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ABSTRACT 

A theoretical and experimental study was conducted on stress waves 

and ballistic performances of weakly coupled attacks of aluminum nitrite 

(A1N) tiles bonded by thin polyurethane films.  The cylindrical 

projectile was made of tungsten alloy with length/diameter (L/D=6) 

weighing 61g at a velocity close to 1170 m/s striking the stack 

centrally.  Total thickness of the stack ranged between 3" and 1.5", and 

with individual tile thickness of 1.5", 0.75", 0.5" and 0.25". 

Ballistic performance was evaluated by the depth of penetration (DOP) 

method into an aluminum block.  For the 1.5" unconfined stack, DOP of 

the monolith was highest with substantial scatter, while DOP of the 

0.75" layer stack was lowest with reduced scatter.  DOP then rises 

smoothly for the 0.5" and 0.25" layer stacks while scatter is reduced 

further.  Trends of this behavior are partly explained by analysis valid 

up to crack initiation.  An important feature of all DOP results is the 

dominance of self-confinement. 



INTRODUCTION 

This constitutes a summary report of the accomplishments and 

meaningful experience gained in Phase II.  Phase II focused on three 

activities: 

(1) Analysis of stress waves in a composite of a bi-periodic layered 

system of ceramic tiles bonded by thin polymer layers adopting 

plate flexure theory.  The intent was to develop an approximation 

to the 2-D axisymmetric analysis in Phase I, and evaluate its 

accuracy.  This procedure yielded insight into the various key 

parameters controlling propagation of elastic waves in weakly 

coupled bi-periodic stacks. 

(2) Controlled ballistic experiments on center impact at EMI aimed at 

understanding the penetration process, and its sensitivity to 

various elements in the experimental set-up: layer thickness, 

crack initiation, lateral confinement and cover plate. 

(3) Controlled ballistic experiments on center impact at California 

Institute of Technology (CalTech) aimed at correlating with and 

confirming results from Ernst Mach Institute (EMI). 

A summary of importance results in the three activities appears 

below. Activities (2) and (3) are discussed together, since they are 

closely related. 

All references are included at the end of the report as 

Appendices. 



(1)      STRESS WAVES IN A PERIODIC STACK  "PLATE FLEXURE MODEL" 

Approximate equations incorporating flexure of plates bonded 

elastically by thin polymer layers were derived [Ref. 2].  This is 

equivalent to the first propagating group of modes in the exact 2-D 

axisymmetric theory in Part I [Ref. 1], but excludes all high frequency 

groups relating to extensional & shear motions in the ceramic layers. 

Also, the plate flexure model is equivalent to the mass-spring chain in 

the 1-D model which includes only the first propagation zone. 

Transient response histories of the stack of 5 periodic sets 

computed by the simplified plate flexure model [Ref. 2] were compared to 

the 2-D model [Ref. 1].  Radial stress on top of the struck tile was 30% 

less than that of the 2-D model.  The reason is that stress from the 

volumetric component of normal traction under the footprint raises 

stress over the equivoluminal (flexure) state, an effect neglected by 

the plate flexure model.  Stresses and displacements elsewhere along the 

stack were within 15-20% of those of the 2-D model.  This difference is 

caused principally by the distortion of the cross-section, because the 

assumption that plane sections remain plane after deformation is not 

accurate for tiles thicker than 0.25".  Nevertheless, the plate flexure 

model is sufficiently accurate when comparing various designs of stacks 

and parametric studies. 

Parametric study, using the 2-D model [Ref. 1] excluding inertia 

of the weak layer, revealed no difference in response histories.  This 

fact was exploited to reduce the number of modes included in the modal 

analysis for transient response, which increased computational speed 

greatly.  Also, a study of phase and group velocities of both 2-D and 

plate flexure models revealed that low frequency modes or large wave 

lengths are essential contributors to these characteristic speeds. 

Indeed, these coincide very closely with phase velocity across the stack 

in the 1-D model [Ref. 3].  Consequently, the 1-D approximation to these 

characteristic speeds is sufficiently accurate in evaluating propagation 

including the effect of flexure. 

Computed histories of the 5-layer stack were compared with 

experiment conducted at EMI using flyer plate impact.  The calculated 

stress histories agree closely with measurement [Ref. 4]. 



In preparation of the work in Phase III treating wave propagation 

in layered stacks struck by an off-center projectile, a plate flexure 

model was adapted to treat asymmetric waves.  This analysis also 

considered the square tile to evaluate how the difference in geometry 

affects propagation.  Also considered is the effect of boundary 

constraint.  Simple supports, clamped and free edges were considered. 

The difference in edge constraint becomes important in the vicinity of 

the boundary [Ref. 5]. 

(2)      CONTROLLED BALLISTIC EXPERIMENTS AT EMI  &  CALTECH 

Three experimental Series on center impact were conducted at EMI: 

Series 1 [Ref. 6]used unconfined stacks with total thickness of 3" and 

4" x 4" or 6" x 6" A1N tiles with tile thickness ranging between 1.5" 

and 1/4" but no monolith.  The ceramic was bonded by PMMA thin layers 

0.4mm to 1.4mm thick (see Figure la).  The projectile was Tungsten Alloy 

L/D=6 weighing 110 grams at a speed of 2.1 km/sec and zero obliquity. 

Flash X-rays were used before impact and at two stages of the 

penetration to evaluate yaw.  The yaw angle did not exceed 4 degrees. 

X-rays revealed that yaw angle was reduced during penetration indicating 

stabilization.  Also, X-rays showed that the stack does not shatter 

globally, while the penetrator is eroding and advancing through the 

stack.  Only after the penetration process is over, the stack bursts 

into pulverized ceramic powder.  Table I, summarizes the results. 

Figure lb, shows depth of penetration of the residual projectile into 

the backing steel block for different stack configurations and with bond 

line thickness as a parameter: 1.4mm, 0.9mm, and 0.4mm.  The line of 

0.4mm bond yielded the lowest penetration.  This line shows that 

penetration diminishes with increasing layer thickness.  Lines of 

thicker bonds show that a minimum penetration exists when the layer 

thickness is 1/2".  These results can be understood in the following 

way.  Kinetic energy of the penetrator was too high and its velocity was 

close to the phase velocity cp along the stack (2.3 km/sec).  This 

allowed little time for the waves to propagate radically and disperse. 

In this way, propagation was confined to the immediate vicinity of the 

projectile's footprint as in a 1-D situation.  Phase velocity in 1-D is 

approximately equal to 

cp~Sqrt{{Ebhc)l{pchb)} (1) 



where Eb is bond modulus, pc is ceramic density, and (hb, hc) are bond and 

ceramic thickness.  Fixing all parameters except hb, cp diminishes with hb 
like Sqrt (l/hb) .  This means that cp for the stack with 1.4mm bond is 

almost half that of the same stack with 0.4 mm bond.  Consequently, dynamic 

coupling of the layers bonded by 1.4 mm is reduced to half that of the 

layers bonded with 0.4mm.  Reducing coupling by thickening the bond reduces 

transmission along the stack which raises flexural stress of the ceramic 

layers.  The difference in cp between 0.4mm & 1.4mm bonds is magnified for 

thicker tiles because of the factor Sqrt (hc) in equation (1). 

Although PMMA was chosen for bond material, because of its 

linearity in a wide pressure range, it lacks the important visco-elastic 

property of stiffening at high strain rate and weakening at low strain 

rate.  The stiffening is needed, during early times when the pulse of 

first arrival is transmitted to the next layer, while the softening is 

needed at later times to reduce intensity of reflecting tensile waves. 

Although, PMMA is stiffer than polyurethane at low strain rates, it is 

much softer at the high strain rates, when polyurethane becomes glassy. 

This experimental Series has demonstrated that the utility of 

weakly coupled periodic stacks is limited to projectile velocities 

sufficiently lower than phase velocity along the stack. It also 

confirmed the importance of the weak bond and its spatial uniformity on 

ballistic performance.  This is clearly evident from tests performed at 

EMI in 1990 on stacks of 2 or 3 layers of 2" to 2.5" thick stacks 

confined laterally including cover plates with a projectile similar to 

that in the present experiments.  These results are depicted in Figure 

2.  The scatter in depth of penetration for the same configuration, and 

inconsistency in results comparing different stacks was caused by not 

recognizing the importance of the weak layer and failing to control its 

uniformity. 

Series 2 [Ref. 7] consisted of 6" x 6" stacks 2.5" thick made of tiles 

ranging in thickness between 1.5" and 1/4" but no monolith, and bonded 

by 10 mil polyurethane adhesive.  The stacks were highly confined 

laterally and with a cover plate (see Figure 3a).  The projectile was 

Tungsten alloy L/D=10 weighing 67.5 grams and speed of 1.5 km/sec.  This 

Series was intended to reproduce a 1989 Dow experiment at UDRL (Univ. of 

Dayton) on 60mm A1N stacks composed of a monolith, 5 x 12mm layers, and 

10 x 6mm layers, bonded by 10 mil polyurethene adhesive.  These limited 

experiments demonstrated the ballistic advantage of the 10 layer stack 



over the monolith.  Table II lists results and Figure 3b shows depth of 

penetration for the different stack configurations of Series 2.  The 

average line indicates a slight advantage by thinning the layers yet the 

results cannot be trusted because of the stiff confinement which, as.was 

discovered in Series 3 experiments, has a paramount effect on 

penetration. 

Series 3a,b [Ref. 8] were aimed at correlating results with experiments 

at CalTech.  These experiments consisted of 1.5" stacks made of a 1.5" 

monolith, 2 x 3/4" layers, 3 x 1/2" layers and 6 x 1/4" layers, bonded 

by 10 mil sheets of very uniform polyurethene, adhering to the ceramic 

tiles by heating to 375 degrees F.  The stacks were confined laterally 

and with cover plates (see Figure 4a).  The projectile was Tungsten 

alloy with L/D=6 weighing 50 grams with velocity near 1170 m/sec.  This 

is the first Series that included a monolith.  At first, the result of 

EMI did not match those of CalTech. CalTech measured depth of 

penetration pr = 30 mm for the 1.5" monolith, and almost no penetration 

for the 1/2" stack.  EMI measured pr = 0 mm for the 1.5" monolith and 

6mm for the 1/2" stack (see Tables III and IV). 

After reviewing CalTech's experimental setup more closely, it 

became clear that CalTech's lateral confinement was so weak that it was 

failing at the corner welds, and the confining plates were ejected 

laterally.  In essence, the CalTech stack was unconfined.  Also, the 

sabot separated from the projectile by arresting it by the cover plate, 

which was in direct contact with the top surface of the stack.  This 

separation pre-shocked the stack since the mass of the sabot, 35 grams, 

is comparable to that of the projectile.  The pre-shocking initiated 

micro-cracks in the monolith or in the top layer of the stack, weakening 

it from its virgin stage.  The two layers beneath the top layer of the 

1/2" stack were shielded from the shock by the polyurethene bond, 

preserving their unshocked properties (see Table III) .  This 

experimental mismatch clarified the following points: 

(a) Lateral and cover plate confinement increases ballistic 

performance substantially.  This is an accepted fact among researchers 

in ballistics.  Yet the way it works is not by reducing tensile waves 

from boundary reflections, but by keeping the cominuted material in the 

path of the projectile, increasing its erosion and consuming its energy. 

(b) Crack initiation controls ballistic performance of ceramic 

material.  This strengthens the role that linear analysis plays in 



evaluating ballistic performance, since it is valid up to the stage of 

crack initiation. 

Having recognized the differences in the CalTech setup, it was 

redesigned so that, after sabot separation by the cover plate, the 

projectile is sufficiently distant from the top surface of the stack, 

avoiding pre-shocking.  Also the confining box was designed with a 

clearance of 5 mm around the stack to permit lateral expansion of the 

damaged ceramic without interference from the plates forming the box 

(see Figure 5).  The same procedure was applied to the setup of EMI 

(Series 3c): no lateral confinement and a cover plate distant from the 

top face of the stack by 3 mm (see Figure 6). 

Series 3c [Ref. 8] experiments were performed at CalTech and EMI 

expecting that results from the two would now match.  Results for the 

1/2" stack agreed: EMI measured pr of 20mm and 23mm, and CalTech 

measured 20 mm and 26 mm.  Yet results for the 1.5" monolith were still 

quite different: EMI measured pr of 6.8mm and 0mm, and CalTech measured 

30mm and 34mm (see Tables V and VI).  The consistency of the latest 

CalTech results pointed this time to a possible deficiency in the EMI 

setup.  EMI repeated 3 more tests on the 1.5" monolith which yielded 

11mm, 33mm and 46mm (see Table VI).  This large scatter among the EMI 

results for the 1.5" confirmed that a fundamental difference existed 

between the two setups meriting a closer look at the EMI setup. 

Examining the cover plates of these last three EMI tests revealed that 

the cover plate corresponding to pr = 11mm case suffered substantial 

plastic deformation, while that of the pr = 4 6mm case had very little 

plastic deformation.  This suggested that the large scatter in pr was 

caused by the degree of confining ejecta in the direction of impact by 

the 3mm thick cover plate which was not even touching the stack.  The 

3mm gap between cover plate and stack was small enough to confine ejecta 

at times when they did not escape through the central hole in the cover 

plate.  When ejecta did not escape through the cover plate hole, they 

remained in the path of the projectile increasing resistance, reducing 

pr and causing the cover plate to yield.  When ejecta escaped through 

the hole, the penetrator encountered less resistance increasing pr and 

keeping the cover plate intact.  These results shed new light on how the 

cover plate increases ballistic performance.  Its function is not to 

reduce reflected tensile waves but to keep cominuted material from 

ejecta in the path of the projectile, increasing its erosion and 

consuming its energy. 



An explanation was still needed to account for the reduced scatter 

in EMI's Series 3c results for the stacked configurations in spite of 

the cover plate's closeness.  That explanation lies in the concept of 

phase velocity cp.  For the monolith, the rate of formation of cominuted 

material in ejecta is approximately the compressional speed of sound 

which for A1N is 10 km/sec.  In the stack, cp is given by equation (1). 

For material properties of polyurethene and 1/2" layers, cp ~ 2.3 

km/sec.  The reduction in cp from the weak coupling reduces the rate of 

ejecta formation by a factor of 4.  This enables ejecta to escape from 

the cover plate hole more often, diminishing the scatter.  In fact, the 

scatter is reduced for thinner tiles consistent with the corresponding 

reduction in cp given by equation (1). 

To bring the two setups into equivalence now required adjusting 

the EMI setup by increasing the distance between cover plate and stack 

from 3mm to 50mm (see Figure 7).  This allowed sufficient space for the 

ejecta to expand without restriction from confinement.  Experiments with 

this final setup Series 3d measured a higher pr in two tests with the 

1.5" monolith: 29mm and 41mm (see Table VI). 

Figure 8 shows EMI results of Series 3c and 3d and CalTech results 

for all stacks tested.  Note the large scatter in pr for the monolith 

when gap between cover plate and stack was 3mm, and the reduced scatter 

from CalTech and EMI data when that gap was increased to 50mm.  The 

scatter diminishes as layer thickness in the stack is reduced. 

Experiments at Caltech on 4" x 4" A1N tiles, 3/4" thick, and 

stacks made of 7 x 0.11" thick tiles bonded to 10 mil polyurethene 

sheets, struck by a 50 cal projectile at 3,000 ft/sec, revealed that the 

stack failed to stop the projectile.  Analysis adopting the 2-D model on 

a single 3/4" monolith, 2 x 3/8" stack, 3 x 1/4" stack and 5 x 0.15" 

stack, explained this experimental result.  The 2 layer case showed a 

reduction in tensile stress integrated throughout the stack, while the 5 

layer case showed a magnification in that stress.  This numerical 

experiment and the test demonstrate that layering does not scale. 

Starting with some thickness of monolith, layering may be effective 

depending on the absolute thickness of the monolith.  For thick targets, 

ballistic performance is enhanced by thinning the layer down to a 

minimum thickness beyond which further thinning reduces performance 

because of magnification of tensile stress from flexure. 
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In conclusion, weakly coupled periodic stacks may enhance 

ballistic performance depending on stack thickness, number of layers, 

and impulse characteristics.  Three distinct mechanisms each play a role 

in the penetration process, two favorable and one adverse: 

(1) Attenuation of stress wave of first arrival as it propagates along 

the stack, by transmission loss across the weak layer.  This 

produces crack initiation in a zone described by an inverse 

conoid, provided projectile velocity is sufficiently smaller than 

phase velocity along the stack.  The comminuted zone creates a 

self-confining funnel that increases projectile erosion. 

(2) Arrest of crack propagation in the stack across weak layers, a 

mechanism lacking in the monolith. 

(4)   The adverse effect of layering is that thinner tiles magnify 

tensile flexural stress promoting failure sooner and counteracting 

the positive effects above. 

(3a)  References: 

Reports, external publications and computer programs produced in 

the course of research in Phase II which also constitute deliverable are 

listed below.  A descriptive title and objective is listed. 

1. Transient elastic waves in finite layered media: two- 

dimensional axisymmetric analysis (J.Acoust.Soc.Am. 99 (6) June 

1996) 

2. Simplified models of transient elastic waves in finite 

axisymmetric layered media (J.Acoust.Soc.Am. 104 (6) December 

1998) 

3. Simplified analytical models for transient uniaxial waves in a 

layered periodic stack (Int.J. Solids Structures, 23, 1997) 

4. Transient waves in a periodic stack:  experiments and 

comparison with analysis (J.Acoust.Soc.Am. 101 (2) February 

1997) 

5. Transient flexural waves in a disk and square plate from off- 

center impact (Preliminary copy, March 1999) 

6. Protection efficiency of layered AIN ceramic targets bonded 

with PMMA, K. Weber, V. Hohler, (EMI Report E  11/96 January 

1997) 

7. EMI Report E 19/97 

8. Results of the 1998 center and off-center impact tests with 4" 

x 4" and 6" x 6" AIN ceramic targets (November 1998) 



(3b)  Computer Programs Developed: 

(1) "STACK1D":  Transient response of simply supported stack of 

layered Mindlin plates using a plate flexure model 

(2) "STACK2D":  Transient response of simply supported stack of 

layered tiles using a 2-D axisymmetric model 

(3) "HDISK":    Transient waves in a disk and square plate from off- 

center impact adopting plate flexure theory, with 

simply support, clamped and free boundaries 
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Figure 3a. EMI test set-up (series 2) 
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Figure 4a. EMI test set-up (series 3a) 
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Projectile: D = 8.33 mm, L/D = 6, mp = 50 g, vp = 1150 m/s, flat nose 

steel plates, 6 mm thick 

two-component epoxy adhesive 

Figure 4b. EMI test set-up (series 3b) 
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5" x 5" M.S. plate 

0.56251 

Figure 5. Caltech test set-up 
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Teflon, 3 mm thick      AIN Ceramic tiles     St tube □ 140 x 140 x 12.5 mm 
100 x100 mm / 

/ 

■^^^^^^^^^^^■: 

X-ray 
150 kV 

o- 

~ TTf 

St 50 mm 

AI6061-T651 
60 mm thick 

Steel cover plate 115x115x5 mm 0.25 mm Polyurethane film 
heated at 190°C over 30 minutes 

Projectile: D = 8.33 mm, L/D = 6, mp = 50 g, vp = 1150 m/s, flat nose 

■tea: 

m 

■v 

Air gap, 6 mm thick 

>"\fr.-W;' 

Figure 6a. EMI test set-up (series 3c) 
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Rubber, 50 mm thick     AIN Ceramic tiles   St tube D 140 x 140 x 12.5 mm 
\ 100 x 100 mm / 

A L  

X-ray 
150 kV 

o- 

I   :    \ 

jtt*   \   f~^  *■***»  *' ?-*"^*, **, 

:W:>i;,'.u 

St 50 mm 

AI6061-T651 
60 mm thick 

 <n  
Steel cover plate 115x115x5 mm        0.25 mm Polyurethane film 

heated at 190°C over 30 minutes 

Projectile: D = 8.33 mm, L/D = 6, mp = 50 g, vD = 1150 m/s, flat nose 

Air gap, 6 mm thick 

Figure 6b. EMI test set-up (series 3d) 
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Rubber, 50 mm thick    AIN Ceramic tiles    St tube □ 195 x 195 x 12.5 mm 
100 x100 mm / 

X-ray 
150 kV 

o- 

¥F 

K 

St 50 mm 

AI6061-T651 
60 mm thick 

Steel cover plate 170 x 170 x 5 mm 0.25 mm Polyurethane film 
heated at 190°C over 30 minutes 

Projectile: D = 8.33 mm, L/D = 6, mp = 50 g, vp = 1150 m/s, flat nose 

30 mm 

V'--''-.l 

asm 

^ 

Jam 

Air gap, 35 mm thick 

Figure 7. EMI test set-up (series 3e) 
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40 

30 

PR [mm] 

<>1140 

D1138 

1140 

1190 

6 

"5 

1121 
1173 

1163 

-   1105 

20 

10 

X1182 \ 

1 layer 
(1.5") 

-A- EMI 1997 (3c) 
-0- EMI 1998 (3c) 
-D- EMI 1998 (3d) 
-O- EMI 1998 (3d) 
-X- CALTECH 

velocity in m/s 

1148 

1166 

A1182 

X1172 
Ö1160 
^1200- 

1188 

x 

1170Q1176 

)<1165 
.1170 
;1179 

X1130 

1158 
-114Ö" oil 

X1141 
1138 <> 

61 

X1145 

A1140 

-O 
1045 

2 layers 
(2 x 0.75") 

3 layers 
(3 x 0.5") 

6 layers 
(6 x 0.25") 

Figure 8. Residual penetration depth vs. AIN layer numbers 
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Projectile: Rod (Material: WSA rod), D = 11 mm, L/D = 6, m p = 109.45 g, p = 17.55 g/cm3, 
Rm =1550 ± 9 MPa, A5 = 8.2 ± 1.9%, flat nose 

RHA-Catcher: Vickers hardness number HV20 = 412 

Exp. 
no. 

VP 
[m/s] 

«l/«7 
[deg] 

Lateral 
target 

dimensions 
[mm] 

No. 
of 

tiles 

AIN 
average 

tile 
thickness 

[mm] 

PMMA 
average 
sheet 

thickness 
[mm] 

Adhesive 
average 

layer 
thickness 

[mm] 

RHA 
thick- 
ness 
[mm] 

PR 
[mm] 

8401 2130 +1.5/— 150x150 12 6.36 0.99 0.20 50.06 27.9 
8402 2132 +3.5/-1.0 150x150 12 6.35' 0.49 0.17 49.73 25.4 
8403 2133 +1.5/-0.5 150x150 12 6.35 0 0.16 50.05 23.5 
8413 2129 +4.0/-1.0 150x150 6 12.77 0.97 0.23 50.24 20.1 
8412 2134 +2.0/-0.5 150x150 6 12.80 0 0.14 50.33 19.8 
8405 2120 +2.0/-0.5 150x150 4 19.31 0.98 0.10 49.87 22.2 
8406 2128 +0.5/-0.5 150x150 4 19.10 0.48 0.21 50.06 21.6 
8407 2120 0/-0.5 150x150 4 19.12 0 0.21 50.22 19.2 
8411 2131 +2.0/-0.5 150x150 3 25.43 0.99 0.21 50.07 23.8 
8408 2129 +2.0/-0.5 150x150 2 38.12 0.97 0.22 50.17 26.7 
8409 2124 +3.0/-0.5 150x150 2 38.10 0.50 0.23 50.19 20.6 
8410 2118 +2.5/-1.0 150X150 2 38.07 0 0.19 50.16 16.0 
8399 1975 +1.51— 150x150 ... — ... ... 3x50 89.8 
8400 1996 +2.5/-0.5 150x150 — ... ... — 3x50 91.4 
8414 2120 -0.5/-0.5 150x150 ... ... ... — 3x50 90.4 
8418 2108 +1.0/0 100x100 12 6.32 0.97 0.16 50.15 31.1 
8417 2123 +1.0/-0.5 100x100 12 6.35 0 0.13 49.92 28.6 
8416 2119 +1.0/-0.5 100x100 2 38.11 1.0 0.20 50.12 25.7 
8415 2116 +0.5/-0.5 100x100 2 38.20 0 0.14 50.00 26.4 

8199 7/30 
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Projectile: WSA rod, D = 7.87 mm, L/D = 10, mp = 69 g; hemispherical nose; 
Backing Plate: RHA, 50 mm thick, HV20 = 280; 
Cover Plate: steel, 10 mm thick 

Exp. 
no. 

VP 
[m/s] 

«1 
[deg] 

Lateral 
target 

dimensions 
[mm] 

No. 
of 

tiles 

AIN 
tile 

thickness 
[mm] 

RHA 
thickness 

[mm] 

PR 
[mm] 

8627 1498 -3 150x150 - - 100 70.5 
8628 1500 -3 150x150 - - 100 72.8 
8629 1501 -1 150x150 -   " - 100 71.9 
8630 1493 -2 150x150 2 38.1 + 25.4 50 12.0 
8631 1554 +0.5 150x150 2 38.1 + 25.4 50 12.2 
8632 1541 -2 150x150 2 38.1 + 25.4 50 15.0 
8633 1543 -1 150x150 3 2x25.4 + 12.7 50 10.0 
8634 1548 0 150x150 3 2x25.4 + 12.7 50 10.0 
8635 1564 -1 150x150 4 3x19.05 + 6.35 50 12.7 
8636 1560 -2 150x150 4 3x19.05 + 6.35 50 14.0 
8637 1562 -0.5 150x150 5 5x12.7 50 9.3 
8638 1543 -0.5 150X150 5 5x12.7 50 12.4 
8639 1546 +1.5 150x150 10 10x6.35 50 12.5 
8640 1546 +1 150x150 10 10x6.35 50 10.1 

Table II  Results of test series 2 

8199 5/30/98 
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Shot no. AIN layers Velocity 
[m/s] 

DOP Qualifying remarks 

MONOLITHIC AIN -1.5" thick 

S14 1 x1.5" 1082 1.17" Ceramic pre-shocking + Al containment 

S19 1 x 1.5" 1137 1.28" No confinement but pre-shocking of the ceramic 

S17 1 x1.5" 1166 1.17" Mild steel confinement, ceramic pre-shocking, 
1/4" thick steel rear plate with 1" diameter hole 

LAYERED AIN - 3 x 0.5" thick 

S20 3 x 0.5" 1035 0.6" No confinement but pre-shocking of the ceramic 

S18 3 x 0.5" 1140 0 Mild steel confinement, pre-shocking of the ceramic 

Table III Summary of earlier CalTech experiments 

8199 5/20/98 
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Projectile: WSA rod, D = 8.33 mm, L/D = 6, mp = 51 g; flat nose; 
Backing Plate: AI6061-T651, 60 mm thick; 
Cover Plate: steel, 10 mm thick 

Exp. 
no. 

Test 
series 

VP 
[km/s] 

AIN 
layers 

Yaw 
angle 
[deg] 

St plate 
thickness 

[mm] 

PR 
[mm] 

8715 3a 1223 AI6061-T651 
5 x 40 mm 

-2.0 - 123.0 

8716 3a 1192 1 x1.5" 0 - 0 

8718 3a 1145 1 x 1.5" -1.0 - 0 

8717 3a 1174 3 x 0.5" -1.5 - 6.2 

8719 3a 1161 3 x 0.5" +0.5 - 6.0 

8725 3b 1167 1 x1.5" +1.0 9.75 - 

8726 3b 1125 1 x1.5" +0.5 9.75 - 

8724 3b 1203 3 x 0.5" +3.5 9.75 8.2 

8727 3b 1169 3 X 0.5" -2.0 9.75 20.5 

8733 3c 1130 1 X1.5" +2.0 - 6.8 

8738 3c 1133 1 x 1.5" +1.0 - 0 
8734 3c 1140 2 X 0.75" 0 ~ 10.3 

8739 3c 1182 2 X 0.75" +2.0 - 26.0 

8735 3c 1186 3 X 0.5" -4.0 ~ 23.3 
8740 3c 1170 3 X 0.5" +0.5 ~ 23.5 

Table IV Results of test series 3a, b, c 
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Shot no. AIN layers Velocity 
[m/s] 

DOP Remarks 

MONOLITHIC AIN - 1.5" thick 

S32 1 x1.5" 1070 0.48" 

S40 1 x1.5" 1121 1.34" EMI material 

S38 1 x1.5" 1140 1.36" 

A41 1 x1.5" 1163 1.18" EMI material 

LAYERED AIN - 3 x 0.5" thick 

S31 3 x 0.5" 1045 0 

S37 3 x 0.5" 1102 0.72" 

S43 3 x 0.5" 1133 0.78" 

S45 3 x 0.5" 1170 1.03" EMI material 

S44 3 x 0.5" 1176 1.03" 

LAYERED AIN - 6 x 0.25" thick 

S42 6 x 0.25" 1170 1.54" 

Table V Summary of recent CalTech experiments 
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Projectile: WSA rod, D = 8.33 mm, L/D = 6, m p = 51 g; flat nose; 
Backing Plate: AI6061-T651, 60 mm thick; 
Cover Plate: steel, 10 mm thick 

Exp. 
No. 

VP 
[m/s] 

a1 / a2 

[deg] 
Test 

set-up 
Lateral tile 
dimensions 

[mm] 

No. of 
tiles 

PR 
[mm] 

Projectile 
used 
from 

8733* 1130 +2.0/-- 3c 100x100 1 x 1.5" 6.8 EMI 
8738* 1133 +1.0/-- 3c 100x100 1 x1.5" 0 EMI 
8850 1142 0/-1 3c 100x100, 1 x1.5" 10.60 EMI 
8853 1173 -4/-2 3c 100x100 1 x1.5" 33.00 EMI 
8857 1140 -1/-4 3c 100x100 1 x1.5" 45.90 EMI 
8874 1111 0/-1.5 3c 100x100 1 x1.5" 8.5 CALTECH 

8875 1105 -3/0 3d 100x100 1 x1.5" 29.3 EMI 

8876** 1138 0/-3 3d 100x100 1 x 1.5" 20.5/41** EMI 
8734* 1140 01- 3c 100x100 2 x 0.75" 10.3 EMI 
8739* 1182 +2.0/- 3c 100x100 2 x 0.75" 26.0 EMI 
8851 1200 -0.5/-2.5 3c 100x100 2 x 0.75" 20.05 EMI 
8854 1160 +2/-1 3c 100x100 2 X 0.75" 21.75 EMI 
8858 1188 +1/0 3c 100x100 2 x 0.75" 18.85 EMI 
8735* 1186 -4/~ 3c 100x100 3 x 0.5" 23.3 EMI 
8740* 1170 +0.5/-- 3c 100x100 3 x 0.5" 23.5 EMI 
8852 1179 -0.5/+3.0 3c 100x100 3 x 0.5" 19.80 EMI 
8856 1187 -1/-1.5 3c 100x100 3 X 0.5" 18.90 EMI 
8859 1182 -1/-3 3c 100x100 3 X 0.5" 19.90 EMI 
8871 1179 -1/+0.5 3c 100x100 3 x 0.5" 22.0 CALTECH 
8872 1156 +0.5/0 3c 100x100 3 x 0.5" 20.5 CALTECH 
8855 1140 -1/-1 3c 100x100 6 x 0.25" 22.50 EMI 
8860 1138 -1.5/-1.5 3c 100x100 6 x 0.25" 19.00 EMI 
8861 1158 +0.5/+0.5 3c 100x100 6 x 0.25" 23.00 EMI 

*1997 experiments 
**ln experiment 8876 strong deflection of the residual projectile during the penetration into the ceramic; 

therefore, ricocheting of the rod in the Al backing plate. 
pR' = 20.5 mm (deepest point of the crater) 
pR = 2 x pR' = 41 mm (estimated residual penetration depth) 

Table VI EMI experiments of test series 3c and 3d 
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Transient elastic waves in tiniiö layered media: Two-dimensional 
axisymmetric analysis 

Michael El-Raheb 
Central Research, The Dow Chemical Company, Midland, Michigan 48674 

Paul Wagner 
7020 Crestview Drive, Pasadena, California 91107 

(Received 28 April 1995; revised 15 December 1995; accepted 23 February 1996) 

The analysis of transient linear elastic waves in Ref. 1 [J. Acoust. Soc. Am. 94, 172-184 (1993)] 
is extended to 2-D axisymmetric finite layered periodic and weakly coupled media. Two essential 
features distinguishing 2-D propagation are flexure and increased dispersion. To allow separation of 
z and r eigenproblems, a boundary condition that approximates simple supports is adopted that 
yields nonorthogonal eigenfunctions in the modal analysis.  © 7996 Acoustical Society of America. 

PACS numbers: 43.40.Ph, 43.20.Gp 

INTRODUCTION 

Before understanding propagation of elastic waves in 
weakly coupled finite two-dimensional periodic media, a 
good understanding of its one-dimensional counterpart1,2 is 
necessary. Transient uniaxial wave propagation in a weakly 
coupled periodic stack of mc hard ceramic layers A bonded 
by (mc-l) weak polymer layers B exhibits the following 
characteristics: 

(a) In the frequency domain, response is divided into nar- 
row propagation zones termed PZ and wider attenua- 
tion zones termed AZ. The first PZ includes a cluster of 
(mc-\) resonances, where the hard layers move as 
rigid masses against the springlike weak layers. The 
width of the first PZ is &a)pzi=*2cA/hA(z~T)~]n, 
where (cA ,hA) are speed of sound and thickness of the 
hard layer, z==(pAcA)/(pBcB) is ratio of acoustic im- 
pedances, and T=(hBlcB)l(hAlcA) is ratio of travel 
times. All ,EZ's.after the first belong to one of two. 
groups; one group includes clusters of mc axial elastic 
resonances of an unconstrained hard layer, and the 
other group includes clusters of {mc— 1) axial elastic 
resonances of a constrained weak layer. Including these 
groups in the response causes high-frequency oscilla- 
tions. 

(b) In transient response, peak stress of first arrival 
changes its shape quickly within the first hard layer 
from the trapezoidal input shape of magnitude cr0 to a 
fully dispersed bell shape. At interfaces between layers, 
peak stress is magnified or attenuated depending on the 
wave transmissibility T, which is the product of Awp;1 

and time interval tj of the equivalent rectangular forc- 
ing pulse that conserves impulse divided by TT, i.e., 
1=k(opzltf/TT. When T<1 peak stress is attenuated, 
varying as ta~

m, where ta is time of first arrival, but 
when 1> 1 peak stress is magnified in the first layers, 
reaching a maximum not exceeding 1.2 a0, then falls 
off asymptotically. T is the single parameter that deter- 
mines whether transient peak stress grows or declines 
as the wave moves through the stack. 

(c) Except for high-frequency oscillations, wave propaga- 

tion is controlled by the first PZ, and can be modeled 
accurately by a simple finite periodic chain of masses 
and springs. The wavefront moves at the phase velocity 
cp corresponding to the frequency of the repeated set in 
the chain, while peak stress moves at the group veloc- 
ity cg evaluated at that same frequency. Both cp and cg 

diminish with frequency from a maximum of 
c0—cA(zT)~m at zero frequency. 

Understanding uniaxial propagation and how it is 
coupled to radial waves forms the basis of understanding 2-D 
propagation. A chronology of events in 2D now follows. A 
forcing pulse is applied on top of a periodic stack. A com- 
pressive normal stress wave is generated under the footprint, 
which disperses as it propagates across the thickness of the 
first hard layer. The difference in crzz between top and bot- 
tom faces of a hard layer Aazz, induces flexure in the form 
of antisymmetric radial and circumferential stresses arr,aee. 
At an interface, the wave is partly reflected and partly trans- 
mitted depending on z~. Obviously, in 2D, crzz at an interface 
is smaller than in ID because of spreading from radial propa- 
gation into undisturbed material. A stiffer weak layer, i.e., 
smaller z, increases transmission and reduces Acrzz which 
reduces flexure of a hard layer. A weaker weak layer, i.e., 
larger i~, decreases transmission and reduces coupling be- 
tween hard layers allowing more flexure of the top layers. In 
the limit of a weak layer without stiffness, the case of the 
lone hard layer is recovered when flexure is greatest on the 
first layer. The process is repeated for all other layers, while 
intensity of all stress components is further reduced from 
dispersion and radial spreading. 

Section I develops the modal analysis adopting transfer 
matrices to treat wave propagation in a 2-D axisymmetric 
biperiodic stack of disks with radius a. The governing linear 
differential equations of elastodynamics are separable. Solu- 
tion of the separated equations is found in terms of primi- 
tives in cylindrical coordinates. The product of the axial and 
radial solutions is expressed in terms of a transfer matrix 
relating state vectors at the two faces of a layer. Radial wave 
number is selected to satisfy traction conditions on the lateral 
boundary r=a. A traction-free condition does not yield a 
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FIG. 1. Geometry of 2-D axisymmetric periodic stack. 

unique dispersion relation for this wave number. One natural 
boundary yielding this condition is for shear stress and radial 
displacement to vanish. Numerical experiments adopting 
Mindlin plate flexure theory3 show that with this constraint, 
the stress after reflection from the lateral boundary is much 
greater than with the traction-free condition. An alternate 
condition is a vanishing gradient of radial displacement, 

"BC1":Free Q = 0, M = 0 

w 

du/dr=0. Radial wave numbers with this constraint asymp- 
totically approach those with vanishing axial displacement, 
w=0, and radial stress arr=0 for higher wave numbers. In 
plate theory, this constraint is termed simple supports since a 
vanishing radial stress across the thickness is equivalent to a 
vanishing radial moment. Unfortunately, with drrz/dr= 
du/dr=0 at r=a, the problem is not self-adjoint and yields 
nonorthogonal eigenfunctions. 

Section II discusses results of the basic stack subjected 
to a trapezoidal pulse. The first part studies the dispersion 
characteristics by observing modal groups in the frequency- 
radial wave number domain. Identification of the dominant 
motion in each group enables the exclusion of eigenfunctions 
with negligible generalized acceleration from the modal ex- 
pansion. The second part presents transient histories of the 
basic stack and compares results to other numerical methods. 

I. ANALYSIS 

Consider the axisymmetric biperiodic layered stack in 
Fig. 1. Each periodic set in the stack consists of a thick hard 
disk A bonded to a thin weak disk B, where (E,p,v) denote 

"BC2": Free/Clamped Q = 0, i|>=0 
—I 1 1 1 1 r 
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FIG. 2. Histories 
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ies of normalized displacement w (microinch). and stresses *rrJrl for boundary condition: (,)-(c) free; (d)-(f) free/clamped at - r-0. - 
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"BC3": Simple supports w = 0, M = 0 BC4": J"0 (7a) = 0  (non-self adjoint) 
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modulus of elasticity, density and Poisson ratio, and h is  . 
thickness. All disks in the stack have the same radius a. 

Start with the axisymmetric Navier equations of linear 
elastodynamics in the time domain4 

dip      d 7} 
U= -T—+ • 

(\ + /t)V(V-u) + /*V-(Vu) + p-£--u=0, 

where u(r,z) = {u,w} is the displacement vector with radial 
and axial components u and w, (k,fi) are Lame's constants 
of the material 

\=- 
Ev 

f*~- (la) 
(l + v)(\-2v)'    ^    2(1 + 1/)' 

and V is the gradient operator. For an axisymmetric geom- 
etry u can be expressed in terms of scalar potentials tp and rf 

u=Vp+VxVx(j7ez), (2) 

where ez is the unit vector along z. Expanding (2) yields 

3515   J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 

dr     dr dz ' 

d(p    1   d I    drj 

dz     r dr\    dr 

(3) 

(1)       Substituting (2) in (1) assuming periodic motions in time 
with frequency a 

V2ip + k2
Lip = 0,    V2

TJ+IC
2
-TJ=0, 

2_\ + 2(M 

"'"   Ci'   P 

*,--. cj-£ 
CO 

CT        ■    P 

The constitutive equations are 

o-,7=\5,v + 2/tie,7, 

^i/=err+^+6„, 

du u 

(4a) 

(4b) 

dw du     dw 
€rr~ a*'    €ee-~,    ezz—T~>    erz~Tr+"^r-     (5) dr dz dz      dr 
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FIG. 4. Circular frequency ft versus radial wave number m,. 

Solutions satisfying (4) are 

v(r,z)=USr)(Ce-Pz + De^), 

(9a) 

,.2_ y2-*2,   ß2=* 

(6a) 

(6b) 

where y and 8 are roots of the dispersion relations to follow. 
Admissible constraints at the lateral boundary r=a are 
BCl=>traction free: rrz(a,z)=0, <rrr(a,z)=0 

Trz(a,z)=2vay(-Ae-az+BeaWya) + tiS(ß2 

+ 82)(Ce-ßz+Deßz)J'0(Sa) = 0, (7a) 

0-rrta,z)=[-x(r2-a2)/o(ra)+2^r2^(ra)] 
X(Ae-az+Beaz) + 2fMßS2J'ö(8a) 

X(-Ce-ßz + Deßz) = 0. (7b) 

BC\ does not yield a z-independent dispersion relation for y 
or & ßC2=>Shear-free with radial restraint: rrz(a,z)-0, 

u(fl,z)=0 

T„(a,z) = 0=>[same as (7a)], (8a) 

M(fl)Z)^7^(ra)r(Ae-« + ße°'z)+7o(^)^^ 

X(-Ce-ßz + Deßz) = 0. (8b) 

ßC2 is identically satisfied if y=<Sand a dispersion relation 
for radial wave number y in the form 

70(7*) = 0. (8c) 

3516    J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 

ßC3=>Simple supports: 0>r(a,z)=O, w(a,z)-0 

o-rr(a,z) = 0=>[same as (7b)], 

w(a,z)^My^)^(-Ae-az + Beaz) 

+ J0(8a)S2(Ce-ßz + Deßz) = 0. (9b) 

BC3 is as awkward to satisfy as BC\. However, it can be 
satisfied approximately if y= 8 and 

J'ö(ya)=o. do) 

This constraint will be termed BC4, and it exactly satisfies 
drrz/dr=du/dr=0. Note that for ya>8.65, roots of (10) 
approximate roots of J0(ya)=0 with a difference less than 

1%.5 

Since the goal is to approximate BC\, selection among 
BC2, BC3, or BC4 depends on how close the correspond- 
ing response is to that of BCl. A numerical test adopting 
Mindlin's plate theory3 to a lone disk with properties: 

£=45X106 lb/in.2;    a = 3  in. 

p = 3Xl(T4 lbs2/in.4;    A = 0.5 in. 

v=0.25; rp = 0.25  in. 

compares histories of w, crrr, and rrz atr=0,rp,2rp,4rpm 
Figs. 2 and 3 for each of the four constraints BCl through 
BC4. The disk is forced by a trapezoidal pressure pulse of 
unit magnitude, 25-JJS duration and 5-/AS rise and fall times, 
acting concentrically over a circular area of radius rp. After 
reflection from the boundary r=a, histories of BCl [Fig. 
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FIG. 5. Eigen modes of 2-D basic stack for radial wave number mr-0.58607. 

2(d),(e),(f)] are different from those of BC\ [Fig. 
2(a),(b),(c)]. However, histories of BC3 almost coincide 
with those of BCA (Fig. 3) and both agree well in magnitude 
and shape withhi'stories of BC\ except for a shift in time of 
reflection caused by the difference in period of the funda- 
mental resonance. Therefore, BCA and Eq. (10) will be used 
throughout the analysis since, added to its convenient disper- 
sion relation, it is physically acceptable, as it produces his- 
tories closest to those of BC3. Unfortunately, with (10) self- 
adjointness is lost, yielding nonorthogonal eigenfunctions 
which slightly offsets the ease of computing response. 

Define the state vector at one face of a layer as 

s={u,azz,w,Trz}
T. (ID 

Let s" be a function of z only after normalization by the radial 
dependence 

^ ={u,az. ,w,rr-}
r, 

Ü=u/J'0(yr),    ¥rz=Trz/J'0{yr) (12) 

w = w/J0(yr),    crzz=azz/J0(yr). 

Expressing s in terms of (7a), (8b), (9b), and 

<rzz(r,z) = J0(yr){{-kkl + 2fJ.a
2)(Ae-a* + Bea*) 

+ 2fißy2(-Ce-^ + De^z)} (13) 
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yields 

s,^M 

(Ü } \ A] 
M = 
w 

w, 0 r / B 

0 Mf -r / 
LeJ > 

C 

. T>z J   z 
ID) 

M,= 

M,= 

y ßy 
-\k2

L + 2fia2    2/ijSy2 

a y2 

2/j.ay   fty(ß1+y2)\ 

e~az      0 0 0 

0      e~ßz      0 0 
[ej = 0 0       e + az      0 

0 0 0 , + ßz 

/= 
1    0 

0    1 

r= 
1     o 
o   -1 

(14) 

{A,B,C,D}T are the undetermined constants of the homoge- 
neous solutions (6a), (6b). Evaluating (14) at z=0 and z = h 
then eliminating {A,B,C,D}T produces the transfer matrix of 
a layer: 
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Equation (15) relates state vectors at the two faces z=0_and 
z = h of a layer in the stack. Enforcing continuity of s at 
interfaces of layers and applying the known traction condi- 
tions 5 at top and bottom faces of the stack produces a tridi- 
agonal block matrix [D] in the ensemble of the 4L unknown 
displacements and tractions 6 at all interfaces of L layers 

[D]6=ff 

D= 

0 0 0 

T„2 I 0 

T/,4 0 -I 0 0 

0 T», T/,2 I 0 

T» T„4 0 -I 

0 0 T„, T*2 

(16) 

where Thi are constituent submatrices of Th in (15) defined 

by 

T*= 
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T/,1    TA2 

.I«    TA4 

G=[shl,sh2,...Jhn]
T 

is the ensemble of state vectors at all interfaces and 

5={f1>0,0,...,0}r 

is the vector of all boundary tractions where f, is the traction 
applied on the top face of the first layer. 
The  eigenproblem  det  [D]=0  produces   the  modal   set 
{$j,(t>j} used in the forced response. 

Steps in the analysis of the forced response now follow. 
Assume that the displacement vector u is the linear superpo- 
sition of a static solution u; times the external time- 
dependent excitation f(t), and a dynamic solution ud satis- 
fying traction-free boundary conditions at the top and bottom 
faces of the stack.5 Where x={r,z} then 

u(x,r) = u,00/(r) + Urf(x,f). (17> 

Expand ud in terms of eigenfunctions |j)={u,w}j(x) 
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where the expansion in (18) includes all truncated sets for all 
/s considered. 

Substituting (17) and (18) in the unsteady equations of 
motion (1) assuming zero initial conditions yields 

X (äj+wjaj)p(x)\j)=-f(t)p(x)us(x). (19) 
j 

Eliminating the spatial dependence by inner products of \j) 
which means integrating over all layers in the stack gives 

X Ny(ay+ft»?a;)=-/(0NflI-, 
j 

Ny=<i|p(x)U>. (2°) 

Nfl/=<«|-p(x)«f(x)>. 
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Since \j) are not orthogonal, N=[7v"y] is not diagonal. 
Decoupled equations in the vector of generalized coor- 

dinates a are found by inverting N: 

fl,.+ cüfa,= -[N-1    NflL/(r). (2D 

A solution to (21) is found in terms of Duhamel's integral: 

«/(')=- — [N_1    NJ, f/(r)sin cofr- r)dr.     (22) 
(>>i Jo 

For the special case of a polygonal /(f) with n, vertices 

"i 

/<0=X [H(t-tk)-H(t-tk+l)](dlk+d2kt),    (23a) 
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/0)=2 [s(t-tk)-s(t-tk+l)]d2k. 
k=l 

Substituting (23) in (22) yields 

1 
«,(')= [N_1    NJ,2 d2k[sm (Oiit-t,) 

(23b) 

-sin (oi(t-tk+i)']. (24) 

Static analysis of the stack is developed in Appendix A. In- 
ner products N and Na are evaluated analytically using 
MATHEMATICA™. 

When radial wave number y is large compared to kL or 
kT, exponents (a,ß) in the axial solutions (6a), (6b) are real 
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and truncation error is inevitable when e~ or e 
greater than e2M where it and (e2M - 1) cannot be distin- 
guished within machine precision. To treat this error in the 
evaluation of inner products N and N0, a method developed 
in Ref. 7, termed selective abbreviation is adapted to the 
present problem. An exposition of how it is applied can be 
found in Appendix B. 

II. RESULTS 

The basic stack consists of five hard A and four weak B 
layers (see Fig. 1). Properties are listed below: 

EA = 45X106 lb/in.2;    £B=20X103 lb./in.2 

pA = 3Xl(T4 lbs2/in.4;    pß=lXl(r4 lb. s2/in.4 

^ = 0.25;    vB=0AS 

hA = 0.5 in.;    hB=0M  in. 

a=3  in.;    rp=0.25 in. 

For motions along the axis of the stack, the compression^ 
impedance ratio zc and travel time ratio rc are 

pAEA(l-vA)    (l + vB)(l-2vB)\
m 

Zr = (l + vA)(l-2vA)    pBEB{\-vB) 
= 30.37, 

?J± EA(\-vA)        pB(l + vB)Q-2vB) 

pA{\ + vA)(\-2vA) EB{\-vB) 

(25) 
1/2 

= 0.20. 

Figure 4 plots resonant frequency fl(Hz) against radial 
wave number mT=yaliT, where (ya) are the roots of dis- 
persion relation (10), for the first 14 modes at fixed mr. 
Frequency lines form groups with specific dominant mo- 
tions. Figures 5 and 6 illustrate shapes of some of these 
modes, showing only the hard A layers and exaggerate the 
thickness of the spring between the layers for clarity. For 
mr=0.586, the first two resonances involve flexure of the 
hard layer with the weak layer acting as an elastic spring 
[Fig. 5(a) and (b)]. The next four modes involve radial ex- 
tension [Fig. 5(c)-(f)]. The next three modes [Fig. 
5(g),(h),(i)] complete the group of flexural modes. The last 
four modes [for example Fig. 5(k),(l)] involve shear motions 
of the hard layer. For this mr, flexural and extensional 
modes overlap. For mr=2.717, the groups are well separated 
as shown in Fig. 6. Here, the first 5 modes [Fig. 6(a)-(e)] 
involve flexure only. The next five modes [Fig. 6(f)-(j)] in- 
clude extension through the thickness of the hard layer. The 
last four modes [for example Fig. 6(k),(l)] include shear of 
the hard layer. 

More generally, among the modes for 0.58=£mr=£4.7, 
there are three frequency groups (see Fig. 4): 

(a) The first group, F, consists of L flexural modes of the 
hard layer with the weak layer acting as a coupling 
spring. In this way it resembles the (L-1) modes in the 
first propagation zone PZ1 in a 1-D chain.2 The differ- 
ence is that in 2 D, hard layers do not move as rigid 
masses but instead flex radially. Shear reaction from 
flexure accounts for the mode added by two dimension- 
ality. 
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(b) The second group, E\, consists of L extensional modes 
of the hard layer. Extension is primarily radial only for 
the lowest mr=0.58, then changes to axial with one 
half-wave through the thickness when mr>0.58. In this 
way, it resembles the L modes of PZ2 in ID. 

(c) The third group, 51, consists of (L—1) shear modes of 
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the hard layer and is without a 1-D counterpart. Since 
shear motions are primarily radial, 51 produces negli- 
gible generalized accelerations |(N_1Nfl)| in response to 
axial forcing functions. 

At 7Hr—4.8, the third group, 51, changes to a fourth 
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group, 551, involving shear motions of the weak layer and 
includes (L-l) resonances. In the interval 6.7<mr<8.7, 
three smooth transitions occur; each involving (L-l) modes: 
F->BSl,El-yF, and S1 -+ £ 1 • This mode transition, called 
coalescence, is similar to what results from changing a pa- 
rameter in other multicoupled dynamical systems. 
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Note that frequency lines of the F group narrow as they 
approach the £1->F transition, then widen after the transi- 
tion. One explanation relies on coupling between rrzB and 
crzzB, and the resonant state of the weak layer at BSl. Near 
this resonance, radial stress arrB follows the plain strain ap- 
proximation: 
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Since Vg=0.48, arrB—azzB, a hydrostatic state of stress. At 
BS1, uB is symmetric about z = hB/2, producing a net volu- 
metric strain, e,VB, i.e., f0

BeVB dz + 0. Accordingly, arrB and 
crzzB are large near BS1. Slightly below BS\, traction on the 
faces and stress in the weak layer are in phase reducing the 
resistance of the weak layer to relative motions at the two 
faces. This effectively weakens coupling between hard layers 

and explains narrowing of the frequency lines in Fig. 4. 
Slightly above £51, traction and stress are out of phase. 
effectively strengthening coupling between hard layers, 
which explains widening of the lines. If rrzB=0 at z=0 and 
z = hB (slip interfaces), uB at BSl is antisymmetric about 
z = hB/2 allowing equivoluminal shear deformation. In this 
case, f0

B£vß dz — 0, invalidating the arguments above. 
At higher frequencies, other groups emerge, such as £2. 

£3, etc., where axial motions of the hard layer include two 
or three half-waves through the thickness. The same applies 
to 52, 53, etc., and £52, 553, etc. Here also, transition 
between groups occurs near coalescence. Note that for an 
axial forcing function, the F and E„ groups dominate re- 
sponse. 

" The first test is to compare transient response of a lone 
hard disk to results from 1-D Mindlin plate theory3 having 
the same boundary condition: J'^iya) = 0. The disk is forced 
by a trapezoidal pressure pulse of unit magnitude, 25 fis in 
duration and 5-/xs rise and fall times acting over a circular 
area of radius ^=0.25 in. its footprint. In this way, it is 
identical to the pulse used to compute response in Figs. 1 and 
3. Figure 7 compares histories of displacement and stress by 
the two methods. Plate bending theory's displacements are 
15% higher, and its stresses are 15% lower. This implies that 
the disk is suffer in 2D than in plate theory. Contrary to the 
1-D assumption that radial displacement u varies linearly 
with axial position z, in 2D, u varies nonlinearly with z and 
reaches a larger magnitude at the surface z=±h/2. Specifi- 
cally in 1-D, u = al(2z/h-l), while in 2D, u = a^2zl 
h — \) + a3(2z/h — 1 )3, where a: and a3 are positive definite 
and depend on slope of the cross section. Moreover, the 
volumetric part of stress raises magnitude of crrr along the 
excited face for r^rp as explained later for the static prob- 
lem. Except for a slight difference in phase velocity, histories 
from both methods agree in shape before and after reflection 
from the lateral boundary. 

A prerequisite to solving the transient response of the 
stack by static-dynamic decomposition is the solution of the 
static problem. Figure 8(A) illustrates the statically deformed 
basic stack. Figure 8B plots static stress distributions of the 
lone disk by the analysis in Appendix A with 80 radial wave 
numbers. In Fig. 8B(a), the sharp increase in \arr\ at r=rp 

and z =0 can be explained as follows. Stress arr is the sum of 
an equivoluminal part [cr,.,.]^^ from flexure, antisymmetric 
about z = hl2, and a volumetric part [a>r]vol from normal 
traction crzz0 over the footprint r<rp. The volumetric part is 
substantial close to crzzQ (r<rp and z<hl€), and diminishes 
steeply elsewhere [see Fig. 8B(a)]. For r>3rp, the flexural 
part becomes paramount as evidenced by the antisymmetry 
of arrr about z = h/2 in Fig. 8B(d). In fact, [crrr]cquiv follows 
the plane stress approximation which at (r,z) =(0,0) yields8 

[o-rr(0,0)]equ 
3    r 

2    h 
l+(l + v)ln — 

(l-v)/V2 

>zz0 

and [oyr]vol. at (r,z) = (0,0) follows the uniaxial strain ap- 
proximation 
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[o-„(0,0)]vol=v/(l-vKz0. 

Clearly, [crrr]vol is independent of geometry while [<Jrr]equiv. 
increases with (rp/h)2 and ln(a/rp). For the example in Fig. 
8(b), h=0.5 in., rp=0.25 in., a = 3 in. and v=0.25, yielding 
[(rrr(0,0)]equiv=1.54 and [cr„(0,0)]vol =1/3. These values 
agree with those obtained from Fig. 8B(a), where 
[afr(0,0)]equiv=krr(0,fc)| and [or„(0,0)]vo,=|o-rr(0,0)| 
-\arr(0,h)\. The above applies also to aeg. At z=0, crzz's 
profile along r duplicates that of the external traction 
<rzz0=H(r)-H(r-rp), where H(r) is the Heviside func- 
tion [see Fig. 8B(b)]. At r=rp, shear stress |rj along z 
achieves a maximum at z=h/6 then drops smoothly follow- 
ing a skewed parabolic profile [see Fig. 8B(f)]. For r>2rp, 
this profile changes to a parabola, symmetric about z = A/2 as 
predicted by 1-D plate flexure theory. In Fig. 8B(c), the sym- 
metry of rn is confirmed by the coalescence of the Tn profile 
pairs at {z=A/3; z = 2A/3} and at {z=/i/6; z = 5A/6} for 
r>3rp. As with {o>r,<W the asymmetry of Tn close to the 
footprint is caused by the volumetric part of the stress field 
from the applied traction. Since the static solution is included 
in the forcing function of the dynamic solution [see Eq. 
(22)], the volumetric part must be represented in the set of 
eigenfunctions by including extensional modes along r and 

z. 
Histories of the basic stack forced by the same pulse as 

that of the lone disk are shown in Figs. 9, 10, and 11. Sensors 
are located at the top face of each hard layer. For each de- 
pendent variable, four histories are superimposed at 
r= 0,rp,2rpArp ■ Histories of layer 1 are shown in Fig. 9(a)- 
(e). To see what effect the stack has, compare its results with 
those of the lone plate. Note that before arrival of waves 
reflected from the r=a boundary, marked by a second pro- 
longed drop of u to negative values, u and w [Fig. 9(a),(b)] 
are smaller [Fig. 7(a),(b)], crrr [Fig. 9(d)] is approximately 
half [Fig. 7(c)] and Tn is almost the same. After the first 
reflection from the r=a boundary arr [Fig. 9(d)] is further 
reduced [Fig. 7(e)]:^Rransmission into the second layer, re- 
ducing the difference in azz between the two faces of the 
layer that causes flexure, accounts for this reduction. 

Figure 9(f)-(j) plot histories of layer 2. azz [Fig. 9(h)] is 
attenuated to 20% of the input pressure <T0 although trans- 
missibility 

2ci      _ 

IT hA 

1/2 
'/ 

has a value, 4.1, that in ID would magnify azz. This attenu- 
ation is caused by spreading of the footprint through radial 
propagation. The spreading is evident from Fig. 9(j), where 
the maximum rrz is reached at r=2rp, which indicates that, 
while propagating through layer 1, the footprint has spread 
from r=rp to r=2rp [compare Fig. 9(e) and (j)]- The 
spreading continues into the third layer, as seen from Fig. 
10(e) and (j) where the maximum rrz is reached at r=4rp. 

Magnitude of arr after the first reflection from r=a, 
\arr\2 rises with axial distance. Figures 9(d), (i), 10(d), (i), 
and 11(d), reveal a succession of values, 0.2, 0.24, 0.23, 
0.28, 0.30, for \crrr\2. Meanwhile, the magnitude at arr on 
first arrival, \<rrr\x, falls with axial distance, and in fact is 
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surpassed by \arr\2 at layer 3. If the isostress for principal 
tensile stress were traced, the resulting figure would take the 
form of an hourglass—wider at the top, narrowing at its 
middle, then opening out again toward the boundary from 
which the reflected waves come. This "hour-glass" shape of 
the damaged zone in weakly coupled stacks of brittle ceram- 
ics was observed experimentally [see Ref. 1, Fig. 3(b)]. 

III. CONCLUSION 

Wave propagation in a finite 2-D axisymmetric biperi- 
odic stack is studied, adopting transfer matrices and modal 
analysis. An approximation to the lateral boundary condition 
w(a,z) = (du/dr)(a,z)=0 yields separable eigenproblems in 
r and z,and a dispersion relation J'ö(ya) = 0. With this ap- 
proximation, histories of a lone disk computed by Mindlin's 
plate theory agree closely to those of the traction free disk 
and those with "exact" simple supports, even after reflection 
from r=a. Important features of 2-D propagation are 
(1) The Q, vs mr plot includes resonance lines belonging to 

one of four groups 

(a) the F group of L resonances includes flexure of the 
hard layers coupled by quasistatic stiffness of the weak 
layers, 

(b) the El group of L resonances includes radial and axial 
motions of the hard layers with the same coupling as in 

(a), 
(c) the BSl group of (L-l) resonances includes shear 

motions of the weak layers between rigid hard layers, 
(d) the SI group of L resonances includes shear motions 

\      of the hard layers with the same coupling as in a). 

Transition of groups from one type to another occurs near 
coalesence where F^BSl, El->F, and Sl^El. Only the 
F and £1 groups have appreciable generalized acceleration 
and contribute to response. 
(2) When forced by a trapezoidal pulse of short duration, the 
basic stack responds in the following way: 

(a) (o-zz), of first arrival attenuates along the stack more 
than in the equivalent 1-D stack because of radial 
spreading from flexural waves. 

(b) (Oi and (cre^ are lower than in the single hard layer 
and attenuate less sharply than (o"z,), along the stack. 

(c) After the first reflection from r = a, (arr)2 rises along z 
and exceeds (o>r), deeper than layer 3 of the basic 
stack. This feature explains the "hour glass" shape of 
the damaged zone observed experimentally. 

ACKNOWLEDGMENT 

The authors appreciate Pat Dougherty for her patience 
and accuracy in typing the manuscript. 

APPENDIX A: ELASTOSTATIC SOLUTION OF THE 
STACK 

Expanding Eq. (1) with d2uldt2=Q yields the elasto- 
static equations of equilibrium: 
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(X + 2/i)Vt + At^i fi+(\ + /i) 
-i2 aw 

dr dz 
= 0,        (Ala) 

d I d      1 , 
(X + ^)^[-+-)"+ /*V0

! + (\ + 2M) 

,     d2      1   <?     «z 

V„=TT+-^ 1-    « = 0,1. <?r      r dr    r 

d1 

a7 vv = 0, 

(Alb) 

Operating on each equation to eliminate w from (A 1 a) and u 
from (Alb) yields the decoupled equations: 

32 \ 2 

(A2a) /z(X + 2^)(V(+-^) K = 0, 

x>2 \2 

MX + 2^)(V^+^| w = 0. (A2b) 

Consider Yih's primitive solutions of the hyper Bessel 
equation6 

(V;+y2)m/=0, (A3a) 

fP(r) = {rJJn+j(7ry,HYn+j(yr)},    j=L    m-\. 
(A3b) 

The [r^Yn+j(yr)) must be excluded since it is singular at 
r=0. Applying (A3) to (A2) produces the following primi- 
tives 

up(r,z) = {Ji(yr);rJ2(yr)}{e±^yze-^}, (A4a) 

Wpir^iUyr^rJ^yr^^yze^}. (A4b) 

The terms [rJ„(yr)] must be excluded since they fail to 
satisfy the original second-order equations (Ala,b). 

The general homogeneous solution of (Al) is the sum of 
products of the remaining "r" and "z" primitives with con- 
stant coefficients 

N 

u(r,z)=^iJj(yjr)[Clje^+ C2,e"^ + C3JyjzeV 

+ CAjyjZe-?Jzl (A5a) 

N 

w(r,z) = S MyjrKDueV+Dzje-V+DyyjzeV 

+ DAj7jze-yjz]. (A5b) 

Equations relating Dnj to Cnl are found by substituting (A5) 
in (Al) and equating coefficients of each term to zero. This 
yields 

(A6) 

Dij=-Cij+vCy,    D3j=-C3j, 

D2j= C2j + vC4j,    D4j = C4j, 

where   v=(\+3/x)/(X+/x)=3-4v.   Substituting   (A6)   in 
(A5b) gives 

N 

w(r,z) = ?, Jo(yjr)[-CljeV+ C2je-*r+{v-yjz) 
7=1 

XC3e
yiz+(v+yjz)C4e

yJz]. 

Expressions for stress are 

(A7) 

du     u     dw\ dw 

= 2 {-2/*yy-(C,;eV+C2ye-V) + [(v-l) 
j'=i 

X(X + 2fjL)-2ßyjz]C3jeVr-[(v- l)(\ + 2/i) 

+ 2/xy^]C4y}/o(r/). (A8a) 

^=wr+ 
<?H       <?W 

<9z     <?r 

= 2 /*y/i(y/)[2CVV-2Cye 
;'=i 

-(v-l-2yjZ)C3;.e^-(v-l 

+ 2y,z)<V-^]. 

-y;z 

(A8b) 

Consistent with the dynamic problem, the approximation to 
simple supports requires BC4 

drn    du 
__i= — = 0    at    r = fl=>/S(r;a) = 0, 

<?r      <?/- 
(A9) 

which determines the same set {y-} found in the dynamic 
problem. Define the state vector of stress and displacement 
in the /th layer as 

S;(r,z) = [^,;*,]C={orK,T„;H,w}7, (A10) 

<I> and ty are matrices of the functions in (A5) and (A8) 
while C is the vector {C„;}. Continuity of S;(r,z) at the 
interface of layer "/" and '7 + 1" requires 

S,(r,A)-S/+,(r,0) = 0;     1«/«L-1, (All) 

where z is a local axial coordinate 0=Sz«/i and h is layer 
thickness. Traction conditions at the free faces take the form: 

(A12) 

(A13) 

^1(r,0)C, = {<r0,0}, 

Vdr,h)CL={0,0}. 

The r dependence in (Al 1) and (A12) is eliminated by inner 
products No,-,- and NUj, where 

N0ij=(Jo(yir)\rJo(Yjr)), 

NuriJ^i^rJ^yjr)), 

applied to {crzz,w} and {rrz,u}', respectively. This deter- 
mines a system of simultaneous equations in tridiagonal 
form: 

T Aj0 

Ai h    
-A20 

Bl/i      _B20 

A2A     -A30 

A(L-l)ft 

B(L-1)A 

■ /c,   \ 
C2 

c3 

i 

-AI0 

~BL0 Q-, 

ALA . S-h  i 
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o 

o 

rne{aj,ßi.-ai-ßi} 

of which (B 
abbreviation as 

(B3) 

when £=0. Define and of which (B2) is just the special case when f-0 
./infirm as the application of a functional Ah(f ) 

(A14) 
(e-l*K    if z<e 

1,    if z<h-e 

(B4a) 

(B4b) 

where 

F0={/o;}.    /o;= 
[a0(r\M7jr)h    J=l>2N 

0,   j = 2N+l,4N 

and A, B, are (2NX4N) matrices constructed by combin- 
ing all*, and <D, matrices in (All) and (A12) after applying 
the appropriate inner products (A13). 

APPENDIX B: SELECTIVE ABBREVIATION 

Most generally before abbreviation, the expression for 

c. J --     — 
V. 

where € is a boundary layer thickness such that \jfte~M. 
Abbreviating lz

(mn) in (B3) falls under one of the following 

cases. , 
Case 1: ?„%><> and ?,<%; «,„ and H2„ abbreviated. 
Let z0l=ä -M/Vi=h ~ e, and vP=V\ + Vi 

fz0] fz02 
7(m,n)=       «im"2n^

+       ulmu2„dz 
z Jo JZ0I 

one component of N, say N12,
is 

Nn=[ ^ U,{r,z)U2(r,z)rdr dz. 

^\\ev\Uoi~zoO 

(Bla) 

where 

I/I-(r,Z)=^(r){fl,-«fl"l + */^'I + c.-Ä","I + '/'e"ftl>: (Bib) 

Substituting (Bib) in (Bla) yields 

I (Arelz)(A2-e2z)d"z 
Jz J 

Nl2=\jvt<rW2(-r)rdr 

(Blc) 

The z integral in (Blc) Iz is composed of 16 terms each with 

the form 

l[mn)= j ulmu2ndz,    «,„ = **■ 

and 

+ "\mu2n dZ 
Jz02 

_ rimn),   Amn) ,   Amn) 
~'\z    +'2z    ^'3z     ' 

/ir^Zoi + fZoA 

/^«)=^7-
1[(l+£(Zo2-77r1))e 

-o+^zoi-vr1))]. 

-(l + £(z02-^
1)^('?1 + '7^- 

Case 2: >7><0, %>0, ^02; «i«'«** abbreviated- 

Z JO J«| -'Z02 

4r) = e_W[z02+^2/2-€I-£e^2], 

/(7)=%-1[l + £(^-772-,)-(l + £(Z02 

Case 3: J7,<0, %>0; z02
<fi- 

/(""'= f °2+ f'+      , 
Z JO Jzo2     J«i 

/(r)=77r.[(1+^U-02_77r'))e^02_l+£/77l], 

(B5) 

(B6) 

-vV))e'Ml 

77, e {a,-,/?,,-«,-A) - 
(B2) '72(el_z02> 

Similarly, each component Nai is composed of a sum of 
terms, each containing a z integral with the form 

/<->=£-%;'[(!+ £(e,-77;
1))^2 

-d+£Uo2-'7;1))^'7,(6'_z02)^ 

(B7) 

= z> ^im* /<"->= J«,M«2»(l + ft)^.      Uim = *Vi' 

and 
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Ca^ 4; 77,,%<0 and hiM^I- 
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(B8) 
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u        2z   * 

/<»»)=e-«T7->[(l + ^(A-^l))<f'».* 
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A simplified model, termed the flexure model, is used to analyze elastic waves in a weakly coupled 
periodic stack of disks bonded by thin layers of a weak polymer. Comparison with results of a more 
complete two-dimensional (2-D) axisymmetric model reveals the importance of axial stress and 
nonlinear distribution of radial displacement across the thickness. Also, in the 2-D model, it is 
possible to eliminate extensional modes through the thickness and inertia of the bond without 
compromising accuracy. In the 2-D model and for low radial wave numbers for a defined mode, its 
phase and group velocities can be approximated by the 1-D mass-spring model. They undergo 
discontinuities at the boundaries of extensional propagation zones. The flexure model reproduces the 
2-D characteristic speeds but with slightly wider propagation.zones and faster wavefronts. © 1998 
Acoustical Society of America. [S0001-4966(98)04811-5] 

PACS numbers: 43.40.Dx, 43.20.Jr [CBB] 

INTRODUCTION 

Wave propagation in layered media finds a wide variety 
of applications. Examples include geological oil exploration, 
shock isolation and crash management in automotive com- 
ponents, delamination in composites, and ballistic protection 
by passive stacked armor. Elastic waves in layered media 
have been studied extensively. Propagation of harmonic 
waves in one-dimensional (1-D) layered media by mono- 
chromatic sources can be found in Refs. 1-5. Extension of 
the theory to 3-D periodic media is treated in Refs. 6-10. 
Analysis of simple periodic structures adopting Floquet 
theory to propagation and attenuation zones is treated in 
Refs. 11-21. The methods used to analyze this problem 
ranged from purely numerical, like discretization and geo- 
metric optics, to purely analytical, like modal and transform 
techniques. In contrast with the extensive work reported on 
harmonic waves,-jelatively less attention was devoted to. 
transient waves despite their importance in many practical 
applications. Reference 22 treats transient uniaxial waves in 
finite ordered and disordered bi-periodic stacks. The method 
relies on deriving transfer matrices in harmonic space relat- 
ing state vectors at the interface between layers. Equilibrium 
of stress and continuity of displacement at each interface 
produces ä system of tri-diagonal block matrices yielding 
modal characteristics of the stack. Transient response is 
found from an expansion of these modes. Simplified analyti- 
cal models of the exact analysis in Ref. 22 are constructed in 
Ref. 23 yielding insights into the mechanics of uniaxial 
waves by reducing the parameters to those essential in con- 
trolling propagation. 

Reference 24 extends the analysis in Ref. 22 to 2-D 
axisymmetric waves in a finite periodic stack of disks 
bonded by weak layers. In this work, radial dependence sat- 
isfies approximately the condition of "simple supports", i.e., 
axial displacement and radial derivative of radial displace- 
ment vanish at the lateral boundary. This approximation 
yields a dispersion relation in radial wave number enabling 
the separation of axial and radial dependencies. Transfer ma- 

trices relating displacement and surface traction at the two 
faces of a disk in the stack are then determined. The solution 
then proceeds along steps similar to the 1-D analysis. From 
Ref. 24, important results of analyzing 2-D propagation in a 
stack of N periodic sets are: 

(1) Fixing the radial wave number mr, there exists an 
infinite number of system resonant frequencies of the stack 
Clj(mr), y= 1,2,3,..., which appear as an ascending series of 
points in an Cl vs mr plot. A line drawn through the lowest 
% C/ = l) f°r eacn mr forms the first "frequency line." 
Similarly, a line drawn through the next higher Clj (j=2) 
forms the second frequency line, etc. In a plot of resonant 
frequency Q. versus radial wave number mr satisfying the 
dispersion relation, O follows lines belonging to one of four 
groups: 

(a) a flexural group of N lines with dominant flexural 
motion of the disk; 

(b) an extensional group of N lines with dominant radial 
and axial motions of the disk; 

(c) a shear group of N—l lines with dominant shear 
motion of the bond; 

(d) a second shear group of N lines with dominant shear 
motion of the disk. 

Lines of one group may change type to another near 
coalescence although frequency lines never cross. Groups (c) 
and (d) above may be neglected without changing the re- 
sponse appreciably.. 

(2) For the excited disk, radial and circumferential stress 
(arr,o-eg) is the sum of an equivoluminal part from flexure, 
antisymmetric about the disk's neutral plane, and a volumet- 
ric part from axial stress over the footprint of the excitation. 
The volumetric part is large close to the footprint and dimin- 
ishes steeply elsewhere. 

(3) For other disks in the stack, (arr,o-ee) mostly de- 
pend on flexure with an anti-symmetric distribution about the 
disk's neutral plane. Unlike the linear distribution character- 
istic to plate flexure theory, termed the Kirchhoff assump- 
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tion, the 2-D distribution is not linear and deviation from 
linearity rises with disk thickness. 

The purpose of this study is to understand the roles of 
axial stress, the Kirchhoff assumption in the Mindlin plate 
equations,25 inertia of the bond producing motions in 1(c) 
above, and extensional motions of the disk producing mo- 
tions in 1(b) above. Neglecting these motions yields a sim- 
pler and more efficient algorithm with prescribed error 
bounds, useful in preliminary parametric analysis of wave 
propagation in periodic stacks. Characteristic of wave propa- 
gation in periodic media is the existence of propagation and 
attenuation zones, PZ's and AZ's. Within each zone, propa- 
gation constants, and phase and group velocities control 
transmission and speeds of wavefront and energy. These will 
be called propagation quantities. They reveal in a more direct 
way the effects of various assumptions and approximations 
than can be seen from frequency spectra and histories of 
transient response. 

A number of simplified models will be constructed, 
some based on the flexure model which allows only flexure 
of the disks, and others based on a more complete 2-D 
axisymmetric analysis. Comparing results from these models 
reveals the importance of their underlying approximations 
and the effects which they ignore. 

Section I develops the analysis of a periodic stack adopt- 
ing Mindlin's plate flexure theory. It treats the bond as an 
elastic spring resisting relative axial and shear motions from 
flexure of the adhering disks. Section II revises the analysis 
of the periodic stack.adopting the 2-D Navier equations of 
elasto-dynamics. It differs from Ref. 24 in that displacements 
rather than potentials are chosen for dependent variables. In 
contrast to the flexure model which uses a body force, the 
2-D model for the external excitation uses the static-dynamic 
superposition method which reduces substantially the num- 
ber of eigenfunctions needed for convergence of transient 
response by modal analysis (see Ref. 26). Section III com- 
pares transient histories computed by the various models and 
explains how differences in response amplitude relate to the 
approximations in-flexure analysis. Section IV compares 
propagation quantities (fi,cp ,cg) by the various models and 
explains how they change with radial wave number where ft 
is propagation constant and cp, cg are phase and group ve- 
locities. 

kGh(ylw+<p) + qz=ph 

dip    i/f 
cp = \7-tff=— +-, 

dr     r 

d2w 

IF' (lb) 

V2= 
d1      1   d 

(lc) 

where r is radial coordinate, D=Eh3l\2{\- v2), K is shear 
constant, v is Poisson's ratio, (E,G) are moduli of elasticity 
and shear, h is thickness, p is density, f is time; qz is trans- 
verse loading from external pressure or bond extension, and 
Mr is moment from bond shear. Operating (la) by (dldr 
+ 1/r) converts i^to cp, then eliminating <p from (lb) reduces 
(la,b) to a single fourth order equation in w. 

1   d2 

V°"^ 

.2 1 

1 

D 
1 

2       l    d 

Eh2 

12   dl 

+ cfh2dt' ?lw 

ITkGil-v1) 
2     h

2   d2 

^Vo+12?F 

1   I Mr      ^r 
+ D\1r~+~r~ 

„2_ 
KG 

"PW^)' 
c =- (2) 

Let "/" denote the order of a disk in the stack. For disks 
bonded by thin elastic layers, qz applied to disk "z" is'pro- 
portional to the bond axial stiffness and relative axial dis- 
placement of disks "/", "/+1," and "i-1 "■: 

iz = ~h~ (2wi 

Ebe-Eb 

-wiri-wi+l), 

(1-Vb) 
(3) 

(i+vb)(i-2vby 

Ebe is the modulus of the bond in uniaxial strain, (Eb,vb) 
are bond modulus in uniaxial stress and Poisson ratio, and hb 

is bond thickness. From Appendix A, Mr is proportional to 
bond shear stiffness and relative radial motion of disks "i", 
"j + l,"and"i-l": 

L ANALYSIS BY PLATE FLEXURE THEORY 

Assume that the stack is made of disks of radius a, 
bonded by thin elastic layers modeled as linear springs re- 
sisting relative axial motion along z and radial motion along 
r of the adhering disks. In cylindrical coordinates and axi- 
symmetric motions, Mindlin's plate equations for axial dis- 
placement w and cross sectional rotation if/ are 

D 

2 
(l-v)V?^+(l + v)^ -KGM ifr+ 

dw 

~dr 

h> dlip     - 
=pY2lF+M- (la) 

G h2 

(4) 

where Gb is bond shear modulus. Invoking (4) in (2) yields 

dMr    Mr    Gbh2 

+ — =—-—(2<pi+<pi+1 + <Pi-i); 
or        r        nb 

eliminating <p,- in (5a) using (lb) yields 

(5a) 

8Mr    Mr        Ghh2 I   ,     I   a2 

dr'      r *°?a7< 
X(2w, + w,_I + w1+1). (5b) 

Substituting (3) and (5b) in (2) produces the coupled flexural 
equation of the t'th disk 
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0~3ä? 

Ehbh 

X(8iwi-wi-]-wi+l)- 

\2kG(l-v2) 

3Gfc(l-v
2) 

12c,2 dt2 

Ehhh 
V2- 

1   dl 

71? 
X(5,W1 + W,_! + H',+ 1), 

«5,-=3 — integer 
i+1 

■+Jf 

(6) 

The left-hand side of (6) accounts for flexural stiffness and 
inertia of the disk. On the right hand side, the first part ac- 
counts for axial coupling along z of neighboring disks by the 
bond, and the second part accounts for shear coupling along 
r by the bond. 

It was shown in Ref. 24 that simple supports at the lat- 
eral boundary of the disk can be approximated by 
du(a)/dr=0, which in plate theory reduces to diff{a)ldr 
=0. This boundary condition allows separation of variables 
and yields the dispersion relation 

^o(y,)=0,    yr=kra, (7) 

where kr is the radial wave number. Assuming harmonic 
motions in time with frequency to, a solution to (6) satisfying 
(7) has the form: 

2   2 o> a "Pi 

yra 

(8) 
Ji(krr)e' 

Substituting (8) in (1) for all disks in the stack determines a 
banded system of simultaneous equations with width 3: 

Aw0=0, 

Au=(-r2r+rlK-y2r+72s)-y2oj2 + Sßa+S,B, , 
hi 

^/,i"+i ~ ■Ai,i-i—    Ba + Bs> 

12£6f(l-j/
2)a4 

B„ = - Ehbh3 

..2\„2 

1.21 

i + y'^-y2 
'? (9) 

3Gb(l-v
l)a' ,      , 

g.=     \. ■      (~y2+y2), Ehhh 

2 = _&1_ 
hl   6(l-v)/c* 

o>a 
yo= 

CO 

Solution of the implicit eigenproblem (9) yields eigenfre- 
quencies cjfm and eigenfunctions <J>ym of the stack for flex- 
ural and shear motions. Since dispersion relation (7) does not 
satisfy natural boundary conditions, the set {<£/„,} is not or- 
thogonal. 
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TABLE I. Properties of basic stack. 

E (lb/in.2) p (lb sVin.4) V A (in.) 

Disk 
Bond 

4.64X107 

2X10" 
3.04X 10"4 

10-" 
0.24 
0.48 

0.5 
0.01 

Consider a stack of five disks with radius a = 3 in. 
bonded by four weak layers with the properties given in 
Table I. This will be termed the "basic stack." Let N be the 
number of disks in the periodic stack. Fixing the number of 
radial half-waves, mr=yrltT, there exists a group of N low 
resonant frequency lines corresponding to flexural modes 
and a group of N high resonant frequency lines correspond- 
ing to disk shear modes. In the flexural group, the first mode 
is anti-symmetric about the stack's plane of bilateral symme- 
try, i.e., all deformed disks are identical in shape and mag- 
nitude [see Fig. 1(a) and (f)]. Its frequency is slightly higher 
than that of the lone disk because of shear stiffness from the 
bond. The second mode is symmetric about the plane of 
bilateral symmetry, i.e., deformed disks on one side of this 
plane are mirror images to those on the other side [see Fig. 
1(b) and (j)]. More complex coupled modes follow with 
shapes alternating between symmetric and anti-symmetric 
[see Fig. 1(c), (d), (e), and 1(h), (i), (j)]. For each mr, the set 
of N flexural modes resembles the set of (N— 1) modes in 
the first propagation zone PZ1 of a 1-D free stack.22 In 2-D, 
N distinct coupled motions are possible. In 1-D, only (N 
— 1) possible motions have nonzero frequency, the Nth be- 
ing a rigid body translation of the 1-D stack. 

At this point it is possible to create another approximate 
model by neglecting bond inertia in the flexure model above. 
Comparing the resulting frequency spectra will reveal its ef- 
fect. Figure 2(a) plots eigenfrequency ft(Hz) of the flexural 
group versus mr for the stack with massless bond and prop- 
erties in Table I. The gap between O lines narrows smoothly 
with mr. Figure 2(b) plots Q, of the disk's flexural and shear 
groups versus mr including bond inertia. Close to the shear 
frequency of the bond, the lowest (N— 1) lines of the disk 
shear group change type and follow the bond shear line until 
coalescence with the flexural group. These lines change type 
again near coalescence with the flexural group, while (N 
- 1) lines of the flexural group change type to become the 
bond shear group. This coalescence without crossing of fre- 
quency lines manifests uniqueness of the solution imposed 
by linearity of the problem. The gap between frequency lines 
of the flexural group widens after coalescence with the shear 
group because of the drop in bond mobility caused by a 
change in phase after crossing the bond shear resonance. 

Transient response to external excitation is found by 
modal decomposition of the axial displacement vector w 

M 

w(r,z,r)= 2 flm(f)<S»/m(r,z). 
m=l 

(10) 

Substituting (10) in (6), multiplying each side by <E>ym (r,z), 
and integrating over the stack's volume yields 

M(ä+co2a) = F/0(f), (11a) 
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mr = 0.586 

: 111 n 

(a) fi = 4425.32 (Hz) (b) fl = 33591.14 (H2) (c) 0 = 63610.88 (H2) 

(d) 0 = 87612.45^ (e) 0=103121.48^ 

mr = 2.717 

■IMMB— 

(f) O = 58539.33 (H2) (g) O = 66681.06 (Hz) (h) O = 84639.26 (Hz) 

(i) 0=102561.62 0g (j) 0 = 115021.38^ 

FIG. 1. Eigenmodes of the stack of five periodic sets (flexure model): (a)-(e) mr=0.586; (f)-(j) mr=2.717. 

where ( ') is time derivative, M is the full matrix of gener- 
alized mass, and F is the vector of generalized force: 

MmMm\p\n),    Fn = (n\p0), (lib) 

wherep(r,t)=p0(r) fQ(t) is the external pressure excitation 
acting on the stack. Inverting M in (11a) yields uncoupled 
equations in the generalized coordinates a(f): 

SJt) + <o2ma(t) = Pmf0(t),    P=M-'F. (12) 

A solution to (12) follows in terms of Duhamel's integral: 

*«(')=-— f7o(T)sin«m(*-r)<*r. (13) 
<>>m  JO 

II. ANALYSIS BY 2-D AXISYMMETRIC THEORY 

For axisymmetric motions of a disk, the Navier equa- 
tions of elasto-dynamics in cylindrical coordinates are: 
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d2u d2w d2u 

d l du     u\ , , d2w 
(X + ^ Jz [Tr + 7J + ^   °W + (X + 2/i) 

d2w 

(14) 

dz2 

V"_ dr2 + r dr    r° .2 ' (15) 

where (u,w) are radial and axial displacements, and (X,/x) are 
Lame's constants. Assuming harmonic motions in time with 
frequency w, separation of variables yields: 

" M(r,z,r)=y1(fcrr)"(z)«"". 
(16) 

w(r,z,t)=Mkrr)ü(z)e"". 
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0.8 

(a) massless bond 

0.6 

fl(MHj) 

-i 1 1 r 

(b) including bond inertia 

''   bond shear 

FIG. 2. Spectra of stack resonant frequency Ü vs mr (flexure model): (a) 
massless bond; (b) including bond inertia. 

The radial function approximates simple supports at r-a 
[see Eq. (7)]: 

du(a,z,t) 

Jr 
= 0 

which defines the~radial wave number kr as 

J'^kra) = 0. 

Substituting (16) in (14) and (15) yields 

(17a) 

(17b) 

T + lTT^T   *rj»    X + 2fikr dz    U' K + 2/J. dz2    \\ + 2fi 

\ + fj.     du    k + 2/j.d'w      pwz     -\ 
 -kr—+ 7T+ *:|w = 0. 

fi      T dz l*      dzz     \  (i 

(18) 

Equations (18) admit solutions in the form: 

n(z) = Ceaz,    w(z) = Deaz, (19) 

where C,D are constant coefficients. Substituting (19) in (18) 
produces the axial dispersion relation in or. 

au   an 

La21     a22j 
= 0, 

HS* 

(20) 

(20a) 

M 
an = 11   k + 2fi        \\ + 2fi «» + I^r-*J1. (20b) 

ö12
= 

a22= 

■ kra;    a2\-—-—kra, 
k + 2/j. V 

X + 2/J. «M^tf 
Equation (20) is quadratic in a2 yielding four complex val- 
ues ctj, 7 = 1,4. From (19), 

^--%C^---%^)D^ 

w(z) = 2 DjeaJz. 
7=1     . 

(21) 

The constitutive equations are 

dw 
äzz=kkrU+{k + 2p)—,    Trz=fi — -krw .    (22) 

dz 

du 

Define the state vector S as 

s={f,g}r, (23a) 

where f={ö-zz,Trz}
T and g={K,vv}r are traction and dis- 

placement vectors over a face of the disk. Substituting (21) 
in (22) relates the state vector S={äzz,Trz,ü,w}T to coeffi- 
cients B={Dj\T: 

S(z)=B(z)D, 

B1j(z)={kkrCj+(k+.2^)ajDj}eaJz, 

B2j(z) = (fJ.ajCrkr)e
aJz, 

B3j(z) = CjeV, 

B4j(z)=Dje°Jz, 

(23b) 

(23c) 

where in (23c) C, is related to Dj by (20a). Evaluating (23b) 
at z = 0 and z=h, then eliminating D, produces the transfer 
matrix T relating state vectors on the two faces of a disk: 

S(ä)=TS(0),    T=B(A)B_I(0). (24) 

T is expressed in terms of four submatrices tki as 

T= 
til      J12 

.*21      *22 

(25) 

For a bi-periodic stack of N repeated sets, where each set 
except the last is made of two layers (one disk and one bond) 
continuity of S at the interfaces of layers produces the global 
tri-diagonal block matrix MG: 

MGSG=0, (26a) 
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where SG is the ensemble of the Sk at all interfaces and the 
two boundaries of the stack: 
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SG
_

{SI>S2,...,S2W_I} 

Mr= 

I 0 0 0 

w M2 I 0 

w ^22 0 I 0 0 

0 0 tff 
t(2) 
M2 I 0 

■8} 
*22 0 I       0 0 

0 0 til» 
4i} ® o 

0 

I 

0   0   t' (1) 

41} 

(26b) 

t£} I 0 

&> o I 

0      I o 

(26c) 

where I is the unit matrix and the superscript (0 in t$ de- 
notes layer number in the bi-periodic set. The first and last 
rows in (26b) correspond to the free traction conditions at the 
two faces of the stack. Eigenvalues a>m and eigenfunctions 
4>Gm of the stack are determined by the condition: 

det|M0|=0. (27) 

Just as in the case of the flexure model, it is possible to 
create an approximate 2-D model by neglecting inertia of the 
bond. In this way, its effect can be evaluated. For the stack 
with properties in Table I, Fig. 3 plots flvsmr for the first 
two frequency groups when the bond is massless. The first 
group includes five lines of flexure dominant motions of the 
disks and resembles the group in Fig. 2(a), while the second 
group includes five lines of radial and axial extensional 
dominant motions of the disks. When mr<2, the two groups 
are not segregated, i.e., radial modes occur among flexural 
modes. Including bond inertia introduces additional groups 
with dominant shear motions of the bond. 

0.7 

ftfMHJ 

i r^ 

FIG. 3. Spectra of stack resonant frequency ft vs m, with massless bond 
(2-D model). 

Transient response proceeds by the static-dynamic su- 
perposition method. Displacement u is expressed as the sum 

u=urf+/o(r)u„ (28) 

where ud and u^ are homogeneous dynamic and inhomoge- 
neous static solutions and /0(f) is time dependence of the 
excitation. Expand u,, is eigenfunctions 

u</=2 fly(0*j(x) = 2 aj(t)\j). (29) 

where {$j(x),<Oj} is the modal set of nonorthogonal eigen- 
functions and eigenvalues. Substituting (28) and (29) in the 
equations of motion 

^u 

dt 

yields 

2 (ä; + <ö;fly)pÜ>=-/(0pO,(xJ- 

(30) 

(31) 

Performing inner products on both sides of (31) yields 

Nv(äj+ofa)=-Nalf(t), (32a) 

Nkj=(k\p\j), (32b) 

Nak={k\.pu,(x)).- (32c) 

Expressions for Nak and Nkj are derived in Appendix B. 

III. RESULTS OF TRANSIENT ANALYSIS 

The basic bi-periodic stack with the five sets and prop- 
erties listed in Table I is chosen for comparing results from 
the various models. A trapezoidal forcing pulse of unit inten- 
sity is assumed with 5-/JS rise and fall times and 25-fJs du- 
ration acting over a concentric circle with radius rp 

= 0.25 in. On the top face of each disk, displacement and 
normal stress histories are computed at four radial stations: 

3374   J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998 Michael El-Raheb: Transient waves in layered media   3374 



r=0, rp, 2rp, and Arp. In contrast, shear stress is computed 
along the neutral plane (z = A/2) of each disk and at the same 
four radial stations. Plots of histories of displacements (u,w), 
and stress (azz,arr,crrz) are presented for each disk in co- 
lumnar form. The column at left results from a flexure 
model, while the column at right results from a 2-D model. 
In both models, bond inertia is neglected and 16 radial wave 
numbers are considered in the radial expansion. In the flex- 
ure model, only the flexural group shown in Fig. 2(a) is 
included. In the 2-D model, the flexural and first extensional 
groups shown in Fig. 3 are included. 

Figure 4 compares histories on the first disk subjected to 
the forcing pulse. Flexure analysis underestimates displace- 
ments and stresses by 15%. For r=£rp, arr and u are lower 
by 50% and 30% respectively, while the difference drops to 
15% for r>rp. In 2-D analysis, arr and <ree are made of 
two parts: an equivoluminal part from flexure anti-symmetric 
about the disk's neutral plane and a volumetric part from 
axial stress. The latter is large under the footprint and dimin- 
ishes rapidly remote from it. It is this part in 2-D which 
accounts for the larger crrr and u when r=£rp. For r>rp, the 
difference in the two models is caused by the Kirchhoff as- 
sumption in plate theory. 

Figure 5 compares histories on the second disk. In con- 
trast to the first disk, flexure analysis overestimates displace- 
ments by 15% and stresses by 25%. This can be explained as 
follows. In the first disk, the volumetric part in 2-D from 
axial stress raises strain energy. Since total instantaneous 
strain energy of the stack is conserved, strain energy of suc- 
ceeding disks along the stack must be reduced. Also, the 
shape of the Trz histories from the two analyses differ sub- 
stantially before reflexion from the lateral boundary [com- 
pare Fig. 5(e() to (e2)] yet the relative magnitudes are still 
within 25%. 

Figure 6 compares histories on the third disk. As with 
the second disk, flexure analysis overestimates all variables 
by 15%. The difference in rrz histories grows even more 
although magnitude, drops, diminishing its importance in re- 
sponse. The drop in rn is caused by radial dispersion of the 
pulse as it propagates across the stack. 

The same observations apply to histories on the fourth 
disk (not shown), where the difference between the two 
analyses drops to 10%. However, this trend is broken for the 
fifth disk where the difference in magnitude depends on the 
variable (see Fig. 7). After 60 /AS, crrr traveling at the shear 
speed reaches the axis of the stack after reflecting from the 
lateral boundary. After dropping to a minimum on the sec- 
ond disk, (Trr rises again and peaks on the last disk. 

Figure 8 illustrates instantaneous snapshots of the de- 
formed stack at intervals of 5 /is for the duration of 60 /is. 
At r=5 /is [Fig. 8(a)], the pulse applied to the lower disk 
produces local deformation confined by the wave front. At 
f = 10 /is [Fig. 8(b)], the pulse spreads radially along the first 
disk, and propagates axially reaching the second disk. At / 
= 20 /is [Fig. 8(d)], the pulse reaches the back of the stack. 
Note that disk curvature diminishes along the stack, produc- 
ing lower flexural stress, consistent with the inverted conoid 
of fracture observed experimentally. At f=25 /is [Fig. 8(e)], 
the forcing pulse elapses, reducing local deformation of the 
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forced disk over the footprint. At t = 30 /is [Fig. 8(f)], flex- 
ural waves in the first two disks reach the lateral boundary. 
At r=50/is [Fig. 8(j)], dispersion has caused all disks to 
move in unison with almost equal amplitude and shape, 
which is not clearly described by specific waves propagating 
with defined wave fronts. At t=60 /AS [Fig. 8(1)], reflections 
from the lateral boundary reach the axis raising amplitude 
and flexural stress of the last disk, as confirmed in Fig. 7(d2) 
by the negative peak of crrr at 60 /is. This is the second 
highest intensity of a„ next to that on the excited face of the 
first disk. This tensile stress on the bottom face of the stack 
causes "spallation." 

IV. RESULTS OF PROPAGATION QUANTITIES 

This section derives propagation quantities (LL,CP ,cg) of 
the bi-periodic stack adopting flexure and 2-D models. Since 
radial wave number yT is prescribed by a dispersion relation 
that satisfies approximate simple supports at the lateral 
boundaries [see Eq. (7)] propagation quantities are computed 
for specific values of yr. In this way, propagation relates to 
frequency groups in Figs. 2 and 3. 

In the flexural model, Floquet theory requires that 

w — e^vv,-!,    Wj+^e^W;, (33) 

where w;, w,-_ ], and wi+l are axial displacement of disks i, 
i—l, and i'+1, respectively, and LL is propagation constant. 
Substituting (33) in the ith row of Eq. (9) yields 

Au+Au+i(e»+e-n = 0. 

Solving the quadratic in (34a) for eß gives 

(34a) 

^=(-A,,±VAf/-4A,.I.+ 1)/(2AM+1)-X1,2 

=*/i = log(\). 

Since /i is related to axial wave number kz by 

kz=fi/hs, 

(34b) 

(35a) 

where hs is set thickness (hs=h + hb), then phase and group 
velocities cp and cg follow: 

cohr du) 
(35b) 

In the 2-D model, the transfer matrix T in Eq. (25) re- 
lates state vectors at two faces of a layer: 

S,+1 — TS(-, 

S,+2=TfcS/+I, (36a) 

where T and Tfc correspond to disk and bond in the bi- 
periodic set. Tj of a set then follows from (36a) 

T,=TfcT. (36b) 

Floquet theory requires that 

S1+2=^IS,=T,S(., (37a) 

=>|T,-I^| = 0. (37b) 
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FIG. 4. Comparison of histories from the two models for disk 1:  
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Propagation constants are related to the eigenvalues of T, 
yielding (cp,cg) by applying (35b). 

Results from the 2-D model are presented first, while 

those of the flexure model are presented later because it is 

more approximate and the disappearance of any features can 

be readily observed. For direct comparison with the 1-D 
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results in Ref. 23, ti={fiR,fi{) is normalized by IT, and cp 

and cg are normalized by c0 where 

c0-hs 
Ebe 

1/2 

iphhb{l + T/z)(l + l/(zT))\   '    
z = pc/pbcbe,    t=hbclhcb£,    cbe= yjEbe/pb. 

(Z,T) are impedance and travel time ratios in the bi-periodic 
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FIG. 5. Comparison of histories from the two models for disk 2: ■ ■r=0; — r=2rp; r=Ar„. 

set. For some number of radial half-waves mr=yrlir, is the resonant frequency of the set when the disk acts as 
propagation quantities (yu.Ä/ir,)tt//'n-,Cp/co,cx/co) are plot- arigid mass and the bond as an elastic spring (see Ref. 23 and 
ted against normalized frequency <ahs/c0, where (fiR,fJ.i) Appendix A). To reproduce 1-D results in Ref. 23, propaga- 
are real and imaginary parts of ft. Note that don quantities are computed for mr=0, as shown in Fig. 9. 

The solid lines in cp fc0 and cg /c0 agree closely with those 
oe = c0lhs (38b)       of !.D shown m Fig 5(a) of Ref 23 
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FIG. 6. Comparison of histories from the two models for disk 3: r=0; •  •  ■  ■ r=rp; —- r=2rp ;  r-4r. 

For the first radial mode with | wave along r, mr 

= 0.59, propagation quantities of the flexural group shown as 
solid lines in Fig. 10 are not segregated from those of the 
first extensional group shown as dashed lines, as also noted 
in Fig. 3. Lines of (cp ,cg) undergo discontinuities marking 
the start of PZ2 and the end of PZ1. Ignoring the singular 

behavior of cp and the sharp drop of cg at the boundaries of 
PZ1 and PZ2, their average lines follow approximately the 
same shape and magnitude as the mr=.0 lines in Fig. 9. The 
fact that the propagation quantities for the low mr are similar 
to those for m,= 0 supports a valuable simplification. The 
mr=0 case is the same as a 1-D model of periodic masses 
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FIG. 7. Comparison of histories from the two models for disk 5: •r=0; r=r.; r=2r. 

and springs described in Ref. 23 where propagation quanti- 
ties are extensively characterized. This implies that all con- 
clusions drawn from the 1-D model can be carried over to a 
good approximation to both flexure and 2-D models. 

As mr increases, PZ1 becomes narrow, reproducing the 

width of the flexural frequency group in Fig. 3 (see Figs. 11 
and 12 for mr=U and 2.72). In fact, fixing mr, all stack 
resonant frequencies within a group (see Fig. 3) fall within 
the boundaries of PZ's. 

Propagation quantities drawn from the flexure model re- 
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FIG. 8. Snap shots of the deformed stack. 
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semble those drawn from the 2-D model in the following 
way. For the lowest mr where flexure and extensional groups 
are not segregated, lines of propagation quantities (Fig. 13) 
follow the trend of the 2-D's (Fig. 10) except that they are 
continuous across boundaries of PZ2. For the higher mr, 
when flexure and extensional groups are segregated, the lines 
resemble those of the 2-D's flexural group. Also, flexure 
analysis over-estimates (cp ,cg) and width of PZ's by at least 
5%. In tum, wavefronts predicted by the flexure model move 
faster than those predicted by the 2-D model, yielding 
shorter arrival times of waves along the stack. This is seen by 
comparing arrival times, which can be measured as the times 
when a dependent variable's history first departs from the 
undisturbed state, in corresponding columns of Figs. 6 and 7. 
The plane stress and Kirchhoff assumptions behind the flex- 
ure model are the causes of this discrepancy. 

V. CONCLUSION 

Results from treating wave propagation in a finite peri- 
odic stack according to the different models developed above 

are compared in order to reveal the effects of their differing 
assumptions. Histories of a stack forced by a trapezoidal 
pulse were used. Important features from comparison of the 
two primary models are: 

(1) On the forced disk, the flexure model underestimates all 
variables by 15% remote from the footprint and by as 
much as 50% in the vicinity of the footprint. This differ- 
ence is caused by the volumetric part of the stress from 
axial compression. 

(2) On succeeding disks, the flexure model overestimates all 
variables by as much as 25%, while the difference di- 
minishes along the stack. This difference is caused by 
the Kirchhoff assumption behind the flexure model. 
The effects on response of the approximations in the 2-D 
models are: 

(3) Neglecting inertia of the bond suppresses frequencies of 
the bond shear group leaving response histories un- 
changed. 

(4) Omitting the extensional frequency groups in the modal 
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expansion does not alter response histories. 
The reason behind conclusion (4) is that extensional mo- 
tions are already included in the analysis by the static 
part of the solution in uj0(t) in (28). This fact empha- 
sizes the importance of using static-dynamic superposi- 
tion which produces an accurate solution with the small- 
est set of eigenfunctions. Indeed, the body force method 
was unsuccessful in modeling the forcing function. Trad- 
ing computational efficiency for degree of approxima- 
tion, the plate flexure model may be used with caution 
for initial screening of parameters in the design of shock 
isolation devices involving stacks. The 2-D model is pre- 
ferred when accurate prediction of wave propagation is 
essential. 
Some further conclusions are drawn from consideration 
of propagation quantities: 
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(5) To a good approximation, all the conclusions drawn 
from the 1-D model of periodic masses and springs can 
be carried over to the flexure and 2-D models (see Ref. 
23). 

(6) Waves with higher mr are more dispersed and every 
transient model becomes dominated eventually by waves 
with low mr. ■ 

(7) Predictions with the flexure model are close to those of 
2-D when limited to the flexure groups. 

APPENDIX A: RADIAL MOMENT FROM BOND SHEAR 

Flexure of the disks induces shear of the bond. Inertia of 
the bond introduces shear resonances that raise or lower mo- 
bility of the bond depending on their proximity to flexural 
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resonances. The effects of bond shear and inertia are consid- 
ered invoking motions with vanishing axial displacement in 
the 2-D axisymmetric equations of elasto-dynamics: 

a2V\u + 
d2u 1   d2u 

s"  Pb 

,     dl     Id     1 
Vf=-T+-- 7 

or      r dr    r 

(Al) 

,2' 

where u is radial displacement, and (Gb,pb) are shear 
modulus and density of the bond. For unixial strain a2 

=2(1 — v6)/(l— 2vb). For approximate simple supports and 
harmonic motions in time 

u{r,z,t) = Ji{krr)u0(z)eiü", (A2) 

where J'o(kra) = 0 [see Eq. (7)]. Substituting (A2) in (Al) 
produces an equation in u0(z) 

d2u0 

dzl ■ + k :«o=0,    kt=yjl^-\  -(kra)2. (A3) 

To find the shear stresses on disk "i" from bonds "1" and 
"2" connecting it to disks "i'-l" and "i+l," respec- 
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The definition of V* in Eq. (lc) should be 

,    d2     Id     n2 

"   dr2     r dr     rL 
(lc) 

The factor Gbh2/hb in Eqs. (4), (5a), and (5b) should be 
Gbh2IAhb. In Appendix A, Eq. (A8) should be 

TJC(Z) = -T**G* 
~9i+k-2 sin kzz+(yi+k-\ 

cos k7z 
+^-+*-2COs*lA»)^TÄ z"b J 

while Eq. (A9) should read 

h 
Mr=-(r,(Afe) + r2(0))- 

hV\     kzhb    Gfc[2^.cositzAfc+^.+I 

^2/  hb sin kzhb 

which changes Eq. (A10) to 

(A8) Mr=[ 2    Gfc[2^I+^I+1+^,_i]/Äfc- 

(A9) 

(A10) 
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(b) bond "2": connecting "i" to "i+1": 

h h 
"(ß(z) = 2 ^' cos kzZ~2^i+l 

(A6a) 

+ fa cos kzhb) 
sin fczz 

sin &znfc' 
(A6b) 

Shear stress of the ifcth bond follows from the relation 

Tk(z)=-^Gb;    *=1,2. 

Substituting (A6a,b) in (A7) produces 

h 

2 

(A7) 

Tk{z)=-7;KGb ^1+ifc_2C0SfczZ + (^, + Jt_1 

+ ifri+k-2 cos kzhb) 
sin &zz 

sin fc.,/^ 
(A8) 

Shear stresses Tx(hb) and r2(0) acting on top and bottom 
faces of disk "i" from bonds "1" and "2" produce a radial 
moment Mr on disk "i": 

Mr=-(T,(Afc) + T2(0))-, 

M2    *ZA6 Y-r-G^lipi cos *Z/J6+<A,+ 1 + ^_,]. 
K.rti, 
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FIG. 13. Propagation quantities formr=0.59 (flexure model). 

tively, solve bond equation (A3) and apply continuity of 
axial displacement at the interfaces of disks "i," "i+1," 
and "i-1." For bond "1" connecting disks "i-1" to "i": 

2/   sin kzhb 

(A9) 

In the limit as (ifcz«fr)->0, the quasi-static moment is recov- 
ered 

(A10) Mr= -   Gfc[2to+to+1 + to-,]. 

"oi(0)= 2 fa-i >    "oi(Afr)= - 2 ^«' (A4) 

where Afc and n are bond and disk thicknesses, and iff is 
rotation angle of the disk cross section. Also for bond "2" 
connecting disks "i" to "i+1": 

"02(0) = 2 & ,     M02(^fc) = - 2 &+1 • (A5) 

In (A9) as (kzhb)-+ir, the fundamental shear resonance of 
the bond is crossed. As this resonance is approached from 
below, the bond mobility rises, reducing coupling between 
disks which narrows the gap between resonances. As shear 
resonance is crossed, bond mobility falls abruptly because of 
a change in phase, raising coupling between disks which 
widens the gap between resonances. 

APPENDIX B: INNER PRODUCTS IN 2-D 
AXYSYMMETRIC ANALYSIS 

Consider the nth eigenfunction and Ith layer in the stack 

N0in = {us\p\udn),+(ws\p\wdn),. (Bl) 

From Ref. 24 
00    1 2 

«,(r,z)= 2     E Csmje^Jz 

The two solutions of (A3) with boundary conditions (A4) 
and (A5) yield uok(z) in the form: 
(a) bond "1": connecting '7-1" to "i": 

m=l   [j=l 

4 

+ 2 Csmj\ßmj\ze^ 
7=3 

Ji(krmr), 

3383   J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998 Michael El-Raheb: Transient waves in layered media   3383 



ws(r,z)=zZ 
m = \ 

2 DtmJe*>* 
7=1 

+^3Dsmj\ßmj\ze^Jz\Mkrmr), 

ßmj=(-iy+1krm. 

Also from (21a,b) 
4 

"</n('%z) = 2 Cdnie
a->zJ,{krnr), 

i=l 

4 

w*,(r,z)=2 Ddnie
a"zJQ(krnr). 

(B2) 

(B3) 

Substituting (B2) and (B3) in (Bl) and performing the inner 
product yields 

oo       4     f    2 

;e=P,2 2 EQ/ 
£ °mnijZ 

= 1 1=1      y=l °mnij 

4 5    -z 

+ 2   Qn/Cimy -3— ( ^mnyZ - 1) | H< 
> = 3 °mni7 0 

N \mn 

oo       4     f    2 e°mnij-- 

+P/2 2  2*w>™,-;—I"' 
m-\ i—\   \j~\ °mnij   Q 

gömnijZ 

+ 2 DdniDsmj -r— (Smnijz =1)1"' 
.7 = 3 °mnij 0 

"rnnij     Pmj~'  &ni > 

1      f« 
AW'=^?J   JMrmr)Jj{krnr)r dr,    7= 1,2. 

Expressions forAr
m„ = (m|p|«) follow 

44 *   ..z 

^L'i=p/2 2 Qm,Qn; ^— |A' /vlmn 
1=1 >=T        " °mnij   0 

N 11 omn » 

(B4) 

4       4 
e°mnijz     _ 

+ P/2 2 DdmiDdnj-z \Nomn, 
i= 1 j= 1 °mnij   0 

^mn,7=ami + «nj- 
(B5) 

In (B4) and (B5), A, is thickness of the /th layer. To find Na 

and Nmn for the stack, sum over all layers 

"an     2-1  "an '      "mn     2J "mn 1 an     JLJ "an 
;=i 

(B6) 
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Abstract—A physical understanding is gained of some results acquired in the analysis of transient 
propagation of uniaxial elastic waves in weakly coupled periodic stacks using simple analytical 
models. Three simplified models are examined: a mass-spring chain, a single mass spring attached 
to a delayed moving base, and high frequencies of an elastic mass reacted upon by a spring. 
Closed-form expressions and asymptotic behavior are obtained for attenuation of maximum stress, 
characteristic velocities, internal stress distribution and transmission or suppression of high- 
frequency oscillations. The results provide insights in the design of impact resistant structural systems 
using layered periodic stacks. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The study of transient uniaxial waves in layered media is useful in composites, geophysics, 
ocean acoustics and oil exploration. A large body of work was produced that treated the 
harmonic propagation of waves in layered media excited by monochromatic sources. 
Thompson (1950), Haskel (1953), Rytov (1956), Anderson (1961) and Tennenbaum (1992) 
discussed time harmonic propagation in 1-D layered media. Sun (1968), Delph (1978, 1979, 
1980), and Herrmann (1982) extended the time periodic waves to 3-D periodic media. 
Mead (1971, 1975, 1978, 1984, 1986), Engels (1978), Gupta (1980), McDaniel (1982), 
Faulkner (1985), Keane (1989) and Rousseau (1989) considered simple periodic structures 
and applied Floquet theory to propagation and attenuation zones. Robinson (1972), Lee 
(1973), Chao (1975), Golebiewska (1980), Shah (1982), Kundu (1985), Mai (1988), and 
Braga (1990) discussed waves in composites. The methods used to analyze this problem 
ranged from purely numerical, like discretization and geometric optics, to purely analytical, 
like-modal and transform techniques. In contrast with the extensive work reported on 
harmonic waves, little attention was devoted to transient waves despite their importance in 
many practical applications. El-Raheb (1993) treated transient uniaxial waves in finite 
ordered and disordered bi-periodic stacks. The method relied on deriving transfer matrices 
in harmonic space relating state vectors at the interface between layers. Equilibrium of 
stress and continuity of displacement at each interface produced a system of tri-diagonal 
block matrices yielding the modal characteristics of the stack. Transient response was found 
from an expansion in these modes. Clearly, the complexity of the analytical solution in El- 
Raheb (1993) limits its usefulness in developing insights into the character of uniaxial 
propagation. In this reference, results on transient uniaxial waves were obtained for a stack 
of alternating hard and weak layers excited by a trapezoidal pulse of short duration (see 
Fig. 1(a)). 

The purpose of this study is to gain physical understanding of these results by a series 
of less general but simpler consistent analytical models, from which concise formulae 
describing propagation can be obtained. These models include: (A) the lumped mass- 
spring model; (B) the oscillator with delayed moving boundary model; and (C), the 
high frequency transmission model. A complete account of each model is found in the 
Appendices. 

Since the first propagation zone (PZ1) of the weakly coupled periodic stack is para- 
mount in propagation, the first simplified Model (A) termed "lumped mass-spring chain" 
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Fig. 1. (a) Geometry of periodic stack and trapezoidal forcing pulse, (b) Histories of« (microns) 
and a at interface of sets along the basic stack with m, = 20, J = 1.034, trapezoidal pulse with 

ty =20 fis. (Continued opposite.) 

reduces the continuum to a finite number of identical masses connected by weak springs 
where each hard layer acts as rigid mass and each weak layer acts as a massless spring. 
Results from this model re-confirm the importance of PZ1 on transient response and yield 
simple expressions for phase and group velocities cp and cg in PZ1 in terms of properties of 
hard and weak layers. Furthermore, an integral of the dynamic equations of motion of 
each set yields a conservation law relating maximum stress of first arrival to width of the 
trapezoidal forcing pulse and period of the primary stress wave prior to reflections. Indeed, 
this is identical to the scaling law derived in El-Raheb (1993) relating peak stress of first 
arrival to frequency interval of PZ1 and width of the trapezoidal forcing pulse. Model (A) 
also explains distribution of peak stress of first arrival within a hard layer and location of 
its minimum along the layer. 

The almost exact match of response histories from Model (A) and the modal solution 
in El-Raheb (1993) suggests one more level of simplification and Model (B) termed "the 
delayed moving boundary", which confines itself to a single mass and a single spring of 
Model (A) but with the spring connected to a base duplicating a delayed motion of the 
mass (see Fig. 10(a)). The hypothesis behind this model is that the wave front moves along 
the stack at the transient phase velocity in PZ1. This means that a pulse produced on top 
of a set arrives at the interface between one set and the adjacent set after a time delay 
equaling the thickness of the periodic set divided by transient phase velocity. Since the 
phase velocity derived in Model (A) is frequency dependent and the resonant frequency of 
a mass-spring set is the dominant frequency in the dispersed pulse, phase velocity is then 
evaluated at that frequency, which equals half the frequency interval in PZ1. Results of this 
model agree closely with results of Model (A). In this way, propagation in a weakly coupled 
periodic stack is reduced to its simplest constituents, namely frequency of the set and phase 
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Fig. 1—Continued. 

velocity evaluated at that frequency. This Model also shows that rate of attenuation of 
peak stress of first arrival along the stack is proportional to arrival time to the power —1/3. 

As explained in El-Raheb (1993), the second propagation zone PZ2 modulates response 
by high frequency from elastic resonances of the hard layer. The third Model (C), termed 
"transmission of elastic frequencies of the hard layer", relies on analysis of a single set 
including elasticity of the hard layer. It identifies the two parameters controlling high 
frequency transmission as rise time of the forcing pulse and dynamic stiffness of the periodic 
set. Furthermore, a simplified expression for stress response shows that if the period of 
elastic resonance of the hard layer equals rise time of the forcing pulse, high frequency is 
suppressed. 

Section 2 reviews results of El-Raheb (1993) and summarizes important features of 
transient uniaxial propagation in a finite periodic stack. Section 3 derives Model A of the 
finite lumped mass-spring chain. Section 4 derives Model B. Section 5 derives Model C. 

2. REVIEW OF RESULTS IN EL-RAHEB (1993) 

The following lists results in El-Raheb (1993), each accompanied by a brief explanation 
or extension obtained by the present analysis: 

1. In weakly coupled bi-periodic uniaxial stacks (see Fig. 1(a)), frequency response is 
divided into propagation zones PZ and attenuation zones AZ similar to pass and stop 
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bands in a filter. It was observed that the first propagation zone PZ1 is paramount. 
In fact, motions in PZ1 are those of a finite rigid mass-spring chain. 

2. At a fixed point along the stack, peak stress response prior to reflections from an 
external boundary is termed peak stress of first arrival, <r'nx. In El-Raheb (1993), a 
non-dimensional parameter, transmissibility J, was derived that scales and controls 
<fXmx- Wave transmissibility is defined as J = A(oPZ]tj{n where Aa>PZ] is the frequency 
interval of PZ1 and t/is the time interval of the equivalent rectangular forcing function 
that conserves impulse. In a stack of bi-periodic sets made of two materials A and B, 
AcOpZ1 ~ 2cJ[hA(zz)U2] where c^is the speed of sound, pAB is density, hAB is thickness 
in layers A and B, £ = (PACA)I{PBCB) is ratio of acoustic impedances, and f = (hBcA)l 
(hAcB) is ratio of travel times. When J <\, a]„x is attenuated, while when J > 1, 
ax

mx is initially magnified, reaching a maximum and then attenuating along the stack. 
These results, as well as a relation between ax

mx and J are obtained by the mass-spring 
chain description in a conservation form. 

3. In the hard layer, ax
mx is larger at the interfaces than within. A caustic generated by 

the envelope of the instantaneous linear stress distributions is obtained based on the 
mass-spring chain description that shows a minimum of ax

mx occuring at 0.6/;,,. 
4. An expression was obtained for maximum phase velocity c0 in the limit when frequency 

o) is zero. This expression is extended using the mass-spring chain description to a 
Taylor's series expansion of both phase velocity cp and group velocity cg in terms only 
of even powers of the frequency parameter (cohs/c0) where hs = hA+hB is the thickness 
of a periodic set. The ratios cpjc0 and cg/c0 are insensitive to J. 

5. When ax
mx attenuates along the stack, it does so monotonically. The asymptotic 

behavior of ax
mx in terms of arrival time of the wave front tp is obtained by the delayed 

moving base model. 
6. High frequency oscillations H.F. are enhanced or suppressed depending on stack 

configuration. By treating the hard layer as an elastic body reacted by the spring of 
the weak layer, an expression for H.F. response is derived in terms of the fundamental 
elastic resonant frequency of the hard layer and rise time of the forcing pulse. Also 
derived is an expression for dynamic stiffness which controls H.F. amplitude. 

In the sections to follow, the observations listed above will be tested, explained or 
expanded upon following the same order as the introduction. Unless otherwise indicated, 
the same test case will be used in examining the simplified models as in El-Raheb (1993). 
By generating and displaying again the results of El-Raheb (1993) as well as results of the 
simplified models, it is assured that they faithfully reproduce the observation to be explained. 

From El-Raheb (1993), the properties of the basic stack (see Fig. 1(a)) with 20 
biperiodic sets (ms = 20) are: 

hA = 1.245 cm;   hB = 0.025 cm 

£/4 = 320GPa;   £Ä = 69MPa 

pA = 3.25 g/cm3;   pB = 1.07 g/cm3. 

The trapezoidal forcing function is of unit intensity, with 5 fis rise and fall times, and a 15 
/is plateau (see Fig. 1(a)). The highest propagation zone in the modal expansion includes 
the second elastic resonance of the hard layer. For the basic stack this translates to a 
frequency of 800 kHz. 

3. LUMPED MASS-SPRING CHAIN 

In Fig. 1 (b) there appears histories of displacement u and stress a at the interfaces 
between layers in the stack. Each box groups histories at five consecutive interfaces. At 
each interface, u rises smoothly reaching a plateau after the forcing function elapses. The 
plateau is disrupted by the reflected wave from the farthest set, n = 20. The behavior of 
succeeding sets is shifted in time by an interval tf = nlijc. where n is set number. These 
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states of motion are typical of transient waves of rigid masses coupled by weak springs, 
showing that the response is largely determined by PZ1 (see Appendix A). The results from 
the method in El-Raheb (1993) and Model A are indistinguishable in this figure, which 
confirms the adequacy of restricting the continuum model to PZ1. The effects of dispersion, 
namely attenuation in a]„x and growth in trailing oscillations are clear from Fig. 1(b), 
graphs (e)-(h). As the wave front moves further into the stack, da/dt decreases, the pulse 
becomes wider, and al

mx attenuates to conserve linear momentum. 
In Appendix A, the mass-spring chain description is developed. With the hypothesis 

that prior to reflection from an external boundary, displacement histories at interfaces of a 
layer tend to quiescence, the following form of conservation of momentum is derived: 

ff, dt = I„ 

(A14) ff,df =      ff,_, dt = Ip 
o Jo 

where <r, is stress in the i'th spring, tL is time for quiescence and Ip is impulse. Furthermore, 
approximating the shape of the dispersed stress wave at the first interface by 

o"i(0 ^2<7"'x 1-cos ( 271- t^T (1) 

where Tis the period of the primary wave, and substituting (1) in (A 14) with tL = T yields 

T 
aL-2 = ffot/= Ip 

=>dlx = alJuQ=2tfIT (2) 

where tf\% the width of the equivalent rectangular forcing pulse delivering Ip. The period T 
of the primary stress wave depends on the relative magnitude of 2tf and n/coe where u>e is 

. the-fesonant frequency of the mass-spring set: 

T^max[2tf,7i/coe] (3) 

when 2r/^7t/cü„ ölx ä 2coetf/7i = J. When tf>%\<a„ ö]„x s 1. Therefore, if J < 1, 
d]„x < 1, and only \iJ>\ can S\,x exceed unity, which was the conclusion also reached in 
El-Raheb (1993). 

In Fig. 2 there appears histories of a for the basic stack along the first three hard 
layers. Histories at six equidistant stations in each layer including the interfaces are grouped. 
Figure 2(a) shows how a evolves along the first layer from the trapezoidal shape at the 
excited face, to the dispersed shape at the interface with the weak layer. In each of the 
following hard layers (see Fig. 2(b), (c)) histories at the different stations in a layer cross 
at the point where ax

mx is minimum. This fact, not obvious before the results were obtained 
and plotted, requires explanation. Consider the distribution of modal stress in a hard layer 
given by the transfer matrix in eqn (2) of El-Raheb (1993): 

ux = cos(kAx)uL + (\/kAEA) sin(kA.x)aL (4a) 

ax= -kAEAsm(kAx)uL+cos(kAx)aL (4b) 
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a   0.4 

20 40 60 80 100        120 

t(jLS) 

Fig. 2. Histories of a within each of the first 3 sets of the basic stack with m, = 20, J = 1.034, 
tf=20ps. 

where subscripts L and x denote quantities at the left boundary and at station x along the 
layer, and kA = co/cA. For modes in PZ1: 

A:,,* < ^ — (zf)  "^ < 0(1). (5) 

Expanding sin(^x) and cos(^x) in (4b) for small (kAx) yields 

ox S -<o2pAuLx+<rL. (6) 

Equation (6) shows that in PZ1, modal stress is linear with x. Since transient stress is the 
superposition of modal stresses, it too is linear with x. 

Figure 3(a)-(d) traces the time evolution of a within one particular hard layer. Each 
line corresponds to a a distribution at some fixed time t. The caustic generated by the 
envelope of these lines coincides with al

mx. The results are shown for four different stacks 
within the range of 0.478 < J < 1.551. It is clear in every case that ax

mx is minimum at 
x/hA = 0.6. From Fig. 4 showing caustics in the three hard layers following the first for 
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 1 -i.          i            i 
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x/hA 

Fig. 3. Distribution of a a along 2nd hard layer with t as parameter and formation of caustic (a) 
Jf = 1.551, (b) S = 1.034, (c) J = 0.738, (d) J = 0.478. 

each of the four values of J, it becomes clear that this is true also independent of 2, f and 

The parametric equation of the caustic may be determined from (6) using 

o(x, t) = {oR(t) - ffi(0) T- + trL(t) 
"A 

(7) 

where subscripts L and R denote quantities at left and right of a layer. If xc(t) is the local 
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-^-  0.487 

0 0.2       0.4        0.6        0.8       1.0 

x/hA 

Fig. 4. Distribution of peak stress of first arrival <s\„ within sets 2 —, 3 • • •, 4 - -- for different, 
values. 

is: 

\v 

axial coordinate at a point on the caustic, holding x fixed, then finding the extrema of the 
function in (7) yields (x„ oc(xc)): 

xc OL 

(fiR-<JL) 
(8) 

where (') is time derivative. Substituting (8) in (7) gives <JC at xc: 

(9) 

Then ac is an extremum at the xc where 

— = fj=>— = : = 0. 
dxc xc        hA 

(10) 

Clearly, the minimum occurs at some / = t„,„ when 0R(tm„) = cL(tmn) 

Ocmn = ^L^mn) = ^(U 

°L 

hA (OR-öL) 
(11a) 

This implies that a]„x achieves a minimum within a hard layer when stress is uniform 
throughout that layer, and confirms that all stress histories cross at tm„. That xcm„/hA = 0.6 
implies that instantaneously at / = tmn, the a line rotates about xcmn yielding 

■öR(tmn) = —-;crL(tm„). (lib) 
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From 
is: 

eqn (20) in El-Raheb (1993), the exact expression for propagation constant \i 

cosfi = rz^sin 
2z 

ysin(> f)+cosy cos (yf) = ET (12) 

where y = oihj cA. By definition 

(x>hs a>hs (13) 
cos-'(r) 

do)    hscA .      fl+z2 ...... / -M 
Cg = -— = — sin n j-jj- [cos y sm(yt) + T sin •/ cos(yr)] 

+ sinycos(yf) + fcosysin(yf)}-   .    (14) 

In PZ1, y < 2(zz)~'12 < 0(1). Expanding (12) for small y then substituting in (13) and (14) 
yields 

c, * c„[l -»27,2 -t'4y; + 0(y,6)] (15a) 

c, ^ c0[l-3v2y
2

p-3v<yA
p+0(y6

p)] (15b) 

where 

-2 

+ l+f 
■1/2 a;/!,     a»       2o) A, f.l+z' 

y = = — = = 2co,    c0 = cA—  i—— p      c0      oic     Acöpz, «,, |_      z 

v2 = [-2(l+f2) + fz]/(24ff) 

o4 = [17(fz)2-20(fz-+3)(l+f2)-120f2]/5760(fz>2. 

For f = 0(1) and large (TZ) : v2 ä 1/24, i;4 ä 17/5760. These values duplicate results in 
Balanis (1975). From (15a,b) it follows that: 

cp>cg 

cp-cg^2v2c0y
2

p+Q(yA
p). 

This difference between cp and cg is responsible for spreading of the pulse since the wave 
front moves at cp and a\ix moves at cg. 

The asymptotic expansions (15a, b) motivate using exact expressions for cp and cg in 
plots of (cp/c0) and (cg/c0) against y,, as shown in Fig. (5a), where the range 0 «S yp < 2 is 
the width of PZ1. Figure 5(b) plots the same quantities against (hs/l) where X = 2n/k is 
wave length. The curves in Fig. 5 are indistinguishable for different f and z in the range 
0.4 =£./< 1.5. 

4. OSCILLATOR WITH DELAYED MOVING BOUNDARY 

The simplest adequate model will describe how al,x varies along the stack. It is built in 
two steps: first, deriving expressions for stress at the first interface; second, determining 
how al

mx attenuates in following layers. Recall how the displacement history in Fig. 1(b), 
graph (a) led to the lumped Model A. Motion of the first layer can be approximated by 
that of single mass-spring oscillator with mass driven by the external force and spring 
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C 

c„ 

c 
c„ 

ü)hs/c0 

0.0      0.1      0.2      0.3      0.4      0.5 

hs/\ 
Fig. 5. Phase velocity c„ (-), and group velocity c, (—), in the first propagation ; 

connected to a moving base. The base displacement is the same as the mass but with a time 
delay r, = c,(a>.)/A, where cp(coe) is phase velocity evaluated at the frequency of the lumped 
model, a>e - - ACüPZI. Closed-form expressions for u and a of this new simpler Model B of 
the oscillator with moving base are derived in Appendix B. The response of succeeding 
masses can be found by repeating the steps above except that stress in the preceding spring 
acts as a forcing function and dispersion causes c,(<oe) to rise smoothly to cJO) = c„ Figure 
6 Compares histories of u and a as predicted by El-Raheb (1993) and Model B Also in 
Appendix B is derived an asymptotic value of 1/3 for the attenuation a where cl oc r" 
and that cp(coe) < c,< c0 and cg(coe) ^ cg < c0. ""     " ' 

Figure 7(a)-(c) shows how <xlmx, cjc0 and attenuation index a vary along a 46-set stack 
for three values of J, where c„ is the transient group velocity of ^ using the mass-spring 
description. From Fig. 7(a,b) and for m = 2, c„/c0 ~ 0.85 which coincides with cjc0 at 
(o-coe (re., G)A/c0=l) in Fig. 5(a) and also from eqns (A8) and (A9) yielding 
c9/c0 - V3/2 = 0.866. This implies that c, s cg(cot) where the force acts and c„ approaches 
c0 smoothly as the stress wave disperses. When J < 1, ^ < l everywhere and a increases 
with m in the interval 0.21 < a < 0.32. Note that the asymptotic value of a determined 
numerically is indeed 1/3. a falls as J increases, apparent from Fig 7(c) for J = 1 631 
where 0.15 < a < 0.28. 

5. TRANSMISSION OF ELASTIC FREQUENCIES OF THE HARD LAYER 

Appendix C derives relations for u and a in the first hard layer including its high 
frequency (H.F.) elastic resonances according to Model C. These high frequencies cor- 
respond to elastic motions of the hard layer in PZ2. From (C12), H.F. amplitude is 
proportional to (w,/,)-1 where eo, is fundamental resonance of the hard layer and tx is the 
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Fig. 6. Histories of u (micro in.) and a at interface of sets for basic stack with J = 1.034, tf = 20 
\i%: (a), (b) Continuum Model Ref. [1]; (c), (d) Moving base Model B. 

rise time of the trapezoidal pulse. H.F. vanishes if <x>xtx = 2jn=>tXs =y'/0,. For illustration, 
return to the case treated in Fig. 2, termed stack I, where fi, = 398.2 kHz and f1:I =j/Qi —(j) 
2.5 fis. Clearly, these histories exhibit no H.F. because r, = 5 ^s = (2) x 2.5 /xs = tu. Figures 
8 and 9 were computed by the method of El-Raheb (1993). In Fig. 8(a)-(f) there appears 
a histories in the first two hard layers for /, = 4 /is, 5 fis and 6 /zs. Pulse width has been 
adjusted to keep jyat 20 /*s. Results for /, = 4 fis and 6 fis exhibit H.F. The effects are larger 
for r, = 4 fis (compare Fig. 8(a) to 8(c)). Figure 8(b), (f) show that H. F. in the second 
hard layer diminishes. These histories are repeated in Fig. 9(a)-(f) for stack II with 
(hA, hB) = (0.45,0.05) and unchanged material properties for /, = 3 fis, 4.6 fis, and 6 fis. For 

' sfäck II; n, = 433.6 kHz and tu =;/fi, =(/) 2.3 fis. Thus, by the choice f, = 4.6 fis, the 
response in Fig. 9(c), (d) becomes free of H.F. Results for tx — 3 fis and 6 fis exhibit H.F. 
and the effect is larger for r, = 3 fis (compare Fig. 9(a) to 9(e)). 

Dynamic stiffness of the weak layer determines the nature of transmission of H.F. in 
hard layers below the first. Except for PZ1, propagation zones belong to one of two types. 
The first type includes clusters of m, frequencies centered at a resonance of the unconstrained 
hard layer £2^ =jcA/2hA. The second type includes clusters of (ms— 1) frequencies centered 
at a resonance of the unconstrained weak layer QBJ =jcB/2hB. To derive the dynamic spring 
stiffness kBd of the weak layer as an extension to Model C by including its inertia, using 
eqns 4(a), (b), evaluate <yx, ux at x = hB, set uL - 0 because the weak layer is assumed fixed 
to a stationary base as in Model C, and eliminate aL: 

ox = kBdux 

<~Bd 

1B 

y*cot}>B 
hB 

2nQhB 

cB 

(16) 
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<f = 1.631. 

where Q is circular frequency of excitation. In PZ1 

Q « QBI =>yB « 1 =>yBcotyB ~ 1 

=>kBd~EB/hB 

recovering the purely spring stiffness in Model C. In a PZ centered at fiA1 

EB( QAl\     ( nA] 
KBd = "J—    K—-   COt ( TT-^ 

As increases, so does transmission, while amplitude of H.F. diminishes. As ^decreases 
so does transmission, while amplitude of H.F. intensifies and becomes confined to the first 
layer. For stack I, QAl = 398.2 kHz and Q3I = 500 kHz producing a (*„), = 336 3 E» For 
stack II fi = 433.6 kHz and Q„ = 100 kHz producing a (^ 15« ^ Co^aring 
amphtude of H.F. m Flg. 8(a), (b) and Fig. 9(a), (b) shows that stack II is almost tS 
stack I, consistent with the ratio (kBdy(kBd)u s 2.2. 
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!§i> 

6. CONCLUSION 

"°Sörrie insights into uniaxial transient waves in weakly coupled periodic stacks are 
captured by examining a series of simplified analytical models suitably modified to include 
periodicity and coupling. These models provide accurate description and insights into the 
mechanics of propagation and interpretation of experimental results. They also provide 
concise formulas helpful in the design of impact resistant structures by judicious attenuation 
along the stack of the forcing pulse. Noteworthy results are: 

(1) A lumped mass-spring model, Model A, demonstrates that PZ1 dominates response 
and reduces the governing equations to conservation form. It also establishes trans- 
missibility J as a scaling parameter. 

(2) Model B, a single mass-spring oscillator with delayed moving base, captures the 
main features of propagation using the dynamic properties of a single set and phase 
velocity evaluated as its natural frequency, and provides simple expressions for stress 
at the first interface. 

(3) Within a hard layer, peak stress of first arrival c}„x achieves a minimum at 0.6 hA. 
The phenomenon can be viewed as instantaneous stress lines intersecting to form a 
caustic surface. 

(4) Asymptotic expansions for phase and group velocities cp and cg are derived in terms 
of even powers of frequency parameters (<ohjc0). The expansions demonstrate that 
cp > cg for all co in PZ1 and that (AcoPZA)/c0 ^ 2. Simpler expressions for cp and cg 
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produced by Model A demonstrate that c,(o>.) < cp< c0 and c,(o>.) < c^ c0 where 
oie is frequency of the periodic set.    . ° 

(3) The attenuation index a, denned by dx act;', rises smoothly and slowly along the 
stack with an asymptote at a = 1/3, where t, is the arrival time of a1 

(6) Transmission of H.F. into the succeeding hard layers depends on dynamic stiffness 
ofthe weak layer kBi and rise time /,. Transmission is suppressed for the special cases 
when a;,;, = 2nj, where a>, is elastic axial resonant frequency of the hard layer. 

^^^/^^,-TheauthorappreciatesPatDoughertyfor her patience and accuracy in typing the manuscript. 
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APPENDIX A: MODEL A: FINITE MASS-SPRING CHAIN 

As an approximation to the continuum bi-periodic system including m, hard layers of material A, bonded by 
(ms— 1) weak layers of material B, consider the following lumped mass-spring system consisting of m, masses 
"TO," connected by (ms— 1) springs with stiffness'%". 

mr = pAhA + pBhB 

K = (hAIEA+hBIEB)-\ (Al) 

In terms of axial displacement u, of each mass /, the equations of motion are 

«i + co,2(«i -u2) = F(t)lmr 

ü/ + cu2(2u/ — «/_,—«,+ ,) = 0;   2^/<(m, — 1) 
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«„ + w; («„_—H„, _,) = 0 

where () is the time derivative and cy, is the frequency of the set 

"1     'A 

1 -1 0 0 0 0 

-I 2 -I 0 .      0 0 

0 -I 2 -I     .. .      0 0 

where AcoPZI is the frequency width of PZ1. The eigenstates are determined by solving 

det[K-arI] = 0 

K = cu2 

0        0        O'      0      ...     -1     1 

where I is the unit matrix. By expanding in eigenfunctions 

j 

in (A2) and by orthogonality of O, a solution for aft) in terms of Duhamel's integral results : 

°i{t) =^NJI ^ F(Z) Sin Wj{t" T) dT 

Nj = m,<bjl<bj 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

where <S>n is the first component of the eigenvector <!>,. 
If the system (A2) were infinite in extent, a Floquet solution periodic in time and space would take the form: 

ui+, = e»K,.. 

Substituting (A7) in (A2) with tf, replaced by -co2«, yields 

-ca2 + 2co2(l-cos/j) = 0: P      ■ _, [to \ 

(A7) 

(A8) 

The propagation constraint M is related to wave number k by n = khs. Expressions for phase and group velocities 
c. and c. have the form: 

lnti 

CO 
cp=T = co 

dco 

sin 11 

c, = - = Cocos  - 

c0 = cufAj. (A9) 

ASM-*0, c,and c,approach c0. When to = cu„p/2 = »t/6and by (A9) c„ =Q/K)C0and e, = ,/3/2c„. Also, when 
^ ~ r°' ~ Ao}™> C

P = 2M> and c» = 0. In (A9), cr is velocity of the wave front and c, is velocity of peak stress 
amx. Expressing cp and cg in terms of to = coj(2wt) yields: 

cp/c0 = to/sin''(w) 

cg/c0 = cos [sin-'(c5)] = (l-c32)"2. 

Both c, and cs peak at <2» = 0 and decrease uniformly with &. 
Stress in the ;'th spring a, is given by 

Oi = ke("i-"i-t)- 

(A10) 

(All) 

Substituting (Al 1) in (A2) yields the relations 



(A2) 
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m,ii, +o, = F(t) 

m,.w, + a,,= a{_, ;    2 < / ^ »;,. (A 12) 

Integrating (A 12) gives 

»>,«il!f+   V, df =    'F(t)dt = IP 

mrü,\'i + r o-,d( = I   ff,._, de (Al3) 

where /, is the external impulse. Figure (la) reveals that after the passage of the wave front, a motionless plateau 
develops in u prior to reflections from the boundary. If iL is sufficiently large to lie in the motionless plateau, the 
first term becomes negligible and (A 13) expresses conservation of momentum: 

|   <r,d' = r«T,-1dr = I,. (A14) 

For a rectangular forcing pulse of unit intensity applied to a semi-infinite periodic chain, an analytical 
expression for transient stress response can be derived by inverting the Fourier transform integral. Transforming 
the dynamic eqns (A2) yields 

-4a,ü0 + (ß0-al) = —°—;   « = 0 (A15a) 
mrm) 

-4cD2fi„ 52fi„ + (2ü„-ß„_,-ü„+1) = 0;   «>1    ü„(cü)=-^=r  uMe^'dt 
y/2n]-a 

where <r0 = 1 is magnitude of the forcing pulse and ä0 is its transform. Periodicity requires that 

(Al 5b) 

ßn = e"fi„-i (A16) 

where yt is propagation constant. Substituting (A 16) in (A 15b) yields the dispersion relation 

e*= l-2cD2 + 2c5(c52-l)"2. (A17) 

Substituting (AI6) in (A15a) and eliminating e* using (A17) gives the transformed impedance at the excited end 

S„ 1 
«o= ; ; ; . (A18) 

.   r^j.      . mrco; 2[cS +c5(<3: — l)"3] 

Expressing ü„ in terms of 80 by repeated use of (A 16) gives 

ö„ = [I-2cD2 + 2c3(cö2-l),/2]"ß0. (A19) 

The inverse Fourier transform of (A 19) is: 

1    f« 
u„(')=-7=       [l-2a>2+2cD(c52-l),''2]"ß0(a))e-fc"dü). (A20) 

^/2K J-OO 

Following Wang and Lee (1973) which specializes in outgoing waves, the integral in (A20) simplifies to: 

uM = 8MuM+2n ['J2"[2"L('~n] »«(Of (A21) 
Jo V      ' ) 

where J is the Bessel function of the first kind. Equation (A21) applies also to normalized stress in the form: 

.(^U^'^ld,'. (A22) 

Equation (A22) is the convolution integral of stress transmissibility at the nth interface. Re-writina the integral in 
(A22) as 

!i>:; 
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then integrating by parts noting that (see Gradshteyn and Ryzhik, 1970) 

yields an exact expression for stress transmissibility when , « h where ,, is the time interval of the forcing pulse 

o, 

For / > t„ changing the upper limit of (A21) to t, noting that 

j F(t-t')dl'= j F(x)dT;   i=t-tf 

then following the procedure that led to (A23) yields 

In PZ1, £r„(0 along the nth layer varies linearly (see eqns (6) and (7)) 

<r«+1 «, 0 = (1 - «ff„(0 + c<r„, (0 (A25) 

S ^^f^tarf^Ä^ coo,wate alonvhe hard iayer °f the «th peri°dic s«- ^on 
06b) ofwTng andILee"$73)?        P       * ^ ^"^ ' = ^ * A(U- D''Sp!acem ent f°1,ows f™ «* 

MO—^r r^*- 
"W>J-Jo f 

= ^o"L {y'W'-^+2
t|/»*'W-0]}dr'. (A26) 

Displacement at other junctions then follows from 

"»(') = »»-iW-ff.M/*,. (A27) 

APPENDIX B: MODEL B: OSCILLATOR WITH DELAYED MOVING BASE 

Figure 10(a) illustrates the oscillator with moving base. The mass m. with displacement u(t) is driven bv Wrt 

'« = Cp(c°r)/K = -to/*,;   '* = c0- (Bl) 

Substituting (Bl) in (A2) produces 

üi(i) + (ol[ui(t)-ul{t-ld)]=F(t)lme 

«i (0 + <»,2[M')-«<i ('-'„)] = <7,-_,(0/m, 

cv_, (0 = *>,_, (?) -«/,_,(«- o)] (B2) 

where f(r) == c0[H(t) -H(t- tf)) and o>„ m„ c„ are frequency, mass and phase velocity of Model A 
A solution to eqn (B2) proceeds bv seementine time intn in^rv^ic „f „„vin, ,   T_ .U. <=_st.     ^ 

1 in the prior interval, 

solution to eqn (B2) proceeds by segmenting time into intervals of width /,. In the first interval 0 < t < i 
u(t- /,) = 0 and „(,) ,s easlly found. In each succeeding interval. „(,-,,) is «he « determined^LSorfntelf 
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Fig. 10(a). Oscillator with moving base. 
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u(t-td) 

m) 

Fig. 10(b). Time segments in moving base model. 

making the forcing function known. This simple recursion becomes slightly more complex during the Jth interval 
Jid < //<(/+1)0- This and all subsequent intervals are further segmented into two subintervals: 

//,,«/< iy;   tf*£t<.(J+l)td 

(J+ \)td =S / =S ld+tf;   td+tf K t <(J+2)td (B3) 

as shown schematically in Fig. 10(b). 
Three special cases arise when fylies in the first, second or third td interval. Now specializing to the first layer 

a new notation is used; subscripts refer to mass number, as in (Bl) and (B2), but to time interval and sub-interval 
numbers. When t < Jtd, a single subscript is used denoting interval number. When t > Jld, a double subscript is 
used; the first denotes interval number while the second denotes sub-interval number. For the case when 0 < // < td, 
the process yields 

(1), 0 < i < V 

(1)2 tf^i^td 

«i.(0 ; 1  fa.  . — 1 —sine), 
o. Jo ™. 

a0 
(/ —i)dr =— (1— coseo,0 

<r,,(0 = *,«„(/) (B4a) 

"n(V) 
"u(0 = Hii('/)coseo,(f —//)H — sino,(r — ly) 

oa = — [-cos cü,r+cos v)e(t — tf)] 

an(t) = Kun(t) (B4b) 
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"2,(0 = «,2(o)cosw,(»-/i,)+ ^^sinc (,. 
0) + tyf     w,,(T-o)sincyr(f-T)dr 

»,.(/) =g[l-cos^-cos^(,-,,)+COS£üp(,_^_^(,_0)sin^((_u I 

ff2i(0 = £,[«2,(0-«>,(*-/,)] 

(B4c) 

A similar process applies to the cases when t, « f, < 2/, and 2/ < , < •*,   ., 

medium, ,<(*,,) is expressed as a Fourier integral! ^'' "^P»»«"»'*""« * unia.xial dispersive 

^(*, 0=1     F(K) exp [/**-/»'(*)/] dK 
(B5) 

^(v,o=r 
J-c 

/■(K)?"*'dK 

I t (B6) 

2£Ä« K AS tr- the ma!n COmribUti0n t0 th£ ^' » W) is from the neighborhood of 

X'(k)=IV'(k)-- = 0. 

If JC"(*) * 0, it will be assumed that F(K), X(K) can be expanded in Taylor series near K = k 

F(K) =, /"(A:) 

X(K)±x(k)+{(K-k)2
x"(k). 

Substituting (B8A) in (B6) and invoking the error integral yields 

A(X,,,) = I/W[^~]'/2exp[fc-/K^-f sgn B-(*)J 

(B7) 

(B8a) 

(B8b) 

where the sum is over all stationary points k. Uy"(k) = 0 and y"YA-l * n rh™ »h •     , 
* v '     " ana x W / 0, then the expansion for Z(K) becomes 

xM = x(*)+.V-*)V<*) (B9a) 
producing the asymptotic amplitude 

-llT/3^5/6 v F(k) _ 

(B9b) 
A(x.t.\ ~  / 1 11 ->l/3^5/6   V -f(£) 

'13/ ^- 7~; exp[/A-x-/»'(jt)/l. 

wSÄESSÄÄifiS imPHCitIy ^ eqn (12)- SpeCiali2inS in — in P^ -duces (.2) to (A8), 

»W-jpr.sinßitA,) 

with derivatives 

»"(*) = c0 cos(U/;,) 

W"(k) = -ic0hsiin(\khs) 

»'"(*)--jCoA,1cos(i*AJ). 

From (B 10b), *. = 4wr/A, is a stationary point because 

(BlOa) 

(BlOb) 

(BIOc) 

(BlOd) 

Sii 
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IV'(k„)-'-= H"(0)-<„ = 0. 

Since W"(k„) = 0 and H""(k„) # 0, the asymptotic behavior emerges from (B9b) 

^„(.v.goci,-13. (Bll) 

More generally, at any point in the stack <7,'„r, can be expected to obey 

fi,ac/-' (B12) 

where the attenuation index oc is determined numerically. 

APPENDIX C: MODEL C: TRANSMISSION OF ELASTIC FREQUENCIES OF THE HARD 
LAYER 

If we consider that the first hard layer is acted upon its left by the trapezoidal pulse FL(t) and on its right by 
the reaction of the soft layer FR(t): 

'i 

<^-) + \~\[H{t-h)-H(t-h)]      (CI) 

^(O^(l-cosf) (C2) 

where t\ < I. Equation (C2) is the same as (1) with a'„, replaced by i;<70. From the definition of/, 

/,=3(r,+/:+f5)-r, (C3) 

and from (A 17) for It, < n'c% 

7= JT/O), = »:/;/<•„. (C4) 

If u(x, t) is expressed as the superposition of static and dynamic solutions to each of FL(t) and FR(i) 

w(.v, 0 = uJL(x, I) + "AX)FL(I) + «M(X, I) + u,R(x)FK(t) (C5) 

where subscripts s and d denote static and dynamic solutions. If udL(x. t) is expanded in eigenfunctions of the 
traction-free layer 

UäL(x,'t) = YiaiL(t)<PM 

A', = P.,O, !<*>,> (C6) 

and similarly for uM(x, i). For the fundamental mode of the hard layer 

<p,(.v) = COSCJI-V/A,,),   <ox=ncA!hA (C7) 

the static solutions are 

In 
»Ax)- 

""M-TXi'-'-iy <=K<- 

Using (C7) and (C8) in (C6) yields 

(C8) 

A'U = <<P||1> = 0;   .V, = [pAhA 

A',s = <»,R I Vi> = ''< ""'• (C9) 
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Solving and summing contributions from au(r) and „„<,) yields: 

(A) 0 < / $ ,. 

,, ir A -    ,- ^ 2 sin co, I "A*,0 cr0- -cos-c 

cos—-cos w,? 
/'-.     4  V       T 

~°°Tn~ 
T:     (cof-4"7r2) 

-cosrcc 

«,(*)/-(/) = a, 

"V(-V, 0 = <70 ' ■)! 

2« 

2 sin ay 4n \ T 

* co,t,   +n^     "  ,    . .    , fsin^ 

«rlW/X/) = <r0 |i<l -0 +1 (l -cos^U 

If2ü>, <G), 

<r,tt < 
2  °o 2       flco. 

from which cdR{t) may be neglected. 

(B) l,^t^t2 

«,(*,/) =: -ffo-^ —[sinö,1,-sina»I(f-/I)]cosw{ 

,.21 
M'r'0^^fsin"<'-sin".('-',)]sin7ic 

To first order, <sd vanishes if 

(C13) is satisfied for all / if 

\%mco,t-%inco,(t-t,)\ = o. 

co,     Q, - 

(CIO) 

(CM) 

(C12) 

(C13) 

(C14) 

SS SmuTupToS6 hard ,3yer ar£ "0t tranSmi"ed Whe" ^ product of fundamental freouency co, 

. ! 

1 $ 
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Transient waves were initiated by allowing a thick PMMA disk to strike a periodic stack of ceramic 
layers bonded by thin weak silicone rubber layers. Pressure at interfaces of ceramic and bond layers 
was measured by carbon gauges along the centerline of the stack. Comparison of experimental 
histories with those from a 1-D analysis [J. Acoust. Soc. Am. 94, 172-184 (1993)] and a 2-D 
axisymmetric analysis [J. Acoust. Soc. Am. 99, 3513-3527 (1996)] reveals that waves propagate 
two-dimensionally and that flexure of the ceramic layers controls attenuation and shape of 
compressive wave of first arrival. Viscoelasticity of the bond material sharply reduces tensile 
stresses.   © 1997 Acoustical Society of America. [S0001-4966(97)01702-5] 

PACS numbers: 43.40.At [PJR] 

INTRODUCTION 

Shock hardening of structures is receiving more interest 
due to increasing applications. One recent application is the 
protection of sensitive devices on board of space probes 
whose mission is to land on planets at velocities sufficient to 
penetrate the soil and perform subterranial measurements of 
soil properties. One method of shock attenuation is by crush- 
ing material of collapsible structures, transforming kinetic 
energy to plastic work irreversibly. This method is limited to 
velocities not exceeding 100 m/s as volume of crushable 
material rises with speed nonlinearly to reach impractical 
limits of space and weight. Weakly coupled periodic chains 
exhibit dispersive properties when subjected to impulse of 
short duration. When combined to the concept of collapsible 
structures, periodicTihaihs add an advantage by raising the ' 
limiting speed. In weakly coupled chains, attenuation of a 
transient pulse along the chain can be tailored to specific 
requirements of force or acceleration by judicious choice of 
geometry and material properties. 

Studies on wave propagation in periodic media are 
mostly limited to the frequency domain (see Refs. 1-10). 
Reference 11 treated transient waves in 1-D weakly coupled 
biperiodic stacks, concluding that the first propagation -zone 
or pass band is paramount. In this zone, hard layers act as 
rigid masses and weak layers act as springs. Reference 12 
extended the analysis to 2-D axisymmetric stacks including 
flexure of the hard layers and demonstrated that flexural 
phase velocity is essential in spreading the pulse radially. 

In this paper we describe results of an experiment de- 
signed to verify the analysis in Refs. 11 and 12 and define 
the limitation of 1-D theory. In Sec. I we analyze the experi- 
mental stress histories. In Sec. II we compare experimental 
stress histories to 1-D and 2-D numerical results. We identify 
regimes of propagation, explain the difference between ex- 
perimental and theoretical histories, and conclude with the 
limitation of 1-D and 2-D linear analyses. 

I. EXPERIMENT 

Transient stress waves were initiated in a weakly 
coupled periodic stack of square aluminum nitride (A1N) ce- 
ramic tiles 10.16 cm in side, bonded by a thin weak silicone 
rubber, ME625.13 Tile and bond thicknesses were 1.27 and 
0.03 cm. Piezo resistive carbon gauges 0.008 cm thick of the 
type C300-50-EKRTE from Dynasen Inc. were inserted at 
the bottom face of the first four tiles along the center line of 
a stack with ten tiles [see Fig. 1(a)]. Each gauge served as the 
active resistor of a Wheatstone quarter-bridge circuit. Just 
before the passage of the wave, the bridge was supplied by a 
45-V pulse with a 300-/AS duration. The initially balanced 
bridge was unbalanced by the change in resistance of the 
gauge from applied pressure. The output voltage was re- 
corded by a 200-MHz transient recorder. Given the specific 
gauge calibration and nonlinearity of the bridge, pressure 
histories are valid up to 300 /AS from impact. The high elec- 
tric current in the system produced an inevitable temperature 
drift of the gauges yielding a fictitious pressure rise of the 
order of 1.75 MPa per 100 /AS. 

The stack was placed in a metal casing facing the 
muzzle of a 6-cm-diam compressed air gun at the Ernst 
Mach Institute, Freiburg, Germany. The stack was struck in 
its center by a PMMA disk 5.75 cm in diameter and 2 cm 
thick, launched by a compressed air accelerator. Velocity of 
the disk at impact ranged from 14-58 m/s. Velocities were 
kept low to avoid damaging the struck ceramic tile. A laser 
beam in the axis of the launch tube reflecting from the top 
surface of the first ceramic tile allowed the alignment of 
stack and disk axes. This procedure resulted in a tilt smaller 
than 2 mrad. The assembled experimental setup of the stack 
is shown in Fig. 1(b). 

A typical digitized output of normal stress history azz 

sensed by the carbon gauges in a stack of ten (10.16X10.16 
X1.27 cm) ceramic tiles is shown in Fig. 2. The broken 
horizontal line labeled p1D defines the computed 1-D pres- 
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FIG. 1. (a) Schematic of experimental setup, (b) Assembled test configura- 
tion. 

sure exerted by the PMMA disk upon the ceramic tile ac- 
cording to 

P\D=PeceV0< 

1 1 
(1) 

-+• 
Pece      Pccc      Pdcd 

where pccc and pdcd are longitudinal acoustic impedances of 
ceramic and disk materials, p and c are corresponding den- 
sity and longitudinal speed of sound, pece is the equivalent 
impedance for determining plD in a uniaxial strain condition, 
and V0 is velocity of PMMA disk at impact in m/s. For 
PMMA stricking AIN, substituting material properties from 
Table I in Eq. (1) yields p 1D=3.044V0 MPa. Note that on the 
second tile the pulse is magnified, i.e., (crzz)max>p lD. On all 

following tiles, (crzz)mm attenuates typical of weakly coupled 
stacks.1'-12 

At each tile, (cr^ of first arrival includes a double peak 
where the second peak is always weaker than the first. A 
second and third peak occur after (<rzz)i. The second peak, 
weaker than the third and delayed by 20 ps after the first, is 
due to flexural reflection at the perimeter of the disk. The 
third peak is due to tensile reflection from the bottom tile. 
Those identifications are from considering flexural phase ve- 
locity in AIN (cpf=2.3 km/s), axial phase velocity along the 
stack (cpz=3.7 km/s), and geometry of disk and tile. The 
double peak in (crzz)i is caused by axial oscillations of the 
tile. One final observation of the histories in Fig. 2 is that 
tensile stresses are very small, which may be caused by vis- 
coelastic effects of the bond material. 

il. ANALYSIS 

The 1-D and 2-D axisymmetric analyses developed in 
Refs. 11 and 12 rely on a modal expansion solution of the 
coupled linear elastodynamic equations of the periodic stack. 
Both methods are adopted to reproduce the experimental 
stress histories at interfaces of layers. The effect of viscoelas- 
ticity of the bond material is then evaluated by including the 
standard linear viscoelastic solid in the 1-D simulation. 

A. 1-D and 2-D axisymmetric analyses 

Applying the 1-D analysis developed in Ref. 11 and 2-D 
axisymmetric analysis developed in Ref. 12 and comparing 
their results with the experiments yields further understand- 
ing of transient propagation in a periodic stack. 

To gain an accurate pressure crzz0 produced by the disk 
at impact, a finite volume algorithm developed in Ref. 14 
was used. It assumes that PMMA and AIN materials are 
linear elastic for the range of velocities in the experiment. 
Figure 3 shows the time evolution of deformation of disk and 
struck tile in the first 16 /is after impact. Note the bulge 
along the perimeter of the disk from Poisson's effect, propa- 
gating toward the free face followed by the lifting of the 
edge which sets up a shear wave propagating back toward 
the axis. This lifting diminishes average stress at the inter- 
face as Fig. 4. shows by the attenuation of <rzz0 with time. 
Unlike the rectangular pressure profile used to compute p 1D, 
decaying oscillations about a downward sloping line ending 
14 /AS after impact is the 2-D normalized pressure pulse in 
Fig. 4. It was used to force both 1-D and 2-D analyses to 
follow. 

The material properties of ceramic and bond are listed in 

TABLE I. Properties of AIN ceramic and polymer bond materials. 

AIN ceramic Polymer bond 

Modulus £ (MPa) 310X103 69 

Mass density p (kg/m3) 3200 1070 

Poisson ratio v 0.25 0.49 

Longitudinal speed cL (km/s) 9.8 1.05a 

Flexural phase velocity cpf (km/s) 2.3" not relevant 

"Uniaxial strain. 
bFor a 1.27-cm-thick plate. 
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FIG. 2. Experimental histories at bottom of first to fourth tile V0 = 28.8 m/s, Pw = 87.55 MPa. 

Table I. In one dimension, the equivalent bond modulus in 
uniaxial strain is 

Ebe~ (l + vb)(\-2vb)' 
(2) 

Histories of normalized axial stress äzz resulting from the 
1-D simulation" with constant planform area are shown in 
Fig. 5. Note ftat,„among other differences, (crzz)max is not 

attenuated along the stack. As the pressure pulse propagates 
through the layers, in the real stack flexural waves radially 
extend the footprint of pressure. Viewed in this way, the 
effective area of layers increases along a 1-D stack. Indeed, a 
1-D simulation of a stack with sets varying in planform area 
along the direction of propagation produced the histories in 
Fig. 6(a) and (b) for two different planform area distribu- 
tions. In Fig. 6(a), the distribution of tile area A,- along the 
stack follows an extension in radius of the nth ceramic layer 
r„ according to 

r„ = rd+(n-l)cpf&ts, 

äts=cpz/hs, 
(3) 

f^BS^S-ÜÜ^^ 

"so 

1.0 

■I                 1                 1 1 T   '          1                1 

0.5 

0 

-1 ~^      S "^ ~~-\ 

•OS 

1                  1                 1 l                l                1 

a 

FIG. 3. Evolution of deformation pattern of PMMA disk striking AIN tile. 
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FIG. 4. History of normalized average pressure on struck tile. 
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FIG. 5. Normalized crz. histories from 1-D analysis with constant plan form 
area. 

where rd is radius of disk, hs=(hc+hb) is thickness of a 
periodic set, cpf is flexural phase velocity in the ceramic tile, 
and cpz is axial phase velocity along the stack measured 
experimentally. Note that in Fig. 6(a) (crzz)imax attenuates 
along the stack and is lower than the corresponding experi- 
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FIG. 6. Histories of <r„ in 1-D stack with 2 different plan form area distri- 
butions, (a) VA1-10, 1.5, 1.9. 2.2, 2.5, 2.8, 3.1, 3.4, 3.7, 4.0; (b) 
iVAl-1.0, 1.0, 1.3, 1.8, 2.4, 3.0, 3.6, 4.0, 4.0, 4.0. 

FIG. 7. Comparison of peaks of first arrival (a^h from 2-D analysis and 
experiment. 

mental values. An explanation is that in one dimension, tiles 
move as rigid bodies while, in two dimensions, tiles flex 
radially as they move axially. The radial deformation reduces 
contact area at the interface of consecutive tiles which in turn 
reduces effective planform area At. Considering this reduc- 
tion, a second distribution of A,- produces the histories in Fig. 
6(b) where now a better match with experiment of (<Fzr) j „^ 
is achieved. 

In Fig. 6(a), (<rzz)lmla of all layers includes a double 
peak similar to that in the experiment. Clearly, this feature 
cannot be attributed to flexure but is caused from axial os- 
cillations of the ceramic layers at the natural frequency of the 
set wsex=(EbJ(Pchchb))m. When the set period 
rse,=2'7r/6)se, is shorter than 2Af/5 where Atf is time interval 
of the forcing pulse, more than one peak will appear in 
(<rzz),. However, if rset>2Ar/, only one peak will appear. 
In the present stack, ^,=20 /us while 2 A tf=28 fis, which 
explains the double peak. 
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FIG. 8. Comparison of <rz. histories including reflections, from 2-D analysis 
and experiment. 

The preceding 1-D analysis demonstrates that radial 
propagation from flexure is indispensible for describing 
wave propagation even in such extreme cases as when the 
impactor's diameter is half that of the struck tile. 

A 2-D simulation12- based on the geometric and material 
properties in Table I yielded the histories of (ö^)] shown in 
Fig. 7(a). Note the following: 

(a) Peak stress of first arrival {crzz)x max at tile 2 is greater 
than (crzt0)max with a magnification matching that in 
Fig. 7(b) of the experiment. 

(b) At-the following tiles, (crzz), max also matches those in 
Fig. 7(b). 

(c) Histories of (tr^)i at all tiles include the double peak 
featured in Fig. 7(b). 

(d) In Fig. 8(a) the second peak is negative and shifted 
from the first by 20 /ts. It is caused by reflection from 
the tile's outer boundary. As will be shown below, this 
second peak in the experiment [see Fig. 8(b)] is posi- 
tive due to viscoelastic strain of the bond material. 

(e) The third peak at 53 fis [see Fig. 8(a)] is caused by 
reflection from the bottom of the stack, while in Fig. 
8(b) that third peak occurs at 63 /is. The deficit of 10 
fjs is caused by the difference in the number of tiles 
used in experiment and analysis. The experiment in- 
cluded ten tiles while the 2-D analysis included eight 
tiles to reduce computational effort. In the experiment, 
the first pulse has to travel over four additional sets 
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FIG. 9. Normalized radial stress histories crrr on top of first five tiles at 
radial stations r = 0.5,  rd,   1.5rrf. 

than in analysis before the reflected pulse reaches the 
top surface of the stack. Since travel time over a set 
Ar^ /ts, arrival time in the experiment should be 
longer by approximately 12 /AS, which is indeed the 
case, 

(f)     Contrary to 1-D where reflection from the bottom of 
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the stack causes tensile stress at the interfacial bond, 
experiment and 2-D theory reveal that this reflected 
wave is compressive as shown in Fig. 8(a) and (b). 
Applied pressure from impact flexes the struck tile as 
illustrated in Fig. 3. Succeeding tiles also flex but at a 
time delayed'Tfom' finite phase velocity along the 
stack's axis. When the wave reflects from the bottom 
of the stack, curvature of the bottom tile is reduced. 
This reduction in curvature then propagates backward 
toward the top tile at delayed times. The time delay 
produces a mismatch in curvature between adjacent 
tiles which in turn compresses the bond. 

One discrepancy between histories in Fig. 7(a) and those in 
Fig. 7(b) is axial phase velocity cpz computed by 

'-pz (4) 

where (hc+hb) is total thickness of a periodic set and Afais 
time interval between peaks at two consecutive tiles. From 
Fig. 7(b) 

\Cpzsexp 
1.3X1CT5 

pz'exp- 3 5X 10-6 

and from Fig. 7(a) 

1.3X10-5 

=6=3.7 km/s, 

(c„) pzitnal     2.6XKT6 = 5.0 km/s. 

The source of this discrepancy is the following. The speed of 
sound in the bond cb used in the analysis was determined 
from the experimental phase velocity computed from (4) and 
the 1-D scaling low:11 

cpz~ cb 
\Pchi 

1/2 

(5) 

where (pb ,hb) is bond density and thickness, and (pc ,hc) is 
ceramic density and thickness. Relation (5) assumes that a 
ceramic tile acts as an unconstrained rigid mass and the bond 
acts, as a linear spring.15 In two dimension, only that circular 
portion of the tile bounded by the flexural wave front moves. 
The portion outside the wavefront adds its own resistance. 
Therefore, a value of cpz in two dimensions may be realized 
by a cb<(cb)lD because the total spring reaction includes a 
contribution from material outside the wavefront. Using 
(cb)lD in the 2-D analysis, then, results in a too-stiff bond, so 

v^pz/anal-^^pz^exp ■ 
Another discrepancy is the negative stresses among the 

analytical histories. As will be demonstrated in the analysis 
to follow, the reduced tensile stress is caused by viscoelastic 
strain of the bond material, an effect not included in the 1-D 
and 2-D simulations.11,12 

Figure 9(a)-(c) plots histories of ärr from 2-D analysis 
on top of the first five tiles in the stack at three radial stations 
r=0.5rd, rd, and l.5rd. Note that on the first tile ärr devel- 
ops a tensile precurser whose peak increases radially reach- 
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ing a magnitude close to | äzz0\ max at the perimeter of the disk 
r=rd For an impact velocity t;0=58 m/s, 
\<ru0\tm~U5p1D»<203 MPa, which is above tensile 
strength of A1N, explaining the formation of circumferential 

cracks illustrated in Fig. 1(b). 

B. Effect of viscoelasticity of bond material 

To demonstrate the effect of bond viscoelasticity in one 
dimension, the elastic bond material is replaced by a linear 
viscoelastic solid with constitutive law1 

a+T£&=ERe(e + T<Te), (6) 

where (ra,TB) are time constants of creep and relaxation and 
ERe is rubbery modulus in uniaxial strain when e=0. In the 
limit when e and <r-->°°, the material becomes glassy and 

from (6) 

(r=ERe — e-tGee, =>Er.. = -fE, Re- (7) 

Treating the tiles as rigid masses, the governing equations 
are modified to include viscoelasticity of the bond: 

mi«i = o"0— crlt 

mju.— cr.-j-o-,-, 

™n"n=crf>-l' 

0-.-+ Ö"|Te = ERs(Si + E/T,,.), 

ei=(u-ui+i)/hb, 

(8) 

mi=pchc,    Ta-rEEGzIERt, 

where ut is axial displacement of the ith mass m,, or, is axial 
stress between layers i and i+1, and a0 is the external stress 
acting on m,. Assume the following bond properties: 

ERe= 1.211 GPa,    £Ce=6.9 GPa,    co* = 0.1,l,10 

where o>* = w'^fJvK and (oM is resonant frequency of the 
periodic set with rubbery modulus ERe (Ref. 15) and 
<*xi={ERJ{pchchb))m. Figure 10(a)-(c) plots 1-D histories 
of (5^), for the stack with material properties from Table I 
but with the viscoelastic bond in (9) for three values of u>*. 
Clearly the viscoelastic effect is to reduce tensile stress. Note 

:that maximum damping occurs when w*=l (see Ref. 16). 

III. CONCLUSION 

Nondestructive experiments were performed on periodic 
stacks of A1N tiles bonded by a thin weak silicone rubber. 
Pressure measured by carbon gauges on the bottom surface 
of ceramic tiles was higher than applied pressure on the first 
tile, and attenuated on all tiles to follow. The close match of 
experimental histories to 2-D analysis confirmed how flexure 
controls the evolution of the pulse by spreading it radially. 
Flexure also modifies the nature of the reflected wave from 
the bottom of the stack, changing it from tensile to compres- 
sive. The absence of normal tensile stress in the experimental 
histories may be caused by viscoelastic effects of the bond 

material. 
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ABSTRACT 

Flexural waves in a disk and square plate produced by off-center impact 

are analyzed.  The effects on maximum transient stress 0max of boundary 

shape, edge constraint, thickness, side of square plate or diameter of disk, 

and eccentricity of center of impact are studied.  While prior analytical work 

has been confined to disks for simplicity, ballistic experiments were 

performed using square plates for practical reasons.  The two geometries agree 

better for central impact or edges that are simply supported or clamped. 

Analytical results show some intensification as center of impact approaches 

the edge, but this is insufficient to explain the measured rise in residual 

projectile kinetic energy after penetrating a ceramic tile.  This reveals the 

inadequacy of the crack initiation mechanism as the primary model of defeating 

the projectile by ceramic tiles. 



INTRODUCTION 

Ceramic materials such as silicon carbide and aluminum nitride A1N are 

presently used to harden structures against impact by high velocity 

projectiles.  Replacing metal with these materials yields lower weight because 

of increased compressive strength in spite of reduced toughness.  Compressive 

strength is paramount in breaking brittle projectiles and eroding soft 

projectiles, and dispersing momentum in the early stages of penetration. 

Ballistic experiments on AlN tiles struck by tungsten allow cylindrical 

projectiles revealed that residual kinetic- energy of the projectile, measured 

by depth of penetration "DOP" into an adjacent aluminum block, increases 

monotonically with the distance between center of impact and tile center 

called eccentricity re.  This effect is caused by at least two mechanisms: 

1) As re approaches the tile's edge, maximum transient stress Gmax 

initiating micro-cracks in the brittle material, may intensify from 

constructive interference between waves radiating from the area of 

impact and earlier waves reflected from the edge.  This is similar to 

the intensification of crmax from central impact when tile size is 

reduced, also called "tile size effect". 

2) Even after crack initiation, resistance continues because the 

comminuted material persists due to inertia and reaction of nearby 

unbroken material, confining the residual projectile.  This effect is 

also called "self confinement". 

Clearly, both mechanisms affect penetration although they act at different 

time intervals, the first acts early before cracking starts, while the other 

acts later after cracking.  A possible conclusion of this work is the relative 

importance of each mechanism. 

In the last two decades, general purpose finite element, finite 

difference and finite volume computer programs were developed for predicting 

penetration of projectiles in elasto-plastic metals.  Because of the large 

strains and strain rates involved during these events, non-linear constitutive 

laws, energy balance, and shock discontinuities had to be addressed.  These 

computer programs are successful in accurately predicting penetration depth 

and crater geometry in metals.  This success relies on the fact that metals 

subjected to these intense transient loads behave almost like viscous fluids, 

which explains the widely used term ""hydro code".  However, when applied to 

penetration in brittle materials, hydro-codes are less successful especially 

in -he later stage of the event when cracks form, breaking the material into 

small pieces with size depending on their vicinity to center of impact. 



Sirice ceramic materials remain linear elastic before crack initiation, 

they can be analyzed using small amplitude linear flexural waves.  Previous 

work treated transient waves from central impact in 1-D layered media [1,2], 

plates [3], thick disks [4], 2-D axisymmetric layered media'[5], and stacks of 

layered plates adopting flexure theory [6] .  The objective of this work is to 

study how o"max changes with eccentricity while varying the following 

parameters 

(a) boundary shape, either disk or square plate 

(b) edge constraint, either simply supported or free 

(c) thickness and lateral dimension 

Relating how o"max varies with these parameters to experimental DOP reveals 

the relative importance of each mechanism on penetration. 

Section I treats flexural waves in a disk based on Mindlin's plate 

equations [7] for an asymmetric forcing pulse.  Transient response uses an 

exact modal solution satisfying simply supported or free edges. 

Section IIA treats flexural waves in a square plate.  Unlike the disk 

where circumferential and radial dependence separate yielding eigenfunctions 

which satisfy all natural boundary conditions exactly, the square plate does 

not allow separation of variables along the two axes x and y.  Instead, a 

Galerkin solution is adopted.  Trial functions of a 1-D strip along x are 

determined that satisfy edge conditions at x = (0,1)  where £   is side length. 

Since the plate is square, and constraints along the four edges are the same, 

trial functions along y are identical to those along x.  Minimizing the error 

committed in the differential equations of motion by enforcing their 

orthogonality with the trial functions produces an eigenvalue problem.  For 

simply supported and clamped edges, trial functions also satisfy the plate's 

edge constraints exactly.  However, for free edges, the zero moment 

constraints are not satisfied identically yielding a stiffer constraint and a 

higher fundamental resonance than the free plate's. 

Section IIB remedies the method in Section IIA when applied to a plate 

with free edges by augmenting the Lagrangian by certain unsatisfied 

constraints.  The spatially dependent multipliers of these constraints are 

expanded in terms of the trial functions in Section IIA.  Orthogonalizing the 

augmented equations and constraint equations by the trial functions determines 

sufficient equations in the generalized coordinates and undetermined 

multipliers. 

Section III compares stress histories of disk and square plate with 

simply supported edges for different eccentricities re.  This is followed by 

histories of the disk with free edges.  A stress factor " aCT" is defined as 



the ratio of ormax for some re to <rmax for central impact.  Plots of aG 

against re reveal regions of stress magnification (aa > l), and regions of 

stress reduction {aa  <  l), depending on plate thickness, lateral dimension and 

edge constraint.  The variation does not follow a simple trend since it 

depends on the interference between waves radiating from the area of impact 

and incoherent reflexions from the edges. 

I. DISK 

Mindlin's plate equations [7] may be written in vector form as 

- [(1 - v)V2*F + (1 + v)V*] - KGh(V + Vw) = ^- ^-y. 
(1) 

KGh(V2w + <J>) + p = ph —j 
at 

<D = V • V D = 
EhJ 

(2) 
12(l - v2) 

where *P is the vector of rotations, w is transverse displacement, (p, v) are 

density and Poisson ratio, (E,G) are Young's and shear moduli, K is shear 

constant, h is thickness, t is time, p is applied pressure, V2 is the 

Laplacian and V is the gradient operator.  Taking the divergence of (1) 

ph3  32<D O) 
DV2<D - KGh(* + V2w) = 

12   3t2 

Eliminating <t>  from   (2)   and   (3) 

7          1    a2 ^ 
V2     1   a 

„2   ->,.2 
.1               C£     dt   J 

( 
V2 1    82 \ i      1      32 ' 

cs
2 at2 J ' ceV at2 w  = 

1 

D 

1 

KGh 

( 
V2 1    92Y] 

r. 2 a,-2 cs    dt J 

_ 2   _            E -          KG 
cs"   =   ^e    ~     / ■>\ 

(4) 

Eliminating   V w   from   (2)   and   (3)   yields 

DV* - 
phJ   d2 

12   dt2 
<l> = ph —- - p 

(5) 



Taking the curl of (1) 

°(l-v)V2-KGh-^lil- 
2 12 at2 (V x T) = 0 

(6) 

from which it can be inferred that (V x *P) is not a function of w while *P may 

actually be, 

¥ = V[g(w)] + V xr (") 

where T is a vector potential for *P independent of w. 

(5) using the definition of <I> yields 

ph3 a2 

DV - 
i2 at2 

V^g = ph 
a2w 
at2 

Substituting (7) in 

(8) 

Substituting (7) in (6) using the identity 

V x V x A = V(V • A) - V2A (9) 

produces 

°(l-v)V2-KGh-p^-^ 
2 -• i2 at2 v2r = o (10) 

Defining x =  VT, reduces (10) to: 

2       a2 

2 -,J1 h2    (i - v)cE
2 at 

T = 0 (ID 

For a solid disk and periodic motions in time with frequency <ü, the 

homogeneous solution of (4) takes the form 

w(r, 6, t) = w(r) cos n9 eicot (12a) 

w(r) = qj^r) + C2Jn(?.2r) (12b) 

X* - 2ßxA.2 + ß2 = 0 

.   1 cE
2 + cs

2  2     o 
ß1=--^-^CD

2  .  ß2 
C£ "-S 

CÜ 12 
„ 2   ,2 c=   h ) 

CD (12c) 



where (r, 8) are radial and circumferential coordinates, n is circumferential 

wave number, i = v—1 and Jn is the Bessel function.  Since g is a function of 

w, and from (8) linear with w, it can be expressed like (12a,b) as 

g-:(r) = CgJn (^r) ,     V2gj = -Xfgj  ;    j = 1,2 (13) 

Substituting (13) in (8) yields 

-X2  + — 
C8 

2    _   120T 
*"j C9J ~ ~ , 2  2 ci n cr 

(14) 

then using (4), equation (14) simplifies to 

C93 = X,2 (15) 

Taking the gradient of (14) 

Vgj = {k '  " f) Cgj Jn^ (16) 

Furthermore, since T and *P are orthogonal and *P is in the plane of the disk 

then x=-(0,O, Tz) and 

T2 - CTJn(XTr) (17) 

Substituting (17) in (11) produces the dispersion relation 

.2 

V = 2co     12K 

(l-v)ce
2  h2 (18) 

Ecuacion (18) exhibits a cut-off above 

ü) 
h     h (19) 

which is the same as that in (12c) .  Finally, using X.T in (18) and since T 



and x  are parallel then T  = (0,0, r2) , and 

rz = Cr Jn (XTr) (20) 

Taking  the  curl   of   (20) 

VXr = (f   '-^)CrJ"M (21) 

Substituting   (16)   and   (21)   in   (7)   determines  the solutions 

" 2 

X Cgj Vn (*jr) + - CTJn{^) Vr(r, 8, t) = cos n0 e XQ)t 

3=1 

(22a) 

V6(r, 0, t) = sinn0 e ICOt 
X - -CBJJnM _ XTCrJn'(>-tr) 
j=l (22b) 

w(r, 0, t) = cos n0 eio)t]T Cj Jn(Xjr) 
i=l 

where Cgi is related to Ci by (15) 

(22c) 

Moments and shear resultants are expressed in terms  of      (\|/r, \j/0, w)   as 

Mrr   = D 
3r r        r     30 (23a) 

Mee   = D V ~~~~^~   T       "T  
3r r       r   38 (23b) 

Mre = 
D(l - V) 

r   90 3r r (23c) 

, 3w 
Qr = KGh| — + yr (23d) 

, 1 3w 
Qe = K   !7 30+V)/e (23e) 



For a solid disk with radius rd, normal stresses on the disk surface are 

related to moment resultants by 

6Mr„ _  6Me9 _  6Mr6 (24a) 
CTrr   -   T~  • CTe9   -   T~  ' °re   ~   T~ 

h h h 

and shear stresses along the neutral plane are related to shear resultants by 

Trz = Qr / h ,     T9z = Qe / h      ' (24b) 

For a free edge 

Mrr(rd) =  Mr9(rd) = Qr(rd) = 0 (25a) 

and for a simply supported edge 

Mrr(rd) = Ve(rd) H w(rd) = 0 (25b) 

Substituting (22) in (23) then in either (25a) or (25b) produces the implicit 

eigenvalue problem 

B(a)c = 0 (26a) 

where B is a 3x3 matrix of the fundamental solutions in (*Pr, Tg, w) and their 

first derivatives, and 

.c-~{cgi ,cg2 ,cr} 
(26b) 

Expanding   {^.WQ.'W}   in terms  of the eigenset   jü)nj ;   Tjj-^j , "Henj* *PnDj 

N        M 

Vr(r, 6, t) =  £   £ anj nrnj (r) cos n8 (27a) 

n=0  j=l 

N        M 

Ve(r, 6, t)  =   £   £ anj Tl6nj (r) sin n9 (27b) 
n=0   j=l 

N        M 

w(r. G, t) =  £   £ anj <pnj(r) cos n9 (27c) 
n=0   j=l 



where (M,N) is the number "of radial and circumferential modes in the 

expansion.  Substituting in (1) and (2) and enforcing the orthogonality of the 

eigenfunctions yields a set of uncoupled differential equations in the 

generalized coordinates an-j 

2                           K{X + 5no) ,  , anj + co nj anj  = Pnjf(t) (28) 
1Nnj 

Nnj   =  Ph(cpnj| 9nj) + ^J [(*lrnj| Hrnj) + (^Onjl Tl9nj)J 

where 8n0 is the Knonecker delta, and f(t) is time dependence of the forcing 

pulse.  For a circular footprint of radius rp and eccentricity re (see Fig. 1) 

6er2 

Pnj  = 2Po J J <Pnj (r) cos n0 rdr de 

0 ri 

9e  = sin_1(rp / re) 

1 
r1.2    =   ~ r_ cos G ± ^(re cos 6)2 - 4(re

2 - rp
2) 

(29) 

The  solution of   (28)   can be  expressed as  a Duhamel   integral 

t 

■•■^J 
(t) = _ jegL+^o)        f f(t)8infflbj(t _ T)dt (30) 

"nD"n: 

IIA.  SQUARE PLATE WITH RESTRAINED EDGES 

In Cartesian coordinates, Mindlin's equations are given by (1) and (2) 

with 

3x + dv (3D ^ = {Vx- Vy}   ■    * = 

where (x,y) is a rectangular coordinate system with origin at the lower left 

corner of the square.  Since solutions along x and y are not separable, a 

Galerkin approximation is adopted.  Trial functions ((px, i\x)   are defined on 



Strips along x satisfying the edge constraints at x = (0, £)   and the 1-D 

Mir.dlin's equations 

92'Hx  ^.f  ^ 9<Pxl _  Ph: 3 
,2, 

3x2      I     3x J    12   lx (32a) 

KGh __ + _2L = _phco2(px (32b) 

For the square plate, trial functions (<py, Tiy) along y are identical to ((px, r\x) 

sir.ce edge constraints are the same on all four edges.  Expand b¥x, *F w} in 

terms of these trial functions: 

N   N 

\|rx(x,y, t) = 2 2
ai:)00 TlxiM <Pyi(y) (33a) 

i=i j=i 

N   N 

Yy(x,y,t) = £ XaijW «PxiM Tlyi(y) (33b) 
i=i j=l 

N   N 

.wfebY^t) = ^ Xai3(t) 'xiM <Pyi(y) <33c) 
i=l j=l 

where N is the number of trial functions in the expansion.  Substituting (33) 

into equations (1) and (2) gives 

"^  = S X {f [2^i«Pyi + (1 " v^xicp^ + (1 + vjcp^riyijaij 

KGh (nxi cpyi + <pxi <pyi)aij - ^- r\xi cpyi ayi} = 0 (34a) 
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®2    S   X X {f fr" -  V)<Pxi%j   + 29xiTl^   +  (1 +  V)Tl^9yi] , 
i      D 

KShf^xilyi  + <Pxi<Pyi) atj - — «Pxilyiäijj  = (34b) 

%    =IX {«5h(<Pxi«Pyi   + <Pxi9yi     + 1xi<Pyi   + «Pxilyijaij  - ph 9xi<Pyiäij}   =   "P (34C) 

1       D 

Where ( ) is derivative w.r.t. the argument.  Multiply ©, in (34a) by (nxm^yn) • 

©2 in (34b) by ((p^r!^) and $3 in (34c) by (93anTiyn), integrate over the 

square's surface, then add the three integrated equations to produce 

A2a + A2a.= F f(t) 

F = < 

6e  r2 

2 J     I  (Pxm(r cos 6) Vynfc s:i-n 6) rdr d9 
0   ri 

(35) 

where the integral is over a circular footprint with eccentricity re as 

defined in (29), and f(t) is the time dependence of the forcing pulse. 

Pre-multiplying (35) by Aj_ 

ä + Aa = F f (t) 

^ A-l -1. A = AfAA2 , F = Af^F 
(36) 

To diagonalize A, apply the transformation 

a = Va* « a* = V-1a (37) 

a*    +    V1AVa"   =  V1F   f(t) (38) 

and impose  the  condition 

V"1 A V = CO2 

This  requires   that V be  the  eigen-vectors  of   A ,   i.e. 

IX - (D2J v = o 

and CO the diagonal matrix of the corresponding eigen-values. 

11 



Equations (36) then decouple in the generalized coordinate vector a* 

ä* + <o2a*= V-1 F f(t) (41) 

with solution of each component in the form of equation (30).  Moment and 

shear resultants and corresponding stresses are the Cartesian counterpart to 

(23) and (24): 

Mxx = D + v  y 

k dx dy <*xx   =  6Mxx / h (42a) 

■ 9vfy   3vfx 
ayy = 6 Myy ' h (42b) 

Mxy = 
D(l - v)(3VJ^ + dyy 

dy dx. <*xy = 6Mxy / h (42c) 

Qx = KGh (£ + ¥X) Txz = Qx / h (42d) 

Qy = KGh|^- + Vy^ ^yz = Qy / h 
(42e) 

They are expressed in terms of modal quantities by (33) noting that a is 

related to a* by (37).  For simply supported and clamped edges, expressions 

(33) satisfy the edge constraints identically.  However, for free edges 

""M^c fe. y) = Myy (x, yc) = 0 (43a) 

Mxyta, y) B Mxy(x, yc) = 0 (43b) 

Qxfcc' y) = Qy(*< yc) = 0 
(43c) 

where xc = (0,0 and yc = (0, () .     Only (43c) is satisfied identically by these 

trial functions.  For example 

Mxx(°» y) = °X Z ftxifa) <Pyi(y) + v<pxi(0) T|yi(y)) Sij 

i  j 

= DX2V(Pxi(0)riyi(y) aij 
(44) 
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which will not in general vanish.  This error is equivalent to a spring loaded 

edge resisting rotation which stiffens the plate and raises its resonances. 

IIB.  SQUARE PLATE WITH FREE EDGES 

An alternative approach that satisfies (43a,b) in the average uses 

Lagrange undetermined multipliers.  Let each of the 8 edge constraint in 

(43a,b) not identically satisfied by the trial functions be expressed by an 

equation in the form 

9yx   3yy    3\|/x   3yy' 
Q   w, V|/x, i|/y, 

dx       dy        By        dx 
= 0 

(45) 

There the modified Lagrangian "L" which accounts for these unmet constraints 

can be written as 

8 

L = T - W + ^ Xy.  Dk (46) 

k=l 

y x L 

W = J J |^ (! + v) (Vx,x + Vy,y) 

dxdy 

2  KGh 
+  (Vx + wx)

2 + (\|ry + wy) J 

D(l-v) 
|(Vx,x " Vy.y) + (Vx,y + Vy,x)2 \äxäy 

where ( ) ,x is partial derivative and (T,W) are kinetic and strain energy, and 

Xk(x, y) are the Lagrange undetermined multipliers.  For each unknown 

u e |\yx, \j/y, wj Lagrange-Euler equation states that 

dx 

9w 
J(du/dx)   J     dy ^3(9u/3y) 

3w 9w  d 3T 

3u  dt du 

lW 
k=l 

3ßk 
3u 

d 

dx 

3Q,, 

a(9u/ax) 
d 

dy" 
K a«v 

3(3u/9y) 

(47) 

After substituting T and W from (46) into the first part of (47) and 

integrating by parts yields the differential operators %, i = 1,3 in (34) 

13 



The second part accounts for the unsatisfied constraints. 

ßi. = Myy, fl2 = 
Mxx and ß3 = Mxy in (42> yields 

®L(W, VX. Vy) - D 
ax.  i^  1 - v dX3/4 

2   3y 

Applying (47) when 

(48a) 

«2(w, Vx, Vy) - D 
3^5,6   1 - V 3X7 8 

V  — + 
3y    2        dx (48b) 

®3(w, Vx» Vy) = -P(
X

< y) f(t) 
(48c) 

On edges parallel to the x axis, 

X(x, y) = A.(x) 6(y - yc) ;    yc. = (0, (.) (49a) 

while on edges parallel to the y axis, 

X(x, y) = X(y)  5(x - x^ ;   ^  =  (0,1) (49b) 

where in (49) 8 is the Dirac delta function, 

trial functions 

Nc 

Mx) = X(x£),PxkM + 42)'ixk(x)) 
k=l 

k=l 

Expanding X(x) and X(y) in the 

(50a) 

(50b) 

where   Nc  < N.     Substituting   (49)   and   (50)   into   (48)   yields 

^  = DX   Z {V (XS ^ + '*& tlik) 6(y - yc) 
k=l   c=l 

;      I Ack <Pyk + Ack ^yk ykj  5(x - xc)| 
(51a) 

NU        2 

k=l   c=l 
®2 = DX   Z {v (xc5) <Py* + *ä tlÜ 8(x - xc) 

■^(47k9xk + 48kiixk)5(y-yc) 
(51b) 
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®3 = -p0(x, y) f (t) (51c) 

Since geometry and edge constraints are symmetric about axes with origin at 

the square's center, trial functions may be segregated into symmetric and 

anti-symmetric sets.  It follows that . 

(52a) J 9xi <Pxj dx s J nxi Ti'xj dx = 0 

J 9yi<Pyj dy  =   J  TlyiTlyj dx  =  0 
(52b) 

Multiplying   (51a)   by  (il».^),    (51b)   by  (<Pxm*1yn)   and   (51c)   by  (<pxm<Pyn)   then 

integrating over the square's  surface allowing for   (52)   reduces   (51)   to 

%  = D I 
c=l 

Nc 

v9yn(yc)£ ?»**'<* 
1 - V 

^jcmfe)^, ßnk^(c+2)k 
k=l k=l 

(53a) 

®2   = D 

c=l 

Nc N= 

V<Pxn(Xc)X Ynk^(c+4)k  + ~T~ Tlyn(yC)X ßmk^(c+6)k 
k=l k=l 

(53b) 

e. a. 

©j  = -f (t)  J J pc(x, y) 9JaB(x) (pyn(Y) dxdy 
0  0 

(53c) 

Yij  = j ^xi^Pxjdx = J Tiyi 9yi dy 
(53d) 

ßij   = \ «Pxi^l'xjdx = J q>yi Tiyi dy 
(53e) 
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In (53), ©k are the ®k  after the same operations.  Adding (53a,b,c) 
produces 

Axä + A2a + BX =  F f(t) (54) 

where Ai and A2 are N
2XN2 matrices, B is N2X8NC with 8NC additional unknowns 

^•ck» c = 1, 8 .  The remaining 8NC equations are found in the constraints 

themselves. 

For Mxx(xc,y) = 0, substituting (33)-in (42a), multiplying by <pyk(y) and 

integrating along edges x=xc yields two equations for each k=l, Nc: 

XEKi(X=)a3k + v<Pxi(t)ßjcj}aij  = o   ;   Xc  = (°>e) 
i      3 

«jk   =  J  <Pyi<Pyk<*y    .    ajk   =  JtlxjTl^dx 
(55a) 

For   Myy(x, yc) = 0,    Mxy(xc, y) = 0   and  Mxy(x, yc) = 0,   a similar procedure yields 

the remaining  6NC equations: 

XStocK + V9yi(yc)ßki}aij  = 0    ;    yc   = (0,/) 
i     3 (55b) 

XXKi(xc)äkj +T1xi(xc)Ykj}aij  = 0    ;   Xc   = (0,/) 
- i~~j    • (55c) 

XXKi^clYa +<Pyj(yc)ä;i}aij   = 0    ;    yc   = (0,/) 
i     3 (55d) 

The  four  sets  in   (55)   when assembled in matrix form become 

Ca =  0 (56) 

where C is an 8NCXN
2 matrix. 

Since the trial functions are segregated into odd and even functions and 

each set can be solved separately, then constraints on side x=0 automatically 

carry over to its opposite at x = f.   and only one constraint is used.  This 
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also applies to constraints on sides y = 0,1.     This reduces the number of X's 

to 4NC.  It also reduces the size of C to 4NCXN
2. 

Equations (54) and (56) when combined are sufficient to solve for the N2 

generalized coordinates a and the 4NC Lagrange multipliers X.     The constraint 

equations may be used ro eliminate an equal number of aij.  Partition (54) and 

the vector of unknowns in the following way 

JAkk Akej   ^ c = 
(Aek AeeJ^_ 

A" =U.„ A«, f..  ' " = ^ej {57b) 

Then 

Akklak + Akeläe + Aj^a,, + Ake2ae + BkX =  Fkf(t) (58a) 

Aeklak + Aeelae + Aek2ak + Aee2ae + BeX  = Fef(t) <58b> 

Cka.k  + Ceae = 0 (58c) 

where the lengths of ae and Fe are the same as X.     Solving for X  in (58b) 

X =  Be 
1[Fef(t) - (Aekläk + Aeeläe + Aek2ak + Aee2ae)] (59) 

then substituting back into   (58a)   yields 
Akklak + Akeläe + Äua&y. + Äke2ae  = Fcf(t) (6°) 

Akki   =   Akki ~ BkBe      Aeki     ,    i  = 1,2 

Akei   =   Akei _ BkBe      Aaei     <    i  = 1/2 

Fc   _  Fk ~ BkBe     Fe 

Eliminating äe and ae from (58c) 

ae - ~ce  ckak 
(61) 
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then substituting (60) yields the condensed equations 

Acläk + Ac2ak = Fc f(t) 

, (62) 
Aci = Akki - Akeice  <=k    ;    i = 1.2 

Equations (62) are analogous to the unconstrained equations (35) derived in 

Section IIA.  The total solution can then be reconstructed by {ak, ae} from 

(61) and (62) .  The steps adopted in diagonalizing Acl
-1 Ac2 are identical to 

those used in equations (35) through (41) of Section IIA. 

RESULTS 

Results are divided into two parts. The first part compares disk and 

plate stress histories (arr, CTgg, trz) where plate side length equals disk 

diameter.  The edges are simply supported.  The purpose is to investigate in 

detail how response is affected by shape of boundary at different 

eccentricities of center of impact.  Further comparisons are made with free 

edges to determine the effect of edge constraint.  The second part studies the 

sensitivity of maximum transient stress amax   to eccentricity at various 

lateral dimensions, thicknesses, pulse widths, and edge constraints.  In all 

cases, the time dependence f (t) of the forcing pulse is trapezoidal with 5(is 

rise and fall times, and either 40^s or 15jls plateau of unit magnitude, 

yielding a total pulse width of 50fis and 25|i.s respectively.  The 50fls is 

typical of a pressure pulse produced by a 50 caliber rifle projectile at 

3000 ft/sec.  The forcing pressure is uniform over a circular footprint with 

radius rp = 0.25" and eccentricity r«.  Stress histories are computed at four 

radial positions or "sensors" as shown in Fig. 1.  Sensors 1 and 4 are 

symmetric about center of impact and should yield identical histories prior to 

reflexions from the edge.  Sensor 2 is on the footprint perimeter and measures 

maximum shear stress Tr2 along the neutral plane.  Sensor 3 is at the center of 

impact and measures maximum normal stresses <rrr and GQQ   on the plate's 

surface.  Sensor 5 replaces sensor 4 only when footprint touches the edge. 

Disks and square plates are made of A1N with properties 

E = 40xl05lb / in2 ■ , p = 3.04xl0~4lb sec2/ in4 , v = 0.25 

Bozh  disk and plate have the same thickness and lateral dimensions, 

i.e. h = 0.5" and ( =  2rd = 6" . 
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Fig. 2a, b plot resonant frequency Q.  in Hz against circumferential wave 

number n with radial wave number m as parameter for disks with simply- 

supported and free edges.  Shear modes are omitted since they do not 

contribute to response.  For n>2, D.  varies almost linearly with n, and as 

expected, for fixed (m, n) ß for simply supported edges is higher than Q  for 

free edges since the former yields a stiffer boundary for n £ 2 .  For free 

edges Cl  lines undergo a reversal in slope between n=l and n=2 as shown in 

Fig. 2b. 

Fig. 3,4 and 5 compare disk and plate stress histories for re = 0", 1" 

and 2.5" respectively, for simply supported edges.  For re=0 

(see Fig. 3a—»3f) , disk and plate reach the same maxima for all stress 

components.  For the disk, reflexions from the edge produce strong 

fluctuations in response because, in radiating from the center of impact, each 

wave front is reflected from the edge at the same time producing a condition 

of the reflected waves called coherance (see Fig. 3a,b,c) .  For re=l" (see 

Fig. 4a-»4f) maxima of both geometries are again the same.  Histories at 

sensors 1 and 4 coincide in the first 15 Jis from impact prior to reflexions 

from the edge.  For re=2.5" (see Fig. 5a—»5f) , the only change is that 

histories at sensors 1 and 4 never coincide because sensor 4 is at the edge. 

Stress histories resemble the trapezoidal shape of the forcing pulse because 

it is more important than the reflected waves in determining the shape of the 

response. 

Figures 6,7,8 and 9 plot histories of the disk with free edges for 

re=0*y■-lAjg 2.5" and 2.75". Here, maximum stress is higher than that for 

simply supported edges.  For re=2.5* (see Fig. 8a,b,c), <Trr is negative at 

sensor 1, and becomes positive at sensors 2 and 3.  As center of impact 

approaches the free edge, it bends a sector of the disk like a cantilever 

producing negative flexural stress arr at sensors remote from the edge (see 

Fig. 8a).  This is called the cantilever effect.  For re=2.75" (see Fig. 

9a,b,c), both sensors 1 and 2 record negative Grr as the cantilever sector of 

the disk is more flexible because its cord is shorter.  This is also evidenced 

by the larger peak magnitude of arr (compare Fig. 8a and 9a) .  Although <Jrr 

diminishes with re, 0QQ rises with re. 

To study how the various parameters affect: peak stress response <Jmax, 

let the stress factor aa   be defined as: 

aff(re) = <*max(re) / Omax(0) 
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An aa >  1 means a magnification from the situation of central impact, and an 

aa < 1 means a reduction.  The feducial <Tmax(0) for a disk with simply- 

supported edges is plotted against h with rd as parameter in Fig. 10.  For 

fixed rd, the CTmax line appears inversely proportional to h
2.  This is 

consistent with the approximation derived in Ref. [3] for cmax  based on the 

approximate model of an expanding cone of influence: 

,      x /      N      3(! + v)       rP c„(0, t) = <Te9(o, t) = p0 S- 
2 h2 

to 
rp I      1 f rp  

2 

41 ( 

= 1.25 ^ ht + 3-25 rp 

where ce is defined in (4) and p0 in (29) . 

Figure 10 also shows that increasing rd reduces CTmax for a fixed h 

because reflected waves contribute less to total stress.  In fact, depending 

on pulse width of At* there is a threshold rd above which o^x does not 

change [3].  Figure 11a plots ac against re/rp with h as parameter for a disk 

with simply supported edges, rd=3", and 0.25" < h < 1" .  For h=0.4" and 0.5", 

aa rises above unity, and well above the other h's.  As re approaches the 

edge, oca diminishes smoothly for all h.  Fig. lib plots <xa for h=0.5" and 

two Atf's .  The shapes of the two curves are similar while the maximum cxCT' s 

occur at different re's.  Fig. 12 plots <xa for rd=2".  There, <xa   is always 

below unity.  The plots of aa   in Fig. 13a,b are for a disk with free edges. 

<xCT reaches a minimum near re/rp=8, then rises smoothly with re for all h. 

This rise is consistent with the cantilever effect.  In general, the shape of 

<xa does not follow trends predictable by simplified models since it depends 

on the interference between waves radiating from the footprint and incoherent 

reflexions from the edges.  The interference is a function of disk geometry, 

eccentricity and pulse width. 
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Figure 1. Convention for sensor positions of eccentric foot-print 

Figure 2. Resonant frequency lines of disk as a function of "n" with "m" as parameter; 
rd = 3", h = 0.5" 

Figure 3: Stress histories of disk and square plate with "simply supported edge"; 
rd = 3", h = 0.5", rp = 0.25", re = 0", Atf = 50u.s 
(a), (b), (c) -*• disk; (d), (e), (f) -* square plate 

Figure 4: Stress histories of disk and square plate with "simply supported edge"; 
rd = 3", h = 0.5", rp = 0.25", re = 1.0", Atf = 50(is 
(a), (b), (c) -»■ disk; (d), (e), (f) -* square plate 

Figure 5: Stress histories of disk and square plate with "simply supported edge"; 
rd = 3", h = 0.5B, rp = 0.25", re = 2.5", Atf = 50(xs 
(a), (b), (c) -> disk; (d), (e), (0 -♦ square plate 

Figure 6: Stress histories of disk with "free edge"; 
rd = 3", h = 0.5", rp = 0.25", re = 0", Atf = 50jxs 

Figure 7: Stress histories of disk with "free edge"; 
rd = 3", h = 0.5", rp = 0.25", re = 1.0", Atf = 50u.s 

Figure 8: Stress histories of disk with "free edge"; 
rd = 3", h = 0.5", rp = 0.25", re = 2.5", Atf = 50fjLS 

Figure 9: Stress histories of disk with "free edge"; 
r<j =Ji", h = 0.5", rp = 0.25", re = 2.75", Atf = 50u,s 

Rgure 10: Varitation of amax with "h" for central impact, and "simply supported edge" 

Figure! 1: Varitation of "aa" with "re" for "simply supported edge"; rd = 3" 

Figure 12: Varitation of "<*</ with "re" for "simply supported edge"; rd = 2" 
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Figure 2. Resonant frequency lines of disk as a function of "n" with "m" as parameter: 
rd = 3", h = 0.5" 
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Figure 10: Varitation of crmax with "h" for central impact, and "simply supported edge" 
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Kurzfassung 

Abstract 

Zur Untersuchung der Schutzwirkung von Keramiklaminaten wurden Versu- 
che mit Stabpenetratoren aus Wolframsinterlegierung (D = 11 mm, L/D = 6, 
mp * 110 g) bei einer Auftreffgeschwindigkeit von v?= 2100 m/s durchge- 
führt. Die Keramiklaminate bestanden aus 6.35 mm, 12.7 mm, 19.05 mm, 
25.4 mm und 38.1 mm dicken AIN - Kacheln mit den lateralen Abmessungen 
von 100 x 100 mm und 150 x 150 mm. Zur Reduzierung der Druck-/ Dehnra- 
teneffekte wurden zwischen den einzelnen Keramikplatten PMMA-Zwischen- 
schichten eingelegt und mit einem Zweikomponenten-Epoxydharzkleber ver- 
bunden. Die Dicke der PMMA-Einlagen wurde zwischen 0 mm, 0.5 mm und 1 
mm variiert. Zur Beurteilung der Schutzwirkung wurden zwei Bewertungsme- 
thoden angewendet: 1) die „Depth-of-penetration-Methode (DOP)" zur Be- 
stimmung der Resteindringtiefe im Panzerstahlbacking und 2) die zeitaufgelö- 
ste Methode zur Beobachtung des Eindringvorgangs des Projektils ins Kera- 
miklaminat. Aus den Meßergebnissen ist ersichtlich, daß mit zunehmender 
PMMA-Schichtdicke die Schutzwirkung des Keramiklaminats abnimmt. Die 
kinetische Energie des gewählten Stabpenetrators (mp« 110 g, vp» 2100 m/s) 
erwies sich für die zu untersuchenden Targets als zu hoch; alle Laminate 
wurden vollkommen zerlegt, sodaß nach dem Versuch keine Beurteilung des 
Schadensbildes möglich war. 

Terminal ballistic experiments Were carried out with tungsten sinter alloy rods 
(D = 11 mm, L/D = 6, mP * 110 g) against ceramic layer systems. The 100 x 
100 mm and 150 x 150 mm targets consisted of 0.25", 0.5", 0.75", 1" and 
1.5" AIN ceramic layers with 0 mm, 0.5 mm and 1 mm PMMA intermediate 
layers bonded with a 0.1 mm to 0.23 mm thick two-component epoxy resin 
adhesive. The tests have been performed at an impact velocity vp around 2100 
m/s. Two evaluation methods have been applied: 1) the depth-of-penetration 
method (DOP) for estimation of the protection efficiency of the ceramic by 
means of the residual penetration depth in the RHA backing plate and 2) the 
time-resolved method for observation of the penetration process into the 
ceramic layers. It has been found that for increasing PMMA layer thickness 
the ballistic performance of the ceramic target decreases. The kinetic energy 
of the rod penetrator with a mass and impact velocity of 110 g and 2100 m/s, 
respectively, was much too high for the target under investigation. Therefore, 
all ceramic tiles were totally destroyed; an examination of target damage and 
crater formation could not be done after the test. 
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Introduction 

During the last decades the use of ceramics in modern armor became of in- 
creasing interest because of its high protection efficiency at relatively low 
areal density. The ballistic performance of ceramics depends on the type of 
the ceramic (compression strength, material density), the geometry (lateral 
dimensions, thickness), the layer sectioning, the confinement as well as the 
material properties of the projectile and the impact velocity. 

The layer sectioning was the main topic of the research program carried out 
in cooperation between the DOW Chemical Company and the Ernst-Mach- 
Institut. In former experiments it has been found that the damage in a 
monolithic ceramic block is much stronger than in a layered target. Therefore, 
there was a strong economic and technical motivation to investigate ceramic 
layer concepts. The DOW Chemical Company developed 1-D and 2-D 
axisymmetric analytical models to describe the stress wave propagation 
dependent on impact velocity, lateral target dimensions, tile thickness, type 
and thickness of the intermediate layers for aluminum nitride (AIN) tiles. Each 
model is limited by simplifications from assumptions necessary to make the 
problem numerically tractable. Further progress could only be achieved by 
finding new effects and parameters from experiments. These tests were 
carried out at the Ernst-Mach-lnstitut. The shock wave propagation in layered 
targets was investigated by planar impact experiments, published in 
References [1] to [3]. 

This report summarizes the results of first terminal ballistic tests of AIN 
ceramic tiles with PMMA intermediate layers bonded with an epoxy resin 
adhesive. 
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Experimental procedure and test parameters 

For acceleration of the heavy tungsten sinter alloy (WS-alloy) projectile the 
EMI range 1 two-stage light gas gun with pump/launch tube diameters of 
65/31 mm was used. The rod projectile (Fig. 1) was embedded into a four- 
finger sabot with a pusher both made of Polycarbonat (trade name 
,Makrolon") and a 4 mm thick titanium disc. In Fig. 2 the in-flight seperation 
of sabot, pusher and titanium disc by aerodynamic forces is shown. 

2.1       Test set-ups 

The tungsten sinter alloy projectile had a mass of mp« 110 g (Table 1) and a 
diameter of D = 11 mm (L7D = 6). The head of the projectile had a blunt       _ 
shape The experiments have been performed at an impact velocity vp around 
2100 m/s against AIN layer targets with PMMA intermediate layers of the 
thicknesses 0 mm, 0.5 mm and 1 mm. They were bonded with an epoxy resin 
adhesive 0.10 mm to 0.23 mm thick. 

Two test set-ups were applied: 1) the depth-of-penetration method (DOP) and 
2) the time-resolved observation method. They are depicted in Figs. 3 and 4. 
For both test methods there was no lateral confinement. Only a RHA backing 
(HV20 = 412) was arranged behind the ceramic layer stack. 

In the case of the DOP method (Fig. 3) the lateral tile dimensions were 150 x 
150 mm The total target thickness of the ceramic tiles was about 3" * 
constant, consisting of 0.25" (12 layers), 0.5" (6 layers), 0.75" (4 layers), 1 " 
(3 layers) and 1.5" (2 layers). 

For observation of the penetration process of the projectile into the ceramic 
layers the time-resolved observation method has been applied for the 0.25" 
and the 1 5" tiles with 0 mm and 1 mm PMMA layers in between the tiles. 
The use of the 600 kV flash X-ray tube made it necessary to reduce the lateral 
tile dimensions from 150 x 150 mm to 100 x 100 mm. For this test set-up the 
target was surrounded (not confined!) by a rectangular tube of an inner cross 
section area of 190 x 190 mm with an observation window of 140 x 50 mm 
at both sides. The 40 mm thick polystyrene foam sheet between target 
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(ceramic tiles + steel backing) and base plate support minimized disturbances 
from the target chamber. For determination of the yaw angles a, and a2 two 
180 kV flash X-rays were arranged vertically and horizontally prior to the 
target. 

2.2      AIN ceramic tiles 

The 0.25", 0.5", 0.75", 1"and 1.5" AIN ceramic tiles with 100x100 mm 
and 150 x 150 mm lateral dimensions have been delivered by the DOW 
Chemical Company, Midland, Ml, USA (product name XUS 35532.00). The 
tiles consist of 95-100% aluminum nitride, 0-5% aluminum oxide and 0-5% 
yttrium oxide. Its material density is p = 3.26 g/cm3 (boiling point 2150°C). 
Other material properties are unknown. 

2.3      Bonding materials 

In the planar impact tests the influence of tile thickness, thickness of the 
intermediate film, and the lateral stack geometry on the first pulse 
propagation into the stack, the phase velocity and the shock wave 
attenuation has been investigated. Different coupling media have been used: 
Latex, single-component silicone rubber (SR 118Q) and two-component 
silicone rubber (ME 625). The planar impact tests have been carried out at an 
impact velocity between 10 m/s and 60 m/s. The two-component silicone 
rubber delivered the most reliable results of the pressure profiles, phase 
velocity and shock wave attenuation (good coupling, complete vulcanization). 
PMMA intermediate layers reduced the strain rate effects to a minimal level. 
In contrast to the two-component silicone rubber PMMA was not strain rate 
dependent over a large range.The weak strain rate effects were due to the 
epoxy bonding. The compounds A and B of the epoxy resin adhesive are 
available commercially in the USA as WELDON-10 A&B, manufactured by IPS 
corporation, Gardena, California. The two part compound A&B were 
thoroughly mixed in the ratio of 100 parts by weight monomer (A) and 13 
parts by weight catalyst (B). The bond was cured at room temperature for 48 
hours. 
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Experimental results and discussion 

3.1      Depth-of-penetration (DOP) method 

Table 1 summarizes the experimental results of the depth-of-penetration 
(exps. 8399 through 8414) and the time-resolved observation methods (exps. 
8415 through 8418). For both procedures the residual depth of penetration 
pR has been determined in the 2 x 50 mm RHA backing supported by 2 x 50 
mm mild steel plates to evaluate the protection efficiency of the ceramic layer 
system. pR is given in Table 1 as well as in the histogram of Fig. 11. For the 
0.25", 0.75" and 1.5" tile thicknesses tests are carried out with an 
intermediate layer of 0 mm, 0.5 mm and 1mm PMMA sheet. For experiments 
8402, 8409 and 8413 the p, values may be additionally influenced by the 
relatively great yaw angle of a, = 3° to 4° (definition in Fig. 5). For all three 
tile thicknesses the highest pR was found for the 1 mm PMMA, i.e., the best 
terminal ballistic performance has the ceramic layer system without PMMA 
layers. This behavior of the ceramic layer system is not yet understood: in the 
planar impact tests it has been found that the PMMA intermediate layer is not 
pressure/strain rate sensitive in the velocity range 12.3 m/s to 45.2 m/s. It is 
assumed that PMMA changes its behavior at higher impact velocities. 
Additional tests would be necessary to give evidence for this supposition. An 
other explanation could be the delamination between AIN tiles and PMMA 
layers observed in the planar impact tests. 

A reduction of the lateral tile dimensions from 150 x 150 mm to 100 x 100 
mm decreased the ballistic performance. 

3.2      Time-resolved observation method (Ref. [4]) 

The flash X-ray photographs in Figs. 7 through 10 show the penetration 
process of the WS-alloy rod into the AIN ceramic layers. The targets consisted 
of 2x 1.5" (Figs. 7 and 8) and 12 x 0.25" tiles (Figs. 9 and 10) with no PMMA 
(Figs. 7 and 9) and 1 mm PMMA (Figs. 8 and 10) intermediate layers, 
respectively. The yaw angles were controlled by 180 kV flash X-ray 
photographs prior and at the moment of impact. The interaction between 
penetrator and ceramic tiles has been observed by means of a 600 kV flash X- 
ray tube at some selected times. Fig. 7 represents the penetration process 
short time after impact (because of a malfunction of the time measurement 
system the time could not be measured) into the 1.5" AIN tiles with no 
PMMA. The crater formed in the target was relatively narrow compared to 
the crater formed in the target with 1 mm PMMA (Fig. 8). In this case the rod 
has already passed the PMMA intermediate layer visible by the strong lateral 
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spread of the eroded rod material. The same behavior could be observed for 
the 0.25" layers. For the 1.5" tiles the crater shape shows a strong 
discontinuity at the PMMA intermediate layer. However, for the 0.25" layers 
the crater contour is much smoother than for the thicker tiles. 

The qualitative results of the X-ray evaluation are given in Table 2. The 
notations used in Table 2 are explained in Fig. 6. Because of the poor number 
of experiments carried out no remarkable influences of layer partitioning and 
PMMA intermediate layers on momentary rod length I, head velocity u and 
tail velocity v have been found. Additional tests would be necessary. 

4      Conclusions and continuation of the program 

By means of the terminal ballistic tests for the 0.25", 0.75" and 1.5" AIN 
ceramic tiles with 0 mm, 0.5 mm and 1 mm PMMA intermediate layers it was 
shown that the protection efficiency of the ceramic layer system slightly 
decreased with increasing PMMA thickness. Furthermore, it was found that 
the kinetic energy of the used projectile (WS-alloy, p = 17.45 g/cm3, D = 11 
mm, L/D = 6, mp = 110 g) was distinctly too high to investigate this type of 
target. From these test results it was decided to continue the experiments 
with a projectile of lower mass (m: a= 65 g) at a lower impact velocity of vp= 
1500 m/s. For all tests AIN targets of 2.5" total thickness, consisting of 0.25", 
0.5", 0.75", 1" and 1.5" tiles of 100x 100 mm and 150x 150 mm lateral 
dimensions are planned to be used. The ceramic layer system will be laterally 
confined by 20 mm mild steel. Additionally, mild steel cover and RHA backing 
plates are mounted. The tiles will be bonded by a 0.3 mm thick two- 
component silicone rubber film (most reliable planer impact results) without 
any PMMA layers in between'the tiles. 
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Kurzfassung 

Abstract 

Der vorliegende Bericht faßt die experimentellen Ergebnisse der 
Untersuchung des Einflusses der Schichtaufteilung auf die Schutzwirkung von 
AIN-Keramiken zusammen. Es wurden sowohl monolithische (1x1.5") als 
auch Zweischicht- (2x0.75") und Dreischicht-Keramikziele (3x0.5") bei einer 
Impaktbelastung durch einen Wolframschwermetall-Stabpenetrator (WSA, mP 

« 50 g, D = 8.33 mm, L/D = 6) bei einer Auftreffgeschwindigkeit von vP« 
1150 m/s getestet. Zur zusätzlichen Bewertung des Verdämmungseinflusses 
wurden drei verschiedene Versuchsaufbauten mit 1) massiver axialer und 
lateraler 2) schwacher axialer und massiver lateraler sowie 3) massiver axialer 
und schwacher lateraler Verdammung untersucht. Die beobachtete geringere 
Schutzwirkung von geschichteten gegenüber monolithischen Keramikzielen 
wird wahrscheinlich durch die höhere Biegebelastung hervorgerufen. Der 
Einfluß der Biegebelastung überlagert-vermutlich den Effekt der reduzierten 
Stoßwellenbelastung bei Schichtzielen infolge von Zwischenschichten 
geringer Impedanz zwischen den einzelnen Keramikkacheln. Die Versuche 
zeigen, daß bereits eine geringe Schwächung von axialer und lateraler 
Verdammung sowohl die Kratergeometrie als auch die Resteindringtiefe 
(Schutzwirkung) beeinflussen. 

This report summarizes the results of the experimental investigations 
corresponding to the terminal ballistic protection efficiency of monolithic and 
layered AIN Ceramics. Monolithic (1.5") as well as multi-layer (2x0.75" and 
3x0.5") ceramic targets have been investigated under impact loading by a 
tungsten-sinter alloy rod pehetrator (WSA, mP» 50 g, D = 8.33 mm, L/D = 6) 
at an velocity of vP« 1150 m/s. Additionally, three different test set-ups have 
been applied with 1) strong axial and lateral 2) weak axial and strong lateral 
and 3) strong axial and weak lateral confinement to get information about 
the confinement influence. The lower protection efficiency observed for 
layered ceramics compared to monolithic ones may be caused by higher 

-flexure effects. In the case of layered ceramics this effect may superpose the 
effect of reduced shock wave loading caused by the bonding interlayer 
material of low shock impedance between the tiles. It has been found that 
already a small weakening of the axial and lateral confinements can influence 
crater geometry as well as residual penetration depth (protection efficiency). 
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1       Introduction 

The report gives a summary of the experiments performed with laterally 
confined 6 x 6" and 4 x 4" AIN ceramic tiles to investigate the protection 
efficiency change of layered ceramic targets compared to monolithic tiles. In 
an earlier test series for laterally unconfined AIN ceramic targets it has been 
demonstrated that the PMMA intermediate layers reduce the ballistic 
protection efficiency [1 ]. Furthermore, the unconfined ceramic targets were 
totally destroyed, because of the overpower of the kinetic energy of the 
projectile. 

In a second and third test series the lateral tile dimensions were reduced in 
size from 150 x 150 mm (6 x 6") to 100 x 100 mm (4 x 4") and additionally 
the confinement and bonding procedure of the ceramic tiles was modified. 
The kinetic energy of the long rod penetrator was also reduced to lower 
masses and velocities. 

Experimental procedure, test set-ups and test parameters 

The heavy tungsten sinter alloy (WSA) projectiles were launched with the 
same acceleration and sabot techniques as described in Reference [1]. For 
evaluation of the terminal ballistic protection efficiency of layered AIN ceramic 
targets the depth-of-penetration (DOP) method has been applied. 

In the following the different test set-ups and test parameters will be 
described (Figs. 1 - 7). In test series 2 the 150 x 150 mm (6 x 6") ceramic tiles 

- -—■    - were laterally confined by a squared 16 mm thick steel tube and 8 mm steel 
plates in between the tube and the ceramic package. The rear and front sides 
of the ceramic were supported by a 50 mm thick RHA backing and a 10 mm 
thick front plate (with 30 mm diameter hole), respectively. The ceramic tiles 
were glued together with a two-component silicone rubber of a film 
thickness of 0.3 mm. The bonding procedure is described in Ref. [1]. For test 
series 2 a WSA rod projectile with hemispherical nose (mp » 70 g, vp = 1550 
m/s, D = 7.87 mm, L/D = 10) was used. The AIN ceramic tiles used in test 
series 2-3 came from the same production line as those of test series 1 (Ref. 
[1]). 

For real targets it is necessary to chose the lateral tile dimensions as small as 
possible. Therefore, in test series 3 (Figs. 4-6) the lateral ceramic tile size was 
reduced from 150 x 150 mm (6 x 6") to 100 x 100 mm (4 x 4"). The total 
ceramic block thickness was also reduced to 38.1 mm (1.5"). Enabling the 
comparison of the experimental results of EMI, Germany, and CALTECH, 
USA, the penetrator mass and velocity was decreased from mp « 70 g and vp 

« 1550 m/s to mp « 50 g (D = 8.33 mm, L/D = 6; flat nose) and vp « 1150 
m/s, respectively. Instead of a 50 mm thick RHA backing an 60 mm thick 
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aluminum backing (AI6061-T651) supported the ceramic rear side. To 
guarantee a homogeneous bonding between the ceramic tiles the two- 
component silicone rubber was replaced by a 0.25 mm (10 mil) thick 
Polyurethane film, heated in the oven at 190° C (375° F) over 30 minutes, 
pressed together by a weight of a mass of 5 kg. In test set-up 3b (Fig. 5) a 10 
mm thick steel plate with a 30 mm diameter hole is added in between the 
ceramic rear side and the aluminum backing. Test set-up 3c (Fig. 6) 
corresponds to test set-up 3a with the exception that the 6 mm thick steel 
plates between steel tube and ceramic block are removed. The laterally 
remaining air gap around the ceramic block makes the lateral confinement 
weaker. 

For approximation of real target testing experiments with the test set-up in 
Fig. 7 (test series 4 & 5) are planned. This test set-up corresponds to the test 
set-up in Fig. 6 (test series 3c) with the following differences: 1) the single 
aluminum block is replaced by a 15 mm aluminum / 10 mm air gap / 60 mm 
aluminum backing 2) the 0.25 mm thick PU film between ceramic and 
aluminum is substituted by a 1 mm thick soft rubber sheet. 

Experimental results and discussion 

■%$ 3.1      Test series 2 

A typical result of test series 2 is shown in Figs. 8 and 9. Fig. 8a depicts the 
crater cross section of a 150 x 150 mm (6 x 6") target consisting of a 1" 
(25.4 mm) in front and a 1.5" (38.1 mm) tile at the rear. Both tiles are totally 
cracked. In the center of the target a large crater is formed with conical 
entrance and exit shapes. The radial crack pattern of the target rear side is 
visible in Fig. 8b after removing the RHA backing plate. Quantitative results 
for the residual penetration depth pR are given in Table 1 and Fig. 16. The 

. relatively small residual penetration depth measured in the RHA backing is in 
the range of 9.3 mm < pR < 15 mm; the data spread was up to 0.5 D. 
Therefore, the improvement of the protection efficiency of the ceramic with 
increasing layer number indicated by the linear regression curve should be 
considered very carefully. 

3.2      Test series 3 

In Figs. 9-15 the influence of the lateral confinement and backing of the 
ceramic will be demonstrated for monolithic (1.5") as well as layered 
(2x0.75" and 3x0.5") AIN ceramic targets 100x100 mm (4x4") in size. The 
quantitative results of test series 3 are summarized in Table 2. 

The perspective view of Fig. 9 gives an impression of the steel confinement 
casing after the shot. Evidence is given that it has been well designed (no 
strong damage and no removed casing components) for the impact loading 
applied in the tests. 
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References 

The test results of the strongest lateral confinement and backing used are 
depicted in Figs. 10 and 11 for the 38.1 mm (1.5") monolithic and the 
3x12.7 mm (3x0.5") layered AIN ceramic targets. From the cross sectioned 
targets it is clearly visible that the rod projectile is consumed by the first third 
of the monolithic ceramic tile; a very flat and wide crater is formed. The 
reminder of the ceramic tile is damaged by radial cracks initiated by shock 
waves propagating from the tip of the rod. The aluminum backing remains 
undamaged. In the case of the layered ceramic target (Fig. 11) the kinetic 
energy of the projectile forms a crater distinctly narrower and deeper 
compared to that of the monolithic ceramic. The residual penetration depth 
pR is around 6 mm (Table 2). These observations and test results seem to be 
in contradiction to theoretical considerations carried out by analytical model 
calculations at the DOW Chemical Company. By means of these calculations 
it has been found that the PL) interlayers diminish the intensity of the shock 
wave propagation initiated in the front layer to the subsequent ceramic tiles, 
i.e., pre-damaging of these layers is reduced. Because of the experimental 
results presented here it is supposed that in practice flexure waves dominate 
the damaging process of the ceramic. 

This behavior of the ceramic observed in test series 3a has also been found in 
test series 3b and 3c with a weaker backing (air gap around shot line at the 
ceramic rear side) and weaker lateral confinement (air gap around the 
ceramic), respectively. The air gap between ceramic block and aluminum 
backing means a reduction of the axial confinement along the shot line. This 
results in the formation of an exit crater with a diameter of around the hole 
diameter in the steel plate (Figs. 12 and 13). 

The weaker lateral confinement of test set-up 3c caused by the air gap 
around the ceramic block reduces the protection efficiency even stronger 
than the weakened axial confinement of test set-up 3b (Figs. 14 and 15). A 
larger crater with comminuted ceramic is formed leading to a lower 
protection efficiency of the monolithic as well as layered ceramic targets. 

Fig. 15 represents the residual penetration depth pR in the aluminum backing 
for the monolithic (1.5"), two-layered (2x0.75") and tree-layered (3x0.5") 
targets. The ceramic tiles with the PL) bonding films presented before were 

■ heated up in the oven from 20PC to 190°C which was held constant over 30 
minutes and subsequently cooled down to 20°C by natural temperature 
radiation. In the case of experiment nos. 8738-8740 (Fig. 15) the glued 
targets (PL) film) were cooled down to 20°C immediately after the high 
temperature of 190°C has been achieved. 

[1]  K. Weber, V. Hohler and A. J. Stilp. Protection Efficiency of Layered AIN 
Ceramic Targets Bonded with PMMA - Terminal Ballistic Experiments. 
EMI-Report E 11/96 
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San 

Fig. 2       AIN ceramic target assembled in steel casing with RHA backing plate; front plate removed    (test series 2) 

5cm 

Fig. 3       Assembled AIN ceramic tiles and confinement components (test series 2) 
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Fig. 8a     Crater cross section of a two layer AIN ceramic tile (6 x 6', 1* + 1.5" thick), after perforation of a WSA rod 
(D = 7.87 mm, UD = 10) at vP = 1493 m/s (Exp. 8630) 

H 

Fig. 8b     AIN ceramic rear side after removal of the RHA backing plate (Exp. 8630) 



8716 
5 cm 

Fig. 9       Perspective views of steel casing, cross sectioned monolithic 1.5" AIN ceramic and aluminum backing 
(test series 3a, strong confinement) top: front view        bottom: side view 



n 

Fig. 10     Cross sections of 1.5" monolithic AIN ceramic targets with aluminum backing, (test series 3a. strong confinement). 
a)Exp. 8716;vP= 1192 m/s; (front plate removed) b) Exp. 8718; vP = 1145 m/s 



Fig. 11      Cross sections of 3x0.5" layered AIN ceramic target (front plate removed) with aluminum backing, (test series 3a, 
strong confinement). a) Exp. 8717; vP = 1174 m/s    b) Exp. 8719; vP = 1161 m/s 



i. 

Fig. 12     Cross sections of 1.5" monolithic AIN ceramic target and steel &aluminum backing (test series 3b, weakened axial 
confinement); a) Exp. 8725; vP = 1167 m/s    b) Exp. 8726; vP = 1125 m/s 



Fig. 13     Cross sections of 3 x 0.5" layered AIN ceramic target and steel & aluminum backing (test series 3b, weakened axial 
confinement); a) Exp. 8724; vP= 1203 m/s     b) Exp. 8727; vP = 1169 m/s 
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i Jcm 

Fig. 14     Cross sections of AIN ceramic target and aluminum backing (test series 3c, weakened lateral confinement); 
a) Exp. 8733; vP = 1130 m/s; 1.5 • monolithic b) Exp. 8734; vP = 1140 m/s; 2 x 0.75" layers 
c) Exp. 8735; vP = 1186 m/s; 3 x 0.5" layers 
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Fig. 15     Cross sections of the aluminum backing with residual projectile (test series 3c, weakened lateral confinement); 
a) Exp. 8738; vP = 1133 m/s; 1.5" monolithic b) Exp. 8739; vP = 1182 m/s; 2 x 0.75" layers 
c) Exp. 8740; vP = 1170 m/s; 3 x 0.5" layers 



in 
<ti 
>» 

V. 

>» 

in 

CD 

•i;H 

I/) 

CD 
>» 

m 
JO 

E 
3 

T<» 

10 

f\l 

< 

o 
1 

in 
I 

o 
i 

m O in 
i 

o in o 
o r*» in fN O r> in CM o 

■ 

fM T- r— r- r- o o o o 
a/bd 



Verteilerliste 

Bericht Nr;;£l?/97; 

Autor: K. Weber, V. Hohler 
Titel:   Protection Efficiency of Layered AIN Ceramics Bonded with Polyurethane Films 

Interne Verteilung: 
Autor(en):        K. Weber 

V. Hohler 

Belegexemplar Bibliothek EMI-Freiburg 

weitere Referate/Institute/Firmen/Personen: 
Dr. El-Raheb, DOW Chemical Company, Midland, Michigan, USA (6 Exemplare) 

27.11.1997 



Reference [7] 
Protection Efficiency of Layered AIN Ceramics Bonded with 

Polyurethane Films 

36 



DISTRIBUTION LIST 

No. of Copies Organization 

2 Defense Technical Information Center 
DTIC DDA 
8725 John J. Kingman Rd. 
Ste'. 0944 
Ft. Belvoir, VA 22060-6218 

10 U.S. Army Tardec 
K. Bishnoi (5 cps) 
D. Templeton 
J. Thompson 
AMSTA TR R MS 2 63 
Warren, MI  48397-5000 

1 Army High Performance 
Computing Research Center 
T. Holmquist 
1200 Washington Ave. S. 
Minneapolis, MN  55415 

2 Dir. USARL 
AMSRL-WM-TD 
A. Rajendran 
D. Grove 
Aberdeen Proving Ground 
Aberdeen, MD 21005-5065 



Reference [8] 
Results of the 1998 Center and Off-Center Hitting Tests with 4 x 4" 

and 6 x 6" AIN Ceramic Targets 

37 



Fraunhofer 
Institut 
Kurzzeitdynamik 
Ernst-Mach-Institut 

Fraunhofer EMI Eckerstraße 1 D-79104 Fre>burg 

Dr. Michael El-Raheb 
The DOW Chemical Company 
Central Research Engin. Lab. 
Bldg. 1776 

Midland, MI 48640 

USA 

Institutsleitung 
Prof. Dr. rer. nat. Klaus Thoma 

Eckerstraße 4 
D-79104 Freiburg 

Telefon +49 (0) 7 61/27 14-0 
Telefax +49(0)761/2714-316 

Karl Weber 
Durchwahl +49 (0) 761/2714-323 
Telefax +49 (0) 761/2714-316 
e-mail: weber@emi.fhg.de 

Freiburg, 
27. November 1998 

Results of the 1998 center and off-center hitting tests with 4 x 4" and 6 x 6" AIN ce- 
ramic targets 

Dear Dr. El-Raheb: 

Enclosed please find the results of all the tests with monolithic and layered AIN ceramic targets 
carried'otit in 1998. 

The tables and diagrams include also the data of the 1997 experiments performed with test set- 
up 3c (Exps. 8733 - 8740); these results were already presented in EMI report E 19/97 „Protec- 
tion Efficiency of Layered AIN Ceramics Bonded with Polyurethane Films". 

Don't hesitate to contact us if you have any questions. 

We are looking forward to your visit at Ernst-Mach-Institut in March 8-12, 1999. 

Yours sincerely, 

K. Weber 
Staff Scientist 

TPV*E. Schneider 
Head of the Impact Physics Division 

Enclosures: 
Vorstand der Fraunhofer-Gesellschaft: 
Prof. Dr.-Ing. Dr. h. c. mult. 
Hans-Jürgen Warnecke. Präsident 
Dr. jur. Dirk-Me;nts Poller 
Dr. rer. pol. Hans-Uli ich Wiese 

Fraunhofer-Gesellschaft zur Förderung 
der angewandten Forschung e V. München 

B.inl-verhinriiinq  Deutsche H.tnt. München 



Fraunhofer Institut 
Kurzzeitdynamik 
Ernst-Mach-Institut 

Fraunhofer EMI Eckerstraße <ä D-79104 Freiburg 

Dr. Michael El-Raheb 
The DOW Chemical Company 
Central Research Engin. Lab. 
Bldg. 1776 

Midland, MI 48640 

USA 

Institutsleitung 
Prof. Dr. rer. nat. Klaus Thoma 

Eckerstraße 4 
D-79104 Freiburg 

Telefon+49 (0)7 61/2714-0 
Telefax +49(0)7 61/2714-316 

Karl Weber 
Durchwahl +49 (0) 761/2714-323 
Telefax+49 (0)761/2714-316 
e-mail: weber@emi.fhg.de 

Freiburg, 
27. November 1998 

'jSäjÜi&H 

Results of the 1998 center and off-center hitting tests with 4 x 4" and 6 x 6" AIN ce- 
ramic targets 

Dear Dr. El-Raheb: 

Enclosed please find the results of all the tests with monolithic and layered AIN ceramic targets 
cäYrifTdöutin 1998. 

The tables and diagrams include also the data of the 1997 experiments performed with test set- 
up 3c (Exps. 8733 - 8740); these results were already presented in EMI report E 19/97 „Protec- 
tion Efficiency of Layered AIN Ceramics Bonded with Polyurethane Films". 

Don't hesitate to contact us if you have any questions. 

We are looking forward to your visit at Ernst-Mach-Institut in March 8-12, 1999. 

Yours sincerely, 

K. Weber 
Staff Scientist 

Enclosures: 

TF7E. Schneider 
Head of the Impact Physics Division 

Vorstand der Fraunhofer-Gesellschaft: 
Prof. Dr.-lng. Dr. h. c. mult. 
Hans-Jürgen Warnecke, Präsident 
Dr. jur. Dirk-Meints Polier 
Dr. rer pol. Hans-Uinch Wiese 

Fraunhofer-Gesellschaft zur Förderung 
der angewandten Forschung e.V.. München 

B-int Verbindung: Deuische Bank, Münchr-n 



X3 

<u 
x> 
£ 
E 
E 

^■^ 
u ID 
m Q. 
tf) ro 
CÜ Ql 

1- 
a; < 
i/i 
+-» 
U1 

.<u H 
«w* 

■a 
o 
x: 

E 
E 

—_ o   ' 
K 

•o 

XT 

Ö 
X 

IX) 

in 
d x 
m 

in 

d x 

(N 

m 

ro 

u 
O x: 

4-» 

< 

0) 

c 
o 

+-> 
05 
L. +-» a> 
c 
a a. E 
o E 

in 
£ (N +-» 
a X 
<D o a "=t 

f~" 

o X 
JC ■ ■   ■—»o  V 
4-» ■"* 

if- t— 

o 
a D 
D 0) 

X3 
+■> 3 
<u +-» 
C0- in 

+J 
m 
& i/i 
H £ E 

*" E 
t o ro ,— 
QJ  X 
^o 
z o 

I» 

E 
E 

no 

c 
O 

T -^ in u 

E 
E ™ I o o E 
in ^«-, 

a; 
O c 

+-< ro 

o 
in 

II 
>' 
cü 
o 
in 
8 

E 
VO 

X Q 
in *1 * 

X 
in 

E 
E 

•*— m 
*~ m 
0) 00 
ro II 
D. Q 
a; > <D 
O 4-* u u 

CD 
CD 
QJ O 

a. 

O 
x: c 
3 
ro 

V .- 



QJ 
X> 

5 
E 
E ^^s 

-a VD 
m CL 
in ro 
0) Ol 

t_ 

< 
to 
+■> 
W 

,<U H- 
TJ 
O 

<D 

#li 

c 
o 
+3 E 
(0 E 
i_ 
+-> LD 

a; fNI                         H—»— 
c *~            EESSB! 
Q) x       SüSü 
a. o         HsU 

■ ^r            iBm 
M- r—                         Ufj 
O x        IHRINR I o ^    BHIH 
+■» 
a D m 

<u           H 
<D XI                ■ 

JZ 
«H ■-■=*•   ■ -       B^^H 
4— 00                 ■■■ 
o 
a 
D 

i 
+■» ct

ile
 

m
m

 

<u E °       1 en 
+■» HI               f^^^m 
w> u x        ■ 
<D -, °       ■■■ 
F Z o        HBl 

HH 
v            BSffl 
u          EffBflf 
x              HEBE +-*                    H 

£      n 
E      ^m 
o   ^/ 
in 
* ** 
(D 
X 
X 
r> 
a: 

**— 
V 

in W 

F 
U3 
1— x 

E to E 
o o b 
in <X- 

l£> 

t 
X <- 

<u 

o 
c 
o 
E 

< 

QJ 
m 
O 
C 

E o 
in 

> 
oi 
o 
in 
8 

E* 
<xT 
ll 

Q 
^ 
E 
E 
m 
no 
od 

II 
Q 

ID > a; 
o 
u u 

QJ 
cu o 

1. 
Q_ 

QJ 
X 

QJ 

13 

< 

O 
X 
c 
ro 



0) -o 
£ 
e 
E 

I^N LD 
<D m 
m d. 
i/) ro 
a; en 

■ MM 

< 
en 
+■> 
V) 

.a> h- 

T3 
O 

<D 

in 

d 
x 

U3 

in 
d 
x 
m 
ro 

in 

d 
x 

CM 

(N 

in 

ro 

o 
+-» 

< 

c 
o 
+J E 
ro E 

4-» in 
<D (N 
c *~ 
<u X 
a. in 

■ en 
«+- v— 

o X 

^ in  ^. 
Cn 

+■» 
a 
Q D~ 

Of 
<D J3 

j= =} 

4-» ■M 

if- in 

0 
a 10 

D -      ^ E i 
4-> uE 
I/) 

ro T— 
+■» <u x 

H zo 

a» 
cn \— 

«7 -z. 
lO < 

-f-» 
3 
C 

F E 
o 

M— m 
<U » c <i; ro > 
r O 
+-» 

-I 

U 
o QJ 

>*o O c o CX> 
a. 
£ 
F 

ro 
■o 

ro 

a> j" in +-' -v. 

O jr 
b o 

LD 
T— *  
II 
> 

E cn 
b o 
in in 

X 8 
in 
en £ 
f— „ 
X l£> 

in II 
en n ,— 

^ <\> 
ro £ 
Q. £ 

m 
> PO 
o CO 

"03 II 
ai Q 
i/> 

u 

3 

El* 
C 

TO -r 

■I- 
t! 'a; .2 
*=   £   £ 
^   3   F 

0) 
«+- o 
C 



QJ 
-a 
£ 
E 
£ 

*p m d. 
v> ro 
O Ol 

< 
in 
+■» 
m 

•<U H- 

73 
O 
£ 
<u 

in 
rsi 
o 
x 
ID 

in 
d 
x 
m 
rn 

in 

d 
x 

ID 

QJ 

3 
< 

c 
o 

0> 

Al 

4-» 

c 
<u 
a. 

o ■ 

a 
o 

o 
a 
D 

i 

(A 

£ 
E 

x 
o 
ID 
CN 
X o 

U3 

(/> jy E 
E 

E o 
ro 
QJ X 
U o 
7 in 

< 
r— 

in v 
E 
E 

£1E 
o 5| 
in o E 
+-> ^o 

<<D 

ai 
Z3 
C 

F £ 
o 

H— m 
<U t— r_ a> ro > 
r: ü 
OJ u 
3 ° QJ 
>.o to 

O 
c o CD 

a. 
E 
F 

+-> 
03 

QJ J" in +-' 
(N CO 

QJ 
b 

o o 
in *— 
*— 

II 
> 

E en 
b o 
in in 

X n 
o 
«XI E 
CM «, 
X 

ID 

o II 
KD n 
rsj ^ 

C1J 
-t—» 
CD E 
a. E 

no 
> ro 
o 00 

"tu II 
a; n 

-t-« 
in 

_QJ 

u 

o 
je 
c 
3 
10 



Q 
U 
O ■ 

m 
o 

"jZ 
<D 
(/I 
4-» 

O 
-C 

c 
.2 
+3 
(0 
k. 

4-» 
<D 
C 
<D 
Q. 

i 
H- 
o 
I 

4-« a o a 

O 
a 

0) 

+-» 

|2 

E 
E 
o 

n 
ro 

Ö 
X 
ID 

in 
r^ 
o 
x 

a; 

(/I fl> 
4-» 
13 
C 

F E 
o **- 00 <L) 

a» 
e 

I— 
01 O 

fO > 
.c o +-■ •*-> ro 
£ u 

0 
o 

H— 
3 
>% •s? 
o CT» F 

Q_ - o 
E 
f- XJ ^- 
in II 
<N ro >' 
O _C 

O) 
o 
in 
8 

Q. 

E b 
E UD 
in II 
X Q 

^ 

X fc 
m b 
CTl 00 
■• no 
ai 

-4-» 00 
ro II 

1_ Q 
0) -> CD 
o i— 
l_> 

CD 
<IJ 
<U O 

01 

ai 

o 
JC 

< 



$ii 

OJ x> 
£ 
e 

c? £ 
u 
O 

IT) 

■ CL 
O) m l_ 

V) < a 
L. 
a en 

-♦-» 
V) 

.<u 1- 
<w» 

TJ 
O 
x: 
+-» a> 
S 
c £ 
o £ 

•*-> in 
to (N 
L. ^— 
+J X 

c m 
en o T— 

a. X 
i 

*♦- o 
in  - 
en 

1 
£ 
+J -ru a o <u 
a 3 

a> <•> _c 
4-* 
**- 
o £ E a 
D 

i 

4"J £ 
r ° c o 

4-» <o »— 
a <U   X 
i/i ^o 
+■» Z O 

<^ 

"2 -^ in u 
£ 
£ ■7 *" 
o 5 p in o £ 
+-■ ^o 

<vo 

in 
rsi 
Ö 
x 

in 
r- 
o 
X 

(N 
,—-^ 
*~ 
CO +-* 
CD 
C31 c_ ,ro 

t— 

2 
CO < 

■*-• 

J> 
C 

F £ 
o 

M— m 
<1> V. c <1> 
CO > 

-C Ü 

tu 
-I 

u 
o <L> 

>>o CO 
O o en 

n * 

£ 
F 

JP. 

Q) J" in ■*-> *-«. 
CM   !P 
O JC 

b o 
in 
T— 

*— 
II 
> 

E CÜ 
fc o 
in in 

X « 
in 
en £ 
T_— v 

X VD 

in II 
en Q T— 

^ 
0) 

03 E 
Q. £ 
CIJ m 
> m 
o 00 

Tu II 
ai a 
CO 

' cu 

cu 

ro 

13 

< 

±=    Is 

O 
JZ 
c 
3 
re 



Q 
U 
O 

i 
JZ m 

"ü 
<D 

en 
+■» 
V) 

o 
X 
+■< 

c 
o 

■ MB 

+-» 
(0 
u 

4-» 
<D 
c 
0) 

CL 
i 

H- 
O 
I 

a 
Q 

JZ 

o 
a 
D 

en 
4-» 

E 
E 

10 _a> E *-> E 
E o 

in ro 
<u X 
u o 
7> in 

< 

T -v in u 
E 
E •7 *- 
o 5| 
in o £ 
+-» 10 o 

<w 

E 
E 

E 
£ 

m o 

II ll 
ro ro 

PvJ 

in 

a> 

,"5 

l/l a> +-* 
Z3 
C 

F^ — o 
*- m CU 
cu ,_ O 

C C    CU 
ro > 

JZ   o +-< 
■4-1   .    . ro 
&V M- 

=i.o -£ 
"5 cr> F a. «- o 
E* in 

E"P *— 
a; II in *± 

.   CU >' o si », 
en 
O 
in 
8 ft. 

E £ 
E KD 
in II 
X n o ^ 

X E 
o b 
vo ro 
fNJ m 
cu CO 
ro II 
Q. 

Q 
a> > oj 
o u   CD 
CD 
CD 

on 

O 
a. 

QJ 

ro 

O 
+-» 

< 

Is 
^ ro 

B     N    4- •2 NS 
v\   3   C 
£ ^: uj 

o 
c 
ro 



<u 
T3 

5 
E s> E 

u 
O d. 
JC (0 

01 
fO i_ 

in < a 
i- 
a> 
i/) 

+J 
M .<u 

F2 

■a 
o 

E 
E 

E 
E 

in 
in 

0 
ID 

II II 
-O X! 

(Nl 

in 
0 
x 

no 
(N 

in 

QJ 
01 

QJ 

cu 

=3 

< 

OJ 

c 
o 
+3 
flj 
L. 

4-» 
<D 
c 
<u 
a. ■ 

a 
<u a 
a? 

4-» 

o 
Q. 
D 

1 
4-» a 
4-» 

i2 

r\i 

in 

CO 
_<y E 

E 
E 0 

in 

QJ X u O 
y in 

H                                £ 
, 

!|                               E E 
EÜ1                              0 E -^m -»| 

0 
ll in 

1 n $ 1 . 1' H 
r irnnni   inmin 

> 
fO   o 
T in 

t 
o 

in 
QJ 

■*-» 

3 
C 

F E 
0 

4— m QJ 
QJ O 

c C 
CO 

tu > 
,r: 0 +-> 
■(-• TO 
e u H— 

<o -Ü? 
0 CTl F 
Q. *" 0 

E (0 in 

£ 
in 

a; 
■4-" II 

(N ro >"" 
0 .c fc 

a> 
0 
in 
ll 

0. 

E b 
£ vo- 
in ll 
X n 0 
ID ^ 

■x E 
O b 
ID m 
(>J m 
a« 

-t—• 00 
ro ll 
Q_ n 
<1> 
> QJ 
O 
u 

QJ 
<ii 
ai 

-4—» 
CO 

O 

85 

o 
.c 
c 
3 
(0 



äSS^S sselgg 
^^^gj^^Är^^^^^P^^j^^g^^^^ <D 

CU 

<D 

fD 

a 
«MM 
>- 
0) 

</* 
4-» 

£ 
O 

 4- 

E 
■*-o ■*■ m 

4 _-  

o 
+-> 

< 

C 
o 

"«p 

<D 
c 
<D 
0. 

i E 
0 E 

*— 
+■» 
a X 

<u o 
Q 

X 

ID 
+J fN 

0 D 
a <u 
D X! 

3 ■ 
4-» <u 00 
</l 
4-» 
in 

.<u H « E 
" £ 
u -= o 
E in 
2 x 
a; o 
U in 

£n  ^ 
• CT) 

cu 

E 
E 
o 
in 

t— V in w 
<D 
>7 

JZ 

lO E 
o b 
ID o 
.< ID 

3 
C 

F E 
o 

H- m 
<U 
c a; 
to > 
.r: o 

3° a> 
>,o in 

O o CT> 
o. 
E 
F ■o 

ro 
H— 

(1) J" in ■P *^ 

O JC 
b 
o 
in 
r— 
*— 
II 
> 

F ai 
b o 
in in 

X 8 
o 
ID E 
r>4 », 
X (D 

o II 
ID n 
(N r^ 
a; 

•4-» E 
Q. E 

on 
> m 
o CO 

"cfi II 
cu n 
in 

i_> 
cu 

fO  -7- 

P TO 
tr '5 2 

•2 => E £*u3 

o .c c 
3 
(S 



£ 

>■ 8874^^^^2-cm^ 



&^&&d^^ksiai 

■1 V<3 

Fig 1-8: Experiments with single layer tile (1.5") 100x 100 mm tiles 
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Fig. 9-14:        Experiments with 2-!ayer tiles (2 x 0.75") 100 x 100 mm tiles 
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Fig. 15-22:       Experiments with 3-layer tiles (3 x 0.5") 100 x 100 mm tiles 
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Fig. 23-28:      Experiments with 6-layer tiles (6 x 0.25") 100 x 100 mm tiles 



siöH 

f*®s$ 

e 
£ 
o 
in 

x 
o 
in 

IT) 

Ö 
X 

<N 

I 

(N 

CD 

E 
QJ 
Q. 
X 

no 
■ 

en 

D1 



1/1 

E 
£ 
o 
LD 

X 
O 
LD 

in 
ö 
X 

en 
i/i 
cu 

cu 

■ m 
si 

c 
cu 
.1 
a» 
x 

•3" 
■ 

m 
61 



iiff. 

Sangs»«« 

A-^4^»ji^s^%g^rog^ 

lpi|§ll§t 

e 
E 
o 
in 

o 
in 

in 

ö 
x 
ID 

^y^r**j <u 
!■*.*•* <-  I TO 

<£> urvi 

CO £ 
i/i 
+-* 
c 
a> 
E 
i 

a> 
Q. 
X 

LU 

r^ 
m 
m 
no 



to 
CD 

E 
E 
o 
Ln 

x 
o 

2 
> o 
CD u 
<D 

<J) 

C 
CD 

E "»_ 
CD 
CL 
X 

LU 

co 
on 



ap*ä 

9029 3 cm 9031 3 cm 

#H 

9032 3 cm 

Fig. 39-41:       Experiments with single-layer tile (1 x 1.5") 150 x 150 mm tile, (off-center) 
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Fig. 45: Experiment with 3-layer tiles (3 x 0.5") 150 x 150 mm tiles, (off-center) 
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Projectile: WSA rod, D = 8.33 mm, L/D = 6, flatViose 
Backing Plate: Al 6061-T651, 60 mm thick; Cover Plate: steel, 5 mm thick 

Exp. 
no. 

mP 

[g] 
vP 

[m/s] 
a,/a2 

[deg] 
Test 

set-up 
lat. tile dim. 

[mm] 
No. of tiles PR 

[mm] 
PKE 

[mm] 
Projectile 

used from 

8733 51 1130 +2.0/- 3c 100x100 1 x1.5" 6.8 - EMI 
8738 51 1133 +1.0/-- 3c 100x100 1 x1.5" 0 - EMI 
8850 51 1142 0/-1 3c 100x100 1 x1.5" 10.6 12.3 EMI 
8853 51 1173 -4/-2 3c 100x100 1 x1.5" 33.0 - EMI 
8857 51 1140 -1/-4 3c 100x100 1x1.5" 45.9 47.0 EMI 
8874 53 1111 0/-1.5 3c 100x100 1x1.5" 8.5 - C ALTEC H 
8875 53 1105 -3/0 3d 100x100 1 x1.5" 29.3 29.4 EMI 
8876* 53 1138 0/-3 3d 100x100 1 x1.5" 20.5 33.8 EMI 
8943 51 1190 -0.8/0 3e 100x100 1 x1.5" 30.5 31.3 EMI 
8944 51 1182 -1/+3 3e 100x100 1 x1.5" 24.7 25.4 EMI 
8734 51 1140 0/~ 3c 100x100 2 x 0.75" 10.3 17.3 EMI 
8739 51 1182 +2.0/-- 3c 100x100 2 x 0.75" 26.0 - EMI 
8851 51 1200 -0.5/-2.5 3c 100x100 2x0.75" 20.05 22.4 EMI 
8854 51 1160 +2/-1 3c 100x100 2x0.75" 21.75 24.6 EMI 
8858 51 1188 +1/0 3c 100x100 2x0.75" 18.85 19.3 EMI 
8947 51 1148 +1/0 3eJ 100x100 2x0.75" 17.6 19.2 EMI 
8948 51 1166 0/0 3e 100x100 2x0.75" 16.7 18.0 EMI 
8949 51 1172 -4/+3 3e 100x100 2 x 0.75" 23.1 26.3 EMI 
8735 51 1186 -4/~ 3c 100x100 3x0.5" 23.3 30.2 EMI 
8740 51 1170 +0.5/-- 3c 100x100 3 x 0.5" 23.5 - EMI 
8852 51 1179 -0.5/+3.0 3c 100x100 3x0.5" 19.8 24.8 EMI 
8856 51 1187 -1/-1.5 3c 100x100 3x0.5" 18.9 24.3 EMI 
8859 51 1182 -1/-3 3c 100x100 3 x 0.5" 19.9 19.9 EMI 
8871 53 1179 -1/+0.5 3c 100x100 3x0.5" 22.0 22.4 C ALTEC H 
8872 53 1156 +0.5/0 3c 100x100 3x0.5" 20.5 23.0 C ALTEC H 

8945 51 1186 0/0 3e 100x100 3 x 0.5" 21.4 22.2 EMI 
8946 51 1145 -5/+2.2 3e 100x100 3x0.5" 17.2 19.5 EMI 
8950 51 1165 0/-2 3e 100x100 3 x 0.5" 24.7 27.4 EMI 
8855 51 1140 -1/-1 3c 100x100 6x0.25" 22.5 24.8 EMI 
8860 51 1138 -1.5/-1.5 3c 100x100 6x0.25" 19.0 - EMI 
8861 51 1158 +0.5/+0.5 3c 100x100 6x0.25" 23.0 23.6 EMI 
895] 51 1130 -2/-1.5 3e 100x100 6x0.25" 25.2 27.4 EMI 
8952 51 1141 +3/-3 3e 100x100 6x0.25" 20.1 27.2 EMI 
8953 51 1161 -2/-6 3e 100x100 6x0.25" 22.6 24.2 EMI 

1997 experiments: 8733-8740;     1998 experiments: 8850-8861, 8943-8953 

$ In Experiment 8876 strong deflection of the residual projectile during the penetration 
into the ceramic; therefore, ricocheting of the rod in the Al backing plate. 

27.11.1998 

Fraunhofer 
Institut 
Kurzzeitdynamik 



Projectile: WSA rod, D = 8.33 mm, L/D = 6, flat nose 
Backing Plate: Al 6061-T651, 60 mm thick; Cover Plate: steel, 5 mm thick 

Exp. 
no. 

mP 

[g] 

VP 

[m/s] 
a,/oc2 

[deg] 

Test 
set-up 

lat. tile dim. 
[mm] 

No. of tiles PR 
[mm] 

PKE 

[mm] 
Projectile 
used from 

8972 51.06 1131 0/0 3f 150x150 1x1.5" 0 - EMI 

8976 51.03 1155 0/0 3f 150x150 1 x1.5" 0 - EMI 

8977 50.96 1155 0/0 3f 150x150 1 x1.5" 0 - EMI 

8974 51.08 1157 0/0 3f 150x150 2x0.75" 3.9 - EMI 

8979 51.08 1135 0/0 3f 150x150 2x0.75" 3.1 - EMI 

8980 51.06 1163 0/0 3f 150x150 2 x 0.75" 2.9 - ■ EMI 

8973 51.05 1164 0/0 3f 150x150 3x0.5" 8.6 9.3 EMI 

8978 51.12 1186 -0.5/0 3f 150x150 3x0.5" 8.3 - EMI 

8981 51.09 1156 0/0 3f 150x150 3 x 0.5" 4.9 - EMI 

8975 51.20 1161 1/-3.5 3f 150x150 6x0.25" 11.3 12.6 EMI 

8982 51.06 1166 0/0 3f 150x150 6x0.25" 16.8 16.9 EMI 

8983 51.15 1120 0/0 3f 150x150 6x0.25" 10.3 -   . EMI 

;jjjij{{ 

Projectile: WSA rod, D = 8.33 mm, L/D = 6, flat nose 
Backing Plate: Al 6061-T651, 60 mm thick; Cover Plate: steel, 5 mm thick 

Exp. 
no. 

mP 

[g] 

vP 
[m/s] 

a,/a2 

[deg] 
Test set- 

up 
lat. tile 
dim. 
[mm] 

AIN layers PR 
[mm] 

PKE 

[mm] 
hit-point 

9058 50.98 1120 0/0 3g-OCII 100x100 2x0.75" 17.1 17.8 15 mm CO 

9059 50.97 1170 0/0 3g-OCD 100x100 2x0.75" 36.6 36.8 40 mm OCD 

9060 50.90 1147 0/0 3g-OCII 100x100 2x0.75" 25.6 26.6 30 mm OCII 

9061 51.08 1105 0/0 3g-OCD 100x100 6x0.25" 38.6 40.9 40 mm OCD 

9062 "5iD8 1157 0/0 3g-OCII 100x100 6x0.25" 33.7 34.9 15 mm OCII 

9063 51.16 1112 0/0 3g-OCII 100x100 6x0.25" 41.6 43.5 30 mm OCII 

9028 51.10 1158 0/0 3h-OCD 150x150 1 x1.5" 0 - 35 mm OCD 

9029 50.87 1155 0/0 3h-OCD 150x150 1 x1.5" 5.7 - 70 mm OCD 

9031 51.19 1157 1/-1.5 3h-OCII 150x150 1 x1.5" -. - 60 mm OCII 

9032 51.15 1153 0/0 3h-OCII 150x150 1 x1.5" 43.8 46.2 55 mm OCII 

9064 50.91 1146 0/0 3h-OCII 150x150 3x0.5" 16.9 26.4 55 mm OCII 

9030 51.22 1140 0/0 3i 9 x(50 x50) 1 x1.5" 19.3 19.7 center 

OCD: off-center, along diagonal OCII:   off-center, parallel edge 

Fraunhofer 
Institut 
Kurzzeitdynamik 
Ernst-Mach-Institut 

27.11.1998 
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Residual Penetration Depth vs. AIN Layer Numbers 
Tile Dimension 100 x 100 mm 
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Residual Penetration Depth vs. AIN Layer Numbers 
Kinetic Energy Line (100 x100 mm Tiles) 
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Residual Penetration Depth vs. AIN Layer Numbers 
Tile Dimension 150 x 150 mm 
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/® 

X© 
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(D 
-6" 

stack        pos.     r(mm) DOP(mm) 

1 x1.5" © 35 0 

1 x 1.5" © 70 5.7 

1x1.5" © 55 43.8 

3x   .5" © 55 16.9 

4" 

4" 

m 
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stack pos. r(mm) DOP(mm) 

2 x 3/4" © 15 17.1 
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2 x 3/4" © .  40 36.6 

2 x 3/4"' ■••© 0 10 < DOP < 23 

6 x 1/4" © 15 33.7 

6 X 1/4" © 30 41.6 

6 x 1/4" © 40 38.6 

6x1/4" © 0 19 < DOP < 25 
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Residua! Penetration Depth vs. AIN Layer Numbers 
(Off-Center Hitting) 

□ l153(55mmOCII) 

o 
1140 (center, 9 parts) 

1170(40mmOCD) 

o 

1112(30mmOCII) 

A 

1105(40mmOCD) 

o 

A 
1157(15mmOCII) 

1147(30mmOCII) 

A 

A 
1120(15mmOCII) 

1146 (55 mm OCII) 

D 

1155(70mmOCD) 

X 

1158(35mmOCD) 

A ■ EMI 1998 (3g OCII) 100x100 mm 

O EMI 1998(3gOCD) 100x100 mm 

D EM11998 (3h OCII) 150x150 mm 

-X- EMI 1998 (3h OCD) 150x150 mm 

O - EMI 1998 (3i) 9x 50x50 mm 

velocity in m/s 

X 

1 layer 
(1.5") 

2 layers 
(2 x 0.75") 

3 layers 
(3 x 0.5") 

6 layers 
(6 x 0.25") 

BTBKSS 27.11.1998 

Fraunhofer 
Institut 
Kurzzeitdynamik 
Ernst-Mach-Institut 



.^ijijiji- 

50 

40 

30 

E 
E 

a 

20 

10 

Residual Penetration Depth vs. AIN Layer Numbers 
Kinetic Energy Line (Off-Center Hitting) 
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Residual Penetration Depth vs. AIN Layer Numbers 
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