly the search space required to achieve a residual error 
rate close to that of complete decoding. 

This work is an adaptation to the soft decoding of what 
is supposed to be the fastest general quasi-complete hard de- 
coding algorithm for long codes, in a way that intends to turn 
these two advantages to the best possible account. 

II. How TO GUIDE INFORMATION SET DECODING 

The above-mentioned hard decoding algorithm is a particu- 
lar information set decoding algorithm designed by Canteaut, 
Chabanne and Chabaud in 94, in order to improve the at- 
tacks on cryptosystems based on error-correcting codes, like 
McEliece's cryptosystem (cf. [2]). In short, it searches for 
an information set with as few errors as possible, and when 

^his work was supported by a grant from the D.G.A. 

changing information set, an only information position is re- 
jected out of it whereas a new one is admitted in it. 

Since we want the information set to contain few errors, 
we can start the search (like in [3], [4]) with the most reliable 
basis, the set of the k most reliable independant positions. 

To continue the search, a choice has to be made: which 
information position to reject and which new one to admit in 
the information set ? Determinist methods based on the reli- 
ability lead to a periodic exploration of the same information 
sets. Preventing this implies an additive cost in space and 
time that can be dramatically important for long codes. 

Eventually, the chosen method is based on a controlled ran- 
dom: All the positions in (out of) the information set can be 
chosen to be rejected (admitted) with a probability that is a 
decreasing (increasing) function of their reliability. 

By looking for the optimal probability distributions, we ob- 
serve stochastic resonance phenomena: For a given set of re- 
liability measures, certain probability distributions will make 
our algorithm much faster. 

The concept of stochastic resonance has been introduced 
in 1981 (cf. [5]) in the study of the periodic variations of 
glacier. It is mentioned when a processing can turn a noise to 
advantage, and when the moments of this noise are adjusted 
to optimize this advantage. Such phenomenas have been ob- 
served in various areas (cf [6]), a main application being the 
improvement of lasers. 

III. RESULTS 

The implemented version of the algorithm has been evalu- 
ated for a gaussian channel with antipodal modulation. For 
instance it performed quasi-complete decoding of a code of 
length 200 and dimension 100, reaching a bit error rate of 
10~6 at 3 dB in a reasonable time. 
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Abstract - In this paper we consider the special case of the 
underdetermined LS problem when the difference between the 
number of unknowns and the number of equations equals one. We 
propose a new method to improve the minimum norm solution 
based on using the estimate of the norm of the exact solution. The 
method is applied to the problem of syndrome based error control 
image coding over real fields. A series of computer simulations 
show the significant gain in output signal to noise ratio at high 
bit error rate in the channel. 

I. A NORM ESTIMATE BASED APPROACH TO IMPROVING 
THE MINIMUM NORM SOLUTION 

Consider the special case of the rank N-l underdetermined LS 
system. It may be written in the following form 

YN-\  =A(N-1)XN   ^N 0) 
whereYw-; is an N-l dimensional vector of observations and A(N- 

I)XN is an (N-l)xN coefficient matrix. 
We can write the expression for the squared norm of the vector of 
N unknowns X^ in terms of the given quantities of the rank N-l 
system and the N-th unknown \N as 

||X# ||  = axw + bxN + c (2) 

where the coefficients a, b, and c are defined as follows 

a ~ r A(nr-i)x(w-i) A 

Y*. 

N,N-] J r 

It 
A(JV-l)x(W-l) AW,W-1 

l)x(W-l) 

(W-l)x(AM) A.N,N-\ 

A(AT_l)x(A/_l) Aw,W_l 

fe 
-1 

(W-l)x(N-!) 

(3) 

J;(4) Yw_,|;(4) 

c= A, *AMJAC l(Af-l)x(W-l)  "Af-lJ A(/V-l)x(AT-l) YW-1 (5) 

By solving equation (11) we can write the expression for the 
unknown Xjv. in terms of the norm of the vector of N unknowns Xjv 
and the coefficients a, b, and c as 

■b±^b2-Aa{c-\XNf) 

2a (6) 

Equation (15) gives the relation between one unknown and the 
norm of the exact solution to the full rank LS system. 

Norm estimation can be considered for certain conditions such as 
appearing in applications in image channel coding over the real 
fields [2]. In fact we estimate a norm ratio (NR) of exact norm Ni 
and minimum norm No i.e. Ni/No. 

H. REAL NUMBER BCH (4,2) PRODUCT CODE 

In [3], real-number codes based on the discrete Fourier transform 
(DFT) are defined. It is important for decoding that the last c 
elements of the error vector e present the syndrome vector s [4], 
Based on s, error signals can be estimated as a solution to the 
standard least squares problem: 

e=A~' s (7) 

where A is a c x c data matrix. 

As it is described in [2] for a (4,2) BCH code, almost all single 

errors under the background noise can be detected and corrected 
based on a syndrome s=(si,S2). To deal with multiple errors, an 
approach based on norm estimation discussed in a preceding 
section has been considered. For the considered case of real 
number (4,2) BCH code it can be found for noise-free case the 
norm ratio (NR) is 

N a0 = NRQ = —L = VL333 = 1.1547 
Wo 

so that this value can be also used as optimal one in noisy cases, 
too. For noisy cases the ratio a is random variable. In addition, a 
correlation between a minimum norm No and norm ratio NRo has 
been considered and negative correlation was identified so that an 
adaptive algorithm for a can be performed. 

m. EXPERIMENTAL RESULTS 

An autoregressive first order process AR(1) driven by a Gaussian 
noise has been quantized with JCS {0,1 ,...,255} which fits data such 
as images and videos quite well. Pair of symbols are coded with 
(4,2) BCH code [2] and transmitted through an AWGN channel. 
Based on Eq. (7) all noise-free and single-error cases are decoded 
based on syndrome values si and S2. For all multiple error cases, a 
MNS   solution   is   calculated   and   an    SNR0    defined   by 

SNRQ =101og[x/(x-x0)],[dB] where x=(xi,x2) is a data vector 
and Xo=(xio,X2o) is an MNS estimate. 

Simulations performed in Matlab show a significant SNR gain for 
highly correlated sources. For a constant norm ratio a = 1.1547 
SNR gain was about 2.3dB. For an adaptive a an additional gain 
of about 1.5dB is obtained. It yields in total a gain of about 3.8dB. 

IV. CONCLUSIONS 

In this paper we propose a new method to improve the minimum 
norm solution to the special case of the underdetermined LS 
problem when the difference between the number of unknowns 
and the number of equations equals one. The approach is based on 
using the estimate of the norm of the exact solution to the full 
rank system. The method is applied to the problem of error control 
over real fields as an additional algorithm to the syndrome based 
error correction in multiple-error cases. Experimental results have 
shown significant gain in SNR. 
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Abstract — A new class of convolutional codes, 
namely generalized woven codes with outer 
warp is presented. The codes are based on 
nested classes of inner single convolutional code 
and many outer convolutional codes with differ- 
ent redundancies. We give a lower bound on 
free distance for these codes. 

I. INTRODUCTION 

In 1997, Host, Johannesson and Zyablov presented wo- 
ven convolutional codes [1], Here we extend these ideas 
and construct generalized woven convolutional codes 
with outer warp (GWOW). We use nested system of bi- 
nary convolutional codes at the inner stage and binary 
convolutional codes with different rates as outer codes. 
The nested system of inner codes are constructed on 
the basis of partitioning of convolutional codes into 
subcodes. The partitioning principles for convolutional 
codes has been described in [2, 3, 4] and can be found 
in the full paper. Furthermore, we extend the active 
distance ideas proposed in [5] to the case of nested sub- 
codes. Based on these results we determine the overall 
code rate and give the lower bound on the free distance 
for GWOW codes. 

II. GENERALIZED WOVEN CODES 

Figure 1 shows the encoder of the proposed general- 
ized woven codes with outer warp.  As the inner code 

First outer stage 

41' 

•^.fii 

zw 

fcth outer stage 

-    Ak> 

*   A W 

#) 

Inner 

convolutional 

encoder 

Figure 1: Encoding scheme of GWOW codes 

a fcth order partitioned convolutional code of rate RB 

is used. We have fcth outer stages, whereby each outer 
stage comprises of l^, j = l,2,...,fc interleaved par- 

allel convolutional codes Af , i = 1,2, ...lj[. In each 

stage all outer codes have the same rate B.JI and they 
determine the sequences z^ which are encoded by the 
inner partitioned convolutional code. The overall code 
Ta.teB.Gwow = B.B(£k

j=} R^/k). 
The partitioning method introduces scrambler matrices 
to construct suitable equivalent encoding matrices for 
fcth order partitioning. Therewith we obtain increasing 
free distances dg , j = 1,2,..., fc in the subcodes. Fur- 
thermore, we also investigate the active row distances 
of subcodes. In general, active row distances of the 
jth subcode B"y can be lower bounded by aT^(l) > 

rnax(aW>Z + /37'ü>, d^) where a™ > 0, aSi\ßr^ £ R, 
I = 0,1,2,  Since ar^'(l) is in general no increasing 
function we define o*""'(Z) > minc>j(aT")(Z)) which is 
an increasing function. 

Theorem: Let Z<j° > lrU) where lr(j) is the smallest I 

for which arU)(l) > 2d(^ holds. Then the free distance 
of GWOW code is lower bounded by 

d(GWOW) > {d^d%\...,d^df,...,d^d^). 

In the full paper with the help of examples we show 
that GWOW codes compared to the ordinary woven 
convolutional codes achieve larger free distances and/or 
higher code rates. 
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Abstract — Woven codes with outer binary block 
codes and additional permutation are presented. 
This enables the construction of a new class of woven 
block codes, where the minimum distance is about 
twice the product of the minimum distances of the 
component codes. 

I. INTRODUCTION 

Woven convolutional codes were introduced by Host et al. 
in [1]. In this paper we present a new encoder construction 
of woven codes namely, woven codes with outer binary block 
codes and inner recursive convolutional encoders. We show 
that by employing designed permutations we can improve 
the distance properties of woven block codes. Moreover, in 
the full paper first simulation results for woven block codes 
are presented, where we employ outer single-parity-check 
codes. 

II. WOVEN ENCODER 

«      IM 0 G" 

IM®G° 

— » inner encoder 

Figure 1: Woven encoder with permutation. 

We use an encoder construction with 1° rows of outer en- 
coders (see Figure 1), where we apply an unique permu- 
tation in each row. Each information sequence uf is subdi- 
vided into M short blocks of length k°. Each short block 
is encoded with the same generator matrix G°. We call 
a codeword encoded by G° basic codeword. The sequence 
vf consists of M basic codewords, each of length n°, i.e. 
N = Mn° code bits. We obtain the output code sequence 
v° of the Zth row after permuting the code bits of vf. Using 
an N x N matrix P; to describe the row-wise permutations 
we may express the encoding of the Ith output sequence as 
vf = uf (IM ® G°) • P(, where IM is an M x M identity ma- 
trix and ® denotes the Kronecker product. A permutation 
matrix Pf is a non-singular matrix with a single one in each 
row and each column, all other elements are zero. In the fol- 
lowing we describe a permutation as a function ir(-), where 
7r;(i) denotes the position of the single one in the ith column 
of the permutation matrix Pj. 

III. PERMUTATION DESIGN 

Let d° and dx
s denote the minimum distance and the free 

distance of the outer and inner codes, respectively. Let j'^in 

denote the minimum j for which j^in = min,{j | äb''(j) > 
2dy} holds, where ä6,'(j) denotes the lower bound on the ac- 
tive burst distance of the inner encoder [2]. If we do not 
restrict the l0 permutations 7T|() we obtain the following re- 
sult. 

Theorem 1. The minimum distance of the woven code with 
1° > b' jmin outer block codes satisfies the following inequal- 
ity: 

<T > d°d). (1) 

In the following we consider designed permutations. Let 
p = N+l be prime. We perform all multiplications in GF(p). 
For each Zth row we use its own unique permutation ni(i) = 
i-ui, i e {1,... ,N}, where/ G {1,... ,1°}. Each m is a fixed 
element of GF(p) which satisfies the following conditions: 

Ul      > 

U{      < 

\SlUl -Ö2Uj\ 

Theorem 2. The minimum distance of the woven code with 
1° > b'j'min outer block codes (each encoded according to for- 
mulas (2) - (5)) satisfies: 

> 2, (2) 
N 

(3) 
n° - l' 

> n°, (4) 
> 3, V <5i,<52 e {-n°+ 1,... ,-1,1,. .. ,n° -1} 

and for any pair I j± j; I, j 6 {1,.. .'"}• (5) 

dw > (2d° - l)d). (6) 

IV. EXAMPLE 

We construct a woven encoder with row-wise permuta- 
tion, where we use G'(D) = (1, t^+° 2) as inner generator 
matrix. We employ 1° = 12 rows of single parity check codes 

with G° = ( p    J    M .  Each row consists of M = 416 

basic codewords. For the permutations we use 

ui € {7,10,17,23,26,29,37,40,43,49,55,61} 

which satisfy conditions (2) - (5). The resulting woven code 
has rate R = 1/3 and dimension K = 9984. With the mini- 
mum distances d° = 2 and d) — 5 we obtain dw > 15. 
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Abstract — A new family of binary convolutional 
codes is introduced: the maximum slope (MS) code 
family. MS codes are defined such, that there ex- 
ist no other rate R — b/c binary convolutional code 
with the same free distance df and overall constraint 
length v, whose lower bounds on the active distance 
family exhibit a larger slope. Tables for the rate 
R = 1/2 maximum slope code family with memory 
m — 1,2,... , 5 are given. Furthermore, tables for new 
rate R = (c - l)/c, c = 2,3,... , 5, punctured convolu- 
tional codes with optimum free distance codes and 
MS mother codes are given. 
Simulation results for woven convolutional codes 
with MS component codes are presented. It is shown, 
that the component code choice makes a tradeoff be- 
tween d/ and a. 

I. INTRODUCTION 

The active distance family was recently introduced in [1]. It 
is a new type of distance measure on binary convolutional 
codes. For example the active burst distance a) is defined 
as the minimal Hamming weight among all c-tuple code 
sequences of length j that start and terminate in the all- 
zero state and do not have consecutive all-zero encoder state 
transitions associated with all-zero input. The active burst 
distance determines the error correcting capability of the 
code. All other active distances are defined in the same man- 
ner, but for different sets of start and terminal states. In [2] 
it is proven that asymptotically in j the minimum weight 
code sequence follows a cycle in the encoder state diagram. 
Hence, the minimum average weight growth is given by the 
cycle with smallest average weight and the active distances 
are lower bounded by linear increasing functions with slope 
a. Upper and lower bounds on a were derived in [3] and [4]. 

In [5, 6] encoding properties and decoding aspects of wo- 
ven convolutional codes are discussed. The free distance and 
the slope of the component codes used in this construction 
essentially describe the woven convolutional code active dis- 
tances. Furthermore, it is shown that the bit error rate per- 
formance of woven convolutional codes depend strongly on 
these parameters. 

II. MAXIMUM SLOPE CODES 

The computation of the active distances is realized by using 
transfer function methods based on the encoder state tran- 
sition matrix. An effective and efficient method to compute 
a for small overall constraint lengths is presented. Some 
rate Ä = 1/2 MS codes with memory m = 2,... ,5 are given 
in the table below. 
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m df a G(D) 

2 4 2/3 (7 6) 
5 1/2 (7 5) 

3 5 4/7 (15 14) 
6 1/2 (15 17) 

4 7 3/8 (31 35) 

5 7 4/9 (70 65) 
8 2/5 (76 65) 

III. SIMULATION RESULTS 
The following figure depicts simulation results for the R = 
1/4 terminated woven convolutional codes (l0,1). On the left 
side no permutation was performed, on the right side row 
wise permutation was applied. 

R=1/4, k=1000. no perm. R=1/4, k=1000, rw. perm. 

_B_ (17.15). lo=17.d,,36 

0    (15,14). lo= 12. d^-25 

Eb/No [dB] 

The bit error performance of serial concatenated Turbo 
codes show a similar behavior. Hence, the slope of the com- 
ponent codes is an important design parameter for serial 
concatenated codes with additional interleaving. 
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Abstract — An iterative decoding scheme for woven 
convolutional codes is presented. It is called pipeline 
decoding and operates in a window sliding over the 
received sequence. This exploits the nature of convo- 
lutional codes as sequences and suits the concept of 
convolutional encoding and decoding as a continuous 
process. The pipeline decoder is analyzed in terms of 
decoding delay and decoding complexity. 

Additional interleaving for woven convolutional 
constructions is introduced by employing a convolu- 
tional scrambler. It is shown that some types of inter- 
leaving preserve the lower bound on the free distance 
of the original woven construction. 

Simulation results for woven convolutional codes 
are presented. 

I. INTRODUCTION 

In [1, 2] three related woven constructions were introduced, 
viz., 

• woven convolutional codes with outer warp (Z0,1), 

• woven convolutional codes with inner warp (1, /;), 

• the twill (lo,h), 

where the (l0,li) denotes the number of encoders in the 
outer and inner warps, respectively. The encoder for a wo- 
ven convolutional code is represented by a serial concatena- 
tion of two warps both consisting of a set of parallel convo- 
lutional encoders, see Fig. 1. If l0 and U are relatively prime 
and large enough, the free distance of the woven convolu- 
tional code satisfies 

ITU -^    JO ll 3free _ afreeafree (1) 

where dfree and d'hee denote the free distances of the outer 
and inner component code, respectively. 

"l E" '"i 

u'i «s E" 

u'{ vl E" 

w' 

«1 E' '»l 

u\ v'2 
E? 

u\ v'u E{ 

Pig. 1: Encoder for the twill. 

II. ITERATIVE DECODING 

In contrast to the well known iterative decoding scheme of 
serially concatenated truncated convolutional codes [3, 4], 
the presented decoding scheme, called pipeline decoding, op- 
erates with a sliding window technique over the received se- 
quence. For the symbol-by-symbol a posteriori decoding of 
the inner and outer component codes a sliding window ver- 
sion of the BCJR algorithm [5] is employed. The window is 
separated into one decision window of size Wd and one delay 
window of size wb. Based on the sizes of these windows we 
analyze the decoding delay and the decoding complexity of 
the W-BC JR, as well as that of the pipeline decoder. Simu- 
lation results for the pipeline decoder are presented. 

III. ADDITIONAL INTERLEAVING 
Additional interleaving can significantly improve the bit er- 
ror performance at low signal to noise ratios. To preserve 
the convolutional code structure of the overall code, we use 
convolutional scramblers for interleaving. 

It is shown, that the woven construction can apply ad- 
ditional random interleaving without violating the lower 
bound on the free distance of the original construction (1). 
Furthermore, additional interleaving can be applied to re- 
duce the number of encoders, l0 and U, while the lower 
bound (1) still holds. 

IV. SIMULATION RESULTS 
Simulation results show that terminated woven convolu- 
tional codes are attractive alternatives to both parallel 
and serial concatenation of convolutional codes, e.g., Turbo 
codes. 
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Abstract — The problem of predicting the next out- 

come of an individual binary sequence, based on past 
observations which are corrupted by arbitrarily vary- 
ing memoryless additive noise, is considered. The goal 
of the predictor is to perform, for each individual se- 
quence, "almost" as well as the best in a set of experts, 
where performance is evaluated using a general loss 
function. This setting is a generalization of the o- 
riginal problem of universal prediction of individual 
sequences relative to a set of experts (cf., e.g., [2] and 
the many references therein). 

I. INTRODUCTION 

The noise model considered in this work is that where the ob- 
servation available to the predictor to make its prediction for 
time t is the vector (j/i,..., j/t-i), where yi = Xi + rit x, is 
the clean bit at time t, and r = {rt, t > 1} is some arbitrarily 
varying memoryless noise process. The additive noise model 
considered in this work differs from the binary-valued noise 
model considered in [1], [3]-[5] (where the observed bit is the 
bitwise XOR of the clean bit and the noise bit) and joins it 
to give a more complete picture for the noisy setting [6]. It 
is shown that even in this noisy environment, when the infor- 
mation available regarding the past sequence is incomplete, a 
predictor can be guaranteed to successfully compete with a 
whole set of prediction schemes in considerably strong sens- 
es. Furthermore, these performance guarantees are valid for 
a very large family of noise processes, though the predictor 
itself does not depend on the statistical characterization of 
the particular active noise process within this class. In other 
words, it is twofold universal where, in this context, twofold 
universality stands for universality in the usual sense (w.r.t. 
the experts in the class and all possible sequences) and w.r.t. 
a family of noise distributions. 

II. STATEMENT OF THE PROBLEM AND MAIN RESULTS 

Let L : {0,1} x [0,1] ->• [0, oo] be a fixed loss function. A 
predictor (or an expert) F = {Ft}t>i is a sequence of func- 
tions where Ft : Rt_1 -¥ [0,1]. We define the cumulative 
loss of the predictor F, fed by y" = (yi,..., yn) and judged 

def 
with respect to xn = (xu...,xn) £ {0,1}" by LF{yn,xn) = 
£2" L(xt, Ft(yt~1)). We consider the case where the noisy 
observation accessible to the predictor, y = (yi, Jft, ■ ■ ■) € R°° 
is given by yt = xt + rt, t > 1, where r = {rt,t > 1} 
is a zero-mean, memoryless, arbitrarily varying process: for 
every n, the p.d.f. governing r" = (n,..., rn) is of the form: 

f(rn\s
n) = nr=i/(r.k.)>where s"e 5"is some unkn°wn 

arbitrary sequence of states, and S, is some abstract state- 
space such that for all a G S we have J_    r ■ f(r\a)dr = 0. 

'The research, which is supported by the Israeli Science Founda- 
tion, is part of the D.Sc. dissertation of the first author. Both au- 
thors are with the Department of Electrical Engineering, Technion- 
Israel Institute of Technology, Haifa 32000, Israel. 

Letting Lp(xn) = ELF(yn,xn) denote the expected loss of 
F when the underlying individual sequence is i", we de- 
fine the worst-case relative expected loss of a predictor P by 

def 
Rn{P,T) = maxj.jfoj}»(Lp(xn) - MF&TLF{%"))■ It is 
shown that, for a large class of loss functions, for any fi- 
nite set of experts T, there exists a predictor P such that 
Rn(P, T) = 0((ln n)2 ■ In \T\), while for another class of loss 

functions we have R„(P,F) = 0(^n]n \T\). 
Further results show, however, that the prediction strate- 

gies that we suggest are guaranteed to be doing well in con- 
siderably stronger senses. It is shown that under some mild 
additional conditions on the noise process, the predictor P 
satisfies 

iimMpMy",»")-inf^^(,»,,»)<c _ Vxe{0|iri 

n->oo vnloglogrc 

for some deterministic constant c. It is further shown that, 
using this same predictor, we also have 

max     Pr{-[Lp(yn,xn) - minLFlyn,xn)] > «} 

<    exp{-n(/(e,B) + o(n))}, 

where, I(e, B) > 0, which lower bounds the possible expo- 
nential rate of the decay, is independent of the expert class 
T. 

The remarkable feature of the predictors that we employ 
is the strong sense in which they are twofold universal. The 
above described performance bounds hold with the same uni- 
versal predictor P, regardless of the particular state sequence 
driving the noise process. 
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Abstract — We investigate on-line prediction of indi- 
vidual sequences. Given a class of predictors, the goal 
is to predict as well as the best predictor in the class, 
where the loss is measured by the self information 
(logarithmic) loss function. The excess loss (regret) 
is closely related to the redundancy of the associated 
lossless universal code. Using Shtarkov's theorem [3] 
and tools from empirical process theory, we prove a 
general upper bound on the best possible (minimax) 
regret. The bound depends on certain metric proper- 
ties of the class of predictors and is applicable to both 
parametric and nonparametric classes of predictors. 

I. SUMMARY 

Assume that elements of an arbitrary sequence t/i,... , yn 

are revealed one by one, where the elements yt belong to some 
set measurable y. At each time t = 1,... ,n, before revealing 
an element yt, we are asked to assign a probability density 
pt on y and then observe yt incurring the logarithmic loss 
— Inpt(yt)- Our total loss at the end is the sum of the losses 
suffered at each round. As we know the prefix t/i,... ,yt-i 
before choosing each probability assignment pt, we may view 
each pt as the conditional p(- | j/i,... ,2/t-i) of some joint 
distribution p that we choose before the game begins. We call 
p a prediction strategy. Any strategy for playing this game is 
equivalent to a probability distribution on yn. 

Our goal is to predict (almost) as well as the best strategy 
in a given "reference" set of strategies. We call "experts" the 
strategies in the reference set. In other words, we intend to 
accumulate a loss not much larger than that of the best expert, 
regardless of what the sequence j/i,... , yn might be. 

In this paper we investigate the minimum excess loss, with 
respect to the total loss of the best expert, achievable on any 
sequence. This quantity, known as minimax regret (under 
logarithmic loss), turns out to depend on certain metric prop- 
erties of the class T of experts. 

It is well-known that every sequential prediction strategy 
may be converted into a sequential lossless source code. Con- 
versely, every uniquely decodable code over yn defines a prob- 
ability distribution. Thus, the prediction problem under loga- 
rithmic loss is formally equivalent to the problem of sequential 
universal coding in data compression. In this context, the sub- 
ject of our study is the smallest achievable worst-case redun- 
dancy of a sequential lossless code, with respect to a general 
class of reference codes. 

Fix a class T of "reference" strategies, called here experts. 
The worst-case regret of a strategy p (with respect to the class 
T) is defined by 

Ä„(p^) = suPlnÄÄ. 
v       p(yn) 

In other words, Rn(p,T) is the worst-case difference between 
the log-likelihood of t/n under the density p and the log- 
likelihood of yn under its maximum likelihood estimator in 
the class T. The smallest worst-case regret achievable by any 
predictor is the minimax regret 

Ä„(f) = infsUpln!l!PÄ 
P   „» p{yn) 

where the infimum is taken over all densities p on yn. 
To any class T of experts, we associate the metric d defined 

by 

d(f,g) = 

This research was supported in part by ESPRIT Working 
Group EP 27150, Neural and Computational Learning II (Neuro- 
COLT II) and DGES grant PB96-0300. The first author was also 
partially supported by MURST project "Modelli di calcolo innova- 
tivi: metodi sintattici e combinatori". 

X>up(ln/(2/(|y<-i)-ln5(y(|y<-i))2.       (1) 
\ t=\   v' 

We use N(T, e) to denote the e-covering number of T under 
the metric d, that is, the cardinality of the smallest subset 
T' C T such that 

(V/€^)(35e^)    d(f,g)<e. 

Our main result is the following: 

Theorem 1 For any class F of experts, 

Rn{T) < inf finN{T,e) + 24 f  y/lnN{T,6)d6)  . 

The theorem improves on previous general results in [1] and 
[2], We may use the theorem to obtain tight upper bounds for 
Rn{^F) for both parametric and nonparametric classes. For 
example, for parametric classes we obtain: 

Corollary 1 Assume that there exist positive constants k and 
c such that for all e > 0, In N(T, e) < k In ^. Then 

Rn{F) < 7pnn + o(lnn) . 
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I 
Abstract — We address the problem of filtering and 

prediction of an individual binary sequence based on 
its noisy past, as an extension to [1]. The perfor- 
mance criterion investigated is the expected fraction 
of errors. We propose algorithms and compare their 
performance to that of the best finite state machine 
(FSM). We improve on previous results [1] by show- 
ing that optimum performance can be achieved by 
Lempel-Ziv-based estimation algorithms. 

I. INTRODUCTION 

Let 0i,02,-... be an arbitrary binary sequence corrupted by 

a Bernoulli noise process 1/1,1/2,... with Pr{i/j = 1} = p. 
An observer accesses the noisy sequence y 1,3/2,..., where 
j/i = 0i © Vi, and © denotes addition modulo 2. The observer 
is interested in either estimating 0i (filtering), or predicting 
0i+i (prediction), based on 3/1,1/2, • • • ,y>- We seek a universal 
estimator whose bit error probability is essentially as small as 
that of the best FSM, simultaneously for all 0. Previous work 
[3],[2] can be viewed as a special case of this filtering prob- 
lem, where in [2] it was shown that there exists a sequential 
estimator whose asymptotic performance is as good as that 
of the best estimator that is implementable by a single-state 
machine. In [2], prediction without noise was considered and 
a sequential LZ-based predictor was shown to attain the fi- 
nite state predictability of all infinite sequences. In this work, 
we improve on previous results of [1] where an asymptotically 
optimum sequential algorithm with growing memory was in- 
troduced. In this work we present a more practical, LZ-based 
algorithm that achieves the same goal. 

A finite-state filter (FSF) with S states is a causal device 
that, upon receiving a sequence of observations yi, j/2, ■ • •, gen- 
erates a sequence of estimates 0i, 02,••• , while going through 
a sequence of states si,S2,■■■ that take on values in a finite 
set S = {1,2,..., S}. The mechanism of the FSF is defined 
by a pair of deterministic functions / and g, where / is the 
output function that is given by 0; = f(si,yi) for filtering 
and 0i+i = f(si) for prediction, and g is the next-state func- 
tion that defines a recursive state update rule, according to 
Si+i = g{si,yi). Let Gs be the set of all next-state functions 
of no more than S states. Henceforth, x\ ,i < j, generically 
designates (xi, x,+i, ...,XJ). Also, denote by gk the fc-th order 
Markovian next-state function whose state at time instant t is 
defined by st = y\Z\. For a given (/, g), let e (0", 1/?, (/, g)) = 

n £"=1 ■*■{» jte } ^e *ne fr^t'011 °f errors attained when (/, g) 

is applied to y?. Let e9(0?) = mmf E {e(0?,i>?,(f,g))} , 
and define the FS filterability of an infinite sequence 0 by 
e(0) = lims->oo limn-»« min9€Gs e9(0")- The aperiodic FS 
filterability,  e(0),  is defined similarly,  with the exception 

1This work was supported by the ISF administered by the Israeli 
Academy of Sciences and Humanities. 

that the minimization is over the class of aperiodic ma- 
chines, and the Markovian filterability, //(0), is defined by 
limfc-too lim„ .(«?)■ 

II. MAIN RESULTS 

Our main result is a derivation of a scheme that asymptotically 
achieves e(0). This scheme is based on the incremental parsing 
(IP) procedure of the LZ 78 algorithm, and can be viewed 
as a Markovian machine of increasing order. The transition 
between states is identical to that of the equivalent scheme in 
[2], apart of the fact that it is the noisy sequence {yt} which 
determines the states sequence rather than the clean one. The 
state at time instant t is the string of bits observed since the 
last phrase, has terminated. 

The estimation is as follows: denote by N%(s,x) = 

Y^iZi !{»<=».y;+i=*} the Jomt count °f state s and the value 
of the next noisy bit being x, and let N%(s,x) be a random- 

ized version of it, i.e., N?(s,x) = N?{s,x) + zx(t) {Nt(s))1/2 

where {zx(*)}"=i ,x € {0,1}, are independent r.v.'s uniformly 

distributed over the interval [0,1] and Nt{s) = X)i=i *{«<=«}• 

Let N?{s,x) = £j~jl{äi=s,e;=s} be the Joint count of 

state s and - the value of the current clean bit being x. 
Now, an estimation of N?(s,x) is performed: Nt(s,x) = 

irs? E^i1^'.»^*} - ir%-N«(s), and sonw auxiliary 

randomization is introduced which results in N?(s,x) = 

N°(s,x) + zx(t)(Nt(s))1'2. 
For prediction, the decision rule is 0t+i = x if Nf(st,x) > 

N?(st,l — x). For filtering, the decision rule is 0t = x if 
Nt(st,x) > i^iVf(st,l - x), and otherwise 0* = yt, where 

ties are broken arbitrarily. Denote by e/p(0") the expected 
fraction of errors made by this scheme. 

Our first  result  is that,  when prediction is concerned 

e9Jt(0f) - min9€Gse9(0?)   <    T^A/^TTT   and therefore 1 /    In 
i-2Py 2(*- 2(*+l) 

p(0) = e(0). When both filtering and prediction are con- 
cerned we show that egk{6T) — min9gGs,9 aperiodiceg(91) < 
0(a(S,p))k + £ where |a(S,p)| < 1 which implies that /L*(0) < 
e(0) for filtering. We further show that c/p(0?) - e9fc(0?) < 

O (   }     ) + O (J3^).   Combining these two observations 

it follows that the above described scheme achieves the FS 
filterability. 
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Abstract — An iterative algorithm is presented for 
joint equalization and decoding of data that has been 
transmitted over intersymbol interference (ISI) chan- 
nels. This differs from well-known "turbo equaliza- 
tion" (TEQ) methods, in that the ISI is removed 
with a soft-input soft-output (SISO) equalizer via 
linear or decision feedback equalization (DFE). The 
data is encoded with a convolutional code and inter- 
leaved prior to transmission over the channel. At 
the receiver, symbol estimates are successively re- 
fined by passing extrinsic information, in the form of 
priors over the symbols, between the SISO equalizer 
and a SISO decoder based on maximum-aposteriori- 
probability (MAP) symbol estimation. The low com- 
plexity of this algorithm make it a practical alterna- 
tive to existing methods, without sacrificing bit error 
rate (BER) performance. 

I. INTRODUCTION 

Data transmission over ISI channels is a classical problem 
in communication scenarios. Conventional approaches imple- 
ment an equalizer to remove ISI or use MAP or maximum like- 
lihood (ML) detection. Data reliability can be enhanced using 
coding, where the data is encoded in the transmitter prior to 
transmission. For reasons of complexity, the receiver then typ- 
ically performs separate equalization and decoding of the data. 
Significant performance gains can be achieved through joint 
equalization and decoding at the cost of added complexity. A 
recent approach that significantly reduces the complexity of 
joint equalization and decoding is the so-called "turbo equal- 
ization" algorithm, where MAP/ML detection and decoding 
are performed iteratively on the same set of received data 
[4, 5]. It has recently been shown that passing soft informa- 
tion, the use of interleaving, and the controlled feedback of soft 
information are essential requirements to achieve performance 
gains with an iterative system [1]. Various algorithms simi- 
lar to TEQ have been proposed to overcome the complexity 
of the MAP/ML algorithms, especially in the detector, where 
complexity is exponential in the channel delay spread [2, 3]. 

An algorithm that is a practical alternative to turbo equal- 
ization is presented in this paper. In an approach similar to 
that of Wang and Poor [2], the MAP/ML detector in the TEQ 
setup is replaced by a linear equalizer (LE) or DFE. The filter 
coefficients are selected according to a minimum mean squared 
error criterion (MMSE), taken over both the statistics of the 
noise and the prior over the symbols. 

II. CONCEPTS 

A block diagram of the data transmission system is shown in 
Figure 1. In the receiver, the SISO equalizer and SISO decoder 
exchange priors over the possible values of each code symbol 
Cn.   The SISO equalizer consists of an estimator, providing 
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Figure 1: Data Transmission System 

the estimates x„ of the transmitted symbols xn, followed by 
a mapping that transforms xn to a prior over the transmitted 
symbol at time n. The SISO decoder uses this soft information 
to decode the data and produce an additional prior over the 
symbols, which can be interpreted as soft feedback information 
for the equalizer. The SISO equalizer minimizes the MMSE 
cost function E{\x„ — x„\2} using the time varying statistics 
E{xn} and Cov{xnXm}, which are computed for each received 
symbol using the soft feedback information [1]. 

For the SISO equalizer, a time-recursive update algorithm 
with 0(N2+M2) (exact implementation) and 0(N+M) (ap- 
proximate) complexity per received symbol and iteration was 
developed [1], where M is the ISI channel length and TV the 
length of the equalization filter. Both implementations yield 
significant savings in the computational complexity compared 
to MAP/ML-based detectors with 0(qM) complexity, where 
q is the size of the alphabet of the transmitted symbols x„. 

III. RESULTS 

From the set of possible equalizer implementations, the exact 
implementation of the LE-based SISO equalizer performs best 
in terms of BER and can match or beat the performance of 
the approach in [3] and even the MAP-based TEQU approach 
in [5]. The DFE-based solutions are shown to perform worse 
than LE-based solutions [lj. The performance improvements 
of the proposed algorithm over that of the TEQ approach, for 
certain ISI channels and data block lengths, demonstrates that 
BER.-optimum SISO receiver elements (detector, decoder) are 
not necessarily optimum in an iterative setup [lj. 
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1 
Abstract — We propose to compute the distance 

spectrum of arbitrary trellis codes (including convo- 
lutional codes, trellis-coded modulation, continuous 
phase modulation, etc.) and intersymbol-interference 
(ISI) channels by means of a modified list Viterbi al- 
gorithm (LVA). This search procedure is (i) compu- 
tationally efficient, (ii) is applicable to linear as well 
as nonlinear codes, (iii) can be applied to arbitrary 
distance measures, (iv) can be used for MLSE as well 
as RSSE or related techniques, and (v) guarantees 
that an ordered list of the N nearest error paths is 
produced. A sample results illustrates the distance 
spectra of linear ISI channels, both for MLSE and 
ideal RSSE receivers. 

I. INTRODUCTION 

Prior solutions to compute the free distance of nonlinear codes 
include sequential algorithms, the Viterbi algorithm, and the 
Dijkstra algorithm. Solutions to compute the distance spec- 
trum include sequential algorithms, transfer function meth- 
ods, and a modified Viterbi algorithm with state-splitting and 
multiple passes, among other techniques. For special applica- 
tions and particularly in the case of linear codes extensive 
simplifications are possible. 

In the present paper, we propose to apply a modified LVA 
for the purpose of computing the distance spectrum of arbi- 
trary trellises. LVAs compute an ordered list of the N best 
paths. Serial and parallel LVAs have extensively been inves- 
tigated in [1] and the references therein in the context of de- 
coding and related applications, but, to our best knowledge, 
not for distance calculations. 

II. DISTANCE CALCULATION USING AN LVA 

Throughout this paper, we assume the existence of a trellis 
with a finite number of states. We consider a linear code first. 
In order to compute the distance spectrum with iV error paths, 
it is sufficient to design a modified LVA for the original trellis 
taking the N best survivors into account, and to apply this 
LVA given noise-free channel outputs. An ordered list of the TV 
nearest error paths is produced, if the following modifications 
are done: 

1. All error paths taken into account must diverge from 
the transmitted sequence at time k = 0 and re-merge 
at time k' > 0. All other paths must be excluded, par- 
ticularly the ML path and all paths that diverge more 
than once from the transmitted path. 

2. Instead of outputting the N most likely information se- 
quences [1], we output the accumulated path metrics 
(i.e., the distances) and the corresponding path weight 
(multiplicity) ad and/or information weight Cd- 

Without loss of generality, the transmitted sequence may be 
the all-zero sequence. Then, the all-zero path (i.e., the ML 
path) may be eliminated by setting the N accumulated dis- 
tances of the all-zero state at the second interval of the trellis 

to infinity. The number of spectral lines is less than the num- 
ber of error paths N actually computed, when the multiplicity 
ad > 1 for at least one distance d. Whether a serial or a par- 
allel type of LVA should be accomplished depends on memory 
and complexity constraints, among others. If the trellis is of 
finite length, the LVA may operate on the full trellis, otherwise 
a stop criterion must be applied. 

These general design criteria also hold for nonlinear codes, 
which are discussed next. In the general case, we design the 
LVA to operate on the product trellis in order to take all error 
events into account. If the error events depend on difference 
symbols only, we may use the difference trellis instead. This 
is the case of linear ISI channels and CPM, e.g. In any case 
the symmetry of the error states has to be taken into account, 
either by eliminating redundant error events or by reducing 
the number of states. 

For illustration, consider a time-invariant linear ISI chan- 
nel with binary inputs a* £ {±1} and channel coefficients hi, 
0 < I < L. The difference symbols, dk = ajt — a*,, take the 
values {—2, 0, +2}. In case of MLSE, the difference trellis has 
3L states, whereas the original trellis has 2L states. However, 
due to the symmetry of the error states, we can use an equiv- 
alent difference trellis that has only (3L + l)/2 states Without 
loss of generality, we may assume that the all-zero difference 
sequence has been transmitted. A new spectral line is com- 
puted whenever an error path re-merges the all-zero difference 
path. In case of reduced-state sequence estimation (RSSE), 
the original trellis has 2K states, where 0 < K < L. A new 
spectral line is computed whenever an error path merges in 
one of the (3L~K + l)/2 hyper states. Otherwise, the search 
algorithm is the same as described above. 

Fig. 1 shows the (truncated) distance spectrum for an ISI 
channel given MLSE and ideal RSSE. (Ideal RSSE does not 
take error propagation into account.) The information weight 
is moderate for error paths with small distance, whereas larger 
spectral lines have a larger multiplicity and are less spread out. 

h0=0.23. h,=0.42. h2=0.52, h„=0.52, h„=0.42, h,=0.23 

» »K=1 (RSSE) 
■ ■ K=2 (RSSE) 
♦-       *K=3 (RSSE) 
A. AK=4 (RSSE) 
▼ TK=5 (MLSE) 

■ 

«♦'" 

,yrßf':::::''±+'      TV' 

A'             ▼" 

0.4 0.6 0.8 
squared Euclidean distance, da 

Fig. 1: Distance spectrum for MLSE and ideal RSSE for a binary, 
linear, time-invariant ISI channel with 32 states. 
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Abstract — For the Gaussian channel with intersymbol- 
interference (ISI), it is known that there is no loss in channel 
capacity if the receiver is an ideal minimum mean-squared er- 
ror (MMSE) decision-feedback equalizer (DFE) with error-free 
feedback. However, combining the DFE with channel coding is 
problematic. Transmitter precoding and reduced-state sequence 
estimation are two common approaches (cf. [1] and references 
therein). This paper introduces a new successively-decodable 
coding technique that effectively combines channel coding with 
decision-feedback that is housed in the receiver. 

I. THE CHANNEL MODEL 

Consider the real-valued discrete-time Gaussian channel with inter- 
symbol interference (ISI) represented by 

Vk 

Af-l 

j=0 

Xk-j +Tlk, (1) 

where {xk} is a sequence of zero-mean, independent identically- 
distributed (i.i.d.) transmitted symbols with power E[x\] = p, 
{^Ifciö1 is the finite-tap discrete-time, post-cursor channel re- 
sponse, and {rik} is an i.i.d. sequence of zero-mean Gaussian noise 
samples with variance E[n2

k} = a2. The average mutual information 
of the channel (bits per channel use) is maximized when the symbol 
distributions are zero-mean Gaussian random variables with power p. 

II. SUCCESSIVELY DECODABLE CODING TECHNIQUE 

We describe the two-level successive decoder for the ISI channel 
from which the corresponding coding technique is easily inferred. 
Begin by blocking the channel output sequence into vectors of length 
L. We view this vector output sequence as N distinct vector channels, 
the n-th of which is given by 

|[   V(kN+n- l)L+l V(k N+n)L   ]     } (2) 

Note that rjk is statistically independent of yk-M- Therefore, if 
N > ["M+^'~1], then the output sequence of the n-th channel is 
the output sequence of a memoryless vector channel. Thus, we have 
decomposed the ISI channel into N memoryless vector channels that 
are statistically related to each other. 

Outer-level coding allows the N vector channels to be decoded 
one at a time, starting with channel 1 and ending with channel N. 
If, when decoding the n-th channel, we make use of symbol deci- 
sions from the channels that have already been decoded (i. e., vector 
channels 1 through n — 1), we refer to this as inter-channel feedback. 
Clearly, the potential advantage of inter-channel feedback increases 
with N, the number of vector channels. 

Inner-level coding addresses each vector channel by viewing it 
as consisting of L scalar sub-channels that are successively decoded 

with single-user coders and decoders. If, when decoding the Z-th sub- 
channel of a particular vector channel, we make use of symbol deci- 
sions from sub-channels that have already been decoded (i. e., sub- 
channels 1 through / — 1), we refer to this as intra-channel feedback. 
Since this vector channel can be cast as a memoryless multiple-access 
channel, the optimal successive-decoding technique developed in [2] 
can be implemented. For any given vector channel, performance po- 
tential will improve as L, the block size, increases. 

Hence, the original ISI channel is treated as a composition of NL 
sub-channels which are to be coded and decoded successively using 
single-user codes, with or without inter- and intra-channel feedback. 

III. EXAMPLE 

Consider the response of the 2 kft-AWG26 channel (i. e., ho = 1, 
hi = -0.6, h2 = -0.15, h3 = -0.12, h4 = -0.05, hs = 0.00, 
and he — 0.05) [1], which is operating at a coded-symbol signal- 
to- noise ratio of p/a2 = 18.0 dB. The following figure compares 
the theoretical rate of information transmission for several schemes. 
The average mutual information is plotted as a function of the total 

7?   3 
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number of sub-channels, NL. It is evident that increasing the vector 
length L can provide substantial gains for each scheme presented and 
that there is an advantage in implementing inter-channel feedback in 
addition to intra-channel feedback. 
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I I 

Abstract — In this paper partitioning for the 
SA(B,C) algorithm on intersymbol interference (ISI) 
channels is considered. Substantial savings in com- 
plexity can be made by using the SA(B,C), while 
achieving almost optimal error performance. 

I. INTRODUCTION 

A receiver that uses the SA(B,C) algorithm [2] for intersym- 
bol interference (ISI) additive white gaussian noise (AWGN) 
channels is considered. SA stands for Search Algorithm. The 
SA(JB,C) partitions the states in the trellis into C state classes. 
Then proceeding breadth first in the trellis, the detector se- 
lects B paths closest to the received signal for each state class. 
The number of computations per released symbol, which is to 
be minimized, is proportional to BC, the number of paths 
traced. The SA(J3,C) family of algorithms perform maximum 
likelihood sequence detection (MLSD) under given structural 
and complexity constraints [2]. The Viterbi algorithm (VA) [1] 
performs complexity unconstrained MLSD. The performance 
of the SA(2?,C) detector is here required to be asymptotically 
optimal (AO) [2], [3], i.e. the error event probability should 
approach unconstrained MLSD when the signal to noise ratio 
(SNR) -*■ oo. Given the parameter B, there will be constraints 
on how to construct the partition i.e., which states that can 
belong to the same state class. To find an optimum partition 
is in its general form an NP-hard problem, e.g., when 5 = 1 
the problem is equivalent to the graph coloring problem [3]. 
Here the size of the problem of finding a partition is limited 
by imposing structural constraints on the partition. 

The cases B < S; C = 1 and B = 1; C < S are considered 
in [2] and [3], respectively. S is the number of states in the 
trellis. The case B < S;C = 1 is optimal with respect to 
complexity [2]. Here the results in [2] and [3] are generalized 
to the case B = 2; C > 1. This method can be generalized to 
apply for an arbitrary B. 

II. SYSTEM DESCRIPTION 

The message to be sent over an ISI AWGN channel is a se- 
quence ajv = {oo,ai,...,aAr-i} of statistically independent 
equally probable data symbols drawn from an M-ary alpha- 
bet. The MLSD finds the candidate sequence having the min- 
imum log likelihood metric given the received sequence. This 
can be calculated recursively using the VA or the SA(B,C). 
The states in the trellis, which the detectors operate in, are 
given by an = (a„-i,...,O„_L+I) where L - 1 is the memory 
of the channel. For large SNR the error event probability of 
the SA(B,C) detector can be approximated as [2] 

Pr (error) « K,Q (y%~SNR) + K2Q {^}IaiaSNR) 

where dfmin is the minimum vector Euclidean distance and 

^min is tne minimum Euclidean distance for the VA, K\ 
and K-i. are constants. By requiring that dfmin > d„in, the 
SA(B,C) detector will be AO. 

III. PARTITIONING 
To find a, constrained partition, consider the states written 
on the form an = (o„-i,o„_2,. • • ,o„-t+i). Next, define the 
partition vector [3] T = (Ti,T2, ■ ■ ■,It-i) where Tk, 1 < k < 
L—l, denotes a partition of the symbol alphabet for the fcth 
position in the state vector. Let 7* be the number of subsets 
defined by partition IV Each subset is identified by a label in 
the range 0,1,... ,7* - 1. No connection is assumed between 
the partitions IV The partition vector may be employed to 
map every state <rn into a corresponding vector of subset labels 
A£

}
 = (A„I,A„2,...,A„L-I), where Xnk, 1 < k < L - 1, is 

the subset label of an-k in the partition IV A state-class is 
defined as the set of states that map onto the same subset 
vector: fi(<) = {a : a -)• A(<)}, i = 1,2,...,C. 

The first step in constructing a partition is to obtain some 
finite set, P, of alphabet partitions from which the partition 
vector is to be constructed. Finding P is a problem that only 
has to be solved once for each alphabet. This can be done 
by imposing a certain degree of regularity on the alphabet 
partitions, by considering rotational invariance and difference 
symbols [3]. The next step is to find the states that has to 
be partitioned into different state classes. The final step is 
to perform a search for a minimum partition vector T among 
the set of vectors (ri,r2,... ,TL-I) with elements Tk € P 
for the given constraints. This can done by either perform- 
ing an exhaustive search or a tree search, since the sequences 
of ri,r2,...,rL_i can be represented by a tree, where ev- 
ery node in the tree represents a unique partition, since e.g. 
(ri,r2) = (ri,r2,0). The complexity BC for some channels 
of various lengths for the 8PSK alphabet are shown in table 
1, using the VA and the SA(B,C) resulting in AO. 
Tab. 1: The complexity for partitions resulting in AO for 8PSK. 

F(z) S 1 • C[3] 2-C B\ 

1 + z-1 8 2 2 2 

(1 + z-1)2 64 16 8 6 
(1+*-1)3 512 64 32 9 
(1-M-1)4 4096 128 32 12 

[1] 

[2] 

[3] 

1This work was supported by TFR under Grant 96-396. 
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Abstract — We propose to model the packets ac- 
tivity of single IP address by the Middleton class A 
noise model. Theoretical results and numerical simu- 
lations indicate that the class A noise model captures 
well the inter-arrival properties of packets, especially 
in terms of long-range dependence (LRD), which is 
widely observed in computer network traffic. 

In this paper we consider the micro-structure of Local Area 
Network (LAN) traffic, that is, the single user network traffic 
up to the packet level. An accurate model for traffic is a 
valuable tool in queuing theory studies. 

Recent results based on high-definition network traffic 
records suggest that high-speed data networks traffic exhibits 
LRD. Network traffic models can be divided into two cate- 
gories. The first category considers the macro-structure of 
traffic. In this class, the mathematical models are fitted to 
the network traffic statistics, without considering the detail 
data stream structure. Examples include the fluid flow model, 
and the fractal On/Off models. In the second category, the 
network traffic is viewed as a point processes that models the 
data stream at the packet level. Various Markov-modulated 
Poisson processes belong to this category. We refer this kind of 
modeling as micro-structure modeling. The proposed model 
belongs to the second class. 

Our statistical model is based on standard renewal pro- 
cesses (SRP). A SRP is characterized by the characteristics 
of the inter-events distribution. The events are the arriving 
packets in the network pipeline. The inter-event times are 
independent random variables drawn from Middleton's class 
A noise envelope. The motivation to investigate that kind of 
model in the context of LAN traffic came from the distinctive 
appearance of graphs corresponding to traffic data, and in par- 
ticular, time intervals between packet arrivals, (see Fig.l) We 
were able to show analytically that, such a model results in a 
process with LRD, thus capturing the essential characteristic 
of real traffic. In the sequel, we outlined the proof of the main 
result of the paper, that is, a standard renewal processes with 
inter-event times modeled as class A noise envelope exhibits 
LRD. By LRD, we here refer to the definition proposed in [1], 
according to which the power spectrum density of the process, 
if it exists, can be approximated by a power-law function. 

The pdf of class A noise envelop equals 

the power spectrum of the SRP becomes: 

wi(e); .-A. £ AA
mee-*2'2a™ 
m\amA2 0 < e < co (1) 

Here,   e,   eo   are   normalized   envelopes   The   parameters 
(AA, FA ,^2/t) are called global parameters. In practice, they 
all have physical meaning. 

Let 

*" jL,m-0 m< e Erfi 

Zi ~ £m=0 ' 

M (2) 

SN(U>) =(J,
2
6{U/2K) + 

Is/lZi 

yfieAAu{Z2 + Z2) 
-1 (3) 

where fi is the inverse of the class A noise envelop mean value. 
Although the power spectrum density cannot be obtained 

in closed form, it can be numerically established that for small 
w's (around unit frequency) the power spectrum density be- 
haves like a power law function. When using Middleton's class 
A noise to model inter-packet times, we will need the non- 
normalized version of the model. The above presented results 
can be easily extended to the scaled version. The estimation 
of class A model parameters from real data is discussed in, for 
example [2]. 

Based on extensive studies involving real network traffic 
data, not included here due lack of space, it appears that the 
class A noise model can capture well the packet level activity 
of a single user in a local area high speed network. Given 
the adjustable class A noise parameters, one can synthesize 
the desired network traffic load traces, which have the same 
characteristics as real world traffic data. 
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Figure 1: Inter-packet distribution [prob(£ > t0)] obtained 
from single user qin.ece.drexel.edu, comparing with Middleton 
class A noise, with parameters AA = 0.02 and F'A = 0.03. X- 
axis is by -0.5 log (- log Q), Y-axis is by 10 log [], i.e. dB. 
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I 

Abstract — The broader design possibilities for sta- 
tistical multiplexing are of our interest provided the 
ATM streams to be merged are not just independent 
but also many. 

I. INTRODUCTION AND NOTATIONS 

Statistical multiplexing of n independent input streams 
each of line rate r and mean activity m is considered, each be- 
ing long range dependent at the same extent. Slotwise cyclic 
scanning of the input streams is assumed at a rate nr, and 
a single common output stream of line rate R — Ir < nr. 
(A := £ < 1.) For fairness a single cyclic shift per scanning 
cycle of the stream scanned initially is assumed. 

Upper and lower bounds are given on the total probability 
PT of overflow (of cells from any stream, Theorem 1, [1]) for 
any scanning cycle initiating an isolated burst of overflowing 
cells only. (For isolated see [1].) The impact ofmerging many 
streams is investigated for multiplexing by scanning, and do- 
ing nothing else (Version (ii)), and for multiplexing as usual, 
including also a leaky bucket of length I next to scanning (Ver- 
sion (i)). Instead of investigating the relation between the 
long range dependence at the input and the burst length at 
the output, a broad class of appropriate Pareto-kind template 
distributions of overflowing cells are considered. A member of 
this class is chosen in a best way (in a sense defined in [1]) 
to overbound the probability estimate that the burst length 
of lost cells is exceeded. (For such an estimate observations 
should be available on the cells stored in the course of each 
scanning.) 

II. MAIN RESULTS 

Given pr < 1, a pair of m and A jointly admissible, denote 
by r»o(pr) the least admissible number of the input streams 
n, from which upwards the total probability of any scanning 
cycle, intitiating an isolated burst of overflowing cells, does 
not exceed pr- From Theorem 1 ([1]) follows: 

nis(pr) < no(pr) < TIVB{PT)- 

Here HUB(PT) '■= \u\. u stands for a positive real, being the 
solution of the following equation: 

lgp^1 = u (D(7> || Q) - cs(«) - ctB(«)). 

1This work was supported in part by the European Copernicus 
Project No. COP579 (1995-1999), the Hungarian Telcomm. Foun- 
dation, Grant No. 109 (1999), and a research professor visit of the 
author, at the CATSS, UTDallas, TX, USA, Feb/March 1999. 

The the relative entropy underlying our present model is de- 
noted by 

D(7>||Ö) = A-+(1-A)£—4- v    "    '        m (1 - m) 

V := (A, 1 - A), and Q := (m, 1 - m) are the underlying 
binary probability distributions. es(n), tLB(n) anderjB(n) are 
positive, each decreasing with increasing n and approaching 
0 as n -¥ 00 (each precisely given in [1]). Igx stands for 
the logarithm of x > 0 of base 10. For nLB(pT) > 0 see [1]. 
For the probability p per input stream, corresponding to pr, 
the following equation holds: p = ^pr (Proposition 2, [1]). 
For Version (i) the following upper bound is given on the total 
probability pT of ATM cell loss due to leaky bucket saturation, 
provided experience on the cell bursts is available (Proposition 

4M): 
PT <   PT PTUB(1)- 

PTUB{1) stands for the upper bound on the total conditional 
probability estimate of cell loss, given event 0, estimated by 
a member of the Pareto-kind distribution class, selected ac- 
cording to Section I. 0 occurs if the just considered scanning 
cycle is initiating an isolated burst of overflowing cells. The 
probability of cell loss p per stream is related, under a real- 
istic assumption, to pr as p to pr (Proposition 5, [1]). Let 
n = 2" (y = 1,2,...). Denote by 7 the at most admitted 
per stream probability and by 7r that of the the total prob- 
ability of the cell loss. Let 7 = 10-9, and -yT = 10_T (as- 
suming n > 100). Then the least number of input streams 
still admitted is n = 2s > rtuB for PT < IT = 10-7, for a 
design with scanning only. However, even n = 2 might be 
admissible, even with pr = 10~4 < IT, for a design with a 
leaky bucket next to scanning. This might be so if (i) not 
only the estimate on the conditional probability (given 0) of 
the cell loss due to bucket saturation can be overbounded by 
PTUB(1) < 10-3, but (ii) the upper bound can also be tolerated 
on the conditional probability estimate (given 0) that a still 
tolerable burst length of cells, lost during bucket saturation, is 
exceeded. Single- and bi-variate large deviation relations are 
considered for finite many terms in Theorem 1 and Proposi- 
tion 4. Obviously a study in finite terms is indispensible for 
estimating «O(PT). One might expect, under two realistic as- 
summptions, Version (i) to offer, even for n > nuB(lT), more 
room for bearing long-range dependence. (For background ref- 
erences and acknowledgements, and for notions, assumptions, 

and all proofs see [1].) 
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I 
I. EXTENDED SUMMARY 

We study fair allocation of service rates for real time loss 
tolerant traffic in arbitrary networks with multicast ca- 
pabilities. Multicasting poses some specific fairness chal- 
lenges. The fairness objective is that every receiver re- 
ceives service at a rate commensurate with its capability 
and the capacity of the path from the source. Hence, 
different receivers should receive information at different 
rates. The source encodes the signal into several layers 
that can be incrementally combined to provide progressive 
refinement. Every receiver must receive the most signif- 
icant layer (layer 1) for basic information. If a receiver 
has additional bandwidth, it can subscribe to other layers 
for better reception quality. A layer carries meaningful in- 
formation, only when all the more significant layers have 
been successfully decoded. Thus the objective is to pro- 
vide fair rates of service to the receivers, and to limit the 
packet losses to the less significant layers. 

We have previously proposed distributed algorithms for 
computing the fair rate allocation[l]. Once the fair rates 
are known, many congestion control policies such as fair 
queueing can be used to attain the computed rates. How- 
ever, rate computation requires the exact knowledge of 
system parameters, such as link bandwidths. In general, 
the schedulers at the nodes may not have exact knowl- 
edge of this link capacity. It is also necessary to exchange 
messages between neighboring nodes. This increases infor- 
mation overhead. We propose a scheduling policy which 
attains the maxmin fair rates without computing them be- 
forehand. In addition to guaranteeing fairness, this policy 
confines packet losses to less significant layers, and pro- 
tects the more important layers, when there is shortage of 
bandwidth. Furthermore, this policy does not require any 
knowledge of traffic statistics, is computationally simple, 
and is essentially local information based. 

II, SCHEDULING POLICY 

We propose a scheduling policy based on prioritized 
round robin with window flow control for multirate multi- 
cast networks. Let session i traverse through link I. Then, 
the "logical buffers" ß(i,fc,j) (*) denotes the number of layer 
k packets of session i waiting for transmission in link I at 
time t. Logical buffers B(i>kii)(t)s are monitored at each 
node, for every session i traversing the node (Figure 1). A 
window parameter (W) is associated with the policy. 

All sessions traversing a link are sampled in round robin 
order. Consider a session i traversing link I. When session 
i is sampled, it first tries to send a packet of the most 
significant layer (layer 1). If it does not succeed, it tries 

Fig. 1. Each session transmits two layers only. We show the log- 
ical buffers associated with source and destination of link es- 
For example, B124 consists of session 1 layer 2 packets waiting 
for transmission in link a. Consider the scheduling of link es. 
Here, ri(es) = {e4,es} and T2(es) = {es}. Session 1 and 2 are 
sampled in round robin order. When session 1 is sampled, it 
sends the most significant layer (layer 1) packet, if Bii3(t) > 0, 
and min(Bii4(t),Bns(t)) < W. Otherwise, it tries to send a 
layer 2 packet. It sends a layer 2 packet if Bi23(t) > 0, and 
min(Bi24(t), Bi2s(t)) < W. If it can not send a layer 2 packet, 
it passes its chance to session 2. Now session 2 tries to send a 
lowest layer packet first, and so on. Let W = 5, Bii3(t) = 2, 
Bi23(t) = 1, Bii4(t) = 5, Bi24(t) = 2, Bns(t) = 7, Bi2S(t) = 6. 
In this case, session 1 is not able to transmit a layer 1 packet. 
However, session 1 transmits a layer 2 packet. 

to send the second most significant layer packet (layer 2), 
and so on. If all layers of session i are exhausted, the 
scheduler switches to the next session in the round robin 
order. Let n(l) be the set of links originating from the 
destination of link I that lie on the path of session i. A Al- 
layer packet of session i will be successfully transmitted at 
time t if 

1. ,,,k — 1, can be no session i packet from layers 1,. 
transmitted, 

2. a A;-layer session i packet is waiting at the source 
node  of the  link,   for  transmission  in  the  link 
(%*,/)(') > °) *»d 

3. at least one of the logical buffers for the kth layer of 
session i at the destination node of the link has less 
than W packets (i.e., minj/6rj(j) ify,k,i')(t) < W). 

Refer to figure 1 for an illustrative example. We have 
proved that for all sufficiently large window and physical 
buffer sizes, this policy allocates the maxmin fair rates to 
all receivers of all sessions. Note that congestion related 
packet loss is possible at any node. The policy offers an 
inherent priority to more significant layers of a session at 
every node. Thus the presence of less significant layers 
is transparent to more significant layers. In fact we have 
shown analytically that the more significant layers suffer 
negligible packet loss, and the packet losses are confined 
to the least significant layer served. 
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Abstract — This work addresses the analysis of mo- 
tion embedded in spatio-temporal digital signals as 
well as motion taking place in the outer space l3xR 
Three categories of motion are considered and re- 
ferred to as translational, rotational or deformational. 
In each category, motion parameters are defined from 
all the temporal derivatives i.e. position, velocity and 
accelerations. Motion analysis means not only de- 
tection, estimation, interpolation, and tracking but 
also motion-compensated filtering, signal decomposi- 
tion, and selective reconstruction. In this context, 
we show how all motion models can be derived from 
Lie groups and how group representations define con- 
tinuous wavelets in the functional space of the sig- 
nals. Motion detection, estimation and interpolation 
are based on continuous wavelet transforms. Selective 
motion tracking is based on the adjunction of a vari- 
ational principle of optimality. The optimality princi- 
ple defines the trajectory or the geodesic and provides 
the appropriate PDE of wavelet motion, the tracking 
equation (ODE), the selective constants of motion to 
be tracked, and all the symmetries to be imposed on 
the system. The Green functions of these PDE's give 
rise to the converse operators i.e. wavelet propaga- 
tors and kernels of integral equations. These integral 
equations have several applications: (1). put a still 
wavelet on a trajectory to perform velocity or motion- 
oriented filtering, (2). achieve the motion compensa- 
tion of a signal. This work investigates in fact the har- 
monic analysis associated with motion groups which 
leads to special functions, spectral signatures, propa- 
gators and yields motion-based detection and velocity 
or motion-oriented filtering. This motion analysis fits 
to both deterministic and stochastic processes. Even- 
tually, spatio-temporal discrete wavelets can be de- 
rived from their continuous cognates as the orthonor- 
mal bases that perform signal decompositions along 
the trajectory and achieve selective reconstructions 
of moving patterns of interest. 

I. MOTION MODELS AND ASSUMPTIONS 

The entire construction for this signal analysis lies on defin- 
ing a Lie group or a Lie algebra of transformation and an 
Euler-Lagrange equation. In short, three assumption have 
to be given as a law of composition and its inverse and 
a principle of optimality from calculus of variations.    For 

each class of motion transformations, we consider the pa- 
rameters of position, velocity and accelerations. For trans- 
lational motion, the spatial position, velocity and acceler- 
ations are considered along with the temporal translation. 
For (circular) rotational motion in two-dimensional space, 
the parameters of angular position, velocity and accelera- 
tions will be denoted in the order of the Taylor expansion 
9i 6 M; i 6 Z+. A variant of circular rotation is hyperbolic 
rotation which is denoted by 0; instead of 9,. The rotations are 
expressed through unitary matrices of transformation namely 

cos(9iT')    —sin{9iT%) 
sin(9iT') cos(9iTl) 

invariance for circular rotations. For deformational transfor- 
mation, the parameters of velocity and accelerations will be 
taken into account. The zero-order deformation is the most 
important. This is the scale which provides multiresolution 
analyses on space and time respectively. The matrix of defor- 

0 

A(0.V) with the x\ + ag- 

ination is defined as A (r In case of 

'This research work is supported by the AFOSR grant  No. 
F49620-99-1-0068 

general transformations taking place in Kn on homogeneous 
surfaces (spheres, hyperboloids) or on smooth manifolds, the 
scale parameter becomes a matrix A. These transformations 
rely on groups within GL(m, M). 
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Abstract — Accurate channel-quality estimates are needed 
for a variety of reasons in wireless communication systems, such 
as for power control and for adaptive transmission and routing. 
Channel-quality information can be derived from many sources 
at the receiver, including statistical characterizations of the chan- 
nel, information from the demodulation process, and information 
from the error-correcting and error-detecting codes. One simple 
method for estimating the channel-quality is to estimate the chan- 
nel error rate by re-encoding the outputs of the error-correcting 
code and comparing the re-encoded symbols to hard decisions 
at the demodulator output. In the presentation, we will present 
analysis and simulation results for several different channel qual- 
ity estimates derived from estimates of the channel error rate. 

I. INTRODUCTION 

In this paper we consider channel quality estimates based on es- 
timates of the channel error rate. An estimate of the channel er- 
ror rate for a system employing error-correcting codes can be deter- 
mined from comparing hard-decision outputs of the demodulator to 
re-encoded symbols from the output of the decoder [1],[2]. We con- 
sider the performance of such estimates for convolutionally encoded 
data transmitted with binary phase-shift-keying. Consider a system 
that uses binary transmission over an additive white Gaussian noise 
channel. The information to be transmitted is convolutionally encod- 
ed and transmitted in blocks of N bits. The channel causes B > 0 
channel symbol errors to occur, as measured by hard-decisions at the 
output of the demodulator. The receiver re-encodes the output of a 
Viterbi decoder and compares it to hard-decisions at the output of 
the demodulator. The number of differences between these encoded 
streams is labeled B' and is an estimate of B, and thus can be used 
to estimate the channel error rate. If no errors occur at the output 
of a Viterbi decoder, B' = B. If errors do occur at the output of the 
decoder, B' ^ B, and B' may not give an accurate count of the num- 
ber of channel symbol errors that occurred. The probability of a block 
having multiple event errors is much higher for systems that employ 
adaptive transmission techniques or have highly dynamic channels 
than for other systems. For many systems, additional information is 
available to determine whether the output of the Viterbi decoder is in 
error. For instance, error-detecting codes are often necessary to val- 
idate that the received block is correct. This additional information 
can be used to improve the accuracy of the error counts. 

The number of bit errors that occur in a block can be used to gener- 
ate several different estimates of channel quality, including estimates 
of the channel error rate, estimates of the signal-to-noise ratio, or 
other estimates. In this summary, we consider estimates for the bit 
energy-to-noise density ratio based on error counts from comparing 
the re-encoded outputs of a Viterbi decoder to hard-decision outputs 
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of the demodulator. The estimates also employ knowledge from an 
error-detecting code about whether the block was successfully de- 
coded. The estimates of the bit energy-to-noise density ratio that we 
consider are of the form £ = f(b), where b denotes the counted 
number of differences between the hard decision demodulator out- 
puts and the re-encoded decoder outputs for a packet. For instance, 
for the maximum a posteriori (MAP) estimate, 

SMAP = argmax P(e = e \B' = b). 
e 

For the minimum mean-square error (MMSE) estimate, 

SMMSE = E {e\B — b } . 

We use several analytical techniques to determine approximations for 
these estimates. For instance, it is intractable to consider all of the 
possible multiple-event errors, so we use the approach taken in the 
analysis of turbo codes and determine a weight profile for the equiv- 
alent block code [3]. Our approach also requires the the probability 
that an event error occurs given that a certain number of the deci- 
sion statistics are in error. This involves calculating the probability 
that a sum of non-Gaussian decision statistics is less than zero. Our 
approach is to use a Gaussian approximation for the sum, and simu- 
lations show that this approximation provides sufficient accuracy for 
many cases. 

II. CONCLUSIONS 

In the presentation, we will present results for channel quality 
estimates derived from error counts from re-encoding the output of 
an error-correcting decoder. We consider estimates that also employ 
information from an error-detecting code that provides information 
about whether the packet decoded correctly. A framework for ana- 
lyzing the accuracy of such estimators for convolutionally encoded 
data is derived, and results are presented that illustrate the accuracy 
of several different types of estimators for different channels. Our 
results indicate that for the minimum mean-square estimate of the 
signal-to-noise ratio, channel error counts of the type discussed in 
this paper yield mean squared errors in the 0.5 dB to 2.5 dB range 
depending on the range and distribution of the actual signal-to-noise 
ratios. We will also illustrate the performance of these estimates for 
some example adaptive signaling schemes. 

'This research was supported by the U.S. Army Research Office under 
grants DAAH04-95-1-0247 and DAAG55-98-1-0O13. 
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Abstract — In this paper, we consider a kind of 
discrete-time linear systems with uncertain observa- 
tions, in which the additive noises of the state and 
observation equations are correlated with each other. 
By using the Orthogonal Projection Theorem, a re- 
cursive algorithm to obtain the least mean-squared 
error polynomial estimator for the state of these sys- 
tems is proposed. 

I. INTRODUCTION 

In the estimation theory developed by Kaiman, it is assu- 
med that, at any time, the signal to be estimated is contained 
in the observations. However, in many practical situations, 
such as communication systems, there may be a nonzero pro- 
bability (false alarm probability) that any observation consists 
of noise alone; this may be caused by an intermittent failure 
in the observation mechanisms. 

These situations are described by a system whose obser- 
vation equation includes not only an additive noise, but also 
a multiplicative noise component, modelled by a sequence of 
Bernoulli random variables. These systems have been investi- 
gated under the topic of Systems with Uncertain Observations. 
In these systems, even if the noises are gaussian, the condi- 
tional expectation is not a linear function of the observations 
and it requires an exponentially growing memory for its com- 
putation (Jaffer and Gupta [2]). Consequently, for this class 
of systems, attention has been directed to suboptimal estima- 
tors. 

The linear estimation problem in systems with uncertain 
observations, when the interruption process is a binary inde- 
pendent sequence, was treated by Nahi [4]. Later on, Hermoso 
and Linares [3] extended the results of Nahi for the case when 
the state and measurement noises are correlated at consecu- 
tive instants of time. 

More recently, Garcfa-Ligero et al. [1] have studied the 
quadratic estimation problem in systems with uncertain ob- 
servations under the hypothesis of mutual independence of the 
noise and the initial state. 

In this paper we consider systems with uncertain observa- 
tions when the additive noises of the state and the observation 
are correlated at the same instant of time. At an earlier stage, 
we proposed to approach the linear estimation problem in 
these systems, which still had not been studied, to subsequent- 
ly obtain estimators which improved the linear one. Finally, 
we have approached the least mean-squared error polynomial 
estimation problem in these systems as a whole. 

1This work has been supported by the "Comisiön Interministe- 
rial de Ciencia y Tecnologia" under contract PB98-1286. 

This study generalizes the work of Garcfa-Ligero et al. [1] in 
two directions: on the one hand, the independence hypothesis 
of the noises is weakened and, on the other hand, polynomial 
estimators of an arbitrary order u {u > 1) are considered. 

II. POLYNOMIAL ESTIMATION PROBLEM 

In order to approach the aforementioned optimal i/th-order 
polynomial estimation problem, we define a new system {aug- 
mented system), whose state and observation vectors are ob- 
tained as the aggregate of the original vectors and their Kro- 
necker powers up to the i/th-order. Thus the least mean- 
squared error linear estimator of the augmented state based on 
the augmented observations provides the optimal polynomial 
estimator for the state of the original system. 

Then the problem is reduced to obtain the least mean- 
squared error linear estimator for the state of the augmented 
system. This system has uncertain observations, and the state 
and observation noises are correlated with each other. Hence, 
the recursive algorithms proposed by Nahi [4] and Hermoso 
and Linares [3] cannot be applied since the augmented system 
does not satisfy the required conditions for their application. 

By using the Orthogonal Projection Theorem, a recursive 
algorithm to obtain the optimal linear estimator for the state 
of the augmented system is proposed. This algorithm, that 
generalizes the Nahi algorithm, sets up recursive equations 
which allow us to obtain the linear filter as a function of the 
linear predictor and reciprocally. It should also be noted that 
the computation of the error covariance matrices is indepen- 
dent of the estimators computation. This allows us to quantify 
the goodness of the estimation without having to calculate the 
estimators explicitly. 

Finally, as we have indicated above, the optimal polynomi- 
al estimator for the state of the original system is obtained 
from optimal linear estimator for the state of the augmented 
system. 
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Abstract — We study the asymptotic behavior of 

the Bayesian estimator of the parameters of a Hid- 

den Markov Model (HMM) with continuous or finite 

observations and finite state space. 

I. INTRODUCTION 

Maximum Likelihood (ML) is still the most popular ap- 
proach to parameter estimation for HMM's. The established 
technique for the computation of the ML is the use of an algo- 
rithm of the EM type, which has poor convergence properties 
and is computationally expensive. In this paper we consider 
the optimal mean square (Bayesian) estimator as a possible 
alternative to ML. We study the asymptotic properties of the 
Bayesian estimator and prove its consistency under standard 
hypotheses of identifiability of the model class and of positivi- 
ty of the prior probability. We briefly consider the algorithmic 
aspects and provide an explicit formula for the case of finitely 
valued observations. Whether Bayesian estimators constitute, 
from the computational point of view, a viable alternative to 
ML is a question that still has to be settled. 

II. STATISTICAL MODEL 

Let {Xn , n > 0} and {Yn , n > 0} be two sequences, de- 
fined on a probability space (fJ, T, P), with values in the finite 
set S = {1, ■ • •, N} and Rd respectively. The statistical model 
is a parametric class of HMM's defined as follows. On the 
space (O, F) we consider a family (Pe , 0 € 6) of probabil- 
ity measures, with 0 compact subset of Rp, such that under 
Pe the unobserved (hidden) state sequence Xn is a Markov 
chain with transition probability matrix (t.p.m.) Q = (<&j), 
i.e. gfj = P9[Xn+i = j | Xn = i] , and initial probability 
distribution no = (ITQ.) independent of 9 S 9, and possibly 
different from the true probability distribution 7r of Xo- The 
observations Yn are mutually independent given the sequence 
of states, i.e. P8[yn € dyn..Yo 6 dyo | Xo = io,--Xn = in] = 

n^o**8^* G ^k I ^k = *fcl' We assume' moreover, that the 
model set contains P, the true measure, i.e. that there exists 
a €0 such that P = PQ. 

III. BAYESIAN ESTIMATION 

In the Bayesian approach to estimation a prior distribution, 
with density say v(-), is assigned on the parameter space 0. 

The Bayesian (optimal m.s.e.) estimator is given by 9n = 
£[0|yn] where the expectation is computed with respect to 
the posterior density p(6\Yn). Our main theorem generalizes 
to HMM's a classical result on the asymptotic behavior of the 

posterior density [4]. Let us define £(9) = lim ^ logpe(yo). 

Theorem If £(■) has a unique maximum at a, and if the prior 
density v(-) > 0 everywhere then 

The proof is an application of the Laplace expansion tech- 
nique, and requires the development of a uniform version of 
the Shannon-McMillan-Breiman Theorem for HMM's, which 
is of independent interest. Heuristically one can observe that, 

for any e > 0, asymptotically the estimator 9n is well approx- 
imated by 

J9expn(£(9) + e)v(0)d9 

Jexpn(£(0) + e)u{9)d9 ' 

The limit for n —> oo can be identified using the Laplace 
asymptotic expansion of the integrals. The assumption that 
£(0) has a unique maximum at a (identifiability assumption), 

allows us to conclude that 9n is consistent. The technical 
results on which the proof is based can be found in [1], [2], [3]. 

IV. EXPLICIT FORM OF THE ESTIMATOR 

A more explicit expression of the Bayesian estimator can be 
given, properly choosing the prior density u(-). In the special 
case of finitely valued observations and parameter 9 coincid- 
ing with the t.p.m. Qe of Xn, one can adopt the Dirichlet 

prior [5], uD(9) t J], [$^n^7]> where T(-) denotes 

the Gamma function. A long but straightforward algebraic 
manipulation gives 

Lemma The estimator 9n corresponding to VD{9) is given, 
componentwise, by 

E[qij\Y?]=EQ 
NV(X?) + l/2  lyn 
Ni(X?) + k/2 

where Q(Xi,Y") is the a-posteriori measure, i.e. 

Q(X?,Y?) =  l Po{XZ,Y?)vD<ß)dß. 

and Nij(Xi) denotes the number of transitions i —» j in X\. 
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Abstract — In this paper Sudan's algorithm is 
modified into an efficient method to list-decode a 
class of codes which can be seen as a generalization 
of Reed-Solomon codes. The algorithm is special- 
ized into a very efficient method for unique decod- 
ing. The code construction can be generalized based 
on algebraic-geometry codes and the decoding algo- 
rithms are generalized accordingly. Comparisons with 
Reed-Solomon and Hermitian codes are made. 

I. INTRODUCTION 

The minimum distance is not the only measure of the usability 
of a code. For practical purposes it is important that there 
exist an efficient decoding method to make use of the error- 
correcting capability, and it is important that error-patterns 
which are likely to occur in the actual application are usually 
corrected by the decoder. 

In [1] a series of new distance functions on vectors over fi- 
nite sets is introduced and some codes which are good with 
respect to this distance are constructed. However, decoding 
methods are not discussed. This paper provides efficient meth- 
ods for unique decoding and for list-decoding of the codes pre- 
sented in [1] which are based on Reed-Solomon and algebraic- 
geometry codes. The methods are based on Sudan's improved 
algorithm (see [2]). 

II. THE CODES 

Let F, denote a finite field with q elements and suppose that 

P:={Pi,... ,Pn}C¥q with|P|=n (1) 

Consider a polynomial, / € F, [x]. Given some Pt € P we can 
write 

deg(/) 

f=Yl  fi-*(x - P<y with fi<i € ¥1 
3=0 

Definition 1  Let r be a positive integer and let 0 < k < rn. 
Then define the following error-correcting code: 

C(P,r,ft) = {/(P,r)|deg(/)<*} 

with P being as in (1) and 

f(P,r) := (/o,i,... ,/r-i,i;/o,2,... ,/r-i,2;... ; 
/o,n, • • •  ,/r-l,n) 

III. THE DISTANCE 

In C(P, r, k) codewords consists of n chunks of r field ele- 
ments where each chunk corresponds to an element in P. This 
structure is reflected in the following definition of r-distance: 

Definition 2 Let r be a positive integer and let u, v € FIn 

with u = (u0t-.. ,Wrn-i) and v = (v0,-.. , iVn-i). For i € 
{0,... , n — 1} define the r-distance, dr(u, v, i), between u and 
v with respect to the i 'th chunk as follows: 

dr(u, v, i) :-r- minfj > 0 | j = r V uir+j ^ vir+j} 

Furthermore, define the r-distance, dr{u,v), between u andv: 

■ n-\ 

dr(u,v) :— yj dr(u, v,i) 
i=0 

The following theorem (a special case of [1], Theorem 6]) 
gives the main parameters of the code C(P,r,k); 

Theorem 3 C(P,r,k) is a linear code of length rn and di- 
mension k. Furthermore, the minimum r-distance between 
two different codewords in C(P, r, k) is rn — k + 1. 

IV. DECODING 

In the paper Sudan's improved algorithm is modified to de- 
code the code C(P, r, k) beyond half the minimum r-distance. 
The following theorem holds: 

Theorem 4 Let s > 1 be a given parameter and let bs satisfy 

-  Jfc-1 

Then the algorithm finds a list of all codewords within r- 
distance r3 from the received word, where TS = rn— [£s/s\ — 1 
withe, := l(rns(s-l)+(k-l)bs(b,-l))/(2b,)\. Furthermore, 
the number of codewords on the list is at most b, — 1. 

For sufficiently large s it can be seen that r,   ss  rn(l — 

V. CONCLUSION 

In [4] the code construction and decoding algorithm are 
generalized to a setting resembling algebraic geometry one- 
point codes. The generalization make use of so-called increas- 
ing zero bases (see [3], Theorem 1) giving a code construction 
slightly different from [1]. 
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Abstract — In this paper we give a construction of 
all binary duadic codes of length n = pim'p2m2 ■ ■ ■pr

mr, 
by which all binary duadic codes of given length can 
be enumerated. 

I. INTRODUCTION' 

Quadratic residue (Q.R.) codes are error-correcting codes 
with good performance [5]. Leon et al. [3] introduced a 
new family of binary cyclic codes, called duadic codes, which 
not only include Q.R. codes as subsets, but also have anal- 
ogous properties to that of Q.R. codes. Leon et al. [3] also 
proved that binary duadic codes of length n exist if and only 
if n = n?rii where each p; = ±l(mod 8) (see [3, 4]). Ding 

t 
et al. [1] constructed and enumerated all of the binary duadic 
codes of prime length by presenting a cyclotomy to a prime 
p = ±l(mod 8), and Ding [2] gave the construction and enu- 
meration of all binary duadic codes of length pm. However, 
the problem of constructing and enumerating the duadic codes 
with length n = p\mip2mi ■ ■ ■pr

rn'r remains open up to now. 
In this paper, we will completely solve this problem. 

II. MAIN RESULT 

In the sequel, we use 8n(a) to denote the multiplicative 
order of a modulo n. 

We present a cyclotomic approach to the construction of 
all binary duadic codes of length pm, by which the number of 
all binary duadic codes of length pm is given. 

Result 1 Let p = il(mod 8) be a prime, and p € Pei = {p : 
(p — 1)/<5P(2) = 2ei}, ei = 2seo, eo is odd, and let m be a 
positive integer. Then the number of splittings of pm is 

AT(p"1) = ^2-1(22^o)
eM, 

3=0 

m 
where ejt = <j){pk)/25pk{2), e = ^ej.   Thus the number of 

fc=i 
duadic codes of length pm is 4iV(pm). 

Furthermore, we give a construction of all binary duadic 
codes of length n = pimip2m2 • • ■pr

mr, by which all binary 
duadic codes of given length can be enumerated. 

Let 2T(l) denote the number of non-zero 2-cyclotomic 
cosetsofpimip2m2 ■ • -pi™1, and 2i; denote the number of non- 
zero 2-cyclotomic cosets of pimi. 

'This work was supported by National Natural Sicence Foun- 
dation of China(No. 69802002, 69882002 and 69772035), and by 
National "863" (No. 863-306-ZT05-05-2). 

For any I > 1, if gcd(5Pi(2),5p.(2)) = 1 for i ± j, i,j e 
{1,2, •■-,1}, then 

T(l)    =    ]T/n+2 ]T UJii+22    ^2    ti.t^U, 

+ --- + 2,~1t1t2---ti 

>1<12<S3 

= £ ,fc-i 
/ j      U1U2 

fc=l    \ M<i2<-"<ifc 

where i3- e {1,2, • • •, /} for j = 1,2, • • •, /. 

(1) 

Result 2 Let n = pimip2
m2 • • ■Prm"r, Pi = ±l(mod 8) a 

prime for i = 1, 2, • • •, r, N(x) denote the number of the split- 
tings of x, 2ti denote the number of non-zero 2-cyclotomic 
cosets  of pi™',   2T{1)   denote  the  number of non-zero  2- 

r-l 
cyclotomic cosets ofp^pi™2 ■ ■ -pim', T = £ (T(Z)tj+i - 1). 

Then 

N(n) > (2T)2 • 8'-1 • N(Pl
mi) ■ N(p2m2)- ■ ■ N(pr

mr) 

and the number of duadic codes of length n is at least 4N(n), 
where the equality is achieved if gcd(5Pi(2),SPj (2)) = 1 for 
i ^ j, in this case T{1) can be obtained from Equation (1) 
for I = 1,2, • • ■, r - 1. In fact, N(pimi) can be obtained from 
Result 1. 
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Abstract — The structure of cocyclic Hadamard ma- 
trices allows us a much faster and more systematic 
search for binary, self-dual codes.The search for bi- 
nary self-dual [40,20] codes from ZB x Z2 - cocyclic 
Hadamard matrices and two types of D20 - cocyclic 
Hadamard matrices resulted in 25 equivalence classes 
of extremal doubly-even codes. It is worth noting 
that the equivalence classes found in each case were 
disjoint, emphasising the importance of the cocyclic 
structure of the Hadamard matrices used. 

I. INTRODUCTION 

Given a Hadamard matrix H of order n = 8s + 4, if the 
number of +l's in each row and column of if is = 3 (mod 4) 
then the matrix [I, H] generates a binary, doubly-even, self- 
dual [2n, n] code C, where H = (H + J)/2, I is the identity 
matrix, J is the all l's matrix of order n (see [4]). 

If in addition H is of the shape 

-1    1...1 
1 

:       H' 
(1) 

then H' is an (+1, —l)-incidence matrix of a symmetric 
Hadamard 2-(n-l, n/2, n/4) design, thus satisfying for n > 4 
the condition required to produce doubly-even codes. 

II. SELF-DUAL CODES FROM Z5 X Z\ COCYCLIC 

HADAMARD MATRICES 

Here we consider H to be a Z8 x Z* - cocyclic Hadamard 
matrix. 

Prom [2] the structure of a Zt x Z2 - cocyclic matrix, t odd, 
is ~fc to a t x t block-backcirculant matrix W with top row 
Wi, W2, ■ ■ ■, Wt, where 

Wi = 

n,- Xi y< z, 
Xi Arii Zi Ay, 
Vi Kzi Bm BKx, 
Zi AKVi Bxi ABKn, 

!<»<<.    (2) 

[1] gives the conditions which make the search for self-dual 
codes more efficient that any known searches. [1] also includes 
a list of codes obtained from a preliminary search from these 
Hadamard matrices. 

The Hadamard matrices were also converted into the equiv- 
alent (1) form and used to produce more codes from Zs x Z| 
- cocyclic Hadamard matrices. Two equivalence classes of ex- 
tremal doubly-even Z8 x Z|- cocyclic[40,20] codes were found, 
one using the 1 form. 

III. SELF-DUAL CODES FROM Dit 

In [3] Flannery details the conditions for the existence of 
a Hadamard matrix cocyclic over Da, the dihedral group of 
order At,t > 1, given by the presentation 

<a,b\a2t = 62 = (aft)2 = 1 > 

Cocyclic Hadamard matrices developed over Du exist only 
in the case (A, B, JiT) = (1,-1,1), (1, -1, -1), (-1,1,1) for t 
odd, where A and B are the inflation variables and K is the 
transgression variable. The matrices for (A, B, K) = (1, -1,1) 
and (1,-1,-1) possess the most tractable block structure and 
are the only cases dealt with here. 

In the case (A,B,K) = (1,-1,1), if there is a cocyclic 
Hadamard matrix associated with a cocycle in this class, then 
t is the sum of two squares. The cocyclic Hadamard ma- 

trices have the form I „„ _,,_ I where the matri- 

ces M and N are 2t x 2t back circulant matrices and dt is 
the back circulant It x It permutation matrix with first row 
1   0   0   0...    0.. 

The case (A,B,K) = (1,-1,-1) is very prolific, giving 
more Hadamard matrices cocyclic over D« for t odd, than 
the case above.  The cocyclic Hadamard matrices are of the 

form I    ,r^       ,,„   1 , where the 2< x It matrices M and N 
(   M        N     V 
^ ND    -MD J ' ND -MD 

are each the entrywise product of a back circulant and back 
negacyclic matrix (hence are symmetric), and D is the It x It 
matrix obtained by negating every noninitial row of Cit- 

Generating matrices using both the cocyclic forms and the 
(1) form were used. Again it was seen that other equivalence 
classes were obtained by using the (1) form. In general it was 
found that there were more equivalence classes obtained from 
the Dihedral construction than the Zs x Z2 construction. 

In the case (A,B,K) = (1,-1,1) there were two equiva- 
lence classes, one obtained by using the (1) form, with 6400 
codes in each class. 

In the case (A,B,K) = (1,-1,-1) a total of 5621 extremal 
codes were found divided into 21 equivalence classes. Usage of 
the (1) form resulted in 11200 codes in another two equivalence 
classes. 
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Abstract — We consider messages represented as matri- 
ces. The term rank norm of a matrix is denned as minimal 
number of lines (rows and coulmns) which cover all the non 
zero entries of a matrix. We propose a family of codes cor- 
recting term rank errors. These codes are optimal since 
they reach the Singleton-type bound. 

I. INTRODUCTION 

In digital communication, messages are often repre- 
sented as matrices. For example, in FDMA or OFDM 
systems, information is transmitted through a system of 
parallel channels. A message can be considered an TV x n 
matrix where N is the number of channels and n is the 
duration of transmission in number of symbols. 

The model in which the most probable event is a cor- 
ruption of a row or a column is considered. A formal 
description of such errors is given. 

For simplicity we restrict our consideration to the bi- 
nary case. Let X be an N x n binary matrix. Let w(X) 
be the minimal number of lines (rows or columns) which 
cover all the non zero entries of the matrix. The number 
w(X) is known as the term rank of the matrix X. This 
notation is introduced and used in combinatorial matrix 
theory [3]. The term rank function w(X) on the set of all 
matrices of the given size is in fact the norm function. 

The concept of term rank distance for coding theory 
was introduced in 1971 (see, [l][2]. The term "lattice- 
pattern errors" was used that here instead of " term rank 
errors".) 

The maximal norm is iumax = min {N, n}. The term 
rank distance between X and Y is defined as d(X, Y) = 
w{X — Y). Let C be a code, i.e., any set of matrices of 
given size. The term rank distance of a code is defined as 

d = d{C) :=   min   {w{Mi - M,-)|Mi € C, Af,- £ C} 

A code with term rank distance d can correct up to 
(d — l)/2 term rank errors. 

Let M = \C\ be the cardinality of the code C. The 
rate of the code is defined as R := -^%—. 

The next Lemma gives the Singleton-type upper 
bound. 

Lemma 1: Let C be a matrix code of size N x n, rate 
R, and term rank distance d. Then 

A code C is said to be the Maximal Term Rank Dis- 
tance (MTRD) code if it satisfies the equation (1) with 
the equality sign. 

It can be easily shown that codes for rectangular ma- 
trices can be derived from codes for square matrices. 

II. CONSTRUCTION OF CODES 

Note: Rank codes proposed in [4] can correct also term 
rank errors. We consider more general codes which are 
not rank codes. 

A. Known Codes of Term Rank Distance n and 2. 

The codes descirbed here are proposed in [1] & [2]. 

B. New Optimal Codes of Term Rank Distance 3 and n — 
1 

We generalise properties of previous codes in this case. 
Lemma 2: A Code C is a MTRD [n, n-2,3] code if and 

only if any n — 2 rows of the general code matrix can be 
considered as information rows and any n — 2 columns of 
the general code matrix can be considered as information 
columns. 

Let C1- be the dual code of C. 
Lemma 3: A code C1- is a MTRD [n, 2,n - 1] code. 
The general code matrix of a MTRD [n, n — 2,3] code 

can be represented in two equivelent forms. The full con- 
struction is given and illustrated by example. 

III. DECODING 

We discuss also decoding methods including the ma- 
jority decoding and soft decision decoding based on the 
method of trellis decoding similar to those described in 
[5]. 
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Abstract — The Hamming-distance related lattice of 
subcodes of a linear code C is represented by a sub- 
code graph. The dimensions of these subcodes and the 
dimensions of the subcodes of the dual are related by 
MacWilliams-like identities. The coordinate permu- 
tation problem for minimum trellis-complexity is ap- 
proached by introducing suitable vertex functions on 
the subcode graph that reflects the trellis-complexity 
measure. This approach gives a simple new proof 
for well-known results on maximum-distance separa- 
ble (MDS) codes and a slight sharpening of the Wolf 
bound for a large class of binary codes. 

I. THE SUBCODE GRAPH 
Let C C Fn be a linear (n, k) block code over a field F. 
For each subset s = {s\,..., St} of the codeword components 

{1,..., n} = I of cardinality £, we consider the ^-dimensional 
subspace Fs C Fn with support in s and the subcode with 
support in s, Cs = CC\FS. If s' C s, then there is an inclusion 
map v ,s : CV —> Cs ■ The lattice structure of the subcodes C, 
can be illustrated by a subcode graph, which is defined as fol- 
lows. The vertices of the graph are the subspaces C3. There is 
a directed edge from vertex C's to vertex Cs, whenever s'Cs 
and the cardinalities of the two sets satisfy \s'\ +1 = \s\. Note 
that the subcode graph is actually a trellis with n trellis sec- 
tions, where \s\ = £ represents the time index. 

II. MACWILLIAMS-LIKE IDENTITIES 

Using the techniques of the original proof No. 1 of the 
Mac Williams Identity [1], one can derive some simple Mac- 
Williams-like identities, which hold for arbitrary fields. 

In analogy to the full weight enumerator of a linear (n,k) 
code [2], we define the full dimension enumerator by 

a(Y, Z) = a(Vi,.... y„, Zi,.... Z„) = 53 dim(CnFs)YsZ, \> 
sCI 

where s runs through all subsets of cardinality £ = 0,1,..., n 
and Ys and Zi\s denote the monomials YSl-YSt and 
Zti • • ■ Ztn_t, ti € I \ s, resp. The dimension enumerator 
of the code C is defined by 

ä(y) = 5]dim(cnF,)YM. 
s 

Theorem 1 Let ä(Y) and ß(Y) (a(Y, Z) and ß(Y, Z)J be 
the (full) dimension enumerators of a linear (n, k)-code C and 
its dual C   , resp.  Then, the following identities hold 

Ynß{Y~l)   =   ä(Y) + J2(n-k-v(ne)Yt 

1=0 ^ '" 
n 

/3(Z,Y)    =    ^(„_fc-£)   J2   YsZIXs+a(Y,Z). 
1=0 3,  \s\=t 

Remarks: 1.) Theorem 1 holds for any field and can be 
extended to codes that are projective modules over abelian 
artinian rings. 2.) The lowest degree nonzero term of the 
dimension enumerator specifies the minimum distance dmin 
and the corresponding codeword multiplicity fimin ■ 

III. THE PERMUTATION PROBLEM 

For a generic linear block code it is computationally diffi- 
cult to find a permutation of the codeword components that 
results in a minimal trellis [3], [4]. We will approach the per- 
mutation problem by introducing suitable vertex functions on 
the subcode trellis: 

• the dimension vertex function is given by k(C3)   — 
dim C, + dim Ci\3, and 

• (in case of a finite field) the enumerator vertex function 
isgiveiibyc(C,) = |C,|-|C/N.|. 

Each path from the starting node to the ending node in 
the subcode trellis corresponds to a chain of support sets 0 = 
s(o) Q s(i) Q       Q s(n) _ j an{j tj1js determines an ordering 

of the codeword components. Thus, permutation problems 
for a given linear block code can be transformed into a path 
search problem on the subcode trellis. E.g., looking for an 
optimal permutation of the coordinates that minimizes the 
maximum state space complexity is equivalent to finding a 
path through the subcode trellis, which goes through a vertex 
with maximum value k(Cs) of the dimension vertex function. 

This approach allows one to give a simple alternative proof, 
using Theorem 1, to show that permuting the codeword com- 
ponents of an MDS code does not change the dimension of 
the state spaces of its minimal trellis, which is well-known [4]. 
Moreover, for a large class of codes, the Wolf bound (Theo- 
rem 5.5 in [4]) can be slightly sharpened as follows. 

Proposition 1  Let C be a binary linear (n, k) code. If either 

(i) 2 < k < n/2 and the all-one word is in C, or 

(ii) n/2 < k < n — 2 and the all-one word is in C 

then the maximum state complexity K3 is upper bounded by 

Ks < min{fe, n — k} — 1. 
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I. INTRODUCTION 

A tail biting trellis for a code is a trellis with multiple 
starting and ending states which has the following structures: 
(1) the starting and ending state spaces are identical; (2) every 
starting state has a unique ending state and they are the same 
state; and (3) a path in the trellis is a valid codeword if and 
only if its starting and ending states are identical [1, 2]. For 
a block code, tail biting trellis representation may result in a 
significant reduction in trellis complexity [2]. 

II. GENERAL STRUCTURE 

The general structure of an T-section tail biting trellis T 
for an (n,k) linear block code C is depicted in Figure 1. Let 
{0,1, ...,£} denote the set of state boundary locations. Sup- 
pose T consists of 2m starting states and 2m ending states. 
We may view T as a union of 2m isomorphic subtrellises which 
share a common part from boundary location(BL)-ti to BL- 
<2, where ti < <2- Each subtrellis consists of those paths in T 
that connect a state at BL-0 to the same state at BL-L, and 
it has three parts, the header, the center span and the tail. 
The center span is shared by every subtrellis. For 1 < i < 2m, 
let T, denote the subtrellis whose starting and ending states 
are SQ and s[ , respectively. Assume that T\ contains the 
all-zero path. Then the paths in T\ form an (n, k — m) lin- 
ear subcode of C, denoted C\, and the paths in any other 
subtrellis form a coset of C\ in C. Let v = (vi, V2, ■ ■ ■.,vn) 
be a codeword in C. Since all the subtrellises have the same 
common span from BL-<i to BL-<2, there must be a codeword 
w = (u»i, W2 wn) in each subtrellis whose components from 
location-(ti + 1) to location-^ are zeros. For convenience, we 
call the part of first t\ components of w the header, the part 
of last n — t2 components of w the tail. Adding w to each path 
in T\ results in a subtrellis which is isomorphic to T\ and is 
identical to Ti from BL-ii to BL-12- The header and the tail 
of this subtrellis are obtained by adding the header and the 
tail of w to the header and the tail of T\, respectively. This 
subtrellis is the trellis for the coset w + C\ of C\ and w is the 
coset representative. 

Although all the subtrellises share a common span from BL- 
t\ to BL-<2- Two individual subtrellises may share a longer 
span starting from BL-i to BL-j with 0 < i: < <i and <2 < 
j < L. For 0 < i < j < L, let [i,j] denote the interval {i, i + 
L • • ■ ,j}- The zero-span of an n-tuple v = (»i, »2, • • •, «B) is 
defined as the largest interval [i,j] such that r;;+i = Vi+2 = 
■. ■ = VJ = 0. This definition implies that Vi = Uj+i = 1. 
Let v be a codeword in C but not in C\ whose zero-span 
is [i,j] with 0 < i < t\ and <2 < J < L. It is clear that 
[ti,<2] C [i,j]. Let Ti(v) denote the subtrellis for the coset 
v + Ci obtained by adding v to every path in Ti. Then Ti(v) 
and Ti have a common span from BL-i to BL-j. Let v and w 
be codewords in two different cosets of the partition CjC\. Let 

[ii,ji] and [22, J2] be the zero-spans of v and w, respectively. 
Let [13, J3] = [Ji.ii] n [22,72]- Then the co-subtrellises, T\(v) 
and Ti(w), are isomorphic and have a common span from 

BL-23 to BL-J3- 

III. CONSTRUCTION 

For 0 < t\ < <2 < L, let C(<i,<2) denote the set of code- 
words in C which satisfy the following conditions: (1) each 
nonzero codeword v in C(ii,<2) has zero components from 
location-(<i + 1) to location-^, i.e., fltj + i = ^tt+2 = ••■ — 
vt2 = 0, and (2) the part of first ti components of v contains 
at least one nonzero component and the part of last n — ti 
components of v contains at least one nonzero component. 
Then C(X\, <2) is a linear subcode of C. The zero-span of each 
codeword in C(t\,t2) contains [ii,<2] as a subinterval. Let 
m be the dimension of C(t\,t2). There exists an (n, k — m) 
linear subcode C\ in C such that C is the direct sum of C\ 
and C(*i,*2). Let CjC\ denote the partition of C modulo 
C\. Then the vectors in C(ii,<2) can be used as the coset 
representatives of the coset in CjC\. 

Let T\ be the minimal conventional bit-level trellis for C\. 
Form all the co-trellises Ti(v) of Ti with v € C(tut2). All 
these co-trellises have a common span from BL-U to BL-<2- 
Putting all these co-trellises together and sharing maximum 
common spans between them, we obtain a tail biting trellis 
with 2m starting states and 2m ending states. The overall 
complexity of this tail biting trellis depends on the length of 
common span of the co-trellises, the choice of the boundary 
locations, U and <2, of the common span. These parameters 
should be chosen to minimize the trellis complexity. 
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Figure 1: General structure of a tail biting trellis. 
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Abstract — For all linear (n, k, d) MDS over finite 
fields Fpm, we identity a generator matrix with the 
property that the product of trellises of rows of the 
generator matrix will give a minimal tail-biting linear 
trellis, and viewing the code as a group code, identify 
a set of generators, product of whose trellises will give 
a minimal tail biting group trellis. We also give the 
necessary and sufficient condition for the existence of 
fiat minimal linear and group tail-biting trellises. 

I. INTRODUCTION 

Trellis representation of block codes illuminate the structure 
of the code and also useful for efficient decoding. Recently, 
unconventional "Tail-biting trellises" (TBT) have been stud- 
ied for well known codes like (24,12,8) Golay code, hexacode 
and few other short codes [1]. 
Minimal Tail-Biting Trellis: A tail-biting trellis with min- 
imum maximum number of states along with the minimum 
product of all state space sizes, among all tail-biting trellis- 
es for the code under all possible coordinate permutations is 
called a minimal tail-biting trellis for the code. 
The total span bound: [1] If C is an (n,k,d) linear code 
over Fq, then any n-section linear tail-biting trellis for C sat- 
isfies 

n-l 

n^i^-1' 
j=0 

>q 
Hd-i) 

If q = pm, then for group trellises we have 

>P 
s^(d-l) 

(1) 

(2) 

(3) 

Flat Trellis: A tail-biting trellis is said to be flat if it has a 
constant state complexity profile. 

It is well known that any k coordinates of a MDS code can 
be taken as information positions. This means that minimum 
weight vectors (of weight n — k + 1) with circular span n — k 
can be obtained such that the successive n — k + 1 nonzero 
components start from any specified coordinate position from 
{0,1,..., (n — 1)}. It can be shown that any k such vectors 
starting from different coordinate positions will constitute a 
generator matrix for the code. Using these results in the next 
section we specify the generator matrices that give minimal 
tail-biting trellises in terms of these k coordinate positions. 

II. MINIMAL CIRCULAR SPAN GENERATOR MATRICES 

Theorem  1:   For a {n,k) linear MDS code over Fpm, let 
e = gcd(n, k), n' = j, k' = j and n' = ak' + ß, where a and 

'This work was partly supported by CSIR, India, through Re- 
search Grants (No:25(0086)/97/EMRI-II) and (22(0298)/99/EMR- 
II) to B.S.Rajan 

ß are integers. The generator matrix which has only minimum 
weight vectors with consecutive nonzeros and with nonzeros 
starting from the indices given by the set / given below gives 
a minimal linear tail-biting trellis when product of trellises 
corresponding to each row vector is obtained: 

/=    {[{jn'+i(a + l)\i = 0,l,...,ß}u 

{jn' + ß{a +■ 1) + (t - ß)a\i = ß + 1,..., fc' - l}] 

j = 0,l,...,(e-l).} (4) 

Theorem 2: A necessary and sufficient condition for an (n, k) 
linear MDS code over any finite field to admit a minimal linear 
flat-trellis is that "n divides k2". 

Notice that the condition in Theorem 2 is independent of 
the size of the field. 
Theorem 3: For a (n,k) linear MDS code over Fpm, let 
e = gcd{n,mk), n = *, k' = ^. Also, let k' = an' + k" 
where 0 < k" < ri and ri = ak" + ß, where 0 < ß < k" 
and a and a are integers. The group-generator matrix which 
has a + 1 minimum weight vectors with consecutive nonze- 
ros with nonzeros starting from the indices given by the set / 
given below and a minimum weight vectors with consecutive 
nonzeros with nonzeros starting at all other time indices gives 
a minimal group tail-biting trellis when product of trellises 
corresponding to each row vector is obtained, if the rows s- 
tarting at the same index are p-linearly independent (which 
can always be achieved): 

{[{jn' + i(a + l)\i = 0,l,...,ß}u 

{jn + ß(a + 1) + (t - ß)a\i = ß + l, 

j = 0,l,...,(e-l).} 

..*" 1}] 
(5) 

Theorem 4: A necessary and sufficient condition for a linear 
(n, k) MDS code over Fpm to admit a minimal group flat-trellis 
is that "n divides mk2". 

Observe that the condition in Theorem 4 depends only on 
m and not on the characteristic of the field. 
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Abstract — Uniformly efficient trellis decoders are 
known for very few codes, and no general method is 
known that can decide whether such a decoder ex- 
ists. It is shown that this question is substantially 
simplifiable in the case of self-dual codes, when cer- 
tain subcodes meet the Griesmer bound with equality. 
Furthermore, in many cases the result makes it possi- 
ble to count the number of uniformly efficient permu- 
tations. In some cases the existence and number of 
uniformly efficient trellises may be deduced directly 
from the parameters of the code. Among the codes 
that meet the criterion are the [24,12,8] Golay code, 
for which the number of uniformly efficient permu- 
tations is derived, four of the [32,16,8] doubly even 
codes, and the [48,24,12] quadratic residue code, for 
which a lower bound on the number of uniformly ef- 
ficient permutations is derived. 

I. INTRODUCTION 
We consider the permutation problem for trellis decoders 

for block codes. For all necessary definitions, background, 
and references, we refer to Vardy's chapter [4], in particular 
Section 5. 

For any fixed ordering of a code, a minimal trellis may be 
found efficiently. However, an equivalent code will have its 
own minimal trellis, which may be of substantially lower com- 
plexity. As there is no useful distinction between two equiva- 
lent codes for many purposes, the problem is to find a permu- 
tation that minimizes the complexity in some sense. 

Various definitions of optimality may be used; here we are 
concerned with one of the strongest: that of "uniform effi- 
ciency." A permutation is uniformly efficient if the minimal 
trellis for the corresponding code minimizes the state com- 
plexity at each time unit simultaneously, i.e., if Si(w*(C)) < 
Si(n(C)) for all permutations ir and all i. Such a permutation 
may or may not exist. 

There are very few codes for which such permutations are 
known. These include the binary Reed-MuUer codes, MDS 
codes, the [24,12,8] Golay code, the [48,24,12] quadratic 
residue code, and the [16,7,6] lexicode [4]. Classification of 
the existence or nonexistence question for short self-dual codes 
has been carried out by Encheva and Cohen [2, 3]. 

Here we consider self-dual codes. Our main result, when 
it applies, provides a way of demonstrating the existence of a 
uniformly efficient permutation and of counting all such per- 
mutations. This resolves a question posed by McEliece for the 
case of the [24,12, 8] Golay code. 

II. MAIN RESULT 
Theorem. Let C be a self-dual code. Suppose kn/2(C) is 

such that n/2 = gq(kn/2,d), where gq(k,d) = J2iIo W^'l JS 

the Griesmer bound function. Then: 

'This work was supported in part by the U. S. Army Research 
Office under Grant DAAH04-96-1-0377. 

(a) the code satisfies the double chain condition; 

(b) the code meets the DLP bound; 

(c) the code has the smallest state complexity in each com- 
ponent among all self-dual codes of the same length and 
dimension, and at least the same distance; 

(d) the optimum state complexity profile is s; = t —2gq~1 (i, d) 
fori < n/2, and sn-; = s;, where g_1(i,d) = max.{j\i > 

g(j,d)}; 

(e) a permutation is uniformly efficient if and only if it is of 
the form 

Gi 0      " 
0      r(G2)     , (1) 
E        F 

where Ci = (Gi) is a length n/2, distance d code that 
meets the Griesmer bound with equality, and is in chain 
condition order; and where G2 generates a code with the 
same parameters as C\, and is in chain condition order; 
and where r(G2) is the column reverse ofG2. 

III. APPLICATION 

The main result applies to the following self-dual codes: the 
binary [8,4,4], [12,6,4], [14,7,4], and [24,12,8] codes, one of 
the [16,8,4] codes, four of the eight [32,16,8] codes, and the 
[48, 24,12] quadratic residue code; the ternary [12,6,6] Go- 
lay code, and both ternary [24,12,9] codes. The results for 
three of the [32,16,8] binary codes and both ternary [24,12,9] 
codes are new. In addition, using part (e), we may in some 
cases easily find the number of uniformly efficient permuta- 
tions: this happens for the binary [12,6,4], [14, 7,4], [16, 8,4], 
and [24,12,8] codes, and the ternary [12,6,6] and [24,12,9] 
codes. The number of uniformly efficient permutations for 
the [24,12, 8] Golay code is, from part (e), equal to the num- 
ber of Xi2's times the square of the number of chain condition 
orderings of a [12, 2, 8] code, i.e., 35420(3-8!-4!)2 permutations 
out of all 24!, a fraction of approximately 4.81 x 10~7 of all 
permutations. 

The main result may be generalized at the cost of a non- 
trivial increase in the difficulty of application [1]; the general- 
ization applies to many more self-dual codes. 
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Abstract — In this paper we prove that for general 
memoryless binary input channels, most ensembles of 
parallel and serial turbo codes, with fixed component 

. codes, are "good" in the sense that with maximum 
likelihood decoding, their word (or bit) error proba- 
bility decreases to zero as the block length increases, 
provided the noise is below a finite threshold. Our 
proof uses the classical union bound, which shows that 
under very general conditions, if the noise is below a 
certain threshold, the word (or bit) error probability 
is controlled by the low-weight codewords as the block 
length approaches infinity. Our main coding theorems 
then follow from a stydy of the low weight terms in 
the ensemble weight enumerator. Using this method- 
ology, we can prove that the threshold is finite for 
most ensembles of parallel and serial turbo codes. 

I. INTRODUCTION 

This paper addresses the basic question as to whether turbo 
codes, both parallel and serial, are "good'' in the sense of 
MacKay [5]. The earliest work on this problem is in [1, 2], 
where "interleaving gain" was first proposed and investigated, 
but this was not fully rigorous. 

In this paper, we restrict ourselves to memoryless binary 
input channels with maximum likelihood decoding. Our spe- 
cific goal is to prove a general coding theorem for ensembles 
of parallel or serial concatenated convolutional codes, where 
the ensemble is taken with respect ot all possible interleavers. 
The tools we use are the union bound and the ensemble weight 
enumerator. Previously, in [3], we analyzed RA codes on 
AVVGN channels, by deriving the input-output weight enumer- 
ator (IOWE), from which we could compute a signal-to-noise 
ratio threshold above which the ensemble is "good." This 
technique fails for complex component codes, because calcu- 
lation of the IOWE is intractable. Fortunately, to prove cod- 
ing theoremd, the exact IOWE isn't indispensable. Instead, a 
good upper bound of that proves to be sufficient. 

II. UNION BOUNDS 

Consider a linear (n,N) block code C with rate Rc = N/n. 
The union bound on the word error probability Pw of the 
code C over a memoryless binary input channel, using ML 
decoding has the form: 

Pw < y^yAhe (1) 
h=\ 

where Ah denotes the number of codewords in C with output 
weight h. The parameter a is determined by channel. 

1This work was supported by NSF grant no. CCR-9804793, and 
grants from Sony and Qualcomm. 

III. MAIN RESULT 

Theorem 1 For an ensemble of a ■parallel concatenated con- 
volutional code with recursive components, if the number of 
recursive parallel branches is k > 2, then there exists a posi- 
tive number -y„, such that for any fixed a > j0, 

Pw     = 

Pb  = 

0(n-*"+£) 

0(rrk+1+<) 

(2) 

(3) 

for arbitrary e > 0. 

Theorem 2 For an ensemble of a serial concatenated con- 
volutional, code with recursive inner code, if the free distance 
of the outer code d'B is at least 3, then there exists a positive 
number y0, such that for any fixed a > 70, 

Pw    =    0(r. 

Pb     =    0(r, 

for arbitrary e > 0. 

,-L 2 

dl+1 

J+t). 

J+t). 

(4) 

(5) 

IV. REMARKS 

The thresholds derived by classical union bound are by no 
means the best possible. In the following table, we compare 
those thresholds for RA codes over BSC derived by union 
bound with those by typical set decoder bound [6]. 

1 R UB:7„ TD:7, Capacity 

3 1/3 0.091 0.132 0.174 
4 1/4 0.132 0.191 0.215 
5 1/5 0.1Ü3 0.228 0.243 
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Abstract— We construct irregular turbocodes with systematic 
bits that participate in varying numbers of trellis sections. By 
making the original rate 1/2 turbocode of Berrou et al slightly 
irregular, we obtain a coding gain of 0.15 dB at BER = 10~4. 

I. IRREGULAR TURBOCODES 

Recently, significant coding gains have been obtained by 
making the codeword bits of low density parity check codes 
participate in varying numbers of parity checks (c.f. [1,2]). 

What we call an irregular turbocode [3] has the form shown 
in Fig. 1, which is a type of "trellis-constrained code" [3]. One 
way to describe the code is by a degree profile, /<* € [0,1], d € 
{1,2,... , D}, where fd is the fraction of codeword bits that 
have degree d and D is the maximum degree. Each codeword 
bit with degree d is repeated d times before being permuted 
and connected to the trellis for a convolutional code. If the 
bits in the convolutional code are partitioned into "systematic 
bits" and "parity bits", then by connecting each parity bit to a 
degree 1 codeword bit, we can encode in linear time by copy- 
ing, permuting and encoding the systematic bits. 

The overall rate R of an irregular turbocode is related to the 
rate B! of the convolutional code and the average degree d by 
d(l - R!) — 1 - R. So, if the average degree is increased, the 
rate of the convolutional code must also be increased (e.g., by 
puncturing or redesign) to keep the overall rate constant. 

II. DECODING IRREGULAR TURBOCODES 

Fig. 1 can be interpreted as the graphical model (factor 
graph, Bayesian network, etc.) [4, 5] for the irregular tur- 
bocode. Decoding consists of applying the sum-product al- 
gorithm (a generalized form of turbodecoding) in this graph. 

The decoder first computes the N channel output log- 
likelihood ratios L°,... ,L°N, and then repeats each log- 
likelihood ratio appropriately. For bit i with degree d,, set 
L,,i 4- L°,... ,L,td <- L\. Next, the log-likelihood ratios 
are permuted and fed into the BCJR algorithm for the convo- 
lutional code, which, for bit i, produces d a posteriori log- 
probability ratios, L\)1,... , L\d. The current estimate of the 

log-probability ratio for bit i is Li <- L° 4- Sfc=i (^'i,k ~ 
Li<k)- The inputs to the BCJR algorithm for the next itera- 
tion, are computed by subtracting off the corresponding out- 
puts from the BCJR algorithm produced by the previous itera- 
tion: Litk *- Li- L'ik. 

III. DISCUSSION 

Fig. 2 shows the simulated BER-Et,/N0 curves for the orig- 
inal regular turbocode and an irregular turbocode that we came 
up with by making 5% of the codeword bits in the original tur- 
bocode have degree 10 The irregular turbocode clearly per- 
forms better than the regular turbocode for BER > 10~4. 

For high Eb/N0, most of the errors for the irregular tur- 
bocode were due to low-weight codewords. Our permuter 
was drawn from a uniform distribution over permuters, but 

Convolutional code 

Hep21    I Rep2|    | Rep 3 

Ö  Ö  O      — O O 

Rep3 

/3 N bits 

Rep DI    | Rep D 

fD N bits /,W bits   /, N bits 

Figure 1: A general irregular turbocode. For d = l,..., D, fraction 
fd of the codeword bits are repeated d times, permuted and connected 
to a convolutional code. 
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Figure 2: Performances of the original block length N = 131,072 
turbocode (dashed line) and one of its irregular cousins (solid line). 

we expect the BER "flattening" effect can be significantly re- 
duced by carefully designing the permuter and the convolu- 
tional code, possibly by extending the method of "density evo- 
lution" to convolutional codes. We are also studying ways of 
constraining the degree 1 "parity" bits (i.e., increasing their 
degree) to eliminate low-weight codewords. 

For BER > 10-4 this irregular turbocode performs in the 
same regime as the best known irregular Gallager code [2]. 
We expect the improvement in performance to be even more 
significant for lower-rate codes, since the constituent convo- 
lutional code can have lower-rate, thus eliminating many low- 
weight codewords while retaining the benefit of irregularity. 
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Abstract — 
The purpose of this paper is to contradict a com- 

mon myth about turbo codes. We are specifically 
addressing R = 1/3 parallel-concatenated codes using 
systematic, recursive constituent codes. 

Myth: Turbo codes constisting of constituent codes 
with large memory order (i.e., a large number of trel- 
lis states) are not as effective as the original Berrou- 
Glavieux-Thitimajshima turbo code [1] in the water- 
fall region of small signal-to-noise ratios (SNR's). 

This myth is contradicted by a turbo code whose 
recursive constituent codes have 256 states. Decod- 
ing this turbo code with the BCJR APP decoder gives 
bit-error-rate (BER) and frame-error-rate (FER) per- 
formance better than the original (Berrou) turbo- 
code at all SNR's. 

I. SUMMARY 

The iterative BCJR APP decoding algorithm [1] [2] per- 
mits relatively quick decoding of turbo codes. Although the 
decoding algorithm is suboptimal, it does perform very close 
to the optimal maximum likelihood (ML) decoder except at 
very small SNR's in the waterfall region. The iterative algo- 
rithm has difficulty starting the convergence toward a solution. 
The first decoding iteration(s) of the constituent codes must 
produce a posteriori estimates that are good enough a priori 
estimates to push the subsequent iterations towards the ML 
solution instead of stalling the convergence in some region of 
the solution space. In general, at very small SNR's, a system- 
atic, recursive constituent code with short cycle length will 
produce better extrinsic APP estimates for the information 
bits than a code with a long cycle length. For example, the 
8-state code below has a cycle length of 3 (where the paren- 
theses just indicate the periodic cycles within the recursive 
portion of the impulse response): 

[1 + D + D2 + D3] A [1111] 

[1 + D3] ~ [1001] 
1(110)(110)... 

The single one bit, out in front, can be considered as the feed- 
forward portion of the impulse response. A turbo code using 
this constituent code does give good extrinsic estimates at the 
start of the iterative decoding algorithm at very small SNR's 
(hence it starts to diverge away from the starting point), how- 
ever it has difficulty finishing the convergence to the ML so- 
lution. We can "strengthen" the constituent code while re- 
taining the short cycle length by increasing the complexity of 
the feedforward portion of the impulse response. Consider the 
code: 

[110000011] 

[111] 
1011011(110)(110). 

We call this a Big Numerator-Little Denominator (BN-LD) 
code. It is described by a trellis with 256 states. The turbo 
code using this 256-state constituent code has an improved 
ability to finish the convergence to the ML solution compared 
to the previous 8-state code with a single one in the feed- 
forward portion. However, analogous to feedforward convolu- 
tional codes, the increased complexity of the feedforward por- 
tion of the impulse response does somewhat reduce the con- 
vergence start-up ability that is due to the short cycle length. 
See Fig.l for BER and FER performance simulations of this 
256-state BN-LD turbo code compared to the (Berrou) code. 

The feedforward portion of the BN-LD code was not picked 
at random, but rather specifically designed to produce an ad- 
ditional "thinning" of the closest codewords due to weight-2 
inputs. This is a new degree of freedom that can be exploited 
to give a new distance profile for the lowest weight codewords. 

A useful application of BN-LD codes is as a replacement 
for the accumulator code, [1, ^] => (1)(1)(1)..., which is 

used in serial concatenation and other schemes [3]. The BN- 

LD accumulator code has the form [1, fe+oj] where the order 

of the numerator polynomial n(D) is two or greater. For ex- 

ample, the code [1, li^jil] => 1110(1)(1)(1)... has a better 
ability to finish converging to the ML solution compared to 
the standard accumulator code. 
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Figure 1: Simulation results for the rate-|, 256-state BN-LD 
turbo code (labeled "Big Numerator") and the Berrou turbo code. 
(The interleaver frame size is 16,384; and 18 iterations are used.) 
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Abstract - This paper describes a new class of codes, 
chaotic turbo codes. They were born from a symbiosis 
between a chaotical digital encoder and a turbo code. This 
paper investigates the most important properties of both 
chaotic digital encoders and turbo encoders in order to 
understand how the two complement each other. A Chaotic 
Turbo Encoder is then described and initial results will be 
presented. 

I. INTRODUCTION 

A chaotic digital encoder was defined for the first time in [1] 
as a non-linear digital filter with finite precision (8 bits) 
which behaves in a quasi-chaotic fashion, both with zero 
and nonzero input sequences. A simple chaotic encoder is 
shown in Figure 1 [1]. 

Mapper H-EP 
■4- 

Figure 1: Chaotic Digital Encoder 

The main features of chaotic digital encoders that are used 
in this paper are: 
• The system is digital which makes possible its 

integration with a turbo code. 
• The output of a chaotic digital encoder with arbitrary 

inputs has a broadband noiselike spectrum. 
• The auto correlation function of the output is similar to 

an uncorrelated noise sequence. 
• The outputs of a chaotic digital encoder with almost all 

arbitrary inputs are uncorrelated to the input for almost 
all choices of initial conditions. 

• The outputs of a chaotic digital encoder with the same 
input sequences are uncorrelated to one another for 
almost all choices of different initial conditions. 

• For almost all choices of input for two identical chaotic 
digital encoders having different but arbitrarily close 
initial states, the states of the two encoders will diverge. 

Another important result in this area is that chaotic circuits 
taken from an appropriate class can be made to synchronise. 
It has been shown that a chaotic system, in the presence of 
a continuous perturbation, is able to asymptotically track a 
replica of itself if it can be decomposed into subsystems with 
stable Lyapunov exponents. Binary digits, X^, are presented 
one at a time to the encoder and mapped onto either 0 or 
2(L-l)   xhe additions are on L bits and the arithmetic is 

modulo 2L. The non-linear map is the LCIRC bloc which 
performs a rotate left operation. There are only two delay 
elements (D) in the encoder, of L bits each. Each encoder 
output, Yk, is L bits wide and can modulate one or more 
pulses. 

II. CHAOTIC TURBO ENCODER 

The chaotic digital encoder shown in Figure 1 could replace 
the recursive systematic encoder used in a turbo code [2]. 
The key element in a turbo encoder is the interleaver. The 
role of the interleaver is to feed into the second encoder the 
same data but in a different random order, such that at the 
receiving end, each decoder to be able to make 
"independent" decisions for the same data bit. A similar 
effect to interleaving can be achieved with the chaotic 
digital encoder if the initial states are different. Both 
encoders use feedback registers, one using binary data, the 
other L-tuples. The advantage of using a chaotic encoder 
in a turbo encoder consists in the possible elimination of the 
interleaver, therefore reducing delay in the system. The 
only difference appears in the non-linearity inserted in the 
chaotic digital encoder. 

II. CONCLUSIONS 

The paper described a chaotic turbo encoder. Simulation of 
the new Chaotic Turbo Codes are expected to show an 
improvement on the results reported in [3], which are based 
on a decision directed state feedback decoder. Similar work 
in the area of secure communication using chaotic signals 
without coding was reported in [4] for both AWGN and 
mobile channels. The use of turbo codes might prove a key 
element in reducing the high signal-to-noise ratios required 
by chaotical systems. 
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Abstract — If a random codebook for lossy source 
coding is generated by a non-optimum reproduction 
distribution Q, then the entropy of the index of the D- 
matching codeword is reduced by conditioning on the 
codebook: the number of bits saved is equal to the di- 
vergence between the "favorite type" in the codebook 
and the generating distribution Q. 

I. STATEMENT OF MAIN RESULT 

Consider coding a source word X = X\...Xi, generated i.i.d. 
by a distribution P over a finite alphabet X, into a code word 
Y = Y\...Yi ("reconstruction") from a finite alphabet y, under 

the distortion constraint d(X, Y) = 1// £^\ d(Xi, Yi) < D. 

As shown in [1], if a codebook Yi,Y2>... of words in y' is 
generated i.i.d. according to a distribution Q, and if we de- 
note by Ni the index of the first codeword that satisfies the 
distortion constraint, then 

log(Wi) -> R(P,Q,D) in probability, 

where the constant R(P,Q,D) is given by, [2], 

R{P,Q,D)=min{lm(P\\Q',D) + D(Q'\\Q)y 

(1) 

(2) 

Here £)(•) denotes divergence (or relative entropy), and 
the function Im denotes the "lower mutual information" 
Im(P\\Q,D) = mmwI(P,W), where I(P,W) denotes the 
mutual information associated with input distribution P and 
transition distribution W from X to y, and the minimization 
is taken over all W's such that the input P induces output 
distribution Q and average distortion less than or equal to D 
(if no such W exists then Im(P\\Q,D) is equal to infinity). 
The "mismatched" coding rate function R(P,Q,D) is greater 
than or equal to the rate distortion function of the source, 
with equality if and only if Q is an optimum reproduction 
distribution which realizes the rate distortion function. 

It was further shown in [2] that for large word length, the 
random type T/v, of the £>-matching codeword YN, concen- 
trates around a limiting distribution: 

TN, —> Q*P,Q,D as / —>• oo in probability, (3) 

where QP^Q^D '
S
 the distribution Q' which achieves the min- 

imum in (2). This distribution, called "the favorite type" 
(although <5P,Q,D 

ls m general not an /-type), strikes the opti- 
mum balance between covering efficiency and frequency in the 
codebook. It follows from (3) that most of the first 2iR{p<Q'D) 

codewords in the codebook are asymptotically useless; only 
those having a type close to QptQto - whose fraction in the 

codebook is only ss 2~lD^Qp-^-D^Q^ - have a good chance to 

be the first to D-match the source word. In a sense, we are 
paying extra D(QPQ D\\Q) bits in coding rate. Our main re- 
sult shows that this redundancy can be removed by entropy 
coding conditioned on the codebook. 

Theorem 1 If Q is positive everywhere, then 

\im\H(Nl\Y1,Y2,...)    =    Im(P\\Qp,Q,D,D).      (4) 

Note that without conditioning on the codebook, the in- 
dex Ni is approximately uniformly distributed over the range 
{l...2lR{P'Q'D)), so its entropy is equal to R(P,Q,D). 

II. EXAMPLE 

Assume X = y = {0,..., \X\ - 1}. Consider a uniform 
codebook generating distribution Q(y) = l/\y\ Vj/, and asym- 
metric distortion measure of the form d(x,y) = d{y — x), where 
the subtraction is modulo-IAI. Then 

R(P,Q,D) = \og\X\-Hn 

and 

'This work was supported in part by the BSF grant no. 9800309. 

QP,Q,D = P*V* ; 

hence the conditional index entropy (4) is given by 

Im(P\\Qp,Q,D,D) = H(P * V) - Hmax, 

where Hmax and V denote the maximum-entropy under a D- 
constraint and the maximum-entropy achieving distribution, 
respectively: 

Hmax=H(V')= max H(V) , 
V:  Y\    V{y)d(y)<D 

and the * sign denotes a circular convolution (i.e., P * V* is 
the distribution of the independent sum of a random variable 
~ P and a random variable ~ V). 

A generalization of this work to the continuous case links 
the conditional entropy (4) with the entropy of dithered lattice 
quantizers. 
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Abstract — We consider adaptive sequential lossy 
coding of bounded individual sequences. The encoder 
and the decoder are connected via a noiseless channel 
of capacity R and both are assumed to have zero delay. 
No probabilistic assumptions are made on how the se- 
quence to be encoded is generated. For any bounded 
sequence of length n, the distortion redundancy is de- 
fined as the normalized cumulative squared distortion 
of the sequential scheme minus the normalized cumu- 
lative squared distortion of the best scalar quantizer 
of rate R which is matched to this particular sequence. 
We demonstrate the existence of a zero-delay sequen- 
tial scheme which uses common randomization in the 
encoder and the decoder such that the normalized 
maximum distortion redundancy converges to zero at 
a rate n-1'5 logn. 

I. SUMMARY 
A (randomized) zero-delay sequential source code of rate 

R — logM is described by an encoder-decoder pair which 
are connected via a noiseless channel of capacity R. It is 
assumed that both the encoder and the decoder have access 
to a common sequence of random variables {Ui}iZi, where 
each Ui is uniformly distributed on the interval [0,1]. The 
input to the encoder is a sequence of real numbers x\,xi,... 
assumed to be bounded such that Xi € [0,1] for all i > 1. 
At each time instant i = 1,2,..., the encoder observes Xi 
and the random number Ui. Based on i,, Ui, and the past 
input values x'~l = (xi,... ,Xi-i), the encoder produces a 
channel symbol yt e {1,2,... ,M} which is then transmitted 
to the decoder. After receiving yt, the decoder outputs the 
reconstruction value Xi based on Ui and the channel symbols 
y' = (yi,... ,yi) received so far. 

More formally, the code is given by a sequence of encoder- 
decoder functions {fi,gi}i^=i, where 

/i:[0ll]ix[0,l]->{l,2)...,M} 

and 

9i {1,2,..., MY x [0,1] -+[0,1]. 

so that yt = fi(x\ Ui) and Xi = 9i{yl, Ui), i = 1,2, — Note 
that there is no delay in the encoding and decoding process. 
Zero-delay schemes have an obvious advantage over other cod- 
ing methods (such as block codes) in applications where de- 
coding delay is a crucial factor. 

The normalized cumulative squared distortion of the se- 
quential scheme at time instant n is given by 

Dn(X") = ±j2(Xi-xi)2 

This research was supported in part by the Natural Sciences 
and Engineering Research Council (NSERC) of Canada and DGES 
grant PB96-0300. 

where the dependence of Dn on the randomizing sequence is 
suppressed in the notation. The expected cumulative distor- 
tion is Dn(x

n) = E[Dn(x
n)], where the expectation is taken 

with respect to the randomizing sequence Un = (Ui,... , Un). 
Let Q denote the collection of all M-level scalar quantizers 

over [0,1]. For any sequence xn, let D*n{x
n) denote the mini- 

mum normalized cumulative distortion in quantizing xn with 
an M-level scalar quantizer, that is, let 

D*n(x
n) = ^m-f](xi-Q(xi))2. 

Note that to find a Q € Q achieving D*n(x
n) one has to know 

the entire sequence xn in advance. The next theorem asserts 
that there exists a zero-delay sequential source code of rate R 
which, for any bounded input sequence, performs asymptoti- 
cally as well as the best scalar quantizer of rate R matched to 
the entire sequence. 

Theorem 1 For any R = logM there exists a randomized 
zero-delay sequential source code {fi,gi}i^Li of rate R whose 
expected normalized cumulative distortion D„(xn) satisfies, 
for all xn € [0,l]n, 

Dn(xn)-D:(xn)<Cn-1/5logn, 

where C is a constant independent of n and x". In particular, 

limsup    max    ( Dn(xn) — D^(xn) ] < 0. 
n_>oo  B»e[o,i]»\ / 

The construction of the coding scheme in the theorem uses 
an appropriately modified version of the exponential weighting 
method of Vovk [1] in which the class of "experts" is a finite 
set of judiciously chosen reference quantizers. Ideally, the cu- 
mulative losses of these experts should be used to form the 
weights in the exponential weighting scheme. A substantial 
difficulty is that these losses are not available at the decoder 
since (unlike in sequential lossless coding) the decoder does 
not have access to the past source outputs. We overcome this 
problem by periodically transmitting approximate versions of 
the cumulative losses of the reference quantizers. We show 
that using only a small fraction of the overall available rate 
to transmit the approximate cumulative losses, the proposed 
scheme does asymptotically as well as a hypothetical scheme 
in which the decoder has full access to the cumulative losses 
of the reference quantizers (such a scheme requires a channel 
of infinite capacity). 
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Abstract — In this work we consider the problem of 
determining the redundancy of successive refinement 
codes and codes with side information, as a function 
of their blocklength. It is shown that successive re- 
finement codes accumulate an 0(log n/2n) redundancy 
term at each stage of the encoding process, which 
may result in a considerable degradation of the final 
description. Redundancy result for codes with side 
information is also presented. 

I. INTRODUCTION 

The redundancy of a code is the difference between the av- 
erage performance of the code and the theoretically expected 
performance. A smaller redundancy is achieved as the block- 
length increases. However, the increase of the block length 
results in an exponential increase in coding complexity. There- 
fore, it is interesting to study the tradeoff between the redun- 
dancy and computational complexity. 

In a lossy source coding the redundancy of a code at rate 
R is the difference between its average distortion and the 
distortion-rate function. Originally, the redundancy problem 
in the lossy source coding was considered by Pile.However, 
only a few years ago, the problem was finally solved by 
Zhang et al.[2]. It has been shown that in the coding of 
a discrete memoryless source {Xi}%l0, X ~ px, the dis- 
tortion redundancy of a code with a fixed blocklength n, is 
\drid(px,R)| Inrt/2n+o (Inn/n), where diid(px, R) is the par- 
tial derivative evaluated at R and assumed to exist. 

II. MAIN RESULTS 

THE REDUNDANCY OF SUCCESSIVE REFINEMENT CODES 

Successive refinement is a coding method that progressively 
improves previously obtained descriptions of the original data 
using additional information. The problem arises in a variety 
of applications, where coarse representation of data is always 
transmitted, and occasionally, finer reproduction is required. 
Furthermore, successive refinement scheme is also a technique 
for fast encoding since it possesses a tree structure. A Tree 
Structured Vector Quantizer (TSVQ) may be constructed fol- 
lowing the successive refinement approach, which reduces ex- 
ponentially the computational complexity. Moreover, it seems 
that for successively refinable source[l], there is no penalty 
due to the multi-stage encoding. Nevertheless, even for suc- 
cessively non-refinable sources this technique is still computa- 
tionally efficient. Now it is clear that the investigation of the 
redundancy aspect is crucial for a performance estimation of 
the successive refinement codes as well as for analyzing fast 
encoding schemes such as TSVQ. 

The i-th stage redundancy of an optimal /("-stage successive 
refinement code2 is given by the following theorem. 

Theorem 1 ; Let Ri > 0 be the rate of stage i, i = 1... K. 
For any discrete memoryless source X ~ px and K distortion 
levels di > ... > d{< > 0, the distortion redundancy of a stage 
i, associated with an optimal code scheme, is 

Vi(px,Ri,R2, 

d - £ dR 

..,RK,n) 

■dK(px,Ri,R2,- ,RK) 
Inn        /lnn\ 

where blocklength n is sufficiently large. 

THE REDUNDANCY OF CODES WITH SIDE INFORMATION 

Another closely related problem, is the redundancy prob- 
lem of codes with side information. It arises when there exists 
a joint source (X, Y), where X is referred to as the source, 
while Y is referred to as the side information and available 
at the decoder. The decoder reproduces the source using the 
knowledge of the side information. The redundancy of an 
optimal code with side information is given by the following 
theorem. 

Theorem 2 ; Let Ry > 0 be the rate of the code. For any 
joint discrete memoryless source (X, Y) ~ pxy and a distor- 
tion level dy > 0, the distortion redundancy associated with an 
optimal side information code operating at rate Ry is 

Vy(pxY,Ry,n)     - 
d 

dRv 
dy{pXY,Ry) 

Inn        /lnn\ 

-2n-+0(lT)> 
where blocklength n is sufficiently large. 

III. CONCLUSION 

An interesting consequence of our result is that any mul- 
tistage encoding scheme will accumulate the redundancy at 
each stage, which may lead to a significant increase in the 
overall distortion. An important example of this phenomenon 
is TSVQ. Practical implementations of TSVQ show that it 
can never achieve the performance of a block code, even for 
successively refinable sources. Until this work there was no 
theoretical understanding of this fact. 
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Abstract — Given an achievable quadruple 
(Ri,R2,Di,D2) for successive refinement with D2 < D\, 
the rate loss at step i is defined as Li = Ri—R(Di). It is 
shown that for a memoryless source and for MSE, an 
achievable quadruple can be found such that Li < 1/2 
bit. Moreover, an achievable quadruple can be found 
with L2 arbitrarily small and Li < 1/2 bit if D% is small 
enough. If an information-efficient description at D\ 
is required (i.e. L\ =0), then there exists an achiev- 
able quadruple with L2 < 1 bit. The results are inde- 
pendent of both the source and the particular D\, D2 
requirements and extend to any difference distortion 
measure. The techniques employed parallel Zamir's 
bounding of the rate loss in the Wyner-Ziv problem. 

I. INTRODUCTION 

If one can .design two-step compression systems that incur no 
rate loss relative to optimal one-step coding, (i.e. if there 
is an achievable quadruple (Ri,Ri + AR,Di,Ü2) such that 
Ri = Ä(Di) and AR = R{D2) - R(Di)), the source is said 
to be successively refinable (SR) [1]. In [2] Koshelev intro- 
duced the notion of divisibility, and argued that successive 
refinement is possible if there exists a channel Qr/2,c/i|x such 
that i.) the random variables U\ and U2 defined through this 
channel achieve the rate-distortion function of X at distor- 
tions D\ and D2, respectively, and ii) the Markov relation 
X —> U2 —> U\ is satisfied. Necessity was later proved by 
Equitz and Cover [1], who also used the Gerrish problem an 
example of a non-SR source with discrete alphabet. 

Rimoldi [3] determined the achievable region for two-step 
compression of a discrete-alphabet memoryless source. In a 
subsequent paper, Effros [4] extended Rimoldi's results to han- 
dle stationary sources and Polish alphabets. 

Given an achievable quadruple (Ri, R2, D\,D2), we define 
the rate loss of at the ith stage as 

Li = Ri-R(Di),   ie{\,2} 

Let Di and D2 be fixed (with D2 < Di). For a succes- 
sively refinable source, there exists an achievable quadruple 
for which L\ = 0 and L2 = 0. For a non-successively refin- 
able source, it is not possible to find achievable quadruples for 
which L\ and L2 are zero simultaneously. It is clear that it 
is important to investigate whether L\ and L2 can be made 
small simultaneously for any given source. Effros [4] computed 
for the Gerrish problem that the smallest possible rate loss L2 
when forcing L\ = 0 is a relatively small fraction of a bit for 
a fixed Di as D2 varies. 

In this paper we provide source-independent bounds for the 
rate loss at both stages. The main result is that for squared 
error as the distortion measure, it is always possible to find an 
achievable quadruple for which the rate loss satisfies L\ < 1/2 
bit and L2 < 1/2 bit, a result which is independent of the 
source and D\, D2 requirements. 

II. SUMMARY OF RESULTS 

We assume that D\ and D2 are some fixed distortion require- 
ments satisfying D2 < D\. We will also assume an MSE 
distortion measure. 

Theorem 1 There exists an achievable rate pair (Äijifo) 
with Li = Ri- R(Di) < 1/2 bit, i G {1,2}. 

Theorem 2 Let D\ be fixed, and let D* —> 0 as k —► 
co. There exists a sequence of achievable quadruples 
{(Äi,Ä*)}ELi with L\ < 1/2 bit and lim* L\ = 0. 

Theorem 3 There exists an achievable rate pair (iZijife) 
with L\ = 0 and L2 < 1 bit. 

Theorem 4 Let the iid source {Xi}^ have variance crx. 
There exists an achievable rate pair (Ri,R2) for which 

Li<-^ 2- A 
bits,    i € {1, 2}. 

!This work was partially supported by a CONACYT (MEXICO) 
doctoral grant (110412/110461) 
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9632266. 

Theorem 5 Let the iid source {X}%x have mean fix and 
variance a\ and let X* ~ f^{ßx,ax)- There exists an achiev- 
able rate pair (R\,R2) with Li < D(X\\X*), i = 1,2. 
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Abstract — A 'single-user' based broadcast approach 
is adapted for the multiple access very slow fading 
channel. This strategy facilitates to adapt the reli- 
ably conveyed rate to the actual channel conditions 
experienced by each of the users without having any 
feedback links to the transmitters. This strategy im- 
plements simultaneously a continuum of capacity re- 
gions vs. outage pairs rather than a single value as is 
the case in the standard approach. We address specif- 
ically expected rates and outages, which are compared 
to ergodic capacities and also the capacity vs. outage. 
The main results presented and demonstrated for the 
two-user independent Rayleigh faded channel, are ex- 
tended to the general multiple access slowly fading 
channel. 

I. MODEL, ASSUMPTIONS AND PRELIMINARIES 

We address here the standard Multiple Access Channel 
(MAC) model subjected to a static fading, which is not nec- 
essarily independent among the If-users. Complex notations 
are used throughout. Here yi, the received signal at a discrete 
time instant-i, i = 1, 2 ... N, equals j/i = ]>^(=i puxu + rii. 
The i-th coded symbol of the Z-th user is designated by xu 
and rii stands for the i-th iid additive Gaussian noise sample 
with variance E\n\2 = 1. The fading power associated with 
user I is designated by su = \pu\2 , I = 1,2 ,..., K, and is 
assumed to be static (su = si). The realizations of the fading 
coefficients {pa} are not available to the transmitters or the 
receiver, which are aware though of the underlying statisti- 
cal law only. We adhere henceforth to the single block fading 
channel model where the block length, N ;§> K, giving rise to 
equal achievable rates for channel state information available 
or not at the receiver. 

In parallel to the single-user case [1], the capacity vs. 
outage for a K user system is associated with the event of 
(si, S2 ,..., SK) satisfying simultaneously the multiuser equa- 
tion set for achievable rates where the signal to noise ratio 
reflects also the interference emerging from those users who 
do not belong to the decodable set [2]. The availability prob- 
ability is associated with the simultaneous satisfaction of the 
equation set and outages are associated with the complimen- 
tary event. For equal rates these probabilities for a two user 
and many user case has been investigated in [2]. Clearly, ex- 
pected rates are naturally associated to outage probabilities. 

II. THE BROADCAST APPROACH CHANNEL 

Single-User: Assume now that the fading power random 
variable s is continuous and let R(s) stand for the reliably 
conveyed information rate at fading level s which designates a 
certain realization of the fading (power) random variable. The 
transmitter views the fading channel as a degraded Gaussian 
broadcast channel with a continuum of receivers each expe- 
riencing a different signal-to-noise ratio specified by s ■ SNR. 

The receiver which experiences a realization s is able to de- 
code its own data stream (indexed by s) and all those streams 
indexed by u < s (intended to be decoded at receivers with 
lower signal-to-noise ratios uSNR). Within this framework in 
[3] the achievable rates, expected rates and outages have been 
studied and the power assignment i>(s) has been optimized. 

Two-Users: Let uik stand for the effective SNR of user 
k = 1,2. It can be shown that {wjt} is given by the solution 
of the equation pair wi = . , "l ,—r, a>2 = . , Si ,—r, where 

Vk(s) = / Vk{u)du, k = 1,2. We express wi = u>i(si, S2), 
W2 = W2(«i, «2) as explicit functions of the actual fading real- 
izations (si, S2) for specified power assignments vi(s), V2(s). 
The simultaneously achievable rates of each of the users 

■Ri(si, «2), Ä2(si, «2) respectively depend now on both fad- 
ing realizations si and S2, and are given by Rk(si, S2) = 

Wfc(«l>»2)   -vdyk(u) 
1+uVkW 1,2.   The expected rates are now P Jo 

RkT = EWi, «2)) = fr (X - *"<-»(«)) TTÄJ. where 

FUk (u) designates the probability distribution of the random 
variable <jfc(si, S2). Also here the functions t/i(w), y2(u) can 
be optimized as to maximize the expected rates, or the total 
expected throughput ÄIT + R2T- In parallel to the single user 
case, also here expected rates per outages can be considered 
by replacing the original probability distribution of the fading 
powers Fsl)S2(a, ß) by F*°S2(a, ß) the conditional distribu- 
tion function of si, S2, conditioned on the event si, S2 & so, 
where the associated outage probability is Prob (si, S2 6 so). 
A natural candidate for a suboptimal symmetric power distri- 
bution for the two-user case is a modification of the optimal 
single-user distribution found in [3]. 

K-Users: extends straightforwardly to the general if-user 
case. Let now k = 1,2,..., K, where Vk(s) stands for the 
power distribution of the fc-th user - all subjected to the same 
average power constraint, SNR. The strategy induces a set of 
Ä'-nonlinear equations w* = sk(l + ^,_1(1^fc) s;i/i(a;i))-1. 

The achievable rates associated with user k for a given 
realization of s = (si, S2 , ■ ■ ■, SK) and the expected rates 
are still given by the former single-user based equations with 
Wk = tUjt(s). The results assume a compact form for large 
systems, K 3> 1. The general approach does not demand, in 
fact, independence among the fadings affecting all the users, 
making the current approach and analysis rather general and 
robust. Some interesting examples related to a variety of in- 
terference type channels are explored. 
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Abstract — Consider M independent users, each 
user having his own transmit antenna, that trans- 
mits simultaneously to one receiver antenna through 
a Rayleigh block-fading channel having a coherence 
interval of T symbols, with no channel state infor- 
mation available to either the transmitters or to the 
receiver. The total transmitted power is independent 
of the number of users. For a given coherence time 
T, we wish to identify the best multi-access strategy 
that maximizes the total throughput, where all users 
are subjected to the same average power constraint. 

If perfect channel state information were available 
to the receiver, it is known that the total capacity 
increases monotonically with the number of users. If 
the channel state information is available to both the 
receiver and all transmitters, the throughput maxi- 
mizing strategy implies that only a single user that 
enjoys the best channel condition transmits. In the 
absence of any channel state information one is forced 
to a radically different conclusion. In particular we 
show that if the propagation coefficients take on new 
independent values for every symbol (e.g., T = 1) then 
the total capacity for any M > 1 users is equal to the 
capacity for M = 1 user, in which case TDMA is an 
optimal scheme for handling multiple users. This re- 
sult follows directly from a recent treatment of the 
single-user multiple antenna block-fading channel. 

Again, motivated by the single-user results, one is 
lead to the following conjecture for the multiple user 
case: for any T > 1" the maximum total capacity can 
be achieved by no more than M = T users. The con- 
jecture is supported by establishing the asymptotic 
result that, for a constant M/T for large T, the total 
capacity is maximized when M/T —► 0, which yields a 
total capacity per symbol of log(l + p), where p is the 
expected SNR at the receiver. 

I. SIGNAL MODEL 

We use a block-fading model [1], with coherence interval 
T, where M independent users simultaneously transmit to a 
single receiver antenna in a flat-fading environment, where 
each user has sole access to one of M transmit antennas, and 
where nobody has any CSI. During each coherence interval, 
the M users collectively transmit a T x M complex matrix S, 
whose columns are statistically independent, and the receiver 
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records a T x 1 complex vector X, 
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iting the Mathematical Sciences Research Center, Bell Laboratories, 
Lucent Technologies 

x=\ffiSH+w> a) 
where H is the M x 1 complex-valued propagation vector, and 
W is a T x 1 vector of additive receiver noise. All components 
of if and W are independent Gaussian CN(0,1). The expected 
SNR is equal to p, subject to the power constraint, 

izE {SS*}=TM. (2) 

Our goal is to maximize mutual information I(X; S), with- 
out any CSI, subject to 1) the power constraint (2), and 2) 
the statistical independence of the columns of S. 

II. CAPACITY FOR T = 1; NO CSI 

An upper bound on capacity is obtained by permitting the 
columns of S to be statistically dependent. This leads directly 
[2] to the conclusion that, when T = 1, the capacity for M > 1 
users is equal to the capacity for M = 1 user. In contrast, if 
perfect CSI were available to the receiver, the total M-user 
capacity would be equal to the single-user/M-antenna capac- 
ity [3], and in case CSI is available also to the transmitters 
the channel controled TDMA is optimal [4]. 

III. CONJECTURE FOR T > 1; NO CSI 

For the general case T > 1, a conjecture is that the to- 
tal capacity for any M > T is equal to the total capacity for 
M <T. At present we are unable to prove this conjecture, but 
we make some headway by studying the case where T and M 
grow big. In this case, with M/T —► 0, the asymptotic mutual 
information is Tlog(l 4- p), which is equal [3] to the capac- 
ity where a single user has access to an unlimited number of 
transmit antennas, with perfect CSI available to the receiver. 
This result strongly support our conjecture. 
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Abstract — We consider a Direct Sequence Code 
Division Multiple Access (DS-CDMA) channel in col- 
ored additive Gaussian noise and focus on the sum 
capacity of this channel. Sum Capacity is the maxi- 
mum sum of rates at which users can jointly reliably 
transmit, in an information theoretic sense. We com- 
pletely characterize optimum sum capacity, which is 
obtained by choosing the signature sequences of the 
users appropriately. Our characterization is construc- 
tive in that we provide a combinatorial algorithm to 
generate the optimum signature sequences as a func- 
tion of the covariance of the additive background noise 
and power constraints of the users. The characteri- 
zation also allows us to identify a saddle property of 
the optimum sum capacity: convexity in the covari- 
ance matrix of the additive noise and concavity in the 
vector of user power constraints. 

I. INTRODUCTION AND PROBLEM STATEMENT 

A discrete time baseband no fading DS-CDMA channel (with 
short signature sequences) is the following: 

y(n) = y\i(n)sj(n) + w(n) 

Here K denotes the number of users and n the channel use 
instant. The user symbols are denoted by x; and y(n) is 
the signal (thought of as a N dimensional vector, N being 
the processing gain or number of chips per symbol) at the 
receiver at time instant n. Here w(n) is an additive Gaussian 
noise with covariance matrix E. Each user t is subject to a 
time averaged power constraint of pi. We denote D to be the 
diagonal matrix of the user power constraints. 

Our focus will be on sum capacity: sum of rates at which 
users jointly reliably communicate. These rates are time av- 
eraged with the power constraint on the users also averaged 
in time. A generalization of the results in [2] to the colored 
noise case allows us to write the following expression for sum 
capacity of the DS-CDMA channel with signature sequences 

5 = [si ... s/c]. 

Csum(S, D, S) = | log det (I+ Z~1SDSt)   . 

Our main focus in this paper is to characterize the maximum 
sum capacity: 

Copt(D,Y,) = maxCj. 
ses 

.(S,0,E) 

where S is the set of all N x K real matrices with all columns 
having h norm equal to 1. Observe that Csum is a continuous 
function defined on a compact set S and thus the use of max 
in above is justified. 

II. MAIN RESULTS 

Our main result is a complete characterization of Copt as a 
function of D and E. This characterization is constructive in 
the sense that we develop a combinatorial algorithm to gener- 
ate the optimum signature sequences (these achieve the maxi- 
mum sum capacity). The details of this result are available in 
[3]. In this summary, we briefly describe a qualitative prop- 
erty of the optimum sum capacity that emerges out of our 
characterization. Our first result is a saddle property of the 
optimum sum capacity: 

Theorem 1 For every fixed E, Copt (D,E) is a concave func- 
tion in D and a convex function in E for every fixed D. 

We can strengthen this result using the partial order of Schur 
majorization on vectors in WN. We say that a vector a ma- 
jorizes another vector b if their components have the same sum 
and the components of a are "more spread out" than those of 
b. For example, every vector in WN with sum N majorizes 
the vector with all components unity. An exhaustive resource 
for results on this partial order is [1]. We show that the opti- 
mum sum capacity is a Schur-saddle function in the following 
sense. Below we have denoted the vector of eigenvalues of E 
by {ff\,...,a2

N). 

Theorem 2       1. For   every   fixed   D,    Copt{D,T,)      > 
Copt (-D.S) for every E ^ E such that (cr\ c^) 

majorizes (a\,..., ä%). 

2. For every fixed E and for every D / D such 
that (pi,...,PK) majorizes (p~i,..., px) we have 
Copt(D,-E) >Copt{D,E). 
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Abstract — The problem of maximizing a weighted 
linear combination of the rates of users in a multiuser 
synchronous CDMA system is considered. We find 
that although spreading decreases capacity, nontrivial 
low rate coding can help to mitigate this loss. 

I. INTRODUCTION AND MOTIVATION 

Massey [1] proposed a novel definition of a spread spectrum 
system as one in which the Fourier bandwidth W, defined as 
the "support" of the Fourier transform, is much greater than 
the Shannon bandwidth B, defined as one-half the number of 
dimensions of signal space used per second. 

Following [1], which dealt with single user communica- 
tion, we study multiuser CDMA communication systems from 
an information theoretic perspective. The sum capacity was 
studied and characterized in [2, 3]. In this paper, we consider 
the problem of maximizing an arbitrary linear combination of 
the users' rates over multiuser capacity regions. 

We 

II. MULTIUSER CAPACITY REGIONS 

assume   a   Ä"-user,   additive  white   Gaussian   noise 
(AWGN) channel with usable bandwidth W, noise PSD ^, 

and average power constraint Pi for the ith user. 
The capacity region, i.e., the set of rates at which reli- 

able communication is possible, for unconstrained signaling 
(no spreading) is well known [4] and defined by the constraints: 

0< gi^Wlog^l + g^)    bits/sec,       (1) 

where J is a nonempty subset of {1, ■ • • , K}. We will denote 
this capacity region with no spreading as Cns- 

The capacity region for symbol synchronous CDMA with 
spreading factor N = ^ is defined by the constraints [5]: 

0< ^Äi <Blog (det *\J\ + 
PJRJ 

N0B 
bits/sec,     (2) 

where \J\ is the cardinality of J, Ik is a k x k identity matrix, 
and Rj and Pj are the matrix of normalized cross correlations 
and the diagonal matrix of received powers (Pi) respectively 
of the users in J. Since the capacity region for direct-sequence 
CDMA depends upon the cross-correlations between the users' 
spreading sequences, we will denote it as Cds(R)- 

We also consider "naive" CDMA, in which all users are 
assigned identical spreading sequences. Defining IK to be the 
K x K matrix of all ones, we note that Caive = Cds{R = IK). 

A common performance metric is the sum capacity [2], 
which is the maximum value of the sum of all users' rates. The 
general problem of maximizing an arbitrary linear combina- 
tion of the users' rates is considered by defining the capacity 
metric function:    M(X = [Ai, ■ ■ • , \K\) = A[Äi, ■ ■ • , RK]   ■ 

^his research is supported in part by NSF Grants CCR-9805885 
and CCR-9733204 and in part by the Intel Foundation Fellowship. 

III. RESULTS AND DISCUSSION 

1. The capacity regions are nested as follows: 

Cnaive i= ^ds(.K) ^ Cns 

This immediately gives us, for any A, 

max M(A) < max M(A) < maxilf(A) 
Cnaive C^B(R) Cns 

(3) 

(4) 

2. That spreading decreases capacity, suitably defined here as 
the maximum of a linear combination of the users' rates, is not 
surprising. The surprising result, also noticed in [1], is that 
spreading need not decrease capacity substantially. Consider 
the sum capacity, i.e., set A = [1, • • • , 1]. Letting the Shan- 
non bandwidth of the sum of the K users' modulated signals 
satisfy B = a-jj-, where a > 0 and P is the average power 
received from all users, a simple argument shows 

Cds(R) _ maxcdAR){M([l,--- ,1])} a 

maxCns{M([l, •••,!])}    -a + lC 
(5) 

3. A similar argument can be used to show that an arbitrary 
linear combination of the user's rates can be made close to the 
maximum achievable. 

maxCdB(R){M(A)} a > 
maxCns{M(A)}    ~ a + K 

(6) 

We make no assumptions on the spreading sequences or 
the received powers of the users. Our results indicate that if 
the Shannon bandwidth is large enough, spreading does not 
entail a substantial loss in capacity. One way to increase the 
Shannon bandwidth is to use nontrivial low rate coding [1]. 
However, (5) and (6) indicate that coding provides diminish- 
ing returns, i.e, as the code rate decreases, the amount of im- 
provement decreases. The implication to the coding-spreading 
tradeoff is that one should code to the point of diminishing 
returns (say 80-90% of capacity) and use the remaining band- 
width expansion for spreading. 
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Abstract ■— Acquisition is a very important step in 
DS/SS communications systems. In this paper, we 
describe several suboptimal schemes for parallel non- 
coherent acquisition. Simulation results and perfor- 
mance analysis are also summarized. 

I. INTRODUCTION 

In direct sequence spread-spectrum (DS/SS) communications 
systems, the transmitter's signature sequence and the re- 
ceiver's replica of this sequence must be synchronized in order 
to provide enough signal energy for reliable data demodula- 
tion. The synchronization has two stages. In the first stage, 
often referred to as coarse acquisition, the receiver's sequence 
is synchronized to within some fraction of the chip duration 
with the transmitter's sequence. In the second stage, the re- 
ceiver accomplishes and maintains fine alignment of the se- 
quences by using a code tracking loop. In this paper, we con- 
sider only the coarse acquisition process. Our goal is to find 
effective acquisition schemes which are also easy to implement. 

II. ESTIMATION OF DELAY 

In noncoherent parallel acquisition schemes, the receiver 
first computes, in parallel, the correlation of the received sig- 
nal with the locally generated in-phase and quadrature RF 
carrier for each of the phases of the PN sequence. Next, the N 
complex observations Z(i), where i = 0,1,..., N— 1, are used 
to estimate the unknown delay between the local sequence and 
the sequence in the received signal. 

Optimal Estimator The optimal estimation scheme [1] 
[2] minimizes Pe, the probability that the estimate of the true 
delay differs from the true delay by more than half a chip 
interval. Sopt as given in [2] is very intensive computationally 
and its performance is difficult to evaluate analytically. 

Suboptimal Estimators Srinivasan and Sarwate [3] have 
considered suboptimal estimators in which the delay 6 = k + e 
(where k = \5j) is estimated in two steps. First, k is estimated 
as kest = argmax;€{o,i jv-i} \Z\\ and then e is estimated in 
the same manner as in Sopt or the coherent version of Sopt [1] • 
These schemes perform nearly as well as the optimal estimator 
scheme but analytical evaluation of performances is difficult. 

We have studied some two-stage suboptimal schemes that 
estimate k as 

arg^^max^d^l2 + \Zl+1\
2+ Re(Z1Z;+1)) 

cf. [2], and e from the ratio \Zkest\/\Zke3t+i\. In particular, 
<Sr«3 uses 

\Zkc,t + l\ 

as the estimate of e. The computational costs of these schemes 
are much smaller than the optimal scheme. Moreover, because 
of the simplicity of the decision statistics, analytical results 
can be obtained. 

III. PERFORMANCE ANALYSIS 

We have proved that Pe for all the suboptimal schemes is 
bounded above by a function that decreases exponentially 
with increasing SNR. This implies that Pe,opt, the error prob- 
ability for Sopt is also an exponentially decreasing function of 
SNR. 

We have studied the performances of the suboptimal 
schemes by simulation. The figure below compares the error 
probability performance of the optimal scheme and the four 
suboptimal schemes. For e = 0.25, two of the schemes have 
performance close to optimal. For other values of e, other 
schemes are close to optimal. However, in all cases, <Sr(3 is 
always close to the optimal. 

epsilon=0.25 

■ 

+            Pe.opt 
          Pe.rtl 
        Pe,rt2 
-  -  ■       Pe,rt3 

•            Pe.rt4 

1            k 

l£*,.,+lla + lz*„«l2 

SNR(dB) 

Figure 1: Pe for Sopt and four suboptimal schemes. 
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Abstract — This paper analyzes the acquisition 
scheme of WCDMA, a standard for the next gener- 
ation wireless systems, and characterizes its perfor- 
mance under various channel conditions. 

I. INTRODUCTION 

WCDMA, a standard for 3G wireless systems, uses a three 
step search to acquire the asynchronous forward link. First, 
the Primary Synchronization Code (PSC) is used to detect the 
scramble code mask timing of the best cell site (slot timing) 
using the proper matched filter. Next, the Secondary Syn- 
chronization Code (SSC) is used to identify the scramble code 
group by cross-correlation of the received signal with all the 
Group Index (GI) code candidates used in the system. The 
frame timing is also given by the use of comma free codes. 
The final stage is the detection of the pilot by identifying the 
scramble code belonging to the group specified by the SSC. 

II. PILOT DETECTION TECHNIQUE 

The PSC and SSC are multiplexed, and are orthogonal 
to each other, but not to the other forward link channels. 
The PSC consists of a length 256 sequence having good ape- 
riodic correlation properties. The searcher coherently inte- 
grates the received waveform over a 256 chip duration, and 
non-coherently integrates a number of them. Then, it picks 
the maximum as the required estimate. Note that as the sym- 
bols transmitted with relatively low power, the signal needs 
to be accumulated over multiple frames to provide enough en- 
ergy to successfully demodulate it. The SSC is essentially a 
two layer code. The outer code provides the frame synchro- 
nization information. The inner code provides information on 
the GI of the pilot. 

The SSC consists of Hadamard sequences chosen appropri- 
ately and XOR-ed with the PSC. The frame timing is obtained 
by using a comma-free code on top of it, i.e. a sequence of 
short codes (SC's) is transmitted. These SC's are unmodu- 
lated, of length 16, and are Comma Free, i.e. all their cyclic 
shifts are unique. Thus the received cyclic shift of this se- 
quence provides information about frame timing. The Comma 
Free code words are constructed from Reed-Solomon codes. 
A (16,3) Comma Free Code has more than 300 possible code 
words out of which only 32 are used, i.e., the process is scal- 
able. Based on the GI, one of 32 possible masks need be iden- 
tified for pilot acquisition. The pilot symbols are integrated 
for 1024 chips, and can be analyzed in a manner similar to 
that described in [1]. During initial acquisition, the MS first 
demodulates the PSC, then the SSC, including the inner and 
outer code. Finally, it demodulates the pilot to obtain syn- 
chronization. If it is unable to find any pilot in the given GI, 
it starts the process all over again till it succeeds. 

III. OVERALL SYSTEM PERFORMANCE 

Since all three stages are always carried out in this algo- 
rithm before going back to the first stage, the average total 
search time can be expressed as:   Ts =  ^_c

p , where Tc is 

amount of time it takes to go .through the three stages, and 
Pe is probability that one iteration of the three-step search 
misidentifies the spreading code number and timing. Adding 
the three stages, use Tc = (30 + 20 + 10) ms = 60 ms. Pe, the 
misdetection probability for each search iteration is given by: 

+ (Pd
pxPf) + (Pd

F x P! x pf), 

where Pf denotes the false -alarm probability in detecting the 
PSC, Pi — I — Pf denotes the probability of correct detec- 
tion of the PSC, Pf 
detecting the SSC, = 1 — Pf denotes the probability of 

denotes the probability 

?f denotes the false alarm probability in 
Ps 

correct detection of the SSC, and Pf 
of false alarm in detection of the pilot. Fig. 1 shows the search 
performance for Rayleigh fading channels: 

WCmM Acquisition In RayWjh Fidlng Channels 
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Figure 1: Acquisition Time in WCDMA 

IV. CONCLUSION 

In practice, the signal may be received at -21dB at the 
cell boundary for a Rayleigh fading channel. Then, it can 
be seen that for a 90% reliability, the acquisition time in a 
practical situation is close to 500 ms. This is in accordance. 
with the simulations shown in [2]. The practical deployment 
scenario governs the requisite power needed for good system 
performance. Details of the analysis are omitted here. 
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Abstract 

In this communication we deal with symbol synchronization in channels with data dependent noise. Examples of such 

channels arise in optical communications using APD receivers, or direct detection of optically amplified signals [ 1 ] where the 

noise power is higher when a logical one is received. Another situation of data dependent noise arises in the detection of 

signals in the presence of clutter [2,3]- In these systems the disturbance exhibits cyclostationary statistics that are ignored by 

the conventional synchronizers designed for the additive Gaussian noise (AGN) channel, although this cyclostationarity 

contains timing information that can be explored to improve the tracking performance of the symbol synchronizer. 

We consider a channel model where the additive disturbance corrupting the received signal consists in the sum of an 

AWGN process and a cyclostationary component modeled by a Gaussian process with power proportional to the data symbol 

transmitted. In spite of its simplicity this model represents a good approximation for many direct detection optical systems 

with APD's or in line optical amplifiers. The maximum-likelihood (ML) data aided (DA) symbol synchronizer for this class 

of channels is derived and its performance assessed. Comparing the new synchronizer against the well known MLDA 

synchronizer designed for the AWGN channel, shows that basically the new structure includes in addition to the operations 

performed by the AWGN-MLDA synchronizer, processing that explores the cyclostationary characteristics of the additive 

disturbance to enhance the accuracy of the time-delay estimation. 

The tracking performance is derived assuming that the synchronizer is designed to operate with a small output jitter, and 

consequently its behavior can be linearized. It is shown that the timing estimates produced by the maximum likelihood 

synchronizer are unbiased provided the elementary data pulses exhibit time symmetry around their center, and consequently 

in such cases the linearized performance achieves the Cramer-Rao bound. The performance of the new synchronizer is 

compared against the one that would be achieved with the AWGN-MLDA structure when used in channels with data- 

dependent noise. The results show that non-negligible (up to 6dB) improvements are achieved with the new structure in 

situations where there is a considerable asymmetry between the noise powers corresponding to a one or zero. The structure is 

thus of interest for APD based optical communications. 
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Abstract — Pulse Position Hopping (PPH) is a new 
promising multiple access technique which has sev- 
eral benefits, such as coherent reception, low trans- 
mit power and it can be constructed to be near-far 
robust. Analysis [1, 2] shows that, it can reach an 
order of several thousands of active users per cell. In 
this paper we have estimated the effective capacity 
for the uplink and the downlink communication in a 
PPH spread spectrum system. 

I. INTRODUCTION 

We consider a PPH-CDMA system with K users.     Let 
<*> = {u(k) ,.<fc) ,.(fc) 'ij,«^ 6 {0,1} and* = 1,2,...,üf, 

be the information sequence of the fcth user and tr ' 

K (*) „w „(*) •I>N-I), 
vn    € {0,1} be the corresponding code 

sequence. The code rate is then r = L/N. The transmis- 
sion of the code symbols is divided into frames of length Tf. 
Each active user transmits one code symbol in each frame. 
The &th user's information rate is then Rw = r/Tf (bit/s), 
k = 1,2,...,K, independent of the user. The frame time is di- 
vided in Q slots of length A, Tf = QA, and a pseudo-random 
"hopping"-sequence af e {0,1,..., Q -1}, n = 0,..., N - 1, 
provides a time shift within the nth frame. 

II. PPH-CDMA 

We have analyzed the transmission by rectangular pulses of 
duration Tc with unit energy and Gaussian shaped pulses, 
such that 

where Tc determines the width of the pulse. The parameter 7 
is chosen such that about 99% of the Gaussian pulse energy 
is located in the interval (-^f,^f)- The fcth transmitters' 
output signal is 

t2 

„(*) 
N-l 

(t)=^2v^h(t-vTf-aih)A), 

where E(A:) is the energy of the received signal from the fcth 
user, 5(fc) is the time offset, n(t) is the additive white Gaussian 
noise. Assuming that the system has perfect power control, 
i.e., £(fc) = E, k = 1,...,K, and perfect synchronization, 
the nth output of the correlation receiver and input to the 
decoder, for the fcth user, is 

/oo 

r(t)h(t - nTf - a(k)A)dt 
■OO 

k'^k 

where lik,k * is the interference from the transmission of the 
fc'th user and n„ is the background noise. As Q » 1 we neglect 
the interferences from pulses transmitted in other frames and 
by the assumption that the system is interference limited we 
neglect the background noise. We estimate the interference 
between the users and model it as white Gaussian noise, which 
is reasonable as there is several thousands of users in each cell. 

Given the parameters fio = E[zh '\vn = 0], pi = 
E[zik)\v(

n
k) = 1], and a2 = var[4fc)] the effective signal-to- 

interference ratio (SIR) per time unit, n, is defined as 

def 
V = 

1 (^r 
Tf      2a2 

and the received signal is 

In [2] we have shown that the overall effective system capac- 
ity (in bits/s), C, can be lower bounded by C > jjf§. For 
Gaussian and rectangular pulses we get 

C>    v^ma'    (Gaussian) 
C >        8Te

3in2 (rectangular.) 

III. NUMERICAL EVALUATION 

We have investigated the performance of a PPH-CDMA sys- 
tem transmitting Gaussian pulses and employing a concate- 
nated code with an inner first order Reed-Muller code and 
an outer rate convolutional code. Simulation of this system 
indicates that it can host more than 30 000 active users trans- 
mitting at a bit rate of 10 kbit/s if you choose Tc to be 1 ns. 

! 

r(t) SW) + n(t), 

1This work was supported in part by the Foundation for Strate- 
gic Research - Personal Computing and Communication(PCC) and 
Ericsson Mobile Communications. 
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Academy of Science in cooperation with the Russian Academy of 
Science. 
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Abstract — A new differential encoding strategy is 

introduced, which is shown to be advantageous for 

bandwidth efficient transmission over flat Rician fad- 

ing channels when using multiple symbol differential 
detection. 

I. SYSTEM MODEL AND DIFFERENTIAL ENCODING 

Consider a stationary, slowly time-varying, frequency non- 
selective (flat) Rician fading channel. Channel state and car- 
rier phase offset are expected to be constant over a block of 
at least N consecutive symbols, but not known at the re- 
ceiver. For such situations, differential phase encoding at the 
transmitter and noncoherent demodulation at the receiver are 
appropriate. To achieve higher spectral efficiencies APSK con- 
stellations are attractive, which points are arranged in a dis- 
tinct concentric rings with radii r\ and ß uniformly spaced 
phases. 

Because the received signal amplitude still provides infor- 
mation on the transmitted amplitude, information should be 
carried in the actual amplitude. But then, due to fading, 
part of the information carried in the amplitude will be lost. 
One possible approach to overcome this drawback and to ex- 
ploit the potential of amplitude modulation is to completely 
map the information onto phase changes, and additionally, to 
(partly) map the same information onto the amplitude of the 
transmit symbols. This redundant mapping introduces diver- 
sity. 

The most promising arrangement for the signal points is 

"4 —  |C — TmTnodaG  aP 0,. ,a/: 1} (1) 

because points whose phases differ by the minimum value ^ 
have different amplitudes. 

Given the data-carrying differential symbol a = r,eJ°^m £ 
A and the state s = riel't'n of the differential encoder, the 
current transmit symbol x 6 X is calculated according to 

gJ^Ti+m) mod aß (2) 

The transmit signal constellation X now consists of again a 
amplitudes but aß phases. Due to the redundant mapping, X 
is expanded and the set A is a proper subset of X. For a = 4, 
ß = 4 the constellations A and X are shown in Figure 1. 

A X 

o     ■   a 
i     °°o° 

-e—0 oo 

a = 4 
ß = 4 

too—e- 

o 
o 

Fig. 1:   Signal constellations A (left) according to (1) and X (right) 
for a = 4, ß = 4 (geometric ring spacing). 

For slow fading channels we apply multiple symbol differ- 
ential detection [1], where the receiver processes blocks of N 
consecutive receive symbols. Due to (ideal) interleaving at the 
transmitter and deinterleaving at the receiver of vector sym- 
bols a (virtually) memoryless block fading channel is obtained. 

II. NUMERICAL RESULTS 

For the AWGN channel and the Rayleigh fading channel the 
achievable capacity is numerically evaluated as a function of 
the (average) signal-to-noise ratio Es/No (E3: average en- 
ergy per received symbol, NQ: one-sided noise power spectral 
density). As shown in [2], it is sufficient to fix the differen- 
tial symbols to be uniformly, independently and identically 
distributed, and to solely optimize the ring ratio. 

Figure 2 shows the capacities of 16-ary modulation schemes 
using two signaling amplitudes and multiple symbol differen- 
tial detection of N = 3. Clearly, for the AWGN channel, 
where the amplitude transmit factor is constant, differential 
encoding of the amplitude is not rewarding. In case of fad- 
ing channels, absolute amplitude modulation without diver- 
sity leads to a flattening of the capacity curve at high SNR. 
This drawback is overcome by the proposed mapping, which 
performs best over the whole region of SNR. Hence, the novel 
scheme incorporates the advantages of the competitors. 

-•— proposed encoding scheme 

6- absolute amplitude encoding 

•*—-  differential amplitude encoding 

10 15 20 

10log,0(E,/N0) [dB] - 
25 

Fig. 2:   Capacities for AWGN and Rayleigh fading channel. N = 3. 
Ring ratio n/ro = 2. 

Noteworthy, the attainable gain is for free, since it does 
not require any increment in the coding/decoding complex- 
ity when used together with channel coding. The theoretical 
statements have been verified by simulations, which show a 
great accordance. For details see [2]. 
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Abstract - We discuss the application of coded modulation for 
power-line communications. We combine M-FSK with 
permutation codes to include frequency and time diversity. 
This makes the transmissions robust against permanent 
frequency disturbances and impulse noise. The scheme is 
applicable to any frequency range. 
keywords: modulation; power-line communications; coding. 

L INTRODUCTION 

Power Line Communication (PLC) can be seen as one of the 
possible solutions to the "last dirty mile" problem for 
communication providers. However, there are several obstacles. 
According to the European standards (CENELEC), the 
transmitters are output voltage limited and bandwidth limited. In 
addition, there are different types of noise involved in PLC. 
Narrow band noise, generated by television sets or computer 
terminals. This type of noise is permanent over a long period of 
time. Impulse noise has been reported in [1]. From this it can be 
concluded that impulses are .1 - 1. second apart and have a 
duration of typically less than 100 usec. More details regarding 
the channel properties can be found in [2]. 
The key idea in this contribution is the combination of the 
following: 1) We use M-FSK for a constant envelope modulator 
output; 2) We use a modified non-coherent demodulation with 
multi valued outputs; 3) We use a permutation code of length M 
where every code word has M different symbols. 4) The decoding 
is minimum distance decoding. 

IL COMBINED MODULATION and CODING 

Encodinz: The information is encoded with a permutation code. 
A permutation code C consists of |C| words of length M, where 
every code word has M different symbols. The code has minimum 
Hamming distance dm,,. 
Modulator: The symbols of a code word are transmitted in time as 
the corresponding frequencies of an M-ary FSK orthogonal signal 
set. Note that we obtain a constant signal envelope and frequency- 
/ time diversity simultaneously. 
Modified demodulator: We use a simple modified non-coherent 
demodulator with M envelope detectors. Every envelope detector 
has a threshold T;, 1 < i < M. The value of T; can be optimized 
with respect to symbol detection error rate and depends on the 
received signal energy and noise power spectral density per sub- 
channel. The demodulator outputs in parallel all envelopes that 
are larger than their respective threshold L\ Thus, the inputs to 
the decoder for the permutation code are then multi-valued. 
Decoder: We use minimum distance decoding, i.e. we output the 
message corresponding to the code word that has the minimum 
number of differences with the M subsequent detector outputs. 
The following errors may occur in the detector output: 1) 
insertions or deletions due to background noise; 2) single 
insertions due to permanent narrow-band noise; 3) multiple 
parallel insertions due to broad-band (impulse) noise. 
Performance: A permanent frequency disturbance only affects one 
symbol in a code word of the permutation code. Impulse noise 
may signal the presence of all frequencies in the demodulator 
output. If restricted to one symbol time interval, this type of error 
reduces the distance to an incorrect code word with one. It does 

not decrease the distance to the correct word. Background noise: A 
deletion error only reduces the distance to the correct code word 
with one. An insertion error only reduces the distance to an incorrect 
code word with one. The minimum distance decoder is capable of 
correcting the combination of (^-1 of these types of errors. 

HI. CODE PROPERTIES 

An interesting mathematical problem is the design of codes. The 
next theorem gives an upper bound on the number of code words in 
a permutation code. 
Theorem 1. For a permutation code of length M with M different 

code symbols in every code word and minimum Hamming distance 
dmin, the cardinality 

|C|< 
M! 

(d min -1)! 
(1) 

It can be shown    that for M < 6, codes exist that meet the 
upperbound with equality for any d^ < M The smallest value of M 
for which the upperbound (1) cannot be met with equality is M = 6 
and dmin = 5. It has been shown that for these parameters |C| = 18, 
[3]. Blake, [4],  uses the concept of sharply k-transitive groups to 
define permutation codes with minimum distance M-k+1. 
The following Theorem gives the parameters of an example of a 
class of permutation codes based on a multi-level code construction 
with Reed Müller component codes. 
Theorem 2. There exists an (M, |C|, dn^permutation code with the 
following parameters: 

M = 2m, 
|C| = (2m+1-2)x(2lr ■2)x-x(22-2), 

(2a) 
(2b) 
(2c) 

where m is an arbitrary positive integer. 

IV. SIMULATION RESULTS and CONCLUSIONS 

We show how a PLC system with reasonable transmission speed 
can use this modulation/coding scheme. It appears that for such a 
system, background noise is of no importance up to a distance of 
750 meters. Extensive simulation reports are available from [5]. 
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Abstract — The performance of multilevel coded 
modulation with multistage and iterative decodings 
over phase noisy fading channels is evaluated. Semi- 
analytical upper bounds on the bit error probability 
are derived and verified to be tight. 

I. SUMMARY 

Ever since coding for bandwidth limited channels with ex- 
panded signal sets was introduced, the subtleties of trellis 
codes against phase noise especially over fading channels have 
been of interest in the literature. However, similar analysis 
for multilevel coded modulation [1] can be scarcely found al- 
though the situation is rather different, due to the multiply 
represented signal points in multistage decoding. The advan- 
tages of this coding scheme are: (1) optimality in informa- 
tion theoretic sense is guaranteed over Gaussian channels with 
staged decoding: (2) flexibility to coordinate the parameters: 
and (3) applicability to unequal error protection (UEP) cod- 
ing as shown and analyzed in [2. 3]. In this paper, we extend 
the results in [4], and evaluate the error performance of multi- 
level codes with coherent detection over phase noisy flat fading 
channels, based upon union bound arguments for the condi- 
tional probability of a bit error and Monte Carlo integration. 

Multilevel codes with multistage decoding can be con- 
structed based on unconventional partitioning, i.e.. other than 
Ungerboeck's set partitioning, effectively for both UEP and 
equal error protection. Hence, various combinations of sig- 
nal partitioning, component codes and (asymmetric) constel- 
lations can be considered, each usually showing a different bit 
error rate characteristic [2, 3], One of the goals of this paper 
is to discuss the sensitivity of each coded level to phase noise 
in the receiver for a number of code constructions, assuming 
maximum likelihood decoding in each staged decoder. 

With multistage decoding, at. a given level of a multilevel 
coded modulation system, let Pc(w) denote the pairwise error 
probability (PEP) that the decoder chooses a wrong codeword 
different in w positions from the transmitted codeword. Con- 
ditioned on a vector of fading amplitudes p = (pi. • ■ ■. p„ ) and 
phase jitter components 6 = (6i,82. ■■ -,6„ ). the PEP becomes 
the same as that of an AWGN channel. In deriving this condi- 
tional PEP, denoted Pe(w\p,§). careful treatment is necessary 
since in general different pairs of code sequences considered 
in the union bound share the same decision regions. The line 
joining the code sequences of each pair considered in the multi- 
dimensional Euclidean space is no longer always orthogonal 
to the decision region considered by the decoder, as shown in 

1This work was supported in part by Association of Radio In- 
dustries and Businesses under the Public Participation Program for 
Frequency Resources Development. 

[3]. The PEP can then be obtained by integrating Pt(w\p.6) 
over the probability density functions of the random vectors 
p and 0. In general, the expression for Pe(w) is difficult, if 
not impossible, to evaluate in a closed form. Following the 
approach of [5]. the conditional PEP is first expressed with 
an alternate form of the Gaussian Q-function. The resulting 
expression, although still needs to be evaluated numerically, 
contains a single integral over a finite range and an integrand 
that can be evaluated using a Gauss-Hermite quadrature in- 
tegration formula. Although semi-analytical in nature, the 
results obtained constitute useful tools in the design of multi- 
level codes for phase noisy fading channels, particularly when 
the Hamming weight of the error events is relatively small. 
This includes short block component codes as well as the er- 
ror floor region of turbo component codes. Moreover, the same- 
set of bounds can be used to evaluate the effect of co-channel 
interference on the error performance of multilevel codes. 

On the other hand, the sensitivity in the waterfall region 
with respect to phase noise, when turbo decoding is performed 
in each stage, can be reduced in essence to that of decoding 
over mismatched channels. A similar argument holds for it- 
erative decoding of multilevel codes, as discussed in [6], in 
which the design rules of code construction arc different from 
that for multistage decoding. In both cases, certain perfor- 
mance degradation due to phase noise has been observed by 
simulation. 

REFERENCES 

[1] H. Imai and S. Hirakawa. "A new multilevel coding method 
using error-correcting codes,"IEEE Trans. Inform. Theory, vol. 
IT-23. no.3. pp.371-377. May 1977. 

[2] R.H. Morclos-Zaragoza. M.P.C. Fossorier, S. Lin and H. Imai 
"Multilevel coded modulation for unequal error protection and 
multistage decoding: part I-symmntric constellations." IEEE 
Trans. Commun.. vol. 48. no.2. pp. 204-213. Feb. 2000. 

[3] M. Isaka. R.H. Morclos-Zaragoza. M.P.C. Fossorier. S. Lin and 
H. Imai "Multilevel coded modulation for unequal error pro- 
tection and multistage decoding: part II-asymmetric constella- 
tions." to appear in IEEE Trans. Commun. 

[4] R.H. Morelos-Zaragoza. M.P.C. Fossorier. S. Lin and H. Imai. 
"On the error performance of multilevel block coded 8-PSK 
modulation for unequal error protection over Rayleigh fading 
channels.'' presented at CISS'97. Baltimore. MA. Mar. 1997. 

[5] M.K. Simon and M.-S. Alouini. "A unified approach to the 
performance analysis of digital communication over generalized 
fading channels." Proc. IEEE. vol. 8G. no. 9. pp. 1860-1877. 
Sept. 1998. 

[6] M. Isaka and H. Imai."Design and iterative decoding of multi- 
level modulation codes." Technical Report of IEICE. IT99-78. 
Mar. 2000. 

0-7803-5857-0/00/51 0.00 ©2000 IEEE. 
138- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

How Large is the Coding Gain for Multilevel Modulation Systems? 

Gerd Beyer, Karin Engdahl and Kamil Sh. Zigangirov 
Dept. of Information Technology, Lund University 

Box 118, SE-221 00 Lund, Sweden 

E-mail: gerd,karin,kamil@it.lth.se 

Abstract — It is well known that Ungerboeck's and 
Imai/Hirokawa's multilevel coded modulation systems give 
essential gain in comparison to a conventional coded mod- 
ulation system, but as we know a rigorous analysis of this 
gain has not yet been done. In this work we present the 
results of an asymptotical analysis and a comparison of two 
coded modulation systems, conventional modulation and 
multilevel modulation, using g-PSK signaling and trans- 
mission over the AWGN channel. 

I. INTRODUCTION AND PROBLEM FORMULATION 

We study asymptotical performances of trellis coded transmis- 
sion over AWGN channel with q-PSK signaling, when q = 2L, L is 
integer, and the memory of the code goes to infinity. We consider 
two trellis coded modulation systems, conventional trellis coded 
modulation and multilevel modulation. 

In the case of conventional modulation the binary information 
sequence u enters a memory m, rate R = b/c (bits/g-ary sym- 
bol) convolutional encoder, whose output is over the integer ring 
Z, modulo q. The encoder output symbol v, maped q-PSK signal 
waveform Si(t). The sequence of signal waveforms Sj(t) is transmit- 
ted over the AWGN channel. The receiver is maximum likelihood 
(Viterbi) receiver. 

In the case of multilevel modulation the binary informa- 
tion sequence u is first partitioned into L binary subsequences 
u(i)>u(2)jp p_>u(t) The subsequences u'1' are encoded by L in- 
dependent binary component convolutional codes of rates fj(') = 
ft(')/c(0 (bits/code symbol) and memories m'1'. The set of L bits 
(one output bit from each encoder) is synchronously mapped onto 
the signal point waveform. The sequence of signal waveforms s is 
transmitted over the channel. The transmission rate is equal to 
R = Yli-i ^'' (bits/channel use). The multistage decoder con- 
sists of a set of L Viterbi-type decoders matched to the codes, used 
at the corresponding levels of encoding. 

Let K. and k be the decoders complexity (number of encoder 
states) for conventional and multilevel system respectively, Pe and 
Pe be the decoding error probability for two systems. We proved [1] 
that for all R < C, where C is the capacity of the AWGN channel 
with q-PSK signaling, there exist, for both modulation systems, 
positive limits 

\. N> 
V 1 V-:-|     - 

3<j   X| ■       
 " "N. ;• ->s^~- v.- ;■; ■ V \ - 

_  |     multllav«! modulation         1      7*, ."rTIC^. _ 

:                                                                           ;   "*V^ 

Figure 1: Comparison of upper 7(A), 7(A) and lower 7(A), 7(A) 
bounds of the overall state-complexity error exponents for conven- 
tional and multilevel modulation systems; q — 32, Es/No = 10 
dB. 

I — — low«r bound 

Figure 2: The optimistic (upper), pessimistic (lower) and realis- 
tic estimation of the coding gain of multilevel modulation system 
compared to the conventional modulation system. 

E,/No [dB] gain|Ä=0 [dB] Äo eainlR=Än tdBl 
0 0.85 0.70 0.5 
1 0.95 0.85 0.51 
3 1.16 1.20 0.5 
5 1.37 1.59 0.47 
8 1.66 2,16 0.41 
10 1.83 2.51 0.35 
15 1.7 3.37 0.3 

Table 1: The asymptotical gain of multilevel 32-PSK signaling in 
comparison to conventional 32-PSK signaling for R = 0 and R = Ro 
as a function of the signal-to-noise ratio ES/NQ for the multilevel 
system. 

7 = — lim 
lOgPe 

>0, 
„def lOgPe 
7 =  —  hm > 0.     (1) 

log/C K->OO   lOgK 

We call 7 and 7 the (asymptotical) state-complexity error exponent 
for the modulation systems considered. Let 7 and 7 denote lower 
bounds for 7 and 7 respectively, 7 and 7 denote upper bounds. 

II. COMPARISON OF TWO MODULATION SYSTEMS AND 
NUMERICAL RESULTS 

In Figure 1 the curves 7_(K), 7(A), l(R) and 7(A) are given. 
In Figure 2 three bounds for coding gain of multilevel system in 
comparison with conventional system are presented. 

The realistic bound corresponds to the coding gain of the mul- 
tilevel system over the conventional system, given that the upper 
(existens) bounds for the decoding error probabilities are the same. 

In Table 1 the gains are presented for different signal-to-noise 
ratios ES/NQ at rate R = 0 and at the computational cutoff rate 
R=Ro = Ro. 
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Abstract — The natural analogues of Lee weight and 
Gray map over F4 are introduced. Self-dual codes for 
the euclidean scalar product with Lee weights mul- 
tiple of 4 are called Type II. They produce Type II 
binary codes by Gray map. All extended Q — codes 
[3] of length multiple of 4 are Type II, this includes 
Generalized Quadratic Residue Codes attached to a 
prime power q = 7 (mod 8). Certain double circulant 
codes are also considered. The first binary extremal 
singly-even [92, 46,16] self-dual code is constructed. A 
general mass formula is derived. 

I. DEFINITIONS AND FIRST PROPERTIES 

Let F4 := {0,1,U!,öJ — w2} be the finite field of order 4, 
A code C of length n over F4 is an F4-subspace of FJ. Du- 
ality for codes is understood with respect to the Euclidean 
form 5^. Xiyi. C is said to be self-dual if C = C±. The Lee 
composition of a vector x = (x\,... ,xn) G FJ is defined 
as (no(x),ni(x),n2(x)) where no(x) is the number of x; = 0, 
712(0:) the number of Xi = 1 and n\{x) = n — no(x) — 712(2:) 
where n is the length. The Lee weight WL(X) of x is 
then defined as ni(x) + 2712(2:). There is a natural (not F4- 
linear!) Gray map <f> which is a F2-linear isometry from 
(FJ, Lee distance) onto (F^™, Hamming distance) where the 
Lee distance of two codewords x and y is the Lee weight of 
x — y. We let, for all x, y 6 FJ 

<t>(ux + üy) = (x,y). 

This leads us to introduce an Euclidean weight WE(-) on 
F4 by the rule WE(0) = 0,WE(U) = WE(1) = 1,WE(ü>) = 2. 
Observe that x i-> uix is an isometry from (F4, WE) to (F4, WL). 

Since multiplying a column by LJ does not preserve the Eu- 
clidean or Lee weight of a codeword, we need a restricted 
definition of equivalence and we say that two codes are equiv- 
alent if one can be obtained from the other by permuting the 
coordinates (this is not the usual monomial equivalence). 

A self-dual code over F4 is said to be Type II if the Lee 
weight of every codeword is a multiple of 4 and Type I oth- 
erwise. The following lemma follows: 

Proposition 1.1 // C is self-orthogonal so is <j>{C). In this 
case 4>(C) is a Type I (resp. Type II) code iff C is a Type I 
(resp, ■ Type II) code. 

II. CONSTRUCTIONS 

(a) Quadratic residue codes 
Let q be a power of a prime with q congruent to 3 (mod 8). 

Let C(q) denote the extended generalized quadratic residue 
code of length q + 1 over F4 [2]. 

Proposition II.1   The code C(q) is a Type   II code over F4. 

(b) Quadratic double circulant codes 
Recently a class of codes which generalizes binary double 

circulant codes and the Pless symmetry codes to codes over 
F4 was introduced in [1]. These codes are also Type II. The 
following table gives the parameters of these codes along with 
those of their binary images: 

n k d —► "t fcfc dt, Type 
14 7 6 28 14 6 I 
16 8 6 32 16 8 II 
46 23 14 92 46 16 I 
48 24 14 96 48 16 II 
62 31 16 124 62 16 I 
64 32 16 128 64 16 II 

Table 1: Quadratic double circulant codes over F4 and 

their Type II binary images 

(c) Q-codes 
The case of quadratic residue codes is a special case of 

Q-codes of prime length. An extended Q-code of composite 
length is Euclidean self-dual if and only if its length is a mul- 
tiple of primes which are congruent to 3 modulo 4 ([3]). We 
already saw that Euclidean self-dual quadratic residue codes 
were Type II. We now generalize this result to Q-codes: 

Theorem II.2 Let C be an odd-like duadic code (or Q-code) 
over F4 of length n = 3 modulo 4, with splitting given by /i_i. 
Let C be the extended code of C. Then the Gray image of C 
is of Type II. 

III. CLASSIFICATION 

To elaborate a mass formula, useful for a complete classifica- 
tion, we need to know the number of distinct Type II codes, 
which is given by: 

Theorem III.l Let n be an integer multiple of 4 and let 
Nd,,(n) be the number of distinct Type II codes over Fn then: 

NdlI(n)= Y[ + 3.2" -1 
4* 
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Abstract — Recently Type II codes over F4 have 
been introduced as Euclidean self-dual codes with the 
property that all Lee weights are divisible by four. We 
construct new extremal Type I and Type II codes, and 
show that there are seven Type II codes of length 12, 
up to permutation-equivalence. 

I. INTRODUCTION 

Recently Gaborit, Pless, Sole and Atkin [1] introduced 
Type II codes over F4 = {0, l,w,w = w2}. These codes are 
closely related to binary Type II codes via the Gray map de- 
fined in [2]. 

A linear code C of length n and dimension k over F4 is a 
fc-dimensional vector subspace of FJ. A code C is said to be 
Euclidean self-dual (resp. self-orthogonal) if C = Cx (resp. 
C C C±) where C± is the dual code of C under the Euclidean 
inner product. 

Let no(x),nu(x),nü(x) and ni(x) be the numbers of 0's, 
w's, w's and l's in a vector x € FJ, respectively. The Lee 
weight wt^ix) oix is defined as 2ni(x)+nu(x)+na(x). Type II 
codes are self-dual codes under the Euclidean inner-product 
with the property that all Lee weights are divisible by four. 
Euclidean self-dual codes which are not Type II are called 
Type I. Type II codes are divided into two classes, namely, 
odd Type II codes and even Type II codes. 

The Hamming weight of x is the number of non-zero com- 
ponents of x. The minimum Lee weight dh (resp. Hamming 
weight dn) of C is the smallest Lee (resp. Hamming) weight 
among all non-zero codewords of C. 

We have found several properties of even Type II codes as 
well as odd Type II codes from properties of binary Type II 
codes. For example, there is a Type II code of length n if and 
only if n is divisible by four. The minimum Lee weight dL of a 
Type II code of length n is upper bounded by dL < 4 [y|] + 4. 

A Type II code of length n with dL = 4 [y|] + 4 is extremal. 
We have found that an even Type II code is not extremal for 
lengths n > 16. 

II. CLASSIFICATION OF LENGTHS UP TO 12 

There is a unique Type II code d of length 4 [1]. Let C& 
be the code with generator matrix ( 74 , J4 — I4 ), where h 
and J4 are the identity matrix and the all-ones matrix of order 
4, respectively. C& is the only extremal even Type II code, up 
to permutation-equivalence. C& and C\ are the only Type II 
codes of length 8, up to permutation-equivalence [1]. 

The classification of Type II codes of length 12 is given in 
Table 1. The mass formula in [1] shows that our classification 
is complete. 

Theorem 1   There are seven Type II codes of length 12, up 
to permutation-equivalence. 

Table 1: The Type II codes of length 12 

Codes dL \PAut(Ci2,i)\ <t>(Cl2,i) 
Cl2,l 4 10368 ei 
Cl2,2 4 16128 el 
Cl2,3 4 972 024 

C12.4 4 432 £>24 

Cl2,5 4 23040 A24 

Cl2,6 4 1152 F24 

Cl2,7 8 660 G24 

I 
The generator matrices ( I , Ai ) of C124 using the form 

01, a,2, ■ ■ ■, 06 where a,j is the j-th row of Ai. 

Ai 

A2 

A3 

A4 

A5 

A6 

A7 

OOOOww, OOOOww, OOwwOO, OOwwOO, wwOOOO, wwOOOO, 

OOOOww, OOOOww, 011100,101100,110100,111000, 

00000)^,00^0)00, OOKDWIö), 0ü>U}1ü)U>,U>01ü>üIU), wOwwwl, 

OOOOüJü), QUJLüQIüI, Quüiu)\ü, OiDwwlü), wllllö), üüüüüw, 

000111,001011,010011,100011, llllwö), llllüw, 

000111, Ouiäjuiüjl, 0<Doia;ä;l, lwonDOcD, lwtDOww, lllüwl, 

OwwwfDl, UJOüJUJIüI, U>ü)üJ0U)1,ü)U0ü)1U), cDlwlll, lcDlull. 

III. NEW EXTREMAL TYPE II CODES 

A pure double circulant code of length 2n has a generator 
matrix of the form ( I , R) where I is the identity matrix of 
order n and R is an n x n circulant matrix. Extremal double 
circulant Type II codes are given in Table 2 

Table 2: Type II pure double circulant codes 

Codes The first row r dL 

■Dj7,20 llwwllOOOO 8 (extremal) 

Djl,2i 110111101000 8 

Dll,28 üüijjüiQujujQl 10000 12 (extremal) 

jD/7,32 wwOwOlwlwOwOOOOO 12 (extremal) 
-D/7,36 wOlwwwlwwlOOlOOOOO 12 

Extremal Type II codes of lengths 16,20 and 28 were con- 
structed in [1]. Du,32 is the first example of an extremal 
Type II code of length 32. 
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Abstract — The problem of finding the values of 
Aq(n, d)— the maximum size of a code of length n and 
minimum distance d over an alphabet of q elements— 
is considered. When q < M < 2q, all parameters for 
which Aq(n,d) = M are determined. Methods for ob- 
taining upper and lower bounds on Ä4(n,d) are dis- 
cussed. 

I. INTRODUCTION 

Let Zq denote the set {0, l,...,q-l) and let Z" be the 
set of all n-tuples (vectors) over Zq. An (n, M, d)q code is 
a code over Zq that has length n, size M, and minimum 
distance d. One of the main problems in combinatorial 
coding theory is to find the largest possible value of M 
when the other parameters have been fixed; this value is 
denoted by Aq(n,d) and corresponding codes are called 
optimal. 

Linear quaternary codes have earlier been considered, 
for example, in [3]. Except for some preliminary results 
of this work, which were presented in [2], only sporadic 
results have been published earlier in the general quater- 
nary case. 

II. ON SMALL OPTIMAL CODES 

To obtain our main result, we combine the Plotkin 
bound, the juxtaposition construction, a result by 
Baranyai [1], and the following theorem, which general- 
izes a result from [4]. 

Theorem 1 Suppose we have a resolvable PBD(v = 
M,K;X) with n parallel classes, where each parallel class 
has at most q blocks. Then there exists an equidistant 
(n, M,n — \)q code. 

The main theorem is as follows. 

Theorem 2 Let q < M < 2q. Then an (n,M,n - \)q 

code exists if and only ifn/X < M(M -l)/2(M -q). For 
M ^ 2q — 1 equality implies that such a code is optimal. 

Corollary 1 For q < M < 2q, Aq(n,d) = M exactly 
when 

(M + l)2 - 3(M + 1) + 2q         ,     M2-3M + 2q 
-n < d <  — TT—^n. 

(M + l)2 - (M + 1) M2-M 

III. FINDING BOUNDS ON Aq(n,d) 

Upper bounds on Aq(n,d) can be obtained, for exam- 
ple, from the Plotkin bound, the Hamming bound, and 
the linear programming,bound. 

Lower bounds on Aq(n,d) are obtained by construct- 
ing corresponding codes. An exhaustive computer search 
is for all but the smallest parameters out of question. To 
search for codes, we therefore have to use stochastic meth- 
ods and/or prescribe a structure of the codes to restrict 
the search. 

As for the structure of the codes, four different meth- 
ods have been used for q = 4. These give additive codes 
over Z2 x Z2, lexicographically minimal codes, codes that 
consist of orbits of words under the action of a permu- 
tation group, and codes that consist of cosets of a linear 
code, respectively. 

To give an example, the 13 vectors below generate a 
(12,213,5) additive code over Z2 x Z2, a current record. 
(The four symbols 00,01,10,11 of Z2 x Z2 are written 
0,1,2,3.) 

111110000000 
110001110000 
101001001100 

010100101010 
211001000001 
022001101000 
021200001001 

130102100001 
110020201000 
011121021001 
101100102200 
000121002020 
131121002002 

xThis work was partially supported by the Bulgarian National 
Science Fund and by the Academy of Finland. 

We have collected the best known bounds on A±(n,d) 
for n < 12. 
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Abstract — We consider the problem of find- 
ing the maximal size A3(d, &o, uii, W2) of a ternary 
constant-composition code. We describe a construct- 
ion of ternary constant-composition codes that proves 
j43(4,4m + l,2,l) = (m + l)(4m + 2) and A3{4,4m-1, 2,1) = 
m(4m + 2). 

I. INTRODUCTION 

We study the problem of determining the maximal size of a 
ternary block code with constant composition. The metric we 
are interested in is the Hamming metric. Let each codeword 
have wo 0's, wi i's and wi 2's. Denote the minimum Hamming 
distance of a code by d and let A3(d,u>o,w\, 11)2) denote the 
maximal size of a code. We let n denote the length of a code. 
The corresponding functions A2(n, d) for binary codes without 
restrictions, ^(n, d, w) for binary constant-weight codes and 
A3(n, d) for ternary codes without restrictions have been thor- 
oughly investigated. The papers [1] and [2] contain extensive 
lists of references on these problems. The problem of deter- 
mining A3[d, wo, wi, W2) on the other hand has received very 
little attention. Two references for results on this problem are 
[3] and [4], 

We focus on ternary constant-composition codes with Ham- 
ming weight three. Without loss of generality we assume 
w\ = 2 and u>2 = 1. In [5] we presented a construction of codes 
with this composition and minimum distance three, whereas 
we here give a construction of codes with minimum distance 
four. 

II. CONSTRUCTION 

Let m be a positive integer. Take D* to be the m x (2m+l) 
matrix with 

2,    if j = 1; 
1,    if j = i + 1 or j = 2m — \ 
0,    otherwise. 

Let D be the m(2m +1) x (2m + 1) matrix with rows equal 
to all different cyclic shifts of the rows of D*, in arbitrary 
order. Let D\ and D2 be two m(2m + 1) x (2m + 1) matrices. 
Take Di to be 1 in exactly those positions where D is 1, and 
take it to be 0 elsewhere. Similarly, take D2 to be 2 in exactly 
those positions where D is 2, and take it to be 0 elsewhere. 
We note that all rows of D\ are different and that for any 
selection of two columns of D\ there is exactly one row that 
has its l's in these two columns. 

We use the notation hm+i for the (2m + 1) x (2m + 1) 
identity matrix and 2/2m+i for the (2m + 1) x (2m + 1) matrix 

with 2's on the main diagonal and 0's elsewhere. We construct 
matrices B\, B2, B3 and B\ as follows: 

Bi = 

10 

10 
l2m+l 2/2m+l 

B2 

' 01 

01 
2i2m + l hm+l 

B3 

' 00 

Di D2 

00 

B4 

" 00 

D2 Di 

00 

Let dm+i be the code consisting of the union of all the 
rows of Bi, B2, Bz and .B4. We define Cnm-i for i = 0,1,2 
to be Cim+i shortened with respect to 0's in the first i + 1 
positions. 

III. BOUNDS ON ^3(4,w0,2,1) 
Our main result is the following theorem: 

Theorem 1  For any integer m > 1, the equalities 

A3(4,4m + 1,2,1) 
A3(4,4m- 1,2,1) 

(m + l)(4m + 2), 
m(4m + 2), 

hold. 

1This work was supported by the Swedish Research Council for 
the Engineering Sciences under grant 271-97-532. 

We are currently not aware of any codes having a larger 
number of codewords than C4m as constructed above. How- 
ever, larger codes than C^m-2 are known for small m, see also 
[3] and [4]. 
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Abstract — In the presentation we find an analytic 
expression for the maximum of the normalized entropy 
— 53<€T p% In pi/ $2<eT »Pi where the set T is the disjoint union 
of sets Sn of positive integers that are assigned probabilities 
Pn, ^2 Pn = 1- This result is applied to the computation 
of the capacity of weakly (d, k)-constrained sequences that are 
allowed to violate the (d,k)-constraint with small probability. 

I. PROBLEM DESCRIPTION AND RESULTS 

Let T be a set of positive integers, and assume that T is 
the disjoint union of a (finite or infinite) number of non- 
empty sets Sn,n G M. Also assume that there are given 
numbers Pn > 0, n G M, with Y,n ^n = 1- We show the 
following result. 

Theorem: The maximum of 

ti ■=  ?=; :  (1) 

(In : natural logarithm) under the constraints that pi > 0, 
52i€SnPi = Pn, n € M, equals zn, where zn > 0 is the 
unique solution z of the equation 

- £ PnlnQn(z) = -Y, P»lnP« 

with for z > 0 

Qn(z) := J2 e~U>    n e M- 
«€S„ 

Moreover, the optimal Pi are given by 

Pn 
Pi = 

Qn(zo) 

and for these pi we have that 

e~"\    iG5„,nGM, 

i€T 

d_ 
dz 

-£P„lnQn(*) (zo) 

(2) 

(3) 

(4) 

(5) 

As an application of this result we consider weakly con- 
strained (d,k) sequences [1]. A binary (d, A;)-constrained 
sequence has by definition at least d and at most k 'zeros' 
between consecutive 'ones'. Weakly constrained codes 
produce sequences that violate the specified constraints 
with a small probability. It is argued that if the channel 
is not free of errors, it is pointless to feed the channel with 

perfectly constrained sequences. A (d, fc)-constrained se- 
quence can be thought to be composed of 'phrases' 10', 
d <i < k, where 0* means a series of i 'zeros'. In order to 
compute the channel capacity, i.e. the maximum zo/ln2 
of the entropy H/ In 2, we define 

T   =    {l,...,d}u{d + l,...,fc + l} 

U    {fc-r-2,fc + 3,...} —S1US2US3, 
(6) 

where d = 0,1,..., and k = d+1, d+ 2,... are given, and 
we compute the capacity for the case that the probabil- 
ities Pi, P3 assigned to the sets Si, S3 are both small. 
Clearly, the quantities Pi and P3 denote the probabilities 
that phrases are transmitted that are either too short or 
too long, respectively. We find that the familiar capacities 
of (d, A;)-constrained sequences [2] are approached from 
above as Pi, P3 -> 0 with an error A(Pi In Pi -I- P3 In P3), 
where we can evaluate the A explicitly. We obtain a sim- 
ilar result for the case that T is as in (6) with Si, S3 
merged into a single set Si U S3. Further results are pub- 
lished in [3]. 

Conclusions 

We have presented an analytic expression for the maxi- 
mum of the normalized entropy — $^»er Pi mP«/ SieT *P» 
under the condition that T is the disjoint union of sets 
5n of positive integers that are assigned probabilities 
P„, $3nPn = 1. We computed the capacity of weakly 
(d, fc)-constrained sequences that are allowed to violate 
the (d, fc)-constraint with given probability. 
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Abstract — We study the number of binary se- 
quences whose differences do not include certain dis- 
allowed patterns. We show that the number of such 
sequences increases exponentially with their length 
and that the exponent, or capacity, is the logarithm 
of the joint spectral radius of an appropriately defined 
set of matrices. We derive a new algorithm for deter- 
mining the joint spectral radius of sets of nonnegative 
matrices and combine it with existing algorithms to 
determine the capacity of several sets of disallowed 
differences that arise in practice. 

I. CODES THAT AVOID DIFFERENCE PATTERNS 

The bit-error-rate of a recording channel is often dominated 
by a small set of error, or difference, patterns. Binary codes 
have been proposed which exploit this fact, e.g.,[l]. The codes 
are designed to avoid the most problematic difference patterns 
by constraining the set of allowed recorded sequences and have 
been shown to improve system performance. In order to maxi- 
mize the achievable linear density for a recording channel, it is 
important to identify constraints that permit the highest pos- 
sible code rate. To that end, we study the largest number of 
sequences whose differences exclude a given set of disallowed 
patterns. 

More specifically, let D be a finite set of finite-length dis- 
allowed difference patterns, and let Cn be a collection of n-bit 
sequences whose differences do not contain any patterns in D. 
The largest number of sequences whose pairwise differences 
do not include any pattern in D is 

5„(D) d= max{|C„| : Cn avoids D}. 

We define the capacity of D as the limit 

cap(iV^log[lim(<5n(-D))1A1. Ln-+oo J 

We show that, for every finite £>, 

cap(D) = log p(E(£>)) 

where £(£>) is an appropriately defined set of adjacency ma- 
trices and p is the joint spectral radius of the set [2]. This 
equality may be viewed as a generalization of the well-known 
result that the growth rate of the number of sequences, or 
Shannon capacity, of a constrained system is the logarithm 
of the spectral radius of an appropriately defined adjacency 
matrix. 

II. COMPUTING THE JOINT SPECTRAL RADIUS 

Computing the joint spectral radius of a set of matrices 
is, in general, a hard problem [3]. Algorithms for computing 
it have been described in [4, 5].  We derive a new algorithm 

Table 1: Capacity of various difference sets D 

m D cap(.D) O 
m> 1 0m~i+ 0 - 
2 +- 

++ 
a 
a 

io(°),oid) 
11 

3 
0+0 
+0+ 
+++ 
+-+ 

.5 
a 
S 
S 

OOd), lid) 
101,111 
111 
ioi(°), oio(i) 

a = log2((l + VE)/2) =..6942... 

5 = log2((l + (19 + 3vW/3 + (19 - 3>/33)1/s)/3) = .8791... 

to compute p(E(L>)) and determine or closely approximate 
cap(D) for a number of difference sets D of practical interest. 

Table 1 summarizes known values of cap(D) for a number 
of difference sets D consisting of a single pattern of length m. 
Next to the capacity, we list a constraint describing a sequence 
of codes, {Cn}, such that each C„ avoids D and 

lim log|C„|1/n 

n—KX) 

achieves cap(D). The constraint is defined by a list of for- 
bidden patterns O. If no superscript is listed with a pattern, 
the pattern is forbidden from appearing in all positions of the 
code. If superscripts appear, then the patterns are periodic 
and the period is one more than the largest superscript. The 
superscript then represents the positions (modulo the period) 
in which the pattern is disallowed from starting. 
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Abstract — In this paper we consider the analysis and design 
of optimal block-decodable M-ary runlength-limited (RLL) 
codes. We present two general construction methods: one based 
on permutation codes due to Datta and McLaughlin, and the 
other a nonbinary generalization of the binary enumeration 
methods of Patrovics and Immink, and Gu and Fuja. The 
construction based on permutation codes is simple and 
asymptotically (in blocklength) optimal, while the other 
construction is optimal in the sense that the resulting codes 
have the highest rate among all block-decodable codes for any 
blocklength. In the process, we shall also prove a new result on 
the capacity ot(M,d,k) constraints. Finally, we present examples 
of remarkably low-complexity (M,d,k) block codes which 
achieve the optimal rate without the use of enumeration. 

I. INTRODUCTION 
Traditional optical recording employs saturation recording, 

where the channel input is constrained to be a binary sequence 
satisfying runlength-limiting (RLL) or (d,k) constraints. A binary 
(rf,£)-constrained sequence is one in which the number of zeroes 
between consecutive ones is at least d and at most k. The idea of 
optical recording with M (M>2) levels has been proposed [1], and 
previous work in coding for such nonbinary channels includes 
[l]-[3]. Assuming an M-ary symbol alphabet, {0,1, ..., M -1}, M<°°, 
an M-ary runlength-limited or (M,d,k) sequence [3]-[4] is one 
where at least d and at most k zeroes occur between nonzero 
symbols.  Binary (d,k) codes are (M,d,k) codes with M=2. 

In this paper we present two broad code construction techniques 
for block-decodable (M,d,k) codes. First, we give a new result on 
the capacity of (M,d,k) constraints; this leads to a simple code 
construction which produces codes that asymptotically (in 
blocklength) achieve capacity. Second, we extend the enumerative 
construction of Patrovics and Immink [5] to the nonbinary case. 
We show how this algorithm can be used to design optimal 
deterministic block codes; these codes are optimal in the sense 
that they have the highest possible rate among all block- 
decodable codes. Finally, we present examples of M-ary block 
codes that achieve the optimal rate through a novel use of lookup 
tables rather than the more complex enumeration scheme. 

II. ON THE CAPACITY OF (M,d,k) CODES 
The allowable sequences in an (M,d,fc)-constrained code are made 

up of phrases, where each phrase begins with at least d and at most 
k zeroes and ends with a single nonzero symbol.   For example, an 
allowable (M,d,k)=(5,\,7) sequence is 

0002    00001    0000004    003    01    00000004 
where individual phrases have been underlined for emphasis. 

Next, we state a result on capacity. This is the M-ary 
generalization of Theorem 1 ofZehavi and Wolf [6]. Let X\ be a 
random variable describing the number of symbols in the /th 
phrase of the parsed sequence, and let A\ be a random variable 
denoting the nonzero value (amplitude) of the terminating symbol 
of the phrase. 

Theorem 1. The code achieving maximum information rate has 
the following properties: 
(1) The random variables A\Ai,--- are statistically   independent 
and uniformly distributed 
(2) The random variables X\JCi,--- are statistically   independent 
and identically distributed 
(3) The probability distribution ofXis 

?(X=i)=(M-1 )2"ic, i=d+1 ,...,*+1 

where C is the capacity of the (M,d,k) constraint. Any (M,d,k) code 
that achieves capacity satisfies (l)-(3), and conversely, any code 
satisfying (l)-(3) achieves capacity. □ 

Using this theorem, we present an asymptotically efficient, fixed- 
rate, parallel encoder that is scalable with respect to M and 
maintains backward compatibility with a binary RLL system [9]. 

III. BLOCK CODES BASED ON (M.dXl.r) SEQUENCES 
In our talk, we present a nonbinary generalization of the 

enumeration algorithm given by Patrovics and Immink [5]. Using 
this enumeration algorithm for (M,d,k,l,r) sequences, we are now 
able to extend two important (d,k) code constructions ([7],[8]) to 
the nonbinary case [9]-[10]. Based on this, we can show that the 
optimal rate of the (M,d,k) code with blocklength n is 

V = l082(i^_1(B-/))/i. 
i=d I 

IV. EXAMPLES OF OPTIMAL <M,d,k) BLOCK CODES 
Next, we present examples of block-encodable/block-decodable 

codes which achieve the optimal code rate, but do not require the 
aforementioned enumeration algorithm. Rather, these codes use a 
series of look-up tables consisting of 'templates' in order to 
encode and decode with very low complexity. As a result, the 
storage space required for these codes is remarkably small. 

Specifically, for an (M,l,7)-constrained code with blocklength 
«=8, it can be shown that the optimal rate #opt=10/8, 13/8 for 
M=5, 9 respectively. In our talk, we show how one look-up table 
consisting of 37 templates of 8-bit codewords can be used to 
generate both of these optimal codes. 

Finally, we present an optimal, 92.4% efficient, (5,2,10)-code 
with blocklength «=26 and ^op,=24/26. This code requires the use 
of 6 look-up tables containing a total of only 203 13-bit templates 
[9]. 
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Abstract — Suppose we are given a block code, that 
is, a list of at least 2P q-bit self-concatenable code- 
words. A rate p : q block encoder is a dataword-to- 
codeword assignment from 2P p-bit datawords to 2P q- 
bit codewords, and the corresponding block decoder 
is the inverse of the encoder. We propose efficient 
heuristic computer algorithms (i) to eliminate the ex- 
cess codewords; and (ii) to construct low hardware 
complexity block encoders/decoders. Constructing 
low-complexity encoder/decoders for very high rate 
codes is of immense economical value-as these codes 
may be implemented in mass-market magnetic record- 
ing systems. For several practical constraints, block 
encoders/decoders generated using the proposed al- 
gorithms are comparable in complexity to human- 
generated encoders/decoders, but are significantly 
simpler than lexicographical encoders/decoders. 

I. EXTENDED ABSTRACT 

Constrained coding is used in magnetic recording systems 
to encode unconstrained user sequences into channel output 
sequences that satisfy certain hard constraints such as various 
limits on the run lengths of zeroes. A block code is a col- 
lection of codewords satisfying a certain constrint such that 
these codewords can be freely concatenated with each other 
without violating the underlying constraint. Block codes have 
been widely used for converting unconstrained user sequences 
into desired constraint sequences. The basic idea in a rate 
p : q block code is to identify a codebook containing 2P q-bit 
codewords that satisfy the desired constraint, and to design 
an encoder that assigns each 2P p-bit dataword in a one-to- 
one and onto fashion to a q-bit codeword in the codebook. 
In other words, a block encoder is a dataword-to-codeword 
assignment. The corresponding block decoder is the inverse 
mapping or the codeword-to-dataword assignment. 

We motivate the problem of interest using a concrete ex- 
ample of (d, k) = (0,2) run-length limited (RLL) constraint 
which demands that runs of consecutive symbols "0" must not 
be more than 2. We are interested in a rate 4 : 5 block code 
for this constraint. A set of valid 5-bit codewords for this 
constraint can be obtained by starting from all 5-bit words 
and eliminating all words that have more than two consecu- 
tive symbols "0" anywhere in the words and by eliminating 
all words that have more than one symbol "0" at the begin- 
ning or at the end of the word. This process leaves a set of 17 
codewords which can be freely concatenated without violating 
the constraint. 

Since 17 > 16 = 2 , these set of codewords can support 
a rate 4 : 5 block code.   Thus, the problem is (i) to select 

Datawords Codewords 
excess 10101 
0000 10010 
0001 10110 
0010 10011 
0011 10111 
0100 01001 
0101 01101 
0110 11001 
0111 11101 
1000 01010 
1001 01110 
1010 01011 
1011 01111 
1100 11010 
1101 11110 
1110 11011 
1111 11111 

I 

Table 1: A block encoder for the (0,2) RLL constraint. 

an excess codeword and (ii) to determine a mapping from 
the remaining 16 codewords to the set of all 4-bit datawords. 
There are 17 choices for the excess codeword, and for each such 
choice there are 16! choices for the encoder. In all there are 
17! « 3.5568 x 10M ways to select a codebook and an encoder! 
In other words, there is a great amount of freedom in selecting 
the encoder/decoder pair to implement a given block code. 
In this paper, we are interested in exploiting this freedom to 
select an encoder/decoder pair that has a low-complexity of 
hardware implementation. Typically, given the large number 
of possibilities, a brute-force search is out of the question for 
even relatively low rate block codes. Currently such a task is 
performed in a laborious, ad-hoc, and human-centric fashion, 
and becomes nearly impossible for very high-rate codes. 

As our main contribution, we propose efficient heuristic 
computer algorithms to select a codebook and to construct 
low-complexity encoder/decoder; for example, the encoder in 
Table 1 was found using the new algorithm. Furthermore, we 
demonstrate the algorithm using rate 8 : 9 block codes for 
(0,4/4) and (0,3/6) PRML constraints. 
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I. INTRODUCTION 

This paper analyzes the distribution of cycle lengths in 
turbo decoding graphs. It is known that the widely-used it- 
erative decoding algorithm for turbo codes is in fact a special 
case of a quite general local message-passing algorithm [1] for 
efficiently computing posterior probabilities in acyclic directed 
graphical (ADG) models (also known as "belief networks") [2, 
3]. However, this local message-passing algorithm in theory 
only works for graphs with no cycles. Why it works in prac- 
tice (i.e., performs near-optimally in terms of bit decisions) 
on ADGs for turbo codes is not well understood since turbo 
decoding graphs can have many cycles. 

ice 

"""-<. 
          ««mutation \ 

\: 

Fig. 1: An example of a turbo decoding graph for a K = 6, n = 12, 
rate 1/2 turbocode. 

II. METHOD 

The ADG model for a turbo-decoder can be reduced to 
what we call a turbo decoding graph (Figure 1), which is an 
undirected graph capturing the inherent loop structure of a 
turbo decoder. There are two parallel chains, each having n 
nodes (for real turbo codes, n can be very large, e.g., n = 
64,000). Each node is connected (via a U node) to exactly 
one node on the other chain and these one-to-one connections 
are chosen randomly, e.g., by a random permutation of the 
sequence {1,2,..., n}. 

To help count the cycles in the graph, we drop the U nodes, 
and label the edges in any simple cycle as 

1. -»:  "Left-to-right on a chain" (e.g., S? 

1). 

2. <-:  "Right-to-left on a chain" (e.g., Sj 

3. =: "Across the chains" (e.g., S3 - S?). 

For example, the cycle S? - Si - S§ - S\ - S\ - S3 

be labeled —»—>■:=•<— <—=. Starting from a node on a chain, and 
a label sequence L € {->, <-,=}+, there is at most one cycle 

S| in Figure 

Si), or 

S? will 

'This work was supported in part by NSF CAREER award IRI- 
9703120 and by AFOSR grant F49620-97-1-0313. 

Fig. 2: Theoretical vs. simulation estimates of the probability of 
no cycles of length k or less, as a function of k, in a turbo decoding 
graph (chain length n = 64,000). 

being labeled L.  We count the number of cycles of length k 
at a node by computing 

1. The total number of possible label sequences L, 

2. The probability of finding a cycle with the label se- 
quence L. 

More complete details can be found in [4]. 

III. CONCLUSIONS 

Using this general approach, we estimate the probability 
that there exist no simple cycles of length < k at a randomly 
chosen node in a turbo decoding graph. In Figure 2, we com- 
pare both analytical and simulation results. For turbo codes 
with a block length of 64000, a randomly chosen node has a 
less than 1% chance of being on a cycle of length less than or 
equal to 10, but has a greater than 99.9% chance of being on 
a cycle of length less than or equal to 20. 
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Abstract — The error correction capability of in- 
terleaved linear block codes is discussed. We assume 
that the channel behaves such that each row of a re- 
ceived array is either error free or corrupted by many 
symbol errors. Provided that the error vectors are 
linearly independent, we show that some interleaved 
block codes can correct asymptotically one erroneous 
row per redundant row, even without having reliabil- 
ity information from the channel output. An efficient 
decoding algorithm that achieves the error correction 
capability is presented. Using this algorithm we de- 
rive a random access scheme that has many similar- 
ities with the Aloha system. This paper represents 
a generalization of our work [2]. As it finally turned 
out, many ideas from [2] were already discussed in 
1990 by Metzner and Kapturowski   [3]. 

I. INTRODUCTION 

Block interleaving of linear block codes is a well known method 
for the correction of long error bursts. Therefore we arrange «2 
codewords of an (ni, fci, di )-code as the columns of an ni x ni 
interleaver matrix. Then the matrix is transmitted over the 
channel row by row. Using column-wise BMD-decoding we do 
not exploit the knowledge that errors occur in bursts and that 
only a limited number of rows is corrupted. In this paper we 
present a decoding algorithm that makes use of these facts. 

II. TRANSMISSION SCHEME 

Each column of the n\ x m block interleaver matrix C rep- 
resents a codeword of a given linear block code C\(n\,k\,d\) 
with parity check matrix H. The symbol alphabet corresponds 
to a finite field denoted by .A. We will consider C to be one 
code matrix of an ni x 712 array code C. The errors inserted 
by the channel can be described by an additive error matrix 
F e AniXn2 where R = C + F. According to the parity 
check matrix H we can calculate a syndrome vector for each 
column of the received matrix. Arranging theses syndromes 
as columns of a (ni — fci) x m matrix we get the so-called 
syndrome matrix S, where S = H • R holds. It follows that 
rank(S) = rank(F), as long as t < d\ — 1 is fulfilled. 

III. ERROR CORRECTION CAPABILITY 

The number of erroneous rows is the metric that we use for 
decoding. Hence an optimal decoder tries to find that code 
matrix, that has as many identical rows with R as possible. It 
can be shown that R can be correctly decoded if the following 
condition is fulfilled: 

t <di -l-(t-rank(F)) (1) 

Hence, for linearly independent error vectors we can correct 
d\ — 2 erroneous rows without using any soft information for 
symbols or rows. It can be shown for many applications that 
the matrix dimensions can be designed such that the proba- 
bility of linearly dependent error vectors becomes arbitrarily 
small [2]. Using an MDS-code as column code, this means that 
the corresponding interleaved code can correct n\ — k\ — 1 erro- 
neous rows without using any reliability information from the 
channel output, provided that the error vectors are linearly 
independent. 

IV. DECODING 
A decoding algorithm can be derived that actually achieves 
the error correction capability for linearly independent error 
vectors [2] [3]. The complexity of this algorithm has order 
0(n\ • «2). The algorithm can be generalized for the case of 
linearly dependent error vectors, such that the error correcting 
capability corresponding eqn. 1 is achieved. The generalized 
algorithm has low complexity for small values of t—rank(F). It 
can be shown that the problem of correcting a linearly depen- 
dent error pattern is equivalent to finding a minimum weight 
codeword of the code that is defined by a submatrix of an 
equivalent parity check matrix H'. 

V. ALOHA-LIKE RANDOM ACCESS SCHEME WITHOUT 
FEEDBACK 

The Aloha system is a simple and well known random access 
scheme. Nevertheless it requires collision detection and feed- 
back from the receiver or channel to the transmitters. The 
idea is to consider one row of the interleaver matrix as one 
received data slot of a random access scheme and to use a 
long RS code as column code. It turns out that the proposed 
scheme has the same throughput as slotted Aloha (1/e) with- 
out requiring a feedback channel or additional redundancy for 
error detection. 
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Abstract — We present the performance limits of 
concatenated codes with interleaver of infinite size 
and under iterative decoding. We study the propa- 
gation of the probabilities at the output of the SISO 
decoder, and give a general formula for the density 
propagation through iterations. 

I. INTRODUCTION 

Compound codes have been extensively studied in the litera- 
ture [l]-[6]. All these codes are decoded iteratively since no 
maximum-likelihood decoding algorithm of reasonable com- 
plexity is available. Recently, [7] and [8] presented a method 
for determining the performance limits of LDPC codes under 
iterative decoding. Their approach is based on the estimation 
of the probability density function of the decoder output from 
its input density. In this paper, we establish a general den- 
sity propagation formula available for all isotropic codes, i.e., 
when the probability distribution of the a posteriori proba- 
bility (APP) is independent of the bit position, and we give 
numerical results for different compound codes. 

II.  ISOTROPY OF CONSTITUENT CODES 

All concatenated codes can be modeled as a graph having two 
types of nodes representing bits and subcodes respectively. In 
the sequel, this graph is assumed to be cycle-free, i.e., the 
length of the interleaver is infinite. Let C(n, k) be the lin- 
ear binary constituent block code. The APP associated to a 
coded bit CJ, j' = 1... n, can be written as a function of the 

conditional weight enumerator (Al~ ,A.\~ )i,]=\ n : 
n 

APP(c3) oc J2^i ® Wr/cMc^lpir/cMc)]®"- 
;=o 

where r is the received symbol, c being transmitted, and 
p(re/ci)p(c(),£ = l,...,n are identically distributed. X + Y 
and XY are respectively denoted 2®X and X®2 when X and 
Y are identically distributed. If the probability distribution 
of the APP information is independent of the bit position, the 
constituent code is said to be isotropic. All bits in the graph 
are then equally protected by the information propagation. 
For example, cyclic codes and extended BCH primitive codes 
are isotropic codes. 

III. LOG-LIKELIHOOD RATIO DENSITY PROPAGATION 

Let us describe the information propagation in the graphi- 
cal model of the concatenated code, d (resp. n, the code 
length or a restricted window containing the local constraints 
for a convolutional code) is the degree of the bit node (resp. 
the subcode node). The constituent code is assumed to be 
isotropic. A subcode node computes an extrinsic information 
extLLRm from its n — 1 inputs. A bit node evaluates its a 
posteriori probability LLRm, combining the channel observa- 
tion, the extrinsic information, and the a priori probability 

resulting from the product of d — 1 independent extrinsic in- 
formations supplied by the other d— 1 subcode neighbors. The 
total APP is the product of d extrinsic informations and the 
initial observation. Let Bm be the partial a posteriori log- 
likelihood ratio (LLR) at iteration m (bit position j omitted): 

.p(r/c = l)p(c = 1) B„ log- 
'p(r/c = 0)p(c = 0) 

The density propagation through the graph can be summa- 
rized by the following general formula 

Er=0 4 ®[e*P(*m-l )]9''-'' 
Bm = Bo + (d - 1) ® log- 

E:=0^®[exp(ßm-,)]« 

The total APP distribution is equal to the convolution of the 
Bm density and the extLLRm density. If pm{x) is the proba- 
bility density function of LLRm and if the all zero codeword 
has been transmitted, the bit error probability at iteration 
m is Pem — J °°pm(x)dx. The performance limit of the 
iterative SISO decoder is given by the minimal value of the 
signal-to-noise ratio Eb/No for which Pem tends to 0 when m 
goes to -fco. 

IV. NUMERICAL RESULTS 

The following table summarizes the thresholds of differ- 
ent compound codes, obtained by a Monte Carlo method. 
PCCC [3] fl = 0.5 C = (13,15) 0.58dB 
SCCC [4] R = 0.5 Ci = (17,6,15), C2 = (31, 25, 33,37) 0.87dB 
Block GLD [6] R = Q.5C = (15,11) 0.83dB 
Convolutional GLD [5] R = 0.5 C = (13,15, 2,14) 0.85dB 
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Abstract — The in-training-set performance of a vec- 
tor quantizer as a function of its training set size is in- 
vestigated. For squared error distortion and indepen- 
dent training data, worst-case type upper bounds are 
derived on the minimum training distortion achieved 
by an empirically optimal quantizer. These bounds 
show that the training distortion can underestimate 
the minimum distortion of a truly optimal quantizer 
by as much as a constant times n-1'2, where n is the 
size of the training data. Earlier results provide lower 
bounds of the same order. 

I. INTRODUCTION 

A d-dimensional fc-point vector quantizer Q is a (measur- 
able) mapping of Rd into a finite set of points {yi,... ,yk}, 
called the codebook. Let Qk denote the family of all d- 
dimensional fc-point vector quantizers. Given a d-dimensional 
random vector X with distribution fix, a quantizer Q* £ Qk 
is called an optimal fc-point quantizer for fix if it has minimum 
mean squared distortion in Qk'. 

D(Q') = E[\\X - Q*(X)\\2] = min E[\\X - Q(X)f]. 
yt Wife 

Assume that a quantizer is to be designed on the basis of 
the training data Xi, X2,.. ■ , Xn consisting of n vectors inde- 
pendently drawn according to ^x- In general, the objective of 
a quantizer design algorithm (such as the generalized Lloyd al- 
gorithm) is to find an empirically optimal quantizer Q* G Qk 
whose distortion in quantizing the training data is minimum: 

Dn{Q'n)= min I £ \\Xi - Q(*0||2. 
1=1 

The random quantity Dn(Q*n) is called the training distor- 
tion of Q*n. Since the training distortion is obtained as a 
by-product of the design procedure without requiring addi- 
tional test data, it can be considered an inexpensive estimate 
of D(Q*). It is easy to see that D(Q*n) is optimistically bi- 
ased in the sense that E[Dn(Q*n)\ < D(Q") (the inequality 
is strict whenever D(Q*) > 0). The size of the bias was 
first investigated in a work by Kim and Bell [1] who showed 
that E[Dn{Q*„)} < D{Qm) (1 — 1/n) for any source distribu- 
tion with a finite second moment. Our main result shows that 
this bound can be considerably improved in a worst case sense: 
the difference D{Q*) - E[Dn(Q*n)] of the minimum distortion 
of an optimal quantizer and the expected training distortion of 
the empirically optimal quantizer can be as large as constant 
times n-1/2. 

II. MlNIMAX BOUNDS ON THE TRAINING DISTORTION 

Let V(B) denote the class of all source distributions which 
satisfy the peak power constraint P{(l/d)||X||2 < B] = 1. 

In other words, for any B > 0, the class V(B) consists of 
all source distributions whose support is contained in the ball 
{x:||:c|| <VdB}. 

Theorem 1 For any quantizer dimension d > 1 and codebook 
size k > 3 there exists a source distribution fix € V(B) such 
that for all training set size n > f/c, 

E[Dn{Qn)] < D(Q') ■ 

BdVV~3 

c{B,d,k) 

\fn 

where c(B, d, k) = BdyJ3 

If the relative difference is considered, the following simple 
bound can be obtained in terms of the training ratio ß = n/k. 

Theorem 2 For any quantizer dimension d > 1 and codebook 
size k > 3 there exists a source distribution fix € V(B) such 
that for all training set size n > |fc, 

E[Dn(Q'n)] < D(Q') (l - ~^j 

where Co 1 fi. :0.27. 

Note that in the above bounds the "bad" source distribu- 
tion giving a large bias does not depend on the training data 
size n. Thus Theorem 1 guarantees the existence of at least 
one fixed source distribution in V(B) such that 

liminf ^ü(D{Q') - E[Dn(Q'n)]) > 0. 
n—>oo \ .  J 

In contrast, the worst case bound developed in [2] on the 
test distortion of an empirically optimal quantizer is obtained 
by constructing a different "bad" source distribution for each 
training data size n. 

Using an earlier result [3], it can be shown that Theorem 1 
is essentially tight. We can conclude that for all k > 3 and all 
n large enough, 

-7= <     sup 
V»        M€P(fl)' 

(D(Q*) - E[Dn(Q'nj\) < 

for some constants c, c > 0 depending on d, k, and B 

c 

■y/n 
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Abstract — We present a new asymptotic quanti- 
zation theory on a plane for a known smooth non- 
uniform data density. Based upon a two-stage model, 
we design a mapping for harmonic cluster. We argue 
angular phase field. We give a relative distortion mis- 
match for a case of asymptotic clusters, and optimize 
over the cluster centers. 

I. INTRODUCTION 

When ||     ||s represents the s-th power (s > 0) of the Euclidean 
distance, the integral 

/  ■ min   \\x - yi\\°p(x)dx. 
l<i<N 

(1) 

measures a performance of an N-quantizer, j/i,.. ., yN, of a 
random point from a smooth probability density p(x) on a 
plane. We study an asymptotic geometry of a near optimal 
quantizer when N is large enough. Let ß = s/k and p = 
2/(.s + 2), and let || p \\p denote {/p(a-)p},/p, then it is well 
known that 

mm 
{yi y/v 

(l)~ N-pR, (2) 

where R2,s is the normalized s-th moment of the regular 
hexagon. This result holds under a mild regularity condition 
on p, including the moment condition J \\x\\s+" p(x)dx < oo 
for any £ > 0. On the one hand the result means that the 
optimal quantizer have a density proportional to p"(x), and 
on the other hand each point in the quantizer, call which a 
generator, have a Voronoi region being almost similar to the 
regular hexagon. Only a few [1][2][3][4] study this seemingly 
contradictory facts. We continue them and propose a new 
asymptotic approach in the design of two-stage quantizer. 

II. RESULTS 

Define g(x) := p"/ jp"dx, thus Ng is the optimal number 
density of generators. We identify U2 as a complex plane C. 
Let C be decomposed into domains C = |J, £/{, where U( is 
indexed by some central point £. We design a compressor,i.e. 
a mapping, ip(z; () from the distribution space U( (parameter- 
ized by z = z\ -\-\zi) to the quantization space ^(parameterized 
by «)), such that ¥>(£;£) = 0. 

At first let l(z) := lng(s), and define a holomorphic func- 
tion 

£(*; 0 ■= J(0 + (* - Odi(0 + \(z - o292/(o,     O) 

where d = -^ - i^-. Using this function we define 

g(z) := ct\eL{::()\ for ; £[';, (4) 

JA part of the work was done while the author stayed in 1996 
at Information Systems Laboratory, Dept. of EE, Stanford Univ. 

where the normalizing constant c£ is determined such that 
g(U<) = 9(Ut). 

For a phase 0(£) € [0, 2*] given at £, we design the com- 
pressor by the complex integral 

v(-,Z) -j; y/ciexp{-L(z;t)-0W}dz. 

The inverse image of this function of a hexagonal lattice 

spanned by A and Aes*1, with the lattice constant A = -x4=, 
V3VN 

approximate the optimal quantizer. We can also argue that 
the angular phase 0(£) satisfies the partial differential equa- 
tion: 

0fc 'dti 

through our two-stage model, where e,j being of Eddington. 
We can also verify this by experiments[4]. 

Define the optimal distortion as 
Dt* := N-ßR2,,fg(jr)-i}p(x)dT. Let Nrj(.r) be the actual 
quantizer number density defined as above and let it yield 
a distortion Dg. Then the relative distortion mismatch can 
be formulated as follows. We assume that N is large enough 
while the number of partitioned domain is finite. 
Fact 

Dg-D° 
Dec 

ß(ß + l) 
/    9(U(){A variance of 

|.T-fl|a A/(0 with rj(-\Ue). (7) 

where g(-\U() is a conditional distribution of g in U(, and the 
asymptotics hold when the diameters of U(S are sufficiently 
small, and A represents the Laplacian operator. 

Both 'domain effect' and 'boundary effect1 can contribute 
to the actual relative distortion mismatch. When the cluster 
centers have a number density Nqk(z), where j k(z) = 1, and 

if 1 << Nq << Ar'^5, and also under a working assumption 
that the cluster centers form a Voronoi diagram with each 
Voronoi cell being almost regular hexagon, then the formula 
(7) takes the following minimum: 

32Nq
2 (Ä2.4 - Rh)-f-A /p(»y/3(Alnp(.r))2>3}3. 

J Pp   J 
(8) 

when A-(J-) = const.p(x)p,3(/Mnp(x))'- /3 
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Abstract — A common belief in quantization the- 
ory says that the quantization noise process resulting 
from uniform scalar quantization of a correlated dis- 
crete time process tends to be white in the limit of 
small distortion ("high resolution"). We show that 
the quantization errors resulting from independent 
non-uniform, vector quantizations of dependent real 
random vectors become asymptotically uncorrelated 
if the joint Fisher information under translation of the 
two vectors is finite and the quantization cells shrink 
uniformly as the distortion tends to zero. 

I. INTRODUCTION 

The Asymptotic Whiteness Property (AWP) of the quanti- 
zation error process [2, sec. 5.6] says that the quantization 
noise process resulting from uniform scalar quantization of a 
correlated discrete time process tends to be white in the limit 
of small distortion ("high resolution")- The AWP also gives 
interesting insight into the behavior of multiterminal coding 
of correlated continuous sources [3], where the correlation be- 
tween the errors at separate terminals may affect the esti- 
mation error at the centralized decoder. Our main result in 
this paper generalizes the AWP to non-uniform quantization. 
Unlike lattice quantization, in this case the quantization cells 
are not necessarily convex, and may be even unions of discon- 
nected regions, as happens in the case of multiterminal source 
coding [3]. However, while a sufficient condition for AWP for 
vector lattice quantization is that the pair Xn and Xn+k have 
a joint probability density function and finite power, the more 
general formulation of the AWP requires stronger conditions 
on the joint distribution of (Xn,Xn+k)- 

The intuition behind the AWP comes from the combination 

of two ideas: 

1. Local uniformity: If the joint distribution of the 
source samples is "smooth", then it is approximately 
uniform inside small cells (corresponding to high reso- 
lution quantization). 

2. Rectangular partition: Independent quantization of 
random variables X £ X and Y ey induces a rectan- 
gular ("Cartesian") partitioning of the (X, J)-plane. 

The property of rectangular partition above seems simple 
and clear. The main purpose of this paper is to make a pre- 
cise statement of the idea of local uniformity, to propose a 
sufficient condition for it to hold and to prove a general form 
of the AWP using the local uniformity condition. For lat- 
tice quantization existence of the joint probability density of 
the source turns out to be sufficient. 'For general non-uniform 
quantization our condition is based on the finiteness of the 
Fisher Information under translation [1], a quantity which is 
a function of the joint distribution of the source samples and 
a moment condition defined below (2). 

II. SUMMARY OF RESULTS 

Let X € X, Y e y, where X = y = Kk, be random vectors 

with joint density p(x,y). Let 

t(x):#-> {1,2,-■■>#«}» J(y):3>->{l,2,...,iM 

induce two partitions of 1lk corresponding to independent 
quantization of X and Y, respectively. Let (x,y) = 

<5(i(x),j(y)) denote the quantizer reconstruction. We de- 

fine Q{i,j) to be the joint centroid of the cell relative to the 
source distribution. 

Consider a sequence of pairs of partition functions 
ijv(x),jjv(y) of X,y, N = 1,2,..., and a corresponding se- 
quence of reconstruction functions (xw.yjv), such that 

DX,N ± E\\X-XNf -+ 0,     Dy,N ä £||Y-Y*||2 -4 0. (1) 

at the same rate. Assume that there exists some 8 > 0 such 

that 

lim sup   E 
N-*oo 

-XNfV+S   E(\\Y-YNf\ 
DX,N ) ' V DV." ) 

1+6 

< CO. 

(2) 
Define the joint Fisher Information (FI) under translation of 

(X,Y)[l]as 

J(X,Y) 
J P(x, y) 

dp(x,y) 
d(x,y) 

dxdy . 

Theorem 1 Let (X,Y) € (X,y), where X = y = Kk, 
be correlated random vectors with continuous source density 
p(x,y), a.s. continuously differentiable lnp(x, y) and joint FI 
J(X,Y) < oo. Let ijv(x) and jjv(y) be a sequence of inde- 
pendent partition functions of X and y, let xjv and yjv be the 
corresponding reconstructions, and let 

A  £{(X-XJy)t(Y-YjV)} pN —  (3) 
y/Dx,NDy,N 

be the correlation coefficient between the quantization errors. 
If the sequence (xjv,yjv) satisfies (1) and (2), then 

pN -> 0    os    JV -> oo. (4) 
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Abstract — We show that there can be an arbitrary- 
discrepancy between the worst-case rate required for 
scalar and vector quantization. Specifically, that for 
every 6, however large, and every e > 0, however 
small, there is a random variable and a distortion mea- 
sure where quantization of a single instance within 
a given distortion requires more than S bits in the 
worst case, but quantization of multiple independent 
instances within the same distortion requires at most 
e bits per instance in the worst case. Furthermore, 
these discrepancies can be achieved by simple distor- 
tion measures that attain just two values: 0 and oo. 

I. SUMMARY 

The results follow from a judicious application of the fol- 
lowing examples. 

Example 1 (Mail order, see Slepian, Wolf, and Wyner [1] 
for average-case analysis.) A mail-order firm sells n different 
shirts. Experience has shown that each customer likes m of 
the n shirts and wants to get just one of them. For example, a 
customer may like all m blue shirts and have no preference for 
one blue shirt over another, while another customer may want 
to buy any one of the m shirts designed by Giorgio Armani. 

The firm designs a new order form. It would like to know 
the shortest length of the reply field which the customer fills 
out to request one of his m favorite shirts. In other words, the 
firm is interested in L(n,m), the smallest number of bits the 
customer must specify for the "worst" set of m shirts. Note 
that n and m are known in advance and the only uncertainty 
is which set of m shirts the customer likes. 

For example, if m = 1 every customer likes exactly one 
shirt and wants to get it. Clearly the shirt must be completely 
specified, so L(n, 1) = pogn]. On the other extreme, if m = n 
each customer likes all n shirts and the firm can mail him any 
of them. Hence no bits need to be transmitted, so L(n, n) = 0. 

One can show (proof in full version) that in general, 

(1) L(n, m) = [log(n — m + 1)]. 

Next we consider independent repetitions of the previous 
scenario and compare the number of bits required by treating 
each case individually to their combined treatment. 

Example 2 (Multiple mail orders.) The mail-order firm 
expands into k product lines. In addition to shirts it now sells, 
say, pants, shoes and (k - 3) other product lines. Again, all 
customers exhibit the same buying pattern: Every customer 
considers all k product lines. In each line the customer likes m 
items and wants to receive one. There is no relation between 
the items liked in different product lines. 

For example, a customer may like all m striped shirts, all 
m pants whose catalog number is a prime, and so on for the 
other lines. He then wants to get one striped shirt, one prime- 
numbered pair of pants, etc. 

Supported by NSF Grant #CCR-9815018. 

We are interested in Lk(n, m), the number of bits the cus- 
tomer must transmit in the worst case. No errors are toler- 
ated, so the customer always receives k products, one from 
each line, and likes all of them. By definition, Li (n, m) = 
L(n,m). We would like to know how Lk(n,m) grows with k. 

By treating each product line separately and describing the 
smallest-numbered desirable item in each line, we see that 

Lk(n,m) < riog(n-m+l)*l « k\log(n - m + 1)] =kl(n,m). 

Since the sets of desirable items in different product lines (say 
shirts and pants) are completely independent of each other, 
knowing one set conveys no information about the other. 
One could therefore be tempted to believe that this upper 
bound is tight, and only roundoff bits (|"fclog(n - m + 1)] vs. 
&[log(n - m + 1)]) can be saved. This is not the case. We 
show that for every integers m <n and k, 

(2) Lk (n, m) < k log \- log n + log k. 
m 

The proof is similar to one used in Alon and Orlitsky [2] 
and will be provided in the full version of this paper. 

To gain intuition about this result, suppose first that n is 
even and m = ra/2. Namely, each customer likes half the items 
in each line. Specifying one item takes 

£(n,£) = pog(n-1 + 1)1 P°g(f + 1)1 
bits. For multiple lines, the customer can describe each line 
separately using \k ■ log(n/2 + 1)1 > k ■ (logn - 1) bits. How- 
ever, Inequality (2) shows that the number of bits needed is 

Lk(n, n/2) < k ■ log — + logn + log k = logn + A; + log k. 

It follows that while the first product line takes log n - 1 
bits to describe, the second product line requires at most 
two additional bits, and subsequent lines add even fewer 
bits. In the limit, the number of bits per line is only 
limjt-^Oogn + k + logfc)/fc = 1. Significantly less than the 
log n — 1 bits per line needed to describe each line separately. 

Returning to the general case of Inequality (2), we see that 
after the initial log(n - m + 1) bits, additional product lines 
require about log ^ bits per line. Consequently, for every 
6, however large, and every e > 0, however small, one can 
choose m and n so that a single line would require > 8 bits 
while multiple lines would need < e bits per instance. G 

The average-case analysis of Example 2 will be carried out 
in the full version of this paper. 
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Abstract — In this paper, we show maximal rates 
in the case that random number generators generate 
a random sequence with an arbitrary prescribed dis- 
tribution from a random sequence with an arbitrary 
given distribution. 

I. INTRODUCTION 
One of generalizing the random number generation problem 

is to relax the requirement that the target random numbers 
should be generated exactly according to the prescribed distri- 
bution. We are especially concerned with the case of the fixed 
length random number generation. Let X and y be countable 
infinite set. Let us define a general source as an infinite se- 
quence X = {^n}^Lj of n-dimensional random variable Xn 

taking value in Xn and Y = {Ym}^=1 of m-dimensional ran- 
dom variable Ym taking value in ym. 

In this paper, we shall investigate into maximal rate in 
the case that random number generators generate a random 
sequence with an arbitrary prescribed distribution from a ran- 
dom sequence with an arbitrary given distribution in the sense 
of vanishing variational distance. The variational distance be- 
tween two distributions Pz and Pi on Z is defined as follows 

III. MAIN RESULTS 

d(Z,Z)    =    X)|/M*)-J>g(*)| (1) 
*€2 

In this setting, there are two types of the case for the fixed 
length random number generation. One is that every source 
nm symbol realization is deterministically transformed into a 
sequence with length m where ram depends only on m. The 
other is that every source n symbol realization is determinis- 
tically transformed into a sequence with length mn. 

II. FORMULATION OF THE PROBLEM 
Definition II. 1 R is called a type A achievable rate for the 
source X and Y if there exists a sequence of mappings <pn '■ 
X" — ymn such that 

and 

lim inf  > R 
n — oo      71 

lim d(Ym",<p„(Xn)) = 0. 

(2) 

(3) 

Moreover the supremum of R that are type A achievable rate 
for the source X and Y is denoted by SA (X, Y) which we call 
maximal type A achievable rate. 

Definition II. 2 R is called a type B achievable rate for the 
source X and Y if there exists a sequence of mappings <pm : 
Xnm —► ym satisfying the condition that nm and m replace 
n and m„ respectively in Formula (2) and (3). Moreover the 
supremum of R that are type B achievable rate for the source 
X and Y is denoted by SB (X, Y) which we call maximal type 
B achievable rate. 

We denote the limsup in probability of < — log p niZn\ \ 

and the liminf in probability of that by H (Z) and /£(Z), re- 
spectively[l][2][3]. Then we have 

Theorem III. 1 

=J&- <5j4(X,Y)<min 
H{Y) ~       V ' ~ 

=J& < SB (X,Y)< min 
JST(Y) _ 

We notice that if either source 
strong converse property[3], then 

K(X) g(x) 
#(Y)'tf(Y) 

K(X)   H(X) 
K(Y)'H(Y) 

X or source Y satisfies the 

(4) 

(5) 

5A(X,Y) ^<X,Y, = §W t«) 

'This research was supported in part of Waseda University under 
Grant 99A-551 for Special Research Projects. 

In the case that source Y is uniform distribution, i.e., 
Py(Y) = \jM (M < oo), by replacing mn with log M„ in 
Formula (2) of definition II. 1 , it is equivalent to the intrinsic 
randomness problem defined by Vembu and Verdii[l]. Then, 

SA(X,Y) = H(X), (7) 

where Mn = Mm". On the other hand, in the case that source 
X is uniform distribution, i.e., Px (X) = \jM, by replacing 
nm with log Mm in definition II. 2 , the minimum of reciprocal 
number of type B achievable rate is equivalent to the minimal 
achievable resolvability rate defined by Han and Verdd[2], i.e., 

5^(x7Y)=7r(Y)' (8) 

where Mm = M"m. 
For the reasons stated above, essence of which maximal 

achievable rate is uniquely decidable is that either source X 
or source Y satisfies the strong converse property. Since uni- 
form distribution satisfy the strong converse property, Both 
maximal achievable intrinsic randomness rate[l] and minimal 
achievable resolvability rate[2] are the special case of theorem 
III. 1 . 

IV. CONCLUSION 
We have defined two types of random number generation 

problem and obtained two maximal achievable rates. Both 
intrinsic randomness problem[l] and resolvability problem[2] 
are the special case of our result. 
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Abstract — We describe an information-spectrum 
approach to rate-distortion function with side infor- 
mation at the decoder for the general class of non- 
stationary and/or nonergodic sources, where the dis- 
tortion measure is arbitrary and may be nonadditive. 
We establish a general formula for the rate-distortion 
function of the Wyner-Ziv problem [1] for the general 
sources with the maximum distortion criterion under 
fixed-rate coding. 

Let us define a general source X as an infinite sequence 
■0    V(n) 

1 A2     l ,Xnjj _.  of n-dimensional X = {Xn = (x[" 
random variables Xn, where each component random vari- 

able X:n', (1 < i < n) takes values in countably infinite sets 
X that we call the source alphabets. We use the convention 
defined in Han [2]. We consider the class of correlated sources 
X = {A"n}~=1,Y = {F"}~=1 that are quit general. We use 
X as the source for encoder and use Y as the side information 
for decoder as shown in Fig.l. 

In order to define a distortion measure, we need to spec- 
ify another countably infinite set X, which is called the re- 
production alphabet. Then, d„(x, x) is called the distortion 

between x G Xn and x G Xn, d„ : Xn x X" -► [0,oo), 
and the normalized distortion is bounded by dmax such that 
£d„(x,x) < dmax for all x G Xn,x € Xn. Furthermore, let 

us consider any reproduction process X of n-dimensional ran- 
dom variables Xn. Moreover, we need the concept of "lim sup 
in probability". For any sequence {-4,,}^! of random vari- 
ables, the infimum of a such that lim„_,oo Pi{An > «} = 0 
is called the lim sup in probability of {^in/STLi and is indi- 
cated by p-limsup,,.,^ An. Then we consider the sequence 
of the normalized distortions {^dn(X

n,Xn)\ _ , and the 

limsup in probability of which is denoted by D(X, X), i.e., 

D(X,X) = p-hmsup^ ±4,(*ni*")- 
A code is defined by two mappings: Encoder <p„ : Xn —► 

Jfc„ and Decoder Y>„ : 2it„ xf -> r, where Ifc„ = 
{1, 2, • • •, fe„}. The limit superior of the code length per source 
letter limsup,,^,^ £ log \<p„\ is called the rate of the encoder 
<pn, where \tpn\ denotes the cardinality of range of ipn- 

For given general source X and distortion D, a pair R is 
called achievable with side information Y if there exists a code 
(¥>„, Vn) such that p-limsup^^ ^dn(X

n,^n{Yn
tipn(Xn))) 

< D and limsup,,^^ Mog|^n| < R-   Moreover, R(D) = 
inf{jR|ß is achievable with side information for given D}. 

In order to give the characterization of the general 
rate-distortion functions, we define the mutual information 
spectrum-sup. Given any three correlated processes, X = 
{Xn}~=i, Y = {rn}„°=1 and Z = {Z"}~ lf we define the 

X Encoder Decoder 

Z2T 
x 

JP 

sequence of the normalized information densities 

Pzn\X"Y"{Zn\X" 

{; log 
PZ^Yn(Z"\Y 

nYn)V 
(1) 

Figure 1: Wyner-Ziv type communication system. 

where we use the convention that Py\x denotes the con- 
ditional probability distribution of Y given _X. Then the 
limsup in probability of (1) is denoted by 7(X;Z|Y), i.e., 

7(X; Z|Y) = p-limsup^ A log ^^"l^P- which 

we call the conditional mutual information spectrum-sup. 

Theorem 1 For given X, Y and D, 

Ä(£>) = inf7(X;Z|Y), 

where inf is over Z and {fn(-, -)}n°=i satisfy next a) and b), 
a) Yn — Xn — Zn is a Markov chain for n = 1,2, • • •, hence, 

i>X"V"Z"(x,y,z) = Px-»y"(x,y)PZn|Xn(z|x) holds for all 
n = 1,2, ■ • • and for all x e Xn,y e y1, and z e Zn. 

b) there exists a sequence of function {/n(-,-)}n°=ii/n : 
f xZ" - Xn such that X = {fn(Y

n,Zn)}^=u and 
D(X, X) < D. 

In order to specify the code, we need a function Fn : Xn —» 

{zi}"Ji C Zn, where M„ < e"(7(x^z)+T) and 7 > 0. F„ is 
due to an extended version[3] of Lemma 4.3 of [4]. 

1. Generation of codebook: Let M„ = e»Ü(X;Z|Y)+27)) gnd 

make Mn bins. Randomly assign the Fn(x),x G Xn to one of 
M„ bins using a uniform distribution over the bins. 
2. Encoding <p„ : Xn —* 1M„. Given a source output x G Xn 

from X, the encoder looks for a z; = F„(x). Then, the encoder 
sends the index j G IM„ of the bin such that Zi belongs one. 
3. Decoding ip„ : !«„ xyn —> X". Decoder receives an output 
j = Vn(x) from encoder and receives a output y G yn as the 
side information from Y. If he can find a unique z< which 
belongs bin of the index j and satisfies (zi,y) G |(y, z) G 

yn x z" 11 bg PX^zZ|y)'y) < J(X; zlY)+^} -then he has 

ipriU, y) = /n(y, z<) by using /„(•, ■) defined in property b). If 
he does not find such a unique z<, then he sets i>n(j,y) = x 
where x is an arbitrary sequence in Xn. 

The converse part is due to a modified version of Lemma 
2.4 of [2]. 
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Abstract — In this work, Csiszär's fixed-length 
source coding /3-cutofF rates are investigated for the 
class of arbitrary discrete sources with memory. It 
is demonstrated that the limsup and liminf Renyi 
entropy rates provide the formulas for the forward 
and reverse /3-cutofF rates, respectively. Consequently, 
new fixed-length source coding operational character- 
izations for the Renyi entropy rates are established. 

I. INTRODUCTION 

In [2], Csiszär establishes the concept of generalized fixed- 
length source coding cutoff rates (forward and reverse) for 
discrete memoryless sources. More specifically, given ß > 0, 
he defines the forward /3-cutoff rate for a source {Xi}^ as 
the number Ro that provides the best possible lower bound 
in the form ß(R — Ro) to the source reliability function. This 
definition implies that the source error probability is guaran- 
teed to exponentially decay with a linear exponent of specified 
slope ß for R > Ro- He also provides a similar definition for 
the reverse /3-cutoff rate (where ß > 0) with respect to the 
source unreliability function (the exponent of the vanishing 
probability of correct decoding). He then demonstrates that 
the forward and reverse /3-cutoff rates are respectively given 
by Hi/(1+ß)(Xi) and H1/(^i_0)(Xi), where Ha{Xi) denotes 
the Renyi entropy of order a. 

In this work, we extend Csiszär's results [2] by investi- 
gating the /3-cutoff rate for arbitrary (not necessarily, sta- 
tionary, ergodic, etc.) discrete-time finite-alphabet sources 

X = {Xn = (X[n\ .. . ,x£°)}~=i [3]. We demonstrate that 
the limsup and liminf Renyi entropy rates provide the expres- 
sions for the forward and reverse /3-cutoff rates, respectively. 
These results also provide simple, and in certain cases, com- 
putable lower bounds to the source reliability and unreliability 
functions. 

II. MAIN RESULTS 

Definition 1 An (n, M) fixed-length source code for Xn is 
a collection of M n-tuples 'Gn = {c",..l,4}. The error 

probability of the code is Pe{'Gn) = Px» [Xn & -€„]. 

Definition 2 Fix e > 0. R > 0 is e-achievable for a source 
X, if there exists a sequence of (n, Mn) fixed-length source 
code <ün such that 

lim sup — log Mn < R   and    lim inf log Pe (-€„) > e. 
„_>«,   n n-xx     n 

Fix ß > 0. The forward ß-cutoff rate for X, denoted by 
R0

f)(ß\X), is defined as the smallest -Ro > 0 such that ev- 
ery R > 0 is ß(R - Ro)-achievable. 

Theorem 1 (Forward /3-cutoff rate [1]) Fix ß > 0.   For 
an arbitrary source X, 

R0
f\ß\X.) = limsup ±H1/il+0)(X

n), 
71—*-00 •* 

where 

Ha(X
n)^-^log   V   PZ„(xn) 

1 — a        z—' 

This work was supported in part by Queen's University, NSERC 
of Canada and NSC of Taiwan, R.O.C. 

X"£X" 

is the (n-dimensional) Renyi entropy of order a. 

Definition 3 Fix e > 0. R > 0 is reverse e-achievable for 
a source X, if there exists a sequence of (n, Mn) fixed-length 
source code ^ such that 

lim sup — log Mn < R   and    liminf log(l — Pe('Gn)) < e. 
n-+oo    n 71-+00        n 

Fix ß > 0. The reverse ß-cutoff rate for X, denoted by 
Rg (/3|X), is defined as the largest Ro such that every R > 0 
is reverse ß(R — Ro)-achievable. 

Theorem 2 (Reverse /3-cutoff rate [1]) Fix 0 < ß < 1. 
For any source X, 

R(
0
r)(ß\X) = liminf ±-HlHl_0)(X

n). 
n—Kx>    Tl 

III. CONCLUSIONS 

In closing, we would like to make the following observations. 

• It is important to point out that if the source X is a time- 
invariant Markov source of arbitrary order, then its Renyi en- 
tropy rate exists and can be computed [4]. Thus in this case, 
the /3-cutoff rates for this source can be obtained. 

• A convex lower bound can be obtained on the source relia- 
bility function. It consists of the supremum of all the support 
lines with slope ß which pass through the point (R0

f'(ß\X), 0), 

given by sup^>0[/3(Ä - R(
0
f)(ß\X))] for every R > 0. We can 

thus conclude that for the class of sources X for which the 
Renyi entropy rate can be calculated (e.g., the class of Markov 
sources), a computable lower bound to the source reliability 
function can also be obtained. A similar remark applies for 
the source unreliability function. 
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Abstract — In this paper we analyze Shannon's ci- 
pher system with the general source [1]. We com- 
pletely determine the achievable rate region of a cryp- 
togram and a key required for encryption of an output 
of the sources with the one-point spectrum. An inner 
and an outer bounds are given for the other sources. 

I. INTRODUCTION 

This paper attempts to analyze Shannon's cipher system [2] 
from a viewpoint of the information-spectrum method origi- 
nating from [1]. Figure 1 shows Shannon's cipher system. For 
each n > 1 let Sn be a random variable from a source taking 
values in Sn. The cardinality of alphabet S is either finite or 
countably infinite. Let En be the uniformly distributed ran- 
dom variable on a finite alphabet £n from a key generator. 
The key En is transmitted to both an encoder and a decoder 
through a secret channel perfectly protected against wiretap- 
pers. The encoder encrypts 5"* into a cryptogram Wn G Wn 

under En as Wn = fn(S
n,En), where /„ is a deterministic 

function. The encoder transmits Wn to a decoder through 
a public channel in the presence of the wiretappers. There- 
fore, Wn is required not to reveal information on Sn. The 
decoder decrypts Wn under En and reproduces 5" with small 
decoding error probability by using a deterministic function 
Sn :Wn x£n ->Sn. 

In this paper we consider the case that the decoding error 
probability tends to zero as n-> oo. We characterize achiev- 
able rates required for transmission of Wn and En subject to 
a new criterion on secrecy of the encryption. 

II. CODING THEOREMS FOR SOURCES SATISFYING 

&(S) = H(S) 
Let S = {Sn}£Li be the general source [1]. Here, the 

general source means an infinite sequence of random variables 
not required to satisfy the consistency condition. First we con- 
sider general sources with one-point spectrum, i.e., the general 

sources satisfying H(S) = H(S) =f H, where H(S) and H(S) 
are the entropy spectrum-inf and the entropy spectrum-sup 
defined in [1]. Let E = {£„}?!, and W = {iy„}~=1. 

For a given constant h > 0, we define the /i-achievable 
region for (RW,RE) as follows: 

Definition 1 Let h > 0 be a given constant. A pair of rates 
(RW,RE) is called h-achievable if there exists a sequence of 
pairs of an encoder and a decoder {(fn,gn)}n°=1 satisfying 

lim sup - log2 | VV„ | < Rw, 
TI-+00       11 

lim sup - log2 \En \ < RE, 
n—roo     n 

lim PI{gn(fn(Sn,En),En) ^ Sn} = 0, 
71—>-00 

H(S\W) > h, 

(1) 

Source 
S" 

Encoder 
Wn         | 

public channel 
ijecoaer 

1 1 i 1 

Key E„ 

Generat 0T secret channel 

S" 

Fig. 1    Block diagram of Shannon's cipher system 

where 

„-l°g2 

H(S\W) 
l 

denotes    the    liminf   in    probability    of 
and Ps"\wn(S

n\Wn) denotes the con- 32 Ps"]W„iS"\W„ 
ditional probability of Sn given W„. 

Intuitively, Rw and RE mean the rates of the public chan- 
nel and the secret channel for sufficiently large n. Note that 
(4) means that with probability close to one a pair of a 
source output sn € Sn and a cryptogram wn € W„ satis- 
fies PSr>\wn(s

n\wn) < 2-n<fc-'1,> if „ is sufficiently large. If (4) 
is satisfied, a criterion proposed in [3] is always satisfied. 

Definition 2 (Achievable Rate Region) 

H = {(RW,RE) ■■ (RW,RE) is achievable}. (5) 

Then, we have the following theorem on TZ. 

Theorem 1  For an arbitrary h 6 (0, H), 

n = w, 
where TV d= {{RW,RE) : Rw > H and RE > h}. 

III. CODING THEOREM FOR GENERAL SOURCES 

For encryption of general sources satisfying H_(S) < H(S) 
we assume that uniformly distributed random variables U = 
{Un}n°=1, Un € Un, are available only to the encoder. We 
define the achievable region TZ for the triplet of RW,RE and 
Ru similarly to Definitions 1-2, where Ru specifies \Un\ by 
limsup,,.,.^ £ log2 \Un\ < Ry. We have the following bounds: 

Theorem 2  For an arbitrary h € (0,#(S)), 

K'n cncn'oui, 
where H'in =f {(Rw,Ru,RB) : Rw > H{S),Ru > H(S) - 

K(S)and RE > h] and 1l'out =f {(Rw,Ru,RE) : Rw > 
H(S), Ru>0 and RE>h}. 

[1] 

(2) 
[2] 

(3) [3] 

(4) 
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Abstract — We theoretically analyze the statistical behavior of 
prediction errors generated by our previously proposed long range 
prediction algorithm, and investigate adaptive modulation design 
using predicted channel state information (CSl). Both numerical and 
simulation results show that accurate prediction of the fading channel 
far ahead makes adaptive transmission feasible for rapidly time- 
varying mobile radio channels. 

1.    Introduction 
Adaptive modulation methods depend on accurate channel state 

information (CSI) that can be estimated at the receiver and sent to the 
transmitter via a feedback channel. This information would allow the 
transmitter to choose the appropriate transmitted signal. The feedback 
delay and overhead, processing delay and practical constraints on 
modulation switching rates have to be taken into account in the 
performance analysis of adaptive modulation methods. For very slowly 
fading channels (pedestrian or low vehicle speeds), outdated CSI is 
sufficient for reliable adaptive system design. However, for rapidly time 
variant fading that corresponds to realistic mobile speeds, even small 
delay will cause significant degradation of performance since channel 
variation due to large Doppler shifts usually results in a different 
channel at the time of transmission than at the time of channel 
estimation [1,2]. To realize the potential of adaptive transmission 
methods, these channel variations have to be reliably predicted at least 
several milliseconds ahead. 

Recently, we have investigated a novel adaptive long-range fading 
channel prediction algorithm in [3]. This algorithm characterizes the 
fading channel using an autoregressive (AR) model and computes the 
Minimum Mean Squared Error (MMSE) estimate of a future fading 
coefficient sample based on a number of past observations. The 
superior performance of this algorithm relative to conventional methods 
is due to its low sampling rate [3]. Given a.fixed model order, the lower 
sampling rate results in longer memory span, permitting prediction 
further into the future. The prediction method is enhanced by an 
adaptive tracking method [3] that increases accuracy, reduces the effect 
of noise and maintains the robustness of long-range prediction as the 
physical channel parameters vary. 

In this paper, we extend the application of long range channel 
prediction to adaptive modulation. First, we theoretically analyze the 
statistical behavior of prediction errors generated by our long range 
prediction algorithm, and consider adaptive modulation design based on 
this prediction error model using predicted CSI. Then, we evaluate the 
performance of adaptive modulation for flat Rayleigh fading channels. 
The extension of this method to our novel realistic non-stationary fading 
model and measured data are discussed in [3,4] and references therein. 

2.     Results 
Consider the linear MMSE prediction of the future channel sample 

c„ based on p previous samples c„.,...c„  as [3]: 

^n=ZdjC„, (1) 
j=l 

where the coefficients dj are determined by the orthogonality principle. 
We assume that channel samples c„ are modeled as zero-mean complex 
Gaussian random variables, i.e., the channel is Rayleigh fading. Thus, 
the amplitude a = Ic.l and its predicted value & = lc„l have a bivariate 
Rayleigh distribution. We define the prediction error ß as the ratio of 
the actual fading gain a and the predicted fading gain d, i.e., ß = ot/d. 
Then the probability density function (pdf) of ß can be derived as: 

Pp(x)= — 
2x(xx2 + X.)(l-p) 

((XX2+X)2-4px2)'-5 

Cov(a2,d2) 

(2) 

, 0 < p < 1, where the correlation coefficient p =  , , _ 
VVar(a2)Var(d2) 

Q=E{a2}, Q = E{d2 ], and X = >/Ö/S. 
We consider the fixed power and modulation level-controlled 

scheme using Square Multilevel Quadrature Amplitude Modulation 
(MQAM) signal constellation for the target Bit Error Rate (BER,,)= 10"3. 
We restrict ourselves to MQAM constellations öf sizes M = 0, 2, 4, 16, 
64. Given fixed transmitter power E, (or the average Signal-to-Noise 
Ratio (SNR) level 7 = E/N0), to maintain a target BER, we need to 
adjust the modulation size M according to the instantaneous channel 
gain a(t). In other words, the adaptive modulation scheme can be 
specified by the threshold values 0^, i = 1, ..., 4, defined as: when a(t) > 
otj, MrQAM is employed, where M, = 2, M; = 22(i", i > 1. When perfect 
CSI a(t) is available, these thresholds can be directly calculated from the 
BER bound of MQAM for an Additive White Gaussian Noise (AWGN) 
channel [1]: 

BERM < 0.2 exp(-1.5Y(t)/(M-l)) for M>2, and 
BER2 = Q(V2}), (3) 

where y(t)= a2(t)7 is the instantaneous received SNR. However, when 
the predicted CSI d(t) is used, the current channel condition is 
characterized by the distribution of p(ald) which can be calculated as: 

1     x 
Pc*t(x)=7iPp(rI) (4) 

Then, the BER bound for predicted CSI d, say BER*M, can be obtained 
by evaluating the expectation of BERM over ß using pu(x) in (2) as: 

r 
M=^BERM(Yx2d2)pß(x)dx 

0 
(5) 

This indicates that we need to use BER*M rather than BERM to calculate 
thresholds when only the predicted CSI is available. In our study, we 
found that when our long range prediction is used for the realistic 
prediction range, there is small difference between the thresholds 
calculated using perfect CSI and predicted CSI [4]. This demonstrates 
that the long range prediction preserves the ideal bit rate while 
maintaining the target BER. However, from the results in [2], we found 
that even very small delay will cause great loss of bit rate for fast 
vehicle speeds when the strongly robust signaling design rule is used 
without long range prediction. Thus, accurate long-range prediction is 
required to achieve the bit rate gain of adaptive MQAM for rapid 
vehicle speeds and realistic delays. 
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Abstract — The use of multidimensional alphabets 
with correlated tones and noncoherent detection over 
Rayleigh fading channels allows to increase the typi- 
cally low spectral efficiency of noncoherent transmis- 
sion and to compensate for the performance degrada- 
tion due to the high correlation between the tones. 

I. MULTIDIMENSIONAL NONCOHERENT DETECTION 

Frequency shift keying (FSK) is a robust modulation 
scheme when noncoherent detection is processed. Particu- 
larly, any channel estimation becomes useless for Rayleigh 
fading channels. Noncoherent detection [1] -a measure of 
the signal envelope after matched filtering- of Q-ary FSK is 
usually made with Q orthogonal signals and a tone spacing 
A/o equal to the inverse of the symbol period T. The band- 
width can be reduced if A/o < 1/T i.e. orthogonality is no 
longer satisfied. The performance degradation due to the use 
of correlated tones can be compensated by careful signal al- 
phabet design ; for example high dimensional constellations. 
We build M-dimensional FSK alphabets of size N. All signals 
Sm = (sm,i, • • •, Jm.if), m = 1,... , M are similar to the ones 
treated in [2] for the Gaussian channel and have equal energy. 
The elementary component sm,n(t), derived from a Q-FSK, is 
given by 5m,n(i) = 07^2™»Mot for _jy2 < t < T/2 and 

1 < n < N. mn is the number of the transmitted tone on the 
nth component of signal Sm, mn € {1,..., Q}- 

II. ML PERFORMANCE ANALYSIS 

The channel is assumed to be frequency-nonselective and 
slowly fading. The optimal noncoherent demodulator, com- 
posed of a bank of Q matched filters and a signal envelope 
detector, carries out Q x N values r,,n. For each signal Sm, 
the set {|rmnin| }n=i,...,jv is a sufficient statistic to make a 
decision. Following an approach similar to [3], we derive a 
simplified structure of the Maximum A Posteriori (MAP) de- 
coder.   A decision is made in favor of Sm which maximises 

N 

-Ei 1, .,M (1) 

The pairwise error probability P(S, —» Sj) can be derived 
from (1) by P(A, < A,-) [3]. Finally, P(S, -» Sj) is given by 

E r i \Hn\ 
\-\ßn\2T* 

0.5x(l-k|2)"'' 

nr=,,*„(M2-Kia) 
(2) 

where F is a signal-to-noise ratio and n„ is the correlation 
between the nth components of signals Si and S3. For all 
k, I € {1,..., N}, we suppose that /Jk ^ Hi- 

III. MULTIDIMENSIONAL ALPHABETS RESULTS 

Two alphabets of dimension 4 are compared. Each compo- 
nent sm,n{t) is denoted by the number of the transmitted tone 

10 20 
SNRperbil(dB) 

Fig. 1: 4-dimensional 8-FSK correlated signals vs.   BFSK 
signals with order of diversity 4. 

mn. Bc is the bandwidth expansion, defined as the inverse of 
the spectral efficiency. The first alphabet is composed of two 
orthogonal BFSK signals with diversity 4 : S\ = (1,1,1,1) 
and S2 = (2,2,2,2). Its theoretical performance can be de- 
rived from equation (4.61) in [3] with N = 4 and /jn = H = 0 
(orthogonal tones). The second alphabet of size M = 8, de- 
signed in a heuristic manner, is based on 8-FSK correlated 
signals. 

Si -> (1,2,1,2) S5 -»-(5,6,4,1) 

S2^ (2,4,3,4) S6 -» (6,8,6,3) 

S3 -»(3,1,5,6) S7 -¥ (7,5,8,7) 

S4 -»• (4,3,7,8) S8 -» (8, 7, 2, 5) 

Notice that this set has also an order of diversity equal to 4 
and that the most correlated signals are S4 and S7. 

It can be easily shown that P(St -» S7) < Pe < (M — 
l)P(S4 —» S7). The pairwise error probability values are de- 
rived from equation (2). The BER is given by Pt, — Pe/2. 
Two main results are highlighted in figure 1. First, simula- 
tion results validate both upper and lower bounds. Moreover, 
the correlated signals alphabet exhibits excellent results when 
compared to the classical BFSK alphabet, although the spec- 
tral efficiency is three times larger. 
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Abstract — Multipath propagation effects encoun- 
tered in mobile wireless channels provide additional 
degrees of freedom that can be exploited via appropri- 
ate signaling and reception. In this paper, we propose 
a framework for spread-spectrum signaling and recep- 
tion that allows manipulating these inherent degrees 
of freedom for maximum bandwidth efficiency. We 
present a simple approach for transforming a multi- 
path channel with a single transmit and single receive 
antenna into a virtual multiple-input multiple-output 
system where space-time codes can be directly ap- 
plied. Performance analysis suggests that simple sig- 
naling schemes based on our framework can yield sig- 
nificant capacity gains over existing spread spectrum 
systems. 

I. SUMMARY 

Time-varying multipath propagation effects encountered in 
mobile wireless channels provide additional degrees of freedom 
that can be exploited for bandwidth-efficient communication 
via appropriate signaling and reception. In spread-spectrum 
code division multiple access (CDMA) systems, signals of suf- 
ficiently high bandwidth and long time durations can be used 
with the RAKE receiver to exploit multipath-Doppler diver- 
sity [1]. In essence, uncorrelated time-varying multipath scat- 
tering provides degrees of freedom (DoFs) that can be ex- 
ploited to enhance performance. However, conventional sys- 
tems exploit all these DoFs for receiver diversity and provide 
diminishing returns as the DoFs increase. 

Recent studies on antenna arrays have shown that the 
capacity of multiple-input multiple-output (MIMO) systems 
far exceeds that of single-input single-output (SISO), single- 
input multiple-output (SIMO) and multiple-input single- 
output (MISO) systems in a dense scattering environment. 
Motivated by these results, we propose a new transceiver 
structure for the multipath fading channel that allows ma- 
nipulating the inherent degrees of freedom for bandwidth effi- 
ciency. In effect, we present a simple approach for transform- 
ing a multipath channel with L degrees of freedom (L inde- 
pendent paths) into a virtual transmit-receive antenna array 
system with M transmitters and N receivers, for any M and 
N such that L = MN. 

We consider spread-spectrum signaling over a frequency- 
selective, slowly fading channel with multipath spread Tm. 
The transmitted signal is of duration T and bandwidth 
B. The impulse response of the channel is given by h = 
[hi,h2,'...,hi,], where L = TmB is the number of degrees of 
freedom available in the system.   Since the dimensionality of 

'The authors are with the Department of Electrical and Com- 
puter Engineering, University of Wisconsin-Madison, 1415 Engi- 
neering Drive, Madison, WI 53706. This research is supported in 
part by Wisconsin Alumni Research Foundation and by NSF under 
Grant No. CCR-9875805. 

the signal space is K « TB [2], we can obtain a matrix formu- 
lation of the system by projecting onto K basis waveforms that 
capture the sufficient statistics. The system can be viewed as 
a A'-input A'-output system over the signal space and repre- 
sented in the form y = Hx + w, where x is the transmitted 
signal vector, y is the received signal vector, H is the channel 
matrix and w is AWGN. When Nyquist sampling is done, the 
basis functions are sine pulses and the channel matrix is block 
toeplitz. In our direct sequence CDMA system, we choose 
the basis functions to be circularly-shifted versions of an arbi- 
trary signature waveform corresponding to a spreading code 
of length K. In this case, the components of x are modulated 
onto circularly-shifted versions of a signature waveform and 
transmitted. This choice of basis leads to a circulant H. For 
this A'-input A'-output system, we study interesting special 
cases where the transmitter and receiver use only a subset of 
the K available dimensions. 

In our framework, the conventional RAKE receiver cor- 
responds to transmitting a single signature waveform and 
can be viewed as a 1-input L-output system. When 
x = [ii,i2,...liMi0,...|0] and the receiver looks only at 
[yM,y2M, ■ ■ ■ J'J/JVM], where L = MN, the multipath channel 
can be viewed as a virtual M-input TV-output system. The 
N x M matrix H contains the L channel coefficients as its el- 
ements. In an uncorrelated scattering Rayleigh fading model, 
the elements of H are uncorrelated. The system is equivalent 
to an antenna array system with M transmitters, N receivers 
and independent coupling between antenna pairs. Existing 
space-time codes such as those in [3] can be directly applied 
to this system. 

We consider outage capacity as the performance measure. 
Transforming the (1, L) system into a (M, N) system provides 
clear capacity gains due to an increase in the number of par- 
allel channels. For example, at the 1%, 5% and 10% outage 
levels and for high SNR (larger than 20 dB), the improvement 
in performance of (2, 2) over (1, 4) is almost 5 dB, and the im- 
provement of (2, 3) over (1,6) is more than 7 dB. The (M, N) 
systems we propose also have a low complexity transceiver 
structure and existing space-time codes can be directly em- 
ployed. These results suggest that simple modifications based 
on our framework can significantly improve the capacity of 
existing single-antenna spread spectrum systems that employ 
the RAKE receiver. 
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Abstract — We examine the problem of designing complex, 
equal energy, signal constellations for the noncoherent additive 
white Gaussian noise communication channel. We derive an asy- 
mptotic performance criterion that may be used as a constraint 
in building correlated signals set for use with the maximum like- 
lihood noncoherent detector. We present an iterative update de- 
sign procedure for obtaining bandwidth-efficient signal sets un- 
der a constraint on the dimension of the signal space. 

I. INTRODUCTION 

On noncoherent communication channels, orthogonal multi-pulse 
modulation (OMM) is typically employed wherein the user transmits 
one of M orthogonal signals during each baud interval [1]. The most 
common implementation of OMM is frequency shift-keying (FSK). 
The chief advantage of OMM is the simple implementation (envelope 
detection) of the receiver. The major drawback to OMM is its poor 
spectral efficiency. Non-orthogonal multi-pulse modulation (NMM) 
combats this drawback by allowing correlation among the signals. 

II. PROBLEM STATEMENT 

In NMM, an M-ary symbol is sent by transmitting one of M equal- 
energy, complex-valued signals that lie in an ./V-dimensional signal 
space. The minimum bandwidth B neededjto generate such signals 
is N/T Hz, where T is the baud interval. The discrete-time model 
for NMM signaling over the additive white Gaussian noise (ÄWGN) 
channel is hence 

= s/Ee^ hm +n, (1) 

when me {1, • • ■ , M) is the transmitted symbol and the corre- 
sponding signal hm is a unit-norm complex vector lying in C^ *l; 
E is the received energy for each symbol; <pm is an unknown phase, 
modeled as a uniform random variable on [0,2ix); and n is a zero 
mean complex normal random vector with correlation £[nn*] = 
cr2I, where * denotes complex-conjujate transpose. 

Assuming equi-probäble symbols, the optimum detector selects 
the signal that maximizes the magnitude of its inner product with 
the received signal: 

m = argmax|y h„ (2) 

This detector has a probability of error which is asymptotically a 
monotonic function of the largest magnitude of the cross-correlation 
coefficient p = maxm^( |hm*h(|. Define the signal correlation ma- 
trix R with Rm; = hm*h;. 

We formulate the problem of designing a bandwidth-efficient mod- 
ulation scheme purely in terms of R as follows: 
Problem Statement: Given N € N and 0 < ^ < 1, find the 
largest M G N for which the corresponding R € £.MXM satjs. 
ties Cl: diag(R) = I, C2: \Ri,j\ < p for i ^ j, C3: R > 0, 
C4: rank(R) < N. The noncoherent signal set is then formed (non- 
uniquely) from the eigen-decomposition of R, R = UAU*, via 
H = A^2U*. 

III. SUCCESSIVE UPDATES OF THE CORRELATION MATRIX 

We consider a successive update procedure whereby a matrix Rjt 
satisfying C1-C4 is updated with a vector x via 

* 
R* + 1 

X 

Rfc 
(3) 

with Rjb+i also satisfying C1-C4. It turns out that we can guar- 

antee that R*+i is positive semidefinite if x Rj x < 1, and that 
the rank of Rfc+i is equal to that of R& when this condition is met 
with equality. In our designs, we started with a two-dimensional Ri, 
and successively added signals until the constraint could not be met 
with equality. At this point, the rank of the matrix was allowed to 
grow by one and the process repeated. At each iteration, we maxi- 
mized the norm, ||x||2, under the constraint that max |xjt| < p. This 
is a nonlinear Optimization problem and was solved using a mod- 
ified Fletcher-Powell optimization algorithm employed through the 
FSQP[2] optimization package. 

IV. RESULTS 

In Figure 1, we plot the spectral efficiency (log2 M/N) of our de- 
signs versus the SNR-per-bit required to achieve a probability of bit 
error of 10-5. For the NMM designs, we held the dimensionality, 
N, fixed and varied the maximum cross-correlation, p. For compari- 
son, we also plot the spectral efficiencies of coherent PAM and QAM 
modulation as well as the capacity curve for the coherent channel. We 
also plot the spectral efficiency of one-sided PAM [3, problem 4.16], 
a scheme in which a fixed waveform has its energy varied to transmit 
information. These results show that we can map out new portions of 
the energy/spectral efficiency plane through our signal designs, and 
that NMM can be made significantly more bandwidth-efficient than 
OMM. 

[3] 

FVBbpa/Hz 

Fig. 1. Energy versus spectral efficiency of the noncoherent designs. 
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By definition, a spherical t—design in N —dimensional Eu- 
clidean space R is any nonempty finite set X C SN-I which 
for any polynomial / of degree at most t satisfies 

1 1 /(x)d^(x) 
1 

T-vi £/w 
xg.V 

where SN-I '■— {(xi, ■ • • i iw) G TLN; x\ + . . . + x2
N = 1} is the 

unit sphere in RN
,/J(X) is the standard Euclidean measure on 

SN-\ (i-e. fi is invariant under the orthogonal group O(N)) 
and 15jv — I | := Js d/i(x) is the surface area of Syv-i. For 

the basic properties of t—designs, we refer the reader to the 

papers [1-3]. 
We denote by Hom(fc) the space of all homogeneous N- 

variate polynomials of degree k over R and by Harm(fc) the 
space of homogeneous /V-variate harmonic polynomials of de- 
gree k, i.e. the space of homogeneous polynomials y = y(x) 

satisfying the Laplace equation -g-% + . . . + -g-%~ = 0. 

Let G be a finite group of orthogonal matrices, and let a be 
a point on Sjv-i ■ All designs of the form X := Ga := {ga\g € 
G] (X, i.e, X is an orbit of an initial point a constitute a 
natural class of designs. In [2] it was proved that the orbit 
Ga is a t—design for any a € SN-I if and only if H(t) =: 
Harm(l) + ... -f- Harm(t) there is no G—invariant harmonic 
polynomial. Moreover, in the cited paper it was shown that if 
H(t) contains some G—invariant harmonic polynomials, then 
they can be "killed" by choosing their common root as initial 
point a. In this case, the orbit Ga is a t—design. 

In the present paper we state the results discussed above 
in a somewhat more general and convenient form. 

As an example, we consider the following well-known re- 
sults. The orbit .0a of the Conway group .0 of all orthogonal 
transformations that fix the Leech lattice is an 11-design for 
any initial vector a, because the first .0—invariant polyno- 
mial with zero mean has degree 12. If we take the vector 
e = 32_1/2(-3,l23) € S23 (see [5], Chapter 4, §11) as a, we 
obtain an 11-design consisting of 196560 elements. Observe 
that 2e is one of the vectors of minimal length in the Leech 
lattice. The total number of such vectors is 196560 and the 
group .0 acts transitively on the set of these vectors [5]. 

The main result of the present paper is an explicit construc- 
tion of an infinite family of 11-designs in the 2"—dimensional 
Euclidean space on the top of the groups $n,2 and En,2, n — 
1, 2,. .. , of orthogonal (2n x 2") —matrices; these groups were 
introduced in [6]. The same construction is proposed also for 
9-designs. The group $„,2 is a subgroup of index 2 of the 
group E„,2- 

For n = 2, the group $ni2 is of order 1152 and is generated 
by the 16 matrices diag(±l, ±1, ±1, ±1), the Hadamard ma- 

trix H 
i   l 
l -l 
l   l 
l -l 

and the 24 permutation matrices 

P„ corresponding to the affined mapping x —> Qx -f a of the 
space F2 into itself (here Q 6 M„(F2) is a nonsingular matrix 
and o € F2). 

We prove that the space of <3>n,2-invariant harmonic poly- 
nomials /(x) of degree at most 9 with zero mean is one- 
dimensional and possesses a generator A'n'(x) of degree 8. 
The space of E,i,2— invariant harmonic polynomials /(x) of 
degree at most 11 with zero mean is also one-dimensional and 
has the same generator A'"'(x). Therefore, for any root a of 
the polynomial A'"'(x) the orbit <3>n,2a is a 9-design and the 
orbit En 2^ is an 11-design. 

Note 'that A<2>(x) = £?=„< + 7£Q,*a VQ,x
4

0j + 

168[jl=1 x2
t — 7/10(X^_, £Q,)

4
I where the variables are la- 

beled by the elements of the two-dimensional space Y\ = 
{»1,02,0/3,04} over the field F2. 

The    vector   c(xQ),    where    c(x)     =     2^(0,1,1,1)   + 

cos i(l, 0,0, 0) and xo is a root of the equation A' '(c(x)) — 
cos8 x + ^- cos4 x sin4 x + ^ cos x sin6 x + | sin x — y^ = 0, 

is one of the roots of the polynomial A'2'(x). The orbit codes 
$„2c(io) and En,2c(xo) contain 96 and 192 points, respec- 
tively, and are 9- and 11-designs in 4-dimensional Euclidean 
space. 

Similar methods can be used to construct 9- and 11-designs 
on sphere in the 8-dimensional Euclidean space. The resulting 
designs consist of 15360 and 30720 points, respectively. 
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Abstract — In this work we investigate the design 
of constellation mappings for the transmission of non- 
uniform memoryless sources over AWGN channels via 
M-ary modulation schemes. We show that constel- 
lation mappings which minimize the average symbol 
energy and, given this, maximize the decoding prob- 
ability of the most likely signals, can yield SER and 
BER performance that is better than Gray encod- 
ing maps. We also find that for highly non-uniform 
sources, 16-QAM can perform better than 2-QAM, in 
terms of both throughput and BER. 

I. INTRODUCTION 

For equally likely signals, Gray mapping in two-dimensional 
signaling is generally accepted as optimal for minimizing bit 
error rate (BER). However, many data sources generate non- 
uniformly distributed symbols, often with memory (e.g. image 
or speech signals). Thus, they contain a substantial amount 
of (natural or residual) redundancy which, after transmission 
over a noisy channel, can be appropriately exploited by a 
maximum-a-posteriori (MAP) detector to improve the over- 
all error resilience of the communication system [1]. 

In this work we propose criteria for constructing mappings 
from a set of signals to points of a two-dimensional constella- 
tion. We show that for non-uniform sources Gray mapping is 
not necessarily optimal for minimizing BER or symbol error 
rate (SER). We illustrate this in the context of an uncoded 
communication system with QAM modulated, non-uniform 
signals sent over an AWGN channel, and decoded using MAP 
decoding. We also illustrate that, when using MAP decod- 
ing for highly non-uniform signals, the BER performance of 
16-QAM can be better than that of 2-QAM, even though 16- 
QAM has four times higher throughput. 

II. CONSTELLATION MAPPINGS FOR MAP DECODING 

We propose the following criteria (listed in order of prior- 
ity) for constructing mappings from a set of M non-uniformly 
distributed symbols to the points of a two-dimensional con- 
stellation: (i) minimize the average energy per symbol for 
the M given symbol probabilities, and (ii) successively mini- 
mize the conditional symbol decoding error probabilities, go- 
ing from the most likely to the least likely symbol. The fol- 
lowing determines the mapping which satisfies criterion (i), 
up to permutations within sets of symbols with the same 
energy: given M symbol probabilities {pi}fLi with energies 
E\ < ... < EM, any permutation •K of {1, 2,..., M} which 

satisfies p„w >...> p*iM) minimizes Y^Li EiP*(i)- 
Subject to criterion (i), we next consider criterion (ii). Let 

si,... ,SM denote the signals listed from most likely to least 
likely. We propose a simple heuristic for successively mini- 
mizing the conditional probabilities P(Symbol Error\si sent). 

This work was supported in part by NSERC of Canada. 
Email: takaharalDglen. mast. queensu. ca. 

Starting with symbol Si, and subject to not violating criterion 
(i), choose neighbours of si to be least likely signals to max- 
imize the area of the decoding region of signal si. Continue 
to allocate signals in this way until there are no signals left to 
allocate. 

III. NUMERICAL RESULTS 

We consider a Bernoulli(p) source sent over an AWGN chan- 
nel with 16-QAM modulation and MAP decoding. BER cal- 
culations were done using the upper and lower bounds in [2], 
which coincide with each other when plotted. Fig. 1 shows 
a 16-QAM constellation with a mapping Mi. For p > 0.5, 
the mapping Mi minimizes the average symbol energy (crite- 
rion (i)) and, subject to this, for any noise variance No/2, the 
mapping Mi also maximizes the conditional probability that 
symbol 0000 (the most likely symbol) is decoded, given that 
0000 is sent. This is due to the fact that symbol 0000 has 
the least likely neighbours, subject to criterion 1; thus the de- 
cision region for 0000 is maximized. The remaining symbols 
are placed in the constellation to successively maximize the 
decoding regions of 0001, 0100, and 0010, in that order. 

1111 
(1100) 

0111 
(01OO) 

OJI01 
(0*110) 

1101 
(1110) 

0011 
(1000) 

OOOO 
(OOOO) 

0001 
(0010) 

1001 
(1010) 

(1001) 
0110 

(0001) 
0010 

(0011) 
0*100 

(1011) 
1100 

(1101) 
1110 

(0101) 
1010 

(0111) 
1000 

(1111) 
1011 

Figure 1: Mappings Mi and Gray (in parentheses). 

Under the mapping Mi, 16-QAM modulation with p = 
0.9 and MAP decoding performs better than the usual Gray 
mapping, gaining roughly 1 dB and 0.75 dB in Eb/No (at error 
rates between 10~5 and 10~2) for SER and BER, respectively. 
We also note that 16-QAM with the mapping Mi achieves 
around 1 dB gain over 2-QAM for p — 0.9 and the same BER. 
This leads us to the interesting observation that while the 
conventional wisdom for equally likely signals is that there is 
a tradeoff between throughput and BER, with non-uniform 
signals there need not be such a tradeoff. Indeed, in this 
example 16-QAM achieves both four times the throughput and 
better BER performance than 2-QAM when p = 0.9. 
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Abstract — In this paper, we introduce a novel 
scheme using a constellation shaping approach to re- 
duce the peak-to-average ratio (PAR) in orthogonal 
frequency-division multiplexing (OFDM) systems. In 
the time domain, the peak power bound traces out 
a hypercube boundary. We map this square time- 
domain boundary back to the frequency domain via 
the DFT and construct a method for indexing the 
OFDM constellation points. The encoding and decod- 
ing of the constellation use generators and relations 
from group theory. The end result is a coding scheme 
with nearly 20 dB of PAR reduction with no reduction 
in data rate or performance. 

I    Introduction 
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In an orthogonal frequency division multiplex (OFDM) 
system, the output time samples are generated by the in- 
verse FFT of the constellation points. When each channels 
takes on a constellation point with the maximum power, 
the peak power is N times of the average power. Thus, 
the time samples may occasionally have very high out- 
put levels, which leads to the requirement of an expen- 
sive, highly linear, and power-inefficient analog front end 
(AFE) and/or a clipping mechanism to limit the time sam- 
ple magnitude, which leads to impulsive noise and perfor- 
mance degradation. High PAR is arguably the greatest 
drawback of OFDM. 

Numerous methods have been proposed to reduce the 
PAR of OFDM. They tend to be tradeoffs between PAR 
and data rate or distortion. We propose a method for 
peak power reduction in OFDM systems based on con- 
stellation shaping [1] which can provide nearly 20 dB of 
PAR reduction while maintaining equivalent data rate and 
performance. In addition, it can be combined with other 
existing methods to further increase the PAR reduction. 

II    Constellation Shaping 

OFDM systems can operate either in baseband (as 
in the ADSL standard) or in passband; we ex- 
amine only the baseband case here, although the 
method applies to both variations. We restrict x = 
\ xo    ■ • ■   zjv-i 1 to be real.   This allows us to define 

X= [ ReVb    •••    ReYjg.    ImVi    •••   Imy^_1 1 and 

Ajv as columns of sin (27r^) and cos (2TTJ^), and we have 
x = AjyX. 

Figure 1: The PAR reduction versus the number of chan- 
nels and constellation size. 

The constellation boundary is usually determined by 
the metric that we want to optimize. In the problem of 
PAR reduction in OFDM systems, we use the oo-norm, 
ll'lloo» *n *ne *ime domain. This metric traces out a square 
boundary, defined by Hx^ = ß. In the frequency do- 
main, we get: Hx^ = HAJVXH^, = ß. This is an JV-D 
parallelotope in the frequency domain denned by A^1. To 
encode and decode the constellation points inside this new 
boundary, we use group theory to compute the generators 
for indexing these points. 

We present some results using this algorithm. Figure 1 
shows the total amount of peak-power reduction using this 
constellation shaping with various numbers of channels 
and constellation sizes. We see that reduction of over 20 
dB is possible when the constellation size is large. Even 
with a typical constellation size, a peak power reduction 
of over 15 dB is easily realized. 
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Abstract — In this paper, a convenient set of func- 
tions is identified whose span includes all functions in 
a tower of function fields of Garcia and Stichtenoth 
that have poles only at the place at infinity. The lat- 
ter set is of interest in the construction of long and 
efficient AG codes. 

I. INTRODUCTION 
The Gilbert-Varshamov (G-V) bound is commonly used to 

assess the performance of long codes. While it is known that 
there exist ^ong alternant and concatenated codes that meet 
the G-V bound, no explicit description of these codes exists. 

Around 1980, V. D. Goppa used the theory of algebraic 
curves to construct a new family of codes, now referred to as 
algebraic geometric (AG) codes. Code performance depends 
upon the ratio N/g of two curve parameters, the genus g and 
the number of (rational) points N. Good codes result in cases 
where the ratio N/g is large and the Drinfeld-Vlädut (D-V) 
bound lim sup^^ N/g < y/q — 1 places an upper bound on 
the ratio. 

In 1982, Tsfasman, Vlädut; and Zink (T-V-Z) showed the 
existence of curves whose N/g ratio achieved the D-V bound. 
The resulting AG codes had performance exceeding that of 
the Gilbert-Varshamov bound - a feat that until then was 
considered unattainable. 

However, the T-V-Z result is existential in nature. In 1996, 
Garcia and Stichtenoth (G-S) showed that two families of 
curves having an explicit description as a tower of function 
fields, also achieve the D-V bound. Identifying the genera- 
tor matrices for "one-point" AG codes constructed on these 
curves requires the determination of a basis for the vector 
spaces C(rP), which comprise functions having poles only at a 
specified point P. The results in this paper present an impor- 
tant step towards determining this basis. A simply described 
set of functions whose span includes the vector spaces C(rP) 
is provided. 

In [6], the authors provide generator matrices for codes 
constructed on the first three function fields in the first G-S 
tower. Hache extends this result to the fourth function field 
over GF(16). The Weierstrass semigroup at P is determined 
in [4]. Other examples of asymptotically optimal towers are 
provided in [1]. 

II. RESULTS 
Let q be the power of a prime p and consider the G-S tower 

of function fields given by T\   =  F,a (xi) and for n > 2, 

Tn  = T„_i (xn) where xq
n + xn 

Let P^' denote the unique place in T„ lying above Poo and 
set an   :=  («J-' + l), 

n 

<S = {1}|J{S"II^' l°^e- ^9-L somee.^O}. 
i=2 

The main result can now be stated. 

Theorem 1 Every function in T„ whole poles are confined to 
Poo" can be expressed as a linear combination of functions in 
the set S, with coefficients of the form p(xi)/x\, where p(xi) 
is a polynomial in xi and i > 0. 

The talk will provide examples as well as other results re- 
lating to the function field tower. 
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Abstract — We propose a lower bound for the mini- 
mum distance of [n, k] linear codes which are specified 
by generator matrices whose rows are k vectors of a 
given sequence of n linearly independent vectors over 
a finite field. Note that the Feng-Rao and the order 
bounds give lower bounds for the minimum distance 
of the dual codes. 

I. INTRODUCTION 

Various kinds of bounds for the minimum distance of linear 
codes have been investigated in the history of coding theory. 
Among them, the Feng-Rao bound is one of the most distin- 
guished [1]. 

Let F be a finite field and n a positive integer. We de- 
note by B := (6i,62,..., 6„) a sequence of n linearly in- 
dependent vectors in Fn.    For u  —   («i,«2 «n) and 
v = (vi,V2,-..,Vn) in Fn, u*v := (uiVi,u2v2,. ■ .,unv„). 

For B and a subset G of B with \G\ = k (1 < k < n), we 
define a code C(B, G) over F by C(B, G) := span{6 : 6 € G} 
and denote its dual by C±(B,G). C(B,G) (resp. CL{B,G)) 
is an [n, k] (resp. [n, n — k]) linear code. We denote by d(C) 
the minimum distance of a linear code C. 

We denote by L< (1 < I < n) the linear space over F 
spanned by 6i, 62, • • •, 6/ and let L0 := {0}. For v € Fn \ {0}, 
let p(v) denote the index I such that v 6 Le \ Le-i holds 
and p(0) := 0. A pair (bi,bj) {bi,bj e B) is said to be well- 
behaving (WB) if p(bu * bv) < p(bi * bj) for all u and i; with 
1 < u < i, 1 <v < j and (u, v) / (i,j). 

Proposition 1  [2, §4]     For B and G, let 

At := {(i,j) : p(bt * bj) = t and (bubj) is WB}, 

for I = 1,2, ...,n and define S(B,G) := mva{\Ai\ : be € 
B\G}. Then d{Cx(B,G))>8(B,G). O 

S(B, G) is known as the Feng-Rao bound for d{CJL(B, G)). 
In this paper, we introduce a lower bound for the minimum 
distance of C(B, G) instead of C±(B, G), by using the map p 
and the concept of well-behaving as in Proposition 1. 

II. A LOWER BOUND FOR d(C(B,G)) 

Theorem 1 For B and G, let 

B\ :- {£ : p{bi *bj)=e for some bj g B 
s.t. (bi,bj) is WB},     i = l,2,...,n 

and Bi := {v : b„ € B \ G} \ B\. Define t(B, G) := max{|ßi| : 
öi € G}. Then d(C(B, G))>n-k + l- t(B, G). G 

This theorem follows from the duality theorem of general- 
ized Hamming weights [6] and the following proposition. 

Proposition 2 Let dt{C) denote the t-th generalized Ham- 
ming weight of the code C, then dt(C

±{B, G)) = k + t for all 
t with t(B, G) + l<t<n-k. □ 

This proposition was first shown for G — {61,62, ••• ,&*} 
[3, Theorem 2] while it is shown to hold for an arbitrary subset 
G of B with \G\ = k. 

For given B and an integer r, let G' := {bi : \Be\ < r}. 
Then t(B, G')<T and therefore d{C(B, G')) >n-k + l-T 
by Theorem 1. Moreover if t(B, G') = t(B, G) then G C G'. 
Thus if t(B, G') = r, then C(B, G1) D C(B, G) for all G C B 
with t(B,G) = T. This means that for fixed B and r, the 
dimension of C(B,G') is \G'\ and is the largest among all 
dimensions of codes C(B, G) with t(B, G) = T. This idea to 
define G' corresponds to the improved geometric Goppa codes 
for CX(B,G) [2, §4.3]. 

III. APPLICATIONS 

For Reed-Solomon and Reed-Muller codes, we can show that 
Theorem 1 gives the true minimum distance [3, 4]. 

For one point algebraic geometry (AG) codes on Cab 
curves [5], if a Cab curve is non-singular and absolutely ir- 
reducible, then we Can show that t(B, G) < g [3] where g 
is a genus of the Cab curve, and B and G are determined 
so that C(B, G) becomes an L-type AG code on the Cab 
curve. Since an L-type AG code is an [n, k, d\ code with 
d > n — k + 1 - g =: d* [2, Theorem 2.65], this result im- 
plies that the lower bound given in Theorem 1 is better than 
d*. 

For evaluation codes [2, §4], a lower bound based on the 
weight function has been investigated [2, §5]. When the one 
point AG codes on Cab curves considered above are regarded 
as evaluation codes, this bound is equal to d* and therefore 
the proposed bound is better. For other evaluation codes, 
relations between the two bounds are left for further study. 
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Abstract — We give lower bounds on the state com- 
plexity of geometric Goppa codes. For Hermitian 
codes we calculate the DLP bound, V, and determine 
when V is tight and when it is not. 

I. INTRODUCTION 

Geometric Goppa codes (also called algebraic-geometric 
codes) are a family of powerful codes that can be longer than 
Reed-Solomon codes. Hermitian codes are a particularly good 
family of geometric Goppa codes. State complexity (SC) is 
used as a measure of the complexity of soft-decision decoding 
algorithms, such as the Viterbi algorithm. The SC of a code 
varies with coordinate orders. We refer to the lowest SC over 
all coordinate orders as absolute state complexity (ASC). Ac- 
cording to Massey, determining an order that achieves ASC is 
'the art of trellis decoding'. The DLP bound, V, is an order- 
free lower bound on SC. In particular, if an order attains V 
then it achieves ASC. 

II. ON THE SC OF GEOMETRIC GOPPA CODES 

Example 3   When F/Fq   is hyperelliptic the Clifford bound 
and the GS bound agree. 

III. TOWARDS THE ASC OF HERMITIAN CODES 

Hermitian codes are defined from the Hermitian function 
field, H/Fq2 of genus g — (Q. For Hermitian codes n = q3 and 
G = mQoo, where Q^ is the place of degree one at infinity. 
We put Cm = Cc(D,mQ00) and km = dim(Cm). We are 
interested in ^ < m < ^ + g. By results of [2, 3], the 
DLP bound of an Hermitian code is equal to the GS bound. 

Result 4 (DLP Bound for Hermitian Codes)   Withn- 
2m + Ag + q — 2 = uq + v, where 0 < v < q — 1, 

V(Cm) 9-LfJ 9-rti 
2 

-min{,-[J| ,«-«}. 

In some cases we can improve on the DLP bound. We write 

q + M'(q + 1) + M°, where 0 < M° < q. 

Our notation and terminology for geometric Goppa codes     Result 5   With q2 = q mod 2, s(Cm) - V(Cm) is at least 
follow Stichtenoth's book. We fix a function field F/¥q of 
genus g and an [n,k] geometric Goppa code Cc(D,G) from 
F/Fq, where D = £J=1 P,-. The abundance of Cc{D,G) is 
a = dim(G — D). The usual expression for state space di- 
mension at depth i in terms of dimensions of past and future 
truncated codes becomes 

1 + M' + M° - L§J 
r§ i - M° 
1 + M' + M° - q 
l + q-q2-M° 

if Lf J -M* <M° <*- -M'-l 

if <M"<P 2       .: ■"■■_= i    2 

ifq-M'<M°<q- 
ifq-^f^M0 <q- 

21 
_  M' + l 

2 

-92- 

Si(Cc(D,G)) = k + 2a-dim{G-Dr)-dim(G-Dt)    (1)     M° < fVl or q - M' < M° < q - q2 

In particular the DLP bound cannot be tight if [f J - M' < 

where D~ = £'     pjt £>+ = D - D~ and 0 < i < n.   As 
usual s(Cc(D,G)) = max0<i<n{si{Cc(D,G))}. 

Almost  immediately  from   (1)  we  get  that  the  SC  of 
Cc(D,G)  reaches Wolf's upper bound,   min{k,n - k},   if 
degG < 2f± or degG > 
that £fi < degG < 2f2 
deg G < ^~- + 2g follow by duality.) A first lower bound on 
SC can be deduced from Clifford's Theorem. 

*2—r- Ig.   For the rest we assume 
+ g.   (The results for £fi + g < 

Result 1 (Clifford Bound)  s(Cc{D,G)) > k+2a-degG+ 
P?*l. 

Two other lower bounds can be derived in terms of the 
gonality sequence, (p*)*>i, of F/Fq. The gonality sequence 
is known from g and the degree of F/Fq, [2]. One of these 
bounds is derived from a known bound on the generalised 
weight hierarchy of F/Fq, [1, 3]; the other is derived directly 
from (1). Often the two bounds are equal and then 

Result 2 (GS Bound)  s(Cc(D,G)) > max0<i<„{fc + 2o - 
\{r:gr < degG - i}\ - \{r : gr < degG + i - n}|}\ 

We have found a coordinate order on Cm that achieves the 
DLP bound whenever this is not ruled out by Result 5. Thus 
this determines exactly when the DLP bound for the SC of 
Hermitian codes is tight. 

However, when the DLP bound is not tight, the coordi- 
nate order does not always achieve the bound of Result 5. 
In these cases we have not ascertained the ASC of Cm. The 
first values of m for which this is the case are q = 5 and 
m = 70, q = 7 and m G {182,189,190} and q = 8 and 
m e {268, 272, 276, 277, 280, 281}. 
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Abstract — We investigate iterative decoding and 
channel estimation for multiple-access channels. Re- 
sults are obtained concerning the fixed points of such 
iterations. 

I. ITERATIVE RECEIVER PRINCIPLE 

In [1] an iterative receiver was proposed for the linear multiple 
access channel. We now consider an approach for integration 
of channel estimation into this technique whereby we use the 
a-posteriori probabilities of the information symbols as uncer- 
tain training sequences for the purposes of channel estimation. 
We investigate the properties of fixed points of such iterations. 

Let 5 be a vector space. Unconstrained sequences can 
take any value u G S as opposed to constrained sequences 
x € C C S. We are interested in low-complexity joint detec- 
tion (or estimation) for sets of constrained sequences observed 
according to known transition probabilities. These probabil- 
ities are defined by some combination of deterministic map- 
pings (e.g. linear combining) and non-deterministic perturba- 
tions (e.g. noise). 

Suppose that the sequences Xk, k = 1,... , n are each pro- 
duced by a mapping Ck of an unconstrained sequence Uk ■ The 
random sequence y is observed according to p(y \ xi,..., x„). 
The Uk may or may not be independent, but are condition- 
ally dependent given y. This model can be thought of as 
a multiple-access communications system (the Xk are coded 
information sequences), but is rich enough to describe other 
systems of interest, such as inter-symbol interference channels 
(by allowing some of the Xk to represent the sequence of chan- 
nel taps, obeying known spectral constraints) and space-time 
diversity channels. 

Optimal detection means the determination of either the 
posterior density p(«i,U2, ■ ■ ■ ,un | y), or its marginals, taking 
into account the constraints. This is usually an NP-complete 
problem and we propose a reduced complexity iterative algo- 
rithm. The basic principle that we propose for design of such 
algorithms may be stated concisely as follows. 

1. Incorporate dependence, ignore constraints. 

2. Incorporate constraints, ignore dependence. 

We iteratively update the distributions pk (uk). Ideally pk con- 
verges over iteration to the A;-th marginal of the true posterior 
distribution p(ui,U2, ■ ■ ■ ,un \ y)- The principle also applies 
to estimation problems, in which case the distributions are 
replaced with the current estimates, which we hope converge 
to some desired estimator e.g. MMSE. 

Let p ■= {pi(ui),p2(ii2),... ,Pn(•"„)} be the sequence pri- 
ors. At the conclusion of any iteration step, the unconstrained 
joint detector, using as priors the current set of marginal dis- 
tributions p, produces a new set p+, taking into account only 
the conditional dependencies. All the constraints are relaxed. 
This results in a p+ that may place mass on "impossible" 

events. Relaxation of (especially integer) constraints can re- 
sult in low-complexity heuristics. An example of this is ap- 
plying the decorrelator or MMSE filter for detection with a 
linear model with integer constraints. 

A bank of constrained detectors ignores the inter- 
dependencies between the Uk- The detector for Uk updates 
the current prior marginal pk based on the constraint Ck and 
p(y | Uk)- For convolutionally coded data, we may use the 
forward-backward algorithm. For a sequence of channel taps 
we may use a Kaiman filter. 

II. CONVERGENCE ANALYSIS 

We shall now consider an asynchronous K user CDMA system 
in the absence of multipath fading.   Identical convolutional 
codes with free distance dfree are used by each transmitter. 

We are interested in the effective noise variance at the out- 
put of each iteration. Considering an input noise variance v 
to the constrained data estimator (Viterbi decoder), we may 
bound the output noise variance Vd- 

Vd  > f(v) = 4dfreeQ ^2dfTee/vj 

For a given spreading factor ß — K/N, input variance Vd and 
thermal noise variance a2, the unconstrained joint detector 
described in [1] is characterized by vd — ßv + a2. This leads 
to the recurrence 

v. 
(m+l) 

F(vd
m)) = 4rffree Q 

2d{ri 

ßv, (m) + 0-' 

In operating regions of interest, we may use the solutions to 
the fixed point equation Vd = F(vd) to accurately predict the 

performance. Furthermore vd
m' may be used to predict the 

performance for finite number of iterations, m. 
Given a fixed point solution x, we have the following suffi- 

cient condition for stability 

0 < x < 
2dfr, 

3 In dfn lni 
F'(x) < 1. 

In practice, we have observed the existence of a stable fixed 
point close to the single user operating point and it is possible 
to derive an expression for the loss compared to single user for 
this point. Decoder failure occurs when a second fixed point 
appears at high noise variance. It can be shown that for high 
SNR this occurs for a critical value of ß given by 

ßcra = (2-v)/r1(2). 

We have verified this behavior with simulations. 
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Abstract — Parallel concatenated convolutional 
codes (PCCC's) are usually constructed using sys- 
tematic recursive convolutional codes (SRCC's) as 
constituent codes. In this paper, we introduce a 
new version of parallel concatenation that uses non- 
systematic recursive convolutional codes (NSRCC's) 
as constituent codes. A systematic constituent code 
then become's a particular case of this general scheme. 
The use of this larger class of constituent codes en- 
hances the number of possible codes in the search 
space, thus allowing the possibility of finding better 
codes. We also introduce a modified iterative decod- 
ing method for this more general form of parallel con- 
catenation. The decoding technique is no more com- 
plex than the standard iterative decoding algorithm. 

I. INTRODUCTION 

The usual view of parallel concatenation is two systematic 
recursive convolutional codes (SRCC's) linked by an inter- 
leaver [1]. The systematic bits that are identical to both con- 
stituent codes are transmitted only once, and the two decoders 
"share" the noisy received systematic symbols. Iterative de- 
coding is then accomplished by exchanging extrinsic reliabil- 
ity information about the systematic bits between the two 
decoders. 

In this paper we propose a class of parallel concatenated 
convolutional codes (PCCC's) that uses non-systematic recur- 
sive convolutional codes (NSRCC's) as constituent codes for 
PCCC's. This class of NSRCC's contains the usual SRCC's 
as a particular case. We also propose a modified iterative 
decoding method for these more general PCCC's. 

We define an NSRCC as a convolutional code with gen- 
erator matrix [n3(D)/d3(D) ra{D)j'd3(D)]. (Note that this 
NSRCC becomes systematic if n3(D) = d3(D) or 714(D) = 
d3(D).) 

We now propose a PCCC scheme as shown in Fig. 1. The 
first constituent code is a rate 1/2 NSRCC in the previously 
described form and the second constituent code is similar to 
the usual PCCC's, i.e., the systematic bits are not transmit- 
ted. 

The block diagram of the decoder is shown in Fig. 2. For 
each a posteriori probability (APP) decoder we use the stan- 
dard BCJR [2] algorithm. 

When 2/1 or 3/2 is a systematic bit, this algorithm gives a 
result that is identical to the classical PCCC iterative decod- 
ing algorithm. In the classical PCCC iterative decoding algo- 
rithm, besides y3 and the extrinsic a priori likelihood ratios 
of the systematic bits provided by APP1, APP2 also received 

ip« s  ■■■ -« a« 

* *— y„ 
Interleaver ] «4 ffl     •     -4 A* 

 J &-►  y3 

Figure 1: A general PCCC. 

noisy systematic symbols {y\ or £2) as inputs. For the new 
decoder shown in Fig. 2, the received noisy systematic sym- 
bols are included in the information sent from APP1 to APP2 
when the code is systematic. The feedback from APP2 to 
APP1, however, is identical to classical PCCC iterative de- 
coding, i.e., only "extrinsic" likelihood ratios are sent in this 
case. 

^his work was supported by NSF Grants NCR95-22939 and 
NCR96-96065 and NASA Grants NAG5-557 and NAG5-8355. 

Figure 2: Block diagram of the decoder. 

Because we have lifted the restriction of using SRCC's as 
constituent codes, the number of possible constituent codes 
is now much larger than for classical PCCC's. We have at- 
tempted a limited search for good PCCC's using NSRCC's 
as constituent codes. A PCCC with generator matrices 
[1 + D/l + D + D2 l + D + D3/\ + D + D2} and [1 + D3+D4/1 + 
D + D2] has been identified as a good choice. Its BER per- 
formance is nearly the same as the original turbo-code in [1] 
for an information block length of 1024 and rate 1/3. Note, 
however, that this non-systematic code has a smaller state 
complexity. 
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Abstract — The concept of iterative decoding of 
concatenated channel codes is applied to joint source- 
channel decoding (JSCD). Extrinsic information from 
the soft-in/soft-out channel decoder is used as a-priori 
information for the new soft-in/soft-out source de- 
coder and vice versa. In this novel iterative approach 
the redundancies within the data-bits and the chan- 
nel codewords are alternately exploited in order to 
approximate the highly complex optimal JSCD. 

ITERATIVE SOURCE-CHANNEL DECODING 

Consider the problem of transmitting a set of M signal-vectors 
Xk, ■■■jXl ' at each time k (fig. 1). The vectors are source- 

encoded (quantized) by the indices /£ , j = 1,..,M. The 
index-bits are interleaved, commonly channel-encoded, and 
the codewords Vjt are transmitted. Since source encoding is 
never "perfect", some dependencies (modeled by first-order 

Markov-processes) remain between adjacent indices ll_1} Ik ■ 
The basic idea of iterative source-channel decoding is 

adopted from iterative channel decoding [1]: The redundan- 
cies, which are contained in the channel codewords and in the 
source-encoder indices, are alternately exploited by separate 
soft-in/soft-out decoders (SISO decoders). Each SISO decoder 
computes the new (extrinsic) part of information on the data- 
bits, which is based only on one type of redundancy. The 
extrinsic information is forwarded to the other SISO decoder 
as a-priori information. This process is iteratively repeated to 
improve the reliability of the index-bits step by step. A block- 
diagram of such an iterative source-channel decoder, which 
directly fits into figure 1, is depicted in figure 2. 

<h) 
A 
W 
Ü 
N 

—»■ 

Source- 
Channel 

Decoding 

■y\ Channel 
Encoder 

 »■ 

Inte leaver 

Fig. 1: Transmission system 

The SISO channel decoder (e.g. BCJR-algorithm [1], [2]) 

processes a-priori information Li '(Tr(Ik)) of the index-bits, 

the received channel-L-values Lc • Vk of the transmitted bits, 
and it computes the output L-values L^c\ir{Ik)) and the ex- 

trinsic information Li (n(Ik)) for the index-bits. The latter 
contains the new part of information that has been computed 
by only exploiting the redundancies within the channel code. 

SISO source decoding is performed by Optimal-Estimation 
(OE) |3]. The channel-values h of the index-bits, the a-priori 

information Li {Ik), which equals the extrinsic information 

L\ (Ik) from the channel-decoder, the transition probabili- 
ties of the Markov-models and the a-posteriori probabilities 
(APPs) from the previous time k — 1 are processed in order 
to compute the APPs of all possibly transmitted indices at 
time k by the recursion given e.g. in [3]. The APPs are used 

to estimate the receiver-outputs Xj.3' after the last iteration. 
Within the iterations the SISO decoder for a binary channel 
code requires a-priori informations for single bits. Since OE 
computes APPs of indices a conversion has to be carried out 
to L-values for the bits, which can be realized by summing up 
the APPs over all possible indices having a "1" or "0" at the 
bit-position under consideration. The L-values of the index- 
bits are converted to the output-L-values Z/S'(ifc) of the SISO 
source decoder by multiplexing, and the extrinsic information 
Le {Ik) is computed. It is interleaved and forwarded to the 

SISO channel decoder as the a-priori information Li '(ir(Ik)). 
Simulation results show that the iterative source-channel 

decoding works better than the non-iterative sequential chan- 
nel and source decoding with the same component algorithms. 
A gain of about 1 dB in Eb/No is achieved by only two iter- 
ations on moderately corrupted channels at the same quality 
of transmission. 
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Abstract — This paper presents novel decoding algorithms for 
turbo codes, in which the likelihood and channel values are updated 
in order for those values to become closer to the true values thorough 
the iterative decoding procedure. The criteria for updating the 
likelihood and channel values are proposed, those are based on the 
simple means to compare the interim hard decision results from each 
of component decoders. 

I.    INTRODUCTION 
Parallel concatenated convolutional (turbo) codes and iterative 

decoding achieve error performances close to Shannon limit'1'. 
The principle of the iterative decoding is that the component 
decoders exchange their outputs of the likelihood values each 
other, and update them though the iterative procedures. In the 
conventional decoding algorithms, only the likelihood values for 
systematic parts are treated to be updated"'21. 

Here we propose novel decoding algorithms which update 
both likelihood and channel values based on the interim hard 
decision results in order to minimize the effects of the error 
contained in those values. 

II.    THE ALGORITHMS 
The iterative decoder in accordance with the proposed 

algorithm is shown in Fig. 1. . Since the likelihood values show 
the log-likelihood ratio (LLR) of the decoded digit, the hard 
decision results of LLR values will be the final decoded results. 
Therefore, if the signs of LLR values output from the component 
decoders are different each other, it is obvious that either of them 
contains error. Based on this, when an error is detected on LLR 
values (Li or Li), it should be updated more reliably. We here 
take a simple method to update LLR values by averaging them, as 
shown in Fig. 2. This makes the absolute value of updated LLR 
smaller, thus the effects of LLR errors can be minimized. 

The systematic part of the channel value U is similarly 
updated by comparing it with the corresponding LLR values. 
Further, regarding the updating of redundant part of the channel 
values Y/, Y2, the LLR values are re-encoded in soft value (using 
log-likelihood addition) to be compared with. Then they are 
compared to detect errors, and updated in the same way. 

III.    PERFORMANCE EVALUATION 
The performance of the proposed algorithm is evaluated with 

the parameters specified in IMT-2000 draft131, i.e., r=l/3, K=3, 
multi-stage interleaver, etc. The results are shown in Figs. 3 
and 4, where SOVA1 ' based component decoders are employed. 

It is shown that the proposed algorithm improves BER 
performance as iterations go on. Also, the achievable BER 
limit is improved by the effective updating method. Moreover, 
it is possible with the proposed algorithm to reduce the decoding 
process time by stopping the iterations much earlier. 

IV.    CONCLUSIONS 
Novel decoding algorithms for turbo codes to update the 

likelihood and channel values based on the interim hard decision 
results have been presented. By updating those values more 
reliably, the proposed algorithms improve BER performance, and 
reduce the iterations. 
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Fig. 1    Iterative decoder updating LLR and channel values 

Fig.2    Likelihood value updating (ex. following Dec 1) 
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Fig.3    Bit error rate as a function of Eb/N0 (AWGN) 
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Fig.4    Bit error rate as a function of iterations (AWGN) 
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Abstract — The high-rate squared-error distortions 
of a balanced multiple description lattice vector quan- 
tizer are analyzed for a memoryless source with prob- 
ability density function p, differential entropy h(p) < 
oo, and lattice codebook A. For any a € (0,1) and rate 
pair (R,R), it is shown that the two-channel distor- 
tion do and the channel 1 (or channel 2) distortion d3 

satisfy 
lim do22B(1+o) = G(A)22h(p)/4 

and 
lim 422H(1-a) = G(5z,)22hCp), 

R-KX 

where G(A) is the normalized second moment of a 
Voronoi cell of the lattice A and G(SL) is the nor- 
malized second moment of a sphere in L dimensions. 

I. INTRODUCTION 

We consider a two-channel multiple description quantiza- 
tion system for a discrete-memoryless source with differential 
entropy h(j>). The quantizer transmits information on each 
channel at rate R bits/sample. The mean-squared error when 
both channels work is denoted by do and when either channel 
works is denoted by d3. 

It has been shown [1] that for a uniform entropy-coded mul- 
tiple description quantizer and any a 6 (0,1) the distortions 
satisfy 

lim d0(Ä)2 
Ä->oo 

2Ä(l+a) 1 /2^>\ 

lim ds(R)2 
R-K30 

2H(l-a) 2
2
MP) 

12 (1) 

On the other hand, by using a random quantizer argument it 
was shown [2] that by encoding vectors of infinite block length, 
it is possible to achieve distortions 

lim do(Ä)2 2fi(l+a)      _ 

lim ds(Ä)2 2Ä(l-a)      _ 

2
2
MP) 

27re 

(2) 

Thus in multiple description quantization it is possible to 
achieve a reduction in the granular distortion by 1.53 dB, si- 
multaneously for the two-channel and the side distortion. 

The goal of this paper is to analyze constructions given 
in [3] for closing this "1.53 dB" gap. The system to be an- 
alyzed is illustrated in Fig. 1. Our approach is as follows. 
From classical quantization theory, we know that the gap be- 
tween scalar quantization and the rate distortion bound may 
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Figure 1: A multiple description vector quantizer with a lat- 
tice codebook. 

be closed by using vector quantizers with lattice codebooks. 
Certainly, by following this approach we can also close the 
gap between the two-channel distortion and the rate-distortion 
bound. In particular, this will allow us to replace the factor 
(1/12) in the expression for do in (1) with G(A), the normal- 
ized second moment of the Voronoi region of a lattice point. 
The main question we address here is that of simultaneously 
reducing d\. How can such a reduction be achieved and what 
is the quantity that will replace the factor (1/12) in the ex- 
pression for di in (1)? We will show through a constructive 
procedure that the distortion d\ can be reduced by solving a 
specific labeling problem. To our surprise, the quantity that 
replaces (1/12) is G{SL), the normalized second moment of a 
sphere in L dimensions. 

For details the reader is referred to the full paper [4], which 
will be published elsewhere. 
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Abstract — We study the problem of finding the 
optimal over-complete (frame) expansion and bit allo- 
cation for multiple description quantization of a Gaus- 
sian signal at high rates over a lossy channel. 

I. INTRODUCTION 

The setup is shown in Figure 1. In multiple description 
quantization using overcomplete (frame) expansions [1, 2], an 
input signal x e RK is represented by a vector y = Fx € RN, 
N > K. F is a N x K matrix, called the frame operator. It 
is assumed any K rows of F span RK. The coefficients of y 
are scalar quantized to obtain y, and are then independently 
entropy coded using on average a total of R bits allocated 
among the TV coefficients. In channel state «, the decoder 
receives NT}, < N coefficients after potential erasures, and 
reconstructs the signal x from the received coefficients. The 
number of channel states is 2N since each coefficient can be 
either received or lost. For a given distribution over channel 
states, we wish to find the frame operator F and the bit alloca- 
tion for the transform coefficients that minimizes the expected 
squared error D = E[\\x - x||2] subject to a constraint on the 
average rate R, for asymptotically large R and Gaussian x. 

II. ANALYSIS 

Without loss of generality, assume that x is distributed 
with zero mean and diagonal covariance matrix Rm = 
diag(«7o,...,cr/f_i) (else can use KLT). Let q = y — y be the 
quantization error and let e = x — x be the reconstruction 
error. At high rate, assume q is distributed with zero mean 
and diagonal covariance matrix with £[||gi||2] = co-y{2~iRi, 
where c = 7re/6 if entropy coded uniform scalar quantization 
is used. The distortion can be written as D = ^2,PsD,, where 
D, = £[||e||2|S = s], and p3 is the probability of the channel 
being in state s. Let yr , denote the NTl, dimensional vector of 
received coefficients. Let FTt, be a Nr,a x K matrix consisting 
of rows of F corresponding to the received coefficients. 

To obtain an expression for D,, there are two cases to con- 
sider: Nr,, > K and Nr,, < K. When Nr,, > K, the decoder 
has enough information to localize the input vector to a finite 
cell. Although the actual reconstruction will use a consistent 
reconstruction [1, 3], for analysis purposes, we use the optimal 
linear reconstruction as x = F+,yr3, where F+ is the pseudo- 
inverse of F. Since x = F+„yTS, the conditional distortion 
can be written as D, = E[\\e\\2\S = a] = J0[||JF,+,gr>,||

8]. 
When NTl, < K, then there is not enough information to 
localize z to a finite cell. In particular x is bounded in 
NTi, dimensions and unbounded in K — Nr,, dimensions. 
Thus, x = F+,yrt, + (F^,)Ty^„ where the rows of F^, 
form an orthonormal basis for the subspace orthogonal to 
the span of the rows of FTt, and y^r, is a K — NT,, di- 
mensional vector.   Now the optimal linear reconstruction is 
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Fig. 1: System setup. 
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Fig. 2: Results for optimal 3x2 expansion: (a) 0< (b) ifi{ for loss 
probabilities of 0.2 (top) and 0.95 (bottom). 

* = F},,Vr,, + (.FtfElvtjVr,, = 0r.J which gives a dis- 
tortion of D. = E[\\F+.qrJ

2] +E[\\y^f\yTiS = yTJ. Since 
the source is Gaussian, ^[||l/^,||2|l/ri,] can be easily computed. 

Using the equations for D, and the fact that E[qqT] is 
diagonal, the portion of distortion that can be minimized 
by bit allocation can be written as Dj = J^iLo1 aitTli'^~2R'> 
where a* is' a function of the transform F, the channel state 
probabilities p,, and the quantization constant c. Let Dnb 
be the remaining portion of the distortion D. Minimizing 
Di, is a classic bit allocation problem with solution given by 
Ri = R/N + loga(tti<^/(n£,1 atf,)1'")!*. This gives an 
optimal Db of D'b = N(U^ aja

2.j)
1/N2-2R'N. To find the 

optimal transform, we have to minimize Dl + Dnb. Since it 
is hard theoretically, we use numerical gradient descent tech- 
niques by varying one coefficient at a time. 

Results show that at high loss rates Dnb is the dominat- 
ing term which is minimized by repeating the coefficient with 
highest variance. At low loss rates, DJ is the dominating term 
which is minimized by the optimal source coder. Results are 
shown for 3 x 2 expansion in Figure 2, where the values for 
0i = tan~l(Fu/Fio), i = 0,1,2 are plotted with rate con- 
straint R = 6 bits and variances a\ = 4 and a\ = 1. Also 
shown is (pit which is the :th row of matrix F. 
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We consider the design of vector quantizers for diversity- 
based communication over two channels of capacities Ri and 
Ü2 with possibly differing failure probabilities. A Multiple De- 
scription Vector Quantizer (MDVQ) maps an n-dimensional 
source vector x to n-dimensional code vectors x°j, x\ and x2 

from the code books X°, X1 and X2 respectively. We use the 
notation of [1]. Let d(x,y) be a single-letter distortion mea- 
sure, and random vectors X and Xm,m = 0,1,2 represent 
the source and decoder outputs respectively. For given values 
of Äi, R.2, Ai and A2 we then wish to find an MDVQ which 
minimizes the average distortion cost 

D = E{d{X, X0)} + Ai£{d(X, X1)} + X2E{d(X, X2)}. 

We shall assume d(x, y) = ||a; — y\|2. Note that Ai and A2 may 
be interpreted as the channel failure probabilities. 

The problem of finding the rates asymptotically achievable 
by MDVQs of very large dimensions is only partially solved. 
For references to the extensive literature on this problem, see 
[2]. In [1], Vaishampayan derived an iterative algorithm for 
the design of multiple description scalar quantizers (MDSQs), 
which is closely related to Lloyd's algorithm for quantizer de- 
sign. While the algorithm monotonically decreases the average 
distortion cost, it is likely to be trapped in poor local minima, 
unless "good" initial code books and initial index assignment 
are used. Vaishampayan recognized this shortcoming, and 
proposed heuristic initializations for the special case where 
the two channels have identical capacities and failure proba- 
bilities (i.e., Ai = A2 and Ri = R2) [1]. But these do not 
generalize well to vectors, or to asymmetric channels. 

We propose a Deterministic Annealing (DA) approach to 
the design of unstructured MDVQs for two-channel diversity 
systems, where the channels may have possibly differing ca- 
pacities and failure probabilities. Our approach is indepen- 
dent of initialization, does not assume any prior knowledge 
of the source density and avoids many poor local minima of 
the cost surface. It consists of iterative optimization of a ran- 
dom encoder at gradually decreasing levels of randomness, as 
measured by the Shannon entropy. At the limit of zero en- 
tropy, a hard multiple description quantizer is obtained. Our 
approach is inspired by, and builds on, the DA approach for 
vector quantizer design [3]. 

Let us begin by assuming that the three code-books, X° = 
{x°j}, X1 = {xf} and X2 = {x2} are given. We use a random 
encoding rule, and assign input source vector x to the index 

. pair (i,j) with probability q(ij\x). These encoding probabil- 
ities are chosen to minimize D subject to a specified level of 
randomness, measured by the Shannon entropy. Correspond- 
ingly, we minimize the Lagrangian F = D—TH. Here H is the 
entropy, and the Lagrangian multiplier, T, is called the "tem- 
perature" of the system in reference to the statistical physics 

analogy. Minimizing F with respect to q(ij\x) gives 

q(ij\x) = 
exp[-( jQtils - x%\\2 + Axil» - x\\\2 + Aall» - ^||2}] 

■"This work was supported in part by the NSF under grant no. 
MIP-9707764, the UC MICRO program, Conexant Systems, Inc., 
Fujitsu Laboratories of America, Inc., Lernout & Hauspie Speech 
Products, Lucent Technologies, Inc. and Qualcomm, Inc. 

where the normalizing factor Zx ensures that ^.. q(ij\x) = 1. 
Further, the corresponding minimum of F is easily seen to be 
F* = nnng(ij\x)F = —T^2xp(x) log Zx. We now find the 
optimal sets of reproduction vectors which minimize F* for 
this random encoder: 

x°ij = '^2p(x\ij)x,    x\ = J2xP(x\i)x,    x2 = ]Pp(x|j)x. 

Our algorithm consists of minimizing F* with respect to the 
code vectors starting at a high temperature and tracking the 
minimum while decreasing the temperature. 

Scalar (for asymmetric channels) and vector quantizers 
designed by DA provided substantial gains over those de- 
signed by the iterative algorithm of [1] even for small code- 
book sizes. For a 2-d Gauss-Markov source with p — 0.9, 
the average distortion cost of the DA-designed MDVQ (with 
R\ = Ä2 = l.öbpss, Ai = A2 = 0.01) was 0.7dB lower than 
the best of twenty different MDVQs designed by the Lloyd ap- 
proach with random initializations. Note that the initializa- 
tions suggested in [1] do not extend to vectors. These initial- 
izations can be used in the design of scalar quantizers. While 
the heuristic initializations are better than random initializa- 
tions, the DA-designed quantizers outperformed both. For 
scalar quantizers of a Gaussian source, the average distortion 
cost for DA-designed MDSQs of Ri = R2 = 3bpss, Ai = 0.006, 
A2 = 0.012 and Ri = 3bpss, R2 = 2bpss, Ai = A2 = 0.01 were 
respectively 0.5dB and l.OdB lower than the best of the MD- 
SQs designed by the algorithm of [1], with both random and 
heuristic initializations. 

In [2], El Gamal and Cover are credited with this weak 
characterization of a multiple description achievable region: 
rate-distortion quintuples (Ri, R2, Do, Di, D2) are achievable 
if there exist random variables I\ and I2 jointly distributed 
with the source X such that Rm > I(X;Im), m = 1,2, 
and Ri + R2 > J(X; Ji,J2) + J(Ii;h) and side and central 
reproductions of the forms Xm = gm{Im), m = 1,2, and 
X° = 9o{h,h) such that £{d(X,X')} < Dt, t = 0,1,2. 
The DA algorithm for MDVQ design can be shown to imitate 
parametric determination of the convex hull of this achievable 
region. 
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Abstract — We propose encoding and decoding 
methods based on linear codes, to achieve all the in- 
tegral points in the rate region of Slepian-Wolf [1] 
problem. The extension of these concepts to the con- 
struction of Euclidean-space codes is also studied and 
analyzed for the case of trellis codes. 

I. INTRODUCTION 

Distributed source coding deals with the efficient encoding 
of correlated sources that do not communicate with one an- 
other. This was first introduced in [1] where it was shown that 
two correlated memoryless sources, X and Y can be separately 
compressed at a total rate approaching the joint entropy. In 
this paper we focus on the sensor network system considered 
by Flynn and Gray [2] as shown in Fig. 1. Here we have a 
source X which is observed in a corrupted form by a number of 
sensors. Let Yi denote the signals captured by the ith sensor. 
Each sensor encodes its message into bits to be transmitted to 
a receiver to get the optimal reconstruction of the signal X. 
Here we consider symmetric encoding of correlated sources in 
a bandwidth-restricted system. 

II. SYMMETRIC ENCODING OF BINARY SOURCES 

We consider an example for illustration of the basic con- 
cepts. Consider a pair2 of correlated discrete memoryless 
sources X and Y such that X, Y € {0,1}" and dH(X, Y) < t 
where (1H(-, ■) is the Hamming distance. According to [1], X 
and Y can be separately compressed at rate pairs Ri, R2 given 
by 

Ri,R2>n-k,R1+R2>2n-k, (1) 

where k meets the sphere packing bound. Let us consider a 
system based on (n, k, 2t + 1) linear binary code, C, to achieve 
these points on the rate region. 
Theorem: C achieves all the integral points on (1) 
Proof: Let G be the generator matrix of C. Let Gl and G2 
be n — Äi x n and n — R2 x n matrices respectively, obtained 
by a partition of k rows of G. Let C\ and C2 be the linear 
codes associated with Gl and G2 respectively. The encoders 
associated with X and Y send the index of the coset of these 
subcodes containing their outcome. Decoding involves finding 
a pair of codewords from the given cosets of C\ and C2 which 
are closest in distance. Q.E.D. 

III. LOSSY ENCODING USING TRELLIS CODES: 

Let the random processes Y\, Y2 received by the sensors are 
given by Y, = X + Ni for i = 1,2, where N, are independent of 
X. We need to encode Y\ and Y2 separately to be transmitted 

to the receiver to get an optimal reconstruction of X. First 
we quantize them separately using the quantizers designed for 
their marginal distributions. We then exploit the correlation 
between Y\ and Y2 (using algebraic codes) to reduce the rate 
of transmission. We encode the observations in blocks while 
minimizing the mean squared error. 

Let us consider a scalar quantizer with 8 levels. Suppose 
R\ = R2 = 2 bits/source sample. Let V be the set of recon- 
struction levels of the scalar quantizer. We partition Vn into 
22" cosets each containing 2" code vectors. The encoder-1 and 
encoder-2 (of Yi and Y2 respectively) partition Vn in two dif- 
ferent ways. Consider the 4-state Ungerboeck trellis built on 
V with a 2/3 convolutional encoder with the generator matrix 
polynomial G(t). We form Gl(t) and G2(t) by partitioning 
the rows of G(t). Let C\ and C2 be the codes associated with 
Gl(t) and G2(t) respectively. Each of the encoders, sends the 
index of the coset of these subcodes containing the observed 
quantized output, thus spending 2 bits/source sample. We 
obtain the most probable sequence-pair using the Viterbi al- 
gorithm in the tensor product trellis. It can be shown that the 
decoding complexity is the same as that of decoding a code- 
word in the underlying trellis code. 
Distance Properties:   Let us denote the ith coset of Cj 
as CJ(J') for i € {1,2 22n} and j = 1,2.   For any coset 
pairs (i,j), define: a(i,j)= minimum of distances dc(cl,c2) 
between any two codewords (cl,c2) € (Ci{i), C2U)) such 
that 3 at least one pair (c3, c4) 7^ (cl,c_2) with de(cl,c2) > 
<2<=(c3, c4), (c3, c4) € Ci(i), C2(j)). We define the correlation 
distance, dc as follows: 

dc = 
minimum 

i,i€{l,2,...,22"} {«(»'. J)} (2) 

Theorem: For all the trellis codes dc > =X!^JL. 

Observation 

Rat« Rj 
ENCODER 

DECODER 

1 

Rat« Ra *» 
2 

^his work was supported in part by DARPA Grant F29601-99- 
1-0169 and NSF (CAREER) Grant MIP 97-03181. 

Extension to more than 2 sources is straightforward 

Figure 1: Sensor network communication system: Encoders 
observe corrupted version of the source X, and transmit their 
information to the decoder to get the best reconstruction of 
X. The encoders do not communicate with each other. 
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Abstract — It is known that liminfn_>00((2n + l)/2 - 
0(C2n+i)) = 0 and that the lim sup of this difference is 
at most 1/4, where 0(G) is the Shannon capacity of 
the graph G. In this paper we prove that the above 
lim sup is at most 1/6 and conjecture that the limit 
itself exists and equals 0. We show that the lim sup 
is small by constructing large independent sets in the 
third power of C2n+i- 

I. SHANNON CAPACITY 

The zero error capacity of a discrete noisy channel C was 
invented by Shannon [5]. A channel consists of a finite set 
X of possible input letters and for each x £ X a subset Yx 

of a (not necessarily finite) output set Y. Here Yx is the set 
of possible outputs of the channel on input x. Clearly, if the 
decoder receives an output y G YX1 C\ YX2 where xi / X2 £ X 
then the decoder cannot be certain of the input letter, i.e., it 
will make an error in decoding with a certain probability. On 
the other hand, if for x # x' £ X we have Yx n Yxr = III, the 
decoder will be able to determine the exact input letter: it is 
the unique x £ X for which the output y is contained in Yx. 

In order to determine the maximum number of letters 
that can be transmitted through the channel without the 
possibility of an error, Shannon associated a (characteristic) 
graph G = G(C) to the channel C as follows. The vertices 
V(G) of the graph G are labeled by the possible input let- 
ters (|V(G)| = \X\), and two vertices Xi, X2 are adjacent iff 
YX1 n YX2 / 0. Clearly, the labels of an independent set can be 
transmitted without an error. Therefore, the number of let- 
ters that can be transmitted by C without an error is exactly 
the independence number a(G). 

If the sender transmitted k letters, say, xi,... ,xjt, i.e., the 
channel has been used k times, then the output of the channel 
will also contain k symbols yi,... ,yk,yt £ YXi. This situation 
can be considered as a single use of the channel Ck, which has 
input set Xk, output set Yk and the set of possible outputs 
YX1 x • • • x YXk on input xi,..., x*,. The kth power Gk of a 
graph G is defined as follows. The vertex set of Gk is V(Gk) = 
V(G)k, and two vertices (xi,X2,... ,Xk) and (x'^x^,... ,x'k) 
are adjacent iff for all 1 < i < k either x, = x\ or Xi and x\ are 
adjacent in G. It is easy to see that the number of sequences 
of length k that can be transmitted without an error is the 
independence number of the kth power of G(C). 

The Shannon capacity of C is defined as 

, i/fc 
G(G) = sup (a(G(C)k)) '   = lim  (a(G(C)k)) 

Note that the capacity gives a measure of the optimal perfo- 
mance of the channel when transmitting long sequences. This 

lrThe second author was partially supported by OTKA Grants 
T 030059 and T 29074, FKFP 0607/1999. 

2The third author was partially supported by NSF grant DMS- 
9970622. 

limit, by super-multiplicativity exists and - since (a(G))k < 
ct(Gk) for an arbitrary graph G - it is always at least a(G). 
It is worth of mentioning, that Shannon originally [5] defined 
the capacity as log 0 (we use the definition and notation of 
Loväsz [4]). Also notice, that 6 depends on the graph G(C) 
only, and every graph is the characteristic graph of some chan- 
nel. Therefore, we consider the Shannon capacity of graphs: 

.i/fc 
9(G) = sup (a(Gk)) '   = lim (a(Gk)) 

k k—>oo x 

Since Shannon's invention of the capacity [5] in 1956, it has 
been one of the central topics in both information theory and 
extremal graph theory. For a more detailed overview of this 
fascinating topic we refer the reader to the excellent surveys 
of Alon [1] and Gargano, Körner, Vaccaro [2]. 

The aim of this paper is to investigate the Shannon capacity 
of large odd cycles C2n+i- It follows from a result of Hales [3] 
that for an infinite subsequence n*,, k = 1,2,..., of positive 
integers the difference n* + 1/2 — ©(C2n/t+i) tends to zero as 
k tends to infinity (note a(C2n+i) = n), i.e., 

Theorem 1.1 (Hales) 

liminf(ra + 1/2 - 0(G2„+i)) = 0. 
n—>oo 

Hales also showed that the lim sup of this difference is at most 
1/4. Modifying Hales linear algebraic construction, we show 
the difference cannot be larger then 1/6 as n tends to infinity 

Theorem 1.2 

limsup(n + 1/2 - 0(G2„+i)) < 1/6. 
n—>oo 

We strongly believe that the limit as n tends to infinity of the 
difference n + 1/2 — 0(G2n+i) exists and is equal to 0. 
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Abstract — Two-dimensional run length limited codes 
satisfying the square constraint are considered. Let S de- 
note a square of area A(S) and let an be a positive sequence 
satisfying limn-too a„ = oo. It is shown that the capacity Cn 

corresponding to the set Sn =Q„SnZ2 asymptotically sat- 
isfies 

a2 4 
lim  Cn ■ -^ = -J-   . 

n-Kx> log2 Q„        A(S) 

I. INTRODUCTION 

One-dimensional run length constraints are important in 
magnetic recording applications and two-dimensional run 
length constraints have recently gained interest due to optical 
recording applications [1, 2, 3]. A two-dimensional run length 
constraint requires that a binary labeling of the integer lattice 
Z2 have a specified minimum and maximum number of ze- 
ros between consecutive ones both horizontally and vertically. 
Additional constraints, such as run length constraints along 
diagonals can also be imposed in order to more accurately 
model optical recording devices. In this paper we examine the 
asymptotic behavior of the "square" constraint. The square 
constraint imposes the condition that for every "one" stored 
in the plane, it must be surrounded by a square of zeros of 
some given side length. As the side length of the square grows 
to infinity the amount of information that can be stored per 
unit area shrinks to zero. In other words the capacity of the 
constraint falls to zero. In this paper we determined the exact 
rate that the capacity of the square constraint falls to zero as 
a function of the area of the constraint. 

II. DEFINITIONS AND RESULTS 

Let R2 denote the two-dimensional plane, and Z2 the two- 
dimensional integer lattice (i.e. Z2 = {(xi,X2) : xi,X2 € Z}). 

Suppose that V C Z2, such that (0,0) € V. The code 
/ : Z2 —)■ {0,1} satisfies the constraint V (or, / defines a valid 
labeling of Z2 with respect to V), if for every x € Z2 

/(x) = 1 => /(y) = 0 forVySV + x,   y#x . (1) 

A subset of Z2 of the form Tl[lfb] = {(x,y) 6 Z2 : a < 

x < c, b < y < d} for some integers a,b,c,d, will be called 

a rectangle. A binary labeling of the rectangle 7v(^'6;is valid 
with respect to a given constraint V, if the labeling can be 
extended to a labeling of Z2 satisfying the constraint V. Let 
Nv(m,n) denote the number of valid labelings of the rectangle 

^■(oo) with respect to V. The capacity Cv corresponding to 

a set V C Z2 including the origin is defined as 

Cy =    lim 
m,n—+c 

log2 Nv(m — l,n — 1) 

The proof in [1] can be generalized to show that the above 
limit exists. 

III. THE ASYMPTOTIC CAPACITY OF THE SQUARE 
CONSTRAINT 

In this section ScR2 will denote a square centered at the 
origin, whose sides are parallel to the coordinate axes. Let 5 = 
SnZ2, and let a„ be a sequence of positive real numbers, such 
that limn-too <*n = oo. Consider the sequence of capacities C„ 
corresponding to the constraints 5„ = ct„SnZ2, as n -^ oo. In 
the main theorem of this section we determine the asymptotic 
rate that C„ goes to zero as n —> oo. 

Lemma 1 Let Cn denote the capacity corresponding to the 
constraint <S„.   Write S„ = 72v_'d _d) for some integer d, and 

consider the set Sn = ^(o'or ^or every positive integer n, Cn 

satisfies the inequality 

Cn< 
log2(A(5„) + l) 

A(Sn) 

where A(Sn) denotes the number of lattice points in 5„. 

Lemma 2 Let Cn denote the capacity corresponding to the 
constraint <Sn.   Write S„ = 7£;_'d _« for some integer d, and 

consider the set <S„ = ftL'J. For We > 0, V7 € Z+ there exists 
N, such that for Vn > AT,' 

Cn> 
■+l) 

log2 A(S„)) 

A(Sn) 
(2) 

Theorem 1  Let Cn denote the capacity corresponding to the 
constraint <S„ = anS l~l Z2. Then, 

hm Cn ■ -. 5" —   i/m n-xx) log2 a„       A(S) 
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Abstract — Retro-information is possible in non- 
unitary universe. We give an estimate of the capacity 
of retro-information channels in parallel. The result is 
significantly different from classical channel capacity. 

I. INTRODUCTION 

The word retro-information denotes the hypothetical pos- 
sibility to transfer information backward in time. How retro- 
information could be made possible is discussed in [2, 3] and is 
the extension of quantum information theory [1] over unitarity 
singularities. In this case the measure operators are not uni- 
tary. In short, physical evidence of non-unitarity could come 
from the following observations: 

1. The unification of Quantum Theory with General Rel- 
ativity poses problems to physicists and cosmologists. 

2. A non-unifiable universe necessarily carries symmetry 
violations which imply unitarity exceptions. 

In this paper we assume that retro-information is possible and 
we want to establish quantitative results on the capacity of 
several retro-information channels in parallel when they are 
submitted to a forward coupling: i.e. when the result of the 
transmission is made available to the transmitter via a reli- 
able forward channel before the transmission occurs. To our 
knowledge this kind of configuration in communication theory 
is completely new and innovative. 

II. COMPUTATION OF CHANNEL CAPACITIES 

We consider a V x M retro-information channel and denote 
by V the wave function associated to this channel. When i 
denotes a V-ary output symbol and j a M-ary setting sym- 
bol, we denote A] the subset of quantum measurements A\ 
which provide output symbol j under setting i. We model 
the channel via its transfer operator T, i.e the V x M matrix 
whose (i,j) coefficient is p(A)) = fAi \ip\2. 

3 

In unitary universes, for all j: the p(A)ys sum to one, and 
we have a classical information transfer probability operator. 
In the following we do not assume that the matrix T is unitary, 
i.e. (1,..., 1) may not be a left eigenvector. 

We now consider n i.i.d retro-information channels in paral- 
lel. The transfer operator associated to the n channels is T®n. 
Let Zn = z\... z„ be the M-ary codeword of the setting sym- 
bols of the channels and Yn =yi-..yn the V-ary codeword of 
their output symbols. Denoting A(Yn, Z„) = A%\ x • • • x A\^ 
we have p(A(Yn,Z„)) = p(Ay

z\) x • • • x p(j4ft). 
Let X„ = x\... x„ be a V-ary codeword to be send via the 

channels. In absence of forward coupling, the setting Zn is 
only a function of Xn: Zn = Zn (Xn) and 

P(Yn\Xn) = 
p(A(Yn,Zn(Xn))) 

ZY,p(A(Y>,Zn(Xn))) 

In presence of Forward Coupling Function (FCF), Zn is a 
function of both X„ and Yn: Zn = Zn(Xn,Yn) and 

PF(Yn\Xn) = 
p(A(Yn,Zn(Xn,Yn))) 

ZY.p(MY£,zn(Xn,YA))) (2) 

Theorem 1   There exists a set of FCF which rises the capac- 
ity of the n V-ary channels in parallel to nCF where 

C    =min{l,logv(     ' t   } 
2-jimmiP{A)) 

(3) 

Remark: This new capacity is much greater than the clas- 
sical capacity nC without FCF. Figure 1 shows both C and CF 

P       1-P 
1-p       p 

p> \. In this case we have C = l+plog2p+(l—p)log2(l—p), 
while CF = min{l,log2 ^-}. 

in the binary symetric case where T : with 

^.       UP-5^   °-6   ,     °-7, P   °-8. ■     9-?      , AF 
Figure 1: Retro-channel capacities G and G versus p. 

(1) 

III. CONCLUSION 

We have presented a new information transfer configuration 
in information theory based on extrapolated physical assump- 
tions. Retro-information a priori is a logical challenge (even 
when restricted to short space-time lap), however it can be 
framed in a consistent axiomatic which can take into account 
paradoxical effects due to for ward, coupling. The unexpected 
results about channel capacities contributes to make retro- 
information a very promising area of investigation. 
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Abstract — The determination of the capacity of a 
binary Finite State Channel with memory is in general 
a very difficult task. In this paper we present a new 
systematic method which amounts to computing the 
entropy of the channel error sequence represented as 
the output of a stochastic finite state automaton with 
state cardinality at most twice the one of the original 
channel. Each state of the original channel yields a 
maximum of two states in the automaton state tran- 
sition diagram according to whether the preceeding 
error symbol was a one or a zero. The error class 
E is defined as the class of all states terminating on 
an error while the remaining class E contains states 
with transitions corresponding to no error. Conse- 
quently any path along states in E represents a solid 
burst of errors and reciprocally all the solid bursts of 
errors can only result from transitions between states 
in E and the same property applies to errorless events 
which can only result from transitions between states 
in E. If the channel has K states, the final result is 
obtained by computing at most 2K series whose ele- 
ments are the coefficients of the generating functions 
of the runs of 0's after an error terminating in any of 
the states of E and of the runs of l's after an errorless 
event terminating in any of the states of E. 

I. SUMMARY 

In this paper we address the problem of computing the capac- 
ity of a class of finite state binary transmisssion channels. Our 
basic model considers a finite state binary channel with inputs 
{xn} and outputs {yn} taking values on {0,1} and such that 

yn  — 2-n (1) 

where zn is the error with values on {0,1} assumed to be in- 
dependent of the input. The generation of the error process 
{zn} depends on the current state sn £ {0,1,..., A" — 1} ac- 
cording to the law Pr{ zn = 1| s„ = k} = 1 — pu and the state 
process is Markov according to a given transition probabilities 
matrix Q = [Pr{ sn = j\ sn-i = i}} i,j € {0,1,..., AT - 1}. 
Such a channel model might be adequate to represent a fading 
channel for which the error rate increases as the transmitted 
signal fades out. It constitutes a generalization of the classical 
Gilbert-Elliott channel which has K = 2 states. Results due 
to Gilbert [1] are known for this channel in the case where 
p0 = l,p! ^ 1 and more generally by using a different ap- 
proach with non zero probability of error in both states [2]. 

'This work was supported by NSERC Grant OGP0001701. 

In contrast, our proposed method of computation of the ca- 
pacity is valid for any K > 2 and extends in a systematic 
way the original approach of Gilbert based on the analysis of 
bursts of consecutive zeros occuring after an error. It turns 
out however that in general statistics relating to the bursts of 
ones are also required. If the channel has K states, the final 
result is obtained by computing at most 2K series whose el- 
ements are the coefficients of the generating functions of the 
runs of 0's after an error terminating in any of the states of 
E and of the runs of l's after an errorless event terminating 
in any of the states of E. Similarly to the case of the well 
known Gilbert channel, an alternate more elegant sum of se- 
ries which in general converge slower can be used based on 
the coefficients of other generating functions representing the 
probabilities of the runs of consecutive errors between error- 
less events starting in any state of E and the error free runs 
between errors starting from any state in E. 
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Abstract — We introduce a new approach for the 
study of weight distributions of cosets of the Reed- 
Muller code of order 1. We next examine the im- 
pact of our results when some cryptographic criteria 
of Boolean functions are considered. 

Our main purpose is to study the nonlinearity, and other 
cryptographic criteria of Boolean functions throughout the 
properties of weight distributions of cosets of the Reed-Muller 
code of order 1 - denoted by R(l, m). Indeed, it appears in re- 
cent papers that the knowledge of the whole Fourier-spectrum 
of a given function, and not only its maximal value, is of great 
interest from a theoretical point of view as well as for applica- 
tions [1, 4]. We begin by giving a general result, based on the 
method introduced by Kasami in [5] by using Pless identities. 

Theorem 1 Let m be a positive integer, m > 3. Consider 
any binary linear code C of length n ^ 2™, dimension k = 
m + 2 and minimum distance 8. Let us denote by aw (resp. 
bw) the number of codewords of weight w in C (resp. C'1) and 
by X(A) the number 

2m-l_! 

1(A) =    J2   (w-2m-1)2((w-2m-1)2-X2)aw. 

Assume that C contains the all-one vector 1 and that C± is 
such that 6i = 62 = 63 = 0. Then for any positive integer 
A<2m_1, we have 

1(A) = 2m (364 - 2m~2 ((2"1-1 - l)2 + (A2 - 2"1-1))) 

If 8 > 2m_1 — A then T{\) < 0 which can be expressed as 

bi<\ 2m~2 ((2m_1 - l)2 - 2m-1 + A2) . (1) 

Equality holds in (1) if and only if 8 = 2m  1 — X and if the 
weight distribution of C is: ao = a2"> = 1 and 

w 8 2m-l 2m -8 

aw 
2äm-2 rim+2             2im-1             0 2!im-U 

(«_2m-l)2 (*-2"—I)*        * («-2—1)2 

Since 64 ^ 0, the minimum distance of C± is exactly 4. 

The codes (x + R(l,m)) U R(l,m), where x 0 R(l,m), 
satisfy the hypothesis of Theorem 1. A coset x + R(l,m) is 
said to be almost optimal if its minimum weight is greater 
than or equal to w0, where w0 = 2m_1 - 2(m~l)/2 for odd m, 
and wo = 2m~1 — 2m^2 for even m. It is called three-valued 
almost optimal if it has three weights only, 2m_1 and ±too - 
its weight distribution is the one given in Theorem 1. 

Corollary 1  Ifx + R(l,m) is almost optimal, then 
• if mis odd, then 64 < 3 2m~2 (2m~1 - l)2; 

• ifm is even, then 64 < \ (2m_2 (2™-1 - l)2 + 22m~3). 
In both cases, equality holds if and only if x + R(l,m) is 

three-valued almost optimal. 

Let / be any Boolean function with m variables.    The 
Fourier transform of / is 

F{f) =  Y^ (-1)/W = 2m - 2wt{Qf) . 

The set {±T(f+tpa) \ a € FJ1} is called the Fourier-spectrum 
of /, where <pa denotes any linear function. 

The nonlinearity of / is equal to 2m~1 — (£(/)/2), where 

C(f) ■ max Hf + <Pa) 

Denote by fi/ the codeword composed of the values f(x), x S 
F™. We will say that / is almost optimal (or three-valued 
almost optimal) when the coset ft/ + R(l,m) satisfies this 
property. Let Daf be the derivative of / with direction a: 
Daf(x) = f(x) + f(a + x). The main indicator related to the 
global avalanche criterion is 

w) = E ^2(^/)- 
oeF™ 

We will examine the connections between the nonlinearity and 
the global avalanche criterion. We first show that if / is almost 
optimal then V(/) < 22m+1 for odd m and V(f) < 22m+2 for 
even m - with equality if and only if / is three-valued almost 
optimal. 

We next study the restrictions of a Boolean function / to 
each coset of any linear subspace of F™. We notably establish 
a relation between the Fourier spectrum of / and the Fourier 
spectra of its restrictions. This leads us to obtain some char- 
acterizations of bent functions, of three-valued almost optimal 
functions and of almost optimal functions which have a linear 
structure. We give a full explanation of links between bent 
functions and three-valued almost optimal functions. 
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Abstract — We propose a construction of resilient 
functions with n binary input variables and m binary 
output variables. In certain cases, the nonlinearity of 
these functions is the highest nonlinearity known. 

I. INTRODUCTION 

An n-input m-output function, F(xi,..., xn) = (/i,..., fm), 
is a set of m Boolean functions, /i,..., fm, where each /; : 
F2 1-4 F2. One of the many applications of these functions 
may be the realization of S-boxes in DES-like block ciphers. 
Different properties and criteria for such functions have been 
studied, see e.g. [3]. Here, we consider two criteria, namely 
nonlinearity and resiliency. 

The previous work on nonlinear resilient functions is mostly 
based on the two constructions presented in [2] and [4]. As 
proved in [2], there is a tradeoff between the nonlinearity and 
resiliency when the two constructions are compared. The con- 
struction in [2] gives higher nonlinearity, while in [4] a larger 
resiliency could be obtained for the same n and ra- 

il. NEW CONSTRUCTION 

The construction presented here is an extension of the de- 
sign of nonlinear Boolean functions presented in [1]. It yields 
highly nonlinear resilient functions for any given input triple 
(n,m,t), where t is the order of resiliency. A well-known re- 
sult states that a function F(xi,... ,xn) = (/i,.-,/m) is 
an (n, m, t)-resilient function if and only if all nonzero lin- 
ear combinations of f\,..., fm are (n, 1, t)-resilient functions. 
Furthermore, the nonlinearity of F(x) = (/i(x),...,/m(x)), 
denoted by NF , is defined as the minimum nonlinearity of all 
nonzero linear combinations of the component functions of F. 

Theorem 1 Let n, m, t and d be four positive integers with 
n > 4,1 <t < n — 3,1 < d < n — t,m < n — d and S„,m,t,d = 

Note, that each component function Ay x is a concatena- 
tion of 2d distinct t-resilient linear functions on F^_d. Hence, 
it is convenient to introduce a 2d x m matrix Av, having as 
each entry an (n — d, 1, t)-resilient Boolean function defined 
uniquely by a vector Ayi,j) e f^~d s.t. wt{Ay

i,j)) > t + 1. 
Due to the first two parts of Theorem 1 each row of Av must 
span an [n — d, m, t + 1] linear code. 

The parameter s* is the number of repetitions of any vector 
Ay in any nonzero linear combination of Ay's columns. It 
can be proved that the nonlinearity is maximized is s* = 1, 
which means that each vector may only appear once in any 
nonzero linear combination of Ay 's columns. 

According to the third part of Theorem 1 the nonlinearity 
is maximized when d is maximized, where d must satisfy a 
trivial upper bound (nt~f) + (nt~

d) +■■■ + (^d) > 2d. We 
can show that given an [n — d, m,t + 1] linear code, we are 
able to fill 2m — 1 out of 2d rows of Ay without violating the 
restrictions given by Theorem 1. Thus, given [2d/(2m — 1)] 
nonintersecting [n — d, m, t +1] linear codes the matrix Ay can 
be constructed. 

The results presented here are obtained using computer 
search for nonintersecting linear codes. A comparison with 
the construction described in [2] is presented in Table 1 in the 
case of 2-resilient functions. Such a favorable comparison can 
be extended to any order of resiliency if the number of input 
variables n is not too large, say for n < 25. 

NF n = = 9 n = 10 n = 11 n = 12 

m Our [2] Our [2] Our [2] Our [2] 
2 240 192 480 384 992 896 1984 1792 
3 192 - 448 - 960 - 1984 1792 
4 128 - 384 - 896 - 1920 - 
5 0 - 256 - 768 - 1792 - 
6 0 - 0 - 512 - 1536 - 

{Av
l> 6 ETd,i = l,...,m I wt{A(y>) > t+l,y 6 F?}-   For 

,_ c , .   *        1,   ,. jrd 1 v>m      /i(')       11      J        Table 1: Comparison on NF of 2-resilient functions any a € Sn,m,t,d, let saiC = \{y € F5 | J_i=1 CiAy - a}\ and F e 

s* = maXcgFg1 max0 s*c.  We now define a function F : F2 ►-► 
F? by 

F{y,x) = {A^x,Ay^x,. 1(2). l(m) 
x), 

where y = (yi,-..,yd) € ff.a; = (xi,... ,xn-a) e F£ d- Then 
the following holds: 

1. F is uniformly distributed if$2T=\ c'Ay   / 0,  for any 

2. F is t-resilient if for any a € F£_d | 0 < wt(a) < t and 

c e ¥?, c ^ 0, it holds that J2T=i c^° # a- 

3. NF = 2n_1 -s*2n_d_1. 
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Abstract — It is proved by means of Ramsey-like 
technique that for each positive integer k there exists 
a minimal nonnegative integer p'(k) that any n — k th 
order correlation-immune function of n binary input 
variables, / ^ const , depends nonlinearly on at most 
p'(k) inputs. It is proved that the number of n — k th 
order correlation-immune functions of n binary input 
variables, k = const , n —» oo, is polynomial. For 
k = 1,2,3 the exact formulas for the numbers of such 
functions are obtained. 

We consider memoryless Boolean functions /: &F(2)n —> 
GF{2), x -> f(x). The number of 'l's in the table of the 
Boolean function / is given by its Hamming weight Wf. A 
memoryless function / is said to be correlation-immune of 
order m, with 1 < m < n, if the output of / and any m 
input variables are statistically independent. This concept 
was introduced by Siegenthaler [3]. In an equivalent non- 
probabilistic formulation (see [4]) the Boolean function / is 
called correlation-immune of order m if Wf1 = W/2 for any 
two its (n — m)-inputs subfunctions /i and /j. 

In [1] it was pointed out that correlation-immune function 
is a particular case of an orthogonal array (OA), namely, mth 
order correlation-immune function of n inputs with weigth Wf 
corresponds to simple (Wj,n, 2,m)-OA. Note that for maxi- 
mal m such that a function is correlation-immune of order m 
the value m + 1 was called a dual distance of a code (a code 
is a characteristic set of the function) by Delsarte [2] and de- 
clared as one of " four fundamental parameters of a code". Of 
course, Delsarte did not use the words "correlation-immune". 

In this work we consider (n—fc)th order correlation-immune 
functions of n inputs in the case k = const , n —» oo, 
i. e. higher order correlation-immune functions. Further, 
(n — fc)th order correlation-immune functions of n inputs are 
called ^-functions. Also we assume that if n < k then any 
Boolean function of n inputs is fc-function. 

The polynomial representation of-/ is called an algebraic 
normal form (ANF) of the function. The degree of /, de- 
noted by deg(/), is defined as the number of variables in 
the longest term in ANF of /. The terms of length 1 are 
called linear terms. We say that the Boolean function f(xi, 
X2-I- ■ ■ ,Xi-i, Xi, Xi+i,... ,xn) depends on the input Xi linearly 
if the variable Xi presents in the ANF of function / only as 
a linear term x,. In all another cases we say that the func- 
tion f(xi,X2, ■ ■ ■ ,Xi-i,Xi,Xi+i,... ,x„) depends on the input 
Xi nonlinearly (including the case then the input n is fictitious 
for the function f(xi, X2,..., Xj-i, Xi, Xi+i,..., xn)). 

Theorem 1.    For each positive integer k there exists a 
minimal nonnegative integer p'(k) that any k-function f,f^ 
const , depends nonlinearly on at mostp'(k) inputs. 

A Boolean function / is called balanced if Wf = Wj. 
We say that fc-function f(x\,X2, ■ ■ ■ ,xm) is a repro- 

ductive fe-function if the function g(xi,X2, ■ ■ ■ ,xm,y) = 
f(x\,X2,---,xm) (By is fc-function. 

Remark, k-function f{x\,X2, ■ ■ ■ ,xm) is a reproductive k- 
function iff it is true at least one of two following conditions: 

a) m < k; b) the function f is balanced. 
Corollary from Theorem 1. For each positive integer 

k there exists a minimal nonnegative integer p(k) that any 
reproductive k-function f depends nonlinearly on at most p(k) 
inputs. 

It is obviously that p(k) < p'(k). Below we show that 
PW ^ P'(*0 at least for k = 2,3. 

Theorem 2. For n > p'{k) the number N(n,n — k) of 
(n — k)th order correlation-immune functions of n inputs is 
expressed by the following formula. 

N{n,n-k) = Y^A(k,i) (nJ +2, 
i=0 

where A(k,i) is the number of i-inputs reproductive k- 
functions that depend on all inputs x\, X2, ■ ■ ■, Xi nonlinearly. 

Corollary from Theorem 2. The asymptotics of the 
number N(n, n — k) of n — k th order correlation-immune 
functions of n inputs is expressed by the following formula, 
k =   const , n —> oo. 

A(k,p(k))   pW 

p(k)\     U      ■ 

p'(l) = 0, p(2) = 1, p'(2) = 3, 

N(n,n- k) 

Theorem 3.   p(l) 
p(3) = 4, p'(3) = 6; 

N{n, n - 1) = 4 
N(n, n - 2) = 2n + 4 
N(n, n - 3) = n4 - (2/3)n3 + (5/3)n + 4 

for n > 0, 
for n > 3, 
for n > 6. 

Theorem 4. p(k) > 3 • 2fc 2. 
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Abstract — By using the action of the FROBENIUS 

group it is possible to decode far beyond the error- 
correcting capability of GOPPA codes provided the 
error-vector has a definite structure. In particular 
cases the generation of these patterns can be easily de- 
scribed and gives a number of decodable patterns nu- 
merous enough to avoid enumeration. We show that 
it is possible to use this property to strengthen the 
McELiECE-type cryptosystems against attacks based 
on random decoding. 

I. INTRODUCTION 

We present a method to decode error-patterns of large 
weight in GOPPA codes by using a subgroup of the automor- 
phism group of the GOPPA codes. Namely, we use the group 
generated by the FROBENIUS automorphism. By its action on 
the large weight error-patterns one obtains error-patterns of 
weight less than the error-correcting capability of the code. 

The efficiency of this method and the number of decodable 
patterns depend on the nature of the FROBENIUS group. In a 
well chosen case we show that it is possible to decode a large 
number of patterns with weight one and a half larger than the 
error-correcting capability of the code. These patterns being 
easily generated, they can be used to improve the work factor 
of the random decoding attack on the MCELIECE public-key 
cryptosystem without increasing the size of the public-key. 

II.   AUTOMORPHISM GROUP OF GOPPA CODES 

GOPPA codes are a subfamily of alternant codes generated 
by a polynomial g of degree t over a finite field GF(2m). The 
set L — (ai,... ,an) of elements in L that are not roots of 
g is denoted generating vector. The GOPPA code T(L,g) of 
length n = \L\ is the set of binary words a = (oQ1, ■ ■ • ,aa„) 
such that 

H. 0 

where H = (a}/g{aj)).=0"=1. 

Generally, the automorphism group of a GOPPA code is 
trivial. However, we showed that when the generating poly- 
nomial g has coefficients over a subfield GF(2S) of GF(2m), 
the automorphism group contains the group generated by the 
FROBENIUS automorphism a of GF(2m)/GF(2s). [2] 

III. TOWER DECODABLE PATTERNS 

Suppose one receives the word 

c —m + e 

where m is a word in T(L, g), g is taken over GF(2S) and e is an 
error-vector. If the weight of e is less than the error-correcting 

capability t of the code then one recovers m easily. Since the 
automorphism group of the code contains the group generated 
by the FROBENIUS automorphism a of GF(2Tn)/GF(2"), any 

linear combination YT=o ~' eiU)°"'(m) of the transformed of m 
through the FROBENIUS is in T(L, g) 

error pattern e becomes X)™/0
S 14" V 

The transform of the 

(e) and we say that 

Definition 1 e is tower decodable in T(L, g) if 

1.   There exists linear combinations indexed by u 

?{*) _ 
■m/s — 1 

= £ », ■'(e) 

of the cr%(e) such that the £'"' can be decoded in the 
GOPPA code T(L,g), 

2.  the knowledge of some of the £'"' enables the receiver 
to recover the error-pattern e with a certain probability. 

IV. APPLICATION TO MCELIECE CRYPTOSYSTEM 

We take the MCELIECE parameters [3] that is, the private 
key is a generating matrix of a GOPPA code r(L, g) where L 
is an indexation of GF(210) and g is irreducible over GF(210) 
of degree 50. The error-correcting capability of the code is 50. 
The public key is the scrambled private key. The best known 
work factor for the attack by random decoding is 264 [1]. 

In our scheme we take g over GF(22) C GF(210). Hence, 
the Frobenius group has cardinality 5. The public-key is the 
scrambled private key reordered according to the orbits of the 
Frobenius group. By randomly chosing a number of 25 orbits 
out of 204 and placing randomly 3 bits on every chosen or- 
bit we construct tower decodable patterns of weight 75. The 
number of such patterns is 2188. For the decoding, we need to 
decode at most two words. The size of the public-key is the 
same as in the original scheme whereas the work factor of the 
attack by random decoding becomes 290. 
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Abstract- A method for analyzing the error performance 
of the iterative threshold decoder using strict sense multi- 
orthogonal convolutional codes where the multiplicity order 
is larger or equal to the number of iterations is presented. 
This allows a tractable analysis, since all random variables 
are considered independent at each decoding step. The 
analysis provides a good prediction of the error probability 
convergence value of the iterative decoding process using 
strict sense doubly orthogonal convolutional codes. 

I.   INTRODUCTION 

A novel iterative threshold decoding procedure without 
interleaving has been introduced in [1]. This technique uses 
Convolutional Self Doubly Orthogonal Codes, CS02C. With 
these codes, the need for interleaving to obtain independent 
observables at each iteration is alleviated and hence the 
procedure does not require an interleaver, neither at the 
encoding nor at the decoding process. The double 
orthogonality property of the code may be defined either in 
the wide sense (CS02C-WS) or in the strict sense (CS02C- 
SS) [2]. The rate Vi codes CS02C-WS allow some repetitions 
of observables which produce correlated inputs at the second 
iteration. For the rate lA code CS02C-SS, all repetitions of 
observables are avoided by using a parallel structure of the 
encoder. The definition of CS02C-SS may also be extended 
to multiple orthogonality of order M where no repetition is 
possible over M consecutive iterations. Such codes are called 
Strict-Sense Convolutional Self Multi-Orthogonal Codes, 
CSO"C-SS. 

In this paper, we present a method for analyzing the error 
performance of the iterative threshold decoder using CSO"C- 
SS where M is larger than or equal to the number of 
iterations. 

II.   BIT ERROR PERFORMANCE FOR SINGLE 
DECODING ITERATION 

A threshold decoder produces at its output an approximated 
Maximum A Posteriori (MAP) value, X(i), for each 
information symbol M. to be decoded at time i. This MAP 
value corresponds to a summation of J parity-check 
equations \|/.(i), at time i, over the currently received 
information symbol yu(i), that is : 

Hi)=yu(i) + f,Vjd) (D 

The parity-check equations \|/.(i) are obtained using add- 
min operators as defined in [1]. This operator represents an 
approximation of the log-likelihood ratio (LLR) of the 
modulo-2 sum of binary random variables. Since CSOC is 
used, X(i) is a sum of independent random variables (RV) 
and the Probability Density Function (PDF) of X{i) is the 
convolution of the PDFs of each RV which belongs to the 
sum given by (1). Even though the RVs are not identically 
distributed, they are somewhat similar and hence their sum 
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tends to be gaussian. The average value A of X(i) is 
obtained as a sum of the means of all RVs. Similarly, its 

variance   a2   may  also  be expressed  as  a sum of the 

variances of all RVs yu(i) and \|//0 . Therefore, the bit error 
probability, Ph(E), may be approximated by : 

(2) 
Pb(

E) = exp ?, X-XJ 2a*  dX=^& fa) 

In order to evaluate (2), we have determined the PDF of 
the RV \\ij(i)   where all its N constituant RVs are gaussian 
distributed with mean m. and variance 07, /= 1, 2, N. 

Using (2) and considering a feedback threshold decoder, we 
have calculated Ph(E) for different CSOC. Comparisons 
between theoretical and simulation results show only a small 
discrepancy, thus confirming the validity of the approach. 

HI. EXTENTION TO ITERATIVE THRESHOLD DECODING 
WITHOUT INTERLEAVING 

The above analysis is extended to obtain Pb(E) for 
multiple iterations where the code used is CSO C-SS. 
Hence, all RVs .are considered independent at each decoding 
step. The main idea behind this approach is to apply 
recursively the method developed in Section II. We 
consider, for the current iteration w, that inputs provided by 
the previous iteration (m-1) are gaussian distributed with 

mean A,"""" and variance a2.(m - 1). Simulation results for 

rate Vi CS02C-SS codes having J parity-check equations 
coincide with those predicted using the theoretical analysis 
where rate lA CSOMC-SS codes with a value of J are used. In 
addition to validating the analyzing this also shows that only 
double orthogonality is in effect needed in order to obtain 
good error performance. The results also indicate that 
CSOMC-SS codes converge more quickly than CS02C-SS 
codes. 

IV. CONCLUSION 

We have presented a method for evaluating the bit error 
probability of iterative threshold decoding using CSOMC-SS. 
This method is based on the evaluation of the probability 
density function of the approximated MAP value obtained at 
the output of the threshold decoder. The multiple 
orthogonality is shown to be useful in the analysis of the 
performance of CS02C-SS codes. Furthermore, the results 
indicate that doubly orthogonal CS02C-SS codes may be 
sufficient to obtain a good error performance. 
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Abstract — New bandwidth efficient Type-I and 
Type-II hybrid-ARQ (HARQ) schemes using Turbo 
Trellis Coded Modulation (TTCM) are proposed. 
These schemes combine the power-efficiency of turbo 
codes with the bandwidth efficiency of Trellis Coded 
Modulation (TCM) to give efficient FEC/ARQ sys- 
tem designs. 

I. INTRODUCTION 

When data is transmitted in the form of packets, it is common 
to use Automatic Repeat reQuest (ARQ) or retransmission 
techniques in addition to Forward Error Correction (FEC) to 
improve the performance of a communication system. Sev- 
eral schemes have been suggested in which code combining 
retransmission schemes using low rate turbo codes have been 
shown to yield good performance [1]. Separately, sequence 
combining TCM schemes have been proposed for systems re- 
quiring higher throughputs [2]. In this paper, we present sev- 
eral TTCM schemes for use in ARQ systems, thereby com- 
bining the advantages of TCM with those of Turbo codes in 
a retransmission environment. 

II. SYSTEM DESCRIPTION 

We assume a selective repeat ARQ scheme with suitably large 
buffers at the transmitter and receiver. Furthermore, we as- 
sume an error free feedback channel over which positive (ACK) 
or negative (NACK) acknowledgements can be sent. The un- 
derlying TTCM scheme used here is the one proposed by 
Berrou et. al [3]. A coherent receiver model is assumed. The 
data sequence consists of information bits and a 16-bit CRC 
sequence. The sequence is fed into the Turbo encoder whose 
output is punctured to the desired rate and formatted into 
P-symbol data packets, U = («i, •■•up), where each symbol 
Ui consists of m bits (i.e., a signal constellation size of 2m). 

The following HARQ schemes using TTCM are considered. 
In Scheme 1, the same packet is retransmitted until the re- 
ceiver accepts it as error free or until a preset maximum al- 
lowed number of retransmission attempts is reached. The er- 
ror prone packets in the previous transmissions are discarded. 
In Scheme 2, also known as an average diversity combining 
scheme, copies of a retransmitted packet are combined into a 
single packet of the same blocksize by averaging the soft de- 
modulated values of each packet and then decoding. Scheme 3 
is an incremental redundancy scheme where received packets 
are concatenated to form noise-corrupted codewords from in- 
creasingly longer and lower rate codes. During the first trans- 
mission only the information bits are sent. Subsequently, the 
check digits are incrementally transmitted to adaptively meet 
the error performance requirements of the system. Finally, we 

assume the blocksize is the same for all transmissions in order 
to keep network overhead to a minimum. 

III. NUMERICAL RESULTS 

Scheme 1 and Scheme 2 employing TTCM use a rate 2/3 
Turbo code obtained by puncturing parity bits from a 4-state 
(7,5)ocfa( constituent recursive convolutional encoder along 
with Gray mapping to a 8PSK signal constellation. The turbo 
decoder uses the APP algorithm. After every iteration, the 
CRC is checked. Scheme 3 employing TTCM uses a mother 
turbo code of rate 1/3 mapped to an 8PSK constellation and 
higher rates are achieved by puncturing. Scheme 1 employing 
TCM uses a rate 2/3 convolutional encoder obtained by punc- 
turing a rate 1/2 16-state (23,35)0cto( convolutional encoder. 
The throughputs are plotted in Fig.l for an information block- 
size of 512 on an AWGN channel. 

1This work was supported by Motorola Inc., NASA grant NAG 
5-8355, NSF grant NCR95-22939, and NSF grant CCR-9996222. 

Fig. 1: Throughput comparison of various schemes 

IV. CONCLUSIONS 
In this paper, a new application of turbo codes to bandwidth 
efficient ARQ schemes is introduced. Since the combining 
schemes described here use a single decoder to decode any 
received packet or any combination of received packets, the 
implementation of these protocols requires only minor modi- 
fications to the transmitting and receiving systems of a stan- 
dard turbo code. 
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Abstract — The exponential convergence of the rela- 
tive burst weight Wb(Zi ... Z„)/n, i.e., the relative fre- 
quency of occurrence of bursts is established for a 
broad class of functionals {Zi} of finite Markov chains. 

I. INTRODUCTION 

Motivated by the intention to evaluate asymptotically 
multiple-burst-error-correcting codes on channels with mem- 
ory, the exponential convergence of the relative burst weight 
Wb{Z\ ... Zn)/n is established for a broad class of functionals 
{Zi} of finite Markov chains (MCs). Here, 6 is afixed but arbi- 
trary positive integer, and Wb(Z\ ...Zn) denotes the number 
of error bursts of length < 6 that appear in Z\ ... Zn, which 
is to be viewed as the additive noise sequence of a channel. 

The standard notation we employ includes N = {1,2,...}, 
A* which denotes the set of all finite-length sequences of sym- 
bols from .A, and ij, = xm ... x„. 

We treat a stochastic process {ZiJtgN such that Z, = f(Ui), 
i € N, for some homogeneous MC {J7;};eN and some function 
/ \U —» Z = f(U), where U is finite, \Z\ > 1, and Z contains 
the symbol 0. We adopt the definitions of primary notions 
(such as burst weight and swept coverings) in [1, Section 2]. 

II. RESULTS AND DERIVATION 

We parse the observed sequence Z\ Zi ... into phrases 

Tl  < T2  < € N, so that Zp , Z^+1,... belong to 

W = {0}U(Z\{0})Zb-\ 

where (Z \ {Q})Zh-1 C Z* denotes the set of {\Z\ - \)\Z\h~l 

phrases of length 6 whose leading symbols are not zero. Then, 
by Corollary 1 of Hamada [1, Section 2], the number of ap- 
pearances of phrases belonging to (Z\{0})Z _1 in the parsed 
sequence up to time n is the burst weight Wb(Z"), where we ig- 
nore the possible existence of the incomplete phrase in the last 
position, which may cause a negligible disagreement with the 
true burst weight. The point is that the above parsing substi- 
tutes for Procedure 1 of Hamada [1, Section 2] for the purpose 
of obtaining the swept covering for {i 6 {1,. .., n} : Zi ^ 0} 
whose size is Wt(Zi). 

Let l(n) denote the number of all phrases produced up 
to time n in the parsing of Z\Zn ■ ■ ■ ; let Qn(u') denote the 
number of occurrences of phrase w up to time n divided 
by l(n), n > 6. Then, Wb(Z?) ~ l{n){\ - Q„(0)} and 
n ~ /(n){Q„(0) + 6(1 - Q„(0))}. Therefore, approximately, 

Wi(ZD/n ~ Wn 
d^f Qn(0) 

Q„(0) + 6(l-Q„(0))" 
(1) 

■•Dept. of Information and Communication Engineering, Univer- 
sity of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan. 
E-mail: hamada8w-one.cas.uec.ac.jp. This work was supported 
by a JSPS Research Fellowship for Young Scientists. 

This indicates a one-to-one correspondence between (the ap- 
proximation of) Wb(Z?)/n and Q„(0), and hence, the behav- 
ior of Wb{Z?)/n hinges on that of Q„(0). 

Now consider the dissection or parsing of the underlying 
MC U1U2 ■ ■ ■ corresponding to that of Z\ Zi ...: 

where Ti < T2 < ... are the time instances at which the 
partitions of Z1Z2 ... occur. Clearly, V\, V2, ■■■ ■ all belong to 

V = /_1(0) U {U \ /_1(0))W6_1, 

where (W\/-1(0))W4_1 C W is the set of all phrases of length 
6 whose leading symbols do not belong to /-1(0). Then, 

Q„(0)=     Y,    Pn{v)> (2) 

„e/-i(o) 

where the relative frequencies Pn(f) of v 6 V axe defined sim- 
ilarly to Q„(w), w € W. Note that {VJt}*eN is a MC whose 
transition probabilities are 

P(v'\v) = P(v'\v),     v,v'eV, (3) 

where v denotes the last symbol of v, and P(x2Xs ... xn|xi) = 
Tli=i P(xi+i\xi) is determined by transition probabilities 
P(u'\u), u,u' 6 U, of the underlying MC {£7;}.eN for any 
x? e U", n e N, n > 2. Thus, from (1), (2), and the strong 
law of large numbers for MCs, we have 

Theorem 1 If the phrase-to-phrase MC {Vk} is irreducible, 
and n is the stationary distribution of {Vk}, then 

Wh{Zl 
((y)' 

I-- 
(n —> 00)    almost surely, 

y + b(l- y) 

where y = £„e/-i(0) Tl(v). 

This result can be strengthened by the method of types: 

Theorem 2 Let J C [0,1/6] be an interval whose end points 
are distinct. If {Vk} is irreducible, then 

Urn n_1 logFt{Wh(Z?)/n G J} = - inf £»(<E>||P)/L($), 
n—+00 4>€T 

where V = {$ : £ (E„€/-I(O) $(
V
)) 6 J, * = $}, * ond I 

denote the two marginals of a probability distribution $ on 
V x V as in [2, p. 790], the usage of D in [2, Eq. (12)] is 
also adopted, P is given in (3), and £($) = £)t>ev ^(i>) x 

{length of v). 

REFERENCES 

[1] M. Hamada, "Almost sure convergence of relative frequency 
of occurrence of burst errors on channels with memory," IE- 
ICE Trans. Fundamentals, vol. E82-A, no. 10, pp. 2022- 
2033, Oct. 1999. Available, for the time being, at 
http: //search. ieice. or. jp/1999/pdf/e82-a_10.2022 .pdf. 

[2] I. Csiszär, T. M. Cover, and B.-S. Choi, "Conditional limit the- 
orems under Markov conditioning," IEEE Trans. Information 
Theory, vol. IT-33, no. 6, pp. 788-801, Nov. 1987. 

0-7803-5857-0/00/$ 10.00 ©2000 IEEE. 
89- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Some low constant weight code designs for the parallel asynchronous 
communication scheme* 

Luca G. Tallini 
Dipartimento Di. Tec, Politecnico di Milano, 

20133 Milano, ITALY. E-mail: luca.tallini@polimi.it 

Abstract — In a constant weight tu code of length n, each 
code word has tu l's and n - tu O's. If the ratio tu/n is low, 
the code is referred to as a low constant weight (LCW) 
code. In this paper, some simple designs of LCW codes 
are presented. Further, the speed performance of these 
codes is derived and then it is shown that these codes have 
much better performance than the dual-rail codes, when 
used in asynchronous buses. 

Index terms: low weight codes, constant weight codes, un- 
ordered codes, proximity detecting codes, asynchronous communi- 
cation systems, low power systems. 

In [2], it has been shown that the lower the weight of the codes 
the faster is the implementation of an asynchronous bus. Hence, 
low weight codes find a direct application in the design of parallel 
asynchronous communication systems. Low weight codes also find 
application in the design of low power VLSI systems [3]. 

This paper presents some low constant weight codes which are 
very efficient in terms of speed if used in realizing an asynchronous 
communication system. They are also efficient in terms of complex- 
ity and redundancy. First their construction will be sketched and 
then their speed performance will be quantified. Let S*, indicate 
the set of all words of length fc and weight tu and DC(n, k, w) in- 
dicate a binary block code of length n, constant weight tu and k 
information bits. 

DC(n = 4,k = 2, tu = 1) code design. This design is defined 
by the following encoding function, £ : 7Z\ -f S\, for the code: 
£(00) = 0001, f (01) = 0010, £(10) = OlOO, £(11) = lOOO. Note 
that both encoding and decoding functions can be realized with 
extremely simple logic. Note also that concatenating this code with 
itself it is possible to obtain very simple DC(n = 2k, k,w = 0.5k) 
codes which require the same number of redundant bits as the usual 
dual-rail code, but the number of l's in each code word is only half 
that of a dual-rail code word. 

DC(n = 7, A: = 4, tu = 2) code design. This design is defined 
by the following encoding function £ : TZ? -> 5| for the code which 
is defined in terms of boolean logic (given x, y 6 ZZ2, let x-y indicate 
the logical AND between x and y, x V y the logical OR between x 
and y, and x the logical NOT of x): £(11x2x3x4) = (x\-X2, xi-xj, 
Xl -X2,  X3 -X4 V Xl -X2 -X3, X3 -X4 V Xl'X2-X~4,  X^-X4 V Xl",X2~'X4, 

xJ-xTVxT-xJJri). VVhereas, £-1(j/it/2!/3j/42/52/6j/7) = (yi Vj/2, 
S/l Vt/3, 2/4 V J/6

-
J/7I 3/6 Vys'Vj)- Also in this case both encoding and 

decoding functions can be realized with very simple logic. Further, 
note that concatenating this code with itself it is possible to obtain 
DC(n = 1.75fc,fc,tu = 0.5A:) codes which have the same features as 
the codes given above but are less redundant. 

DC(n = 13, k = 8, tu = 3) code design. Note that any constant 
weight 3 coding method requires at least 5 extra check bits to encode 
8 bit data. Further, using 5 check bits, 8 is the maximum length 
of information word that can be made constant weight 3. Thus, 
this code is optimal from the redundancy point of view. The code 
design is also simple because the whole coding system (encoder 
plus decoder) for this code can be implemented using less than 
1070 transistors with a depth of less than 30 transistors. Because 
of the space limitation, the code design is not given here. Note that, 
concatenating this code with itself it is possible to obtain efficient 
DC(n = 1.625fc, it, tu = 0.375*:) codes. 

Speed performance analysis of LCW codes in the asyn- 
chronous communication scheme. Parallel asynchronous com- 
munication in asynchronous busses is realized using unordered codes 
[1], [4], [2]. Researchers in [1], have modeled the asynchronous com- 
munication scheme as a situation in which the sender communicates 
with the receiver using n parallel tracks (the bus lines) by rolling 
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0-PD 1-PD 2-PD 3-PD 4-PD 5-PD 6-PD 7-PD 

DC(tu = l) 25.9% - - - - - - - 
DC(tu = 2) 13.3% 41.7% - - - - - - 
DC(u) = 3) 7.9% 25.9% 51.1% - - - - - 
DC(tu = 4) 4.9% 18.1% 34.9% 57.4% - - - - 
DC(tu = 5) 3.0% 13.3% 25.9% 41.7% 61.9% - - - 
DC(tu = 6) 1.7% 10.2% 20.2% 32.2% 46.9% 65.3% - - 
DC(tu = 7) 0.7% 7.9% 16.2% 25.9% 37.4% 51.1% 67.9% - 
DC(tu = 8) 0.0% 6.3% 13.3% 21.4% 30.8% 41.7% 54.5% 70.0% 
BC(tu = 5.36) 2.5% - - - - - - - 
l-VP(tu = 7.29) 0.5% 7.4% - - - - - - 
2-VP(tu = 7.73) 0.2% 6.7% 14.1% - - - - - 

*This work was supported by the National Science Foundation 
under Grant MIP-9705738. 

Tab. 1: Minimum speed-up comparisons between some t-PD codes 
and the dual-rail code with k = 8 information bits used EIS 0-PD 
code. The codes DC(tu) are constant weight tu codes. The code 
BC(tu = 5.36) is a Berger like code designed to minimize the average 
weight per code word. The codes l-VP(tu = 7.29) and 2-VP(tu = 
7.73) are respectively, systematic 1 and 2-PD codes of [4]. 

marbles in the tracks. If the t'-th component of the code word is a 
1 then the sender rolls a marble in the i-th track of the bus. The 
amount of time a marble takes to travel from the source to the 
destination is unknown and may differ from track to track or even 
from roll to roll. But it is non-negative and finite. The only way the 
receiver has to realize the complete reception of the code word is to 
make a membership test of the current word in the unordered code 
at the receiver end of the bus. Once complete reception is detected, 
the receiver sends an acknowledgment signal to the sender indicat- 
ing that it is ready to receive the next code word. In the usual 
implementation of the scheme, the receiver detects the complete 
reception of the word when the last marble of the word is received. 
This is a special case of (-proximity detection [4] in which certain 
(-proximity detecting (<-PD) codes are used to allow the receiver to 
send the acknowledgment signal to the sender when all but ( of the 
transmitted 1/marbles of a code word have been received. Exam- 
ples of (-PD codes are constant weight codes, for all ( > 0 [4]. For 
j = 1,2,..., tu let Xj be the random variable which represents the 
transmission time for the j-th marble of the word. In [2], assuming 
that the Xj's are continuous, independent and all uniformly dis- 
tributed over the time interval [tmin,tmax], it is shown that the 
average transmission time for a code word of a (-PD code is 

Tt-PD\W) = tmin H —(tmax — <mt'n)- 
tu + 1 

In this paper, using the above formula we are able to quantify the 
speed performance of (-PD codes, ( > 0, and make the transmission 
time comparisons given in Table 1. Analogous conclusion can be 
drawn for distributions which are different from the uniform distri- 
bution given above. 
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Abstract — In this paper, we consider the concatena- 
tion of turbo codes and M-ary orthogonal modulation. 
A modified decoding algorithm that utilizes the cor- 
related nature of an orthogonal symbol drawn from 
a Hadamard matrix and the soft-input/soft-output 
module of turbo codes is introduced. This improved 
decoding algorithm can significantly lower the error 
shoulder and reduce the SNR required for a given er- 
ror probability. 

I. INTRODUCTION 

In our research, a concatenation of turbo codes (outer code) 
and orthogonal codes (inner code) is investigated for PCS ap- 
plications. We propose a two-stage joint decoding of both 
turbo codes and orthogonal codes. The proposed algorithm 
iteratively evaluates the log-likelihood metrics for both sys- 
tematic and 'turbo-encoded parity bits and feeds the a priori 
information back to the orthogonal decoder. 

II. SYSTEM MODEL AND JOINT DECODING 

An information sequence, dk € {0,1}, is encoded with 
a rate 1/3 turbo code. The coded sequence is then multi- 
plexed onto a single data stream, block interleaved to break 
up the correlation among the consecutive bits, and passed to 
an orthogonal modulator. The orthogonal modulation is a 
Hadamard matrix with rate r = log2 MjM = K/N. An addi- 
tive white Gaussian noise (AWGN) channel with and without 
Rayleigh fading is considered in this paper and noncoherent 
reception is used at the receiver. 

The proposed iterative decoding process is composed of two 
stages. The first stage is the maximum a posteriori (MAP) 
decoding of the Hadamard matrix. The second stage is the 
modified turbo decoding. 

For the first stage decoding, the received complex signal 
is processed with the fast Hadamard transform and then 
square-law combined to form a decision vector w, where 

w = {tui,..., WN-I}- If the i row of the Hadamard matrix 
(Hi) is sent, the conditional probability is given as follows 

P(< 
{ P»(u>>) = £i 

*" IB,- 
Jo(^) for j = i 

for j ^ i 

where a2 is the average noise variance, z2 is the expected 
received signal energy and 7o() is the zeroth-order modified 
Bessel function of the first kind. 

By applying Bayes law, the a posteriori probability 
can be expressed as P(H;|w) = p(w|Hj)P(H;)/p(w), where 
p(w|Hi) =p„(w0)- ... ■ ps{wi) ■ ...-pn(wN-i) andp(w) is a 

constant independent of i. With the assumption of large 
packet size and proper interleaving, the information bits 
fed into one orthogonal symbol (XO...XK-I) are assumed 
to be independent and therefore the a priori information 

P(Hi) = P(x0)P(xi)...P(xK-i). The next step is to evaluate 
the conditional probability of the K systematic bits of the 
Hadamard function. This can be done by summing the objec- 

tive xk, P{xk = 0|w) = EJIö,xt=o P(Hi|w). Finally, we can 
evaluate the density function p(w\xk) by applying Bayes law. 
This information will be passed onto the turbo decoding. 

The second stage is an iterative decoding process and the 
derivation of this algorithm is well described in previous pa- 
pers. After several turbo iterations, the log-likelihood ratio 
(LLR) of the systematic bits will converge. The LLR of sys- 
tematic bits are used as a prior information to decode the 
turbo-encoded parity bits [2]. The decoding process is similar 
to that of the systematic bits. Finally, all the LLR information 
is then fedback as a priori information to the inner orthogonal 
code. In this two stage sequential decoding, the quality of the 
turbo decoding output is very important. 

III. RESULT AND CONCLUSION 

Figure 1 shows the bit error rate (BER) of the 64-ary sys- 
tem in both an AWGN and Rayleigh fading channels with 
a packet size of 1200 information bits. The system without 
feedback to the orthogonal codes (i.e., without joint decod- 
ing (JD)) but with 10 turbo decoding iterations is compared 
to the system with 5 initial turbo decoding iterations, one 
feedback to the orthogonal decoding, and 5 additional turbo 
decoding iterations. The proposed JD algorithm achieves a 
significant reduction in error probabilities. The error shoul- 
der introduced by the turbo code is also shown to be lowered 
to the region beyond interest. 
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Fig. 1: BER for 64-ary noncoherent reception. 
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Abstract — A Turbo nonlinear continuous phase frequency 
shift keying (CPFSK) with iterative maximum a posteriori 
probability (MAP) decoding is proposed. It uses the nonlinear 
CPFSK encoding components proposed by us. They have 
nonlinear characteristics and good performance of power and 
bandwidth with simple structures. 

I. INTRODUCTION 

Turbo codes, newly invented by Berrou et al [1], are good 
error-correcting codes that yield remarkable bit error rates 
(BER) close to Shannon limits with simple encoding structures. 
And they were proposed for BPSK modulation. But when more 
spectral efficiency is needed such as in satellite communications, 
other modulations with constant envelopes may be used. 

In constant envelope digital modulation the information- 
carrying phase varies continuously, which reduces the side lobe 
of the spectrum of signal. Such a modulation scheme is called 
the continuous phase modulation (CPM) [2]. CPM can be 
decomposed into the continuous phase encoder (CPE) and the 
memoryless signal mapping (MM) modulation part in the same 
way as trellis-coded modulation (TCM). The nonlinear CPFSK 
introduces a nonlinear modulation index, which is a kind of 
multi-h CPM with the non-time-varying phase trellis. And we 
have proposed an M-ary nonlinear CPFSK scheme to achieve 
more spectrum efficiency [3]. Also, it achieves higher improved 
performance than ordinary CPFSK. 

In this paper, we propose the Turbo nonlinear CPFSK 
systems with iterative MAP decoding. The overall structure is 
similar to Turbo codes or Turbo TCM [4] but uses the proposed 
nonlinear CPFSK encoding components that allow better 
performance than RSC components in Turbo code. The Turbo 
nonlinear CPFSK code has nonlinear characteristics and good 
performance of power and bandwidth with simple structures. 
The proposed schemes improve the performance relatively over 
Turbo code with modulations and overcome the nonlinear 
property, so they can provide reliable communications such as 
in satellite channels. 

n. THE TURBO NONLINEAR CPFSK 

The decomposition of the nonlinear CPFSK — the 
decomposition of the MM modulator and the nonlinear 
continuous phase encoder (NCPE). 

A new representation of coded symbols considered as the 
sum of the product input and the past symbols of the 
convolutional encoder is expressed by 

4."J=-J-^rcos(w0r + ^(r,M„)). (1) 

where E is the bit energy, T is the symbol duration, and w0 is the 
carrier frequency. To produce the present input symbol u„ and the 
present state Vn, it introduces the nonlinear symbol into the CPE and 
the nonlinear MM modulator. Then inputs of the nonlinear MM 
modulator can be represented as M-ary symbol un and V„. 

un = *(*./) =/o +Z/,fl-w +- + /1..,fl.-flMtl'    <2-b> 

(2-c) 

V^=modN[Vn+u„], (2-d) 

where u, V, and the nonlinear mapping coefficients / are defined in 
the modular N spaces, M presents M-ary symbol and c is the number 
of input symbols at the nonlinear MM. 

The overall system —' we apply the basic principles and 
modified structures of Turbo codes for the Turbo nonlinear 
CPFSK. A search for good component codes is performed from 
Eq. (4). In the presence of AWGN, the probability of the 
nonlinear CPFSK maximum likelihood (ML) receiver making an 
erroneous decision can be closely approximated by 

P." (3) 

4L =- min lim r'r[l-(cos</> (t,a)-cos<p {t,b))]dt  (4) 
T    a.b     "r->—'<> 

where Eb is bit energy, d^iB is the normalized squared Euclidean 
distance and Nr is the number of interval of remerge path. 

The iterative decoder consists of two identical concatenated 
decoders of the component codes separated by the interleaver. 
The component decoders are based on MAP algorithms 
generating weighted soft estimates of the input sequences. 

m. CONCLUSIONS 

In this paper, we have presented Turbo nonlinear CPFSK 
systems that have iterative MAP decoders. The overall structure 
is similar to Turbo codes or Turbo TCM codes but exploits the 
non-linearity of the component codes. They have nonlinear 
characteristics and good performance of power and bandwidth 
with simple structures. 
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Abstract — We present upper bounds for bit error 
rates of Turbo Coded Modulation (TuCM) on AWGN 
channels. We then apply these bounds to calculate 
the spectral efficiency of adaptive TuCM on flat fad- 
ing channels, which comes within 4dB of the fading 
channel capacity limit. 

I. TRANSFER FUNCTION BOUNDS 

Techniques that compute bounds on the bit error rate of coded 
systems based on the input-output transfer function of the 
state diagram describing the system are referred to as trans- 
fer function bounds. Previous work describes "such bounds 
for trellis codes and turbo codes1 with binary modulation [1]. 
We extend this idea and apply it to Turbo Coded Modula- 
tion(TuCM) with permuter size N, where the output bits are 
mapped to a higher level constellation. Let the sets Si and 
S2 represent all possible states and the sets B\ and B2 repre- 
sent all possible edges in the state diagram of the constituent 
encoders 1 and 2 of the turbo code under consideration. Let 
Ei and E2 denote the set of all possible error states and C\ 
and C2 the sets of all possible edges in the error state dia- 
grams of the constituent encoders 1 and 2. Then we define 
a super-state for constituent encoder 1 as an element of the 
set Z\ = {(si,ei) : si 6 Si.ei e £1} and a super-edge as 
belonging to the set Wi = {[61,ci] : 61 eßi,ci € Ci}. Simi- 
larly super-state set Zi and super-edge set W2 can be defined 
for constituent encoder 2. We now define a combined-state 
as one that belongs to the set {(21,22) : z\ € Z\,Z2 £ ^2} 
and a combined-edge as belonging to the set {[tui,«^] : wi 6 
Wi,W2 £ M^}. The combined-states and combined-edges in 
a graphical representation form a combined state diagram. In 
this diagram, each combined-edge [WI,Iü2] has a label of the 

form rjJ'XIYyDd2L, where I, J,X, Y,D,L are dummy vari- 
ables which carry useful information in their exponents. i,j 
equal the input weights of the constituent encoders 1 and 2, 
corresponding to the combined-edge [wi,^]- Similarly, x,y 
represent weights of error patterns and d the Euclidean dis- 
tance between correctly and incorrectly decoded codewords 
corresponding to [u>i,u>2]- The variable L is present on each 
combined-edge to denote a transition. This combined-state 
diagram can be treated as a signal flow graph with the labels 
on the edges being treated as gains, and its transfer func- 
tion from the all-zero state back to the all-zero state can 
be obtained. The coefficient of \J

N
 in a series expansion of 

this transfer function can be written as T(I,J,X,Y,D) = 

Ei<i.i.x,,<jv Eda.,J,x,v,dI*JJXIY!'Dd2 and the BER can be 
-d2/4JV0 

- ,where bounded as Pbit   <   EKJ.KN Ed f/ "^ 

iVrj/2 is the power spectral density of the noise. This ex- 
pression can be simplified if the outputs of the two con- 
stituent encoders of the TuCM are modulated indepen- 
dently. If the coefficient of L" in the transfer func- 
tion of super-state diagram of the jth constituent encoder2 

is T^X.I.D) = E,<,,x<jvEi^,i,^1l'Dd!, then the 
BER of the net TuCM scheme can be bounded as Put  < 

EIO^N^CC)^))-
1
^,,"!...«.^,,.^-^^

0
- An ex- 

ample code from [2] with 16-state constituent encoders, N = 
4096 and 8PSK per encoder was chosen, with feedback poly- 
nomial ho = 23 and h\ =' 14,/12 = 16, /13 = 21,/14 = 31 as 
feedforward polynomials and reordered mapping. The bound 
matched simulation results within 1.5 dB at high SNR. 

II. AVERAGE BOUNDS AND ADAPTIVE MODULATION 

Next, we propose an average bound for Self Concatenated 
Coded Modulation(SCCM), realizing that TuCM are special 
cases of these. We use the transfer function technique de- 
scribed in Section I, but this time average over all possi- 
ble rate b/n recursive constituent encoders of memory k to 
get the Error-path Length Generating function(ELGF) as 
A(M,L) = J^. . Oi^M'L'', where M and L are dummy vari- 
ables representing error weight and error length respectively. 
Using the definition for Ro in [3] and averaging over all scram- 
blers3, we obtain Pbit < l/N2-(N-kb)dA(M,L)/dM after 
substituting M = 1 and L = 22nR°. Considering an adap- 
tive coded modulation system with model, and constraints EIS 

in [4], we use the average bound to calculate spectral effi- 
ciency with 16-state constituent codes and N = 1024. The 
results obtained show a 2dB gain in SNR compared to trel- 
lis coded modulation systems, with a spectral efficiency that 
comes within 4dB of channel capacity. 
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of length N. 
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Abstract — We develop new, low-complexity turbo codes suit- 
able for bandwidth and power limited systems. These codes are 
constructed as an extension of Repeat-Accumulate codes to high- 
level modulations. Two design criteria are proposed, based on 
maximum-likelihood decoding and on Gaussian density evolution 
in iterative decoding. 

I. STRUCTURE OF SCTCM WITH RATE-1 INNER CODE 

Our recent results on concatenation of an outer code with a sim- 
ple accumulator as inner code for binary modulation [2] led us to 
develop a new method for serial concatenated TCM (SCTCM). For 
MPSK, or a two dimensional constellation with M points, let's define 
m = log2 M. We propose a novel method to design low-complexity 
serial concatenated TCM, which achieves bm/(b + 1) bits per modu- 
lation symbol, using an outer rate b/(b+\) binary convolutional code 
(or a short block code) with maximum free Hamming distance. An 
interleaver n permutes the output of the outer code. The interleaved 
data enters a rate m/m = 1 recursive convolutional inner encoder. 
The m output bits are then mapped to one symbol belonging to a 2m- 
level modulation. 

The inner code and the mapping are jointly optimized. For short 
blocks we use the ML criterion based on maximizing the effective 
free Euclidean distance of the inner TCM (see [1] for more de- 
tail on ML design criteria). For large block sizes we use a new 
minimum-threshold criterion for iterative decoding to be discussed 
shortly. Considering 8PSK (m = 3) modulation as an example, then 
the throughput r = 3b/(b + 1) is as follows: for b — 2, r = 2; for 
b = 3, r = 2.25; and for b = 4, r = 2.4. This suggest that we can 
use a rate 1/2 convolutional code with puncturing to obtain various 
throughputs without changing the inner code or modulation. 

For rectangular M2-QAM, where m = log2 M, the structure be- 
comes even simpler. In this case, to achieve throughput of2mb/(b + 
1) bits/symbol we need a rate b/(b + 1) outer code and a rate m/m 
inner code, where the m output bits are alternatively assigned to 
in-phase and quadrature components of the M2-QAM modulation. 
For example consider 16-QAM modulation, where m = 2, then the 
throughput r = 4b/(b + 1) is: for b = 1, r = 2; for b = 2, r = 2.67; 
for b = 3, r = 3; and for b = 4, r = 3.2. 

Here we only discuss the example of 16QAM modulation, and 
r = 3 which implies b = 3. The encoder structure of SCTCM for 
4-state inner TCM and 4-state outer is shown in Fig. 1 as an example. 

II. ITERATIVE DECODING DESIGN CRITERIA 

The design criterion is based on the method of density evolution pro- 
posed by Richardson and Urbanke [3]. It has been observed by many 
researchers that the extrinsic information in iterative decoding can be 
approximated by a Gaussian density function. El Gamal [4] consid- 
ered the soft-input soft-output APP module in turbo decoders as a 
signal-to-noise ratio (SNR) transformer. Using these ideas, and the 

method for analyzing turbo codes suggested by El Gamal [4], we ex- 
tended the results to analyze concatenated TCM by approximating 
the density functions for extrinsics as Gaussian densities, and then 
computing the mean and variance in the Gaussian density evolution. 
Since the probability of incorrect decoding is given by g(VSNR), 
where SNR = mean2/variance, we only need to track the SNR. This 
will result in a slightly pessimistic threshold since the Gaussian den- 
sity has the highest entropy for a given variance. Slightly optimistic 
threshold results are obtained if we impose density consistency as 
proposed by Richardson et al, which suggests that we only need to 
compute the mean (SNR=mean/2). At each iteration, we computed 
SNRs (averaged over all transmitted patterns), and collected them for 
the outer and the inner codes. We used the example of 4-state outer 
with puncturing pattern 100100... and 4-state rate-1 inner as shown 
in Fig. 1. The output-input SNR for the inner code and the input- 
output SNR for the outer code are shown in Fig. 1. Iterations for 
Et,/N0=5.5 dB are also shown in the Fig. 1. If the two curves do 
not cross, then the iterative decoder converges. Note that we used all 
assumptions made by Richardson and Urbanke for very large block 
sizes and the concentration theorem. In Fig. 1 we see that if E^/Ng 
is greater than 4.8 dB, the iterative decoder converges, where the ca- 
pacity limit is 4.54 dB. This method was used to select the 2-state and 
the 4-state inner TCM codes. The performance of iterative decoding 
of this serial TCM with 16QAM for input block size of 12288 bits 
and 8 iterations required Eb/N0 = 6 dB at BER=4 x 10~8. 

Eb^o 
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Figure 1: Graphical analysis of iterative decoding threshold 
(16QAM, puncturing pattern 100, r=3). 
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Abstract — In this paper, we construct quasi-cyclic 
Goppa (or related) codes. Some of these codes reach 
the parameters of best known codes. Generally, there 
is no known quasi-cyclic code for these lengths and 
dimensions. 

I. INTRODUCTION 

Alternant codes are subfield subcodes of Generalized Reed- 
Solomon codes (GRS code). Goppa codes are particular case 
of Alternant codes. In [2], we proved that parity-check sub- 
codes of Goppa codes and extensions of Goppa codes are also 
Alternant codes. In [3], A. Dür characterized of GRS codes. 
Some semi-monomial automorphisms of GRS codes that are 
not permutations of the support induce a permutation of the 
subfield-subcodes [1, 2]. We use this method for constructing 
Goppa codes invariant under some prescribed permutations. 

II. CLASSICAL GOPPA CODES 

Let K be the finite field GF(pm) and K = K U {oo}. Let 
C = (ao, -.. ,a„_i) be an n-tuple of distinct elements of K. 
It will be the support of the codes. Let v = (t>o,.. •, t>n-i) be 
an n-tuple of non-zero elements of K. For s = 0,..., n, let 
0s,v,£ be the n-tuple 0s,v,c = (v0ao,..., Vn-ia^^) g Kn. 

Definition 1 Let k be an integer less than n. The Alternant 
code Akiy, C) is the code of length n over GF(p) with parity- 
check matrix Mfc(v, C) whose rows are Os,v,c for s = 0,..., k — 
1. 
Let g(x) € K[x] be a polynomial of degree r < n such that 
g(ati) ^ 0 for i = 0,..., n — 1. The Goppa code Q{g, C) with 
Goppa polynomial g(x) and support C is the Alternant code 
Ar(yg,c,£) with vg,c = (g(o!o)~1,g(ai)-\...,g(an-i)-

1). 

Definition 2 The parity-check subcode C of C is the subset 
of elements x = (xo,..., xn-\) € C satisfying the parity-check 
control xo + xi + ... + xn-i = 0. 

The extension C of C is obtained by adding a parity-check 
control symbol x„ = —(xo + x\ + ... + xn-i) to the codewords 
ofC. 

III. MAIN RESULTS 

We use oo for the support of parity-check control symbol 
of the extension of a Goppa code. 

Let / be an element of the projective semi-linear group 
PrL(2, K). f can be considered as a permutation of K: 
/(C) = «« + fc)/K' + d), ad-bc^0,q = pi.   __ 

Let Cf be a union of orbits of elements of K under /. 
Clearly, / induces a permutation of the support Cf. 

'Associated  Searcher,  projet  CODES,  INRIA-Rocquencourt, 
78153F LE CHESNAY, FRANCE 

Theorem 1  Let g(x) =X^=ofi'';E' ^e a Goppa polynomial of 
degree r < n. 

1) Let f be an element ofATL(l, K) (i.e. /(C) = a(q + b). 
l-q g(x)q, the Goppa code C If g satisfies g(axq + b) = a'g, 

Q(g,Cf) is invariant under f. 
2) Let f be an element ofPTL(2, K), oo £ Cf. If g satisfies 

g(a) / 0 and £[=0 gi{ax" + b)'{cxq + d)™ = g(a)g-^g(x)q, 

then the parity-check subcode C of the Goppa code C = 
G(g,Cf) is invariant under f. 

3) Suppose that Cf contains oo and C is Cf without oo. 
Let f be an element of PTL(2,K). If g satisfies g(a) ^ 0 
and J2ri=o9i(axq + bY(cxq + d)r-' = g(a)g7qg{x)q, then the 
extension C of the Goppa code C — G(g, C) is invariant under 

f- 

IV. APPLICATION TO THE CONSTRUCTION OF 

QUASI-CYCLIC GOPPA CODES 

In [2], we gave an algorithm for computing the polynomials 
g described in Theorem 1. 

Choosing for support C some union of orbits of same length, 
this gives us quasi-cyclic codes. 

We give now some non-exhaustive examples of parameters. 
All these codes meet the bound of best known codes. The 
order of quasi-cyclicity (i.e. the order of the quasi-cyclic per- 
mutation) is given in index. 

Goppa codes: 

[84,70,5]i4,  [63,51,5]9,  [63,39,9]9,  [60,48,5]12,  [60,36,9]12, 
[52,40,5]13, [45,27,8]9, [36,18,8]9. 

Parity-check subcodes of Goppa codes 

[98,83,6]14, [84,55,10]14, [84,69,6]14, [70, 41, 10]14, 
[56,41,6]14,[36,18,8]18. 

Extended Goppa codes: 

[84,55,10]14, [84,3,48]i4, [70,41,10]i4, [63,38,10]9, 
[54,41,6]18,[54,35,8]18. 

These codes are obtained for K = GF( 128) or K = GF(64) 
using MAGMA. 
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Abstract — 
We use Gröbner bases of modules to construct and 

classify quasiscyclic codes. Whereas previous stud- 
ies have been mainly concerned with the 1-generator 
case, our results elucidate the structure of arbitrary 
quasicyclic codes and their duals. We include a com- 
plete characterisation of selfdual quasicyclic codes of 
index 2. 

I. INTRODUCTION ■ 

The theory of Gröbner bases of modules has been applied 
[F95, F96, F97] to decoding Reed-Solomon codes, to scalar 
rational interpolation, and to various other problems, such as 
Pade approximation, that can be represented as solving sys- 
tems of polynomial congruences. The structure of quasicyclic 
codes was explored by Seguin and others [CS, SD, SH]. We 
adopt a new approach based on the construction of a canonical 
Gröbner basis generating set for a quasicyclic code regarded 
as a submodule of R1 where R = F\x)/{xm - 1). 
NB: Throughout the paper the word "code" means "quasicyclic 
code". 

II. BASIC STRUCTURE 

Let C be a code of length Im and index (. over F, where I 
the smallest power of the cyclic shift operator under which 
C is invariant. By a coordinate permutation we obtain the 
polynomial representation of C as an i?-submodule of Re. The 
code C is the image of an F[i]-submodule C of F[x]e containing 
/C = ((xm — l)e{, i = !,...,£) (where e; is the standard basis 
vector) under the natural homomorphism ip : (ai,..., ae) i—► 
(ai + (xm — 1),..., ae + (xm — 1)). We use position-over-term 
(POT) order in F[x]e, with e; > ej for i < j. 
Theorem 1 The reduced Gröbner basis of C is 

g = {<?; = (0,... ! 9iii ,gu),i = !,...,£} 

where 
i. ga is monic and dgki < dgu for k < i 
ii. gu divides xm — 1 
iii. if gu = xm — 1 then g{ = (xm — l)ei. 

The F-dimension of F[x]e/C is ^2i=1 dgu.   If G is the poly- 
nomial matrix with rows <j; then there is a matrix A satisfying 
AG = GA = {xm - 1)1. 

Thus C has an Ä-generating set Q comprising the elements 
of a Gröbner basis C? not mapped to zero under ip. We refer 
to this set of generators as a GB generating set of C (or RGB 
generating set as appropriate). 
Corollary 2 The dimension of the code C with GB generating 
set {<p{gi),i = 1,..., e} is tm - ]P'=] dgu = ]T'=1 (m - dgu). 

This makes it straightforward to enumerate the possible di- 
mensions of codes, and thus, in principle, construct all possible 
codes of a given index. 

The set of vectors in Fim denned by {xs'gi : i ~ 
1, ...,£, Si = 0,..., m - dgrl - 1} is a basis of C. These form 
the rows of a block upper triangular generator matrix of C. 
Using the matrix A introduced in Theorem 1 we can derive a 

Gröbner basis representation and generator matrix of C   . 

III. SELF-DUAL CODES OF INDEX 2 

We write x71 1 n„6 N f™ over F' wnere £ = m/char F, 
and divide the irreducible factors fn,n S ./V into two types 
according to whether or not /* ~ /„ (where u* denotes the 
reciprocal of u, and ~ means "is a constant multiple of"). Let 
I C N be the set of indices of factors having this property. 
The others then fall into reciprocal pairs. Let J C N be a set 
of indices comprising one element of each of these pairs and 
define TT : J -> N\(I U J) by // = fAJ).   Then xm - 1 ~ 

n/m/;n/;o> where /,* ~ /,, // ~ f„U)j„w* - u 
and we note that 9/,r(„) = dfn. Denote the monic factor 
cT\fi"' Ylfj ' Y[f7,(j\'

)< where c is an appropriate constant, 
by [Qi,Qj, Q„(j)]. 
Theorem 3 The code C of index 2 is selfdual if and only if 
each minimal Gröbner basis of C has a generator matrix 

lQi>a.nQ„Ü)l     v[ßi,ßjß„U)\ 
0 l7i,7j,7„(j)] 

where 
i. 2a; < e, ctj + a„(j) < £ 
ii. 2a; < e + ßi -7;, a.,- + avU) < e + ßj -7.7, «j + a„w < 
e + #,(j)-7„(j) 
iii. a, + 7; = e, a-, + Q>(j) + 7j + %(j) = 2e 
iv.  vv'[2ßi - 2oa,ßj + ßAJ) - Qj - aAJ),ßj + ßAJ) - a, - 
a,0')l = 1 mod [27i-e>7j+7„U)-e.7j+7„(j)-e]; where v1 = 
-xrv,r = ZidMai-ßi) + '£.dfj(ai+a„U)-ßi-ß1,U)). 

In the special case [7t,7j,7„(j)] = xm - 1 the RGB generating 
set of C is (1    v) where vv = — 1 mod xm — 1 and dv < m. 
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Abstract— Twelve new binary quasi-cyclic(QC) codes, 
which improve the lower bounds on minimum distances for 
binary linear codes, are presented, and a web database on 
best-known binary QC codes is constructed for public access. 

I.   INTRODUCTION 

Quasi-cyclic (QC) codes are a generalization of cyclic 
codes whereby a cyclic shift of a codeword by p positions 
is still a codeword. Cyclic codes are a special case of QC 
codes with p = 1. It has been known that QC codes 
contain many of the best-known linear codes[2,3]. 

Circulant matrices are building blocks in the generator 
matrix of a QC codes. A circulant matrix can be specified 
by a polynomial with the first row as the coefficients. If m 
be the dimension of the matrix, then the block length for 
the QC code is n = mp, where p is the number of circulants 
for the code. 

Let go(x), gi(x), ..., gp-i(x) be p generator polynomials 
for the QC [mp, k] code. Then its generator matrix can be 
defined by 

G = (go(x),gi(x), ...,gp.,(x) ) (1) 
Let 

h(x) = (x™- 1) /gcd{ xm - 1, go(x), g,(x), .... gp.,(x) } 
(2) 

Then k, the dimension of the QC code, is equal to the 
degree of h(x). In this paper, only binary codes are 
discussed. 

II. NEW  BINARY QUASI-CYCLIC CODES 

Computer search for good QC codes have been proved 
to be a good method and lots of QC codes improving 
lower bounds on minimum distance have been found[3]. 

The technique used in the this paper was presented first 
in [1]. Some refinements to reduce the complexities are 
introduced, and special search interests are paid to the case 
with m > 32. 

With this approach, twelve new good QC codes which 
improve the lower bounds on the minimum distance [2] 
have been constructed and many other QC codes which are 
better than previously known QC codes or as better as the 
best-known codes are obtained[3]. Table 1 shows the 
parameters of twelve new QC codes. The column lb - ub 
gives the previously known lower and upper bounds on 
the minimum distance of the binary linear codes from the 

database maintained by Professor Brouwer[2]. The author 
[3] maintains a web database of binary QC codes 
(including weight distributions). This database is 
searchable by block length n, code dimension k, circulant 
matrix size m, parameter p, and contributor, or any 
combination of them. For the sake of space, the generator 
polynomials are omitted in the paper and they can be 
found in the database. 

TABLE 1  NEW  QC CODES THAT IMPROVE THE 
LOWER BOUNDS ON MINIMUM DISTANCE OF A 

BINARY LINEAR CODE 

1 
QC Code P m d lb-ub 

[112, 13] 4 28 48 46-50 
[99, 20] 3 33 34 33-39 
[102, 17] 3 34 38 37-42 
[164, 20] 4 41 62 61-72 
[225, 19] 5 45 90 89-102 
[153, 16] 3 51 64 62-68 
[153, 18] 3 51 62 59-66 
[204,18] 4 51 82 80-92 
[165, 20] 3 55 64 62-72 
[165, 21] 3 55 62 61-72 
[220, 20] 4 55 88 86-97 
[220, 21] 4 55 86 85-96 

In [4], a binary QC [102, 17] code with d = 37, m = 17 
and p = 6 was found. As shown in the Table 1, a binary 
QC [102, 17] code with d = 38, m = 34, p = 3 and 
generator polynomials 607703, 11774425325, 
4411577731 existed. 
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Abstract, — A sequence of <j-ary cyclic codes is con- 
sidered. For each finite field GF(q), q > 4, there is a 
code with parameters [n, k, d; q] = [q(q — 1) + 1, q(q — 1) — 
6,6;g]. We show that all these codes are n-, k- and 
d-optimal, with only one exception. Also the dual 
codes are considered. Their true minimum distances 
are calculated in the range 4 < q < 29. 

I. INTRODUCTION 

Standard terminology from coding theory is used. Cyclic 
codes are identified with ideals in the ring GF(q)[x]/(x" — 1). 
The set / consisting of all roots of the generator polynomial 
g(x) of a given code is referred to as a defining set. The 
minimal polynomial of a', where a is a primitive n-th root of 
unity in an extension field of GF(q), will be denoted mt(x). 
Detailed proofs of the given statements can be found in [6]. 

II. THE CODES 

Let 5 be a power of a prime. Denote by Cq the cyclic 
code of length n = q(q — 1) + 1 over GF(q) with genera- 
tor polynomial g(x) = mo(x)m\(x). The codes Ci and C3 
are trivial, consisting of the all-zero codeword only. Since 
n\(q6 - 1), then a 6 GF(q6) and the defining set / of Cq 

equals {Q°, a1, a   1,ai~q  l\a (o-i) ,Q~«}.  Thus for q > 4 
the codes Cq are g-ary BCH codes [1, 2] of dimension k = 
q(q — 1) — 6 and designed minimum distance 4. But the true 
minimum distance is actually 6 for all prime powers q > 4. 

Theorem 1  For every prime power q > 4  the code Cq has 
minimum distance six, 

1,9(9- 1) -6,6;g]. 

. e.    Cq  has parameters [q(q — 1) + 

In the proof resuts of Roos [3], Van Lint and Wilson [4, 
p.28] and sphere packing arguments are used. 

Define Dq(n,k) and Kq(n,d) to be the maximal value of 
d and k, respectively, for which an [n,k,d;q] code exists. 
Furthermore, let Nq(k,d) denote the minimal value of n for 
which an [n, k,d;q] code exists. A code is said to be d-, k- 
or n-optimal if, respectively, d = Dq(n,k), k = Kq(n,d) or 
n = Nq{k,d). The following statement shows that the codes 
Cq, q > 4, are d-, k- and n-optimal with only one exception. 

Theorem 2   The following equalities hold. 

(1) Dq(q(q - 1) + l,q(q - 1) - 6) = 6 for q > 4; 

(ii) Kq(q(q - 1) + 1, 6) = q(q - 1) - 6 for q > 4; 

(Hi) Nq{q{q - 1) - 6, 6) = q(q - 1) + 1 for q > 5. 

Nevertheless, for fixed minimum distance d and redundancy 
r = n — k,Cq do not have maximal information rate B. = k/n = 
1 — ^ for all q > 4. It is known that there exist [20,13, 6; 4] and 
[28, 21, 6; 5] codes providing two (the only known) examples 
(see [5, p. 420,435]) of this fact. 

III. THE DUAL CODES 

Let Cq   denote the [q(q — 1) + l,7,dL;q\ dual code of 
Then C^ has defining set {a2,a3,. >"+>   r,«+2 

-2, - 2,4-3 -2<) + 4 ,a" '}. Thus they are 
BCH codes with designed minimum distance djjCII := q2 — 
3q + 1. Using the computer software MAGMA the true mini- 
mum distance dx of Cq has been calculated for q < 32. The 
result is presented in Table 1 together with djjCH. 

Table 1: True minimum distance of C^ 

Q d1 d1 UBCH 9 d1 a
BCH 

4 5 5 16 216 209 
5 11 11 17 247 239 
7 30 29 19 315 305 
8 43 41 23 474 461 
9 57 55 25 565 551 
11 93 89 27 665 649 
13 136 131 29 773 755 

^his work was partially supported by the Swedish Research 
Counsil for Engineering Sciences under grant 271-97-554 

We note that for q = 7, 8 and 9 the entries in our table 
improve the corresponding lower bounds given in [5, pp. 441- 
447]. 
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Abstract — We design sequences of low-density par- 
ity check codes that provably perform at rates ex- 
tremely close to the Shannon capacity. These codes 
are built from highly irregular bipartite graphs with 
carefully chosen degree patterns on both sides. We 
further show that under suitable conditions the mes- 
sage densities fulfill a certain symmetry condition 
which we call the consistency condition and we present 
a stability condition which is the most powerful tool 
to date to bound/determine the threshold of a given 
family of low-density parity check codes. 

I. INTRODUCTION 

In this paper we present irregular low-density parity check 
(LDPC) [1,4] codes which exhibit performance extremely close 
to the best possible as determined by the Shannon capac- 
ity formula. These codes are characterized by their degree 
sequence pair (X(x), p(x)) [2] and a random choice of the 
connections. For the additive white Gaussian noise channel 
(AWGNC) the best code of rate one-half presented in this 
paper has a threshold within 0.06dB from capacity, and sim- 
ulation results show that our best LDPC code of length 10 
achieves a bit error probability of 10-6 less than 0.13dB away 
from capacity, beating even the best (turbo) codes known so 
far. 

Slii 
m\ 

1.0 0.2 0.4 0* 0.8 1.0 1.2 E„«0[dBl 

.0 0977 0.966 0.033 0912 0J91 0371 0*51 a 

In the following, we call a distribution / on R consistent 
if it satisfies f(x) = f(—x)ex for all i € R+. For example, a 
Gaussian density is consistent iff its mean ß and variance <r 
are related by a1 = 2fi. The following theorem can often be 
used to achieve significant speed-ups and improved accuracy 
in the determination of these message distributions. 

Theorem 1 Suppose that a binary-input channel has symme- 
try property p(y \ x = 1) = p(—y | x = —1). Under the all-one 
codeword assumption let Pi denote the message distribution 
of a belief-propagation decoder at the £-th iteration, where all 
messages are assumed to be in log-likelihood ratio form. Then 
Pi is consistent. 

Assume that after some iterations the number of remain- 
ing errors is fairly small. Will the number of errors converge 
to zero if we proceed with further iteration rounds or will it 
stay bounded away from zero regardless of the number of it- 
erations? This is answered in 

Theorem 2 Let g(s) be the moment generating function cor- 
responding to the initial message distribution Po(x), i.e., 
g(s) = Epa[e'x], and assume that g(s) < oo for all s in 
some neighborhood of zero. Define r = — log (inf«<o g{s)) 
which for consistent initial message distributions Po simplifies 
to T = -log (2/0°° P0(x) e-l/2 dx). If A'(0)p'(l) > er, then 
the probability of error of density evolution is strictly bounded 
away from 0. Conversely, i/A'(0)p'(l) < er, then there exists 
€ > 0 such that if density evolution is initialized with a consis- 
tent message distribution P satisfying Pr„r(P) < e, then the 
probability of error will converge to zero under density evolu- 
tion. 

For the binary erasure channel, the binary symmetric channel 
and the additive white Gaussian noise channel we have er = |, 

, and er = e a«-2 , respectively. 

Figure 1: Comparison of (3,6)-regular LDPC code, turbo code, 

and optimized irregular LDPC code. All codes are of length 106 

and of rate one-half. The bit error rate for the AWGNC is shown 

as a function of E^/No (in dB), the standard deviation a, as well 

as the raw input bit error probability Pt- 

II. ANALYTIC PROPERTIES OF DENSITY EVOLUTION 

Assume we employ a message passing decoder on an infinitely 
long LDPC code. Let Pi denote the distribution of messages 
emitted from the variable nodes at the -£-th iteration assuming 
that the all-one codeword was transmitted. The sequence of 
distributions Pi and their determination is collectively referred 
to as density evolution [2]. 

2-v/£(l-<0 

III. OPTIMIZATION 

By optimizing the degree sequence pair (A(x),p(x)) we have 
found ensembles of irregular LDPC codes with thresholds ex- 
tremely close to capacity for a wide range of rates and channels 
[3]. 
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I. INTRODUCTION 
LDPC codes [1] with iterative decoding based on belief- 

propagation (IDBP) have been shown to achieve astonishing 
error performance [2], But no algebraic or geometric method 
has been found for constructing these codes. Codes that have 
been found are largely computer generated, especially long 
codes. In this paper, we present two classes of high rate 
LDPC codes whose constructions are based on the lines of 
two-dimensional finite Euclidean and projective geometries, 
respectively. 

II. CODES CONSTRUCTED BASED ON 

TWO-DIMENSIONAL FINITE GEOMETRIES 

Regard the Galois field GF(22s) as the two-dimensional Eu- 
clidean geometry EG(2,2S) over GF(2a) [3]. Let a be a primi- 

tive element of GF(22*). Then a°°=0,a0 = 1, a1, a2,..., a2*'-'2 

form all the points of EG(2,2S). The zero element 0 is called 
the origin of EG(2,2S). Every line in EG(2,2S) consists of 2s 

points. For a given point a' in EG(2,2S), there are 2s + 1 lines 
intersect at a'. Let v = (vo,vi,... ,v2i,_2) be a (22s -l)-tuple 
over GF(2). Number the components of v with the nonzero 
elements of GF(22s) as follows: the component v, is numbered 
Q

1
 for 0 < i < 22s — 2. Hence, a1 is the location number of 

Vi. Let £ be a line in EG(2,2S) that does not pass through 
the origin a°°. Based on £, form a binary (22ä - l)-tuple as 
follows: V£ = (uo, vi,..., v22s_2) whose z-th component u, is 
1 if and only if its location number a' is a point on C. This 
vector V£ is called the incidence vector of line C. Now form a 
(22s - 1) x (22s - 1) matrix H with v£ and its 22s - 2 cyclic 
shifts as rows. The rows of H are the incidence vectors of the 
22s — 1 distinct lines in EG(2,2S) which do not pass the origin, 
and the columns of H correspond to the 22s — 1 non-origin 
points of EG(2, 2s). The ratio of the total number of ones to 
the total number of entries in H matrix, called the density, 
is r = 27(22ä - 1). Let C be the null space of H. Then C 
is a LDPC code of length n = 22s - 1. It is cyclic and its 
generator polynomial is completely characterized by its roots 
in GF(22s). It has n - k = 3s - 1 parity check bits and a 
minimum distance dm;n = 2s + 1. 

Similarly LDPC codes can also be constructed based on 
the lines of the two-dimensional projective geometry PG(2,2S). 
This construction results in a class of PG-LDPC codes which 
are also cyclic. 

Since both EG- and PG-LDPC codes are cyclic, their en- 
coding is extremely simple. This is a contrast to the complex 
encoding of long computer generated LDPC codes. For iter- 
ative decoding of these cyclic LDPC codes, error detection at 
the end of each decoding iteration can also be achieved easily 
with a simple shift register. 
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III.  EXTENSION AND PUNCTURING 

A 2-dimensional EG- or PG-LDPC code can be extended 
by splitting each column h of its parity-check matrix H into q 
columns, hi, h2,..., hq, with the "ones" of h distributed among 
hi,li2, • • • jh, (evenly or not evenly). This results in a low- 
density matrix Hel< with <j(22s - 1) columns and density 
r = 2s/{q(22s - 1)). The null space Cext of Hel( is also a 
LDPC code and is quasi-cyclic. Finite geometry LDPC codes 
can also be punctured in various ways to obtain good LDPC 
codes. We can remove columns of the parity-check matrix H 
correspond to the points on a line or a set of lines. Puncturing 
can also be achieved with combination of removing columns 
and rows of H. 

IV. ERROR PERFORMANCE 

EG- and PG-LDPC codes and their extended codes with 
IDBP achieve very good performance. As an example, let 
m = 2 and s = 6. There exists a (4095,3367) EG-LDPC code. 
The error performance of this code with IDBP is shown in 
Figure l-(a). Suppose we split each column of the parity check 
matrix of this code into 16 columns. This column splitting 
results in a (65520,61425) extended EG-LDPC code. Using 
IDBP, this code achieves an error performance only 0.3dB 
away from Shannon limit, shown in Figure l-(b). 
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Figure 1: (a).Bit- and frame-error probabilities of the 
(4095,3367) EG-LDPC code. (b).Bit- and frame-error 
probabilities of the (65520,61425) Extended EG-LDPC 
code. 
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Abstract — A statistical analysis of low-density con- 
volutional (LDC) codes is performed. This analysis 
is based on the consideration of a special statistical 
ensemble of Markov scramblers and the solution to a 
system of recurrent equations describing this ensem- 
ble. The results of the analysis are lower bounds for 
the free distance of the codes and upper bounds for 
the maximum likelihood decoding error probability. 
For the case where the size of the scrambler tends 
to infinity some asymptotic bounds for the free dis- 
tance and the error probability are derived. Simula- 
tion results for iterative decoding of LDC codes are 
also presented. 

Low^density convolutional (LDC) codes were introduced by 
Jimenez and Zigangirov [1] and the theory of these codes was 
further developed in the first part of the paper [3]. The LDC 
codes have some common features in comparison with low- 
density block codes, invented by Gallager [2], but at the same 
time there are differences, which arise from the recurrent na- 
ture of LDC codes. Particularly, the iterative decoding of 
LDC codes can be performed by a pipeline implementation. 

The main goal of this paper is to demonstrate the possi- 
bility to get bounds on performances of LDC codes, similar 
to bounds for conventional convolutional codes, by the in- 
troduction of a special ensemble of Markov scramblers and 
application of Markov chain theory (see also [4]). 

We have studied two classes of LDC codes, A and B. In 
class A, a rate Äs = d]c convolutional scrambler is followed 
by a rate Ab = {d — 1) /d degenerated component convolu- 
tional encoder of memory zero. (It calculates one parity-check 
symbol to d — 1 input symbols.) The resulting LDC code is a 
homogeneous (d(l — Ä),d)-code. 

500   1000  1500  2000  2500  3000  3500  4000  4500  6000 
M 

Fig. 1: Lower bounds on the free distance. The dashed lines 
correspond to (from bottom to top) (2,4), (2.5,5) and (3,6) codes 

of class A. The solid lines correspond to class B codes with 
component code memory 2,3,4 and 5. 

1This work was supported in part by Swedish Research Council 
for Engineering Sciences under Grant 98-216. 
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Fig. 2: Burst error probabilities for (3,6)-codes. The solid lines 
show (from top to bottom) simulation results for 

ms = 129,257,513,1025,2049,4097. The size of the scrambler is 
M = 2.5(ms - 1). The union bound (dashed-dotted) and the 

expurgated bound (dotted) are shown for ms = 129. The vertical 
dashed line shows the cut-off rate limit. 

In class B, a rate Äs = d/c convolutional scrambler is fol- 
lowed by a rate Rb = (d — c + b) /d component convolutional 
encoder. To simplify the description in this paper we consider 
only rate R = 1/2 LDC codes. 

In Fig. 1 lower bounds on the free distance of some dif- 
ferent codes are given as a function of the scrambler size M. 
It is worth to note that the bound grows linearly with M for 
the LDC (3,6)-codes of class A and only logarithmically for 
the other considered codes. Upper bounds on the burst er- 
ror probability, together with simulation results of iterative 
decoding, are presented in Fig. 2. For the asymptotic case 
we proved, that there exists an LDC (3,6)-code (LDC (2,4)- 
code, respectively) of memory size M, for which the burst 
error probability decreases at least as 0(1/M2) (0(1/M)) , 
M -¥ oo, for signal to noise ratios Eb/N0 > 2.63 dB (3.58 
dB). In analogy with conventional convolutional codes we can 
call the limit values of Eb/No cut-off rate limit. 
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Abstract — We show that low-density parity-check 
codes are random-like, and we comment this result. 

I. INTRODUCTION 

Gallager's low-density parity-check (LDPC) codes [1] at- 
tract renewed interest. MacKay has recently shown that 
LDPC codes are indeed good in a precise meaning [2]. 

Why does the low-density of some parity-check matrix re- 
sult in a good code, whereas most of its linearly equivalent 
matrices are not of low density? We show that such codes 
are actually random-like (RL) i.e., their weight distribution 
resembles that obtained in the average by random coding [3], 
an intrinsic property of the code, not of a peculiar matrix. 

II. DENSITY IN A SYSTEMATIC-FORM MATRIX 

Let a binary matrix M have n m-bit columns of the same 
constant weight j > 1, but otherwise random and mutually 
independent. Assuming M of full rank, it can be transformed 
into an equivalent systematic matrix Msys = [Q Im] (Im is 
the m-order unity matrix, the submatrix Q has n — m columns 
and m rows) using the Gaussian elimination process. 

Let fh denote the average density of the n — i columns not 
yet reduced to a single 1 after the t'-th step of the elimina- 
tion process. At its last step (the m-th), these columns make 
up submatrix Q so its density is pm. Interpreting p, as the 
probability of having a 1 at any given location, we obtain the 
recursion formula: 

P. = P.-i[l - 1/m + (1 + 2/m)p,_1 - 2p2,_1]. (1) 

Assume first that i may increase indefinitely. According to 
(1), the asymptotic value poo of the density is a root of the 
polynomial (1/2 - p)(p - 1/m). The right hand side of (1) is 
an increasing function of» for 1/m < p;_i < 1/2 so p,^ = 1/2 
provided po > 1/m, but the increase in p; is limited by the 
maximum number of steps m. For m approaching infinity, 
Pm thus approaches 1/2. For a finite value of m, pm is an 
increasing function of p0 = j/m. Even for the lowest possible 
value j = 2, numerical computation shows that.densities close 
to 1/2 are obtained even for moderate values of m (e.g., for 
m = 50 and m = 100, the computed density of Q with j = 2 
is 0.49715 and 0.49999966, respectively). If p0 = 1/2, then 
Pi = 1/2, V». Anyhow, Q is random insofar as M itself is so. 

Since the proof only involves average densities, it applies 
as well to non-constant column weight matrices provided no 
column weight is allowed to become less than 2. 

III. APPLICATION TO LDPC AND LINEAR RL CODES 

Let the parity-check matrix H\d of an (n, k) linear code be 
a matrix M as in the previous section, resulting in an LDPC 
code. The systematic matrix equivalent to i/jj is: 

HSys = [P     In-k\, (2) 
1 Retired 

where the superscript t denotes transposition. Then, P is 
random with density close to 1/2 if n — k is large enough, as 
will be assumed throughout. The corresponding systematic 
generator matrix is Gsys - [h   P], with P same as in (2). 

The actual implementation of easily decodable LDPC codes 
leads to additional constraints which may weaken the random- 
ness of P. Similarly, some constraints on the columns of P1 

will be needed for obtaining a large minimum distance (e.g., 
j = 2 results in dmi„ — 3, so larger j will be preferred). 

For designing an (n, k) linear binary code at random, we 
may choose each entry of its generator matrix G independently 
of the others with probability 1/2. With high probability, we 
thus obtain a matrix of rank k and effective length n (i.e., no 
column weight is 0) which generates a code with a distance 
distribution close to that obtained in the average by random 
coding. Assume furthermore that we demand that no column 
weight of G is less than 2. Then, applying the result of section 
II to G, submatrix P is random with density 1/2. Instead of 
the full matrix G, it suffices to randomly generate the nonunity 
submatrix P with density 1/2. But section II shows that we 
may as well restrict ourselves to generate at random a low- 
density parity-check matrix H\^ or generator Gy. 

For designing a random-like code, we have to replace truly 
random binary variables by pseudo-random ones. They have 
the average properties of random variables, but are generated 
by deterministic means which enable to fulfil the above con- 
ditions. We may still generate either the submatrix P with 
density 1/2, or one of the low-density matrices H\& and Gy. 
Doing so, we only obtain a weight distribution close to that 
of random coding i.e., a weakly RL code [3]. Additional con- 
straints may be needed to ensure a large minimum distance. 

IV. REMARK ON THE WEIGHT DISTRIBUTION 

The normalized weight distribution of the codewords obtai- 
ned by drawing G at random is Bernoulli of mean n/2. When 
P in the matrix GSys is drawn at random, almost the same 
result is obtained. The unity submatrix and P both con- 
tribute Bernoulli distributions, of means it/2 and (n — k)/2 
respectively, as if the information and parity vectors were in- 
dependent. Of course, they are not, but their relation is as 
complicated as to make them behave as if they were so. Spe- 
cifying a submatrix P involves k(n — k) binary choices, so the 
information and parity vectors are associated according to a 
specific rule among as many as 2*("~'!' possible ones. 
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Abstract — We show that for the case of a binary 
symmetric channel and Gallager's decoding algorithm 
A the threshold can, in many cases, be determined 
analytically. We further present optimal codes for a 
large range of rates. 

I. INTRODUCTION 

Let xo be the expected number of initial errors, i.e., xo equals 
the cross-over probability of the binary symmetric channel. It 
was shown by Gallager [1] that the expected number of errors 
(under the independence assumption) in the l-th iteration is 
given by the recursion 

xi = xo - z0p+(zi_i) + (1 - x0)p~{xi-i), (1) 

where 

p+f»    :=    A 

p-(x)    :=    A 

P(l ~ 2«) 

-p(l-2x) 
2 

)■ 

and where (A(x), p(x)) is the degree sequence pair. 
The threshold x J is the supremum of all xo in R+ such that 

II(XO) as defined in (1) converges to zero as / tends to infinity. 

II. EXACT THRESHOLDS 

Lemma 1 Let r denote the smallest positive real root of the 
polynomial p(x) := xp+(x) + (i - l)p~(x) and assume that 

• r}. A2P'(1) < 1. Then x'0 < XS := min{ ^ffXW)' 

We note that, although one can construct counterexamples, 
for most codes one has Xg = Xg. Table 1 summarizes thresh- 
olds of some standard regular codes for all of which one has 
io = ^o • 

III. OPTIMAL CODES 

Given the ease with which thresholds can be determined, one 
might wonder whether optimal codes for the given decoder 
can be found. This is indeed the case. In a nutshell, one 
can show that for a wide range of rates the optimal codes 
for Gallager's decoding algorithm A are left and right con- 
centrated, i.e., these codes have at most two non-zero (left 
or right) degrees and these non-zero degrees are consecutive. 
Fig. 1 shows the achievable thresholds as a function of the 
rate for the optimal concentrated degree sequences. The solid 
curve corresponds to the capacity formula r = 1 — A(io). The 
dashed curve corresponds to the optimal concentrated degree 
sequence pairs. Note that over the whole range the optimal 
concentrated codes can achieve roughly half of capacity. Our 

1This work was performed while the first author was a summer 
intern at Bell Labs. 
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T-(3,6) ~ 0.0394636562 
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2-v/2(-l+v/5) 
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Table 1: Thresholds for the binary symmetric channel 
and Gallager's decoding algorithm A for some standard 
regular codes. 
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Figure 1: The solid curve corresponds to the capacity for- 
mula r = 1 — h(xa) whereas the dashed curve corresponds 
to the optimal concentrated codes. 

main result now states that above a rate of roughly 2/5 these 
optimal concentrated codes are optimal. This implies that for 
these rates optimal codes and their thresholds can be found 
analytically. 

REFERENCES 

[1] R. Gallager, "Low-Density Parity-Check Codes," Cambridge, 
Massachusetts: M.I.T. Press, 1963. 

0-7803-5857-0/00/$! 0.00 ©2000 IEEE. 
203 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Solving Lattice Codebook Enumeration Problem 
for Generalized Gaussian Sources 

P. Loyer (pierre.loyer@space.alcatel.fr), J.M. Moureaux (moureaux@cran.u-nancy.fr), M. Antonini (am@i3s.unice.fr) 

Abstract — In the context of lattice quantization of a 
generalized gaussian source, with idependantly identically 
distributed signal values, a low complexity indexing 
algorithm, based on a geometrical approach, is proposed. 

I.  INTRODUCTION 

Signal vectors are distributed according to a probability 
f       „ \ 

\P density function (pdf) of the kind a exp -/£>l 
i=\ 

As a 

codebook, we take the intersection of surfaces of constant pdf 
with the cubic lattice. 

Recently, Chen and al. [Chen97] proposed algorithms for 
quantizing to the Zn lattice with a boundary well suited to this 
pdf. Unfortunately, when p is different from 1 or 2, enumerating 
or indexing lattice points reveals difficult [Chen97]. 

Our main contribution in this work is to propose a low 
complexity enumeration algorithm based on a geometrical 
interpretation and valid for values of p in the range 0 < p < 2 . 
This point of view offers various advantages and particularly it 
enables one to reduce the algorithm to the calculation of a few 
convolutional products. 

II. MATHEMATICAL PRELIMINARIES 

The Lp - norm of the vector x is Lp(x) = IW 
V'=i 

In 

the   subspace   of the   k  first   coordinates,   we   define   the 
Lp - sphere of center c and radius R 

Sk(c,R) = ^/Lp(c,x)<R\ Eq. 1 

and similarly the surface of the Lp -sphere  Sk(c,R). We will 

use as well the word sphere for both Sk(c,R) or Sk{c,R). The 
number p is omitted for the sake of simplicity of notations. 

The (generalized) theta-function of the lattice  Z"   is the 

generating function associated to the series   # S„ (kp) 

ö„(z) = J]#5„(A')z* 
4=0 

We have 

en+x{z) = 9„(z)9x(z). 

k=0...m 

Eq. 2 

Eq. 3 

This    recursive    formula    enables    one    to    derive    all 
theta-functions from   6\ (z). As a corollary, the term of index k 

of #n+] (z) is the convolutional product of the terms of 

3[(z) and G„(z) up to the index k. 
The coefficient of the generic term of the theta-function 

counts the number of points with an energy k = Rp . It is easy to 
derive an enumeration algorithm from a counting algorithm. 
Assuming that points are ordered some way, we associate as a 
number to a given point the number of points which preceed it. 
Here, we order points from inside to outside of spheres and from 
the bottom to the top of the last axis. 

III. PRINCIPLE OF CODING 

We will focus on the index calculation at a given energy. 

Any hyperplane xn = cte, \cte\ < R, an integer, cuts S,I(R)in 

a n-1 -dimensional sphere of radius    .ft^-lcte! 
K 

Thus, a 

sphere in dimension n can be seen as a stack of spheres in 
dimension n-\ along the last coordinate axis (say). This can be 
written as 

S„(R): (J   is^RP-\xH\p] + x„e„ 
*.=-kl 

Eq. 4 

Hence, the n-\-dimensional spheres being disjoined,  we can 
deduce a recursive formula 

#S„(R)=   Y#SHJ^Rp -\x„\" |. Eq.5 

IV. ALGORITHM 

Given   a   point   to   be   numbered    M(x\,...,x„).    Set 

_    v"1*  i   \p 

A/^ (*],...,*£) and  R£ = /,.   \xi\   ■ ^e want t0 compute N 

the index associated to M. This index appears to be the sum of 
the number of points below Mfc for every k. Thus we define a 
function named Number which counts the points below Mk in 
the space of the k first coordinates. It proceeds by adding up the 

cardinality of the layers under Mk . These cardinalities are 
computed by the means of theta-functions. 
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Abstract — An generalized notion of source divis- 
ibility or in other words successive refinement of in- 
formation with additional requirement of exponential 
decrease of error probability is considered. A con- 
dition necessary and sufficient for possibility of such 
successive refinement is established. 

I. INTRODUCTION 

The idea of source divisibility or successive refinement of 
information developed in works of Koshelev [l]-[3], Equitz and 
Cover [4], Rimoldi [5] and other authors. We generalize the 
concept adding the requirement of reliability. 

Let the probability distribution (PD) of messages of the dis- 
crete memoryless source {X} is P* = {P*(x), x e X}, where a 
finite set X is the alphabet of the source. Reproduction alpha- 
bets of receivers are X1 and X2 and the corresponding single- 
letter distortion measures are dk : X x Xk —* [0; oc,, k = 1, 2. 
Distortions dk(x.,xk) (k = 1,2) between source A-length mes- 
sage vector x and its reproducted versions xfc are considered 
as averages of per-letter distortions. 

•* E2,A2 

Fig. 1. Two-level communication system. 

A code (/,F) = (/i,/2,Pi,F2) for the system consists of 
encoders: fk : XN -> {l,2,...,Lk(N)}, k = 1,2, and de- 
coders: Ft : {1,2,..., MAT)} -» (X'f, 

F2 : {l,2,...,Li(N)} x {1,2, ...,L2(AT)} - (X2)N. 

The probabilities of the sets of source vectors x which are 
reconstructed (using a code (/, F)) out of the permissible dis- 
tortion levels Ai and A2 at each destination are denoted by 
ek(f,F,Ak,N) = ek,k=l,2. 

Let E = (EUE2), A = (Ai, A2). A pair of rates (RUR2) 
(Rk >0,k = 1,2) is called (E, A)-achievable for reliabilities 
Ek > 0, distortion levels Ajt > 0, k = 1, 2, if for every e > 0 
and sufficiently large N there exists a code (/, F), such that 

AT-1 logLfc(Ar) < Rk + e, ek < exp{-NEk} A; = 1,2. 

II. Divisibility of source with reliability 

Let P be a PD on X, Q = {Q{xi,x2\x)} be a conditional 
PD on X1 x X2 and Q(xk\x) be the corresponding marginal 
PD. Denote by D(P || P*) the divergence of PD P and P* 
and a(Ek) = {P : D(P || P*) < Ek}, k = 1,2. 

^his work was supported by INTAS Grant 94-469. 

Consider a function $(P, E, A), values of which are 
such conditional PD Q corresponding to a PD P that 
for a given A if P € ct(Ei) then Ep,Qdk(X,Xk) = 
£iiit P{x)Q(xk\x)d(x,xk) <Ak,xe X, xk eXk,k = 1,2, 

and if P e a(E2) — a(E\) then the last inequality holds only 
for A: = 2. Let M(P, E, A) is the collection of all such func- 
tions *(P, E, A) for given E, A and P. 

The rate-reliability-distortion function R(Ek, Ak),k= 1,2, 
which is the minimal achievable rate for one terminal source 
code ensuring reconstruction of messages with requirement of 
reliability Ek and distortion level A*, is known [6]: 

R(Ek,Ak) =    max min IPQ(X/\Xk). 
P€a(Ek) Q:EP,Qdk(X,Xk)<&k 

Definition. Successive refinement from a level (E\, Ai) to 
(E2, A2), for Ai > A2 and Ei < E2 is the (E, A)-achievability 
of the pair of rates (R(EU Ai), R(E2, A2) - R(Ei, Ai)). 

III. Necessary and sufficient condition 
Theorem.  For the considered multilevel system (Fig.   1) 

the successive refinement takes place iff there exist pairs of 
PD Pi 6 a(£i),Qi € A4(Pi,E,A) and P2 e a(Ei),Q2 6 
A4(P2,E,A), such that 

H^.A^/P.^IXAI
1
), R(E2,A2) = Ip„Q2(XAX2), 

and the random variables (RV) X,X2,X* form a Markov 
chain XP2 -> X2 —> X1, where Xp2 is the RV X with the 
distribution P2. 

Corollary. When the receivers requirements on reliability 
are absent, i. e. E\ = E2 —» 0, the result of Equitz and Cover 
from [4] follows. 
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I. INTRODUCTION 

This work addresses the coding of .finite binary sequences with 
a finite amount of decoding computational resources. In this 
setting, we propose a general coding methodology and discuss 
its convergence properties. 

II. RESOURCE BOUNDED COMPLEXITY DISTORTION 

Consider Shannon's traditional communication system where 
the source decoder is replaced by a universal Turing ma- 
chine ty. ty also denotes a recursive function from P = 

Bn = nr=i{^>!} *° J^n *f programs are also represented 
by binary sequences. By •^,t,a(p),p g P, we denote the 
execution of program p on t using less than t execution 
steps and less than s memory cells. In this setting, it is 
natural to measure the performances of the encoder with 
the Resource Bounded Complexity Distortion Function [3] 

defined by: C^'(x^) = K'"(^'(1"» where x» g ßn 

Ä"t,s(-) is the Resource Bounded Kolmogorov Complexity [1] 
and Qf^s(x") = argmin!,neBn.(jB(.rniSn)<£) Kt,3(y"), D be- 
ing a distortion constraint according to a distortion mea- 
sure d„(-,-). There is an interesting equivalence between 
CpS(x") and R(D), the Rate Distortion Function. For a sta- 
tionary ergodic source with recursive probability measure /i, 
limt,j_oo lim„_oo C^J(x") = R(ti), jt-almost surely [3]. The 
two limits in this statement show that this equivalence holds 
only for infinite observations and that Shannon's theory does 
not bound the computational power of the decoder. As a con- 
sequence, the coding of finite objects with decoding computa- 
tional bounds fits better in Kolmogorov's algorithmic frame- 
work and it becomes a recursive search for short descriptions. 

III. GENETIC ALGORITHMS 

We focus on time complexity and follow [4], to transform ev- 
ery program p into a new string of length n + c by stuffing a 
new "no operation" symbol nop to p. c is a constant such that 
Vx? € Bn, K'(x?) < n + c, where K\x^) = lim3_oo A'M(z")- 
Hence, the problem of encoding x" can be reduced to a search 
problem in an exponentially large search space excluding the 
possibility of an exhaustive search. Genetic Programming 
(GP) [4] is a very attractive solution to this but to the best of 
our knowledge its convergence properties are not well under- 
stood. Instead, we propose to use Genetic Algorithm (GA) 
search techniques to identify good representations. The use 
of the nop instruction allows us to modify the GP search into 
a well understood GA search where all programs have the 

same length. An evaluation metric, f(p), commonly called 
the fitness measure, is used to assign to each program p of 
the search space a score associated with the ability of p to 
represent x".    Let /(•) be the indicator function.    f(p)  = 

HD{P) > fl)gX*ffiP) + Wb) ^ DKn +c - '(P) + ]) 
where l(p) is the length of p (before stuffing symbols nop), 
D(p) = dn(xn, ^'(p)) the distance between its output and x". 
Dmax = sup „ „pB„{(f(x",j/")}, and ß > 0. This fitness 

ranks programs based on distortion only, if the search oper- 
ates outside BXn, a ball of radius D centered at x„. When 
it operates inside BXn, it ranks programs based only on their 
length. Clearly, elements inside BXrt have fitness greater than 
elements outside Bx„ ■ With this measure, a typical GA pro- 
cess uses three genetic search operators (crossover, mutation 
and reproduction) to evolve generations of programs [4]. 

IV. CONVERGENCE PROPERTIES 

The GA process can be modeled by a Markov Chain or more 
generally by a quadratic dynamical system. The probabil- 
ity to have an element with maximum fitness in the pop- 
ulation converges [2] and it can be shown that this proba- 
bility converges to 1 if the best individual in each genera- 
tion is always reproduced in the next. In general, conver- 
gence to 1 can be guaranteed but this is not a sufficient 
property. Another important point is the speed of conver- 
gence to justify the superiority of this approach to the ex- 
haustive search. It can be argued that the convergence is 
fast. To see this, denote by pt the distribution at generation 
t. Let poo be the stationary distribution. Define the mix- 
ing time [2] as r(e) = maxPo min{< :|| pti — p<x> ||< £,Vt' > t 
where || • || denotes the variation distance and i £ (0,1]. 
It can be shown [2] that for a one-point crossover system, 
T-(C) < (n + c)ln(n + c) + (n + c)In e_1. 
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Abstract — Karhunen-Loeve transforms (KLT's) 
are the optimal orthogonal transforms for transform 
coding of Gaussian sources. This well-known fact is 
usually established with approximations from high- 
resolution quantization theory. How high does the 
rate have to be for these approximations to be ac- 
curate? The minimum rate allocated to any compo- 
nent should be at least about one bit. (The aver- 
age rate per component may be much higher.) Does 
the rate actually have to be high for the KLT to be 
optimal? No, the KLT is optimal more generally. 
Two new, simple proofs of this fact are described. 
They rely on a scale invariance property, but not on 
high-resolution approximations or properties of opti- 
mal fixed-rate quantization. 

Let {a>(n)}n€Z+ be a sequence of independent, identically 
distributed (i.i.d.), zero-mean Gaussian random vectors of di- 
mension N with covariance matrix Rx = E[xxT\. In trans- 
form coding, an orthogonal linear transform T is applied to 
each source vector to get a vector of transform coefficients 
y = Tx. The transform coefficients undergo fixed- or variable- 
rate scalar quantization, yielding y = Q(y); a reproduction 
vector is obtained by inverting the transform: x = T~xy. The 
fidelity of reproduction is measured by the mean-squared error 
per component between the source vector and the reproduc- 
tion: D = N-1 E\\x - xf. 

A transform that makes the transform coefficients uncorre- 
lated is called a Karhunen-Loeve transform (KLT). The opti- 
mality of the KLT was first shown by Huang and Schultheiss 
under assumptions of optimal fixed-rate quantization and a 
mild, commonsense condition on the bit allocation. (Earlier 
work by Kramer and Mathews did not involve quantization 
and was not in an operational rate-distortion framework.) 
Optimality of the KLT can also easily be established under 
the assumption that each component quantizer has distortion- 
rate performance described by 

O 

where of is the variance of yx. This result relies on optimal, 
arbitrary-real bit allocation, which is unrealistic. 

At high rates, (1) is a good approximation of the perfor- 
mance of entropy-coded uniform quantization (ECUQ). The 
original intention of this work was to determine how high the 
rate has to be for the KLT to be optimal or nearly optimal 
when using ECUQ. Actually, there is no limitation on the rate 
for the KLT to be optimal. Also, through numerical calcula- 
tions, bit allocations based on (1) are close to optimal when 
each coefficient has a rate of at least one bit per sample. 

Limits of high-resolution analysis Lagrangian bit alloca- 
tion using (1) is easy because of the simple form of dDi/dRi. 
Where (1) is accurate, the optimal allocation of bits results 
in equal quantization step sizes for each transform coefficient. 

The accuracy of the derivative of (1) is assessed in Fig. (a). 
With ai = 1 and a\ = 1/4, optimal bit allocations are com- 
pared to those obtained with equal quantization step sizes in 
Fig. (b). 

Optimality of the KLT The optimality of the KLT holds 
much more generally than previously published results indi- 
cated. The new result below does not rely on optimal fixed- 
rate quantization or high-resolution quantization theory. 
Theorem [1] Assume that the distortion-rate performance 
of a scalar quantizer applied to a component with variance o2 

is D = a f(R). Then a KLT is an optimal transform, i.e., 
for any given maximum rate, it minimizes the distortion. 

We may assume that /(•) is nonincreasing; if Ri > R2 but 
f(Ri) > /(i?2), rate Ri can be replaced in any purportedly 
optimal solution by rate R2. /( ■ ) need not be convex. 

Proof 1: Let T be any orthogonal transform. Suppose that 
Ri bits are allocated to transform coefficient y,. Assume of > 
Oj implies Ri > Rf, otherwise, the distortion can be reduced 
by the permutation of T that swaps yx and y,. 

If the (i, j) component of Ry = TRXT
T is nonzero for some 

* / Ji the Jacobi rotation that zeroes this value does not in- 
crease the distortion. Repeating the process until convergence 
(the classical Jacobi algorithm for computing eigendecompo- 
sitions) yields a KLT at least as good as T. ■ 

Proof 2 (Telatar): This proof is based on elementary prop*- 
erties of majorization [2]. The problem is to minimize the 
function D = N~1'Ef'=1cr?f(Ri) by manipulating the of's 
through the choice of T. Let a = (of, a2, ..., o%) = 
diag(TRXT

T). For a Hermetian matrix, the diagonal elements 
are majorized by the eigenvalues, so o is majorized by a vec- 
tor A of eigenvalues of Rx. Now the majorization of a by A 
is equivalent to o being in the convex hull of the N\ permu- 
tations of A. Thus, we are left with minimizing D over the 
convex polytope defined by the permutations of A. In mini- 
mizing a linear function over a convex polytope, the optimum 
is always attained at a corner point. This establishes that the 
optimal transform is a KLT. ■ 
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Abstract — We derive the rate-distortion region for 
the two-channel multiple description problem on sta- 
tionary discrete ergodic and nonergodic sources with 
alphabets admitting an ergodic decomposition. The 
results do not provide a single-letter representation 
for the rate-distortion region on i.i.d. sources. 

I. INTRODUCTION 

In multiple description (MD) source coding with two channels, 
a source is described at two different rates, and each descrip- 
tion is sent over a separate channel to the receiver. Each 
channel has some probability of breaking down, in which case 
all of the data sent on that channel is lost. If only channel i 
is working, the receiver makes reproduction Xi with average 
distortion Di using the rate-ßj description sent on channel i. 
When both channels work, the receiver makes reproduction 
Xi2 with average distortion Du using the description pro- 
vided by combining the information on both channels with 
an additional rate-Ä« description. The descriptions of both 
X\ and X2 are available when decoding Xn; the additional 
rate fiu spent on X\2 can be treated as refinement and split 
arbitrarily between the two channels. 

Other authors have found upper and lower bounds on the 
achievable rate distortion region (the set of achievable vectors 
(R,D) =\R\,B.2,Rw,D\,D2,D\i)) for the two-channel mul- 
tiple description of an i.i.d. source. The bounds do not match 
for all sources. We present a new achievability theorem and 
matching converse giving the achievable rate-distortion region 
for both ergodic and nonergodic sources. On i.i.d. sources, our 
converse is similar to that of [1], and our achievability result 
uses an existing achievability result from [2]. We use a La- 
grangian approach and closely parallel [3]. 

Both the converse and achievability proofs make use of dis- 
tributions with a property that we call n-block conditional 
independence, defined in the following section. The use of 
distributions with this property arises from the observation 
that the bounds of [1] and [2] match when X\ and Xt are 
conditionally independent given X. While such conditional 
independence is not observed on a symbol-by-symbol basis, it 
arises naturally when using n-dimensional codes since XT,Xi 
and Xi2 are all uniquely determined by Xn. 

II. N-BLOCK CONDITIONAL INDEPENDENCE 

Let the elements of a one-sided infinite sequence Y be 
denoted   Yi, Yj,       We   divide   these   elements   into   n- 
blocks as Y(i) = Y(jLi\n+\- We say that distribu- 
tion q(ii2,Xi,x2|x) has n-block conditional independence 
if q(x12,x1,x2|x) = nrLi9?(xi2(fc),xi(fc),x2(fc)|x(fc)), and 
9?(Äi,ä2|a;n) = q2(x?\xn)q?(xZ\xn).  Define T(n) to be the 

■•This work was supported by a Pickering Fellowship, NSF grant 
CCR-9909026, Caltech's Lee Center for Advanced Networking, an 
F.W.W. Rhodes Memorial Scholarship, and a Redshaw Award. 

set of all distributions q(x12,x1,x2|x) with n-block condi- 
tional independence for a particular n, and let T — \J°°=, T(n). 

III. RESULTS 

Let A be a discrete source alphabet, and define A°° to be 
the set of one-sided sequences from A. Let p be a stationary 
source with alphabet A°° and marginal pn on An. Let A be 
a discrete reproduction alphabet, and let p : A x A —¥ [0,oo) 
be a nonnegative distortion measure. We assume that there 
exists a reference letter y* € A such that Epp{x, y) = d* < oo. 
Define p(xn,yn) = £"=1 p(x<,i/i). 

We denote an MD quantizer of blocklength n by Qn = 
(Qi>QaiQij)- For each S, Qs maps A" onto some finite 
or countable set of codewords C<J from A". We assume that 
the description of Jf"2 made by Q"j is a refinement of the 
descriptions X" and X% made by Q" and Q2 respectively, 
since these individual descriptions are available to the decoder 
when decoding X"2. The codeword descriptions are assumed 
to be uniquely decodable. 

The set 72-(p) of asymptotically achievable rate-distortion 
vectors (R, D) is, by a timesharing argument, a convex set, 
and can be entirely characterized by its support functional 

j(<*,ß,p) - iai(r<d)€fi(p)'Z,seM(asds +0srs), where M = 
{{1},{2},{12}}. 

The weighted rate-distortion function is defined as 

J{a,ß,p) = inf Jn(a,/3,p), 
n 

Jn(a,ß,p) =    inf   I[ V asEpnq7P(Xn,XZ) q6r(n) n ku 

Stationary Ergodic Sources:   When p is stationary and 
ergodic, the following result holds. 
Theorem 1: j(a,ß,p) = J(a,ß,p). 
Stationary Nonergodic Sources:   When p is stationary 
and nonergodic, but an ergodic decomposition {px : x € A°°} 
of p exists, then the following results hold. 
Theorem 2: J(a,ß,p) = J J(a,/3,px)dp(x). 
Theorem 3: j(a,ß,p) = J(a,ß,p). 
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On the Rate-Distortion Region for Multiple Descriptions 
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The problem of source coding with multiple descrip- 
tions (henceforth the multiple descriptions problem) was 
first posed by Gersho, Witsenhausen, Wolf, Wyner, Ziv 
and Ozarow at the 1979 IEEE Information Theory Work- 
shop. Since then, this problem has been extensively stud- 
ied. El Gamal and Cover [1] obtained an inner bound on 
the rate-distortion region for multiple descriptions, and 
showed that it is tight for the case of deterministic dis- 
tortion measures (see [1], Theorem 2). Ozarow [2] showed 
that this inner bound is also tight for the Gaussian source 
with the square error distortion. Furthermore, Ahlswede 
[5], Zhang and Berger [4] showed that the El Gamal-Cover 
region is tight for the case of no excess rate for the joint 
description. In the excess rate case, Zhang and Berger 
[4] showed by a counterexample that the El Gamal-Cover 
region is not tight in general. How to establish the rate- 
distortion region for multiple descriptions is still open. 
It is one of the well known hard problems in multiuser 
information theory. 

In this paper, we study the problem of source coding 
with multiple descriptions, which is described as follows. 
For a discrete memoryless source X, there are two en- 
coders Ei and E2, and three decoders Di, D2 and Do- 
The two encoders Ei and E2 describe the source X at re- 
spective rates Ri and R2. Decoder Di receives the output 
of encoder Ei only, and it can recover X with distortion 
D\. Decoder D2 receives the output of encoder E2 only, 
and it can recover X with distortion D2. Decoder Do re- 
ceives the outputs of both encoders Ei and E2, and it can 
recover X with distortion Do. We show that if decoder 
D2 (or Di) is required to recover a function of the source 
X perfectly in the usual Shannon sense, the El Gamal- 
Cover inner bound on the rate distortion region is tight. 
As a corollary, the Rimoldi [7] rate-distortion region for 
successive refinement of information, the Kaspi [8] rate- 
distortion function when side-information may be present 
at the decoder, and the El Gamal-Cover [1] achievable 
rate region for multiple descriptions with deterministic 
distortion measures can all be obtained. We have also 
obtained a new outer bound on the rate-distortion region 
which enhances the outer bound due to Witsenhausen 
and Wyner [3]. This new outer bound implies some inter- 
esting facts regarding the achievable rate-distortion vec- 
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tors. Finally, inspired by the problem of multiple de- 
scriptions with deterministic distortion measures studied 
by El Gamal and Cover [1], and the problem of symmet- 
rical multilevel diversity source coding studied by Roche, 
Yeung, Hau and Zhang (see [9] and [10]), we pose a multi- 
level diversity source coding problem for further studying. 
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Abstract — We show the asymptotic attainability of 
R(D) without assuming reference letters. 

I. INTRODUCTION 

To show the attainability of R(D) for a source X with a single 

letter fidelity criterion d(aN ,bN) = £^i=1 d(ai,bi), we usually 
assume a reference letter y* such that 

where we let kN   =   (N+l)/N2 and gN   =   (logN)/N. 
Let 

F(p,S\aN)    £    Pr {±ixw(aN,WN)<p 

and ±d(aN,WN)<6 \xN=aN\.    (5) 

E[d(Xt,y')] <oo. (1) 

Then, for p = ixw(xN, wN)/N + A, the right-hand side of (4) 
is bounded by 

1 
Its importance is readily understood by the fact that most of 
known source coding theorems, except1 possibly for [3] and [4], 
rely on it or on a stronger assumption of bounded distortion. 

We modify a scheme in [2] and prove a coding theorem 
for a stationary abstract-alphabet source only assuming an 
auxiliary source WN such that E[d(XN,WN)] < oo. 

<   kN-(Np + NA + l)+gN + kN\og 

and we have 

F(p+A,8\x») 
(6) 

E[R(XN,WN)]     <    kN[l(XN-WN) + NA + l)+gN 

+kNE 
/ 

log 
1 —dF(p,5\XN) •(7) 

II. RATE-DISTORTION FUNCTION 

The Nth-order rate-distortion function is the infimum 

RN(D)tinfLl(XN;WN) (2) 

over all WN such that (l/N)E[d(XN, WN)] < D. It converges 
to R(D) as N -> oo whenever X is stationary. 

III. VARIABLE-RATE VARIABLE-DISTORTION CODING 

We consider a reproduction code Cr consisting of infinitely 
many reproduction codewords ym 6 B , m = 1, 2, • • • , and 
an addressing code C« consisting of infinitely many binary 

6m, m = 1, 2, ■ • ■ . For each m, we let £m   =   |6m| so that 

(l+i)logm+i+logAT < £m < (l+i^logm+i+logN+l. 

(3) 
Then, £m satisfy Kraft's inequality and hence we can assume 
that C^ is uniquely decodable. 

Our encoding scheme is as follows. For given X = x , 
we first observe the outcome WN = wN and then search for 
the smallest rh satisfying d(xN,y^) < d{xN,wN). The trans- 
mitted codeword is then 6^ G Ca . 

Let D(xN,wN,CN) *d{xN,y%)/N and R{xN,wN,CN) = t^/N 
respectively. 

IV. CODING THEOREM 

For an auxiliary source WN, let YN be an independent replica 
of WN and construct a random ensemble of codes, C , by se- 
lecting reproduction codewords randomly and independently 
of each other. Let £ be the expectation with respect to C   . 

Given (XN,WN) = (xN,wN), letR(xN,wN) = £[R(xN,wN,CN)]. 
Then, from (3), we have 

F(p + A,6\XN) 

The last term is a two-dimensional Lebesgue-Stieltjes integral 
in (p, 8) £ (—oo, oo) x [0, oo) and, using a certain upper bound 
on it, we have 

Theorem 1  For N > 3, there exists C     such that 

E[D{XN,WN,CN)]    <    D    and (8) 

E[R(XN,WN,CN)]    <    RN(D) + 
21ogiV 

N 

i3 + 2loge + 3RN(D)   ,  13 + logJV 
+ xr + »TO •   {*) N W 

R(xN,wN)    <    kN log£[ rh] + gN + kN, (4) 

1 [3] is for fixed-distortion coding and [4] does not consider R(D). 

V. A REMARK ON TIME-CONTINUOUS SOURCES 
Berger discussed the extension of coding theorems to time- 
continuous sources in [1]. He argued therein that we must 
extend our mathematical tools, which have been proved 
to be useful for time-discrete sources, to time-continuous 
sources. Up to now, however, there seems to be little 
progress in the attempt to extend those mathematical tools, 
such as AEP (asymptotic equi-partition) theorems, to time- 
continuous sources. Our coding scheme proposed in this paper 
can be extended to time-continuous sources since no facts in 
ergodic theory is used. 
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Abstract — A communication system is considered, 
where messages of K correlated sources X\, • • •, XK are 
encoded by a common encoder and two secondary en- 
coders. At each receiver it is demanded: (i) to re- 
cover the messages of a part of the sources within 
given distortion levels, (ii) to keep secret the outputs 
of another part of the sources for receivers connected 
to the secondary encoders; and (iii) to disregard the 
information of the rest of the sources. It is required 
that for a given reliability E > 0 at all receivers the 
error probabilities of the blocklength N code do not 
exceed 2~NE. Inner and outer bounds on the region 
of achievable rates are established, depending on the 
reliability E and permissible distortion and secrecy 
levels. 

I. INTRODUCTION 

We study a problem of common encoding of K correlated 
sources for transmission to three destinations with respect 
to fidelity, security, and reliability criteria for the one-stage 
branching communication system shown in the figure. The 
problem is a generalization of the one studied by Yamamoto 

h T i x1   , 
1 1 

X h / Fo xu   , 
\ 

h E" x2   , 

Let X„, n = 1, N be a sequence of N discrete, indepen- 
dent, identically distributed random vectors with K compo- 
nents, which represent messages of the fc-th source at the rv- 
th moment, k = 1, K, n = 1, N, with values in the finite 
set Xk, k = 1,K, respectively. Let X\ x ... x XK = X, 
(Xx)N x ... x (XK)N = (X)N. For each receiver m = 0,1,2 the 
set of indexes of sources {1,..., K} is divided into three groups: 
{1,..., K} = QT U G? U SS1, G° = 0. We denote by small let- 
ters the corresponding values of random vectors and random 
variables, such that (xi,n,..., xK,n) = xn, (xk,i,..., Xk,N) = xfc, 
k = 1,K, (XI,...,XK) = x. Let X™n be the reconstruc- 
tion of the 7vth message of the fc-th source at the m-th re- 
ceiver, with values in a finite set X™, respectively, n = 1,N, 
k e GT, rn = 0,1,2, X?1 x ■■■ X X% = Xm. For mes- 
sages received at the outputs we use analogous notations, such 
38 \

X
I,TLT ■ ■ ixK,n) = xn > \xk,li ■ ■ ■ ixfc,iv) =xfc > k = 1,K, 

(x™,...,Xj?) — xm, m — 0,1,2. The common probability dis- 
tribution of the vector of messages of K sources is denoted by 

^his work was supported by INTAS Grant 94-469. 

P* = {P*{x),x € X}. Let d^-.XkX XJ? -> [0, oo), k = l,K, 
m = 0,1,2 be the corresponding distortion measures. Distor- 
tion for JV-vectors is defined by averaging. A code is a family 
of six mappings: (i) three encoding functions /o : {X)N —* 

{1,-,M„(J\0}, /i : {l,---,Mo(JV)} - {l,...,Mi(JV)}, 
h : {1, • • •, Mo(AT)} -» {1, • • •, M2(N)}, and (ii) three decod- 
ing functions Fm : {1, • • •, Mm(N)} -> {Xm)N , m = 0,1,2. 
Let A> = {x : Fo(/o(x)) = x°, d2(x*,x2) < A°k, k € Ö?}, 

An = {x : Fm(/m(/0(x))) =xm, C(xfc,xn < A^, * £ ST, 
rfT(xfc,x^) > Ar, k e G?}, m = 1,2. 

Security evaluation by distortion measures was first consid- 
ered by Yamamoto in [2] and later in [3]. 

Error probabilities of the code {f,F) are: em = 
1 — P*N(Am), rn = 0,1,2. For brevity we denote 
(A?1,-", AJJ1) = Am, (A0, A1, A2) = A. A triplet of non- 
negative numbers (Ro,Ri,R.2) is called (E, A)-achievable for 
E > 0, A^ > 0, k = X~K, m = 0,1,2, if for any e > 0 and N 
sufficiently large there exists a code (/, F) such that 

N'1 logMm{N) < Am + e, em < exp(-NE), m = 0,1,2. 

The inner and the outer bounds for the rates-reliability- 
distortions-partial secrecy region TZ(E, A) are constructed. 
When E —» 0, we obtain the inner and outer bounds for the 
corresponding rates-distortions-partial secrecy region TZ(A.). 

In a special case we arrive at the results of Yamamoto [1] 
for a bidirectional branching communication system, but our 
inner bound is larger. The results are consistent with the 
corresponding results from [2], [4], [5]. 

Remark: Some cases of coincidence of the inner and the 
outer bounds are pointed out. 
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Abstract — This paper presents a theoretical anal- 
ysis of a recent algorithm for fast correlation attacks, 
based on the use of convolutional codes [1]. 

I. INTRODUCTION 

Consider a binary synchronous stream cipher where a correla- 
tion has been identified between the keystream sequence and 
the output from one of the LFSRs. Then a correlation attack 
can be applied [2, 3]. 

Let the LFSR have length / and let the set of possible LFSR 
sequences be denoted by C. Clearly, \C\ = 2l and for a fixed 
length N the truncated sequences from C is also a linear [N, I] 
block code, referred to as C. Furthermore, the keystream se- 
quence z = Z\,Z2,...,ZN is regarded as the received channel 
output and the LFSR sequence u = «i, t*2, ■ • •, «N is regarded 
as a codeword from C. Due to the correlation between u; 
and Zi, we can describe each zt as the output of the binary 
symmetric channel, BSC, when w; was transmitted. The cor- 
relation probability 1 — p, defined by 1 — p = P{m = zi), gives 
p as the crossover probability (error probability) in the BSC. 

The algorithm proposed in [1] transforms a part of the code 
C stemming from the LFSR sequences into a convolutional 
code. The encoder of this convolutional code is created by 
finding suitable parity check equations from C. Here we can 
only give a brief sketch of the methods to create this convolu- 
tional code, for a complete description see [1]. 

Let us start with the linear code C stemming from the LFSR 
sequences. There is a corresponding I x N systematic gener- 
ator matrix GLFSR = (IiZ). Let gi be the ith column of 
GLFSR- Clearly, m = uogi, where uo is the initial state of 
the LFSR. Fix the memory of the convolutional to B. We are 
now interested in finding parity check equations that involve 
a current symbol u„, an arbitrary linear combination of the 
B previous symbols un-i, • • •, Un-B, together with at most t 
other symbols. Clearly, t should be rather small. Parity check 
equations for UB+I with weight t outside the first B + 1 po- 
sitions can then be found by finding linear combinations of t 
columns of G such that 

B 

Ui-L+.-.+Uif  = U0(g<! + . . . + gi,) = ^JcjUi-fB-j) +«;. 
i=l 

To recover the initial state of the LFSR it is enough to 
decode / consecutive information bits correctly. However, in 
our application there is neither a starting state nor an ending 
state. To deal with this problem we decode over J symbols 
where Js! + 10J5. Optimal decoding (ML decoding) of con- 
volutional codes uses the Viterbi algorithm to decode.  This 

estimate from the Viterbi algorithm is then used to provide 
the corresponding estimate of the initial state of the LFSR. 

II. THEORETICAL ANALYSIS 

The principle of the analysis is the following. We start by 
calculating the average number of parity check equations that 
we find by the proposed algorithm, which gives us the rate of 
the convolutional code. Let E[m] be the expected number of 
parity check equations. Then it can be shown that 

E[m] (V) 
2'" 

In our case,  we consider an  "embedded"  convolutional 
code.  Then the received symbol r„   corresponding to code- 
word symbol ul   is given as the sum of t keystream symbols, 

Zju + - - • + Zjti. If P(zi = m) = 1/2 - 8 it can be shown -(0 

that P(^i;, = vS>) ..«> 1/2 — e, where 

e = 2t~16t. 

'This work was supported by the Foundation for Strategic Re- 
search - PCC under Grant 9706-09; 

Given the number of equations and the error probability of 
the BSC we can use results from convolutional coding to get 
a bound on the burst error probability of the convolutional 
code. This burst error probability determines the probability 
that the proposed attack fails. Finally, we fix the rate to be 
R = Ro, where Ro is the computational cutoff rate. Based 
on these assumptions, Theorem 1 gives the required initial 
correlation for given length N, LFSR length /, and algorithm 
parameters B and t. 

Theorem 1   With probability 1 —pe,'pe < 1, the proposed at- 
tack succeeds if 

r^ 1    /41n2-2'-BN 

where the correlation probability is P(zi = Ui) = 1/2 + S, and 
pe <J2~B. 

The result of Theorem 1 agrees well with the simulation 
results presented in [1]. 
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Abstract — We show that fast correlation attacks 
based on Gallager decoding algorithm with parity- 
check equations of weight 4 or 5 usually provide better 
performance than all previously known attacks. 

I. INTRODUCTION 

In a binary additive stream cipher the ciphertext is ob- 
tained by adding bitwise the plaintext to a pseudo-random 
sequence s. This running-key is produced by a pseudo-random 
generator whose initialization is the secret key of the cipher. 
A classical method for generating a running-key is to combine 
n LFSRs by a Boolean function /. Correlation attacks intro- 
duced by Siegenthaler [5] exploit the existence of a correlation 
between the running-key and the output of one constituent 
LFSR for recovering the initialization of each LFSR sepa- 
rately. When the combining function is i-th order correlation- 
immune, this attack should examine (t + 1) LFSRs together. 

Proposition 1 Let t denote the maximal correlation-immu- 
nity order of the combining function f. Then there exists a 
subset oft+1 variables, {x,1 ,■■■, Xii+1}, and a Boolean func- 
tion g with t + 1 variables such that pg = Pr[f ^ g] < 1/2. 
Moreover, the lowest possible value of pg is achieved by the 

affine function g = ^ =1 Xij + e where e S {0,1}. 

Let <r denote the sequence produced by these (t +1) LFSRs 
combined by the affine function g. The running-key sequence s 
can then be seen as the result of the transmission of a through 
the binary symmetric channel with error probability p9. The 
sequence a corresponds to the output of a unique LFSR of 
length L whose feedback polynomial P is derived from the 
feedback polynomials of the constituent LFSRs. Any subse- 
quence of length N of a is then a codeword of an [N, L]-linear 
code C. The attack aims at recovering L consecutive bits of a 
from the knowledge of N bits of s. This can be done by decod- 
ing (sn)n<N relatively to C. Meier and Staffelbach attack uses 
the iterative decoding process due to Gallager [1] with parity- 
check equations of weight 3. Johansson and Jönsson recently 
proposed two new techniques for fast correlation attacks based 
on convolutional codes [2] and on turbo codes [3]. 

II. ATTACK BASED ON GALLAGER ALGORITHM 

The preprocessing step of the attack consists in generating 
all parity-check equations involving d bits of the sequence 
(o-n)n<N- They correspond to all polynomials Q(X)P(X) of 
weight d and of degree at most N, where P is the feedback 
polynomial of the LFSR generating a. The number of such 
equations involving the n-th bit of a is approximatively 

Using these parity-check equations we recover (cr„)n<N from 
{sn)n<N using Gallager soft-input/soft-output decoding algo- 
rithm [1]. Simulations provide an approximation of the mini- 
mum value of m(d) for convergence of the decoding algorithm: 

Kd 

m(d) ~ 
N' ■d-l 

(d-iy.2L 

m(d)> 
Cd-2(p) 

where Cd-2(p) is the capacity of the binary symmetric channel 
with error-probability pd-2 = f (1 ~ (1 — 2p)d_2), Kd ^ 1 if 
d > 4 and K3 ~ 2. 

III. COMPARISON WITH PREVIOUS ATTACKS 
The attack presented in [2] uses a convolutional code with 
memory B. This code is defined by all equations involving an 

and d — 1 bits of a outside positions n — 1,..., n — B. The 
number of such equations is approximatively 

Nd~12B 

mB{d) = (d-mL' 
The attack then consists in decoding a sequence r such that 
Pr[r„ ^ o-n] = pd-x- Viterbi algorithm then converges if 

K' 
mB{d) < 

<7d-i(p) 
-1 

xalso with Ecole Polytechnique - 91128 Palaiseau Cedex - France 

where K' slightly depends on L (K' = 3 for L = 21 and 
K' = 2.5 for L = 40). It follows that this attack with d = 3 
achieves the same performance than Gallager algorithm with 
d = 4 only for high values of B. This makes the decoding step 
intractable due to the complexity and the memory require- 
ment of Viterbi algorithm. The only advantage of the attack 
based on convolutional codes is the lower complexity of the 
preprocessing step; but this part is performed once for all. 

As an example, for L = 40 and N = 400,000, the maximum 
error-probability achieved by our attack with d = 4 is p = 
0.44. In this case, the preprocessing step and the decoding 
step take respectively 9 hours and 1.5 hour on a DEC alpha 
workstation. For these parameters, the attacks described in [2] 
and [3] respectively achieved p = 0.40 with d = 3 and B = 15 
and p - 0.41 with d = 3, M = 8 and B = 13. 
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Abstract — A powerful family of algorithms for the 
fast correlation attack [1] with significantly better per- 
formance, assuming the same inputs, than previously 
reported methods, is proposed. The family is based 
on the iterative decoding principle in conjunction with 
a novel method for constructing the parity-checks. 

Let tin be the set of all considered parity-check equations 
related to the n-th parity bit of an (N, L) punctured simplex 
code (N, L) codeword defined as follows: 
Each parity-check equation is the morf2-sum of the n-th row 
of the parity-check matrix H = [PT, IN-L] and at most W 
other rows, providing that values on the positions i = B + 
1,5 + 2,..., L, are all zeros, where B < L is a predetermined 
parameter, and where the m-th row of the matrix PT is equal 
to the first row of the m-th power of the LFSR L x L state 
transition matrix . 

Theorem 1: For any (N,L) punctured simplex code, an ap- 
proximation on the expected number ft of parity checks per 
parity bit, assuming each parity check includes only a certain 
subset from B fixed bits among the L information bits, and 
no more than W + 1 other check bits, is given by: 

-L+B £ N -L-l 

where 0<B<La.ndl<W<L-B. 

In the following, the main steps of the family of algorithm 
are summarized (see [3] for a complete description). 

1. Hypothesis setting 
From the set of all possible 2 binary patterns obtained 
from the first B information bits, select a previously not 
considered pattern x\, £2, ...,XB- If no new pattern is 
available, terminate the procedure. 

2. Iterative decoding 
Identify the sets tin of parity-check equations, n = L + 
1, L+2, ..., N*, and choose the desired iterative decoding 
of the (N*, L)-code codeword \z\, 22,..., ZN'\ using the 
following iterative decoding approaches: 

• Bit Flipping (BF), 

• A Posteriory Probability (APP), 

• Belief Propagation (BP), 

• Belief Propagation Based Bit Flipping (BP-BF). 

Generate  an  estimation   of the codeword  parity  bits 
XL + l, XL + 2, ...,XN'. 

3.   Final correlation check 
Using the sequence £L+I , £i+2, ...,IAT«, perform infor- 
mation set decoding. 

The performance of the previous family of algorithms is ex- 
perimentally considered when the LFSR characteristic poly- 
nomial is 1 + u + u3 + ub + u9 + «" + u12 + u17 + u19 + w21 + 
u2b + u27 + u29 + u32 + it33 + u38 + ui0 (i.e. assuming the same 
example as was considered in [2]). 
Figure 1 depicts the percentage of error free information sets 
obtained for different values of crossover probability p with 
the employed types of algorithms and N* = 4096. 

'This work was supported by JSPS Grant RFTF 96P00604 and 
by NSF Grant CCR-97-32959. 

0.42 O.M 
BSC crossover probability p 

Figure 1: Percentage of error free information sets as 
a function of the BSC crossover probability p for the 

(4096,40) truncated simplex code with B = 22 and 

V7+l = 3. 
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Abstract — We examine the implications of us- 
ing a Low Density Parity Check Code (LDPCC) in 
place of the usual Goppa code in McEliece's cryp- 
tosystem. Using a LDPCC allows for larger block 
lengths and the possibility of a combined error cor- 
rection/encryption protocol. 

I. INTRODUCTION 

If one wishes to use a LDPCC in the McEliece system, there 
are several ways to proceed. An efficient way seems to be the 
following: 
As usual, suppose Bob wishes to send Alice a secure message 
over an insecure channel. Alice chooses a random (n — k) x n 
sparse parity check matrix, H, for a binary LDPCC, C, that 
admits decoding of any pattern of t or fewer errors with, say, 
belief propagation. She also randomly chooses sparse invert- 
ible matrices S € GL(k,F2) and T 6 GL(n -k,F2). She then 
calculates H := TH and has keys: 
Public Key: (H,S,t) 
Private Key: {H,T) 
Now, if Bob wants to send Alice the message m, he first com- 
putes the generator matrix, G, for the code C in row reduced 
echelon form, and then computes G = S~1G. He then applies 
the encryption map: 

m i-)- mG + e =: y 

where e is a random error vector of weight at most t. Alice's 
decryption procedure is then as follows: Since G and G define 
the same code, C, she can use H to decode the word y to 
mG — mS~1G. Since G is in row reduced echelon form, this 
reveals mS~l in the k coordinates of mG in which G has 
only one nonzero entry (i.e., the systematic coordinates of G). 
Right multiplication by S finally recovers Bob's message m. 
This seems relatively efficient because the keys consist of 
sparse matrices, allowing considerable compression. Hence, 
one could have key sizes comparable to those of a (1024, 512) 
McEliece system, but for a code of size (16384, 8192). 

II. SECURITY 

The security of this system is based on two observations: 

• If T is chosen with the proper parameters, H will most 
likely not admit decoding with, e.g. belief propagation, 
for the correction of up to t errors. 

• It seems difficult to recover a matrix, H', equivalent to 
H that admits decoding with, e.g. belief propagation, 
for the correction of up to t errors. In particular it seems 
difficult to recover the specific degree structure of the 
parity check matrix H. 

However, a simple observation shows that if T is chosen too 
sparsely, this latter task is not difficult. In what follows, if 
u = (tii,..., un) and v = (vi,...,vn) are two vectors over 
F2, u * v := (u\Vi,... ,u„vn) denotes the intersection of the 
binary vectors u, v. This is a vector whose support is exactly 
supp(u) n supp(w). Equivalently, it can be considered as the 
'AND' of u and v. 

Let h\,... ,hn-k denote the row vectors of H and 
hi,... ,hn-k the row vectors of H. Notice that the hi are 
sparse vectors and each hj is a linear combination of the hi. 
Furthermore, if T is sparse, each hj = hj1 + • • • + hjw. with 

the Wj small. That is, each hj is a linear combination of a 
small number of rows of H. If the Wj are too small (i.e., T 
is too sparse), then with reasonable probability one has that 
hj * hj„, = hjm for many of the 1 < j <n — k, 1 < jm < 3wr 

In this case, since each hjm appears in several of the hj, we 
can, with non-negligible probability, find 31,32 such that 

3\ 32   ~~     * 

for some i. Thus, in time k(k—1)/2, we can recover some of the 
original rows of H by computing the intersection of all pairs of 
rows, checking to see if the intersection is in Rowsp(H). Hav- 
ing found some of the original rows, we can determine, with 
high probability, which of the hj have these rows as compo- 
nents in their linear combinations. We thus subtract each 
original row from the hj that have many nonzero coordinates 
in common with it. Then go back to computing the intersec- 
tion of all pairs of rows again, and keep repeating until we've 
found sufficiently many original rows to allow decoding. 

III. CONCLUSION 

Empirical evidence has shown this attack and some variants 
of it, to be effective enough that we consider this system in- 
secure unless T is chosen to be dense. Thus, there seems to 
be no advantage to using a parity check matrix as the public 
key. However, this system is still of possible interest in the 
following case: If one is using a LDPCC for error correction, 
some security can be added at very little extra cost. 
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Abstract — This paper presents a wide class of sig- 
nal processing algorithms which employs a nonlinear 
operation in the time domain and is capable of pro- 
viding good power/bandwidth tradeoffs with OFDM 
transmission. A suitable analytical approach is pro- 
posed for efficiently evaluating performances within 
this class of algorithms, and several performance re- 
sults are shown and discussed in detail. 

A well-known, major drawback of conventional OFDM 
schemes (Orthogonal Frequency Division Multiplexing) is 
their high PMEPR (Peak-to-Mean Envelope Power Ratio), 
leading to amplification difficulties: in order to avoid the out- 
of-band radiation levels which are inherent to nonlinear dis- 
tortion, power amplifiers for OFDM transmission are required 
to have strongly linear characteristics and/or a significant in- 
put backoff has to be adopted. Therefore, a reduced power 
efficiency is the price to pay for a high bandwidth efficiency. 

In this paper we propose a technique to reduce the en- 
velope fluctuations with OFDM transmission, while preserv- 
ing low out-of-band radiation levels and small inband "self- 
interference" effects. This technique is related to those pro- 
posed in [l]-[3] but introduces further flexibility. The sig- 
nals to be transmitted are generated as follows: an aug- 
mented block {S'k; k = 0,1..., TV' - 1} is obtained by adding 
TV' - TV zeros to the data block {Sk; k = 0,1..., TV - 1}, 
where TV' = TVM, for a selected integer M; the IDFT of 
this frequency-domain block is computed, leading to the block 
{s'n;n = 0,1... ,TV' — 1}; each time-domain sample, s'n, is 
submitted to a nonlinear operation, leading to the modified 
sample s£ = fc(\s'n\)exp(jaig(s'n)); a DFT brings the "non- 
linearly corrected" block back to the frequency domain, where 
a shaping operation is performed by a multiplier bank with 
selected coefficients Gk, k = 0,1,..., TV' - 1, so as to obtain 
the final frequency-domain block {S^F; k = 0,1,..., TV' - 1}; 
etc. For a given input block size TV, a specific algorithm can 
be designed through the selection of M, /c() and {Gk,k = 
0,1,...,TV'-1}. 

Adding TV' — TV zeros to each initial frequency-domain block 
and computing the IDFT of the augmented block is equiva- 
lent to oversampling, by a factor M = N'/N, the "OFDM 
burst" which should directly correspond to the case where 
M = 1. The nonlinear operation /c() corresponds to a band- 
pass memoryless nonlinearity, characterized by an "AM/AM 
conversion" function /c(-) and an "AM/PM conversion" func- 
tion equal to zero, and can be used to reduce the envelope fluc- 
tuations and the PMEPR values. The subsequent frequency- 
domain operation using the set {Gk',k = 0,1,... ,TV' - 1} 
can provide a complementary filtering effect. For instance, by 
adopting Gk = 1 for the TV "data subcarriers", and Gk =0 for 
the remaining TV' — TV ones, we completely eliminate the out- 
of-band distortion effects of the nonlinear function /c(); how- 

ever, this leads to some regrowth of the envelope fluctuations. 
A suitable M > 1 reduces the in-band "self-interference" 
which is due to the nonlinear distortion inherent to /c(-) (e.g., 
an "envelope clipping" function), as compared with that con- 
cerning M = 1. 

Whenever the number of subcarriers is high, conventional 
OFDM signals are known to exhibit a Gaussian-like nature. 
One can take advantage of this for evaluating performances 
by analytical means, so as to find an appropriate triple choice 
(M, /c() and {Gk; k = 0,1,..., TV' - 1}) for any given appli- 
cation. All we really need in our case is to use well-established 
results on bandpass memoryless nonlinearities with Gaussian 
inputs [3, 4]. In this paper, we employ these results to de- 
rive a suitable characterization of the frequency-domain block 
{Sk ;k = 0,1,...,TV' — 1} which replaces the frequency- 
domain block {Sk; k = 0,1,..., TV-1} of conventional OFDM. 

By assuming that E[Sk] = 0 and £[&££,] = 2o§ for 
k = k' and zero otherwise, it is shown that the transmit- 
ted frequency-domain samples can be decomposed into two 
uncorrelated terms, a "useful" term and a "self-interference" 
term, as follows: SfF = aS'kGk + DkGk, where a = 
E[\s'n\fc(\s'n\)]/E[\s'n\

2}. It is shown that E[Dk] = 0 and 
E[DkDl,] = 0 for k # k'; when M = 1, E[\Dk\

2} is shown 
not to depend on k, but this is no longer true when M > 1. 
Moreover, for any k, Dk exhibits quasi-Gaussian character- 
istics under the 'high TV' assumption mentioned above (say 
TV>64). 

The characterization of the transmitted frequency-domain 
block, including the appropriate values for J5[|.Dfc|2], is then 
used for both power spectrum and BER computations. The 
main issue here is to evaluate the impact of the transmitted, 
noise-like, "self-interference" on both bandwidth efficiency 
and power efficiency. For this purpose, our analytical ap- 
proach provides quite accurate results through a modest com- 
putational effort. 

A set of performance results is presented and discussed in 
detail, showing that good power/bandwidth tradeoffs can be 
achieved within the proposed class of algorithms. 
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Abstract — The peak-to-average power ratio 
PAPR(C) of a code C is an important characteristic 
of that code when it is used in OFDM communica- 
tions. We establish bounds on the region of achiev- 
able triples (R, d, PAPR(C)) where R is the code rate 
and d is the minimum Euclidean distance of the code. 
We prove a lower bound on PAPR in terms of R and d 
and show that there exist asymptotically good codes 
whose PAPR is at most 8 log n. We give explicit con- 
structions of error-correcting codes ■with low PAPR by 
employing bounds for hybrid exponential sums over 
Galois fields and rings. 

I. INTRODUCTION 

A major barrier to the widespread acceptance of OFDM 
is the high peak-to-average power ratio (PAPR) of uncoded 
OFDM signals. By appropriately coding the OFDM signals, 
this PAPR can be reduced. It is also possible to introduce 
error-correction capability by using such a code. Here we in- 
vestigate the fundamental trade-offs between the parameters 
R, d and PAPR of a code C. 

Our codewords c € C are complex vectors of length n with 
||c||2 = n. The OFDM signal corresponding to c as a function 
of time t is the real part of: 

&(*) = ( Yl c> exp(-27r/(/o + ifs)t) j 

for 0 < t < 4-, where /o is the carrier frequency and fs is 
the bandwidth of each tone. We define PAPR(c), the peak- 
to-average power ratio of the OFDM signal corresponding to 
c, to be 

imax[ft(Sc(i))f. 
n    t 

We define PAPR(C) = maxc6C(PAPR(c)). 

Statement of The Problem: What is the achievable region 
of triples (Ä,cZ, PAPR(C))? 

II. BOUNDS ON THE PAPR OF CODES 

We define the curve Q C Cn by 

Q = {(exp(27rjC<), • • • , exp(27rj(C + n- l)t)) : 0 < t < 1} 

where C = fo/fs- Typically, £ >> 1. There is a geometric 
interpretation to the PAPR of a code, showing that the closer 
a code lies to the curve 0. U —H, the larger its PAPR: 

Lemma 1  Let d* denote the minimum Euclidean distance be- 
tween the codewords of C and the points of O U —fi.   Then. 
d* < y/2n and 

PAPR(C) = n{\ - Sf 

where 5 — dl/ln. 

Using the above lemma together with a packing argument, 
we can prove a lower bound on PAPR(C) as a function of 
R and d. This bound is rather complex to state and we do 
not include it here. We also have the following analogue of 
the Gilbert-Varshamov bound, establishing a region of pairs 
(R,d) in which asymptotically good sequences of codes with 
low PAPR are guaranteed to exist: 

Theorem 2 Let R > 0 and A > 0 be such that 

2A(1 
A 

)<1. 

Then for all sufficiently large n, there exists a code C of length 
n, rate R and minimum Euclidean distance d = v2An with 
PAPR(C)<&logn. 

III. CODES FROM EXPONENTIAL SUMS 

We can explicitly describe families of codes with PAPR 
growth of order (logn)2, where n is the code length. The 
families we consider are length n = 2m, 2e-PSK codes and 
are derived from special cases of what we call lengthened trace 
codes. The lengthened trace codes are linear over Z-2« and 
their codewords can be roughly characterised as having a rep- 
resentation as the trace of a polynomial function evaluated on 
a Galois field (e = 1) or Galois ring (e > 1). The technique 
we use to bound PAPR applies to any code whose DFT is 
uniformly small. We use bounds for hybrid exponential sums 
over Galois fields and rings to bound the DFT coefficients of 
the code families. As a sample of our results we state: 

Theorem 3 Let Ct be the length n = 2m code obtained by 
adding to the dual of a primitive t error correcting BCH code 
the complements of all codewords and then an overall par- 
ity check. Then any non-constant codeword of the {+1,-1}- 
valued version of Ct has PAPR at most 

v2/21og2, N2 

(2t - iy -(m + l) + 3 

Similar results can be obtained for weighted degree trace codes 
and the quaternary versions of the Kerdock and Delsarte- 
Goethals codes using bounds for hybrid exponential sums over 
Galois rings due to Shanbag, Kumar and Helleseth. None of 
our families is asymptotically good, however. The explicit 
construction of such families with low PAPR remains an open 
problem. 
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Abstract — The error performance of various 8-VSB 
TCM decoders for reception of terrestrial digital tele- 
vision is analyzed. In previous work, 8-state TCM de- 
coders were proposed and implemented for terrestrial 
broadcasting of digital television. In this paper, the 
performance of a 16-state TCM decoder is analyzed 
and simulated. It is shown that not only a 16-state 
TCM decoder outperforms one with 8-states, but it 
also has much smaller error coefficients. 

I. INTRODUCTION 

The Digital Television standard [1,2] describes a broadcast- 
ing system designed to transmit high quality video and audio 
as well aas data over a single 6 MHz channel. In order to 
maximize service area, the terrestrial broadcast mode incor- 
porate both an NTSC rejection filter (in the receiver) and 
trellis coding. When the NTSC rejection filter is activated in 
the receiver, a trellis decoder for the combination of a four- 
state trellis encoder and the filter is used. In the paper, the 
error performance of various TCM decoders is studied, with 
and without the NTSC rejection (1-D) filter. In the previous 
results [1,2], a combined 8-state trellis decoder is employed 
for the case with NTSC rejection filter. We propose a 16-state 
TCM decoder and analyze and simulate its error performance. 
The results show that the error performance improves, with 
respect to 8-state TCM decoders, at the cost of doubling the 
memory requirements. In return, a 16-state TCM decoder has 
much smaller error coefficients and does not require precoding 
to operate. 

II. ENCODER MODEL FOR ATSC TERRESTRIAL 

BROADCASTING OF DIGITAL TELEVISION 

In the ATSC terrestrial broadcasting system specification, 
the 8-VSB transmission subsystem employs a rate-2/3 4-state 
Ungerboeck trellis code, with the uncoded bit precoded. The 
4-state feedback encoder and the bits-to-8 PAM symbol map- 
per are shown in Fig. 1 (a). The NTSC interference rejection 
(comb) filter is a one tap linear-feed-forward (1-D) filter. Its 
purpose is to reduce the analog NTSC interference that is 
caused by a carrier tone. However, the received signals are 
also modified. The 8 signal levels are converted to 15 lev- 
els. While providing needed co-channel interference benefits, 
it is well-known that the (1-D) filter degrades white noise per- 
formance by 3 dB. This is because the filter output is the 
subtraction of two full gain paths and, as white noise is un- 
correlated from symbol to symbol, the noise power doubles. 
There is an additional 0.3 dB degradation due to error prop- 
agation introduced by precoding. 

HI. APPROXIMATED ERROR PERFORMANCE ANALYSIS 
'This work was supported by LSI Logic Corp. 

In the approximations presented in this section, we inter- 
pret the trellis code with decoding depth k, as a terminated 
zero-tail (ZT) (3k, 2k - m) block code [3]. (For the four-state 
trellis decoder, m — 2, while for 8- and 16-state trellis de- 
coders, m = 3 and m = 4, respectively.) When plotting 
the expressions with respect to the energy per bit-to-noise 
ratio (Eb/No), a rate correction of RL (dB) is applied, to 
account for the rate loss due to trellis termination, where 
RL = (2k - m)/2k. With the NTSC interference rejection 

filter in the receiver, the number of states in the decoder in- 
creases, due to a signal constellation of increased dimension- 
ality. In the guide to the ATSC system[2], a (1-D) filter is 
recommended that increases the number of signal levels from 
8 of the original 8-PAM constellation to 15 at the output of 
the filter. To analyze the performance of the eight-state trel- 

lis decoder, a truncated union bound is computed using the 
technique of [3] as follows. A polynomial state transition ma- 
triz U9X) for the 8-state trellis is used, with branch weights 
equal to Xd, where d denotes the squared Euclidean distance 
(SED) with respect to the all-zero branch and X is an inde- 
terminant. For each set of three parallel branches between 
two states i,j, an element Kij(X) in matrix II is a poly- 
nomial iti,j(X) = Xdl + Xd* + Xd3, where djtj = 1,2,3, 
denotes the SED from the branch output to the all-zero se- 
quence output. Using symbolic mathematical software, the 
value of the fc-th power Uk(X) is computed and the coef- 

ficients of K^\(X) yield the weight distribution of the ZT 
(3k, (2k — 3)) block code. For the 8-state trellis decoder, with 

k = 54, 7r<?o4)(*) = 5696X56 + 1520X48 + 404X40 and for 16- 

state trellis decoder, irffi (X) = 840X58 + 248X48 + 101 Jf40. 
As shown above, the error coefficients for the MSED for the 
16-state trellis decoder is much smaller than that of 8-state 
trellis decoder. 

IV. CONCLUSION 

The simulation and approximated error performance shows 
that a TCM decoder with 16-states outperforms one with 8- 
state by approximately 0.33 dB at a BER of 10~s. Finally, 
while the 8-state decoder must use a precoder for the uncoded 
bit to be able to decode properly, the proposed 16-state de- 
coder does not and has a better error performance. 
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Abstract — Channel capacity of OFDM systems 
with digital clipping is discussed, under the as- 
sumption that the distortion terms are Gaussian- 
distributed. 

I. INTRODUCTION- 

One of the major problems in the orthogonal frequency 
division multiplexing (OFDM) technique is the high peak-to- 
average power ratio (PAPR) property of the signal waveform, 
and digital clipping may be employed in order to reduce the 
PAPR before amplification. The performance of the clipping 
in terms of the PAPR reduction capability and the degrada- 
tion in the bit error rate is discussed in e.g., [1-3]. Without 
coding, clipping may be a severe source of the performance 
degradation. However, in most applications of the OFDM, 
channel coding may be applied so as to reduce the required 
energy to achieve the targeted bit error performance. There- 
fore, it is important to study the performance of the clipped 
coded OFDM signals. In this paper, the channel capacity of 
the clipped OFDM signals is derived and evaluated. 

II. SYSTEM MODEL 

Let N be the number of subcarriers and J be an over- 
sampling factor of the OFDM signals before clipping. Thus, 
NJ-point IDFT will be used to construct the OFDM signals. 
In order to efficiently reduce the PAPR of the OFDM signals, 
the clipping should be performed with oversampling [1,3]. We 
assume that the clipping is followed by the rectangular fil- 
ter such that the OFDM signal is tightly band-limited. As 
a clipping model, soft envelope limiter is considered, where 
the clipping ratio 7 is defined as 7 = Amax/y/P£ta' with 
Amax and P/°ta! being the maximum permissible amplitude 
and the average power of the OFDM signal before clipping, 
respectively. 

III. CHANNEL CAPACITY 

By the central limit theorem, the distribution of distortion 
components of the clipped OFDM signal can be shown to ap- 
proach Gaussian for large N. Let P;„[fc] and P0ut,s[k] denote 
the average (useful) signal power of the fcth subcarrier before 
and after clipping, respectively. Let Pd[k] also denote the av- 
erage distortion power of the A;th subcarrier. Then, without 
any constraint in the input signal except the total input power 
J2k PinV"] = Pinta\ the average channel capacity per subcar- 
rier will be given by 

N-l 

C = -jr max V log2(l + SNDRt)    bits/subcarrier.     (1) 

1This work was supported in part by the Research Fellowship 
from the Japan Society for the Promotion of Science for Young 
Scientists. 

The inverse of the signal-to-noise-plus-distortion ratio of the 

fcth subcarrier is given by 

SNDR^1 ■ + 
1 Pd[k]               

P««t,.[*] ^ WSNRc \Pin[k] "   >o«t,.[fc] 

C  ptotal 
) £12— + 

\pi«[fc] 

Pttotal 
d 

(2) 

total is the total average distortion power and SNRC = 
PoZt"-/Praise is the channel signal-to-noise ratio, with P0'°t°! 

and Pnotse being the total power of the output signal and 
AWGN at the receiver, respectively. Note that since the rect- 

angular filter is employed, P„Z\a   = St=o ^»«Mt^l + ^d° ° 

Since Pd[k] is a function of all the Pin[k], the maximization 
of (1) seems quite involved. Therefore, we further assume 
the constraint that the power allocation of each subcarrier is 
equal, i.e., Pin[k] = Pf°ta'/N for all k. Then, (2) reduces to 

1      1        1   L . 1 

where Pd 
-ytotal 

and Pl
d
otal 

SNDR71 = 
SDR*      SNRc 

1 + £ N ^ SDRfc 
k=0 

(3) 

where the signal-to-distortion ratio of the fcth subcarrier is de- 
Poui^M   wnjch can be easily calculated as fined as SDRt = PdM 

a function of 7 by use of infinite series expansion of the au- 
tocorrelation function of the input signal [4]. As a numerical 
example, Fig. 1 shows the asymptotic value of the average 
capacity, for SNRc -¥ 00 without constraint on the input sig- 
naling and N = 512. The derivation of channel capacity of 
other cases such as QPSK or 16QAM signaling is straightfor- 

ward. 
10 

0 0.5 
Clipping Ratio  y 

Fig.l Asymptotic average channel capacity, N = 512. 
(The case 7 = 0 corresponds to hard envelope limiter.) 
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This paper describes a construction technique for q- 
ary Turbo Codes that computes good recursive 
systematic convolutional q-ary constituent codes with 
constraint length v < 5 for q = 2m, m = 2, 3, and 4. 
The construction technique, based on the algorithm in 
[1], determines the codes with maximum dj for i = 2, 
3, and 4 and minimum codeword multiplicity, where 
d, is the minimum weight of all code sequences with 
input weight i. Due to the large number of encoder 
states involved, standard weight distribution 
calculations are difficult. The construction algorithm 
employed is a computer search that generates all 
possible terminating sequences of weight 2, 3, and 4 
to use as inputs to the set of allowable encoders. The 
best codes with maximum dj and minimum 
multiplicity are determined. The performance of 
these Turbo codes using M-ary (M = 4, 8, 16) non- 
coherent modulation (FSK) is computed by 
determining performance bounds assuming the 
parallel concatenation of two constituent codes [2]. 
M-ary FSK with q-ary Turbo Coding can provide an 
efficient modulation/coding solution. The emphasis 
is on matching the modulation alphabet with the 
Turbo coding alphabet to implement simple 
modulation / coding approaches that perform at a 
lower required Eb/N0 and greater bandwidth 
efficiency than current coding approaches using these 
modulation techniques. 

The code construction algorithm consists of searching 
all possible feedback polynomials of the form 
H(D)=hmDm+hm.,Dm"'+ • • • + h,D+l to determine a 
maximal length generator. This implies that the 
polynomial is primitive. Once a primitive polynomial 
H(D) is determined, the minimum parity weight p< 
and codeword multiplicity Nj corresponding to input 
weights i = 2, 3, and 4 are computed. The p, and N, 
are computed by generating all possible terminating 
weight 2, 3, and 4 sequences to use as inputs into the 
encoder for all feedforward polynomials 
G(D)=gmDm+gm.1D

m-'+ . . . +g,D+l. The 
construction algorithm determines all polynomials 
G(D) and H(D) with maximum pi and minimum Nj 

for i = 2, 3, and 4 as described in [1]. Some of the 
associated weight spectra as determined by the 
algorithm are shown in Tables 1 and 2. 

Table 1: Partial Weight Spectrum of 4-ary R=l/2 
Constituent Codes 

V #of 
states 

P2,N2 P3,N3 p4,N4 

1 4 2,3 2,3 2,3 
2 16 6,3 3,3 2,3 
3 64 18,3 5,3 3,3 
4 256 66,3 8,3 5,3 
5 1024 258,3 22,3 8,9 

Table 2: Partial Weight Spectrum of 8-ary R=l/2 
Constituent Codes 

V #of 
states 

P2,N2 P3,N3 P4,N4 

1 8 2,7 2,7 2,7 
2 64 10,7 3,7 3,14 
3 512 66,7 6,7 4,7 
4 4096 512,7 5,7 6,7 
5 32768 4097, 7 52,7 3,7 

[1] S. Benedetto, R. Garello, and G. Montorsi, "A 
Search for Good Convolutional Codes to be Used in 
the Construction of Turbo Codes," IEEE Trans. 
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Abstract — The design of multilevel superposition 
coded modulation schemes using turbo codes is ad- 
dressed. A multistage decoding algorithm with re- 
duced decoding delay is proposed. Simulation results 
over an impulsive noise channel are obtained. 

Recently a superposition coded modulation scheme (SCM) 
for transmission over a broadcast AWGN channel was pro- 
posed in [1]. The scheme uses a nonuniformly spaced 32-QAM 
signal constellation and multilevel coding associated with a 
nonstandard partition [2]. The QAM constellation consists of 
four 8-PSK subconstellations. The proposed scheme has two 
information classes, class A (the more important) and class 
B (the less important). In the multilevel construction, class 
A is associated with the first two levels (1 and 2) and class 
B is associated with the other levels (3,4 and 5), i. e., with 
the 8-PSK subconstellation. The nonstandard partition al- 
lows parallel decoding of levels 1, 2, 3 and 4. This important 
feature encourages the use of turbo codes as component codes 
of the multilevel construction in applications where there is a 
delay constraint. For low-to-medium bit error rates, the per- 
formance of class B can be significantly improved by using 
a standard partition associated with the 8-PSK subconstella- 
tion. On the other hand, the standard partition eliminates 
the decoding parallelism of levels 3 and 4. To circumvent 
this problem we propose a new multistage decoding (MSD) 
algorithm which partially recovers this parallelism. Consider 
a standard MSD (SMSD) algorithm where each component 
code is decoded with three iterations. We propose to use the 
decoding structure shown in Fig. 1 instead of SMSD for de- 
coding the component codes of levels 3,4 and 5 (class B). After 
the first iteration in the third stage the subset information is 
passed to the fourth stage and the first iteration in this stage 
begins. In the same way, after this first iteration the subset 
information is passed to the fifth stage and the first iteration 
in this stage begins. The remaining iterations in each stage 
are now done in parallel. If D is the delay of each iteration, 
the total delay of the new algorithm is 5D while a SMSD al- 
gorithm has a total delay of 9D. In Fig. 1 the dashed boxes 
indicate additional iterations that could be done in the third 
and fourth stages during the same decoding interval. The de- 
coding structure described in Fig. 1 can be easily generalized 
for cases where number of iterations in each stage is greater 
than three and/or the subset information can be passed to the 
subsequent stage after more than one iteration. 

Fig. 2 shows simulation results for class B over an impul- 
sive noise channel with hit probability and impulsive-to-noise 
power ratio equal to 0.1 and 10, respectively. The superposi- 
tion gain of the SCM approach [3] was obtained for this impul- 
sive noise channel based on a cutoff rate parameter and it jus- 
tifies the approach's choice. In each partition level the turbo 

encoder consists of a parallel concatenation of two identically 
punctured 16-state RSC encoders with rates 1/2. The result- 
ing rate distribution for class B levels is R3 = 0.44, TU = 0.70 
and R5 = 0.88. Each turbo encoder uses a pseudo-random 
interleaver of size N = 400. All the results were obtained 
for MSD algorithms with 6 iterations per stage. The results 
for the new MSD (NMSD) algorithm are for the case of 1 
(NMSD-1) and 2 (NMSD-2) initial iterations before passing 
information to the next stage. For a bit error rate (BER) 
equal to 10-3, the performance degradation of NMSD-1 algo- 
rithm (delay=8D) relative to SMSD algorithm (delay=18D) 
is about 0.17 dB. For BER < 10-3, the performance degrada- 
tion of NMSD-2 is negligible (delay=10D). Fig. 2 also shows 
the performance of class B with parallel multistage decoding 
(PMSD) of stages 3 and 4 (one initial iteration before passing 
information to the fifth stage: delay=7D) which has 0.3 dB 
degradation relative to NMSD-1 at BER= 10-3. Therefore, 
the new algorithm has an excellent trade-off between perfor- 
mance and decoding delay. 

1TER1 ITER2 ITER 3  ITER 41 ITER 5 I—» 

ITER1 ITER 2 ITER 3 

Figure 1: The proposed multistage decoding algorithm. 
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Figure 2: Performance of the new algorithm. 
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Abstract — We design parallel concatenated trel- 
lis coded modulation (PC-TCM) schemes at 1 
bit/sec/Hz for 8-PSK and 8-QAM over the following 
discrete two-dimensional (2D) channels: (a) a slow- 
fading Rayleigh channel with discrete carrier tracking 
by a phase locked loop (PLL), where the PLL signal- 
to-noise ratio (SNR) is proportional to the fading am- 
plitude squared; (b) an additive white Gaussian noise 
(AWGN) channel with a PLL; and (c) a fast-fading 
Rician channel with carrier phase estimation for the 
line-of-sight (LOS) path only. The fading gain and 
phase error are assumed independent over successive 
symbols. The codes for channels (a) and (b) perform 
within 1 dB of constellation-constrained capacity at 
bit error rates of 10-6, while those for channel (c) 
perform within 1.2 dB of constellation-constrained ca- 
pacity for LOS-to-diffuse power ratios of 3 dB. 

I. INTRODUCTION 

This work extends previous results on PC-TCM for AWGN 
and fading channels [1, 2], to the case of partially coher- 
ent fading channels. We consider two important causes for 
partial coherence: PLL phase error on slow-fading channels, 
and low LOS-to-diffuse power ratios on fast-fading channels. 
Equiprobable signaling is assumed throughout the paper. 

We consider the discrete-time channel model for a correla- 
tor receiver with PLL 

Y = AX exp(j4>) + N, (1) 

where X and Y are the complex channel input and output, A 
is the (real-valued) fading gain with E[A2] = 1, cf> is the phase 
error, and N is 0 mean complex AWGN with i.i.d. component 
variances equal to No/2. A and <j> are independent of N. For 
channel (a), A is Rayleigh distributed and is known at the 
receiver. For channel (b), A = 1. For (a) and (b), <f> has 
conditional Tikhonov PDF p{<f>\A) = exp[pcos(cf>)]/(2TrI0(p)), 
where loop SNR p = {Es/N0){aA2)/{2BLT) is a function of 
average signal energy Es, discrete carrier power fraction a, 
PLL bandwidth BL, and symbol interval T. For channel (c), 
A is Rician distributed with LOS-to-diffuse power ratio ß, 
A is unknown at the receiver, and <\> has the angular PDF 
corresponding to the Rician amplitude PDF. 

II. CODE DESIGN 

Our codes use the bit-interleaved architecture of [1], with 
an additional x2 signal expansion for additional gain on fad- 
ing channels. Our 1 bit/sec/Hz rate 2/6 PC-TCM consists 
of two 16-state rate 2/4 systematic convolutional encoders, 
each of which punctures one of the two systematic inputs for 

Rayleigh With Tikhonov Phase Channel: 3l_T=0.1, length 16384. S32 and S40 interteavers. 
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Fig. 1: PC-TCM simulation results on the slow-fading 
Rayleigh channel with PLL phase estimation and 
BLT = 0.1. 

an effective rate of 2/3.  Each encoder addresses one 8-point 
constellation. 

We search over linear Ungerboeck encoders to maximize 
d2

cg, the minimum squared Euclidean distance (s.E.d.) be- 
tween symbol sequences corresponding to input sequences dif- 
fering by weight two. We choose one encoder that provides a 
high and nearly equal d\g for all constellations and mappings 
studied. We prove that s.E.d. is in fact the maximum likeli- 
hood code design metric for channel (c). For channels (a) and 
(b), the selected codes give very good performance despite the 
fact that s.E.d. is not the optimal design metric. 

III. SIMULATION RESULTS 
Figure 1 presents 8-iteration turbo-decoding simulations for 

channel (a), with the product BLT = 0.1. The MAP al- 
gorithm uses the closed form conditional channel PDF. We 
tested two bit mappings for the two-radius 8-QAM: the first 
mapped the systematic bit to the two radii, and the second 
attempted to minimize bit transitions between nearest neigh- 
bors. The radial mapping is best at BLT = 0.1, but shows no 
advantage at BLT = 0.01. The best case mappings perform 
within 1 dB of constellation constrained capacity for both 8- 
QAM and 8-PSK in all simulated cases. 
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Abstract - In this paper, carrier phase recovery of turbo 
coded modulation systems in the AWGN channel is studied. A 
decision-directed (DD) and non-data-aided (NDA) synchroni- 
zation structures are considered. Simulation results are shown to 
illustrate performance of turbo coded BPSK and QPSK 
employing these synchronizers. 

I. INTRODUCTION AND PROBLEM STATEMENT 

Introduced in 1993 parallel concatenated convolutional codes, 
termed turbo codes [1], are very powerful error correction technique 
which outperforms all previously known coding schemes. Turbo 
codes are capable of operating very close to the Shannon limit on 
AWGN channels with a reasonable encoding and decoding 
complexity. Decoding algorithm works in an iterative manner, 
decoding the constituent codes of the turbo code separately and 
passing the symbol-likelihood information from one decoder to the 
other. 

Coherent demodulation of carrier-modulated signals requires 
precise knowledge of signal frequency, phase and symbol period. 
Good estimation of these parameters by synchronization circuits in 
the receiver is essential for an overall system performance. For turbo 
coded signals the synchronization problem becomes especially 
difficult since turbo codes operate in the region of low SNR. 
Consequently, a question arises whether adequate synchronization 
can be obtained from the modulated signal itself and how much 
performance degradation one may expect with practical 
synchronization schemes compared to perfect synchronization case. 

Decision-directed ML joint phase and timing synchronization 
for turbo codes has been studied in [2]. In this paper, we focus our 
attention on carrier phase recovery for turbo coded BPSK and 
QPSK schemes. We consider both decision-directed (DD) and non- 
data-aided (NDA) estimation schemes. In the communication system 
we analyze, the binary data stream is first differentially encoded and 
then, in frames of length N, passed to the turbo encoder. The output 
of the turbo encoder is fed to a BPSK or QPSK modulator. After 
transmission in an AWGN channel, the received signal is first 
downconverted to baseband and then carrier phase estimation 
followed by phase rotation are performed. Channel observations are 
then passed to the turbo decoder and finally, its outputs are 
differentially decoded to obtain the estimates of sent data bits. To 
solve the problem of ambiguity in the phase estimate, rotationally 
invariant turbo code is used. 

II. DD AND NDA PHASE RECOVERY STRUCTURES 

The DD synchronizer we examined is shown in Figure 1. In this 
structure, based on received samples rk rotated in phase according to 
obtained phase estimates, tentative decisions on data are made. The 
tentative decisions are used then to remove data from the received 
signal. Phase estimates 6 are obtained from samples zk in the phase 
estimator according to the ML rule: 

where L is the window length of the estimator. Phase estimates Ö 
are used then to multiply the input samples rk. The resultant samples 
yk are passed to a turbo decoder. 

It is known that for M-PSK signals at low SNR when no reliable 
data estimates exist, NDA (i.e. data-independent) approach to carrier 
phase recovery can be employed. As a NDA carrier phase estimation 
scheme we investigated the Viterbi and Viterbi (V&V) synchronizer 
[3]. It is an efficient feedforward phase tracking scheme for A/-PSK 
modulation, which uses nonlinear function that can be optimized to 
minimize phase error variance. The carrier phase estimate in our 
V&V synchronizer is calculated as: 

'-iHSw ■expO'A/argfo)) (2) 

where K is the duration of the observation window measured in 
symbol intervals. 

III. NUMERICAL RESULTS 

For performance analysis of considered synchronizers in turbo 
systems, computer simulations were performed. We examined rate- 
1/2 turbo code with a 16-state (37/31)8 RSC encoder and block 
lengths of 256, 1024 and 16384 bits. Window lengths of the 
estimators were selected following the results of cycle slipping 
analysis. Phase estimators with windows of size 30, 60 and 80 
samples, were studied. 

The simulation results show that for both modulation schemes 
the DD synchronizer performs better than V&V with the same 
window size. However, energy loss for BPSK is of only 0.1-0.2 dB. 
For QPSK we observe larger SNR penalty - 0.5-0.7 dB. Comparing 
achieved performances with those of perfectly synchronized 
schemes it is seen that the turbo decoder with the DD scheme 
exhibits the loss of about 0.1-0.5 dB at.BER=10"4, depending on the 
window size and block length. 
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Fig. 1. Decision-directed synchronizer: PE - phase estimator. 
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Abstract — We investigate the main parameter 
in the function of undetected error probability for 
shortened binary cyclic codes - the number of mini- 
mum weight words Ad. Method for calculations is pre- 
sented. 

I. INTRODUCTION 

Let C be an [n,k,d\ binary cyclic code, generated by the 
polynomial g(x),deg(g) = p = n — k. Every codeword 
c(x) € C can be represented as xpf(x) + xpf(x)(modg(x)), 
where f(x) = /„-p-ix"""-1 + /n_p-2x

n~p~2 + --- + fix + f0. 
Let {J4i}iLo be the weight distributions of C. A CRC code 
D[n — nc, k — nc] is obtained from C by shortening in the first 
nc positions. Let us denote by A^c the number of the words of 
minimum weight for D[n — nc, k — nc]. For a BSC let us denote 
by e 6 [0,1/2] the channel error rate. Then the probability 
of undetected error for C is Pud(C, e) = £3"=d Aiel(l — e)n~'. 
For low values of e the most important parameter of the func- 
tion PUd(C, e) is Ad- We present a method for fast calculation 
of the value of Ad- This will allow us to investigate the per- 
formance of several standards for n — nc > 1000. Previous 
algorithms for calculation of PUd are due to Fujiwara-Kasami- 
Kitai-Lin [2] and Castagnoli-Bräuer-Herrmann [1]. 

II. THE METHOD FOR GENERAL CASE 

Let n = ord(g(x)). We have D[n - l,fc - 1] = C D {c : 
/„_p_i =-0},£>[n-2,fc-2]=Cn{c:/„-p-i = /„_p_2 = 0} 
and so on. 

Definition 1 Denote Cd = {c : c(x) = xpf(x) + 
xpf(x)(modg(x)) € C,wt(c) = d}, Q(i) = #{c(z) : c(x) 6 
Cdji = 1}, Qi(i) = #{c(x) : c(x) 6 Cd,fi = ft = 1}. 

As C[n, k] is a cyclic code we have Q = Q(0) = • • • = 
Q(n—p— 1) = dAd/n. It is clear that Qi = Qi(0) = Qj+i(l) = 
••• = Qj+n-p-i(n — p— 1) . Let S C {1,. ..,n — p— 1}. 

Definition 2 Qs(i) = #{c(x) : c(x) € Cd, Si = Si — 1 for a" 
j e 5}. 

nc-d+1 

We have Qs = Qs(0) = <?s+i(l) = Qs+2(2) = ... and 
A\ = Ad - 2Q + Qi; A\ - Ad - 3Q + 2Ql + Q2 - Qi,2. 
Counting by the inclusion-exclusion principle, we obtain: 

Theorem 3 For a binary CRC code D[n — nc,n — p — nc] 
generated by g(x),ord(g) = n and 1 < nc < n we have 

A2C    =    Ad - ncQ + J2   2 Qi-* ~ 
i=l   j=i+l 

+{-if x: - E *. 
=*d-i+i 

III. THE METHOD FOR HAMMING CODE 

Let g(x) be a primitive polynomial which generates a Ham- 
ming code C[n, k], n = 2P — 1. We have Qi = • • • = Qn-p-i = 
1 and Q = 2P~1 — 1. By definition, we have Qm,j = 1 iff 
g(x)\xm +X-*+1 and Qmj = 0 otherwise. Consequently Qm,j 
depends on g(x) and we also write Qm,j{g)- For the Hamming 
case Theorem 3 has a following form: 

Theorem 4 For binary shortened Hamming codes with n == 
2P — 1, k = n — p we have 

AT = ^-y'^-My-'-D 

+ nc(nc — 1) 
nc-2   nc-l 

E     E    (nc _m)(?'".J- 
j' = l   m=j'+l 

^-maihpeterkazakovQyahoo.com.     On  leave  from  IMI-BAS, 
P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria. 

IV. ALGORITHM FOR COMPUTING 

Let g(x) be a primitive polynomial of degree p. 

Definition 5  Let us denote gt{x) = gcd{g{xt),xn — 1), for 
gcd(t,n) = 1. 

Lemma 6 If(t,n) = 1 then Qij(g) = Qit(modn),jHmodn)(gt)- 

The polynomial gt(x) is also primitive of degree p. We 
calculate Qmj for g{x). In fact, gt2i (x), I = 0,1,..., are .the 
same and we can group the coefficients t into a few sets. For 
each such set, we calculate the values of Qit(modn),jt(modn)(gt) 
and Ad

lc{gt). It remains to mark the minimum values of A^c. 

V. PRACTICAL REALIZATION FOR p = 16 

For d = 3 there are 8 classes of polynomials with orders 
between 32768 and 65535. For each of them we calculate the 
values of A^c between 32768 and its order for all sets of the 
class and find the best results. 

Similar procedures were developed for d = 4. 
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Abstract — The knowledge on the weight distribu- 
tion of the coset leaders for a given binary linear code 
is important for the evaluation of error performance 
of the code. An algorithm is proposed for computing 
the weight distribution of the coset leaders. Using this 
algorithm, we have computed the weight distribution 
of the coset leaders of (JV, K) Reed-Muller codes, bi- 
nary primitive BCH codes, and their extended codes 
with N < 128 and N - K < 42. 

I. WEIGHT DISTRIBUTION OF COSET LEADERS 

A minimum Hamming weight vector in a coset of an (JV, K) 
binary linear block code C is called the coset leader. Let on 
denote the number of coset leaders of C whose weight is i 
with 0 < i < N. Then, E£LoQ* = 2N~K ■ The sequence 
(ao,Qi,... ,a/v) is called the weight distribution of the coset 
leaders (WDCL) of C. The knowledge on WDCL is important 
for the evaluation of error performance of the code. 

All the weight distributions of the cosets of some well- 
structured codes have been computed. Such codes include 
the r-the order Reed-Muller code of length 2m with r = 1 and 
m < 5 and with r = 2 and m = 5, the two-error-correcting 
(binary primitive) BCH codes and their extended codes and 
some three-error-correcting extended BCH codes (see [1] for 
example). In [2], Wadayama et al. has proposed a trellis- 
based algorithm for computing WDCL. Using the algorithm, 
they have computed WDCL of Reed-Muller codes, BCH codes, 
and extended BCH codes with N < 128 and N - K < 28. 

II. ALGORITHM FOR COMPUTING WDCL 

The algorithm proposed in [2] for computing WDCL uses 
a syndrome trellis. The straight forward way to search min- 
imum weight paths is applying the Viterbi algorithm to the 
entire syndrome trellis. This computing method is simple, 
but the space complexity is 0(2N~K). The algorithm we pro- 
pose requires smaller space complexity. The key to improve 
required space complexity is that we compute WDCL using 
two smaller syndrome trellises. 

We first form a check matrix H of C in (711,712)-normal 
form as show in Figure 1. Let Vm be the set of m-tuples 
over GF(2)-, and let w(s,Hi),i = 1,2 be the weight of the 
coset leader u G Vni of the code with parity check matrix 
Hi and uHj = s e Vri+ri. The weights, w(s,Ht) with ev- 
ery s 6 Vri+ri, are computed using two syndrome trellises 
constructed for H% and H2 with total space complexity of 
0(2max{r1,r2}+r')    Then the weightg of the coset Laders of C 

can be computed using the following theorem. 

Theorem 1. For si 6 Vri, s2 6 Vr2, and s' e Vr>, w(si os' o 
82, H) = mins»gV ,{w(Slos" ,Hi)+w((s'+ s")os2,H2)}.    D 

N 

N -K{ 
Hi 

}n0 

0 

n\ ri2 

Figure 1: Check matrix in (ni,ri2)-normal form. 

Here uov denote the concatenation of vectors u and v. The 
additional space complexity to compute the above formula 
is only O(N). Therefore the total space complexity of our 
algorithm is 0(N + 2m^r^r^+r'). 

III. COMPUTATIONAL RESULTS 

Using the proposed algorithm, we have newly computed 
WDCLs for the (64,22) and (128,99) Reed-Muller codes, the 
(63,24), (63,30), and (127,92) binary primitive BCH codes, 
and the (64,24), (64,30), (128,92), and (128,99) extended 
binary primitive BCH codes. The WDCLs for the (64, 30) 
extended binary primitive BCH code and the (128,99) Reed- 
Muller code are shown in Table 1. 

Table 1:    WDCLs for the EBCH(64,30) 
and RM( 128,99) codes. 

EBCH(64,30) RM(128,99) 
Qo 1 1 
ax 64 128 
a2 2,016 8,128 
03 41,664 341,376 
Q4 635,376 5,293,995 
Q!5 7,624,512 42,330,624 
ae 74,974,368 148,487,892 
a.i 607,475,136 225,763,328 
Ct8 3,598,400,997 114,645,440 
ag 7,749,340,480 0 
OlO 4,915,906,912 0 
an 225,452,736 0 
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Abstract —   General expressions are derived for the 
weight distributions of the binary product codes 5mi ® 

il 09 ^2) "mi 09 '^mj) £-rr t1 09 K-n 

where Sm is the [2m — l,m,2m 1] simplex code, Hm is 
the [2m, m + 1, 2m_1] first order Reed Müller code, and 
£m is the [m,m — 1,2] even weight code. 

I. SUMMARY 

Previous Work: The weight distributions of most families of 
product codes are unknown. MacWilliams and Sloane [1] give 
the weights which occur in the product of simplex codes. Tol- 
huizen et al. [2] have determined the number of codewords 
of low weight for arbitrary linear row and column codes. The 
weight enumerator of the dual of the product of even parity 
codes is also known [3]. 

Preliminaries: Consider linear [ni,ki,di] codes C, for i = 1,2 
over GF(q). Their direct product C\ (&C2 is a [niri2, k\k2, dif/2] 
linear code whose codewords A form an ni x «2 matrix whose 
columns are codewords of C\ and whose rows are codewords of 
Ci- A contains a k\ x £2 submatrix M of information symbols. 
Define as information columns, those columns of A coinciding 
with columns of M; define remaining columns as parity check 
columns. The parity check columns of C\ ® C2 are defined by 
the same linear combinations of information columns as the 
parity check bits of C2 are linear combinations of the informa- 
tion bits. Clearly, rank A = rank M. 

Main Results: The weight distributions of five families of prod- 
uct code are given in Theorems 1—5. Outline proofs are given 
only for Theorems 1—2. 

Theorem 1  In the product S„ of simplex codes, 
A,   =  0  unless i  =  fi(r)   =   2mi+m2_1 - 2

mi+m2-1-r for 
r = 0,1,... ,min{mi, m.2}.  Then Ao = 1, and 

TT (2mi - 2')(2m2 - T) AM = 11 hT^T.  

for r = 1, 2,... , min{mi, m.2}. 

Outline of proof. If rank M = r, the 2m2 —1 columns of A com- 
prise all 2r — 1 non-zero codewords of an r-dimensional sub- 
code of Smi repeated 2m2_r times, and additionally, 2m2-r — 1 
zero columns. A^r^ equals the number of distinct mi x 7712 
matrices of rank r. 

Outline of proof. If rank A4 — r, the 2m2 columns of A com- 
prise all codewords of either (i) a coset of x £ Hmi on an 
r — 1-dimensional subcode of 72.mi repeated 2m2_r+1 times, or 
(ii) an r-dimensional subcode of 7£mi repeated 2m2~r times. 
Ap(r) equals the number of distinct M corresponding to (ii) 
in which the subcode does not contain the codeword of weight 
2mi. 

Theorem 3 In the product Smi ®Ttm2 of a simplex code and 
a first order Reed Muller code, Ai — 0 unless i = fi(r) = 
2m, + m2-i _ 2mi+m2-i-r yor r _ 0,1,..., min{m,, m2> or 

i = 2m'+m2-1. Then A0 = 1, and 

■■.TT I2"*1 -2')(2m2+1 -2,+1) A»(r)  - 11 2r_ 2, 
t=0 

for r = 1,2,..., min{mi, 012}- There is no explicit expression 
for Ajm,^,-.  which is determined by ]T A, = 2mi<m2+1'. 

Theorem 4 In the product £mi ® Sm2 of an even weight and 
a simplex code, Ai = 0 unless i = fi(r) — r2m2_1 for r = 
0, 2,3,..., mi.  Then Ao = 1, and 

Mr) 

for r = 2,3,..., mi. 

mi 
{(2r l)r + (-l)r(2m2-l)} 

Theorem 5   The product £m, ® 72.m2 of an even weight and 
first order Reed Müller code has non-zero codewords of weight 

li(i) = (mi +i)2m2_1,        0<|i|<mi-2 

and, iff mi is even, a single codeword of weight mi2m2.   The 
number of codewords of weight /j(i) is 

M0 = "•+ £ Gr-,., 
J=I«I 

2j - \i\ 

j 
B, m!-2>+|i 

where 

Br 
_ (2m2 -l)r + (-l)r(2m2 -1) 

0ni2 + l-r 

forr = 2,3,... ,mi, and Hi = ( J^+i) t/mi+i = 0    (mod 4), 

and is 0 otherwise. 

Theorem 2  In the product 72.mi ® 7lm2  of first order Reed 
Müller  codes,   Ai   =   0   unless i   =   fi(r)   =   2mi+m2_1 ± 
2m,+m2-l_r   ^  r    _   0) X)       ^ m   Qr   {   _   2m^m2-l _      jhen 

Ao = A2m1+m2 = 1, and 

Mr) =n (2 
m,+l i+l\/r,m2 + l 

')(2 ,.+i 

for r = 
for A,, 

1,2,..., min{mi, m.2}.  There is no explicit expression 
„i+m2-i which is determined by J2 A, = 2(m' + l)(m2 + 1). 
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Abstract — In this paper, we present a general for- 
mula for the asymptotic largest minimum distance 
(in blocklength) of deterministic block codes under 
generalized distance functions (not necessarily additive, 
symmetric and bounded). An alternative expression 
for the same formula, which is useful in character- 
izing the general Varshamov-Gilbert bound, is next 
addressed. 

I. INTRODUCTION 

The problem of determining the asymptotic largest mini- 
mum distance among block codes can be described as follows. 
Determine the asymptotic ratio (in n) of n-fold largest min- 
imum distance among M selected codewords divided by the 

code blocklength n, subject to a fixed rate R=log(M)/n over 
a given code alphabet and a given measurable function on the 
'distance' between two code symbols. 

Research on this problem has been done for years. Up 
to the present, only bounds on this ratio are established. 
Recently, channels without statistical assumptions such as 
memoryless, information stability, stationarity, causality, and 
ergodicity, etc., are successfully handled by employing the 
notions of liminf in probability and limsup in probability of 
the information spectrum [2]. Inspired by such probabilis- 
tic methodology, together with random-coding scheme with 
expurgation, a spectrum formula on the largest minimum dis- 
tance of deterministic block codes for generalized distance 
functions (not necessarily additive, symmetric and bounded) 
is established [1]. An alternative expression for the same for- 
mula in term of large deviations is next addressed. 

II. FORMULAS FOR THE ASYMPTOTIC LARGEST 
MINIMUM DISTANCE OF BLOCK CODES 

Denote the n-tuple code alphabet by Xn.   For any two 
elements xn and xn in Xn, we use ftn(x

n,xn) to denote the 
n-fold measure on the "distance" of these two elements.   A 
codebook with block length n and size M is represented by 

C   „ £ JCW c(»> CC">        c
(n)   \ l-n.M —   S t-o    >°1     >°2    »••■>l"M-lJi 

where cfi^ = (cmi,cm2,.. .,CmB), and each Cmk belongs to X. 
We define the minimum distance and the largest minimum 
distance respectively as 

dm{Cn,M) =  „   ™»£  , Mr. (Cft1^™') 

and 

'This work was supported by National Science Council, Taiwan, 
R.O.C., from NSC 87-2213-E-009-139- and by Univ. of Maryland, 
College Park, MD, U.S.A. 

dn,M = max     min     dm(Cn,M). 
C„,M0<m<M-l 

Note that there is no assumption on the code alphabet X and 
the sequence of the functions {nn(-, -)}n>i ■ For simplicity, Xn 

and Xn are used specifically to denote two independent ran- 
dom variables having common distribution Pxn throughout. 
The natural logarithm is employed unless otherwise stated. 

Theorem 1 (distance-spectrum formula) 

dn,M 

and 

supAx(jR) > limsup 
X n-*oo       n 

supAx(i?) > liminf —— 
X n—foo        71 

>supAx(Ä + <5) 
x 

>supAx(fi + (J) 
x 

for every S > 0, where 

{^>.})"-.} Ax(.R)=mf{ a 6 ft : limsupl Pr 
n—too    \ 

and 

Ax(Ä)=inf | a e It: liminf (pA ^2"^*") > A\   =Q\ 

We next derive an alternative expression for the formulas 
derived above. 

Lemma 1  (large   deviation   formulas   for  Äx(Ä)   and 

Ax(Ä)) 

I 

Ax(Ä) = inf {a € ft : Ma) < R} 

and 
AX(Ä) = inf {a € ft : £x(a) < R} 

where lx(a) and £x(a) are respectively the sup- and the inf- 

large deviation spectrums of (l/n)[i„(Xn,Xn), defined as 

eJc(a)=limsnp--logPr{-ßn(Xn,X7l)<a] 
n->oo      n In J 

£x(a)=liminf-- log Pr \-»n(X
n,Xn) < a] . 

n-Hx     n In J 

and 
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Abstract — An adaptive error protection scheme 
for embedded source coders is presented. Convolu- 
tional codes of very high memory and regressive re- 
dundancy are applied to encode the data frame of the 
source. The channel decoder with scalable complex- 
ity and delay employs modified sequential decoding. 
In contrast to conventional coding systems, the prin- 
cipal idea of this new algorithm, the 'Far End Error 
Decoder (FEED)' is to delay the first error as far to 
the end of the frame as possible rather than to aim at 
a low average error rate. The proposed system is par- 
ticularly appropriate for transmitting over strongly 
varying channels. 

I. INTRODUCTION 
In todays heterogeneous network and application world com- 
munications takes place between users with a wide range of dif- 
ferent bandwidth resources, computational capabilities, per- 
formance requirements and transmission conditions. This has 
initiated a growing interest in multiresolution or progressive 
transmission source coding. Multiresolution source coders are 
data compression algorithms in which simple low-rate source 
descriptions are embedded in more complex high-rate descrip- 
tions. Therefore, we refer to these coders as embedded source 
coders. While for multiresolution coders [1] the refinement 
steps are large, we usually have very small step sizes in case of 
progressive coding. In principle each bit could refine the in- 
formation, i.e., lower the distortion. Theoretical analysis [1, 2] 
and practical applications in image coding [3] show that the 
loss due to progressive transmission is almost negligible, con- 
sidering the advantages provided by progressive source coders. 

However, the performance of these coders in error prone 
environments like, e.g., mobile channels degrades significantly 
as only a single error in the low-rate description usually results 
in a useless high-rate description. To avoid the complete loss 
of the low-rate description unequal error protection (UEP) 
schemes are applied to embedded source coders [5]. Addition- 
ally, using data after the first (undetected) channel decoding 
error for source reconstruction in general does not improve, 
but might even decrease the quality. Therefore, localizing the 
first error is essential. This requires an outer error detection 
code if the inner code is a convolutional code. To avoid a 
huge overhead due to this error detection coding, the source 
data has to be blocked in relatively large units. Hence, stan- 
dard coding schemes are not appropriate for embedded source 
coders. We will present an error protection scheme adapted 
to embedded source coders. 

II. FAR END ERROR DECODING 

Following the discussion above, the progressively coded source 
does not require a certain frame or bit error rate but rather an 

error-free part from the beginning of the frame as far to the 
end as possible. The key feature of our channel coding system 
therefore is the Far End Error Decoder (FEED) which delays 
the first decoding error as far out as possible. To achieve this 
we employ 

• very high memory systematic convolutional codes, 

• a regressive redundancy profile by puncturing (results 
from channel and source optimized UEP and rate allo- 
cation based on cutoff rate consideration), 

• a modified sequential decoding algorithm with a certain 
computational resource per frame [4], and 

• determination of the virtual error free part. 

For more details see [4]. The principle of our new method is 
not to deliver the whole data block to the source decoder but 
to deliver only the error free part from the beginning of the 
data block up to the first bit error. This is quite natural as 
the interpretation of the later bits by the source decoder after 
an error occured is wrong anyway as outlined before. 

III. CONCLUSIONS 

The decoding method is self-adaptive to varying and unknown 
channel conditions (interference, fading, packet loss) and pro- 
vides graceful degradation. The presented source and channel 
coding system is appropriate for compound channels where 
the transmitter is usually not aware of the transmission con- 
ditions (Internet, mobile channels) or it has to transmit to 
several or many users with different receiving conditions at 
the same time (broadcast). Additionally, our new method 
provides a trade-off between complexity and quality due to 
the sequential decoding unit. Therefore, we conclude that the 
far end error decoding (FEED) algorithm is a well adapted 
error protection method for the huge amount of existing and 
upcoming progressive source coding algorithms. 
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Abstract — The deficient probability is the proba- 
bility that a sequential decoder fails to decode the re- 
ceived data. For Jelinek's sequential decoder model, 
we give an asymptotically tight bound for it here. 

I. INTRODUCTION 

Jelinek introduced the term "deficient decoding" to refer to 
decoding failure caused either by decoding error, by buffer 
overflow, or by other impairment [1]. It is well known [2] 
that the number of computational efforts obeys the Pareto 
distribution for DMC's and that it is this distribution that 
hinders proper decoding at high rates, ft is believed that the 
probability of deficient decoding decreases proportionally to 
iV1~'> as a function of the decoder buffer size AT whenever the 
rate satisfies E0(p)/p = R. Simulation results confirm this 
statement but there has been no rigorous proof for it. 

II. CONVOLUTIONAL CODE AND THE FANO ALGORITHM 

Consider a DMC with input and output alphabets A and B 
respectively and suppose that message sequences u = u\U2- ■ ■ 
over GF(g) appear with equal probability. For each u;, the 
encoder of rate R = i logg first calculates Si,iS;,2. • -S«,K by 

K-\ 
si,i = XI ui-k9k+i,j, j=l,2,...,v, (1) 

fc=0 

adds a bias sequence over GF(q) as 

When gij and vij are selected randomly and independently 
of each other from GF(g), then (l)-(3) define arandom ensem- 
ble of convolutional codes with the symbol probability r(a) = 
|F(a)|/g. For this input probability assignment r, we let P(b) 

=   EaeAr(a)P(b\a). 
In the g-ary code tree, a message u = U1U2.. Mi uniquely 

specifies a path of length t and, hence, a node at level £. 
For a channel output sequence y* = yit/2. ■ .yi, we assign 

each node u* with its weight 

i(u'i & £ ^-" 
(4) 

where x* = x\X2. ■ .£/ is the codeword for u* and P(y;) = 
I~n=i P(.yi,i)- The Fano algorithm searches the code tree for 
the path with the largest weight. 

We assume the decoder model shown in Fig. 1, where the 
search unit can retain a code tree of maximally N branches in 
height, and the control unit controls the process of sequential 
decoding of search depth S. 

III. PROBABILITY OF DEFICIENT DECODING 

We show the following result. 

Theorem 1 Suppose that pR = E0(p) for p > 1. Then, for 
an arbitrarily given e > 0, the best attainable deficient proba- 
bility PQ satisfies inf PG ~ „p^p-i for sufficiently large a, S, 
and N, where S is a positive number dependent on p. 

I 
Z»,J   = «i,J +U>,J) J=1,2,...,V, (2) 

and generates channel input x,,ia:;,2.. -Xit„ according to the 
transformation 

z —► x, whenever z 6 F(x) for x G A, (3) 

where {F(a), a € A} is a partition of GF(g) into \A\ subsets. 
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Figure 1: Sequential decoder model 
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I. INTRODUCTION 

Recently, sequential decoding of large memory codes has been 
investigated]!] for 8-PSK, 16-QAM, and larger constellations. 
The results show that high reliability can be achieved at chan- 
nel signal-to-noise ratios (SNR's) where the code rate is nearly 
equal to Ro, yielding 1-1.5dB coding gain over Viterbi decod- 
ing of small memory codes. Since Bootstrap Hybrid Decoding 
(BHD)[2] is known to improve the cut-off rate of a sequential 
decoder for binary modulation, further improvements can be 
expected using this method applied to TCM. 

In this paper we present a lower bound to the computa- 
tional cut-off rate for the extension of the BHD scheme to 
TCM. Our analysis is based on the original derivation for the 
case of binary modulation contained in [2]. Numerical evalua- 
tions of the expressions obtained for the cases of hard-decision 
8-PSK and 8-level quantized 4AM modulation show significant 
improvements over the usual cut-off rate, similar to the results 
obtained in [2] for BPSK modulation. These results suggest 
that performance close to capacity can be achieved with suf- 
ficiently powerful TCM systems and bootstrap sequential de- 
coding. 

II. BOOTSTRAP HYBRID DECODING AND TCM 

Bootstrap Hybrid Decoding can be described as follows. 
The encoder takes a set of m — 1 information sequences and 
computes their sum. It then encodes all m sequences using 
a TCM encoder and sends them over a noisy channel. Upon 
receiving all m sequences, the sequential decoder attempts to 
decode each sequence using a modified likelihood function that 
exploits the parity constraint introduced by the encoder. If 
it succeeds in decoding a sequence, it assumes the estimate is 
correct and subtracts it from the parity constraint. It then 
updates the likelihood function based on the new parity con- 
straint and proceeds to decode the remainder of the unde- 
coded sequences, until only one sequence remains. It follows 
that the decoding of each sequence helps in decoding the re- 
maining ones, resulting in a bootstrapping effect. 

III. A LOWER BOUND ON RO 

Consider a quantized AWGN channel with input alphabet 
/, output alphabet J, and a set of transition probabilities 
{p{y\x)\V 6 J,x € /}. Let E<x,(a) be the Gallager function 
for this channel, 

£«,(*) = -log^Epfol*)1*7 -P(*)]l+"- (1) 
y£J 16/ 

Let R be the code rate and (Too be defined by R = 
E'oo{c<x)/o-oo- For the BHD scheme, we have to take into ac- 
count the effect of the parity constraint, and thus the Gallager 

BHD Lower Bound 
8-PSK Hani Decision 

^*^"             ''*' 

//       : 

// 
,--' 

- / /. 
' 

/ / / 

Cn»tity 

CWnlT 

BUDCtoff 

Eb/NO (dB) 

Fig. 1: Lower Bound on the cut-off rate for the BHD scheme with 
hard-decision 8-PSK. 

function is written as 

£*(<7) = -iog J2 E^i1'* ■p{x)] l+<7 
(2) 

Y€Jm  xel 

'This work was supported in part by NASA Grant NAG5-8355, 
NSF Grant NCR95-22939, and CNPq Grant 200617/94-0. 

where Jm = JxJx-xJ(m times). Let Ok be defined 
by R = Ek(ffk)/^k- Let fc/j be the value of k that makes the 
quantities fccfoo and Ok the closest. 

The main theorem can now be stated as follows: 

Theorem 1 Let R be the code rate in each of the m streams 
in the BHD scheme. Let C be the number of computations 
per decoded bit performed by the BHD decoder. Then, the l-th 
moment of C, E[Cl], is finite as long as 

mm{akR, (kR + l)<Too} > I, 

where <7oo; o~k, and HR were defined above. 

IV. CONCLUSIONS 

A lower bound to the computational cut-off rate for the BHD 
scheme applied to TCM was presented. Its numerical evalu- 
ation for hard-decision 8-PSK modulation (see figure 1) and 
8-level quantized 4AM modulation shows that performance 
close to capacity is possible, and simulations with unquan- 
tized channel outputs show performance within 0.5dB of turbo 
TCM schemes, at a lower computational complexity. Due 
to its very low undetected frame error probability, the BHD 
scheme is very attractive in applications where reliability is of 
prime importance. 
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Abstract — In this paper, the generalized proof are 

shown for the coding theorem of [1]. Consequently, 

the further discussion is obtained. 

I. INTRODUCTION 

Despite list decoder is seldom employed for applications, Gen- 

eralized Viterbi Algorithm(GVA) use list decoder for its mean 

process [2]. In the analysis of the GVA, the error probability 

is dominated by that of list decoder. Therefore, we proposed 

the decision feedback scheme with GVA, which has the con- 

structive decision rule for list decoding with feedback [1]. 

In this paper, the more strict bound and a certain gen- 

eralization of the proof of [1] are shown. As a result, the 

further properties can be clarified. Throughout this paper, 

DMC characterized by P = {Pij, j £ A,i € B}, and noiseless 

feedback is assumed. 

II. THE ALGORITHM [1] 
We are concerned with a q-ary tree code, each branch of which 
is assigned with v input alphabet. So, the rate of the code 
is defined by R = - In q . A N information sequence of q- 

ary alphabet specifies a path, denoted by u< . Let the sub- 
sequence of path vuN from the root to the n-th level be UJ". 

Furthermore, L(branches) is defined as decoding constraint 
length of the GVA. 
{ Initial condition and Recursive ■procedure } 

(Step \)Initial condition : At the level n — 1 , each state of 
qL~* has their list, namely S survivors. Each survivor of the list is 
labeled "Accept". 

For the level n (L < n < TV), repeat (Step 2)~(Step 4), recur- 
sively. 

(Step 2)Path extension: At the level n, all retained paths are 
extended by one branch as u™ = u"_1u. Then each metric of Sq1, 

paths is calculated. 
(Step 3)Path selection: At each state of q , the best S paths 

are selected among the qS paths as the list. 

(Step  4) Testing:     We  denote  the  selected  list  as   C,   C   = 

<UFl)'U(2)' *(S) }, and '(S+l) is the S + 1-th most path at the 

state 1. The listed paths are labeled "Accept" or "Reject" by the 

following decision rule. However, a path once labeled "Reject" is 

kept its label "Reject". The rule is if „ ,  „„, '   (1)   „, < A, A > 1 

holds, u?.., i (•) 1,2, — ,S are labeled "Reject". Otherwise, u?.., i ■■ 
1,2, •• • ,S are labeled "Accept". If there is no survivor labeled "Ac- 

cept" at any q state, the retransmission is required and restart 

from Step 1. 

{ Final path selection at the check tail  } 

By L — 1 known symbols, q lists are reduced to one list with 

'For the received sub-sequence y"" from root to level n , we 
denote the likelihood of the fc-th most path as Pr(y*">|u(fc)

n). 

Step 2 ~Step 4. Then, by T—(L —1) known symbols, the best path 

is selected among the S survivors of the final list. If the label of 

the best path is "Reject", the retransmission is required and restart 

from Step 1. 

III. MAIN RESULTS 
Though the analysis in [1] depends on each tree configura- 

tion [5], the bounds newly obtained are independent. So, we 

newly observe the case that JS is very large. For obtaining the 

feedback exponent — ^ lnPr(E2) of Forney [4], we take A as 

-^lnPr(ßi) -► 0 (L -» oo) , where Pr(Ei) and PT(EI) 

is Pr [The decoding error occurs, or, the retransmission is re- 

quired.] and Pr [The decoding error occurs.], respectively. We 

show this result as Theorem. 
[Theorem]As S —¥ oo, the exponent approaches to e[°°'(R), 

e\°o)(R)=     max    (i?„(l,a,0,q) + cc ■ e^(R)\, 

T>4 = {a > 0,   ß > 0, £C 

i?o(5> CiE) Pz I q) 

Eo(l,a,ß,<i)-ßR>0}. 

■In 

J6B   \ieA 
EE<HE^ °xlf>* 

jk 
keA 

Spx-I 

ef)(R)=   max   EoF(S,v,td, 
q,l/SX>3 

2>3 = {EoF(S, v, q) - uSR > 0,   v > 0} 

EoF{S, v,q) = S ^2 Yl qiPki m 

keBjeA 

l/u 
P ' 

J2jeA^Pk^" 

IV. CONCLUSION 
We show the properties of the decision feedback scheme using 

fixed size list decoder, especially the size of list is very large. 

The exponents we have obtained have the similar properties 

to those of the GVA. 
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Abstract — We compare the theoretical and em- 
pirical performance of horizon-free universal portfo- 
lios for a large number of stock pairs using real stock 
market data in two scenarios: with and without side 
information, and with and without short selling. 

I. SUMMARY 

The horizon-free ^.-weighted universal portfolio is a sequen- 
tial investment algorithm that has been shown to perform as 
well as the best constant rebalanced portfolio to first order in 
the exponent (cf. [1]). Additionally, a number of theoretical 
properties of the universal portfolio have been derived. We 
are interested in the performance of the universal portfolio in 
the actual stock market and how this performance compares 
with the theory. To this end, we determine the performance 
of horizon-free universal portfolios for a large number of stock 
pairs using real stock market data in two scenarios: with and 
without side information, and with and without short selling. 

First, we observe for a large number of stock pairs that 
the n-day universal portfolio return Sn consistently per- 
forms near the best achievable constant rebalanced portfo- 
lio return Sn, and a factor of 28 better than the mini- 
max lower bound of VnSn established in  [3],  where  Vn   = 

[E („1,.
n,nm)2"nH<ni/n" "n"'/n)]"1' thus indicating that the 

market is not maximally hostile. We also compute the ratio 
Sn/Sn for real data and compare it to the theoretical asymp- 

where m is the number of stocks and M»l' 
t0te   (m-l)!(27r/n)<"-"I)/2 ' 

Jn is the sensitivity matrix (cf.  [1].). 
We then extend the universal portfolio by using side in- 

formation to assign days to certain states, and utilize state 
constant rebalanced portfolios as in [2]. For a state constant 
rebalanced portfolio the trading days are divided up into sub- 
sequences based on the state information. A constant re- 
balanced portfolio is then used independently on each subse- 
quence of days. One example of side information yt for a pair 
of stocks is to assign each day i to one of two states, 1 or 2, 
corresponding to the stock with the larger windowed moving 
average of price relatives for the last k days. The best constant 
rebalanced portfolio 6* and the universal portfolio 6; are based 
on the current and past state information y' and past price 
relatives x,_1. The best constant rebalanced portfolio return 
5*(xn|yn) is the product of the best constant rebalanced port- 
folio returns for the subsequence of days associated with each 
state: 

s:(xn\yn) max 
6 n*'* n*'* 

i:y,=2 

Similarly, S„ is the product of the wealth factors associated 
with the independent running of the universal portfolio on 
the subsequences of trading days associated with each of the 
states. For actual stock market data we observe that this sim- 
ple nonanticipative algorithm achieves factors as large as 105 

for some stock pairs over a twenty year period. When the 
side information of the windowed moving average is used for 
two portfolios without short selling, the lqg optimal portfolio 
6* for each state often exhibits a "bang-bang" effect, where 
all the wealth is allocated to a single stock. This "bang-bang" 
effect often has all the wealth pouring into the stock which has 
been underperforming. Additionally, the "bang-bang" effect 
indicates that even more wealth can be generated by selling 
one stock short and buying more of the other. Consequently, 
we analyze the effect of short selling and the tradeoffs be- 
tween return and amount of leverage. We also compare the 
performance of the /i-weighted universal portfolio with the 
exponentiated gradient universal portfolio as in [4]. Next, we 
look at the performance of the universal portfolio with and 
without side information, and with and without short selling 
for a portfolio of fifty stocks. 

Finally, we explore the use of several heuristic methods for 
increasing the rate at which the universal portfolio learns the 
stock market. These methods include several ways of creating 
a fake market associated with the actual market, computing 
portfolios in the fake market, and mapping portfolios from the 
fake market back to the actual market. 
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Abstract — An adaptively random searching algo- 
rithm is proposed for log-optimal portfolio. Under 
reasonable conditions the convergence of this algo- 
rithm is shown. The numerical results using this al- 
gorithm for real data from Shanghai Stock Exchanges 
are sastisfactory. 

I. INTRODUCTION 

Suppose one wishes to invest in a- stock market consist- 
ing of m stocks. We denote the market by a random vector 
X = {Xi,X2, • • • ,Xm)T, where Xi denotes the price relative 
of i-th stock, i = 1, 2, • • • , m. X is supposed to be drawn 
according to the distribution F(x),x € Rm. A portfolio 
b = (61,62, •••, bm) , 6; > 0, £ 6i = 1, is an allocation of 
investment capital. The expected log return W(b) is defined 
by W(b) = £[ln(bTx)] = |m(bTx)dF(x). The problem is 
to find the optimal portforlio b* to reach the maximal ex- 
pected log return W which is defined by W* — maxb W(b). 
A systematic discussion can be found in Cover and Thomas' 
book [1, Chapter 15]. Optimization algorithms abound for 
this problem. Readers can refer to Cover[2], Ye and Zhang[3] 
and the references cited therein for details. In this paper we 
suggest an adaptively random searching algorithm wiich is dif- 
ferent from the above-mentioned algorithms. The main body 
of the result is derived from a more general framework of con- 
strained stochastic gradient method. 

II. MAIN RESULTS 

The purpose is to solve the problem of finding b* to achieve 

W = maxW(b) = max / ln(bTx)dF(x), 
/' 

(1) 

based upon the observed data x(l), x(2), • • •, x(i), ■ • •, where 
b(£) is the observed stock return vector for t-th day. 

First we take a quadratic parameter transformation 6, = 
wf to change the original constraint manifold, a (m — 1)- 
dimensional simplex, B = {h : 6, > 0, ]T\ 6» = 1} into a 
(m — l)-dimensional unit surface, 

sm-i _ |w _ (WliW2t...iWm) : 22wi = !}■ 

Step 0 Given any initial guess w(0) 6 S™'1. 

Step 1 Compute the modified quantities 

i = 0; 

,(t+i) («it+1),<4t+1), <&+1))T 

by the formula w(t+1) = w(t) + Aw(1), where Aw(t) = 
77(£)gradM/(w(t),xw), t = 0,1, ■ • •, r)(t) is some chosen 
positive step size, called learning rate in general. The 
gradient vector is easy to compute by 

gradM/(ww,xw) = { 
Xi(t)wl (') 

Er=1K
,)a*j(t) 

thm 
-w\'}i=l. 

Step 2 Halt if the iteration of time reaches some predeter- 
mined number, or the norm of the difference w"+1' — 
w'') is small than some given control precision; other- 
wise, (t + 1) —> t, go to step 1. 

The learning rate sequence {r)(t)} satisfies that 

rj{t) > 0, ^2 Vi1) = +°°' Vit) -* 0, as t -> +00. 
t 

It is shown that under some reasonable conditions, this al- 
gorithm converges and results in the optimal portfolio b* = 
{wf,w*22, , w^ )    which achieves 

W* =maxW(b). 
b 

The numerical results based on this algorithm with real data 
from Shanghai Stock Exchanges are satisfactory. 
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I 

Then the problem considered becomes 

Maximized (w) = Maximizei?[/(w,X)], 

where /(w,x) = log(£™1 wfxi). 
Next we propose the following algorithm to solve the above 

problem: 

■"^This work was supported by the National Natural Science Foun- 
dation of China under the Grant No. 79790130 and 19901018. 
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We consider N-layer scalable source coding of a finite mem- 
oryless source X ~ px. Let X, denote Xi,...,Xit where Xi 
is the reproduction at the ith layer. From [5], we know that a 
scalable coder can achieve the sequence of decreasing distor- 
tions D =! {A}£Li and increasing rates R = {Ri}?=1, if and 
only if there exists a conditional distribution QXN\X such that 

E{d{X,Xi))    <    Di     i = l,...,N 
I(X;Xi)    <    Ri     i=l,...,N. 

The 2AT-dimensional achievability region A is convex. Hence, 
in order to find a point on the boundary of A with an inward 
normal vector (a = {a.i}?=1,ß = {$}£Li), we must solve the 
following minimization problem: 

Faß =   inf   Y^ aiHX; Xi) + ßiE(d(X, X,)) . 

The above problem was first addressed by Effros [4, Sec- 
tion V]. A new system of equations and inequalities regarding 
the optimal marginal qXN was formed, and all tentative solu- 
tions (extracted from the equations) were tried until the one 
satisfying the optimality conditions (the inequalities in the 
system) was found. (See [1, Section 2.6] for the details of 
the approach for the ordinary rate-distortion problem.) How- 
ever, it was not clear how qXi+1\Xi should be defined when 
qXi = 0. In fact, we showed that satisfaction of the condi- 
tions given in [4] for some assumed qXi+1\Xi when qXl = 0, 
does not necessarily imply the optimality of qXN. Moreover, 
this approach becomes impractical as the size of the output 
alphabet grows. (For an extreme example, consider contin- 
uous source and reproduction alphabets.) As a remedy, we 
propose an iterative algorithm which is a generalization of the 
Blahut-Arimoto (BA) algorithm [2] for rate-distortion com- 
putation. The algorithm is initialized with arbitrary nonzero 
reproduction probabilities, and monotonically approaches the 
optimal reproduction distribution. We also revise the optimal- 
ity conditions to handle the complications that arise whenever 
qXi = 0. 

Let Q = {QXN\X} and q= {qXN} denote, in vector no- 
tation, a random encoding, and a reproduction distribution, 
respectively. 
Lemma 1: 

■aß = inf inf F„ 
Q    q      ° jg(Q,q) 

where 

Fa,fl(Q>l) = J2ßiEQ{d(X,Xi)) + aiV(QXtlxPx\\qXtPx) 

1This work was supported in part by the NSF under grant no. 
MIP-9707764, the UC MICRO program, Conexant Systems, Inc., 
Fujitsu Laboratories of America, Inc., Lernout & Hauspie Speech 
Products, Lucent Technologies, Inc. and Qualcomm, Inc. 

Thus, the problem is that of double minimization and, as will 
be shown, is solvable by alternating minimization. 
Lemma 2: 
a) Given Q, arginfq Fa ß(Q, q) is the marginal 

q*N(Q) = J2pxQXN\x 
X 

b) Given q, arg inf Q Faß(Q,q) is given by 

O      M=     q*N 6XP *~ ^'^1 ß'idx'Xi + Q>i l0g ^'Xi * 
£z„Wexp{-£f=1,3^>+c/log/-,zJ ' 

where a\ = on/ £f=i a, and ß[ = ßt/ £^=. ajt and 

2. + 1 

for i = 1,..., N - 1, and /^XJV = 1. 

Theorem   1:    Let  q(0)   be  positive  everywhere,   and  let 
Q("> = Q(q(n-^), and q<n>  = q(Q(n)) for n =  1,2,3  
Then the sequence q(0), Q(1), q(1), Q(2), ..., converges to 

(Q*,q*) = arginf(Fa/3(Q,q)). 
Q,q      "•>-' 

The proof follows the same line as the proof for the optimality 
of BA, given in [3]. Finally, the optimality conditions are given. 
by 
Theorem 2: A given q is optimal if and only if there exists 
a legitimate qx,+l\Xi for all qXl = 0, so that 

vXN < vXN_1 <■■■ <vXl < 1 , 

for all Xjv, where 

EPxfi,Xj exp {- £-=1 ß[dx<Xi + a'i log/*,x.} 

Ez„ 9** exP {- ££Li ßidx^i + a'i log fx,Zi} 
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I. INTRODUCTION 

The Arimoto-Blahut algorithm ([1], [2]) determines the ca- 
pacity of a discrete memoryless channel through an iterative 
process in which the input probability distribution is adapted 
at each iteration. While it converges towards the capacity- 
achieving distribution for any discrete memoryless channel, 
the convergence can be slow when the channel has a large 
input alphabet. This is unfortunate when only a small num- 
ber of the input letters are assigned non-zero probabilities in 
the capacity-achieving distribution. If we knew which input 
letters will end up with a probability of zero, we could elim- 
inate these letters and operate the algorithm on a subset of 
the input alphabet. The algorithm would converge towards 
the same solution faster. 

We present an algorithm which makes use of this fact to 
speed up the convergence of the Arimoto-Blahut algorithm 
in such situations. The algorithm starts with an input alpha- 
bet consisting of two symbols, then grows the alphabet by one 
symbol at every iteration until it includes all the symbols with 
non-zero probabilities. At every iteration, the Arimoto-Blahut 
algorithm is used to compute a capacity relative to a partial 
input alphabet. When our algorithm terminates, it will have 
found the same solution as the Arimoto-Blahut algorithm ap- 
plied to the complete input alphabet. However, we cannot 
guarantee that our algorithm will include only symbols with 
non-zero probabilities in the partial alphabet it ends up with. 

II. THE ALGORITHM 

Let X be the input random variable to a discrete memory- 
less channel, and let X take on values over the finite alphabet 
A. Let Y be the output random variable of the channel and 
let C be its capacity. We define 

,(* - r.n - Ewwn ^ F^
(gSU) 

as in [3]. Let Gx< denote the capacity of the discrete memo- 
ryless channel induced when all but the letters in the subset 
A' of A are forcibly assigned a probability of zero. We give 
an outline of our algorithm: 

1. Determine (x,y) € A2 which maximizes C{X)V} over all 
choices of x and y. Define A' = {x, y} and C' = Gju. 

2. If A' = A, then C = C and the algorithm terminates. 
Otherwise, for all x € A \ A', compute I(X = x; Y). If 
the values computed are all smaller or equal to C'\ then 
C = C by [3, Theorem 4.5.1] and the algorithm can be 
terminated at this point. 

3. Add the symbol a; that maximized I(X = x; Y) in step 2 
to the set A'. Recompute C' = C^' using the Arimoto- 
Blahut algorithm. Return to step 2. 

The algorithm is certain to obtain the correct solution for the 
following reasons: 

'This  paper   documents   work   performed   at   the   Signal   & 
Inf. Proc. Lab., ETH Zürich, Switzerland. 

• When the algorithm exits in step 2 because all the values 
of I(X = x\ Y) are smaller or equal to C', the solution 
is guaranteed to be correct by [3, Theorem 4.5.1]. 

• The algorithm must eventually exit. In the worst case, 
it will end up including all the symbols of A into A'. 
In this case, the last occurrence of step 3 applies the 
Arimoto-Blahut algorithm to the complete input alpha- 
bet. This will be the case when our iterated algorithm 
is applied to channels whose capacity-achieving input 
distributions have only non-zero terms. 

As already mentioned, there is no guarantee that the algo- 
rithm will only include symbols whose probabilities in the 
capacity-achieving distribution are non-zero into its partial 
alphabet A'. However, the practical examples for which the 
algorithm was tested seem to indicate that it is highly unlikely. 

III. PRACTICAL IMPLEMENTATION AND CONCLUSION 

The practical need for such an algorithm arose in an at- 
tempt to compute the optimal coding distributions for uni- 
versal lossless source coding over sets of discrete memory- 
less sources with monotone non-increasing probability distrib- 
utions with a fixed average. The problem of determining the 
optimal coding distribution for universal coding over a set of 
probability distributions is equivalent to the problem of com- 
puting the capacity of a discrete memoryless channel [4]. 

For an alphabet size of 256, the problem of determining 
the optimal coding distribution for the set of monotone non- 
increasing distributions with a fixed average corresponds to 
the computation of the capacity of a channel with an input 
alphabet of up to 16'000 letters. Of those 16'000 letters, only 
about 100 letters have non-zero probabilities in the capacity- 
achieving distribution. Therefore, the algorithm presented 
here allowed a considerable acceleration of the convergence 
when compared to a conventional implementation of the Ari- 
moto-Blahut algorithm. A detailed presentation of this appli- 
cation along with more information on the implementation of 
the algorithm are given in [5]. 

REFERENCES 

[1] Suguru Arimoto, "An Algorithm for Computing the Capacity 
of Arbitrary Discrete Memoryless Channels," IEEE Trans, on 
Inform. Theory, IT-18, pp. .14-20, January 1972. 

[2] Richard E. Blahut, "Computation of Channel Capacity and 
Rate-Distortion Functions," IEEE Trans, on Inform. Theory, 
IT-18, pp. 460-473, July 1972. 

[3] Robert G. Gallager (1968), Information Theory and Reliable 
Communications, John Wiley and Sons, New York, ISBN 
0-471-29048-3. 

[4] Robert G. Gallager, "Source Coding with Side Information 
and Universal Coding," unpublished, submitted to the IEEE 
Trans, on Information Theory, September 1976. 

[5] Jossy Sayir (1999), On Coding by Probability Transformation, 
ETH Zürich, PhD Dissert. Nr. 13099, Hartung-Gorre Verlag 
Konstanz, Germany, ISBN 3-89649-444-9. 

I 

0-7803-5857-0/00/510.00 ©2000 IEEE. 
-235 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

To Code Or Not To Code 
Michael Gastpar, Bixio Rimoldi and Martin Vetterli1 

Department of Communication Systems 
Swiss Federal Institute of Technology 

CH-1015 Lausanne, Switzerland 

e-mail: {gastpar,  rimoldi,  vetterli}<BJ.cavsunl.epfl.ch 

Abstract — The theory and practice of digital com- 
munication during the past 50 years has been strong- 
ly influenced by Shannon's separation theorem [1]. 
While it is conceptually and practically appealing to 
separate source from channel coding, either step re- 
quires infinite delay in general for optimal perfor- 
mance. On the other extreme is uncoded transmis- 
sion, which has no delay but is suboptimal in gener- 
al. In this paper, necessary and sufficient conditions 
for the optimality of uncoded transmission are shown. 
These conditions allow the construction of arbitrary 
examples of optimal uncoded transmission (beyond 
the well-known Gaussian example). 

I. PREVIOUS AND BASIC RESULTS 

We consider a discrete-time memoryless source represented 
by the random variable S € S. The source output 5 is applied 
directly to a memoryless channel.2 The channel output Y € y 
is our estimate of the source with respect to a distortion mea- 
sure d(s,y). The source is specified by a probability density 
(or mass) function p(s) and a distortion measure d(s,y). The 
channel is specified by a conditional probability density (or 
mass) function W(y\s) and a channel input cost function p(s). 
Therefore, uncoded transmission achieves (average) distortion 
A = Ed(S,Y) and (average) input cost F = Ep(S). 

Definition. Uncoded transmission of the source (p, d) across 
the channel (W, p) is optimal if: (%) A is the minimum distor- 
tion achievable when the maximum input cost is T; and (ii) T 
is the minimum input cost to achieve distortion at most A. 

Let R(D) be the rate-distortion function of the source, and 
D(R) the distortion-rate function. Correspondingly, let C(P) 
be the capacity-cost function of the channel, and P(C) the 
cost-capacity function. From the separation theorem, we have 
the following Fact: Uncoded transmission of the source (p, d) 
across the channel (W, p) is optimal if and only if (i) A = 
D(C(T)), and (ii) T = P(R(A)). 

These two conditions are cumbersome to work with. For 
most cases of interest, we can find simpler necessary and suf- 
ficient conditions. However, let us first exclude certain special 
cases. Let Co denote the capacity of the unconstrained chan- 
nel (W,p), i.e. Co = C(P -> oo). 

Condition A. The source (p, d) and the channel (W,p) sat- 
isfy condition A if (i) in case I(p, W) = 0, W is the u- 
nique achiever of zero mutual information, and (ii) in case 
I(p, W) = Co, p is the unique achiever of Co. 

The condition ensures that D(R()) and P(C(-)) axe the 
identity functions, respectively. 

Lemma 1. Granted condition A, uncoded transmission of 

the source (p, d) across the channel (W, p) is optimal if and 
only if R(A) = C(r). 

This Lemma follows essentially from [2]; however, Condi- 
tion A was not mentioned there. On a more intuitive level, 
Lemma 1 implies the following: 

Lemma 2. Granted condition A, uncoded transmission of 
the source (p,d) across the channel (W,p) is optimal if and 
only if (i) the source p achieves capacity on the channel (W, p) 
(at input cost T), and (ii) the channel W achieves the rate- 
distortion function of the source (p,d) (at distortion A). 

Unfortunately, in order to compute rate-distortion and 
capacity-cost functions, we have to resort to numerical meth- 
ods in general. Thus, neither Lemma 1 nor Lemma 2 give an 
explicit way to verify whether or not for a given source and 
channel uncoded transmission is optimal and to construct ex- 
amples of such source/channel pairs. 

II. MAIN RESULT 

Proposition.   Uncoded transmission of the source (p, d) 
across the channel (W, p) for which 0 < I(p, W) < Co is opti- 
mal if and only if 

P(s) ciD(W(-\s)\\py)+p0 

1M. Vetterli is also with the Dept. of EECS, UC Berkeley, USA. 
2For the framework of this paper, we assume that the channel 

input alphabet is also S. The extension to arbitrary memoryless 
encoders and decoders will be presented at a later stage. 

d(s,y)    =    -C2log2^Ä+do(5), 
py{y) 

for some constants c\ > 0, Ci > 0, po and an arbitrary func- 
tion rfo(s), where £>(-||) is the Kullback-Leibler distance and 
py(y) = EW{y\S) is the pdf of Y. 

A proof of this proposition can be found in [3]. A similar 
result can be obtained for the case I(p, W) = Co. Note that 
the proposition allows to construct essentially all occurrences 
of optimal uncoded transmission. 

Universality of uncoded transmission. The most interest- 
ing applications of uncoded transmission are cases where the 
separation theorem does not hold, e.g. non-ergodic channels 
or multi-user communication. Consider a broadcast scenario 
with one source and many (different) channels. If it turns out 
that the above proposition is satisfied for the source and each 
channel individually, then uncoded (broadcast) transmission 
is (globally) optimal. In this example, uncoded transmission 
exhibits a property of universality, whereas the performance 
of any separation-based coding scheme is strictly suboptimal. 
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Abstract — Two source-channel coding strategies, 
tandem coding and channel-optimized quantization, 
are compared on the basis of distortion vs. complex- 
ity. For each, formulas for the mean-squared error 
and complexity used to minimize distortion subject 
to a complexity constraint. The results suggest there 
is a threshold such that tandem coding is better than 
channel-optimized quantization when and only when 
the complexity constraint is larger than the threshold. 

I. INTRODUCTION AND SYSTEM DESCRIPTION 

An oft claimed motivation for joint source-channel cod- 
ing (JSCC) is the potential to obtain good performance with 
less delay or complexity than with the conventional tandem 
source-channel coding (TSCC). However, little quantitative 
support for this claim has appeared in the literature. In this 
work, we seek to determine the validity of the claim by quanti- 
tatively comparing representative systems of each type on the 
basis of distortion vs. complexity. (Delay is not considered.) 

To avoid idiosyncrasies, the source, channel and represen- 
tative systems are chosen to be as plain vanilla as possible. 
Specifically, the source is Gauss-Markov; the channel is binary 
symmetric (BSC); the distortion measure is mean-squared er- 
ror (MSE); the TSCC, as in [1], is a conventional transform 
(source) code in tandem with a Reed-Solomon (R-S) channel 
code, and the JSCC is a channel-optimized transform code 
(COTC), which is a kind of channel-optimized quantizer. In 
both cases, a KLT transform is used, and the transform coeffi- 
cients are encoded with fixed-rate scalar quantizers. (Entropy 
coding is not used because of its idiosyncratic sensitivity to 
channel errors.) For COTC, the quantizers and bit allocations 
are optimized for the BSC as in [2]. For TSCC, the quantizers 
are optimized for a noiseless channel, with conventional bit al- 
locations, and the (n, k, m) R-S encoder is systematic. When 
the BSC output is within the error correcting capability, t, 
of some R-S codeword, the R-S decoder produces the first k 
symbols of that codeword. Otherwise, the received decoder 
is said to FAIL, and it simply produces the first k channel 
output symbols. 

II. DISTORTION, COMPLEXITY AND OPTIMIZATION 

The MSE of the COTC may be computed as in [2]. That 
of the TSCC can be computed in the form 

E[D] = E[D\no fail] Pr(no fail) + £[D|fail] Pr(fail). 

When t > 4, the probability of decoding error given no failure 
is negligible. Thus, E[D\no fail] is the usual distortion of the 
transform code on a noiseless channel. The computation of 
Pr(fail) is elementary, and a detailed method for computing 
£[Z)|fail] has been developed. 

1WoTk supported by ARO MURI grant DAAH04-96-1-0337. 
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As a measure of complexity C, we sum estimates of the 
numbers of arithmetic operations per data sample used in en- 
coding and decoding. For COTC, C = 4L-2 + Ä, where L = 
transform dimension and R — number of BSC uses per data 
sample. For the tandem code, C = 4£ — 2 + Rk/n + (ak + 
ßn)(n — k)R/nm, where a — 2 and ß = 10. 

Using the above methods for computing the MSE and com- 
plexity, an optimization program searched for the best param- 
eters for systems of each type, subject to a complexity con- 
straint. The Gauss-Markov correlation coefficient is fixed at 
0.9. The BSC error probability p and the number of BSC uses 
per data sample R are also fixed at various values. The TSSC 
parameters are L, n, m, k; the only COTC parameter is L. 

III. RESULTS AND CONCLUSIONS 

A representative result of the optimizations is provided by 
Figure 1. For small values of complexity, channel-optimized 
transform coding is better. However, as complexity increases, 
its performance tends to saturate and tandem coding becomes 
better. In other words, there appears to be a threshold such 
that tandem coding is better than channel-optimized trans- 
form coding when and only when the available complexity is 
above this threshold. Other results, not shown, indicate that 
the complexity threshold decreases as the BSC error proba- 
bility decreases. 

REFERENCES 

[1] J. Lim, D. L. Neuhoffand T.C. Nolan, " Allocating complexity 
between source and channel coding," Workshop on Data Compr. 
Proc.Techn. for Miss. Guid. Data Links, pp. 669-679, Dec. 1998. 

[2] V.A. Vaishampayan and N. Farvardin, "Optimal block cosine 
transform image coding for noisy channels," IEEE Trans. Com- 
mun., vol. 38, pp. 327-336, Mar. 1990. 

p=10   ,   R=5,   rho=0.9 
40 

35 

30 

„25 
m 

20 

15 

10 

Ideal Source & Channel Coding 

Ideal Channel Coding; 

Channel Opt 
Tran Code 

Tandem Code 

Transform coding 

100 200 300 
Complexity c 

400 500 

Fig. 1: Performance (SSNR) vs. complexity (op's/sample). 

237- 

I 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Iterative Source/Channel Decoding based on a Trellis Representation 
for Variable Length Codes 

Rainer Bauer and Joachim Hagenauer 
Institute for Communications Engineering (LNT) 

Munich University of Technology (TUM) 
Arcisstrasse 21 

D-80290 Muenchen, Germany 

e-mail: {Rainer.Bauer, Joachim. Hagenauer}<Sei . turn, de 

Abstract — A new trellis representation for vari- 
able length codes (VLC) is proposed which allows 
soft-in/soft-out decoding of these codes. Applying the 
BCJR-algorithm on this trellis either symbol-level or 
bit-level reliability information for the variable length 
coded sequence can be obtained. By using this soft- 
in/soft-out VLC decoder for iterative ("turbo") de- 
coding of a serially concatenated scheme consisting 
of an outer variable length code and an inner con- 
volutional code separated by an interleaver signifi- 
cant gains can be yielded compared to a instanta- 
neously decoded variable length code of the same 
overall source and channel code rate. 

I. INTRODUCTION 

Recently several schemes have been proposed to perform 
decoding of variable length codes by considering the overall 
sequence rather than decoding the VLC coded symbol stream 
instantaneously using the prefix property of these codes. Some 
of these approaches also use trellis representations of vari- 
able length encoded symbol sequences and carry out either 
maximum likelihood (ML)- or maximum a posteriori (MAP)- 
sequence estimation to decode the source symbols. Although 
in [2] symbol-level soft-output was proposed, the soft-output 
was not used for further processing. We present a soft-in/soft- 
out VLC decoder which can be used in an iterative decoding 
scheme. 

II. TRELLIS REPRESENTATION 

Consider a source that independently produces outputs se- 
lected from an M-ary alphabet U = {0, ...,M — 1}. A vec- 
tor u of K source output values is mapped to a vector c of 
codewords taken from a variable length code C for the given 
symbol alphabet. Let 1 = (II,...,IM) be an M-tuple that de- 
fines the lengths of the codewords. The total bit-length of 
the VLC vector c is denoted by N. Every sequence consisting 
of K symbols and TV bits can be graphically represented by 
a trellis-like structure as shown in Figure 1 for K = 4 and 
N = 6, where the horizontal axis represents the symbol time 
and the vertical axis represents the bit time. The alphabet size 
in the example is M = 3 and the lengths of the codewords are 
1 = (1,2,3). Furthermore, let the vector c be channel coded 
and transmitted over a noisy channel. 

III. DECODER STRUCTURE 

As the above mentioned trellis is terminated it can easily be 
seen that maximum a posteriori (MAP) decoding according to 
the BCJR-algorithm [1] can be applied on this trellis. Thereby 

decoding can be carried out either on a symbol-by-symbol 
basis along the horizontal axis or on a bit-by-bit basis along 
the vertical axis. If decoding is done vertically the output 
values of the decoder are a posteriori probabilities (APP) for 
the bits of the variable length coded sequence c. Let us assume 
a concatenated coding scheme with a variable length code as 
outer code and a channel code as inner code separated by an 
interleaver. If the APP-VLC decoder works in the bit-level 
mode the soft-output can be used as a priori information for a 
second run of the inner soft-in/soft-out channel decoder. This 
results in the well known structure of an iterative decoder for 
a serially concatenated coding scheme. 

symbol time 

Figure 1: Example for VLC-Trellis 

This new iterative approach in source/channel decoding 
with variable length codes results in significant performance 
gains compared to a system with instantaneous VLC decoding 
for both AWGN and fully interleaved Rayleigh-fading chan- 
nel. Further detail about the proposed approach can also be 
found in [3]. 

REFERENCES 

[1] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, "Optimal decoding 
of linear codes for minimal symbol error rate," IEEE Trans, on 
Inform. Theory, vol. IT-20, pp. 284-287, March 1974 

[2] M. Park and D. J. Miller, "Decoding entropy-coded symbols 
over noisy channels using discrete HMMs, in Proc. Con}, on 
Information Sciences and Systems (CISS), Princeton, USA, 
March 1998 

[3] R. Bauer and J. Hagenauer, "'Turbo-FEC/VLC-Decoding' and 
its Application to Text Compression", in Proc. CISS 2000, 
Princeton, NJ, March 2000 

0-7803-5857-0/00/51 0.00 ©2000 IEEE. 
238- 



Progressive Image Transmission over Compound Packet Erasure 
Channels 

Vinay Chande and Nariman Farvardin 1 

Department of Electrical and Computer Engineering, 
University of Maryland 

College Park, MD-20742 ,USA 
e-mail: {chande,farvar}8eng.umd.edu 

Abstract — We consider the problem of joint source- 
channel coding for progressive packetized transmission 
of an image over a packet-loss network whose packet- 
loss rate is a random variable. We obtain an algorithm 
for unequal erasure protection which, by design, main- 
tains progressivity, that is, good performance at inter- 
mediate transmission budgets. 

Embedded source coders for images are attractive because 
they provide a single bitstream capable of progressively repro- 
ducing the image at different distortions and rates (bit bud- 
gets). Maintaining such a progressive capability, when the 
communication channel is noisy or lossy, requires design of a 
joint source-channel coding scheme which generates a single bit- 
stream, simultaneously taking into account the distortion-rate 
performance at a number of transmission budgets. In this work, 
we undertake the design of a system for progressive image trans- 
mission over a lossy packet network with unknown packet-loss 
characteristics in the absence of any network/transport layer 
loss recovery mechanism and feedback channel (e.g. transmis- 
sion using User Datagram Protocol (UDP). We assume the 
.packet length to be fixed. We model a network with unknown 
packet-loss rate as a compound channel. A compound packet 
erasure channel is a finite-state channel whose packet-loss rate 
for a session is a random variable with known probability dis- 
tribution. In each state s G <S, the channel is memoryless with 
an associated packet erasure rate e(s). The state is chosen at 
the beginning of the transmission session according to a known 
probability mass function /s, and remains unchanged during 
the entire session. This model applies to situations such as 1) 
transmission of the same bitstream to different receivers facing 
different packet-loss rates, 2) transmission over a time varying 
channel, where the time-scale of variations in packet-loss rates 
is much larger than the average length of an image transmission 
session (e.g. over the Internet where the packet-loss rates due 
to congestions have hourly and daily variations.) 

We select a high performance embedded image coder like 
SPIHT as the source coder. The joint source-channel coder de- 
sign requires the allocation of unequal erasure protection to (i) 
incorporate varying sensitivity of source-bits to loss, and (ii) 
combat the channel variability. In addition, the design requires 
the scheduling of the source and the protection bits in the trans- 
mit bitstream to obtain good progressive transmission. We use 
a rate compatible family C = {ci,C2,. • • cj} of (n,ko) packet 
erasure correcting (PEC) codes obtained by puncturing a Reed- 
Solomon (RS) parent code for different n and fixed ko- A (n, ko) 
PEC code corrects n—fco packet erasures. The embedded source 
coder output is divided into fixed length source-blocks of length 

ko packets. Each source-block is encoded with a potentially 
different channel code, chosen from C according to a code allo- 
cation policy. The joint source-channel coder generates a single 
stream of packets and transmits over the lossy network. Some 
of these packets are lost or dropped by the network. We assume 
that the location of dropped packets is known. At the receiver, 
RS codewords are reassembled and source-blocks are recovered. 
The image is reconstructed only from the longest available (re- 
covered) prefix of the source-block sequence. A code allocation 
policy 7T given by a sequence {c\,c%,..., c- } allocates chan- 
nel code ct G C to the ith source-block out of the source coder. 
Let MT(7T) denote the total number of packets used by policy 
■K. Let, for c e C, rc(c) denote the coderate. Then MT(TT) 

is computed as, MT(n) =' ^^ kor'^ci). Let PSNR* de- 
note the expected Peak-Signal-to-Noise-Ratio (PSNR) at the 
receiver while following the policy n over the compound chan- 
nel. The code allocation problem under the constraint of total 
transmission budget of M packets is written as, 

(1) 

1 Prepared through collaborative participation in the Advanced 
Telecommunications/Information Distribution Research Program 
(ATIRP) Consortium sponsored by the U.S. Army Research Lab- 
oratory under Cooperative Agreement DAAL01-96-2-0002 and sup- 
ported in part by a grant from the National Security Agency. 

xnaxPSNR„ subject to Mr(n) < M. 

Unlike a fading channel, for a compound channel and a pol- 
icy 7T, PSNR,, does not depend on the order of the packets in 
the bitstream. But the expected PSNR at intermediate budgets 
is controlled by the order of the packets. The proposed algo- 
rithm addresses the simultaneous ordering and code allocation 
problem. The output bitstream is regarded as a sequence of 
embedded policies, each designed for an intermediate transmis- 
sion budget [1]. Let ix*(M) denote the policy obtained by the 
proposed algorithm for problem (1) for packet budget M. The 
algorithm generates 7r*(M) from policies it*(j) for 1 < j < M, 
in such a way that the resulting policies are embedded by design. 
Briefly, the algorithm restricts the search of 7r*(M) to a union 
of (i) all policies obtained by adding one parity-check packet 
to a source-block in policy -K*(M — 1) and, (ii) all policies of 
packet-constraint M, obtained by adding an entire source-block 
encoded with some code c G C to one of the policies 7r* (j) for 
j < M. Then, from the (restricted) search space, it selects 
the policy 7r* (M) which maximizes the average PSNR. The al- 
gorithm is greedy and suboptimal, but for each budget M, it 
generates a single packet stream which executes ir*(M) as well 
as ir*(j) for a number of intermediate budgets j, 1 < j < M. 
Simulations for selected channels and images yield over 0.5 dB 
improvement in average PSNR over equal erasure protection 
(EEP) schemes across a range of transmission rates. The gains 
are higher and the designed allocation is farther away from an 
EEP scheme if the variation in the packet-loss rates is higher. 
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Abstract — An ideal cipher system is suggested 
whose coding time is less in order of magnitude than 
for known methods. 

I. INTRODUCTION 

It is well known in cryptography that it is easy to construct 
an unbreakable secret-key cipher system if a plaintext source 
generates letters which are independent and equiprobable even 
if the length of a key sequence is much less than the length 
of the message [1]. In this paper, we suggest a new secret-key 
cipher system in which a message generated is transformed 
into two parts in such a way that the biggest part consists 
of independent and equiprobable bits and only this part is 
encrypted. The complexity of the method is exponentially 
less than that for other known methods. 

We use a common definition of a secret-key cipher system. 
As customary, we assume that the secret key k is statistically 
independent of the plaintex sequence 2:1X2 ■ • •■ We also assume 
that the plaintext digits, key digits, and ciphertext digits take 
values in the alphabet A = {0,1}, the key source and the 
plaintext source are i.i.d., and key digits are equiprobable, 
but the suggested method is easily generalized for the case of 
any finite source alphabet and for Markov sources. 

In this report a simply realisable ideal system is suggested 
for the case when the length of a key is much less than the 
length of an encrypted message. 

II. DESCRIPTION OF THE CIPHER SYSTEM 

The description of the suggested cipher system may be di- 
vided into two parts as follows: first, a generated sequence 
of letters is transformed into two subsequences, and, second, 
the biggest subsequence which consists of independent and 
equiprobable letters, is encrypted. The first part plays a key 
role. It is based on the method of P. Elias [2] and the fast 
algorithm of enumeration from [3]. 

Let us give some new definitions in order to describe the 
method. Let S'n be the set of all binary words of the length n 
with i ones, (n > i > 0), and let for every x e S'n code(x) be 
lexicographical number of the word x in the set S'n which is 
written in binary number system, the length of code(x) equals 
riog(7)i bits. 

A generated plaintext can be written in the form of a se- 
quence of blocks of the length n, where n > 2 is a param- 
eter of the method. Every block x is encoded by the se- 
quence of three words u(x)v(x)w(x). Here u(x) is the number 
of units in the block x and the length of u(x) is equal to 
[log(n + 1)] bits. In order to describe v(x) and w(x) we de- 
fine mk = [\og(l)\(= |k>g|S*|j) andletQm(bQmt_1...Q0 be 

a binary notation of |5*|. Let amk = 1,0,-j = 1,... ,otj, =1 
and the other aik   = 0 and let ji   > j2  >  ...  > js.    Let 

•ß(x) = ßmkßmk-i ■ ■ ■ ßo be the binary notation of the lexi- 
cographical number of x and let the following inequalities be 
valid: 

amkamk-i ■ ■ ■ QJr000 ... 0 < ß(x) 
< amkamk-i .. . a_,r+100.. .0 

for a certain r. (Obviously such r exists). The word w(x) is 
defined as follows 

(1) 

w(x) l       ßjr-lßjr- 

l     A> 
2...A),if >-l >0 

if  jr - 1  < 0, (2) 

where A is an empty word and jo = mk by definition. At last, 
v(x) is a binary notation of the length of the word w(x) and 
the length of v(x) is equal to [log(mfc + 1)] bits by definition. 

Let us describe the second part of the method. It 
is convenient to enumerate digits of words w(x\ ... xn), 
w(xn+i ■ ■ ■ X2n), ■ ■ ■ and denote them by wowi ■ ■ •■ Let k = 
koki ... kt-\ is the key word. The enciphering and deciphering 
are defined by formulas z; = Wi®k{ mod t and Wj = Zi®ki mod (, 
correspondingly. Every symbol z; is put on the place of the 
letter w*. So an encrypted sequence may be considered as 
the sequence u(-)v(-)z(-)u(-)v(-)z()..., where z(-) is the en- 
crypted word w(-). 

Theorem: Let there be given a Bernoulli source which gen- 
erates letters from the alphabet A = {0,1} with (unknown) 
probabilities p and q, respectively. Let the suggested cipher 
system be used for encrypting the source messages with the 
blocklength n. Then the following holds: 

i)the suggested system is strongly ideal 
ii) The symbols of the sequence w(x\1) w{x\^l

+l) w{x\\n+\) 
... are independent and equiprobable. 

iii) E(\w{x\(;n
+

+
lln)\) > nh - 21og(n + 1), where h = 

— (plogp + qlogq) is the entropy of the source, E(-) is an 
expectation. 

iv) the method requires the memory size 0(n log n) bits 
and has the time of encoding and decoding 0(log3 n log log n) 
bit operations per letter as n —> 00. 

Remark. The source generates h bits of information per let- 
ter and, therefore, nh bits per block. The suggested cipher sys- 
tem encrypts symbols of the words «>(a:|^,+i ), r = 0,1,2,.. .. 
The claim iii) shows that, informally, almost all generated in- 
formation is encrypted when n grows. 
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Abstract — A perfect homophonic coding technique 
is devised for which the number of fair coin tosses to 
select a homophone is bounded for any source with ra- 
tional letter probabilities. The new scheme enlarges 
the source alphabet, which paradoxically generally re- 
sults in less plaintext expansion than does "optimum" 
homophonic coding of the unaugmented source. 

I. INTRODUCTION 

In homophonic coding, a multiplicity of "homophones'1 (bina- 
ry words hereafter) are probabilistically substituted for each 
plaintext letter so as to reduce the redundancy of the result- 
ing-new "plaintext'1 and hence to increase the unicity distance 
of the cipher at the cost of some plaintext expansion. Ho- 
mophonic coding is perfect if the new plaintext sequence is 
irredundant and is optimum if it is perfect and its plaintext 
expansion (i.e.. the average length of a homophonic word less 
the entropy of a source letter) is as small as possible [1]. 

For simplicity, we consider only binary homophonic cod- 
ing of the output sequence of a A'-ary discrete memoryless 
source (DMS). The homophonic coding problem then reduces 
to that for a single A'-ary random variable U. but the theo- 
ry is easily modified to handle general sources. We assume 
that U has a probability distribution with rational entries 
P[/(a,) = mi/n, 1 < i < K. where m, and n are positive 
integers and n is as small as possible. If and only if n is an 
integer power of 2. the number of fair coin tosses to select a 
homophone is bounded for perfect homophonic coding of the 
DMS U [1]. We show now how to achieve this for all n. 

II. THE NEW SCHEME 

The "trick" is to augment the source U with a "dummy" let- 
ter A to which we assign probability Py(A) = (2N - n)/2N 

where N = [log2nl. This forces the choices Pfj(ui) = 
{n/2N)Pu(u,) = m,/2N for 1 < »'" < K. The letter proba- 
bilities for the augmented source are thus rational numbers 
with a common denominator of 2N and hence at most N fair 
coin flips are required to choose the homophone if optimum 
standard homophonic coding [1] is now applied. Surprisingly, 
the resulting plaintext expansion is generally less than for s- 
tandard "optimum" homophonic coding of the original source. 
Example: Consider the binary DMS with Pr/(«i) = 1/3 and 
Pu{ui) = 2/3. "Optimum" homophonic coding uses an un- 
bounded number of fair coin tosses for homophone selection 
and gives an average word length E[W] = 2. The plaintext 
expansion is E[W]-H(U) = 2-A(l/3) s= 1.082, where h{p) is 
the binary entropy function. N = [log2 3] = 2, so we augmen- 
t V with a dummy letter A with Py(A) = (4 - 3)/4 = 1/4. 
Then P&(m) = (3/4)(l/3) = 1/4 and J>&(«2) = (3/4)(2/3) = 

1/2 so at most two fair coin flips are needed to select a ho- 
mophone. All letter probabilities for U are negative integer 
powers of 2 and hence E[W] = H(U). The average number of 
letters from the original source U that are encoded with the 
encoding of one letter of U is p = n/2w = 3/4. The plain- 
text expansion of the new scheme is thus E[W] — pH(U) = 
H(Ü)-pH{U) = 3/2 - (3/4)A(l/3) » 0.811, which is sub- 
stantially less than the plaintext expansion 1.082 for standard 
"optimum" homophonic coding of the original source U\ 

The new scheme can be implemented as follows. One first 
tests for the occurrence of an event of probability p = 1 — 
Pjj(&) = n/2N, which requires at most N flips of a fair coin. 
If the event occurs, one calls on the source U to emit a letter 
that then becomes the output oi'U. Otherwise, the dummy 
letter A becomes the output of U. Decoding is simple-one 
just deletes the dummy letters from the reconstructed output 
sequence of U to obtain the output sequence of U. 

III. BOUNDS ON PLAINTEXT EXPANSION 

Proposition 1 Let U be a K-ary discrete memoryless source 
whose letter probabilities are all rational numbers, and let n, 
N and p be as defined above. Then standard optimum ho- 
mophonic coding [l] of the augmented source U achieves a 
plaintext expansion E[W] — pH(U) satisfying the bounds 

h{p) < E[W]-pH(U) < h{p)+2-23~N, all N > 3,p # 1 (1) 

and, if a) the letter probabilities ofU written as fractions with 
denominator n all have numerators that are integer powers of 
2 and b) n = 2N — 2' for some i, 0 < i < N — 2, satisfying 

E[W]-pH(U) = h(p). (2) 

1 This author thanks Andre Kauffman for helpful discussions and 
the Brazilian National Council for Scientific and Technological De- 
velopment (CNPq) for its support under Grant No. 304214/77-9. 

The lower bound in (1) follows immediately from the fact 
that E[W] > H(Ü) = h(p)+pH(U). The upper bound for 
N > 3 follows from the bound in [2] upon noting that when 
p 7^ 1 there can be at most N — 1 terms in the expression for 
the probability of any letter of U as a sum of distinct negative 
integer powers of 2. 

The equality in (2) follows by noting that conditions a) 
and b) are necessary and sufficient for the probabilities of all 
letters of U to be negative integer powers of 2 or, equivalently, 
to have E[W] = H(Ü) = h(p)+pH(U). Note that conditions 
a) and b) are always satisfied when N — 2 and p^l. 
Example: Consider the DMS U with letter probabilities 2/3, 
1/6 and 1/6.   Here n = 6 and N = 3.   Conditions a) and 
b) are satisfied so (2) holds and the plaintext expansion is 
E[W] - pH(U) = h(p) = A(3/4) ä 0.811. 
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Abstract — We discuss a strategy initiated by Boneh 
and Shaw for Collusion-Secure Fingerprinting. We 
show that under this strategy, finding fingerprinting 
schemes that resist coalitions of two users amounts to 
finding Z?2-sequences of binary vectors. A sequence of 
vectors l>i,V2,... ,v„ is a B^-sequence if all sums t>, + Vj, 
1 < i < j < Ti, are different : the associated extremal 
set-theoretic problem is what is the maximal size of 
a B2-sequence ? We shed new light on this old com- 
binatorial problem and improve on previously known 
upper bounds. 

I. MARKING ASSUMPTIONS AND DUPLICATION 

Suppose a Distributor wishes to create and distribute a large 
number of copies of a large binary file <£ 6 F^. In order to 
trace illegal copies he will mark each copy of 4>. The marking 
process of some copy of $ consists of changing the bits of * 
belonging to some subset of a privileged set M C {1,... N) 
of coordinates called marks. The subset of marks associated 
to a copy of $ is called a fingerprint and can be seen as a 
binary vector of length m = \M\. The set of marks M is 
unknown to anyone but the distributor. It is supposed to be a 
small subset of {1,... N}, so that modifying a fingerprint by 
randomly changing a few bits of a copy of $ is inefficient. 

The problem of collusion occurs when a coalition of c pirate 
users compare their fingerprinted copies : whenever their set 
of copies differ on some coordinate they will know it is a mark. 
They can then produce an illegal copy by changing at will bits 
on the subset of marks they have found out. 

We shall concern ourselves with the case c = 2. 
Boneh and Shaw use the following duplication trick: the 

set of fingerprints is actually constructed from a code C C 
FJ where m = tn. A fingerprint X is constructed from a 
codeword x G C simply by duplicating each symbol t times, 
i.e. changing 0 to 00 • • • 0 and 1 to 11 ■ • ■ 1. Let us call the 
set of t coordinate positions of X that stem from a single 
coordinate of x a block. The partition of the set M of marks 
into blocks is kept secret by the distributor. Thus, when two 
pirate users compare their fingerprinted copies they will have 
no way of deciding whether two uncovered marks belong to the 
same block or not, so whenever the pirates decide to change a 
fraction p of the set of uncovered marks, they will, on average, 
change a fraction p of the marks belonging to any single block. 

Suppose two colluding pirates are in possession of two legal 
copies fingerprinted by X and Y and that A' and Y originate 
from x, y 6 C. The pirates have essentially the following type 
of strategy : they can pick one of the copies, fingerprinted by 
X say, and change randomly and independently with proba- 
bility p every coordinate of the set of uncovered marks. Their 
only degree of freedom is p. 

On the other hand, when confronted with this illegal copy 
of $ the distributor will try to trace one of the legal copies it 
was constructed from, i.e. reconstruct x or y. The distributor 
has two strategies: 

1. He can associate to every block a binary symbol by ma- 
jority decision. 

2. The alternative strategy is to associate to any corrupted 
block which contains both zeros and ones a third erased 
symbol, say e.   This strategy yields a ternary vector 
<e{ft,i,e}n. 

What duplication ensures is that the second strategy need 
be applied only when the first has failed to produce a legiti- 
mate codeword z 6 C. With high probability this will happen 
only when the pirates have chosen p sufficiently separated from 
0 and 1. In that case the second strategy will yield with high 
probability the ternary vector 

C = C(*,v) 

defined by £ = n = y; when Xj = y< and by £ = £ when 
Xi / yi. 

If the code C has the property that C(x,y) always identifies 
{x,y} for any pair of codewords {x,y}, then, for any suffi- 
ciently big duplication parameter t, one of the two decoding 
strategies will almost always identify x or y. 

II. £?2-SEQUENCES 

Let x and y be two codewords of a code C C FJ. Notice 
that £(x, y) is obtained from the real sum x + y by changing 
every 2 coordinate into a 1, every 1 coordinate into e and 
leaving 0's unchanged. The relevant identifying property that 
we need from C is that the real sums x + y are all different for 
every pair {x, y} of codewords. Such a code has been named 
a f?2-sequence by Lindström [2]. 

Define by R — limsup,,.^ i log2 |C„| the maximum rate 
of a Bi -sequence. The previously known best bounds were 

[2]: 
0.5 < R < 0.6 (1) 

Using results from [3] we obtain: 

Theorem 1 
R< 0.5752. 
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Abstract — We present a simple calculus for deriv- 
ing conditional independence relations of events and 
random variables and show how it can be applied to 
simplify, generalize and sometimes strengthen crypto- 
graphic security proofs relying on the indistinguisha- 
bility of certain types of probabilistic constructions 
relevant in cryptography. 

The goal of our calculus is similar in spirit to those of other 
authors [3, 2, 1], but a crucial difference, important in our ap- 
plications, appears to be that in addition to random variables 
occurring in the conditional independence relations, we also 
consider events. 

The core of many classic security proofs of cryptographic 
systems relying on a pseudo-random function (e.g. imple- 
mented by a block cipher), is a proof that an idealized version 
of the system, with the pseudo-random function replaced by 
a random function, is statistically very close to a perfect sys- 
tem modeling the desired ideal behavior of the system. More 
precisely, it is proved that no adaptive distinguisher algo- 
rithm, even with unbounded computational resources, can dis- 
tinguish the ideal and the perfect system with non-negligible 
probability, unless it queries the system for an infeasibly large 
number of inputs. 

Our approach is based on defining appropriate conditioning 
events for the idealized system such that if the event occurs, 
then it behaves exactly like the perfect system. In this short 
abstract we cannot sketch the cryptographic applications. 

Definition 1 Two events A and B are conditionally indepen- 
dent, given the event C, denoted [A; B\C], if P(A D B n C) ■ 
P{C) = P{A n C) ■ P(B n C) or, more briefly, if 

P(ABC) ■ P(C) = P(AC) ■ P(BC). 

If P(C) > 0, this is equivalent to P(AB\C) = P(A\C) ■ 
P(B\C). The concept of conditional independence and this 
notation can be extended to random variables: 

Definition 2 Let S,T and U each be an event, a random 
variable, or a list consisting of events and random variables. 
S and T are conditionally independent given U, denoted 
[S; T\U], if the conditional independence relation according 
to Definition 1 holds for all possible triples of events resulting 
when the random variables in S, T and U take on particular 
values. 

The following theorem states under which condition an 
event or random variable can be deleted from an independence 
set or the conditioning set, shifted from an independence set 
to the conditioning set, or vice versa. Any random variables 
in an independence set can be deleted and, if accompanied in 
the set only by other random variables, then it can also be 
moved to the conditioning set. 

Theorem 1' Consider a fixed random experiment and let 
S, T, U and V each be an event, a random variable, or a list 
consisting of events and random variables. If [S;T\V], then 
[S; U\TV] and [S;TU\V] are equivalent, i.e., one implies the 
other: 

\S;T\V]  A  [S;U\TV]  =>  [S;TU\V] (1) 

and 

[S;T\V]  A  [S;TU\V]  =►   [S;U\TV]. (2) 

If U is a random variable (or a list of random variables), then 

[S;TU\V] 

[S;TU\V] 

[S;T\V], 

[S; U\TV], 

and 
[S;T\UV]  A [S;U\V]   =>  [S;T\V]. 

(3) 

(4) 

(5) 

Proof. It suffices to prove the first claim for the case when 
S, T, U and V all are events. If some of the quantities S, T, U 
and V are random variables or lists of random variables, the 
fact that the implication holds for all events obtained by let- 
ting these random variables take on particular values implies 
that it also holds for the random variables. [5;T|V] is equiv- 
alent to 

P(STV) ■ P(V) = P(SV) ■ P(TV), (6) 

[S; U\TV] is equivalent to 

P(STUV) ■ P(TV) = P(STV) ■ P(TUV), (7) 

and [S; TU\V] is equivalent to 

P{STUV) ■ P{V) = P(SV) ■ P(TUV). (8) 

1 Department  of Computer  Science,   ETH  Zürich,   CH-8092 
Zürich, Switzerland. E-mail: maurer8inf.ethz.ch. 

Equation (8) is obtained from (6) and (7) by multiplying the 
left side of (7) with the left side of (6) and the right side of (7) 
with the right side of (6), and canceling the terms P(STV) 
and P(TV) appearing on both sides. Similarly, (7) is obtained 
from (6) and (8) by multiplying the left side of (8) with the 
right side of (6) and the right side of (8) with the left side 
of (6), canceling the terms P(V) and P(SV) appearing on 
both sides. The second part of the proof is omitted. A 

Note that if S, T, and U are events, then [S;TLf\ =>■ 
[S;T\U] and [S;TU] => [S;T] are false in general. For 
instance, let P(S) = P{T) = P(U) = 0.5, P(ST) = 
P(SU) = P(TU) = 0.2, and P(STU) = 0.1. Then 
P{STU) = P(S)P(TU) = 0.1 but P{STU)P(U) = 0.05 ^ 
P(SU)P(TU) = 0.04. 
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Abstract — We introduce a closed-form blind chan- 
nel estimator for multiple-input multiple-ouput (MI- 
MO) finite impulse-response (FIR) systems, based on- 
ly on second-order statistics (SOS). We rely on cor- 
relative filters at each transmitter to induce a spec- 
tral assimetry between the users. No additional pow- 
er or bandwidth, nor synchronization between the 
sources, are required, and the original data rate is 
maintained. We show that, under a simple spectral 
condition on the transmitted random processes, this 
data preprocessing makes the MIMO channel unique- 
ly determined (up to a phase offset per user) from 
the SOS of the MIMO system outputs. The closed- 
form algorithm which attains this channel identifiabil- 
ity bound is briefly discussed. 

I. PROBLEM FORMULATION 

Consider the P-input/N-output MIMO system, y (t)  = 

E^.JfpSp(*) + *»(*); here> w(0 e cN, HP € cNxM", 
sp (t) = [sp(t) sp{t - 1) • • • sp(t - Mp + 1]T, sp{t) is the scalar 
signal emitted by the pth user, and w(t) 6 CN denotes addi- 
tive noise. Our goal is the blind estimation of the MIMO chan- 
nel matrix H = [Hi ■ ■ ■ HP] from the SOS of the observed 
data y(t). We assume: (Al) P (number of users) is known 
and H is full column rank, and (A2) the sp(t)'s are uncorrelat- 
ed zero-mean unit-power wide sense stationary processes, and 

the noise correlation matrices RW{T) = E j w(t)w (t — r) j 

are known; sp(t) and w(t) are independent processes. Here, 
for simplicity, we also assume (A3) that Mi,... , Mp (users' 
channel orders) are known. 

II. CHANNEL IDENTIFIABILITY 

As it is well known, the MIMO channel matrix H is not 
unambiguously defined from the SOS of its outputs, 1Zy = 
{Ry(r) : T £ Z}, if the sources are white up to 2nd order, 
i.e., rSp(r) = E {sp(t)sp(t - r)*} = 6 (r) (Kronecker delta). 
To make H identifiable from V,y, we propose to color the 
sources; i.e., the pth user, rather than transmitting the white 
information sequence, say ap(t), emits the output of a correl- 

ative FIR filter, sp(t) = YA=Q
1
 /p(0ap(< - 0- Moreover, sup- 

pose that the correlative filters / = (/p(0),... , fP(Lp — 1)) 
are designed as to satisfy: (A4) for each p / q, there is a cor- 
relation lag r = r(p,q), such that a (Ap(r)) ncr(A,(r)) = 0. 
Here, er (X) denote the spectrum (set of eigenvalues) of X, 

and Ap (r) = R,p (0)~1/2 RSp (r) R3p (0)~1/2 is the normal- 
ized autocorrelation matrix for the vector process sp(t). Then, 
we have theorem 1. 

Theorem 1. Under (A1)-(A4), H is uniquely determined (up 
to a phase offset per user) from the SOS of the MIMO system 
OUtpUtS   IZy. 
Condition (A4) on the correlative filters is not very restrictive. 
In fact, let Mp and Lp (p =? 1,.... , P) be given, where Lp > 1 
(i.e., each correlative filter / has memory). Denote by ML 

the set of all unit-norm minimum-phase FIR filters of degree 
L, let M = nP=i MLP (Cartesian product), and denote by T 
the subset of M which satisfy (A4). Then, theorem 2 holds. 
Theorem 2. T is dense in M. 
Proofs of both theorems can be found in [1]. Notice that 
unit-norm correlative filters are required in order to maintain 
the original transmitted power. The minimum-phase property 
is desirable as it permits to estimate the information symbols 
ap(t) by directly inverting the filters /   (once H is identified). 

III. BLIND IDENTIFICATION ALGORITHM 

We just outline the algorithm three main steps (for details, 
see [1]). We exploit theorem 1 as the basis of our identification 
strategy. It guarantees that, if G : N x M (M = J2P=i Mv) 

satisfies the equations Ry(r) = GR,{T)G" + RW(T) (T € Z), 
then G — H (up to a phase offset per user); here, R,(T) 

are the correlation matrices of s(t) = [si(t)T ■ ■ ■ sp(t) ] . 
Since the MIMO system is FIR, we only have to consider a 
finite number of equations, say for r G T — {n,... ,Tk}. 
Let R(T) = RV{T) — RW(T) (denoised output correlation 
matrices). Step 1: we obtain Go = HR,(0)1/2QH, where 
Q = [Qj • • ■ Qp] : (unknown) unitary, as the square-root 
of R(0). Step 2: Focus on the pth user, and let B(T) = 
G+R(T)G+

H
 = ZP=IQPAP(T)Q^. Due to the unitary 

structure of Q, Qp satisfies the linear system (in the unknown 
X) C: B(T)X - XAP{T) = 0, r e T. It turns out that, due 
to (A4), Q is the unique solution (within a scalar factor). 

Thus, solving C and re-scaling, yields Up = Qpe'6p. Step 3: 

Let U = [UI---UP]. Then, G = G0UR,(0)-1/2 is a copy of 
H (up to a phase offset per user). 
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Abstract — A novel technique for the blind source 
separation (BSS) of mutually independent and iden- 
tically distributed i.i.d. discrete-time sequences is 
presented. The observed signals are assumed mixed 
through a narrow-band (memoryless) multiple-input- 
multiple-output (MIMO) noisy channel and are then 
processed by a linear MIMO receiver, whose outputs 
should ideally match the transmitted signals. In the 
proposed approach (called the Multi-User Kurtosis 
(MUK) algorithm), the linear receiver's matrix set- 
ting is computed adaptively based on the optimiza- 
tion of a constrained statistical criterion that involves 
only second and fourth order statistics of the re- 
ceiver's output. At each iteration, the algorithm com- 
bines a stochastic gradient adaptation with a Gram- 
Shmidt orthogonalization that enforces its criterion's 
constraints. The analysis of its stationary points (pre- 
sented in [1], [2]), reveals that it is globally convergent 
to a zero forcing -ZF (or decorrelating) solution, both 
in the absence of noise and in the presence of spatio- 
temporally white additive Gaussian noise. 

I. SUMMARY 

We consider the standard instantaneous mixture BSS prob- 
lem: p i.i.d. and mutually independent zero-mean discrete- 
time sequences ai(k), I = 1,... ,p, that share the same pdf, 
are transmitted through & p x q MIMO linear memoryless 
channel. The received signal model then takes the familiar 
form Y(k) = HA(k) + n(Jfc), where A(k) = [oi(Jfc) • • • ap(k)}T 

is the p x 1 vector of source signals, H is the q x p channel 
matrix, Y(k) is the gxl vector of received signal snapshots, 
n(k) is the q x 1 vector of additive noise samples, all at time 
instant k, and T denotes matrix or vector transpose. The re- 
ceived vector signal Y(k) is subsequently filtered by a q x p 
"spatial equalizer" W which produces the pxl vector output 
z(k) = [zi(k) ■■■ zp(k)]T. The vector output z(k) is hence 
given by z(k)=WTY{k)=WTnA(k)+n'(k)=GTA(k)+n'(k), 
where G = HTW is the p x p global response matrix and 
n'(fc) = WTn(fc) is the filtered noise at the receiver output. 

The MUK algorithm, which is presented in [2], is derived 
from the following optimization criterion 

max    F(G) = Y^\K(Zj 

subject to:    GHG = 1» 

(1) 

where K(x)=E (|x|4) -IE2 (\x\2) -\E (x2) |2 is the kurtosis 
of x, Ip is the pxp identity matrix and H denotes Hermitian 
transpose (we also assume a%=E(\ai{k)\2=l). The algorithm 
requires the received signal Y(k) to be spatially pre-whitened, 
corresponding to a unitary channel H.   At each iteration, it 

1. k = 0: initialize W(0) = W0 

2. for fc>0 
3. Obtain W'(ÄH-l) from (2) 
4. Obtain tVi(*+l)=iV1'(ifc+l)/||iV1

,(*;-|-l)|| 
5. for j = 2 : p 
6. Compute Wj(k + 1)  from (3) 
7. Go to 5 
8. W(k + l) = [W1(k+l)---Wp(k+l)} 
9. Go to 2 

Table 1:     The MUK algorithm 

first updates the receiver matrix through the following recur- 
sion 

W(*+l)=W(fc) + ß sign(Ka) Y*(k)Z(k) (2) 

where fj, is the stepsize (a small positive scalar), Ka=K(ai(k)), 
Z(k)={\zi{k)\2z1{k)---\zp(k)\2zp(k]\, (* denotes complex 
conjugate), and then it projects each column of W'(fc-l-l) to 
the corresponding column of W(fc+1) through 

Wj{k+1) - ]£(W,a(*+l)w;(*+l))Wi(*-rl) 

Wj{k+1)=- 
j'-i 

||W;(*+1) - ^(^H(fc+l)WJ(A:+l))W(^+l)ll 
i=i 

(3) 
where ||Jf ||2 = XHX. The resulting MUK algorithm is de- 
scribed in Table 1. In [1], [2], the following theorem was shown 
regarding the convergence of the MUK algorithm: 

Theorem 1 Both in the absence of noise and in the presence 
of additive noise with mutually independent i.i.d. and circu- 
larly symmetric Gaussian components (of variance cr2 each), 
and assuming that Y(k) is perfectly pre-whitened (correspond- 
ing to a unitary H), the only maxima of the MUK algorithm 
correspond to a decorrelating (zero-forcing) detector, i.e. to a 
solution of the following type 

*<Pi ■e^]), i=y/=l, *!,..., where $=diag([e 
trary phases, and Ü is a p x p permutation matrix. 

(4) 

are arbi- 
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Abstract — We apply a novel signal processing 
method based on Independent Component Analysis 
(ICA) to blind multiuser receivers. ICA is well suited 
for blind multiuser detection problems as the criterion 
used to separate signals is a mutual information min- 
imization principle which attemps to separate inde- 
pendent signals from mixed signals. When the cross- 
correlations between signature sequences are big, ICA 
has better performance than decorrelating receivers 
and linear MMSE receivers. 

I. CDMA SYSTEM DESCRIPTION 

We consider the following CDMA system where the signal 
at a given receiver consists of the sum of N transmitted user 
signals embedded in additive white Gaussian noise [2]. 

y(t) = ^2  ^2 AkbkSk(t-iT-rk) + an(t) (1) 

where Ak is the received amplitude of the fcth user's signal, 
and bk € { —1,-f-l} is the bit transmitted by the fcth user. 
Sk is the deterministic signature sequence assigned to the ifcth 
user. The length of the packets transmitted by each user is 
2M + 1. Tk € [0,T) is the delay of the fcth user and rk — 0 
corresponds to a synchronous channel model. n(t) is white 
Gaussian noise with unit power spectral density and <r is the 
noise deviation. 

II. INDEPENDENT COMPONENT ANALYSIS 

Independent Component Analysis (ICA) is a linear transfor- 
mation of data such that the elements become statistically 
independent. ICA is well suited for blind multiuser detec- 
tion problem. In CDMA communications, user signals are 
independent from each other. The channel output is the lin- 
ear mixture of multiuser signals and additive white Gaussian 

X = As (2) 

where X is the channel output, A is a mixing matrix, and s 
is a vector containing original user signals and additive white 
Gaussian noise. ICA will determine a weight vector such that 

WX (3) 

here s is the estimate of independent source signals and the 
components of s are called Independent Components (IC). In 
order to make the components of ä as independent as possible, 
ICA will find a linear transformation that can minimize the 
output mutual information [1]. 

III. XICA ALGORITHM AND SIMULATION RESULTS 

The XICA algorithm combines the fixed-point algorithm 
proposed by Hyvarinen [1] and a detection scheme. After the 
fixed-point algorithm converges, we can get the demixing ma- 
trix W and by using the detection scheme that we propose, we 
can separate the desired user signals from others. The detec- 
tion scheme works as follows: First, calculate the correlation 
between the desired user signature sequence and each column 
of A which is the inverse of W matrix. Then take the IC with 
the largest absolute correlation and this IC is the desired user 
signal. 

If we use Gold code as spreading sequences, the perfor- 
mance of ICA is similar to the linear MMSE receiver and the 
decorrelating receiver. By using a set of spreading sequences 
that have bigger correlations and smaller processing gains, 
ICA performs better than the other two linear receivers. We 
consider a synchronous five-user Gaussian channel. All users 
have equal energy, the correlation coefficient is 0.2, and the 
spreading gain is 5. Figure 1 shows that ICA performs better 
than the linear MMSE and the decorrelating receiver. Since 
Gassian noise is independent of all user signals and it is sym- 
metric in all directions, ICA can mitigate the noise by extract- 
ing user signals first and leaving noise behind. 
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Abstract — We consider blind adaptive multiuser detection 
in Correlated Waveform Multiple Access (CWMA)-based cellu- 
lar radio networks. A common stochastic approximation (SA) 
based framework is proposed from which three blind adaptive al- 
gorithms for linear MMSE detection are obtained. Two of them 
coincide with previously proposed algorithms and the third is 
shown to be best suited for implementation at a base station. Im- 
provement in terms of convergence properties of these SA-based 
adaptation algorithms is sought by using the more recent results 
on the SA technique with averaging. 

I. SYSTEM MODEL 

We consider a cellular network model in which there are B base 
stations with Kj users assigned to base j. While the transmissions of 
out-of-cell users are received symbol-asynchronously at a base sta- 
tion, it is assumed, for the sake of simplicity, that in-cell users are 
symbol-synchronous. A base station is assumed to have knowledge 
of the (common) timing of the received signals of only the users in its 
own cell. For simplicity, we assume binary antipodal signalling. 

The discrete-time model for the Nj matched filter outputs at base 
j can be expressed as 

*i      B K,        _ 

1} = X y/"iwJj*tJbV + X X J»il8Ü]{siljbil +*tjbt) +XJ> 0) 

where the channel gain to base j, the transmit power and the trans- 
mitted symbol of the ith user of base I are denoted by guj, w« and 
bu, respectively. sy denotes the vector representation (the "signa- 
ture sequence") of the signal of user i of base j with respect to 
a set of orthonormal basis functions that spans at least the in-cell 
signal subspace. For the same basis functions, the vectors sjj, and 
st. denote the segments of the signals associated with the two sym- 
bols of user i of base I, b^j and b\, respectively, that overlap with 
the symbol of interest at base j. %j ls an ^/-dimensional zero- 
mean Gaussian random vector with a covariance matrix equal to 
o?I. For base j, let us denote the signal matrix for in-cell users as 
Sj = [siy-S2y • • ■ SKjj] and the diagonal matrix of in-cell user energies 
as Wy = diag [wijgijj,••■,wKjjgKjjj]. With i = 1,■ • •,K, and I ^ j, 
the out-of-cell signal and user energy matrices will be denoted as 
s7 = [{%}]> S,+ = [{</}] and W; = diaS [{wii8»j}}> ^P^- 
tively. 

II. BLIND MULTIUSER DETECTION WITH AVERAGING 

We will consider detection at base station 1. The linear MMSE 
multiuser detector for user k is given (with suitable scaling) as the 

s*i whereA = SiWiS[ + unique solution to the equation: Ac*i 

From the theory of iterative methods to solve linear equations, we 
can form the following general deterministic iteration 

c*i(n) = (I-/*nQA)cjti(B-!)+/!„ Qstl, 

that converges to the desired c*i. Q is a nonsingular matrix, whose 
inverse is called the splitting matrix. Replacing Q by the identity 
matrix and A by its instantaneous stochastic estimate y\(n)yi(n)T, 
leads to the stochastic approximation based algorithm in [1]. Fur- 
ther, using the canonical representation for the (scaled) MMSE linear 
detector, -[- :«:*i =s*i+p*i Pfci _L St! , we can replace Q by 

..lA-'sti - 

P^ = I — sjti (sJjSjti)—1sjt'i (note that in this case, Q is singular) to 
adaptively estimate p*i: 

s«+Pti(n) = (I-A'«Pi1yi(n)y[(n))(s*i+Wi(n-l))-      (3) 

\in > 0 is a suitably chosen fixed or decreasing step-size sequence. 
The rule in (3) can be shown to be identical to the one in [2], where 
it was derived differently by minimizing the output energy. Both the 
recursions mentioned above are based on the knowledge of only each 
user's own signal, i. e., s*i. 

Defining B = SiV?\Sf + ajl, we observe that in a cellular system 
where the out-of-cell interferers are typically weak, B can be consid- 
ered as a course approximation of A. Therefore, with the knowledge 
of the signals of the in-cell users, their energies, and the noise vari- 
ance, we replace Q by B_1 to obtain: 

CMW = (I-^B-1yi(«)yi(")7")c*i("-l)+ÄB-1s«.      (4) 

This algorithm is seen to converge more quickly to the MMSE solu- 
tion than its single-signal based counterparts. 

. A recent fundamental development in stochastic approximation is 
the idea of averaging as introduced for multidimensional problems in 
[3]. The stochastic version of the general deterministic rule in (2) can 
be modified to include an averaging step after the "basic" recursion: 

c*i(")    =    (I-/J/.Qyi(n)yi(n)r)c*i(«-l)+/iQsjti,     (5) 

cjti(n) -Xc*i(i). 
"i=i 

(6) 

The "smoothing" effect of the averaging allows the basic recursion 
step to use "larger" step-sizes than would be feasible for the non- 
averaged adaptive rule leading to an improvement in convergence. 
Analytical convergence for (3) is shown in a manner different than in 
[2]. The adapatations with averaging are shown to converge with zero 
asymptotic mean squared error under the assumption of a completely 
synchronous system and almost surely for the asynchronous model. 
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Abstract — In this paper, we investigate a subop- 
timum version of the iterative multistage maximum 
likelihood algorithm presented in [2]. Application to 
Block Coded Modulation is considered. Conditions 
are introduced which reduce the computational com- 
plexity and decoding delay. Simulation results sup- 
port the claims. 

I. SUMMARY 

Decomposable and multilevel codes [1], such as block coded 
modulation (BCM) codes, can be efficiently decoded by mul- 
tistage decoding(MSD) algorithm. In the conventional MSD, 
the reduction of complexity, as compared to maximum likeli- 
hood decoding (MLD) algorithms, is achieved at the expense 
of increased error rate. For short codes, the performance 
degradation is small. The discrepancy between the optimum 
and MSD algorithms becomes apparent when long codes are 
used. 

The iterative multistage (IMS) MLD [2] can be used to 
obtain the optimum performance for a given code. This algo- 
rithm achieves MLD through iterations with optimality tests 
at each decoding stage. In [3], another MSD algorithm for 
decoding multilevel codes based on list decoding of the outer 
codes was presented. The improvement is achieved by pass- 
ing additional estimates from the first to the second decoding 
stage when the distance of the decoded codeword from the 
received sequence is larger than a given threshold. 

The algorithms presented here combine those in [2] and [3]. 
Let ED('),,ter denote the squared Euclidean distance between 
the received sequence (rii,ryi)i=it2,...N and the estimate at 
i-th decoding stage of iteration iter.   The optimum version 
of IMS-MLD is based on two simple facts: 1) ED'0'""" < 
ED(,+J),it=r and ED(0."«- < ED(0,i'er+J for  ■ > 0. 2) if the 

constellation label sequence at the first stage, CLS'1', is 
a codeword in the BCM code, then no further estimate will 
be closer to received sequence than CLS^ is. 

In the suboptimum version, threshold decoding is used to 
reduce the number of iterations. Due to new criteria in- 
troduced as a modification of [2], optimality is not claimed. 
However, the simulations show that properly chosen values of 
thresholds can lead to good error performances. This algo- 
rithm is particularly useful when long codes are used as outer 
codes in BCM schemes. Both algorithms are given in Fig- 
ure 1, where dashed lines denote modifications that lead to 
suboptimum version. 

Examples of several codes will be presented to show the 
performance vs. decoding complexity. 

1This research was supported by the National Science Foun- 
dation under Grants No. NCR-94-15374 and NCR-97-32959, and 
NASA under Grant NAG 5-931. 
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Abstract — We investigate the application of the 
sum-product algorithm to the decoding of a g-ary 
Block-Coded Modulation (BCM) scheme which is 
based on extending the parity check equations of a bi- 
nary block code to g-ary symbols. This is achieved by 
decomposing the code into a sub-code with an acyclic 
Tanner graph and its cosets which are represented by 
a trellis diagram. The combination of these two cycle- 
free graphs are used to develop an efficient soft output 
decoding algorithm for the given code. 

I. INTRODUCTION 

Our objective has been to develop a soft output decod- 
ing method for the BCM codes proposed in [1]. The cor- 
responding construction is based on extending good binary 
block codes from GF(2) to Zq. They assume a g-PSK sig- 
nal constellation where the components of the g-ary code are 
directly mapped to the g-PSK points using an appropriate 
labeling. The extension of the binary linear code to a g-ary 
linear code is based on extending the parity check equations 
to {0,1,..., 4 — 1}, mod q constraints. In this case, the en- 
coder inputs log(g*) = k • log(g) bits and outputs a length 
n codeword of elements of Zq = {0,1, ...,g — 1} which are 
each mapped to the points of a g-PSK constellation. The 
resulting scheme is 2n-dimensional with a minimum time di- 
versity of MTD= d, and Band-Width-Efficiency (BWE) of 
■q = k- log(g)/n = R • log(g) bits/2-D symbol (R = k/n is the 
binary code rate). Therefore the optimality of these codes for 
a Rayleigh fading channel in terms of MTD and BWE is tan- 
tamount to that of the underlying binary block code. These 
schemes fall into the category of codes over rings and groups 
which recently have received a lot of attention among coding 
theorists [2]. 

II. DECODING 

Consider the communication system in Figure 1 where k 
information bits ü = (ui,U2, ...,«*) are first encoded to n 
channel symbols x = (xi,X2,...,xn) and then transmitted 
through the channel which outputs y = (yi,y2,---,Vn)- Chan- 
nel is memoryless such that each channel output y; is only 
related to the channel input at the same time, namely, s;, 
by, yi = a; • x; + n;, where a; is 1 for an AWGN channel 
and Rayleigh-distributed for a Rayleigh fading channel. For a 
probability propagation decoding, one can construct a proba- 
bilistic model for the system by examining the encoding pro- 
cess and the channel.  Then, a soft output decoding method 

Ü 
Encoder 2 

Memoryleis 
Coding 
Channel 

a , Decoder 
ü 

1This work was supported by Natural Sciences and Engineering 
Research Council of Canada (NSBRC). 
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Technology Ontario (CITO). 

Figure 1: General Memoryless Coding Channel. 

that maximizes Pr(z; | y), i = 1,2,... ,n, will minimize the 
symbol (g-ary) error probability. The sum-product algorithm 
provides an efficient way for calculating such marginals using 
a graphical representation of the code [3, 4]. 

In [1], a 2-level decoding method based on a generalization 
of the method discussed in [5] is proposed. To decode the con- 
structed BCM scheme, the codebook which has a cyclic Tan- 
ner graph (TG) is decomposed to a sub-code with an Acyclic 
Tanner Graph (ATG), and its cosets. The significance of rep- 
resenting the code by an ATG is that, one can use a general- 
ization of the well-known Wagner rule for their decoding. A 
composite Tanner graph-Trellis (TG-T) is used to represent 
the code structure. 

On the other hand, it is well known that the probability 
propagation algorithms for soft output decoding, e.g., BCJR 
algorithm, can be used on a cycle-free graph to produce an 
exact probability calculation of code symbols. Examples of 
such cycle free graphs include a trellis representation and a 
cycle-free Tanner graph. The focus of the current article is to 
use the TG-T representation of the code (which is based on 
the combination of two cycle free graphical representations) 
to produce an efficient soft output decoding method. 

The bit error performance of the resulting code construc- 
tion will depend on the method used for the bit labeling of the 
underlying g-PSK constellation. We will present a discrete op- 
timization method to optimize such labeling to minimize the 
resulting bit error probability. 
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Abstract, — In this paper, we apply the iterative 
Viterbi algorithm (IVA) to decode a concatenated 
multidimensional TCM in which a trellis code is used 
as the inner code and a simple even parity code is 
used as the outer code. 

I. INTRODUCTION 

In this work, we extend the iterative Viterbi algorithm 
(IVA) [2][3] for concatenated multidimensional (MD) trellis 
codes. With a simple BCH code, at BER - 4.4 x 10~6 about 
2.2 dB additional net gain can be achieved using the IVA for 
the 4D 16-state Wei's code [1] at a spectral efficiency of 7 
bits/T. 

II. ENCODING THE CONCATENATED MD TCM 

In Fig. 1, there are (m — 1) information streams organized 
into a block of (m — 1) rows. The mth stream called the 
parity-check (PC) stream is then generated in such way that 
the trellis-encoded bits in the mth stream will be the parity 
of the trellis-encoded bits of the (m — 1) information streams, 
i.e., Im r = X/i=i ©A>- The non-trellis-encoded bits in the 
mih stream are intact. 

We noted that the operation of differential encoder in Wei's 
code design is a nonlinear operation. Therefore, to prevent the 
PC property being violated after the differential encoding, we 
impose the PC condition on the trellis-encoded bits of all the 
m streams only after the differential encoding. 

ittte im 
1 i v- i I'!   „r iiL+3J k+2 I-- ' 
2 N-, ll' i'i, i k+' !•■ 

streun 
m — .fcj. £._,   ..- •+S /*+j    i ■ • 

m 1 'U Ufn.uc |/'+3 1 
L'.mifi, .  " m. ii c 

the trellis-encoded information bits in a 4D symbol 

the non-trellis-encodcd information bits in a 4D symbol 

f/ro e I    tnc trellis-encoded parity check bits in a 4D symbol 

Figure 1:  ID structure consisting of the m streams 

III. DECODING THE CONCATENATED MD TCM 
USING THE IVA 

Let R\ (i = 1,2, • ■ ■ ,rn) denote the received 4D signals of 
the m streams at time t. Let Z\ and Z'+1 denote the 2D 
encoded codewords of the iih stream in the first and second 
2D sub-constellations at time t, respectively. 

In the IVA, the likelihood function of the 4D type in the 
(m — l)"1 stream at, time t is 

Aj».,       =       -log [P(Äi,/£,..., J&IZjL-M.Smt'x)]       (1) 

m — 1    '       m — 1 

where Aj;_j denotes the branch metric value, which is iden- 

tical to the metric used in the VA, and Aj;_x denotes the 
extrinsic metric value introduced by the PC condition from 
the other streams. The metric function X^l_1 is equal to the 

metric used in the VA for the mth stream, but it is "con- 

trolled" by the estimated PC condition W^_2 = £™~2 ©/', 

where /, is the decision of I\ in the previous iteration. 

IV. NUMERICAL RESULTS 

Figure 2 presents the performance of the 4D 16-state Wei's 
code using the 2D IVA with and without BCH code at a 
spectral efficiency of 7 bits/T. It is shown that at BER = 
4.4 x 10~6 level about 2.7 dB gross gain or 2.2 dB net gain is 
achieved. 

Figure 2:  Performance of the 4D 16-state Wei's codes using 
the VA and 2D IVA at a spectral efficiency of 7 bits/T 

V. CONCLUSIONS 
Significant gains for concatenated 4D trellis codes using 

the IVA over the use of the VA can be obtained with low 
complexity and reasonable computation. The cases of the 8D 
and higher dimensional concatenated TCM can be obtained 
through the similar way. More results about the performance 
of other decoding algorithms can be found in [4]. 
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Abstract — A multilevel coding approach to the con- 
struction of multidimensional (MD) GU trellis codes 
is considered. We present a family of GU trellis codes 
with good trade-off between SNR, decoding complex- 
ity with stage decoding, and coding rate near the cut- 
off rate. 

I. INTRODUCTION 

For a transmission rate of hn bits per h channel symbols • 
over an AWGN channel employing 2D QAM signals, almost all 
TCM schemes known in the literature assume that the modu- 
lator has twice more signal /i-tuples than strictly needed. The 
redundancy of the trellis code is then 1 bit per h symbols and 
it has been shown by Ungerboeck that very litle increamental 
gain can be achieved by further increasing the modulator al- 
phabet redundancy. It seems that the only way to make the 
trellis code more powerful is to increase the number of encoder 
states. The problems are the maximum likely-hood decoding 
complexity and the lack of algebraic methods to synthesize 
good codes with many states: the only practical way is to 
generate a large number of codes in a small class where one 
expects to find the best codes, followed by their performance 
evaluation. However, an exhaustive search for good codes with 
many states still remains difficult even for the class of Geo- 
metrically Uniform (GU) codes [1] whose symmetry proper- 
ties and algebraic structure permit an efficient search for good 
codes. 

In this paper, we show that a possible way to solve the 
problem is to allow the code to have more redundancy than 
one bit so that a stage construction [2] can be used to simplify 
the search for good codes with many states in connection with 
reduced decoding complexity, using stage decoding. 

II. MULTILEVEL CODE CONSTRUCTION 

A 2n+1-point QAM signal constellation S is partitioned in 
two steps according to the GU partition chain Z2/iZZ2/2fiZ2 

using a reflection v about the vertical axis, a reflection g about 
the origin, and a translation r by (0,2). This gives a 8-way 
GU partition of S isomorphic to Z|. For a positive integer 
h > 2, the encoder structure for 2h-D GU trellis codes is 
shown in Fig. 1. As a multilevel code, one bit of the code 
C\, which is the best 2"1 -state ia.te-1/h binary convolutional 
codes, identifies a coset in Z2/ÄZ2 and a pair of bits of the 
code Ci, which is the 2"2-state rate-(2/i — l)/2/i binary convo- 
lutional code taken from the best 2h-D trellis codes employing 
4-way partition of the QAM constellation, selects a coset in 
RZ2/2RZ2 each time. The third level is uncoded. As an en- 
coder for an MD trellis code, the scheme generates a 2h-D GU 
trellis code C with 2"1+"2 states and a transmission rate of n 
bit/sym. For h = 2, 3,4, we have found codes with good per- 
formance/complexity trade-off with stage decoding. Table 1 
shows the search result for h = 2. The encoder's generators 
are given in octal. Effective coding gain is in decibels. 

III. PERFORMANCE ANALYSIS 

Figure 2 shows cut-off rates of two-step partition of the 
64QAM constellation. The code design region for transmission 
of 5 bit/sym is shadowed. For h = 2, 3,4, rates of component 
codes are shown together with required SNR for stage decod- 
ing to perform well [3]. In this region, the rate and decoding 
complexity are traded-off by the SNR. 
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Fig. 1: The encoder structure 
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Fig. 2: Cut-off rates of the partition of 64QAM. Design rates for 
constituent codes (h — 2,3,4). 

Tab. 1: 4D GU trellis codes (h = 2). 

Ci c2 C 

V\ generators V2 taken from 7eff ND 

4 
5 
6 
6 
6 

23       35 
53       75 
133     171 
133     171 
133     171 

3 
3 
3 
4 
5 

Wei's 4D code 
Wei's 4D code 
Wei's 4D code 
Wei's 4D code 
Wei's 4D code 

4.84 
5.17 
5.33 
5.70 
6.02 

88 
104 
136 
152 
248 

1 
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Abstract — We show that the minimum distance d of 
a linear code is not approximable to within any con- 
stant factor in random polynomial time (RP), unless 
NP equals RP. In the process we show that it is hard 
to find the nearest codeword even if the number of 
errors exceeds djl by an arbitrarily small fraction td. 

I. INTRODUCTION 

Consider a linear code A[n, k, d]q with generator matrix A € 
^xn. We study complexity of the following problems: 
• Approximate the Minimum Distance d of a linear code .4; 
• Find the Nearest Codeword y for the received vector x. 

Vardy [5] proved that it is NP-hard to compute d explicitly. 
The (second) Nearest Codeword Problem (NCP) was proven 
to be NP-hard in [3]. More generally, we can consider decoding 
complexity given relatively low error weight. For real p, this 
gives the Relatively Near Codeword Problem RNC'": 

Given a generator matrix A 6 I^x".of a linear code A 
of minimum distance d, an integer t with the promise that 
t < p- d, and a received word x G ffj, find a codeword within 
distance t from x. (The algorithm may fail if the promise is 
violated, or if no such codeword exists.) 

In particular, p = 1/2 in the "Bounded distance decoding 
problem". Till recently, not much was known about RNC^' 
for constants p < oo, let alone p = 1/2. Now we show that 
RNC(^ is NP-hard (under random reductions) for every p > 
1/2. This result brings us closer to an eventual (negative?) 
resolution of the bounded distance decoding problem. 

We also show that the minimum distance is hard to approx- 
imate within any constant factor, unless NP = RP (i.e., every 
problem in NP has a polynomial time probabilistic algorithm 
that always rejects No instances and accepts YES instances 
with high probability). In our work, we adapt the proofs of 
results for integer lattices obtained in [2] and [4], by using 
linear codes that surpass random codes. 

II. APPROXIMATION PROBLEMS 

A promise problem is a generalization of decision problem 
when some strings are not required to be either a YES or a 
No instance. However, given a string with the promise that 
it is either a YES or No instance, one has to decide which of 
the two sets it belongs to. Below we use A € l£xn, v e 1F£, 
and t e Z+. Also, q is a prime power, 7 > 1, and p > 0. 

Definition 1 (Minimum Distance Problem) 

An instance of GAPDIST7,9 is a pair (A,d), such that: 
(A, d) is a YES instance if d(A) < d; 
(A, d) is a No instance if d(A) > 7 • d. 

iThis work was supported by the NSF grant NCR-9703844. 
2This work was supported by a Sloan Foundation Fellowship, 

an MIT-NEC Research Initiation Grant and NSF Career Award 
CCR-9875511. 

Definition 2 (Nearest Codeword Problem) 

An instance of GAPNCP7,, is a triple (A, v,t), such that: 
(A,v,t) is a YES instance ifd(v,A) < t; 
(A, v, t) is a No instance if d(v, A) > 7 • t. 

Definition 3 (Relatively Near Codeword Problem) 

An instance of GAPRNC^, is a triple (A,v,i), such that: 
t<pd(A); 
(A,v,t) is a YES instance ifd(v,A) < t; 
(A,v,t) is a No instance ifd(v,A) > ft. 

Our reduction uses the promise problem GAPNCP7W that is 
proved to be NP-hard [1] for every constant 7 > 1. It is 
also hard [1] to approximate d(v,.4) to within a factor of 

2log n for any e > 0, unless NP C QP (deterministic quasi- 
polynomial time). 

We also use polynomial reverse unfaithful random reduc- 
tions (RUR-reductions). Given a security parameter s, these 
probabilistic algorithms require poly(s) time to necessarily 
map No instances to No instances and YES instances to YES 

instances with high probability 1 — q~s. 

Theorem 4 For any p > 1/2, 7 > 1 and any finite field ¥q : 

GAPRNCVJ, is NP-hard under polynomial RUR-reductions; 
GAPDIST7I(, is NP-hard under polynomial RUR-reductions; 
GAPDIST7I(,    is   NP-hard    under    quasi-polynomial   RUR- 

reductions for y(n) = 2log        n. 

For further details, see [6]. 
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Abstract — An updated table of parameters for bi- 
nary and ternary quadratic-residue codes of length 
up to 200 resp. 100 is presented. In particular, we 
find that the minimum distance of the binary [167, 83] 
quadratic-residue code is 24. 

I. PRELIMINARIES 

More than twenty years ago, MacWilliams and Sloane posed 
the computation of the minimum distance of binary and 
ternary quadratic-residue (QR) codes as a research problem 
(Research Problem (16.1) in [1]). Some of the missing min- 
imum distances were presented in [2J. The increase of com- 
puting power in the last decades made it possible to find the 
minimum distances of the [137, 69] binary QR code [3] and the 
minimum distance of the [83,42] ternary QR code [4]. The 
problem was solved by the built-in algorithm of the computer 
algebra system MAGMA [5]. Using some theoretical results, we 
were able to determine the minimum distance of the [167, 83] 
binary QR code and to improve some of the bounds on the 
minimum distance presented in [1, Fig. 16.1]. 

II. QUADRATIC-RESIDUE CODES 

Let p and I be prime integers such that I is a quadratic residue 
modulo p. Furthermore, let Q denote the set of quadratic 
residues modulo p. Then the polynomial xp — 1 can be factored 
over GF(l) asxp-l — (x - l)q(x)n(x), where the roots of q(x) 
are aT for all non-zero quadratic residues r 6 Q and a is a 
primitive pth root of unity in an extension field of GF(l). The 
quadratic-residue (QR) codes Q, Q, A/", and J7 are the cyclic 
codes of length p over GF(l) generated by q(x), (x — l)q(x), 
n(x), and (x — l)n(x), resp. The extended quadratic-residue 
codes Q and Jx axe obtained by adding an overall parity check 
to Q and A/", resp. A lower bound on the minimum distance 
dp of the quadratic-residue code Qp of length p is given by 
dp > i/P- The minimum distance of the extended code Qp and 
of the expurgated code Qp is dp = dp + l. For p — 3 (mod 4), 
Q is self-dual. Hence I must be 2 or 3 (see Theorem 1 in [1, 
Ch. 19, §1]). Then, for I = 2, Q is doubly-even, and for I = 3, 
all weights are multiples of 3 (see Theorem 8 in [1, Ch. 16, 
S4]1). 

III. RESULTS 

In Table 1, parameters of binary and ternary extended QR 
codes of length up to 200 resp. 100 are presented. Differences 
to the original version [1, Fig. 16.2] are marked and references 
are given. Here we briefly discuss our results: 

For the [167,84] binary code QIöT, the lower bound in [1] 
is <ii67 > 15, the upper bound is di67 < 23. As Qi67 is doubly 
even, candidates for the minimum distance are 16, 20, and 24. 
To show that the true minimum is 24, it is sufficient to show 

Tab. 1: Parameters of extended quadratic-residue codes Q (updated 
version of [1, Fig. 16.2, p. 433]). 

(a) Over GF(2) 

8 4 4 74 37 14 138 69 22c 

18 9 6 80 40 16 152 76 20 
24 12 8 90 45 18 168 84 24e 

32 16 8 98 49 16 192 96 24c-28 
42 21 10 104 52 20 194 97 22f-28 
48 24 12 114 57 16a 200 100 248-32 
72 36 12 128 

(b) 

64 

Ove 

20 

r GF(3) 

n k 
6 

d 
6 

n 
48 

k 
24 

d 
15 

n k d 
12 74 37 18a 

14 7 6 60 30 18 84 42 20d 

24 12 9 62 31 12a 98 49 21h-24 
38 19 llb 72 36 18a 108 54 2P-27 

JNote that in Theorem 8 (ii) in [1] no restriction on p is made, 
but the proof uses Theorem 7 which requires p = 3    (mod 4). 

New entries: "see [2], bsee [2, 6], csee [3], dsee [4], "d > 21 and doubly- 
even, 'd > 22 and even, *d > 22 and doubly-even. bd > 21, 'd > 19 and 
d = 0     (mod 3) 

rfi67 > 21 resp. di67 > 20. The lower bound die? > 20 was 
established using MAGMA V2.5-1 in about 8 days on a SUN 
Ultra 5 running at 360 MHz. 

For the [192,96] binary code Q191, we have enumerated all 
approx. 240 vectors of information weight r < 9. The lowest 
weight encountered was 28, showing digi > 20 and digi > 21. 
Again, Q191 is doubly even, hence di9i = 24 or di9i = 28. 
The lower bounds for ^194 and c^oo were obtained similarly. 

The only ternary code of [1, Fig 16.2] whose minimum 
distance remains unknown is Q97. Enumeration revealed 
21 < dg8 < 24. Additionally, we considered the [108, 54] 
ternary code Qio7- This code is self-dual, hence dioT = 0 
(mod 3). Enumeration showed dio7 > 19, hence dio7 > 21. 
The other possible values are 24 and 27. 
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Abstract — We show that for a code used for error 
detection or combined error correction and detection 
in the binary symmetric channel, the probability of 
an undetected error can have several local maxima. 

In particular, we construct a code with three lo- 
cal maxima in (0,1/2), a code with five local maxima 
in (0,1); and a linear code with two local maxima in 
(0,1/2) and a linear code with three local maxima in 
(0,1). 

I. INTRODUCTION 

Let t be a given non-negative integer and C a binary 
(n,M,d) code with d > It + 1. Denote by Br(x) the 
Hamming sphere of radius r centered at x and Bt = 
1/M • |{(a,b) € C x C | d(a,b) = *}|. Assume that x 
and y are given, and d(x, y) = i. We denote by P{(p) 
the probability that x changes to a vector in Bt(y) in 
the binary symmetric channel with transition probability 
p. The probability of undetected error after using C to 
correct t or less errors is given by 

P$(C,p) = Y/Bip(t\p). (1) 
i=l 

Kl0ve and Korzhik [3] give an excellent account of error 
detecting codes. They have studied a large number of 
codes, and ask [3, p. 227] whether it is true that for every 
code (or for every linear code) the function PuJ(C.p) has 
at most one maximum in the interval (0,1/2) and at most 
two maxima in [0,1]. We answer this question in the 
negative. 

II. THE APPROACH 

When we are only interested in the number of local 
maxima, we can multiply the polynomial (1) by the con- 
stant M/2, and instead consider the polynomial 

Q(tHC,p)=J2qiP?)(p).. 
t=i 

where now qt tells how many of the (*%) pairwise distances 
between the codewords are equal to i. Consequently. 

H<fc = (2) 

Tero Laihonen1 

Department of Mathematics 
University of Turku 

FIN-20014 Turku, Finland 

e-mail: terolaifflutu.fi 

Since the distance between two codewords is even if and 
only if both of them have even weight or both of them 
have odd weight, we know that 

£ qi = K(M-K), 
i odd 

(3) 

aThis work was supported by the Academy of Finland under 
grant #46186. 

where K denotes the number of codewords of odd weight. 
Our approach consists of two steps. We first try to find 

a polynomial R(p) - YX=iriPi (p) with non-negative 
integer coefficients which has a prescribed number of local 
maxima and which satisfies (2) and (3) for some M and 
K. On the other hand, we have the goal of making M as 
small as possible. 

The second step then consists of constructing a code C 
such that the (2) pairwise distances between the code- 
words have the required distribution, i.e., the coefficients 
9i of Q^{C.p) equal the r,'s. Such a code cannot of 
course exist unless the required distance distribution sat- 
isfies the Delsarte inequalities. 

Using this method we are able to construct the follow- 
ing nonlinear and linear codes. 

Theorem 1 Let 4 = 0,1. There exists a code C such 
that the function Put■ (C.p) has three local maxima in the 
interval (0,1/2) and a code C" such that the function has 
five maxima in (0,1). 

Theorem 2 Let t = 0,1. There exists a linear code 
Ci such that the function PuJ{Ci.p) has two maxima in 
(0.1/2) and a code C\ such that the function has three 
maxima in (0,1). 

Example 1 We consider now the case t = 2. Let us 
extend twice the [31,5] simplex code. We furthermore 
take the vector 1111100...0 of length 33 as a codeword to 
obtain a (33,33) code. The code gives 95 = 1, 913 = 4, 
<7i5 = 16, <7i6 = 496, qn = 8 and «721 = 3 (other <?,'s 
equal zero). This code yields two maxima for Pie'(C,p) 
in (0,1/2). The first one is at p « 0.10 and the second at 
p « 0.48. 
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Abstract — We use projective multisets (projective 
systems) to find upper bounds on the weight hier- 
archies for a special class of codes, namely the ex- 
tremal non-chain codes. Several code constructions 
exist meeting the bounds with equality. 

I. INTRODUCTION 

Let C be a linear q-axy code of dimension k and length n. 
The weight w(S) of a subcode S C C, is the number of posi- 
tions where at least one word in S differs from zero. The rth 
generalised Hamming weight dT of C is the least weight of an 
r-dimensional subcode of C. The sequence (di, d-z,..., dk) is 
called the weight hierarchy of C [6]. 

II. EXTREMAL NON-CHAIN CODES 

The chain condition was introduced in [7], and states that 
there is a chain Do C ... C Dk of subcodes, where Di has 
dimension i and weight di.  ■ 

The opposite extreme are the extremal non-chain codes, 
defined as follows. For each pair (i, j) where 1 < i < j < k, 
there are no subcodes Di C £>,■ of dimensions i and j respec- 
tively such that w(Di) = di and w(Dj) = dj. The extremal 
non-chain codes were introduced by Chen and Kl0ve [1], and 
this study continues their work. 

III. PROJECTIVE MULTISETS 

Let G be a k x n generator matrix of C. By permuting 
columns of G or by multiplying certain columns by non-zero 
scalars, we get an equivalent code. Equivalent codes have the 
same weight hierarchy. 

Let PG(fc— l,q) be the projective (fc—l)-spaceover the finite 
field with q elements. The code C is determined up to equiv- 
alence by giving the map 7 : PG(fc — 1, q) —> {0,1,...}, saying 
how many times each projective point occurs as a column in 
G. Such a map is called a projective multiset [2], a projective 
system [5], or a value assignment [1, 4]. The definition of 7 is 

extended by 7(S) = E.gs^W for a11 s S PG(Jfc - l,q). The 
number -y(S) is called the value of S. 

We know [3, 5] that a subcode Dr of dimension r and weight 
w, corresponds to a subspace Sr Q PG(k — l,q) of dimension 
k — r — 1 and value "f(Sr) = n — w. Hence a subcode Dr 

of minimum value corresponds to a projective subspace Sr of 
maximum value. Also if Dr C Dr', then Sr 2 Sr>. 

The difference sequence (So, Si,..., Sk-i) is defined by Si = 
dk-i — dk-i-i. The difference sequence is easily computed 
from the weight hierarchy and vice versa. If S is an i-space 
of maximum value, then y(S) = So + 61 + ... + Si. A differ- 
ence sequence corresponding to an extremal non-chain code is 
called an ENDS (Extremal Nonchain Difference Sequence). 

IV. RESULTS 

Theorem 1 (General Bound) // (6o,Si,... ,5k-i)   is  an 
ENDS, l<m<k-2, then 

Sm < qmSo 
„m+l 

9-1 

// equality holds for m = m, then equality holds for all m < m. 

Theorem 2 (Binary Codes) // (So,Si,.. .,Sk-i), k > 4 is 
a binary ENDS, then 

Sk-2 < 2k~35i - 2 - 2fc_3. 

Theorem 3 (Total Value) If(80,5i,.. .,Sk-i), k>3is an 
ENDS, then 

7(PG(*-l,<7))<53* + («m-l)' 
-1 

9-1 

for all m such that 1 < m < k — 2. 

Explicit constructions meeting the bounds with equality 
exist in dimension 5 and less, provided 80 is sufficiently large; 
So > 5 is sufficient in all cases. 
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Abstract - Nonquasicatastrophic maximum transition run 
(MTR) codes are introduced by defining a new /-constraint. 
Finite state transition diagrams (FSTD) exhaustively 
characterizing MTR (j,k,t) constraints for detector trellises that 
are unconstrained or incorporate the ./-constraint are presented 
and their capacity is computed. It is shown that (G,/) 
constrained systems are a subclass of (j,k,t) MTR constrained 
systems. 

I. INTRODUCTION 

Consider a recording channel consisting of a modulation encoder, 
precoder, generalized partial response channel, Viterbi detector, 
inverse precoder and modulation decoder. Let {bt} eB denote the 
input of the modulation encoder, where bi 6 {0,1} and B is the set 
of all binary sequences. The modulation encoder generates binary 
sequences {*,} e X that satisfy a desired constraint, such as a (G,/) 
constraint or a maximum transition run constraint. The precoder is 
usually of the form 1/(1 ©D) or 1/(1 ©D2) and its output is 
denoted by{y,} e Y, where Y denotes the set of all possible channel 
input sequences. 

The class of generalized partial-response channel polynomials of 
the form F(D) = (1 -D2){\ -P(D)) is studied, where the whitening 
filter 1 -P(D) has no roots on the unit circle. The Viterbi detector 
.provides an estimate of the channel input sequence {y,} e Y, where 
Y is usually a proper subset of Y. The output sequences of the 
inverse precoder are denoted by {i,} e X. 

II. CHARACTERIZATION OF MTR CONSTRAINTS 

We define the maximum run of accumulated zero-distance as the 
maximum number of branches associated with two distinct trellis 
paths that have the same output labels, i.e., 

rA  max {n :   £ e.2 =0}, (1) 

where {£,•} is the channel-output error sequence with D-transform 
e(D) = {y(D)-y(D))F(D). Clearly, the sequence detector suffers 
from quasicatastrophic error propagation [1] if r = oo. 

It can be verified that traditional MTR(j,k) codes [2] do not avoid 
quasicatastrophic error propagation in sequence detectors for 
generalized partial-response channels that have spectral nulls both 
at dc and the Nyquist frequency, i.e., r = oo. A new constraint is 
thus necessary to ensure that MTR codes are nonquasicatastrophic. 
We say that the output sequence {*;} of an encoder satisfies a 
"twins" constraint, or f-constraint, if it does not allow /+1 
consecutive pairs of 0's or l's ("twins") that are the complement of 
an allowable string i,,i,+i, ...,i,>2<+i at the inverse precoder output. 
The /-constraint can be characterized by a finite set of forbidden 
strings and is therefore a shift of finite type. A special case of the 
twins constraint was introduced in [3]. Traditional MTR codes that 
also satisfy a twins constraint are referred to as MTR(j,k,t) codes. It 
can be shown that for the new class of MTR(j,k,t) codes it holds 
that r = max(/+l,*+l,2r+3)-L. Hence, MTR(j,k,t) codes are 
nonquasicatastrophic if and only if j, k, and t are finite. 

Let PC(G,I) be the set of all allowable sequences at the output of a 
1/(1 ©Z)2)   precoder   following   a   (G,I)   modulation   encoder. 

Similarly, let M{j,k,i) and Mc{j,k,t) be the sets of all allowable 
sequences at the 1/(1 ©D) precoder input and output, respectively, 
where the MTR constrained system corresponds to the case of an 
unconstrained detector trellis, i.e., X = Y = B. 

Proposition 1       PC(G,I) = Mc(j = G+\,k = G+l,t = I) 
The above proposition states that (G,/) constraints are a subclass of 
the (j,k,t) MTR constraints. 

For channels with memory L> j+ 1 they'-constraint can readily be 
incorporated into the detector trellis to reduce the number of states 
and/or branches, and to increase the capacity of the constrained 
system M(j,k,t) by adding new potential code sequences that were 
not allowed before. The new expanded constrained system is 
denoted by M'(j,k,t) .where the prime indicates that the generalized 
partial-response detector trellis is /-constrained. For j=2 and /=3, 
FSTDs have been constructed by tracking the run length of all four 
phases of the patterns (0011) arriving at a state. Tables 1 and 2 list 
the capacity of MTR constraints M'(j,k,t) for j=2 and 3 by 
truncating the numbers after the fourth digit following the decimal 
point. 
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TABLE 1. Capacity of MTR constraints M'(j = 2, it, t) 

k 

t 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 

0.5514 
0.6508 
0.6792 
0.6887 
0.6922 
0.6934 
0.6939 
0.6941 

0.6370 
0.7472 
0.7819 
0.7900 
0.7933 
0.7941 
0.7945 
0.7946 

0.6819 
0.7888 
0.8264 
0.8334 
0.8365 
0.8372 
0.8375 
0.8375 

0.7057 
0.8090 
0.8475 
0.8538 
0.8569 
0.8575 
0.8578 
0.8578 

0.7189 
0.8193 
0.8581 
0.8641 
0.8671 
0.8671 
0.8679 
0.8679 

0.7263 
0.8248 
0.8636 
0.8694 
0.8724 
0.8728 
0.8731 
0.8732 

0.7305 
0.8278 
0.8664 
0.8722 
0.8751 
0.8756 
0.8759 
0.8759 

0.7330 
0.8294 
0.8680 
0.8737 
0.8766 
0.8771 
0.8773 
0.8774 

TABLE 2. Capacity of MTR constraints M'(j = 3,k,t) 

k 

t 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 

0.6370 
0.7472 
0.7819 
0.7900 
0.7933 
0.7941 
0.7945 
0.7946 

0.6942 
0.8345 
0.8670 
0.8756 
0.8781 
0.8788 
0.8790 
0.8791 

0.7266 
0.8707 
0.9034 
0.9115 
0.9137 
0.9143 
0.9145 
0.9145 

0.7444 
0.8876 
0.9203 
0.9280 
0.9301 
0.9306 
0.9308 
0.9308 

0.7544 
0.8960 
0.9285 
0.9359 
0.9380 
0.9385 
0.9387 
0.9387 

0.7599 
0.9002 
0.9326 
0.9399 
0.9419 
0.9425 
0.9426 
0.9426 

0.7631 
0.9024 
0.9346 
0.9419 
0.9439 
0.9444 
0.9446 
0.9446 

0.7650 
0.9036 
0.9357 
0.9429 
0.9450 
0.9455 
0.9456 
0.9456 
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Abstract — Recent success of turbo-like coding 
schemes on memoryless channels has sparked interest 
in using them on intersymbol-interference (ISI) chan- 
nels. Decoders for turbo and low density parity check 
(LDPC) codes perform much better with soft input 
information which has to be supplied by the channel 
detector as its soft output. We consider a class of ISI 
channels commonly used to model magnetic recording 
channels in a wide range of linear recording densities, 
and show that simple soft output detectors are pos- 
sible, since the channel transfer functions belong to a 
family of special polynomials. 

I. INTRODUCTION 

Let {xn}, x„ € GF(2), be the possibly coded user data se- 
quence. We consider a discrete-time model for the magnetic 
recording channel with input {an}, an — 2xn — 1, impulse 
response {hn}, and output {yn} given by 

Vn )     fln-m»m ~T T]ni (1) 

where r)n are independent, zero-mean, Gaussian random vari- 
ables. We separately consider the PR4 channel with the trans- 
fer function h(D) = Y^n^nD* = 1 — D2, and higher order 
partial response (PR) channels with h(D) — (1 — D)(1 + D)N, 
N>2. 

The optimal receiver for magnetic recording channel model 
performs maximum likelihood sequence estimation (MLSE) 
i.e., it determines an {än} satisfying 

min   £l({an\) 
{an}ec    Vl    " «({An}), 

where Q,({an}) is the well known log-likelihood function for 
channels with inter-symbol interference: 

fi({an}) = ^2{yn - y^amfon- (2) 

A general soft-output sequence estimation was introduced in 
[1], and it is of course possible to get information on symbol 
reliabilities by using techniques presented there. However, the 
transfer functions of magnetic recording channels belong to a 
family of special polynomials. We exploit that fact to derive 
simple soft output detectors for these channels. We propose 
two types of soft output channel detectors: one based on a 
sequence detector for the PR4 channel, the other based on a 
symbol-by-symbol detector enabled by special precoding for 
higher order PR channels. 

II. THE PR4 CHANNEL 

The maximum likelihood sequence detector for the 1 — D2 

channel is realized by two interleaved Viterbi detectors cor- 
responding to the two constituent 1 — D channels whose log- 
likelihood function is given by 

fi(W}) = ^2[yk ~ (a* -Ofc-i)] • 

Common implementations of the MLSE use the recursive 
difference metric algorithm of [2]. It was recognized in [2] that 
the decision about extensions to both states at time n can be 
made based on single variable 

5n = AJn-i - yn,   where AJn = [J„{1) - J„(-l)]/2 

and Jn(s) is the minimum cost up to time n and state s, 
«€{-1,1}: 

Jn(s) =   min 
{an}ee 

A;= —oo, an—s 

[(ajt - ak-\)yk + akOk-i]. 

It can be easily shown that the difference in cost of the sur- 
viving and discarded extension to state s € {—1,1} at time n 
is equal to \8n + s\. Therefore, once the most likely symbol at 
time n, an, is known, the soft information about an-i (its re- 
liability) can be computed as |<5„ + än\. Under the assumption 
that either the most likely path or the second best path is the 
correct path and the assumption that only minimum distance 
error events are possible, the two most likely paths can differ 
in a string of consecutive Is or a string of consecutive —Is. 
Therefore the possible error event may have originated at any 
time k < n — 1 such that d*. = äk+i = ■ ■ ■ = än-i- All these 
symbols are assigned the reliability of an-i- 

III. HIGHER ORDER PR CHANNELS 
Let {wn}, wn G GF(2), be a sequence obtained from {xn} by 
special processing known as precoding, and {an} the channel 
sequence in (1) obtained from {w„} as an = 2w„ — 1. For 
channel with the transfer function h(D) = (1 - D)(l + D)N, 
we choose the precoder transfer function to be 1/(1 © D)N+1, 
as proposed in [3]. This gives 

W{D) = (I¥iW^ 
where © denotes the addition in GF{2). Such precoding gives 
the following relation between the user data {xn} and the 
channel noiseless output rn = ^2man-mhm: 

—      mod 2, (3) 

which makes symbol-by-symbol channel detection possible. 
The soft-output channel detection we propose relays on (3) 
and some other features of these special ISI channel. 
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Abstract — We develop union bounds for high rate 
linear codes used for partial response equalized chan- 
nels with additive white Gaussian noise. One particu- 
lar application of the present setting is the computa- 
tion of bounds for magnetic recording systems using 
turbo codes. 

I. SUMMARY 

A recent application of turbo codes is in digital magnetic 
recording [1]. So far, all of the studies on the subject, with 
the exception of one [2], use Monte Carlo simulation using a 
sub-optimal decoding algorithm to evaluate the performance 
of system. There clearly is a need to analyze the system per- 
formance from a theoretical perspective. In [2], the authors 
develop performance bounds for the turbo equalized dicode 
(1 — D) channel assuming maximum likelihood decoding by 
using the union bounding technique. However, their result 
cannot be used to predict the performance of a general partial 
response (PR) equalized magnetic recording channel, such as 
PR4 or EPR4. 

In this paper, we develop the union bound for an arbitrary 
partial response equalized channel when maximum likelihood 
decoding is employed. The resulting bound is a generalization 
of the results of [2], however, our approach is totally different. 

number of codewords of the underlying code with information 
weight i and total weight d by c{i,d). We show that 

linear 
code 

coded 
bits 0 — -1 

1 — +1 

PR 
channel 

Figure 1: System block diagram. 
The block diagram of the system is presented in Figure 1. 

Consider the transmission of a block of Nu information bits. 
The information bits are first encoded by a high rate linear 
code to obtain a coded sequence. The coded sequence is then 
interleaved, and then may or may not be precoded. The (pre- 
coded) bit sequence is then modulated ("l"s are mapped to 
"+1" and "0"s are mapped to "—l"s) to obtain the channel 
input. The channel is a partial response channel, which can 
be described by a certain trellis. 

In order to make the derivation of the bounds tractable, 
we assume that the interleaver is uniform. Furthermore, we 
assume that for any error event e, the squared Euclidean dis- 
tance between two codewords, 6i and 62 with 61 © 62 = e, is 
approximately equal to the squared Euclidean distance pro- 
duced when these two codewords are not restricted to lie 
within the code. This approximation is valid for high-rate 
linear codes only, and it is the same approximation used in [2] 
to find performance bounds for the dicode channel. 

We assume that-^0- is the two sided power spectral density 
of the noise, and we define the signal to noise ratio per infor- 
mation bit as SNR =■£-■§-, where Rc is the underlying code 
rate, and E is the energy of the PR channel. Let us denote the 

Pb<2 
t=l  d=0   dl. (7)' 

where Pb is the bit error probability, and t(d, d%) is the number 
of different pairs of sequences with a Hamming distance d and 
a squared Euclidean distance d%. This quantity can be com- 
puted using an extended state diagram of the partial response 
target which lists the possible squared Euclidean distances 
and the number of information bit differences between any 
two pairs of sequences, that is, any two uncoded sequences. 

•         «mutation 
      bound 

\      • 

*              •""""■"--■w 

• 

SNR pw bit In dB 

Figure 2: Bound and simulation results for the example. 

In Figure 2 we present the union bound for the rate 16/17 
(5, 7) (in octal notation) convolutional code with an interleaver 
length of N = 2048 for EPR4 (1 + D - D2 - D3) channel. 

II. CONCLUSIONS 

We developed the union bound for a high rate linear code 
used over a partial response equalized additive white Gaus- 
sian noise channel. The bound is applicable for a general 
partial response equalized channel with or without precoding. 
Therefore, we now have a way of predicting the performance 
of a coded magnetic recording system, or any other partial re- 
sponse equalized system, with maximum likelihood decoding. 
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Abstract — This paper presents a concatenated cod- 
ing scheme for error correction in (0, k) constraint 
channels with hard and soft decision decoding. 

I. INTRODUCTION 

In magnetic recording systems, constraints on the num- 
ber of consecutive like symbols sent on the channel are im- 
posed in order to maintain the clock synchronization at the 
receiver. The use of runlength limited (RLL) sequences have 
found almost universal application in optical and magnetic 
disk recording practice [1]. Ref. [2] has shown a method to 
find combined codes by modifying a known error control code 
into a runlength limited code. The best codes obtained are 
of short length because the lower bounds obtained for the k 
constraint are prohibitively large for long" codes. This paper 
presents a concatenated coding scheme for error correction 
in channels with (0, k) constraint based on a Reed-Solomon 
code as an outer code and a runlength limited code obtained 
by modifying a binary linear transparent block code [2] as an 
inner code. 

II. CODE CONSTRUCTION 

The inner code C\ is a (n\,k{) modified version of a lin- 
ear transparent binary block code [2]. The outer code Ci 
is a non-binary Reed-Solomon code with symbols of k\ bits. 
The encoding process is done in three steps. Firstly, ki infor- 
mation symbols are encoded by a conventional Reed-Solomon 
encoder to form an ni coding vector. In the next step, each 
/ci-binary sequence is encoded into a code vector by C\. Fi- 
nally, a modification vector is added to each C\ codeword to 
obtain a string of n% runlength limited code vectors of C\. 
Thus, the resulting code is a {n\ni,k\k?) binary code. The 
decoding process may be performed either by hard or soft de- 
cision. Hard decision decoding is performed firstly removing 
the modification vector from each modified C\ codeword as 
it arrives at the receiver. Then, a conventional decoder for 
the C\ parent code is used to decode the ti\ codewords, pro- 
ducing sequences of k\ bits. Sequences of n% symbols are then 
decoded by a conventional Reed-Solomon decoder to obtain an 
estimate of the original message. Soft decision decoding may 
be performed by using a minimal trellis representation of the 
inner code. The branch labelling of the trellis must be mod- 
ified according to the corresponding modification vector [3]. 
Then, the Viterbi algorithm may be used to decode the inner 
code. The RLL code is obtained from the method presented 
in ref. [2]. The runlength constraint of this code is reached by 
modifying the systematic generator matrix of a binary linear 

transparent block error control code and then adding a suit- 
able coset leader that provide the best performance in terms 
of runlength. The modification is made by means of column 
permutations of the generator matrix of the parent code C\ 
to obtain a lower bound for the k constraint. Because of the 
linearity of the original code, the Hamming distance and the 
correction capacity of the code are preserved. 

III. RESULTS 

The proposed scheme is best explained by examples, which 
are going to be shown in the presentation. Soft decision de- 
coding of the concatenated codes presents a coding gain of 
about 3dB over hard decision decoding. 

IV. CONCLUSION 

This paper presented a construction of a concatenated cod- 
ing scheme for error correction in channels with (0, k) con- 
straint. The parent binary codes and the bounds for the k con- 
straint may be selected from ref. [2]. Because of transparency, 
all the code vectors (and any concatenation of them) of the 
runlength limited-inner code of the scheme satisfy the k con- 
straint. Hence, both the number of "zeros" and the number 
of "ones" of any encoded sequence are bounded by k without 
loss in coding rate. The proposed scheme allows to construct 
long error control codes with the same runlength constraints 
of a small runlength limited code. The error correction capac- 
ity of the inner code may be utilized for correcting random 
errors. Burst of errors affecting symbols can be corrected by 
the outer code. Hence, the codes are effective against a mix- 
ture of random and burst errors. An increase in the length 
of the correctable burst can be obtained by interleaving the 
symbols of the outer Reed-Solomon code. 
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Abstract — The class of punctured convolutional 
codes were first constructed by starting with low 
rate convolutional codes, and by periodically punc- 
turing single bits out of some code symbols in a time 
varying trellis diagram. Thus, simplified Viterbi de- 
coders could decode the resulting codes, with only 
two branches entering each state in the trellis dia- 
gram [1]. This concept was ingeniously extended in 
[2], to construct incrementally variable rate codes for 
unequal error protection. Here we somewhat reverse 
the above procedure, and name the resulting codes 
"pruned codes". We now start with optimal high rate 
convolutional codes, and periodically delete complete 
code symbols and branches to obtain a time vary- 
ing trellis diagram. Hence, lower rate codes capable 
also of correcting insertions and deletions can be con- 
structed. 

I. PRUNED CONVOLUTIONAL CODES 

The sequences of high rate convolutional codes offer many 
degrees of freedom for pruning. We show that, by judiciously 
pruning these codes, lower rate codes can be obtained, capable 
of correcting insertions/deletions, and also with an increased 
free distance at the corresponding stages in the trellis diagram, 
thus making possible unequal error protection. 

It should be noted that the pruned codes are subcodes of 
known good convolutional codes, hence complicating issues 
such as catastrophic error propagation are avoided. In some 
of our code constructions, the original punctured code imple- 
mentation advantage of a simplified Viterbi decoder with only 
two branches remerging in each state can be retained. This 
is possible if we start with a high rate base code, which is a 
punctured convolutional code. 

II..EXAMPLE 

Our code construction procedure can perhaps be best ex- 
plained by an example. 

The time varying trellis diagram of a R = |, dm;„ = 3 (i.e. 
reversal error correction, t = 1) punctured convolutional code, 
with octal generators 5, 7, 5, 7 from [1], can be depicted with 
al= -,n = 1,2 trellis diagram. 

The R = | code is selectively pruned to obtain a rate of 
R = j. This code now has dmin = 8, t = 3, and the remaining 
code symbols represent a single insertion/deletion correcting 
code (i.e. s = 1) since each n = 4 bit symbol complies with 
the condition in [3]: 

y   ixt = a(modm),i = 1... 4. (1) 

for some fixed integers a and m, where 771 > n + 1. Here 
o = 0 and m = 5. 

In general, before affecting single insertion/deletion correc- 
tion with codes complying with (1), the boundaries of the code 
word need to be known. This can be affected with marker se- 
quences, or more productively with the remaining code sym- 
bols forming marker code books [4], which enable the simul- 
taneous transmission of data. 

An alternative pruning of the R = f code can then be 
done. The resulting R—\ code also has dmin = 8, and t = 3. 
Each pair of code symbols, exiting a state, now form a marker 
code book from [4]. This alleviates the boundary problem. 
Furthermore, each pair of n = 4 bit symbols also form an 
s = 1 insertion/deletion correcting code, due to the repetition 
of 3 bits within the symbol. 

These flexible codes can be used as building blocks, which 
can be concatenated in many different ways, to protect sen- 
sitive data files, such as multimedia, with unequal error pro- 
tection against reversal (i.e. additive) errors, or against inser- 
tion/deletions during synchronization failures. 

It should be noted that there is a trade off. Although the 
lower rate codes may have a suboptimum dmin, the advantage 
of correcting insertions/deletions is obtained. 
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Abstract — Convolutional codes with unequal in- 
formation protection are investigated. Lower bounds 
on the free distance of time-varying codes are derived 
and compared to previous bounds. The asymptotic 
behavior of these bounds leads to the conclusion that 
significant gains for the important data are attain- 
able by enlarging the corresponding constraint length. 
This comes at the cost of reduced performance for the 
less significant data. 

We consider codes with two importance levels wherein 
each message block is divided into two significance levels : 
m = (mi,m2) , rm £ Mi = (GF(2))ki [1]. Consequently, 
the data portion at the encoder input corresponding to mi is 
represented by a binary fci-tuple, that corresponding to m-2 is 
represented by a binary fo-tuple, and the concatenated binary 
k = k\ + k>2 vector comprises the encoder input in result to 
m = (m\,m2). Suppose that a block code is used with the 
encoding function c : m —> c(m) then the separation of the 
code - s = (si, S2) - is defined as 

Si min d(c(m), c(m )) 1,2 

where d(-, •) is any metric defined on the set {c(m)}. 
Herein as we deal with convolutional codes the separation 

definition extends to free distances or active row distances 
[2] evaluated on output sequences generated while the input 
sequences are constrained to m,i ^ m'i. 

For the class of time varying convolutional codes with pe- 
riod T we seek to answer the following. Given that the en- 
coder input is a binary fc-tuple, the code complexity is fixed 
at kv = k\Vi + kivz and the branch length equals N, what is 
the set of attainable separation vectors. 

Let ut,t £ {—00,+00}, denote the encoder input fc-tuple 
at time t and let U[t~u,t+j+v\ denote the set of information 
sequences ut_„ut_„+i ... ut+j+v such that the first v and last 
v subblocks (fc-tuples) are zero and such that they do not con- 
tain v + 1 consecutive zero subblocks. Further, let S denote 
the set of information sequences U[t-v,t+h+v]>0 < h <T and 
let Sjtj denote the set of information sequences in Sh which 
differ from the all zero sequence at least on the fci data sec- 
tion. Furthermore, let S£2(fci) denote the set of information 

sequences in Sh which differ from the all zero sequence only 
on the &2 section while the fci section identifies to that of the 
all zero sequence (alternatively, to the fci section of the correct 
sequence). 

Let F(h,di) denote the fraction of codes with a nonzero 
codeword of weight less than di produced by an information 
sequence from the set 5^. Similarly let F(h, di\k\) denote the 
fraction of codes with a nonzero codeword of weight less than 

d2 produced by an information sequence in S^2(k\). 
these definitions we have the following 

With 

Lemma 1: A sufficient condition for the existence of a code 
that has minimum codeword weight not smaller than d2, and 
codeword weight of at least di for information sequences dif- 
fering on k\, where d\ > di is 

£ jF(/i,di) + F(/i,d2|A;i) < 1 . (1) 

Using this result Costello's [3] technique is extended to the 
ensemble of unequal error-protection time varying codes. 

Lemma 2: Consider the ensemble £(k,N,i',T) of binary, 
rate R = (fci +k2)/N, periodically time-varying convolutional 
codes encoded by polynomial generator matrices of memory 
length vi for the fci important bits and V2 for the fo less 
important bits where kv = k\v\ + ^2^2- The fraction of codes 
whose jth order active row distances a_,(2) , aj(l), Oj(l) > 
aj(2), 0 < j < T, satisfy respectively 

aj(2) < äj(2) < (j + V2 + l)N/2 or 
a,(l)<aJ(l)<0-+ 1/1+I) AT/2 
does not exceed 

T20>^i+i)JV(?q^FT«+g((,.+V1+
)

1)Ar)-i)(1 _ 2-0+1)*!) 

+T20+^+DiV(^±lpTfi2+H(n^lw)-i) ^ 

where H(-) denotes the binary entropy function. 

As a corollary to Lemma 2 we derive a lower bound on the 
corresponding active row distances. 

Our main conclusion is that, in the asymptotic case of large 
v, non-uniform error protection is feasible by splitting the 
memory unevenly between mi. 
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Abstract -^ A new construction of dc-free error- 
correcting codes based on convolutional codes is pro- 
posed. The encoder employs a Viterbi algorithm as 
the codeword selector so that the selected code se- 
quences satisfy the dc constraint. Some important 
parameters, including the free distance, the running 
digital sum (RDS), and the sum variance are investi- 
gated. 

I. CONSTRUCTION AND FREE DISTANCE 

Our construction of dc-free error-correcting codes can be de- 
scribed by the encoder shown in Figure 1. Codes C\ and C2 

are (n,ki) and (n,k2) binary linear convolutional codes, re- 
spectively, with Ci n C2 = {0}. The information sequence 
a(D) is first encoded to a code sequence x(D). The code 
sequence x(D) is then used by the codeword selector which 
produces a code sequence b(D) e Ci so that the final modi- 
fied sequence y(D) = x(D) ffi b(D) satisfies the dc constraint. 
To ensure dc-free transmission, two codeword selection criteria 
are proposed, the minimum absolute RDS (MRDS) criterion 
[1] and the minimum squared weight (MSW) criterion [2]. The 
codeword selector, based on the MRDS or MSW criterion, is 
implemented by a Viterbi algorithm (VA) with proper metric 
assignment. To reduce the decoding complexity, a subopti- 
mal decoder is proposed that is implemented by a VA decoder 
operating over the minimum trellis of the convolutional code 
C12 = C\ ffi Ci- The free distance db of the new constructed 
code Cb is obviously bounded by db > di2, where di2 is the 
free distance of C12. Define w[H] as the nonzero minimum 
weight of codewords in H C Ci2- A tighter bound is given in 
the following theorem. 
Theorem 1 Let db be the free distance of Cb; then db > 
w[C12\C2]. 
Define deff = w [Cn\C2]. For a Viterbi decoder operating on 
the trellis of G12, deff ls exactly the free distance attained by 
this suboptimal decoding scheme. A procedure is proposed for 
determining deff based on a minimum-weight codeword search 
over Cu- 

ll. RUNNING DIGITAL SUM AND SUM VARIANCE 

We present a sufficient condition for the codes to have bounded 
RDS. Define D(P) as a set of disparities of all binary vector 
in P. The polynomial generator matrix G2 (D) of Ci can be 

expressed as G2{D) = G^ffiG^Dffi.. .®G2
a)Da. Define the 

binary generator matrices G2 T for r = 1,..., a + 1 as Gi T = 

[[Gt°),...,Gri)r,[o,G^,...,Gr2)r,...,[o1...,o,c?2
o)n 

Define E as the set of all possible states in the trellis of G2, 
A'7"' as the set of all possible rn-tuple binary outputs from 

Source Inpul Encoder of 

Convolutional Code 

Ci 

*(D) Codeword Output 

»(D) 

b(D) 

Codeword 

Selcclor over 

Convolulional Code 

Ci 

Figure 1: Dc-free encoder. 

Gi, and ß(o~) is a rn-tuple binary output of the encoder of 
G2 with the initial state a and with an all-zero input. 
Theorem 2 The RDS of Cb are bounded if there exists 
some T, T = 1,2, • • • ,Q + 1, such that, for arbitrary x G A^T' 
and a € E, the set D({G2,r)b ffi ß{o) ffi x) contains opposite 
polarities or a zero. 
Let t be the smallest integer of r that satisfies Theorem 2. By 
a simplified codeword selection algorithm, the sum variance 
of the new code can be shown to be 

=    A-B (1) 

£>(Xm = x) (z + 'yj(bz,cr(x)®x))2 

B 

'This work was supported by the National Science Council of 
Republic of China under Grant NSC 88-2218-E-260-004. 

n' 

= ^EiEp(z~ = *>5™ = CT) 
i=i   «en 

■res; 

Y^ P(X™ = x) (z + tj(bz,<,(x) ffix))]\ 
i£A 

where n' = tn, A is the set of all the possible outputs of length 
n' of C\, 7j(fcj,(r(x) ffi x), j = 1,2,..., n', are the disparities 
among bZl„(x) ® x, fi is the set of all the possible RDS, E is 
the set of all possible states in the trellis of G2, and bz,a{x) 
is the n'-tuple binary output of G2 that corresponds to the 
path beginning at state {z,cr) and minimizing the absolute 
value of z + 7n'(b*,tr(z) ffi x). The state (Zm, Sm) can be cast 
into a Markov chain model and the stationary probabilities 
P(Zm = z, Sm = a) can be evaluated by a simple matrix 
inverse. The results are then substituted into (1) to obtain 
the sum variance. 
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Abstract — A novel DC-free binary convolutional 
coding scheme is presented. The proposed scheme 
achieves DC-free and error correcting capability si- 
multaneously. The scheme has a simple cascaded 
structure of the RDS (running digital sum) control 
encoder and the conventional convolutional encoder. 
The scheme provides wide varieties of reasonable 
tradeoffs between the coding gain, the RDS con- 
straint, and decoding complexity. 

I. INTRODUCTION 

The DC-free coding is widely used in digital communica- 
tion and magnetic/optical recording areas. We here present a 
DC-free convolutional coding scheme with error correcting ca- 
pability. Figure 1 illustrates the configuration of the proposed 
coding scheme. First, the user message sequence is encoded 
to the intermediate sequence by a RDS control encoder. The 
convolutional encoder then converts an intermediate sequence 
to the coded sequence. After the binary-bipolar conversion, 
the coded sequence is transmitted to the channel. The scheme 

RDS 

control 

encoder 

Convolutional 

encoder Message 
Intermediate 
sequence 

sequence Coc 
seq 

Bece 
sequ 

ed 
uence 

/Noisy 
Vchannt 

RDS 
control 

decoder 
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snce 

Viterbi 
decoder Estimated 

message 
sequence 

Figure 1: DC-free convolutional coding scheme 

is suitable for a power limited noisy channel. Availability of 
soft decision decoding is one of the major advantages of the 
proposed scheme. By using the RDS bound which have been 
derived in this research, we can guarantee that the RDS val- 
ues obtained from the proposed scheme belong to a certain 
bounded range. The proposed scheme is based on the fol- 
lowing three major ideas: (l)additive encoding using a binary 
linear block code, (2) upper and lower bound on the RDS for 
an additive encoder, and (3) splitting a convolutional code 
into infinite sequences of a linear binary block code, which is 
called a window code. 

II. ADDITIVE ENCODER 

Assume an infinite length binary message sequence 
{a0,oi,...}. Each vector at(i = 0,1,2,...) belongs to 
F2

fcl. An additive encoder encodes a message block Oi to 
d € C for each block index i. The code C is a binary linear 
code of length n. The resulting sequence {co, Ci,...} is called 

a coded sequence. The additive encoder appends redundancy 
fc0 = n — k\ bits per block and thus the coding rate becomes 
Iti/n. After the binary-bipolar conversion, the bipolar 
sequence {/(co),/(ci),...} is transmitted over the noisy 
channel, where / is the binary to bipolar conversion map. 
For achieving DC-free transmission, the additive encoder has 
to generate the coded sequence with a RDS constraint. An 
additive encoder encodes a message block m into Ci in such 
a way: 

a = biGo © aid, 

where 6* S F%° is selected by the additive encoder according 
to the value of the RDS and a selection rule. The matrices Go 
and G\ span sub-spaces of C. We call the vector bi the con- 
trol vector. In other words, the additive encoder has freedom 
to select a control vector and should specify a control vector 
so as to obtain a code sequence which keeps the RDS value 
bounded. In this setting, upper and lower bounds on the RDS 
for the additive encoder have been derived. 

III. DC-FREE CONVOLUTIONAL CODE 

The idea of the additive encoding Can be applied to binary 
convolutional codes. The main idea is to apply the additive 
encoding method to window codes obtained from a convolu- 
tional code. A window code is a binary linear block code 
obtained by splitting a convolutional code into an infinite se- 
ries of blocks. Thus, the RDS bound for block codes can be 
extended to the case of convolutional codes. For a given win- 
dow code, we need a good decomposition of the window code 
for achieving a tight RDS constraint. We have performed ex- 
haustive computer searches. Table 1 presents the results for 
the case where the base convolutional code is rate 1/2 64-state 
convolutional code with dfree = 10. For example, a 64-state 
DC-free coding scheme with the overall rate 6/16 satisfies a 
bounded RDS condition(from C = —18 to U = +18) and it 
yields the asymptotic coding gain(ACG) of 5.7 dB. We have 
performed encoding simulations as well. In Table 1, the results 
of encoding simulations are also shown. 

Table 1: Results on searches and simulations 
R C U L U ACG(dB) 
5/14 
4/14 
3/14 

-13 
-8 
-7 

+13 
+8 
+7 

-11 
-6 
-7 

+13 
+8 
+5 

5.53 
4.56 
3.31 

6/16 
5/16 
4/16 

-18 
-9 
-7 

+18 
+9 
+7 

-12 
-7 
-5 

+13 
+9 
+7 

5.74 
4.95 
3.98 

i?:overall coding rate, 
C and W:theoritical lower and upper bounds on RDS 
L and £/:observed RDS's in encoding simulation 

ACG = 10\ogw{Rdfree) 
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Abstract — Systems employing variable-length source codes are 
prone to error propagation. Several techniques that involve vary- 
ing levels of cooperation between the channel decoder and source 
decoder are considered for improving performance. At one extreme, 
conventionaltandem decoding performs channel decodmgand source 
decoding independently; at the other extreme, joint source-channel 
MAP decoding combines the two into a single decoder. Simulation 
results indicate that joint source-channel list decoding with "trellis 
pruning" can result in significant improvement over conventional 
tandem decoding. 

I. INTRODUCTION 

. Most efficient data communication systems employ source coding 
(compression) and channel coding (error-control). Variable-length 
source codes (VLCs, e.g., Huffman codes) and convolutional channel 
codes are commonly employed in such systems, and the receiver typ- 
ically uses a tandem decoding scheme - i.e., a maximum-likelihood 
(ML) Viterbi decoder for the channel code followed by an indepen- 
dent source decoder. When transmitted over a noisy channel, error 
propagation results if a bit error causes the source decoder to in- 
correctly interpret a source codeword as a codeword of a different 
length. While VLCs exhibit an impressive ability to resynchronize, 
the resulting shift in the decoded sequence (relative to the transmitted 
sequence) is often considered catastrophic. 

II. METHODS FOR MITIGATING ERROR PROPAGATION 

Since error propagation is associated with symbol addi- 
tions/deletions, one approach to limiting propagation is to packetize 
the data and convey to the decoder the bit-size and symbol-size of 
each packet. (Typically, one of these would be a (fixed) parameter of 
the protocol and the other is reliably conveyed to the decoder, e.g., 
as part of the packet header, protected with a powerful block code.) 
Several methods for exploiting this side information to improve the 
probability-of-symbol-error performance of the system are discussed 
below. 

Tandem Decoding: The conventional scheme consisting of a 
channel decoder and a source decoder operating independently in 
tandem is used as the baseline for comparison. The channel decoder 
performs maximum likelihood (ML) Viterbi decoding, and "tosses" 
its estimated sequence "over a wall" to the source decoder, which 
maps it onto the corresponding source-symbol sequence. If too many 
symbols are generated, the extra ones are discarded; if too few symbols 
are generated, the sequence is padded. 

List Decoding: In list decoding [1], the channel decoder is 
modified so that, at each decoding stage, the decoder retains the L 
most likely paths among those paths merging at a given state. After 
decoding a block, the L best paths among the survivors are selected 
and provided to the source decoder. The source decoder decodes each 
of the L sequences and selects from the resulting sequences the most 
likely path that maps to the correct number of symbols. 

Source Decoder Assisted List Decoding: This is a 
modification of the above list-decoding scheme; with this strategy, 
the channel decoder is provided with information about the length (in 
source symbols) of each path through the trellis. The list decoder, 
when selecting the survivors into a state, selects the L best paths with 
distinct symbol lengths. 

Trellis Pruning: Here, the channel decoder is provided at 
each decoding stage with an indication whether the path has a valid 
extension with the correct symbol length. Any path with no valid 
extension is eliminated from consideration. 

Hybrid Schemes: List decoding and trellis pruning can be com- 
bined in a straight forward manner and result in a further improvement 
in performance. Combining source-assisted list decoding with trellis 
pruning is expected to result in further improvement in performance. 

Example: Consider a memoryless source with alphabet 
{a, b, c,d,e, f, g, k] and probabilities {0.75, 0.15, 0.07, 0.02, 0.007, 
0.002, 0.0007, 0.0003}. The source code is a Huffman code; the 
channel code is the convolutional code with generator G(D) = 
(l + D2,1 + D + D2) followed by BPSK modulation. Simulation 
results illustrating the performances of the above schemes are shown 
in Figure 1. Increasing cooperation results in improved performance, 
and list decoding with trellis pruning provides the best performance 
for this example. Note that increasing the list size from L = 2 to 
L = 3 yields only a small improvement. 

'Supported in part by NSF grant CCR-99-96222. 

Fig. 1. Performance of various decoding schemes discussed in the text 
for the system outlined in the example. 
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Abstract — We present a new class of channel 
codes, which we call Source Optimized Channel Codes 
(SOCCs). These non-linear codes are designed to 
maximize a given analogue quality measure in con- 
sideration of source and channel statistics. 

I. INTRODUCTION 

Unlike conventional channel coding which usually mini- 
mizes the residual bit or sequence error rate, we design a new 
class of non-linear block codes which minimizes a given quality 
measure in the domain of continuous-valued source encoder 
symbols, e.g. parameters of a speech encoder. These codes 
are called Source Optimized Channel Codes (SOCCs) [1, 2]. 
At the receiver, we do not exploit the code redundancy for 
error correction, but for parameter estimation [3]. The per- 
formance of SOCCs is compared to that of a reference system 
which was developed at the Institute for Communications En- 
gineering at Munich University of Technology [6] This refer- 
ence employs rate compatible convolutional codes [4] for Un- 
equal Error Protection (UEP) and Source Controlled Channel 
Decoding (SCCD) [5]. 

II. COMMUNICATION MODEL 

By the model shown in Figure 1, we simulate a block- 
oriented speech transmission. The source encoder is repre- 
sented by a vector source producing L-dimensional real val- 
ued parameter vectors u — (m, ..,UL). TO mimic residual 
inter-frame correlation each component u, is independently 
modeled by a Gaussian low-pass source with pUiu;(l) = p- 
Each vector component is quantized independently. Instead 
of conventional linear channel encoding as used e.g. in mobile 
telecommunications, we apply non-linear Source Optimized 
Channel Codes (SOCCs) to encode the quantized parameter 
vectors ü to a binary channel sequence x. At the receiver, 
parameter estimates ü are extracted from the observed soft 
bit sequence y by Softbit Source Decoding (SBSD) [3]. 

AWGN 

SE Q socc -©- Parameter 
Estimator 

L dimensions 
\T& 

N bits   N soft bits   L dimensions 

Fig. 1: Communication model 
SE: parameter source (model of the source encoder), 
Q: quantizer, SD: parameter sink (source decoder) 

III. SOURCE OPTIMIZED CHANNEL CODES 

We assume a given quality measure X>(ü, ü) and a statistical 
model of the transmission channel y = t(x) which is described 
by py|x(y|x). The optimal decoder (estimator) with respect 
to V and t is denoted by ü = /z>,t(y). Then we define a SOCC 
as a set of channel symbols 

C={x|x = $[ü], Ü6Ü} , (1) 

which results from solving the optimization problem 

E{2?(ü,/0,t(t(*[ü])))}=min, (2) 

where E{-} denotes expectation. Hence, SOCCs minimize the 
mean distortion V(ü, ü) measured between quantized and es- 
timated parameter vectors. 

IV. SOCC PERFORMANCE 

Figure 2 depicts a performance comparison between 
SOCC/SBSD and UEP/SCCD at a transmission rate of 4 bits 
per vector dimension. Three values of residual inter-frame 
correlation are considered: p = 0, 0.75 and 0.9. SOCC/SBSD 
outperforms UEP/SCCD for all channel conditions if p>0.75. 
For p = 0.9, a gain in parameter SNR of at least 1 dB and up 
to 3 dB can be observed. In addition, the SOCC/SBSD sys- 
tem exhibits a graceful analogue-type degradation, whereas 
UEP/SCCD shows the well known threshold effect. 
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Fig. 2: SOCC/SBSD vs. UEP/SCCD, 4 bits per dim. 
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Abstract — In digital transmission of speech, audio, 
images and video signals residual redundancy is of- 
ten left after source coding due to the complexity and 
delay constraints. This redundancy remains both in- 
side one block or frame but also in a time correlation 
of subsequent frames. Both kinds of redundancy are 
used in an iterative process of source and channel de- 
coding to improve the quality of transmitted parame- 
ters. For better understanding, Gaussian distributed 
and time correlated parameters are used. 

In [1] it is shown that a priori knowledge can be used ei- 
ther in channel or source decoding. In [2] an approach is shown 
which exploits a priori knowledge in channel and source de- 
coding and an additional correction of the a priori probabili- 
ties leads to an improvement in the parameter SNR. Now this 
approach is extended to iterative source and channel coding. 

bit level symbol level 

Pl{ x.lY.X)^ Pl.e«* inverse 
mapping 

P(x|x(-1)) 
,,+rs 

U 

■•_», 

, 1 1 r   * 
convolutional 

decoding 
r=l/2, m=3 t 

source decoding 
with a priori inf. 

(joint probabilities) 

t k 1 ' ••+'• i 
y p 2,ea t P2(x, IX,Y) 

£ ■^— iMSfc; r^- 

Fig. 1: Block diagram of iterative source/channel decoding. 

In the following Fig. 1 is explained by an example. A Gaus- 
sian distributed parameter with time correlation p = 0.8 is 
Lloyd-Max quantized with 8 levels and these levels are as- 
signed to 3 bits Xi with folded binary mapping. 20 parameters 
are then placed within one frame. They are not correlated to 
each other but in time from frame to frame. The interleaver 
orders the 20 MSBs of the correlated parameters in the mid of 
the frame; to the left and the right there are first placed the 
20 mid bits (10 each side) and then the LSBs. Finally, 20 bits 
are put to the beginning and to the end of the block (dummy 
bits), so that the influence of the definite start and termina- 
tion of the code can be neglected. This leads to a blocklength 
of 100 bits which are coded by a rate 1/2, constraint length 4 
recursive systematic convolutional code and transmitted over 
an AWGN channel. 

Through this mapping and interleaving a typical "Turbo" 
decoding system is designed. There, the extrinsic information 
was introduced. In the same manner we "subtract" (in the 
log domain) the a priori information Pi,ext from Pi(zi|Y,X) 
after channel decoding and the input into the source decoder 

Pi.ext from its output P2(zi|X,Y). The capital Y,X denote 
the dependence of the bit Xi from all channel values and pa- 
rameters not only in the current frame but also in the previous 
frames. The channel values y and the probabilities denoting 
the time correlation P(x|x(—1)) are the two inputs for the 
system. The output delivers a mean square estimation for the 
considered parameters. 

*   This work was done while all authors were with AT&T Labs 
Research. 

-3 -2 
Es/N0 in dB 

Fig. 2: Combined Source and Channel Decoding (SaCD) using a 
priori knowledge: Comparison of the iterative approach (4 and 2 

iterations), decoding with a priori knowledge (AK) in channel 
(CD) or source decoding (SD), and neglected AK. 

From Fig. 2 the answer to the title question can be seen: 
"A priori information can be used twice!" There's almost no 
further gain by doing more iterations. The reason is that 
in the source decoder we only have three bits denoting one 
symbol and the correlation of this symbol to the previous one 
is similar to a very short code. Maybe, the whole system 
could be improved if there is correlation between parameters 
within on frame. This approach can be implemented e.g., into 
a speech transmission standard. With some extension this is 
done for the ANSI-136 system [3]. 
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Abstract — In the standard model with only pair- 
wise communication channels, unconditionally secure 
broadcast among n players is achievable if and only if 
the number t of corrupted players satisfies t < f • We 
show that, when additionally given broadcast among 
each subset of three players then global broadcast is 
achievable if t < j. 

I. INTRODUCTION 

Given a set P = {pi,... ,p„} of n players, the goal of broad- 
cast is to let some distinct player d e P (called dealer) reliably 
distribute a value to all players in P, i.e., all correct (i.e. un- 
corrupted) players must receive the same value (agreement), 
and if the dealer is correct then this must be the value the 
dealer intended to distribute (validity). 
In this paper we focus on broadcast protocols that are un- 
conditionally secure against an adversary that may actively 
corrupt up to t of the n players. To actively corrupt a player 
means to make him deviate from the protocol in an arbitrarily 
malicious way. Unconditionally secure means that the correct- 
ness of the protocol does not rely on any further restriction 
on the power of the adversary than the threshold t of players 
he can corrupt during the protocol. 
Since the network typically consists only of communication 
channels among subsets of players and some of the players, es- 
pecially the dealer, may be corrupted by the adversary, broad- 
cast is a non-trivial problem. 
Pease, Shostak, and Lamport [2] proved that, according to 
the standard communication model of a complete synchronous 
network of pairwise authentic channels among each pair of 
players, unconditionally secure broadcast is achievable if and 
only if t < j. The communication model considered in this 
paper extends this standard model by a synchronous network 
of authentic broadcast for each subset SCPof the players of 
cardinality |S| =3, i.e., 

• for every subset of three players and for any selection of 
a dealer among them there is a broadcast channel, and 

• for every such channel, all involved players are authen- 
tic, i.e., every correct player is able to assign a received 
message to its corresponding broadcast invocation. 

A broadcast primitive or protocol for n players that is secure 
against t corrupted players is called (n,t)-broadcast. 

II. RESULTS 

Theorem 1 Given (3,1)-broadcast, (n, l?^\)-broadcast is 
achievable for any n > 3. 

i.e., not necessarily dependent on k. Instead of letting the vir- 
tual players directly participate in the protocol, every virtual 
player qi is simulated by some specific collection Si C P of 
the actual players (according to player simulation in [1]). If 

it can be achieved that at most t' < ^- players qt are incor- 
rectly simulated then the protocol achieves broadcast among 
the players in Q (with respect to the players qj that are cor- 
rectly simulated). Finally, broadcast among the players in P 
can then easily be derived from broadcast among the players 
inQ. 
The following proposition immediately follows from [1]. 

Proposition 1 A player qt € Q of any protocol among a 
player set Q can be simulated correctly by a collection of play- 
ers S if broadcast among the players in S is possible and less 
than LJ- players in S are corrupted. 

Proof of Theorem 1: The proof of this theorem is based on 
a recursive construction that, for any k > 0, allows to achieve 
(2k + 3, k + l)-broadcast from (2k + 1, A;)-broadcast. Finally, 
(3, l)-broadcast can then be used as a base for the recursive 
construction in order to achieve any (n, [2L=^J)-broadcast. 
Let P be a set of 2A; + 3 players and assume (2k + l,k)- 
broadcast to be achievable among any S C P with \S\ = 2k+l. 
We define a set Q of n' = (j^+J) virtual players and in- 
volve them in some standard broadcast protocol that tolerates 
t' < Y player corruptions. We now let every possible collec- 
tion S C P of \S\ = 2k+l players from P simulate exactly one 
player qi £ Q. Such a player qi is simulated correctly if at least 
k + 1 of the simulating players are correct themselves (since 
k + 1 constitutes a majority and hence broadcast among S 
works correctly and hence Proposition 1 applies), i.e., at least 
k + 1 of the simulating players in S must be corrupted by the 
adversary in order to corrupt the corresponding virtual player. 
Hence at most t' < (£tj) (*£2) players of the original protocol 
can be corrupted which are given by all simulating collections 
S C P of cardinality \S\ = 2k + 1 including at least k + 1 
corrupted players. Since k > 0 we get 

n' _ ("ff) _ 2(2fc + 3) 

t' (kt2) k + 2 fc + 2 >3, 

and hence strictly less than a third of the players in the orig- 
inal protocol is corrupted. Finally we can let every simulated 
player send his result to every simulating player who then can 
compute the outcome of the broadcast by a majority voting 
on all received values. ■ 

! 

The basic idea is to take some known broadcast protocol 
(e.g [2]) for some virtual player set Q (\Q\ = n') in the stan- 

dard model that tolerates t' < ^- corrupted players among Q 
— where, for the moment, n' can be supposed to arbitrary, 
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Abstract — A new technique for secure information 
transmission in a mobile environment using the short 
term reciprocity of the radio channel was described 
in [1]. This paper evaluates the performance and se- 
curity aspects of the technique. 

I. SYSTEM MODEL AND ALGORITHM REVIEW 

Users A and B, at least one of them being mobile, must com- 
municate in a secure manner in the presence of an adversary 
£ on a common wireless medium. Assuming that B is trans- 
mitting information to A, the communication is achieved in 
two steps. The first step involves a transmission of M si- 
nusoids at frequencies /i, /2, ■. •, /M with equal phases and 
equal energies from user A to user B. The signal transmit- 

ted by A in the k signaling interval (kT, (k + 1)T] is given 

by SA{t) = YLi=i VT C0S(2T/i£ + 4>). The mobile channel 
is a time-varying fading channel with additive white Gaus- 
sian noise. The sinusoids cos(2nfit) are separated by at least 
the coherence bandwidth of the channel. The receiver dif- 
ferentially estimates the (M — 1) received phase differences 
(02(fc) — ©i(fc)),..., (&M(k) — ©i(fc)) between the various si- 
nusoids. Now, B has probed the response of the channel to 
the transmission of these multiple sinusoids. In the next step, 
the knowledge of this response is used by user B to transmit 
information to user A. This is done by transmitting a sig- 
nal consisting of sinusoids of the same frequencies but with 
the phases of each of the sinusoids modified so as to control 
the phase differences received by user A to fall within one 
of R decision regions depending on the information symbols 
to be transmitted.   The signal transmitted by B is given by 

*»(*) = Efci VTCOB(27r/*'-(e*-e0+*0.  *i = °. *< € 
{-7r,-7r + 27r/ß,...,-7r + 2(ß-l)7r/ß}, ,ie {2...M}, where 
&i — 0i are the phase differences detected from A's transmis- 
sion, and ^i is determined by the information to be trans- 
mitted and the mapping between each decoding region and 
the information bits. The signal that is received by A is now 
given by rA{t) = Y,*Li VT cos(27r/it + *i) + n{t), tf i = 
0,*i g {-7r,-7r + 27r/ß,...,-7r + 2(fl-l)7r/Ä}, ig {2..M}. 
User A detects the M — 1 phase differences, (0i — 0i) = ^i, 
i = 2..M, and for each phase difference it decodes the corre- 
sponding information symbols. 

II. PERFORMANCE AND SECURITY 

A symbol error is made on reception by A if the total phase 
error $e = $f + <3?^ due to the phase errors $f at B and 
the phase error $^ at A forces the ith phase difference at 
A to fall within a region other than the desired region. It 
can be shown that the conditional probability density func- 
tion of $f and $^ is given by p$ (</>|F) = ^ exp {-F} + 

4; (vT~cos0) • exp {-rsin2<£} [l - Q (y/ÖTcos <f>)],  where 

T =  Ail,h j?- ■ The probability density function Pr("() can 
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be shown to be Pr{y) = ft ^i^jr^iexp |-2^_| dx, 

where 7 = Aa2E/N0 is the average signal to noise ratio. Now, 
the probability density function of $e = <3>^ + $f is obtained 

as P<Jv(<£) = /„"P*. (OIF) Pr{l)dy, where p*. (#|r) is the 
convolution of two identical density functions for $^ and $f. 
Note that this sum can take values in [—27r, 27r). The proba- 
bility of symbol error may be obtained from the above density 
function after resolving the ambiguities of 2n. For R = 2, 
the performance is close to that of differential PSK in a flat 
Rayleigh fading channel. 

The security of the proposed method depends completely 
on two basic assumptions: the reciprocity assumption and 
the spatial decorrelation assumption. If the phase differences 
at the intended users locations and adversary location are 
statistically independent, then the amount of work required 
to break the system approaches that of a simple exhaustion 
of trials of the cryptovariable. To inspire the reciprocity as- 
sumption with mobility, consider a mobile with a speed of 100 
km/hr and using a carrier in the 900 MHz region; with a delay 
of 10 /jsec, the distance moved by the mobile would be 0.00028 
m, which is negligible compared to the wavelength 0.33 m. To 
motivate the assumption of phase independence, let the dis- 
tance between the locations of £ and B be many wavelengths, 

let $E be £'s estimate of 0, - ©i and define * = $B - $E. 
Then, \f/ is a random variable with a probability density func- 
tion that is a function of a2 = J2

(WDT)/(1 + (w\ — W2)2cr2), 
where Jo(-) is the Bessel function of order 0, WDT is the 
Doppler times delay between the received phases used in com- 
puting the phase differences, and a is a time delay spread pa- 
rameter that ranges between 1/4 micro-seconds for suburban 
areas to 5 micro-seconds for urban areas [2]. It was shown in 
[2] that for a2 < 0.4, ip is almost uniformly distributed. That 
is, if the bandwidth and time delay between transmissions sat- 
isfy a2 < 0.4, the phases are independent when £ and B are 
separated by many wavelengths. This value of a2 = 0.4 is 
achieved for »i — W2 = 240 kHz, if WD = 200 Hz, a = 5/us as 
is the case for a fast moving mobile terminal. Note that r = 0 
is chosen in this computation since there is no delay between 
the received phases used in computing the phase differences. 
To compute the rate at which we may transmit information 
securely, we compute the value of r for which a2 < 0.4 with 
the above parameters and with w\ —W2 = 0 since the phases at 
the same frequency must be sufficiently de-correlated in time. 
The rate then is calculated as (M — 1)/T. For the above sce- 
nario, with two tones, a rate of 156 bits per second is possible. 
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Abstract — A new identity-based conference key 

distribution scheme is presented using Harn-Yang's 

identity-based digital signature scheme, 

I. INTRODUCTION 

In 1993, Harn and Yang proposed ID-based cryptographic 
schemes for user identification, digital signature, and key dis- 
tribution [1]. Here we extend their key distribution scheme 
to a conference key distribution scheme using Ham-Yang's 
identity-based digital signature scheme. 

II. NEW IDENTITY-BASED CONFERENCE KEY 

DISTRIBUTION SCHEME 

The new scheme consists of three phases: the initiation phase, 
the user registration phase, and the application phase. 

Initiation phase: The key authentication center (KAC) 
selects a one-way function /, a large prime p, and a primitive 
element a of GF(p), which are made known to the public. 
A random number x £ [l,p — 1], with gcd(x,p — 1) = 1, is 
selected as KAC's secret key. KAC calculates his public key 
as follows. 

y = ax   (mod p). (1) 

User registration phase: When a user, say i, is register- 
ing in the KAC, he presents his identity IDi to the KAC. The 
KAC computes for user i an extended identity EIDi — f(IDi) 
and the signature (r;,s,) of EIDi as 

st = (EIDi —kir,)x       (mod p — 1) (2) 

where r, = ak' (mod p) and A;, is chosen randomly from [1, 
p-l] such that gcd(si,p — 1) = 1.   Note that no fc; should be • 
used repeatly.   In the application phase, s; is user i's secret 
key and r; is user j's public key. 

Application phase: Suppose all n users have registered 
in KAC, and they are connected in a star network. With- 
out loss of generality, we assume user 1 is the chairman, and 
he collects and delivers messages between him and user j 
(2 < j < n). In addition, all n users share a conventional 
encryption algorithm EK(-), where K is their shared key. 

• User 1 randomly chooses arandom number vi € [l,p—1] 
such that gcd(v\,p— 1) = 1. So, there exists uf1 such 
that v\v~[   =1   (mod p — 1). Then, user 1 calculates 

v" 
=     (m — üiUJi)«! l 

(mod       p) 
(mod    p — 1) (3) 

where m = f(ID\, time). User 1 sends (IDi, ri,wi,rji) 
to user j (2 < j < n). 

'This work was partially done when the author was visiting 
Eindhoven University of Technology. 

• Upon receiving (IDi,n,wi,r]i), user j checks whether 
the following congruence holds: 

»1 (' 
EIDi „-n\>7i rp)"1   (mod p). (4) 

If (4) holds, user j chooses arandom number Vj € [l,p— 
1] such that gcd(vj,p- 1) = 1. So there exists v~l such 

that VJVJ
1
 = 1   (mod p — 1). Then user j computes 

Wj     — yv' (mod        p) 
rtj     = WjJ (mod        p) 
rjj     =     (nj — VjW^sJ1     (mod    p — 1). 

(5) 

Next, user j sends (ID-j, r.j, w3, rtj, rjj) to user 1. 

•  Upon   receiving   (IDj,rj,Wj,nj,rij),    user   1   checks 
whether the following (n — 1) congruences hold: 

yn> =^^(0       'fj   3)ni   (mod p). (6) 

If all the congruences hold, user 1 generates a random 
number r £ [l,p — 1] and calculates the conference key 
Kc as follows. 

Kc = yr   (mod p). 

Also, user 1 computes 

Zj = «j1        (mod p), 

(7) 

(8) 

and sends (ZJ,EKC(IDI)) to all other users, where 
ER'C(IDI) denotes a conventional encryption of ID\ us- 
ing Kc. 

• User j (2 < j' < n) computes the conference key 

Kc = (zj)vi      (mod p), (9) 

and verifies it through decryption of EKC(ID\). 

Through the above scheme, each user can obtain the same 
conference key Kc. Since the conference key depends on the 
random number r, Kc will be different from one time to the 
next. 
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Abstract — A Distributed Key Distribution Scheme 
is a protocol enabling a set of n servers of a network 
to jointly realize a Key Distribution Center, a server 
which distributes cryptographic keys to users for se- 
cure group communications. We model Distributed 
Key Distribution Schemes within an information the- 
oretic framework showing lower bounds on the size of 
the information sent and stored by the servers and 
on the number of random bits needed to set up such 
schemes. The bounds are tight as there exists a pro- 
tocol which meets them. 

I. INTRODUCTION 

Enabling groups of users in a network (conferences) to pri- 
vately communicate using symmetric encryption algorithms 
requires an efficient protocol to give each conference a key. 

Often, in a network, there exists a Key Distribution Center 
which is responsible of the management of the secret keys. 
If the center works on-line, then users must sent it requests 
to obtain the common key. If the center is off-line, then the 
common keys can be recovered by the conferences using some 
private information initially distributed by the center. The 
protocols implemented by the Key Distribution Center are 
called Key Distribution Schemes (KDSs). 

All the previous KDSs, concern with a centralized environ- 
ment. With a Distributed Key Distribution Scheme (DKDS), 
the secret keys are distributed between n servers and it can be 
recovered by a user only if he obtains answers to a key-request 
message sent to k out of the n servers. The distribution avoids 
the concentration of secret information in a single place of 
the network and increases the availability and security of the 
overall system. We are interested in unconditionally secure 
DKDSs. 

II. THE MODEL 

Initially, a dealer distributes private information to each server 
of the network. 

- Let U = {1,..., m} be a set of users, let Si,..., Sn be 
the servers of the network, and let C be the family of all 
conferences of U that need to communicate securely. 

- Let Kh be the set of possible keys KH that can be com- 
puted by the users in Ch G C (let K^ be the correspond- 
ing random variable). 

- Let Ai be the set of values that the server Si can obtain 
privately from the dealer during the initialization phase. 

- Let Y^j be the set of values that can be sent by 
the server Si to user j g U upon a key-request 
message for the conference Ch   (let Ai  and Yfj  be 

the  corresponding  random   variables).      Let   Y" 
Y'j, for s £ h, for i = 1,.. rl -yh-1   Tfh + 1 

* i,j ■ ■ ■  * i,j    ' x i,j 

and j G U, and let Y X    ,...,! ,1 h+1 ,Ylcl. 

Definition II. 1  A (k, n,C)-DKDS is a protocol which enables 
each user of Ch G C to compute a common key Kh interacting 
with at least k of the n servers of the network. More precisely: 

- For each conference Ch G C, for each user j £ Ch, and 
for each subset of indices {ii, ■ ■ ■ ,ik} Q {1,... ,n}, it 
holds that 

H(Kh|Y? ,-) = 0. 

C and for each subset of 
., n}, it holds that 

- For each conference Ch  G 
indices {ii,...,ü_i} C {1,. 

H(Kh\Y,Ail,...,Aik_,)=:H(Kh). 

The first property of the above definition establishes that 
each user in a conference Ch G C can univocally compute 
the key Kh, after interacting with at least k servers of his 
choice. The second property formalizes the security condition. 
W.l.o.g, we assume that all the entropies on keys are equal, 
and we denote this common entropy by H(K). 

III. OUR RESULTS 

Theorem III.l  In a (k,n,C)-DKDS, for each Ch G C, and 
fori = l,...,n andjeU, it holds that F(Yfj) > H(K). 

Theorem III.2  Let Ai,..., An be the private information of 
Si,...,5„.  Then, H(A{) > \C\H(K), for each i = l,...,n. 

Theorem III.3  Let Au 

Si,...,Sn-  Then, H(AU 

, An be the private information of 
.,An)>k\C\H(K). 

All the previous bounds are tight. Indeed, using multiple 
copies of the Shamir's Secret Sharing Scheme [2], we can con- 
struct a protocol that meets the bounds. Moreover, also the 
scheme described in [1] is optimal with respect to the infor- 
mation distributed. 

IV. OPEN PROBLEMS 

Further researches can be done to model: DKDSs with an ini- 
tialization performed by a subset of Si,..., S„; DKDSs secure 
against coalitions of users fixed in size; DKDSs in which user's 
key-recovering is not based on a threshold structure but on a 
generic access structure on Si,.. . ,Sn- 

REFERENCES 
[1] M. Naor, B. Pinkas, and O. Reingold, "Distributed Pseudo- 

random Functions and KDCs", Advances in Cryptology: Pro- 
ceedings of Eurocrypt 99, Lecture Notes in Computer Science, 
Vol. 1592, Springer-Verlag, 1999, 327-346. 

[2] A. Shamir, "How to Share a Secret", Communications of ACM, 
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Abstract — A novel adaptive Bayesian receiver for 
signal detection in flat-fading channels is developed 
based on the sequential Monte Carlo methodology. 
The basic idea is to treat the transmitted signals 
as missing data and to sequentially impute multi- 
ple copies of them based on the observed signals. 
The imputed signal sequences, together with their 
importance weights, provide a way to approximate 
the Bayesian estimate of the transmitted signals and 
the channel states. It is shown through simulations 
that the proposed sequential Monte Carlo receivers 
achieve near-bound performance in fading channels 
without the aid of any training/pilot symbols or 
decision feedback. Moreover, the proposed receiver 
structure exhibits massive parallelism and is ideally 
suited for high-speed parallel implementation using 
the VLSI systolic array technology. 

I. SYSTEM DESCRIPTION 

We consider a communication system signaling through 
a flat-fading channel with additive ambient noise. The 
transmitted complex data symbol st takes values from a 
finite alphabet set A = {ai, • • •, «]>i|}- The input-output 
relationship of the flat-fading channel is described by 

Vt cttst + nt,       * = 0,1, • (1) 

where y>, at, st and nt are the received signal, the fading 
channel coefficient, the transmitted symbol, and the ambient 
additive noise at time t, respectively. The processes {at}, 
{st}, and {nt} are assumed to be mutually independent. It 
is assumed that the additive noise {nt} is a sequence of 
independent and identically distributed (i.i.d.) zero-mean 
complex Gaussian random variables: nt ~ A/'(0,o■2). It is 
further assumed that the channel-fading process is Rayleigh. 
That is, the fading coefficients {at} form a complex Gaussian 
process that can be modeled by the output of a lowpass 
Butterworth filter driven by white Gaussian noise. This fading 
channel can be described by the following state-space model 

xt    =    Fxt-i+gut, 

yt    =    sth
Hxt + avt, 

(2) 

(3) 

where {vt} in (3) is a white complex Gaussian noise sequence 
with unit variance and independent real and imaginary com- 
ponents. 

'This work was supported in part by the Interdisciplinary 
Research Initiatives Program, Texas A&M University. R. Chen was 
supported in part by the U.S. National Science Foundation (NSF) 
under grant DMS-9626113 and grant DMS-9982846. X. Wang was 
supported in part by the NSF grant CAREER CCR-9875314. J.S. 
Liu was supported in part by the NSF grant DMS-9803649. 

II. THE MIXTURE KALMAN FILTER RECEIVER 

Denote Yt = (yo,---,yt) and St = (so,- • -rst). Assume 
that the transmitted symbols are independent and identically 
distributed uniformly a priori. We are interested in estimating 
the symbol at and the channel state at = hHXt at time t 
based on the observation Yt. Note that with a given St, the 
state-space model (2)-(3) becomes a linear Gaussian system. 
Hence, 

p(xt | St, Yt) ~ A^(/xt(St), £,(S,)), (4) 

where the mean fit(St) and covariance matrix Et (St) can 
be obtained by a Kalman filter with the given St. The 
adaptive receiver proposed in this paper is based on a recently 
proposed filtering method, the mixture Kalman filter (MKF). 
The basic idea is to obtain a set of Monte Carlo samples of 
the transmitted symbols, {(S, , u>, )}JLi, properly weighted 
with respect to the distribution p(St\Yt). Then for any 
integrable function A(a;t, st), we can approximate the quantity 
of interest E{h(xt,st)\Yt} as follows: 

,E{h(xt,st)\Yt} 

I    I h(x,st)4(x;pt{St),i:t(St))dx 

«(so 
m 

p(St | Yt)dSt 

(5) 
3=1 

where Wt = YlT=i wt > an<^ ^(">/*>'£) denotes a complex 
Gaussian density function with mean p. and covariance matrix 
E. In particular, a posteriori symbol probability can be 
estimated as 

1     m 

P(at = aJ)^^-^l(^ = a0»(/)) 

' J=I 

where l(-) is an indicator function.  Denote /ly' — /x,(S,   ), 

S(tj) = St(S(
t
j)), and K\j) = [M(

t
j),S(

t
j)]. By exploiting the 

Markovian nature of the state-space model (2)-(3), we can 
derive a recursive procedure for generating a set of properly 
weighted Monte Carlo samples (i.e., {(S(

t
3\ K(

t
j),t4j))}j=i) 

at time t, with respect to p(St\Yt), from a set of properly 
weighted Monte Carlo samples at time (t — 1), which leads 
to an adaptive receiver structure in fading channels based on 
Monte Carlo filtering. Moreover, if the transmitted symbols 
are convolutionally coded, then a similar Monte-Carlo-based 
adaptive receiver can be developed that directly samples the 
information bits based on the received signal. Simulation 
results indicate that a sample size of 50 suffices to obtain good 
receiver performance. 

1 
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Abstract — An optimal multiuser detector, in the 
weighted least squares (WLS) sense, is derived for 
Code Division Multiple Access (CDMA) and Space 
Division Multiple Access (SDMA) systems. 

I. INTRODUCTION 

Optimal detectors, e.g., the maximum likelihood detector 
with a bank of matched filters (MF-ML) [1], require knowl- 
edge of many parameters such as the number of users, their 
signature sequences, and transmission delays. In this paper, 
we present an optimal WLS detector that can be implemented 
adaptively without the knowledge of these parameters. The 
WLS detector includes the MF-ML detector as a special case 
and it also optimally suppresses narrow band interference. 

II. WLS STRUCTURE 

Let y(t) be a received CDMA or SDMA signal due to KT 

users. Consider the fractionally chip spaced received vector, 
y = Sb + n, where y = [yo,- • • ,yN,-i]T, Nt is the total 
number of received samples, yi = y(lTcr), T„ = Tc/r, Tc 

is the chip period, and r is chosen to satisfy the Nyquist 
sampling criterion. The matrix S equals [si,o, • • • ,BKT,Nt-i], 
where Sk,i = E[bk,iy] is the signature vector for the »-th bit of 
the fc-th user, &*,<, and Nb is the total number of bits trans- 
mitted by each user. S also includes the effects of multipath 
channel. The vector b equals [&i,o, ■ • • ,bKT,Nh-i]T. The co- 
variance matrix of the noise vector n, which may also contain 
narrow band interference, is R„. Consider the problem of 
joint detection of K users, where K = KT — KJ,KI being the 
number of unknown CDMA/SDMA interferers. We rewrite 
Sb = Sobo + Sc/bj/, where bo contains symbols of the K 
users and SD contains the corresponding signature vectors. 
Similarly, St/ and by correspond to the Kj users. 
Proposition 1 The output samples of a bank of KNb min- 
imum mean squared error (MMSE) filters corresponding to 
each symbol of each of the K users contain a set of sufficient 
statistics for WLS detection. 
The proof follows from the WLS detection criterion, 

bo = argmin(y - Sobo^R^y - SobD) 

where Ry = SuS" + Rn- The MMSE filter p*,, correspond- 
ing to bk,i is of the form p*,j = R^'s^. 
Corollary 1.1 If the interfering users' symbols are Gaussian 
distributed, and n is Gaussian, then the MMSE filter output 
samples are also a set of sufficient statistics for ML detection. 
Corollary 1.2 Only a bank of K + £*=1 Wk + (Nb - NU)) 
MMSE filters is required for generating sufficient statistics, if 
the MMSE filter corresponding to 6*,,- is of the form pk,i = 
[Ou,pl,0i,v]T for N'k <i < Nk\ where N'k and N'k' are in- 
tegers, £ = Jo + (»' - l)rN, n = Nt- (rNf + l0 + (t - l)rN) 

'Part of the work was done at RSISE, Australian National Uni- 
versity, Canberra, Australia. 

for some integer lo, 0m,„ is anmxn zero matrix, and pk is 
a vector of length rNf. In practice, only K filters are needed. 
Each user repeats its signature sequence for consecutively 
transmitted symbols. Therefore, instead of considering the 
whole received vector, a sliding windowed received signal vec- 
tor y(t') of length rNf samples may be considered so that 
y(t') = S(t)b(t) + n(»), where the argument i implies that 
it corresponds to the t'-th symbol of all users. This sliding 
window moves at steps of rN samples, where N is the spread- 
ing gain.  Then the WLS metric, to be minimized, becomes 

A(bD) = Er=iE1=o"I[-2B*K..-pfy(0] + «.<qA,*i^W], 
where qdd.k represents interference contributions to y(»), in 
MMSE sense, from symbols of the K users except bk,t and the 
vector bdd(i) contains these symbols. Re[] denotes real part. 

III. ADAPTIVE IMPLEMENTATION 

Consider a centralized decision feedback detector, with feed- 
forward filter(FFF) tap vector wj/«,i, and feedback filter 
(FBF)vector ddfe,k for the fc-th user. We write S(»')b(«) = 
Sud(*)bud(») + Sdd(i)bdd(i), where S<jd(») contains windowed 
signature vectors corresponding to symbols in bdd(i), and the 
remaining signature vectors and symbols are contained in S„d 
and bud respectively. 
Proposition 2 The MMSE solution for the FFF and FBF 
taps is [2]: Wdfc.k = F^'s^i), ddft!ik = S"d(i)wdfe,k, where 
Fu = S.d(0Sa(i) + R;, R; = E[n(t)nH(i)]. 
This solution can be adaptively obtained using training sym- 
bols from the K users. The FFF/FBFs are normalized 
with respect to one of the users, say user 1. Define ßk = 
dd/<,i(*,*)/d<i/e,*(l,*) for 1 < k < K, where ddfe,k(m,i) de- 
notes the effect due to the m-th user's «'-th bit. 'Scaled' FFFs 
and FBFs are defined for 1 < k < K as y/dfe,k = /9*Wd/e,* 
and ddfe,k = ßkddfe,k-  The WLS metric becomes A(bo) = 
EL E<Vl-2R*fö.<*#«,*y(0] + b'kßSfckbddii)}. 

Ignoring the scaling factor ßk, when users have different 
power levels, results in performance loss [3]. The WLS data 
detection is now performed by using the Viterbi algorithm [3]. 

IV. CONCLUSIONS 

A more general optimal detector, compared to the ML detec- 
tor, is presented and its adaptive version is realized. 
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Abstract — We consider the problem of simulta- 
neous parameter estimation and data restoration in a 
synchronous CDMA system. Bayesian inference of all 
unknown quantities is made from the superimposed 
and noisy received signals. The Gibbs sampler, a 
Markov Chain Monte Carlo procedure, is employed 
to calculate the Bayesian estimates. The basic idea 
is to generate ergodic random samples from the 
joint posterior distribution of all unknowns, and then 
to average the appropriate samples to obtain the 
estimates of the unknown quantities. Being "soft- 
input soft-output" in nature, this technique is well 
suited for iterative processing in a coded system, 
which allows the adaptive Bayesian multiuser detector 
to refine its processing based on the information 
from the decoding stage, and vice versa - a receiver 
structure termed as adaptive Turbo multiuser detector. 

I. SYSTEM DESCRIPTION 

We consider a synchronous CDMA system with K users, 
employing normalized modulation waveforms B\, 82, • • •, 8K, 

and signaling through a channel with additive white Gaussian 
noise. The received signal is given by 

K 
r(0    =    ^2^kXk(i)ak +n(i),   i = 0, • • •, M - 1.   (1) 

In (1), M is the number of data symbols per user per frame; 
Ak, Xk(i) and a* denote respectively the amplitude, the i-th 
symbol and the normalized spreading waveform of the ifc-th 
user; n(i) = [no(i) ni(i) ■■■ np_i(i)]T,is a zero-mean white 
Gaussian noise vector, i.e., n.j(i) ~ A/"(0,<72), where <r2 is the 
variance of the noise. Define the following a priori symbol 
probabilities 

Pk(i) P[xk(i) = +1],     i = 0, ■ • •, M - 1; k = 1, ■ ■ ■, K. 

Note that when no prior information is available, then pk(i) = 
1/2, i.e., all symbols are equally likely. 

Denote Y = {r(0), r(l), • ■ •, r(M - 1)}. We consider the 
problem of estimating the a posteriori probabilities of the 
transmitted symbols 

P[xk(i) = +1\Y],    * = 0,...,M-1; k = l,.--,K, 

based on the received signals Y and the prior informa- 
tion {Pk(»)}k=i i^o> without knowing the channel amplitudes 

{/U}jfcLj and the noise variance a2. 

'This work was supported in part by the Interdisciplinary 
Research Initiatives Program, Texas A&M University. X. Wang 
was supported in part by the NSF grant CAREER CCR-9875314. 
R. Chen was supported in part by the U.S. National Science 
Foundation under grant DMS 9626113 and grant DMS-9982846. 

II. THE GIBBS MULTIUSER DETECTOR 

We choose the following conjugate prior distributions for 
the unknown parameters p(a), p (<r2) and p(X). For the 
unknown amplitude vector a, a truncated Gaussian prior 
distribution is assumed, 

p(a)    oc    A/-(a0,Eo) I{a>o}- 

For the noise variance <r2, an inverse chi-square prior distri- 
bution is assumed, 

V (<r2)    ~    X-2("o, Ao). 

Finally, the prior distribution p{X) can be expressed as 

M-l   K 

p{x) = nn^1')^1-^*')]1"^ 
t=0   fc=l 

where Ski is the indicator such that.fit; = 1 if Xk(i) = +1 and 
Ski = 0if zfc(i) = -l. 

The Gibbs sampling implementation of the adaptive 
Bayesian multiuser detector in Gaussian noise proceeds iter- 
atively as follows. Given the initial values of the unknown 

quantities {a,(°\ a3 ', X^} drawn from the above prior 
distributions, and for n = 1,2, • • • 

1. Draw a(n> from p(a | <r2(n_1), A^"-1), Y). 

2. Draw <r2(n) from p(<r2 | a^, X^-^, Y). 

3. For t = 0, 1, •••, M-l 

For jfc = l, 2, •••, K 

Draw xk(iY
n) from P[xk(i) \ a^,(rAn),x{l\Y], 

whereX^ = {*(())(">, •••, x(i-l)™, Xl(i)^\ ■■■ xk^(ifn\ 

xk+iii)^'^, ■■■, XKii)^-^, *(i.+ 1)<—»>, ••■, x(M-l)("-V}. 
The conditional distributions in the above algorithm can be 
found in closed forms. 

To ensure convergence, the above procedure is usually 
carried out for (no + N) iterations and samples from the last 
N iterations are used to calculate the Bayesian estimates of 
the unknown quantities. In particular, the a posteriori symbol 
probabilities in are approximated as 

n0+N 

PM,) = +i|Y]  -   -L J2 W- 
n=n0 + l 

The above Bayesian multiuser detector can incorporate the 
a priori symbol probabilities, and it produces as output the 
a posteriori symbol probabilities. Hence it is very well suited 
for iterative processing in a coded system, which allows the 
adaptive Bayesian multiuser detector to refine its processing 
based on the information from the decoding stage, and vice 
versa - a receiver structure termed as adaptive Turbo multiuser 
detector. 

I 
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Abstract — Multi-user detection of CDMA signals 
is studied in the light of iterative processing. The 
complete factor graph of a coded CDMA system is 
used to develop several successively less complex joint 
detection algorithms whose performance is related to 
the computational complexity of the algorithm. 

INTRODUCTION 

We study the general structure of coded CDMA systems 
from an iterative processing point of view, illuminating how 
the different parts, in particular the FEC codec and the 
CDMA receiver have to interact with each other. We apply 
a series of simplifications to the basic (graphical) structure of 
the receiver which result in simpler algorithms with reduced 
performance. In the course of these simplifications we red- 
erive a number of previously proposed receivers, such as the 
iterative receivers and linear metric generation receivers. We 
show that if the receiver for a given user does not know the 
code (FEC) of the other users, its code network breaks into 
subnetworks, specifically, into a FEC decoder network, and a 
number of metric generation networks. 

The optimal metric generator can easily be formulated, but 
is in general too complex for most practical considerations. 
Hence, we simplify this metric generation, which leads to a 
family of low-complexity interference cancellers. In particu- 
lar linear metric generation can be performed at the cost of 
further loss in performance. There exist efficient methods for 
generating these metrics iteratively [2]. 

Code Network 
User 1 

For illustration, assume that the encoders are (rate R = 
1/2) convolutional encoders. Using the factor graph repre- 
sentation for a convolutional code [1], a factor graph for the 
complete decoder can be drawn and is shown in Figure 1: 
(Note that there are other ways of drawing the code network 
graph, in particular, the multiple-access node can be expanded 
into a complete trellis diagram describing the multiple access 
interference between the symbols d). 

We refer to detection in an interference limited environment 
as interference cancellation whenever full joint detection is not 
possible. That is, we assume that the receiver for the target 
user, say user K, has no knowledge about the FEC system of 
the interfering users and can therefore not decode their data 
streams. Since knowledge of the code of the interfering users 
is not available, the network structure of their coding system 
is also unknown, and we have to truncate the receiver network 
at the transmitted symbol nodes of the interferers, using the a 
priori distributions for them. The resulting network structure 
is shown below: 

work 

Code Network 
User K 

Multiple Access Node (/) 

Multiple Access Node (/) 

Fig. 1: Factor Graph of a complete coded CDMA system. 

'Supported in part by NSF Grant No. CCR-9732962. 

Fig. 2: Factor Graph of the coded CDMA system without knowl- 
edge of the FEC networks of the interfering users. 

While the algorithm now no longer has to visit the FEC 
code networks for the K — 1 (interfering) users, the problem 
with the large multiple-access node arc incidence persists. 
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Abstract — We show that the probability of un- 
detected error for a quantum code on the depolariz- 
ing channel can be expressed via code's weight enu- 
merators. We prove that there exist quantum codes 
whose probability of undetected error falls exponen- 
tially with the length of the code and derive a lower 
bound on this exponent. To derive upper bounds we 
formulate a linear programming problem and present 
two feasible programs for it. The asymptotic upper 
and lower bounds coincide in a certain interval of code 
rates close to 1. 

I. INTRODUCTION 

A quantum code Q((n,K)) is a A"—dimensional linear sub- 
space of the space H = C2 [2]. The number R = (log2 K)/n 
is called the rate of Q. During transmission over the channel 
a quantum state v € H can be altered by an error operator 

E = Ti ® T-l ( (1) 

where TV 6 {±Ü2, ±i<rx,±i(rz,±icry}, and ax,ay,az are the 
Pauli matrices. Under the action of E the "transmitted" state 
is transformed to Ev. The number of nonidentity matrices in 
(1) is called the weight of of error, wt(E). By the definition 
of the channel, the probability of an error operator E equals 
(p/3)wt<B>(l-p)B-wt<B>. 

Let P be the orthogonal projection on the code Q. "Weight 
enumerators" associated with Q have the form B(x,y) = 
J^BiX71-^* and B±(x,y) = '£B^xn-iyi, where [3] 

Bi =    ^2    Tr2(EP) and B,x =    ^    Ti(PEPE). 

Wt(B)=: Wt(B)=i 

II. ERROR DETECTION 

It is possible to define error detection for quantum codes in 
several ways. If the measurement of the received state pro- 
duces a vector in the subspace orthogonal to Q, this indicates 
a detectable error. If this measurement gives a vector in Q, 
the error is not detected. However, in a general situation, we 
assume that if the received state is very close to the transmit- 
ted state, no error has occurred. 

Calculating the probability Pue(Q,p) of undetected error 
under these assumptions, we obtain 

Theorem 1 

Pue{Q,P) = -^y Y^{Bt - Bi) (|;) (1 ■PY 

We also consider some other possible definitions of undetected 
error that arise under natural physical assumptions. In all the 
cases the expressions obtained are the same as in the theorem 
(up to a constant factor). 

To describe the behavior of the probability Pue for best 
possible codes, we define the exponent 

E(R,p)    =    limsup(—l/nlog2 PUe(n,R,p)). 
n—+oo 

where Pue (n, R, p) is the minimal attainable probability for 
codes of rate R. 

III. LOWER BOUND 

Let T4(x,y) = xlog43 - xlog4 y - (1 -x)log4(l - y) and 
H4(x) = T4(x,x). Let 8{R) = i/4

_1((l + R)/2). 

Lemma 1 There exists a sequence of stabilizer codes of rate 
R such that Bi = 0 for 1 < i < nS(R) and B±- < 
n(rl)3i2k-n fornö(R)<i<n. 

Computing Pue{Q,p) for a sequence of codes Q from this 
lemma, we obtain the following lower bound on E(R,p). 

Theorem 2 

'  T4(ff4-1((l-Ä)/2),p), 

E(R,p)>< 0<R<2(1-H4(p))-1, 

k   (1 — R)/2, otherwise. 

IV. UPPER BOUNDS 

Theorem 3 Let Z(x) = '^l"=0ZiKi(n,'i,x) be a polynomial 
expanded in the basis of the Krawtchouk polynomials. Suppose 
that 

zwKWzyo.-pT-' 
and 

(1/2)(1 + R)nzi - Z(i) > 0    (1 < i < n). 

Then Pue(R,n) > z0(l/2 + R/2)n - Z(0). 

By an appropriate choice of polynomials we derive two asymp- 
totic upper bounds on E(R,p). We cite the first one. Denote 
by Rip(S) the upper bound [1] on the asymptotic rate of qua- 
ternary codes with distance S and by Sip(R) its inverse func- 
tion. 

Theorem 4 
/   1-Ä 

2 

E(R,p) < { 

^-H4(SlpC-^))+T4(Slp(i±ä),p), 

R < 2Rip(p) - 1 

,   —j^, otherwise. 

The second bound derived in the work improves this theorem 
for medium code rates. The journal version of this talk is 
published in IEEE Trans. Inform. Theory, May 2000. 
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I. INTRODUCTION 

The use of multiuser detection techniques in multiple access 
optical channels has been studied in the literature, with em- 
phasis on optical CDMA [2]. In general, it has been assumed 
that the optical detection is carried out by PIN diodes, which 
count the photons present in the field. However, the theory 
of quantum detection [1] indicates that other measurements 
might yield significantly smaller error probabilities. 

In this paper, we show by example that this can happen 
in the multiple-access case. We also note that the quantum 
multiuser detection problem differs from the classical one, in 
that quantum measurement precludes the use of matched filter 
banks for non-orthogonal signals. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.8 1 

II. CHANNEL MODEL 

We assume that K users transmit information via the elec- 
tromagnetic field with OOK modulation. Specifically, user k 
sends a bandpass signal Sk(t) to indicate a "1" and no signal 
to indicate a "0". Sk can be conveniently described by its low- 
pass equivalent Sk, where Sk(t) = Re Sk(t) e'2v^ct and fc is 
the carrier frequency. We will take these signals to represent 
the electric field in a quasi-monochromatic linearly polarized 
coherent light beam. 

Since we want to study the effect of multiple-access inter- 
ference, we ignore the effects of noise and assume that the 
different users transmit synchronously. Thus, the detector re- 
ceives the linear superposition of the Sfc's, which excite various 
modes of the detector aperture field. The resulting quantum 
state, described by a density operator p, contains the trans- 
mitted information. The receiver then has to decide which 
one of the several possible p's is present, using a probability 
operator-valued measure (POVM). This is a collection of Her- 
mitian positive-definite operators Hk, which must be chosen 
so that the probability of detection error is minimized. 

In the single-user case, we can consider a "matched filter" 
detector, such that Si(t) coincides with one of the temporal 
modes of the field. Then the hypotheses to be tested are 
\if>) = |a) vs. \tp) — |0), where \a) is a coherent state and 
\ip) {4>\ is the received density operator. It is shown in [1] 
that in this case an optimally-designed POVM achieves a lower 
probability of error than a detector based on photon counting. 

III. MULTIUSER DETECTION 

Now consider the case K = 2. If Si and 52 are orthog- 
onal, they can again be aligned with two temporal modes of 
the field, so that the hypotheses to test are \ip) = |0) |0) vs. 
\ip) = \a) |0> vs- |V) = |0> \a) vs. \tp) = \a) \a). We as- 
sume that both users transmit the same average number of 

Figure 1:   Probability of symbol error for the ML photon 
counter and the optimal quantum detector. 

photons, N(= a2.) It can be shown that in this case the op- 
timal quantum detector is equivalent to two matched filters 
acting independently on each mode. In general this is true if 
the received density operator when user 1 sends symbol i and 
user 2 sends symbol j is of the form ptj = pi ® pj. 

If Si and 52 are not orthogonal, we can no longer assign 
separate modes to the different users, so that independent 
matched filtering is not only not optimal, but actually not 
possible. As an alternative we can take 

9i    =    Si/IISil 
92    oc    52/||52| rgi, 

(1) 

(2) 

xThis work was supported by the National Science Foundation 
under Grant CCR-99-80590. 

where r is the correlation coefficient between Si and S2. 
Hence, the 4 hypotheses are   \tp)   =   |0) |0) vs.     \ip)  = 

|ft) \ß2) vs.     |V>  =   |Q> |0> vs.     W  =   l^/cT+W) \fa), 

where r  =  ßi/a and the two user powers are equal,  i.e. 

Fig. 1 shows the probability of (symbol) error of the op- 
timal quantum detector as the correlation coefficient varies 
between 0 and 1, for N = 10 and N = 30. The dashed 
line corresponds to a maximum-likelihood multiuser detector 
based on the number of photon counts in each of the modes. 
It can be seen that the optimal quantum detector outperforms 
the ML photon counter by 3 orders of magnitude for r « 0.3. 
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Abstract — The aim of this paper is explicit calcu- 
lation of the classical capacity of quantum Gaussian 
channels, in particular, of those using squeezed states. 
The calculation is based on a general formula for the 
entropy of quantum Gaussian state, which is of inde- 
pendent interest, and on the recently proved coding 
theorem for quantum communication channels. 

I. INTRODUCTION 

One of the recent achievements of the quantum information 
theory is the direct coding theorem for transmission of clas- 
sical information through quantum communication channels, 
which provides an explicit formula for the capacity of the chan- 
nel as supremum of the quantum entropy bound with respect 
to input probability distributions. This result was extended 
to channels with constrained inputs [2] among which channels 
with additive quantum Gaussian noise and the constrained 
power of the signal are most important for applications, be- 
cause the class of quantum Gaussian states includes coherent 
and squeezed states, together with their thermal mixtures. In 
this talk we present several results concerning the capacity of 
quantum Gaussian channels. 

II. CLASSICAL SIGNAL PLUS QUANTUM NOISE 

We consider quantum system, such as cavity field with 
finite numbers of modes, described by annihilation opera- 
tors oi,..., a, satisfying the canonical commutation relation 
(CCR) Let % be the Hilbert space of irreducible representa- 
tion of CCR, and let p(0) be a density operator in % describ- 
ing state of the cavity field. Consider the family of density 
operators 

p(/x) = V^)p(0)V^y ; ß = (W) € C', (1) 

where V{n) is the displacement operator in %. In commu- 
nication theory p(0) describes background noise, comprising 
quantum noise, and p. is the classical signal. Thus the map- 
ping n -> p(n) is classical-quantum channel in the sense of 
[2]. 

According to [3], the capacity of such a channel is equal to 

C = sup H(PP) - H(p(0)). 
Pevi 

(2) 

where H = — Trplog p is the von Neumann entropy, pp = 
J p(p.)P{dp), and Vi is a convex subset of probability distri- 
butions P(dp) on C*, satisfying the power constraint 

fY^hwMtfP{dn)<E. (3) 

III. THE CAPACITY OF QUANTUM GAUSSIAN CHANNELS 

Let p(0) be the Gaussian density operator with m = 0 
and the correlation matrix a. Let P be Gaussian probability 
distribution with correlation matrix ß and zero mean. The 
inequality (3) then takes the form: 

Sp eß < E, (4) 

where e is the diagonal energy matrix. 
Theorem. The capacity of the Gaussian channel is equal 

to 

C=maxiSp<?(abs(A-1(a + /3))-//2) (5) 

-|sPfl(abs(A-1a)-//2) 

where g(x) = (x + 1) log(x + 1) — x log x and Bi is the convex 
set of real positive matrices ß, satisfying (4). 

Example. In the case of squeezed state p(0) in one mode 
let N, = E/hw, N = Trp(0)ata = (w2aqq + app)/2hu be, 
correspondingly, the mean photon numbers in the signal and 
in the noise. Then if JV2 + JV < N*, the capacity of the 
squeezed state channel is 

C = g(N + N.), (6) 

otherwise 

C = g UN.(2N+l + 2y/N2 + N) + ±-Y\. (7) 

Prom these expressions one sees that using squeezing states 
under constrained input energy E does increase the capacity. 
On the other hand, with restricted output energy hw(N + N,) 
ope cannot obtain capacity greater than (6), which is known 
to be the absolute maximum under this constraint. 
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Abstract — We study the problem of compressing 
a block of symbols (a block quantum state) emit- 
ted by a memoryless quantum Bernoulli source. We 
present a simple-to-implement quantum algorithm for 
projecting, with high probability, the block quantum 
state onto the typical subspace spanned by the lead- 
ing eigenstates of its density matrix. We propose a 
fixed-rate quantum Shannon-Fano code to compress 
the projected block quantum state using a per sym- 
bol code rate that is slightly higher than the von 
Neumann entropy limit. Finally, we propose quan- 
tum arithmetic codes to efficiently implement quan- 
tum Shannon-Fano codes. 

I. EXTENDED ABSTRACT 

Modern information theory makes fundamental assump- 
tions concerning the physical representation and processing of 
information. Following the lead of classical mechanics, mod- 
ern information theory assumes that a information bit can 
exist in either one of two states, say, 0 or 1. However, clas- 
sical physics is known to fail spectacularly under many cir- 
cumstances, for example, when the objects being described 
are very small or have very large energies. This regime of 
physics is described by the laws of quantum mechanics. Con- 
ventional information theory fails to properly describe how 
information can be represented and transformed in such physi- 
cal systems, and must be replaced by an appropriate quantum 
analog: quantum information theory. In contrast to the clas- 
sical information bit, a quantum information bit can exist in 
a superposition of two orthogonal quantum states. 

The problem of compression is central to storage and trans- 
mission of quantum data. We investigate quantum algorithms 
for compressing a sequence of symbols emitted by a memory- 
less quantum Bernoulli source. The basis for compression of 
classical data is Shannon's noiseless coding theorem: if the 
per symbol code rate is slightly larger than the Shannon en- 
tropy, then there exists a block code (with sufficiently large 
block size) such that the compressed message can be recov- 
ered with probability close to unity. The quantum analogue 
to Shannon's theorem is Schumacher's theorem [2]: if the per 
symbol code rate is slightly larger than the von Neumann en- 
tropy, then there exists a block code (with sufficiently large 
block size) such that the compressed message can be recovered 
with average fidelity close to unity. The similarity of the two 
theorems makes it possible to use, to a limited extent, clas- 
sical algorithms for performing quantum data compression. 
However, classical compression codes cannot immediately be 
translated into quantum versions; for example, in order to pre- 
serve the coherent quantum state, all operations performed on 
the data must be reversible and must not entangle the state 
with any temporary variables. Furthermore, it is essential that 

the original state must be entirely obliterated in producing the 
encoded state, because quantum states cannot be cloned. 

The statistics underlying a quantum memoryless Bernoulli 
source is completely captured by its density matrix. The fun- 
damental idea behind quantum data compression is to ana- 
lyze the eigen-structure of the joint density matrix associated 
with a block quantum state emitted by the quantum memory- 
less Bernoulli source. As our first contribution, we present a 
quantum-mechanical algorithm for projecting the block quan- 
tum state onto the subspace spanned by the leading (or typ- 
ical) eigenstates of the joint density matrix. Our algorithm 
computes, in parallel, an indicator function that is 0 if the 
eigenstate is typical and 1 otherwise. By making a measure- 
ment on the quantum bit associated with the indicator func- 
tion, with very high probability, we project the block quan- 
tum state onto the typical subspace spanned by the leading 
eigenstates. Our theoretical results represent a strengthening 
of Schumacher's pioneering result in that they hold for fixed 
block sizes and they deliver a rate of convergence. 

The projection onto the typical subspace wipes out the 
trailing eigenstates, and, hence, the projected quantum state 
lies in the low-dimensional typical subspace. Consequently, 
each leading eigenstate can be represented using roughly the 
logarithm of the dimension of the typical subspace. The cen- 
tral problem of quantum data compression is to efficiently 
compute such low-dimensional representations. As our second 
contribution, we propose a quantum Shannon-Fano code to 
represent and compress the projected block quantum state 
using a per symbol code rate that is slightly higher than the 
von Neumann entropy limit. 

As our third contribution, we propose quantum arith- 
metic codes to efficiently implement quantum Shannon-Fano 
codes. Our arithmetic encoder/decoder use a certain finite- 
precision arithmetic process that is inspired by classical arith- 
metic coding. The novelty of quantum arithmetic coding 
is to implement finite-precision arithmetic processes in a 
quantum-mechanically reversible fashion. Our arithmetic en- 
coder/decoder have a cubic circuit and a cubic computational 
complexity in the block size. The proposed encoder and de- 
coder are quantum-mechanical inverses of each other, and con- 
stitute a very satisfying example of reversible quantum com- 
putation. 
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I. INTRODUCTION 

Run length constraints derive from digital storage applica- 
tions [2]. For nonnegative integers d and k, a binary sequence 
is said to satisfy a one-dimensional (d, k)-constraint if every 
run of zeros has length at least d and at most k (if two ones 
are adjacent in the sequence we say that a run of zeros of 
length zero is between them). A two-dimensional binary pat- 
tern arranged in an m x n rectangle is said to be (di, ki, cfe, ta )- 
constrained if it satisfies a one-dimensional (di, fci)-constraint 
horizontally and a one-dimensional (d2,A:2)-constraint verti- 
cally. The two-dimensional {di,ki,d2,k2)-capacity is defined 

as 

Wi,fci,<f2,fc2 lim 
m,n—>c 

loga<
1»'"1,,'a'*a) 

mn 

where iV^1
n'fcl'd2''C2) denotes the number of m x n rectan- 

gles that are (di,fci,d2,fc2)-constrained. If d = di = d2 
and k = k\ = ki (this is called the symmetric constraint) 
then the two-dimensional (di,fci,d2,&2)-capacity is called the 
two-dimensional (d,k)-capacity, and is denoted by Cd,k- A 
proof was given in [3] that shows the two-dimensional (d, k)- 
capacities exist, and essentially the same proof shows that the 

Cd1,fci,d2,k2 exist. 
The two-dimensional asymmetric positive capacity region is 

the set 
{(di,ki,d2,k2) : Cdi,ki;d2,fc2 > 0}. 

A basic question is to determine which constraints actually 
lie in the positive capacity region and which do not. For the 
symmetric constraints, it was shown in [1] that Ci,2 = 0 and 
a complete characterization of which (d, k) integer pairs yield 
positive capacities was given in [3] and is stated as the propo- 
sition below. 

Proposition 1 Gd k > 0 if and only if k — d > 2 or (d, k) = 

(0,1). 

II. MAIN RESULTS 

In the present paper we determine whether or not the two- 
dimensional capacity is positive, for a large set of asymmetric 
constraints (di,ki,d2,k2), and the main results are summa- 
rized in Theorem 1. It is interesting, to note that for the 
symmetric constraint (i.e. when d\ = d2 and fei = fo), the 
capacity is zero whenever d and k are positive and differ by 
one, whereas for many asymmetric constraints the capacity is 
positive when the horizontal constraints or the vertical con- 
straints differ by one (e.g. Theorem 1 part (ii(B)b)). However, 
in the asymmetric case if, for example, ki = di + 1 < d2 then 
the capacity is zero (by Theorem 1 part (i)). 

"This work was supported in part by the National Science Foun- 
dation and by a JSPS Fellowship for Young Scientists. 

Theorem 1 Let di, k\, d2, and Ai2 be nonnegative integers 
such that di < ki and d2 < k2. Let d = min(di,d2), D = 
max(di,d2), k — min(fci,fc2), K — max(fci,fc2), S = k — D, 
and A = K — d. Then the following partially characterizes 
the positive capacity region of two-dimensional run length con- 
strained channels: 

(i) If5<0 then C<j1,fclid2,fc2 = 0. 

(ii) If 8 = 1 then 

(A) J/d = 0 then Cd^Mrf-zM > 0- 

(B) Ifd> 1 then 

(a) //A < 1 then CdiM-42M = 0. 

(b) If A> di = d2 then Cd1,k1;d2,k2 > 0. 

(c) //A > 3 and d = 1 then Cd1,ki;d2,k2 > 0. 

(iii) If 5 > 2 then Cd1,fclid2,fc2 > 0. 

The .only case that is presently not completely character- 
ized in Theorem 1 is part (iiB), namely when 6 = 1, d > 1, 
and A > 2. If 6 = 1, d = 1, and A = 2 then the only ca- 
pacities that need be considered are Ci,2,i,3 and' Ci,3,2,3- But 
Ci,2,i,3 > 0 from part (ii(B)b). Thus if we were able to show 
that Ci,3,2,3 > 0 then we could replace A > 3 by A > 2 
in part (ii(B)c). However, computer simulation suggests, but 
does not prove, that perhaps Ci,3,2,3 = 0. This remains an 
open question. 

Also, computer simulations suggest the plausibility of Con- 
jecture 1 below, for which we presently do not have a proof 
either. 

Conjecture 1 Cd,d+i,d,2d = 0 whenever d > 0. 

Conjecture 1 would characterize with Theorem l(ii(B)b) the 
positive capacity region for k = d + 1 and d\ = di as: 

Cd,K,d,d+i = Cd,d+i,d,K = 0  if and only if K < Id. 
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Abstract — We show that a Read/Write Isolated 
Channel can be modelled as a constrained binary ma- 
trix. This permits the use of constrained matrix tech- 
niques to bound the capacity of the channel, improv- 
ing on the older known bounds. 

I. INTRODUCTION 

A serial binary (0,1) memory is read isolated if no two con- 
secutive positions in the memory may both store l's. A serial 
binary (0,1) memory that undergoes rewriting is write isolated 
if it satisfies the restriction that no two consecutive positions 
in the memory can be changed during one rewriting phase. 

A read/write isolated memory (RWIM) is a binary, linearly 
ordered, rewritable storage medium that obeys both the read 
and write restrictions. This type of memory was considered by 
Cohn in [3], who examined its channel capacity. The set of all 
permissible binary memory configurations can be considered 
as a channel alphabet. The rewriting restrictions determine 
which characters may follow which characters in the channel. 
The channel capacity of this process can then be defined as fol- 
lows [2] [8]: let k be the size of the memory in binary symbols, 
r the lifetime of the memory in rewrite cycles and N(k, r) the 
number of distinct sequences of r characters. For fixed k, the 
channel capacity, measured in bits per rewrite, is defined to 
be [6] 

Ck = lim -log27V(fc,r). 
r-Kx> r 

The channel capacity of the read/write isolated memory, in 
bits per symbol per rewrite, is then defined to be 

C=  lim \ck. 
k-ioo K 

In [3] Cohn established several expressions for the capacities 
Ck and derived the following upper and lower bounds on C: 
0.50913 ... < C < 0.56029 .... In this paper we continue the 
investigation of the channel capacity and manage to refine the 
bounds to 

0.53500... < C < 0.55209.... 

We also provide reasons to conjecture that C — 0.53500 .... 

II. CONSTRAINED MATRICES 

The main observation is that there is another way of viewing 
the rewriting process. Suppose k, the size of the memory and 
r, the number of rewrites, are known. Then we can define, B, 
a r x k binary matrix: VI < i < k, 1 < j < r, 

B(ji') = content of location i after the (j — l)st rewrite. 

of the form 

'This work partially supported by Hong Kong CERG grants 
HKUST652/95E, 6082/97E and 6137/98E and DIMACS 

Thus the jth row of B is the content of the memory after the 
(j - l)st rewrite.   Translating the RWIM rules into matrix 
notation shows that B satisfies the following two constraints: 

1.  read restriction: B does not contain any two horizon- 
tally consecutive ones, i.e., it does not contain any 1x2 
submatrix (11); 

write restriction: B does not contain any 2x2 submatrix 
' 0    1 \       ( 1    0 

1   o J or (, 0   1 
Note too that if B is any r x k binary matrix that obeys 

the two conditions above then B can be viewed as modelling 
a memory with the jth row of B being the content of the 
memory at time j. The memory thus modelled satisfies the 
read/write isolated conditions. We have therefore just seen 
that N(k,r), previously defined as the number of distinct se- 
quences of r characters, is also the number of r x k binary 
matrices that satisfy conditions (1) and (2). 

This observation permits noticing that C is not only the 
capacity of the RWIM channel but also the capacity of the 
constrained matrices satisfying (1) and (2). We can therefore 
use transform matrix techniques developed to study the ca- 
pacity of constrained matrices, e.g., in [1][4][5][7], to derive 
the better bounds. We note that these techniques have to be 
modified slightly to deal with the fact that the constraint sys- 
tem here is not symmetric, i.e., if matrix B satisfies (1) and 
(2) it is possible that BT does not satisfy (1) and (2) (pre- 
viously studied constraints all seem to have been symmetric 
and the techniques implicitly used this symmetry). 
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I. INTRODUCTION 

Run length constraints derive from digital storage applica- 
tions [3]. For nonnegative integers d and A;, a binary sequence 
is (d, k)-constrained if there are at most k consecutive zeros 
and between every two ones there are at least d consecutive 
zeros. An n-dimensional pattern of zeros and ones arranged 
in an mi x mi x • • • x m„ hyper-rectangle is (d, k)-constrained 
if it is (1-dimensional) (d, fc)-constrained in each of the n co- 
ordinate axis directions. The n-dimensional (d,k)-capacity is 

■ defined as 

°d,fc lim 
1052 Jv"'l."'2i' 

m1,TT»2,...,m„-»oo      mim2 • • • Tnn 

dimension n grows to infinity. These results are summarized 
in the following two theorems. 

Theorem 1 For every n > 2, d > 1, and k > d, 

-.(») 0&k = d+l. 

where N$£?f$,...,m„ -denotes the number of (d, k)-constrained 
patterns onaamixnijx-x m„ hyper-rectangle. A sim- 
ple proof was given in [5] that shows the existence of two- 
dimensional (d, fc)-capacities, and a slight modification of the 
proof can show that the n-dimensional (d, fc)-capacities exist. 

The capacity C^l represents the maximum number of bits of 
information that can be stored asymptotically per unit volume 
in n-dimensional space without violating the (d, k) constraint. 

The study of 1-dimensional (d, fe)-capacities was originally 
motivated by applications in magnetic storage. Interest in 
2-dirnensional (d, fc)-capacities has recently increased due to 
emerging 2-dimensional optical recording devices, and the 
multidimensional (d, &)-capacities may play a role in future 
technologies as well. A tutorial on these topics is given in [3]. 

In general, the exact values of the various n-dimensional 
(d, fc)-capacities are not known except in a few cases [6]. For 
example, in all dimensions, if k = d the capacity is zero, and if 
d = 0 the capacity is positive for all k > 1. In one dimension 
the capacity is positive whenever k > d > 0. Very tight upper 
and lower bounds on the (0, Incapacity were given for two 
dimensions in [1], improved in [2, 7], and extended to three 
dimensions in [7]. In [9] an encoding procedure for the 2- 
dimensional (d, oo)-constraint was given for all positive integer 
d's, and in [8] an encoding procedure for the 2-dimensional 
(0, l)-constraint was given whose coding rating comes very 
close to the capacity. It was shown [5] that whenever k > d > 
1, the 2-dimensional capacity is zero if and only if k = d + 1. 

II. MAIN RESULTS 

We present two main results that characterize the zero ca- 
pacity region for finite dimensions and in the limit of large 
dimensions. The first result generalizes the zero capacity char- 
acterization in [5] to all. dimensions greater than one, which 
turns out to be exactly the same as in dimension 2. The sec- 
ond result gives a necessary and sufficient condition on d and 
k, such that the capacity approaches zero in the limit as the 

Theorem 2 For every d > 0 and k > d, 

lim C'Xl = 0 & k < 2d. 
n—»oo       ' 
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Abstract — An upper bound on the capacity of con- 
strained three-dimensional codes is presented. The 
bound for two-dimensional codes of Calkin and Wilf 
was extended to three dimensions by Nagy and Zeger. 
Both bounds apply to first order symmetric con- 
straints. The bound in three dimensions is generalized 
in a weaker form to higher order and non-symmetric 
constraints. 

I. INTRODUCTION 

In this paper we consider the capacity of constrained three- 
dimensional (3-D) codes defined by a set of constraints. We 
consider shift invariant constraints of finite extent (N,M,L), 
in the sense that the constraints may be defined on an N by 
M by L volume. Each element is taken from an alphabet 
A of size \A\. The \A\NML possible configurations on the 
volume are divided into a set of admissible and a set of non- 
admissible configurations. Let F(n,m,l) be the number of 
distinct admissible configurations (or codewords) on an n by 
m by / volume not violating the constraints within the volume. 
The per symbol capacity (or maximum entropy), C'3' of the 
3-D code defined by the constraints may be defined as: 

C(3) lim 
log F(n,m,l) 

nml (1) 

A more formal treatment of the entropy definition and its 
existence is given in [1]. 

Calkin and Wilf [2] presented a method giving tight bounds 
on capacity for the (hard square) 2-D constraint, with binary 
elements, specified by that for any two 4-neighbors, i.e. hor- 
izontal and vertical neighbors, both of them can not be '1'. 
The upper bound [2] is based on 

A<Trace(T2p)1/2p,p>0. (2) 

where A is the largest eigenvalue of T. (2) is valid for real sym- 
metric matrices and it is applied to the transfer matrix of the 
constraint in one direction. Nagy and Zeger [3] extended the 
results to the 3-D version of the constraint above. (Two direct 
neighboring 'l's in the direction of the third axis is also non- 
admissible.) Let D denote the dimension of the constraint. 
Their methods may be applied to other constraints, but they 
are restricted to constraints for which the transfer matrices 
are symmetric in at least D — 1 directions. This is satisfied for 
constraints which are of 1st order and symmetric in (at least) 
all but one direction. Here we address the problem of bound- 
ing capacity for higher order and non-symmetric constraints 
in 3-D, eg. limits on run-lengths or distances (> 3). 

II. UPPER BOUND FOR HIGHER ORDER 3-D 
CONSTRAINTS 

In order to achieve an upper bound we shall specify a source 
which has the required symmetric transfer matrices and as a 
subset can generate all configurations admissible by the orig- 
inal constraint. In [4] we presented a way to do this in 2-D. 
Extending to 3-D leads to the following construction. The 
states are defined by the admissible configurations within 4 
sub-states, which are rectangular boxes of equal size. The 
sub-states forming one state must have the same boundary 
configuration of width M - 1 in the m-direction and L - 1 in 
the /-direction. The states extend A/ — 1 in the n-direction. 
The admissible transitions between the combined states in all 
generating si by s2 distinct elements are specified by G,llS2.- 
The transitions are admissible iff the transitions of the 4 sub- 
states are. 

Theorem 1: The capacity of a 3-D code specified by shift 
invariant constraints of finite extent (N, M, L), has the upper 
bound 

c,3, < H"(sus2) 
SlS2 

(3) 

where H" is the capacity determined by the logarithm of the 
largest eigenvalue of G,,,jj of the given constraint, si and 32 
are positive even integers. 

The principles of the proof is as follows. (2) is applied first 
in one and then in another direction as in [3]. We need to en- 
sure that the matrices are symmetric. Given a non-symmetric 
transfer matrix T (in one direction), introduce A = Tp and 
the symmetric matrix C = A + A*, where * denotes the trans- 
pose. Applying (2) to C2, the bound is assymptotically dom- 
inated by Trace(AA'). A* may be described as the reverse 
transition of A. So the trace counts configurations which are 
given by two transitions starting and ending in the same state. 
Used in two directions leads to the construction above and 

G,,r 
We expect to achieve improved numerical results using (3) 

in 3-D as we did in 2-D [4] using the same approach to derive 
symmetric transfer matrices generating all admissible config- 
urations as a subset. 
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Abstract — The Hadamard matrix structure is ap- 
plied to the construction of space-time codes. Space- 
time Hadamard (STH) codes are statistically analyzed 
with respect to diversity and coding gain criteria and 
are shown to have good statistical properties. 

I. INTRODUCTION 

Two design criteria are derived for space-time codes in [1]. 
The performance gain is shown to be dependent on the min- 
imum rank and the minimum sum of eigen values based on 
codeword difference matrices. Present code designs consist 
of orthogonal block constructions [2], [3] which maximize the 
rank, and empirically constructed convolutional codes or codes 
found using exhaustive search algorithms. The challenge in 
finding a space-time code construction is complicated because 
the codes exist in an infinite complex field instead of a finite 
real field. STH codes offer a flexible design construction which 
produces statistically good codes. 

II. SPACE-TIME HADAMARD (STH) CODE 

CONSTRUCTION 

[1] shows that for the codeword matrix difference c — c, 
maximizing the rank corresponds to maximizing the rate that 
the BER decreases. This is the dominant gain criterion for 
asymptotic Eb/No- Space-time Hadamard code construction 
(STH codes) is based on Hadamard matrices Hn of order m = 
2n. These codes are designed to give statistically good rank 
properties which improve with increasing .constellation size, 
and code length. STH codes can be recursively constructed 
as follows 

and 
f(n+l)f 

TT    _  (   H„-i H„-l   \ 
\   Hn-\       —Hn-1    J 

2,3, 

Let An+i = diag(Ai, A2,... , A2n+i) be a diagonal ma- 
trix of eigen values of the codeword c. The recursive code- 
word matrix is W(n+1)(l) = 2-(n+1)Hn+iAn+i#n+i. I cor- 
responds to the order of the direct sum extension of STH 
codes where Wn(l) has dimensions n x I • n. Denote A„ = 
diag(\i,\2,-.. ,A2»), An = diag(A2»+i, A2,... , A2„+i). 
Then 

An+i = 
A<>> 

0 

0 
A(2) 

-<n+l) 

W(n+L)(l) = 2-n=1Hn+iAn+i#n+i 

HniAP + A™)Hn     HniA^ 
Hn(Al1' - Al2))Hn    Hn(Ai1} + A™)Hn 

Ai2))ffn 

The factor 2  ("+1' is a normalization factor. The symmetric 
matrix has the first row 

(wi,W2,... ,w2„+i) = 2_(n+1)(Ai,A2)... ,A2(„+i))i7(n+1). 

All other rows are permutations of the first row. 
The basic structure of STH codes can be modified to give 

different code parameters. By selecting a subset of T columns 
of the codeword matrix, we obtain the T-reduced STH code. 
By taking the direct sum of several STH matrices, we obtain 
extended STH codes where I > 1. 

III. STATISTICAL PROPERTIES 
Table 1 shows that as the constellation size and/or the ex- 

tension order I increases, the fraction of full rank codewords 
approaches 1. Statistical analysis shows that as the rank de- 
creases,, the eigen value sum increases, which also produces a 
performance gain. Statistically good codes can be constructed 
for small constellations and code sizes. 

Table 1: Rank statistics for STH codes W^(l) over dif- 
ferent constellations. 

q % rank 1, / = 1 % rank 1, I > 1 
4 16.7 « 2 x 102-°-55' 
8 5.2 «2x ioa-"-« 
16 1.4 « 2 x lfj*-1-1' 

IV. CONCLUSIONS 
The STH code construction is presented and evaluated 

based on the rank and eigen value design criteria [1]. This 
code construction shows good statistical properties. The ba- 
sic construction can be adapted to give different code param- 
eters. The code properties improve with the code length and 
constellation size. 
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Abstract — The application of Maximum Rank Dis- 
tance (MRD) codes is investigated with respect to 
the space-time code scenario. A construction method 
is presented based on primitive polynomials over ex- 
tended Galois fields. A one-to-one mapping is then 
performed between the Galois field code symbols and 
the complex transmission symbols. 

I. INTRODUCTION 

In [2] the design criteria for space-time codes was derived 
which showed that for asymptotic Eb/No, the rate of perfor- 
mance gain was dominated by the minimum rank of the code- 
word difference matrices (diversity gain). Present space-time 
constructions include the class of orthogonal space-time codes, 
where all codeword matrix columns are mutually orthogonal 
and convolutional space-time codes which are constructed by 
hand or found through exhaustive searches. Both types of 
codes seek to maximize the minimum rank over the set of all 
codeword differences. 

The rank code construction based on [1] is applied to space- 
time codes. The codeword rank is maximized to give maxi- 
mum rank distance (MRD) codes. This results in a new de- 
sign technique for space-time code construction. 

II. MRD CODE CONSTRUCTION 

We define the matrix primitive polynomial as 

/(*)■ 
xT+bT-iXT  1 +bT-2XT  2 + .+ 61I + 60,      (1) 

where 6( € GF(q), t = 0,1,... , T - 1 with the restriction 
that br = 1. ß € GF(q) is a primitive element such that 
f(ß) = 0. Furthermore, let p(x) be the element primitive 
polynomial for the extension field q = p°: 

p(x) =x" +a3-ix
3  1+as-2x

s  2 + ... cnx + a0,      (2) 

where a* € GF(p), i = 0,1,... , s — 1 with the restriction 
that as = 1. a is a primitive element of GF(p) such that 
p(a) = 0 and p is a prime number. The associated (primitive) 
matrix C constructed from f(ß) is written as 

C = 

/o    1 

0     0 
\ 60 61 

0 \ 

&T-1    / 

The elements bi can be represented in terms of a based on 
equation 2. This primitive matrix has analogous properties to 
primitive elements for vector fields. 

The resulting T xT matrices 

c = {o,c,c2,... ,c,T_2,c,T-1} (3) 

define an MRD code of cardinality qT with rank distance T. 
Furthermore, these codes are linear [1]. 

We now map the GF(q) elements to a complex signal con- 
stellation. Let Ac be a complex signal constellation of size 
q. Define a one-to-one map AGFM <=^ Ac- If GF(q) — 
{Q-°° =0U a\ i = 0,1,... , q - 2} and \Ac\ = q then 
we define the following mapping 0 = a~°° := 7a-°o and 
a' :=70,-, i = 0,1,... ,g-2. 

Consider an MRD code C of T x T matrices with rank dis- 
tance T generated by equation (3). We replace every element 
of GF(q) by the corresponding element from the constellation 
Ac using the defined mapping. This gives the code C(Ac) 
over the constellation Ac- For a given constellation, we have 
to verify whether the resulting code is MDR. 

III. SEARCH RESULTS FOR MRD CODES. 

The authors have found that the mapping from GF(2) 
MRD codes to any complex binary constellation produces 
complex MRD codes. For the 2 x 2, GF(22) MRD code, 
it has been shown that the 4 PSK constellation produces a 
complex MRD code. 

We note that the complex MDR code space is a finite sub- 
set of an infinite complex space. The challenge is in finding 
a modulation alphabet which produces complex MDR code, 
and which is still practical for an information system. 

IV. CONCLUSIONS 

The matrix rank of codewords is maximized to give maxi- 
mum rank distance (MRD) codes. These codes are first con- 
structed in GF(q) and then mapped to a complex signal con- 
stellation. The properties of the chosen signal constellation 
determines the resulting code which may no longer be MRD. 
MRD codes exist for all binary constellations, and for the 
2x2 MDR code over 4 PSK. 
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Abstract — Recently, a general approach to differ- 
ential modulation for multiple transmit and receive 
antennas was proposed by Hughes, and by Hochwald 
and Sweldens. In this approach, data are differen- 
tially encoded using a restricted class of space-time 
group codes in which each code matrix is square and 
has equal-energy, orthogonal rows. In this talk, we 
remove the restrictions imposed in earlier work and 
extend the theory of differential transmission to arbi- 
trary Slepian-type group codes. This extension leads 
to new modulation techniques that significantly out- 
perform previously known methods, both for single 
and multiple antenna systems. Applications to uni- 
versal channel coding for discrete memoryless chan- 
nels are also discussed. 

I. SUMMARY 

In wireless communication, fading due to multipath sig- 
nal propagation often has a severe impact on system perfor- 
mance. One way to improve performance is to increase diver- 
sity through the use of multiple antennas at the transmitter 
and/or receiver. Modulation techniques designed for multiple 
transmit antennas — called space-time modulation or transmit 
diversity — have been shown to be highly effective in reducing 
the effects of fading, and can also dramatically increase the ca- 
pacity of multipath radio channels, especially when combined 
with multiple antennas at the receiver. 

In recent years, a wealth of space-time coding and mod- 
ulation techniques have been proposed. Most early work fo- 
cused on the coherent case, when accurate channel estimates 
are available at the receiver but not the transmitter. More 
recently, there has also been considerable interest in the non- 
coherent case, when channel estimates are not available at the 
transmitter or receiver. In this case, Marzetta and Hochwald 
[3] have shown that, for large signal-to-noise ratios, the capac- 
ity of a multi-antenna quasi-static Rayleigh fading channel is 
approached by unitary space-time block codes, in which the 
signals transmitted by different antennas have equal energy 
and are mutually orthogonal. 

Recently, Hughes [2] and Hochwald and Sweldens [1] inde- 
pendently proposed a general approach to differential mod- 
ulation for multiple transmit and receive antennas (see [4, 5] 
for other approaches). In this approach, data are differentially 
encoded using a restricted class of space-time group codes in 
which each code matrix is square and has equal-energy, or- 
thogonal rows. 

1This work was supported in part by the National Science Foun- 
dation under grant CCR-9903107, and by the Center for Advanced 
Computing and Communication. 

In this talk, we remove the restrictions imposed in earlier 
work and extend the theory of differential transmission to arbi- 
trary Slepian-type group codes. For a system with t transmit 
antennas, we consider block codes in which each code matrix 
is of the form 

C = DG , 

where D is a fixed t x n complex matrix, and where G belongs 
to an algebraic group Q of n x n unitary matrices (GG' = I). 
Here, the rows of C represent symbols transmitted by different 
antennas, and the columns represent symbols transmitted at 
different times. Using this code, a sequence of messages Gk € 
Q can be differentially encoded in a way similar to differential 
PSK: At time k = 0 we send the block Co = D to initialize 
transmission. Thereafter, to send message Gk in block k, we 
send 

Ck  =  Ck-iGk , k = 1, 2,... 

The group property ensures that Ck € DQ for all k. 
In this work, we consider transmission of the differentially 

encoded sequence Ck over a flat-fading Rayleigh channel in 
the presence of additive Gaussian noise. We derive a differ- 
ential receiver that reliably recovers Gk without knowledge of 
current channel fading conditions. We further derive a bound 
on the error probability of this receiver as well as modulator 
design criteria. The design criteria lead to new differential 
modulation techniques for both single and multiple antenna 
channels that significantly outperform the best codes in [1, 2]. 
Extensions to universal channel coding for discrete memory- 
less channels are also discussed. 
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Abstract — Many wireless systems today employ 
error correcting coding. Adding transmit diversity 
may further improve the performance. We study the 
options to achieve the goal without significant change 
to the existing systems. 

I. INTRODUCTION 

Transmit diversity is an effective technique to mitigate 
channel fading in wireless communication systems. Many 
space-time coding (STC) techniques have been suggested to 
provide transmit diversity [1, 2]. 

Most modern wireless systems employ forward error- 
correcting coding (FEC). Providing additional transmit di- 
versity to such systems is of practical interest and also chal- 
lenging, hi this paper, we study several possible techniques to 
achieve the diversity gain. 

II. COMBINATION OF FEC AND ANTENNA HOPPING 

One simple way to achieve transmit diversity for coded sys- 
tems is to use the Alamouti STC scheme [3]. A possibly sim- 
pler method is to use antenna hopping [4]. The coded bits 
from the FEC encoder are first interleaved and then transmit- 
ted alternately, in bursts, through multiple transmit antennas. 

Without coding this scheme clearly provides no diversity. 
The bit-error rate can be very high if the path from any an- 
tenna is in a deep fade. However, coding groups together 
many symbols with potentially different fading levels into one 
codeword. For a powerful FEC code with large free Hamming 
distance, diversity combining can take place during the calcu- 
lation of codeword metrics for maximum likelihood decoding. 

To obtain more insight, we consider the pairwise error prob- 
ability between a pair of codewords with Hamming distance 
d, for a two-antenna system. We assume that each bit can 
be transmitted from either antenna equally likely. Then the 
probability that a total of k out of d bits are transmitted from 
antenna 1 is of a binomial distribution (fc)0.5d. For Rayleigh 
channels with AWGN, we obtain an upper bound on the av- 
erage pairwise error probability (APEP) for a two-antenna 
system 

APEP    < (1) 

where Es is the energy per symbol and No is the noise den- 
sity. For large d, a diversity order of two is achieved with 
high probability. We will show that the bounds for antenna 
hopping and the Alamouti scheme are quite close for large d. 
Calculation of channel cutoff rate also shows that the perfor- 
mance of the two schemes is close. Note that the binomial 
distribution is a conservative estimation. For practical cod- 
ing schemes, a simple (even-odd) hopping can often ensure a 
diversity order two. 

For a large number of transmit antennas, it is difficult to 
design STC based on orthogonal design [2]. In this case, we 
can combine antenna hopping with STC. For example, we can 
partition four antennas into two two-antenna groups. The 
interleaved FEC output is switched alternately, in bursts, to 
the two groups. In each group, a STC is used for the two 
antennas. With this method, more transmit antennas can be 
used to increase the diversity order. 

In Figure 1, we compare the performance of FEC concate- 
nated with a single antenna, two-antenna (even-odd) hopping, 
and two-antenna STC, four-antenna hopping, group hopping 
with two-antenna STC, and a hypothetical four-antenna STC. 
The FEC code is a rate-1/3 parallel concatenated convolu- 
tional (turbo) code with 16-state component codes. 

A     1 Ant 
O    2 Ant Hop. 

-O-   2 Ant STC 
O    4 Ant Hop. 
$    4 Ant Hop+2-STC 

-0-   4 Art. -8TC- \aST   * 

^ b \o              * 

V         ^ V °   \ 
A 

V      0                  \o                                                                & 

 Y  o Vo .... 
T     *               \ 

Figure 1: Performance of turbo-coded BPSK over block 
Rayleigh fading channels. 

III. OTHER CONCATENATION METHODS 

We will also discuss the design of and show results for space- 
time turbo coding and other trellis based methods. 
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Abstract — A new algorithm for computing the free 
distance of turbo codes is applied to the CCSDS and 
the UMTS standard codes. Results on the free dis- 
tance behaviour for increasing interleaver length are 
also presented. 

I. INTRODUCTION 

It is known that turbo codes may have low free distances 
dfree, despite of very large interleaver lengths N. This causes 
their BER curves to flatten following the "error floor" imposed 
by dfree, after the "water-fall" decrease at low signal-to-noise 
ratios. This behaviour may be not admissible for applications 
requiring very low Bit Error Rates (BER < 10~8 - 1CT10). 
In [1] we have developed a new algorithm for computing the 
free distance dfree of parallel and serially concatenated codes 
with interleavers, based on the new notion of constrained sub- 
codes. The algorithm permits to compute large distances 
without constraint on the input sequence weight. Since dfree 

and its multiplicity dominate the code performance at very 
high signal-to-noise ratios, their knowledge allows to analyti- 
cally estimate the code error floor, i.e., the code performance 
for very low probabilities where simulation is not feasible. 

As a first example of application, we present some results 
concerning the free distance behaviour for turbo codes with 
growing interleaver length. They provides some information 
on these two issues: (i) the improvement in terms of error 
floor potentially available by increasing the interleaver length, 
and (ii) the probability of choosing at random an "optimal" 
(in terms of dfree) interleaver of a certain length. In Fig. 1 
we report the behaviour of the best and the average free dis- 
tance for 16-state rate-1/3 turbo codes, obtained by randomly 
generating a very large number of turbo codes and evaluating 
their free distance. 

102 lcr l 
interleaver  length 

Fig. 1: Distribution of <ffree for 16-state rate-1/3 turbo codes.- 

Fig. 2:   The error floors for the Bit Error Rates of the rate-1/3 
UMTS turbo code and the other two codes. 

II. APPLICATION 1: THE CCSDS STANDARD 

Recently, the CCSDS telemetry channel coding standard 
has been updated for including turbo codes. They consist of 
the parallel concatenation of two 16-state rate-1/4 binary con- 
volutional encoders and a block Berrou's analytical interleaver 
with length N =1784, 3568, 7136, 8920, or 16384. Four nom- 
inal code rates 1/r, for r — 2, 3, 4, and 6, can be obtained 
through puncturing. 

We have successfully applied our new algorithm to the 
whole class of CCSDS turbo codes with TV = 1784. By de- 
noting with (dbee/Nfree/whee) their free distance, multiplicity, 
and input bit multiplicity, the results are (17/2/6), (32/1/2), 
(42/1/2), and (70/1/2) for r = 2, 3, 4, and 6, respectively. 

III. APPLICATION 2: THE UMTS STANDARD 

The UMTS/3GPP standard for third generation personal 
communications will use a turbo code. Its encoder consists 
of the parallel concatenation of two 8-state rate-1/2 binary 
convolutional encoders and a block interleaver with length N, 
with 320 < N < 5120. Two nominal rates 1/r, with r = 2 
and 3, can be obtained through puncturing. For the rate-1/3 
code with A^ = 320, we have applied the new algorithm and 
obtained dfree = 24, ATfree = 1 and u;free = 4. For compari- 
son, we have considered the classes of 8-state parallel concate- 
nated codes (PCCC) and 4-state serially concatenated codes 
(SCCC) employing spread interleavers. At best, we have ob- 
tained two codes yielding (21/2/6) and (38/1/2), respectively. 
The error floors for these three codes are depicted in Fig. 2. 
We can observe that the UMTS turbo code has very good per- 
formance at very low BER, better than the best PCCC spread 
found, even if a SCCC could overcome it. 
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Abstract — New upper bounds to error probabilities of coded 
systems such as turbo codes on the additive white Gaussian noise 
and fading channels were obtained. 

I. A NEW BOUND FOR AWGN CHANNELS 

For binary (n, k) block codes which include turbo and serial codes 
the bit and word error probabilities using a technique in [1] can be 
bounded by [2] 

where 

n-k+l 

I 
h=hmi„ 

n-K+L   

Pe<    J2   ™n  \e-nE(c'h\enr^Q(V2c~h)\ 

cf(c) 
E(c, h) = - \n[\-2cQ{&)f{c)}+-x +        , c0(S) < c < 

e2r(&) 1 
25(1-5) 

otherwise E(c, h) = -r(S) + Sc.   Also S = h/n, c = Rc%r, 

c0(S) = (1 - <?-2rW)^, and /(c) = y/c/c0 + 2c + c2 - c - 1. 

For bit error probability r(&) = ^ln J2W jAwn (Aw^n is the input- 

output weight distribution), and for word error probability r(<5) = 
^lnA/, {Ah is the output weight distribution). This is the tight- 
est "closed form" upper bound on decoding error rate. The mini- 
mum Eb/N0 threshold can be computed as (£fc/No)threshold = 

max,5 CQ(S)/RC. In [2] we proved that the threshold for Poltyrev 
bound (see [3] and references there) is the same as our threshold, 
thus the proposed bound is as tight as Poltyrev bound for very large 
blocksize n. The simple bound for AWGN channel is applied to ob- 
tain the ML performance of rate 1/4 Repeat Accumulate (RA) codes 
as in Fig. 1. Also in the Figure the performance of suboptimum iter- 
ative turbo decoder for RA codes are shown. 

repeat 4 accumulator 

(input btack) Sim: 20 iteratio 

10-101 

Eb^o 

Figure 1: ML upperbound on the bit error probability of a rate 
1/4 RA codes over AWGN Channel 

*The work described was funded by the TMOD Technology Program and 
performed at the Jet Propulsion Laboratory, California Institute of Technology 
under contract with the National Aeronautics and Space Administration. 

II. A NEW BOUND FOR FADING CHANNELS 

For independent Rayleigh fading with CSI 

n-k+l 

£ 
h=hmin 

Pe<    J2   min\e-nE{c>h\enr(-s)- if 
n Jo 

sinLe 

iin29 + ( 
d9 

where . 

E(c, h) = maxp,£,r,0   -pr(S) + f In J + -^ In |^| 

+    p8\n[l+c(\-2r4>)] 

+    p(l-«)ln 

+    (l-p)ln 

(l-r)2p 

l-p(\-2r<P)      {\-pi\-r))1 

1 + c   1 - 2rd 

1+c 
1-P (l-p)(\-ß) 

S, c, and r(S) are defined as in the previous section. The maximum 
with respect to <p can be obtained in a closed-form, then the remaining 
maximizations must be performed numerically. The simple bound for 
Rayleigh fading channel is applied to obtain the ML performance of 
rate 1/4 Repeat Accumulate (RA) codes as in Fig. 2. Also in the 
Figure the performance of suboptimum iterative turbo decoder for 
RA codes over independent Rayleigh fading with CSI are shown. 

k=input block sizo 
Rayleigh lading with CSI 

Figure 2: ML upperbound on the bit error probability of rate 
1/4 RA codes for Rayleigh fading channel 
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Abstract - The number of errors that a convolutional codes can 
correct in a segment of the encoded sequence is upper bounded by 
the number of distrinct syndrome sequences of the relevant length. 

I. INTRODUCTION 

We shall analyse the error correcting power of a convolutional code 
by relating the number of correctable errors to the available syndromes. 
The results are related to the bound in [1], but we take a more direct 
approach. Syndromes for convolutional codes have not received much 
attention since the structural results appeared in [2]. The main diffi- 
culty compared to block codes, is that different sequence lengths have 
to be considered. Even though a Hamming type upper bound usually 
cannot be reached, it is an important estimate of the number of errors 
that can be corrected with high probability by a typical code. 

II. CORRECTABLE ERRORS FOR SHORT SEQUENCES 

In [3] a general method for relating bounds for block codes to convo- 
lutional codes was introduced. Thus an upper bound on the number 
of errors that can be corrected independent of their location, to, may 
be derived from the Hamming bound for block codes. However, a direct 
analysis of errors and syndromes in convolutional codes gives a tighter 
bound, since some error patterns give rize to short syndromes. 

Theorem 1: If a binary (n,k) convolutional code with encoder memory 
M (blocks) and syndrome former memory M' corrects all combinations 
of to errors, the inequality 

Tin   C(f)  £  2{n'k)is+Ml) 

is satisfied for any s>M and j< tß. Here c(j) is the number of truncated 
codewords of weight j. 

The bound will be applied to examples of short high rate codes, and 
we shall demonstrate how the factor c(j) makes the bound sharper than 
the translated Hamming bound. It is essential to the performance of 
convolutional codes that the number of correctable errors increases with 
the length of the sequence. Thus we are interested in the number of 
errors, tj, that can be corrected in a sequence of length j blocks, 
provided that no more than to errors occur in a sequence of length j-1. 
This approach may be extended to yield a description of distributions 
of correctable errors in short sequences. 

III. A VARIABLE LENGTH DESCRIPTION OF ERRORS 

An obvious question about a convolutional code is, how often can a 
burst of to errors be corrected? Our first approach above does not give 

a convenient answer to questions of this type, since the syndromes are 
simply assumed to be zero outside the window under consideration. 
Thus we seek a rule for segmenting the error pattern into finite strings 
in such a way that any concatenation of correctable strings form a 
correctable error sequence. This gives a variable length description of 
the correctable error patterns which may be related to a segmentation 
of the syndrome sequence. The segments may be mapped on the leaves 
of a tree where the branches are labeled by the syndrome bits. 

IV. AN UPPER BOUND BY THE KRAFT INEQUALITY 

We may obtain a Hamming type upper bound by relating the error 
sequence and the syndrome sequence through a version of Kraft's 
inequality: 

Theorem 2: For a tree of correctable error patterns, the number of paths 
of length L (blocks) is A(L). Then the number of check symbols per 
block, r, must satisfy 

5>(i) rL < l 

This version of the upper bound indicates that for short codes there is 
a trade-off between a high value of to and a rapid increase in the 
number of correctable errors with the length of the sequence. Clearly 
for long codes, the fraction of errors is given by the saymptotic Ham- 
ming bound. 

V. RELATION TO THE BOUND BY FINITE STATE ALGORITHMS 

While the bound of Theorem 2 gives a convenient way of testing partial 
descriptions of error patterns, the variable length description usually 
leads to an infinite tree. Thus a complete weight specification is natu- 
rally described by a finite state algorithm, and we arrive at the upper 
bound discussed in [1]. 
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Abstract — We derive bounds on the error probabil- 
ity of ML decoded LDPC codes, for any binary-input 
symmetric-output channel. For appropriately chosen 
ensembles of LDPC codes, reliable communication is 
possible up to channel capacity. The lower and upper 
bounds coincide asymptotically, indicating a polyno- 
mially decreasing ensemble averaged error probabil- 
ity. For ensembles with suitably chosen parameters, 
the error probability of almost all codes is exponen- 
tially decreasing. Furthermore, the error exponent 
can be set arbitrarily close to the standard random 
coding exponent. 

I. INTRODUCTION 
In this paper we examine the error probability of optimal 

(Maximum Likelihood) decoding of low density parity check 
(LDPC) codes, first introduced by Gallager [1] in 1963. 

We consider two ensembles of LDPC codes. The first en- 
semble was proposed by Mackay [2]. The second ensemble is 
based on bipartite regular graphs, and was used by several 
researchers, e.g. [3]. 

II. AN INDEPENDENT MATRIX COLUMN ENSEMBLE 

We consider the ensemble of parity check matrices ALXN 

(corresponding to a code with block length N and L parity 
check equations) defined by applying the following procedure 
to each column of A, for some integer t. First set the entire 
column to 0's. Then t times an index is drawn uniformly and 
independently from {1,2, ...,L} and the corresponding bit is 
flipped. We claim the following: 

Theorem 1 Consider the ensemble of binary parity check 
matrices ALXN described above, over a memoryless binary- 
input symmetric-output channel. Let C denote channel ca- 
pacity, R=l — L/N and suppose that the following conditions 
are satisfied for t>3 and some 0 < 7 < 1/2 and K > 0; 

and 

6ln(t/(l-R)) ^K 

hid) + (1-R) (log (l + e-4e~"~K) - l) < 0 

R + GiR^t) <C 

(1) 

(2) 

(3) 
where 

G(Ä,7<)=   max   {(1 - Ä)/i2(x)+7<log(l - 2x)} 
0<x<l/2 

Denote the ensemble averaged maximum likelihood decoding 
error probability by Pe ■ Then 

zbgp1= r 1-1 
logAT \  t-2 

hi(x) is the (base-2) entropy function. The rate of the code 
is in fact lower bounded by R, due to possible redundancy in 
the parity check equations. Perhaps the most striking feature 
of the theorem is that the right hand side of (4) is indepen- 
dent of both R and C. This behavior stands in contrast to 
the various bounds on the probability of error when using ran- 
dom coding, where the bound is monotonically increasing with 
increasing R or decreasing C. 

Furthermore, it can be shown that (l)-(3) hold when either 
R < C and t is large enough, or when for given t, D > 0 is 
small enough, where D is a quality parameter of the channel, 
D= E„ V^(yJÖ)P(yil) (P(y\x) describes the channel). 

III. CODES DERIVED FROM BIPARTITE REGULAR 

GRAPHS 
A popular method for obtaining an ensemble of sparse 

parity-check codes is defined in terms of a bipartite graph. 
This is done by constructing a c — d regular bipartite graph in 
which there are N vertices on the left side of the graph, each 
of degree c, and L vertices on the right, each of degree d, so 
that Nc = Ld. This ensemble is described in [3]. 

It can be shown that the following holds, 

lim -lOgPe  =   f    f-1 
logN        \ c-2 

c even 
c odd 

lim 
N-*oo    log 

t even 
t odd (4) 

provided that c and d satisfy conditions analogous to the con- 
ditions set in Theorem 1. 

IV. EXPURGATED ENSEMBLES 

Our results can be greatly improved by expurgating from 
the ensembles codes which have small minimal distance. It 
turns out that when the ensemble parameter t (c and d) is 
sufficiently large, the error probability of the expurgated en- 
semble is exponentially decreasing, and the exponent is arbi- 
trarily close to the random-coding exponent. 
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Abstract — Puncturing is the predominant strategy 
to construct high code rate convolutional encoders, 
and infinite impulse response convolutional encoders 
are an essential building block in Turbo codes. In this 
paper various properties of convolutional encoders 
with these characteristics are developed. In partic- 
ular, the closed form representation of a punctured 
convolutional encoder and its generator matrix is con- 
structed, necessary and sufficient conditions are given 
such that the punctured encoders retain the infinite 
impulse response property, and various lower bounds 
on distance properties, such as effective free distance, 
are developed. Finally, necessary and sufficient con- 
ditions are given on the inverse puncturing prob- 
lem: representing a known convolutional encoder as 
a punctured encoder. 

Turbo codes, introduced in 1993 by Berrou et al.[l], use 
systematic infinite impulse response (IIR) convolutional en- 
coders as building blocks. The IIR or recursive constraint is 
imposed to achieve interleaver gain [2]. The systematic con- 
straint is imposed so that the information bits are used only 
once in a codeword together with the parity bits from both 
constituent binary systematic convolutional encoders. In this 
paper the interest is in convolutional codes for Turbo codes 
on bandlimited channels. Such channels force the code rate 
of each constituent code to be high. Since punctured convo- 
lutional encoders are the most practical class of convolutional 
encoders that generate high code-rate codes, puncturing is 
imposed on the constituent convolutional encoders. In this 
paper, we refer to the original encoder from which the punc- 
tured encoder is derived as the parent encoder. 

In this paper, we are interested in designing binary punc- 
tured convolutional codes that are IIR, may or may not be 
systematic, and that perform well when used in a Turbo set- 
ting. To characterize the effectiveness of such encoders, in 
[2, 3, 4] the commonly used free distance is replaced with 
the effective free distance efe, the minimum weight among all 
codewords with weight 2 information sequences. 

In this paper, polyphase representation and polyphase de- 
composition [5] are generalized. We also introduced polyphase 
composition. Some properties of these polyphase transforms 
are derived that will form the building blocks for the rest 
of the paper. Also in this paper, a punctured convolutional 
encoder is represented in closed form using polyphase trans- 
forms. Finally, the generator matrix of a punctured encoder is 
concisely derived similarly to McEliece [5] and Hole [6] where 
the parent encoder was assumed to be finite impulse response 
(FIR). Generator matrices for rate-2/3 punctured systematic 
encoders were derived from a parent rate-1/2 encoder in [4]. 

When an IIR convolutional code is punctured the resultant 
encoder is not necessarily IIR. In this paper, given an IIR 

convolutional encoder, necessary and sufficient conditions are 
derived to ensure that the resulting punctured encoder is IIR. 

Various lower bounds are found in this paper on the effec- 
tive free distance efo for punctured parent codes. More specif- 
ically, for any rate-1/no parent encoder, a sufficient condition 
is given that guarantees a punctured rate-fc/n encoder with 
di > t, where 1 < t < n. Also, for a systematic rate-1/2 par- 
ent encoder with irreducible feedback polynomial, sufficient 
conditions, which include a necessary and sufficient condition 
for a class of parent encoders, are given on di > 3 of the gen- 
erated punctured rate-fc/(fc + 1) encoders. Note that when 
the encoder is IIR efc > 3 also implies minimum free distance 
greater or equal to 3 which, as pointed out by Divsalar et al. 
in [7], is a crucial condition on the outer code for serial turbo 
codes to have interleave gain. 

Good non-punctured convolutional codes have been com- 
prehensively studied [5, 8]. In general, using these codes, 
punctured encoders are constructed. However, it is not known 
whether the rate-fc/n good convolutional codes themselves can 
be encoded as a punctured encoder with rate-fco/no parent en- 
coder such that fco is much smaller than fc. It is shown in this 
paper that any rate-fc/n systematic convolutional code can be 
encoded by a punctured systematic encoder with a rate-fco/no 
parent encoder for any factor fco of fc and for some no (< n). 
Furthermore, given fco and no, a necessary and sufficient con- 
dition is given that guarantee that a rate-fc/n convolutional 
code can be generated from rate-fco/no parent convolutional 
encoder. 
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Abstract—In this paper we present the search and determina- 
tion of a subset of orthogonal convolutional codes called Convolu- 
tional Self Doubly Orthogonal Codes (CSO^C). These codes may 
be advantageously utilised for the novel coding/iterative deco- 
ding technique introduced as an important amelioration of Turbo 
Codes. For this technique the code constraint length corresponds 
to the latency of each decoding iteration. Hence, an important 
parameter in the code searching is the minimisation of the code 
constraint length for a given error correcting capability. 

I. INTRODUCTION 

The new coding system presented in [1], [2] represents 
an important improvement over the classical turbo code 
architecture. However it requires the use of threshold de- 
codable codes which must exhibit further orthogonal pro- 
perties than the well known orthogonal codes [4]. The 
methods initially used to generate these codes were based 
on principles of finite field Projective Geometry. We present 
new techniques based on the use of a random parameter 
which produces CS02C with substantially reduced length. 

II. WIDE-SENSE RATE CS02C WITH RATE R 

A rate R=| convolutional code having J connections is 
said to be doubly orthogonal in the wide sense, if its J 
generators {gi} satisfy the relation : 

r V{i,j,k,l)i?j,k?l,j?k,i?l 
<   the differences gi - gj - (gi - </*) are distinct    (1) 
I    (except for unavoidable index permutations). 

Code generation technique   : 
A pseudo-random constructive method for determining the 
code generators is used. Starting from a set of J acceptable 
generators, we try to add an element taken among the na- 
tural integers arranged in ascending order. Should the new 
set of J+l elements so obtained proved to be self-doubly 
orthogonal, a random test is run in order to decide whether 
or not to retain this additional integer. The procedure is 
repeated anew until the required number of elements is ob- 
tained. 
Length reduction : 
Improvement on the code length is attemped by using a 
reduction method based on the following observation : any 
addition or multiplication applied to {gi} maintains the 
double orthogonality property. The reduction consists in 
performing theses elementary operations modulo an integer 
n which is gradually decreased until the largest reduction 
is obtained. 
Results   : 
The code generation method and its ensuing reduction pro- 
cedure has yielded good novel CSO~C codes which were 
superior to those obtained by the previous procedure. 

(2) 
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III. STRICT-SENSE CS02C WITH RATES R = £ 

The self-double orthogonality in the strict sense is ob- 
tained by allowing a single connection between each infor- 
mation sequence and each parity sequence [1]. That is, the 
code generators {gij} must satisfy : 

J  be (k,v), V(l,m,n) l^n, m^n and m ^ v 
\       9k,i - 9m,i - (9v,n ~ 9m,n) are distinct. 

Code generation technique   : 
Once again we investigate a method which includes a ran- 
dom parameter. Starting from a set of generators that we 
know to be self-doubly orthogonal, we perform a random 
repartition of the index order of our matrix (gij). Then, we 
replace each generator (taken in the order previously eta- 
blished) with the smallest natural integer that maintains 
the property of double orthogonality. 

Length reduction  : 
The reduction procedure is based on the method proposed 
by Wu [3]. Simple addition and substraction operations are 
performed over the rows and columns of the initial matrix 
of generators.  An algorithm was developed for executing 
the procedure iteratively until a set of generators whose 
largest element is as small as possible is obtained. 
Results   : 
The results obtained show that substantial reduction of the 
lengths of the codes could be achieved without requiring an 
excessive computation time. 

CONCLUSION 

The novel methods have yielded very interesting results 
with the generation of different sets of CS02C with re- 
duced lengths. Both types of self-doubly orthogonal codes 
(wide and strict sense) have been analysed and compared. 
The error performances of all these codes have been de- 
termined by simulation using the novel iterative decoding 
algorithm [1]. The new sets of CS02C generated improve 
significantly the performance of the novel coding/iterative 
decoding system by limiting both the latency at the deco- 
ding and the amount of memory required. 
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Abstract — A class of rate-k/2k self-dual convolu- 
tional codes is defined, which includes, for instance, 
the Golay Convolutional Code. It is shown that codes 
in this class are not asymptotically catastrophic in the 
sense defined by Hemmati and Costello [3]. 

I. INTRODUCTION 

Block codes can be obtained from convolutional codes via 
the tail-biting construction where zero-tail termination is re- 
placed by tail-biting, avoiding the rate loss. If the convolu- 
tional code used has long low-weight codewords, the result- 
ing block code can have poor weight distribution. Convolu- 
tional codes which have long codewords of low weight were 
called asymptotically catastrophic by Hemmati and Costello 
[3]. In this paper, we show that the class of time-invariant 
unit-memory rate-fc/2fc self-dual convolutional codes is not 
asymptotically catastrophic. 

II. SELF-DUAL (2k,k,k) CONVOLUTIONAL CODES 

A rate-fc/n convolutional code with overall constraint 
length v and memory order m [2] can have a time-varying 
or time-invariant encoder. A time-varying (n, k, v) convolu- 
tional encoder can altenatively be viewed as a time-invariant 
unit-memory (n' = nm, k' = km, v) encoder with memory 
order m' = 1 [2]. 

A linear code (block or convolutional) is self-orthogonal if 
it is contained in its dual, and self-dual if it is equal to its dual 
[1]. The dual of a linear code is the set of all codewords that 
are orthogonal to the codewords in the code. For convolu- 
tional codes, we have the related concept of the convolutional 
dual code. If a convolutional code is generated by a matrix 
G(D), then its convolutional dual code is generated by a ma- 
trix H(D), with G(D)HT(D) = 0. 

We define the class S of (2k, k, k) self-dual convolutional 
codes as follows. We only consider time-invariant unit- 
memory (2k, k, u) convolutional codes that also have u = k, 
for fc > 1. Then, we further restrict ourselves to self-dual 
(2k, k, k) codes to get the class S. Note that the Golay Con- 
volutional Code [1] belongs to this class as an (8,4,4) code. 

III. MAIN RESULT 

Let wo denote the minimum average weight per branch over 
all cycles in the state transition diagram of a convolutional 
encoder, excluding the zero-weight self-loop around the zero 
state. Hemmati and Costello [3] defined a class of codes to 
be asymptotically catastrophic if wo approaches zero as codes 
with increasing v are considered. Many convolutional code 
classes are asymptotically catastrophic [3, 4]. 

Let H(Z?) be a canonical parity-check matrix for the con- 
volutional code, and let e;, 1 < i < r — n — k, be the 
maximum degree of the polynomials in the ith row of the 
matrix.    Without loss of generality,  assume the ordering 

ei = e-2, = ... = e7 = 0 for some 7, 0 < 7 < r, and 
1 < e-t+i < ••• < er — e-max- If 7 > 0, the first 7 rows of 
H(D) define a parity-check matrix for an [n, n — 7] binary 
block code S, with minimum distance de [5]. For 7 = 0, let 
£ be the trivial [n, n] block code having all possible binary n- 
tuples, with de = I. Hole [5] has recently obtained the lower 
bound 

wo > de/emax. (1) 
A class of convolutional codes is not asymptotically catas- 
trophic if wo is bounded away from zero as v increases. In 
practice, it is often important to ensure that a class of codes is 
not asymptotically catastrophic. For instance, if longer block 
codes are obtained via tail-biting constructions from convo- 
lutional codes, the resulting distance properties can become 
dependent on whether the parameter wo is high or low. 

Proposition 1 The class S of (2k, k, k) self-dual convolu- 
tional codes defined above is not asymtotically catastrophic. 

Proof. For any code in S, the corresponding convolutional 
dual code is generated by the reverse G (D) of the generator 
matrix G(D), i.e., H(D) = G(D). Since G(D) has all its row 
degrees equal to one, the corresponding parity-check matrix 
H(D) must have overall constraint length v — k. But H(D) is 
also a k x 2k matrix whose row degrees ei, ei, ■■■, er = ej, must 
sum to k. Hence all dual row degrees ei,...,efc = emax — 1, 
so wo > de. Further, since no ei is equal to zero, we have 
7 = 0 and de = 1. Therefore, wo > 1, and the statement of 
the proposition follows. Q.E.D. 

This implies that block codes obtained from convolutional 
codes in the class 5 via the tail-biting construnction are good 
from the weight distribution perspective, as shown for block 
codes obtained from the Golay Convolutional Code [6]. 
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Abstract — The generalized Singleton bound and 
MDS-convolutional codes are reviewed. For each n, k 
and 5 an elementary construction of rate k/n MDS 
convolutional codes of degree 8 is given. 

I. INTRODUCTION 

The minimum distance of a block code is upper bounded by 
the Singleton bound dmin < n — k + 1. Codes attaining this 
bound are called MDS block codes and Reed Solomon codes 
are examples of such codes. Since convolutional codes gener- 
alize block codes, it is natural to study the way the Singleton 
bound is generalized to convolutional codes. 

Let F be a finite field and G(D) be a k x n full rank matrix 
over F[L>]. Let C = {u{D)G(D) \ u(D) e ""*[£"]} be the rate 
k/n convolutional code generated by G(D). Two generator 
matrices G{D) and G'(D) are equivalent if they generate the 
same convolutional code C. Then there exists a k x k unimod- 
ular matrix U{D) with G'(D) = U{D)G{D). We say that 
G(D) is catastrophic if a non-polynomial message u(D) can 
result in a polynomial codeword u(D)G(D). This can happen 
if and only if the k x fc-minors of the matrix G(D) have a 
non-constant common divisor other than D. We will suppose 
G(D) is noncatastrophic. 

Along with n and k, there is a third important parameter 
of a convolutional code C, called the degree. It is defined as 
the maximal degree 8 of the k x k minors of G(D). Equivalent 
encoding matrices have the same degree so the degree is an 
invariant of the code. See [3] for details. 

We define the weight of a polynomial v(D) € F" [D] as the 
sum of the Hamming weights of all its F" -coefficients and the 
free distance of the code as: 

dfree = min{wt(v(D)) | v(D) e C,v(D) ^ 0}. 

Lemma 1 [3] Let C be a convolutional code of rate k/n and 
degree 8.  Then the free distance must satisfy: 

dfree  < (n - k) ([8/k\ + 1) + 6 + 1. (1) 

We call the bound (1) the generalized Singleton bound. For 
5 = 0 the bound is the classical bound n — k + 1. We showed 
in [3] that there are codes attaining this bound over sufficiently 
large finite fields. We called such codes MDS convolutional 
codes. The existence proof in [3] was non-constructive and it 
was based on methods from algebraic geometry. 

II. A CONSTRUCTION OF RATE K/N-MDS 
CONVOLUTIONAL CODES 

In this section we follow [5] and provide a concrete con- 
struction of an MDS convolutional code for each degree 5 and 
each rate k/n. The construction makes use of [1, 2]. 

As defined in [1, 2], a convolutional code is said to be gen- 
erated by a polynomial 

9(D)=g0(D
n)-rg1(D

n)D + ...+gn-i(Dn)Dn-\ 

'The authors were supported in part by NSF grant DMS-96- 
10389. The first author was also supported by a fellowship from the 
Center of Applied Mathematics at the University of Notre Dame. 

if it has a polynomial encoder of the form 
go(D) gi(D) 

Dgn-x(D) g0(D) 
G{D) = 

■n-2(D) 
(2) 

.Dg„-k+i(D)    Dgn-k+2{D)...  gn-k{D) 

The code C generated by G(D) is isomorphic to 

{(u0(D
n) + ux{Dn)D + ... + «*_,(£>")£>*--) • g(D)}, 

where (uo(D),... ,Uk-i(D)) € IF* [D] is an information vector. 

Lemma 2 [5] Let p be a prime and k < n, 6 nonnegative in- 
tegers with p and n relatively prime. Then there exist positive 
integers r and a with 

a > \8/k\ + 1 + 8/(n - k), an - pT - 1. 

Assume that a,r is as in the Lemma 2 and let N = an, 
K = N - (n - k) ([8/k] + 1) - S, and a 6 Fp- a primitive 
element of Fpr. Define g{D) = (D - a°)(D - a1) ■ ■ ■ (D - 

aN-K-ij e Fpr[D]. The polynomial g(D) defines an [N,K] 
Reed-Solomon block code with distance dg = N — K + 1 = 
{n-k)([6/kj+l) + 5 + l. 

Using [1, Theorem 3] we obtain: 

Theorem 3 [5] Let g(D) be defined as above. Then the con- 
volutional code defined by (2) is MDS. 

Example 4 [5] Let a be a primitive of F26. The rate 2/3 
encoder 

a284«35Z>+o57P- 
a8LM<*26D2+Ds 

l+a6m<x42D2 

a28W5m<*57D2 
a8W6D+D2 

l-rQ6D-ra42D2 

has degree 5 and has free distance 9. The code attains the 
generalized Singleton bound (1) and therefore is an MDS con- 
volutional code. 

If one is interested to do the construction with small fields 
then one should construct a prime power q for which 

„2 

n | (qr — 1) and q > 5 
k(n — k) (3) 

The first author recently showed [4] that there are alterna- 
tive constructions for unit memory MDS convolutional codes, 
these are codes where 8 < k. 
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Abstract — A universal lossless resolution scalable 
progressive image code is presented which is based on 
the concept of a conditional quadrisection grammar. 

I. INTRODUCTION 

Let A be a finite alphabet. For each nonnegative integer 
n, let Mn be the set of all 2" x 2n matrices over A. Let 
M = U„Mn; M is the class of images that we deal with here. 
If n > 1 and M = [M(i,j) : i,j = 0,1, • ■ •, 2" - 1] is an image 
in Mn, we let 4- M = [M(2i,2j) : i,j = 0,1,--•,2"-1 - 1] 
be the image in Mn-\ obtained by downsampling M. For 
each image Q £ M, let M(Q) be the set of all images M for 
which 4- M = Q. For each n > 0 and each M € Mn, let 
M°, M1, • • •, Mn be the images such that M" = M and 

M'= IM*1,   0<i<n 

A lossless resolution, scalable progressive image code (LR- 
SPIC) <f> on M consists of a collection of binary words 

4> = {w(a) : a € A} U {w(M\Q): Q € M,  M € M(Q)}  (1) 

such that 

(i) The words {w(a) : a € A} satisfy the prefix condition. 

(ii) For each Q € M, the words {w(M\Q) : M g M(Q)} 
satisfy the prefix condition. 

For each n > 0 and each M € M„, the LRSPIC (j> given by 
(1) encodes M into the binary codeword ti^(M) given by 

«V(M) = w(M°)«.(M1|M0) ■ • • «»(ATIM"-1),       (2) 

the    left-to-right    concatenation    of   the    words    w(M°), 
w{Ml\M°), w(M2\Ml), • • •, w(Mn\Mn~l). 

II. CONDITIONAL QUADRISECTION 

Let Q and M be images such that M € M{Q). Supposing 
that Q is 1? x 2', we let I(Q) denote the distinct subimages 
of Q that appear in the partitions of Q into 2' x 2' subimages, 
0 < i < j. The conditional quadrisection grammar G(M\Q) 
[1] is a set of production rules of the form 

B C    D 
E    F (3) 

where A is a member of I(Q), B is an abstract symbol, 
C,D,E,F are all abstract symbols if R £ Mo (in which 
case (3) is said to be nonterminal) or are all members of A 
if R € Mo (in which case (3) is said to be terminal). The 
grammar G(M\Q) satisfies the properties: 

(a) Given R and B, there is at most one production rule in 
G(M|Q)ofform(3). 

(b) There is exactly one production rule (3) in G(M\Q) with 
R = Q (called the root production rule of G(M\Q)). 

(c) A square array of nonterminal production rules can be 
made bigger by simultaneous replacement of each entry 
(3) with a 2 x 2 array of rules 

c4[] 

R = 

where 
' S    T 

U    V 

Repeated application of this operation, starting from 
the root production rule, eventually results in a matrix 
of terminal production rules which yields M. 

'o  o' 
Example: Let Q = 

0    1 
and let G{M\Q) be the condi- 

tional quadrisection grammar 

M * * 1 A   ° ,   A-+ 
' 0    1 ' 

1    1 ,  A\ 
' 1   1 ' 

1   1 

The reconstruction method (c) yields 

0    10    11 

M = 
1111 
0    111 
1   1   1 1 . 

}• (4) 

'Supported by NSF Grants NCR-9627965 and CCR-9902081. 
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Given Q, M can be encoded with 9 codebits, because each 
rule in (4) can be encoded with 3 codebits. 

III. UNIVERSALITY RESULTS 

To each conditional quadrisection grammar G(M\Q) there 
corresponds a binary codeword w(M\Q) such that G(M\Q) 
is recoverable from Q and w(M\Q). The binary codewords 
{w(M\Q) : Q € M, Me M(Q)}, augmented by any binary 
codewords {w(a) : a £ A} satisfying (i), induce a unique LR- 
SPIC on M. Let L(M) be the length of the codeword (2) 
assigned to M € M by this LRSPIC, and let Lls(M) be the 
length of the codeword assigned to M by a fixed (but arbi- 
trary) finite-state LRSPIC on M. 

Theorem 1 For some positive constant C, 

max {L(M) - LU(M)} < C [—1 ,   n > 1 

Corollary 1 Let [X(i,j) : i,j integers] be a stationary ran- 
dom field with entropy H. Let Mn = [X(i,j) : i,j = 
0,l,...,2n-l]. Then 

urn E[L{Mn)]/4n = H 
n-t-oo 
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Abstract — A binary data string of length 2k induces 
a Boolean function of k variables which can be repre- 
sented by a unique reduced binary decision diagram. 
We losslessly compress the data string indirectly by 
compressing this binary decision diagram. The result- 
ing data compression algorithm is universal. 

I. INTRODUCTION 

We start with the observation that a binary data string 
of length 2* induces a Boolean function of k variables in a 
natural way. The following example illustrates the procedure. 

Example 1: A general binary data string 

U = tilW2U3«4tl5tl6M7«8«i9tll0«llOl2til3Ul4Ul5Ul6 (1) 

of   length    16   induces    the   following    Boolean   function 
fu(xi,X2, X3,x*) of four variables: 

/„(0, 0,0,0) = «, 
/u(0,0,l,l) = «4 
/„(O, 1,1,0) =117 
/„(1,0,0, l) = «,o 
/„(l, 1,0,0) = «413 
/«(l, 1,1,1) = ui« 

/„(0,0,0,1) = «2 

/u(0,1,0,0) = us 
/,(0,1,1,1) = us 
/„(l, 0,1,0) = «,, 
/„(l, 1,0,1) = tin 

/u(0,0,l,0) = «3 
/„(0,1,0,1) = tie 
/u(l,0,0,0) = u9 

/«(l,0,l,l) = uia 
/u(l,l,l,0) = «,5 

Notice that we assigned values to fu(xi, X2, X3,x4) by run- 
ning through the 16 possibilities for the vector variable 
(£,,:T2,a;3,:E4) in lexicographical order. 

Boolean functions are commonly represented by finite, bi- 
nary, rooted, directed, acyclic, labelled graphs called binary 
decision diagrams (BDD's) [1], The BDD with the mini- 
mal number of vertices that represents a given Boolean func- 
tion is unique and is called the ROBDD representation of 
the Boolean function. (ROBDD stands for Reduced Ordered 
Binary Decision Diagram.) 

Example 2: Taking the string in (1) to be u = 
0001000100011110, the figure below depicts the ROBDD rep- 
resentation of the Boolean function fu{xi,X2,X3,X4). 

Supported by NSF Grants NCR-9627965 and CCR-9902081. 
Supported by Canadian NSERC Grant RGPIN203035-98. 

The preceding discussion suggests a lossless data compres- 
sion algorithm which encodes a binary data string u of length 
a power of two in two steps: 

Step 1: Find  the ROBDD representation  of the Boolean 
function induced by u. 

Step 2: Compress the ROBDD representation. 

II. COMPRESSION DETAILS 

The ROBDD representing the Boolean function induced by a 
binary string of length 2* is reconstructible from k -f 1 recur- 
sively generated strings S,, S2,•• •, S*+i, constructed as in the 
following example. 

Example 3: The ROBDD representation in the figure is 
coded into the five strings: 

5, =A, S2= B2C, S3 = BBE, 

54=02D12F, 55 =001110 

Each first appearance of a symbol in {A, B, C, D, E, F} in a 
string Si (corresponding to a nonterminal vertex of the BDD) 
produces two symbols in the next string 5,+, (corresponding 
to the two daughter vertices, bottom daughter vertex first). 
Powers are used to indicate the presence of missing variables— 
for example, in S2, the bottom daughter vertex of A is denoted 
B to indicate that there are 2 — 1 = 1 missing variables 
between vertex A and vertex B. Each first appearance of 
a symbol in {A, B, C, D, E, F,0,1} raised to a power > 2 in 
a string Si brings about an appearance of that symbol to a 
power one less in the next string S;+, (e.g., B2 in S2 becomes 
B in S3). The decoder knows the first string 5,, and is sent 
codebits by the encoder to allow each 5, to be built from S;_,. 
(For complete encoder/decoder description, see [2].) 

III. UNIVERSALITY RESULT 

For each k > 1, let Bk denote the set of all nonconstant binary 
strings of length 2k for which the left half of the string is not 
equal to the right half of the string. For u a member of U/tß*, 
let L(u) denote the number of codebits into which « is encoded 
by our ROBDD-based compression method. Let Lf„(u) be the 
number of codebits into which u is encoded by any fixed (but 
arbitrary) finite-state lossless compression algorithm. 

Theorem 1 For any k>l, 

max{L(«) - Lf3(«)} < C 
ugßt 

where C is a positive constant depending only on the number 
of states of the fixed finite-state compression algorithm. 
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Abstract — We present an information-theoretic 
framework for the optimization of the order in which 
embedded bit-plane coders encode image data. 

I. SUMMARY 

An embedded image coder generates a code-stream with the 
property that every prefix of the stream can be decoded to 
reconstruct the original image data with a fidelity approach- 
ing that of an "optimal" compression algorithm, tailored to 
produce the same code length (data rate) as the prefix. Em- 
bedding raises the problem of ordering information according 
to its "value": since the code-stream can be truncated at any 
time, we wish to transmit the most valuable information (in 
the sense of reducing the distortion of the reconstructed im- 
age the most) as early as possible. This ordering constraint, 
in turn, can affect causality relations that are usually relied 
upon to optimize the sequential probability assignment used 
for coding. Bit-plane coding is a simple and natural embed- 
ded coding technique that sequentially encodes the bits in the 
binary representation of the coefficients produced by a linear 
(e.g., wavelet) transformation of the image data. Until re- 
cently, the importance of the ordering problem had not been 
appreciated, and most early schemes, especially those based 
on context modeling and arithmetic coding, simply encode 
bit-planes in order of decreasing significance and according to 
a fixed scanning pattern within bit-planes. A more principled 
approach to the ordering problem was proposed in [1, 2, 3]. 

In this work, we formulate a fairly general framework for 
the bit-plane technique, the embedding problem, and the de- 
sired characteristics of the solution. A generalized notion of 
bit-plane coding is formalized as a sequence of steps, each 
step culminating with the encoding of either a ternary signif- 
icance event (whether or not a coefficient becomes non-zero 
at a certain precision level, and possibly its sign), or a binary 
refinement event (an additional precision bit for an already 
significant coefficient). We index coefficients linearly as a se- 

quence xn = X1X2 ■ ■ ■ xn, and denote by Q]m the value of Xi 
quantized by a dead-zone quantizer with step size 2~(mo+m' A, 
where m > 0 is the precision level of Q\m , the integer mo sat- 
isfies 1 > 2m°maxi|a;i|/A > 1/2, and A > 0. Thus, the 

m-th bit-plane is given by the values of Q\m conditioned on 

Q[m_1\ 1 < i < n. We denote by Qj the information encoded 
up through and including step j, by Ij the index of the coeffi- 
cient whose quantized representation is updated at step j, and 
by Mj the new level of precision attained on that coefficient 
with the update. Finally, we seek functions {/,•(•)} sucn that 

Ij = fj(Qj-i), and probability assignments Pj{Qj. ' |Qj — I), 

used to encode the events. A sequence of pairs {(fj,Pj)} char- 
acterizes a generalized bit-plane coding scheme. 

The selection of {{fj,Pj)} should strive to minimize, in 
some sense, a distortion measure D(R) over as wide a range 

1Work done while the author was at HP Labs. 

of rates R as possible, and for as many images as possible. The 
resulting global optimization problem appears intractable at 
present, which has lead to more localized, "greedy" heuristic 
approaches. In [2], the following embedding principle is de- 
fined: Select Ij so as to maximize E[Dj-\ — Dj | Qj-i]/E[Rj — 
Rj-i | Qj-i], the expected distortion reduction per expected 
bit of description. Here, Dj and Rj denote, respectively, the 
distortion and total code length after step j, and expectation 
is taken with respect to some model for xn. The separation 
of significance and refinement decisions in EZW [4] roughly 
conforms to this principle. 

Although the embedding principle can still be computa- 
tionally demanding [3], it can also be applied to derive an 
intra-bit-plane ordering of decisions. In this framework, we 
generalize results in [2] to show that for a broad class of con- 
ditional distributions on {xn}, the principle dictates the en- 
coding of significance decisions in decreasing order of their 
likelihood of being non-zero. This result follows from Propo- 
sition 1 below, where subscripts fk denote the underlying den- 
sities, Pm,fk is the conditional probability that |Q; | = 1, 
and Dmjk (0) (resp. Rm,fk (0)) denotes the decrement (resp. 
increment) in distortion (resp. ideal code length) when encod- 

ing Q\m+1) conditioned on Q\m) = 0. 

Proposition 1 Given two symmetric densities f\ and fi 
having the property that fi(y)/fi(x) < f2(y)/f2{x) for all 
0 < x < y, then, the following hold for all m, i and A: 

1-    Pm.h   <Pm,f2- 
2. Ef^XiW™ = l\<Eh\xi\Q

<r> = \]. 
3. DmJl(0)/Rm,h{0) < An,/2(0)/Am,/2(0). 

Proposition 1 covers zero-mean Laplacian and, more broadly, 
generalized Gaussian densities. These families are often used 
to model wavelet transform coefficients. 

The established equivalence leads to an effective implemen- 
tation of the embedding principle as shown in [2], where con- 
text modeling for ordering and coding are combined. These 
ideas and techniques have been incorporated into the algo- 
rithm at the core of the emerging image compression stan- 
dard JPEG2000. The formal framework presented also pro- 
vides new insight into the effectiveness of other established 
practical algorithms like SPIHT [5]. 
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I. INTRODUCTION AND ALGORITHM 

Recently proposed in [1], the MPM (Multilevel Pattern 
Matching) grammar transform underlies a lossless data com- 
pression algorithm developed in [1]. In this paper, we ex- 
tend the MPM grammar transform to the case of side in- 
formation known to both the encoder and decoder, yielding 
a conditional MPM grammar transform which is referred to 
as the CMPM(r,7) transform throughout this paper. Based 
on the CMPM(r, I) transform, we develop a universal lossless 
data compression algorithm with side information called the 
CMPM algorithm, which has linear time and storage complex- 
ity and asymptotically achieves the conditional entropy rate 
of any stationary, ergodic source pair. The advantage of using 
side information, if any, for data compression is obvious; one 
can considerably reduce the compression rate if the side infor- 
mation is highly correlated with a sequence to be compressed. 

Let An denote the set of all sequences of length n drawn 
from an finite alphabet A, and let xn = xi.. . x„ G An. In 
the CMPM algorithm, xn is compressed indirectly via the 
CMPM(r, 7) transform (for some positive integer parameters 
r and 7) followed by conditional arithmetic coding. The input 
to the transform is a sequence of pairs (Xl), ■ ■ ■ , (In) from a 
joint alphabet Ax Ay, where the sequence yn, drawn from the 
finite alphabet Av, is regarded as side information and known 
to both the encoder and decoder. The transform output is a 
multilevel structure called a CMPM grammar, in which each 
level i is represented by a pair of sequences v^ = v[^ ... «f *' 

and t^t«...tg)f 

l„«)| 
The sequence tr'' is then encoded 

conditionally on t^ by a zero-order arithmetic encoder for 
» = 7,7-1,...,0. 

II. CMPM(r, 7) GRAMMAR TRANSFORM 

To simplify the description of the transform, we assume that n 
is a multiple of rl. Then, the CMPM(r, 7) transform generates 
the levels 7 through 2 by repeating the following three steps 
for each level i: 

SI: (t = 7) Partition xn into blocks of .4-symbols of length 
r1. Denote these blocks by variables v['\... , ü^7?j 

and the resulting sequence v[ '... v^ , by v^. Analo- 
gously, partition yn into blocks of -4v-symbols of length 
rr, and denote these blocks by variables i[!\ ... ,^,'r" 

and the resulting sequence tj ...P?, by f(/). For 
brevity, we will call a block of ^4-symbols an ".4-block " 
and a block of .4y-symbols an ",4,,-block". 

"This work was supported in part by NSERC of Canada under 
Grant RGPIN203035-98, by CITO, by the Premier's Research Ex- 
cellence Awards of Ontario, and by NSF under Grant CCR-9902081. 
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N2L3G1, Canada, {ehyang,  akaltche}Cbbcr.uvaterloo.ca. 

3ECE Department, University of Minnesota, Minneapolis, MN 
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SI: (»' < 7) For every j such that vj,+1) = s, partition the A- 

block CJ*+1) and the .4,,-block £j<+1) into r sub-blocks 
of length r', yielding a sequence v^ of A-blocks and a 
sequence i^ of .Ay-blocks. 

S2: Visit every .4v-block in the sequence i^ from left to 
right, and label all identical .4y-blocks with the same 
integers and all distinct Av -blocks with distinct inte- 
gers in increasing order, starting with 1. Denote each 
label, or a y-token, corresponding to an ,4y-block ty 

by ty. For every distinct y-token 7, let t5(,)|7 denote 

the subsequence |iJJ,) : tj° =7}. We call this sub- 

sequence a conditional subsequence of tr'^ since C^|7 
can be regarded as the sequence v^ conditioned on the 
y-token 7. All conditional subsequences of v^ are pro- 
cessed independently from each other in step S3. 

For each distinct y-token 7, visit every .4-block in the 
conditional subsequence €^^7 from left to right and la- 
bel the first appearance of each distinct .4-block a in 
this subsequence by a special symbol V. If the same 
,4-block a appears in C(,)|7 again, label it by an integer 
so that all identical «4-blocks a in t>^|7, except for the 
most left one, will be labeled by the same integer, which 
is just the number of distinct ,4-blocks in t5^|7 up to 
the first appearance of the .4-block a inclusive. We use 

S3: 

..M ,-,(<> in «CO variable Vj to denote the label of ,4-block vy' in v 
For level 1, we perform only step SI, and instead of perform- 
ing steps S2 and S3, we let t/0) and t(0) be ö(0) and f(0) 

respectively. 

III. OPTIMALITY RESULTS 
Let rcmpm(xn\yn) be the compression rate in bits per letter 
resulting from using our CMPM algorithm to encode xn given 
j/n. Let rl(xn\yn) be the smallest compression rate among 
all conditional arithmetic coding algorithms with k contexts 
which condition on yn and operate letter by letter. Then, 
based on the framework of grammar-based codes[2], we have 
established the following optimality results: 

Theorem 1. max 
Vn€AV. 

[-» l(x"|y")-rl(xn|yn)]=0(^ 

Corollary 1. For any stationary, ergodic source pair XY = 
{XiYi}^  with alphabet A x Ay, »"cmi,m(xn|yn)  converges 
to T/oopqy) =   lim (iff(jfi,...,jfm|yi ym» with 

probability one as n —¥ 00. 
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Abstract — In this paper, we present a construction 
for binary sequences {«(<)} of period N = pm - 1 for an 
odd prime p based on the polynomial (z + \)d + azd + b 
with optimal three-level autocorrelation. 

I. CONSTRUCTION OF NEW BINARY SEQUENCES 

Recently, there has been a big progress in constructing bal- 
anced binary sequences of period 2m — 1 with ideal autocor- 
relation [1, 2, 4]. The idea of the (new) construction is to use 
a special polynomial over finite fields. In this paper, we gen- 
eralize it to generate binary sequences of period pm — 1 with 
optimal autocorrelation for any prime p and an integer m. 

Let F denote the field of pm elements and F* = F\{0}. 
For a, b £ F and a positive integer d, consider the subset of 
F* given by 

I(a, b) = { x | x = {z + l)d + azd + b, z € F }\{0}. 

The characteristic sequence {sa,b{t)}-of the set I(a, b) in F* is 
defined by sa,b(t) = 1 if oe € I(a, b) and sa,b(t) = 0 otherwise, 
where a is a primitive element of F. 

Proposition 1 Let p >3,d = 2, anda,b £ F with a + 1 ^ 0. 
Then, {sa,b(t)} is a cyclic shift of the characteristic sequence 
of the polynomial z2 — c, where c € F depends on b. 

By virtue of the above proposition, we may define, for short 
notation, 

Ic = { x \x = z2-c, zeF}\{0}, 

rc = {x\x = z2-c, z€F' }\{0}, 

(1) 

(2) 

{sc(t)} ({«*(<)}) to be its characteristic sequence in F* of 
period N = pm — 1, and 0c(r) (0*(r) ) its periodic autocorre- 
lation function. There are two more cases in which {sa,b(t)} 
becomes a cyclic shift of {sc(<)} for some c £ F. 

Proposition 2 Let p > 5, d = 3, and a = —1. For any 
positive integer m and any b € F, {sa,b{t)} is a cyclic shift of 
{sc(t)}, where c £ F depends on b. 

Proposition 3 Let p = 3, d = A, a = 1, and m is odd so 
that N = 3m - 1 = 2 (mod 4). For any b£F, {s0,6(<)} ™ ° 
cyclic shift of {sc(t)}, where c £ F depends on b. 

Theorem 4 Let {sc(<)} and {s*(<)} be the characteristic se- 
quences of Ic and /*, respectively, of period N = pm — 1, 
and a be a primitive element of F. Then, both {«„(<)} and 
{si(t)} are balanced, and both {sa(t)} and {sl{t)} are almost 
balanced. Furthermore, we have (i) SQ(<) = s\(t — 1) + 1 for 
all t; (ii) sa(t) = sj(t - 1) + 1 for all t; (Hi) sa(N/2 + 1) = 
sx(N/2) = 1 and si(t) = sa(t + 1) + 1 for all t / N/2; and 
(iv) s*a{N/2) = sl(N/2 - 1) = 0 and af (*) = s*a{t + 1) + 1 for 
allt^N/2-1. 

Theorem 5 The sequences {««(t)} and {«i(*)} of period N 
are balanced and have optimal autocorrelation. Specifically, 
forr^O    (mod N) 

where e € {0,1}. 

-4e, 
2-4e, 

ifN = 0 
ifN = 2 

(mod 4) 
(mod 4) 

Theorem 6 The sequences {s*(t)} and {sa{t)} of period N 
are almost balanced and have optimal autocorrelation. Specif- 
ically, for rj^O    (mod N), 

our) = 

where t 6 {0,1}. 

-4e, ifN = 0    (mod 4) 
2 - 4e,      if N = 2    (mod 4) 

REFERENCES 

[1] J. F. Dillon, "Multiplicative Difference Sets via Additive Char- 
acters," preprint, 1998. 

[2] Hans Dobbertin, "Kasami Power functions, permutation poly- 
nomials and cyclic difference sets," in Proceedings of Differ- 
ence Sets, Sequences and their Correlation Properties, NATO 
Advanced Study Institute Workshop, held in Bad Windshiem, 
Germany, August 3-14, 1998. 

[3] A. Lempel, M. Cohn, and W. L. Eastman, "A class of binary se- 
quences with optimal autocorrelation properties," IEEE Trans. 
Inform. Theory, vol. 23, No. 1, pp. 38-42, Jan. 1977. 

[4] J. -S. No, H. Chung, and M. -S. Yun, "Binary Pseudorandom 
Sequences of Period 2m — 1 with Ideal Autocorrelation Gener- 
ated by the Polynomial zd + (z + l)d," IEEE Trans. Inform. 
Theory, vol. 44, No. 3, pp. 1278-1282, May 1999. 

[5] T. Storer, Cyclotomy and Difference Sets, Lecture Notes in Ad- 
vanced Mathematics, Markham Publishing Company, Chicago, 
1967. 

I 

0-7803-585 7-0/00/$ 1 0.00 ©2000 IEEE. 
299- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Inverse Hadamard Transforms of Two-Level Autocorrelation Sequences 

Guang Gong 
Department of Combinatorics and 

Optimization 
University of Waterloo 

Waterloo, Ontario, Canada. 

Solomon W. Golomb 
Communication Sciences Institute 

Electrical Engineering/Systems 
University of Southern California 

Los Angeles, CA, U.S.A. 

Abstract — It is well-known [1] that a balanced bi- 
nary sequence {ak} of period 2n — 1 with two-level 
autocorrelation is constant on cyclotomic cosets, i.e. 
{fl2fc} = {a-k+r} for all k and some fixed value of r. 
Moreover, there is a cyclic shift of the original se- 
quence for which r = 0. Such two-level autocor- 
relation sequences are in one-to-one correspondence 
with cyclic Hadamard difference sets with parame- 
ters (2n - l^"-1 - l,2n-2 - 1). Perhaps best known 
among such sequences are the m-sequences, which cor- 
respond to Singer difference sets. For any primitive 
element a in GF(2n), the set of m-sequences is given 
by Sq = {Tr{aqk)}, (q,2n - 1) = 1, where Sq and Sq, are 
distinct m-sequences iff q and q' belong to different 
cyclotomic cosets. 

If B = {bk} is any binary sequence of period 2n — 1 
which is constant on cyclotomic cosets, then B can 
be written as a sum (term-by-term, modulo 2) of se- 
quences of the form {Tr(aqk)}, where q need not be co- 
prime to 2n — 1. That is, the linear feedback sequences 
of all periods which divide 2™—1 form a basis for the set 
of sequences which are constant on cyclotomic cosets. 
We conjecture (based on numerical evidence) that for 
two-level autocorrelation sequences, only values of q 
which belong to cyclotomic cosets of size n are in- 
volved in this basis representation. However, not all 
the component sequences in this representation need 
to be m-sequences. 

It has recently been shown [2] that when n is odd, 
all the known cases of two-level autocorrelation se- 
quences of period 2" — 1 have the same Hadamard 
transform as one of the m-sequences. A similar result 
holds for even n, but instead of an m-sequence, only 
a linear feedback sequence appears. 

Using the inverse Hadamard transform, and start- 
ing with a single m-sequence (when n is odd), we 
can obtain all the known two-level autocorrelation se- 
quences of period 2" — 1 which have no subfield fac- 
torization. (Here we say that the binary sequence 
B = {bk} where bk = f(ak) and f(x) = ^ Tr(x") has a 

subfield factorization if there is m, a proper factor of 
n, such that f(x) can be decomposed into a composi- 
tion of a function from GF(2m) to GF(2) and the trace 
function from GF(2n) to GF(2m).) We have verified 
this for odd n < 19. Interestingly, no previously un- 
known examples were found by this inverse Hadamard 
transform process for any odd n < 19. This is support- 
ing evidence (albeit weak) for the conjecture that all 
families of cyclic Hadamard difference sets of period 
2n — 1 having no subfield factorization are now known, 
at least for odd n. 

We will continue to investigate odd values of n, and 
to look for analogous results with n even. 
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Abstract — Crosscorrelation functions Cd(t) of m- 
sequences over finite field GF(p) and their decimation 
sequences are investigated in this paper. 

I. INTRODUCTION 

Maximal length linear shift-register sequences (or called m- 
sequences) have desirable autocorrelation functions, thus they 
have been widely used, e.g. in crytography and communica- 
tions. However, the problems about the crosscorrelation of 
m-sequences and their decimation sequences still keep open, 
although much research has been done. 

Let p be a prime, n a positive integer, q = pr\ and GF(<?) 
the finite field with q elements, Tr denote the trace func- 
tion from GF(g) to GF(p),and a be a primitive element in 
GF(q), then the sequence (a; = Tr(7a'))i is an m-sequence 
over GF(p) ( [2, 4]), where7 = a~' is an element of GF(ij). 
The sequence (6, = an = Tr(7ad,))i is called a decimation 
sequence of (fli)i with the decimation factor d. 

Let (a,i)i and (bj)j be periodic sequences over GF(p) with 
period I, and £ = e2,"'p be the primitive complex pth root 
of unity, the crosscorrelation function of (OJ); and (bj)j is 
defined by 

i-i i-i 

cab(t) = ]Tf—is: = ^ri-t-,".o <*<'-!•    C1) 
i=0 i=0 

In particular, when (ai)i is identical to {bj)j, Cab(t) is the au- 
tocorrelation function of (<n)i. In this paper, we consider 
only the case that (a;), is an m-sequence over GF(p) and {bj)j 
is its decimation sequence with decimation factor d, so (1) can 
be simplified as 

cab(t) = ]Tr-'-6i 

i=0 

/Tr(-r*-x") 

i=0 

*SGF(p")* 

=      -1+       y^       ^TH-yx-x'') 

x€GF(pn) 

=      Cd(t) 
1 Projected Supported by National Natural Sicence Foundation 

of China(No. 69802002, 69882002, 69772035), and by National 
"863" (No. 863-306-ZT05-05-2) 

Tr(x-~fXd) 
(2) 

For convenience, we consider 

1 + 0,«= ■£   e 
ieGP(p") 

Müller [1] studied the upper bound of |l+C<j(t)| for decima- 
tion factor d = ^^ + E-y^> n odd and p = 3, and proposed 
an open problem: what is the upper bound of |H-Cd(t)| when 
p > 3? In this paper, we have solved this open problem and 
get more results. 

II. MAIN RESULTS 
(1) If the decimation factor d = p ** + ^-j1 p = 3(mod4) , 
n odd, then 

li + OMI <^VP 

Therefore the problem proposed by Müller [1] is solved. 
(2) If 
then 
(2) If the decimation factor d = p„ +1, n odd, p = 3(mod4), 

Cd(t)e {-1,-1 + 

(3)Under the condition of (l),we have 

(4)Under the condition of (2),we get the result: 

P|l + Cd(t)|=VPv^)<^T, 
P(l + Cd(t) = 0)>l-^. 

III. CONCLUSIONS 
In this paper, we have studied in detail the crosscorrela- 

tion functions of m-sequences and their decimation sequences 
in two different cases. This paper generalizes the conclusion of 
Muller in [1], and therefore solved an open problem proposed 
by Muller in [1]. In addition, we have investigated the distri- 
bution of the value of crosscorrelation functions, and get the 
result that when p is large enough, the probability of the cross- 
correlation function achieving the maximal absolute value is 
very small. 
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Abstract — We conjecture that length 2' bipolar 
sequences with optimal or near-optimal Hadamard 
and Negahadamard Peak Factors are exactly the set 
of Golay Complementary sequences, as formed using 
the Davis-Jedwab construction. It appears Golay se- 
quences are both Bent and Negabent for lengths 2* 
where t is even and t ^ 2 mod 3. We also conjecture 
this sequence family has near-maximum distance from 
all constaaffine functions. 

I. INTRODUCTION 

The sum of aperiodic autocorrelations of Golay sequence pairs 
is a 6 pulse [2]. [1, 4] describe a construction for length 2* Go- 
lay sequences (Golay-Davis-Jedwab construction (GDJ)) that 
probably covers all Golay sequences of length 2*. We de- 
fine Hadamard, Negahadamard and Constahadamard Trans- 
forms (HT, NHT and CHT), these being multidimensional 
Cyclic, Negacyclic and Constacyclic Discrete Fourier Trans- 
forms (DFT). Negabent and Constabent sequences are se- 
quences whose NHTs and CHTs, respectively, have completely 
flat power profile. Extensive computation suggests that bipo- 
lar GDJ sequences always have fiat or near-flat HTs, NHTs 
and CHTs. It is conjectured that these sequences are the 
unique intersection of the set of bipolar sequences with Bent 
or known near-Bent properties with those with NegaBent or 
known near-NegaBent properties. It is known that GDJ se- 
quences are Bent for length 2', t even, [3], but the near-Bent 
property for length 2', t odd, and the Negabent and near- 
Negabent properties are new results. It is conjectured that 
bipolar GDJ sequences are both Bent and Negabent for a 
specified infinite set of lengths and therefore their associated 
boolean functions have maximum distance from affine and ne- 
gaaffine functions. Further computations suggest they have 
near-maximum distance from all constaaffine functions in all 
cases. This may be desirable for cryptographic applications. 

II. THE CONSTAHADAMARD TRANSFORM 

The Walsh-Hadamard Transform (HT), Ht, is constructed 
from the direct product of 2-point DFT matrices, Ht = 
HX ® Hj ® Hj ® ... = ®*=1Hi where Hi = ( \ _\ ) and ® is 
the direct product. The Negahadamard Transform (NHT), 
NHt, is the direct product of 2-point Discrete Negacyclic 
Fourier Transform matrices, NH, = NHJ ® NH: ® NH, ® ... = 
®*=1NH! where NHi = ( \ _V ), and i2 = -1. The 
Constahadamard Transform (CHT), CnjHt, is the tth di- 
rect product of 2-point index j Discrete Constacyclic Fourier 
Transform (DCFT) matrices over nth complex roots where 
2|n, cn jHt = cn JHJ ® C„JH1 ®cn,jHi ® • • = ®*=icnjHi where 

CnjHi = f ' J%% j, a = e~^, j is one of the ^- inte- 

gers in Zn mutually prime to n and less than §, and (p is Eu- 
ler's Totient Function, e.g., Ht = C2,iHt, NHt = Cj.iHt, 

where a = e^. 

JThis work was funded by NFR Project Number 119390/431 

and, Ci2,BHi = ( \    £ ), 

Constahadamard Peak Factor:      Let A = CnjHta = 
(A0,Ai,...,A2t_l)

T for some n,j. The Constahadamard 
Peak Factor of a is CHPF(a) = 2-tmax{i4iJ4J|0 < i < 
2'}. All CHT matrices obey Parseval's Theorem. 1.0 < 
CHPF(a) < 2* Vn,j if a is unimodular. A unimodular se- 
quence is Bent if it has Hadamard Peak Factor (HPF) of 1.0, 
Negabent if it has Negahadamard Peak Factor (NHPF) of 1.0, 
and ConstaBent if it has CHPF of 1.0. 

III. CHPF PROPERTIES OF GDJ SEQUENCES 
GDJ Sequences are detailed in [1, 4]. They are certain second 
order cosets of Reed Müller (1, t) which are length 2* Golay 
Complementary Sequences. Bipolar GDJ sequences are bent 
for even t [3]. From computational results we state, 
Conjecture 1: The HPF of a bipolar GDJ sequence is 1.0 
for even t and 2.0 for odd t. 
Conjecture 2:    The NHPF of a bipolar GDJ sequence is 1.0 
for t^l mod 3 and 2.0 for t = 2 mod 3. 
Conjecture 3:    Bipolar GDJ sequences of length 2* are both 
Bent and Negabent for even t, t / 2 mod 3. 
Conjecture 4:   Let F be the set of length 2' bipolar sequences 
with HPF =1.0 and 2.0 for t even and odd, respectively. Let 
G be the set of length 2* bipolar sequences with NHPF =1.0 
and 2.0 for t ^ 2 mod 3 and t — 2 mod 3, respectively.   The 
set of GDJ bipolar sequences is exactly F l~l G. 
Conjecture 5:       The CHPF of GDJ bipolar sequences is 
always < 2.00, Vn, t,j. 
Conjecture 3 follows from Conjectures 1 and 2. Conjecture 4 
may not hold for t large. Conjecture 5 implies GDJ boolean 
functions have near-maximum distance from all constaaffine 
functions. 

IV. CONCLUSION 

Bipolar Golay-Davis-Jedwab (GDJ) sequences appear not 
only to possess low one-dimensional peak factors < 2.0, but 
also possess low multi-dimensional peak factors < 2.0. We 
conjecture these sequences are Bent or near-Bent and Ne- 
gaBent or near-NegaBent. They appear to be Bent and Ne- 
gabent for lengths 2', t = 0 or 4,  mod 6. 
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Abstract — In this paper we consider the outage 
probabilities of three multiuser scheduling/power con- 
trol algorithm: TDMA, the K&H algorithm which 
achieves maximal Shannon capacity [1], and TD-KH 
- a combination of the former two [2]. For flat block 
fading channel, the outage probability of these algo- 
rithms can be asymptotically modeled as a reward 
renewal process. Employing Large deviations analy- 
sis, TDMA and TD-KH are shown to be superior over 
K&H under outage probability criteria. 

I. INTRODUCTION 

The maximal Shannon capacity for single user in flat fading 
channel (channel state information assumed at the transmit- 
ter) is achieved by the water pouring solution for each channel 
use [3]. The K&H [1] power control expands it for multiple 
users i.e., only the user with the best fading should transmit. 
The K&H power control has a significant drawback: Assum- 
ing flat block fading channel, an arbitrary user might wait for 
a long time until it reaches temporal maximal fading, allowing 
him to transmit. Thus, when delay criteria are imposed, the 
K&H power control is not always suitable. Note the contra- 
dicting approach of K&H when compared to TDMA where the 
time interval between successive transmissions of each user is 
fixed. 

The TD-KH algorithm can be regarded as a compromise 
between the above contradicting approaches. Its Shannon ca- 
pacity is below that of K&H and above TDMA capacity and 
by setting a user controlled parameter can achieve any value 
between the two [2]. In this article we show that TDMA and 
TD-KH algorithms are advantageous over K&H when outage 
capacity is concerned. Exact analytic calculation seems in- 
tractable, we adhere therefore to asymptotic calculation for 
large number of slots T -¥ oo. The achieved result is applica- 
ble for general renewal process defined over discrete time. 

II. CHANNEL MODEL 

For the sake of clarity, we shortly repeat the description 
of the TD-KH algorithm. Consider a multiple-user flat block 
fading Gaussian channel [3] where each of the N users has 
the same independent fading statistics and the same average 
power. Setting a user chosen parameter L > N—l the schedul- 
ing policy of TD-KH is as follows: Inspect the previous L slots 
before the next one. If each of the N users has transmitted at 
least once in one of the L slots then let the user with the best 
fading transmit by the K&H power control. Otherwise, the 
user who has not transmitted in the last L slots (there is only 
one possible user) transmits using fixed power as in TDMA. 
Note that for L = N — 1 the TD-KH algorithm degenerates 
into TDMA while for L/N -^ oo it identifies with K&H. 

Assume an arbitrary user transmitted in n slots out of T 
contiguous slots. We define the outage as the probability of 
the average information transmitted in these n slots being 
less then a certain threshold aC where a € [0,1] and C is the 
average sum rate capacity. Formally, 

1   " 
Outage Pr(T) = Pr(n = 0) + £ Pr(n)Pr(- ^ Cj < aCj 

n=l J = l 

(1) 

where Cj is information transmitted in each of these n slots 
by the user. 

III. OUTAGE ASYMPTOTIC 

Analytic calculation of (1) seems complicated. However, we 
notice that both TDMA and K&H are renewal process since 
the time intervals Xi between two subsequent transmission 
of the same user are either fixed (TDMA) or iid (K&H). The 
TD-KH algorithm can be shown to behave asymptotically also 
as a renewal process. In addition X2 = Cj depends at most on 
the last interval length, thus making the process X = (Xi, X2) 
a reward renewal process. Using Cramer's theorem for R2 we 
reach: 

lim -(l/T)log(Outageprob(T))= \-£-I(yi,aCJ\ (2) 

where 7(yi,aÖ)-g-7(yi,oC) = 0. 

where I{y\,yi) is the rate function.of (Xi,X2). 

IV. RESULTS AND CONCLUSIONS 
Inspecting (2) we note that the outage exponent of TDMA 

and TD-KH increase both as a decreases, where the TDMA 
exponent is always above the TD-KH . For a 6 [0, aöC] the 
TDMA and K&H exponents are larger then K&H. The K&H 
exponent is upper bounded by log(l — 1/N) even for a -*■ 
0. The TD-KH exponent on the other hand, is not upper 
bounded as in K&H even for large L/N (e.g. L/N — 5). 
Thus, we conclude that under the asymptotic outage criteria 
the TD-KH is superior over K&H. 
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Abstract — Relying on a simple algorithm for 
the Laplace transform inversion of cumulative dis- 
tribution functions, we develop a moment generat- 
ing function-based numerical technique for the out- 
age probability evaluation of maximal-ratio and equal- 
gain combining over generalized fading channels. 

I. INTRODUCTION 

Recently, a unified moment generating function (MGF)-based 
approach was adopted for the exact average error rate analysis 
of several modulation schemes in conjunction with maximal- 
ratio combining (MRC) and equal-gain combining (EGC) di- 
versity reception [1]. In addition to the average error rate, 
outage probability, Pout, is another standard performance cri- 
terion of communication systems operating over fading chan- 
nels. It is defined as the probability that the combined signal- 
to-noise ratio (SNR), ft, falls below a threshold 7th, i.e., 

Pout = P[0 < ft < 7th]. = /0
1,hP7«(70 dft, where p7,(7t) 

is the probability density function (PDF) of ft- Since find- 
ing the PDF of 7t in closed form is often restricted to some 
special cases while the MGF of ft, M-,t(s) — P7([eS7'], can 
be obtained in a simple form for various fading conditions, we 
present an MGF-based approach for the outage probability 
evaluation of diversity systems over generalized fading chan- 
nels in which the diversity paths are not necessarily indepen- 
dent, identically distributed nor even distributed according to 
the same family of distribution. 

II. OUTAGE PROBABILITY EVALUATION 

The total conditional SNR per symbol, 7t, at the output of an 
L-branch MRC combiner or a postdetection EGC combiner is 

given by ft = $ZI=1 7(, where 7; is the Zth-path instantaneous 
SNR per symbol. Applying the numerical technique developed 
in [2] and after some manipulation we obtain Pout as [3] 

Pout   =   P^A,N,Q)J-^lj- (°)V^ 
q=0 n=0 

7th 

n 
M-, y 27lh     ) 

A+2irjn 
27th 

-E(A,N,Q), 

where the parameters A, N, and Q can be set to guarantee 
an overall error given by 

\E{A,N,Q)\    ~ 

■R. 
A4, 

7th       ^—' v Q' 
,=0 

/     A+2wj(N+g+l)\ 

A + 2irj(N+q + l) 
27th 

(2) 

lThis work was supported by the Graduate School of the Uni- 
versity of Minnesota and by the National Science Foundation. 

Combined Effect of Powar May and Fading CcxraUbon Profile* [nuO.S] 

NormMied Average SNR of Firil Paffi 

Figure 1: Outage probability with MRC or postdetection EGC 
(L = 4) versus normalized average SNR of the first path 7i/7th 
over an exponentially decaying PDP and an exponential correlation 
profile across the mutipaths ((a) p = 0, (b) p = 0.2, and (c) p = 0.4). 

For coherent EGC, the conditional combined SNR per sym- 

bol, ft, is given by ft = j- (X);=i Vli) ■ The outage proba- 
bility Pout can hence be rewritten as Pout = P[0 < ft < 7th], 

where ft = YLi=i V^ an<* 7th = V^lth- Since the MGF of 
•y/77 can be found in closed-form for the Nakagami-m case, 
the outage probability of coherent EGC receivers can also be 
computed using (1), and the corresponding numerical error 
can be estimated from (2), where in these two expressions ft 
and 7th are replaced by ft and 7th, respectively. 

III. NUMERICAL EXAMPLE 

As an illustration of the applicability of the approach to cases 
where a "classical" PDF-based approach fails to give an easy- 
to-compute solution, Fig. 1 shows the outage probability of 
MRC RAKE reception over a Nakagami chanel with an expo- 
nentially decaying power delay profile (PDP) (fl = e~s^'~1'f1, 
where 5 is the power decay factor) and an exponential corre- 

n\     lation profile (such as pw = p'       ) across the multipaths. 
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Abstract — We derive the optimal power allocation 
and minimum outage probability for fading multiple- 
access channels under the assumption that both the 
transmitters and the receiver have perfect channel 
side information. This minimum outage probability 
implicitly defines the outage capacity region. Two dif- 
ferent assumptions about whether the outage decla- 
ration from each user is simultaneous or independent 
are considered. 

Wireless communication channels vary over time due to 
user mobility. Assuming that the channel side information 
(CSI) is available at both the transmitter(s) and the re- 
ceivers), the zero-outage capacity regions are derived for fad- 
ing multiple-access channels (MAC) and for fading broadcast 
channels in [1] and [2], respectively. This type of capacity 
is the maximum constant rate that can be maintained in all 
fading conditions through optimal power control. By allow- 
ing some transmission outage under severe fading conditions, 
the maximum rate that can be kept constant during non- 
outage will increase. Finding the optimal power allocation 
that achieves the outage capacity for a given outage proba- 
bility is tantamount to deriving the allocation strategy that 
minimizes the outage probability for a given rate or rate vec- 
tor. This minimum outage probability problem is solved for 
a single-user fading channel in [3] and for a fading broadcast 
channel in [2]. 

In this paper we consider the optimal power allocation and 
minimum outage probability problem for an M-user fading 
MAC under different assumptions about whether the outage 
declaration from each user is simultaneous or independent. A 
discrete-time M-user fading MAC model as discussed in [1] is 
characterized by the output 

Y(") = Etei y/HJriXiiri) + Z{n), 

where Xi(n) and Hi(n) are the transmitted waveform and the 
fading process of the ith user, respectively, and Z(n) is the 
Gaussian noise with variance a2. For a slowly time-varying 
MAC, let h = '(hi, /12, • • •, ^M) be the joint fading state at a 
particular time n, i.e., H(n) = h. 

In the zero-outage case, given an average power con- 
straint vector P* = (Pi, P2*! • •'! PM) 

and a ra&e vector R = 
(Ri, R2, ■ • •, RM) for the M users, an iterative algorithm (we 
will refer to it as the Hanly-Tse (HT) Algorithm) is proposed 
in [1] for obtaining the optimal power allocation strategy that 
solves 

pm (1) inf max 
V   Ki<M P: 

where V denotes a power allocation policy and Pi(R) is the 
resulting average transmit power of each user i required to 

support R in every fading state without any outage. There- 
fore, rate vector R lies in the zero-outage capacity region if 
and only if the infimum in (1) is no greater than 1. 

Now if the infimum in (1) is larger than 1, the given rate 
vector R can only be maintained with a non-zero outage prob- 
ability for some or all of the M users. In this case, under the 
assumption that the transmission from all users is turned on 
or off simultaneously, we wish to obtain the minimum common 

outage probability Pr* — Prm,n(P*,R) and the correspond- 
ing optimal power allocation. Under the alternative assump- 
tion that the transmission from each user is turned on or off 
independently, we wish to obtain the outage probability region 
Oi(P*, R) and the optimal power allocation that achieves the 
boundary surface of Ö/(P*,R), where Cj(P*,R) is the set 
of all average outage probability vectors for which R can be 
maintained with the average transmit power of each user i no 
larger than P*, VI < i < M. 

Under the first assumption, given the rate vector R and 
power constraint vector P* fixed, for each common outage 
probability Pr > 0, we use a similar algorithm as the HT 
Algorithm to find the power allocation that solves 

inf  max 
V   Ki<M 

Pi(Pr,R) 

p;    ' 
(2) 

lrThis work was supported by NSF Career Award NCR-9501452 
and by a grant from Pacific Bell. 

where V denotes a power allocation policy for which the com- 
mon outage probability is Pr and the resulting average trans- 
mit power of each user i is Pi(Pr, R). By denoting the infi- 
mum in (2) as Inf(Pr), it can be shown that Inf(Pr) is a 
strictly decreasing function of Pr [4]. Therefore, it is clear 
that Inf(Pr) > 1 if Pr > Pr* and Inf(Pr) < 1 otherwise, 
with equality achieved when Pr = Pr*. We propose an iter- 
ative algorithm that converges to the power allocation satis- 
fying Inf(Pr*) = 1, and finds the minimum common outage 
probability Pr*. 

Under the alternative assumption that an outage can be 
declared independently for each user, a similar iterative algo- 
rithm is proposed to obtain the boundary surface of the outage 
probability region C/(P*,R). 
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Abstract — Peak transmitted power is a key issue 
in wireless systems. In this paper we consider upper 
and lower bounds to Gallager's random coding error 
exponent [1] for the two dimensional (or quadrature) 
memoryless flat fading channel with perfect channel 
state information (CSI) at the receiver and when a 
peak power constraint is imposed at the transmitter. 

I. SUMMARY 

Due to space limitations, we only provide the final results. 
For more detials, the reader is referred to [2]. 

Let us assume a discrete-time memoryless fading chan- 
nel (with AWGN) for which the received symbol Y is equal 
to y = i)x + w, where X is a transmitted symbol, T is a 
known fading variable and W is the AWGN term. For an 
input per-letter peak power constraint of the form |a;| < 
V, an upper bound to the ensemble block decoding er- 
ror probability, for any choice of p; 0 < p < 1, is eas- 
ily determined to be [2][1] Pe < exp{-NEr (q (x) ,p, R)}, 
where the error exponent, Er(p,p(x) ,R), is defined as 
Er (q {x) ,p,R) = Eo (q (x), p) - pR , where E0 (q (x), p) = 

-In [jvP(v)Jy [Jxq(x) p(»|a:,u)1/(1+rt dx]1+Pdy*;] . The 

input distribution q(x) follows the general form q(x) = 
g (x) u (V — |x|2), where u(-) is the unit-step function and 

g(x) satisfies j ,2<v9(x) dx = 1. The random coding ex- 

ponent Er (R) is achieved by maximizing Er (q (x), p, R) over 
all q (x) and p. Finally, and without loss of generality, let 
a\ = 0.5, in order to obtain a unity power fading. Also, let 
a^y = 1, then the peak-power-to-noise-ratio (PPNR) is de- 

fined as PPNR = 4^ = VII. 

Instead of optimizing over the input distribution, which is 
a difficult task, we propose upper- and lower-bounds to the 
exponent so as to trap this function to a reasonable degree of 
accuracy. 

An upper bound to the error-exponent Er (R), can be 
shown to be [2] ET (R) < max0<p<i {E0,u (p) - pR), where 

srtaint.    We have attempted three different input distribu- 
tions.    The first is a rectangular-uniform input distribution 

It E0tU(p)  = p-ln(l + p)-lnßp(„,/(l + ^fj)   'J. 
should be mentioned that the aforementioned upper bound 
not only is an upper bound to the error exponent of the per- 
letter peak-power limited channel, but also is an upper bound 
to the random coding exponent of the per-letter average-power 
limited channel (see [2] for clarification). 

A lower bound to the random coding exponent for the 
peak-power-limited ideal fading channel can be determined us- 
ing any input distribution that satisfies the peak-power con- 

1This research has been performed at the ECE Dept. Queen's 
Univ., Canada. It has been partially supported by the Telecom- 
munications Research Institute of Ontario (TRIO) and the Natural 
Sciences and Engineering Council of Canada NSERC. 

which has the pdf q(x) = (£) U (-fi-) -U (^j). where 

U(-) is defined as U(() = The second at- 

The last attempt is a conical 

*|2), 

i   ; |*| < i 
0    ; otherwise 

tempt is a circular-uniform distribution which has the pdf 

q(x) = f &   ; N2<^ 
1   0        ; otherwise 

distribution with pdf q (x)  =   [Spj ( J- — -j= i 

where u (•) denotes the unit-step function. It has been possi- 
ble [2] to derive a closed-form expression for the lower bound 
based on the conical input pdf. For the rectangular-uniform 
pdf, a Monte-Carlo-integration based methodology has been 
used to numerically calculate the bound. Finally, for the 
circular-uniform pdf, only asymptotic results at high peak- 
power-to-noise ratio (PPNR), as well as cut-off rate numerical 
calculations at any PPNR, have been feasible. On the other 
hand, the lower bound based on the concial pdf is the loosest, 
the bound based on the rectangular-uniform pdf is tighter 
than the one based on the concial pdf. Finally, the bound 
based on the circular-uniform pdf is the tightest. 

II. RESULTS 

Upon evaluation of the upper and lower bounds proposed 
in this paper, it has been found that at high PPNR, the dif- 
ferences between the upper bound to the cut-off1 rate and the 
corresponding lower bounds, due to the rectangular- and the 
circular-uniform inputs, are 1.45 and 1.0 nats/symbol, respec- 
tively. Also, the differences between the upper bound to the 
cut-off rate and the corresponding lower bound based on the 
conical pdf is 1.61 nats/symbol. It should be mentioned that 
the aforementioned asymptotic (high PPNR) differences are, 
in fact, independent of the fading distribution. 

In conclusion, since the upper bound we propose is also an 
upper bound to the random coding exponent for the channel 
with average-power-constrained inputs, it follows that the loss 
in the error exponent, due to the peak-power constraint and 
relative to the average-power-constrained channel, is no more 
than 1.0 nats/symbol, which is equal to 1.44 bits/symbol. 
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Abstract — The hard-square model consists of all 
binary arrays in which the l's are isolated both hori- 
zontally and vertically. Based on a certain probability 
measure defined on those arrays, an efficient variable- 
to-fixed-rate encoding scheme is obtained that maps 
unconstrained binary words into arrays that satisfy 
the hard-square model. For sufficiently large arrays, 
the average rate of the encoder approaches a value 
which is only 0.1% below the capacity of the con- 
straint. A second, fixed-rate encoder is obtained 
whose rate for large arrays is within 1.2% of the ca- 
pacity value. 

I. INTRODUCTION 

Recent developments in optical storage are attempting to 
increase the recording density by exploiting the fact that the 
recording device is two-dimensional in nature. This, in turn, 
motivates the study of coding schemes for two-dimensional 
constraints that may be present in those devices. 

The hard-square model, defined next, is a notable example 
of such a constraint. Consider (without real loss of generality) 
the parallelograms 

:  0 < i < m,   0 < i + j < n} 

{0,1}, where hereafter xij denotes 

Am,„ = {(i,j)€ 

and mappings x : Am,n 

the value of x at location (i,j) € Am,n. We say that such a 
mapping x satisfies the hard-square model if Xi,j = 1 implies 
Xij+i = 0 (when j < re—1) and Xj+i,j = 0 (when i < m—1). 
The set of all mappings over Am,n that satisfy the hard-square 
model will be denoted by <S(Am]„). 

The main goal of this work is designing efficient lossless 
coding schemes of unconstrained binary words into elements 
of<S(Am,n). 

II. VARIABLE-TO-FIXED-RATE ENCODER 

Based on the idea of two-dimensional bit-stuffing intro- 
duced in [3], we obtain a variable-to-fixed-rate encoder into 
S(Amin). Our encoder effectively realizes the following prob- 
ability measure p,m,n on <S(Am,n): for every x 6 <S(Am,n), 

fJ*m,n{x)      =      H„    (xo,0,Xo,l,---,Xo,n-l) 
Ad), 

m—1   n—1 —t 

n n * 
i=l j = -i+l 

i *£m— 1, — (m — 1)) 

~i,j | XiJ — 1) Xi— l,j , Xi — l,j-fl J , 

'This work was supported in part by Grants Nos. 95-00522 and 
98-00199 from the United-States-Israel Binational Science Founda- 
tion (BSF), Jerusalem, Israel, by Grant No. NCR-9612802 of the 
National Science Foundation (NSF), and by the Center for Magnetic 
Recording Research at the University of California, San Diego. 

where, for two parameters go £ [0,1) and gi € (0,1], 

tf(0 )\u,y,v) = l-'d(l\u,y,v) = I   ^    ^ 
u = y = 0 

otherwise 

The boundary measures, p,n   and fim , are set so that the non- 
boundary values have a stationary distribution. The limit 

H=    lim 
mtn—>oo 
 / ßm,n(x)\0g2ßm,n(x) 

i€5(Am,„) 

exists and can be written explicitly as a function of qo and 51. 
Maximizing this function yields H « 0.587277, which is the 
average rate of our encoder. This rate is only 0.1% below the 
capacity value of the hard-square model [1], [2], [4]. 

III. FIXED-RATE ENCODING SCHEME 

With a slight compromise on the rate, we can also obtain 
an efficient fixed-rate encoder into 5(Am,n). Let <S<,r be the 
set of all words in {0,1}' of Hamming weight r in which the 
l's are isolated, and for a prescribed positive integer t define 

t-i ,      >. 

K(n,t) = Y/Z
S(t~1)\Sn- 3t+2,t-s\ 

The images of our encoder are elements x e <S(Am,„) that sat- 
isfy the weight constraint J^. Xij — t for each i. The coding 
rate is [(log2 K(n, t))/n\, and the weight constraint allows to 
obtain efficient encoding through enumerative coding. 

It can be shown that for every fixed rational S, 

lim sup (1/n) • log2 K(n, 5n) > sup F(5,p) , 
n—+00 p 

where p ranges over [0, min{5/(1—38), 1/2}] and 

F(S,p) = 6-[l+h((l/6-3)p)]+(l-M>[(l-pYh{p/(l-p))-p] , 

with h(t) standing for —i-(log2t) — (1—i)log2(l— t).   Maxi- 
mizing over 6, we thus obtain the coding rate 

maxF(5,/>)« 0.581074 , 
(<5>p) 

which is within 1.2% of the capacity value of the hard-square 
model. 
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Abstract — A two-dimensional code for a second 
order spectral null constraint is given and it is shown 
that the rate of the code is asymptotically equal to 
1. 

I. INTRODUCTION 

Recently two-dimensional recording devices are developed. 
Therefore several authors have studied two-dimensional codes 
for these devices [1], [2]. 

It has been shown that there are encoding algorithms for 
two-dimensional spectral null constraints with asymptotical 
code rate 1 [3]. In this paper we introduce a coding rule 
for two-dimensional second order spectral null constraints and 
show that its code rate is asymptotically 1. We describe an 
outline of our coding rule. 

II. PRELIMINARIES 

Let a = aoai • ■ ■ at-i be a finite sequence of numbers. The 
running digital sum of o, denoted by RDS(a), and the sec- 
ond order running digital sum of a, denoted by RDS(2'(a), 
are defined as follows: RDS(a) = Y,j=o ai alld RDS(2)(a) = 
£t=o RDS(aoai---Oj). If RDS(a) = 0 then we say that 
a satisfies a spectral null constraint at dc. If RDS(a) = 
RDS^'(a) = 0 then we say that a satisfies a second order 
spectral null constraint at dc. For a symbol a we define a by 
ä = —a and 5 by 5 = ööST• ■ • UL-I- We introduce an equiv- 
alence relation '=' of sequences a and b such that a = b if 
a = b or a = b. 

Let A be a two-dimensional array. If all rows and all 
columns of A satisfy a second order spectral null constraint 
at dc then we say that A satisfies the constraint horizontaJiy 
and vertically, respectively. If an array satisfies a second order 
spectral null constraint both horizontally and vertically then 
we say that the array satisfies a two-dimensional second order 
spectral null constraint. 

III. OUTLINE OF CODING RULE 

We assume that the channel symbol alphabet is {—1,1}. 
Let Ao be a two-dimensional array of size m x n. 

Step 1 First we encode Ao into a two-dimensional array 
A which satisfies a second order spectral null constraint at 
dc horizontally by using the Henry-Knuth method [4] and a 
method by Tallini et. al. [5]. Then the length of each row of 
A is m = n + 4[logn\. 

Step 2 Let p{ be the i-th row of A and let 
{</i>92> • • • >9N} 

De *ne se* °f aH distinct code words appear- 
ing as rows in A where we identify p with p' if p = p'. Without 
loss of generality we assume that the first symbol of q{ is 1 for 
1 = 1,2,... , N. We define L(i) to be the number of elements 
in {j : pj = q{}.   We define £(i,j), i = 1,2,... , JV so that 

P/«,,-) = Qi for i = 1,2,... , L(i) and £(», j) < i(i,j + 1) for 
j = l,2,...,L(i)-l. 

Step 3 We extend A vertically (L(i) and £(i, j) are also 
extended at the same time) by duplicating rows so that L(i) is 
a multiple of 4. Let J be the number of rows of the resulting 
array. 

Step 4, Step 5 and Step 6 We invert rows so that 
the absolute values of the second order running digital sums 
of columns can be bounded from above by 2"1 J. 

Step 7, Step 8 and Step 9 We add rows so that the 
second order running digital sum of each column of the result- 
ing array is 1, -1 or 0. This can be accomplished by adding at 
most 2ni 2\fj\ rows. We also add rows to the resulting array 
in order that all columns satisfy the second order spectral null 
constraint. The number of extra rows is constant. 

Step 10 Let b(i), i = 1,... , m be a sequence such that 
b(i) = 1 if the i-th row in Ao is inverted and b(i) = — 1 oth- 
erwise. We concatenate the resulting array we get above and 
6(1),6(2),... ,6(m) so that they satisfy the two dimensional 
second order spectral null constraint. 

IV. CODE RATE 

The number of columns of A is ni. In step 4 we add at most 
2ni rows to A. In step 8 we add at most W2ni rows where 
W is the smallest multiple of 4 with 4(m + 2ni)2ni < W2. 
In step 9 we add at most 4 • 2"1 rows. In step 10 we add at 
most 4 Mp- rows. Therefore the code rate of our algorithm 
is bounded from below by 

m (m + 2ni + rv/4(m + 2ni)2"il +4 + 4-2ni+4   —   j 

We consider a rectangular array of size 22" x n.   Then the 
above rate tends to 1 as n —> oo. 
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Abstract — This paper proposes a method of joint 
decoding for combined system between 2-Dimensional 
Partial Response (2-D PR) system and convolutional 
codes for the purpose of high density magnetic record- 
ing. Since both 2-D PR system and convolutional 
code can be represented with trellis diagrams, de- 
coding performance can be improved by joint decod- 
ing with their overall trellis diagram. Moreover, a 
method of decoding which can achieve low amount of 
calculation is also investigated. 

I. CHANNEL MODEL 

If ITI is known in advance, 2-D PR system (3 track - 3 
head) can be shown in figure 1.  "a" is the amount of ITI. 

Y +   r 
input 1 ^ /T 

D D 
V 1 \ 

-j- 

I\ input 2 
(Center Track) 

D D iv. 
.T> f^ + 1 

input 3 

D D 

output 2 

Figure 1: 2-D PR4 (3 Tracks - 3 Heads) 

From figure 1, we assume that ITI from the outer track 
existing on the center track is larger than the ITI from the 
center track on the outer track. By computer simulation, we 
confirmed worse BER performance of center track than BER 
performance of outer tracks (figure 2). 

ie-01 
a =0.2 
/ (3tr»ck average) 

1e-02 / 

rS.      (Slrack average) 

2 1e-03 */\^ 
HI 

CD \\ 
1e-04 a -0.4 

{■riddle rack) 

■"""""""""""^       \\ 
a-0.2 

(middle track) 

1e-05 

"34567 
Eb/lsb 

9       10 
[dB] 

Figure 2: BER performance 

II. CONVOLUTIONAL CODE AND 2-D PR4 

Since BER of the center track is worse than that of the 
outer tracks, it is useful to use error correcting codes for 2-D 
PRML in which the data in the center track are protected 
against a greater number of errors than the data in the outer 
tracks. As we described, both 2-D PR system and convolu- 
tional code can be represented with trellis diagrams. More- 
over, decoding performance can be improved by joint decoding 
with their overall trellis diagram.Therefore, we consider joint 
decoding system with convolutional codes and 2-D PR4 sys- 
tem. The system model is shown in figure 4. 

We consider that the contents of memory elements are an,i 
(memory elements in convolutional codes) and 6n,f (memory 
elements in PR4 system), where n is the time instant and / 
is the track number. In this system, outputs are affected by 
3 bits and 2 time instances, so the state of the system, Sp, is 
defined as a 3xn matrix as 

(1) 

<Jn-l,l      an- -2, 1 •• •       fcn- 1,1 bn-2,1 " 
sP = O-n-1,2       Gln-2,2 bn-1,2 bn-2,2 

"n-1,3        In —2,3 bn-1,3 bn-2,3 

S/P 

ECC 
(Low Capability) 

CO c 
n7 

2-D PR4 
Channel 

2-D Vitcrbi 
Decoder 

ECC 
(High Capability) 

ECC 
(Low Capabilily) 

Figure 3: System model 

III. ALGORITHM FOR LOW AMOUNT OF CALCULATION 

Next, the algorithm for low amount of calculation of joint 
decoder is described. As an example, we consider the simplest 
case applies a (7,5)g convolutional code to the only center 
track. By using buffer, the number of input bits of each tracks 
is same, even the code rate of the center track and that of the 
outer track is different. Therefore, 6 bits are necessary for 
1 path in the trellis diagram. Since the number of memory 
elements of both PR4 system and (7,5)g convolutional code 
is the same, the number of states in the Viterbi decoder will 
decrease.. 
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Abstract — A comparison of various full-surface 
demodulation algorithms is presented. Algorithms 
based on an iterative approach achieve highest data 
storage density at reasonable complexity and fixed bit 
error rate. 

I. INTRODUCTION 

Consider information transmission using a full-surface 
paradigm. The user data, u, is represented as a one- 
dimensional signal over a two-dimensional index set, i.e. a ma- 
trix of data values, m,j e {0,1}. The noise-free output of the 
channel, denoted v, may be modeled as the two-dimensional 
convolution of the user data, u, and the channel model, c, 
written v = c * u. Additive white gaussian noise, n, corrupts 
the noise-free output, v, which results in the received signal, 
r = v+n. The full-surface maximum-likelihood (ML) demodu- 
lator minimizes the expression ||r —v||2 = £\ Sj(r«.i — "».i)2> 
where v denotes the noise-free channel output due to channel 
input ü, i.e. v = c * ü, and || * || denotes the L2 norm. 

In the full-surface optical data storage problem, the chan- 
nel may be modeled as the truncation of a bivariate gaussian 

blur, i.e. a,j = exp ~((i~^)<s'?2 exp ~(0'^c
a
)f'')2, where 6X and 

Sy denote separation of bits in the vertical and horizontal di- 
rections and oc is the physical variance of the channel point- 
spread function.   The unitless storage density, D, of such a 

2 

system is given by D = j^f-, where dividing D by a\ produces 

a physical density measurement. Finally, the signal-to-noise 

ratio (SNR) is given by SNR = 101og10 *$3-, where <r„ is the 

variance of the noise. 

II. COMPARISON 

Figure 1 gives a performance comparison of several full- 
surface demodulators. For a given point on the graph, data 
is stored at density given by the vertical axis with SNR given 
by the horizontal axis and demodulator output that achieves 
a bit error rate of 10~2. 

To date, no ML full-surface demodulator with reasonable 
complexity has been found. The curve of asterisks is an upper 
bound to the ML demodulator and is computed using a brute- 
force ML search over data blocks of size four by four. 

The other algorithms perform at sub-ML levels. The solid 
curve shows the performance of the multitrack Viterbi algo- 
rithm (MVA) due to Krishnamoorthi [1]. The curve with "x" 
is MVA applied to received data that has been filtered using 
a full-surface equalizer. This equalizer allows for density im- 
provement only at high SNR when colored noise has a negligible 
effect on the ML demodulation criterion. 

The combination of ML image processing methods with 
threshold decision yields the dashed curve. This is improved 
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Figure 1: Comparison of Full-Surface Demodulators 

to the curve with circles by applying iterative thresholding, 
an idea developed by Kau [2]. 

The next class of algorithms is based upon a greedy algo- 
rithm. The dotted curve in Figure 1 shows the performance 
of a greedy algorithm that iteratively chooses data bits to 
minimize a local metric. It uses a single-point optimization, 
changing bits one at a time. This algorithm is improved signif- 
icantly by using techniques of simulated annealing that avoid 
local minima (the dot-dash curve). Expanding the greedy al- 
gorithm to perform multipoint optimizations of likely error 
sequences produces the curve of plus signs. Finally, a ge- 
netic algorithm based upon the improved greedy demodulator 
achieves the best results. The curve of triangles uses an initial 
population of five estimated user data matrices and six gen- 
erations of combining three individuals by majority decision. 
The curve of upside-down triangles improves on this by using 
a larger initial population of six and ten generations of natural 
selection based upon the ML metric. 
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The most common approach for dealing with one-dimen- 
sional error bursts is interleaving. For example, to implement 
the correction of bursts of length 4, one can use four different 
codewords drawn from a code that corrects r errors, while en- 
coding, or interleaving, the one-dimensional data sequence as 
follows: 123412341234 • • •. An alternative way to correct any 
r bursts of length up to 4 is to use two different codewords 
from a code that corrects 2r errors, while interleaving the one- 
dimensional data sequence as follows: 112211221122 •••. This 
is an interleaving scheme with two repetitions, in that the same 
integer appears (at most) twice within a burst of length 4. 

While the optimal one-dimensional interleaving schemes, 
both with and without repetitions, are straightforward, in 
two dimensions, it is not at all obvious how to interleave a 
minimal number of codewords so that any burst of size up 
to t can be corrected. Most two-dimensional burst-correcting 
codes that have been studied in the literature so far correct 
error bursts of a given rectangular shape, say t\ x £2 rectan- 
gular arrays. In this work, we assume that a cluster of errors 
can have an arbitrary shape, as long as it maintains horizon- 
tal/vertical connectivity. Important applications where the 
correction of such two-dimensional error clusters is required 
are optical recording and holographic storage [2]. 

Given the foregoing notion of a cluster, one may define 
a two-dimensional interleaving scheme A(t,r) of strength t with 
r repetitions as an infinite array of integers characterized by 
the property that every integer appears at most r times in 
any cluster of size t. The interleaving degree of A(t, r), denoted 
deg A(t, r), is the total number of distinct integers contained in 
the array. An interleaving scheme A(t, r) is said to be optimal 
if deg A(t,r) is the minimum possible for the given t and r. 

Blaum, Brück, and Vardy [2] constructed optimal two- 
dimensional interleaving schemes without repetitions for all t. 
Blaum, Brück, and Farrell [1] generalized the two-dimensional 
interleaving schemes of [2] in such a way that each integer 
appears at most twice in any cluster of size t. However, 
the methods developed in [1] are limited in their scope and 
applicability. On the other hand, it is obvious from the work 
of [1, 2] that the problem of constructing A(t,r) to minimize 
deg A(t, r) becomes much more challenging for r ^ 2. 

In this work, we introduce the notion of r-dispersion that 
turns out to be crucial in the design of two-dimensional in- 
terleaving schemes with repetitions. The r-dispersion may be 
thought of as a generalization of the Li-distance to a quantity 
that reflects a property of r points for r ^ 2. For r = 3,4, 
we refer to the corresponding r-dispersion as tristance and 
quadristance; efficient methods for computing these disper- 

1This work was supported in part by the National Science Foun- 
dation, the David and Lucile Packard Foundation, and by grant 
No. 95-522 from the U.S.-Israel Binational Science Foundation. 

sions are presented. We also introduce a special class of inter- 
leaving schemes based on two-dimensional lattices, which we 
call lattice interleavers. Lattice interleavers are akin to linear 
codes in coding theory: both classes are distinguished by the 
fact that a certain linearity property is imposed on their struc- 
ture. So far, all the best-known interleaving schemes, with or 
without repetitions, belong to the class of lattice interleavers. 

We construct lattice interleavers A(t, 2) for all t, and com- 
pute the corresponding tristance. We also derive lower bounds 
which show that our constructions are optimal for even t. Fi- 
nally, we develop the methodology for an elaborate computer 
search that produces optimal lattice interleavers with two rep- 
etitions for all t < 161. These results support our conjecture 
that the lattice interleavers A{t,2) constructed in this work 
are, in fact, optimal for all values of t, both even and odd. 

We present analogous constructions, bounds, and computer 
search for lattice interleavers with three repetitions, and prove 
that our constructions are optimal for t = 0 mod 9, and 
asymptotically optimal for other t. The computer search 
yields optimal lattice interleavers A(t,3J for t ^ 180. We 
conjecture that for all higher values of t, optimal lattice inter- 
leavers may be obtained from our construction. 

For r = 4, we construct lattice interleavers for all t. and 
compute their 5-dispersion. Although we do not have lower 
bounds in this case, we conjecture that these lattice inter- 
leavers are optimal, except for t = 4,5,8,53,70. The com- 
puter search confirms this conjecture up to t = 221. For highei 
values of r, we exhibit certain infinite families of lattice inter- 
leavers, such as A(rk, r) and A(r2k, r) for all k e Z+, and com- 
pute the interleaving degree in each case. These families make 
it possible to establish general asymptotic results for large r. 

We also consider interleaving schemes for an alternative 
cluster connectivity model. Namely, we assume that two el- 
ements in an array are connected if they are adjacent hor- 
izontally, vertically, or diagonally. We show that there is 
a tight relation between interleaving schemes for this connec- 
tivity model and interleaving schemes for the standard hori- 
zontal/vertical connectivity model. 

Finally, we consider the following problem: What is the 
largest shape S C Z2 such that the tristance between any three 
points of S is at most t? Our solution to this problem leads to 
lower bounds on the interleaving degree of A(t, 2) for general 
(nonlattice) interleavers. These bounds improve substantially 
upon the earlier results of Blaum, Brück, and Farell [1]. 
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Abstract — This paper provides an information- 
theoretic perspective on the use of transmit antenna 
arrays when the transmitter has imperfect channel 
feedback. The gains obtained are found to be substan- 
tial, in contrast with the meager gains due to feedback 
reported in previous work on single antenna systems. 

I. INTRODUCTION 

Antenna arrays at the transmitter are widely recognized as 
an effective means of improving the capacity and reliability 
of a wireless communication link. There are two key tech- 
niques that have been proposed in the literature for exploiting 
transmit antenna arrays: space-time coding, which requires no 
knowledge of the spatial channel on the part of the transmit- 
ter, and transmit beamforming techniques, which assume that 
the transmitter has accurate knowledge of the channel through 
feedback from the receiver. For a typical time-varying channel, 
however, the feedback available to the transmitter will be of 
intermediate quality, and one would expect that the transmit- 
ter strategy in such situations would be some blend of space- 
time coding and beamforming. Our purpose in this paper is to 
make this intuition precise by providing information-theoretic 
insights into the appropriate transmitter strategies when the 
channel feedback available to the transmitter is imperfect. 

II. PROBLEM STATEMENT 

It is assumed that the transmit antenna has M elements, and 
that the receive antenna has a single element. Consider a dis- 
crete time system, where the channel coefficients from the M 
transmit elements to the receive element at time t are denoted 
by the M x 1 complex vector h(t). We consider the following 
abstraction to model partial knowledge of the channel at the 
transmitter. 

Problem Set-Up: The transmitter knows that the channel 
h has a complex Gaussian distribution with mean ii and co- 
variance £, denoted by Af(/x, £). The input to the channel is 
x. The receiver knows h, and receives 

y xHh + n 

where n ~ A/"(0, a2) is circular complex Gaussian noise with 
variance a2 /2 per dimension. 

Problem: What is the input distribution p(x) that maximizes 
the mutual information I(x;y), subject to £?{||x||2} < P. 

The preceding abstraction can be related to a specific model 
for channel feedback considered recently in the literature 
[1], for which the maximizing input distribution achieves the 
Shannon capacity of the forward link. 

'This work was supported by Motorola under the University 
Partnerships in Research Program. 

It can be shown [2] that the maximizing input distribution 
is complex special Gaussian, x ~ A/"(0,Q). The optimization 
problem is now one of finding the optimum choice of the co- 
variance matrix Q° maximizing the mutual information for 
power constraint P, and the optimization problem can be re- 
stated as follows: 

maxEhUog(^^ + M (1) 

subject to the power constraint trace{Q} — P, where a2 is 
variance of the additive circular complex Gaussian noise. The 
expectation in (1) is computed using the Af(ii, S) distribution 
for h. 

III. OVERVIEW OF RESULTS 

Presently, the solution to the optimization problem in (1) 
for the general form of h ~ A/"(/i, S) is not known. In this 
work, the optimum distribution is characterized in the follow- 
ing two cases: 

1. Mean Feedback: In this case, the channel distribution 
is modeled at the transmitter as h ~ A/"(/x,aI), so that 
the feedback provides noisy information regarding the 
current channel realization. It is shown that the opti- 
mum solution is to use beamforming along fx (Q is unit 
rank) when the feedback SNR is larger than a threshold, 
and to use M-fold diversity (Q is full rank) otherwise. 
In the latter case, the most power is put in the direc- 
tion it, while the remaining M — 1 orthogonal directions 
receive equal (but lower) powers. 

2. Covariance Feedback: The channel distribution known 
to the transmitter is h ~ A/"(0, £). This models a situ- 
ation in which the channel may be varying too rapidly 
for the feedback to give an accurate estimate of the cur- 
rent channel value. However, the relative geometry of 
the propagation paths changes more slowly, and is re- 
flected in the covariance matrix S. The optimum solu- 
tion here is shown to consist of independent Gaussian 
inputs along (a subset of) the M eigenvectors of S. The 
solution resembles water pouring, in that eigenvectors 
corresponding to larger eigenvalues receive more power. 
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Abstract — Prior treatments of space-time commu- 
nications in Rayleigh flat fading generally assume that 
channel coding covers either one fading interval—in 
which case there is a nonzero "outage capacity"— 
or multiple fading intervals—in which case there is 
a nonzero Shannon capacity. However, we establish 
conditions under which channel codes span only one 
fading interval and yet are arbitrarily reliable. In 
short, space-time signals are their own channel codes. 
We call this phenomenon space-time autocoding, and 
the accompanying capacity the space-time autocapac- 
ity. 

Let an M-transmitter-antenna, iV-receiver-antenna 
Rayleigh flat fading channel be characterized by an 
M x N matrix of independent propagation coeffi- 
cients, distributed as zero-mean, unit-variance com- 
plex Gaussian random variables. This propagation 
matrix is unknown to the transmitter, remains con- 
stant during a T-symbol coherence interval, and there 
is a fixed total transmit power. Let the coherence in- 
terval and number of transmitter antennas be related 
as T = ßM for some ß. A T x M matrix-valued signal, 
associated with R ■ T bits of information for some rate 
R is transmitted during the T-symbol coherence inter- 
val. Then there is a positive space-time autocapacity 
Ca such that for all R < Ca, the block probability of 
error goes to zero as the pair (T, M) —> oo such that 
T/M = ß. The autocoding effect occurs whether or 
not the propagation matrix is known to the receiver, 
and Ca = N\og(l + p) in either case independently of 
ß, where p is the expected SNR at each receiver an- 
tenna. Lower bounds on the cutoff rate derived from 
random Unitary Space-Time signals suggest that the 
autocoding effect manifests itself for relatively small 
values of T and M. For example within a single coher- 
ence interval of duration T = 16, for M = 7 transmitter 
antennas and N = 4 receiver antennas, and an 18 dB 
expected SNR, a total of 80 bits (corresponding to 
rate R = 5) can theoretically be transmitted with a 
block probability of error less than 10~9, all without 
any training or knowledge of the propagation matrix. 

A complete copy of this paper is available on the 
web at http: //mars. bell-labs. com. 

I 
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Abstract — Sufficient conditions to ensure QAM 
space-time codes achieve full space diversity in quasi- 
static fading channel are presented. The conditions 
are on code words or generator matrices instead of 
on every code word pair. This greatly simplifies the 
construction of full space diversity codes. 

I. INTRODUCTION 

For wireless communication, the design goal of so called 
"space-time" codes [1] is to take advantage of both the spa- 
tial diversity provided by multiple antennas and the temporal 
diversity available with time-varying fading. 

In quasi-static Rayleigh fading channel, in order for a space- 
time code to achieve full space diversity, the rank of every code 
symbol difference matrix need to be full rank over complex 
number field. However, the code is not linear over complex 
number field. This discrepancy causes a serious obstacle in the 
design. The paper by Hammons and El Gamal [2] represents 
an important first step to bridge this discrepancy by providing 
a binary rank criteria for binary BPSK codes and Z4 QPSK 
codes to ensure full space diversity. 

We provide a theory for the design of space-time codes 
in quasi-static Rayleigh fading channel with higher order of 
constellation (22fc QAM) [3]. It includes the BPSK binary 
rank criterion in [2] as a special case. For QPSK constellation, 
it is applicable to GF(4) codes instead of Z4 codes. 

Applications of the theory, such as analysis of existing 
space-time codes, constructions of new space-time codes from 
traditional codes and turbo codes will be presented. Only the 
main theorems are given in this abstract. 

II. S0-RANK CRITERION 

The full space diversity rank criteria developed in [3] are for 
codes defined on the ring Z2k(j), the ring Z2k adjoined with 
the element j which satisfies j2 = 01. In the sequel, © is used 
to denote the modulo 2k addition. 

Definition 1 (Linear Z2k(J) Code -with Translation 
Mapping,) A linear Z2k(j) codeC is a set of code words which 
form an additive group. Each code word J is an Nc by Lt ma- 
trix with elements in the ring Z2k(j). Each code word matrix 
J is mapped to a complex code symbol matrix D by the trans- 
lation, Di(j) = Ji(J) - ((2fc - l)/2 + j(2k - 1)12), on the el- 

ement ofith column and jih row for alii and j. It results in 
a 22* QAM constellation. 

Definition 2 
OIL, in Z2k(j) 

(Eo-Coefficientsj  Coefficients,  ot\,  a2,  ..., 
are said to be E0-coefficients if there exists i* 

such that a,« + &;♦ is odd, where a,« ® jb,- = a,« . 

'This work was supported by National Science Foundation under 
Grant NCR-9706372. 
Y. Liu, M. P. Fitz, and O. Y. Takeshita are with Department of 
Electrical Engineering, The Ohio State University, 205 Dreese Lab, 
2015 Neil Ave., Columbus OH 43210, USA. 

Definition 3 (Column E0-Rankj A matrix V over the ring 
1*2kii) has column E0-ranfc L if L is the maximum number of 
column vectors o/V, such that 

L 

BV={Vil,...,ViL},   0ai^,/ii, 
1=1 

for any E0 -coefficients, 0:1,0:2,... , a/,. 

The row E0-rank can be similarly defined. Since column 
Eo-rank and row E„-rank are equal [3], they are called E0- 
rank. 

Definition 4 (T\ill E0-RankJ An m by n matrix V over 
ring Z2k(j) is said to be of full Eo-rank if it has Ti0-rank equal 
to the minimum of m and n. 

The sufficient conditions on code words are given first. 

Theorem 1 (E0-Rank Criterion j Let C be a linear Z2k(j) 
code with translation mapping to 22k QAM constellation. If 
every nonzero code word J € C has full E0-ranfc, then C 
achieves full space diversity. 

For linear codes, the conditions can be translated into the 
conditions on the generator matrices. 

Theorem 2 Let C be a linear Z2k(j) code. The ith column 
of the code word matrix is defined as 

Ji = Gil, (1) 

where I is the information sequence in Z2k(j), G; is the 
generator matrix for iih antenna. If for all E0-coefficients, 
Qa, «2, • • •, at,, and for all nonzero information sequence,'I, 

0a,G(    /VO, (2) 

then V nonzero J € C, J is of full T,0-rank.   Thus, the code 
achieves full space diversity. 
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Abstract — An EM-based algorithm is introduced 
for decoding space-time trellis codes without as- 
suming channel knowledge. Its complexity is much 
smaller than a direct evaluation of the log-likelihood 
function, and simulation results indicate it receiver 
achieves a performance close to that of a receiver that 
knows the channel perfectly. 

I. INTRODUCTION AND SYSTEM MODEL 

Tarokh, Seshadri and Calderbank recently proposed trellis- 
based space-time codes [1] which combine signal processing 
at the receiver and coding appropriate to multiple transmit 
antennas. These so-called space-time codes perform well in 
slowly-fading channels, assuming perfect channel state infor- 
mation (CSI) at the receiver. With the presence of chan- 
nel mismatch, however, system performance suffers a signif- 
icant degradation [2]. In this paper we look at the prob- 
lem of maximum-likelihood sequence estimation for space- 
time coded systems without assuming channel knowledge. An 
expectation-maximization (EM) algorithm [3] is derived for 
the sequence estimation problem and is shown by simulations 
to perform close to the performance of a maximum likelihood 
decoder that assumes perfect CSI. 

We consider N transmit and M receive antennas. Data 
blocks of length L are encoded by a space-time encoder. The 
transmitted code block can be described by a matrix D, whose 
entry, din, is the complex symbol transmitted by the n-th an- 
tenna during the Z-th symbol time and whose row-vectors are 
denoted by Dj. The fading channel between the transmit and 
receive antenna arrays is described by a matrix T whose en- 
try -fij denotes the complex, Gaussian, fading gain in the path 
from the i-th transmit to the j'-th receive antenna. We assume 
the fading processes of different paths (transmit and receive 
antenna pairs) are independent. Its column-vectors are de- 
noted by Tj, which represents the vector of fading coefficients 
viewed by the j-th receive antenna. The complex matched- 
filter outputs over the length-L transmitted block at each of 
the M receive antennas is represented by a matrix Y, whose 
entry yij denotes the output at jth antenna at I time instant: 
Y = Dr + N, where M is the AWGN term. We denote the 
column-vectors of Y by Yj. 

II. THE EM-BASED RECEIVERS 

To apply the EM algorithm, we choose the fading parame- 
ter vector Tj' as the missing data. Thus the expectation step 
of EM algorithm yields 

L     M 

where 

Q(D|Dfc) = £ JT [«(5yD,f}) - jD.ftjD?] , 

fj = ((DhrDfc + |^s)~I(DhrY„ 

      EMDscodar 
     Channel Mismatch 
     Ganla Bound 

^^is   ""*-i r^-O^ „     ;  -*^ 
^^** ■-:                     : 

•""■O * 

^*>v              i  "♦ 

▼"♦ 

Figure 1: The EM and "genie" decoders: N = 2, M 
2, L — 128, 8-state code, 4 pilot symbols, 3 iterations 

+ + -L.) T SNR7 
(Dfc)*Dfc+r*(f£)* 

The maximization step yields 

L      M 

((D*)*D 

.tion step 

L 

Dfc+1 = arg max ££ [» (SyD.fJf) - iD.AjDf] 

III. PERFORMANCE 

We use the 8-state QPSK code introduced in [1] to study 
the performance of the EM-based algorithm. Pilot symbols 
are inserted into the data stream to initialize the algorithm. 
The maximization step of the EM algorithm is efficiently per- 
formed using the Viterbi algorithm. Figure 1 shows simula- 
tion results for the frame-error probability for the EM-based 
algorithm, the "genie" receiver that assumes perfect channel 
knowledge, and a receiver that first estimates the channel. 
In the simulations for the channel mismatch case, eight pilot 
symbols were inserted in each frame to estimate the channel. 
It is clear that the EM decoder performs close to the "genie 
bound", while in the channel mismatch case, about ldB loss 
occurs at a frame error rate of 0.1. At higher SNR, perfor- 
mance loss becomes even larger. 
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Abstract — We analyze phase trajectories of the 
turbo decoding algorithm as a function of the signal- 
to-noise ratio (SNR). We prove the existence of fixed 
points not only at asymptotically high SNRs but also 
at asymptotically low SNRs. Fixed points at practical 
SNRs are empirically divided into two classes: inde- 
cisive fixed points which usually lead to numerous er- 
roneous decisions and unequivocal fixed points which 
usually correspond to correct decisions. The water- 
fall region in the performance curve of turbo decoding 
is characterized as the region of transition from con- 
vergence to indecisive fixed points to convergence to 
unequivocal fixed points. 

I. INTRODUCTION 

We consider classical turbo codes, transmitted over an addi- 
tive white Gaussian noise channel using binary phase-shift- 
keying modulation. The corresponding turbo decoding algo- 
rithm can be viewed as a discrete dynamical system [3]. This 
dynamical system iteratively updates two probability densi- 
ties on information bits — commonly known as the extrinsic 
information — provided by the two constituent decoders of 
the turbo decoding algorithm. 

As a dynamical system, the turbo decoding algorithm can 
have a variety of phase trajectories. A phase trajectory may 
converge to a fixed point, reach a well-defined invariant set, 
or simply wander in the high-dimensional space of extrinsic 
information. At present, preciously little is known about the 
characteristics of these phase trajectories. For example, in 
many cases, the turbo decoding algorithm does not converge 
after a fixed number (say 18) of iterations. Is it possible that 
in the majority of such cases the decoding algorithm actually 
converges, albeit only after a large number of iterations? Or 
is the opposite true: in the majority of such cases, the decod- 
ing will never converge. It has been observed that the turbo 
decoding algorithm always converges at high SNRs. What 
happens at (asymptotically) low SNRs: Does the algorithm 
converge or does it wander ad infinitum? These are some of 
the basic questions answered in this work. 

II. FIXED POINTS AT ASYMPTOTIC SNRS 

Using a set of sufficient conditions provided by Richardson [3], 
we show [1] that at asymptotically low SNRs, with high prob- 
ability, the turbo decoding algorithm has a unique fixed point. 
The extrinsic information that corresponds to this fixed point 
is close to the uniform distribution on information bits. That 
is, the fixed point votes almost equally in favor of the two 
possible values for each transmitted information bit. 

On the other hand, we show that at asymptotically high 
SNRs, with high probability, the turbo decoding algorithm 
has fixed points that correspond to the transmitted codeword. 

xThis work was supported in part by the National Science Foun- 
dation and by the David and Lucile Packard Foundation. 

Moreover, starting from unbiased initialization, the turbo de- 
coding algorithm will converge to one of these fixed points. 
The derivation of this result indicates that extrinsic informa- 
tion corresponding to such fixed points is concentrated on the 
transmitted information bits. 

III. FIXED POINTS AT PRACTICAL SNRS 

The existence of certain fixed points at asymptotic SNRs 
raises interesting questions. Does the turbo decoding algo- 
rithm, starting from unbiased initialization, converge to these 
fixed points? If so, what are the threshold values of SNR 
beyond which the turbo decoding algorithm converges? 

To answer these questions, we performed extensive simu- 
lations. Empirically, we found that the turbo decoding algo- 
rithm converges to two types of fixed points: indecisive fixed 
points and unequivocal fixed points. The algorithm converges 
to indecisive fixed points for SNRs that are below the water- 
fall region, and to unequivocal fixed points for SNRs above 
the waterfall region. The empirically observed characteristics 
of indecisive and unequivocal fixed points match closely the 
characteristics predicted by our analysis for asymptotically 
low and asymptotically high SNRs, respectively. 

For SNRs in the waterfall region, the decoding algorithm 
may or may not converge, and in some cases, the phase tra- 
jectory may become quasi-period or periodic. 

IV. CONTINUATION OF FIXED POINTS 

For sufficiently long turbo codes, we can treat the turbo de- 
coding algorithm as a single-parameter dynamical system, pa- 
rameterized (approximately) by the SNR. This allows us to 
trace the movement of fixed points (more precisely, obtain the 
equilibrium curves of fixed points) as the SNR is changed. 

The equilibrium curves, parameterized (approximately) by 
the SNR, reveal that unequivocal fixed points barely move as 
the SNR is changed from very high to very low values. How- 
ever, starting from the very low values, indecisive fixed points 
move substantially as the SNR is increased while becoming less 
and less stable. Ultimately, for SNRs in the waterfall region, 
indecisive fixed points bifurcate and disappear. All three types 
of bifurcation, studied in classical bifurcation theory [2], occur 
in turbo decoding. This explains the quasi-periodic and peri- 
odic behavior of the phase trajectories in the waterfall region. 
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Abstract — We prove the existence of thresholds for 
turbo codes [1] and we prove concentration of the per- 
formance of turbo codes within the ensemble deter- 
mined by the random interleaver. In effect, we show 
that the results obtained in [2] and [3] for low-density 
parity-check codes extend to turbo codes. The main 
technical innovation is to rigorously show that depen- 
dence of output extrinsic information on input priors 
decays with distance along the trellis. In an infinitely 
long turbo code the densities of the extrinsic informa- 
tion fulfl.ll a certain symmetry condition which we call 
the consistency condition. This condition provides the 
basis for an efficient Monte-Carlo algorithm for the 
determination of thresholds for turbo codes. Thresh- 
olds of all symmetric parallel concatenated codes of 
memory up to 6 have been determined. 

I. INTRODUCTION 

We determine the asymptotic (in length) performance of 
turbo-codes under iterative decoding. The analysis is based 
on the techniques introduced in [2, 3, 4] in the context of low- 
density parity check (LDPC) codes extended here to turbo 
codes. 

Assume we have the following setup. 

1. A family of binary-input output-symmetric memoryless 
channels ordered by physical degradation and indexed 
by a real parameter <r, e.g., the class of binary symmet- 
ric channels (BSC), the class of additive white Gaussian 
noise channels (AWGNC) or the class of Laplace chan- 
nels (LC). 

2. For every integer n we define an ensemble of turbo codes 
C„ in the following manner. We first fix the two ratio- 
nal functions Gi(D) = ^|§j and G2(D) = ^-gj which 
describe the recursive convoiutional encoding functions. 
For x £ {±1} let fi(x), i = 1,2, denote the correspond- 
ing encoding functions. Then for a given permutation T 

on n letters the unpunctured codewords of a standard 
parallel turbo code have the form (1,71(1), 72(x(i))). 
We will assume a uniform probability distribution on 
the set of such permutations. 

There exists a threshold <r* with the property that if n is 
large enough then for almost any code from the ensemble Cn 

the probability of bit error is below any desired level if trans- 
mission takes place over a channel with a < a* and the bit 
error probability is bounded away from zero if we transmit 
over a channel with a > a*. 

We use a result from the theory of products of positive 
random matrices to prove that dependencies in the trellis de- 
cay with distance. This implies that constituent decoding is 
essentially local in the trellis and can be appoximated arbi- 
trarily well by finite window turbo decoding [5]. Once one 
restricts to windowed decoding the proof goes through much 
as for LDPC codes:  An edge exposure martingale argument 

proves concentration of performance around the mean. For 
any fixed number of iterations the graph determining output 
extrinsic information is asymptotically a tree with high prob- 
ability so the mean converges to the performance of such a 
tree. By taking limits one obtains the corresponding result 
for non-windowed, standard, turbo decoding. 

To date we know of no numerical algorithm to calculate 
thresholds which has efficiency comparable to the LDPC code 
case. To determine thresholds we simulate, in effect, an in- 
finitely long turbo code. If P is the distribution of the priors 
then the one-sided state distributions, usually denoted a and 
ß converge to steady state distributions along an infinitely 
long trellis. The output extrinsic information is determined 
by the these steady state distributions and the distribution of 
the channel data. We use Monte-Carlo techniques to estimate 
the various distributions. These calculations are significantly 
improved in both speed of convergence and accuracy by ex- 
ploiting a provable symmetry property of extrinisic informa- 
tion distributions in infinitely long turbo codes. Let f(x) be 
a distribution of extrinsic information in log-likelihood repre- 
sentation for an infinitely long turbo code assuming the all 
0 codeword. Then f(x) = f(—x)ex. This consistency condi- 
tion implies that /(x) is determined by the distribution of |x|, 
which is much easier to accurately estimate via direct simula- 
tion. 

m code <T* 

2 (5,7) 0.883 
3 (11,13) 0.93 
4 (17,31) 0.94 
5 (31,45) 0.94 
6 (41,107) 0.941 

Table 1: The highest threshold of standard parallel 

concatenated codes of rate | up to memory 6 for the 

AWGNC: y = x + n where x = ±1 and n is <7JV(0, 1). 
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Abstract — We use a Gaussian approximation (GA) 
for analyzing the sum-product algorithm for low- 
density parity-check (LDPC) codes and memoryless 
binary-input continuous-output additive white Gaus- 
sian noise (AWGN) channels. This simplification al- 
lows us to calculate the threshold quickly and to un- 
derstand the behavior of the decoder better. We have 
also designed high rate LDPC codes using the GA 
that have thresholds less than 0.05 dB from the Shan- 
non limit. 

I. INTRODUCTION 

For many interesting channels and iterative decoders, 
LDPC codes exhibit a threshold phenomenon: an arbitrary 
small bit error probability can be achieved if the noise level 
is smaller than a certain threshold and the probability of bit 
error is larger than a positive constant for a noise level above 
the threshold as the block length tends to infinity [1]. 

In this paper, we present a simple method to estimate the 
thresholds of randomly constructed irregular LDPC codes for 
memoryless binary-input continuous-output AWGN channels 
under sum-product decoding. This method is based on ap- 
proximating densities of log-likelihood ratio (LLR) messages 
as Gaussian mixtures. We assume for each variable node the 
graph is a tree up to a certain depth as validated by the gen- 
eral concentration theorem [2]. 

II. GAUSSIAN APPROXIMATION 

If all incoming messages of a variable node are Gaus- 
sian, then the resulting extrinsic information distribution is 
also Gaussian because it is the sum of independent Gaussian 
random variables. Numerical results using density evolution 
(DE) [1] show that the extrinsic information distributions from 
both variable and check nodes are very close to Gaussian even 
though the inputs are not. From now on, we assume all ex- 
trinsic information distributions are Gaussian. By enforcing 
the consistency condition [2] at each iteration, we can greatly 
improve the accuracy of the approximation and reduce the DE 
problem to a one-dimensional one. 

Let X(x) - YZU Aix<_1 and p(x) = £?I2 pixi_1 be the de- 
gree sequences for the variable and check nodes, respectively. 
For 0 < s < co and 0 < t < oo, we define /(s, t) as 

/(«.*)   =  Yl,p^' 
3=2 

£>tf(« + (t-l)t) 
J'-I\ 

where ip{x) is defined by 

(»—)■' du    if x > 0 
if a: = 0. 

The message update rule becomes now ti = f(s,ti-i), where 
s = muo is the mean of tin and ti is the ensemble mean of the 
output messages of check nodes at l-th iteration. The initial 
value to is 0. Note that since t\ = /(s,0) > 0 for s > 0, the 
iteration will always start. 

We define the threshold s* as the infimum of all s in R+ 

such that t/(s) converges to co as I -> oo. By finite induction, 
we conclude that if s > s*, ti(s) converges to co. The following 
lemma shows an alternative interpretation of the threshold. 

Lemma 1 ti(s) will converge to oo iff 

*</(«,*).   VtGR+. (1) 

As in the case of DE [2] we can derive a stability condition: 

Theorem 1 If X2 < AJ, then t will converge to infinity if 
the initial value of t is large enough. If A2 > AJ, then t 
cannot converge to infinity for any initial value of t, where 

For this model it is even possible to derive expressions for 
the convergence rate of the probability of error Pi. In partic- 
ular, for A2 < AJ, Pi behaves asymptotically as the following 
as f —► 00: 

Pi    ~ 

where a and b are constants that depend on X(x),p(x) and a. 
These predictions fit well with the actual results using DE. 

III. OPTIMIZATION OF DEGREE SEQUENCES 

For given p(x) and rate, we can find optimal A(x) that 
maximizes the noise threshold. This can be performed by 
maximizing the rate subject to the normalization and the in- 
equality constraint in (1), which can be done using linear pro- 
gramming. Optimization of p(x) can be done similarly. We 
show when we consider only low error probability regions, the 
optimal form of p(x) is concentrated in 1 or 2 consecutive 
degrees. We have successfully optimized degree sequences us- 
ing these methods up to within 0.05 dB from the Shannon 
limit for rates greater than 0.99. Good degree sequences were 
also obtained for lower rates. Online demonstration of de- 
gree sequence optimization using the GA and more results 
are available at http://truth.mit.edu/~sychung. 
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Abstract — In this paper, we introduce a simple 
technique for analyzing the iterative decoder that is 
broadly applicable to different classes of codes de- 
fined over graphs in certain fading as well as AWGN 
channels. The technique is based on the observation 
that the extrinsic information from constituent MAP 
decoders is well approximated by Gaussian random 
variables when the inputs to the decoders are Gaus- 
sian. The independent Gaussian model implies the 
existence of an iterative decoder threshold that statis- 
tically characterizes the convergence of the iterative 
decoder. Despite the idealization of the model and 
the simplicity of the analysis technique, the predicted 
threshold values are in excellent agreement with the 
waterfall regions observed experimentally in the lit- 
erature when the code word lengths are large. 

I. INTRODUCTION 

This paper is based on a simple but powerful technique orig- 
inally developed by the first author in his Ph.D. thesis [1] 
to evaluate the convergence characteristics of the iterative 
decoder for various graphical codes. Independently and at 
roughly the the same time as [1], Richardson and Urbanke [2] 
developed a rigorous method of analysis for iterative decod- 
ing of Gallager low density parity check codes (GLDPCCC). 
Their approach entails computation of density functions as 
they evolve from one iteration to the next. The analysis tech- 
nique proposed in this paper is simpler to evaluate than the 
density evolution technique and provides insights into the de- 
coder operation that would be difficult to extract using the 
density evolution approach. Furthermore, despite the ideal- 
ization of the mathematical model and the simplicity of the 
analysis technique, the close agreement between its predictions 
and the simulation results available in the literature, including 
[2], is striking. 

II. DECODER CONVERGENCE 

Iterative decoding on graphs can be viewed as a multi-stage 
decoding operation where soft information is exchanged be- 
tween the different stages. The algorithm performed in each 
iteration can be either the sum-product or the min-sum algo- 
rithms [3]. It was observed in [3] that, if inputs to the sum 
product algorithm are independent Gaussian random vari- 
ables, then the output can be tightly approximated by a Gaus- 
sian random variable. The independent Gaussian approxima- 
tion allows for complete characterization of the turbo decoder 
convergence in terms of a single parameter: the extrinsic in- 
formation signal-to-noise ratio. 

In this paper, we only consider the sum-product algo- 
rithm. Therefore, we assume that the constituent codes are 
decoded by a soft-input/soft-output (SISO) maximum a pos- 
teriori (MAP) decoder. The model developed in [4] is intended 
to cover graphical codes that enjoy some symmetry in their 

structure; however, with minor modifications the proposed 
technique can be extended to handle certain irregular codes. 
In [4], we use this model to show that it is sufficient to char- 
acterize the extrinsic information SNR input/output relation 
of the basic constituent decoder(s) to determine if the turbo 
decoder will converge or not at any Eb/No [4]. This character- 
ization is generally possible via simple simulations. We only 
need to simulate on constituent decoder, assuming symmetry, 
with Gaussian extrinsic and intrinsic inputs and measure the 
output extrinsic information bit error rate. 

III. APPLICATION TO DIFFERENT CODE 

CONSTRCUTIONS 

In [4], we analyze in detail the effect of the iterative de- 
coder convergence characteristics on the performance of var- 
ious graphical codes. For all of the cases considered, the 
convergence results predicted by the proposed technique are 
within a small fraction of a dB from the simulation results re- 
ported in the literature. [4] also includes an interesting asym- 
metric parallel concatenated code designed based on conver- 
gence considerations. 

IV. CONCLUSIONS 

The main result established in this paper is that the perfor- 
mance of graphical codes in the low SNR region is governed 
by the convergence characteristics of the iterative decoder in- 
dependent of the distance spectrum of the code. Thus, tradi- 
tional optimization of the code parameters with respect to the 
distance spectrum will not in general improve the performance 
in the low SNR region. The simple method developed in this 
paper to analyze the iterative decoder convergence is based on 
the Gaussian approximation and yields very accurate results 
compared with the literature. 
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Abstract — A thresholding method for reduction of 
dimensionality applied to test statistics of an M-ary 
composite hypothesis testing problem, with the max- 
imum likelihood (ML) estimates incorporated instead 
of the true parameters, is developed. The ML esti- 
mates are obtained from training sets of small size. 
The thresholding method selects only the entries in 
the testing vector that contain a large amount of infor- 
mation for discriminating among M hypotheses. The 
information measure is a plug-in version of the rel- 
ative entropy with one of two distributions known. 
The method is promising for the exponential family. 
The performance of the test with a reduced number of 
dimensions is analyzed by applying a theory of asymp- 
totic expansions of integrals. 

I. MODIFIED TEST 

Consider an M-ary hypothesis testing problem with popu- 
lations modeled to belong to a parametric family with an h- 
dimensional vector of parameters 9 in an open subset 6 C Ti-h ■ 
Assume that the vectors of parameters 9m,m£M = l,...,M, 
are unknown and distinct. Suppose that M independent sets 
Sm, one for each population, are available to estimate the un- 
known parameters. Each set <Sm consists of a collection of N, 
i.i.d. realizations of a random vector of length n > N sampled 
from the m-th parametric distribution. Maximum likelihood 
(ML) estimation often has low complexity and is often pre- 
ferred for practical pattern recognition systems (see [1]). 

Independent data R drawn equiprobably from one of the 
M populations are tested using the composite Bayes test with 
ML estimates in the test statistics. When the entries in the 
vectors of observations are independent, the test is 

arg max V log {p(Ä(i) : 0m{l))\ , (1) 
1 = 1 

where 6m{l), are the ML estimated parameters obtained us- 
ing the training set <Sm. Tests of this kind are known as 
plug-in tests [1]. Plug-in tests with ML estimates often ex- 
hibit degraded performance and even a so-called peaking phe- 
nomenon, which results from nonoptimal use of ML estimates 
in the test statistics. 

A method used in pattern recognition to improve perfor- 
mance of the test with the plug-in test statistics is to apply 
a method of dimensionality reduction [2, 3]. We take this 
approach and develop a hard thresholding method to select 
informative variables (features). First, define a null hypoth- 
esis, under which the testing data have a parametric distri- 
bution from the same family as the hypothesized populations 

1This work was supported in part by Grant DAAH04-95-1- 
0494, by Grant N00014-98-1-06-06, and by the Boeing McDonnell 
Foundation. 

but with known vector of h parameters ip (a design vector- 
parameter). The distribution of the null hypothesis can be 
incorporated in the test statistics by applying a chain rule. 
Further the number of dimensions of the testing vector is re- 
duced by using a thresholding approach. According to the 
method, only the entries in the testing vector that contain the 
most information for discrimination among M populations are 
selected. The discrimination information is measured using 
the following rule 

d{dm(l),iP(l))>K, (2) 

where K is a nonnegative parameter, called thresholding level, 
and d(-,-) is an information measure between two distribu- 
tions. Note that (2) involves the distribution of the null hy- 
pothesis. In this work we choose d(-,-) to be a plug-in ver- 
sion of relative entropy. Invoking the null hypothesis and the 
thresholding rule (2), we can obtain the test 

arg max N 
1 = 1 

log 
p(R(l) : flm(0) ) 
p(R(l) : iP(l))   M-(«m(').*(0)>- (3) 

where /(.) is an indicator function. 

II. PERFORMANCE ANALYSIS 

We analyze the performance of the modified test in (3) by 
first using Monte-Carlo simulations and then by applying a 
theory of asymptotic expansions of integrals. If N is a pa- 
rameter of approximation, the moment generating function of 
the modified test statistic (assume M = 2) is a product of 
(semidefinite or definite) integrals each with a kernel of ex- 
ponential type. Under conditions stated in [4], each of these 
integrals can be asymptotically approximated to an arbitrary 
order in (1/N) (we consider 0(N~2) ) by applying the Mellin 
transform method. The approximation depends on the loca- 
tion of the true parameters in parameter space relative to the 
solutions of the equation d(9m(l),ip(l)) — K,   1 = 1, ...n, [5]. 

The results are applied to complex Gaussian models that 
appear in automatic target recognition problems [5]. 
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Abstract — Principal curves, like principal compo- 
nents, are a tool used in multivariate analysis for ends 
like feature extraction. Defined in their original form, 
principal curves need not exist for general distribu- 
tions. The existence of principal curves with bounded 
length and a learning algorithm for such curves for 
any distribution that satisfies some minimal regular- 
ity conditions has been shown. We define principal 
curves with bounded turn, show that they exist, and 
present a learning algorithm for them. 

I. INTRODUCTION 

Principal component analysis is a widely used tool in multi- 
variate data analysis for purposes such as dimension reduction 
and feature extraction. A generalization of the idea of princi- 
pal components to principal curves was introduced by Hastie 
and Stuetzle in [2]. Principal curves by their definition in 
[2], however, are not guaranteed to exist for any distribution. 
Kegl et. al. [3] provided a new definition for principal curves 
with bounded length, and showed that such curves exist for 
any distribution with bounded second moment. They also de- 
rive a learning algorithm for such curves. Due to the length 
constraint, the treatment in [3] does not encompass the case 
of classical principal component analysis. In this paper, we 
penalize the turn of a curve instead of its length, and look for 
principal curves within the class of curves of bounded total 
turn. The appeal of this approach consists partly in the fact 
that principal components are a special case of such principal 
curves wherein the total turn is 0. We define principal curves 
with bounded turn and show that they exist and also analyze 
an algorithm for learning such curves. Our approach to the 
problem follows very closely that in [3]. 

II. PRELIMINARIES AND NOTATION 

Definition 1 A curve in R is defined as a continuous func- 
tion /:/HR where I is an interval on R (possibly infinite, 
but a closed subset of R). 

Consider a curve / and a point x £ Rd. We define the 
projection of x onto / and the distortion due to this projection 
in the natural way. For a random variable X, we define the 
distortion A(/) of curve / as the expected distortion due to 
projection of X on to /. 

Definition 2 Given a random variable X, we say that f is 
a principal curve for X in a class of curves C if f £ C and 

A(/) = infsec A(5) ^ Ac 

We define the turn «(/) of a curve / as in [l] so that it 
generalizes the notion of total integral curvature of a curve to 
nonsmooth curves in a natural way. 

This work was supported in part by the National Science Foun- 
dation under NYI grant IRI-9457645 and grant ECS-9873451. 

III. EXISTENCE OF PRINCIPAL CURVES 

The main idea in the construction is to use the compactness 
property of the set of curves of bounded turn within a compact 
subset of R . We know that for any CK, there exists a sequence 
of curves in CK whose distortions converge to A *c . From this 
sequence, we construct a subsequence of curves such that this 
subsequence converges on any compact subset of Rd. We then 
obtain a "limiting" curve from this subsequence and show that 
it achieves the minimum distortion in the class and, therefore, 
is a principal curve. 

We need to impose more stringent regularity conditions on 
the class of curves we consider to ensure that minimizers of 
our objective function exist as curves that are permitted to 
accumulate their turn arbitrarily far from the origin may result 
in the "limit" of these curves not being a curve, but a union 
of curves. We take the following approach to circumvent the 
above problem. Impose a uniform bound on the rate at which 
the turn accumulated within BR converges to the total turn 
of the curve, i.e. fix T(R) continuous and decreasing in R and 
consider the class of curves 

CK = {/ such that «(/) < K, «(/) - K(/|BH) < T{R)}   (1) 

Proposition 1 Consider the class of curves CK as detailed 
in (1). If £[||X||2] < oo, then there exists a principal curve 
in CK. 

As in [3], we may also derive a result on learning such prin- 
cipal curves from i.i.d. data (imposing some extra regularity 
on Fx)- In order to arrive at the principal curve, we resort to 
empirical risk minimization. When we have a finite amount of 
data, we cannot optimize over the entire class CK as this may 
lead to overfitting to the data. Hence, we choose a sequence of 
classes of increasing complexity within which the optimization 
is conducted. Just as in [3], we consider classes of polygonal 
lines with increasing number of segments. A distinction that 
we make is that we also expand the set in which these polyg- 
onal lines lie as the random variable X is not assumed to be 
bounded. 

Proposition 2 Suppose that E[\\X\\7lBc(X)} < R~a, then 

there exists an algorithm to produce a sequence of estimates 
fn such that 

A(/„)-A(r)~0(n-5+^) 
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Abstract — In this paper, we propose a technique 
to reduce the number of trellis states in BCJR-type 
algorithms, i.e., algorithms with a structure similar 
to that of the well-known algorithm by Bahl, Cocke, 
Jelinek and Raviv (BCJR). This work is inspired by 
reduced-state sequence detection (RSSD). The key 
idea is the construction, during one of the recursions, 
of a "survivor map," relative to the reduced-state trel- 
lis, to be used in the other recursion. 

I. BCJR-TYPE ALGORITHMS 
We assume that a source emits a sequence of independent 
and identically distributed information symbols {a*} which 
is transmitted through a channel modeled as having a finite 
memory, possibly by means of some approximations as in [1]. 
Denoting by x* = {xk}k=1 the sequence of samples at the 
input of the receiver, where K is the transmission length and 
Xh is the observation vector at the fc-th signaling interval, and 
by ek(m',m) the branch which connects state Sk — tn' to 
state Sk+i = m, we assume that the BCJR algorithm [2] can 
be generalized as 

P(ak = »|xf) = P{ak = i}Y,'Tk(ek)ak(eh)ßh(ek)P{S-(el.)} 

where S~(ek) is the beginning state of transition ek. The 
sum in the above formula is extended over all transitions of 
epoch fc associated to information symbol a(ek) = i. Similarly 
to the BCJR algorithm, we assume that we can compute the 
probability density functions ak(ek) and ßk(ek) by means of 
a forward and backward recursion [1, 2, 3]. 

II. PRINCIPLE OF A REDUCED-STATE BCJR-TYPE 

ALGORITHM 
A single transition in the full state trellis can be related to V 
information symbols, that is ek = (ak-v+i,- • .,ak). Without 
going into the details as done in [4], indicating by sk a state in 
the reduced-state trellis, we simply identify the state reduction 
by assuming that a transition ek = (ak,ak+i) in the new trellis 
is equivalent to a sequence (oi_Q+i,... ,ak) of information 
symbols, with Q < V. In the reduced-state trellis we may 
define by &£'___ Aek) the sequence of the most likely transitions 
(e*-i-t+i,...,«*-j) = (ak-j-i-Q+2,... ,ak-j-Q+i) along the 
survivor that ends in ek. As ak(ek) can be calculated through 
a forward recursion in the full state trellis, a similar recursion 
holds for ak(ek) in the reduced-state trellis. In the logarithmic 
domain, we may write 

äk(ek) cz max {^k(ek-i,ek)+äk-i(ek-1)+lnP{a0u(€k-i)}} 

where i/>k(ek-i,ek) is a suitable logarithmic probability den- 
sity function and a0td(ek-i) indicates the information symbol 
lost in the transition ek-\. For each transition ek, the tran- 
sition e™" that maximizes the partial metric rj>k(ek-i,ek) + 

10' 

10" 

1 iteration 

<£         . 6 iterations 

v\ N.         ^\        .*«; 

—  Coherent    \ 

— v-3 (Q-3)     \ 

— -   v-4 (Q-4)           \ 

•—• v-3, Q-2 
A—* v-4, Q-3 

»—» v-5. Q-3 

4 5 6 7 8 
E/N0 [dB] 

Fig. 1: Application of the proposed technique to iterative detection, 
through linear prediction, over a flat-fading channel. 

ak-i(ek-i) + lnP{a0u(ek-i)} should be stored (equivalently, 
we could store *~(«™") or a£J", the symbol discarded in the 
transition e™"). Keeping track of the survivors associated to 
each transition in the forward recursion, we build a "survivor 
map" to be used in the backward recursion. 

The proposed reduced-state technique can be successfully 
applied to various cases where iterative decoding can be em- 
ployed: coherent detection over channels affected by intersym- 
bol interference (ISI) (assuming perfect knowledge of the ISI 
channel coefficients), noncoherent detection as proposed in [1] 
and fading channels. 

In Fig. 1, we consider iterative detection, based on linear 
prediction, over a Rayleigh flat-fading channel, referring to 
the concatenated scheme (outer convolutional code and inner 
differential code) proposed in [5]. The performance for vari- 
ous levels of complexity (in terms of prediction order v and 
reduced-state parameter Q of the inner differential detector) 
is shown. The considered numbers of iterations are 1 and 6 in 
all cases. The performance in the case of decoding with per- 
fect knowledge of the fading coefficients is also shown (solid 
lines). The normalized fading rate is fDmamT, = 0.01. 
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I. INTRODUCTION 

In this paper we show that the log-likelihood of finite mix- 
ture models is approximately concave as a function of the 
number of mixture components k. A corollary of this result 
is that the penalized log-likelihood will also be approximately 
concave (as a function of k) if the penalty term is itself strictly 
concave or linear in k (true, for example, for BIC [1]). These 
results have a number of significant practical implications for 
parameter estimation [2] and model selection [3, 4] in a mix- 
ture context 

II. NECESSARY CONDITIONS ON THE MIXTURE 
COMPONENTS 

Our results require three assumptions on the functional 
form of the components in the finite mixture models being 
used to fit the data (assumptions which are commonly met in 
mixture models used in practice): 

1. Each model of complexity k contains each model of com- 
plexity k' < k as a special case (i.e., it can be reduced 
to a model of lower complexity by a suitable choice of 
parameters). 

2. Any two models of complexities fci and fo can be com- 
bined as a convex weighted sum in any proportion to 
yield a valid model of complexity k = ki + fa. 

3. Each model of complexity k = ki + fo can be decom- 
posed into a convex weighted sum of two valid models 
of complexities fci and &2 respectively, for each valid 
choice of ki and &2- 

III. CONCAVITY 

We wish to fit a finite mixture model probability density 
function (PDF) to the data U consisting of data points Xi, 

U = {xi,x2,... ,x„}, of the form: f(x;9).- £* <*,•$,• (*;0y) 
where $j are basis functions of the mixture model, each with a 
corresponding set of parameters 0j. Assuming that the Xi are 
independent (conditioned on the model /) the log-likelihood 
is defined as: l(0\U) = £"=1 \nf(Xi;6). 

Theorem 1: 
Assuming a mixture model that satisfies the three assumptions 
from Section II, the log-likelihood is first-order concave, i.e., 

h+i - 2Zfc + lk-i < 0, (1) 

within first-order, where the quantities Ik and lk±i are log- 
likelihoods of the best k and k ± 1 -component models, i.e., 
the models with k and k ± 1 components which achieve the 
maximum of the likelihood function. 

O    In-sample log-likelihood 
•o ■ BIC penalized log-likelihood 
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Fig. 1:   Maximum log-likelihood and BIC as a function of k for 
Markov mixtures fitted to sequences from a Web data set. 

From the theorem above an obvious corollary is that if an 
additive penalty term to the log-likelihood is strictly concave 
or linear-in k, then this implies first-order concavity of this 
penalized log-likelihood (BIC being such an example). 

Figure 1 shows an empirical example of apparent concavity 
for a mixture of Markov chains fitted to over 100,000 page- 
request sequences from a large commercial Web site. Note 
that BIC as a function of k is unimodal, as predicted within 
first-order by theory. This unimodality is a useful practical 
property in searching for the best model within a large model 
family as in this example. 

Li and Barron [5] have shown in related work that the log- 
likelihood for any k is bounded above by a function of the 
form C/k where C is a constant which is independent of k. 
The results presented here are complementary in the sense 
that we show that the actual maximizing log-likelihood itself 
is concave to first-order as a function of k. 
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Abstract— The normalized maximum likelihood dis- 
tribution as a code minimizes the mean code length 
distance to the ideal target, defined by the negative 
logarithm of the maximized likelihood of a paramet- 
ric class of models, where the mean is taken with re- 
spect to the worst case model outside the paramet- 
ric class. The same minmax bound is in essence the 
lower bound for all codes when the mean is taken 
with respect to almost all distributions that minimize 
the mean ideal target. These results strengthen the 
known bound when the mean is restricted to the para- 

metric class. 

I. INTRODUCTION 

Two fundamental types of universal code denning distribu- 
tions for a parametric model class Mk = {P(xn;9)}, where 9 
ranges over a subset Q of the fc—dimensional Euclidean space, 
are the mixture 

P»C 
Jn 

P(xn;9)w(9)d9 (1) 

and the Normalized Maximum Likelihood NML distribution 

H*n) = *V; *(*")) (2) 

Here, w is a density function on the parameters, often called 
a 'prior' although no prior knowledge in the Bayesian sense 
is required, and 9(xn) is the ML estimate. The mixture 
for a special prior minimizes the worst case redundancy, [2], 
min, max» Ee log(P(Xn; 6)/q(Xn)), which also defines the ca- 
pacity of a related channel. In [5] this was generalized to min- 
imizing the worst case relative redundancy 

minmax Eg log(P(Xn; 9g)/q(Xn)), (3) 

where 6g minimizes -EglogP(Xn;6) and where the expecta- 
tion is to be taken with respect to a distribution outside the 
model class Mk satisfying certain conditions. Asymptotically 
the minmax relative redundancy was reached by a modified 

Jeffreys' mixture. 
The normalized ML distribution,   too, solves a minmax 

problem due to Shtarkov, [4], but of a very different kind, 

min max log 
q(xn) 

(4) 

The first contribution of this paper is to show that the normal- 
ized ML distribution also solves the following minmax problem 

nun max u9 E9log^ßp=logCn(k), (5) 

where the expectation is taken with respect to virtually any 
nonsingular distribution g(x"). 

We then have a nice symmetrical situation in that the 
two universal distributions, the modified Jeffreys' mixture 
and the normalized ML distribution, are solutions to their 
closely related minmax problems, (3) and |5), respectively. 
These are indeed close, since for iid models 9(xn)) -t 9g with 
p-probability 1. As in [1] for the case where G = Mk one 
can interpret -£9log P(Xn;9(X")) as the mean of an ideal 
but unreachable target code length, and the minimizing q as 
the reachable distribution that is closest to the ideal target in 

the mean code length sense. 
In [3] this result was strengthened as follows. Let Ge = {g : 

9g — 9}, and define 

g(9) = min Es log l/f(Xn; 9(Xn)) 
96°» 

as the most 'benevolent' distribution for model f{Xn; 9) giving 
the shortest mean ideal target. 

Theorem 1  Let Mk be an exponential family.  Then 

logC„(fc)= Jlogf+log / \I(9)\1/2d9 + o(l),      (6) 
2        2TT Jn 

where \I(9)\ is the Fisher information. Moreover, for any dis- 
tribution q(xn) and any e 

Eg{e) log l/q(Xn) > Em log l/f(X"; 9(Xn)) + ^ log n 

except for 9 £ An, where the volume of An goes to zero as 

n -> oo. 
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Abstract — We offer two noiseless codes for rep- 
resenting blocks of n integers Xn generated inde- 
pendently by a source characterized by an unknown 
monotone probability function. Though assumed 
monotone, the source is allowed arbitrary entropy 
H > 0, including zero. Our first coding procedure is 
illustrative, yet universal in the strong sense that the 
expected value of the code length L(Xn) is dominated 
by a linear function of the source entropy, E L(Xn) < 
Co + Ci n H. Our second procedure is asymptotically 
optimal in the sense that E L(Xn) < nH + o(nH). We 
discuss the implications of these coding procedures 
for model selection using MDL. 

I. INTRODUCTION 

Consider the problem of encoding a finite collection of n 
positive integers, Xn = (.Xi,... ,X„) into a prefix code of 
shortest expected length. The component terms Xi > 1 are 
independent, integer-valued random variables that share the 
common, unknown monotone probability distribution F. If 
X ~ F denotes a random variable with distribution F, then 
Pr(X — i) = pi > Pi+i, i = l,2,..., but are otherwise arbi- 
trary. In particular, the entropy 

H= -^Pilogpi 

can be 0, in which case all Xi = 1. 
We wish to encode Xn as efficiently as possible for the 

given sample size n, regardless of the entropy of the underly- 
ing source. Given F, one can construct an arithmetic coder 
whose code length LF(X

U
) is on average within one bit of the 

minimum attainable length, 

nH<ELF(Xn) < 1 + nH . 

If F is unknown, we seek a universal code whose loss relative 
to this Utopian performance is limited. In particular, we seek 
to encode Xn so that the length of the resulting prefix code 
L(Xn) is bounded in expectation by a linear function of the 
entropy of the source, 

E L(Xn) < co + ciH(Xn) = co + cm H , 

where the constants co and ci > 1 are invariant of n and F. 
Such a code is universal in the sense described by Elias [1]; the 
ratio of the expected code length to the minimum attainable 
message length is bounded for all allowed sources, 

EL(Xn) 

mzx.(l,H(Xn)) 
< Co + Ci 

We also want to use codes that are optimal in the sense of 
having small values for the constants Co and ci. 

II. RESULTS 

Our first result is to show that a simple modification 
of the concatenation of scalar universal codes produces a 
universal code with co = 3 and ci = §. Surprisingly, the only 
modification is the optional compression of the leading bits of 
each universal code so that the code is competitive when the 
source entropy is near 0. Our second result is to extend this 
approach significantly to produce an asymptotically optimal 
code for sources with arbitrary entropy. Specifically, we prove: 

Theorem 1. There exists a uniquely decodable prefix code for 
Xn whose length function L(Xn) satisfies 

lim 
nH-io 

EL(Xn) 

nH 
<1 + 

2 log log (nH) 

log(nff) 
+ 0 

log «if 

Thus, the relative redundancy goes to 0, asymptotically, as 
the minimum expected number of bits goes to infinity. Our 
final goal is to provide a firm upper bound on the code length 
for all sequences. To this end we prove: 

Theorem 2. There exists a uniquely decodable prefix code for 
Xn whose length function L(Xn) satisfies 

EL{Xn) <l + H(Xn) l+O 
/log log log n 

\   log log n 

This code has a particular goal in mind: model selection us- 
ing the minimum description length (MDL). In that setting, 
the Xi represent the absolute value of rounded, standardized 
parameter estimates in a statistical model, such as the coeffi- 
cients in a multiple regression equation. 
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Abstract — A lower bound on the achievable re- 
dundancy for universal lossless coding of parametric 
sources with abruptly changing statistics is derived. 
Unlike the previously known bound for a problem that 
assumes a fixed number of changes in the statistics, 
the new bound is general and can be used even if the 
number of changes increases with the data length. 

The universal lossless coding problem of Piecewise Station- 
ary Sources (PSS's), namely, sources with abruptly changing 
statistics, has significant practical importance. This results 
from the fact that data sequences from a large family of prac- 
tical applications can be modeled as being emitted from a 
source in this class. 

A PSS is uniquely defined by the parameter ip = (0, t). The 

vector 0 = (0i, 02,..., 0q) is the set of ^-dimensional parame- 
ters that govern the statistics in each of q stationary statisti- 

cally independent segments. The vector t = (ti,£2,• • •, tq-i) 
represents the set of transition times between stationary seg- 
ments. The redundancy of a code with length function L (•) 
for n-sequences governed by ip is defined as 

Rn(L,iP) = -E^L(Xn)-H^(Xn), (1) 
n 

where Xn is a random sequence, E^ is the expectation for the 
given PSS, and H$ is the per-letter average entropy of ip. 

In [1], Merhav derived a lower bound on the redundancy of 
any universal lossless code for a somewhat artificial particular 
case, where it is assumed that q remains fixed even if n grows. 
Merhav showed that for every code with length function L (■), 
the average universal coding redundancy over all sequences of 
n letters, drawn from almost every PSS ip with a fixed number 
of stationary segments q, is lower bounded by 

Rn(L,xl>)>(l-e)(±kq + q-l) 
logn 

(2) 

where e > 0 can be arbitrarily small. 
In various recent works, different approaches were used to 

develop low complexity, strongly sequential, compression al- 
gorithms specifically designed to code memoryless PSS's. Re- 
cently (see [3]), it was shown that even if q grows, there exist 
such coding schemes that achieve redundancy of 

Rn{L,tl>)<(l + e)(jkq + q-l) 
logm 

(3) 

for every PSS, where m = n/q is the average segment length 
and e > 0 can be arbitrarily small. 

In this work we show that in the general case, where q is 
allowed to grow with n (but at a slower rate), there exists a 
lower bound that asymptotically meets the upper bound in 
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(3). First, let A, be the class of all PSS's with q segments. 
Then, define a subclass Ae C A, as follows: If q —t oo, Ac con- 
tains all ip € A, for which almost all segments are sufficiently 
long (at least ml~c time units) and almost all transitions are 
sufficiently large (at least of Euclidean distance of m~e). Oth- 
erwise, A£ contains all ip 6 A, for which all segments are suf- 
ficiently long and all transitions sufficiently large. It can be 
shown that in either case, Ae contains almost all sources in A, 
in the sense that under the uniform prior (distribution) fi (•) 
over all possible sources in Aq, fi (AE) —> 1 as n —> oo. 

Next, partition the subclass AE into disjoint sets (p = 
(ip1,... ,ipMv), each with M# > M points ip' € Ac, such that 
any set ip contains the largest possible number of sources ip, 
distinguishable by Xn, for which the parameters for all short 
segments and small transitions are identical. A set <p is distin- 
guishable by Xn if for any source ip' € (fi, the probability that 
an Xn generated by ip' appears to be generated by ip3 € (fi 
for j ^ { goes to zero. 

By the random coding version of the redundancy-capacity 
theorem (see [2]), if p(Ae) -> 1, and all possible sets (fi are 
distinguishable by Xn, then the redundancy of every code for 
almost every source ip 6 A,, except for a set of sources B for 
which ß (B) —> 0, is lower bounded by 

Rn (L,iP) >(l-e) 
logM 

(4) 

where e > 0 can be arbitrarily small.   Lower bounding the 
maximum Mv that satisfies the above condition, and using 
(4), the redundancy for almost all ip S A, is lower bounded 

by 
logm 

A. (£.V0>(l-e) (1*9 + 9-1)^ (5) 

for any parametric PSS of practical interest. If q 2> m, in 
order for all sources ip in a set (fi to be distinguishable, the 
choices of Sq long segments, and 8q large transitions, for a 
S > 0 that can be arbitrarily small, are constrained by the 
choices of the other parameters for any source ip € (fi. This 
reduces Mv, but negligibly, resulting in the same lower bound 
as in (5). The lower bound above confirms the optimality of 
schemes that achieve the redundancy in (3). 
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Abstract —   We present bounds of the redundancy II. BLOCK-SORTING ALGORITHM 
of the recency-rank [2] and the block-sorting [1] uni- Let ^ be the ßurrows-Wheeler Transform (BWT) of xqk 

versal lossless data compression algorithms for finite- ^ fc.symbol extension and ak (xqk) be the pointer of the se- 
length sequences. quence. We use the recency-rank algorithm ipk with ft-symbol 

I. RECENCY-RANK ALGORITHM extension to encode a(xq ) and a lossless encoder 6q to encode 
We call the mapping £ : An -* An k-block permutation if there a(xqk). Then the block-sorting algorithm *t is defined by 
exists a permutation irxn : {1,2,... , q} -+ {1,2,... , q} such 

that S(*n) = [*'=i <;;„(w-i],+i] * aft+i, where q = [n/k\ 
and n = qk + r.   We assume that both the encoder and Since BWT is a fc-block permutation, we do not need the 
the decoder have £.   For yn  e An, we encode yqk by the BWT to perform the universal asymptotic optimality when 
recency-rank algorithm with fc-symbol extension and yqk+i the lossless encoder is the recency-rank algorithm with the 
using some fixed-length lossless code. Let ipk be the encoder extension of alphabet.   However, due to sorting in the lex- 
and H(pk(x

n)) be the non-overlapping fc-block empirical en- icographical order, symbols with the same context are gath- 

$k(x
n) = <pk((Tk(x

qk) * xn
qk+1) * 5q(ak(xqk)). 

tropy function estimated from xn. 

Theorem 1  Let £ be a k-block permutation. Then 

^(V*«(*B))) < \H(pk{x
n)) + ilog2fc 

+ ^log2 1 + 
2k\A\k 

+ £ log2 log2 1 + 
2k\A\k 

+o(üiÄi)+o(i). 
When k(n) satisfies k{n)\A\k(n) <n< [k(n) + l]|^|fc(n)+1, 

+ 0 /logjlog^oganN 

V        loS2"        / ' 
When £ is the identity map, this theorem is the results 

in [2]. It follows from the theorem that the algorithm is asymp- 
totically optimal for an infinite-length sequences, stationary 
ergodic sources in the almost-sure sense, and Asymptotically 
Mean Stationary (AMS) sources in the average and almost- 
sure sense. 

Next theorem tells us the lower bound of the redundancy. 

Theorem 2 Let £ be a bijective k-block permutation.   Then 
there exist 0 < h < log2 |«4| and xn such that 

£%*«(*"))) > £#(P*(*")) + I log2 k 

_„(£*.)_„(!£)_„(.). 
When fc(n) satisfies k{n)\A\k(n) <n< [k(n) + l]\A\k{n)+1, 

k log2 n -°(r-) \log2 n) 

ered by the BWT. This provides the good performance for the 
block-sorting algorithms. We construct the code $/t defined 
by 

*fc(xn) = yk{ak{Txqk) * xn
qk+l) * Sq(ak(T

sxqk)) * 5k(s), 

where s = argmin0<3<fc-i £((pk(o-k(T
sxqk)) and T is the rota- 

tion of the sequence. Let H(pm(xn)) be the empirical m-step 
Markov entropy function estimated from x". We have the 
following theorem. 

Theorem 3 

U{*k{xn))<H(ir{xqk)) + \\og2k 

+ ^log2 1 + 
2fc|.4P|.4|* 

+ ^log2l 1 + 
2fc|^n-4|* 

0Aog2bg2n+0/lo|n\+0/^ 

When k{n) satisfies Jfe(n)|.4|*(n) < n < [fc(n) + l]|.4|fc(n)+1, 

-l($k(n)(x
n)) <     min 

n K   ' 0<m<fc(n) 
H(^n(xqkW)) + m[log2 Ml]2 

log2n 

|  [log2 ].4|] log2 log2 n  | 0 

log2 n 
/log2log2log2n\ 

\       lo§2n       ) ' 

It should be noted here that m is automatically optimized 
by the BWT and we don't need to select it. 
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Abstract — Let a be a primitive element of Fa*. Let 
d = 32k -3* + l where n = 3k. We show that the ternary 
sequence {a(t)} given by s(t) = Trn(a

l +adt) has a two- 
level ideal autocorrelation function. 

I. INTRODUCTION 

Given a sequence {s(t)} of period e and with elements from 
a finite field Fp. The autocorrelation of the sequence at shift 
r is defined by 

a(r) = ]Tw S(t + T)-S(t) 

t=0 

j2fc Theorem 1. Let d = 3Z 

the ternary sequence given 
3* + 1, n = 3fc and let {s(t)} be 

a(t)=Trn(a
t + adt) 

where a is a primitive element of F3".   Then the sequence 
{s(i)} has ideal two-level autocorrelation. 

The autocorrelation of the sequence above will equal the 
crosscorrelation of two m-sequences that differ by this deci- 
mation and thus will be at most three-valued.  The purpose 

1This work was supported in part by The Norwegian Research 
Council under grant numbers 127203/410 and 119390/431 and 
in part by the National Science Foundation under Grant NCR- 
9612864. 

[4] 

where w is a complex pth root of unity. 
An important problem in sequence design is to find se- 

quences with two-level ideal autocorrelation, i.e., where a(r) — 
—1 for any r^O. Recently, much progress has been obtained 
for binary sequences of period e = 2n — 1. These are of consid- 
erable interest also because of their close connections to differ- 
ence sets. For recent work on binary sequences with two-level 
ideal autocorrelation function the reader is referred to [3], [6], 
[7], [8], [2] and [1]. 

Motivated by these results we focused our attention to 
ternary sequences. To our knowledge, the only non-binary 
sequences over the alphabet Fp of length pn — 1 with ideal au- 
tocorrelation are the m-sequences and the GMW-sequences. 
This paper present one new family of ternary sequences with 
ideal autocorrelation. 

II. MAIN RESULT 

It is known that the crosscorrelation function takes on three 
values in the case d = p2k —pk + \ when n/gcd(n, k) is odd. t8i 
When p = 2 this result is usually attributed to Welch even 
though he never published a proof. In Kasami [5] a proof can 
be found in the binary case. For p > 2 the proof is given in 
Trachtenberg [11]. 

The following is the main result. 

of this paper is to show that the autocorrelation of this se- 
quence has only one out-of-phase value, being equal to —1. 
By observing that the trace function of the sequence can be 
expressed as a quadratic form over Fpk, we found the number 
of solutions and thereby proved the theorem. 

For  further  references  on  the  crosscorrelation  of m  - 
sequences the reader is referred to [4], [10], [5], [11] and [9]. 
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Abstract — We show that the crosscorrelation be- 
tween two ternary m-sequences of period 3" — 1 that 
differ by the decimation d = 2-3m + 1, where n = 2m+1, 
takes on 3 different values. We conjecture the same 
result for the decimation d = 2 • 3r + 1, where n is odd 
and r is defined by the condition 4r + 1 = 0 mod n. 
These two new cases form in a sense ternary coun- 
terparts of two recently confirmed binary cases, the 
conjectures of Welch and Niho. 

I. INTRODUCTION 

Let {«(<)} and {v(t)} be two sequences of period e with sym- 
bols from Fp, the finite field of p elements. The crosscorrela- 
tion of the sequence {u(t)} and {«(<)} is defined as 

0..„(T) = ^W«(t+T»-"(,), 

where w is a complex, primitive pth. root of unity. 
If {u(t)} and {v(t)} are two cyclically distinct m-sequences 

of period pn — 1 with symbols from Fp, we may assume without 
loss of generality that there exists a d such that gcd(d,pn — 
1) = 1 and that 

u(t) = Trnia*) and v(t) ■ Trn(a
dt) 

for some primitive elements a in the finite field Fp» and where 
Trn denotes the trace function from Fp» to Fp. We use 
Cd(r) to denote the crosscorrelation function between the m- 
sequence {s(t)} and its decimation {s(dt)}. 

It is known for a long time that the crosscorrelations be- 
tween two Fp-valued m-sequences of period pn — 1 that differ 
by a decimation d takes on 3 different values for the Gold type 
decimation d = \ (pk +1) (which can be replaced by d = 2* +1 
for p = 2) and the Kasami-Welch-Trachtenberg type decima- 
tion d = p2k - pk + 1 if nj gcd(fc, n) is odd. We even get a 
preferred, i.e. three-valued and minimal, crosscorrelation func- 
tion in these cases if gcd(fc, n) = 1. 

In the binary case old conjectures of Welch [5] and Niho 
[7] have recently been confirmed in part by [1], [4], [3] and 
[6], which give two additional decimations with a preferred 
crosscorrelation function for each odd n. Apart from the above 
mentioned cases no other decimations for odd n are known 
to have a preferred crosscorrelation function. Particular, no 
decimation have been found by computer experiments. Two 
further cases for even n can be found in [2]. 

II. MAIN RESULTS 

Our main result is the following theorem, loosely speaking 
the "ternary Welch conjecture": 
Theorem A. Let d = 2 • 3m + 1, where n = 2m + 1, then 
the crosscorrelation function Cd(r) is preferred, i.e. it takes 
on the following three values: 

-1 + 3m+1 occurs ±(3n_1+3ra) times 
-1 occurs 3" _ 3»-i _ i times 
_1 _ 3">+i occurs i(3n"1-3m) times. 

Our proof of Theorem A follows in principle the same basic 
steps as the proof of the binary case.   We were not able to 
prove the following "ternary Niho conjecture". 
Conjecture B. Let d = 2 • 3r + 1, where n = 2m + 1 and 

s=I       ifn = l    (mod 4), 

32=i      ijn = 2,    (mod 4), 

then the crosscorrelation function C<I(T) is preferred. 
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Abstract — We introduce three definitions of quater- 

nary codes which are based on a biologically motivat- 

ed measure of sequence similarity for quaternary n- 

sequences, extending Hamming similarity. The corre- 

2') S(x,x) > Si for any x € C and S(x, y) < 52 for any 
x#y, x6C, y eC. 

Definition 3. A set of words C C An is called a reverse- 
complement code with similarity threshold A if the reverse- 

sponding codes are used in bio-molecular experiments complement condition 1) holds and 

with DNA sequences. One of the codes is based on a 2") Si - S2 > A, where Si is the least self-similarity and 
distance function, extending Hamming distance.  We S2 is the largest cross-similarity in the set C, see 2'). 

discuss upper and lower bounds on the rates of these 
codes. III. BOUNDS ON THE RATE 

Denote by t(n,D), t'(n,Si,S2) and t"(n, A) the maximum 
I. NOTATIONS possible sizes of codes defined above.  Let n -> 00, D ~ nd, 

Consider the quaternary alphabet A = {0,1, 2,3} and de- 5l ~ nSl> Si ~ nS2 and A ~ nS' where d> 5»> s2 and S are 

note by A" the set of words w = (wi,..., wn), Wi € A.  For fixed' Introduce the rates of these codes 
any two words x, y e A", we define a similarity function 

n 

S(x,y) = Y^^xi'Vi)> (!) 
i=l 

where alphabetic similarities ?(0,0) = c(3,3) = 3, ?(1,1) = 
c(2, 2) = 2 and c(x, y) = 0 for x ^ y. 

The value S(x,x) is called a self-similarity of the word x, 
and the value S(x,y) for x # y is called a cross-similarity 
between sequences x and y. 

Using (1), we define a DNA distance on A" x An: 

P(x!y)A^(x,x) + S(y,y)_5(xy) (2) 

For any x = (xi,...,z„) e A", we introduce its reverse 
complementary word 

R(d) = lim sup 

R (si, S2) = lim sup 
n-+oo 

R"(S) = lim sup 

log2 t(n, D) 

logat'(n,Si,5a) 
n 

log2t"(n,A) 

Theorem 1 (Plotkin bound).  If d > 1.9, then R(d) = 0. 
IfO<d< 1.9, then 

R(d) < R(d) *»(-S')- 
Let m(p) = 1 + 6p - 10p2 < m(3/10) = 1.9, 0 < p < 1/2, 

ti(h,p) 4 log2 (2p2(l + 23fc) + 2g2(l + 22h) + 8pg22-8h) , 

X — (Inj^n-l, • ■ • ) Xl), 

where alphabetic complementaries have the form Ö ; 
2 = 1 and 3 = 0. 

3,1 = 2, 

II. DEFINITIONS 

Definition 1. A set of words C C A" is called a reverse- 
complement code of DNA distance D if the following two con- 
ditions hold: 

1) for any word x 6 C, its reverse complementary word 
x # x and x 6 C; 

2) £>(x, y) > D for any x # y, x, y e C. 

Definition 2. A set of words C C A" is called a reverse- REFERENCES 
complement code with similarity parameters (Si,S2) if the     [1]  R-G. Gallager, Information Theory and Reliable Communica- 
reverse-complement condition 1) holds and '»<"». New York: J- Wiley, 1968. 
—:  [2]  J. L. Massey, "Reversible Codes," Information and Control, no. 

'This paper was supported by the US Department of Energy 7 pp, 369-380  1964. 
through OBER. The work of A.D'yachkov and P.Vilenkin was sup- 
ported in part by the Russian Foundation of Basic Research, grant 
98-01-00241. 

where q = \ - p. For the fixed p g (0,1/2), consider the 
function E(p, d) > 0, 0 < d < m{p), defined by the parametric 
equations 

E(p,d) = h^l-ß(h,p),    cf=^l,    ft<0. 

Theorem 2 (random coding bound). If 0 < d < 1.9, then 

R(d) > R(d) =   max E(p, d) > 0, 
m(p)>d 

where the maximum is taken over p, 0 < p < 1/2, for which 
0 < d < m(p). 

[3]  A. G. D'yachkov and D.C. Torney, "On Similarity Codes," pa- 
per, submitted for publication. 

0-7803-5857-0/00/$! 0.00 ©2000 IEEE. 
-330- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Golay Complementary Sequences for OFDM with 16-QAM 

Cornelia Rößing1 

Department of Mathematics 
Ohio University 

Athens, OH 45701, USA 
e-mail: roessingtoath.ohiou.edu 

Abstract — Orthogonal frequency division multi- 
plexing (OFDM) is a common technique in multicar- 
rier communications. Whereas most results so far 
relate 4-PSK-based OFDM, this contribution intro- 
duces a new approach using the 16-QAM scheme. 

I. BASICS 

The transmission of a signal in an OFDM system is based 
on equally spaced, phase-shifted sinusoidal carriers. In a 4- 
PSK modulation e.g. there are four distinct phase shifts used, 
and the OFDM signal of a word x e ZJ is given by the real 
part of the function: 

n-l 

Sx(t) :=J2iXi exp[27"(/0 +3&f)t] 

where fo+jAf are the carrier frequencies and i = \/—\. The 
16-QAM (quadrature amplitude modulation) is a signal set 
that allows a convenient representation as a product af two 
4-PSK modulations.  Here, after a normalization R = y/2 is 

16-QAM as a product of two 4-PSK 

the distance between the origin and the center of one 4-PSK 
circle and r = |\/2 is the radius of the smaller circles. Then 
the OFDM signal is given by the function 

n-l 

&,,(*) ~ J2(Ri*J +riVi)e-xp[2m{fa+iM)t], 
3=0 

where x,y S ZJ. The instantaneous envelope power is defined 
as Px,y(t) := \Sx,y(t)\2, and the peak-to-mean envelope power 
ratio (PMEPR) of a set Z C ZJ x ZJ is given by 

suPQcyjez^Pt^.yC*) PMEPR(Z) := 
\z !r £(..,)€*/p«.»(*)*' 

xThis work was supported by AT&T Labs-Research, Florham 
Park, NJ 

II. RESULTS 

The aperiodic autocorrelation of a sequence i € ZJ at dis- 
placement u is the function 

C(«):=        Y.       iXi~*J+u- 
0<j,j+u<n—l 

Two sequences x,y € ZJ form a Golay complementary pair 
(GCP) if Cx(v) + Cy{u) = 0 for each u ^ 0. A member of a 
GCP is called a Golay sequence. It is known that Px(t) < In 
for a Golay sequence x e ZJ. 

Theorem: For a GCP (x,y) of length n there holds 
Px,y(t) < bn. If x and y are Golay sequences (not necessarily 
forming a GCP) then Px,y(t) < lOn. 

If C C ZJ is invariant under the translation by the all-2- 
sequence, then for Z := C x C we have 

W\    £    C Px,v{t)dt = 2.bn. 

Theorem: Let C C ZJ be a set of Golay sequences that 
is invariant under the translation by the all-2-sequence. Then 
the PMEPR for Z := C x C is bounded by 4. 
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Abstract — Linear weighted multistage parallel in- 
terference cancellation (PIC) implements exactly the 
family of polynomial expansion detectors. For long- 
code CDMA, a set of optimal weights is found which 
minimizes the ensemble averaged mean squared error 
(MSE) over random codes. The weights are depen- 
dent on moments of the eigenvalues of the correlation 
matrix, where exact expressions are derived. The loss 
incurred by averaging rather than using the optimal, 
time-varying weights is practically negligible. 

I. INTRODUCTION 

Consider a if-user symbol-synchronous CDMA system 
with processing gain N. The received signal vector is r = 
Ad + n, where A = (ai,a2, ■ ■ • ,ajr) is the matrix contain- 
ing all users' spreading codes, d = (<£i, d2, ■ ■ ■, <2JC)

T
 the data 

vector and n the AWGN with variance cr2. 
The detailed structure of the ith PIC stage with weight 

Pi is depicted here where MF denotes matched filtering. A 
multistage PIC is a simple cascade of m PIC stages, whose 
output is 

i-IJ(i-^(R + *2i)) (R + <ral)~lAHr      (1) 

where R = AHA is the correlation matrix. By choosing an 
appropriate set of weights, the PIC can implement exactly any 
detector of the form of a polynomial in R applied to the code 
matched-filtered output AHr. 

It has previously been shown that the PIC is a realiza- 
tion of the steepest descent algorithm used to minimize the 
MSE. Following this interpretation, a unique set of weights, 
dependent on the eigenvalues of R, was found to lead to the 
minimum achievable MSE for a given number of stages in 
a short-code system [1], This approach is too complex for 
long-code systems. Instead, we consider using a set of code- 
invariant weights designed to give the minimum ensemble av- 
eraged MSE over random codes. 

The ensemble average of the excess MSE, as compared to 
the MMSE, is expressed as a function of u = (/JI , /i2, ■ ■ •, ßm) 

(2) 
j(m,(u)=E EvT^ni1-^^)!2 

Afc-l-o-2 

where the Afc's are the eigenvalues of R and the expectation 
is taken over random codes. By an elementary symmetric 
polynomial transform in u we can rewrite (2) as a quadratic 

This work was supported in part by the Centre for Wireless 
Communications, National University of Singapore and Oki Techno 
Centre (S'pore) Pte Ltd. 

»i-i.i 
r-<x>-*<B    -JMF}-£ 
I      Y    (i-w2) i- 

-HMF|——> 

(i-w') 

W,J 

Vi,K 

function in a vector x, which is a function of u. A unique 
minimum is then obtained where the corresponding /ik's are 
found as the inverse polynomial transform. 

For an m-stage PIC, the weights depend on the first 2m 
moments of the eigenvalues, defined as MT = E{Ar}, r = 
1, 2, ■ ■ •, 2m where A is an arbitrary eigenvalue of R. Moreover, 

MT -^E {trace {Rr}} 

K        K K 

fc,=ljl3=l fc,=l 

K       K K           N        N 

~K 2^/ 2-, " z^i 2^i L-i " 

■ -Rfcr_,fcrÄfcrfcj} 

E 
■ 1 = 1*3 = 1 kr = l     n1=ln3 = l nr = l 

E{A*lfclj4„lfc:lA*3fc3>ln2fc3 ■■■An1.krAnTk1} ■    (3) 

Since Ank are all independent random variables, only terms 
containing all complex conjugate pairs are relevant. MT is 
then obtained through evaluation of the summation over all 
combinations of indices. As the expectation is taken over all 
code-sets, Mr only depends on N and K, but not on specific 
codes. In fact it is a polynomial in N and K [2]. 

With the exact expressions derived, the moments can be 
evaluated easily and the optimal weights computed. The 
computational complexity is minor for a moderate number 
of stages and hence can be implemented on-line. Simulation 
results show that the penalty of averaging rather than using 
the optimal weights dependent on the instantaneous spreading 
codes is negligible in most cases of interest. 
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Abstract — Recently, a closed solution to the capac- 
ity of. synchronous CDMA for fading channels sup- 
posing exact channel knowledge at the receiver and 
infinite spreading factor, i.e., N-+oo has been derived 
by Shamai and Verdü [1]. On the other hand, consid- 
ering imperfect channel state information Evans and 
Tse [2] derived analytical solutions to the signal to 
noise ratio provided by linear multiuser receivers and 
could also give results for the error variance resulting 
from linear channel estimation. Here, lower and up- 
per bounds on the users' SIR reachable by means of a 
nonlinear MMSE—receiver applying successive cancel- 
lation while assuming a certain channel estimation ac- 
curacy are given. Note that due to imperfect channel 
estimation the interference from previously decoded 
users cannot be cancelled completely even if no de- 
coding errors occur. 

I. LOWER AND UPPER BOUND ON SIR 

We consider the synchronous transmission of K users over 
frequency selective fading channels to a common receiver and 
model the shifted replicas of the fcth user's random spreading 
sequence arriving over the L resolved paths as L independently 
chosen random spreading sequences Sk,\[ß], ■. ■, 3k,L\ß], Vfc, 
with spreading factor N [2] (Note, this model holds exactly for 
the equivalent case of K users transmitting with L antennas 
over flat fading channels to a single receiver). Assuming im- 
perfect channel knowledge at receiver site, the path weights 
are modeled as sum of a Gaussian distributed MMSE path 
weight estimate hk,i\p] with variance 1/L - J and orthogonal 
estimation error nk,i[fA witn power J. For sake of simplicity, 
we suppose that channel estimation is performed with equal 
accuracy for all users 1 < k < K, paths 1 < / < L and 
time slots. Now, considering user k the signal employed for 
subsequent processing in a specific time interval [p] after can- 
cellation of user k + 1,..., K based on their perfectly decoded 
symbols is 

k        L 

VkbA     =     ^2^2sK,l[fi]ChK,,[fj]+nK,l[ti])xK[fj,] 
K = l    1=1 

K L 

+ Yl Y2SK-l^h"^fJ']xiAf4 + Mß\, 
K=k + 1 1=1 

where the N dimensional vector n represents the additive 
channel noise. The i.i.d. components of n are zero mean 
complex Gaussian with variance <r£. Further, the users' chan- 
nel symbols are denoted as xk € X, 1 < k < K, having equal 
power o\ and the superscript d marks the already known chan- 
nel symbols of previously decoded users. Assuming uncorre- 
lated channel estimation errors for the different users as well 

as paths and time slots, a lower bound on the resulting signal 
to interference ratio SIRfc[//] at the output of an MMSE filter 
extracting the signal of user k from yk[p] can be solved for 

JV^oo with \hk[ß}\2 i\ £f=1 \hkM\2 as 
Theorem: For arbitrarily long spreading sequences 

and constant load ß the normalized signal to interfer- 

ence ratio SIR(Q = k/N,,3 = K/N) = SIR*[/x]/|fe*[^]|2 is 
in probability lower bounded by 

SIR(a,/?)[/.]> 7L(Q,/3) 

where 

7L(Q,/3) 

l + J7
L(a,/3): 

a(L-l)J 
l + yL(a,ß)J 

oo oo > 

-Ufl      ^r f      C/j|Xp(C)      j>,„. /*    C/|h|a+j(C) 
+{ß-a)LJ  a|+7L(a,«CdC+Qy   1+7^,/?)^ 

Here, f^+jiO as well as/a|Xp(0 denote the pdf of \h\2 + 
J, as well as the pdf of the squared absolute value of the 
transmit symbols x £ X multiplied by a, respectively. 

In addition, for single path fading channels an upper bound 
can be given resulting from the assumption of correlated chan- 
nel estimation errors. 

Lemma: For a single path fading channel SIR(Q,/3) 

is for N—too upper bounded by 

7UK/3) 
SIR(a,/3) < 

1 +J7u(a,^)' 

'V\W+jlU dC where 7
U(a,/3)= l% + af%$ 

\ o 
Based on the above formulas as well as results on iterative 

channel estimation we can show that successive cancellation 
yields considerable gains compared to linear interference sup- 
pression even if the channel state is not know exactly at re- 
ceiver site. It turns out that this advantage depends heavily on 
the system load as well as number of propagation paths. More- 
over, we can show that also in this case nonorthogonal multiple 
access can reach a higher spectral efficiency than orthogonal 
schemes. Finally, it is worth noting that other nonlinear re- 
ceivers, systems with multiple transmit and receive antennas 
as well as the problem of imperfectly known reference symbols 
for channel estimation can be treated analytically in the same 
way. 
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Abstract — The performance of the linear paral- 
lel interference cancellation (LPIC) receiver in a syn- 
chronous multiuser CDMA system with binary sig- 
naling is studied. We show that there exist conditions 
under which the LPIC receiver underperforms other 
receivers and characterize its asymptotic behavior. 

I. INTRODUCTION AND MOTIVATION 

The linear parallel interference cancellation (LPIC) receiver 
has been been studied in the literature recently due to its 
low computational complexity and good performance under 
certain operating conditions. In this paper, we compare the 
performance of the LPIC receiver to the hard parallel inter- 
ference cancellation (HPIC) and conventional matched filter 
(MF) receivers. 

We assume the standard discrete synchronous CDMA sys- 
tem model [1] with K users using binary (±1) spreading 
sequences of length N and binary signaling over an addi- 
tive white Gaussian noise (AWGN) channel with variance a2. 
Let R be the K x K normalized spreading sequence cross- 
correlation matrix and A be the K x K diagonal matrix of 
positive real amplitudes. If the spreading sequences are cho- 
sen randomly, we resort to large system techniques [2, 3] to get 
analytical results. By "large system", we mean that K —> oo 
and N -*• oo but K/N —> ß, for some constant ß. 

In parallel interference cancellation (PIC), the desired 
user's decision statistic is formed by subtracting an estimate 
of the multiple access interference (MAI) from the original ob- 
servation of the desired user. PIC lends itself to a multistage 
implementation in which M stages can be used to generate the 
final decision statistics. The HPIC receiver generates hard bit 
decisions at each stage to be used in subsequent stages, while 
the LPIC receiver passes on soft information. 

The goal of this paper is to develop a better understand- 
ing of the behavior and performance of the LPIC receiver. 
Some authors have previously noted the performance limita- 
tions of the LPIC and others have suggested improvements. 
We do not propose to fix the LPIC receiver but rather to un- 
derstand it better so that we can bound the operating regions 
where the LPIC receiver exhibits good or bad performance. In 
that spirit, we present a collection of related analytical results 
which expose the behavior of the LPIC receiver. We refer to 
[4] for detailed proofs. 

II. RESULTS AND CONCLUSIONS 

Our main results are as follows: 

1.   Let MSE[*p|C and MSE^p!C be the mean squared error of 
the £th user's MAI estimate for the two stage LPIC and two 
stage HPIC receivers respectively. Let AMSE^'p,,- be the ap- 
proximate MSE derived by using a Gaussian approximation 

'This research is supported in part by NSF Grants CCR- 
9805885, MIP-9811297, EEC-9872436, ECS-9528363, and in part 
by the Intel Foundation Fellowship. 

for the MAI. Then for any R, a, A, K, and £, we show that 
MSE$IC > AMSE$IC. 

2. Let-P[p1c(M) and P^ be the error probabilities for the M- 
stage LPIC and the MF respectively for the kth user. Then 
for any k, M, R ^ I, a > 0, and interfering user amplitudes 
a(l) W ^ k, there exists an amplitude threshold a* < oo such 
that P$C(M) > P<$ for aw > a*. 

3. For any user k in a system with K > 2 users, odd M, equal 
amplitude users such that A = al and j > 0, there exists R 

such that PL
(pi'c(Af) > 0.5. We say that the kih user suffers. 

4. Consider the behavior of the LPIC for large M. Let p(R) 
be the spectral radius of R, i.e., the maximum magnitude of 
all eigenvalues of R. It is well known that if p(R) < 2, the 
LPIC converges to the decorrelating detector. Our result is as 
follows. If p{R) > 2, there exists M" and at least one k such 

that PL
(
RC(

M
) > °-5 for a11 odd integer values of M > M*. 

5. An extra constraint on R allows us to show that all 
users can suffer. Suppose p(R) > 2 and R has an eigen- 
vector, associated with an eigenvalue greater than two, with 
all nonzero entries. Then there exists M* such that for all k, 
P

LPIC(
M

) > °-5 for a11 odd integer values of M > M*. 

6. For randomly chosen spreading sequences and large sys- 
tems, we show that for any a, A, and (., E[MSEiP\c] > 
•E[MSE^plc]. Note that, unlike Result 1, we need not rely 
upon the Gaussian approximation for the MAI. 

7. For randomly chosen spreading sequences and large sys- 
tems, we show that if ß = K/N > (V2 - l)2 « 0.17, then 
p(R) > 2 almost surely. Result 4 then indicates that at least 
one user will suffer in each bit interval for large odd M. More 
precisely, we note that the misperforming user may be differ- 
ent for each realization of R, and so no one user need suffer 
on average. Numerical experiments suggest that, on average, 
all users may indeed suffer as M —► oo, but a proof of this 
conjecture is left as an open problem. 

The results in this paper, which indicate that the LPIC has 
the potential to misperform, are intended to fill in some of the 
gaps in our understanding of PIC receivers. We hope they 
can serve as cautionary guidelines concerning the application 
of LPIC receivers to CDMA communication systems. 
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I. SUMMARY 

We combine the adaptive (Least Squares) Parallel-Multiuser 
Decision Feedback Detector for CDMA with short spreading 
sequences, presented in [1], with iterative (turbo) decoding 
and soft cancellation, presented in [2]. The resulting receiver 
requires only a training sequence and (coarse) timing for es- 
timation of all filter coefficients, and performs close to the 
single-user bound with relatively low Eb/No- Prior knowledge 
of spreading codes and channels is unecessary. 

For simplicity, we consider a synchronous CDMA system. 
The extension to an asynchronous CDMA system with multi- 
path can be achieved by using an expanded observation win- 
dow [1]. A block diagram of the receiver is shown in Figure 
1. Each user's information bits are convolutionally encoded 
and interleaved before transmission. The received vector of N 
samples during symbol interval i is r(i) = Pd(i) + n(i) where 
P is the matrix of spreading codes, d is the binary vector of 
coded symbols across users, and n is noise. The sequence of 
vectors r(l), ■ • ■, r(M), corresponding to a packet, is the input 
to the iterative receiver. Referring to the figure, the output of 
the DFD is 

ylm;(i) = (Ftm0Tr(i) - (Bln")Tdlm;(0- 

where F'm' and B'm' are the feedforward and feedback fil- 
ters, respectively, and crm' is the vector of soft decisions, all 
corresponding to the mth iteration. 

For purposes of MAP decoding, we assume that the resid- 
ual interference plus noise at the output of the DFD is Gaus- 
sian. It is then possible to estimate the a priori probabilities 

Pr \y™ (i)\dk{i) = ±1 I without additional side information. 

These are deinterleaved and input to the MAP decoder for the 
convolutional code. The MAP decoder generates the a poste- 
riori probabilities Pr[dj,(i) = ±1], which are used to compute 
the input to the feedback filter d(m) = E[d]. 

The filters F(m) and B(m) are selected to minimize the 
Least Squares (LS) cost function 

'   M 

£LS = Y, Hd« - (F(m))+rW + (B(m))+d(m)(i)||2       (1) 

at each iteration m, and are constant over the duration of 
the packet. The symbols d are obtained either from a train- 
ing sequence or in decision-directed mode. In the latter case, 
simulation results show that using soft decisions gives better 
performance than using hard decisions. 

Figure 2 shows a plot of packet error rate vs. Ei/No for dif- 
ferent receivers. For the MMSE Parallel (P)-DFD curve, the 
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Figure 1: Iterative P-DFD receiver 
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Figure 2: Receiver comparison with K = 12 users, N 

16, code rate R = 1/2 (8 chips per coded bit). 

filters F'm' and B'm' are computed assuming perfect feed- 
back (d = d). The "approximate" LS P-DFD curve is based 
on minimizing (1), but with soft decisions for d. The results 
are averaged over random spreading sequences. Data packets 
contain 500 information symbols and 200 training symbols. 

Because of the high load, the linear receiver has a packet 
error rate near one. The MMSE P-DFD performs worse than 
the LS P-DFD since the latter measures and exploits the joint 
statistics of the soft estimates with the transmitted symbols. 
The break point near 3 dB shown in the Figure is close to the 
fundamental limit based on large system capacity. 
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Abstract — Space-time block code design and 
decoder design are addressed for Code-Division 
Multiple-Access (CDMA) systems. Optimal code de- 
signs are found by optimizing the Chernoff bound of 
the probability of decoding error. From this, the di- 
versity gain and the coding gain are determined for 
the CDMA scenario. The resultant optimal code de- 
signs are classified and analyzed. Both optimal and 
moderate complexity suboptimal decoding algorithms 
are proposed and evaluated. 

I. INTRODUCTION & SYSTEM MODEL 

Transmit diversity methods have proven effective for com- 
batting fading in wireless communication systems[l, -2, 3, 4]. 
In this paper, we focus on determining space-time block coding 
methods for Code-Division Multiple-Access systems. Due to 
the assumption of independent fading for different users; the 
multiuser coding problem decoxiples to multiple single-user cod- 
ing problems. The presence of spreading codes in the CDMA 
problem yields interesting differences in code designs and code 
metrics relative to the single-user narrowband case [4]. 

The up-link between K users and one base station is con- 
sidered. For each user, kc information bits are mapped to one 
of 2kc Space-Time Block Codes (STBC), D. The codeword 
D is a matrix of dimension Lt x M; where M is the num- 
ber of transmit antennae and Lt is the duration, in symbol 
intervals, of the code. It is assumed that the base station 
has N receive antennae. We further assume that: the fading 
processes associated with each transmit antenna are indepen- 
dent; the channel is constant over the duration of the block 
code (quasi-static) and is known perfectly; and that the trans- 
mission is synchronous. For the system under consideration, 
a different spreading code is employed for each transmit an- 
tenna and it is assumed that the receiver has full knowledge 
of these spreading codes. 

II. PERFORMANCE CRITERIA & CODE DESIGNS 

It can be shown that optimizing the upper bound on the 
probability of decoding error yields two criteria for space-time 
block code design.   Performance is determined by a key ma- 
trix <l> = AD"ADQR \ AD is a codeword difference 
matrix and R is the spreading code cross-correlation matrix. 
The resultant design "metrics" over all pairs of codewords are: 

diversity gain AH = Nrmin, where rmi„ is the minimum 
rank of <3>. 

coding gain Ap = (n[=i" ^0     is the smallest product of 
all the non-zero eigenvalues of $. 

These "metrics" are analogous to those obtained in [1] for 
the narrowband case, but due to the presence of the cross- 
correlation matrix, R, some new features appear in the re- 
sulting optimal codes. The goal of code design is to find 2kc 

2This work was supported by NSF Grant ANI-9809018. 
1Hcre 0 represents Schur product. 

distinct STBCs such that rmjn is maximized and given this 
rank, that Ap is also maximized. Codes satisfying these con- 
ditions are deemed optimal. The following two propositions 
can be proved regarding diversity gain'and coding gain: 

PROPOSITION 1 If AD has no zero columns and if R is 
positive definite, full diversity gain is always achieved. 

PROPOSITION 2 // Rij = p for i / j, the coding gain is 
a monotonically decreasing function of p. 

Note that for the narrowband case, p = 1 and R is thus sin- 
gular. For the CDMA case, due to these two propositions, we 
focus on maximizing A,,. We observe that non-unitary codes 
usually outperform unitary codes. Consider the optimal code 
sets for BPSK modulation. We discuss the case of k, = 2, 
M = 2 and Lt = 2. The resulting optimal codes can be par- 
titioned into three equivalence classes. Each element of the 
equivalence class can be transformed into another element via 
simple isometries. Each class has a uniform distance spectrum 
across codewords. Class 1 and 2 are optimal for all \p\ < 1 
while Class 3 is optimal for \p\ < \/3/2. Class 2 is essentially 
Alamouti's orthogonal code set [3] while Class 1 is non-unitary 
[4]. Interestingly, for QPSK modulation, we can find an opti- 
mal non-unitary code set which outperforms all unitary codes 
for all \p\ < 1. The optimal codes are tabulated below. 

symbol Class Dl D2 D3 D4 
BPSK 1 1       1 

1       1 
1       -1 

-1       -1 
-1       1 

1       -1 
-1      -1 
-1       1 

BPSK 2 1       1 
1      -1 

1       -1 
-1       -1 

-1       1 
1       1 

-1      -1 
-1       1 

BPSK 3 1       1 
1       1 

1       -1 
-1       1 

-1       1 
1       -1 

-1      -1 
-1      -1 

QPSK 1       1 
1       i 

1       -1 
-1       i 

-1       i 
-i       1 

-i      -l 

i      -i 

III. DECODING ALGORITHMS 
Three types of decoders are considered: the optimal 
maxmimum-likelihood (ML) decoder, a joint multiuser mini- 
mum mean-squared error decoder and a combined interference 
cancellation/ML decoder. These algorithms perform as pre- 
dicted with the ML decoder offering the best performance at 
the expense of computational complexity. The two suboptimal 
algorithms offer solid performance with reduced complexity. 
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Abstract — Multiple antennas can greatly increase 
the data rate and reliability of a wireless communi- 
cation link in a fading environment, but the practical 
success of using multiple antennas depends crucially 
on our ability to design high-rate space-time constel- 
lations with low encoding and decoding complexity. It 
has been shown that full transmitter diversity, where 
the constellation is a set of unitary matrices whose 
differences have nonzero determinant, is a desirable 
property for good performance. 

We use the powerful theory of fixed-point-free 
groups and their representations to design high-rate 
constellations with full diversity. Furthermore, we 
thereby classify all full-diversity constellations that 
form a group, for all rates and numbers of transmit- 
ter antennas. The group structure makes the constel- 
lations especially suitable for differential modulation 
and low-complexity decoding algorithms. 

The classification also reveals that the number of 
different group-structures with full diversity is very 
limited when the number of transmitter antennas is 
large and odd. We therefore also consider extensions 
of the constellation designs to nongroups. We con- 
clude by showing that many of our designed constel- 
lations perform excellently on both simulated and real 
wireless channels. 

A complete copy of this paper is available on 
the web at http://mars.bell-labs.com under the ti- 
tle "Representation Theory for High-Rate Multiple- 
Antenna Code Design." Other related papers are also 
available at this web site. 

I. AN EXAMPLE OF A HIGH-RATE CODE 

As an example of a high-rate group code that we find, we 
plot the performance of SL^Fs), the group of 2 x 2 matri- 
ces over the field F5 with determinant one. This group has 
a representation as 120 complex 2x2 unitary matrices suit- 
able for transmission over a two-antenna fading channel. The 
group is fixed-point-free which means that its constellation 
has full diversity. We also plot the performance of the best 
cyclic group with the same rate [2], a 2 x 2 orthogonal design 
[4] (which is not a group) and a generalized quaternion group 
code [3] with similar rates. All of these codes can be used with 
a known channel (as shown), or they can be used differentially 
when the channel is unknown and with a performance loss of 
approximately 3 dB. 

SNR (dB) 

Block-error rate performance of the group SL2 (F5) com- 

pared with constellations from other constructions for 

M = 2 transmitter antennas and N = 1 receiver antenna. 

The channel is known at the receiver. The solid line is 
SL2(F5), which has 120 unitary matrices (rate R ss 3.45). 

The dashed line is an orthogonal design with 11th roots 
of unity (R « 3.46). The dashed-dotted line is the best 

diagonal (Abelian group) construction (R « 3.45). The 

dotted line is the quaternion group with 128 matrices 
(R = 3.5). 
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Abstract — This paper investigates the application 
of the expectation-maximization algorithm for sys- 
tems with multiple transmit and/or receive antennas 
in presence of fast fading channels. 

I. INTRODUCTION 

The use of space-time coding and modulation techniques 
can improve system performance and combat the damaging 
effects due to the presence of fading. Most work has assumed 
that accurate estimates of current channel fading conditions 
are available at the receiver [4, 5, 6]. When channel estimation 
becomes very challenging, e.g. in fast fading channels, it is of 
interest to explore joint channel estimation and data detection 
methods in order to approach coherent performance with a 
minimum of pilot symbols. 

For single-antenna channels, suboptimal receivers based 
on the expectation-maximization (EM) algorithm have been 
shown to perform well under fast fading [2] and multipath fad- 
ing [3] conditions. The EM algorithm is a general two-steps 
procedure for iterative maximum likelihood estimation. The 
algorithm was first formalized in the statistics literature by 
Dempster, Laird, and Rubin [1], and has since been applied 
to a variety of communications problems. 

We consider a system with multiple transmit and receive 
antennas, and propose a suboptimal space-time receiver based 
on the EM algorithm, which performs iterative joint channel 
estimation and data sequence detection in alternating steps. 
We derive simple expressions for these steps and evaluate the 
performance of the resulting receiver for several modulation 
techniques. 

II. RECEIVER STRUCTURE 

Consider a wireless channel with t transmit and r receive 
antennas.   The signal sample taken by receive antenna i at 

,r , k = 1,... ,n, as time k can be modeled, for t = 1 

t 

Vik  = y^,hjj(k)cjky/pi + nik (1) 

where Cjk is the constellation point transmitted, hij(k) is the 
fading path gain, pt is the signal-to-noise ratio and n,i are 
noise samples. In matrix form, (1) can be rewritten as 

Y = ^ptHvCv + N , (2) 

where Hv = [Hi : Hi : ■ ■ ■ : Hn] is r x nt, Cv is the nt x n 
block-diagonal matrix, pt is the signal-to noise ratio and N is 

xThis work was supported in part by the National Science Foun- 
dation under grants CCR-9903107, and by the Center for Advanced 
Computing and Communication. 

the noise matrix. Each row of Hv is iid with covariance matrix 
S. 

The receiver performs iteratively two steps:   Expectation 
step and Maximization step. The E-step can be evaluated as 

Q(Cv\d)    =    £ [log p(Y\Hv,Cv)\Y,Cl] 

=    -Tt{(Y - y/p-tHiCv)HY - y/piHiCv) 

+rptClKCv) - rn log;r , (3) 

-At, ■»K-i where Hi = y^YCJ'Ei and £* = (S'1 -fptCJCJ')-1 are 
the channel estimate and the error covariance matrix, respec- 
tively, at the i-th iteration. 

The M-step calculates the next estimate by Cl+1 = 
argmaxc\, Q(Cv\Cl). The expression (3) can be recursively 
maximized by using the Viterbi Algorithm with a modified 
metric which consists of the Euclidean distance metric plus 
a quadratic term that depends on the previous decoded se- 
quence CJ. Thus, each iteration consists of an estimation 
phase followed by a detection phase. 

The initial estimate C° for the iterative receiver will gen- 
erally be derived using a pilot-symbol-assisted modulation 
scheme. 

Simulations suggest that the receiver can often achieve 
near-coherent performance with only two iterations and us- 
ing a very small number of pilot symbols under fast fading 
conditions. 
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Abstract — Recently, the authors presented a 
new threaded space-time architecture [1][2] combining 
generalized layered transmission, advanced iterative 
multi-user detection techniques, and space-time code 
design that provides superior performance compared 
to the layered architectures proposed by Foschini et 

al. [3] and Tarokh et al. [7]. In this paper, we discuss 
the design of algebraic space-time codes for layered 
and non-layered architectures. 

I. INTRODUCTION 

Two essentially different approaches have been proposed for 
exploiting the spatial diversity available to systems with multi- 
ple transmit and receive antennas operating over fading chan- 
nels. In the first, channel coding is performed using so-called 
"space-time codes" [4][6][5]. In the second, conventionally- 
encoded data streams are "layered" in space and time by the 
transmitter and separated at the receiver using interference- 
cancellation and interference-avoidance signal processing [3]. 
A new "threaded" space-time architecture, introduced in 
[1][2], shows that significant gains are possible without undue 
complexity, however, when the encoding, interleaving, and dis- 
tribution of transmitted symbols among different antennas are 
optimized to maximize spatial diversity, temporal diversity, 
and coding gain in accordance with space-time code design 
principles. 

II. ALGEBRAIC SPACE-TIME CODE DESIGN 

We consider a communication system with n transmit and m 
receive antennas. A space-time code C consists of an underly- 
ing channel code C together with a spatial modulator function 
f that parses the modulated symbols among the transmit an- 
tennas. Binary rank criteria developed in [5] made possible 
the first designs of space-time codes by algebraic means. 

Thm 1 (Stacking Construction) [5] Let C be the space- 
time code of dimension k consisting of the n x £ code 

word matrices c = [ iMi 1M2 • • • iM„ ] , where 
Mi, M2, • • •, M„ are binary matrices of dimension k x £ and 
x denotes the k-tuple of information bits. Then, for BPSK 
transmission over the quasi-static fading channel, C achieves 
full spatial diversity nm provided 

Vai,d2, •. • ,an € F,  not all zero : 

M = BIMI © a2M2 © ■ • • © anM„ is of rank k over F. 

Furthermore, if Mi,M2,...,M„ are 7-n-valued matrices 
whose projections modulo 2 satisfy the above constraint, then 
the corresponding ~L\ space-time code C achieves full spatial 
diversity for QPSK transmission. 

In a layered architecture, a similar algebraic construction 
is applicable to arbitrary signaling constellations fi of size 2b. 

Thm 2  (Threaded   Stacking   Construction)   Let L   be 
a layer of spatial span n. Given binary k x £ matrices 
Mi,M2,...,M„, let C be the binary code consisting of the 
vectors c(x) = 2M1 11M2 | • ■ • | iM„, where x denotes a k- 
tuple of information bits. Let f/, be the spatial modulator in 
which the modulated symbols associated with iMj are trans- 
mitted in the £/b symbol intervals of L that are assigned to 
antenna j. Then, the space-time code C consisting of C and 
fz, achieves spatial diversity dm in a quasi-static fading chan- 
nel iff d is the largest integer such that 

Vai,a2,. ■. ,an € F,ai + 02 + ■ • • + an = n — d + 1 : 

M = [aiMia2M2 • • • onM„] is of rank k over F. 

The stacking constructions are general for any number of 
antennas and apply to trellis as well as block codes. The obser- 
vation in [5] that the stacking construction is readily satisfied 
within the class of binary rate 1/n convolutional codes is par- 
ticularly noteworthy. Indeed, most of the well-known convo- 
lutional codes of rate 1/n with optimal dfree can be formatted 
to achieve full spatial diversity! 

Similarly, the natural space-time codes associated with the 
general class of binary rate k/n convolutional codes are attrac- 
tive candidates for the layered space-time architecture since 
they can be easily formatted via periodic bit interleaving to 
satisfy the generalized layered stacking construction. In this 
case, a total transmission rate of b(n — d+1) bits per signaling 
interval can be achieved, which is the maximum possible. 

Example. The natural layered space-time code associated with 
the optimal 8-state, dfree = 5 convolutional code (with gen- 
erators Go(-D) = 1 + D2 and Gi(D) = 1 + D + D2) achieves 
maximum possible spatial diversity for n = 2, 4, and 6 trans- 
mit antennas. The achieved diversity levels are d = 2, 3, and 
4, respectively, in accordance with Theorem 2. 
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Abstract — The bit error rate of tailbiting convolu- 
tional encoders is compared for the case that a priori 
source information is available, and for the case that 
it is not. The set of best encoders depends on the a 
priori information, and is not identical to the set of 
encoders maximizing minimum distance. Character- 
istics that govern the BER are analyzed. 

SUMMARY 

The bit error rate (BER) is an important encoder crite- 
rion. The question arises which encoder to use in a specific 
environment. We compare the BER performance of tailbiting 
convolutional (TB) encoders for the BSC and AWGN channel 
with different noise powers when differing amounts of a priori 
information are available to the decoder. 

A TB encoder must end in the same state it started. A 
codeword can be viewed as a path around a circular trellis. 
TB codes are an efficient tool to supply error protection for 
short packets, since they do not suffer any rate loss due to a 
terminating zero-tail. In general, they achieve the minimum 
distance (dmin) of the best known block codes. Besides, TB 
codes allow trellis decoding. 

The apt decoder is the symbol-by-symbol maximum a poste- 
riori algorithm, denoted as MAP decoder. With trellis decod- 
ing, the well-known BCJR algorithm computes the a posteri- 
ori probability (APP) of each data symbol. The data symbol 
with highest APP is chosen as the MAP decoder output. In 
order to achieve a lower BER the a priori information is taken 
into account. In [1] we extended the original BCJR algorithm 
to the TB environment. This algorithm (TB-BCJR) does not 
quite obtain the true MAP output, but it is a factor 2m simpler 
than the true MAP decoder, where m denotes the memory of 
the TB encoder. Here, the BER of rate 1/2 feedforward TB 
encoders is measured using the TB-BCJR algorithm. 

Let L be the tail-biting length. The ith bit of the data word 
is denoted by Ui, \<i<L. Define the source bit probability 
4>i = P{ui=0], \<i<L. Assume now that <pi = l/2, Vi. A 
table of best rate 1/2 TB encoders for the BER criterion is 
shown in [2]. The BERs are listed at three SNR benchmarks 
for the BSC and AWGN channels. In general, the list of best 
encoders differs in each of these cases. The main conclusions 
are as follows. 

(i) The BER of the best encoder of memory m does not de- 
crease further with growing L once the ratio Ljm exceeds 4-5. 
Analogously, the BER does not decrease much with growing m 
and constant L. The critical ratio Ljm relates to the decision 
depth parameter of the encoder, which relates asymptotically 
to the Gilbert-Varshamov parameter. 

(ii) The best encoder in a bad channel is a systematic one. 
Systematic feedforward codes have asymptotically half the free 
distance growth with m, compared to general codes. Thus the 

best encoder in a channel of unknown quality is a feedback 
systematic one, since these have full distance growth; its BER 
will be low in both good and bad channels. 

(iii) In about half the combinations m, L the best encoders in 
a BSC differ significantly from those in the AWGN channel. 

(iv) Due to the mapping between information and codebits, 
the best encoders are in general not the ones maximizing dmm- 

Now, assume an unbalanced information source, i.e., 
4>i^l/2, \<i<L. Some data words and their corresponding 
codewords have a higher probability than others. 

In [3] we present good TB encoders in terms of BER when a 
priori information is available. Their performances are listed 
for the same channels as before. The main results are: 

(i) In general, for BSCs the best encoders for balanced 
sources perform badly if a lot of a priori information is avail- 
able, e.g., if </>i=0.95, Vi. This is because now the codewords 
with low Hamming weight are more likely to occur. If the 
codewords with dmin, i.e., the ones which are most likely to be 
decoded in error for a balanced source, are unlikely to occur, 
then the a priori information will drastically reduce the BER. 

(ii) For BSCs the best encoders for </>,=0.5, Vi, are generally 
also the best when <f>i=0.7, Vi. If the source is not strongly 
unbalanced, the effect described in (i) looses importance. 

(iii) The best encoders for <f>i=0.95, Vi, perform poorly when 
used for data with (j>i=0.5 or </>i=0.7, compared to the best 
encoders for those cases, for which the mapping of data to 
codebits and the distance spectrum play the major role. The 
best encoders for AWGN channels for <f>i=Q.b, Vi, also differ 
from the best encoders for strongly unbalanced sources, but 
their BER can be almost as good. 

(iv) For $i=0.95, Vi, the best encoders for a BSC are not the 
best encoders for a AWGN channel, and vice versa, although 
they also perform sufficiently well for the other channel model. 

(v) The encoders maximizing dmjn are generally not those 
with best BER. 

(vi) When not all data bits carry the same a priori informa- 
tion, the BER depends on the positions of the bits with most 
a priori information. Similar arguments as in (i) explain this 
effect. In general, the TB encoder and the amount and struc- 
ture of the a priori information must be tuned to each other. 
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Abstract — Tailbiting trellis representations of linear 
block codes with an arbitrary sectionalization of the 
time axis are studied. A new lower bound on the max- 
imal state complexity of an arbitrary tailbiting code 
is derived. The asymptotic behavior of the derived 
bound is investigated. Some new. tailbiting represen- 
tations for linear block codes of rates R = 1/c, c = 2,3, 
4 are presented. 

I. INTRODUCTION 

Tailbiting is a technique to terminate a convolutional code 
into a block code [1]. We focus on constructions and bounds 
for sectionalized tailbiting trellises since they may have less 
complexity than non-sectionalized ones. 

We consider an (N, K, dm-m) binary linear block code C with 
a generator matrix G = {n},i = 1,...,K. We say that G is 
given in tailbiting span form if it consists of rows such that 
(circular) start(rj) / start(rj) and end(ri) ^ end(r,), i ^ j, 
where start(x) and end(x ) denote the (circular) number of the 
first and the last nonzero section in the vector x, respectively. 
The ith section of r,- is active if i 6 [start(r,),end(rj)). The 
maximal state complexity or /z-state complexity of the trellis 
is defined [2] as ß = maxi{log2 |Ai|}, where \Ai\ denotes the 
number of rows where the ith section is active. 

II.  LOWER BOUND ON THE STATE COMPLEXITY FOR 

TAILBITING CODES 

Theorem 1   The state complexity ß of a linear (N, K, d, 
tailbiting code is lower-bounded by 

n) 

max     {RNmin{j,dmin) - j}    ■ 
i=i K 

ß>ßo 

Moreover, if ßo is odd ß > raax{ßo,dmin(K + 1)/N — 1}. 

Denote by £ = ß/N the relative trellis complexity.  Then 
we have the following asymptotic behavior of £ as N -> oo, 

C >   max {6 [R 
~ Se[2<5,l] 

where 5 = dmin/n, and fima: 

Rumsey-Welch upper bound. 

«max (8/6)]}, 

(•) is the McEliece-Rodemich- 

III.   SEARCH TECHNIQUES AND RESULTS 

We have used the bound in Theorem 1 to find an efficient 
(in sense of state complexity) tailbiting representation for an 
(N, K) linear block code using time-invariant convolutional 
codes of rate R = 1/c, c = 2,3,4, and state complexity (con- 
straint length) ß. We exploit two kinds of methods to reject 
weak codes.   The first one includes rules for rejecting weak 

encoders of convolutional codes. The second one rejects those 
encoders among the accepted ones which generate poor tailbit- 
ing codes. Some search results are presented in the following 
table. 

■J M ■"■) Uminl^min) ß(ß) Generators 
56,28,12(12-14) 9(8) 477,1505 
58,29,12(12-14) 9(8) 433,1275 
60,30,12(12-14) 9(8) 217,1665 

62,31,12(12-15) 8(8) 435,657 

64,32,12(12-16) 8(8) 235,557 
66,33,12(12-16) 8(8) 235,557 

68,34,13(13-16) 11(9) 4315,5651 

72,36,14(15-18) 13(10) 4473,32611 
74,37,14(14-18) 11(10) 1353,7461 
76,38,14(14-18) 11(10) 1145,7173 
78,39,14(15-18) 10(10) 1473,2275 
82,41,14(14-20) 10(10) 1157,3455 
84,42,14(15-20) 10(10) 1157,3455 
92,46,16(15-22) 13(11) 5447,21675 
94,47,16(16-22) 12(11) 5135,14477 
96,48,16(16-22) 12(11) 5135,14477 

110,55,18(18-25) 15(14) 23077,173255 
84,28,22(22-27) 11(10) 2215,5467,7647 
96,32,24(24-30) 1.2(11) 2153,11625,17557 
99,33,24(24-32) 11(11) 4467,5725,6373 

102,34,24(24-32) 11(11) 4465,5357,6373 
105,35,25(24-33) 13(13) 20447,25315,37317 
108,36,26(24-34) 13(13) 20465,31327,34773 
111,37,26(25-34) 13(13) 20445,31527,35757 
114,38,26(26-36) 13(13) 20445,31653,37673 
120,40,28(28-37) 14(14) 41127,63663,72575 
112,28,32(32-40) 11(11) 4447,5277,6335,7533 
116,29,32(32-42) 11(11) 4445,6353,6537,7673 

Almost all codes meet the Brower-Verhoeff (BV) lower bound 
dmin on the minimum distance for linear codes and achieve the 
lower bound ß on the state complexity. All presented codes 
are new best known quasi-cyclic codes. The code (111,37,26) 
is better than any previously known linear code with the same 
length and dimension, and the codes (92,46,16), (105,35,25) 
and (108,36,26) are better than any previously known codes 
with the same length and dimension. 
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I. INTRODUCTION 

A tail biting (TB) trellis for a code is a trellis with multi- 
ple starting and multiple ending states [1, 2]. Each starting 
state corresponds to a unique ending state and they are the 
same state. A path in a TB trellis represents a valid code- 
word if and only if it starts'from a state and ends at the same 
state. Such a path is called a TB path. In this paper, two new 
iterative algorithms for decoding codes based on their TB trel- 
lises are presented, one is unidirectional and the other is bidi- 
rectional. Both algorithms are computationally efficient and 
achieves virtually optimum error performance with a small 
number of decoding iterations. 

II.   THE WRAP-AROUND VITERBI (WA-V) 
ALGORITHM 

Let T be an i-section TB trellis for a code C with sec- 
tion boundary locations in {0,1, • • •, L}. For 0 < t < L, let 

Et(C) = {s\ \s\ v ■ •, s, } denote the state space of the 
trellis at the boundary location(BL)-/. Eo(C) and EL(C) 

are the starting and ending state spaces, respectively, and 
Eo(C) = EL(C). For simplicity, we assume that s0 and sL 

are the same state for 1 < i < qo(oi gi). 
The WA-V algorithm processes T continuously in a round- 

and-round manner. One round of decoding process is called an 
iteration. At the beginning of the first iteration, the decoder 
starts from all the states in Eo(C) at BL-0 with the same ini- 
tial state metrics. At the end of each iteration, the decoder 
attempts to make a decoding decision. If the decoding deci- 
sion is successful, the decoding process stops; otherwise, the 
decoder wraps around T and starts another iteration from the 
states in Eo(C) with the starting state metrices equal to the 
metrics of their equivalent states in EL(C) at the end of the 
previous iteration. Suppose the decoder is executing the t'-th 
iteration. For each state s, in T, the decoder computes two 
metrics, the accumulative state metric(ASM) and the state 

metric gain(SMG). The ASM of a state s(,j) at BL-t in the i- 

th iteration, denoted M^''(t,s, ), is defined as the total path 

metric of the survivor that originates from a state s0 at the 
beginning of the first iteration and terminates at the state 
St . The SMG of the state s\3' during the i-th iteration, de- 

noted A^''(t, 5,   ), is defined as the path metric of the survivor 

-.(■'^s('o> „OoK 

P^(SQ , s\ ') that originates from the state s[, at BL-0 at the 

beginning of the i-th iteration and terminates at the state s\ . 

Therefore, A{'\t,s\3)) = M{,\t, s\3)) - M(,)(0,4°), where 

M(,)(0,s[,;)) = M(-'-1\L,s{[>) and M(1)(0, s^^constant, for 
all 1 < k < qo- When the decoder reaches BL-L at the 
end of the i-th iteration, there are qL survivors p (SQ ,S£ ) 

of length L, each terminates at a different state s£ at 

BL-L. The path p(,)(s[,!o), s(/o)) with the best metric gain 

A^(L, s^ ) is chosen as the winning path. If the win- 

ning path p^(so    i S
L    ) 's a TB path, decoding stops and 

Pv '{sh " ■ S
L"') ls the decoded codeword. Otherwise, find the 

TB path with the best metric (if any), denoted p^ b !t, and 
store it. The decoder then starts the (i -f l)-th iteration. De- 
coding process continues until either the winning path at the 
end of an iteration is a TB path or a preset maximum number 
of iterations Imax is reached. For the latter case, the decoder 
outputs the best TB path pr.best stored in the memory if it 
exists; otherwise, it outputs the winning path found at the 
end of the /maT-th iteration. 

III. THE ITERATIVE BIDIRECTIONAL VITERBI 

DECODING (IBVD) ALGORITHM 

This algorithm processes a TB trellis T of a code from 
opposite directions with two decoders, called the left- and the 
right-decoder, respectively. Both decoders execute the WA-V 
algorithm and they collaborate to make a decoding decision. 
During each iteration, the two decoders start from opposite 
ends of T, work through the trellis until they reach the other 
ends of T. For each state in the trellis, two ASM's and two 
SMG's are computed by the two decoders. At iteration-i, as 
soon as a state s, has been visited by both decoders, it has 

two SMG's, denoted AJ'^/, s(,J)) and A(
r'\t, s\})), from the 

left and the right decoders.    The sum of these two SMG's, 
v(0/ „O) denoted A(

c 
}(t, s\ ) is called the composite SMG of the state 

s\ which is simply the path metric of the survivor of length 

L passing through the state s\ that connects a state at BL- 
0 with a state at BL-i. This survivor is called a composite 
path(CP). The CP at BL-t with the best composite SMG is 
called the best CP at BL-i, denoted BCP,. If the BCP, is a 
TB path, decoding stops; otherwise, find the best composite 
TB path at BL-i(if any), denoted BCTBP(, and store it in 
the decoder memory. The iteration process continues until 
the BCP at a boundary location is found to be a TB path or 
a preset maximum number of iterations, Imax, is reached. For 
the latter case, the updated BCTBP in the memory is chosen 
as the decoded codeword if it exists; otherwise, the BCP stored 
in the memory is chosen as the decoded codeword. 

IV. PERFORMANCE AND COMPLEXITY 

Both WA-V and IBVD algorithms have been applied for 
decoding several convolutional and block codes(including the 
(24,12) Golay code). Simulation results show that both al- 
gorithms achieve virtually optimum error performance with a 
small number of iterations. The IBVD algorithm in all cases 
always converges to MLD performance in two iterations. 
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Abstract — It is shown that for short and moderate 
relative tailbiting lengths and high signal-to-noise ra- 
tios systematic feedback encoders have better bit er- 
ror performance than nonsystematic feedforward en- 
coders. Conditions for when tailbiting will fail are 
given and it is described how the encoder starting 
state can be obtained for feedback encoders in both 
controller and observer canonical form. 

I. SYSTEMATIC VERSUS NONSYSTEMATIC TAILBITING 
ENCODERS 

Comparing the bit error performance between tailbiting codes 
encoded by systematic and nonsystematic encoders [1] shows 
that for a bad channel systematic encoders, feedforward or 
feedback, give the best performance. Simulations also show 
that the best encoders to use when the channel quality is un- 
known are the systematic feedback ones. In a good chan- 
nel we show that the type of encoder having the best bit 
error performance depends on the relative tailbiting length, 
i.e., the tailbiting length/memory. For a good channel, ML- 
decoding, and a rate R = b/c tailbiting code of length L an 
upper bound on the bit error probability can be expressed as 
Pi, < y- Vc._ . bdPd, where bd is the sum of all bit errors for 
all codewords of weight d and Pd is the probability that a word 
of weight d is chosen instead of the allzero word. For a given 
length L and memory m the encoder giving the lowest bit error 
probability in a good channel is the one with as large mini- 
mum distance as possible and the smallest bdmin as possible. 
For rate R = 1/2 a search has been made for these encoders 
at various lengths and encoder memories. We can identify 
three regions where different encoder types give the best per- 
formance. For very short relative tailbiting lengths the best 
feedforward encoders are systematic and give the same bit er- 
ror probability as the best systematic feedback encoders. For 
short and medium relative tailbiting lengths, systematic feed- 
back encoders are typically a factor of 1.5-2 better than the 
feedforward ones. For long relative tailbiting lengths feedfor- 
ward encoders give typically a factor of 2 better performance 
than the systematic feedback encoders. The explanation for 
this lies in the type of codeword which leads to the minimum 
distance. We show that this in turn depends on the relative 
tailbiting length. 

II. TAILBITING FAILURE 

A rate R = b/c feedback convolutional encoder of memory m 
can be viewed as consisting of b linear feedback shift registers 
(LFSRs), where the longest shift register has length m. For a 

1This research was supported by the Foundation for Strategic 
Research - Personal Computing and Communication under Grant 
PCC-9706-09. 

given LFSR we define the cycle characteristic of the LFSR as 
the set of all possible cycles of its output. Consider first a rate 
R = 1/c encoder. Assume that the LFSR has a cycle of length 
p. Then if we are in one of the states that belongs to this cycle 
and feed the encoder with only zeros at the input, correspond- 
ing to an allzero information sequence, the encoder returns to 
the same state after p steps. If the tailbiting length (number 
of trellis sections) L is a multiple of p, then we have more than 
one codeword corresponding to an all-zero input since the al- 
lzero codeword corresponds also to the allzero input. This 
means that for this L, we have no one-to-one mapping be- 
tween the blocks of information bits and the codewords, and 
the tailbiting technique cannot work. Every polynomial has 
at least one cycle of length 1, the zero cycle corresponding to 
the allzero codeword, which is not a trouble maker, but for 
any multiple of any other cycle, the tailbiting technique fails. 
If we have a general rate R = b/c encoder the tailbiting tech- 
nique does not work for any multiple of the cycles in the cycle 
characteristic of any of the b LFSRs. See also [2] [3] [4]. 

III. FINDING THE ENCODER STARTING STATE 

For polynomial convolutional encoders realized in controller 
canonical form the initial state of the encoder is simply given 
by the reciprocal of the last m input 6-tuples, but for system- 
atic feedback encoders the starting state depends on all of the 
information bits to be encoded. Several methods are presently 
known for finding the starting state in the controller canonical 
form. Certain algebraic equations may be set up and solved 
to obtain the starting state [2] [4]. In some cases the number 
of delay elements can be reduced by realizing the encoder in 
observer canonical form. For example, the minimal realization 
of rate R = 2/3 and R = 3/4 systematic feedback encoders is 
the observer canonical form [5]. We give a method for finding 
the starting state for this form. 
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Abstract — We study the problem of finding zero- 
error instantaneous codes for the Slepian-Wolf con- 
figuration [1]. By a zero-error instantaneous code 
we mean two encoder maps fa : X —> {0,1}*, fa '■ 
y —> {0,1}* and a decoding algorithm which, for 
any pair of encoder outputs /i(xi)/i(x2)/i(x3) • • • and 
h(yi)h{y2)fc{y3) ■ • ■» can correctly determine x\ and yi 
by reading only the first length(/i (xi)) bits of the X 
encoder output and the first length(/2(yi)) bits of the 
Y encoder output. For \X\ — 2, we find a necessary and 
sufficient condition for the existence of a zero-error in- 
stantaneous code with a given set of codeword lengths 
for Y. Using this condition, we derive an upper bound 
to the minimum expected codeword length for Y and 
construct a simple example showing that the coding 
scheme proposed by Kh, Jabri and Al-Issa [2] is not 
optimal in general, and more surprisingly, the opti- 
mal code may violate the "Morse condition" that the 
more probable of two symbols never has the longer 
codeword. For \X\ = 3, we find a necessary but not 
sufficient condition for the existence of a zero-error in- 
stantaneous code with a given set of codeword lengths 
for Y. Moreover, for \X\ > 3, the existence of such a 
code is shown to be related to a rectangle packing 
problem. 

I. INTRODUCTION 

The variable-length coding scheme proposed by Kh, Jabri and 
Al-Issa [2], henceforth called KJA coding, is summarized as 
follows. One of the sources, say X, is encoded by a Huffman 
code corresponding to the marginal p.m.f. p(x), while for Y, 
a Huffman code is constructed for 4>{Y) rather than Y, where 
0 : {0,1, 2,... , |j>| - 1} -> {0,1, 2 5 - 1} and S < \y\. 
S and <j> are chosen in such a way that ${y\) / ^(2/2) if 3x' 
s.t. p{x',y{) > 0 and p(x',y2) > 0, and the entropy of <fi{Y) 
attains the minimum over all possible choices of 4>. 

KJA codes operate at rates Rx —> H{X) and Ry < H(Y) 
and in general have lower rates than Witsenhausen's codes [3] 
because they use the nonzero p(x, y) values explicitly, whereas 
Witsenhausen distinguished only those (x,y) with p(x,y) = 0 
from those for which p(x,y) > 0. However, we notice that it 
is not necessary for the distinct codewords for Y to satisfy the 
prefix condition. Therefore, we propose an improved coding 
scheme as follows. 

For X, a Huffman code is used as before. For Y, we 
abandon the mapping cj> and encode by fa directly, where 
{2 has the property that for each x G X the set of code- 
words {f2(y) ■ p(x,y) > 0} satisfies the prefix condition; we 
call such a code an admissible fa. Decoding is done in two 
steps. X is first decoded in the usual way for Huffman codes. 

Then the decoded value x will give us a set of codewords 
UÄy) '■ P(E>2/) > 0} which can be used to decode Y. The fact 
that {fa{y) ■ p(x,y) > 0} satisfies the prefix condition guaran- 
tees that as we read the encoder output of Y sequentially, the 
first match to one of the codewords in {fa{y) ■ p(x,y) > 0} 
corresponds to the true value of Y. Therefore, this modified 
scheme is a zero-error instantaneous code. 

II. MAIN RESULTS 
Where i e X and j e y, let Ai = {y : p(i,y) > 0} and 
J,, =length(/2(j)). 

Theorem   1:     For   \X\ 2,   if  fa   is   admissible,   then 
'■>   <  1, for i = 0,1.    Conversely, if {l'j} satisfies 

0,1, then there exists an admissible 2~l'i < 1, for i 

Y^ 2~'3 < 1        for i = 0,l,2 (1) 
}€Ai 

E          2_,i^1 (2) 
j£(A0ClAi)\J(A-LnA2)\J(.A2r\Aa) 

^j€Ai 

2^jeA{ 

fa such that l'j = length(/2(j)) for all j 6 y. 

Non-optimality of KJA coding: For the joint p.m.f. 
{p(0,0) = 0.201, p(0,1) = 0.201, p(0,2) = 0.201, p(0,3) = 
0.1, p(l,3) = 0.1, p(l,4) = 0.197}, the expected codeword 
length of Y for KJA coding is 2, while that for our code is 
1.803. 

Theorem 2: For 1^1 = 3, if fa is admissible, then 

and 

Unlike the case for \X\ — 2, (1) is not a sufficient condi- 
tion for the admissibility of fa when \X\ = 3. Furthermore, 
even with the additional constraint (2), we still do not have 
a sufficient condition. This can be verified by the following 
example. 

If \X\ = 3, \y\ = 7, A0 = {0,2,4,6}, Ax = {1,2,5,6}, 
A2 = {3, 4, 5, 6}, then (2) and (3) can be satisfied by choosing 
{lj} s.t. /o = h = '3 = 2, I2 = h = h = 3 and l& = 1. Yet no 
codeword sets with these lengths can satisfy the admissibility 
requirement. We will show this by considering a rectangle 
packing problem. 
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Abstract- In this paper, we propose a new match length 
function (MLF) called multi-value MLF (MVMLF) to be 
used with Lempel- Ziv type (LZI) data compression 
scheme. By restricting the function to five essential 
constraints, we obtain the most complete and compact 
dynamic dictionary which is efficiently updated. Based 
on MVMLF, we present two asymptotically optimal 
compression schemes. 

Summary 
With reference to Lempel- Ziv data compression algorithm 

(LZ1)[1], various modifications have been made to reduce 
the bits required to encode the match length and match 
position. In [2], Gavish and lempel describe match length 
function (MLF), and propose to use MLF to save on 
encoding the length of a match. As a modification of their 
approach, in this paper we introduce and employ multi-value 
MLF (MVMLF) to achieve some desired properties, such as 
to obtain the most complete and compact dynamic dictionary 
which is efficiently modified and updated according to the 
existance redundancy in the window. 

The MLF as introduced in [2] associates just one unique 
nonnegative integer called match length value to each 
position of the current input data string in the window. MLF 
is defined as follows. 

Let    XL x0xlx2...xH_l  denote an input sequence of 
length N over a finite alphabet of size a and n , 0 < n « N, 
be the size of the sliding window. Let also l,{k) denote the 
value of MLF for the &* position of the window , when the 
window starts with xt, the /* symbol of the input string. To 
determine l(k) , we look for the largest integer /',/'< LMAX, 

that satisfies X'lt*1''1 = X 
/+m+/,(m)-2 
i+m i+k       - ^i+m 0<m<k, and then 

we set /j(/fc)= max{P,LMIN}, where LMIN and LMAX 
indicate the minimum and maximum permissible values of 

MLF. All strings of the form X\+
+
k

k
+IXk)~l ,0<k<n are 

referred to as valid strings , and the set of all valid strings 
creates the dictionary. 

The MVMLF that we propose in this paper may uniquely 
associate several match length values to some positions in 
the string , but does not associate any match length value to 
other positions. That is , numerous valid strings can be 
started from some positions (called valid positions) , 
whereas no valid string is started from other positions (called 
invalid positions). To save the required memory, and also to 
implement the recursive algorithm for MVMLF evaluation 
easily, we consider a special from of MVMLF in which the 
values associated to a valid position are successive. We 
define   three  functions   //(^),/min (k)andlmax(k),  each 

associates a value to  each position'A;, for 0 < k < n, where 

fi (k) = 0 implies   invalidity  of position k and f (k) = 1 

implies validity of all strings X*+M, / = /mill( (*),...,/„„,(*) 

started from position k . Subscript / in these functions has 
the same meaning as in l,{k). 

To have the most complete set of valid strings with 
minimum redundancy, in which lengthy strings can be 
included as easily as short ones , and also to update the 
MVMLF efficiently , we force MVMLF to satisfy the 
following constraints : 
• All prefixes of a valid string are valid. 
• Each string with the occurrence of at least two times in 

the window is a valid string. 
• Validity of a string is preserved as long as the string 

remains in the window. 
• A string can be valid in just one position in the window. 
• A string appearing in several positions  in the window 

must be valid in the rightest position of its occurrence. 

Assume that the subsequence X.+"'] is in the window and 
MVMLF has been evaluated for all position at the left side 
of k.   To   evaluate MVMLF at position  k, we first set 

ft (*) = 1  , /min/ (*) = /M| (*) = LMIN .   We then do 

the following steps sequentially for k' = k-1, k-2, ..., 2,1,0. 

1- Specify /, the length of match between positions k and k 
as : 

max 

2-if 

if 

I = minji 

LMIN < I 

U.C*')^/ 

!/'• y' - y — -A , ''-'\LMAX\ 

Set 

W) = o 
'««,(*) = ' 

U, (*') = ' 
or 

/,(*') = ! 

,(*')^/raa* (*') , Set 
I. «,(*) = ' 

(*') = / + ! 

The MVMLF defined in this way satisfies all five constraints 
mentioned above. We propose two data compression 
schemes based on using MVMLF. We prove that under the 
conditions : 

,.     logLMAX(n) TXIAV, s     l°g" J lljjl —=-; -^- = 0 , LMAX(n) > —^— , and 
log» H+s 

,,„,,    1°£ n + l°g LMAX +1     „,„,   , LMIN<— r-2— <LMIN + \ 
I log« | 

the proposed schemes are asymptotically optimal. 
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Abstract — This paper treats the codeword length of 
a fixed-to-yariable length code (FV code) as a random 
variable and analyzes its asymptotic properties. It is 
shown that for a given general source [2] the codeword 
length can be viewed as the self information as n -» oo 
if a certain kind of optimal lossless FV code is used. 

I. INTRODUCTION 

Consider an FV code that encodes a discrete random vari- 
able Xn e Xn into K-3.vy codewords with K > 2. We de- 
fine the FV code as a pair of an encoder ipn and a decode 
V>n, where (p„ is a surjective mapping from Xn to a code 
Cn C {0,1,. ..,K — 1}* and il>n a mapping from Cn to Xn. 
Usually, performance of FV codes is measured by the aver- 
age codeword length E[l(ipn(X

n))] under the requirement that 
the decoding error probability en = Pi{il>n(ipn(Xn)) ^ Xn} is 
equal to zero, where E[ ■ ] denotes the expectation with respect 
to the probability distribution Px™ of Xn. 

In this paper we investigate asymptotic properties of a ran- 
dom variable l(ipn(Xn)) as n -> oo for the cases that £„ = 0 
for all n > 1 and limsupn_+oc £„ < £ for an arbitrary £ € [0,1). 
In both cases l(tpn(Xn)) turns out to be deeply related to an- 
other random variable logK p ' „. provided that FV codes 
satisfying a certain kind of optimality are used. 

II. LOSSLESS CASE 

Suppose that X = {Xn}'^Li is an infinite sequence of ran- 
dom variables (or the general source [2]) with a countably 
infinite alphabet X. In order to unveil a relationship between 
the two random variables, we consider the following class of 
FV codes for X originally defined in [5]. 

Definition 1  An infinite sequence of FV codes {(<pn, 4>n)}™=i 
is called asymptotically mean-optimal if it satisfies all of 

(LI)     Y,   tf~'(*"*(*n)) < 1 for all n > 1, 
i"€*" 

(L2) limsup l-E[l(<pn(Xn))} - -H(Xn)\ < 0, 
n-K=o      I." n ) 

(L3)  £„ = 0 for all n > 1. 

It is easy to check the Shannon-Fano-Elias code (e.g., [1]) is 
asymptotically mean-optimal if it is applied to Xn, n > 1. We 
have the following theorem on asymptotically mean-optimal 
FV codes that is comparable with Nemetz and Simmons [4] 
treating discrete memoryless sources with a finite alphabet. 

Theorem 1 If {^ log/(- p *xn }™=1 is uniformly integrable, 
i.e., it satisfies 

lim sup — 
u-+oon>] n £ Px-(xn)\ogK 

[3], then for any S > 0 all sequences of asymptotically mean- 
optimal FV codes {(</>n, V'rOlJTLi satisfy 

lim Pr{Xn e\Vn(8)} = 0, 
n—¥oo 

where Wn(S) is defined as 

W.(*) = {*- €*" : |Ikgjr j^-I/^,-))! >*}. 

III. e-ERROR CASE 

Next, we consider infinite sequences of prefix-free FV codes 
satisfying lim sup,,^^ £„ < £ for an arbitrarily fixed £ € [0,1). 
In this setting we characterize an asymptotic behavior of code- 
word length of FV codes belonging to the following class. 

Definition 2  An infinite sequence of FV codes {(<pn, V'n)}^! 
is called asymptotically mean-£-optimal if it satisfies all of 

(El)    Y   K-«v') <lfor alln> 1, 

V*€C„ 

(E2) MmWmsup \ -E[l{<pn(X
n))] - -Gc+y(X

n)\ < 0, 
yi°   n-»oo    I. n n i 

(E3)  lim sup £„ < £, 

where Gs(X
n) is defined as 

Pt{xneAn} 

X":T: ,OBK 

Px»{xn) 
PXn(»") = 

Gc(X
n)= inf V PX"(xn)\og2      U     ,    , 

The mean-£-optimal FV code can be easily constructed in the 
manner similar to the construction of the weak variable length 
code [3, Sect. 1.8]. We have the following theorem on the class 
of asymptotically mean-e-optimal codes. 

Theorem 2 For any 5 > 0 all sequences of asymptotically 
raean-E-optimal FV codes {(c/3n,y>n)}^_i satisfy 

lim Pi{xn evnn wn(S)} = o, 
71—>CK> 

where Vn is defined as Vn = {xn £ Xn : j>n{tpn(x
n)) = xn}. 
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Abstract — We introduce the idea of proper and 
almost surely complete parsing. This parsing can 
uniquely segment the source output with probability 
one, and strengthens the coding converse theorem. 
Some kinds of non-proper parsing are involved in the 
proper and almost surely complete parsing. 

I. INTRODUCTION 
So far, a variable-to-variable (VV) length encoder has been 
considered as a variable-to-fixed (VF) length encoder followed 
by a fixed-to-variable (FV) length encoder [1]. Let us call 
this type of VV length encoders as VF-FV length encoders. 
The VF length encoder has a parser as a preprocessor, which 
segments the source output into a concatenation of variable- 
length strings, each of which belongs to a dictionary. The 
dictionary is supposed to be proper, i.e., no string in the dic- 
tionary is a prefix of another string in the dictionary. More- 
over, the dictionary is supposed to be complete, i.e., every 
infinite sequence has a prefix in the dictionary. Generally, a 
prefix and complete dictionary has exactly one prefix for every 
infinite sequence. 

We consider an i.i.d. source with a countable alphabet X 
with distribution P. If the dictionary of the parser is proper 
and complete, then the lengths of its entries are uniformly 
bounded. However, it is not necessary to bound the lengths 
of the entries for a VV length encoder. 

II. ALMOST SURELY COMPLETENESS 

Definition 1 A dictionary, which is a set of finite length 
sequences over X, is said to be almost surely complete (a.s.c.) 
if the probability that the dictionary has a prefix of the suffi- 
ciently long source output is one. 

For a proper and a.s.c. dictionary, the lengths of its en- 
tries are not generally uniformly bounded and the dictionary 
has exactly one prefix of a sufficiently long source output as 
its entry with probability one. The "weakly unique parsable- 
ness" for VF length coding defined in [2] is equivalent to this 
property. Note that being complete means being a.s.c. An 
example for a proper, a.s.c. and non-complete dictionary over 
{0,1} is {0,10,110, 1110, • • •}, which has no prefix of 111 • • ■. 

With an a.s.c. dictionary, we reinterpret a VV length en- 
coder. A VV length encoder consists of a parser and a prefix 
encoder tp. The parser have a proper and a.s.c. dictionary ip. 
The prefix encoder tp emits a codeword tp(x) for each string 
x in ip. Let (ip, tp) denote a VV length encoder. Note that 
the VV length encoder can no longer be decomposed into a 
VF length encoder and an FV length encoder. We now must 
abandon that every infinite sequence out of the source can be 
encoded. But they can be still encoded with probability one. 
Theorem 1 (Coding Theorem) We define the cod- 
ing rate of a VV length encoder (ip,tp) as E|</?|/E|t/>| = 
(Exe^tolvOOl) / (£l€^(*)M)> where \x\ denotes the 
length of a string x. Let C denote the collection of VV length 
encoders with a proper and a.s.c. dictionary. We have 

inf    EM/EM =-ff(P), 
W,c)ec 

where H(P) = — £a6 ^ P(a) log P{a) and the base of the log- 
arithm is equal to the size of the code alphabet. 

The theorem consists of the direct part and the converse 
part. The direct part can be replaced by that of the FV length 
coding because an FV length encoder is also a VV length 
encoder. The converse part can be demonstrated similarly to 
the VF-FV length coding theorem by means of 
Lemma 1 For an i.i.d. source over a countable alpha- 
bet X with distribution P, if ip is proper and a.s.c, then 
-Ylx^P(^ogP(x)^E\iP\H(P). 

The proof for a finite alphabet can be found in [3]. 

III. THE LONGEST MATCHING 

The properness and almost surely completeness together 
guarantee that the source output is uniquely segmented with 
probability one. However, the properness is not a necessary 
condition. We allow the dictionary not to be proper, and let 
the parser cut the source output at the tail of the longest 
match among the dictionary. Then, the necessary and suffi- 
cient condition for uniquely parsing is. the following. 
Definition 2 We say that a dictionary ip is longest matchable 
if in ip, there exists the longest prefix of a sufficiently long 
source output with probability one. 

A longest matchable dictionary is a.s.c. but may be non- 
proper. A simple example of such a dictionary is {0, 00,10, 
110,1110, ••• •}, which is obviously non-proper. 

For a longest matchable dictionary, we will try to obtain 
an equivalent, proper and a.s.c. dictionary. Let (ipo,tpo) be a 
VV length encoder with a longest matchable dictionary. For 
n = 1,2, •••, we recursively define tpn as follows. Let Mn-i 
be the collection of entries of ipn-i each of that is a prefix of 
another entry in ipn-i- Define 

ipn =   {tpn-i \ Mn-i) U {y € Mn-Hpo | there is 
no prefix of y in ipn-\ \ Mn-i }, 

where Mn-\ipo is the collection of concatenations of two 
strings from Mn_i and ipo, respectively. If ipo is proper, then 
ipn = ip0 for all n. For {ipn}, we now let 

V>oo = lim inf ipn. 
n—»oo 

It is shown that ipoo is proper. But unfortunately, it may be 
empty. 
Theorem 2 Let (ipo, <po) be a VV length encoder with longest 
matchable parsing.   If ipoo is a.s.c, then with some tpoo, the 
VV length encoder (■d'xi, ipoo) emits the same codewords as 
(ipo, ipo) with probability one. 
Corollary 1   If (V'o, <fo) is a VV length encoder with longest 
matchable parsing and ipoo is a.s.c, then (ipo,tpo) obeys the 
VV length coding theorem with proper and a.s.c. parsing. 
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Abstract — We investigate the Gaussian side information 
channel in the Shannon [1] setup and propose a method that 
achieves correlation between the signal and the side information 
noise. The capacity still remains to be determined however. 

I. INTRODUCTION 

Shannon [1] investigated the communication system in which the 
state Sk of the channel Pch(y\x,s) during transmission k = 
1, 2, • • • , K is selected according to the distribution Pst(s). Both the 
channel and the state selector are assumed to be memoryless. The 
encoder sends the message, m e {1, 2, ■ • • , txp(KR)) to the decoder. 
When x/c is to be produced, the encoder may use its knowledge of 
the state sk, which is made available to him just before transmission 
k is about to begin, and all previous states s\,S2, ■ ■ ■ , -ty-i- Hence 
Xk = F(M, S\, 52, •■ ■ , Sfc-i, Sjt) for some encoding function F(). 
When the channel input alphabet X and state alphabet S are dis- 
crete, the capacity is known (see [1]). This is not the case for the 
Gaussian side information channel however. Here the channel output 
Y = X + S + Z, where S and Z are independent Gaussian random 
variables with mean 0 and variances Q and N respectively. The code- 
words xf = (X\, X2, • • • , Xic) must satisfy the power constraint 
J2k=l K ^k — K P- The objective here is to find the capacity of this 
Gaussian channel. 

An upper and lower bound for the capacity C in nats per transmis- 
sion are 

\    Q+N    ) 2     \    N    ) (1) 

In [3] noise cancelation and noise concentration was studied. 

II. CORRELATING SIGNAL AND NOISE 

Here we transpose the Costa method [2] by trying to realize correla- 
tion on the symbol level. In transmission k we transmit a signal «£ 
from the set 

B± 5ß  _3_ß  _B_     B     3_ß      5ß 
"T'      2~'_'2'+'2'+~2~'+"2~' 

for some well chosen B. Assume that during transmission k the mes- 
sage j € {1, 2, ■ • ■ , J) must be transmitted. This message corre- 
sponds to a subset Bj of B. E.g. for J = 2 we could get the subsets 

B\    = 

Bl    = 

3B      B      5B 

2       2        2 
■}, 

5B 

~2'' 

B      3B 

and for j = 1 we choose a signal Uk € By and for j = 2 we choose 
a signal Uk from Bi- What we mean by this is that the transmitter 
chooses the input Xk such that Uk = Xk+Sk € Bj and x2 is minimal, 
when message j is to be transmitted. The channel output y* = Xk + 
Sk + Zk = Uk + Zk 's tne signal Uk to which Gaussian noise with 
variance N is added. It will be clear that for B2 » iV we obtain a rate 

R close to ln(7) bits per transmission. On the other hand the power P 
that is needed to concentrate the signal on Bj is roughly (JB)2/12. 

Hence J « y/\2P/B2. If we take B2 = \2N then J « -/PjN and 
we achieve a rate R close to (1/2) \n(P/N), which is independent of 
Q and more or less what we want for P «a J2N ~2> N hence for J 
not too small. 

Note that this method realizes that the transmitted symbol Uk = 
Xk + Sk is correlated with the state Sk- 

ill. NUMERICAL EVALUATION 

For Q = 100, N = 1 for 0 < P < 300 we have computed the lower 
and upper bound according to (1) and the rates achieved by the can- 
cellation and concentration techniques from [3]. In the concentration 
case A = 20 was chosen. The curves are shown in the first figure. 

Moreover for J = 2, 3, • • ■ , 10 and B = 2, 4, 6, ■ • • we have 
determined the channel with input U taking values from the alphabet 
{1, 2, • • • , J) and output Y. The mutual information I{U\Y) of this 
channel is computed assuming that U is uniformly distributed over 
{1,2, • • • , J). Also the average concentration power is determined. 
This leads for each value of J to a curve representing the power-rate 
pairs for several values of B. These curves are in the second figure. 
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Abstract — 
We determine the capacity regions for a class 

of time-varying multiple-access channels (TVMACs), 
when the underlying channel state evolves in time ac- 
cording to a probability law which is known to the 
transmitters and the receiver. Additionally, the trans- 
mitters and the receiver have access to varying de- 
grees of channel state information (CSI) concerning 
the condition of the channel. Discrete-time channels 
with finite input, output and state alphabets are con- 
sidered first. Next, in order to reduce transmitter 
complexity, we restrict the encoders at each time in- 
stant to depend only on a limited extent of CSI. As 
a special case, we consider a memoryless TVMAC, 
with the channel state process being a time-invariant, 
indecomposable, aperiodic Markov chain. We then 
study a time-varying (multiple-access) fading channel 
(TVFC) with additive Gaussian noise, when various 
amounts of CSI are provided to the transmitters while 
perfect CSI is available to the receiver, and the fades 
are assumed to be stationary and ergodic. 

I. PRELIMINARIES 

Consider first a discrete-time two-sender TVMAC with (fi- 
nite) input alphabets X\, X2, (finite) output alphabet y and 
(finite) "state space" S. The probability law of the channel is 
characterized by a sequence of (known) transition pmf's 

W = {W{yn\x'i,x^,sn) : 

xi e Xi, *2 e x?, sn e Sn, yn e y"}"=i, (U) 

and a (known) probability law Ps governing the 5-valued state 
process {St}£i which allows the state at any time to depend 
on the previous states but not on the previous channel inputs 
or outputs. 

Let £1, £2 and V be finite sets and hi : S —► £1, /12 : S —► £2, 
and g : S —► V be mappings which are used to describe the 
CSI available to the two senders and the decoder, respectively. 
Thus, at each time instant t, the encoder for sender-1 (resp. 
sender-2) is provided with the instantaneous CSI ei,t = hi(st) 
(resp. ei,t = ^2(5*)) while the decoder is provided with CSI 
dt = g(st), all in a causal manner. The capacity region of the 
TVMAC in (1.1) for the average probability of error criterion 
will be denoted by C. 

In order to reduce encoder complexity, we shall often 
consider situations in which we restrict the encoder for 
sender-j, j = 1,2, to depend only on the limited CSI 

(cj,max{i,t-*+i})- • ■ )ej,*)  at tmie *i f°r some fixed integer 

k > 1.   The capacity region corresponding to this "encoder 
restriction of window-fc" is denoted by C(fe). 

We shall also consider the multiple-access time-varying fad- 
ing channel (TVFC) model, in which the received IR-valued 
signal is given by 

Yt = Y,Sj,txj,t + Nt,  t>l, (1.2) 

J=I 

where {£j,t}tii and {Sj,t}tS=i are the IR-valued transmitted 
signal and ]R+-valued fade of sender-j, j = 1,2, respec- 
tively, and {Nt}%Li is i.i.d. Gaussian noise with mean zero 
and variance a%. The fading processes {Sjtt}t^=i, j = 1,2, 
are assumed to be jointly stationary and ergodic, though not 
necessarily independent of each other; they are independent 
of {Nt}^. The state of the channel at time t, t > 1, is 
St = (5i,t,52,t) G S = R2. The CSI available to sender-j is 
given by a mapping hj : (IR+)2 —► £,-, where £,■ can be an arbi- 
trary subset of H which is not necessarily finite. The decoder 
is assumed to possess perfect CSI, i.e., dt = st,t > 1. Sender- 
j, j = 1,2, is assumed to be subject to an input (average) 
power constraint Vj. 

II. RESULTS 
Our results include a determination of the following ca- 

pacity regions with CSI at the encoders and decoder. Some 
of them constitute generalizations to the multiple-access sit- 
uation of results for single-sender time-varying channels in 
[Caire-Shamai, IT Sept.1999]. 

• The capacity region C of the TVMAC in (1.1) (this follows 
as a straightforward consequence of the approach in [Han, 
IT Nov. 1998]), including in the special case when the CSI 
available to the encoders is contained in that available to the 
decoder. 

• The capacity region C of the TVMAC in (1.1) when the 
channel is memoryless and when the state process {St}?^ 
is a time invariant, indecomposable, aperiodic Markov chain 
(TIAMC), under suitable sufficient conditions for the invari- 
ance of C with respect to the distribution of Si. 

• The capacity region C(k) under an encoder restriction of 
window-fc, when the TVMAC and the state process are as in 
the previous situation; also, the capacity region C when the 
distribution of Si is the stationary distribution of the TIAMC. 

• The capacity regions C(fc) and C, when the TVMAC in 
(1.1) is memoryless and the state process {St}t^i is stationary 
and ergodic. 

• The capacity regions C(fe) and C of the TVFC in (1.2), 
as also implications when the fades are Raleigh and varying 
degrees of CSI are provided to the transmitters. 
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Abstract — Feedback strategies are presented for 

the ÜT-user white Gaussian multiple-access channel. 

The strategies are based on the discrete Fourier trans- 

form of fength K and achieve the sum-rate capacity 

for equal user powers if the signal-to-noise ratio is 

large enough. 

I. INTRODUCTION AND MODEL 

The capacity region of the 2-user white Gaussian multiple- 
access channel with feedback (MAC-FB) was determined 
in [1]. However, it seemed difficult to generalize this result 
to more than 2 users. We show that one can partially circum- 
vent the difficulties by considering a complex noise model and 
by using the discrete Fourier transform. 

The K user complex white Gaussian MAC-FB is a K + 1 
terminal channel with K inputs X\, Xi,..., XK and one out- 
put Y = (5^fc=1 Xk) + Z, where Z is a circularly symmet- 

ric complex Gaussian random variable with variance a1 = 
E[|Z|2]. Terminal k transmits a Bk bit message to the receiv- 
ing terminal in N channel uses, so that its rate is Rk = Bk/N 
bits per use, k = 1,..., K. At time n the transmitting termi- 
nals use the past n — 1 channel outputs Y"_1 to encode their 
messages. The power constraints on the transmissions are 
Yln=i El\xkn\2]/N < Pk for some constants Pk, k = 1,..., K. 

II. TRANSMISSION AND RECEPTION 

Terminal k transmits by mapping its message onto a point 0k 
in the complex plane and by correcting the receiver's estimate 
of this point. More precisely, 

Xk = \    Pk  /ffc(n_i)   • Cfc(n-l) -"Ifcn, (1) 

where <Tk(n-i) = E[|£k(„_i)|2] is the variance of the receiver's 

error £*,(„_!) = 0k(n-i) — 6k after n— 1 channel uses and mkn is 
a modulation coefficient. We call this transmission technique 
modulated estimate correction (MEC) [2]. We will choose the 
mkn to be entries from the length K discrete Fourier transform 
matrix, i.e., mkn = e*Mfc-i)("-i)/* 

We let the receiving terminal estimate the 0k by using a 
linear minimum-mean square error (LMMSE) estimator. The 
result is the K recursions 

2 2 
0~kn = Cfc(n-l) VynlXkJVYn, (2) 

where Vyn is the variance of Yn and VYn\xkn is the variance 
of Yn given Xkn- Consider also the correlation coefficients 

pkin = E[ejfcneJn] T2 
'tn 

1This work was performed while the author was with Endora 
Tech AG, Hirschgässlein 40, 4051 Basel, Switzerland. 

10 10 
Number of Users = K 

Fig. 1:  Sum-rate achievable with P = 10 and a2 = 1.   The rate 
units are nats/use/dimension. 

and let QLn be the K x K matrix with pktn in the (k,£)th 
position. One finds that 

Qe      . VYn  - CnC» 
0^=0-^=       _"      , (4) 

yVYn\x!< —yn\x>< 

where c_ is the column vector of the 

ckn = E[efc(n„1)yn*] 14- fc(n-l) (5) 

(3)      [2] 

Y_Yn\xK 's tne column vector of the Vyn|xfcn , the "0" in front 
of the fraction denotes term-by-term division (a "Hadamard 
quotient"), and the square-root in the denominator denotes 
taking term-by-term square roots. The recursion (4) yields 
good rates for a wide variety of power constraints and rates. 
Moreover, if Pk = P for all k the analysis can be simplified 
to an eigenvalue recursion. Numerical results are depicted in 
Fig. 1 for P = 10 and a2 — 1, where the sum-rate capacity 
is achieved for K < 8. It can be shown that, in general, 
MEC combined with LMMSE estimation achieves the sum- 
rate capacity for equal user powers if the signal-to-noise ratio 
is beyond some finite number that depends on K only. 
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Abstract — The achievability of the Wyner-Ziv the- 
orem [1] for the Gaussian case is shown using only 
geometric arguments. The motivation for this is to 
inspire the construction of practical codes based on 
this [2]. 

I. INTRODUCTION 

Distributed source coding deals with the encoding of cor- 
related sources that do not communicate with one another. 
The concept of distributed source coding has been considered 
for continuous sources with a fidelity criterion in [1] where 
X and Y are sources such that the decoder has (lossless) ac- 
cess to Y, and the encoder compresses X using the fact that 
the decoder knows Y. It was shown that when X and Y 
are jointly Gaussian with mean squared error as the fidelity 
criterion, it is possible to compress X as efficiently as the 
case when both the encoder and the decoder have access to 
Y i.e. Rx\y(D) = R*(D) [1]. In [2], a construction of gen- 
eralized coset codes has been proposed based on the channel 
coding principles. Using geometrical arguments we establish 
the achievability of the following rate distortion bound with 
side information for X: 

R=^og 
(l+<T2n)d* 

(1) 

where X is i.i.d. Gaussian with zero mean and unit variance, 
d* is the reconstruction fidelity, and the side information is 
given by Y = X + N, where N is i.i.d. Gaussian with zero 
mean and with variance <r^ and independent of X 

II. GEOMETRIC DERIVATION OF WYNER-ZIV BOUND 

We encode the source X in blocks of length L. Randomly 
distribute 2LRl codewords independently and uniformly on 
the surface of an L-dimensional sphere SL (Vl — 02) of radius 

•v/1 — 02 where R\ is a real number which depends on 8 (9 = 

\    "Tlrf«)-   Let C denotes this set of codewords.   Randomly 

choose 2LR7 codewords independently and uniformly from this 
set C, and give an index to this subset called a coset. Keep 
repeating this until all the codewords are exhausted. Thus, 
there are 2L<Ä1_H2) = 2LR indices. 

Encoding involves finding a codeword from the space of 
codewords satisfying a distance criterion (within distance 6) 
and sending the index of the coset containing the encoded 
codeword to the decoder. If none of the codewords satisfies 
the criterion, then an error is declared. We derive a lower 
bound on R\. The basic idea behind the proof is the follow- 
ing: encoder chooses a codeword to represent X, and nature 
chooses the side information Y independent of the encoder 

using a "channel" p(y\x) on X. Yet there exists a strong 
correlation between the quantized codeword and the side in- 
formation, which needs to be exploited. This key result (also 
known as the Markov Lemma [1]) used in the geometric argu- 
ments is given by the following theorem. 
Theorem: For any e > 0 (sufficiently close to 0), 3 £i(e) 
such that for any L > Li(e), P [|||Y||2 - 92 - a2

n| > e] < e, 

where Y = Y - W, Y, W are side information and quantized 
codeword vectors respectively. 

The first part of the decoder involves finding a "suitable" 
codeword in the given coset. If either more than one or none 
of the codewords satisfies the distance criterion, then an error 
is declared. We derive an upper bound on Ä2- The second 
part of the decoder then gets the reconstruction vector as a 
function of the encoded codeword and the side information 
vector. It is shown geometrically that the probabilities of the 
error events can be made arbitrarily small for large L. The 
geometry for the ideal case of very large L is shown in Fig. 1. 

lid« XBtoiMtlon 

^his work was supported by in part by DARPA Grant F29601- 
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Figure 1: OA,OC and OH represent the codeword and ob- 
served side information and the reconstruction vectors respec- 
tively. A,H and C are collinear. OH gives the minimum 
distortion given that OA and OC are codeword and the side 
information respectively. FG and DE represent two spheres. 
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Abstract — We will discuss the generation of dc- 
free runlength-limited (DCRLL) sequences. We pro- 
pose to employ standard RLL codes, where dc-control 
is effectuated by multiplexing the source data or the 
encoded data with dc-control bits. The dc-control bits 
offer the degree of freedom required to shape to spec- 
trum. It will be shown that a new technique, called 
parity preserving assignment, will offer great benefits over 
other constructions. 

I. INTRODUCTION 

The design of dc-free runlength-limited (DCRLL) codes 
can, at least in principle, be systematically accomplished 
by the many design techniques published [1]. Unfortu- 
nately, the design of a DCRLL code with a rate close 
to the Shannon capacity of the constrained channel, is 
severely hampered by the large number of states of the 
finite-state machine which models the channel constraints 
at hand. The large number of states of the underlying 
FSM, can, at least in principle, be handled by buying a 
larger computer, but the insight required is too easily lost. 
Essentially, there are two systematic design approaches 
that emerged in the literature. 

The first method uses a standard method, such as the 
ACH algorithm to design an RLL code. In the final stage 
of the ACH algorithm we end up with a graph with the 
property that from any state of the graph there are at 
least 2m (m is assumed to be the source word length) 
outgoing edges. These surplus edges are used as alterna- 
tive codewords that can be used for dc-control. The rate 
8/16, (2,10) EFMPlus code is an example of a DCRLL 
code used in practice (DVD) that was designed according 
to these guidelines [1]. 

In the second method, a given, state-of-the-art, RLL 
code, is used to generate RLL sequences. The sequences 
generated under the coding rules of said code are mul- 
tiplexed with dc-control bits for minimizing the low- 
frequency components. The user data or alternatively 
the encoded data are partitioned into segments of v bits. 
Between two consecutive i/-bit segments ß dc-control bits 
are inserted, and the ß dc-control bits, in turn, are chosen 
to minimize the low-frequency components. 

II. CODES WITH PARITY PRESERVING WORD 

ASSIGNMENT 

In order to make it possible to efficiently control the dc- 
content in the source date level mode, we have made the 
assignment between source words and codewords in such 

Table 1:  Variable-length synchronous rate 2/3, (l,oo) code 
with parity preserving assignment. 

Data Code 
00 < > 000 
01 i ► 010 
10 i > 100 
1100 < > 001010 
1101 i ► 001000 
1110 < ► 101010 
1111 i > 101000 

a way that the parity of both source word and its assigned 
codeword are the same. The parity, P, of an n-bit word 
(xi,... ,x„), X{ € {0,1}, (either source or codewords) is 
defined by 

n 

P = 2_lxi m°d 2. 
«=1 

In other words, if the source word has an even (or odd) 
number of 'one's then its channel representation also has 
an even (or odd) number of 'one's. A code with a par- 
ity preserving assignment has the virtue that when it is 
used in conjunction with dc-control bits at data level that 
setting an even (or odd) number of 'one's at data level 
will result in an even (or odd) number of 'one's at code 
level. This leads, as we will demonstrate, to an efficient 
dc-control. 

The variable length rate 2/3, (1, oo) code shown in Ta- 
ble 1, is an example of a code with the parity preserving 
property. It can easily be verified that indeed the as- 
signment is parity preserving. In the presentation, we 
will show the difference in performance between various 
DCRLL codes. 

References 

[1] K.A.S. Immink, Codes for Mass Data Storage Sys- 
tems, Shannon Foundation Publishers, Eindhoven, 
The Netherlands, 1999. 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 352- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Design of Binary Sequences with Optimal Frame Synchronization Property 

Young Joon Song 
Advanced Telecomm. Research Lab., LG Information & Communications, Ltd., 

LG R&D Complex, 533, Hogye-dong, Dongan-gu, Anyang-shi, Kyongki-do, 431-080, Korea 

Abstract: Based on the ideal autocorrelation property 
of sequences with odd length n, a general method to 
generate binary sequences of length N=2n with optimal 
frame synchronization property is studied. The sequence 
generation method may be useful in the field of 
communication systems. 

I.     Introduction 

The importance of sequences with optimal frame 
synchronization property is increasing since by employing 
two thresholds at the output of correlator of such sequences, 
we can double-check frame synchronization and thus 
improve the frame synchronization performance [1]. If the 
autocorrelation function of a sequence has double maximum 
values equal in magnitude and opposite polarity at zero and 
middle shifts, and further if the function has the lowest out- 
of-phase values except for at middle shift, then such a 
sequence is said to have "optimal frame synchronization 
property". A sequence is said to have "ideal autocorrelation 
property" if the out-of-phase autocorrelation value of the 
sequence is all " -1" or " 1 ". Based on sequences with ideal 
autocorrelation function, a general method to generate the 
optimal frame synchronization sequences of length N = 2n 
is proposed. Since all the binary maximal length sequences 

of period n = 2r -1 have the out-of-phase autocorrelation 
value "-1", we can easily construct the desired optimal 
frame synchronization sequences by using the proposed 
method. 

H.    Definitions and basic properties 

Let S =(si) = (sQ,sl,--^,sn_l) be an n-tuple binary 

sequence over GF(2)={0,1} and T be a cyclic shift left 
operator such that TS =(s1,s2,-",s0) . The periodic 

autocorrelation function is defined by [2] 

R,W = tz(*,)-X(s, 
i=0 

(i+T)(modn) .)) (l) 

where x(') is the unique isomorphism of the addition 

group {0,1} onto the multiplication group {-1,1}. We call 

R{0) the "in-phase autocorrelation value" and R(x) 'S 

(T * 0) the "out-of-phase autocorrelation values". The 

sequence S is said to have the "ideal autocorrelation 
property" if its periodic autocorrelation function has the 
lowest out-of-phase autocorrelation value of " 1 " or " -1". 

III.   Design of optimal frame synchronization 
sequences 

Using the following important results, we can construct 
the optimal frame synchronization sequences. 

Theorem 1: Let S = (i;) be an n-tuple binary sequence 

over GF(2) with ideal autocorrelation function, where 
n = 21 +1 , / = 1,2,3, • • • . If a sequence A = (a,) is 

constructed by the following relationships, 

*2z(modN) z(mod n) 

/£'a(2z+!)(modA0-' —     X\S(7.+(n+\)ll){maXn)) 

(2) 

(3) 

then the sequence   A   has the following optimal frame 
synchronization property. 

*.(*) = 

N,r = 0(mod N) 

-N,x = «(mod N) 

2, T = odd, x *■ «(mod N) 

- 2, T = even, x * 0(mod N) 

for positive odd /   (4) 

*.(*) = 

N, x = 0(mod N) 

-N,x = n(mod N) 

- 2, x - odd, x *■ «(mod N) 

2, x = even, x *■ 0(mod N) 

for positive even I   (5) 

From theorem 1 we observe that the sequences with optimal 
autocorrelation property of even period can be generated by 
(2) and (3) based on binary sequences with ideal 
autocorrelation property. 

Corollary 1: Let S be a maximal length sequence over 

GF(2) of period n = 2r -1 , r > 2 . Then the 
autocorrelation function of A with period N = 2n , 
which is generated by (2) and (3) becomes (4). 
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Abstract — We consider the problem of generating 
random numbers with a specified distribution by pars- 
ing a sequence of general coin tosses. We suggest a 
method based on homophonic coding that allows the 
number of tosses to approach arbitrarily close to the 
lower bound with exponentially less computational ef- 
fort than other known methods. 

I. INTRODUCTION 

The statement of the problem of random number gener- 
ation is to produce a random number that obeys some pre- 
scribed target distribution when having as an input some 
known random process, e.g., repeated tosses of a coin. A 
general coin is assumed to take on values from {1,2,..., M} 
with probabilities p(l), p(2), ..., p(M). The additional natu- 
ral setting to the problem is to minimize the (average) number 
of tosses required for generation of one random number. 

Knuth and Yao [1] suggested a method for generating i.i.d. 
random numbers with specified probability distribution by 
making use of fair coin tosses. They constructed a parse tree 
which minimizes the average number of coin tosses and proved 
that H+2 is the lower bound for the average number of tosses, 
where H is the Shannon entropy of the target distribution. 
However, when a sequence of random numbers is to be gener- 
ated, the size of the tree grows exponentially and the method is 
intractable. Han and Hoshi [2] suggested an interval algorithm 
which requires only linear growth of the memory size as the 
length of the sequence increases, and involves multiplication- 
type operations with linearly growing precision which results 
in roughly quadratic growth of computation time. They also 
used general coin tosses as an input. 

To construct a class of less complex methods of random 
number generation we suggest an approach based on homo- 
phonic coding. We show that using the ACIS-method [3] 
requires only logarithmic growth of the memory size and 
roughly square-logarithmic growth of computation time when 
approaching the lower bound for the number of coin tosses. 

II. THE ESSENCE OF THE APPROACH 

In homophonic coding, a message x\X2X3 ... with known 
probabilities of symbols is converted into a code sequence 
C1C2C3..., c 6 {0,1}, whose symbols are equiprobable and 
independent, i.e., indistinguishable from random bits. The 
decoder receives the sequence C1C2C3... and also knows the 
source probability distribution. Having these data, it recon- 
structs the initial message £12:22:3 ... Obviously, if instead 
of C1C2C3 ... the decoder is given a sequence of fair coin tosses 
nr2T3 ... and a target distribution, it will produce a sequence 
of random numbers yij/21/3 ■ ■ ■ that obey this distribution. 

Define the loss of generator to be the mean per random 
variable excess of the number of coin tosses over the random 

variable entropy. This loss is equal to the redundancy of a 
correspondent homophonic encoding that would produce such 
tosses. The ACIS-encoding [3] is to the date the fastest ho- 
mophonic coding method that allows for arbitrarily small re- 
dundancy. Hence, the ACIS-decoding can provide arbitrarily 
small loss when used as a random number generator. 

Let now a random variable X takes on values from 
{1,2,... ,M} with arbitrary (but known) probabilities. Let 
we are given a sequence of the random variable values Xm = 
X\X2 ■ ■ ■ Xm. It is required to generate a sequence of ran- 
dom numbers Yn — yij/2-..yn that represent values of a 
random variable Y that obeys some target distribution over 
{1, 2,... N). Denote by H{X) and H(Y) the entropies of X 
and Y. 

To solve this general problem we apply ACIS-encoding to 
Xm and transfer the code bits produced to ACIS-decoder that 
operates under the distribution for Y. But the encoder needs 
an extra source of random bits in order to make homophone 
selection. To obtain a solution in a standard framework, i.e., 
without any extra source of randomness, we replace the source 
of random bits with an auxiliary random bit generator and let 
a small fraction of the source numbers fork to the generator. 
Of course, this generator cannot be based on homophonic cod- 
ing. But we could expect that even a relatively more complex 
generator would not increase the overall complexity since the 
number of random bits it must generate can be made arbi- 
trarily small. 

Theorem: Let the scheme based on ACIS encoding and 
decoding be used to generate a sequence of random numbers 
Yn, n —> 00, by parsing a sequence of general coin tosses Xm. 
Then the expected number of values of X required to generate 
one value of Y 

n-fco      n H(X) 
+ e, 

and the loss e can be made arbitrarily small at the expense of 
the memory size S and computation time T growing as 

S = 0 (log i) ,    T = 0 (log i log log i log log log I) . 
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Abstract — In this work we deal with the prob- 
lem of linear multiuser detection for asynchronous 
DS/CDMA systems. We introduce a new Mean- 
Output-Energy cost function, whose constrained min- 
imization leads to two new linear multiuser detectors, 
exploiting the information contained in the pseudoau- 
tocorrelation of the observables, and which generalize 
and outperform the classical decorrelating and mini- 
mum mean square error receivers. 

I. INTRODUCTION 

The decorrelating detector [1] and the minimum mean 
square error (MMSE) receiver [2] are the two most popular 
linear multiuser detectors; indeed, both receivers have a com- 
plexity which is linear in the users number and achieve opti- 
mum performance in terms of near-far resistance. Both detec- 
tors, however, exploit only the information contained in the 
autocorrelation function of the observables. While this is the 
optimum strategy when dealing with proper complex random 
processes, it turns out to be suboptimal in situations where the 
disturbance is an improper complex random process1. Since, 
as shown in [3], the multiaccess interference (MAI) can be 
modeled as an improper complex noise, it is expected that 
designing receiving structures capable of exploiting the infor- 
mation contained in the pseudoautocorrelation function of the 
observables would permit achieving better performance. In 
this work, we deal with the problem of linear multiuser de- 
tection: a new cost function is introduced, whose constrained 
minimization leads to new versions of the decorrelating and 
the MMSE receivers exploiting the information contained in 
the observables pseudoautocorrelation function. 

II. SYSTEM MODEL AND DETECTORS DESIGN 

We consider an asynchronous DS/CDMA network with K 
active users. Stacking in an NM-dimensional vector2, the 
discrete-time samples of the received waveform in the p-th 
signaling interval \pTt, (p + 1)T&], and assuming that we are 
interested in decoding the bits from the user "0" and that 
TO = 0, we obtain the vector: 

r(p) = A0b0(j>)so + z(p) + w(p) (1) 

In the above equation, z(p) and w(p) contain the contribution 
from the MAI and from the additive thermal noise, respec- 
tively. Given the iVM-dimensional observable vector r(p), any 

1 According to [3], a complex random process n(t) is said to be 
proper if its pseudoautocorrelation function Rn(t,u) = E[n(t)n(u)] 
is zero Vt, u, and it is said to be improper in the opposite case that 
Rn(t,u) is non-zero. 

2 N is the processing gain, M is the number of samples per chip. 

linear receiver takes a decision as to the bit &o(p) according to 
the rule: 

&o(p)=sgn(R{d?r(p)}) (2) 

where sgn(-) denotes the signum function, SR{} denotes real 
part, while the vector do S CNM is to be designed according 
to some optimization criterion. Since, inspecting the decision 
rule (2), it is seen that the receiver performance is impaired 
by the disturbance term K {dg (z(p) + w(p))\, we propose 
here to choose the vector do as the solution to the following 
constrained minimization problem: 

E[(K{d0
H/i(p)})2] s.t.    3?{d?sg} = l     (3) 

The solution to the above problem can be shown to be written 
as: 

do = Hvvs0 — MvvMvvHvVs0* (4) 

with Hvv = 2 (MVV - M'vvM^MyV J   .   In the above 

equations, (-)+ denotes the Moore-Penrose generalized inverse, 
Mvv = E[v(p)vH(p)] and M'vv = E [v{p)vT(p)] repre- 
sent the covariance and pseudocovariance matrix of the vector 
w(p), respectively3, while, finally, v(p) = A0b0(p)so + h(p). It 
can be shown that, if we let h(p) = z(p), solution (4) repre- 
sents a generalization of the decorrelating detector, while, if 
we let h(p) = z(p) + w(p), solution (4) is a generalization of 
the MMSE linear multiuser detector. Only in the special case 
that the matrix M'vv is zero, does solution (4) reduce to the 
classical decorrelating and MMSE linear multiuser detectors. 

As to the performance assessment, it can be shown that the 
newly proposed receivers outperform the classical linear mul- 
tiuser receivers. Indeed, an analytical proof showing that the 
new receivers achieve a near-far resistance not smaller than 
that of the classical decorrelating receiver can be given, while 
computer simulations confirm the superiority of the new re- 
ceivers in terms of error probability too. 
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Abstract — In this summary, we present the minimum mean 
squared error multiuser detector for noncoherent detection of 
non-orthogonal multipulse modulation. The detector is analyzed 
in the large signal-to-noise ratio regime and it is shown that the 
MMSE detector approaches a new multiple access interference 
suppressing detector, termed the multipulse decorrelating (MD) 
detector. The asymptotic performance of the detectors is pre- 
sented for the additive white Gaussian noise noncoherent chan- 
nel. 

I. Introduction 

We introduce the minimum mean squared error (MMSE) detector 
for non-orthogonal multipulse modulation (NMM) over the nonco- 
herent multiple access channel. NMM is a generalization of orthog- 
onal modulation in which the users may transmit correlated wave- 
forms, allowing for bandwidth efficiency. The generalized maximum 
likelihood (GML) detector has been studied in [l]-[6] for detection 
on such channels and we compare the GML with the MMSE detector 
for large values of the signal-to-noise ratio (SNR). The MMSE will be 
seen to approach a new detector, termed the multipulse-decorrelating 
(MD) detector, at large SNRs. We show that the the MD (and hence 
the MMSE) detector is asymptotically superior to the GML detector 
for binary (M=2) signalling but that this performance advantage does 
not generalize to larger cardinality signal sets. 

II. Discrete Time Model 

We adopt the following discrete model for the output of the nonco- 
herent multiple access channel after basis function matched filtering: 

y = HVb + n. (1) 

The matrix U - [H(l), H(2), • • • , H(K)] contains the signal vec- 
tors for each user with H(fc) = [hi (A:), h.2(k), ■ ■ ■ , h.M(k)] and 

i(A;) is the mth signal corresponding to user k.    The vector 
[bT(l), bT(2), • • • , bT(K)]T is an MK x 1 vector with each 

h, 
6 
b(k) a column of the MxM identity matrix which selects the signal 
transmitted by user k. The MK x MK matrix V contains the user 
energy and phase terms. The additive noise, n, is modeled as zero- 
mean complex Gaussian with correlation matrix £[nn*] = a2I. 

Assuming that the phase terms are independent zero mean random 
variables, the measurement y has first and second order statistics: 
m = E[y] = 0 and R = E[yy*] = WFH* + rj2I, where F 
diagf^I, 
user. 

, EKI} and Ek is the energy associated with the k 

This work was supported by the National Science Foundation under Contract No. ECS 9979400 and 
by the Office of Naval Research under Contract No. N00014-00-1-0033. The results contained in this 
paper have been submitted to the IEEE Transactions on Communications. 

III. The MMSE Detector 

The (linear) minimum mean squared error estimate of the vector 
Vb is given by Vb = F'M*R_1y. We make decisions on user k by 
examining the kth block, U(k)b(k), of the estimate Vb. This leads 
to the simple decision rule: 

■ifiMMSE(k)    =    argmaxUD(A;)b(/i:H 
mit Jr. 

(2) 

=    arg max llh^WR-Vf}, 
where R = E[yy*]. 

At high values of the signal to noise ratio (SNR) we find that the 
MMSE detector approaches the asymptotic form: 

ifiMD{k) = arg max |(H(*) »pi H(fc))     H(Jfc) *ps(k)y 

where A ' is the pseudo-inverse of the matrix A and the interference 
matrix S(k) has the signals H(Z) for I ^ k as its columns. We call 
this detector the multipulse decorrelating (MD) detector in analogy 
to the linear decorrelating detector of [7]. 

Using standard union bounds and two signal lower bounds we find 
that as the SNR grows large, the error probability for the MD (and 
hence the MMSE) detector has the asymptotic form 

■ exp ■ mm - 
-Ek 

((G*G)+ra + (G*G)+ + 2 |(G*G)+ |) *} 
(3) 

where we have defined G = PS(MH(A;). 

By comparing this expression with the probability of error for the 
generalized maximum likelihood (GML) detector of [l]-[5] we find 
that for M = 2 (binary signaling) the MD (MMSE) detector is supe- 
rior to the GML rule asymptotically. This result does not generalize 
to larger cardinality signal sets. Neither detector is uniformly supe- 
rior over constellation sizes M > 2. 
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Abstract — In this paper we present a new group 
detection strategy for asynchronous DS/CDMA Sys- 
tems. The new detector is a two-stage one: the first 
stage is a linear filter, aimed at suppressing the ef- 
fect of the unwanted users signals, while the second 
stage is a non-linear block, implementing a maximum 
likelihood (ML) detection rule on the set of desired 
users signals. Simulation results confirm that the new 
structure, which encompasses Varanasi's group detec- 
tor as a special case, achieves very satisfactory per- 
formance. 

I. INTRODUCTION 

Given a Direct-Sequence Code-Division Multiple-Access 
(DS/CDMA) communication system with K active users, 
a group detector jointly demodulates the information bits 
stream from a certain subset, Q say, of the K transmitting 
users. The concept of group detection was first introduced 
by Varanasi in [1], wherein, with reference to a synchronous 
CDMA system, new receiving structures were derived, based 
on the application of the generalized likelihood rule. 

In the very recent past, group detection has become an 
attracting and intriguing research topic, in that it has been 
recognized that it can be successfully applied to wireless cellu- 
lar communications so as to come up with multiuser receivers 
able to suppress both the intra-cell and the inter-cell interfer- 
ence [2] and with single-user receivers for multirate/multicode 
CDMA systems [3]. 

In this work we consider an asynchronous DS/CDMA sys- 
tem and present a new group detection structure; it is a two- 
stage receiver: the first stage is a linear filter, aimed at sup- 
pressing the multiaccess interference (MAI), and whose G- 
dimensional output (with G the cardinality of the set Q of 
the desired users) is forwarded to the second stage, a non- 
linear device, which implements a maximum-likelihood detec- 
tion strategy and takes the final decision on the G bits of 
interest. 

II. SYSTEM MODEL AND RECEIVER SYNTHESIS 

We consider an asynchronous DS/CDMA System with K 
active users. Assume, without loss of generality, that the 
users to be decoded are indexed by 0,..., G — 1, namely that 
Q = {0,... ,G — 1}. It follows that the discrete-time ver- 
sion of the complex envelope of the received waveform in the 
bit-interval \pTb, (p + l)Tj], r(p) say, is an iVM-dimensional1 

vector expressed as: 

r(p) = ]T Ake
j^bk(P)s0

k + z{p) + w(p) (1) 

wherein z(p) and w(p) represent the discrete-time versions 
of the MAI and of the thermal noise. We also suppose that 
the codes s°,..., SQ_1 are linearly independent. The detec- 
tion structure that we consider is depicted in figure 1. The 
filter D is chosen as the solution to the following constrained 
minimization problem: 

E [||DH/i(p)||2| = min    subject to: D"SG = K (2) 

wherein Sa is an NM x G-dimensional matrix containing on 
its columns the signatures from the users to be decoded, and 
K is a G x G matrix, which we assume to have full-rank. If 
we let h(p) = r(p) — w(p), the filter D ends up coincident 
with a decorrelating group detector, and, if the signatures of 
all of the active users are linearly independent, it zero-forces 
the MAI. Under this circumstance, it can be also shown that, 
if we let M = 1 and consider a synchronous CDMA system, 
the receiver structure in figure 1 reduces to the group detector 
presented in [1]. On the other hand, if we let h{p) = r(p), the 
filter D reduces to a group MMSE detector. It is also seen 
that the choice of the constraint matrix K has no effect on the 
system structure, so that we can set K equal to the identity 
matrix. 

As to the performance assessment, simulation results con- 
firm that the new structure achieves very satisfactory perfor- 
mance. In keeping with the single-user receivers behavior, the 
MMSE group detector outperforms its decorrelating counter- 
part, especially for large number of users and/or for power- 
controlled systems. 

Finally, it is worth pointing out that the new structures 
may be implemented in a blind adaptive fashion through a 
straightforward application of the Recursive-Least-Squares al- 
gorithm or of subspace tracking algorithms. 

rip) 
D 

DHrip) 
*ML Receiver 

MP) 

1 iV is the processing gain and M is the number of samples per 
chip. 

Figure 1: Block-scheme of the group detector. 
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Abstract - In this paper we discuss a research effort focused 
on the design and analysis of robust, low-complexity, 
adaptive wireless receivers that exhibit good performance 
characteristics in the presence of multiple sources of 
complex structured interference as well as significant 
uncertainty regarding the exact structure ofthat interference. 
We consider problems primarily related to the code-division, 
multiple-access (CDMA) environment. In particular, we 
study adaptive one-shot linear-quadratic (LQ) receivers for 
time-varying, frequency-selective CDMA fading channels. 
We propose a novel Bayesian approach to this problem in 
which receivers are designed based on a probabilistic 
channel model that explicitly incorporates multiple sources 
of additive interference as well as a stochastic structure for 
the channel uncertainty. Under the assumption that the 
probabilistic structure of the channel model is known, we 
develop and analyze a design strategy for adaptive LQ 
receivers that are optimal with respect to the assumed 
channel model and robust with respect to uncertainty 
regarding the true instantaneous state of the channel. In 
addition, we develop and analyze an adaptive modulation 
scheme that works in conjunction with the proposed LQ 
receivers to either maximize throughput or minimize 
probability of error. 

For the purposes of receiver design (but not performance 
analysis), we make the simplifying assumption that all 
additive interference on the channel is Gaussian. If we were 
to restrict attention to linear detectors incorporating 
antipodal signals, then it is easy to show that the proposed 
approach to receiver design would lead directly to an 
adaptive minimum-mean-squared-error (MMSE) linear 
detector analogous to the one developed in [1]. In this 
respect, the proposed approach can be regarded as a 
generalization of linear MMSE detection that is much less 
sensitive to errors in channel state estimates. Under the 
Gaussian assumption, the optimal detectors for a fixed signal 
structure and known estimates of the current channel state 
are necessarily linear-quadratic. We show that if the second- 
order structure of the channel is known, then the optimal 
detector for binary signals can be determined by maximizing 
a particular cost function. In addition, we show that the 
maximum value of the proposed LQ cost function for any 
pair of transmitted signals is equivalent to the Kullback- 
Leibler (KL) distance between the two corresponding 
Gaussian hypotheses. Hence, maximizing the cost function 
simultaneously with respect to both the signal and detector 
structure gives the optimal LQ detector for the signal pair 

that maximizes the KL distance between the corresponding 
Gaussian hypotheses subject to the known estimates of the 
channel state and the second-order channel structure. 
Furthermore, the structure of the cost function can be 
exploited to develop efficient adaptive algorithms for 
simultaneous signal selection and receiver design. Finally, 
this approach can be extended straightforwardly to M-ary 
signal constellations in order to adapt the modulation and 
detector structure to give minimum probability of error at a 
fixed data rate or maximum data rate at a fixed probability of 
error. This leads to adaptive modulation schemes that are 
analogous to those discussed in [2, 3] but much less sensitive 
to errors in channel state estimates. 

As an indication of the potential of this approach, consider 
the results of a simulation experiment presented in Figure 1. 
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Figure 1. MMSE Linear Receiver versus LQ Receiver with 
Adaptive Binary Signaling at 8 dB SNR 
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Abstract — The problem of error-free filtering for 
a discrete-time, stationary, singular, stochastic pro- 
cess X = {Xn} from observations V = {Yn} in the case 
of dependent distortions, i.e., where the pair {X, Y) 
forms a jointly stationary process is considered. 

Let (X, Y) be a two-dimentional, partially observable, 
discrete-time, stationary stochastic process where X = {Xn} 
is the nonobservable and Y = {Yn} the observable component. 
We shall take an interest in finding rather general conditions 
under which error-free filtering of Xn from the observations 
{Yj,j < n} is possible. In [1, 2], such conditions were pointed 
out for the case where Y = X + Z and X and Z are indepen- 
dent stationary processes. In [3], such kind of conditions were 
found for the case of independent distortions, i.e., under the 
assumptions that, given a sequence {An}, the observations 
{Yn} are independent and 

P{y„ edy\xhj = o±i,...} = p{rn e dy \ xn) 

and, moreover, the conditional distribution P{Yn € dy \ Xn) 
does not depend on n. Thus, in this case, the observations 
{Yn} can be considered as an output sequence of a stationary 
memoryless channel whose the input sequence is {Xn}. 

Here, we consider a more general situation where, given a 
sequence {Xn}, the observations {Yn} can be dependent. The 
results obtained here are rather closed to some results of [4] 
though, in contrast to [4], we consider a causa/filtering and, 
moreover, the methods of proof are absolutely different. 

Let us now assume that the process X being estimated 
and the observable process Y form a two-dimentional jointly 
stationary stochastic process. Moreover, we shall assume that 
A- is a singular process with a finite number of values in a set 
X and Y takes values in a measurable subset y of the real 
line. 

To state the main result, we introduce the notion of condi- 
tional regularity for a pair of processes X = {Xn} and V = 
{Yn}. To do this, we need in some definitions. Denote by X1 

the set of all infinite sequences x = (... x_i, xo, xi,...), x,- € 
X, i = 0,±1,— The set y1 is defined similarly. Let 
A*x(0» x € X' be a probability measure on y' (with «r-algebra 
of measurable sets generated by all cylinder sets) which is a 
conditional distribution of Y — {Yn} given X = x, x 6 X', 

i-e-, /iX(-) = Py|x=x(-)- 
Assume now that the measures /ix(")> x 6 X11 have the 

following property: for all B € ^(—00,00) = (Jjry(—oo,n] 
n 

(where Ty{—00,n] = a\Yj, j < n} is the ff-algebra generated 

1 This work was supported in part by the Russian Fundamental 
Research Foundation under Grant 99-01-00828. 

by values of the process Y — {Yj} up to time instant n) 

sup        \ux(AB) - ux.(A)ux(B)\ -* 0    as     n-* -00 
A€^V(—00,Tl] 

uniformly in x for almost all x € X1 (with respect to the 
measure generated by the process X). In this case, we shall 
call that the process Y = {Yn} is conditionally regular with 
respect to X — {Xn}. 

Note that in the case where X and Y are independent, 
the notions of conditional regularity and (usual) regularity 
coinside. 

Let /ix(')> x € X1 ■> De a projection of /*x(*) on the space 
of values of the random variable Ki, i.e., /ix(0 = Pv„|X=x(0 
is the conditional distribution of Yn given X = x. Finally, 
denote by f"(-) = Pyn|xn=x(-)» * € X, a probability measure 
on y which is a conditional distribution of Yn given Xn =■ 
x. In the case of jointly stationary processes X and Y the 
measure f£(-) does not depend on n and will be denoted by 

".(•)■ 

The main result is given by the following 

Theorem. If Y is conditionally regular with respect to X, 

for any x = (... x_i, xo, x\,...), and 

y*(-) # JV(-)   for    x/x, 

then for any integers m and n the equality 

Epkiyry = xn  a.s., 
holds, i.e., the value of Xn, n = 0, ±1,..., can be reconstruct- 
ed without error from the observations KTU = {Yj, j < m}. 

The proof of this theorem can be found in [5]. 
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Abstract — The purpose of this paper is to de- 
scribe the extension of the Whittaker-Shannon sam- 
pling theorem to the case of signals observed in the 
presence of noise. We introduce a class of signal re- 
covery methods being a smooth correction of the car- 
dinal series. Both band-limited and non band-limited 
signals are considered. The weak and strong Li con- 
sistency of the algorithms are established and the rate 
of convergence is investigated. 

I. INTRODUCTION 

The Whittaker-Shannon (WS) sampling-interpolation the- 
orem is generally recognized as a milestone in information 
theory, communication systems, signal processing as well as 
Fourier analysis [1]. The result may be briefly stated as fol- 
lows. Consider a class BL(Q) of band-limited signals with 
bandwidth ft and fintie energy. The WS theorem says that 
every / G BL(Cl) can be reconstructed from its discrete values 
/(jr),j = 0,±l,±2,...by 

OO 

f(t)=   Y,  /0>)sinc (^-jr)) (1) 

provided that r < ir/£l, where sinc(i) = sin(t)/t. Formula 
(1) is frequently referred as the cardinal series or the WS in- 
terpolation scheme. Many extensions of (1) have been given 
in the case when some assumptions in the sampling theorem 
are not satisfied. In particular, truncation, aliasing, location 
(jitter), amplitude errors of the WS cardinal expansion have 
been examined. Furthermore, generalizations to multiple di- 
mensions, random signals, not necessarily bandlimited signals, 
missing data, wavelet subspaces and irregular sampling have 
been proposed [1], [4]. Relatively little attention, however, 
has been given to the problem of signal sampling in the pres- 
ence of random noise. This issue has been mentioned a num- 
ber of times in the signal processing literature, but no al- 
gorithms with established convergence properties for a signal 
reconstruction from noisy data were given. The rigorous theo- 
retical threatment of this problem has been studied in [2] and 
[3]. In all these papers a particular class of reconstruction 
algorithms has been examined and only band limited signals 
have been taken into account. In this paper we study the 
previously introduced algorithms for both band-limited and 
also non band-limited signals. We observe that each particu- 
lar technique can have good reconstruction accuracy and no 
technique dominates universally over a large class of signals. 
Hence our principal goal in this paper is to reconstruct a sig- 
nal f(t) from the following finite record of sampled and noisy 
data yj = f(jr) + £■,-, \j\ < n, where r is a sampling rate. 

We examine two types of estimators of f(t) motivated by 
the cardinal expansion formula. The first one is a kernel type 

estimator with the sine function being the reproducing ker- 
nel for BL(Q). The second class is using an orthogonality 
property of the sine function yielding an orthogonal series es- 
timate. We also extend our theory to the case of not necessary 
band-limited signals. Hence we show that our estimates can 
adapt to a larger class of signals. This is carried out by ap- 
proximating non-band-limited signal in Li(R) by a sequence 
of band-limited functions with the bandwidth increasing to 
infinity, i.e., fi = fin —> oo as n —♦ oo. It is worth noting 
that allowing Q to vary our construction can be viewed from 
the prespective of wavelet interpolation subspaces (multires- 
olution theory). Let us note, however, that our estimation 
algorithms do not interpolate data; the necessary property in 
the presence of noise. 

II. ESTIMATORS AND RESULTS 

The first estimator of f(t) is based on the fact K(t) = 
s'm(Q't)/nt is a reproducing kernel for BL(Q) provided that 
fi < fi'. Hence we obtain the following kernel estimate 

Mt) = TDui^yj""!"'^)^- Note that /„ e JBL(fi'), 
hence fn lives in the same space as /. Such a property is 
not shared by ordinary kernel estimators. To construct the 
second estimator we observe that (1) can be written in the 
following equivalent form f(t) = Yl'iL-oo fUT) si(t)' where 
it is known that {sj(t) = sinc(7r(t — jr)/r),j = 0, ±1,...} 
defines as orthogonal and complete system of functions for 
BL(Q.), provided that r < 7r/fi. 

The above interpretation of the cardinal expansion sug- 
gests the following orthogonal type estimate of f(t) : fn(t) = 

X!|fc|<N £fcSfc(*)' where Öfc = E|i|<Mu,i^-i is the weighted 

moving average of {yk} in the neighborhood of f(kr). The 
global mean integrated sequared error (MISE) converges rates 
for the aforementioned estimators are established. In partic- 
ular it is shown that for / E BL(Q) we have MISE(fn) = 
Q(n-r/(r+l))   and   MISE(fn)   =   0(n-2(2r+l)/(5r+7)))   where 

the index r > 1 defines the decay of band-limited signals at 
±oo. The rate of convergence for /n is valid for all positive 
weight sequences {wi}. 
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Abstract — In this paper, the linear almost- 
periodically time-variant (LAPTV) filtering of gener- 
alized almost-cyclostationary (GACS) signals is con- 
sidered in the fraction-of-time probability framework. 
It is shown that in general GACS signals, when pro- 
cessed by LAPTV filters, deliver output signals with 
zero power. 

I. INTRODUCTION 

Very recently, a class wider than that of the almost- 
cyclostationary (ACS) signals has been introduced and char- 
acterized [2]. Signals belonging to this class are called general- 
ized almost-cyclostationary (GACS) and exhibit multivariate 
statistical functions that are almost-periodic functions of time 
whose Fourier series expansions have coefficients and frequen- 
cies that can depend on the lag shifts of the signals. Moreover, 
the union over all the lag shifts of the lag-dependent frequency 
sets is not necessarily countable. The GACS signals have been 
characterized in [2] in both time and frequency domains in 
terms of generalized cyclic statistics. 

In this paper, the linear almost-periodically time-variant 
(LAPTV) filtering of GACS signals is considered in the 
fraction-of-time (FOT) probability framework [1] in which 
statistical parameters are defined through infinite-time aver- 
ages of a single time-series rather than ensemble averages of a 
stochastic process. 

II. LAPTV FILTERING OF GACS SIGNALS 

Let us consider the impulse-response funcion of a LAPTV 
system 

h{t,u) = Y^ha{t-y)ei2^u , (1) 
irgfl 

where f2 is the set of the frequency shifts introduced by the 
system. It can be shown that the .Nth-order temporal moment 
function (TMF) of the output y(t), that is, the almost-periodic 
component contained in the Nth-order lag product of y(t), is 
given by 

Xy(lt + T)=   J2  ej2n<TJ(lt+T)T)x,<r(lt + T),      (2) 

where 

Dx,CT(lt + r) £  /    nÄ.(A»+a,)S,.(Ä)e'h*T(1'+T»dA. 
•'«"nil 

(3) 

In (2) and (3), 1 = [1,---,1]T, Ha(f) is the Fourier trans- 
form of ha{t), and Sa;(A) is the TVth-order spectral moment 
function of the input signal x{t), that is, the AT-fold Fourier 
transform of the Nth-order TMF. 

It can be shown that if h„(t) € L2(K) and x(t) is a GACS 
signal not containing any ACS component, then !Da.,<r(li + T) 
is infinitesimal as ||T|| —¥ oo and then, as \t\ —> oo. Therefore, 
Da:,<T(lt + T), as function of t, is a function with zero power 
so that the product Du^, (It + Ti)CDa:,CT2(li + T2) does not 
contain any additive sinewave component. Thus, the TMF 
(2) of any order N is zero in the temporal mean-square sense, 
that is, the output signal has zero power. Moreover, it results 
that the output TMF can be not identically zero only if the 
input time-series contains ACS components (in which case the 
output time-series is ACS), unless some function /i<r„() con- 
tains impulsive terms, as in the case of systems introducing 
constant time delays or frequency shifts. 

Some limitations in the applicability of (higher-order) 
cyclostationarity-based signal processing algorithms arise, 
when the increasing of the collect time makes the GACS 
model more appropriate than the ACS one, since possible 
time variations of timing parameters of the signals must be 
taken into account. In fact, in such a case, (generalized) 
cyclic statistic estimates of the output signal are asymptot- 
ically zero when the collect time approaches infinity. There- 
fore, there exists an upper limit to the maximum usable collect 
time and, consequently, there exists a limit to the minimum 
acceptable signal-to-noise ratio for cyclostationarity-based al- 
gorithms which are, in principle, under mild assumptions, in- 
trinsically immune to the effects of noise and interference, pro- 
vided that the collect time approaches infinity. 

The identically zero (generalized) cyclic statistics of the 
LAPTV filtered GACS signals are consequence of the proper- 
ties of the single observed time-series (e.g., the possible time 
variation of a timing parameter, such as the carrier frequency 
or the baud rate). In contrast to this, statistic functions of 
a stochastic process can be identically zero as a consequence 
of the presence, in the stochastic process model, of a ran- 
dom parameter whose effect is to make the statistical expec- 
tations equal to zero. In such a case, however, in general the 
stochastic process is not ergodic. Therefore, the FOT prob- 
ability framework is very actractive due to the equivalence 
between theoretical statistical functions and their asymptotic 
estimates. 
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Abstract — We explore in this paper the lattice 
sphere packing representation of a multi-antenna sys- 
tem and the algebraic space-time (ST) codes. We 
apply the sphere decoding (SD) algorithm to the re- 
sulted lattice code. For the uncoded system, SD 
yields, with small increase in complexity, a huge im- 
provement over the well-known V-BLAST detection 
algorithm. SD of algebraic ST codes exploits the 
full diversity of the coded multi-antenna system, and 
makes the proposed scheme very appealing to take ad- 
vantage of the richness of the multi-antenna environ- 
ment. The fact that the SD does not depend on the 
constellation size, gives rise to systems with very high 
spectral efficiency, maximum likelihood (ML) perfor- 
mance, and low decoding complexity. 

I. INTRODUCTION 

Recently, the field of multi-antenna processing and space-time 
(ST) coding has attracted large interest in the communication 
community due to the huge capacity of the multi-antenna envi- 
ronment [1]. Because of the maximum likelihood (ML) detec- 
tion high complexity sub-optimal detection like the V-BLAST 
have been proposed for the uncoded system [2]. 

In this paper, we prove that one can reach the ML perfor- 
mance of the uncoded system with low complexity by applying 
the sphere decoder [3] on the lattice sphere packing represen- 
tation of a multi-antenna system. Moreover, it is shown that 
one can achieve the full diversity of the multi-antenna system 
by using full spatial diversity rotated constellations without 
adding redundancy [4], and still reach the ML performance 
with reasonable complexity. 

II. SIMULATION RESULTS 

In simulations we use the constellation g-QAM, with q = 4, 16. 
The average energy per bit is fixed to Eb = 1. We consider 
a multi-antenna system with M transmitters and N — M 
receivers. The algebraic coding is done over I periods by using 
rotated constellations of dimension Ml. The channel transfer 
matrix is modeled by independent complex Gaussian random 
variables of variance 0.5 per real dimension. The curves are 
plotted as a function of SNR (the signal-to-noise ratio per bit), 
and the variance a2 of the complex AWGN per real dimension 
is adjusted by the formula <r2 = 2ifB\) 10~5JVfl/1°, where Es 

is the average symbol energy of the q-QAM when Eb = 1 and 
equals '?~ '. In figures 1 and 2 we applied the SD on both 
uncoded data streams and algebraic ST codes over / periods 
with M = N transmit/receive antennas [4]. Comparisons are 
done with the V-BLAST detection algorithm [2]. It is shown 
that at the expense of a moderate increase in complexity, a 
huge improvement in performance is achieved. 

Fig. 1: SD of V-BLAST architecture, M = N =8, average symbol 
error rate of the 16-QAM modulation, 32 bits/s/Hz. 

Fig. 2:  SD of algebraic ST codes, M = N =4, average symbol 
error rate of the 4-QAM modulation, 8 bits/s/Hz, / = 1,2,3. 
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Abstract — The computational cut-off rate 
is studied for the complex Rayleigh flat fad- 
ing spatio-temporal channel under a peak power 
constraint. Any optimal finite constellation of 
signals must admit an equalizer distribution 
which equalizes the conditional decoding error 
probabilities. For small constellations the set of 
equiprobable mutually-orthogonal unitary ma- 
trices attains cut-off rate. For low SNR these 
matrices are rank one and a single transmit an- 
tenna is as good as multiple antennas. 

I. INTRODUCTION 

There are M transmitter antennas and N receiver 
antennas and the MN channel fading coefficients are 
i.i.d. constant complex Gaussian over the coherent fade 
interval of length T time periods [2]. While the SNR 
T) is known the fading coefficients are unknown to both 
transmitter and receiver. In a frequency hop system 
each coherent fade interval corresponds to a different 
frequency band. A baseband transmitted signal Si is 
a T x M matrix having complex valued entries. When 
the Si's are drawn from a constellation of if-possible 
signals the signalling rate is K/T symbols/sec/hz. The 
computational cut-off rate specifies the maximum prac- 
tical rate that can be supported by the channel and is 
often simpler to calculate than channel capacity. For 
more details on the following results see [1]. 

II. CUTOFF RATE REPRESENTATIONS 

For any Ä"-dimensional constellation {Si,...,SK} 

define the K x K dissimilarity matrix EK = 

((e-WD<s'"s'>))£=1 where 

is a pairwise distance function between signal matrices 
in the constellation. 

where <S^ak is the set of K-dimensional peak con- 
strained constellations for which there exists an "equal- 
izer probability vector" P_K satisfying EKE_K 

= cl* for 

some c > 0. 

III. OPTIMALITY OF UNITARY ORTHOGONAL 

MATRICES 

and 

For given TJ, T and M define the integer M0 

+ T)TM/(2m 
1 + T)TM/m 

(1 + riTM/(2M0))
2 

M0 = argmaxm6{1 M}^mIog v   ,., _^,;r/„—}■   (1) }■ 

def 
£>max"=        max     £>(5i||S2) = M0log      ,.„TM/M 

Si,S265K
eak 1 + 1)1 M/Mc 

Anax is the maximum value of the minimum distance 
achievable by any constellation of dimension K < 
TjM0. 

Proposition 2 [1] Let IM < T and let M0 be as de- 
fined in (1). Suppose that M0 < min{M,T/K}. Then 

Ro{K) = log(T 
K 

+ (K-l)e- 

and Anax is given by (2). Furthermore, the optimal 
constellation attaining R0(K) is the set of K equiprob- 
able rank M0 mutually orthogonal unitary matrices: 
SfSi = IMo and Sf Sj = 0, i # j. 

The rank M0 of the matrices in the optimal con- 
stellation increases from 1 to M as the SNR parameter 
r\TM increases from 0 to oo. If SNR is sufficiently 
large, e.g. for M = 6 and T > 12 if nTM > 17, then 
M0 — M and the optimal signal matrices utilize all M 
transmit antennas. On the other hand for small SNR, 
e.g. r)TM < 4, then M0 = 1 and the optimal signal 
matrices apply all available transmit power to a single 
antenna element over each coherent fade interval. 

1 
Proposition 1 [1] Let R0{K) denote the peak power 
constrained cut-off rate restricted to K-dimensional 
constellations. Then 

Ro{K) log max max 
L    ,Jt = l       peak 

luEu     li 

1This research was performed, in part, while the first au- 
thor was visiting the Mathematical Sciences Research Cen- 
ter, Bell Laboratories, Lucent Technologies 
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Abstract — In this paper, we study the capacity of 
multi-antenna channel where the fading coefficients 
are unknown to either transmitter or receiver. The 
high SNR channel capacity is computed, and a geo- 
metric interpretation of sphere packing in Grassmann 
manifold is given. 

I. INTRODUCTION 

Recent research has shown that by using multiple antennas 
at both the transmitter and the receiver, the spatial diversity 
provides much larger spectral efficiency than the conventional 
channels. In contrast of the single antenna AWGN channel, 
where 1 bps/Hz capacity gain can be achieved with every 3dB 
increase in SNR, in a channel with N transmit and N receive 
antennas, it is shown that the corresponding capacity is gain 
is N bps/Hz. [1] 

The result above is derived under the key assumption that 
the instantaneous fading coefficients are known or precisely 
estimated at the receiver end. In practical applications, espe- 
cial mobile systems, the fading coefficients can change quite 
rapidly and the precise estimation of the channel parameters 
becomes difficult. In this paper, we will study the channel 
capacity with no assumption on the prior knowledge of the 
fading coefficients to understand the fundamental limit of non- 
coherent multi-antenna communications. 

II. SYSTEM MODEL 

We will use the same model given in [2]. Assume the system 
has N transmit and N receive antennas. The propagation 
coefficients between all antenna pairs form a N x N random 
matrix H with iid CN(0,1) entries. H is unknown to the 
transmitter and receiver. To approximate the continuously 
varying coefficients, we assume that H remains constant for T 
symbol periods, and change to new independent realizations 
afterwards. The time period that H remains constant will 
be referred as coherence interval, and T referred as coherence 
time. The channel in each coherence interval can thus be 
written as 

Y=HX+W 

where X, Y € C x are the transmitted and received signals, 
respectively. W € CNxT is the additive white Gaussian noise. 
The SNR at each receive antenna is denoted as p. 

The goal of this paper is to compute the capacity of this 
channel at high SNR, p —► oo. In [2], it is shown that increas- 
ing the number of antennas TV beyond T provides no capacity 
gain. Therefore in this paper, we will only consider the case 
where N < T. 

'This research is supported by a National Science Foundation 
Early Faculty CAREER Award and by DARPA grant F30602-97- 
2-0346. 

III. CHANNEL CAPACITY 

To approach this problem, we need to introduce the following 
new coordinate system. A N x T matrix R with N <T, can 
be represented as the TV dimensional subspace QR spanned 
by the row vectors, together with a. N x N matrix CR which 
specifies the N row vectors of R with respect to a prescribed 
basis in QR. The transformation 

R-*(CR,QR) 

is a change of coordinate system: CNxT - CNxN x G(T, N). 
Here G(T, N) is the Grassmann manifold defined as the set of 
all N dimensional subspaces of C   . 

The motivation of using this new coordinate system is that 
the transmitted subspace is not corrupted by the fading coeffi- 
cients, QHX = f^x- Therefore,the new coordinates decompose 
CNxT into the directions that affected by both fading and ad- 
ditive noise and those directions affected by noise alone. In 
this new coordinate system, the relevant differential entropies 
can be computed, and the optimization problem can be solved 
more easily. 

Theorem 1 For system with N transmit and receive anten- 
nas, if the coherence time T > 2N, the high SNR channel 
capacity (bps/Hz) is given by 

C(p)    =    ilo62|G(r,7V)| + (l-^)£[log2det(HH')] 

+iV(l-f)log2 |^+0(1) 

where \G(T,N)\ is the volume of Grassmann manifold 

G(T,N), and £[logdetHH'] = ££, E\ogX\i for x\i chi- 
square distributed with dimension 2x. 

This capacity is asymptotically achieved by the constant equal 
norm input P(A = VTIN) = 1- Under this input, one can 
show that all the mutual information is carried by the random 
subspace fix, which lies in the Grassmann manifold G(T, N) 
with dimension N(T—N). Therefore, the number of degrees of 
freedom available to communicate non-coherently is N(T—N) 
per T symbol time. The capacity gains ./V(l — N/T) bps/Hz 
for each ZdB SNR increase. 

The capacity result above can also be interpreted as sphere 
packing in Grassmann manifold. 
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Abstract — In this paper, we design multiple- 
antenna signal constellations for a Rayleigh flat-fading 
channel unknown to the receiver. It is shown that 
good signal constellations correspond to packings with 
large minimum distances in complex Grassmannian 
space. We describe a numerical optimization proce- 
dure for finding such packings. The corresponding 
signal constellations improve significantly upon pre- 
viously best-known signal constellations. 

I. INTRODUCTION 

This paper concerns with the design of unitary space-time 
constellations [2] for an M transmit-antenna communication 
system operating in a Rayleigh flat-fading environment. As- 
sume that the fading coefficients among different pairs of 
transmit and receive antennas are statistically independent 
and are unknown to the receiver. The fading coefficients re- 
main constant for a coherence interval of T symbol periods, 
and then change simultaneously to independent realizations. 
A unitary space-time constellation of cardinality L is a collec- 
tion of L complex orthonormal matrices of size T x M, where 
the i-th column of each matrix contains symbols transmitted 
over a coherence interval through the i-th transmit antenna. 

We show that for a small number of transmit antennas, 
the pairwise probability of error between two distinct sig- 
nal points, $i and $2, of a unitary space-time constellation 
is related to the correlation ($I$2,$i$2), where {A,B) = 
514 k AjkBjk. Thus, the maximum correlation between two 
distinct signal points can be used as a figure of merit and the 
problem of finding good unitary space-time constellations can 
be stated as follows: 

Unitary space-time constellation design problem: 
Given natural numbers T, M, and L, with M <T, find a col- 
lection S = {$1,$2>• ■ • ,§i}ofTxAf complex orthonormal 
matrices such that the maximum correlation, given by 

<r-(S) max   ($?$,,$?$,•) (1) 

is minimized, o 

II. COMPLEX GRASSMANNIAN SPACE 
The complex Grassmannian space Q(T,M,C) is the set of 
all M-dimensional subspaces of C?\ Let $i,#2 be two 
T x M complex orthonormal matrices whose column spaces 
are Pi,Pi € Q(T,M,C) respectively. The squared distance 
between Pi and P» can be defined as 

We refer to a finite subset of the complex Grassmannian space 
G(T, M, C) as a packing in Q(T,M,C) The squared minimum 
distance d2(S) of a packing S is given by 

<F(S)=   min   d2(Pi,Pj) (2) 

From (1) and (2), it follows that the problem of design- 
ing good unitary space-time constellations is the same as the 
problem of finding packings in complex Grassmannian space 
that have large minimum distances. 

III. OPTIMIZATION TECHNIQUE 

Since the complex Grassmannian space Q(T, M, C) is a dif- 
ferentiable manifold, parameters involved in the optimization 
problem given by (1) lie in a differential manifold. Thus, one 
can consider the direct minimization of o-*(S) using gradient 
search algorithms. Unfortunately, a* (S) has many local min- 
ima that are far away from the global minima. Moreover, 
<7*(S) is not very smooth—in fact, it is not even differentiable 
everywhere. 

In order to circumvent these difficulties, we introduce a 
family of potential functions fa(S) with the following proper- 
ties: For all a the functional fa is smooth; for small values of 
a the functional fa has few local minima; the functional fa 

mimic a*, as a -» 00. 
The search procedure starts with a relatively small value 

of a, say ao, and a randomly generated unitary space-time 
constellation 5. It uses numerical optimization techniques to 
find a set Sao such that the value of fao is (nearly) locally 
minimized. Next, we slightly increase a to an and starting 
from the set Sao, find a new set 5ai that (nearly) locally min- 
imizes fai. We continue in this manner, each time increasing 
the value of a slightly and tracking the minimizer of fa. For 
very large values of a, fa would be essentially equivalent to 
a* and minimizing fa will also essentially minimize a*. 

IV. RESULTS 

Using the numerical technique described above, we gener- 
ate unitary space-time constellations of cardinality 2T for 
M = 1,2,3 and T = 5,6,..., 10 [1]. In all cases, these constel- 
lations improved upon previously best known constellations 
[3]. The unitary space-time constellations generated here can 
be used as a benchmark to assess the optimality of other sig- 
nal constellations designed subjected to constraints such as 
the ability to 'easily encode and decode'. 
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SUMMARY 

As new classes of iteratively decodable very 
long block-length codes are discovered, they 
appear to have the potential of achieving 
extremely low error probabilities close to the 
Shannon limit. While the degree to which the 
suboptimal iterative decoding process 
degrades this performance is not yet well 
determined, progress has occurred in 
establishing the optimal maximum likelihood 
performance. 

Following the approaches of [1] and [2], we 
obtain that for arbitrarily long block lengths 
on a Gaussian channel, vanishingly low error 
probabilities can be achieved by maximum 
likelihood decoding provided 

r(d)<K(Es/No,d)   for0<d<l 

where r(d) is the code "rate-weight function", 
which is the normalized logarithm of the 
ensemble average number of codewords of 
normalized distance d, and K(Es/No,d) is a 
function only of the channel parameters. We 
have evaluated K( ) for the SNR range of 
interest. For certain serial-concatenated and 
accumulated-convolutional codes [3], r(d) 
has been approximated, from which the 
closeness of the code's performance to the 
Shannon limit can be estimated. 
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I. INTRODUCTION 

Although turbo codes with iterative decoding have been 
shown to achieve bit-error rates (BER's) close to the Shannon 
limit, they suffer from three disadvantages: a large decoding 
delay, an error floor at low BER's, and a relatively poor frame 
error performance (FER). This paper presents an interactive 
concatenated turbo coding system in which a Reed-Solomon 
outer code is concatenated with a binary turbo inner code. In 
the proposed system, the outer code decoder and the inner 
turbo code decoder interact to achieve both good bit error 
and frame error performances. Also presented in the paper 
are an effective criterion for stopping the iterative decoding 
process and a new reliability-based decoding algorithm called 
Chase-GMD algorithm for nonbinary codes. 

II. THE CHASE-GMD DECODING ALGORITHM 

The Chase-GMD decoding algorithm is a reliability-based de- 
coding algorithm which combines Chase-2 and GMD algo- 
rithms. Consider an (n0,k0,d) RS code over GF(g) with 
q = 2m. Let y be the received sequence and z be the hard- 
decision received sequence. Without loss of generality, we as- 
sume that the hard-decision received symbols in z are ordered 
in the order of increasing reliability. We also assume that an 
error-and-erasure algebraic decoder is used to generate can- 
didate codewords. For 0 < P < [d/2\, let E denote the 
set of test error patterns with errors (nonzero components) 
confined to the P least reliable positions. Let Ai(q') denote 
the set of q' < q most probable symbols in GF(g) at the i- 
th symbol position, 0 < i < P. The error at the i-th po- 
sition of E is chosen from Ai(q'). Let CGA(P,q') denote 
the Chase-GMD algorithm with parameter P and q . This 
CGA(P, q') processes all the vectors w = z + e with e in E. 
Let I(P) = {i : 0 < i < d - 2P - 1 and d - i is odd}. 
For each w and each integer i € I(P), erase i symbols of w 
starting from symbol position P + 1 to symbol position P + i. 
This results in a vector w* with i erasures. Perform error- 
and-erasure decoding on w*. If decoding is successful, the 
decoded codeword is a candidate codeword. After performing 
q'p([{d + l)/2j — P) decodings, we obtain a set of candidate 
codewords. Among these candidate codewords, the one with 
the best metric is the decoded codeword. The performance of 
CGA(P, q') improves as P increases. 

III. A CONCATENATED TURBO CODING SYSTEM 

To construct a concatenated turbo coding system, a turbo 
code with two block component codes is chosen as the inner 
code, and an (n0,k0,d) RS code over GF(2m) is chosen as 
the outer code. At the decoder, the received sequence is first 
turbo decoded in parallel mode[l], i.e., two component code 
decoders operate simultaneously. At the each phase of a de- 
coding iteration, two decoders produce two decoded informa- 
tion sequences, each segmented into A vectors with n0 symbols 

1This research was supported by NSF under Grants NCR 94- 
15374, CCR 97-32959, CCR 98-14054 and NASA under Grants 
NAG 5-931 and NAG" 5-8414. 

over GF(2m). Then, compare each pair of corresponding vec- 
tors from the two turbo decoders, and check how many sym- 
bol positions where two corresponding symbols do not match. 
If the number of mismatched symbol positions for each pair 
of corresponding n0-vectors is less than or equal to the error 
correcting capability of the outer RS code, [(d — 1)/2J, we 
stop the inner turbo decoding iteration and let the outer code 
decoder with algebraic decoding to take over and complete 
the decoding process. This new stopping criterion for inner 
turbo decoding is called symbol matching (SM) criterion. It 
saves more decoding iterations and requires much less compu- 
tational complexity than the cross-entropy (CE) criterion in 
[2]. If the outer code decoding is not successful (decoding fail- 
ure), the outer code decoder instructs the inner turbo decoder 
to continue its decoding iterations from the phase where it was 
stopped until the symbol errors at the input of the outer de- 
coder is reduced within the error correction capability of the 
outer code. The interactive process continues until either the 
outer decoding is successful or a preset maximum number of 
decoding iterations for the inner turbo decoder is reached. In 
the latter case, the outer code decoder computes the reliability 
values of its input symbols based on the soft output informa- 
tion (log-likehood ratios of the decoded bits) of inner turbo 
code decoder and carries out the reliability-based CGA(p, q') 
decoding. 

IV. SIMULATION RESULTS 

Consider a concatenated turbo coding system in which the 
(228, 212) shortened RS code over GF(28) is used as the outer 
code and the (64,57) distance-4 extended Hamming code is 
used as the two component codes for constructing the inner 
turbo code. The rate of this system is P=0.75. The bit- 
error and frame-error performances of this system for AWGN 
channel are shown below. We see the waterfall performance 
without error floor. It is 1.3 dB away from Shannon limit. 
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Abstract — In a parallel concatenated convolutional 
code (pccc) an information word is encoded by a first 
convolutional encoder and an interleaved version of 
the information word is encoded by a second convolu- 
tional encoder. We discuss the situation in which we 
require that both convolutional encoders end in the all 
zero state. To do so, we have to split the information 
word in two parts. One part containing information 
bits, and a second part containing bits, called tail- 
bits, computed such that both encoders end in the 
all zero state, which'we call simultaneous zero-tailing. 
Depending on the structure of the interleaver, differ- 
ent number of tail-bits are needed. By using a con- 
structive method we characterize all interleavers for 
a prescribed number of tail-bits. We explain meth- 
ods of encoding. In addition simulations have been 
carried out to investigate the performance of simul- 
taneous zero-tailing. This shows that simultaneous 
zero-tailing is similar in performance compared with 
previously known zero-tailing methods and that it is 
better than zero-tailing just one of the encoders. 

I. MATHEMATICAL CHARACTERIZATION 

We know that the joint end state [5i, S2] of the two encoders 
is a linear function of the information word /. This linear 
function depends on the interleaver n used. Moreover, the 
dimension of the space of end states is between k (fully simul- 
taneous zero-tailing) and 2k (fully independent zero-tailing), 
where k is the memory of both encoders. We have derived a 
characterization of interleavers with which simultaneous zero- 
tailing is possible. Our method, being more general, gives a 
larger class of interleavers than discussed in literature of si- 
multaneous zero-tailing interleavers so far [1, 2]. 

Using the mathematical characterization we have devel- 
oped in this work, it is possible to design an interleaver such 
that the dimension of the space of end states is a given num- 
ber k + s for any s 6 {0..fc}. This characterization can be 
used in several ways. Given an interleaving permutation one 
can compute the number of zero-tailing bits that are neces- 
sary for simultaneous zero-tailing. Conversely, the character- 
ization allows counting and construction of interleavers with 
a prescribed number of tail-bits. This construction can be 
augmented to look for interleavers with large spread [3]. 

II. SIMULATION RESULTS 

We performed experiments in order to answer the following 
questions. 

1. How does zero-tailing both encoders compare to only 
one encoder being zero-tailed? 

2. How does the simultaneous zero-tailing compare in per- 
formance to the zero-tailing strategy proposed for the 
UMTS standard (both encoders of the pccc are zero- 
tailed separately)? 

Observe that the number of additional bits sent through the 
channel (tail-bits and their corresponding parity bits) amounts 
to 4k for independent zero-tailing of both encoders (such as in 
UMTS), whereas our proposal requires between 3k and 6fc bits 
depending on the interleaver used. We use a pccc with 8-state 
constituent encoders and an interleaver of size 150 and spread 
4 for the simulations. The four schemes compared are (1) both 
encoders are truncated, (2) one encoder is zero-tailed and the 
other is truncated, (3) both encoders are zero-tailed using the 
zero-tailing strategy proposed for the UMTS standard and (4) 
both encoders are zero-tailed using a simultaneous zero-tailing 
interleaver leading to 3k additional bits. 

Figure 1: WER for the four schemes discussed for pccc 

with 8-state constituent codes and interleaver size 150, 
spread 4. 

We have plotted the WER corresponding to the above four 
experiments for different Signal to Noise Ratios (Figure 1). 
Simulations show that our method of zero-tailing is compara- 
ble in performance to previously known zero-tailing techniques 
and better than termination strategies in which only one en- 
coder is zero-tailed. 
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Abstract — In this paper, we present a simple method 
using a single-error correcting BCH outer code in order to 
improve the performance of turbo codes. It is shown that 
this method reduces the errors dramatically at moderate-to- 
high Ey/No. 

I. INTRODUCTION 
Narayanan and Stiiber proposed a selective serial 

concatenation of turbo codes using a double-error correcting 
BCH outer code to protect the non-zero bit positions in the 
weight 2 inputs generating many low-weight codewords [1]. 
In this paper, we present a new method, using a single-error 
correcting BCH outer code, to protect most of the non-zero bit 
positions corresponding to low-weight codewords. We show 
that this method has a simpler decoder, better performance 
and a smaller loss of code rate compared to the scheme of [1]. 

n. TURBO CODES WITH A SINGLE-ERROR BCH OUTER 

CODE 

The low-weight inputs generating low-weight codewords 
for a (7, 5) component code and a 512 random interleaver are 
listed in Table 1. The errors of one frame occur 
simultaneously in the non-zero bit positions associated with 
low-weight codewords [2]. So, if we select each one non-zero 
bit position from each information words associated with 
low-weight codewords, the number of the error occurring in 
the selected bit positions is mostly one at moderate-to-high 
Eb/N0. For example, 15 bit positions are identified in each 
group in Table 1 (e.g. 134,165,179,474,9,16,94,112,171, 214, 
224, 243, 88,130), and then 11 information bits are encoded by 
a (15,11) single-error correcting BCH code. The 15 bits from 
the BCH code are interposed in the above 15 bit positions. 
Finally, the encoder encodes the overall information frame 
using the turbo encoder and transmits the codeword through 
channel. If the bit errors are not corrected by the iterative 
decoding of turbo codes, most of them are errors of the non- 
zero bit positions in Table 1 at moderate-to-high Eb/N0. So, 
one of the errors can be found using a single-error correcting 
BCH decoder. From the error bit position found by the BCH 
decoder, we can find the other error bit positions by Table 1. 

Table 1: 
than 10. 

Non-zero bit positions generating the codewords of weight less 

Distance (d) Bit positions in information frame 

6 
(134,137)       (165,168)       (179,182) 
(474,477)       (491,494) 

8 
(9,18)             (16,19)           (94,103) 
(112,115)       (171,174)       (214,217) 
(224,233)       (243,252) 

9 
(88, 95, 96)         (130,131,132) 
(368, 376,378)    (453,460,464) 
(476,478,483) 

IH. SIMULATION AND DISCUSSION 

The rate 1/2 turbo code for the simulations consists of two 
(7, 5)8 RSC codes linked by a length 512 random interleaver. 
The MAP was used for iterative decoding of turbo codes. 
BPSK modulation and AWGN channel were also assumed. 
For the outer code, a (31, 21) double-error correcting BCH 
code and a (63, 57) single-error correcting BCH code were 
used. The proposed scheme (1-BCH turbo) was simulated 
using fewer parity bits than the scheme of [1] (2-BCH turbo). 
Fig. 1 shows that the turbo code using a BCH outer code is 
superior to the original turbo code (turbo) at moderate-to- 
high Eb/N0. The proposed scheme shows a performance 
improvement of 0.75 dB compared to the original turbo code 
and 0.15 dB compared to the scheme of [1] at BER 10-6. The 
FER performance improvement is l.OOdB compared to the 
original turbo code and 0.20dB compared to the scheme of [1] 
at FER 10-4. 

The proposed scheme has only a slight reduction of code 
rate due to protection of many non-zero bit positions by small 
parity bits. Moreover, the proposed scheme has an advantage 
of protecting the non-zero bit positions in information frames 
of weight greater than 2. Due to these two characteristics, the 
proposed scheme is superior to the scheme of [1] in 
performance. Since single-error correcting BCH codes have 
very simple decoding structure, the complexity of decoder 
and decoding time are reduced. 

1 "E-"? - -          1 .OE-05 
0.5    1     1.5    2    2.5    3    3.5    4    4,5 

E,/N,[dB] 

Fig. 1:   The performance of the original turbo code and the turbo 
code with the BCH outer codes after 7 iterations. 
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Recall that Huffman code is an iterative algorithm built 
over the associated Huffman tree, in which the two nodes with 
lowest weights are combined into a new node with a weight 
that is the sum of the weights of its two children. Such a 
construction is not unique but fortunately with a simple mod- 
ification to the Huffman algorithm, it is possible to construct 
a unique Huffman code so that the longest code words are 
as short as possible (cf. [6]). Hereafter, we deal with such 
modified Huffman codes and present a precise asymptotic re- 
sults on the average redundancy of such codes for memoryless 
sources. 

Given a probabilistic source model, we let P(x") be the 
probability of the message x" € An. For a code Cn, we denote 
by L(Cn,x?) the code length for a;". The average redundancy 
Rn(Cn,P) is defined as 

Rn(Cn) = Exr[fin(C„,P;Xr)] = E[L(C„,*,")] - Hn(P) 

where Hn(P) is the entropy, and E denotes the expectation. 
To the best of our knowledge, no asymptotic results have 

been reported in literature on the average redundancy of Huff- 
man codes. However, many elegant, insightful and useful lower 
and upper bounds on R^ are known. Gallager [4] proved that 
Rn < Pi + lg(2(loge)/e) « pi + 0.086 where pi is the proba- 
bility of the most likely symbol. This bound was further im- 
proved by Capocelli and de Santis [2], Stubley [6] and others 
(cf. [1]). 

Let p denote the probability of generating a 0 and q — 
1 — p denote the probability of emitting a 1. Throughout, 
we assume that p < |. Certainly, this does not restrict the 
generality of the analysis. 

We start with the average redundancy of the Shannon- 
Fano code of a block x™ of length n. It assigns code length 
[— log2p*(l — p)n~*l to the block x™ where k is the number 
of "1" in x". Thus, its average redundancy is 

k   n 
p q '{ak + ßn) 

where (x) = x— |_xj being the fractional part of x, a = log2(l — 
p)/p and ß = log2(l -p)/p. 

Theorem 1   Consider the Shannon-Fano block code of length 
n binomially(n,p) distributed over a binary alphabet.   Then, 
for p < 5 as n —> oo 

irrational 
pSF _ 

i«Mn/J)-i)+0(p») M 

'This work was supported in part by NSF Grants NCR-9415491 
and C-CR-9804760. 

where p < 1 and gcd(Ar, M) = 1. 

Now, we are in position to summarize our results for the 
Huffman code. Stubley [6] was led to the following asymptotic 
formula for the Huffman's average redundancy for the block 
x™ generated by a memoryless source 

k=o ^ ' 

-(ak+ßn) 

where p < 1. 

Theorem 2 Consider the Huffman block code of length n bi- 
nomially(n,p) distributed over a binary alphabet. Then, for 
p < h as n —> oo 

Rn 

I-Kb+o(l) «0.057304, Q    irrational 

where TV, M are integers such that gcd(iV, M) = 1. 

Observe that if we set in the rational case x = (Muß), then 

5« _ i      ! + lo§ loS 2 
max Rn = 1 — 

0<K1 log 2 
= lg(2(lge)/e) = 0.08607..., 

which is the Gallager upper bound (since the most likely prob- 
ability p\ = 0(l/\/n) in this case). We formulate it as a 
corollary. 

Corollary 1 The maximum value of the average Huffman re- 
dundancy is 

max{^ } = 1 - 1 + '0g^°g2 = lg(2(lg c)/e) = 0.08607 
log 2 

as n —> oo. 
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I. INTRODUCTION 

Huffman codes or minimum-redundancy prefix codes is one of 
the most widespread compression techniques nowadays. 

Canonical codes are a subclass of Huffman codes, described 
by Conellfl] and Schwartz and Kallick[4]. The canonical codes 
have a numerical sequence property, i.e. codewords with the 
same length are binary representations of consecutive inte- 
gers. Once the length of the current codeword is known, it 
can be decoded by several arithmetic operations in the follow- 
ing way. Supposed we have read the prefix 6 of the current 
codeword and all codewords with prefix b have length I. In- 
dexes of the codewords with prefix b are consecutive integers 
and the codewords themselves are binary representations of 
consecutive integers.Let h be the length of the prefix 6, firsti 
be the index of the first codeword with length I and bn be a 
value of the next I — h bits. Then the index of the current 
codeword can be computed as bn + firsti. This idea is used in 
the algorithm, described in [3]. Single bits are read from the 
input stream, until the codeword length I can be determined, 
then we read another I — h bits and compute codeword index 
with the above formula. A special data structure, called an 
sk-tree is used to check, whether a codeword length can be 
determined from the read bits. 

II. DECODING WITH SEQUENTIAL LOOK-UP TABLES 

In this work we describe a table look-up decoding method. 
It leads to fast decoding without causing too high memory 
requirements. Besides that, combined with a special data 
structure, it enables memory-efficient decoding without bit- 
oriented processing of the input stream. 

Let Imin and lmax denote minimal and maximal codeword 
lengths respectively, hmin and hmax will denote minimal and 
maximal codeword lengths for codewords with prefix 6. 

Instead of reading a fixed number of bits, we use the al- 
ready read codeword prefix to determine a possible codeword 
length. We do not traverse a Huffman tree bit-by-bit, but read 
at each stage as many bits as possible. Thus, we begin with 
reading lmin bits.If the codeword length of the current code- 
word equals lmin, than the corresponding symbol is output. 
If the symbol length can be identified from bits already read, 
next lb bits are read, otherwise, next hmin —lmin bits are read. 
The process is repeated until a symbol is output. This process 
can be implemented with a series of tables. Every table record 
consists of two fields. One field is used to indicate, whether 
a codeword has been read or the next table has to be used. 
The second field contains either a symbol, corresponding to a 
codeword or a pointer to the next table. We look up the value 
of the first lmin bits in the first table. If the bits read so far 
constitute a codeword we output the corresponding symbol, 
otherwise we read the next bit sequence. 

The number of records in all tables does not exceed the 
number of nodes in the Huffman tree, therefore 2n — 1 is an 
upper bound for the number of table records.   Let S be the 

Procedure Read_Next_Symbol(  ) 
begin 
while  (table[bitval].type <> DIRECT.DECODE) 

next_length:=table[bitval].length; 
table:=table[bitval].next_table; 
bitval:=get_next_bits( next_length ); 

output table[bitval].value; 
end 

set of codeword prefixes 6, such that length of 6 equals to the 
length of some codeword in the Huffman code. Let length(b) 
be the length of 6. Then the total number of records can be 
computed as J2bes'2lb'-^~length{b) + 2l™"> + n 

The described algorithm uses essentially less space than 
classical Huffman tree approach and allows for faster decom- 
pression. Our algorithm is also faster then sk — tree decoding, 
for we always read groups of bits and not individual bits. 

Further we suggest a special finite-automaton-based data 
structure, which allows reading of up to i bits from the in- 
put stream without using bit-oriented operations. This finite 
automaton has states corresponding to all binary sequences 
6 with length between 1 and 8. The input alphabet consists 
of integers between 1 and i, the output alphabet consists of 
pairs (v,j), where j is an integer between 1 and i. States of 
the automata correspond to the "rest" of current byte, that 
is not yet processed. Input I indicates the number of bits to 
be read, v is the value of read bits, j is the number of bits 
that should be read at the next step. Supposed the FSM is 
in a state s, corresponding to the bit sequence- of length k 
and input integer is Z. If I > k the automaton outputs pair 
(v,l — k), where v is the value of b shifted / — k bits left. If 
I < k, the automaton outputs pair v,l — k, where v is the value 
of b shifted k — I bits right. Thus in the output pair (v, j) the 
first component v is the value of "as many as possible" read 
bits from the current byte and j indicates the number of bits 
which should be read from the next bytes. 

The algorithm and data structure described in this work 
allow fast decoding of Huffman codes, that can be efficiently 
implemented without using bit operations. 
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Abstract — We prove that the maximum data ex- 
pansion of Huffman coding is at most 0.83485 bits per 
symbol, improving on the previous best known bound 
of 1.256 bits per symbol. Our bound is very close to 
the 0.8 bits per symbol conjectured by Cheng et al. 

I. PROBLEM DEFINITION 

The data expansion problem for Huffman codes was first pro- 
posed by Cheng et al. [1] and has been investigated in [l]-[5]. 
Let N be the size of the source alphabet and assume a binary 
alphabet for the codewords. Denote the probability and the 
Huffman codeword length of the z-th source symbol by p* and 
U, respectively. The data expansion of the code is denned as 

follow, s=    ^piih_lhg2N]) (1) 

{i|l,>riog2Nl} 

Data expansion is a measure of the temporary increase of 
the file size in the worst case if the Huffman codewords 
replace the fixed-length codewords sequentially and "in 
place" [1]. It is also a measure of the penalty for using long 
codewords for less likely codewords if we ignore the ben- 
efit we get from using short codewords for more likely symbols. 

The goal of this paper is to find a universal upper bound 
on the data expansion, for any number of codewords and any 
probability distributions. The conjectured and the best known 
bounds are 0.8 [1] and 1.256 [5] bits per symbol respectively. 

II. CANONICAL ORDERED HUFFMAN CODE TREES 

AND SUFFICIENT SETS 

A canonical ordered Huffman code tree is an ordered Huffman 
code tree [6] in which the probability of every intermediate 
node is no less than the probability of every terminal node at 
the same level. 

Define S as the space of all possible combinations of Huff- 
man code tree structures and probability distributions. A sub- 
set S' of S is called a sufficient set if for any data expansion S 
achieved by some element of S, there exists an element of S' 
with data expansion at least as large as S. 

III. DATA EXPANSION UPPER BOUND 

Theorem 1 The set of Huffman code trees with the following 
properties is a sufficient set for the maximum data expansion 
problem of Huffman codes. 

1. The Huffman code tree is canonical ordered. 

2. There is at most one codeword at each level up to level 
log2 N, and the probability of each such codeword is 
equal to the maximal node probability at the next level. 

3. The only codewords at levels greater than log2 N are at 
the largest level and the second largest level. 

4- Either all codewords at the largest and second largest 
levels have the same probability (case A) or codewords 
at the second largest level have twice the probability of 
the codewords at the largest level (case B). 

It is sufficient to consider only N a power of 2, say N = 
2m. Consider any Huffman code from the sufficient set of 
Theorem 1. Let N' be the number of intermediate nodes at 
level m. Let K, K < m, be the number of codewords of 
length at most m. Denote the largest level as L. Define ß — 
(N -K)/N'. It can be shown that 

L  =  m + 7 + [log2^J, (2) 

S = (3) 

where 7 is 0 if the number of codewords at level L — 1 is 0 and 
1 otherwise. It can then be shown that the data expansion is 

(Llog2/?J + 2(1 - I • 2^"J)) PA, case A 

(Llog2/3J-l+ jp&fj) PB,   caseB 

where PA and PB represent the total probability that con- 
tributes to the data expansion in each case. We prove that 

PA   <  PB (4) 

 2N'(0i - fl3)  
PB   = 

2m-i(6>< - el
2) + (2™-< + AT')(0'i+1 - 02

+1) 

 2(fli - ft,)  

2-'ß(0[ - 0< + 0i+1 - 02
+1) + (0i+1 - 02

+1) 

(5) 

(6) 

where 0X = (1 + \ß)/2, 02 = (1 - \ß)/2, and I is defined as 
min-fj I n-, = 0} — 1, where nj is the number of codewords at 
level j. It can be shown that 

'-WJ- (7) 

Using (3), (4), (6), (7), and the fact that the maximum data 
expansion is monotonically increasing with m, we show that 
the maximum data expansion for case A and B is at most 
0.83485 and 0.8 bits per symbol respectively. 

Theorem 2 The maximum data expansion of Huffman codes 
is at most 0.83485 bits per symbol. 
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Abstract — An efficient implementation of a Huff- 
man code is based on the Shannon-Fano construction. 
An important question is: how complex is such an 
implementation. In the past authors have considered 
this question assuming an ordered source symbol al- 
phabet. For of the compression of blocks of binary 
symbols this ordering must be performed explicitly 
and it turns out to be the complexity bottleneck. 

I. THE HUFFMAN-SHANNON-FANO CODE 

We consider a binary, memoryless source {Xi}^ with 
Pr{Xi = 1} = p < §. The Huffman-Shannon-Fano (HSF) 
codes [1] that we shall consider are described as follows. 

First assign to each block xn a unique index i(xn) € 
{0,1,... ,2n - 1} such that for all pairs of blocks xn,yn € 
{0,l}n holds i(xn) < i(yn) =^ P{xn) > P(yn). Let 
w = wo,wi,... ,u)2"-i be a vector of code word lengths 
such that: - w satisfies Kraft's inequality with equality; - 

E{W} - Y.x^e{o,i}n p(xn)wi(.x") is minimal; - For all i,j £ 
{0,1,... ,2n — 1} i < j => Wi < Wj. So, w is a non-decreasing 
sequence given the index ordering i(xn). 

Now it is time to introduce the Huffman-Shannon-Fano en- 
coding procedure briefly. Given the code word lengths w we 
determine the number of codewords v(i) of a given length i. 
We shall use the notation w- for the shortest, and w+ for the 
longest code word length. 

From Nemetz and Simon [3] we know that for all xn holds 

K(x") + log2 P{xn)\ = o (n), (1) 

and with the fact that Pr{0n} = -nlog2(l -p) and Pr{ln} = 
—n log2 p we obtain that 

w+ — — n log2 p + o (n), 

w- = —nlog2(l — p) + o (n). 

(2) 

(3) 

Now we can compute the 'base' values by: Vwe{w_,... ,w+} 

base(W) i £7=1 v(j)2" ■ v{j). 
The encoding procedure is now as follows. Given a source 

sequence xn do: - Determine the index i — i(xn); - Determine 
the code word length w = wt; Produce the code word for xn 

from the binary representation of base(w) + i in w bits. 

II. COMPLEXITY CONSIDERATIONS 

Storage complexity: We shall consider only the storage re- 
quirements for the encoding (and.decoding) of a block Xn. 
So, we do not take into account the cost of the preprocessing 
(designing the code). 

Time complexity: We require that the total time complex- 
ity is 0 (n). Again we only consider the encoding and decoding 
cost and not the preprocessing cost. 

Usually, but not always, we can interchange storage and 
time complexity by adding more units to perform more oper- 
ations in parallel thus increasing the storage complexity while 
decreasing the time complexity and vice versa. 

III. CONCLUSIONS 

The storage complexity of the HSF code is bounded by the cost 
of indexing the source sequence. This is a fact that is ignored 
in the Computer-Science literature where one is concerned 
with an efficient determination of the codeword lengths. How- 
ever that is a one time only problem, while for the encoding 
and decoding one needs the indexing once per codeword. 

Summarizing the complexity: 

• The cost of the code word generation. When we store 
the base array the time complexity is 0 (1) and the stor- 
age cost is 0 (n2) bits. We also showed that it is possible 
to compute the base values when we need them in 0 (n) 
time. The storage cost then is 0 (n) because we must 
save the resulting codeword. 

• The cost of the code word length array. We described an 
algorithm that produces the required code word length 
from the source sequence index in Ö (log n) time and 
0 (n2) storage space. 

• The index computation is still an open question. Using 
enumerative techniques similar to [2] we have two op- 
tions, either we use a table of binomial coefficients, Pas- 
cal's triangle, or we compute the required coefficients. 
Pascal's triangle requires Ö (n3) bits of storage and the 
computation of the index then costs 0 (n) time. Com- 
puting the coefficients requires 0 (n) divisions that must 
be performed sequentially thus resulting in a time com- 
plexity of 0 (n2), which is unacceptable. 
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Abstract — An approach towards an information 
theoretic based analysis and design of cache memo- 
ries is presented. Computer systems usually have a 
slow main memory and a faster cache memory, usu- 
ally much smaller than the main memory because of 
its cost. A somewhat similar situation is present also 
in Internet servers. A miss happens whenever an 
item is not found in the cache memory. If so, the 
item is fetched from the main memory and placed 
in the cache. A hit is obtained whenever the item 
is found in the cache. Usually the cost of a miss is 
several times that of a hit. The goal is to find strate- 
gies for the many to one mapping of addresses of the 
main memory to the cache memory, as well as the 
replacement strategies. Usual replacement strategies 
are Least Recently Used, LRU, Random Replacement, 
RR, etc. The main goal is to obtain strategies that 
will optimize the running time of the program un- 
der execution. Since almost all programs use branch 
instructions and loops, some of the information the- 
oretic approaches previously introduced consider the 
prediction of the result of a branch based on its past 
behavior. Here a different approach is considered. 
In particular the opposite case is analyzed, i. e. a 
linear loop that is executed indefinitely. In particu- 
lar a combined Random Replacement and Least Re- 
cently Used strategy is analyzed. It is shown that 
this model is equivalent to the one of classifying N 
objects in M classes with at least c objects in each 
class, and that this problem gives a generalization of 
the Ehrenfests' urn model used in Statistical Ther- 
modynamics in connection with the Boltzmann H- 
theorem. In that sense, a combinatorial generaliza- 
tion of the Stirling Numbers of the Second Kind is 
presented as the number of partitions of a set with n 
elements in m subsets with at least c elements each. 
Combinatorial properties and a recursive relation are 
obtained. The generating function is obtained as the 
m-th power of a truncated exponential series expan- 
sion at c. Asymptotic results are given for n going to 
infinity, with m fixed, and with n/m constant, from 
which, in particular, the Stirling Formula is obtained. 
The connection with some large deviation theory re- 
sults are discussed, as well as the relation with the 

minimum variance unbiased estimator of Truncated 
at c Poisson Distributions. The solution of the lin- 
ear loop model is given in terms of a Markov chain 
which generalizes the Ehrenfests' urn model. Finally, 
it is discussed how the results obtained so far suggest 
an information measure for the behavior of arbitrary 
programs and a Bayesian approach to cache memory 
optimization. 

1This work was partially supported by the Universidad de 
Buenos Aires, grant No. TI-09, and the Consejo National de Inves- 
tigations Cientificas y Ticnicas, grant No. PIP-4030, CONICET, 
Argentina. 
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Abstract — A new approach to investigating the 
Mastermind game and related problems, among them 
uniquely decodable codes for noiseless adder channel, 
based on ideas and methods of coding theory is pro- 
posed. This approach leads to improved bounds in 
various problems associated with the rigidity of Ham- 
ming spaces. 

I. INTRODUCTION 

We call a set B a base of a metric space L if every point 
of L is uniquely determined by its distances to the points of 
B. The minimal possible number of points of a base is called 
the rigidity of the metric space and denoted by r(L). Let 
Hn,q be the n-dimensional q-ary Hamming space and r„,, be 
its rigidity. This notion was introduced in 1963 by P. Erdös 
and A. Renyi [1] for solving the following weighing problem: 
what is the minimal number W(n) of weighings on an accurate 
scale to determine all counterfeit coins in a set of n coins. It 
is easy to see that the minimal number Wd(n) of weighings 
for deterministic strategies differs from rn,2 by not more than 
on one. Note that this problem is equivalent to the problem 
of uniquely decodable codes for noiseless n-user adder channel 

[2]- 
Many mathematicians have worked on the game of Mas- 

termind. For instance, in 1977 D. Knuth proved [3] that 4 
questions suffice to determine a hidden "code" - i.e., a word x 
of length n in an alphabet of q elements for n = 4, q = 6. De- 
note by m(n, q) the minimal number of queries to determine 
any "hidden" word i, and by m.d(n,q) the minimal number 
of queries for the case of deterministic strategies. Obviously, 
q — 1 queries is enough to find the composition of the word x. 
Therefore, rn,q — (q—1) < md(n,q) < rn,g, and the asymptotic 
behavior of the both values m.d(n, q) and r„,, is the same at 
least for the case of n >> g.. 

II.  THE RIGIDITY OF THE HAMMING SPACE: THE 

CASE q IS FIXED 

Obviously, r„>9 > rj—? , t), because the number of possible 

distances is not more than n + 1. Straightforward generaliza- 
tion of [1] gives twice better bound: 

log„n 
(l + o(l)). (1) 

By considering a random base of Hn,q V.Chvatal [4] proved 
that rn,q < C(q)^(l + o(l)), where C(q) = 2(2 + log, 2). 

More precise calculations show that 

rn,q <c(q)r—-(l+o(l)), 
log„n 

(2) 

where c(q) = 21og,(l + {q - l)q) < 4 < C{q). 
It was proved in [5],[6] that r„,2 = 2j^|-^(l +o(l)).  We 

prove that 

Theorem 1: For q = 3, 4 

= 2 
log," 

(l+o(l)) 

^his work was supported by the NSF grant NCR-9703844 

III. THE RIGIDITY OF THE HAMMING SPACE, 

MASTERMIND AND "BULL AND COWS" GAMES: THE 

CASE n = q 

Let us consider the case n = q. Further, consider among all 
n-letter words the set Sn of words without repetitions of sym- 
bols, i.e., permutations. This space corresponds to another 
famous (and much older, see [3]) game, "Bulls and Cows". 
As in the last section, random choice of a base and entropy 
techniques proves the following result. 

Theorem 2: 

0(n log2 n) < r(JJ„,„), r(Sn) < 4n log2 n(l + o(l)). 

IV. CONCLUSION 

We show how information theory techniques can be use- 
ful for investigating several long standing problems. However, 
the centeral question, "what is the rigidity of q-ary Hamming 
space?" remains open for q > 4. We conjecture that, as in 
the binaxy case, random choice does not give the final an- 
swer to the problems considered. We have considered the case 
of deterministic strategies of the games. Much less is known 
about adaptive strategies, which corresponds, in particular, 
to noiseless adder channel with feedback. Another interesting 
direction is the relationship of these problems with superim- 
posed codes on the n-dimensional cube (i.e., i^,-space), see 

[7]. 
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Abstract — A transmission strategy that allows the 
sender to deliver any of M messages to the receiver 
over a binary channel when at most e errors can occur 
is presented. The total number of bits required by 
the strategy differs from the known lower bound by 
3e. This statement simultaneously gives a new upper 
bound on the number of questions in the process of 
searching with lies known as the "Ulam's game". 

I. INTRODUCTION AND FORMULATION OF THE RESULT 

Let [M] = {1,..., M] denote the set of messages. One of 
them should be transmitted over a binary channel where at 
most e errors 0 —► 1 and 1 —> 0 can occur. For all r = 1, 2,..., 
the sender noiselessly observes the received bit yT and sends 
the next bit xT+i based on the message m g [M] and the bits 
x i,..., xT, 2/i,..., yT which were transmitted and received at 
the previous time instants. Any transmission strategy is the 
algorithm for computing the bits xi,..., xn by the sender and 
for decoding the message m by the receiver, where n is the 
total number of transmitted bits. The equivalent problem can 
be formulated as searching for an integer m e [M] by asking 
questions when at most e lies are allowed in the answers : the 
question Q is a subset of the set [M}\ the answer is either 0 or 
1, and the answers 0 if m E Q and 1 if m £ Q are considered 
as lies. 

Theorem : There exist searching strategies such that any 
of M integers can be discovered with n* — n + 3e questions 
when at most e lies are allowed in the answers, where n is 
the minimal integer satisfying the inequality MVe     < 2n and 

v}n) = EUo(l)- 

II. BASIC IDEAS OF THE PROOF 

Suppose that Mo, ■ ■ ■ ,Me are pairwise disjoint subsets of 
the set [M] constructed by the questioner in such a way 
that if m G Mj, then j lies are allowed in all further an- 
swers, j = 0, ...,e. Then the vector c = (|.Mo|, • • •, \Me\) 
can be interpreted as the state of the search. Let 23(c) de- 
note the set consisting of integers 5 such that |<S| < c and 
5 = c (mod 2). For all S = (<50 G V(c0),...,Se G 23(cc)), 
let a(c|<S) = (a0,...,ae), b(c|<5) = (b0,-.-,be), where a_,- = 
(CJ + Cj+i + Sj - Sj+i)/2, bj = {cj + Cj+i - Sj + 5j+i)/2 and 
j = 0,..., e (we assume that ce+i = <5e+i = 0). Let the vector 
S specify the question |Je_0 Qj, where Qj is the subset con- 

sisting of (CJ +öj)/2 smallest elements of the subset Mj for all 
j = 0,..., e. We will call this procedure "partitioning of the 
subsets Mo, ■ ■ ■ ,Me in accordance with the vector 6". Let 
Qe+1 = Me+i = 0 and Qj = M3\Q3 for all j = 0,...,e + 1. 
If the answer is 1, the new vector of sets has components 
M'j = Qj p| Qj+i and a(c|S) is the new state of the search. 

If the answer is 0, the new vector of sets has components 
Mj — Qj P| QJ+I and b(c|d) is the new state of the search. 

A key point of our considerations is the introduction of 
a special class of rooted regular binary trees whose nodes 
"contain" possible states of the search. This construction 
relates binary trees to coverings of the Hamming spaces by 
sets having the cardinalities coincident with the sizes of the 
Hamming balls and leads to the following statement, which 
is essentially used in the searching strategy. Let Mo, ■ ■ ■, Me 

be current pairwise disjoint subsets constructed by the ques- 
tioner and let t be the minimal integer satisfying the inequal- 
ity X]e=o I M-j | • V < 2(. Then the searching problem un- 
der consideration cannot be solved using less than t questions, 
and a solution with t questions exists only if this problem can 
be solved using t questions when some set Mo assigned in 
such a way that | Mo \ = 2( - £°=0 \Mj\- v/°; Mo 2 Mo; 

Mo P| MI = ... = Mo P| Me = 0 is substituted for Mo- 
To prove the theorem we present a specific algorithm for 

assigning the vector 6 for any vector c that can be obtained by 
the questioner and denote this vector by ä*(c). Let r\ denote 
the index of the last positive component of the vector c. If 
C, = 1, then h\ := —c\,. 

:= 5* := 0. If c, > 1, then 
■ ,«i,-i =7,-1 

8'i := arg    min 
t-\ 6 + E 

«; 

t-\ 

i; "T,+I 
:— 

s: 

for j = e,..., 1. In both cases, So := — X)e
=1 ('_1)<^*- 

The searching strategy is given below, where the vector of 
length e + 1 containing 1 in the j-th position and 0's in all 
other positions is denoted by lj, j — 0,..., e. 

1. co := 2" - MVe
(n); Mo := Me := 0; Me 

[M\. 

c := (co, |JMI| 

to 5. 
...,\Me\). If c € {l0,...,le}, then go 

3. Construct the vector S*(c) = (5o, ■ ■ ■ ,<5*) using the al- 
gorithm described above with the value of t determined 

by the equation Y^j=oc3^j = 2'- XI I °o I > co, then 

co := c0 + X^=0 Cj■ (j ) and go to 2. 

4. Partition the subsets Mo, ■ ■ ■ ,Me in accordance with 
the vector 6*(c). If the answer is 1, then co := (co + ci + 
^o — ^i)/2 and Mj := Mj, j = 0,... ,e. If the answer 
is 0, then c0 := (c0 + ci - 5Q + 5*)/2 and Mj := M'j, 
j = 0, ...,e. Go to 2. 

5. End : the singleton Mj, where j is such that Cj = 1, 
contains the defined integer. 
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Abstract — Let qe(m) be the^smallest integer q sa- 
tisfying Berlekamp's bound £'=0 (?) < 29~m [1]. We 
prove that for any fixed e > 1 and all sufficiently large 
m there is a binary searching strategy to guess a num- 
ber x € {0,... ,2m — 1} in spite of up to e lies in the 
answers, which uses exactly qe(m) questions and adap- 
tiveness only once. The strategy goes through a first 
batch of m non-adaptive questions asking for the bits 
of the binary expansion of x and then, only depending 
on the answers to these questions, a second batch of 
qe{m) — m  non-adaptive questions. 

I. INTRODUCTION 

We consider the following scenario: Two players, called Ques- 
tioner (Q) and Responder (R) , first agree on fixing an integer 
m and a search space 5 = {0,..., 2m — 1}. Then R thinks of 
a number x, 6 5 and Q must find out x, by asking questions 
to which R can only answer yes or no. It is agreed that R the 
Responder is allowed to lie at most e times. We are interested 
in the problem of determining the minimum number of ques- 
tions Q has to ask in order to infallibly guess the number x,. 
This problem was posed by Ulam [7] and Renyi [4], and has 
been intensively ivestigated in the last decades (see [2] for a 
survey). 

In the fully adaptive case, i.e., when the ith question is 
asked knowing the answer to the (i — l)th question, a remark- 
able result of Spencer [5] shows that qe (m) questions are nec- 
essary and sufficient, up to finitely many exceptional m's. At 
the other, totally non-adaptive extreme, when all the questions 
are asked at the outset, before knowing any answer, a series 
of negative results culminating in the paper by Tietäväinen [6] 
shows that searching strategies with exactly qe (m) questions— 
or equivalently, perfect binary e-errors correcting codes with 
2m codewords of length qe(m)—are sporadic exceptions for 
e < 3, and do not exist for e > 3, except in trivial cases. 

Our main result, stated in the abstract, says that for each 
e, and for all sufficiently large m, searching strategies do exist 
having the least possible degree of adaptiveness (just once) 
and using exactly qe(m) questions. Since Q can adapt his 
strategy only once, our paper yields e-fault tolerant search 
strategies with minimum adaptiveness and the least possible 
number of tests. 

II. THE TWO-ROUND STRATEGY 

By a yes-no question we simply mean an arbitrary subset T 
of 5. If the answer to the question T is "yes", numbers in 
T are said to satisfy the answer, while numbers in 5 \ T fal- 
sify it. At any time Q's state of knowledge is represented 
by an (e + l)-tuple a = (A0., Ai,..., Ae) of pairwise dis- 
joint subsets of 5, where A; is the set of numbers falsify- 
ing exactly i answers, i — 0,1, 2,..., e. The type of a is the 

'This work was supported by Enea-Grant. 

(e + l)-tuple (|A0|,|Ai|,... , |Ae|). Moreover, a is a final state 
iff \A0 U Ai U • • • U Ae\ < 1. For any state a = (A0, ■ ■ ■, Ae) 
and question T C 5, the two states ayes and ano respectively 
resulting from a positive or a negative answer, are given by 
ayes = (Av

0
es,..., Afs) and an0 = (A%°,..., A™) where, set- 

ting A-i =0, we define Ayes = {Ai f!T)U (Ai_i \ T) and 
A?" = (At \ T) U (Ai-i n T) for each i = 0,1,..., e. 
The first batch of questions is easily described as follows: 
For each i = l,2,...,m, let Di C 5 denote the question 
"Is the ith binary digit of x, equal to 1?" Thus a number 
y € S belongs to Di iff the ith bit yt of its binary expansion 

V = 2/1 • • • 2/m is equal to 1. 
Upon identifying 1 = yes and 0 = no, let bi G {0,1} be 

the answer to question A- Let 6 = 6i • • • bm. Beginning with 
the initial state a = (5,0, ...,0), the resulting state as an 

effect of the answers 6i • • • bm, is a = (Ao, Ai,..., Ae), where 
Ai = {y € 5 | dH{y,b) = i}, for all i = 0,1,...,e. Here 

dH(-,-) denotes the Hamming distance.    Thus ab has type 

(!,«»,(?),•.-,(?))■ 
The second batch of questions. We can prove that for all 
sufficiently large m there exists a second batch of n = qe (m) — 
m non-adaptive questions allowing Q to infallibly guess the 
secret number. Here follows the key lemma. 

Lemma II.1 For any fixed e and all sufficiently large m let 
n = qe(m) — m. Then there exists a family of codes V = 
{Co,Ci,... ,Ce-i} together with integers di > 2(e — i) + 1 
(i = 0,1,..., e — 1) such that (i) Each & is an (n, (™), di) 
code [3]; (ii) &(&,Cj) > 2e - (i + j) + 1, (whenever 0 < i < 
j < e - 1), where A(Ci,C2) = mm{dH{x,y) \ x 6 Ci,y£ C2}. 

Let / be any mapping associating elements in A, to codewords 
of d (i = 0,..., e — 1) and elements of Ae to n-bit vectors of 
{0, l}n \T. Let f(x)j be the jth bit of f(x). Let the set Tj C S 
be defined by Tj = {z € 5 | }{z)j = 1}, (j = 1,... ,n). This 
makes the second batch of questions. Intuitively, Tj asks "is 
the jth bit of f(x,) equal to 1?" 
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I. INTRODUCTION 

Welch's bound for a set of K equal-energy sequences of length 
N (K > N) is defined as the lower bound on the sum of 
the squared correlations between all pairs of these sequences 
[1, 2]. The sets of sequences that achieve the Welch bound are 
desirable in many signal design problems for multiple access 
communications [2]. Here a similar bound for the set of K 
equal-energy, time-limited signals is derived when no specific 
format of signal waveforms is assumed and when the band- 
width of the signal set is taken into account. Signal sets that 
achieve the lower bound are also obtained. 

Let s(t) = [si(<),...,sK{t)]T, 0 < t < T, be a vector of 
K unit-energy signals.   The total squared correlation (TSC) 

of the signal set is TSC = £* i EJLi (f*Si(t)s}{t)dt\ . 

The average root-mean-square (RMS) bandwidth b(s(t)) of 

the signal set satisfies b2(s(t)) = £ £f=1 /^ f\Sk(f)\
2df 

and the signal set is said to have an average fractional 
out-of-band energy (FOBE) bandwidth W at level n if 

«(■(*)) = ££f=i Iw>w \Sk(f)\2df < n, where 0 < r, < 1. 

II. RESULTS 

The same approach as in [3] has been used to obtain the fol- 
lowing results. 

Proposition 1 Given T, W and K. If 1 < (2WT)2 < 
(K + l)(2.ftT + l)/6, then the minimum total squared corre- 
lation (MTSC) of the set of K unit-energy signals of duration 
T and average RMS bandwidth less than or equal to W is 

MTSC 
N 

1 + 
5[(N + 1)(2JV + 1) - 6(2WT)2]2 

(N - 1)(N + 1)(2N + 1)(87V + 11) 

where N is the largest integer less than or equal to K such that 
(2WT)2 > [(iV+l)(2Ar-l)(27V + i)]/[5(4AT + l)]. The 
MTSC is achieved by the signal set 

8(0 VA1 

■(¥)■■ . ,sin (¥)]' 
where A = diag(Ai,..., XK) 

Xk = ^fl + 5[(JV + 1)(2JV + 1) - 6(2WT)2} 

(N + 1)(2N + 1) - 6k2 

' (N - 1)(N + 1)(2N + 1)(8N + 11) 

for k = 1,..., AT; A* = 0 for k = N + 1,..., K and V is any 
K x K orthogonal matrix such that VAVT is a unit-diagonal 
matrix. 

xThis work is supported by the University of Manitoba Graduate 
Fellowship (UMGF) and by an NSERC Operating Grant. 

// (2WT)2 >(K + 1)(2K + l)/6 then MTSC = K and the 
set of K orthonormal signals achieves the MTSC. 

If (2WT)2 < 1 then no signal set of duration T and RMS 
bandwidth less than or equal to W exists. 

Proposition 2 Given T,  W,  K and 0   <   J?   <   1.    Let 

{ipo(t),ipi (*),-••, i>K-i (<)} <™d {Xo, Xi, ■ • •, XK-\ } be the first 
K time-truncated, normalized and shifted prolate spheroidal 
wave functions and their eigenvalues, corresponding to 

c = nWT [4]. // i Y,k=o Xk<l~V<Xo, then the MTSC 
of the set of K signals of duration T and average FOBE band- 
width at level n less than or equal to W is 

MTSC = 
N 

1 + 
(v(N)-r,)2 

u(N)-v2(N) 

where 
N-l 

k=0 k=0 

and N is the largest integer less than or equal to K such that 

(1 - XN-I)(V(N) -n)< u(N) - nv(N). 

The MTSC is achieved by the signal set 

s(0 = VA
1/2

 [&(*),^(0,...,V^-i(0]T 

where A = diag (Ai,..., XK ) 

K (r,v(N) - u(N)) + (v(N) - IJ)(1 - **-i) 
\k = 

N v2(N)-u{N) 

N; \k = 0 fork = N+l,. for k = 1,..., N; Xk = 0 for k = N + 1,..., K and V is any 
K x K orthogonal matrix such that VAVT is a unit-diagonal 
matrix. 

V 7c T,k=o Xk>l-r) then MTSC = K and the set of K 
orthonormal signals achieves the MTSC. 

If 1 — T; > xo then no signal set of duration T and FOBE 
bandwidth at level n less than or equal to W exists. 
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Abstract — This paper derives general results on 
the partial auto-correlation function of the optimal 
spreading sequences to minimize the average error 
probability under the Standard Gaussian Approxima- 
tion (SGA) and also provides a real-valued spreading 
sequence implementation which is at the same time 
optimal and practical. 

I. INTRODUCTION 

System performance of asynchronous CDMA communications 
with single-user matched filter reception critically depends on 
the auto-correlation and cross-correlation of the spreading se- 
quences. This paper derives general results on the partial 
auto-correlation function of the optimal spreading sequences 
to minimize the average error probability under the SGA con- 
dition without the assumption of "random processes" on the 
spreading sequences [1]. Based on the ergodic theory of dy- 
namical systems we can design a family of optimal chaotic 
spreading sequences and evaluate their performance analyt- 
ically if the invariant measure of the dynamical system is 
known. We describe a simple method to implement spreading 
sequences with optimum auto-correlation properties by using 
Chebyshev polynomials, which are exact (and hence ergodic) 
transformations, and admit a closed-form invariant measure. 

II. DERIVATION OF OPTIMAL SEQUENCES 

An asynchronous CDMA system with K users and 
spreading factor JV is considered. By using a single- 
user matched-filter detector, the MAI power for the t-th 
user from all other users can be computed [2] as a2   = 

JW E£« Ei=7iW[2CfM0> + CkAl)Ck,i(l + 1)], where CW(J) 
is the partial cross-correlation between the fc-th and i-th se- 
quence. Using the identities ^^]_NCx,y(l)Cx,y(l + n) = 

Ei-Tiw Cx(l)Cy(l + n) and Ck[l) = Ck(-l) given in [2], the 

MAI power can be simplified to of = g^ Ef#i[2Cr*(°)C'*(0) + 

4 ZLV Ck(l)Ci(l) + £,N
=ÖX Ck(t)d{l + 1) + Ck(l + l)d(l)}. 

With the normalization C<(0) = 1, the solution that minimizes 
MAI power is given by Ck(l) = (-l)'(r'-N -rN-')/(r-

N -rN) 
where r = 2—\/Z, and the corresponding minimum MAI power 

2N    . r2N )/6jy(r-aw + r2N _ 2)   Note 

(—r)' which decays exponentially 

analytically by using the Birkhoff individual ergodic the- 
ory. The n-th (n > 2) degree Chebyshev polynomials de- 
fined by Tn(x) = cos(narccos(x)) with invariant measure 
p(x)dx = dx/ny/l — x2 is considered. The auto-correlation 
functions for these Chebyshev sequences can be computed us- 
ing ergodic theory and is given by < Cx(l) >= ytf(/)- There- 
fore, the system performance of an asynchronous CDMA sys- 
tem using Chebyshev sequences is identical to the random 
white sequences with the MAI power a2 = (K — 1)/3AT. 

Since the auto-correlation function of a Chebyshev se- 
quence is a Kronecker delta function, we can design the op- 
timal spreading sequences by passing these Chebyshev se- 
quences through a low-pass filter with a single pole at (—r). 
Then each non-overlapped section of the output sequences is 
assigned to a different user. The system performance compar- 
ison using various spreading sequences are shown in Figure 1. 
These simulation results show that the optimal sequences are 
better than random white sequences by about 15% in terms 
of allowable number of users, which is consistent with the an- 
alytical expression. 

N*63. Ej^-22 dB, Optimal and white Sequences 

y/3(K - l)(r~2N - r2N)/6N(r-
2N + r2N - 2). is <rlPt 

that when I < N, Ck(l) 
with alternative sign. Moreover, the minimum MAI power is 
given by a2

pt = \/E(K — 1)/6AT as N is large, which increases 
by 15% the number of users achieved with white sequences, 
i.e., (K - 1)/3N. 

III. SEQUENCES DESIGN USING ERGODIC THEORY 

For spreading sequences generated by ergodic determin- 
istic dynamical systems, the performance can be computed 

18 20 
USER NUMBER(K) 

1This work is partially supported by MURI-ARO grant DAA 
G55-98-0269 and NASA/Dryden grant NCC2-374. 

Figure 1: Asynchronous CDMA performance comparison 

using various optimal and white sequences. 
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Abstract — An algorithm is described for demodu- 
lating full-surface two-dimensional data, such as two- 
dimensional on-off keying, in the presence of two- 
dimensional intersymbol interference, a topic that is 
becoming important in the field of optical recording. 

I. INTRODUCTION 

Page-oriented storage systems are full-surface recording 
systems that use two-dimensional waveforms to record the 
user data. In contrast to those older recording methods that 
define one-dimensional tracks on a two-dimensional surface, 
the recording waveforms in a full-surface recording system are 
truly two-dimensional. Data is densely packed in both the 
horizontal and the vertical directions and, in a high-density 
recording system, intersymbol interference will be present in 
both the horizontal and the vertical directions because of the 
need to pack data closely in comparison with the resolution 
of the read transducer, whether that transducer be a mag- 
netic read head or an optical lens system. In a high density 
waveform, the demodulator must be able to recover the stored 
user data in the presence of two-dimensional intersymbol in- 
terference, as well as additive noise and storage media defects. 
A two-dimensional waveform can be used to obtain a desired 
storage density only if each pattern is uniquely recognizable 
by a computationally tractable algorithm so that the correct 
user data can be recovered by the demodulator even in the 
presence of the storage impairments mentioned above. 

A two-dimensional sequence estimation algorithm may be 
regarded as a generalization of the Viterbi algorithm to a 
two-dimensional trellis, which is a trellis standing on Z2 with 
branches at each trellis site connecting every node at that site 
to one of the nodes at each of the four nearest neighboring 
sites. The algorithm finds, at minimum-euclidean distance 
from a given data array of numbers, a set of nodes comprised 
of one node at each site such that nodes at neighboring sites 
are connected by branches. When used to demodulate a two- 
dimensional senseword with two-dimensional intersymbol in- 
terference in white gaussian noise, the performance is nearly 
the performance of a two-dimensional maximum-likelihood de- 
modulator provided that Eb/No is above some critical value. 

II. THE LAYBOURN ALGORITHM 

Two-dimensional intersymbol interference is a straightfor- 
ward generalization of one-dimensional intersymbol interfer- 
ence to two dimensions. Algorithms for processing intersym- 
bol interference and recovering data, however, do not gen- 
eralize so easily. We are interested in algorithms for mini- 
mum euclidean-distance demodulation, which for white gaus- 
sian noise is equivalent to maximum-likelihood demodulation. 

The generalization of a trellis to a two-dimensional struc- 
ture is straightforward in principle, but it is not entirely 
straightforward to formalize this generalization or to por- 
tray the trellis structure in a useful form. Consider the two- 
dimensional integer lattice Z2. The sites of the trellis are the 

lattice points of Z2. Standing on each point of the lattice Z2 

is an identical column of nodes. Each node represents a state. 
At each trellis site branches every node at that site is con- 
nected to one or more nodes at each of the four neighboring 
sites. 

The Viterbi algorithm, which is a systematic method of 
finding a preferred path in a one-dimensional trellis, does not 
generalize directly to two dimensions. More generally, the 
dynamic programming principal does not directly apply to 
the problem of searching a two-dimensional trellis. 

The notions of past and future, which are natural in one 
dimension, do not have immediate counterparts in two di- 
mensions. Instead, more advanced notions such as neighbor, 
region, inside, and outside must be introduced. Although such 
notions themselves are not very difficult, they are more dif- 
ficult than the one-dimensional notions of past and future. 
In particular, all of the familiar techniques surrounding the 
Viterbi algorithm become much more difficult when gener- 
alized to this two-dimensional setting. For one thing, the 
boundary of a neighborhood is variable in size, which is quite 
different from the one-dimensional case. To construct a sys- 
tolic two-dimensional trellis-search algorithm, some approxi- 
mations are inevitable. 

In this paper, we shall describe and evaluate a recursive 
formulation of a demodulator for two-dimensional sensewords 
with intersymbol interference. Because the first author for 
some time has been referring to the algorithm as the Laybourn 
algorithm, we shall continue to use this terminology, though 
with some breach of modesty for the second author. 

However, if the signal-to-noise ratio (as measured by 
Eb/No) is above a critical value, which we may call the critical 
temperature, then there seems to be a kind of phase transition 
in the nature of the two-dimensional problem. The structure 
of the problem freezes and, with high probability, only local 
decisions are needed to find the proximate codeword. Con- 
versely, the structure of the problem thaws at low Eb/No, and 
an algorithm that uses only local decisions will fail. 
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Abstract — We show that block coded sequences are cyclo- 
ergodic, and based on this property, we introduce a new non- 
probabilistic formula to calculate the average power spectral 
density of these sequences. We present a new sufficient condi- 
tion to construct codes with an arbitrarily high-order spectral- 
null at zero frequency. Given this condition, we outline two new 
coding schemes and use them to generate new classes of efficient 
high-order spectral-null sequences. 

I. INTRODUACTION 
First-order spectral-null codes have received considerable attention 
in the literature. Recently, high-order spectral-null sequences have 
also attracted interest [1]. In high-order spectral-null codes, the 
power spectrum of the encoded sequence and its higher-order de- 
rivatives are zero at zero frequency to achieve a wide spectral notch 
at low-frequency. We denote sequences with an Mth-order spectral 
null at zero frequency to be dcM-codes, individual words to be dcM- 
words, and denote these sequences and words to be from sets 
<fr(N,M) and <p(N,M) respectively, where N is the codeword 
length. Let the source word length be /. Such block codes are called 
UN codes. 

Construction of high-order spectral-null sequences is usually 
based on concatenation of block codewords with the same order 
spectral-null [1]. We denote 0(N,M I [q>(N,M)]) to be a subset of 
<I>(iV,M) for this coding scheme (Mth-order zero-disparity). In this 
approach, as the order of spectral-null increases, the code rate be- 
comes very low and makes coding impractical. One proposed ap- 
proach [2] to increase the cardinality of useable codewords of those 
codes is to employ codewords with fixed moments. We introduce a 
new class of efficient dcM-codes composed of block dcM_1-words. 
We denote this subset of dcM-codes as <t>(N,M \[<p(N,M -1)]). 
Comparison of cardinality of these schemes is shown in Fig. 1. 

II. BLOCK ENCODED SEQUENCES WITH HIGH-ORDER 

SPECTRAL-NULL 

Assuming that the input source sequence of a line encoder is 
composed of independent identically distributed (i.i.d.) symbols, the 
state sequence is a stationary Markov chain. We show that if the 
Markov chain has finite number of states and is irreducible and 
aperiodic (i.e. ergodic), the output codeword sequence is both wide- 
sense stationary and wide-sense ergodic, and the output symbol 
sequence X(«) = {x„} is both wide-sense cyclostationary and wide- 
sense cycloergodic with the period of the word length. We show 
that the statistical mean and autocorrelation of a cycloergodic cy- 
clostationary stochastic process evaluated by averaging over en- 
semble statistics are identical to the asymptotic time average and 
time average autocorrelation of one sample function of the process. 

The limiting time-average autocorrelation and limiting power 
spectrum are a Fourier transform pair [3, p. 74]. Therefore, the av- 
erage power spectrum Hx(co) equals the limiting time-averaged 
(smoothed) periodogram given in [3, p. 81]: 

1      K       1 
Hy (co) = lim lim Y 

L->.K->~2K- 2L + 1 
x„e •Join 

(1) 

By taking derivatives of (1), we conclude that if the first M-l 

"This work was supported by the Natural Sciences and Engi- 
neering Research Council of Canada and TRLabs. 

moments of every codeword are zero and the M-lth moment of the 
sequence is bounded, then the sequence concatenated by these 
codewords has an Mth-order spectral-null at zero frequency. 

III. CONSTRUCTIONS OF DC^-CODES 
We present explicit constructions to implement spectral-null 

codes of order M using (A) codewords from the set of 
<D(Ar,MI[(p(JV,M-l)]) and (B) codewords from 
<&(N,M \[q>(N,M-l),<p(N,M)]). We propose two methods of 
doing so: with coding tables and through guided scrambling (GS) 
[4]. Define two codewords to be a codeword pair if they have the 
same zero moments and if they have the same absolute values and 
opposite sign for nonzero moments. In approach (A), a source word 
is mapped to a set of codewords where there exists at least one pair 
of codewords from <p(N,M -1). Encode the source words to sat- 
isfy the requirement for a bounded M-lth moment of the coded 
sequence. In approach (B), the only difference from (A) is that a 
source word is assigned to a unique codeword from <p(N,M) or at 
least one pair of codewords from <p(N,M -1). This improves code 
efficiency and performance. Fig. 2 presents power spectrum results. 
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Abstract — We establish the Guassianity of the 
output multiple-access interference (MAI) of linear 
MMSE receiver in a large DS-CDMA network. 

I. INTRODUCTION 

Bit error probability (BEP) is an important performance mea- 
sure in wireless communications, and is determined by the 
overall interference consisting of the MAI and background 
noise. In this paper, we study the behavior of MAI at the 
output of the minimum-mean-square-error (MMSE) receiver 
employed in a DS-CDMA system. We focus on systems with 
random spreading. The random signature model is applicable 
to many scenarios, for example, systems employing very long 
pseudo-random spreading sequences, and systems in which the 
signatures of the users are repeated from symbol to symbol, 
but they are randomly and independently selected initially. 
By exploiting results in martingale limit theory and random 
matrix theory, we show that as the processing gain increases, 
(1) the output MAI of the MMSE receiver is asymptotically 
Gaussian; and (2) for almost every realization of the signa- 
tures and received powers, the conditional distribution of the 
output MAI converges to the same Gaussian distribution as 
in the unconditional case. These results are quite general and 
are useful for performance analysis such as the calculation of 
the bit error probability. We note that Verdü and Shamai [2] 
obtained that for almost every choice of signatures, the out- 
put MAI of the conventional receiver converges to a Gaussian 
random variable, while Poor and Verdü [1] established the 
Gaussian nature of the MAI-plus-noise at the output of the 
MMSE receiver in several asymptotic scenarios (the output 
MAI vanishes in these scenarios). 

II. MAIN RESULTS 

Consider the following discrete-time model for the uplink of a 
synchronous CDMA system. The baseband received signal at 
the front end of the receiver is 

YW = J2^P,b,s, + V, 

where the 6;'s are the information symbols, the P,'s are the 
received powers, and V is background noise that comes from 
the sampling of the ambient white Gaussian noise. We as- 
sume that users choose their signatures randomly and in- 
dependently. We restrict our attention to binary signa- 
tures. The model for binary random signatures is as fol- 
lows: Si = -7T;(S;I, • • •, S;N)

T
, where the s;n's are i.i.d. with 

P{sin   =   1}   =   P{sin   =   -1}   =   i,  n   =   l,...,N,  and 

'Supported by NSF through grant ECS-9501652. 
Supported by NSF Early CAREER Award under grant NCR- 

9734090. 

i = 1 K. Moreover, in a practical wireless system, fad- 
ing is ubiquitous, making perfect power control impossible. 
Therefore, we assume that the received powers are random. 

We consider user 1 without loss of generality. The MMSE 
receiver generates an output of the form of c'Y'^', where c is 
chosen to minimize the mean square error 

J^E^c'YW-brflPuS], 

where S is the collection of signatures of all the users. After 
some algebra, we can get the expressions for the linear MMSE 
receiver and hence the output MAI. 

Our results are asymptotic in nature, with both K and N 
going to infinity," while keeping K/N fixed. First we impose 
the following assumptions on the received powers: 

(3.B1) The empirical distribution function of {/Ji,... ,HK} 

converges weakly to a distribution function FM; 

(3.B2) The second moments of the received powers are 
bounded. 

Theorem 2.1 (Unconditional MAI) Suppose Conditions 
S.Bl and 3.B2 hold. Then the output MAI of the MMSE re- 
ceiver has a limiting Gaussian distribution (as N -¥ ooj. 

To establish the asymptotic Guassianity of the output MAI 
conditioned on the signatures and received powers, we need 
a stronger form of regularity on the received powers. The 
assumptions we impose on the received powers are as follows: 

(3.C1) The joint empirical distribution function of 

{(PI,^I),...,(PA-,^K)} converges weakly to a 
distribution function Fpltl with probability one; 

(3.C2)  The P,'s are uniformly bounded above; 

(3.C3) The fi,'s are bounded below by a positive number. 

Theorem 2.2 (Conditional MAI) Suppose Conditions 
(3.C1-3.C3) hold. Then the conditional distribution of the 
output MAI of the MMSE receiver, given the signatures and 
the receiver powers, converges almost surely (as N —► oo^ to 
the same Gaussian distribution as in the unconditional case. 

Based on the above theorems, we conclude that the overall 
interference is asymptotically Gaussian, and that from the 
viewpoints of detection and channel capacity, the signal-to- 
interference ratio (SIR) is the key parameter that governs the 
system performance. 
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Abstract — We present a model for the inter- 
ference generated by a collection of geographically- 
distributed, bursty transmitters. Transmitters begin 
transmission at random times and locations, deter- 
mined by a Poisson process in space and time. As 
each transmitted signal propagates to the receiver, it 
is attenuated by a power-law path loss and shifted in 
phase by a random angle. We show that the com- 
bined interference of all transmitters can be repre- 
sented as a moving average of Levy motions — impul- 
sive, a-stable random processes which are analogous 
to filtered white noise. Further, these results can be 
adapted to include the effects of fading, delay spread, 
Doppler, and different modulation schemes. The tools 
developed here may be useful for modeling other im- 
pulsive phenomena, such as automobile ignition noise, 
atmospheric noise, and radar clutter. 

I. SUMMARY 

In code-division multiple access (CDMA), transmitters 
share a common frequency band and are distinguished at the 
receiver on the basis of unique signature sequences. It often 
happens that these sequences are not orthogonal, so that a 
conventional correlation receiver passes not only the desired 
signal, but also co-channel interference due to the other active 
transmitters. When the number of interfering transmitters is 
small, this multiuser interference can be eliminated in princi- 
ple with multiuser detection. For a large population of trans- 
mitters, however, this generally is not possible. Under these 
circumstances, multiuser interference is often the main factor 
limiting the performance of CDMA networks. 

As with any type of interference, accurate and tractable 
models are essential in communication system design. It is 
not surprising then that there is an extensive literature on 
modeling multiuser interference. Most of this work deals 
with interference produced by a fixed population of equal (or 
nearly equal) power transmitters, and suggests that Gaussian- 
mixture models are often suitable. These assumptions are of- 
ten appropriate for the reverse link in cellular CDMA, where 
power control prevents any one mobile from dominating. 

A different perspective on multiuser interference is offered 
by Sousa and Silvester in [2], and in subsequent extensions 
and applications [3, 1]. In these papers, transmitters are dis- 
tributed at random locations determined by a spatial Poisson 
process. There is no power control and so, due to. different 
path losses, the signals of different transmitters arrive at the 
receiver with vastly different powers. These assumptions are 

xThis work was supported in part by the National Science Foun- 
dation under grant CCR-9903107, and by the Center for Advanced 
Computing and Communication. 

appropriate for ad-hoc packet radio networks, where there is 
no central base station. Under these conditions, Sousa and Sil- 
vester [2] obtain non-Gaussian stable probability models for 
multiuser interference. Non-Gaussian stable probability den- 
sities are often regarded as models of impulsive phenomena, 
since their tails are heavier than those of the Gaussian density. 

The results in [2, 3, 1] present a static, discrete-time model 
of multiuser interference. They essentially characterize the 
distribution of a single interference sample, after the process 
has been filtered and sampled. It is natural, however, to ask 
about the properties of the continuous-time interference that 
arrives at the receiver front-end. In fact, many fundamen- 
tal communications questions are more naturally addressed 
in the context of continuous-time interference. For example, 
does linear filtering and sampling extract sufficient statistics 
for signal detection from the received signal? How does the 
interference evolve with time, and how is this time dependence 
affected by the modulation scheme and bandwidth of the in- 
terfering transmitters? How is it affected by vehicular motion? 
What is the dependence between interference at different fre- 
quencies, and how is it affected by channel delay spread? All 
of these questions suggest the importance of examining the 
continuous-time behavior of multiuser interference. 

In this paper, we present a dynamic model for the 
continuous-time interference produced by a collection of 
geographically-distributed, bursty transmitters. Transmitters 
begin transmission at random times and locations, determined 
by a Poisson process in space and time. As each transmit- 
ted signal propagates to the receiver, it is attenuated by a 
power-law path loss and shifted in phase by a random angle. 
We show that the combined interference of all transmitters 
can be represented as a moving average of Levy motions — 
impulsive, a-stable random processes which are analogous to 
filtered white noise. Further, these results can be adapted to 
include the effects of fading, delay spread, Doppler, and dif- 
ferent modulation schemes. The tools developed here may be 
useful for modeling other impulsive phenomena, such as auto- 
mobile ignition noise, atmospheric noise, and radar clutter. 
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Abstract — This paper deals with the asymp- 
totic performance analysis of M-estimator-based mul- 
tiuser detectors designed for noncoherent detection of 
DPSK signals in fading non-Gaussian channels. 

I. INTRODUCTION 

Multiple-access channels are inherently non-Gaussian in 
nature due to the presence in the channel of highly structured 
multiple-access interference. Moreover, for many multiple- 
access channels the ambient noise is known through exper- 
imental measurements to be decidedly non-Gaussian. The 
problem of joint mitigation of multiple-access interference 
(MAI) and non-Gaussian interference is a challenging one, 
since the reduction of MAI often relies on linear separat- 
ing structures while the mitigation of impulsive noise typ- 
ically relies on nonlinear detectors. Nevertheless, consider- 
able progress has been made on this problem (see [2] for the 
additive-noise channel model and [1] for channels that exhibit 
fading). In this paper the asymptotic probability of error of 
the M-estimator-based multiuser detectors proposed in [1] for 
(differential) noncoherent detection of DPSK signals in fading 
non-Gaussian channels is derived under the assumption that 
the channel fading is Rayleigh distributed. 

To introduce the M-estimator-based multiuser detector let 
us consider a synchronous CDMA system where the signal of 
each of K active users arrives at the receiver through an inde- 
pendent, single-path, slowly-fading channel. At the receiver, 
after complex basebanding, chip matched filtering, and chip 
rate sampling, the resulting discrete-time signal corresponding 
to the i—th signaling interval is given by 

rn{i) = 5^fffc(»)&*(i)an + wn(i) 1.....JV       (1) 
fc=l 

where N is the processing gain, 0.1,0.*,... ,aN is the normal- 
ized signature sequence of the A;—th user, gk(i) is the A:—th 
channel fading coefficient and the sequence of noise samples 
{wn(i}} is assumed to be a sequence of independent and iden- 
tically distributed complex random variables whose in-phase 
and quadrature components are independent non-Gaussian 
random variables with a common probability density func- 
tion /. The synchronous signal model (1) can be written in 
matrix notation as 

r(i) = H i(i) + w{i) (2) 

where the real vectors r(i), w(i) and 9(i) are obtained by 
stacking the real and imaginary components of the corre- 
sponding complex vectors. 

'This work was supported in part by the U.S. National Science 
Foundation under Grant CCR-99-80590. 

The basic idea of M-estimator-based multiuser detection is 
to detect the symbols in (2) by first estimating the vector 6(i), 
and then extracting symbol estimates from these continuous 
estimates. The required estimates of 9(i) are obtained by. 
using an estimator of the class of M-estimators proposed by 
Huber. These estimators minimize a function p(-) (called the 
penalty function) of the residuals: 

2N 

m 
2K 

arg    min     )   p I rj (1) - Y^ hjiO[(i) 

1 = 1       \ 1=1 

(3) 

where rj(i) and 9k(i) are the j—th and the A:—th element of 
the vectors r(i) and 6(i), respectively, and hjk is the j, k—th 
element of the matrix /£. Given such an estimator, the de- 

tected symbols are given by bi(i) = sgn < K   o|(i)0; (i — 1)   >, 

where %[■] denotes real part and &i{i) — 6i(i) + j6i+i<(i)- 
The asymptotic probability of error for large processing 

gain (N —> 00) for the M-estimator-based multiuser detectors 
can be obtained taking into account that under certain regu- 
larity conditions, the M-estimators defined by (3) are consis- 
tent and asymptotically normal. Specifically, the asymptotic 
probability of error for the /—th user can be shown to be 

Pi(e) = i     1 Pi 
(4) 

1 + R' ui aSNRi 
where pi is the I—th channel fading correlation coefficient, 

v2 = E[l>2{x)]lE?W{x)\ with V(0 = P'(-), [E'~'] 

denotes the //—th component of the inverse of the cross- 
correlation matrix of the random infinite-length signature 
waveforms of the K users, a2 represents the variance of the 
in-phase and quadrature components of the noise samples and 

SNRi = E[\ g,(i) |2] /o-2. From (4) it follows immediately 
that the asymptotic error rate of the linear decorrelating de- 
tector (i.e., tp(x) == x) with DPSK depends on the noise distri- 
bution only through its variance (as one would expect). More- 
over, for sufficiently high values of SNR, (4) suggests that the 
M-decorrelators' performance present an error floor that de- 
pend mainly on the fading correlation coefficient. Specifically, 
the slower the fading rate, the lower the error floor. 
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Abstract — The large system limits of the probabil- 
ity of error for multiuser Decision Feedback Detectors 
(DFDs) are evaluated for synchronous CDMA. Both 
Successive (S-) and Parallel (P-) DFDs are consid- 
ered, where the niters are optimized according to the 
Minimum Mean Squared Error (MMSE) criterion. A 
comparison of the analytical results with simulation 
shows that the large system results accurately predict 
the performance of systems with spreading gain > 128 
over a wide range of error rates. The results also show 
that the P-DFD error rate approaches the single-user 
bound at high Signal-to-Noise-Ratios (SNRs). 

I. SUMMARY 

The multiuser DFD can potentially achieve higher spectral 
efficiencies than the linear MMSE receiver with little added 
complexity [1]. Here we are interested in the average perfor- 
mance (error probability) of the multiuser DFD for uncoded 
synchronous CDMA, where the average is over randomly as- 
signed signature sequences. Even with fixed signature se- 
quences, an exact analysis of error probability for a finite-size 
system is difficult due to error propagation. Averaging over 
the signatures further complicates the problem. Our approach 
is to study the large system limit of error probability, where 
this limit is defined by letting the number of users K —> oo 
and the processing gain N -> oo with K/N = a fixed. This 
approach has been used in [2] to evaluate the performance of 
linear MMSE receivers. 

We assume the standard baseband CDMA model in which 
the received vector corresponding to symbol i is 

r(i) = Pb(i) + n(i) (1) 

where P = [pi,-- ,PK] is the N x K matrix of random 
spreading codes with i.i.d. elements, b(i) is the vector of bi- 
nary symbols across users, and n is the noise. Here we assume 
that the users are received with equal power, although our re- 
sults can be generalized to arbitrary power distributions. 

The output of the DFD is 

y(i) = Pfr(i) - B+b(i) (2) 

where b(i) is the vector of tentative decisions, and F and B 
are the feedforward and feedback filters, selected to minimize 
the Mean Squared Error E[\\h - y||2].   For the P-DFD, the 

tentative decisions b(i) = sgn < F]inr(i) \ where Fnn is the 

linear MMSE filter, and the final decision b(i) = sgn{y(i)}. 

^his work was supported by ARO under grant DAAD19-99-1- 
0288. 

Our interest is in computing the probability of error Pe = 
Pr{S, # bk). 

We show that as (K,N)  -¥ oo, Pe for the P-DFD ap- 
proaches the limit 

= Q 
V^PUNOI + a\ 

(3) 

where PUN is the large system probability of error for the linear 
MMSE receiver. 

For the S-DFD, users are decoded and cancelled succes- 
sively. Hence, Pe depends on the user index k. To obtain the 
large system limit, we let x = k/K, where k = xK -> oo and 
0 < x < 1. The performance of user k + 1 depends on the 
performance of users 1,... , k. Taking the large system limit 
gives the following expression for PS-DFD(X + dx) in terms of 
•PS-DFD(V), 0 < v < x, 

Ps-Dto(x + dx) = 1 - Q -7-1 

VT- 20-, 2+<+l- >.af(x) 
(4) 

where 7i = / (x+t^ dG(\), G(\) is the asymptotic eigenvalue 

distribution of the covariance matrix Ry == P^Py, where the 
columns of Pu are the spreading codes for the undetected users 
k + 1 < m < K, and 

The boundary condition is 

(v) dv. 

Ps-DFD(0) = PLIN(a) 

(5) 

(6) 

that is, Pe for the linear MMSE receiver with load a. The rela- 
tions (4)-(6) can be numerically integrated to obtain PS-DFD(X) 

for 0 < x < 1. 
Comparisons with simulation results show that for Pe > 

10~3, the large system results accurately predict the perfor- 
mance of a finite-size system with N > 32. At high j^-'s (> 10 
dB), the S-DFD can achieve close to ideal-feedback perfor- 
mance for loads up to f. At low loads (a < 0.5), a lower j^>- 
(around 6 dB) suffices. For loads a < 1, the P-DFD achieves 
near single-user performance at a sufficiently high ^t. 
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Abstract — Asymptotic bounds are derived involv- 
ing second additive term of order y/\ In a\ as a -> 0 for 
the mean length of a controlled sequential discrimi- 
nation strategy s between two statistical models in a 
general non-parametric setting. The parameter a is 
the maximal error probability of s. 

These results are applied to change-point detection. 

I. INTRODUCTION 

The aim of the present report is three-fold: 
1. to construct second-order optimal sequential strategies 
strengthening the traditional ones; 
2. to do this for a non-parametric setting with control, indif- 
ference zone and general loss of power growth at infinity; 
3. to apply our constructions for change-point detection. 

We continue [1] devoted to first order optimal tests. 
Let (X,B,p), X C R, be a probability space, (V,d()) 

be a metric space, where V is a subset of the set A of mu- 
tually absolutely continuous probability measures. The set 
V is partitioned into sets Vo, Vi and the indifference zone 
V+ = V \ (Pi U Vo) such that the distance between Vo and V\ 
is positive. We test H0 : P € Vo versus Hi : P 6 Vi, every 
decision is good for P € V+. 

For an a > 0 introduce a- strategies s satisfying condition: 
maxr=o,i supP€7>r Pp(S — 1 — r) < a. 

Define z{P,Q*x) = log(^(z)), I(P,Q) = EPz(P,Q,x), 
I{P,ll) = infQ€TC/(P,Q) for K C V; A(P) = Vi-T for P e 
Vr as the alternative set in V for P. For P € V+, if I{P, Vo) < 
I(P,Vi), then A(P) = Vi, otherwise, A(P) = Vo- Finally 
c(P) = I(P,A(P))-K 

For a mixed control u = («i,..., nm) on U — {1,..., m}, 
Pu is a mixture of measures Pu,u € U, while V%,k = 0,1, 
are sets of corresponding distributions from A with a positive 
distance between them. 

Define Ia(P,Q) = £™ j Ki/(P\ £?<) axid introduce 
k*(P) = maxuet/" /u(P,Au(P)),c*(P) = k'(P)'1, and let 
u* = u*(P) be a control such that k'(P) = JU.(P, AU>(P)). 

II.  NON-PARAMETRIC SECOND ORDER BOUNDS 

Cl. There is c > 0 such that for all P € V,Q S V, and 
ueUEu

P(z(Pu,Qu,X))2 <c. 
C2. There exist t > 0 and / > 0 such that 
EP (supQ€P exp(-r.z(P, Q, X))) < f for all u € U and P € V. 

C3.D = Jx zi(x) (a(x)b(x))1/2 dx < oo, where 

zi(x) = supQeT, |°*(af'x)|, supPe7, f^pitfuidt) < a{x), 

supP€7, /~ p(t)fi(dt) < b(x). 
C4. There exist b > 0 and K\ = K\(b) such that for every 
n the estimate p — pn for the density function of i.i.d.(P) 
observations Xi,...,Xn exists with Ep(/(P, P)) < K\n~b. 

Theorem 1. i. Under the condition Cl every a-strategy s 
for the no-control problem satisfies 

E'pN > c(P)| log Q| + O (x/l log a|) (1) 

for every P € V. 
ii. For controlled experiments and every P € V the inequality 
(1)   holds with c*(P) substituted instead ofc(P). 

Theorem 2. For every P £ V under the conditions Cl- 
C4 with b > 5 there exists an a-strategy s* such that EP N < 

c(P)|loga| + o(V|loga|). 

III.  NON-PARAMETRIC TESTING WITH CONTROL 

C5. Suppose a sequence of mixed controls u„(P), c > 
0 and K2 = Ki{c) exist such that u„(P„) is a measurable 
control for every n and i.i.d.(P) observations X\,... ,Xn,-P € 
V satisfying Ep|/Un(Pn)(P, AU-(P)(P)) - k'(P)\ < K2n~c. 

Theorem 3. Under the conditions C1-G5 there ex- 
ists  an a-strategy S*   such that Ep'N   <   c*(P)|loga| + 

O (|loga|1-min((,'c)/2) +0 (v/floi^i) for every PeV. 

IV. CHANGE-POINT DETECTION 

Our strategy and bounds appear well-applicable for a non- 
parametric detection of abrupt change in the distribution of 
i.i.d. sequence without an indifference zone. We use the 
methodology outlined in [2]. 

Let the observations Xi,... ,Xn,... be independent, and 
for n < v all have a distribution Po € Vo, while all the Xn 

with n > v have an unknown distribution Pi € Vi, where 
v > 1 is an unknown integer, and Ii = I(Pi,Vo)- 

Let AT be a change-point estimate, and a+ = a, if a > 0, 
and a+ = 0 otherwise. Following [2] we use the functional 
E'{N) = sup^esssupE^ ((N - v+1)+\Xlt... ,X„) 
with Pi € Vi suppressed as the optimality criterion of the 
strategy s under the restriction EP (TV) > a-1. 

Theorem 4. Under the condition Cl for every a-strategy 
and sufficiently small a the following lower bound is valid 
E'(N) > llogal/r1 +0(log|loga|). 

Under the conditions C1-C4 there exists a-strategy a* such 

that E'' (N) < llogal/r1 +0 (| log a\l-b/2)+0 (vTIog^j) . 
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Abstract — In this paper we consider the con- 
strained ML problem where the solution vector is re- 
stricted to lie within a convex set. An iterative al- 
gorithm for solving the convex-constrained ML prob- 
lems is derived where special cases correspond to mul- 
tistage interference cancellation structures. 

I. SUMMARY 

The detection strategy usually denoted optimal multiuser de- 
tection is equivalent to the solution of a (0,l)-constrained 
maximum-likelihood (ML) problem, a problem which is known 
to be NP-hard. Here we relax the constraints imposed on 
the solution vector in order to formalise lower complexity ML 
detectors [1]. Consider a if-user asynchronous CDMA sys- 
tem with additive white Gaussian noise (AWGN) of variance 
a2 = No/2. Each user transmits a block of L data symbols 
using BPSK. A minimal set of sufficient statistics of dimen- 
sion LK is obtained through filtering matched to the received 
spreading code of the desired user y = Rd + z where y is the 
matched filter output vector and R is the correlation matrix. 

The general constrained ML problem for asynchronous 
CDMA is described as 

arg  min  F(v) = arg  min   -v Rv Vy. (1) 

For a closed convex set constraint, an iterative algorithm for 
solving the problem in (1) can be found by considering a vari- 
ational inequality (VI) problem which has the same solution 
as(l). 

Definition 1 The VI problem VI(G, C) is defined as finding 
a vector u 6 C C RLK such that 

(v-u)TG(u)>0,        VveC, (2) 

where G is a given continuous function from C to RLK and C 
is a given closed convex set. 

Letting f(v) be the derivative of F(v), the solution to the 
problem is described in the following lemma. 

Lemma 1 (Lemma 3.1 [2]) Let C be a closed convex set, 
and let f (u) be a continuous function. Then u is a solution to 
(v - u)Tf(u) > 0, for all v£C, if and only if 

u = Pc(u - wf (u)) for some or all u> > 0. (3) 

In Lemma 1, Pc(y) is an orthogonal projection onto the con- 
straining set, Pc(y) = argminx6s ||x - y||. The following it- 
erative algorithm is proposed in [2] for solving a VI problem. 
Conditions for convergence are considered in [1]. 

Algorithm 1 For any initial value uo € C, let 

um+i = pPc[um - wE(Rum - y + K(um+i - um))] 

+(l-p)um, (4) 

where 0 < p < 1, ui > 0, E is any positive diagonal matrix, 
and m = 0,1,... , M — 1 is the iteration index. If the orthog- 
onal projection operation can be decoupled into independent 
element-wise projections, then K can be either strictly lower 
triangular, strictly upper triangular or equal to the null matrix 
0. Otherwise, K must be equal to the null matrix 0. 

Algorithm 1 has the form of generalised interference cancel- 
lation. The algorithm is serial (successive) in nature when K 
is strictly upper or lower triangular. When K = 0, the algo- 
rithm becomes parallel in nature, as iteration m only depends 
on estimates from iteration m — 1. Let R be partitioned such 
that R = D + L + U, where D is a diagonal matrix and L and 
U are strictly lower and upper triangular, respectively. Spe- 
cial cases of Algorithm 1 are equivalent to known successive 
and parallel interference cancellation structures. An M-stage 
successive interference cancellation (SIC) scheme is described 
as 

um+i = PC[D  1(y - Lum+i - Uum)], (5) 

where uo = y. The relationship between the SIC and the 
general iterative algorithm is clear from substituting K = L, 
E = D_1 and p = UJ = 1 into (4). Similarly, the M-stage 
weighted parallel interference canceller (PIC) is described as 

um+i =Pc[wD"1y + (I-wD-1R)um], (6) 

which can be derived from (4) by taking K = 0, E = D-1 

and p = 1. Again uo = y. 
The orthogonal projection operation, essential for the algo- 

rithm, clearly corresponds to the tentative decision function 
in a cancellation structure. For a box constraint, the orthog- 
onal projection operation can be decoupled into independent 
element-wise orthogonal projections. Element i of the orthog- 
onal projection vector is in this case 

(ft(y))«   = 
yi     if -1 < yi < 1 
-1    if y* < -1 
+1    if y» > 1 

(7) 

The function Pb(y) is incidently identical to the clipped soft 
decision function suggested for interference cancellation [1]. 
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Abstract - A necessary and sufficient condition for the equivalence of 
two test functions is stated, also a necessary and sufficient condition 
for the existance of UMP test is proposed. Then it is shown, for the 
first time, that in coherent radar detection, UMP test does not exist 
and ALR and GLR detectors are not equivalent. 

I- Introduction 
In several detection problems, we have a composite hypothesis test, i.e.a 

test that at least, a parameter characterizing one of the hypothesis is 
unknown. 
first, we have discussed about the meaning of equivalence of two tests and 
have stated a necessary and sufficient condition for equivalence of two 
tests in sealer and vectorial cases and then we have discussed about the 
existance of UMP test in two- sided hypothesis tests and have found a 
necessary and sufficient condition for the existanse of UMP test and then 
by using of theorems we have shown that in the coherent radar detection in 
gaussian noise, UMP test does not exist and ALR and GLR detectors are 
not equivalent. 

II - Equivalence of two tests 
In this section, we propose the concept of equvialence of two tests and 

conditions of this equivalence. The test which result from the comparison 
of a function of observation (for example A(x)) with a thershoId(n,) is 
represented here by T(A), i.e.the test T(A) is a test with decision rule of 

Definition: two tests are equivalent iff they have the same critical region. 
Theorem (1): If two test T(A) and T(B) are equivalent then: 
Vxj ,x2:A(x} )=A{x2 )c*ß(*7 )=B(x2) (1) 

On the other hand, if functions A and B are continuous and equation(l) is 
satisfied for them, the test T(A) will be equivalent either with T(B) or with 
T(-B) [1]. 
Remark (1): Theorem (1) is valid also when we deal with the vector form 

of observations (e.g. A(*\H  ia ) [1]. 

Ill - UMP test in two - sided hypothesis tests 
UMP test is the most powerful test in the test class of its size. 

Unfortunately, in general there is not a theorem in literature that answers 
to this question that whether the UMP test exists in a given problem or 
not? In this section, we discuss about this problem in two - sided 
hypothesis tests and propose a way to check for the existance of the UMP. 
Iemma(l): Necessary and sufficient condition  for the existance of UMP 

test   in   a  two-sided   hypothesis   test (e.g.   \H,:9*90 ) is that the 

likelihood ratio, i.e. Aä(';S)  = 
L(,,e) 

£(';«„> 
has two following properties[l]: 

a) For any e .solution of LR(t. ;S) = LR(i. ;0) is independent of e . 

dLR (i,e ) 
b) For any t, sign of  is independent of« 

Lemma (2): If in a test, likelihood ratio is in the form of LR (* -B_ )=/( ~.g ) 

(in  which   x   and  6     are   n-dimensional and k-dimensiona! vectors, 
respectively), necessary and sufficient condition for existance of UMP test 
in two-sided hypothesis test, is[l]: 
1) For any e , solution of LR{X, -,s)=Lä (x2 -,e) js independent of e : 

2) For l±i<n , sign of 
dLR (x,$) 

is independent of e 

IV- Applications to coherent radar detection 
Example (1): In the detection of coherent radar signals with unknown 

Doppler shift, we have the following hypothesis test: 

\"ö-x=n_ 
Hj.x=s+n (2) 

where x , s and n are N-tuple vectors of observed data, signal and noise, 
respectively.Noise     is   assumed   to   be   zero-mean    gaussian,    and 

5 = vexp( j4)ö QJ 

where v is the amplitude, and ^ is the initial phase of the signal and 

s^iJne2Jn .<(A,-'^]r,    where n     is   the   normalized   Doppler 

frequency. 

The vector   S is considered as an unknown vector and we can rewrite the 

problem of hypothesis test as: 
H 0   s = 0 

H j   ~s*0 

The likelihood ratio equals[2] 

LR(x;s)= 
/(*;«) 

=exp -sHZj,'s+2Re(x
HZzh) (4) 

where i „„ is the noise covariance matrix. According to Lemma(2), if 
the UMP test exists then the solution of the following equation should be 
independent ofs. 

LR(x1;s)^R(x2,s)^RS:(x
H E^v)=Re(A:W I^.v) ($) 

_-_--;- -2 w 

But if   x = x *ji„„ i   is selected, then this solution which is dependent of 

s satisfies the eq.(5). Therefore, the UMP test dose not exist. 
Example(2):  Here, we suppose that parameters ■". t and V inexample(l), 

are unknown but ßand «> are random variables with uniform distribution 

in the interval[°.^) and V has Rayleigh distribution with paramater a, 
hence we can use ALR detector in this problem. ALR and GLR detectors, 
for this problem, are in the following form [2 - 4]: 

I I2 

LR (*,/?) = - 
l + 2aS H 

-exp( 
l + 2aS H -) (6) 

A(x)   = LR{X, n)dn G ( x )  =   max      [LR( x, O )]    (7) 

If it is supposed that N=2, *=(*;.*2) andl„„ 

be in the following form: 

M*l\\x2 A(x)- 
2it(Ma 

C(f)=7^r°",[7^'"H^I)'] 

. Above detectors will 

(8) 

(9) 

where I0 (.) is the modified Bessel function. We see that G(xi,x2) is costant 
over jjry[+|JC2 |= cte, but A(X|,X2) is not costant over I*; |+|*21= cte, 
therefore eq.(l) is not satisfy and consequently GLR and ALR detector are 
not equivalent. 
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Abstract — Approximate simultaneous orthogonal 
expansions of two second-order stochastic processes 
are defined and their convergence is showed. The 
technique is based on the Rayleigh-Ritz method to 
solve the homogeneous equation involving both co- 
variance kernels simultaneously. Finally, two specific 
applications of these finite expansions are given: in 
the Gaussian estimation and detection problems. 

I. INTRODUCTION 

This paper is concerned with the simultaneous diagonalization 
of two covariance kernels and its application to second-order 
stochastic processes. Several approaches have been developed 
to expand two processes simultaneously (e.g., [l]-[3]). These 
methodologies allow both processes to be expanded in the 
same set of functions with uncorrelated coefficients. A number 
of applications of such expansions can be found in the litera- 
ture. For example, in [1] an extension of Shannon's definition 
for the information content of a Gaussian process in Gaussian 
noise is provided, Kadota gives a solution to the problem of 
estimating a Gaussian signal in noise [4], and Root [2] and 
Pitcher [5] apply them in the Gaussian detection problem. 

From the practical standpoint, simultaneous orthogonal ex- 
pansions of two stochastic processes are very limited because 
there is no standard method to find the eigenvalues and eigen- 
functions of the operator involved. Kadota gives two examples 
illustrating an indirect method to obtain the expansion coeffi- 
cients and the expanding functions [6]. However, this method 
requires computing the set of eigenfunctions of a covariance 
kernel, what is generally a difficult task and, sometimes, im- 
possible. 

Our aim is to provide a methodology overcoming the dif- 
ficulty of computing the true simultaneous eigenvalues and 
eigenfunctions. For this purpose, we will apply the Rayleigh- 
Ritz method to solve numerically the homogeneous equation 
involving both covariances simultaneously. The result ob- 
tained is an approximate procedure allowing the simultane- 
ous diagonalization of two covariance kernels and, as a conse- 
quence, the definition of the so-called approximate simultane- 
ous orthogonal expansions of two stochastic processes. 

II. APPROXIMATE SIMULTANEOUS ORTHOGONAL 

EXPANSIONS 

Since the most general solution for expanding two stochas- 
tic processes simultaneously is given in [3], we consider this 
approach as the basis of the present paper. We assume the 
conditions on the two covariance kernels imposed in the above 
work and the additional assumption of imperfect detection 
[2]. Thus, it can be shown that the approximate simultane- 
ous eigenvalues and eigenfunctions, computed by applying the 

Rayleigh-Ritz method to the associated homogeneous equa- 
tion, converge to the true ones. This result yields a way of 
approximating the expanding functions and the expansion co- 
efficients. Moreover, it allows us to obtain an approximate 
method to diagonalize both covariances simultaneously and 
also, to define the approximate simultaneous orthogonal ex- 
pansions of two stochastic processes. The convergence of these 
finite expansions are also shown. The results remain valid un- 
der differentiation. To conclude this section, the implementa- 
tion of the method is illustrated by considering an example. 

III. APPLICATIONS 

The first application considered is concerned with the problem 
of estimating the mth quadratic-mean derivative of a Gaus- 
sian signal in independent Gaussian noise. On the basis of 
Kadota's results [4], a suboptimal estimate approaching the 
optimal estimate as the length of the series goes to infinity 
is proposed and an expression of its error variance is given. 
Furthermore, it is shown that the sequence of mean-squared 
estimation errors resulting from the suboptimal estimate con- 
verges to the minimum error resulting from the optimal one. 

The second application addresses the Gaussian nonsigular 
detection problem. Specifically, we propose an approximate 
log-likelihood ratio derived from the above finite expansions, 
which converges to the optimum detection statistic [2]. The 
advantage of such approaches is that they are computationally 
feasible. 

REFERENCES 

[1] R.T. Huang and R.A. Johnson, "Information Transmission 
With Time-Continuous Random Processes," IEEE, Trans. In- 
formation Theory, vol. 9, pp. 84-94, 1963. 

[2] W.L. Root, "Singular Gaussian Measures in Detection Theory," 
Proc. Symposium on the Time Series Analysis, John Wiley, 
N.Y., pp. 292-315, 1963. 

[3] T.T. Kadota, "Simultaneous Diagonalization of Two Covari- 
ance Kernels and Application to Second Order Stochastic Pro- 
cesses," SIAM J. Appl. Math., vol. 15, pp. 1470-1480, 1967. 

[4] T.T. Kadota, "Optimum Estimation of Nonstationary Gaussian 
Signals in Noise," IEEE, Trans. Information Theory, vol. 15, 
pp. 253-257, 1969. 

[5] T.S. Pitcher, "An Integral Expression for the Log Likelihood 
Ratio of Two Gaussian Processes," SIAM J. Appl. Math., vol. 
14, pp. 228-233, 1966. 

[6] T.T. Kadota, "Simultaneously Orthogonal Expansion of Two 
Stationary Gaussian Processes-Examples," Bell System Tech. 
J., vol. 45, pp. 1071-1096, 1966. 

1 

0-7803-5857-0/00/$ 10.00 ©2000 IEEE. 
-389- 



Maximal number of constant weight vertices 
of the unit n-cube 

contained in a /c-dimensional subspace 
R. Ahlswede, H. Aydinian, and 

L. Khachatrian 
University Bielefeld 

I. EXTENDED SUMMARY 

We introduce and solve a seemingly basic geometrical ex- 
tremal problem. 

The set of vertices of weight w in the unit cube of R" 

E(n, w) = {xn e {0, l}n : xn has w ones} 

can also be viewed as the set in which constant weight codes 
are studied in Information Theory. Another interest there is in 
linear codes. This was a motivation for studying the interplay 
between two properties: constant weight and linearity. In par- 
ticular we wanted to know M{n, k,w) = max{|l/£n£(n, w)\ : 
U£ is a /c-dimensional linear subspace of Rn}, that is, the 
maximal cardinality of a set of vectors in E{n,w), whose linear 
span has a dimension not exceeding k. Here is our complete 
solution. 

Theorem. Let w < \ and k < n, then 

(a) M(n,k,w) = M(n,k,n - w) 

((*), if(i)2w<k 
(b) A/(n,k,w)=l {2{^:))22w-k,    if (ii) k<2w<2(k- 1) 

(2fc_1, if (Hi) 2{k - 1) < 2w < n. 

The key sets giving the lower bounds for M(n,k,w) in the 
three cases are 

(i) Si = E(k,w) x {0}"-* 

(ii) S2 = E(2{k - w), k - w) x {10, 01}2u-fc x {0}"-2u' 

(iii) S3 = {lO.Ol}*-1 x {i}«'-fc+' x {0}"-ur. 

We also present an extension to multi-sets and explain a 
connection to the (simpler) Erdös-Moser problem. 
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Abstract — We present new upper bounds on the 
size of constant-weight binary codes, derived from 
bounds for spherical codes. In particular, we improve 
upon the 1962 Johnson bound and the linear program- 
ming bound for constant-weight codes. 

I. INTRODUCTION 

An (n, d, w) constant-weight code is a binary nonlinear code 
with length n and minimum Hamming distance d, where all 
codewords have the same number of ones, w. The maxi- 
mum size of such a code is denoted A(n, d, w). The value of 
A(n, d, w) is in general not known, but a number of lower and 
upper bounds have been established. See [2-4] for summaries 
of the best bounds known today. 

The new bounds presented here are based on concepts from 
Euclidean geometry, in particular, spherical codes. An (n, s) 
spherical code is a set of points on the n-dimensional unit 
sphere such that the inner product of any two points is at 
most s. Its maximum size is denoted by As{n, s). 

II. IMPROVED JOHNSON BOUND 

Through an elementary mapping from binary space to Eu- 
clidean space, we obtain the following upper bound. It is 
equivalent to the well-known Johnson bound from 1962 [2] for 
6 > 6/(n + 1) and improves on it for 0 < b < 8/(n + 1). 

Theorem 1. Letb = 6 — w(n — w)/n. Then 

A(n,25,w)  <  [6/b\, 

A{n, 26, w)  <  n, 

A(n,26,w)  <  2n-2, 

ifb>6/n 

if0<b<6/n 

if6 = 0 

Proof: Consider any constant-weight code .if with param- 
eters (n, 28, w) and map it into Euclidean space by replacing 
the binary components 0 and 1 with, respectively, 1 and —1. 
After translation and scaling, this yields an (n — 1, s) spherical 
code, where s — 1 — Sn/(w(n — w)). Since its size is upper- 
bounded by As (n — 1, s), so is the size of If. Applying known 
values of As (n — 1, s) for s < 0 [1] completes the proof.   | 

Some values of A(n,d, w) for which Theorem 1, in con- 
junction with known lower bounds [3], yields previously un- 
known exact values are A(20,10,9) = 20, A(21,10,8) = 21, 
,4(24,10,7) = 24, 4(24,12,11) = 24, A(26,12,9) = 26, and, 
somewhat surprisingly, 4(28,14,12) = A(28,14,13) = 28. 

III. IMPROVED LINEAR PROGRAMMING BOUND 

The distance distribution of any binary code ^ is defined 
as Ai = i^yEcetfK0' ^ ^ I d{c,c') = i}\ for i = 0,... ,n, 

where d(-, •) denotes the Hamming distance. The linear pro- 
gramming bound for a const ant-weight code with w < n/2 is 
A(n, 26, w) < 1 + max J27=s ^2i > where the maximum is taken 
over all {Ai} that satisfy certain well-known constraints [2]. 

We propose an additional constraint in the maximiza- 
tion, which sharpens the bound. In the following theorem, 
T'(wi,ni,W2,n2,d) and T(wi,m,W2,ri2,d) denote the max- 
imum size of an (n\ + n,2,d,wi + 1U2) constant-weight code 
in which the number of ones in the first m positions of all 
codewords is, respectively, at most w\ and exactly mi. 

Theorem 2. For all i, j € {<5,6 + 1,... , w} with i ^ j, 

PjiA2i + {Pi - Pij) A2j < PiPji,    ifPij/Pi + Pji/Pj > 1 

(P, - Pji) A2i + PijA2j < PjPij,    ifPij/Pi + Pji/Pj > 1 

PjAn + PiA2j < PiPj,     ifPij/Pi + Pji/Pj < 1 

where Pi, Pj, Pij, and Pji are any numbers that satisfy 

Pi>T(i,w,i,n-w,26) 

Pj>T{j,w,j,n-w,28) 

Pij > min {Pi,T'(w — 6,j,6 — w + i,n — w — j, 

26-2w + 2i)}, ifi + j<n-6 

Pji > min {Pj,T'(w — 8,i,6 — w + j,n — w —i, 

26-2w + 2j)}, ifi + j<n-8 

Pji = Pi:j = 0, ifi + j>n-6. 

The entities T and T' can be upper-bounded using bounds 
for spherical codes and so-called zonal spherical codes. Details 
and proofs are given in [1], which also contains several other 
new bounds, a survey of known bounds on A(n, d, w), and 
updated tables of A(n, d, w) for n < 28. 

New upper bounds obtained through Theorem 2 include 
A(20,8,9) < 195, A(21,8,9) < 320, A(22,8,10) < 641, 
A(24,8,11) < 2188, and A(23,10,9) < 81. 

REFERENCES 

[1] E. Agrell, A. Vardy, and K. Zeger, "Upper bounds for constant- 
weight codes," IEEE Trans. Inform. Theory, submitted Decem- 
ber 15, 1999, available online at www. chl. Chalmers. se/"agrell. 

[2] M.R. Best, A.E. Brouwer, F.J. MacWilliams, A.M. Odlyzko, and 
N.J.A. Sloane, "Bounds for binary codes of length less than 25," 
IEEE Trans. Inform. Theory, vol. 24, pp. 81-93, Jan. 1978. 

[3] A.E. Brouwer, J.B. Shearer, N.J.A. Sloane, and W.D. Smith, 
"A new table of constant weight codes," IEEE Trans. Inform. 
Theory, vol. 36, pp. 1334-1380, Nov. 1990. 

[4] R.L.Graham and N.J.A.Sloane, "Lower bounds for constant 
weight codes," IEEE Trans. Inform. Theory, vol. 26, pp. 37-43, 
Jan. 1980. 

1This work was supported in part by the National Science Foun- 
dation and by the David and Lucile Packard Foundation. I 
0-7803-5857-0/00/$ 10.00 ©2000 IEEE. 

-391 



. ISIT 2000, Sorrento, Italyjune 25-30,2000 

On the Covering Radius of Ternary Negacyclic Codes with Length up 
to 26 

Tsonka S. Baicheva1 

Institute of Mathematics and 
Informatics 

Bulgarian Academy of Sciences 
P.O.Box 323 

5000 Veliko Tarnovo, Bulgaria 

e-mail: lpmivt0vt.bia-bg.com 

Abstract — The covering radius of all ternary ne- 
gacyclic codes of even length up to 26 is given. The 
minimal distances and weight spectra of all codes were 
recalculated. Seven of the open cases for the least cov- 
ering radius of ternary linear codes were solved and 
for other three cases upper bounds were improved. 

I. INTRODUCTION 

Constacyclic codes are linear codes which are closed un- 
der constacyclic shifts of codewords. A constacyclic shift 
of the n-tuple (ao, oi,..., an_2, an-i) yields the n-tuple 
(can_i, ao, oi,..., a„_2), where c is a fixed nonzero field el- 
ement. Constacyclic codes share many of the well-known al- 
gebraic properties of cyclic codes [5, ch. 7]. In particular, one 
way of describing a constacyclic code C is as an ideal in the 
ring of polynomials F[x]/(xn — c), closed under polynomial ad- 
dition and multiplication modulo xn — c. It can be shown that 
C is a principal ideal, and as such, it contains a unique monic 
polynomial of minimum degree, denoted g(x), that generates 
C, i.e. C = {g(x)). The generator polynomial g(x) must be 
a divisor of xn — c, and the degree r of g(x) determines the 
redundancy of C, i.e. (g(x)) is an [n,n — r] code. We will 
denote n — k by k. 

When c = — 1 codes are called negacyclic [3, ch. 9]. In 
this case g(x) is a divisor of i" + 1. The polynomial h(x) = 
(xn + \)/g(x) is the check polynomial of the code C. 

As xn + 1 = (x2n - 1)/(E" - 1), roots of the polynomial 
xn + 1 are these roots of x2n — 1 which are not roots of the 
polynomial xn — 1. If or is a primitive root of the polynomial 
x n — 1, its odd powers are all roots of the polynomial xn + 1, 
i.e. the roots of the polynomial xn + 1 are odd powers of the 
primitive 2n-th root of unity. Therefore we can characterize 
the code C by its defining set, which is the collection of all j 
such that a} is a zero of g(x). 

The covering radius R(C) of the code C is defined as the 
smallest integer R, such that the spheres of radius R around 
the codewords cover the n-dimensional vector space Fg over 
GF(q). 

The function tq[n, k] is defined as the least value of R when 
C runs over the class of all linear [n, k] codes over GF(q) for 
a given q. 

II. TERNARY NEGACYCLIC CODES WITH LENGTH UP 

TO 26 

Table II-A from [4] was used as source for all ternary nega- 
cyclic codes of lengths up to 26.   According to [3] two codes 

are equivalent, if their defining sets are the same up to mul- 
tiplication with an integer coprime to their length. So, only 
nonequivalent codes were considered. Their minimal distances 
and weight spectra were recalculated. To determine R(C), 
part of the codes were handled analytically and for the rest of 
them computer calculations by Method 1 and Method 2 as in 
[1] were used. 

Bounds for the function i3[n,fc] for ternary codes with 
n < 27 are given in [2, Table II]. Based on the determined in 
this work covering radii of ternary negacyclic codes we have 
obtained some exact values and upper bounds for i3[n,fc]. 

Proposition 
1) t3[20,6] = 7-8. 
2) t3[20,10] = i3[20,11] = i3[21,11] = 4. 
3) <3[24,12] = <3[25,13] = 5. 
4) t3[21,10] = t3[22,ll] = 5 
5) i3[22,10] = 5-6. 
6) <3[25,12] = 5-6. 
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I. INTRODUCTION AND DEFINITIONS 

The concept of multicovering radius was introduced by Klap- 
per [2] in the context of studying the security of stream ci- 
phers. Let C be a code of length n and m be a positive 
integer. The m-covering radius of C is the smallest integer r 
such that every set of m vectors in Fn is contained in at least 
one ball of radius r around a codeword in C. 

We denote the m-covering radius of a code C by Rm(C). 
Then R{C) := R\{C) is the covering radius of C. For results 
on the covering radius, see to the book by Cohen, et. al. [1]. 

In general we are interested in various extremal values asso- 
ciated with this notion: Rm(Fn) := the smallest m-covering 
radius among length n codes, tm(n,K) := the smallest m- 
covering radius among (n, K) codes. 

The purpose of this paper is to derive new bounds by relat- 
ing the multi-covering radii of a code to a relativized notion 
of covering radius. For generality, we define this notion for 
multi-covering radii, although we shall only use the ordinary 
covering radius version. 

Definition 1 Let C and S be codes of length n, and let m 
• be a positive integer. Then the fc-covering radius of C relative 
to S, Rk(S,C), is the smallest integer r such that for every 
c1, • • •, ck € C there is an s € S such that d(cl, s) < r for all 
i = 1, • ••,*;. Also, tk(m, C) := min{Äfc(S, C) : \S\ = m}. 

Note thattfc(m,Fn) = ijfc(n,m). 

II. A FUNDAMENTAL IDENTITY 

Let S denote the set of word-complements of elements of a 
code S. 

Theorem 2 If C is a code of length n then 

Rm{C) = n-t1(m,C). 

For C = Fn we obtain the following corollary, which is 
essentially a restatement of Theorem 19.4.4 of Cohen, et. al. [1] 
(cf. also Theorem 19.4.2). 

Corollary 3 For all natural numbers n,m > 1, i?m(Fn) = 
n — ti(n,m). 

III. THE 3-COVERING RADIUS OF HAMMING CODES 

Let Hr denote the Hamming code of order r. It was shown by 
Klapper [2] that for any m > 2 and r > 2, 2r_1 < Rm(Hr) < 
2r_1 + Cm, where cm is a constant depending only on m. It 
was also shown that Rm(H2) = 3 for m > 2; for r > 3 we 
have RtiHr) = 2r_1; and for m = 3,4,5 we have 2r~1 < 
Rm{Hr) < 2* x-(-l. However, in this .last case the precise value 
was unknown. In this section, using Theorem 2, we determine 
exactly the 3-covering radius of the Hamming codes. 

Theorem 4   We have ti(3, Ti.T) 
Ä3(Wr) = i(n + l) = 2r-1. 

i(n - 1) = 2r_1 - 1 and 

IV. COROLLARIES 

It is known from Klapper [2] that for all n > 3 R2(F
n) = 

R3(Fn) = fn/21 and fl4(F
n) = Ä5(F

n) = \(n + l)/2] . Using 
Corollary 2.2 and known results about K{n, R), the minimum 
cardinality of a binary code of length n and covering radius 
R, we can determine Re(Fn) and fl7(F

n). 

Theorem 5 For all n > 4 we have Re(Fn) = \{n +1)/2] 
and R7(F

n) = \(n + 2)/2] . 

Since ti(n,2k) is bounded above by the covering radius of 
any binary linear code of length n and dimension k, we also 
obtain many bounds on multicovering radius by using known 
bounds on binary linear codes. The resulting tables of bounds 
are omitted from this abstract. 

Using Corollary 2.2 and the results in Section 12.5 of Co- 
hen, et. al. [1] we obtain asymptotic results on i?m(Fn). For 
instance, using Theorems 12.5.1 (sphere-covering bound) and 
12.5.10. (from Lovasz, Spencer and Vesztergombi [3]) we ob- 
tain the following theorem. 

Theorem 6 For   all   n    and   m,    Rm(Fn)     <     n/1  + 

N/nlog2mln2/2. For all n and m, Rm(Fn) < n/2 + Yl^Jvn,. 

We obtain bounds on t\ (m, C) by counting vectors in balls. 
If \S\ = m, Ri(S,C) = ti(m,C), and k is the maximum 
number of vectors of C in any ball of radius t\(m, C), then 
km > \C\. Thus £i(m, C) must be large enough that k > 
\C\/m. When m < \C\, we must have k > 2. If do is the 
largest minimum distance among the (m+l)-element subcodes 
of C, then any ball of radius at most (do — l)/2 contains at 
most one element of C. Thus if h(m, C) < (d0 - l)/2, then 
k - 1, which is false. Therefore ti(m,C) > (do - l)/2. That 
is, ti{m.,C) > do/2. Hence Rm(C) < n - do/2. In particular, 

Theorem 7 // the 
Rm(C) <n-d/2. 

minimum   distance   of C   is  d,   then 
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Abstract — A simple decoding algorithm for the 
[24,12,8] extended Golay code, based on the | a + x \ 
6+a:|a + &-r-2:| Turyn construction is described. 

I. INTRODUCTION 

In this paper we propose a simple high-speed decoding al- 
gorithm for the [24,12,8] extended Golay code, based on the 
| a+x | b+x | a+b+x \ Turyn construction [1]. The algorithm 
can be easily realized in combinational circuits. Futhermore 
we show that [24,12,8] Golay code can correct simultaneously 
all patterns of three or fewer random errors as well as certain 
patterns of quadruple errors such as 4-bit cyclic single-burst 
and two-dimensional byte errors. 

II. THE DECODING ALGORITHM FOR RANDOM 

ERRORS 

Let Ci be the binary cyclic [7,4,3] Hamming code with 
the generator polynomial gi{x) = x3 + x + 1 over GF(2) 
and let C2 be formed by reversing the code words of C\. Let 
V\ and V2 be the [8,4,4] codes obtained by adding an overall 
parity check to C\ and GY The code C, consisting of all vectors 
c= I a+x I b+x I a+b+x |, where a, b 6 Vi and x E V2, is the 
[24,12,8] extended Golay code G24 (Turyn [l],pp. 587-588). 

Let z = c + e be a received word, c be a code word of 
the Golay code and e be an error word. Represent the words 
z and e as z =| z0 \ z\ \ z2 | and e =| e0 | ei | e2 |, where 
zo = a + x + eo, z\ = b + x + e\, Z2 = a + b + x + e2. Under 
decoding we define u0i = z0 + z\ = a + b + e0 + ei, «02 = 
zo + Z2 = b + eo + e2, U12 = Z\ + 22 = a + e\ + e2, U012 = 
zo + z\ + Z2 = x + eo + ei + e2. Calculate the syndromes of 
these words and overall parity checks A* of the words zt,i = 
0,1,2. For an error word e of the weight wt(e) < 8 the 
syndromes S'(«o2) = S(ui2) = S(u0i2) = 0 if and only 
if e = 0. S(z) = (S(uo2),S(u12),S{uoi2)) is called the 
syndrome of 2. Let zw = c(1) + e(1) and z(2) = c(2) + e(2) 

where c(1) and c<2) are words of the Golay code C and 
e(1), e(2) are error words. If e(1) / e(2) and wt(ew) < 
3, w«(e(2)) < 4, then S(zw) # S(z(2)). Use the syndrome 
S(z) and overall parity checks A; in order to find the syndrome 
Sn(zn) of the word zn of the intersection code Vi fl V2 that 
is the extended BCH code of the minimum distance 8. Then 
using the decoding algorithm for this code we define locators 
Qj, atj € GF(23), j = 0,1,2,..., 7 of errors in the words 
zo,Zi and 22- 

The described algorithm for random errors is suitable for 
implementation in combinational curcuits. We estimate the 
number of gates of the decoder and the decoding delay. We 
show that the combinational decoder of the [24,12,8] extended 

Golay code needs no more than 295 XOR, 234 AND, 101 OR 
and 63 NOT gates and no more than 24 gate delays for cal- 
culating the output word. 

III. CORRECTION OF SINGLE-BURST AND 

TWO-DIMENSIONAL BYTE ERRORS 

We will represent the Golay code as a generalized array 
code [2], Then the code word c=\a + x\b + x\a + b + x\ 
of the Golay code C is represented as following array 

coo Coi CO 2 C03 C04 C05 C06 C07 

ClO Cll C12 Cl3 Cl4 Cl5 Cl6 cn 
C20 C21 C22 C23 C24 C25 C26 C27 

The error word array e is called a 4-bit cyclic single- 
burst error if for some i,j (where i and j are the row 
and column indexes of the array, respectively) the symbols 
e<,j,ei+i,J+i,e;+2,j+2,ei+3,j+3 may be equal to 1 and all 
other symbols of the error word e are equal to 0. The in- 
dexes i and j are taken mod 3 and mod 8 respectively. If 
Cij = ej+i,j+i = e;+2j+2 = ei+3,j+3 = 1, the error word e 
is called a 4-bit cyclic solid single-burst error. As the Golay 
code corrects all patterns of three or fewer errors we consider 
only 4-bit cyclic solid single-burst errors. We show that all 
4-bit cyclic solid single-burst errors have different syndromes, 
that differ also from the syndromes of all error words of weight 
<3. 

The error word e is called a 4-bit two-dimensional single- 
byte error if for some i = 0,1, 2 and j = 0, 2,4, 6 the symbols 
e>,j!e>,j+ii Ci+i,j,ei+i,j+i may be equal to 1 and all other 
symbols of the error word e are equal to 0. The index i is 
taken by mod 3. If ei:j = eij+i = ei+hj = e,+],J+i = 1, the 
error word e is called a 4-bit two-dimensional solid single-byte 
error. We show that all 4-bit two-dimensional solid single- 
byte errors have different syndromes, that also differ from the 
syndromes of all words of weight < 3 and 4-bit cyclic solid 
single-burst errors. 
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Abstract — A framework is presented for general- 
ized minimum distance (GMD) decoding with a lim- 
ited number of decoding trials and fixed erasing. The 
realizable distance for this technique is studied. 

Generalized Minimum Distance (GMD) decoding, as intro- 
duced by Forney [1], permits flexible use of reliability informa- 
tion in algebraic decoding algorithms for error correction. In 
subsequent trials, an increasing number of the most unreliable 
symbols in the received sequence is erased, and the resulting 
sequence is fed into an algebraic error-erasure decoder, until 
the decoding result and the received sequence satisfy a cer- 
tain distance criterion. In Forney's original algorithm, the 
unique codeword (if one exists) satisfying the distance crite- 
rion is found in at most \d/2~\ trials, where d is the Hamming 
distance of the code. 

Kovalev [2] considered GMD decoding algorithms in which 
the maximum number of trials is limited to a certain number 
/ > 1. This restriction may decrease the error correction capa- 
bilities compared to Forney's algorithm. Still, it is worthwhile 
investigating limited-trial GMD decoding, since its reduction 
of the delay (in case of a serial implementation) or the number 
of required error-erasure decoders (in case of a parallel imple- 
mentation) may more than compensate for the (slightly) worse 
performance. 

We assume the following situation. A codeword c = 
(ci,..., c„) from a g-ary code C of length n and Hamming dis- 
tance d is transmitted over a g-ary channel. The output of the 
channel consists of the received g-ary vector r = (n,..., r„) 
and an associated reliability vector a = (OJI,. . .,an), where 
all oti are from a set 1Z which is a subset of the real interval 
[0,1] containing {1}, i.e., {1} C H C [0,1]. The higher an, 
the more reliable is the symbol rj. The generalized distance 
between the received word r with reliability vector a and a 
g-ary vector z = (zi,..., zn) is defined as 

dG(z,r,a)=   52(i_a«)/2+   £)(l + an)/2.     (1) 
i:Zi=ri i-.Zi^Ti 

In the GMD decoder, some of the most unreliable received 
symbols, i.e., r; with lowest a,, are erased. In this work, where 
we consider fixed erasing, the erasing procedure is based on a 
fixed set X — {i\,..., it}, which is independent of the received 
reliability vector a. In trial j, the ij most unreliable received 
symbols are erased, after which the resulting vector rj is fed 
into an error-erasure decoding algorithm for the code C with 
the property that it returns the original codeword whenever 
the numbers of erasures s and of errors t are such that It 4- s < 
d. This leads to (at most) I codewords Cj, among which one 

^his author was supported by NSF Grant CCR-96-12354. 

with smallest da(cj , r, a), is chosen as the final decoding result 
c. 

For a code of Hamming distance d and length n, a reliabil- 
ity vector a of length n, and an erasing set X, let dr(d, a,X) 
be defined as the largest real number dr for which the follow- 
ing assertion holds: for any transmitted codeword c and any 
received vector r of length n with reliability vector a such 
that do(c,r, a) < dr/2, the original codeword c is delivered 
by the GMD decoder based on erasing set X. For a code of 
Hamming distance d and length n, a reliability set H, and a 
fixed erasing set X, let the realizable distance of the associated 
GMD decoder be defined as the infimum of dT(d, a, X) over all 
a eft". 

The realizable distance is an important figure of merit for a 
limited-trial GMD decoder. For any H, Forney [1] has shown 
that by erasing 2j — 1 — d + 2|d/2j most unreliable symbols 
in the jth trial (j = 1,..., \d/2]), the realizable distance is 
(at least) d, i.e., the full Hamming distance d is exploited. 
For H = [0,1] and fixed erasing, Kovalev [2] calculated the 
loss of distance compared to Forney's algorithm in case the 
maximum number of decoding trials is restricted (i < fd/2"]). 
Here, we extend Kovalev's result to the case that H is any 
subset of [0,1]. 

For a code C of Hamming distance d and length n, a reliabil- 
ity set 1Z with infimum p,, and a fixed erasing set X satisfying 
—ti = io < 0 < ti < • • ■ < %i < ii+i = d + 1 and d — ij = 1(2) 
for all j, the realizable distance can be shown to equal 

(P-1) d + 1 - fii\ + max (ik+i -ik). 
k=0,...,l 

(2) 

Note that the realizable distance depends on the code C only 
by its Hamming distance d and on the reliability set H only 
by its infimum fi. For given C, H, and I > 1, the maximum 
realizable distance among all erasing sets X of size I can be 
shown to equal 

fl('räSi) 

«KiUfl/iJ) 

ff(rii) 

ifO<M<5FTT 
and rg$l < [[£yi\, 
lf 2J+T < A* < 2rfi-2j|.r$i/'j+i 
and r*|Tl < Lrfl/lJ, 

otherwise, 

(3) 

where g(x) = 2(ix + (1 - /j)(d + 1 - \x/l]). 
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Abstract — For binary linear block codes, we in- 
troduce "multiple GMD decoding algorithm", where 
GMD-like decoding is iterated around a few appro- 
priately selected search centers. Compared with the 
original GMD decoding by Forney [1], this decoding 
algorithm provides better error performance with in- 
creasing the number of iterations of erasure and error 
correction moderately. To reduce the number of it- 
erations, we derive new effective sufficient conditions 
on the optimality of decoded codewords. 

1. Definitions: Suppose a binary linear (N,K) block 
code C with minimum weight dmin is used over the AWGN 
channel using BPSK signaling. Each codeword is transmit- 
ted with the same probability. For a positive integer n, let 
V" denote the set of all binary n-tuples. For a received 
sequence r = (ri,r2,... , rw), the hard-decision sequence 
z = (zi,Z2,-.. ,ZN) of r and an ./V-tuple u G V^, define 

L(u)= EieD_,(u) N.where D-i(u) = {i : m # z<, and 1 < 

i < N}. For nonempty U C VN, let L[U] be defined 
as minug[/ L(u). Let v[U], called the best in U, denote 
an ./V-tuple in U such that L(v[U]) = L[U]. For integers 
l<i<3<N,u and v e VN, let d}j,i,j(u, v) denote the 
Hamming distance between u and v from the i-th bit to the 
j-th bit. 

2. Multiple GMD decoding: For v € V", a GMD-like 
decoding with search center v, denoted GMD(v), is defined 

as the iterative decoding algorithm consisting of p = [(dmin + 
1)/2J stages whose j-th stage is an algebraic decoding which 
corrects 2j — p — 1 erasures in the least reliable 2j — p — 1 
components and p — j or less errors in the remaining compo- 
nents of input v for 1 < j < p. The region which has not 
been searched (for candidate codewords) yet up to the j-th 
stage of GMD(tt), denoted Rp(v,j), is given by Rp(v,j) = 
{x € VN : dw,2j'-p,jv(x,«) > p-j' for 1 < / < j}. Define 

RGMD(V) = Rp(v, p). 
For a positive integer h, /i-GMD decoding is defined as 

an iterative decoding algorithm which consists of successive 
GMD(«(1)), GMD(B

(2)
), ..., GMD(«W). Here, v(i) e VN 

is called the i-th search center of the h-GMD decoding, and 
v(1) = z and other v(l) is chosen as the best TV-tuple in the 
region which has not been searched by (i — 1)-GMD decoding, 

that is, v(i) = v [n^ÄoMD^«'))]- For 1 < i < h and 

1 < J' < Pi the j-th stage of the i-th GMD(vw) decoding is 

called,the (i, j)-th stage. Let cQst(j) be the best candidate 
codeword generated up to the (i, j)-th stage, if it exists. After 

the (h, p)-th stage, c^J^ip) is output as the decoded codeword, 
unless the decoding fails. 

3. New Early Termination Conditions: Just after the 

(i, j)-th stage, R(i,j) = (fl-rij -RGMD(„«')))nÄp(«
(i),i) is the 

region which has not yet been searched for candidate code- 

words. For v € VN, Ödmin(v) = {x € VN : dH,i,N{x,v) > 
dmin}. The following condition is a sufficient condition on the 
optimality of c^8t0): 

Condg (j) is stronger than CondTP introduced by Taipale- 
Pursley [2], because R(i,j) is taken into account. 

4. Simulation Results: Figure 1 shows simulation re- 
sults of block error probabilities of the extended (128, 85) BCH 
code, denoted EBCH(128, 85). For comparison, the block er- 

ror probabilities for bounded distance-io( = U^min — 1)/2J) de- 
coding and Chase decoding algorithm II [3] are shown. 

The reduction rate of 3-GMD decoding is defined as the 
ratio of the number of iterations of erasure and error correc- 
tion stage to the maximum 3p. Since sufficient conditions can 
be used only when at least one candidate codeword has been 
generated, rates /JTP and /ZNEW denote the averages of reduc- 
tion rates by using CondTP and Condg\j), respectively, as 
early termination conditions over all the trials where at least 
one candidate codeword is generated. Table 1 lists /JTP and 
A»NEW in percentage for EBCH(64, 24) and EBCH(128, 85) at 
Eb/N0 = 2.0dB and 4.0dB. 
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Figure 1: Block error probability of EBCH(128, 85) 

Table 1: The average of reduction rate of 3-GMD decoding 
Code Eb/N0 = 2.0dB Eb/N0 = 4.0dB 

A*TP MNEW /iTP A'NEW 
EBCH(64, 24) 66.7% 61.6% 23.6% 19.8% 
EBCH(128, 85) 78.4% 74.3% 21.1% 18.1% 

1(0/ „(0 
Cond^ü) : L(cZtU)) < L R(i,j) fl O^Jc^Ü)) 
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Abstract — It is shown that there exist totally self- 
checking (TSC) combinational decoders for (n, k) Ham- 
ming SEC codes if and only if n = 2r — l,r = n — k. 
For shortened (n, k) Hamming SEC codes the modi- 
fied combinational totally self-checking decoders with 
minimum testing delay 2 < ft < (n — k) are suggested. 

I. INTRODUCTION 

The most natural architecture for on-chip error-correcting 
is to place a single-error-correcting code along each row of the 
memory [1]. To maintain the high level of reliability, faults 
of the decoder as well as faults of the memory chips must be 
detected. The effective means of of the achievment of these 
purposes are self-checking circuits. In this paper the prob- 
lem of constructing totally self-checking decoders for Ham- 
ming SEC codes is considered. It is shown that there exist 
totally self-checking combinational decoders for (n,k) Ham- 
ming SEC codes if and only if n = 2r — 1, r = n — k. For 
shortened (n, k) Hamming SEC codes the modified combina- 
tional totally self-checking decoders with minimum testing de- 
lay 2 < ft < (n — k) are suggested. 

II.   TOTALLY SELF-CHECKING CIRCUITS 

We consider a combinational circuit that produces an out- 
put vector y(x,f), which is a function of the intput vector 
x from the intput set X and a fault / £ F. The standard 
single stuck-at fault model is assumed ( [2, pp. 249-248]). A 
circuit C is fault-secure for an input set X and a fault set F 
if for any input x in X and for any fault / in F, y(x, f)£Y 
or y(x, f) = y(x, A) where A is the null fault. A circuit C is 
self-testing for an input set X and a fault set F if for every 
fault / in F there is some input a; in A" such that y(x, f) £ Y. 
An input x for which y(x, f) £ Y is called a testing pattern 
for /. A circuit C is totally self-checking (TSC) if it is both 
self-testing and fault-secure ([3, pp. 392-394]). Self-testing 
is a rather difficult condition to satisfy perfectly. With this 
difficulty in mind, the concepts of strongly fault secure logic 
networks [4] and totally self-checking circuits with minimum 
testing delay [5] were proposed. A TSC circuit is TSC with 
minimum testing delay ft = 1. 

III.  MODIFIED SELF-CHECKING DECODERS FOR 

HAMMING SEC CODES 

The decoder of the Hamming SEC code comprises the syn- 
drome generator (SG), the syndrome decoder (SD) and the 
corrector (COR). It is supposed that the decoder is a combi- 
national circuit. SG and COR are composed entirely of XOR 
gates. SD is constructed by AND gates and NOT gates. 

Let X = {x : x = v + e, v £ V, wt(e) < 1} be an input 
set and Y = {y : y = y(x, A) = v, x £ X, v £ V} be an 
output set of a combinational decoder of a systematic (n, k) 
Hamming SEC code V in the absence of faults. We show 
that the decoder of V is totally, self-checking if and only if 
n = 2T — 1, r = n — k. 

Most of the codes for semiconductor memory applications 
are shortened codes. For n < 2r — 1 we construct totally 
self-checking decoders with minimum testing delay 2 < ft < 
(n — k). We show that for any shortened (n, k) Hamming SEC 
code there exists a parity-check matrix such that a decoder of 
this code is TSC with minimum testing delay ft = 2. 

Totally self-checking code checker can be constructed for 
the combinational totally self-checking decoder with testing 
delay ft of a systematic Hamming SEC code. This checker 
consists of the regenerator of syndrome pairs and multi-input 
two-rail code checker. The description of the syndrome regen- 
erator and multi-input two-rail code checker can be found in 
[3, pp. 443-444, 459-466]. We show that the decoder can be 
modified such that the complexity of the checker is becoming 
significantly less. 
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Abstract — An explanation is given for the para- 
doxical fact that, at low signal-to-noise ratios, the 
systematic feedback encoder results in fewer decod- 
ing bit errors than does a nonsystematic feedforward 
encoder for the same code. The analysis identifies a 
new code property, the d-distance weight density of 
the code. For a given d-distance weight density, the 
decoding bit error probability depends on the num- 
ber of taps in the realization of the encoder inverse. 
Among all encoders for a given convolutional code, 
the systematic one has the simplest encoder inverse 
and, hence, gives the smallest bit error probability. 

I. INTRODUCTION 

It is well-known that the free distance of a convolutional code 
is the principle determiner of the burst error probability (first- 
event error probability) for large signal-to-noise ratios when 
maximum-likelihood decoding is used [1]. Since the free dis- 
tance is a code parameter, the burst error probability is the 
same whether the convolutional code was encoded by a non- 
systematic feedforward encoder or by a systematic feedback 
encoder. The decoding bit error probability, however, depends 
on the encoder used. Typically at high signal-to-noise ratios 
where most of the decoding burst errors are made to code- 
words at the free distance from the transmitted codeword, the 
systematic feedback encoder results in more bit errors than a 
nonsystematic encoder. We now explain the paradoxical fact, 
often observed in practice, that, at low signal-to-noise ratios, 
the systematic feedback encoder results in fewer bit errors 
than does a nonsystematic feedforward encoder. 

II. d-DISTANCE WEIGHT DENSITY 

Our analysis is based on consideration of what we call the 
d-distance weight density of the code, pd, and define as the 
fraction of l's in the "detours" of weight d in the binary con- 
volutional code. We use this parameter in a model of the 
internal codeword structure, together with the structure of 
the encoder inverse, to estimate the number of information 
bit errors that result from each 1 in a burst error that forms a 
codeword of weight d. The weights of codewords are code pa- 
rameters, not encoder parameters, and hence these estimates 
reveal which convolutional encoders give the best bit error 
probability performance. At low signal-to-noise ratios, i.e., at 
code rates close to channel capacity, error bursts are typically 
very long so that the codewords with weights substantially 
larger than the free distance of the code primarily determine 
the decoding bit-error probability. 

1This research was supported by the Foundation for Strategic 
Research - Personal Computing and Communication under Grant 
PCC-9706-09. 

Consider all codewords of weight d in a rate R = bjc fixed 
binary convolutional code. For small d, the number of code- 
words of weight d, nd, is also small and the value of pd fluctu- 
ates widely. For larger d, however, the number of codewords 
of weight d increases rapidly and the value of pd stabilizes. 
One finds that pj tends towards an asymptotic value as d in- 
creases. This asymptote is slightly memory dependent. For 
small memory, m, the asymptotic value is larger than for large 
m. As m grows, however, pd quickly decreases to its asymp- 
totic value, which we denote by poo ■ The d-distance weight 
density, pd, also depends on the code rate, the lower the rate, 
the higher the value of pa. To determine the asymptote p«,, 
we analyzed randomly chosen rate Ft = b/c, time-varying bi- 
nary convolutional codes. We calculated the following values 
of poo for some interesting rates: poo = 0.29 for R = 1/2, 
Poo = 0.37 for R = 1/3 and poo = 0.40 for R = 1/4. 

III. BIT ERROR PROBABILITIES VIA ENCODER 

INVERSES 

We now compare the decoding bit error probability for system- 
atic and nonsystematic encoders. For a particular encoder, let 
qd denote the arithmetic average of the number of decoding 
bit errors per codeword 1 taken over all codewords of weight 
d. Somewhat surprisingly, qd turns out to be an affine func- 
tion of d with a slope that depends on the encoder type. The 
different slopes can be explained using an argument involving 
encoder inverses. 

We model the appearance of l's within a codeword of 
weight d by a binary memoryless source which outputs a 1 
with probability pd. For brevity, we consider here only rate 
R = 1/2 codes. For systematic encoders, whose encoder in- 
verse has only one tap, the average number of bit errors per 
codeword 1 is then qd = 1/2. This is reasonable since one 
would expect that half of all codeword l's occur in the sys- 
tematic bit-stream and thus create information bit errors. For 
quick-look-in encoders whose encoder inverses have two taps 
[2], we obtain qd — l—pd- Inserting the asymptote poo = 0.293 
for R = 1/2, we get qd = 0.71. As the number of taps in 
the encoder inverse increases, qd increases monotonically to 
its asymptotic value of 0.85. This explains why the average 
number of bit errors per codeword at distance d is larger for 
nonsystematic encoders than for the systematic ones. 
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I. INTRODUCTION 

Although Viterbi decoding is widely used in practical sys- 
tems, only a few studies have been made for exact analysis of 
error probability. In [2], we already proposed analytical tech- 
nique for exact analysis of error state probability of 2-state soft 
decision Viterbi decoding. The extension to bit error probabil- 
ity analysis is possible with error state probability[3]. In this 
paper, this technique is extended to exact error state proba- 
bility in 4-state soft decision Viterbi decoding. This employs 
an iterative calculation of probability density function of path 
metric. 

II. MODEL FOR ANALYSIS 

Let us consider that the model for analysis is consisted 
of 4-state convolutional encoder of rate 1/2 with generator 
polynomial matrix given by [1 + D + D2,1 + D2] and signal set 
mapper of binary phase shift keying(BPSK). In this case, we 
assume that an output vector of the encoder (6i, b2) G {0,1} 
is transmitted as a, BPSK modulated vector u = («1,02) S 
{+1,-1}, where u,; = 1 - 26;, i = 1,2. 

III. PDF OF PATH METRIC AND ERROR STATE 

PROBABILITY 

For soft decision decoding, we assume the memoryless ad- 
ditive white Gaussian noise(AWGN) channel with zero mean 
and variance <TQ- The received vector v = («1,1*2) can be ex- 
pressed by Gaussian random variables. The conditional pdf 
of v assuming u is given by 

f(v\u) = 
2TT<T

2 
exp 

(i>i - tti)2 + (v2 -u2)
2 

2a2 (1) 

The branch metric M(6i,62) is denned by the logarithm of 
(1), and we can express true metric as [1] 

M(bub2) = In f{v\u) = A(invi + u2v2) + B , (2) 

where A and B are independent of the paths, because these 
constants are the same for the paths compared, and path met- 
ric is additive. Thus, we can redefine M(b\, b2) = u\V\ + «2^2 
as the branch metric. 

Let us assume that an input sequence of encoder is all zero, 
that is, 61 = 62 = 0 and MJ = u2 = 1. The trellis dia- 
gram is given by Fig.l where symbols u\ and u2 are both 
one, and branch metrics are shown with x = v\ + v2, y = 
—vi + v2. In this figure, So, Si, S2, and S3 indicate the en- 
coder states. Here, So is a correct state, Si, S2 and S3 are 
error states, and their path metrics are 0, ki, k2, and £3, re- 
spectively. After vi and «2 are received, the path metrics 
become ao = ma,x{x,k2 — x}, at\ = ma.x{—x,k2 + 1}, ot2 = 
ma.x{ki+y, k3—y}, and «3 = max{fci — y,k3+y}, respectively. 
The.conditional pdf of four random variables ao, <*i, «2, and 
0:3 is given by a product oi f(ao,cti\k2), and f(a2,ot3\ki,k3). 

f(ao,ai,a2,a3\ki,k2,k3) = /(ao, ai|fc2)/(a2, Q3\ki, k3)  (3) 

In order to renew the metrics of correct and error states 
by subtracting the metric of correct state per a transition, we 
define difference path metrics z\ = ai — ao, 22 — <*2 — ao, and 
z3 = a3 — ao, respectively. The conditional pdf of z\, z2, and 
z3 is obtain by convolutional integral of (3) to eliminate ao- 

f(zi,z2,z3\ki,k2,k3) 

/(a0, z\ + a0, z2 + a0, z3 + a0\ki,k2,k3)dao(4:) 

The pdf of zi, z2, and Z3 after j transitions is given by 

fU)(zuz2,z3) 

lf{zuz2,z3\ki,k2,k3)f
U)(k1,k2,k3)dkidk2dk3.(5) 

-f J —a 

# 
The initial path metric K%,K2,K3 is constant, and its pdf is 
represented by /(1)(fci, k2,k3) = S(ki - m,k2 - K2,k3 - K3). 

We begin to calculate the pdf /(1)(zi, z2, z3). Then, the resul- 
tant zi, Z2, and Z3 become the input to the next trellis, which 
it rewritten by hi, k2, and £3 in (5), since we calculate itera- 
tively. Finally, the pdf in a stationary condition /(zi,Z2,z3) 
is obtained by iterative calculation of (5), that is, 

/(zi,22,z3)= lim fu'(z1,z2,z3) (6) 

Error state probability is defined as a probability that metric 
of one or more error states are larger than metric of the correct 
state. In Fig.l, So is a correct state, Si, S2, and S3 are error 
states. In this case, error state probability is given by 

/0        p0        rO 

/        /      f(z1,Z2,z3)dz1dz2dz3.   (7) 
-OO   J — OO   J —CO 

CX3 (z3 =cc3- 

Fig. 1: Redefined trellis diagram 
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Abstract — The storage complexity of bounded dis- 
tance decoding for binary-channel convolutional codes 
over the BSC is « (21_K- l)_t, where up to t errors are 
corrected. We show that the path storage becomes 
» 22Rt over the AWGN channel, which is significantly 
lower. Thus Gaussian convolutional coding is not only 
3 dB more energy efficient, but its decoding is simpler 
as well. 

Earlier it has been demonstrated [1, 2] that breadth-first 
binary convolutional decoders that correct up to t errors over 
a BSC must store a number of trellis paths that grows expo- 
nentially with t according to 

M«(21-fl-l)- (1) 

in which M is the number of paths and R is the code rate 
in data bits per channel use. We derive the exponential law 
that applies when the channel is instead an additive white 
Gaussian noise (AWGN) one. A more attractive law replaces 
(1), namely 

M«22Rt. (2) 

We assume that the breadth-first decoder is the M-algorithm, 
so that the M in (1) becomes the M needed in that algorithm, 
but the wider meaning of M is that of worst-case storage. A 
bounded distance decoder (BDD) is one for which a distance 
criterion A, or alternately an error correction criterion t, is 
specified: The BDD must correct any channel disturbance 
< A or t. We assume further that a certain stage far into the 
trellis has been reached and that paths have been deleted if 
they merge state or exceed the BDD criterion. 

Let x[l],x[2],..., x[n] £ {±1}, be a word of an ordi- 
nary convolutional code of rate R = (log2/3)/c, where 0 
is the branching factor at each trellis node and there are 
c binary symbols on each trellis branch. When two code- 
words lie at Hamming distance d2

H from each other, they lie 
at Euclidean distance D% = 4(1% E, under binary antipo- 
dal transmission. Normalized to the data bit rate, this is 
d\ = Ad2

HE,/2Eb = 2Rd2
H. Here Eb is the energy per data 

bit and E3 is the energy per channel bit. A bounded distance 
decoder working on these codewords guarantees correction of 
noises of normalized Euclidean square size 82 up to a limit 

4,/ree/4 = Rd2
HJreJ2. (3) 

The first event error probability is 

Pc < Pr{\ v l> A} = Q(5^4Eb/N„) < (1/2) e-
2S*Eb/N° 

For AWGN channel convolutional BDD decoding at simple 
rates such as 1/2 or 1/3, the required survivor number M pre- 
cisely doubles with each increase by 1/2 in the normed square 

distance criterion S2. This phenomenon has been observed in 
various forms during the 1990s. The law holds for S2 up to 
the Rd2

Hjrcj2 limit in (3). The needed M in terms of d\ is 

therefore M = 2[Rd"i. 
The general law for a BDD at 6 in AWGN is actually 

M = /3L2ä2/log2/3J_ 
(4) 

With d2
H set to 2t, the asymptotic form of this in t is M w 

22Rt. The source of law (4) is the fact that the words of 
a convolutional code occupy the vertices of a hypercube in 
signal space. The worst case storage of a breadth-first BDD 
decoder at 5 is the largest number of signal points that can 
be enclosed by a ball in signal space with radius S. Let a Äc- 
dimensional hypercube be made up from the symbols in the 
last K stages of the code trellis. The normalized Euclidean 
distance to any cube vertex is y/KcR/2\ the cube comprises 

ßK code points. Thus a ^/KcR/2-ba.W encloses at least these 
many. From these facts, (4) is at least an underbound. For 
any sensible code, it turns out that the ball will not enclose 
more points than (4): For this to happen, all codewords must 
take the same symbol value in one or more positions. 

From the BSC law (1) we can form an approximate ratio 
for the survivors needed to make full use of a d\ over the BSC, 
compared to full use of the same d2

H over the AWGN channel, 
where full use means that [(d2

H - 1)/2J or fewer errors are 
guaranteed never to occur. It is 

1 

_2RV2l~R- 1 
(5) 

Thus the AWGN improvement in complexity grows exponen- 
tially with free distance. For example, at rate 1/2 a code with 
free distance 12 needs (1.099)12 = 3.1 times more survivor 
storage if works with a BSC rather than an AWGN model. 
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Abstract — We clarify the relation between trellis 
degeneration (TDG) and symbol reliability estimation 
using the bidirectional Viterbi algorithm (BIVA) for 
the case of Quick Look-in (QLI) codes. 

I. INTRODUCTION 

Based on an observation that the syndrome sequence cor- 
responding to a received sequence z contains many segments 
with value 0 (i.e., zero-strings) under high SNR conditions, 
TDG can be realized for a syndrome trellis. Here, "degener- 
ation" means to identify the error-free interval for each zero- 
string and to exclude such intervals from the normal decoding. 
In connection with this fact, we showed that TDG is also pos- 
sible for a code trellis, if Scarce State Transition (SST) Viterbi 
decoding is applied to QLI codes. It is shown that the hard- 
decision input to the main decoder in an SST Viterbi decoder 
is just the syndrome in the case of QLI codes. This fact en- 
ables the code trellis corresponding to the main decoder to be 
degenerated. On the other hand, it is known that symbol re- 
liability values are obtained by computing a Viterbi algorithm 
(VA) in two directions over a block of coded symbols. We call 
this scheme the Soft-BIVA (this is equivalent to the Max-Log- 
MAP). Then we showed that in the case of QLI codes, the 
symbol reliability values are obtained by applying the BIVA 
either to the code trellis for the main decoder or to the corre- 
sponding syndrome trellis [1]. As a result, a new problem of 
finding the relation between TDG and symbol reliability esti- 
mation using the Soft-BIVA has become crucial. In this paper, 
we show that the TDG process can be effectively utilized for 
symbol reliability estimation. 

II. TDG AND SYMBOL RELIABILITY ESTIMATION (1) 

In the TDG process for a zero-string [t, t'], forward de- 
coding is performed from each state at level t and backward 
decoding is performed from each state at level t'. Assume 
that TDG is successful and (rhe sub-interval [r, r'\ in which the 
maximum-likelihood (ML) path surely passes through state (0) 
(the all-zero state) has been identified. Then the ML bits (i.e., 
information bits on the ML path) corresponding to [r, r'\ can 
be regarded as early detected information bits in the sense of 
Frey and Kschischang [2]. Note that if the degenerated sec- 
tions are cut out of the original trellis, the remaining trellis 
sections are divided into sub-trellises terminated with state 
(0) at both ends. In this case, the reliability values for the 
ML bits which are contained in the part of a sub-trellis not 
affected by the TDG process are obtained by applying the 
Soft-BIVA to the sub-trellis under consideration. 

III. TDG AND SYMBOL RELIABILITY ESTIMATION (2) 

Next, consider an interval [t, t'] affected by the TDG pro- 
cess. Note that the TDG process can be viewed as trellis inte- 
gration. Hence, it is reasonable to evaluate the reliability value 
not for each ML bit but for the integrated ML branch. Assume 
that TDG is successful and the degenerated sub-interval [r, r'\ 
has been identified. Let Xm(state io —► state jo) be the inte- 
grated ML branch for [t, t']. Then the reliability value for X^ 
can be evaluated by 

A'=lnH2,Xr+JC+X2*)]- max \n[ß(z,Xs -\-Xrj +x:)i 
(i) 

where Xmi is any integrated branch other than X^, and 
X*(Xs) and X2*(X4*) are the best paths linked with X„(Xm>) 
obtained by performing forward decoding and backward de- 
coding, respectively. Since all the integrated branches pass 
through state (0) in [r, r'], A* can be reduced to 

min{(a;0 + 7- 0)-max(aj +7.'o), (7o'JO +ßio)-max(7o'j +ßj)}, 

(2) 
where cti and ß} denote the metrics of the best paths for state 
i at level t and state j at level t' obtained using forward de- 
coding and backward decoding, respectively, and 7,'0 and 7o'j 
denote the metrics for the path segments i —► (0)(a< T) and 
(0)(at T') —► j, respectively. Note that 7,'0 and 70'j are ob- 
tained when the TDG process for [t, t1] terminates. Also, at 

and ßj are obtained when the Soft-BIVA is applied to each 
sub-trellis after TDG. Hence, no extra computations are re- 
quired for calculating the reliability value A* for X^- 

IV. RELATIONSHIP BETWEEN RELIABILITY VALUES 

FOR AN ML BRANCH AND ML BITS 

Let 1^ be the integrated ML branch for [t, t']. Let k be any 
level between t and t'. Also, let xa be the path with Uk ^ u*k 

which attains the reliability value A£ for the ML bit v.%. Note 
that the restriction of xa to [t, t'] does not necessarily belong 
to a class of integrated branches for [t, t']. Then let st and 
st' be the states which x" passes through at levels t and <', 
respectively. Denote by Xa the best path connecting st and 
sti. In this case, if Xa ^ X„ holds, then A£ is lower-bounded 
by the reliability value A* for Xm- 
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Abstract — A good assignment of binary codewords 
to cells is necessary for a scalar quantizer to be robust 
to channel errors. We investigate a redundant assign- 
ment method that uses Snake-in-the-Box codes, which 
have a desirable distance-preserving property. 

I. INTRODUCTION AND SYSTEM DESCRIPTION 

An index assignment (IA) associates length n binary code- 
words u>i,..., WN to the cells, Si,..., SN of a scalar quan- 
tizer. A source sample x is encoded into the u>, corresponding 
to the cell Si in which x lies; w, is sent over a binary sym- 
metric channel (BSC) with error probability e; and a decoder 
produces iJ{X|r} as the reproduction x of x, where r is the 
BSC output word. 

This paper considers redundant IA's, i.e. n > log2 N. One 
approach is to use a set of codewords with as large minimum 
distance (dmin) as possible, so that some channel errors can be 
corrected, and then to assign codewords to cells to minimize 
the effects of uncorrectable error patterns, cf. [1]. Another 
approach, pursued here, is to allow dmin = 1, but use IA's 
that mitigate rather than correct channel errors, i.e. a few 
such errors should cause only a small error in x. Snake-in- 
the-box (SIB) codes (also called circuit codes) can be used to 
make IA's of this type. 

An (n, s, N) SIB code has the distance preserving proper- 
ties that <fif(tci,Wi+i) = 1, and dnivijivj) < s => \i — j\ = 
dH(wi,Wj), where djj is Hamming distance, and s > 2 is an 
integer called the spread of the code. This allows it to mitigate 
L^^-J errors. SIB codes were first introduced as robust index 
assignments for A/D converters [2]. Over the years, the family 
of known SIB codes has gradually enlarged, cf. [3]. However, 
they have never been studied as general purpose index assign- 
ments for noisy channel quantizers. This paper presents the 
initial results of such a study. 

II. COMPARING SIB CODES TO OTHER APPROACHES 

Representative results are given in Fig. 1, which for an N = 32 
level quantizer, compares the source SNR (SSNR) due to an 
(8,3,32) SIB index assignment to that due to other IA's, all 
computed using conventional means. The source sample is 
Gaussian, and the quantizer is optimized for it, assuming no 
channel errors. Because the various IA's cannot all be chosen 
to have the same codelengths n, to make fair comparisons, 
instead of fixing the BSC error probability e, we fix an under- 
lying analog channel (AWGN or AWGN plus Rayleigh fad- 
ing) and use the e that results from BPSK modulation. The 
channels are parameterized by their CSNR, defined as Es/No, 
where Es is the average received energy per data sample, and 
No/2 is the PSD of the white Gaussian noise. 

In addition, the figure shows the SSNR resulting from us- 
ing the [9,5] shortened Hamming code, which is an interesting 

comparison because it corrects single errors, whereas spread-3 
SIB codes mitigate single errors. Also, shown is the SSNR due 
to the nonredundant natural binary code (NBC) index assign- 
ment, and that due to the NBC index assignment followed by 
a Hamming code, whose input length is not constrained to 
match the output length of the NBC. Note that the latter is 
a tandem system rather than an index assignment. (For the 
Rayleigh channel, only the [3,1] Hamming code results are 
shown, since they turned out to be best.) 

One may see from Fig. 1 that the SIB index assignment 
is better than all other strategies, except at high CSNR for 
the AWGN channel, where the tandem Hamming codes are a 
little better. In our view, the SIB approach represents the bet- 
ter overall strategy because it is significantly better at small 
CSNR, while only slightly worse at high CSNR. In particu- 
lar, as CSNR decreases, the channel error mitigation strategy 
leads to a more graceful degradation of SSNR than does the 
channel error avoidance strategy. 

III. CONCLUSION 

SIB codes have much potential to be used as an IA for joint 
source-channel coding.    Their distance-preserving property 
protects against channel induced distortion, in a "bend-but- 
don't-break" fashion. 
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Fig. 1: Gaussian Source, 32 level SQ. 
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I. INTRODUCTION 

Consider a system designed for conveying a rf-dimensional ran- 
dom source vector, X. A sample, x, from the source is fed to 
the encoder e, producing an index i = e(x) € {0,... ; N — 1}, 
where N = 2L. The L bits of i are then fed to a binary sym- 
metric channel (BSC), resulting in the output j producing a 
codevector yj from the decoder codebook {yj}^1. We as- 
sume that the BSC corresponds to a Gaussian channel with 
noise variance a2 and with binary input in {±1}. 

At the transmitter, the index i also chooses a codevector Zi 
from the encoder codebook, {zi}]^1, and the residual vector 
e = x — zi is then formed. This vector is scaled by the con- 
stant a and transmitted over a discrete-time analog-amplitude 
Gaussian channel. (The scaling constant a regulates the 
transmission power.) The received vector u = a ■ e + w, 
where w is zero-mean Gaussian with independent components 
of variance cr2, is multiplied by a re-scaling constant ß and 
then added to the codevector yj, resulting in an estimate of 
the transmitted source vector according to 

X = /?U + Vj. 

Hence, the reproduction x is based on information transmitted 
both via a digital and an analog channel. This is the key prin- 
ciple behind the work of this paper. Related previous work 
can be found in, e.g., [1, 2]. 

II. SYSTEM DESIGN AND PERFORMANCE 

We will now present optimality criteria for the described HDA 
system, resulting in a design algorithm striving to minimize 
the distortion D = E\\X. — X||2 under a constraint on the 
transmitted power Pa per channel use in the analog channel. 
More precisely, the aim of the design is to find e(x), {ZJ}, {y,} 
and ß such that D is minimized, under the constraint that a 
is chosen such that Pa = 1 is satisfied at all times. 

Optimality for a fixed encoder. Assume that e(x) is known 
and fixed, and define 

JV-l 

x(j) ^ E[X\J = j], fkj ±J2 Pr(7 = i\J = j) Pr(J = k\I = i) 
i=0 

and the matrices 

Y 4 [yo ... y^],  X 4 [i(0) • • • x(JV-l)], and (F)kj = fkj. 

Then the optimal encoder and decoder codebooks, {zi} and 
{yj}, can be jointly determined, by solving the equation 

Y.(IJV-7F) = (1-7)X, 

where IJV is the N x N unity matrix and 7 = a/3, and then 
letting Zi = rriy(i) = E[yj\I = i]. Furthermore, the optimal ß 
can be found (independently) as ß = Q

-1
/(1 + cr2). 

'The work of M. Skoglund was supported in part by the Swedish 
Research Council for Engineering Sciences. 

2The work of F. Alajaji was supported in part by the Natural 
Sciences and Engineering Research Council of Canada 

Optimality for a fixed decoder codebook. Now assume that 
{vj} is giyen) that {zt} is chosen as Zi = rrij,(i), and that 
ß = a-1/(l + cr2), as above. The optimal encoder then is 

e(x) = arg min {(1 -7) • \\x - my{l)\\2 + gt}, 

where gi = U[||yj||2 |I = i] - ||rrij,(i)||2. Based on these 
results, the system can be (locally) optimized at an assumed 
channel SNR, 1/er2, using an iterative approach similar to the 
well-known generalized Lloyd algorithm for VQ design. 

Motivated by a broadcast scenario, we illustrate below the 
performance (signal-to-distortion ratio versus SNR) of em- 
ploying a fixed encoder and an adaptive decoder (adapts to a 
varying SNR), denoted by FE.AD where * is the design SNR 
of the encoder. We also illustrate some benchmark schemes. 
All systems use a rate of two channel uses per source sample. 
The source is Gauss-Markov with correlation 0.9. 
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Dashed lines from above at SNR = 15 dB: The Shannon 
bound (distortion-rate function evaluated at channel capac- 
ity); a purely analog system (transmits each source sample 
twice, minimum mean-square error receiver); a purely digital 
tandem system (source-optimized VQ with d = 8 and L = 8, 
rate-1/2 Turbo code with (n, k) = (2048, i024) and genera- 
tors (37,21)). Solid lines from above at SNR = 15 dB: A HDA 
system with source-optimized VQ, and; HDA-FE» AD systems 
with * = 10, 5, 0 dB. All HDA systems use d = 8 and L = 8. 

We observe that the HDA systems outperform the tandem 
system and the analog system (at high SNRs). In particu- 
lar we note the graceful improvement of the HDA systems, as 
opposed to the leveling-off in performance of the tandem sys- 
tem. We also observe that the performance can be improved 
at low SNRs using the optimization procedure. 
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Abstract — In [1], it was proved that distortion due 
to a binary symmetric channel is minimized by a lin- 
ear labelling. In this paper, we show how to obtain 
an asymptotically optimal linear labelling which also 
minimizes the source distortion for Gaussian sources. 
This linear labelling is based oh the notion of com- 
ponent diversity which can be obtained by algebraic 
constructions derived from Number Theory [3]. 

I. PROBLEM STATEMENT 

In this work, we present, an approach for Joint Source- 
Channel Coding based on the minimisation of, first, channel 
distortion and then, source distortion. This problem has been 
traditionnally treated from the source coding point of view [2], 
First, the source codebook is matched to the source statistics 
in order to minimize distortion due to the source, and then, 
the labelling, i.e. the mapping between the source codebook 
and the channel codebook, is optimized in order to minimize 
distortion due to the channel. Our approach follows the chan- 
nel point of view. We propose to optimize, first, the channel 
distortion and then, the source distortion. 

In [1], it has been proved that, on binary symmetric chan- 
nels, the channel distortion is minimized if the vector quan- 
tizer can be expressed as a linear transform of a hypercube. 
We propose to extend this approach by finding a set of linear 
transforms which minimizes the channel distortion,along with 
the distortion of Gaussian sources. 

II. LINEAR LABELLING TO MINIMIZE CHANNEL 

DISTORTION 

By constraining the labelling to be linear, we solved the 
problem of minimisation of the channel distortion. Now, we 
are concerned with the problem of source distortion minimisa- 
tion. We focus our investigation to the case of a memoryless 
zero-mean Gaussian source with variance a\. With our as- 
sumptions, one can express points of the source codebook if 
as a linear function of the points of the hypercube 

with G being a matrix representing the linear transform. 
G   = [gi,j] has d rows and n columns. 

III. MINIMISATION OF SOURCE DISTORTION (GAUSSIAN 

SOURCES) 

By looking at the expression of the components of if, 

-EU 9i,jhj   i = l,2„. 

we can see that, in order to mimic a memoryless Gaussian 
source, if must have the same distribution. To obtain this 
distribution, we need to apply the central limit theorem to 

the independent random variables hj. In order to insure the 
Gaussianity of if, we need that all components gi,jhj of the 
summation be nonzero, for any vector h . 

This property can be obtained with "maximum component 
diversity" constellations [3]. Let M be the n x n generator 
matrix of a "maximum component diversity" constellation. 
Then we can obtain the previous property by taking G equal 
to any set of d rows of M. 

We can show how to construct full diversity rotations of 
dimension n = 2m, m being a positive integer. As an example, 
we construct a full diversity rotation matrix with m — 2. In 
this case, we obtain 

M = 
V2 

U>3 

Wl5 

W9 

W21 

Wl 

W13 

Wl5 

W3 

W23 

Wll 

W21 

Wl7 

Wl3 

W9 

with 

Uli = COS {2(m+2)     l) 
v2(m+2) 

Assume that we need a quantizer of dimension, let us say, 
2. Take, as an example the first and third line of M to obtain 
the codebook represented below, 

Z-Arerebnal veclor quantai 

[1] 

[2] 

[3] 
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Abstract — A transmitted signal is decomposed 
into two parts which are then encoded using fixed- 
and variable-length coding, respectively. Com- 
pared to conventional variable-length codewords 
with synchronization-symbols or fixed-length cod- 
ing strategies, the proposed method enjoys a better 
distortion-rate performance on particular channels. 

I. JOINT FIXED- AND VARIABLE-LENGTH CODING 

A fixed-length coding strategy is optimal for a uniformly 
distributed (flat) source probability density function (pdf). 
For a zero-mean memoryless Gaussian source, it is possible to 
find an approximately flat region centered around the origin 
of its pdf. This region can be encoded using fixed-length code- 
words while slightly losing from compression efficiency. In the 
mean time, it is still possible to encode the tail of this distri- 
bution by a variable-length coding scheme. A typical system 
is shown below. 

-H 

Varlabfe-i-ate Quantizer 

Flnd-rate Quaatiier 

Or 

&^£ rsp-t 

In this system, when a signal value, x, saturates in the 
fixed-length coded quantizer, Qf, x is subtracted from its 
fixed-length quantized version, xj and the switch between 
fixed and variable-length quantizers is closed. The difference 
is then passed to the residual stage, where this saturation off- 
set, x, is quantized by variable-length quantizer, Qv, and the 
quantized residue xv is encoded using a variable-length code. 
After transmission of x/ and xv, the receiver checks whether a 
signal value is saturated or not, using the received fixed-length 
coded part, x/, and if so, it will decode and add the received 
quantized difference, xv, on top of if. 

S-parameter gives the width of the reserved non-saturating 
region of the signal pdf and R/ixed denotes the bit rate re- 
served for the fixed-length quantizer, Q/, from the overall 
total rate, Rtotai- For a given channel and Rtotai value, our 
design goal is to find the optimal (S, R/ixcd) pair so that the 
distortion of the reconstructed signal at the receiver is mini- 
mized. Since, in noisy channels, an analytical distortion anal- 
ysis for variable-length coded data is not possible, the "best" 
(5, Rfixed) pair, rather than the optimal, is found by the using 
operational rate-distortion characteristics. 

II. SIMULATIONS 

The fixed-length quantizer utilized in the simulations is a 
derivative of Lloyd-Max quantizer (LMQ) [1]. The variable- 
length coded or saturated component is quantized using an 
ECSQ [2], whose output indices are entropy coded using Huff- 
man coding. This variable-length bit-stream is protected from 
error propagation by carving it up into slices and adding end- 
of-slice (EOS) markers. The simulated channel is taken to be 
a simple binary symmetric channel (BSC) and simulations are 
conducted for different bit error-rates (BER). 
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SNR vs. BER : Gaussian memoryless source for fixed- 
length, variable-length and joint fixed and variable-length cod- 
ing (solid line) for (left-to-right) Riotai = 3, 4, 5 and 6 b/p. 

III. CONCLUSION 

For some BER range (between 10~4 and error-free), sepa- 
rating a symbol into two (saturating and non-saturating) parts 
and encoding these parts appropriately, is advantageous com- 
pared to variable- or fixed-length-only strategies. The most 
attractive property of this approach is its capability for di- 
viding any source into subsources with different error immu- 
nities. Hence, unequal channel error protection is possible in 
the symbol level for any source. 
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Abstract — In next generation wireless commu- 
nication systems, packet-oriented data transmission 
will be implemented in addition to standard mobile 
telephony. Designing efficient schemes for packet 
transmission on top of an existing connection-oriented 
CDMA system will be a challenge for system design- 
ers. In this work, we take an information-theoretic 
view of some simple protocols for reliable packet com- 
munication based on "hybrid ARQ". 

In order to support new sevices (e.g., wireless mobile ac- 
cess to the Internet), next generation wireless communication 
systems will implement packet-oriented data transmission in 
addition to standard mobile telephony. This implies bursty 
sporadic communication from a large population of users, that 
may require instantaneous large data rates and very small er- 
ror probabilities for a short time. On the other hand, next 
generation systems will be based mainly on CDMA, which is 
suited to continuous-mode transmission and (at least in its 
current conventional implementation [1]) it requires closed- 
loop power control. Then, a challange for future system de- 
signers is to implement efficient schemes for packet transmis- 
sion on top of an existing connection-oriented CDMA system, 
preserving the uncoordinated access flexibility of the latter. In 
essence, next generation wireless systems should be regarded 
as "composite" systems where several subsystems with very 
different power, rate, reliability and delay constraints will co- 
exist, sharing the same bandwidth. 

Motivated by the above consideration, we take an 
information-theoretic view of some simple protocols for re- 
liable packet communication based on "hybrid ARQ", i.e., 
on combining channel coding and Automatic Retransmission 
reQuest (ARQ). We model low-power low-rate continuous- 
mode traffic as background white Gaussian noise for the high- 
rate high-power bursty users. Random user activity prevents 
closed-loop power control and user coordination. Then, we 
assume that users transmit their signal bursts at very high 
instantaneous power and in a completely uncoordinated way. 
The receiver is formed by a bank of conventional single-user 
decoders, and does not implement joint decoding. We refer to 
this model as the Gaussian collision channel [3]. The trans- 
mission of each user is governed by an hybrid ARQ protocol, 
designed in order to achieve very low error probability. 

We consider a slotted multiple access Gaussian channel 
with fading. We study the system performance in terms of 
throughput (total bit/s/Hz) and average delay for three sim- 
ple idealized hybrid ARQ protocols: a coded version of Aloha, 
a repetition scheme with maximal-ratio packet combining and 
an incremental redundancy scheme with general coding. By 
applying the renewal-reward thereom [4], we obtain a closed- 
form throughput formula under a delay constraint (time-out) 
and code rate constraint. Since we consider random coding 
and typical set decoding, our results are independent of the 

particular coding/decoding technique and should be regarded 
as a limit in the information theoretic sense. Then, we study 
asymptotic behaviors with respect to various system parame- 
ters. The system throughput is compared to that of a conven- 
tional CDMA with conventional decoding. Interestingly, the 
ARQ system is not interference-limited even if no multiuser 
detection or joint decoding is used (arbitrarily high through- 
put can be obtained by increasing the user transmit power), 
as opposed to conventional CDMA. 

As a byproduct of this analysis, we provide a stronger op- 
erational meaning to the information outage probability of 
block-fading channels and we obtain the closed form prob- 
ability distribution of signal-to-interference plus noise ratio 
(SINR) with Rayleigh fading and a Poisson-distributed num- 
ber of interferers, extending the result of [5]. 

In the full paper [2], we give all the details of the proofs 
and a wide range of numerical results illustrating the perfor- 
mances of the examined ARQ protocols, as well as a com- 
parison with conventional CDMA (another form of "collision 
channel") which shows that especially for high SNR the slot- 
ted ARQ system provides great potential advantages. In fact, 
it is well-known that conventional CDMA is interference lim- 
ited while the slotted ARQ system is not. 

As a conclusion, we can say that as far as packed data 
communication is concerned, it is more useful to spend the 
feedback channel to provide ACK/NACK for the ARQ proto- 
col rather than to provide power control commands. 
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Abstract — 
We establish a region of reliably received rates for 

time-slotted ALOHA systems. We combine concepts 
from multiple-access channels and broadcast channels 
to determine a capacity region for a single transmis- 
sion of a packet (which is long enough to achieve ca- 
pacity) in an ALOHA system and determine capacity- 
achieving strategies. 

I. INTRODUCTION 

The flexibility of ALOHA systems, which were first proposed 
in 1970 by Abramson, makes them an attractive option for 
wireless data applications. In the original ALOHA system, if 
a collision among packets occurs at the receiver, those packets 
are discarded and the users retransmit those packets. Several 
coding schemes have been proposed for ALOHA packets to 
allow at least part of the data in the packets to weather out 
one or several collisions. Depending on the presence or absence 
of other users, each user will be able to achieve different rates. 
Since some transmitted bits will be lost owing to collisions, we 
consider a maximum reliably received rate region rather than 
maximum reliably transmitted rate region ([4]). 

II. SINGLE PACKET SYSTEM. 

We consider a time-slotted ALOHA system with two users. 
Users, at each time slot, determine according to a Bernoulli 
process whether to transmit. A packet occupies one time slot, 
which is long enough so that Shannon capacity is approxi- 
mately achieved over that time slot (i.e. the slot duration 
is long enough so that Pe is approximately zero when trans- 
mitting at the Shannon rate). The users share an AWGN 
channel with noise variance a2

N. Users 1 and 2 have average 
power constraints a\ and erf. 

We combine concepts from rate splitting for multiple-access 
communications ([5]) and broadcast channels ([1], [2]). The 
rationale behind our approach springs from the following ob- 
servation. In multi-access channels, rate splitting achieves ca- 
pacity by creating virtual users and decoding all users us- 
ing interference cancellation. In a degraded AWGN broadcast 
channel, the low resolution code is decoded by considering 
the high resolution code as noise. Hence, there is similar- 
ity between the decoding mechanism for achieving capacity 
in multiple-access and in degraded broadcast channels ([3]). 
In the system we consider, a user codes to transmit over two 
possible channels- a channel with the other user present and 
a channel without the other user. 

We begin by presenting a coding scheme. As for rate split- 
ting, we divide user 1 into two users, U[ and U", which send 
independent WGN signals with variance ßa\ and (1 — ß)a\, 
respectively. User 2 maps to a single user, U-2. As in broad- 
cast channels, each of the users we constructed sends two mes- 
sages on two separate signals. U[ sends signal LR[ and HR[, 

xThis work was supported by Grant NSF Grant CCR 99-79381. 
2ONR Young Investigator award N00014-99-1-0578 and ONR 

award N00014-99-1-0698. 

which are independent WGN signals with variance a\ßa\ and 
(1 — a'i)ßal, respectively. U" sends signal LR" and HR", 
which are independent WGN signals with variance a"(\ — ß)a2 

and (1 — a")(1 — ß)af, respectively. U2 sends signal LRi and 
HR2, which are independent WGN signals with variance a.2C*\ 
and (1 — 02)172, respectively. Note that all as and ß are in 
[0,1]. We decode signals (performing interference cancella- 
tion) in the order: first LR[, second LR2, third LR", fourth 
HR", fifth HR2 and sixth HR[. Our arguments can easily be 
extended to more than two users. Our rate region is defined 
as the achievable rates for the cases wher we have both users, 
user 1 only, user 2 only, and no users. Our coding scheme 
achieves the rate region. 

III. EXPECTED RATE. 

We may select the as and ßs to maximize the expected 
achievable rate, when the users' energies and probabilities of 
transmission are fixed. An interesting special case arises when 
both users transmit with equal probability. Our results show 
that, regardless of whether we operate at high SNR or low 
SNR, when the users have SNRs which are comparable, then 
we do not need to split the users between HR and LR. When 
we have highly asymmetrical SNRs, then for low enough trans- 
mission probability, such splitting is required to achieve the 
capacity region. 

IV. CONCLUSIONS. 
We have determined a capacity region (where capacity re- 
gion refers to the rates achievable under the four scenarios 
described above) for an ALOHA system in the case of a single 
time slot with very long length, such that we can achieve ca- 
pacity over a single packet transmission. We may extend our 
results to several time slots. 

Instead of considering a single transmission, we can con- 
sider several transmissions. In the limit as the number of 
transmissions is arbitrarily large, preliminary results show 
that our system is stable: if the average rate arriving to the 
system is below the expected rate, that rate can be reliably 
received. Another interesting area of further research is maxi- 
mizing the expected rate when the average power (determined 
by the product of the average per-time slot power given by a2 

and the probability of transmission) is fixed. 
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Abstract — An equation is derived whose solution(s) 
yield the number of transmitting mobiles in the equi- 
librium state(s) for a DS-CDMA network employing 
code combining(CC). Numerical results for a simple 
form of CC show that while there may exist multiple 
equilibria, these are typically clustered together, and 
do not cause a significant degradation in throughput. 
The results also show that CC is capable of eliminat- 
ing bistability, and of having a single equilibrium state 
at which the throughput is slightly better than that 
at the desirable equilibrium state for the correspond- 
ing DS-CDMA network employing automatic repeat 
request. 

I. INTRODUCTION 

Code combining is known to enhance throughput over point- 
to-point links. A receiver operating under code combining 
does not discard information from a transmission received in 
error; instead it requests an additional transmission and com- 
bines information from the new transmission with that from 
the original one with the goal of increasing the probability of 
successful reception. We investigate the effect of using code 
combining as the link layer protocol on the stability of a direct- 
sequence code division multiple access (DS-CDMA) network. 
Details may be found in [1]. 

II. MODEL 

Consider a DS-CDMA packet data network consisting of a 
single base station and M mobiles. Each mobile transmits 
fixed length packets with a spreading gain of N chips per bit. 
The time-axis is divided into contiguous equal-length slots, 
each of which has a duration equal to the time required to 
transmit a single packet. Mobiles initiate transmissions only 
at the beginning of time slots. The spreading code used by a 
mobile is assumed to change from slot to slot (e.g., IS-95), so 
that the outcomes of the transmission attempts of the active 
mobiles are assumed to be mutually independent, both within 
a slot, and across time slots. Perfect power control is assumed. 

Each mobile has a buffer of size one. If a mobile has a 
packet in its buffer, it is considered "active"; otherwise, it 
is "idle". In any given time slot, all active mobiles trans- 
mit, and each idle mobile generates a packet with probability 
A. The receivers at the base station are assumed to be of 
the conventional matched filter type. Neglecting the effect of 
thermal noise, the bit-energy-to-interference density ratio at 
the receiver for any given mobile becomes Sb/IoU) = prryi 
where j is the number of active mobiles. The probability of 
a successful packet transmission by an active mobile is a non- 
decreasing function of the Sb/Io at the receiver throughout 
the packet transmission time. 

III. EQUILIBRIUM STATES 

We assume that there is some maximum number E of trans- 
missions attempts that may be made for a given data packet. 
A packet is discarded after E attempts; higher layer protocols 
will treat it as lost, and take the appropriate action. Define 
the random sequence S — {Sn;n 6 Z+}, where Sn = (xn,hn), 
xn = (xn,xn,... ,xE), and hn = {hi,hi,... ,hE). Here x3

n 

€ [0,1] is that fraction of all mobiles which, in slot n, are mak- 
ing their jth attempt at transmitting some data packet, and 
h3

n = 2~2f=i a;*_j+i is that fraction of all mobiles that are ac- 
tive in slot n — j + 1. The vector hn represents the interference 
history of active mobiles. Call S„ the state of the network at 
time n, n 6 Z+. It follows from the modeling assumptions in 
Section II that S forms a Markov chain. 

Denote a typical state of the network by a, where s = 
(x,h), x = {x\...,xE), and h = (h\...,hE). Write x = 
x1 + ■ ■ ■ + xB for the total fraction of mobiles that are active. 
Let p'(h) denote the probability of successful reception for 
packets being transmitted for the jth time when the network 
is in state s = (x, h). 

Equilibrium states are those states a for which E[Sn+i \ 
Sn = s] = 3. Solving this system of equations yields h3 = x, 

x3  = A(l-i)ni=,(l-P*(/»)), j = l-2,...,£, and x = 

A(i-*)(i+£f=2nU(i-p*w)). 
Thus—although the state space is multi-dimensional—for 

a given arrival rate A, the equilibrium states s are uniquely 
determined by the fraction x of mobiles that are active in 
those states. Further, given A, the values of x corresponding 
to the equilibrium states are given by the solutions of the 
equation A 

a-r)(i+^:f=2niz\{i-Pkux,x *»)) 
, 0 <x < 1. 

'This work was supported in part by the U.S. Army Research 
Office under grants DAAH04-96-1-0377 and DAAH04-96-1-0177. 

As the number of mobiles and the spreading gain tend to 
infinity (with their ratio held constant), the evolution of the 
stochastic system, by the law of large numbers, converges to 
a deterministic trajectory. If this deterministic trajectory is 
globally asymptotically stable, then the steady state proba- 
bility distribution of the fraction of mobiles that are active 
converges to a point mass at the unique equilibrium. It is not 
known whether the deterministic system is globally asymp- 
totically stable in general; finding the appropriate Lyapunov 
function remains an open problem. 

IV. NUMERICAL RESULTS 
Numerical results show that the use of CC can eliminate 
the undesired equilibrium state present in conventional DS- 
CDMA networks, thereby significantly improving throughput. 
In cases for which CC has multiple equilibria, the numerical 
results show that these equilibria are typically close together 
and do not significantly degrade throughput. 
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Abstract — We consider a user communicating over 
a flat fading channel. The user wishes to reliably com- 
municate bursty data over this channel while mini- 
mizing both the average power and the average de- 
lay incurred. We formulate a buffer control problem 
which illustrates the trade-off between these quan- 
tities. This model is analyzed using dynamic pro- 
gramming techniques. The asymptotic performance 
is shown and asymptotically optimal buffer control 
policies are given. 

I. INTRODUCTION 

Motivated by wireless communication, channel models where 
the output conditionally depends on a time-varying channel 
state have received much attention. Cases where either the 
transmitter or receiver have access to channel state informa- 
tion (CSI) have been well studied. Using the CSI, the trans- 
mitter can allocate communication resources over time in an 
effort to combat the fading. In this work, we study such re- 
source allocation problems for a single user in a flat fading 
channel when both the transmitter and the receiver have per- 
fect CSI. The goal is to minimize the transmission power re- 
quired to provide the user with an acceptable quality of ser- 
vice. Minimizing power is an important consideration since 
mobile users rely on batteries with limited energy. 

If the user simply required a long term average rate, then 
minimizing the average power needed to communicate reliably 
is equivalent to characterizing the channel's capacity. This 
has been well studied for a large class of fading channels. Ap- 
proaching the capacity of a fading channel, typically requires 
the use of codewords whose length is long enough to average 
over the channel statistics. We consider the situation where in 
addition to an average rate, the user requires a given average 
delay. When delay constraints limit codeword lengths, then 
capacity may not be a useful performance criterion; i.e. one 
can not get an acceptable probability of error at rates near 
capacity while satisfying the delay constraint. This is the 
motivation behind the work on outage capacity and delay- 
limited capacity. We also assume that messages arrive from a 
higher layer protocol in a bursty manner and are placed into 
a transmission buffer. Delay requirements may prevent one 
from removing this burstiness through source coding. 

We consider the following model. Assume that the mes- 
sages are fixed length packets of log M bits which arrive from 
some higher layer application and are placed into a trans- 
mission buffer. Let A„ be the number of packets that ar- 
rive at time n, where {An} is an ergodic Markov chain with 

steady-state average arrival rate Ä. Periodically, the trans- 
mitter removes a packet from the buffer, encodes it into one 
of M codewords of infinite length, and begins transmitting 
the codeword over a fading channel. Assume the channel is a 
complex, additive white Gaussian noise channel with a time- 
varying gain H„ 6 C. The process {Hn} is also modeled as 
an ergodic Markov chain. While transmitting, the transmitter 
can adjust the transmission energy by scaling the input by an 
adjustable gain. This decision is based on the channel state, 
the buffer occupancy and the current source state. Once the 
receiver can decode the message with an acceptable proba- 
bility of error, the transmitter stops transmitting the packet 
and proceeds to the next packet. We formulate a new buffer 
model where the buffer occupancy corresponds to, the amount 
of error exponent required by each packet; this is a variation 
of the model used in [1]. At each time Un, the amount of 
exponent to be transmitted, is chosen. A given choice of Un 

requires P(Hn,Un) average transmission energy. 
We consider the problem of minimizing the average trans- 

mission power subject to a given average delay constraint. Let 
P* (D) be the minimum average power required for the aver- 
age delay to be less that D. We show that P*(-) is always a 
non-increasing convex function. Each point of P* (D) can be 
found by minimizing 

1    m <? 
lim ■iVP(ÄB,(/„)+4 

1This work was supported by the Army Research Office under 
grant DAAG55-97-1-0305. 

for an appropriate choice of ß. Here Sn corresponds to the 
buffer occupancy at time n. This corresponds to solving an 
average cost dynamic programming problem where the cost is 
a weighted sum of the average power and average delay. 

We study the behavior of P* (D) as D —¥ oo. Our approach 
to this problem is similar to the work in [2] on buffer control for 
variable rate lossy compression. The mathematical structure 
underlying these problems has many similarities. Let V(Ä) 
denote the limiting value of P*(D). We characterize V and 
show that P*(D) - V(Ä) = G(l/Z?2). Finally a sequence of 
simple policies is given which exhibit this optimal convergence 
rate. These policies have the characteristic that the transmis- 
sion rate is a function only of the the channel state and in 
which of two regions the current buffer state lies. 

REFERENCES 
[1] E. Telatar and R.G. Gallager, "Combining Queuing Theory 

with Information Theory for Multi-access," IEEE Journal on 
Sei. Areas in Comm., Vol. 13, No. 6, pp. 963-969, Aug. 1995. 

[2] D. Tse, Variable-rate Lossy Compression and its Effects on 
Communication Networks, PhD Thesis, MIT, Cambridge, MA 
02139, Sep. 1994. I 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 
-409- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Capacity of PPM on Gaussian and Webb Channels'1 

Sam Dotinar, Dariush Divsalar, Jon Hamkins, and Fabrizio Pollara 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 

e-mail: jsam, dariush,hamkins, fabrizio}@shannon. jpl .nasa .gov 

Abstract — We compare the capacities of M-ary pulse posi- 
tion modulation (PPM) on Gaussian and Webb channels, which 
are often used to model optical channels with avalanche photo- 

diode (APD) detectors. Both types of channels exhibit the same 
brickwall thresholds on minimum signal-to-noise ratio per infor- 
mation bit (bit-SNR) for different values of M. 

Consider a symmetric channel with input signals x restricted to an 
Af-ary orthogonal constellation (such as PPM) and no restriction on 
the channel outputs y. The maximum mutual information between x 
and y is achieved with an equiprobable distribution on the inputs, and 
the channel capacity can be evaluated as 

M 

C = log2 M - £v|x, log2 J2 
7=1 

P(v|Xj) 

p(v|xi) 
(1) 

where v is any random vector obtained from y via an invertible trans- 
formation. 

For a standard additive white Gaussian noise channel (AWGN-1), 
the components of the channel output vector y, given one of the 
orthogonal inputs Xj, are conditionally independent Gaussian ran- 

dom variables, identically distributed except for yy. y,- is /V(0, a2), 

i j= j, and yj is N(m, a2). The capacity is evaluated from (1), using 
A       / A     

A     2/   2 Vj = yj/a and p = mz/cr . 

M 

C(p) = log2 M - £V|Xj log2 Y^ exP [VP(vj ~ v0]        (2) 
7=1 

A "double" AWGN channel (AWGN-2) adds greater noise to the 
orthogonal component in the direction of the signal.   The compo- 
nents of the channel output y, given one of the orthogonal inputs 
Xj, are conditionally independent Gaussian random variables, iden- 

tically distributed except for yj: yi is N(mo, CTQ), i ^ j, and yj is 

N{m\, a2), with mi > wo and o\ > OQ. The capacity evaluated 
from (1) is 

C(p, y) = log2 M 

M 

- £V|X, log2 J2 exP l/V/öty - vl) + (1 - Y)i.v) - v2)/2\     (3) 
7 = 1 

where the (conditional) statistics of VJ = (yj — mo)/oQ, and hence 

the capacity, depend on two parameters p = (mi — ITIQ) /ai and 
A      o       9 

Y = akla\ < 1. rather than on four parameters mo, CQ, m i, ct\. 
An optical channel with APD detectors can be modeled as a 

"double" Webb channel (Webb-2), plus additional Gaussian ther- 
mal noise [1]. A Webb random variable W(m, a2, S2) = m + wo 
is a scaled-and-translated version of a standardized Webb random 

A 9 9 
variable w = 1^(0, 1, &) having probability density p(w;&A)   = 

/2n 
-S.  For a pure Webb-2 

*This work was funded by the TMOD Technology Program and performed 
at the Jet Propulsion Laboratory, California Institute of Technology under con- 
tract with the National Aeronautics and Space Administration. 

channel, the components of the channel output y, given one of the 
orthogonal inputs Xj, are conditionally independent Webb random 

variables, identically distributed except for yj: yi is W(mQ, O-Q , <5Q), 

; ^ j, and yj is W(m\,o2,82), with m\ > mo, <y\ > OQ, and 
<5i > SQ. The optical APD channel model imposes an additional in- 
terrelationship Y = SQ/S

2
. The capacity is then evaluated from (1) in 

terms of A = S2 — <5? as '\ u0 

C(p,y, A) = log2M 

M  p L/Vivj 
~ £v|x, l0g2 2^ 

VP); T^F) P^ 
y& 

ytip^i-Vp);^)^«;;^) 
(4) 

where vj, p, and y have the same definitions (in terms of the Webb-2 
channel variables) as for the AWGN-2 model. 

We evaluated the A/-dimensional expectations in (2), (3), and 
(4) accurately via Monte Carlo simulation. Some results are plot- 
ted in Fig. 1 for the AWGN-1 and Webb-2 channels for different 
PPM orders M. The abscissa in this figure is a normalized bit-SNR, 

pb = p/(2C). Along each Webb-2 curve, the two independent vari- 
ables held constant are A = 60.8 and py/(l — y) = 17.6, which 
correspond to a representative optical APD problem with r)ns = 38 
detected signal photons per PPM word and an excess noise factor 
F = 2.16. The Webb-2 capacity curves for each M exhibit the 
same brickwall thresholds on minimum p/, as the AWGN-1 capacity 
curves. For different M, these thresholds are offset from each other 
by a factor M/{M — 1), representing the penalty for using orthogonal 
signals instead of a simplex signal set. In the limit as M -> oo, the 
minimum pi, approaches (for both AWGN-1 and Webb-2) the well- 
known bit-SNR threshold of -1.59 dB for a standard AWGN channel 
with no restriction on the channel inputs. 

-   *0 28dB 
40 02 dB 

-1 59 dB 

Simplex-to-Orthogonal 
Penally Factors 

Bit-SNR pb, dB 

Fig. 1: Capacity of M-ary PPM on AWGN-1 and Webb-2 channels. 
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Abstract — The capacity of a wireless link is stud- 
ied when multiple transmit and receive antennas are 
used. Under the assumption of a narrow-band link 
and a rich scattering environment, the propagation 
medium is modeled as a Rayleigh flat fading with a 
good receive diversity. By contrast to the previous 
works, the assumption of decorrelated transmit anten- 
nas is relaxed. This enables a study of some common 
scenarios where the transmit antennas occupy a lim- 
ited volume. For an arbitrary correlation between the 
transmitting antennas, tight capacity bounds are cal- 
culated and an optimal signaling scheme is derived. 

I. INTRODUCTION 

Recently, Foschini et al. studied the capacity of a narrow- 
band wireless link between multiple transmit and receive an- 
tennas and nearly optimal transmission schemes when the 
propagation channel is assumed Rayleigh and flat with i.i.d. 
coefficients [1]. Such a modeling is rather inaccurate when 
multiple transmit antennas occupy a limited volume which is 
situated far away from the receive antennas. The indepen- 
dence condition is relaxed here so that the channels corre- 
sponding to different transmit antennas may exhibit an ar- 
bitrary correlation. A tight lower bound of channel capacity, 
presented in this work, yields an optimal transmission scheme. 
This bound shows that a limited transmit volume is charac- 
terized by a limited capacity; this capacity may be achieved 
with a finite number of transmit antennas when the received 
signal is due to a local scattering in the receiver vicinity. 

II. MAIN RESULTS 

Consider a flat fading channel between m transmitting and 
M receiving antennas such that 

xt=Hst+nt,        t€R, (1) 

where St is the m x 1 vector of the transmit antenna out- 
puts, Xt is the M x 1 vector of the received signals, H is the 
M x m channel matrix and nt is the M x 1 vector of the 
AWGN. Assume that each entry of St is an i.i.d. series and 
that these entries may be mutually correlated with fixed total 
power: E{stsf} = a2

s C, tr ( C ) = 1. Define g2 - {alia1) 
the signal-to-noise ratio (SNR). According to [2], the channel 
capacity (in bits per second per hertz) is given by 

C =log2det( lM + Q2HCHH ). (2) 

The Rayleigh channel model is assumed so that the ele- 
ments of H are jointly complex circular Gaussian. As- 
sume arbitrary correlations of the transmit antennas speci- 
fied by a normalized correlation matrix RT — E{H%.Hk,-.}, 
1 < k < m whereas the received antennas are decorrelated 
(i.e., RR = E{H:,iH^,} = IM, 1 < I < M). To introduce 
the core result, we define the eigendecomposition {C7, A2} of 

RT*CRT* such that RT^CRT2 = UA2UH with a diago- 
nal A = diag{Afc}^=1 and a unitary U. Then the capacity in 
(2) admits an accurate lower-bound C* < C such that 

m 

C, = ^log2 (l + g2A2
k XM-k+i), Ai>...>Am. (3) 

it=i 
where the random quantities xlt-k+i are Gamma distributed 
with (M—k+1) degrees of freedom. This bound is shown to be 
tight at high and moderate SNR and big M. The bound in [1] 
is a particular case of (3) when RT — lm and C = (1/m) Im. 

The optimal signaling is derived that maximizes the ap- 
proximate expected value of the capacity in (3). An accurate 
approximation is due to Jensen's inequality: E{C»} < C^, 

m 

C„ = ^2log2{l + Q2A2
k(M + l-k)), Aj >...>Am. (4) 

The capacity C* is also shown converging in probability to C«> 
when M and m are big. This capacity may be reached when C 
has the eigenbasis U with the eigenvalues that obey the water 
pouring distribution for a given set {g2A2.(M + 1 — k)}™=1. 

III. NUMERICAL EXAMPLE 

Consider a WLAN scenario in the 5.2GHz band; 6 transmit 
and 8 receive linear antenna arrays of size 30cm are separated 
by 30m. Major scatterers are uniformly distributed in the 
receiver vicinity. In Fig.l, solid lines show the empirical 
capacity obtained from 10000 random trials of a physical 
propagation model that assumes free space path loss. The 
empirical capacity driven by a stochastic model (specified by 
RT), its stochastic bound C« and the deterministic approx- 
imation Coo are depicted by dashed lines, dash-dotted and 
vertical lines correspondingly, for optimal (water pouring) 
and uniform power loading. The "i.i.d. bound" stands for the 
capacity predicted by [1], under the assumption RT = Im. 

.''y?y^~ \   .'-'T      ! 

'i 
' ji/ optimal 
/    loading / i.i.d: bound 

J                 '■   Q) ; 

-    uniform Y >h 
loading      ■/,' l \                   ;../           j :                    j 

T'ß' •' 

:    ~*tZ^Z'' 
\ /' \ 

      physical     model         statistical  model 
      stochastic bound 

i                ;                i 

Capacity   (blta/K'Hz) 
ZO -     22 24 2Q 

[1] 

[2] 

Fig.l. Cumulative probability of the capacity: 
M = 8, m = 6, Q2 = lOdB. 
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Abstract — We present closed-form expressions for 
the single-user capacity over slow nonselective corre- 
lated Rayleigh fading channels having equal branch 
powers and the same correlation between any pair 
of branches. Maximal ratio combining (MRC) is 
used and three adaptive transmission schemes are 
analyzed: (1) optimal simultaneous power and rate 
adaptation, (2) optimal rate adaptation with constant 
transmit power, (3) channel inversion with fixed rate. 

I. INTRODUCTION 

Consider the coherent reception of some digitally modulated 
signal with L diversity branches and predetection MRC. Let 
fi, i = 1,... ,L, denote the instantaneous signal-to-noise ra- 
tio (SNR) of the ith diversity branch. The random vari- 
ables V^TT, ..., -ffL are identically distributed, each having a 
marginal distribution which is Rayleigh with second moment 
2a (p > 0); the covariance between any pair 71,73, i ^ j, is 
4p2<r4 (0 < p < 1), and therefore the correlation coefficient 
between 74 and 7,- is p2. Such a correlation model is appro- 
priate when we use space diversity with closely packed diver- 
sity antennas. The total instantaneous received SNR using 
MRC is given by 7 = 5Z=1 7« • Denoting a 

b 

*>L        ..        T>__ ^:  1 
2<T*(l+[L-l}p)' 

2<raa    ), we obtain from the charactersitic function of 7 

the following expression for its probability density function: 

A(") = «*' 
L-l 

L-l 

(6-a) T=T 
.-*« LF^ 1)! 

*=1 

v> 0. 

The case of i.i.d. branches (p = 0) has been analyzed in [1]. 

II. CHANNEL CAPACITY 

Under the condition of optimal simultaneous power and rate 
adaptation, the channel capacity Copra (in bits/sec) is given 

by [2] [1] Copra - ]M~ In (£)/»*/, where B (in Hz) 
is the channel bandwidth and 70 is the optimal cutoff SNR 
satisfying /~ (^ - ±) /7(v) dv = 1. 

Denoting the exponential integral of order one by 

E\(c) = f°° ^-j— dv, c > 0, and the Poisson distribution by 

Pk(c) = e_c5Zn~0 fjr , we get the following closed-form ex- 
pression for the capacity per unit bandwidth (in bits/sec/Hz): 

¥ = A [*<•»> (^)L_1 " *Qn») {(^)t_1 -1} 
L-2 

+£™{G£rrn~1-1} 
Since the transmission in suspended when 7 < 70, there is 

an outage probability which is given by 

In the case of optimal rate adaptation with constant trans- 
mit power, the channel capacity is given by [3] [2] [1] 
Cora = i^/0°° In (1 + v) /7(u) dv, which yields the following 
expression for the capacity per unit bandwidth: 

1 
In 2 

L-l 

(Ä)l_Vfi(.)-G(Ä) 
k=i 

fc-i 

x \ Pk(-b)E1(b) + £ ipm(6)ft_m(-6) 

In the case of channel inversion with fixed rate, there are 
two schemes: truncated channel inversion with fixed rate, and 
channel inversion with fixed rate without truncation. With the 
truncation scheme, the channel capacity per unit bandwidth 
is expressed as [1] 

=   E*k 1 + S"ify(v)do (1-Pout), (2) 

where Pout is given by (1). The cutoff level 70 can be cho- 
sen either to achieve a specific outage probability Pont, or to 
maximize (2). A closed-form expression for the capacity can 

be obtained from (2). If we set 70 = 0 in (2), we get cy, 
the capacity for channel inversion with fixed rate and without 
truncation. In this case, Pout = 0. 

III. NUMERICAL RESULTS 

Prom plots of the channel capacity per unit bandwidth, we 
find that the capacity increases with increase of diversity 
order L and increase of average received SNR per branch 
E[7i] = 2<72, as expected. While the capacities CoralB, 
Cdfr/B and Cufr/B decrease with increase of p, the capacity 
Copra I'B increases sharply with p for small positive values of 
p, reaches a maximum, and then decreases as p increases fur- 
ther. It is also to be noted that the decrease in capacity with 
increase in p is much sharper in the case of optimal power and 
rate adaptation as compared to the other schemes. In the case 
of truncated channel inversion, the cuoff SNR 70 which maxi- 
mizes the capacity decreases with increase of p. A comparison 
of the plots for the different schemes shows that for the same 
channel bandwidth B, Copra > Cora > Cti/r > Ccifr- 
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Abstract — In modeling wireless channels, slow 
and fast fades are generally decoupled. We show 
that the difference between true capacity and that 
obtained assuming independence of fast and slow 
channel fades is O (elog(e)log (—elog(e))), where e is 
the ratio between the average duration of fast and 
slow fades. 

Our purpose in this work is to explicitly take into ac- 
count, in the capacity computation for time-varying fad- 
ing channels, the fact that slow fades and fast fades are 
not truly decoupled. Decoupling slow fades from fast 
fades has generally been used as a first-order approxi- 
mation. We consider the case where the sender channel 
side information (SCSI) is a coarse representation of the 
receiver channel side information (RCSI). In many cir- 
cumstances, RCSI and SCSI are asymmetric, although 
related. In particular, when the channel is rapidly vary- 
ing, providing full feedback from the receiver to the sender 
may be onerous and inefficient. Recent work in this area 
has considered the case where the SCSI is a deterministic 
function of the RCSI [1]. In [1], exact capacity results 
are given for the case when the SCSI remains Markov. If 
the SCSI and the RCSI can indeed be decoupled, in such 
a way that both remain Markov, then the results of [1] 
apply directly. 

We consider a discrete-time finite-state Markov chan- 
nel (FSMC). The RCSI, which we term the micro states, 
is a full description of the FSMC. The SCSI, which we 
term the macro states, is a coarser representation of the 
states: the sender only knows that the current state is 
within one of a set of states. The macro states repre- 
sent the long-term behavior of the channel, i.e. the slow 
fades. Note that fades are possible while we are in the 
good macro state and, conversely, energy surges are pos- 
sible while we are in the bad macro state. Although the 
model of [1] does not apply, we suspect that, as the spread 
between the speed of the slow fades and that of the fast 
fades grows, the results of [1] should become an increas- 
ingly good approximation to the true capacity. Our re- 
sults support this intuition and quantify the effect of the 
spread between the speed of the slow fades and that of 
the fast fades. However, our results also show that con- 
vergence is very slow. 

We consider a nearly decomposable model ([2]) for our 
FSMC. Consider a discrete-time Markovian fading pro- 
cess defined by the stochastic matrix A + eB, where A is 
block-diagonal with M blocks and the ith block (which 
is also a stochastic matrix) is denoted by At. We call 
the set of fading states associated with the ith block a 
macro state and denote it by St. We assume the RCSI is 
the current micro state of the channel whereas the SCSI 
is the current macro state. Let n^ be the stationary 
probability vector associated with A{, i.e., TT^'A; — 7r'*'. 

R. Srikant 
University of Illinois 

e-mail: rsrikantOuiuc. edu 

Define an M x M matrix P as follows:   the (i,j) en- 

try of P is given by Pj =  ]T £ *?*",        * # * 
keSi leSj 

and Pa = 1 — Y2 ■ j; P'j ■ Note that P is also a stochas- 
tic matrix and let p be its stationary probability vector, 
i.e., p — pP. We can interpret P as being the long-term 
transition probabilities among macro-states and pt as ap- 
proximating the long-term probability of being in Si, i.e., 
Pi{e) = pi + 0(e), where pt(e) is the actual probability of 
being in micro-state i. 

Let T(n) denote the random variable corresponding 
to the micro-state at time n and define S(n) to be ran- 
dom variable corresponding to the macro-state at time 
p,. The sample values of T(n) is denoted by t(n). Fur- 

ther, let y/G(T(n)) be the random variable correspond- 
ing to the signal attenuation at time n. The received sig- 
nal at time n is given by the random variable Y(n) = 

y/G(T(n))X(n) + W(n), where X(n) is the transmitted 
signal and W(n) is AWGN with variance a2. Our coding 
theorem follows. 

Theorem 1 Define 

c ■= {^> \ I> £log i1+^Sä) **(0 suh3ect 
i=i     teMi       ^ ' 

to £}i=1Pi(e).P(J) < V, where T is the power constraint 
on the sender. 

Given R < C and S > 0, we can find an e* (R) and n(S) 
such that for all e < e*, there exists a (n/e, 2"Ä/,£) code 
whose maximal probability of error is less than S. (Note 
that e* is independent of 5.) 

Define  C(r„e(e)   =    lim -   max   I(Xn;{Yn,T"}), 
n—*oo n p(xn\sn) 

where p(xk\s")   =   p(xk\sk),  for  all k   <   n.   Then, 
Ctme(e) = C + 0{t\og(e)log(-elog(e))). 

Suppose for some R > 0, we have the following prop- 
erty: for every S > 0, we can find e*(R) and n(6) such 
that for all e < e", there exists a (n/e, 2nR//e) code whose 
maximal probability of error is less than S. Then, R < C. 
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Abstract — We apply the results of [2] to es- 
timation of Renyi I-divergence between an un- 
known distribution and a known reference dis- 
tribution using power weighted pruned minimal 
graphs spanning a random sample of n points 
from the unknown distribution. In particular 
we establish that the weight of a minimal graph 
connecting the points converges a.s. in n to the 
I-divergence after a suitable change of measure. 

I. INTRODUCTION 

Let Xn = {xi,X2,.-.,xn} denote a sample of i.i.d. 
data points in Rd having unknown Lebesgue multivari- 
ate density f(x) supported on [0, l]d. Define the order 
v Renyi I-divergence [1] with respect to a dominating 
reference density fo(x) 

planar fc-MST approximation of Ravi et al, called the 
greedy fc-MST approximation, which runs in polyno- 
mial time. 

Let v S (0,1) be defined by v = (d — ^)/d and define 
the statistic 

Hv(X:,k) = Y^ In (n-'L{K,k)) + ß{v, <*) (2) 

where ß is a constant equal to the t>-th order Renyi 
entropy of the uniform density on [0, l]d. Let G(x) be 
the coordinate transformation on [0, l]d which maps the 
reference distribution f0 to a uniform distribution and 
define the transformed data sample yn = G(Xn). Then 
using the results of [2] it can be shown that H^iy^n) 
is an a.s. consistent estimator of the I-divergence (1). 
Furthermore, with a = k/n, Hv{y„ k) is an a-trimmed 
estimator of I-divergence in the sense that 

1 r ( f<T\\" Hviy*nk)-¥     min     —!—In /   (^TT)   fo{x)dx   (a.s.)    (3) 
^(/./o) = ^Iln| (j&L)   f0(x)dx      (1) (n''      A-.PW>al-u     JA\Ux)) 

The I-divergence takes on its minimum value (equals 
zero) if and only if / = f0 (a.e.). h(f,fo) reduces to 
the Renyi entropy Hv(f) when f0 is equal to a uniform 
density over [0, l]d. Special cases of interest are ob- 
tained for v = | for which one obtains the log Hellinger 
distance squared and for v —> 1 for which one obtains 
the Kullback-Liebler divergence. 

II. MST's AND ENTROPY ESTIMATION 

A spanning tree T through the sample Xn is a con- 
nected acyclic graph which passes through all the n 
points {xi}i in the sample. T is specified by an or- 
dered list of edge (Euclidean) lengths e^, connecting 
certain pairs (xi,Xj), i / j, along with a list of edge 
adjacency relations. The power weighted length of the 
tree T is the sum of all edge lengths raised to a power 
7 € (0, d), denoted by: X^er lel7- ^ne minimal span- 
ning tree (MST) is the tree which has the minimal 
length L(Xn) = min-r 53e€T |e|7. For any subset Xn^ 
of k points in Xn define Tx„ h the fc-point MST which 
spans Xn,k- The fc-MST is defined as that fc-point MST 
which has minimum length. Thus the A;-MST spans 
the densest fc-dimensional subset X* k of Xn. The k- 
MST computation is NP complete. In [2] we presented 
asymptotic results for a d-dimensional extension of the 

where the minimization is performed over all d- 
dimensional Borel subsets of [0, l]d having probability 
P(A) = fA f„(x)dx > a. 

Let / follow the mixture model 

/ = (1 - t)h + e/o, (4) 

1This research was supported in part by AFOSR under 
MURI grant F49620-97-0028. 

where f0 is a known outlier density and /i, e G [0,1] are 
unknown. Then for small e and a close to one it can 
easily be shown that the right hand side of (3), which is 
h(f,fo), is to a close approximation Iv(fi,fo). Thus 
Hv(y^k) is a robust estimator of Iu(fi,fo). 

Note the following: the estimator .&, (}£,*) does not 
require performing the difficult step of density estima- 
tion; estimates of various orders u of Iv can be obtained 
by varying the edge power exponent; the sequence of 
trees yn,2, ■ ■ ■ ^n.n = 3^ provides a natural extension of 
rank order statistics for multidimensional data. Here 
k plays the same role as the parameter a in the a- 
trimmed mean estimator for 1-dimensional data. 
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Abstract — A channel decoder employing the a 
posteriori probability (APP) algorithm can be for- 
mulated so that its inputs and its outputs are log- 
likelihood-ratios (LLR): channel LLRs of the code bits 
are accepted, and a posteriori LLRs of the info bits 
and/or the code bits are delivered. Since decoding 
improves the reliability, the APP algorithm can be 
interpreted as a non-linear filter for LLRs. The "LLR 
amplification" depends on the distance properties of 
the channel code; for high signal-to-noise ratios it is 
dominated by the minimum distance. 

SUMMARY 
The APP algorithm [1] accepts a priori probabilities and 

channel probabilities as inputs and delivers a posteriori prob- 
abilities as outputs. With additional computation of soft out- 
puts for the code bits [2] [3] and with usage of LLRs instead of 
probabilities [4], it can be extended to the logarithmic APP 
(LogAPP). 

Consider a binary linear convolutional encoder of rate R = 
k/n. Let e denote the path through the trellis associated with 
the info word u(e) and the code word x(e), u, x € {+1, —1}. 
The code bits are transmitted over a memoryless channel; the 
received value of a single bit is denoted by y, and the received 
word is denoted by y. 

The LogAPP algorithm takes the a priori LLRs of the info 
bits U and the channel LLRs of the code bits X, 

*      P(U = +1) ±      P(X = +l\y) 
L {u) ~ln p(u = -iy L {x) ~ln p(x = -i\yy   (1) 

and computes the a posteriori LLRs of the info bits and of the 
code bits 

+,   , A      P(U = +l\y)    r + m^lnF(X = +1|3/) 

L {u)-lnp(u = -i\yy L {x)-lnp(x = -i\yy (2) 

These inputs and outputs of the LogAPP algorithm are de- 
picted in Fig. 1. In the following, the info bits are assumed to 
be equally distributed, i.e. L~ (U) = 0. 

L-(U) ■ 
L-(X). 

LogAPP 
+ L+(U) 

Fig. 1: The input and the output LLRs of the LogAPP algorithm. 

The purpose of decoding is to improve the reliability of 
the bits. This motivates to interpret decoding as non-linear 
filtering, as mentioned in [2]. In this paper, the LogAPP is 
treated as a non-linear LLR filter. This point-of-view suggests 
to define an info bit LLR amplification (ILA) and a code bit 
LLR amplification (CLA): 

ILA.EvL+([/) 
E„ L-(X) 

CLA 
A Eu L+(X) 

L-(U) 
Ev L-(X) 

(3) 

where Ey denotes the expected value with respect to y. The 
ILA can be regarded as the transfer function of a soft-decoder; 
since there are less output values than input values, the soft- 
decoder is similar to a decimator. The CLA can be regarded 
as the transfer function of a soft-repeater, i.e. a device which 
performs decoding and re-encoding using soft values. 

For rate 1/2 convolutional codes with memories 2 to 8, 
binary transmission over an AWGN channel was simulated. 
In Fig. 2, the ILA and the CLA are depicted as a function 
of the mean channel LLR Ey L~ (X) of the code bits. The 
following characteristics can be justified analytically: 

1. For low input LLRs, the ILA approaches 0 and the CLA 
approaches 1. 

2. For high input LLRs, both the ILA and the CLA ap- 
proach a constant value which can be identified with the 
free distance of the code. 

L-(U) 

Fig. 2: The LLR amplifications of the convolutional codes with 
memories 2 to 8. 
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Abstract — We present a fourth-moment measure of the 
"bandwidth" of a strictly time-limited signal and obtain a 
minimum-bandwidth basis for L2(a,b). Such a basis consists 
of orthonormal waveforms with the smallest obtainable band- 
widths. The primary advantage of the fourth-moment bandwidth 
relative to the Root Mean Square (RMS) and Fractional Out-of- 
Band Energy (FOBE) measures is that its basis functions have a 
0(1//3) frequency roll-off compared to the 0(1//2) and 0(1//) 
decay of the RMS and FOBE basis functions, respectively. 

I. MAIN RESULT 

Every strictly time-limited pulse has a spectrum which is non- 
zero for an infinite range of frequencies. Hence, non-strict measures 
of bandwidth are used to quantify the spectral concentration of such 
signals. Two such measures, namely the RMS and the FOBE band- 
widths, have been studied in the past. In particular, it was shown that 
the minimum RMS and FOBE bandwidth orthonormal basis func- 
tions for L2(0, T) are sinusoids sm(km/T) for integer k [1] and the 
set of time-truncated prolate-spheroidal wave functions [2], respec- 
tively. In this paper we consider the fourth-moment bandwidth and 
obtain the corresponding minimum bandwidth orthonormal basis. 

Definition 1 (Fourth-Moment Bandwidth Measure) For a base- 
band signal with energy spectrum Sx(f), the fourth-moment band- 
width is defined as 

bw(;r) 
F-f*sx(f)df 
f?.Sx(f)df 

1/4 

(1) 

Definition 2 (Minimum-Bandwidth Basis) Let the collection of 
functions <B = {yi}°°=\ be an orthonormal basis for L2(-T/2, T/2) 
(the space of square-integrable functions with standard inner prod- 
uct), and let the bandwidth measure be defined through (1). If\ifk has 
the minimum bandwidth of all L2 functions which are orthogonal to 
{¥,}?=-/, i.e., 

V* = arg      min      bw(x) (2) 

jr±Vi,-,Vi_i 

for all k, then (B is a minimum-bandwidth basis/or L2(—T/2, T/2). 

The main result of this paper is that the minimum bandwidth basis 
functions for the fourth-moment bandwidth measure are solutions of 
the eigenvalue/eigenfunction equation 

W(') 
1 

167I4 i-i £™ (0 (3) 

where   T  denotes   the   time-limiting  operator   (to  the   interval 
[—772,772]).   The boundary conditions are imposed by requiring 
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Figure 1: Magnitude spectra of \(/i (t) for the FOBE case (with 
BT = 2ri), the RMS bandwidth and the fourth-moment mea- 
sure, all for T = 1. 

the solutions to lie in !HQ(-T/2, T/2) which are the time-limited el- 
ements of the Sobolev space W2 of functions on R defined as [3], 

W2: {*:||(l+/2)*(/)||2<~}. (4) 

It can be shown that the eigenvalues y^ of (3), which are equal to 
the bandwidths of the respective basis functions, are given as y* = 
(tpfc/27r)4, where the tfrt's are the positive solutions to 

cos{$kT/2) sinh(0tr/2) + sm(<bkT/2) cosh(<))ir/2) = 0    (5) 

and 

cos(<t>*772)sinh(<t>jt772) - sin(())itr/2)cosh((t»tr/2) = 0 

The eigenfunctions are given for / € [—T/2, T/2] by 

k, odd 

yjrnlnh (sin(fo0 + a*sinh(<k?)) 

(6) 

k, even 
(7) 

'This work was supported in part by NSF Grant NSF Grant CCR-9706591 

\Jr(\2+al) (cosCfaO + otjfcCoshOhfcO) 
v*(0 — \    1   2— 

where cc* = -cos((|)J(.r/2)/cosh((|)<.r/2). 
A comparison of the frequency roll-off of the minimum FOBE, 

RMS and fourth-moment bandwidth functions can be seen in Fig- 
ure 1. This figure reveals that while the minimum fourth-moment 
bandwidth basis function has a somewhat larger main lobe than the 
truncated prolate-spheroidal function and the half sinusoid, its rate of 
side-lobe decay is significantly better. 
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Abstract — The similarity of the Berlekamp-Massey 
(B-M) algorithm and the Welch-Berlekamp (W-B) al- 
goritm is demonstrated in showing that both algo- 
rithms are special instances of one iterative model- 
ing procedure. In particular, from Reed & Solomon's 
original problem statement a W-B type algorithm is 
directly derived through a system-theoretic interpo- 
lation approach. 

Reed & Solomon's original curve fitting formulation for 
decoding a (n,k) Reed-Solomon code over a finite field F 
is readily reformulated as a minimal interpolation problem, 
see [1] and references therein. From this a system-theoretic 
formulation, involving trajectories of time bi : Z+ 1-4 F2, can 
be obtained as follows. Let the code locations be given by 
x\,...,xn, define G(s) := (s — x„_k+2) • • ■ (s — xn) and let 
(ri,... ,r„) be a received word. Without restrictions we may 
assume that r„_*+i = • • • = r„ = 0. Next let trajectories 6< 
be defined by 

bt 
G(Xi) 

Hin 
0 

G(a) 

nxi 
Xi 

bi 

TiXi 
_ 2 Xi 

with 

]....). 
for i = 1,..., n — A + 1. Here a denotes the backward shift. 
The decoding problem can now be formulated as: find a rep- 
resentation with minimal row degrees 

w = (1) 
D(a)    -N(a) 
K{a)     -Q{fx) J 

for the behavior B spanned by the trajectories bi,..., bn-k+i■ 
Thus we adopt a so-called behavioral system-theoretic ap- 
proach, see [8] for more details. 

The above corresponds to a slight variation of the W-B key 
equation in which polynomials D and N are sought with deg 
D minimal such that for }/; := n/G(xi) 

D{xi)yi = N(xi) (2) 

as well as deg N < deg D (rather than deg N < deg D). 

In earlier research [3] it was shown how the B-M algorithm 
can be interpreted as a special instance of the general iter- 
ative modeling procedure of [8, p. 289]. Below we outline 
an iterative algorithm along the same lines for constructing 
a representation (1), thereby solving the W-B type key equa- 
tion (2). Our algorithm below is thus another instance of the 
modeling procedure of [8]. In particular, like the B-M algo- 
rithm, it makes use of the solution's degree L at each step to 
determine which type of update matrix is used. In this re- 
spect it differs from the W-B algorithm which uses a different 
integer parameter. 

Algorithm 

For j = 0,..., n — k denote Rj := 

define 

Dj    -Nj 
Ki -Qi J 

Initially 

flo:= 
0 

S — Xn-k + l 
and Lo := 0. 

Proceed iteratively as follows for j = 1,... ,n — k. Compute, 
after processing (n, j/i) for i = 0,..., j, the numbers Aj and 
Tj as follows: 

Aj    :=    Dj-i (Xj )y, - Nj -1 (x,) 

Tj    :=    Kj-iixjfoj-Qj-ilxj). 

Compute the matrix Rj and the integer Lj as follows: 

Rj := VjRj-i, 

where, if Aj ^ 0 and (Lj-i < j/2    or Tj = 0), 

Vj(s):= 

and, if otherwise 

Vj(s) :-. 

S — Xj 

A,- 

Ay 

S — Xj 

;     Lj := Lj-\ + 1, 

;     Lj.= L j—1 ■ 

Topics of further research consist of the derivation of insight- 
ful and efficient algorithms (see also [2, 5]) for list decoding 
based on a behavioral modeling view. 
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Abstract — A pipelined finite-field multiplier struc- 
ture in conjunction with a single systolic array imple- 
mentation of the Berlekamp-Massey algorithm leads 
to a highly parallel decoder architecture in which the 
critical path delay is an order of magnitude smaller 
than the path delays of conventional architectures. 

INTRODUCTION 

The Berlekamp-Massey algorithm [1] is an efficient iterative 
method for solving the key equation in BCH decoding that 
relates the (unknown) error locator polynomial X(z) and error 
evaluator polynomial u>(z) to the (known) syndrome polyno- 
mial S(z). In the r-th iteration, the algorithm computes the 
r-th discrepancy Ar, and then updates its estimate of A(z) and 
a "scratch" polynomial B(z). Even in highly parallel imple- 
mentations, the speed bottleneck is this iterative loop which 
requires a multiplication (while computing Ar) followed by 
a division (while updating B(z)): the latter is more time- 
consuming than the former. Fortunately, the division can be 
replaced by a multiplication as described in [3]. Similarly, the 
two serial multiplications can be carried out in parallel if Ar+i 
(which is to be used in the next iteration) is computed at the 
same time as the polynomials are being updated in the current 
iteration. This gives the following algorithm, implementable 
with a single systolic array, for a <-error-correcting BCH code: 
Initialization: A<°>(«) = @{0)(z) = S(z)+z3t; 7

(0) = 1. 
for r = 0 until 2t - 1 do 

A(r+D{z) = |Wr)wj _ A<,r)e<r>(z) 

(e"^),7(r)) 
([^j.AM) 
u{z) = A(2t){z)modzt. 

Here, [a(z)/za\ denotes the quotient when a(z) is divided 
by zs. This is readily implemented by shifting when s = 1, 
whereas the output polynomials are merely different parts of 
the A register. Note that A^r) = A(r)(0) is the r-th discrep- 
ancy and it is always the low-order symbol in the A register.1 

HIGH-SPEED IMPLEMENTATIONS 

VLSI implementations of the algorithm described above can 
be expected to operate roughly twice as fast as the the imple- 
mentation in [3]. Even faster implementations are possible for 
block-interleaved codes, provided that decoding is completed 
prior to de-interleaving. For a code interleaved to depth M, 
the decoder structure is the same systolic array except that 

(e<r+1>(*),7(r+1))=< 

Output: X(z) = \*!™i!l 

each storage cell now consists of a serial M-stage register. 
The critical path delay is no different from that in the origi- 
nal circuit. However, the results of a polynomial update are 
not required during the next M — 1 cycles while other (inter- 
leaved) codewords are being processed. This allows the use of 
a pipelined multiplier that computes the product of two ele- 
ments of GF(2m) in m clock cycles (assuming that M > m.) 

Let Y = y0 + yia + y%a   + n-ia be an element 

1 After discovering this result, we found that it had been pub- 
lished already in [4]. It also appears in [2]. 

of GF(2m). The pipelined multiplier architecture is based on 
writing the product of X and Y as 

X{yo + yia + y2a
2 + ■•■ ym-iam_1) = 

Xyo + (Xa)yi + ((Xa)a)y2 + ...(... {(Xa)a) ■ ■ ■ a)«/m_i 

which can be computed by adding X into an empty accumu- 
lator (or not) according as yo is 1 (or 0). Simultaneously, X 
is multiplied by a to produce Xa. Then, Xa is either added 
(or not) to the accumulator according as yi is 1 (or 0), while 
simultaneously, Xa is multiplied by a to produce Xa2; and so 
on ... for m stages. Multiplication by a is easy to implement, 
and thus the critical path for this new decoder architecture 
passes through only one Exclusive OR (XOR) gate and one 
2-to-l multiplexer. This is an order of magnitude smaller than 
the delay in a conventional multiplier. 

Ignoring wiring delays and other non-idealities, an 0.18 fim 
CMOS technology Reed-Solomon decoder over GF(28) has 
critical path delays of 6.8 ns, 3.0 ns, and 0.36 ns respectively 
for the implementations described in [3], [4] and this paper. 
Decoding at rates exceeding a gigabyte per second appears to 
be feasible with the decoder implementation described above. 
Details of the proposed architecture can be found in [5]. 
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Abstract — We consider two methods of Euclid's 
algorithm to solve the Linear Feedback Shift Regis- 
ter (LFSR) synthesis problem. One of the methods 
is identically equivalent to the celebrated Berlekamp- 
Massey(B-M) algorithm. The other method is dis- 
tinctly Euclidean. The formulation of the problem 
from Euclid's algorithm leads to the characterization 
of the LFSR synthesis for the reverse sequence given 
the LFSR synthesis for the forward sequence. 

I. LFSR SYNTHESIS PROBLEM 

All polynomials and sequences considered in this paper are 
over a finite field F. Let deg{P) denote the degree of the 
polynomial P and Coeff(P, I) denote the coefficient of xl in 
P. Let SN = {so, si, • • •) SN-I} denote a sequence of length 
N over F. The LFSR synthesis problem is, given SN find a 
shortest length LFSR (L) satisfying the recursion: 

L-l 

■ ^2asj-L+i,N < j <L,ae F. (1) 

A    Algorithm A 

Here we represent the sequence SN as SN-I + SN-2X + 
■■■ + siXN~2 + soxN-1 and compute recursively using the 
GCD algorithm the minimal connection polynomial C(x) = 
co + CixA \-ci-\xL~1+xL, where c\s are as in (1). We de- 
note the LFSR of length L by a polynomial pair (C(x), B(x)), 
where B(x) = S(x)C(x) (mod xN). This is the version of 
Euclid's algorithm used by Dornstetter in [1] to prove the 
equivalence with the B-M algorithm. 

B    Algorithm-B 

Let a sequence 5(N) be represented by the polynomial S(x) = 
so + six -I r- SN-IX^

-1
, and the corresponding connection 

polynomial D(x) is given by D(x) = 1 4- CL-\X -\ h cox  , 
where c[s are as in (1). Note that the the polynomials S(x) 
and D(x) given above happen to be the reciprocal polynomials 
of the corresponding polynomials defined in Algorithm-A. The 
following theorem supports the LFSR synthesis. 

Theorem 1 An LFSR oflengthg L with a connection polyno- 
mial D(x) of degree L generates SN if and only if there exists 
a polynomial B(x) such that 

B{x) = S(x)D{x) (modxN),deg(B(x)) < L,Coeff(D,0) = 1. 

  (2) 
xThis work was supported by Australian Research Council Large 

Grant #A49701206 

We denote the LFSR of length L by a polynomial pair 
[D(x),B(x)] in this representation. The above theorem in 
conjunction with the Euclid's GCD evaluation of the polyno- 
mials 5(x) and xN, results in Algorithm B. At each iteration 
the algorithm provides a valid LFSR representation of (2) with 
the length max{deg(D(x)),l + deg(B(x)}. A minimal solu- 
tion is chosen when length of the LFSR is minimal. 
Remark: In Algorithm-ß, the length of the LFSR at each step 
monotonically decreases to the minimum value (L° = N). On 
the other hand, in Algorithm-A which resembles the B-M al- 
gorithm, the length of the LFSR at each iteration gradually 
increases to the minimal value of L from 0. 

Next theorem characterizes the length of the LFSR design 
for the reverse sequence. 

Theorem 2 Let      us      consider      the      shortest      LFSR 
(C(2m),B(2m))  of length L(2m)  that generates the sequence 
5(2m) = {si.sa,-••'2m], Let(C{2m),B{2m)) be the shortest 
LFSR for reverse sequence 5'2m'   =  (s2m,S2m-i, • • -si)  of 
length L(2m). 7/L(2m) < m, then 
t'2m» = L(2m) i/Coe//(C2m,0) # 0; 
L(2m) = 2m - L(2m) + 1 otherwise. 
If L(2m) > m, then 
£<2m)  = L|!m)   if Coef f{C2m ,0) / 0,' 
L(2m) = 2m - L(2m) + 1 otherwise. 

The above Theorem characterizes completely the length of 
the LFSR for the reverse sequence given the. design of the for- 
ward sequence. This generalizes a result in [2] which considers 
the length of the reverse sequence only for a particular case 
of sequences whose complexity is exactly half of the sequence 
length (L*2m' = m). Also observe that, in our approach, the 
designs for the reverse sequence can be obtained by Euclid's 
algorithm. 

Even though the similarities between the B-M and other 
algorithms are studied extensively, this view point of the pa- 
per concerning the LFSR synthesis procedures using Euclid's 
algorithm seems to be new. 
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Abstract — When a Hermitian curve is put in a 
special position with respect to its infinite rational 
point, the (x, j/)-coordinates of all finite rational points 
of the Hermitian curve have regular algebraic prop- 
erties. Based on these properties, the use of Homer's 
rule and the mechanism of Chien search in the decod- 
ing of Reed-Solomon codes can be extended to render 
up efficient architectures for syndrome generation and 
error location search in the decoding of codes con- 
structed from the Hermitian curve. [1, 2, 3] 

I. INTRODUCTION 

It is well known that syndrome generation in the decoding 
of Reed-Solomon codes is usually executed by Homer's rule 
which has regular hardware structure and is suitable for VLSI 
implementation. The first goal of this paper is to extend the 
use of Homer's rule to the decoding of Hermitian codes. The 
intuitive idea of error-locator searching is to evaluate the value 
of the error-locator polynomial at each finite rational point of 
the Hermitian curve. If the value is zero, then an error location 
is found. It will be welcome to have an architecture like the 
mechanism of Chien search, which generates all finite rational 
points of the Hermitian curve and evaluates the error-locator 
polynomial at these points very efficiently, which is the second 
goal of this paper. 

II. RATIONAL POINTS IN A HERMITIAN CURVE 

Let Er = {oo, 0,1, • • • , r - 2} be a linearly ordered set with 
oo<0<l<"-<r-2. Assume that a is a primitive 
element of GFiq2) and ß = a"+1. For convenience, we define 
a°° = 0. The set fl of (x, y)-coordinates of all finite rational 
points of the Hermitian curve Hg over GF(q2), defined by 
xv+1 = y" + y, can be shown to be Q = \Jm€Eq(Xm x Ym), 
where 

X   -|{°>' 
m ~ \{am 

if m= oo, 
:«M-*(9-i)|fc = o,l,...,,},   if m 6 [0,g-2], (1) 

and Ym is the solution set of the equation yq + y = ß™, Vm G 
Eq. Define il\y' to be the intersection of the Hermitian curve 
with the line y = a* on the affine plane over GF(q2) and A< 
be m if a* is in Ym for each t € Eqa. Now, we are able to 
identify a point (aAi+*(«~1),a<) in the {/-slice il\v) by the pair 
(k,i), denote this point as P(k,i) for each * in Eqi, and order 
the points P(jk,<) m fl according to a lexicographical ordering 
on the index pairs (k,i) : (k',i') <j (k,i) if»' < t or if t" = t 
and k' < k, where oo<0<l<--<g2-2. 

III. SYNDROME GENERATION 

'This work was supported by the National Science Council, Tai- 
wan, under contract no. NSC86-2221-E-007-022. The authors are 
with the Department of Electrical Engineering, National Tsing Hua 
University, Hsinchu 30055, Taiwan, email: cclu@ee.nthu.edu.tw. 

For our purposes, let S(a,b) be the syndrome of the Hermi- 
tian code Hm associated with the monomial xayb for o, 6 > 0 
and aq + b(q + 1) < m. It can be shown that S(a, b) = 

ZPsarpx(P)°y(P)b = E&CoAc?)', where {rp}Pen is 
the received symbol sequence and c0,» = ÜCp6n<»> rpx(P)a 

for each i e £,i,   If A< = oo, we have c„,< = 0 and if 

A< # oo, Ca,i = aaX< E*=or*.<(a°(*_1))*. where we den(>te 
rp as rit,i when the two-dimensional index of P is (fe, t). Thus 
the generation of the syndrome S(a,b) can be implemented 
by a Homer's double-loop with feedback gains ao(*_1) and ab 

respectively. 

IV. ERROR LOCATION SEARCH 

Here we re-index the q3 finite rational points through 
a unique order-preserving transformation T from the two- 
dimensional index set onto (U,s,<). Let <r(x,y) = 
S"=i vixaiyb' be an error-locator polynomial with ai = 6i = 
0. Since the first point P«, has coordinates (0,0), we have 
"■(Poo) = ^i aud then P«, is an error location if and only if 
a\ = 0. At all other finite rational points Pj,0 < j < q3 — 2, 
we have <r(P,) = £?=1#(P,) = E?=i LoopifJ) ■ Selectt(j). 
The sequence {Selecti(j)}0<j<qa-2 can be implemented by 
a multiplier-selection unit with a control signal and the se- 
quence {Loop*(j)}o<.7<93_2 can be generated sequentially like 
in the mechanism of Chien search by a closed-loop with initial 
value at and with three feedback gains a°'(,_1), a°'(*~1)+6' 
and abt, selected by a multiplexer with a control signal. 

V. CONCLUSION 

In this paper, we exploit a specific ordering of all finite 
rational points of a Hermitian curve and extend the use of 
Homer's rule and the mechanism of Chien search in the de- 
coding of Reed-Solomon codes to the decoding of Hermitian 
codes. The basic building blocks in the proposed architectures 
are loops and multiplier-selection units. Since the multipliers 
used are all special-purposed, the hardware complexity is very 
acceptable. Moreover, the number of clock times needed to 
complete a cycle of syndrome generation or a cycle of error- 
location search is just the length of a received codeword. In 
conclusion, the two goals of this paper, stated in the introduc- 
tion section, are achieved. 
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I. DESCRIPTION AND PERFORMANCE RESULTS 

The turbo-principle [Hag97] is far more reaching than the 
original turbo code concept. Encoded DPSK transmission, 
e.g., can be viewed as a serial concatenation of a channel 
code with a rate-one code representing the DPSK modula- 
tion. Iterative decoding of this concatenated scheme shows 
surprisingly good performance (see [PSH97, Hoe99]). We de- 
scribe the serial concatenation of interleaved tail-biting convo- 
lutional codes (TBCC) with this DPSK rate-one code trans- 
mitted over AWGN and fiat Rayleigh fading channels. The 
receiver performs time-continuous "turbo" iterations between 
the inner and outer codes and is realized by two analog ring 
networks connected via an interleaver ring which exchanges 
extrinsic information by means of analog signals being contin- 
uous in time and value. Employing analog circuits is advan- 
tageous, since they are much faster and consume significantly 
less power. The feasibility of analog circuits replacing the 
Viterbi or BCJR algorithm was shown in [Hag98], [HOM99] 
and [Loel98]. In the meantime the first VLSI chips for simple 
decoders have been produced at Lucent/TU Munich [MGYOO] 
and Endora/ETH Zurich. 

£(»,-,) 
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£(',) 

3    '  <    ) ©■ 
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Figure 1:   Structure of the analog DECPSK receiver corre- 
sponding to one trellis section. 

The key element of the analog networks is the represen- 
tation of the log-likelihood ratio (LLR) of a binary random 
variable L(x) = log(P(x = +l)/P(x - -1)) by voltages. The 
'box-plus' element EB defined by 

L(JI)1I(II)    = L(xi © X2) 

2 atanh(tanh(L(xi)/2) ■ tanh(L(x2)/2)) 

can then be realized by a simple circuit consisting of 9 
transistors [MGYOO]. Using these elements plus summations 
we design an analog turbo receiver for the concatenation of 
DECPSK modulation and a memory-2 TBCC. One section 

of the DECPSK receiver (processing one trellis section) 
is shown in Fig. 1. Note that this results in a delay-less 
nonlinear bidirectional circuit connected to the receiver 
values, the neighboring circuits and the interleaver ring. The 
channel provides us with the weighted matched filter outputs 
L(xi) and the interleaver ring with the extrinsic LLRs L(bi) 
from the decoder circuit of the TBCC. Simulation results 
are obtained by solving nonlinear differential equations. 
Fig. 2 shows that the analog network performs similar to a 
digital turbo decoder applying 20 iterations.- In addition, we 
discuss implementation issues of analog VLSI showing their 
advantages in terms of power consumption and speed. 
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Figure 2: Bit error rate versus signal-to-noise ratio for de- 
coding of DECPSK serially concatenated with tail-biting con- 
volutional codes applying a digital iterative decoder and an 
analog decoder. 
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Abstract — Several popular, suboptimal algorithms 
for bit decoding of binary block codes such as turbo 
decoding, threshold decoding, and message passing 
for LDPC, were developed almost as a common sense 
approach to decoding of some specially designed 
codes. We explain exactly how they approximate the 
optimal decoding algorithm, and show how good this 
approximation is in some special cases. 

We propose an entirely new approach to the problem of 
iterative decoding, which is algebraic in nature and derives 
the well known suboptimal algorithms from the bit-optimal 
as a starting point. This approach gives new insights into the 
issues of iterative decoding. 

We axe concerned with a binary block code C defined by 
its parity-check matrix H = {Aij}(n_k)Xn> *-c, by the group 
generators hi = {hy}ix„, i € X, of its dual code C, where X 
is used to denote the index set X = {0,1,..., n — fc — 1}. We 
consider suboptimal decoding algorithms for a binary code 
C, e.g., a turbo decoding scheme (as introduced in [1], [2]) 
with two component codes & and C2 defined by their dual 
codes' sets of generators X\ and I2 such that X\ n I2 = 0 and 
Xxt\Xi=X. 

The channel is assumed to be memoryless and codewords 
equiprobable. We derive an expression for optimal decoding 
of the whole code C based on the dual code (as in [3]), and 
then rewrite it so that it explicitly involves only /»,-. Thus, 
for the log-likelihood of bit m over code C, L^ = log[P(cm = 
0|r)/P(cm = l|r)], we obtain the following: 

n4i+fiAM 
l4=logl±^+log 

i€X 

n4i+(-i)ftimnA"0] 
a) 

<6I 3=0 

where A, = [p(r7-10) -pfo|l)]/[p(»v|0) +pfa|l)] and 

Aj®A,=(AJ-Ai)
1-^ = |  £■*''    \tJl 

We then show that the turbo decoding algorithm can be 
represented as shown in the figure below: 

1This work was supported by the 1999 German-American Net- 
working Research Grant given by the the national academies of 
engineering of Germany and the USA. 
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decoder Ci 
iteration v +1 
decoder G\ 
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"+i 

^®n«[i+^mn[A?i*y] 
[Am]./+1 = 

i€Xl i=l 
is*™ 

[A&].®n«[i+nW^] 
[Am]"+i = 

•exj j=0 

ieii j=o 
The corresponding expression for the log-likelihood of bit m 
of the turbo decoding algorithm at iteration (1/ + 1) given by 

n«hn^1 
1 j.r\c2i '6Xi ?70 

[Itn]v.+l = log : rrSr- +1°S ■ 
1 " [AS?]» 

n-1 

n4i+(-i)fti™n[A^1 
>6Ii i=0 

is then compared to the optimal solution (1). 
A similar analysis can be done for Gallager's message pass- 

ing algorithms for his LDPC codes as well as for threshold 
decoding. 
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Abstract — An efficient algorithm for the MAP de- 
coding is presented. The proposed algorithm is a 
hybrid of the conventional BCJR algorithm and the 
recursive-MAP (r-MAP) algorithm which has been 
proposed by the authors. The r-MAP algorithm uses 
structural properties of linear codes to reduce the de- 
coding complexity, but does not work well for high- 
rate codes. The proposed algorithm overcomes this 
defect, and achieves smaller decoding complexity than 
BCJR and r-MAP algorithms for any code. 

I. BACKGROUND 

The maximum a posteriori (MAP) decoding plays an essen- 
tial role in the decoding of turbo codes and the complexity 
of a MAP decoding algorithm is significant for realization of 
efficient turbo decoders. The BCJR algorithm- ' is known as 
the conventional algorithm for the MAP decoding, but the 
complexity of the BCJR algorithm is too much for construct- 
ing the entire trellis diagram of the code. The authors have 
proposed the recursive-MAP (r-MAP) algorithm in [3]. The 
r-MAP algorithm uses structural properties of linear codes, 
and succeeds in reducing (time and space) complexity for the 
MAP decoding for relatively low-rate codes. However, the r- 
MAP algorithm is inefficient for high-rate codes. Liu et al. 
consider to apply the BCJR algorithm on a section trellis di- 
agram, and show that the decoding complexity is reduced' '. 

II. PROPOSED ALGORITHM 

Let C be an (n, k) binary linear code, and let Cxy be the set 
of codewords of C such that the first x and the last n — y 
symbols are all zero. Also let pxy(C) be a set of vectors which 
are obtained by deleting the first x and the last n — y symbols 
of each codeword of C. Let Lxy be the set of cosets of pxy(Cxy) 

in Pij/(C), and define Dxy with Dxy 6 Lxy, x < i < y and 
6 € {0,1} as the set of vectors in Dxy such that the (i — a;)-th 
symbol of the vector is b. Define 

V£D'Jy
h *<i<v 

for x < i < y and 6 G {Oil} where PTJ(VJ) is the a pri- 
ori probability that the symbol Vj is chosen at the j-th bit 
position. If the j-th bit position is a parity symbol, then 

Pij(vj)=l. The MAP table for Dxy € Lxy is a table which 
contains MAP(Dxy,i, b) for x < i < y and b € {0,1}. In the 
r-MAP algorithm, the MAP tables are constructed in a divide- 
and-conquer manner: For short sections (i.e. y — x is small), 
the MAP tables are constructed in a rather straight-forward 
way. Otherwise, the MAP tables are computed recursively, 
by decomposing the coset Dxy into cosets in Lxz and Lzy, 
where x < z < y, computing the (smaller) MAP tables for the 

MAP{Dxy,i,b)=    V^ 

decomposed cosets, and combining the computed (smaller) 
MAP tables. By this approach, the decoding complexity is 
reduced significantly for low-rate codes. However, for high- 
rate codes, the complexity of the r-MAP algorithm is larger 
than the BCJR algorithm. Careful analysis of the complexity 
of the r-MAP algorithm shows that the complexity necessary 
at the recursion levels two or three is considerably large. 

We consider a hybrid algorithm of the r-MAP and the 
BCJR algorithms. In the proposed hybrid algorithm, MAP 
tables are constructed in the bottom-up manner, as in the 
r-MAP algorithm. When MAP tables for reasonable section 
length are built up, we switch to the BCJR algorithm. A sec- 
tion trellis diagram with appropriate section boundaries are 
considered, and MAP tables are associated with the composite 
branches of the section trellis. Then, a BCJR-like algorithm 
is executed to obtain the MAP table for the code C. 

III. EVALUATION 

The decoding complexity of the proposed algorithm depends 
on the section boundaries at which algorithms are switched. 
The BCJR and the (pure) r-MAP algorithms can be regarded 
as special cases of the proposed algorithm. Therefore, the 
decoding complexity of the proposed algorithm cannot be 
wronger than the complexity of the BCJR and r-MAP algo- 
rithms. Table 1 is to compare the decoding complexity of the 
BCJR, r-MAP and the proposed algorithms with the known 
best sectionalization. The table shows the number of mul- 
tiplications of probabilities necessary for one decoding. The 
proposed algorithm is more efficient than the other algorithms. 

As a future work, a systematic way for finding the optimum 
sectionalization must be investigated. 

Table 1: The decoding complexity. 

code* BCJR r-MAP proposed 
RM(64,22) 
RM(64,42) 

1,500,132 
2,197,476 

174,464 
4,492,672 

116,096 
529,792 

eBCH(64,16)6 

eBCH(64,36)c 

eBCH(64,45)r 

2,860,004 
56,098,788 

3,000,292 

120,192 
105,056,640 
15,525,680 

120,192 
20,670,592 

1,762,528 

(2] 

[3] 

RM(n, k) and eBCH(n, k)    stand for Reed-Muller code and 
extended BCH code with p-type permutation, respectively. 
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Abstract — Fundamental building blocks for ana- 
log decoders are introduced which transform log- 
likelihood ratios into probabilities and vice versa. By- 
interconnecting these blocks general trellis modules 
can be designed for an analog VLSI implementation 
of the APP (BCJR) decoding algorithm. 

I. INTRODUCTION 

Analog Viterbi decoders are already employed in magnetic 
recording. Recently, analog VLSI implementations of APP 
decoders were reported in [1], [2]. For more background in- 
formation see references therein. Such decoders are needed 
for complex and time-consuming 'turbo'-decoding and 'turbo'- 
equalization. The main advantages of an analog implementa- 
tion include higher speed, smaller size and lower power con- 
sumption when compared to a digital implementation. 

II. LOG-LIKELIHOOD RATIOS AND PROBABILITIES 

Consider a discrete random variable X with values x G 
{0,..., J-1}. The log-likelihood of the probability Px (x = j) 
is defined as lj{X) = ln(Px{x = j)) by using the natural log- 
arithm. A log-likelihood ratio of the discrete random variable 
X can be expressed by using two outcomes x = i and x = j 

Typel 

Li AX) = h{X) - lj(X) = In 
Px(x = i) 

(1) Px(x=j)' 

The probability of a possible outcome x = j is determined by 

Px(x = j) 
EiLo' AX)' (2) 

III. ANALOG DECODER IMPLEMENTATION 

Elementary devices of an analog decoder are bipolar transis- 
tors and diodes, which realize the exponential and logarith- 
mic functions, respectively. The collector current Ic of a 
bipolar transistor is a function of the base emitter voltage 
VBE with Ic = Is eVsE'/Vr, where Is denotes the transport 
saturation current and VT is a temperature dependent quan- 
tity (« 26 mV at 300° K). The configuration of the emitter 
coupled transistors shown in Fig. 1 forms a Type II block. 
This block is an exact circuit implementation of (2), where 
the input voltages Vj = VT lj (X) + C are transformed into 
output currents lj = I Px(x = j). Here J is the bias cur- 
rent of the circuit and C is a voltage constant to be cho- 
sen according to the required input voltage range of the cir- 
cuit. Log-likelihood ratios are represented by differential in- 
put voltages Vi,j = Vi — Vj = VT Lij(X).   The probability 

'This work was supported by the Wireless Circuits and Systems 
Research Department, Bell Labs, Lucent Technologies, 600 Moun- 
tain Avenue, Murray Hill, NJ 07974. 

Example: 

|   TypeLJ=2 

1 
,    1 1 T-1 1 
JType n, J=M= =2ÜTypen,J= =M=2J 

\~i ^ZrP"" 
jType n, J=N=2 

*7 
Type I block: Diode connected transistors transforming 

probabilities into log-likelihood ratios, Type II block: Emitter cou- 
pled devices transforming log-likelihood ratios into probabilities, 
Example: Trellis module for a binary trellis section (XOR opera- 
tion of three bits). 

multiplication of the APP decoding algorithm can be imple- 
mented by using a stacked configuration of Type II blocks, 
where output currents of.one lower block (J = N) are used 
as bias currents for N upper blocks (J = M). Assuming the 
lower Type II block for a variable Xi and each upper Type 
II block for a variable Xi the output currents of the upper 
Type II blocks represent NM probability products PxxPx2- 
The probability summation of the APP decoding algorithm 
is simply obtained by connecting the current outputs of the 
blocks together. This technique is used in [1] to design trellis 
modules with current inputs and in [2] for modules with volt- 
age inputs. The inversion of the exponential characteristic 
can be obtained by using diode connected transistors which 
form the Type I block in Fig. 1. Such devices act as simple 
diodes and generate voltage drops proportional to the loga- 
rithm of the input currents. When the input currents repre- 
sent (scaled) probabilities this circuit exactly implements (1) 
with —V'i.j — Vli = VT Lij(X). The negative sign is due 
to all V'j which are voltages to ground rather than voltage 
drops at the diodes. Note that any scaling of probabilities 
cancels out in (1). The trellis modules in [2] use such Type I 
blocks on top of all Type II blocks to transform the (scaled) 
probabilities back into the log-likelihood domain while in [1] 
CMOS current mirrors are used to generate output currents 
carrying the probability information. For the binary case with 
N, M = 2 and a single binary trellis section (see Example in 
Fig. 1) the circuit implementation results in a Gilbert cell with 
diode loads [2], where the overall function can be described by 

V{.0 = 2 VT tanh-1 [tanh (%j%±) tanh (^x)] ■ 
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Abstract —   We prove a sufficient and a necessary    Corollary 3 Let it be a set of codeword lengths.  If h = 1, 
condition on the existence of fix-free codes, and give 
a few new upper bounds on the redundancy of optimal 
fix-free codes. 

I. INTRODUCTION 

then 

l<j<n 

implies the existence of a fix-free code with lengths ln. 

In fix-free codes, no codeword is a prefix or a suffix of any other    Theorem 2 (Necessary Condition) For a set of codeword 
codeword. This kind of codes has several applications [1]. For    len9ths '" > define 

example, a file compressed by fix-free codes can be decoded 
in the forward direction and the reverse direction simultane- 
ously, thus reducing the decoding time to half compared with 
decoding in one direction only. 

II. MAIN RESULTS 

Consider a code with n codewords. The lengths of these code- 

n-l 

Su(ln) JJ(1 - 2 E 2-'' + [t + 1 - h(i)] ■ 2~'i+1 

y^     2((.+i-'i-'v)+-'i+i)+_ 
»=i 

+ 
l<j,k<k(i)-l 

If Su(ln) = 0, no fix-free code with lengths ln exists. 

words form a vector (/i, • • •, lk, ■ ■ ■, /„), where lk is the length Theorem 3 For a set of codeword lengths In, if for 1 < i < 
of the fcth codeword.   We assume without loss of generality n — 1, either U = lj+\ or 2/,- < li+\, then there exists a fix-free 
that h < h < ■ ■ ■ < ln, and use ln to denote this ordered set code with lengths ln if and only if 
of codeword lengths.   Let h(i) be the smallest h* such that n-i 
lh> = li+i. Define (a:)+ as the positive part of a real number TT(1 — 2 V^ 2~l> + \i + 1 — h(i)] ■ 2~'i+l 

x
'le' i=i           i<j<< 

, .+      J   x,    if x > 0, _-^           ,    ,    . 
{x) ={ o, ifx<0: +  E  2-<i-'*)+>o. 

Our main results in [2] are summarized below. 

n-l 

J2 2~'i-'")+. + 

l<i, k<h(i)-l 

Let q, p\ and pn be the probability of any given source 
Theorem 1 (Sufficient Condition) For a set of codeword symbol> the probability of the most likely source symbol and 
lengths it   define t^le probability of the least likely source symbol, respectively. 

Denote R as the redundancy of an optimal fix-free code. 
Theorem 4 

[  2-.Hi,(g)-(l-9)log(l-2-r-1°<^) 
R<1 -g(i-r-ioggl), if 9 <0.5, 

[  4-3q-Hb(q), if q > 0.5. 
Corollary 4 For any fixed n, where n is the size of the source 
alphabet, it is impossible to construct a sequence of source dis- 
tributions for which R tends to 2. 

Theorem 5 

R    <    min[4-3pi-Hb(pi),2-Hb(pi) 

-a -Pi)iog(i - 2-[-,o^)-Pl(i - r-iogp,i)]. 
Theorem 6 

R    <    2-/f6(pn)-(l-pn)log(l-pn + 2-r-logp"1) 

-Pn(l-r-logPnl). 

REFERENCES 
[1] J. L. Peterson, "Computer programs for detecting and correct- 

ing spelling errors," Comm. ACM, 23, pp. 676-687, 1980. 
[2] C. Ye and R. W. Yeung, "Some basic properties of fix-free 

codes," Accepted by IEEE Trans. Infoem. Theory,. 

l<j,k<h(i)-l 

Ifsi(ln) > 0, there exists a fix-free code with lengths ln- 

Corollary 1 Let ln be a set of codeword lengths. If 

■2-'-, E 2~" 
l<7<n 

<2 + 

then there exists a fix-free code with lengths ln ■ 

Corollary 2 Let ln be a set of codeword lengths. If 

l<J<n 

then there exists a fix-free code with lengths ln ■ 
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Abstract — This paper proposes and analyzes vari- 
able-rate sync-timing codes that resynchronize after 
the encoded bits are corrupted by insertions, deletions 
or substitution errors, and also produce estimates of 
the time indices of the decoded data. 

I. INTRODUCTION 

Information theory, which has traditionally focused on en- 
coding data values, has apparently overlooked the problem 
of encoding data time indices. The latter is necessary in most 
situations where conventional data synchronization is needed, 
i.e., when the encoded bit stream is corrupted by insertions, 
deletions or substitution errors. For example, suppose an infi- 
nite sequence of temperatures, 43,64, 27, 54,36,42, 73,45,..., 
corresponding to cities Det, LA, Chi, Bos, NY, StL, Mia, 
Bal,..., is encoded into an infinite sequence of bits, which 
a decoder must begin decoding midstream, at some arbitrary 
point. Since the decoder does not initially know how to parse 
the arriving bits into codewords, it will ordinarily produce er- 
roneous outputs, until at some point, it acquires synchroniza- 
tion and produces correct outputs from then on. For example, 
if it produces 73,40, 54, 36,42, 73,45,..., then it has acquired 
sync when producing "54". However, the decoded data is of 
limited value because the correspondence between tempera- 
tures and cities has been lost. What is needed is a system that 
encodes data time indices, as well as data values, so that the 
decoder produces estimates of both, i.e., a sequence of temper- 
ature and time index pairs, like (73,12), (40, 7), (54,4), (36,5), 
(42,6), (73, 7), (45, 8),.... We refer to codes that encode and 
decode data time indices, as well as data values, as sync-timing 
codes. They are essential in video coding, where they ensure 
frame-sync, as well as audio-video sync. 

While conventional sync codes have been much studied 
(cf. [1]), only ad hoc techniques have been developed for sync- 
timing, e.g. the marker systems in JPEG and MPEG. Indeed, 
the sync-timing problem has only recently been identified as 
such, and only recently has a theory begun to emerge [2]. 
However, the theory in [2] applies only to fixed-rate schemes, 
whereas source codes are often variable-rate, and such codes 
are the most sensitive to errors. In this paper, we initiate 
a theory of variable-rate sync-timing codes by introducing a 
family of such codes and analyzing them on the basis of the 
performance measures used in [2]: coding rate, ^synchroniza- 
tion delay and timing span (which measures the code's ability 
to reproduce time indices). We find that the asymptotic per- 
formance of the variable-rate sync-timing codes studied here 
is the same as that of the best known fixed-rate codes. 

II. A VARIABLE-RATE SYNC-TIMING CODE 

Here, we describe a variable-rate sync-timing encoder that is 
designed to follow a binary source encoder that maps blocks 

•This work was supported by NSF Grant NCR-9415754. 

of k source symbols into codewords with average length kL. 
The output of the sync-timing encoder, in response to a source 
codeword, is a sync-timing codeword that consists of one of p 
distinct markers, followed by the source codeword after it has 
undergone bitstuffing, followed by a zero. The marker prefixed 
tothejth "bitstuffed" codeword comprises a flag of mi consec- 
utive ones (denoted by lmi), followed by a zero, followed by a 
block index codeword for j — 1 mod p, followed by another zero. 
The block index codewords are p distinct binary sequences of 
length m2, each of which does not contain the flag. Bitstuffing 
prevents the appearance of a flag in each source codeword by 
"stuffing" a zero immediately after each occurrence of lmi_1 

in the codeword, the idea being that the flag can then be used 
for synchronization purposes. The structure of this variable- 
rate sync-timing code is similar to that of the cascaded code 
described in [2]. Note that the source encoder could be lossless 
or lossy, and it need not process blocks independently. 

The decoder locates the flags in the stream of received bits, 
and for each flag found, it reverses (if possible) the encod- 
ing procedure on the sequence up to the next flag. Thus, 
every successful reversal of the encoding yields the integer 
j encoded by the block index codeword, and the reproduc- 
tions of the k source symbols encoded by the source codeword. 
The ith source symbol decoded receives the time index jk + i. 
Since j < p — 1, the time indices produced by the decoder are 
modulo-fcp reductions of the actual time indices of the data. 

We measure the performance of this code in terms of delay, 
rate and timing span, as defined in [2], after modifying their 
definitions slightly to account for the variable-rate nature of 
this code. Thus, we define resynchronization delay to be the 
average length of a sync-timing codeword, so that D = mi+ 
m.2 + k(L+S) + 3, where kS is the average number of stuffed 
bits added per codeword. Rate, R = kL/D, is a measure of the 
redundancy introduced by the sync-timing encoder. Finally, 
the timing span of the code, T = kp, is a measure of the code's 
ability to reproduce time indices. We want D to be small, R 
to be close to 1, and T to be large. Let T(r,d) denote the 
maximum timing span achievable by such a code with rate at 
least r and delay at most d. The following theorem shows that 
the rate of growth of T(r, d) with d has the same asymptotic 
form as that for fixed-rate codes {cf. [2]). 

Theorem: For r £ (0,1), (i) for any d > 0, T{r,d) < 
(d/L)2d(-1~r), (ii) for any e > 0, there_exists d(r,e) > 0 such 
that for all d > d(r,e), T(r,d) > rd/(L(l + e)) 2d(1-r)/(1+£), 
and (iii) limd_*00(log2T(r,d))/d = 1 - r. 
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Abstract — We examine a specific strategy of us- 

ing sync markers for error containment in compressed 

data, using a model that separates the data compres- 

sion and error containment stages. 

I. A SIMPLE ERROR CONTAINMENT SCHEME 

Consider a data compressor that maps blocks of source 
symbols to variable length binary sequences. At the output 
of the compressor, we assume that zeros and ones are equally 
likely and that an error at this point would be undetectable 
to the decompressor. To limit the effect of channel errors we 
use a special sequence called a sync marker. The length m 
sync marker s is inserted between compressed blocks so that 
block boundaries can be identified following a channel error. 
To prevent the chance occurrence of the sync marker within 
the compressed data sequence, we insert a bit whenever we 
observe the first m — 1 bits of the sync marker. 

Our aim is to determine how to choose sync markers and 
analyze the impact on overall performance of this strategy. A 
complete version of these results is available in [2]. Related 
work includes [1, 3]. 

II. ERROR CONTAINMENT PERFORMANCE 

The bit insertion procedure can be described using a state 
diagram that is essentially the same as that in [1], The ex- 
pected total number of bits In(s) inserted in a block of n 
compressed bits can be computed from the transition matrix 
for the state diagram [2]. 

Two length m sync markers s and t are said to be equivalent 
if they give identical performance in the error containment 
scheme, i.e., when In(s) = In{t) for all n > 0. Two equivalent 
sync markers can have very different state diagrams. 

We define the overlap set of the bit string s = S1S2 ... sm 

as V(s) = {1 < i < m : si ... Si = sm_;+i ... sm}. In other 
words, i 6 V(s) if s can be written twice with i identical bits 
overlapping. Let V'(s) denote the overlap set of s with the 
last bit inverted. 

Theorem 1  If s and t are length m sync markers for which 
V(s) = V{t) and V'{s) = V'(t), then s and t are equivalent. 

The asymptotic growth rate of the average number of inserted 
bits In{s) can be neatly evaluated for any sync marker s: 

Theorem 2 If s is a length m sync marker, then 

lim -In(s) = (V1-1 - 1 +   V  2i"1 -   V   2*"1 

i£V(s) i£V'(s) 

"The work described was funded by the TMOD Technology Pro- 
gram and performed at the Jet Propulsion Laboratory, California 
Institute of Technology under contract with the National Aeronau- 
tics and Space Administration. 

Given a blocklength n, for any fixed sync marker length 
m < 8, we have verified empirically (and we conjecture that 
it is true for all m) that the optimal sync marker must belong 
to one of three classes. These classes are those containing 
10m~\ 10m_2l, and lm, which we refer to as class-1, class-2, 
and class-3, respectively. 

Theorem 3 For class-1, class-2, and class-3 sync markers, 
the average number of inserted bits In{s) takes the following 
form wherever it is nonzero: 

n 
In(s) 

a(s) 
+ b(s) + cn(s)2" 

where a(s), b(s) are independent of n, and cn(s) is periodic in 
n with a short period on the order of the length of s. Expres- 
sions for a(s), b(s), and cn(s) are given in [2] for each of the 
three special classes. 

To compare the performance of sync markers of different 
lengths, we compute the average data expansion, i.e., the av- 
erage number of extra bits that are added to each data block 
for synchronization purposes. The average data expansion is 
Xn(s) = \s\+In(s) where \s\ denotes the length of sync marker 
s. In Figure 1 we plot the difference between the globally op- 
timum average data expansion mins Xn(s) and log2n. 

For large n, class-1 and class-2 markers take approximately 
equal turns at being optimum, and the globally optimum av- 
erage data expansion is confined to a tight range of values 
between log2 n +1.9 and log2 n + 2. Class-3 markers, while 
asymptotically optimum for any fixed marker length m, are 
never globally optimum. 

2- 

r i mi| 1—rTTTTTr] 1—i—rrmr| 1—i i i uf 

10 100 1000 
blocklength n 

Figure   1:      Globally   minimum   average   data   expansion, 
min., Xn(s), plotted as a difference relative to log2 n. 
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I. INTRODUCTION 

Lossless data compression, such as arithmetic coding and Ziv- 
Lempel coding, is widely used for text compression[l]. Since errors 
in compressed data give serious influence to the decompression, er- 
ror control for compressed data is necessary. From this point, the 
authors proposed burst error recovery in arithmetic coding[2]. This 
paper proposes error recovery schemes for LZW coding and LZ77 
coding[l] by using Unequal Error Protection (UEP) schemes, which 
protect the important parts of the compressed data more strongly. 

II. ERROR RECOVERY FOR LZW CODING 

Let the input alphabet[l] contain q characters. Initially, the dictio- 
nary contains q distinct phrases each of which corresponds to one 
character in the input alphabet. A phrase is a word, part of a word, 
or several words[l]. The compressor searches the dictionary for a 
phrase which matches the input and dispenses the pointer of the 
phrase. At the same time, a new phrase is parsed and added into 
the dictionary until the number of phrases reaches its limit. Let the 
size of the dictionary be M phrases. Then the length of the pointer 
is flog2 M~\ bits, where \x~\ is the smallest integer greater than or 
equal to x, and the first (M — q) pointers are used to rebuild the dic- 
tionary in decompression. Thus the former part is more important 
than the latter part and should be more strongly protected. 

The algorithm of the proposed scheme is as follows. 

(1) Divide the compressed data into two parts, where the former 
part consists of the first (M — q) x flog2 M] bits and the latter 
part consists of the remaining compressed data. 

(2) Apply t\ bytes error correcting code to the former part and 
<2 bytes error correcting code to the remaining latter part, 
where t\ > *2- 

Fig. 1 shows the relation between error location in the com- 
pressed data and relative amount of errors occurred in the decom- 
pressed data in the proposed scheme with M = 8192, q = 256, ti = 
5 and t2 = 1- The source file is "paperl"[l]. The check bit length is 
116 bits and 48-bit burst errors are injected. The relative amount 
of errors is given by calculating the percentage of erroneous lines to 
total number of lines. Here, a line shows a group of phrases sepa- 
rated with each other by "return mark". For comparison, the cases 
of applying the conventional four bytes error correcting code with 
the same number of check bits as that of the proposed UEP scheme, 
denoted as "4bEC", to the whole compressed data as well as of no 
error correcting code, denoted as "Without ECC", are also shown. 
Fig. 1 says that the proposed scheme is more efficient to control er- 
rors than the conventional error control coding. Simulation results 
for other source files are similar to this. 

12396 bytes for 
re-building dictionary 

1     I   i 
11 • «j ■ * CU1 

Proposed UEP scheme      
(116 check bits, ti =5, t2=l) 

4bEC code(116 check bits)- -' 

Without ECC — 

Source: "paperl" 
/ 53,161 bytes, 1250 lines, x 
V compressed size: 26,689 bytes ' 

Errors: 48-bit burst errors 

* 0 5000 10000 15000 20000 2501 
Error location in compressed data (bytes) 

Fig. 1: Error recovery capability of UEP scheme for LZW coding 

III. ERROR RECOVERY FOR LZ77 CODING 
Compressor of LZ77 coding searches a fixed-size sliding window for 
the longest phrases which matches the current input. In the i- 
th match, compressor dispenses a fixed-length pointer (OJ, /;,«;), 
where o< is the offset of the match, /; the matched length and Ui 
the first character which does not match. In decompression of the 
t'-th pointer, the decompressor copies a /;-symbol phrase from the 
position indicated by Oi and shifts the copied phrase as well as the 
character Ui into the sliding window and the output buffer. 

The influence of errors occurring in /j's is quite different from 
those in o;'s or u;'s. If error is in /;'s, the length of copied phrase 
is changed. It affects the window shift, i.e., o;'s of the following 
pointers will indicate the phrases different from the correct ones. 
Hence, all the following decoded phrases are corrupted. Simulation 
shows that an error in /;'s averagely gives over 40 times larger 
damage than that in o, 's or Ui 's. In addition, errors in /; 's located in 
the former part of the compressed data give more serious influence 
than those in the latter part. Thus, algorithm of the proposed 
scheme is as follows. 

(1) Group the compressed output (oi,/i,«i), (02, ji, «2), —, 
(on,fn,un) into two sequences {oi,ui,02,«2i—>°n,«n} and 
{/l./2,-..,/n}. 

(2) Apply li-bit burst error correcting code to {01, «i, 02, «21 
...,on,un}. 

(3) Apply /2-bit burst error correcting code to {/i,/2,—, 
/l n/2]} and /3-bit burst error correcting code to 
{/|n/2j+l./|n/2J+2>->/n}.  Here, l2 > k ■ 

(4) Append the check bits obtained in Steps (2) and (3) at the 
end of the compressed data. 

Fig. 2 shows the relation between error location in the com- 
pressed data and relative amount of errors occurred in the decom- 
pressed data in the the proposed scheme with h = 16, h = 12 and 
(3 = 8. The source file is "paperl"[1]. The check bit length is 105 
bits and 48-bit burst errors are injected. The results of Fig. 2 are 
obtained in the same way as that in Fig. 1. For comparison, the 
cases of applying the 40-bit burst error correcting Fire code with 
119 check bits as well as of no error correcting code, denoted as 
"Without ECC", are also shown. Fig. 2 says that the proposed 
scheme is more powerful to control errors than applying the 40- 
bit burst error correcting Fire codes. Simulation results for other 
source files also lead to the similar conclusion. 

Proposed scheme(105 check bits, 
/,=/«,   l2=12, /,=«; 

40-bit burst error correcting Fire code(119 check bits) 
A    /%*—. Without ECC 

v N.,^--v Source: "paperl" 

/ 

s. 
N / 53,161 bytes, 1250 lines, \ 

\ compressed size: 29,772 bytes/ 
«-«.Errors: 48-bit burst errors 

10000 15000 20000 25000 
Error location in compressed data (bytes) 

Fig. 2: Error recovery capability of UEP scheme for LZ77 coding 
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Abstract — We examine communication over block 
fading additive Gaussian channels with delayed chan- 
nel state information feedback and finite decoding de- 
lay constraints. Following an approach due to Cover 
[1], we apply the broadcast strategy and find the max- 
imum achievable expected rate in cases where the un- 
derlying parallel Gaussian broadcast channels are not 
degraded in the same direction. 

I. INTRODUCTION 

Consider a single user communicating over a discrete time 
additive Gaussian noise channel where the noise variance stays 
constant over a block of N symbols but may vary from block 
to block. The channel model over the kth block (k 6 Z) is 

Xk + Zk (1) 

where Xk = {Xkl,... ,XkN) and Yk = (Yku... ,YkN) are 
vectors in RN representing the inputs and outputs of the chan- 
nel over the fcth block. Zk is a Gaussian random vector with 
mean zero and covariance matrix SkI. Assume that the noise 
variance process {Sk} is stationary ergodic and that S, the 
state space of {Sk}, is a finite subset of R. The Zk's are as- 
sumed to be independent. This is an equivalent model for a 
version of the block fading channel. For convenience, we refer 
to (1) as the block Gaussian channel (BGC). 

Assume that during the fcth block, the receiver has perfect 
knowledge of the noise variances 5* ^ = (..., Sk-i, Sk), while 
the transmitter has perfect knowledge only of S*^, where 
d> 1, via delayed noiseless feedback. Next, suppose the sys- 
tem has a maximum allowable decoding delay of KN symbols 
(K € N). The goal is to maximize the expected rate (expecta- 
tion is over the fading process {Sk}) over the BGC subject to 
the decoding delay constraint and an average power constraint 

-KN £*=1 Z)n=l E [XL]  < P- 

II. DECODING DELAY OF ONE BLOCK (K = 1) 

For the one block case, we show that the maximum expected 
rate per block is attained by a broadcast strategy which as- 
sociates noise variance levels in the BGC with corresponding 
receivers in a degraded broadcast channel. The optimal power 
splitting parameters are chosen according to the conditional 
probabilities of the current channel state given all previous 
channel states. 

Theorem 1 Consider a BGC with an average transmit power 
constraint P and noise power varying according to a stationary 

Edmund M. Yeh 
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Mass. Institute of Technology 

77 Mass. Ave. Rm 35-303 
Cambridge, MA 02139 
email: emyehamit.edu 

ergodic process {Sk, k € Z} with state space S = {»/i,... ,»?/,}, 
T]i > T)2 > ■ ■ ■ > T]L . Suppose the decoding delay constraint is 
N symbols and noiseless channel state feedback to the trans- 
mitter is delayed by d blocks. If arbitrarily small error proba- 
bility is required, the expected rate per block satisfies 

<*USTJ)P E. [R] < Esk-d 

.1=1 Zj>tc,*(sh_-J)P + r,i 

where Q,(STJ) ± Ej=lP (Sk = Vi\SkSj), andcx*{sT£) = 

(Qi (S-J) . • ■ ■ >Q2 (S-~J)) maximizes 

£ Y.p{s* = vAsk--J = s*rJ) ( ^ "l 

subject to cti > 0, IC/^i aj = 1. 

III. DECODING DELAY OF TWO BLOCKS (K = 2) 
The main challenge in extending Theorem 1 to the case of 
if > 1 is that unlike the one-block case, the underlying paral- 
lel Gaussian broadcast channels for K > 1 are in general not 
degraded in the same direction. Nevertheless, we extend El 
Gamal's work [2] on the capacity region for the two-receiver 
two-parallel Gaussian broadcast channel with common infor- 
mation to conclude that the broadcast strategy remains opti- 
mal for the the case of a two state i.i.d. BGC with K = 1. 

Theorem 2 Consider a two-state i.i.d. BGC with noise vari- 
ance S = rji with probabilty q and S = 772 w.p. 1 — q. Let the 
average transmit power constraint be P and the decoding delay 
constraint be two N-blocks. If arbitrarily small error probabil- 
ity is required, the expected rate per block satisfies 

2 L    \m+a'3Pj KVi+a'sPJi 2 

+ C (Ä)+"-",°(^) <" 
where a = 1 — a, and a* = (al,al,a3) maximizes the RHS 
in (2) in a subject to a; > 0, i — 1,2,3 and £ a; = 1. 
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Abstract — A game theory formulation for the Gaus- 
sian interference channel is given under the assump- 
tion that no interference subtraction is performed. 
The existence, uniqueness and stability of a pure 
strategy Nash equilibrium is established under a mild- 
interference condition, 

I. INTRODUCTION 

In a Gaussian interference channel, two independent 
sender-receiver pairs attempt to communicate in the presence 
of interference from each other. The capacity region for the 
interference channel is still an open problem. The largest rate 
region presently known is achieved with superposition cod- 
ing and interference subtraction [1], but its optimality is not 
yet known. However, the traditional view of the interference 
channel allows the two senders, while remaining independent, 
to be cooperative in their respective coding strategies. If such 
cooperation cannot be assumed, the interference channel be- 
comes a non-cooperative game. This paper studies the inter- 
ference channel from this game theory perspective. We focus 
on Gaussian interference channels with memory, but make 
the simplifying assumption that no interference subtraction is 
performed regardless of interference strength. We ask the fol- 
lowing questions: if each sender's sole objective is to maximize 
its own data rate, can an equilibrium be achieved in a com- 
petitive environment? If so, is such an equilibrium unique? 

II. COMPETITIVE EQUILIBRIUM 

The two senders in a Gaussian interference channel, 

yx = xi + ^2x2 + ni 

y2 = X2 + .4.1X1 +n2, 
(1) 

(2) 

are considered as two players in a game. The channel transfer 
functions are normalized to unity. The square magnitude of 
the interference transfer functions A\ and A2 are denoted as 
Qi(/) and 0.2(f). Let Ni(f) and N2(f) denote noise power 
spectrum densities. The structure of the game, i.e., the in- 
terference coupling functions and noise power, are common 
knowledge to both players. A strategy2 for each player is its 

Pi(/) and P2(f), subject to the 

'" P2, 

transmit power spectrum 

power constraints J   P\(f)df < Pi, and J   P2(f)df < 
respectively. The payoffs are data rates : 

Pi 

R2 

-f Jo 

-f Jo 

log    1 Pl(f) 

log    1 + 

Nx(f) + a2(f)P2(f) 

iV2(/) + ai(/)Pi(/) 

df, 

df, (4) 

where bandwidth up to F is used. The game is not zero- 
sum. We are interested in characterizing its pure strategy 
Nash equilibrium. 

JThis work was supported by a Stanford Graduate Fellowship. 
2 Only pure (or deterministic) strategy is considered here. 

A Nash equilibrium is a strategy profile in which each 
player's strategy is an optimal response to the other player's 
strategy [2]. For the interference channel, the optimal re- 
sponse for a player is the waterfilling of its power with respect 
to the combined noise and interference. If the power distribu- 
tions are such that waterfilling is achieved simultaneously for 
both players, a Nash equilibrium is reached. At a Nash equi- 
librium, neither player has an incentive to move away from its 
present power distribution. 

Theorem: Suppose that sup^ cti(f) ■ supya2(/) < 1, then 
a pure strategy Nash equilibrium in the Gaussian interference 
game exists, is unique, and is stable. 

Proof: The first idea is to recognize that if ai(/)-c*2(/) < 1 
V/, there is a Nash equilibrium corresponding to every wa- 
ter level (K\,K2). For fixed (K\,K2), the Nash equilibrium 
(P\(f),P2(f)) is found by solving the waterfilling condition: 

Pi(/) + a2(/)P2(/) + iVi(/) = ^i (5) 

P*(f) + <*i(f)Pi(f) + N2(f) = K2, (6) 

unless Qi(/) > K\-N\U\ >in which case pi(/) = max{0, (Ki - 

JVi(/))} and P2(/) = 0, or a2(/) > %!%$, in which case 

P2(/) = max{0, (K2 - N2(f))} and Px(f) = 0. 
Next, we establish that for a given power constraint 

(Pi,P2), there exists (K\,K2) whose Nash equilibrium has 
exactly this power. For each (K\,K2), denote the power 
level at the corresponding Nash equilibrium as (PK1,PK2)- 

Observe that when ai(/) • a2(f) < 1, if K\ < K[ and 
K2 = K2, then PKl < ~PK' and PÄ2 > Pr. Now, start 
with K\ — K2 = 0. Increase K\ until T?KX = Pi, then in- 
crease Ä2 until PK2 = P2- But then, we have PKJ < Pi by 
observation. So, we can increase K\ again, until P/Cj = Pi, 
then increase K2, etc. The increasing sequences of Ki's and 
AVs converge because they cannot go to infinity with finite 
power constraints. The limit point is a Nash equilibrium cor- 
responding to (Pl,P2). 

To prove uniqueness, let (P(i(f), PfC/)) be the power dis- 
tribution at a Nash equilibrium. Start with any power distri- 
bution P{ '(f) that satisfies the power constraint.  Waterfill 

y(0)f for Pj   (/)> assuming P{ '(f) as interference. Then, waterfill 

for Pj '(f), assuming P2
l '(f) as interference, etc. This itera- 

tive waterfiling process coverges in Li-norm f \P\ ' — P\\df 

because maxdKP^1' - P1
w)+||i,||(P1

(fc+1) - P^-Hi) < 

(3) supa2(/) • max(||(P2
(fc) - P2

N)+||i, \\(P™ - P2
N)-||i) < 

supa2(/)supa1(/)-max(||(P1
(fc)-P/v)+||1,||(P1

(fc)-P1'v)_||i), 
which is a contraction by the assumption that supai(/) • 

supa2(/) < 1. So, P[k) -+ Pf in Li-norm as k -> 00. O 
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Abstract — 
We characterize the capacity-achieving distribution 

for a class of non-Gaussian additive noise channels, 
when the transmitter is subject to an "average" power 
constraint. Specifically, we show that if the prob- 
ability density function of the noise, in addition to 
satisfying some mild technical conditions, has a tail 
which decays at a rate slower (resp. faster) than 
the Gaussian, then the capacity-achieving distribu- 
tion has bounded (resp. unbounded) support. 

I. PRELIMINARIES 

Consider a (discrete-time) additive noise channel where the 
IR-valued output corresponding to an IR-valued input xt is 
given by 

Yt=xt + Zt,    t>l, (1.1) 

where {Zt}^Li is the IR-valued i.i.d. noise with TE[Zt] = 0, and 
n(Zt-nzt\)2) = cri 

Assume that the distribution of the rv Zt admits a proba- 
bility density function (pdf) pz with respect to the Lebesgue 
measure. Then, for any IR-valued channel input rv Xt with 
distribution Q, let p® denote the resulting pdf of the output rv 
Yt. The capacity of the channel in (1.1), subject to an average 
power constraint Vo < oo, denoted C(Vo), is given as 

C(Po) =        max        I(Q), 
Q.EQ[X?)<V0 

(1.2) 

where 7(Q) 4/(Xf AYt). 
Let the marginal entropy density (cf.  e.g., Smith (1969)) 

be given by 

M*;Q) !' J —( 
pz(y-x)logp(y;Q)dy,    x e 1R, Q G A 

(1.3) 
where A denotes the set of all distributions of the IR-valued 
TV Xt. 

Next, we consider three kinds of noise rv with pdf pz in 
(1.1): heavy-tailed, light-tailed and bounded. 

A noise rv Zt will be called heavy-tailed if its pdf pz satisfies 
the following conditions: 

(Al) it is uniformly continuous; 

(A2) for QUQ2 € A, it holds that if p^(y) = p^2(y), y€lR, 
then Qi = Q2; 

(HI) there exist (finite) positive constants ki,k2 and ph, 0 < 
ph < 2, such that 

pz(z)>k1e-
k^Ph,    zGlR; (1.4) 

(H2) there exist (finite) positive constants kz and k*, such 
that 

Pz{z)-kT^'   zelR- (L5) 

On the other hand, a noise rv Zt will be called light-tailed 
if its pdf pz, in addition to satisfying (Al) and (A2), is such 
that 

(LI) there exist (finite) positive constants ci,C2, and pi > 2, 
such that 

Pz (*)<cie-C2|z|",     zeJEi; (1.6) 

(L2) there exists a (measurable) convex, increasing mapping 
4>: IR+ -»IR+, such that 

4>(z)    <    oo,    z e 1R+ 

pz(z)    >    e 

Efe(4|Zt|)]    <    oo 

</>(M) z€lR, 

(1.7) 

Finally, a noise rv Zt will be called bounded if its pdf pz is 
a bounded function and has bounded support. 

II. RESULT 

Theorem II.1 If the noise rv Zt in (1.1) is heavy-tailed, then 
the capacity-achieving distribution Qo in (1.2) has a bounded 
support. If the noise pdf has the additional property that for 
every Vo > 0 and Q 6 Q-p0, there exists an analytic extension 
of the marginal entropy density h(x;Q), x € IR, then Qo has 
a finite support. On the other hand, if the noise rv Zt is 
light-tailed or has a bounded support, then Qo has unbounded 
support. 

Earlier related results can be found in the work of Abou- 
Faycal, Trott and Shamai (ISIT 1997). 

The heuristics behind the assertions in Theorem II. 1 can 
be understood as follows, denoting by g a Gaussian pdf with 
mean zero and variance Vo + o\, and by Q^0 the set {Q € 
Qv0 ■ EQPQ

2
] = Vo}, under the conditions (HI, H2) or (LI. 

L2) and (Al), it holds that 

C(Vo)    = max  I(Q) 
QeQ'Vo 

=    -[l+\og27r(V0 + a2
z)]-MZt) 

(HI) 

min   D(pY\\g). 
Q€Q To 

Hence, the maximization in (1.2) is equivalent to minimiz- 
ing the (Kullback-Leibler) divergence between the pdf of the 
output rv Yt and the Gaussian pdf g. The assertion in The- 
orem II.1 is then, in effect, a reflection of the fact that for a 
given noise pdf, an input distribution with a bounded support 
results in an output pdf which decays more rapidly than when 
the input distribution has unbounded support. 
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Abstract — The capacity of future high-density mag- 
netic recording systems is expected to be limited pri- 
marily by "jitter". For such systems, a new simple 
channel model is proposed. A factor graph repre- 
sentation as well as upper and lower bounds on the 
capacity of this channel model are given. 

As mechanical and electronic components of magnetic 
recording systems are being improved, the "noise" of 
the magnetic medium itself will begin to dominate other 
noise sources [1]. This "medium noise" is highly signal- 
dependent [2] and comes in two different forms. First, isolated 
transitions (i.e., changes of magnetic polarization) are affected 
by jitter [3]: the transition is read at a different position than 
where it was written. Second, very short polarization regions 
tend to be unstable: the two transitions move towards, and 
may actually cancel, each other. 

The present paper addresses the problem of modeling these 
effects in a way that is suitable for signal processing. To this 
end, the magnetic recording channel is first decomposed into 
three parts: a "binary jitter channel" (BJC) that captures 
the mentioned medium noise, a linear intersymbol interference 
channel that is defined by the impulse response of the read 
head, and additive white Gaussian noise due to the amplifier. 
The BJC is then further decomposed as follows. 

Let Xk G {0,1} and Yk £ {0,1} be the time-A; input and 
output, respectively, of the BJC, where Xk = 1 (Yk = 1) 
means that a transition is written into (read from) the time-A; 
slot. The BJC Xk —► Yk is decomposed into a memoryless 
probabilistic channel Xk —► Jk and a deterministic channel 
Jk —► Yk with memory. The auxiliary variable Jk takes values 
in the set {0} U {£>* : i = —m, —m + 1,... , m} for some posi- 
tive integer m; Jk = D3 means that a transition was written 
into the time-A; slot and moved into slot k + j. We mainly 
consider the simplest case with m = 1, pj\x(D    |1) = p, and 

P.7|X(1|1) ■ 2p. We always have PJ|A(0|0) = 1. 
The deterministic channel Jk -> Yk —which takes into ac- 

count the cancellation of transitions that fall into the same 
slot or cross—can be described by a trellis. For m = 1, this 
trellis has 4 states and 16 branches. 

The factor graph [4] that corresponds to this BJC model 
is shown in Fig. 1. This factor graph can be plugged into a 
block factor graph (as in Fig. 2) of the whole system. The sum- 
product algorithm ("probability propagation") [4] can then be 
applied to "turbo" decoding of such a system. 

The mentioned cancellation of crossing transitions makes 
it difficult to compute the capacity of the BJC. How- 
ever, methods similar to those of [5] (where can- 
cellations   were   not   considered)    can   be   used   to   ob- 

1 Partial support from NSF Grant CCR-9904458. 
2This work was supported by NSF Grant CCR-9984515. 
3This work was supported by Grant TH-16./99-3. 

tain   tight upper   and   lower   bounds   by   optimization   of 

maxp, [H(YL\Y
L_l1)-H(YL\K+_LL

+
+\Y

L_L ,_L )] and 

Cf t maxpx [//(YL|Y^15^)-//(yL|X+^1
1Y^1)] re- 

spectively, where SLL is the state of the BJC composed of the 
time-(—L) state and M prior inputs. The input is assumed 
to be stationary and generated by a Markov-Chain of order 

iM <cM
L, and C approaches capacity 

for M —► oo. Fig. 3 shows upper and lower bounds on the 
capacity of the BJC for (l,oo)-constrained input sequences, 
i.e., there is at least one zero between two ones. 

[2] 

So I        Si I        52 I        S3 I        54 !        55 

Y0 Yi r2 Y3 K, 

Fig. 1: Factor graph representation of the BJC. 

9    9    9   9-9 
binary code 

9  9  9  9  9-9 
interleave? 

9   9   9   9   9-9 
(1,7) RLL rate 2/3 encoder 

9999999-  9 
binary jitter channel 

mm?- ? 
intersymbol interference channel 

9999999-   9 
symbolwise AWGN 

0060000 ... 

Fig. 2: Block factor 
graph. 

■a 
i 
i 

0.7, 

-V- Upp« Bound. M>5. 2L+1*5 
V Uppw Bound. M.3. 2L*1-7 
a- Low»r Bound. M.3. 2L»1>7 
-*- Low« Bound. M»5. 2L*1=5 

0.65 

0.8 

0.55 

1 
0.5 

0.45 

0.4 

0.35 

 N^ \  

Fig. 3:   Bounds of the BJC for 
(1, oo)-constrained inputs. 

REFERENCES 

[1] A. Kavcic and A. Patapoutian, "A signal-dependent autoregres- 
sive channel model," in Proc. IEEE JNTERMAG Conference, 
Kyongju, Korea, May 1999. 

S. M. Yuan, H. N. Bertram, "Statistical data analysis of mag- 
netic recording noise mechanisms," IEEE Trans. Magnetics, 
vol. MAG-28, pp. 84-92, Jan. 1992. 

[3] C. P. M. J. Baggen, An Information Theoretic Approach to 
Timing Jitter, Ph.D. thesis, UCSD, 1991. 

[4] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, 
"Factor graphs and the sum-product algorithm," sub- 
mitted to IEEE Trans. Inform. Theory, available at 
http://www.comm.utoronto.ca/frank/factor/. 

[5] Sh. Shamai, E. Zehavi, "Bounds on the capacity of the bit 
shift magnetic recording channel," IEEE Trans. Inform. The- 
ory, vol. IT-37, no. 3, pp. 863-872, May 1991. ! 

0-7803-5857-0/00/$! 0.00 ©2000 IEEE. 
-433- 



.NT 2000, Sorrento, Italy, June 25-30,2000 

The Traffic Carrying Capacity Of Wireless Networks 
Piyush Gupta and P. R. Kumar 

CSL, University of Illinois 
1308 W. Main St, Urbana, IL 61801 

{piyush,prkumar}Qdecision.csl.uiuc.edu 

Abstract — How much traffic can wireless networks 
carry? Consider n nodes located in a disk of area A 
sq. meters, each capable of transmitting at a data rate 
of W bits/sec. Under a protocol based model for suc- 
cessful receptions, the total network can carry only 
0 (Wy/An) bit-meters/sec, where 1 bit carried a dis- 
tance of 1 meter is counted as 1 bit-meter. This is 
the best possible even assuming the nodes locations, 
traffic patterns, and the range/power of each trans- 
mission, are all optimally chosen. If the node loca- 
tions and their destinations are randomly chosen, and 
all transmissions employ the same power/range, then 
each node only obtains a throughput of© (W/y/n\ogn) 
bits/sec, if the network is optimally operated. Similar 
results hold for a physical SIR based model. 

I. INTRODUCTION 

Consider a network with n nodes located in an area of A sq. 
m. Every node can transmit at a data rate of W bits/sec over 
a common channel. Due to interference between transmis- 
sions, we need to specify when transmissions are successfully 
received. We allow for two models. 

The Protocol Model: For a node to receive a transmission 
at a range r, there can be no other simultaneous transmissions 
within a range (1 + A)r from it. (Or one can assume that 
interference rules out any other receptions in a disk of radius 
(1 + A)r around a transmitter of range r). 

The Physical Model: Assume that path-loss can be mod- 
eled as r~a where a > 2, and that there is ambient noise of 
power level N. Then a transmission by node X; at a power 
level Pi is successfully received by node Xj if and only if the 
signal-to-interference ratio (SIR) is at least ß, i.e., 

PilXj-Xj] 

N + T,keTP"\x>'-xi\ 
>    ß- 

Above T is the set of all other nodes which are transmitting 
at the very same time, and Pk is the power level of node Xu ■ 

II. THE BEST CASE SCENARIO 

The destinations of nodes are allowed to be arbitrary, as are 
the traffic levels for OD-pairs. Each transmission may be of 
an arbitrary range/power. 

We say that the network has transported 1 bit-meter when 
1 bit has been transmitted over a distance of 1 meter. 

1This material is based upon work partially supported by the Air 
Force of Scientific Research under Contract No. AF-DC-5-36128, 
the Office of Naval Research under Contract No. N00014-99-0696, 
and EPRI and DOD-ARO under subcontract Nos. W08333-04 and 
35352-6086. Any opinions, findings, and conclusions are those of 
the authors and do not necessarily reflect the views of the above 
agencies. 

2Please address all correspondence to the second author. 

III. THE RANDOM SCENARIO 

We assume that the n nodes are randomly located (uniform 
iid) in a disk of area A sq. m. Each node has a random 
destination, chosen as the node nearest to a uniform and iid 
chosen point to which it wishes to send traffic at a rate \(n) 
bits/sec. We suppose that in this homogeneous environment 
all transmissions employ the same range or power. 

We say that the throughput capacity is 0(/(n)) bits/sec 
if for some constants 0 < c < c' < -t-oo, 

lim   Prob (A(n) = cf(n) is feasible for each node)    =    1 
n—>oo 

liminf Prob (A(n) = c fin) is feasible for each node)    =    0. 
n—*oo 

IV. THE MAIN RESULTS 

Theorem 1. Best Case for Protocol Model: The trans- 
port capacity is 0 (Wy/Än) bit-meters/sec. More specifically, 

wVÄ 
1 + 2A0I + 

< Transport < 

8TT     ~   capacity   - 
8 Wy/Ä 

y/n. 

Theorem 2. Best Case for Physical model: A trans- 
port capacity of cWy/An bit-meters/sec is feasible, while 

c WVAn o    bit-meters/sec is not. More specifically, 

16/9    22 + < Wy/Än 

y/n + y/En 

<   7r"5[2 + 2//3]° Wy/An 

Transport 

capacity 
1 ,—       q-1 

Theorem 3.   Random Case for Protocol Model:  The 
throughput capacity is 0 (W / y/n log n) bits/sec. 

Theorem  4.     Random  Case  for  Physical  Model:   A 
throughput X(n) = cW / y/n log n bits/sec is feasible, while 
A(n) = c'W I y/n is not, for appropriate values of c and c', 
both with probability approaching one as n —> +oo. 

V. CONCLUDING REMARKS 

Under a protocol model, the best per-node throughput for 
a wireless network with n nodes, with each node having a 
destination non-vanishingly far away, is 0 (l / y/n) bits/sec. 
If the nodes are randomly located, the per-node throughput 
is © (l / y/n log n) bits/sec. The random case is nearly best. 

Thus, in wireless networks, compromises should be made 
either with respect to the number of nodes involved, or ba- 
sically only nearest neighbor communication should be envis- 
aged. Other conclusions following from the constructive proof 
of capacity in the random case are: A cellular operation is 
feasible, the range of nodes is about Oiy/Alogn jirn), and 
the fraction of time a node is busy is only 0 (1/logn). 
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Abstract — We develop extensions to our techniques 
in [1] for signal estimation from sequential encodings 
in the form of quantized measurements communicated 
over binary symmetric channels. We show that the 
channel quality affects not only the quality of the 
encoding but also its optimality. We also construct 
encodings from optimized pseudo-noise and feedback- 
based control inputs, and efficient signal estimators 
from channel corrupted versions of the encodings. 

I. INTRODUCTION 

We consider sequential signal encoding strategies in the 
form of quantizer bias control for wireless sensor networks 
where the sensor encodings are communicated to the host over 
a binary symmetric channel (BSC). 

In [1] we focused on the case where the encodings are com- 
municated error-free to the host and showed that a prop- 
erly designed control input added to the noisy signal prior to 
quantization can improve the effective digital encoding. For 
this scenario, we developed optimized control input selection 
strategies and associated estimators for several different sce- 
narios. These methods can be viewed as lossy encoding tech- 
niques of a noisy source [2, 3, 4] that are sequential. 

We develop extensions of these approaches for the case that 
each communication link is a BSC. The block diagram involv- 
ing a single sensor and the host is shown in Fig. 1, where tu[n] 
is a control input, v[n] is zero-mean IID Gaussian sensor noise, 
y[n] denotes the binary quantized signal sent to the host, and 
z[n] denotes the encoding sequence received by the host. 

II. MAIN RESULTS AND DISCUSSION 

We focus on two special cases. First, we consider pseudo- 
noise control inputs whose statistical characterization alone is 
exploited at the host for estimation. Second, we examine the 
effects of BSC errors when knowledge of the control input can 
be exploited for estimation at the host and where, in addition, 
feedback information from the host to the sensor is available 
and can be exploited in the selection of the control input. 

For pseudo-noise control inputs that are accurately mod- 
eled as sample paths of a zero-mean IID Gaussian process, we 
show the optimal pseudo-noise level is an increasing function 
of the BSC error probability pe; in particular, as pe is varied 
from 0 to 0.5, the optimal aggregate (sensor plus pseudo-noise) 
level cropt changes monotonically from ä 2 A/7r to A, where 
A denotes the signal dynamic range. Hence, in order to ac- 
curately optimize the quality of the pseudo-noise encoding at 
the sensor it is important to take into account the quality of 
the BSC. We also show that, if the encoder does not know the 
fidelity of the BSC, choosing <ropt(pe -t 0.5) achieves the best 
performance across the pe spectrum. 

AW  » 
Low-bandwidth 

signal 

s[n] 
r        , 

y[n] Binary 
Symmetric 

Channel 

z[n] 
Estimator 

Encoding 
sequence 

A\n\ 

v[n]      win] 

Sensor      Control 
noise        input 

Fig. 1: Signal estimation from channel-corrupted encodings. 

In the second case the host knows the control input and can 
also broadcast feedback information (based on past received 
encodings) which can be used by each sensor in the selection 
of future control input values. For any given pe we derive a 
bound on the MSE performance of any feedback-based con- 
trol input strategy and develop control selection methods and 
computationally efficient estimation algorithms that achieve 
this bound. Again, both the optimized encoding and estima- 
tion algorithms depend on the BSC quality. 

We also develop extensions of these bounds and algorithms 
that achieve them for the more practical case where the sensor 
receives noise-corrupted feedback information from the host, 
and, in particular, the case where the (additive) feedback noise 
is well modeled as a zero-mean IID Gaussian random process. 
Although the estimators we develop effectively achieve the as- 
sociated bound provided the number of observations is large 
enough, the larger the pi level the larger the number of obser- 
vations required to effectively achieve the bound. 

Finally, as in the case pe = 0 that was considered in de- 
tail in [1], for any given pe the asymptotic performance of 
these systems can be completely characterized by means of 
the signal-to-noise ratio (SNR). In particular, for any given 
pe level, the MSE performance loss with pseudo-noise con- 
trol inputs can be made to grow quadratically with SNR by 
judicious selection of the pseudo-noise power level, while a 
fixed loss independent of SNR can be achieved in the feed- 
back cases. For comparison, the MSE performance loss due 
to the encoding in the absence of control input can be shown 
to grow exponentially with SNR for any given pe value. 
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Abstract: In this paper, wireless sensor networks are considered 
from an information theory point of view and the rate distortion region 
for the special case of correlated Gaussian sources where n sources 
provides partial side information to one main source is discussed. 

I. INTRODUCTION 

It is well known from the theory of distributed detection that higher 
reliability and lower probability of detection error can be achieved when 
observation data from multiple, distributed sources is intelligently fused in a 
decision making algorithm, rather than using a single observation data set 
[1, 3], This, coupled with the fact that fabrication technological advances 
have made low-cost sensors incorporating wireless transceivers, signal 
processing and sensing in one integrated package a desirable low-cost 
option, it is inevitable that such devices will be widely used in detection 
applications such as security, monitoring, diagnostic, remote exploration 
etc. This has given rise to the development of wireless integrated 
networked sensors (WINS) [2]. 

However, the effective deployment of such distributed processing 
systems introduces some significant design issues, most notably: 
networking and communication protocols, transmission channel and power 
constraints, and scalability, among others [1]. These are not the subject of 
this summary. However, it is evident that some fundamental limits are 
required to assess the optimality of any system design with regard to the 
"best design". Thus, an information theoretic analysis of the system is 
required. We consider a special case of this problem. 

II. THE «-HELPER SYSTEM 

Consider the multisensor system as shown below. 

/""\ Satellite/remote link between 
/k gateway and sensor network 

i infrastructure 

Gajteway/Fusion Center 

A cluster of sensor nodes with a main 
source (X) and n-helpers (Y,) 

Figure 1: A multi-node networked sensor system. 

A portion of a distributed cluster of sensor nodes (perhaps mobile) is 
observing a phenomenon and generating source data. Algorithms exist 
which can determine which nodes in the proximity of the phenomenon need 
to be activated and which can remain dormant [1]. Once this boot-up 
process is completed, the node observation data is assumed to be Gaussian 
(for analytical simplicity), with one data node acting as the main data source 
(e.g. that which is closest to the phenomenon), and the remaining nodes 
generating correlated data. The coding challenge is then to determine 
appropriate codes and data rates such that the gateway/data-fusion center 
can reproduce the data from the main node using the remaining nodes as 
sources of partial side information, subject to some distortion criteria. 

III. A RATE-DISTORTION BOUND 

Thus for a main source, X, and n correlated sources, Y„ with 

{Xr Yu,- Y,,,}™. being stationary Gaussian memoryless sources, for each 

observation time, f=l, 2, 3, ..., we let the random (n+/)-tuplet (x,,Yu,-- Ym) 

take values in X x Y, x■■ ■ Y . The covariance matrix is denoted as: 
1        n 

°x 

Px),axar, 

Px>axar 

Pxi;axar, 
2 

OyyOyOy 

PxY°xarm 

PyyCSyOy 

Then for an encoding system using the Y„'$ as n-helpers, the rate- 
distortion region, given by: 

Vi(Dx,D,,-••£>,„) = {(RX,R,,■■■ R„)-{RX,A,,■•■ R„) is admissible} 

for a given set of rates and distortion measures is desired. The encoding 

functions: (?x:Xm -> N, = {l, •••, Ci}---(pi: Y" -> N, = {l, ••■, C,} are 

such that the rate constraints being satisfied are:—log C, < Rl +5, i=X,I, 

2, ...«. Extending previous results [4 -6], we show that for an admissible 
rate (Rx,Rl,R2,---Rn), and for some A's > 0, the «-helper system data 

rates can be fused to yield an effective date rate (with respect to source X) 
satisfying the following lower bound: 

tfv>|log 
Dy 

no-'Wk-2"2*) 
*=] 

Future work will attempt to extend these results for non-Gaussian, 
non-stationary sources. 
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Abstract — This paper considers a distributed bi- 
nary detection system with n binary independent 
identical sensors. We show that the system-wise 
probability of error is a quasi-convex function of lo- 
cal threshold r for generalized Gaussian noise and 
some non-Gaussian noise distributions. This yields 
a globally optimal and computationally feasible solu- 
tion technique. 

Consider distributed detection of s g {—m,m}, where the 
ith of n local sensors observes Xi = s + z, with i.i.d. noise 
z,. The ith sensor compares Xi to a threshold r to compute a 
binary decision m to be 0 when Xi < r and 1 otherwise. 

Each binary decision Ui is transmitted to a fusion center, 
which applies a fusion rule F to k = 5Z"=i ui *° produce the 
final decision F(k). 

The identical threshold r in local sensors generally does 
not result in an optimum system. However results in [1] 
showed that identical local detectors are asymptotically op- 
timum when the number of sensors n tends to infinity. Even 
with identical local thresholds, the problem is still compli- 
cated by the discontinuity of Bayesian error probability and 
the existence of multiple local minima. [2] provided continuous 
bounds on the Bayesian error probability, but the minimiza- 
tion problem still has local minima. 

In this paper we show that for any admissible fusion rule F 
(i.e. any F that is optimal for at least one T), the probability of 
error is a quasi-convex function of r. The admissible functions 
F are simply threshold tests of the form 

—m    if k < i 
m       if k > i. 

Fi(k) (1) 

Hence, the problem decomposes into a series of n quasi- 
convex optimization problems. We have used this technique 
to identify the optimal (r, F) pairs for a variety of cases, and 
our results suggest that the optimal F is always essentially 
majority vote for equal a-priori probability case. According 
to this conjecture, the optimal F is identified without compu- 
tation and only one quasi-convex problem needs to be solved. 

For brevity, we prove the quasi-convexity for the Gaussian 
noise case, i.e. Zi ~ A/"(0,1). See [3] for a more extended pre- 
sentation showing the quasi-convexity for generalized Gaus- 
sian noise and some well known non-Gaussian noises. 

First define 

Mr) = Po Q Q\T + m)Qn-\-T - m), 

Bk(r) = Pl Q Qh(r - m)Qn-k(-r + m), 

where po is the a-priori probability of s = —m and 
pi = 1 - po- Q(j) = /r°° f(x)dx, where f(x) is the pdf of 
normal distribution with zero mean and unit variance. 

Theorem 1   Only fusion rules of the form Fi in (1) are ad- 
missible, i.e. are MAP for some choice of r. 

Proof: For every r the MAP F has the form Fi in (1). 
Theorem 1 states the same admissible fusion rule as ob- 

served in [4]. 

Theorem 2 For a fixed admissible fusion rule Fi, probability 
of error is a quasi-convex function of T. 

Proof: Define Pe (r, i) as the probability of error for (r, Fi). 
Pe (r, i) can be expressed as 

Pc{T,i)=P0 + Y,{Bh(T)-Ak{T)). (2) 
*=0 

The derivative of Pe(r, i) is a telescoping sum (i.e. has the 
form SJ.~o(/fc(r) - fk-i(r)) for a specific fk(r)) and can be 
simplified to Pi(r, i) = a(r)(/9(r)—y(r)), where Q(T) is always 
positive, ß(r) is a positive and monotonically increasing func- 
tion and 7(7-) is a positive and monotonically decreasing func- 
tion. ß(-oo) < 7(-oo) and /?(oo) > 7(00). So Pi(r,i) = 0 for 
only one r*, for which ß(r*) = 7(7"*). For r < r*,P'e{r,i) < 0 
and T > T*,P'e{r,i) > 0. So Pe{r,i) is quasi-convex. D 

[5] generalizes these results by showing quasiconvexity in 
the likelihood ratio function for any distribution on the i.i.d. 
observations Xi. The quasiconvexity can also be extended to 
Bayesian cost function 5R(r, i). 

Using quasiconvexity we examined the SNR required for 
Pe = 10~5 as a function of the number of sensors [3]. For 
Gaussian noise, we found that the number of binary sen- 
sors needed for every SNR is fewer than twice the number 
of infinite-precision sensors. This can make the binary sensor 
a better choice from a practical or economic point of view. 

REFERENCES 

[1] J.N.Tsitsiklis, "Decentralized detection by a large number of 
sensors," Mathematics of Control, Signals, and Systems,vo\. 1, 
pp. 167-182, 1988. 

[2] W.A.Hashlamoun and P.K.Varshney,"Near-optimum quantiza- 
tion for signal detection," IEEE Trans, on Comm. , vol. 44, no. 
3, pp. 294-297, March 1996 

[3] W.Shi, T.W.Sun and R.D.Wesel, "Optimal binary distributed 
detection ," 33rd Asilomar Conference on Signals, Systems & 
Computers , Pacific Grove, California, Oct., 1999. 

[4] Z. Chair and P.K.Varshney, "Optimal data fusion in multiple 
sensor detection systems," IEEE Trans, on Aerospace and Elec- 
tronic Systems , vol. AES-23, no. 1, pp. 98-101, Jan. 1986. 

[5] Q.Zhang, P.K.Varshney and R.D.Wesel, "Optimal distributed 
binary hypothesis testing with independent identical sensors," 
CISS, Princeton University, March 2000 I 

0-7803-5857-0/00/$ 10.00 ©2000 IEEE. 
-437 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

CDMA with fading: Effective bandwidth and spreading-coding tradeoff 

E. Biglieri, G. Taricco, E. Viterbo 
Dipartimento di Elettronica 
Politecnico di Torino, Italy • 

e-mail: name8polito.it 

G. Caire 
Institut Eurecom 

Sophia-Antipolis, France 

e-mail: caire9eurecom.fr 

Abstract — We find the capacity regions of large 
CDMA systems with linear receivers and random 
spreading subject to slow fading (nonergodic channel) 
and fast fading (ergodic channel). 

We consider the uplink of a single-cell, synchronous DS- 
CDMA system with K users and random spreading sequences 
of L chips. The received signal L-chip column vector corre- 
sponding to one symbol interval is given by 

= ^2 M^kxksk + n (1) 

where n ~ A/c(0, iVoI), %k is the complex modulation symbol 
of user fc, sjt is the spreading sequence of user k, made of binary 
antipodal chips ±\/\fL generated at random with uniform 
probability and where Zk is the flat fading power gain. We 
assume that the base station receiver has perfect knowledge 
of all fading gains and phases, and without loss of generality, 
we include the phase rotation of the k-th channel into the 
modulation symbol Xk- User k is received with signal-to-noise 
ratio (SNR) 7^. = zkTk, where Tk is the transmit SNR. As 
in [3, 4], we consider an asymptotically large system with K —> 
co and K/L —¥ a. The receiver for user 1 (our reference 
user) is defined by y\ = hfy followed by a single-user decoder 
operating on the sequence of filter outputs y\. The filter hi 
can be either a single-user matched filter (SUMF) or a linear 
MMSE filter [1]. Under the above assumptions, the output 
SINR ß\ of receiver 1 satisfies [3]: 

l+o   f°° xdF-,{x) 
Jo 

71 
Too x->! 

-dF-,(,x) 

SUMF 

MMSE (2) 

Where F-y(x) is the limiting cdf of the received user SNRs. 
In the following, we assume that users are partitioned into 
J classes. Each class j is characterized by a transmit SNR 

Tj. Each class has pjK users, where Y2j=iPJ = *> an<* t^ie 

Zk are i.i.d. and normalized, so that J    xdF:(x) = 1. Then, 

F1{x) = Y^J=iPjF-(x/rj) where F-(x) is the fading cdf. Let 
user 1 belong to class i. Because of the uncompensated fading, 
user 1 SINR is a random variable /3,,i. However, the ratio 
£ = ßi:i/(TiZx) is non-random and independent of i, and can 
be calculated from (2). 

Non-ergodic fading. In this case, we assume that the 
fading time-variations are very slow so that the output SINR 
is random but constant over one code word. Outage proba- 
bility for users of class i is given by Pout,; = P(ß,,k < Ä) = 
Fz ( £T~ ) wnerc Ä is a SINR threshold that depends on the 

coding scheme of class i. Assuming Gaussian codes and min- 
imum distance decoding at the output of the receiving filter, 
we let 0, =2"' - 1. 

Let f — (f 1,..., f j) be a vector of input SNR constraints, 
e = (ei,..., tj) be a vector of target outage probabilities, and 
R = (R\,... ,Rj) be a vector of coding rates. We find the 

outage capacity, i.e., the set H C M+ of rate vectors R that 
can be assigned to the J classes such that, for all i — 1,. 
Pout,, < U and T, < f\. By letting 

2"' -1 

sup{x€R+:Fz(x) = e,} 

,,J, 

(3) 

we rewrite the outage constraint as I\£ > ßi. For maximum 
R, this must hold with equality, which implies that Ti/ia = K 

is a constant independent of i. Solving for K and imposing the 
input constraints, we obtain the capacity inequality 

a^PjBj mm 

J = I 
{-£} 

where the effective bandwidth Bj is given by 

f   N Bj  =  <       f °o     xy j 
L    Jo      l+xnj 

d.Fz(x) 
SUMF 
MMSE 

(4) 

(5) 

Ergodic fading. In this section we assume that the fading 
is sufficiently fast the channel can be considered information 
stable [2], Assuming that all users generate their code book 
according to a complex circularly-symmetric Gaussian pdf, 
users in class i can communicate reliably at rate 

Ri f Jo 
\og2(l + x^T1)dFz(x) 

We find the set of rates R = (Ri,. ..,Rj) achievable with 
input constraints T < f. Since the function f(y) = 
f00 log2(l + xy)dFz(x) is monotonically increasing, we define 

1/, = f~l(Ri), then, T;£ > Vi and from an argument similar to 
above we obtain a capacity inequality of the same form of (4), 
with the substitution Vj -> \.ij. It follows that the effective 
bandwidth B3 in the ergodic case has the same form of (5), 
with v. ■fij. 
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Abstract — A family of multiuser detectors is ana- 
lyzed which require neither matrix inversions nor oth- 
er operations with significant complexity. The time 
complexity per bit of most of them is independent of 
the number of users. Nevertheless, their spectral ef- 
ficiency for random spreading sequences is shown to 
be not far behind that of linear MMSE detection. 

I. INTRODUCTION 

Recently, the performances of well-known linear and nonlinear 
multiuser detectors in random environments were analyzed in 
[1, 2, 3] revealing important gains over the spectral efficiency 
of the single-user matched filter. The price for those improve- 
ments is receiver complexity. 

An important class of multiuser receivers with lower com- 
plexity is based on the idea of approximate decorrelation (AD) 
[4] (a generalization to approx. MMSE detectors is straightfor- 
ward): Matrix inversion in approximated via Ltb order poly- 

nomial expansion M_1 ss ^2t=0 wtM1, see e.g. [5], with prop- 
erly chosen weights wt. 

II. MAIN RESULTS 

Let y = Sn(Sx + n) denote the vector notation of a syn- 
chronous K user Gaussian CDMA channel with x, y denoting 
the transmitted and received symbols, respectively, n the com- 
plex additive white Gaussian noise of variance a2 and S the 
L x K matrix of complex signature sequences. In this sum- 
mary, we restrict attention to equal received powers and we 
assume that the diagonal elements of the matrix R = SHS 
equal unity. 

Theorem 1 Let K, N -» oo, but 0 < ß = $ < oo and the 
random components of S be independent with finite variance. 
Then, the signal-to-interference-and-noise ratio at the output 
d = Ty of any linear equalizer described by a matrix T = 
"}2il-o't>1i{ß-,o-)R converges almost surely to a deterministic 
scalar for arbitrary weight functions wt(ß,cr),0 < £ < L, and 
arbitrary order L. 

Theorem 1 allows to give explicit expressions for the SIR 
of Lth order approximation to the MMSE multiuser detector. 
The results for L = 1, 2, 3 are the following: 

maXÄiKl  ->  ^2+<r2(1+2/3)+CT4   >   ^2+^3+a2(r_W5) 

max SIR3 

SIRAL 

l+/3+/?2+/3
3+(72(aHW/32)+<r4(3+3ff)+<T6 

/34+CT2(l+2W/32-H03)+<T4(at6/j4€/3:i)+CT6(a+40)+cr8 

The 01 order approx. is equivalent to the conventional 
matched filter. The first order approximation (cf. [4, Prob. 
5.28.d] is better than the approximate decorrelator analyzed 

'This work WEIS supported by the German Academic Exchange 
Service (DAAD) under grant 332 4 00 510 and by the U. S. Army 
Research Office under Grant ARO DAAH04-96-1-0379. 

in [4, p. 281], where the weights were based on a Taylor expan- 
sion and not optimized with respect to the maximum achiev- 
able SIR. The optimum weights can be expressed as Lth order 
polynomials in ß and a2 and calculated, recursively. Thus, 
their computation is very simple in real-time applications. 

For a fair comparison to the performances of the decorrela- 
tor, the MMSE detector, and the matched filter, the spec- 
tral efficiency r = ßC = /31og2(l + SIR) and power ef- 
ficiency l^- = a2C are calculated as in [1, 2]. Averaging 
capacity results over the load, our results are extended to 
re-encoded successive cancellation (SC) receivers [1, 2] via 

rsc(/3) = // log2(l + SIR(ß'))dß'. Fig. 1 shows the spectral 
efficiency for fixed Eb/N0 as a function of the load ß = K/N. 
At low ß simple linear receivers noticeably outperform the 
single-user matched filter. At high ß simple nonlinear receivers 
noticeably outperform the exact MMSE receiver. 
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Fig. 1: Spectral efficiency vs. system load for several multiuser de- 
tectors and fixed 101og10(.Eb/iVo) = 10 dB. 

III. CONCLUSION 

Increasing spectral efficiency by multiuser detection need not 
involve significant increase in receiver complexity even with 
long spreading sequences. 
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Abstract — In this work we present an approach for 
evaluating the spectral efficiency of a direct-sequence 
spread-spectrum system based on the channel cutoff 
rate. The spectral efficiency is evaluated indepen- 
dently of specific forward error control codes, and thus 
can provide general insight into system performance 
and parameter tradeoffs. 

I. INTRODUCTION 

For equal-power users with known power the effective noise 
spectral density in a direct-sequence (DS) spread-spectrum 
system is given by [1, 2] 

I0 = N0 + (N- l)RbEb/WT (1) 

where the first term, No, represents the thermal noise while 
the second term represents the multiple-access interference in 
terms of the bit rate per user, Rb. We consider the single-user 
detection case, with a large number of users. To incorporate 
the effects of fading, we assume the energy is unknown and 
that the amplitude of the received signal from each user is 
subject to Rician-distributed fading, \z\, and further impose a 
conservation-of-energy constraint so that £{|S(t)| } = 1. 

It follows that the signal-to-interference ratio can be writ- 
ten as 

Eb/N0 
Eb/Io (2) 

1 + (N- l)(Rb/WT)(Eb/N0) ' 

Defining the spectral efficiency as TJN = -^
JL
 ; bits/sec/Hz 

and the total carrier power as CT = NRbEb as in [3], combin- 
ing the three equations and normalizing by the total thermal 
noise yields the spectral efficiency in terms of the carrier-to- 
noise power ratio, 

VN 
CT/(N0WT) 

(Eb/I0)[l + (»J=1)(CT/{N0WT))] 
; bits/sec/Hz .  (3) 

We are particularly interested in the limiting spectral effi- 
ciency in terms of increasing numbers of users, i.e., N —¥ oo. 
A general method for evaluating the spectral efficiency is pre- 
sented in the following section. 

II. CUTOFF RATE EVALUATION OF SPECTRAL 

EFFICIENCY 

The cutoff rate for both MPSK and QAM can be written 
in the form 

Ro = log2 
M 

l + ±fM(REb/N0,(
2) 

; bits/c.u.   , (4) 

where M is the constellation size and R is the coding rate. 
Setting R = Ro in (4) leads to the requirement that the value 
of Eb/No required to operate at this rate be the solution of 

- AWGN 
- Perfect (51,^= 10 
- Perfect CSI, Ravletgh 

Carricr-to-NoUe Power Relic-, C/(N,WT> 

Fig. 1: 
rates. 

The limiting spectral efficiency for M — 4 and selected 

fM(REb/N0X
2) = (M2~R-1)M. Given Eb/N0 for a specific 

channel and modulation scheme, the value of Eb/Io in (3) is 
then taken as Eb/No- 

In Fig. 1 the limiting spectral efficiency as N —> oo for 
DS/MPSK is shown as a function of the carrier-to-noise power 
ratio, CT/(NOWT), for selected channel coding rates. Observe 
that for all rates there exists a value of the carrier-to-noise 
power ratio, CT/(NOWT) ~ 10, above which increasing the 
ratio does not result in a significant gain in the spectral ef- 
ficiency. It is also readily observable that the spectral effi- 
ciency is monotonically increasing with increase in error con- 
trol coding, i.e., decreasing R. However, the spectral efficiency 
gains reach a point of diminishing returns at approximately 
R = 0.25. Similar results are shown for DS/QAM. 

III. SUMMARY 

It is shown that in general use of some FEC coding increases 
the spectral efficiency of the system. However, regardless of 
code rate, performance is optimized for M = 4; no significant 
performance gains are realized for larger signaling alphabet 
sizes. 
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Abstract — The performance of data-aided chan- 
nel estimation algorithms for CDMA systems is anal- 
ysed. We compare frame-synchronous and frame- 
asynchronous LMMSE channel estimators in large 
systems with random spreading. 

I. SIGNAL MODEL 

Our starting point is the equation for the chip-matched 
filter output vector at time m 

K 

y(m) = ^2ak(m)bk(m)sk(m) + n(m) 
*=i 

where k 6 {1,... , K} indexes the multiple users, ajt(m) is the 
channel gain for user k over symbol period m, bjt(m) is the 
M-ary PSK data symbol of user k over period m, sjt (m) is the 
signature sequence of user k over symbol period m and n(m) 
is a circularly symmetric complex white Gaussian noise with 
E[n(m)] = 0 and E[n(m)nH(m)] = a21. 

The channel gain process for each user is a circularly 
symmetric complex Gaussian random process and the pro- 
cesses for each user are independent with E[ajb(m)] = 0 and 
E[<Zk (m)a£(m)] = p. We assume that the channel is constant 
over time spans corresponding to the frame or block dura- 
tion so that within a particular frame of data we can drop 
the time dependence. We also assume the channel estima- 
tion starts from scratch at the beginning of every frame which 
means that our a priori information is simply E[afc(m)] = 0 
and E[ajfe(m)a£(m)] = p. 

The signature sequence Sk(m) is assumed to be an N di- 
mensional column vector with independent and identically dis- 
tributed elements each being a circularly symmetric complex 
Gaussian random variable with zero mean and variance 1/N. 
The random sequences are independent across users and across 
symbols. 

II. CHANNEL ESTIMATION 

Suppose throughout that we are interested in estimating 
the channel of user one. If we refer to the channel we are 
referring to the channel of user one. We assume we have r 
pilot symbols in every frame for channel estimation and let 
pT = p/r, OT = c/^/r and aT = a/r. The proofs of the 
results are omitted however Result 2 can be found in [1] and 
Result 1 follows using the same techniques (first applied in [2] 
for the data estimation problem). 

Frame-Asynchronous LMMSE 
For this estimator we perform LMMSE estimation of the chan- 
nel based on the received signal over the estimation window, 
along with the training data of user one. We do not assume 

that the data of the interfering users is known to the chan- 
nel estimator so that this algorithm is applicable in frame- 
asynchronous scenario where the training data of the users 
does not line up. 

Result 1 The MSE for any user converges almost surely as 
N —► oo to the nonrandom £2 = p/(l +pßc), where 

ßc = 
1-Q 1 [(1-Q)

2
   ,   1+a   ,    11 

 1- .i -J— -\ _ -\ _ 
W 2pT L    4a*          2pTa?      4p?J 

1/2 

The effect of the estimation window length is that the back- 
ground noise power and the interference power are reduced by 
T relative to the r = 1 case. 

Frame-Synchronous LMMSE 
In this case we assume we know the data of all users over 
the estimation window and perform LMMSE estimation con- 
ditioned on this information. We thus require that the train- 
ing interval or estimation window of all users is aligned. In 
this case the resulting channel estimate is the MMSE estimate 
since the problem is one of Gaussian estimation. 

Result 2 The MSE for any user converges almost surely as 
N -t oo to the nonrandom £2 = p/(l +pßc) where 

2(7? 2p 
+ (l-ar)

2   ,  1 + a. 
4a* 

+ 
ipa% 

1 I 1/2 

For this receiver we see that, along with the background 
noise being reduced by T, the effective spreading gain is in- 
creased by T. The alignment of the pilot symbols of all 
users means that we can form effective spreading sequences 
of interferers by piecing together the (modulated) spread- 
ing sequences from all the pilot symbols. This property can 
lead to very large performance improvements over the frame- 
asynchronous LMMSE estimator. 

III. CONCLUSIONS 

In this work, we analyse the performance of multiuser chan- 
nel estimation algorithms for CDMA systems. One point that 
is evident, is that there are significant gains from knowing the 
data of all users over the estimation window. The results we 
have presented can be extended to frequency-selective fading 
and to handle non-equal average powers. 
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Abstract — We consider the problem of one- 
dimensional parameter transmission over the Poisson 
channel when input signal (intensity) obeys peak en- 
ergy constraint. We show that it is possible to choose 
input signals and estimator in such a way that the 
mean-square error (or, more generally, a-mean er- 
ror for loss function |x|a) of parameter transmission 
will decrease exponentially with transmission time 
T -4 co, and we find the best possible exponent, if 

a>a0 = (l + v/5)/2«1.618. 

I. STATEMENT OF THE PROBLEM 

Let 0 = [0,1] be the parameter (to be transmitted) set. We 
assume that an input signal (intensity function) S(8, t) of Pois- 
son channel satisfyes only the peak energy constraint: 

0 < S(8, i)<A    for any    6 G [0,1], 0 < t < T,      (1) 

where A > 0 is some given constant. 
Thus, if 0o is the true value of parameter 6 then the ob- 

servation process at the channel output X(t), 0 < t < T, 
is a random process with independent increments such that 
X{0) = 0 and for any 0 < tx < t2 < T 

Pr{X(t2)-X(h) = 3} 
VA' 

ß 
0,1, 

where 

Jti 
5(öo,t) dt. 

Introduce function d(a,T), giving the minimal possible a- 
mean error for the best estimator 8T and the best chosen 
signals S(6, t) when parameter 6 takes values from the set 
0 = [O,1]: 

d(a,T) = inf inf sup Ee\eT- 8 \" ,     a>0, 
s(.) eT see       ' ' 

where infs(.i.) is taken over all signals 5(.,.) satisfying con- 
straint (1). 

We are interested in asymptotic behavior of function 
d(a,T) for large T. Since it decreases exponentially when 
T —}■ oo, we introduce also function e(a), giving the best pos- 
sible exponent for the a-mean error 

e(a) =  Mm  \--^=^d(a,T)\ ,     a>0. 
T-Kx> I   AT ) 

(2) 

'This work was supported by Grant N  98-01-04108 from the 
Russian Fund for Fundamental Research. 

II. MAIN RESULT 

The following theorem presents the main result of the pa- 

per. 

Theorem . If a > a0 = (1 + Vs)/2 « 1.618 then 

a 
e(a) = 

4(1+«)' 
(3) 

In other words, if a > «o then for T -> oo 

inf inf  sup  Eg \8T - 0\   = exp 
s(.,.) eT eg[o,i] 

\    aAT(l + o(l))\ 

I 4(1 +or)      /' 

where infs(. .)  is taken over all signals S(.,.) satisfying con- 
straint (1). 

Clearly, e(2) = 1/6 determines the best exponential rate 
for the mean-square error. 

Remarks. 1) Function e(a) is very similar to the reliability 
function E(R) of Poisson channel [5], [3]. Using function E(R) 
we get the lower bound for function e(a). On the other hand, 
knowning function e(a) we can get the exact upper bound for 
function E(R) that is the most difficult part in finding the 
function E(R). 

2) In the case of White Gaussian noise channel a similar 
problem was solved in [1, 2]. Moreover, a number of opti- 
mal results known for White Gaussian noise channel has been 
obtained recently for Poisson channel as well [5, 3]. In that 
respect, the paper also extends results of [1, 2] to the Poisson 
channel. A common feature of all papers [5, 3] and this one is 
that the Poisson channel turns out to be a simpler than the 
Gaussian one. 
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Abstract — In this paper, a new recursive algo- 
rithm for ARMA modeling of uniformly sampled sig- 
nals with missing observations is proposed. This algo- 
rithm enables real-time processing and may be used 
for time and frequency domain reconstruction. 

This paper addresses the problem of statistical inference 
concerning time series from missing data. Several restora- 
tion methods, including parametric estimation methods in the 
presence of incomplete data, can be found in [1] [2] [3]. All 
those methods deal only with stationary signals while the pro- 
posed method is also suited to non-stationary ones. 

An ARMA adaptive predictor is used. It has been adapted 
to the non-uniform sampling context by the way of replacing 
each missing value by its estimate. So, due to missing obser- 
vations a non-linear optimization criterion is required in order 
to estimate the model parameters. The optimum is reached 
by means of an LMS-like algorithm adapted to this sampling 
context. 

A low-pass ARMA (2,2) signal is generated as the output 
of an elliptic filter in order to test the performances of the 
proposed algorithm for both AR and MA parts. Figure 1 
shows the reconstructed signal for only one realization of the 
sampling process in the case where 20% of the samples are 
lost. 

estimator than a classical off-line method [4] for ARMA iden- 
tification of uniformly sampled signals, even in the case where 
20% of the samples are lost. 

Fig. 1: Original (—) and reconstructed (...) signal, missing 
samples (++) 

Figure 2 shows a good agreement between original and es- 
timated PSDs for different values of probability p. The pro- 
posed method leads to far better performances for the spectral 
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Fig. 2: Original PSD (—), estimated PSD: classical off-line 
method (- -), proposed method: periodic sampling p = 1 (-.-), 

missing samples p = 0.8 (...) 

Data compression may be achieved by means of non- 
periodic transmission [5]. The proposed algorithm is an an- 
swer to the need of an efficient reconstruction algorithm in the 
receiver in the case of ARMA modeled signals (for instance 
speech coding). 
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Abstract — We use unreliable system replicas and 
unreliable voters to construct redundant dynamic sys- 
tems that tolerate transient failures in their state 
transition and error correcting mechanisms. Using 
low density parity check (LDPC) codes, we develop a 
fault-tolerant scheme that efficiently protects linear fi- 
nite state machines (LFSM's) with identical dynamics 
but distinct input sequences and states. The scheme 
achieves a probability of failure that remains below 
any given bound for any pre-specified (finite) time- 
interval using a constant amount of hardware (XOR 
gates and voters) per LFSM. 

I. INTRODUCTION 

A dynamic system evolves according to an internal 
state that influences its future states/outputs. The effect 
of a transient failure in the state transition mechanism 
may last over several time steps (even though the cause 
does not persist). A dynamic system (e.g., a finite-state 
machine) in which the probability of making a transition 
to an incorrect next state is ps and is independent be- 
tween different time steps, follows the correct state tra- 
jectory for L time steps with probability (1 — ps)

L. A 
common solution is to use modular redundancy with feed- 
back: a voter feeds back to all systems the state agreed 
upon by the majority of them. If the voter fails with 
probability pv, this approach will not work: after L time 
steps, the probability that the system has followed the 
correct state trajectory is at best (1 — pv)

L ■ 

II. FAULT-TOLERANT SCHEME 

Consider a variant of modular redundancy that uses 
n system replicas (initialized at the same state and sup- 
plied with the same inputs) and n voters, each of which 
receives "ballots" from all n systems and feeds back a 
correction to only one of the systems. Since a fault-free 
voter recovers the correct state of the underlying dynamic 
system as long as more than half of the n systems are in 
the correct state, our (conservative) goal is to ensure that, 
with high probability, the fault-tolerant implementation 
has no overall failure (i.e., it operates with at least [~^] 
systems in the correct state at any given time step). 
Theorem, [1]: Suppose each system takes a transition to 
an incorrect state with probability ps and each voter feeds 
back an incorrect state with probability pv (independently 
between systems, voters and time steps).   The probability 

'This work has been supported in part by fellowships from the 
National Semiconductor Corporation and the Grass Instrument 
Company and in part by a grant by the University of Illinois at 
Urbana-Champaign. 

of an overall failure at or before time step L is bounded 
above by ££"=|„/2j ( 1 )p;(l -/>)""'', where p = pv + 
(1 —pv)ps- This probability goes down exponentially with 
the number of systems n if and only if p < \. 

An LFSM is an FSM with state evolution 
qs[t + 1] = Aqs[i] © bx[t), where qs[t] is the d- 
dimensional state vector, x[t] is the input, and A, b are 
constant matrices of appropriate dimensions (all vectors 
and matrices have entries from GF(2)). If we take k 
such LFSM's and let them run in parallel (each with dif- 
ferent initial states and different input streams), we get 

[ qi[*+l]     •••    qk[t + l] ] = 
= AC[ qi[t]    ■•■    qk[t] ]®b[ Xl[t]    •••    xk[t] ]   ' 

If we post-multiply both sides of the above equation 
by GT  (where G is an n x k encoding matrix of a 
linear code), we get the following n encoded parallel 
instantiations 

[    £l[*+l] ■•■        Sn[t+1]    ]   = 
= Ac[0W    ■■•    Cn[*]]©b([i,[t]    •■•    xk[t]]GT) 

y v , 

e(xi[t],x2[t},- •• ,xk[i\) 

We have n LFSM's performing k different encoded in- 
stantiations of the given LFSM. We employ LDPC codes 
(with K "l's" in each row and J "l's" in each column of 
their parity check matrix) and use the approach in [2] to 
perform error-correction (each bit can be corrected via a 
mechanism that uses unreliable XOR gates and unreliable 
voters). 
Theorem, [1]: Assume that the 2-input XOR gates fail 
with probability px and the (J—\)-bit voters fail with prob- 
ability pv. Let J be a fixed even integer greater than 4, 
let K be an integer greater than J, and let p be such that 

P> ( 3jfl \ [{K - l)(2p + 3Pl)]J/2 + pv + Px.   Then 

there exists a sequence of (n, k) LDPC codes such that the 
probability of an overall failure at or before time step L 
is bounded above by LdCk~^ where 

log{(J-l)(fC-l)(    //-J1    )[(K-l)(2p+3Pl)]J/2-'}   _ 
ß    = 

C    = 

21og[(J-l)(A--l)] 3, 

r(2p + 3Pl)[^- jjrhr] 
-03+3) 

The code redundancy is j < 1_)iK and the hardware 

used per LFSM (including the error-correcting mecha- 
nism) is bounded above by a constant. 
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Abstract — It is known that in the absence of dis- 
tortion, the minimum average sampling density for a 
multiband signal is given by its spectral occupancy [1]. 
Furthermore, there exist nonuniform sampling pat- 
terns of the same average sampling density such that 
reconstruction is feasible even if the actual spectral 
support of the multiband signal is unknown [2]. This 
is called spectrum-blind nonuniform sampling. How- 
ever, if the samples are distorted, an increased sam- 
pling density may lead to superior reconstruction. 

Suppose that a fidelity criterion is imposed on the recon- 
struction. To satisfy this, it is necessary to sample at an in- 
creased density. In this paper, we consider additive noise dis- 
tortion of the samples, and the fidelity criterion is the prob- 
ability that the spectral support is correctly reconstructed. 
In [3], we consider samples distorted by quantization, with a 
mean-square reconstruction error fidelity criterion. 

I. NONUNIFORM SAMPLING 

Consider a complex-valued length-N sequence x € CN 

with discrete Fourier transform  (DFT)  X   e   CN,  where 

X(m) = l/VN ELO^W
6
"^

2
'™' 

Let x be a multi" 
band sequence of spectral occupancy q/N, i.e. let X have (at 
most) q non-zero components in arbitrary locations, indexed 
by K_ = {fci,..., kq}, where fa € {0,... JV — 1}. The spectral 
occupancy for this vector is ft = q/N. Define the vector x£ 

containing only p of the JV components of x, at locations in- 
dexed by c = {ci,..., cp}. These are the nonuniform samples, 
with average sampling density p = p/N. In matrix notation, 
we can write x£ = AC,K^S. Here, S contains the q non-zero 
components of X, and AC,K_ is the submatrix of the inverse 
DFT matrix that is obtained by only retaining the rows with 
indices in c and the columns with indices in K_. We consider 
the case of distorted samples y£ = x£ + z = AC,K_S + z, where 
z ~ Ac(0, (j2I) is (complex) white Gaussian noise. 

II. NECESSARY SAMPLING DENSITY 

Let the location of the q nonzero components of X be 
distributed uniformly over all possibilities, and let their 
(complex) values be distributed as circularly normal, S ~ 
Afc(Q,o%I)- We define the signal-to-noise ratio (SNR) ß = 
<r|/cr2. It can be shown [4] that for z — 0, there exist sam- 
pling patterns with sampling density p = ft + 1/JV allowing 
w.p.l, perfect reconstruction of x from y£. 

We derive a necessary condition for the optimal sampling 
density for z ± 0. It follows from considering mutual informa- 
tions. We start by noting that by the data processing lemma, 

^his work was supported in part by by NSF Grant No. MIP 
97-07633 and DARPA Contract F49620-98-1-0498, administered by 
AFOSR. 

/teufe) > I((S, JO;fe) = I(Ki tfe) + I(S;fcJJQ, which yields 

max/(ic; 2/c) >   max {l(K; y£) + I(S; yc_\K)} ,      (1) 
{Ac.K_} 

where first, the max is taken on both sides over all sets 
{AC,K} of matrices satisfying (A^kA^k).. = ft (which pre- 

serves E\xc_(i)\2 = ft<r|); then, on the LHS, the max is taken 
over all distributions of x£(i) for which E\xg_(i)\2 = fto-| as 
for the true x£(i). The term on the left in Eqn. (1) is sim- 
ply the capacity of a (complex) additive white Gaussian noise 
(AWGN) channel with input power constraint ftcrf and addi- 
tive noise variance a2, thus max/(x£; y£) = plog2 (1 + ft/?) • 

Next, consider /(JCJJ/C) in Eqn. (1). This is the mutual 
information across the digital channel from K_ to j/£. A lower 
bound on the mutual information follows from Fano's inequal- 
ity, I(Ki VcJ > H{K) - Hb(Pe) - Pe log2 ((,") - 1). 

Last, consider I(S; yc\K) iQ Eqn. (1). It is the mutual in- 
formation across the channel between S and j/£. This is also a 
Gaussian channel, but its input is not iid. The achieved mutu- 
al information is found by averaging over all k as I(S; yc}K) = 

i?K_log2 det (/, -I- ßA"K AC,K) ■ For each k, the maximum over 
Ac,k subject to the aforementioned constraint is achieved (by 
the geometric-arithmetic mean inequality) by Ac,k that has or- 
thogonal columns, yielding I(S; yc\K) = 9l°g2 (1 + ßp)- This 
proves the following: 

Theorem (Necessary Condition). The optimal sam- 
pling density p = p/N has to satisfy 

pl0g2 (1 + ßil) > 1 [l0g2(f) - Hb(Pe) - Pe l0g2 (O - 1)] 

+ ftlog2(l+/3p) 

Letting JV —► oo in the theorem, we obtain 

plog2 (1 + /3ft) > ft log2 (1 + ßp) + (1 - Pe)Hb(Q),      (2) 

which is sharp in the limit ß —> oo, because it reduces to 
p > ft. For finite SNR ß, p > ft, with the excess density 
given by (2). 
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I. INTRODUCTION 

Calderbank and McGuire discovered 2 remarkable Z4-linear 
codes [2],[3]. The binary Gray images of these codes have 
respective parameters (64,237,12) and (64,232,14) and thus 
have 2 (resp. 4) times as many code words as the best known 
linear codes of the same length and minimum distance. 

A decoding algorithm for the 5-error-correcting code is 
given in [4]. The approach there (following the ideas of the 
pioneers of Z4-codes) is to split the study into several cases 
according to the Lee type of the error vector. Then the Ga- 
lois ring algebra is used to decide, whether the syndromes are 
compatible with an error vector of the prescribed type. Unfor- 
tunately, it seems to be very difficult to apply this method to 
the case of the six-error-correcting code. A different approach 
(presented as an alternative in [4]) is required. 

Using the ideas presented here it is easy to also develop a 
list decoding algorithm for the 5-error-correcting code. I will 
discuss this possibility. 

II. OUTLINE OF THE DECODING ALGORITHM 

The 6-error-correcting Calderbank-McGuire code C is a 
submodule of Z32. The code is denned by BCH-like parity 
checks involving the elements of the Teichmuller set inside 
the Galois ring GÄ(45). If ß is a generator of the non-zero 
Teichmuller elements, the code C is defined by the following 
GR(45)-valued parity checks 

H = 

We remark that a parity check for the 5-error-correcting 
Calderbank-McGuire code is obtained from the above matrix 
H simply by multiplying the last row by 2. 

We express words x of C 2-adically, i.e. x = u(x) + 2v(x), 
where u and v are binary vectors of length 32. Using if it is 
easy to see (cf. [3]) that here u must be a word of the Reed- 
Muller code Ä(2,5) and that each u e R(2,5) determines a 
coset /(u) + Ä(2,5) with the property that u+2v g C, if and 
only if v € /(u) + Ä(2,5). One of the reasons, why C has 
such nice distance properties is that /(u) + R(2,5) is actually 
in Ä(3,5)/Ä(2,5), whenever u is a vector of minimum weight 
8. 

We can similarly write any error vector e in the form 
e = u(e) -(- 2v(e) with binary u and v. Here simple key 
observations are that in order to get an error vector e of Lee 
weight at most 6, the Hamming weight of u must not ex- 
ceed 6. Furthermore, if the Hamming weight of u is 5 or 
6, then the support of v must be contained in the support 
of u. Another useful observation is that, if we also con- 
sider —e = u(e) + 2(v(e) + u(e)), we see that either v(e) 

1 1 1 1 1 
0 1 ß ß2 ■ .  ß30 

0 1 ß* ß6 ■ ..  ß90 

0 1 ß* ß10  . . ßlso 

or v(—e) = v(e) + u(e)    (mod 2) has Hamming weight at 
most 3. 

So given a received vector y = u(y) + 2v(y) = x + e, x € C 
we decode it as follows. First reduce the Z4-valued compo- 
nents modulo 2 and then decode the resulting vector u(y) 
with a full decoding algorithm for the code Ä(2,5). We re- 
quire such a decoding algorithm theat gives a list all possible 
error patterns of weight at most 6, i.e. all the words of weight 
at most 6 that lie in the coset u(y) + R(2,5). These are then 
the candidates for the vector u(e). We then process the list 
and for all candidates u try to find a matching v taking all 
the above observations into account. 

III. FULL DECODING OF i?(2,5) 
A complete decoding algorithm for Ä(2,5)* has been given 

by Seroussi and Lempel [5]. It is based on an earlier binary 
matrix factorization algorithm due to Lempel. I will describe 
that algorithm as an application of the theory of symmetric 
bilinear forms over a binary vector space. It is quite simple 
to extend their algorithm to a complete decoding algorithm 
for R(2,5). The covering radius of R(2,5) is six. So after this 
stage we get a single candidate u, namely a coset leader of 
u(y) + Ä(2,5). 

The weight distribution of all the cosets of R(2,5) has been 
determined by Berlekamp and Welch [1], From their data one 
sees that any coset has at most 8 words of weight at most 
5 and at most 35 words of weight 6. Altogether our list of 
candidates u may contain up to 36 elements. Luckily simple 
applications of affine geometry allow us to find all the low 
weight words in a coset, when a leader is known. A relatively 
efficient way of achieving this is to precompute look-up tables 
of low weight words for certain standard coset leaders (one for 
each orbit of the group of affine transformations) and modify 
the Lempel-Seroussi algorithm to always reduce into one of 
the standard cases. Thus we can meet all the requirements of 
the main algorithm and hence succesfully decode all the error 
patterns of Lee weight at most 6. 
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Abstract — We present an algebraic decoding al- 
gorithm for all Z4-linear Goethals-like codes Ck intro- 
duced by Helleseth et al. We show how Dickson poly- 
nomials can be used to solve syndrome equations. 

I. INTRODUCTION 

Let m be an odd integer and let Z4 denote the ring of 
integers modulo 4. Let also R = GR(4, m) be a Galois ring 
of characteristic 4 with 4m elements. The group of units in R 
contains a unique cyclic subgroup T = {0,1, ß,..., ß2 ~2} of 
order 2m — 1. Every element of R can be expressed uniquely 
in the form A + 2B where A, B g T. We have the natural 
modulo 2 reduction map p : R —¥ F where F is a finite field 

of order 2m. The Gray map 0 : Zf -» F2
2™+1, defined by 

0(0) = 00, 0(1) = 01, 0(2) = 11 and 0(3) = 10, maps a 
Z4-codeword componentwisely to a binary codeword. 

Helleseth, Kumar and Shanbhag [1] observed that the Z4- 
linear codes Ck with parity-check matrices 

Hk 

11 1 

0    1 ß 

.0    2    2ß2k- 2ß (2
fc+l)2 2/J<2' +l)(2m-2) 

have the same weight distributions whenever gcd(fc, m) = 1. 

They have 22 "3m"2 codewords and minimum Lee distance 
8. The Gray images of these codes 4>{Ck) are nonlinear binary 
codes which have the same Hamming weight distribution as 
the Goethals code. Helleseth and Kumar [2] presented a com- 
plete decoding algorithm for the code C\. In this talk we 
sketch an algebraic decoding algorithm for all codes Ck, which 
corrects errors with Lee weight < 3. 

II. DICKSON POLYNOMIALS 

In the decoding procedure we solve the roots of an equation 
Dn{x,u) = v, where gcd(n,2m — 1) = 1 and 

LfJ 
Dn(x,u) = ^ 

71      I 71 — 'l \ .        .;    n-2i 
(.—U) X 

n — i \    1 

is a Dickson polynomial. It satisfies the functional equation 
Dn(x + y,xy) = xn +yn, which implies that the roots can be 
solved effectively by Cardan's method. 

For further details see for example the survey [3]. 

III. MAIN RESULTS 

Let X, Y,Z,A,B,C denote elements in T and x, y, z, a, 6, c 
their images in F under ^-mapping. The syndrome of the 
error vector e 6 Zf" is S = effj = (t,A + 2B,2C), where 
t € Z4. The decoding algorithm in [2] can be straightforwardly 
generalized in the cases t = 0 and t = 2 but in the case t = ±1 
we need the Dickson polynomials. 

Theorem 1. Let S 
a coset. 

(1,A + 2B,2C) denote the syndrome of 

(i) 7/6 = 0 and c = a + , then the coset leader has Lee 
weight 1 and is uniquely determined by x = a and ex = 
1. 

(%%) If b ^ 0 and c = a +1, then the coset leader has Lee 
weight 3 and is uniquely determined by x = a+b, ex = 2, 
y = a, and ey = 3. 

(Hi) lfb^0,c^ of+1 and Tr( ji^' ) = 0, then the coset 

leader has Lee weight 3. The coset leader is uniquely 
determined by ex = ey = 1, ez = 3, D2k_1(z + a,b2) = 

■^ and x and y are the zeros of T2 + (z + a)T + -& 
b  + az — 0. In particular in the case k = 2 the variable 
z should satisfy (z + a)3'+ b2(z + a) = 9^£- 

(iv) Ifb / 0, c # a2"+1 andp(T) = T3+aT2 + (a2+b2)T+a3 

has three distinct zeros in F where 0-3 satisfies Dn(ff3 + 

a3 + a62,66) = a     , +c and 

\n = 

\n = 

2 +1 and d ■ 

3 and d ■■ 
1      if 2 f k 

b2    if2\k, 

then a coset leader has Lee weight 3 and is uniquely 
determined such that x, y, z are the three distinct ze- 
ros of p(T) in F and ex — ey = ez =3. Espe- 

when k = 2 the condition for (73 can be stated 

as 0-3 = _  c+aa+a''bi+aVi 

-&- 
(v) If none of (i)-(iv) hold, then any coset leader has Lee 

weight > 5. 
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Abstract — 
We give a new algorithm for the solution of the 

Hamming metric decoding problem for alternant 
codes over a Galois ring Ä. First we develop a com- 
prehensive theory of Grobner bases over R\x\,..., xn], 
which is of independent interest. By specialising to 
the case of one variable, we show that the solution 
of the key equation can be determined as a certain 
minimal element in a Gröbner basis of the solution 
module. 

I. INTRODUCTION 

In [IPE97] a modified Berlekamp-Massey algorithm was pre- 
sented as part of a (Hamming metric) decoding procedure 
for BCH and RS codes defined over Galois rings. The prob- 
lem of constructing and decoding alternant codes over Galois 
rings was addressed in [AIP98] by adapting the techniques of 
[IPE97]. In this paper we give a new algorithm for decoding 
alternant codes over Galois rings. 

Let P = GR(pn,r\) be a Galois ring of characteristic pn 

defined by a basic irreducible polynomial of degree r\ over 
Zpn, and let R = GR(pr', r2) be the Galois extension of P, 
where T\ \ r%, defined by a basic irreducible polynomial of 
degree Ti/rx over P. Let R" be the group of units of R, and 
let G = (C) be the unique cyclic subgroup of R' of order pr2 — 1, 
whose elements are the roots of xp _1 — 1. An alternant code 
C(N,r,a,~/,P) of length N with symbols from P is defined 
as follows. Let a = (QJ , Q2,..., ajv) be a vector of distinct 
elements of R, with the condition that a* — <x, be a unit for 
all i j£ j, and let 7 = (71,72,..., 7JV) be a vector with non-zero 
components 7,- £ R*. The alternant code C = C(N,r, 0,7, P) 
is the P-submodule of P    defined by the parity check matrix 

H 

/ 

V 

71 72 "YN \ 
71 ai 72 Q2 7JVttf; 

0-1 
7i a] 

0-1 
72 a2 

q-1 
• •    7JVQJ, / 

A straightforward modification of the BCH bound establishes 
that C has minimum Hamming distance greater than q. Er- 
ror polynomials, the syndrome polynomial S, the error locator 
polynomial E, and the error evaluator polynomial Q, all take 
the same form as their counterparts over a field and satisfy 
the key equation ES = Q mod xq. The decoding problem is 
equivalent to solving this congruence subject to certain con- 
ditions. 

In [F95] new algorithms corresponding to the Euclidean, 
Berlekamp-Massey, and Peterson-Gorenstein-Zierler algo- 
rithms for the solution of the key equation were derived using 
Gröbner bases. Each of these algorithms is computationally 
at least as efficient as its classical analogue [F95, FJ98]. This 

approach has been extended to rational approximation and 
interpolation problems, and to the solution of multivariable 
congruences (F96, F97]. In this paper we apply similar prin- 
ciples to decoding alternant codes defined over a Galois ring. 

II. GRöBNER BASES IN R[XU. .. ,xn\ 

We generalise the theory of Gröbner bases to the specific con- 
text of a Galois ring R. Many of our results are exact ana- 
logues of those holding over a field. However, their proofs are 
complicated by the change in significance of the coefficients, 
which may be zero divisors in R. We establish a division 
algorithm and the existence of Gröbner bases and give a gen- 
eralisation of Buchberger's algorithm in which, at each stage, 
a set of (appropriately defined) S-polynomials to be included 
in the new basis is augmented by certain p-power multiples of 
the elements of the current basis. 

III. GRöBNER BASES IN R[X\
2
 AND DECODING 

The general structure of a Gröbner basis of a submodule of 
R\x}2 is given by 
Theorem 1 Let A be an R—submodule of R\x}2 Then A has 
a. Gröbner basis of the form 

{(a0,b0),.. ., (on-i.bn-i), (c0,rfo),. .., (c„_ \,dn. 1)} 

satisfying, for alli,j £ {0,..., n — 1} 
i. lm(oi,6i) = (yxea\0), lm(Ci,di) = {0,pjx9d>) 
ii. doi < daj for i > j, ddi < ddj for i > j. 

Define the solution module M = {(a, b) : aS = b mod xq}. 
It is easy to see that {(1, S), (0, xq)} is a basis of M. Our main 
result is that the required solution may be found by convert- 
ing this to a Gröbner basis. 
Theorem 2 The solution (E, SI) of the key equation required 
for decoding the alternant code C(N,r, a, 7, P) is (up to equiv- 
alence) the minimal regular element of the Grobner basis of the 
solution module M under the term order <-\. 
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Figure 1. Computation sequences of multiplicative inverse (m - 
(a) Fermat's little theorem, (b) Itoh and Tsujii's algorithm. 

Abstract —   A new algorithm that can calculate the 
multiplicative inverses in GF(2m) with 0(log2 m) iterations 
is presented. While this algorithm requires in total the same 
number of multiplications ([log2(m - 1)] + Hw(m - 1) - 1 ) 
with the best known algorithm [1], the latency, if mapped to 
a hardware, can be reduced significantly ([log2(m -2)] + 1), 
comparable to the best case result, which is implemented 
using Fermat's little theorem. 

I. TRADITIONAL ALGORITHMS 

One of the famous inversion algorithms is to calculate a 
formula x_1 -x2"'2 = x2 x2 •■■X2'" , following Fermat's 
little theorem (Figure la). If this formula is mapped into a 
sequential circuit, the latency is m-2 multiplications. If 
mapped to a combinational circuit, the latency can be improved 
to [\og2(m - 2)] +1 by arranging multiplications like a tree. 

In [1], Itoh and Tsujii proposed an improved algorithm that 
requires the least number of multiplications ever known (Figure 
lb). The latency is at most twice as long as that of Fermat's 
theorem; [log2(w-l)] + Hw(m - 1) - 1 multiplications where 
Hw() denotes Humming weight. It is difficult to shorten the 
latency, since the multiplications need to be performed in a 
sequential manner. 

II. THE PROPOSED ALGORITHM 

Figure 2 shows our new algorithm and Figure 3 shows some 
example computation sequences by using our algorithm. After 
the ([log2(m-l)] +l)-th iteration of for-loop, a multiplicative 
inverse is obtained in a register yi.   Please note that the first 
multiplication to y2 and the last multiplication to y\ are always   mj14        ,x , v 

(l"u'ti'p':"tio"is ™"e.c.e.ss.a?h 
unnecessary, although this is not described in Figure 2, for  \xL^p^x

2_^)^x
iJC<^y^x'' 

simplicity. '"' |£S,' : register yi        ; .„^ 
Clearly, our algorithm requires in total the same number of j ^^.rimuljipBcatjon.is urmecessary)..L^T^..j,egister.y!.. 

multiplications with Itoh and Tsujii's algorithm. The latency, 
however, is only [log2(m-2)] +1 multiplications, since in the 
for-loop, calculation of the values of y\ and yi can be 
performed in parallel, if mapped to a hardware. This algorithm 
can be used in any value of m and any basis representations, 
and also can be implemented not only as a sequential circuit but 
also as a combinational circuit. We believe that combining our 
algorithm with a composite-field based method in [1,2] will 
make a very fast and compact inversion circuit possible, if m is 
not a prime number. 

16). 

y\ :=x; 
yi-i; 
for k = 0 to [log2(m -1)] do begin 

if(bit-*of(m-l)) = 1 then 
yi := yi x Oi * *2(«m-,)mod(2,,,*))+I)); 

end if; 
y, :=y, x O, * *2<2*'*>);   r * * *(2<2"*<*+1» - -1) will be stored */ 

end for; 
write yi; 

Figure 2. The proposed iterative algorithm. 

APPENDIX. CORRECTNESS PROOF OF OUR ALGORITHM 

is represented by 
1 — £j=o 2 '    where   '* > £s-i > '" > to. 

Suppose that m 
m 

From (1), 
Vk(s ä k § 1); (m - 1)mod2''■ = Ejtr] 2' 

and also 
(m-l)mod2'»=0. 

From Figure 2, the output of our algorithm xollt 

Xout '■ n A=0- t{(2<2**'*) - 1) . 2(((»'-l)mod(2.*/f.))+l)} 

From (2),(3) and (4), 
xOH,=x**(IJU(2"*-2«*-')) 

where   w/, = (S'lo 2 'Q + 1. 

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 3. Computation sequences by our algorithm. 

From (1) and (5), 
Xoiit ~ X & "X-^Z ■2l)=x**(2'"-2)=x- D 
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Abstract — The Turbo code interleaver design prob- 
lem is considered for relatively large block sizes, where 
the effect of trellis termination is less marked. An 
optimised interleaver design technique based on sim- 
ulated annealing is proposed - performance is signif- 
icantly better than the Berrou-Glavieux interleaver 
without an increase in delay. 

I. INTRODUCTION 
The classical use of interleavers is to randomise the location 
of errors, enabling the use of random-error-correcting codes 
on channels with burst error patterns. Turbo coding also in- 
troduces a further dimension to interleaver requirements, due 
to the effects of the iterative algorithm. Most optimised in- 
terleaver design techniques in the literature are based on the 
JPL's S-random interleaver algorithm [1]. While S-random 
interleavers perform well, the technique was not intended as a 
basis for advanced interleaver design. Its main shortcomings 
are that it is not guaranteed to produce the required inter- 
leaver and that it only aims at achieving a spread S. 

II. OPTIMISED INTERLEAVER DESIGN 

Simulated annealing [2] can be used to design optimised inter- 
leavers by definining an energy function based on a predefined 
set of requirements. We use a random interleaver as an ini- 
tial state, and define the perturbation function as a swap of 
two random interleaver entries, ensuring that the interleaver 
is always valid. The energy function used is: 

f \/(*-j)2 + [AW-A0')]2 

where i,j 6 [0, r — 1], r is the block size, u is the encoder 
memory, and A() is the interleaving function. This energy 
function attempts to 'push' bit-pairs away from the origin in 
the Input-Output Distance Spectrum (IODS)1, increasing the 
spread of the interleaver. In contrast with the JPL technique 
it does not guarantee a particular spread; however, it pushes 
points away from the origin even beyond the spread boundary. 

III. RESULTS 

We restrict ourselves to unpunctured rate-1 symmetric Turbo 
codes with v = 2 and generator2 (1, 5/7). In order to avoid 
the effects of trellis termination, we also choose r = 1024. As 
a reference for performance, we implement a uniform inter- 
leaver by using a different random interleaver for every block 
simulated [3]. We compare our interleaver design with this 
uniform interleaver, a rectangular interleaver, the design used 
by Berrou and Glavieux [4], and an S-random interleaver in 
Fig. 1. Our design achieves a BER of 10"5 at f*- = 1.35 dB. 

10 

10' 

10' 

rr 
LU 
m 

r2 

r3 

-5 

3—© Uniform (Unlefminated) 

Q—D Rectangular (21x49) 

<y—$ Berrou-Glavieux (32x32) 

A—£ Simulated Annealing 

<}—< S-Random 

-6 

10 

10 

10 0.0 0.5 1.0 1.5 

Eb/No (dB) 

Fig. 1: Turbo code BER simulation (10 iterations) 

IV. CONCLUSIONS 

Our new interleaver design performs at least as well as the 
S-random interleaver. However, using our technique it is eas- 
ier to include design restrictions, for example to make the 
interleaver correctly-terminating or odd-even. Also, more so- 
phisticated energy functions matched to the component codes 
may be considered, particularly for use with punctured codes. 
Utilising some performance enhancement techniques, the com- 
plexity of the energy function grows only as 0(T), making it 
suitable for use with large block sizes. 
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Abstract — We propose a new algorithm for Turbo 
code interleaver design, which is based on the con- 
ventional s—random approach and whose complexity 
grows only linearly with the interleaver length. 

Designing the interleaver 7r = {-K\;..; -KK) of length K of a 
Turbo code serves to increase the code's minimum distance 
<5min arid hence to lower the error floor of the Word and Bit 
Error Rates (WER/BER). An efficient method was presented 
in [1]. Examinations show that for so-designed interleavers, 
the codeword at dmul is mainly caused by a combination of 
an input word u'1' of the first component encoder (identical 
to the Turbo encoder input u) and a second component in- 
put word u^2' as shown in Fig. 1. In this example, "1001" 
represents an error pattern, i.e. an input sequence causing a 
short error event in a component code trellis. The s-random 
interleaver n does not avoid that the four "l"s in the two error 
patterns of ir1' are mapped crosswise to two error patterns 
in u'2\ since the two "l"s belonging to each error pattern 
in u(1) are spread to distant positions in u'2', and hence the 
spreading condition of [1] is satisfied. However, this unlucky 
mapping of positions can be avoided and <5min can be increased 
by modifying the interleaver design algorithm. 

m m+3 
0010010 

l-l  t 
0010010 

Position 
U(D= „ 

u<2' ... 0100100    ....    0010010 ... 
Position i-3   i j-3   j 

Figure 1: Unlucky mapping of positions 
The proposed algorithm incorporates the s-random 

method of [1] and hence, it successively determines 7ri to TTK ■ 
In step I, we set up the set Ai C {1;..; K] of possible values 
for 7T(, which have not already been assigned to nt in earlier 
steps t < I, and which satisfy the spreading condition of [1]. 
Moreover, step I consists in determining and discarding values 
of Ai, which would cause an unlucky mapping like in Fig. 1. 

Determining these unfavourable values in Ai can be done 
very efficiently using a recursive backtracking approach, which 
is shortly outlined using the example of Fig. 1. Our basic ob- 

.(!) servation is that any "1" present in u'1^ = (uj ;..; u^1) or 

ir ' = (u\ ;..;uK), respectively, must belong to an error 
pattern. Otherwise the associated codeword has large weight 
and can be ignored, since we consider and try to avoid only 
low weight codewords. In step /, we consider exclusively u(1' 
_■,!.    ..(I)    _    -, .    ..(1)    _.    n       Ui,      ,        ~ .■_.., '        ,. with u 1 and u\' = 0, Vt > I. Our starting point for 

the backtracking is that the "1" in u\ must belong to an er- 
ror pattern (as reasoned above). Every possible error pattern 
must be considered, and for each of them, we must proceed in 

XM. Breiling is sponsored by the Fraunhofer Gesellschaft - In- 
stitut für Integrierte Schaltungen, Erlangen. 

2S. Peeters is now working for BU Satellite Communications, 
Nortel Dasa Network Systems, Friedrichshafen/Germany. 

a backtracking manner. In our example of Fig. 1, we consider 
(i) ..W only the error pattern "1001" in u\_'3 to u\ '. Since 7n_3 = j 

has already been determined, we know that vS2' = 1. Follow- 

ing the above reasoning, the "1" in vh must belong to an 
error pattern, for which we must consider every possibility. In 

(2) ,(2) the Fig., we consider "1001" in uj_3 to uy'. For the case that 
j — 3 has earlier been assigned to 7rm, m < /, we conclude 
that »V = 1. Every possible new error pattern containing 
Um = 1 must be considered in u'1' (in the Fig. "1001" in 

um to um+3). Finally, for -Km+z = i, we find that u\ ' = 1. 
We must thus discard i — 3 from Ai, since this prevents the 
assignment 7r; = i — 3, which would otherwise complete the 
unlucky mapping in Fig. 1. When all unfavourable values have 
been discarded from Ai, then 7rj is randomly chosen from the 
remaining values. The backtracking algorithm works also for 
error patterns of weight > 2. The complexity of a complete 
interleaver design grows linearly with K. 

We verified the proposed algorithm by designing an in- 
terleaver of length K = 200 for a Turbo code of rate 1/2 
employing M = 2 component codes (generator polynomials: 
(1; 5/7)). In the design, we used s = 8 and considered all error 
patterns of weight < 3. For a termination of both component 
trellises, this Turbo code attains Jmjn = 14. Fig. 2 shows 
the WER (upper curves) and BER (lower curves) for varying 
Eb/No (received energy per information bit over the one-sided 
noise power spectral density) for a simulated transmission us- 
ing coded BPSK over an AWGN channel. The performance 
is compared to using a pure s-random interleaver [1] with 
s = 10 (expected Jm;n < 12) and a uniform interleaver [2] 
(mean ömm < 6) of the same length. We can clearly see the 
improved BER and particularly WER for higher Eb/No- 
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Figure 2: Simulation results 
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Abstract — In this paper the design of interleavers 
for Turbo Codes is considered. The proposed algo- 
rithm is based on a Hamming weight cost matrix. It 
optimizes both the minimal distance of Turbo Codes 
and the passing of extrinsic information. Simulation 
results show that for short lengths these interleavers 
improve the error performances at high SNR. 

I. INTRODUCTION 

It is admitted that the interleaver is the key element of 
Turbo Codes [1] [2], In order to optimize the distance spec- 
trum and the minimal distance of Turbo Codes, the inter- 
leaver should map input sequences u(D) which generate low 
weight output sequences j/i (D) with interleaved sequences 
v(D) which generate high weight output sequences 2/2(JD), and 
vice versa. Due to the iterative structure of the turbo decoder, 
the interleaver should also guarantee a good passing of extrin- 
sic information from one decoder to the other. The proposed 
interleaver optimizes both these two criteria. In order to in- 
crease the minimal distance, a Hamming weight cost matrix 
is used for the construction. The second goal is achieved since 
the proposed interleaver belongs to the family of cycle op- 
timized interleavers [3]. The interleaver is built element by 
element using a tree search method. 

Let u — [UQ,UI, .. . ,UN-I] and v = [vo, v\,... , VN-I] re- 
spectively be the input and output sequences of the inter- 
leaver. We have the relation : v = ul where I = {a,ij}NxN 

with aij € {0,1} and JZ a'J = Si a'i = 1- ^e can 

also define the interleaver with the permutation vector E = 
[e(0), e(l), e(2),..., e{N - 1)] where e{i) = j e> atj = 1 

II. INTERLEAVER DESIGN 

For the construction of E, we will use a cost matrix J 
of same dimension as I. J = {6,j}jvx;v bij is equal to the 
Hamming weight of the lowest Hamming weight code gener- 
ated from the input sequences u(D) with Hamming weight 
w < WMAX and supposing a^ = 1. Each new element e(n) is 
chosen according to both criteria defined previously. 

1. initialization : 

6ij(0) = +oo    Vi,j 
e(0) is chosen randomly 

2. for (?i = 1,2,..., AT- 1) : 
-update of bij(n)    (i > n)    Vj: 

with     C = {u(D) = D'o + Dh + D'2 + ■ ■ ■ + D'-'-1} 

N-l 

w = Y^ Uk < WMAX     and    w < n + 1 

1, 

1 

let    £1 

£2 

{J 

{J 

(1) 

(2) 

(3) 

(4) 

bij (n) = : (n - 1), min L + ^ ylk + ^ yik 

with    lo < li <     ■ < lw-3 < n - 

lw-2 = 7i — l,     lw-i > n 

-choice of e(n) : 

bnj > DM AX} 

\i - j\ + \e(i) - e(j)\ > L, 

i = 71 — 1, n — 2,..., 71 — L — 2} 

e(n) € £ = £1 n £2. e(n) is chosen randomly in £. 
Equations (1) and (2) reduce the set C of input sequences 

v(D) to test for each 11. Equation (3) corresponds to the mini- 
mal distance constraint. Equation (4) corresponds to the cycle 
optimized constraint which imposes that two bits separated by 
A' bits (A < L —2) in the input sequence u(D) should be sep- 
arated by at least L — 2-X bits in the sequence v(D). £ is the 
set of all the new positions satisfying both constraints. This 
method allows us to build an interleaver with minimal dis- 
tance DM AX and minimum cycle L. From [3], it is possible to 
build an interleaver with L < y/N + 2. If the tree search fails 
{£ = 0), the procedure should be started again. To obtain an 
interleaver with the greatest minimal distance, the procedure 
must be repeated by increasing the value DM AX until it is no 
longer possible to build the interleaver. 

III. RESULTS AND CONCLUSION 

Simulations using a R=l/3 Turbo Codes with two 8 states 
RSC's with generator (15/17)8 were performed. For Ar=105 
bits, the parameters obtained with WMAX=3 are DMAX — ^ 

and L=10. Simulation results show that, at high SNR, the 
performances of Turbo Codes using this interleaver are O.ldB 
better than the best interleavers available in the literature [4]. 
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Abstract — A new interleaver design to improve the 
performance of the Turbo codes is presented here. 
Two criteria are considered in the design of the inter- 
leaver; the distance spectrum properties of the code 
and the correlation between the input information 
data and the soft output of each decoder correspond- 
ing to its parity bits. A deterministic interleaver de- 
sign based on these criteria is also proposed here. 

I. INTRODUCTION 

Turbo codes[l] have an impressive near Shannon limit error 
correcting performance. This superior performance of Turbo 
codes compared to convolutional codes is only achievable when 
the length of the interleaver is very large, on the order of 
several thousand bits. For large block size interleavers, most 
random interleavers perform well. 

An interleaver 7r is a permutation i i—> 7r(i) that maps a 
data sequence of N input symbols into the same sequence in a 
new order. An S-random [2] interleaver is a semi-random in- 
terleaver that performs better than most random interleavers. 
Each randomly selected integer is compared to S previously 
selected random integers. If the distance between this inte- 
ger and previously selected random integers is greater than S, 
then it is selected. Otherwise, a new random integer will be 
chosen and this process is repeated until all N distinct inte- 
gers are selected in this random order. This interleaver design 
assures that the short cycle events are avoided. Short cycle 
event occurs when two bits are close to each other before and 
after interleaving. 

II. 2-STEP S-RANDOM INTERLEAVER DESIGN 

A new interleaver design, 2-step S-random interleaver, is 
presented here based on the S-random interleaver. The 2-step 
S-random interleaver is designed under the constraint to in- 
crease the minimum effective free distance of the Turbo code 
without increasing the correlation properties between the in- 
formation input data sequence and the soft output of each 
decoder corresponding to its parity bits. The criterion used in 
the second step of the design is based on the revised version of 
iterative decoding suitability (IDS) condition that is described 
in [3-4]. 
Step 1: Each randomly selected integer 7r(i) is compared 
with the previous selections ir(j) to check that if i — j < Si 
then |7r(i) — n(j)\ > Si. We also insist that 7r must satisfy 
\i — 7r(i)[ > S2. Si and S2 are two constants. 
Step 2: Choose the maximum pre-determined weight Wdet for 
input data sequences and the minimum permissible effective 
free distance code dmin<WdiLt. Find all input data sequences of 
length N and weight wi < wdet and their corresponding effec- 
tive free distance dWl for the Turbo encoder with an interleaver 
design based on step 1 such that dWl < dmintWdet. All these 
input data sequences are divisible before and after interleaving 
by the feedback polynomial (usually a primitive polynomial) 
of the Turbo encoder. Consider the first input data block of 

weight w\ with non-zero elements in locations (ii, 12, • ■ ■, iu 
Compute IDS(new) based on [4] for the and dwi < dv 

original interleaver designed in step 1. Set j = i\ + 1 and find 
the pair (j,ir(j)). Interchange the interleaver pairs (ii,7r(ii)) 
and (j,7r(j)) to create a new interleaver, i.e., (ii,7r(j)) and 
0,7r(?-i))- Compute the new IDS, IDS[new), based on the 
new interleaver design. If IDS[new) < IDS(new), replace the 
interleaver by the new one. Otherwise, set j = j + 1 and con- 
tinue. Repeat this operation for all input data sequences with 
a minimum weight of wi < Wdet and dw, < d„ After 
completing this operation, return to step 2 and find all in- 
put data sequences of weight wi < wdet with dwi < dmin,wdet 

for the new interleaver. Continue this step until it converges 
and there is no input data sequence of weight wi < Wdet with 
dw, < dmin,wdt.t ■ Obviously if dmin,wd<,t is selected a large 
value, the second step may never converge, and in this case 
dmin,wdet should be reduced. 
An interleaver design proposed in [6] is based on the joint S- 
random criteria and elimination of all error patterns of weight 
Wi. However, in practice the joint optimization criteria will 
not converge easily and therefore the value of S must be re- 
duced and Wi restricted to only weight two inputs. By sepa- 
rating these two criteria into two steps, we can easily find the 
appropriate interleaver satisfying each step separately. 
In some applications we need to have a deterministic inter- 
leaver to reduce the hardware requirements for the Turbo en- 
coder and decoder. The following theorem describes a tech- 
nique to design a deterministic interleaver based on step 1. 

Theorem 1: Let a € N be a natural number such that 
gcd(a, N) = 1 and a — 1 divides N. Then there is a permuta- 
tion 7T € SAT satisfying (i) and (ii) with Si := min(a, -^) and 

S2 := LVJ- Let ß ■= L^J and define TT : {1,..!, N} - 
{1,...,N} by 7r(i) := a-i + ß, where n(i) has to be interpreted 
as the number ir(i) e {1,..., N} that is congruent to a-i + ß 
modulo N. 
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Abstract — We show that an optimal source code 
with cost function for code symbols can be regarded 
as a random number generator generating a random 
sequence (not necessarily a sequence of fair coin bits) 
as the target distribution in the sense that the normal- 
ized conditional divergence between the distribution 
of the generated codeword distribution and the tar- 
get distribution vanishes as the block length tends to 
infinity. 

I. INTRODUCTION 

In 1998, Visweswariah et al. [1] and Han [2] have indepen- 
dently shown that an optimal variable-length source code can 
be regarded as a variable-length random number generator in 
the sense that the normalized divergence distance between the 
distribution of the generated codeword process and the uni- 
form distribution vanishes as the block length tends to infinity. 

On the other hand, as is well known, if we impose un- 
equal costs on code symbols, it is no longer optimal to use the 
code which minimizes the average codeword length. Karp [3] 
has given an algorithm for constructing minimum-redundancy 
prefix codes with unequal cost symbols. Naturally, there 
would exist a bias in the frequency of code symbols gener- 
ated by an optimal source code with cost. Can we then con- 
sider the optimal variable-length source code with cost as a 
variable-length nonuniform random number generator? The 
purpose of this study is to demonstrate that the answer to 
this question is "yes". 

II. VARIABLE-LENGTH SOURCE CODING WITH COST 

Let A" be a countably infinite source alphabet and y be a 
finite code alphabet, respectively. In the sequel all the log- 
arithms are taken to the base K = \y\, where \y\ denotes 
the cardinality of y. We denote the set of all non-null fi- 
nite length sequences taken from y by y*. Let us now de- 
fine a general source as an infinite sequence X = {X" = 

(X["\---X„)}^=1 of n-dimensional random variables Xn 

where each component random variable X\ (1 < t < n) 
takes values in X. The class of sources thus defined covers a 
very wide range of source including all nonstationary and/or 
nonergodic sources. 

Next, we define the cost function c : y —> R+ = (0, +co] 
as follows: First, each symbol y 6 y is assigned the corre- 
sponding cost c(y) such that 0 < c(y) < -t-oo (Vy € y), and 
then the additive cost c(y) of y = (t/1,2/2, •: • ,2/k) € yk is 

defined by c(y) = $3j=1 c(y;)- 

Definition 1 : R is called an achievable variable-length 
source coding cost-rate for the source X if there ex- 
ists  a  variable-length  prefix  encoder   tp„    :    X"    -+   y* 

10. Uchida is now with the Dept. of Network Engineering, Kana- 
gawa Institute of Technology, Atsugi, Kanagawa, 243-0292 Japan. 

given the cost function c : y -> R+ such that 
limsup„_HX, ^E{c(ip„(X"))} < R, and the infimum of R 
that are achievable variable-length source coding cost-rates 
is denoted by ß^(X), which we call the infimum achievable 
variable-length source coding cost-rate. 

Theorem 1  : For any general source X, we have 

K(X) = — limsupitfpn, 
etc   „-Kx,   n 

where the cost capacity ac is the positive unique root 
a   of the  equation   £y6y tf-0"^    =    1   and  H{X")    = 

-£xe*"P*"(x)logP*S"(x)- 

III. SOURCE CODE WITH COST AS A NONUNIFORM 

RANDOM NUMBER GENERATOR 
Given a variable-length prefix encoder y>„ : X" -> y", we 

define Vm = {x € X" | f(<p„(x)) = m} for any positive inte- 
ger m, where /(•) denotes the length of a string, and we put 
J(tpn) = {m|Pr{Xn € X»m} > 0}. For any m € J(<?„)> we 

define X£, as the random variable taking values in Dm with 

the distribution given by Px^(x) = Pr{x"gpm} (x e ^mT- 

For any positive integer m, V(m) indicates an i.i.d. sequence 
of length m. Let us now define the conditional divergence by 

D&n(X")\\V^\In) =   Y,   Pr{/» = m}D(VB(JC)||K<m>) 
m£J(Vn) 

where /„ is the random variable such that In — m for X" 6 

Then, we have the following main theorem. 

Theorem 2 : We assume that the entropy rate of the general 
source X has the limit lim,.-^ ^H(Xn). Let <pn : X" -¥ y* 
be any optimal variable-length prefix encoder in the sense that 

lim -E{c(>pn(X"))} = Rl(X). 
n—yoo 71 

If we define the probability distribution qc = {qc(y)}y€y cor- 
responding to the cost function c by qe(y) = K~"cC^y' (y € 
y), then we have 

lim -D(Vn(X")\\V(I")\In) = 0, 
n—>oo n 

where V(m' stands for the i.i.d. sequence of length m subject 
to the distribution qc. 
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Abstract We consider the simulation problem of 
generating random sequences from an arbitrary pre- 
scribed discrete memoryless source (DMS) by using 
a random sequence from a given DMS. We propose 
two simple algorithms and give some explicit results 
for their asymptotic performances. 

I. INTRODUCTION 

Simulation problems of generating random sequences from 
a prescribed information source by using a random sequence 
from a given information source is called random number 
problem. Recently, simple and efficient algorithms for ran- 
dom number problem and the analysis of their performances 
were studied by Han and Hoshi [1], Uyematsu and Kanaya 
[2] and Oohama [3]. We deal with the simulation of generat- 
ing random sequences of fixed length from an arbitrary pre- 
scribed discrete memoryless source (DMS) by using a random 
sequence of fixed length from a given DMS. We propose two 
simple algorithms and derive explicit results for their asymp- 
totic performances. Our results contain some of the results of 
Uyematsu and Kanaya [2] and Oohama [3] as special cases. 

II. RANDOM NUMBER APPROXIMATION PROBLEM 

Let A" and Y be random variables taking values in finite 
sets X and y, respectively. The distributions of A" and 1" 
are denoted by Px = {Px(-r)}rex and P,- = {Py(y)}yey 
respectively. Let V(X) and V(y) denote the set of all prob- 
ability distributions on X and >\ respectively. Consider two 
stationary discrete memoryless sources {A'/J^Lj and {YjJ^lj. 
For each t = 1,2, ■ • •, A"< and Yt obeys the same distribution as 
those of X and Y, respectively. We write random sequences of 
lengths »i and m from information sources as A" = A"i A'j • ■ • 
A„ and Ym = Y1Y2 ■ ■ ■ Ym, respectively. 

The Fixed to Fixed random number approximation prob- 
lem discussed here is as follows. Let fi>n : y'" —» X". Let 
$(r) denote the set of all the map <fi„ that satisfies the rate 
constraint m < nr. By the map fi„, the random sequence 
Ym is transformed into the sequence <fi„(Y"'). which is used 
as an approximation of the random sequence A". We con- 
sider the approximation error measured by the variational dis- 
tance between the distributions of fi„(Y"') and A" denoted 
by </(¥>„(!""), A"). 

Next, we explain our proposed algorithms for approxima- 
tion. Let ix be an one-to-one map from A'" to {1. 2, • ■ ■, \X\n }, 
where \A\ denotes the cardinality of the set A. Let Px(x"), 
xn € Xn denote the probability of xn and Ix{x") be a subin- 
terval of [0,1) given by Ix(.r" ) = [Lx(r"), Lx(->") + Px(x")), 

where Lx(xn) = E.-:,-(„-)<i(x») Px (<*")• Definitions and no- 
tations for Y are the same as those for A'. In the proposed 
algorithms the map <p„ has the following form. For ?/" € >"" 
define <f„(y'n) = •>■" if Ly (ym ) e Ix(.r" )• In the arithmetic 

algorithm the map ix is determined according to some lexico- 
graphical order of sequences in X". In the sorting algorithm 
the map ix is determined according to the descending order 
of values of probabilities of sequences in X". The definition 
of iy for I" is the same as that for A". 

To state our results for the performances of the above two 
algorithms, set 

Fx(R.Px)=    miu   {[X(R-H(P)-D(P\\Px))]+ 

+D(P\\PX)} 

F+(R.PX) =   lim   Fx(R,Px). 
A—+oc 

F-(R,PX)=   lim   Fx(R,Px). 
A—-*■ — oc 

where [t]+ = max{0,f}. Let R-(Px) = miiix.e*( -log 
Px(r)). R+(Px) = maxrG,r( -log Px(*)) and set 

Ks=    {(R.R) :     i?>ri?_(iY), 

rF.{^.Py)<R<R+(Px)}. 

Define two functions by 

E-4r,Px,Py) 

miu       max { Fi{R. Px )■ rF- (-.P\)\ 
K>rK_(Py ) I \ r J i 

E&(r.Px.Py)=     miu    \ [R - R] + 

+ mfix{F+{R.Px),rF- (f-^)} }■ 

Our main results are as follows. 

Theorem 1 For any r > 0 and the sequence of maps 
{fin ■ ■fin € $i,(''')}^_i defined by the arithmetic algorithm 

lim   (--) logd(fi„(Ym). A") > E^r.Px.Py).      (1) 

Theorem 2 For any r > 0 and the sequence of maps 
{fin : fin € $,11')}^-! defined by the sorting algorithm 

lim  (--) logf/(^„(F"').A") > Es(,;Px,Py 
« — so \    11 J 

) •      (2) 
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Abstract — Source conversion by means of two bi- 
nary prefix codes is considered. A source sequence is 
encoded into a stream of codewords by the first code. 
Then, the stream is parsed into codewords of the sec- 
ond, which consequently produces another source se- 
quence. The conversion rate is investigated in the 
context of the combined source-(d, k) coding. 

I. INTRODUCTION 

In the combined source- (d, k) coding scheme as introduced 
by Kerpez [1], an arithmetic code performs source coding and 
(d, fc)-constrained channel coding simultaneously. While its 
mechanism looks very similar to the interval algorithm for 
generating random numbers proposed by Han and Hoshi [2], 
Kerpez's code essentially consists of an arithmetic encoder 
for an information source and an arithmetic decoder for the 
maxentropic source associated with the (d,k) constraints [3]. 
Using these two codes, Kerpez's code converts a given source 
to another, say to the maxentropic source. 

To study on source conversion more generally, we investi- 
gate the coding performance of the combination of two binary 
prefix codes cj>\ and (j>2'- the first code <j>i maps an informa- 
tion source sequence X = XiX2- ■ ■ over X = {ai,..., OD} 

into the intermediate binary process Y = (f>\(X\)4>\(X2) ■ ■ ■ 
over y = {0,1} while the second parses Y into Y = 
<p2(Zi)4>2(Z2) ■ ■ •,   and  outputs  Z   =   Z\Zi...  over  Z   = 

{71. ■•■,7*}- 
The conversion rate p is the ratio of the length of Z to that 

of X. More precisely, we define 

p(X,<j>ucf>2) = limsupJV(0i(X'),^2)/* 
t-too 

where (j>i(Xe) = d>i(Xi) ■ ■ ■ d>i{X() and N(yk,(j>2) is the num- 
ber of codewords completely parsed by <j>2 for yk G yk. 

In this article, we obtain a formula on conversion rate for an 
independent and identically distributed (i.i.d.) source X and 
apply it to the problem of the combined source and (d, k)- 
constrained channel coding. 

II. A FORMULA ON CONVERSION RATES 

Fixed Y = y e y°°, we expect that for a sufficiently long 
subsequence ym (m » 1), the ratio N(ym, 4>2)/N(yrn, (j>{) 
is close to the conversion rate. In fact, if X is i.i.d., then 
{N{Ym,cj>i),m > 0} with iV(Y0,(^) = 0 is a renewal 
process [4] with mean E\(f>i(X)\, i.e., the average codeword 
length of (fii for X. Hence, the strong law for renewal 

processes says limm_>oo N(Ym, </>i)/m "= l/E\4>i(X)\ where 

= ' means the convergence with probability one. However, 
{N(Yrn,cf>2), m > 0} is not a renewal process since the pro- 
cess {4>2(Zi), 4>2(Z2), ■..} is not always i.i.d. except the case 

the probability of X is D-adic, that is, each of pk = Pi{X{=ak} 
equals D~l for some L 

To overcome this difficulty, we get the insight into a Markov 
chain which exists behind Y.   Here, for i = 1,2, let T, be 

a binary tree whose paths from the root to external nodes 
uniquely correspond to codewords of <j>i by labelling 0 and 1 
to the left and right branches of internal nodes, respectively. 
The set of states of the chain consists of internal nodes of T\. 
And the state transition probability P can be recursively given 
by initially assigning probabilities pk {k = l,...,D) to the 
corresponding external nodes. Then, Y is given as the output 
process of the chain which emits the label 0 or 1 according to 
a branch passed through in every transition. 

Now, construct a joint Markov process with the state set 
consisting of pairs of internal nodes of Ti and T2. Its tran- 
sition probability is automatically deduced from P. Then, 
Y can be thought as the output process of the joint Markov 
chain as well. Having considered its stationary probability, we 

showed that lim^oo N(Ym,T2)/m a= l/E\<j>2(Z)\ where Z 
is a random variable with the stationary probability of Z. 

Theorem 1 Given an i.i.d. source X, and prefix codes 4>\ 
and <f>2, 

p{X,4>u4>2)a= ■ E\4>y{X)\IE\<h(Z)\- 

III. RATE OF COMBINED SouRCE-(d, k) CODING 

Let Cd,k be the set of binary strings 0 • • • 01 consisting of i 
consecutive zeros followed by a symbol 1 for i = d, d+1,..., k. 
Let f{d,k), or simply /, be a one-to-one mapping from Z to 
Cd.k where \Z\ = k — d + 1. After converting the source 
sequence X to Z through <p\ and <j>2, we apply / to each 
symbol in Z.   Then we obtain a (d, A;)-constrained sequence 

f(Z) = f(Z\)f(Z2)---. Let us define the conversion rate 
p(X,<j>i,<f>2, f) of the combined coding by 

p(X,0i,02,/) = Um supiV |/(7)| JV^CA-'),^^) 

where N{y™cj>2,~i) is the frequency of ^2(7) parsed from ym. 

Theorem 2 p(X,4>u4>2,f)  =' p(X ,4>i,<h) E\f(Z)\. 

Finally, we obtain the following theorem. 
Theorem 3 There exists a series of pairs of <j>[   : X1 —> y* 

and 4>^: Z* y* such that 
W   At) lim p{X,(j>\',4>\\f{dtk))  = 

H(X) 
log A 

where y* is the set of all finite sequences over 3^, H(X) is 
the entropy rate of X, and A is the largest positive root of 
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Abstract — This paper deals with the interval algo- 
rithm proposed by Han and Hoshi for random number 
generation, and evaluates the efficiency of the algo- 
rithm for each sample path instead of evaluating over- 
all expectation. We show a theorem in the almost- 
sure sense to give bounds on the sup generating rate 
as well as on the inf generating rate for each sample 
of input and output processes. 

I. INTRODUCTION 

This paper deals with the most general random number 
generation problem by interval algorithm [1] where the pro- 
cess of repeated coin tosses and that of repeated random num- 
ber generations are general processes subject to neither sta- 
tionarity nor ergodicity but consistency restrictions. We are 
concerned with the case in which the target process should be 
generated exactly subject to the prescribed probability mea- 
sure, and concentrate on the almost sure asymptotic property 
of the generating rate of each sample, i.e. the number of coin 
tosses per output sample of the general process. To this end, 
we introduce the minimum length function to indicates the 
length of the shortest prefix of sample x £ A°° from the gen- 
eral source with which the interval algorithm generates the 
n-length prefix of some sample y £ A00 subject to the target 
probability measure. Then we define sup generating rate and 
inf generating rate of each input sample. As a result, we prove 
a theorem in the almost-sure sense to give bounds on the sup 
generating rate as well as on the inf generating rate for each 
sample of input and output processes. 

II. BASIC DEFINITIONS 

(a) General sources 
Let A be a finite set and (.4°°,.^) a measurable space, where 
A°° is the set of all strings of infinite length that is formed 
from the symbols in A, and T is a cr-field of subsets of A°°. 
Let fibea probability measure defined on (A°°,!F). Then 
we call (A°°,!F,ii) a probability space. We call n a general 
process [2]. Throughout this article, we assume for Li neither 
stationarity nor ergodicity but consistency restrictions. 

An extension of the interval algorithm for general sources 
was indicated in [1, Remark 12]. So, we omit the description 
of the algorithm. 

(b) Inf generating rate and sup generating rate 
The minimum length function L" : A°° —> N is defined as 
the length of the shortest prefix of sample x £ A°° from the 
general source v with which the interval algorithm generates 
the n-length prefix of some sample y £ A°° subject to the 
target probability it. Here it should be understood that L"(x) 
is defined as +oo if the above set is empty. We call L"(x) the 

minimum length of x.  Further, we define the sup generating 
rate for any source sample x as 

li(x) = lim sup — V}(x)    Va: G ^4°°. 
n-K»     n 

Similarly, the inf generating rate is defined as 

lT(x) — liminf — L"(x)    Vx £ A°°. 
n-+oo    n 

III. MAIN RESULTS 

We require the following hypotheses to prove the theorem 
as well as the consistency restrictions for \x and v : 

HI:    There exists a positive number a such that 

lim inf — log —;—r 
n-t-oo    n V\Xn) 

> a    i^-a.s. 

H2:    There exists a positive number ß such that 

> ß    fi-a.s. Urn inf — log —.— 
n-too    n fJ,(Xn 

Suppose that for the input sample x £ .A00, the output 
sample y £ A°° is generated by the interval algorithm. Then, 
the following theorem holds. 

Theorem : 

hv{x) 

Kiv) 
h„(x) 

My) 
kM) -h{x) - A» ~: 

where h„(x) and hv(x) (resp. hjjj) and h^y)) are inf v- 
complexity rate and sup v-complexity rate (resp. inf and sup 
^(-complexity rates) defined in [2]. Especially, if both processes 
v and ix are stationary ergodic, then 

lj(x) = li(x) = -r^-    a.s. 

where hv (resp. h^) denotes the entropy rate of the process v 
(resp. n). 

It should be noted this theorem is an extension of the re- 
sults in [3] where we only deal with i.i.d. processes. 
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Abstract — Upper bounds on the reliability func- 
tion of the Gaussian channel were derived by Shan- 
non in 1959 [1]. Kabatiansky and Levenshtein 
[2] obtained a low-rate improvement of Shannon's 
"minimum-distance bound". Together with the 
straight-line bound this provided an improvement 
upon the sphere-packing bound in a certain range of 
code rate. 

In this work we prove a bound better than the 
KL bound on the reliability function. Employing 
the straight-line bound, we obtain a further improve- 
ment of Shannon's results. As intermediate results 
we prove lower bounds on the distance distribution 
of spherical codes and a tight bound on the exponent 
of Jacobi polynomials of growing degree in the entire 
orthogonality segment. 

Let S"-1 be a sphere of radius <J\J'An in Rn, where A is 
the signal-to-noise ratio in the channel and a1 is the variance 
of the Gaussian noise along each coordinate. A code W is 
a finite subset of Sn~x. The number R = (l/n)\n\W\ is 
called the rate of W.   Let d(W) :— minx,yew dist(x,y)(0 ^ 

d{W) ^ la\/An), be the minimum distance of W. Suppose 
that W is used for transmission over the Gaussian channel. 
Let Pe(W) — T^r 2~Dxsw fe(x) be the error probability of W 
under maximum likelihood decoding. Let 

Pe(R,A,n)    = min      PC{W) 

E{R,A,n)    =    --logPc{R,A,n). 
n 

Shannon [1] introduced the function 
E(R, A)   =     lim E(R,A,n)   and  called   it   the   reliability 

n—*oo 
function of the channel. Computing this function forms a 
central problem of information theory. In the same paper 
Shannon proved the sphere-packing upper bound on E(R, A) 
in the form 

nra   A\ ^  A        -</Äg(9, A) COS 6 . 
E(6,A) ^ ^4-^ \n(g{9,A)sm9), 

22 (1) 

(here p(0,,4) = f (\/A~cos0-fVAcos2 9 +A), 9 = arcsin(e~Ä)), 
and the minimum-distance bound 

E(R, A) < Emd(R, A) = (A/8)d2(R), 

where d(R) is any upper bound on the distance of a code 
of rate R. Kabatyansky and Levenshtein [2] proved a new 
upper bound on the distance of spherical codes in the form 
d{R) ^ i(p(R)), where 6{x) = y/2{yJTT~x - y/x)/y/l + 2x, 
p(R) is the root of the equation R = (1 + p)//(y£-), and H is 

the natural entropy function. Using this bound in Emd(R, A) 
together with the straight-line bound, they improved [2] upon 
Shannon's results in a certain range of code rates. 

The main result of the present paper is the following theo- 
rem. 

Theorem 1 The reliability function of the Gaussian channel 
with signal-to-noise ratio A satisfies the upper bound 

,2 2 

E(R, A) ^     min    max   min(A — , A——A(w)) , 
0Cp£p(R)   w,d   L 8 8 J 

(2) 

where R is a value of the code rate, 

0 ^ d < 5(p(R)),    d^w^ 6(p) 

.    f     Ad2w2       „,   _ 1 
2 

and 

I8(4w2 -d2)' 
w2,p ■)}■ 

,1. 
+ ln(-(i +v

/(l + 2p)2x2 4p(l - p))) 

+ {l + 2p)ln 
(1 + 2p)x + y/(X + 2p)2x2 -4p{l-p) 

2(1 +P) 

Bound (2) is better than the minimum-distance bound on 
E(R, A) of [2]. Together with the straight-line bound related 
to it, (2) also improves upon the sphere-packing exponent (1) 
in a larger range of code rates than the results in [2]. 

The proof consists of the following 4 steps: 
-a general theorem on the distance distribution of spherical 
codes.   This theorem carries over to the spherical case the 
techniques developed recently in [3], [4], 
-asymptotic bounds on the exponent of Jacobi polynomials 
Pk (this is an extension of a result in [2] on the asymptotics 
of the extremal zero of Pk), 
-asymptotic bounds on the distance distribution of spherical 
codes, and 
-bounding below the error probability of decoding for a code 
with a known distance distribution. 
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Abstract — In this paper we develop AWGN cod- 
ing theorems for ensembles of codes for which we can 
calculate, or at least closely estimate, the ensemble 
weight enumerator. As a rule, for such an ensem- 
ble we can find a threhold c such that if Eb/No > c, 
then the ensemble maximum-likelihood error proba- 
bility appraoches zero. This threshold is always bet- 
ter, and usually much better, than can be obtained 
from the union bound. The role of low-weight code- 
words is key. 

1. INTRODUCTION 

Coding theory has been revolutionized by the discovery of 
that certain random ensembles of codes (" turbo" style codes, 
LDPC codes, and their relatives) can be effectively decoded 
with iterative message-passing algorithms. Of course a ran- 
dom ensemble is a candidate for iterative decoding only if it 
has the potential for good performance, as measured by its 
maximum-likelihood decoding performance. In this paper we 
will develop a technique for finding the ML potential for a 
broad class of random ensembles, on the AWGN channel. A 
weaker, but more broadly applicable, technique is the subject 
of a companion paper [2].) 

II. ENSEMBLE WEIGHT ENUMERATORS 

By an ensemble of linear codes we mean a sequence 
Cni, C„2,... of sets of linear codes of a common rate R, where 
Cni is a set of (n;, fa) codes with fa/n; = R. We assume that 
the sequence n-i,»i_,... approaches infinit)'. If C is an (n,fc) 
code in the ensemble, we denote the weight enumerator of 
C by the list Ao{C),Ai(C),...,An(C). The average weight 
enumerator for the set Cn is defined as the list 

^B)(C),Äi'0(C), ■ rf:\c), 

where 

4n) = 1 

\Cn\ 
^2 Ah(C)        for h = 0,1,. 

C6C, 

Also, we define the ensemble spectral shape : 

for 0< 6 < 1, r{6) = lim -]ogA"Sn} n->oo n L     ' 

assuming that the limit exists. In this case, we may write 

T(n) - „"(<-W+°U)) /ih    — e , 

where 6 = h/n. 
For technical reasons, we need to make the following two 

assumptions about the behavior of Ah , for ft. = o{n). Both 
assumptions say, roughly, that there are not too many words 
of low weight in the ensemble. 
• Assumption 1: There exist a sequence of integers dn such 
that dn —» co and 

dn 

xThe work of these authors was supported the National Aero- 
nautics and Space Administration. 

2The work of these authors was supported by NSF grant no. 
CCR-9804793, and grants form Sony and Qualcomm. 

Assumption 2: 

lim V A),    = 0 
n—foo * «iJ 

lim^<0. 
6->0     6 

It is our goal to prove an AWGN coding theorem for such 
an ensemble, i.e., a theorem that says that if Eb/No exceeds 

a certain threshold, then PE    —► 0 as n —» co, where P' E 

denotes the ensemble average probability of (word) error for 
a maximum-likelihood decoder.   In the next section, we will 
give a formula for such a threshold based on a recent result of 
Divsalar. 

III. DEFINITION OF THE DIVSALAR THRESHOLD 

For an ensemble of the type discussed in Section II, we can 
define the Divsalar threshold as follows: 

I-61- e-2r<6) 

CD -    SUp    • 
0<&<\ 

(The 

crj    = 

6 2 

The derivation of this threshold is explained in [1]. 
threshold   corresponding   to   the   union   bound   is 

r(-)   \ 
sup0<«<i—0 

IV. THE MAIN THEOREM. 

Theorem. For an ensemble of rate R which satisfies the two 
assumptions cited in Section II, if Eb/No > (1/R)CD, then 

lim 7^ = 0. 

Using the result of this theorem, and the known expressions 
for r(6) for the ensembles of low-density parity-check codes 
and "repeat-accumlulate" codes [3], we can obtain very good 
values for the ML thresholds for these codes. 

REFERENCES 
[1] D. Divsalar, "A simple tight bound on error probabil- 

ity of block codes with application to turbo codes," 
TMO Progress Report 42-139 (November 1999). avail- 
able at http://tmo.jpl.nasa.gov/tmo/progress_report/42- 
139/139L.pdf. 

[2] Hui Jin and Robert J. McEliece, "General Coding Theorems for 
Turbo-Like Codes," Proc. ISIT 2000. 

[3] D. Divsalar, H. Jin, and R. J. McEliece, "Coding theorems for 
'turbo-like' codes," in Proc. 36th Allerton Conf. on Communi- 
cation, Control and Computing, pp. 201-210, 1998. 

1 
I 

0-7803-5857-0/00/510.00 ©2000 IEEE. 
■459- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Gaussian ISI Channels and the Generalized Likelihood Ratio Test 
Amos Lapidoth 

ETF E 107 ETHZ 
CH-8092 Zürich 

Switzerland 

lapidothQisi.ee.ethz. ch 

Emre Telatar 
EPFL - DSC - LTHI 
CH-1015 Lausanne 

Switzerland 

Emre.TelatarQepf1.ch 

Abstract — Decoders employing the generalized 
likelihood ratio test can achieve rates that can be 
achieved by maximum likelihood decoders on ISI 
channels even though they are ignorant of the channel 
characteristics. 

I. INTRODUCTION 

A variety of communication systems can be modeled accu- 
rately by an intersymbol interference (ISI) channel. In many 
situations, however, the exact nature of the interference may 
not be known at the time of the system design. In this note, we 
consider the performance of a particular decoding rule that, 
in contrast to maximum likelihood (ML), operates with im- 
precise knowledge of the channel. 

The question of the existence of universal decoders for the 
ISI channel has been previously addressed [1]. It is known that 
universal decoders do exist for this class of channels. However, 
the existence proof suggests a very complicated construction, 
one that requires to consider all ML decoders for all the pos- 
sible ISI channels, and to form a "merging" of these decoders 
into a single universal one. As such, the complexity of the 
evaluation of any particular codeword is very high. 

For the case of discrete memoryless channels the situation 
is simpler. The maximum mutual information decoder first 
suggested in [2] and widely popularized in [3] employs a rela- 
tively simple decoding rule: given a received sequence y, and 
a candidate codeword x, compute a score maxQ Q(y|x), where 
the maximization is taken over all DMC probability laws. The 
decoder then chooses the codeword with the highest score. It 
is known that this decoding rule is universal. Even though 
the cost of codeword evaluation is more than that of max- 
imum likelihood decoding, it is still much less than that of 
universal decoders based on merging. 

The natural generalization of the above decoding rule leads 
to the so called "Generalized Likelihood Ratio Test" (GLRT): 
Let the possible channels be parametrized by 6 with Pg denot- 
ing the probability law of the corresponding channel. Given a 
received sequence y, compute the score of x as max« Pg(y\x), 
and choose the codeword with the highest score. 

That universal decoders do exist for the ISI channel does 
not imply that the GLRT decoder performs well; there are 
classes of channels for which there exists a universal decoder, 
but GLRT performs poorly [4]. In this presentation, we will 
investigate the performance of the GLRT on ISI channels. In 
particular we will show that as far as achievable rates are con- 
cerned, the GLRT decoder performs as well as the maximum 
likelihood decoder. 

II. RESULTS 

If the spectral characteristics of an ISI channel are known in 
advance, the codebook used over this channel will be designed 
accordingly; in particular, the capacity of the channel can be 
achieved via water pouring. Since we assume that the ISI co- 
efficients are not known in advance, we will consider the case 

in which the codewords are chosen to have a flat spectrum. 
We will content ourselves by considering the rates achievable 
by GLRT decoders and ML decoders when the codebook is 
chosen as such. Since the codebook is not spectrally matched 
to the channel we have no hope of achieving the true capac- 
ity of the channel; but we feel that to have assumed that 
the transmitter is designed with the knowledge of the channel 
whereas the receiver is not would have been artificial. In all 
the cases considered below, the transmitter is subject to an 
average power constraint P. 

We will assume that the channel filter a has at most a 
given duration J, and that the output of the channel at time 
k is related to the channel input x via 

Yk = {a *x)k + Zk,    k-l,...,n, 

where * denotes cyclic convolution and Zk are i.i.d, circu- 
larly symmetric Gaussian random variables with E[Z{\ — 0, 
£[|Zi|2] = 1. The use of cyclic convolutions is motivated 
for reasons of analytical convenience, but can be justified by 
prepending each codeword by its last J symbols. 

In addition to assuming that ctk = 0 for k > J, we will 
further assume that the filter a satisfies a norm constraint 

The GLRT decoder then works as follows: given a received 
y, it assigns to each codeword x a score mina ||y — a*x|| where 
the minimum is taken over all filters a of at most J taps that 
satisfy the energy constraint ||a||2 < H. The decoder then 
declares the codeword of smallest score. 

We show that for randomly chosen codes (with indepen- 
dently chosen codewords, each codeword chosen either uni- 
formly on the sphere or with i.i.d. Gaussian components), the 
error probability for the GLRT decoder decays to zero as long 
as the code rate is less than 

/  log(l + P|Q(0)|2 

Jo 
de, 

where a(8) = Ylk otkel2^ek is the Fourier transform of the 
channel impulse response. We thus see that for ISI channels, 
GLRT decoders can achieve all rates the ML decoder can. 
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Abstract — In this work, we present a new lower 
bound on the feedback capacity of the colored Gaus- 
sian noise channel. Under the assumption of large 
power, this lower bound is shown to be strictly larger 
than the non-feedback capacity. Insight into the role 
of the feedback and the capacity-achieving strategy- 
have been obtained. 

I. INTRODUCTION 

In [1], Cover and Pombra have characterized the feedback 
capacity of the discrete-time, real, colored Gaussian noise 
channel with noiseless feedback, but their expression still in- 
volves an unsolved maximization problem. Since then, most 
of the work has concentrated on finding upper bounds on the 
capacity. The only lower bound published in the literature 
says that the feedback capacity cannot be smaller than the 
non-feedback capacity. To our knowledge, a specific feedback 
strategy, applicable for any noise process, that shows that the 
feedback capacity is strictly larger (when this is actually the 
case) than the non-feedback capacity has not been published 
in the literature prior to our work. 

II. PROBLEM FORMULATION 

The single-user, discrete-time, colored Gaussian noise channel 
is described by the equation relating the transmitted signal 
X[n] to the received signal Y[n] at time n: 

Y[n] = X[n] + Z[n] (1) 

where Z[n] is the Gaussian noise at time n. We will consider 
transmission over this channel for N time steps and assume 
that Z[l], • ■ • , Z[N] are jointly Gaussian and zero-mean with 
covariance matrix Kz- Without feedback, X[n] is only a func- 
tion of the message U to be transmitted; however with feed- 
back, X[n] may also depend on past values of the noise process 
Z[l], ■ • • , Z[n — 1]. The transmitter is power-constrained by 
Y.L,E[X[n?}<NP. 

III. PREVIOUS WORK 

Let CN,FB (P) be the capacity in bits per transmission over 
N time steps if feedback is available and the transmitter is con- 
strained to an average power P. The expression for the feed- 
back capacity and the form of the capacity-achieving feedback 
strategy are determined as follows in [1]: 

CN,FB(P)=      max   _ —: 
tT(Kx)<N P IN 

\Kx±A\ 
\Kz\   / 

(2) 

where the maximization is taken over all feedback strategies 
of the form: X = U + F Z where U is a Gaussian vector and 
is independent of the noise process Z and F is a strictly lower 
triangular matrix, since the feedback has to be strictly causal. 

IV. NEW LOWER BOUND ON FEEDBACK CAPACITY 

Determing the feedback capacity reduces to a joint opti- 
mization problem over Ku and F, which is not easily solved 
in closed form. However by fixing a strictly lower triangu- 
lar matrix F and finding the optimal Ku for that given F, 
we will determine a lower bound on the feedback capacity, 
parametrized by F. Under the assumption of large enough 
power P, it is obtained that: 

CN,FB(P) > -^ log 
(P+jrtr(Kz) + jrtr(FKz))1 

\Kz\ 

(3) 

By chosing a particular feedback matrix F, it is shown that 
the feedback capacity is strictly larger than the non-feedback 
capacity: 

Theorem 1 For any noise covariance matrix Kz of a colored 
noise noise process, let F = FLLSE be the linear least squares 
prediction matrix. The difference between the feedback and the 
non-feedback capacity is then bounded below by: 

CN,FB(P) - CN(P) > \ log 
1     %tr (FLLSE Kz) 

P+jftriKz) 
> 0 

(4) 

lThis work was conducted under Lincoln Laboratory contract 
BX-7036. 

In this feedback strategy, the linear least squares prediction 
of the noise is added to the information part of the signal 
to form the transmitted signal. Note that this prediction is 
known at the transmitter, but not at the receiver. And it turns 
out that this strategy gives the receiver added information 
about the noise. It is surprising that whitening the effective 
noise process encountered by the information signal is not a 
beneficial strategy. The new lower bound provided can be 
further tightened by introducing an amplification factor and 
by considering F = a FLLSE, where a > 1. The tightest 
bound achievable through our family of strategies is obtained 
when increasing a until the assumption of large enough power 
is violated. 
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Abstract — The new signature scheme, traitor trace- 
able signature scheme is presented, which allows the 
signer to convince any arbiter of the recipient's in- 
fringement, if the recipient distributes illegally the 
signature which he got. We use the techniques of a 
proof of knowledge of discrete logarithm[l][2], iden- 
tification of double spender in an off-line electronic 
cash[3][4], and a signcryption scheme[5]. Our scheme 
consists of 3-move and it is more compact and effi- 
cient compared with the previous scheme[6], due to 
eliminate the cumbersome cut-and-choose like tech- 
niques. Moreover, our accusation protocol does not 
require the private-key of the recipient of signature, 
i.e., signer can convince any arbiter of the recipient's 
infringement without help of original recipient". 

I. INTRODUCTION 

In a conventional digital signature scheme, after issueing the 
digital document with his signature, the signer cannot con- 
vince anyone who has leaked his signed document, since he 
can reproduce it arbitrarily. Recently, [6] proposed that the 
technique of tracing traitor[7][8] could be applied to the mes- 
sage with signature in order to prevent illegal proliferation of 
it. This approach is effective in case that both the message 
and signature are valuable for anyone. 

However, this method[6] is not efficient in communication 
and computation, due to involve the cumbersome cut-and- 
choose like technique. Moreover, [6] has the following two 
problems, 1) an accusation protocol requires the private-key 
of the recipient of signature. Therefore, if the recipient is not 
available, the arbiter cannot make decision of accusation, 2) 
after accusation protocol, the signer can know the complete 
signature which is known only by recipient before accusation. 
This means that [6] is not robust against signer making wrong 
accusations. 

II. TRAITOR TRACEABLE SIGNATURE 

In this paper, we propose the new signature scheme, traitor 
traceable signature, which solves several problems of [6] : 1) 
if the recipient distributes illegally the signature which he 
got, our scheme allows the signer to convince any arbiter 
of the recipient's infringement, 2) We use the technique of a 
proof of knowledge of discrete logarithm, identification of dou- 
ble spender in an off-line electronic cash, and a signcryption 
scheme, which are well estimated to be (provably) secure, 3) 
our scheme consists of 3-move and it is more compact and effi- 
cient compared with the previous scheme[6], due to eliminate 

the cumbersome cut-and-choose like techniques, 4)our accusa- 
tion protocol does not require the private-key of the recipient 
of signature (the signer can convince any arbiter of the recip- 
ient's infringement without help of original recipient), 5)the 
signature can be generated to the recipient only once per each 
execution of this protocol in order to prevent the signer from 
making wrong accusations. 

Table 1: Traitor Traceable Signature Scheme 

Altec 

X  <- g' 
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Abstract — An efficient traitor tracing scheme for 
broadcast encryption is proposed. Its security de- 
pends on the difficulty of discrete logarithm problem 
and is equivalent to ElGamal public-key cryptosys- 
tem even when subscribers collude. The proposed 
scheme is the first one which satisfies all the following 
features: The tracing algorithm is black box tracing; 
All the traitors are identified from a captured pirate 
decoder; The data supplier can encrypt the contents 
such that only a specific subset of subscribers' de- 
coders can decrypt it; The encryption algorithm is 
public-key. 

I. INTRODUCTION 

A broadcast distribution system (BDS) is a system where 
the data supplier broadcasts the contents in encrypted form 
and gives each subscriber a decoder containing a secret de- 
cryption key, e.g., pay-TV. For a BDS, there are two require- 
ments: At least one traitor can be identified from a captured 
pirate decoder which is constructed by t or less traitors; The 
data supplier can prevent .s or less subscribers from decrypt- 
ing the broadcasted contents in encrypted form. Here, s and 
t are parameters. To the authors' knowledge, only the BDS 
in [1] satisfies both s > 0 and t > 0, while it is not efficient. 
We construct an efficient BDS by limiting its security and the 
parameters to computationally theoretical one and s = t, re- 
spectively. The proposed BDS is based on the BDS with s = 0 
and t > 0 in [2] and uses the idea of a group key distribution 
scheme in [3] to make s > 0. Compared with the BDS in [2], 
the proposed BDS can identify traitors even if a captured pi- 
rate decoder is used only as a black box. Note that, for a group 
key distribution, there is no need to trace traitors. Actually, 
that is not discussed in [3]. 

II. PROPOSED SYSTEM 

We label all the n subscribers from 1 to n. The set of all 
the n subscribers is denoted by $, i.e., <J> = {l,2,...,n}. Let 
p and q be prime numbers with q\p — 1. The multiplicative 
group of order p — 1 is denoted by Zp. Let g be a q-th root 
of unity, and Gq denote a subgroup of Z* of order q, i.e., 
Gq = {gz : 0 < z < q}. Let Iq denote the set of nonnegative 
integers less than q. All the subscribers and the data supplier 
agree on the prime numbers p, q and the generator g. 

The secret  decryption key for the subscriber i is d;   = 

the session key ks. For ks and A = {xi,X2, ■ ■ ■ ,X\A\}, the 
data supplier generates the enabling part, denoted B(k„,A), 
(<7r,fcs2/5,(zi,Sr/(ll>),(*2,<?r/(*2)), ...,(*„ »"<->)) where r 
is a random element in Iq and relatively prime to p — 1, and ev- 
ery Xi with |A| < i < t is chosen/rom 7,\($U{0}). gr"x'' can 

be computed from e and r by gr^Xi> = (y0 xj/j'xt/j' x   • • • x 

Vt  ) ■ 
For B(ks, A), only a subscriber m with m £ A can compute 

<7r-f (°) by performing Lagrange interpolation formula for f(x) 
implicitly in the exponent of gT, and obtain ks. 

Suppose a pirate decoder constructed by a coalition C of t or 
less traitors is captured. Even if the pirate decoder is used only 
as a black box, the traitors can be identified as follows: For 
every set of t subscribers, denoted by A, generate the enabling 
part B(ks, A) where ks is taken over Gq at uniformly random; 
Give every generated enabling part to the pirate decoder; Sup- 
pose that the pirate decoder does not output the session key 
for the I enabling parts, B(k,i, Ai), B{kS2, A2),... , B(k3i,Ai); 
The set of all the traitors is f]i=1 A» under the same assump- 
tion that in [1] where a pirate decoder outputs the contents as 
long as the input is an enabling part and at least one traitor is 
not in A. The reason is that CCA; for every Ai with 1 <. i < I 
and there is no C' such that C C C C A; with 1 < i < I under 
the above assumption. 

III. DISCUSSION ON EFFICIENCY AND SECURITY 

When evaluating a BDS, two complexity measures are to 
be considered: the size of an enabling part and that of a secret 
decryption key. The enabling part consists of 2t + 2 elements 
in Z* and each secret decryption key consists of two elements 
in Zp. The proposed system is much more efficient than the 
BDS in [1] where those are 0(t2) and 0(t6), respectively, and 
as efficient as the most efficient system in [2] where those are 
t + 1 and 1, respectively. 

Even if the encryption key e is made public, for every A 
with |A| < t, the computational complexity for A to compute 
ks is shown to be as hard as to compute a plaintext in El- 
Gamal public-key cryptosystem over Zp. The computational 
complexity for C to obtain a secret decryption key (u, f(u)) 
where u & C, when given e and traitors' secret decryption keys 
di with i £ C, is shown to be as hard as the discrete logarithm 
problem over Zp. 

(i,f{i)), where f(x) = a0 + aix + aix2 + 
with ao,oi,... ,at & Iq. The encryption key is e = (p,g,yo, 
2/1,   ... , 2/t), where y; = gai with 0 < i < t. 

The broadcasted contents in encrypted form consists of an 
enabling part and a cipher part. The cipher part is the sym- 
metric encryption of the contents under a session key. For 
each distribution, a session key is chosen randomly. Let A 
denote the set of t or less subscribers whom the data sup- 
plier prevents from obtaining the contents encrypted under 
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Abstract — We say that a broadcast encryption 
scheme is a (c, Ar)-Broadcast Exclusion Scheme (BEx) 
if a center can exclude c or less users among N users. 
In this paper, we present an efficient (c, N)-BEx which 
has inherently large traceability by showing a new 
construction of cover free families. 

I    Previous works 
Assume that there exist secure block ciphers. It was recently 
shown that a (c, N)-BEx is obtained from a cover free family 
by Kumar et al. [1] and the authors [2] independently. Kumar 
et al. also presented a construction of cover free families such 
that overhead — 0(c2), which is independent of N, by using 

algebraic geometry codes, where overhead =(the length of a 
ciphertext)/(the length of a plaintext). 

A set system is a pair (X, B), where X = {1, 2,.. ., v} and 
B is a set of blocks B; C X with i = 1, 2,..., N. We consider 
a set system such that |B;| = k for i = 1, 2,..., N. 

Definition 1.1 [3] We say that {X,B} is a (v,N,k,c,D)- 
cover free family if \B,0 \ \J

C
=1 Btj \ > D for VB,,,..., VB,c 

andforVBi0${Bi1,...,Bic}. 

On the other hand, a broadcast encryption scheme is said 
to have c-traceability if when a set of at most c users (who are 
not necessarily excluded) pool their keys together to construct 
a "pirate decoder", at least one of the users (a traitor) involved 
can be identified from the decoder [4]. 

Definition 1.2 [5] We say that (X,B) is a c-(v,N,k) trace- 
able set system if for VBn ,... , VBic and for VBi0 £ 
{Bil,. ..,Bic}, 

|Fnß;0| <  max \FDB, | 
l<j<c 

(1) 

for any F C |J'-=i B'j  su°h that \F\ ~ k. 

In the c-traceability scheme, Bi is the key of user i and 
F corresponds to the pirate key. From Eq.(l), we see that a 
traitor is detected by computing max; \F (1 Bi\. 

II    Proposed construction 
In [1, page 614], it was remarked that cover free families could 
be used to construct traceability schemes. Actually, we can 
prove the following theorem. 

Theorem II.1 // there exists a (v, N, k, c, D)-cover free fam- 
ily, then there exists a (c, N)-BEx such that overhead = v/D. 
Further, if k < D + \D/c\, then it can be used as a c- 
traceability scheme as well. 

In this section, we show a construction of cover free families 
which satisfy both overhead = 0(c2) and k < D + \D/c] by 
using almost strongly universal hash functions. Even for BExs 
only, our construction is conceptually much simpler and much 
easier than that of [l]. 

Let X and Y be finite sets such that \X\ > |V|. Let H be 
a set of functions such that h : X —► Y for each h 6 H. Let 
\H\ = v,\X\=m, \Y\ = n. 

Definition II. 1 [6] We say that H is an e-almost strongly 
universal (e-ASU2(v, m, n)) hash function family provided that 
the following two conditions are satisfied: 

1. for any x G X and any y € Y, there exist exactly 
\H\/\Y\ functions h £ H such that h(x) = y. 

2. for any two distinct elements x\,X2 € X and for any 
two (not necessarily distinct) elements 1/1,2/2 € Y, there 
exist at most e\H\/\Y\ functions h G H such that 
h(xi) = y{, i =1,2. 

Theorem II.2 If there exists an e-ASU2(v,m,n) hash func- 
tion family H, then there exists a (v, N, k, c, D)-cover free fam- 
ily such that N = ran, k = v/n, D = -(1 — ce) + 1. 

Theorem II.3   There exists a e-ASU2(v,m.,n) hash function 

family such that v = q      , n 

I 

q, m = q q    and 

+ 
q      q 

1 1 

for 1 < V< < W < V<7 = prime power. 

Corollary II.1 There exists a (v, N, k, c, D)-cover free family 

such that v = ql+2, N = q'9' + 1, k = q'+1 and D = ql+1 - 
c(lq  + ql      — q) + 1 for 1 < Vi < V/ < V</ = prime power. 

XA part of this research was funded by NSF CCR-9903216. 

Corollary II.2 Let q be a prime power and let c = \/g/3. 
Then there exists a (c, N)-BEx such that overhead = 0(c2). 
Further, it can be used as a c-traceability scheme as well. 

(Proof) Let t = 1 and I = 2. 
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Abstract — It is shown that oblivious transfer of 
strings can be reduced to the weakest version of obliv- 
ious bit transfer, where the receiver can choose to ob- 
tain arbitrary (but incomplete) information about the 
pair of bits sent. This solves an open problem posed 
by Brassard and Crepeau. 

I. EQUIVALENCE BETWEEN OBLIVIOUS TRANSFERS 

Important cryptographic primitives, such as secure mes- 
sage transmission, key agreement, or secure multi-party com- 
putation, can often be reduced to apparently much weaker 
primitives such as noisy communication channels or correlated 
randomness. In this note we present an information-theoretic 
reduction of so-called l-out-of-2 oblivious string transfer to a 
weak variant of oblivious bit transfer, called universal obliv- 
ious transfer. Oblivious-transfer primitives are of central 
importance for many cryptographic protocols. In principle, 
oblivious transfer allows for carrying out any secure two-party 
computation. 

The standard oblivious bit transfer (bit OT) between two 
parties corresponds to a binary erasure channel with erasure 
probability 1/2: The sender's input is a bit 6, which the re- 
ceiver learns with probability 1/2, whereas otherwise, he ob- 
tains no information about b. The sender on the other hand 
does not learn whether the bit has been received or not. 

In l-out-of-2 bit OT ((j)-OT for short) the sender sends 
two one-bit messages, exactly one of which the receiver can 
choose to read, remaining completely ignorant about the other 
one, such that the sender does not get any information about 
which message has been chosen. In l-out-of-2 k-bit-string OT 
((j)-OTfc) the messages are fc-bit strings instead of single bits. 

The problem of reducing string OT to bit OT was studied 
by many authors (see [1] and the references therein). In [1], 
a reduction was presented based on so-called privacy ampli- 
fication by hashing with linear functions. It was even shown 
that (j)-OT* with security s, i.e., such that with probabil- 
ity at least 1 — 2~", the receiver obtains no information at 
all about one of the transmitted strings, even when given the 
other, can be reduced to n = 0(k + s) realizations of gener- 
alized OT (GOT), where the receiver can choose to learn any 
one-bit function (such as &o, bo © 6i, or fco A 6i) about the two 
bits 6o and 6i sent. Protocol BC, which achieves this, works 
as follows. First, GOT is applied n times with random input 
bits (xi,yi). Then, the two A;-bit messages mo and mi to be 
sent by (j)-OTfc are blinded by (i.e., xor-ed with) two k-bit 
strings ho(x\,..., xn) and hi (j/i,..., y„), respectively, where 
ho and hi are two linear functions from n-bit to A>bit strings, 
chosen randomly and published by the sender. 

It was stated as an open problem in [1] how this result 
generalizes to a primitive offering the receiver the possibil- 
ity to obtain arbitrary (probabilistic) information about the 
pair (6o,bi). We show that the most optimistic answer is the 
correct one: Whenever the information the receiver obtains 
in such universal OT (UOT) does not completely determine 

'Department  of Computer  Science,   ETH  Zürich,   CH-8092 
Zürich, Switzerland. E-mail: wolfflinf.ethz.ch 

(60,61), then string OT can be reduced to this primitive. The 
argument is based on the fact that among all types of an ad- 
versary's side information about a single bit with given error 
probability, there exists a "strictly worst case," namely infor- 
mation obtained from a symmetric erasure channel. This also 
allows for simplifying the proofs given in [1] and for improving 
the results with respect to the involved constants. Related re- 
sults in models different from the one of [1] were shown in [2]. 

II. THE POWER OF UNIVERSAL OT 
Definition 1. Let a > 0. In universal OT with parameter 
a (Q-UOT), the sender's input is a pair of bits (bo,bi). The 
receiver specifies a possibly probabilistic function fi which 
must satisfy H((bo,bi) | fi(fco,&i)) > Q if (fco, bi) is uniformly 
distributed. Then the receiver obtains fi(6o,fci), but no 
additional information about (6o,fci). The sender on the 
other hand does not learn anything about fi. 

Theorem 1. Protocol BC reduces (j)-OT* with security 
s to at most \(s + 2fe)ln2/pe] realizations of a-UOT, 
where pe is the unique solution (< 1/2) to the equation 
h(2x) + 2xlog3 = a. 

Lemma 2. Let B be a symmetric binary random variable, 
and let U be a random variable such that B and U have joint 
distribution PBU ■ Let p be the average error probability of 
guessing B when given U, using the optimal guessing strategy. 
Then there exists a random variable V with the following 
properties. First, V = {0,1, A} and Py(A) = 2p hold, and 
for every u € U, we have PB\U=U,V=A(0) = PB\U=U,V=A(1)- 

Proof. Let u e U, and assume that a = PB\U=U(0) > 
PB\U=U(1) = b. Let V be defined by Py |j3=o,u=u(0) = 
(a - b)/a, Pv|B=o,i/=u(A) = 6/a, and PV|B=I,U=U(A) = 1. 
Note that PV\U=U(A) = 26, i.e., twice the error probability 
for guessing B when given U = u. D 

The idea of the proof of Theorem 1 is as follows. By Fano's 
inequality, one can conclude that, when the pair (xi,yi) is sent 
by Q-UOT, about at least two of the bits Xi, yi, and Xi © ?/;, 
the receiver's error probability when guessing the bit with the 
optimal strategy is at least pe. Because of Lemma 2, we can 
assume that with probability at least 2pe, the receiver has no 
information at all about such a bit. By construction, this im- 
plies that with overwhelming probability, the receiver cannot 
bias g(ho(xi,... ,xn),hi(yi,... ,y„)) for any linear function g 
with range {0,1} and depending non-trivially on both inputs. 
In this case, he has no information at all about one of the 
inputs, even when given the other. 
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Abstract — This paper considers "vector multiple 
access channels" (VMAC) where each user has mul- 
tiple "degrees of freedom" and studies the effect of 
power allocation as a function of the channel state on 
the "sum capacity" defined as the maximum sum of 
rates of users per unit degree of freedom at which the 
users can jointly reliably transmit, in an information 
theoretic sense. A concrete example of a VMAC is 
a MAC with multiple antennas at the receiver where 
the antennas provide spatial degrees of freedom. Our 
main result is the identification of a simple dynamic 
power allocation scheme that is optimal in a large sys- 
tem, i.e., in the regime of a large number of users and 
a correspondingly large number of antennas. A key 
feature of this policy is that, for any user, it depends 
only on the instantaneous amplitude of the slow fad- 
ing component of the vector channel ofthat user alone 
and the structure of the policy is "waterfilling". 

I. INTRODUCTION AND PROBLEM STATEMENT 

A discrete time baseband frequency flat channel fading model 
for the multiple antenna, multiple access channel is the fol- 
lowing: 

K 

y{n) = Y^Xi(n)hSi{n)h{(n)+w(n) . 

i=i 

Here K denotes the number of users and n the channel use 
instant. The user symbols are denoted by I, and y(n) is the 
received signal (thought of as a N dimensional vector, N be- 
ing the number of antennas at the receiver) at the antenna 
array at time instant n. Here w(n) is an additive white Gaus- 
sian noise. The channel (a vector with N components) from 
user i to the antenna array at time instant n is written as 
h{ (n)hf (n). Here h° is a scalar that varies slowly in time and 
captures the distance loss and the shadowing effects and thus 
depends only on the user. The fast fading component which is 
changing due to the destructive and constructive additions of 
the signals from multiple paths is represented by the vector hf 
which depends on the individual antenna elements. For the 
purpose of this summary, we will assume that {hi(n)}n and 

|h; (n)\ are independent stationary and ergodic processes. 
We are interested in the scenario of coherent communication, 
the scenario when the receiver is able to track the channel 
variations reliably. 

Our performance measure is the long term sum capac- 
ity: sum of rates at which users jointly reliably communicate. 
These rates are time averaged with a power constraint on the 
users which is also averaged in time.    We are interested in 

the characterizing sum capacity with and without feedback 
of channel states to the users. If there is no feedback to the 
users, then a coding theorem shows that the users transmit 
at constant power. When there is feedback information of the 
channel state, users can modulate their power based on this 
knowledge. The problem addressed here is the characteriza- 
tion of the power allocation policies that are optimal in the 
sense of maximizing sum capacity of the system. 

II. MAIN RESULT 

In the one antenna scenario, there is a simple characteriza- 
tion of the optimal power policy (only the user with the best 
channel is allowed to transmit and this user uses a water- 
filling power policy) and the gap between sum capacity by 
using this optimal policy and the sum capacity with no chan- 
nel state feedback is very large (unbounded in the number 
of users). However, in the general case of multiple antennas, 
there is no closed form solution to the optimal power policy 
which for any user is some function of the paths from all the 
users to the antenna array. Our main result below identifies 
a simple waterfilling power allocation policy that is optimal 
in the regime of large number of users and antennas: con- 
sider the power policy that for.any user depends only on the 
slow fading component of that user alone and the structure 
is that of "waterfilling". Observe that in the regime when 
slow fading is constant over the time scale of communication, 
this policy simply allocates constant power. Our main result 
is that this is a very good approximation to the complicated 
optimal power policy. In particular, this means that feeding 
back only the slow fading component is asymptotically suffi- 
cient in the multiple antenna scenario. Denoting the ratio of 
users to antennas by [»-^Ji we have our main result below. 

Theorem 1 For all a, for all SNR levels, for all fading dis- 
tributions, 

lim sup vN (Sum Capacity with optimal power policy 
N-~ oo 

— Sum Capacity with waterfilling policy) < oo 

The details of this summary are available in [1]. 

REFERENCES 

[l] P. Viswanath, D. Tse and V. Anantharam, "Asymptotically 
Optimal Waterfilling in Vector Multiple Access Channels", ac- 
cepted in IEEE Transactions on Information Theory subject to 
minor revisions, Feb 2000. Also available as UCB/ERL Memo- 
randum. M99/54. 

'This work was supported by NSF under grant IRI97-12131 and 
by an NSF CAREER Award under grant NCR 97-34090 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 
•466- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

A Resource Pooling Result 
for a CDMA Antenna Array 
S.V. Hanly 1 D.N. Tse 2 

Dept. of Electrical and Electronic Dept. of Electrical Engineering and 
Engineering Computer Science 

University of Melbourne University of California at Berkeley 
Parkville Victoria 3052 Australia Berkeley CA 94720, USA 

e-mail: s.hauily@ee.mu.oz.au        email: dtse@eecs.berkeley.edu 

I. INTRODUCTION 

We consider a spread spectrum, multi-user channel, with 
an antenna array at the receiver, and independent flat 
fading to each antenna from each user. We focus on 
the case of microdiversity, and show that a curious phe- 
nomenon of "resource pooling" arises. 

II. BASIC MULTI-ANTENNA MODEL 

We consider a sampled discrete-time baseband model for 
a symbol-synchronous multi-access CDMA system with 
K users, L receive antennas and processing gain N. The 
received signal at the Ith antenna is given by 

Y(0 = J2xkVTlyk(l)sk + W(0, (1) 

where Xk is the symbol transmitted by user k at transmit 
power Tit, -jk(l) is the complex fading channel gain from 
user k to antenna /, s*, € C^ is the signature sequence 
of user k, Y(l) € CN, and W(Z) is additive white Gaus- 
sian noise with variance <T

2
, independent across I. The 

symbol energy E[A",2] is normalized to be 1. Here, we are 
assuming a flat fading channel model, and the channel 
gains are assumed to be circular symmetric, as is typ- 
ical for a baseband model. Furthermore, we make the 
additional assumption of "microdiversity": we assume 
that the marginal distributions of the fk{l)s are identi- 
cal, across both antennas, and users. We will also allow 
the transmit powers T^s to depend on the magnitudes of 
the channel gains 7k(Z) for all k and I, but independent 
of everything else. This models the use of power control. 

The optimal linear receiver is known as the MMSE re- 
ceiver. While an explicit expression for the SIR of the 
MMSE is well known, we obtain more insight by proving 
an asymptotic result as the system grows large, under 
randomly selected signature sequences: assume that the 
chip values of the sequences are i.i.d. circular symmet- 
ric complex Gaussian random variables with mean zero 
and variance 1/N, and the sequences of different users are 
chosen independentliy. 

1 Supported by an Australian Research Council Small Grant 
2Partially supported  by  a  National  Science  Foundation 

Early Faculty Career Award. 

III. MAIN RESULT 

Theorem 1 Let Pk = Tk £f=1 |7fc(/)|
2 be the sum of the 

received powers of user k. Assume that almost surely the 
empirical distribution of (Pi,... ,PK) converges weakly to 
a limiting distribution F as N goes large, and that the Pks 
are uniformly bounded for all k and N *. Then if N,K -> 
co with K/N —> a but L fixed, SIRi/Pi converges in 
probability to a deterministic constant a, where a is the 
unique positive solution to the fixed-point equation: 

1 
(2) 

*2 + iE[i^k] 
and P is a random variable having distribution F. 

Proof See [2]. o 

This result says that in a wideband system with many 
users, the SIR of a user does not depend on the specific 
realization of the signature sequences, the channel gains 
and the transmit powers. The SIR is a function of the 
user's own received powers at the antennas and depends 
on the the interferers' received powers only through the 
limiting empirical distribution of the Pks. In a sense, 
there is an averaging of the effects across the large num- 
ber of interferers. Furthermore, by comparing this result 
with our main result in [1], we see that the multiantenna 
system here is behaving, asymptotically, just like a single 
antenna system with users per degree of spreading of j, 
and received power being the pooled received power from 
the multi-antenna system. 
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Abstract — The design of binary power control al- 
gorithms for cellular communication systems is con- 
sidered in context of code division multiple access 
(CDMA). The control problem is posed as a tradeoff 
between the desire for users to meet their signal-to- 
interference ratio (SIR) requirements and the need to 
minimize the transmitted signal energy over the dura- 
tion of their calls. The dynamic nature of the wireless 
channel for mobile users is incorporated in the prob- 
lem definition. Based on dynamic programming argu- 
ments, an optimal single-user solution is obtained. 

I. INTRODUCTION 

The analysis of power control for wireless multi-access sys- 
tems has been well documented over the past decades, with 
new contributions often motivated by the need to address 
practical issues. Much of the work on uplink power control 
for CDMA systems has been focusing on static channel mod- 
els, i.e., models in which the channel gain of every user is 
assumed constant. The performance results obtained under 
this assumption will be valid as long as the reaction time of 
the power control algorithm is small compared to the coher- 
ence time of the underlying wireless channel. In other words, 
the transmitted power of each user is implicitly assumed to 
converge to its optimal level before any significant change oc- 
curs in the channel state. We propose a different approach to 
the design of power control algorithms and include a dynamic 
stochastic channel model as part of the problem definition. 

II. PROBLEM FORMULATION 

We address the control problem as a tradeoff between the 
desire for users to meet their SIR requirements and the need 
to minimize transmitted energy over time intervals in-between 
control signals. Effectively, this formulation leads to a trade- 
off between the user capacity of the overall system and the 
link quality of individual users. We wish to solve this design 
problem using dynamic programming. To cast the problem 
into a dynamic programming framework, we need to develop 
a discrete-time model for the underlying wireless channel, and 
to define an appropriate cost function. 

We adopt the standard tap-delay line channel model [5] 
and assume the channel gains to vary slowly with respect to 
the time interval in-between control signals. In dealing with 
slowly varying channel gains, it is convenient to develop an 
equivalent discrete-time channel model for the analog system. 

^his research was supported in part by a NSF CA- 
REER/PECASE grant under CCR-9733204, and by the Office of 
Naval Research under grant N0014-97-1-0823. J.-F. Chamberland 
was also supported by a Fonds FCAR fellowship. 

After maximal ratio combining, the discrete-time channel gain 
G[-] becomes a function of the gain coefficients {JE<[-]|^=1}, and 

is given by G[k] = Ylt=i l-^<MI2) where L 's the number of 
resolvable paths. 

We define the individual cost g as a function of the target 
SIR 7, and the actual SIR at the receiver 7. When 7 is below 
the target SIR 7, a fixed cost is incurred, which accounts for 
the user not meeting the target SIR requirement. Otherwise, 
the SIR at the output of the receiver exceeds the target SIR 
and we make the cost function proportional to the excess of 
transmitted energy. The cost per stage function captures the 
tradeoff between the desire for users to meet their SIR require- 
ments and the need to minimize the transmitted energy over 
the control period. 

We pose the optimization problem as a discounted cost in- 
finite horizon problem [4]. -The discounting factor a < 1 re- 
flects the uncertainty on the time duration of a call and our 
level of confidence in the accuracy of the channel parameters 
over time. Given an initial state xo (channel plus transmitted 
power) and a discounting factor, we want to minimize the total 

cost J(xo) = lim^-yoo E [XZjfc=To afcff(x*)]- Standard dynamic 
programming steps lead to an optimal stationary policy which 
satisfies Bellman's equation. 

III. DISCUSSION AND CONCLUSION 

The dynamic programming algorithm yields as a solution 
a look-up table. Although large look-up tables are hard to 
implement, this solution provides an upper bound on the per- 
formance of practical systems. For instance, the performance 
of the best threshold policy comes close to that of the dynamic 
programming solution. Thus, the technique we developed can 
be employed to assess the performance of simpler, easily im- 
plementable algorithms. 
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Abstract — The purpose of this paper is to provide a 
framework for resource allocation and admission con- 
trol in a DS-CDMA system in which there are sev- 
eral traffic classes with different rates and quality of 
service requirements. We focus on uplink (mobile to 
base) transmission, in which the transmissions from 
different mobiles are uncoordinated. For special cases 
of two traffic classes, we show that, for large systems, 
a Gaussian approximation for the interference yields 
that the boundary of the admission control region is 
approximately a straight line and the optimal power 
ratio P21 Pi is roughly the same throughout the bound- 
ary of the admission control region. 

I. INTRODUCTION 

Our framework is based on the following assumptions: 
(a) The users transmit using fixed-length packets, and are 
assumed to be synchronized at the packet level. Thus, the 
system is time-slotted, with a slot equal to a packet duration. 
(b) The traffic generated by a user may be bursty (e.g., voice, 
variable bit rate video, TCP). However, we assume that the 
bit rate over a given packet is constant, which means that the 
processing gain over a packet is fixed (since the chip rate is 
fixed). 
(c) The event of packet loss for a given user is well approxi- 
mated by the event that the Signal-to-Interference-plus-Noise 
Ratio (SINR) falls below a threshold. 

II. SYSTEM MODEL 

We consider on-off traffic sources here, for which the offered 
bit rate can take one of only two possible values, the peak rate 
and zero. For an on-off source of traffic class i, the process- 
ing gain when the source is on is determined by its peak rate, 
and is denoted by Ni. Our purpose is to determine the re- 
gion determined by the allowable tuples (Ki,K2,...), where 
Ki denotes the number of sources of type i. This also requires 
determining the optimal values of the received powers {Pi}, 
where Pi denotes the desired received power for a user of type 
i. Our model is simpler than the models in [1] and [2], in that 
we allow the processing gain to be fixed by the offered rate, 
and only choose the received powers for the different traffic 
classes. This enables us to obtain a simpler characterization 
of the admission control region. 

III. MAIN RESULTS 

Since we consider on-off sources, at each given time slot, 
we assume each user of traffic type i is active with probability 
Pi. The allowable packet loss rate for a user of type i is qi. 
The packet loss event for a user of type i is approximated 
by the event that the SINR seen by the packet falls below 
a threshold 7;. For simplicity of illustration, we employ the 
SINR expression for a chip-synchronous DS-CDMA system 
with conventional matched filter reception, so that the SINR 
for a typical packet of type i is given by 

SINRi = 
PiNi 

Et:1 xikPi + EU Efii xikPj + *2 

where \ik is an on/off indicator (i.e., \ik = 1 if user k of type 
i is active, and 0 else), and a2 is the background noise power, 
which indicates the inter-cell interference. The on/off indica- 
tors {xik} axe assumed to be independent random variables 
and P[xik = l]=pi, P[xik = 0] = 1 -pi. We consider the case 
of two traffic classes. Given K\ and K2, we say that (Ki, K2) 
is admissible if the following conditions are satisfied: 

P[SINRi < 7i] < qt, t = l, 2. (1) 

1This work was supported by the National Science Foundation 
under a CAREER award NSF NCR96-24008CAR and under grant 
NSF CCR9979381. 

Assuming that the contribution of a single user's power to the 
total transmitted power is negligible, we can rewrite (1) as 

P[Xi + rX2 > 01] < qi,     P[Xi + rX2 > a2r] < q2,       (2) 

where r = ft/ft , a, = AT;/7i - a*/Pi , Xi = ^±1 »»> »' = 
1,2. When the system size is large, we may approximate 
Xi +rX2 by a Gaussian random variable based on the Central 
Limit Theorem. For a class of specific scenarios considered in 
the paper, we obtain the following results: 

(a) Given K\, the number of users of type 1, there is an 
optimal value of r(ifi) such that the number of users of type 
2 admissible is maximized. 

(b) For a large system, the maximum number of users of 
type 2 is approximately a linear function of K\. Also, the 
power ratio r(Ki) equals approximately a constant r*. 

Simulation results show that, for large systems, the Gaus- 
sian approximation provides an admission region close to the 
exact admission region, which is also well approximated by 
fixing the power ratio r{K\) as a constant r*. 
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Abstract — Two wavelet-based estimators on frac- 
tional Brownian motion (FBM) are evaluated through 
the large deviation principle (LDP). These are a] and 

H, the estimators of (i) the variance of wavelet coeffi- 
cients of FBM for each scale j and (ii) the Hurst pa- 
rameter, respectively, where H is obtained from the 
slope of the linear regression of a] for a number of 
scales. Both estimators are shown to be consistent 
from the ergodic theorem. We perform detailed cal- 
culations related to LDP for stationary Gaussian pro- 
cesses with unbounded and non-L2 power spectrum, 
to obtain L1 -estimates of the convergence of both es- 
timators. A wavelet-based representation of the bias 
of the estimators is introduced and successfully used 
in the theory, reflecting the quantitative analysis re- 
sults on FBM to the corresponding analysis of wavelet 
coefficients. 

I. INTRODUCTION AND PRELIMINARIES 

Let the wavelet coefficients {dj(k);j G Z, k G N0} of FBM 
{B„(t); t G R+} be 

dj{k)= j BH{t)vbj>k{t)dt 

where Vj,*(*) = 2~-7'/2*/>(2^t - k). Let To > 0 be a time in- 
stant up to which FBM signal is observed. Then, the number 
Nj(To) G N of available wavelet coefficients at scale j up to 
To satisfies Nj ~ 2"JT0. We assume that wavelet vb is com- 
pactly supported on R.+ and satisfies the vanishing moment 
condition of sufficient order. 

The two estimators we consider are a] (To) and HT0 , defined 

by 

w £ te(*)i2. 
k=0 

and 

log2 (<*?) = (2#r0 + l)i + const. 

The following relations are fundamental. 

Proposition 1. For j — 1, ■ • • , J and k G No, 

dj(k) 
<!> /)(H + (l/2))j 

JR + 
BH(t + k)i>{t)dt, 

(d) 
where = denotes equality in distribution. 

^his work was supported by Japan Society for Promotion of 
Science, 11740057. 

For each fixed s, t G R + ,let {Yk{s,t);k G N0} be such that 
Yk(s,t) = B„{s + k) - BH(t + k), /cGNo. {Yk(s, t); k G No} 
is a stationary-increment sequence. Let VH be variance of 

BH(1). 

Proposition 2. For each j, 

*2-E[K(0)|2] 

(d) 

1 JR+JR+ 

N,-l 

i- J2{Yk(s,t)}   -VH\s-tf 
N, 

dsdt. 

II.  RESULTS 

Using the ergodicity of {Yk}, we can obtain the consistency 
of the estimators, in the form of L1- and a.s. convergence, as 
well as L2-convergence. 

The following results are our main theorems. 

Theorem 3.   There exists a constant CH > 0 such that 

E[|ä2(To)-E[K(0)|2]|]'<CH-2 (2// + (3/2))j •Tn 
-1/2 

for each j. 

The L2-estimate for <7j(T0) - E[|d, (0)|2]1/2 is then imme- 
diately obtained from the above. 

Theorem 4.   There exists a constant CH > 0 SO that 

E[\HTo-H\2] <CH-T0-\ 

Theorems 3 and 4 are derived from the following theorem, 
which itself is obtained from LDP for stationary Gaussian pro- 
cesses. 

Theorem 5. For each s,t G R+ and N G N, 

l^{n(s,0}2-v",|s-< E 
2H 

k=0 

2//\2 <4^(VH\s-t\2"y-N -1/2 
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ABSTRACT - This paper present Reverse Jacket 
Transform[RJT] and a simple decomposition of its matrix 
which is used to develop a fast algorithm for the RJT. The 
matrix decomposition is of the form of the matrix products 
of Hadamard matrices and successively lower order 
coefficient matrices. 

I. INTRODUCTION 
The Hadamard transform is an orthogonal matrix with 

highly practical value for representing signals and images 
especially for the purposes of data compression[l,2]. The 
reason for the practicality of this transform is the fact that 
the elements of the Hadamard matrix are either + 2°(=1) or - 
2°(=-l) Thus, the computation of the transform of a signal 
consists of additions and subtractions of the signal samples. 
Recently, Hadamard matrix has been presented in that 
Walsh-Hadamard transform is the most known of the non- 
sinusoidal orthogonal transforms. Walsh-Hadamard matrix is 
used for the Walsh representation of the data sequences in 
image coding and for Hadamard-Walsh orthogonal sequence 
generator in CDMA spread spectrum communication. Their 
basis functions are sampled Walsh functions which can be 
expressed in terms of the Hadamard [H]N matrices. Using the 
orthogonality of Hadamard matrices we construct a 
generalized Weighted Hadamard matrices [1,2] called [RJ]N 

matrix with a reverse geometric structure. In this paper, 
[RJ]N and its 5 case matrix examples are described. [RJ]N is 
nonorthogonal but its Hadamard matrix, which is subset of 
[RJ]N [1],[2] is orthogonal. In this paper we propose a simple 
recursive factorization for the [RJ] in terms of the Kronecker 
product of 2*2[RJ] and Hadamard matrices of consecutively 
lower orders. A consequence of this factorization is a simple 
and clear fast Hadamard transform algorithm resulting from 
a block circulant sparse matrix factorization of the [RJ] 
matrix. 

II. THE PROPOSED RJT 
Using the orthogonality of Hadamard matrices use 

construct weighted Hadamard matrices. The [RJ]N are a 
generalized conventional[WH]N and [H]N [1],[2]. The [RJT] 
having geometric structure property. The basic idea of this 
paper was motivated by the cloths of Reverse Jacket. As our 
two side jacket is an inside and outside compatible, at least 
two positions of a Reverse Jacket matrix [RJ]N are replaced 
by their inverse; these elements are changed their position 
and are moved for example from inside of the middle circle 
to outside or from to inside without loss of signs; this is very 
interesting phenomenon. This is the reason why we call 
it.Reverse Jacket matrix. 

Definition 2.1 

A (2«x2«)matrix    A=(a V»   ,  n e N is called 

Hamiltonian, if [Aj] = [AJJ with  j _ 

where  /  eR2"2   is the unit matrix. 

0     K 
-/.,    0 

Definition 2.2 
We define one more notion related to the Hadamard matrix 
[//],. e   R2'"2'.Let [RJ\2>e R2'"2'be a  t x 2k 

matrix.    A  2A x 2A matrix  |/?Jj2< such that 

[RJh=[H]-2l[Rj)AH]f, 
is called the Reverse Jacket matrix, where  k  is belong to 
Integer N, R is Real number. All its components is  ± 2" 
,(«=0,1,2;. 

Fig.l. Block-wise circular sparse matrix pattern and Sphere 
circular sparse matrix like football 

Fig 1 shows the expanding block-wise circulant sparse 
matrix structure. This figure is a plan surface, an interesting 
point is that the block-wise circulant sparse matrix 
characterized similiar fashion as football and rotating pattern. 
This means that when 2x2 sparse matrix is expanded to 
4x4 matrix, the element of 2 x 2 sparse matrix becomes, the 
pattern of Figure 1. 

III. CONCLUSION 
The Reverse Jacket matrix is a generalized the weighted 

Hadamard and the Hadamard matrix. The [RJ]N matrix has 
recursive structure and symmetric characteristics. The 
elements positions of the forward matrix can be replaced by 
its inverse matrix and the signs of them are not changed 
between the matrix and its inverse. The [RJ]N matrix has five 
cases of basic symmetric matrix according to the 
construction of elements. The Hadamard matrix is a special 
case of Reverse Jacket matrix. The fast [RJ]N transform 
algorithm is the matrix decomposition of the Hadamard 
matrices and succesively lower order Weighted coeff. 
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Abstract — In this paper, we generalize Sylvester's 
construction for (generalized) Hadamard matrices in 
such a way that m matrices Bi,B2,...,Bm (not neces- 
sarily distinct) of the same size k and a mtrix C of size 
m are used as components to construct a (generalized) 
Hadamard matrix of size mk. 

In this paper, we will prove a construction for generalized 
Hadamard matrices. This construction is a generalization of 
Sylvester's construction. Even though it looks obvious, no 
such generalization has been appeared in a literature as far as 

both authors are aware of. 

Definition 1 Let G be an abelian group of order g written 
additively. For a positive integer X, a generalized Hadamard 
matrix GH(g,X) is agXxgX matrix [h(i,j)]t where 1 < t < gX 
and 1 < j < gX denote the row and column indices, respec- 
tively, such that, for any h # t2, every element of G appears 
exactly X times in the list h(ii, 1) — A(ij, 1), /i(ti, 2) — /i(ij, 2), 
..., h(h,gX)-h(i2,gX). 

Remark 2 A Hadamard matrix of size m is a GH(2,m/2). 

In this paper, we will consider only the generalized 
hadamard matrices over an abelian group, and abelian groups 
will be written additively with operation denoted by +. 

Theorem 3 We assume that there exists an m x m general- 

ized Hadamard matrix C = [dj] = GH(g,Xi) over G, where 
G is an abelian group of order g and m = gXi. We also as- 
sume that there exist Bi,ß2, ....Bm which are (not necessarily 
distinct/generalized Hadamard matrices GH(g,X2) over G. 
Then, the matrix 

H = 

cii + Si 
C21 + Si 

C12 + Bi 

C22 + Bl 
Clr 

C2, 

+ B„ 
+ B„ 

Cml + Bi      Cm2 + B2 Cmm   1   &n 

(1) 

is a g2XiX2 x g'XiXz generalized Hadamard matrix 
GH(g,gXiX2) over G, where c + Bk for c € G is the 
matrix obtained by adding c to every component of Bk. 

Corollary 4 Using the same notation and assumptions of 
Theorem 3, the matrix 

(2) 

en + By C12 + Bi     ■ Clm + Bi 

C21 + B2 C22 + B2 C2m + B2 

Cml + Bm      Cm2 + B„ + B„ 
lrrhis work was supported by the Basic Research Program of the 

Korea Science and Engineering Foundation (KOSEF) under Grant 
Number 97-0100-0501-3. 

is also a p2AiAj x g*XiX2 generalized Hadamard matrix 
GH(g,gX\X2) overG. 

Corollary 5 If Bi = B2 = ■ ■ ■ = Bm in the construction of 
Theorem 3, the resulting generalized Hadamard matrix H is 
of Sylvester type. 

Corollary 6 If Bk 's are the same, except for some column 
permutations, in the construction of Theorem 3, then the re- 
sulting generalized Hadamard matrix H is of Sylvester type up 
to some column permutation. 

Corollary 7 Let H be constructed as in Theorem 3 using 
Bi,B2,...,Bm and C. Let H' be constructed as also in Theo- 
rem 3 using B[, B'2,..., B'm and the same C. If Bk is the same 
as B'k except for some column permutation for k = 1,2,..., m, 
then H and H' are the same except for some column permu- 
tation. 
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Abstract — We solve the local large deviation 
problem (LDP) for the shape of random Young 
diagram when lengths and heights of the steps of 
the shapes of diagrams take values form given (and 
in general different for length and height) sets of 
nonegative integers 

The shape of the Young diagrams Y„ of weight n is the 
piecewise constant functions with integer lenths and heights 
of the steps. It the work [l] we establish the local LDP for the 
shape of random Young diagram with uniform distribution. 
In the work [2] we consider the case when lengths (or which 
is equivalent the heights) of the steps take values from given 
set of positive integers ^4 C {0,1...}. 

Here we continue our investigations and consider the case 
when lengths of the steps take values from the given set A 
and heights take value from (in general other) given set B. To 
solve this problem we use some new considerations and some 
methods from our previous works. 

There exists the natural maping between the Young 
diagrams of weight n and the nonordered decompositions of n 
into the sum of natural numbers. We consider the scailing of 
random Young diagrams of weight n dividing the linear sizes 
of diagrams by y/n. Let's «„ is the shape of the scaled random 
Young diagram which in turn is the random curve. Define the 
function £i(z) and the number L2 by the following relations 
Let's ti2(x) satisfies the equality 

and in turn constant C satisfies the relation 

Jo 
h2(x)dx = C. 

Next we put L\ = 2C and 

L1(z) = zh\z) + h2{z), 

where h1, h2 satisfy the equality 

ieA tee 

and /1: (s) satisfies the relation 

dtfjh1) 
Z~        dh1     ' 

We put L2 = 2C. 
Next we consider the set of functions C C ^'([OjOo)) such 

that for every y £ C there exists y = y a.s. such that y is 

monotonically nonincreasing and nonegative. Also for every 
0 < x\ < i'2 < co the function y must satisfy the following 
relation 

'y{xi) - y(x2) 
X2 — Xl 

> —CO. (1) 

Note, that from the definition of the function £i(z) and (1) it 
follows that when \A\ < 00 or |ß| < 00, then y is continuous 
and 

min    - < y  <    max   - a.s. 
i€A,jeB } IEA,J£B ] 

The main result of this work contains in the following 

Theorem 1  For the sequence n„ the following relations are 
valid 

lim lim lim 
0—*0 €—*0 n—*oo 

hi-Pn(i±<s)(«n 6 B(f>v)) 
\/n 

-N(y), 

where 

N(y) = 
_{  L2- j™ Li(-y'{x))dx,    yeC, 

y£C 

and B(f.,y) = {z £ i1([0,co)) : \\z — y\\ < c} is.the ball in 
1}-space. Notation Pn(i±f) means that we consider Young 
diagrams with weights in the range [n(l — <5),ra(l + 5)]. 
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Abstract — The structure of perfect binary single- 
error-correcting codes of length n = 2( — 1 is investi- 
gated. The concepts of local and interweight spectra 
of a code are introduced. They are generalizations of 
the notion of the weight spectrum of a code. Proper- 
ties of the spectra of perfect codes are studied. The 
concept of strong distance-invariance of a code is in- 
troduced and it is shown that a perfect binary code 
is strong distance-invariant. 

I. DEFINITIONS 

A binary code C of length n is a subset of the n-cube (that 
is n-dimensional vector space over GF(2)). 

Let x and y be vertices of the n-cube. We denote the Ham- 
ming weight of vertex x by wt(x) and the Hamming distance 
between x and y by p(x,y). 

A code is distance-invariant if the number of all codewords 
at distance i£ {0,l,...,n} from codeword x does not depend 
on the choice of the codeword x. A code is called distance- 
regular if for all fixed integers i, j € {0,1,... ,n} the number 
of codewords z such that p(x,z) = i, p(y,z) = j does not 
depend on the choice of x and y but only depends on p(x, y). 
We call a code strong distance-invariant if for every codeword 
x and all i,j, d g {0,1,... ,n} the number of codeword pairs 
(y,z) such that p(x,y) = i, p(x,z) = j and p(y,z) = d does 
not depend on the choice of x. This property is stronger than 
distance-invariance and weaker than distance-regularity. 

A fc-dimensional face 7 of the n-cube is the set of all vertices 
of the n-cube with fixed n — k coordinates. A face -y1 is 
orthogonal across the face 7 if the set of face 7"1" fixed positions 
and the set of face 7 free positions coincide. It is clear that 
the dimension of 7X is equal to n — k and the intersection of 
two orthogonal faces consists of the unique vertex. 

Let C be a binary code and z be a vertex of the face 7. We 
denote the number of face 7 codewords which are at distance i 
from vertex z by vf(-f,z). We call (see [4]) the vector 

vC(7>z) = (■yf(7,z),^f(7,z)> 
c 

1 Vdim-f (7,*)) 

a local spectrum of the code C in the face 7 with respect to 
vertex z (briefly a (7, z)-local spectrum of the code C). 

We denote the number of codeword pairs (x, y) such that 
wt(x) = i, wt(y) — j and the distance between x and y is 
equal to d by T^(i,j). We call the vector 

TC(i,j)={T0
c(i,j) ■ ,rB

c(t, *)) 

an (i,j)-weight spectrum of the code C and the ordered set of 
(i,j)-weight spectra with 0 < i, j < n an interweight spectrum 
of the code C. 

A perfect binary single-error-correcting code C (briefly a 
perfect code) is.-a subset of the n-cube such that a set of balls 
of the radius 1 with centers in C is a partition of the n-cube. 

II. RESULTS 

The local spectra of a perfect code in two orthogonal faces 
with respect to their common vertex were proved to be in the 
tight interdependence (see [4]). 

Theorem 1: Let 7 be a fc-dimensional face of the n-cube 
and z be the common vertex of 7 and 7X. The (f1, z)-local 
spectrum of a perfect code C is uniquely determined by the 
(7,z)-local spectrum of the code and the generating function 
of the consequence vc(-fL,z) is 

1 
n + 1 [1 + 0      + (i-O" c(i + 0" 

q = 0 V 

(7>z) - n + 1 

Establishing the relations between interweight and local 
spectra of a perfect code and using Theorem 1 one can prove 
the following 

Theorem 2: The interweight spectrum of a perfect code is 
uniquely determined by the fact whether the code contains 
all-zero vertex or not. 

S.P. Lloyd [2], H.S. Shapiro and D.L. Slotnik [3] proved a 
perfect binary code to be distance-invariant. S.V. Avgusti- 
novich and F.I. Solov'eva [1] proved that among the perfect 
codes only Hamming codes of length 3 and 7 are distance- 
regular. ^,From Theorem 2 we have 

Theorem 3: A perfect code is strong distance-invariant. 

The question on strong distance-invariance of other types 
of codes is open. 
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Abstract - Efficient symbol error-correcting codes of 
distances 4 and 5 arc presented. 

I. INTRODUCTION 

Error-correcting codes have been routinely applied to 
modern computer memory subsystems. As the capacity 

of  memory   chips   increases,   the   applications   of 
error-correcting codes have been gradually shifted from 
the bit-oriented codes to the symbol-oriented codes. 

Symbol error-correcting codes of distances 4 and 5 
have been investigated by many researchers [1-5]. In 
particular, Dumer has constructed several families of 
codes [3|. Feng, et. al., have improved Dumcr's results 
in the construction of codes of distance 5 [4]. For a 
symbol of size b, let q = 2b. Feng's codes have the 
parameters of code length n = qm and number of check 
symbols r = r7m/3] + 1, for odd m. 

We present a family of distance 4 codes that are 
more efficient than those in [1-3]. In the case of 
distance 5 codes, we construct a family of codes with 
the same parameters as [4] for even m, thus enlarging 
the number of available codes for applications. 

II. RESULTS 

We employ the technique illustrated in [5] for the 
construction of symbol error-correcting codes. These 
codes obtained are called subspacc subcodes in [6]. The 
basic idea is to start with a linear code, not necessarily 
a Reed-Solomon code, with symbols over a finite field. 
A new code with a smaller symbol size is then obtained 
by consistently deleting a fixed set of bits from the 
symbols of die original code. 

For distance 4, we start with a code Co with symbols 
over GF(2ra) and parameters n = 22m +1, and r = 4. The 
first row of the parity-check matrix consists of either 
the field elements zero or one. Wc then construct a code 
C(b,c) with symbol size of b bits. Let W = (wi, w2, ..., 
Wn) be a code word of C(b,c), and let Vi be a binary 
vector obtained from w, by attaching c zeros, c^m-b. 
Then W is a code word of C(b,c) if and only if V = (vi, 
v2,..., vn) is a code word of Co: Code C(b,c) is of length 
n = 22(bK:) + 1 with the number of check bits rb = 4b + 
3c. The number of check symbols r is 4 + 3c/b. Let q = 
2b. Then n = 22cq2 +1. We have r = 1 + 1.5 logq(n-l). 

The number of check bits is fewer than a distance 4 
code in [4] for the same value of n. 

A comparison of C(b,c) with other known codes can 
be made when r is an integer. Consider b = 3c. We have 
r = 5, n = q8/3 + 1. This is better than the codes in [2], 
which have r = 5 and n = 2q2 + 2q + 1 for q > 4, in that 
the code length is longer. Consider next b = 1.5c. We 
have r = 6 and n = q10/3 + 1. This is also better than the 
codes in [1], which have r = 6 and n = (q + 2)(q2 + 1). 

For distance 5, we apply the same technique to a 
code of [4] with n = qm and r = r7m/3l + 1 to yield a 
new code with n = 2mcqra and r =T(7m + 3)/3l + 
r7m/3]c/b. Let t = c/b. The new code has n = q(t+1)m 

and r =(t+l) |7m/3l + 1. In particular, let t = 1, then n 
- q2m and r = 2\lmli] +1. We have a family of 
distance 5 codes with n = an even power of q. 
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Abstract — We present a very simple multi-stage 
encoding scheme of self-dual codes using a [8,4, 4] ex- 
tended Hamming code as short base code and bit per- 
mutations (or interleavers as in Turbo-Codes[l]) be- 
tween stages. We describe several examples of inter- 
leavers in order to build some extremal codes, with a 
minimum number of stages, such as the [24,12,8] Go- 
lay code, [32,16,8], [64,32,12], and [88,44,16] codes. For 
length 32, we show how to build the 5 non-equivalent 
extremal QR, RM, F, G, U [32,16, 8] self-dual codes. We 
conjecture that this encoding scheme may find good 
rate-1/2 long block codes[3]. 

An example of a [24,12,8] Golay code encoder built with a 
[8,4,4] extended Hamming self-dual base code is shown below 

n0 III 
Figure 1: 3-stage encoding of the [24,12,8] Golay code. 

The two identical permutations IIo and III map the ordered 
integers set (0,1,2,..., 11) into (0, 2, 4,6, 8,10,1,3, 5, 7,9,11). 
The even (resp. odd) bits are permuted to the upper (resp. 
lower) bits. In general, the permutations are not identical 
and not unique for a given code. The first stage 0 transforms 
the input information bits vector X = (xo, x\,..., Xk-i) = 

X       —   (xo   > x (o)  „(0) „(°) x^_j) into "redundancy"  bits vector 

R(°) = (r(o\r^\...,r^°\), then the bits of R(0) are per- 
muted or interleaved by permutation IIo to provide the input 
vector X'1' of stage 1, and so on until the last stage (s — 1) 
which outputs R'

S_1
'. The codeword C is the concatenation 

of the input information bits vector and the output redun- 
dancy vector of the last stage: C = (X(0),R(s_1)). Table 1 
summarizes the codes built with permutations defined by the 
affine application ra,f,(z) = a * z + b (mod. k) with a,b £ Z. 
Conway and Pless[2] have shown that it exists only 5 non- 
equivalent extremal type-II self-dual codes of length n — 32: 
the Qfl[32,16,8] and #M(2,5) codes, and the codes called 
F, G, and U. We have only found the QR, G and U codes 
(Cf. Table 2) with identical (at all stages) permutations asso- 
ciated to the linear applications in the multiplicative group 
GF(16) defined by z -»• aaz + abz2 + acz4 + adz8, with 
a,b,c,d €  0,1,..., 14 where a is a primitive generator of 

GF(16). But, we have built, with a minimum of 3 stages, 
these five [32,16,8] codes with couples of non-identical per- 
mutations given in Table 3. 

Code[n, k, dmi„] a, 6 Stages 
[16, 8, 4] 1,0 3 

Golay[24,12, 8] 5,1 3 
G[32,16, 8] 3,0 3 

[40,20, 8] 3,0 3 
[56, 28,12] 5,1 3 
[64,32,12] 19,0 3 
[72,36,12] 5,0 3 
[88,44,16] 35,0 7 

Table 1: Codes obtained with z —> a*z + b permutations. 

Gode[32,16,8] Permutation Stages 
QÄ[32,16,8] aV + z4-ra*B 3 

G[32,16,8] aV 3 
f/[32,16,8] a'z'2 + z4 +az>i 7 

Table 2:   Length 32 extremal codes built with permu- 
taions associated to linear applications over GF(16). 

Code Permutations 
QR IIo = 0,4,8,12,1,5,9,13, 2,6,10,14,3,7,11,15 

IIi = 0,13,6, 7,4,1,10,15,8,5,14,3,12,9,2,11 
RM ITo = 0,4,8,12,1,2,9,13,3,5,6,14, 7,10,11,15 

IIi = 0, 5,14,3,4,13,10,7,8,9,2,15,12,1,6,11 
F IIo = 0,4, 5,8,1, 2,6,12,3,7,9,13,10,11,14,15 

IIi = 0,1,10,11,4,13,6,15,8,9,2,7,12,5,14,3 
G IIo = 0,4, 8,12,1, 5,9,13, 2,6,10,14, 3, 7,11,15 

IIi = 0,13,6,11,4,1,10,15,8, 5,14,3,12,9, 2,7 
U IIo = 0,4, 8,12,1, 5,9,13, 2,6,10,14, 3, 7,11,15 

IIi = 0,13,6,3,4,1,10,11,8,5,14, 7,12,9,2,15 

Table 3: Permutations of the 5 extremal [32,16,8] codes. 
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Abstract — A new block code is introduced which is 
capable of correcting multiple insertion, deletion and 
substitution errors present in a single block. An inner 
code resilient to synchronisation errors provides soft 
inputs to an outer code capable of correcting substitu- 
tion errors. The decoder does not require knowledge 
of the block boundaries. 

Many coding methods have been proposed to cope with 
synchronisation errors. Most fall into one of two categories, 
either correcting limited synchronisation errors [1, 2] or im- 
posing run-length limiting constraints [3]. In this paper we 
present a block code capable of correcting multiple synchro- 
nisation and substitution errors using a probabilistic decoder. 
We apply the code to a model binary channel with an input 
queue. At each use, one of three events occurs. With probabil- 
ity Pi a random bit is inserted into the received stream. With 
probability Pd the next queued bit is deleted. With probabil- 
ity Pt = (1 — Pd — Pi) the next queued bit is transmitted, with 
a probability Ps of suffering a substitution error. 

The construction of Watermark codes is outlined in figure 1. 
We first encode our message m into a vector d of length N us- 
ing a standard outer error-correcting code. We use low-density 
parity-check codes defined over the field GF(q = 2 ) because 
they can easily utilise the soft information provided by the in- 
ner code. Low-density parity-check codes [4] are currently the 
best known error correcting codes for Gaussian channels [5, 7]. 

Fig. 1: Watermark codes 

For the inner code, we choose a fixed binary vector w of 
length n x N, for some n > k, which we call the watermark. 
The watermark is known to both encoder and decoder. Suit- 
able choices for w include pseudo-random and run-length lim- 
ited sequences. The encoder maps outer codewords d to sparse 
messages s of length |w| by mapping each g-ary symbol of d 
to one of the q sparsest patterns of length n. 

Next we form the transmitted vector t := w + s mod 2. If 
the message vectors s are constrained to be sufficiently sparse, 
and synchronisation errors are sufficiently rare, it is possible 
for a Hidden Markov Model decoder to recover synchronisa- 
tion with a small probability of error. 

The inner decoder takes the noisy received vector r and 
returns an a posteriori distribution for each q-ary symbol of 
d. It should be noted that the decoder does not know the 
position of the block boundaries. The outer decoder takes the 
output of the Watermark decoder and attempts to recover the 
codeword d and corresponding message m. 

Watermark codes can communicate very effectively over 
insertion/deletion channels. Figure 2 shows rate 1/2, block- 
length 4600, watermark codes reaching a block error rate 
of 10~3 with roughly 100 synchronisation errors scattered 
throughout each block. This compares favourably to previous 
reports [2] of rate 1/2 blocklength 15840 codes achieving simi- 
lar block error rate for a channel that made insertion/deletion 
bursts of expected length 6 on average once every 9 blocks. 

T 
Rate 0.71 

i 
i 

Rate 1/2 

Rate ly 

Rate 3/14 

/20 

Fig. 2: Performance of concatenated watermark codes with over- 
all rate between 0.7 and 0.05 and blocklengths roughly 5000 bits. 
Outer codes were regular low-density parity-check codes with mean 
column weights between 2.6 and 3. The channel substitution prob- 
ability Ps was zero. Vertical axis: block error rate. Horizontal axis: 
insertion/deletion probability. Figure reproduced from [6]. 

REFERENCES 

[1] V. I. Levenshtein, "Binary codes capable of correcting deletions, 
insertions, and reversals", Soviet Physics - Doklady, vol. 10, no. 
8, pp. 707-710, February 1966. 

[2] P. A. H. Bours, Codes for Correcting Insertion and Deletion 
Errors, PhD thesis, Eindhoven Technical University, June 1994. 

[3] B. H. Marcus, P. H. Siegel, and J. K. Wolf, "Finite-state modu- 
lation codes for data storage", IEEE Journal on Selected Areas 
in Communication, vol. 10, no. 1, pp. 5-38, January 1992. 

[4] R. G. Gallager, Low Density Parity Check Codes, Number 21 
in Research monograph series. MIT Press, 1963. 

[5] M. C. Davey and D. J. C MacKay, "Low density parity check 
codes over GF(q)", in Proceedings of the 1998 IEEE Informa- 
tion Theory Workshop. IEEE, June 1998, pp. 70-71. 

[6] M. C. Davey and D. J. C. MacKay, "Reliable Communication 
over Channels with Insertions, Deletions and Substitutions.", 
Submitted to IEEE Trans. Info. Theory, 1999. 

[7] T. Richardson and R. Urbanke, "The capacity of low-density 
parity check codes under message-passing decoding", Submit- 
ted to IEEE Trans. Info. Theory, 1998. I 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 
477- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Fast Computation of Roots of Polynomials over Function Fields and 
Fast List Decoding of Algebraic Geometric Codes1 

Xin-Wen Wu Paul H. Siegel 
ECE, 0407 ECE, 0407 

University of California, San Diego University of California, San Diego 
La Jolla, CA 92093-0407, USA        La Jolla, CA 92093-0407, USA 

e-mail: wxwScwc.ucsd.edu e-mail: psiegel0ucsd.edu 

Abstract — We present a fast algorithm for finding 
the roots of polynomials over function fields that can 
be used to speed up the list decoding of algebraic 
geometric codes. 

I. INTRODUCTION 

Suppose C is a [n, k,d\ code over a finite field F, and 
let t < n be a positive integer. For any received vector 
y = (yi, • ■" 12/n) 6 Fg, we refer to any code word c in C satis- 
fying d(c, y) < t as a t-consistent code word. Let r = [^-J. It 
is clear that in any Hamming sphere in FJ of radius < r, there 
exists at most one code word of C. On the other hand, if t > r 
then there may exist several distinct t-consistent code words. 
We call T the error correction bound of the code. The clas- 
sical decodings only consider the decoding algorithms which 
can correct T or fewer errors. A list decoding is a decoding al- 
gorithm which tries to construct a list of all t-consistent code 
words, where t can be greater than r. Thus, a list decoding 
algorithm makes it possible to recover the information from 
errors beyond the traditional error correction bound. 

In this paper, motivated by Roth and Ruckenstein's work 
[2], we propose an efficient algorithm for finding the roots of 
polynomials over function fields. This algorithm can be used 
to speed up the list decoding of algebraic geometric codes. 

II. LIST DECODING FOR AG CODES 

Recently, Shokrollahi and Wasserman [3] proposed a list 
decoding algorithm for low-rate algebraic geometric codes, 
generalizing the results of Sudan [4] for Reed-Solomon codes. 
Guruswami and Sudan [1] then proposed an improved list de- 
coding algorithm applicable to high rate algebraic geometric 
codes and Reed-Solomon codes, as well. The list decoding al- 
gorithm consists of two main steps. The first step is to find 
a nonzero univariate polynomial H(T) over the function field 
K. of the curve. This step can be reduced to the solution of a 
system of homogeneous linear equations, which can be imple- 
mented with low complexity using Gaussian elimination. The 
second step is to find the roots of the polynomial H(T) in 
a rational function space L(G). Shokrollahi and Wasserman 
[3] and Guruswami and Sudan [1] proposed factorization (or 
root-finding) algorithms to find the roots of H{T). However, 
the implementation of these algorithms is rather complicated. 

In [2], Roth and Ruckenstein presented an efficient list 
decoding algorithm for low-rate Reed-Solomon codes, based 
upon [4]. They reduced the complexity of the second step, the 
codeword reconstruction, by means of an efficient algorithm 
for finding roots of univariate polynomials over polynomial 
rings. 

III. FAST ALGORITHM 

We have extended the efficient root-finder in Roth and 
Ruckenstein's reconstruction algorithm to the class of uni- 
variate polynomials over the function field of any curve in 
m-dimensional projective space. Using this extension, we ob- 
tain an efficient list decoding algorithm for algebraic geometric 
codes. 

Let H(X;T) = h0(X) + hi(X)T + ■ ■ ■ + h,{X)T', where 
hj{X) € L((l-jp)P). Suppose f(X) G L(G) = L(pP) such 
that H(X;f(X)) = 0. Let {(fi,<fi2,■ ■ ■ ,<pic} be a basis of 
L(pP), such that <fi has a pole only at P and the order of the 
pole is pi, i.e., OTdp(ipi) = —pt, where pt is the i-th nongap at 
P. We can assume/(X) =h<px{X)+f2<P2{X) + - • -+fk<pk{X), 
where fi G F,. We now can find fk, fk-i, • • ■, /1, by the fol- 
lowing procedure. 

Set Gi{X;T) = Hi(X;T) = H{X;T) and Gi(X;T) = 

Gi(X-tV,kT). Then, Gi(*;T) = Y.)=0(hivi)Ti. Let -pn = 
min{ordp(/ij^) | j = 0, l,'--,s}. Suppose tpri is a ratio- 

nal function with ordp(y>ri) = — Pn- Divide Gi(X;T) by 

<pri, and let Gi(X;T)= Gi(X;T)/<pri- Then, Gi(P;T) is a 
nonzero polynimial in F,[T]. 

On the other hand, by H(X;f(X)) =0, we have 

Vfc(A) (1) 

'This work was supported in part by Grant No. NCR-9612802 
from the NSF and by a research grant from the National Storage 
Industry Consortium. 

Since ordp ( ~*-I = pk — Pj > 0, for j = 1, • • •, A; — 1, we have 

£(P) = fk-  By (1), we have Gi{P;fk) = 0.  So by solving 

Gi(P;T) = 0, we can get fk. 
This derivation can be applied inductively to determine the 

remaining coefficients fk-i, ■ ■ ■, h of a root f(X) of H(T) = 0. 

Theorem: Let H(T) be a nonzero polynomial of degree s 
in K.[T] that is returned in the first step of the list decoding 
algorithm. Then the roots of H(T) in L(G) = L(pP) can be 
determined by the root-finding procedure described above. This 
root-finding procedure requires 0(ks(n2 + s2 + log2s • loglogs • 
logg)) operations over Fq and 0(ks2) operations over K. 
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I. INTRODUCTION 

Recently Sudan [1] presented a decoding method of RS 
codes beyond the error-correction bound t, i.e. the half of 
the minimum distance. This is a list decoding which gives 
as its output a list of all codewords within a specified dis- 
tance t' from the received word, where t' > t. On one hand 
this method can be generalized to a list decoding of one-point 
algebraic-geometric (AG) codes [2], and on the other hand 
their improved versions for larger rate have been given [3]. Su- 
dan algorithm is composed of two major stages. At the first 
stage, in case of RS codes, one must find a bivariate polyno- 
mial f(x, y) having a prescribed set of zeros and a minimal 
(multi-)degree with respect to a certain admissible total order 
over the set of integer vectors ZQ SO that its factors of form 
y — g(x) give the codewords in the required list at the second 
and last stage of factorization of f(x,y). Though the fac- 
torization problem has more complexity in Sudan algorithm, 
the interpolation problem is significant by its own nature and 
important as well. 

In a general interpolation problem in the bivariate polyno- 
mial ring K[x, y] over a finite field K, one is required to find a 
set of polynomials f(x, y) subject to the condition: f(oti, ßi) — 
7t) 1 < i < n, for a given set {(a,, ßi,ji)\l < i < n} C K3 

along with some additional constraints or prerequisites. Since 
this problem is equivalent to a nonhomogeneous system of lin- 
ear equations for unknown coefficients of polynomials f(x, y), 
its generic solution is given as a sum of a single or special solu- 
tion of the nonhomogeneous system and the generic solution 
of the homogeneous system corresponding to the condition: 
f{oti,ßi) = 0, 1 < i < n. Thus, the latter type of interpola- 
tion problem, where one is required to find polynomials with 
preassigned zeros, is substantial. Furthermore, the generic so- 
lution of this homogeneous system has a mathematically clear 
meaning as follows: 

For a finite subset V := {(ai,ßi)\l < i < n} C K2, the set 
of polynomials I{V) := {f(x,y) e K[x,y)\f{ai,ßi) = 0, 1 < 
i < n} is an ideal of the ring K[x, y] and any element of I(V) 
having a minimal degree can be obtained among a Gröbner 
basis of the ideal I(V) with respect to the specific total order. 
Though some other efficient algorithms to solve this interpo- 
lation problem have been given [4] [5], they miss the above 
crucial observation so that each of them is of its own special 
and separate form. 

In this paper, we present an efficient algorithm to find a 
Gröbner basis of the ideal I(V) based on Berlekamp-Massey- 
Sakata (BMS) algorithm [6] [7], which gives another efficient 
method of giving the solution at the first stage of Sudan al- 
gorithm.    Furthermore, we show that the above interpola- 

tion problem can be generalized to find a Gröbner basis of 
the ideal I(V; M) which consists of polynomials having ze- 
ros (oti,ßi) 6 V with some multiplicity condition specified by 
a set M (e ZQ) of integer vectors. This Hermitian type of 
interpolation problem takes a role in the improved version of 
Sudan algorithm [3]. A modification [8] of BMS algorithm can 
be applied to solve this problem. On the other hand, for list 
decoding of one-point AG codes our method can be adapted 
to find a Gröbner basis of a relevant ideal. 

II. CONCLUSION 

BMS algorithm can be applied efficiently not only for 
the conventional bounded-distance decoding of one-point AG 
codes up to the Feng-Rao designed distance but also for list 
decoding of RS codes and one-point AG codes. As a result of a 
simple analysis of computational complexity in the improved 
version of Sudan list decoding of RS codes for the number 
t' of correctable errors, where t' ~ n — \fhkn for a constant 
h > 1, we have the following estimate. Based on our method, 

the first interpolation stage has complexity ö{k~ zn? m5) (in 
comparison with ö(n3m6) based on Gaussian elimination), 
where m is the required multiplicity of zeros in the improved 
Sudan algorithm. 
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Abstract — We derive upper bounds on the num- 
ber of errors that can be corrected by list decoding of 
MDS codes using small lists. We show that the perfor- 
mance of Reed-Solomon codes, for certain parameter 
values, is limited by worst-case codeword configura- 
tions, but that with randomly chosen codes over large 
alphabets, more errors can be corrected. 

I. INTRODUCTION 

In most cases, error patterns with slightly more than y 
errors can be corrected by an (N,K) maximum distance 
separable (MDS) code. However, until the publication of 
Sudan's algorithm [1], the complexity of the computation 
increased quickly with the number of additional errors, and 
in practice only a single additional error could be corrected 
with an acceptable amount of computation. Sudan's paper 
not only gives an algorithm which allows more errors to be 
corrected, it also gives a proof that for a limited number of 
errors, the correct codeword is always on a very small list of 
possible transmitted words. In [2] the algorithm was extended 
to all rates and they obtained a bound for list of j decoding 
consisting of a sequence of straight lines meeting at the points 
(r,t) = (s(s-l)/j(j + l),l-s/(j + l)),s = 1, 2,..., j + 1 
where r is the rate of the code and t is the fractional number 
of errors that can be corrected. For large j, the fractional 
number of errors approaches 1 — y/r. 
The aim of this paper is to study codeword configurations 
in order to derive bounds on the number of errors that can 
be corrected with any list decoding algorithm when the size 
of the list is some fixed number. The bounds coincide with 
Sudan's bounds indicating that the limitation is not related 
to any particular decoding algorithm. 

II. A GENERAL OBSERVATION 

Suppose we have j + 1 codewords 

Ui (Uil,Ui2 ■ ■ ■ ,UiN) , i = 1,2,... ,j + 1 

at mutual distance D with the property that in any coordinate 
the j +1 words have the same symbol in s words and different 
symbols in the remaining j + 1 — s words. 
From such a configuration we can get a balanced incomplete 
block design by taking the j + 1 codewords as points and let 
the N blocks be the codewords that have the same symbol in 
the first, the second,..., the N th. coordinate. 
The parameters of the design aie v = j + 1, k = s, X = N — 
D, and b = N. 
Necessary conditions for the existence of such a design are 

(s- -1) {N- D)j (1) 
s(s - -1) (N- ■ D)j(j + 1) (2) 

(N- -D)j(j + 1)    -- =    Ns(s -1) (3) 

-^and 

r = i__s- 

If such a configuration of codewords exists and we let w be the 
word that has the shared symbol as its j th coordinate, the 
distance between w and all the codewords is T = N 

the code has rate N~%+1 = j|j^} + jj and t - N - . j + l 

If we let A = Ülizii and N = lji^11 the existence of such a 
block design (for sufficiently large /) follows from a theorem of 
Wilson [3]. In the special case where / = 1 and j + 1 is rela- 
tively prime to 2, 3,..., s - 1 there is a nice direct construction 

[4]- 
This gives the following theorem 

Theorem 1 Let j and s be natural numbers s < j + 1. Then 
there exists a natural number m such that for I > m the Ham- 
ming space Fq    where N = ^Mp^ contains j + l vectors of 

mutual distance D — N- 
ts(s-\) in a sphere of radius N- Nj_ 

"j'+i' 

Remark 1 One can prove that if N = |,^2
+ ' "ien ^e sma^- 

est radius of a sphere containing j + l words of mutual distance 
at least N - '-&f±± isN-f£. 

It turns out that using classical designs from points and hy- 
perplanes of PG(m, q) one can actually get the corresponding 
R-S codewords. This leads to the following: 

Theorem 2 Suppose j + 1 = q _~', where q is a prime power 
an m is a natural number.    Then there exist Reed-Solomon 
codes of rates s—m

+^  2 and ^-02 
such that we can only 

be sure to have the correct codeword on a list of size j if the 

fractional number of errors t satisfy t < 1 — ,-m_7    and t < 

1 — -—m_i      respectively. 

This gives t < 1 — \fr for large j. 

III. AN UPPER BOUND FOR RANDOMLY CHOSEN CODES 
We have also studied list decoding of randomly chosen 

codes and could prove the following 

Theorem 3   There exists (q — l,k) codes over F,  such that 
list of j decoding is possible for any t < (1 — r)j/(j + 1). 

In a particular case we have that if m is at least 10 , there 
are codes over F2"> of rate 1/2 that allow more than N/4 errors 
to be corrected with list of 2 decoding. 
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Abstract Vector symbol decoding is an outer code decoding technique for a concatenated code 
which works with a (n-k)*r syndrome matrix S of n-k linear combinations of r-bit inner code symbol 
vectors. A Gauss-Jordan reduction provides an error location vector. The zeroes in the error location 
vector are the apparent error positions, and the number of zeroes should match the rank of S. Then 
the error values can be solved for. Decoding success is related to the linear independence of error 
vectors. Data scrambling techniques for inner code symbols can make linear independence likely for 
moderately large r. .Any parity check code structure can be used for the combination rules. 

The new result is that, if the outer code decoder has available a (possibly ordered) list of two 
or more alternative decisions for some or all inner symbols, a slightly modified vector symbol 
decoder automatically reveals most correct alternatives, allowing more powerful and often simpler 
correction. Moreover, the ability to recognize these alternatives does not require error vector linear 
independence. 

The main idea is to store differences between alternative choices and the first choice as 
additional rows below the syndrome matrix S. Let x = first choice, y = second choice. If y is correct, 
the stored x - y = e, the true error. When column operations are done on the augmented matrix to 
transform the n-k rows of S, if y is correct, e will almost always be directly revealed as a member of 
the row space of S. .Also, its position is known by construction. A simple theorem shows that e is 
revealed whenever the first-choice error positions do not completely cover any code word of the 
combination code (because then all the error vectors will be in the row space of S, even if the error 
vectors are linearly dependent). It is found that the probability that the error vectors are not all in 
the row space of S is about four orders of magnitude lower than the decoder error probability for 
an equal-rate maximum distance nonbinary outer code working with a 0.01 - 0.1 vector symbol error 
probability range, for cases of a (15,4) binary combination code and a (23, 12) Golay binary 
combination code. Even for a randomly-chosen (255, 223) binary combination code, the probability 
the errors are not all in the row space of S is at least two orders of magnitude lower than the decoder 
failure probability of a (255,223) Reed-Solomon code correcting up to the guaranteed error 
probability, in the symbol error probability range 0.02-0.06. For conditional second choice error 
probability less than about 0.3 and large r, the decoder failure probability closely approximates the 
probability that the first-choice error positions cover some code word, in the ranges stated. 

If p is the rank of S, there is a probability of about 2 that x - y is in the row space of S 
for a false y. However, the error location vector acts as added verification whether the position of 
y is one of the apparent error locations. .Another theorem shows that the number of false apparent 
error locations in the error location vector can not exceed the number of combination code words 
covered by the error vectors in at least all but one position. This number would usually be zero, and ^ 
rarely > 1. %, 
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Abstract — 
We present a method for selectable delay turbo coding that, 

using a common serially-concatenated encoding operation with 
interleavers of growing lengths, allows decoders having differ- 
ing latency constraints to achieve decoding power commensurate 
with that delay. 

I. INTRODUCTION 

Concatenated encoding with soft, iterative decoding is known to 
be capable of achieving operation near the Shannon bound on the 
AWGN and other channels, provided the interleaving length is suf- 
ficiently large (see for example [1]). Other than decoder computa- 
tional complexity attached to the APP algorithm and subsequent it- 
erative decoding passes, the primary negative aspect of turbo codes 
is latency (delay) associated with the interleaving and deinterleaving 
mappings in the decoder. It is now known [2], [3], that concatenated 
systems with iterative decoders perform nearly as well as any code for 
a given specified latency. Still, latency is a sensitive issue for many 
applications, e.g. two-way interactive voice traffic. Also, it is easy 
to envision applications whose latency allowances vary widely from 
frame to frame. We thus propose a system which admits decoder 
choice in latency, while sharing a common transmission framework. 
We suggest this has applications in multimedia data transmission ap- 
plications, or in allowing performance/delay tradeoffs. 

II. SYSTEM DESCRIPTION 

We will illustrate the concept with the three-level serial concate- 
nation scheme shown in Figure 1. A message u with length N enters 
the encoder, and is systematically encoded by a 2-state convolutional 
encoder with feedback. The sequence p1 is formed as the running 
sum of the input to the encoder, i.e. pn

l = Y"!?_, WJ. To maintain 

-QE-1 -Qßr^ra H^T I± 

10 transmitter 

Figure 1: Diagram of three-level encoder 

high rate, we puncture much of the parity stream, and for discussion 
here, preserve every seventh parity bit for transmission. Hence the 
first component is a rate 7/8, two-state convolutional encoder. The 
multiplexed bit stream is designated v and has length (8/7)N. As 
with standard SCCC systems, the sequence v is bit-interleaved into 

'This work was supported by NSFgrant NCR-9714646 

a permuted sequence w, using an interleaves Here we suggest inter- 
leaver size D\ in the range of a few hundred bits, ultimately allowing 
a modest delay iterative decoding. 

The pseudo-message w is presented to another encoder, also here 
having two states and rate 7/8. The output parity sequence p2 is 
again punctured and multiplexed with the input sequence, producing 
a sequence x having length (8/7)2/v\ Finally, x is interleaved to a 
sequence y with an interleaver having size D2, perhaps 4000 bits. 
The sequence y is encoded as above, producing a final sequence z, 
whose length is (8/7)3iV, so that the overall encoding rate is (7/8)3. 

Instead of transmitting the sequence z we propose a reordering 
so that selectable latency options exist. Specifically, we form the se- 
quence b as shown in Figure 1, obtained by first multiplexing v with 
the punctured version of p2 to produce a. Note that this sequence 
retains the proper ordering of the v sequence, so that "zero-delay" 
decoding is possible. Then, b is formed by multiplexing the punc- 
tured parity sequence p3 into a. 

Depending on the latency allowed, three decoding architectures 
are possible. First, a simple Viterbi decoding of the sequence v, with 
essentially zero delay, is possible merely by deleting unncessary par- 
ity bits from the received stream. A moderate delay iterative decoder 
using two SISO modules can be built to process the noisy reassem- 
bled version of x. This decoder's latency is proportional to D\. Fi- 
nally a full three-SISO decoder can be fashioned to exploit the entire 
received stream. Its latency is proportional to £>2- 

III. RESULTS 

We have simulated the performance of the three decoding options 
in conjunction with BPSK transmission on a Gaussian noise channel. 
To illustrate, for a message size 4900 bits, encoded with overall rate 
(7/8)3 = 0.67, and interleaver sizes £>, = 280 and D2 - 6400, we 
find that "zero delay" decoding achieves Pi, = W~4 at Eb/No = 8 
dB, consistent with high-rate, low complexity, and penalty of dis- 
carded parity. With two-SISO decoding (moderate delay), we achieve 
a coding improvement of about 3 dB over the zero-delay option at 
Pi, = 10~5. Finally, the three-level iterative decoder achieves error 
probability 10"5 at Eb/N0 = 2.7 dB. This is about 1.7 dB short of 
channel capacity for binary PSK when R=0.67 signaling is employed. 
In summary, progressively more energy efficiency is gained as the la- 
tency constraint is relaxed and more decoder levels are employed. In 
addition to the gain implied by larger latency, we obtain extra value 
from not discarding parity symbols. Each of these performances is 
attainable with a common transmitting framework. 
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Abstract — An optimal MAP-equivalent SOVA de- 
coding algorithm and its simplified suboptimal algo- 
rithm for non-binary codes are proposed. The im- 
plementation of its suboptimal algorithm is simpler, 
while its performance is very close to the optimal 
Log-MAP algorithm. The proposed SOVA can be 
used as a decoder for Turbo trellis coded modulation 
(TTCM). It is concluded that the proposed SOVA 
performs very close to the Log-MAP algorithm for 
both the TTCM and binary Turbo codes, and its per- 
formance is better than the conventional SOVA. 

I. INTRODUCTION 

The MAP and Log-MAP algorithms are optimal in the sense 
of maximum a posteriori sequence probability. The simplified 
versions of MAP or Log-MAP, such as Max-Log-MAP, SOVA, 
are suboptimal. The optimality are traded for simplification 
of implementation. The SOVA is roughly half as complex as 
the Log-MAP [2] with some performance degradation. As for 
non-binary codes, the complexity of MAP algorithm becomes 
overwhelming and the simplified suboptimal algorithms are 
badly needed, with desirable small performance degradation. 
In this paper, a different implementation of MAP algorithm is 
proposed, together with a suboptimal algorithm. It is shown 
the performance of the suboptimal algorithm for non-binary 
Turbo codes is near to the performance of optimal MAP. 

II. MAP EQUIVALENT SOVA 

One elegant derivation of the MAP algorithm is presented in 
[1] by splitting the joint probability p(s', s, y), where s' -¥ s is 
the state transition at some epoch k, and y is the received se- 
quence. Another way to derive the joint probability p(s', s, y) 

p(s',s,y) = P(s'\s,y)P(s\y)p(y). 

The probability of s' given s and the received y is 

P(*'\s,y) = 
p(4s'~*s\yi<k) 

ES»-PO 
.(»"->*) yj<k) 

(i) 

(2) 

where s^ ~*s' is the trellis path containing branch (s' -> s), 

and sfc
s ~>s) is the trellis path containing branch (s" -> s) at 

epoch k. For each state s at k, the number of trellis branches 
terminated at s is equal to M for M-ary codes. There are 
M possible states s" for state transitions s" -» s. The ra- 
tio of probability of a trellis path containing branch (s' -> s) 
to the sum of probabilities of all possible trellis paths ter- 
minated at s is the probability of state «' given s and y, 

^his research was supported by the National Science Founda- 
tion under grant CCR-9903297. 

i.e., P(s'\s,y).   From the VA, the path metric of path sk is 

Mfc(sfc) = log (p(sk,yk)\. Then we have, 

P(s'\s,y) = 
exp(M,(s^>)) 

£,„exp(M*(sj>"-'>))' 
(3) 

where the received symbol sequence yj>j; is independent of 
the state transition at epoch k. The conditional probability 
P(s|y) can be yielded through backward recursion, as 

p(s'\y) = J2p(s'\s>y)p(s\y)- (4) 

The initial value of the backward recursion is P(s\y) = 1 for 
terminal state s at epoch k = N, and P(s|y) = 0 otherwise. 

The soft output should have M possible values for M-ary 
source symbols. The soft output value of the proposed algo- 
rithm in probability form is obtained as, 

P(uk=a\y)    =      ]T  p(s',s,y)/p(y) 

exp^si''-"')) 
=      V   P(s|y) ±- J——. 

(^> £ä"exp(M*(sr^)) 

(5) 

Using the joint probability in (1) with the a posteriori prob- 
ability definition, we derived the implementation of MAP al- 
gorithm. In our discussion, the path metrics are computed 
with VA. (5) is the a posteriori probability, or the soft out- 
put definition of VA. So we still can call the proposed MAP 
implementation as a SOVA. However, the proposed SOVA is 
different from the SOVA in literature [1, 3, 4]. The proposed 
SOVA is an optimal MAP algorithm, while the conventional 
SOVA is a Max-Log-MAP equivalent, which is sub-optimal. 

Similar to the MAP algorithm, the proposed SOVA soft 
output in (5) can be simplified by passing to the log-domain 
of probability. 
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Abstract — Geometric interpretation of turbo- 
decoding has founded an analytical basis, and pro- 
vided tools for the analysis of this algorithm. Based 
on this geometric framework, we extend the analyti- 
cal results for turbo-decoding of product codes, and 
show how analysis tools can be practically adopted 
for this case. Specifically, we investigate the algo- 
rithm's stability and its convergence rate. We present 
new results concerning the structure and properties 
of stability matrices of the algorithm, and develop up- 
per bounds on the algorithm's convergence rate. We 
prove that for any 2x2 (information bits) product 
codes, there is a unique and stable fixed point. For the 
general case, we present sufficient conditions for sta- 
bility. The interpretation of these conditions provides 
an insight to the behavior of the decoding algorithm. 

I. INTRODUCTION 

Turbo codes, first introduced in 1993 [1], are considered as 
one of the most important developments in coding theory in 
recent years. Although simulation and practical results gener- 
ally show excellent performance, there is a lack of theoretical 
basis for explaining the results and providing tools for their 
analysis. Recently, a new approach [2] of geometric inter- 
pretation to the decoding algorithm has managed to reveal 
interesting features of the decoding process. Based on it, we 
extend the analytical results, and use simulations to gain a 
deeper understanding of the turbo-decoding of product codes. 

II. PRODUCT CODES TURBO-DECODING 

A product code (without checks on checks) turbo encoder 
uses block encoders, and a rows to columns interleaver. The 
information bits are arranged in kr rows and kc columns. The 
i-th row (xri) enters a (ny,kc,dr) block encoder and forms a 
row code word y*. The i-th column (xCi) enters a (nz,kr,dc) 
block encoder and forms a column code word z' (where dr and 
dc are the minimal distances of the row and column codes, re- 
spectively) . 

Let Px,Py and Pz represent the log-densities corresponding 
to the posterior densities p(x\x),p(y\x) and p(z\x), respec- 
tively. Let Qv,Qz denote the extrinsic information from the 
rows and columns decoders, respectively. In [2] it is shown 
that the stability of the decoding algorithm is determined by 
the stability of 5: 

5 = SRSC 
(JP,+PV+Q: ~ I)(JP*+QV+P, - I),      (!) 

and the general expression for the Jacobian matrix is given. 
Using the independence of the decoding of different rows (or 
columns), we develop an explicit expression for Jp. E.g. for 
the Jacobian of the rows decoding - {JR)i,j we get (P = Px + 

S = (3) 

f  ep(xj = l\xi = 1) - ep(xj = \\xi = 0)    xuxj € xr" 
|  0 Xi € xr", Xj £ xTb 

(2) 
The brute-force calculation complexity of a JR element is 
o(2kc~1), also, note that it is a diagonal block matrix, whose 
i-th block (JRi) is the Jacobian matrix of the i-th row de- 
coding. 

We show that for general values of kr and kc , S is a block 
matrix, where each block (S''j) is' a kc x kc matrix, with an 
all zeros diagonal. The main diagonal of S is the zero matrix 
(SM = 0). For kT = kc = 2 we get: 

/ 01,262,4 \ 

<l2,lfrl,3 

03,464,2 

\ 04,363,1 / 

where aij = (SR)i,j and bij = (S  )i,j. 
Theorem 1: The fixed point of any product code turbo- 

decoder with kr — kc = 2 is always stable. 
Proof: From (2) we deduce that the absolute value of each 

element of JR is less or equal to 1, hence, \ai,j\ < 1. The same 
holds for bij. Therefore, the eigenvalues of S are inside the 
unit circle, and S is stable (regardless of the SNR or the rows 
or columns encoders). 

For the general case, we develop in [3] an upper bound for 
the maximal eigenvalue of S (which governs the convergence 
rate in the vicinity of the fixed point), and sufficient condi- 
tions for the stability of the decoding algorithm. The basic 
component in these conditions is the product of the posterior 
dependence between two bits in a row, and the sum of the 
posterior dependencies between one of these bits and all the 
bits in its column. Hence, small column posterior dependen- 
cies (i.e. successful columns decoding) can compensate for a 
large value of inter-row bit dependence (i.e. unsuccessful row 
decoding) and vice versa. 

In our talk we present simulation results for the stability ma- 
trices of Hamming [(7,4,3)]2 and Golay [(24,12,8)]2 product 
codes. Further analysis of the results is made using distri- 
bution histograms of the complete eigenvalues spread, at the 
algorithm's fixed-point. 
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Abstract — After recognizing classical turbo- 
decoding as fix-point iteration, alternative numerical 
methods such as Gauss-Seidel iteration, Jacobi over- 
relaxation iteration, the damped substitution method, 
and Newton-type methods are evaluated. None of 
these methods seem to perform better than fix-point 
iteration, and it is noticed that not even Newton's 
method performs better due to the presence of a ran- 
dom interleaver. 

I. PROBLEM STATEMENT 

Consider a turbo code [1] with a random interleaver of length 
N equal to the block sizel transmitted over an additive white 
Gaussian noise channel using a binary antipodal signal set. 
The iterative receiver employs a posteriori probability (APP) 
algorithms (MAP decoders) for the two constituent codes. 
In classical turbo-decoding, the MAP decoders simply feed 
each other after proper interleaving/deinterleaving, and the 
final decisions are based on the APPs from the last de- 
coder after a number of iterations. Given a block of received 
samples, a full decoding iteration corresponds to a nonlin- 
ear function g : KN -> HN, which produces extrinsic log- 
likelihood ratios (LLR) from the input a priori LLRs. Using 
similar functions ci, C2 for the constituent MAP decoders, 
and denoting the operations of the interleaver/deinterleaver 
with permutation matrices P and P_1 = PT, respectively, 
g(Ln) = PTc2(Pc1(Ln)) at iteration n. Usually, L° = 0. 

For every received block, the goal is to find a multidimen- 
sional fix-point L*, in which L* = g(L*). This implies con- 
vergence of bit decisions based on L*. Equivalently, we can 
find a root to f (L*) = 0 where f (L) = g(L) - L. Clearly, clas- 
sical turbo-decoding corresponds to fix-point iteration (or the 
substitution method), Ln+1 = g(Ln). Of course, fix-points 
can be found (possibly faster) with several other numerical 
methods. 

II. OVERVIEW OF NUMERICAL METHODS 

First, consider a recursion similar to Gauss-Seidel's method for 
a system of linear equations [2]: Ln

k
+1 - gk(L^+\.. -,L^l, 

££,... ,L%), k = 1,... N. Normally, it converges slightly 
faster than fix-point iteration. However, using block-mode 
MAP decoders, ci and c2 are evaluated for all k at the same 
time, thus not allowing a successive evaluation. Instead, con- 
sider a method similar to Jacobi over-relaxation (JOR) itera- 
tion for linear equations [3]: Ln+1 = a„g(Ln) + (1 - a„)Ln, 
0 < a„ < 1. If it converges, it still solves the fix-point 
problem. Since the Jacobian of g, Jg(L), is attenuated by 
a factor an, we expect convergence more frequently, but pos- 
sibly also at a slower rate.   As a third alternative, consider 
the damped substitution (DS) method L" g"*(L») = 
ang(Ln) = a„P  c2(Pci(Ln)), an  > 0, and where a„ ap- 
proaches one as n increases.    Jg(L*) and Jg

35(L*) are the 

same, suggesting convergence equally frequently. The DS 
method does not differ very much from the modified DS 

L*+i = prc2O^Pci(v/^'Lrl)), originally used in [1]. 
With Newton's method for solving f(L*) = 0, a common 

approach [4] is to use L"+1 = Ln + a„sn, 0 < a„ < 1, with the 
Newton direction sn = -Jf

_1(Ln)f(L"). a„ is determined at 
each iteration by performing a backtracking line search, which 
aims at yielding a sufficient decrease in some function relat- 
ing to the distance from the solution, e.g. d(L) =|| f(L) ||2. 
Requiring a decrease in d(L) is exactly what we would do if 
we were trying to minimize d(L) over L. However, all its lo- 
cal minima need not be roots of f, a fact which turns out to 
be a clear drawback in turbo-decoding. (In fact, all gradient 
methods suffer from the problem of finding false roots.) Fur- 
thermore, due to the random interleaver, most of the elements 
of Jg(L) are close to zero, hence Jt(L) « Jf

_1(L) « —I, re- 
ducing Newton's method to the JOR iteration. In practice, 
Jg(L) certainly has some significant elements, but we can still 
imagine that the strength of Newton's method - to exploit 
the Jacobian - is of little value for a problem such as turbo- 
decoding. 

III. SIMULATION RESULTS AND CONCLUSIONS 

The different methods were compared by computer simula- 
tions estimating the bit error rate (BER) for a non-punctured 
turbo code employing two identical rate-1/2 recursive sys- 
tematic convolutional codes with generating matrix G(D) = 
[ 1, (1 + D2)/(l +D + D2) ], separated by an 5-random in- 
terleaver with 5=19 and JV=1024. At Eb/N0=0.75 dB, 
BER« 1(F3 after 10 iterations with fix-point iteration. With 
the JOR, DS, and modified DS iterations, a large number 
of attenuation coefficient sequences ending with an = 1 were 
evaluated. None of these methods were able to converge faster 
(in terms of BER for a given number of iterations) than fix- 
point iteration. With Newton's method, the BER flattens out 
at appr. 10~ even in the absence of noise, obviously because 
it finds a false root for many blocks. In conclusion, fix-point 
iteration seems to be the superior choice in most situations. 
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Abstract — Asymptotic behaviour of the minimum 
number of the repeated transmissions of a sequence 
over a discrete memoryless channel sufficient for its 
exact (or within a permissible Hammimg distance) re- 
construction with a given error probability is found. 

I. INTRODUCTION 

Traditional problems of theory of information transmission 
consist in efficient transmission of messages over noisy chan- 
nels which are described by combinatorial or probabilistic con- 
ditions. For solution of these problems it is used a coding to 
introduce a redundancy to messages so that the distance be- 
tween the encoded messages would be sufficiently large and 
allows one to correct errors at the output of channels. How- 
ever, some natural problems, such as analysis of observations, 
recovering genetic information, require to reconstruct an ar- 
bitrary sequence using a sufficiently large number N of its 
erroneous patterns. In these cases we in fact use the repeated 
transmission, because such patterns can be considered as a re- 
sult of an N-tuple transmission of the sequence over the same 
combinatorial or probabilistic channel. This gives rise to new 
combinatorial and probabilistic problems of finding the mini- 
mum number N of erroneous patterns sufficient to reconstruct 
an unknown sequence with a given accuracy. The precise set- 
ting of the problems and solutions to a number of them can 
be found in [2], [3]. Below we present some results for a dis- 
crete memoryless channel C with a matrix (pi,j) of transition 
probabilities of the set Fq = {0,1, ...,q] into Fr, q>2,r> 2. 

II. OPTIMAL AND REDUCIBLE TV-RECONTRUCTORS 

We deal with non-degenerate channels C for which the tran- 
sition matrix (pi,j) does not have two identical rows and con- 
tains a column with at least two nonzero probabilities. For 
any i,k € Fq, denote by C(i,k) the subset (which may be 
empty) consisting of all j G Fr such that pijpkj > 0. For 

any s, 0 < s < 1, let ailfc(s) = £jec(i,*)P.-,7Xj and 

a(C) = maxi.fceF,, i^tk min0<s<i a»,k(s)- One can show that 
0 < a(C) < 1 if and only if C is non-generate channel. 
For any x = (xi,...,xn) G Fq and Y = (yi,..., J/N), where 
Vi = (yuj,-,Vn,j) G Fr

n, j = 1,...,N, we set Pc{Y\x) = 

Y\N=\ YYl=\Pxk,vk,r We consider Y as the matrix (y;j) of 
the size n x N over Fr and denote by Yn,N the set of all 
rnN such matrices. Let MN be the set of all mappings 
/ : Yn,N -> F£, n = 1,2,... , which are referred to as N- 
'reconstructors. Given an integer-valued function d = d(ri), 
0 < d < n, and / G MN , one can calculate the error probabil- 

ity Pc(f,x,d,N) = Ey6yn,N, dH(f(YU)>d Pc(Y\x) of recon- 

structing x G Fq with at most d wrong letters (here dn (z, x) is 

the Hamming distance). Note that the case d = 0 corresponds 
to the exact reconstruction. We set 

Pc(n,d,N) =   min   max Pc(f,x,d, N) 
f€MN iEFn (1) 

and call an JV-reconstructor / optimal if it gives the mini- 
mum in (1) for all n (optimal ^-reconstructors exist for any 
function d = d(n)). An N-reconstructor / for a memory- 
less channel C is called reducible, if there exists a memoryless 
channel CN such that for any n (n = 1, 2,... ) and x, z € Fq , 

^veY„,N, f(Y)=* Pc(YW = PcM*)- Thus> the action of a 

reducible iV-reconstructor reduces iV-tuple transmission of a 
message over C to its single transmission over another "im- 
proved" memoryless channel CN ■ Reducible iV-reconstructors 
are in general not optimal, but we use them and the classical 
work [1] to obtain the following estimates. 

Theorem 1 For any non-degenerate discrete memoryless 

channel C, Pc(n,d,N) = ^=d+i C?)7^1 ~ P)"-<> where 

(2g)-1 (a(C))N e-ß^^ < P < (q - 1) (a(C))N , and 
ß(C) = \/2minmaXj6c(i,t) \lnPi,j/Pk,j\ viith the minimum be- 
ing taken over alii, k G Fq such that a(C) = mino<a<i c«i,k(s). 

III. THE MINIMUM NUMBER OF REPETITIONS 

Denote by Nc(n,d,e) the minimum integer N such that 
Pc(n,d,N) <e,0<e< 1/2. Thus, Nc{n,d,e) is the mini- 
mum number of repeated transmissions that allow one to re- 
construct any sequence of length n with accuracy up to d 
letters with the error probability at most e. 

Theorem 2 Let £ — e{n) > 0 and d = d(n) > 0 be functions 
such that e -» 0 and d/n -¥ 0 as n -> oo. Then for any 
non-degenerate discrete memoryless channel C, 

Nc(n,d,e) ~ (In 
d+1 

+ dTTln7)/lnoW 

'This work was supported by the RFBR Grant 99-01-00941 

In particular, by Theorem 2 Nc(n,d,£) grows linearly with 
length n when the permissible error probability e of recon- 
struction of a sequence with a fixed number d or less wrong 
letters decreases exponentially with n. On the other hand, one 
can prove that if d > 5n, where 0 < 5 < 1, and e > 2~cn,c > 0, 
then Nc{n,d,£) is restricted above by a constant. For in- 
stance, in the case of the symmetric binary channel with 
p = 0.02, we get that for 5 = 0.01, and c = 0.1 five repe- 
titions are sufficient independently of length n. 
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Abstract — In this paper, we present a new approach 
for channel coding on unknown or time-varying chan- 
nels. Given a family of possible channel characteris- 
tics, we define a multi-resolution channel code as a sin- 
gle channel coding codebook from which a collection 
of codes of increasing rates are extracted by choosing 
larger and larger nested subsets of the original set of 
codewords. We give an achievable rate region and a 
tight converse. 

I. INTRODUCTION 

Consider the problem of channel coding for an unknown or 
time-varying channel. Given a family of possible channel char- 
acteristics, in theory we could design a different channel code 
for each channel in our collection. Assuming knowledge (at 
both the transmitter and the receiver) of the channel in oper- 
ation at communication time, both encoder and decoder could 
choose among the family of codes. The resulting strategy 
would theoretically achieve the capacity of any channel in the 
collection (e.g., [1], [2] and [3]). Unfortunately, this approach 
requires an uncountably infinite collection of channel codes 
when ii is uncountably infinite. We define a multi-resolution 
channel code (MRCC) as a single channel coding codeboök 
from which a collection of codes of increasing rates are ex- 
tracted by choosing larger and larger nested subsets of the 
original set of codewords. Given a collection Q of channels 
and a fixed set of 2nRm** channel codewords, the MRCC uses 
the first 2nr(e) codewords to code at rate r(9) < A™»* across 
channel 6 € fi. We here consider the set of rate functions r(-) 
achievable on a fixed class Q of channels. MRCCs are similar 
in application to punctured channel codes (e.g., [4]). 

II. PRELIMINARIES 

Consider a class Q of memoryless channels with common in- 
put alphabet A and output alphabet B. For each Ö 6 fl, 
let C{9) and vg denote the capacity and conditional distribu- 
tion of channel 9, respectively. Given il, a positive constant 
fimax, and a rate function r : £2 -> [0,-Rm«] that is measur- 
able with respect to the Borel <r-algebra of open subsets on 
fi, a MRCC C„ = {Tn, fn,gn,r) on O is a single channel code 
defined by a codebook Tn, a measurable encoder fn, and a 
measurable decoder gn. The channel codebook Tn contains 
[2nHm»xj blocklength-n codewords. The codewords are or- 
dered and denoted by Tn = {an(l),... ,an(|2nH""J)}. The 
channel 9 £ Q in operation is assumed to be fixed and known 
to the channel code's encoder and decoder during any sin- 
gle channel use. The channel may vary from channel use to 
channel use. For any 9 £ Cl, the code is used at rate r(0) 

on channel 9.   The collection U^ of allowable messages on 

9 is defined as U^ = {1,..., [2nr(e)J}. For any 9 £ Q, the 

encoder is defined as fn(9,u) = an(u) for all u £ U^e); the 
corresponding decoder gn(9, •) maps the channel output space 

Bn back to the set f„ of allowable messages. For any 9 £ Q 
and u g U{

n
e\ let T^ = {yn £ Bn : gn{9,yn) = u} represent 

the decoding cells associated with u and 9. Then for any class 
O of channels and MRCC C„ = {Tn, fn,gn,rn),we define the 
average probability of error of C„ on O with respect to ß as 

dß(9), 

'This work was supported by NSF MIP-9501977 and CCR- 
9909026 and grants from the Lee Center for Advanced Networking 
and the Powell Foundation. 

where ß is an arbitrary distribution on fl. 
A (|2nH»«J,n,r(-),e)-Wodfe MRCC for (0./3) is denned 

as a MRCC C„ = {Tn,fn,gn,r) with P^(Cn,U) < e. For 
any fim« < oo, we call the rate function r : fi —>■ [0,Äm8X] 
achievable on fi if for any distribution ß there exists a se- 
quence of (|_2nBm"J,n,!•„(•),«n)-block MRCCs with respect 
to ß on fi such that lim,,-»,*, r„(9) = r(9) for each 9 G ß and 
limn-K» e„ = 0. 

III. RESULTS 

Theorem 1 If O is a collection of stationary, memoryless 
channels such that maxsgn C{9) < oo, then 

r{9) = C{9)     V9eQ 

is achievable if one of the following holds: (1) fl is finite; (2) 
the channel input alphabet is finite; (3) the optimal input dis- 
tribution for each 9 € fi, has a bounded derivative and power. 

Theorem 2 If Q is a collection of stationary, memoryless 
channels such that max«en C(9) < oo and the power budget is 
P{6) for any 9 € Ü, then 

r{9) = C{9)      VÖ G Ü 

is achievable if one of the following holds: (1) U is finite; (2) 
the channel input alphabet is finite; (3) for each 9 £ Q, ße(x), 
the optimal input distribution for channel 9 has a bounded 
derivative and for any e > 0, there exists an Sa such that 

S\x\>sa
x2fie^dx<e- 
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Abstract — Information rates in certain discrete- 
time, memoryless, stationary channels with additive 
non-Gaussian noise and slowly varying input signal 
are investigated. Under the assumption that the in- 
put signal is a stationary Markov chain with rare tran- 
sitions, it is shown that the information rate is asymp- 
totically equivalent to the entropy of the chain and, 
therefore, the main term of its asymptotics does not 
depend on the channel noise. 

I. INTRODUCTION 

Consider a stationary channel whose output signal Y — {Y:} 
is equal to the sum 

YJ=XJ + Z], 0,±1,..., (1) 

where the input signal X = {X3} and the noise Z = {Z}} are 
independent, discrete-time, stationary processes. The prob- 
lem of explicit calculation of the information rate I(X;Y) (i.e., 
the mutual information per unit time) in such a channel is, 
except for a number of special cases, rather hard. Therefore, 
it is important to obtain good upper and lower bounds and 
investigate the asymptotic behavior of I(X;Y) under different 
assumptions on the behavior of the parameters which charac- 
terize the input and noise processes. 

In most previous papers dealing with this subject such an 
asymptotic behavior of I(X; Y) has been analyzed for the case 
where the input signal is weak, i.e., the noise is large. Here, 
we do not assume that the power of the input signal or the 
noise goes to zero or infinity, respectively, but we consider the 
case where the input signal {-V,}, depending on a parameter 
e, is a slowly time varying stationary Markov chain with a 
finite number of states (i.e., the transition probabilities of it 
tend to 0 or 1 as e — 0). Thus, the model (1) can be consid- 
ered as a special case of the well-known simple hidden Markov 
model. In [1], for such kind of model the asymptotics of the 
mean-square error for the optimal estimates of X„ from the 
observations Y"^ = {Y},j < n} was found. We use the re- 
sult of [1] to derive the asymptotics of the information rate as 
£->0 for the channel model considered. 

In this connection, it should be noted that some relations 
between the mutual information and a causal mean-square 
filtering error were observed many years ago. But most results 
in this area were obtained for continuous-time models with 
additive white Gaussian noise. 

'This work was supported in part by the Russian Fundamen- 
tal Research Foundation under Grant 99-01-00828 and in part by 
INTAS under Grant 94-469. 

II. MAIN RESULT 

As already mentioned in the introduction, we consider a sta- 
tionary channel whose input signal Xc — {Xj} (and, there- 
fore, the output signal Y' — {Yf}) depends on a parameter 
e > 0 and 

Y; = X'}+Z„  j = o,±i,.... (2) 
It is assumed that X' is a stationary, aperiodic, and ir- 
reducible Markov chain with a finite number of- states 
{ii,...,im, Xi £ R, i' = l,...,m} and transition proba- 
bilities 

At, = P{X'n+1 

where A<; 

Xj\X'n = x,} — I j 
eA„,    i = j, (3) 

y^ A,j.  We will also assume that Z = {Z3} is a 

sequence of real valued i.i.d. random variables independent of 
Xc. 

Theorem. // EjZol'3 < oo for some ß > 4, then 

I(X';Y') = H(X')(l+o(l)),    e 0, 

where 

H{XC K)< 1+0(1)),        £-0, 

is   the   entropy   of   the   Markov   chain   X',    and   {qk    = 
lim  P{A"„  =  Xk},   k —  l,...,m}  is the stationary distri- 

n—»oo 
bution of it (which does not depend on e). 

The proof of this theorem can be found in [2]. There, 
we also compare the asymptotic behavior of the information 
rates I(XC;XC + Z) for the channel model (2) under the as- 
sumptions that: 1) Xc is a stationary Markov chain with 
two states x\, xi £ R and transition probabilities (3) where 
Ai2 = A, A21 = /i, 2) Xe is a stationary Gauss-Markov pro- 
cess with the same covariance function as the Markov chain 
above. It is also assumed that the noise Z = {Zj} in both 
cases is a sequence of i.i.d. Gaussian random variables. 
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Abstract — The broadcast disk provides an effec- 
tive way to transmit information from a server to 
many clients. Information is broadcast cyclically and 
clients pick the information they need out of the 
broadcast. An example of such a system is a wireless 
web service where web servers broadcast to brows- 
ing clients. Work has been done to schedule the in- 
formation broadcast so as to minimize the expected 
waiting time of the clients. This work has treated the 
information as indivisible blocks that are transmitted 
in their entirety. We propose a new way to sched- 
ule the broadcast of information, which involves split- 
ting items into smaller sub-items, which need not be 
broadcast consecutively. This relaxes the restrictions 
on scheduling and allows for better schedules. We 
look at the case of two items of the same length, each 
split into two halves, and show that we can achieve op- 
timal performance by choosing the appropriate sched- 
ule from a small set of schedules. 

I. MODEL AND PROBLEM 

The broadcast disk is a way to send information to many 
clients at the same time over a broadcast medium. The broad- 
cast disk is a central server that acts as a common cache for 
many clients. Data at the server is made available cyclically to 
the clients, according to the broadcast schedule. The goal is 
to schedule the broadcast information in a way that minimzes 
the expected waiting time of the clients. 

Vaidya and Hammeed [1] worked out the optimal broadcast 
frequencies of items within a schedule as a function of their 
demand probabilities, pi, and lengths, U. They showed that to 
minimize expected waiting time, the frequencies of broadcast, 
ft, should be proportional to */fF. This led to an algorithm 
that attempted to achieve these relative frequencies. This 
algorithm is good because it is computationally fairly simple 
and works for an arbitrary number of broadcast items with 
arbitrary lengths and demand probabilities. However, they 
make some assumptions about spacing of items that do not 
hold in most cases. 

We look at a new way to schedule the items, which allows 
us to achieve better expected waiting times. We consider the 
case of two items of the same length, and we split each item 
into two halves. We then schedule these pieces of the items 
for broadcast. We find the optimal schedule under these con- 
ditions based on the demand probabilities. 

We represent a schedule by a sequence of numbers. Each 
number represents a piece of an item. For example, 1122 
means we broadcast two pieces of item 1 followed by two pieces 
of item 2.  To determine which piece of an item to send, we 

look at which piece of that item was sent last and send the 
other piece. 

Our metric for evaluating schedules is the following: 

Definition 1 EWT(S, pi) is the expected waiting time us- 
ing schedule S with demand probabilities p\ and pi = 1 — Pi, 
assuming two items, each of length one unit, split into two 
halves. 

By "expected waiting time", we mean the total amount of 
time that a client spends listening to the broadcast channel, 
not including the time spent obtaining the desired data. We 
assume that clients start listening at random times uniformly 
distributed over the broadcast cycle. 

II. SUMMARY OF RESULTS 

The main result is the following: 

Theorem 1 For two items of the same length, each split into 
two halves, the broadcast schedule that minimizes expected 
waiting time is: 

1122,  if pi e (1 

11222,  ifpx £ | 

112222,  ifPl e (i,- 

s+y711 

>16> 2} 

A.  Al 
k21 '  16J 

21 J 

122122 2... 2, n =  Max [ 0, 

(°. 
if Pi   € 

'This research was partially supported by the Lee Center for 
Advanced Networking at Caltech 

For a more detailed discussion of this result, refer to [2]. 
This theorem tells us that with two items of equal length, the 
optimal schedule is a simple function of the demand probabil- 
ity p\. To prove this result, we first prove some lemmas about 
comparing the waiting times of different schedules. Then, we 
use these lemmas to narrow the set of schedules to a small 
set of schedules. From this set, we numerically compare the 
schedules to find which is best and for what value of pi. 

Is is surprising that the optimal schedule is such a simple 
function of p\. The set of possible schedules is uncountably 
infinite. Using certain rules of manipulation, we can reduce 
this uncountable set to a countable set, which is essentially 25 
types of schedules, each parameterized by length. From these, 
we see that only the small set of schedules in the theorem are 
optimal. 
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Abstract — The goal of this paper is to complete 
results about /-projections and reverse /-projections, 
and to correct some errors in the literature. A new 
tool is the concept of convex support of a probabil- 
ity measure, better suited for our purposes than the 
familiar closed convex support. 

I. PRELIMINARIES 

For probability measures (pm's) on the same measurable 
space, D(P\\Q) denotes information divergence (relative en- 
tropy). Its infimum for P or Q in a set S of pm's is denoted 
by D(S\Q) and D(P\S), respectively. If here a unique min- 
imizer exists, it is called the /-projection of Q to S or the 
reverse /-projection (r/-projection) of P to S. Such projec- 
tions, particularly to linear, respectively exponential families 
of pm's occur in various problems of probability and statistics. 
Previous works studying these projections include Cencov [1], 
Csiszär [2], [3], Topsoe [5], etc. 

We will consider linear families Ca — {P '■ J x dP = a} for 
a G Rd, and exponential families of pm's on Rd 

SQ = {Qo :  4S±(x) = exp[(tf,x> - AQW] , 0 G dorn AQ}, 

where 

AQ(I9) = log f exp{d,x)dQ,     dom AQ = {t? : AQ(tf)<oo}; 

more general situations can be easily reduced to this [3]. 
We define the convex support cs(Q) of a pm Q on Rd as 

the intersection of all convex sets of Q measure 1. 

Theorem 1.    D{Ca\Q) is finite iff a G cs(Q). 

We also introduce the extended exponential family 

ext (SQ) = M {£QF : F non-empty face of cs(Q)} 

(see [4] for the definition of and basic facts about faces) where 
QF denotes the conditional distribution determined by Q con- 
ditioned on F, the closure of F. Note that SQ C ext {SQ) with 
equality iff cs(Q) is open. 

A similar construction appears in [1], using closed convex 
support (equal to cs(Q)) rather than cs(Q), but several asser- 
tions there are false. The 'right' extension concept permits us 
to correct those. 

Example. Let Q be the normalized sum of the Lebesque 
measure on the unit square and the point masses <5t, Sc at 
6 = (5,0), c = (f,0). Then Jj, and <5C belong to ext (SQ) but 

'This work was supported by the HSSS programme of ESF, by 
the Hungarian National Foundation for Scientific Research, Grant 
T 26041 and by Grant Agency of Academy of Sciences of the Czech 
Republic, Grant A 1075801. 

not to the union of SQ with its 'boundary at infinity' in the 
sense of [1]; they have no r/-projection to that union, contra- 
dicting Theorem 23.3 of [1]. 

II. MAIN RESULTS 

Let {R : D(S\R) = 0} be the I-closure cl,(S) and {R : 
D(RjS) — 0} the reverse I-closure clri(S) of a set S of pm's. 

Theorem 2. For every exp. family £ — SQ and a 6 cs(Q) 
there exists a unique pm Qa£ in ch (£a) H ext (S). It satisfies 

D(P\\R) = D(PlQle) + D(Ca\\R),    P € Ca , R € ext (S). 

The pm Qä,e belongs to SQF where F denotes the unique face 
of cs(Q) whose relative interior contains a. 

Corollary 1. For a pm Q and a G cs(Q) the /-projection of 
Q on Ca exists iff Ca intersects ext(£c?). A sufficient condition 
for the latter is dom KQ = Rd. 

Corollary 2.   If S is an exponential family and P is a pm 
with mean a such that D(P\\ ext (S)) is finite then the reverse 
/-projection of P to ext (S) exists and equals Q'a,£- 

Theorem 3.     For every exp. family S = SQ and a G cs(Q) 
there exists a unique P*£ in clri (S) such that 

D{P\P;,£) = D(P\\S) = D(P\cK, (S)),    P e Ca . 

This Pa & has a mean a*, and satisfies 

D(P\\R) > D(P\S) + D(P:,£\\R),    P€Ca, Re cl,, (S). 

Corollary 3.   If S is an exponential family and P is a pm 
with mean a such that D(P\S) is finite then the r/-projection 
of P to clr,(S) exists and equals P^e- The r/-projection of P 
to S exists iff P* E G £■ 
Corollary 4. The following assertions are equivalent 

1. D(Ca\S) = Q 

2. P;,£ = Q'a.e 
3. clj(Ca) n clri(S) is nonempty. 

Theorem 4. ext (SQ) is variation closed. A sufficient condi- 
tion for the equality in clrI (SQ) C ext (£Q) is dom AQ — R . 
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Abstract — The information value decomposition 
approximates a positive-valued matrix by a sequence 
of reduced rank matrices. A rank K approximating 
matrix is closest to the original matrix in the sense 
of minimizing the discrimination between the original 
matrix and the approximation, over rank K matrices. 
The information value decomposition is analogous to 
the singular value decomposition with discrimination 
used for the discrepancy measure instead of squared 
error. Several properties of the information value de- 
composition correspond to properties of the singular 
value decomposition. These properties are discussed. 

I. INTRODUCTION 

The singular value decomposition is arguably the most im- 
portant tool in numerical linear algebra and is used widely in 
virtually all areas of science and engineering. The singular 
value decomposition computes the real-valued, rank K ap- 
proximation to a real-valued matrix that is closest to that 
matrix, where the closeness or discrepancy is measured us- 
ing squared error. The information value decomposition com- 
putes the closest positive-valued, rank K approximation to a 
positive-valued matrix, where discrimination (or I-divergence) 

J(A||B) = ££ayln£L-ay-r&i; (1) 

is the discrepancy measure. 
The information value decomposition is useful for problems 

where the data are naturally positive-valued, including prob- 
lems in optical and hyperspectral imaging, and in approxima- 
tions of joint probabilities. 

Several properties of the information value decomposi- 
tion result from properties of discrimination (see the work of 
Csiszär [1, 2, 3]). Two properties are equivalent to the suc- 
cessive projection property of squared error. Let C be any 
nonempty linear set 

C = {p € R^ : Qp = q}. (2) 

Then for any p S C, 

J(p||r) = /(p||p*) + J(p», (3) 

where p* = argminpg£ J(p||r). Let £ be any nonempty expo- 
nential set 

£ = {r 6 R" : n = iTi exp(^   Pijfij), for some p}.      (4) 

where r* = argminr€£ I(p||r). These two successive projection 
properties are central to the analysis of the information value 
decomposition. 

Many alternating minimization algorithms [3, 4] can be 
rewritten as minimizing the first variable over a linear set and 
minimizing the second variable over an exponential set 

min min/(pi |r). 
res pec (6) 

The computation of the information value decomposition may 
be written in this form, yielding an iterative algorithm for 
a rank K approximation. Write the approximating ma- 
trix in terms of factors as B = XVT, where X and V 
are nonnegative-valued matrices with K columns, and the 
columns of V sum to 1. Denote the set of all such rank K 
matrices as P{K,m,n). The optimal rank K matrix is found 
as B<*> = X<*>V<K>r and achieves 

B(K) =    argmin    J(A||B).. 
BeP(K,m,n) 

(7) 

The rank one solution is given by the normalized marginals 
on the columns and rows of A. If the entries of A sum to 
1, the resulting discrimination equals the mutual information 
between two random variables whose joint distribution is A. If 
the entries do not sum to 1, the discrimination is proportional 
to such a mutual information, with proportionality constant 
equal to the total sum of the entries of A. 

The successive approximation properties yield expressions 
for the improvement going from rank K to rank K + 1 ap- 
proximations. 
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Abstract — In this paper, the one-to-one corre- 
spondence between group-theoretic inequalities and 
information-theoretic inequalities are established. 
The consequence is that we can prove an information- 
theoretic inequality by proving its corresponding 
group-theoretic inequality and vice versa. Finally, a 
new non-trivial group-theoretic inequality is found us- 
ing this approach. The meaning of this inequality is 
yet to be understood. 

I. GROUP-THEORETIC INEQUALITIES 

Definition 1.1 Let G be a finite group and Gi, G2, ■ ■ ,Gn be 
subgroups of G. A group-theoretic inequality is an inequality 
that involves only additions or subtractions of terms of the 
form log 4£JT, where \G\ is the order of the group G and \Ga \ 
is the order of the subgroup f]i€a Gi. 

A group-theoretic inequality is valid if and only if it is satisfied 
by all finite groups. For example, log Id 

log J£L 
G-ina3\ + log JGL 

G2nG3| 

GinG2nG3| 
+ log 0\ is a valid group-theoretic inequality. 

II. A ONE-TO-ONE CORRESPONDENCE 

For any information inequality, we can establish a group- 
theoretic inequality through the following transformation. For 
any entropy term in the information inequality, say H(Xa), 
the entropy of the joint random variable (X,- : i G a), we 
change it to log rg-'r • Then the inequality obtained is a group- 
theoreitc inequality. For example, given the information in- 
equality, H(Xi, Xs) + H{X2, Xa) > H(Xi, X2, X3) + H(X3), 
after transformation, we obtain the group-theoretic inequality 

log lW£b+1°S JÄT * loS lojljncfrl+tog TST- 
K can be 

seen easily that the transformation is reversible, that is, given 
any group-theoretic inequality, we can find its corresponding 
information inequality. 

The main result of this work is the following theorem. 

Theorem II.1  A linear information inequality is valid if and 
only if its corresponding group-theoretic inequality is valid. 

This theorem establishes an intriguing relation between en- 
tropy and group in the form of inequalities. A trivial impli- 
cation of the theorem is that if we can also prove an informa- 
tion inequality, then we also prove the corresponding group- 
theoretic inequality, and vice versa. 

III. GROUP-THEORETIC APPROACH 

Suppose we want to prove a linear information inequality. We 
can prove it in two steps. 
step 1:   Transform the information inequality to its corre- 
sponding group-theoretic inequality. 
step 2: Prove that the group-theoretic inequality is true for 
all groups. 

Example III.l Suppose vie want to prove H(Xi) + H(X2) — 

H{Xi,2) > 0. It suffices to show that log j^L. + log ^ - 

log i^L > 0, or equivalents, |Gi||G2| < |G||GinG2| is sat- 
isfied by all groups and their subgroups. But it is a trivial 
result in group theory that |Gi||G2| < |G||GinG2|. Hence, the 
result follows. 

All commonly known information inequalities can be 
proved by using this group-theoretic approach. Moreover, all 
the tools developed in group theory can be used to prove in- 
formation inequalities. This approach enlarges our set of tools 
for proving information inequalities. 

IV. INFORMATION-THEORETIC APPROACH 

As in the previous section, we can use an information-theoretic 
approach for proving group-theoretic inequalities. The proce- 
dure is similar, and we omit the details here. But an interest- 
ing result obtained by using this approach deserves mention- 
ing. A new information inequality has recently been proved 
by Zhang and Yeung in [2]. This information inequality is 
highly non-trivial that it cannot be deduced from the com- 
monly known information inequalities. This inequality, in 
terms of joint entropies, is as follows: 

H(Xi) + H(X2) + 2H(X1,2) 
+4H(X3) + 4H(Xt) 
+5H(Xh3,4)+5H(X2,3A) 

6H(Xa,4)+4H(Xi,a) 
<   +4FpfM) + 4#(X2,3) 

+4if(X2,4) 

The corresponding group theoretic inequality, 

|G3nG4|
6|G1nG3| |G.||G2||G3|4 

|GinG4|
4|G2nG3|

4   <   |G4|
4|GinG2|

2 

|G2nG4|
4 |GinG3nG4|

6|G2nG3nG4|
B 

appears to be new in group theory, but its meaning is yet to 
be understood. 

REFERENCES 

[1] H.L. Chan and R.W. Yeung, "New Approaches to Information 
Inequalities Part II: Algebraic Analysis of Entropy Functions," 
submitted to IEEE Transactions of Information Theory. 

[2] Z. Zhang and R. W. Yeung, " On the characterization of en- 
tropy function via information inequalities," IEEE Trans, on 
Information Theory, Vol. 44, pp.1440-1452, Jul 1998. 

0-7803-5857-0/00/S10.00 ©2000 IEEE. 
492- 



. ISIT 2000, Sorrento, Italy, June 25-30,2000 

Toward a Theory of Information Processing 

Sinan Sinanovic* and Don H. Johnson* 
Department of Electrical and Computer Engineering 

Rice University 
Houston, Texas 77251-1892 

e-mail: sinanQrice.edu,   dhjQrice.edu 

Abstract — Information processing is performed 
when a system preserves aspects of the information 
encoded in the input and removes other aspects. We 
describe an approach to quantify such information 
processing based on applying controlled changes to 
the input and observing the corresponding outputs. 
Information-theoretic distance measures—those that 
reflect the data processing theorem—are calculated on 
the input and output separately and compared. Prop- 
erties of the resulting information transfer ratio are 
used to quantify the system's fundamental informa- 
tion processing properties. 

I. INTRODUCTION 

In general, processing is performed when a system enhances 
certain aspects of its input as it supresses others. While some 
systems only re-represent the input signal without loss, such 
as an ideal amplifier or the Fourier transform, others do have 
a loss and act as "information filters." To develop a mea- 
sure that would characterize a system's information process- 
ing capability, we need to compare input (s) and output (s) 
somehow. In linear systems, one uses the transfer function 
or cross-correlation. However, in quantifying the processing 
of more complex systems, non-linearities and non-Gaussian 
effects cause classical methods to fail to capture all a sys- 
tem does. Furthermore, in the case of the mixed input and 
output (e.g. continuous input, discrete output), it is diffi- 
cult to find joint distribution of the input and output. We 
induce controlled changes of the information represented by 
a system's input and compare distances between inputs and 
between outputs using the Kullback-Leibler distance. By con- 
sidering distance changes thus induced, we essentially specify 
what information is conveyed and processed. Finally, by mea- 
suring the difference between two inputs before and after the 
change and comparing this difference to the corresponding 
output difference, we quantify how a system processes rele- 
vant information. 

II. QUANTIFYING INFORMATION PROCESSING 

We represent information by a collection of parameters co- 
alesced into the vector 0. Let X represent a system's input 
signal and Y its output. According to the data processing 
theorem [2], if 0 H> X H> Y (fl, X, and Y form Markov 
chain), then 7(0; X) > 7(0; Y). Let X(0O), X(0X) represent 
input signals having different information content with Y(0o), 
Y(0i) representing the corresponding outputs. Many distance 
measures, which we generically write as d(-, •), also satisfy the 
data processing theorem in the sense that 

7X,Y(0O,0I) 
d(Y(e„),Y(fli)) 

d(X(0o),X(0i)) 
< 1 

»Work supported by NSF Grant CCR-9628236. 

All Ali-Silvey distances [1], satisfy the data processing the- 
orem by construction. We use one particular Ali-Silvey 
distance—the Kullback-Leibler (KL) distance—extensively 
because of its convenience and importance. We explore the 
quantity 7X,Y, the information transfer ratio, defined as the 
ratio of the distance between the two output distributions and 
the distance between the corresponding input distributions. 
This ratio is always between zero and one: zero means none of 
the information change 0o —> 0i is represented by the output 
and one means perfect reproduction of the input information 
change. 

III. A SYSTEM THEORY OF INFORMATION 

PROCESSING 

If two systems are in cascade, the overall information 
transfer ratio is the product of the component ratios: if 
SHXHY^Z form a Markov chain, 7x,z = 7X,Y • 7Y,Z 

regardless of the distance measure used. 
The special case wherein the information parameter is per- 

turbed (0i = 0o + 50) yields interesting result. When the 
distance measure is in the Ali-Silvey class, we can explicitly 
write the information transfer ratio, under very general as- 

sumptions, as 7X,Y(0O,0O + <50) =      ,   Y^ °.^     , where F is 

the Fisher information matrix. We refer to this result as the 
local invariance property: the information transfer ratio for 
perturbational changes is invariant to the choice of distance 
measure. 

Notice that two previous results hold for any Ali-Silvey 
distance used in the information transfer ratio. However, the 
KL distance is especially convenient since it is related to both 
detection (Stein's lemma) and estimation theory (Fisher infor- 
mation matrix). The following results are derived using the 
KL distance. 

When the input consists of several statistically independent 
components, the overall information transfer ratio is related 
to individual transfer ratios by an expression identical to the 

parallel resistor formula:  ^—^—r- = V\- JTL—-r—r. 
7X,Y(0O,0I) 7Xi,Y(0o,0i) 

Finally, consider the system with one input and N outputs 
that are conditionally independent given the input (N parallel 
systems is one example). We calculated how the information 
transfer ratio changes as more outputs are added for two spe- 
cial cases. In both cases as N -» oo, 7X,Y(0O,0I) —> 1, and the 
asymptotic differential increase in 7 is proportional to 1/N2 

We believe this result applies more generally. 
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Abstract — The problem of minimizing sum trans- 
mit power for a fading multiple-access channel is con- 
sidered. While for non-fading channels with equal 
user attenuations wideband multi-access with cooper- 
ative (joint) decoding and orthogonal access are both 
optimal, wideband access is superior in case of un- 
equal attenuations or fading channels. Losses due to 
fading are negligible for wideband access as a result 
of low rate coding, and near AWGN perfomance is 
achievable. On the other hand, orthogonal access suf- 
fers from losses of high rate codes under fading condi- 
tions. Wideband access with non-cooperative decod- 
ing is clearly suboptimal in any case and only useful 
for low transmission rates. 

I. INTRODUCTION 

A multiple-access channel is considered where K users are 
accessing the channel at information rates Rk = R,k 6 K. = 
{1,... ,K}. Each transmission signal Xk is attenuated in 
power by a constant 1/ Hk due to path losses and randomly 
attenuated by Hk due to multipath propagation assumed to 
result in flat fading. The fading is perfectly known at the base 
station for all signals individually but unknown at the trans- 
mitters. The transmitters merely have access to the average 
attenuations 1/fJ.k via a low-rate feedback link, which is used 
to control the powers. 

The problem of minimizing sum transmit power is discussed 
for wideband accessing of all users with optimal cooperative 
(joint) decoding (WB-CD) and independent, non-cooperative 
decoding (WB-NCD), respectively, as well as orthogonal ac- 
cessing techniques (OA). 

II. RESULTS 

For WB-CD, the set VCD of required powers for equal rate 
transmission is given implicitely by [1] [2] ' 

,CD 

\S\R<Elc(^HkPk,a
2) l.VSC/CWl) 

The problem of finding the minimum sum transmit power 
PT to support reliable transmission at rates R may thus be 
formulated as 

PT =   min   Y^ ßk Ph. ■ 
pc-pCD £—' 

(2) 
keic 

The region VCD is proved to be convex and thus, the min- 
imum can be found using Kuhn-Tucker multipliers. However, 

^(P.cr2) = Ilog2(l + £) andE,(I) = /] 

VCD does not form a contra-polymatroid, and the optimum 
point P* minimizing sum transmit power need not be a ver- 
tex. The vertices of VCD posses the outstanding property of 
being achievable by low complexity stripping [3]. By focusing 
on the best vertex a practically attractive solution is obtained 
which usually is close or equal to the optimum. 

With WB-NCD, all users are decoded individually and in 
parallel considering all other users as noise. The optimum 
receive power P* per user is given implicitely by 1 

R- 
ep. 

2 In 2 (A"-2)! !?K-Hi+t) dt. 

For OA, the optimum receive power P* is given by 

R = 
1 

IK In 2 
eKP' Ei 

KP* 

(3) 

(4) 

Both non-cooperative decoding and orthogonal access elim- 
inate inter-user trade-offs and result in a minimum sum trans- 
mit power given by 

keic 
(5) 

which is stricly greater than the best achievable with WB- 
CD even for equal attenuations. WB-NCD suffers from sub- 
optimal decoding and OA from suboptimal accessing as well 
as losses of high rate codes under fading conditions. 

By using adaptive resource sharing, the minimum sum 
transmit power for OA could be reduced at the cost of a more 
complex encoder/decoder pair supporting variable rates. 

If the users are located uniformly within a cell and the 
attenuations grow with the distance rk to the receiver as 
[ik = rp

k, expressions for the long-term average transmission 
power per user are found for WB accessing with stripping, 
WB-NCD, and OA. 
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Abstract — An exact error probability analysis 
clearly demonstrates that adaptive antenna arrays are 
unable to fully exploit the implicit diversity effect of 
Rayleigh fading channels. Instead, a class of array 
receivers that yields close-to-optimal performance is 
proposed. 

I. SYSTEM DESCRIPTION 

Binary signaling is treated, and the channel comprises D 
diversity links, represented by means of D receiver antenna 
elements. In each link the transmitted waveform is perturbed 
by two time-varying random processes: one is the multiplica- 
tive fading, and the other is the additive noise. The mod- 
ulator waveforms, the noise, and the fading are assumed to 
be statistically independent. Further, suppose that the noise 
processes in the different diversity links are equally strong, 
independent, and white stationary Gaussian. The statistical 
properties of the fading, which is assumed to be frequency-flat, 
is described in detail in [1]; the correlation function depends 
on the Doppler frequency shift, the direction of arrival (DOA), 
the angle spread (AS), and the antenna geometry. 

II. OPTIMUM AND SUBOPTIMUM RECEPTION 

Optimum one-shot detection of binary signals on Rayleigh 
fading channels requires the continuous-time received signal to 
pass through a time-varying filter whose impulse response in 
general cannot be found on closed form [2]. In order to avoid 
such complex operations on the received signal, the subopti- 
mum approach suggested in [3] will be followed here. First, 
the received process is projected onto a finite dimensional basis 
to obtain a finite set of N observation variables. Karhunen- 
Loeve expansion (KLE) is known to be optimal, since it leads 
to uncorrelated observables. The basis is thus found as the so- 
lution to a vector-valued homogeneous Fredholm equation of 
the second kind. Here, time-orthogonal modulator waveforms 
are employed to make the kernel of the Fredholm equation in- 
dependent of the hypotheses. Secondly, given this finite set of 
observables, the optimum one-shot detector performs a binary 
likelihood ratio test. However, the KLE is far too complex 
for practical implementation; recall that the no closed-form 
expression for the basis exists, and note that the detector 
has to (numerically) resolve for the basis whenever the ker- 
nel changes, i.e., whenever the Doppler shift, the DOA, or the 
AS changes. For a single-antenna system, a simple set of time 
orthonormal basefunctions (ON set) has proved to give per- 
formance comparable to that of the KLE [3]. Our proposal is 
then to employ the very same ON basis in each antenna. 

Further, the concept of adaptive antenna arrays suggests 
a weighted sum of the antenna signals to be formed. Much 
research has been devoted to derive antenna weights, but the 
underlying models are mostly free from fading—an ideal as- 
sumption hardly met in real systems. Two weighting prin- 
ciples are treated: least mean square (LMS) and maximum 
likelihood (ML). The LMS algorithm operates by aligning the 
phases of the antenna signals, erroneously assuming zero AS, 
while the ML weights minimize the error probability. Once a 
continuous-time sum has been formed, the KLE still consti- 
tutes an optimum projection. 

III. CALCULATION RESULTS AND CONCLUSIONS 
Merely for brevity, both the first and second order channel 

statistics are assumed to be perfectly estimated. An exact 
expression for the probability of error has been calculated by 
means of the method given in [4]. Figure 1 shows that adaptive 
antenna arrays are suboptimal regarding error performance on 
Rayleigh fading channels. The error rates were calculated for 
a 2-element array with antenna separation=0.5 wavelength, 
DOA=45°, AS=90°, and Doppler frequency shift=0.1 symbol 
rate. The antenna patterns, DOA=60° and AS=180°, reveal 
a fundamental discrepancy between LMS and ML weights. 

- LMS Adapt»« Array 
■ ML Adapt» Amy 

xThis work was supported by Grant PCC-9706-01. 

Slgnal-to-Nol» Ratio (dB) 

Fig. 1: Error probabilities and antenna patterns. 
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Abstract — We address the problem of designing 
jointly optimum precoder and equalizer for a MIMO 
spatial multiplexing system using the MMSE crite- 
rion. Next, we compare the optimum power alloca- 
tion policy and the achievable rate region for such a 
system to the well-known rate maximizing precoder 
and decoder design. 

I. INTRODUCTION 

It is well-known that the optimum precoder and decoder that 
maximizes the information rate decouples the MIMO channel 
into parallel sub-channels and allocates bits and power on the 
sub-channels according to the well-known water-pouring strat- 
egy. This requires a variable coding and modulation scheme 
across sub-channels which is difficult to implement in prac- 
tice for a changing MIMO channel. For fixed modulation and 
coded systems, the optimum design should equalize the MIMO 
channel. The MMSE design [1][2][3] optimally trades off noise 
enhancement and channel equalization at both the transmitter 
and receiver. 

II. SYSTEM MODEL 

Spatial multiplexing involves transmitting (and receiving) in- 
dependent data streams on separate antennas, through a 
MIMO wireless channel to achieve unparalled data-rates. 
Consider the following MIMO system equation: 

X = GHFS + GN 

where H is an m x n MIMO channel whose (t, j)-th entry de- 
notes the channel gain from the j-th transmit antenna to t-th 
receive antenna; X is the 6x1 received vector and S is the 
b x 1 transmitted vector, where b = rank(H) < min(m, n) is 
the number of independent data streams that is to be trans- 
mitted; N is the m x 1 noise vector; finally, G is the 6 x m 
decoder matrix and F is the n x b precoder matrix. Assume 

E(SS*) = I;  E(NN')=RNN;  E{SN')=0. (2) 

where the superscript * denotes the conjugate transpose. De- 
fine the eigen-value decomposition (EVD) : 

H'R-^H = VhV* = (V Vn-h) ( Q    A°_6 ) (V V„-»r 

(3) 
where V is an n x 6 orthogonal matrix which is the projec- 
tor onto the range space of H'RJ/^H and A is a diagonal 
matrix containing the b non-zero eigen values, arranged in a 
decreasing order from top-left to bottom-right. 

The optimum precoder and equalizer that minimizes the 
total output symbol estimation errors using the MMSE crite- 
rion, was shown to diagonalize the MIMO channel [1][3]. The 
optimum transmitter power allocation policy across the sub- 
channels is given by [1][2][3]: 

$ } = V -1/2-.-1/2 
-A-!)+ (4) 

where $^ is a diagonal matrix of transmitter powers across 
sub-channels and ft is computed so that the total power con- 
straint tr($2f) = Po is satisfied. This is compared to the well- 
known water-pouring policy given as: 

*} = Q*-l"I-A-l)+ (5) 

The maximum data rate for the i-th sub-channel (for both the 
designs) is given by: 

d = log \1 + Ai92
u\ (6) 

where $^ is obtained from (4) or (5). 

III. RESULTS 

The MMSE design, like the rate-maximizing design, allocates 
non-zero power on sub-channels with highest SNRs. How- 
ever, among the above chosen sub-channels, power is allocated 
inversely proportional to sub-channel SNRs, unlike the rate- 
maximizing design. This subtle, yet important difference leads 
to a loss in data rate which we now quantify. The capacity hit 
suffered by the MMSE design (under high SNRs) is given by: 

TT72- (1)     SC = log \ij  l\, where T) = b 
E^ 

When if is an or- 

'On part-time leave at Gigabit Wireless Inc. 

thogonal matrix ( A —f I), the capacity hit is zero i.e., SC = 0. 
For an iid channel matrix, the capacity hit suffered by MMSE 
design is minimal, while a more trivial channel inversion strat- 
egy at the transmitter suffers a great hit in capacity due to 
noise enhancement. 

The MMSE policy ensures similar sub-channel SNRs (when 
compared to the water-pouring policy) and hence favors iden- 
tical but lower data rate transmission across sub-channels. 
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Abstract — This paper addresses a problem in error 
control coding when a user has access to either one 
of two identical channels or may have access to both 
channels simultaneously. In particular, puncturing se- 
quences matched to this type of scenario are identified 
for select convolutional codes. 

I. INTRODUCTION 

Communications networks are usually designed to handle a 
specified peak capacity that may occur during busy hours or 
in highly populated regions. It is, therefore, not uncommon 
that such networks have excess idle capacity a good percent- 
age of the time. The network can use this excess capacity to 
enhance the performance of other users accessing the network 
during off-peak times. This scenario was particularly moti- 
vated by global satellite systems [1]. In such systems most 
latitude bands provide for double coverage; that is, one user 
can see two satellites most of the time. When satellite capac- 
ity is under-utilized, each user can access two radio channels 
between a user and two distinct satellites. The simplest (and 
common) error control coding strategy is to use repetition cod- 
ing when two channels are available: transmit the same code 
twice, once over each channel. The receiver can then use any 
soft combining method it desires when it receives both chan- 
nels. In this case, a practical coding gain provides an extra 
2.5 dB. The next section describes a strategy that takes better 
advantage of the availability of the two channels. 

II. DUAL PUNCTURED CODES 

Consider a digital communications system having access to 
two channels: channel-1 and channel-2. Each channel is 
bandwidth restricted such that only a rate-fc/n code can 
be used. The intended receiver can receive the information 
from channel-1 only, or channel-2 only, or both channel-1 and 
channel-2 simultaneously. A good error control coding strat- 
egy is the following. 

• Use or construct the optimal (or best known) convolu- 
tional code C with rate k/2n. 

• Find a dual-puncturing scheme that divides C into the 
two codes C\ and C2, each with rate-fe/n. Dual refers 
to a puncturing sequence and its 2-s compliment. The 
dual-puncturing scheme is such that the free distance 
of C\ and C2 are the same, and are as good as the best 
known punctured codes. 

• Transmit C\ over channel-1. 

• Transmit C2 over channel-2 when available. 

• If the receiver receives channel-1 or channel-2 only, it- 
can decode a rate-fc/n punctured code using the rate- 
k/2n code decoder. 

• If the receiver receives both channel-1 and channel-2. 
it decodes a rate-fc/2n, code with the same rate-fc/2n 
decoder as above. 

III. SEARCH RESULTS 

(A) Rate-1/3, K = 3 Convolutional Code 

The first example is demonstrated starting with a rate-1/3, 
constraint length K = 3 (4 states) convolutional code. The 
octal form of the code generator is G = (5,7,7). Using an 
exhaustive search, the best punctured rate-1/3 code to rate- 
2/3 code is derived from a puncturing sequence which is a 
periodic repetition of the following puncturing vector of length 
6: 

P=(l    0    0    0    1    1) 

to obtain C\, with a dual puncturing vector given by 

P = (0    11    1    0   0) 

to obtain C2. Moreover, dfree(Ci) = dfree(C2) = 4. 
A commonly used puncturing sequence is a periodic se- 

quence 
P = (l    0    1    0    1    0...) 

with a resulting dual puncturing vector 

P = (0    1    0    1    0    1...) 

However, in this case, <%ree(Ci) = 4, but rffree(C2) = 3. 
In comparison, the best known rate-2/3, K = 3 code has 

dfree = 5- 
(B) Rate-1/3, K = 4,G= (13,15,17) 

The best puncturing vector of length 12 and its dual are 
given by 

0    110    10    10) 

10    0    10    10    1) 

P = (1    0    0    1 

P = (0    1    1    0 

resulting in rate-2/3 codes such that dfree(Ci) = dflee(C2) = 
5. The best known rate-2/3, K = 4 code has dfree = 7. 

(C) Rate-1/3, K = 5,G= (25,33,37) 

The best puncturing vector of length 12 is given by 

P= (11110000110 0) 

resulting in rate-2/3 codes with dfree(Ci) = dfree(C2) = 6. 
The best known rate-2/3, K = 5 code has dfree = 8. 
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Abstract — Self-similar processes have a rich linear 
structure, based on scale invariance, which is anal- 
ogous to the shift-invariant structure of stationary 
processes. The analogy is made explicit via Lam- 
perti's transformation. This transformation is used 
here to characterize the reproducing kernel Hubert 
space (RKHS) associated with self-similar processes 
and hence to solve problems of prediction, whitening, 
and Gaussian signal detection. Some specific results 
for the fractional Brownian motion illustrate the gen- 
eral concepts. 

I. SELF-SIMILAR PROCESSES 

An H-self-similar (or H-ss) stochastic process is one whose 
distributions are essentially invariant to scaling of the time 
axis. More precisely, scaling by a factor a > 0 has the same 
effect as multiplying the process by a factor aH: 

{Y{at)} = {aHY(t)},    a > 0, 

where the notation = indicates that the two processes have 
the same probability law, and where H is referred to as the 
self-similarity parameter of the process. In recent decades self- 
similar processes have found application in diverse fields in- 
cluding hydrology, medicine, finance, physics, and electrical 
engineering. 

As noted in [1], Lamperti's transformation LH given by 

(L„Y)(t) = e-HtY(et) 

invertibly maps an H-ss process Y on R+ to a stationary pro- 
cess LHY on R. The process LHY is the stationary generator 
of Y. Recent applications of Lamperti's transformation can 
be found in [2], [3], [4], and [5]. 

II. RKHS STRUCTURE OF SELF-SIMILAR PROCESSES 

The reproducing kernel Hilbert space (RKHS) formalism 
can be used to describe the linear space of a random pro- 
cess, and to describe the solutions to linear problems such 
as Gaussian signal detection, prediction, and whitening [6], 
[7]. Given a random process Y(t) on an index set J, there is 
an isomorphism J which maps random variables in the lin- 
ear space L2 (Y, I) of Y to functions in a specially-structured 
Hilbert space S(Y, I) (an RKHS). The solutions to many prob- 
lems of interest are known once we have answered the fol- 
lowing questions: Which functions belong to S(Y,I)? For 
f,g € S(Y,I), how can the inner product (f,g) be comput- 
ed? For / G S(Y, I), how can the random variable J~1{f) be 
expressed? 

1 Research supported in part by the Office of Naval Research 
under Grant N00014-00-1-0141, in part by the National Science 
Foundation under Grant CCR-9979361, and in part by the U.S. 
Department of Defense NDSEG Fellowship Program. 

The result below demonstrates that if these questions can 
be answered for the stationary generator of an H-ss process, 
then they can easily be answered for the H-ss process itself. 

Theorem 1 Suppose that Y is a H-ss process on I C fft+, 
and that X = LHY is its stationary generator. Denote by 
JY : L2(Y,I) -»• S(Y,I) and Jx : L2(X,\nI) -> S(X,\nI) 
the RKHS isomorphisms associated with each process. Then 

L2[Y) = L2(X) and for each g€ S{Y,I), Jx(Jy1(s)) = LHg. 

The RKHS's associated with stationary processes on semi- 
infinite index sets can be characterized using spectral factor- 
ization and linear time-invariant systems. Applying Theo- 
rem 1, we can describe the RKHS's associated with H-ss pro- 
cesses on a variety of index sets, using linear self-similar sys- 
tems. 

III. APPLICATION TO FRACTIONAL BROWNIAN 

MOTION 

Specializing the general results of the previous section, we 
characterize the RKHS associated with fractional Brownian 
motion (fBm) on various index sets, extending results in [8] 
and [9]. We also give conditions for non-singular discrimina- 
tion of the usual fBm from the Barnes-Allan fBm. 
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The redundancy-rate problem of universal fbced-to- 
variable length coding for a class of sources consists in de- 
termining by how much the actual code length exceeds the 
optimal (ideal) code length. In a minimax scenario one finds 
the additional "price" on top of entropy incurred (at least) by 
any code in order to be able to cope with all sources. While 
Shields [5] proved that there is no function o(n) which is a 
rate bound on the redundancy for the class of all ergodic pro- 
cesses, it has been known for some time (cf. [3]) that, for 
certain parametric families of sources (e.g., memoryless and 
Markov sources), the redundancy can be as small as ©(logn) 
where n is the block length. There was no interesting bound 
for a class of sources that lies between 6(logn) and general 
o(n) until recently, when Csiszär and Shields [1] designed a 
renewal class of sources that yields a ®(y/n) bound. In this 
paper, we provide a precise asymptotic expansion of the re- 
dundancy for renewal sources up to the constant term. 

Given a probabilistic source model, we let P(xi) be the 
probability of the message x" 6 An. For a given code C„, 
we denote by L(Cn,xT) the code length for x". The point- 
wise redundancy Rn(C„,P) is defined as Rn(C„,P;xi) = 
L(Cn,Xi) + lgP(z"). The (asymptotic) strong redundancy- 
rate problem consists in determining for a class S of source 
models the rate of growth of the minimax quantities 

Rn(S) = minsup{max{i?„(C„,P;a;")}} 
c„ P€S    xl 

where supremum is taken over all distributions P. 
A substantial literature is available on the redundancy 

problem. The following results are known: 
• If M is i.i.d. or the class of Markov chains, or more generally 
the process belongs to a finitely parameterizable class of di- 
mension K, then it was established that Rn(M) ~ R^{M) ~ 
^ log ra (cf. Rissanen [3]). 
• Csiszär and Shields [1] have studied order r Markov renewal 
sequences in which a 1 is inserted every To, Ti,... of 0's, where 
{Ti} is either an i.i.d. or Markov renewal or r-order Markov 
renewal process. We denote such sources as "Rr ■ The authors 
of [1] proved that Rn{nr) = R*{TZT) = G{n(T+1)/(-r+2) for 
r = 1, 2,... which specializes to ©(\/n) when r = 0. 
• Shields [5] proved that there is no function p(n) = o(n) which 
is a weak-rate bound for the class of all ergodic processes. 
• Louchard and Szpankowski [2], Savari [4], and Wyner [7] 
proved that the Lempel-Ziv codes in the class of i.i.d. and 
Markov processes have either rate 0(n/logn) (for LZ'78) or 
0(n log logn/logn) (for LZ'77 code). 

'This work was supported in part by NSF Grants NCR-9415491 
and C-CR-9804760, and Purdue Grant GIFG-9919. 

We now present our main result and start with a precise def- 
inition of the class 7£o of renewal process and its associated 
sources. Let Ti,T2 ... be a sequence of i.i.d. positive-valued 
random variables with distribution Q(j) = Pr{Ti = j}. An in- 
dependent random variable To is introduced with distribution 
Pr{T0 = i} = Epi]"1 J2j>iQU) Provided E[7\] < oo. The 
quantities {T}^ are the interarrival times, while T0 is the 
initial waiting time. The process To, T0 + Ti, T0 + Ti + T2,... 
is then called a renewal process and it is stationary whenever 
To has the distribution above. With such a renewal process 
there is associated a binary renewal sequence that is a 0,1- 
sequence in which the l's occur exactly at the renewal epochs 
T0, To + Ti, To + Ti + T2, etc. 

Shtarkov's maximum-likelihood technique [6] implies 

log2 I ^supP^D j < R'„(K0) < log2     ^supP(x^)    +1 

where supremum is taken over all distributions Q. We use this 
bound to prove our main result. 

Theorem 1   Consider the class TZo of renewal sources.   The 
the minimax redundancy R^ of the renewal process satisfies 

Ä"(7Jo) = loiW (y _1) "-|log2"+^log2logn+0(l). 

for large n. 

This result is proved by complex-analytic methods that 
include generating functions, Mellin transforms, singularity 
analysis and saddle point estimates. Thus, this work places 
itself within the framework of analytic information theory. 
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Abstract — The problem of tracking an exponen- 
tially unstable scalar source process across a noisy 
channel is considered. We introduce the a new para- 
metric notion of capacity that we call "any-time ca- 
pacity" Cat(a). It is a twist on the familiar concept 
of error-exponents and is always between the classi- 
cal Shannon Capacity and the zero-error capacity. A 
separation theorem is given which shows that Cat(a) 
characterizes the properties of a channel needed for 
finite expected distortion. 

I. INTRODUCTION 

In a sense, the justification of Shannon capacity is the 
classical source-channel separation theorem and its modern 
refinements[9]. These tell us that for a wide class of sources, 
channels, and distortion measures, two-part encodings suffice 
as long as we are willing to tolerate delays. 

Traditional rate-distortion theory[l] has focused almost ex- 
clusively on stationary processes. While a broad class, it ex- 
cludes exponentially unstable processes which are important 
in practice, especially in control applications[5]. Recently, 
there has been some work showing how to extend source cod- 
ing to such processes.([7], [3]) But these have implicitly con- 
sidered only noiseless channels. For noisy channels, the situ- 
ation was unclear since the traditional source-channel separa- 
tion theorem need not (and in fact, does not) apply. 

II. WHY CLASSICAL SEPARATION FAILS 

Consider the simplest of all unstable processes: 

Xt+i=AXt + Wt,   t>0,A>l (1) 

where {Xt} is an Ml-valued state process and {Wt} is a 
bounded noise process s.t. ||Wj|| < -£. Assume Xo = 0 for 
convenience. This process is non-stationary and has infinite 
variance as t goes to oo. Our per-letter distortion measure is 
the usual d(X,X) = (X - X)2. 

VJ > 0, sequential rate distortion theory([8], [7]) gives en- 
coders which can track this process with finite expected dis- 
tortion using (log2 A + S) bits per sample. They quantize 
(Xt — AXt-i) at each time and recursively track the source. 

If we attempt to apply the usual separation results, 
we would pick an e > 0 which 3(N,£N,T>N) for which 
Pe(Sp/,T>N) < e across a noisy channel. For Shannon Ca- 
pacity, while this per-bit probability of error can be made ar- 
bitrarily small, it can not be made exactly zero. Eventually, a 
mistake will be made. The effect will be compounded at every 
subsequent time step since it will get repeatedly multiplied by 
A > 1 in the source decoder's recursion. The expected per- 
letter distortion will thus tend to infinity with probability one, 
regardless of how small an e we choose in our channel code! 

1Work under Prof. Sanjoy Mitter and supported by U.S. Army 
Grant PAAL03-92-G-0115. 

III. "ANY-TIME" CAPACITY 

Definition III.l The a-any-time capacity C0j(a) of a chan- 
nel is the maximal rate at which the channel can be used to 
transmit data with a probability of error that decays to zero 
with delay at least exponentially at a rate a. 

Cat(a) = sup{R\3(£R,K),VN > 0,3X>£,Pe(£
Ä,X$) < KT°" 

The above definition is very close to the definition of the 
reliability function E(R) of a channel given in [2]. The crucial 
difference is that while we require the encoder to be fixed, in 
the standard definition of error exponents both the encoder 
and decoder vary with delay N. 

Theorem III.l [6] For the AWGN channel with noiseless 
feedback, Cai(a) = C regardless of the value for a. 

Theorem III.2 [5] For the binary erasure channel with 
noiseless feedback and probability of erasure e: 

Cativ ~ log2(l + (2" - l)e)) = 1 - ± log2(l + (2" - l)e) 

if you let n range over (0, oo). 

Amazingly, [6] shows that a-any-time capacity is also non- 
zero for these channels even without any feedback! 

IV. SEPARATION FOR UNSTABLE PROCESSES 

Theorem IV.1 The source in (1) can be tracked with finite 
MSE across a noisy channel iff there is an e > 0 for which 
Cat(2 log2 A + e) > log2 A for the channel. 
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AhM.vn.ct We discuss how to identify a Markov 
information source with transition matrix P by only 
observing  a sequence, of symbols  generated  by the 

I. INTRODUCTION 

Markov information sources play an important role in mod- 
elling subjects to be studied as a stochastic process, for ex- 
ample, blockcipher, speech recognition, recognition of human 
genes ill DNA and so on. Suppose what we can do is only ob- 
serving a sequence of symbols generated by a Markov source. 
To identify an AT-state simple Markov source with transition 
matrix P which takes symbols in S € {1. 2, ■ • • , A"}, it, is natu- 
ral to estimate directly all the elements JUJ, (i,j = 1, 2, • • •, Ar) 
in P by using N2 histograms of possible strings of length 2. 
However, this method requires too many histograms if the 
number of states, N becomes large. Since statistics of se- 
quences generated by the Markov source are primarily gov- 
erned by eigenvalues of P. one of simple ways to identify the 
source is to estimate eigenvalue's of P. In this case, the number 
of eigenvalues in question is N — 1. Hence we discuss how to 
estimate a characteristic polynomial of P by using histograms 
whose number is in the order of N. 

II. ALGORITHM 

The characteristic polynomials of P is expressed as 

f(P) = (r - Dfr*-1 + «,3-A'-3 + • • • + «,v_,).        (1) 

Denote an arbitrary string of length in by 

[' = UuU, ■ ■ ■ [',„_,.     Lh S 5,     (A- = Ü, 1, • • • . m - 1).     (2) 

Next, let 

«(") = «ö",»1"---'4;-i     (r = 0,l.--.,.Vm-l)        (3) 

be the r-th string with elements u[r) € 5, (A- = 0,1, • • •. »(-1). 
Let.  {A",,},^-!   (A„   €   S)  be a sequence generated by a 

Markov source. We introduce a binary random variable, 

\-iJ'h    —    J   1    (A'„A'„+i • •• A"ll+,„_i = «(r 

M"     '    "     \  0    (A-„A-„+1.-.A„+„1_1#„"' 

Let 

Mr{vlT>) = Y,Y«lulT) 

First choose strings with symmetry such that. 

'■0      —  "in-1- "l       —  "in-: 

V/^./.   (;,j = o.i, ]) «!■"*«}' 

(4) 

(5) 

(0) 

(7) 

Next, select strings of length in of which all the first symbol 
«o («o G S) is the same. We denote elements of a class of this 
specific strings by «("ü"0. We investigate 2 A' - 2 histograms 

of random variables -ML(ui""-'")), (m = l,2.---,2Ar - 2). 

Note that />„„ is to be estimated when in = 1. 
Thus we obtain a nonsymmetric Toeplitz system of equa- 

tions 

A(A'-l) 

A(N) 

A(N 
A(N 

A(2A'-3)    A(2Ar-4) 

A(l) 
-4(2) 

«l 

«2 

A(N - 1) . .   «JV-I    . 

"      A(N)      ■ 
A(N + 1) 

. A(2N-2) . 

(8) 

where .4(m)'s are constants determined by means and vari- 

ances of 2A' - 2 histograms of -ML(u{"0-"']). Note that (8) 

is like the Wiener-Hopf equation [1]. We remark hen: that 
unknown parameters are «; and eigenvalues of P. A; ^ 1 
(i' = 1, 2, • • ■, N — 1) and hence the number of these is equal 
to that of different strings of symbols. This implies the above 
method is based on the minimum number of histograms. 

III. CONCLUDING REMARKS 

Computer simulations are carried out for 2-state Markov 
chains. Unfortunately experimental estimations of A(2) are 
not. in accordance with theoretical ones because estimating 

variances of histograms of —MI(J/
(
"°'

2)
) are not successful. 

If we do not. use the variances of histograms, the algorithm 
is to be modified as follows. Denote any strings of length m 

with u[r) = u!„rL, by w("om). Means of 2Ar - 2 histograms of 

random variables — M,,(u{uo'm)) (in = 1,2,--,2A" - 2) give 

coefficients „4()ii)'s of another Toeplitz system of equations. 
Computer simulations based on this algorithm are also carried 
out for 2-state and 3-state Markov chains. The identification 
of 2-state Markov chains are successful. However , experimen- 
tal estimations of -4(4) are not in accordance with theoretical 
ones on identification of 3-state Markov chains. Further in- 
vestigation is needed and problems remain on the algorithm 
based on the minimum number of histograms. 
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