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Preface 

Herein are contained the papers presented at the Ninth International Conference on Composite 
Structures (ICCS/9) held at the University of Paisley, Scotland in September 1997. The Conference 
was sponsored by the University of Paisley with co-sponsorship kindly provided by Renfrewshire 
Enterprise, Renfrewshire Council and The Chivas and Glenlivet Group. Additionally, thanks are due 
to the US Air Force European Office of Aerospace Research and Development (EOARD) and the 
US Army, Research, Development and Standardisation Group — United Kingdom for their con- 
tribution to the success of the conference. 

The Conference forms a natural and ongoing progression from the eight previous highly successful 
ICCS events which have attracted a large international gathering of specialists in composite struc- 
tures. Twenty-six countries are represented at the present conference. 

Although each ICCS conference makes a unique contribution to knowledge and has many~ memor- 
able highlights in the social programme, this year's event has a special significance in that it coincides 
with the centenary of its major sponsor. In 1897, Paisley College of Science and Art (now the 
University of Paisley) was founded with a specific aim to enhance practical engineering knowledge in 
the west of Scotland. One hundred years later it is fitting that a technical conference which brings 
together engineers and scientists from virtually every corner of the world should take place. Only by 
a free exchange of knowledge can some real progress be made. 

It is also timely to reflect upon the issues which have been addressed over the years in the ICCS 
series of biennial conference. Since the first event in 1981 there have been many advances in the field 
of composite structures. Fibrous forms of reinforcement have been developed which are stronger and 
suffer than before. Matrix materials are tougher with enhanced resistance to a wide variety of 
environmental influences. Analytical models are far more sophisticated, leading to greater under- 
standing of the physical behaviour of load bearing composites. All of these factors, along with 
tremendous advances in computational power, allows today's designers of composite structures 
unprecedented flexibility and scope. In particular, finite element modelling techniques have become 
a formidable tool in the design process with PC-based systems more than adequate for all but the 
most complicated problems. However, before being carried away on an analytical sea of euphoria it 
is worth remembering that experimental evidence to corroborate theoretical predictions is still 
unavailable in many instances. Clearly considerable caution must be exercised if complicated compo- 
site structures are being designed using software that has been validated using much simpler 
benchmarks. 

Notwithstanding the aforementioned words of caution it is a fact that composite materials continue 
to find many and diverse practical applications. Indeed there are few industries which do not 
recognise the benefits of designing a material to assist a particular function rather than the tradi- 
tional converse of compromising functionality by accepting the limitations of existing materials. 
Conferences such as ICCS are but one means of disseminating knowledge and in so doing enhance 
understanding. 'Show me and I will understand' is surely an appropriate phrase in this context. 

To authors, session chairmen and contributors go our sincere thanks for their effort. They are the 
essence of any conference. 

Particular thanks are due to: 

THE INTERNATIONAL ADVISORY PANEL 

W. M. Banks — University of Strathclyde, UK 
A. M. Brandt — Polish Academy of Sciences, Poland 



A. R. Bunsell — Ecole des Mines de Paris, France 
T. Hayashi — Japan Plastic Inspection Association, Japan 
R. M. Jones — Virginia Polytechnic and State Institute, USA 
A. Miravete — University of Zaragoza, Spain 
J. Rhodes — University of Strathclyde, UK 

THE CONFERENCE SECRETARY 

Miss Janet Syme 

ably assisted by: 

Miss Michelle Martin 

Grateful thanks are due to many other individuals who contributed generously to the success of the 
event. As always a final thanks to Nan, Simon, Louise, and Richard for their support throughout the 
conference. 

I. H. Marshall 
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Ninth International Conference on Composite 
Structures (ICCS/9), University of Paisley, 

Scotland, September 1997 

National Engineering Laboratory Composite Structures Award 

The ICCS/9—NEL Composite Structures 
Award was bestowed on the paper Design, 
Fabrication and Testing of a Composite Bracket 
for Aerospace Applications by H. G. S. J. Thuis 
and C. Biemans (National Aerospace Labora- 
tory, Voorsterweg 31, 8316 PR Marknesse, The 
Netherlands). 

The above picture shows from left to right, 
Frank Kinghorn, General Manager NEL, Bert 
Thuis and Ian H. Marshall. 

When announcing this award at the 
Conference Dinner, Frank Kinghorn, Chairman 
of the Awards Committee, stressed the "severe 



Ninth International Conference on Composite Structures Award 

difficulties in chosing a particular paper due to 
the extremely high standards of the papers in 
many areas". However, as this biennial award 
has traditionally reflected particular conference 
themes it was considered appropriate to 
recognise a paper which considered a composite 
replacement of a metal forging designed using 
an optimisation module thereby achieving a 
weight reduction of 43%. The bracket was 
subsequently manufactured and successfully 
tested to well in excess of its design load. 

Our   congratulations   go   to   the   successful 
authors. 

The next in this highly successful series 
biennial "Paisley" Composite Structures 
Conference, which commenced in 1981, will be 
held in September 1999. Those wishing to be 
put on the mailing list for information should 
contact: 

Janet Syme 
Conference Secretary 

Dept. of Mechanical & Manufacturing 
Engineering & The Quality Centre 

University of Paisley 
Paisley PA12BE 
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Analysis of pultruded glass reinforced plastic 
beams with semi-rigid end connections 

G. J. Thrvey 
Engineering Department, Lancaster University, Bailrigg, Lancaster LAI 4YR, UK 

The influence coefficient method of analysis has been used to derive closed- 
form expressions for the mid-span deflection and end rotations of shear 
deformable uniform section beams with semi-rigid end connections. The 
formulae have been recast into performance indices which define the 
reduction in mid-span deflection, the increase in load carrying capacity and 
the increase in span relative to an otherwise identical simply supported 
beam for two practical load distributions: (1) a point load at mid-span and 
(2) a uniform load over the entire span. Expressions are also presented for 
the required rotation capacity of the semi-rigid end connections. Initial 
rotational stiffness data, derived from full-scale tests on web and web and 
flange cleat connections between two sizes of pultruded glass reinforced 
plastic (GRP) WF-section are used in the formulae to evaluate the 
performance indices for the practical range of span-to-depth ratios for load 
case (1). The values obtained quantify the benefits to be derived from 
exploiting semi-rigid end connection stiffness in the design of pultruded 
GRP beams with the current, very limited, range of section sizes. © 1997 
Elsevier Science Ltd. 

NOTATION 

E 
G 
I 

k, 
K 

L 
Q 

Kc 

h 
An 

Gross cross-sectional area of a WF- or I- 
section beam 
Web cross-sectional area of a WF- or In- 
sertion beam 
Longitudinal elastic modulus of the beam 
Shear modulus of the beam 
Major-axis  second  moment  of area  of 
beam cross-section 
Constants (/=l-4) 
Rotational stiffness of the beam end con- 
nection 
Beam span 
Total load (point or distributed) on the 
beam 
Dimensionless   shear   flexibility   of   the 
beam (=EI/GAL2 or EIlGAjJ) 
Dimensionless rotational flexibility of the 
beam end connection (-EI/KL) 
Mid-span deflection of the beam 
Mid-span deflection-span ratio (=S/L) 
Deflection reduction index 
Load enhancement index 

AL      Span enhancement index 
6       Rotation of the beam end connection 
6C      Required beam end connection rotation 

for a prescribed mid-span deflection-span 
ratio 

INTRODUCTION 

Over the past few years there has been a grow- 
ing awareness of the potential benefits that may 
be derived from the appropriate use of fibre 
reinforced polymer composites in the construc- 
tion industry. Glass reinforced plastic (GRP) 
materials are the most widely used in industry 
at present, but interest in carbon, aramid and 
hybrid (glass-carbon) fibre reinforced polymer 
composites is growing, especially in Japan and 
North America. 

It is the uncertainty regarding the long-term 
corrosion resistance and durability of conven- 
tional construction materials, e.g. steel 
reinforcement  and concrete, which has pro- 
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moted renewed interest in fibre reinforced 
polymer composites. GRP possesses a number 
of advantages including low cost, high corrosion 
resistance and low weight, but it does have the 
disadvantage of low stiffness. There are situa- 
tions in the construction industry which require 
lightweight structures to operate in harsh 
environments, e.g. offshore platforms and 
chemical process plant. For these applications 
fibre reinforced polymer composites are poten- 
tially strong candidate materials. Indeed, GRP 
is frequently used in walkway structures or 
support frames in both the offshore and process 
industries. Its use in similar applications in the 
water industry is growing. 

There are, however, a number of other 
factors (apart from the low modulus of GRP) 
which are inhibiting the rate at which fibre rein- 
forced polymer composites are being applied in 
the construction industry. For GRP at least cost 
does not appear to be an important inhibiting 
factor. However, toxic emissions produced by 
some of the matrix materials of pultruded GRP 
sections in the fire environment are legitimate 
causes for concern and are being actively 
addressed by the composites industry. In the 
future, phenolic resins may eventually supplant 
the cheaper polyester resins, because of their 
superior fire-performance characteristics. 

Another major inhibiting factor is the lack of 
knowledge among structural engineers of the 
load-deformation characteristics of GRP 
materials and components. Presently, little 
design guidance is available. For pultruded 
GRP components the major US manufacturers 
have recognized this problem and have pub- 
lished design manuals [1,2]. While these 
documents are useful, they have a number of 
shortcomings — at least from the standpoint of 
structural engineers practising within the UK. 
First, the design manuals use the US system of 
units. Second, they are based on permissible 
stress design philosophy. And third, they relate 
to particular proprietary products. Although 
recognized structural design standards for fibre 
reinforced polymer composites are to be hoped 
for in the future, interim documents are already 
beginning to emerge [3,4]. Quinn [4] brings up 
to date an earlier publication which has enjoyed 
widespread use in the UK for many years, 
whereas the document by Clarke [3] — the 
most code-like of all — follows the Eurocode 
format and is based on limit state design philo- 
sophy. 

Although the factors mentioned above con- 
tinue to slow the pace of application of GRP in 
primary load-bearing situations, perhaps the 
most important factors are simply the lack of 
knowledge of the actual behaviour of simple 
beams, columns and joints and the rather 
limited range of standard structural section 
sizes. Lack of knowledge of the real behaviour 
of beams and their end connections has lead to 
the situation that beams are generally designed 
as simply supported and that large knockdown 
factors on material strength are often used. The 
consequence is that such beams only operate at 
a small fraction of their ultimate strength. It is, 
of course, recognized that, because of their low 
modulus, GRP beams are likely to be designed 
for the deflection limit state and, in conse- 
quence, will generally be lightly stressed. 
Ordinarily this would not matter, but when, for 
a given load requirement, the deflection limit of 
a section is just exceeded a large penalty has to 
be paid in moving to the next larger section, 
because the range of sections is small. One way 
of improving the performance of the present 
range of standard structural sections is to make 
use of the semi-rigid nature of the end connec- 
tions. This, of course, presupposes that 
adequate knowledge of connection behaviour 
exists. 

During the past 7 years a number of tests 
have been carried out on beam-to-column con- 
nections between pultruded GRP sections and 
knowledge of their real behaviour is beginning 
to accumulate [5-10]. Although insufficient 
testing has yet taken place to enable semi-rigid 
design procedures to be developed for these 
materials, enough test data are available to 
enable preliminary studies to be made of the 
potential performance gains to be realized with 
the current range of beam sections. This is the 
main objective of the present paper. In order to 
carry out such a study closed-form expressions 
for the deformation response of shear deform- 
able beams with semi-rigid end connections 
have been developed. These formulae have 
been used with real connection data to quantify 
the reduction in deflection, the increase in load 
and the increase in span of a semi-rigid beam 
relative to an otherwise identical simply sup- 
ported beam for two basic load configurations 
and the practical range of span-to-depth ratios. 
In addition, the rotation capacities required of 
the semi-rigid connections to achieve these per- 
formance gains have been defined. 
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SHEAR DEFORMABLE SEMI-RIGID BEAM 
ANALYSIS 

It is usual to take account of shear deformation 
in the analysis and design of pultruded GRP 
beam sections because the shear modulus of 
GRP is low. From the practical design stand- 
point two load cases for the design of pultruded 
GRP beams are of particular importance. They 
are: (1) a point load at mid-span and (2) a 
uniform load extending over the whole span. 
Figure 1(a) and (b) shows the two load cases 
and Fig. 1(c) shows the linear moment-rotation 
characteristic of the semi-rigid beam end con- 
nections. In the sequel simple closed-form 
expressions are presented for the deformations 
of semi-rigid shear deformable beams subjected 
to these two types of loading. 

First-order shear deformation beam theory in 
conjunction with the method of influence coeffi- 
cients has been used to derive the expressions 
for the mid-span deflections and the joint rota- 
tions of single span beams subjected to the two 

X- 
(a) 

->'- 

VIZ ->'- 
Semi-Rigid End Connection 

Total Uniform Load = Q 

(b) 

basic load configurations. Other analysis tech- 
niques could, of course, have been used to 
achieve the same results. However, the method 
of influence coefficients proved to be particu- 
larly easy and insightful to use. No details of the 
method are presented here as it is well known 
and adequately documented elsewhere [11]. It is 
convenient to present the results for each of the 
two load cases together below. 

Point load at mid-span/uniformly loaded beam 

The expression for the mid-span deflection is 
given as 

S = 
QÜ I l+4Sa + k2ß + 96aß 

k,EI \+2ß (1) 

in which S is the deflection, Q is the total load, 
L is the span, E is the longitudinal elastic mod- 
ulus, / is the major-axis second moment of area, 
a is the dimensionless shear flexibility of the 
beam and ß is the dimensionless rotational flex- 
ibility of the end connections. The values of the 
constants, kx and k2 (and k3 and kA arising in 
formulae presented later) are given in Table 1 
for the two load cases. It should also be 
appreciated that the aß term in the numerator 
of eqn (1) implies that coupling exists between 
the shear flexibility of the beam and the rota- 
tional flexibility of the end connections. 

For Euler-Bernoulli (shear-rigid) beams, the 
shear flexibility parameter, a, is zero and eqn 
(1) simplifies to 

8 = 
QL3 l l+k2ß 

kxEI \  1 + 2ß 
(2) 

(0 

Rotational Stiffness = K 

Fig. 1. Geometry and material properties of a single span 
shear deformable beam with semi-rigid end connections: 
(a) load case 1 — point load at mid-span, (b) load case 2 
— uniform load over the entire span and (c) moment 

(m)-rotation (9) characteristic of the end connections. 

It is readily shown that eqn (2) degenerates fur- 
ther to yield the classical mid-span deflection 
results. Thus, for a beam with simply supported 
ends ß = oo and S = QL3k2l2k1EI. Likewise, for 

Tablet. Values of kt (i—1 — 4) for the constants in the 
deflection, etc. expressions for beams subjected to a point 
load at mid-span or a uniform load over the entire span 

Beam load distribution k1        k2       k3       k4 

Point load at mid-span 192 
Uniform load over entire span       384 10 12 
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a beam with clamped ends ß = 0 and S = QL3/ 
kiEI. 

The expression for the rotation of the semi- 
rigid end connections (which, of course, are 
equal and opposite) is given by 

QL2 

k3EI 

ß 
\ + 2ß 

(3) 

It should be appreciated that eqn (3) implies 
that the joint rotation is independent of the 
beam shear flexibility parameter, a. 

It is readily shown that eqn (3) degenerates 
further to yield the classical beam end rotations. 
Thus, for the case of a beam with clamped ends 
ß = 0 and 0 = 0. Likewise, for a beam with 
simply supported ends ß = oo and 6 = QL2/ 
Tk-ßl. 

SEMI-RIGID VERSUS SIMPLY SUPPORTED 
BEAMS 

Performance indices 

The case for using semi-rigid beam analysis and 
design with fibre reinforced polymer composites 
must rest on the performance gains that may be 
achieved in practice. It is the objective of this 
paper to quantify these gains. As the design of 
pultruded GRP beams is currently based on 
simply supported beam response, it is sensible 
to measure the performance of a semi-rigid 
beam relative to an otherwise identical simply 
supported beam, i.e. in terms of performance 
indices. These performance indices may be 
expressed in terms of the reduction in beam 
deflection, the increase in load-carrying capacity 
or the increase in span. It is convenient to 
present these performance indices separately. 

Deflection reduction index Ck8) 
the simply supported and semi-rigid beams have 
the same span and support the same loads, then 
the   deflection  reduction  index,   Xs,   may  be 
expressed as 

X,= 
\+4%0L + k2ß + 96aß 

k4 + 48a + k2ß + 96ccß 
(4) 

It is beneficial to examine briefly the degenerate 
forms of eqn (4). First, if the beams are shear- 
rigid then a = 0 and eqn (4) reduces to 

h = 
\+k2ß 

k4 + k2ß 
(5) 

Further simplification of eqn (5) depends on 
the nature of the semi-rigid connection. Thus, if 
ß = oo, i.e. the ends are simply supported, then 
ks = 1. On the other hand, if ß = 0, i.e. the ends 
are clamped, then Xs = l/k4. These two values of 
the index, Xs, represent the practical limits of 
the deflection reduction index. In other words, 
by clamping the beam ends it is possible to 
reduce the mid-span deflection to one (l/fc4)th 

of the value of a similarly loaded simply sup- 
ported beam (see Table 1). These results are, of 
course, well known and serve to verify the 
degeneracy of eqn (4). 

Load enhancement index (XQ) 
If the simply supported and semi-rigid beams 
have the same span and are subjected to the 
same deflection limits at mid-span, then the 
load enhancement index, XQ, for a beam with 
semi-rigid end connections is given as 

1 
(6) 

irrespective of whether the beam is shear-rigid 
or shear-flexible. For the clamped beam, ß = 0 
and, hence, XQ = k4. Similarly, for the simply 
supported beam, i.e. ß = oo, the index XQ = 1. 
These two values of XQ represent the limits of 
the range of this index. They indicate that 
clamping the beam ends allows the load sup- 
porting capacity to be increased to k4 times that 
of an otherwise identical simply supported 
beam. This fact is, of course, well known and 
confirms the degeneracy of eqn (6). 

Span enhancement index (A,L) 
If the loads and deflection limits are prescribed, 
then the performance of a beam with semi-rigid 
end connections may be measured, relative to 
an otherwise identical simply supported beam, 
in terms of the increase in the span that it may 
operate over. The analysis for this index is a 
little more complex than for the two preceding 
indices and does not lead directly to a closed- 
form expression for the span enhancement 
index. Instead, it is determined as one of the 
roots of a cubic equation. 
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For the beam with semi-rigid end connections 
and carrying a point load at mid-span or a uni- 
form load over the entire span the form of the 
cubic equation for the span enhancement index 
is as follows: 

X3
L + k2X2

Lß-k4XL-k2ß = 0 00 
It turns out that only one of the roots of eqn (7) 
is positive and it is this which gives the span 
enhancement index, XL. It should also be 
appreciated that the beam shear flexibility 
parameter, a, is absent from eqn (7), so that 
shear flexibility is not a factor in span enhance- 
ment. 

It is of interest to consider briefly the 
degenerate forms of eqn (7). For the case of a 
clamped beam, i.e. ß = 0, eqn (7) simplifies to 

4-Mz, = 0 (8) 

The roots of eqn (8) are: XL = y/k^, 0 and + jk~A 

and, therefore, the span enhancement index 
XL 

= V^4- Likewise, for the case of a simply sup- 
ported beam, i.e. ß = oo, eqn (7) simplifies to 

4-1 = 0 (9) 

The roots of eqn (9) are: XL = — 1 and + 1 and, 
therefore, the span enhancement index XL = 1. 
These two values of the span enhancement 
index, XL, represent the practical limits. Thus, it 
is apparent that by clamping the beam ends it is 
possible to increase the span to ^/k^ times that 
of the corresponding simply supported beam. 

Rotation requirements of the end connections 

In order to take advantage of the semi-rigidity 
of the end connections, they must exhibit ade- 
quate rotation capacity prior to the onset of 
material damage and a reduction in rotational 
stiffness. From the design standpoint it is 
advantageous to express the rotational capacity 
in terms of the serviceability limit on mid-span 
deflection, i.e. in terms of the deflection-span 
ratio, KC. End connection rotation capacity 
expressions have been derived for shear 
deformable beams with semi-rigid end connec- 
tions. These are presented below. 

Point load at mid-span/uniform load over the 
entire span 
The rotation capacity, 9C, of the end connection 
required to achieve a prescribed mid-span 
deflection-span ratio, KC, is obtained by com- 
bining eqns (1) and (3) so that 

0 _  *l  ( Keß 
c    k3 \ l+48oc + k2ß + 96aß 

(10) 

It should, of course, be appreciated that the 
aß-term in the denominator of eqn (10) indi- 
cates the existence of coupling between the 
shear flexibility of the beam and the rotational 
flexibility of the end connections. 

It is also of interest to examine, briefly, the 
degenerate forms of eqn (10). First, if the beam 
is shear-rigid, i.e. a = 0, then eqn (10) reduces 
to 

kx I    KJ 

l+k2ß (11) 

Further degeneration of eqn (11) depends, of 
course, on the value of the rotational flexibility, 
ß, of the end connection. For the case of ß = 0, 
i.e. clamped ends, the required rotation capacity 
6C = 0. This result conforms with our expecta- 
tions, namely that for a beam with clamped 
supports no rotation capacity is required irre- 
spective of the prescribed mid-span 
deflection-span ratio, KC. Likewise, for the case 
of ß= oo, i.e. simply supported ends, eqn (11) 
reduces to 6C = k-^Kjk^. These two results for 
ß = 0 and oo are well known and confirm the 
degeneracy of eqn (10). 

PULTRUDED GRP BEAM PROPERTIES 
AND SEMI-RIGID JOINT STIFFNESSES 

While the foregoing shear deformable semi- 
rigid beam analysis and performance indices are 
quite general, it is the present purpose to focus 
on pultruded GRP beam sections and the types 
and characteristics of the semi-rigid joints used 
to connect them. It is convenient to deal with 
the beam properties first. Because of the domi- 
nant role of the US pultrusion industry, 
standard structural sections are produced mainly 
by US pultruders [1,2]. The most popular pul- 
truded sections for beam applications are WF- 
(wide flange) and I-sections. It is, therefore, 
proposed to select two sizes of each section for 
use in the numerical calculations which are pre- 
sented later in the paper. The two sizes are the 



G. J. Turvey 

Table 2. Details of the cross-section geometry of two sizes of pultruded GRP WF- and I-section 

Section type Depth Web and Major axis second Gross cross- Web cross- 
(mm) flange thickness moment of area sectional area sectional area 

(mm) (mm4) (mm2) (mm2) 

WF-section 101.6 6.4 3,304,900 1864.5 567.7 
I-section 101.6 6.4 1,831,400 1219.4 567.7 
WF-section 203.2 9.5 41,282,000 5632.2 1754.8 
I-section 203.2 9.5 23,080,000 3696.8 1754.8 

101.6 and 203.2 mm deep sections. Details of 
the cross-section geometry for each section size 
and shape are given in Table 2. Although the 
pultruded GRP material is orthotropic, only the 
longitudinal elastic modulus and the in-plane 
shear modulus are needed to evaluate the per- 
formance indices. These moduli are given for 
the EXTREN™ series of structural pultrusions 
in Ref. 2. The longitudinal modulus, E, for the 
deeper section is 17.24 kN/mm2, whereas for the 
shallower section it is slightly larger at 17.93 kN/ 
mm2. However, the shear modulus is the same 
for all section sizes at 2.93 kN/mm2. 

In order to provide meaningful performance 
index values for the pultruded WF- and I-sec- 
tions, it is necessary to use realistic semi-rigid 
joint flexibility data. It is, therefore, sensible to 
use rotational stiffness data derived from tests 
on semi-rigid connections between pultruded 
GRP sections. Such data are not very extensive. 
It appears that most of the published test data 
relate to joints between the 203.2 mm deep WF- 
sections [5-8]. Recently, Turvey and Cooper 
[9,10] have reported on a number of semi-rigid 
joint tests between the 101.6 and 203.2 mm 
deep WF-sections. The connections were all 
bolted and were in two arrangements. In the 
first arrangement the connection between the 
column flange and beam web was via a pair of 
web cleats and in the second arrangement an 
additional set of cleats was provided between 
the upper and lower beam flanges and the col- 
umn flange. Details of the web and flange cleat 
connections for the small and large size wide 
flange sections are shown in Fig. 2(a) and (b), 
respectively. The web cleat connections are 
similar to the connections shown in Fig. 2 but 
with the flange cleats absent. The moment- 
rotation behaviour observed in these tests was 
broadly in line with comparable test data 
reported elsewhere [5-8]. In the tests reported 
by Turvey and Cooper [9,10] care was taken to 
determine the initial rotational stiffnesses. It is 
these  stiffnesses which  are  required for the 

evaluation of the parameters in the perform- 
ance indices. The initial rotational stiffness 
typical of each arrangement and for each of the 
two section depths is given in Table 3. 

It should, of course, be appreciated that the 
initial stiffnesses given in Table 3 were all 
derived from tests on WF-sections. It has been 
assumed that the same initial rotational stiffness 
values apply to the I-section semi-rigid connec- 
tions. 

VARIATION OF THE SHEAR AND 
ROTATIONAL FLEXIBILITY PARAMETERS 

Before evaluating the three performance indices 
for the pultruded GRP WF- and I-sections it is, 
perhaps, worthwhile to see how the beam shear 
flexibility parameter, a, and the rotational flex- 
ibility parameter, ß, of the semi-rigid end 
connections vary. In order to be able to show 
these variations for different section depths and 
shapes it is convenient to plot the a and 
jß-values as functions of the span-to-depth ratio. 
The variations of a and ß with the span-to- 
depth ratio are shown in Fig. 3 and Fig. 4, 
respectively. In Fig. 3 two sets of a-values are 
presented for each section depth and shape. 
The reason for calculating two a-values for each 
case is that the shear deformable beam analysis 
used to derive the performance indices does not 
include a shear correction parameter to com- 
pensate for inadequate modelling of the shear 
stress distribution over the beam cross-section. 
Thus, by evaluating the a parameter on the 
basis of the gross and the web cross-sectional 
areas of the beam section, upper and lower 
bound a-values are determined. It is evident 
from the shape of the curves shown in Fig. 3 
that the shear flexibility parameter, a, is large at 
small span-to-depth ratios and decays rapidly as 
the span-to-depth ratio increases. It may, there- 
fore, be inferred that the influence of the 
a-parameter on the performance indices is most 
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Fig. 2. Bolted beam-to-column web and flange cleat connections: (a) layout of 101.6 mm WF-section connection and (b) 
layout of 203.2 mm WF-section connection. 
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Table 3. Initial rotational stiffnesses for semi-rigid bolted 
joints between pultruded GRP WF- and I-sections 

Type of bolted Section depth Initial rotational 
connection (mm) stiffness 

(kNm/radian) 

Web cleats 101.6 14 
Web + flange cleats 101.6 85 
Web cleats 203.2 100 
Web + flange cleats 203.2 500 

significant at small span-to-depth ratios. From 
Fig. 3 it is also clear that the a-values based on 
the web area of the cross-section are larger than 
the a-values based on the gross area of the 
cross-section. Furthermore, the a-values for the 
WF-sections are generally larger than the 
a-values for the I-sections and the difference 
between corresponding values is greater when 
the web rather than the gross cross-sectional 
area is used. For the two depths of section 
chosen, it appears that the section depth does 
not have much effect on the a-parameter. 

The dimensionless rotational flexibility 
parameter, ß, of the connections is shown 
plotted against the span-to-depth ratio in Fig. 4. 
The general shape of the curves in Fig. 4 is 
similar to the a-parameter curves shown in Fig. 
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Fig. 3. Beam  shear flexibility parameter (gross and web 
cross-sectional area values) versus span-depth ratio for 101.6 

and 203.2 mm deep pultruded GRP WF- and I-sections. 
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Fig. 4. Semi-rigid end connection rotational flexibility param- 
eter (web and web+flange cleats) versus span-depth ratio for 
101.6 and 203.2 mm deep pultruded GRP WF- and I-sections. 

3, though they assume much larger values. As 
one might expect the /J-values for semi-rigid 
web cleat connections are greater than for web 
and flange cleat connections. Also the ^-values 
for WF-sections are larger than the ß values for 
the corresponding I-sections. 

EVALUATION OF PERFORMANCE INDICES 
AND END CONNECTION ROTATION 
REQUIREMENTS FOR PULTRUDED GRP 
BEAMS 

Having defined general expressions for the per- 
formance indices and end connection rotation 
requirements for the two load cases and also 
having quantified the a- and ^-parameters for 
two common forms of bolted connection used 
to join pultruded GRP sections, it is of interest 
to obtain quantitative information which 
demonstrates the potential gains to be derived 
from taking account of the rotational stiffness 
inherent in the beam end connections. The per- 
formance indices will be considered first and 
then the end connection rotation requirements. 

The deflection reduction, load enhancement 
and span enhancement performance indices are 
plotted against span-to-depth ratio in Fig. 5, 
Fig. 6 and Fig. 7, respectively for WF- and I- 
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section beams subjected to a point load at 
mid-span. In each figure the data are presented 
for two section depths and shapes of cross-sec- 
tion.    In    addition,    the    effects    of    shear 

deformation of the beam based on the gross 
and web areas of the cross-section are com- 
pared with the results for a shear-rigid beam. 
Furthermore, results are also presented for the 
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Fig. 5. Deflection reduction index versus span-depth ratio for pultruded GRP beams with semi-rigid end connections (web and 
web+flange cleats) and subjected to a point load at mid-span: (a) 203.2 mm WF-section, (b) 203.2 mm I-section, (c) 101.6 mm 

WF-section and (d) 101.6 mm I-section. 
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two connection arrangements, viz. web cleats 
and web and flange cleats. 

Thus, Fig. 5 shows the deflection reduction 
index versus span-to-depth ratio. The variations 
of the index for 203.2 mm deep WF- and I- 

sections are shown in Fig. 5(a) and (b), 
respectively. The trends in both figures are simi- 
lar, but the index values are smaller for the 
I-section which indicates that the I-section 
benefits more than the WF-section from the 
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Fig. 6. Load enhancement index versus span-depth ratio for pultruded GRP beams with semi-rigid end connections (web and 
web+flange cleats) and subjected to a point load at mid-span: (a) 203.2 mm WF-section, (b) 203.2 mm I-section, (c) 101.6 mm 

WF-section and (d) 101.6 mm I-section. 
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connection semi-rigidity in reducing the mid- 
span deflections. This is so regardless of 
whether web cleats or web and flange cleats are 
employed in the end connections. Clearly, the 
deflection reduction indices for web and flange 
cleats are much smaller than for web cleats 
alone. For example, for the 203.2 mm WF-sec- 
tion with a span-to-depth ratio of about 10 the 
deflection reduction index varies from 0.69 to 
0.78 (depending on whether the beam is shear- 
rigid or shear-flexible) when web and flange 
cleats are used in the connection, whereas for a 
web cleat connection the index varies from 0.91 
to 0.93. In other words, exploiting the inherent 
rotational stiffness of the beam end connections 
leads to mid-span reductions in deflection of 
22-31% for the web and flange cleat connec- 
tion and 7-9% for the web connection. The 
corresponding reductions in mid-span deflection 
for the 203.2 mm I-section (see Fig. 5b) are 
34-42% and 12-15%, respectively. It is also 
clear from Fig. 5(a) and (b) that shear deforma- 
tion raises the value of the deflection reduction 
index and this may be quite significant at short 
spans. Thus, shear deformation tends to offset 

2.0 

1.8 
x 

203.2 WF (Web) 
203.2 I (Web) 
203.2 WF (Web+Flange) 
203.2 I (Web+Flange) 
101.6 WF (Web) 
101.6 I (Web) 
101.6 WF (Web+Flange) 
101.6 I (Web+Flange) 4 

10       20       30       40 

Span - Depth Ratio 

50 

Fig. 7. Span enhancement index versus span-depth ratio for 
101.6 and 203.2 mm deep pultruded GRP WF- and I-section 
beams with semi-rigid end connections (web and web+flange 

cleats) and subjected to a point load at mid-span. 

the benefits of the rotational stiffness of the end 
connection. In Fig. 5(c) and (d) the deflection 
reduction index versus span-to-depth ratio is 
plotted for the 101.6 mm deep WF- and I-sec- 
tions, respectively. The results are very similar 
to the results for the corresponding larger sec- 
tion size and shape. 

The load enhancement index versus span-to- 
depth ratio for shear deformable beams with 
semi-rigid end connections and subjected to a 
point load at mid-span are shown in Fig. 6(a) 
and (b) for the 203.2 mm deep WF- and I-sec- 
tions, respectively. As expected the benefits of 
semi-rigid end connections increase as the span 
of the beam increases. The increase in the load 
enhancement index is almost linear for the web 
connection but shows signs of non-linearity for 
the web and flange connection. Again, it is 
evident that the increase in load carrying capa- 
city appears to be greater for I-sections than 
WF-sections for the same semi-rigid end con- 
nection arrangement. For example, at a 
span-to-depth ratio of about 10 (see Fig. 6a), a 
203.2 mm WF-section with web cleat end con- 
nections is able to support between 7 and 10% 
more load than a simply supported beam, 
whereas the same WF-section with web and 
flange cleats is able to support between 28 and 
45% more load depending on the nature of the 
beam's shear flexibility. The corresponding 
increases in load carrying capacity for the 
203.2 mm deep I-section (see Fig. 6b) are 
14-18% and 51-72%. Again, these figures show 
that the beam's shear flexibility reduces the 
benefits of enhanced load carrying capacity 
derived from the semi-rigid end connections. 
Corresponding load enhancement versus span- 
to-depth ratio curves for 101.6 mm deep WF- 
and I-sections are shown in Fig. 6(c) and (d), 
respectively. The load enhancement indices are 
very similar to the values for their deeper sec- 
tion counterparts. 

The span enhancement index versus span-to- 
depth ratio plots for the two section depths, 
shapes and connection arrangements are shown 
in Fig. 7. It is evident that, regardless of section 
depth and shape, the span enhancement index 
increases almost linearly with the span-to-depth 
ratio when a web cleat connection arrangement 
is adopted. It also appears that the span 
enhancement index is significantly larger for I- 
sections than for WF-sections, especially at 
large spans and with web and flange cleat end 
connections. However, when web and flange 
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cleats are used, the difference between the span 
enhancement indices for the different section 
depths of the same shape is negligible. The vari- 
ation of the span enhancement index with 
span-to-depth ratio is non-linear for web and 
flange cleat end connections. In this figure no 
distinction between results for shear-rigid and 
shear deformable beams is made as the index is 
independent of the shear flexibility parameter, 
a. It is of interest to compare the index values 
for a span-to-depth ratio of 10. Thus, for a WF- 
section with web cleats the span increase 
(compared to a simply supported beam) varies 
from 4 to 5% depending on the section depth, 
whereas for an I-section the increase in span 
varies from 8 to 9%. The corresponding span 
increases for beams with web and flange cleat 
connections are 24% for the WF-section and 
38-39% for the I-section. 

The required rotation capacity of the semi- 
rigid end connection versus span-to-depth ratio 
is shown in Fig. 8(a) and (b) for 203.2 mm deep 
WF- and I-sections, respectively. These figures 
have been compiled assuming the the mid-span 
deflection-span ratio, KC = 0.005. Although the 
curves in both figures show similar trends, it is 
evident that the required end connection rota- 
tions are somewhat smaller for the I-section. In 
the case of shear-rigid beams the required end 
rotation capacity of the connection reduces as 
the span increases. Moreover, as the span 
increases the affect of the beam's shear flex- 
ibility on the end connection rotation 
diminishes. However, for short spans the shear 
flexibility of the beam has a significant effect in 
reducing the required rotation capacity of the 
end connection. For example, in the case of a 
203.2 mm WF-section (see Fig. 8a) for a span- 
to-depth ratio of 10 a rotation capacity of 
15 mrad for a shear-rigid beam reduces to 
between 10 and 13 mrad depending on the 
degree of shear flexibility of the beam. The 
corresponding value for the I-section is 14 mrad 
reducing to between 11 and 12.5 mrad. The end 
connection rotation capacity versus span-to- 
depth ratio plots for the 101.6mm deep WF- 
and I-sections are shown in Fig. 8(c) and (d), 
respectively. These figures are similar to those 
of their deeper section counterparts and do not 
merit further discussion. 

A set of performance index and end rotation 
capacity results have also been produced for 
pultruded WF- and I-section beams uniformly 
loaded over their entire span, but are not repro- 

duced here for space reasons. The results trends 
are similar to those for a point load at mid-span 
though the index values differ somewhat. For 
example, if the deflection index values for the 
point load case are compared with the uniform 
load case, it is evident that the latter deflection 
reduction index values are smaller. This sug- 
gests that the benefits of semi-rigidity of the 
end connections are greater under uniform 
loading than under point loading at mid-span, 
i.e. the mid-span deflection is smaller. Likewise 
comparing the load enhancement indices for a 
point load at mid-span with their corresponding 
indices for a uniformly loaded beam, it is again 
evident, particularly in the case of web and 
flange cleat connections, that the values for uni- 
form loading are larger. Hence, the benefit of 
the semi-rigid connection in enhancing the load 
supporting capacity is greater under uniform 
loading. On the other hand, when the the span 
enhancement indices for the cases of a point 
load at mid-span and a uniform load over the 
entire span are compared it appears that the 
indices are very similar which suggests that the 
load distribution does not influence the index 
— it is the flexibility of the end connection 
which plays the dominant role. 

Finally, comparing the end connection rota- 
tion requirement for the point load and uniform 
load cases, it is clear that the rotation require- 
ment is larger for the uniform load case. 

CONCLUDING REMARKS 

Simple closed-form expressions for the mid- 
span deflection and end connection rotations 
have been derived for shear deformable semi- 
rigidly connected elastic beams. The formulae 
are based on first-order shear deformation 
theory and the connections are assumed to have 
a linear moment-rotation characteristic. The 
formulae have been converted into performance 
indices which define the mid-span deflection, 
the load carrying capacity and the increase in 
span of a semi-rigidly connected beam relative 
to an otherwise identically loaded simply sup- 
ported beam. Moment-rotation data derived 
from web and web and flange cleat connection 
tests between 101.6 and 203.2 mm deep WF- 
sections have been used to calculate the beam 
shear flexibility and end connection rotation 
flexibility parameters for both WF- and I-sec- 
tion pultruded GRP beams. These parameters 
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have been used in the formulae to quantify the 
performance indices and end rotation require- 
ments as functions of the span-to-depth ratio 
for mid-span point loaded beams with the two 
types   of  conventional   semi-rigid   connection 

configurations. The results indicate that sub- 
stantial reductions in the mid-span deflection, 
increases in the load carrying capacity and 
increases in the span are possible especially for 
the web and flange cleat connections. For pul- 
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Fig. 8. End connection rotation requirement versus span-depth ratio for pultruded GRP beams with semi-rigid end connections 
(web and web+flange cleats) and subjected to a point load at mid-span: (a) 203.2 mm WF-section, (b) 203.2 mm I-section, (c) 

101.6 mm WF-section and (d) 101.6 mm I-section. 
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truded GRP sections knowledge of these 
performance improvements is particularly 
important as the current practice is to design 
beams as simply supported and the range of 
section sizes is very limited. Thus, the informa- 
tion provided in the paper allows the structural 
engineer to decide for a given span-to-depth 
ratio whether or not the additional capacity 
available from the semi-rigid connection is suffi- 
cient to allow a beam to be used which is 
designed as simply supported and is on the limit 
of its performance. 
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Actuation and sensing of piezolaminated 
sandwich type structures 

H. Abramovich & B. Pletner 
Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, 32000 Haifa, Israel 

A new piezolaminated sandwich type structure to be eventually used as a 
smart wall for active control of sound radiated by harmonically excited thin 
walled structures is proposed. The present study presents the equations of 
motion of the new adaptive sandwich structures in a sufficiently accurate 
model in a form readily for solution either in closed-form or by 
approximate methods. The theoretical natural frequencies are compared 
with an approximate evaluation and test results yielding a good correlation. 
It also yields the axial strains and the curvature of the composite beam 
leading to the calculation of equivalent mechanical loads produced by the 
piezoceramic actuator for inclusion in a finite element code. The numerical 
results are compared with experimental ones obtained during a test series 
on a cantilever sandwich beam equipped with piezoceramic sensors and 
actuators and constructed according to the new proposed concept. The 
influence of the input voltage on the performance of the new sandwich 
structure is investigated. The beam tip deflection induced by the 
piezoceramic actuators is measured and compared with numerical and finite 
element predictions to yield a very good match. Both the numerical and the 
experimental results show the applicability of the new proposed concept. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

A common form of an adaptive structure is a 
thin type structure equipped with piezoelectric 
laminae. These laminae are made of piezo- 
electric materials such as Polyvinylidene 
Fluoride (PVDF) — a piezoelectric copolymer 
film [1] or Lead Zirconia Titanate (PZT) [2] — 
a piezoceramic based material available at 
present in relatively small rectangular patches. 
The figure of merit of such laminae is their 
capability of transducing electric fields into 
mechanical strains, and mechanical strains into 
electrical charges. These 'active' laminae are 
used either to actuate the hosting structure by 
inducing strains in the non-piezoelectric, 'pas- 
sive' laminae, or to sense deflections of the 
hosting structure by measuring the local strain 
fields. The active laminae, the actuators, can be 
continuous over the entire domain of the struc- 
ture, as in the PVDF case, or discontinuous as 
in the case of piezoceramic (PZT) patches. A 

survey on piezoelectricity and its use can be 
found in Ref. [3]. 

A vast number of studies deal with the use of 
piezoceramic patches to control the vibrations 
of flexible structures like beams and plates and 
their deflections. Such are the studies of Cud- 
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Fig. 1. The assumed strain distribution across the beam 
(not to scale). 

17 



18 H. Abramovich, B. Pletner 

Table 1. Dimensions and material properties 

PZT Patch Aluminum Beam Foam Beam 

Thickness (mm) 2a = 0.1905 2d = 0.75 
Width (mm) Wj = 50 w = 60 
Density, p (kg/m ) 
Young's Mod. (Pa) 
Length (mm) 
Piezo. Const., d31 (m/V) 

7700 
E„ = 5 x 1010 

/ = 50 
180 xHT12 

2700 
Es = 7 x 1010 

L = 300 

2a = 11.65 
w = 60 
80 
EF = 75 x 106 

L = 300 

ney et al. [4], Clark et al. [5], Akella ef a/. [6] 
and Batra and Ghosh [7] to quote only a few. 
Other researchers, such as Main et al. [1], Kim 
et al. [8], Chandra and Chopra [9] and Pletner 

Configuration 3 
(not to scale) 

Fig. 2. The various sandwich configurations used in the 
tests (not to scale). 

and Abramovich [10], try to model composite 
structures, which include PZT actuators, and to 
evaluate the influence of the actuators induced 
strains on the overall behavior of the structures. 

The subject of noise attenuation using active 
beside passive means has been presented in 
numerous studies in the literature. Crane et al. 
[11], Dungan et al. [12], Wang [13], Kim et al. 
[14], Bao et al. [15], Ko and Tongue [16], Bala- 
chandran et al. [17] and recently, Pletner et al. 
[18], represent only a few references in which 
theoretical and experimental efforts were made 
to apply active acoustical control to reduce 
noise levels. In some of these works [13-18], 
use was made of PZT patches acting to induce 
strains and to control and then attenuate 
interior noise. 

While the control part of the smart-adaptive 
structures problem is well advanced it seems 
that the development of accurate models for 
induced strain actuation and sensing local 
strains are essential for the correct and efficient 
design of smart/adaptive structures and their 
use for vibration suppression, noise attenuation, 
shape control and vibration steering. 

The majority of the smart structures do not 
involve sandwich structures. A few studies 
[19,20] do concentrate on sandwich type struc- 

Table 2. Formulae for calculating induced curvatures and axial strain (N = M = 0) sandwich configuration 1: PZT, host 
beam, (PZT) Jfc 

Configuration Curvature K Axial Strain^ 

Two Sided Active Symmetric PZTs 

Two Sided Symmetric PZTs (only 1 Active) 

One Sided Active PZT 

Approx. 

Exact 

2Aa 2pAA* 

d(pE + 2y) 

Aa 

d(pE + 2y) 

(pE + 2pA) 

(P + 2pA) 

Aa PAA 

d(pE + y) 

3ApA(l + pA){l-ß) 

d[pE + y-3ßpA(l + pA)] 

(PE + PA) 

pAA(l-cc/y) 

(PE + PK-O-PAII) 
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Table 3. Formulaae for calculating induced curvatures and axial strain embedded PZTs (N = M = 0) sandwich con- 
figuration 2: [foam beam, PZT, host beam, (PZT)t&, foam beam] 

Configuration Curvature K Axial Strain / 

Two Sided Active Symmetric PZTs 

Two Sided Symmetric PZTs (only 1 Active) 

One Sided Active PZT 

Approx. 

Exact 

2Aa 2p„A* 

d(pE + 2y + IpfJx) 

Aa 

d(pE + 2y + 2pFy!) 

Aa 

dy3 

3ApA(l + pA-pA«i/ys) 

d(r3-3/0Aai) 

(PE + 2pA + 2pFpA) 

 PV^  

(PE + 2pA + 2pFpA) 

P*A 

(PE + 74) 

p/tA(l-a«1/y3) 

(PE + 74-3pAai2/73) 

*For the case where in-phase voltage is supplied to both PZTs. For the out-of-phase voltage case, 1 = 0. 
tk = 1 — the PZT is available, k = 0 — the PZT is not available. 

tures, using the PZT actuators either on the 
outside faces [19] or in the thickness-shear 
mode [20]. Therefore, the present study is 
aimed at developing a sufficiently accurate 
model of a new piezolaminated sandwich type 

structure to be eventually used as smart walls 
for active control of sound radiated by harmon- 
ically excited thin walled structures. Sandwich 
structures consisting of stiff facing sheets and a 
relatively soft lightweight core such as rigid 

Table 4.  Formulae  for calculating induced  curvatures  and  axial  strain  embedded  PZTs   (N = M = 0)  sandwich 
configuration 3: [foam beam, PZT, host beam, (PZT) fc] 

Configuration Curvature K Axial Strain % 

Two Sided Active Symmetric PZTs 

Approx. 

Exact 

Two Sided Symmetric PZTs (only 1 Active) 

Approx. 

Exact 

One Sided Active PZT 

Approx. 

Exact 

2Aa 2p„A* 

d(pE + 2y + pFyj) 

6ApA(l + pA-0.4/79) 

d(y8-3a42/y9) 

Aa 

d(pE + 2y + pFyO 

3ApA(l + pA-a.Jy9) 

d(y8-3a42/y9) 

Aa 

d(pE + y + pFyi) 

3ApA(l + pA-a3/y7) 

d(y6-3a32/y7) 

(pE2pA + PFPä) 

2pAA*(l-a2«4/y8) 

(y9-3a42/y8) 

PAA 

(PE + 2pA + pFpA) 

pAA(l-a2aJy8) 

(y9-3a42/y8) 

P^A 

(PE + PA + PFPä) 

PAA(l-a2«3/y6) 

(y7-3a32/y6) 

*For the case where in-phase voltage is supplied to both PZTs. For the out-of-phase voltage case, z = 0. 
t& = 1 — the PZT is available. K = 0 — the PZT is not available. 
where   pA = aid;   pA = aid;   pE = EJEP;   pF = EF/Epa = 3(1 + pA)pA;   a.x = 1 + pA + 2pFpA;   a2 = a/pA;   a3 = 
(1 + PA)pA + PF[(1 + 2pA)pA + PA];   a4 = a3-«/3;   ß = pA/(pB + pA);   y = 3pA + 6pA + 4pA;   yx = 3(1 + 2pAfpk + 
6(1 + 2pA)pA + 4pÄ; y2 = 3pA + 6pA + 4pA; y3 = pE + y + pF(y1 + y2); y4 = ai-l; y5 = pE + y4; y6 = pE + y + pFyx; 
7? = PE + PA + PFPä! 7s = PE + 2y + pF[3(l + pAfpA + 6(1 + pA)p% + 4p%]; y9 = pE + 2pA + pFpk- 
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Fig. 3. The wiring configurations of the two PZTs. 

foam or honeycomb are highly efficient in bend- 
ing. An excellent review on computational 
models of sandwich structures can be found in 
Ref. [21]. 

Providing the sandwich structure with means 
of sensing the vibrational motions induced by 
external noise and means of actuation to reduce 
the amplitudes of those motions will yield a new 
advanced structure having the efficiency of a 
sandwich one together with an ability of active 
noise attenuation. This new structure will be 
constructed from five main layers: a thin metal 
plate equipped with PZT patches for sensing 
and actuation sandwiched between the usual 
faces and foam core. This new emerging sand- 
wich construction offers many advantages over 
the conventional surface-mounted construc- 
tions. For example, far better protection of the 
piezoceramic patches and its electrical leads 
and wires is obtained. Moreover, sensing and 
actuation is done independently without the 
need to mount and change the host structure, 
and at relatively low bending stresses which will 
not be detrimental to the brittle piezoceramic 
patches. 

The present study presents the equations of 
motion of the new adaptive sandwich structure 

in a form ready for solution either in closed- 
form or by approximate methods. It also yields 
the axial strains and the curvature of the com- 
posite beam leading to the calculation of 
equivalent mechanical loads produced by the 
piezoceramic actuator for inclusion in a finite 
element code. The numerical results are com- 
pared with experimental ones obtained during a 
test series on a cantilever sandwich beam 
equipped with piezoceramic sensors and actua- 
tors and constructed according to the new 
proposed concept. The influence of the input 
voltage on the performance of the new sand- 
wich structure is investigated. The beam tip 
deflection induced by the piezoceramic actua- 
tors is measured and compared with numerical 
predictions to yield a very good match. Both the 
numerical and the experimental results show 
the applicability of the new proposed concept. 

FORMULATION OF THE PROBLEM 

The axial strain and curvature of the beam 

It is assumed that the unstrained state of the 
material is defined when the PZT layer (the 
actuator) is attached to or embedded in the 
structure with no electrical field applied to the 
actuator and no external tractions (forces or 
moments) acting on the structure. Therefore 
the axial strain distribution along the composite 
structure has the form (see Fig. 1) 

£x = ylr + % (1) 
where r is the radius of curvature (the curvature 
K = 1/r), y is the distance from the neutral axis 
and x is a constant. 

Assuming that all materials are isotropic we 
get the stresses in each component of the com- 
posite structure, as 

(O, = Esex (2a) 

(ax)p = Epsx (2b) 

(ax)F = EFsx (2c) 

where a is the axial stress in the composite 
beam, E is Young's modulus, ()5 the structure 

Table 5. Natural frequencies of the beam — various configurations 

Configuration Mode        Freq. (Hz) Approx.        Freq. (Hz) Prog.        Freq. (Hz) Test 

Aluminium beam + 2 PZTs 123 
Aluminum beam + 2 PZTs + 1 Foam beam 12 
Aluminum beam + 2 PZTs + 2 Foam beams 12 

6.69, 41.94, 117.48 
24.4,152.8 
29.8,186.7 

8.2, 48.53,128.61 
24.76,153.66 
30.11, 187.4 

7.25, 42.0, 108.0 
22.0,148.0 
26.25,185.5 
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to which the PZT patches are bonded, Qp a 
piezoceramic, PZT, layer and QF the foam 
beam. 

The piezoceramic layers provide the ability to 
apply stress and therefore axial forces to the 
structure (the actuator mode). The piezoelectric 
effect is characterized by the piezoelectric pro- 
portionality constants, d31 and d32 (see Table 1), 
that relate the electrical field, JE, applied across 
the thickness of the patch (usually denoted as 
3-direction) with the strains induced in the 
longitudinal directions (the so called 1- and 
2-directions) when the patch is unconstrained. 
For a one-dimensional case the free strain in 
the 1-direction is defined as: 

KEPCO Power Supplier 

A = d31JE (3) 

For the present derivation, the 1- and 3-direc- 
tions correspond to the x and y directions, 
respectively. Applying Hook's Law to eqn (3) 
yields 

op = Epd31JE (4) 

Fig. 4. The schematic test set-up. 

Here ap is the effective stress applied to the 
actuator layer due to the piezoelectric effect. It 
is assumed that all parts of the composite struc- 
ture are perfectly bonded, with the adhesive 
layer's thickness being negligible. Now the 
applied stresses and the beam stress environ- 
ment are known. Resultant axial forces and 
moments can now be summed to find the beam 
axial force-strain and moment-curvature rela- 
tionships 

T,FX = 0=> - N + w\apdy = wj(ax)dy (5a) 

1,MZ = 0=> — M + w\opydy = w\{ax)ydy     (5b) 

where N and M are the outside applied axial 
force and moment, respectively, w the compo- 
site beam width, and (ox) the stress in the x 
direction in a given layer. The integral is on the 
left and right hand of the eqn (5a,b), according 
to the composite beam configuration (see 
Fig. 2). 

Making the appropriate substitutions yields 
the formulas presented in Tables 2-4. 

Table 6. Experimental results 

2 Foam Beams 
No Foam Beams 1 Foam Beam (at /, = 22 Hz) (at/, = 

V-m (Volts) 

26.25 Hz) 

Vin (Volts)         Vout (Volts) W(mm) Vin (Volts) Vout (Volts) W(mm) W{mm) 

1 active PZT, at/i = 7.25 Hz 1 active PZT 2 active PZTs 

38                            16.7 14.5 36 2.5 1.04 107 2.9 
34                           15.21 12.25 63 3.25 1.61 125 3.28 
30                           13.7 12 72 3.51 1.8 98 2.57 
26                           12.2 10.8 90 4.06 2.05 89 2.33 
23                            10.8 9.4 99 4.36 2.3 80 2.1 
19                             9.2 6.95 108 4.74 2.44 72 1.84 
15                             7.6 6.5 126 5.44 2.75 54 1.38 
11                             5.7 3.85 144 6.27 3 36 0.91 

1 active PZT, at/2 = 42 Hz 2 active PZT 

71                           45.5 7.65 36 _ 1.2 _ _ 
62                           41.7 6.83 45 - 1.42 - - 
53                           37.2 6.1 54 - 1.65 — — 
44                           32.3 5.25 63 - 1.75 - - 
36                           27.15 4.4 72 - 1.94 - - 
27                           21.5 3.45 81 - 2.1 - - 
18                          15.6 2.5 90 - 2.29 - - 

9                             9.02 1.43 108 - 2.57 - - 
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One should remember that the axial strain 
for two active PZTs case is possible only when 
in-phase voltage is supplied to both PZTs, while 
for the out-of-phase voltage case, x = 0 (see 

Table 7. Experimental results — forced 
two sensing PZTs 

vibrations with 

Vout (Volts) W (mm) peak-to-peak 

No Foam Beams at/ = 34.25 Hz 

14.9 
22.06 
24 

5.0 
8.0 

10.0 

1 Foam Beam at/ = 30.0 Hz 

2.12 
2.84 
3.54 

1.4 
2.4 
3.1 

2 Foam Beams at / = 39.5 Hz 

1.6 
2.1 
2.6 

1.59 
2.2 
2.88 

Fig. 3). Applying out-of-phase voltage to both 
PZTs results in a pure bending moment. Note 
that in case the width of the PZT patch, wu is 
not equal to the width of the beam, w (in 
general w^w^, the symbol pA in Tables 2-4, is 
to be replaced by öA, which is defined as: 

&A = PAWX/W (6) 

The dynamic equations of motion 

The equation of motion for an Euler-Bernoulli 
type beam (which is our case) is given by 

Z),.6
4

V,./8JC
4
 + m&yldt1 = 0 (7) 

where the subscript / denotes the following (see 
also Fig. 1) 

i = 1 0<x,</ 

i = 2l<x2<L W 

The Dt and the m, represent the flexural rigidity 
and the mass per unit length of the beam, 
respectively. 

Metal Alone- No foam (at f1) 

20 

V(in) volts 

♦ V(out) ■W(FE) AW(exp.) 

Fig. 5. PZT-Struct.-PZT Config. (at/: = 7.25 Hz) 
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The boundary conditions associated with the 
problem are 

at x = 0 y, = 0; dyjdx = 0 

at x = L d2y2/dx2 = 0; 83y2/8x3 = 0 ^ 

The other four conditions to solve the problem 
come from the compatibility of displacements 
and equilibrium of forces at x = 1, namely 
satisfaction of the following continuity condi- 
tions 

at x = 1 V! = y2 

dy^dx = dy2/dx 

-D^yjdx2 = -D2d
2y2/dx2 

-D^y^dx3 = -D2d
3y2/dx3 + mi: 

(10) 

where mp represents the induced piezo-bending 
moment given by 

mp = EPK (11) 

Substituting the relevant dimensions, material 
properties and the boundary and continuity 
conditions yield the natural frequencies of the 

beam for the various configurations used in the 
present study (the Prog, results presented in 
Table 5). 

Computer code was written to calculate the 
natural frequencies of various configurations of 
the beam. The results are presented in Table 5. 
The approximated results stem from a straight- 
forward calculation of the natural frequencies 
for a cantilever beam, and thus neglecting the 
mass and stiffness of the PZTs. 

It can be seen from the comparison presented 
in Table 5, that neglecting the PZTs can lead to 
a large error for the PZT-Aluminum-PZT 
configuration (see Approx. vs. Prog, in Table 5), 
whereas for the other two configurations, the 
neglect reasonable. 

The theoretical predictions are, as expected, 
higher than the experimental measured fre- 
quencies, with the highest difference being for 
the first configuration. This might be attributed 
both to the correct detection of the natural fre- 
quency as well as to the beam not being fully 
clamped.  Overall,  the  theoretical  predictions 

Metal Alone- No foam (at f2) 

35 40 20 25 30 

V(out) volts 

Fig. 6. Kout vs. lateral displacement W (PZT-Struct.-PZT Config. at/2 = 42 Hz). 

45 50 
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are close to the experimental values derived 
from above. 

THE EXPERIMENTAL TEST SET-UP 

The experimental test set-up is presented in a 
schematic view in Fig. 4. It consists of a .75 mm 
thickness aluminium beam (the base structure) 
having a length of 30 cm and width of 6 cm. The 
beam is clamped at one side and free at the 
other one. A pair of PZT patches (for dimen- 
sions, see Table 1) is glued to the beam, as can 
be seen from Fig. 4. 

Three types of configurations were tested: 
(1) PZT-Structure-PZT, (2) Foam-PZT- 
Structure-PZT, and (3) Foam-PZT- 
Structure-PZT-Foam. 

The composite structure was driven by the 
PZTs acting as actuators. At the beginning only 
one PZT was driving the structure (by changing 
the input voltage, Vin, supplied via the KEPCO 
power supply) while the second one served as a 

sensor (its output, Vout, being monitored on an 
oscilloscope). The natural frequencies were 
found for each configuration using Lissajous 
figures. Then AC voltage was supplied to the 
PZT at the first and/or second natural frequen- 
cies of the specific configuration while the tip 
displacement of the composite beam was mea- 
sured continuously. Once a correlation was 
established between the beam tip lateral dis- 
placement and the voltage output, Vout, the 
whole structure was also driven by a pair of 
PZTs connected out-of-phase. 

The experimental results are presented in 
Tables 6 and 7 and in Figs 5-9. ANSYS®[22] 
finite element code was used and its results are 
presented in Fig. 5. A very good match is 
exhibited between the experimental results and 
those predicted by the finite element code. In 
Figs 5-8, one can see a linear dependence 
between Vout and Vin, as well as between the 
beam tip displacement and Vin. This holds true 
for the three configurations tested. Adding 
foam beams leads to the need for a higher input 

One Side Foam Only 

6.5 

5.5 -- 

5 -- 

4.5 

£    4 + 

3.5 -- 

3 -- 

2.5 

▲   ■ 

■   ♦ 

-+- 
20 40 60 80 

V(in) volts 

100 120 140 

♦ V(out) ■ W (1 PZT active) AW (2 PZTs active) 

2.8 

2.6 

-- 2.4 

+ 2.2 

E 
+ 2       E 

1.8 

1.6 

-- 1.4 

1.2 

160 

Fig. 7. Foam-PZT-Struct.-PZT Config. (at/, = 22 Hz) with 1 and 2 active PZTs. 
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voltage to overcome the relatively high added 
damping and to sustain the same beam tip dis- 
placement (see Table 6). Activating two 
out-of-phase PZTs does not mean twice beam 
tip displacement, as compared with only one 
active PZT. This cannot be said intuitively, as 
the composite structure is not symmetric (see 
Table 7) and the results show less than twice. It 
is also worthwhile to note the different behavior 
of the three configurations tested, as they 
appear in Fig. 9. If one defines the static deflec- 
tion parameter, A, as the curvature, %, per unit 
half-thickness of the hosting structure, d, and 
unit free piezo strain, A, an optimal pE ratio 
can be found for other given parameters, such 
as pp, pF and pä. The static deflection parameter 
can serve as an index to the matching of the 
PZT thickness to the other components thick- 
ness, not only for the static case, but also for 
the dynamic one [23]. It is clear that configura- 
tion 1 has a different peak as compared to the 
other two configurations. Considering the value 
of pE = 0.254 (with pp = 1.4, pF = 0.0015 and 

pä = 15.53) used in the tests, one can see a 
good matching for configuration 1 while the 
other two have a poor matching, yielding a 
lower performance (less deflections) for con- 
figurations 2 and 3 (see also Table 7). 

Finally, each configuration was driven also at 
of-resonance frequencies, measuring the beam 
tip displacement and the generated output volt- 
age. The data are presented in Table 7 and 
show a linear relationship. 

DISCUSSION AND CONCLUSIONS 

A new type of smart structure is proposed. It 
consists of a sandwich structure equipped with 
PZT actuators glued to an aluminum beam 
which is placed inside the sandwich. 

This structure has the advantages of sandwich 
structures with an addition of enhanced cap- 
ability to react to external stimuli, yielding an 
advanced smart structure. Another important 
advantage of the proposed configuration is its 

Both Sides Foam-one pair of PZT 
(at f1) 

40 60 80 

V(in) volts 

100 120 140 

Fig. 8. Foam-PZT-Structure-PZT-Foam Config. (at fx = 26.25 Hz) with a pair of active PZTs (at first natural fre- 
quency). 
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Two Sided Active PZTs 

0.6 

Fig. 9. A comparison between the three beam configurations pF = 0.0015, pE = 1.4, pä = 15.53. 

natural protection of the PZTs and the wires, as 
they are embedded inside the structure with no 
exposure to the surroundings. 

A theoretical model was developed for the 
proposed structure. Preliminary test results 
showed that the new model can be applied to, 
yielding a good correlation with experimental 
results. Both the theoretical/numerical and the 
experimental results show the applicability of 
the new proposed concept. 
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Buckling analysis of functionally graded plates 
subjected to uniaxial loading 

Esther Feldman & Jacob Aboudi 
Department of Solid Mechanics, Materials and Structures, Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel 

Elastic bifurcational buckling of functionally graded plates under in-plane 
compressive loading is studied. It is supposed that the gradients of material 
properties throughout the structure are produced by a spatial distribution 
of the local reinforcement volume fraction v,- = vf(x, y, z). To analyze the 
problem, a method based on a combination of micromechanical and 
structural approaches is employed. This establishes the effective constitutive 
behavior at every point of a nonhomogeneous composite plate and provides 
a buckling criterion. The derived criterion enables one to calculate the 
critical buckling load R" for a given distribution \t(x, y, z). 

Furthermore, with the aim to improve the buckling resistance of the 
functionally graded plate, the functional Rc

x
r(yf) is maximized. This yields an 

optimal spatial distribution vf(x, y, z) of the reinforcement phase. 
Results are presented for both short- and long-fiber SiC/Al plates in 

which the fibers are nonuniformly distributed in the x-, y-, or z-directions. 
The effects of length-to-width ratio of the plate, and of different types of 
boundary conditions are studied. Buckling load improvements of up to 
100%, as compared to the corresponding uniformly reinforced structure, 
are shown. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The traditional approach to fabricating compo- 
site materials implies that the reinforcement 
phase is distributed either uniformly or ran- 
domly such that the resulting mechanical, 
thermal, or physical properties do not vary 
spatially at the macroscopic level. Recently, a 
new concept involving tailoring or engineering 
the microstructure of a composite material to 
specific applications has taken root. This idea 
has given rise to the term functionally graded 
materials' (FGM) to describe this newly emerg- 
ing class of composites. FGMs are a new 
generation of composite materials in which the 
microstructural details are spatially varied 
through nonuniform distribution of the rein- 
forcement phase, by using reinforcements with 
different properties, sizes and shapes, as well as 
by interchanging the roles of reinforcement and 
matrix phases in a continuous manner. The 
result is a microstructure that produces continu- 
ously    changing    thermal    and    mechanical 

properties at the macroscopic or continuum 
level. 

Such an approach offers a number of advant- 
ages over the more traditional methods of 
tailoring the material properties and opens up 
new horizons for novel applications. Grading or 
tailoring the internal microstructure of a com- 
posite material or a structural component 
allows the designer to truly integrate both 
material and structural considerations into the 
final design and final product. This brings the 
entire structural design process to the material 
level in the purest sense, thereby increasing the 
number of possible material configurations for 
specific design applications. 

The potential benefits that may be derived 
from functionally graded composites have led to 
increased activities in the areas of processing 
and materials science of these materials. How- 
ever, in order to develop a component made of 
FGM it is necessary to model such a component 
and investigate its required properties. Thus, an 
accurate modeling of the FGM is essential to its 

29 
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development. There are presently two 
approaches for the modeling of FGM. 

The first is based on a homogenization of the 
FGM in which the microstructural effects are 
decoupled from the global response by calculat- 
ing pointwise effective thermoelastic properties 
without regard as to whether the actual 
microstructure admits the presence of a repre- 
sentative volume element (RVE), and 
subsequently using these properties in the 
global analysis of the heterogeneous material. 
In the second approach the coupling between 
the microstructural and the global macrostruc- 
tural effects is accounted for. 

Recent special issues edited by Pindera et al. 
[1-3], and by Needleman and Suresh [4] have 
been devoted to various topics dealing with the 
mechanics and material aspects of multiphased 
and functionally graded composites. A review 
paper that summarizes a higher order theory for 
functionally graded composites which explicitly 
couples the microstructural details with 
material's macrostructure has been presented 
by Pindera et al. [5]. 

The concept of FGM can also be utilized for 
the management of a material's microstructure 
so that the buckling behavior of a structure 
made of this material can be improved. In this 
investigation the idea of tailoring the micro- 
structure of a composite material for the 
purpose of improving the buckling behavior of a 
plate is pursued. It is supposed that the 
gradients of material properties throughout the 
structure are produced by changing the local 
reinforcement volume fraction vf over the plan- 
form and/or through the thickness of the plate. 

To determine the buckling load of a plate for 
a given spatial distribution of reinforcement 
volume fraction v/(x, y, z), the proposed micro- 
to-macro approach [6,7] is further extended to 
include the buckling analysis of functionally 
graded plates. The micromechanical analysis 
performed in the present study relies on the 
RVE-based version of the method of cells [8]. 
As a result, a buckling criterion incorporating 
the effective constitutive behavior at every point 
of the plate, is obtained. This criterion allows 
one to calculate the critical buckling load R? 
for a given function \f(x, y, z). 

Consequently, for a greater buckling resist- 
ance of a FGM plate the function R^r(vf) should 
be maximized. This leads to an optimal spatial 
distribution Vj(x,y,z) of the reinforcement phase. 

To illustrate the proposed approach, results 
are presented for both short- and long-fiber 
SiC/Al unidirectional plates, with reinforce- 
ments nonuniformly distributed in the x-, y-, or 
z-directions. The effects of length-to-width and 
length-to-thickness ratios and different types of 
boundary conditions are studied. Substantial 
buckling load improvements, as compared to 
the corresponding uniformly reinforced plate, 
are shown. 

THEORETICAL FORMULATION 

An elastic, midplane symmetric, functionally 
graded rectangular composite plate, subjected 
to an in-plane compressive loading, is con- 
sidered. The structure is reinforced by either 
long fibers or discontinuous ones, with the rein- 
forcements volume fraction vf being a function 
of the spatial coordinates x, y, z. The coordi- 
nates x and y define the plane of the plate, and 
z-axis is oriented in the thickness direction. The 
nondimensional coordinates £=x/a, r]=y/b, 
C = z/h, and the aspect ratio of the plate X = alb 
are introduced, where a, b and h represent the 
plate's length, width, and thickness, respectively. 

Governing equations to bifurcational buckling 
of a nonhomogeneous plate 

In the present study, the buckling behavior of a 
nonhomogeneous plate is described in terms of 
the stress function d> and the out-of-plane dis- 
placement w, in the framework of the classical 
plate theory. The corresponding system of 
governing equations may be obtained elsewhere 
[9] 

+ X\DX2wM +X2D22w^ + 2Wi6w^)m 

+ 2A(D16wiK + ^2V,W + 2AD66w,{,)t{f, 

- ^2(<E\ ww K - 20enw<in +0,Kwtf,„) = 0      (1) 

+ {k2At2^,m+A^M-XA^^\ii 

-X{k2A\S>,nn +A^ii~XAt6^inhn = 0 
(2) 

Here A* and D are the stiffness matrices which 
are given, for example, by Whitney [10]. 

Further, the behavior of simply supported 
(SS) and clamped (C) plates subjected to com- 
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pressive edge displacements A,, in the 
x-direction will be analyzed. Depending on the 
in-plane boundary conditions at the edges n = 0, 
1, two cases are considered, namely: the edges 
r\ = 0, 1 are immovable in the v-direction (SS1- 
and Cl-cases); the edges Y\ = 0, 1 are unloaded 
(SS2- and C2-cases). In all instances, the in- 
plane displacements at the edges are 
unrestricted in tangential direction. 

Introducing the average edge shortenings in 
both in-plane directions 

A = 

-r. 
[w(l, rj)-u(0, rj)]dri; 

[v(£,l)-v(£,0)]d£ 

(where u and v are the in-plane displacements), 
and using the expressions for Äx, Äy in terms of O, 
w, given in an earlier paper [7], the boundary 
conditions may be formulated as follows: 

SSI at £ = 0, 1: ®jn = w = Mii = 0; 

- f \\x2Al1®tm+Ai2®M)dZdri = Äx 
a Jo Jo 

where Maß (a, ß = £, r\) are the moment resul- 
tants. 

To fulfill the buckling analysis of a FGM plate, 
one needs to determine the constitutive behavior 
at every point of the structure, so that the stiff- 
nesses involved in eqns (l)-(3) can be calculated. 
The required constitutive law can be obtained by 
a suitable micromechanical approach. In the 
present work, the micromechanical analysis per- 
formed relies on the RVE-based method of cells 
[8]. That is, at every point (x, y, z) of the plate this 
micromechanical method is employed, using the 
values of material properties of fiber and matrix 
phases, as well as the reinforcement volume frac- 
tion at that point vf(x, y, z). This enables one to 
establish the effective constitutive law of a func- 
tionally graded composite in the form 

a(x, y, z) = C(x, y, z)s(x, y, z) 

where a and s are stress and strain tensors, and C 
represents the effective stiffness tensor. 

Determination of the critical buckling load 

An approximate solution to the above-formu- 
lated problem is sought in the form 

att] = 0, 1: ®en = w = Mm = 0; 

{X2At2®m+A2\®M)d!;dn = Q 

SS2 at £ = 0, 1: <$>? = w = M„ = 0; 

a Jo J o 
(Al41*1*w+^[1*2<l),«)d^di/ = AI 

at »j = 0, l:<D^ = ^ = w = Mw = 0 

Cl at £ = 0, l:Oi=w = w, = 0; 

1 

a   J 
(^f1ofW+^1*2o«)dfdi/ = 4 

at r\ = 0, 1: $ ^ = w = w n = 0; 

fj Jo J 
(X2At2%tl+A^^)d^drj = 0 

C2 at £ = 0, 1: ® {lJ = w = w4 = 0; 

n n {k2At&,m +A*l2®ii)d£dt1 = kx 
a   jo Jo 

at rj = 0, 1: $ ^ = $ ^ = w = w „ = 0 (3) 

®(Z,ri)=-—Rr — 
a 

J2 
rj_ 

2 
-Ä 

e 

+   £   %FpqXpa)Xq{n) 
p=l  q=\ 

M      N 

w(£, n) =   Z   X Wmn sin n ml; sin nnn 
m=1n=1 

(for SS-cases) 

M      N 

w{in)= x  zwmnxm(Oxn(n) 
m—1n=1 

(for C-cases) (4) 

where X((i = 1, 2, ...) are beam eigenfunctions 
satisfying boundary conditions Xi(0) = Xi(l) 
= x;<0) = X'Xl) = 0. It can be readily seen that 
one needs to determine the coefficients of the 
series (4), and the values of Rx, Ry (having the 
meanings of normal in-plane loads at the edges 
x = 0, a andy = 0, b). 

To calculate the coefficients Fpq, Wmn, the 
series (4) are substituted into the governing 
eqns (1) and (2), and the Galerkin procedure is 
employed. The compatibility equation (2) is 
multiplied by Xr(^)Xs(rj) and integrated over the 
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plate surface. Equation (1) is multiplied by 
sin id£, sin iqr\ for SS-cases or by X^yx^rj) for 
C-cases and integrated over the plate surface as 
well. For SS-cases, to account for the boundary 
conditions on the bending moments, boundary 
integrals are included in the formulation of the 
Galerkin equations (see Whitney [10] for 
details). As a result, the following equations are 
obtained 

X X S™pqF   = RxS2x + RySZ x^ 2x ~l y^ 1y 

(5) 

p  q 

(r=\,...,P,s=l,...,Q) 

x x srnwmn+ x x x x sTnpqw mnF f m   n m   n    p    q 

+ xii(Rxs
iir+Rys

ii;m)wmn=o 

(i=l,...,M,j=l,...,N) (6) 

The coefficients Sr{pq,..., S^n, which are analo- 
gous to those given in an earlier paper [9] 
involve surface integrals from different ele- 
ments of stiffness matrices A* and D, multiplied 
by the beam or trigonometric functions. 

To determine the values of Rx, Ry, the 
approximation (4) for the stress function is sub- 
stituted into the boundary conditions (2) for the 
edge shortenings. This yields 

SI, Cl 

R, A*nd^drj + Ry A&d&ri 
o 

a a     PI 
(7) 

R, A*2d^drj + Ry 

V?V>& 

A%2d£dri 

S2, 
Rr 

li/^S»i 

Af&dr, 
o j 

—+ — 22f„Sg;Ä, = 0 
a a    PI 

For all the boundary conditions considered, the 
solution to (7) may be written as 

^ = eiA+XX^Fw; 

R = elvÄx+XX^Fr (8) 

From substitution of relationships (8) into eqn (5) 
it is possible to get Fpq in the form 

■* pq     *r pq^x (9) 

Finally, substituting (8) and (9) into eqn (6), one 
obtains 

xx(sr"-ÄxQrn)wmn = o 
m   n 

(i = l,...,M,j = l,...,N) 

where 

(10) 

Qjmn = e^sir+e^r+zzt^w 
p  <? 

+ e£S'ir + e%S%?n) 

From eqn (10), the buckling criterion is readily 
obtained 

det[ß71S3-Ä;c/] = 0 (11) 

where / is an identity matrix. 
The buckling criterion (11) enables one to cal- 

culate the critical buckling displacement Kc
x (as 

the minimal eigenvalue of the matrix Q~ 1S3) and, 
according to (8), to obtain the critical buckling 
load Rx

r for a given reinforcement volume fraction 
v/(£, n, 0- 

Optimal reinforcement distributions 

For greater buckling resistance of a FGM plate, 
the functional Rc

x(vf) should be maximized. In 
the present work, this is achieved as follows. 
Function vf is expanded into the Legendre poly- 
nomials 

v/^,0 = io .£ Jo v^oPjWPktcx^) 

with Vijk being unknown coefficients to be 
determined. This allows one to represent the 
buckling load as R°x

r = Rc
x
r(Vijk). It is further 

required that the total amount of reinforce- 
ments (namely the plate weight) remains a 
given constant 

( = 0  j 

n/2 

n = o (= -1/2 
v^dffdC = v/= const    (13) 
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Thereafter the objective function Rxr(Vijk) is maxi- 
mized, with ViJk being a set of design variables 
subject to the above constraint (13). Two addi- 
tional constraints stem from the following 
requirements on the volume fraction v^: vf > 0, 
v/<l. 

Once an optimal set of design variables has 
been obtained, the corresponding optimal distri- 
bution Vfpt of the reinforcement phase is easily 
calculated from (14). The described procedure 
should be repeated for different numbers of terms 
retained in the series (4) and (14) to ensure the 
convergence of the proposed procedure. 

Considering in more detail the affect of the 
plate thickness on the buckling behavior, it may 
be shown that, for symmetrically laminated non- 
homogeneous plates with the same aspect ratio 
X, the same reinforcement distribution vf(£, rj, 
0, and subjected to the same boundary condi- 
tions, the following relationship holds 

Ri1)cr/R?)cr = h3M (14) 

where R^cr is the critical buckling load for a 
plate of thickness hx, and R^)cr is the critical 
buckling load for a plate of thickness h2. From 
(15) follows, in particular, that the above-men- 
tioned plates will possess the same optimal 
volume fraction distribution v°pt(£, % Q. 

RESULTS AND DISCUSSION 

To illustrate the proposed approach, consider 
SiC/Al unidirectional plates with reinforcements 
oriented in the x-direction. Results are pre- 
sented for the temperature T = 100°C, at which 
the material properties are taken as follows: for 
SiC fibers, Young's modulus E = 414 GPa, and 
Poisson's ratio v = 0.3; for the aluminum matrix 
(2024-T4 alloy), E = 70.5 GPa, and v = 0.33. It 
is assumed that SiC reinforcements comprise 
30% of the plate volume, i.e. v* = 0.3. As an 
initial guess (which is needed to start an optimi- 
zation procedure) assume that a plate is 
uniformly reinforced, that is vf(£, n, 
Q = V/* = 0.3. 

For the purpose of estimation the effect of a 
functionally graded plate, introduce a ratio 7?°p7 
Rh

x
om, where R°x

pt and R^om stand for the critical 
buckling loads for a functionally graded plate 
with optimal distribution v^pt(£, n, 0 and for its 
homogeneous counterpart, respectively. Fur- 
thermore, three examples of tailoring the 
distribution of reinforcement phase are con- 

sidered; for each of them one of the coordinate 
directions is chosen as a functionally graded 
one. 

Short-fiber plate with reinforcements 
nonuniformly distributed in the x-direction 

Consider a SiC/Al plate reinforced by short SiC 
fibers oriented in the x-direction, with the 
fibers' aspect ratio equal to 7. The fibers' distri- 
bution is nonuniform only in the x-direction, 
such that \f = vf(x). 

In Fig. 1(a), optimal distributions of a SiC 
phase along the x-axis are exhibited for a rect- 
angular plate subjected to different types of 
boundary conditions. Due to the symmetry of 
the problem, here and further only a half of a 
functionally graded coordinate axis is shown. It 
may be seen that the distributions \°/\xla) are 
dissimilar for simply supported and clamped 

Vf=vf(x) 

VfOPt 
1 

0.8 

bound. cond. C1 

X.=0.5 .1.5           / 

A/ 
,3.0 

■"»—/i*— 

I 

I 

0.6 

0.4 

0.2 

0.1       0.2      0.3      0.4x/a0.5 
(b) 

Fig. 1. Optimal reinforcement volume fraction distribu- 
tions along the x-axis for short-fiber functionally graded 
plates (the fibers are oriented in the x-direction, fiber 
aspect ratio = 7), (a) for various types of boundary condi- 

tions, (b) for several values of aspect ratio X. 
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1.5 

Rx
opt/Rx

hom 

0.5 

Vf = Vf(x) 

1 

1 
fc= 0.5 

\  
1.0      1.5 3.0     h= 0.5 

 / V_ 
1.0      1.5      3.0 

bound, cond. SS1 bound, cond. C1 
Fig. 2. Buckling load improvements for short-fiber functionally graded plates (the fibers are oriented in the ^-direction, 

fiber aspect ratio = 7); the fibers are non-uniformly distributed in the ^-direction. 

plates. Moreover, a beneficial effect of a non- 
homogeneous reinforcement is quite different 
as well: for the boundary conditions SSI and 
SS2 R°pt/R*om= 1.11, while for Cl- and C2-cases 
R°pt/Rh

x
om = 1.35 and 1.42, respectively. 

The effect of the plate aspect ratio X is illus- 
trated in Fig. 1(b) for a clamped structure 
(boundary condition Cl). As is apparent from 
the graphs, the optimal distribution of a rein- 
forcement phase is strongly affected by the 
value of the length-to-width ratio. Notice that 
the improvements in the buckling load also 

Vf=vf(y) 
1 

pt bound, cond. C1 

0.8 
1.0      // 

0.6 
V     \    3.0                     / / 

0.4 -A        \          X=0.5          / /   / 

0.2 

0 ^Cy;     -——►■—       i           i 

0.1 0.2      0.3 0-4y/b0.5 

Fig. 3. Optimal reinforcement volume fraction distribu- 
tions along the y-axis for long-fiber functionally graded 
plates (the fibers are oriented in the x-direction), for 

several values of aspect ratio X. 

depend essentially on alb: R^pt/R*om = 1.24, 
1.35, 1.23, 1.17, and 1.16 for X = 0.5, 1.0, 1.5, 
2.0, and 3.0, respectively. These results indicate 
that for the cases considered the maximum 
advantage over a uniform reinforcement may be 
achieved for a clamped rectangular plate. 

An additional insight into the buckling load 
improvements that may be attained for the case 
considered is provided by Fig. 2 where the 
histograms of R°pt/R*om are presented for two 
types of the out-of-plane boundary conditions 
and for several values of X. 

Long-fiber plate with fibers nonuniformly 
distributed in the v-direction 

Consider a long-fiber SiC/Al plate such that the 
fibers are oriented along the x-axis and the 
spacings between them (in the y-direction) are 
not equal; i.e. v/ = v/(y). 

Regarding the influence of different bound- 
ary conditions on the buckling behavior of 
functionally graded plates, similar trends are 
observed, as compared to the above considered 
case of short-fiber plates with vf = vf(x). That is, 
the optimal volume fraction distributions and 
the corresponding buckling loads for simply 
supported and clamped plates differ signifi- 
cantly. For rectangular plates, R^pt/R^om = 1.09, 
1.13, 1.23, and 1.27 for SSI-, SS2-, Cl-, and C2- 
boundary  conditions,   respectively.   Examining 
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vf=vf(z) 

0        0.1       0.2       0.3      0.42/h0.5 

(a) 

Fig. 4. Optimal reinforcement volume fraction distribu- 
tions through the thickness for long-fiber functionally 
graded plates (the fibers are oriented in the x-direction), 
(a) for two types of simply supported boundary condi- 
tions, (b) for a clamped plate and several values of aspect 

ratio X. 

the effect of plate's aspect ratio, it should be 
pointed out, that, as indicated in Fig. 3, the 
optimal distributions v°/\n) may differ greatly 
from each other for various values of alb. The 
improvements in the buckling loads, corre- 
sponding to the graphs shown in the figure, are 
as follows: R^pt/Rh

x
om = 1.19, 1.23, 1.12 and 1.09 

for X = 0.5,1.0,1.5 and 3.0, respectively. 

Long-fiber plate with fibers nonuniformly 
distributed through the thickness 

Consider a long-fiber SiC/Al plate such that the 
fibers are oriented along the x-axis and non- 
uniformly distributed in the direction normal to 
the midsurface, so that vf—wf(z). 

It turns out that in this case, for all the 
boundary conditions and aspect ratios con- 
sidered, the optimal volume fraction 
distributions v°pt(() are quite similar and, more- 
over, particularly high values of E^pt/R^om may 
be obtained. This is illustrated in Fig. 4(a), 
where the optimal reinforcement distributions 
through the thickness are shown for a rectangu- 
lar plate subjected to the two types of simply 
supported boundary conditions, and in Fig. 
4(b), where results are presented for clamped 
plates with different aspect ratios X. As viewed 
in Fig. 4, matrix-rich regions next to the middle- 
plane are observed, which occupy about 50% of 
the plate thickness. In the vicinity of the plate 
surfaces, fiber clustering takes place. 

The buckling load improvements correspond- 
ing to the graphs presented in Fig. 4(a) are as 
follows: R°pt/R*om = 1-95 and 2.02 for rectangu- 

2  - 

FLop,/R¥
hom 

Vf=vf(z) 

1 
i 

h= 0.5 
\  

1.0      1.5 

bound, cond. SS1 

3.0     h= 0.5 
 /       v_ 

1.0       1.5      3.0 

bound, cond. C1 
Fig. 5. Buckling load improvements for long-fiber functionally graded plates (the fibers are oriented in the jc-direction); the 

fibers are nonuniformly distributed in the thickness direction. 
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lar plates subjected to SSI- and SS2-boundary 
conditions, respectively. The beneficial effect of 
a nonhomogeneous reinforcement for various 
values of the aspect ratio X is shown in Fig. 5, 
both for simply supported and clamped func- 
tionally graded structures. 
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The objective of this paper is to present a new 81-degrees-of-freedom finite 
element for geometrically and materially linear elastic multilayered 
composite, moderately thick plates. The element is a six nodes C1 triangular 
element based on a new kind of kinematics and built from Argyris 
interpolation for bending, and Ganev interpolation for membrane 
displacements and transverse shear rotations. The kinematics allow both, 
the continuity conditions for displacements and transverse shear stresses at 
the interfaces between layers of a laminated structure, and the boundary 
conditions at the upper and lower surfaces of the plates, to be exactly 
ensured. The representation of the transverse shear strains by cosine 
functions allows one to avoid shear correction factors. The element 
performances are evaluated on some standard plate tests and also in 
comparison with an exact three-dimensional solution for multilayered plates 
both for statics and dynamics. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The aim of this work is to analyse the mechani- 
cal behaviour of multilayered structures by plate 
finite elements including transverse shear 
effects and continuity requirements between 
layers in order to predict displacements and 
stresses of such structures for design applica- 
tions. Many of the existing analysis methods for 
multilayered anisotropic plates are direct exten- 
sions of those developed earlier for 
homogeneous isotropic and orthotropic plates, 
see Noor [1]. In fact, many approaches utilize a 
displacement field which does not account for 
the contact requirement at the interfaces of 
multilayered structure. A synthesis is given in 
Ref. [2]. A finite element of triangular shape 
has been proposed by Di Sciuva [3] based on a 
third-order refined shear deformation theory 
satisfying interlaminar continuity. In this work, 
piecewise linear functions are introduced using 
the Heaviside operator. 

We present a new C1 plate finite element 
based on a refined kinematic model, see Tour- 
atier [4], incorporating: 

(1) the transverse shear strains with cosine 
distributions, 

(2) the continuity conditions between layers 
of the laminate for both displacements 
and transverse shear stresses, 

(3) the satisfaction of the boundary condi- 
tions at the top and bottom surfaces of 
the plates, without shear correction 
factors, using five independent general- 
ized displacements (three translations 
and two rotations). 

The element is of triangular shape and the 
generalized displacements are approximated by 
higher-order polynomials based on: 

(i) Argyris [5] interpolation for the trans- 
verse normal displacement, 
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(ii) Ganev [6] interpolation for the mem- 
brane displacements and for the 
transverse shear rotations. 

Finally, some tests in linear statics and 
dynamics have been achieved, and show that 
the element has a good behaviour and gives 
with only a few elements accurated computa- 
tions for displacements and stresses compared 
to the exact three-dimensional solutions for 
multilayered plates. 

+ amy%xi,x2,t) 

°23 V*-l5 X2i Zt V 

=   fef/'OO-  ^ W(*)) + «#Wl,*2,0 

THE DISPLACEMENT FIELD FOR 
LAMINATED PLATES 

Let (xi, x2, x3 = z) denote the Cartesian co- 
ordinates such that xx and x2 are in the 
midplane (z = 0) of the plate, while z is the 
transverse normal co-ordinate. We denote by 
ufk) (xu x2, z), i s {1, 2, 3} the Cartesian compo- 
nents of the displacement field for the kth layer 
of a multilayered plate, and we suppose that the 
transverse normal strain denoted by e33 is negli- 
gible, according to the moderately thick plate 
hypothesis. Since the material behaviour is lin- 
early elastic and that this work is limited to 
small disturbances (small displacements), strains 
and stresses are classically denoted by eJP and 
uij  • 

In order to prescribe: 

(1) cosine distribution across the thickness 
for transverse shear stresses, 

(2) boundary conditions on the upper and 
lower faces of the plates for transverse 
shear stresses, 

(3) interlayer continuity for displacements 
and transverse shear stresses, 

we assume in the kth layer [7]: 

G\3 (X1>X2> Zi 0 

= [cg[f'(z)- -b55f"(z))+ «g>W1Ä,0 
\      \ n II 

+ |cf5)|/'(z)-^44/"(z)J 

+ \C$\f'{z)- ^b44f"(z)\ + a^\f2{x^2,t) 

(1) 

In these equations f(z) = h/n sin nz/h and 
f'(z) = d/(z)/dz; h is the thickness of the plate; 
y° and y2_ are the transverse shear strains 
at z = 0; CJP are the moduli of the material for 
the kth layer taking into account of the zero 
transverse normal stress hypothesis. The con- 
stitutive law is expressed as 

[<7(*>] = [C(/£)][£(A:)] (2) 

with 

\\^ij    — \^ij      i_/3 \^p /i_33 

for I,; = l,2,6Cf = Cf 

for/, 7 = 4,5 

In eqn (2), C\P are the three-dimensional mod- 
uli of the material for the kth layer, and eqns 
(1) and (2) account for layers having ortho- 
tropic axes oriented at various angles with 
respect to the plate axes. 

Otherwise, e33 = 0 allows one to put down 
M3      C^l» X2i Z> 0   =   ^3(*1> X2i Z> 0   =   V3KXl^i X2> 0* 
Then, from strain definitions we have for the 
transverse shear strains 

2E/J3 V*l> X2I 
Z

I 0 

= v3(xu x2, t)e + uf\xx, x2, z, 0,3 (3) 

From (2), the transverse shear strains may also 
be written under the following form 

2«g> = Sg>o# + S®o% (4) 

Zfc23     —   ^45 °13   T °44 °23 

where [S(A°] = [C(/c)]_1 are the material com- 
pliances. 
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Substituting (1) into (4), then equating (3) 
and (4), and performing an integration with 
respect to the z co-ordinate, it follows 

{«<*> = v,-zvxl + (/•  + gf))(v3>1 + 00 

= v2-zv3a + g?\v3A + 00 

+ (/2+^))(V3>2 + 02)"3=   V3 (5) 

where in-plane displacements va have been 
introduced and where functions /,, f2, gf\ ..., 
gf^ are immediately deduced from eqn (1) and 
the above integration performed with respect to 
the z co-ordinate. Other coefficients (by, 
a\p,...) are determined from the boundary con- 
ditions on the top and bottom surfaces of the 
plate, and from the continuity requirements at 
the layer interfaces for displacements and stres- 
ses, see Beakou and Touratier [7]. Hereafter, 
the superscript (k) for u(^ components is 
deleted in order to simplify the finite element 
description of the model. 

THE TRIANGULAR SIX NODE FINITE 
ELEMENT FOR SEMI-THICK LAMINATES 

The finite element construction is now briefly 
described. Based for example on the principle 
of virtual powers, the discrete formulation of 
the boundary value problem in linear elasticity 
is classically deduced from the following func- 
tion: 

("*h    -**h\ 

(6) 

where U^e is the triangulation of the multi- 
layered structure and [JCe is the edge of the 
meshed structure. In addition, uh is the finite 
element approximation of the displacement 
field ü given above by eqn (5) and uh is the 
finite element approximation of the correspond- 
ing virtual velocity field ü*. Linear functions / 
and F represent the body (including inertia 
terms) and surface external loads, actually sur- 
face and line loads respectively due to the 
integration performed throughout the thickness 
in eqn (6). The superscript h introduced in eqn 
(6) indicates the finite element approximation. 
Then, it is also used for finite element approxi- 
mation of the generalized displacements in (5), 
denoted by vf and 0^ where / = 1, 2, 3 and 
a = 1, 2. Thus, the finite element approxima- 

tion of functions vt and 0a are briefly indicated 
hereafter. 

The elementary stiffness matrix is obtained by 
computing the bilinear form given in (6) at the 
elementary level as 

«0\ö**)a = \oXElh]T[Ae][Ehe)^ (7) 
where [Ae] is the material behaviour matrix for 
a multilayered finite element resulting of the 
integration with respect to the thickness co- 
ordinate, and [E'l] is the following vector 

[Eh
e]
T = [v?X2 : vlA,2 ; AAAM^VAM 

I #101,1 tfl ,2 : 0202,102,2] \p) 

The matrix [E*e
h] is defined by an analogous 

expression introducing the superscript *. The 
form given by (8) for the vector [££] may be 
seen as the vector of generalized strains for the 
proposed model. So, we must now explicit the 
interpolation for each approximated generalized 
displacement and its derivatives appearing in 
(8). In Fig. 1 (from Bernadou [8]) local degrees 
of freedom for the interpolation of the v^ func- 
tion are given, and Argyris interpolation for v^ 
obtained from this set of degrees of freedom is 
P5. In the same way, Fig. 2 (from Bernadou [8]) 
gives the set of local degrees of freedom for the 
other generalized displacements v£ and ßh

a. 
Ganev interpolation constructs from this set is 
P4. In this two figures, derivative degrees of 
freedom are local because they are expressed 
with respect to the directions associated with 
the edges of the triangle. 

So, the discrete form of the vector [E^] can 
be written as 

PK= P5(K); dim PK = 21; 

ZK = {p(a,.), D/>(ö)(a,_ra,), Dp(a,.)(a,.+ |-a,.),   1 < / < 3; 
D2p(a^(aj+raH)2,   1 < ij < 3;  Dp^Xa.-c.),   l</<3} 

Fig. 1. Set 1,K of the local degrees for freedom of a 
function p for Argyris triangle. 
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PK= PA(K); dimPK= 15; 

Dp{al)(.ai+rai), p(bt), Dp(b^arc.),   1 < i < 3} 

Fig. 2. Set Z^ of the local degrees for freedom of a 
function p for Ganev triangle. 

m = [m,][De]\Qe] (9) 

where [Qe] is the vector of degrees of freedom 
in global co-ordinates, [De] is a transformation 
matrix between local and global co-ordinates 
taking account of local derivative degrees of 
freedom. Finally, in eqn (9) the matrix product 
[A] [Te] gives interpolations for each component 
of the vector [E*] in terms of all barycentric 
monomial terms for the matrix [A] and constant 
coefficients for the matrix [Te]. 

Then, it is evident from (7) and (9) that the 
stiffness matrix is obtained as 

[Ke] = LXDe]T[Te]
T[A]T[Ae][A][Te][De]dQe 

(10) 

The elementary mass matrix [Me] is given after 
an integration with respect to the thickness as 
follow 

U^Tta^a = [Q:]T[Me][Qe]    (ii) 

where [Ie] is the inertia matrix, (") = d2()/dt2, t 
is the time; [l%] is the vector of generalized 
displacements deduced from eqn (5) and given 
by 

[üiY = [AAAAAA^ (12) 

Finally, [U*e
h] is the vector of generalized virtual 

velocity consistently associated to (12). 
Load vector construction does not need to be 

presented here as it is classic. The elementary 
matrices are integrated using a 16 point integra- 
tion rule which integrates exactly eight order 
polynomials, see Dunavant [9]. 

NUMERICAL EVALUATION OF THE 
ELEMENT 

Basic tests 
Firstly, standard basic tests for plate elements 
have been considered: 

(1) rank deficiency, 
(2) shear locking, 
(3) mesh orientation sensitivity, 
(4) convergence properties. 

For all these classical tests, the new finite 
element exhibits a very good behaviour: 

(1) six zero eigenvalues, 
(2) no shear locking when the plate becomes 

thin and very thin, 
(3) no sensitivity to mesh orientation with 

few elements, 
(4) very good convergence properties. 

In addition, two kind of models have been 
tested: 

(i) laminated SINUS model including inter- 
layer continuity given by (5), denoted 
SIN CONT, 

(ii) laminated SINUS model without inter- 
layer continuity deduced from (5) with 
g, = 0, ie{l, 2, 3, 4} and/, = f2 = f, 
denoted SIN. 

Static problem 

The Srinivas' problem [10] is considered to 
evaluate the performances of the element to 
compute deflection and stresses for a thick 
three-layered plate. The plate is simply sup- 
ported (B.C: SA-1 on all its edges) and 
submitted to a transverse normal uniform load 
(h = —LSI). The material properties of the 
three-layered (sandwich) square plate are given 
in Ref. [10] and the skin by core ratio is ß = 15 
while geometric characteristics of the plate are: 

(1) length of the side a = 10 SI, 
(2) total thickness e = 10 SI, 
(3) thickness of the skin (symmetric plate) 

es = 0.1 SI, 
(4) thickness of the core ec = 0.8 SI. 

Table 1 shows results deduced from the pro- 
posed triangular finite element associated with 
the two models denoted SIN CONT and SIN. It 
is clear for deflection and stresses that the inter- 
layer continuity model SIN CONT is the best 
model and gives very accurate results in com- 



A new laminated triangular finite element 41 

Table 1. Deflections and stresses for an orthotropic sandwich plate under an uniform load 

Value for N = 4                                                    Ref. value [10]                             SIN CONT SIN 

Vjßx\Jp0                                                                    121.72                                        121.88 115.46 

o-n/jPo 
Top skin at top surface 
Top skin at interface 
Core at upper interface 
Core at lower interface 
Bottom skin at interface 
Bottom skin at bottom surface 

66.787 
48.299 

3.2379 
-3.2009 
-48.028 
-66.513 

66.742 
48.215 

3.2143 
-3.2143 

-48.215 
-66.742 

66.891 
50.060 

3.3373 
-3.3373 

-50.060 
-66.891 

GzdPo 
Top skin at top surface 
Top skin at interface 
Core at upper interface 
Core at lower interface 
Bottom skin at interface 
Bottom skin at bottom surface 

46.424 
34.955 
2.4941 

-2.3476 
-35.353 
-46.821 

46.581 
35.109 

2.3406 
-2.3406 
-35.109 
-46.581 

45.721 
35.148 

2.3432 
-2.3432 

-35.148 
-45.721 

<r13/po 
Top skin at top surface 
Top skin at interface 
Core at upper interface 
At mid surface 
Core at lower interface 
Bottom skin at interface 
Bottom skin at bottom surface 

0.0000 
3.9559 
3.9559 
3.9638 
3.5768 
3.5768 
0.0000 

0.0000 
3.5542 
3.5542 
4.0841 
3.5542 
3.5542 
0.0000 

0.0000 
19.390 

1.2927 
4.1832 
1.2927 

19.390 
0.0000 

parison with the exact three-dimensional 
elasticity solution. Computations in the Table 1 
have been achieve using a N = 4 mesh shown 
in the Fig. 3. This is sufficient to reach the 
convergence of stresses even for the transverse 
shear stresses, and therefore for the deflection, 
see Fig. 5. Actually, convergence properties for 
deflection is reached only with N = 1 mesh, see 
Fig. 4. 

plate 10 SI x 10 SI ; thickness e = 1 SI 

3 layers : skin thickness e = 0.1 SI 

i x2                      core thickness e = 0.8 SI 

material skin by core ratio ß — 15 

uniform transverse load : f3 = —1. SI 

SYM. or ANTISYM. 
CONDITIONS 

x2 = a/2   ,^-~-—'           / 

SA-l 
FREE 

Xi = a/4 

x2 = 0 Xi 

SA-l 

/ / 

/ 
JV = 1 N = 2 N = 4 

Fig. 4. Meshes used for convergence tests. 

ä_22... 

an com 

is^^m- 

7*"5trr 

sin com: 

o 22 
sin 

q_13 

a 13 
-corse- 

dof 

Fig. 3. Numerical test configuration for the sandwich plate 

0       200     400      600      800     1000   1200    1400    1600 

Fig. 5. Convergence test for displacement and stresses in a 
sandwich plate (a/c = 10) under and uniform normal tran- 

verse load: SA-l SA-l. 
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Fig. 6. Thickness distribution of on at the center point 
(a/2, a/2,x,); SA-1-SA-1. 
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9. Distribution of ou with respect to jtj (lines (xlt 
x2-e/2)); FREE SA-1. 

x_3 
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0.2 

-0.2 

-0.4 
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 ref. value 
-*— sin cont. 
-9—sin 

-40 -20 0 20-40 

Fig. 7. Thickness distribution of a22 at the center point 
(a/2, a/2, *3); SA-1-SA-1. 

o 6—0—0—$i—0—0-*^—o—0—0—0—o—0—0—0—0-^4 x—1 
0 1.25 2.5 3.75 5 

Fig. 10. Distribution of a12 with respect to xx (lines (xu 
x2-e/2)); FREE-SA-1. 

0.2 

-0.2 

-0.4 

-20 

a 13 
 ref. value 
-*— sin cont. 
-e—sin 

-15 -10 

Fig. 8. Thickness distribution of a13 at the middle point 
(0, a/2, x3) of the free side; SA-1 -SA-1. 
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o_13 
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x_2 = a/4 
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-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6     I ' ' J—J ' ■ 1 ' • ' ■ ■ : : 1      X_1 
0 1.25 2.5 3.75 5 

Fig. 11. Distribution of 0-13 with respect to*] (lines (xu x2, 
0)); FREE SA-1. 
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o < »000 
oJ3 

—< 

x_2 = a/2 

>    0    0—*—< »0000 

^ 
-t j-s-*-61^ 

x_2 = a/4 

{ 
^ ^ 

[ ^r•"" 
\ 

x_2 = 0 

n ( x_1 
0 1.25 2.5 3.75 5 

Fig. 12. Distribution of (x23 with respect to x1 (lines (x1; x2, 
0)); FREE-SA-1. 

Distributions of stresses throughout the thick- 
ness at the center of the sandwich plate are 
given: 

(1) Fig. 6 for the stress component axl, 
(2) Fig. 7 for the stress component a22- 

Fig. 7 shows the distribution of the transverse 
shear stress er13 throughout the thickness at the 
station (0, a/2) of the sandwich plate, see also 
Fig. 3. 

Free edge effects 

The problem considered is still the above 
square plate submitted to an uniform normal 
transverse load. Only boundary conditions are 
removed in order to analyze the effect of a free 
edge in statics, using the interlayer continuity 
SIN CONT model. Results are shown in Figs 
9-12. The boundary conditions are: SA-1 for 
edges x2 = 0 and a, FREE for edges xx = 0 
and a, see Fig. 3. 

Dynamics problem 

The above sandwich square plate is studied in 
dynamics for free vibrations in the case of all 
simply  supported  edges  (SA-1).  Results  are 

given in Table 2 for the models SIN CONT and 
SIN, and for different meshes in comparison 
with the three-dimensional solution. [10]. 

FINAL REMARKS 

In this paper a new six node multilayered tri- 
angular finite element has been presented to 
analyze the behaviour of composite laminates. 
The novelty in this work is the use of a refined 
shear deformation theory including interlaminar 
continuity, both for displacements and trans- 
verse shear stresses, and satisfying exactly the 
boundary conditions at the top and bottom sur- 
faces of a multilayered plate structure. In 
addition, the way to interpolate the generalized 
displacements using higher-order polynomials 
of C1 continuity assures the field compatibility 
for membrane and transverse shear strains. Due 
to the C1 continuity, it may be notice that all 
stresses are continuous at the corner nodes of 
two adjacent elements. 

The element has good properties in the field 
of finite elements, and gives very good results 
compared to the exact three-dimensional elas- 
ticity solution for a sandwich plate. 

Actual and future works are pointed toward 
edge effect sensitivity for this type of two- 
dimensional refined model, and buckling 
analysis. 
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It is known that the presence of cracks in composite structures introduces 
local flexibility associated with the changes in the dynamic characteristics of 
composite structures. However the nature and variations of the natural 
frequencies due to the presence of cracks, are still under discussion and 
analysis. 

The present work introduces an attempt to study the variations in the 
eigen-nature of cracked composite beams due to different crack depths and 
locations. A numerical and experimental investigation has been made. The 
numerical finite element technique is utilized to compute the eigen pairs of 
laminated composite beams through several state of cracks. The model is 
based on elastic-plastic fracture mechanics techniques in order to consider 
the crack tip plasticity in the analysis. A finite element model has been 
developed to formulate the stiffness matrices for single edge cracked 
structural elements using transfer matrix theory. These matrices take into 
account the effects of axial, flexural and shear deformations due to crack 
presence. The present model has been applied to investigate the effects of 
state of crack, lamina code number, boundary condition on the dynamic 
behavior of composite beams. 

The experimental tests and frequency response spectrums (FRS) is 
displayed on [FFT] analyzer. In experimental work the eigen pairs versus 
several state of cracks with various code number are measured using 
inductive hammering technique. The results show that the changes of the 
eigen parameters provide a proper indicator for detection and predication 
the current state of crack. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The eigen nature of cracked laminated compo- 
site beams is one of the most serious problems 
in machine element structures. The investiga- 
tion of dynamic criteria of these crack elements 
is of great interest due to its practical import- 
ance since cracks on a structural element 
change its local flexibility and damping capacity. 

Early investigations into analysis of simple 
cracked structures formed from simple compo- 
nents such as uniformly cracked shafts and 
beams [1-5], where begun by recognizing the 
need for simplified modelling of cracks on ele- 
ments. In the above research, the modelling 
under consideration was limited to simple 
stress-strain relations. 

In recent years the determination of strain 
energy release rates and stress intensity factors 
using the finite element method has been pre- 
sented in Ref. [6]. For more accurate analytical 
modelling of complex composite cracked struc- 
tures, many finite element procedures were 
developed by many researchers [7-11]. These 
researches are directed towards improving the 
model of cracks either by using typical finite 
elements, by separating the nodes of the 
cracked elements with six to eight nodes, and by 
using a very dense grid finite element in the 
neigborhood of the crack tip due to the singular 
character of the local stresses and strains. 

The present paper presents a numerical and 
experimental analysis of eigen parameters on a 
laminated composite beam with various orienta- 
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tions, which are carried out for different 
boundary conditions, and in the absence and 
presence of cracks. 

The numerical finite element technique is 
utilized to compute the eigen pairs of laminated 
composite beams through several state of 
cracks. The model is based on elastic-plastic 
fracture mechanics techniques in order to con- 
sider the crack tip plasticity in the analysis. A 
finite element model has been developed to for- 
mulate the stiffness matrices for single edge 
cracked structural elements using transfer 
matrix theory. The model takes into account the 
effects of crack location and size, fiber orienta- 
tion, and boundary fixation. 

In the experimental work, various specimens 
of laminated composite beam made of fiber 
glass are investigated. Each specimen was made 
of five plies for various states of crack (different 
ratios of depth and location) for various code 
numbers via different boundary conditions 
within the overture frequency spectrum. The 
experimental tests and frequency response spec- 
tra were displayed on a [FFT] analyzer. The 
results show that the changes of the eigen para- 
meters provide a proper indicator for the 
detection and prediction of the current state of 
the crack. 

Elastoplastic compliance of a cracked-beam 
element 

The compliance of a cracked-beam element is 
affected by the crack-tip stretch caused by local 
yielding. Irwin [12] suggested that the effect of 
increased compliance due to the crack-tip yield- 
ing could be simulated by a hypothetical 
extension (rp) of the crack tip. Irwin introduced 
the value of rp for local mode I deformation by 

*i 
(1) 

where k. 

a 
a 
Y 

elastic stress intensity = YaJa 
applied nominal stress 
crack length 
geometric correction factor 
yield strength of the material. 

If the physical crack length is increased by 
rp/2. the following equation could still be used 
to calculate the near tip stress (ay) and the 
influence of the plastic zone would be approxi- 
mately accounted for 

Finite element model 

A finite element model is developed which 
represents a prismatic beam element containing 
an open single-edge crack. The model takes 
into consideration the effect of plasticity ahead 
of the cracked tip. For various cases of crack 
location and depth, it is possible to determine 
the changes in the static, dynamic and stability 
behaviour of the structural beam. The stiffness 
matrix for a single-edge cracked structural ele- 
ment has been derived using transfer matrix 
theory. These matrices take into account the 
effects of axial, flexural and shear deformation 
due to crack presence. Hence, this analysis can 
be employed to identify the order stressed 
regions in cracked-structures. 

However, in practice most materials deform 
in a plastic manner once some critical combina- 
tion of stresses is achieved. The plastic ahead of 
the crack tip will increase the compliance of the 
cracked-beam element. This may require modi- 
fication on the element stress intensity factor to 
consider the effect of increased compliance due 
to crack tip plasticity. 

*i 

2nr 
(2) 

which the expression [k^oja] adjusted Irwin 
becomes 

klP = yaja+r 12 (3) 

where k1P = elasto plastic stress intensity factor. 
Substituting the expressions of r and k into 

last equation we have 

*IP = FP-*, (4) 

where FP: plasticity adjustment factor given by 

FP = (5) 

Here, the state of plane strain (ays) is elevated 
to J3<jy. The plasticity adjustment factor is used 
to determine the increase in the compliance of 
the cracked-beam element due to crack rip plas- 
ticity. Therefore, the change in the compliance 
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of the  creaked-beam  element  due  to  crack 
presence is given by 

Ac = 
E'F7 fc+rn)k2

lPd(a+rp/2) (6) 

where 

E' equals equivalent modulus of elasticity and 
refrerring to Ref. 13 the results are cal- 
culated. 

b     beam width 
F applied force (axial force, shear force or 

bending moment). 

Axial force and bending moment contribute 
to mode I of stress intensity factor. Therefore, 
reciprocal effects between axial and flexural 
deformations at the cracked section must be 
considered. The change in each of axial compli- 
ance Acpp, bending compliance Acmm, reciprocal 
derived by a computer program to evaluate the 
local flexibility matrix for the crack segment, 
here as 

[c] = 

Acpp 0 Ac, 
0 

_AcW 0 
0 

Ac„ 
(7) 

The model of the cracked-beam element is 
divided to into three segments, namely, left 
crack and right segments. The left and right 
segments are standard beam elements with 
length Lt and L2, respectively. The crack seg- 
ment is of zero length and connects left and 
right segments. Three degrees of freedom 
corresponding to axial force, shear force and 
bending moment are considered at each side of 
the crack segments as shown in Fig. 1. 

The matrix [c] relates the displacement vector 
to the corresponding force vector {a} = [c] {p} 
due to reciprocity, the matrix [c] is symmetric, 
i.e. &cpm — o£mp 

The transfer matrix of the crack segment, [Tc] 
is related to the matrix [c] as 

[Tc] = 
[I]    [c] 
[0]    [I] (8) 

where [I] is (3 x 3) identity matrix, [0] is (3 x 3) 
null matrix, and [c] is (3 x 3) local flexibility 
matrix. 

Using the transfer matrix theory, the cracked- 
element transfer matrix [Tce] is given by 

[Tce] = [TL][Tc][TR] (9) 

M Q M 

n 
'.       L* 
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L 

# n 
H-B-W 

Geometry and loading of an element 

<£V 
Li 

ffi 

U 

11   12 

T> 10 

Cracked beam element model 
Fig. 1. Geometry and loading of a rectangular cross-sec- 

tional element and cracked element model. 

where [TL] and [TR] are the transfer matrix of 
the left and right segments, respectively. 
Various terms of [TL] and [TR] are given in 
computer program. This procedure is useful 
since small flexibility terms for small cracks do 
not affect the transfer matrix [Tce] if sufficient 
length of left and right segments are main- 
tained. Moreover, for a crack very close to a 
node [14], we have the equation 

klvYoh+rpl2 

The crack element stiffness matrix [kc] of 
order (6 x 6) can be determined by partitioning 
the transfer matrix [Tce] into four 3x3 subma- 
trices, and the matrix [kc] is given by 

[kc] = 
T2l -T 22 12 22 

— 1 
12 
— 1 
12 

(10) 

Various elements of the matrix [kc] are 
defined by computer program. This analysis is 
valid for open single-edge crack problems. The 
computer program BEAM2.BAS has developed 
to determine the stiffness matrix of the cracked- 
beam, including; 
1. Stiffness matrix of beam without crack 
2. Stiffness matrix of cracked beam (single-edge 

crack). 
By using the program, the natural frequencies 
can be determined including computation of the 
1. Mass matrix... 
2. Eigen solution problem for various B.C. 
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Here the elements of stiffness matrix is given by 

AL2 

I 
öym 

0 12 
0 6L 4L2 

-AL2 

0 0 
AL2 

I I 

0 -12 -6L 0 12 
0 6L 2L2 0 -6L 4L2 

(11) 

where ^4, L, /: cross section area, length and 
moment of inertia of the beam, respectively, for 
composite beam the equivalent bending stiff- 
ness matrix, Ay[15] can be recast in the form 

DU = DU 

n2 

D 22 

[Dl2D26-Dl6D22] 

D22[D2
26-D22D66] 

(12) 

The elements of Inertia matrix of beam is 
given by 

[M] = 
pAL 
  X 
420 

"140 Sym 
0 156 
0 22L 4L2 

70 0 0 140 
0 54 13L 0 156 

L 0 -13L -13L 0 -22L 4L2 

where p: density of composite beam material 

Numerical calculations 

A BEAM2.BAS computer program was 
developed to carry out the numerical results, 
which program has been employed to give stif- 
fens matrix of beam element of single-edge 
cracked, and the inertia matrix of beam ele- 
ments, finally calculation eigen freqencies for 
different boundary fixations, and various state 
of crack. 

EXPERIMENTAL WORK 

The test specimens are selected in the form of 
laminated beam dimensions 300 x 20 mm and 
thickness 5 mm. Six types of specimens with 
various Code number are constructed and 
manufactured using the hand layout technique 
with respect to the fiber direction. The mechan- 

Table 1. Specifications of fiber and matrix used in the present study 

Property type Density                               Tensile                                Elastic 
(g/cm3)                               strength                              modulus 

(MPa)                                  (GPa) 

Poission's 
ratio 

E-Glass 
Polyester 

2.5                                     3448                                    72 
1.2                                34.5-103.5                                 3.95 

0.22 
0.3 

Dot. matrix 
printer Desktop computer 
ND-15 

Dual channel 
signal analyzer 

2034 

Fig. 2. Instrumentation set-up formed from excitation and measuring systems. 
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ical properties of fiber and polyester are listed 
in Table 1. The fiber volume fraction is 0.50%. 
The code numbers of five plies are [0]5, 
[15/0/0/0/15] [45/0/0/0/45], [60/0/0/0/60], 
[75/0/0/0/75] and [90/0/0/0/90] with 1 mm thick- 
ness of each ply. 

The experimental apparatus is shown in 
Fig. 2. The mounting of the specimens was 
either clamped or simply supported edges in the 
test rig. The boundary crack was initiated at the 
side of each specimen, with a saw cut and prop- 
agated successively for each state of crack. The 
depth and location of crack were checked 
directly by measurement at each test. 

The excitation and measuring procedure 
including calibration, transducers using the dual 
channel signal analyzer [2034] in conjuction 
with the fast fourier transform (FFT), gives the 
mathematical connection between time and fre- 
quency, showing that the frequency response 
spectra (FRS) are similar to those illustrated in 
Ref [16]. The eigen frequencies and damping 
parameters measured for the first five natural 

frequencies and associated five damping param- 
eters are carried out for each specimen in the 
uncracked reference state and the nine states of 
cracks. The three depth ratios and three loca- 
tion ratios for a single edge of the specimen are 
(HclH= 0.10, 0.25, 0.35) and Lc/L = 0.15, 0.25, 
0.35), respectively. The experimental results are 
taken as an average of five measurements of 
each. The experimental measurements of the 
natural frequencies and damping parameters 
against the different states of crack for the 
three types of boundary conditions are listed in 
Table 3. The damping factor £ of a particular 
resonance can be calculated from the width of 
the resonance peak in the magnitude of the 
(FRF) [17] and the form 

1 
£ = , Q = w/wd 

Hence the resonant frequency (wd) and the 
width (w) can be found from the magnitude 
diagrams using the reference cursor. The values 

Table 2. Values of the first five frequencies in Hz for reference state of different lamina orientation and boundary 
conditions (finite element and experimental results) 

Type of fixation c-F s- s c- c 

Laminate F. E EX F. E EX F. E EX 

[0]5 42.7 44 81.6 86 217.6 220 
163.6 167 259.2 265 381.8 384 
546.8 549 577.8 582 795 796 

1163.1 1169 1211 1215 1414 1416 
2211.6 2215 2418.8 2420 2688 2690 

15/0/0/0/15 31.6 34 69.1 72 193.4 196 
127.3 131 233.2 235 312 315 
443.04 447 546.3 548 651 653 

1069.2 1075 1168 1172 1318 1320 
2114 2120 2377 2380 2333 2336 

45/0/0/0/45 23.4 25 55.2 58 154.1 157 
109.8 115 181 184 245.1 249 
368.2 373 510 512 543.3 547 
824 829 1144 1148 1214.7 1218 

1509 1512 2125 2127 2338.1 2341 
60/0/0/0/60 19.18 21 41.2 44 133.8 136 

92.4 96 159.9 162 221.1 224 
257.2 262 482.2 486 532.8 536 
644 649 1110.9 1116 1191.7 1194 

1468 1471 2105.8 2108 2309.3 2312 
75101010/75 17.2 20 36.4 38 113 116 

91.3 94 144.9 148 208.1 212 
255.1 258 453.1 4 56 516.6 518 
641 645 1092.5 1096 1161.1 1164 

1459 1465 2098 2100 2292.9 2295 
90/0/0/0/90 16.2 19 33.8 36 110.1 112 

92.1 94 139.2 142 205.5 208 
253 257 445.1 448 511.7 315 
641 645 1085.2 1088 1153.2 1156 

1456 1460 2086 2090 2288 2289 
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of the damping factor £ was plotted against 
various states of crack as shown in Figs 5 and 6. 

RESULTS AND DISCUSSION 

In the tested specimens, the first five resonant 
frequencies of laminated composite beams for 
three fixations c-F, s-s and c-c are measured 
and computed numerically using a finite ele- 
ment technique for the six types of code 
numbers as shown in Table 2. 

Experimental studies in the area of the eigen- 
nature of cracked composite beams are carried 
out by the measurement of five natural frequen- 
cies and the associated damping factors. 
Experimental results are obtained for the length 
ratio in the three states of crack location as 
Lc/L = 0.15, 0.25 and 0.35. The crack was initi- 
ated for each beam with a fine saw cut in the 
three states of crack-depth ratio (Hc/H= 0.10, 
0.25 and 0.35). At each step the depth of crack 
is checked directly by measurement. It can be 
observed that the natural frequencies decrease 

Table 3. Values of the fundamental frequency in Hz and damping factor I; x 10 ~3 for different state of location and depth 
of cracks with different lamina orientation and boundary conditions (Experimental results) 

Laminate   State of crack [0]5 15/0/0/0/15 45/0/0/0/45 60/0/0/0/60 75/0/0/0/75 90/0/0/0/90 

Boundary   Lc/LHc/H 15% 25% 15% 25% 15% 25% 15% 25% 15% 25% 15% 25% 
condition 35% 35% 35% 35% 35% 35% 

10% Freq. 42 38 32 31 23 21 19 17 18 16 1715 
36 29 18 16 14 13 

Damp. 
Fac. 72 75 95 102 120 125 126 130 142 148 168 172 

76 106 133 137 153 176 
C-F       25% Freq. 40 35 30 28 20 19 18 16 17 15 15 14 

33 27 16 14 13 12 
Damp. 

Fac. 74 76 105 110 124 127 132 135 146 152 174 179 
78 115 135 143 157 185 

35% Freq. 37 33 29 26 18 17 15 13 15 13 12 11 
31 24 13 12 11 10 

Damp. 
Fac. 77 79 109 114 129 131 138 140 149 154 180 186 

80 120 139 147 160 192 
10% Freq. 85 82 70 68 56 54 4139 35 33 34 32 

79 67 53 37 31 30 
Damp. 

Fac. 35 37 55 60 75 78 95 97 115 119 135 139 
39 66 83 102 122 145 

S-S       25% Freq. 83 78 67 65 53 51 38 37 32 30 33 31 
76 63 48 35 29 29 

Damp. 
Fac. 40 39 63 65 77 80 99 105 118 123 139 144 

40 70 85 109 126 149 
35% Freq. 80 75 64 62 49 47 36 34 28 27 30 28 

72 61 46 32 26 27 
Damp. 

Fac. 40 42 7174 8184 104 109 121 126 144 148 
43 78 89 115 130 155 

10% Freq. 219 217 193 192 154 152 133 130 113 111 110 108 
215 190 151 128 109 105 

Damp. 
Fac. 15 16 32 36 55 57 75 78 95 98 115 119 

17 40 59 81 102 122 
C-C       25% Freq. 217 215 191 189 151 149 131 129 110 108 108 106 

213 187 148 126 107 103 
Damp. 

Fac. 18 19 34 39 58 62 79 83 99 103 118 122 
21 43 65 86 106 127 

35% Freq. 216 214 190 188 147 146 129 127 109 107 105 102 
211 185 144 124 105 101 

Damp. 
Fac. 20 22 37 41 60 64 84 89 104 106 123 126 

23 46 68 92 108 129 
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monotonically as the current cross-distance of 
the crack decreases monotonically close to anti- 
nodes of the vibrating beam modes, and the 
depth of crack increases as shown in Table 3 
and Figs 3 and 4. 

The rates of change of the eigen frequencies 
via different fixations are relatively high com- 
pared with the rate of change due to the use of 
the various code numbers of fiber orientations 

as shown in Figs 3 and 4. In contrast to the 
feature of frequencies, the damping factors 
increase monotonically as the current depth of 
the crack increases and the current cross-dis- 
tance decreases quasi-linearly can be observed 
in Figs 5 and 6. 

In view of the stacking sequences, it is 
noticed that the orientations of [0]5 layers is 
relatively high in natural frequencies compared 
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depth of crack (c-F). 
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with the others. This is due to the maximum 
values of the flexural elastic modules and stiff- 
ness at this orientation. 

With regard to changing the fiber direction of 
the outer most layers, this causes sharp changes 
in the values of the flexural elastic modulus, 
hence the frequency has a considerable effect 
and, by increasing the fiber orientation angle, 

the natural frequencies decrease as shown in 
Tables 2 and 3. These variations depend mainly 
on the magnitudes of the acute angles between 
the lamina orientations and the direction of the 
crack propogation. This means that the life 
span, in a typical crack, may be increased by 
increasing the acute angles. These results can 
be easily investigated by Comparing the meas- 
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urements   of   the   laminate   [15/0/0/0/15]   to 
[90/0/0/0/90]. 

In view of crack location, it is observed that 
the damping capacity is higher and natural fre- 
quencies are lower at a crack location of 0.35 
and a crack depth of 0.35, respectively. This 
comparison indicates that the effect of crack 
location may dominate the effect of the depth 

of the crack. In view of the state of fixation, it is 
observed that effect of the degree of constraints 
is dominant on the values of natural frequencies 
and damping factors, compared with the varia- 
tion of the crack state (location, depth). The 
highest natural frequency and lowest damping 
factors occur at the state Lc/L = 0.15, 
Hc/H= 0.10   for   clamped-clamped   and   the 

164 

o 

X 

«~ 
S u 
,a 

g? 
'S« 

[75/0/0/0/75] 
196 

0.10     0.15     0.20     0.25     0.30     0.35     0.40 
State of crack location Lc/L 

0.10     0.15     0.20     0.25     0.30     0.35     0.40 
State of crack location Lc/L 

o 

g? 

m 
'© 

o 

'S, 

0.10     0.15     0.20     0.25     0.30     0.35     0.40 
State of crack location Lc/L 

0.10    0.15    0.20    0.25    0.30     0.35    0.40 
State of crack location Lc/L 

VJ1 

a» 

0.10     0.15     0.20     0.25     0.30     0.35     0.40 
State of crack location Lc/L 

% 

3 
ü 

'5, 

Q 

0.10     0.15     0.20     0.25     0.30     0.35     0.40 
State of crack location Lc/L 

Fig. 5. Variations of the First damping factor t, x 10  3 and different locations of the crack with various lamina orientations 
and depths of crack (c-F). 



54 A. Abd El-Hamid Hamada 

inverse occurs at the same state for clamped- 
free as shown in Table 3. It is noticed that the 
damping capacity depends to a certain extent 
on the mutual influence of the lamina code 
number and the type of fixation. 

It can be noticed that the damping feature of 
specimen [0]5 for clamped-clamped is a light 
damping compared with the moderate damping 

of specimen [90/0/0/0/90] for clamped-free as 
shown in Figs 5 and 6. 

Conclusions 

In the present work, an investigation into the 
eigen-nature of a cracked composite beam for 
various cases of the state of crack are investi- 
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gated numerically and experimentally. A finite 
element model has been developed to formu- 
late the stiffness matrices for cracked beam 
elements using a transfer matrix theory. The 
model is based on an elastic-plastic fracture 
mechanics technique considering the crack tip 
plasticity. The experimental measurements and 
computed values of natural frequencies are 
compared. The comparison indicates good 
agreement for various lamina orientations and 
fixations. The following conclusion can be 
drawn: 

1. A finite element model based on elastic- 
plastic fracture mechanics technique 
considering the crack tip plasticity is a good 
key for formulating and estimating the state 
of the crack in composite beams. 

2. The damping capacity of cracked composite 
beams increases quasi-linearly with increas- 
ing crack depth due to the dissipation of 
energy. 

3. With the proper choice of lamina stacking 
sequence the maximum values of flexural 
elastic modulus and stiffness can be 
achieved. Hence the life time of a typical 
composite beam with a relatively small crack 
can be increased. 

4. The crack location has a considerable effect 
on the stiffness and damping capacity of a 
composite beam. The perturbations of the 
eigen-nature are governed by the intensity of 
the crack and its location in the structure. 

5. In contrast to the crack propagation in bulk 
material, the measurements of cracked com- 
posite specimens fabricated here indicated 
that fiber-glass prevents crack growth and is 
capable of increaseing the laminated compo- 
site structure strength to prevent the crack 
propagating to another lamina. 

6. The present study provides an efficient non- 
destructive technique for the detection and 
prediction of the current state of the crack 
for any composite structure system. 
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Composite wraps for ageing infrastructure: 
concrete columns 
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The post-war boom years were when much of Australia's current 
infrastructure was constructed. However, there are now doubts as to the 
durability and structural integrity of this construction, and composite 
repairs may well be one method for addressing the problems of an ageing 
infrastructure. To this end the present paper evaluates the ability of 
externally bonded composite wraps to increase the load-carrying capacity of 
concrete columns. Tests are performed under a range of environmental 
conditions. Both glass and Kevlar wraps are considered. In this study the 
failure loads were found to be relatively unaffected by the environmental 
conditions with failure occurring when the wraps reached a critical strain 
level. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Concrete and structural steel are by far the 
most commonly used construction materials. 
This popularity is due both to low cost and the 
appropriate properties and characteristics these 
materials possess. However, concrete structures 
located in humid or marine environments, or 
where chemical attack is possible, often experi- 
ence what has been termed 'concrete cancer' 
[1]. The problem starts by penetration of 
environmental agents (humidity and salts) 
through the concrete cover leading to the corro- 
sion of reinforcements. This initiates swelling in 
the concrete and can result in spalling and loss 
of cover. The steel reinforcement may now be 
further exposed to the environment thereby 
accelerating the corrosion process. This corro- 
sion affect is often termed concrete cancer. The 
remedial treatments employed to overcome this 
problem are greatly dependent on the extent of 
damage that has occurred. At an early stage, 
cathodic protection can provide an adequate 
means of protection against any further deteri- 
oration. When extensive damage has already 
occurred then (generally) only a few options 
remain. These options include either the demo- 
lition and rebuilding of the structure or 
adopting a conventional repair procedure. In 

the latter case an externally bonded repair or 
patch repair is frequently adopted [2-7]. 
Although composite materials have always been 
used in buildings (e.g. the use of straw to form 
mud bricks, etc.), in the twentieth century the 
construction industry has been relatively slow in 
adopting new materials. Concrete, steel and 
timber dominate the construction scene, and, 
although there is a large range of materials that 
offer (potentially) superior properties, there has 
been little success in using these materials on a 
large scale. The reason for this can be attri- 
buted to many factors, such as lack of hardware, 
expertise, design codes and cost. 

Composite materials have the potential to 
provide a viable alternative to traditional con- 
crete reinforcing material. Some selected 
advantages are: 

• Resistance to chemical attack and corrosion 
resistance. In this case composites could pro- 
vide an excellent alternative to steel 
reinforcements. 

• Higher strength-to-weight ratio. Here light- 
weight repairs and reinforcing materials 
could replace heavier ones and the use of 
lighter materials also has the potential to 
decrease construction time and result in 
simpler repairs. 
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• Composite materials also have the potential 
to lead to more earthquake-resistant struc- 
tures. Here composites could be used as an 
external confining reinforcement to concrete 
columns. 

The beneficial effects of lateral reinforcement 
on the strength and deformation characteristics 
have been recognized since the early days of 
structural concrete. Early investigations showed 
that the use of circular reinforcing hoops or 
spirals could result in members twice as strong 
as similar members with only lateral reinforce- 
ment. Heavier spirals are thought to provide a 
significant safety factor against complete failure. 
Composites have the potential to be regarded 
as a substitute for conventional steel spirals. 
This would transfer the advantages of compo- 
sites to wrapped members. Wrapping also has 
the potential to dramatically increase the tough- 
ness of concrete columns, and to provide an 
excellent resistance to harsh environmental con- 
ditions. 

This paper illustrates the effectiveness of 
composite repairs via a series of laboratory 
tests. These tests focus on the ability of external 
wraps to concrete cylinders to increase the ulti- 
mate compression strength. At the same time a 
finite element analysis of these tests was per- 
formed so as to obtain an understanding of the 
failure mechanism(s). 

COMPOSITE WRAPS TO CONCRETE 
COLUMNS 

The vinyl ester resin used was prepared in bat- 
ches consisting of resin, promoter and 
accelerator in the appropriate proportions. The 
mixed resins were consumed within two weeks 
of mixing. The promoter (cobalt naphthenate 
6%) and the accelerator were thoroughly mixed 
into the resin by manual shaking of the resin 
container for 2 min. The catalyst, MEK per- 
oxide, was added just prior to curing and mixed 

manually for 30 s. The concentrations of the 
catalyst, promoter and accelerator in the resin 
were 1%, 0.2% and 0.5% by weight, respec- 
tively. The GP polyester was prepared by 
mixing 3% catalyst, MEK peroxide, for 30 s into 
the resin just prior to use. In each case the 
fibres used in the repair were submerged in the 
resin before being wrapped around the cylin- 
ders using a simple manual device. The 
wrapped cylinders were then cured at 60°C for 
9 h and subsequently left at room temperature 
for one week. 

The tests were then performed using a 
2000 kN compression testing machine under 
load control, and the deflection was measured 
using a compressometer fitted with two vertical 
and three radial dial gauges, each with a toler- 
ance of 0.002 mm. In some samples strain 
gauges were used to measure strains at the con- 
crete-wrap interface and at the surface of the 
wraps, in the vertical and the circumferential 
directions. The test specimens considered were 
standard test (concrete) cylinders (AS1012.8) 
with dimensions of 100 mm x 200 mm. The con- 
crete cylinders were classified according to the 
Table 1 and the properties of fibres used in the 
composite wraps are given in Table 2. The test 
configuration was as shown in Fig. 1. 

The properties of the vinyl ester resin, used 
as the matrix material, were E = 3.25 GPa, 
G = 1.3 GPa and v = 0.32. The wraps obtained 
using impregnated glass fibres had a 40% fibre 
content while those obtained using impregnated 
Kevlar fibres had fibre content of 34%. Use of a 
simple rule-of-mixtures approach yielded the 
properties for the fibre glass-vinyl ester compo- 
site    wrap    as   Et = 30.75 GPa,   E2 = 7 GPa, 

Table 1. 

Cylinder 
bearing 
strength 
(MPa) 

Static 
chord 

modulus 
(GPa) 

Poisson's 
ratio 

33 
127 

32 
44.5 

0.2 
0.28 

Table 2. 
Fibre type Fibre Fibre Fibre Specific Strain 

longitudinal longitudinal Poisson's gravity to failure 
tensile modulus ratio % 

strength (GPa) 
(MPa) 

Kevlar 49 
E-fibre glass 

3600 
3400 

124 
72 

0.35 
0.2 

1.45 
2.54 

2.0 
1.3 (measured value) 
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v12 = 0.272 and G12 = 2.66 GPa. For the Kev- 
lar-vinyl ester composite wrap we obtained 
Ex = 44.3 GPa, E2 = 6.34 GPa, v12 = 0.33 and 
G12 = 2.4 GPa. Tests on simple uniaxial fibre 
glass-vinyl   ester   composite   specimens   gave 

2 vertical dial gauges 

located at 180° 

150 mm 

3 radial gauges 

located at 120° 

Fig. 1. Compression testing configuration. 

E1 = 28.4 GPa, v12 = 0.33 and Et = 3.52 GPa, 
v12 = 0.435 for the vinyl ester resin. 

Specimens' classification 

In this test programme the test specimens were 
classified as described in Table 3. The specimen 
code number was designed to facilitate the 
identification of the samples. The first digit 
refers to the sequential number among the 
group of samples, the second digit refers to the 
weight of the fibres used, the letter F for fibre 
glass, and the letter K for Kevlar, the third digit 
represents concrete grade, and the last letter E 
stands for environmental exposure. 

Specimens 1-0-127, 2-0-127, 1-0-33, 2-0-33, 
3-0-33 were used as control specimens to obtain 
the maximum compression strength, (concrete) 
Young's modulus and Poisson's ratio and to 
monitor cracking progress and the failure mech- 
anisms for unwrapped cylinders of different 
strengths. Specimens 1-100K-127 and 2-100K- 
127 were tested to evaluate the effectiveness of 

Table 3. Classification of test specimens 
Specimen sequential Sample code Wrap Total Concrete Environment No. of 

number number kind wrap 
weight 

(g) 

grade 
(MPa) 

days of 
exposure 

1 1-0-127 No wraps n/a 127 n/a 
2 2-0-127 No wraps n/a 127 n/a 
3 1-300F-127 Fibre glass 300 127 n/a 
4 2-300F-127 Fibre glass 300 127 n/a 
5 1-100K-127 Kevlar 100 127 n/a 
6 2-100K-127 Kevlar 100 127 n/a 

6' (Failed sample No. 2) 1-300K-127 Kevlar 100 127 n/a 
7 1-0-33 No wraps n/a 33 n/a 
8 2-0-33 No wraps n/a 33 n/a 
9 3-0-33 No wraps n/a 33 n/a 

10 1-0-33E No wraps n/a 33 Soaked 45 
11 2-0-33E No wraps n/a 33 Soaked 45 
12 3-0-33E No wraps n/a 33 Soaked 45 
13 1-200F-33 Fibre glass 200 33 n/a 
14 2-200F-33 Fibre glass 200 33 n/a 
15 3-200F-33 Fibre glass 200 33 n/a 
16 1-200F-33E Fibre glass 200 33 Soaked 45 
17 2-200F-33E Fibre glass 200 33 Soaked 45 
18 3-200F-33E Fibre glass 200 33 Soaked 45 
19 1-300F-33 Fibre glass 300 33 n/a 
20 2-300F-33 Fibre glass 300 33 n/a 
21 3-300F-33 Fibre glass 300 33 n/a 
22 1-300F-33E Fibre glass 300 33 Soaked 45 
23 2-300F-33E Fibre glass 300 33 Soaked 45 
24 3-300F-33E Fibre glass 300 33 Soaked 45 
25 1-100F-33 Fibre glass 100 33 n/a 
26 1-100F-33E Fibre glass 100 33 Soaked, then wrapped 140 
27 1-100F-33 Fibre glass 100 33 n/a 
28 4-200F-33E Fibre glass 200 33 Soaked 140 
29 4-300F-33E Fibre glass 300 33 Soaked 140 
30 4-200F-33 Fibre glass 200 33 
31 4-300F-33 Fibre glass 300 33 
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Kevlar fibres in inducing confinement on the 
concrete cylinders and hence increasing the ulti- 
mate compression capacity. Specimen 
1-300K-127 was tested to evaluate the effective- 
ness of Kevlar fibres in restoring strength to 
previously failed cylinders, i.e. to repair 
damaged structures. Specimens 1-300F-127 and 
2-300F-127 were tested to evaluate fibre glass as 
a (cheaper) alternative to Kevlar specimens 
1-200F-33, 2-200F-33, 3-200F-33, 1-300F-33, 
2-300F-33, 3-300F-33 were tested to help deter- 
mine the stress-strain relationship of wrapped 
concrete, and to establish the failure criterion 
of wrapped concrete. Specimen 1-100F-33 was 
tested to help understand the relationship 
between wrap thickness and the increase in the 
ultimate strength. 

Specimens 1-0-33E, 2-0-33E, 3-0-33E were 
tested to determine the affect of the environ- 
mental on unwrapped concrete elastic 
properties and also as control specimens for the 
low-grade concrete subjected to environmental 
parameters. Specimens 1-200F-33E, 2-200F- 
33E, 3-200F-33E,l-300F-33E, 2-300F-33E, 
3-300F-33E were tested to determine the degra- 
dation affect of environmental conditions on 
fibre-glass-wrapped cylinders. Specimens 
4-200F-33E, 4-300F-33E were tested to deter- 
mine the affect of environmental conditions, 
extended for a long duration, on the perform- 
ance of fibre glass wraps. Specimens 
1-100F-33E, 1-100F-33 were tested to evaluate 
the affect of different loading rates on the 
behaviour of wrapped concrete, particularly in 
the post-yield zone. 

As part of the environmental test programme 
specimens were immersed in seawater with a 
salt content of 3.5% by weight and a pH value 
of 8.2-8.4. The specimens were also subjected 
to a circulating air current and fluctuating tem- 
peratures (20-43°C). 

TEST RESULTS 

The behaviour of wrapped cylinders under con- 
centric loading up to failure could generally be 
divided into three regions: pre-yield zone, yield 
zone, and post-yield and failure zones (see 
Fig. 2). The behaviour of the test specimens in 
these three regions could be described as fol- 
lows. 

Region I. In this stage damage formation is 
believed to have started. Its existence appears 

Vertical load disp. (33 MPA concrete) 

III 

(300 gms F.G.) 

3 4 
Disp. (mm) 

Fig. 2. Load versus displacement test results. 

to have only a limited affect on the elastic 
properties. At this stage the behaviour of 
wrapped and unwrapped concrete specimens 
was almost identical. 

Region II. In this region the load-deflection 
response was non-linear and as such was indica- 
tive of the onset of inelastic behaviour. It is 
believed that in this region microdamage may 
be joining thereby reducing the apparent stiff- 
ness of the concrete. In this region the 
load-deflection curve resembles that of the 
'knee' in the stress-strain curve for metals. As 
such an apparent 'yield stress' can be defined, 
this yield stress roughly corresponds to the 
failure stress for the unwrapped concrete. At 
the end of this stage the similarity in the 
behaviour of unwrapped and wrapped concrete 
had ceased, and the concrete started transfer- 
ring stresses to wraps, thereby allowing strain 
energy to be stored in wraps. 

Region III. The inelastic behaviour (damage), 
which had previously been observed, continued 
and the slope of the load-deflection curve again 
became linear. The linearity in this region may 
also reflect the linear elastic behaviour of the 
wrapping materials. The ultimate strength of 
the concrete-wrap composite section was 
reached when the wraps reached a certain criti- 
cal radial strain leading to failure of the wraps. 

In Fig. 2 it can be noticed that a higher 
degree of confinement resulted in a higher post- 
yield slope. This was believed to be due to the 
fact that a more confined section produced a 
higher resistance to the vertical and radial 
deformations, which in turn increased the post- 
yield stiffness of wrapped concrete. It can be 
also noticed that the increase in the ultimate 
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strength was directly related to the stiffness of 
the wraps. Increasing the mass of the wraps 
from 200 to 300 g, which corresponded to a 
33% increase in the thickness of the wrap, lead 
to a «33% increase in the ultimate load (see 
Fig. 2). This supports the hypothesis that the 
increase in the ultimate strength reflects the 
capacity of the wraps to both constrain the con- 
crete and to store strain energy. 

Modes of failure 

Unwrapped cylinders. The loading and geo- 
metry of the test specimens were typical of a 
short column, with the main load being axial 
and with negligible eccentricities and bending 
moment affects. In general, high-strength con- 
crete specimens had two modes of failure: shear 
failure with an inclination of about 25° to the 
vertical axis; and radial splitting failure; most 
evident in top and bottom faces (see Fig. 3). 
The loading was accompanied with cracking 
sounds which started at about 40% of ultimate 
load. The lower strength cylinders maintained a 

Fig. 3. A typical shear failure mode. 

random cracking pattern with extensive splitting 
and with shear cracks being evident in the mid- 
section. 

Wrapped high-strength concrete. High-strength 
concrete when wrapped with fibre glass or Kev- 
lar fibres suffered shear failure. The higher 
stiffness of the concrete prohibited gradual frac- 
ture and tensile splitting associated with lower 
strength concrete. The fracture plane had an 
acute angle to the vertical with the crack front 
reaching both the top and bottom surfaces. Due 
to this failure mechanism, the concrete was 
unable to develop enough radial displacements 
to fully utilize the maximum potential of the 
wraps. At failure, the wraps remained essen- 
tially intact. 

Failed then wrapped high-strength concrete. 
High-strength concrete cylinders which had 
been previously loaded to failure, and failed by 
tensile splitting, were repaired by wrapping with 
Kevlar fibres and retested. These specimens had 
a lower stress-strain slope reflecting the 
damaged state of the concrete. When retested 
the wraps prohibited further tensile splitting of 
the concrete and failure was due to shear 
failure extending from the top to the bottom 
concrete faces. 

After failure, the differential surface move- 
ments could be seen from both top and bottom 
surfaces. The failure was accompanied with 
explosive sounds. The failed concrete was then 
sliced to obtain a clear view of the cracking 
pattern and to verify the failure mechanism. In 
general a single shear crack was clearly obvious 
in every section and created an acute angle with 
the vertical of about 26°. 

Wrapped low-strength concrete. The low- 
strength concrete gave early signs inelastic 
behaviour. This lead to the gradual damage of 
the concrete as opposed to the sudden and 
brittle failure of high-strength concrete. The 
gradual and continuous fracture of the concrete 
allowed the concrete to achieve a substantial 
radial expansion and therefore transfer the 
stresses radially, possibly in a hydrostatic 
manner to wraps. The failure was ultimately 
governed by the ability of wraps to carry the 
radial stresses and achieve ultimate strain. 
Failure of the fibres lead to release of the radial 
(confining) stresses in this particular area lead- 
ing to extensive splitting failure in concrete in 
this region. 

Failed then wrapped low-strength concrete. The 
behaviour   was   essentially   identical   to   the 
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Vertical load-disp. (Fiber glass wrapped) 

300 gms F.G. & 127 MPA cylinders 

300 gms F.G. & 3 
MPA cylinders 

3 4 
Disp. (mm) 

Fig. 4. Load-displacement curves for fibre glass wrap. 

wrapped virgin (undamaged) concrete speci- 
mens. 

The wraps did not markedly alter the vertical 
rigidity of the structure. However, through the 
use of external wrapping of 100 g of Kevlar 
fibres, impregnated in vinylester, the ultimate 
load was increased by 40%. Using 300 g of fibre 
glass yielded a 35% increase in strength for 
high-strength concrete; however the failure 
remained sudden and explosive. 

When wraps were applied to low-strength 
concrete an increase in the ultimate strength of 
up to 600% was achieved (Figs 4 and 5). 

The behaviour of wrapped cylinders is 
analogous to that of spiral reinforced columns. 
The spirals add little to the columns apparent 
'yield point' strength and becomes effective only 
following the large increases in deformation 
that occur after the 'yielding' of the column. 

In the presence of lateral confinement, the 
axial compressive loads initiated shear failure, 
while in its absence axial splitting failure took 
place for high-strength concrete while splitting 

1400 

1000 

800' 

o 600 

400 

200 

Vertical load-disp (127 MPA cylinders) 
1-100K-127, 2-100K-127 

1-300K-127 
(failed then wrapped with Kevlar) 

1-300F-127, 2-300F-127 

1-0-127, 2-0-127 

_i 1 i 1 1 1 1 1 

0 0.2        0.4        0.6        0.8 1.0        1.2 1.4 1.6 
Disp. (mm) 

Fig. 5. Vertical displacement versus load curves. 

tensile stresses was most common in lower 
strength concrete. 

Failed, then Kevlar-wrapped, high-strength 
cylinders achieved approximately 125% of the 
strength of unwrapped cylinders. In the case of 
low-strength concrete this increase was up to 
400%. (In both cases initial failure of concrete 
had almost no subsequent affect on behaviour, 
up to failure of the repaired specimens.) This 
highlights the potential of using wraps to 
restore strength to existing spalled or cracked 
columns. Indeed, as a result of this test pro- 
gramme it is believed that using wraps could 
also give additional toughness to concrete col- 
umns, and thereby greatly increase its ultimate 
strength and strain to failure. 

The wrapped low-strength concrete speci- 
mens were able to achieve large displacements 
following the 'yield' point of the concrete. This 
resulted in a substantial contribution of wraps 
to load-carrying capacity. In contrast high- 
strength concrete achieved only limited 
post-yield displacements with a lower contribu- 
tion of the wraps. Generally speaking shear 
failure was dominant in high-strength concrete, 
which tends to be global with brittle failure of 
the concrete occurring suddenly with little or no 
warning. This failure was evident in both 
wrapped and unwrapped cylinders. Low- 
strength concrete suffered localized fractures 
accompanied by radial expansion most evident 
in mid-section which suffered minimal restrain- 
ing action due to friction forces at top and 
bottom platens. 

Environmental effects 

After 80 days the unwrapped cylinders had 
absorbed an average of 130 g of water to 
achieve an 8% moisture content of approxima- 
tely 8% whilst wrapped cylinders absorbed an 
average of 115 g of water to achieve a moisture 
content of approximately 7%. The moisture 
content then continued to increase at a slower 
rate achieving a maximum of almost 9% after 
120 days for unwrapped concrete. Despite the 
relatively high moisture content absorbed by 
cylinders, the test results performed after both 
45 days of soaking and after 140 days were 
almost identical to those of the unsoaked cylin- 
ders (see Figs 6 and 7). The combined affect of 
moisture, salt and cyclic temperature had little 
(or no) affect on the behaviour of cylinders 
exposed to these environmental parameters. 
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Vertical Load-disp. (200 gms F.G. 
& 33 MPA concrete) 

Load vs radial strains 

Soaked for 140 
days 
Unsoaked 

Soaked for 
45 days 

2 3 
Disp. (mm) 

Fig. 6. Effect of environment. 

0.005 0.010     0.015 
Strain 

0.020 

- Failed then 
wrapped with 
200 Gms F.G., 33 
Mpa concrete 

- 100 Gms F.G, 33 
Mpa concrete 

-100 Gms F.G, 33 
Mpa concrete 

-200GmsF.G., 33 
Mpa concrete 

Fig. 8. Maximum radial strains, measured at mid-section, 
for 200 and 300 g wraps. 

It should be noted here that the composite 
wraps themselves had a very slow rate of mois- 
ture absorption with specimens soaked for three 
months achieving a moisture content of 
approximately 3.4%. A pure resin samples 
achieved only 2.7%. 

Failure analysis 

As can be seen from the experimental test 
results (Fig. 8), it was found that in each case 
the wraps failed when a (maximum) radial 
strain of approximately 0.012 was reached. This 
was true regardless of the magnitude of vertical 
displacements, the thickness of the wraps or the 
level of environmental conditioning. Hence, it 
appears that failure analysis/prediction can be 
based on a simple maximum permissible strain 
criteria. Once the wraps failed the concrete 
could no longer carry the load and the speci- 
men failed. 

ANALYSIS 

To aid in understanding of this process a finite 
element analysis of these tests was conducted 
with a range of models representing both the 
unwrapped and the wrapped structures. For 
simplicity the analysis used the Prandtl-Reuss 
equations for incremental plasticity. The stress- 
strain relationship in the concrete was assumed 
to be bilinear and, based on the previous test 
results, the yield stress of concrete was taken to 
be the failure stress of the uncracked concrete. 
As a first approximation the ratio of the post- 
yield slope (of the concrete) to its initial elastic 
modulus was taken to be the ratio of the post 
yield slope to the initial elastic slope for the 
100 g wrap shown in Fig. 2. Due to geometric 
and loading symmetry, only a quarter of a 
cylinder was modelled. 

The resultant load-deflection curves are 
given in Fig. 9 and Fig. 10. Here it can be seen 
that the results were in good agreement with 

Vertical Load-disp. (300 gms F.G. 
& 33 cylinder MPA) 

Soaked for 140 
days 

. Unsoaked 

Soaked for 
" 45 days 

2 3 
Disp. (mm) 

Fig.  7.  Comparison  of  load-displacement  results  for 
soaked specimens. 

Vert, load-disp (200 gms F.G. & 33 MPA cylinders) 

"""—r 
Analytical based on FE results 

Fig. 9. Predicted vertical displacement versus load curve, 
200 g wraps. 
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Vert, load-disp (300 gms F.G. wraps & 33 MPA cylinders) 

Fig. 10. Predicted vertical displacement versus load curve, 
300 g wraps. 

the experimental results. This highlights the 
ability of the finite element method to capture 
the gross behaviour of wrapped concrete struc- 
tures. This analysis revealed that the fibres 
maintained an almost uniform tensile stress 
across the longitudinal profile. However, the in- 
plane shear stresses were maximum at the 
concrete-fibres interface. The maximum prin- 
ciple stresses obtained from the analysis were 
located at the outer fibres and decreased 
towards the centre. Kevlar fibres resulted in 
higher principle and shear stresses than glass 
fibres because of their higher stiffness. 

In the wrapped concrete the principle stresses 
had higher magnitudes near the top and bottom 
faces. Unwrapped cylinders had much higher 
(radially oriented) maximum principle stresses 
than wrapped cylinders. This may explain the 
axial splitting of unwrapped concrete specimens. 

CONCLUSION 

This paper has discussed the potential for com- 
posite materials to assist in addressing problems 
associated with concrete cancer. To this end the 
present paper has outlined the results of an 

initial study into the behaviour of wrapped con- 
crete columns. The experimental test 
programme, undertaken as part of this investi- 
gation, revealed that composite wraps were an 
effective means for increasing the strength of 
concrete columns. 

The increase in strength was due to the con- 
finement induced by the wrap. The failure load 
was determined by the maximum allowable 
strains in the wrap. The behaviour of the 
wrapped columns can be predicted using tradi- 
tional finite element analysis tools. 

While this work has concentrated on the 
ability of external composite wraps to increase 
residual strength additional work is required to 
evaluate the ability of wrapped columns to with- 
stand large overloads without degradation in 
structural performance. 
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Strengths of laminated composite pressure vessels are studied via both 
analytical and experimental approaches. Experimental techniques are 
presented to determine the first-ply failure and burst strengths of laminated 
composite pressure vessels with different lamination arrangements. 
Different analytical methods, together with various failure criteria, are used 
to predict the first-ply failure strengths of the laminated pressure vessels. 
The accuracy of the theoretical prediction of first-ply failure strength is 
verified by the test data. The suitability of the failure criteria, as well as the 
limitations of the analytical methods are discussed. © 1997 Elsevier Science 
Ltd. 

INTRODUCTION 

The application of composites in pressure 
vessels and piping has drawn close attention in 
recent years [1-5]. Much work has been 
devoted to the manufacturing and design 
aspects of laminated composite pressure vessels 
[6-10]. In general, the design of laminated com- 
posite pressure vessels is achieved by the use of 
the first-ply failure approach, i.e. a suitable 
failure criterion is adopted to determine the 
first-ply failure load, and the classical lamina- 
tion theory for stress analysis. The suitability of 
the adopted failure criterion and the classical 
lamination theory in determining the first-ply 
failure strength of laminated composite pres- 
sure vessels, however, has not been studied in 
detail nor validated by experimental data. For 
safety reasons, pressure vessels must be 
designed for high reliability. A meaningful relia- 
bility assessment of a laminated composite 
pressure vessel relies on the accurate prediction 
of the first-ply failure strength of the vessel. 
Therefore, more work must be devoted to the 
failure analysis of laminated composite pressure 
vessels if reliable as well as economical vessels 
are desired. 

In this paper, first-ply failure of laminated 
composite pressure vessels is studied via both 
analytical and experimental approaches. Experi- 

ments are performed to determine the strengths 
of laminated composite pressure vessels with 
different lamination arrangements. The suitabil- 
ities of different failure criteria and analytical 
methods commonly used in determining first-ply 
failure strength of laminated composite pres- 
sure vessels are studied via the test data. 

FIRST-PLY FAILURE ANALYSIS OF 
PRESSURE VESSELS 

The pressure vessel is modeled as a symmetric- 
ally laminated cylindrical shell of thickness h, 
length L and radius R, where R refers to the 
radius of the middle surface. The shell is con- 
structed of an even number of orthotropic 
layers of equal thickness, t. The fiber orienta- 
tion 6 is denned as the angle between the fiber 
direction and the longitudinal axis x. The stress 
resultants in the geometric coordinate axes are 
given by [11] 

N = As (1) 

where N is the vector of stress resultants, A is 
the matrix of extensional stiffnesses, e is the 
vector of strains. The stress-strain relations for 
the kth orthotropic layer are given by 

rjw = <2we ,(*),, (2) 
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where aw is the vector of stresses for the kth 
ply, Q is the matrix of the transformed material 
stiffness constants. According to the principle of 
the strength of materials, the stress resultants of 
the pressure vessel subjected to internal pres- 
sure/? are given by 

A^=-y-,A^ = pJ?,A^ = 0 (3) 

where Nx, N^ are stress resultants in the axial 
and circumferential directions, respectively; NX(j> 

is the shear stress resultant which is zero due to 
the symmetry of the lamination. The first-ply 
failure analysis of the laminated composite 
pressure vessel is performed via the use of a 
suitable failure criterion. Herein, a number of 
phenomenological failure criteria are adopted 
in the analysis. For comparison purpose, the 
laminated composite pressure vessel is also ana- 
lyzed using the finite element method which is 
formulated on the basis of the first-order shear 
deformation theory [12]. 

EXPERIMENTAL INVESTIGATION 

pressure vessel, an acoustic emission (AE) sys- 
tem (AMS3) with two AE sensors for detecting 
sound waves emitted from the pressure vessel 
during failure process, a data acquisition sys- 
tem, a digital pressure meter used for 
measuring oil pressure in the vessel, and two 
strain gauges attached to the surface of the 
vessel. A schematic description of the experi- 
mental setup is shown in Fig. 1. During testing, 
oil was pumped into the pressure vessel at low 
speed and the pressures at which first-ply and 
ultimate failures of the pressure vessel occurred 
were recorded. The first-ply failure pressure of 

Table 1. Properties of graphite/epoxy laminate 

Material Value Strength Value 
constant parameter 

Ei 88.53 GPa JV'T 1560 MPa 
E2 6.72 GPa Xc 1760 MPa 
G12 4.03 GPa YT 35.75 MPa 
G23 1.022 GPa Yc 178 MPa 
Vl2 0.28 S 61 72 MPa 

R 46.21 MPa 
XsT 1.174 xlO"2 

YsT 0.35 x HT2 

A number of laminated composite cylindrical 
pressure vessels made of graphite/epoxy prepreg 
tapes were subjected to burst strength test. The 
properties of the composite material deter- 
mined from experiment are listed in Table 1. 
The lamination arrangements and the dimen- 
sional properties of the pressure vessels are 
tabulated in Table 2. The experimental appara- 
tus consists of a test rig for supporting the 

Table 2. Properties of pressure vessels 

Lamination 
arrangement 

[547-54°]. 
[457-45°]s 
[90/0°]s 
[547-54754«], 
9070790°]s 
[907079070°]s 

Dimensions 

Outer radius r0 = 4 cm 
Length L = 23 cm 
lamina thickness t = 0.15 mm 

Strain Gauges 

Pressure Vessel 

AE Sensor 
"77T7 

Test Rig 

Digital Pressure Meter 

Oil Pump 

AE System 

Data 
Acquisition 

System 

Identify 
failure strength 
and construct 
pressure-strain 

curve 
PC 486 

Fig. 1. A schematic description of the experimental setup. 
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the vessel was determined by identifying the 
first major energy rise in the energy-pressure 
diagram produced by the AE system. Figure 2, 
for instance, shows the energy-pressure relation 
of the [54°/—54°/54°]s pressure vessel generated 
by the AMS3 system. The ultimate burst 
strength of the vessel was identified from the 
measured pressure history. Deformation of the 
vessel was monitored via the strain gauges and 
the data acquisition system. 

RESULTS AND DISCUSSION 

Six laminated composite pressure vessels with 
different layups and various number of plies 
were tested to failure. The laminated composite 
pressure vessels subjected to burst test are also 
analyzed using the aforementioned analytical 
methods on the basis of different phenomeno- 
logical failure criteria. The theoretical and 
experimental results are listed in Tables 3-8 for 
comparison. It is noted that when the number 
of plies in the laminated composite pressure 
vessels is equal to or less than 6, the first-ply 

failure pressures predicted by the analytical 
methods are in good agreements with the 
experimental ones. In particular, both the maxi- 
mum stress and Hoffman criteria can yield very 
accurate theoretical first-ply failure pressures 
for the pressure vessels composed of 4 or 6 
plies. As for the [907079070°]. pressure vessel 
which is composed of 8 plies, there exists signi- 
ficant differences between the theoretical and 
experimental first-ply failure pressures which 
are greater than 20% as shown in Table 8. This 
implies that the present analytical methods are 
inadequate and more sophisticate methods such 
as those constructed on the basis of the higher 
order shear deformation theory are required for 
the stress analysis of moderately thick lami- 
nated composite pressure vessels. It is noted 
that for the laminated composite pressure 
vessels composed of same number of plies, the 
optimally designed pressure vessel possesses 
the highest first-ply failure strength as well as 
the ultimate burst strength. For instance, 
amongst the laminated composite pressure 
vessels composed of 4 plies (Tables 3-5) the 
[547—54°]s pressure vessel which has been opti- 

1.6x108- 

1.2x108- 

§>      8.0x10 
<5 
c 

UJ 

4.0x10' - 

Pressure (MPa) 
Fig. 2. Energy vs. pressure produced by tile AE system for the [547—54°/54°]s pressure vessel. 
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Table 3. Failure strength of the [547 — 54°] pressure vessel 

Failure criterion Theoretical first -ply Experimental first -pfy Experimental burst \Pf-P,\ LL failure failure failure 
pressure pressure pressure pf Pb 

P, (MPa) Pf (MPa) Ph (MPa) (%) (%) 

Maximum strain 9.32 (a) 
9.44 (b) 

29.81 
31.47 

Maximum stress 7.61 
7.64 

5.99 
6.41 

Hoffman 7.62 
7.65 

7.18 14.32 6.13 
6.55 

50.14 

Tsai-Hill 7.75 
7.78 

7.94 
8.36 

Tsai-Wu 7.97 
8.03 

11.00 
11.83 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 

mally designed yields the highest first-ply failure 
strength as well as the ultimate burst strength. 
It is also worth noting that for the same pres- 
sure vessel, the ultimate burst strength is usually 

much higher than the first-ply failure strength. 
Therefore, the pressure vessel will be safe 
enough if it is designed against the first-ply 
failure pressure. 

Table 4. Failure strength of the [457 — 45°] pressure vessel 

Failure criterion Theoretical first -ply Experimental first -ply Experimental burst \Pf-P,\ Pf 
failure failure failure 

pressure pressure pressure pf Pb 
P, (MPa) Pf (MPa) Pb (MPa) (%) (%) 

Maximum strain 5.21 (a) 
5.34 (b) 

50.14 
53.89 

Maximum stress 3.40 
3.43 

2.02 
1.12 

Hoffman 3.42 
3.45 

3.47 10.36 1.44 
0.58 

33.49 

Tsai-Hill 4.35 
4.39 

25.36 
26.51 

Tsai-Wu 4.03 
4.06 

16.14 
17.00 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 

Table 5. Failure strength of the [9070°] s pressure vessel 

Failure criterion Theoretical first -ply Experimental first-ply Experimental burst \Pf-P\ Pf 
failure failure failure 

pressure pressure pressure Pf Pb 
P, (MPa) Pf (MPa) Pb (MPa) (%) (%) 

Maximum strain 7.07 (a) 
7.11 (b) 

24.47 
25.17 

Maximum stress 6.04 
6.06 

6.33 
6.69 

Hoffman 6.05 
6.07 

5.68 11.57 6.51 
6.87 

49.09 

Tsai-Hill 6.21 
6.24 

9.33 
9.86 

Tsai-Wu 6.42 
6.46 

13.03 
13.73 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 
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Table 6. Failure strength of the [547-54754°] pressure vessel 

Failure criterion Theoretical first -ply Experimental first -ply Experimental burst \Pf-P,\ Pf. failure failure failure 
pressure pressure pressure Pf Pb 

P, (MPa) Pf (MPa) Pb (MPa) (%) (%) 

Maximum strain 12.83 (a) 
12.91 (b) 

32.82 
33.64 

Maximum stress 10.52 
10.56 

8.90 
9.32 

Hoffman 10.53 
10.57 

9.66 16.07 9.01 
9.42 

60.11 

Tsai-Hill 10.96 
10.99 

13.45 
13.77 

Tsai-Wu 11.15 
11.20 

15.42 
15.94 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 

CONCLUSION 

First-ply failure of laminated composite pres- 
sure vessels was studied via both theoretical and 

experimental approaches. Different methods 
were used to predict the first-ply failure pres- 
sures of the laminated composite pressure 
vessels on the basis of various failure criteria. 

Table 7. Failure strength of the [9070790°] pressure vessel 

Failure criterion Theoretical first -ply Experimental first -ply Experimental burst \Pf~P,\ Pf. failure failure failure 
pressure pressure pressure Pf Ph 

P, (MPa) Pf (MPa) Pb (MPa) (%) (%) 

Maximum strain 11.48 (a) 
11.52 (b) 

29.86 
30.32 

Maximum stress 9.71 
9.76 

9.84 
10.41 

Hoffman 9.73 
9.77 

8.84 10.07 13.41 
10.52 

65.92 

Tsai-Hill 9.99 
10.08 

13.01 
14.03 

Tsai-Wu 10.31 
10.40 

16.63 
17.64 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 

Table 8. Failure strength of the [907079070°] s pressure vessel 

Failure criterion Theoretical first-ply Experimental first-ply Experimental burst \Pf-P,\ Pf 
failure failure failure 

pressure pressure pressure Pf Pb 

P, (MPa) Pf (MPa) Pb (MPa) (%) (%) 

Maximum strain 13.65 (a) 
13.73 (b) 

31.12 
31.89 

Maximum stress 12.55 
12.64 

20.56 
21.42 

Hoffman 12.57 
12.67 

10.41 20.75 21.96 
21.71 

47.40 

Tsai-Hill 12.71 
12.86 

22.09 
23.54 

Tsai-Wu 12.90 
12.99 

23.92 
24.78 

(a) first order shear deformation theory (finite element analysis), (b) classical plate theory. 
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Experiments were carried out to verify the accu- 
racy of the analytical methods. The analytical 
methods together with the maximum stress cri- 
terion or Hoffman failure criterion can predict 
accurate first-ply failure pressures for thin lami- 
nated composite pressure vessels. Both of the 
adopted analytical methods are inadequate for 
failure analysis of moderately thick laminated 
composite pressure vessels. Results on ultimate 
burst pressure for the pressure vessels were pre- 
sented for comparison. Ultimate burst pressure 
is generally much higher than first-ply failure 
pressure of a laminated composite pressure 
vessel. It may be appropriate to use first-ply 
failure as a criterion for the design of laminated 
composite pressure vessels. 
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In today's global market the optimal use of composites, to fulfil their 
potential for weight savings, is now being increasingly pursued as a means 
of obtaining a competitive advantage. However, the optimum design of 
composite structures and bonded composite joints requires a detailed 
understanding of the fundamental mechanical behaviour of composite 
materials and the adhesive systems. Whereas the time-dependent behaviour 
of the adhesive systems is reasonably well documented and has, to some 
degree, been accounted for in the design of bonded joints this has not yet 
occurred for advanced graphite-epoxy composites. Indeed, although it is 
recognised that the matrix-dominated response of many composite 
materials and structures is highly nonlinear, even at room temperature, this 
is often neglected in the design process. This restriction means that the full 
potential of the fibre matrix system may not be achieved. To this end the 
present paper, which focuses on the (matrix dominated) shear stress-shear 
strain behaviour of the AS4/3501-6 graphite-epoxy resin system, presents 
the results of an experimental investigation into the nonlinear behaviour of 
graphite-epoxy. © 1997 Published by Elsevier Science Ltd. 

INTRODUCTION 

In recent years there has been an increasing 
trend to use composite materials as primary 
load bearing structures. As with any new initia- 
tive safety considerations require a detailed 
understanding of the fundamental mechanical 
behaviour and the associated failure mechan- 
isms. Furthermore, whereas in the past 
composites have been used mainly in the aero- 
space industry they are now being increasingly 
used across a broad range of other industries. 
This is particularly true in the newly emerging 
fields of composite, and adhesively bonded, 
pipelines and infrastructure rehabilitation [1]. 
In this context it has become apparent that the 
future economic lives of Australia's transporta- 
tion and infrastructure complex is largely 
determined by the coupled effects of fatigue 
and corrosion. In reinforced concrete structures 
this combined effect is often termed 'Concrete 
Cancer' and is estimated to cost in excess of 

A$200 million per year. In South Australia it 
has been estimated that by the year 2010 this 
will have risen to absorb the entire State's con- 
struction budget. In the US there are currently 
in excess of 1500 structurally deficient bridges. 
Existing maintenance techniques have lead to 
significant closure/down times. The combination 
of 'down' time and maintenance costs have 
been estimated to be in excess of two billion 
dollars (US). To overcome this problem the use 
of composite reinforcement is now being con- 
sidered. 

In the aeronautical scene Australia has 
developed unique methods which utilise exter- 
nally bonded composite patches to repair 
cracked, or damaged, structural components [2]. 
Although this repair methodology was first used 
to repair cracks in military aircraft it has 
recently been applied to civilian aircraft. Appli- 
cations to Boeing and Airbus aircraft are 
described in Refs [3, 4], which outline a series 
of flight  demonstrator  programs.   Composite 

71 



72 W. K. Chiu, S. Galea, R. Jones 

repair technology can also be used to maintain 
and extend the safe life of bridges and rein- 
forced concrete structures, see Refs [1, 5, 6]. 
Indeed, Australian, Japanese and US com- 
panies are already focusing on this technique. 
There are three principal ways in which compo- 
sites can be used to rehabilitate aging 
infrastructure: 

(i) By using a modified cementious compo- 
site as a filler material. 

(ii) As in (i) but with an external composite 
or metallic doubler also bonded over the 
damaged region. 

(iii) Using a composite structural member to 
either replace the deficient component 
or to provide an alternative load path. In 
the latter case the member would be 
directly attached to the structure either 
mechanically or via an adhesive bond. 

For damaged or degraded (infra) structures 
the challenge is to transmit a significant propor- 
tion of the load to the external wrap and to 
make the wrap tolerant to external damage. In 
both cases the (matrix dominated) shear per- 
formance of the composite wrap is often a 
limiting feature. Furthermore, for the purposes 
of certification it is necessary to understand all 
of the potential failure mechanisms. One recent 
review of the potential failure mechanisms of 
composite repairs was presented in Ref. [6]. 
Here it was shown that failure of the matrix 
material, i.e. interlaminar failure, can often 
drive the design process and limit the load bear- 
ing capability of the repair. 

From the structural/design viewpoint the 
necessity, for composite repairs or composite 
joints, of transmitting the load from the compo- 
site to the underlying or connecting structure 
generally results in matrix dominated interlami- 
nar shearing forces. Indeed, this was one of the 
primary causes of the disbonding of the struc- 
tural reinforcement of the F111C wing pivot 
fitting, see Refs [6, 7]. Consequently, safety and 
certification concerns therefore dictate that the 
matrix dominated behaviour of graphite-epoxy 
composites be both understood and character- 
ised. 

To this end the present paper presents one 
such study into the nonlinear matrix dominated 
response of a composite material, AS4/3501-6. 
Particular attention is focused on the shear 
behaviour of the epoxy being used as the matrix 
material. This paper focuses on 

— The effects of strain rate on the stress- 
strain behaviour. 

— The effects of cyclic loading at various 
strain rates. 

— Strain holds to  demonstrate  the  stress 
relaxation phenomena. 

— Creep experiments performed with load 
hold experiments. 

— The effects of strain rate on the failure 
stresses and strains. 

— The effects of strain rate on the inter- 
laminar fracture toughness. 

In this context it is important to note that 
similar experiments were also reported by Gates 
[8], where the rate-dependent behaviour of 
advanced composites was studied. In this work 
Gates investigated a different fibre matrix sys- 
tem (Hercules IM7 fibre and Amoco 8320 
matrix, a thermoplastic material) and significant 
rate-dependent behaviour of this matrix 
material was reported [8]. 

This paper supports the general findings of 
Gates: rate-dependent stress-strain behaviour, 
rapid rates of stress decay during strain holds, 
significant creep characteristics, elevation of the 
apparent yield stress with loading rate, and 
failure loads and also reveals fracture energies 
which are dependent on the loading rate. 

As a result of this investigation it is con- 
cluded that, in the initial design process, 
limiting the stress and strain levels in the com- 
posite to regimes where this complexity is not 
apparent will mean that the full potential of the 
fibre matrix system may not be achieved. If the 
design is not to be restricted then these com- 
plexities should be taken into account if an 
accurate assessment of the structural integrity 
of the composite structure/repair is required. 
This is particularly true for loading regimes 
which involve load, or displacement/strain, 
holds which can be expected in civil infrastruc- 
ture applications [5] and which frequently occur 
in (structural) certification tests [6, 7] as well as 
in the proof pressure testing of pipelines. 

This test programme also reveals that the 
failure load(s) can be load-history dependent. 
This is an interesting finding since, in many 
instances, the number of specimens required to 
obtain valid structural and material allowables 
have been based on statistics which assume load 
history independence. Consequently, the impli- 
cations of this behaviour means that the 
number of specimen/structural tests required to 
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obtain a comprehensive data base needs to be 
revisited. 

TEST SPECIMENS AND PROCEDURES 

ASTM Standard D3518-76 tests 

To determine the matrix dominated shear 
response tests were performed, using a 100 kN 
servohydraulic INSTRON test machine, in 
accordance with ASTM Standard D3518-76 on 
a 24 ply ((±45)i2)s laminate. The geometry of 
the test specimens was as shown in Fig. 1 and 
was nominally 200 x 50 x 6.5 mm. The test sec- 
tion was 115 x50 mm. The specimens were 
manufactured from a large panel made from 
AS4/3501 graphite-epoxy. The lay up of the 
panel was ((±45)12)s. As reported by Chiu et al. 
[9], it is desirable that the testing of the mech- 
anical behaviour of the specimen be performed 
under local strain control. As a result, strain 
gauges were located in the centre of the test 

coupon to provide the local strain values and, 
more importantly, the signal to the strain con- 
troller of the Instron testing machine. This was 
required in order to test under strain rate con- 
trol. 

The tests were performed at room tempera- 
ture (25-19°C) and at strain rates, ranging from 
0.00001 s_1 to the machine maximum of 0.152 
s-1. During stress relaxation tests, the strain 
was held at a predetermined value. These tests 
consisted of loading the specimen to a nominal 
shear strain of 17000/ie and then applying a 
triangular cyclic loading of approximately 
10,000 + 7000 pie for a number of cycles. 

Tests were also performed at a range of con- 
stant load rates, i.e. under load control, varying 
from 0.1 to 100 kN s_1. The load hold tests 
were conducted at a load level where nonlinear- 
ity was observed in the monotonic tests. 

RESULTS AND DISCUSSIONS 

Strain rate controlled tests 

l<     5°mm   >l 

*  * 

_.y. 

Strain 
gauges 

25 mm 

K—> 
48 ply laminate [±45)12]sym 

Fig. 1. Geometry of test specimen. 

Repeatability of test results is illustrated in Fig. 
2, where two specimens were loaded at nomin- 
ally similar strain rates. At strain rates of 
0.00014 and 0.00017 s"1, respectively. 

The stress-strain behaviour of the graphite- 
epoxy at various strain rates is shown in Fig. 3. 
These curves demonstrate the dependencies of 
the stress-strain behaviour of the composite 
material on strain rates where, at high shear 
strain levels, the value of shear stress in the 
material may vary by up to 20% depending on 
the strain rate applied. For a general structure, 
in the area where local geometry changes occur, 
the local strain field changes rapidly. This can 
also be interpreted as a region of highly variant 
strain rates. Therefore, material in this location 
can follow a different stress-strain curve 
depending on its strain rate. This phenomena 
was studied numerically by Jones et al. [10], 
where it was shown that under these circum- 
stances, analysis of the structure using 
traditional single stress-strain curves can result 
in gross errors in the estimation of the stress- 
strain values. A more accurate assessment of 
the structure can only be attained when the 
time-dependency of the material is incorporated 
in the analysis 

The cyclic load results are shown in Fig. 4. 
Figure 4(a) shows that the hysteresis curve, for 
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Fig. 2. Shear stress-shear strain behaviour of carbon fibre-epoxy resin system AS4/3501-6 for two test specimens at similar 
strain rates. 

a shear strain rate of 0.00001 s-1, has saturated 
at about the 5th cycle. Specimens loaded at 
higher rates require a greater number of cycles 
to reach saturation. Typically for the higher 
rates, greater than 0.00014 s_1, about 10 cycles 
are required before saturation is achieved. It is 
also clear that although there are quite distinct 
hysteresis loops the (initial) loading and unload- 
ing curves appear to be parallel to the initial 
loading curve. This infers that the material non- 

linearity does not change the elastic modulus of 
the material. 

The results from the stress relaxation experi- 
ments are shown in Fig. 5 (a)-(c). The temporal 
stress decay during these experiments are 
shown in Fig. 6(a)-(c). As discussed by Chiu et 
al. [11, 12], during strain holds, the stress decays 
to an asymptotic limit. In this case, this limit is 
approximately 60MPa. It can be seen that 
during a strain hold, depending on the initial 
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Fig. 3. Shear stress-shear strain behaviour of carbon fibre-epoxy resin system AS4/3501-6 at various strain rates. 
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loading rate, a stress decay of up to 30% can be 
obtained. Figure 6(a) shows that this 30% drop 
in shear stress (or load) was attained in less 
than 5 s. This demonstrates the highly nonlinear 

behaviour of the matrix material of this particu- 
lar graphite-epoxy. This stress drop can be 
interpreted as a degradation of the matrix 
material as it represents a conversion of elastic 
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Shear Strain 
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(b) 
Fig. 4. Shear stress-shear strain behaviour of carbon fibre-epoxy resin system AS4/3501-6 under cyclic loading at various 

strain rates, (a) 0.00001 s_1, (b) 0.00014 s~\ 
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energy  to  irrecoverable  energy  as  the  total 
strain is held at a constant value. 

Figure 7(a)-(c) shows the creep character- 
istics  of the matrix materials.  These figures 

show that even at room temperature, the matrix 
exhibits significant time-dependent behaviour. It 
is expected that the creep rate is dependent on 
the load at which the test specimen is held at, 

0.000 0.006 0.010 0.016 

Shear Strain 
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Fig. 4. Shear stress-shear strain behaviour of carbon fibre-epoxy resin system AS4/3501-6 under cyclic loading at various 
strain rates, (c) 0.0188 s_1and (d) 0.152 s_1. 
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Fig. 5. Stress relaxation behaviour of carbon fibre-epoxy resin system AS4/3501-6 at various strain rates, (a) 0.000068 s   ', 
(b) 0.000108 s-1 and (c) 0.135 s"1. 
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Fig. 6. Temporal stress decay during stress relaxation experiments, (a) 0.000068 s~\ (b) 0.000108 s_1 and (c) 0.135 s"1. 
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i.e. the higher the load, the higher the creep 
rate. Creep is, of course, a reflection of the 
degradation of the material. The load being 
held constant (i.e. elastic strain is constant) 
implies that the temporal development of strain 
contributes directly to the increase in inelastic 
strain. This may be interpreted as a accumula- 
tion of damage in the matrix material. 

Load control tests 

To compliment these tests a series of load con- 
trol tests had also been performed, in 
accordance with ASTM Standard D3518-76, on 
a 16 ply [(+45/—45)4]s laminate. In these series 

of tests the loading rates used were; viz: 0.4 kN 
s-1, 4kN s_1 and 270 kN s_1. The resultant 
load displacement curves are shown in Fig. 8. 

These tests revealed the following features: 

(i) As the loading rate increased the 
apparent yield stress increased. 

(ii) As the loading rate increased the failure 
stresses increased whilst the failure strain 
decreased. 

Interlaminar fracture toughness tests 

As a result of this work it was tempting to hypo- 
thesise that this rate dependency, both in the 
stress-strain response and in the failure loads, 
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Fig. 7. Temporal strain development during load holds (creep test) at (a) 60 MPa and (b) 70 MPa. 
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DISPLACEMENT (mm) 

Fig. 8. Load displacement curves: load control. 

should be reflected in the interlaminar fracture 
(failure) toughness being dependent on the 
loading rates. To this end a (preliminary) series 
of edge notch flexure tests were performed, see 
Ref. [12] for details of this test configuration. In 
this test programme the specimen layup was 
[012] and had a 25 mm crack, i.e. a Teflon 
insert, between the 6th and the 7th plies. The 
test specimens were then loaded at three dif- 
ferent  crosshead  speeds,  i.e.  0.5 mm  min-1, 

5 mm min-1 and 50 mm min-1, and the load P 
deflection curves recorded, see Fig. 9. 

Whilst this test programme was limited the 
results of this preliminary investigation were 
encouraging in that they supported the hypothe- 
sis of loading/strain rate dependency. In general 
as the displacement rate increased there was a 
significant increase in the failure load. A more 
detailed experimental programme aimed at clar- 
ifying this dependency is currently underway. 

-0.5 mm/min 
-5 mm/min 
-50 mm/min 

Failure Load 5.0 mm/min 

-0.15T 

0.35 

Load(KN) 

Fig. 9. Typical load displacement curves at three loading rates. 
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CONCLUSIONS REFERENCES 

As a result of these experimental findings, the 
potential for graphite-epoxy composites to 
experience nonlinear time-dependent mechani- 
cal behaviour, even at room temperature, has 
been documented. In this investigation the rate- 
dependent stress-strain behaviour of the 
material was reflected in a rapid rate of stress 
decay during strain holds (in some cases, 30% 
in less than 5 s), significant creep characteristics, 
and in elevation of the apparent yield stress 
with loading rate. The failure loads, and strains 
(displacements), and the fracture energies were 
also dependent on the loading rate. 

Whilst this behaviour is complex it is clear 
that limiting, in the initial design process, the 
stress and strain levels in the composite to 
regimes where this complexity is not apparent 
will mean that the full potential of the fibre 
matrix system may not be achieved. However, if 
the design is not to be restricted then these 
complexities should be taken into account if an 
accurate assessment of the structural integrity 
of the composite structure/repair is required. 
This is particularly true for loading regimes 
which involve load, or displacement/strain, 
holds which can be expected in civil infrastruc- 
ture applications [5] and which frequently occur 
in (structural) certification tests [6,7] as well as 
in the proof pressure testing of pipelines. 

In this test programme we have seen that the 
failure load(s) can be load-history-dependent. 
This is particularly interesting since in many 
instances the number of specimens required to 
obtain valid structural and material allowables 
has been based on statistics which assume load 
history independence. Consequently, the impli- 
cations of this behaviour on the number of 
specimen/structural tests required to obtain 
statistically valid data needs to be evaluated. 
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non-uniform temperature loading: the effect of 
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Thermal response of antisymmetrically laminated metal matrix composite 
(MMC) plates subjected to non-uniform temperature field is analysed. 
Temperature dependence of both elastic and viscoplastic properties of the 
metallic matrix is taken into account; this suggests that a non-uniformly 
heated plate should be considered as a non-homogeneous structure. A 
micro-to-macro approach is employed to establish the instantaneous 
thermo-inelastic constitutive law at each point of the plate and to perform 
the structural analysis. 

Results are presented for simply-supported and clamped graphite- 
aluminium plates. The effects of boundary conditions, lamination angle, 
length-to-thickness ratio and different types of spatial temperature 
distributions are illustrated. Comparisons with the results obtained using an 
approach that treats the effect of temperature-dependent material 
properties in a simplified manner are shown. Comparisons with the 
corresponding elastic solutions (which neglect the inelastic effects in the 
metallic matrix) are given. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Metal matrix composites (MMCs) possess some 
advantages that are very important for their use 
as structural materials; in particular, one of the 
main virtues of MMCs is that they are resistant 
to severe environments, and particularly to high 
temperatures. In the present study the thermal 
post-buckling behaviour of laminated MMC 
plates is addressed. 

When a MMC plate is subjected to tempera- 
ture change some special features of the metal 
matrix composites deserve consideration. First, 
the inelastic effects in the MMC structure can- 
not be disregarded, as thermo-mechanical 
behaviour of the metallic matrix at high tem- 
peratures is inherently time-dependent and 
hereditary. Second, both elastic and viscoplastic 
mechanical properties of the metallic matrix 
are highly temperature-dependent (see, for 
example, the monograph by Taya and Arsenault 
[1]). Therefore, an MMC plate exposed to a 

non-uniform temperature field must be treated 
as a non-homogeneous elasto-viscoplastic struc- 
ture. 

It is worth noting that among the studies con- 
cerned with the elastic thermo-mechanical 
response of composite plates and curved panels, 
the temperature-dependent material properties 
(TDMP) were included only in a few of them 
(see Chen & Chen [2] and Weiler & Patla- 
shenko [3]). From the results presented in these 
contributions it follows that the effect of TDMP 
on thermal post-buckling behaviour is signifi- 
cant. One would expect that when the 
elasto-viscoplastic behaviour of a structure is 
addressed, this effect might be of even greater 
importance. 

Elasto-viscoplastic post-buckling response of 
antisymmetric angle-ply MMC plates under uni- 
form thermal loading was analysed by Feldman 
& Aboudi [4]. Thermal buckling of non-uni- 
formly heated symmetrically laminated MMC 
plates was studied by Feldman  [5].  In both 
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papers, temperature-dependent material prop- 
erties of the metallic matrix were taken into 
account. 

In the present paper thermal post-buckling 
behaviour of non-uniformly heated antisymmet- 
ric angle-ply MMC plates is investigated. It is 
assumed that the thickness-temperature 
gradient is negligible, and that the temperature 
field, T, the plate is exposed to is a function of 
the in-plane coordinates x, y and the time t. The 
plate is treated as a non-homogeneous thermo- 
elasto-viscoplastic structure. 

To analyse the response of non-uniformly 
heated plates, the micro-to-macro approach 
proposed by Feldman & Aboudi [4] to thermal 
post-buckling of inelastic laminated MMC 
plates is extended to include the behaviour of 
non-homogeneous structures. At the stage of a 
micromechanical consideration, the instan- 
taneous overall thermo-elasto-viscoplastic 
constitutive law is obtained at every point of the 
plate using the micromechanical method of cells 
[6]. The micromechanically derived effective 
thermo-inelastic constitutive law is utilized to 
formulate a system of differential equations 
which govern the geometrically non-linear 
behaviour of a non-homogeneous plate. Two 
types of out-of-plane boundary conditions are 
examined, namely simply-supported and 
clamped. 

Results are presented for Gr/Al plates sub- 
jected to a non-uniform temperature field 
T= T(x,t). The effects of boundary conditions, 
length-to-thickness ratio, lamination angle and 
different types of spatial temperature distribu- 
tions are illustrated. To evaluate the effect of 
temperature-dependent material properties the 
approach proposed in this study is compared to 
another one treating the effect of TDMP in a 
simplified manner. Comparisons with the corre- 
sponding elastic solutions, obtained by 
neglecting the inelastic effects in the metallic 
matrix, are shown. 

FORMULATION AND SOLUTION 
PROCEDURE 

Governing equations 

In the present study, the moderately large 
deflection behaviour of geometrically imperfect 
MMC plates under quasi-static temperature 
loading is analysed in the framework of the 

classical plate theory. An antisymmetric angle- 
ply plate of length a, width b and thickness h 
is considered. Introducing the non-dimensional 
in-plane coordinates £=x/a, rj=y/b, the non- 
dimensional coordinate in the normal 
z-direction ( = z//z, and the plate aspect ratio 
X = alb, the system of differential governing 
equations can be written in the form [7] 

(1) 

X2s0,-    +s°   **-X&   * 

„2 
[ - wMw^+(w^nf+w0

Mw°m - (w°£„)2] 

(2) 

Here w and w° are current and initial transverse 
displacements, respectively; # is the stress func- 
tion; and Maß (a, ß - £, rj) are the moment 
resultants. The mid-plane strains s°ß correspond 
to the von Karman kinematic relations 

£°£ = — U ?+ ■ 
1 

let 
[(w ,f -(w0,)2] 

X X2 

4 = -^ + ^[K)2-«)2] 

o    x\x 

a a a 

(3) 

where u and v are the in-plane displacements in 
the x- and y-directions, respectively. 

The expressions for the middle plane strains 
and moment resultants in terms of <P, w may be 
obtained using the corresponding constitutive 
relationships describing the thermo-inelastic 
behaviour of a plate. For an antisymmetrically 
laminated structure, these expressions have 
been derived in Feldman & Aboudi [4]. Substi- 
tuting them into eqns (1) and (2) yields 

[D* , (w - W°)^+X2D\2{w - W°XW - XB*61$itllSi 

+ X2[D* 2(w - w°)M+X2D*22(w - w°X, 

- XB*62$ in]m+2X[2XD*66(w - w0)^ 

+ X2B*6$,m+B*26$iili,1 

,nn 
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+a (Gi(ii+2XG^^^+X Gww) 

+ a (G^^+IAG^^+A Gmm) 

- A2(«P wwt« - 2(r>t{f,wt{f,+4>fKwfW) = 0      (4) 

nn 22(^A*11^,W+A*12^^))W+(22A*12^ 

+A*22$ii\ii+A2(A*66&i,1Xin 

= 2A[B*26(W-w0\it]lii 

+ 2X3[B*l6(W-W
0),in\m 

+ 2.2B*62(w-w°\nillill 

+ a {Xy^^ — X y^,n,,—ym,^) 

+a2ttyj„, (r, - ^yJs, m - iln, a) (5) 

The stiffness matrices v4*, B* and D* (which are 
defined, for example, in Whitney [8]) are func- 
tions of the spatial coordinates £, r\ and the 
time t. The expressions for the plastic and ther- 
mal functions G«ß, y«ß and G^ß, ylß may be 
found in Feldman [9]. 

Boundary conditions 

Further, we shall analyse the thermal response 
of simply-supported (SS) and clamped (C) 
plates. The in-plane displacements u, v are sup- 
posed to be unrestricted in the tangential 
direction; the edges ^ = 0, 1 are immovable. As 
to the boundary conditions at the edges r\ = 0, 
1, two possibilities are considered, namely: the 
edges r\ = 0, 1 are immovable in the y-direction 
(SSI and Cl cases); the edges n = 0, 1 are 
unloaded (SS2 and C2 cases). 

Introducing the average edge shortenings in 
both in-plane directions 

i 

Ax= 1 [u(l,n)-u(0, n)]dri; 

Ay = JK£,l)-«;(&0)]d£ 

the boundary conditions may be formulated as 
follows 

551 at f = 0, 1: <P^ = w = Mii = Ax = 0; 

at 77 = 0, 1: $in = w = Mm = Ky = Q 

552 at £ = 0, 1: <P {„ = w = MK = Äx = 0; 

at 77 = 0, l:$K = ^ = w = Mw = 0 

Cl at f = 0, 1: $iin = w = w<i = &x = 0; 
(6) 

at n = 0, 1: <PAn = w = wn = Äy = 0 

C2 at £ = 0, 1: €>^t, = w = wi = Ax = 0; 

at 77 = 0, 1: <P ilt = <£> in = w = w n = 0 

where the expressions for Kx, \ in terms of <P, 
w, are derived in Feldman & Aboudi [4]. 

Solution procedure 

To obtain a solution to the problem at hand, a 
micro-to-macro approach is adopted. At the 
stage of micromechanical analysis, the effective 
thermo-inelastic constitutive law of MMC 
material is established using the method of cells 
developed by Aboudi [6]. The fibers are 
assumed to be thermo-elastic, whereas the 
metallic matrix is represented as a thermo-plas- 
tic work-hardening material. The method of 
cells enables one to obtain, for a unidirectional 
MMC layer, the effective reduced stiffness 
matrix Q, the plastic deformations e^j and the 
effective coefficients of thermal expansion aaß. 
Thereafter, the stiffness matrices A*, B* and 
D*, as well as the plastic and thermal functions 
involved in eqns (4) and (5), may be calculated. 
It should be pointed out that, owing to TDMP, 
the above-mentioned micromechanical analysis 
is to be performed at every point of the plate at 
each increment of thermal loading. 

At the structural analysis stage, an approxi- 
mate solution to the boundary value problem, 
eqns (4-6), is represented in the form 

a2 n2       2 e 
<P(& 77, t) = - — Px{t) — -a2Py(t) — 

A 2 2 

+ £     £ Fpq(t)Xp(OXq(n) 
p=l     q=l 

M N 

w(£, 77, t) =   £     £ Wmn(t) sin %m£, sin 7m?7 
m= 1    n= 1 

(for SS cases) 
M        N 

=   £    Z Wmn(t)Xm(OXn(ri) 
m~ 1    n= 1 

(for C cases) (7) 

where Xt (i = 1, 2, ...) are beam eigenfunctions 
satisfying boundary conditions X/0) = X,-(1) = 
X/(0) = X/(1) = 0. The initial imperfection w° is 
expanded into the double Fourier series in 
accordance with the boundary conditions 

M        N 

w°(£, n) =   £     £ W°mn sin %mt, sin nnrj 
m=1    n= 1 
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(for SS cases) 
M        N 

= £   £ w°mnxm(OXM 
m=1    n= 1 

(for C cases) 

The coefficients in eqn (7), and the values of P„ 
Py (having the meanings of normal in-plane 
loads at the edges x = 0, a and v = 0, b), are 
obtained in an analogous manner as is per- 
formed in Feldman [5]. As a result, the 
following system of equations is arrived at 

O^ £ß(1) w 

+ 2J   2J   2J   2J {Jpqmnij™ inn™ ij 
m     n       i       j 

+ ESXSI ZQ%m„uklWmnWuWk! = 0; 
m     n      i      j      k      I 

(p=l,...,M,q=l,...,N) (8) 

Here Qfq,..., Qfqmnijkl are complicated expres- 
sions containing the geometrical parameters of 
the plate, the amplitudes of the initial imperfec- 
tion Wc£l, and various line and surface integrals 
involving the elements of the stiffness matrices 
as well as different plastic and thermal func- 
tions. 

Thus, the system of eqn (8) describes the 
behaviour of a geometrically non-linear imper- 
fect laminated plate, made of metal matrix 
composite material, and subjected to non- 
uniform temperature loading. In the absence of 
plastic deformations eqn (8) reduces to the sys- 
tem of equations from which the response of an 
imperfect thermo-elastic plate may be obtained. 

To solve eqn (8), one needs to determine the 
coefficients Q(ß,..., Qfqmnijkl. Owing to the plas- 
tic effects, this is performed in an incremental 
procedure similar to those described by Feld- 
man & Aboudi [4]. Once, at each loading 
increment, the coefficients of the system in eqn 
(8) have been calculated, the real roots of eqn 
(8) are to be found; they represent the ampli- 
tudes Wmn(t) of the transverse displacement at 
the moment considered. 

A simplified treatment of temperature- 
dependent material properties 

With the intent of estimating the effect of 
temperature-dependent material properties 
(TDMP) on thermal response, we need to com- 
pare the approach proposed in this paper with 
another procedure that deals with this effect in 

a more simplified way. Such a simplified 
method to account for TDMP (which has been 
employed by Feldman [5]) is as follows. At each 
loading increment an average temperature of 
the plate surface Tav(t) is introduced and the 
material properties of the composite are cal- 
culated at this temperature. Therefore, 
according to this approach, the material proper- 
ties of each ply are 'smeared' over its surface, 
and the plate becomes effectively homogene- 
ous: the parameters of its elastic and 
viscoplastic behaviour are no longer functions 
of the coordinates x, v. 

It should be emphasized that this simplified 
procedure does not ignore totally the tempera- 
ture dependence of material properties, 
because, as time goes on, the material param- 
eters change with the change in Tav. However, 
at each increment of thermal loading the spatial 
distribution of the material properties is dis- 
regarded. 

APPLICATIONS AND DISCUSSION 

Results are presented for unidirectional and 
angle-ply graphite-aluminium plates with a 
fibre volume fraction vf = 0.3, subjected to a 
non-uniform temperature field T=T(x,t). The 
elastic T-50 graphite fibres are assumed to 
behave as transversely isotropic, with the follow- 
ing properties in the axial (denoted by subscript 
A) and transverse (denoted by subscript T) 
directions:   Young's   moduli   EA = 388.2 GPa, 

vA = 0.41, 
GA = 14.9 GPa; 

ET = 7.6 GPa;     Poisson's     ratios 
vT = 0.45;     shear    modulus 
and    thermal    expansion    coefficients    aA = 
-0.68 x HT6 °C"\ aT = 9.74 x 10"6 0C_1. 

The aluminium matrix is modelled as a 
thermo-viscoplastic work-hardening material, 
whose rate-dependent behaviour is described 
using the unified theory of plasticity given by 
Bodner & Partom [10]. In the framework of this 
theory, the material parameters of the alumin- 
ium alloy 2024-T4 at various temperatures are 
given in Table 1. The material parameters of 
the metallic matrix at any temperature within 
the interval T e [21, 371]°C are obtained using 
piecewise linear interpolation of the data given 
in Table 1. 

To illustrate the effect of non-uniform ther- 
mal loading, consider MMC plates exposed to a 
temperature field T(£,t) = Tref+T0(t) sin" n^\ it 
is   assumed   that   Tref = 21°C  throughout   the 
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Table 1. Material constants of the 2024-T4 aluminum alloy: isotropic material in the elastic region; isotropic work- 
hardening material in the plastic region 

T E V a D0 Z0 Zi m n 
(°Q (GPa) Cc-1) (s-1) (MPa) (MPa) 

21.0 72.4 0.33 22.5 x 10 "6 10,000 340 435 300 10.0 
148.9 69.3 0.33 22.5 x 10 "6 10,000 340 435 300 7.0 
204.4 65.7 0.33 22.5 x 10"6 10,000 340 435 300 4.0 
260.0 58.4 0.33 22.5 x 10~6 10,000 340 435 300 1.6 
371.0 41.5 0.33 22.5 x 10 "6 10,000 340 435 300 0.6 

Here E, v and a are Young's modulus, Poisson's ratio and the thermal expansion coefficient, respectively; D0 is the limiting 
strain rate, Z0 is related to the 'yield stress' of a uniaxial stress-strain curve, Zx is proportional to the ultimate stress, m 
determines the rate of work hardening and the rate-sensitivity is controlled by the parameter n. 

plate. The value n = 0 corresponds to a uniform 
thermal loading; as the value of n increases, the 
temperature field becomes more and more 
localized. Note that information on the material 
properties of the aluminium alloy at T > 371°C 
was not available; therefore, the process of 
thermal loading was terminated when the tem- 
perature at any point of the structure reached 
the value of 371°C. With the aim of comparing 
results relating to different types of non-uni- 
form temperature distribution, the above- 
mentioned average temperature Tav of the plate 
surface is used. It is defined by 

Tav(t)= J int,ri,t)dZdri 
o  o (9) 

The response of a plate is displayed as average 
temperature Tav vs the non-dimensional trans- 
verse displacement W/h, where W stands for the 
deflection at the centre of the middle plane. 
The initial geometrical imperfection of a 
simply-supported plate is assumed to have 
a sinusoidal form: w°(£, rf) = WQ sin n£ sin %r\; 
for a clamped plate it is taken as w°(£, n) = 
WoX^OX^rj). It should be noted that, for all 
the cases considered below, the first term in eqn 
(7) for w was found to be a predominant one. 

Consider first imperfect unidirectional plates 
with a lamination angle 6 = 0°, and the ampli- 
tude of initial geometrical imperfection 
WJh = 0.01. The response curves for simply- 
supported and clamped square plates 
(a=b = 0.2m) subjected to the uniform and 
non-uniform heating are shown in Figs 1 and 2. 
Dashed lines represent the elastic solutions 
obtained by neglecting all of the inelastic 
effects; dashed-dotted lines display the results 
corresponding to the simplified approach to 
TDMP described above. 

It is evident from the graphs that the type of 
non-uniform   temperature   distribution   T(x,t) 

that the plate is exposed to affects significantly 
its response, for all the boundary conditions 
considered. As Fig. 1 suggests, the thermal 
response of a thermo-viscoplastic plate differs 
essentially from the behaviour of its thermo- 
elastic counterpart. While the central deflection 
of the elastic structure continues to grow with 
the increase in temperature, the corresponding 
viscoplastic solution exhibits, as the temperature 
rises, an increase in W followed by a decrease in 
the central deflection. This effect has been dis- 
cussed by Feldman [9]; it may be attributed to 
the fact that the in-plane forces acting on the 
viscoplastic plate at a given temperature are 
smaller than the forces corresponding to the 
elastic solution. 

350 

GxIM [0°] 

a/b = 1 

b/h = 50 

T(x,t)=Tref+To(t)sin"f- 

0.25 0.5 0.75 1 1.25 

W/h 
1.5 1.75 

Figure 1. The effect of different types of spatial tempera- 
ture distributions on the thermal response of a 
unidirectional simply-supported plate (boundary condi- 
tions SSI and SS2). Dashed lines correspond to the elastic 

solutions. 
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Figure 2. The effect of different types of spatial tempera- 
ture distributions on the thermal response of a 
unidirectional clamped plate (boundary conditions Cl and 
C2). Dashed-dotted lines correspond to a simplified 
approach to the effect of temperature-dependent material 

properties. 

One can see from Figs 1 and 2 that the in- 
plane boundary conditions considered in this 
study have a marked influence on the response 
curves. For a given set of out-of-plane boundary 
conditions and temperature loading T(x,t), a 
plate with immovable edges in the y-direction, 
y = 0,b (boundary conditions SSI and Cl), 
undergoes noticeably larger deflections than its 
counterpart with edges that are unloaded, 
y = 0,b (boundary conditions SS2 and C2). 

The effect of temperature-dependent 
material properties on the behaviour of a uni- 
directional plate is illustrated in Fig. 2 for the 
boundary conditions Cl and C2, and for several 
types of thermal loading T(x,t). Figure 2 shows 
the response curves obtained using the method 
proposed in this paper alongside the graphs 
resulting from the simplified approach to 
TDMP (which disregards the spatial distribution 
of both elastic and viscoplastic material proper- 
ties at each loading increment). Note that in the 
case of a uniform temperature change (n = 0) 
the two mentioned approaches obviously coin- 
cide. However, in the case of non-uniform 
heating these approaches lead to substantially 
different results, both in a quantitative and a 
qualitative sense. 

The behaviour of a [ + 30°] angle-ply simply- 
supported plate, which is exposed to a 
non-uniform heating, T(£, t) = TTe{+ T0(t) sin2 n£, 
is displayed in Fig. 3. The graphs correspond to 
several values of width-to-thickness ratio b/h 
and to the boundary conditions SSI. Figure 3 
allows the elastic solutions and the results 
obtained using both the approach proposed in 
this study and the simplified treatment of 
TDMP to be compared. It is seen that whereas 
the elastic and viscoplastic response curves dif- 
fer essentially, only a slight dissimilarity may be 
observed between the elastic solution and its 
viscoplastic counterpart which treats the effect 
of temperature dependence of material proper- 
ties in a simplified manner. 

A character of stresses distribution is illus- 
trated in Fig. 4, where the stresses ax at the 
surface z = h/2 of a [ + 30°] plate are presented. 
Owing to the symmetry, only a quarter of 
the plate surface is shown. The graphs ox(£,,r\) 
are plotted at the average temperature 
Tav = 195.5°C; they correspond to a uniform 
temperature change T(t) = TTef+T0(t) (Fig. 4a) 
and to localized heating T(£, t) = TTef+ 
T0(t) sin2 n£ (Fig. 4b). For the case of localized 
thermal loading, the results obtained using the 

200 

Gr/A^ [+30°] 

a/b = 1 
T(x,t) = Trei+To(t)sin2f- 

0.5 1.5 2.5 

W/h 
Figure 3. The effect of the length-to-thickness ratio on the 
thermal response of a [ + 30°] angle-ply plate (boundary 
condition SSI). Dashed and dashed-dotted lines corre- 
spond, respectively, to the elastic solutions and to a 
simplified approach to the effect of temperature- 

dependent material properties. 
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T(t)=Tre( + To(t) 

0) 

<5 
¥/* 

GrIM [±30°] 
a/b = 1 
b/h = 50 
Tav=195.5°C 

^    T(x,t)=Tr0i + To(t)sin2f. 

(b) 

Figure 4. Distribution of a stress o-x over the surface 
z = h/2 of a [ + 30°] angle-ply plate (boundary condition 
SSI). The graphs refer to three cases: (a) uniform thermal 
loading; (b) non-uniform thermal loading; and (c) non- 
uniform thermal loading and simplified approach to the 

effect of temperature-dependent material properties. 

simplified treatment of TDMP are displayed in 
Fig. 4c. We note that the landscape of stress 
distribution in the non-uniformly heated plate is 
quite different to those corresponding both to 
the uniform heating and to the simplified 
approach to TDMP. Quantitatively, the stresses 
in case (b) are noticeably smaller than those in 
cases (a) and (c) in Fig. 4. 

From the results obtained it may be con- 
cluded that thermal response is affected 
markedly by the type of spatial temperature 
distribution the plate is exposed to. The visco- 
plastic effects in the metallic matrix may have a 

significant influence on the behaviour of MMC 
plates. The effect of temperature-dependent 
material properties, both elastic and viscoplas- 
tic, should be taken properly into account. 
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In this paper the results of a programme, in which a composite bracket as 
a replacement for a metal forging was developed, will be presented. The 
finite-element method (FEM) in combination with an optimization module 
was used to design the bracket. Compared to its metal counterpart, the 
composite bracket demonstrated a weight reduction of 43%. Two 
composite brackets were fabricated by resin transfer moulding (RTM). One 
bracket was loaded statically to 1.38 x Design Ultimate Load. The bracket 
did not fail at this load level. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The use of composites in primary aerospace 
structures is increasing gradually. Until recently 
one of the most important reasons for using 
composites instead of metals for these struc- 
tures was the reduction of weight. However, the 
last few years a change from 'Design for Mini- 
mal Weight' to 'Design to Cost' can be 
observed. The main goal of this 'Design to Cost' 
approach is to achieve a reduction in total life- 
cycle costs of a structure. A way to realize this 
cost reduction, among others, is to develop new 
composite materials and fabrication concepts 
for these materials. One of these fabrication 
techniques is 'resin transfer moulding' (RTM). 

The RTM fabrication concept is based on the 
injection of resin into a mould cavity containing 
dry fibres (preform). During the injection pro- 
cess, air in the mould cavity is replaced by resin 
and the fibres are impregnated. The RTM pro- 
cess has been in use within the automotive 
industry for many years for limited-production 
run parts where the cost of tooling for pressed 
steel construction would be prohibitive, e.g. for 
sports cars and special purpose vehicles. RTM 
has also been in use in the aerospace industry 
for many years for secondary parts such as 
radomes and flap track fairings. However, until 
recently, RTM has not been used routinely in 
the aerospace industry for primary structures 

because of the lack of high-quality RTM resins 
and the lack of available material databases 
adequate for structural substantiation and certi- 
fication. 

Now that high-quality RTM resins are 
becoming commercially available, RTM is 
becoming increasingly popular in the aerospace 
industry. The main improvement of these new 
RTM resins (besides their improved mechanical 
properties) is that they have a low viscosity for a 
reasonable time, enabling large products with 
high fibre volume fractions to be produced 
without the use of excessively high injection 
pressures. Although RTM moulds often are 
very complex and expensive, RTM has several 
advantages compared to autoclave prepreg 
fabrication concepts which, at this moment, are 
the standard used in the aerospace industry. 
Some of these advantages are as follows. 

• Net shaped products can be made, reducing 
the amount of trimming required for the 
cured product. 

• Two-sided tooling concepts can be used 
assuring tight outer-dimensional tolerances, 
reducing the amount of shimming during 
assembly. 

• No high capital investments (for instance an 
autoclave) are required. 

• Both resin and fibres can be stored for long 
periods at room temperature. 

91 



92 H. G. S. J. Thuis, C. Biemans 

• Three-dimensional double-curved products 
can be fabricated which cannot be made 
using standard autoclave fabrication tech- 
niques. 

An example of a three-dimensional double- 
curved composite component is a bracket as a 
replacement for a metal forging. The potential 
advantages of these composite brackets are 
(besides a reduction in weight) a reduction in 
fabrication and maintenance costs. A major 
reduction in fabrication costs can be achieved 
because an RTM mould for such a part can be 
relatively simple in comparison to an often very 
complex and expensive forging die. The reduc- 
tion in maintenance costs can be attributed to 
the excellent fatigue properties of composites. 

In the investigation described in this paper a 
composite bracket for aerospace applications 
has been developed. The bracket was fabricated 
by RTM. To evaluate the composite design it 
was compared with an existing metal bracket as 
its counterpart. The main goal of the investiga- 
tion was to demonstrate the feasibility of a 
composite bracket as a replacement for a metal 
version. 

THE METAL BRACKET 

The metal bracket, which was used as reference 
for this study, is presented in Fig. 1. The 
bracket is made of aluminium and has a weight 
of 314 g. In service the bracket will be con- 
nected to a backing structure by two 5/16-inch 
steel bolts and four 1/4-inch titanium high locks 
(see Fig. 2). Design Ultimate Load (DUL) for 
the metal bracket was 33.3 kN in tension and 
34.0 kN in compression (see Fig. 2). These ten- 
sion and compression loads are introduced via 

load 

Load cases at D.U.L.: 
33.3 kN in tension 
34.0 kN in compression 

1/4" 5/16" bolt 
high lock 

Fig. 2. Static load cases for the metal bracket. 

1/4" high lock 

Fig. 1. Metal bracket. 

two    pin-loaded    holes   with    diameters    of 
14.0 mm. 

COMPOSITE MATERIALS USED 

The following materials were used for the com- 
posite bracket. 

(a) SA Injectex GF420-E01-100 2.5-D (420 g/ 
m2) carbon fabric with HTA fibres — this 
balanced fabric has an equal amount of 
fibres in the warp and weft direction. The 
mechanical properties of this fabric are not 
as good as for an unidirectional fabric but it 
has excellent drapability characteristics and 
can, therefore, be used in double-curved 
areas of the bracket. 

(b) SA Injectex GU230-E01-100 unidirec- 
tional (230 g/m2) carbon fabric with HTA 
fibres — this fabric has 90% of its fibres in 
the warp direction and 10% in the weft 
direction. Because of the unidirectional 
character of the fabric, the mechanical 
performance is excellent but drapability 
characteristics are poor. Therefore, this 
fabric can be used in single-curved areas of 
the bracket. 

Low-temperature curing epoxy resin LY5052 
and hardener HY5052 were used to impregnate 
the fibres. 

The material properties of the materials used 
(needed as input for the finite-element analysis) 
were determined by testing tension (250x25 
x 3.5 mm) and compression (45 x 40 x 3.5 mm) 
specimens. The specimens were fabricated by 
RTM and had a fibre volume fraction of 58%. 
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All tests were performed at ambient conditions. 
The results of these tests are presented in Table 
1. 

ANALYSES AND OPTIMIZATION OF THE 
COMPOSITE BRACKET 

The purpose of the programme described in 
this paper was to demonstrate, in a relatively 
short period, the feasibility of a composite 
bracket as a replacement for a metal version. It 
was decided to use the same kind and number 
of pin-loaded holes, high locks and bolts in the 
composite bracket as were used in the metal 
bracket. The pin-loaded holes, used for load 
introduction, and the holes for the bolts and 
high-locks were not modelled in detail to keep 
the FEM model as simple as possible in order 
to minimize the time needed for modelling and 
post-processing. 

The composite bracket had to be a functional 
replacement for the metal bracket. However, it 
was allowed that the global geometry of the 
composite bracket differed from the metal 
bracket. The finite-element code B2000 [1] was 

Table 1. Test results 

GU230 GF420 

£n 110.0 GPa 59.0 GPa 
E2t 3.4 GPa 59.0 GPa 
Elc 110.0 GPa 57.0 GPa 
E2c 3.4 GPa 57.0 GPa 
G12 4.5 GPa 4.5 GPa 
G\X 1500.0 MPa 591.0 MPa 
02t 70.0 MPa 591.0 MPa 
<7lc 633.0 MPa 388.0 MPa 
^2c 70.0 MPa 388.0 MPa 
Vl2 0.300 0.035 
^12 89.0 MPa 89.0 MPa 

used for the analysis. The bracket was modelled 
using 354 nine-node anisotropic shell elements 
Q9.st (see Fig. 3). The pin-loaded holes were 
modelled by introducing the load in two nodes, 
one node on each side of the bracket. The bolts 
and high-locks were modelled using boundary 
conditions which lock all six degrees of freedom 
in the corresponding nodes in the base of the 
bracket. Because it was not certain whether a 
fibre volume fraction of 58% (which was used 
to determine the material properties) could be 
realized in the bracket the Design Ultimate 
Load levels were multiplied by a factor of 1.15. 

The bracket was divided into six sections (see 
Fig. 4) with the following sublaminates: 

Sections    1    and   6:    [45°,0o,45o]sublaminate l9 

[U ,yU ,U Jsublaminate 2i l^J  >" >4D Jsublaminate 5 

Section 2: [45o,0°,45°]sublaminate l9 

r^0 n° 4*)°i |.-r~< 5U >^~" Jsublaminate 5 

Section 3: [45°,0°,45o]sublaminate l9 [0°,90°,0°]sub. 

laminate 2> L^ Jsublaminate 3> L"" Jsublaminate 4> 
\A<° f)° 4S°1 
I.T.; J" j^-" Jsublaminate 5 

Section   4:   [45°,0°,45°]sublaminateol,   [0°]sublami. 

nate 3' ["" Jsublaminate 4» L^"' '^ '   ^ Jsublaminate 5 

354 nine-node 
anisotropic shell elements 

Fig. 3. Finite-element model. 

>10° 

Fig. 4. Geometric design variables and sections 1-6. 
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Section    5:     [45 ,0 ,45 ]sublaminate 1>     [0 Jsublami- 

nate 3? L-'" Jsublaminate 4) 1^ >" i*3 Jsublaminate 5" 

The optimization module B20PT [2] within 
B2000 was used to optimize the composite 
bracket. The optimization code minimizes the 
weight of the bracket while the design is sub- 
jected to constraints on stresses and geometric 
limits. For the optimization the following 10 
design variables were defined (see Fig. 4): 

design variable 1 — height H; 
design variable 2 — width Wx\ 
design variable 3 — width W2; 
design variable 4 — length L; 
design variable 5 — number of 45° plies in 
sublaminates 1 and 5 of sections 1-6; 
design variable 6 — number of 0° plies in 
sublaminates 1 and 5 of sections 1-6; 
design variable 7 — number of 0° plies in 
sublaminate 2 of sections 1, 3 and 6; 
design variable 8 — number of 90° plies in 
sublaminate 2 of sections 1, 3 and 6; 
design variable 9 — number of 0° plies in 
sublaminate 3 of sections 3, 4 and 5; 
design variable 10 — number of 90° plies in 
sublaminate 4 of sections 3, 4 and 5. 

Sublaminates 1 and 5 were composed of the 
2.5-D fabric GF420-E01-100 (because this fabric 
is symmetric and balanced a 45° layer also can 
be regarded as a —45° layer, see design variable 
5). Sublaminates 2-4 were composed of the 
unidirectional fabric GU230-E01-100. 

The composite bracket had to be a functional 
replacement for the metal version. Therefore, 
side-constraints for the optimization were 
defined to ensure that the optimized bracket 
stayed within the available assembly window of 
the metal bracket. In order to avoid fibre wrink- 
ling and ease fabrication of the bracket preform 
an experimental drape study was carried out to 
determine the drape limit of the fabrics used. 
This drape limit was transformed into a side- 
constraint for the optimization which defined 
that the angle between sections 1 and 2 of the 
bracket (see Fig. 4) had to be larger than 10°. 

As mentioned before, the pin-loaded holes 
and holes for the high-locks and bolts were not 
modelled in detail. To design these holes in the 
bracket the following design stress levels were 
used [3]: abearing = 400 MPa, tshear.out = 90 MPa 
and <Ttension = 388 MPa. These stress levels, in 
combination with the diameters of the different 

Fig. 5. Global sizing of a pin-loaded hole. 

holes, determine the dimensions required of the 
bracket near the holes (see Fig. 5). These mini- 
mum dimensions were used as side-constraints 
for the optimization. The side-constraints were 
set to values which ensured a bearing failure 
mode as this failure mode has a fail-safe charac- 
ter [3]. 

The Tsai-Hill stress criterion was used to 
predict laminate failure. A number of elements 
near the load introductions were left out in the 
determination of laminate failure as these ele- 
ments were expected to give unrealistically high 
stresses as a result of the FEM model simplifi- 
cations. 

Figure 6(a) shows the stress distribution of 
the initial model before optimization. Note the 
stress concentrations near the load introduction 
areas. Figure 6(b) presents the stress distribu- 
tion in the bracket after optimization. Note the 
change in geometry of the bracket and the uni- 
form stress distribution. Figure 7(a) shows the 
(uniform) thickness distribution in the bracket 
before optimization. Figure 7(b) presents the 
thickness distribution of the bracket after opti- 
mization. Note the increase in thickness of the 
sublaminates to realize the uniform stress distri- 
bution and satisfy the side-constraints. 

As a result of the optimization, the sublami- 
nates in sections 1-6 had changed as follows. 

SeCt!0no   \    aondo6:      [452°'0O'452O]sublaminate 1, 
[03

o,90°,0o,90o,03
o]subIamjnate2, 

|452 >0 ,432 Jsublaminate 5 
Section o      o 2: [452°,0°,452°]sublaminate lt 

[452 ,0 ,432 Jsublaminate 5 
Section o  o     3: Q       [452°,0°,452°]sublaminate u 

[03
o,90o,0o,90o,03O]subiaminate2, 

|03 ,90 ,0 ,90 ,03 ,90 ,03 Jsublaminates 3 and 4; 

|452 ,0 ,452 Jsublaminate 5 
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Section 4: [452°,0°,452°]sublaminate |} 

[902
O,03O,902

O,0 ,902 ,03 ,902 ]sublaminates 3 and 4; 

|452 ,U ,452 Jsublaminate 5 
Section 5: [452

o,0°,452
o]sublaminate 1} 

[902 ,0 ,902 ,0 ,902 ,0 ,902 Jsublaminates 3 and 4> 

|4J2 ,U ,4j2 Jsublaminate 5- 

Figure 8 presents the dimensions of the bracket 
after optimization. 

After optimization a buckling analyses was 
performed to check the stability of the bracket. 
Figure 9 presents the first buckling mode which 
occurred at 8.5 x Design Ultimate Load. 

FABRICATION OF THE BRACKET 

Figure 10 presents the different elements of the 
RTM mould. All elements of the mould were 
made of aluminium with the exception of the 

If« SDHentkrer i-SlK 
! Initul design of co«po*iU br»±*t Strtsi distribution                                                            | 

|(a)| 
_ 

i 
; i;i 

,    % 
1   7)2 

V/-^$' 

0" 
11   44 

Fig.  7.  (a)  Thickness  distribution before  optimization, 
(b) Thickness distribution after optimization. 

Fig.   6.   (a)   Stress   distribution   before   optimization, 
(b) Stress distribution after optimization. 

Fig. 8. Dimensions of the composite bracket after optimi- 
zation. 



96 H. G. S. J. Thuis, C. Biemans 

central part which was made of the elastomer 
Techtron HPV. Techtron was selected because 
of its high coefficient of thermal expansion 
which eases demoulding of this mould element 
after post-curing the bracket. Because of the 
modular character of the mould, subpreforms 
could easily be prepared on the tapered mould 

Fig. 9. First buckling mode at 8.5 x Design Ultimate Load. 

elements and the Techtron central part. Then 
sublaminate 5 was preformed on the subpre- 
forms to complete the preform of the bracket. 
The final preform was positioned on the mould 
base plate. Then the mould was closed by bolt- 
ing the side plates to the base plate and 
positioning the top plate. Resin was injected 
through a hole in the Techtron central part via 
a central injection point in the top plate. Eight 
vents, located in the side walls, were used to 
evacuate the air during resin injection. 

Based on a cost estimation, it was decided 
not to fabricate the bracket net shaped but to 
machine the cured bracket to the required 
dimensions, as cutting the subpreforms to the 
net shaped dimensions without fibre distortion 
at the edges would become very difficult, time- 
consuming and expensive owing to the small 
dimensions of the bracket. 

Two brackets were fabricated. During resin 
injection the mould had a temperature 50°C. 
Resin was injected without vacuum assistance. 
The RTM pump pressure needed to inject the 
resin varied from 1.5 bar at the beginning to 
3.5 bar at the end of the RTM process. After 

side plate side plate 

side plate side plate 

Fig. 10. Elements of the RTM mould. 



Composite bracket for aerospace applications 97 

AF 

Fig. 11. Composite bracket before and after machining. 

4 min the preform was wetted. However, in 
order to ensure a complete impregnation of the 
fibres in the preform, the resin injection was 
continued for 20 m. A fibre volume fraction of 
55% was achieved with a good laminate quality. 
The C-scans made indicated that there was no 
entrapped air or dry spots. Figure 11 shows the 
bracket before and after machining. 

The weight of the bracket after machining 
was 173 g whereas the aluminium bracket 
weighed 314 g, which means that a weight 
reduction of 43% had been realized. Unfortu- 
nately, because no data were available on the 
costs of the metal bracket no cost comparison 
between the composite and the metal bracket 
could be made. 

TESTING THE BRACKET AND TEST 
RESULTS 

One of the two brackets fabricated was tested 
statically in tension and compression. During 
the tests the bracket was mounted in a test set- 
up on a slope making an angle of 40° (see 
Fig. 12). Six rosettes (type HBM 6/120RY11) 
were used to measure strains during the tests 
(see Fig. 12). The tension and compression 
loads were introduced to the bracket by a metal 
bar connected to a screw-driven test machine. 
Two steel bushes were positioned in the pin- 
loaded holes of the bracket to fix the metal bar. 
The tests performed were displacement con- 
trolled with a velocity of 0.1 mm/min. The 
bracket was subjected to the following test pro- 
gramme. 

• Test 1 — 0.575 x Tension Design Ultimate 
Load 

Rosette 1 opposite to 2 
Rosette 3 opposite to 4 

Fig. 12. Test set-up and instrumentation of the bracket. 

• Test 2 — 0.575 x Compression Design Ulti- 
mate Load 

• Test 3 —  1.15 x Tension Design Ultimate 
Load 

• Test 4 — 1.15 x Compression Design Ulti- 
mate Load 

• Test 5 — 1.38 x Tension Design Ultimate 
Load 

• Test 6 — 1.38 x Compression Design Ulti- 
mate Load. 

The bracket was designed for 1.15 x (Design 
Ultimate Load)metal bracket. During tests 5 and 6 
the bracket was loaded to 1.2 x (1.15 Design 
Ultimate Load)metal bracket. The bracket did not 
fail at this load level. The bracket was not 
loaded to failure at this stage because it will be 
subjected to a fatigue programme in the near 
future. Figure 13 presents the principle strains 
of rosettes 1 and 4 (see Fig. 12) measured 
during test number 3 (1.15 x design Ultimate 
Load test in tension), and principle strains of 
rosettes 5 and 6 (see Fig. 12) during test 
number 4 (1.15 x Design Ultimate Load in com- 
pression). Figure 12 indicates that for a certain 
load level the calculated strains are somewhat 
lower than the measured strains. This may have 
been caused by the mismatch in the fibre 
volume fractions between the specimens used to 
determine the material properties (58%), which 
were used as input for the FE analyses, and the 
fibre volume fraction of 55% obtained in the 
actual bracket. 

CONCLUSIONS 

A composite bracket for aerospace applications 
as a replacement for a metal bracket has been 
developed. The finite-element method in com- 
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Fig. 13. Calculated and measured load-strain curves. 

bination with an optimization module was used 
to design the bracket. 

The weight of the composite bracket was 
173 g whereas the aluminium bracket weighed 
314 g, which means that a weight reduction of 
43% has been realized. Because no data were 
available on the costs of the metal bracket no 
cost comparison between the composite and the 
metal bracket could be made. 

An RTM mould and modular preforming 
concept to produce the composite bracket have 
been developed. Two composite brackets were 
fabricated. One bracket was subjected to a test 
programme in which the bracket was loaded to 
1.38 x Design Ultimate Load in both tension 

and compression. The bracket did not fail at 
this load level. 
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This paper deals with the implementation and test of a non-smooth 
eigenfrequency based criterion to evaluate the directional derivatives 
applied to multilaminated plate structures, when non-differentiable multiple 
eigenfrequencies occur during the structural optimization process. The 
algorithm is applied to a family of C° Lagrangian higher order shear 
deformation theory discrete models. Angle ply design variables and 
vectorial distances from the laminate middle surface to the upper surface of 
each ply are considered as design variables. The efficiency and accuracy of 
the algorithm developed is discussed with an illustrative case. The analytical 
single and/or directional derivatives are compared to forward finite 
difference derivatives for the developed discrete models. © 1997 Elsevier 
Science Ltd. 

INTRODUCTION 

Laminated composite materials are being widely 
used in many industries mainly because they 
allow design engineers to achieve very import- 
ant weight reductions when compared to 
traditional materials and also because more 
complex shapes can be easily obtained. The 
mechanical behavior of a laminate is strongly 
dependent on the fiber directions and because 
of this the laminate should be designed to meet 
the specific requirements of each particular 
application in order to obtain the maximum 
advantages of such materials. Accurate and effi- 
cient structural analysis, design sensitivity 
analysis and optimization procedures are very 
important to accomplish this task. Structural 
optimization with behavioral constraints, such 
as stress failure criterion, maximum deflection, 
natural frequencies and buckling load can be 
very useful in significantly improving the per- 

*Address for correspondence: IDMEC/I.S.T.-Instituto de 
Engenharia Mecänica-Instituto Superior Tecnico, Av. 
Rovisco Pais, 1096 Lisboa, Codex, Portugal. 

formance of the structures by manipulating 
certain design variables. Design sensitivity 
analysis is important to accurately know the 
effects of design variables changes on the 
performance of structures by calculating the 
search directions to find an optimum design. To 
evaluate these sensitivities efficiently and 
accurately it is important to have appropriate 
techniques associated to good structural 
models. 

It is well known that the analysis of laminated 
composite structures by using the classical 
Kirchhoff assumptions can lead to substantial 
errors for moderately thick plates or shells. This 
is mainly due to neglecting the transverse shear 
deformation effects which become very import- 
ant in composite materials with low ratios of 
transverse shear modulus to in-plane modulus. 
This can be attenuated by Mindlin's first order 
shear deformation theory [1,2], but this theory 
yields a constant shear strain variation through 
the thickness and therefore requires the use of 
shear correction factors [3] in order to approxi- 
mate the quadratic distribution in the elasticity 
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theory. More accurate numerical models such 
as three-dimensional finite elements models can 
be used with adequate refined meshes in order 
to contemplate acceptable aspect ratios, but 
these models are computationally expensive. A 
compromising less expensive situation can be 
achieved by using single layer models, based 
on higher order displacement fields involving 
higher order expansions of the displacement 
field in powers of the thickness coordinate. 
These models can accurately account for the 
effects of transverse shear deformation yielding 
quadratic variation of out-of-plane strains and 
therefore do not require the use of artificial 
shear correction factors and are suitable for the 
analysis of highly anisotropic plates ranging 
from high to low length-to-thickness ratios. 

Pioneering work on the structural analysis 
formulation based in higher order displacement 
fields can be reviewed in Lo et al. [4,5], where a 
theory which accounts for the effects of trans- 
verse shear deformation, transverse strain and 
nonlinear distribution of the in-plane displace- 
ments with respect to thickness coordinate is 
developed. Third order theories have been 
proposed and/or reviewed by several re- 
searchers [6-15]. 

Recently, Abrate [16] gave a perspective of 
work carried out by different researchers in the 
field of the optimum design of composite lami- 
nated plates and shells subjected to constraints 
on strength, stiffness, buckling loads and funda- 
mental natural frequencies. Most of the papers 
reviewed are based on variational approxima- 

tion methods. The use of higher order models 
as well as the problem of non-differentiability of 
multiple eigenvalues that may occur during the 
structural optimization process is not men- 
tioned. 

Multiple eigenfrequencies do appear fre- 
quently on complex structures. It is known 
[17-34] that multiple eigenvalues are not differ- 
entiable in the common sense and therefore 
analytical single design sensitivity analysis [35] 
cannot be used. When this problem occurs it 
can be overcome by evaluating the directional 
derivatives using the concept of generalized 
gradient [24]. An overview of recent develop- 
ments in this area, mainly related to isotropic 
structures, can be found in Ollhoff et al. [30], 
Seyranian et al. [31] and Seyranian [34] among 
others. 

In the present paper C° nine node Lag- 
rangian higher order models applied to eigen- 
frequency sensitivity analysis of multilaminated 
thin-to-thick plate structures [36] is extended to 
contemplate the non-differentiability of mul- 
tiple eigenfrequencies. 

The design variables considered are the ply 
orientation angles of the fibers and the vectorial 
distances from the laminated middle surface to 
the upper surface of each layer. The sensitivities 
of eigenfrequency response with respect to the 
design variables are evaluated analytically. An 
illustrative numerical example is presented to 
validate the feasibility of the proposed design 
sensitivity approach to evaluate directional deri- 
vatives when multiple eigenvalues are involved. 

HIGHER ORDER DISPLACEMENT FIELDS 

In order to approximate the three-dimensional elasticity problem to a two-dimensional laminate 
problem, the displacement components u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) at any point in the laminate 
space (Fig. 1) are expanded in Taylor's series powers of the thickness coordinate z. The following 
higher order displacement fields can be written [11] 

HSDT 11 

u{x,y,z,t) = u0(x,y,t)+z9x(x,y,t)+z2u0(x,y,t)+z3(p*x(x,y,t) 

v(x,y,z,t) = vo(x,y,0+zoy(x,v,0+z2Vo(^,y,0+z3<?'y(^>>',0 
w(x,y,z,t) = wQ(x,y,t)+z(pz(x,y,t)+z2w*0(x,y,t) (1) 

HSDT 9 
u(x,y,z,t) = u0(x,y,t)+z6x(x,y,t)+z2ih(x,y,t)+z3(px(x,y,t) 

v(x,y,z,t) = v0{x,y,t)+zOy{x,y,t)+z2v*0{x,y,t)+z3'(p*y{x,y,t) 

w(x,y,z,t) = w0(x,y,t) (2) 
where u, v, w are the displacement components of generic point in the x, y, z directions, u0, v0, w0 are 
the displacements of a generic point on the reference surface, t is the time, 9X, 6y are the rotations 
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z, w 

Fig. 1. Laminate geometry and coordinate systems (x,y, z) and (1, 2, 3). 

of normal to the reference surface about the y and x axes respectively and <pz, u0*, v0*, w0*, cpx*, cp* 
are the higher order terms in the Taylor's series expansions, defined at the reference surface. 

FINITE ELEMENT MODEL 

The finite element formulation for the displacement field HSDT 11 represented by eqn (1) applied 
to 9-node Lagrangian quadrilateral elements, will be briefly described. The strain components are 
given by 

\ t 

8«o 

SJC 

9vo 

dy 
)+Z\ 

0 
du0     dv*0 

+ 
dy      dx 

1 \ 

\ 

dx 

dy 
0 

dcp*x     d<p*y 
 + —- 

dy       dx 

(3) 

dw0 

Wdw° 
dx 

t 

\               J \ 

2vo+ 

2u0+ 

dy 

d<Pz 

dx 

The strains can be written as 

+zT 
3</>> 

dw*0 

dy 

\3q>x+- 
dw\ * 

dx 

(4) 

(5) 
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where Zbm and Z5 are matrices containing powers of z coordinate (z" with n = 0, ..., 3) defined in 
accordance with displacement fields and strain relations and e*bm and e* are vectors containing the 
bending and membrane terms of the strain components and the transverse shear, respectively, given 
by 

£bm — 

j 8«0     8v0          du0     8v0     8«o 

)   dx      9v '   v   oy      8x      8x 

8VQ 

8v' 

8M0     8V0 
+ 

8v      8x 

00, 

8x 

80, 

dy 

dOy     8<p*     dy*     Q(p*x     8<p*  [T 

,2w0, 
80. 

9x      8x       8y       8y       9x 
(6) 

8w0 

8x 
, 2VQ+ —- , 2w0+ —— , 3cpy+ — 

8v 8x oy 
, 3cp*x+ 

8wo    T 

8x 
(7) 

Using C° Lagrangian shape functions [1,37] the displacements and generalized displacements 
defined in the reference surface are obtained within each element, respectively, by 

V   ( = Zm{u0 V0 W0 9X 6y <pz U0 VQ Wo <p* <pl} 

w 

{w0 v0 w0 9X 9y <pz Mo VQ Wo <py}T=   £ Njfi 
= 1 

(8) 

(9) 

where Zm is a matrix containing powers of z coordinate defined in accordance with the displacement 
field, Nt are the Lagrange shape functions of node / and cf, is the displacement vector of node / which 
is related to the displacement vector of the element, qe, by 

qe={...cfi...}
T,i=\,...,9 (10) 

The strains in eqns (6) and (7) are represented as 

°bm ' B, bm 

5. (11) 

where Bbm and Bs are the strain-displacement matrices, respectively, for bending and membrane and 
transverse shear, relating the degrees-of-freedom of the element with the strain components. 

♦ ♦ -   f * 
\    ♦ ^   * '  f *   /\ 

+    1   X. ♦ 
\ ♦ yi_ry /\   ' 

1 . . \ ♦ f   + y \ * l^- 
• *    +          1 ♦  j 

VY 
*♦ \   1 * * 

* * 1   1 ♦ \ X \ * i* j * 
"l * * /. ~\\ *JV ♦ I 

+     1    jf 
♦ / - ~\*\\f 

\.   j   * 

/    * / • •  \ ♦   \ 

* - *   \ ' 

Fig. 2. Square plate with central circular hole — finite element mesh. 
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Mode 1 Mode 2 

Mode 3 Mode 4 
Fig. 3. Vibration modes for lamination sequence [457 — 45°]. 

Applying Hamilton's principle to the Lagrangian functional assuming small displacements and 
adding the contributions of all finite elements in the domain one obtains for free harmonic vibration 
the equilibrium equation of the finite element discretized structure 

(K-XnM)qn = 0,n=\, N (12) 

where K and M are respectively the structure stiffness matrix and mass matrix and N represents the 
total number of degrees of freedom. The solution of this eigenvalue problem consists of TV eigenva- 
lues A.n = a>l and corresponding eigenvectors q„, where con is the natural frequency of mode n. K and 
M matrices are obtained by assembling in the usual way the corresponding element matrices Ke, Me. 

Mode Mode 2 

Mode 3 Mode 4 
Fig. 4. Vibration modes for lamination sequence [307 — 60° 
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Table 1. Eigenfrequency sensitivities in order to ply angles obtained with Q9-HSDT 11 model, for simply supported 2-ply 
[457 — 45°] square plate with central circular hole 

Frequency Direction 
(fli, e2) 

Analytica sensitivities Global finite 
difference" (rad/s) 

Multiple Single 

146.0411 

259.5086 

dcojdc 

d[min(w2, <a3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-44.7128 
-44.7128 
-19.9962 

-0.163641 xlO"5 

0.163641 x KP5 

43.6214 
-43.6214 
-19.5081 

-0.802172 x 10 "2 

0.229122 xlO^2 

-44.7136 
-44.7102 
-19.7928 

259.5086 d[max(co2, co3)]/dc 
JE' JE 

1,0 
0,1 

1       2 

44.7128 
44.7128 
19.9962 

-43.6214 
43.6214 
19.5081 

44.7073 
44.7079 
19.79225 

445.8111 dco^dc 
JE ' JE 

1,0 
0,1   

-0.498112x10-° 
0.498058 x 10"6 

0.114643 x 10~2 

-0.114643 xlO"2 

increment for forward finite difference derivatives 5 = 0.000001°. 

Table 2. Eigenfrequency sensitivities in order to ply angles obtained with Q9-HSDT 11 model, for simply supported 2-ply 
[307-60°] square plate with central circular hole 

Frequency Direction 
(öl, Ö2) 

Analytical sensitivities Global finite 
difference" (rad/s) 

Multiple Single 

130.0205 

254.0572 

dcuj/dc 

d[min(a>2, &>3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-26.7139 
-26.7139 

5.20718 

47.1639 
47.1639 
56.7199 

-18.3624 
8.94208 

47.1590 
47.1527 

-26.7067 
-26.7130 

5.31705 

254.0572 d[max(aj2, a>3)]/dc 
JE' JE 

1,0 
0,1 

1       2 

65.0715 
65.0715 
46.2549 

-18.3623 
56.7199 
42.5200 

65.0594 
65.0622 
45.9627 

426.0753 daVdc 
JE ' JE 

1,0 
0,1 

— 63.6208 
63.6208 

63.6195 
63.6212 

"Increment for forward finite difference derivatives <5 = 0.000001°. 

Table 3. Eigenfrequency sensitivities in order to ply angles obtained with Q9-HSDT 9 model, for simply supported 2-ply 
[45°/—45°] square plate with central circular hole 

Frequency 
(rad/s) 

Direction 
(0i, 02) 

Analytical sensitivities Global finite 
difference" 

Multiple Single 

145.9545 

259.3818 

dcoj/dc 

d[min(a>2, co3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-44.7366 
-44.7367 
-20.0068 

-0.162070 x 
0.162070 x 

14.7842 
-14.7842 
-6.61170 

io-5 

lO"5 
-0.200543 x 10-1 

-0.160434 xlO"1 

-44.7446 
-44.7360 
-19.6851 

259.3818 d[max(co2, co3)]/dc 
JE' JE 

1,0 
0,1 

1       2 

44.7367 
44.7366 
20.0068 

-14.7842 
14.7842 
6.61170 

44.7280 
44.7245 
19.6737 

445.5345 daVdc 
JE' JE 

1,0 
0,1 

— -0.458874 x 
0.458800 x 

10"6 

10-6 
-0.114643 xlO"2 

0.171964 x 10"2 

"Increment for forward finite difference derivatives <5 = 0.000001°. 
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The stiffness and mass matrices of the element are evaluated, respectively, as 

Ke = \+\\+l, 
7T 

Qk z. dz 
Bbm det J d^dr\ 

Me = \+\\+\NT[   X pkfyk^ZT
mZmdz   TVdet/d<^7 

(13) 

(14) 

where Qk is the constitutive matrix in the (x, y, z) laminate axes for &th ply [6,7,38], TV is the matrix 
of the Lagrange shape functions and (k the material density of fcth layer. NL is the number of layers 
of the laminate, hk is the vector distance from the middle surface of the laminate to the upper side 
of kth ply (Fig. 1). Finally, det / is the determinant of the Jacobian matrix of the transformation from 
(£, n) natural coordinates to element (x, y, z) coordinates. 

The finite element model having the displacement field represented by eqn (1), will be referred to 
as Q9-HSDT 11. The element which displacement field is given by eqn (2) is developed easily from 
this parent element by deleting the appropriate degrees of freedom leading to the finite element 
discrete model referred to as Q9-HSDT 9. The C° 9-node Lagrangian first order discrete model, 
referred to as Q9-FSDT 5, can also be obtained by deleting all high order terms and introducing 
shear correction factors [1-3,38]. 

SENSITIVITY ANALYSIS 

For single eigenvalues, considering a vibration mode q^ which corresponds the natural frequency cop 

normalized through the relation qjMqp=l, the sensitivities of natural frequency with respect to 
changes in the design variable bt are [35] 

d(Qp 

dbt   
= 

these sensitivities can be efficiently obtained at element level through 

(15) 

dcor  £ 

db,- 2cor leE 

QK'e 

db, 
— cor 

dMl
e 

db; 
(16) 

where E represents the set of elements in which the design variable bt is defined. 
In the case of multiple eigenvalues, if Xj = Xj+1 = ... = Xj+m are the eigenvalues with m + 1 multi- 

plicity and q, = t^-+1 = ... = qj+m are orthonormal eigenvectors of Xp then the directional derivatives in 
the direction c = {ca, ..., c„ ..., c„dv}, where „dv is the number of design variables, are obtained by 
calculating the eigenvalues of the x matrix of dimension (m+1) x (m+1) whose elements are evalu- 
ated by [31,33] 

«dv 

XPq=  X c,<   2 q£ 
i=i leE 

8KJ 6Mi 
— A 

db, 
, p,q = j, ..., j = m (17) 

where the vector c has the norm ||c|| = 7c?+...+c?+...+c^v= 1. Let us define the functions 

f^maxiXj, Xj+l, ..., Xj+m) (18) 

/2 = minU,., Xj+1, ..., Xj+m) (19) 

If nx and ju2 are respectively the maximum and minimum eigenvalues of matrix x then the 
directional derivatives of the functions/a and/2 in the direction c are given by 

d/i d/2 
= ß1 and = fi2 

dc dc 
(20) 
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For comparison purposes the eigenfrequency directional derivatives in the direction c can be 
obtained by forward finite difference by 

df _ /(a)-/(b) 

dc .5 

The perturbed design represented by vector a is given by 

a = b+(5c 

(21) 

(22) 

where ö is a small positive design perturbation and b = {bx, ..., bb ..., bndv} is the vector of design 
variables. 

NUMERICAL APPLICATION 

The free vibration problem of a 2-ply simply 
supported square plate with a central circular 
hole is considered. The side dimension of the 
plate is a = 2 m and the hole diameter is a/3. A 
finite element mesh with 288 elements and 64 

nodes is used (Fig. 2). The simply supported 
boundary conditions for HSDT 11 model were 
taken as uo = ul = wQ = wl = 6x = (p*x = (pz = 0 at 
v = ±a/2 and v0 = vl = w0 = wl = 6y= (p*y = cpz = 0 at 
x = ±a/2. The boundary conditions for HSDT 9 
and FSDT 5 models can be obtained from 
HSDT 11 by deleting the appropriate terms. 

Table 4. Eigenfrequency sensitivities in order to ply angles obtained with Q9-HSDT 9 model, for simply supported 2-ply 
[307-60°] square plate with central circular hole 

Frequency Direction 
(0i, e2) 

Analytical sensitivities Global finite 
difference3 

(rad/s) 
Multiple Single 

129.9607 

253.9611 

dcoj/dc 

d[min(co2, ct>3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-26.8269 
-26.8269 

5.06551 

47.0852 
47.0851 
63.9992 

-25.8454 
5.50448 

47.0931 
47.0874 

-26.8150 
-26.8173 

5.37664 

253.9611 d[max(a>2, co3)]/dc 
■ß '   JS 

1,0 
0,1 

1       2 

64.9806 
64.9806 
46.1231 

-25.8454 
63.9991 
45.6841 

64.9803 
64.9769 
45.7667 

425.8654 doVdc 
£ '   J5 

1,0 
0,1   

63.3884 
63.3884 

63.3926 
63.3926 

increment for forward finite difference derivatives ö = 0.000001°. 

Table 5. Eigenfrequency sensitivities in order to ply angles obtained with Q9-FSDT 5 model, for simply supported 2-ply 
[457—45°] square plate with central circular hole 

Frequency Direction 
(0i, 02) 

Analytical sensitivities Global finite 
difference0 

(rad/s) 
Multiple Single 

146.2792 

259.8325 

dcoj/dc 

d[min(co2, to3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-44.5991 
-44.5991 
-19.9453 

-0.165879 x 
0.165879 x 

-27.6453 
27.6453 
12.3634 

10"5 

10"5 
0.401086 x 10~2 

0.000000 
-44.5967 
-44.5985 
-19.6192 

259.8325 d[max(co2, co3)]/dc 
JE '   J5 

1,0 
0,1 

1       2 

44.5991 
44.5991 
19.9453 

27.6453 
-27.6453 
-12.3634 

44.6002 
44.5956 
19.6249 

446.5281 dwVdc 
JE'   J5 

1,0 
0,1 

— -56.2312 
56.2316 

0.000000 
-0.573212 xl0~3 

"Increment for forward finite difference derivatives ö = 0.000001° 
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Table 6. Eigenfrequency sensitivities in order to ply angles obtained with Q9-FSDT 5 model, for simply supported 2-ply 
[307 — 60°] square plate with central circular hole 

Frequency 
(rad/s) 

Direction 
(0i, 02) 

Analytical sensitivities Global finite 
difference3 

Multiple Single 

130.1740 

254.2542 

dwj/dc 

d[min(cü2, co3)]/dc 

1,0 
0,1 
1,0 
0,1 

1       2 

-26.3020 
-26.3020 

1.71635 

47.4291 
47.4291 
32.8684 

6.21572 
20.2587 

47.4421 
47.4426 

-26.2925 
-26.2982 

6.01434 

254.2542 d[max(a>2, ea3)]/dc 1,0 
0,1 

1       2 

65.3861 
65.3861 
46.7205 

6.21573 
32.8684 
32.1782 

65.3894 
65.3980 
46.3563 

426.5209 doVdc 1,0 
0,1 

— 64.3679 
64.3679 

64.3707 
64.3724 

increment for forward finite difference derivatives ö = 0.000001°. 

The material properties are: E1 = 138 GPa, 
E2 = E3 = 8.96 GPa, G12 = G13 = G23 = 7.1 
GPa, v12 = v13 = v23 = 0.3, p = 2000 kg/m3 (mass 
density). The thickness of each ply is 0.01 m. 
Two lamination sequences are considered: 
[457-45] and [307-60°]. The 0° direction is 
aligned with the X axis. Both lamination 
sequences lead to repeated eigenfrequencies 
corresponding to the second and third vibration 
modes. The vibration modes for both lamina- 
tion schemes are shown in Figs 3 and 4. Due to 
the high side-to-thickness ratio of 100 and low 
degree of anisotrophy {E-JE2 ratio) the natural 
frequencies and corresponding sensitivity results 
obtained with higher order and first order 
models are all in a good agreement. 

The eigenfrequency sensitivities in order to 
ply angles 91 and 62 obtained with Q9-HSDT 
11, Q9-HSDT 9 and Q9-FSDT 5 discrete 
models, for the above lamination sequences, are 
shown, respectively, in Tables 1-6. The multiple 
analytical directional derivatives (eqns 
(17)-(20)) evaluated along chosen directions c 
and the single design derivatives evaluated 
using eqn (16) and corresponding directional 
derivatives are compared with alternative values 
obtained with global forward finite difference 
(eqns (21) and (22)) with a perturbation 
S = 0.000001° using the same discrete model. 

Tables 7-9 show the eigenfrequency sensitiv- 
ities in order to vectorial distances from middle 
surface of the laminate to the upper surface of 

Table 7. Eigenfrequency sensitivities in order to vectorial distances hk obtained with Q9-HSDT 11 model, for simply 
supported 2-ply [307 — 60°] square plate with central circular hole 

Frequency Direction Analytical sensitivities Global finite 
(rad/s) (h0, hu h2) difference3 

Multiple Single 

130.0205 daVdc 1,0,0 — -0.64815 xlO4 -0.648147 xlO4 

0,1,0 — -0.259227 xl0~4 0.448799 
0,0,1 — 0.648158 x 104 0.648169 x 104 

254.0572 d[min(a>2, cu3)]/dc 1,0,0 -0.148266 xlO5 -0.123981 xlO5 -0.148263 xlO5 

0,1,0 -0.446987x10" -0.386985 xlO3 -0.446871 xlO4 

0,0,1 0.103567 xlO5 0.127851 x 105 0.103570 xlO5 

1       1 2 0.422810 x 104 0.521950 x 104 0.421704 x 104 

J6 '   J6 ' M 
254.0572 d[max(ffl2, <a3)]/dc 1,0,0 -0.103567 xlO5 -0.127851 xlO5 -0.103564 xlO5 

0,1,0 0.446987 x 104 0.386985 x 103 0.447104 x 104 

0,0,1 0.148266 x 105 0.123981 x 105 0.148268 x 105 

1     1 2 0.605292 x 104 0.506150 x 104 0.604523 x 104 

J6'   J6' J6 
426.0753 daVdc 1,0,0 — -0.211640 xlO5 -0.211636 xlO5 

0,1,0 — 0.516952 x 10 "4 1.67645 
0,0,1 — 0.211640 xlO5 0.211645 x 105 

increment for forward finite difference derivatives 8 = 0.000001 m. 
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Table 8. Eigenfrequency sensitivities in order to 
supported 2-ply [307- 

vectorial distances hk obtained with Q9-HSDT 9 model, for simply 
60°] square plate with central circular hole 

Frequency Direction Analytical sensitivities Global finite 
(rad/s) (h0, hu h2) difference" 

Multiple Single 

129.9607 dcoj/dc 1,0,0 — -0.647778 x 104 -0.647767 xlO4 

0,1,0 — -0.258566 x 10~~4 0.449340 
0,0,1 — -0.647778 x 104 0.647789 x 104 

253.9611 d[min(co2, a>3)]/dc 1,0,0 -0.148196 xlO5 -0.10825 xlO5 -0.148194 xlO5 

0,1,0 -0.446896 xlO4 -0.352033 xlO4 -0.446780 xlO4 

0,0,1 0.103507 x 10s 0.143453 x 105 0.103510 x 10s 

1       1 2 0.422565 x 104 0.585643 x 104 0.421460 x 104 

J6'   J6' J6 
253.9611 d[max(co2, w3)]/dc 1,0,0 -0.103507 xlO5 -0.143453 xlO5 -0.103504 x10s 

0,1,0 0.446896 x 104 0.352033 x 104 0.447013 x 104 

0,0,1 0.148196 xlO5 0.108250 xlO5 0.148199 x 10s 

1     1 2 0.605009 x 104 0.441930 x 104 0.604241 x 104 

&'   J6' J6 
425.8654 dw^dc 1,0,0 

0,1,0 
0,0,1   

-0.211485 xlO5 

0.516745 x 10"4 

0.211485 xlO5 

-0.211481 x 105 

1.67717 
0.211489 x10s 

increment for forward finite difference derivatives ö = 0.000001 m. 

kth ply — hk, k = 0, ..., 2 obtained with Q9- 
HSDT 11, Q9-HSDT 9 and Q9-FSDT 5 discrete 
models for the lamination sequence [307—60°]. 
Again in this case the directional derivatives are 
compared with single derivatives and global for- 
ward finite difference with a perturbation 
Ö = 0.000001 m. 

In both cases it can be observed a good 
agreement between the single analytical sensi- 
tivities and the global forward finite difference 
whenever the eigenvalue is unique. In the case 
of repeated eigenvalues the single analytical 
method gives wrong results. In this case a good 

agreement between the multiple analytical 
directional derivatives (eqns (17)-(20)) and 
global forward finite difference is obtained. 

CONCLUSIONS 

A non-smooth eigenfrequency based criterion 
has been applied to multilaminated plate struc- 
tures in order to evaluate the directional 
derivatives when non-differentiable multiple 
eigenfrequencies occur. The algorithm has been 
applied to a family of C° Lagrangian higher 

Table 9. Eigenfrequency sensitivities in order to 
supported 2-ply [307- 

vectorial distances hk obtained with Q9-FSDT 5 model, for simply 
60°] square plate with central circular hole 

Frequency 
(rad/s) 

Direction 
(h0, hu h2) 

Analytical sensitivities 

Multiple Single 

Global finite 
difference3 

130.1740 

254.2542 

254.2542 

426.5209 

dcoi/dc 

d[min(cu2, co3)]/dc 

d[max(a>2, <«3)]/dc 

dcojdc 

1,0,0 
0,1,0 
0,0,1 
1,0,0 
0,1,0 
0,0,1 
J_     1 
1' IE' 
1,0,0 
0,1,0 
0,0,1 

1     1 

1,0,0 
0,1,0 
0,0,1 

_2_ 

1 

_2_ 

-0.148339 x 10s 

-0.447825 xlO4 

0.103556 x 10s 

0.422765 x 104 

-0.103556 x 10s 

0.447825 x 104 

0.148339 x 10s 

0.605589 x 104 

-0.649469 xlO4 

-0.258359x10" 
0.649469 x 104 

-0.105351x10s 

-0.411929 xlO4 

0.146544 x10s 

0.354504 x 104 

-0.146544 x 10s 

0.411929 x 104 

0.105351 x 10s 

0.430093 x 104 

-0.211879 x10s 

0.515666 x 10" 
0.211879 x 10s 

-0.649687 xlO6 

0.451860 
0.649709 x 104 

-0.148552 x 10s 

-0.447709x10" 
0.103775 x 10s 

0.422541 x 104 

-0.103770 x 10s 

0.447942 x 104 

0.148558 x 10s 

0.605703 x 104 

-0.212105 x10s 

1.68202 
0.212114 x10s 

"Increment for forward finite difference derivatives ö = 0.000001 m. 
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order shear deformation theory discrete models 
suitable for the analysis of thin-to-thick multi- 
laminated structures. 

The feasibility of the described method was 
validated through the numerical solution of an 
illustrative example. From the results shown for 
natural frequencies one can observe a good 
agreement between global forward finite differ- 
ence sensitivities and analytical directional 
derivatives when multiple eigenfrequencies are 
involved. When multiple eigenfrequencies occur 
single analytical sensitivities evaluated by eqn 
(16) should not be used. 

The frequent occurrence of multiple eigen- 
frequencies that can be observed from the 
simple test case carried out, emphasizes the 
need to introduce adequate algorithms into the 
structural optimization codes to overcome this 
non-differentiability problem. 
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An earlier paper by Purkiss & Blagojevic (Composite Struct., 25, 45-9, 
1993) detailed the results from some load-deflection tests on two sets of 
beams. The first set were reinforced both with two number 8 mm high yield 
bars and with steel fibres. The second set as a comparison had only high 
yield bars. 

The results reported indicated that at a given load the beams with fibres 
produced lower deflections and did not give such an extensive 'yield 
plateau' as those beams without fibres. Using a method proposed by Hsu et 
al. (ACI Struct. /., 89, 650-7, 1992), albeit modified to allow for the tension 
stiffening of the concrete and the use of a continuous function for the 
reinforcing bar stress-strain relationship, the theoretical deformations and 
crack widths may be calculated. The predicted load-deformation results are 
in good agreement with the experimental values for both sets of beams. The 
predicted crack widths were determined using the methods in both BS 8110 
and ENV 1992-1-1. ENV 1992-1-1 gives good agreement for the beams with 
bars only and for the beams with fibres up to the point of first visible crack. 
This is not unexpected as the model used for the tensile zone in the 
concrete assumes immediate failure after the achievement of the flexural 
tensile strength. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Although the benefits of fibre reinforcement in 
concrete are reasonably well known, the analy- 
sis of such effects is less well known. This paper 
sets out an anylsis for the flexural behaviour of 
beams reinforced both with bars and with steel 
fibres. 

EXPERIMENTAL DATA 

As the results from the the experimental work 
have already been reported [1] only a very brief 
summary is provided. 

The mix used was (by weight) 1:1.18:0.86 — 
OPClOmm coarse siliceous aggregate: zone 2 
sand with a water/cement ratio of 0.4 (as 
batched) and, where appropriate, 1.5% volume 

fraction of Fibrex SS35 fibres (35 mm long with 
an equivalent diameter of 0.64 mm and an 
aspect ratio of 55). The control test results 
(cube strength, /cu, and modulus of rupture, /t) 
at 28 days were for the concrete with fibres 
/cu = 68.9 MPa and ft = 10.7 MPa, and for the 
no fibre concrete 66.9 MPa and 8.0 MPa, 
respectively. 

The beams were 2 m long by 100 mm wide by 
176 mm deep. The two 8 mm high yield bars 
(/yk = 550 MPa) had an effective cover in both 
directions of 10 mm. The beams were loaded at 
third points over a span of 1.92 m by an 
hydraulic jack and spreader beam system. 
Deflections were measured at the midspan and 
under the load points. Electrical resistance 
strain gauge readings at the centre of the beam, 
and crack width measurements in the centre 
third, were also taken. 

Ill 
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THEORETICAL ANALYSIS OF MOMENT 
CAPACITY 

In order to carry out the analysis certain 
assumptions needed to be made on material 
behaviour (Fig. 1). 

(1) The Bernoulli theory of bending was 
used. 

(2) For the concrete in tension it was 
assumed that in the regrettable absence of com- 
plete data from the modulus of rupture tests 
the stress-strain was assumed to be linear with 
the same elastic modulus as in compression, 
and a maximum stress equal to the modulus of 
rupture. The concrete was taken to have no 
strength after the modulus of rupture was 
achieved. The stiffening effect of the tensile 
zone in the concrete was, however, included. 

(3) Concrete in compression. 

Concrete with no fibres. Equation (4) from the 
European Concrete Design Code (EC2) (ENV 
1992-1-1: 1991 [2]) was used 

Oc = /c 
kn — n 

\ + {k-2)n (1) 

where n = ec/ecl (ec is the compressive strain in 
the concrete and ec] is the strain at maximum 
stress taken as 2200 microstrain), fc is the com- 
pressive cylinder strength of the concrete and 
the parameter k is defined as 1.1 Ec nom£cJfc, 
where Ecnom is the mean value of Young's 

modulus for the concrete. As the experimental 
value of Young's modulus for plain concrete 
was not determined, the value given by eqn 
(3.5) of ENV 1992-1-1 was used 

Er = 9.5(/c+8) 1/3 (2) 

For  the  plain  concrete fc = 46.2 MPa, Ec = 
Ec, nom = 35.95 GPa and k = 1.883. 

Concrete with fibres. The equation proposed 
in Hsu et al. [3] was used 

ß— 
crc = /c 

/>-!+- 

(3) 

where ß is a parameter dependant upon the 
type and shape of the fibre and for this case is 
given by 

ß= 1.093 + 7.4818 wf 

/ 

\     4 

■1.387 

(4) 

where //</> is the aspect ratio and wf is the weight 
fraction of the fibres. 

For the concrete in use fc = 48.1 MPa, 
e0 = 2543 microstrain, wf = 0.0491, l/<f> = 55 
and ß = 2.98. 

CROSS 
SECTION 

eb f«<f. 

(a) Uncracked 

STRAIN 
PROFILE STRESS 

(b)    Cracked 

Fig. 1. Section geometry and stress block resultants. 
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(4) Reinforcement. From tests carried out 
at Aston on 8 mm high yield steel, the following 
equation was found to fit the data 

C-cm   — 

0.201705 
+418.4 

17.9612 

530.803 
(5) 

where as is the stress in the steel and esm is the 
steel strain in microstrain. 

At any point the following relationship must 
be satisfied 

p  +p—F   = o 1 ct~J s     xcc" (6) 

where Fcc is the resultant force due to the con- 
crete compression zone, Fs is the force due to 
the steel reinforcement and Fct is the force due 
to the tensile zone of the concrete. 

The forces and the depth of the neutral x are 
dependant upon the strains in the section. An 
iterative solution is therefore necessary. The 
solution was achieved on a spreadsheet by set- 
ting a value of the strain in the extreme 
compression fibre eC; max and iterating values of 
the neutral axis with the resulting steel and con- 
crete tension strains until eqn (6) was solved to 
within 0.05xl0_6kN. The expressions for the 
concrete in compression for both the plain and 
fibre reinforced concrete are not capable of 
being integrated explicitly, so the trapezium rule 
was used. The stress-strain curve for the rein- 
forcing steel also needs a numerical solution as 
the explicit variable is the steel strain. Two 
cases need to be considered for calculating the 
force in the tensile zone of the concrete, Fct, 
and its point of action denned by the distance x2 

(Fig. 1). 
Foreb</t/£c 

**«* = 
100(176-x)eb£c 

(7a) 

with 

x-2 = — (176 — JC) 
3 

and for eb >fJEc 

100/t 

(8a) 

Frt = 
*/t 

F F uc, max J-'c, nom 

(7b) 

with 

x, = 
2 

3   e, 

*/t 

c, max M-'c, nom 

(8b) 

The position x^ of the resultant force of the 
concrete compression zone is determined by 
evaluating the first moment of area of the stress 
block using numerical techniques and dividing 
by Fcc. 

The moment M that can then be resisted by 
the section for a given value of ec max is given by 

M= 162 Fs+(x+x2) Fct-(x-Xl) Fc (9) 

The full details of the proceedure are given in 
Wilson [4]. 

The total applied load P, ignoring the self- 
weight of the beam, is then determined as 
3.125M (as the loading is at third points over a 
span of 1.92 m). 

MIDSPAN DEFLECTION CALCULATION 

Using a strain energy approach the midspan 
deflection S is given by 

0 = 2 
'L/2 Mtfn 

(El), 
ds (10) 

where (EI)S is the flexural rigidity at a point a 
distance s from the support, M0 is the applied 
moment under a given load P, and m the 
moment due to a unit load at the centre. 

M0I(EP)S is the local curvature and is equal to 
£c,maJx for a given load P, and the unit moment 
is given by s/2, thus eqn (10) becomes 

r-L/2 

Jo 

ss, c, max 
ds (11) 

The integral in eqn (11) is evaluated numer- 
ically on a spreadsheet to give the values of 8 
corresponding to a given applied load P. Thus, 
the load-deflection history is obtained. 

CRACK WIDTH CALCULATION 

Two approaches were considered. 
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(a) BS 8110 [5] 

The design crack width wd is given by 

3öcr % 
wd = 

1 + 2 
a   —c  ■ 

h — X 

(12) 

where eb is the strain in the extreme tension 
fibre (determined in this case with the effect of 
tension stiffness), aCI is the distance from the 
surface of the bar to the centre of the beam 
soffit (= 36.5 mm), cmin is the minimum cover 
(= 10 mm) and h is the depth of the section 
(176 mm). 

(b) ENV 1992-1-1 (EC2) [3] 

The design crack width wk is given by 

Wk = ßsTm£s (13) 

where ,srm is the average crack spacing and esm is 
the mean strain in the reinforcement allowing 
for the effects of tension stiffening. The value 
of ß is taken as 1.7 for determining the design, 
i.e. acceptible crack width. For the mean crack 
width, ß is taken as unity [6]. 

The crack width spacing srm is determined 
from 

Srm = 50+0.25 kxk2 
Pr 

(14) 

From EC2, for this case, kx = 0.8 (high bond 
bars), k2 = 0.5 (flexure), 0 = 8 (bar size), pr = 
As/2.5(h-d)b = 2x50.3/(100x2.5(176- 
160)) = 0.0287. Thus, srm = 77.9 mm. The aver- 
age value of the crack spacing in the middle 
third of the beam observed in the tests was 
around 75 mm. The values of esm are those from 
the section analysis, allowing for tension stiffen- 
ing. 

RESULTS 

Load-deflection results 

The calculated load-deflection results and the 
mean load-deflection results (from three tests) 
are plotted in Fig. 2(a) for the beams with no 
fibres and Fig. 2(b) for the beams with fibres. 
There is a very good correlation in both cases, 

except that for the beams with fibres a substan- 
tial yield plateau is generated in the theoretical 
response but which did not appear in the test 
results. The anomaly between the test results 
from beams with and without fibres remains 
unexplained (Wilson [4]). For beams with fibres 
only, Casanova & Rossi [7] indicate that there 
may be additional deflection due to the plastic 
hinge rotation at the root of the crack. Casa- 
nova & Rossi have only verified this for a single 
controlled crack at a notch but not for beams 
with additional steel reinforcement. Owing to 
the uncontrolled nature of the crack pattern 
within reinforced beams the extension of the 
theory by Casanova & Rossi may not be easy to 
confirm. 

It should be noted that the predicted load at 
first crack is in reasonable correlation with the 
observed load, although it should however be 
pointed out that it is hard to determine the 

10 20 30 

Deflection (mm) 

Deflection (mm) 

Fig. 2. Comparison between the theoretical and experi- 
mental load-deflection responses,  (a)  Beams with no 

fibres, (b) Beams with fibres. 
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exact load at which cracking occurs and the 
resultant observed load is likely to be a slight 
overestimate. The mean experimental load at 
first crack for the beams without fibres is 12 kN, 
and with fibres it is 18 kN. The calculated loads 
are 14.3 and 19.3 kN, respectively. 

It should be noted that the predictions of the 
load at first crack show that there is a short 
period of instability in the values of strain and 
neutral axis depth until the crack stabilizes. This 
would not be observed in practice unless the 
strains were being continuously monitored and 
the response time of the experimental set-up 
was very low. 

Strains 

Table 1 gives values of strains measured in the 
actual tests, where gauges were attached to the 
bar reinforcement, and those calculated. Results 
from only one beam are available for beams 
without fibres and two beams with fibres. Below 
the load at which cracking occurs the two sets 
of values are close for both series of beams, 
except at extremely low values of loading. How- 
ever, after cracking the calculated strains are 
generally much higher than the measured 
strains. This is due to the fact that the analysis 
assumes that once the section cracks this situa- 
tion exists along the whole beam, whereas in 
practice the beam cracks discretely with the 
steel strains varying from zero at the face of the 
crack to a maximum half-way between cracks. 
This will also affect the strains in the concrete. 
Also, electrical resistance strain gauges effect- 
ively measure the mean strain over the length 
of the gauge, thus smearing the results. This 
applies to both the steel and the concrete 
strains. 

Crack widths 

Crack widths calculated using both design 
methods are compared, in Tables 2 and 3, with 
those reported by Purkiss & Blagojevic [1]. To 
determine the mean crack widths the values in 
Table 1 should be multiplied by 0.6. 

For beams with no fibres the BS 8110 
approach underpredicts crack widths consist- 
ently by a factor of slightly less than 2, whereas 
the approach in EC2 using ß = 1.7 gives a good 
correlation between the experimental and theo- 
retical values. For the beams with fibres both 
methods give a good correlation below the 
loads to first crack of around 18 kN, although it 
should be remembered that that there may be 
large errors in the experimental values owing to 
the difficulty in making accurate measurements 
of small crack widths. After cracking the cal- 
culated results will not be reliable because the 
theoretical model used makes no allowance for 
post-cracking stiffness of the fibre matrix. 

CONCLUSIONS 

(1) Good correlation was found between the 
observed and calculated load-deflection 
curves for reinforced concrete beams 
with and without steel fibres. 

(2) There was good agreement between the 
observed and calculated loads at crack 
initiation. 

(3) Reasonable correlation was noted 
between the observed and calculated 
strains before cracking commenced. The 
correlation was less good post-cracking, 
although still acceptable. 

Table 1. Crack widths 

Crack widths (mm) 

No fibres Fibres 

Load 
Theoretical Theoretical 

(kN) Measured BS 8110 EC2 Measured BS 8110 EC2 

11.0 0.16 0.09 0.14 0 0.01 0.02 
13.0 0.19 0.11 0.17 0 0.02 0.03 
15.0 0.22 0.13 0.20 0 0.02 0.03 
17.0 0.25 0.16 0.23 0.03 0.02 0.04 
19.0 0.28 0.17 0.26 0.05 0.02 0.04 
20.0 0.31 0.18 0.27 0.06 0.17 0.26 
22.5 0.33 0.21 0.32 0.10 0.20 0.31 
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Load 
(kN) 

Table 2. Comparison between measured and calculated strains — beam with no fibres 

Strains (microstrain) 

Concrete 

Measured Calculated 

Reinforcement 

Measured Calculated 

0 0 
65 46 

710 96 
1305 146 
1771 1618 
2443 2068 
3645 2683 
7915 5299 

14,458 10,131 
15,148 15,029 
na 25,128 
na na 

0 
4 
8 

12 
16 
20 
24 
28 
30 
31 
32 
33 

0 
60 

267 
449 
578 
719 
870 

1100 
na 

1470 
1565 
1820 

0 
67 

120 
182 
531 
660 
816 

1214 
1759 
2259 
3500 
na 

na indicates that for the measured strains values are not available as they were either not measured at that load or the 
gauges had failed. In the case of the calculated strains na indicates the analysis had been terminated before this point. 

(4) There was good correlation between 
observed and calculated crack widths 
using the approach in ENV 1991-1-1 for 
the beams without fibres. 

(5) The lower crack widths observed in the 
beams with fibres were not reflected in 

the calculations after cracking as it was 
not possible to incorporate a full model 
for the post-cracking steel fibre response 
in the calculations. 

Table 3. Comparison between measured and calculated strains — beams with fibres 

Strains (microstrain) 

Concrete Reinforcement 

Load Measured" Measured" 
(kN) (1) (2) Calculated (1) (2) Calculated 

0 0 0 0 0 0 0 
5 30 70 102 47 65 79 
10 108 157 205 132 167 160 
11 na 172 225 na 188 176 
12 136 204 247 174 242 193 
13 160 232 266 204 300 208 
14 na 265 287 na 390 225 
15 202 352 308 331 503 241 
16 na 364 329 na 614 257 
17 275 407 351 449 695 275 
18 310 450 370 516 808 290 
19 na 402 392 na 910 307 
20 390 459 684 781 1020 1516 
22 na 642 866 na 1265 2236 
22.5 485 na 885 1126 na 2302 
24 na 752 955 na 1513 2589 
25 570 na 1008 1425 na 2589 
26 na 852 1086 na 1753 3256 
28 na 947 1356 na 2031 5120 
30 745 1037 1904 2069 2307 9959 
32 na 1140 3241 na 2708 23328 
34 na 1302 na na 3693 na 
35 960 na na 3519 na na 
36 1010 1807 na 4379 10925 na 

"There are two sets of experimental results from the beams with fibres labelled (1) and (2). 
na indicates that for the measured strains values are not available as they were either not measured at that load or the 
gauges had failed. In the case of the calculated strains na indicates the analysis had been terminated before this point. 
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A higher-order shear-deformation theory, assuming a non-linear variation 
for the displacement field, is used to develop a finite-element model to 
predict the linear buckling behaviour of anisotropic multilaminated or 
sandwich thick and thin beams. The model is based on a single-layer 
Lagrangean four-node straight-beam element. It considers stretching and 
bending in two orthogonal planes. The most common cross-sections and 
symmetric and asymmetric lay-ups are studied. The good performance of 
the present element is evident on the prediction of the buckling of several 
test cases of thin and thick isotropic or anisotropic beam structures. 
Comparisons show that the model is accurate and versatile. © 1997 Elsevier 
Science Ltd. 

INTRODUCTION 

Laminated beams are presently used as struc- 
tural elements in general high-performance 
mechanical, aerospace, naval and civil applica- 
tions, where high strength and high stiffness to 
weight ratios are desired. The beams are made 
of composite materials which have the ability of 
being tailored according to specified response 
constrained requirements to achieve optimum 
structural objectives. As part of the design 
process, it is required to predict accurately dis- 
placements, normal and transverse stresses, 
delamination, vibrational and buckling 
behaviour to establish the load and perform- 
ance capabilities of this type of structural 
element. Owing to the large elongation to 
failure allowed by both fibre and resin, buckling 
is most of the time the governing failure for the 
most used pultruded structural members. In this 
paper a refined finite-element model for the 
linear buckling analysis of composite or sand- 
wich beam structures is presented. The model is 
developed for symmetric and asymmetric lay- 

ups, and considers the most usual cross-sections 
used in design. 

The present model is based on a higher-order 
displacement theory using displacement fields 
proposed by Lo et al. [1,2] for plates, and by 
Manjunatha & Kant [3], Vinayak et al. [4] and 
Prathap et al. [5] for rectangular cross-section 
beam structures in one-plane bending under 
static loading. The proposed theory enables the 
non-linear variation of displacements through 
the composite beam width/depth, thus eliminat- 
ing the use of shear correction factors. These 
displacement fields are suitable for the analysis 
of highly anisotropic beams ranging from high 
to low length to depth and/or width ratios. 

Pioneering work on the buckling analysis of 
composite beams can be reviewed in Kapania & 
Raciti [6]. Related work has been carried out by 
Bhimaraddi & Chandrashekhara [7], Hwu & 
Hu [8], Barbero & Tomblin [9], Barbero & Raf- 
toyiannis [10], Wisnom and Häberle [11], Ray 
& Kar [12], Turvey [13], Rhodes [14] and Bar- 
bero et al. [15], among others. Recently, 
Sheinman et al. [16] developed a high-order ele- 
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ment for pre-buckling and buckling analysis of 
laminated rectangular cross-section beams and 
plane frame structures, considering a third- 
order expansion in the thickness direction for 
the in-plane displacement and a constant trans- 
verse displacement throughout the thickness. By 
deleting degrees of freedom they arrive at 
various alternative models. A parametric study 
of the locking phenomenon and the shear- 
deformation effects was carried out for isotropic 
and laminated structures. From the surveys one 
can find very few research publications related 
to the buckling of multilaminated composite/ 
sandwich beams using higher-order displace- 
ment fields and, consequently, comparison with 
alternative formulations such as Euler-Ber- 
noulli and Mindlin are also very rare, hence the 
motivation for the proposed work. 

In the present study, the development of a 
higher-order discrete model (HSDT) for static 
and buckling analysis is presented. The model is 
based on a straight-beam finite element with 
four nodes and 14 degrees of freedom per 
node, considering bi-axial bending and stretch- 
ing. The development takes into consideration 
non-symmetric lay-ups and the rectangular, I, T, 
channel and rectangular box beam cross-sec- 
tions. The present discrete model is part of a 
package of finite-element programs for the opti- 
mization of two-dimensional composite or 
sandwich arbitrary beams. This package also 
includes Euler-Bernoulli (EBT) and Timo- 
shenko (FSDT) beam elements. The perform- 
ance of the model developed is discussed for 
several buckling applications. 

DISPLACEMENT AND STRAIN FIELDS 

The displacement field considered assumes, for the numerical finite-element model, a third-order 
expansion in the thickness and width co-ordinates for the axial displacement, and a second-order 
expansion for the transverse displacements. The displacement field can be represented in a compact 
form as 

u = Xq; u = [u(x, z, y) v(x, y) w(x, z)]r 

k = 
1 0 0 0 z 
0 10 0 0 
0   0   10   0 

-y z 
0     0 
0     0 

0 
0 

0    0   0   0   z3 

y2   0   y   0   0 
0   z2   0   z   0 

0 
0 

q=[u 0 .0 v" w° 6°x 9°y 9°z u° u v°* w°* ß°y ß°z or A! lO*-iT 
(1) 

where q is the vector of generalized displacements, representing the appropriated Taylor's series 
terms defined along the x-axis and z = 0 and v = 0. The first six terms are related to displacements 
and rotations as defined in Fig. 1. The remaining parameters are higher-order terms in the Taylor 
series expansion. They represent higher-order transverse cross-sectional deformation modes which 

Fig. 1. Typical laminated beam geometry. Co-ordinate system. 
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are difficult to physical interpret. Considering the kinematic relations for linear elasticity and the 
HSDT displacement field (eqn (1)), the strain field is obtained as 

e = te0;£ = [Ex£yszyxzyxy\T 

X = 

~ 1 z2 -f 0 0 z e 0 -y -y3 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 z 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 V 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 z z2 0 0 0 

L o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 y y 

8 —     [£X       £X Ex Ey        £z        Ky      ky       KJJ,      Kj.      Kj.        kXy       (PXZ        (PXZ        (PXZ (PXy        ty^       ^ Xy j 

where 

,o_K. £o._^!l. 6.-._^l. f./,, ,.».k-*L. k--< 

(2) 

*« = 2w  kz = —— ;  A;z = —— ;   ^ = 2v   ;   4 
ox ox 

dw° 
+9°;    fxz = 2ti 

ox OX 

dw' 0* dv° 
C = 36F+ -—;   4>„ = — -C;   C = -2"°   + 

Ox 8x Ox: 
0**=-30f+ 

dv°* 

ax 
(3) 

CONSTITUTIVE RELATIONS 

Considering the orthogonal referential xyz, the constitutive relation for an orthotropic beam layer, 
which can have an arbitrary fibre orientation, are related to the strains through the relations 

oil Ö12 Ö13 0 ß16 

Ö12 Ö22 Ö23 0 ß26 

Ö13 Ö23 Ö33 _0 Ö36 

_0 _0 _0 Q*55 _0 

Lßl6 Ö26 Ö36 0 ß66J 

*z 

Yxz 

(4) 

Neglecting the shear stress xyz, one obtains for the elastic coefficient Ql5 the expression 

05*5 = 055-045/0 45' i£44 (5) 

where the terms of matrix Q, for the kth layer are explicitly given in Vinson & Sierakowski [1,17]. 
Integrating the stresses through the depth and width of the laminate one obtains the resultant forces 
and moments acting on it, as follows 

[N] = [Nx N*x IC Ny NZ]T =  X     j    } [ax ax ox ay az]r [1 z2 y2 1 1] dy dz 
k=l    zt_,    y, 

[Mxz] = [MyM*yMxz]T=   X     J    J [ax ax <xz]T [z z3 z] dy dz 
k=\    zk-,    y, 

[Mxy] = [MzM*zMxy]T =  X     ?   )r[(Txaxay]T[yy3y]dydz 
k=l    zt_,    y, 

[Q"l = [S„ S*xz S7z]
r=   X     J    J I,, [1 z z2] dy dz 

fc=l   z*_,    y, 

[Qxy] = [Sxy S*xy S7y]T =  X     j    T xxy [1 y y2] dy dz 
*=1    z*-i    J"; (6) 
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where N is the number of layers. The constitutive relation then becomes 

N A wz 
Bxy 0 Cf eu 

M" 
T 

Dxz Bxyz 0 cxy 
k*z 

Mxy = wy 
Dxyz* Dxy 0 cxy 

k^ 
Qxz 0 0 0 Sxz 0 4>xz 

Qxy _ _Cf cf cxy 
0 s^_ j>xy_ 

(7) 

s° = [s°x s°; sT* s°y e°]T; k~ = [ky kl kxzf; kxy = [kz k*z kxy]T; cj>xz = [<j>„ fxz ^f; <j>xy = IK 4L 4>7y] 
(8) 

Matrices A, B'-', D'7, S'7, D** and CJ/ with (ij=xz, xy; ijk=xyz; n = l, ..., 3) are explicitly given in 
Appendix A for multilaminated rectangular cross-sections. The corresponding matrices for T, I, 
channel and rectangular box beams, can be found in Loja [18]. 

FINITE-ELEMENT MODEL 

In the present work a four-node straight-beam element is developed for static and buckling analysis. 
Lagrangean shape functions are used to interpolate the generalized displacements within the ele- 
ment, as follows 

Nl=- 
16 £+T IU-T k-D N2 = 

27 

16 
(£+D i- (£-D 

27 /       1   \ 9/1 

The generalized displacements (eqn (1)) can then be represented as 

u°= £ NiU°e°;= i, Nte°z* 
i= 1 i'=l' 

(9) 

(10) 

One can then represent the displacement field, by 

ue = ANqe 

ql=[u° v° w° e°x e°y e°z u°* u0** v°* w°* ß°y # e°; e°zT a=1,2,3,4) (ii) 
where N is the shape function matrix and qe the element nodal displacement vector. By differentiat- 
ing (eqn (10)) in accordance with the generalized strain field yields 

e° = BMqe;   k*z = BFjqe; k^ = BFvqe;    ^
z = Bs^qe;  (^B^q. (12) 

where matrices BM, BF , BF , Bs   and Bs   relate the degrees of freedom to the generalized strains, 
for membrane, flexure and shear. 

The total potential energy for the eth element is 

n.= T< ) [N M*z Mxy Qxz Qxy] 

£ 

kxz 

kxy 

f 
<f>xy _ 

dx+y l^jU^jdV-qTQ, ,xyz (13) 

where the first and the second terms correspond to the first- and second-order strain elastic energy, 
<T° denotes the stress components associated to the initial state of stress, which are previously 
calculated by means of a linear static analysis, V is the volume of the element, and the comma within 
the subscripts denotes the partial derivatives. The second term is expanded as shown in Moita et al. 
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[19] for plate structures, and Qe is the element load vector. Substituting eqns (10) and (12) into eqn 
(13), one obtains 

n^-qJCK.+K^qe-qjQe (14) 

The application of the minimum potential energy variational principle yields the following equi- 
librium equations 

KeQe+Kfq^Qe (15) 

where Ke and Kf are the element stiffness and geometric matrices. These matrices are respectively 
given as 

Ke= 1 (B^ABM+B^B-X+B^B-BF +B^B^TBM+B^B^BF^+B^D«BF^ 

+B^D^Bp^+B^ DxyzBp,+B^v D^ BF +B£, Cf Bs +B£Cf BM 

+Bp  C2 B§ 

+Bl" CJyTBF +BI  C7 Bs +BI C7TBF +B| S* Bs +8^  S*BS )/df »F     ^3    "S„T"Sxy ^3 
+ 1 

Kf=   J  GTTG7d^ 

(16) 

(17) 

Matrices T and G are shown in Appendix B and Appendix C, respectively. The Jacobian operator, 
relating the natural co-ordinate derivatives to the local co-ordinate derivative, is / = L/2 for equally 
spaced nodes. Load vector Qe, when distributed loading is acting within the element, geometric 
element matrix K° and terms relating to stretching, bending and bending-stretching of element 
stiffness matrix Kg are evaluated analytically in the £ direction using symbolic manipulator Maple V. 
[20] The last two sub-matrices of eqn (16), relating to transverse shear elastic strain energy, are 
evaluated numerically using three Gauss points. The degrees of freedom 6X. (i = 1, ..., 4) are related 
with angles of twist on a plane normal to the x-axis of the element. Then, assuming that they do not 
affect displacements other than their own, the stiffness and geometric matrices for a four-node 
Lagrangean bar element in free torsion are superimposed onto eqns (16) and (17), in the usual 
assembly way. The equilibrium equations for the whole and discretized beam for static and linear 
buckling analysis are then 

Kq = Q (18) 

Kq,HKGq, = 0 (19) 
where Q is the system load vector, K and KG are the system stiffness and geometric matrices, q is 
the system displacement vector and q, is the eigenvector associated with the kt eigenvalue, which is 
a function of the applied loading. The smallest Xt corresponds to the critical buckling load parameter. 
Equations (18) and (19) can easily be solved once the boundary conditions are introduced. 

NUMERICAL APPLICATIONS 

The higher-order finite-element model (HSDT) 
is applied to several illustrative beams subjected 
to compressive axial loads. Buckling predictions 
are validated against results obtained by other 
researchers [23], and also with predictions of 
two available beam finite-element models based 
on Euler-Bernoulli formulation (EBT) and 
first-order shear-deformation theory (FSDT), 
and a higher-order shear-deformation plate 
finite-element model (HSDT) [19]. For all cases 

but one (see next section where discretization 
was considered for 10 beam finite elements. 

Clamped-free isotropic T-beam 

This example shows the influence of the slen- 
derness ratio (length of column/least radius of 
gyration of the cross-section) on the critical 
load of a clamped-free isotropic wide-flange T- 
beam. The material and geometrical data are: 

E = 200.0 GPa (Young's modulus); 
v = 0.3 (Poisson's ratio); 
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hweb = 0.102 m; 
^flange = 0.102 Hi; 
t = 6.4 x 10 3 m (where t is the thickness of 

web and flange). 
In Table 1 one can observe the comparative 
influence of the slenderness ratio on the critical 
buckling load, for the different models, and the 
Euler critical load, given by Pcrit = n2EI/L2. As 
one can observe, for the different slenderness 
ratios, the EBT model gives very good results 
when compared with the closed form solution. 
If one considers low ratios, it is clear from 
Table 1 that the critical loads become lower 
than the analytical solutions for the FSDT and 
HSDT models. This fact is more evident in the 
HSDT case, which is not surprising because of 
its greater transverse shear-deformation influ- 
ence. 

Simply-supported isotropic beam 

In this test case an isotropic rectangular cross- 
section beam is considered in order to study the 
shear-deformation effect on the buckling load. 
The material and geometric properties used 
are: 

E = 1.379 x 109 Pa; 
L = 0.0254 m; 
h = 0.00254 m (thickness); 
b = 0.003048 m (width). 

Table   2   shows   predictions   for   the   present 
(HSDT) model for several discretizations which 

are compared with the buckling loads obtained 
by Wennerström & Backhand [21] and with the 
mechanics of materials solution, including shear 
effects, which is evaluated using the expression 
[22] Pcr = PJ(l+Pek/(Gbh)), where Pe = n2EI/L2 

and k = 5/6. The HSDT model presents a good 
agreement for the different cases studied when 
compared with the closed form solution, leading 
to lower critical loads because of its greater 
flexibility. 

Simply-supported composite I-beam 

A simply-supported composite I-beam is con- 
sidered. This test case intends to compare the 
critical loads of different commercially available 
laminated wide-flange I-beam sections. The fol- 
lowing mechanical parameters are used: 

Ex = 20.632 GPa; E2 = 4.433 GPa; 
G12 = 1.985 GPa; 
v12 = 0.318; 
E3 = E2; 

V13 = V23 = V12- 
Table 3 shows the critical buckling load predic- 
tions for several I-sections. It can be seen that 
there is a good agreement between the HSDT 
model and the experimental values of Barbero 
& Tomblin [9] and the corresponding critical 
buckling loads evaluated by the Southwell 
asymptote technique of the experimental meas- 
urements [22,24]. 

Table 1. Effect of the slenderness ratio on the critical buckling load. T-column (kN) 

Slenderness ratio Euler load EBT FSDT 
(k = 5/6) 

HSDT 

30 2863.501 2863.506 2778.604 2243.168 
50 1030.860 1030.862 1019.598 924.558 

100 257.715 257.715 257.004 247.141 
200 64.429 64.429 64.384 62.691 
500 10.309 10.309 10.307 10.081 

1000 2.577 2.577 2.577 2.525 

EBT, Euler-Bernoulli theory; FSDT, first-order shear-deformation theory; HSDT, higher-order shear-deformation theory; 
k, shear correction factor. 

Table 2. Convergence and influence of shear on critical loads (kN) 

Wennerström & Bäcklund [21] — 
FSDT 

Present model - -HSDT 

Elements A B A B 

2 
4 

20 
Analytical [21] 

86.6758 
85.5166 
85.4477 
86.1043 

73.8210 
72.9727 
72.9131 
73.3295 

86.0859 
85.4426 
85.4321 

73.0340 
72.9421 
72.9407 

FSDT, first-order shear-deformation theory; HSDT, higher-order shear-deformation theory. 
A — G = 0.6895 x 10" Pa (transverse elasticity modulus); B — G = 0.6895 x 108 Pa. 
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Table 3. Critical buckling load, for wide-flange I-beams (kN) 

Section Length Experimental Southwell Present 
(mm) (m) [9] method [9] method (HSDT) 

102 x 102 x 6.4 4.48 12.08 12.46 11.60 
102 x 102 x 6.4 2.98 27.21 28.10 26.09 
152 x 152 x 6.4 6.03 23.10 23.66 21.15 
152 x 152 x 6.4 3.58 64.15 67.11 59.49 
152 x 152 x 9.5 6.03 33.38 34.11 31.42 
152 x 152 x 9.5 3.89 78.80 82.22 75.02 

HSDT, higher-order shear-deformation theory. 

Simply-supported orthotropic beam 

A simply-supported orthotropic beam with a 
rectangular cross-section is analysed, consider- 
ing the following lay-ups: [0°], [0790°], 
[079070°], [079070790°]. The material proper- 
ties of the beam are: 

El = 181 GPa; E,=E3 = 10.3 GPa; 
G13 = G12 = 7.17 GPa; G23 = 6.21 GPa; 
v12 = 0.28; v13 = 0.02; v23 = 0.40. 

Table 4 shows the results using the following 
multiplier X = pJ[h2/L2 E2h/(l-v12v21)]. The 
present results are compared with two alterna- 
tive beam finite-element models proposed by 
Bhimaraddi & Chandrashekhara [7] using the 
displacement field (HSDT) [7]: 

u(x, z) = u°+z I 1 ■ 
3h2 f-z  y        dx 

w(x, z) = w° (20) 

and also the FSDT [7] formulation, respectively. 
As one can see from Table 4, the present model 

shows a good agreement with the two alterna- 
tive solutions. 

Orthotropic beam under different boundary 
conditions 

An orthotropic, multilaminated, rectangular 
cross-section beam is studied to analyse its 
behaviour when subjected to different boundary 
conditions, and for various length to thickness 
ratios. The beam lay-up sequence is 
[457—45°]s. The present model critical buckling 
load parameters are compared to the closed 
form solutions shown in Reddy [23] The 
material properties used are: 

EXIE2 = 25; 
Gi3 = G12 = 0.5E2; G23 = 0.2E2; 
v12 = 0.25. 

Table 5 shows the buckling load parameters, X, 
which were obtained using the following multi- 
plier X = PCTL

2/E2h3. From Table 5 one can see 
that there is good agreement between the 
present HSDT results and Reddy's solutions 
[23]. As expected, for lower length to thickness 
ratios, the present finite-element model gives 
lower critical buckling load predictions. 

Table 4. Critical buckling load parameter, k, for homogeneous and cross-ply beams (L/h = 10) 

Model 0° 0790° 079070° 079070790° 

HSDT 
FSDT 
HSDT 

[7] 
[7] 
(present method) 

11.5255 
11.5669 
11.4179 

2.9172 
2.9297 
2.7574 

11.0573 
11.0967 
8.4274 

5.7511 
5.7740 
5.5855 

FSDT, first-order shear-deformation theory; HSDT, higher-order shear-deformation theory. 

Table 5. Influence of the L/h ratio and boundary conditions on the critical buckling load parameter. La} -up [457-45°] s 

L/h Clamped-clamped Clamped- free 

Reddy 
[23] 

Present 
HSDT 

Reddy 
[23] 

Present 
HSDT 

100 
20 
10 

5.737 
5.478 
4.802 

5.847 (1.9%) 
5.515 (0.6%) 

4.767 (-0.7%) 

0.359 
0.358 
0.355 

0.363 (1.1%) 
0.343 (-4.2%) 

0.294 (-17.2%) 

HSDT, higher-order shear-deformation theory. 
Deviations (between brackets) calculated as: (X — A24)//!24 x 100. 
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Table 6. Critical buckling load parameter, k, for angle-ply beams (L/ft = 10) 

Model 0° 15° 30° 45° 60° 75° 90° 

HSDT [7] 11.5255 5.4619 2.4584 1.4050 0.9907 0.8414 0.8056 
(19.1%) (0.5%) (2.84%) (6.3%) (6.3%) (6.7%) (7.2%) 

FSDT [7] 11.5669 10.4370 7.5251 4.1569 1.8142 0.9345 0.8092 
(19.5%) (92.0%) (214.8%) (214.6%) (94.7%) (18.5%) (7.6%) 

HSDT [19] 9.6755 5.4352 2.3904 1.3212 0.9317 0.7884 0.7517 
HSDT (present) 11.4179 10.2600 4.2349 1.4071 0.8095 0.7241 0.6996 

(18.0%) (88.8%) (77.2%) (6.5%) (-13.1%) (-22.3%) (-6.9%) 

FSDT, first-order shear-deformation theory; HSDT, higher-order shear-deformation theory. 
Deviations (between brackets) calculated as: (A —A19)//lls> x 100. 

Simply-supported angle-ply beam 

An angle-ply laminated beam, with the same 
properties as those of the previous test case, is 
studied to analyse the effect of the fibre orien- 
tation angle on the beam buckling behaviour. 
Table 6 presents the critical buckling loads on 
the xz plane, for the different fibre orientation 
angles considered, obtained with the different 
models using the multiplier X = pcrl[h2IL2 E2hl 
(1 — v12v2i)]. From Table 6 it can be seen that 
there is a fair agreement between the present 
HSDT predictions and the beam model of 
Bhimaraddi & Chandrashekhara [7], whose dis- 
placement field is given by eqn (20), and the 
results obtained using the plate model described 
in Moita et al. [19]. A full mesh discretization of 
2 x 10 plate elements was been used. Moita et 
ö/.'S [19] plate finite-element model is based on 
a displacement field using a third-order expan- 
sion in the thickness co-ordinate for the 
in-plane displacement and a constant transverse 
displacement. The present HSDT results agree 
well with the FSDT [7] predictions for all ply 
orientations. No apparent reasons have been 
found for the discrepancies observed between 
the present model, the HSDT [7] beam model 
and the Moita et al. [19] plate model. The 
HSDT [7] and Moita et al. [19] models demon- 
strate a behaviour closer to that expected. 

CONCLUSIONS 

A single-layer Lagrangean beam finite-element 
model, based on a higher-order shear-deforma- 
tion theory which assumes a non-linear 
variation for the displacement field, is proposed 
to study the buckling behaviour of anisotropic 
multilaminates of thick and thin sandwich 
beams. Its good performance is shown for most 
of the illustrative cases presented in this paper. 
From the extended numerical studies carried 

out, and comparisons with experimental and/or 
numerical alternative solutions available, it can 
be concluded that the proposed model effi- 
ciently predicts the buckling loads of beams, 
underestimating them compared with the EBT 
and FSDT models. For the simply-supported 
angle-ply beam (see the section on 'Simply-sup- 
ported angle-ply beam'), and with no apparent 
reason, there are some discrepancies between 
the present HSDT buckling load predictions 
and the results obtained from the HSDT [7] 
beam model (eqn (20)) and the HSDT [19] 
plate model, which in fact perform better. 
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APPENDIX A 

ELASTIC COEFFICIENT MATRICES FOR RECTANGULAR MULTILAYERED CROSS- 
SECTIONS 
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ßn*3*i 

ßn*>*3 

ßl2*l*l 

ß>3*>*, 

ßi 1*3*1 

ßn*5*i 

ßl 1*3*3 

ßl2*3*l 

ß13*3*1 

ßn*i*3 

Quh3b3 

ß, 1*1*5 
QX2hxb3 

ßl3*l*3 

ßl2*l*l 

ßl2*3*l 
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ß33*i*i 
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ßi 1*2*1 
Qxxh4bx 

ßi 1*2*3 
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Bxy = 
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ßl 1*4*1 ßl 1*6*1 ßl2*4*l 
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ßl3*2*l ßl3*4*l ß23*2*l 

w = 
Q\\b3bx    ßn/j5*i    ßi3*3*i 

ßl 1*5*1       ßl 1*7*1       ßl3*5*l 

ßl3*3*l       ßl3*5*l       ß33*3*l 

Bxy = 
ßl 1*3*1 ßl 1*5*1 ßl2*3*l 
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ßl2*3*l       ßl2*5*l       ß22*3*l 
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Sxz = 
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cxy= 
ßl6*l*2 ßl6*2*2 ßl6*3*2 

Öl6*l*4 ßl6*2*4 Öl6*3*4 

036*1*2      036*2*2      ß36*3*2 

Cf = 

where 
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and k is the number of layers. 

APPENDIX B 

T MATRIX 

T = 
L21 

-12 

i, 22 
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where the forces and moments resultants are given by 

[N°jU <T°xdA 
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[L°xz M°xz Lxzl M°xzl Lxz2 Mxz2]=\ [ a°x [z z2 z3 z4 z5 z6]T dA 
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A numerical modeling technique was presented to simulate, predict and 
evaluate progressive damage or failure in a composite structure subjected 
to an external loading. To this end, a micro/macromechanical approach was 
proposed along with damage mechanics at the microlevel. The micro/ 
macromechanical model utilized both the macromechanical analysis and the 
micromechanical analysis in tandem. The continuum damage mechanics 
was applied to the microlevel stresses-strains in order to predict damage 
evolution in a composite structure from the initiation of damage through to 
complete failure of the structure. Crack initiation and growth in a 
particulate composite with stress concentration was simulated using the 
proposed technique, and the results were compared to experimental data. 
The comparison showed a very good agreement. © 1997 Elsevier Science 
Ltd. 

INTRODUCTION 

Composite materials have been considered as 
substitutes for conventional materials for appli- 
cations where specific strength and stiffness are 
the major concern. Examples include, but are 
not limited to, aerospace and military strutures. 
However, the design and analysis of composite 
structures challenges engineers because of the 
complicated nature of failure modes and mech- 
anisms of composite materials. Therefore, 
prediction and evaluation of progressive 
damage in a composite structure is very import- 
ant for structural design and/or analysis using 
advanced composite materials: 

Modeling of damage or failure in composites 
was undertaken in the past, in general, using 
the macromechanical approach [1-7]. Because 
there are different damage or failure modes in 
a composite, depending on its physical constit- 
uents and lay-out, a damage or failure criterion 

was assumed for each case [8-16]. However, 
different damage or failure modes at the macro- 
mechanical level can be attributed to the same 
damage or failure mode at the micromechanical 
model. For example, fiber splitting, transvere 
matrix cracking and delamination result from 
the matrix damage or failure. Therefore, 
description of a damage or failure in terms of 
the micromechanical level can be more direc- 
tive. At this level the damage or failure is 
classified in terms of the fiber/particle breakage, 
matrix cracking and/or interface debonding. 
However, the dimension of the micromechan- 
ical level is so much smaller than that of the 
macromechanical level. This makes it difficult 
to describe a progressive damage or failure in a 
general composite structure (i.e. macrolevel) 
using the microlevel damage or failure modes. 
As a result micromechanical studies generally 
have been focused on qualitative understanding 
of a damage or failure process in a composite 
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material, and prediction of the effective stiff- 
ness of an undamaged composite or a uniformly 
damaged composite [17-24]. 

In the present study, in order to relate the 
progressive damage at the microlevel to that at 
the structural level (i.e. macrolevel), the micro/ 
macromechanical approach was proposed. In 
this approach the damage or failure of a struc- 
ture is expressed in terms of the damage or 
failure of the constituent materials (i.e. micro- 
level). The micro/macromechanical approach 
can model, simulate and predict progressive 
damage or failure in a general composite struc- 
ture including macrocrack initiation and growth, 
and reduction of strength and stiffness of the 
structure using the damage or failure of the 
constituent materials. This technique can pro- 
vide engineers with a simulation-based design 
tool. 

The next section describes the micro/macro- 
mechanical approach in detail. The approach is 
based on a micromechanical model and the 
damage mechanics. Thus, derivation of the 
micromodel and the damage mechanics is also 
provided later followed by some results and dis- 
cussion as well as conclusions. 

MICRO/MACROMECHANICAL APPROACH 

The micro/macromechanical approach consists 
of two levels of analyses in tandem: macro- 
mechanical and micromechanical analyses. The 
two analysis modules are tied together through 
their inputs and outputs. The schematic dia- 
gram of the approach is illustrated in Fig. 1. For 
the macrolevel analysis, the finite-element tech- 
nique [25] is utilized so that a general com- 
posite structure including plates and shells can 
be analyzed. 

A finite-element analysis uses smeared, 
effective composite material properties which 
are determined from a microlevel analysis using 
a micromechanical model. In other words, the 
microlevel analysis computes the effective 
material properties from the constituent 
material properties. On the other hand, the 
smeared, composite-level stresses-strains from 
the finite-element analysis are decomposed into 
microstresses-microstrains at the constituent 
level (i.e. stresses-strains in the fiber, particle 
and matrix) using the micromechanical model. 
Then, the continuum damage mechanics is 
applied  to  the  microstresses-microstrains  to 

RESIDUAL STRENGTH 
8. STIFFNESS DF 

COMPOSITE STRUCTURES 

| G0AL=> ASSESSMENT DF DAMAGES, RESIDUAL STRENGTH, AND STIFFNESS | 

Fig. 1. Micro/macromechanical approach. 

determine the damage initiation or growth in 
the constituent materials. Thus, fiber and/or 
matrix failure can be determined independently 
from the analysis. The damaged fibers, particles 
or matrix result(s) in reduced effective material 
properties for the subsequent finite-element 
analysis. Thus, the iteration of micro-/macro- 
analyses continues with progressive damage in 
the constituent materials until there is a com- 
plete failure in a structure (which denotes that a 
structure can no longer sustain a load) or until 
the final load is applied to a structure incremen- 
tally. 

A detailed discussion about the microme- 
chanical model and the damage mechanics are 
presented in subsequent sections. The micro- 
level analysis is performed, in general, at every 
element (or every numerical integration point) 
which can undergo damage. The elements may 
include the entire domain. However, the micro- 
level analysis is very computationally efficient 
because it is based on a simplified, analytical, 
three-dimensional micromechanical model. 
Therefore, the whole procedure in the micro/ 
macromechanical approach is computationally 
efficient. 

THREE-DIMENSIONAL 
MICROMECHANICAL MODEL 

A micromechanical model for a fibrous compo- 
site was developed by Kwon et al. [24,26,27]. 
Thus, this section presents a micromechanical 
model for a particulate composite. The fibrous 
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M P 
2 -e- 

(a) (b) 

Fig.   2.   Simplified,   three-dimensional   micromechanical 
model. 

micromechanical model can be considered as a 
subset of the particulate micromechanical 
model. The simplified, micromechanical, unit- 
cell model is shown in Fig. 2(a). Figure 2(b) 
shows a clear view of the locations of eight 
subcells of the unit-cell seen in Fig. 2(a). Sub- 
cell 1 is the particle subcell and the rest are the 
binder (matrix) subcells. Planes 1-2, 2-3 and 
3-1 are symmetric planes. For simplicity, it is 
assumed that each subcell has uniform stresses 
and strains. Equilibrium of subcell stresses at all 
interfaces must be satisfied as given below 

^1     _ ^2 3    _     4 5     _     6 7    _      8 
°n = aiu CTn = CTii> °n - Gni ^H - ^n 
_1    _   _3 2    _     4      _5    _     7       _6    _ „.8 
°22 — "22» "22 — "22' °22 — °22> °22 — °22 
_1     _   _5 2    _   _6 3    _     7      -4    _  _8 
"33 ~ °33» °33 — °33> "33 — "33' "33 — "33 

(1) 

(2) 

(3) 
where the subscripts denote stress components 
along the axis shown in Fig. 2, and the super- 
script indicates the subcell number. Only 
normal stress components are considered in 
these equations. Similar equations can be writ- 
ten for shearing stress components. However, it 
is assumed that each subcell is an orthotropic or 
isotropic material so that normal stress-strain 
components are not coupled from shear compo- 
nents. Thus, the present development is only for 
the normal components of stresses-strains and 
a similar development can be made for the 
shearing stresses-strains. 

It is assumed that subcells satisfy the follow- 
ing strain compatibility 

'pell+'mell = 'pell + 'mell = 'pell + 'mell 

= *pell + 'mell 

'p£22 + 'm£22 = 'pe22 + *m£22 = 'p£22+'m£22 

= 'p£22 + 'm£22 

'pe33 + 'm£33 = 'p£33 + 'me33 = 'p£33 + 'm£33 

— 'pe33 + *m£33 

(4) 

(5) 

(6) 

in which 

/  =VU3 (7) 

(8) 

and Vp is the particle volume fraction of the 
composite. 

The unit-cell stresses and strains are obtained 
from the volume average of subcell stresses and 
strains. In other words 

au=    XVotj 
n = 1 

elJ=    ZV% 
n = 1 

(9) 

(10) 

Here, V" is the volume fraction of the nth sub- 
cell over the unit-cell. Subscripts / and / vary 
from 1 to 3, and a,-, and ztj are the average cell 
stresses and strains, respectively. Further, the 
constitutive equation between the subcell stres- 
ses and strains is 

°?j = E?Jkl& (11) 

Manipulating these equations results in the fol- 
lowing relationships explicitly 

aij = ^ijkfikl 

Sij = Tijkfikl 

(12) 

(13) 

The detailed derivation is given by Kwon et al. 
[24,26,27] and is therefore omitted here. Equa- 
tion (12) indicates the constitutive equation for 
the unit-cell. That is, Eijkl is the smeared com- 
posite material property matrix determined 
from material properties of a particle and a 
matrix. This equation provides the route from 
the micromechanical analysis to the macro- 
mechanical analysis. 

Equation (13) relates macrostrains (compo- 
site level strains) to microstrains (constituent 
level strains). Substituting the microstrains to 
eqn (11) yields microstresses. Thus, these equa- 
tions make it possible to decompose 
macrostrains into microstrains, and likewise 
microstresses. The microstrains and microstres- 
ses are used for damage mechanics or failure 
criteria in the present analysis. Equation (13) 
yields the connection of the macromechanical 
analysis to the micromechanical analysis, the 
opposite to the process given in the previous 
paragraph. 

In the unit-cell model, if any two contiguous 
subcells represent the fiber (for example, sub- 
cells T and '2'), the present model can also be 
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applied to a fibrous composite as developed by 
Kwon et al. [24,26,27]. 

CONTINUUM DAMAGE MODEL 

Damage and failure in a composite structure is 
described in terms of those at the constituent 
level, i.e. fiber/particle fracture, matrix cracking 
and fiber(particle)/matrix debonding. The fol- 
lowing derivation of continuum damage 
mechanics is for the matrix damage. However, a 
similar derivation may be obtained for fiber/ 
particle damage. The present approach of 
continuum damage mechanics is a strain-based 
isotropic damage model as developed by Simo 
& Ju [28]. 

Introducing a scalar variable d as the damage 
parameter, the effective stress after damage can 
be expressed as 

(14) 

On are the effective and homo- 

11   a-d) 
where au and 
genized stress tensors, respectively. Further, the 
damage variable d is limited to between 0 and 
dc(<\), which denotes the damage saturation. 
It is assumed that the stress tensor can be 
obtained from the free energy as given below 

olt= -— ={\-d) 
dsu 8e; 

(15) 

where *F° is defined as jE°JklEu£kl, and E°jkl is 
the tensor of the undamaged material property. 

The function for damage criterion is assumed 
to be 

F = f(eiJ,aiJ)-K (16) 

where K is a constant for the damage threshold 
value which increases with the damage. If F is 
less than zero, damage does not occur, but 
damage occurs when F = 0. For the present 
damage model, function/is assumed to be 

where 

(17) 

(18) 

which is the equivalent strain measure as 
defined by Simo & Ju [28]. Equations (17) and 
(18) indicate that K depends on the previous 
maximum state of strains. Thus, further damage 

begins to occur when the present state of strains 
reaches the previous maximum state of strains. 
This phenomenon was observed in some par- 
ticulate composite materials such as a solid 
rocket propellant material [29]. 

Further, the damage evolution equation is 
defined as 

d = kg(e) (19) 

where the overdot denotes temporal derivative. 
Damage loading and unloading conditions can 
be stated as 

K>0 

F<0 

kF = 0 

(20) 

(21) 

(22) 

For unloading, F<0 and k = 0. Then d = 0 
from eqn (19). This indicates no more damage. 
On the other hand, if k > 0, then F = 0 and 
d > 0, i.e. damage is occurring. 

In order to determine the damage tangent 
modulus, the time derivative is sustituted into 
eqn (15). Then 

°ij = (1 -d)E°jkl£kI-äo°j 

where 

< = 
QVJ/O 

~dE~: 

(23) 

(24) 

Use of previous equations finally results in the 
damage tangent modulus 

Eijki = (l—d)E°jkl — >ijuki (25) 

For the particulate composite under present 
study, function g is assumed to be constant. 
That is, the rate of damage evolution is linearly 
proportional to the rate of equivalent strain 
measure. Further, if the damage parameter d 
reaches its critical value dc at a local zone, 
damage becomes saturated and a crack is 
assumed to initiate at the location. It is also 
assumed that the direction of crack propagation 
is determined from the direction of dc in the 
material. 
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RESULTS AND DISCUSSION 

A study was conducted to investigate the crack 
initiation in a particulate composite material 
using the micro/macromechanical approach and 
the damage mechanics as described in the pre- 
vious sections. In order to evaluate the 
micromechanical model and the damage mech- 
anics model, a uniaxial tensile test was 
conducted for the material. The micromechan- 
ical model requires the material properties of 
the particles and the matrix. For the present 
composite, the elastic modulus of the particles 
was 1.0 x 106 psi and that of the binding matrix 
was 110 psi. Thus, the particles are much suffer 
than the matrix material. The particle volume 
fraction was 0.78. The predicted stress-strain 
curve agrees well with the experimental curve, 
as seen in Fig. 3. 

The next study examined crack initiation 
from a notched specimen made of the same 
material as above. The specimens had dimen- 
sions of 3 in. wide by 3 in. long and 0.25 in. 
thick. Two circular holes of two different sizes 
were drilled at the center: one hole had a 
0.25-in. diameter and the other had a 0.5-in. 
diameter. The specimens were subjected to ten- 
sion with uniform displacement until a crack 
initiated from the hole. Numerical prediction 
was also undertaken for the crack initiation. A 
typical finite-element mesh is shown in Fig. 4. 
The mesh is refined around the hole. 

For the specimen with a 0.25-in. diameter 
hole, the applied load vs displacement is plotted 
in Fig. 5 for both the experimental and numeri- 

Fig. 4. Finite-element mesh for a specimen with a 0.5-in. 
diameter hole. 

cal results until a crack initiates. The 
displacement is half the displacement between 
the two grips because of the symmetry of the 
specimen. The curve was linear up to a dis- 
placement of 0.11 in. and then became 
nonlinear. The crack occurred at a displacement 
of approximately 0.14 in. Damage initiated 
before the breaking point from the linearity in 
the curve. However, a small amount of damage 
at a local area around the notch tip of the hole 
had little effect on the damage tangent modu- 
lus. As the damage grew, the damage tangent 
modulus became significantly reduced from the 
virgin modulus and the curve deviated from lin- 
earity. The two curves obtained both from the 
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Fig. 3. Stress-strain curves. 
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Fig. 5. Load-displacement curve for a specimen with a 
0.25-in. diameter hole. 
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Fig. 6. Deformed shape of a specimen with a 0.25-in. 
diameter hole. 

experimental and the numerical studies show 
almost the same results. 

Further, the predicted crack size was 
0.048 in., while the measured crack size was 
between 0.043 and 0.051 in. Thus, the predic- 
tion lies within the experimental data. Figure 6 
illustrates the predicted deformed shape of the 
initially circular hole. The circular hole became 
elliptic and the major diameter was about 60 
longer than the minor diameter. This geometry 
was also confirmed by the experimental obser- 
vations made by Yen & Liu [30]. The saturated 
damage zone did not increase for a while even 
when the applied strain to the specimen 
increased. As the applied strain increased fur- 
ther, the saturated damage zone then 
propagated. This phenomenon was also 
observed in the experiment. The experimental 
study showed that the critical crack hesitated 
for a while prior to propagation. 

Figure 7 shows the distribution of normal 
strains in the load direction as a function of 
distance from the hole edge. The distance was 
normalized with respect to the hole radius, 
while the strain was normalized in terms of the 
applied strain. Before damage occurs, the strain 
concentration near the hole decreases along 
with the increase in the applied strain. This 
reduction is caused by the deformation of the 
circular hole into an ellipic shape with the 
major axis along the loading direction. The con- 
centration factor for an elliptic hole is given by 
Timoshenko & Goodier [31] as (1+2 at'b), in 
which 2a is the axis of the ellipse normal to the 

0.1 0.2      0.3      0.4      0.5      0.6      0.7      0.8 
NORMALIZED DISTANCE FROM THE HOLE 

Fig. 7. Strain distribution along the minimum section. 

loading direction and lb is the axis in the load- 
ing direction. Therefore, this expression agreed 
with the present result. However, the normal- 
ized strain increases away from the hole as the 
load increases. (Compare the two curves in Fig. 
7 for applied strains of 0.0033 and 0.0300, 
respectively.) On the other hand, as the damage 
initiates and propagates, the normalized strain 
increases because the damage tangent modulus 
decreases. In Fig. 7, the cases with applied 
strains of 0.0667 and 0.0833 show an increase in 
the normalized strain when compared to the 
other curves. 

Similar comparisons were also made for the 
specimen with a 0.5-in. diameter hole. Figure 8 

0.04        0.06        0.08 0.1 
DISPLACEMENT (inch) 

Fig. 8. Load-displacement curve for a specimen with a 
0.5-in. diameter hole. 
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gives the load-displacement curve for compari- 
son. The predicted crack size was 0.045 in., 
while the measured crack was between 0.035 
and 0.067 in. Therefore, the prediction agreed 
well with the experimental data. The measured 
crack size for the 0.5-in. diameter hole had a 
larger variation than that for the 0.25-in. diam- 
eter hole. 

CONCLUSIONS 

A micro/macromechanical approach using the 
finite-element technique, a simplified micro- 
mechanical model and damage mechanics was 
developed to simulate the damage initiation and 
growth in a composite structure. The approach 
can model a general composite structure made 
of fibrous or particulate composite materials, 
and is also computationally efficient. The pro- 
posed approch was applied to investigate crack 
initiation in particulate composite specimens 
with a center hole. The numerically predicted 
results agreed well with the experimental data. 
Thus, the proposed approach is useful for the 
design and analysis of composite structures in 
terms of damage and failure. 
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Steel caissons currently used on offshore platforms for the uplift of 
seawater onto platform topsides, for example, are susceptible to corrosion, 
and some operators have had to replace corroded caissons during service. 
The use of fibre reinforced plastics (FRP), in particular glass-fibre (GRP), 
has been explored by a number of offshore operators as an alternative to 
steel, principally due to the resistance to corrosion of these materials. In 
addition, their relative light weight facilitates handling and installation that 
is particularly beneficial for retrofit applications. 

However, the low flexural modulus of GRP compared to steel, combined 
with the large support spacings on conventional steel jacket structures in 
the splash zone region, means that standard GRP tubes designed for biaxial 
loading (i.e. with +55° reinforcement fibre winding angle) will exhibit 
greater deflections than their steel counterparts, when subjected to the 
various in-service wave loadings. 

An investigation has therefore been conducted to determine the 
improvement in flexural modulus of GRP tubes manufactured with 
shallower reinforcement winding angles. Tubes manufactured with a range 
winding angles and different reinforcement types have been obtained and 
subjected to deflection tests. Experimental results are presented and 
compared with predictions of flexural modulus generated from laminate 
analyses software packages. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Caissons are large-diameter piping transporta- 
tion systems suspended from offshore platforms 
for the import of seawater to, and the export of 
waste products from, the platform topside. They 
vary in size, from 250 to 1200 mm in diameter 
and from 20 to 100 m in length, depending on 
the function required and the size of the plat- 
form. Import caissons typically incorporate a 
central pumping and riser system to lift sea- 
water to the platform topside for process, utility 
and fire applications. Export caissons normally 
contain a number of smaller pipes discharging 
treated effluent. A schematic of a caisson is 
shown in Fig. 1. 

Steel caissons currently used are susceptible 
to corrosion, and require rigorous inspection, 

*Now at BG pic Transco, Norgas House, Killingworth, 
Newcastle upon Tyne, NE991GB. 

maintenance and repair/replacement pro- 
cedures to ensure accordance with safety 
legislation, especially for fire water systems. 
These procedures are extremely expensive, 
often requiring underwater inspection, and can 
total as much as five times the original installa- 
tion costs over the life of the caisson [1]. 

The use of fibre-reinforced plastics (FRP), in 
particular glass-reinforced plastic (GRP), has 
been explored by a number of offshore suppli- 
ers and operators as an alternative to steel, 
principally due to the corrosion resistance affor- 
ded by these materials. In addition, their 
relative light weight facilitates handling and 
installation, reducing the cost of retrofit applica- 
tions. The substitution of a GRP caisson 
represents a 50% weight reduction over an 
equivalent steel caisson. 

However, the relatively low flexural modulus 
of GRP, combined with the large support spac- 
ings through the splash zone on conventional 
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steel jacket structures, means that standard 
GRP tubes designed for biaxial loading (i.e. 
with a +55° reinforcement fibre-winding angle) 
will deflect more than their steel counterparts 
when subjected to in-service wave loadings. 
Moreover, it is a design requirement that these 
deflections do not exceed prescribed limits or 
restrict the performance of the equipment 
housed within the caissons. An investigation has 
therefore been conducted to determine the 
increase in flexural modulus that can be 
achieved by manufacturing tubes with shallower 
reinforcement winding angles, and hybrid glass- 
carbon fibre reinforcement. 

Glass-reinforced epoxy (GRE) tubes manu- 
factured with a range winding angles and 
different reinforcement types were subjected to 
flexural-bending tests. The experimental results 
were then compared with predictions of flexural 
modulus generated from laminate analysis soft- 
ware packages. In addition, finite-element 
analysis was used to assess the magnitude of 
GRE caisson deflections when subjected to a 
critical in-service load; in this case, the 100-year 
wave load. The resulting data have been con- 
sidered with regard to the geometry, loading, 
deflections and access of a typical caisson to 
indicate the feasibility of a GRP replacement. 

Schematic of a Seawater Lift Pump Caisson 

Motor Power Cable 

Caisson Housing 

Diver Protection Cage 

0 o o o o 0 
0 o o o o 0 
0 o o o o 0 
0 o o o 0 0 
0 0 o 0 o 0 
0 o 0 o o 0 
0 0 o o o 0 
0 o 0 o o 0 

Main Riser Pipe 

Submersible Pump 

Suction Strainer 

Fig. 1. Schematic of a seawater lift pump. 
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APPROACH 

The GRP caisson study has been conducted in 
three stages. 

Four-point flexural tests were performed on 
composite tubular specimens with a range of 
laminate constructions to determine flexural 
modulus. In addition to flexural modulus values, 
failure load, deflection and strain to failure 
were also recorded. 

Predicted values of flexural modulus, 
obtained from commercially available software, 
were compared with the measured values from 
the flexural tests. Potentially, these software 
packages afford quick and easy methods of 
determining stiffness properties of composite 
materials with various laminate architectures, 
which can speed up the design process. 

Finite-element analyses of actual caisson 
geometries were performed. Predictions of the 
maximum deflections and peak stresses made 
for both the steel and the GRP caissons, sub- 
jected to the 100-year wave load, were obtained. 
The purpose of this analysis was to determine 
the relative performance of steel and GRP cais- 
sons under in-service loading conditions. Two 
caissons diameters were selected for analysis: 
610 and 1016 mm. 

Experimental testing — four-point bend tests 

Two types of GRE tubes were obtained from 
two manufacturers. Details of all the sample 
tubes are given in Table 1. Strain gauges were 
attached to the mid-point of the tubes at the 
top and bottom, dead centre, to measure failure 
strains. The four-point bend tests were carried 
out in each case until sample failure occurred. 
The length of the support spans for the bend 

tests were determined by scaling down a 22 m 
full-size span by the appropriate scale factor for 
each tube, namely 1:5 and 1:10. Test results are 
summarized in Table 2 [2]. 

Analytical predictions of flexural modulus for 
various laminate constructions 

The following software tools were used to pre- 
dict the relationship between flexural modulus 
and the laminate construction of GRP tubes. 

Trilam II — Osbourne Composite Engineer- 
ing Ltd; 

Clamp — Hunting Engineering in-house pro- 
gram. 

Both of these software packages use classical 
laminate analysis theory as their basis. Various 
laminate constructions were analysed, with the 
objective of optimizing flexural modulus. Vari- 
ables included reinforcement winding angle, 
fibre volume fraction, number of layers, and 
resin and reinforcement types. Predicted flex- 
ural moduli for the different laminate 
constructions interrogated are given in Table 3. 

The predicted values of flexural modulus 
compare favourably with those values obtained 
from flexural tests in all cases, except for the 
±10° hybrid (29% carbon-71% E-glass) speci- 
men. A possible explanation for this could lie in 
the actual location of the carbon reinforcement 
fibres. To increase the carbon fibre reinforce- 
ment content from 14 to 29%, additional 
carbon layers were placed on the inside of the 
tube, with the effect that the contribution to the 
flexural modulus of the internal carbon reinforc- 
ing layers was negligible when compared to the 
carbon reinforcing layers placed on the outside 
of the tube. It would appear that the software 

Table 1. Details of GRE sample tubes tested 

Scale" Internal Length Thickness Winding Quantity Details 
diameter (m) (mm) angle tested 

(mm) o 
1:5 208 4.9* 6 30 1 E-glass-epoxy (GRE) 
1:5 208 4.9fc 8 30 2 E-glass-epoxy (GRE) 
1:10 106 2.5 4 10 3 E-glass-epoxy (GRE) 
1:10 106 2.5 4 15 2 E-glass-epoxy (GRE) 
1:10 106 2.5 6 15 2 E-glass-epoxy (GRE) 
1:10 106 2.5 4 20 3 E-glass-epoxy (GRE) 
1:10 106 2.5 4 10 3 Hybrid (29% carbon-71% E-glass)-epoxy 
1:10 106 2.5 4 10 3 Hybrid (14% carbon-86% E-glass)-epoxy 

"Scale indicates ratio of size of sample compared with full-sized caisson. 
fc4.9 m tubes were supplied with flanged ends. 
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Table 2. Results of four-point deflection tests 

Winding angle      Wall Material Maximum Calculated Flexural Maximum Maximum Maximum 
o thickness load maximum modulus displacement strain strain 

(mm) (kN) stress 
(MPa) 

(GPa) (mm) TDC 
(axial) 

(fie) 

BDC 
(axial) 

(pe) 

208 mm diameter, 4.4 m span 
30 6 GRE 38.9 142 24.5 130 -5776 5950 
30 8 GRE 64.9 148.3 24.1 137 -6150 6605 
30 8 GRE 63.3 158.1 24.4 135 -6797 6945 

106 mm diameter, 2.2 m span 
10 4 GRE 33.4 320 32.9 96 -9103 10065 
10 4 GRE 34.9 334 32.9 100 -8049 10708 
10 4 GRE 46.3 436.8 31.8 134 -13760 13700 
15 4 GRE 45.3 427.6 28.1 143 -17270 17930 
15 4 GRE 43.3 426.1 29.3 137 -19847 13322 
15 6 GRE 71.6 453.7 28.3 151 -14274 14740 
15 6 GRE 72 453.4 26 152 -21420 14800 
20 4 GRE 27.3 262 28.8 94 -10466 10080 
20 4 GRE 28.0 268.3 28.1 103 -9078 10695 
20 4 GRE 32.5 313.5 27.4 117 -11411 11247 
10 4 Hybrid (29% carbon) 49.7 430.9 41.4 96 -12770 9144 
10 4 Hybrid (29% carbon) 43.1 390.4 44.1 79 -8540 10330 
10 4 Hybrid (29% carbon) 36 333.6 45.3 67 -8821 9870 
10 4 Hybrid (14% carbon) 52.2 420.2 43.8 88 -7405 9215 
10 4 Hybrid (14% carbon) 52.2 434.6 45.2 87 -8340 9460 
10 4 Hybrid (14% carbon) 47.4 382.5 43.3 71 -8184 8889 

Italics indicate data recorded at maximum machine displacement before tube failure. 

analysis packages simply calculate the stiffness 
of the laminate, and do not take into account 
any structural effects. 

Analysis of offshore caissons 

The Atkins Structural Analysis Systems (ASAS) 
finite-element package was used to simulate the 

effect of the load produced on a caisson by the 
100-year wave. Two typical caisson sizes were 
chosen, with diameters of 610 and 1016 mm and 
an unsupported span of 22 m through the splash 
zone. 

The maximum bending moment in the 
caisson occurs at the upper lateral restraint of 
the 22 m span, while the maximum deflection 

Table 3. Comparison of predicted and measured flexural modulus 

Winding angle 
(°Q 

Wall thickness 
(mm) 

Material Flexural modulus (GPa) 

Predicted0 Actual measured 

Trilam Clamp Individual values Mean 

208 mm diameter 
30 6 GRE 24.1 24.5 24.5 
30 8 GRE 24.4 — 24.1, 24.4 24.3 

106 mm diameter 
10 4 GRE 33.1 32 31.8, 32.9, 32.9 32.5 
15 4 GRE 31.2 29.8 28.1, 29.3 28.7 
15 6 GRE 34.1 30.8 28.3, 26.0 27.2 
20 4 GRE 31.8 27.5 27.4, 28.8, 28.1 28.1 
10 4 Hybrid (29% carbon) 79.1 50.6 41.4, 44.1, 45.3 43.6 
10 4 Hybrid (14% carbon) 40.9 38 43.8, 45.2, 43.3 44.1 
55 (standard pipe) 10.4 — ll.T 

"Based on a 75% by weight reinforcement to resin ratio. 
^Manufacturer's data. 
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occurs at the mid-point of the span, see Fig. 2. 
Graphs showing maximum bending stress and 
maximum deflections for the two caisson sizes 
are shown in Figs 3-6. For comparison, pre- 
dicted deflections are given for steel and for 
GRP caissons with different levels of assumed 
flexural modulus. 

The trends shown in Figs 4 and 6 are clear. 
Significant reductions in the maximum deflec- 
tion of the caisson can be realized by increasing 
the flexural modulus. The tests described in the 
previous section show that GRP tubes manufac- 
tured with shallow winding angles have flexural 
moduli ranging from 24 to 33 GPa, and up to 

44 GPa for the glass-carbon hybrid tubes. This 
represents a significant improvement in the flex- 
ural modulus for the standard ±55° wound 
tube, namely 11.7 GPa [3]. Based on the 
rationale that a 50% weight saving would be 
achieved by using GRP tubes with a wall thick- 
ness around twice that of steel, the deflection 
data are summarized in Table 4. 

The analysis predicts that the deflections for 
GRP caissons are approximately three times 
that for the associated steel caissons, albeit for 
different wall thicknesses. Also, the deflections 
are markedly lower for the larger diameter cais- 
sons, as would be expected. For the 1016 mm 

Caisson deflection under 100 year wave load 

Node height above sea bed (m) 

1 - 47.4 
2 - 42.7 
3  - 38.0 
4 - 32.5 
5  - 27.0 
6 - 21.5 
7 - 16.0 
8 - 6.9 

Maximum bending 
moment at Node 3 

Maximum deflection 
at Node 5 

I 
I 
/4- 
/ 
I 

I 
I 

\6- 

\ 

/ 

Water depth 22.5 metres 

Caisson fixed 
at Node 1 

Lateral restraint 
at Node 3 

Lateral restraint 
at Node 7 

Fig. 2. Caisson deflection under the 100-year wave load. 
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Fig. 3. Maximum bending stress vs wall thickness for a 610 mm diameter 100-year wave load. 

diameter caisson, the relative slenderness of the 
internal riser and the location of the pump 
towards the bottom of the caisson are such that 
deflections of 83 mm should be accommodated 
easily, without damage to internal equipment. 
However,   the   maximum   deflection   of   the 

610 mm diameter GRP caisson (257 mm) may 
prove to be sufficiently large that the opera- 
tional and/or safety requirements are 
compromised. Methods of limiting the maxi- 
mum deflections of relatively slender caissons 
are best addressed on a case-by-case basis. 
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Fig. 4. Maximum deflection vs wall thickness for a 610 mm diameter 100-year wave load. 
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Fig. 5. Maximum bending stress vs wall thickness for a 1016 mm diameter 100-year wave load. 

OBSERVATIONS FROM THE STUDY 

Experimental measurements of flexural 
modulus 

The measured values of flexural modulus for 
the GRE tubes ranged from 24.3 GPa ( + 30° 

winding angle) to 32.5 GPa (+10° winding 
angle). This represents a significant improve- 
ment compared with the flexural modulus of a 
standard +55° winding angle tube (i.e. 
11.7 GPa). 

A further improvement in flexural modulus 
to 44 GPa was obtained for the hybrid glass- 

500 

Maximum Deflection vs Wall Thickness of 1016mm dia. 
100 year wave load 

20 30 40 50 

Caisson Wall Thickness (mm) 

Fig. 6. Maximum deflection vs wall thickness for a 1016 mm diameter 100-year wave load. 
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Table 4. Deflection data Table 5. Determination of the fibre to resin ratio 

Material Wall 
thickness 

(mm) 

Maximum 
deflection (mm) 

610 mm 
diameter 

1016 mm 
diameter 

Steel 17.5 80 
Steel 22 24 
GRP (flexural modulus 40 257 83 

33 GPa) 
Hybrid (flexural modulus 40 211 69 

40 GPa) 

carbon tube. However, increasing the 
proportion of carbon in the reinforcement from 
14 to 29% produced no change in measured 
flexural modulus, although the laminate analysis 
software predicts a significant increase. 

Comparison of measured and predicted flexural 
modulus 

Predicted moduli agreed reasonably well with 
the measured values for the all GRE tubes. Of 
the two programs compared, the Hunting 
Clamp program produced better agreement 
than the Trilam II software package, the latter 
tending to overestimate the flexural modulus. 

Predicted moduli were less reliable for the 
hybrid tubes, resulting in a 7-14% underesti- 
mate for the lower carbon variant, and a large 
overestimate for the higher carbon variant. This 
could be attributed to the fact that the software 
analysis packages simply calculate the stiffness 
of the laminate, and do not take into account 
any stiffness effects afforded by the structure 
itself. 

The reason for the discrepancy between the 
predicted and measured values for the +10° 
hybrid (29% carbon-71% E-glass) specimen 
may be explained by the details of the laminate 
construction. The extra carbon layers were 
placed on the inside of the tube, with the effect 
that the contribution of the internal carbon rein- 
forcing layers to flexural modulus was negligible 
when compared to those placed on the outside 
of the tube. 

It should also be recognized that there will be 
a cost implication of using carbon reinforce- 
ment as carbon fibre is an order of magnitude 
more expensive than E-glass. In addition, other 
aspects of performance would need to be evalu- 
ated, such as fatigue and impact tolerance. 

Sample details Fibre content 

Winding 
angle 
o 

Wall 
thickness 

(mm) 

% by volume        % by weight 

10.0 
20.0 

56.2 
56.7 

75.4 
76.1 

Other properties 

Tensile axial strains at failure varied as indi- 
cated: 

+ 30° GRE tubes 0.6-0.7%; 
±20° GRE tubes 1.0-1.1%; 
±15° GRE tubes 1.3-1.5%; 
+ 10° GRE tubes 1.0-1.4%; 
+10° hybrid tubes 0.9-1.0%. 

Burn-off tests were conducted to determine 
the fibre to resin ratio for selected tubes. 
Results are given in Table 5. 

Comparison of the finite-element analysis with 
experimental data 

The +10° GRE tubes failed at bending stresses 
of around 300-400 MPa. Corresponding failure 
strains are of the order of 1-1.4%. The analysis 
predicts a maximum bending stress of 43 MPa 
for the 1016 mm diameter, 40 mm wall thick- 
ness, caisson. Therefore, strain levels in the 
caisson will be an order of magnitude smaller 
than the failure strains, typically 0.1-0.14%, as 
stress and flexural modulus scale by the same 
magnitude. Therefore, a design strain level of 
0.25% is sufficient to ensure the survival of the 
full-scale caisson against the 100-year wave 
load. 

A GRP caisson of 1016 mm diameter and 
40 mm wall thickness is approximately 50% of 
the weight of a traditional steel caisson of wall 
thickness 22 mm. The analysis predicts that the 
maximum deflection of the GRP caisson, when 
subjected to a 100-year wave, will be approxi- 
mately three times that for the steel caisson. 

The increase in deflection predicted by the 
analysis does not present any operational 
restrictions on the use of GRP materials for 
large-diameter caissons. Steel caissons have a 
lifetime corrosion allowance designed into the 
wall thickness, and as such are considerably 
over-designed with respect to structural loading. 
In view of the large distance over which the 
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caisson spans, up to 22 m in some cases, it is 
envisaged that the predicted maximum deflec- 
tion for a 1016 mm diameter GRP caisson is 
still sufficiently small to ensure no damage to 
the equipment housed within it. 

Manufacture of tubes 

The practical manufacturing limit for shallow- 
angle winding of tubes lies in the range 
+10- + 30°. However, only a limited number of 
manufacturers are currently able to wind at the 
lower end of this range. 

CONCLUSIONS 

The results of the flexural-bending tests show 
that a significant increase in flexural modulus 
can be achieved by reducing the fibre winding 
angle of glass reinforcement. Also, by using 
glass-carbon hybrid reinforcement, the flexural 
modulus can be increased further. However, the 
use of such reinforcement material is prohibit- 
ively expensive for this application. Flexural 
moduli generated from the laminate analysis 
software packages compared reasonably well 
with the measured values for the all GRE tubes, 
and the measured tensile failure strains of the 
tubes were typical of GRP materials. 

The maximum bending stress and maximum 
strain predicted by finite-element analysis for 
the 100-year wave loading condition were an 
order of magnitude lower than the failure stres- 
ses and strains measured in the flexural tests. 
The predicted maximum deflection of the GRP 
caisson is approximately three times that pre- 
dicted for an equivalent steel caisson. However, 
steel caissons have a lifetime corrosion allow- 
ance designed into the wall thickness, and as 

such are considerably over-designed with regard 
to structural loading. 

In summary, the use of GRP materials for 
caissons offers corrosion resistance and a 50% 
weight saving over traditional steel caissons. 
The findings of this study also conclude that, for 
large-diameter GRP caissons, the predicted 
maximum in-service deflection is sufficient not 
to damage equipment housed within it. As such, 
there are no perceived restrictions on the struc- 
tural use of GRP for caissons, providing proper 
consideration is given to the criteria listed 
below. 

— Caisson span and supporting structures. 
— Predicted maximum deflection. 
— Location internal equipment. 
— Clearance issues, both internal and 

external. 

ASSOCIATED WORK 

The integrity of jointing methods for GRP 
tubes has been addressed by SLP Engineering 
and Ameron [4] under fatigue loading condi- 
tions, and has attained Lloyds certification for 
the Bondstrand® GRE system. 

The effect of vortex shedding on caisson dis- 
placement and fatigue requires assessment. SLP 
Engineering have expertise in this area, having 
developed in-house software to perform vortex 
shedding analysis. 
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Axisymmetric vibration analysis of laminated 
hollow cylinders with ring stiffeners 

Jianqiao Ye 
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This paper presents an axisymmetric vibration analysis of laminated hollow 
cylinders composed of monoclinic layers and stiffened by ring stiffeners. A 
successive approximation approach, which is based on a transfer matrix and 
then an equivalent stiffness matrix formulation, is used to enable three- 
dimensional solutions to be found. It is assumed that the ring stiffeners are 
attached to the lateral surfaces of the cylinder and only provide elastic 
supports in radial direction. These constraints are imposed by using 
Lagrange multipliers to couple the responses of a number of vibration 
modes of corresponding cylinders without stiffeners. Using this method the 
natural frequencies of a stiffened cylinder are found to be the eigenvalues 
of a constraint matrix and the predictions can be arbitrarily close to the 
exact three-dimensional solutions. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Laminated composite panels and cylinders are 
increasingly being used in mechanical, civil, 
aerospace and many other industries. As it is 
well known that the mechanical behaviour of 
such structures is far more complicated than 
that of ones made of homogeneous materials, 
three-dimensional stress analysis has received 
considerable attention over the last few years. 
For analytical vibration analysis of laminated 
cylinders, research results have been published 
concerning cylinders composed of either cross- 
ply or angle-ply laminates. These were mainly 
obtained on the basis of two alternative 
approaches: (a) the well-known method of Fro- 
benius [1,2]; and (b) a new successive 
approximation method [3,4]. However, none of 
the these publications dealt with laminated 
cylinders with stiffeners. 

As an initial study of three-dimensional free 
vibration analysis of stiffened laminated cylin- 
ders, this paper attempts solutions dealing with 
axisymmetric vibration of laminated hollow 
cylinders. The cylinders can be made of an arbi- 
trary number of material layers and the lay-ups 
can be either cross-ply or angle-ply. The cylin- 

ders are stiffened using a number of ring 
stiffeners which are attached to their lateral sur- 
faces. It is assumed in this study that the ring 
stiffeners only provide elastic support in the 
radial direction. A Lagrange multiplier 
approach, together with the successive approxi- 
mation method that has been successfully used 
in connection with the vibration analysis of 
unstiffened plates and shells, is used to impose 
connections between cylinders and stiffeners. 
Using this method, a number of free vibration 
modes corresponding to an unstiffened cylinder 
are coupled to represent the real vibration 
modes of the stiffened cylinder. Theoretically, 
therefore, the exact three-dimensional solutions 
of the natural frequencies can be approached as 
long as sufficient vibration modes have been 
coupled. In practice, a satisfactory prediction of 
the exact solutions can always be obtained by 
coupling a suitably large number of the vibra- 
tion modes. 

The main purposes of this paper are not only 
to present an exact, three-dimensional and axi- 
symmetric free vibration analysis of laminated 
cylinders but also to serve as a basis on which 
general vibrations of laminated cylinders can 
also be analysed in a similar manner. 
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z(w) 

Middle Surface 

Fig. 1. Nomenclature of a hollow cylinder. 

SUCCESSIVE APPROXIMATION OF A LAMINATED CYLINDER 

Consider a hollow circular cylinder (Fig. 1) having an arbitrary constant thickness h, and denote with 
L and R its axial length and its middle-surface radius, respectively. The axial, circumferential and 
radial co-ordinates are denoted with x, s and z, respectively (the z co-ordinate is along the outward 
normal), while u, v and w represent the corresponding displacements. The cylinder may be divided 
into an arbitrary number of sub-layers, each of which is a co-axial cylinder. These sub-layers may 
have different thicknesses and material properties. It is assumed, however, that each of these sub- 
layers is made of an homogeneous monoclinic linearly elastic material, and the thicknesses of these 
sub-layers approach zero uniformly as the number of the division approaches infinite. The elastic 
behaviour of any of these sub-layers is described by Hook's law 

c„ ^-12 C,3 0 0 

Ci2 £-22 C23 0 0 

C,3 C23 C33 0 0 
0 0 0 C44 C45 

0 0 0 C45 c55 
C16 C26 C36 0 0 

c,6" 
1         \ 

C26 e. 
C36 1 £7 

0 7sz 

0 Ixz 

Cö6 Jxs 
\       J 

(1) 

where Q, are the stiffnesses of the materials. 
The axisymmetric vibration of the cylinder is independent of the circumferential co-ordinate 

parameter, 5. Owing to anisotropy, however, the following differences should be compared with the 
homogeneous orthotropic case. There is a coupling between the longitudinal and torsional deforma- 
tions and, therefore, the circumferential displacement, v, and the shear strains, ysz and y^, of the 
cylinder are all non-zero. Hence, the dynamic version of the Navier-type governing differential 
equations for each of these sub-layers have the form 

Cuuxx + C55R-\l+z/Rriuz+C55uz,+(Cl3+C55)w^z+(C12+C55)R-1(l+z/R) ~ \X+Cl6v^xx 

+ C45v,zz = putt 

C66v,xx-C44R-2(l+z/R)-2v+C44R- \l+z/R)-\z+C44v,zz+Cl6uxx 

+ C45utZZ+(C36+C45)w<xz+2C45R-l(l+z/Rrluz+(C26+2C45)R-\l+z/R)-yx = pv „ 
(C13+C55XXZ + (C13 - C12)R- \l+z/R) -lu,x+C55w,xx+C33w,zz 

- C22R-2{\+zlRr2w+C33R-\\+zlRrlw^{C45+C36)v^xz 

+ (C36 - C26 - C45)R- \l+z/Rr\x = pvv „ (2) 
For free vibration problems, the following stress boundary conditions are imposed on the lateral 
surfaces (z = ±h/2) of the cylinder: 

<Tz( + Ä/2) = 0,TÄ( + Ä/2) = 0andTÄ( + A/2) = 0 (3) 
Owing to the appearance of the terms (1+z/R), eqn (2) is made up of differential equations with 
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variable coefficients. However, on the basis of the analyses presented by Ye & Soldatos [3-4], all 
these terms in the equations are replaced by 1 for thin sub-cylinders (h/R<^l). Hence, eqn (2) is 
reduced to the following approximate equations with constant coefficients 

Ci 1uxx+C55R~1uz+C55uzz+(C13+C55)wxz+(C12+C55)R~ lw,x+Cl6vxx+C45v<zz = putt 

C66v,xx ~ C44/?-2v+C44/?- y Z+C44v<zz+Cl6uxx+C45uzz+(C36+C45)w<xz+2C45R- luz+(C26+2C45)R- lw,x 

= Pv„ (4) 

(C13+C55)uxz+(Cl3 - C12)R- \X+C55w,xx+C33w,zz - C22R-2w+C33R-\z+(C45+C36) 

x v,xz+(C36 - C26 - C45)R ~~xvtX = pwttt 

For axisymmetric vibration problems, the displacement model 
i 

u(x, z; t) = ü(x, z)T(t) =  Z Um(z) cos (mnx/L) eicot 

m— 1 

v(x, z; t) = v(x, z)T(t) =  £  Vm(z) cos (mnx/L) eimt 

m= 1 

w(x, z; t) = w(x, z)T{t) =  £  Wm(z) sin (mnx/L) eimt (5a) 
m= 1 

represents a superposition of the first q normal modes of vibration and is associated with transverse 
stresses of the following form 

xxz(x, z; 0 = TXZ(X, z)T(t) =  £ Xm(z) cos (mnx/L) eicot 

m= 1 

xsz(x, z; t) = xsz(x, z)T(t) =  2 Sm(z) cos (mnx/L) emt 

m= 1 

az(x, z; 0 = oz(x, z)T(t) =  £  Zm(z) sin (mnx/L) eicot (5b) 
m— 1 

where <x> is the vibration frequency of the cylinder. Equation (5b) satisfies exactly the following 
simply-supported boundary conditions at the two edges (x = 0 and x = L) 

w = ox = xxs = 0 (6) 

Introduction of the displacement field (eqn (5a)) into eqn (4) and, for convenience, using fi(z), 
f2(z) and/3(z) to represent U(z), V(z) and W(z), respectively, yields the following differential equation 

fkm(z)=  .X Z.jFj-C^fl^JC^^^   (k=l, 2, 3; fOm = 0) (7) 

where Fy are the elements of the vector 

{Fm}  = {Fj F2 F3 F4 F5 F6} = {flm, flm, f2m, f2m, f3m, f3m} (8) 

and the Zkj can be found in the Appendix of Soldatos & Ye [4]. Using simple algebraic manipula- 
tions, eqn (7) can be further brought into the following form 

C^C^         6    I                C44 I 
fkm(z)=-— -r   -L\zkj--—* ZkJ\Fj   (k=\,2) 

<-44<-55      (-'45     J ( ^(6-k)(6-k) ) 

/L(z)=XZ3/J. (9) 

Differential eqn (9) can equivalently be represented in the following matrix form 

{Fm}' = [GJ{Fm} (10) 

where the elements of [G] are calculated on the basis of eqns (8) and (9) and are, in general, 
dependent on the unknown natural frequency co. Upon applying eqn (10) to all the sub-layers of the 
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cylinder, imposing appropriate continuity conditions on all interfaces and using the recursive formula 
introduced by Ye & Soldatos [3], the following equation is obtained 

{EW*^)} = [HJ{F^>(-/*(1>/2)} (11) 

where {F™(hm/2)} and {¥(J,\-h0)/2)} denote the values of {Fm} at the top and bottom lateral 
surfaces of the cylinder, respectively, and [Hm] is a frequency-dependent transfer matrix and has a 
dimension of 6 x 6. 

The transfer matrix equation, eqn (11), can be represented by an equivalent stiffness matrix 
formulation after the following matrix transformation 

{FT} = [Amn]{¥^(hm/2)}, {E™} = [BJ{F^(-/*(1)/2)} (12) 

where 

{frN)}T=[Z,X,S, U, V, W]z=h/2, {F(1)}T = [Z,X,5, U, V, W]z=_h/2 (13) 

and the elements of the 6x6 matrices [Am] and [Bm] are constants and can be calculated easily by 
using Hook's law and the strain-displacement relations. The column matrices appearing on the left- 
hand side of eqn (12) give the values of the stresses and displacements on the top and bottom lateral 
surfaces of the cylinder, respectively, and a combination of eqn (11) and (12) yields further 

{E™} = [AJtHJfBJ-MF^-^)} = [HJ{FL1)(-/i(1)/2)} (14) 

from which the following equations can finally be obtained 

{dJ = [QJ{E<I
1)}, {sJ = [RJ{F<l)} (15a) 

where 

{d}T = [f/(/*(/V)/2), V(/*(A0/2), W(hiN)/2), U{-hwl2), V(-hw/2), W(-h0)/2)] 

{s}T = [X(h(N)/2), S(h(N)/2), Z(h(N)/2), X(-h(1>/2), S(-h(1)/2), Z(-h(1)/2)] (15b) 

Obviously, the column matrices {dm} and {sm} consist of the values of the displacement and stress 
components, respectively, on the lateral surfaces of the cylinder. Elimination of {F^} from eqn (15a) 
yields the dynamic stiffness equation of the cylinder in the following form 

{sj = [RJ[QJ"!{<U = [KJ{«U (16) 

where the 6x6 dynamic stiffness matrix [Km] is symmetric and has frequency-dependent elements. 
Owing to the zero tractions on the lateral surfaces of an unstiffened cylinder, its natural vibration 
frequencies can be found as eigenvalues of the transcendental eigen-matrix [Km]. Numerical experi- 
ence has shown that the natural frequencies obtained can approach the exact three-dimensional 
solutions as the thicknesses of all the sub-layers approach zero [3,4]. 

VIBRATIONS OF LAMINATED CYLINDERS WITH ATTACHED RING STIFFENERS 

For axisymmetric vibration of a laminated cylinder with attached ring stiffeners, the stiffeners can 
well be represented by a set of continuous springs that provide elastic supports in radial direction. 
The stiffnesses of these springs depend on the materials and the cross-sections of the stiffeners. 
Suppose that the coupling of the first q normal modes of eqn (5a) represent a vibration mode of a 
cylinder having a number of ring stiffeners attached to its lateral surfaces. Using the notations 
adopted in eqn (15b), two vectors that represent displacements and stresses on those lateral surfaces 
(z = ±h/2) can, respectively, be formed as follows 

{D}=   £  [Nm(x)]{dJ (17a) 
m= 1 

{f}=   £  [Nm(x)]{sJ (17b) 
m= 1 
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where 

{D}T = [ü(x, h/2), v(x, h/2), w(x, h/2), U(x, -h/2), v(x, -h/2), w(x, -h/2)] 

{f )Tx:
l\x, h/2), xsz(x, h/2), oz(x, h/2), xxz(x, -h/2), TSZ(X, -h/2), az{x, -h/2)] 

\N m(x)]=Diag 
mux \        / mnx \       / mnx \        / mux \        / mux \       / m%x 

cosl    , cos    , sin     , cos    , cos    , sin (18) 

Consider initially, for simplicity, a special case in which the cylinder has only one ring stiffener 
attached to its inner surface at (x*, —h/2), here x* represents the x co-ordinate of the stiffener. As 
this ring stiffener can be modelled by a continuous spring attached to the cylinder at the same 
location, the following equation can be obtained from the last part of eqns (17b) and (19) 

kw=   £   [IsC(x*)]{sm}=   £   PC(**)][KJ{dJ (19) 
m=1 m=1 

where k is the rigidity of the stiffener that represents the force between the cylinder and the stiffener 
induced by a unit radial displacement of the interface, and [N*m] is the last row of [Nm]. Introducing 
the last part of eqn (17a) into eqn (19) yields the following constraint equation 

£   [N;0C*)]{[KJ-*IH<U=0 (20) 
m= 1 

where I is a unit matrix. It is worthwhile to mention that if the stiffener is attached to the outer 
surface of the cylinder, the corresponding constraint equation is 

£   [N;(x*)]{[KJ+M}{dm}=0 (21) 

Consider next that there are p ring stiffeners attached to either the inner or the outer surface of the 
cylinder at different locations. Upon denoting with x*, the vector consisting of the x co-ordinates of 
all the stiffeners, the general constraint equation has the following form 

£   [Em(x*)]{dm„} = {0} (22) 
m— 1 

where [Em(x*)] is ap x6 matrix, each row of which can be represented by either [N^(x*)]{[Km] — kl} 
or [N^(x*)]{[Km]+H} calculated for different values of x* and k. 

Dynamic equilibrium considerations suggest that the total energy, V, of the cylinder equals the 
total work done by the external forces acting on the displacements of the lateral surfaces. Hence, the 
total energy of the panel can be written as follows 

V= j JUf }T{D} dA= y Ij j JE   [NJ[KJ{dJ I   \   .£  [N,]{d,} i dA (23) 

where A represents the area of the lateral surfaces. Applying the Lagrange multipliers method 
involves the minimization of a functional 4> that equals V plus the product of the (arbitrary) 
Lagrangian multipliers and the constraints. Then the partial derivatives of $ with respect to elements 
of {dm} are equated to zero. Thus, the function to be minimized is 

ix [NJ[KJ{dJ V \   .£  [N,]{d,J i dA+{X}T I m£   [Em(x*)]{dJ > (24) 

The Lagrange multipliers vector, {I}, represents the forces acting at the connections between the 
cylinder and the stiffeners due to the constraints. Performing the surface integration in eqn (24) and 
equating with zero the derivative of 4> with respect to {dm} yields the stationary values of 4> as 
follows 

[KJ{dJ+[EJT{r} = {0}    (m=l,2,...,q) (25) 

where {A*} =2{k}lnLR. 
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Equations (22) and (25) can be written in the following compact matrix form 

[K]{D} = {0} 

where 

(26) 

[K] = 

"IK,] 
[0] 

[0] 

[0] 
[K2] 

[0] 

[KJ 

[EJ    [E2] [E„ [E,] 

[E,]T" 
[E2]T f{dl0 

{d2} 

[EJT ,    [D] = J {dm} 

[E,]T 

[0] 

(27) 

Hence, the natural frequencies of a laminated cylinder having an arbitrary number of ring stiffeners 
can be found as roots of a transcendental equation which is produced by nullifying the determinant 
of the constrained dynamic stiffness matrix K. It becomes apparent, therefore, that upon employing 
a suitably large number, q, of normal vibration modes, these predictions can be arbitrarily close to 
the exact natural frequencies of the stiffened cylinder considered. 

CLOSURE 

A three-dimensional study of the axisymmetric 
dynamic behaviour of laminated cylinders com- 
posed of an arbitrary number of monoclinic 
layers and stiffened with ring stiffeners has been 
performed. The study was based on a recursive 
formulation of the successive approximation 
approach employed by Ye & Soldatos [3] and 
the Lagrangian multiplier technique. This 
method has been successfully applied in connec- 
tion with vibration analysis of laminated 
cylinders and cylindrical panels having rigid 
point supports and clamped edges. 

Some preliminary results have been obtained 
and show satisfactory predictions to the corre- 
sponding three-dimensional solutions. Never- 
theless, it was decided that these results, along 

with other theoretical and numerical investiga- 
tions, should be published in a more 
comprehensive form. 
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Interlaminar stresses in laminated composite 
plates, cylindrical/spherical shell panels 

damaged by low-velocity impact 

S. Ganapathy & K. P. Rao 
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India 

Prediction of damage caused by low-velocity impact in laminated composite 
plate cylindrical/spherical shell panels is an important problem faced by 
designers using composites. Not only the in-plane stresses but also the 
interlaminar normal and shear stresses play a role in estimating the damage 
caused. The work reported here is an effort in getting better predictions of 
damage in composite plate cylindrical/spherical shell panels subjected to 
low-velocity impact. 

The low-velocity impact problem is treated as a quasi-static problem. 
First, the in-plane stresses are calculated by 2-D nonlinear finite element 
analysis using a 48 degrees of freedom laminated composite shell element. 
The damage analysis is then carried out using a Tsai-Wu quadratic failure 
criterion and a maximum stress criteria. Interlaminar normal and shear 
stresses are predicted after taking into account the in-plane damage caused 
by low-velocity impact. The interlaminar stresses are obtained by 
integrating the 3-D equations of equilibrium through the thickness. The 
deformed geometry is taken into account in the third equation of 
equilibrium (in the thickness direction). After evaluating the formulation 
and the computer program developed for correctness, the interlaminar 
stresses are predicted for composite plates/shell panels which are damaged 
by low-velocity impact. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Interlaminar stresses in composites arise due to 
the difference in elastic properties of the layers. 
Interlaminar stress prediction is essentially a 
three-dimensional (3-D) problem for which 
closed-form analytical solutions are not avail- 
able. Hence, numerical methods, such as the 
finite element method, are used to predict the 
interlaminar stresses. A full 3-D finite element 
analysis of the problem is computationally 
expensive. The closed-form elasticity solution of 
interlaminar shear stress for multilayered 
bidirectional composites was given by Pagano 
and Hatfield [1]. Lajczok [2] has applied finite 
difference technique to the strains and curva- 
tures obtained from MSC/NASTRAN thin plate 
solution to determine their derivatives. These 
quantities are incorporated into classical thin 

plate theory to calculate interlaminar shear 
stresses using equations of equilibrium. Tolson 
et al. [3] developed a 2-D finite element for 
composite laminate stress calculation which is 
used to predict the progressive failure. They 
have also used the equations of equilibrium for 
predicting interlaminar stresses. Lo et al. [4] 
have used a higher-order shear deformation 
theory based on assumed displacement fields to 
find the transverse stress components. They 
have shown that the transverse stresses obtained 
by integrating the equations of equilibrium are 
more accurate than those obtained directly 
from the constitutive relationships. 

All the works described hitherto are based on 
small deformation theory. It is observed that 
thin laminated composite structures undergo 
large deformations due to low-velocity impact 
such as tool drop or runway debris hit. This in 
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turn affects both the magnitude and distribution 
of interlaminar stresses. Hence for predicting 
interlaminar stresses accurately, geometric non- 
linearity must be taken into account in the 
analysis. Moreover, the inplane damage, namely 
matrix cracking and fiber breakage, caused by 
the low-velocity impact, affects the interlaminar 
stress distribution. 

Reddy [5] has given a higher-order shear 
deformation theory of plates accounting for the 
von-Karman strains. He has mentioned that 
more accurate transverse shear stresses are 
obtained when equations of equilibrium of 3-D 
elasticity theory are used. Only linear analysis 
results are given. To the authors' knowledge, no 
work has been reported in the literature on pre- 
diction of interlaminar stresses in composite flat 
plates/shell panels taking into account the 
damage caused by low-velocity impact. 

In the present work, the interlaminar stresses 
are predicted after taking into account the 
inplane damage caused by low-velocity impact. 
First a 2-D nonlinear finite element analysis is 
used to calculate the inplane stresses. A damage 
analysis is then carried out using the Tsai-Wu 
failure criterion. Subsequently 3-D equations of 
equilibrium are integrated through the thick- 
ness to get the interlaminar stresses. 

NONLINEAR FINITE ELEMENT ANALYSIS 

off-Love shell theory. Only geometric 
nonlinearity is included in the analysis and the 
material is assumed to be linearly elastic. The 
Green's strain tensor is used in formulating the 
tangent stiffness matrix based on a total Lagran- 
gian approach. The resulting nonlinear 
algebraic equations are solved by an incremen- 
tal/iterative procedure using a standard 
Newton-Raphson method. The nonlinear 
inplane stresses are calculated at 7x7 Gauss 
points inside an element. The detailed formula- 
tion and solution technique used can be found 
in Ref. 7. 

DAMAGE ANALYSIS 

The inplane stresses thus obtained at Gauss 
points are used to predict the occurrence of 
damage with the Tsai-Wu quadratic failure cri- 
terion and the mode of damage, namely the 
matrix cracking and fiber breakage are identi- 
fied using maximum stress failure criteria (see 
Ref. 7 for details). The material is degraded 
suitably at all failed Gauss points as follows: 

— When the mode of failure is transverse 
matrix cracking or shear splitting, then 
E22 = 0;G12 = 0 and v12 = 0 

— When fiber breakage occurs, then 
En = 0; E22 = 0; G12 = 0 and v12 = 0 

The low-velocity impact problem is treated as a 
quasi-static problem and the Hertzian law of 
load distribution is used. The inplane stresses 
are calculated using nonlinear finite element 
analysis. A four noded, 48 degrees of freedom 
doubly curved composite quadrilateral finite 
element developed by Venkatesh and Rao [6] is 
particularised to represent plate, cylindrical/ 
spherical shell panel geometry. The element is 
of constant thickness and is based on Kirchh- 

where En, E22, Gl2 and v12 represent the in- 
plane Young's modulus of the lamina in the 
fiber direction, inplane Young's modulus of the 
lamina in the transverse direction, inplane shear 
modulus of the lamina and inplane Poisson's 
ratio of the lamina, respectively. The nonlinear 
finite element analysis is carried out again tak- 
ing into account the new material properties at 
failed Gauss points. This process is repeated 
until no further damage is observed. 

INTERLAMINAR STRESS PREDICTIONS 

The mid-plane strains and curvatures are obtained at element centers from nonlinear finite element 
analysis. A second order finite difference scheme is used to calculate the first and second derivatives 
of mid-plane strains and curvatures. The 3-D elasticity equations of equilibrium are integrated in the 
thickness direction to get the interlaminar stresses. The deformed geometry has been taken into 
account in the third equation of equilibrium (in the thickness direction). 
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Derivation for interlaminar stresses in axi-symmetric shell panels 

The equations of equilibrium for an rth ply of an axi-symmetric shell panel is as follows [8]: 

da[    84    8(4 sin0 
 + + +(o'J-Ö0)  =0 
ds     rdd     dz /?i cos d> 

8<0    da'e    6<4 sin0 
 + + +2TS0  =0 (1) 

ds     rdd     dz Ri cos d) 

da'sz      da'6z    do'zz 
«    + ~TT+-T~ H T+1T \ + (^s+TsOKsO+a'eK0) = 0 
85        rod      dz       \ Rx    R2 I 

where i?x and i?2 are the principal radii of curvatures and (f> is the angle between the vertical and the 
tangent at any point on the shell panel, r is the radius of any parallel circle and is given as R2 cos 
(j) and KS, Kg and KS0 are the curvatures and are given as 

d2w       w 
Ks=~~dsT~^ 

8 w        8w   sin 0       w sin <f> (   1 1 
Kn = „ _ „ — J"       U 

^2 r2d92        ds       r R2 r     I R?       R, 

d2w      dw   sin 6     /   1 1   \ l du        dv    v sin 6 
KS6= -2 +   —-—      -—+ - 

rdsdO    rdd      r \ R2       Rt ) \ rd9       ds r 

The above equations are derived with the approximation (l+z//?lj2)«l. These equations can be 
particularised for flat plate, cylindrical shell panel and spherical shell panel easily. The interlaminar 
shear stresses are given as 

4+1 = - 2 z       k=i 
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i
s--(z2

+1-zf)Gi
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Gl = ß'„<,+ ß'12^, + ß',6|C,+ —    + 026— +0*66   D
KSe'\    +{(Qin-Q\2)Ks + (Q\2-Q22)Ke 

r   I r Rx cos d) 

sind) 
+ (ß'l6-Ö26K0}   
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where ßL (A;, / = 1,2, 6) are the transformed modulus of the material of the *'th ply. e", e°, y"y 

are mid-plane strains due to extension and KX, Ky, K^ are curvatures due to bending.lt is 
assumed that the top and bottom surfaces of the laminate/shell panel are free from shear stresses. 
The condition at bottom surface is forced and integration is carried out from bottom ply. The 
condition at the top surface will be satisfied automatically. 

The interlaminar normal stress is given as 
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K = (ßi i Ks + Q\2Ke + Q[6KS6)KS+ (Q[2KS + Q22Ke + Q26Ks9)K0+ (Q\6KS + Q26Ke + Q(,6Kse)Ks0 

+ — {(Öii+ßi^^+Cß^+ßy^+Cß^+öy^} 
R 

Here the boundary conditions used are a\ = 0 at z = zx and on
z
+l = q(s, 6) at z=zn+l, where q(s, 9) 

is the applied loading. The first boundary condition is forced and the second one is satisfied 
automatically. 

Finite difference method 

The mid-plane strains and curvatures at the center of each element are obtained from the finite 
element analysis. The first and second derivatives of these mid-plane strains and curvatures, which 
are required for the interlaminar stress calculation are obtained from the finite difference scheme. 
The forward difference method is used along the left and top edge, the backward difference method 
is used along the right and bottom edge and the central difference method is used elsewhere. The 
three different schemes used, for a general function f(x,y), are as follows. 

Forward difference method 

Sx 

where 
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Backward difference method 
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Central difference method 

ÖX 

[clft+ij-ftM-l)+fi-iJ 
C3\Xi+l~~Xi—l) 

(V) 

where 

c3 = 
X.— X; 
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Effect of inplane damage 

The interlaminar stresses are predicted by the same equations as given earlier. The only modification 
is that the degraded material properties are used in the damaged portion of a ply. Since the damage 
is predicted at all Gauss points and the interlaminar stresses are predicted at the center of each 
element, the damage which corresponds to the central Gauss point is taken as the damage of that 
element. 

RESULTS AND DISCUSSIONS At x = 0, a: u,v,w = 0; 

First the computer code developed is evaluated 
thoroughly, for linear/nonlinear analysis of iso- 
tropic plates, cylindrical shell panels and 
axi-symmetric shells by comparing its results 
with those available in the literature. Subse- 
quently the present method is applied for 
predicting interlaminar stresses in laminated 
composite plates, cylindrical/spherical shell 
panels, damaged by low-velocity impact. 

Evaluation analysis 

Simply supported Isotropie plates subjected to a 
uniform load 
A square isotropic plate of size 50 mm x 50 mm 
and 1 mm thick is considered first. The plate is 
simply supported along the edges and subjected 
to a uniform load of 1 MPa. The Young's 
modulus and Poisson's ratio of the material 
used are 210 GPa and 0.3, respectively. The 
boundary conditions used are defined as follows 
(refer to Fig. 1 for definition of a and b) 

At y = 0, b: u, v, w = 0 

The variation of shear stresses xxz and xyz with 
respect to x are shown in Fig. 2(a). The varia- 
tion of xxz with respect to z is shown in Fig. 
2(b). As seen from the graph, the agreement 
between the analytical results given by Timo- 
shenko and Krieger [9] and the present results 
for the linear analysis is very good. The effect of 
nonlinearity is to reduce the magnitude of the 
shear stresses. Figure 2(c) and (d) shows the 
variation of normal stress with respect to x and 
z, respectively. The agreement between the ana- 
lytical and the present results for linear analysis 
is good. The magnitude of the normal stress 
gets increased inside the plate when the non- 
linearity is accounted for. However the 
boundary condition at the top surface, namely 
At z = h/2 az = q where q is the applied load- 
ing, is satisfied, if the equation of equilibrium in 
z-direction is written taking into account the 
deformations (see eqn (1)). 

z,w 

(a)   Plate 

\<x 

,'R 

V/ 

R\ / R 

'>~*. i 

(c)   Spherical shell panel 

(b)   Cylindrical shell panel 
Fig. 1. Axes system. 
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Simply supported Isotropie cylindrical shell panel 
subjected to a sinusoidal load 
Next an isotropic cylindrical shell panel simply 
supported along the edges and subjected to 
sinusoidal loading is considered. The radius and 
length of the cylindrical shell are 250 mm and 
20 mm, respectively. The shell is of 1 mm thick- 
ness and the angle subtended by the circular arc 
is 0.2 rad. The boundary conditions are given as 
(refer Fig. 1 for definition of / and a) 

x = 0, /: v, w = 0; 

At 6 = 0, a: u, w = 0 

The loading is defined as 

%x \    I %6 
a_o = sin| — sin — 

The Young's modulus and Poisson's ratio of the 
plate material are 210 GPa and 0.3, respectively. 
The variation of shear stresses with respect to 6 
and z are given in Fig. 3(a) and (b), respec- 
tively. As seen from the graph, the results are 
matching very well with the analytical results 
given by Timoshenko and Krieger [9] for linear 
analysis. The maximum shear stresses have a 
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higher value when the nonlinearity is accounted 
for. Figure 3(c) and (d) shows the variation of 
normal stress along 9 and z, respectively. The 
agreement for the linear analysis with the ana- 
lytical results is good. The magnitude of the 
normal stress reduces when nonlinearity is 
accounted for. 

Clamped Isotropie axi-symmetric spherical shell 
cap subjected to uniform pressure 
The radius of the axi-symmetric spherical shell 
cap considered [9] is 56.3 in. and the included 
angle is ^ = 78°. The shell is 2.36 in. thick. The 

Poisson's ratio of the material is 0.2. An uni- 
form load of 2840 psi is applied towards the 
center of the shell. Since the shell is an axisym- 
metric one, only a 5° segment of the shell is 
analyzed. The boundary conditions used are 
(refer to Fig. 1 for a definition of R and i//) 

At s = R\j/\ u, v, w, ws, w0 = 0; 

At 6 = 0, 5°: u0, v, w0 = 0 

Figure 4(a) and (b) shows the variation of xsz 

with respect to s and z, respectively. The analyt- 
ical solution for this problem is obtained by 
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using Geckler's approximation as given by Tim- 
oshenko and Krieger [9]. As seen in the graph, 
the difference between the present solution and 
the approximate analytical solution increases as 
s increases and it is maximum near the support. 
The nonlinear effect in this case is to reduce 
the magnitude of xsz. The difference between 
linear and nonlinear results are small because 
the load-deflection curve just crosses the linear 
regime. There is a small error in the boundary 
condition at the top surface both in the analyt- 
ical and the present solution as shown in Fig. 
4(b). The variation of az with respect to s and z 
is shown in Fig. 4(c) and (d), respectively. Here 

also there is a small error in the boundary con- 
dition at the top surface. 

Application to plates/shell panels damaged by 
low-velocity impact 

In this section composite plates/shell panels are 
considered. The results are obtained using non- 
linear finite element analysis. 

Simply supported [0J904]S laminate 
A 2 mm thick, square laminate of size 76.2 mm 
is considered. The laminate is simply supported 
along the edges. The central impact load is 
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applied through a 6.35 mm nose diameter steel 
impactor to produce an impact energy of 1.1 J. 
The material used is graphite/bismalemide 
which has the following material properties 

En = 177.8 GPa; E22 = 12.4 GPa; 

G12 = 4.62 GPa; v12 = 0.39 

X = X' = 1500 MPa; Y = 40 MPa; 

F' = 246 MPa; S = 68 MPa 

where X, X' are the inplane tensile and com- 
pressive strengths of the lamina in the fiber 

direction, respectively, Y, Y are the inplane ten- 
sile and compressive strengths of the lamina in 
the transverse direction, respectively, and S is 
the inplane shear strength of the lamina. The 
boundary conditions used are as follows 

At x = 0, a: v, w = 0; 

At v = 0, b: u, w = 0 

Figure 5(a) and (b) shows the variation of inter- 
laminar shear stresses with respect to x and z, 
respectively. As seen in the graph, the magni- 
tude of stresses gets increased once the damage 

80 ■ 

64 ■ 

48 - 

•  32- 
Q. 

I«" 
CO 

2     0 " 
« 
g-16- 

co 
-32 ■ 

-48' 

-64 

-80 ■ 

_L J_ JL I J L 

+ T^ (Undamaged) 
« T„ (Damaged) 
o ^(Undamaged) 
o t„ (Damaged) 

□DDOooooaaonaDn 
*****  

□ooooaaooGQaoaon— 
S       B 

* S 0 

* - 

At y=b/2; z=0 

n—i—i—i     i—i—i—i—T 
8       16     24     32     40     48     56     64     72 

xinmm 

(a) 

1 ' 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

I        I       I J I 

+ xa (Undamaged) 
« ^(Damaged) 
o ^(Undamaged) 
o Tyz (Damaged) 

DO 

CD 

o   D 
OD 

At x=a/2; y=b/2 

~i—i—i—i—T—i—i—i—r 
50   -40   -30   -20-10     0      10     20     30    40     50 

Shear stress in MPa 

(b) 

0 ■ 

-15 ■ 

-30- 

-45 ' 
cd 

I    -60 ■ 
c 
eN -75 • 

-90 

-105 

-120 

-135 

I     I     I     I.   I.   I I I       I +    * 

8 B 
+ 

a 
CD 

+ At z=h/2 (Undamaged) 

» At z=h/2 (Damaged) 

a At z=0 (Undamaged) 

o At z=0 (Damaged)        + 

+ 

Aty= =b/2 

I        I        I       I       I I        I 

1 U I I I I I I I I L 

0       8      16     24     32     40     48     56     64     72 
xinmm 

(c) 

0.8 - 

0.6 

0.4 

0.2 - 

o- 

-0.2 - 

■0.4 
Undamaged 

-0.6 H * Damaged 

-0.8 

-1 

At x=a/2; y=b/2 

T—i—i—i—i—i—i—i—i—r 
-135 -120 -105 -90   -75   -60   -45   -30   -15     0 

oz in MPa 

(d) 

Fig. 5. Simply supported [04/904]s laminate subjected to impact load. 
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occurs. Since the damage is greater near the 
impact site, the stresses get modified in that 
zone only. The through-the-thickness stress dis- 
tribution is affected drastically, especially for 
xyz, as shown in Fig. 5(b). The laminate 
becomes unsymmetric in the damage zone. The 
major mode of damage is matrix cracking and is 
along the fiber direction. This damage extends 
approximately up to 4 plies from the bottom 
surface. Hence xyz is zero in that region as its 
transverse properties are lost in that region. 
The interlaminar normal stress variation is 
shown in Fig. 5(c) and (d) with respect to x and 
z, respectively. Here also the stresses get 
increased near the impact site. 

Simply supported [0J904]S cylindrical shell panel 
The radius and length of the cylindrical shell 
panel considered next are 381 mm and 76.2 mm, 
respectively. The angle subtended by the circu- 
lar arc is 0.2 rad. The shell panel is 2 mm thick. 
The material properties used are the same as in 
the previous example. An impact energy of 0.8 J 
is applied at the center of the shell panel 
through a spherical steel ball impactor of diam- 
eter 6.35 mm. The boundary conditions used 
are 

At x = 0, /: v, w = 0; 

At 9 = 0, a: u, w = 0 

Figure 6(a) and (b) shows the variation of inter- 
laminar shear stresses and interlaminar normal 

stress with respect to z. The distribution of 
stresses is similar to that of the flat laminate but 
here the impact energy is less than that of the 
laminate. 

Simply supported [04I904]S spherical shell panel 
Next a spherical shell panel of radius 381 mm is 
considered. The a and \J/ for the panel are both 
0.2 rad. The shell panel is 2 mm thick. The 
loading and the material properties are the 
same as in the previous case. The boundary 
conditions used are 

At s = 0, R\j/\ v, w = 0; 

At 6 = 0, a: u, w = 0 

Figure 7(a) and (b) shows the variation of inter- 
laminar shear stresses and interlaminar normal 
stress with respect to z. Since the spherical shell 
panel is stiffer, the damage is greater when 
compared to the cylindrical shell panel and the 
flat laminate. 

CONCLUSIONS 

Interlaminar stresses are predicted for lami- 
nated composite plates, cylindrical/spherical 
shell panels, damaged by low-velocity impact. 
The impact problem is treated as a quasi-static 
problem. A nonlinear finite element analysis is 
carried out using a four noded, 48 degrees of 
freedom, doubly curved composite quadrilateral 
shell   finite   element.    Kirchhoff-Love   shell 
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Fig. 6. Simply supported [04/904]s cylindrical shell panel subjected to impact load. 
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Fig. 7. Simply supported [04/904]s spherical shell panel subjected to impact load. 

theory is used along with Green's strain tensor. 
The Tsai-Wu quadratic failure criterion and 
maximum stress failure criteria are used in the 
damage analysis. The 3-D elasticity equations of 
equilibrium are integrated through the thick- 
ness to get the interlaminar stresses. 

The interlaminar stresses obtained from the 
present analysis can be used effectively in the 
study of delaminations in composite panels as 
well as in residual strength/stiffness studies. 
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conical shells under axial compression 
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The stability of composite material stiffened conical shells under uniform 
axial compression and with classical clamped boundary conditions is 
investigated. The effects of stiffeners are uniformly distributed over the 
whole surface of the shell, and the shell is treated as an equivalent 
orthotropic shell. A method of solution is developed by using energy 
principles and Rayleigh-Rize approximations. It is shown that the approach 
proposed in this paper is practical, effective and satisfactory. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

To increase the resistance of shells to buckling, 
they are strengthened by stiffeners and thus the 
critical load can be increased several times with 
only a little addition of material. Stiffened lami- 
nated composite material conical shells are 
finding widespread use in aerospace and other 
technical applications. Knowledge of the 
stability analysis of this kind of structure is 
essential for reliable lightweight structural 
design. 

Extensive research on buckling behavior of 
many kinds of structures is reported in the open 
literature [1-6] and buckling of isotropic coni- 
cal shells under compressive axial loads has 
been studied by many researchers [7-11]. A 
simple formula was developed for buckling of 
isotropic conical shells by Seide [7], and this 

formula is independent of boundary conditions 
and is best used for long shells. There have 
been fewer studies for orthotropic shells and 
stiffened laminated composite material conical 
shells [12]. 

The present study is an attempt to provide a 
suitable tool for the analysis of the stability of 
composite material stiffened conical shells sub- 
jected to axial compression. In the problem to 
be considered, the analysis is confined to the 
treatment of an equivalent orthotropic shell. 
The treatment distributes the stiffener effects 
uniformly over the shell and is capable of 
affording a good approximation to the elastic, 
stiffened shell if the reinforcing is sufficiently 
closely spaced. The critical buckling pressure 
for this kind of shell is obtained by using the 
energy principle, the variational principle and 
the Rayleigh-Ritz approximation. 

ANALYTICAL FORMULATION 

The shell geometry and the coordinate system are defined in Fig. 1. 

Basic Assumptions 

For the shell skin, it is assumed that the linear elastic theory for thin shell holds. For the stiffeners, 
it is assumed that: (1) the stiffeners are 'distributed' over the whole surface of the shell; (2) the 
normal strains sx and zv vary linearly in the stiffener as well as in the sheet; (3) the stiffeners do not 
transmit shear; and (4) the torsional rigidity of the stiffener is ignored. 
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<£ z 
Detail of stiffeners 

unit:   mm 

Fig. 1. The conical shell structure and the notation. 

Middle surface strains and displacements 

The expressions for the middle surface strains and curvatures of a deformed conical shell are given 
as follows: (Fig. 1) 

£   =W r+ — W 
'     2    " 

sv = (1 /r)(v v — u cos a+w sin a) 

<W = Vj+Uy/r+v cos aJrKv = -w,xx 

KV = (-1 /r)(wtVV/r - w,x cos a 

KxV =-KVX = (- Ur)(w,x<p+w,<p cos a/r) (1) 

The above is also called the strain-displacement relation. 
The stress resultants and strain relationships, with no bending-twisting and no stretching-bending 

couplings, are given by 
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where, Atj and Dtj are calculated from the elastic stiffness constants of the &th layer (ß,,)* through 
N 

A-ij=      2)     (Qij)k(Z(k')~~ Z(yt-l)) 

Dtj=  X (j2,7)(Z(«-4-i))/3 
k=\ 

(3) 

and, the quantities Nx, Nv, ..., M^ are the force and monent resultants obtained by integrating the 
stresses ux, av,..., aX(p through the shell thickness. 
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According to the assumptions for stiffeners, the rigidities of stringer and web of the stiffener are 
uniformly distributed over the surface of the shell, and the stiffeners only bear pressure and bending. 
Thus, An and Dn of eqn (2) must be modified as 

■^11-^11 shell"™ 1 l stringer+^11 web 

^11 =^11 shell+^ll stringer+^ll web (4) 

where 

ElAl 
"11 stringer             _ 

E2A2 
^Mlweb- 

A             - EJl 
**■ 11 stringer            „ 

E2I2 
(5) 

in which, Eu E2 and Iu I2 are moduli of elasticity and moment of inertia of stringer and web, 
respectively. S represents the distance between stiffeners at x = L/2. A1 andA2 are the cross section 
area of stringer and web, respectively. 

From eqn (2), we can obtain 

Nx — A\ i£x+Al2£q> 

N<p = A12sx+A22£v 

NX(p = A66ex(pMx = Dn KX+D22KV 

MV = D12KX+D22KV 

Mxcp=-Mvx = D66KX(p (6) 

Energy relations 

The potential energy for an elastic system is governed by the relation 

V=U+Q (7) 

in which, U is the strain energy due to bending and stretching of the stiffened shell and Q. is the 
potential energy of the external force system. The strain energy of the stiffened shell may be 
expressed as the surface integral 

1 r 
U = — UNjx+N^<p+Nxvexv+MxKx+Mq,K<p+2MxtpKxv)ds (8) 
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Infinitesimal theory of buckling 

The infinitesimal theory of buckling requires that the variation of the change in potential energy of 
the system with respect to the allowable displacements must be zero. Expressed mathematically 

<S(AV) = 0 

where 

AV=AU+AQ 

(9) 

(10) 

in which, AC/ and AQ are changes in the strain energy and the potential energy, respectively. 
From the assumption of the linear elastic theory, we assume that the deformed shell prior to 

buckling is very close to its original shape, the expression, eqn (1), for the middle surface strains and 
curvatures may be considered to represent the change in strains and curvatures after buckling occurs. 
Hence, the displacements u, v, w, and the force and moment resultants A^, Nv,..., MX(p are now taken 
as the additional displacements, forces and moments in the shell after buckling and eqn (8) as the 
changes in strain energy. 

Since the middle surface strains and curvatures are measured from the position of incipient 
buckling, the potential energy expression must be modified to include the energy stored by the shell 
in a compressed but unbuckled state. The term to be added to the potential energy expression is 
given by 

AUM = J£Njx+N^v+Nx^xp+M^x+MvKv+2MxvKxv)ds (11) 

in which, Nx, Nv, ..., MX(p, are the membrane stresses and moments existing in the shell prior to 
buckling. 

The shell is assumed under symmetric loading and initial bending stresses are neglected. Omitting 
the terms Nxq>, Mx, Mv, and Mxq>, eqn (11) reduces to the form 

AUM = ls(Nxsx+N<p£(p)ds (12) 

Under axial compression, we have following relations 

Nx=- 
2nr sin a 

(13) 

By substituting eqns (1) and (6) into eqns (8) and (12) and retaining all second order terms, the 
total expression for the changes in strain energy of the stiffened shell becomes 

AUT = 
r2nrL_    / 1 \ l 

Nx\u,x+ — M?x\r&x&q>+ — \AUU
2

X 
o   Jo  l 

+2Al2(vr(p — u cos a+w sin a) 

(uJr)+A22 
r 1 

• (vv — u cos a+w sin a) +A66[v,x+uj(p/r 

+v cos a/r]2irdxdcp+ — ID,iW^x+2Dl2(w<tptpfr-w,x cos cc)(w,xx/r) 

+D 22 

1 
- —(w^/r-w^ cos a) +2D, 66 - — (Wj:V+w,v cos tx/r) 

~\2 
rdxdcp (14) 

The terms in the expression AQ for the change in potential energy of the external force system are 
not presented herein. However, it is noted that terms in AQ which are linear u, v, w cancel with 
similar terms in the strain energy expression (eqn (14)) by the principal of virtual work. Thus, we 
only consider AUT as AV for the following derivative. 
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Rayleigh-Ritz approximation 

The related clamped boundary conditions can be written as 

w = 0 ") 
w>;c = o[when x = 0, L (15) 
v = 0 J 

In applying the Rayleigh-Ritz approximate method, it is necessary to determine a set of displace- 
ments which accurately describe the deflected shape of the conical shell. Now, let us assume 
solutions for the displacements of the following forms 

u = A cos ncp cos(mnx/L) 

v = B sin ncp sm(mnx/L) 

w = C cos ncp sin(mnx/L) (16) 

where, A, B and C are undetermined coefficients, and m and n are the number of waves in the axial 
and circumferential directions, respectively. 

Substituting these equations into the simplified energy relation (14) and integrating yields a 
homogeneous quadratic function of A, B, and C, namely 

AV = auA2+al2AB+al3AC+a22B
2+a22B2+a23BC+(a33 - —  )C2 (17) 

V 8 sin a / 

where 

X = mnlL (18) 

The coefficients in eqn (17) are defined in the Appendix. 
The condition for the minimization of the potential energy of the system is obtained by setting the 

derivatives of eqn (17) with respect to the unspecified coefficients equal to zero. This operation 
yields a set of linear homogeneous equations for the coefficients of the displacements as follows 

2öJ xA+al2B+al3C = 0 

a12A+2a22B+a23C = 0 

al3A+a23B+2 ( a33 - —   ] C = 0 (19) 
\ 8 sin a  I 

The determinant of eqn (19) vanishes for nontrivial values of the critical load 

2an     al2 

a,0     2a 
'13 

12        ^"22 "23 

( m2 

«13       ö23      21 a33- — 
\ 8 sin a 

Theoretical result for conical shell 

= 0 (20) 

When the determinant, eqn (20), is expanded, the result for the composite material stiffened conical 
shell can be approximately expressed as 

8 sin a Ssina(2a22a2
3+2aual3 — 2al2ai3a23) 

LX LA (Saua22 — 2al2) 
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In eqn (21), Pcr is only a function of the axial wave number m and circumferential wave number 
n after geometry and material parameters of the shell are given. For the minimum value of the 
general instability load, it is necessary to minimize eqn (21) with respect to the wave numbers, m and 
n. However, in this investigation, m is set equal to unity and n, allowed to vary continuously. This 
procedure assumes that the axial wave length extends over all of the stiffener element. It is especially 
available for the short conical shells. 

NUMERICAL RESULTS AND DISCUSSION 

The critical axial compression for general instability is computed for some typical cases. The geo- 
metry and material parameters of shells are given in Tables 1 and 2. The cases with different base 
angle a of the shell (Fig. 1) are investigated by the method proposed in this paper, and the numerical 
results are shown as Table 3. The torsional resistance of the stiffeners is neglected and the whole 
distance between the stiffeners is taken as the 'effective length' of the sheet. The moduli of elasticity 
of the sheet and stiffeners are considered equal. 

For a particular conical shell with the base angle a = 60°, we calculate its critical load Pcr by using 
an equivalent method in Ref. [13], and get Pcr = 2.175 x 106 N. It is shown that the result obtained 
from proposed method is satisfactory, and has a good agreement with the result from other method. 
And from practical experience, one can understand that these results are reasonable for the short 
conical shells. 

It can be seen, from Table 3, that Pcr and n increase when the base angle a becomes larger for 
shells with other fixed geometry parameters. It can be described, physically speaking, by saying that 
the larger the conical base angle a becomes, the larger the critical load tends to be. Thus, it may be 
safe to say that to increase the critical load of a composite material stiffened conical shell, one 
should try to consider the conical base angle a in an engineering design. 

Table 1. Geometry 

Shell Stiffener 

L = 337.38 mm 

a = 1008.5 mm 

Thickness of stringer: 1.8 
Height of stringer: 36 mm 
Thickness of web: 3.6 mm 
Height of web: 20 mm 

mm 

Table 2. Material parameters 

Shell Stringer of stiffener Web of stiffener 
Material 

Parameters 

Eu = 103,000 N/mm2 

£22 = 6850 N/mm2 

v12 = 0.31 
v21 = 0.0206 
G12 = 4050 N/mm2 

N 

^1   =   „^     Q11 stringer 

.4, = 64.8 mm2 

h = 17.469 mm4 

N 

£-2    4*    oil web 

A2 = 72.0 N/mm2 

I2 = 77.76 N/mm4 

Angle-ply [±45/02/± 45/0^+45] [ + 45/02/ +45/Ü2/+45 ] [± 45AV+45/02/ ±45]2 

Ply thickness 0.18 mm 0.18 mm 0.18 mm 

Table 3. Numerical results 

a                        5* 
(mm) 

Per 
(N) 

n 

15°                    88.50 
30°                    90.27 
45°                    93.07 
60°                    96.73 
75°                  100.99 
80°                  102.49 

0.5650 x 10* 
1.156 x 10* 
1.720 x 10* 
2.187x10* 
2.492 x 10* 
2.550 x 10* 

10 
13 
15 
17 
19 
20 

*5 is the distance between stiffeners at x = L/2. 
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CONCLUSION 

A relatively simple formula is derived for analysis of the stability of composite material stiffened 
conical shells subjected to axial compression. The formula contains two paramters, the axial wave 
number m and circumferential wave number n. The numerical analytical results show that the 
approach proposed in this investigation has good accuracy, and it can also be used in a practical 
analysis for long conical shell. For a simply supported conical shell, the following displacement 
functions are suggested 

u = A cos ncp cos(mnx/L) 

v = B sin ncp sm(mnx/L) 

w = C cos ncp sin(mnx/L) 

It is worth stressing that the conical base angle a has a significant influence on the critical buckling 
loads and the circumferential wave number. From this investigation, it is shown that the present 
method provides a widely practical tool in the stability analysis of composite material shell structures. 
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APPENDIX A 

DEFINITION OF GEOMETRIC PARAMETERS 
The coefficients in eqn (17) are defined as 

1 
au = 

A2LnAi 
■K+A22n cos a-^+Agö«2^ ,/cos a 

a22 = — 
2                  A66l

2nLK 
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a13 = — [ — 2A22Tt sin a-f4] 
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a23 = — [2A22nntga-t5] 

a33= — [A22ntga-t6+2DuX4nLK — 4D12X2n2n-t7/cos a.+D22nn4t8/cos a+2D22n22.nt9 
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f« = 
16a2       16(a-L cos a)2       2 

1 1 

to=-\ 
1 1 

T~£io — ~7 811 
2 4 



Stability of stiffened conical shells 111 
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Compressible flow analysis of filling and post- 
filling in injection molding with phase-change 

effect 
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and Technology, Taejon 305-701, South Korea 

In order to predict the shrinkage, warpage and mechanical properties of the 
injection molded parts, it is necessary to know the history of the flow field 
during injection-molding processes. In the present investigation a numerical 
simulation program was developed to predict the flow field in filling and 
post-filling stages of injection molding. To simulate the real molding 
conditions more accurately, a generalized Hele-Shaw model for a non- 
Newtonian fluid was assumed considering the effects of phase change and 
compressibility of the resin. A finite-element-finite-difference (FEM- 
FDM) hybrid scheme with control volume approach was employed as the 
solving technique. For modeling the viscosity of the resin, a modified Cross 
model was used with a double-domain Tait equation of state being 
employed in describing the compressibility of the resin during molding. The 
energy balance equation, including latent-heat dissipation for semi- 
crystalline materials, was solved in order to predict the solidified layer and 
temperature profile in detail. For verification of the numerical results 
obtained from the developed program, the simulation results were 
compared with the experimental results obtained from the test mold set 
designed in the current study using commercial-grade PP and the data 
available in the literature. Based on a comparison between experiments and 
simulations, it was found that the currently developed program was useful 
in unified simulations of filling and post-filling in injection-molding 
processes when considering the phase-change effect. © 1997 Elsevier 
Science Ltd. 

INTRODUCTION 

Injection molding is one of the most widely 
used manufacturing processes for producing 
thin thermoplastic parts. It consists of filling, 
packing and cooling stages. In the filling stage, 
in order to yield a good-quality product, molten 
polymer must fill the cavity without making any 
air entrapments, weld-lines or any other defects. 
After filling, additional polymer melt is pushed 
into the cavity to maintain a uniform pressure 
at the inlet and to compensate for any possible 
shrinkage caused by a phase change of the 
material. Thus, it is important to simulate the 
filling and post-filling stages as a continuous 
process to achieve good dimensional accuracy 

and mechanical properties of the final molded 
parts. In the present investigation, a simulation 
program for the filling and post-filling stages, 
considering this phase-change effect, was 
developed as a part of computer-aided 
engineering of injection molding. 

After the pioneering work of Hieber & Shen 
[1], who developed a systematic approach for 
the filling analysis of injection molding by 
assuming a Hele-Shaw flow inside the thin 
cavity and by employing a finite-element-finite- 
difference (FEM-FDM) hybrid scheme for 
solving the pressure and temperature fields with 
the moving grid method, many more studies 
have been carried out [2-8]. Among these, 
Wang et al. [2] combined the control volume 
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with a flow analysis network (FAN) to advance 
the moving front during the filling stage. This 
approach reduced the computation time 
required for numerical analysis and made it 
easier to analyze filling in the case of complex 
cavities. In addition, Wang et al. [3] investigated 
the Spencer Gilmore or Tait state equations to 
consider a variable density for the post-filling 
analysis in Hele-Shaw flow modeling. 

Recently, Chiang et al. [5,6] carried out a 
unified filling and post-filling simulation. They 
used unified governing equations for both the 
filling and post-filling stages. They employed 
one- and two-dimensional elements, respec- 
tively, to model complex thin cavities, and 
calculated the pressure distribution by applying 
a finite-element technique for each type of ele- 
ment. With this method, the pressure 
distributions during the filling stage were iter- 
atively determined in order to satisfy the mass 
flow rate condition at each time step after the 
solution was obtained under constant pressure 
conditions. Thus, additional iteration is required 
and, furthermore, the strict mass flow rate con- 
dition at the inlet is probably not satisfied. The 
energy equation with latent-heat release for the 
semi-crystalline polymer was solved in their 
investigation [5,6] based on a fixed-domain 
method by modifying the specific heat according 
to the phase change of the material, although 
the exact location of the solid-liquid boundary 
cannot be predicted using this approach [9]. 
Therefore, another approach based on a mov- 
ing-domain method was employed by Chen & 
Liu [4,7] to solve the same energy equation. 

In the present investigation, a hybrid FEM- 
FDM was introduced for solving the coupled 
flow and temperature fields in filling and post- 
filling, taking account of both phase change and 
compressibility of the material. Mass conserva- 
tion for the control volume defined was applied 
in obtaining flow fields for the convenience of 
computation. This approach eliminates the 
additional pressure iteration step mentioned 
earlier and allows the prescribed mass flow rate 
condition to be satisfied. It also enables us to 
use various types of elements, such as tri- 
angular, strip and cylindrical, to simulate fluid 
flow in runners and complex die cavities. The 
location of the solid-liquid boundary was cal- 
culated by solving the phase-change problem 
(Stefan problem) in the thickness direction 
based only on the moving-domain technique 
[10]. The variable-density effect was considered 

by applying the Tait state equation, with a 
Cross-type model being employed to represent 
the shear viscosity. The solution accuracies were 
tested by three different case studies. The first 
mold set was designed and manufactured in the 

, current investigation, and the second and third 
molds were selected from Chiang et al. [6]. 

THEORETICAL BACKGROUND 

The generalized Hele-Shaw (GHS) flow was 
assumed for flow analysis in a thin cavity. Con- 
sidering the variable-density effect, governing 
equations for flow in the plane direction of 
Fig. 1 can be written as [1,11] 

dp      6 8 8 
— + — (pu)+ — (pv)+ — (pw) = 0 
ot     ox oy oz 

d  I    du 
— I *7 — 
8z \    8z 

8  /    8v 
— I r\ — 
8z V    8z 

dp_ 

dx 

dp_ 

8v 

= 0 

= 0 

(1) 

(2) 

(3) 

where x and y denote the planar coordinates 
and z the gap-wise coordinate, while (u, v, w) 
are the velocity components in the (x, y, z) 
directions with t the time and p the pressure. 
p(T, p) is the density and r\{y, T, p) the shear 
viscosity, where y is the effective shear rate. 

For the temperature field, phase change was 
assumed to occur at the crystalline temperature 
for semi-crystalline polymers and at the glass 

Fig. 1. Schematic diagram of material flow in the die 
cavity. 
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transition temperature for amorphous polymers, 
with both temperatures being dependent on 
pressure. So there is a definite boundary 
between solid and liquid, at which the latent 
heat is dissipated. Following this assumption, 
and neglecting thermal diffusion along the 
plane direction by comparing the order of mag- 
nitudes, the energy equation for each phase, 
liquid and solid, can be, respectively, expressed 
by 

/ er     er     er 
pC0,\  +u +v  y  p\ Qt       8JC       dy 

er _   d2T 

I ^T 2 (4) 

(5) 

where T is the temperature, Cp the specific heat 
and k the thermal conductivity of the material, 
with subscripts 1 and s denoting the liquid and 
solid phase, respectively. 

In addition the following interfacial energy 
balance equation should be applied at the 
liquid-solid boundary 

er, 
dz 

-V 
er, 
e7 

6(5 
(6) 

where S is the distance of the solid-liquid 
boundary from the center of the thickness and 
L is the latent heat of the material. 

In the gap-wise direction, the flow was 
assumed to be symmetric at z = 0 and non-slip 
conditions were applied at the wall, i.e. at 
z= ±h. With these considerations, integrating 
eqns (2) and (3) in the z direction yields 

6w 

~e7 

where 

Arz ev 

a* 
AyZ 

(7) 

8p _ 8p 

8*'   y~      8y 

From this equation, the effective shear rate 
can be written as 

(8) 

where 

A=JA^AJ 

Integrating eqn (7) in the z direction yields 

u = \J>, v = Ay(p (9) 

where 

h     7 

0= J - dz 
z   r\ 

Then, the mass flow rate per unit length in 
the x and v directions can be obtained by inte- 
grating eqn (9) as follows 

= 2 j pudz = 2SAx mr-l j pu 
o 

m=2 ] pvdz = 2SAy *       o J (10) 

where 
h 

S= J pcßdz 

For boundary conditions of flow field in the 
plane direction (refer to Fig. 1), pressure was 
set to zero (atmospheric pressure) at the melt 
front (Cm) and the impermeability condition 
was imposed at locations where the polymer 
made contact with the wall surfaces or inserts 
(CoUCj). In addition, at the inlet, the constant 
mass flow rate condition was applied during the 
filling stage and the constant pressure condition 
during the post-filling stage, with the holding 
pressure being set in the injection-molding 
machine or measured pressure values at the 
inlet being used as the constant pressure condi- 
tion. For the temperature field, as thermal 
diffusion along the plane direction was neg- 
lected in the present investigation, the 
temperatures needed to be specified only at the 
inlet and at the melt front. At the inlet the 
temperature was uniformly set to that of the 
barrel of the machine and at the melt front to 
that of the upstream core region to mimic the 
complex fountain flow effect. 
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To effectively describe the shear thinning 
effect, a Cross-type model was employed as fol- 
lows [11] 

r\(y, T, p) = 
rio(T, p) 

l+< 
rio(T, p)y \-n (11) 

Here, n is the power-law index, T* the stress 
level of the asymptotic transition region 
between the power-law and Newtonian fluids, 
and r]0{T, p) the zero shear rate viscosity. 

In representing r\0, the simplest form is the 
Arrhenius type [11] of temperature and pres- 
sure dependences such as 

To describe the variable density, the Tait 
state equation [5] was used as follows 

v(T,p)=-=v0(T) 
P 

1-Cln   1+ 
B(T) 

(14) 

where C = 0.0894. To accurately model density 
in both the liquid and the solid regions, v0(T) 
and B(T) were represented by 

v0(D = ' 
blA+b2A(T-b5)ifT>Tt 

bUs+b2,s(T-b5)i£T£Tt 

rj0(T,p) = Bexp\ exp (ßp) (12) 
B(T): 

\b3Jexp{-b4J(T-b5)} if T>Tt 

\bXsexp{-b4,s(T-b5)} if T<Tt 

Another form for large temperature regions 
is the WLF (Williams, Landel and Ferry) func- 
tional form [11] such as 

q0(T, p) = D1exp< - — 
Ajr-r»] 

A2+D3p+[T-T'(p)] 

Tt(p) = b5+b6p 

where Tt is the glass transition temperature for 
amorphous polymers or the melting tempera- 
ture for semi-crystalline polymers. The 10 
material constants (bxx-b4 ,, bUs-b4s, b5, b6) 
used in this investigation are shown in Table 2. 

(13) 

where T*(p) = D2+D3p. 
Thus, for describing r\{y, T, p) eqns (11) and 

(12) yield a five-constants (n, T*, B, Tb, ß) 
model, with eqns (11) and (13) being a seven- 
constants (n, x*, Du D2, D3, Au A2) model. 
These two models were used in the current 
investigation and the values used in the numeri- 
cal simulations are presented in Table 1. 

Table 1. Viscosity model constants for PP 

Profax 
6323 

BJ 
500 

Seven-constants 
model 

T* (Pa) 
£>! (Pa-s) 
D2 (°C) 
£»3 (°C/Pa) 

A2 (°C) 

0.3135 

1.10 x 104 

1.96 x 1014 

-10.0 
1.3 xlO"7 

30.9 
51.6 

Five-constants model n 
x* (Pa) 
B (Pas) 
Tb (K) 
ß (Pa"1) 

0.204 
3.07 x 104 

0.144 
4830.0 

4.39 xl0~9 

NUMERICAL 

As the numerical approach to solve the GHS 
flow coupled with temperature is available else- 
where [11-13], the highlight of the present 
development will be described in the following. 

Applying a finite-element formulation to the 
continuity equation, with mass flow rate as an 
integral form as in eqn (10), a pressure formu- 
lation can be obtained for each type of element. 
In order to satisfy the mass flow rate condition 
the iteration is, in general, required with this 
approach to adjust the pressure fields after the 

Table 2. Specfic-volume model constants for PP 

Profax 
6323 

BJ500 

i K/kg) 
(m3/kg-°C) 

^■(Pa) 
fcuCC-1) 
bUs(m3/kg) 
62,s(m3/kg-°C) 
*>3,s(Pa) 
^.sCC-1) 
bs (°C) 
b6 (°C/Pa) 

.246xl0"3 1.319 xlO"3 

9.03 xlO"7 1.156 xlO"6 

9.28 x 107 6.62 x 107 

4.07 xlO"3 3.76 xlO"3 

1.16 xlO"3 1.23 xlO"3 

3.57 xlO"7 7.64 x 10 "7 

2.05 x 108 9.73 x 107 

2.49 xl0~3 2.46 xHT3 

123.0 118.0 
2.25 x 10~7 2.25 x 10"7 
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solution is obtained under constant pressure 
conditions as explained in detail later. 

To resolve this problem, the control volume 
(CV) technique will be used in the present 
investigation. It enables us to combine various 
types of elements such as triangular, cylindrical 
and strip elements, as introduced in Fig. 2, to 
effectively describe the complex mold shapes 
including runners. According to this approach, 
the pressure field will be determined from mass 
conservation applied to each CV constructed 
around each node. CV at each node was 
defined by summing the surrounding sub- 
volumes (SV) connecting the centroid of each 
element and the centers of the sides in each 
element, as shown in Fig. 3. 

If node N is the /(/)th internal node of ele- 
ment /, which surrounds node N, mass 
conservation in CV(iV) of node TV can be writ- 
ten as 

0 = 
dm, cv 

dt 
+   j   (puk)nk dA 

ecv  r *   k 

m^+m^ m* (15) 

The value of mff* is zero if node TV is neither 
on the inlet nor on the melt front, the specified 
mass flow rate if node JV is on the inlet, and 
undetermined if node N is on the melt front. 
Thus, the impermeability condition, where the 
melt is in contact with the inserts or the wall 
surface, and the constant mass flow rate condi- 
tion at the inlet can be explicitly satisfied 
regardless of the type of element employed. 

In most filling studies reported so far, a con- 
stant pressure condition was imposed at the 
inlet for each pressure iteration. To extract 
appropriate pressure boundary conditions from 
the given mass flow rate, additional iteration 
was indispensably required in which, as shown 
schematically in Fig. 4, the total mass flux along 
the melt front was calculated using the initial 
pressure condition, then compared to the given 
mass flow rate to adequately adjust the pressure 
condition. Such numerical iterations continued 
until the given mass flow rate was approxima- 
tely satisfied. Furthermore, as the total mass 
flux along the melt front and the given mass 
flow rate are not exactly equal, as shown below, 
realistic injection-molding conditions cannot be 
satisfied by this kind of numerical iteration 

dm 
me = +[mass flux] 

dt 
(16) 

where the index notation is used for the velocity 
(uk) and normal vector (nk) with duplicate index 
k implying summation. In addition, mjl) is the 
mass of SV(N, /) of the element / included in 
CV(N), mjl) is the mass flow rate from SV(N, /) 
into element /, and nf™ is the mass flow rate 
into CV(N) from outside the calculation 
domain. 

Here, m denotes the filled mass at time t and 
me the given mass flow rate condition. 

As each element currently employed is linear, 
S in eqn (10) is constant in the element, result- 
ing in a constant mass flow rate per unit length. 
To calculate mf\ the density can be integrated 
in SV(N, /), with assumed values for the pres- 
sure at node /, and the temperature at the 

(£ 

(a) (b) 

^ ^—*x 

(c) 
Fig. 2. Schematic diagram of linear (a) triangular, (b) cylindrical and (c) rectangular strip elements used in the simulations. 
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Control volume boundary 

Element boundary   \"*" 

* 
CV(N)     Ü 

SV(NJ) 

Fig. 3. Schematic diagram of the control volume used in 
the simulations. 

centroid. The time derivative of density can be 
divided into the pressure derivative and the 
temperature derivative to ensure stability. Thus, 
discretizing eqn (15) yields a final equation of 
the following form [14] 

,(') M 
dt 

+Kikpk  \-ml< 
:t+1 f\ •(/) 

(17) 

where / is defined as before in eqn (15) and k 
represents the free index of the internal nodal 
number. 

In solving eqn (17), only the pressure condi- 
tion at the melt front needs to be applied as 
impermeability and the mass flow rate condi- 
tions have already been satisfied. The time 
derivative was approximated using a backward 
difference scheme. Owing to non-linearity, suc- 
cessive under relaxation was adopted to solve 
the discretized finite-element equation. 

The temperature field in the half thickness of 
the liquid phase (<5) was calculated at the center 
of each element where the velocity and viscous 
heating was accurately accounted. Nodal tem- 
peratures were obtained by averaging the 
elemental values of the surrounding elements 
by their sub-volumes and employing the upwind 
scheme to ensure numerical stability. Both the 
liquid and solid portions were divided into the 

m. 
Inlet 

P.(t) 

mold wall 

Fig. 4. Schematic diagram of the mass flow rate and mass 
flux. 

same number of finite-difference grids in the 
thickness direction to solve the energy equation, 
taking into consideration the release of latent 
heat (see eqns (4-6)). The time derivative and 
conduction term were approximated using a 
backward difference scheme as in the following 
equation. The finite-difference equation for the 
/th layer in element / at time j can be obtained 
as follows 

/?7,
1>i_u+1-(l+2j8)T1>i,j;1+iSTu+1,j+1 

= -Tu,J+Atj CON,,,,-a VIS,,,,- 

(18) 

where 

a = ß = k 
At, 

pCpAz2 

The convection (CON) and the viscous heat- 
ing (VIS) terms in the above equation were 
calculated from the previous temperature field 
and were set to zero in the solid phase. 

The energy balance equation at the phase 
interface between solid and liquid, eqn (6), was 
also approximated as follows 

Ti, nl+l, 7+1 — T Tm~ll,nl—\, 7+1 

Azs 

= PSL 

Az, 

At, 
(19) 

where Azs and Azx are the magnitudes of the 
finite-difference grid of the solid and liquid 
phases, respectively, and Tm is the melting tem- 
perature with nl indicating the location of the 
solid-liquid boundary. 

As eqns (18) and (19) cannot start from a 
zero solid fraction, an analytical solution of the 
Stefan problem for a simplified case was used to 
provide the initial values. 

The time increment in the filling stage was 
automatically determined by adopting a flow 
analysis network (FAN) combined with the con- 
trol volume method, as described by Wang et al. 
[2]. In this approach, / is defined as the filled 
fraction and all nodes are classified as follows 

filled node if / = 1 
front node      ifO</<l (20) 

unfilled node      if / = 0 

Of the front nodes, the first to be filled was 
found from the calculated velocity fields. The 
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time needed to fill this node was chosen as the 
next time increment. 

At each time step, the temperature field was 
first calculated and then the pressure field 
was determined. The incremental time step was 
selected to be small enough so that iterations to 
couple the temperature and pressure fields were 
unnecessary. 

EXPERIMENTAL 

A Jaco III-H-3 injection-molding machine, 
which has a 46 ton clamping force, 101 cm3 

injection volume and 140 MPa maximum injec- 
tion pressure was used for the experiments. To 
measure the cavity pressure a Kistler quartz 
pressure transducer type 6157BA was used. The 
mold wall temperature was measured using a J- 
type thermocouple. The signal from the 
pressure transducer was amplified by a Kistler 
charge amplifier type 5039A and stored in a PC. 

The designed mold set (mold A) consists of 
four cavities and circular runners of 3 mm 
radius, as shown in Fig. 5. The material (PP; 
BJ500) used in this experiment and the raw 
material data were supplied by Samsung Chem- 
icals Co. To extract appropriate constants for 
the material data, as summarized in Tables 1 
and 2, the least-squares method combined with 
the steepest gradient method was employed. 
For thermophysical values of the material those 
of Profax 6323, as given in Table 3, were used 
in simulations because of the lack of data. The 
barrel temperature was set at 180°C, with the 
mold wall temperature measured as 40°C. Fill- 
ing time set in the machine was 1.5 s, which was 
required for filling the whole mold including the 

O pressure sensor location 

3  cm 

Table 3. Thermal properties of PP (Profax 6323) 

Cpl (J/kg-K) 2.7 x 103 

Cps (J/kg-K) 2.0 x 103 

kx (W/m-°C) 0.175 
ks (W/m-°C) 0.22 
L (J/kg) 2.34 x 105 

sprue, runners and cavities. As the sprue was 
not considered in the analysis, the appropriate 
volumetric flow rate of 7.4 x 10 ~6 m3/s was esti- 
mated from the sudden increases in measured 
values ofPj. 

Two additional mold sets were adopted from 
Chiang et al. [6] for the purpose of verification 
studies. One (mold B) is for verification of the 
filling stage and the other (mold C) for a verifi- 
cation study of post-filling. Simulation results 
obtained from the currently developed program 
are compared with the experimental observa- 
tions and simulation results available from 
Chiang et al. [6]. 

The mold schematic B is shown in Fig. 6. 
This mold consists of two cavities of the same 
shape, three rectangular gates, trapezoidal run- 
ners and a sprue. The runner system was 
designed to be unbalanced so that packing-type 
flow occurred in the upper cavity after it was 
filled. The trapezoidal runner was approximated 
by the equivalent cylindrical element, with the 
appropriate hydraulic radius as given in Chiang 
et al. [6]. The material properties of PP (poly- 
propylene; Profax 6323/Himont) are 
summarized in Tables 1 and 2 based on the 
seven-constants viscosity model and the Tait 
state equation, the thermal constants are given 
in Table 3. For process variables, the tempera- 
tures of the barrel and the mold wall were set at 
200 and 30°C, respectively, with a volumetric 
flow rate of 1.07 x 10 ~5 m3/s. In order to satisfy 

Cavity Thickness 0.2 cm 
Fig. 5. Schematic diagram of mold A. Fig. 6. Schematic diagram of mold B. 
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the given prescribed constant volumetric flow 
rate at the inlet in experiments, the constant 
mass flow rate was determined by multiplying 
the density of the material to the prescribed 
volumetric flow rate and applying it to the 
numerical simulations. A post-filling study was 
made for mold set C, as shown in Fig. 7. This 
mold consists of a rectangular cavity with a uni- 
form thickness and a thick rectangular 
reservoir. This reservoir made the flow flat in 
the cavity. So the cavity was approximated in 
simulations using 24 identical rectangular strip 
elements. The material and process conditions 
used were the same as those in the previous 
calculations except that the mold wall tempera- 
ture was set at 32°C. In the post-filling stage Px 

was used for the constant pressure condition at 
the inlet. For this material, the non-flow tem- 
perature was assumed to be 103°C, which was 
about 20°C less than the transition temperature. 

Cavity 

— Reservoir 
Fig. 7. Schematic diagram of mold C. 

This was taken into consideration in simulations 
by replacing the viscosity value with infinity for 
temperatures below this non-flow temperature. 

RESULT AND DISCUSSION 

Figure 8 shows the calculated melt front 
advancement obtained for mold set A. The cavi- 
ties were predicted to be filled in the order: 
lower, upper, right and left cavities. Pressure 
traces during the filling stage are shown in 
Fig. 9. For convenience, the time when P1 

begins to increase was set to zero in Fig. 9. 
Experimental and simulation results are seen to 
be very similar. But the locations of sudden 
increases are not accurately predicted according 
to Fig. 9. From the fact that this location coin- 
cides with the instant when the melt touches the 
cavity boundary, it can be construed that the 
rate of filling in each cavity was not predicted 
well. This might be due to the air ventilation 
condition in each cavity and the viscoelasticity 
of the polymer melt which was not considered 
in this analysis. 

The comparison of pressures between predic- 
tion and measurement at the post-filling stage is 
made in Fig. 10 for a holding time of 6 s. In 
simulations, the pressure value at the inlet was 
chosen to be the measured values of Px based 
on the assumption that the pressure difference 
along the runner was not very noticeable in the 
post-filling stage, which is demonstrated in 
Fig. 10. For P2, the pressure variations are simi- 
lar, but the magnitudes differ by about 20%. 
This might be due to inaccurate thermal 
properties used in the present calculations. 
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Fig. 8. Predicted melt front advancement for mold A. 
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Fig. 9. Comparison of predicted and measured pressures in the filling stage for mold A. 

For mold B, the simulation result of the melt 
front advancement is shown in Fig. 11. The melt 
entered the upper-left gate first and then the 
other gates after about 0.2 s. At 3.5 s the upper 
cavity is filled and packing-type flow occurs. 

To study the effect of compressibility and 
phase change on filling, simulation results of the 
pressure difference between measuring loca- 
tions at #1 and #5 (AP15 = P1 -Ps) are 
compared to the experimental results obtained 
from the same source [6] in Fig. 12. After the 
melt approaches the upper-right gate, AP15 

decreases until the melt runs through all the 
gates. When the upper cavity is filled, AP15 

decreases rapidly. Compared with the case 
where compressibility and phase change were 
not considered, the pressure difference becomes 

2 
CL 

Time (sec) 

Fig. 10. Comparison of predicted and measured pressures 
in the filling and post-filling stages for mold A. 

smoother when compressibility is considered 
and becomes higher if phase change is con- 
sidered. However, the effect of phase change 
was not as large as that of compressibility. 

Simulation results of pressure distributions at 
various locations are compared with the avail- 
able data from Chiang et al. [6] in Fig. 13(a) 
and (b). Figure 13(a) shows that the numer- 
ically calculated result is slightly higher than the 
one from Chiang et al. [6], and the trend of 
variation is closer to that of the experimental 
results. Comparing the level of reduction at 2.0 
and 3.5 s shows that the current result is 
steeper. This is because of the constant mass 
flow rate boundary condition which was strictly 
applied in the present investigation, as previ- 
ously mentioned. The pressure difference across 
the gate (AP23) in Fig. 13(b) is still lower than 
for experimental results. This is probably due to 
juncture loss which was not considered in the 
governing equation. 

For mold C, comparisons between the cur- 
rent simulations and numerical results obtained 
from Chiang et al. [6] are shown in Fig. 14(a) 
and (b), respectively, for the verification of the 
post-filling study. 

In Fig. 14(a), the experimental results show 
that high pressure was maintained for about 
10 s, and then the pressure decreased. This 
phenomenon was well predicted by the current 
simulation. Calculations also showed that the 
pressure decrease at 10 s was due to the whole 
solidification of one element, which was physic- 
ally reasonable. After 12 s the pressure was not 
predicted well, but this was possibly due to the 
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Fig. 11. Predicted melt front advancement for mold B. 

lack of accuracy in the modeled thermal con- 
stants used in simulations. 

In Fig. 14(b), trends in the pressure distribu- 
tions were the same as in the reference data of 
Chiang et al. [6]. In addition, the unnecessary 
dip at around 6 s in the numerical prediction in 
Chiang et al. [6] does not occur in the current 
simulation. From these studies it was found that 
the currently developed program generated 
reasonable data for different cases. 

CONCLUSIONS 

For unified simulations of filling and post-filling 
processes in injection molding, a finite-element- 

finite-difference program was developed 
considering phase changes and compressibility 
effects of the material. Flow analysis network 
together with the control volume method 
enabled simulations to be available for complex 
mold cavities using various types of elements 
simultaneously. The constant mass flow rate 
condition could be applied explicitly at the inlet, 
resulting in a reduction of the calculation time. 
Simulations were performed for three different 
molds. For the filling analysis, the inclusion of 
the phase-change effect did not seem to pro- 
duce any noticeable differences, while the 
consideration of compressibility led to more 
accurate results. For the post-filling stage, more 
accurate results were obtained by considering 
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the phase-change effect during simulations. To 
further improve the reliability of the developed 
program, consideration of juncture loss and 
effects of air ventilation will be beneficial. 
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Local buckling loads of sandwich panels made 
with laminated faces 

M. A. Aiello & L. Ombres 
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The paper is devoted to assessing the optimal arrangements of hybrid 
laminated faces of sandwich panels in order to maximize local buckling 
loads corresponding to the wrinkling of compressed faces. The analysis is 
carried out by modelling compressed faces as thin unsymmetric laminates 
resting on elastic two-parameter foundations. The First-order Shear 
Deformation Theory, in conjunction with the Rayleigh-Ritz method, has 
been used to evaluate buckling loads of simply supported flat laminates 
subjected to in-plane biaxial compression and shear forces. A numerical 
investigation is intended to support evidence for the influence of laminate 
parameters (fibre orientation, geometrical dimensions) and foundation 
parameters (modulus of subgrade reaction and shear modulus); obtained 
results are reported and discussed in the paper. © 1997 Elsevier Science 
Ltd. 

NOTATION 

a, b, h 

■A-ij, By, Dtj 

Eu,E22 

G\2, Gl3, &23 

Vl2 
U, V, w 

U0, VQ, W0 

N  N  N lyx> J,_y> l*xy 
k   k   k "•XI ^y ""xy 

w,u 

<W 

Laminate length, width and 
thickness, respectively 
Extensional, coupling and 
bending laminate stiffnesses 
Young's moduli along the 
fibre direction and normal to 
the fibres, respectively 
In-plane shear moduli 
Poisson's ratio 
Displacements in the x, y 
and z directions, respectively 
In-plane displacements of 
the middle plane of the 
laminate 
Laminate normal strains 
Shear rotations 
In-plane applied loads 
Laminate curvatures 
Elastic strain energy 
Work of internal stresses 
Work of external stresses 

E 
X 
Pi 
k 

Gh 

£ 
4 

Total potential energy 
Load multiplier 
Density of materials 
Modulus of subgrade 
reaction 
Shear modulus of the 
subgrade 
NJ,2/E22h3 

Ny/Nx 

NyJNx 

kb4/E22h3 

Gbb2IE22h3 

INTRODUCTION 

Sandwich structural elements made with lami- 
nated faces are very widespread in the industrial 
fields of engineering as well as the mechanical, 
naval and aeronautical fields; however, they can 
also be useful in the field of civil engineering, 
particularly in lightweight constructions such as 
roof coverings [1]. 

Indeed, from a static point of view, the possi- 
bility of taking advantage of the anisotropy that 
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is a typical property of plastic composites 
materials makes the use of sandwich structures 
with laminated faces, in place of steel faces, a 
viable solution. 

Sandwich panels consist of two thin outer 
sheets (faces), flat or profiled, generally made 
of a high strength material and a thick light- 
weight layer (core) of a low strength material 
which improves the bending stiffness of the 
panels. 

At present, technological solutions commonly 
used in constructions consist of sandwich panels 
with metallic (steel or aluminium) or laminated 
faces and a core made of a metallic honeycomb, 
which is vertically stiff and very flexible with a 
negligible longitudinal rigidity, or, alternatively, 
a core made up of plastic foam or a non-metal- 
lic honeycomb which, generally, has a very low 
rigidity [2]. 

An analysis of the mechanical behaviour of 
sandwich panels must also take into account the 
instability phenomena caused by the high 
degree of slenderness of the panels and the very 
small thickness of the faces. 

Instability phenomena may concern the whole 
panel but, often, take place in a localized zone 
of the panel affecting separate elements. 

A typical local instability phenomenon is the 
wrinkling of the compressed faces of sandwich 
panels [3]. This wrinkling characterizes the local 
instability of sandwich panels where the core is 
made of a low density material. In this case, in 
the presence of flexural actions, the core may 
be insufficient to stabilize the panel; as a conse- 
quence, the faces become independent of each 
other and the compressed face can buckle 
locally because of its small thickness. 

For this reason, analysis of the wrinkling type 
of local instability is carried out with reference 
to a single face of the panel connected to the 
core; this hypothesis is generally correct 
because the thickness of the core allows the 
interaction between opposite faces to be neg- 
lected. 

Theoretical models used for the analysis of 
this wrinkling phenomenon are dependent on 
the type of core material and on its deform- 
ability; in fact, generally, the core is considered 
as an elastic medium supporting the outer face 
of the sandwich panel. The most correct theo- 
retical model refers to a laminated plate 
supported by an elastic space; however, in order 
to reduce analytical difficulties, approximate 
models are currently used. 

These models very useful from an engineer- 
ing point of view as they consider the stabilizing 
action of the core proportional to the out-of- 
plane face displacement (Winkler model) also 
taking into account the shear deformability of 
the core (Pasternak model) [4]. 

The use of laminated faces allows the struc- 
tural response of sandwich panels to be 
optimized on the basis of the state of stresses 
produced from external forces. It is possible, in 
fact, to design an optimal configuration of the 
laminate varying both in the fibre orientation in 
each layer and the geometrical dimensions of 
the laminate. 

A very good performance is obtained by 
hybridization of the laminate, that is by the use 
of layers of different mechanical characteristics 
along the thickness of the laminate. 

The influence of hybridization on the buck- 
ling load values of flat laminates subjected to 
in-plane axial and shear forces has recently 
been analysed from the literature [5]. Results 
obtained relating to hybrid symmetric and 
unsymmetric laminates, made with inner layers 
of a low-stiffness fibre-composite material and 
outer layers of a high-stiffness fibre-composite 
material, support the theory that advantages of 
hybridization increase when the anisotropy of 
outer layers is very high and that buckling loads 
of hybrid laminates are higher than those corre- 
sponding to homogeneous laminates of equal 
mass. 

In this paper, on the basis of previous con- 
siderations, buckling load values corresponding 
to the wrinkling of sandwich panels with lami- 
nated faces are analysed in order to evaluate: 

— the influence of the strong anisotropy that 
characterizes the structural system, in par- 
ticular hybrid laminated faces; 

— the better arrangement of laminated faces 
with varying fibre orientation and geo- 
metrical dimensions in order to maximize 
local buckling loads; 

— the influence of characteristic properties 
of the core material. 

The analysis is carried out by modelling the 
compressed face of a sandwich panel as a lami- 
nate resting on a two-parameter foundation; 
these parameters, modulus of the subgrade 
reaction and shear modulus, are defined on the 
basis of the geometrical dimensions and mech- 
anical properties of the core. 
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Using the First-order Shear Deformation 
Theory, in conjunction with the Rayleigh-Ritz 
method, buckling loads of laminates, generally 
unsymmetric, are obtained by an energetic algo- 
rithm as a solution of a standard eigenvalue 
problem. 

By numerical investigation, supposing the 
absence of delaminations, the best arrangement 
of laminates corresponding to maximum buck- 
ling loads, in the presence of in-plane biaxial 
compression and shear forces, is defined by 
varying parameters of both the laminates (geo- 
metrical dimensions, slenderness, mechanical 
properties of layers, etc.) and the subgrade 
(modulus of subgrade reaction, shear modulus). 
A comparison between obtained results and 
those corresponding to sandwich panels made 
with laminated homogeneous faces supports the 
theoretical advantage that the use of hybrid 
laminates can guarantee to increase local buck- 
ling loads of sandwich panels. 

PROBLEM FORMULATION 

Laminate modelling 

The analysis was carried out assuming that 
global buckling of sandwich panels and local 
buckling of compressed faces are uncoupled. 
This hypothesis will not be completely correct if 
the core material is compressible in the vertical 
direction; in these cases, in fact, an interaction 
between the two faces of the sandwich panel 
exists [6-9]. 

Models that consider the coupling between 
global and local buckling are founded on a 
high-order theory and are defined by complex 
analytical procedures, often very onerous from 
a computational point of view. 

For this reason the use of models that sup- 
pose the uncoupling of the two instabilities is 
very large, allowing very good provision for the 
real behaviour of structures with little computa- 
tional effort. 

In this paper the compressed faces of sand- 
wich panels are modelled as flat plates resting 
on a two-parameter elastic foundation (Fig. 1). 

These parameters take into account both the 
compressibility of the core by the modulus of 
the subgrade reaction k, and the shearing inter- 
action between the loaded face and the core by 
the shear modulus Gb. In particular, the k value 
is determined by modelling the core material as 

outer layer: high stiffness 
composite materials 

inner layers: low stiffness 
composite materials 

Fig. 1. Laminated faces of a sandwich plate resting on an 
elastic support. 

a continuosly distributed linear tension-com- 
pression spring (Winkler model). 

Values of k and Gb depend on the mechani- 
cal and geometrical properties of the core 
material, that is type and thickness; they have to 
be defined for each technological adopted solu- 
tion. For cases analysed in the paper, the core 
material is assumed to be isotropic, homo- 
geneous and linear-elastic. 

Constitutive law of laminates 

The constitutive law of a laminate made with 
orthotropic layers taking into consideration 
shear deformation is given by following rela- 
tions: 

{N} = [A]{S} + [B]{K} 

{M} = [B]{E} + [D]{K} 

{Q} = [F]{v} 

where 

{N} = {Nx,Ny,Nxy} 

{M} = {Mx, My, Mxy] 

{Q} = {Qx,Qy} 

(Au, Bip DtJ) 
*/i/2[min]   _ 

ß,-/l, z, z2) dz (i, j = 1, 2, 6) 
-h/2 

<"h/2 

Fn=  I        k*iiQiidz(i,j = 4,5) ij 
-h/2 

where k^ are shear correction factors, Qi} are 
functions of elastic constants and the ply angle, 
9, differs from a layer to another, while 

[£\  =  (6^0' £;yO> ^xyOI 

[K\  =  \KX, Ky, Kxy\ 

{v} = {evz, e„} 
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with 

£xO — U0, x'i £yO = U0, y'i £xyO = U0, y + V0, x 

Kx=   ~ Yx, x> Ky =   ~~ Yy, y> Kxy =   ~ \Y x, y + Yy, x) 

Zxz = W.x-Y'x, £yz = Wy-^y 

where u0, v0, sx0, Sy0 and e^o are the displace- 
ments and strains at the middle plane of the 
laminate. 

Energy expressions 

The total strain energy of a laminate resting on 
an elastic foundation is expressed as 

Tl = W+U 

where W is the strain energy of the laminate 
and U is the strain energy due to the founda- 
tion. 

Considering a flat rectangular laminate of 
dimensions a and b along the x- and v-axis, 
respectively, the strain energy W is expressed as 

W = 
1 

2 J 
[{£}T[A]{e} 

+ {s}T[B]{K} + {K}T[B]{e} 

+ {K}T[D]{K} + {v}T[F]{v}]dxdy 

while the strain energy due to the two-param- 
eter foundation is given by 

1 
U = — 

2   J o j 
[kwl + Gb(wl x+wl )] dx dy 

Buckling load analysis 

The buckling load of a flat laminate is deter- 
mined by an energetic approach founded on 
Dirichlet's principle, expressed as follows [5] 

Ö2E = U + X(L*2-L2) (1) 

where IT = W+U is the strain energy of the 
laminate, L*2 is the work of internal stresses in 
the initial configuration for the second-order 
strain components, L2 the work corresponding 
to the external loads for the second-order dis- 
placement components, 82E is the second 
variation of the total potential energy and k is 
the load multiplier. 

For a flat rectangular laminate,  the work 
L*2 is expressed as 

1 

2 
\Nx(ulx+vlx+w2

x) 

+ Ny(uly+vly+w2
y) 

+ 2Nxy(u0,xu0<y 

+v0, xV0,y+w,xW,y)] dx dy 

The work L2 is zero when external loads are 
constant or independent of u, v and w displace- 
ments. 

For unsymmetric laminates in which the geo- 
metric middle plane is different to the neutral 
plane, the buckling load can be determined as a 
bifurcation load only if added conditions, that 
guarantee the flatness of the laminates, are 
imposed. 

This problem has been investigated by Leissa 
[10,11] who defines the conditions under which 
unsymmetric laminates remain flat during the 
prebuckling stage when subjected to in-plane 
loads. Leissa separates the prebuckling response 
equations from the buckling equations and 
works out the conditions for the curvatures to 
vanish during the prebuckling stage (flatness 
conditions): if these conditions are satisfied, the 
bifurcation phenomenon will occur [11]. 

For a simply supported laminate subjected to 
in-plane loading, the flatness conditions involve 
the introduction of bending moments, M°x and 
M°y, acting along the edges of the laminates in 
the initial configuration. 

The values of M°x and M°y are determined 
using constitutive laws for the laminate with 
first-order components of displacement and 
shear rotations. Bending moments M° and M°y 

furnish a value of L2 that must be considered 
for the evaluation of S2E. 

Substituting n, L\ and L2 expressions in eqn 
(1), the condition b2E = 0 gives the relations 
that allow the buckling loads of laminates to be 
determined. 

The solution of the problem is obtained by 
the Rayleigh-Ritz method assuming linear vari- 
ation of in-plane displacements u and v and 
constant transverse deflection w over the panel 
thickness 

u(x, y, z) = u0{x, y) + zil/x(x, y) 

v(x, y, z) = v0(x, y)+zil/y(x, y) 

w(x, y, z) = w(x, y) 
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For a simply supported flat laminate the dis- 
placements that satisfy the geometric boundary 
conditions 

v = w = ij/y = 0   at x = 0, a 

u = w = i]/x = 0   aty = 0, b 

are chosen in the form of following trigono- 
metric series 

"o<X y) = X X Um„ cos(mnx/a) sin(nny/b) 
m     n 

v0(x, y) = X X Vmn sin(mnx/a) cos(nny/b) 
m      n 

\j/x{x, y) = X X Xmn cos(mnx/a) sm(nny/b) (2) 
m      n 

il/v(x, y) = X X Ymn sm(mnx/a) cos(nny/b) 
m      n 

w(x, y) = X X Wmn sin(mnx/a) sin(nny/b) 
m      n 

Substituting eqn (2) into the expressions of W 
and L2, eqn (1) becomes 

{[L]-l[K] + A[I]}{q}=0 (3) 

that represents a system of linear equations of 
5mn x 5mn order. The solution to eqn (3) is 
obtained as solution of a standard eigenvalue 
problem that can be solved by available 
standard procedures. [L] and [K] are matrices 
of 5mn x 5m« order that contain terms relative 
to strain energy and external work; the vector 
{q} contains the series of coefficients Umn, Vmn, 

The buckling load coincides with the smallest 
eigenvalue of eqn (3). In the presence of biaxial 
compression and shear the solution is obtained 
considering the ratios 

Ny 
Z= TTL;C = 

N xy 

Nx Nx 

and evaluating the critical value of Nx. 

NUMERICAL INVESTIGATIONS 

Numerical analyses, founded on analytical rela- 
tionships and procedures previously described, 
are carried out taking into consideration hybrid 
laminates resting on a two-parameter founda- 
tion. Hybrid configurations of laminates refer to 
compressed faces of sandwich panels; they are 
obtained considering laminated faces made with 

outers layers of a high-stiffness fibre-composite 
material and inner layers of a low-stiffness 
fibre-composite material. 

Such configurations guarantee the best 
arrangement for obtaining maximum values for 
buckling loads [5]. The whole sandwich struc- 
ture is considered symmetric while faces are 
unsymmetric; local buckling loads are then eval- 
uated for unsymmetric flat hybrid laminates 
resting on elastic foundations. 

Numerical results are carried out considering 
laminated faces made with one outer layer of a 
high-stiffness composite material and the inner 
layers of a low-stiffness composite material. 

The material properties of the layers used in 
the numerical analysis are as follows. 

Outer layer 
Material MRI:  En = 128 GPa; 

E22 = ll GPa; 
G12 = 4.48 GPa; 
G13 = 4.48 GPa; 
G23 = 1.53 GPa; 
v12 = 0.25. 

Material MRII: Eu/E22 = 40; 
G12 

= Gi3 = 0.6E22; 
G23 = 0.5E22; 
v12 = 0.25. 

Inner layers 
Material M^  En = 38.6 GPa; 

£22 = 8.27 GPa; 
G12 = G13 = G23 = 4.14 GPa; 
v12 = 0.26. 

Material Mn: Eu/E22 = 10; 
G\2 = G13 = 0.5E22; 
^-r23= 0.5zs22; 
v12 = 0.28. 

The shear correction factor is assumed to be 
k* = 5/6 for all calculations. 

First, the analysis refers to laminates with 
constant thickness for which the optimal 
lamination angle values of the outer layer are 
defined by varying both the foundation param- 
eters and the load combinations. 

In Fig. 2 curves n-9 (where n = Nb2IE22t
3

{) for 
a foundationless laminate with a 907079070 
lay-up subjected to uniaxial compression are 
drawn by varying the amount of high-stiffness 
composite material (a = tT/tf, where tT is the 
thickness of the outer layer of the laminate). 

For this configuration the optimal solution 
corresponds to 6 = 42°, confirming results of 
previous work [5]. 
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T 

0        15       30      45       60       75       90 
Fig. 2. Non-dimensional uniaxial buckling load vs lamina- 
tion angle. Lay-up: 07907070. alb = 1; b/tf = 20. Outer 

layer: MRI; inner layers: M,. 

For the same laminate configuration, curves 
n-6 are shown in Figs 3-5 for varying founda- 
tion parameters. 

In particular Fig. 3 shows curves obtained by 
neglecting the shearing interaction; this situa- 
tion corresponds to a Winkler model of 
foundations. Obtained results are very different 
to those illustrated in Fig. 2; in this case, in fact, 
the maximum buckling load is obtained for 
0 = 0° for all considered hybrid configurations. 

Also, for 8 > 45°, by increasing the a value 
one obtains a drastic reduction in the buckling 
loads. 

In Fig. 4, curves obtained by neglecting the 
subgrade reaction, k,  are shown; results are 

T—'—i—■—i—«—i—'—r 

0        15       30       45       60       75       90 
Fig. 4. Non-dimensional uniaxial buckling load vs lamina- 
tion    angle.    Lay-up:    07907070.    alb = 1;    b/t{ = 20. 
Foundation parameters: 5k = 0; Ö  = 5. Outer layer: MRI; 

inner layers: M,. 

similar to those corresponding to foundationless 
laminates, as illustrated in Fig. 2. 

The maximum buckling load corresponds to 
6 = 42°, and by increasing a values an improve- 
ment in the response of laminates can be noted. 

Results obtained for hybrid laminates resting 
on a two-parameter foundation, as in the 
Pasternak type [4], are shown in Fig. 5. 

It is possible to observe that the response of 
laminates is very similar to that corresponding 
to a Winkler foundation, as shown in Fig. 3. 

The maximum buckling load corresponds to 
6 = 0°; also, for hybrid configurations and 
6 > 45°, by increasing the amount of high-stiff- 

T 

0        15       30      45       60       75       90 
Fig. 3. Non-dimensional uniaxial buckling load vs lamina- 
tion    angle.    Lay-up:    07907070.    alb = 1;    b/tf = 20. 
Foundation parameters: Sk = 200; «5  = 0. Outer layer: 

MRI; inner layers: M,. 

T 1 1 1 1 1 1 ■ r 

0       15       30      45      60       75      90 
Fig. 5. Non-dimensional uniaxial buckling load vs lamina- 
tion    angle.    Lay-up:    07907070.    alb = 1;    b/t{ = 20. 
Foundation parameters: 6k = 200; S  = 5. Outer layer: 

MRI; inner layers: M,. 
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0,00      0,05      0,10      0,15      0,20      0,25 
Fig. 6. Non-dimensional uniaxial buckling load vs a = tjtf. 
Lay-up: 07907070°. alb = 1; b/t( = 20. Outer layer: MRI; 

inner layers: M,. 

1—■—i—'—i—'—r 
0,00     0,05     0,10     0,15     0,20     0,25 

Fig. 8. Curves n-a for laminated faces resting on a two- 
parameter  foundation   (where  n = Nb2/E22h ).  alb = 1; 
b/h = 20;    C = 0;    £ = 1;    Sg = 5.    Lay-up:    (07307- 

307307core)s. Outer layer: MRI; inner layers: Mr 

ness composite material one can see a reduction 
in the buckling load values. In all situations, 
however, hybridization of laminates produces an 
increase in the buckling loads. In Fig. 6, n-a 
curves for varying foundation parameters and 
for a lamination angle of the outer layer equal 
to 0° are shown. For the cases examined it is 
possible to show that the best response of lami- 
nates is obtained for a small amount of outer 
layer reinforcing material. 

The same considerations are taken into 
account when analysing the curves drawn in 
Figs 7 and 8; they represent the variation in 

0,00 0,05 0,10 0,15 0,20 0,25 
Fig. 7. Curves n-a for square laminated faces resting on a 
two-parameter foundation (where n = Nb2/E22h3). 
b/h = 20; C = 0.5; £, = 0; 8k = 400. Lay-up: 
(-30707907457core)s. Outer layer: MRi; inner layers: 

M,. 

buckling loads against foundation parameters 
for laminates under biaxial compression and 
uniaxial compression combined with shear. 

The percentage variation in local buckling 
loads of hybrid laminated faces with respect to 
values corresponding to homogeneous lami- 
nated faces (a = 0 for each examined situation) 
is reported in Tables 1 and 2. 

When analysing the results it is evident that 
the hybridization of laminated faces increases 

Table 1. Percentage variation of local buckling loads. 
Square sandwich panels with hybrid laminated faces. 
Lay-up: (07307 -307307core)s; b/h = 20; £ = 0.5; £ = 0; 

V = 5 

a\Sk 0 50 100 200 400 

0.00 0.00 0.00 0.00 0.00 0.00 
0.05 9.37 7.14 7.81 6.67 5.04 
0.10 11.62 8.97 8.64 7.46 5.81 
0.15 12.45 9.66 8.95 7.75 6.12 
0.20 12.55 9.76 9.01 7.83 6.25 
0.25 12.36 9.63 9.01 7.85 6.28 

Table 2.  Percentage variation  of local  buckling  loads. 
Square  sandwich panels with hybrid laminated faces. 
Lay-up: (07307 -307307core)s; b/h = 20; £ = 0.5; £ = 0; 

Sk = 400 

oMg 0 5 10 20 50 100 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.05 12.31 11.58 10.98 10.03 8.04 6.24 
0.10 20.81 19.29 18.04 19.30 15.28 11.40 
0.15 25.74 23.80 22.19 22.99 19.86 14.71 
0.20 28.44 26.29 24.51 25.09 22.80 16.85 
0.25 29.78 27.55 25.70 26.19 24.65 18.20 
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0       15      30      45       60      75      90 
Fig. 9. Sandwich panels with equal mass: n-9 curves for 
laminated faces resting on a one-parameter foundation. 

Sg = 0; alb = 1; b/h = 20. Lay-up: (0/O°/9O7O7core)g. 

the buckling loads; also, a small amount of rein- 
forcing outer layer is sufficient in order to 
obtain a good response. In fact, by increasing a 
values for all assigned foundation parameters 
one obtains small increases in the buckling 
loads. 

In Figs 9-11 results corresponding to lami- 
nates with equal mass are shown; in particular if 
h is the thickness of a hybrid laminate made 
using layers with p, and py material density, 
using the condition Mhyb = Mhom, one obtains 
h = hi/[p+(l -p)pt/pj\ where Mhyb and Mhom are 
the mass of the hybrid and homogeneous lami- 
nate, respectively, while (i is the ratio between 
the thickness of the material of density pt and 
the total thickness of the hybrid laminate. 
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0       15       30      45      60      75      90 
Fig. 10. Sandwich panels with equal mass: n-9 curves for 
laminated faces resting on a one-parameter foundation. 

Sk = 0;a/b = l; b/h = 20. Lay-up: (0/O°/9O7O7core)s. 
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0       15      30      45      60      75      90 
Fig. 11. Sandwich panels with equal mass: n-9 curves for 
laminated faces resting on a two-parameter foundation. 

"      1; b/h = 20. Lay-up: (0/O°/9O7O7core),. alb 

Results are shown as n-9 curves for uniaxial 
compression, where n is the ratio between buck- 
ling load values and those corresponding to the 
homogeneous laminate made up of four layers 
of graphite-epoxy composite material (MRI 

material). The analysis is carried out for the 
following configurations: 

Gr: MRI-MRI-MRI- M RI> 

H:  MrMrMrMRI; 
Gl: MJ-MI-MI-MJ. 

Maximum buckling loads correspond to 
0 = 0° for all assumed configurations. The 
hybridization of laminated faces of sandwich 
panels furnishes an improvement of the local 
buckling response for 0<45°; also, an increase 
in the a value produces a small variation in the 
buckling load. 

In order to evaluate the influence of load 
combinations on the buckling loads of lami- 
nated faces, curves n-9 for hybrid laminates 
with a constant thickness resting on a two- 
parameter foundation are shown in Fig. 12. 

Results are obtained for the core material 
with the following mechanical parameters: 
Ec = 3.86 GPa, Gc = 1.4846 GPa, vc = 0.30. The 
foundation parameters 5k and Sg are evaluated 
using the relationships of the Vlasov foundation 
model [12,13]. 

By varying the load combinations, maximum 
buckling loads are always attained for 9 = 90°; 
however, values corresponding to 0 = 90° are 
very close to those ones corresponding to 
0 = 0°. 

In Fig. 13 local buckling interaction curves 
«*-£-( for a -4573070745° laminate resting 



Local buckling loads of sandwich panels 199 

~i—■—i—■—i—■—i—■—r 

0       15       30      45      60       75      90 
Fig. 12. Curves of n-6 for varying load combinations for 
square hybrid sandwich panels, b/h = 20; b/t{ = 200. Lay- 
up: (0/307-307307core)s. Outer layer: MR1; inner layers: 

on a two-parameter foundation are shown. The 
non-dimensional value n* is the ratio of the 
value of the buckling load to the value corre- 
sponding to the uniaxial compression load. The 
curves in Fig. 13 demonstrate the large reduc- 
tion in buckling load values with increasing 
shear forces. 

The influence of shear forces on the local 
buckling of sandwich panels can be observed 
with the analysing curves n-b/t{ shown in Fig. 
14; they are obtained for a three-layer laminate 
with a 07307-30° lay-up; non-dimensional 
values of buckling load are obtained as the ratio 
of buckling load to maximum uniaxial compres- 

b/t 
T " r 

0 50 100 150        200 
Fig. 14. Local buckling of square sandwich panels: curves 
n-b/tf for varying £. Lay-up: (07307-307core)s. Outer 

layer: MRII; inner layers: Mn. 

sion load. Results obtained confirm a very large 
decrease in the buckling load in the presence of 
shear forces for thick laminated faces; con- 
versely, for thin laminated faces (b/tf > 100), the 
presence of shear forces is not influential. 

The influence of mechanical properties of the 
core material is evaluated using the ratio 
y = EJElu between the elastic modulus of the 
core, Ec, and of the inner layers, E1U. Values of 
y usually vary between 0.001 and 0.01 [7]. 

Curves n-y (where n = Nb2/E22n3 and 
y = y x 103), for varying b/h ratios (where h is the 
total thickness of the sandwich panels), are 
drawn in Fig. 15 for hybrid four-layer laminates 
with a 07-90745790° lay-up and hc/h = 0.8 
(where hc is the core thickness). 

T—«—i—'—i—'—r 

0,0       0,2       0,4       0,6       0,8        1,0 
Fig. 13. Local buckling interaction curves «*-{-<!; for 
square  sandwich  panels,  b/h = 10;  b/tf = 100.  Lay-up: 
(-45730707457core)s. Outer layer:  MRI; inner layers: 

M,. 

0,0 

b/h = 25 

i  •   i   ■   I   •  i  ■   I   ■  I  ■   I   ■   I 

1     2     3     4     5     6     7     8    9    10 
Fig. 15. Curves of n-y for varying b/h ratios for square 
laminated   faces   of  hybrid   sandwich   panels.   Lay-up: 
0°/-907457907core/ 907457-9070°. Outer layer: MRII; 

inner layers: Mn. 
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3     4     5     6     7     8     9    10 
Fig. 16. Comparison between overall and local buckling 
loads   of   sandwich   panels   with   varying   y   values. 
Lay-up: 07-90°/457907core/907457-9070°. b/h = 10; a/ 

b = 1. Outer layer: MRII; inner layers: Mn. 

Analysis of the diagrams shows that local 
buckling of sandwich panels becomes nearly- 
constant with increasing y; in particular this 
situation is obtained for high values of y for 
thick laminates (b/h < 15) and for low values of 
y for moderately thick laminates. For sandwich 
panels with thin faces, local buckling is indepen- 
dent of the core material properties. 

In Figs 16 and 17, curves n-y, relative to the 
overall buckling of the sandwich panels and the 
local buckling of compressed faces, are com- 
pared. 

Overall buckling loads are evaluated con- 
sidering the core as a layer of the whole 
sandwich panel in which the distribution of dis- 
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Fig. 17. Comparison between overall and local buckling 
loads   of   sandwich   panels   with   varying   y   values. 
Lay-up: 07-907457907core/907457-9070°. b/h = 15; a/ 

b = 1. Outer layer: MRII; inner layers: M„. 

1     2     3     4     5     6     7     8     9    10 
Fig. 18. Curves of n-y for varying load combinations for 
square   hybrid   sandwich   panels,   b/h = 10;   b/tf = 100. 
Lay-up: (307-30730707core)s. Outer layer: MRII; inner 

layers: Mn. 

placements are considered linear along the 
thickness: this hypothesis is correct because of 
the low value of the face thickness. 

Analysing results, it is evident that a coupling 
exists between the local and overall instability of 
the sandwich panels. Coupled instability is 
attained for y values for different b/h ratios of 
the sandwich panels. 

In Fig. 18, n-y curves for a compressed face 
with a 307-3073070° lay-up are shown for 
varying load combinations. In the presence of 
biaxial compression and shear load, the buck- 
ling load of the faces is sensibly reduced. 

In Fig. 19, for sandwich panels with a 
(0790790707core)s lay-up, a comparison 
between local buckling corresponding to hybrid 
and homogeneous configurations of compressed 
faces is shown. 

Curves are drawn by varying the ratio 
between the core thickness and the total thick- 
ness of the sandwich panel, hjh. 

By analysing the curves it is possible to 
demonstrate that the advantages of hybridiza- 
tion are more evident for low values of the ratio 
hjh that correspond, for an assigned b/h value, 
to high value of the slenderness of the com- 
pressed faces (b/tf). 

CONCLUDING REMARKS 

The local buckling of sandwich panels made up 
of hybrid laminated faces and a flexible core has 
been investigated in this paper. Local buckling 
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Fig. 19. Comparison between local buckling for sandwich 
panels with hybrid and homogeneous faces: curves of n vs 
hjh. alb = 1; b/h = 10; y = 0.05. Outer layer: MRII; inner 

layers: M„. 

has been evaluated considering compressed 
faces as unsymmetric laminates resting on elas- 
tic foundations for which characteristic 
parameters have been determined on the basis 
of the mechanical properties and geometrical 
dimensions of the core. 

The analysis has been carried out considering 
hybrid configurations of faces made with one 
outer layer of a high-stiffness composite 
material and inner layers of low-stiffness com- 
posite material. 

The results of numerical investigations allow 
the following conclusions to be drawn. 

The optimal configuration of the reinforcing 
outer layer of the sandwich faces is strongly 
conditioned from the mechanical properties of 
the core material; however, for examined cases, 
the maximum buckling load for each load com- 
bination is, generally, attained for a lamination 
angle of the outer layers equal to 0° or 90°. 

The hybridization of faces produces an 
improvement in their instability behaviour. This 
result has been obtained even if the slenderness 
of the faces is very high. 

Low percentages of reinforcing high-stiffness 
material are sufficient to obtain the optimal 
arrangement of laminated faces. 

The mechanical properties of the core influ- 
ence the local buckling of the faces only for low 
values of b/h ratios (thick and moderately thick 
sandwich panels). 

The presence of shear forces, combined with 
in-plane compression loads, produces a reduc- 
tion in buckling load. 

A coupling between local and overall 
instability of the sandwich panels has been 
observed corresponding to low values of the b/h 
ratio. 
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The period of normal shutdown and maintenance for a nuclear power plant 
can be remarkably shortened when the examination and maintenance of the 
tubes of a steam generator are simultaneously carried out with refueling. 
The nozzle dam in a steam generator is a closure to block the flow of 
coolant from the inlet-outlet nozzles in a steam generator. Recently, the 
installation and removal operations of the nozzle dam were attempted using 
a robot rather than the manual operation because of the radioactive 
hazard. For the operation using the robot the weight of the dam must be 
reduced because the robot's payload for assembling operations is usually 
small. 

In this work, a lighter nozzle dam was designed and manufactured using 
a carbon-epoxy composite, a glass-epoxy fabric composite, an aluminium 
plate and honeycomb. The carbon-epoxy composite was used for the main 
structural material and the honeycomb was used to increase the bending 
stiffness, while the aluminium plate and the glass-epoxy fabric composite 
were used to reduce the stress concentration around bolt holes. Also, the 
variation in mechanical properties of composites with respect to radiation 
emission was investigated. 

In order to verify the structural integrity of the nozzle dam installed on 
the nozzle ring with bolts, the stress analyses of the nozzle dam under 
hydrostatic pressure were performed using commercial finite-element 
software and the pressure test was performed. The stiffness of the 
composite nozzle dam was measured and compared to that obtained by 
finite-element analysis. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The examination and maintenance of the steam 
generator in a nuclear power plant should be 
carried out regularly, and a reduction in the 
period of normal shutdown and maintenance is 
extremely important. Therefore, the examina- 
tion and maintenance operations of tubes in the 
steam generator are simultaneously carried out 
during refueling, which requires the flow of 
coolant from a reactor cavity to the steam gen- 
erator to be blocked. The nozzle dam which is 
located at the inlet-outlet nozzles in the steam 
generator is a special closure to block the flow 

of coolant from the reactor. The installation 
and removal operations of the nozzle dam have 
usually been performed manually. Figure 1 
shows the nozzle dam in the steam generator. 

The manual installation of the nozzle dam 
induces radiation exposure to working person- 
nel. Because the radiation exposure during its 
installation and removal sometimes becomes 
more than 15% of the whole radiation exposure 
absorbed in a nuclear plant, workers are reluct- 
ant to carry out the related work [1]. Moreover, 
the heavy weight of current nozzle dams, made 
of aluminium alloy, makes the installation and 
removal work much more difficult. In order to 
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Fig. 1. Nozzle dam in the nuclear steam generator. 

protect the workers from radiation exposure a 
new design concept for the nozzle dam should 
be developed, such as a lightweight one which 
can be installed in a shorter time or by a robot. 

Three types of nozzle dams have been used in 
Korea, designed by Westinghouse, CE (Com- 
bustion Engineering) and NES (Nuclear Energy 
Service). The Westinghouse type is used in Kori 
nuclear power plant in Korea, while the CE and 
NES types are to be installed in Yonggwang 3 
& 4 and Ulchin 3 & 4 in Korea, respectively, in 
the near future. 

The Westinghouse-type nozzle dam is so 
heavy that oriental workers have great difficulty 
in installing and removing nozzle dams. It takes 
at least 30 min to install the nozzle dam using 
20 bolts to provide both structural stability and 
sealing performance. In order to solve this 
problem, Trundle [2,3] has improved the instal- 
lation technique by devising a new transport 
system for the heavy nozzle dam. 

The CE-type nozzle dam for Yonggwang 3 & 
4 is composed of one set of wet and dry nozzle 
dams, hence called double nozzle dams. The 
dams are installed by inserting pins into the 
holes on the nozzle wall of a steam generator. 
The nozzle dams have continually been 
improved, with Weisel [4] devising the single 
nozzle dam. McDonald [5] invented an instru- 
ment which enabled workers to install the 
nozzle dam outside the steam generator. 

The NES-type nozzle dam for Ulchin 3 & 4 is 
conceptually similar to the CE-type single noz- 
zle dam. It is composed of one centre section 
and two side sections, so that it can easily be 
transported through the small manway. It is 
installed by inserting pins into holes on a nozzle 
ring welded on the steam generator nozzle. The 
whole installation time of this nozzle dam is 
only a few minutes. 

Another type of the nozzle dam, which is not 
used in Korea, is produced by BRAND utility 

Table 1. Weights and materials for current nozzle dams 
Nozzle dam type Nozzle dam weight (N) Material 

Centre section Side section 

KORI nozzle dam 
BRAND nozzle dam 
NES Nozzle dam (Type C-2) 0.762 m 

1.067 m 

340 
272 
150 
154 

340 
159 

Aluminum alloy 5052-H32 
Aluminum alloy 2024-T351 
Aluminum alloy 2024-T351 
Aluminum alloy 2024-T351 
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103 kPa 

Nozzle ring 

Fig. 2. Nozzle dam system composed of the nozzle dam, nozzle ring and diaphragm seal. 
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Fig. 3. Results of the tension test with respect to radiation 
emission and temperature. 

Inc., USA. The thickness of the BRAND nozzle 
dam was determined by calculating the bending 
moment induced by the pressure of cooling 
water [6]. A separate sealing mechanism is used 
to reduce the number of bolts to be fastened 
and the BRAND nozzle dam can be installed by 
a robot using attached handling lugs [7]. It takes 
only a few minutes to install the BRAND noz- 
zle dam. 

However, there is great difficulty in installing 
the nozzle dam, whether manually or using a 
robot, because the nozzle dam is made of a 
heavy aluminium alloy. Table 1 gives the 
weights and materials for each nozzle dam. As 
shown in Table 1, the nozzle dams are very 
heavy for an oriental man or a robot to handle. 
Because the nozzle dam needs to be installed 

Table 2. Mechanical properties of the nozzle dam used in the analysis 

Carbon- Glass-epoxy Honeycomb Aluminium 
epoxy (fabric) 

El (GPa) 128.0 21.5 — 69 
E2 (GPa) 8.0 21.0 — — 
G12 (GPa) 6.0 4.0 — — 
G23 (MPa) — — 110 — 
G13 (MPa) — — 69 — 
Vl2 0.30 0.11 — 0.3 
XT (MPa) 1900 428 — — 
YT (MPa) 60 425 — — 
5 (MPa) 75 95 — — 
Ply thickness (mm) 0.125 0.20 — — 
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Fig. 4. Configuration of the composite nozzle dam. 

within a confined area and in limited time, it 
would be of great benefit to reduce its weight. 

In order to reduce the weight of the nozzle 
dam without sacrificing the structural safety, in 
this work the nozzle dam was designed and 
manufactured using fibre-reinforced composite 
materials as they have been widely used in air- 
craft and automotive structures due to their 
high specific modulus and high specific strength. 
If the nozzle dam is manufactured with fibre- 
reinforced composite materials, the time for 
installation and removal might be remarkably 
shortened or it could allow a robot to be used. 

In this work the lighter nozzle dam was 
designed and manufactured using a carbon- 
epoxy composite, a glass-epoxy fabric 
composite, an aluminium plate and honeycomb. 
The carbon-epoxy composite was used for the 
main structural material and the honeycomb 

was used to increase the bending stiffness, while 
the aluminium plate and the glass-epoxy fabric 
composite were used to reduce the stress con- 
centration around the bolt holes. 

As there is a tendency for properly degrada- 
tion when composite materials are exposed to 
radiation emission, the effect of radiation on 
the mechanical properties of the carbon-epoxy 
composite material was tested with respect to 
radiation emission. 

The stress analyses of the nozzle dam instal- 
led on the nozzle ring with bolts were 
performed by ANSYS, a commercial finite-ele- 
ment software, when the nozzle dam was 
subjected to hydrostatic pressure. In order to 
verify the structural integrity of the nozzle dam, 
the mock-up of the steam generator with the 
diaphragm seal assembly was manufactured and 
the pressure test was performed. The maximum 

Table 3. Mechanical properties of the face and the core materials 

(GPa) 
Eu/E22 G12/E22            v12 Gl3 

(MPa) 
G23 

(MPa) 

Graphite-epoxy (face material)                        206.8 
Glass fabric honeycomb (core material)              — 

40 1.0               0.25 
117.2 241.3 
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displacement of the composite nozzle dam was 
measured and compared to that obtained by 
finite-element analysis. 

CHARACTERISTICS OF THE NOZZLE 
DAM SYSTEM 

The nozzle dam system is composed of the noz- 
zle dam, nozzle ring and diaphragm seal. 
Figure 2 shows the nozzle dam system. The noz- 
zle dam located at the inlet-outlet nozzles 
blocks the flow of coolant from the reactor in a 
steam generator. The nozzle dam has to be 
carried through the manway. Because the diam- 
eters of the manway and the nozzle dam are 0.4 
and 1.05 m, respectively, the nozzle dam was 

yA 

q = 6881.1 N/m* 

t|  : Thickness of the face 

tc : Thickness of the core 

Fig. 5. Sandwich structure used in the verification of the 
model. 

divided into one centre section and two side 
sections. 

The nozzle ring is welded to the entrance of 
the nozzle of a steam generator and the nozzle 
dam is fastened to the nozzle ring with bolts. 

In general, a water pressure of 110 kPa is 
applied to the nozzle dam. The diaphragm seal 
for the coolant is divided into a disk type and 
an inflatable seal type in which the latter uses 
compressed air, while the former uses many 
bolts of high clamping pressure. In the Kori 
nuclear power plant the disk-type diaphragm 
seal is used, which takes 30-40 min to install in 
the nozzle dam. In the inflatable seal type, the 
compressed air in the inflatable seal makes the 
seal adhere to the inner wall of the nozzle ring. 
It takes only a few minutes to install the nozzle 
dam when the inflatable seal type is used. 

In this work, a lighter nozzle dam was 
designed for the Kori nuclear power plant using 
composite materials. In the Kori nuclear power 
plant, the weights of the centre section and the 
side section of the nozzle dam are both 340 N. 
There are 18 holes in the composite nozzle 
dam, of which 10 holes were used for bolts and 
the other eight holes for guide pins. 

STATIC TEST OF CARBON-EPOXY WITH 
RESPECT TO RADIATION EMISSION AND 
TEMPERATURE 

Radiation emission and environmental tempera- 
ture may change material properties and induce 
swelling, hardening, softening and degradation. 
Therefore, the mechanical properties of dam 
materials should be tested with respect to radia- 
tion emission because the radiation emission is 
very high in the vicinity of the nozzle in the 
steam generator and the nozzle dam is used for 
a long time. In general, the temperature in the 
steam generator during the maintenance opera- 
tion is about 60°C and the maximum 
temperature is less than 100°C. When the noz- 
zle dam is installed on the nozzle ring in the 

Table 4. Comparison of the analysis results from the sandwich model with 
(a = 1270 mm, tc = 25.4 mm) 

those by Monforton & Ibrahim  [8] 

Aspect ratio {alb) tjti «US] 
(m) 

cu0 (this study) 
(m) 

AU8] 
(N/m) 

Nx (this study) 
(N/m) 

1.0 
2.5 

4 
10 

5.121 xlO"4 

1.421 x 10"4 
5.427 x 10"4 

1.438 xKT4 
21780 
26360 

21391 
26336 

tc, thickness of the face; *,, thickness of the honeycomb; co0, centre deflection of the sandwich plate. 
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IMl 

ANSYS 5.1 
JON 24 1996 
15:03:11 
PLOT NO.   3 
ELEMENTS 
TYPE NÜM 

XV  =-1 
YV  =1 
ZV  =1 
DIST=0.363815 
XF  =0.254 
YF  =0.2647 
ZF =0.02675 
CENTROID HIDDEN 

Fig. 6. Finite-element model used for the analysis. 

steam generator it will be used for 30 days in 
radioactive conditions of 5-40 rads/h. 

In order to investigate the effect of the radia- 
tion emission and temperature on the 
mechanical properties of the carbon-epoxy 
composite, tension, compression and shear tests 
were carried out using INSTRON with ASTM 
standard specimens after imposing radiation 
emission on the specimens. 

When the nozzle dam is used for 30 days in 
radioactive conditions of 5-40 rads/h, the maxi- 
mum radiation absorbed in the nozzle dam was 
obtained using the following equation 

40 rads/h x 24 h/day x 30 days/month 

= 2.88 x 104 rads/month 

The specimens were radio-activated using a 
y-ray emission instrument in KAERI (Korea 
Atomic Energy Research Institute) with levels 
of 0, 2.88 x 104 and 2.88 x 106 rads at tempera- 
tures of 20, 60 and 100°C. 

Figure 3 shows the result of the tension test 
of the unidirectional carbon-epoxy whose pro- 

perties are given in Table 2 with respect to 
radiation emission and temperature. Each point 
in Fig. 3 is a mean value of five experiments. As 
shown in Fig. 3, the radiation did not affect the 
mechanical properties of the carbon-epoxy 
composite, however, the mechanical properties 
did decrease a little as the temperature 
increased. Therefore, it was concluded that car- 
bon-epoxy was applicable as the main 
structural material for the nozzle dam. 

DESIGN OF THE NOZZLE DAM 

The design pressure for the nozzle dam was 
110 kPa and compressed air at 448 kPa was 
injected into the diaphragm seal. Figure 4 
shows the configuration of the three-piece com- 
posite nozzle dam. 

The sandwich structure composed of carbon- 
epoxy face material and Nomex honeycomb of 
1/8-in. core was employed for the nozzle dam 
structure to increase bending stiffness. The 
fabric glass-epoxy of 2 mm thickness and the 
aluminium   plate   of   2 mm   thickness   were 
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stacked around the bolt holes in the carbon- 
epoxy to reduce the stress concentration. The 
centre plate and the two side plates were fas- 
tened by two bolts and four bolts, respectively. 
Table 2 shows the material properties for the 
nozzle dam. 

FINITE-ELEMENT MODELLING 

The ply angle and thickness of the carbon- 
epoxy face material were determined using the 
Tsai-Wu failure criterion through a finite-ele- 
ment method. Before performing the analysis of 
the nozzle dam, a sandwich plate simply sup- 
ported at four edges was analysed using 
ANSYS, a commercial finite-element analysis 
software, to verify the validity of the model of 
the nozzle dam. The result was compared with 

that of Monforton & Ibrahim [8]. The core 
material was modelled using solid elements with 
20 nodes, and the face was modelled using shell 
elements with eight nodes. The ply angle and 
ply thickness can be assigned in the shell ele- 
ments. The stacking sequence of the face 
material was [90°/0°]T and the core material was 
glass fabric honeycomb. Figure 5 shows the 
sandwich plate used for verification which is 
subjected to a uniform load of q = 6881.1 N/m2. 
Table 3 shows the mechanical properties of the 
face and the core materials. 

Table 4 shows the results of FEM analysis as 
well as the results given by Monforton & Ibra- 
him [8]. From the results of the FEM analysis, 
it was found that the solid elements for the core 
model and the shell elements for the face 
model were appropriate for the sandwich struc- 
ture. 

Center section 
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(b) 

Fig. 7. Maximum failure index and maximum displace- 
ment with respect to ply angle: (a) centre section; (b) side 

section. 
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Fig. 8. Maximum failure index and maximum displace- 
ment with respect to the thickness of the face when the 
core thickness is 40 mm:  (a) centre section;  (b)  side 

section. 
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The Stresses of the nozzle dam were also cal- 
culated using ANSYS. Because of symmetry, 
only a quarter of the nozzle dam needed to be 
modelled. For the boundary conditions, all the 
displacements around the bolt holes were fixed 
and the design pressure of 110 kPa was applied 

Center section 

30 35 
Core Thickness (mm) 

- Max. F.L    -■- Max. disp. 

30 35 
Core Thickness (mm) 

- Max. F.L    -*- Max. disp. 

(b) 

Fig. 9. Maximum failure index and maximum displace- 
ment with respect to the thickness of the core: (a) centre 

section; (b) side section. 

Table 5. Determined ply angles and thicknesses 

Centre Side 
section section 

Ply angle of the carbon- ±15 ±45 
epoxy O 

Face thickness (mm) 
Core thickness (mm) 
Thickness of glass- 

5 
40 
2 

5 
40 
2 

epoxy (mm) 
Thickness of aluminium 2 2 

(mm) 

to the nozzle dam and an air pressure of 
448 kPa in the diaphragm seal was applied to 
the side wall. Figure 6 shows the finite-element 
model used in the analysis. 

In order to determine the ply angle of the 
nozzle dam, the maximum Tsai-Wu failure 
index and the maximum displacement of each 
section were calculated with respect to ply angle 
when the face thickness and the core thickness 
were 4.5 and 40 mm, respectively. Figure 7 
shows the maximum Tsai-Wu failure index and 
the maximum displacement of each section. 

As the maximum failure index in the side 
section was lowest when the ply angle was 
+ 45°, this ply angle was used for the side sec- 
tion. In this case, the maximum displacement of 
the side section was 2.8 mm. In the centre plate, 
when the ply angle was ±30°, the maximum 
failure index was lowest and the maximum dis- 
placement was 4.3 mm. However, the difference 
in maximum displacement between the centre 
plate and the side plate was large when the ply 
angle was + 30°. Because the large difference in 
displacements between the two plates would 
cause the diaphragm seal to fail, a ply angle of 
+ 15° for the centre section was used because 
the maximum displacement was 3.5 mm in this 
case. 

In order to determine the face thickness of 
each section, both the maximum failure index 
and the displacement of each section were cal- 
culated with respect to the thickness of the face 
when the core thickness was 40 mm. As shown 
in Fig. 8, the maximum failure index and dis- 
placement of the plates were decreased as the 
face thickness was increased. Considering the 
weight and safety factor of the nozzle dam, a 
face thickness of 5 mm was used for both sec- 
tions. 

The maximum failure index and the maxi- 
mum displacement of the plates were also 
calculated with respect to the core thickness. 
Figure 9 shows the maximum failure index and 
the maximum displacement of the plates. In the 
centre section, as the core thickness increased, 
the maximum displacement was decreased but 
the maximum failure index was increased. In 
the side section, as the core thickness was 
increased, the maximum displacement was 
decreased but the maximum failure index was 
almost constant. Because the bending stiffness 
in the centre section was decreased as the core 
thickness was decreased, a core thickness of 
40 mm for both sections was used although the 
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Fig. 10. Photograph of the prototype composite nozzle dam whose diameter is 1.06 m. The gripper of a robot holds the 
adapter portion and the arrow indicates the holes provided for the bolts. 

maximum failure index was decreased as the 
core thickness was decreased. Table 5 shows the 
determined design parameters for the sections. 

MANUFACTURING THE NOZZLE DAM 

The face of the nozzle dam was manufactured 
using the pre-preg lay-up method and autoclave 

vacuum bag process. The face thickness and the 
core thickness of the centre plate and the side 
plate were 5 and 40 mm, respectively. The faces 
of the centre plate and the side plate had stack- 
ing sequences of [±15°]10S and [ + 45°]iOS, 
respectively. In order to reduce the stress con- 
centration around the bolt holes, the glass 
fabric-epoxy composite of 2 mm thickness was 
stacked on the flange part of the carbon-epoxy 

Fig. 11. Photograph of the composite nozzle dam installed in the mock-up of the steam generator. 
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Fig. 12. Pressure test system of the nozzle dam. 
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Fig. 13. Results of the pressure test and the finite-element 
analysis. 

and then the aluminium plate of 2 mm thick- 
ness was bonded onto the glass fabric-epoxy 
composite. 

The rib of the centre plate was tapered in 
order to reduce the interference between the 
centre plate and the side plate, which makes the 
installation of the nozzle dam by a robot pos- 
sible. As there was a gap between the centre 
plate and the side plate, the two plates sup- 
ported load independently. The robot handled 
the nozzle dam by gripping the adapters which 

were mounted both on the centre plate and the 
side plate of the nozzle dam. 

The six 22-mm diameter holes were drilled 
on the centre and the side plates. Two bolts 
were used to fasten the centre plate while four 
bolts were used to fasten the side plate. The 
rest of the holes were for the guide pins. The 
two small 7-mm diameter holes around the 
22-mm diameter holes were drilled for the bolt 
holder and the guide pin holder. The bolt 
holder and guide pin holder hold the bolts and 
pins with strings, which prevents the robot 
dropping bolts and pins into the bottom of the 
steam generator during the installation opera- 
tion. Figure 10 shows the manufactured 
composite nozzle dam. 

The centre plate and the side plate of the 
composite nozzle dam weighed 80 and 74 N, 
respectively. As the centre and side plates of 
the nozzle dam made of aluminium alloy 
weighed 340 N, the composite plates were only 
25% and 22%, respectively, that of the alumin- 
ium alloy nozzle dam. 

PRESSURE TESTING THE NOZZLE DAM 

The pressure test for the nozzle dam was per- 
formed using a specially designed mock-up of 
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the steam generator to compare the calculated 
results with the tested results. Figure 11 is a 
photograph of the mock-up of the steam gen- 
erator. In order to prevent water from leaking, 
the diaphragm seal was installed between the 
nozzle and the nozzle dam. As shown in Fig. 2, 
the diaphragm seal was composed of the dry 
seal, the wet seal and the mechanical seal. The 
sealing of the nozzle dam was established using 
compressed air at 448 kPa which was injected 
into the dry seal and the wet seal. The schema- 
tic diagram of the pressure test system is shown 
in Fig. 12. 

Figure 13 shows the results of the pressure 
test and the calculated results for the centre 
section. The calculated value of the maximum 
transverse displacement of the centre section 
was 2.95 mm under a pressure of 110 kPa and 
the test result was 3.75 mm. As shown in 
Fig. 13, the test results were non-linear while 
the FEM results were linear, this is because 
linear material properties were used in the 
finite-element analysis. Therefore, at low pres- 
sure, the difference between the FEM result 
and the test result was small, but the difference 
increased as the pressure increased. It was 
therefore concluded that in order to perform a 
more accurate analysis, the non-linearity of the 
core material as well as the composite material 
should be included in the analysis. 

The composite nozzle dam was tested under 
a pressure of 120 kPa. After the test the nozzle 
dam was disassembled from the mock-up and 
examined, no visible damage was found. 

CONCLUSIONS 

In this study a lighter nozzle dam was designed 
and manufactured using carbon-epoxy compo- 

site, glass-epoxy fabric composite, an 
aluminium plate and honeycomb. In order to 
investigate the effect of the radiation emission 
and temperature on the mechanical properties 
of the carbon-epoxy composites, tension, com- 
pression and shear tests were carried out and it 
was found that the radiation and a temperature 
lower than 100°C did not much affect the mech- 
anical properties of the carbon-epoxy. 

From the finite-element analysis, the ply 
angles of the centre section and the side section 
were determined to be ±15° and +45°, respec- 
tively; the thicknesses of the face and the core 
were determined to be 5 and 40 mm, respec- 
tively. 

The prototype composite nozzle dam was 
manufactured using the autoclave vacuum bag 
process and tested using a specially designed 
mock-up of the steam generator. From the 
tests, it was found that the composite nozzle 
dam had a structural integrity although the 
weight of the composite nozzle dam was just 
25% that of the aluminium nozzle dam. 
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Recently the design and manufacture of lightweight train structures have 
become important in order to increase speed. Composite train structures 
have many advantages over conventional steel or aluminum train structures 
because of their high specific strength, modulus and high damping capacity, 
which is beneficial for NVH (noise, vibration and harshness). 

From the structures of high-speed trains, the upper car-body is a good 
candidate for composite structures which increase the stability of trains due 
to the low gravity center of vehicles. 

If the side body of the train is made of steel plates, then joining of 
composite structures to the steel structures is required. 

In this work, the adhesive joining method between the composite upper 
car-body structure and the steel side plates was investigated. A 1/10-size 
model of a real train subjected to internal pressure was developed and 
tested statically and dynamically. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

When speeding-up large vehicles, such as a 
train, it is important to reduce the weight of the 
car-body that contributes most of the weight of 
the vehicle. In order to decrease the weight of 
the car-body without sacrificing the safety of the 
vehicle, it is effective to change the materials 
making up the car-body. Fiber-reinforced com- 
posite materials have been widely used in 
aircraft and spacecraft structures because of 
their high specific strength, modulus and high 
damping capacity. If they are applied to the car- 
body, it is expected that not only the speed of 
the car-body is increased but also that noise and 
vibration are reduced. 

Tagawa et al. used aluminum in their train 
structures and tested it under internal pressure, 
bending moments and twisting moments [1]. 

Suzuki et al. tested honeycomb and composite 
trains under bending moments and pressures 
[2]. Matsuoka & Nakamura suggested a method 
of joining the aluminum and composite 
materials using specimen tests and compared 
the effectiveness when they are applied to the 
train [3]. Lewis tested glass-reinforced plastic 
tubes to determine statically and dynamically 
the crash behavior of composite-structure trains 
with respect to many types of accidents [4]. 
Thorton & Jeryan performed axial compressive 
tests using quadrilateral composite tubes to 
determine the energy absorption of the compo- 
site-structure train [5]. Larrode et al. studied the 
manufacturing method of the composite-struc- 
ture bus using FEM [6]. 

If an upper car-body is made of composite 
materials and the side plates of the car-body are 
made of steel, it is expected that both the speed 
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and stability of the car-body are improved 
because the weight of car is reduced and the 
gravity center of the vehicle is lowered. In this 
case, the joining of an upper composite car- 
body and the steel side plates is necessary. As 
the efficiency of composite structures is largely 
dependent on the joint used rather than the 
structure itself [7], the optimum joining of the 
composite car-body is imperative. 

The forces trains are subjected to consist of 
internal pressure, and bending and twisting 
moments. To increase the speed of the train, a 
railroad track is designed to be straight with 
small curve and slope. Therefore, the dominant 
force of the high-speed train is the internal 
pressure because the difference between the 
inner and outer pressures of the car-body 
increases proportionally to car velocity squared, 
especially when traveling in a tunnel. 

In this work, a 1/10-size composite-steel shell 
structure of the prototype train subjected to 
internal pressure was developed and tested. The 
adhesive joining method was used to assemble 
the upper composite roof to the side steel 
plates. The stress distribution of the joint was 
analyzed using a commercial finite-element soft- 
ware. Also, the prototype model was 
dynamically tested under fluctuating internal air 
pressure to investigate the fatigue strength of 
adhesive joints. 

TEST SPECIMENS 

Figure 1 shows the configuration and joining 
types of the composite-steel shell specimens, 
whose dimensions are 300 x350 mm2, which is 
1/10-size of the prototype train. Only 100 mm 
length of the specimen was chosen because the 
stress distribution of the train subjected to 
internal pressure was independent of the train 
length. The thickness of the composite roof for 
the weight reduction and stability of the train 
was chosen to be 2.4 mm, and steel plates were 
chosen for the side body of the train. For a 
reliable join of the composite and the steel an 
adhesive thickness of 0.1 mm was chosen [8]. 
Table 1 gives the properties of the carbon 
fiber-epoxy composite and the glass fiber- 
epoxy composite used in this work. Table 2 
shows the properties of IPCO 9923, which is a 
rubber-toughened adhesive manufactured by 
IPCO National (CA, USA). Two bonding 
lengths of 10 and 20 mm for joining the compo- 
site roof to the steel side plates were tested. 
Three types of joining method, such as an adhe- 
sively bonded inner single lap-joint, an 
adhesively bonded outer single lap-joint and an 
adhesively bonded double lap-joint as shown in 
Fig. 1, were tested. The stacking sequences of 
the composite roof were [ + Ö]4S (0 = 10, 30, 45, 
60 and 80°). For the adhesively bonded single 
lap-joint specimens, four different thicknesses 

Composite 

Steel - 

300 

J       350 

<  mm  > 

Adhesively-bonded 
inner single lap joint 

Adhesively-bonded 
double lap joint 

Fig. 1. Three types of lap joint specimens for the composite-steel shell structure. 

Adhesively-bonded 
outer single  lap joint 
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Table 1. Properties of the composites1 

Carbon-epoxy Glass-epoxy 
composite composite 

£L (GPa) 130.0 43.5 
ET (GPa) 8.0 5.0 
GLT (GPa) 6.0 5.0 
vLT 0.28 0.25 
X1 (MPa) 1800 1000 
r (MPa) 50 50 
5 (MPa) 75 50 
Ply thickness (mm) 

n3) 
0.15 0.175 

Density (kg/n 1560 1980 

'.EL, longitudinal tensile modulus; ET, transverse tensile 
modulus; GLT, shear modulus; vLT, Poisson's Ratio; X\ 
longitudinal tensile strength; Y', transverse tensile 
strength; S, shear strength. 

of the steel plates such as 4.0, 5.5, 7.0 and 
10.0 mm were used. For the adhesively bonded 
double lap-joint specimens, 5.6, 8.6, 11.6 and 
17.6 mm thick steel plates were used. 

EXPERIMENTAL EQUIPMENT 

The experimental equipment consists of a 
tester, a pneumatic circuit and an electric cir- 
cuit. Figure 2 shows the tester on which the 
specimen was mounted. The rubber tube in the 
tester was used to apply internal pressure to the 
specimen. The wood in the tester was used to 
reduce the internal volume of the tester, which 
increased the loading frequency in the dynamic 
test. Figure 3 shows the configuration of the 
pneumatic and electric circuits that supply air 
into the rubber tube for static and dynamic 
tests. The function generator in Fig. 3 was used 
to supply fluctuating air pressure in the rubber 
tube. 

After the composite roof was cured under the 
curing cycle for the composite, it was adhesively 
bonded to the two steel side plates using IPCO 
9923 rubber-toughened adhesive. The tester was 
installed in a protective housing which had an 
aluminum lid and a lift. The lid was used for 
the shut-down of air pressure in case of compo- 
site roof failure. When the adhesive joint of the 
specimen or the specimen itself fails by the 
internal pressure, the composite roof clicks the 

Table 2. Properties of the adhesive (IPCO 9923) 

Tensile modulus (GPa) 
Poisson's ratio 
Tensile strength (MPa) 
Shear strength (MPa) 
Lap shear strength (MPa) 
Density (kg/m3) 

1.3 
0.41 
45.0 
29.5 
13.7 
1200 

limit switch, which shuts down the air supply to 
the tester. 

FINITE-ELEMENT ANALYSES OF THE 
ADHESIVE JOINT 

In order to investigate the stress distributions of 
the specimens subjected to internal pressure, 
finite-element analyses were performed using 
ANSYS 5.0, a commercial software. A layered 
version of the eight-node structural solid ele- 
ment (SOLID46) for the composite roof and an 
eight-node structural solid element (SOLID45) 
for the steel side plates and the adhesive layer 
were used. As the specimens had vertical sym- 
metry, only half of the structure was analyzed. 
Figure 4 represents the element configuration 
and boundary conditions of the adhesively bon- 
ded inner single lap-joint specimen with 10 mm 
bonding length. The node numbers and element 
numbers for the analysis of the single lap-joint 
were 5742 and 4650, respectively. The IPCO 
9923 epoxy adhesive had a strong nonlinear 
stress-strain behavior due to rubber toughen- 
ing. Therefore, its behavior was modeled 
multi-linearly as shown in Fig. 5. The magnitude 
of the internal air pressure was 0.42 MPa. 

For the failure prediction of the specimen, 
three failure criteria were used: Tsai-Wu and 
Ye-delamination for the composite roof, and 
von Mises yield criterion for the adhesive. 

The Tsai-Wu failure criterion is described by 
the tensor polynomial [9] 

Fp&Ftj°Pj=l (i,j=l, ..., 6) (1) 

In order to avoid failure, the left-hand side of 
eqn (1) must be <1, and failure is predicted 
when the left-hand side is > 1. 

The Tsai-Wu failure criterion was used to 
predict the in-plane failure of the composite 
roof in which a3 = a33 = 0, <r4 = T23 = 0, 
<75 = T31 = 0. 

The Ye-delamination criterion was used to 
predict the interlaminar delamination failure of 
the composite roof. 

The Ye-delamination criterion predicts the 
delamination failure [10] when 

'23 
> 1 for (Too > 0 

or 
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(2) 

where au (i = l, 2, 3) are the normal stress com- 
ponents in the principal material directions; atj 

(i, j = 1, 2, 3, / /;') are the shear-stress compo- 
nents; Zt is the tensile strength of material in 

the thickness direction, and R and T are the 
corresponding shear strengths. 

For the carbon composite roof, the following 
strength values were used to estimate the dela- 
mination failure: Zt = 50 MPa, R = 75 MPa and 
T= 18.8 MPa. 

The von Mises theory was used to predict the 
yield of the adhesive. The von Mises yield cri- 
terion predicts that the failure will occur when 

(a) 

Specimen 

Rubber 
tube 

4-     ■$■   ^   4-   4-   4-     -4- 

^ 

^ 

Wood 

-■n i --^H>— JHL-jp-JFi»—rq1- 
Ü     U     U     U=F u   u   u   u   u   a  TU=s 

^ 

^ 

(b) 
Fig. 2. Tester for the adhesively bonded lap joint for the composite-steel shell structure: (a) photograph and (b) schematic 

drawing. 
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the octahedral shear stress for any stress state 
equals or exceeds the octahedral shear stress for 
the simple tension-test specimen at failure [11]. 
The von Mises yield criterion is expressed as 
follows 

Tester 

J  Pneumatic  Circuit 

j_  j   Electric  Circuit 

Fig. 3. Pneumatic and electrical circuits for the tester. 

(a, - <J2f+{o2 - <73)
2+(<73 - axf 1/2 

/ffy>l 

(3) 
where ay is the yield strength of the adhesive. 

The thickness of the steel side plates was 
determined from the bending stiffness of the 
prototype train section. Figure 6 shows the sec- 
tion of the prototype steel train. 

The bending stiffness (Et) is expressed as fol- 
lows. 

EI = E 
bh3 

12 
(4) 

where E is the stiffness of the material, / is the 
second moment of inertia, b is the width of the 
section and h is the height of the section. 

The side walls of real trains are usually 
manufactured with a hollow section. To esti- 
mate the thickness of the steel side plates, if the 
side walls of the real train had been manufac- 
tured with a solid section, the equivalent 
bending stiffness of the section was calculated 
as follows 

EJh = EJs (5) 

where Edh is the stiffness of the steel hollow 'h^h 

ANSYS5.0A 

ELEMENTS 
TVPE HUM 
V 

XV     =1 
W     =1 
zv    =1 
DIST=0.214326 
XF    =0.0762 
VF    =-0.0238 
ZF     =-0.05 
CEHTROID  HIDDEN 

Fig. 4. Finite-element meshes and boundary conditions for the specimen. 
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D.2                       <J,ß                        1 1.4 1.5 

EPS 

Roof made of the composite material 

Fig. 5. Calculated multi-linear tensile stress-strain curve for the epoxy adhesive. 

section of the prototype train and EJS is the 
equivalent stiffness of the steel solid section of 
the prototype train. 

Then the 1/10-size of the thickness of the 
prototype solid steel train was chosen as the 
thickness of the model section. Although the 
thickness of the 1/10-size train was 5.3 mm, a 
5.5 mm thickness was chosen for the reliable 
manufacturing of the specimen. 

Figure 7 shows the analysis results with 
respect to the stacking sequences for the adhe- 

sively bonded inner single lap-joint specimens, 
with 5.5 mm thick steel side plates, when the 
internal pressure was 0.42 MPa. The stacking 
sequences were [±0]4S (0 = 0-90°). 

In Fig. 7 the Ye-delamination index 
decreased as the stacking angle increased, and it 
was higher than both the Tsai-Wu failure index 
and the von Mises failure index at 0 = 0-50°. 
The Ye-delamination index was influenced by 
the peel stress and interlaminar shear stress of 
the joining area due to the internal air pressure. 

< Unit : mm > 

Section a-a 

t=3.5 

1—BO—I —I I— h 

The hollow section       The solid section 

(a) (b) 

Fig. 6. Cross-section of the train; (b) cross-section of the a-a section. 
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Fig.   7.  Failure   indices  with   respect  to   the   stacking 
sequences for the adhesively bonded inner single lap-joint 

specimen (carbon-epoxy composite roof). 

From these results, it was concluded that the 
specimen would fail by interlaminar delamina- 
tion at 9 = 0-50°. 

The Tsai-Wu failure index increased as the 
stacking angle increased. At 9 = 50-90°, the 
Tsai-Wu failure index was higher than both the 
Ye-delamination index and the von Mises 
failure index, and it was concluded that the 
specimen would fail by in-plane failure. The 
Tsai-Wu failure index was greatly influenced by 
hoop stress that was distributed on the compo- 
site roof because the hoop strength of the 
composite roof was low when the stacking angle 
was large. Because the von Mises failure index 
was relatively low compared with both the Ye- 
delamination index and the Tsai-Wu failure 
index, it was concluded that the adhesive would 
not fail. 

Figure 8 shows the analysis results with 
respect to the stacking sequences for the adhe- 

is 30 45 60 75 90 

Fig.   8.  Failure   indices  with   respect  to   the   stacking 
sequences for the adhesively bonded outer single lap-joint 

specimen (carbon-epoxy composite roof). 

sively bonded outer single lap-joint specimens 
with 5.5 mm thick steel side plates. The stacking 
sequences were the same as those for the adhe- 
sively bonded inner single lap-joint specimens. 

The Ye-delamination index was lower than 
the von Mises failure index at all stacking 
sequences and lower than the Tsai-Wu failure 
index at the stacking sequences [ + 0]4s 
(9 = 40-90°). In this joining type, low peel 
stress and interlaminar shear stresses were 
found. From these results it was concluded that 
the specimen would not fail by interlaminar 
delamination. The Tsai-Wu failure index was 
larger than the other indices at the stacking 
sequences [±0]4S (0 = 60-90°). At these stack- 
ing sequences the hoop strength of the 
composite roof was low when the stacking angle 
was large. Therefore, the specimen would fail 
by in-plane failure. The von Mises failure index 
was larger than the other indices at the stacking 
sequences [ + 0]4S (9 = 0-60°). At these stacking 
sequences high interfacial shear stresses 
between the adhesive and the composite roof 
were found. From these results it was concluded 
that the specimen would fail by the failure of 
the adhesive itself or the interfacial failure 
between the adhesive and the composite roof. 

From the analysis results, with respect to the 
stacking sequences, it was concluded that a suit- 
able stacking angle was at 9 = 40-60°, 
irrespective of the type of join. 

In order to investigate whether the 5.5 mm 
thick steel side plates were suitable for the 
stacking angle of 9 = 40-60°, the analyses for 
the specimens with the stacking sequence 
[ + 45°]4S were performed with respect to the 
thicknesses of the steel side plates. 

Figure 9 shows the analysis results with 
respect to the thickness ratios for the adhesively 
bonded inner single lap-joint specimens. The 
thickness ratio was defined as follows 

Thickness of the steel side plates 
'R=       (6) 

Thickness of the composite roof 

The Ye-delamination index was larger than 
the Tsai-Wu failure index and the von Mises 
failure index at all thickness ratios. The Ye- 
delamination index was influenced by the peel 
stress and the interlaminar shear stress when 
the thickness ratio, tR, was less than 2.29 and 
greatly influenced by the interlaminar shear 
stress when tR was larger than 2.29. Therefore, 
the specimen with the 5.5 mm thick steel side 
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Ye-delamination 

Failure Index 

Thickness Ratio 

Fig. 9. Failure indices with respect to the thickness ratios 
for the adhesively bonded inner single lap-joint specimen 
(carbon-epoxy    composite    roof;    stacking    sequence: 

[±45°]«). 

plates was appropriate for the stacking 
sequence of [±45°]4S, from which it was con- 
cluded that the specimens would fail by 
interlaminar delamination. 

Figure 10 shows the analysis results with 
respect to the thickness ratios for the adhesively 
bonded outer single lap-joint specimens. 

The von Mises failure index was larger than 
both the Tsai-Wu failure index and the Ye- 
delamination index at all thickness ratios. The 
von Mises failure index was influenced by the 
peel stress and the interfacial shear stress 
between the adhesive and the composite roof 
when tR was less than 2.29 and greatly influ- 
enced by the interfacial shear stress when fR 

was larger than 2.29. Therefore, the specimen 
with the 5.5 mm thick steel side plates was 
appropriate for the stacking sequence [±45°]4S, 
from which it was concluded that the specimens 

1.5 

'0.5 

. "N. 

Von Mises 

Failure Index 

\ ^"--.   L 

v      ^s's? 

Tsai-Wu 

Failure Index 
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Ye-delamination 
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Thickness Ratio 

Fig. 10. Failure indices with respect to the thickness ratios 
for the adhesively bonded outer single lap-joint specimen 
(carbon-epoxy    composite    roof;    stacking    sequence: 

[±45°]4S). 

would fail by interfacial failure between the 
adhesive and the composite roof. 

From the analysis results with respect to the 
thickness ratios, it was concluded that the 
effective thickness ratio for the adhesively bon- 
ded inner single lap-joint specimen and the 
adhesively bonded outer single lap-joint speci- 
men was 2.29. 

EXPERIMENTAL RESULTS AND 
DISCUSSION 

Static test 

Three different failures, interlaminar delamina- 
tion, interfacial and in-plane failure, were 
observed in the tests. Figure 11 shows photo- 
graphs of the failed specimens for each failure 
types. The failure in Fig. 11(a) was caused by 
interlaminar delamination due to the high peel 
stress between the plies of the composite roof. 
The peel stress was produced by the bending 
moment due to the internal pressure. The 
failure in Fig. 11(b) was caused by the high peel 
stress between the adhesive and the composite 
roof in the joining section. The peel stress was 
also produced by the bending moment due to 
the internal pressure. The failure in Fig. 11(c) 
was caused by the low hoop strength of the 
composite roof. The low hoop strength was 
caused by the large stacking angle of the com- 
posite roof. 

Table 3 compares the failure characteristics 
of two different types of adhesively bonded 
single lap-joints when the stacking sequence 
and thickness ratio were [ + 45°]4S and 2.29, 
respectively, which gave the highest strength in 
the analyses. Looking at the sections of the 
fractured specimens, it was found that the adhe- 
sively bonded inner single lap-joint specimens 
failed as a result of interlaminar delamination. 
The joining area of the composite roof was sub- 
jected to a bending moment due to the internal 
pressure, which produced a peel stress in the 
lower side of the joint and a compressive stress 
in the upper side of the joining area. Inter- 
laminar shear stresses were also produced in 
the joining area. The composite roof failed in 
the delamination mode because of the peel 
stress and the interlaminar shear stress in the 
lower side of the joining area. However, the 
interface between the adhesive and the compo- 
site roof, as well as the adhesive itself, was not 
affected. On the contrary, the adhesively bon- 
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(c) 

Fig. 11. Specimens fractured by: (a) interlaminar delamination (carbon-epoxy composite roof; stacking angle: [ + 45°]4S): 
(b) interracial failure between the adhesive and the composite roof (glass-epoxy composite roof; stacking angle: [ + 45°]4S); 

(c) in-plane failure (carbon-epoxy composite roof; stacking angle: [ + 80°]4S). 
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Table 3. Failure pressure of the adhesively bonded single lap-joints 

Type of specimen Bonding 
(mm) 

length Inner single lap-joint 
(MPa) 

Outer single lap-joint 
(MPa) 

Carbon composite 

Glass composite 

10 

20 

10 

20 

0.42 
(interlaminar delamination) 
>0.75 
(no failure) 
0.40 
(interlaminar delamination) 
>0.75 
(no failure) 

0.13 
(interfacial failure) 
0.18 
(interfacial failure) 
0.08 
(interfacial failure) 
0.16 
(interfacial failure) 

ded outer single lap-joint specimens failed 
because of the interfacial failure between the 
adhesive and the composite roof caused by the 
high peel stress and the interlaminar shear 
stress due to the bending moment. The peel 
and interlaminar shear stresses were relatively 
small in the composite roof. Therefore, it was 
concluded that the adhesively bonded inner 
single lap-joint type was a better joining method 
than the adhesively bonded outer single lap- 
joint type. 

Table 3 shows the failure pressures of the 
adhesively bonded single lap-joints. From Table 
3 it was concluded that the joint strength of the 
glass-epoxy specimens was almost same as that 
of the carbon-epoxy specimens. Therefore, fur- 
ther tests were concentrated on the adhesively 
bonded inner single lap-joint specimens with 
the carbon-epoxy composite roof. The maxi- 
mum internal pressure was limited to 0.75 MPa 
for test safety. 

Figure 12 shows the test results with respect 
to the stacking sequences of the composite roof 

of the adhesively bonded inner single lap-joint 
specimens with 10 and 20 mm bonding lengths 
and 5.5 mm thick steel side plates. From 
Fig. 12, the strength of the specimens was low 
at the [ + 10°]4S stacking angle because of the 
high bending stiffness of the composite roof. 
The strength of the specimens was increased as 
the stacking angle was increased until the 
[±45°]4S stacking angle and decreased beyond 
this stacking angle because the bending stiffness 
of the composite roof was comparable to that of 
the steel side plates. From these results it was 
concluded that the high bending stiffness of the 
composite roof produced a high peel stress at 
the joining area. Therefore, interlaminar dela- 
mination failure occurred up until the [ + 60°]4S 

stacking angle and composite failure occurred 
at the [±80°]4S stacking angle due to the low 
hoop strength of the composite roof. 

Figure 13 shows the test results with respect 
to the stacking angles of the adhesively bonded 
double lap-joint specimens. The strength of the 
specimens was similar to that of the adhesively 

u     0.4 

a '■ 10mm length 

(Interlaminar Delamination) 

X : 20mm length 

(Interlaminar Delamination) 

± : 10mm length 

(In-plane Failure) 

m : 20mm length 

(In-plane Failure) 

Degree 

Fig. 12. Test results with respect to the stacking angles of the composite roof for the adhesively bonded inner single lap- 
joint specimen (carbon-epoxy composite roof; thickness ratio: 2.29). 
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a : 10mm length 

(Interlaminar Delamination) 

X : 20mm length 

(Interlaminar Delamination) 

j^ : I Omm length 

(In-plane Failure) 

m : 20mm length 

(In-plane Failure) 

Fig. 13. Test results with respect to the stacking angles of the composite roof for the adhesively bonded double lap-joint 
specimen (carbon-epoxy composite roof; thickness ratio: 3.58). 

bonded inner single lap-joint specimens. The 
strength was at a maximum at the [+45°]4S 

stacking angle. Interlaminar delamination 
failure occurred up until the [ + 60o]4S stacking 
angle and composite failure occurred at the 
[±80°]4S stacking angle. 

The specimens were also tested with respect 
to the thickness ratios of the steel side plates. 
Figure 14 shows the test results with respect to 
the thickness ratios of the adhesively bonded 
inner single lap-joint specimens. From Fig. 14, 
the strength of the specimens was very low at 
tR = 1.67. Because the bending stiffness of the 
steel side plates was small at tR = 1.67, the steel 

side plates were observed to be quite signifi- 
cantly bent. Therefore, it was concluded that 
the low strength of the specimen at tR = 1.67 
was caused by the high peel stress of the joining 
area. But as the bending stiffness of the steel 
side plates was comparable to that of the com- 
posite roof at tR = 2.29, the strength of the 
specimens was much increased due to the low 
peel stress. Above tR = 2.29, the peel stress of 
the joining area did not much affect the 
strength of the specimens but the interlaminar 
shear stresses did affect the strength of the 
specimens. Because the interlaminar shear 
stress did not vary much when the thickness was 
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Fig. 14. Test results with respect to the thickness ratios for the adhesively bonded inner single lap-joint specimen (carbon- 
epoxy composite roof; stacking angle: [ + 45°]4S). 
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large, the strength of the specimens was almost 
constant when the thickness ratio was greater 
than 2.92. 

Figure 15 shows the test results with respect 
to the thickness ratios of the adhesively bonded 
double lap-joint specimens. The strength of the 
adhesively bonded double lap-joint specimens 
was similar to that of the adhesively bonded 
inner single lap-joint specimens. The strength of 
the specimens was a maximum at tR = 3.58 
which is when interlaminar delamination failure 
occurred. 

Dynamic test 

One of the most important subjects in the 
design of car-body structure is to sustain the 
outer pressure fluctuation. As the speed of 
trains increases, the outer pressure fluctuation 
increases proportionally to car velocity squared 
when the train passes through tunnel. There- 
fore, requirements were established for 
car-body design as follows [1]. 

1. For static air pressure load: —0.02 to 
0.013 MPa. (Two trains pass each other in a 
tunnel at a velocity of 550 km/h.) 

2. For cyclic air pressure load range: —0.017 to 
0.011 MPa. Number of cycles: 100,000. (Two 
trains pass each other in a tunnel at a velo- 
city of 500 km/h.) 

In Korea, Saemaul Express Trains make one 
round trip a day between Seoul and Pusan with 
17 tunnels, which is about 450 km with a speed 

of about 100 km/h. For the dynamic internal 
pressure test, the cyclic air pressure load range 
and the number of cycles were established as 
follows. 

1. For cyclic air pressure load range: 
0-0.1 MPa (a more severe test condition 
than the general requirement). 

2. The number of cycles: TU x TB x DA x 
YE xn = 200,000 cycles (a more severe test 
condition than the general requirement), 
where TU (the number of tunnels) = 17, TB 
(there and back) = 2, DA (days per 
year) = 365, YE (estimated life of the train 
in years) = 10, n (safety factor) = 1.6. 

The specimens with the carbon composite roof 
and the glass composite roof were dynamically 
tested under 0.1 MPa internal pressure with a 
10 s period. The composite roof specimens that 
were adhesively bonded with 10 and 20 mm 
bonding lengths did not fail until 200,000 cycles 
were completed. Therefore, it was concluded 
that all of the specimens were suitable for the 
car-body subjected to dynamic pressure. 

CONCLUSIONS 

In order to investigate the adhesive joining 
method between the composite roof and the 
steel side plates of trains, 1/10-size models of 
the real train were designed and tested under 
static and dynamic internal pressures. From the 
tests, the following conclusions were made. 

a. 
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Fig. 15. Test results with respect to the thickness ratios for the adhesively bonded double lap-joint specimen (carbon- 
epoxy composite roof; stacking angle: [ + 45°]4S). 
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The optimal joining method between the 
composite roof and the steel side plates was 
an adhesively bonded inner single lap-joint 
type. 
The stacking sequence [±0]4S (0 = 40-60°) 
of the composite roof was chosen for the 
optimum stacking sequence when the thick- 
ness ratio was 2.29. At the stacking sequence 
[ + 45°]4S, it was found that the optimum 
thickness ratios for the adhesively bonded 
inner single lap-joint specimen and the adhe- 
sively bonded double lap-joint specimen were 
2.29 and 3.58, respectively. 
From the static and dynamic test results, the 
joining strengths of the specimens made with 
carbon fiber and glass fiber composite roofs 
were similar. 
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The fuel efficiency and emission gas regulation of passenger cars are two 
important issues nowadays. The best way to increase fuel efficiency without 
sacrificing safety is to employ fibre-reinforced composite materials in the 
body of cars because fibre-reinforced composite materials have higher 
specific strengths than those of steel. 

In this study, the side-door impact beam for passenger cars was 
developed using glass-fibre-reinforced composite materials as metals usually 
have a lower capacity of impact absorption energy at low temperature 
compared with that of glass-fibre-reinforced composite materials. Static 
tests were carried out to determine the optimum fibre stacking sequences 
and cross-sectional thickness for the composite impact beams taking 
consideration of the weight saving ratio compared to the high strength 
steel. 

Dynamic tests were carried out at several different temperatures using 
the pneumatic impact tester, which was developed to investigate the 
dynamic characteristics of impact beams at a speed of 30 mph. Also, finite- 
element analyses were performed using ABAQUS, a commercial software 
to compare the simulated characteristics of the impact beams with the 
experimental results. 

From the comparison, it was found that the results from the finite- 
element analyses showed good agreement with the experimental results, 
although several assumptions were made in the finite-element analyses. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

Fibre-reinforced composite materials have been 
used in aircraft and space vehicles as they have 
high specific strength (strength/density) and 
high specific stiffness (stiffness/density) [1]. 
They also have high damping [2] and impact 
characteristics [3]. As the price of composites 
has fallen, they are now widely used for sport 
goods, leisure supplies, machine tools and in the 
structure of automobiles [4,5]. Reports from 
the United States and Canada predicted that 
plastics and composites would be widely applied 
to body panels, bumper systems, flexible compo- 
nents, trims, driveshaft and transparent parts of 
cars [6-8]. Also, rotors manufactured using 
RTM (resin transfer moulding) for air compres- 
sors or superchargers of cars have been used to 
substitute for metal rotors which are difficult to 

machine [9]. Composites have also been used to 
substitute flexspline materials in harmonic 
drives or traction drives [10,11]. In industrial 
robots, in particular, stiffness is very important 
and an increase in the robot stiffness leads to 
an increase in the body weight, which reduces 
the payload of a robot. Therefore, composites 
were tried in the body of SCARA-type [12] or 
anthropomorphic robots [13]. As mentioned 
above, substitutions using composites for exist- 
ing metal structures have been widely tried and 
successfully achieved in several cases. 

The weight of cars has been continuously 
reduced to increase the fuel efficiency, which 
sacrifices the safety of cars. The best way to 
increase the fuel efficiency of cars without sacri- 
ficing safety is to employ fibre-reinforced 
composite materials in the body of cars because 
the fibre-reinforced composite materials have a 
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higher specific strength compared to that of 
metals. Because glass-fibre-reinforced and 
aramid-fibre-reinforced composites have high 
impact energy absorption characteristics, a car 
body made of these composite materials would 
bring about an increase in fuel mileage and a 
reduction in human body injuries when acci- 
dents occur. 

In this study side-door impact beams, which 
require a large impact energy absorption cap- 
ability, were manufactured using 
glass-fibre-epoxy composites. Design param- 
eters such as fibre stacking sequence and 
cross-sectional thickness were selected and 
determined in order to manufacture composite 
impact beams. Moreover, various cross-sec- 
tional shapes of composite impact beams were 
designed to prevent local collapse as composites 
have a tendency to buckled at low level of 
external load owing to local collapse by concen- 
tric loads. Moulds for composite impact beams 
were fabricated and the prototype composite 
impact beams were manufactured. Three-point 
static bending tests were performed for the steel 
and composite impact beams. 

Although the static energy absorption of 
composite beams was low, because composites 
usually have low failure strains compared with 
those of metals, the dynamic impact energy 
absorption of composites are high due to fibre 
pull-out, matrix cracking and delamination. 

Because the dynamic energy absorption of 
side-door impact beams is more important than 
the static energy absorption, a pneumatic 
impact tester, whose impact velocity was 
30mph, was developed to investigate the 
dynamic behaviour of steel and composite 
impact beams. With the developed impact 
tester, the dynamic energy absorption of steel 
and composite impact beams was investigated at 
several low temperatures, as well as room tem- 
perature. 

Also, numerical analyses using ABAQUS/ 
Standard, a commercial finite-element analysis 
package developed by H.K.S. Inc. (Hibbitt, 
Karlsson and Sorensen Inc.), were performed to 
compare the numerical results with the experi- 
mental ones. 

Side impact beam 

Fig. 1. Shape and mounting configuration of the side-door 
impact beams. 

DESIGN PARAMETERS FOR COMPOSITE 
IMPACT BEAMS 

Figure 1 shows the shape and mounting con- 
figuration of the side-door impact beams. The 
lengths of the front-door impact beam and the 
rear-door impact beams for compact passenger 
cars were 803 mm and 507 mm, respectively. 

To manufacture the composite impact beams, 
design parameters such as the type of composite 
materials, stacking sequences [14], shape and 
the thickness of cross-sections should be deter- 
mined. Table 1 shows the mechanical properties 
of high strength steel and glass-fibre-epoxy 
composites [3]. Consulting the Charpy impact 
energy absorption in Table 1, the glass-fibre- 
epoxy composite was selected for the impact 
beam material. Also, compositions of high 
strength steel (AISI 4340) for steel impact 
beams are shown in Table 2 [15]. The stacking 
sequences of the beam were determined using 
the results of the three-point static bending 
tests. 

Table 1. Properties of high strength steel and glass-fibre- 
epoxy composites 

High strength Glass-fibre- 
steel epoxy 

(AISI 4340) composites 
[3] 

Charpy impact 214 622 
(kJ/m2) [3] 

Density (kg/m3) 7870 1980 
Ex (GPa) 210 43.5 
Ey (GPa) 210 5 
v*y 0.3 25 
G^ (GPa) 80.8 5 
X1 (GPa) 1.5 1.0 

Table 2. Compositions of AISI 4340 steel [15] 

C Mn                 P                S              Si                 Ni Cr Mo 

AISI 4340 0.38-0.43 0.60-0.80          0.035          0.040          0.15          1.65-2.00 0.70-0.90 0.20-0.30 
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Five different stacking sequences, such as 
[0°]nT, [ + 15°]nT, [02790°]nT, [03790°]nT and 
[0167904°]T, for the glass-fibre-epoxy composite 
impact beams were selected. The mass of each 
of the 507 mm impact beams was 0.25 kg and 
the cross-sectional shapes of each of the impact 
beams was circular. The outside and inside 
diameters of the composite impact beam were 
31.8 mm and 26.3 mm, respectively. The longi- 
tudinal or axial direction was designated to be 
0°. The three-point static bending tests were 
carried out using Instron 4206 to determine the 
optimum stacking sequences for the composite 
impact beams. The jig span and diameter of the 
loading cylinder for the three-point static bend- 
ing tests were 250 mm and 25.4 mm, 
respectively. Figure 2 shows the results of the 
three-point static bending tests. 

From Fig. 2 it was found that [0°]nT angle 
could not effectively sustain external load 
because of its low strength under hoop stress. In 
the case of [0167904°]T, the 0° fibre could not 
withstand the hoop stress after the 90° fibre 
yielded. Therefore, it was found that the 90° 
fibre should be uniformly placed through the 
entire cross-section of the composite impact 

beams. The stacking sequences of [ + 15°]nT and 
[02790°]nT showed similar behaviour; however, 
the latter was desirable because of the ease of 
cutting and handling the prepreg. Finally, an 
additional 0° layer was included to enhance the 
bending stiffness, resulting in the stacking 
sequence [03790°]nT. 

Composites have a tendency to buckle by 
concentrated loads which give rise to local col- 
lapse, consequently fracture would occur at 
relatively low external loads. Therefore, various 
cross-sectional shapes, such as shown in Fig. 3, 
for prohibiting local collapse were devised. 

The impact beam (a) in Fig. 3 has a hollow 
circular cross-section, (b) has a regular square 
cross-section, (c) is a composite wrapped onto a 
low carbon circular steel tube, (d) is a compo- 
site wrapped onto a low carbon regular square 
steel tube, (e) is centre-part enhanced, (f) is a 
regular square cross-section strengthened by a 
rib and (g) is an I-type cross-section composite 
impact beam. Two different thicknesses for the 
impact beams were used to make the weights of 
the impact beams 50% and 70% weight ratios 
with respect to the high strength steel impact 
beams whose outer and inner diameters were 

2 
r* 

cd 
o 

Displacement  (mm) 
Fig. 2. Load vs displacement diagram of composite impact beams with respect to stacking sequences. 
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(a)      (b) 

(c)     (d)      (e)      (f)      (g) 

Fig. 3. Various cross-sectional shapes for the composite 
impact beams. 

31.8 and, 27.4 mm, respectively. The mass and 
length of the high strength steel impact beam 
were 0.825 kg and 507 mm, respectively. 

MANUFACTURE OF THE COMPOSITE 
IMPACT BEAMS 

Moulds for the various cross-sectional shapes 
were designed and manufactured. The UGN 
150 type uni-directional glass-fibre-epoxy pre- 
preg fabricated by Sun Kyung Industry (Suwon, 
Korea) was used for the manufacture of compo- 
site impact beams by the autoclave-vacuum bag 
degassing method. 

Figure 4 shows the manufacturing sequence 
for the circular composite impact beam. First, a 
non-porous Teflon sheet was wrapped on a 
steel mandrel as shown in Fig. 4(a). Then, the 
prepreg was cut to the appropriate size and 

(a) (b) 

(c) 

=> 

(e) (f) 
Fig. 4. Schematic diagram of the manufacturing sequence 

for the circular composite impact beams. 

angle and was stacked on the Teflon-sheet- 
wrapped mandrel, as shown in Fig. 4(b). After 
removing the mandrel, as shown in Fig. 4(c), 
the rolled prepreg was placed inside the bottom 
mould, as shown in Fig. 4(d). After assembling 
the upper and lower moulds, with bolts as 
shown in Fig. 4(e), the prepreg inside mould 
was cured in an autoclave after bagging the 
whole assembly with a vacuum bag, as shown in 
Fig. 4(f). 

Figure 5 is a photograph of the manufactured 
circular cross-sectional composite impact beam 
which was adhesively bonded to the mounting 
brackets. After painting, the yellow-green col- 
our of the glass-fibre-epoxy composite was 
changed to black. 

The regular square composite impact beams 
were manufactured using the mould with a 
regular square cross-sectional shape. The manu- 
facturing methods for the regular square 
cross-section composite beam strengthened by 
the rib, as well as the I-type cross-section com- 
posite impact beam, are shown in Fig. 6. 

The regular square cross-section composite 
impact beam strengthened by the rib was manu- 
factured by co-curing [16—18] a prepreg layer 
inserted between the interface and two prepreg 
layers both placed on the top and the bottom 
surfaces of the two rectangular composites 
already manufactured. A similar manufacturing 
method was used for the I-type cross-sectional 
composite impact beams. 

Figure 7 shows the cure cycle used for the 
manufacture of the composite impact beams. 

As shown in Fig. 7, the 30 min dwelling stage 
at 80°C was employed to promote consolidation 
between the plies of prepreg. Then the inside 
temperature of the autoclave was increased to 
120°C to cure the prepreg. During the entire 
cure cycle a vacuum state was maintained inside 
the vacuum bag, while a 0.6 MPa air pressure 
was applied outside the vacuum bag. A photo- 
graph of the cross-sections of the manufactured 
composite impact beams of the types shown in 
Fig. 3(a), (b), (f) and (g) are shown in Fig. 8. 
The cross-sections of the impact beams were 
painted to enhance their visability. 

STATIC BENDING TEST AND NUMERICAL 
ANALYSIS 

The jigs and loading cylinders were prepared 
based on the FMVSS (Federal Motor Vehicle 
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Fig. 5. Photograph of the circular cross-sectional composite impact beam bonded to the mounting brackets. 

Fig. 6. Schematic diagram of the manufacturing methods 
for the regular square cross-section impact beam strength- 
ened by the  rib,  as well  as  the  I-type  cross-section 

composite impact beams. 
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Fig. 7. Cure cycle for the glass-fibre-epoxy composites. 

Safety Standards) 214 regulation which regu- 
lates the static properties of the side-doors of 
passenger cars. Figure 9 shows the jig for the 
three-point bending test of the impact beams. 

As shown in Fig. 9, the jig span was set at 
470 mm (18.5 in.), and two 25.4 mm (1 in.) 
diameter cylinders were used to support the 
impact beam. The load was given by an Instron 
4206 through a 304.8 mm (12 in.) diameter half 
cylinder at the midpoint of the impact beam. 
The stacking sequence of all the composites was 
[03790°]nT. Prototype composite impact beams 
were manufactured and tested with a weight 
ratio of 50% and 70% with respect to steel 
impact beams. From the experiments, it was 
found that the load-carrying capacity of the high 
strength steel impact beams was 27.3 kN, while 
the load-carrying capacity of the circular com- 
posite impact beams was 16.2 kN. The 
composite impact beam was collapsed locally by 
the concentrated load which was prominent at 
the circular cross-section. The regular square 
cross-section composite impact beams were able 
to resist a 25.3 kN external load because the 
contact area of the regular cross-section was 
larger than the circular cross-section. The 
impact beam manufactured by wrapping compo- 
site prepreg onto the circular low carbon steel 
yielded at low external load of 12.5 kN, which 
has not only low load-carrying capacity but also 
low weight saving effect due to the embedded 
steel. The composite impact beam which had an 



234 S. S. Cheon, D. G. Lee, K. S. Jeong 

Fig. 8. Photograph of the cross-sections of the composite impact beams. 

enhanced centre part also yielded at a relatively 
low external load of 17 kN. The centre-part size 
of the impact beam could not be increased 
beyond a certain limit because of the limitation 
of the mounting space. Therefore, the compo- 
site impact beam whose centre part was 
enhanced was shown to be irrelevant. The regu- 
lar square cross-section composite impact 
beams strengthened by the rib could resist an 
external load of 27.1 kN, which is similar to that 
of the impact beam made of high strength steel. 
The I-type cross-section composite impact 
beams yielded at 25 kN, which was similar to 

the impact beams with the regular square cross- 
section. Figure 10 shows the static load-carrying 
capacity of the impact beams. 

The load-carrying capacities of the impact 
beams were numerically analysed [19] using 
ABAQUS/Standard. The employed element 
both for the high strength steel and for the 
glass-fibre-epoxy composites was C3D8R (solid 
three-dimensional, eight nodes, reduced inte- 
gration, hour-glass control) to prevent both 
shear locking and hour-glass mode. Only a 
quarter of the cross-section of the impact beam 
was modelled to include the contact phenome- 
non between the impact beam and the loading 
cylinder. The loading cylinder was assumed to 

Fig. 9. Jig for the three-point static bending test. 

~/70% weight ralio 
/50% weight ratio 

Fig. 10. Static load-carrying capacity of the composite 
impact beams of [03790°]nT stacking sequence. 1, Circular 
cross-section; 2, regular square cross-section; 3, regular 
square cross-section strengthened by a rib; and 4, I-type 

cross-section. 
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Fig. 11. Deformed shape of the steel impact beam. 
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be rigid. The friction force between the contact 
surfaces was assumed to be negligible. The 
orthotropic composite properties as shown in 
Table 1 were used taking into consideration the 
stacking sequences. The deformed shape of the 
steel impact beams from finite-element analyses 
is shown in Fig. 11 as a representative sample. 

Figure 12 shows the results of the finite-ele- 
ment analysis where they showed a relatively 

Retroreflectors 

1 Electromagnet 

Safety rail 

Photo sensors 

- - Accelerometer 

Photo sensors 

Fig. 13. Dynamic impact tester accelerated by a pneumatic 
cylinder, (a) Schematic diagram, (b) Photograph. 

good agreement with experimental results. The 
low- and high-level lines represent 50% and 
70% weight ratios, respectively, with respect to 
the steel. Also, the solid and the dashed lines 
represent experiment and analysis, respectively. 

From the experiments and analyses, it was 
found that the composite impact beam of the 
regular square cross-section strengthened by the 
rib had a comparable static strength compared 
to the high strength steel impact beam. How- 
ever, the composite impact beam had a low 
energy absorption capability because composites 
usually do not have plastic regions after yield- 
ing. However, as impact beams undergo 
dynamic loads in a car crash, the dynamic 
impact energy absorption capability [20] of 
impact beams is more important than the static 
energy absorption capability. In addition, the 
new FMVSS 214 regulation, revised in 1993, 
introduced these dynamic tests between cars. 

DEVELOPMENT OF AN IMPACT TESTER 

An impact tester, whose impact velocity was 
increased by a pneumatic cylinder, was 
developed to investigate the dynamic character- 
istics of impact beams, as shown in Fig. 13. 

The 25 mm nose radius impact tup of the 
dynamic impact tester is accelerated when 
the electromagnet which holds the piston 
in the pneumatic cylinder is switched off. When 
the air pressure in the cylinder was 0.5 MPa, the 
velocity of the 13 kg impact tup was greater 
than 30 mph. During the impact process, veloci- 
ties of the impact tup before and after impact 
were measured with four photo-sensors. The 
upper two photo-sensors were used to measure 
the time difference through 50 mm of move- 
ment, while the lower two photo-sensors were 
used to measure the time difference through 
100 mm of movement. Because the lower two 
photo-sensors were infrared emitted-retrore- 
flector-type, the interval between them was set 
to 100 mm considering the space for the retro- 
reflective mirror mounting, whose diameter was 
85 mm. On the other hand, as the upper two 
photo-sensors were optical-fibre-type without 
mirrors, their interval was set at 50 mm. 

The acceleration of the impact tup was also 
measured with an accelerometer attached at the 
impact tup. The signals from the photo-sensors 
and the accelerometer were processed by an 
IBM 486 computer through an A/D converter. 
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Fig. 14. Signal from the photo-interrupt sensors. 

The mass of the impact tup was adjusted in the 
range of 10-15 kg to vary the impact magni- 
tude. Also, the impact velocity was adjusted in 
the range of 1-25 m/s by varying the pressure 
inside the cylinder. The measured signals from 
the accelerometer were low-pass filtered with a 
100 kHz cut-off frequency. 

DYNAMIC IMPACT TESTS 

The high strength steel circular impact beam 
whose outer diameter and inner diameter were 
30 and 27.4 mm, respectively, was impact tested. 
The high strength steel, which was heat-treated 
through its thickness, had an ultimate tensile 
strength of 1.5 GPa. The mass and length of the 
high strength circular impact beam were 0.50 kg 
and 507 mm, respectively. The simply supported 
jig span of 360 mm was used during impact 
tests. When the tup mass and the cylinder pres- 
sure were 13 kg and 0.5 MPa, respectively, the 
velocity of the tup was 13.1 m/s (29 mph, 47 km/ 
h), which was close to the standard velocity of 
30 mph for the side crash test of FMVSS 214. 
In the tests, about 1100 J of dynamic energy was 
given to each specimens. 

In dynamic tests, because the composite 
impact beams of 0.25 kg (50% weight ratio) 
showed a sufficient dynamic energy absorption 
capability, only 0.25 kg composite impact beams 
were tested. Figure 14 shows the time differ- 
ences checked by the four photo-interrupt- 
sensors during dynamic testing of the high 
strength steel impact beams at 25°C. 

From Fig. 14, the measured initial velocity of 
the impact tup was 13.1 m/s (V{ = 50 mm/ 
3.819 ms), and the measured velocity after 
impact on the high strength steel impact beam 
was 8.75 m/s (Vf= 100 mm/11.43 ms). There- 
fore, the energy absorption rate, which is 
defined as 1-Vj/Vf, was 55%. The glass-fibre- 
epoxy composite impact beam, which had a 
0.25 kg mass, was found to absorb 53% of the 
given impact energy at a room temperature of 
25°C. Therefore, it was found that a 50% weight 
saving could be obtained when the composite 
impact beams were used instead of steel ones, 
based on the dynamic energy absorption cap- 
ability. Moreover, composite impact beams 
showed very similar dynamic energy absorption 
capabilities regardless of their cross-sectional 
shapes, although the static strengths were much 
more dependent on the cross-sectional shapes 

Table 3. Dynamic energy absorption rate of four sections of composite impact beams 

Cross-sectional shape                   Circular type                 Regular square                 Regular square+rib 
(0.25 kg)                         (0.25 kg)                               (0.25 kg) 

I 
(0.25kg) 

Energy absorption rate                      53.2%                             52.9%                                   52.5% 53.3% 
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30 

on the composite impact beams, as shown in 
Table 3. Therefore, it was decided that in this 
study only circular composite impact beams 
were to be investigated. 

In order to investigate the temperature 
dependence of the impact beams, the impact 
tests were performed at several low tempera- 
tures. Figure 15 shows the impact energy 
absorption of the impact beams with respect to 
environmental temperatures. The low environ- 
mental temperature was established by placing 
the impact beams inside a box containing dry 
ice, and the outside temperature of the impact 
beam was measured by a touch-probe-type ther- 
mometer. 

From Fig. 15, it was revealed that the energy 
absorption of the steel impact beams went down 
as the environmental temperature dropped; 
however, the composite impact beam had an 
almost constant energy absorption capability. As 
it was expected that the slope of energy absorp- 
tion rate was steep between 0 and — 10°C, an 
impact test was performed at — 5°C. From the 
test it was estimated that the nil ductility tem- 
perature [21] of the steel impact beam might 
exist between —5 and — 10°C. 

CONCLUSIONS 

In this study composite side-door impact beams 
were designed and manufactured. From the 
three-point static bending tests it was found that 
the composite impact beams with a circular 

cross-section had a tendency to be buckled by 
relatively low concentrated loads, which gave 
rise to local collapse and fracture. However, the 
regular square cross-section composite impact 
beams, especially strengthened by the rib, could 
resist external loads comparable with that of the 
high strength steel impact beams. The glass- 
fibre-epoxy composite impact beam has a 30% 
weight reduction compared to the high strength 
steel impact beam based on the static bending 
tests. 

A pneumatic impact tester was developed to 
investigate the dynamic characteristics of the 
impact beams at several different environmental 
temperatures. From the dynamic tests it was 
found that the composite impact beam had bet- 
ter impact energy absorption capability than the 
high strength steel impact beams. The cross- 
sectional shape of the impact beams had little 
influence on the impact energy absorption cap- 
ability. The impact energy absorption capability 
of the high strength steel impact beams drop- 
ped abruptly at environmental temperatures 
below — 10°C, from which it was concluded that 
the nil ductility temperature of the high 
strength steel impact beam might exist at a tem- 
perature around — 10°C. The glass-fibre-epoxy 
composite impact beam has a 50% of weight 
reduction compared to the high strength steel 
impact beam based on the dynamic tests. 

From the experiments it was concluded that 
the composite impact beams not only reduce 
the weight of the impact beams by more than 
50% but also had a constant impact energy 
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absorption capability with respect to environ- 
mental temperature variation. 
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Flexural-torsional buckling of pultruded fiber 
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In this paper a comprehensive experimental and analytical approach is 
presented to study flexural-torsional buckling behavior of full-size 
pultruded fiber-reinforced plastic (FRP) I-beams. Two full-size FRP I- 
beams with distinct material architectures are tested under 
midspan-concentrated loads to evaluate their flexural-torsional buckling 
responses. To monitor rotations of the cross-section and the onset of 
critical buckling loads, transverse bars are attached to the beam cross- 
section and are subsequently connected to LVDTs; strain gages bonded at 
the edges of the top flange are also used. The analysis is based on energy 
principles, and the total potential energy equations for the instability of 
FRP I-beams are derived using nonlinear elastic theory. The equilibrium 
equation in terms of the total potential energy is solved by the Rayleigh- 
Ritz method, and simplified engineering equations for predicting the 
critical flexural-torsional buckling loads are formulated. A good agreement 
is obtained between the experimental results, proposed analytical solutions 
and finite-element analyses. Through the combined experimental and 
analytical evaluations reported in this study, it is shown that the testing 
setup used can be efficiently implemented in the characterization of 
flexural-torsional buckling of FRP shapes and the proposed analytical 
design equations can be adopted to predict flexural-torsional buckling 
loads. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Pultruded fiber-reinforced plastic (FRP) com- 
posite shapes are increasingly used in civil 
engineering structures, due to their favorable 
properties such as light weight, corrosion resist- 
ance and electromagnetic transparency. FRP 
shapes are commonly fabricated using fiberglass 
and either polyester or vinylester resins. 
Because of the low modulus of elasticity of glass 
fibers and the common thin-walled sectional 
geometry, pultruded FRP beams are susceptible 
to buckling under service loads. 

Owing to the high strength-to-stiffness ratio 
of pultruded FRP composites, buckling is the 
most likely mode of failure before the ultimate 
load reaches the material failure for FRP 
shapes. A long slender beam under bending 

loads about the strong axis may buckle by a 
combined twisting and lateral (sideway) bending 
of the cross-section. This phenomenon is known 
as flexural-torsional (lateral) buckling. Numer- 
ous analyses [1-4] have been presented for steel 
beams, where the material is homogeneous and 
isotropic. Several researchers have carried out 
studies on theoretical and experimental evalu- 
ations of lateral buckling for FRP structural 
shapes and have developed some design method- 
ologies for these members. The flexural- 
torsional buckling behavior of pultruded E-glass 
FRP I-beams has been experimentally investi- 
gated by Mottram [5], and the observed results 
compared well with numerical predictions using 
a finite-difference method. Mottram [5] empha- 
sized that there is a potential danger in analysis 
and design of FRP beams without including 
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shear deformation. A series of lateral buckling 
tests on small-scale pultruded E-glass FRP 
beams were carried out by Turvey [6] and 
Brooks & Turvey [7,8]. The effects of load posi- 
tion and boundary condition on the lateral 
buckling response of FRP I-sections were 
investigated, and the results were correlated 
with approximate formulae by Nethercot & 
Rockey [9] and finite-element eigenvalue analy- 
sis. They attributed the disparity between 
experiment and analysis to factors not included 
in the models, such as initial deflections, pre- 
buckling displacements and geometric 
nonlinearities. Although significant contribu- 
tions have been provided by previous 
investigators, there is a need to develop com- 
bined experimental and analytical studies to 
characterize the buckling behaviors of full-size 
FRP sections and to propose engineering design 
analysis equations for flexural-torsional buck- 
ling of FRP beams. 

In this paper a comprehensive experimental 
and analytical approach is used to study flex- 
ural-torsional buckling behavior of pultruded 
FRP I-beams. Two full-size FRP wide-flange I- 
beams with two different material architectures 
are tested to study their flexural-torsional buck- 
ling responses under midspan-concentrated 
loads and, to induce global buckling without 
distortion of the beam cross-section (flexural- 
torsional buckling), wooden stiffeners are 
inserted between the flanges and web at mid- 
span. Through displacement measurements with 
LVDTs and strain measurements at the edges 
of the top flange, bifurcation responses and 
rotations of the midspan cross-sections are eval- 
uated. Energy principles and nonlinear elastic 
plate theory are applied to formulate the 
engineering equations of flexural-torsional 
buckling loads for FRP I-beams. The predic- 
tions of simplified equations for flexural- 
torsional critical buckling loads correlate closely 

with experimental results and finite-element 
analyses. The present study intends to bridge a 
gap between sophisticated modeling of compo- 
site materials and the requirement of a simple 
but accurate tool for engineering design. 

EXPERIMENTAL EVALUATIONS OF 
FLEXURAL-TORSIONAL BUCKLING OF 
FRP I-BEAMS 

In this study two full-size FRP wide-flange I- 
beams, which were manufactured based on 
optimum designs [10], are tested to evaluate 
their flexural-torsional buckling responses [11]. 
The beams tested are full-size 304.8 x 
304.8x12.7 mm (12 x 12 x 1/2 in.) I-beam sec- 
tions with two different material architectures: 
(1) beams WF-A (Fig. 1) consist of rovings, 
continuous strand mats (CSM) and + 45° angle- 
ply stitched fabrics (SF); and (2) beams WF-AC 
(Fig. 2) consist of rovings, continuous strand 
mats (CSM), +45° angle-ply stitched fabrics 
(SF) and 0790° cross-ply stitched fabrics (SF). 
The span length considered is L = 4.42 m 
(14.5 ft), and both beams are tested under mid- 
span-concentrated loads. 

Experimental setup 

For the experimental evaluation of flexural-tor- 
sional buckling of the WF I-beams [11], wooden 
stiffeners were inserted between the flanges and 
web at midspan to prevent distortions of the 
beam cross-sections. The beams were restrained 
at the supports to closely simulate a roller con- 
dition and at the same time avoid out-of-plane 
twisting. Using transverse bars attached to the 
beam midspan cross-section (as shown in 
Fig. 3), LVDTs were installed to measure the 
rotation angles of the cross-section at critical 
buckling loads. Also, strain gages were installed 
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Fig. 1. Dimensions and panel fiber architectures of WF-A beams. 
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Fig. 2. Dimensions and panel fiber architectures of WF-AC beams. 

on the compression flanges to detect the onset 
of lateral buckling. The load was applied to the 
top flange and lateral supports were placed 
close to the beam to prevent catastrophic fail- 
ures. The hydraulic ram was rigidly attached to 
a supporting frame and, therefore, the load was 
not capable of acting as a 'follower load' when 
flexural-torsional buckling occurred and the 
whole cross-section rotated suddenly. At the 
onset of buckling, this loading arrangement had 
a restraining effect against rotation of the cross- 
section as flexural-torsional buckling proceeded 
and induced a restoring torque making the criti- 
cal load slightly higher than for the case of a 
true follower load. 

Experimental response of flexural-torsional 
buckling 

The experimental physical occurrence of flex- 
ural-torsional buckling is shown in Fig. 4, 
where all attached bars rotated in the same 
direction under torsional response of the cross- 

section. The LVDTs' readings of the tip vertical 
displacements of the transverse bars, described 
in Fig. 3, are shown in Fig. 5 for the WF-A I- 
beam and in Fig. 6 for the WF-AC I-beam, 
respectively. Strain responses along the two 
edges of the top flange at the midspan cross- 
sections are also plotted in Fig. 7 for the WF-A 
beam and Fig. 8 for the WF-AC beam. As indi- 
cated in Figs 5-8, a bifurcation response point 
from load-displacement or load-strain curves 
can be observed when the applied load reached 
the critical buckling load for each individual 
beam. 

ANALYTICAL EVALUATIONS OF THE 
FLEXURAL-TORSIONAL BUCKLING OF 
FRP I-BEAMS 

The analyses of flexural-torsional (lateral) 
buckling are based on energy considerations, 
and the total potential energy equations govern- 
ing instability are derived using nonlinear plate 
theory. 

H 0.81m (32 in) f 0.81 m (32 in) 

7 
Strain #2 

D mil 
Strain #1 

Attached bars 
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LVDT#4 

0.76 m (30 in) 

LVDT#5 LVDT#3 LVDTtfl LVDT#6 

/    / / Ground ' 

Fig. 3. Arrangement of LVDTs and strain gages at the midspan cross-section of the WF I-beams. 
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Fig. 4. Experimental phenomenon of flexural-torsional buckling of a WF I-beam. 
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Fig. 5. Load-displacement curve for flexural-torsional 
buckling of a WF-A I-beam. 

Derivation of total potential energy 

The total potential energy of the system (e.g. I- 
beams) is the sum of the strain energy and 
potential energy of the applied loads. To estab- 
lish equilibrium using the total potential energy 
(n) in a displaced buckling mode, the prebuck- 
ling work, which is the product of the applied 
loads and their corresponding displacements, 
can be ignored in stability analysis. In conform- 
ance with the basic approximations for 
thin-plate theory, the strain energy in a 
deformed plate is 

U=— j jj (axsx+(Tysy+Txyyxy) dV (1) 

For I-beam sections consisting of two flanges 
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Load-displacement curve for flexural-torsional 
buckling of a WF-AC I-beam. 
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Fig. 7. Load-strain curve for flexural-torsional buckling 
of a WF-A I-beam. 
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Fig. 8. Load-strain curve for flexural-torsional buckling 
of a WF-AC I-beam. 

and one web, the total strain energy in a buck- 
led beam is given by 

fore, the nonlinear terms (9w/9x)2 and (9w/9y)2 

in eqn (3) remained. For a stability problem, 
the displacement gradients 9v/9x and du/dy may 
become relatively large due to in-plane rota- 
tions, especially for the flanges; whereas the 
terms 9M/9X and 9v/9y, and particularly their 
quadratic forms, are significantly smaller than 
the other terms and can be ignored. Hence, eqn 
(3) reduces to 

9« 1 
fil = — + — 

9x 2 

u=utf+uw+uhf 
(2) 

9v     1 

^ ~  9y + 2 

9v     du    dw   dw 

**      dx     dy    dx    dy 
(4) 

where the superscripts tf, w and bf refer to top 
flange, web and bottom flange, respectively. 

As the displacement-gradient components 
are not small compared to unity, the strains for 
the buckling problem are expressed in nonlinear 
terms. It is assumed that the strains and curva- 
tures are much less than unity everywhere in 
the plate. For a plate in the x-y plane, the in- 
plane finite strains of the midsurface of the 
plate are given by Malvern [12] as 

9« 1 
fil = — + — 

9x 2 

9v      1 

9y + 2 

9v  9« 9M 9M  9V 9V dw   dw 

9x dy    dx   dy     9x dy     dx    dy 

(3) 

Based on von Karman plate theory, only the 
displacement gradients dw/dx and 9w/9y are 
considered to have significant values and, there- 

The curvatures of the midplane are defined as 

92w 92w d2w 
K   =  —      K=  —      K„, = 2 

dx2 df ^■xy 
9x9y 

(5) 

For buckling analysis of I-beams under bend- 
ing, the deformation before perturbation is 
ignored. Based on the coordinate system shown 
in Fig. 9, the buckled displacement fields are 
expressed as follows [4] 

«w = 0, vw = 0, ww = w(x, y), 

x(u) 

z(w) 

Fig. 9. Displacement field and coordinator system of an 
I-beam. 
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for the web (in the x—y plane) (6a) 

"tf = "tf(*. z). Vtf = vtfC*, z)> Wtf = *%(*), 

for the top flange (in the x —z plane) (6b) 

ubf = ubf(x, z), vbf = vbf(x, z), wbf = wbf(x), 

for the bottom flange (in the x—z plane) 

(6c) 

For the top flange (x-z plane), the strains 
and curvatures in eqns (4) and (5) become 

9wtf     1 
StfT = + 

9x      2 

9v%     9wtf     9vtf   9vf/ 

ox       dz       ox     dz 
btfxz " 

and 

K   = 
82vtf 

dx2 
a2vtf 

9z2 
K   =2 82vtf 

9x9z 

(7) 

(8) 

In the present study, the above equations are 
applied in the buckling analysis of pultruded 
FRP I-beams. Most pultruded FRP sections 
[13] are produced as symmetric laminated struc- 
tures (no stretching-bending coupling, Btj = 0), 
and the off-axis plies of pultruded panels are 
balanced symmetric (no extension-shear and 
bending-twist couplings: A16 =A26 = D16 = 
D26 = 0)- The panel mechanical properties are 
independently obtained either from experi- 
mental coupon tests or theoretical predictions 
using micro/macromechanics models [13]. 

For a laminate in the x-y plane, the in-plane 
midsurface strains and curvatures are expressed 
in terms of the compliance coefficients and 
panel resultant forces as [14] 

/xy 

'"xy 

y 

\Kxy) 

«11 «12 «16 ßll ßll pV 

«12 «22 «26 Pl2 P22 P26 
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ß\2    ßl2    ^26     <5l2     ^22     <5 

P16    F26    P66 

26 

^16     ^26     <566. 

Ny 

Mx 
(9) 

[M. xyJ 

and considering the top flange of an I-beam 

(Fig. 9) to act as a beam element, the transverse 
resultant forces are neglected 

7vf=Mf=0 (10) 

Referring to the coordinate system of Fig. 9 
and applying eqn (9) to the x-z plane, we 
obtain 

tf_ £tf* 
X                              ' 

an 
Ntf = J' X7. 

7tfxz 

a66 ' 

rtf         Ktfx Mtf = 
Ktfxz (11) 
'66 

where Nx and Nxz are the membrane forces per 
unit length, and Mx and M^ are the bending 
and twisting moments per unit length. The com- 
pliance coefficients [a] and [5] are obtained by 
inversion of the stiffness matrices [A] and [£>]. 
Then the total strain energy of the flange 
becomes 

2    Area 

+MtXfx+MtlKt(Jdxdz (12) 
Ignoring the  fourth-order terms,  the  total 

strain energy of the top flange is simplified as 

+2Afv 

9vtf   9vtf 

dx    dz 
dxdz 

2  Area    a,, V   dx 

*66 

9wtf 

dx 

9wtf 

dz 

where 

N = 
1     dut{ 

x,,    dx 
Nxz = 

1   / 9wtf     9wtf 

a66 I    dx       dz 
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The total strain energy of the bottom flange 
can be obtained in a similar way as 

9v, bf 9w, bf 

+2Nr 

9vhf   9v, kbf bf 

9x     9Z 

9x    I 

r dxdz 

dx 

2 Area 

A66 

9«, bf 

dx 

9vv, bf du bf 

9x 9z 

92vbf Y     1 
Öx2   ) + 5 66 

92vbf 

9x9z 
dxdz 

(14) 

Considering the web as a plate and the defor- 
mation field of eqn (6a), the total strain energy 
of a web panel is expressed as 

1    rr ir=- \\ 
2    Area 

Nr 

9>Vw 

9x 

+2AT 

1 

9ww   9w„ 

9x     9y 
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\2        / 92wv 
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92ww  92w„ 

12 
9x2     9y2 

stress resultant distributions on the correspond- 
ing panels are assumed based on beam theory, 
and the location, or height, of the applied load 
is accounted for in the analysis. For FRP I- 
beams of uniform thickness, the membrane 
forces are expressed in terms of the applied 
midspan-concentrated load P. The expressions 
for the flanges are 

N? = 

N« = 

A^f = 

NbJ=- 

AI 

Pbj 

AI 

PkJ 
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AI 

Pbjt 

AI 
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(16a) 

(16b) 

+AD] 661 
92Ww 

dxdy 
dxdy (15) 

The equilibrium equation (II = U = 0) in 
terms of the total potential energy is then 
solved by the Rayleigh-Ritz method. 

Stress resultants in I-beam panels 

For a simply supported I-beam subjected to a 
midspan-concentrated vertical load, simplified 

/ = 
2 12 

bj>i+ — bl \t 

To account for the location of the applied 
load along the web panel, the transverse stress 
resultant on the web panel is represented as 

Nw = 
P(y+yP) 

(x = L/2 and -bJ2<y<bJ2) (16c) 



248 /. F. Davalos, P. Qiao, H. A. Salim 

where yP is the distance from the centroidal axis 
to the location of the applied load (Fig. 9). 

Displacement field of buckled I-beam panels 

Assuming that the top and bottom flanges do 
not distort (i.e. the displacements are linear in 
the z direction) and considering compatibility 
conditions at the flange-web intersections, the 
buckled displacement fields (Fig. 9) for the web, 
top and bottom panels of the I-section are 
derived. For the web (in the x-y plane): 

«w = 0> vw = 0, ww = w(x, y) (17a) 

For the top flange (in the x-z plane) 

utf=utf(x,z)=-z(wtf),x, 

Vtf=vt£x,z)=-zOa, 

wtf=wtf(x) (17b) 

For the bottom flange (in the x-z plane) 

"bf = "bf(*> z) = -z(wbf)w 

vbf=vbf(^z)=-zöbf, 

wbf=wbf(x) (17c) 

For flexural-torsional (lateral) buckling of I- 
section beams, the cross-section of the beam is 
considered as undistorted. As the web panel is 
not allowed to distort and remains straight in 
flexural-torsional buckling, the rotation of the 
web and sideway deflection are coupled. The 
following displacement functions for the web 
centroidal axis displacement (w) and the beam 
rotation (0) are selected as 

w = Ci sm(nx/L)    6 = C2 sin(nx/L) (18) 

The displacements and rotations (referring to 
eqns (17a-c) of panels then become 

energy equilibrium equation, the critical buck- 
ling load, Pcr, for a midspan point load applied 
at the centroid of the cross-section is obtained. 
As an example, based on the above formulation, 
a design equation for the critical buckling load, 
Pcr, is obtained as 

PCT = 2n3h[(6D1 ,+fl, xh
2) x [(nh)2(2D1 l+4dl, 

+ anh2)+48(2D66+d66)L
2]]U23(n2+4)L3 

(20) 
where au = l/ccu and [a,v] = [Au] l (or a,, = Ej, 
where Ex can be obtained from coupon tests); 
dn = l/öu, d66=l/ö66 and [5y] = [D0r

1 (or 
du=E/l\2, d66 = Gx//l2, where Ex and G^ 
can be obtained from coupon tests); Du and 
D66 are obtained from the [Dtj\ matrix; h is the 
width and height of I-beam (in the above equa- 
tion, the width is assumed to be equal to the 
height, h). The stretching stiffness coefficients 
\Ay\ and bending stiffness coefficients [£>,-,] used 
in this study are obtained from micro/macro- 
mechanics models. In Figs 10 and 11 the critical 
flexural-torsional buckling loads (Fcr) for WF- 
A and WF-AC beams (see details about the 

356 \ Dimension: I-section (304.8 mm x 304.8 mm x 12.7 mm) 

\   D ll= 4396867 N-mm;D,2 = 991273.1 N-mm; 

\ D 22= 2430145 N-mm; D66 = 1068419 N-mm; 
[   \ a 11= 331128 N/mm; a66 = 80000 N/mm; 

d u ■= 3994028 N-mm; d66 = 1066325 N-mm. 

VV„ ■■w+y9 

1.524     3.048     4.572    6.096    7.620     9.144    10.668 

L(m) 

Fig. 10. Critical flexural-torsional buckling load envelope 
for a WF-A I-beam. 

wtf - w+ ■ 

whf = w— — 
2 

"bf" 

0tf=0bf=0 (19) 

where h is the height of beam. 

Simplified equation for flexural-torsional 
(lateral) buckling 

By  applying  the  Rayleigh-Ritz  method  and 
solving for the  eigenvalues  of the  potential 

356 

267 

Pcr 
(kN) 178 

89 

\ Dimension: I-section (304.8 mm x 304.8 mm x 12.7 mm) 
Di i = 4747260 N-mm; D12 = 687222.4 N-mm; 
D 22= 2690114 N-mm; D 66 = 761822.2 N-mm; 

a, ,= 354657 N/mm; a 66= 66616 N/mm; 
d 11 = 4557709 N-mm; d 66 = 763744 N-mm. 

P applied at the top of flange 

°0     1.524     3.048     4.572    6.096    7.620     9.144   10.668 

L(mm) 

Fig. 11. Critical flexural-torsional buckling load envelope 
for a WF-AC I-beam. 
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Table 1. Comparison of flexural-torsional buckling load for a pultruded FRP WF-A beam 
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Load application Per (kN) 

Analytical solution Finite element Experimental 

Centroid of section 
Halfway between top flangeand centroid 
Top of flange 

163.128 
124.413 
96.578 

163.297 
125.681 
101.767 

133.554 

material lay-up for these beams in Figs 1 and 2) 
are plotted vs the span length, L. The predic- 
tions of the proposed formulation are 
correlated with experimental results presented 
in the next section. 

EXPERIMENTAL AND ANALYTICAL 
CORRELATIONS 

As discussed in the previous section, the dis- 
placement functions for flexural-torsional 
buckling for the web central displacement (w) 
and rotation of the beam (0) are given in eqn 
(18). By solving for the eigenvalues of the 
energy equation, the critical buckling load, Pcr, 
for a midspan point load applied at the centroid 
of the cross-section of an I-beam is given by eqn 
(20) (as shown in Fig. 10 for a WF-A section 
and Fig. 11 for a WF-AC section). To verify the 
prediction accuracy of the explicit solutions, the 
test beams were also analyzed with the commer- 
cial finite-element program ANSYS [15], using 
Mindlin eight-node isoparametric layered shell 
elements (SHELL 99). The results given in 
Tables 1 and 2 indicate that the predicted ana- 
lytical values from eqn (20) agree well with the 
FE and average experimental values. 

CONCLUSIONS 

In this paper a combined experimental and ana- 
lytical method is used to characterize the 
flexural-torsional (lateral) buckling response of 

pultruded FRP I-beams. Two full-size FRP 
wide-flange I-beams are tested under midspan- 
concentrated loads to evaluate their 
flexural-torsional and lateral-distortional buck- 
ling responses. Using transverse bars attached 
to the beam midspan cross-section, LVDTs are 
installed to measure the rotations of the cross- 
section at critical buckling loads. Similarly, 
strain gages bonded at the edges of the top 
flange are used to detect the onset of buckling. 
The experimental setup used in this study can 
be applied to other FRP shapes to detect the 
onset of flexural-torsional as well as lateral- 
distortional buckling. 

Based on energy principles, the total poten- 
tial energy equations for the instability of 
pultruded FRP I-sections are derived using 
nonlinear elastic theory. The flexural-torsional 
responses are analyzed using this approach and 
simplified engineering equations for flexural- 
torsional buckling are formulated. The models 
exhibit a satisfactory accuracy as verified both 
by experimental data and by finite-element 
analysis results. 

A good agreement is obtained in this study 
between the proposed analytical approach, 
experimental results and finite-element ana- 
lyses, and, through the combined analytical and 
experimental program reported in this paper, it 
is shown that the proposed analytical solutions 
can be adopted to predict flexural-torsional 
buckling loads and used to formulate simplified 
design equations for pultruded FRP I-sections. 
As there are no simplified and yet rigorous 

Table 2. Comparison of flexural-torsional buckling load for a pultruded FRP WF-AC beam 

Load application Fcr (kN) 

Analytical solution Finite element Experimental 

Centroid of section                                                             171.952 
Halfway between top flange and centroid                           130.585 
Top of flange                                                                      101.015 

166.857 
128.970 
101.168 

137.790 
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guidelines for predicting fiexural-torsional 
buckling of pultruded FRP I-beams, it is signifi- 
cant that this paper develops an experimentally 
verified engineering equation that can be 
readily adopted by pultrusion manufacturers 
and practicing engineers. 
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The harmonic drive is a special gear-drive speed reduction system whose 
operation principle is based on elastic deformation rather than rigid-body 
motion of the general gearing system. From the components of the 
harmonic drive, the flexspline is the key element for the transmission of 
motion. It must be flexible in the radial direction, but must be stiff in the 
torsional direction to accurately transmit rotational motion. Because the 
contradictory dual role of the flexspline cannot be satisfied effectively with 
conventional isotropic materials, but can be achieved with anisotropic 
composite materials, in this paper the cup section of the flexspline was 
hybridly manufactured by laying-up composite material on the inside 
surface of the steel cup section. 

The static and dynamic characteristics of the hybrid flexspline were 
investigated with respect to the fibre volume fraction, stacking sequence 
and the mass ratio of the composite to steel. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The harmonic drive has many advantages, such 
as a high-speed reduction ratio, high rotational 
accuracy, high torque transfer per weight, high 
efficiency, little backlash and a very compact 
size. Therefore, the harmonic drive is widely 
adopted in precision mechanisms such as in 
industrial robots, CNC machine tools and com- 
munication equipment where little backlash and 
a high-speed reduction ratio are required. 

The harmonic drive is composed of a rigid 
circular spline, elliptical wave generator and a 
flexible spline, which is called the flexspline. 
The input torque of the harmonic drive is 
usually applied to the shaft of the wave gen- 
erator, which is pressure fitted to the open end 
of the flexspline, and the output torque is trans- 

mitted to the shaft at the closed end of the 
flexspline. In the case where the natural fre- 
quency of the radial direction of the flexspline 
coincides with the driving frequency of the wave 
generator a resonance vibration occurs. There- 
fore, the vibration characteristics such as 
natural frequency and damping ratio of the 
flexspline are very important. Figure 1 shows 
the shapes of the conventional cup-type steel 
flexspline which was investigated in this work. 

Because the operation principle of the har- 
monic drive is based on elastic deformation 
rather than rigid-body motion, the flexspline 
must be flexible in the radial direction but must 
be stiff in the torsional direction. Therefore, the 
harmonic drive has dynamic drawbacks: the 
motion is not perfectly smooth but has a small 
ripple which has the same frequency as the 
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Fig. 1. Shape of the conventional cup-type steel flexspline investigated in this work. 

wave generator. The ripple can produce noise 
or vibration when the natural frequency of the 
flexspline becomes the same as the exciting fre- 
quency. Also, the torsional stiffness of the 
flexspline is small because it is designed as a 
thin cup shape to decrease the radial stiffness. 
These phenomena cannot be avoided when the 
flexspline is made of conventional isotropic 
materials such as steel and aluminium. 

In order to solve these problems, the flexs- 
pline was designed and manufactured using 
carbon fibre-epoxy composite because the car- 
bon fibre-epoxy composite material has a high 
specific stiffness, a high specific strength and a 
high damping capacity [1-3]. According to pre- 
vious studies on the composite flexspline, it was 
found that the composite flexspline had suffi- 
cient torque transmission capability and 
excellent vibration characteristics. 

The vibration characteristics of composite 
cylindrical shells depend on the stacking 
sequence of composites. From the many studies 
on composite shells, several studies relating to 
the composite flexspline are cited in this paper. 
Jones & Morgan [4] investigated vibration 
characteristics of cross-ply composite shells. 
Ditaranto [5] derived the sixth-order equation 
of motion, taking into consideration the shear 
deformation of a beam, and also derived an 

auxiliary equation to explain the damping effect 
of the viscoelastic materials on the vibration. 
Sharma & Darvizeh [6] analysed free vibration 
problems of specially orthotropic thin cylindri- 
cal shells with various boundary conditions 
using Rayleigh-Ritz variational procedure. Kos- 
tas [7] studied the buckling and free vibration 
problems of thin composite antisymmetric angle 
ply shells and concluded that the effect of coup- 
ling between bending and extension on free 
vibration frequencies died out rapidly as the 
number of layers increased. 

In this study, in order to enhance the damp- 
ing capacity of the flexspline and to increase the 
manufacturing productivity of the flexspline, the 
hybrid type flexspline was manufactured using 
both composites and steel. The inside of the 
hybrid flexspline was reinforced with carbon 
fibre-epoxy composite and glass fibre-epoxy 
composite either by co-cure bonding or by 
epoxy adhesive bonding. The design concept of 
the hybrid flexspline is that the steel part of the 
flexspline transmits the major portion of 
required torque, while the composite part 
increases the natural frequency and damping 
capacity of the flexspline. 

The static and dynamic characteristics of the 
hybrid flexspline were measured and compared 
to those of the steel flexspline with respect to 
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Table 1. Properties of the steel 

Tensile modulus (GPa) 
Shear modulus (GPa) 
Poisson's ratio 
Tensile strength (MPa) 
Density (kg/m3) 

200 
80 

0.27 
1000 
7850 

the thickness of the steel tube, the stacking 
sequence of the composites and the thickness of 
the adhesive. 

MANUFACTURE OF THE HYBRID 
FLEXSPLINE 

The properties of the steel, composite materials 
and epoxy resin that were used for the hybrid 
flexspline are shown in Tables 1-3, respectively. 

The co-cured hybrid flexspline was manufac- 
tured by laying-up composite prepregs on the 
inside of a steel tube and curing in an autoclave 
with a cure cycle as shown in Fig. 2. The inside 
surface of the steel tube was abraded using #80 
mesh sandpaper giving a better adhesion of the 
composite to the steel. 

The required pressure for the consolidation 
of the prepreg and the adhesion of the compo- 
site to the steel tube was given by a silicon 
mandrel. The pressure of the silicon mandrel 
was adjusted by upper and lower plates which 
gave axial compression to the silicon rubber. 
The stacking sequences of the composites for 
the manufacture of the hybrid flexspline were 
[±30% [ + 45% [±60% [ + 30% [±45°]s 

and [ + 60% 

Table 2. Properties of the composites 

Carbon 
fibre-epoxy 
composite 

Glass 
fibre-epoxy 
composite 

£L (GPa) 
ET (GPa) 
GLT (GPa) 

T (MPa) 
y1 (MPa) 
S (MPa) 

130.0 
8.0 
6.0 

0.28 
1800 
60.0 
75.0 

43.5 
5.0 
5.0 
0.25 
1000 
50.0 
50.0 

Table 3. Properties of the epoxy resin (IPCO 9923) 

Tensile modulus (GPa) 
Shear modulus (GPa) 
Poisson's ratio 
Tensile strength (MPa) 
Shear strength (MPa) 
Lap shear strength (MPa) 
Density (kg/m3) 

1.3 
0.46 
0.41 
45.0 
29.5 
13.7 
1200 

Figure 3 shows a photograph of the co-cured 
hybrid flexspline and the silicon rubber man- 
drel. 

The hybrid flexspline was also manufactured 
by using adhesive bonding to compare the per- 
formance of the two flexsplines. The epoxy resin 
used for adhesive bonding was IPCO 9923 
(from IPCO National Ltd, USA) and its proper- 
ties are given in Table 3. The inside surface of 
the steel tube was abraded with #80 mesh sand- 
paper before adhesive bonding, and bonding 
thicknesses of 0.1, 0.5 and 1.0 mm were used. 
For control of the bonding thickness and the 
concentricity of the adherends, the guide sec- 
tion of a cylindrical fixture was inserted in the 
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Fig. 2. Cure cycle for the composite materials, the epoxy 
resin and the silicon rubber. 
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Fig. 3. Photograph of the co-cured hybrid flexspline and the silicon rubber mandrel. 

hole of the boss section of the flexspline. 
Figure 4 shows the cylindrical fixture for the 
concentric adhesive bonding of the hybrid flexs- 
pline. The epoxy adhesive was cured using a 
cure cycle as shown in Fig. 2 in an autoclave 
and the composite tube was cured using a 
vacuum bag degassing-moulding process. 
Figure 5 shows the flexspline manufactured by 
using epoxy adhesive bonding. 

MEASUREMENT OF THE SPRING 
CONSTANT OF THE HYBRID FLEXSPLINE 

The stiffness of the flexspline in the radial 
direction must be low for smooth operation. 
Because the stiffness of the hybrid flexspline in 
the radial direction might be increased too 
much due to the reinforcement of the compo- 
site, the spring constant of the flexspline was 

Fig. 4. Composite tube and cylindrical fixture for concentric bonding. 
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Fig. 5. Hybrid flexspline manufactured by epoxy adhesive bonding. 

measured by compressing the flexspline with 
INSTRON 4206, as shown in Fig 6. Figure 7 
shows the measured stiffness of the flexspline in 
the radial direction with respect to stacking 
sequence and bonding type such as co-cure 
bonding and adhesive bonding. The adhesive 
thickness of the adhesively bonded hybrid flexs- 
pline in Fig. 7 was 0.1 mm. 

From the test results it was found that the 
stiffness    of    the    flexspline    was    strongly 

dependent on the type of composite, the stack- 
ing sequence and the number of plies as the 
thickness of the steel tube was decreased. When 
a 0.3 mm thick steel tube was reinforced by co- 
cure bonding with the carbon fibre-epoxy 
composite, with a [±60°]s stacking sequence, 
the radial stiffness was increased by about 
+ 100%, while that of the hybrid flexspline rein- 
forced by co-cure bonding with the glass 
fibre-epoxy composite, with a [±60°]s stacking 

Fig. 6. Apparatus for measuring the spring constant of the flexspline. 
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sequence, was increased about 30% compared 
with that of the unreinforced steel flexspline. 
When the steel tube was reinforced by adhesive 
bonding with the glass fibre-epoxy composite, 
with a [±60°]s stacking sequence, the stiffness 
was increased about 100% when the bonding 
thickness was 0.1 mm, while that of the carbon 
fibre-epoxy composite reinforced with same 
stacking sequence was increased about 300%. 
Therefore, it was concluded that the glass fibre- 
epoxy composite material and the small 
stacking angle from the axis of the flexspline 
were beneficial because the flexspline must be 
flexible in the radial direction. 

FFT Analyzer 

ODD 
ODD 
DDD 

o 

Impact hammer 

■////////s/s/ 

String 
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\S\VsVv\SSV\ 
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Fig. 8. Impulse-frequency response test of the flexspline. 

VIBRATION CHARACTERISTICS OF THE 
HYBRID FLEXSPLINE 

The vibration characteristics of the hybrid flex- 
spline were measured using an impulse- 
frequency response test. The test apparatus 
consisted of a dual-channel fast Fourier trans- 
form analyser (B&K 2032), a charge amplifier 
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steel    [±30]T [±45)T [±60]T [±30]s [±45)s [±60]s 
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Fig. 7. Comparison of measured spring constants of the 
flexsplines with respect to the stacking sequence and 
bonding type (co-cure bonding and epoxy adhesive bond- 
ing): (a) reinforced with the carbon fibre-epoxy 
composite; and (b) reinforced with the glass fibre-epoxy 

composite. 

(B&K 2626), an impulse hammer (B&K 8202), 
an accelerometer (B&K 4374), a force trans- 
ducer (B&K 8200) and a personal computer 
with an HP-IB board for data acquisition. The 
fundamental natural frequency and damping 
ratio were measured by giving radial impulses 
on the flexspline suspended with strings, as 
shown in Fig. 8. Figure 9 shows the fundamen- 
tal natural frequency and damping of the 
co-cured hybrid flexspline, and Fig. 10 shows 
the fundamental natural frequency and damp- 
ing of the adhesively bonded hybrid flexspline 
reinforced with the glass fibre-epoxy composite 
with respect to stacking sequence, number of 
ply and thickness of the steel tube. 

As shown in Fig. 9, the fundamental natural 
frequency of the co-cured hybrid flexspline was 
increased and the damping ratio was decreased 
as the stacking angle was increased. The vibra- 
tion characteristics of the hybrid flexspline was 
greatly dependent on the properties of the com- 
posite materials as the thickness of the steel 
tube was decreased. When the thickness of the 
steel tube was 0.3 mm, for the hybrid flexspline 
reinforced with the glass fibre-epoxy composite 
with a stacking sequence of [±30°]s, the funda- 
mental natural frequency in the radial direction 
was increased by 8%; however, the damping 
ratio was increased by about 140% compared 
with those of the unreinforced steel flexspline of 
0.3 mm thickness. 

As shown in Fig. 10, for the adhesively bon- 
ded hybrid flexspline reinforced with the glass 
fibre-epoxy composite with a stacking sequence 
of [±30°]s, the fundamental natural frequency 
in the radial direction was increased by 23-47% 
when the bonding thickness varied from 0.1 to 
1.0 mm; however, the damping ratio was 
increased by 630% when the bonding thickness 
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was 0.1 mm, compared with those of the unrein- 
forced steel flexspline of 0.3 mm thickness. 

From the test results it was found that the 
damping ratio of the adhesively bonded hybrid 
flexspline was superior to that of the co-cured 
hybrid flexspline and the damping ratio of the 
hybrid flexspline reinforced with a glass fibre - 
epoxy composite was higher than that of the 
hybrid flexspline reinforced with a carbon fibre- 
epoxy composite. Therefore, the adhesively 
bonded hybrid flexspline reinforced with the 
glass fibre-epoxy composite was more bene- 
ficial. 

Figure 11 shows the apparatus (MTS 319.10) 
for the torque test of the flexspline. During the 
torque test, the six bolts clamping the boss sec- 
tion of the hybrid flexspline failed at the applied 
torque of 430 Nm. As the rated torque trans- 
mission capability of the flexspline was 110 Nm, 
further tests were not performed. Therefore, it 
was concluded that the hybrid flexsplines had a 
sufficient torque transmission capability. 

FINITE-ELEMENT ANALYSIS OF THE 
HYBRID FLEXSPLINE 

TORQUE TEST 

The torque transmission capabilities of the 
hybrid flexsplines, manufactured either by co- 
curing or by adhesive bonding with bonding 
thickness of 0.1 mm, were tested. The flexspline 
which consisted of the glass fibre-epoxy compo- 
site with a stacking sequence of [ + 30°]T and a 
steel tube of thickness 0.3 mm was tested 
because this type of flexspline is supposed to 
have the lowest torque transmission capability. 

The fundamental natural frequency in the radial 
direction was calculated by finite-element 
method using ANSYS5.0, a commercial soft- 
ware. Also, the torque transmission capability of 
the hybrid flexspline was calculated by finite- 
element method and compared to the 
experimental results when it was subjected to 
the maximum rated torque of the flexspline. 

The eight-node 3-DOF SOLID 45 elements 
of ANSYS were used for the modelling of iso- 
tropic materials such as steel and epoxy, and 
the  eight-node  3-DOF  SOLID  46  elements 
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were used for the modelling of anisotropic 
materials such as the carbon fibre-epoxy com- 
posite and the glass fibre-epoxy composite, as 
shown in Fig. 12. 

Owing to axi-symmetry, only a quarter of the 
flexspline was modelled, and the tooth part was 
modelled as a rectangular cross-section which 
has the same area as a trapezoid consisting of 
an addendum circle for the upper side and a 
dedendum circle for the lower side of the tooth. 

For the torque analysis, the element nodes 
were fixed in the radial and axial directions to 
prevent out-of-plane deformation, and the boss 
section was fixed. The torque was applied to the 
outer nodes of the tooth section in the 0-direc- 
tion. 

Although the tooth shape of the flexspline 
was assumed to be rectangular, the error in the 
fundamental natural frequency between the cal- 
culated and the experimentally determined was 
less than 10%, as shown in Fig. 13. 

When the co-cured hybrid flexspline was 
composed of a 0.3 mm steel tube and the glass 
fibre-epoxy composite, with a stacking 
sequence of [ + 30°]T, the maximum stresses in 
the steel tube and the composite tube were 
0.67 GPa and 21.3 MPa in the composite part 
(failure index = 0.10), respectively. When the 
adhesively bonded hybrid flexspline was rein- 
forced with the glass fibre-epoxy composite, 
with the same stacking sequence, the maximum 

Fig. 11. The apparatus for the torque test of the flexspline. 
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stress of the steel part was slightly decreased as 
the bonding thickness was increased. When the 
bonding thickness was 1.0 mm, the maximum 
stresses in the steel tube and the composite 
tube were 0.661 GPa and 20.1 MPa (failure 
index = 0.09), respectively. Therefore, it was 
concluded that the hybrid flexspline reinforced 
with the glass fibre-epoxy composite had good 
torque transmissibility. 

CONCLUSIONS 

In this paper the hybrid flexspline of a harmonic 
drive was designed and manufactured with steel 
and fibre-reinforced composite materials to 
improve the dynamic properties of the steel 
flexspline. The carbon fibre-epoxy composite 
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Fig. 12. Finite-element model for the hybrid flexspline: (a) 
modelling for modal  analysis;   and  (b)  modelling for 

torque analysis. 

and the glass fibre-epoxy composite were either 
co-cure bonded or adhesively bonded to the 
inside surface of the steel tube to produce the 
hybrid flexspline. 

From the experimental and numerical results 
it was found that the adhesively bonded hybrid 
flexspline had better dynamic characteristics 
than those of the co-cured and unreinforced 
flexsplines. For the adhesively bonded hybrid 
flexspline reinforced with the glass fibre-epoxy 
composite, with a stacking sequence of [ + 30°]s, 
the damping capacity was increased by 630%, 
while the fundamental frequency and the radial 
stiffness was increased by only 23% and 43%, 
respectively, compared to those of the unrein- 
forced steel flexspline when the bonding 
thickness was 0.1 mm. Also, it was found that 
the hybrid flexspline had enough torque trans- 
mission capability compared to the steel 
flexspline. 

Therefore, it may be concluded that the 
adhesively bonded hybrid flexspline reinforced 
with the glass fibre-epoxy composite, with a 
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Fig. 13. Comparison between the test results and the cal- 
culated results when the steel thickness was 0.3 mm: (a) 
co-cured flexspline reinforced with the glass fibre-epoxy 
composite; and (b) adhesively bonded flexspline rein- 

forced with the glass fibre-epoxy composite. 
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stacking sequence of [ + 30°]s, was most appro- 
priate for a harmonic drive. 
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Woven fabric has been recognized as one of the widely used materials in 
the aerospace industry. In order to effectively utilize this material, it is 
necessary to evaluate its mechanical properties. In this paper a three- 
dimensional multi-scaled modelling technique has been developed to 
investigate the linear elastic properties of single-ply opened-packing woven 
fabrics for pure tension and shear responses. This technique is 
accomplished by introducing a number of new three-dimensional macro- 
and micro-blocks. Thus, this technique can be considered as a full three- 
dimensional- modelling technique. In order to verify the capability of this 
method, some theoretical and finite-element analysis (FEA) numerical 
studies were carried out for four types of opened-packing woven fabric unit 
cells. It was shown that there exists a good agreement between the 
theoretical results and those predicted using the FEA models. The trends 
of the stiffness and engineering elastic constants with ng, which denotes a 
warp (or weft) yarn is interlaced with every ngth weft (or warp) yarn, were 
also investigated. For the in-plane elastic properties, the present results 
correlate well with those available in the literature. © 1997 Elsevier Science 
Ltd. 

INTRODUCTION 

To tailor woven fabric composite materials to 
the exact requirements of their functions in the 
components or structures, it is necessary to 
determine their mechanical properties. Meas- 
urements of these properties are difficult and 
the costs involved can be very high, especially 
when studying effects of manufacturing and 
geometrical parameters. Theoretical and finite- 
element analysis (FEA) modelling are 
cost-effective alternatives of determining these 
properties, and thus provide savings in both 
manpower and time [1,2]. 

It is known that [3-8] a woven fabric is 
usually considered as an assemblage of unit 
cells interconnected at a discrete number of 
nodal points. Hence, mechanical properties for 
woven fabrics can be predicted based on those 
for the relevant unit cells. 

In this paper, a three-dimensional modelling 
technique applicable to theoretical and FEA 
analysis is presented for predicting the linear 
elastic properties for opened-packing woven 
fabric unit cells. This technique involves artifi- 
cial division of a woven fabric unit cell into 
macro-blocks, which are further divided into 
micro-blocks. The fabric reinforcing geometry 
for a micro-block is easier to determine, model 
and analyse. 

In the theoretical model, the linear elastic 
properties of the three-dimensional micro- 
blocks are easy to obtain theoretically utilizing 
elastic mechanics theory. Those for the macro- 
blocks can be evaluated using an 'XY model' or 
'YX model' and the relevant elastic properties 
of the micro-blocks. The 'XY model' and 'YX 
model' will be described in the following sec- 
tion. The procedure for evaluating elastic 
properties  of the  macro-blocks  can  also  be 
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(a) Opened-balanced plain weaves (b) Closed-balanced plain weaves 

Fig. 1. A schematic of unit-cell architecture for the artificial plain weaves. 

utilized to estimate those for woven fabric unit 
cells. In FEA modelling, using the FEA soft- 
ware Strandö [9], the linear elastic properties 
for micro-blocks, macro-blocks and woven 
fabric unit cells can also be obtained. It is 
shown that there exists a good correlation 
between the theoretical results and those cal- 
culated using FEA models. 

To be cost-effective on establishing and run- 
ning FEA models, it is suggested that a 
mechanical property data bank be established 
for the micro- and macro-blocks. Thus, for the 
blocks that have the same geometrical param- 
eters and mechanical properties of composite 
constituents, we can select the same elastic 
property data from the data bank rather than 
run the models again. 

THEORETICAL MODELLING 

In this section, the linear elastic properties for 
woven fabric unit cells will be investigated using 
the 'XY model' and 'YX model', respectively. 
This investigation was carried out based on four 
types of artificial woven fabric unit-cell archi- 
tectures (i.e. plain, twill, 5- and 8-harness satin 
weaves). 

Constructions and assumptions of the artificial 
woven fabric unit-cell architecture 

Owing to the complicated architecture of woven 
fabric, it is difficult to describe a unit-cell geo- 
metry at the same scale as woven fabric 
micro-geometry. Hence, the geometrical models 
for woven fabrics are established at the yarn 
level. In these models, each yarn contains a few 
thousand fibres and all fibres are assumed to 
follow the same path as the corresponding yarn. 
To evaluate the elastic properties with mini- 
mum effort, four simplified three-dimensional 

unit-cell models are proposed for the four types 
of woven fabrics. As shown in Fig. 1, for plain 
woven fabrics it is noted that the cross-section 
shapes of yarns in the unit-cell models are 
assumed to be rectangular for opened-packing 
woven fabrics (see Fig. la) and hexagonal for 
closed-packing woven fabrics (see Fig. lb). 
Each yarn in a unit cell is divided into three 
segments along its longitudinal direction, i.e. 
two straight yarn segments and one undulated 
yarn segment. In the present work the discus- 
sion is restricted to non-hybrid, opened-packing 
woven fabrics. 

For all four types of artificial woven fabric 
unit-cell models, the following assumptions are 
introduced to simplify the analysis. 

• The woven fabrics are assumed to be 
balanced, i.e. within a woven fabric unit cell, 
the fibre volume fraction and mechanical 
properties along the warp direction are 
exactly the same as those in the weft direc- 
tion. 

• Both warp and weft yarns exhibit linear elas- 
tic behaviours prior to failure. The elastic 
properties of yarns are taken to be identical 
to those of fibres. 

• The warp and weft yarns are packed per- 
fectly. Thus, the overall fibre volume fraction 
is equal to the ratio of the yarn geometrical 
volume to the whole unit-cell geometrical 
volume. The void of resin and nesting resin 
on the interlacing areas between a warp yarn 
and a weft yarn are ignored. 

• The undulated segments for both warp and 
weft yarns are idealized to be inclined 
straight yarns. 

• The micro-blocks, macro-blocks and woven 
unit cells are assumed to be orthotropic and 
homogeneous in the woven fabric unit-cell 
global coordinate system, while resin is 
assumed to be isotropic and homogeneous. 
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Theoretical modelling for plain weaves 

An opened-packing plain weave unit cell is 
shown in Fig. 2(a) using a bold square, where a 
small square covered with light lines indicates 
that the warp yarn crosses over the weft yarn at 
that intersection can be considered to be an 
assemblage of three types of micro-blocks, as 
shown in Fig. 2(b). They are the straight cross- 
ply micro-block (SCPMIB), the undulated yarn 
micro-block (UMIB) and the pure resin micro- 
block (PRMIB) (see Fig. 2c). The micro-block 
SCPMIB is composed of two straight fibre yarn 
segments which are cross-banded, while the 
micro-block UMIB consists of an undulated 
fibre yarn segment and pure resin. The constitu- 
ent of the micro-block PRMIB is pure resin. 

For the micro-block SCPMIB, the stress- 
strain relations in the global coordinate system 
for a plain weave unit cell can be expressed as 
follows 

*i = CtjBj (1) 

where the stiffness constants C,y (/, j = 1-6) are 
given by 
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in which VT and Vs are the volume fractions for 
the top and bottom fibre ply, respectively; Cjp 

CB, and Cg are, respectively, the stiffness con- 
stants for the top fibre ply, the bottom fibre ply 
and the micro-block SCPMIB. 

For the micro-block UMIB, shown in 
Fig. 2(c), the stiffness constants Q, under the 
yarn principal direction coordinate system can 
be evaluated using eqns (2)-(10), and then the 
stiffness constants Ctj under the plain weave 
unit-cell global coordinate system can be 
obtained by 

c66=cI6v
T+cBvE 

[C'iJ] = [T-l][Cij][T] (11) 

where [Cjy] is the stiffness matrix referred to in 
the local coordinate system and [C-7] is the stiff- 
ness matrix in the global coordinate system, and 
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[7] is the Hamiltonian tensor transformation 
matrix. 

For the micro-block PRMIB, the relevant 
stiffness constants can be evaluated in terms of 
the Young's modulus and Poisson's ratio of the 
resin. 

Evidently, the stiffness constants for the 
micro-blocks SCPMIB, UMIB and PRMIB, 
evaluated above, can be further used to deter- 
mine the elastic properties of a plain weave unit 
cell using the 'X model' and the 'Y model'. In 
the 'X model' all micro-blocks are assembled 
into a strip along the x-axis (shown in Fig. 3a), 
while in the 'Y model' all micro-blocks are 
assembled into a strip in the y-direction (shown 
in Fig. 3b). 

Using concepts of both the 'X model' and 'Y 
model', and the elastic mechanics theory, we 
derive the following formulae for the stiffness 
constants of a strip assembled by micro-block 
elements. 

1. Equations derived using the 'X model' 
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where NA and NB are the numbers of micro- 
blocks A and B within a strip, respectively; 
and VA and Vs are the volume fractions of 
micro-blocks A and B, respectively; CA, CB 

and Cfj are the stiffness constants for micro- 
block A, micro-block B and a strip, 
respectively. 

Similarly, the stiffness constants for a plain 
weave unit cell can also be evaluated using the 
'Y model' or 'X model' and the relevant strip 
stiffness constants. Thus, we need to introduce 
two models known as the 'XY model' and 'YX 
model' for evaluating the stiffness constants for 
a plain weave unit cell. In the 'XY (or YX) 
model' all micro-blocks of a strip along the x (or 
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y) direction are assembled, then all of these 
strips are assembled in the y (or x) direction. So 
we can use the 'X (or Y) model' to evaluate the 
stiffness constants of a strip and then, based on 
these constants obtained, the 'Y (or X) model' 
will be applied to estimate the stiffness con- 
stants of a plain weave unit cell. 

Theoretical modelling for twill weaves 

For twill weaves, the relevant unit cell, shown 
by a bold square in Fig. 4(a), is constructed by 
assembling three types of macro-blocks denoted 
as A, B and C. The geometry and elastic 
properties of macro-block A is exactly the same 
as those for a unit cell in opened-packing plain 
weaves shown in Fig. 2(b). The geometry of 
macro-blocks B and C are shown in Fig. 4(b) 
and (c), respectively. Comparing Fig. 4(b) with 
Fig. 4(c), it is noted that both macro-blocks B 
and C are assembled by micro-blocks a, b, c and 
d, where the geometry and elastic properties for 
micro-blocks a, b and c are exactly the same as 
those for micro-blocks SCPMIB, UMIB and 
PRMIB in a plain weave unit cell, respectively. 
The geometry of micro-block d, called the 
straight yarn micro-block (SMIB), is shown in 
Fig. 4(d). This micro-block consists of a straight 
fibre yarn and pure resin. Its stiffness constants 
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Fig. 4. A schematic of the twill weave. 

can be evaluated using eqns (2)-(10). Because 
the stiffness constants for micro-blocks 
SCPMIB, UMIB, PRMIB and SMIB are 
known, it is possible to determine the stiffness 
constants of macro-blocks A, B and C using the 
'XY model' or 'YX model'. When the stiffness 
constants of macro-blocks A, B and C are 
known, the stiffness constants for a twill weave 
unit cell can also be predicted using the 'XY 
model' or the 'YX model'. 

Theoretical modelling for 5- and 8-harness 
satin weaves 

For 5-harness satin weaves, the relevant unit 
cell illustrated in Fig. 5(a) by a bold square is 
constructed by assembling macro-blocks B, C, 
D, E and F, and the structures for macro-blocks 
D, E and F are shown in Fig. 5(b)-(d). The 
stiffness constants for both macro-blocks E and 
F, which are obtained using the 'XY model' or 
'YX model', are equal to those for macro-block 
B in twill weaves under the global coordinate 
system. Macro-block D shown in Fig. 5(b) is 
assembled by micro-blocks SCPMIB, PRMIB 
and SMIB. The stiffness constants for macro- 
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Fig. 5. A schematic of the 5-harness satin weaves. 
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block D can be determined by following a 
similar procedure to that for macro-block B. 
Similarly for 8-harness satin weaves, the unit 
cell indicated by a bold square in Fig. 6 is also 
constructed by assembling macro-blocks B, C, 
D, E and F. Thus, the stiffness constants for 
both 5- and 8-harness satin weave unit cells can 
be evaluated using similar procedures to that 
for the twill weave unit cell. 

FINITE ELEMENT ANALYSIS MODELLING 

A number of three-dimensional finite element 
models, including various types of micro-blocks, 
macro-blocks and unit-cells models, were 
developed using 20-node three-dimensional 
brick elements in Strandö [9]. Orthotropic and 
homogeneous material properties were used. 
Linear deformations, namely pure extension 
and pure shear, are applied to the models using 
Lagrange constants. These pure extension and 
shear deformations are considered to be homo- 
geneous. The average forces required to create 
such deformations can be recovered from the 
relevant finite element models by summing the 
values of the Lagrange Multipliers. 

Boundary conditions and loadings 

To evaluate the stiffness constants for all three- 
dimensional micro-blocks, macro-blocks and 
woven fabric unit cells, six separate strain vec- 
tors are applied to them using Lagrange 
Multipliers. Six separate FEA analysis cases 
(i.e. cases (a)-(f) below) are required to run on 
the same architecture FEA model for the cor- 
responding six separate strain vectors: case 
(a) sx = 0.001; case (b) ^ = 0.001; case (c) 
ez = 0.001; case (d) y^ = 0.001; case (e) 
yyz = 0.001 and case (f) y^ = 0.001. The relevant 
boundary conditions for each case are obtained 
using  the  usual  form  of the  linear  strain- 

displacement relationships [10,11] (e.g. 
DX\X=U = 0.001/,, DX\X . o = 0, DY\y=0 = DY\y=ly = 
DZ\z=o = DZ\z=lz = 0 for case (a)). Based on the 
average normal and shear stresses obtained for 
each case, the required stiffness constants can 
be determined (e.g. Cn= ax/sx, C2i=oy/sx, 
C31 = az/ex for case (a)). 

RESULTS AND DISCUSSION 

In this section the theoretical and FEA models 
developed previously will be used to evaluate 
the stiffness and engineering elastic constants 
for all four types of artificial woven fabric unit 
cells. In addition, the in-plane engineering elas- 
tic constants for plain weave will be compared 
with those obtained by Naik & Shembekar [6]. 

The geometry details are listed in Table 1 for 
all four types of micro-blocks and Table 2 for 
all four types of woven fabric unit cells, where 
lx, ly and lz are lengths of a block or a unit cell 
in the x, y and z directions, respectively. The 
elastic constants for yarns and resin used in this 
investigation are listed in Table 3 [6]. 

Comparing the theoretical and FEA results 
for both stiffness and engineering elastic con- 
stants, it is found that there exists a good 
agreement. For both stiffness and engineering 
elastic constants, the absolute differences 
between the theoretical analysis and FEA simu- 
lating results range from 0 to 4 GPa. In 
addition, by studying the constraints used in 
FEA models, it is noted that for cases (a)-(c), 
Cy values (i, j = 1-3) are evaluated under the 
iso-stress conditions. Hence, the lower bounds 
are obtained [6,7,12-15]. This is the reason why 
Cy values (/, j = 1-3) obtained from FEA 
models are close to the lower bounds evaluated 
using the theoretical models. For the rest of the 
cases, the FEA models run under the iso-strain 
conditions. Thus, the FEA results are close to 
the upper bounds predicted from the theoreti- 
cal models. Note that the number of finite 
elements in the FEA models does not affect the 
effective stiffness constants significantly, but the 
predictive stiffness constants are very sensitive 
to the choice of boundary conditions. 

From comparisons of the C(j values obtained 
from both theoretical and FEA models for all 
four types of woven fabrics, it is found that an 
increase in ng generally results in an increase in 
Cu because of less undulation. This finding is 
consistent with that reported by Chou & Ko 
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Table 1. Geometry for four types of micro -blocks i 

SCPMIB 
(mm) 

UMIB 
(mm) 

PRMIB 
(mm) 

SMIB 
(mm) 

0.25 
0.25 
0.1 

0.25 
0.5 
0.1 

0.5 
0.5 
0.1 

0.25 
0.5 
0.1 

^CPMID, straight cross-ply micro-block; UMID, undulated yarn micro-block; PRMIB, pure resin micro-block; SMID, 
straight yarn micro-block. 

[12]. The variation trends of the stiffness and 
engineering elastic constants with ng are illus- 
trated in Figs 7 and 8, respectively. 

Figure 7 shows that an increase in ng also 
causes an increase in C22 and slight decreases in 
Ci3> C23, C44 and C55. When ng increases C12 

and C66 increase slightly. C33 remains constant 
as ng changes. From Fig. 8, it is noted that an 
increase in ng generally results in increases in 
in-plane Young's modulus, Ex and E2, and 
decreases in out-of-plane Poisson's ratio, v13 

and v23, and out-of-plane shear modulus, G13 

and G23. Some of these variations can be attri- 
buted to the decrease in waviness as ng 

increases. These findings are consistent with the 
report that with decreased waviness Ex 

increases and G23 and v13 decrease [16]. With 
the increases in n% in-plane Poisson's ratio, v12, 
increases slightly, which is consistent with v12 

increasing with decreased waviness [16] and 
plain weaves generally having a lower in-plane 
Poisson's ratio than the satin weaves [5]. In- 
plane shear modulus, G12, is almost unchanged 
when ng changes, while it is reported by Ishi- 
kawa et al. [17] that the in-plane shear modulus 
increases as ng increases. Whitcomb [16] also 
reported that G12 increases with decreased wav- 
iness. The effects of ng on out-of-plane Young's 
modulus, E3, are not significant, which is 
expected. Hence, it may be concluded that with 
increases in ng the in-plane Young's modulus 

and Poisson's ratio increase, but the out-of- 
plane shear modulus and Poisson's ratio 
decrease. The out-of-plane Young's modulus 
and in-plane shear modulus almost remain con- 
stant when ng changes. Thus, for the structural 
components requiring higher in-plane stiffness 
and tensile strength, it is suggested that woven 
fabrics with a higher ng are chosen. 

For the plain weave unit cell comparisons of 
the in-plane Young's moduli, shear moduli and 
Poisson's ratio between the present results and 
those reported by Naik & Shembekar [6] are 
also presented on the basis of same three 
dimensions (i.e. l„ ly and 4), lamina thickness, h, 
fabric thickness, ht, the undulated length of 
yarn, /u (see Fig. 9), and the close overall fibre 
volume fraction V^. The relevant data and 
results are listed in Table 4. 

It is noted that the in-plain Young's moduli 
obtained from both the FEA and theoretical 
models are in good agreement with those 
obtained from Naik & Shembekar's WF parallel 
model and one-dimensional mosaic parallel 
model [6] and the experimental results. For the 
in-plane shear modulus, G12, the present results 
predicted by theoretical models also correlated 
well with those calculated using Naik & Shem- 
bekar's models and mosaic models [6]. 
However, the value predicted by FEA model is 
50% larger than those predicted by the theo- 
retical model. The reason for this is that the 

Table 2. Geometry of the unit cell for four types of woven fabrics 

Plain weave                          Twill weave                          5-harness satin 
(mm)                                    (mm)                                       (mm) 

8-harness satin 
(mm) 

lx 1                                           3                                             5 
13                                             5 

0.1                                        0.1                                           0.1 

8 
8 

0.1 

Table 3. Elastic properties for warp (weft) yarn and resin 

Materials             E1           E2          E3           v12            v13            v23 G12 G13 G23 

Yarn (GPa) 
Resin (GPa) 

T-300 carbon          230          40           40          0.26          0.26          0.26 
Epoxy resin           3.5          3.5          3.5          0.35          0.35          0.35 

24 
1.3 

24 
1.3 

14.3 
1.3 
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FEA model runs under the iso-strain condition 
which gives an upper bound while the presented 
theoretical models are developed under the iso- 
stress condition which gives the lower bounds. 

The in-plane Poisson's ratio determined by the 
FEA and the presented theoretical models only 
correlate well with that obtained using Naik & 
Shembekar's two-dimensional WF models [6]. 

(a) Effect of ng on Cn and C22 (b) Effect of ng on C33 

(c) Effect of n„ on Q2 (d) Effect of ng on C13 and C23 

(e) Effect of n„ on C44 and C55 (f) Effect of ng on C66 

FEA: FEA model HB: Higher bound LB: Lower bound 

Fig. 7. Effects of ng on the stiffness constants for woven fabrics. Effect of n  on: (a) Cn and C22; (b) C33; (c) C12; (d) Cr 
and C23; (e) C44 and C55; and (f) C66. FEA, FEA model; HB, higher bound; LB, lower bound. 
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CONCLUSIONS 

This   paper   proposed   a   multi-scaled   three- 
dimensional modelling technique that has been 

theoretically verified to be a logical and general 
method, and can be used to evaluate the elastic 
properties of various types of woven fabrics. 
The elastic properties of a woven fabric lamina 

(a) Effect of ng on Ej and E2 (b) Effect of n„ on E3 

(c) Effect of n„ on vn (d) Effect of n„ on V13 and V23 

(e) Effect of n„ on Gn (f) Effect of ng on G13 and G23 

FEA: FEA model HB: Higher bound LB: Lower bound 

Fig. 8. Effects of n  on elastic constants for woven fabrics. Effect of ng on: (a) Et and E2; (b) E3; (c) v12; (d) v13 and v23; 
(e) G12; and (f) G13 and G23. FEA, FEA model; HB, higher bound; LB, lower bound. 
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gv( or gf) af(or aw)/2 

h=h. 

h ( or h) 
Fig. 9. The geometry of the plain weave unit cell. The nomenclature used in Table 4 is given here. 

can be evaluated based on those of the relevant 
unit cells. The data for the unit cells can be 
obtained using the FEA models, in which the 
woven fabric unit cells are assembled by select- 
ing the required micro-blocks for plain weave 
and macro-blocks for other types of weaves. 
The stiffness and elastic constants for these 
blocks can be obtained from the corresponding 
FEA modelling or data bank established. 

The theoretical models, i.e. the 'XY model' 
and 'YX model', presented in this paper can be 
further extended to estimate the elastic proper- 
ties for the woven fabric laminates. Hence, two 
new theoretical models called as 'XYZ model' 
and 'YXZ model' will be developed for studying 
the mechanical properties of the composite 
laminates. In these two models, all micro-blocks 
of a strip along the x (or y) direction are 
assembled, then all these strips are assembled in 
the y (or x) direction to form a plane. Later, 
these planes for different lamina are assembled 
along the z direction. Hence, a new block called 
the plate-block will be introduced into these 
models. 

In general, a single micro-block can be used 
as an assembling unit for different types of 
macro-blocks, and a macro-block can be an 
assembling unit for different woven fabric unit 
cells, and a plate-block will be an assembling 
unit for different woven fabric laminates. From 
this point of view, this three-dimensional FEA 
technique is an effective and efficient method 
for reducing the time spent on building FEA 
models and carrying out the relevant calcula- 
tions as the elastic properties for these blocks 
may be obtained from the data bank. 
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The present investigation provides the correct expressions of adhesive 
stresses in Goland and Reissner's solution. An improvement on the 
inconsistent plane stress and plane strain relations using in Goland and 
Reissner's original paper is achieved. A set of generalized equations are 
suggested for the adhesive analysis in dissimilar adherends with different 
thicknesses and lengths. Some comments on the proposed European code 
of polymer composites structural design are also given. © 1997 Published by 
Elsevier Science Ltd. 

INTRODUCTION 

Adhesive bonding techniques have been widely 
used in flight and space vehicle structures. Now 
it is also being used increasingly in civil 
engineering, for example, in designing fiber 
reinforced plastics (FRP) bridges and struc- 
tures, in stiffening, joining, and repairing 
precast, prestressed concrete structures. 

Consequently, the importance of adhesive 
bonding in technology [1] has been recognized, 
and a considerable amount of theoretical and 
experimental research has been carried out on 
adhesive structures. For example, in simple lap 
joint theories which predict the state of stress in 
the thin adhesive which bonds the adherend 
plates, Goland and Reissner presented the first 
modern lap joint theory [2]. Subsequently, 
numerous authors [3-5] have proposed theories 
which have improved upon Goland and Reiss- 
ner's basic formulation. The common feature of 
all these theories is that simplified assumptions 
are made concerning the behaviour of the 
adherends and of the adhesive. These assump- 
tions remove the stress singularities which occur 
at the edges of the interfaces and the adherends 
and yield tractable differential equations which 
can be solved to yield the stresses in the adhe- 
sive.  Maximum adhesive  stresses from these 

solutions can then be used in joint design. Car- 
penter [6] had made a comprehensive 
comparison of numerous lap joint theories for 
adhesive bonded joints and founded that pre- 
dicted maximum adhesive shear stress is 
insensitive to underlying assumptions and that 
maximum adhesive peel stress is relatively 
unaffected by most assumptions. 

However, the classic theory of Goland and 
Reissner neglects shear deformation of the 
adherends, inconsistently uses plane stress and 
plane strain for the adherends, and uses an 
inconsistent shear strain equation for the adhe- 
sive. The maximum peel stress from this theory 
is expected varying less 30% compared with 
that prediction by a consistent lap joint theory 
which considers shear deformation of the 
adherends [6]. Although there exists a little 
stress difference between classic Goland and 
Reissner theory and some improved theories, 
the Goland and Reissner theory is widely 
accepted today because of it's simplification of 
the model. Furthermore, it can provide explicit 
analytical expressions for the shear and peel 
stresses, which is very useful to designers in 
engineering. Some so-called consistent solutions 
can only be realized by very complicated 
numerical calculations [7]. This is why the 
Goland and Reissner theory was recommended 

273 
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as a basis of simplified design procedure for 
adhesive lap joints in the recent publication 
Structural Design of Polymer Composite Euro- 
comp Design Code and Handbook [8]. However, 
it should be noted that Goland and Reissner's 
solution for the stress in the adhesive is incor- 
rectly written and has unfortunately been used 
in this form by many authors [8-10] including 
the Structural Design of Polymer Composite 
Eurocomp Design Code and Handbook. Carpen- 
ter [11] has pointed out one of these errors in 
Goland and Reissner's paper. Adams et al. [12], 
had cited Sneddon's result [13] of Goland and 
Reissner theory. To our surprise, some terms 

and signs were also incorrectly left out in the 
parameter and solution expressions in Sned- 
don's paper. 

The present investigation does not give a new 
solution to the adhesive joint problem. It will 
provide the correct expressions of adhesive 
stresses in Goland and Reissner's solution. An 
improvement on the inconsistent plane stress 
and plane strain relations using in Goland and 
Reissner's original paper is achieved and 
applied to composite adhesive joints. Several 
differential equations are suggested for the 
analysis of joint-edge loads in dissimilar adher- 
ends with different thicknesses and lengths. It 

r% 
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i 
i 
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(a) geometric and material parameters 
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M. 

(b) free-body diagrams under loading 

«e 
c; 

& 
M 

(c) positive conventions for the internal forces 
Fig. 1. Schematic representation of a single-lap joint, (a) geometric and material parameters, (b) free-body diagrams under 

loading, (c) positive conventions for the internal forces. 
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can be used for the stress analysis of adhesive 
joints of FRP adherends. 

THEORETICAL FORMULATIONS OF 
CLASSIC ANALYSIS 

In classic analysis, the geometrical and material 
parameters of the single-lap joint of two rect- 
angular adherends (sheets) are shown in 
Fig. 1(a), in which a represents a force-eccentri- 
city angle, / the length of the outer adherend, 2c 
the length of the overlap, h the thickness of the 
adherend, and n the thickness of the adhesive 
layer. The elastic modulus and Poisson's ratio 
are E and v, respectively, for the isotropic 
adherends, and Ec and vc for the adhesive. 
When the single-lap joint is subjected to a 
stretching load, T, it is convenient to introduce 
two coordinate systems (xl5 wx) and (x, w) in 
order to study the deformations [shown in 
Fig. 1(b)]. 

Obviously 

R = aT, and a = 
h+r\ 

2(/+c) 
(1) 

Setting Mx equal to the bending moment in 
the sheet 1 and M equal to the moment in the 
joint, each per unit of width, then 

Ml = T(ouc1-wl)(0<x1^l) (2) 

M = T a(/+x) - 
h+n 

-w- (0<x<c) (3) 

The positive conventions chosen for the 
moments Mx and M and for the transverse 
shearing forces per unit of width Qx in the sheet 
1 and Q in the joint, to be given in the later 
work, are shown in Fig. 1 (c). 

According to the theory for the small bending 
of thin cylindrically bent plates, the differential 
equations for the transverse deflections of the 
sheet and joint become 

dV 
dx2 

d2w 

dx2 

ML 

M 

D 

= - — (axj-Wj) 
D 

T 

D 
(a(l+x) — w- 

h+r\ 

(()<*!</) 

(0<x<c) 

(4) 

where Dt and D are the flexural rigidities of the 
sheet and joint, respectively, and 

Di = 
Eh3 

12(1-v2) 
,D = 

Eh3 

3(1-v2) 

where 

lix 
D. 

P = 0) 

1 
+   —hrj+hrj 

Erf 

1-v2      12(1-v2) 
(5) 

The solutions of eqn (4) have the form of 

Cwx = A1chix1x1+B1shnlx1+ai,x1 (0 <xl < I) 

<.w = Ach/ix+Bshfix+a(l+x) - 
h+rj 

(0<x<c) 

(6) 

The four constants At, Bt, A, B of formula (6) 
are determined by the four boundary conditions 

w1(0) = 0,w1(/) = w(0),w(Z) = 0, 
dj(/)      dw(0) 

dxj dx 

(8) 
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and to the isotropic balanced single-lap joint, the 
edge moment, M0, and shearing force, Q0, can 

A, =0,5, be written as 
h+rj ch/ic 

Ml 
shjixlchnc+ — chfiyl-shfic 

M 

The constants./!, B are not needed in the subse- 
quent calculations. The moment and shearing 
force at the end of the overlap then become 

M0M1\Xi = ! = T[al-w1(l)] = 
(h+rj)T 

sh/ij-chfic 

Mi 
shfi1l-chßc+ — chßj-shfic 

M 

(9) 

00 = 0! ,=/- 
dM, 

dx, 
:I=T 

dw,(/) 

(h+r])T ßiChßJ-chpc 

Mi 
sh/u1l-ch/j.c+ — chfij-shßc 

M 

(10) 

If we introduce a dimensionless parameter k, 
i.e. 

k = 
shßj-chßc 

Mi 
shfill-chfic+ — chfij-shfic 

ß 

(11) 

then 

(h+r,)T (h+rj)T      ^ch^l 
M0=— k,Q0= — h 

2 2 shfij 
(12) 

If the adhesive layer was thin compared to 
the thickness of the sheet {r\<h) so that the 
presence of the adhesive layer was neglected, r\ 
and Ec are eliminated from the formulation. By 
applying the approximations 

shUilKchßil (13) 

M0 = 

where 

■*, ßo = /*iAf0 (14) 

12(1 -v2)T 

k = 

Eh3 

1 

l+272th 
/ PlC 

(15) 

(16) 

l  2j2 

Formula (13) is exactly equation (15) in Goland 
and Reissner paper. 

STRESSES IN JOINT FOR FLEXIBLE 
ADHESIVE LAYER 

In this section, the assumption is made that the 
deformations of adherend arise only from the 
longitudinal stress, ax. Since the transverse nor- 
mal strain and shear strain in the adherends 
(sheets) are relatively small compared to those 
in the adhesive, a cylindrically bent-plate formu- 
lation was developed with values of M0, T and 
go given in Section 2. The adhesive shear and 
transverse normal stresses (T0 and a0) were 
assumed constant through the thickness of the 
thin adhesive layer. Figure 2(a) and (b) show 
elements for the sheets 1 and 2, respectively, 
with the sign conventions chosen for the 
moments and forces indicated. 

The equilibrium equations for the elements 
of the joints are 

dx 

dx 

= &■ 

= —a, 

h+t] 

o> 
d#i 

dx 

(17) 

= — Tn 
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N, €3 
|«     &     \ Qi+äO- 

n/2' 

e* 
Of) y 

Nt+dNt 
N, 

\J2 A. V2-TUV 2 

H   M2+dM2 ax      I 

-n/2 

(a) sheet 1 (upper) (b) sheet 2 (lower) 
Fig. 2. Elements of sheets in joint, (a) sheet 1 (upper), (b) sheet 2 (lower). 

t 
dM2l h+n 

= ß2-T0 dx 

dg2 

dx 
= —Co» 

2 

diV2 

dx 

(18) 

= T(i 

Where the subscripts 1 and 2 designate quanti- 
ties pertaining to the sheets 1 and 2, 
respectively. Denoting the transverse deflections 
of the sheets 1 and 2 in joint by wr and vv2 as 
shown in Fig. 1, the differential equations for 
the transverse deflections are 

d2W! 

~dxT = ~ 

where 

D2 = D1 = 

or 

Eh3 

d2w2 

~d7" 
M2 -t       (19) 

12(1-v2) 

given as before. 
Let ul and u2 represent the longitudinal dis- 

placements of lower surface in sheet 1 and 
upper surface in sheet 2 at the boundaries adja- 
cent to the adhesive, then the stress-strain 
relations give 

( 
T0 = --Gc 

u2 

n 
w, 

= EC 

w2 wx 
00- 

n 

The assumption that the adhesive is elastic 
leads to the relations 

(21) 

which is compatible with the directions of T0 

and (70 shown in Fig. 2. 
The   edge   conditions   for   the   two   sheets 

[Fig. 1(b)] are 

M1=0, ßl=0,      N, = 0 
C')M2=-M0,    Q2 = Q0,   N2 = T        K    } 

iM^Mo,    Ö! = ßo,    Ni = T .    . 
X~    C')M2 = 0,       ß2 = 0,      JV2 = 0 l    ; 

From eqns (17)-(21), two differential equations 
for x0 and a0 can be obtained 

dx 
O    _/}2dT0 
3      P    dx 

= 0 (24) 

dw, 

dx 

du2 

, dx 

1-v2 / Ni     6Ml 
■ + ■ 

E    \  h        h2 

1-v2 / N2       6M2 

E    \   h   ~   h2 

(20) 

It is compatible with the plane strain assump- 
tion of the sheets deformations. Goland and 
Reissner gave an inconsistent relations by leav- 
ing out (1 —v2) in eqn (20). 

dV0 

dx4+4ur°=0 

where 

nh En 

(25) 

f.lz±.^^.^zfM.     (26) 

The boundary conditions  (22)  and  (23)  are 
reduced to: 
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For tn 

x = ±c, 
dtp 

dx 
= + 

and 

jc_cr0dx = T 

For (T0 

d2ff0 x= +c, 

x= +c, 

dx2 

dV, 0 _ 

■Mn 

dx3 nD\ 
ßo 

(27) 

(28) 

(29) 

(30) 

On the basis of the eqns (27)-(30), the solu- 
tions for eqns (24) and (25), i.e., the 
distributions of the shearing and the normal 
stresses are, respectively 

T 

1 

ßc 
— d+3fc) ■ 
h 

ch\ 
ßc    X 

sh 
ßc 

-+3(1 -Jt) 

(31) 

Gn-C 

th 

1 

A 
R,X2 — +Xk' smXshX 

x x 
sin X — -shX — 

c c 

+  R2X2 —+Xk' XchX 

Rt = chX sin X+shX cos X 

R2 = shX cos X—chX sin X 

1 
A = — (sh2X+sm 2X) 

Compared with the results of Goland and 
Reissner paper, Goland and Reissner failed to 
give a correct expression of ß and y shown in 
formula (26). The factor (1 — v2) was incorrectly 
left out in both ß2 and y4 expressions. It is also 
important to note that Goland and Reissner's 
derivation (see equations (38) and (48) of the 
Goland and Reissner paper) was inconsistent 
with the sign of Q0 in the boundary conditions. 
The effect of the inconsistency on a0 was 
removed by a second inconsistency in the 
development of their analysis from their equa- 
tions (48)-(53). Sneddon [13] pointed out the 
inconsistency in Goland and Reissner's formula- 
tion of the boundary conditions and removed it 
[but did not correct equation (48) in the Goland 
and Reissner paper]. Sneddon also removed the 
second inconsistency in the derivation but used 
the original equation (48), and obtained an 
expression similar to eqn (32) of the present 
paper but with negative signs for the k' terms. 
Subsequently many researchers have used the 
Sneddon expression, for example, Adams et al. 
[32,12]. In the recent publication Structural 
Design of Polymer Composite Eurocomp Design 
Code and Handbook [8], Sneddon's result has 
even been adopted as a theoretical basis of 
adhesive joint design. Hence, the problem 
should be pointed out now. To the author's 
knowledge, a fine explanation to the problem 
just mentioned was first given by Tsai [9]. 
Unfortunately, Tsai's paper [9] only repeated 
the derivation of Goland and Reissner original 
results. One year later, he made a change to the 
expression of y4 and gave the correct formula 
[10]. However, the expression of ß2 was still 
incorrect, based on plane strain assumption of 
adherends deformations. 

where 

k' = k-c 

x x 
cos X — -chX — ] 

c c 

3(l-v2)r   chfij 

Eh3        shji^l 

X=-, 

(32) 

(33) 

FORMULATION OF ADHESIVE JOINTS OF 
DISSIMILAR ADHERENDS 

Because the original research of Goland and 
Reissner's paper is only available for the single- 
lap joints of two isotropic sheets of equal 
thickness t, and length l+2c (where 2c is the 
lap-jointed length and both adherend sheets has 
the same material property), the results can 
hardly be used for the dissimilar adherends. So 
far, we note that the most refined analytical 
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Fig. 3. Geometric and material parameters of joint. 

model on the adhesive joint problem of dis- 
similar adherends is based on the laminated 
anisotropic plate theory [14]. The entire 
coupled system is then obtained through assum- 
ing the peel stress between the two adherends 
and shear stress distribution throughout the 
thickness of the adhesive. It is, in fact, a kind of 
generalized Goland and Reissner theory. Not 
much progress on this aspect is made. Here, we 
suggest several differential equations used for 
the analysis in dissimilar adherends with dif- 
ferent thicknesses and lengths. 

The problem considered is two rectangular 
sheets of different materials, unequal thickness, 
hl  and h2,  and length  (lx+2c)  and  (/2+2c), 

respectively (Fig. 3). The bond between the two 
sheets is established by means of an adhesive 
layer with thickness \\. Let Ex, vt be the Young's 
modulus and Poisson's ratio of one sheet; E2, v2 

those of the other; and Ec, vc those of the adhe- 
sive layer. The main problem is the 
determination of joint-edge loads and the stress 
distribution in the joint region. 

To determine the loads acting on the edges 
of the joint, three coordinate systems (x1} Wj), 
(x2, w2) and (x, w) like Fig. 1(b) were intro- 
duced. According to the theory for small 
bending of cylindrically bent plates, the differ- 
ential equations for the transverse deflections 
are 

d2w1 

dx\ 

d2 w 

dx2 

d2w2 

Ml T 
— = - — Ovi ~wi) 

dx\ 

M 

D 

M*2 

T 

D 

hi 
OLJUX+X) — w— —+d 

T 

D2 

hx+h2 
ac(/,+2/+x2) — w2 — +d 

(0<JC! </!> 

(0<x<2c) 

(0<x2</2) 

(34) 

These equations have solutions of the form 

w, = A1chß1xl+B1sh/j.lx1+<xcxl 

w = Achfix+Bshfix+ac(li+x) — — +d 

w2 = A2chii2x2+B2shpi2x2+a.c(ll+2l+x2) - 
hi+h2 

(35) 

where 

0i = 
£>, 

02 = 

hx+h2 

a = 

D, 
0 = 

2(Z1+2c+Z2) 
(36) 
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Dx = 

D = 

Exh\ E2h\ 

12(1-v?) 

E, 

,D2 = 
12(1 -vl) 

3(1-v?) 

E, 

m-dy 

+d3]+—-^-[(h2-d)3+d3] 
3(1-v2) 

Once the edge loads (moments, shear forces 
etc.) are known, The stress distributions in 
adhesive layer can be easily detected by using 
the similar procedure as shown in Section 3. 
Here, we do not want to repeat this tedious 
work. Interested readers can refer to the paper 
of Shun Cheng et al. [34,5]. 
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d^! dx 
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dx dx-, 

Thus, the deflections of the joint can be 
uniquely determined. The edge-loads can then 
be obtained from the differential eqn (34). For 
example, Mx and M2 shown in Fig. 4 are, 
respectively 

d2w1 
M, =M,L    , = —D, — L _, i       11*.-/, i   dx2   u,_/, 

M2 = M2\X2 = 0=-D2 

d2w~, 

dx 2    1x2 = 0 
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Simplified linear and non-linear analysis of 
stepped and scarfed adhesive-bonded lap- 

joints between composite laminates 

Flemming Mortensen & Ole Thybo Thomsen 
Institute of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark 

This paper presents a newly developed unified approach for the analysis 
and design of adhesive-bonded stepped and scarfed lap-joints. The 
adherends are modelled as beams or wide plates in cylindrical bending, and 
are considered as generally orthotropic laminates using classical laminate 
theory. Consequently, adherends made as asymmetric and unbalanced 
composite laminates can be included in the analysis. The adhesive layer is 
modelled in two ways. The first approach assumes the adhesive layer to be 
a linear elastic material, and the second approach takes into account the 
inelastic behaviour of many adhesives. The governing equations are 
formulated in terms of sets of first-order ordinary differential equations, 
which are solved numerically using the 'multi-segment method' of 
integration. © 1997 Published by Elsevier Science Ltd. 

INTRODUCTION 

The use of polymeric fibre-reinforced composite 
materials has gained widespread acceptance as 
an excellent way to obtain stiff, strong and very 
lightweight structural elements. However, load 
introduction into composite structural elements 
through joints, inserts and mechanical fasteners 
is associated with considerable difficulties. The 
primary reason for this is the layered structure 
of composite laminates, which results in poor 
strength properties with respect to loading by 
interlaminar shear and transverse normal stres- 
ses. Thus, the interaction between composite 
elements and adjoining parts often proves to be 
among the most critical areas of a structural 
assembly. 

Joining of composite structures can be 
achieved through the use of bolted, riveted or 
adhesive-bonded joints. The performances of 
the mentioned joint types are severely influ- 
enced by the characteristics of the layered 
composite materials, but adhesive-bonded joints 
provide a much more efficient load transfer 
than mechanically fastened joint types. 

From a purely structural point of view, the 
most effective adhesive joint types are stepped 
and scarfed lap-joints, where both types can be 
single- or double-sided. These types of joints 
are most often used when severe loads are to be 
transferred between structural components 
made of composite materials. 

Accurate analysis of adhesive-bonded joints, 
for instance using the finite-element method, is 
an elaborate and computationally demanding 
task (see Crocombe & Adams [1], Harris & 
Adams [2] and Frostig et al. [3]), and there is a 
specific need for analysis and design tools that 
can provide accurate results with little computa- 
tional effort involved. Such tools would be very 
useful for preliminary design purposes, i.e. in 
the stages of design where fast estimates of 
stress and strain distributions as well as joint 
strengths are needed. 

The main objective of the present paper is to 
consider a unified approach for the analysis of 
stepped and scarfed adhesive-bonded lap-joints. 
Even though the approach is shown for the 
analysis of stepped and scarfed adhesive-bon- 
ded lap-joints, it can equally well be used for 
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the analysis of any of the following commonly 
used joint types: single lap-joints, scarfed single 
lap-joints, bonded double lap-joints, double lap- 
joints, double-sided stepped lap-joints and 
double-sided scarfed lap-joints (see Mortensen 
& Thomsen [4]). 

In the analysis the adherends are modelled as 
beams or wide plates in cylindrical bending and 
are considered as generally orthotropic lami- 
nates using classical laminate theory. 
Consequently, adherends made as asymmetric 
and unbalanced composite laminates can be 
included in the analysis. The adhesive layer is 
modelled as continuously distributed linear ten- 
sion-compression and shear springs. As 
non-linear effects in the form of adhesive plasti- 
city play an important role in the load transfer, 

the analysis allows inclusion of non-linear adhe- 
sive properties. The load and boundary 
conditions can be chosen arbitrarily. Analysis 
procedures for all the adhesive-bonded joints 
mentioned above have been developed and are 
being implemented in the new composites 
analysis and design software package ESAComp 
(see Saarela et al. [5]). ESAComp, which is 
being developed for the European Space 
Agency, provides an easy-to-use environment 
for preliminary evaluation and analysis of plies 
and laminates, as well as structural composite 
components. The developed analysis tools for 
adhesive-bonded joints will be completely inte- 
grated in the ESAComp environment, which 
offers complete access to the ESAComp design 
system [5]. 

MATHEMATICAL FORMULATION 

The stepped and scarfed lap-joint configurations, each composed of two similar or dissimilar gener- 
ally orthotropic laminates subjected to general loading conditions, are shown in Fig. 1. 

The adherend thicknesses are tl and t2 outside the overlap zones for both joint types. Inside the 
overlap zone the adherend thicknesses for the stepped lap-joint are 

tl{x) = t™\    t2(x) = t%;   m = step number,    0<x<L 

(1) 
For the scarfed lap-joint the adherend thicknesses inside the overlap zone are changed linearly 

tl(x) = tl — I  —  p;    ?200 = l  —  p;    0<x<L 

where tx and t2 are the thicknesses of the adherends outside the overlap zone. 

(2) 

Adherend 

Adherend 

Fig. 1. Schematic illustration of an adhesive stepped lap-joint and an adhesive scarfed lap-joint (both single-sided) 
subjected to general loading conditions. 
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Basic assumptions for the structural modelling 

The basic assumptions adopted for the structural modelling are the following. 

The adherends: 

• beams or wide plates in cylindrical bending, which are described by use of ordinary 'Kirchhoff 
plate theory; 

• generally orthotropic laminates using classical laminate theory (e.g. asymmetric and unbalanced 
composite laminates can be included in the analysis); 

• the laminates are assumed to obey linear elastic constitutive laws; 
• the strains are small, and the rotations are very small. 

The adhesive layer: 

• modelled as continuously distributed linear tension-compression and shear springs; 
• inclusion of non-linear adhesive properties, by using a tangent modulus approach for the non- 

linear stress-strain relationship in conjunction with a modified von Mises yield criterion. 

Load and boundary conditions: 

• can be chosen arbitrarily. 

The system of governing equations is set up for two different cases, i.e. the adherends are modelled 
as wide plates in cylindrical bending or as narrow beams. 

Modelling of adherends as plates in cylindrical bending 

For the purposes of the present investigation, and with references to Fig. 1, cylindrical bending can 
be defined as a wide plate (in the v direction), where the displacement field can be described as a 
function of the longitudinal coordinate only. As a consequence of this, the displacement field in the 
width directions will be uniform. Thus, the displacement field can be described as 

MJi = «J)W.    V0 = v&(*),    w/ = w''(x) (3) 

where u0 is the midplane displacement in the longitudinal direction, v0 is the midplane displacement 
in the width direction and w is the displacement in the transverse direction (all with respect to the 
middle surfaces of the laminates), and where / = 1, 2 corresponds to laminates 1 and 2, respectively 
(see Fig. 1). As a consequence of this, the following holds true 

uky = vky = w',y = w',yy = 0 (4) 
It should be noted that the concept of 'cylindrical bending' is not unique, and that other definitions 
than the one used in the present formulation can be adopted (see Whitney [6]). 

Substitution of the quantities in eqn (4) into the constitutive relations for a laminated composite 
material [4,6] gives the constitutive relations for a laminate (i) in cylindrical bending 

Kx = An"o, x+XieA x ~ B\ iw[xx, Mxx = B\x^ X+B\6vk X-D\ xw\xx 

Nl
yy = A'12< x+A!26V0t X-B\2w\xx, Myy = B\2uk X+B26V0, X-D\2w\xx 

Ky =«,+46< x - B[6wlxx, Mxy = B\6uk AB^v'o, X-D\6W\XX (5) 

where A'jk, B'jk and Dl
jk (j, k=l,2, 6) are the extensional, coupling and the flexural rigidities. N'xx, N'yy 

and Nxy are the in-plane stress resultants, and M'xx, M'yy and M'xy are the moment resultants. For the 
stepped lap-joint the rigidities A'jk, B)k and D'jk (j, k=l,2 ,6) have different values within each step 
depending on the thickness of the adherends and the plies within each step. For the scarfed lap-joint 
the rigidities within the overlap zone are each changed as a function of the longitudinal direction in 
accordance with their definition, i.e. A'jk is changed linearly, Bl

jk is changed parabolically and Dl
jk is 

changed cubically (j, k = 1, 2, 6). 
From the basic assumptions, the following kinematic relations for the laminates are derived 

i/ = u^zßx,   ßx=-w[x,   ßy = 0 (6) 
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Stepped lap-joints 
With reference to Fig. 1 the equilibrium equations for the stepped lap-joint are specified in three 
regions: —L,<x<0, 0<x<L and L<x<L+L2. 

Referring to Fig. 2, the equilibrium equations can be written as follows 

Kx,x=o 
Ky,x=o 
Qx,x=o 

Mxx,x = & 
M'     = O' \L '^ xy, x      *£yj 

2 = 1 for — L,<x<0, 
i = 2 for L<x<L+L2. 

N1      = —T 11 xx, x           ''ax' N2       =T J * xx, x      vax 

N1      = — T 1" xy, x            * ay N2     =T J T xy, x       *a.y 

Qx,x= -ö"a> Q2x, x = °a 

tT+ta 
M1       -O'-T "^xx, x      it.*       ''ax        _        ' M2    = 02- L ± xx, x      x£x '■ax 

t?+ta Mx     -01
-T ±rj~ xy, x      *£y       Lay        _         ' M2    =02- "*■ xy, x      z£y ~^ay 

2 
> 0<x<L(7) 

where f? and 1% are the thicknesses of the adherends within the rath step. Within each gap of length 
ta] in the overlap zone (see Fig. 1) the thickness of the adhesive layer is large compared to the 
overall thickness of the adhesive layer ta, and therefore the adhesive in these gaps is assumed not to 
participate in the load transfer. 

The coupling between the two adherends is established through the constitutive relations for the 
adhesive layer, which as a first approximation is assumed to be homogeneous, isotropic and linear 
elastic. The constitutive equations for the adhesive layer are established by a spring model, where the 
adhesive layer is assumed to be composed of continously distributed shear and tension-compression 

Ml,* 

Fig. 2. Equilibrium elements for a stepped lap-joint in the overlap zone; 0<x<L. 
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springs. The constitutive equations of the adhesive layer are suggested in accordance with Thomsen 
[7,8]andTong[9] 

Ga   .                .         Ga   /     2        f2   o2 1 ^    ol\ Tax =  (U2-UX)=   I   «o- —ßx-U0- —ßx   I 

c c 
Taj = — (v2 - Vj) = — (vg - v0) (8) 

*. 'a 

P 
a   /    2 1\ 

tfa=    (W^W1) 

where Ga is the shear modulus and Ea is the elastic modulus of the adhesive layer. 
As a consequence of the modelling of the adhesive layer it is not possible to fulfil the condition of 

zero shear stresses at the free edges of the adhesive (see Fig. 1). However, in real adhesive joints no 
free edges at the ends of the overlap zone are present. Instead a fillet of surplus adhesive, a so-called 
'spew fillet', is formed at the ends of the overlap. This spew fillet allows the transfer of shear stresses 
at the overlap ends. Modelling the adhesive layer by spring models has been compared with other 
known analysis methods such as finite-element analysis [1,3] and High-order Theory Approach [3] 
(including the spew fillet), and the results show that the overall stress distribution and the predicted 
values are in very good agreement. 

From the equations derived it is possible to form a complete set of system equations for the 
stepped lap-joint problem. Thus, a combination of eqns (5)-(8), in the areas — Ll<x<0 and 
L < x < L+L2 (outside the overlap) yields 

«o. x=fc/AWA. Nxx, x=0 
W[x=-ßx, Qx,x = 0 
ßk x = k4iNxx+k5iNxy+k6iMxx, Mxx, x = Qx 

Vo. x = M^+M^y+MC. Ky, x = 0 

i = l,2 (9) 

The coefficients ku-kgi (i = 1, 2) contain laminate stiffness parameters and appear when u'0 „ v0 x 

and w'xx are isolated from Nxx, Nxy and Mxx in eqn (5). Equation (9) constitutes a set of eight linear 
coupled first-order ordinary differential equations. Within the overlap zone, i.e. for 0<x<L, a 
combination of eqns (5)-(8) yields 

"a x = *i iNl
xx+k21Nxy+k3lMxx, «0, x = ki2N2

xx+k22N
2

xy+k32M
2

xx 

^x=-ßl v?x=-ßx 
ßl, x = k4lNxx+k5lNxy+k6lM\x, ß% x = k42N

2
xx+k52N

2
xy+k62M

2
xx 

vo, x = kjiN^+k^Nly+k^Ml,, vg, , = k72N
2

xx+kS2N
2

xy+k92M
2

xx 

Ga?2   o2 Ar2 
Ga      l Gjl Ga Gj2 -r-ßx, N2

XXiX=-—ul
0-—- ßi+ — ul-——ßx 

2t t 2t t 2t z*ia ia t.ia la 4*1 a 

*T2 G*      1       Ga     2 
N2

Xy,x=-  V0+ V0 

'a *a *a ^a 

1#1 ^    Ga{t,+ta) GMti+t*) nl 1/f2        „2    G^2+ta)    ,    Gj^+tJ 
Mxx, x = Q\+ ul

0+ ßx M2
XXt x = Q2

X+ u0+ ßl 
2ta 4ta 2ta 4ta 

Ga{tY+ta)        Gj^t.+tJ Ga(t2+ta)        Gj2(t2+ta) 
~ ; "o+ " fr„ ~ " «o+ " ßx 

2ta 4ta 2ta 4ta 

G„    ,    Gat, 
N\x,x-        "o+   „      ßl- 

ta          2ta 

Ga     2 

 "o+ 
ta 

NXy,x=   V0-  V„, 
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Qlx=—W
l-—w\ Qlx=-—^ — w2 (10) 

'a 'a 'a *a 

Within each gap in the overlap zone the governing equations are the same as those of each adherend 
outside the overlap, i.e. eqn (9). Equation (10) constitutes a set of 16 linear coupled first-order 
ordinary differential equations. A solution vector containing the fundamental variables for each 
adherend can be defined such that 

{yi} = W0,w
i,ßi

x,v
i

0,N
i
xx,N

i
xy,Mxx,Qx}    « = 1,2 (11) 

These variables will be determined through the analysis. In addition, the quantities 

{yU = {Nyy,Myy,Mxy,Qy}    i = l,2 (12) 

can be determined from the equilibrium equations and the constitutive relations. 
To solve the problem the boundary conditions and continuity conditions have to be stated 

«o or N'xx, W' or Q'x  ] 
x = — L,, L+L2: prescribed: }   i=\,2 

ß'x or M'xx, v'0 or A^J 

x = 0: adherend 1: Continuity across junction 

adherend 2: N2
XX = N% = M2

xx = Q2
x = 0 

x = L: adherend 1: Nxx = Nl
xy = Mxx = Qx = 0 

adherend 2: Continuity across junction 

Continuity across each step: 

adherend 1: UQ* = u1
0—ß1j*l 

MXX = MXX+NX/X 

Ml
x*y = Mxy+Nxyt* 

adherend 2: I* = ul — ß2
xt*2 

M2* = M2+N~ xxl2 

Mx*y = M2
xy+N2

x/2 

(13) 

where tt* and t2* are the distances between the centerlines of the adherend laminates at each step. 
The boundary conditions for adherend 2 at x = 0 and for adherend 1 atx = L are derived from the 
assumption that the adherend edges are free and do not participate in the load transfer (see Fig. 1). 

Scarfed lap-joints 
For the scarfed lap-joint problem the constitutive relations, the kinematic relations and the equili- 
brium equations outside the overlap zone are the same as for the stepped lap-joint. Inside the 
overlap zone the constitutive relations are the same as for the stepped lap-joint, except that the 
stiffness parameters change as functions of the longitudinal coordinate due to the linear change of 
adherend thicknesses. The equilibrium equations are also different inside the overlap zone due to the 
linear change of the adherend thicknesses. With reference to Fig. 3, the equilibrium equations for 
the scarfed lap-joint within the overlap zone (region; 0<x<L, see Fig. 1) can be written as follows 

N1      =—z N2     =T 11xx,x '■ax' ly xx, x      '-ax 
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Nl     = —T 1' xy, x ^ ay 

y£x, x~       "a> 

"*xx, x ~ \Lx       ''a 

M =0   — T "'■xy, x      VJy &y\ 

ti(x)+ta 

ti(x)+ta 

)+Nl 
2L 

N        =T 

öl ^ = fa 

M2     = 02 
'        lrx XX, x       >Cx 

)+N'>TL- 
M2     =0

2
 — T   I Lxxy, x      >Cy a.y\ 

t2(x)+ta  \     „    t2 
   \+N2

xx  
2 2L 

t2(x)+t[ a     \    „2      f2 )+N- xy 
2L 

0<x<L       (14) 

where the relationship between xw, aa in eqn (14) and xm, o^ shown in Fig. 3 is established through 
equilibrium 

T„ = Ta„+o,
a„tana,   aa = aan - zan tan a (15) 

The quantities tx(x) and t2{x) are the linear variations of the thicknesses of the adherends defined in 
eqn (2), and t1 and t2 are the thicknesses of the adherends outside the overlap zone. 

As for the stepped lap-joint the complete set of system equations for the scarfed lap-joint problem 
can be formed by a combination of the derived equations. The system equations for the scarfed lap- 
joint are the same as for the stepped lap-joint outside the overlap, i.e. in the areas — Lt<x<0 and 

□5 DQ? 
ay dy AM* 

Mxu -*-   ^*y dx 

Fig. 3. Equilibrium elements in the overlap zone for a scarfed lap-joint; 0<x<L. 
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L<x<L+L2. Within the overlap zone, i.e. for 0<x<L, combination of eqns (5), (6), (8) and (14) 
yields 

ßl x = k4iNxx+k51N
l

xy+k61M 

Vo, x = k71N
l

xx+kslNxy+k91Mx 

i 
JCJC' 

«o. x = kl2N2
xx+k22N

2
xy+k32M

2
xx 

Vx=-ßl 
ßl x = k42N

2
xx+k52N

2
xy+k62M 

Vo, x = k72N
2

xx+kS2N
2

xy+kg2M[ 

2 
xx 

Nl 
Ga   ,    Gatx(x) 

un+ 
2ta 

ßl a ..i Kx,x=-  "Ö- 
2ta     

Px 

Ga   2    Gat2(x) 
 "o+ — ßl 
ta 2ta 

G a   ..2 
Mn — 

Gj2(x) 

2t» 

»rl                      a      1 
Ky,x=   V0- 

'a     2 A72 Ga      ,      Ga 

Nh,x=- VA+ vf 
ta 

V(p 

ta 

0 

Mxx,x = Ql
x+ 

Ga{tx{x)+ta)        Gj^xXt^+tJ 
1+ «n+ ßx 

2ta 4f„ 

„2        ^    Ga(t2(x)+ta)        Gatx{x){t2{x)+ta) 
M2 x = Q2

X+ — «o+ : ßl 
2ta 4ra 

 «o 
2f„ 

Ga(t2(x)+ta) 

2U 

Ga?2(x)(f1(x)+?a) f, 
+ K+ ^i*. 

4?, 2L 

Gaf2(x)(;2(x)+U n2    f2 

4r„ 2L 

^\ a       1 a       2 
Qlx=-—^ — ^ (16) 

Coefficients ku-k9i (/ = 1, 2) are functions of the longitudinal coordinate, as the stiffness parameters 
are functions of the longitudinal coordinate within the overlap for the scarfed lap-joint. To solve the 
problem the boundary conditions again have to be stated 

x= — Lu L+L2: prescribed: 
«o or A^, wl or Qx 

ß'x or M'xx, v0 or N'xy, 

x = 0: adherend 1: Continuity across junction 

adherend 2: N2
XX = N% = M2

xx = Q2
x = 0 

x = L: adherend 1: Nl
xx = Nl

xy = Ml
xx = Ql

x = 0 

adherend 2: Continuity across junction 

« = 1,2 

(17) 
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The governing equations can be derived in a similar way for the double-sided stepped lap and 
scarfed lap-joints. In these cases a set of 24 linear coupled first-order ordinary differential equations 
will appear within the overlap zone. In addition, other continuity conditions have to be specified. 

Modelling of adherends as beams 

Modelling of the adherends as narrow beams 
can be considered as a special case of cylindri- 
cal bending. When the adherends are modelled 
as beams the width direction displacements are 
not considered, and only the longitudinal and 
vertical displacements are included. Thus, the 
displacement field in eqn (3) is reduced to 

u0 = u0(x),    w = w(x) (18) 

For this case the constitutive relations for a 
composite beam are reduced to 

Nxx = A'nu'0,x-B'nw[x; (19) 

The kinematic relations (eqn (6)), the equili- 
brium equations (eqns (7) and (24)) and the 
constitutive relations for the adhesive layer (eqn 
(8)) are the same as for cylindrical bending 
cases except that all variables associated with 
the width direction are nil. 

The problem is reduced to a set of six 
coupled first-order ordinary differential equa- 
tions for each adherend outside the overlap 
zone, and 12 inside the overlap zone. For this 
problem, the solution vector containing the 
fundamental variables for each adherend is 
defined by 

{yi) = {ui
0,w

i,ßx,Nxx,Mxx, Qx\    /=1,2   (20) 

The boundary conditions can be stated as for 
the cylindrical bending case (eqns (13) or (17)) 
except that v0 or N^ do not have to be specified 
on the boundaries x = constant. 

Multi-segment method of integration 

The set of governing equations, i.e. eqns (9) 
and (10) for the stepped lap-joint and eqns (9) 
and (16) for the scarfed lap-joint, together with 
the boundary conditions, eqn (13) or eqn (17), 
constitute   a   multiple-point   boundary   value 

problem   which   for   both   problems   can   be 
expressed in the following general form 

{y\x)}tX = [All(x)]{y\x)}+{B1(x)} 

-L!<x<0 

{yl(x)Y 

{Ax)}. 

{y\x)} 

{Ax)} 

[A„(*)] [A12(x)] 

XKiix)] [A22(x)]_ 

[B2(x)} 
0<x<L 

{y2(x)},x = [A22(x)]{y2(x)}+{B2(x)} 

L<x<L+L2 (21) 

The boundary conditions at x = — Lu x = 0, 
x = L, x = L+L2 (see Fig. 1) are stated by 
specifying linear combinations of the fundamen- 
tal variables 

x=-L1:[T0]{y1(-L1)} = {U0} 

{/(0)}\ 
x = 0:[T1].    , 

V(0)} 

X = L:[TJ^)>1 = {U2} 
2Jl{/(L)}j 

x = L+L2. [T3]{v1(L+L2)} = {U3} (22) 

It should be emphasized that eqn (22) does 
not involve any restrictions on the boundary 
conditions, and that any natural boundary con- 
ditions may be stated in this form. The 
multiple-point boundary value problem consti- 
tuted by eqn (21) and eqn (22) is solved using 
the 'multi-segment method of integration' (see 
Kalnins [10]). This method is based on a trans- 
formation of the original 'multiple-point' 
boundary value problem into a series of initial 
value problems. The principle behind the 
method is to divide the original problem into a 
finite number of segments, where the solution 
within each segment can be accomplished by 
means of direct integration. Fulfilment of the 
boundary conditions, as well as fulfilment of 
continuity requirements across the segment 
junctions, is assured by formulation and solving 
a set of linear algebraic equations. 
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NON-LINEAR ADHESIVE FORMULATION 

Most polymeric structural adhesives exhibit 
inelastic behaviour, in the sense that plastic 
residual strains are induced even at low levels 
of external loading. Thus, the assumption of 
linear elasticity of the adhesive is an approxima- 
tion. 

The concept of effective stress-strain is one 
way of approaching this problem, and it 
assumes, for a ductile material, that plastic resi- 
dual strains are large compared with the creep 
strains at normal loading rates. Therefore a 
plastic yield hypothesis can be applied, and the 
multi-directional state of stress can be related 
to a simple unidirectional stress state through a 
function similar to that of von Mises. 

However, it is widely accepted that the yield 
behaviour of polymeric structural adhesives is 
dependent on both deviatoric and hydrostatic 
stress components. A consequence of this 
phenomenon is a difference between the yield 
stresses in uniaxial tension and compression. 
This behaviour has been incorporated into the 
analysis by the application of a modified von 
Mises criterion suggested by Gali et al. [11] 

s = CSW2D)      +C^/Ji 

Cs = 
21 

Cv = - 
X-l 

2X 

k = (23) 

where s is the effective stress, /2D is the second 
invariant of the deviatoric stress tensor, Jt is the 
first invariant of the general stress tensor and A 
is the ratio between the compressive and tensile 
yield stresses. For k-\, eqn (23) is reduced to 
the ordinary von Mises criterion. At the failure 
load level, the first part of eqn (23) is trans- 
formed into the expression 

^ult = Cs, ultW2D)ult +CV, ult(A)ult (24) 

where the subscript 'ult' denotes 'ultimate'. 
Equation (24) describes the failure envelope for 
the general case of a ductile material, and in 
three-dimensional stress space eqn (24) repre- 
sents a paraboloid with its axis coincident with 
the line ax = o2 — er3. 

The effective strain e is given by: 

1 1 

1+v 
e = Cs — (/2D)1/2+Cv —— (/,) (25) 

1—2v 

where v is Poisson's ratio, I7rt is the second 
invariant of the deviatoric strain tensor and It is 
the first invariant of the general strain tensor. 

The non-linear adhesive properties are 
included by implementing an effective stress- 
strain relationship derived experimentally from 
tests on adhesive bulk specimens [7,9]. Thus, it 
is assumed that the bulk and in situ mechanical 
properties of the structural adhesive are closely 
correlated (see Gali et al. [11] and Lilleheden 
[12])- 

Based on a tangent modulus approach for the 
the non-linear effective stress-strain relation- 
ship for the adhesive, the solution procedure for 
determining the stress distribution in the adhe- 
sive layer can be described by the following 
steps. 
1. Calculate the effective strains, e1} and stres- 

ses, s^ (eqns (23) and (25)), for each point 
of the adhesive layer using the linear elastic 
solution procedure and assuming a uniform 
elastic modulus, Ex, for the adhesive. 

2. If the calculated effective stresses, sx*, are 
above the proportional limit, denoted by 
spmp, determine the effective stresses sx for 
each point of the adhesive layer according to 
the corresponding effective strains, ex, cal- 
culated in step (1). 

3. Calculate the difference As, =s\—Si between 
the 'calculated' and the 'experimental' effect- 
ive stresses, and determine the specific 
tangent modulus, E2, defined by 

Et
2={l-ö(Asl/sl)}El (26) 

where ö is a weight factor which determines 
the change of the modulus in each iteration. 

4. Re-run the procedure (steps (1) and (2)) 
with the elastic modulus, Ex, for each adhe- 
sive point modified as per step (3). 

5. Compare the 'calculated' effective stresses, 
s*, for each adhesive point with the 'experi- 
mental' values, s, obtained from the effective 
stress-strain curve. 

6. Repeat steps (4) and (5) until the difference 
between the 'calculated' and 'experimental' 
stresses (As) drops below a specified fraction 
(2%) of the 'experimental' stress value. 
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Convergence is usually achieved within a few 
iterations. 

EXAMPLES AND DISCUSSION 

To show the applicability of the developed 
linear and non-linear solution procedures two 
examples will be presented. The first example 
presents the results obtained for a stepped lap- 
joint assuming linear elastic adhesive behaviour. 
The second example presents the results 
obtained for a scarfed lap-joint assuming linear 
elastic as well as non-linear adhesive properties. 
The basic adherends properties, i.e. outside the 
overlap zone, and the adhesive properties 
assumed in the examples are given by (see 
Fig. 1 for reference) the following. 

Plies: 

Laminate 1: 

Laminate 2: 

Adhesive: 

Lengths: 

Load and B.C.: 

Modelling: 

graphite-epoxy 
Ex = 164.0 GPa, 
E2 = E3 = 8.3 GPa, 
G12 = G31 = G23 = 2.1 GPa, 
v12 = v13 = v23 = 0.34, 
t = 0.125 mm 
graphite-epoxy [0°, 30°, 60°]4, 
tx = 1.5 mm; 
graphite-epoxy [60°, 30°, 0°]4, 
t2 = 1.5 mm; 
epoxy AY103, Ea = 2800 MPa, 
va = 0.4, ta = 0.05 mm; X = 1.3, 
Vop = 27.0 MPa, 
sult = 71.5 MPa, euU = 0.049 
L1=L2 = 30.0 mm, 
L = 20.0 mm; 
x = —Lx:   ul

0 = wl = VQ = Mx
xx = 0; 

x = L+L2:        w2 = vl = M2
xx = 0, 

N2
xx = 0.2kN/mm 

Wide    plates    in    cylindrical 
bending 

Stepped lap:       tal = 1.0 mm;   length   of  each 
step = 7.0 mm 

Scarfed lap:        a = 4.33° 

The adhesive layer stresses are normalized with 
respect to the prescribed tension load on the 
loaded edge, which is given by 

<jN = N/t2b (27) 

where N is value of the axial tension load. 

Linear analysis of a stepped lap-joint 

The stepped lap-joint is made with three steps 
in the overlap (see Fig. 1). Within each step 
three plies of the laminates are dropped. The 
lay-up of the laminates is made such that a 0° 
ply is always facing the adhesive layer. Figure 4 
shows the distribution of the normalized adhe- 
sive layer shear stresses. 

As a consequence of the inclusion of the 
coupling effects in the laminates it is seen that 
width direction shear stresses (xay) are induced. 
Figure 5 shows the distribution of the normal- 
ized adhesive layer transverse normal stresses. 

From Figs 4 and 5 it is seen that the peak 
stresses are located close to the ends of the 
overlap. 

Linear and non-linear analysis of a scarfed lap- 
joint 

The vertical displacements of the adherends are 
shown in Fig. 6, and the width direction dis- 
placements are shown in Fig. 7. 

The width direction displacements VQ and VQ 
shown in Fig. 7 occur because of the inclusion 
of the coupling effects in the laminates, i.e. 
because the adherend laminates are asymmetric 
and unbalanced. Figure 8 shows the distribution 
of the normalized adhesive layer stresses. 

Tan/ÖN 

Tay/0N 

O 0.2 0.4 0.6 0.8 1 
Fig. 4. Normalized adhesive layer shear stresses, ij^ and xa>,/o-N. 
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- oJan 

x/L 
O 0.2 0.4 0.6 0.8 1 

Fig. 5. Normalized adhesive layer transverse normal stresses aja^,. 

As a consequence of the inclusion of the 
coupling effects in the laminates, it is seen that 
width direction shear stresses (xay) are induced. 
As for the stepped lap-joint, it is seen that the 
peak stresses are located close to the ends of 
the overlap. 

The stress-strain curve for the AY103 adhe- 
sive (from Ciba-Geigy) used is obtained from 

bulk specimens [7]. Using the non-linear 
material properties for this adhesive, together 
with the modified von Mises criterion, results in 
the adhesive layer stress distribution shown in 
Fig. 9. 

Comparison of the adhesive stress distribu- 
tions obtained for the linear case in Fig. 8 and 
for the non-linear case in Fig. 9 shows that 

Adherend 2 / - 

x, [mm] 
-40    -30    -20    -IO        O IO      20      30      40      50 

Fig. 6. Vertical displacements w1 and w2. 

v0\ v0
2, [mm] 

0.002 

O.OOl 

O 

-O.OOl 

-0.002 

-0.003 

-0.004 

-0.OO5 

- 
/7s 

Adherend 1 ^\ */                  Adherend 2 
if if // 

if 
// // // 

if /f // // 

x, [mm] 
-40     -30    -20    -IO       O        IO      20     30      40 

Fig. 7. Width direction displacements vj and v2,. 
50 
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Fig. 8. Normalized adhesive layer stresses, xja-^, Tay/aN and aJaN, obtained using the linear solution procedure. 

-0.05 
O 0.2 0.4 0.6 0.8 

Fig. 9. Normalized adhesive layer stresses, T>N, Ta3,/<7N and oJoN, obtained using the non-linear solution procedure. 

inclusion of the non-linar effects reduce the 
maximum predicted adhesive layer stresses by 
about 25%. Based on these results, it is con- 
cluded that inclusion of adhesive non-linarity is 
very important as adhesive plasticity can occur 
even at low levels of external loading 

CONCLUSION 

A general method for the analysis of stepped 
and scarfed adhesive-bonded lap-joints between 
composite laminates has been presented. The 
analysis accounts for coupling effects induced 
by adherends made as asymmetric and 
unbalanced laminates. The analysis allows speci- 
fication of any combination of boundary 
conditions and external loading, and it allows 
inclusion of the non-linear behaviour of many 
structural adhesives. The analysis can be carried 
out with the adherends modelled as narrow 
beams or wide plates in cylindrical bending. 

The   developed   analysis   procedures   have 
proven to be robust, reliable and computionally 

effective,  and  the  obtained  results  are very 
accurate. 
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A comprehensive study on analysis and design of fiber reinforced plastic 
(FRP) composite deck-and-stringer bridges is presented. The FRP decks 
considered consist of contiguous thin-walled box sections and are fabricated 
by bonding side-by-side pultruded thin-walled box beams, which are placed 
transversely over FRP composite stringers. In this study, we review the 
modeling and experimental verification of FRP structural beams, including 
micro/macro-mechanics predictions of ply and laminate properties, beam 
bending response, shear-lag effect, and local and global buckling behaviors. 
A simplified design analysis procedure for cellular FRP bridge decks is 
developed based on a first-order shear deformation macro-flexibility 
(SDMF) orthotropic plate solution. The present approach can allow the 
designers to analyze, design and optimize material architectures and shapes 
of FRP beams, as well as various bridge deck configurations, before their 
implementation in the field. Experimental studies of cellular FRP bridge 
decks are conducted to obtain stiffness coefficients, and an example of a 
cellular FRP deck on optimized winged-box FRP stringers under actual 
track-loading is presented to illustrate the analytical method. The 
experimental-analytical approach presented in this study is used to propose 
simplified engineering design equations for new and replacement highway 
FRP deck-and-stringer bridges. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Many of the bridges in the United States are 
deteriorating, particularly concrete bridge 
decks. According to the US Congress, 42% of 
the nation's highway bridges are considered 
deficient [1]. Owing to the corrosive nature of 
steel rebars used in concrete bridge decks, the 
service-life of these bridges is reduced. The 
rehabilitation and replacement of bridge decks 
requires intensive planning, analysis and design 
of alternative materials and systems. The advan- 
tages of fiber reinforced plastic (FRP) 
composites over conventional materials moti- 
vate their use in highway bridge rehabilitation 
and replacement applications. The favorable 
properties of FRPs include low weight, corro- 
sion resistance, high specific stiffness and 
strength, and ease of installation and fabrica- 
tion. In addition, the material architecture and 
geometric shape of FRPs can be tailored for 

specific applications. FRP decks are considered 
a potential solution to the problem of deterior- 
ating bridge decks. 

Current applications of composite structural 
components include buildings, pedestrian 
bridges, platforms and highway bridges. In the 
literature, there are several efforts to build and 
test FRP decks for highway bridges. The success 
of the use of FRP decks for highway bridge 
applications will depend, among other things, 
on the accuracy and simplicity of the analytical 
tools available. When designing steel or con- 
crete bridges, engineers have access to design 
guidelines to meet certain established criteria. 
In contrast, when dealing with FRP bridge 
decks, engineers have to use expensive tools, 
such as the finite-element method, to optimize 
and analyze the superstructure. The use of 
sophisticated analyses can be time consuming 
and, therefore, a simple but yet accurate analy- 
sis procedure is needed to be able to predict the 
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296 H. A. Salim, J. F. Davalos, P. Qiao, S. A. Kiger 

response of FRP decks for highway bridge 
applications. 

In this study, we propose to construct FRP 
decks from single-cell thin-walled box sections 
bonded together using adhesive (Fig. 1). In 
order to fully understand the behavior of the 
whole system, the analytical-experimental 
evaluation of the component single-cell box sec- 
tions is essential; therefore, the developments 
on analysis, design and optimization for struc- 
tural composite beams are first reviewed. The 
review includes: micro-mechanics predictions of 
ply stiffness; macro-mechanics predictions of 
laminate (panel) stiffness; beam stiffness coeffi- 
cients computed using the Mechanics of 
Laminated Beams (MLB) model; beam 
response in bending accounting for shear defor- 
mation for box, winged-box (WB) and 
wide-flange (WF) sections; shear-lag study of 
beam flange panels; local and global buckling 
behaviors of FRP beams; first-ply-failure; and 
design optimization of beam shapes. The com- 
bined analysis, design optimization and 
experimental evaluation can be used to propose 
a comprehensive engineering design approach 
for FRP beams and to develop new innovative 
shapes for bridge applications. 

Consistent with design methods for highway 
bridges given by AASHTO [2], step-by-step 
design guidelines for FRP decks are needed. 
The development of design equations can be 
based on a first-order shear deformation macro- 
flexibility (SDMF) orthotropic plate solution, as 

FRP deck 

bonded interface 

proposed by the authors. In this paper, a one- 
term approximation of a SDMF series solution 
for deck-and-stringer orthotropic bridges is used 
to develop simple expressions for load distribu- 
tion factors, which in turn reduce the analysis of 
a deck-and-stringer bridge system to the analy- 
sis of a beam section. It is significant that the 
present equations include important parameters 
that represent, as accurately as possible, the 
response characteristics of the structure, such as 
material properties of the deck and stringers, 
the bridge aspect ratio, and the number and 
spacing of the stringers. 

First, we present a comprehensive overview 
of analysis and design optimization of FRP 
beams and, subsequently, we introduce the 
SDMF analysis for FRP deck-and-stringer 
bridges, from which we derive an explicit 
expression for wheel-load distribution factors. 
The experimental investigation of a cellular 
FRP bridge deck test sample includes push- 
down shear, transverse and longitudinal 
bending, and torsion tests. Further on-going 
research efforts on FRP bridges are described 
in this paper. 

REVIEW OF EXPERIMENTAL- 
ANALYTICAL EVALUATION AND OPTIMAL 
DESIGN OF FRP BEAMS 

Because of the complexity of composite 
materials, analytical and design tools developed 
for conventional  materials  cannot  always be 

FRP box beam 
101.6 x 203.2 x 6.35 mm (4 x 8 x 1/4 in? 
(as shown in Figure 2) 

FRP stringer 
Winged-Box beam 
304.8 x 609.6 mm (12 x 24 in) 

Fig. 1. Schematic of an FRP deck on FRP stringers. 
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readily applied to FRP shapes, and numerical 
methods, such as finite elements, are often diffi- 
cult and expensive to use and require 
specialized training. Therefore, to expand the 
structural applications of pultruded FRP beam 
sections and create a new family of efficient 
FRP shapes for civil engineering structures, a 
practical and comprehensive engineering design 
and analysis tool for FRP shapes is needed. In 
this section we review analytical and experi- 
mental studies on FRP beams, and we suggest a 
practical design and optimization method for 
structural composite beams. 

Prediction of ply-laminate stiffnesses 

Although pultruded FRP shapes are not lami- 
nated structures in a rigorous sense, they are 
pultruded with material architectures that can 
be simulated  as laminated configurations. A 

typical pultruded section mainly includes the 
following three types of layers [3] (see Figs 2 
and 3): (1) continuous strand mats (CSM); (2) 
angle-ply stitched fabrics (SF); and (3) unidirec- 
tional fibers or roving layers. Each layer is 
modeled as a homogeneous, linearly elastic and 
generally orthotropic material. Based on the 
fiber volume fraction (V{) and the manufac- 
turer's specification, the ply stiffnesses are com- 
puted from micro-mechanics models for 
composites with periodic micro-structure [4]. 
For more details on the Vf computation and 
micro-mechanics model see Davalos et al. [3]. 
Once the ply stiffnesses for each laminate or 
panel of a FRP beam are computed, the stiff- 
nesses of a laminate can be computed from 
macro-mechanics [5]. The micro/macro-mech- 
anics models reviewed in this study have been 
shown to correlate well with experimental 
results for coupon samples [3,6,7]. 

208.3/m (62.5/ft) - 61 yield roving 

' Nexus Veil 

203.2 mm (8") 

15.5 oz 90   SF 

1 *S> 1/2 oz CSM 

1 oz CSM 
12oz+/-45°SF 

208.3/m (62.5/ft) - 61 yield 
5 oz 90° SF 

ozCSM 

Total # of 61 yield ravings = 250 

6.35 mm (1/4") 

101.6 mm (4") 

Fig. 2. Material lay-up of a typical FRP box beam section. 

I-section 

13 layers through the thickness of each panel 

Fiber volume fraction: Vf = 44.3% 

W.VAVWAVAV 

VAWMWAVAW 

WIVAWAVAW 

3/4oz. CSM & 17.7oz. SF 
54 rovings (62 yield) 

3/4oz. CSM&17.7oz. SF 
34 ravings (62 yield) 

3/4oz.CSM&17.7oz. SF 
54 rovings (62 yield) 

3/4oz. CSM & 17.7oz. SF 
54 rovings (62 yield) 

3/4oz. CSM & 17.7oz. SF 
54 rovings (62 yield) 

3/4oz.CSM&17.7oz. SF 
54 rovings (62 yield) 

3/4oz.CSM&17.7oz. SF 

304.8 x 304.8 x 12.7 mm (12 x 12 x 1/2") 

Fig. 3. Dimensions and panel fiber architectures of a WF-beam. 
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Predictions of beam stiffness coefficients and 
member response 

The response of FRP shapes in bending is eval- 
uated using the mechanics of thin-walled 
laminated beams (MLB) model [8]. In the MLB 
model the stiffness coefficients (axial, A; bend- 
ing, D; axial-bending coupling, B; and shear, F) 
of a beam are computed by adding the con- 
tribution of the stiffnesses of the component 
panels, which in turn are obtained from the 
effective beam moduli. Displacement and rota- 
tion functions can be obtained by solving 
Timoshenko's beam theory equilibrium equa- 
tions, and the ply strains and stresses can be 
obtained from classical lamination theory 
(CLT) [5]. The MLB model is suitable for 
straight FRP beam columns with at least one 
axis of geometric symmetry. As indicated in 
Table 1, the MLB analytical prediction of 
deflections and strains correlated well with 
experimental results for the 101.6x203.2 
x 6.35 mm (4 x 8 x 1/4 in.) box beam section of 

Fig. 2 (see Salim et al. [6]). Based on the MLB 
model, engineering design equations for FRP 
beams under bending [9] have been formulated, 
and they can be easily adopted by practicing 
engineers and composite manufacturers for the 
analysis, design and optimization of structural 
FRP beams. 

Local and global buckling of FRP shapes 

Because of the low modulus of elasticity of glass 
fibers and the common thin-walled sectional 
geometry, FRP beams may be susceptible to 
buckling even under service loads. Owing to the 
high strength-to-stiffness ratio of pultruded 
FRP composites, buckling is the most likely 
mode of failure before the ultimate material 
strength is reached. We developed a compre- 
hensive analytical approach to study the local 
buckling behaviors of pultruded FRP shapes 
[10]. The local buckling analysis for discrete 

laminated plates or panels of FRP shapes is 
formulated and the effects of restraint at the 
flange-web connection are considered. For the 
flange panels under compression, simplified 
expressions for predictions of plate buckling 
strength are proposed by approximately solving 
transcendental equations as 

Nx=— [^(2jD^D^2)+p(D12+2D66)] (1) 

where Nx is the critical stress resultant, Dtj are 
bending stiffness coefficients, and p and q 
depend on the coefficient of restraint ((). For 
example, the values of/? and q are illustrated in 
Fig. 4 for the flanges of the 101.6x203.2 
x 6.35 mm (4 x 8 x 1/4 in.) box beam section 
(Fig. 2), where ( = 0 corresponds to a clamped 
condition and £ = oo represents a hinged condi- 
tion. The details on the determination of the 
coefficient of restraint (() are given by Qiao & 
Davalos [10]. For the web panels under shear 
loading, the analysis is based on an energy 
approach, and the equilibrium equation in 
terms of the total potential energy is solved by 
the Rayleigh-Ritz method. The simplified 
design equation [eqn (1)] and the relationship 
between the parameters p and q and the coeffi- 
cient of restraint ( developed by Qiao & 
Davalos [10] can assist practitioners to perform 
local buckling analyses of customized FRP 
shapes as well as to optimize innovative sec- 
tions. 

A combined analytical and experimental 
evaluation of flexural-torsional and lateral-dis- 
tortional buckling of fiber-reinforced plastic 
(FRP) composite I-beams was recently con- 
ducted by Davalos & Qiao [11]. Based on 
energy principles and nonlinear elastic theory, 
simplified engineering equations for flexural- 
torsional buckling were formulated. A good 
agreement was obtained among the analytical 
predictions, experimental results and finite-ele- 
ment   analyses,   and   through   the   combined 

Table 1. Experimental and analytical predictions of deflections and strains for a 101.6 x 203.2 x 6.35 mm (4 x 8 x 1/4 in.) 
box section 

Loading Maximum deflection (mm/kN) Maximum strain (^g/kN) 

Experiment MLB model Ratio Experiment MLB model Ratio 

Four-point 

Three-point 

edge 
flat 
edge 
flat 

0.114 
0.354 
0.796 
2.427 

0.122 
0.373 
0.830 
2.512 

1.070 
1.051 
1.043 
1.035 

82.31 
123.56 
105.67 
177.93 

82.64 
122.58 
116.36 
184.16 

1.004 
0.992 
1.101 
1.035 
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Coefficient of restraint L, 

Fig. 4. Local buckling predictions for the flange of the box 
section in Fig. 2. (Factors p and q vs the coefficient of 

restraint C-) 

analytical and experimental program considered 
by the authors it was shown that the proposed 
analytical solutions can be adopted to predict 
flexural-torsional and lateral-distortional buck- 
ling loads and used to formulate simplified 
design equations for pultruded FRP I-sections. 

First-ply-failure 

The Tsai-Hill failure criterion can be used to 
predict the first-ply-failure load (PFPF) of FRP 
beams as [12] 

FPF 

(2) 

where a±, a2 and T12 are the components of in- 
plane ply stresses in material coordinates, and 
X, Y and S are the corresponding ply strengths. 

FRPBEAM computer program 

Based on the modeling assumptions and analyt- 
ical tools for FRP beams discussed above, the 
computer program FRPBEAM (flowchart 
shown in Fig. 5) was developed by Qiao et al. 
[13] to model, analyze and design FRP beams, 
from the evaluation of ply stiffnesses by micro- 
mechanics to  the  overall beam response by 

Fig. 5. Computational flowchart for program FRPBEAM 
[13]. 

Mechanics of Laminated Beams (MLB). The 
MLB subroutine can accurately predict dis- 
placements and strains of pultruded FRP beams 
[14]. 

Shear-lag in flange components of beams 

In contrast to the assumption of constant stress 
across the width of a section used in elementary 
beam bending theory, the stress distributions 
across the flanges of beams can be nonuniform 
due to shear-lag, which results from the in- 
plane shear flexibility of the flange panels. The 
shear-lag effect can be important in design as it 
can lead to a significant decay of normal stres- 
ses at locations away from the intersections of 
flanges and webs. On the other hand, shear-lag 
can also reduce the bending stiffness of a given 
member from what is expected by ordinary 
beam theory. Salim & Davalos [15] presented a 
model for predicting shear-lag effects in FRP 
box sections and this model was extended to the 
analysis of FRP WF sections [16]. The flanges 
of a box or a WF section are first isolated and 
loaded by the longitudinal shear flow trans- 
mitted from the webs and by the normal stress 
resultant per unit width. This procedure is 
incorporated into the Mechanics of Laminated 
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27.0 

22.5 " 
US 

/kN 
18.0 

13.5 

Constant strain by beam theory 

Experimental 
. SL model 

-152.4 
1 1 1 1 1 J- 

50.8 -50.8 

s = flange width (mm) 

152.4 

Fig. 6. Shear-lag effects of the WF beam in Fig. 3. 
Beams (MLB) model [8] to predict the non- 
linear distribution of stresses on the flanges that 
result from shear-lag effects. The predictions of 
the present shear-lag model correlated closely 
with experimental results for FRP box beams 
[15] and for wide-flange I-beams [16], as illus- 
trated in Fig. 6. 

Design optimization of FRP shapes 

Unlike the extensive work reported for the opti- 
mal design of laminated composites plates and 
shells, the material architecture and shape opti- 
mization of thin-walled laminated composites 
beams is still under investigation and is less 
developed. Qiao et al. [17] proposed an optimi- 
zation method to minimize the cross-sectional 
area for new pultruded FRP beams. The beam 
members were subjected to transverse loading, 
and the optimization constraints included 
deflection limit, material failure and elastic 
buckling. A global approximation technique was 
combined with a power law to generate the con- 
straint equations at a number of design points. 
Davalos et al. [18] improved the above work 
and presented a design and optimization 
approach for structural composite beams. An 
optimized winged-box section was proposed as a 
new structural shape with significantly better 
performance than a counterpart WF beam of 
the same cross-sectional area. A multiobjective 
(multicriteria) design optimization of material 
architecture (ply fiber orientations and ply fiber 
percentages) for pultruded FRP shapes was 
subsequently developed [12], and a wide-flange 
I-section beam, which is one of the most com- 
monly used structural shapes, was chosen to 
illustrate the analysis and design optimization. 
The beam maximum deflection, buckling resist- 
ance and material failure were considered as 
multiple objectives (criteria) in the optimization 
process. The optimal solutions were obtained 
through a multiobjective scheme, and a recom- 

mended practical design was proposed [12] 
which was used to manufacture the actual sec- 
tion shown in Fig. 3. 

An optimized winged-box (WB) section was 
recently proposed by Qiao et al. [19], and the 
final cross-sectional dimensions and material 
architecture are given in Fig. 7. This WB beam 
section is used for the bridge main stringers of 
the example presented in this study (Fig. 1). 
The review given above on a comprehensive 
study for the analysis, design and optimization 
of FRP beams can be used to formulate 
engineering design equations and develop 
various innovative shapes for infrastructure 
applications. 

DESIGN OF AN FRP DECK-AND-STRINGER 
BRIDGE 

For an FRP bridge deck (Fig. 1), equivalent 
orthotropic properties such as longitudinal (Dy), 
transverse (Dx) and in-plane (H^) stiffnesses 
are needed to accurately model the structure. 
These properties are determined from the 
apparent stiffnesses of the FRP deck. The deck 
longitudinal stiffness, along the axis of the 
single cells, can be characterized by considering 
each repetitive cell as a representative beam, 
and the apparent bending stiffness of the cell, 
Dy, is predicted using the Mechanics of Lami- 
nated Beams (MLB) model [3,8]. The deck 
transverse stiffness, Dx, and in-plane shear stiff- 
ness, Hxy, are defined analytically and 
experimentally (Fig. 8). 

The design of a deck-and-stringer bridge is 
usually reduced to the analysis of a single beam 
section, loaded by a concentrated load corre- 
sponding to an equivalent fraction of the 
applied truck load. This equivalent load is 
defined by load-distribution factors that 
approximate the overall behavior of the bridge 
superstructure. In this section, the first-order 
Shear Deformation Macro-Flexibility (SDMF) 
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tf = 19.05 mm [3/4"] 

bp 76.2 mm {3.0"]   b2=76.: 

h = 609.6 mm [24.01 

17 layers through the thickness of flanges 
3/4 ozCSM& 17.7 ozSF 
21 rovings/25.4 mm [1 in] (113 yield) 
3/4 ozCSM& 17.7 ozSF 

<<»»<»»»»<>tt»9— 21 rovings/25.4 mm [1 in] (113 yield) 
3/4 oz CSM & 17.7 oz SF 
21 rovings/25.4 mm [1 in] (113 yield) 
3/4ozCSM&17.7ozSF 

'— 21 rovings/25.4 mm [1 in] (113 yield) 
'     3/4ozCSM&17.7ozSF 

»oae»»»«98»»»Q9— 21 rovings/25.4 mm [1 in] (113 yield) 
SF ggSSSiia— 3/4 oz CSM & 17.7 oz 

26 layers through the thickness of webs 
3/4 oz CSM & 17.7 ozSF 

13 yield) 2 rovings/25.4 mm [1 in] (1 
3/4 oz CSM & 17.7 ozSF 
2 rovings/25.4 mm f 1 in] (113 yield) 
3/4 oz CSM & 17.7 ozSF 
2 rovings/25.4 mm f 1 in] (113 yield) 
3/4ozCSM&17.7ozSF 
2 rovings/25.4 mm [1 in] (113 yield) 
3/4ozCSM&17.7ozSF 

L— 2 rovings/25.4 mm [1 in] (113 yield) 
I— 3/4 oz CSM & 17.70Z SF 
;— 2 rovings/25.4 mm [1 in] (113 yield) 

3/4 oz CSM & 17.7 ozSF 
2 rovings/25.4 mm [1 in] (113 yield) 
3/4 oz CSM & 17.7 ozSF 

1— 2 rovings/25.4 mm [1 in] (113 yield) 
3/4ozCSM&17.7ozSF 

Fig. 7. Dimensions and panel fiber architectures of an optimized winged-box beam [19]. 

analysis is first presented, and an explicit 
expression for wheel-load distribution factor is 
derived, followed by a proposed design method- 
ology for FRP composite deck-and-stringer 
bridges. Experimental results for stiffnesses of a 
cellular FRP bridge deck are correlated with 
the analytical solutions proposed by the authors. 

SDMF analysis 

For a rectangular plate element the equilibrium 
forces and moments, and the sign convention, 
for the deformations are shown in Fig. 9. The 
assumptions for shear deformation plate theory 
are analogous to Timoshenko's beam theory. 

101.6 mm (4" 

(a) Longitudinal bending 

I p 203.2 mm (8" 

00000005 floonyw 

203.2 mm (8") 

203.2 mm (8") 

101.6 mm (4") 

(b) Transverse bending 

101.6 mm (4"). 

c- A 
J 

203.2 mm (8") 

-6- 
(c) Torsion, L = 3.0 m (10.0 ft) 

Fig. 8. Experimental deck stiffness coefficients. 
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x, u 

y.v 

X NT 

Fig. 9. Sign convention for deformation and plate stress resultants. 

The displacement field of the plate is given by 
[20] 

u(x,y,z) = u0(x,y)+zil/x(x,y) 

v(x,y,z) = v0(x,y)+zil/y(x,y) 

w(x,y,z) = w0(x,y) (3) 

where u0, v0, w0 denote displacement compo- 
nents of a point along the x, v, z coordinates, 
and \jjx and \\iy denote the rotations of a line 
element, originally perpendicular to the longitu- 
dinal plane, about the y and x axes, respectively. 
Using the total potential energy principle, the 
equilibrium equations for first-order shear 
deformation theory can be obtained, as avail- 
able in Reddy [20]. The result is five differential 
equations for five unknowns, u0, v0, w0, \j/x and 
ij/y. However, in this case w0, \j/x and \\iy are 
decoupled from u0 and v0. 

For certain boundary conditions one can 
develop solutions by using double series expan- 
sions. The closed-form solution for the response 
of a bridge-type system (Fig. 10), with two 
opposite sides simply supported and the other 
two stiffened by edge beams, is developed by a 
macro-flexibility (MF) analysis [21]. The rect- 
angular deck-stringer system can be subjected 
to arbitrary static transverse loads (no torsional 
moments and/or in-plane forces). The stringers 
are equally spaced and have identical section 
and material properties. The analysis is general 
with respect to: (1) size and stiffness of the 
deck; and (2) type of loading (uniform and/or 
concentrated). The solution for symmetric load- 
ing condition only is given in this paper. 

The basic steps in the flexural analysis of 
ribbed plates by the macro-flexibility approach 
are: (1) following the formulation proposed by 
Salim et al. [21], obtain the solution for the 

plate stiffened by exterior stringers only (see 
Fig. 10b); (2) obtain the solution for an interior 
rib (stringer) subjected to the interaction forces 
R(x,r) (Fig. 10c); (3) as the solutions of the 
previous steps have the interaction forces R(x,r) 
as the only unknown, determine R(x,r) by satis- 
fying the compatibility conditions for the 
deflection of the plate along the interior ribs; 
and   (4)   once   the   deflection   functions   are 

^1 

r=0 1 2   

4 
z 

(a) Deck-and-Stringer system 

r " 

b 

y, r 

(b) Plate with exterior stringers only 

IT" 

(c) Interior stringer 

Fig. 10. SDMF flexural analysis model. 
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obtained for the plate and for the stringers, 
obtain moments for an isolated deck-and- 
stringer 'composite' beam section. Following 
these steps, the macro-flexibility solution for 
symmetric load case is derived. The solution for 
a stiffened plate is developed first, followed by 
the solution for an interior stringer. 

Solution for a plate stiffened by edge beams 
A Fourier polynomial series is employed in this 
approach to obtain the solutions for the plate 
equation. The solutions for w0, ij/x and \\iy for a 
symmetric loading are 

oo 

w0(x,y)=  X   Wij sm(ax)(cos(ßy)+W0) 
i, j= 1 

oo 

iK(x,y)=  £   Xucos(ax)(sm(ßy)+X0) 

The stiffness coefficients Atj and Dtj relate stress 
resultants and strains and curvatures. The con- 
stants W0 and X0 are obtained by satisfying the 
boundary conditions of the orthotropic plate, 
and are given as 

and 

X0=- 
■^44 Yu+ßWu 

Xn 
(6) 

<Av(x,y)=   2   Yu sin(ax) cos(ßy) 

(4) 

where a = in/a and ß =jn/b, W0 and X0 are edge 
deflection coefficients, and Wip Xy and Ytj are 
the coefficients to be determined to complete 
the solution. By applying orthogonality condi- 
tions [21] we obtain, for any given i and j, the 
following equations 

K2i 

Kl3 

12 ^13 

22 ^23 

23 K33_ 
(5) 

where Qtj is the load parameter and Ktj are the 
coefficients 

4a2 

Kx, = a2A55+)ß
2A44+ —- A55 W0K12 

ßb 

where K, F and D are, respectively, the shear 
correction factor, shear stiffness and bending 
stiffness of the exterior stringer (beam). At this 
stage all the constants have been determined to 
allow us to completely define the deflection and 
moments at any point in the plate of Fig. 10b 
for any type of loading. 

Solution for an interior stringer 
The effect of the interior stringers is now added 
in order to evaluate the deflection function and 
moments of any interior stringer. For any 
interior stringer at any location r (r = 0, 1, 2, ... 
n), the governing differential equations are [20] 

_8_ 

dx 
KF\ \j/R(x,r)+ 

8wR(x, r) 

9x 
= R(x,r)    (7) 

4a 

~ßb 
■ aA55+ — A55X0Kl3 

4a 
: ^44^21 = «^55+ — ^55^0^23 

ßb 

= aß(Dl2+D66)K 33 

= a2D66+ß2D22+A44K 22 

4a2 

= a2D, 1+ß'D66+A55+ -— D, ,X0+ — A55X0 
ßb ßb 

eVW)          /   _           dwR(x,r) 
D     y  V     -KF\ il/R(x,r)+ ^-  ) = 0 

8x2 8x 

(8) 

where wR(x,r) is the generalized deflection func- 
tion for any interior rib (stringer), t^R(x,r) is the 
generalized rotation of any interior rib and 
R(x,r) is the generalized interaction force at the 
rib line (Fig. 10c). 
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The generalized deflection function of any 
interior stringer is defined for any symmetric 
loading as 

wR(x,r) = Rn 

nx 
xsm 

nr 
sin —+Wt 

n 
o (9) 

where 

Rn-- 

öi 

1 1    \ ßn      n AW0 
 + ——     + —    1+  
KF     <X

2
D      Wtt     b\ n 

(10) 

Wheel-load distribution factor 

The macro-flexibility solution is used to define a 
wheel-load distribution factor for any of the 
stringers. The basic steps in the formulation 
are: (1) to obtain the edge deflection coeffi- 
cients W0 and X0 from eqn (6); and (2) to 
compute the distribution factor for any ith 
interior stringer as the ratio of the interaction 
forces, R(x,r), for the ith stringer to the sum of 
interaction forces for all stringers. The wheel- 
load distribution factor under symmetric 
loading is given as 

W?m(r) = 

nr 
W0+ sin — 

n 

(n+l)W0+ — n 
n 

(11) 

Design methodology for FRP composite bridges 

For the design of FRP composite deck-and- 
stringer bridges, the one-term SDMF solution is 
used to define a wheel-load distribution factor 
which reduces the design of the bridge to the 
design of a single deck-and-stringer 'composite' 
beam section. The stiffness coefficients of the 
unit-cell beams that compose the bridge deck 
are used to evaluate the deck stiffness coeffi- 
cients of eqn (5). For example, Du is obtained 
from the bending stiffness D of a single box 
beam [3]. The coefficient D22 is the bending 
stiffness of a unit width of the deck in the trans- 
verse direction, and is obtained experimentally. 
The value of D66 is considered as the in-plane 
torsional stiffness of an individual box beam 
which can be obtained both analytically and 
experimentally [22]. The stiffness coefficients of 
the stringers, D and KF, can also be obtained 
both analytically and experimentally [3]. 

Once all the stiffness coefficients of the deck 
and the stringers are defined, either analytically 
or experimentally, the edge coefficients (W0 and 
X0) are computed from eqn (6) and are used to 
compute the maximum wheel-load distribution 
factor from eqn (12). Then, an isolated deck- 
and-stringer 'composite' beam section of span L 
is loaded at the center by an equivalent concen- 
trated load, Pe, which produces a maximum 
moment, MA, equal to the maximum AASHTO 
[2] lane moment for a given truck loading (e.g. 
HS-20 or HS-25) 

P =M (13) 

This load Pe is then modified by a maximum 
wheel-load distribution, (Wf)max, and the 
number of lanes, iVL, to produce the design con- 
centrated load, Pd 

Pd=PMWf)n (14) 

where n is the number of stringer spacings. The 
maximum wheel-load factor under symmetric 
loading becomes 

V " f     /max 

1+Wn 

(n+l)W0+ — n 

(12) 

which induces a corresponding design moment, 
Md. The maximum live load moment, MLL, and 
deflection, <5LL, including impact, for an interior 
stringer are computed from 

MLL = 
P«L 

(1+DLA) (15) 
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S,,=P. 
(   Ü        L   \ 

i    +    (1+DLA) 
\ 48D     AKF ) 

where DLA is the dynamic load allowance, not 
yet defined for FRP bridges but can be assumed 
to be similar to those suggested for timber 
bridges [21]. 

Experimental investigation of an FRP bridge 
deck 

Under this research effort a 3.0 x 3.0 x0.2 m 
(10 x 10 ft x 8 in.) deck is fabricated by bond- 
ing box beams of 101.6 x 203.2 x 6.35 mm 
(4 x 8 x 1/4 in.) (Fig. 2) produced by pultrusion 
(Creative Pultrusions Inc., Alum Bank, PA, 
USA). Single- and double-cell box beams were 
tested in bending under three- and 4-point load- 
ings to assess their bending and shear stiffnesses 
(Fig. 8a). The box beams were also tested in 
torsion to obtain their in-plane shear stiffness 
using the applied torque and relative angle of 
twist measurements (Fig. 8c). A 0.3 x 0.2 x 2.0 m 
(12x8x80in.) transverse beam was built by 
bonding 20 0.3 m (1.0 ft) box sections together 
(Fig. 8b). The transverse beam was tested under 
three- and four-point bending for various spans 
to obtain the bending and shear stiffnesses in 
the transverse direction of the deck. The experi- 
mental-analytical stiffnesses to be used in the 
analysis of a deck-and-stringer system are given 
in Table 2. As Fx is relatively small, it can be 
ignored in design. 

Design application 

To illustrate the design procedure, a single-lane 
short-span bridge of 4.5 m (15 ft) width and 
7.5 m (25 ft) span is designed using the 101.6 
x 203.2 x 6.35 mm (4 x 8 x 1/4 in.) box sections 
(Fig. 2) for the deck assembly and FRP 
winged-box beams of 304.8 x 609.6 mm (12 x 
24 in.) (Fig. 7) for the stringers. The 
required   material   properties   [19]   for   the 

Table 2. Stiffnesses of the FRP deck 

stringers are: D = 2.903 x 107 kN-m4/m2 (1.248 
x 1010 kip-in.4/in.2); and F = 8.73 x 107 kN-m2/ 

(16) m2 (1.940 x 107 kip-in.2/in.2). A deflection limit 
of L/500 is used. The loading considered is 
AASHTO HS-20 [2], and the stringer spacing is 
used as the design variable. 

The edge deflection coefficient is evaluated 
from eqn (6) as W0 = 0.270, and the deflection 
limit from eqns (12), (14) and (16) is written as 
a function of the number of stringers (n+1) 

Stiffness Experimental Analytical 

Dy (kN-m4/m2) 627.571 525.957 
Fy (kN-m2/m2) 
Dx (kN-m4/m2) 

14949.0 16555.5 
15.949 — 

Fx (kN-m2/m2) 69.3 — 
H^ (kN-m4/m2) 2.838 2.742 

<3,T   = 'LL — =MJ — W( 
500        A\ L /     \ 

1+Wo 

(n+l)W0+ — n 
n 

48D     AKF 
ll+DLA) (17) 

The DLA factor is taken as 0.20, which is 
recommended for timber bridges [23]. From 
AASHTO [2] MA = 279.99 kN-m (207.4 kip-ft). 
In this case JVL = 1.0, and K is taken as 1.0. 
Solving for the number of stinger spacing we 
get n = 4.25 and, therefore, we use n = 5, which 
corresponds to 0.9 m (36 in.) center-to-center 
spacing of the stringers, and a total of six longi- 
tudinal stringers should therefore be used. 

We can now go back and evaluate Pd from 
eqn (14) and, subsequently, we compute the 
maximum moment from eqn (15) as 
MLL = 90.263 kN-m (789.7 kip-in.) and, based 
on this value, the maximum stress in the 
stringer becomes amax = 18.865 MPa (2.734 ksi), 
which is below the allowable value. 

Other considerations 
The local deflection, stresses, punching shear 
and local buckling in a deck section between 
two adjacent stringers need to be investigated. 
Equally important is the connection between 
the deck and the stringers, and also the side-by- 
side connection of the FRP cells, which may 
need to be designed with a locking mechanism 
to properly transfer shear. 

Summary 

In this section we presented a one-term macro- 
flexibility series solution, including transverse 
shear deformations, for the approximate analy- 
sis of orthotropic, simply supported, stiffened 
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plates. The formulation is applied to FRP 
decks, and is used to define a wheel-load dis- 
tribution factor. The wheel-load distribution 
factor is used to define design equations for 
FRP decks on stringers, and the analysis of the 
superstructure is reduced to the design of a 
beam. The present formulation can be extended 
to include asymmetric loading [21,22]. Based on 
partial experimental results, an illustrative 
example for a short-span FRP bridge is pre- 
sented. To validate the present model, 
experimental and finite-element studies are 
being conducted and results will be presented at 
a later date. 

CONCLUSIONS 

In this paper, a new design concept for short- 
span FRP composite bridges is presented. FRP 
sections are bonded to construct a cellular FRP 
bridge deck, and optimized FRP winged-box 
(WB) beams are considered as the bridge 
stringers. An overview of the analysis, design 
optimization and experimental verification of 
the FRP beam components is given, and the 
present analytical tools for FRP beams can be 
used to propose efficient engineering design 
equations. Based on the present first-order 
SDMF orthotropic plate solution, a simplified 
design analysis procedure is proposed, and it 
can be used for the analysis and design optimi- 
zation of various case studies of FRP 
deck-and-stringer bridges. Partial experimental 
results validate the proposed analytical models. 
The experimental and analytical results pre- 
sented in this study can assist in the 
development of efficient FRP sections and sim- 
plified design equations for new and 
replacement highway bridge decks. 
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The natural bending frequency of a torque transmission shaft can be 
increased without reducing the torque transmission capability if the shaft is 
made using both carbon fiber composite and aluminum: the former 
increases the natural bending frequency and the latter sustains the applied 
torque. The high natural bending frequency of a shaft makes it possible to 
manufacture the drive shaft of passenger cars in one piece. 

In this work, a hybrid one-piece drive shaft composed of carbon fiber- 
epoxy composite and aluminum tube was manufactured by co-curing the 
carbon fiber on the aluminum tube. 

The fabricational thermal residual stresses due to the coefficient 
difference of thermal expansions of aluminum and carbon fiber composite 
were eliminated by applying a compressive preload to the aluminum tube 
before the co-curing operation. 

From the dynamic tests, it was found that the first natural bending 
frequency and the minimum static torque transmission capability of the 
hybrid shaft were 9000 rpm and 3550 Nm, respectively, and the shaft did 
not fail until 107 cycles under a dynamic load of ±500 Nm. © 1997 Elsevier 
Science Ltd. 

INTRODUCTION 

An automotive drive shaft, or propeller shaft, as 
shown in Fig. 1 transmits power from the 
engine to the differential gears of rear wheel- 
drive vehicles. The torque transmission 
capability of the drive shaft for passenger cars, 
small trucks and vans should be larger than 
3500Nm and the fundamental natural bending 
frequency of the drive shaft should be higher 
than 6500 rpm to avoid whirling vibration [1]. 
The whirling of the drive shaft which is a reso- 
nance vibration occurs when the rotational 
speed is equal to the fundamental natural bend- 
ing frequency, which is inversely proportional to 

the square of the shaft length and proportional 
to the square root of specific stiffness. 

Since the fundamental natural bending fre- 
quency of one-piece drive shafts made of steel 
or aluminum cannot be higher than 6500 rpm 
when the length of the drive shaft is longer than 
1.0 m, the steel drive shaft is usually manufac- 
tured in two pieces. However, the two-piece 
steel drive shaft has a complex and heavy struc- 
ture and produces noise and vibrations that are 
transmitted to the vehicle through a center 
bearing. 

The fundamental natural frequency of the 
carbon fiber composite drive shaft can be twice 
as high as that of steel or aluminum because the 
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(               ) 

Leaf spring 1 1 

Driveshaft 

) 

Center 

• 

support bearing 1 1 
( ) 

Spline universal joint 

. Transmission 
Fig. 1. Schematic diagram of the drive shaft for a rear wheel driving vehicle. 

carbon fiber composite material has more than 
4 times the specific stiffness than steel or alumi- 
num [2], which makes it possible to 
manufacture the drive shaft of passenger cars in 
one piece [3]. 

The composite drive shaft has many other 
benefits such as reduced weight and less noise 
and vibration. However, the composite drive 
shaft requires reliable joining of the composite 
shaft to the steel or aluminum yoke of a univer- 
sal joint [4,5], which is often the most difficult 
task. 

The first composite drive shaft was developed 
by the Spicer U-Joint Division of Dana Cor- 
poration for the Ford econoline van models in 
1985. The General Motors pickup trucks which 
adopted the Spicer product enjoyed a demand 
three times that of projected sales in its first 
year (1988) [1]. Until now, three different 
manufacturing methods for the composite drive 
shaft were developed: Dana-MMFG, Hercules 
and Ciba-Geigy methods. Figure 2 shows the 
representative manufacturing methods for the 
composite drive shaft. In the Hercules and 
Ciba-Geigy designs, the filament wound car- 
bon/glass-epoxy composite tube was assembled 
to steel yokes with a blind fastener or a com- 
pression ring with adhesive. In Dana-MMFG 
manufacturing method, glass fibers were fila- 
ment-wound in the hoop direction on an 
aluminum tube and 0° carbon fibers were 
coated by pultrusion. Forged aluminum yokes 
were beam welded to the aluminum tube. For 
the Dana-MMFG method, there is a high ten- 
dency that the thermal residual stresses would 
be produced in the aluminum tube and compo- 
sites. 

Although the co-curing of composite to metal 
reduces process times, only a few related studies 
on the co-cure joining for composite structures 
are available. In damping enhancement of aero- 
space and military structures subjected to 
dynamic loading, however, there are several 
attempts to co-cure join one or more layers of 
high damping visco-elastic material to the struc- 
tures [6,7]. 

In this work, the drive shaft was hybridly 
manufactured using both carbon fiber-epoxy 

._ Blind fasteners (2 rows) 
Steel yoke / 

.  O   O 

? 2s^ 
Adhesive bond Composite carbon/glass 

vinylester 

(a) 

Steel yoke   Press fit with or without adhesive 

^ -Compression ring 
Composite carbon/glass epoxy 

(b) 

Aluminum yoke 

^ 

weld 
Composite 0 deg. carbon 

"vinylester 

Aluminum tube 

(C) 
Fig. 2. Joining methods between the composite drive 
shafts and yokes: (a) Hercules design (b) Ciba-Geigy 

design (c) Dana-MMFG design. 
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composite and aluminum, in which the carbon 
fiber-epoxy composite increases the natural 
bending frequency and the aluminum sustains 
the required torque transmission capability. 
This method eliminates the joining problem 
between composite and metal because the yoke 
of a universal joint can be welded to the alumi- 
num shaft or joined using a serration. Also, a 
preload was given to the aluminum shaft before 
co-curing the composite to the aluminum shaft 
to reduce the thermal residual stresses. The 
static torque transmission capability, natural 
frequency and damping of the manufactured 
hybrid drive shaft were tested. Also, a whirling 
test of the drive shaft was performed. 

DESIGN OF THE HYBRID DRIVE SHAFT 

The one-piece hybrid drive shaft was designed 
using both aluminum and carbon fiber-epoxy 
composite in which the major role of the alumi- 
num was to transmit the required torque while 
the role of the carbon fiber epoxy composite 
material was to increase the natural bending 
frequency. For the drive shafts of passenger 
cars, small vans and trucks, the minimum value 
of the torque transmission capability and the 
natural bending frequency are 3 500 Nm and 
6500 rpm, respectively. Taking into account 
these requirements, the dimensions of the alu- 
minum tube and the number of stacking plies of 
the composite were calculated. Since the outer 
diameter of the drive shaft was limited to 
80 mm for passenger cars, the outer and inner 
diameters of the aluminum shaft were deter- 
mined to be 74 and 70 mm, respectively. One 
ply of glass fiber epoxy fabric was firstly laid-up 
on the aluminum tube to eliminate galvanic 
corrosion between aluminum and carbon fiber 
and eight plies of carbon fiber epoxy prepregs 
with a stacking sequence of [±5]4T from the 
shaft axis were laid-up on the glass epoxy fabric. 
The carbon fiber-epoxy prepreg was USN150 
manufactured by Sunkyung Industry (Suwon, 
Korea), whose properties were similar to T300/ 
5208. Table 1 and Table 2 show the mechanical 
properties of carbon fiber epoxy composites and 
the aluminum tube (6061-T6). 

For the high natural bending frequency of the 
shaft, the stacking angle of the fiber from the 
shaft axis should be small. In this work, the 
stacking sequence of [+5]4T was employed 
because the transverse tensile strength of the 

Table 1. Properties of the unidirectional carbon fiber- 
epoxy composite (USN 150) 

YL 131.6 GPa 
ET 8.20 GPa 
GLT 6.12 GPa 
vLT 0.281 
p 1560 kg/m3 

X, 2000 MPa 
Xc 100 MPa 
Yt 60.9 MPa 
Yc 130 MPa 
S 74.8 MPa 
aL -0.9 ns/"C 
aT 27 /is/°C 
Thickness of ply '         0.15 mm 

composite with the stacking sequence of [0]8T 

was too low. Table 3 shows the laminate 
properties calculated by the classical lamination 
theory [8] using the unidirectional properties of 

Table 2. Properties of the aluminum tube (6061-T6) 

E 
G 

Tensile strength 
Yielding strength 
Shear strength 

72 GPa 
27 GPa 
23.0 /*s/°C 
2695 kg/m3 

350 MPa 
325 MPa 
210 MPa 

Table 3. Laminated properties of the carbon fiber-epoxy 
prepreg 

Stacking angle [±5]4 

E2 

G12 

<x9 

129.30 GPa 
8.30 GPa 
6.96 GPa 
-1.06jus/°C 
26.57 ^s/°C 

If, 
Tapped flange 

Screw Fixed blocl 

[|    ^— Untapped flange 

(a) 

rtn JT 
Composites 

-H—EE r . Aluminum 

(b) 
Fig. 3. The compressive jig. (a) Schematic diagram of the 
compressive jig. (b) Hybrid drive shaft compressed by the 

jig- 
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the carbon fiber-epoxy prepreg. The torque 
transmission capability of the hybrid drive shaft 
was calculated by the following equations. 

(1) 

(2) 

T — Tat+Tco 

Tal = 
Gal-J, al 

Gal'Jal+Gco'Jco 

ty'J al 
= T al (3) 

where, T, Tal and Tco are the torque transmis- 

sion capabilities of the hybrid shaft, the 
aluminum shaft, and the composite shaft, 
respectively, G shear modulus, / second 
moment of inertia, xy the shear strength of alu- 
minum and r0 the outer radius of the aluminum 
shaft. When the thickness of the carbon fiber- 
epoxy composite was 1.2 mm and the outer and 
inner diameters of the aluminum shaft were 74 
and 70 mm, respectively, the calculated torque 
capability was 3 770 Nm, which was larger than 
3500 Nm. 

The first natural bending frequency co of the 
hybrid drive shaft was calculated by the follow- 

80 

Undeformed shape 

Deformed shape 

5 = Sa + Si 

Fig. 4. Total compressive displacements (e)) of a jig com- 
posed of 5a and <5y. 

B   -40- 

-80 
0.5 1 1.5 2 2.5 3 

Compressive displacement (mm) 

Fig. 5. Compressive displacement vs.  thermal residual 
stresses in the co-cured drive shaft. 

Table 4. Stresses in the four steps of CO -curing with the stacking angle [ + 5]4Tof the composite 

Step Temperature aa (MPa) oc (MPa) oj (MPa) 

1 
2 
3 

Final 

20°C 
120°C 
20°C 
20°C 

-106.66 
-173.21 
-84.84 

0.01 
-152.39 

-0.02 

68.26 
130.38 
112.95 

Steel yoke 
Weld 

Outer serrated steel 
with adhesive 

Inner serrated aluminum 
with adhesive 

Aluminum tube (6061-T6) 

Composite 

Fig. 6. Schematic diagram of the joining method with serrations. 
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ing equations with simply supported boundary 
conditions 

co = 
9.869 

I2 

C'al'*a&^co'^co 

Pal+Pc 
(rad/s) (4) 

where, / is the length of the shaft, E Young's 
modulus, / mass moment of inertia and p mass 
per unit length. When the length of the shaft 
was 1.35 m, the calculated fundamental natural 
bending frequency of the shaft was 9055 rpm. 

METHOD OF ELIMINATING THE 
FABRICATIONAL THERMAL RESIDUAL 
STRESSES 

The residual thermal stresses are induced at the 
interface between the composites and the alu- 

6.0 

Fig. 7. Configurations of the end part of the aluminum 
tube with four slots. 

minum of the hybrid drive shaft during 
co-curing operation due to the large difference 
of coefficient of thermal expansion. The alumi- 
num tube expands as the temperature rises until 
the curing temperature of 120°C without con- 
straint by composites. After co-curing 
composites to the aluminum tube, the hybrid 
drive shaft was cooled down to the room tem- 
perature of 20°C. Since the coefficient of 
thermal expansion of the composite shaft in the 
axial direction is near zero when the stacking 
angle of the composite is less than 15° from the 
axis of the shaft, the tensile stress in the axial 
direction occurs in the aluminum shaft and the 
axial compressive stress occurs in the carbon 
fiber composite when the shaft is cooled down. 

When the stacking angle of composites was 
[±5]4T, the calculated residual thermal stresses, 
by the method of solid mechanics in the alumi- 
num tube and the composite, were 62.46 MPa 
and —79.42 MPa, respectively. The residual 
thermal stresses were calculated on the assump- 
tion that the radial and hoop stress components 
in the co-cured shaft were not produced 
because the difference of the CTEs of the two 
materials in the radial and hoop directions was 
small. However, the large shear stress in the 
axial direction occurs at the interface of the two 
materials due to the large difference of the 
CTEs of the two materials. This large shear 
stress at the interface of the hybrid shaft lowers 
the torque transmission capability of the co- 

Fig. 8. Photograph of the inner serration and the outer serration. 
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Fig. 9. Photograph of the two-piece steel drive shaft and 
the one-piece hybrid drive shaft manufactured. 

cured hybrid drive shaft. In this work, to reduce 
the residual thermal stresses produced at the 
interface of the two materials of the hybrid 
shaft during the co-curing operation, a compres- 
sive preload was applied to the aluminum tube 
before the co-curing operation. To apply a com- 
pressive preload to the aluminum tube, a 
compressive jig similar to a vice was used. 
Figure 3 shows the compressive jig composed of 
a steel screw of 1 mm pitch thread, a fixed 
block, an untapped flange and a tapped flange 
with a thrust bearing. 

The method for eliminating the residual ther- 
mal stresses in the hybrid drive shaft by 
applying a preload is described by the following 
four steps. In the first step, the carbon fiber- 
epoxy prepreg was laid-up on the surface of the 
preloaded aluminum tube. In the second step, 
the composite was co-cured on the surface of 
the preloaded aluminum tube. In the third step, 
the co-cured shaft was cooled down to the room 
temperature of 20°C without removing the pre- 
load in the aluminum tube. Both the composite 
and the aluminum tube were under compressive 
stress in the third step. In the fourth step, the 
preload by the compressive jig was removed, 
then the residual thermal stresses of the compo- 
site and the aluminum tube were eliminated. 

The applied compressive displacement was 
calculated by the following method considering 
the axial stress component (oz). If the displace- 

0   1000  2000  3000  4000  5000  6000  7000  8000  9000  10000 11000 12000 

RPM 

Fig. 10. Frequency response plot of the vibration of the hybrid drive shaft. 



Manufacture of one-piece drive shafts 315 

Ö öj     ö« üj a, 
I 

= — + — = S:-Sa=       " 
1           E, ~ E 

ments of the aluminum tube and the jig, both of 
length /, are 8a and <5y-, respectively, then the 
total displacement Ö produced by the rotation 
of the tapped flange in the compressive jig is 
<5 = öa+öj as shown in Fig. 4. Therefore, the 
total displacement S can be expressed as follows 

(5) 

where, e,- and ea are the axial strains of the jig 
and the aluminum tube, respectively, and Oj and 
aa the axial stresses of the jig and the aluminum 
tube, respectively, and Ej and Ea the Young's 
moduli of the jig and the aluminum tube, 
respectively. 

From the force equilibrium between the alu- 
minum tube and the jig, the following equation 
holds 

:0 (6) Aaaa+Aj(Tj: 

where Aa and Aj are the areas of aluminum 
tube and the jig, respectively. 

Using eqns (5) and (6), the tensile stress in 
the jig and the compressive stress in the alumi- 

Fig. 11. Photograph which shows the whirling test of the 
one-piece hybrid drive shaft. 

num tube in the first step can be calculated in 
terms of <5 as follows 

',).= 

Oi = 

EjEaAa 

EjAj+EaAa 

EjEaAj 

EjAj+E^a 

(?) 

(8) 

In the second step, the jig and the aluminum 
tube expand the same amount due to the tem- 
perature increase AT. Then, the stress-strain- 
temperature relationship can be written as fol- 
lows 

— +aaAT= —+01AT 
E„ E,      J 

(9) 

Using eqns (6) and (9), the axial stresses in the 
jig and the aluminum tube in the second step 
can be calculated as follows 

<rj)2 = (<xa-<Xj)AT 
EjEaAa 

EjEj+EaAa 

02=-(aa-^)A3r 

(10) 

(11) 

In the third step, the jig, the aluminum tube 
and the composite are cooled down to the room 
temperature. Therefore, the force equilibrium 
among the three materials is 

GaAa+(TjAj+GcAc = 0 (12) 

where ac and Ac are the axial stress and the 
area of the composite, respectively. 

In the third step, the length changes of the 
three materials or strains are same 

— +aaAT = — -HXjAT = — +occAT (13) 

From eqns (12) and (13), the axial stresses in 
the three materials were calculated as follows 

03 = | 
EaAaaa+EjAjaj+EcAc(xc 

EaAa+EjAj+EcAc 
-«„ \EAT 

(14) 
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<T/)3 = I 
EaAaCLa+EjAjaj+EcAcac 

■*j WAT 

(15) 

fa 

E„ 
(18) 

From eqns (17) and (18), the axial stresses were 
calculated as follows 

ffc)3 = 

EaAaaa+EjAjCCj+EcAcac 

EaAa+EjAj+EcAc 

-a, \EAT 

(16) 

Finally in the fourth step, the preload by the 
compressive jig was released. When the jig was 
removed, it was assumed that the preload of the 
compressive jig was transferred to the compo- 
sites and the aluminum tube. Therefore, in the 
fourth step the following equations hold 

(jjAj = <jaAa+GcAc (17) 

o4= 

ffc>4 = 

EaAa+EcAc 

Ar<Xj)4 

EaAa+EcAc 

AfGj)4 

where 

(19) 

(20) 

(21) 

Then the final stresses in the aluminum tube 

,,    - 

350.0 

30.0 

 1 

(a) 

[§ 
20.0 

45.0 

?5X 

(b) 
Fig. 12. Dimension of the static torque specimen, (a) Hybrid drive shaft, (b) Outer serrated adapter for the installation 

in the static torque tester. 
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Table 5. Torque transmission capabilities of the hybrid 
drive shafts 

Specimen Torque 
(Nm) 

3600 
3650 
3550 
3620 

and composites are the sum of the stresses cal- 
culated in the previous steps 

Ofinal = Ol+02+03+ff
0)4 

tfjfinal = ö'c)3+ö'c)4 

(22) 

(23) 

Using above equations, the residual thermal 
stress distributions when the stacking angle of 
composites was [±5]4T was calculated with 
respect to the compressive displacement (Ö) as 
shown in Fig. 5. The residual thermal stresses in 
the aluminum and the composite were almost 
zero when the compressive displacement S of 
the jig was 2.445 mm, in which the compressive 
displacement  5a  of the  aluminum  tube was 

2.0 mm and the tensile displacement <5y of the 
jig was 0.445 mm. Table 4 shows the stresses 
and temperatures of each loading step. Table 4 
shows the fabricational thermal stresses in the 
hybrid shaft when the compressive displacement 
of the aluminum tube was 2.0 mm. In Table 4, a 
very small tensile stress of 0.01 MPa in the alu- 
minum tube and a very small compressive stress 
of — 0.02 MPa in the composite were produced 
in the final stage. 

MANUFACTURING 

The hybrid drive shaft consists of the co-cured 
shaft and the two yokes. The inner-serrated alu- 
minum bushes were welded at the both ends of 
the aluminum tube as shown in Fig. 6. To 
increase the weld strength, four slots in the alu- 
minum tube along the circumference as shown 
in Fig. 7 were machined and welded. The steel 
yoke consists of the outer serrated part, a uni- 
versal joint and a spline universal joint. Figure 8 
shows a photograph of the inner and outer ser- 

fc^T^!ir;V-r   "'.V V'-f-:->. 

Fig. 13. Fractography of the hybrid drive shaft after static 
torque test. 

Fig. 14. Photograph which shows the fatigue test of the 
one-piece hybrid drive shaft. 
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rations with 90 teeth. The former serration was 
machined with a slotter and the latter was 
machined with a hobbing machine. 

The hybrid drive shaft was manufactured by 
co-curing after wrapping one-ply glass fabric 
and eight ply carbon fiber-epoxy prepreg on 
the surface of a treated aluminum tube with the 
predetermined preload. The outer serration 
part of the universal joint was assembled with 
interference fit into the inner serration part of 
the hybrid drive shaft. Figure 9 shows a photo- 
graph of the existing two-piece steel drive shaft 
and the one-piece hybrid drive shaft manufac- 
tured. The hybrid drive shaft was 50% lighter 
than the steel drive shaft. 

EXPERIMENTS 

Whirling Test 

The vibration characteristics of the hybrid drive 
shaft were measured by impulse-frequency 
response test using a fast Fourier transform 
analyzer (B&K 2023). Figure 10 shows the 
impulse-frequency responses of the hybrid 
drive shaft. The fundamental natural bending 
frequency was 9100 rpm and the error between 
the measured value and the calculated value 
(9055 rpm) was about 5.0%. The damping ratio 
was 0.01, which was about seven times larger 
than that of the steel drive shaft. 

For the whirling test of the hybrid drive shaft, 
an apparatus shown in Fig. 11 was designed and 
manufactured. The whirling tester was com- 
posed of a three pole AC electric motor (220 V, 
3.7 kW), a frequency converter for the control 
of motor velocity, bearing units (NSK P5) for 
high rotational speed and a jig for fixing the 
hybrid drive shaft. The rotational velocity of the 
hybrid drive shaft was controlled from 0 to 
10000 rpm by the frequency converter and mea- 
sured by a stroboscope. From the whirling test, 
it was observed that the resonance whirling 
vibration did not occur until 9 000 rpm. 

Static torque test 

For the static torque test, the short length 
hybrid drive shafts rather than the full size drive 
shafts were used. Figure 12 shows the dimen- 
sions of the hybrid drive shaft and the outer 
serrated adapter for mounting on the static 
tester. The test specimens were manufactured 

by the same method for the full size hybrid 
drive shaft. The outer serrated adapter made of 
S45C steel was tight-fitted into the inner ser- 
rated aluminum bush of the hybrid drive shaft 
with an interference fit. Table 5 shows the maxi- 
mum torque transmission capabilities of the 
four test specimens in which the minimum 
torque transmission capability of the hybrid 
drive shaft was 3550Nm. From these test 
results, it was concluded that the hybrid drive 
shaft had a suitable torque transmission cap- 
ability for passenger cars, vans and small trucks. 
All the fractures of the hybrid drive shafts 
occurred at the circumferential weld line 
between the aluminum tube and the inner ser- 
rated bush as shown in Fig. 13. 

Dynamic torque test 

The dynamic torque test of the prototype hybrid 
drive shaft was performed by the fatigue tester 
that was composed of a double acting pneu- 
matic cylinder (FESTO ADV-100), a 5/2 way 
solenoid valve (FESTO JMFH-5-1/4), a load 
cell and a sequence control unit. The torque of 
the fatigue tester was produced by rotating the 
moment arm by the double acting pneumatic 
cylinder. The applied torque to the hybrid drive 
shaft was measured by the load cell fixed at the 
frame of the fatigue tester. The frequency of 
loading of the fatigue tester was controlled by 
varying the duration of electric current in the 
solenoid valve using a function generator. 
Figure 14 shows the hybrid drive shaft mounted 
on the fatigue tester. From the fatigue test, it 
was found that the hybrid drive shaft did not 
fail until 107 cycles under dynamic torque of 
+ 500Nm. 

CONCLUSIONS 

In this paper, the one-piece hybrid drive shaft 
composed of carbon fiber-epoxy composite and 
an aluminum tube was designed and manufac- 
tured to reduce weight and vibration. The 
hybrid shaft was manufactured by co-curing the 
composite to the aluminum shaft with an 
applied preload to the aluminum before co-cur- 
ing to reduce thermal residual stresses. The 
vibration characteristics of the hybrid drive 
shaft were measured by impulse-frequency 
responses and whirling tests. The static and 
dynamic torque tests of the hybrid drive shaft 
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was also performed. From the tests, the follow- 
ing conclusions were made: 

1. The hybrid drive shaft was 50% lighter than 
the existing steel drive shafts. 

2. The fundamental natural bending frequency 
of the hybrid drive shaft was 9100 rpm and 
the shaft rotated without whirling until 
9000 rpm. 

3. The minimum static torque transmission cap- 
ability of the hybrid drive shaft was 
3550Nm. 

4. The hybrid drive shaft was not failed until 
107 cycles under a dynamic torque of 
±500Nm 
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Since thin polymer films can not sustain the large tension generated from 
the rotational inertia of a guide roller during start and stop periods of film 
processing and can be easily damaged by the rough surface of the guide 
roller, the guide roller should have low rotational inertia, low friction 
poefhcient, high bending stiffness and fine surfaces. 

The carbon fiber-epoxy composite material electroplated with chromium 
has excellent properties for the structure of the guide roller due to its high 
specific modulus and high damping, which reduces induced vibrations. 

In this paper, the design and manufacturing methods as well as the static, 
dynamic and frictional characteristics of the carbon fiber-epoxy composite 
rollers electroplated with chromium were investigated using analytical and 
experimental methods to improve the performance of the high speed guide 
roller. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Rollers are widely used in the metal rolling and 
polymer film manufacturing processes to con- 
trol thickness, to guide the paths of products 
and to wind films [1]. Rollers have been 
designed and manufactured using steel or alu- 
minum with the aim of minimizing the 
deflection caused by processing pressure and its 
own weight. However, the high speed produc- 
tion of thin polymer film has been hindered by 
the heavy weight and inertia of rollers, because 
thin polymer films can not sustain the large ten- 
sion generated from the rotational inertia of the 
guide roller, especially during the start and stop 

♦Department of Mechanical Engineering, Korea Advanced 
Institute of Science and Technology, ME3221, Kusong-dong, 
Yusong-gu, Taejon-shi, Korea 305-701 

periods of film processing. Thin films can be 
easily damaged by the rough surface of the 
guide roller. Therefore, the guide roller should 
have low rotational inertia, low friction coeffi- 
cient, high bending stiffness and fine surfaces. 
Also, the material for the guide roller should 
have high damping to reduce the vibration 
which might be induced during operation. 

One method to increase the dynamic stiffness 
of the guide roller is to use a material which has 
both high static stiffness and high damping. 
However, it is very difficult to increase the 
dynamic stiffness of conventional materials 
because they usually have high stiffness with low 
damping and vice versa. Composite materials, 
on the other hand, can be made to have both 
high static stiffness and damping because com- 
posite materials can be composed of two 
materials, one of which has high Young's mod- 
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ulus and the other has high damping. The 
resulting performance will reflect the best 
characteristics of each material [2]. 

However, the fiber reinforced composite 
material has low hardness and high surface 
roughness due to the projection of the fiber 
when the surface was ground or machined by 
another method. Therefore, it is necessary to 
coat the surface of the composite with hard 
materials such as chromium for a guide roller. 
Since the conductivity of carbon fiber-epoxy 
composite is anisotropic and low compared to 
other high conductivity metals, it is not easy to 
directly electroplate the carbon fiber composite 
with chromium [3]. It is necessary to coat paste 
which includes a good conductor such as silver 
or copper on the composite surface before elec- 
troplating. 

Several attempts to increase the roller per- 
formance have been performed through 
experiments and analyses. Conroy studied the 
design of the large roller press and discussed 
the bearing housing and roller alignment [4]. 
Yang derived governing equations for rotating 
arbitrary axi-symmetric rollers with various 
types of boundary and initial conditions. He 
obtained the analytical solutions for the case of 
a circular cylinder [5]. Good developed models 
to calculate the internal stress in wound rolls of 
web material in which a new boundary condi- 
tion were presented to calculate the internal 
stresses [6]. Ulku investigated fiber breakage at 
different roller speeds and the relationship 
between the breakage and friction of yarns 
made of cotton, polyester, viscose and acrylic 
fibers [7]. Lee et al. developed the carbon fiber 
composite spindle system to enhance the 
dynamic and thermal stability of the spindle sys- 
tem [8]. Several attempts to use high damping 
materials as an additive layer have also been 
conducted. However, the use of a damping 
material  was  limited  by  the  geometric  and 

boundary conditions and also by the lubrication 
and bearing mounting requirements. 

In this paper, the design and manufacturing 
methods as well as the static and dynamic 
characteristics of the carbon fiber-epoxy com- 
posite guide rollers electroplated with 
chromium were investigated using analytical 
and experimental methods to improve the per- 
formance of the guide roller system. 

Electroplated chromium 

Aluminum sleeve 

EXPERIMENTAL SETUP FOR THE HIGH 
SPEED GUIDE ROLLER SYSTEM 

For the development of the composite guide 
roller, the bearing types and the stacking 
sequence of composite materials must be 
selected first. Then the bearing arrangement 
and the roller shape are determined for the 
optimum performance of the guide roller sys- 
tem. For the first stage of development, the 
experimental setup for the prototype guide 
roller system as shown in Fig. 1 was designed 
and manufactured. The bearings were mounted 
on the shaft with interference fit to obtain high 
stiffness. Table 1 shows the specifications and 
circularity for the roller system. The 60-series 
deep groove ball bearings manufactured by 
FAG in Germany, whose specifications are 
shown in Table 2 were selected for the roller. 

The low friction grease, Arcanol 174, manu- 
factured by FAG in Germany, was used for 
bearing lubrication. The high strength carbon 
fiber-epoxy USN150 manufactured by Sun- 
kyung, Korea, was used for the guide roller. 
Table 3 shows the mechanical properties of the 
carbon fiber-epoxy composite. 

Figure 2 shows a photograph of the experi- 
mental setup before assembling the high speed 
ball bearings. This setup was used to measure 
the static, dynamic and thermal characteristics 
of the guide roller system. 

, Copper paste 

, Composite roller t Shaft 

Bearing 

(E3, 

Fig. 1. Experimental setup for the prototype composite guide roller system. 
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Table 1. Specifications and circularity of the roller 

Roller diameter (mm) 100 
Roller length (mm) 800 
Surface roughness (fim) <0.5 
Circularity (^m) <20 

MANUFACTURING OF THE CARBON 
FIBER-EPOXY COMPOSITE GUIDE 
ROLLER 

Since heat generated from bearings and mois- 
ture might degrade the properties of composite 
materials, two aluminum sleeves for bearing 
mounts were manufactured as shown in Fig. 3. 
The two aluminum sleeves and the carbon 
fiber-epoxy composite roller were bonded with 
epoxy adhesive. Table 4 shows the properties of 
the epoxy adhesive used. 

Since the hardness of carbon fiber-epoxy 
composites is low and the surface roughness can 
not be reduced beyond a certain value due to 
the projection of fibers on the surface of the 
composites when they are machined, the surface 
of the composites must be coated with hard 
material to be used as the guide rollers for thin 
polymer film processing. In this work, the sur- 
face of the carbon fiber-epoxy composite was 
electroplated with chromium. Since the carbon 
fiber-epoxy composite has anisotropic and 
inhomogeneous conductivity and does not have 
enough conductivity for electroplating with 
chromium, some conductors such gold, silver 
and copper must be coated on the carbon fiber- 
epoxy composite. In this work, the copper 
paste, ACP-060 manufactured by ASAHI in 
Japan, was uniformly painted on the surface of 
the composite. Table 5 shows the properties of 
the copper paste used and Fig. 4 shows a photo- 
graph of the carbon fiber-epoxy roller painted 
with the copper paste before electroplating with 
chromium. 

The carbon fiber-epoxy composite painted 
with the copper paste has been electroplated in 
a chromium bath for 18 h. Then, the carbon 
fiber-epoxy composite roller electroplated with 
chromium was ground to the final dimensions. 

The stacking sequence of composite materials 
was determined to satisfy the high flexural mod- 
ulus for high natural frequency and low 
deflection. In this work, the specifications of 
power and speed were 10 kW and 3800 rpm, 
respectively, and the maximum bending compli- 
ance at the center of the shaft should be less 
than 0.1 /mi/N. The required torque capacity T 
of the roller is obtained by the following equa- 
tion 

T = 
60H 

2nn 
(1) 

where, H is the motor power and n is the rpm 
of the shaft. 

From Eq. (1), the maximum required torque 
capacity of the roller was 95 Nm when the roller 
was driven at 1000 rpm. With this torque capa- 
city, the fundamental natural frequency of the 
roller should be larger than 3800 rpm. Figure 5 
shows the calculated natural frequencies in the 
bending mode of the roller versus stacking 
sequence of [ + #]nT with simply supported 
boundary condition. The natural frequency of 
the composite shaft in bending mode decreases 
with the increase of the stacking angle 9. 

When the stacking sequence [+5]nT from the 
axis of the shaft was chosen, the fundamental 
natural bending frequency was higher than 
45 000 rpm and the maximum compliance at the 
center of the roller shaft was smaller than 
0.1 /mi/N. For the easy separation of the com- 
posite roller shaft from the mandrel, a taper 
angle of 1/1600 was given to the mandrel. Since 
the maximum driving frequency of the roller 
motor and the allowable maximum compliance 
were 3800 rpm (63.3 Hz) and 0.1 /rni/N, respec- 
tively, this stacking sequence was found 
acceptable. 

The material damping of metal is dependent 
on frequency. The damping factors of steel and 
aluminum usually decrease with frequency and 
are less than 0.001-0.005 when the frequency is 
greater than 100 Hz. Since the damping factor 
of the carbon fiber-epoxy composite is around 

Table 2. Specifications of the deep groove ball bearing (FAG, Germany) 

Bearing 
model 

Inner diameter 
(mm) 

Dynamic load 
rating (kN) 

Static load 
rating (kN) 

Limit speed (rpm) 

Oil-air                      Grease 
lubrication                lubrication 

6004 20 9.3 5 20000                        17000 
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Table 3. Properties of the unidirectional carbon fiber- 
epoxy composite 

Tensile Modulus (GPa) 
Transverse Modulus (GPa) 
Shear Modulus (GPa) 
Poisson's Ratio 
Tensile Strength (GPa) 
Transverse Strength (MPa) 
Shear Strength (MPa) 
Fiber Volume Fraction (%) 
Density (kg/m3) 

131.6 
8.2 
6.1 
0.3 
1.78 

50 
88 
60 

1600 

Fig.  2.  Experimental  setup  for  measuring  static  and 
dynamic characteristics of the roller system. 

Fig. 3. Two aluminum sleeves for bearing mounting. 

Table 4. Properties of the epoxy adhesive (IPCO 9923) 

13.7 (ASTM D-1002-72) 
1.3 
45 
0.46 
0.41 

Lap shear strength (MPa) 
Tensile modulus (GPa) 
Tensile strength (MPa) 
Shear modulus (GPa) 
Poisson's ratio 

Table 5. Properties of the copper paste (ASAHI, Japan) 

Viscosity (ps at 25°C) 400-600 
Specific gravity (g/cc at 25°C) 3.2 
Curing conditions 30 min at 150°C 
Hardness (H) 3 
Sheet resistance (fl/mm2) 0.1 
Humidity aging (%) +30 
Solder resistance (%) +30 

0.01 and less dependent on frequency, the 
damping factor of the carbon fiber-epoxy com- 
posite is about 2-10 times higher than that of 
the cast iron or steel when the vibration fre- 
quency is higher than 100 Hz [1,9]. 

The torque transmission capabilities of the 
adhesively bonded joints between the composite 
roller shaft and the aluminum sleeves are 
dependent on the bonding length and the adhe- 
sive thickness [10]. Figures 6 and 7 show the 
calculated torque transmission capabilities with 
respect to bonding length and adhesive thick- 

Fig. 4. Carbon fiber-epoxy roller painted with the copper 
paste before electroplating with chromium. 

50 
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?S   30 
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10 

6 = 0' 

15' 

30' 

^Aluminum roller 

45' 

J_ J 

Composite thickness (mm) 

Fig. 5. Variations of the fundamental natural frequency of 
the composite roller in bending mode versus stacking 

sequence [±0]nT. 
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6. Torque transmission capabilities of the composite 
roller wrt bonding length and stacking sequence when the 

bonding thickness is 0.5 mm. 

ness. Since the maximum torque generated by 
the driving motor was 95 Nm, it was found that 
the 30 mm bonding length and 0.5 mm adhesive 
thickness were more than enough. 

Figure 8 shows the coefficient of thermal 
expansion versus stacking sequence calculated 
by classical laminated plate theory. From Fig. 8, 
the transverse coefficient of thermal expansion 
of the composite was 26.5 /im/m °C, which was 
similar to that of aluminum (23.6/zm/m °C) 
when the stacking sequence was [+5]nT. 

STATIC AND DYNAMIC CHARATERISTICS 
OF THE COMPOSITE ROLLER SYSTEM 

Since the static stiffness of the roller determines 
both the accuracy and natural frequencies of 
the roller system, the estimation of the static 
stiffness of the roller system is important in the 
design stage. 

3000 

Z 

O   o 

2000 

1000 

_]_ J 
0 1 

Fig. 
Bonding length (mm) 

7. Torque transmission capabilities of the composite 
roller wrt adhesive thickness when the bonding length and 
the stacking sequence are 30 mm and [ + 5]nT, respec- 

tively. 

Ply angle (deg.) 

Fig. 8. Coefficient of thermal expansion of the composite 
versus stacking sequence. 

The analytic expression for the roller stiffness 
was attempted by simplifying the roller system 
of Fig. 1. The simplified roller system for analy- 
sis is shown in Fig. 9. The bearings were 
replaced by equivalent springs. Under these 
assumptions, the maximum deflection Ö of the 
center of the roller system was expressed as 
follows [11]. 

(2) 
k2  I    2>UEl 

Where, cb is the distributed load per length, / 
the roller span, El the flexural rigidity of the 
roller and fca, k2 the stiffness constants of the 
front and rear bearings, respectively. 

In order to assess the validity of the displace- 
ment equation of the roller, the displacement 
was also calculated using ANSYS, a commercial 
finite element analysis software. In the finite 
element analysis, the nodes were generated 
using one dimensional beam elements. 
Figure 10 shows the deflection of the roller sys- 
tem when the distributed load of 1 kN was 
applied at the center of the roller. Table 6 
shows the calculated displacements. 

y axis 

1 = 800 mm 

El = 95400 Nm' k = 23106N/m 

Fig. 9. Simplified roller system for analysis. 
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Fig. 10. Deflection of the roller system when the distributed load of 1 kN was applied on the roller. 

During the rolling operation, it is generally 
known that two different vibrations of the roller 
system occur: the rigid body motion of the 
roller which is supported by bearings and the 
bending motion of the roller on the bearing 
foundation. Under the assumption of the two 
vibration modes, the natural frequencies of the 
composite roller system can be calculated either 
by analytic or numerical methods. The Ray- 
leigh-Ritz method, which is an analytic method, 
calculates the natural frequencies using appro- 
priate functions which represent the vibration 
modes [12]. In this work, the Rayleigh-Ritz 
method was applied to the composite roller sys- 
tem as shown in Fig. 9. The displacement Y of 
the roller was assumed by the following equa- 
tion. 

71X 
Y = C,x+C2 sin — 

/ (3) 

Where, Cx represents the displacement of the 
roller in the rigid body motion and C2 repre- 
sents   the   bending   motion   of   the   roller 

Table 6. Deflections of the center of the roller when the 
distributed load of 1 kN is applied 

From 
Eq. 2 

FEM 
result 

Error 
(%) 

Displacement at the center   0.056 mm   0.058 mm     3.4 
of the roller 

supported by the bearings. Then, the square of 
the natural frequency co is expressed as follows 

R(co) = co2 = 

d2Y \2 
Ell —- I dx+kxY

2+k2Y
2 

AY2dx 

= const. (4) 

The numerical value of the first natural fre- 
quency of the composite roller system 
calculated by Eqs. 3 and 4 was 745 Hz. How- 
ever, the Rayleigh-Ritz method becomes very 
complicated for higher natural frequencies and 
consequently the calculation error will be larger. 
Also, the natural frequencies of the composite 
roller system was calculated using FEM. In the 
numerical analysis, one dimensional beam ele- 
ments were used and the front and the rear 
bearings were replaced by equivalent springs. 
Figure 11 shows the first mode shape of the 
bearing system which occurs at 727 Hz. 

To compare the analytical result with the 
experimental result, the amplitude of the 
acceleration at the center of the roller system 
was measured with an accelerometer through 
FFT (Fast Fourier Transform) signal analyzer. 
Table 7 shows the natural frequencies cal- 
culated by several methods. From the 
calculation of the natural frequencies by FEM, 
it was found that the FEM with one dimen- 



Development of composite guide rollers 327 

ANSYS5.0A 

WTSVS   5.0   Ä 

00:19:14 
DISPLACEMENT 
STEP=1 
SUB   =1 
TIME=1 
ESVS=0 
DMX  »0.S77E-04 

DSCÄ=762.769 
zv    =1 
DIST=0.44 
XF     =0.4 
VF    =-0.025663 
CEHTP.OID  HIDDEN 

Fig. 11. First mode shape of the roller system. 

sional beam element gave more accurate result 
than the Rayleigh-Ritz method. 

PERFORMANCE OF THE ROLLER 
SYSTEMS 

In general, aluminum shafts have been used 
without machining for long and large rollers 
because it is not easy to bore out the inner 
surface of a long pipe with the required accu- 
racy. Then, the balancing of large aluminum 

shafts has been important issue. These prob- 
lems can be solved with the composite roller 
because it is easily balanced owing to its light 
weight and can be moulded with hollow shape 
using mandrels. Table 8 shows several advan- 
tages of the composite roller compared with the 
existing aluminum roller. 

Since both the natural frequency and damp- 
ing ratio of the composite roller were increased, 
the dynamic stiffness of the roller system which 
is denned as the product of stiffness and damp- 

Table 7. Fundamental natural frequencies of the roller system 

Methods First natural frequency Error (%) 

Rayleigh-Ritz method 
FEM 

Experiment 

745 Hz 
One dimensional beam element: 727 Hz 

685 Hz 

6.1 

Table 8. Comparison of the composite roller system with the steel roller shaft 

Existing aluminum system Composite roller system Notes 

Roller section shape Hollow 
Maximum deflection 0.058 mm/kN 
Machining, balancing 
and handling Difficult 
Natural frequency 
(Simply supported) 425 Hz 
Damping ratio 0.004 
Mass 
(Excluding both sleeves) 1.81kg 

Hollow 
0.058 mm/kN 

Easy 

685 Hz 
0.015 

0.92kg 

Same 

Increase of 1.6 times 
Increase of 3.8 times 

Decrease of 2.0 times 
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ing, was also increased. Moreover, due to its 
light weight the assembly of the composite 
roller shaft was much easier than the existing 
aluminum roller shaft. 

CONCLUSIONS 

In this paper, the high speed roller for thin 
polymer film processing was designed and 
manufactured with carbon fiber-epoxy compo- 
site material. The surface of the composite 
roller was electroplated with chromium to 
increase surface hardness. The static and 
dynamic characteristics of the composite roller 
system were investigated using analytical and 
experimental methods when the maximum 
deflection of the composite roller was equal to 
that of the existing aluminum roller. From the 
investigation, it was found that the natural fre- 
quency and the damping ratio of the composite 
roller were increased by 1.6 and 3.8 times, 
respectively, compared with those of the exist- 
ing aluminum roller. Also the weight of the 
composite roller was 50% that of the aluminum 
roller. Therefore, it was concluded that the pro- 
ductivity in thin film processing could be 
increased significantly by using the composite 
roller system. 
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The optimum bolted joints for hybrid composite materials composed of 
glass-epoxy and carbon-epoxy under tensile loading were investigated. The 
design parameters considered for the bolted joints were ply angle, stacking 
sequence, the ratio of glass-epoxy to carbon-epoxy, the outer diameters of 
washers and the clamping pressure. As bearing failure was desirable for 
bolted joints, the geometry of the bolted joint specimen was designed to 
undergo bearing failure only. 

By inspecting the fracture surfaces of the specimens it was found that 
delamination on the loaded periphery of the holes and extensive damage on 
the edge region constrained by a washer occurred. To assess the 
delamination of the hybrid composite materials, three-dimensional stress 
analysis of the bolted joint was performed using a commercial finite- 
element software and compared with the experimental results. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

The fiber-reinforced composites have been used 
widely in aircraft and spacecraft structures, as 
well as in sports and leisure goods, because they 
have high specific stiffness, high specific 
strength, high damping and a low coefficient of 
thermal expansion. These properties cannot be 
obtained from conventional metals such as steel 
and aluminum [1,2]. In addition, the structures 
made of composites have a high natural fre- 
quency as well as a light weight, therefore they 
are increasingly employed in rotating structures 
such as power transmission shafts of aircrafts 
and automotives [3], in machine elements such 
as machine tool spindles [4] and robot arms [5]. 

When composites are employed as structural 
materials, joining of composites to other 
materials is necessary because manufacturing 
the whole structure using only composites is not 
generally feasible. Therefore, the joint used in 
composite structures, with only a few excep- 
tions,    determines   the    structural    efficiency 

♦Author to whom correspondence should be addressed. 

because it usually becomes the weakest part of 
the structure [6,7]. There are two types of 
joints: mechanical and adhesively bonded joints. 
The mechanical joint has several advantages 
over the adhesively bonded joint, which requires 
careful surface treatment of the adherend, is 
affected by service environment and is difficult 
to dismantle for inspection and repair, although 
it does distribute load over a larger area than 
the mechanical joint. However, the mechanical 
joint requires holes to be drilled for bolts and 
rivets, which causes unavoidable stress concen- 
trations as well as a weight penalty due to the 
bolts and rivets [8]. 

Three different types of fasteners, such as 
self-tapping screws, rivets and bolts, are usually 
used in mechanical joints. Among these fasten- 
ers, the bolted joint was found to be most 
efficient for the mechanical fastening of compo- 
sites [9]. However, the analysis of mechanical 
joints has not been very satisfactory because of 
the friction between bolts and holes, the 
material non-linearity and the presence of 
three-dimensional stresses and strains. Thus, 
many investigators have experimentally studied 
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the behavior of mechanical joints of CFRP and 
GFRP. 

Collings [9] investigated the effect of stacking 
angle on the bearing strength with respect to 
three different composites. Eriksson [10] 
showed that bearing strength was strongly 
affected by a lateral constraint of the material 
surrounding the loaded hole. Quinn & Mat- 
thews [11] reported a significant effect of the 
stacking sequence on the bearing strength of 
GFRP. Herrington & Sabbaghian [12] studied 
the effect of radial clearance between the bolt 
and washer on the bearing strength of the com- 
posite bolted joints and showed that bearing 
strength increased as the radial clearance 
decreased. They also found that the ratios of 
width-to-diameter (w/d) and edge distance-to- 
diameter {eld) influenced the failure mode, and 
the bearing strength was increased and 
approached a limiting value as the ratios were 
increased [13-15]. Kim & Whitney [16] found 
that elevated temperature and increased mois- 
ture content of the laminate reduced the 
bearing strength. Akay [17] studied the static 
and dynamic bearing strengths of uni-direc- 
tional and woven carbon-epoxy composite 
when test pieces were hygrothermally treated. 

Most models for the strength prediction of 
bolted composite laminates adopted elastic two- 
dimensional plane-stress analysis using a 
finite-element method [18-21]. Chen et al. [22] 
used the incremental restricted variational prin- 
ciple and the transformation matrix, derived 
from three-dimensional contact kinematic con- 
ditions, to carry out a three-dimensional contact 
stress analysis of a composite laminate with bol- 
ted joints. Graham et al. [23] performed a 
two-dimensional contact stress analysis assum- 
ing that bolts and washers were rigid and that 
bolts had a perfect fit. Smith et al. [24] estab- 
lished a simple three-dimensional model to 
predict the strength of bolted composite lami- 
nates, and studied the effects of the coefficient 
of friction between washers and laminates. 

Although hybrid composites composed of car- 
bon-epoxy and glass-epoxy are in widespread 
use in automotive and aerospace propeller 
shafts, leaf springs and fly wheels due to their 
improved mechanical behavior, such as their 
high specific stiffness, high specific strength, 
high impact energy, cost reduction, good corro- 
sion resistance and easy fabrication [25], most 
studies have been focused on the behavior of 
mechanically   fastened  joints   for   non-hybrid 

composites such as carbon-epoxy and glass- 
epoxy. Therefore, there are few data available 
on the joints for hybrid composites [26]. 

In this work, the optimum bolted joints for 
hybrid composite materials composed of glass- 
epoxy and carbon-epoxy under tensile loading 
were investigated. The geometry of the bolted 
joint specimen was designed to induce bearing 
failure because bearing failure is preferable for 
the bolted joint. The design parameters were 
ply angle, stacking sequence, ratio of glass- 
epoxy to carbon-epoxy, outer diameter of the 
washer and clamping pressure. 

The optimum ply angle for hybrid composites 
was determined using the static test results for 
the bolted joints of carbon-epoxy and glass- 
epoxy composites with respect to ply angle. 
Then the joint specimens for the hybrid compo- 
sites were tested under tensile loading with 
different stacking sequences and ply number 
ratios of glass-epoxy to carbon-epoxy compo- 
site. The effects of the outer diameter of the 
washer and the clamping pressure of the bolt on 
the bearing strength were also investigated. 

In order to investigate the delamination of 
the hybrid composite materials three-dimen- 
sional stress analyses for the bolted joint were 
performed using a commercially available finite- 
element software and then compared with the 
experimental results. 

EXPERIMENTS 

Because the failure of bolted joints should not 
occur catastrophically, in this work the speci- 
men geometry was designed to induce bearing 
failure. For this purpose, both the ratio of 
width-to-diameter and of edge distance-to- 
diameter were set at 5. The geometry of the 
bolted joint is shown in Fig. 1. 

In order to determine the ply angle of the 
hybrid composites the static tests of the bolted 
joints for carbon-epoxy and glass-epoxy were 
performed with respect to the ply angle. The 
number of plies for both the carbon-epoxy and 
the glass-epoxy composite were 20. The stack- 
ing sequences for both the composites were 
[02/(0/90)3/902]s and [02/( + 0)3/9O2]s (6 = 15, 30 
and 45°). 

The carbon-epoxy composite and the glass- 
epoxy prepregs used were USN150 and 
UGN150, respectively, both manufactured by 
Sunkyung Industry (Suwon, Korea). Table  1 
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Fig. 1. Geometry of the specimen. 

shows the uni-directional mechanical properties 
of the composite materials and Fig. 2 shows the 
curing cycle for the composite materials. 

A glass fabric-epoxy composite was used for 
the tabs on the composite specimens, and the 
tensile tests were performed using the loading 
fixture illustrated in Fig. 3. The 8 mm bolt with 
class 10.9 was used for the bolted specimens. 
Washers, 2 mm thick, with the same inner diam- 
eter as the bolt and a 20 mm outer diameter 
were used. The specimens, clamped using fin- 
ger-tightened   bolts,   were   tested   at   room 

Table 1.    Material    properties    of   the    carbon-epoxy 
(USN150) and glass-epoxy (UGN150) composites 

£L (GPa) 
ET (GPa) 
GLT (GPa) 

Xt (MPa) 
Yt (MPa) 
S (MPa) 
Ply thickness (mm) 

ISO 

120 

80 

Carbon-epoxy Glass-epoxy 
(USN150) (UGN150) 

130.0 43.5 
8.0 5.0 
6.0 5.0 

0.28 0.25 
1800 1000 
60 50 
75 50 

0.15 0.125 

60 

i 
/   '                   '                   ' 

Pressure: 0.6 MPa 
1                      ' 

! 

 i  i i-  1  
2 3 
Curing time (hr) 

Fig. 2. Cure cycle for composite materials. 
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.Washer (thickness  =  2mm) 

Specimen 

•Tab 

1 k, 

Fig. 3. Schematic diagram of loading fixture. 

temperature with an Instron 4206, a static 
material testing machine with a test speed of 
1 mm/min. Five specimens were tested for each 
point. 

Typical load-displacement curves are shown 
in Fig. 4, where the first peak loads (A) indicate 
the local delaminations around the holes under 
the washers. The damage development in the 
vicinity of the hole boundary at the peak point 
(A) was measured using an ultrasonic C-scan as 
shown in Fig. 5. From the result of the C-scan, 
it was found that damage developed along the 
loaded half of the hole circumference. The load 
was continuously increased because the swelling 
of the composite in the thickness direction, due 
to the Poisson effect, induced the clamping 

20 

18 

T3 
10 

Carbon/Epoxy 

Glass/Epoxy 

—i 1 1— 

2 3 4 
Displacement (mm) 

Fig. 4. A typical load-displacement curve for the carbon- 
epoxy bolted joint and the glass-epoxy bolted joint. 
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Table 2.  Stacking sequences of the carbon-epoxy and 
glass-epoxy composites 

k   hit   , Al 
390  400  410  420  430  440  450  460  470 

X  SCALE / mm       PIVOT HEIGHT = 83 mm 

. Results of the ultrasonic C-scan of the bolted joint. 

pressure in the region of the laminate con- 
strained by the washer, which delayed the 
delamination of the specimens. Therefore, in 
this work, the ultimate failure load rather than 
the first peak load was taken as the joint 
strength load because the joint was not frac- 
tured at the first peak load (A) and the rate of 
the increase of the load was not decreased. 

The   ultimate   bearing   strength,   ab,   was 
defined by the following equation 

ÖV 
P 

dt (1) 

where P is the ultimate failure load, d is the 
hole diameter and t is the thickness of the lami- 
nate. 

Static tests of joints for the carbon-epoxy and 
glass-epoxy composites 

In order to determine the optimum ply angle 
for hybrid composites, the bolted joints for the 
carbon-epoxy and glass-epoxy composites were 
first tested with respect to the ply angle. Table 2 
shows the stacking sequences for the carbon- 
epoxy and glass-epoxy composites. From the 
static test results of the carbon-epoxy compo- 
site with a stacking sequence of [02/(0/90)3/902]s 

and [O2/( + 0)3/9O2]s (0 = 15, 30 and 45°), it was 
found that the bearing strength was increased as 
the ply angle 0 was increased. When the stack- 
ing sequence was [02/(0/90)3/902]s, the 
combined modes of tensile and shear-out 
failure occurred, and the bearing failure mode 

Material Stacking sequence 
(GPa) 

Carbon-epoxy 

Glass-epoxy 

[02/(0/90)3/90^3 69.3 
[02/( + 15y902]s 95.8 
[02/( + 30)3/902]s 69.8 
[02/( + 45y902]s 46.1 
[02/(0/90y902]s 24.4 
[02/(±15)3/902]s 33.1 
[02/( + 30)3/902]s 26.1 
[02/(+45y902]s 19.2 

1Eii, Laminate longitudinal modulus. 

occurred when the stacking sequence was 
[O2/( + 0)3/9O2]s (0 = 15, 30 and 45°). Figure 6a 
shows the bearing strength and failure modes of 
carbon-epoxy with respect to the ply angle. On 
inspecting the fracture surfaces of the speci- 
mens, delamination of the carbon-epoxy 
specimen on the loaded side of the holes and 
extensive damage at the washer edge outside 
the constrained region were found. From the 
test results, it was found that delaminations 
were more critical to the joint failure than in- 
plane damage. 

In order to investigate the effect of a 90° ply 
on the joint strength, the specimen with a stack- 
ing sequence of [03/(±45)3/+45]s was tested 
and the result was compared with that of 
[02/(+45)3/902]s. The bearing strengths of the 
specimens with [03/(+45)3/+45]s and 
[02/(±45)3/902]s were 859 and 880 MPa, respec- 
tively, where the bearing strength was higher 
when a 90° ply was contained in the laminates. 

From the static test results of a glass-epoxy 
composite with a stacking sequence of 
[02/(0/90)3/902]s and [02/( ± 0)3/9O2]s (0 = 15, 30 
and 45°), it was found that the bearing strengths 
of the two specimens were similar. The speci- 
men with [02/(0/90)3/902]s failed in the 
combined modes of bearing and shear-out fail- 
ures. The specimen with [02/( + 15)3/902]s was 
failed in the combined modes of bearing, ten- 
sion and shear-out failures, while the specimens 
with a [O2/( + 0)3/9O2]s (0 = 30° and 45°) joint 
failed in bearing failure mode. Figure 6b shows 
the bearing strength and failure modes of the 
glass-epoxy composite with respect to the 
stacking sequence. 

Similar to the case of the carbon-epoxy com- 
posite, delamination of the glass-epoxy 
specimen on the loaded side of the holes and 
extensive damage at the washer edge outside 
the constrained region were found. During the 
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tests it was found that the area of the specimen 
between the hole and the edge was deformed 
considerably out of the laminate plane due to 
the low modulus of the glass-epoxy composite. 
This out-of-plane buckling mode was also 
observed by Kretsis & Matthews [27]. 

Static tests of the joints for the hybrid 
composites 

From the static tests of the carbon-epoxy and 
glass-epoxy composites, it was found that car- 
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Fig. 6. Joint bearing strengths of the CFRP and GFRP 
with respect to the stacking angle of [O^ + 0)3/9O2]s. (a) 

CFRP. (b) GFRP. 

bon-epoxy with [02/(±45)3/902]s yielded the 
highest bearing strength and the glass-epoxy 
with [02/( + 30)3/902]s and [0A±^)3/902]S 

yielded similar high bearing strengths. There- 
fore, for the hybrid composites, the stacking 
sequence was [0C/+45G/ + 45C/90C]S (C: car- 
bon-epoxy, G: glass-epoxy) containing carbon 
plies in the 0°, 90° and ±45° directions and 
glass plies in the ±45° direction. 

In order to investigate the effects both of the 
clamping pressure of the bolt and the outer 
diameter of the washer on the bearing strength, 
the stacking sequence and the ratio of carbon- 
epoxy to glass-epoxy which gives the highest 
bearing strength was used in the test of speci- 
mens. As the thickness of carbon-epoxy was 
different to that of glass-epoxy, as shown in 
Table 1, the percentage of ply number is dif- 
ferent to the volume fraction. Therefore, the 
volume fractions of the glass-epoxy with ply 
number percentages of 20, 40 and 60 are 17.2, 
35.8 and 55.6%, respectively. Table 3 shows the 
stacking sequences of the hybrid composites 
which have the stacking sequence type [OC/ 
+ 45G/+45C/90C]S. The specimens with 14 
different stacking sequences were tested when 
the volume fractions of glass-epoxy were 17.2 
and 35.8%, while the specimens with seven dif- 
ferent stacking sequences were tested when the 
volume fraction of glass-epoxy was 55.6%. 

When the volume fraction of the glass-epoxy 
was 17.2% (OC: 20.7%, +45G: 17.2%, ±45C: 
41.4%, 90C: 20.7%), type G yielded the highest 
bearing strength (941 MPa) and type H yielded 
the lowest bearing strength (834 MPa), the dif- 
ference being 107 MPa as shown in Fig. 7. 

From Fig. 7a and b, it was found that the 
bearing strength was dependent on the location 
of the +45G and +45C plies. The difference in 
bearing strengths between types A-G compo- 
sites and types H-N composites was about 
60 MPa, although the only difference in the two 
types of composites was the location of the 
±45G plies. Therefore, it was concluded that 
the location of the +45G plies was important 
for the bolted joint in composite materials. 

When the 90C plies were located in the 
vicinity of the +45G plies (type F) and the 
+ 45C plies were located in the vicinity of the 
+ 45G plies (type M), the bearing strength of 
type F was higher than that of type M. Simi- 
larly, type B as shown in Fig. 8a, where the 
+ 45G plies are located between the OC and the 
+45C plies, had a lower bearing strength than 
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that of type I as shown in Fig. 8b, where the 
+ 45G plies were located between the +90C 
and the +45C plies. Therefore, it was con- 
cluded that the interlaminar stress 
concentration was decreased due to the smaller 
difference in stiffness of each ply when the 
+ 45G plies were located between the 90C and 
the ±45C plies. 

When the volume fraction of the glass-epoxy 
was 35.8% (OC: 21.4%, +45G: 35.8%, +45C: 
21.4%, 90C: 21.4%), type G yielded the highest 
bearing strength (917 MPa) and type F yielded 
the lowest bearing strength (792 MPa), as 
shown in Fig. 9. 

When the volume fraction of the glass-epoxy 
was 55.6% (OC: 22.2%, +45G: 55.6%, +45C: 
0%, 90C: 22.2%), type G yielded the highest 
bearing strength (788 MPa) and type C yielded 
the lowest bearing strength (695 MPa), as 
shown in Fig. 10. 

Figure 11 shows the bearing strength with 
respect to the volume fraction of glass-epoxy in 

the hybrid composites. As shown in Fig. 11, the 
bearing strength decreased for all the stacking 
sequences as the volume fraction of glass-epoxy 
was increased. In case of type A, the bearing 
strengths of joints for the pure carbon-epoxy 
and the pure glass-epoxy are also presented in 
Fig. 11. Although glass-epoxy is cheaper and 
more impact-resistant than carbon-epoxy, it is 
important to determine an appropriate volume 
fraction of glass-epoxy as the bearing strength 
of the joint decreases as the volume fraction of 
glass-epoxy increases. 

When the stacking sequence of the hybrid 
composite was [0G/ + 45C/90G]S, where the 
volume fractions for glass-epoxy and carbon- 
epoxy were 35.8 and 64.2%, respectively (0G: 
17.9%, +45C: 64.2%, 90G: 17.9%), the speci- 
mens with seven different stacking sequences, 
as shown in Table 4, were tested. 

In this case it was found that the bearing 
strength increased as the volume fraction of the 
+ 45C plies was increased, which is a similar 

Table 3. Stacking sequences of the hybrid composites [0C/ + 45G/ + 45C/90C]S 

Stacking pattern1 Type Stacking sequence 

[OC/+45G/ + 45C/90C]S0C: A [(0C)2/( + 45C)2/ + 45G/(90C)2]S 
20.7%+ 45G: 17.2% + 45C: B (90C)2/( + 45Cy + 45G/(0C)2]S 
41.4%90C: 20.7% C (+ 45C)2/ + 45G/(0C)2/(90C)2]S 

D (90C)2/(0C)2/( + 45C)2/ + 45G]S 
E (0C)2/(90C)2/( + 45C)2/ + 45G]s 
F (±45C)2/(0C)2/(90C)2/ + 45G]S 
G +45C/-45C/+45C/(0Cy-45C/+45G/- -45G/(90C)2]S 
H (0C)2/ + 45G/(±45C)2/(90C)2]S 
I (90Cy±45G/( ±45C)2/(0C)2]S 
J + 45G/(±45C)2/(0C)2/(90C)2]S 
K (90C)2/(0C)2/ + 45G/( ± 45C)2]S 
L (0C)2/(90C)2/±45G/( + 45C)2]s 
M + 45G/ + 45C/(0C)2/(90C)2/ + 45C]S 
N +45G/ - 45G/+45C/(0C)2/ - 45C/+45C/ - -45C/(90C)2]S 

[OC/ + 45G/ + 45C/90C]S0C: A (0C)2/±45C/(±45G)2/(90C)2]S 
21.4%+ 45G: 35.8%+45C: B (90C)2/±45C/(±45G)2/(0C)2]S 
21.4%90C: 21.4% C + 45C/( + 45G)2/(0C)2/(90C)2]S 

D (90C)2/(0C)2/ + 45C/( + 45G)2]S 
E (0C)2/(90C)2/ + 45C/( + 45G)2]S 
F + 45C/+45G/(0C)2/(90C)2/+45G]S 
G +45C/-45C/+45G/(0C)2/-45G/+45G/- -45G/(90C)2]S 
H (0C)2/( + 45G)2/ ± 45C/(90C)2]S 
I (90C)2/( + 45GV+45C/(0C)2]S 
J ( + 45G)2/±45C/(0C)2/(90C)2]S 
K (9ocy(ocy( ± 45oy+45C]S 
L (0C)2/(90C)2/( + 45G)2/+45C]S 
M (± 45G)2/(0C)2/(90C)2/( ± 45C)]S 
N +45G/ - 45G/+45G/(0C)2/ - 45G/+45C/- -45C/(90C)2]S 

[OC/+45G/+45C/90C]S0C: A (0C)2/(±45G)3/(90C)2]S 
22.2%+ 45G: 55.6%+ 45C: B (90C)2/(±45G)3/(0C)2]S 
0%90C:22.2% C ( + 45G)3/(0C)2/(90C)2]S 

D (90C)2/(0Cy( + 45G)3]s 
E (0C)2/(90C)2/(±45G)3]S 
F (± 45G)2/(0C)2/(90C)2/± 45G]S 
G +45G/-45G/+45G/(0C)2/-45G/+45G/ -45G/(90C)2]S 

'C, Carbon-epoxy; G, glass-epoxy. 
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trend to that found for [0G/+45G/ + 45C/ 
90G]S. Therefore, the specimens with 
[0G/+45C/90G]S (OG: 17.9%, +45C: 64.2%, 
90G: 17.9%), which had a high of volume frac- 
tion of ± 45C plies, were tested. Type G yielded 
the highest bearing strength (974 MPa) and 
type C yielded the lowest bearing strength 
(839 MPa), as shown in Fig. 12. 

As it was found that the bearing strength of 
[02/( + 45)3/902]s was similar to that of 
[02/(±30)3/902]s from the static test of glass- 
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Fig. 7. Joint bearing strengths of the hybrid joints with 
respect to  stacking sequences  ([0C/ + 45G/ + 45C/90C]S 
(OC, 90C: 20.7%,   +45G:  17.2%,   ±45C: 41.4%)).  (a) 

Type A-type G. (b) Type H-type N. 

epoxy, type G of [0C/±30G/+45C/90C]S was 
also tested and compared to [0C/±45G/+45C/ 
90C]S. As shown in Fig. 13, when the volume 
fractions of the glass-epoxy were 17.2 and 
35.8%, the bearing strength of the joint contain- 
ing + 30G was a little higher than that of the 
+ 45G, while the bearing strength of the joint 
containing + 30G was a little lower than that of 
the +45G when the volume fraction of the 
glass-epoxy was 55.6%. 

The hybrid composites of type G [0G/ + 45C/ 
90G]S (OG: 17.9%, +45C: 64.2%, 90G: 17.9%), 
which had the highest bearing strength, were 
tested with respect to the clamping pressure of 
the bolt and the outer diameter of the washer, 
when the inner diameter of the washer was 
same as that of the bolt and the outer diameter 
of the washer was 20 mm. After lubricant was 
applied to the bolt threads to reduce the varia- 
tion of preload, the clamping pressure was given 
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Fig. 8. Effective longitudinal modulus of the plies in the 
vicinity of the +45G ply. (a) Case of low bearing strength 

(type B). (b) Case of high bearing strength (type I). 
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Fig. 11. Bearing strengths with respect to the volume frac- 
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Table 4. Stacking sequences of the hybrid composites [0G/45C/90G]S 

Stacking pattern1 Type Stacking sequence 

[0G/±45C/90G]S 
OG: 17.9% 
±45C: 64.2% 
90G: 17.9% 

A 
B 
C 
D 
E 
F 
G 

[(0Gy( + 45C)3/(90G)2]s 
[(90G)2/( + 45C)3/(0G)2]s 
[( + 45C)3/(0G)2/(90G)2]S 

[(90G)2/(0G)2/(45C)3]S 
[(0G)2/(90G)2/( + 45C)3]s 

[(+ 45C)2/(0G)2/(90G)2/+45C]S 
[+45C/ - 45C/+45C/(0G)2/ - 45C/+45C/ - 45C/(90G)2]S 

1C, Carbon-epoxy; G, glass-epoxy. 



Optimum bolted joints for hybrid composites 337 

1000 

900   _ 

S 

DO 

§ aoo 

so a 
'u 
a 
0) 

CO 700 

600 

A B C 

Stacking Sequence Type 

Fig. 12. Joint bearing strengths of the hybrid joints with 
respect to stacking sequence ([0G/ + 45C/90G]S (OG, 90G: 

17.9%, +45C: 64.2%)). 

by a torque wrench [28]. The torque T (N-m) 
required for a given axial preload F(N) is cal- 
culated as follows [29] 

T = KF 
1000 

(2) 

where K is the torque factor (0.2 on average) 

and d is the nominal bolt diameter (mm). Then 
eqn (2) becomes 

' press 

Kd(dl-d2) 
(3) 

or 

' press (MPa) = 2.37r(N-m) (4) 

where dw is the outer diameter of the washer. 
The torque range used was 0-40 N-m, which 
was 0-95 MPa in terms of the axial load. 
Figure 14 shows the bearing strength with 
respect to clamping pressure. As shown in 
Fig. 14, the bearing strengths of the hybrid com- 
posites were increased as the clamping pressure 
was increased up to 71.1 MPa, and it then con- 
verged to a constant value which was 1.3 times 
higher than the value without preload. 

The bolted joints for the hybrid composites 
were tested by varying the outer diameter of the 
washer, ranging from 1.5d (12 mm) to 4.5d 
(36 mm) when the inner diameter of the washer 
and the clamping pressure of the bolt were 
8 mm and 23.7 MPa, respectively. As shown in 
Fig. 15, as the outer diameter of the washer was 
increased up to 2.5d (20 mm), the bearing 
strength was increased and then saturated. 
When the outer diameter of the washer was 
smaller than 2.5d (20 mm) bearing failure 
occurred;   however,   tension   failure   occurred 
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Fig. 14. Bearing strength with respect to the clamp-up 
pressure for type G of [0G/±45C/90G]S (washer outer 
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outside edge were found from the joint tests of 
the hybrid composites, delamination of the bol- 
ted joints for the hybrid composite materials 
was investigated using ANSYS, a commercial 
finite-element software, and compared with the 
experimental results. A cosine load distribution 
was used for the contact force between the 
composites and the bolt. The solid 46 element 
of the ANSYS element library, which enables 
the assignment of the ply angle, stacking 
sequence and ply thickness, was used for the 
stress analysis. Figure 17 shows the finite-ele- 
ment model for the bolted joint. Owing to 
symmetry, only a quarter of the laminate was 
modeled and the finger-tightened washer effect 
was simulated by constraining the z-direction 
displacements of the elements under the 
washer. 

The delamination of the hybrid composites 
was predicted using the Ye-delamination failure 

when the outer diameter was larger than 3d 
(24 mm) because the gap distance (w') between 
the washer edge and the specimen edge was 
reduced, as shown in Fig. 16, as the washer size 
was increased. 

STRESS ANAYSIS 

Because delamination on the loaded side of the 
holes and the extensive damage at the washer 
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Fig. 16. Geometry of the hole and washer. 
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Fig. 17. Finite-element model for the bolted joint. 
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criterion, which is depicted in the following [30] 

+1 — r+( — I ^1 for ff„>0 
Zt /    V   R  J   \   T 

>33. 

or 

R 
Q~23 

> 1 for cr33 < 0 

(5a) 

(5b) 

where Zt is the interlaminar tensile strength, 
and R and T are the interlaminar shear 
strengths in the 1-3 and 2-3 directions, respec- 
tively. The material properties in Table 1 were 
used and the interlaminar tensile strength was 
assumed to be equal to the transverse tensile 
strength, Yt. The interlaminar shear strengths R 
and T were assumed to be equal to the in-plane 
shear strength, S, and the out-of plane shear 
moduli, G13 and G23, were assumed to be equal 
to the in-plane shear modulus, GLT. 

The load condition of stress analyses was the 
cosine distribution, of which the x-directional 
resultant force was 10 kN. 

The hybrid composites of [0G/+45C/90G]S 

with seven different stacking sequences were 
analyzed and compared with the experimental 
results. The analysis results predicted the first 
peak load (A in Fig. 4), however, it could not 
predict the maximum failure load. Figure 18a 
and b show experimental and FEM results. 

For a more accurate prediction of the joint 
strength it might be necessary to include the 
effects of the material non-linearity, the friction 
between the washer and the laminate, as well as 
between the bolt and the laminate, and the stiff- 
ness reduction due to failure during analysis. 

CONCLUSIONS 

In this work, the optimum conditions of bolted 
joints for the hybrid composite materials com- 
posed of glass-epoxy and carbon-epoxy under 
tensile loading were investigated. The design 
parameters investigated were ply angle, stacking 
sequence, the ratio of glass-epoxy to carbon- 
epoxy, the outer diameter of the washer and the 
clamping pressure. From the test results the fol- 
lowing conclusions were made. 

1. A peak load occurred before the maximum 
failure load, which was due to delamination 
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Fig. 18. Comparison of experimental results with the FEM 
calculated failure index result of the joints when the 
external load was 10 kN ([0G/ + 45C/90G]S (0G, 90G: 
17.9%, +45C: 64.2%)). (a) Experimental results, (b) 

FEM results. 

of the laminate under the washer. At the 
maximum failure load, delamination on the 
loaded side of the hole and the extensive 
buckling of plies at the washer outside edge 
were found. 
From the static test results of the hybrid 
composites with stacking sequences of [0C/ 
±45G/±45C/90C]S and [0G/±45C/90G]S 

(C: carbon-epoxy, G: glass-epoxy), it was 
found that the bearing strength increased as 
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the +45 plies were distributed evenly in the 
thickness direction, irrespective of the ratio 
of glass-epoxy to carbon-epoxy and the 
stacking pattern. 

3. The bolted joint of [+45C/-45C/+45C/ 
(0G)2/ - 45C/+45C/ - 45C/(90G)2]S, which 
has a 35.5% volume fraction of glass-epoxy, 
yielded the highest bearing strength. In this 
case, the bearing strength increased as the 
clamping pressure of the bolt increased up to 
71.1 MPa, then the bearing strength satu- 
rated to a constant value. When the washer 
outer diameter was 20 mm, the failure mode 
was changed from bearing to tension. There- 
fore, the stacking sequence of [+45C/ 
- 45C/+45C/0G2/ - 45C/+45C/ - 45C/90G2]S 

would be the most suitable one. Also the 
clamping pressure should be larger than 
70 MPa and the outer diameter of the 
washer should be 20 mm, respectively. 

4. The finite-element analysis predicted the first 
peak load, however, it could not predict the 
maximum failure load. For a more accurate 
prediction of the joint strength it might be 
necessary during the analysis to include the 
effects of the material non-linearity, the fric- 
tion between the washer and the laminate, 
and between the bolt and the laminate, and 
the stiffness reduction due to failure. 
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This study describes the relation between the cutting force and the surface 
roughness of a drilled hole wall in small-diameter drilling of GFRP for a 
printed wiring board. In order to investigate the characteristics of small 
diameter drilling for GFRP, the surface of the drilled hole wall is observed 
by SEM, and the surface roughness along the feed direction is measured at 
various edge position angles of the drilled hole. The cutting force during 
drilling is measured. Moreover, the thrust force is devided into two 
components (the static component and the dynamic component). It is 
shown that the dynamic components are related with the surface roughness 
of the drilled hole wall. In conclusion, it is found that the major cutting 
edge of the drill is more influential in the quality of the drilled hole wall 
than the chisel edge of the drill in small diameter drilling of PWB. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

Recently, one requirement has been that the 
packaging density of printed wiring boards 
(PWB) be improved because high packaging 
density technology has allowed downsizing. For 
example, from a general public of view, tele- 
visions and telephones are typical cases of 
downsizing, so that their use has changed from 
stationary to portable. From an industrial point 
of view, computing speed and memory size are 
increasing. Therefore, high-quality micro- 
machinings are necessary for PWB. Especially, 
it is necessary that a great number of through- 
holes can be drilled with high reliability to make 
a circuit. So it is required to clarify the cutting 
mechanism of small diameter drilling in order 
to improve the quality of the drilled hole on 
PWB. On the other hand, printed wiring boards 
are often made of glass fibre reinforced plastics 

(GFRP). There are a few studies which have 
mainly dealt with the machined surface condi- 
tions of FRP [1-8]. But there are few studies 
which have dealt with the cutting force during 
drilling the small diameter hole. Hence, in this 
study, the relation between the thrust force and 
the surface roughness at the drilled hole wall is 
given attention in order to investigate the 
cutting mechanism in small diameter drilling for 
GFRP. 

First, to investigate the drilled hole quality in 
detail, the surface roughness of the hole wall 
along the feed direction is measured, and the 
hole surface is observed by SEM. It is found 
that the surface roughness has different charac- 
teristics at the each edge position angle. 

Second, the thrust force is measured to 
research the cutting mechanism in small diam- 
eter drilling for PWB under various cutting 
speeds  and  feed  rates.  The  investigation  is 
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carried out from the point of view of the rela- 
tion between the thrust force and the process of 
drilling. As a result, it is found that there is a 
large variation in the thrust force because of the 
different forces between for resin and for fibres 
in the laminate. So, to evaluate the cutting 
mechanism, we utilize a method of dividing the 
thrust force into two components, its mean 
value (named the static component) and the 
magnitude of variation (named the dynamic 
component). It is found that the dynamic com- 
ponent and the static component are affected 
by the cutting speed and the feed rate. 

Third, drilling for various pre-hole workpie- 
ces is carried out to research a distribution of 
those force components along the radius direc- 
tion of the point (the chisel edge and the major 
cutting edge) of the small diameter drill. The 
static component and the dynamic component 
increase as the pre-hole diameter decreases. 
Especially, when the pre-hole diameter is 
smaller than the chisel edge diameter, the static 
component increases greatly. However, the 
increase rate of the dynamic component is not 
as large as that of the static component in such 
small pre-hole diameters. As a result, it is clear 
that the static component mainly occurs at the 
chisel edge of the drill and the dynamic compo- 
nent is mainly occurs at the major cutting edge 
of the drill. Therefore, it is found that the static 
component influences on a cutting phenomenon 
occur at the chisel edge of the drill and the 
dynamic component influences on a cutting 
phenomenon occur at the major cutting edge of 
the drill. 

Finally, to investigate the influence of the 
thrust force on the surface roughness at the 
drilled hole wall, the surface roughness is mea- 
sured in detail under various drilling conditions. 
It is found out that the surface roughness is 
affected by the cutting speed and the feed rate. 
Compared with results of the thrust force 
measurement, it is clarified that the surface 
roughness is related to the dynamic component 
more than the static component in small diam- 
eter drilling, i.e. the dynamic component is 
influential in the surface roughness. 

EXPERIMENTAL EQUIPMENT AND 
MATERIALS 

An NC-drilling machine is used in the experi- 
ments. Cemented carbide drills for PWB are 

used, and the diameter is 1.0 mm. The drilling 
conditions are 5000-12000 rpm spindle speeds 
and 5-63 /mi/rev feed rates. 

Drilled GFRP is glass (39% in weight)-epoxy 
resin, plain woven cloth and thickness 1.6 mm. 
This workpiece is a copper clad laminate (con- 
sisting of eight plies) for PWB. The filaments 
are 9 /mi, and the width of yarn is about 500 /im 
in the laminate. An aluminum plate is used as a 
top stiffener and a bakelite plate is used as a 
bottom stiffener to prevent burr and delamina- 
tion at the hole entrance and exit, as is usual 
with small diameter drilling for PWB. 

The thrust force (a feed direction component 
of the cutting forces) is measured by a piezo- 
electric dynamometer mounted on the table of 
the drilling machine and the force is recorded 
through a charge-amplifier on a data-recorder. 
The hole surface is observed by a scanning elec- 
tron microscope (SEM), and the surface 
roughness (maximum peak-to-valley; i?max) of 
the hole wall is measured along the feed direc- 
tion by a stylus profile meter. 

RESULTS AND DISCUSSION 

Influence of drilling conditions on surface 
roughness 

In general, it is necessary to take into account 
the fibre angle 0-180°, the relative angle 
between the cutting direction and the fibre 
direction. Therefore, in the case of the plain 
woven cloth, the edge position angle y (0-180°), 
as shown in Fig. 1, is defined in this paper. The 
relationship between the edge position angle y 
and the fibre angle 9 is also shown in this figure. 
Hence, when regarding the direction of warp 
yarn and weft yarn, it is necessary to asses the 
damage along the half circumference of the 
drilled hole. 

Figure 2 shows the relationship between the 
edge position angle and the hole surface rough- 
ness measured along the feed direction. From 
this figure, the surface roughness value becomes 
maximum at edge position angles of 30° and 
120°, compared with other angles. There is little 
difference in the surface roughness values 
between the two edge position angles (30/120°). 
Therefore, it is not necessary to take account of 
the directions of warp and weft yarns. After 
this, we take notice of the surface roughness at 
the edge position angle 30°. 



Small diameter drilling of GFRP 345 

Figure 3 shows the high magnification SEM 
photograph of the drilled surface at the edge 
position angle 30°. In this figure, fibre buckling 
is observed. At this edge position angle, there 
are two fibre angles (30/120°). The buckling 
occurs at the 30° fibre angle, and not at 120°. 
Therefore, the surface roughness increases at 
the edge position angle of 30°. 

Figure 4 shows the relationship between the 
cutting speed and the surface roughness. 
Figure 5 shows the relationship between the 
feed rate and the surface roughness. The sur- 

Warp Yarn 
Y 

Y = 90deg. 

9 = 7]jrWeft Yarn 

Cutting Edge1 

Y=90deg.-x 

Rotation direction of drill 
tnniin i 

Fig. 1. The definintion of the edge position angle (j°) and 
the fiber angle (0°). 

face roughness increases slightly in proportion 
to the cutting speed as shown in Fig. 4. On the 
other hand, the surface roughness increases 
largely in proportion to the feed rate as shown 
in Fig. 5. Therefore, it is found that the feed 
rate is more influential in the surface roughness 
of a drilled hole wall than the cutting speed. 

Cutting force during drilling 

As stated in Section 3.1, the surface roughness 
of the drilled hole wall increases as the cutting 
speed and the feed rate increase, but the feed 
rate is more influential than the cutting speed. 

E 

x 
to 
E 
rr 

180 
Edge position angle (deg.) 

Fig. 2. The edge position angle and the surface roughness 
(maximum peak-to-valley; Rmax). 

Measuring direction of the surface roughness 
(Feed direction) 

* 

e = 30deg. 

e = 120deg 

IffiffiR 

fpfe 

*¥-.lV ...Vi 

Käs§a£:: 
Fig. 3. The high magunifacation SEM photograph of the drilled srface (Cutting speed = 15.7 m/min, Feed rate = 20 /im/ 

rev, y = 30°). 
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20 

15 

0 10 20 30 40 
Cutting speed (m/min) 

Fig. 4. The cutting speed  and the surface roughness 
(y = 30°). 

On the other hand, the surface roughness 
increases due to the difference of the cutting 
states between fibre angle 30° and 120° at the 
edge position angle 30°. It is considered that the 
difference of the cutting states represents 
cutting forces. Thus, thrust force is considered 
as an influential factor in the surface roughness. 

Figure 6 shows the thrust force during drilling 
in PWB. From this figure, it is found that the 
drill cuts the aluminum plate as a top stiffener, 
the upper copper foil, the laminate of GFRP 
(eight plies), the lower copper foil and the 
bakelite plate as a bottom stiffener in this 
order, and the thrust force has some peaks 
during that time. In particular, it is considered 
that variations in thrust force during drilling of 
the laminate part are caused by the different 
cutting characteristics of two materials of 
GFRP. In order to estimate the thrust force 
quantitatively,  the mean value of the thrust 

10        20       30 
Feed rate (iim/rev) 

Fig. 5. The feed rate and the surface roughness (cutting 
speed = 15.7 m/min, y = 30°). 

Fs: Static component 
Copper     FD : Dynamic component 

Aluminum  y' rr 

0.5 1.5 1.0 
Time (s) 

Fig.    6.   The    thrust   force   during   drilling    (cutting 
speed = 15.7 m/min, feed rate = 24 /mi/rev). 

forces is defined as the static component (we 
named Fs) and the magnitude of variations is 
defined as the dynamic component (we named 
FD), moreover, peaks and valleys in eight varia- 
tions are defined, respectively, as the maximum 
value (we named FP) and as the minimum value 
(we named FB). Those definitions are shown in 
Fig. 6. 

Drilling condition and thrust force 

In this section, the thrust force is measured in 
drilling various pre-hole diameters workpieces 
in order to evaluate the influence of the chisel 
edge on Fs and FD. Figure 7(a) and (b) shows 
the relationship between the pre-hole diameter 
and Fs, FD, respectively. Fs increases as the pre- 
hole diameter decreases as shown in Fig. 7(a). 
In particular, Fs increases sharply at the pre- 
hole diameter 0.4 mm or less. It can be seen 
that Fs at the chisel edge occurs most because 
the chisel edge diameter of the drill is about 
0.4 mm. On the other hand, FD increases 
slightly at the pre-hole diameter 0.4 mm or less 
as shown in Fig. 7(b). It can be seen that the 
major cutting edge of the drill is influential in 
FD. 

Figure 8 shows Fs and FD under various feed 
rates, and Fig. 9 shows them under various 
cutting speeds. From Fig. 8, it is found that Fs 

and FD increase as feed rate increases. On the 
other hand, as the cutting speed increases, FD 

increases slowly, but Fs decreases a little as 
shown in Fig. 9. So, FP and FB are evaluated in 
detail to research the influential factors of Fs 

and FD under various drilling conditions. 
Figure 10 shows FP, FB in drilling GFRP and Fs 

in drilling an epoxy plate under various feed 
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Pre-hole diameter (mm) 

(a)Fs 

0.0 0.2 0.4 0.6 0.8 

Pre-hole diameter (mm) 

(b)FD 

Fig. 7. The pre-hole diameter and the thrust force (cutting 
speed = 15.7 m/min). 
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^  15 
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2 ,o 
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Cutting speed (m/min) 

Fig. 9. The cutting speed and the thrust force (feed 
rate = 24 /im/rev). 

rates. In the case of the epoxy plate, there are 
little differences of FP and FB (no existence of 
FD). From that figure, the thrust force of drill- 
ing in the epoxy plate is almost same as FB. 
Therefore, it can be mentioned that FB is 
related with the thrust force for resin parts of 
GFRP in the case of this workpiece. On the 
other hand, it is considered that FP is related 
with the thrust force for fibres. As shown in the 
relationship between FP and FB, both of them 
grow as the feed rate increases. Moreover, FP 

increases more rapidly than FB. Therefore, both 
FP and FB increase almost linearly with the 
increase of the cutting area, such as drilling for 
metals. The cutting force per unit area for fibres 
is larger than that for resin. Hence, the increase 
of Fs with increased feed rate is due to the 
increase of FP and FB with increased feed rate. 
On the other hand, the increase of FD with 
increased feed rate is the reason the difference 

0 10 20 30 40 
Feed rate (urn/rev) 

Fig.  8.  The  feed  rate  and  the  thrust  force   (cutting 
speed = 15.7 m/min). 

0 10 20 30 40 
Feed rate (u.m/rev) 

Fig.  10. The feed rate and the thrust force  (cutting 
speed = 15.7 m/min). 
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Fig. 11. The cutting speed and the thrust force (feed 
rate = 24 ^m/rev). 

of FP and FB increases with increased feed rate 
because the cutting force per unit area of FP 

and FB is different. 
Figure 11 shows FP and FB under various 

cutting speeds. FP changes little and FB 

decreases a little with increased cutting speed. 
The influence of cutting temperature is con- 
sidered as a reason for this result. It is difficult 
that the heat, which occurs by friction between 
drill and a workpiece, transmits into the work- 
piece, because the thermal conductivity of the 
glass fibre and the epoxy resin is smaller than 
that of steels by 2 or 3 orders of magnitude. 
Moreover, the cutting temperature rises rapidly 
with the friction heat and the increase in the 
cutting speed. Therefore, it is considered that 
the reason for almost no changes of FP is that 
the fibre is little effected by cutting temperature 
because of the high melting point of the fibre. 
On the other hand, the resin is softened by the 
influence of the cutting temperature because of 
its low melting point. As a result, it is con- 
sidered that FB is reduced. Hence, it is found 
that Fs is reduced with increased cutting speed, 
because FB decreases, and FP is almost constant 
against the increase in cutting temperature. It is 
also found that FD increases with increasing 
cutting speed because the difference of FP and 
FB is larger at high temperatures. 

Influence of thrust force on surface roughness 

In Section 3.3, the fact that the drilling condi- 
tions effect the thrust force is clarified. 
Therefore, in this section, we continue the 
evaluation of the influence of the thrust force 
on the surface roughness. 

Figure 12(a) shows the relationship between 
Fs and the surface roughness and Fig. 12(b) 
shows the relationship between FD and the sur- 
face roughness. These figures indicate that the 
surface roughness increases with increasing 
thrust force. Moreover, Fs and FD are in pro- 
portion to the surface roughness. From Fig. 12, 
it is found that Fs and FD increase more when 
the feed rate is increased under the constant 
cutting speed than when the cutting speed is 
increased under the constant feed rate. In con- 
clusion, it is found that the surface roughness is 
more affected by feed rate than by the cutting 
speed. 

The relationship between the surface rough- 
ness and the thrust force is evaluated in the 
case of pre-hole existence or not. Figure 13(a) 
and (b) show the relationships between Fs, FD 

and the surface roughness, respectively. From 
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Fig. 12. The thrust force and the surface roughness. 
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Fig. 13(a), it is found that the surface roughness 
increases with an increase in Fs, but there are 
two different lines in the case of pre-hole exist- 
ence or not. On the other hand, from 
Fig. 13(b), it is found that the surface roughness 
increases with an increase in FD, and there is a 
line in the case of pre-hole existence or not. 
Therefore, FD is more influential in the surface 
roughness than Fs. In conclusion, it is con- 
sidered that the difference of the thrust force 
for fibres and resin, that is, the difference of the 
cutting phenomena for fibres and resin is influ- 
ential in the surface roughness. Compared with 
results of the thrust force measurement, it is 
clarified that the surface roughness is related 
with FD more than Fs in small diameter drilling. 
FD is influential in the surface roughness, 
because the major cutting edge of the drill has 
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Fig. 13. The thrust force and the surface roughness. 

an effect on the surface roughness at the drilled 
hole wall more than the chisel edge. 

In conclusion, it is found that the major 
cutting edge of the drill is more influential in 
the quality of the drilled hole wall than the 
chisel edge of the drill in small diameter drilling 
for PWB. Therefore, it is clarified that, in order 
to improve the quality of the drilled hole, it is 
effective to reduce FD occurring at the major 
cutting edge of the drill. 

CONCLUSION 

Drilling experiments are carried out to investi- 
gate the cutting mechanism in small diameter 
drilling for GFRP. In particular, surface rough- 
ness of drilled hole walls and the thrust force in 
drilling are paid attention. The results are as 
follows: 

1. The characteristics of the cutting force (the 
thrust force) have been clarified by dividing 
the force into two components, the static 
component Fs and the dynamic component 
FD. That is, influential factors on the thrust 
force has been clarified from the point of 
view of radius direction distribution of the 
drill and drilling conditions. 

2. The feed rate is more influential in the sur- 
face roughness of the drilled hole wall than 
the cutting speed. Therefore, it is effective to 
reduce the feed rate so as to improve the 
drilled hole quality. 

3. It is found that FD is very influential in the 
surface roughness, because this component 
indicates the difference of cutting character- 
istics between fibres and resin of GFRP. 
Therefore, in order to improve the quality of 
the drilled hole, it is effective to reduce FD 

occurring at the major cutting edge of the 
drill. 
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Fiber glass reinforced composites like sheet molding compounds (SMC) 
have recently been widely used in the fabrication of two-piece automobile 
hoods for passenger cars. In the present investigation, a one-piece 
composite hood with reinforcing ribs was optimally designed and 
manufactured by resin transfer molding in order to reduce manufacturing 
cost. In order to obtain the optimal design, stiffness analyses for deflections 
due to self-weight, oil canning, and torsion test conditions were carried out 
by applying the ABAQUS/Standard program. Based on these analyses, the 
thickness dimension of the composite hood required to maintain a stiffness 
comparable to a conventional steel hood was determined. For optimization 
studies of the weight reduction of the currently proposed one-piece 
composite hood with reinforcing ribs, IDESIGN program was employed. 
Based on a recursive quadratic programming technique, the thickness 
dimensions of the reinforcing ribs were optimized. The deflection ratios 
between fiber glass reinforced composite and conventional steel hoods were 
minimized in the optimization studies. From the present studies, it was 
found that the weight saving effect obtained by introducing the optimally 
designed one-piece composite hood was 37% compared to the conventional 
steel hood. This ranged approximately from 30 to 40% for composite hoods 
manufactured by resin transfer molding, depending on the composite 
materials used. Through these studies, it was confirmed that the one-piece 
composite hood was a preferable design and manufacture, compared to 
currently used composite hood made in two pieces, in terms of weight 
reductions and manufacturing cost without losing the stiffness required. 
Copyright © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Recent environmental issues require less fuel 
consumption with better efficiency. Due to such 
a requirement, one of the major design con- 
straints for passenger cars is to reduce their 
weight. Weight reduction can be achieved by 
either redesigning its structure and size or intro- 
ducing new light-weight materials for body 
components without sacrificing the safety of the 
vehicles [1]. 

Since the optimal design of reinforcement 
geometry and arrangements for better stiffness 
is of importance in automotive structure design, 

♦Corresponding author. 

numerous studies for weight reduction have 
been carried out so far. Radaj et al. [2], con- 
ducted finite element structural design analysis 
and Melosh [3] carried out static and dynamic 
analyses of bottom frame for Ford using NAS- 
TRAN. Also, optimization analysis of 
automotive structure design with a beam ele- 
ment was conducted by Bennett et al. [4]. A 
simplified stick model was proposed by Choon 
et al. [5] for structural analysis. 

In order to apply new light-weight materials 
in the manufacture of body components instead 
of steel, it is necessary to estimate the new 
required dimension of the same part without 
loss of safety or stiffness. Fenyes [6] studied the 
applications of high-strength steel,  aluminum 
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and graphite-epoxy for weight savings in auto- 
mobiles. In particular, it is well known that the 
use of engineering plastics, which was limited to 
bumpers and inner components in the past, is 
being expanded to outer components [7-9]. 

With the rapid development of computer 
technology and numerical methods, the field of 
optimization is actively being studied by many 
researchers. In general, the optimization prob- 
lem in structure design in the automotive 
industry can be divided into two processes: a 
determination process of cross-section, shape, 
and configuration; and a total optimization pro- 
cess based on the design variables selected. 
Numerous optimization algorithms and pro- 
grams to solve such problems have been 
developed so far. IDESIGN [10] is one such 
program, which can solve the optimization 
problems interactively. It consists of several 
algorithms such as cost function boundings 
(CFB), recursive quadratic programming 
(RQP), linearization method of Pshenichny 
(LINRM), and the conjugate gradient method 
[11]. Thus, it is adequate for applications to 
various engineering fields. 

The major purpose of this study is to design a 
hood in one piece with rib-type reinforcements 
made of sheet molding compounds (SMC), 
thermoset based composites reinforced with 
fiber-glass. Currently, SMC hoods are manufac- 
tured in two pieces and bonded together by 
applying adhesives [7]. In order to achieve this 
goal, simplified structural analysis was con- 
ducted by applying the ABAQUS/Standard 
program to determine deflections due to self- 
weight, oil canning, and torsion for a 
conventional hood made of aluminum killed 
steel under the assumption that the material 
properties were isotropic. Similar studies were 
carried out for composite materials by changing 
the thickness of the hood. By comparing the 
numerical data for deflection levels obtained 
from simulations, the weight saving effect was 
investigated between aluminum killed steel and 
composite materials. In order to optimize the 
weight reduction of the one-piece plastic hood, 
IDESIGN was applied based on the RQP 
method by selecting the thickness of the rein- 
forcements as a primary design variable and the 
deflection ratios between aluminum killed steel 
and plastic hoods as object functions. The total 
weight of the hood was given as a constraint. 
Based on the optimization results, the one-piece 
composite hood was made by applying resin 

transfer molding. It was found that the weight 
saving ranged from 30 to 40% through the 
present investigation. 

STIFFNESS ANALYSIS 

Stiffness analysis process 

In order to estimate the necessary hood thick- 
ness made of composite materials such as SMC, 
structural analysis of a conventional aluminum 
killed steel hood was made to establish the 
reference data for the stiffness requirement. In 
general, stiffness analysis is conducted by esti- 
mating and comparing the deflections subjected 
to external loads. For self-weight and torsion 
analyses, the global stiffness of the hood is com- 
pared by examining maximum deflection values, 
whereas in oil canning analysis, the localized 
stiffness is compared. In the present investiga- 
tion, self-weight, torsion, and oil canning 
analyses were undertaken for global and local 
stiffness comparisons using the ABAQUS/ 
Standard program. 

The geometry of the hood was idealized for 
computational simplicity into a one-piece hood 
with stiffening ribs as shown in Fig. 1(a) and 
(b). In Fig. 1(b), the arrangement is shown and 
in Table 1, the dimensions of each reinforcing 
rib are summarized. Due to geometric sym- 
metry only half of the hood was used in 
simulations. Although the material properties 
were anisotropic, they were assumed to be iso- 
tropic for numerical simplicity. The material 
properties used in the present investigation are 
summarized in Table 2 for aluminum killed 
steel and SMC [12]. 

The boundary and loading conditions used in 
the self-weight and oil canning analyses are 
approximated as depicted in Fig. 2(a) and (b), 
respectively. In these figures, A-A' represents 
the line of symmetry, B the points of simple 
supports, and C the hinged boundary points. 
For the self-weight analysis, the gravitational 
body force was the only external loading 
applied. However, the gravitational effects were 
neglected in oil canning and torsion analyses. A 
concentrated load of 50 N was applied at point 
D in oil canning analysis. For torsion analysis, 
concentrated loads of 40 N were applied at the 
given point C as shown in Fig. 2(c). Here, A-A' 
is the line of skew-symmetry and B is the fixed 
point. 
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ANALYSIS RESULTS 

A number of thickness variations were used for 
self-weight, oil canning, and torsion analyses. 
The numerical results obtained from simula- 
tions for aluminum killed steel and SMC are 
compared in Table 3 and Fig. 3 in consideration 

Table 2. Physical properties of high strength steel and 
SMC 

Young's modulus (MPa) 
Poisson's ratio 
Yield strength (MPa) 
Density (kg/m3) 

High SMC 
strength 

steel 

210 x103 14 x 103 

0.29 0.49 
91.3 55.0 
7833 1700 

(a) 

(b) 

Fig. 1. Schematic diagrams of (a) automobile hood and 
(b) structure of reinforcements used. 

Table 1. The dimension of each reinforcing rib in Fig. 1(b) 

Reinforcing 
ribs 

Width 
(mm) 

Initial 
thickness 

Rib 1 150 
Rib 2 70 
Rib 3 90 
Rib 4 80 
Rib 5 65 
Rib 6 55 
Rib 7 100 
Rib 8 50 
Rib 9 60 

2<steei ( = 2 x 0.7 mm) 

^.  : Simple support 
o  : Hinged B. C. 

A-A': Symmetric 
Condition 

A' 

(a) 

•^   : Simple support 
o   : Hinged B. C. 

A-A': Symmetric 
Condition 

■ : Loading Pt. 

(b) 

A 
<L 

I                    ~"       »v 
^  : Simple support 
o   : Hinged B. C. 

A-A: Anti-Symmetric 
Condition 

^  1 

1                            B°  1 A I             --4 

(c) 

Fig. 2. The boundary conditions used for (a) self-weight, 
(b) oil canning, and (c) torsion deflection analyses. 
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Table 3. Deflection results obtained for stiffness analyses 
Thickness ratio Weight 

ratio 
Weight 

reduction (%) 
Deflection ratio 

Self-weight Oil canning Torsion 

2.0 0.435 56.5 1.628 2.344 3.195 
2.2 0.478 55.2 1.508 1.732 2.529 
2.4 0.522 47.8 1.414 1.270 2.307 
2.6 0.565 43.5 1.334 0.969 1.664 
2.8 0.608 39.2 1.265 0.772 1.378 
3.0 0.652 34.8 1.205 0.635 1.153 
3.2 0.696 30.4 1.151 0.501 0.974 

.2 i- 

■ \ 

_ 
■ Self-weight 

■ Oil-canning 

■ Torsion 

'   Reference line 

-   N. 

2.0 2.5 
Thickness ratio 

3.0 

Fig. 3. Comparison of deflection curves obtained from 
self-weight, oil canning, and torsion analyses. 

of weight reduction and stiffness levels. The 
thickness ratio, percentage of weight reduction, 
and deflection ratio used in Table 3 were 
defined as follows: 

Thickness Ratio 

Thickness of SMC hood 

Thickness of aluminum killed steel hood 

(1) 

Weight Reduction (%) = 

1- 
Weight of SMC hood 

Weight of aluminum killed steel hood 

xlOO 

Deflection Ratio 

(2) 

C       Initial        "\ 
\Design Variable/ 

"     ABAQUS   N 

Stiffness Analysis 

Torsion Test 
Self-weight Test 

/'Object Function ^\ 
\Design Sensitivity/^ 

IDESIGN 

(     Modified    ^\ 
V^Design Variabley 

^Acceptabl 
No 

Yes 

Optimized 
Design Variable 

Fig. 4. Flow chart of the optimization process. 

Maximum deflection value of SMC hood 

Maximum deflection value of 

aluminum killed steel hood 

(3) 

As shown in Table 3, the deflection ratios 
obtained under the present simulation condi- 
tions are 1.151, 0.501, and 0.974 for self-weight, 
oil canning, and torsion studies, respectively, 
when the thickness ratio used was 3.2. From the 
results, it can be construed that the thickness 
ratio of 3.2 was safe enough based on the stiff- 
ness consideration. This result leads to a weight 
reduction of 30% when SMC was used as a 
replacement for aluminum killed steel. In 
Fig. 3, as the deflection curves are lower than 
the reference deflection ratio line for oil can- 
ning and torsion tests, it can be found that the 
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stiffness of the SMC hood is better than that of 
aluminum killed steel. 

OPTIMAL DESIGN 

Optimal design process 

In order to enhance the weight reduction effect 
and to achieve a more efficient stiffness distri- 

(a) 
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bution within the prescribed design conditions, 
the optimization analyses were carried out by 
selecting the thickness of the reinforcing ribs as 
a primary design variable. The thickness of the 
outer hood without reinforcements was 
assumed to be three times thicker than the one 
of aluminum killed steel based on the results 
obtained from previous stiffness analyses. 

The optimization was carried out for three 
cases according to the selection of object func- 
tions as follows. The deflection ratios between 
one-piece SMC and conventional aluminum kil- 
led steel hoods due to self-weight and torsion 
were used as object functions in the first and 
second cases of optimization, respectively. In 
the third case, the weighted deflection ratio 
obtained from self-weight and torsion analyses 
was selected as an object function. The total 
weight of the SMC hood and the minimum and 
maximum thicknesses of the reinforcing ribs 
were identically constrained for all three optimi- 
zation cases. 

The optimization modeling for each case was 
formulated as follows. 

(b) 
1.4 

(C) 
1.3 

1.2 

1.1 - 

1.0 - 

0.9 

4 6 
No. of iteration 

12 

Object function 
Self-weight 
Torsion 

10 12 
No. of iteration 

Fig. 5. Comparison of deflection curves obtained from 
self-weight and torsion analyses with optimized thicknes- 
ses for three case studies: (a) case (i), (b) case (ii), and (c) 

case (iii). 

3 4        5 6 
Reinforcement no. 

3        4        5        6 
Reinforcement no. 

Fig. 6. Resultant thickness ratios of reinforcements based 
on different optimization processes due to (a) self-weight, 
(b) torsion, and (c) weighted self-weight and torsion ana- 

lyses. 
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9) values 

/ = 
(.^weight); SMC 

V^weight/steel 

subject to 

^Total <MCritical( = 0.65 Msteel) 

W/MinimumV — -^'steel/ 

< (/,) < (f;)Maximum( = 6-5fsteel) 

Case (ii): find the tt (i = \, 2, 
which will minimize the equation 

/ = 
(<5, torsicWSMC 

\" torsion/steel 

subject to 

MTotal ^CriticalC = 0.65 Msteel) 

v/i/MinimumV — ^steel/ 

< (tj) < (^JMaximuml = 6.5fsteel) 

(4) 

(5) 

(6) 

9) values 

(7) 

(8) 

(9) 

Fig. 8. Photographs of (a) foam core mould and (b) foam 
core manufactured by RTM. 

Fig. 7. Photographs of (a) upper and (b) lower moulds 
used for RTM. 

Fig. 9. Photograph of top and bottom surfaces of the one- 
piece composite hood manufactured by RTM. 
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Table 4. The materials used in manufacturing composite hoods by RTM and the measured weight reduction ratios for 
each case 

Resin type (product name) Weight 
reduction 

(%) 

Epoxy (Epolite 2410/2183 (100:44)) 
Vynilester Resin (AROTAN Q6530) 
Novolac Type Vynilester Resin (SR-841L) 
Epoxy (Epolite 2410/2310 (100:14)) 
Phenol Versatil 
Unsaturated Polyester Resin (R401) 
Epoxy (Epolite 2410/2180 (100: 7.5)) 
Unsaturated Polyester Resin (R459) 
Epoxy (Epolite 2434/2347) 

32% 
35% 
32% 
31% 
40% 
35% 
37% 
34% 
30% 

Case (iii): find the tt (i = 1, 2, ..., 9) values 
which will minimize the equation 

f = a< 
(^weight)sMC 

V^weight/steel 

x )    ("torsion)sMC    ( 1 /1/v. 
+d-«K —  f,«= - (10) 

{     v^torsion/steel     ) ^ 

subject to 

MTotal <MCritical( = 0.65 Msteel) (11) 

V'/zMinimumv — ^steel/ 

< (ti) < a,)Maximum( = 6.5fsteel) (12) 

where th Ö, and M are the thicknesses of the 
reinforcing ribs as illustrated in Fig. 1(b), 
deflection value obtained from the structural 
analysis and the total weight of the hood, a 
represents the weighting factor used in optimi- 
zation. 

In order to solve the above optimization 
problems, the recursive quadratic programming 
method provided in IDESIGN was used. The 
flow chart of optimization process used in the 
present study is given in Fig. 4. As can be seen, 
the deflection ratio was computed using the 
ABAQUS/Standard program in the same 
manner as previously mentioned for stiffness 
analyses. The object function values were sepa- 
rately determined for three different cases 
according to their definitions as previously 
introduced. These object function values were 
provided as input for IDESIGN and the modi- 
fied design variables, th were used for structural 

analyses   again   until   desired   values   were 
obtained. 

Sensitivities of the object function and the 
constraint were calculated by applying the linear 
perturbation method as follows 

8/ 
% 

8Af. Total MTotal(r,+Af,) -MTotal(f,.) 

8f, At,- 

(13) 

(14) 

Optimal design results 

In Fig. 5(a), (b) and (c), the deflection ratios 
calculated by three different optimization cases, 
(i), (ii), and (iii), as introduced previously, are 
depicted at every iteration number. As seen in 
Fig. 5(a), the object function value, namely the 
deflection ratio obtained from self-weight ana- 
lyses became lower than the reference value of 
one as the number of iterations increased, 
whereas the deflection ratio obtained from 
torsion analyses increased. This result showed 
that only the self-weight deflection ratio was 
minimized, while the torsion deflection ratio 
was not controlled. For case (ii), in contrast to 
the results of case (i), only the torsion deflec- 
tion ratio was minimized. In this case, the 
self-weight deflection ratio was bounded, but 
the desired value less than the reference value 
of one was not obtained. From these results, it 
is found out that it was necessary to include the 
deflection ratios obtained from both the self- 
weight and torsion analyses into the object 
function. 

In order to satisfy the reference value for 
stiffness in both cases of optimization due to 
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self-weight and torsion, weighting factors were 
introduced in the third case of optimization. 
When the same weighting factor of 0.5 was 
imposed on both self-weight and torsion deflec- 
tion ratios, deflection ratios of 0.9742 and 
0.9381 were obtained, respectively, as shown in 
Fig. 5(c). Thus, it can be construed that both 
self-weight and torsion deflection ratios are 
satisfied by imposing a weighting factor of 0.5 
on each deflection ratio. According to this 
figure, object function values and deflection 
ratios converged as the number of iterations 
increased for this case. Also, for all three cases, 
a weight reduction of 37% in the SMC hood 
was achieved compared to the aluminum killed 
steel hood. Therefore, both the stiffness and 
weight reduction were improved through opti- 
mization compared to the initial design 
obtained from structural analyses only. 

Figure 6 shows the bar graphs of the resultant 
reinforcement thickness ratios for three cases of 
optimization, (i), (ii), and (iii). As shown in 
Fig. 6(a) and (b), reinforcements 3 and 2 have 
dominant influences on the self-weight and 
torsion deflection ratios, respectively. However, 
for case (iii), as can be seen in Fig. 6(c), the 
dominant components are reinforcements 2, 3, 
5, and 6. Thus, different reinforcement design 
was necessary, depending on the selection of 
the object function. 

MANUFACTURING THE COMPOSITE 
HOOD 

Through the optimal design process, a one- 
piece type composite hood was designed. For 
the purpose of checking the manufacturability 
of the designed hood, composite hoods were 
manufactured by a resin transfer molding 
(RTM) process. For this purpose, RTM moulds 
were manufactured in three parts, the upper 
and lower RTM moulds and the foam core. The 
RTM moulds were made of epoxy. By using a 
foam core, a one-piece composite hood with 
rib-type reinforcements could be manufactured. 

The widths of the reinforcing ribs were the 
same as the values given in Table 1, but the 
thicknesses were determined from the third 
case of the optimization results. Figure 7 shows 
photographs of the upper and lower moulds 
and the foam core mould and manufactured 
foam core for rib-type reinforcements can be 
seen in Fig. 8. A photograph of one of the one- 

piece composite hoods manufactured by resin 
transfer molding is shown in Fig. 9. The weights 
of the manufactured hoods were measured, and 
based on these, it was found that the actual 
weight reduction ranged from 30 to 40%. Table 
4 summarizes the materials used in manufactur- 
ing the composite hoods and the actual weight 
reductions for each case. 

CONCLUSIONS 

The following conclusions were obtained from 
the present investigation. 
1. A weight reduction of around 30% was 

achieved by applying SMC as a substitute for 
aluminum killed steel, when the thickness 
ratio was 3.2. 

2. The optimization results showed that an 
additional 7% weight reduction can be 
obtained compared to the initial design. This 
leads to a better design in terms of weight 
saving without sacrificing the stiffness of the 
hood. 

3. According to experimental observations, the 
final weight reduction ranged between 30 
and 40%, which is very close to the value 
obtained from the optimization. 

4. A one-piece composite hood designed in the 
present investigation can reduce the manu- 
facturing cost by removing the bonding 
process. 
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Mechanical properties prediction of textile- 
reinforced composite materials using a 

multiscale energetic approach 
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A computer aided design tool and a numerical procedure allowing the 
prediction of textile reinforced composite behaviour are presented in this 
paper. Specifying a geometrical description, the software used allows the 
rebuildong of both simple or sophisticated textile structures. It also aims to 
become a pre-processing work for the subsequent mechanical analysis. 
Fabric unit cells (fibres+matrix) are regarded as a three-dimensional 
aggregate of subcells on which we apply a multi-scale energetic approach. 
First elements to validate the elastic prediction are provided by results 
obtained on a woven fabric material. The progressive failure procedure is 
validated by comparisons between simulation and experiment on 3D 
braided composites. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The potentialities of woven, non-woven, knitted 
or braided fabrics used as reinforcements for 
polymer matrix composite materials are increas- 
ing. Today, their use within laminates in 
aerospatial and ship building fields, or as soft 
membranes and repairing elements in the civil 
engineering area, are common. However, the 
multi-functional character of those materials, 
which are perfectly adapted for structural ele- 
ment design, is not thoroughly used. This is 
essentially the result of the difficulties in pre- 
dicting their performance. The main problem of 
modelling the textile composite's mechanical 
properties lies in dealing with the large stress 
and strain variations within a textile accurately. 

A textile composite is a very heterogenous 
structure. Therefore, it must be considered (as it 
is often modelled) as a three-dimensional assembly 
of transverse isotropic unidirectional rods. As 
far as polymer matrix composites are con- 
cerned,  the  aniSOtrOpiC  faCtOr   (^axial/transverse) 
of those rods is substantial, between 20 and 30 

for a carbon/epoxy composite for example. As a 
consequence, the stress and strain fields within 
these differents elements depend greatly on the 
constituent's repartition, on their size and on 
their spatial arangement. In other words, it 
depends on the textile architecture. 

Many approaches exist to describe the global 
geometry of a composite. A simplifying descrip- 
tion—we can speak about geometrical 
homogeneization—is necessary in order to 
develop a mechanical model. Many of them 
only provide good results for specific textile 
geometry, according to a certain kind of load- 
ing. Most of the existing models seem to be 
inaccurate because of the introduction of new 
reinforcements such as multi-directional or 
three-dimensional fabrics. 

This paper has two objectives. The first is to 
describe a computer program developed in 
order to model the textile architecture geo- 
metry. The second is to present a numerical 
procedure allowing the estimation of the elastic 
and failure behaviour of composites with a 
textile reinforced polymer matrix. Finally, the 
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model is compared with results provided from 
experiments carried out on woven and braided 
fabric composites. 

PRESENTATION OF TIS3D 

The graphical technics implicated in computer 
aided design tools find an appropriate field of 
applications in the description of textile struc- 
tures. In a sophisticated representation, we can 
find a substantial amount of information which 
we have to deal with and use efficiently. 

The computer aided design software 
developed by the Mechanical engineering and 
Material Laboratory (L2M) is called TIS3D. 
One of its main features is to reconstitute basic 
volumes that represent usual textile structures. 

The geometrical description according to a 
reduced number of parameters allows the study 
of woven, knitted, braided, 2D or 3D reinforce- 
ments of homogeneized geometries (Fig. 1). 

Once the unit cell is defined, a regular 
volume element meshing is superposed on the 
'real' geometry (Fig. 2(a)-(b)). 

Each element is specified as a 'meso-element' 
and is characterized by an individual material 
orientation obtained by minimizing the distance 
between its own center and the yarn path. 

This meso-element is then considered as an 
assembly of eight micro-elements, the proper- 
ties of which depend on their belonging or not 
to the yarn volume (Fig. 3). If all or part of the 
micro-element is in the yarn volume, its proper- 
ties are those of the fibre-matrix mixture with 
the average orientation of the meso-element. 

TIS3D Version 2.0 
Fichier   Edjtion    Dessin    Modeies G.    Resolution 

f; :*•'•»! 

c:\vb\MuHiply 

c."\vb\triax ID3 

Fig. 1. Architectures generated by Tis3D — from left to right, top to bottom: multi-layered woven fabric, interlock woven 
fabric, triaxial braided fabric, interlock braided fabric. 
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On the contrary, if the micro-element does not 
belong to the yarn volume, its properties are 
similar to those for the matrix. 

Finally, the analysis of the unit cell mechani- 
cal behaviour consists of studying that of an 
aggregate of multi-scale elements with indivi- 
dual properties. 

For the mechanical prediction we must then 
consider three analysis scales: 

• a microscopic scale at the level of which we 
have to determine the tow properties accord- 
ing to those of the constituents (fiber+ 
matrix), 

• a mesoscopic scale at the level of which we 
define properties of a meso-element (eight 
micro-elements), 

• finally, the macroscopic scale at the level of 
which we consider the mechanical properties 
of the unit cell (aggregate of meso-elements). 

THEORETICAL ASPECTS 

General aspect 

An energetic approach is used for each analysis 
level. At the microscopic scale, we idealize the 
fibre+matrix mixture by a bidimensional net- 
work of cells (Fig. 4). This modelling has 
already been proposed by Aboudi [1]. 

The main idea of this method consists of min- 
imizing the complementary energy Ucj from the 
/-assembly defined as the average energy in 
each /-cell (/ = fiber or matrix) 

UCJ=- 'zvi{ai}
T[s]i{(T}i 

2   <=i 

Mj- I j — micro (1) 

V"/Fmlitt:i    Filtfmi     Diww«    Mrnlt:!.:* G.    fli 
rmmuni?«: B 

DchiCT   Cdjtkn   gesfrin   JhMclcfiG.   BcfJutioa 
liHiBMIWIM 

i-l 

Fig. 2. Meso-element meshing: (a) yarn partial meshing; (b) unit cell total meshing. 
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where v, is the volume ratio of the /-cell and [s]a 

represents the compliance matrix of the a 
entity. 

Through Lagrangian multipliers [2] and 
imposing the conditions of continuity and aver- 
aging of stresses  specified in eqn  (2),  it is 

meso-element 

Yarn volume 

nodes 1,2, 5, 6 included 
\A  in the yarn volume 

Sffl 1,2,5,6: fibre + matrix 
3,4,7,8: matrix 

z 1 (k-)meso-element=8 (j-)micro-elements 

Fig. 3. A meso-element as an assembly of eight micro- 
elements. 

possible to determine the linear relationships 
between the local tensors {a}, and the tensor of 
micro-element stresses {o-}y.micro as matrices of 
stresses localization [Lf],„m;cro (eqn (3)) 

1    ,=4 
<<T>=-   I (a), 

4 ;=i 

f>z)l=(tfZ)2;(>z)3 = <>z)4 

(Xyz)l = (Xyz)3> (Zyz)2 = K^yzJA 

\Xxz)\ = \1xz)2> \Txz)3 = i^xzM 

\Xxy)l = yZxy)?,'' \1xyJ2 = \Xxy)4 

{<7},. = [Lf],-micr^l i j — micro 

The compliance matrix [s]j_ 
bly is then easily explained 

(2) 

(3) 

of the j'-assem- 

[s] j — micro = \ V,M,[LH 
«=i j — micro 

=vn[s]f[Lr]j — micro 

+  X  V,[5]m[Lf] 
i=2 j — micro (4) 

-matrix 

idealized (j-)micro-element 

Fig. 4. Geometrical idealization of the fibre-matrix mixture. 
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with m:  matrix, /:  fibre,  v2 = v3 = JVR-Vn v4 = 
1 -lJVl+Vn, Vfl is the fibre packing ratio. 

At the mesoscopic scale, we consider a 
volume element composed of eight subdivisions 
of identical volumes (Fig. 3). The subdivision 
properties are then defined as 

, = Mr (5a) L^J^ —micro — L^Jmatrix 

if the subdivision does not belong to the yarn 
volume 

l>jjj —micro = L-* erJ       ißlfibre — microL-* si 

in the opposite case. Or else 

L^Jy —micro      lAlmatrix 

LCJy_micro = 1L-» CTJ        lAlfibre —microL^ EJJ (5b) 

where [Ta], |TJ are the stress and the strain 
transformation matrices. 

Then, still using the Lagrangian multipliers 
method and conditions of continuity and aver- 
aging of stresses or strains, the approach 
consists of supplying the lower and the upper 
bounds of each volume meso-element stiffness 
(or compliance) properties, respectively, mini- 
mizing the complementary (Uc) and strain (Us) 
energy. Thus, we define 

8 

[C],_meso< Z Vj[C]j_micm[L%_meaoUsrmni 
j = i 

8 

[S]*-meso< I Vy.[S]7_micro[LJ]t_meso Uc min i 

(6a) 

with   [L^.rneso   and   [Laj]k.meso   derived   from 
expression (6b). 

{£}j-micro = [L£j\k_meso{E}k_mesoUs min i 

{ff}y-micro = [*J]*-meso{Z}*_meso Uc miU l      (6b) 

Where   {£}y-miCro>    l^-O'-microJ    l^Jfc-mesoJ    l^Jfc-meso 
are    the    micro-element    and   meso-element 
strains and stresses. 

At the macroscopic level, the latter approach 
is extended to a three-dimensional assembly of 
regular volume meso-elements (see Fig. 2) to 
eventually estimate the bounds of the unit cell 
elastic properties. 

[C]maCro<     I     Vk[C]k_meso[Lk]macTOUs mm i 
k=l 

[5]macro<    I   Vft[S]t_meso[L2]macro Uc min I 
k = l 

(7a) 

where vk=l/NxNyNz;NxNyNz represents the 
number of meso-elements, with 

{E}k_meso = [LE
k]macro{E}macro Us min i 

{£}*-meso = [iHmacrotSJmac«,^ ™in i (7b) 

where {E}macm and {2}macro are the unit-cell 
strains and stresses. 

Result of the method 

The key point of the method which consists of 
explaining the relations between internal and 
external stresses (or strains) through localiza- 
tion matricies, allows us, first, to determine the 
bounds for the elastic characteristics of a textile 
reinforcement unit cell. Then, it is possible to 
estimate the internal stress and strain states 
according to an imposed external stress 
{£}macro or an imposed external strain {£}macro 

up to the microscopic scale. 
For example, we propose in eqns (8a)-(8d) 

the bounding of stress and strain tensors at the 
microscopic scale (that of a micro-element) for 
an imposed external stress and then for an 
imposed strain. The knowledge of micro- 
element stress and strain states is directly 
exploitable to anticipate the composite failure 
behaviour. 

At this scale, we can include several criteria 
taking into account the matrix cracking and the 
fibre failure. As each of the different criteria 
are applied to the assembly of subcells which 
compose the unit cell, progressive damage func- 
tions can also be determined. 

Details on numerical procedure for progressive 
failure simulation 

The method used to simulate progressive failure 
of textile composites is based on the relations 
(8). The analysis according to an imposed macro- 
scopic stress or an imposed strain are similar in 
so far as the yield criterion used is the same for 
both configurations. In the present paper, the 
maximum stress criterion will be used to study 
the failure behaviour of 3D braided composites. 
However, it is possible to use a maximum strain 
or a quadratic criterion. The procedure for pro- 
gressive failure simulation according to an 
imposed uniaxial stress and using a maximum 
stress criterion is detailed below. 
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First of all, each stiffness [C]y.micro or compli- 
ance [»S]y.micro matrix is calculated by a first 
elastic analysis on the undamaged composite. 
Once this calculation is achieved, we consider a 
macroscopic stress (for example, a unity) in the 
studied direction. The micro-elements internal 
stresses are then deduced in the local axis 
associated with the fibre direction. The minimal 
tension, compression or shear normalized stress 
(strength on real stress) is investigated in order 

to give the macroscopic stress value that would 
yield to the first micro-element failure. The con- 
stitutive matrix of the micro-element is then 
reduced by the selective RC method (rows and 
columns of the matrix [C]macro set to zero 
according to the stress allowable which was 
exceeded). The elastic analysis is continued, 
taking into account the change of [C];.micro (or 
IPJ/'-micro/- 

Table 1. Glass and epoxy properties [MPa] 

Glass Epoxy 

■^11 =^22 =-^33 

G\2 = Gu = G2- 
v12 = vI3 = v23 

73000 
30000 
0.20 

3130 
1170 
0.34 

APPLICATION TO A WOVEN FABRIC-PREDICTION OF ELASTIC BEHAVIOUR 

The validation of the numerical procedure in case of elastic prediction is provided through experi- 
ments carried out on woven fabric composites. We study the cases of a plain-woven and 
five-harness-satin-woven fabrics. Both textile composites are glass/epoxy materials. The constituent 
properties and the main geometrical characteristics of the unit cells are given in Tables 1 and 2 and 
Fig. 5. 

Table 2. Geometrical data [mm] 

Unit cell Tow 

t * H* n    *             n     * •^weft                            ^warp Vfl VfB a* b* 
Plain 
Satin 

0.005 
0.005 

0.205 
0.205 

0.65                   0.65 
3.25                   3.25 

0.81 
0.81 

0.514 
0.538 

0.3 
0.3 

0.05 
0.05 

tm: matrix thickness, H: height of the unit cell, £>weft and Dwarp: distance along weft and warp directions, Vfl: tow fibre 
packing ratio, Vfg: composite fibre volume ratio, a and b: yarn geometric parameters (Fig. 5). 

Fig. 5. Plain-woven fabric unit cell geometrical parameters. 
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According to an imposed stress 
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[La, j \k — meso 

7 = 8 

/_,   vj[S]j-microlLjlk-r. 
.7 = 1 

{LI} lei macro 

Wz 7 = 8 

I    M   Z vy[C]y_micro[L5],. 
*=1      0=1 

[LI meso ( L-^fcJmacro {2}macro<{(T} macro —- I" I j — micro 

l Oj 7-micro ^ U-jh- 

Z    M   Z v,m,_micro[LJ],_ 

L^yJfc —mesol^Ur 

i'=8 « i -meso' |     ^_,   "yL'-'Jj- — microL^/Jifc — meso f   l~JtJmacro° 

■[*£ meso (   Li-yjtJmacro  / I ^-'J macro (8a) 

7 = > /v,Ayvz 

2J      
Vfc]    2J   

VyL^Jy — microL^y-U — meso ('lAfc-lmacroJ       \*-llmacro^\£)j- 
* = 1 1.7-1 J 

I£ ) 7 — micro ^ L^/Jfc — meso' U-*J 

/ Ayvyv, 7 = 8 

macro'l 2J      
vfc'j    2J   

V jl^i j —microl*-'j Ik —meso f' L^Jmacro)l ^)r 
\    k=l (7=1 J 

(8b) 

According to an imposed strain 

V'-'jik — mesoL^fcJmac 

\0)j — micro ^ 1^7Jyt — meso'lAfcJ 

«AV, 7 = 8 

I    M   Z v,[5],_micro[LJ] 
*=i        (7=1 

/fc —meso (   L^/fcJmacro [Lak\ 

/  NtNyN, 7 = 8 

macro' I 2J      
V0     2J   ^[^Jy-microt-^'y] 

— 1 

I ^ J macro — 1" J 7 — micro 

& — meso [''L^/Umacro7' I ^ ) macro      V"W 
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For the plain-woven fabric, a unit-cell quarter is meshed with 864 meso-elements 
(12(JC) x 12(y) x 6(z)). As for the five-harness-satin-woven fabric, which has a more heterogeneous 
geometry, it is meshed with 3456 elements (24(x) x 24(y) x 6(z)). More refined meshing does not 
improve the elastic prediction. 

Table 3 gives comparisons between the results obtained by the experiments (only for the plain 
woven fabric), our numerical procedure (average of results provided by both the Us and Uc 

approaches) and an exact method (F.E.M.) [4]. We can see that the results obtained by the 
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numerical procedure can be accepted. Indeed, the difference from the exact solution does not exceed 
1% as for the Ex and Ez moduli and 11% as for the Ey modulus. However, we have to be cautious 
as far as the Poisson ratios are concerned (24% for vxz, 11% for vyx). The satin-woven fabric can be 
considered in the same way. The results confirm that the moduli predictions can be accepted (1% as 
for the Ex and Ez moduli and 6% as for the Ey modulus). However, the discrepancies observed for 
the Poisson ratios are lower (about 18% for vxz and 9% for v ). 

Table 3. Comparisons between experimental and numerical results 

Plain Satin 

Exact Tis3D Exp. Exact Tis3D 

Lx — t,z 25200 24700 24860 25800 25540 
Ey 11000 12380 14000 11100 11800 
Gxz 5230 5140 6140 5700 5560 
^yx       ^Jyz 3260 3640 4000 3400 3740 
vxz 0.140 0.178 0.194 0.150 0.181 
V     = V yyx       yyz 0.310 0.348 0.360 0.320 0.352 

APPLICATION TO A 3D COMPOSITES- 
PREDICTION OF PROGRESSIVE FAILURE 

We propose to test the validity of our numerical 
procedure for the failure behaviour from 
experiments carried out on Carbon/PA12 3D 
rectangular cartesian braided fabrics. The car- 
bon yarns are spun and coated with the matrix. 

Material properties 

The mechanical properties of the constituents 
are summed up in Table 4. The fibre packing 
ratio is equal to 0.7. 

Data used to study the braided composite 
failure behaviour are voluntarily restricted (in a 
first approach and considering the tensile load- 
ing) to axial tension and compression and 
braiding yarn shear strengths at the micro- 
elements scale. These data are presented in 
Table 5. 

This restrictive choice is deduced from 
experimental observations usually done con- 
cerning the 3D composites failure. Referring to 
Cox [5], their failure results from phenomena 

Table 4. Carbon and PA12 properties [MPa] 

Carbon PA-12 

En 230000 1300 
E22 15000 1300 
^■33 15000 1300 
G,2 50000 480 
Gl3 50000 480 
G23 12000 480 
Vl2 0.33 0.36 
Vl3 0.33 0.36 
V23 0.33 0.36 

Table 5. Tow maximum strengths 

Axial tensile 
strength 

Axial 
compression 

strength 

Shear 
strength 

a0 = 912 MPa 
s = 6.612 
L0 = 35 mm 
a = 0.610 

810 MPa 90 MPa 

combining axial tension and compression and 
yarn shear (kink band formation) failures, 
which the resin resistance does not affect. 

The tensile strength is described through a 
three-parameter Weibull distribution with the 
cumulative distribution function (CDF) given 
below (eqn (9)). 

F(a)=l— exp (9) 

where s is the shape parameter, a0 the shape 
parameter, L0 the gauge length reference and a 
describes the effect of the gauge length on the 
CDF. 

The determination of these three parameters 
is carried out by testing four yarn groups of 
different lengths consolidated at 220 °C and 
submitted to a 7-bar pressure for one hour. This 
is a simulation of the consolidation cycle of the 
3D braided composites. Each group are com- 
posed of 15-23 specimens with a gauge length 
of 35-140 mm. In Fig. 6, we present the CDF 
curves for F versus a/a0 allowing us to deter- 
mine two parameters of the Weibull law. 
Figure 7 shows the evolution of (a0(L)/a0(L0)) 
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ratio (normalized scale parameter) according to 
the gauge length ratio L/L0. It is then possible 
to determine the third CDF parameter, giving 
the tensile strength distribution law however 
long the specimen is. 

The axial compression and shear strength 
values given are averages. As for axial compres- 
sion, tests are carried out on 2mm-long 
specimens and the variations observed on them 
are quite negligible. As for shear, we also 
observe few variations since it is impossible to 

include scale phenomena (tests are carried out 
on tows with an identical section). 

Geometrical properties 

In order to determine the unit cell geometry of 
the 3D rectangular cartesian braided compo- 
sites, we make a painstaking sectioning of 
specimens (Fig. 8). It allows us to rebuild the 
path of each braiding yarn along a repetition 
unit and thus to identify 10 constituent subcells 

Cumulative distribution function vs normalized stress [a/ao] 

1 
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'S   0.4 

0.2 

• L=35 mm (exp.) 

- L=35 mm (theo.) 
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— - L=105mm (theo.) 
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-" L=140mm (theo.) 

0.55 0.65 0.75 0.85 0.95 
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Fig. 6. Cumulative distribution functions of single Carbon/ 
PA12 tows made for various gauge length. 

Normalized scale parameter la«{L)/a4l^)} vs normalized gauge length ll/L»/ 
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Fig. 7. Normalized scale parameter [a0(L)/<r0(L0)] versus 
normalized gauge length [L/L0] — determination of the 

third Weibull distribution parameter a. 

micrography 
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digitization 

I 

specimen sectioning 

Fig. 8. 3D braided fabric unit cell construction by specimen sectioning. 
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Fig. 9. 3D cartesian braided fabric unit cell. 

from the braided composite unit cell (Fig. 9). 
The orientations of each of the yarn elements 
within the subcells as well as the composite 
fibre volume ratio can be determined from the 
process parameters. 

Progressive failure according to a tensile 
loading 

Forty-three-yarn-braided-fabrics are loaded to 
failure (along the z-axis direction). The dimen- 
sions of the specimens are 100 x 10 x 2 mm 
(Lx/xe). The average braiding angle is equal 
to 27°. The average fibre volume ratio, deter- 
mined according to the ASTM D 3171 norm, is 
0.517. 

The Fig. 10 shows a comparison between five 
experimental and two simulated progressive 
damage functions. The simulations are derived 
from the eqn (8a) (maximum stress criterion) 
and considering that the macroscopic strain 
{£}macro according to the imposed macroscopic 
stress {£}macro is directly given by 

{E}T , = [S]T (10) 

600 T 

500 .. 

400 

I    30° 
C     200 

100 

Tensile tests on Carbon/PA12 3D braided fabrics 

strain energy approach 
complementary energy approach 
experiments 

0 2000       4000       6000       8000       10000      12000      14000      16000 

£ [p.m/m] 

Fig. 10. Comparisons between experimental and simulated 
damage functions. 

this expression is determined from the eqns 
(6b) and (7b). 

The two simulation curves are based on a 
1536-meshing (24(x) x 8(y) x 8(z)) of the unit 
cell shown in Fig. 9. 

We note that in the case of a complementary 
energy approach the first simulated micro- 
element failure occurs more rapidly in terms of 
stress (310 MPa according to Uc and 560 MPa 
according to Us). The failure of the whole brai- 
ded composite is then predicted before that 
determined from the strain energy approach 
which seems rather logical according to expres- 
sions (8). We can also notice that strains to 
failure are almost similar (10%). 

As far as the experimental curves are con- 
cerned, we remark that strength values are 
included between the bounds predicted by both 
of our approaches. However the simulated 
strain to failure values are lower than the 
experimental ones. This is probably due to the 
original formulation of the strength problem 
which is based on a maximum stress criterion 
and that in principle strain criteria are not 
taken into account. We can also explain it by 
the fact that, by definition, 3D braided architec- 
ture implies important strains to failure, often 
considered as structural strains, which can 
hardly be modelled at the present time. 

Finally, it seems necessary to add that the 
failure description included between two func- 
tions is justified if we consider the various 
dispersions observed on a group of specimens. 

CONCLUSIONS 

An efficient numerical procedure based on the 
knowledge of textile geometry is proposed in 
order to simulate the elastic and failure 
behaviour of textile-reinforced composites. 
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The elastic prediction is shown to be quite 
close to a usual F.E.M. in the case of woven 
fabric composites. Failure seems to have quite 
an encouraging future since they can deal with 
complex architectures. 

In the future, this numerical procedure will 
allow us to optimize and compare the proper- 
ties of braided structural elements with these of 
metal elements. 
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This paper describes an experimental investigation into the energy 
absorption properties of a foam-cored sandwich panel with integral fibre- 
reinforced plastic (FRP) tubes and frusta. The panels were tested under 
quasi-static flatwise compression and a number of different insert 
geometries were examined. By using X-ray analysis it was found that those 
panels with inserts which failed by stable progressive brittle fracture 
exhibited-the best specific energy absorptions. Inserts which failed 
catäStrophically led to much lower values. Conical inserts were found to 
offer the most repeatable performance as their geometry assisted in 
ensuring consistency of manufacture. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Considerable research interest has been shown 
in the use of composite materials for crashwor- 
thiness applications because it has been 
demonstrated that they can be designed to pro- 
vide energy absorption capabilities which are 
superior to those of metals when compared on 
a weight-for-weight basis [1,2]. It has been 
found that, in general, fibre-reinforced plastics 
(FRPs) do not exhibit the ductile failure pro- 
cesses associated with metals. Instead, the 
brittle nature of most fibres and resins tends to 
generate a brittle mode of failure. Provided that 
the crushing mechanisms can be controlled so 
that the FRP fails in a stable, progressive 
manner, very high levels of energy can be absor- 
bed. 

In recent years, some progress has been made 
in establishing the influence of material, geo- 
metric and experimental parameters on the 
energy absorption capability of FRP tubes, with 
perhaps Hull [3] providing the definitive work 
in this field. However, the practical application 
of this knowledge has been limited by the sim- 
plistic nature of the geometries investigated. 
Although tubes can be considered structurally 
representative  up   to   a  point,   the   question 

remains of how best to reproduce the high 
energy absorptions demonstrated in the labora- 
tory within real applications. Furthermore, 
design methodologies and manufacturing tech- 
niques need to be developed which will enable 
the viable production of actual crashworthy 
structures. This is especially important if FRP 
components are to be competitive with their 
metallic counterparts. 

This paper describes one approach to the 
development of structural crashworthy compo- 
sites. It is based on the use of a foam-cored 
sandwich panel with integral energy absorbing 
FRP inserts. The function of the FRP inserts, 
which were in the form of tubes and hollow 
conical frusta, was to control the failure loads 
(and hence the energy absorption capability) of 
the panels. Resin transfer moulding (RTM) was 
used to fabricate the test specimens. The overall 
objective of this investigation was to establish a 
fundamental understanding of the energy 
absorption behaviour of the panels and, in par- 
ticular, the influence of the FRP inserts. By 
identifying the principal failure mechanisms and 
ascertaining their relative contribution to the 
overall energy absorption, recommendations for 
optimising the performance of such structures 
can be proposed. 

373 
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MATERIAL DESIGN AND SPECIFICATION 

A cut-away illustration of the structural concept 
behind the panels studied in this investigation is 
shown in Fig. 1. The basic sandwich consisted of 
a rigid closed-cell polyurethane foam of nomi- 
nal density 120 kg/m3 surrounded by facings of 
glass-reinforced unsaturated polyester (GRP). 
Moving outwards from the core, the face plate 
laminates were comprised of a layer of 450 g/m2 

continuous fibre mat, a layer of 2336 g/m2 

[0/45/90/—45] non-crimp quadriaxial mat and a 
80 g/m2 surface veil. Each facing had a thickness 
of 3 mm, and that of the foam core was 25 mm. 

Incorporated within the core of each speci- 
men were four GRP inserts fabricated from 
[ + 45] braided glass fibres in an unsaturated 
polyester resin. These ran through the entire 
thickness of the core with their longitudinal 
axes perpendicular to the face plates of the 
sandwich. Their positions within each specimen 
are shown in Fig. 2. The fibres at the ends of 
each braided insert were merged with those of 
the face plate laminates (between the continu- 
ous fibre and quadriaxial mats) so as to provide 
a mechanical tie between opposing facings. It 
has previously been shown [4] that this arrange- 
ment inhibits separation of the face plates, even 
after core debonding. Furthermore, it been 
found [4] to enhance the mechanical properties 
of a panel, particularly with respect to shear 
stiffness and strength. 

A number of different insert geometries were 
tested, although there was no variation within a 

given specimen. Details are provided in Table 1. 
The geometries of the conical frusta were 
chosen in accordance with Mamalis et al. [5], 
recommendations for designing FRP frusta 
which fail by high energy progressive crushing. 
Similar mean diameters were then selected for 
the tubular inserts. In general, all the conical 
inserts in a given specimen were oriented in the 
same direction (i.e. all the wide ends were adja- 
cent to the same face plate). However, for some 
of the 20.6 mm wide outside diameter frusta, 
two diagonally opposing inserts were inverted 
(i.e. each face plate was adjacent to two wide 
ends and two narrow ends). Furthermore, a 
number of the specimens with 20.6 mm wide 
outside diameter frusta were manufactured 
without any braid ends passing into the face 
plate laminate (i.e. there were no mechanical 
ties between opposing facings). A conventional 
sandwich panel, without any inserts, was also 
tested for the purpose of comparison. 

MANUFACTURE OF SPECIMENS USING 
RESIN TRANSFER MOULDING 

Resin transfer moulding (RTM) typically 
involves the assembly of a dry fibre/foam pre- 
form which is then placed in a closed mould 
and injected with a low viscosity liquid resin. 
The advantages of RTM which make it particu- 
larly suitable for manufacturing energy 
absorbing sandwich panels include: 

1. The ability to produce complex geometries. 

Glass-Reinforced 
Polyester Facings 

Braided 
Glass-Reinforced 
Polyester Insert 

Fig. 1. General structural design of the energy absorbing composite sandwich structures. 

Rigid Polyurethane 
Foam Core 
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100 mm 

20 mm 

Fig. 2. Arrangement of the four GRP inserts within the cores of the test specimens. 

2. The consistency of the finished products. 
3. The opportunities it provides for the local 

tailoring of reinforcements. 
4. The opportunities it provides for integrated 

design. 
5. The  closed mould reduces  emissions  and 

promotes a healthy work place. 
6. It is cost-effective for small-medium sized 

production runs. 

The first stage in the manufacture of the test 
specimens involved the production and prepara- 
tion of the rigid polyurethane foam core 
material. This was moulded in solid blocks of 
dimensions 800 x 130 x 25 mm using a pro- 
cedure which has been described elsewhere [6]. 
From these blocks, smaller 125 x 125 x 25 mm 

core specimens were cut. These were then abra- 
ded (to improve adhesion with the face plates) 
and drilled in accordance with Fig. 2 and Table 
1; the diameters of the drilled holes were equal 
to the external dimensions of the GRP tubes 
and frusta. Solid cylindrical and conical poly- 
urethane foam plugs were also produced to fill 
the gaps inside the GRP inserts. The geom- 
etries of these plugs were equal to the internal 
dimensions of the GRP tubes and frusta. 

Having prepared the rigid polyurethane 
foam, the tubular glass braid was then cut into 
60 mm lengths. Each piece was passed through 
a hole in the foam core and filled with a foam 
plug. These integrated cores were then laid-up 
in groups of six, together with their glass mat 
facings,   within   a   375 x 250 x 31 mm  wooden 

Table 1. The different geometries of GRP insert investigated 

Insert type Semi-apical Length Inside Outside Estimated 
angle (mm) diameter diameter fibre 

(mm) (mm) volume 
fraction 

(%) 

None   — — — — 
Tube — 25 14 15 59 
Tube — 25 14 16 29 
Hollow conical frustum 10° 25 Wide end = 19.4 Wide end = 20.6 49 
Hollow conical frustum 10° 25 Wide end = 19.4 Wide end = 21.5 24 
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moulding frame on a steel base plate. Holes 
were cut in the continuous fibre mat to allow 
the passage of the tubular braid. Once through 
this layer, the ends of the braid were splayed 
radially to promote bonding with the rest of the 
face plate laminate. 

When the dry fibres and foams had been 
satisfactorily positioned within the wooden 
frame, the whole arrangement was firmly 
clamped between two steel moulding plates. 
These plates were heated to a temperature of 
around 30-35°C in order to promote cure and 
to ensure the low viscosity of the resin. The 
polyester resin was-then injected through a port 
located in the centre of the top moulding plate. 
Injection continued until the resin had reached 
the small ventilation holes in each of the four 
lower corners of the mould and no more 
trapped air was escaping. Upon removal of the 
injection head, the mould was sealed and the 
specimens were left to cure for around an hour. 
The finished six-specimen moulding was then 
undamped, removed from the wooden frame 
and cut into individual 100 x 100 x 25 mm test 
specimens. This process was repeated for each 
of the specimen types listed in Table 1. 

TESTING AND ANALYSIS PROCEDURES 

The specimens were compressed in the flatwise 
direction between two parallel rectangular pla- 
tens using a Mayes 100 kN capacity 
servo-electric test machine. All the specimens 
were crushed at a uniform rate of 5 mm/min 
and the load-displacement characteristic was 
recorded in each case. 

One specimen of each type listed in Table 1 
was also examined using X-ray analysis. 
Because glass fibres have higher mass absorp- 
tion coefficients than either polyurethane foam 
or polyester resin, radiography provided an 
ideal method for visualising the response of the 
GRP inserts at progressively increasing crush 
distances. In particular, it eliminated the need 
for specimen dissection, a process which would 
have been likely to displace the fibres from 
their original crushed positions. 

FAILURE MECHANISMS OF THE TEST 
SPECIMENS 

Under flatwise compression, all specimens 
exhibited  a  linear-elastic  response  at  small 

crush distances (< K 1 mm). This was due to 
the bending and stretching of the cells within 
the rigid polyurethane foam and the elastic 
compression of the GRP tubes and frusta. 
Those specimens with GRP inserts displayed a 
stiffer elastic response than those without. 

At large crush distances ( > «15 mm), the 
collapse load of all specimens increased rapidly 
with displacement. The cores of the sandwich 
panels had become fully crushed, and their use- 
ful energy absorption capability was exhausted. 
Core densification had been reached. 

Between these two extremes (i.e. for crush 
distances of «1-15 mm), the load-displace- 
ment response of the sandwich panels was 
found to vary considerably with insert geometry. 
In general, three different types of behaviour 
were observed: a uniform response, a uniform 
response with an initial peak load, and a non- 
uniform response (Fig. 3). Each is considered in 
turn below. 

Uniform response 

This was the characteristic behaviour of the 
sandwich panels with no GRP inserts. Between 
the elastic and densification regions there was a 
long collapse plateau in which the load 
increased only slowly with displacement. Such a 
response is typical of polymer foams [7], and is 
associated with the gradual collapse of the cells 
within the foam. The implication is that, in the 
absence of any inserts, the properties of the 
sandwich panels under flatwise compression 
were dictated by the bulk core material. The 
principal energy absorption mechanism was the 
plastic collapse of the cell walls. 

Uniform response with an initial peak 

This was the characteristic behaviour of the 
sandwich panels with the following types of 
insert: 

• 16 mm outside diameter tubes. 
• 20.6 mm wide outside diameter frusta, half of 

which were inverted. 
• 20.6 mm wide outside diameter frusta, with 

no braid ends passing into the face plate 
laminate. 

• 21.5 mm wide outside diameter frusta. 

These specimens all exhibited a pronounced 
peak load at the end of the elastic region. 
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Fig. 3. A comparison of the load-displacement characteristics of representative specimens from each of the three general 
failure categories. The 20.6 mm wide outside diameter frusta in the specimen shown were all oriented in the same 

direction. 

Audible cracking accompanied the termination 
of the peak load, suggesting failure of the FRP 
inserts. The load then dropped and assumed a 
largely uniform response, similar to that typical 
of foams, but at a higher average crush level. 

These observations would tend to indicate an 
initial catastrophic failure of the GRP inserts 
rather than the onset of controlled progressive 
crushing. X-ray analysis supported this hypothe- 
sis. Figure 4 shows the sequence of failure for a 
16 mm outside diameter tube. The images 
clearly show the development of a central cir- 
cumferential fracture. This then generates a 
telescopic collapse mode in which the bottom 
half of the tube slides up inside the top half. 
Apart from the initial fracture, there is no fur- 
ther evidence of brittle failure. This explains the 
uniformity in the load-displacement character- 
istic. 

The principal energy absorption mechanisms 
of these specimens included the plastic collapse 
of the cells within the rigid polyurethane foam, 
the matrix cracking and fibre breakage associ- 
ated with the initial fracture of the GRP inserts, 
and the frictional effects caused by the frac- 
tured halves sliding over one another. 

It is believed that the majority of the speci- 
mens which failed in a catastrophic manner did 
so because of inconsistencies in the fibre distri- 
bution within the GRP tubes and frusta. 
Unstable failure was initiated from a local non- 
uniformity in the material or geometry. These 
inconsistencies were caused by displacement of 

the braided fibres during the injection of the 
resin. For the specimens with the 16 mm out- 
side diameter tubes and the 21.5 mm wide 
outside diameter frusta, this can be attributed 

Fig. 4. X-ray analysis showing the sequence of failure for 
a 16 mm outside diameter tube. Images are shown at 

crush distances of 2, 6 and 13 mm. 
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to the large gaps between the inner foam plugs 
and the outer foam core. The braided glass 
fibres were free to wander within these gaps 
and this resulted in considerable deviations in 
their geometry. Inconsistencies in the fibre dis- 
tribution were also observed for those inserts 
without any braid ends passing into the face 
plate laminate. The very short lengths of braid 
used to make these specimens tended to result 
in a lack of cohesion in the fibre weave. The 
only specimens which were found to have a con- 
sistent fibre distribution and yet still failed in a 
catastrophic manner were those in which half 
the conical inserts were inverted. It is believed 
that the inherent asymmetry of this arrange- 
ment prevented the onset of stable progressive 
crushing. 

Non-uniform response 

This was the characteristic behaviour of the 
remainder of the specimens, i.e. those with 
15 mm outside diameter tubes and 20.6 mm 
wide outside diameter frusta (oriented in the 
same direction, with braid ends passing into the 
face plate laminate). Following initial failure, 
the load-displacement characteristics of these 
specimens exhibited pronounced serrations. 
Furthermore, there was audible cracking 
throughout the crush event. 

These observations are consistent with the 
progressive crushing of the inserts. Figures 5 
and 6 show the sequence of failure for a 15 mm 
outside diameter tube and a 20.6 mm wide out- 
side diameter frustum. Both clearly show 
controlled brittle failure from one end of the 
insert. The serrations in the load-displacement 
characteristic are caused by the stick-slip 
nature of the brittle fracture process. 

It is interesting to note that the GRP frusta 
all crushed progressively from their wide ends. 
This is contrary to what is commonly observed 
[8]; crushing usually occurs from the narrow 
end of frusta where the stress is locally highest. 
It is believed that this apparent deviation from 
the norm was a result of the tubular braid used 
to fabricate the inserts. This had a nominally 
constant diameter. Therefore, when formed into 
a conical geometry, there was a locally higher 
fibre volume fraction at the narrow end of the 
frustum and a correspondingly lower one at the 
wide end. The reduced level of reinforcement at 
the wide end caused failure to be initiated from 
this point. 

Fig. 5. X-ray analysis showing the sequence of failure for 
a  15 mm outside diameter tube. Images are shown at 

crush distances of 2, 6 and 13 mm. 

The principal energy absorption mechanisms 
of the progressive crushing specimens included 
the plastic collapse of the cells within the rigid 
polyurethane foam, and the matrix cracking, 
fibre-matrix debonding and fibre breakage 
associated with the brittle failure of the inserts. 

ENERGY ABSORPTION CAPABILITY OF 
THE TEST SPECIMENS 

Having established the failure mechanisms of 
the different types of sandwich panel, their 
energy absorption capabilities were then 
assessed. The amount of energy absorbed by 
each specimen was calculated from the area 
under its load-displacement characteristic. Only 
useful energy absorption was considered; that 
beyond crush distances of 15 mm was not taken 
into account. 

Figure 7 shows the variation of absolute 
energy absorption with insert geometry. The 
columns represent mean values for specimens 
with a given type of insert, and the error bars 
indicate recorded extremes. It can be seen that 
all panels with GRP tubes and frusta absorbed 
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more energy than those without. Specimens 
with 20.6 mm wide outside diameter frusta (ori- 
ented in the same direction, with braid ends 
passing into the face plate laminate) exhibited 

Fig. 6. X-ray analysis showing the sequence of failure for 
a 20.6 mm wide outside diameter frustum. Images are 

shown at crush distances of 2, 6 and 13 mm. 

the highest mean energy absorption, with an 
increase of 69% over the sandwich panels with 
no inserts. 

However, more meaningful assessments of 
relative energy absorption performance are 
often provided by normalised measures. These 
allow direct comparisons to be made between 
specimens of different materials and geom- 
etries. Therefore, mass specific energy 
absorptions were also calculated and a compari- 
son is shown in Fig. 8. It can be seen that a very 
different trend to that shown earlier is revealed. 
Only two of the insert geometries provided sig- 
nificant improvements over the basic sandwich 
construction. In other words, for the majority of 
the specimens, any increase in energy absorp- 
tion by virtue of the inserts was offset by their 
higher mass. 

The two insert geometries which did show 
improvements were the 15 mm outside diameter 
tubes and the 20.6 mm wide outside diameter 
frusta (oriented in the same direction, with 
braid ends passing into the face plate laminate). 
Sandwich panels with these types of insert 
showed increases in mean specific energy 
absorption of 12% and 34%, respectively. It 
should be recalled that these were the only 
geometries which were found to crush in a 
stable, progressive manner. Therefore, the 
energy absorption potential of the brittle frac- 
ture processes was exploited very efficiently. 
Those specimens which failed in a catastrophic 
manner were much less efficient and resulted in 

400 
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Fig 

A - No Insert 

B - Tube, 15 mm outside diameter 

C - Tube, 16 mm outside diameter 

D - Cone, 20.6 mm wide outside diameter 

E - Cone, 20.6 mm wide outside diameter, 
no braid ends passing into the facings 

F - Cone, 20.6 mm wide outside diameter, 
half inverted 

G - Cone, 21.5 mm wide outside diameter 

Insert Type 
7. A comparison of the absolute energy absorption for the different types of sandwich panel. 
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A - No Insert 

B - Tube, 15 mm outside diameter 

C - Tube, 16 mm outside diameter 

D - Cone, 20.6 mm wide outside diameter 

E - Cone, 20.6 mm wide outside diameter, 
no braid ends passing into facings 

F - Cone, 20.6 mm wide outside diameter, 
half inverted 

G • Cone, 21.5 mm wide outside diameter 

Insert Type 

Fig. 8. A comparison of the energy absorbed per unit mass for the different types of sandwich panel. 

correspondingly lower values of specific energy 
absorption. 

As for the repeatability of the results, it can 
be seen from the error bars in Fig. 8 that the 
specimens with GRP inserts generally exhibited 
a much wider spread in recorded specific energy 
absorptions than those without. This is signifi- 
cant because repeatability is an important 
aspect of crashworthy design; a minimum level 
of performance must be guaranteed and, on a 
larger structural scale, there will be a need to 
predict and ensure a preferred sequence of col- 
lapse. However, the 20.6 mm wide outside 
diameter frusta (with braid ends passing into 
the face plate laminate) did provide a level of 
consistency which was comparable to the sand- 
wich panels without any inserts. It is believed 
that this was due to the manufacturing benefits 
of this particular geometry. In particular, the 
conical foam plugs were more straightforward 
to produce than their tubular counterparts 
because their shape facilitated easy removal 
from their moulds. Furthermore, there were a 
number of factors associated with these speci- 
mens which assisted in maintaining the position 
of the braided glass fibres during lay-up and 
injection. These included the relatively small 
gaps between the inner foam plugs and the 
outer foam cores, the braid ends passing into 
the face plate laminate, and the inherent coni- 
cal geometry. All of these helped to ensure that 
the GRP inserts had a high consistency in their 

fibre distribution, and hence in their mechanical 
properties. 

CONCLUSIONS 

Foam cored sandwich panels with integral GRP 
tubes and frusta have been tested under quasi- 
static flatwise compression. Those panels with 
inserts which failed by stable progressive brittle 
fracture exhibited the best energy absorption 
characteristics. The main prerequisite for ensur- 
ing this mode of failure was consistency in the 
fibre distribution within the GRP tubes and 
frusta. Otherwise, the inserts tended to fail 
catastrophically at a local non-uniformity in 
material or geometry. Conical inserts were 
found to offer the most repeatable energy 
absorption performance as their geometry 
assisted in ensuring consistency of manufacture. 

The development of representative scale 
structures based on this, and similar, material 
systems will form the next stage of this work as 
part of the HYCOTRANS project, a European 
consortium which has been formed to develop 
crashworthy composite bodyshells for rail 
vehicles and coaches [9]. In particular, much 
work is still required on the optimisation of 
insert geometries and configurations for a range 
of loading conditions, not just flatwise compres- 
sion. Less labour intensive insert designs would 
also be advantageous. 
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Nonlinear closed-form high-order analysis of 
curved sandwich panels 

E. Bozhevolnaya & Y. Frostig* 
Institute of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark 

Closed-form high-order theory of sandwich panels, including transverse 
flexibility and shear rigidity of a core, as well as geometrical nonlinearity of 
unsymmetric faces is generalized for sandwich panels of constant curvature. 
Variational calculus is used to derive the set of governing equations 
describing a stress-deformation response of the panel to arbitrary loads. 
Boundary conditions are presented both in the local and global 
formulations. The procedure for the numerical solution of the governing 
nonlinear differential equations is based on the finite-difference method 
with deferred corrections. The solution technique is illustrated through 
numerical examples. Influence of the geometrical nonlinearity on the 
overall behaviour of the sandwich panel and localized effects are 
demonstrated. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Sandwich panels and shells are becoming 
increasingly used in high-performance crafts 
and building facilities. Various theoretical 
models of sandwich structures have been 
developed in recent years, and a summary of 
the general approaches can be found in a few 
textbooks by Plantema [1], Allen [2] and Zen- 
kert [3]. Although these textbooks are devoted 
mainly to flat sandwich panels, similar principles 
are adopted in the analysis of curved panels and 
shell structures. 

Reissner [4] was the first who took into 
account the transverse shear resistance of sand- 
wich plates. Further development of the 
first-order shear-deformation theory was due to 
Mindlin [5]. The Reissner-Mindlin model 
became a foundation for a large group of 
research accomplishments (see, for example, Di 
Sciuva and Carrera [6]). The thickness of the 
sandwich panel is assumed to be constant, thus 
the normal stresses are neglected. As a conse- 

*Visiting Professor. On Academic leave from Technion- 
Israel Institute of Technology, Faculty of Civil 
Engineering, 32000 Israel. 

quence, local effects such as debonding and 
delamination phenomena, the presence of con- 
centrated loads and geometric discontinuities 
are beyond the capability of the proposed 
approach. 

To overcome the inaccuracies of the first- 
order shear-deformation theory, higher-order 
displacements fields were suggested (see, for 
example, Lo et al. [7]). However, these attempts 
were of limited use as difficulties arose in 
obtaining the solutions for governing equations 
under prescribed boundary conditions. Reddy 
[8] introduced a specific form of the displace- 
ment fields that does not increase the order of 
the system of governing equatons to be solved, 
but at the same time accounts for a higher- 
order shear-strain distribution through the 
thickness of the plate. The application of 
higher-order shear-deformation theories in 
FEM modelling has been considered by many 
(see, for example, Meyer-Piening [9]). 

A classification of the computational models 
supplied with the detailed literature survey has 
been conducted by Noor et al. [10]. It should be 
stressed that these computational models are 
based on a priori assumptions regarding dis- 
placements fields in the sandwich layers. Such a 
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hypothesis suits very well as far as the overall 
behaviour of a sandwich structure is concerned, 
but fails if localized phenomena are examined. 

Recently, Frostig et al. [11-20] have 
developed a consistent rigorously closed-form 
high-order theory for sandwich panels and 
plates that can be extended to curved panels 
and shells. The theory does not impose any pre- 
liminary restrictions on the deformation 
distributions through the thickness and, as a 
consequence, the high-order effects are 
obtained as a part of the solution. The theory is 
valid for any type of loading, point load as well 
as distributed, allows discontinuities in loads 
and geometry and incorporates the transverse 
flexibility of the sandwich core along with its 
shear rigidity. Localized effects can be 
described within the frames of this approach. 
Boundary conditions may be global or local, i.e. 
the conditions for the various skins at the same 
section may be different. The theory has been 
used to model buckling, vibrations problems, 
delamination cases, tapered beam and stress 
concentration in general. 

The literature survey reveals that, so far, 
there is no rigorous nonlinear theory developed 
for arbitrary loaded sandwich curved panels of 
general design with a 'soft' core and under arbi- 
trary boundary conditions. Thus, this paper is 
an extension of the linear closed-form high- 
order theory to the nonlinear analysis of 
sandwich curved panels with transversely flex- 
ible core assuming a geometrical nonlinearity of 
the sandwich faces. 

MATHEMATICAL MODEL 

Fig. 1. Geometry of the model. 

The local coordinate system for the core is 
polar (r, q>) and has its origin in the centre of 
the panel curvatures. 

The following assumptions form the basis of 
the presented model. 

The faces may have a different thickness dt 

and db and they are small in comparison with 
the panel span a or radii of curvature of the 
faces. The ratio between the panel span and its 
radii can be arbitrary. The core is considered to 
be a two-dimensional elastic medium with 
resistance to shear and radial stresses. Circum- 
ferential (tangential) stresses in the core are 
neglected. The allowed deformations in the 
core are small (Fig. 2), thus the kinematic rela- 
tions become linear. Note that no a priori 
assumptions on the deformation fields through 
the thickness of the core are made. The core is 
fully bonded with the faces. Faces are treated as 
thin elastic panels that follow Bernoulli assump- 
tions. However, circumferential deformations in 
the faces are in the class of intermediate defor- 
mations, i.e. substantial rotations are allowed. 

The proposed model is related to a cylindrically 
curved sandwich panel consisting of an inner 
core and two outer face layers. Geometry of the 
panel, coordinates and sign convention appear 
in Fig. 1. Here, and in the following text, indices 
t and b refer to the top (upper) and bottom 
(lower) faces of the panel. The faces of the 
sandwich are not identical and have a constant 
thickness and a constant curvature of their cen- 
troidal lines dt and rt (i = t,b), respectively. The 
local coordinate systems for each face (z„ st), 
with their origins on the face centroidal sur- 
faces, are introduced. Note that these 
curvilinear systems become polar through the 
substitution s^rtf, where cp is a polar angle. 

pb((p) 

Fig. 2. Deformation in the faces and core. 
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External loading is exerted on the centroidal 
surfaces of the faces only. Different kinds of 
boundary conditions may be implemented for 
the various faces at the same section. Local 
boundary conditions are applied to the faces 
and core separately. If some extraneous rigid 
members are introduced to connect sandwich 
components at the edges of the panel, global 
boundary conditions are applied. 

The variational principle based on the mini- 
mization of the total potential energy of a 
deformed system is used to derive the governing 
equations and the boundary conditions. Total 
potential energy of the deformed panel consists 
of the strain energy of the deformed panel U 
and potential energy of the external forces V. 

The variation of the strain energy U is given 
by 

dU= J   <rtöstdvt+  I   (7b<5ebdvb 

+ \ (arrSsrr+Tcöyr(p) dvc (1) 

where at, e, (i = t, b) are circumferential (tan- 
gential) stresses and strains in the faces; er„, TC 

and £„,, lrq> are radial and shear stresses and 
strains in the core, respectively; Vtop, Vbot, Vc 

are the appropriate volumes of the faces and 
core to perform integration; dv, = r^fi dq> (i = t, 
b), dvc = bdr dcp are elementary volumes relating 
to polar coordinates (see Fig. 1). 

External loads acting on the panel are shown 
in Fig. 3. Here, qt, qb, nt, nh is a pressure and 
tangential loading distributed circumferentially; 
Pjt, Pjb, NJt, Nß, are concentrated forces in the 
radial and circumferential directions; rat, mb, 
Mjt, Mfl, are distributed and concentrated 
moments. 

The variation in the potential energy of the 
external forces Fis equal to 

5V=—   j  (qtSwt+ntöuot—mtößt)dst 

- J   (qböwb+nböuob-mbößb)dsb 

-?    1   (Pjtöwt+Njtöuot 
J       ^top 

-Mjtößt)öD(st-Sj)dst 

- S    J   (PjbSwb+NJböuob 
j       ^-bot 

-MJ-bößb)öD(sb-sj)dsb (2) 

where wt, u0i, ßt (i = t, b) are radial, circum- 
ferential displacements and rotations of the 
centroids of the faces (see Fig. 2); <5D(5,-—s,-) is 
the Dirac function and s, is a circumferential 
coordinate of an applied concentrated load. 
Integration in eqn (2) is performed along the 
lengths of the face centroids Ltop and Lbot (cf. 
Fig. 1). 

Deformation of the panel element is shown 
in Fig. 2. Note that deformation of the faces 
depends only on the circumferential coordinate 
cp, while deformations of the core are also func- 
tions of the radial variable. 

The kinematic relations for the faces in polar 
coordinates using a moderate type of deforma- 
tion (see pp. 124-5 of Brush and Almroth [21]) 
are 

«i = Uot+Zißi, Ei = Soi+ZiK;, 

ßt = 
Uoi-wiytp 

(i = t,b) (3) 

where 

Fig. 3. External loads: distributed and concentrated. 

eOi_ 

K,= 

Upj, cp+Wj        (U0i-WL(p)2 

2rj 

ßi.v U0i,cp-Wi, 

r? 

The second term in the expression for the cir- 
cumferential in-plane strain E0i introduces 
geometrical nonlinearity and is due to rotaton 
of the centroids of the faces. 
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The kinematic relations for the core in polar 
coordinates are 

£rr — wc r, yr(p — uc r+ (4) 

As the core and faces are assumed to be fully 
bonded along their mutial interfaces the follow- 
ing compatibility conditions exist at the upper 
face-core interface r = rtr. 

Wc = Wt, Uc = H, 
dt 

ot ßt 

and at the lower interface r = rbc 

db 
wc = wb,uc = uob+ — ßb 

(5) 

(6) 

In the faces, in-plane resultants and moments 
are 

d,/2 d,/2 

Nt = b    J    Oidz,Mi = b    )    aizdz(i = t, b) 
— d,/2 — df/2 

(7) 
The adopted sign convention and the internal 
resultants acting in the faces and in the element 
of the core are shown in Fig. 4. Note that the 
total stress resultants are presented in the faces: 
in-plane circumferential resultants, Nh shear 
resultants, Qh and moments, Mt (i = t, b). The 
upper face from below and the lower face from 
above are affected by the shear stress, xc(ric), 

and the radial normal stress, cr^(r,c), because of 
the cooperation of the faces with the core. 

Equilibrium/field equations and boundary 
conditions 

Minimization of the total potential energy of 
the deformed system <5I1 = <5£/+<SF=>0 (cf. eqns 
(1) and (2)), together with compatibility equa- 
tions (eqns (5) and (6)) and kinematic relations 
(eqns (3), (4) and (7)) results in the following 
set of equalibrium/field equations for a loaded 
curved sandwich panel 

Ar Mt.ffl        Ar   ("ot-Wt    ) 
Nu v+  -Nt 

,JL- -Nt 

Nb,«,+ ■ 

("ot-Wt*,,) 
x — 

ft 

+rtnt — mt = 0 

-brtc\l A hc(r=rtc) 

b,<p Ar     (
M0b — ^b, <p) 

-Nb- 
rb 

Ar   (uob-wl   ) /       db 
-Nb —+brbc\ 1+ 

rb 

XTc(r = rbc)+rb«b-mb = 0 

2ru 

(8) 

(9) 

Qt+Qut
dst 

dst=rtdcp 

rr W 
' *..>^Nt+NtjStdst 

Mb+Mb,sdsb' 
Nb+Nb,^ 

ds=rdcp 

dsb=rbd(p 

Fig. 4. Internal resultants and stresses in the faces and core. 
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M. U<P<P »r /    »r     (M0t_ Wt, cp) 
-A^t-pVt 

M. t£ _ «0<-W«,y   _„    UOi-Wi,V 

- hvt 2-1   +fertc — 
V rt !,<p 2rt 

Tc. «> x (r = '"tc) - brtcarr(r = rtc) 

+rtqt-mu<f) = 0 (10) 

 -Nb-\ Nb  
rb 

rb / •<P 

-   #> 
(Mpb-^b.y) 

.<P ^rb 

Tc. <px(r = rb)+brbcarr(r = rbc) 

+rbqb-mb(p = 0 

Tc, «p+Wrr, r+°Vr = 0 

2Tc+rrCjr = 0 

(11) 

(12) 

(13) 

The first four equations of this system are equi- 
librium equations (in the radial and 
circumferential directions) of differential ele- 
ments of the upper and lower faces. It should 
be mentioned, referring to Fig. 4, that the terms 
<rjr = ric), *c(r = ric) (i = t, b) in eqns (8)-(ll) 
are radial and shear stresses of the core in the 
face-core interfaces. The last two equations of 
this system (eqns (12) and (13)) describe the 
equilibrium of the two-dimensional elastic core 
medium in polar coordinates. The local bound- 
ary conditions at the edges of the curved panel 
(p0 and q>x are derived simultaneously with the 
governing equations from the variation of the 
total potential energy as follows 

+b——Tc(r = ric)+mi 
2r, 

—Pt = 0 or Wi = Wi (15) 

- XMt - Mi = 0 or wu 9 = wu v (16) 

Tc = 0orwc = wc(r) (17) 

where X = — 1 at the left edge of the panel 
(p = <Po, and X=+l at the right edge of the 
panel (p = q>\ (see Fig. 1). 

Because in most practical applications sand- 
wich panels have rigid inserts (stiffeners, 
membranes) at their edges, global boundary 
conditions have to be implemented. These 
extraneous rigid members force boundary con- 
ditions for the faces and the core to be related 
to each other and also to the global boundary 
conditions. In the general form the global 
boundary conditions for the curved sandwich 
panel with rigid inserts at their edges can be 
written as follows 

wt = wb 

Wt, cp = Wbt v 

WUv = 

M0brt ~ MOtrb 

c+dt/2+db/2 

(18) 

(19) 

(20) 

X(Mt+Mb+Ntrt+Nbrb)+MG - NGrG = 0 

or 

MOG-' 

uot(c+db)/2+uob(c+dt)/2 

c+dt/2+db/2 
(21) 

XI Mt+Mb+NA 
c+dt 

-Nh 

c+du 
U-Mn = 0 

l        Mt \    I -       Mt  \ 
X\N;+   )_l^«--   l = 0orMo, = uo, 

(14) 

or 

w. G, cp' 

MObrt ~ MOtrb 

c+dJ2+dbl2 
(22) 
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J M<><p     Mb,y    , rtcdt M  + -+b—— T(r = rtc) 

+b — t(r = rbc) ~mt-mh 
2rb 

Nt 
(a, ot wt, <p+"< ot -Kcp) 

faces. The relations for the shear and radial 
stresses of the core are 

vc(r, (p)=—, orr(r, (p) = — I  — +7o 
r r   \   r 

where 

+ — (Wb-Wt) 
r 

(26) 

#„ 
+ ("ob - wb> (p+uoh - wb> v) 

-PG = 0orwt = vvG (23) 

TC = 0 or wt = wb = wc = wG (24) 

where k = -1 at the left edge of the panel 
<p = (Po, and A=+l at the right edge of the 
panel (p = q>1 (see Fig. 1); c = rtc-rbc is the 
thickness of the sandwich core; rG = (rtq+rbc)l2 
is the radius of fixation of the stiffener; PG, NG, 
MG are external concentrated loads applied to 
the supports of the panel; ü0G, wG, wG v are 
prescribed deformations and rotation of the 
edge stiffener. 

Stresses and deformations in the core 

The shear and radial stresses in the core with 
the help of kinematic relations, eqn (4), give the 
following constitutive relations for the core 

^c = Gcyn(p = Gc\ ucr- 
Ur — W, C, q> 

7o = 
' tc      'be 

rtcrbcln(rbc/rtc) 
?i = 

ln(rbc/rtc) 
(27) 

Note that in eqn (26) unknowns T, wt and wb 

are functions of the circumferential coordinate 
q> only. Using eqn (26) the stresses at the face- 
core interfaces, which appear in the first four 
governing equations (eqn (8)-(ll)), can be 
determined. 

To obtain circumferential displacements in 
the core, uc(r, cp), one has to integrate the first 
constitutive relation for the core (eqn (25)) with 
respect to r taking into account the first of the 
relations from eqn (26). Afterwards it is neces- 
sary to fulfil the second of the compatibility 
conditions (eqn (5)) and use simultaneously the 
relations (eqn (3)) for the face rotations, /?, 
(/ = t,b). 

Finally, radial and circumferential displace- 
ments of the core are 

wc(r, <p) = wb+ — 
E„ rbc 

■ = Ecsrr = Ecw^r (25) 

where Ec and Gc are the Young's and shear 
modulii of elasticity of the core, respectively. 
Analysis of the governing equations (eqns 
(8)-(13)) shows that the equilibrium equations 
of the two-dimensional core medium (eqns (12) 
and (13)) can be integrated separately. Substi- 
tuting the above-defined radial stress a„.(r, q>) 
into the second constitutive relation for the 
core (eqn (25)), and performing integration 
with respect to r, one obtains radial displace- 
ment in the core, wc(r, cp), which has to satisfy 
compatibility conditions in the radial directions 
(eqns (5) and (6)) at the upper and lower inter- 

+l>0ln   —      +riln   — 
'be 

x(wb-wt) , uc(r, q>) 

'be 

= r\ 
«Ot   _   <*t("0t-Wt,ff) 

'"tc 2rtrtc 

2G„ 

2 2 rt-r 

rtnr 

rtl. — r 
+Wi b, <p 
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Ec 

rtr.-r 

r.s. tc'bc 

2 2 rt-r 

2r2
tcr 

+7o 
■r          r         r       rtc 

— +ln — — In  
rbc rbc 

(Wt,y-^b.y) 

ln(rbc/rtc) 

+ln -—In- 
rbc 'be 

(28) 

The solution of the last two field equations 
(eqns (8)-(13)) represents the stresses (eqn 
(26)) and deformations (eqn (28)) in the sand- 
wich core in terms of the five unknown 
functions of the variable cp: T, wt, wb, u0t and 
uob. 

Governing equations 

Internal resultants in the faces (eqn (7)), in the 
case of isotropic or composite laminated faces 
with a symmetric lay-up, can be expressed 
through the circumferential stresses, a,=Efii, 
which together with kinematic relations (eqn 
(3)) leads to the following constitutive relations 
for the faces of sandwich panel 

N, = E,Ai ——+ ^_ 

Mi = EJi ;  (? = t,b) (29) 

where Et are the Young's modulii of the faces; 
Ai = d£> are areas of the cross-sections of the 
faces and It = Mf/12 represents their moments 
of inertia. 

Continuing the analysis of the field equations 
(eqns (8)-(13)), one can express the remaining 
equations (eqns (8)-(ll)) through the same 
unknown functions that appear in eqns (26) and 
(28). Making use of constitutive relations (eqn 
(29)) and expressions for the shear stresses at 
the interfaces (eqn (26)), four governing equa- 
tions in terms of five unknowns x, wt, wb, u0t 

and uob can be derived. Note, that the number 
of unknowns is larger than the number of equa- 
tions. However, in all the above deriviations the 
compatibility condition of the circumferential 
displacement at the lower face-core interface, 
uc(r = rbc), i.e. the second part of eqn (6), has 
not yet been utilized. Substituting eqn (28) for 
uc and eqn (3) for ß into this equation, the fifth 
governing equation with the same unknowns, T, 

wt, wb, wot 
ancl Mob is obtained. Finally, the set of 

governing equations is 

+ (Mot-Wt,„)(Kot, P) 

(M0t-Wt     ) (Wot-^t,^) 
-Nt -Nt  

-ytx(cp)+rtnt-mt = 0 

/*l"ob. w+Aj^b, „ - (01 - ßl)Wb, cp<p<p 

+ («Ob - Wb, <pX"ob, <p - Wb, <p<p) 
rb 

(30) 

-M 
(uob-Wb,<p) 

-N, 
(u*ob-Wb,<p) 

+yb<(p)+rbnb-mb = Q 

a2(a i — <x2) a2(a j — a2) 
«2"ot, <p+ WU qxp+  

(31) 

xw ,+(02-ftyi)wt+fcy1wb 

a2(ai-a2) 
+  
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a2 

+ —("of 
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+ ■ Nt 

wuv) 
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+\Nt 
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+ • ■ yt?,<p(<p)+byox ,<?(<?)+ 

(aj-a2) 



390 E. Bozhevolnaya, Y. Frostig 

xrtnUcp-rtqt+ — mt    =0 
«i 

ß2(ßl-ß2) ß2(ßi-ß2) 
P2"ob, <p+ vvb> V(p+  

Pi Pi 

x Wb, (pipq><p+(ß2-byl)wb+bylwt 

ß2(ßi-ß2) „ 
+ ((Mob _ Wb   ) 

P>* 

X (MOb, (p — wb, <p<p)),<p 

+ — (Uob-Wb,<p) 

(32) 

2rb 
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rb 
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Pi 
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b dt b dh 
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The set of governing equations (eqn 
(30)-(34)) is a system of ordinary differential 
equations. The five unknown functions of the 
variable cp are: the radial, wt, wb, and circum- 
ferential, w0t, u0b, displacements of the centroids 
of the upper and lower panel faces, and the 
shear function, T, that is related to the shear 
stress in the core, TC, by the first part of eqn 
(26). The order of the system (eqns (30)-(34)) 
is 14, that coincides with the number of bound- 
ary conditions whether in local (cf. eqns 
(14)-(17)) or in global (cf. eqns (18)-(24)) 
cases. 

NUMERICAL STUDY 

The numerical procedure consists of converting 
the set of five governing equations (eqns 
(30)-(34)) into a set of first-order ordinary dif- 
ferential equations. Thus the obtained set 
contains 14 equations. Further replacing of the 
derivatives by their finite-difference counter- 
parts transforms the set of ordinary differential 
equations into a system of nonlinear algebraic 
equations. The linear part of this system is 
solved and used as an initial guess in the itera- 
tion procedure followed. The Newton iteration 
method with deferred corrections, elaborated by 
Pereyra [22], is employed to solve the full sys- 
tem of nonlinear algebraic equations. 
Convergency of the numerical procedure is 
improved by gradually increasing the relative 
weight of the nonlinear part of system. 

Numerical examples are presented here to 
illustrate the ideas behind the theory developed 
and demonstrate the effect of the nonlinearity 
introduced. A sandwich beam with aluminium 
2024-T3 faces and a Divinycell H-160 core is 
considered. The geometrical parameters of the 
beam are as follows (see Fig. 1): b = 30 mm, 
dt = 1 mm, db = 1 mm, rtc = 812.5 mm, 
rbc = 787.5 mm and a = 500 mm. The beam is 
subjected to a radially uniform load on the 
upper face only. 

Two kinds of supports are considered: simple 
supports at the edges (S-S) and clamped edges 
of the beam (C-C). To prevent damage of the 
sandwich beam, the simply supported beam has 
been supplied with infinitely rigid edge stiffen- 
ers hinged at their midheights. The global 
boundary conditions were applied. 

The shear stresses at the upper, tc(r = rtc), 
and lower, Tc(r = rbc), face-core interfaces are 
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presented in Fig. 5. The shear-stress distribution 
through the thickness of the core is not con- 
stant, as it is known to be for flat panels. Shear 
changes abruptly in the vicinity of the edges and 
increases smoothly to zero at the beam mid- 
span. Attenuation of the shear stresses due to 
nonlinearity is of the order of the difference 
between shear at the upper and lower interface, 
and is particularly pronounced in the area 
where these stresses have their extrema: at 
<ploc~0.025 or 1^20 mm. This distance is of the 
order of the beam height and determines a 
zone of stress concentrations. 

Distributions of the circumferential normal 
stresses in the aluminium faces are affected by 
the stress concentration in the vicinity of the 
beam edges. The relations at((p) and erb(<p) are 

shown in Fig. 6. The labels 'top' and 'bottom' in 
this figure correspond to the outer upper and 
outer lower fibres of the faces, respectively, and 
the label 'interface' corresponds to the lower 
fibre of the upper face and the upper fibre of 
the lower face. Being very close to each other 
along most of the length of the beam, the cir- 
cumferential face stresses change abruptly close 
to the supports. In the case of a clamped beam, 
the outer fibre of the upper face is in tension, 
while the inner fibre of this face is in compres- 
sion. The lower face is entirely in compression. 
Existing stresses are close to the yield stress 
that is indicated for severe bending moments in 
that zone. Nevetheless, the average stresses at 
the beam edges are far from critical and the 
relations at((p) and äb(<p) for the face centroids 
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are smooth and monotonous along the entire 
length of the beam. It is known, however, that 
failure of sandwich structures occurs more often 
due to debonding of the core from the adjacent 
faces close to the supports, inserts, concentrated 
loads, geometrical discontinuties, etc. The 
behaviour of the radial shear stresses o„. in the 
core is shown in Fig. 7. To avoid damage these 
stresses should be less than the core strength. 
The radial shear stresses in the face-core inter- 
faces are denoted as peeling stresses. Owing to 
the uniform loading exerted on the upper face 
of the beam, the compressive radial stress 
developes mainly in the core beyond zones of 
localized effect: at cp > <ploc = 0.025. At the 
same time, drastic changes in the peeling stres- 

ses occur in the vicinity of the supports at the 
characteristic length / = 20 mm (see the enlarge- 
ment of this area in Fig. 8). The peeling stresses 
at the upper interface are tensile in the S-S and 
C-C cases. In Fig. 8 a comparison of linear and 
nonlinear models is demonstrated. 

Radial displacements of the sandwich faces 
are shown in Fig. 9. The nonlinear model yields 
larger displacements than the linear model. 
Radial displacements of the lower faces are 
slightly smaller than those of the upper faces, 
which indicates the compressibility of the core. 
The influence of nonlinearity introduced into 
the model is illustrated in Fig. 10, where the 
radial midpoint displacement of the upper 
beam face wt at <p = 0.3125 vs uniform loading 
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Fig. 10. Displacement of the upper face vs uniform load- 
ing. 

qt are shown. The deviation of nonlinear curves 
from the appropriate linear relations are larger 
for the S-S beam than for the C-C beam. 

CONCLUSIONS 

The nonlinear model presented describes the 
stress-deformation response of an arbitrary 
loaded sandwich panel of constant curvature. 
The model accounts for the geometrical non- 
linearity in the sandwich faces and the 
transverse shear and normal compliances of 
core. No a priori assumptions on the displace- 
ment fields in the core are made. Using the 
variational principle, the set of governing equa- 
tions and the boundary conditions in global and 

local formulations are derived. An appropriate 
numerical procedure is developed and the 
numerical analysis is performed. The nonpoly- 
nomial displacement distributions through the 
panel thickness are obtained as an inherent part 
of the solution. Attenuation of the results due 
to the nonlinearity introduced is demonstrated. 
The model is shown to be suitable for describ- 
ing the overall behaviour as well as the localized 
effects in the arbitrary loaded sandwich panel of 
constant curvature. 
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In an effort to further decrease the power requirement caused by the 
spherical stress tensor in SMC compression moulding, further 
developments in roll forming have been pursued. A continuous cross 
section such as a channel beam is produced by longitudinal rolling in 
progressive stages. As the product has a shear centre away from the 
centroid when the component is used as a structural part, the forming 
process must avoid the development of stress concentrations resulting from 
unsuitable orientation of reinforcements. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

SMC compression moulding is used extensively 
today in manufacturing the panels and struc- 
tural parts of transportation vehicles. In an 
effort to further decrease the power require- 
ment caused by the spherical stress tensor, 
while maintaining cycle time, fabrication by roll 
forming has been developed. A continuous uni- 
form cross section is produced by longitudinal 
rolling in progressive stages. As the product has 
a shear centre away from the centroid, the 
forming process employed should avoid the 
stress concentrations arising in shear due to the 
orientation of reinforcement. For the case of 
pultrusion as a continuous moulding process, it 
is necessary to employ special techniques to 
ensure adequate strength in the web against 
shear stress caused by the fibre orientation to 
prevent unstable plastic buckling. To overcome 
these problems, it is necessary to develop new 
techniques for the micro-specific interfaces in 
continuous processes with investigations of the 
mechanical  properties  of the  products  from 

various forming conditions. The principal pur- 
pose of the study is to develop a design 
procedure for a new roll forming process con- 
sidering tooling geometry to optimise interface 
conditions. Basic information on the deforma- 
tion behaviour is obtained for channel-shaped 
profiles using various coupled rolls with dif- 
ferent diameter ratios to active optimum tool 
geometry, and also a T-shaped profile process is 
applied to investigate a filling flow behaviour by 
quasi two-dimensional analysis due to pheno- 
mena of rigid rotation along interfaces. 

It is necessary to adopt single shaft driving 
for the two rolls due to US Patent considera- 
tions, but this leads to an effective result to 
preventing unstable plastic buckling due to the 
interface problem. 

EXPERIMENTAL ROLL FORMING USING A 
PROTOTYPE MACHINE 

The rolling machine should be made with high 
longitudinal rigidity to maintain the accuracy at 
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intersection points of each beam element with 
synchronisation of all the drive shafts. It is 
necessary to adopt single shaft driving for the 
above mentioned rolls due to US Patent, and it 
is effective in preventing buckling due to inter- 
face problem. 

Although the method of uniaxial driving is 
generally used, a traction driving method is 
adopted at the coupling rolls between the form- 
ing device and the hardening furnace and after 
hardening. The various parts of the equipment 
can be adjusted and rolls and adapted variants 
changed during investigation. The general lay- 
out showing essential futures of the machine 
designed in 1991 are shown in Figs 1 and 2 and 
the design of one rolling stage is shown in 
Fig. 3. A profile of a channel-shaped product is 
shown in Fig. 4. It is possible to select suitably 
dimensioned flange parts to overcome forming 
faults, but they have to be of a suitable design 
for refined tooling geometry. The fundamental 
stage assembly is shown in Fig. 5, which is very 
effective in getting suitable distribution of 
materials at the interface. Driving the material 
by a slightly smaller diameter roller, giving a 
deviation of the neutral axis, and also by an 
upper roller with an incremental reduction 
creates resistance in the distortion controlled 
filling behaviour. This should be considered as a 
basic feature of roll forming. 

As a forming material, Class A SMC is used, 
made up from resin/filling/glass fibre 
26.5/46.5/27 wt.%, respectively, and with a 
thickness of about 2 mm. 

As the filling increases at the flange, it should 
be possible to use a special filling material to 
hold with considerable resistance under the thin 
strip. Alternatively, to make control easy, it 
should be possible to apply a surface driving 
velocity to the filling flow using a harmonic 
drive motor on the front and rear coupling rolls. 

INTERFACE ASPECTS AT PREPREG SMC 
CAUSED BY HETEROGENEITY 

Prepreg SMC is essentially heterogeneous, con- 
sisting of reinforcement, matrix and voids. The 
blanks used for roll forming are laminates of 
SMC where the outer surfaces of each ply are 
resin-rich, creating so called macroscopic inter- 
faces. Each ply in a laminate has orientated 
strands (fibres) with random microscopic inter- 
faces. It offers advantages over isotropic 
materials with the possibility of achieving 
properties not possible with conventional 
materials. 

An important aspect is that the flow 
behaviour depends on the microscopic interfa- 
ces occurring at changes of orientation of the 
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Fig. 1. Roll forming machine used in the trial. 
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Die Roll 

Driving Roll, 

Fig. 2. Forming device of roll forming machine. 

reinforcement. There are many microscopic 
interfaces to affect flow lying in the plane of 
SMC. The complex filling behaviour is influ- 
enced by the existence of interfaces during roll 

Adjusting screw 

Harmonic      , 
motor ■—v 

forming, as shown in Fig. 6. As the rolling 
behaviour is initially seen to be unstable, the 
deformation during an incremental reduction 
gives the eigenmode at macroscopic interfaces 
based on the boundary loading conditions on 
the blank. The subsequent deformation is 
dependent on the distribution of microscopic 
interfaces, and it is necessary to investigate the 
effects of heterogeneity. Hence the volume frac- 
tion condition of the intersection and 
orientation of reinforcement must be investi- 
gated as a possible influence on filling 
behaviour. 

The approach in optimizing the forming pro- 
cess is to look for the factors affecting filling 
behaviour by systematic experiments. Initially it 
is considered in relation to feed rate (incre- 

^T**--. 

Fig.  3.  Design  figure  of one  stage  for  roll  forming 
machine. 

75 

Fig. 4. Sectional view of specimen. 
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Fig. 5. Shaping die roll and driving cylindrial roll coupling assembly. 

mental reduction speed/driving speed) and the 
experimental results show that the composite 
behaves in an opposite way to conventional 
materials. 

Although fabrication methods using the pro- 
cess of the roll-flower shows an advantage in 
production rate and flange moulding accuracy, 
there still remains the problem of unstable plas- 
tic   buckling   due   to   quasi   two-dimensional 

ROLL FORMING ( SMC FABRICATION ) 

SMC 

HETEROGENEOUS MATERIAL 

Flow Behaviour 
(MICROSCOPIC INTERFACE) 

Complex Mechanical Behaviour of 
Reinforcement with Matrix and Void 
Fibre Orientation 
( Fibre rigid rotation due to 

different stiffness of fibre and resin ) 

FEED RATE 
( Reducing speed / Driving speed ) 

Conventional material 
The larger valuei _.    .   „    ,.„. 

„,.„ _    , ,     [The better filling 
SMC--The lower value -1 

LAMINATE COMPONENT 
Resin Rich Interface 
(MACROSCOPIC INTERFACE) 
Initial Behaviour Control Subsequent Process 

Admissible Stress Field 

Stress Field Discontinuity 

Fig. 6. Macro- and microscopic interfaces due to hetero- 
geneous material  and laminate component under roll 

forming process. 

orientated flow patterns and the many patents 
on the system. 

FILLING EFFECT ON TOOLING 
GEOMETRY AND INTERFACE 
DEPENDENCE ON BIDIRECTIONAL 
REINFORCEMENT 

Because the SMC is a laminate, the initial roll- 
ing behaviour of the macroscopic interfaces 
between plies with resin-rich surfaces should be 
considered. As the interface could be assumed 
discontinuous, compared with the prepreg 
material, the deformation under the admissible 
stress field and stress field discontinuity in the 
cross section was analysed to obtain the eigen- 
modes. The principal stress at each interface 
under various rolling conditions is obtained 
during initial stages as shown in Fig. 7. The 
experimental conditions are very important in 
investigating the effect of the microscopic inter- 
faces for a particular product. As shown in 
Fig. 5, the die rolls are designed with an 8 mm 
smaller radius in this paper and only one shaft 
at the coupling rolls is driven, being different to 
a conventional roll machine. But this applied 
design may be better to create interfaces in 
SMC. 

The eigenmode for the material under incre- 
mental reduction in roll forming is very 
important in the filling flow into the flange. The 
principal stress shows a deformation pattern for 
each   ply.   For   example,   the   lowest   ply   in 
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Fig. 7(a) suggests a difficulty in achieving filling 
into the flange due to separation from the lam- 
ina. The result is evidenced by many short pick 
points of glass fibre standing out from the bot- 
tom of the product after relaxation of the resin 
material. 

The approach in optimising the roll forming 
process is to look for the factors affecting filling 
behaviour by systematic experiments. Initially it 
is considered in relation to feed rate (incre- 
mental reduction speed/driving speed) and the 
experimental results show that the composite 
behaves opposite to conventional materials [1]. 

Filling behaviour into rib canal 

The filling effect on flow behaviour should be 
considered for the rigid rotation of reinforce- 

Pressüre Die Roll 
Resin-rich Interface 

///////////// 

Driving Flat Roll 

Pressure Die Roll 
75 

Jtfm-tm.tl 
Driving Flat Roll 
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ment. The distribution aspect of the 
microscopic interfaces plays an important role 
in the filling behaviour during the deformation 
process. 

The first problem is to control the flow and 
filling behaviour during the fabrication process, 
caused by rigid rotation due to the different 
stiffnesses of fibres and resin at the microscopic 
interfaces. As the flow analysis was carried out 
continuously by a progressive step-by-step 
method, the results after flow analysis along the 
centre line of a rib channel shows the swing of 
the vectors at the entrance to the T profile, 
which can be observed in Fig. 8 with the velo- 
city vectors along the axis of symmetry from a 
to b point in Fig. 8(a), shifting to a simple flow- 
ing process a to be considered as a tendency 
according to incremental steps. It is evident 
from the results that the unsteady flow is quite 
significant for early steps and not significant 
later, dependent on roll diameter. The 
behaviour during the incremental roll pass 
shows a changing step of orientation of the 
velocity vectors as indicated in Fig. 9. As a 
simple example homogeneous material such as 
Plasticine shows, similar dependence on the roll 
diameter exists in analytical and experimental 
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Fig. 7. Principal stress distribution on channel-shape with 
free space at both ends along the macrospecific interfaces 
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Incremental reduction  /Deformation zone 
at each pass E 

Fig. 9. Progress of incremental reducing steps due to the 
diameter of roll. 

results irrespective of feed rate, as shown in 
Fig. 10. A higher rate of filling at a higher feed 
rate has been obtained for a ring rolling process 
[2], and to some extent for the TMC (Thick 
SMC) composites, as there is unsteady flow for 
a short period which decreases as flow proceeds 
due to the interfaces resulting from its soft 
rigidity. The results of fibre content in the plate 
part are verified by experiment, which indicates 
a higher ratio of filling at a higher feed rate and 
a slightly higher rigidity of material when the 
roller has more limited diameter. 

UP-SET COMBINATION BY DIE-ROLL 
DRIVING 

It has proven to be very difficult to channel 
material into a flange canal, as observed in the 
initial conditions shown by Fig. 7(c). Some fila- 
ments appeared at both sides of the web in the 
bottom of the channel, depending on deviation 
of the neutral axis of the cross section shown as 
in Fig. 11. The process should be carried out to 
give    a   heavy   distortion   of   the   material 
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.a 
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(0 

Fig. 
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10. Fill factor of rib glass fibre under various feed 

rate. 

J       V 

A       f 

>^ 
Neutral Axis 

I \ 
Deformation 

^(Caused by 
Micro-buckling) 

Fig. 11. Case of die roll driven. 

dependent on additional flanges in the upper 
roll, to increase the moment of inertia as shown 
in Fig. 12. Although additional material at both 
end flange positions is applied to improve filling 
in the previous case, the result is no good after 
several rolling operations due to the deviation 
of the neutral axis following belt transmission 
theory. One result is shown in Fig. 13. 

RESULTS SYNTHESES 

Experimental conditions on the coupled roller 
assembly investigated by bending behaviour are 
very important in investigating the effect of 
microscopic interfaces for a particular product, 
as shown in Table 1. The basic deformation 
behaviour depends on the applied rolling condi- 
tions. The physical properties of the SMC are 

P22! 
o 

TZZZ2^ 
Fig. 12. Additional flanges into upper roll to increase the 

moment of inertia. 
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Fig. 13. Transportation aspect of an additional limited 
narrow material upon the opposite side of filling canal. 

dependent on its heterogeneous nature and the 
laminate component. Because the SMC is a 
laminate, the initial rolling behaviour of the 
macroscopic interfaces between plies with resin- 
rich surfaces should be considered. As the 
interface could be assumed to be discontinuous 
compared with the prepreg material, the defor- 
mation under the admissible stress field and the 
stress field discontinuity in the cross section was 
analysed to obtain eigenmodes. The principal 
stresses at each interface under various rolling 
conditions during the initial stages are shown in 
Fig. 7. 

For a structural component, the first problem 
is to control the flow and filling behaviour 
during the fabrication process, which is influ- 
enced by the rigid rotation due to different 
stiffnesses of fibre and resin at the microscopic 
interfaces covering each ply range. Mechanical 
behaviour under loading depends on the distri- 
bution of the interfaces. In the simplest case, 
the effects of feed rate on the flow pattern is a 
very important aspect of the rolling process, as 
well as the properties of products made under 
various conditions of roll forming, at the same 
feed rate, since the filling behaviour depends on 
an eigenmode at the initial incremental reduc- 
tion, due to the laminate component of SMC. 

Voids which are present in SMC are not all 
eliminated with increasing moulding pressure 
and can remain as fibrous voids. Thin channel 
components are subject to normal stress and 
shear flow stress concentrations under bending 
loads. The product can suffer sudden buckling 
due to the stress concentration. It might appear 
that fibrous voids aligned parallel to the sec- 
tional surface during roll forming could prevent 
sudden buckling caused by delamination of the 
interface since it relaxes the over stress. On the 
contrary the stress concentration gives rise to a 
dangerous debonding due to the plastic buck- 
ling   in   the   case   of  void   lines   distributed 

randomly. This behaviour can be appreciated 
from Fig. 14. 

The anisotropic mechanical charactertics for 
the web of channel-shaped products along the 
longitudinal and lateral directions related to the 
strength have been investigated for the various 
fabrication methods [3]. Although high modulus 
and strength are evident for a higher value of 
radius of curvature at the corner (R = 4 mm), 
dangerous buckling is produced for the case 
shown as R4A in the figure. For the case of 
R2A with a smaller radius, sudden delamination 
of the interface might occur at the high peak 
stress without showing buckling behaviour. 
Characteristics evident in the products of roll 
forming will indicate the presence of interfaces, 
dependent on heterogeneous properties. The 
best filling behaviour is obtained for the case of 
0.25 mm incremental reduction, but the value of 
0.1 mm is used in this experiment to make 
fabrication of any form possible. At the higher 
value of (5 m/min), there is a pronounced buck- 
ling mode as shown in Fig. 15, R2B. Since a 
channel-shaped sectional beam has a shear flow, 
the component is loaded by bending and tor- 
sional moment. It is most important to prevent 
torsional collapse laterally caused by buckling at 
the corners between web and flange. Therefore, 
it is undesirable to have small values of maxi- 
mum shear strain. The principal strains and 
principal axes should be analysed by in-plane 
and out-of-plane deformation using pairs of 
gauges to obtain the maximum and minimum 
normal strains and also the maximum tangential 
strains to estimate the equivalent strain. The 
summarised results are indicated in Fig. 16, and 
are very convenient to select the moulding 
method and shape of product. The mechanical 
properties of channel-shaped beams made by 
roll forming using composite materials are 
shown in the figure by the equivalent strain and 
shearing resistance. The highest strength 
product is made by the pultrusion process with 
robing cloth, but this is not expected to show 
torsional resistance. Although the anisotropic 
characteristics due to the fabrication method of 
normal strain are shown by R2C and the com- 
ponent should be roll-formed by the distortion 
process of SMC, the product has a small resi- 
dual shear strain under the bending test. This is 
caused by the optimum distribution of micro- 
scopic interfaces with more distortion in this 
process compared with other products because 
of the uniaxial driving process. 
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Conditions 

Incremental reduction (mm) 
Driving speed (m/min) 
Roll type 

Corner radius of die shape (mm) 

T. Hirai, M. Hirai 

Table 1. Experimental conditions 

R2A R2B R2C R4A 

0.1 
1 
Upper driving roll 
Lower driving roll 
2 

5 
DS 
FC 

1 
FC 
DS 

DS 
FC 
4 

The next best would be R2A based on the 
equivalent strain being the principal strain, but 
it's macroscopic interfaces should be considered 
for the filling behaviour under initial incremen- 
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Fig. 14. Voids aspects in the sectional view of product. 

tal reduction because of the torsional resistance. 
The mechanical properties are compared near 
the peak point of linearity in Fig. 15. 

The main feature in this development has 
been the reduction in forming load. The load 
has been measured at the upper roller and is 
shown in Fig. 17. The maximum fabrication 
pressure under a small area between the coup- 
ling rolls is 3.5 MPa. This value may not 
produce fracture in glass fibre compared with 
the practical experience with SMC compression 
moulding. 

CONCLUSION 

Having established the optimum conditions in 
the forming sequence from the experimental 
study,   suitable   boundary   conditions   can   be 
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Fig. 15. Bending moment-deflection diagrams for channel-shaped component made by roll forming. 
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Fig. 16. Equivalent strain due to Tresca's assumption and 
maximum shear strain. 

obtained to produce shaped channel beam com- 
ponents. The important feature is that filling is 
achieved by suppressing the longitudinal defor- 
mation between the stages. This paper might 
help to determine the most suitable shaped 
product. The most suitable fabrication using 
rolling could be derived from the process 
applied to the method and the objective distri- 
bution of interfaces in the materials. 

■a ra 
o 

1.5- 

1.0 

0.5- 

• Driving speed 1 ( m/min )   ( R2B ) 

o Driving speed 5 ( m/min )   ( R2A) 
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Reduction ratio 
Fig.   17.   Forming   load   for   multi-stage   roll   forming 

machine. 
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Size effects in tensile failure were investigated by means of tensile and four- 
point bending tests. Tapered tensile specimens with plies dropped off 
internally showed a reduction in strain at failure with increasing gauge 
length. Scaled bending tests also showed a reduction in strain with 
increasing specimen size. These two effects and the relationship between 
the tensile and flexural results could all be fitted satisfactorily with a 
Weibull strength model. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The tensile strength of composites tends to 
reduce with increasing stressed volume. Such 
size effects have been reported for example for 
tensile loading of glass fibre [1] and carbon fibre 
[2], and for flexural loading of carbon [3] and 
glass fibre composites [4]. This is an important 
phenomenon because allowable stresses based 
on small coupons are often used to design large 
structures. It is also of more fundamental 
interest in understanding failure in these 
materials. 

Size effects in composites are usually 
explained on the basis of Weibull statistical 
theory in terms of the probability of finding 
larger defects when the stressed volume is 
greater [2]. Weibull theory also indicates that 
higher strength would be expected under flex- 
ural loading than in tension, and this has been 
observed experimentally [5,6]. Whilst Weibull 
strength theory works well for brittle materials, 
it is less clear whether it is applicable when 
failure occurs progressively as often happens in 
tensile failure of unidirectional composites, 
especially in bending. Also there are indications 
that strength may be more dependent on length 
than volume [2, 7]. An alternative explanation 
has been proposed for the higher strength in 
bending than tension based on a fibre bundle 

model [8]. This model predicts a size effect 
depending on specimen length rather than 
volume. 

It is difficult to resolve these questions con- 
clusively because of the many problems in 
obtaining accurate and reliable experimental 
results. For example, constant section speci- 
mens are often used to measure tensile 
strength. However, these tend to fail near the 
grips, and therefore underestimate the true 
strength of the material. A recent study showed 
that by carefully tapering the ends of the speci- 
mens, values of strength 14% higher could be 
obtained [9]. In flexural tests beam theory is 
often used to determine stresses. Deviations 
due to large deflections and also due to 
material non-linear stress-strain response for 
carbon fibre can introduce significant errors 
into the stresses calculated [10], making the 
validity of comparisons questionable in some 
cases. A further problem is the difficulty of 
excluding effects due to different test tech- 
niques or material processing, for example 
when comparing tests on single tows and on 
laminates. 

In this study an investigation of size effects 
was carried out for unidirectional glass fibre- 
epoxy prepreg material with all specimens 
manufactured under the same conditions from 
the same batch of material. Strain gauges were 
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used to obtain reliable results for tensile strains 
at failure. Size effects in tension were studied 
using a newly developed tapered test specimen 
with different gauge lengths. Size effects in 
bending were investigated with scaled four- 
point bending tests. The results in tension and 
bending were compared, and the ability of Wei- 
bull statistical strength theory to fit the data was 
assessed. 

EXPERIMENTAL 

Materials 

All tests were performed on material from the 
same batch of unidirectional Ciba E glass/913 
epoxy prepreg. The volume fraction was mea- 
sured by resin burn-off, giving a value of about 
56%. All plates for tensile testing were cured 
using the standard cure cycle at 120°C. Speci- 
mens up to 64 plies thick were used for flexural 
testing. To avoid any problems due to exo- 
therms, all plates for flexural specimens were 
subjected to an additional dwell of 45 min at 
90°C. 

Tensile test specimen 

Standard straight-sided tensile test coupons 
tend to fail at the ends due to stress concentra- 
tions and stresses through the thickness caused 
by the load introduction at the grips. This can 
be overcome by waisting the specimen through 
the thickness, but it leaves broken fibres on the 
surface, and very often failure initiates from 
these, leading to delamination along the length. 
It was therefore decided to use tapered speci- 
mens with plies dropped off internally. 
Calculations based on previous work [11] sug- 
gested    that    these    should    not    fail    by 

delamination prior to tensile failure. There are 
still local stress concentrations at the ends of 
the dropped plies, but these only extend over a 
very small volume of material. 

A tapered plate was manufactured by drop- 
ping off plies symmetrically within the layup. 
The centre section was eight plies thick, increas- 
ing to 15 plies at the ends. The ply drop nearest 
the centre was of a single ply at the mid-plane. 
Subsequent plies were dropped in pairs, one on 
each side of the centreline. The ply drops were 
spaced 5 mm apart, with continuous interleaving 
plies. The arrangement is shown in Fig. 1. 

The tapered plate was laid up between flat 
aluminium plates by including additional plies 
on the other side of the release cloth to make 
up the thickness, as shown in Fig. 2. In the 
centre section it is necessary to make up one- 
half ply thickness on either side, and this was 
done by including a layer of bagging film on the 
surfaces of the plate. This method of making 

adhesive_ 
fillet 

16 gauge 
soft aluminium 
tabs 

80 TYP  15 100 

290 TYP LOA 

Fig. 1. Geometry of short stepped tensile specimen (mm). 

release  film 

release  film 

tapered  specimen 

fill  in  plies 

Fig. 2. Manufacturing method for tensile specimens. 
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tapered plates has been used previously, and 
found to provide very good consolidation pro- 
vided care is taken to position the fill-in plies 
accurately. The release cloth used left a 
textured finish on the surface of the specimens. 

Figure 1 shows the baseline test piece geo- 
metry. Specimens of width 10 mm were cut out 
of the plate using a diamond wheel. The gauge 
length was 100 mm. Some specimens had soft 
aluminium tabs bonded at the ends, and others 
were simply wrapped in emery paper to protect 
the ends from the grips. Initial tests did not 
show any evidence of failure initiating at the 
grips, and tests with and without tabs gave simi- 
lar results. Subsequent tests were therefore 
performed without tabs. 

Tensile tests at different gauge lengths 

A series of tests was performed on the standard 
100 mm gauge length specimens, and on ones 
with 300 and 1000 mm gauge lengths. All details 
of the specimen geometry and manufacturing 
process were the same apart from the lengths. 

Strain gauges were bonded to the centre of 
both sides of the specimens. Tests were carried 
out in a Zwick screw-driven test machine under 
displacement control. The rate was changed to 
produce failure in similar times. Displacement 
rates of 0.048, 0.116 and 0.48 mm/s were used 
for the 100, 300 and 1000 mm specimens, 
respectively. 

Specimens were loaded to failure, and values 
of load, strain and cross-head displacement 
were logged on a computer data acquisition 
system. 

Scaled flexural tests 

Four-point bending tests were carried out on 
16-ply unidirectional glass fibre-epoxy. Smooth 
release film was used to produce a flat surface. 
Specimens 60 mm x 5 mm were cut out with a 
diamond wheel saw, and tested with an outer 
span of 45 mm, and inner span of 15 mm. The 
rig had fixed loading and support noses of 
diameter 10 mm, with a layer of greased rubber 
placed under the loading noses. The test rig is 
shown in Fig. 3. 

Strain gauges of 1-mm length were attached 
to both surfaces at the centre. Tests were 
carried out under displacement control to pro- 
duce failure in about 60 s, a similar rate to that 
used on the tensile tests. Loads, strains and 

,,   15.0 

2JT 

Dimensions in mm. 

Fig. 3. Small bending rig. 

crosshead  displacement were  logged  on  the 
computer. 

Two further sets of tests were carried out 
with all dimensions of the specimens and test 
rigs increased by factors of 2 and 4 compared 
with the initial set. The thicknesses of the speci- 
mens from the 32- and 64-ply panels did not 
scale perfectly, with mean measured values of 
4.30 and 9.21 mm compared with 2.19 mm for 
the 16-ply panel. The number of layers of 
rubber under the loading noses was also 
increased in proportion to maintain the same 
distribution of local stresses at the loading 
points. The size of the strain gauges was not 
changed between the different tests. 

RESULTS AND DISCUSSION 

Tensile tests 

For the 100-mm specimens the response was 
initially linear. Towards the end of the test, the 
load started to increase less rapidly, eventually 
reaching a peak and then dropping before cata- 
strophic failure. The strain was increasing 
throughout the test. Figure 4 shows a typical 
load-strain response based on the average of 
the two gauge readings. 

Failed specimens showed extensive splitting 
and fibre failure throughout the gauge length. 
On all specimens longitudinal splitting and dela- 
mination extended right back as far as the grips, 
but in most cases there was little evidence of 
fibre failure here, and so it is believed that 
failure did not initiate at the grips. There was 
no clean delamination between the continuous 
and dropped plies of the type that might be 
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Fig. 4. Response of typical 100 mm gauge length tensile 
specimen. 

expected if this was the cause of failure. On 
some specimens damage was greatest within the 
gauge length, whereas on others it was more 
concentrated around the start of the tapered 
sections. 

The fact that the strain increased whilst the 
load dropped means that there must have been 
broken fibres in the gauge length prior to final 
failure. Damage at this stage was internal, with 
generally no visible evidence of fibre failure, but 
it is not possible to determine whether it initi- 
ated randomly along the gauge length or at the 
start of the taper due to the stress concentra- 
tion at the dropped plies. 

The longer specimens all behaved similarly, 
although there was a tendency for there to be 
less damage distributed along the gauge length, 
and more concentrated near the start of the 
tapers. There was also less drop in load after 
the maximum tensile strain had been reached 
for the 300-mm specimens, and virtually no 
drop in load at all for the 1000-mm ones. 

Table 1 shows the results for the three dif- 
ferent length specimens in terms of the strains 
at maximum load and maximum strains at 
failure. The values are the averages of the gau- 
ges on both sides of the specimen except for a 

few cases where one of the gauges failed 
prematurely. The strains for the 100-mm speci- 
mens are higher than the longer ones, especially 
the maximum strains, but there is little differ- 
ence between the results for the 300- and 
1000-mm long specimens. 

The strain at maximum load is considered to 
be the best measure of tensile failure strain, as 
this corresponds to the strength of the material 
when tested under load control. The reduction 
in strain at maximum load from the 100- to 
1000-mm specimens is 7.2%, a significant differ- 
ence. However, there is not a consistent trend 
between all three sets of results. The expected 
differences are relatively small compared with 
the coefficients of variation, and it may be that 
scatter in the results is obscuring the trend for 
reducing strain with increasing gauge length. 

Alternatively it could be that failure for the 
longer two sets of specimens is controlled by 
the stress concentration at the start of the 
tapered section, and this is why the strains at 
failure are similar. If this is the case it is not 
clear why the shorter specimens should be 
stronger since the tapers at the end of the 
gauge length are nominally identical. 

One possible explanation is the effect of the 
strain energy stored in the specimens, which 
increases with length. When failure initiates, the 
greater release of energy for the longer speci- 
mens makes it more likely that failure will 
propagate. This is also consistent with the long- 
est ones failing at the maximum load, whereas 
the shortest ones survived to considerably 
higher strains after the load had peaked. 

Despite the care taken with specimen design 
and testing, these tests did not resolve conclu- 
sively the questions of size effects in tension, or 
the relative importance of length and volume 
on strength. The results illustrate the difficulties 
in carrying out tensile tests and trying to 
measure relatively small effects. Fortunately a 

Table 1. Summary of results for tensile tests 
Gauge Tensile Maximum Maximum No. of 
length strain at tensile load specimens 
(mm) maximum 

load 
(microstrain) 

strain 
(microstrain) 

(kN) 

100 36710 39070 15.36 9 
c.v. 3.4% 3.6% 3.8% 

300 33650 34120 14.54 15 
c.v. 4.6% 5.2% 6.8% 

1000 34060 34120 14.46 10 
c.v. 5.8% 5.5% 5.2% 
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Fig. 5. Response of typical small flexural specimen. 

clearer picture emerged from the four-point 
bending tests discussed next. 

Flexural tests 

Failure occurred in tension in all cases, with 
fibres breaking in the centre section between 
the loading points and splitting off from the 
surface to produce a brush-like appearance. 
Failure initiated at the surface, and then con- 
tinued progressively through the thickness until 
the deflections became very large and the test 
was stopped. Figure 5 shows a typical response 
for one of the smallest specimens. The tensile 
gauge failed when the fibres on the surface frac- 
tured. In some cases this was the point of 
maximum strain, whilst in other cases the maxi- 
mum strain was registered shortly before gauge 
failure, suggesting that damage had initiated 
close enough to the gauge to affect its reading. 
In all but one case the maximum strain was 
recorded at or before the maximum load. The 
compressive gauges continued to read beyond 
this point, with strains generally increasing 
while the load reduced. 

The medium and large specimens behaved 
very similarly, and in all cases the maximum 
strain occurred before the maximum load. As 
with the smaller specimens this sometimes cor- 
responded to the point of gauge failure, and 
sometimes the strain dropped slightly before 
the gauge broke. Again the compressive strains 
continued to increase, but there was less ten- 
dency for the load to drop, especially for the 
largest specimens. This could be explained by 
failure occurring on a ply by ply basis, where 
the effect of one ply failing and splitting off 
would have much less effect on the load on a 
64-ply specimen than it would on one with only 
16 plies. 

Number 
of plies 

Maximum 
tensile 
strain 

(microstrain) 

c.v. 
(%) 

Number of 
specimens 

16 
32 
64 

43950 
42210 
37110 

2.3 
5.9 
5.7 

The maximum tensile strain was considered 
to be the most reliable measure of failure 
strain, and the mean results are shown in Table 
2. There is a significant size effect, with a 16% 
drop in strain from the smallest to the largest 
specimens. This is very similar to the size effect 
previously found in bending of unidirectional 
carbon fibre-epoxy with the same matrix [3], 
where a 14% reduction in tensile strain at 
failure was measured going from scaled speci- 
mens of 25 to 100 plies. 

Very high strains were measured on the com- 
pressive surface of the specimens, up to 
47 920 microstrain for one of the small ones. 
However, there was no indication of any 
damage on the surface despite the high strains. 

The maximum strains for failure under flex- 
ural loading can be compared with the strains at 
maximum load under tensile loading. This is 
probably the best basis for comparison, 
although in the bending tests there was con- 
siderable fibre failure before the maximum load 
was reached whereas in the tensile tests there 
was not. There is a significant difference 
between the bending and tensile failure strains, 
with the lowest set of results for the largest 
bending tests being higher than the highest set 
of results for the shortest tensile specimens. In 
view of the considerable care taken in the speci- 
men design and testing, this is believed to 
reflect a real difference between failure under 
flexural and tensile loading, rather than being 
due to the different testing techniques. 

Fit with Weibull theory 

Weibull statistical strength theory predicts a size 
effect for scaled specimens and a higher 
strength in bending than tension. In this section 
it is applied to the experimental results to see 
how well it is able to fit the data. 

For a two-parameter Weibull model, the 
probability of survival for a specimen subject to 
a strain field e over a volume V is 

P(s) = exp[-!(e/s0)mdV] (1) 
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where e0 is the characteristic strain and m is the 
Weibull modulus. 

For tensile specimens the strain field can be 
assumed constant over the gauge length. The 
tapered part can be neglected, since the taper is 
short compared with the gauge length and the 
stress drops rapidly as the thickness increases. 
Also the stress concentration at the first ply 
drop only extends over a very small volume and 
will be neglected. Strains z1 and e2 for speci- 
mens of different volumes V1 and V2 can be 
compared using eqn (1) and assuming equal 
probability of failure 

i to failure (microstrain) 

e1/e2 = (V2/V1) 
Mm 

(2) 

A log-log plot of failure strain against volume 
should therefore give a straight line. 

In the bending tests there is a variable strain 
distribution. In order to compare the results 
with the tensile tests it is therefore necessary to 
calculate an equivalent volume V which gives 
the same probability of failure when subject to a 
constant tensile strain e as the actual strain dis- 
tribution e acting over the volume V. This 
requires integration of the strain distribution 
using eqn (1). 

Based on beam theory the strain can be 
assumed to vary linearly through the thickness, 
with a constant distribution along the length / 
between the loading noses. The surface strain 
can be assumed to vary linearly from zero to 
the maximum value over the distance d between 
the support and loading noses. Integrating eqn 
(1) over the half thickness of the specimen 
where the strains are tensile and equating to the 
uniform tension case gives 

V = wt 
I 

■ + ■ 
2(m+l)      (m+iy (3) 

Figure 6 shows all the results for the tensile 
and flexural tests plotted on a log-log scale. 
The strains at maximum load from the tensile 
tests are plotted against the actual gauge length 
volume. The maximum strains from the flexural 
tests are plotted against the equivalent volume 
V calculated from eqn (3) using the nominal 
specimen thicknesses. The error bars corre- 
spond to one standard deviation on either side 
of the mean results. 

A least squares line has been put through the 
data, and gives a very good fit, passing within 
the error bars of all six sets of data. The slope 

100 1,000 10,000 

Equivalent volume (mm3) 

Flexural tests Tensile tests 
▲ ■ 

Fig. 6. Weibull fit to data. 

of the graph gives a Weibull modulus of 29.3, 
and this was the value used in eqn (3) to correct 
the volumes of the bending specimens. This is 
similar to values obtained in other studies on 
unidirectional composites. For example, a Wei- 
bull modulus of 25 was obtained from scaled 
bending tests of unidirectional carbon fibre- 
epoxy [3]. 

There are some questions about the applic- 
ability of Weibull theory to tensile failure of 
unidirectional composites due to the progres- 
sive nature of failure as opposed to the 
catastrophic propagation from a critical defect 
implied by Weibull strength theory. Neverthe- 
less, it has been shown to be successful in fitting 
the experimentally observed phenomena. The 
length effect in tensile tests, the size effect in 
bending tests and the difference in tensile 
strength in tension and bending have all been 
reconciled using a single set of Weibull para- 
meters. Despite the remaining uncertainties, 
from a practical point of view it is reasonable to 
use Weibull theory to predict failure and set 
allowable stresses accounting for specimen size 
and non-uniform stress distributions. 

CONCLUSIONS 

A new type of tapered tensile test specimen has 
been developed which produced failure away 
from the grips at high strains. A tensile value of 
36 700 microstrain was obtained with a 100-mm 
gauge length. This dropped to 34100 for speci- 
mens with a gauge length of 1000 mm, a 7.2% 
reduction. Four-point bending tests failed in 
tension, with higher strains at failure than under 
tensile loading. A size effect was observed in 
scaled tests, with failure strain decreasing with 
increasing specimen size. Maximum values of 
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43900 were obtained for 16-ply specimens, 
decreasing to 37100 for 64-ply specimens, a 
reduction of 16%. All six sets of data fitted a 
Weibull strength model with a Weibull modulus 
of 29.3. The same set of Weibull parameters 
was able to reconcile the length effect in the 
tensile tests, the size effect in the bending tests 
and the difference between tensile strength in 
tension and bending. 
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Vibration control of an active laminated beam 
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The dynamic response of a carbon fibre reinforced plastic [0/+45/ — 45/0]s 
active laminated beam covered by piezoelectric layers is considered. A 
simple collocated displacement control strategy is implemented by letting 
the active layers work as actuators and sensors and by constructing an 
analogue control circuit the characteristics of which are given in some 
detail. The open- and closed-loop steady-state response of the cantilever 
beam are then experimentally tested in the range of 40-2000 Hz and the 
effectiveness of the control mechanism is successfully demonstrated. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

Recently, considerable attention has been 
directed to the use of piezoelectric materials as 
actuators and sensors in the development of 
advanced fully integrated active structures [1]. 

Many studies have focused on the description 
of the interaction between the piezoelectric part 
and the host structure both in the static and in 
the dynamic conditions by means of analytical 
methods and finite element techniques [1-4]. 

Increasing efforts have been addressed to the 
problem of vibration control and suppression 
[5-8]. In fact the practical opportunity to effect- 
ively face the problem of reducing the level of 
the dynamic response of a flexible structure 
represents one of the most interesting areas of 
application of the so-called 'intelligent struc- 
tures' technology. The possibility of applying a 
distributed control on a flexible structure by 
means of piezoelectric materials was illustrated 
by Bailey and Hubbard [5] and demonstrated, 
both from the analytical and the experimental 
point of view, by Hagood et al. [6]. Hanagud et 
al. [7] have shown the use of optimal control 
strategy based on the minimization of a quad- 
ratic performance index for the vibration of an 
elastic cantilever. Denoyer and Kwak [8] 
applied positive position feedback control and 
LQG control for the vibration suppression of a 
slewing cantilever. 

It is especially clear from the works of 
Hagood et al. [6] and Denoyer and Kwak [8] 

that the use of electrically active actuators and 
sensors requires not only the necessary develop- 
ment of a reliable optimal control strategy, but 
also a special attention to the construction of 
the control chain and the relevant electronics. 
The design of the feedback electronic circuits 
represents a fundamental step in the realization 
of the entire controlled system. Indeed an elec- 
tronic circuit which is not well matched at its 
output or input can substantially modify its 
expected response in terms of bandwidth and 
phase. In particular, because of its large capaci- 
tance, the electronic interfacing of a piezo- 
electric device, both as a sensor and an actua- 
tor, is a critical point of the electronic design. In 
such a design concept the role of connections 
between the different sub-systems (passive 
structure, sensors and actuators, control circuit, 
power supply) is a key issue for the feasibility 
and the reliability of the system. 

The already well-established technology of 
laminated composites provides an extraordinary 
opportunity for developing and constructing 
real systems which can practically meet the 
technical requirements of an active structure. In 
fact, the concept of laminated structures offers 
a natural environment for introducing in dif- 
ferent layers the various functions which are 
present in the system. Active actuating or sens- 
ing piezoelectrics can be introduced at a certain 
point of the stacking sequence and connected to 
a layer where the electronics for control are 
constructed. 

413 
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This paper aims to describe the implementa- 
tion of a vibration control capability on a 
laminated composite beam using piezoelectric 
materials as active actuating and sensing layers 
and analogue circuitry as the control devices. 
The use of commercially available piezoelectric 
devices is demonstrated to allow the construc- 
tion of an active laminated structure. Simple 
open- and closed-loop experiments, based on a 
simple and effective displacement control tech- 
nique, show significant reduction for the first 
two modes of a cantilever structure excited at 
its tip by an external disturbing action. 

THE ACTIVE LAMINATED BEAM 

A composite [0/+45/-45/0]s cantilever carbon 
fibre reinforced plastic (CFRP) beam with two 
active layers of piezoelectric material covering 
approximately 50% of the top and bottom sur- 
faces is considered (Fig. 1). The characteristics 
of the laminate and the geometry of the beam 
are illustrated in Table 1 and shown in Fig. 1. 

The piezoelectric layers (whose character- 
istics are shown in Table 2) are symmetrically 
glued to the beam by means of a two-phase 
epoxy resin cured at room temperature. The 
polarization directions are also shown in Fig. 1. 
The position of the piezo-devices was chosen in 
such a way to activate and sense the dynamic 
response of the beam at the first and second 
mode. To achieve this aim the results obtained 
in ref. [9] for an isotropic beam structure are 
used to establish the position and the length of 
the piezo. Both active layers can work either as 
a sensor or as an actuator. In the present case 
these layers are made from commercially avail- 

able devices and are connected to the host 
structure after the composite's curing process 
has been concluded. It is possible to consider a 
process in which the curing of the composite 
includes also the active layers. In this case, how- 
ever, some serious difficulties may arise, 
especially in the case of internal active layers, as 
to the wiring and the electric connections to the 
control sub-system. The electronic circuit itself, 
if inserted in one layer of the laminate, can 
produce some problems. This paper is not 
addressing such issues, which are of primary 
importance in the feasibility study of active 
composite structures. 

A SIMPLE CONTROL STRATEGY 

Due to the converse piezoelectric effect a polar- 
ized piezoelectric device strains if excited by an 
applied voltage and, due to the piezoelectric 
direct effect, generates a voltage if mechanically 
deformed. Then a piezo is able to produce an 
induced strain or to monitor a strain (or stress) 
field by means of the interaction of its mechani- 
cal and electrical properties [4]. In the former 
case the piezo operates as an actuator and in 
the second one as a sensor device. 

With the beam considered here, the piezo- 
electric layer was placed on the top of the 
laminated host structure and was supposed to 
work as an actuator while the second one, 
placed at the same position but on the opposite 
side of the beam thickness, acts as a sensor. The 
objective of the control action is to reduce the 
vibrations induced on the beam by some 
external steady-state actions. In our case an 
electromagnetic   exciter   produces   sinusoidal 

j                          —     100                                    —t- 

lim /ab m pie*»          | 25.4 

40 13 

V+r 

51 

piezo-actuator 

36 

>S/ + 
±1.1 

piezo-sensor 

Fig. 1. Geometry of the active cantilever beam (all measurements are in mm). The polarization directions of the double- 
bonded piezo-devices are also indicated. 
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transverse forces at the tip of the beam which 
are tuned from 40 to 2000 Hz; the range of the 
first three bending modes of the beam. 

Due to this excitation, the sensing piezo is 
subjected to a strain field which is proportional 
to the surface electric charge which appears on 
both the electrodes covering the upper and 
lower surfaces of the device. By amplifying and 
feeding back this charge to the actuator which is 
placed on the opposite side of the beam, an 
electric voltage is produced that causes the 
(actuating) piezo to strain in a fashion which 
opposes to the bending motion. The presence 
of the charge on the electrodes of the sensor is 
proportional to the average of the strain field at 
the top surface of the laminated beam which is 
covered by the piezoeletric sensor itself. For 

Table 1.   [0/+45/—45/0] s   laminate   characteristics   and 
lamina elastic characteristics 

C12 = G13 = G23 

Vl2 = V13 = V23 
Density 

250 GPa 
7.8 GPa 
4.5 GPa 
0.3 
1644 kg/m3 

this reason special attention should be paid to 
the position of the actuator along the beam axis 
or to the dimensions of the active part of it, as 
explained in ref. [9]. 

This control mechanism, being the strain 
related to displacements by means of spatial 
(and not time) derivatives, can be thought of as 
a displacement (or position) like control strat- 
egy which performs its action by increasing the 
stiffness of the structure. 

EXPERIMENTAL HARDWARE 

A block diagram of the controlled system is 
shown in Fig. 2. As can be seen from the figure, 
the feedback signal is obtained interfacing the 
piezo-sensor to a charge amplifier. As will be 
explained in more detail later, this allows one to 
obtain, with the necessary sensitivity, a voltage 
signal which is proportional to the average 
strain in the area of the beam covered by the 
actuator (that is to the surface charge produced 
in that area due to the direct piezoelectric 
effect). The feedback circuit is then completed 

Table 2. Piezo characteristics of model QP10N by ACX Inc. 

Young's modulus 
d31 
e 
Device size 
Piezo-wafer size 
Operating voltage range 
Maximum operating frequency 
Device capacitance 
Full-scale strain extension 
Extension gain 

18.95 GPa 
-7.257 x 10 "10m/V 
16.112 nF/m 
50.8 mm x 25.4 mm x 0.381 mm 
45.97 mm x 20.57 mm x 0.25 mm 
0-200 V 
20000 Hz 
0.06 fiF 
+ 352 \iz 
1.76 iie/V 

i 9, 

oscilloscope 

""*>>>>*' piezo-actuator ,,*,,,,,,,,,,,,,,,,,,,,,,,,,,>,,,,,,,,,,-, beam 

I MJJIDHir jiiiiiiiiiiiiii/iiiiiiiiiiiiiiiiiiiiiinn 
piezo-sensor 

exciter Ü 
Low-pass filter sinusoidal 

generator 

Charge amplifier 
adjustable gain 
high voltage amplifier 

Fig. 2. Experimental apparatus. 
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by a filtering circuit which is necessary in order 
to stabilize the system response and a high-volt- 
age amplifier which increases the level of the 
field induced in the piezo-actuator. 

Besides the aforementioned feedback loop 
circuits the experimental apparatus includes 
measurement devices which were utilized to 
carry out the harmonic responses of the system: 

1. an electromagnetic exciter (Briiel and Kjaer 
type 3930) producing the external action at 
the beam tip which represents the disturb- 
ance that has to be suppressed; 

2. a frequency oscillator (Briiel and Kjaer type 
1017) generating sinusoidal signals in the 2 
to 2 kHz frequency range to drive the 
exciter; 

3. a dual-trace oscilloscope (Tektronics type 
2246A) with frequency, phase and amplitude 
measure displaying capability; 

4. an accelerometer bonded at the tip of the 
cantilever. 

The circuits which form the feedback loop will 
be described in detail below. 

The charge amplifier 

The piezo-sensor is a charge generator with the 
generated charge proportional to the sensed 
strain. Its equivalent circuit consists of an ideal 
charge generator Qp and a shunt capacitor Cp 

(see Fig. 3). The open circuit voltage Vp, which 
is a measure of the device sensitivity, is defined 
as in eqn (1) 

V„ = 
cr 

(i) 

When the piezo-sensor is connected to an 
amplifier by a coaxial cable other shunt capaci- 
tances are added to Cp as shown in Fig. 3. The 

charge amplifier 

p.ezo-sensor    coaxial caWe 

—*0 O •- - 

—lo ' o—*— 
out 

total shunt capacitance will be the following eqn 
(2) 

CT = Cp+Cc+Ca (2) 

In eqn (2) Cc and Ca represent the distributed 
capacitance of the cable and the input capaci- 
tance of the amplifier respectively. The effect of 
these added capacitances is to reduce the device 
sensitivity. As a consequence if the piezo-sensor 
is interfaced to a voltage amplifier its output 
voltage signal is strongly influenced by from the 
presence of these capacitances. For this reason 
a charge amplifier is preferred for interfacing 
the piezo-sensor. 

The circuit diagram of the ideal charge 
amplifier is shown in Fig. 3. When a piezo- 
sensor is connected to the input of this 
amplifier the charge Qp is divided in part on 
input capacitance and in part on the feedback 
capacitor Cf and it is possible to write 

QP=cTvin+(vin-vout)Cf (3) 

But the output voltage of the amplifier is Vout 

=AVin where A is the open loop gain of the 
amplifier. Then eqn (3) can be transformed in 
the following eqn (4) 

Qp = CTVin-Via(A-l)Cf (4) 

Because the gain A is very high (A > 105), it is 
possible to write eqn (5) 

Qp^=VinACf=-VoutCf (5) 

Fig. 3. Ideal charge amplifier. 

As a consequence of this last result, all of the 
piezo-sensor generated charge Qp is pushed into 
the feedback capacitor Cf and the output volt- 
age of the amplifier depends only on the charge 
intensity. In such a way a voltage signal propor- 
tional to the average strain detected by the 
piezo-sensor can be obtained. 

The circuit used in the tests was made by 
means of a serial connection of two distinct cir- 
cuits: a charge amplifier and an inverting 
voltage amplifier. The complete circuit diagram 
is shown in Fig. 4. The two operational ampli- 
fiers used are integrated into the same chip 
(TL082, dual operational amplifiers, by Texas 
Instruments [10]). 

In the charge amplifier section of Fig. 4 it is 
possible to note the presence of the feedback 
capacitor Cf and other components that were 
added to eliminate the effects of the input off- 
set voltage and input bias current [11] of the 
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charge amplifier 

coaxial cable 
-O CH 

Cf   ||3.9nF 

inverting amplifier    100 Kß 
—CZ3- 

Fig. 4. Real charge amplifier. 

real operational amplifier. The presence of 
these components and in particular the 
presence of the resistance Rf causes a fre- 
quency-dependent behaviour of the charge 
amplifier. Our circuit behaves like an ideal 
charge amplifier only when the frequency of the 
input signal is over a cut-off value determined 
by eqn (6) (fc=2 Hz in the present case). 

fc = 
2nRfCf 

(6) 

In order to have the right phase in the feed- 
back control, the 180° phase shifting of the 
charge amplifier is to be eliminated. For this 
reason an inverting voltage amplifier was con- 
nected to the charge amplifier. 

The transfer function of the complete circuit 
can be supposed as a constant between the 40 
and 2 kHz frequency range of the experimental 
tests because the lower cut-off frequency is fc 

while the higher one is equal to the high cut-off 
frequency of the operational amplifiers that is 
about 3 MHz. 

The high voltage amplifier 

The high voltage amplifier is an inverting ampli- 
fier of type 1224/5 manufactured by Quick Pack, 
Active Control eXpert. Its principal character- 
istics are: maximum output voltage +200 V at a 
peak current of 200 mA; adjustable inverted 
gain from x 1 to x 20, continuous; output 
impedance 1 Q. Because the bandwidth of this 
amplifier is 5 kHz in value, also the relevant 
transfer function can be supposed as a constant 
between the 40 and 2 kHz frequency range of 
the experimental tests. 

EXPERIMENTAL RESULTS 

The active beam described in Fig. 2 along with 
its control chain can be thought of as a single 
input-single output control system. The input 
and the output of the system are represented 
respectively from the input of the piezo-actua- 
tor and the output of the piezo-sensor. The 

The low-pass filter 

The function of the low-pass filter is to stabilize 
the controlled system by reducing the closed- 
loop gain out of the frequency band of the 
experimental tests (between 40 and 2 kHz) 
(Fig. 5). It is a typical two-pole active low-pass 
filter characterized by a cut-off frequency fixed 
at 2000 Hz. The value of the cut-off frequency/,, 
was chosen in such a way as to have no influ- 
ence on the phases of the modes into the 
frequency band of the tests. 

10 nF 

out 

Fig. 5. Low-pass filter circuit. 
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series connection of dedicated electronic cir- 
cuits which connects the output and the input of 
the system forms the feedback loop. 

In the displacement control the feedback cir- 
cuit generates an actuating voltage signal Vact(t) 
proportional to the sensing displacements. This 
signal drives the piezo-actuator in such a way to 
obtain a displacement field which is opposite 
respect to that one produced from the disturb- 
ance external action. It can be demonstrated 
that this type of control performs its action by 
increasing the stiffness of the structure. 

The flexural modal frequencies were first 
experimentally determined by measuring the 
harmonic response relative to the acceleration 
of the beam tip without control; the test gave a 

value of 81 Hz for the first modal frequency and 
of 542 Hz for the second one. The problem of 
system stability was then analysed measuring 
the amplitude and the phase of the open-loop 
transfer function. The measuring was done by 
assuming that the input voltage of the high volt- 
age amplifier was the input and the charge 
amplifier output voltage was the output. The 
amplitude (in dB units) and phase diagrams for 
this function obtained for a fixed value of the 
gain of the power amplifier are shown in Fig. 6. 

The phase of the open-loop transfer function 
has a value about equal to 0° out of the reso- 
nance and becomes about —160° in corres- 
pondence to every resonance frequency. Refer- 
ring  to  the  usual  stability criteria  (Nyquit's 

20 

15 

10 

5 

0 

db -5 

-10 

-15 

-20 

-25 

-30 

1 [ 

' 
i 

/ J 
r 

\ 1 \ 

10 

10 

100 

100 
Hz 

1000 

1000 

10000 

10000 

-20 

-40 

-60 

dgr. -80 

-100 

-120 

-140 

-160 

11 

^ 11 "I / 1 

J 

1 1 I 
Fig. 6. Amplitude and phase diagrams of the power amplifier to charge amplifier open-loop transfer function. 



Vibration control of an active laminated beam 419 

o 

-5 

-10 

-15 

-20 

db-25 

-30 

-35 

-40 

-45 

-50 

10 

\\         1 1 1 
: 

 without control 

 with control 

;: 
1 

\ 
\ 

/ 
"V. |: 

1: 
JL V 'k\ 1; \ 

100 1000 10000 

Hz 
Fig. 7. Amplitude of the exciter input voltage to beam-tip acceleration transfer function with displacement control. 

criterion) and on the basis of these results the 
controlled system is inherently stable, as 
expected, between the 40 and 2 kHz frequency 
range. 

Nevertheless instability problems were 
present in the closed-loop system, shown by 
spontaneous oscillations at 20 kHz, the same 
value indicated by the piezo-device data sheet 
as the maximum operating frequency. For this 
reason, a second-order low-pass filter with a 
cut-off frequency of 2 kHz was introduced into 
the feedback loop. In this way all the harmonic 
components of the feedback signal over this fre- 
quency were cut-off. By this adjustment the 
closed-loop system became stable and it was 
possible to increase the gain over the previous 
fixed value and to measure the closed-loop 
response whose amplitude diagram is shown in 
Fig. 7. 

The diagram in Fig. 7 is plotted in decibel 
units assuming as reference and output signals 
the exciter input voltage and the accelerometer 
output, respectively. The attenuation of the 
external action effects is strong for both modes, 
indeed we have 18.1 and 15.3 dB, respectively 
for the first and the second modes. Shifts of the 
resonance frequencies between the two states of 
deactivated/activated control were also noted. 
Indeed, the frequency of the first resonance is 
decreased from 81 to 78 Hz, while the second is 
increased from 542 to 555 Hz. These frequency 
shifts happen because of the concurrent action 
of the stiffness increasing and the changing pole 
values when the control loop is closed. 

CONCLUSIONS 

The possibility of constructing an active compo- 
site beam with sensing and actuating capability 
is demonstrated. A simple collocated control 
strategy is implemented by means of analogue 
circuitry which allows one to consider the sensi- 
tivity and instability problems that were met for 
frequency ranges of up to 2000 Hz of the 
dynamic response of the beam. A reduction of 
18 dB for the first mode and of 15 dB for the 
second mode in the case of steady-state external 
harmonic disturbances is obtained. The experi- 
mental results show that piezoelectric actuators 
and sensors can be used effectively for vibration 
control and suppression of a composite lami- 
nated beam. 
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The analysis of a glass-fibre sandwich panel for railway applications is 
considered. The influence of a special fire-resistant treatment on the 
mechanical properties of the structure is analysed for static and cycling 
loadings. The main design and simulation issues are first highlighted. The 
failure loads of the composite panel are then evaluated from a numerical 
and an experimental point of view both for the laminated skin of the 
sandwich and for the entire structure. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The possible use of composite materials in 
secondary and primary structures has recently 
received more and more attention within the 
framework of railway applications [1-3]. In par- 
ticular, some interest has been devoted to the 
adoption of sandwich panels made using com- 
posite laminated skins with an insulating core 
for the construction of railway carriages. 

In fact, several advantages of such a tech- 
nology compared to more traditional ones can 
be easily identified: 

• weight reduction; 
• integrated acoustic insulation; 
• integrated thermal insulation; 
• reduction in the finishing work required; 
• reduction in the number of assembly phases 

required. 

While these advantages may offer cost savings, 
some drawbacks are expected due to: 

• joining difficulties; 
• manufacturing process still in its 'infancy' 

stage; 
• difficulties of quality control; 

• maintenance aspects (repair and recyclabil- 
ity). 

One of the most important requirements of the 
component is its fire resistance and whether 
there is an emission of toxic gases in the event 
of fire. 

In this paper, the design and testing of glass- 
fibre sandwich panels for car body constructions 
is analysed. The structure is first described in 
some detail. Then the main design and simula- 
tion issues are highlighted and some numerical 
predictions are presented. In particular, the loss 
of symmetry of the skin laminate and the non- 
linearity of its constitutive behaviour due to the 
treatment of the matrix for fire resistance are 
investigated. 

DESCRIPTION OF THE PANEL 

The analysed sandwich is a segment of the wide 
wall of a carriage. Each face of the sandwich 
panel is a fibre-reinforced laminate, whose 
thickness is tf = 4 mm; the thermosetting matrix 
is vinylester with the addition of aluminium tri- 
oxide powder (ATH), used to improve the fire 
resistance, while the composite reinforcement is 
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glass fabric. The core is polymeric foam, with a 
thickness of tc = 40 mm; the skins are adhesively 
bonded to the core materials (epoxy-based 
adhesive). One skin essentially consists of two 
outer plies, which are the fire-resistant part of 
the skin, and of three plies, which are the carry- 
ing part of the skin (it is placed in proximity to 
the core). The two parts of the skin are distin- 
guished by the amount of ATH in the matrix 
and by the fibre reinforcement. The thermoset- 
ting matrix mixed with ATH has better fire 
resistance, but lower mechanical properties. 
Hence, the powder weight is three times greater 
in the outer plies than in the inner plies. 

The stacking sequence of the skin is illus- 
trated in Fig. 1, while the characteristics of the 
plies are described in Table 1. In Table 1 it can 
be noted that the fibre content is higher in the 
inner laminate, in accordance with the defined 
task. Owing to the presence of fire-resistant lay- 
ers, the laminate is not symmetric. Further- 
more, the lower fibre content and the lower 
toughness of the matrix, caused by ATH, results 
in other critical effects, such as the reduction of 
stiffness and strength of the laminate and the 
non-linearity of the stress-strain relation. 

to other modifiers and it does not cause any 
manufacturing problems, but, however, its use 
does result in some disadvantages: a substantial 
reduction in both strength and stiffness. Lami- 
nates (made of nine layers with the same fibre 
direction) constituted with glass fabric, vinyles- 
ter matrix and several amounts of ATH have 
been produced: OATH, ATH is not used; 
60 ATH, ATH weight = 60% of the matrix 
weight; and 180 ATH, ATH weight = 180% of 
the matrix weight 

The laminates were subjected to fire-resist- 
ance tests, the results of which are illustrated in 
Table 2. 

Tensile and shear tests have been performed; 
it has been noted that Young's modulus is sub- 
stantially constant in two intervals. The Young's 
moduli of both intervals and the knee strain 
(strain range between them) decrease with 
increasing ATH content. Engineering constants, 
ultimate strains and strengths of several lami- 
nates, resulting from different ATH powder 
fractions, are illustrated in Tables 3 and 4. 

ANALYTICAL STUDY 

INFLUENCE OF ATH ON MECHANICAL 
BEHAVIOUR 

The ATH powder is an inorganic substance, 
A1203, used to increase the fire resistance of the 
polymeric material in which it is inserted. The 
principle is based on an endothermic reaction 
produced at about 200°C, which generates water 
molecules and aluminium oxides. In addition, 
the ATH powder is relatively cheap compared 

Pos.3 
0/90 Pos. 2 
±45 Pos. 2 

Pos.3 
0/90 Pos. 1 
±45 Pos. 1 
0/90 Pos. 1 

OUTSIDE 

INSIDE 

Fig. 1. Stacking sequence scheme of the laminate. 

Structural characteristics of the laminate 
(skin) 

The structural characteristics of the laminate, 
which is the sandwich skin, have been computed 
by means of the classical lamination theory. The 
experimental data, illustrated in Tables 3 and 4, 
have been used to assign the properties of plies 
in the principal directions; the layer properties 
in the weft direction were reduced by 10% com- 
pared to the ones in the warp direction. Hence, 
checking of normal strain in local references 
with increasing load has been used to consider 
the two intervals in which the Young's moduli 
are constant. 

Because the constitutive behaviour of each 
fabric layer is non-linear, the local in-plane 
stresses, ax, a2 and T12, of every ply have a non- 

Table 1. Material characteristics of the laminate 
Position Number Main 

characteristic 
Kind of fibre Name 

800L 
W1480 

Matrix 

VE-ATH 180 
VE-ATH 180 
VE-ATH 60 

Weight 
fibre 

content 
(%) 

3 
2 
1 

2 
2 
3 

Separate layer 
Fire-resistant layer 
Load-carrying layer 

Glass fabric 
Glass fabric 

60 
70 



Glass-fibre panels for car body constructions 423 

Table 2. Fire test results for laminates with different ATH 
contents 

Time interval 
(s) 

0 
ATH 

60 180 
ATH          ATH 

First flame formation 
Failure (gas formation) 

25 
90 

170 — 
180             500 

linear dependence on the external tensile load 
(Figs 2-4). The diagram is arrested at the first 
ply failure load of the laminate. The nomencla- 
ture of the laminate used in such graphs is such 
that the plies are numbered from inside to out- 
side (see Fig. 1). 

For each of the cases considered (traction, 
bending, shear and torsion) the shear-stress 
component is always responsible for the first-ply 
failure. For tensile and bending load cases the 
first broken layer is the fire-resistant lamina at 
( + 45°), while for the shear and torsion load 
cases the first ply to fail is the fire-resistant 
lamina at (0°, 90°). Calculated first-ply failure 
and ultimate loads of the laminate are illus- 
trated in Table 5. The first-ply failure load is 
about 50-60% of the ultimate load of the lami- 
nate; for the tensile load it appears as normal 
strain of the middle plane, ex = 0.79%. 

In the tensile case, a strong decrease in 
Young's modulus for a mean stress ox = 40 N/ 
mm2 and a strain sx = 02% can be observed. 
However, Young's modulus is reduced con- 
stantly with increasing load for the bending case 
and it negligibly decreases for shear and torsion 
loads. In Table 6, the reductions in the 
engineering coefficients of the laminate, loaded 
up to first-ply failure, are summarized. 

Failure modes of the sandwich 

The loads, causing fracture of the face in the 
cases of traction, constant bending and in-plane 
shear, have been calculated by means of the 
classical lamination theory. In addition, the core 
shear failure and wrinkling loads have been 
determined. The numerical results for a test 

sandwich panel (110 x80 cm) are summarized 
in Table 7. 

The critical compressive loads on the test 
sandwich panel have been performed by means 
of the finite-element program ADINA [7] by 
using the composite shell element; the skin 
(whose properties were experimentally deter- 
mined) is considered to be an orthotropic layer 
while the core is treated as an isotropic 
medium. The mesh used for the sandwich panel 
has six elements for each edge, every element 
having eight nodes and each node has six 
degrees of freedom, which totals 1728 degrees 
of freedom. In Table 8 critical loads for several 
cases of boundary conditions are shown. 

The critical shear load for the simply sup- 
ported plane, calculated using the FE method, 
has the value N^ = 6,232,500 N. 

It can be noted that for each load (Nx, Mx, 
N^ and M^) sandwich failure occurs at levels 
which are lower than the ones due to local or 
global instability. 

Finally, the four-point bending results have 
been determined analytically: the value of the 
distance between the inner and outer supports, 
above which first-ply failure occurred and below 
which core shear failure occurred, is 
L = 93.5 cm, which corresponds to a load, P, of 
4610 N. 

EXPERIMENTS 

Structural characteristics of the laminate 
(skin) 

First, tensile, three-point bending and shear 
tests were performed on the laminate being 
considered; Figs 5 and 6 show the graphs (nor- 
mal stress vs strain) of tensile and bending 
experiments, respectively, while Tables 9 and 10 
describe the results. 

In addition, the ultimate shear stress has also 
been determined: x^ (uitimate) = 99.2 N/mm . 

Aex (phase 1) (%) 
Aex (knee) (%) 
Aex (phase 2) (%) 
Ex (phase 1X /1VT/— 
Ex (phase _, v. 

)(%) 

Table 3. Tensile tests results for laminates with different ATH contents 

(phase 1) (N/mm2) 
2) (N/mm2) x \t      /  \    '  

e* (ultimate) \'°) 
0* (ultimate) (N/mm ) 

OATH 60 ATH 

0-0.25 
0.25-0.63 
0.63-2.05 

27,600 
21,100 

2.32 
498.5 

0-0.18 
0.18-0.35 
0.35-1.55 

26,500 
18,100 

2.33 
419.1 

180 ATH 

0-0.13 
0.13-0.25 
0.25-1.13 

25,000 
13,900 
2.49 
315.9 
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In Fig. 7, experimental forms of Young's 
modulus with increasing load for the tensile and 
the bending cases are illustrated. 

The form of Young's modulus for the tensile 
case presents a strong discontinuity compared 

Table 4. Shear tests results for laminates with different 
ATH contents 

0 
ATH 

60 
ATH 

180 
ATH 

Gxy (N/mm2) 4800 
^ (ultimate) (N/mm2) 60.0 

4590 
52.0 

3620 
37.5 

to the bending case, for which the Young's 
modulus decreases fairly constantly. 

For both the tensile and the bending cases, 
specimens were subjected to increasing loads up 
to a level causing first-ply failure, with the 
objective of identifying the reason for the non- 
linear behaviour of the composite; Figs 8-11 
show both surfaces of the laminate for traction 
and bending, respectively. The formation of 
microcracks in the matrix, which are arranged 
in a transverse direction to the load, could be 
observed on the surfaces of the laminates. This 
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Fig. 2. Normal stress (in the warp direction) of each layer vs tensile load. 

Nx[N/mm] 
- laminal (0,90) 
■ lamina4 (445,-45) 

- lamina2 (445,-45) 
-laminaS (0,90) 

- Iamina3 (0,90) 

Fig. 3. Normal stress (in the weft direction) of each layer vs tensile load. 
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Fig. 4. In-plane shear stress of each layer vs tensile load. 

Table 5. Ultimate and first-ply failure loads on the lami- 
nate 

structural damage clearly reduces the mechani- 
cal properties. In the tensile case, the 
fire-resistant layer shows a higher density of 
cracks compared to the load-carrying ply; this 
means that the ATH makes the matrix brittle. 
In addition, on the surface of the load-carrying 
ply, it is possible to see the first phase of the 
formation of damage; the formation of cracks is 
focused in the intersection zone of the warp and 

Table 6. Reduction in engineering coefficients between initial conditions and loads causing first-ply failure 

First-ply Ultimate 
failure load 
load 

Traction Nx (N/mm) 453 805 
Bending Mx (N) 619 — 
In-plain shear N^, (N/mm) 187 327 
Torsion M^ (N) 140 — 

AEX 
(%) 

AEy                                 AG™ 
(%)                                  (%) (%) 

Nx (0-453 N/mm) 
Mx (0-619 N) 
AL, (0-187 N/mm) 
Mv (0-140 N) 

32.0 
30.0 

5.5 
2.9 

18.2                                  23.7 
21.0                                   14.0 

6.2                                  23.0 
3.2                                   14.0 

9.7 
2.7 

27.9 
14.7 

Table 7. Failure loads on the test sandwich panel 

Face 
fracture 

First-ply                       Shear core 
failure                           failure 

Wrinkling 

Traction Nx (N) 
Bending Mx (Nm) 
Transversal shear N^ (N) 
In-plane shear ALy (N) 

1,492,100 
30,100 

503,800 

749,000                             — 
15,800                             — 

35,900 
137,800                             — 

1,719,900 
42,200 

Table 8. Critical compressive load on the test sandwich panel with several boundary conditions (N) 

The others                         The others 
free                          simply supported 

The others 
clamped 

Loaded edges clamped 
Loaded edges simply supported 
Loaded edges clamped and simply supported 
Load edges clamped and free 

1,292,900                            1,963,600 
352,460                            1,518,500 
696,100                            1,518,500 
911,000                                — 

2,883,700 
2,389,400 
2,440,700 
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Lin ' 

Fig. 5. Tensile test on the laminate, normal stress vs normal strain. 

8.0 

Fig. 6. Three-point bending test on the laminate, normal stress of the edge vs corresponding normal strain. 

Table 9. Tensile test on the laminate, main strains, stresses and Young's moduli 
(%) N/mm2 

N/mm2 

*» (ultimate) 2.29 
Aex (phase 1) 0-0.18 
Ae* (knee) 0.18-0.34 
Aex (phase 2) 0.34-1.30 

"jc (ultimate) 244.4 
Aax (phase 1) 0-40 
A(TX (knee) 40-60 
Aax (phase 2) 60-162 

£, (DIN) (10-50%) 
Ex (phase 1) 
Ex (phase 2) 

13,728 
21,200 
11,033 
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Table 10. Three-point bending test on the laminate, ultimate strain, stress of the edge and secant Young's modulus 

(%) 

&x (ultimate) 2.53 °!r (ultimate) 

weft fibres, particularly among the weft fibres in 
the proximity of the external surface. 

Then, the first-ply failure was studied in 
detail for the tensile and bending cases; in fact, 
specimens subject to first-ply failure load were 
analysed with a C-scan, in addition to taking 
micrographs of their cross-sections (see Figs 12 
and 13). 

N/mm2 N/mm2 

384.0 Ex (DIN) (10-50%) 19,108 

The micrographs show cracks in the fire- 
resistant ply, with the principal direction 
orientated (±45°) with respect to the global 
reference, which complies with analytical 
results. 

In addition, specimens were subjected to a 
cycling tensile load with decreasing maximum 
normal strain, in steps of Aex = 0.02%, starting 
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Fig. 7. Secant Young's moduli for the tensile and bending cases vs the mean stress through the cross-section and the 
normal stress at the edge, respectively. 
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Fig. 8. Tensile test, the surface of the fire-resistant layer, of which the calculated strain is ex = 0.895%. 
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Fig. 9. Tensile test, the surface of the load-carrying layer, of which the calculated strain is sx = 0.681%. 

at sx = 0.18% (extreme strain limit of the first 
phase where the stiffness behaviour is linear). 
Thus, as shown in Fig. 14, the elastic limit of 
the laminate has been defined as a deformation 
ex of 0.09%/0.1%; such a specimen does not 
exhibit any damage on the surface. 

As the fatigue limit has been determined for 
a sx of 0.4%, the increase in damage of the 
laminate, subjected to few load cycles, has been 

qualitatively studied. In Fig. 15, three graphs 
(stress vs strain) relating to tensile tests for one, 
five and 10 cycles are illustrated; it can be 
noticed that the highest deformation occurs for 
sx = 0.35%, which is within the strain range of 
damage tolerance. The laminate absorbs most 
of the energy in the first cycle compared to the 
following ones; however, the formation of 
microcracks is still not saturated even after 10 

«' 

Fig. 10. FPB test, the surface of the fire-resistant layer, of which the calculated strain is ex = 1.418%. 
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Fig. 11. FPB test, the surface of the load-carrying layer, of which the calculated strain is EX = 1.128%. 

cycles. In addition, the stress-strain relation 
becomes linear with increasing number of 
cycles; the stiff contribution of the matrix 
quickly vanishes and after 10 cycles the Young's 
modulus, Ex, is 17,400 N/mm2. 

Reduction of residual deformation of the 
laminate 

Because the laminate is not symmetric, residual 
strains are present. Several square laminated 
plates (with a 30 cm side) have been manufac- 
tured and the curvatures have been measured; 

the mean values of which are: kx = 0.215 m \ 
ky = 0.197 m^1 and k^ = 0.278 m"1. 

Fire-resistant layers could be added in the 
proximity of the outer side of the load-carrying 
plies to obtain symmetry, but other disadvan- 
tages occur: a large increase in weight and the 
formation of cracks for weak loads on the sur- 
face adjacent to the adhesive ply. 

Hence a concept has been elaborated to 
introduce an interlayer (thin ply with casually 
orientated glass-fibres) which is able to reduce 
the coupling between in-plane and out-of-plane 
action.  First,  the  stiffness  properties  of the 

Fig. 12. Tensile test, micrograph of the cross-section of the laminate. 
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Fig. 13. TPB test, micrograph of the cross-section of the laminate. 

interlayer were determined experimentally. 
Thus, the coefficients of the coupling matrix as 
a function of position and thickness of the inter- 
layer have been analysed. 

A substantial reduction of coupling coeffi- 
cients has been obtained for the laminate with 
an interlayer (whose thickness is t = 0.85 mm) 
placed    between    the    load-carrying    layers 

(between the outer one with a (0°, 90°) orienta- 
tion and the one with a ( + 45°) orientation). 
Finally, the laminate was built with the new 
stacking sequence; a large reduction of curva- 
tures has been measured: Akx = 41.7%, 
Aky = 57.3% and Ak^ = 93.7%. 

However, no interlayer was used for further 
investigations as a reduction of curvature is 

50 -. 

L in 

Fig. 14. Normal stress vs strain of laminates subjected to a cycling tensile load. 
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75 —1 

50- 

25 - 

Fig. 15. Normal stress vs strain diagrams of laminates subjected to a cycling tensile load with one, five and 10 cycles, 
respectively. 

obtained by means of an excessive increase of 
the skin thickness and of the corresponding 
weight. 

Four-point bending test 

Sandwich beams have been designed and 
realized; the main manufacturing steps are sum- 
marized below. 
1. Construction of two laminates (with dimen- 

sions of 850 x400 mm). The Bag Molding 
technique was used; hence, after preparing 
the tool plate, glass fabrics (six pieces with a 
(0°, 90°) orientation and four with a ( + 45°) 
orientation of fibres), peel plies, bleeder ply 
and vacuum bag were cut and the matrixes 
were prepared, according to the weight con- 
tents of Table 11. Hence, the lay-up 
according to the stacking sequence in Fig. 1 
was implemented; subsequently, the vacuum 
bag assembly process was realized by heating 
up to T = 100°C, staying constant at 
T= 100°C for 1 h and letting cool down up 

to 40°C (approximately 0.5 h). The pressure 
is kept at 7 bar during the entire process. 
Using an electric saw, the edges of the lami- 
nates (which constitute impurity) were 
removed and the core panel cut. 
Adhesion between faces and core. The lami- 
nates were warmed at a low temperature 
r^50-60°C, then the adhesive paste was 
smeared on the side of the load-carrying 
layer of the laminate. Subsequently, the faces 
and core were fixed together with no adhe- 
sive tapes; in addition, the sandwich panel 
was vacuum-bagged, as shown in Fig. 16, and 
the adhesive resin was polymerized by means 
of the following curing process: T = 60°C; 
p = 1 bar; At = 2 h. 
Using an electric saw, four sandwich beams 
were cut, having the dimensions: 
L = 800 mm (length of beam); b = 80 mm 
(width); h = 48 mm (thickness); tt = 4 mm 
(thickness of face); fc^40mm (thickness of 
core); fa = 0.5mm (thickness of adhesive 
layer). 

Table 11. Weight content of the layers 

Position Fibre 
(g) 

Matrix                           TBPB 
(g)                           hardening 

(g) 

TBEH 
hardening 

(g) 

ATH 
(g) 

1 
2 

810 
540 

347                                3.5 
360                                3.6 

6.9 
7.2 

208.3 
648.0 
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Fig. 16. Vacuum bag process during the bonding phase. 

Fig. 17. Failure of the sandwich beam. 

5. Finally, two strain rosettes were placed on 
the skins in the middle cross-section to 
measure the deformation ex. 

The equipment for the four-point bending test 
was regulated so that the distance between the 
outer supports was Lout = 700 mm and the dis- 
tance between the inner supports was 
Lin = 300 mm.  Three  beams  were  tested;   as 

expected, failure occurred in the core. The 
separation surface is oblique and it was placed 
between the inner and outer supports; Fig. 17 
shows the beam crack at the instant of failure; it 
clearly shows how the faces slide over each 
other (shear deformation). The experimental 
graphs, load vs normal strain of the skin in the 
middle cross-section, give information on the 
flexural rigidity, whose value is D - 40,000 N/ 
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mm2; the failure load is P = 4570N and the 
failure normal strain at the edge of the middle 
section is £, = 0.03%. The maximum normal 
strain of the skins is lower than the elastic limit 
of the laminate; in fact, the specimens tested do 
not show damage of the skins, and the flexural 
rigidity remains constant. 
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This paper presents an investigation of the tensile creep behaviour of 
woven fibre composite stitched, through the thickness, with cotton or 
carbon threads along the loading direction. Creep tests were conducted at 
various temperatures. It was found that the through-thickness stitching 
significantly improved the creep deformation and creep rupture resistance 
of these composites. The creep data were analysed using the 'time- 
temperature-stress superposition principle' theory (TTSSP). The long-term 
behaviour of the material could then be predicted by means of a master 
curve. Finite-element analyses of the composites was also carried out and 
the stitching was found to considerably reduce the interlaminar stresses. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

Polymers generally exhibit a viscoelastic 
response when subjected to load at ambient or 
elevated temperatures. This time-dependent 
response becomes significant as the temperature 
approaches the glass transition temperature, Tg. 
Therefore, in many structural applications, an 
understanding of the effect of temperature on 
mechanical properties is essential. 

A study of the viscoelastic behaviour of a 
thermosetting, glass-filled polyester was 
reported by Janas & McCullough [1]. An early 
study [2] on methylmethacrylate, below its glass 
transition temperature, showed that the amount 
and rate of creep were significantly influenced 
by the thermal history. One method that has 
been widely adopted to predict long-time creep 
behaviour, using accelerated tests, is the 'time- 
temperature-stress superposition' principle 
(TTSSP) [3-6]. The TTSSP is essentially based 
on the fact that creep deformation curves for 
different thermomechanical conditions are of 
the same shape. In addition, increases in tem- 
perature and/or stress will shift creep 
deformation curves to the left on a log-time 

scale, indicating that these parameters acceler- 
ate creep deformation in much the same 
manner. Therefore, by collecting short-time 
creep deformation data at elevated tempera- 
tures (or stresses), long-time creep behaviour at 
lower temperatures (or stresses) can be pre- 
dicted. 

The aim of the present investigation was to 
study the influence of temperature on the vis- 
coelastic creep response of stitched and 
unstitched composites. Previous studies [7,8] 
have found that the creep of woven composites, 
at room temperature, can be significantly 
reduced by the introduction of a stitching pro- 
cess during manufacture. In particular, 
composites stitched with thick carbon threads 
were the most resistant to creep compared with 
other stitching yarns. Based on the superposi- 
tion principle of the theory of viscoelasticity 
(TTSSP), the long-term viscoelastic behaviour 
was predicted from short-term behaviour using 
an accelerated characterization procedure. To 
investigate the changes in the stress distribution 
as a result of stitching, finite-element analysis 
was also performed for both unstitched and 
stitched structures. 

435 
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MATERIALS AND EXPERIMENTS 

The composite was manufactured by stitching 
woven cloth lay-ups followed by a standard 
resin injection technique. Five layers of bi-direc- 
tional carbon fibre cloth were placed between 
two layers of bi-directional E-glass cloth. The 
matrix employed was a unfilled epoxy-resin 
known as EPOCAST 50-A/946, which was made 
by mixing thoroughly 100 parts by weight of 
Epocast 50-A with 15 parts by weight of hard- 
ener 946. The resulting mixture had a low 
viscosity. The carbon preform was a (0790°) 
plain weave cloth with a thickness of 0.35 mm/ 
ply and a weight of 0.46 kg/m2. Fifty per cent of 
the fibres were in the warp direction and 50% 
in the weft direction. The final fibre-matrix 
ratio of the cured composite was 3:2 (i.e. 60% 
fibre and 40% matrix by weight). 

The stitching operation was performed on the 
fabric before resin injection. A modified lock 
stitch was used as shown in Fig. 1(a). As the 
thread experienced significant bending during 
stitching, a relatively high flexibility was desired. 
To assess whether a low stiffness thread would 
achieve the same effect in terms of suppressing 
creep strain, both cotton and carbon threads 
were used in the present work. Table 1 sum- 
marizes the dimensions and mechanical 
properties of the cotton and carbon threads. 

-<3\ -<2\ t 

g£ 
5m 

0 stitch 

(a) (b) 
Fig. 1. (a) Lock stitch pattern and (b) loading direction. 

The stitching process was repeated along the 
loading direction as shown in Fig. 1. 

After the stitching process was completed, a 
standard resin injection procedure was applied 
to obtain the stitched composites. The speci- 
mens were finally cured as recommended: 
3 days at room temperature followed by a post- 
curing process of 2h at 80°C. The resulting 
composites had a volume fraction of approxima- 
tely 0.5, half of which was aligned parallel to the 
axis of the specimens and the rest perpendicular 
to that axis. 

Specimens were cut using a water-cooled 
diamond saw. The size of each specimen was 
200 mm long, 15 mm wide and 1.5 mm thick, 
and the edges were smoothed using fine emery 
paper. The specimens were cut in such a way 
that two stitching lines were symmetrical to the 
centre-line of the specimen. At each end, 
50 mm of the specimen was held in the grips, 
leaving a test area of 100 mm long and 15 mm 
wide. Tensile creep tests were conducted at 
temperatures of 35, 55 and 70°C, and rupture 
testing was conducted at 80°C using a workshop 
constructed lever arm tester. At each tempera- 
ture 30, 50 and 70MPa stress levels were 
applied to specimens which were: unstitched, 
cotton stitched (pitch = 5 mm), carbon stitched 
(pitch = 5 mm) and thick carbon stitched 
(pitch = 10 mm). 

The temperature variation was kept constant 
with +1.5°C during the tests. The oven con- 
sisted of aluminium plates, fixed on both sides 
of the specimen, which incorporated power 
resistors to provide the heat. The temperature 
was monitored by a thermocouple and digital 
voltmeter system, and was automatically con- 
trolled during testing. A uniform temperature 
distribution was achieved throughout the gauge 
section at the test temperature for 30 min prior 
to loading. A dial gauge was employed to 
measure the specimen extension. At least two 
specimens were tested at each condition. 

Table 1. Characterization of stitch yarn 

Cotton 
yarn 

(Tex = 300) 

Carbon 
yarn 

(Tex = 200) 

Thick 
carbon 

(Tex = 800) 
Tensile strength 

(MPa) 
Modulus (GPa) 

350 

2.857 

3400 

238 

3400 

238 

RESULTS AND DISCUSSION OF CREEP 
STRAIN RATE TESTING 

The experimental creep curves for unstitched 
specimens at 35, 55 and 70°C are shown in 
Fig. 2(a)-(c), where the creep strains, corre- 
sponding to different constant stresses, were 
plotted against time. Here the strains were the 
total longitudinal strains, s. It is clear that the 
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creep strain increased with increases in tem- 
perature and stress. 

The effects of various stresses and tempera- 
tures on the creep behaviour of cotton stitched 
composites can be seen in Fig. 3(a)-(c). Con- 
siderable reduction in creep strain was observed 
in the cotton stitched specimens when com- 
pared with similar unstitched lay-ups. 

The creep responses of carbon thread 
stitched composites are shown in Fig. 4(a)-(c). 
Even more reduction in the creep strain at a 
given stress level was observed compared with 
the cotton stitched composites. 

To examine further the influence of thread 
tensile stiffness on creep, experiments were 
carried out for specimens stitched with a thicker 

carbon thread. The results are shown in 
Fig. 5(a)-(c). It is seen that some further reduc- 
tion in creep occurred when compared with the 
thin carbon thread results. At a given stress 
level, it is observed that the creep rate 
increased with increasing temperature. 

A comparison is made, in Fig. 6, of the 
effects of stitch threads at various temperatures. 
Clearly, for the same pitch density, thick carbon 
thread is shown to be most effective. Neverthe- 
less, cotton thread was reasonably effective. 

In this study the time-temperature-stress 
superposition principle (TTSSP) was employed 
to provide a method by which long-term 
behaviour could be predicted from short-term 
tests. To perform TTSSP, creep data at various 

Findley model 
Experiment 

T=70°C 

500        1000       1500       2000 

Time ( min.) 

Findley model 
Experiment 

500   1000  1500  2000 

Time ( min.) 

(a) a=30MPa (b) a=50MPa 

—— Findley model I 
e     Experiment 
 T=70°n 

0 500        1000       1500       2000 

Time (min.) 

(c) o=70MPa 
Fig. 2. Effects of temperature on unstitched composite creep behaviour, (a) <7 = 30MPa, (b) <r = 50MPa and (c) 

a = 70 MPa. 
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conditions of stress and temperature were first 
plotted on a log-time scale. These curves were 
then shifted vertically and horizontally to form 
a smooth continuous curve, called the master 
curve, which represented the long-time viscoe- 
lastic response at a given reference condition. 
In the following, an equation is introduced 
which allows the analytical determination of the 
amount of shift necessary to construct a master 
curve. 

For a given specific thermomechanical condi- 
tion, the Findley equation [3] can be written as 

e((j, T, t) = £0(<7, T)+B(a, T)tn (1) 

where T is the temperature and a is the stress, 

and n, B and e0 are functions of the stitching 
thread, temperature and applied stress. Based 
on the concept of the TTSSP previously 
described, eqn (1) can be expressed in terms of 
the creep response at a given reference condi- 
tion (<70 and T0) 

e(ff, T, t) = av[s0(a0, T0)+B(a0, T0) (t/ah)"]      (2) 

where 

av = e0(a,T)/s0(a0,T0) (3) 

ah={[s0(a0,T0)B(a,T)]/ 

[s0(a,T)B(a0,T0)]}-Un (4) 

From eqn (2), the creep strain data at a given 
thermomechanical condition can be shifted to 

Findley model 
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T=70°C 
T=55°C 

500        1000       1500       2000 

Time (min. ) 

1 

Findley model 
Experiment 

T=70°C 
Mwuaouüu 

T=55°C 

T=35°C 

500        1000       1500      2000 

Time ( min.) 

(a) o=30MPa (b)a=50MPa 

Findley model 
Experiment 

T=70°C 

T=55°C 

T=35°C 
■■■■■■■■■ ■-*•••■• 

0 500        1000       1500       2000 

Time(min.) 

(c)o=70MPa 
Fig. 3. Effects of temperature on cotton stitched composite creep behaviour, (a) a = 30 MPa, (b) a = 50 MPa and (c) 

a = 70 MPa. 
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represent the creep strain at a reference condi- 
tion. The appropriate shifts of the creep strain 
curve plotted on a log-time scale are vertical, 
log av, and horizontal, log ah. 

It should be pointed out that in eqn (2) the 
time exponent, n, is assumed to be independent 
of both stress and temperature. To perform the 
TTSSP, creep strain data at different environ- 
mental conditions were fitted with the time 
exponent obtained for the reference condition 
(<70, r0). To obtain a master curve, using the 
prescribed analytical characterization pro- 
cedure, the Findley equation parameters E0 and 
B in eqn (1) for the reference time exponent, n, 

must be used. The reference conditions chosen 
for this study were r=35°C and a = 30 MPa. 
The vertical and horizontal shift factors were 
calculated using eqns (3) and (4). Construction 
of the master curves for unstitched, cotton 
thread stitched, carbon fibre stitched and thick 
carbon fibre stitched are shown in Fig. 7(a)-(d). 

CREEP RUPTURE TESTING 

The experimental results obtained for stage I 
and II creep represent the behaviour that may 
occur under service conditions with low and 

s 
'3 
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(c)a=70MPa 
Fig. 4. Effects of temperature on carbon stitched composite creep behaviour, (a) a = 30 MPa, (b) a = 50 MPa and (c) 

c = 70 MPa. 
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medium applied stresses. As the applied stress 
increases, failure in the form of creep rupture 
may result. If composite materials are to be 
used reliably for extended periods, it is import- 
ant to know not only how much the material 
deforms but also if and when the material will 
fail. To this end, experiments were carried out 
by increasing the applied stress level to between 
85 and 95% of the tensile strength and increas- 
ing the temperature to 80°C. Figure 8 shows 
these creep to rupture curves. 

The creep curves exhibited various stages. 
Directly upon loading, the unstitched specimens 
experienced instantaneous stretch, which was 
followed by the primary stage creep, as shown 
in Fig. 8(a). The creep rate declined gradually 

in this region and eventually reached a constant 
value in the secondary stage. The third or final 
stage took place in a relatively short period 
covering only several minutes in the experi- 
ments performed. At the same applied stress 
and temperature (T=80°C, oJoh = Q£) the 
curve for the cotton stitched composite, shown 
in Fig. 8(b), exhibited a slower creep rate and 
longer time to fracture compared with the 
unstitched specimens. Figure 8(c) shows the 
carbon stitched composite creep to rupture 
curves. Compared with the unstitched and 
cotton stitched composites, under the same 
stress level, the carbon stitched specimens 
generally took longer to fail. A further increase 
in the rupture life was observed for thick carbon 
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Fig. 5. Effects of temperature on thick carbon stitched composite creep behaviour, (a) c = 30 MPa, (b) a = 50 MPa and 

(c) a = 70 MPa. 
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(a) (b) 
Fig. 6. Effects of stitching and type of stitch fibre on creep behaviour, (a) T = 35°C and a = 70 MPa. (b) T = 55°C and 

a = 70 MPa. 

thread stitched composites, as shown in 
Fig. 8(d). 

Compared with cotton threads and carbon 
threads, thick carbon threads can enhance the 
creep rupture time for a given stress, see 
Fig. 9(a) and (b). It should be noted that the 
tensile strength (rjb) used in the normalization 
is dependent also on the stitching thread used 
and stitching density. It is also clear that for a 
given creep rupture life, at a certain tempera- 
ture condition, the maximum stress level that a 
plain woven composite can sustain can been 
considerably increased by stitching with thick 
carbon threads. 

In addition to the creep rates, the creep 
strain at failure was also determined for each 
specimen. As illustrated in Fig. 8(a)-(d), the 
creep strain at failure increased as the applied 
stress decreased. Figure 10 shows creep failure 
strain as a function of failure time. 

It has been suggested that the creep lifetime 
of many materials can be correlated using a 
Monkman-Grant type of relationship which 
relates the failure time, t{, to the creep rate, e. 

tf=Ce~ (5) 

where C and m are material and environmental 
constants. Equation (5) has been shown to be 
valid for various metals, ceramic composites 
and polymer composites, with a single curve 
being able to describe the behaviour of a 
material independent of stress state and tem- 

perature. An exponent of m = 1 implies a 
constant strain at failure and assumes that creep 
in the primary and tertiary stages is negligible, 
whereas an exponent greater than unity means 
that the failure strain should increase as the 
strain rate decreases. Figure 11 shows the creep 
rate for the unstitched and stitched composites 
as a function of the time to failure. Clearly, the 
time to failure was independent of the applied 
stress, temperature and materials (stitched or 
unstitched). This means that all of the creep 
rupture data (unstitched and stitched) could be 
correlated using this one universal curve, thus 
providing a creep rupture criterion that can be 
identified relatively easily. Thereafter, C and m 
were constants independent of stitching and 
temperature. 

A more useful relationship would be one that 
relates the time to failure to the applied stress 
and temperature. Because the results of this 
study have shown that the time to failure when 
plotted against creep rate is independent of the 
stress state and the microstructure of stitched 
composites, eqn (5) and Norton's law [2] can be 
combined to provide an expression that gives 
the time to failure as a function of the applied 
stress 

tf=CA^mc-am/Ta-mn 
(6) 

where C and m are constants independent of 
geometry and temperature. However, constants 
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A0, a and n are dependent on temperature and 
stitching. 

FINITE-ELEMENT ANALYSIS 

To gain further insight into the mechanism of 
stitching, a finite-element analysis was per- 
formed for plain weave textile composites. Unit 
cells, as shown in Fig. 12, for stitched and 
unstitched models were constructed using two- 
dimensional, plane strain elements. For the first 
attempt, the fibre architecture within the unit 
cell (pitch = 5 mm) was simplified to a two- 
dimensional idealization. The three phases are 
assigned the appropriate in-plane elastic 
properties corresponding to 0° fibres, 90° fibres 
and the matrix. The impregnated fibre tows 

(warp and weft yarns) were modelled with con- 
stant rectangular cross-sections, rather than 
elliptical sections. Curvature of the tows, due to 
interlacing, was represented by parallel and 
diagonal straight lines. A unit tensile stress, 
(7app, was applied to each side of the unit cell as 
shown in Fig. 12. 

The distributions of the resulting interlaminar 
shear stress, T^,, and interlaminar normal stress, 
Oyy, along line AB are shown in Fig. 13(a) and 
(b). These two stresses are believed to control 
the viso-elastic-plastic deformation and crack- 
ing of the matrix, and interfibre cracking of the 
90° fibre tows. As the creep of the fibres is 
normally negligible, especially at low tempera- 
tures, any creep in the matrix would lead to a 
straightening of the 0° fibre tows under the 
action of an applied tensile stress. As can be 
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Creep behaviour of woven and stitched composites 443 

seen in Fig. 13, both the interlaminar shear and 
the normal stresses have been significantly 
reduced as a result of stitching. In particular, 
there is a three-fold reduction in the shear 
stress and a two-fold reduction in the normal 
stress. The amount of reduction in these stres- 
ses is approximately equal to the increase in the 
stress required to cause the same amount of 
creep after stitching in a given time. In other 
words, the enhanced creep resistance of stitched 
composites can be attributed to reductions in 
the interlaminar shear and normal stresses. This 
indicates that the main mechanism for the signi- 
ficant improvement in creep performance by 
stitching is the reduction in interlaminar stres- 
ses. 

CONCLUSIONS 

1 For the stitched and unstitched composites 
investigated, the influence of temperature on 
the creep response has been experimentally 
studied. 

2. The creep response of stitched woven com- 
posites has been characterized by isothermal 
creep tests with various stress levels via the 
time-stress superposition principle. 

3. A universal relationship between creep rate 
and rupture life has been found to exist for 
all the woven composites examined. 

4. Finite-element analysis has revealed that 
through-thickness stitching significantly 
reduces   the   interlaminar   stresses,   hence 
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Fig. 8. Rupture behaviour of (a) unstitched, (b) cotton stitched, (c) carbon stitched and (d) thick carbon stitched 

composites. 
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Fig. 11. Master rupture curves for woven stitched compo- 
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Fig. 13. Distribution of: (a) the shear stress along AB; and (b) normal stress along AB. 

accounting for the beneficial effects of stitch- 
ing on the creep resistance of woven 
composites. 
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Reliability formulation for composite 
laminates subjected to first-ply failure 

T. Y. Kam & E. S. Chang 
Mechanical Engineering Department, National Chiao Tung University, Hsin-Chu 300, Taiwan, Republic of China 

Methods formulated on the basis of the concept of first-ply failure and the 
structural reliability theory are presented for the reliability analysis of 
laminated composite plates. In the reliability formulation, an appropriate 
phenomenological failure criterion is used to establish the limit state 
equation of the laminated composite plates, and different numerical 
techniques are employed to evaluate the reliability of the plates. 
Experimental investigations of lamina strengths and first-ply failure loads of 
laminated composite plates were performed. Baseline probability 
distributions of lamina strength parameters constructed from the test data 
are used to study the reliability of the laminated plates. The accuracy of the 
proposed models in reliability assessment of the laminated plates are 
verified by the experimental results on first-ply failure load distributions. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

Laminated composite plates are important com- 
ponents in the construction of aircrafts, 
automobiles, and mechanical and marine struc- 
tures. In general, these structures are operated 
in severe environments and subjected to com- 
plex loadings. To ensure no sudden catastrophe 
for the structures, the reliability of the struc- 
tures must be thoroughly investigated before 
use. In order to have a meaningful reliability 
evaluation, realistic reliability models must be 
adopted in the reliability analysis of the lami- 
nated composite structures. Recently, a number 
of researchers have proposed different methods 
for studying the reliability of composite lami- 
nates [1-6]. For instance, Kam et al. [5] 
presented a load space formulation technique 
for the reliability analysis of laminated compo- 
site plates. In the previous reliability studies of 
laminated composite plates, however, only the 
theoretical aspect was considered and no 
experimental data were presented to verify the 
accuracy of their proposed methods. 

In this paper, methods formulated on the 
basis of the first-ply failure concept are pre- 
sented for the reliability analysis of laminated 

composite plates with random strength param- 
eters. Phenomenological failure criteria are 
used to construct the limit state equation of the 
laminated composite plates. Different numerical 
techniques are adopted to derive the reliability 
of the laminated composite plates from the 
probability distributions of the lamina strength 
parameters. The feasibility and accuracy of the 
proposed methods are validated by the experi- 
mental data. 

FAILURE ANALYSIS OF LAMINATED 
COMPOSITE PLATES 

Stress analysis of a laminated composite plate is 
accomplished via the finite-element method, 
which is constructed on the basis of the first- 
order shear-deformation theory [7]. The 
element contains five degrees of freedom (three 
displacements and two shear rotations) per 
node. In the evalution of the element stiffness 
matrix, a nine-node Lagrangian element with 
reduced integration using the 2 x 2 Gauss rule is 
adopted. Stresses at node points of an element 
are determined from those at the integration 
points via the extrapolation method. Five inde- 
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pendent stress components at any point in the 
laminated plate are considered in the finite-ele- 
ment analysis. The first-ply failure load of the 
laminated composite plate is defined as the 
strength of the plate. The first-ply failure analy- 
sis of the laminated plate is performed via the 
use of a phenomenological failure criterion. 
Currently, there are a number of phenomeno- 
logical failure criteria available for the failure 
analysis of composite laminates [8]. In general, 
the failure criteria can be classified into two 
categories, namely, independent and dependent 
failure criteria. For instance, maximum stress 
and Tsai-Wu failure criteria belong to the cate- 
gories of independent and dependent failure 
criteria, respectively. Herein, maximum stress 
and Tsai-Wu criteria are adopted in the first- 
ply failure analysis of laminated composite 
plates. The maximum stress criterion states that 
the ratios of stresses in the principal material 
directions to the respective strengths must be 
less than 1, otherwise failure is said to have 
occurred, that is 

Fi2 = 
1 

•ZV-^x    C^ T-* C 
(3) 

where    XT=Xlt    YT=X2,    R=X4,    S=X5, 
Xr =X,r and Yn = Y L1C 2C- 

RELIABILITY FORMULATION 

In the reliability formulation for laminated 
composite plates strength parameters of the 
constituent composite laminae are treated as 
independent baseline random variables. The 
constituent laminae of the laminated composite 
plates are assumed to possess the same material 
properties and strength parameters. Herein, the 
reliability model for composite laminates with 
random strength parameters subjected to first- 
ply failure is formulated on the basis of the 
structural reliability theory. The failure prob- 
ability, Pf, of a composite laminate is expressed 
as 

R,= — < 1(1 = 1,2,4,5,6) 
•A; 

(1) Pf = l"   \fx^d-fx^q)dxrdxq g>0 i y (4) 

where i?, are stress ratios; ox and a2 are normal 
stress components; a4, a5 and a6 are shear stress 
components; Xx and X2, are the lamina normal 
strengths in the 1, 2 directions; and X4, X5 and 
X6 are the shear strengths in the 23, 13 and 12 
planes, respectively; X5 =X6. When ax, a2 are of 
a compressive nature they should be compared 
with X1C, X2C which are normal strengths in 
compression along the 1, 2 directions, respec- 
tively. The Tsai-Wu criterion can be expressed 
as 

F,.(X,.+F,7<7,.(7y.>l (2) 

where g is the limit state equation of the lami- 
nated plate; Xt are independent random 
strength parameters; /X.(X) are baseline prob- 
ability density functions; and the integration is 
performed over the failure region, g > 0. In 
general, the limit state equation represents a 
surface in the strength space where the surface 
separates the survival and failure regions. 
Figure 1 shows the limit state curve, g(xu 

x2) = 0, in the strength plane. Herein, the limit 
state equation of the plate is constructed using 
either the maximum stress or the Tsai-Wu 
failure criteria. 

with 
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X, 

Fig. 1. Two-dimensional limit state curve constructed on 
the basis of dependent criteria. 
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G(X,,X2)=0 

"Failure" 

Fig. 2. Two-dimensional limit state curve constructed on 
the basis of maximum stress criterion. 

Maximum stress criterion (independent) 

In view of eqn (1) the limit state equation is 
expressed as 

6 

g=    n   (Ä,-i)=o (5) 

where H is the notation of multiplication. For 
the two-dimensional case, the limit state curve 
in the strength plane is shown in Fig. 2. In view 
of eqn (4), the reliability of the laminated plate, 
Ps, is written as 

6 oo 

Ps=      n       I A,.(x,)dx, (6) 
1=1, i#3     a, 

where at are the largest stress components in 
the laminated plate. Equation (6) can be solved 
easily via the use of numerical integration. 

Tsai-Wu criterion (dependent) 

In this model, the stress state of the most criti- 
cal point in the laminated plate is used to 
construct the limit state equation of the plate. 
In view of eqn (2), the limit state equation is 
expressed as 

g = Fiai+Fij<Tiaj-l=0 (7) 

Unlike the independent failure criteria, the 
solution  of eqn  (4)  will  be  difficult  if not 

Table 1. Statistics of strength parameters 

Strength Mean Coefficient 
parameter value of variation 

(CV) 
(MPa) (%) 

Ji. 1 = JL*Y 1537.2 2.1 
X2 — Ij 42.7 6.3 
X4 = R 79.67 5.7 
X5 = T 102.42 5.7 
X6 = S 102.42 5.7 
X\c = -^c 1722.1 2.1 
X-ic = 'c 213.95 6.3 

untractable for dependent failure criteria. 
Herein, the modified ß-method [9] is used to 
evaluate the reliability of the plate. 

EXPERIMENTAL VERIFICATION 

Experiments of centrally loaded laminated com- 
posite square plates of length a = 100 mm and 
ply thickness ht = 0.121 mm were performed to 
verify the accuracy of the proposed reliability 
models. The laminated composite plates under 
consideration were made of graphite-epoxy (Q- 
1115) perpreg tapes supplied by the Toho Co., 
Japan. The properties of the composite material 
were determined from experiments conducted 
in accordance with the relevant ASTM stand- 
ards [10] and their mean values are given as: 
Ex = 139.4 GPa, E2 = 7.65 GPa, G12 = G13 = 
4.35 GPa, G23 = 1.02 GPa and v12 = 0.29. 

The statistics of the lamina strength param- 
eters are listed in Table lspherical head and a 
fixture for clamping the specimen. The fixture 
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Fig. 3. First-ply failure load data of the [0790°2/0°9] plate 

fitted by lognormal distribution. 
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fitted by Weibull distribution.                                                       fitted by normal distribution. 

Table 2. Statistical parameters of experimental probability distributions of first-ply failure load 
Plate Normal                                             Weibull                                          Lognormal 

MeanP                  °p                     Scale                      Shape                  E[lnP]                <rlnP 

parameter               parameter 

[0790y0°6]s                       1841.1                  75.7                   1878.14                   25.1877                   3.26                 0 0178 

YlSTSk.Aco,                 miJ                 65-6                   1240-53                   18-493                     3.08                 0.0237 
457-45V45U                2091.6                117.88                 2148.21                   18.4856                   3.32                 0 0248 

L45V-45°6JS                       1296.3 

Note: a = standard deviation; E[ ] = expected 

72.93                 1331.58                   18.3931                   3.11                 0.0246 

value. 

Table 3. Experimental plate reliabilities derived from various probability distributions 
Plate                                               p(N) Reliability 

Normal                             Weibull                             Lognormal 

K^8                                     1725                              °-9241                               °-8914                                  0.9376 
$£°£%,^0i                              1125                              °-9306                               0-8992                                  0.9344 
lf7r4^fds                             1900                              °-9529                               °-9018                                  0.9639 

[456/-456]s                                   1175                              0.9638                               0.9047                                  0.9762 
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Table 4. Theoretical plate reliabilities derived from various baseline probability density distributions 

Plate P(N) Independent reliability model Dependent reliability model 

Normal Weibull Lognormal Normal Weibull Lognormal 

[0790y0°6]s 

[0V90U 
[457-45V45°6]s 
[45V-45U 

1725 
1125 
1900 
1175 

0.876 
0.9233 
0.9362 
0.9493 

0.8232 
0.865 
0.8758 
0.889 

0.8495 
0.904 
0.9173 
0.933 

0.851 
0.904 
0.9333 
0.9207 

0.817 
0.843 
0.8747 
0.862 

0.827 
0.871 
0.9095 
0.8945 

was made up of two square steel frames. During 
testing the laminated plate was clamped using 
the two steel frames, which were connected 
together by four bolts. A stroke control 
approach was adopted in constructing the load- 
deflection relation for the laminated plate. The 
loading rate was slow enough for inertia effects 
to be neglected. During loading, two acoustic 
emission sensors were used to measure the 
stress waves released at the AE sources in the 
laminated plate. The measured acoustic emis- 
sions were converted by the AMS3 (AE) system 
to a set of signal describers such as peak ampli- 
tude, energy, rise time and duration, which were 
then used to identify the first-ply failure load of 
the laminated plate [7]. 

RESULTS AND DISCUSSION 

First-ply failure load data of laminated compo- 
site plates with different lamination 
arrangements, namely [0790°2/0°9]s, [0°6/90°6]s 

[457-450
2/45°9]s and [45y-45°6]s, obtained 

from experiments are fitted by various prob- 
ability distributions via the probability papers. 
For instance, Figs 3-5 show the first-ply failure 

load data of the [0790O2/0o
9]s plate fitted by nor- 

mal, Weibull and lognormal distributions, 
respectively. It is noted that Weibull distribu- 
tion can yield the most conservation values for 
plate reliability when small failure probability, 
e.g. Pf<0.1, is considered. The statistical para- 
meters of the experimental probability 
distributions of the first-ply failure loads for the 
laminated plates are listed in Table 2. The 
experimental reliability of the laminated compo- 
site plates, which are subjected to a center point 
load, P, of different magnitudes, derived from 
various probability distributions are listed in 
Table 3. It should be noted that the 
[45°/_45°2/45°9]s plate, which has been opti- 
mally designed, yields the highest reliability. 
The reliability of the laminated composite 
plates is also determined using the aforemen- 
tioned reliability models and baseline 
probability density functions. Table 4 lists the 
theoretically predicted reliabilities for the plates 
with different lamination arrangements. The 
differences between the experimental and theo- 
retical plate reliabilities are given in Table 5. It 
is noted that in general the differences between 
the experimental and theoretical results are 
small (less than 12%) irrespective to the types 

Table 5. The difference between theoretical and experimental reliabilities of composite plates1 

Plate Independent reliability model Dependent reliability model 

Lay-up P(N) Experiment 
distribution 

Normal       Weibull       Lognormal       Normal       Weibull       Lognormal 

[0790y0°6]s 

[0V90°6]S 

[457-45V45°6]s 

[45V-45%]S 

1725 

1125 

1900 

1175 

Normal 
Weibull 
Lognormal 
Normal 
Weibull 
Lognormal 
Normal 
Weibull 
Lognormal 
Normal 
Weibull 
Lognormal 

5.2 
1.7 
6.5 
0.8 
2.7 
1.2 
1.7 
3.8 
2.8 
1.5 
4.9 
2.7 

10.9 
7.6 

12.2 
7.0 
3.8 
7.4 
8.1 
2.9 
9.1 
7.8 
1.7 
8.9 

8.1 
4.7 
9.4 
2.8 
0.5 
3.2 
3.7 
1.7 
4.8 
3.2 
3.1 
4.4 

7.9 11.6 10.5 
4.5 8.3 7.2 
9.2 12.8 11.8 
2.8 9.4 6.4 
0.5 6.3 3.1 
3.2 9.8 6.8 
2.0 8.2 4.5 
3.5 3.0 0.8 
3.1 9.2 5.6 
4.5 10.6 7.2 
1.7 4.7 1.1 
5.7 11.7 8.3 

difference = 
experiment—theory 

experiment 
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of probability distributions used in modeling the 
distributions of the lamina strength parameters 
and first-ply failure load. In particular, when the 
baseline probability density functions are nor- 
mal and the distribution of first-ply failure load 
is Weibull, the differences can be less than 5% 
for the laminated composite plates irrespective 
to the method used in the reliability analysis. 

CONCLUSIONS 

Different methods were presented for the relia- 
bility assessment of laminated composite plates. 
The methods were constructed on the basis of 
the concept of first-ply failure and the structural 
reliability theory. The feasibility and accuracy of 
the present methods were validated by the 
experimental distributions of first-ply failure 
loads of laminated composite plates with dif- 
ferent lamination arrangements. The effects of 
different types of baseline probability density 
functions on the system failure probability of 
laminated composite plates were studied. It was 
found that the use of Weibull distribution in the 
reliability design of laminated composite plates 
could yield more conservative results. The use 
of normal distribution for modeling the lamina 
strength parameters in the reliability analysis 
could yield very accurate results for the plates 
when their first-ply failure loads were modeled 
as Weibull variates. Both analytical methods are 
suitable for the reliability analysis of laminated 
composite plates. 
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Free and forced vibration analysis of thin, 
laminated, cylindrically curved panels 

N. S. Bardell,* J. M. Dunsdon & R. S. Langley 
Department of Aeronautics and Astronautics, University of Southampton, Highfield, Southampton S0171BJ, Hampshire, UK 

A comprehensive vibration study of thin, laminated, cylindrically curved 
shell panels (based on the shell theory of Love with a modification by 
Arnold and Warburton) is conducted by using the h-p version of the finite- 
element method (FEM). Polynomially enriched stiffness and mass matrices 
are derived from classical shell theory using Symbolic Computing, and then 
stored in algebraic form for a single, generic element. A number of such 
elements may then be combined to form the global stiffness and mass 
matrices for a more general co-axial and/or co-circumferential assembly. 
Any of the classical edge conditions, or point corner supports, may be 
accommodated in the analysis; forcing may be applied through one or more 
point forces acting normal to the shell surface. Excellent agreement has 
been found with the work of other investigators, and some new results are 
presented for a multiply supported curved panel made from the 
aluminium-glass-fibre hybrid GLARE. The h-p method is shown, by 
example, to offer an efficient means of conducting typical repetitive 
sensitivity analyses, such as varying the fibre orientation and the stacking 
sequences of a given panel. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The use of laminated fibre-reinforced composite 
materials in thin-walled structural applications 
has had a major impact on the entire design 
process for two-dimensional stress-bearing sys- 
tems. Nowhere has this impact been greater 
than in the birthplace of the modern composite 
— the aerospace industry — where current 
design capabilities range from aeroelastic tailor- 
ing to minimum weight structures. This 
advantageous state of affairs owes much to the 
vast amount of research and development that 
has been, and continues to be, expended in 
gaining a better understanding of the mechani- 
cal behaviour of composite materials under 
static and dynamic loading actions. The 
research effort reviewed here [1-16] contains 
only a representative overview of this vast sub- 
ject area; an exhaustive survey is beyond the 
scope of this discussion. 
*Westland Lecturer in Helicopter Engineering, and author to 
whom correspondence should be addressed. 

This paper continues the programme of work 
first carried out by the authors on laminated co- 
planar plate assemblies [1] using the h-p 
version of the finite-element method [17-20], 
which is a state-of-the-art numerical modelling 
technique. The main aim of this work is to vali- 
date the use of h-p techniques for simple, 
singly curved, laminated components, and 
explore the efficiency gains that might be 
realized through adopting this methodology. 
The feature of forced vibration response is also 
considered. 

Three problems are addressed in this work. 
The first is a simple convergence benchmark 
test for the natural frequencies of a thin, lami- 
nated, cylindrically curved shell, supported on 
shear diaphragms on all four edges [7,12]. The 
second is a free and forced vibration analysis of 
a clamped panel [10], with the emphasis on 
investigating the effect of different ply orienta- 
tions and stacking sequences. Finally, some new 
free and forced vibration results are presented 
for a curved, multi-bay panel made from the 
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layered aluminium and glass-fibre hybrid 
GLARE. This panel is internally sub-divided by 
an orthogonal array of line simple supports, and 
supported around its boundaries by a mixture of 
point supports, and clamped and free edges. 

Love's shell theory [15], with the modification 
introduced by Arnold & Warburton [16], is 
used as the basis for the h-p finite-element for- 
mulation developed here. 

METHOD OF ANALYSIS 

Background to the h-p version of the FEM 

The h-p version of the FEM may be regarded 
as the marriage of the conventional h version 
and p version; convergence is sought by simulta- 
neously refining the mesh and increasing the 
degree of the elements [17-19]. For the type of 
problem under consideration here, in which the 
motion in all three co-ordinate directions is 
coupled, it is advantageous to represent both 
the out-of-plane displacements and the in-plane 
displacements by the same set of assumed 
modes. There are two good reasons for this: (i) 
it greatly reduces the computational effort 
required to calculate the element stiffness and 
mass matrices; and (ii) it simplifies the element 
assembly process. 

An ascending hierarchy of ^-orthogonal poly- 
nomials, used in conjunction with Hermite 
cubics, furnishes a complete set of admissible 
functions with full Cx continuity. (A full descrip- 
tion of these assumed modes is given by Bardell 
et al. [1].) The hierarchical modes contribute 
only to the internal displacement field of the 
element, and do not therefore affect the dis- 
placement along the element edge or at the 
element nodes. However, products formed 
between any of the i^-orthogonal polynomials 
and the Hermite cubics will constitute what 
amounts to edge degrees of freedom along the 
element boundaries. Adjacent elements may be 
joined by ensuring compatibility of both nodal 
and edge displacements. The use of C1 continu- 
ity functions to describe the in-plane 
displacement field is justified on the grounds 
that it is only necessary to match the displace- 
ments u and v across an element interface to 
thus ensure C0 continuity; no attempt is made 
to enforce first derivative continuity (i.e. du/dri, 
dv/dt], 8«/8£, dv/d£) — which effectively 
describes the in-plane strain at a point — across 

Fig. 1. (a) The geometry of the laminated curved shell 
element, (b) The stacking notation for the layers of the 

shell element. 

an element interface, because this would over- 
prescribe the connectivity. In this manner, all 
the edge-to-edge interfaces are fully conforming 
in the conventional sense. 

Derivation of the laminate stiffness and mass 
matrices 

With reference to Fig. 1, consider a general 
point, distance z from the geometric mid-plane, 
within the /th layer of an AMayer, laminated, 
cylindrically curved, rectangular planform shell 
finite element. The laminate is of total thickness 
h, mean radius of curvature R, considered thin, 
i.e. h <^R, bounded along its edges by the lines 
x = 0, x = a, 9 = 0 and 9 = <j>, and each layer is 
assumed to be generally orthotropic, homo- 
geneous, elastic, of uniform thickness and 
perfectly bonded to its neighbours. The usual 
thin-shell assumption is made that plane-sec- 
tions remain plane under combined bending 
and stretching of the laminate. According to 
Love [15] and Arnold & Warburton [16], the 
strain-displacement relationships at a general 
point within the z'th layer, are 

Oy-y      

8« 

8x 
—z- 

82w 

8JC2 
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1    8v    w 

1    9«     Sv / 

R de   de     \ 

d2w      1 8v 

de2 + R2 de 

dv 1 Q2w    l 

R   6x80     R   dx 

(1) 

where u, v and w refer to the mid-plane dis- 
placements. It should be noted that no account 
is taken of shear deformation within the layers 
of this particular model. 

On introducing the non-dimensional co-ordi- 
nates £, Y\ which are related to the element 
Cartesian co-ordinates through £ = 2x/a — 1 and 
£ = 2Re/b — 1, the strain-displacement relation- 
ship can be rendered in the matrix form 

Uxe- 

2_ _8_ 

a   8£ 

b   dn 

4   e2 

a2   d^2 

1 4 

R ~Z b2 

—z- 

dn2 

8       82 

ab   8£8?/ 

-u(£,n)- 

Mt, n). 
(2) 

This can be written more concisely as 

{e} = [A]{<5} (3) 
The state of displacement of the laminate mid- 
plane may approximately be represented by a 
finite series of the previously assumed modes in 
the £,- and ^/-directions, namely 

Pux P„v 

rx= 1     sx= 1 

v(£,ri)=  Pf    z  y 
/-y=l     sy=l 

rz=l    sz=l 

Xrx, sxfrxiöfsxil) 

ry, syJ ry\S) Jsy\*l) 

rz, szJ rz frz(OfsZ(ri) 

(4a) 

(4b) 

(4c) 

where Xnsx, Y^^, and Z^ 52 are the (unknown) 
generalized co-ordinates of the problem, and 
each summation may be taken over any number 
of p assumed modes. Equations (4a), (4b) and 
(4c) can be written more succinctly in matrix 
notation as 

{S} = [N]{q} 

where {q} = {X, Y       7 rx, sxi   * ry, syi  ^-'^ 

(5) 
,}T. Substituting 

eqns (4a), (4b) and (4c) into eqn (3) yields 

{e} = [A][N]{q} (6) 

As the material of each layer of the plate is 
considered to be generally orthotropic, with its 
directional elastic properties depending upon 
the fibre orientation angle ß (see Fig. 1), the 

constitutive relationship for the /th layer can be 
written 

{<r}i = [D]t{e} (7) 

where {a}t = {ax, ay, T^}J, and [D\ is the well- 
known [21] 3x3 array of elastic coefficients for 
a generally orthotropic material. Note that for 
use in the forced response analysis, a single 
layer-wise value of the loss factor nt is assigned 
to all the elastic moduli to reflect the presence 
of hysteretic damping in each layer of material 
[22]. Whilst it is recognized that such an 
approach is highly simplistic — there are, in 
fact, 18 different damping loss factors that can 
be prescribed in a laminated composite [22] — 
it is justifiable on the grounds that the main 
purpose of this work is to illustrate the applic- 
ability of the methodology to such problems. 

Panel strain energy 
In element-local, non-dimensional, co-ordinates, 
the strain energy of the complete AMayer lami- 
nate is given [21] by 

1 „ ab    N    +i    +i    z, 
U=-{q}T—   X     J     J     /   ([A][N])T 

2 4    «=i   -i   -i  z,_, 

x[Dl[A][N]Rdzdr,dUq} (8) 
The terms between the row and column vectors 
denote the laminate element stiffness matrix 
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Panel kinetic energy 
Likewise, in element-local, non-dimensional, co- 
ordinates, the kinetic energy of the complete 
TV-layer laminate is given by 

1 ^ ab    *r       V    V     ^        _ 
2 4 ii- i=i 1      Zi- 

x [N]R dz drj d£{q} (9) 

Evidently, the terms between the row and 
column vectors denote the laminate element 
mass matrix ME. Both KE and ME are of 
the overall order [(pwxxpwy)+(puxxPuy)+ 
(Pvx^Pvy)], and are comprised of nine sub- 
matrices. 

Potential energy of the external loading action 
Only harmonic point forces, acting normal to 
the shell surface (positive radially outwards), 
are considered here. The gain in potential 
energy of such a force P located at (£P, rjF) and 
with phase \x is given by 

V=-Pei*wtfr,rJp) (10) 

Equations of motion 
The equations of motion of the system can be 
formulated using Lagrange's  equation, which 
states 

- — = -— (11) 
dV 

~dq 

where U, T and V are defined above. By substi- 
tuting these expressions into eqn (11), and 
assuming harmonic motion, the equations of 
motion of the shell can be expressed in the 
form 

-o/Mq+K(l+jt])q=F (12) 

where M and K are the global mass and stiffness 
matrices, and the vectors q and F contain the 
generalized co-ordinates and generalized forces. 
Note: the absence of any in-plane forces will 
render the two sub-sets of the generalized force 
vector corresponding to X^ 
i.e.FE = [0,0,i^JT. 

and Y,ytSy zero, 

Element assembly 
The matrix multiplication and integration 
required to evaluate the element stiffness and 
mass matrices shown in eqns (8) and (9), and 
the generalized force vector shown in eqn (10), 

was performed symbolically (for a maximum of 
10 assumed in-plane and out-of-plane modes in 
both the x- and y-directions) by using the Com- 
puter Algebra package MAPLE [23]. This 
enables all the entries in KE, ME and FE to be 
pre-computed in exact, fractional, algebraic for- 
mat, and then down-loaded to the main analysis 
program where they are stored at a familial 
level. In this way, no numerical rounding errors 
are introduced into the calculation of the ele- 
ment matrices; also, only one significant 
computational expense is ever incurred by keep- 
ing KE, ME and FE completely generic. The h-p 
method of assembling the elements to obtain 
the global stiffness and mass matrices, and 
generalized force vector, is accomplished by 
identifying, and then adding together, all the 
like terms from any number of adjacent ele- 
ments which correspond to common nodal and 
edge degrees of freedom along their interface. 
The only restriction on the boundary geometry 
possible with the method in its current state of 
development is that it must be possible to 
divide the structure into an assembly of rect- 
angular planform elements of identical 
curvature. 

Boundary conditions 
Specific boundary conditions may be applied to 
the model simply by removing those rows/col- 
umns from K and M, and rows from F, which 
correspond to fixed degrees of freedom — 
hence any combination of shear diaphragm, 
simple support, clamped or free edges, or cor- 
ner point supports can be accommodated in the 
analysis. In the current work, a shear diaphragm 
(S-D) permits an in-plane translation across the 
support but prevents w-wise motion normal to 
it; a simple support (S-S) permits rotation of 
the plate normal about the supporting edge, but 
prevents all three (u, v and w) translational 
freedoms. 

The frequency equation for free vibration 
By assuming harmonic motion and the absence 
of any external forcing agency or internal damp- 
ing, the governing equations of motion can be 
written in the standard form 

[K-co2M]q = 0 (13) 

which can be solved as a matrix-eigenvalue 
problem. The solution to eqn (13) yields the 
natural frequencies. Corresponding to each 
eigenvalue is an eigenvector, which may be used 
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in conjunction with eqn (4c) to recover the 
associated out-of-plane normal modes of the 
panel under consideration. 

The equation of motion for forced response 
By assuming harmonic motion, the governing 
equations of forced motion can be expressed 
thus 

[(l+jr1)K-co2M]q=F (14) 

The solution to eqn (14) can be found by 
specifying co and then pre-multiplying the right- 
hand side by the inverse of the left-hand side, 
thus 

q = [(l+jn)K-co2M]-lF (15) 

The (complex) vector q may then be used in 
conjunction with eqn (4c) to recover the associ- 
ated out-of-plane displacement w(£, n) of each 
element in the model, and hence permit the 
construction of a frequency-response recep- 
tance plot w/F. If w is determined at the point 
of excitation, then a point receptance is 
obtained; if w is determined at some point other 
than the excitation point, then a transfer recep- 
tance is obtained. 

RESULTS 

Comparison with the work of others 

Confidence has been gained in the h-p method- 
ology through a number of validation exercises. 
The first comparison case is based on the work 
of Sinha and Rath [5], Soldatos [8] and Bercin 
[12], who all determined the fundamental fre- 
quencies of a shear diaphragm supported 
curved panel defined by b/R = 0.5, R/h = 40, 
with   various   alb.   The   variety   of   different 

methods and shell theories used provide a good 
set of benchmark results, although it should be 
noted that relative to the radius, this shell is 
quite thick, and hence it is likely that shear- 
deformation effects will influence the 
frequencies of all the modes. The panel is con- 
structed from two layers of angle ply material; 
the principal fibre direction of the inner layer is 
aligned with the circumferential direction, and 
the principal fibre direction of the outer layer is 
aligned with a generator of the shell, i.e. 
[9070°]. The material properties for each layer 
are as follows: EJE2 = 25, G12/E2 = 0.5, and the 
major Poisson's ratio v12 = 0.25. The fundamen- 
tal non-dimensional natural frequencies 
Q. = a)a2(p/E2h

2)V2 have been calculated for a 
variety of aspect ratios alb which are shown in 
Table 1. 

It is immediately apparent that the funda- 
mental frequencies converge monotonically 
from above to give answers consistent with 
those reported by other investigators. The maxi- 
mum discrepencies (which fall consistently 
between the results of Soldatos [8] and Bercin 
[12]) are well within the limits attributable to 
the different shell theories and methodologies 
employed, and are consistent with the fact that 
Bert & Kumer [6] included shear-deformation 
effects within their model. 

For the alb = 1 case, the results arising from 
the h = 4 mesh idealization are consistently 
lower than those from either the h = 1 or h = 9 
case. This apparent anomaly can be explained 
by reference to this particular mode of vibra- 
tion, which is the (1, 1) mode. It just so happens 
that dividing the shell into four equal elements 
enables the available shape functions within 
those elements to ape the actual deformation of 
this particular mode better than either of the 
other two idealizations, and hence yield a more 
accurate answer. This 'feature' arises because 

Table 1. Convergence study for the fundamental natural frequencies Q, = aa2(p/E2h2)112 of a two-layer curved panel 
supported on shear diaphragms (b/R = 0.5, R/h F 40, with various alb) 

alb h = l h = 4 h = = 9 Sinha & Soldatos Bercin o <b> <^ Rath [5] [8] [12] 

p = 6 p = 8 p = W p = 5 P=I p = 9 p = 6 p = 8 

1 11.6988 11.6967 11.6967 11.6967 11.6943 11.6896 11.6962 11.6949 11.65 11.84 12.01 
2 7.3296 7.3280 7.3280 7.3285 7.3279 7.3277 7.3279 7.3279 7.37 7.25 7.43 
3 6.5462 6.5444 6.5444 6.5450 6.5444 6.5444 6.5444 6.5444 6.59 6.39 6.59 
4 6.2842 6.2824 6.2824 6.2830 6.2824 6.2824 6.2824 6.2824 6.33 6.11 6.30 
5 6.1702 6.1683 6.1683 6.1689 6.1683 6.1683 6.1683 6.1683 6.21 5.99 6.20 

MO1 64 132 224 148 364 676 539 1131 — — — 
lrThe term MO denotes the final matrix order, or total number of DOFs, of the problem under consideration. 
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Table 2. The first six natural frequencies Q. = (phco2b4/D0)l/2 of various clamped laminated curved panels (where the 
factor D0 =E11h3/12(l — v12v21)). h-p results arising from one super-element with p = 10 (R/h = 500, alb = 1, b/h = 100, 

MO = 164) 

Symmet ric cross- Antisymmetric Symmetric cross -ply [ßl-ßl- -ß/ß] 
ply [0790°]s cross -ply [0790°] 

,6 = 0° j3 = 30° 

h-p 

,8 = 45° 

h-p 

ß = 60° 

h-p 

j3 = 60° 

Chun& 

j? = 90° 

h-p Chun & h-p Chun& h-p h-p 
Lam [10] Lam [10] Lam [10] 

fi. 47.99 48.19 35.09 35.48 28.27 31.49 38.89 48.87 49.06 60.98 
fi, 55.46 — 42.24 — 31.20 38.83 46.26 52.89 .— 63.88 
Q, 60.97 60.96 51.09 51.57 42.61 56.37 55.70 60.17 60.25 64.20 
fi4 70.75 — 52.31 — 60.55 57.61 66.38 67.86 — 70.77 
O.e. 72.82 72.83 65.28 65.61 65.04 71.09 78.66 77.74 77.71 71.50 
Q6 88.85 — 73.46 — 68.76 79.57 89.02 87.90 — 82.21 

the internal p-boost in the h = 4 mesh does not 
constitute a sub-set of the p-boost in the h = 9 
case. 

For shells with a higher value of R/h than that 
just considered, for which shear-deformation 

30 40 50 60 70 

Non-dimensional frequency Q 

10 20 30 50 60 70 80 90        100 

Fig. 
[07- 

2. The point receptance and phase for a clamped 
-07—070°] panel subjected to a unit harmonic force 

applied at £ = -0.37 and r\ = 0.43. 

30 40 50 60 70 

Non-dimensional frequency O 

Fig. 3. The transfer receptance and phase for a clamped 
[457-457-45745°] panel subjected to a unit harmonic 
force applied at £, = —0.37 and r\ = 0.43, and monitored at 

the panel centre. 

effects could be neglected with confidence in 
the first few modes of vibration, consistent and 
reliable answers should be forthcoming. To test 
this hypothesis, a further study was conducted 
based on the work of Chun and Lam [10], who 
analysed a variety of differently laminated cylin- 
drically curved panels that were clamped 
around all four edges. In particular, a panel 
characterized by R/h = 500, a/b = \, b/h = 100 
was modelled using one super-element with 
each of the series representing the u, v and w 
displacements boosted to a maximum poly- 
nomial enrichment of 10, i.e. h = 1, p = 10. The 
material properties are assumed to be the same 
for all the layers, and are EJE2 = 15.4, G12/ 
E2 = 0.8, and the major Poisson's ratio v12 = 0.3. 

To illustrate the efficacy of the current 
technique, a variety of different symmetric 
angle ply lay-ups were considered, and 
the first six non-dimensional natural frequen- 
cies, Q = (phco2b4/D0)U2, where D0=Euh3/ 
12(1 — v12v21), of each of these panels are pre- 
sented in Table 2. The agreement with Chun 
and Lam [10] is excellent, especially when it is 
understood that some of the latter authors' 
results are not fully converged and therefore 
will marginally overestimate the correct fre- 
quency values. This study also shows that the 
curvature, as well as stacking sequence and 
principal fibre direction, influences significantly 
the general trend of the results at low frequen- 
cies. For example, the [07-07-070°] case is a 
panel with the principal fibre directions in each 
layer parallel with a generator of the shell, i.e. it 
will favour wave motion around the circum- 
ference in preference to along its length, and 
therefore will vibrate with the lowest frequen- 
cies of all the cases considered here. However, 
the [907-907-90790°] case, which might be 
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Fig. 4. The geometry and mesh design of a GLARE inter- 
nally supported curved panel. 

thought to be the stiffest panel within this study, 
will not vibrate solely along its lengthwise 
direction as might be expected, on account of 
the additional stiffness afforded that direction 
by the panel curvature. It is also worth noting 
that the [307-307-30730°] case and the 
[607-607-60760°] case do not give identical 
frequencies, as they would for a flat plate. 
Again, this is because the 60° case has a greater 
proportion of its principal fibre direction 
aligned with the curvature than the 30° case, 
and hence affords the panel more stiffeness in 
the circumferential sense. 

40 50 60 

Frequency   Hz 

Fig. 5. The transfer receptance and phase for the panel 
shown in Fig. 4, when it is subjected to a unit harmonic 
force  applied  at  (0.07 m,   1.217 m)  and  monitored  at 

(0.89 m, 2.904 m). 

Some forced response calculations have been 
performed for the basic panel with two different 
symmetric angle-ply lay-ups. The first case con- 
cerns a [07-07-070°] lay-up subjected to a 
unit harmonic force applied at £ = —0.37 and 
n = 0.43. (This location was chosen at random 
such that it would be unlikely to coincide with 
any nodal lines.) The (simplified) damping loss 
factor associated with each layer was 0.05, and 
the response was measured at the point of 
application of the force. The magnitude and 
phase of the point receptance, plotted over a 
non-dimensional frequency range from 0 to 100, 
are shown in Fig. 2. The location of the reso- 
nant peaks accords with the free vibration 
results, apart from the absence of mode 4 at 
fi = 60.55. It is likely that this particular mode 
is hardly excited by the applied force, a conjec- 
ture borne out by the corresponding 'kink' in 
the phase diagram in the vicinity of this particu- 
lar frequency. 

The second case concerns a [457—457 
—45745°] lay-up subjected to a unit harmonic 
force applied at £ = —0.37 and v\ = 0.43, and 
monitored at the panel mid-point. The magni- 
tude and phase of the transfer receptance are 
shown in Fig. 3. The location of the resonant 
peaks again accords with the free vibration 
results for the modes at Q = 38.89 and at 
Q, = 66.38. The remaining modes within the fre- 
quency range under consideration all have 
nodal lines at the centre of the panel, and 
hence are not observed at this monitoring loca- 
tion. 

Further results 

Having accumulated some experience with the 
h-p curved laminate element, one further 
example was considered to illustrate the versa- 
tility of the methodology. This concerns the 
vibrational behaviour of a 1.5 m length of panel 
with an included angle of 90° and a 2.0 m 
radius. The panel is divided internally by line 
shear diaphragms, such that one shell element 
with p = 10 can be used to model each of the 
nine so-formed sub-panels. See Figure 4. It is 
assumed the panel is fabricated from GLARE 
with the following lay-up [Al, 0°, Al, 90°, Al]s. 
The material properties are (i) Aluminium foil: 
thickness 0.2 mm, E = 72 GPa, p = 2780 kg/ 
m3, v = 0.30, nal = 0.001; (ii) Glass fibre 
prepreg: thickness 0.125 mm, Ej = 50 GPa, 
E2 = 
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4.0 GPa,     G12 = 1.25 GPa,     p = 2000 kg/m3, 
v12 = 0.35 t]gfp = 0.05. 

The panel was excited by a unit harmonic 
force located near the 'free end' at A (0.07 m, 
1.217 m), and the response was monitored at B 

(0.89 m, 2.904 m), where distances are mea- 
sured relative to the set of global axes indicated 
in Fig. 4. The magnitude and phase of the 
transfer receptance are presented in Fig. 5, and 
clearly show a congregation of resonant peaks 

Mode 1: f=47.7 Hz Mode 2: f=50.7 Hz 

Mode 3: f=53.2 Hz 
Mode 4: f=56.0 Hz 

Mode 5: f=56.2 Hz \y Mode 6: f= 65.8 Hz 

Fig. 6. The first six natural modes of the panel shown in Fig. 4. 
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just above 50 Hz. The corresponding natural 
modes are shown in Fig. 6, confirming that a lot 
of modal activity takes place within a very nar- 
row frequency band width. Clearly, the motion 
of the panel is dominated by localized modes 
caused by the internal sub-divisions and sup- 
ported edges. Only in modes 2, 5 and 6 can 
anything resembling a more global mode be 
seen to establish itself around the less highly 
constrained 'free' edges of the panel. 

The usefulness of such a model at the design 
stage cannot be underestimated when the com- 
plex interaction between panel geometry, 
boundary conditions, radius of curvature, angle 
ply properties and stacking sequence all have to 
be considered, and parameter studies under- 
taken. 

CONCLUSIONS 

The h-p version of the FEM has been 
developed to study the vibration characteristics 
of laminated cylindrically curved panels. The 
element stiffness and mass matrices have been 
derived and stored in symbolic form for a 
single, generic element. By removing the need 
to carry out numerical integration at the ele- 
ment assembly stage every time a new model is 
constructed, execution times are kept to a mini- 
mum, and no rounding errors are introduced. 
Experience to date indicates that the optimal 
blend of mesh refinement and polynomial 
enrichment should be such that the coarsest h- 
mesh commensurate with the boundary 
conditions is used in conjunction with a high 
degree of /^-enrichment. Excellent correlation 
has been found with the work of other inves- 
tigators, and considerable savings on the final 
size of the matrix-eigenvalue frequency problem 
have been demonstrated. Should a typical sensi- 
tivity analysis be required, in which variations of 
ply angle and stacking sequence are considered 
the prime design variables, it is essential that an 
efficient analysis tool is available. The h-p 
methodology advanced here would seem to ful- 
fil this demanding criterion. 
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Free vibration analysis of coplanar sandwich 
panels 

N. S. Bardell,* J. M. Dunsdon & R. S. Langley 
Department of Aeronautics and Astronautics, University of Southampton, Highfield, Southampton SO 171BJ, Hampshire, UK 

A comprehensive vibration study of simple three-layer sandwich plates, 
based on the h-p version of the finite element method, is presented. The 
methodology incorporates a new set of trigonometric functions to provide 
the element /^-enrichment — these functions exhibit good convergence 
characteristics, and enable the medium frequency regime to be explored at 
minimum computational expense. Elements may be joined together to 
model more general coplanar assemblies, and the trade-off between h- 
division and ^-enrichment is discussed. Excellent agreement has been found 
with the work of other investigators, and new results are presented for (i) 
a completely free, symmetric section, rectangular sandwich panel whose 
core thickness is varied as a function of the overall plate thickness whilst 
the mass per unit area is maintained constant, and (ii) a cantilevered, T- 
planform, asymmetric section, sandwich plate. The results from this latter 
case are compared with those forthcoming from a proprietary finite 
element package; outstanding agreement is obtained, and a reduction of 
over 30% in the total number of degrees of freedom is demonstrated. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

The origins of laminated or sandwich panel 
construction can be traced to the aircraft 
industry, where the need for high strength-to- 
weight ratio structures has been, and always will 
be, a driving factor in innovative design. In its 
simplest form, sandwich construction typically 
comprises three layers of materials: two thin 
sheets of high-strength material between which 
a relatively thick core layer of low average 
strength and density is intercalated. The various 
types of different faceplates, core materials, and 
constructional variations found in sandwich 
structures are described in detail by Allen [1]. 

This general subject area has been well 
researched over the past 50 years, and although 
a comprehensive literature survey is beyond the 
scope of this paper, some of the more signifi- 
cant publications merit a brief mention at this 
juncture. The early work on sandwich plates 
[2-5] was carried out in the 1950s and 1960s 
long before the availability of large-scale com- 
*Westland Lecturer in Helicopter Engineering. 

puting, and therefore concentrated on 
developing and solving increasingly sophisti- 
cated sandwich plate equations that arose from 
generalizing ever more of the governing 
assumptions. The merit of this analytical 
approach was the good physical insight it pro- 
vided into the mechanical behaviour of these 
structures. By the early 1970s, some results aris- 
ing from nascent finite element formulations [6] 
had been produced, and since then, a vast 
amount of work [7-9] has appeared in this 
general subject area. Ha [10] and Noor et al. 
[11], have recently produced comprehensive and 
timely reviews of the entire spectrum of work 
related to sandwich plates and shells; the latter 
item contains over 800 relevant references! It is 
apparent that since the 1970s, the greatest pro- 
portion of analysis has been of an approximate 
nature based on variational approaches, with 
most of the numerical solutions being deter- 
mined by one or another type of finite element 
or finite strip methodology. 

The present study has arisen from a larger 
programme of work intended to explore the use 
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of sandwich construction as the primary struc- 
tural medium in the vicinity of future ASTOVL 
aircraft jet engine exhaust nozzles. For this 
reason, the scope of the work has deliberately 
been limited to metallic panels having isotropic 
faceplates and generally orthotropic honeycomb 
cores. 

Mathematical models of such structural forms 
must take account of the shear deformable 
nature of the core material, which, in a dis- 
placement-type of formulation, is usually 
accounted for by the use of additional degrees 
of freedom (DOF) to represent the shear defor- 
mation [10]. It is well known that approximately 
four conventional finite elements are required 
to capture one half-wavelength of vibration in a 
given direction [12] — in a two-dimensional 
plate model, this would amount to some 16 ele- 
ments being needed to resolve the fundamental 
(1,1) mode of a square panel, and over 50 ele- 

ments to recover the 2,2 mode. Considering 
that most 'sandwich elements' are often con- 
structed from three separate layers, each with 
four nodes and three DOF per node, then it 
soon becomes apparent that the total number 
of DOF in a model capable of capturing, say, 
the first 10 modes of vibration, is extremely 
large, and will most likely prove prohibitively 
expensive for recursive analyses such as optimi- 
zation or sensitivity studies, or predicting the 
response at medium frequencies. It is against 
this background that the h-p version of the 
finite element method (FEM) [13-17] is pre- 
sented, since this formulation promises 
substantial efficiency gains without loss of accu- 
racy when compared with the conventional 
FEM. Hence the main purpose, and indeed 
novelty, of this paper is to validate the use of 
h-p techniques for predicting the natural fre- 
quencies and modes of sandwich panels. 

METHOD 

Assumptions 

As with all work of this kind, a set of initial assumptions [10] must be made with the aim of capturing 
the essential properties of the physical sandwich panel, whilst permitting an analytically tractable 
solution to be obtained. For the problem under consideration, this set may be summarized thus: 

(i) There is no significant direct strain in the core perpendicular to the plane of the face plates. 
Hence, both the face plates and the core deflect by the same amount normal to the plate 
surface. 

(ii) There is no significant shear strain across the depths of the face plates. Hence, only the core 
will carry the shear strain, which is assumed uniform through the core depth. 

(iiii) The face plates are considered to be isotropic, and to possess both axial and flexural stiffness. 

(iv) The core is considered to be generally orthotropic, and to possess both axial and flexural 
stiffness. 

(v) The sandwich plate is assumed to behave elastically, and is subject to small displacements. 

In what follows, the lower faceplate will be referred to as layer 1, the core as layer 2, and the upper 
faceplate as layer 3. The mid-plane of layer 2 is taken as the global reference datum from which all 
subsequent deformations are measured. (Note that this reference datum will not coincide with the 
geometric mid-plane of a panel whose faceplates are not of equal thickness.) 

Assumed deformation pattern 

Consider a particle at a general point x, y, z2 within layer 2. In its deformed state, the position of this 
particle is related to the layer 2 mid-plane displacements by 

u2(x, y, z2) = u0+z2ik 

v2(x, y, z2) = v0+z2(j) 

w2(x, y, z2) = w0 

(la) 

(lb) 

(lc) 



Free vibration analysis of coplanar sandwich panels 465 

where u0, v„, and w0 are the displacements of the layer 2 mid-plane, and <f> and \j/ are the rotations 
due to shear deformation of layer 2 about the x- and y-axes, respectively (see Fig. 1). Equations (1) 
can be rendered in matrix format as 

u2 

v2 

w2 

1 0 0 z2 0 
0 1 0 0 z2 

0   0    10    0 

u0 

«A 
0 

(Id) 

i.e. 

82 = R2(50 
(le) 

Layer 3 (upper face plate) 

Layer 

Mid-plane of Layer 2 Layer 1 (lower face plate) 

(b) 

Layer 3 f 

Layer 2 

Mid-plane 

.i_ 

J_ 

DATUM 
Undeformed section 

DATUM 
Deformed section 

Fig. 1. (a) The sandwich plate element, (b) The assumed deformation pattern (shown in the ^-direction). 



466 N. S. Bardell, J. M. Dunsdon, R. S. Langley 

where ö0 is the column vector of the layer 2 mid-plane 'master' displacements. By similar reasoning, 
the displacement of a particle at a general point x, y, z3 within layer 3 is related to the layer 3 mid- 
plane by 

u3(x, y, z3) = «03 - z3dw03/dx (2a) 

v3(x, y, z3) = v03 -z38w03/8y (2b) 

w3(x,y,z3) = wO3 = w0 (2c) 

where u03, v03, and w03 are the displacements of the layer 3 mid-plane (see Fig. 1). Compatibility 
between layers 2 and 3 is enforced by ensuring that every particle on the upper surface of layer 2 
occupies the same position as every particle on the lower surface of layer 3, i.e., there is no relative 
slippage permitted between the core and faceplate. Hence, equating eqns (la-c) with z2 set equal to 
h2/2, to eqns (2a-c) with z3 set equal to -h3/2, respectively, the following compatibility relationship 
is established 

*03 

"03 

W, 03- 

*03 

"03 

-Wn 

1 0 

0 1 

0 0 

1 0 

0 1 

Lo o 

hj_ _8_ 

2    8x 

n3       u 

2 dy 

1 

h. — 
a 8£ 

hj_   8 

b dr] 

1 

h2    0 

0 hy 

0     0 

w0 

0 

(3a) 

h2 0 ~u0~ 

v0 

0 h2 

w0 

•A 

0 0 _ 
L0 J 

(3b) 

The latter expression is obtained when the element-local, non-dimensional, coordinates £ = 
2x/a -1 and r\ = 2y/b -1 are introduced. Equation (3b) can be written more compactly as 

ö03 = R3<50 (3C) 

In a similar manner, enforcing compatibility between layers 2 and 1 yields 

1 0 
nl    o 

M01 
2    dx 

Voi = hx    8 
LwoJ U 1 

2    dy 

_0 0 1 

1 0 
Ä,    8 

«03 
a    8^ 

v03 

_^03_ 0 1 
^    8 

b    drj 

.0 0 1 

-h, 0 

0      -h, 

 -h,      0 

—      0      -ho 

(4a) 

0 0 

w0 

4> 

(4b) 
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Equation (4b) can be written more compactly as 

^01 = Ri^o 
(4c) 

Strain-displacement relationships 

The strain-displacement relationships [18], rendered in terms of the element-local, non-dimensional, 
coordinates for layers 1 and 3, related to their own mid-planes, are 

- 2  a 
a   8£ 

0 

£yy 

— Ixy— 1,3 

0 
2    8 

b   drj 

2    8 2    8 

_ b   dr\ a   dt, 

£1,3 = F<5oi, 03 

— Z\ 

■Zl,3 

JL a2 

4   _cf_ 

8      82 

—z 1,3 
ab   di;drj 

*01,03 

V01,03 

UW01,03- 

(5a) 

(5b) 

In order to relate the faceplate displacements to the core mid-plane displacements, it is necessary 
to use eqns (3c) and (4c) such that st = FRlt50 and e3 = ¥R3S0, i.e. 

and 

e3 = A3<50 

(6a) 

(6b) 

where Aa = FRj and A3 = FR3. The strain-displacement relationship for the shear deformable core 
can be written [18] in terms of the element-local, non-dimensional, coordinates as 

2    8 

a   8£ 
0 0 

&xx 

0 
2    8 

b   drj 
0 

lyz 

Jxz 

= 0 0 
2 8 

b   drj 

Y xy 2 
0 0 

2 8 

a   8£ 

2    8 2    8 
0 

b   dt] a   8£ 

z2 
1JL 
a   8£ 

2    8 

z2 

0 

2  _8_ 

b   drj 

2    8 

b   drj a   8£ 

v0 

w0 

"A 
0 

(7a) 

e2 = A2<50 
(7b) 
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Layer constitutive relations 

The standard constitutive relations [18] for the isotropic face plates, and the generally orthotropic 
core, are written as follows: 

E vE 

ru   ~i 
a yy = 
T 

<—Lxy —I 1,3 

(1-v2)       (1-v2) 

vE E 
0 

(1-v2)       (1-v2) 

0 0 G 

'yy 

— txy- 

1,3 

axx 

°yy 

hz = 

*zx 

T _xy 2 

\ *■ xy *yx) 

Vyßx 

(1-V    V    ) V vxyyyx/ 

~     (l-v^vyJ       (1-v^v  ) 

0 
0 
0 

0       0 

0       0 

Gyz   0       0 

Gzx   0 0 
0       0 'xy 

yyz 

IZX 

i xy 

CT1,3 — Dl,3£l,3 

and 

a2 = D2e2 

Choice of assumed displacement functions; background to the h-p version of the FEM 

(8a) 

(8b) 

The h-p methodology adopted is similar to that presented elsewhere by the authors [19], so only the 
essential details are given here. In brief, the h-p version of the FEM may be regarded as the 
marriage of the conventional /«-version and /^-version; convergence is sought by simultaneously 
refining the mesh and increasing the degree of the elements [13-17]. For the type of problem under 
consideration here, in which the motion in all five DOF is coupled, it is advantageous to represent 
all the displacement fields by the same set of assumed modes. This greatly reduces the computational 
effort required to calculate the element stiffness and mass matrices, and simplifies the element 
assembly process. 

To this end, an ascending hierarchy of special trigonometric functions [20], used in conjunction 
with Hermite cubics, will furnish a complete set of admissible displacement functions /(£ or rj) (see 
Table 1). The motivation for using trigonometric, as opposed to the usual üT-orthogonal polynomial 
[19] hierarchical functions, is on account of their improved performance when modelling medium 
frequency deformations [21]. 

The hierarchical modes contribute only to the internal displacement field of the element, and do 
not therefore affect the displacement along the element edge or at the element nodes. However, 
products formed between any of the trigonometric functions and the Hermite cubics will constitute 
what amounts to edge freedoms along the element boundaries. Adjacent elements may be joined by 
ensuring compatibility of both nodal and edge displacements. The use of what effectively amounts to 
Cj continuity functions to describe the in-plane and shear deformation displacement fields — which 
possess C0 continuity — is justified on the grounds that no attempt is made to enforce/zrtf derivative 
continuity of any of these quantities across an element interface. 
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Hence the in-plane, out-of-plane, and shear deformation master displacements can be represented 
as the following series expressions 

uQ(Z,r,)= "f   Pfxrx^frx(OLM 
rx= 1     sx— 1 

Pvx Pvv 

V0tf,r])=      Z 1      Yry,Jry(Ofsy<J\) 
ry = 1     wy = 1 

W0(&»?)=     ^        P£Zrz,szfrz(OfrM 
rz- 1    sz= 1 

rij/=l    sxj/ = 1 

r0= 1     ^0= 1 

This can be expressed in a more compact matrix notation as 

where qT = [X^, Y^, Z^z, V,VtSV, <Pr4>Ml and N is a rectangular matrix with five rows. 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

(9f) 

Table 1. The first ten assumed displacement functions 

Function 
number 

Hermite cubics set fr ft) Trigonometric set fr ft) 

r=l 

r=2 

r=3 

r=4 

1.0000 

0 

-1.0000 

0.1481 

0 

-0.1481 

1.0000 

0 

-1.0000 

0.1481 

0 

-0.1481 

1                       0                       1 

/" 

1                        0                        1 

1                      0                      1 

^/ 
-1 

For r>4, the following set of trigonometric 
functions is used as hierarchical functions. 

/r ft) = sin [_jl (r - 4) ft +1)) sin [_|. ft +1) 
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Panel energies 

The strain energy of the panel, which is given by 

1      3 
U=-   Z ly.eTDfiidV, 

can be constructed from eqns (l)-(9) thus 

1 
"=T.- 

3 nU 

Z I+-\ I-1, Jt*02 (A^D, A,N — dZi d£ di, !=1 4 

(10) 

(11) 

The terms within parentheses are recognized as the element stiffness matrix KE. 
Similarly, the kinetic energy of the panel element is given by 

T=-   ilVlpi5jbldVi 

Substituting eqns (le), (3c), (4c) and (9) into eqn (12) yields 

T-2t 
3 nh 

<=i 4 

(12) 

(13) 

The terms within parentheses are recognized as the element mass matrix ME. Note that in-plane 
inertia and rotary deformation effects are contained within this expression on account of the coupling 
that exists between the various displacements characterizing each layer. 

The matrix multiplication and integration required to evaluate the element stiffness and mass 
matrices shown in eqns (11) and (13) was performed numerically using a Gauss-Legendre quadra- 
ture scheme. This scheme, which was implemented using commercially available software [22], 
dynamically allocates the number of integration points required to ensure a predetermined level of 
accuracy. 

Interelement compatibility is achieved simply by matching the appropriate generalized 'master' 
coordinates at common element nodes and along common edges, as explained earlier. This pro- 
cedure ensures the elements are fully conforming — in the conventional sense — and, moreover, 
facilitates assembly of the global stiffness and mass matrices KG and MG. 

Boundary conditions 

Specific boundary conditions may be applied to 
the model simply by removing those rows/col- 
umns from KG and MG which correspond to 
fixed 'master' degrees of freedom — hence any 
combination of shear diaphragm, simple 
support, clamped or free edges, or corner point 
supports, can be accommodated in the analysis. 
In the current work, the support conditions are 
imposed at the layer 2 mid-plane, so some care 
has to be taken in defining exactly what each 
category means. A shear diaphragm permits an 
in-plane translation across the support, and full 
rotation about the mid-plane, but prevents w- 
wise motion normal to it; a simple support 
permits full rotation of the panel about its mid- 

plane, but prevents all three translational 
freedoms there; a clamped support prevents all 
three translational freedoms, and shear defor- 
mation within layer 2. 

Equations of motion 

By assuming simple harmonic motion, and the 
absence of any forcing agency, the governing 
equations of motion for free vibration can be 
obtained by deriving Lagrange's equation from 
the expressions already obtained for the strain 
and kinetic energies of the complete model. 
This yields the standard matrix-eigenvalue form 
of the problem 

[KG-w2MG]{q}=0 (14) 
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The solution to eqn (14) gives the natural 
frequencies in radian units, rendered here in an 
appropriate form depending on the analysis. 
Corresponding to each eigenvalue is an eigen- 
vector which may be used in conjunction with 
eqn (9) to recover the associated displacement 
of each element in the model, and hence the 
complete mode of the panel under considera- 
tion. 

COMPARISON WITH OTHER WORK 

Convergence study 

In order to gain confidence with the h-p formu- 
lation presented here, it is important to validate 
the convergence behaviour of the model. The 
example chosen as a suitable benchmark was 
presented by Zhou and Li [9], who determined 
the natural frequencies of an aluminium honey- 
comb sandwich panel with all four edges simply 
supported by using a spline finite point method 
(SFPM). The panel dimensions are 
a = 182.9 cm and b = 121.9 cm, giving an aspect 
ratio of alb = 1.5. The material properties are 
quoted in Table 2a. 

Three different trade-off studies were con- 
ducted using various combinations of the h- and 
/^-parameters. These results are presented in 
Table 2b, alongside the results of Zhou and Li 
[9], and some further, exact, and experimental, 
results presented by Raville and Veng [23]. It is 
immediately obvious that the results from the 
current method converge monotonically and 
from above, as expected, and that very good 
agreement is obtained with the work of other 
investigators — the current results deviate from 
the exact solution by a maximum of only 1.7% 
in the sixth mode. The relatively slow converg- 
ence of the low frequency results stems from 
the use of the trigonometric assumed displace- 
ment functions; this feature has been noted by 
their progenitors [20]. Clearly, the single super- 
element, with the highest possible amount of 
/^-enrichment, can be seen to give the most 

accurate results for the least overall number of 
DOF. This finding is commensurate with pre- 
vious work in this subject area [19]. Considering 
that Zhou and Li [9] used specific beam modes 
as their assumed displacement functions, and 
would have to generate different sets for dif- 
ferent combinations of boundary conditions, the 
versatility of the present h-p methodology is 
clearly self-evident. This exercise, and other 
such studies not reported here, give confidence 
in the validity of the h-p formulation as applied 
to the title problem. 

Further results 

Two further examples are now presented to illu- 
strate the versatility of the methodology, and to 
add some new results to the available literature. 
In both cases, the material properties quoted in 
Table 2a are used, i.e. the structures are both 
aluminium honeycomb sandwich panels, with 
the core ribbon direction aligned with the ele- 
ment y-axis. 

Example (1): Consider a solid, uniform, iso- 
tropic, rectangular panel (a = 1 m, b = 0.5 m), 
of total thickness 5 mm, with all four edges 
completely free. (The free edge case is one of 
the more challenging test cases for any approxi- 
mate methodology, and has been chosen here in 
order to fill this particular lacuna.) The mass 
per unit area of this panel is 13.84 kg/m2. A 
parameter study was conducted to examine the 
effect on the panel's natural frequencies of 
increasing the core depth as a percentage of its 
total thickness, whilst maintaining a constant 
mass. For this study, the face plate thicknesses 
were considered equal, so ht = h3. 

Let a represent the fraction of the core depth 
relative to the total thickness. Then 
h2 = ailh^h^ or, after a little manipulation, 
h2 = 2ahj(\ — a). Keeping the mass per unit 
area constant guarantees that 2prhx+ 
p2h2 = 13.84, which, on substituting for h2, 
means   that   2plh1+2p2c(h1/(l — ot) = 13.84,   or, 
h1 = 6.92(l-a)/\ß1(l-<x)+p2<x]- BY varying a 
between 0 and 0.95, it is possible to see what 

Table 2a. Material properties for an aluminium honeycomb sandwich panel 

Thickness 
(mm) 

Elastic modulus 
(GPa) 

Poisson's 
ratio 

Shear modulus 
(GPa) 

Density 
(kg/m3) 

Layers 1 & 3 0.41 

6.35 

68.95 0.33 25.92 2768 

Layer 2 0 0 Gxy=0 Gzx =0.0517 Gyz =0.1345 121.8 
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effect the introduction of a particular depth of 
honeycomb core will have on the natural fre- 
quencies of this panel. 

Figure 2 shows the first six elastic frequencies 
(the rigid-body modes are not included in this 
numbering scheme) in cycles per second, 
plotted as a (continuous) function of a. What is 
immediately apparent is the rise in frequency in 
all six modes as the percentage depth of the 
core increases. This is due to the relative 
increase in the flexural stiffness of the plate 
caused by the increasing depth of sandwich 
core. To quantify this, if it was desired to raise 
the fundamental frequency of the original solid 
plate (25.8 Hz) without increasing the structural 
mass, it would be germane to replace the solid 
plate by a sandwich panel — the fundamental 
frequency could be doubled by making the 
thickness of both face plates 2.4 mm and the 

core depth 3.2 mm (corresponding to a = 0.4), 
or increased 10-fold by making the thickness of 
both face plates 1.6 mm and the core depth 
38.2 mm (corresponding to a = 0.92). Similar 
improvements can be obtained for the higher 
modes, with greater frequency rises being 
obtained for greater core depth fractions. 
Clearly, there is some scope here to 'design out' 
unwanted resonances, knowing the operating 
environment of the panel. This example clearly 
shows the reason why sandwich construction is 
so highly favoured by the aerospace industry 
when dealing with weight-critical applications. 
(Note that the current model cannot be relied 
on to produce accurate results as a->l because 
certain assumptions no longer remain valid.) 

Example (2): Consider the T-planform, canti- 
levered, honeycomb sandwich plate shown in 
Fig. 3. The top and bottom face plates are of 

Table 2b. Convergence properties of the current h-p method. Simply supported honeycomb sandwich panel after [9]. 
Material properties are given in Table 2a 

Current h-p version 
h=\ 

Current h-p version 
h=A 

Current h-p version 
h=9 

m 

p=2 

120 
DOF 

/l=23.30 

/2=44.98 

/3=73.52 

/4=89.12 

/5=93.53 

f6= 133.72 

p=l 

248 
DOF 

/i=23.18 

/2=44.27 

/3=71.59 

/4=80.43 

/5=91.64 

/6=125.95 

p=0 

260 
DOF 

/l=23.20 

/2=44.37 

/3=71.80 

/4=83.56 

/5=91.94 

/6=128.26 

[9] 
SFPM 

[23] 
Exact 

[23] 
Experiment 

23.29 23 — 

44.47 44 45 

71.15 71 69 

78.78 80 78 

91.57 91 92 

125.10 126 125 

p=& 

588 
DOF 

/l=23.11 

/2=44.01 

/3=71.14 

/4=78.54 

/5=91.03 

/6=124.15 

p=3 

608 
DOF 

/i=23.10 

/2=44.02 

/3=71.15 

/4=78.60 

/5=91.06 

/6=124.22 

P=2 

608 
DOF 

/l=23.09 

/2=43.98 

/3=71.12 

/4=78.52 

/5=91.00 

/e=124.09 

p=12 

1100 
DOF 

/l=23.07 

/2=43.94 

/3=71.08 

/4=78.42 

/5=90.90 

p=5 

1128 
DOF 

/l=23.07 

/2=43.94 

/3=71.09 

/4=78.43 

/5=90.91 

p=4 

1844 
DOF 

/j=23.05 

/2=43.91 

/3=71.06 

/4=78.37 

/5=90.85 

/6=123.92 /6=123.93 /6=123.82 
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Fig. 2. Parameter study to examine the effect on the first 
six natural frequencies of a completely free rectangular 
panel by increasing the sandwich core depth as a fraction, 
a, of its total thickness, whilst maintaining a constant 

mass. 

thickness 2 and 4 mm, respectively, while the 
core depth is 30 mm. To determine the first six 
natural frequencies and modes of this structure 
represents a significantly more challenging 
problem than has hitherto been reported, and 
indeed was chosen to demonstrate the general 
efficacy of the current technique. An h-p model 
was constructed using just four ^-elements 
(denoted by the dashed lines in Fig. 3), each 
boosted to p = 8, since experience indicated 
that this level of refinement should produce 
fully converged frequency results for the low 
frequency modes. The total number of DOF 
used in this model was 2460. 

In order to provide some measure of valida- 
tion and confidence in the h-p results, a 
detailed model of this panel was also con- 
structed using the proprietary finite element 
package ANSYS [24]. The face plates and core 

Fig. 3. Schematic of a T-planform, asymmetric section, 
cantilevered, sandwich panel. 

were modelled individually from quadrilateral 
brick elements, each having eight nodes with 
three DOF per node, giving each 'sandwich' 
element a total of 48 DOF. Some 256 elements 
(3460 DOF) were necessary to obtain con- 
verged results for the panel. 

Results from both methodologies are shown 
in Fig. 4. Outstanding agreement is obtained 
across all six modes, with less than 1% differ- 
ence being observed between the h-p- and 
ANSYS results. Perhaps of greater significance, 
however, is the fact that the h-p results were 
obtained using some 30% fewer DOF than the 
ANSYS model. The benefit of such savings, 
when translated into reduced computational 
costs, could become important when modelling 
sandwich-type structures significantly more 
complicated than the example presented here. 

CONCLUSIONS 

A detailed formulation of an h-p sandwich 
panel finite element, based on a novel set of 
trigonometric assumed displacement functions, 
has been presented in this paper. The converg- 
ence properties of this element have been 
established for different combinations of the h- 
and /»-parameters, thereby assuring its integrity 
for more general use. To illustrate the efficacy 
of the method, two new sets of results have 
been added to the literature: (i) a detailed 
parameter study that examined the effect on the 
natural frequencies of a completely free panel 
by increasing the core depth as a percentage of 
its total thickness, while maintaining a constant 
mass, and (ii) the determination of the first six 
natural frequencies and modes for a T-plan- 
form, asymmetric section, cantilevered, 
honeycomb sandwich plate. These studies have 
shown, amongst other things, that the h-p for- 
mulation offers considerable savings on the final 
size of matrix-eigenvalue problem when com- 
pared with conventional finite element-type 
analyses. This feature could usefully be 
employed should typical parameter studies, or 
repetitive calculations arising from an optimiza- 
tion algorithm, be required at the design stage. 
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Free vibration and flutter of damaged 
composite panels 
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A finite element method is investigated for studying the free vibration and 
supersonic flutter analysis of arbitrary damaged composite panels. The 
finite element method employs a 48 degrees of freedom (DOF) general 
plate element and uses the classical lamination theory, microstructural 
continuum damage theory and linearized piston theory. Two different 
damage models were investigated. Finite element results are obtained to 
illustrate the effect of damage on the eigenvalues and flutter boundaries. 
The results obtained indicate that between the two models considered, 
damage model 1 has a strong influence on both free vibration and flutter 
boundaries. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Composite materials are being used in aero- 
space engineering applications to minimize 
weight and increase stiffness by tailoring the 
structures, and also to meet performance 
requirements. Composite structures develop 
damage in the form of matrix cracks, delamina- 
tion, fiber-matrix debond and fiber breakage 
due to the manufacturing process or fatigue 
loading during service. It is important to study 
the flutter behavior of such damaged panels due 
to the complex interaction of aerodynamic, 
inertial and structural forces. Flutter takes place 
at a critical air speed and it is important to 
capture this accurately for damaged panel con- 
figurations otherwise it might lead to 
catastrophic failures. 

Several authors have investigated the flutter 
behavior of undamaged panels, see for example, 
Refs [1-3], among others. The flutter behavior 
of composite plates and shells was recently 
studied by Pidaparti and Yang [4] and Liaw and 
Sun [5] using general plate and shell finite ele- 
ments. Mei [6] studied non-linear and 
temperature effects on the panel flutter. Chen 
and Lin [7] studied the supersonic flutter behav- 
ior of isotropic thin cracked panels using the 
hybrid finite element method. Lin et al.  [8] 

studied the panel flutter problems of thin plate- 
like composite panels with patched cracks using 
a finite element method. Recently, Strganac et 
al., in a series of papers, investigated the aeroe- 
lastic behavior of damaged composite plate and 
beam structures [9-11]. In their studies results 
are presented for aeroelastic systems with 
examples of evolving microstructural damage. 
They concluded that the development of appro- 
priate damage models is important as the 
change in stress field affects the accumulation 
of damage and the resulting aeroelastic stability 
boundaries. 

It appears plausible to explore the influence 
of different damaged-material models to study 
the aeroelastic behavior of aging/damaged air- 
craft structural components. This paper 
presents an investigation of damaged composite 
panels under supersonic flow using the recently 
developed general plate finite element [4]. Two 
different damage models were investigated. The 
present formulation and computer program 
were validated by solving examples of a no- 
damage case for which alternative solutions are 
available. To illustrate the effect of different 
damage models, the example of a symmetrically 
laminated composite plate was studied and the 
free vibration and flutter results are presented 
and discussed. 
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FINITE ELEMENT ANALYSIS 

A general quadrilateral plate finite element [4] 
is extended to include the different damaged- 
material models for composite materials. The 
finite element was formulated based on the 
classical lamination theory and linearized piston 
theory for the flutter analysis of laminated com- 
posite panels. The general plate finite element 
is quadrilateral in shape and has four nodal 
points each with 12 DOFs. 

The laminated anisotropic behavior was 
included using the classical lamination theory. 
The plate is assumed to be made of an arbitrary 
number of layers. Each layer is assumed to be 
orthotropic with its principal material axes at an 
angle to the local coordinate axes. The stress- 
strain relation for each layer is transformed to 
the reference coordinate system. The stress and 
moment resultants are then related to the 
middle surface strains and the change of curva- 
tures. Details of the element developments are 
available in Ref. [4]. 

The derivation of the aeroelastic equations 
was obtained using Hamilton's principle. The 
aeroelastic system of equations results in an 
eigenvalue problem corresponding to a value of 
the aerodynamic pressure parameter. The 
aeroelastic system of equations for a panel 
under the influence of stiffness, inertia and 
aerodynamic forces may be written in the 
matrix form as 

{[K]+ß[A]-X[M]}{q} = {0} (1) 
where ß is the aerodynamic parameter, and X is 
the eigenvalue of the panel. In eqn (1), the 
stiffness matrix is [K\, mass matrix is [M] and 
the aerodynamic matrix is [4]. When ß = 0, the 
eigenvalues are real, positive and definite, giv- 
ing the free vibration characteristics. If the 
aerodynamic damping factor is neglected, the 
flutter boundary is obtained when the two rela- 
tive lowest eigenvalues coalesce at a critical 
value of the aerodynamic parameter. The criti- 
cal values of the flutter boundaries are the 
eigenvalue and the aerodynamic pressure 
parameter. 

DAMAGED-MATERIAL MODELS 

Two different types of damaged-material 
models were investigated in this study. Both 
damaged-material models follow the continuum 

damage mechanics theory with an internal state 
variable to describe the state of damage in the 
material. It is assumed that damage is at the ply 
level and the properties are changed as a result 
of damage present in that lamina. The damage 
parameter is related to the density of micro- 
cracks present in the composite material in a 
particular direction. 

The stress-strain relationship for a damaged 
laminate is described in terms of the constitu- 
tive properties for each lamina in the principal 
material directions. The details of each material 
model are described below. 

Model 1 

The elastic stiffness reduction in each lamina in 
the two orthogonal directions is a function of 
damaged areas through a damage parameter 
(a,) in those two directions. The damaged 
orthotropic lamina's elastic properties in the 
principal material direction are defined in terms 
of undamaged elastic properties [12] as 

(2) Ed = Ei(l-af 

Gd-G..  t1-»')2*1-»/ 
(l-a,)2+(l-a,)2 

vd- = v- 
a-«,-) 

(3) 

(4) 

where the material properties with superscript d 
are the damaged material properties, while 
those properties without superscript are the 
undamaged properties. The subscripts / or ;' = 1 
and 2 denote the principal material directions 
of the composite plate. 

Model 2 

A different damage parameter (£) introduced 
by Talreja [13] was used in the present study. 
This damage parameter describes the density of 
damage at the ply level. The constitutive 
properties of the damaged orthotropic lamina 
in the principal material direction are defined in 
terms of undamaged lamina elastic properties 
as 

Ed = El+2ac3+C8(v12)2-Cl6vl2] (5) 

Ed
2=E2+2aC8+C3(v2l)

2-Cl6v2l] (6) 

vd2 = vl2+m-v12v2l)/E2](Cl6-2C8vl2)       (7) 
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G12-Gl2+2ä,Cl3 (8) 

The terms C3, C8, C13, and C16 in the above 
equations are experimentally derived material 
constants [13]. 

Given the undamaged lamina properties and 
the damage parameter, the damaged lamina 
properties can be estimated by using eqns 
(2)-(4) and eqns (5)-(8). These damaged lam- 
ina properties were used in the finite element 
simulation to estimate the damaged stiffness of 
the composite plate due to microdamage. 

RESULTS AND DISCUSSION 

A computer program was developed to include 
the different damaged-material models into the 
finite element formulation for supersonic flutter 
analysis of damaged composite panels. Finite 
element simulations were carried out to find the 
results of eigenvalues and flutter bounds. 
Results were obtained for an example of a 
[0/90]s laminated graphite-epoxy (AS4/3502) 
composite square plate with simply-supported 
boundary conditions. Each lamina is assumed to 
be 0.00544 in. thick. 

The material properties used for undamaged 
and damaged composite plates are taken from 
Refs [2-8,11] as follows 

Ex = 19.8 Mpsi 
E2 = 1.45 Mpsi 
G12 = 0.7 Mpsi 
v12 = 0.3 
C3= -0.627 Mpsi 
C8= -0.329 Mpsi 
C16= -0.564 Mpsi 
C13 = 0 (due to symmetry of laminate) and 
p = 1.4488 xl0~4 lb s2/in4. 

The results of the aerodynamic pressure para- 
meter (ß) and the eigenvalues for various values 
of damage parameter (a for material model 1 
and l for material model 2) corresponding to 
flutter conditions are obtained and presented 
for the [0/90]s laminated composite square 
plate. 

The first two eigenvalues as a function of the 
damage parameter for the two damaged- 
material models (1 and 2) are shown in Fig. 1. 
It can be seen that as the damage parameter 
increases, the eigenvalues decrease. Damaged- 
material model 1 predicts lower eigenvalues as 
compared to damaged-material model 2. The 

0.0 0.2 0.4 0.6 

Damage Parameter 

Fig. 1. Eigenvalues as a function of the damage parameter 
for the two material models considered in this study. 

difference between eigenvalues for two 
damaged-material models increases as the 
damage parameter is increased. For example, at 
a damage parameter of 0.4, there is a difference 
of 13.5% and 18.4% for modes 1 and 2, respec- 
tively. 

Figures 2 and 3 show the coalescence of the 
first four eigenvalues as a function of aero- 
dynamic parameter (ß) for the case of a 
damaged composite plate (0.2) for material 
models 1 and 2, respectively. It can be seen 
from both the figures that flutter occurs by 
coalescence of modes 1 and 2. However, 
material model 1 predicts a lower value for the 
critical dynamic pressure as compared to 
material model 2. The relationship between the 
aerodynamic parameter and the damage para- 
meter for both material models is shown in 
Fig. 4. It can be seen from Fig. 4 that for the 
same value of the damage parameter, model 1 
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Fig. 2. Coalescence of eigenvalues as a function of the 
aerodynamic parameter for the damaged composite plate 

(a = 0.2) using material model 1. 
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2000 

Beta 

Fig. 3. Coalescence of eigenvalues as a function of the 
aerodynamic parameter for the damaged composite plate 

(£ = 0.2) using material model 2. 

predicts a lower value for the critical dynamic 
pressure as compared to material model 2. 

Figure 5 shows the comparison of eigenvalue 
coalescence for the damaged composite plate 
(0.4) using the two different material models 
considered in this study. It can be seen that the 
critical flutter dynamic pressure for the 
damaged composite plate decreases around 
22.6% and 3.5% for the material models 1 and 
2, respectively, as compared to the no-damage 
case. It is evident that damage decreases the 
critical nutter dynamic pressure by different 
amounts. The results presented in Figs 1-5 illu- 
strate the effects of two different 
damaged-material models on eigenvalues and 
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Fig. 4. Relationship between the damage parameter and 
the aerodynamic parameter for the two material models 

considered. 
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Fig. 5. Comparison of the eigenvalue coalescence between 
the damaged and undamaged composite plate with the 

two different material models considered in this study. 

flutter bounds. The present approach can be 
easily extended for parametric studies of various 
parameters affecting the damage in the compo- 
site plates. 

CONCLUDING REMARKS 

Free vibration and supersonic flutter analysis of 
selected laminated composite damaged panels is 
investigated. The finite element method 
employs a 48 DOF general plate element and 
uses the classical lamination theory, microstruc- 
tural continuum damage theory and linearized 
piston theory. Numerical results are obtained 
for a [0/90] symmetrically laminated composite 
plate using two different damaged-material 
models. 

Amongst the damaged-material models con- 
sidered in this study, model 1 predicts lower 
values for eigenvalues and flutter bounds as 
compared to model 2. The limited results pre- 
sented indicate that the damage parameter has 
a strong influence on both free vibration and 
flutter boundaries. Currently, results are being 
obtained to study the influence of various 
damage parameters on the flutter bounds for 
various composite panels. 
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The study of the binder removal processes for injection moulded ceramic 
composite compacts was studied with the aid of a thermogravimetric 
analyser. It has been observed that a number of factors, such as the heating 
rate, the heating environment and the heating profile have an effect on the 
rate of binder removal. The matrix of the composite was alumina and the 
reinforcement was silicon carbide whiskers. It was confirmed that the 
presence of silicon carbide whiskers in the injection moulded compacts 
provided additional oxygen diffusion paths to enhance oxidative 
degradation. It was also found that the heating profile used for binder 
removal had a strong influence on the formation of internal cracks in the 
moulded components. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

There are many shape-forming processes for 
ceramic materials but most of them involve 
powder compacting. One of these techniques is 
injection moulding which has the ability of mass 
production with high dimensional accuracy 
[1-4]. As ceramic injection moulding provides 
many manufacturing advantages, it seems that 
this technology can be extended to ceramic 
matrix composite materials [5-8]. The steps 
involved in the ceramic shape-forming by injec- 
tion moulding include the following: 

(a) selecting a ceramic powder for the process; 
(b) mixing the powder with a suitable binder; 
(c) producing homogeneous granular pellets of 

mixed powder and binder; 
(d) injection mould the pellets to form  the 

component; 
(e) remove the binder from the formed part 

(debinding); 
(f) densifying the debinded compact by a high 

temperature sintering process. 

Most investigators in Refs [3,4,9,10] agreed 
that the incidence of defects in a ceramic 
moulding after binder removal is closely related 

to the rate of weight loss of the polymeric 
binder during decomposition. For pyrolytic 
removal of the polymeric binder from the 
ceramic injection moulding, the thermogravi- 
metric behaviour may be influenced by the 
heating rate, ambient environment, sample size, 
heating profile, etc. [10-13]. 

In our earlier investigation on the injection 
moulding of alumina/silicon carbide whisker 
(Al203/SiCw) composites [14], we have derived 
a suitable binder for the ceramic composite. In 
this paper, we shall report on the investigation 
of the binder removal behaviour for the injec- 
tion moulding compacts (IMC) of Al203/SiCw 

composites. 

EXPERIMENTAL DETAILS 

Alumina powder (Grade A152, Alcoa Chem- 
icals Ltd.) and SiCw (Grade SCW-1, Tateho 
Chemical Industries) were selected as matrix 
and reinforcement materials, respectively, in 
this investigation. The polymeric binder system 
consists of 

(a) polystyrene (Grade 25, Kaofu Chemical) as 
the major binder, 
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(b) stearic   acid   (Riedel-deHaen   Laboratory 
Chemicals), and 

(c) a lubricant (N34, Eastman Chemical). 

The selection of N34 as the lubricant was based 
on results of our earlier investigation [14]. 

The compounding of the alumina/SiCw/binder 
systems was the same as described earlier [14]. 
Basically, compounding was done using a 
Brabender counter-rotation twin-screw com- 
pounder. Alumina/whisker/binder (A/W/B) 
blends with different weight compositions were 
compounded. Their designation and composi- 
tion used in this work are given in Table 1. The 
compounded blends were pelletized and injec- 
tion moulded into rectangular bars as described 
earlier [14], and were referred to as IMC. 

The main emphasis of this work is to study 
the thermal decomposition behaviour of the 
IMC. Thermogravimetric analysis was carried 
out using a Seiko TG/DTA 220 Thermal Analy- 
sis System. Samples of approximately 10 mg in 
weight were cut from the IMCs and were used 
for measurements. 

RESULTS AND DISCUSSION 

Thermograms for the binder constituents 

In order to study the decomposition behaviour 
of the binder constituents, thermogravimetric 
analysis was carried out at a heating rate of 
10°C/min and under static air environment. 
Figure 1 shows the thermograms for the stearic 
acid, polystyrene and N34. For the stearic acid 
used, its decomposition started at about 200°C, 
followed by a rigorous weight loss to nearly 
0 wt% at about 300°C. For polystyrene, decom- 
position started at about 300°C and ended at 
about 425°C. For the N34 lubricant, decomposi- 
tion started at about 300°C; 65wt% of the 
lubricant was rapidly lost within a temperature 
range of 75°C. The remaining 35 wt% decom- 
posed gently to completion at about 550°C. 

Knowledge of the thermogram for the binder 
constituents will allow us to predict the decom- 
position behaviour of the binder in the IMCs. 
Figure 2 compares the experimental thermo- 
gram for an A152 IMC with a rule-of-mixture 
prediction of the following form: 

WC(T) = WPS(T) x mPS+WSA(T) 

xMSA + Wlub(T)xmlub (1) 

where WC(T) is the total weight of the polymeric 
binder remaining in the IMC at temperature T; 
WPS(T), WSA(T), and WXuh(T) are the weight of 
polystyrene, stearic acid, and lubricant, respec- 
tively, remaining in the IMC at temperature T; 
and mPS, mSA, and mlub are the wt% of poly- 
styrene, stearic acid, and lubricant, respectively, 
in the binder system before binder removal. 

In the current study, the values of mPS, mSA, 
and m,ub are equal to 0.67, 0.11 and 0.22, 
respectively. It can be seen from Fig. 2 that eqn 
(1) gives a prediction to the decomposition of 
the binder system in the IMC with acceptable 
accuracy. 

Effects of whisker content 

Figure 3 shows the thermograms of the IMCs 
with various whisker contents. All the thermo- 
grams were obtained at a heating rate of 
10°C/min and in a static air environment. The 
thermograms showed that they had the same 
initial binder decomposition temperature and 
nearly the same final decomposition tempera- 
ture. These curves mainly differ in the starting 
temperature (Ts) at which the most rapid rate of 
weight loss occurred. Ts can be determined by 
plotting the rate of change of the thermograms 
against temperature (DTG). The DTG curves 
are shown in Fig. 4. Close inspection showed 
that Al 52 had the highest Ts value whereas 
samples containing SiCw (i.e. 5SC, 15SC and 
30SC as described in Table 1) had lower Ts 

values in comparison. 
Generally, both thermal and oxidation degra- 

dation can occur if a polymer is heated under 

Table 1. Weight composition of the ceramic/binder blends 
Ceramic/binder A152 5SC 
blend (wt%) 

Alumina 85 81.6 
SiC whisker 0 3.4 (5 vol%) 
Polystyrene 10 10 
Stearic acid 1.7 1.7 
Lubricant 3.3 3.3 

15SC 30SC 

74.5 
10.5 (15 vol%) 

10 
1.7 
3.3 

63.3 
21.7 (30 vol%) 

10 
1.7 
3.3 
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Fig. 1. Thermogravimetric curve of individual polymeric 
binder system constituents. 
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Fig. 2. Thermogravimetric curve  of alumina injection 
moulding. 
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Fig. 3. Thermogravimetric curves of alumina injection 
moulding in static air. 

an oxidizing atmosphere such as static air. Ther- 
mal degradation is the process at which long 
molecular chains are broken into shorter mole- 
cular chains when they acquire sufficient activa- 
tion energy. It is therefore temperature 
controlled and is a bulk reaction process. For 
oxidation degradation of polymers, this occurs 
under an oxidizing atmosphere. Therefore the 
rate of weight loss of polymers through oxida- 
tion degradation is controlled by the diffusion 
rate of oxygen into the bulk sample. 

The incorporation of SiCw increases internal 
porosity throughout the IMC during compac- 
tion [1,10]. The increase in internal porosity 
provides more diffusion paths for the oxygen to 
diffuse into the core of the bulk sample and 
consequently enhance the weight loss of the 
binder system due to oxidation degradation. 
This explains the increasing shift of the thermo- 
grams to lower temperatures when a sample 
contains more and more SiCw (see Fig. 3). 

In order to show that the difference of the 
thermograms between the samples with and 
without SiCw is due to the presence of more 
oxygen diffusion paths, TGA measurements 
were also taken for the IMCs in a non-oxidizing 
(N2) environment at a heating rate of 10°C/min. 
The measured thermograms are shown in 
Fig. 5. It is noted that the thermograms nearly 
overlap each other and this shows that the 
excess oxygen diffusion paths for the SiCw are 
no longer functional in a non-oxidizing environ- 
ment. Thus it proved that the shifting of the 
thermograms of the samples with SiCw is due to 
the presence of more oxygen diffusion paths in 
air than a non-oxidizing environment. 

Effect of heating rate 

Figure 6 shows the thermograms for A152 
under five heating rates. It can be seen that the 

200 250 450 500 300 350 400 

Temperature (deg C) 

Fig. 4. DTG behaviour of alumina injection moulding in 
static air. 

150     200     250     300     350     400     450     500     550 

Temperature (deg C) 

Fig. 5. Thermogravimetric curves of alumina injection 
moulding in flowing nitrogen gas. 
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Fig. 6. Thermogravimetric curves of alumina injection 
moulding under various heating rates. 

thermogram is shifted more to the left of the 
temperature axis with decreasing heating rate. 
Similar results can also be found in the IMCs 
containing SiCw (see Fig. 7). The observation is 
consistent with the results obtained by Shukla 
and Hill [10]. 

Effect of heating profile on binder removal 

Thermogravimetric measurements on the 
binder removal behaviour of the A152 IMC 
were conducted at three different heating pro- 
files. The three profiles used are shown 
schematically in Fig.  8. Heating profile A is 

■a 
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Fig. 7. Thermogravimetric curves of alumina injection 
moulding with 30 vol% SiC whisker under various heating 

rates. 
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Fig. 9. Binder weight loss of alumina moulding against 
time using various heating profiles. 

monotonous increasing from 25 to 500°C at a 
heating rate of 5°C per hour. For heating pro- 
file B, the starting temperature, ending 
temperature and heating rate were the same as 
profile A but there exist two steps at 200 and 
350°C and the holding time for each step was 24 
hours. Heating profile C was similar to that of 
profile B but it possessed more steps and the 
holding time for each step was 5 h. 

Figure 9 shows the variation of binder residue 
with time in the A152 IMC using heating pro- 
files A, B and C. It can be seen that profile B 
provides a much more gentle decrease than 
profiles A and C. Between profiles A and C, 
profile C had a more gentle overall decrease 
than profile A. It is believed that the incidence 
of defects or cracks in IMC during binder 
removal is closely related to the rate of weight 
loss of the binder [3,4,9,10]. Therefore, a 
steady rate of weight loss over a wide tempera- 
ture range is more preferable than a sudden 
decomposition. As a result, both heating pro- 
files B and C are preferred to profile A because 
they can provide smaller rate of weight loss 
over the temperature range. 

Figure 10 shows the optical micrograph of a 
sample of the A152 IMC after binder removal 
using heating profile A. Cracks were clearly 
observed. However, cracks were not observed in 
similar samples when binder removal was con- 
ducted using profiles B or C. 

CONCLUSIONS 

An Al203/SiCw composite manufactured by 
injection moulding method was studied. In par- 
ticular, the binder removal processes for 
ceramic composite compacts with various SiCw 

contents were studied with the aid of a thermo- 
gravimetric   analyser.    The   rate    of   binder 
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Fig. 10. Optical micrograph of the longitudinal section of 
IMC after binder removal using heating profile A. 

removal was found to depend on a number of 
factors, such as the heating rate, the heating 
environment and the heating profile. The 
present investigation also confirmed that the 
presence of silicon carbide whiskers in the injec- 
tion moulded compacts provided additional 
oxygen diffusion paths to enhance oxidative 
degradation. Experiments with various heating 
profiles for binder removal showed that a steady 
rate of weight loss over a wide temperature 
range was more preferable than a sudden 
decomposition. 
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Transverse shear effects in discrete 
optimization of laminated compressed 

cylindrical shells 

A. Muc 
Institute of Mechanics and Machine Design, Cracow University of Technology, Warszawska 24,31-155 Krakow, Poland 

This paper presents optimization problems of cylindrical shells subjected to 
buckling and ply failure constraints. The objective is to maximize failure 
load. The layers are assumed to be oriented at 0°, 90° and ±45°, so that the 
locations of plies in the laminate (3^ variables) are design variables. The 
aim of the present work is to discuss the influence of various formulations 
of governing equations on optimal solutions including the effects of 
transverse shear deformations and to present the use of different variants 
of genetic algorithms, i.e. different selection, mutation and crossing. A 
series of numerical examples illustrates the discussed problem. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

In mechanical, aerospace and other branches of 
engineering composite materials are increas- 
ingly used due to their excellent weight saving 
and the ease of tailoring. In spite of tremendous 
progress in the analytical capability to analyse 
the behaviour of composite materials and struc- 
tures there is a lack of design models which may 
allow efficient and, on the other hand, suffi- 
ciently accurate tailoring of their specific 
(anisotropic) properties to specific requirements 
for structural components. Therefore, the opti- 
mum design of composite structures has been a 
subject of research for many years. However, in 
order to deal with the optimization problems of 
laminated composite thin-walled structures in 
the structural design problems the following 
problems should initially be correctly formu- 
lated and established: 

1. structural model in view of assumptions and 
hypotheses valid for the analysed type of 
governing 2-D equations; 

2. optimization model in the sense of FE or 
other modelling of design structures; 

3. optimization algorithms; 

It should be emphasized that the majority of the 
optimization problems have been solved with 
the use of the classical Love-Kirchhoff (L-K) 
equations. On the other hand, it is well-known 
that the higher-ordered shell or plate theories 
should be employed in the analysis in view of 
the consistency and the correctness of theoreti- 
cal results with experimental investigations. The 
classical theory fails to predict accurately the 
static and dynamic response when the structures 
in question are even moderately thick and/or 
when they exhibit high anisotropy ratio. 

In their review paper, Noor and Burton [1] 
cited only three references [2-4] devoted to the 
buckling analysis of laminated cylindrical shells 
with the use of relationships taking into account 
the effects of transverse shear deformations. In 
general, as demonstrated, for example, by Sol- 
datos [5] for cylindrical composite shells sub- 
jected to buckling constraints, the use of high- 
er ordered shell theories results in a decrease of 
buckling loads in comparison to those obtained 
with the use of the L-K relations. 

The goal of the present paper is two-fold: 

• to present the influence of the governing 2-D 
shell relationships on optimal failure loads 
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(understood in the sense of buckling and/or 
first-ply-failure (FPF) loads) and optimal 
shell configurations (laminate topologies); 

• to apply and analyse the effectiveness of a 
powerful solution technique, based on 
various versions of genetic algorithms. 

The shell theory developed in this paper is 
based on the first order transverse shear defor- 
mation theory (FSDT), but with the use of two 
types of geometrical relationships referring to 
shallow and deep shell theories. 

The optimum design of laminated cylindrical 
shells subjected to buckling and/or FPF con- 
straints have been addressed by numerous 
investigators, but only with the L-K governing 
equations. They have shown that the laminate 
configurations have great influence on the buck- 
ling loads. Tasi et al. [6] have analysed the 
stability of composite shells composed of three 
layers. Hirano [7] has investigated the buckling 
load of angle-ply laminated shells. Uemura and 
Kasuya [8] have studied the coupling effects in 
buckling and optimization of cylinders. Onoda 
[9] has found that the optimal stacking 
sequence corresponds to the quasi-isotropic dis- 
tributions of an infinite number of infinitely thin 
layers. Narusberg and Teters [10] have formu- 
lated and discussed various optimization 
problems for laminated cylinders. 

equal to t. The shell is constructed of an arbi- 
trary number N of orthotropic layers of 
thickness t/N. The laminate is assumed to be 
symmetric, balanced and made of 0°2, 90°2, 
+ 45° plies, each of thickness 2t/N. As a result 
only N/4 ply orientations are required to 
describe the laminate configuration. The strains 
in the z direction are assumed to be related to 
the midsurface strains and the curvature 
changes as follows, including the effects of 
transverse shear deformations 

£xz~     .   £x 

£j,v—       £J (1) 

where 

C = 
1    du 

R   dx 

1  /   9v      du 
0     R \ dx     d(j) 

GOVERNING RELATIONS 

Let us consider the simply-supported cylindrical 
shell having a circular cross-section and loaded 
in the x direction by an axial compressive force 
P (see Fig. 1). The shell is assumed to be com- 
posed of anisotropic layers made of uni- 
directional plies whose material properties are 
identical. The total thickness of the shell is 

Cz = 7i+ 
1    9w 

R   dx 

1 / 8w 

* R\ 60    ~/ 

i  e7l 
K   = 

Kj, — 

R    dx 

R   80 

Fig. 1. Shell geometry. 

1  /  8?!      dy2 
Kxd> =              +   0     R I   80      dx (2) 
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Both x and 0 are dimensionless quantities. The 
above kinematic relationships are supplemented 
by the equilibrium equations in the following 
form 

= 0   Q^+Q^+Nf-RPw^ 

= 0 Mx,x+Mx^-RQi3 

where a comma after the symbols denotes dif- 
ferentiation with respect to x or 0 variables. 
Using the classical lamination theory one can 
build the constitutive relationships in the 
appriopriate form for laminated cylinders. 

In eqns (2) and (3), if we neglect the under- 
lined terms these would be the relationships for 
shallow cylindrical shells — the so-called Don- 
nel-Vlasov shallow shell theory. On the other 
hand, starting with the general eqns (2) and (3), 
the assumption of no transverse shear deforma- 
tions results in the following expressions for the 
rotations 

7i = 
1   dw 

R   dx 
72 = 

dw 

90 
— v (4) 

Thus, eqns (2) and (3) describe four variants 
of the governing equations for cylindrical shells, 
i.e. the relationships for deep or shallow shells 
including (or not) the effects of transverse shear 
deformations. The general formulation allows 
us to analyse and compare their influence on 
optimal stacking sequences and/or on values of 
optimal buckling loads. 

BUCKLING ANALYSIS 

In this paper, the axial compressive buckling 
force P is estimated by the Rayleigh-Ritz 
method. Assuming the classical form of buck- 
ling mode for displacements u, v, w and angles 
of rotation yl5 y2 from the eqns (2) and (3) and 
from the constitutive relationships we finally 
arrive at an eigenvalue problem defined by the 
vanishing of the five by five determinant 

det Krs = 0, r, s=\, 2, ..., 5 

whose elements are given by 

Ku = Ana2+A66n2 

Kl2 = cm(Al2+A66) 

(5) 

Kls = xAl2 

A 22 = a A66+n A22
JrAA4 

K25 = n(A22+A44) 

K33 = (oc2Dn+n2D66)/R
2+A44 

K34 = oin(D12+D66)/R
2 

= 0   M^+MX^X-RQ23 = Q       (3) K35 = *A. 44 

(6) 

K44 = (oc2D66+n2D22)/R
2+A44 

Ä45 = wA44 

Ä-55 = (a2+n2)A44+A22 - Ra2Pb 

The symbol Pb denotes the buckling axial load. 
In the symmetric matrix K„, the rest of ele- 
ments equal zero. The parameter oc = mTlR/L, 
whereas m and n are wavenumbers in buckling 
in the x and <f> directions, respectively. The 
above relationships are valid for deep cylindri- 
cal shells including transverse shear 
deformations. Using eqn (4) one can derive the 
relationships for deep cylinders described with 
the use of the Love-Kirchhoff hypothesis. Neg- 
lecting the underlined terms one can obtain the 
similar to the above relationships for the Don- 
nell-Vlasov shallow five- (or three- L-K) 
parametric shell theories. It should be noted 
that the introduced deformation modes identi- 
cally satisfy simply supported boundary condi- 
tions. However, the simply supported boundary 
conditions only can be satisfied rigorously if 

Ai6 = Bi6=Di6 = 0,i = l, 2 (7) 

If these values are not equal to zero (so-called 
special orthotropy) overestimated approximated 
eigenvalues will be obtained (see e.g. Ref. [8]). 
It may be noticed that prebuckled shell defor- 
mations are not taken into account (a 
geometrically linear buckling problem). In addi- 
tion, due to coupling effects arising in the 
buckling analysis it is necessary to equalize the 
A45 term of the stiffness matrix to zero. This 
results in the following equality 

Gi3 = G23 = 0.5G12 (8) 

which has been directly introduced in relation- 
ships (5) and (6). 

To determine the buckling load Pb for the 
cylindrical shell with given dimensions and a 
given material system, one determines those 
integer values of m and n which make Pb a 
minimum. 
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FIRST-PLY-FAILURE 

After a buckling load Pb has been determined, a 
check should be made to see that the final lami- 
nate construction is not overstressed at a load 
below the critical buckling load,because if that 
is the case the cylinder is limited to a load that 
will result in overstressing. Starting with the 
general equations (i.e. eqns (l)-(3)) reduced to 
the axisymmetric prebuckling deformations, 
assuming that there are no transverse shear 
deformations (i.e. eqn (4)) and that the compo- 
site laminate material is symmetric with respect 
to the shell midsurface, [B] = 0 and if there are 
no other coupling terms (eqn (7)), the govern- 
ing equations for the lateral deflection w, and 
the in-plane displacement u become 

d4w 

dx4 ■+4rj4w = Ps 

R3A 12 

AUDU 

du 

dx 
= (RPS+Ai2w)/Al (9) 

where 

4/y4 
R2(A22An-A2

l2) 

AUDU 

(10) 

and Ps denotes the axial load corresponding to 
the first-ply-failure of the shell. 

Assuming the simply-supported boundary 
conditions and the symmetry with respect to 
x = 0, one can find that the solution of the dif- 
ferential eqn (9) can be written as 

w(x) = wp 
coshy cos z+coshz cosy 

cosf^Lj+cosh^L) (11) 

where z = rj(x+L/2), y = r](x-L/2), x e [-L/2, 
L/2] and 

R3A12 
Wn = Ps A P     *\AAUDU 

(12) 

Having the explicit form of the lateral deflec- 
tion w, the laminate strains sx, s^ can be 
calculated in the global coordinate system from 
eqns (1) and (2). Let us note that the strains are 
proportional to the axial load Ps. Then, using 
the classical transformation rules the strains for 

the kth ply in the local coordinate system can be 
calculated 

fcn —bx cos k+E* sin2 0, 

eg^sin^+e^cos2^ 

eiS = (ey-e4,)an(26k) (13) 

where 6k denotes fibre orientation of the kth ply 
and in the present discrete optimization prob- 
lem belongs to the set: [0°2, 90°2, +45°]. 
Comparing each of the above strains with the 
ultimate ones or using the relationships (9) in 
the arbitrary quadratic strain or strength FPF 
criterion (e.g. the Tsai-Wu criterion), finally, 
one can find (with the use of eqns (9)-(13)) the 
value of the Ps parameter corresponding to FPF 
load for the analysed cylindrical shell. 

OPTIMIZATION PROBLEM 

If choices can be made regarding laminate 
topology (i.e. the ply orientation, number of 
plies etc.), then an optimization can be per- 
formed to determine the construction that 
provides the highest failure load, i.e. Ps and/or 
Pb. Having all basic relations one can formulate 
now the optimization problem in the following 
form. Find 

(14) Max   Min  Pb(St; m, n) 
Sj m,n 

subjected to the inequality constraint 

Pb(Si;m,n)<Ps(Si;m,n) (15) 

Ps is the FPF load parameter computed using of 
eqn (14) and an appriopriate FPF criterion, 
whereas S, constitutes a set of 3N/4 locations of 
plies oriented at 0° or 90° or +45° in the lami- 
nate. 

To simplify the optimization problem formu- 
lation, the eqns (14) and (15) have been 
replaced by the equivalent in the following 
form: Find 

Max   Min P 
S, m,r 

\tn,n 
b     ~ 

\m,n\2 rs{pr-p?n) (16) 

The positive variable rs controls the magni- 
tude of the penalty term in the above objective 
function. It is found helpful, and respectful of 
reality, to allow a small tolerance in satisfaction 
of constraints — especially for discrete design 
variables. Tolerances of 0-5% have been used 
in this study. 
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Fig. 2. Contour plot of buckling loads. 

GENETIC ALGORITHMS 

The existence of multiple relative or local 
optima is a characteristic feature of composite 
2-D structures, independently on the type of 
design variables used in the analysis, i.e. contin- 
uous, discrete or integer (see Fig. 2). Let us 
notice that the contour plot shown in Fig. 2 fills 
only a part of the space AX1-DXX since fibres 
can be oriented at 0°, +45° and 90°. Therefore, 
the problem of the relative optima cannot be 
unique to linear programming methods. The 
solution of the problem by the latter methods is 
usually liable to depend on the initial design 
from which the design procedures are started. 
This difficulty can be alleviated by repeating the 
computations from different starting points and 
comparing the solutions until reasonable confi- 
dence is built up that the global optimum has 
been achieved. In the area of the optimization 
of 2-D thinwalled structures two approaches are 
introduced: (1) two-level multi-start optimiza- 
tion algorithms and (2) genetic (probabilistic) 
algorithms. 

Two-level optimization algorithms are par- 
ticularly directed to the analysis of continuous 
design variables, such as fibre orientations Bk 

and layer thicknesses. At the first phase of the 
optimization, the layer thicknesses are kept con- 
stant and the conditional global optimal 
orientations are determined to maximize failure 
loads using a multi-start optimization method. 
At the second level the optimal layer orienta- 
tions are kept unaltered and the conditional 

global optimal thicknesses are designed includ- 
ing also multi-start optimization methods. The 
obvious advantage of genetic techniques over 
the previously discussed algorithms is based on 
probabilistic search method linking both multi- 
start optimization algorithms, the possibility of 
the effective optimization analysis for disjoint or 
nonconvex design spaces and the existence of 
zero-one integer variables simplifying the com- 
puter coding. Mathematical programming 
methods will find the optimum in convex prob- 
lems where a single global optimum exists. 
Genetic algorithms are local search methods 
that belong to the class of stochastic or random 
search algorithms. Although these algorithms 
are randomized, genetic algorithms are not a 
simple random walk in the space of design vari- 
ables. They efficiently incorporate information 
from previous stages to create new search 
points in the design space, resulting in improved 
performance. Genetic algorithms use random 
choice as a tool to guide their search through a 
coding of design variables. However, it should 
be pointed out that the genetic algorithms do 
not prevent re-entry of the search into 
unfavourable regions in the design space. For 
instance, the current maximum fitness will drop 
back a considerable distance after reaching a 
new level and several generations of processing 
may be needed before the algorithm picks up 
again. The above may be stimulated, eliminated 
and accelerated by various factors representa- 
tive of genetic algorithms. Clearly the removal 
of unfavourable regions is of benefit to the opti- 
mization process. However, a space 
condensation may be conducted rather on the 
basis of knowledge concerning the particular 
physical problem. 

There are essentially three basic components 
necessary for the succesful implementation of a 
genetic algorithm. At the outset, there must be 
a code or scheme that allows for a bit string 
representation of possible solutions to the prob- 
lem. In our detailed discrete optimization 
problem described by eqn (16) it is assumed 
that the fibres oriented at 0° are represented as 
1, at +45° as 2, and at 90° as 3. The assumed 
sets of discrete data may possess an arbitrary 
number of values and, for example, the bit 
representing fibre orientations may be a list of 
17 values, e.g. (i-l)x5° (i = 1, ..., 17). How- 
ever, coding of continuous ply-angle variables 
involves always a rounding errors and finally it 
may result in finding of local not global optima. 
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On the other hand, for bits describing continu- 
ous ply variables the effectiveness of genetic 
search algorithms may be completely wrong. 
Next, a suitable objective function must be 
devised, for instance in the form given by eqn 
(16). The final component is the development 
of transformation functions, with the use of ran- 
dom variable generators, that mimic the 
biological evolution process, i.e. recombination 
and mutation. The above three factors may be 
easily adopted to the optimal design strategy for 
2-D thinwalled composite structures. However, 
it should be emphasized that the correctness of 
the genetic search as well as the total number of 
iterations depend on various factors, such as: 
(1) the number of multiple relative and local 
optima, (2) the length of the bit string (equal to 
N/4) — for discrete optimization problems the 
better results can be obtained as N increases, 
(3) the initial population size, (4) the prob- 
ability and number of crossover, (5) the 
probabilty of mutation, (6) the selection rule in 
the recombination process (the design space 
condensation). It is not known in advance how, 
for a particular optimization problem, the opti- 
mal values of the above factors can be selected 
or prescribed. 

Due to the lack of space, we present herein 
some numerical results only, but in our opinion 
they demonstrate some general trends occurring 
in the optimization of 2-D laminated composite 
structures. In general, the numerical experi- 
ments have been designed to study how genetic 
information is carried by populations. Two 
aspects have been analyzed in details, i.e. the 
influence of the selection and crossover opera- 
tions on the genetic search optimization process 
and optimization results. The selection is based 
on the best choice of individuals (according the 
assumed criterion) in an old population that can 
be a future parent and create a new population. 
Referring to Fig. 2, the selection is equivalent 
to the choice of the subspace in the An-Dn 
space such that it contains the global optimum 
— the space condensation. In the selection pro- 
cess individuals having good values of fitness 
may receive a higher weighting than bad. The 
question is how do we identify good values 
during the processing? Or on the other hand, 
how can we create a basis on which the genetic 
algorithm can learn to distinguish between good 
and bad? To illustrate, explain and investigate 
the importance of the selection operations in 
the genetic algorithms four selection methods 

have been proposed and tested herein. They 
have been introduced as the system of updating 
rules (procedures) described below. 

1. The classical roulette random operation. 
2. For the old population the average fitness 

value (f) is determined and then the indivi- 
duals having the fitness values greater than 
e.g. 0.5/ are selected to the new population. 
The rest of the new population is randomly 
generated   among   the   individuals   having 

3. The selection rule is the same as in the pro- 
cedure 2_ but each of the worst individuals 
(i.e. /</) is replaced by the best individual 
in the old population. 

4. In the old population the worst individuals 
are mutated in order to obtain the better 
genetic material. 

Variations of the average fitness values with the 
selection methods are shown in Fig. 3. 

As may be seen, the selection methods 3 and 
4 are the best. Let us show that they represent 
the search procedure where, in the old popula- 
tion, the best individuals only can offer their 
genetic material for new generations. It is worth 
noting that similar results have been obtained 
for different numerical examples studied herein. 
It is worth mentioning here that the same 
results have been obtained in the discrete opti- 
mization of laminated plates (Ref. [11]). Thus, 
it demonstrates evidently that for laminate 
topology optimization some general rules in the 
selection process may exist. As the next 
example, let us consider the influence of the 
crossover on the average of the fitness value 
(Fig. 4). Both mutation and crossover opera- 
tions are handled variable-by-variable so the 
operations are taking place on comparatively 

Fig. 
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3. Influence of selection methods. 
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Fig. 4. Effects of crossover. 

short strings. It has been reported that as the 
mutation probability tends to zero, the effec- 
tiveness of the optimization process increases. 
The identical effects have also been observed 
for laminated plates (Muc et al. [11]). Then, as 
it is decided whether or not the mutation can be 
applied to a string, a second random number 
decides which bit can be mutated. The numeri- 
cal experiments plotted in Fig. 4 prove that the 
value of the crossover probability pc and the 
number of the crosspoints in the string may 
affect the total number of iterations required 
for the convergence of the optimization prob- 
lem. However, it does not prove how can we 
select the best value of pc and the cross sites. 
Further work is necessary to assess this device 
for particular optimization problems. It is obvi- 
ous that a good selection method may 
significantly accelerate an optimal search and 
allows the avoidance of the loss of convergence. 
In our opinion, for laminated composites there 
is only a few representative parameters that 
decide what configuration is optimal or not and 
they are connected directly with the form of an 
objective function. For instance, for compressed 
composite plates in Ref. [12] it has been proved 
that angle-ply orientations are optimal as ply 
orientations are continuous variables. In that 
case, only angle-ply orientations play a role of 
the representative parameter, i.e. they select 
and cut off a set of allowable solutions. As may 
be seen in Figs 3 and 4 the choice of the best 
individuals in populations always gives conver- 
gent solutions since they possess the 
representative genetic material for the optimal 
search. Therefore, the search for the best selec- 
tion method is necessary and it should be 
supported by theoretical considerations of a 

particular optimization problem because as 
numerical results demonstrate, in fact, that 
genetic algorithms are not a completely a ran- 
dom process. 

NUMERICAL EXAMPLES 

A large number of numerical calculations for 
optimization with both buckling and FPF con- 
straints have been carried out with various 
geometrical ratios. In general, it has been found 
that the optimal solutions cannot be determined 
uniquely. That is, there are many sets of opti- 
mal strings which give the identical values of 
the objective function. The optimal point is 
always defined and obtained, not as a function 
of design variables but as a function of the finite 
number of terms defining the stiffness matrix 
for a laminate. Therefore, various combinations 
of design variables may exist that give the iden- 
tical values of the terms in the stiffness matrix. 
The same conclusions have been drawn from 
the analysis of optimization problems for lami- 
nated plates [11]. 

The results presented herein were obtained 
for a graphite-epoxy cylindrical shell having the 
following material properties 

Ex = 212.0 GPa, E2 = 12.72 GPa, 

G12 = 7.42GPa, v12 = l/3, 

£?iax = 0.008, e^ = 0.029, e^" = 0.015 (17) 

Figures 5-7 show the variations of optimal 
dimensionless buckling load parameter Pb/tE2 

versus the variations of the dimensionless length 
parameter   a.   The   effects   in   variations   in 
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Fig. 5. Variations of optimal buckling loads with the 
number of layers — the Donnell-Vlasov shallow shell 

theory. 
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Fig. 6. Influence of the thickness ratio t/R. 

number of layers in the laminate on optimal 
buckling loads is demonstrated in Fig. 5. As was 
expected, upon increasing the number of layers, 
the optimal buckling load increases very rapidly. 
However, for iV>20 (A74 = 5) the values of 
optimal buckling loads are almost insensitive to 
the variations of N, although the optimal string 
varies since the string becomes larger. There- 
fore, in further analysis, the length of the string 
has been limited to 5. On the other hand, the 
values of wave numbers, and in particular the 
value of n, increase with a. Figure 6 give an 
indication of the influence of the thickness ratio 
t/R on the values of optimal critical loads. The 
optimal buckling loads based on the transverse 
shear deformable theory are always lower than 
the corresponding values based on the classical 
(L-K) theory. Due to the relatively small value 
of the thickness ratio t/R, the observed dis- 
crepancies do not exceed 10% (t/R = 0.0033) 
but become larger (even up to 220%) as the 
thickness ratio increases to 0.075 (Fig. 6). The 

difference in values of optimal buckling loads is 
also a function of the a parameter and of the 
employed variant of the shell theory. If the 
parameter a tends to zero (long cylindrical 
shells) the difference in optimal buckling loads 
rapidly increases for shallow and deep formula- 
tion of the optimization and buckling problem. 
This simply gives an indication about the 
validity of the employed kinematic and constitu- 
tive relationships. It should be emphasized that 
the comparative review of variations of buckling 
loads with various parameters deals with the 
optimal loads. Thus, the values of Pb for the 
identical parameters a have been evaluated for 
different (optimal) laminate configurations. As 
may be seen in Table 1, the optimal strings are 
different for various formulations of the shell 
theories. 

Figure 7 gives a comparison of optimal buck- 
ling loads for four variants of the analysed shell 
theories and one value of the thickness ratio t/R 
equal to 0.075. It appears that both transverse 
shear deformations and the shallowness para- 
meters have the opposite effects on the values 
of optimal buckling loads. As the shallowness 
parameter decreases the optimal buckling load 
increases. Thus, investigating the optimization 
problems, researchers should be very careful in 
the choice of the appriopriate variant of the 
shell theory. For the analysed numerical results, 
especially from the point of view of the 
assumed material properties — eqn (17) and 
the low thickness ratio (less than 0.1 being the 
limit of validity of the classical relations for iso- 
tropic 2-D structures), ply failure has not been 
observed, i.e. buckling is a dominant failure 
mode. 
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CONCLUSIONS 

The optimal design of laminated composite 
cylindrical shells is presented. The design goal is 
to the maximize buckling load of the axially 
compressed cylindrical shell. For a certain type 
of simply-supported boundary conditions the 
governing equations have been solved analyt- 
ically and then used in the analysis of buckling 
and FPF for four variants of shell theories. The 
constraints are imposed on lamina failure — 
the governing failure equations have been given 
in the explicit analytical form too. A genetic 
algorithm is presented and applied to the opti- 
mal design. The objective function is formulated 
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Table 1. Comparison of optimal strings for various shell theories (N = 20, t/R - 0.01/3) 

FSDT L-K 

Deep Shallow Deep Shallow 

0.4 
0.6 
0.8 
1.0 

11333 
12113 
11233 
11213 

11112 
11123 
12133 
11213 

11133 
11133 
11123 
11112 

13333 
11333 
11333 
11233 

for particular shell theories, i.e. the first-order 
transverse shear deformation theory and the 
classical Love-Kirchhoff theory (for both the 
deep and shallow variants) have been studied 
using a geometrically linear approach. The 
examples are solved to demonstrate the import- 
ance of the selection procedures in genetic 
algorithms and to highlight the significance of 
transverse shear effects in optimization prob- 
lems. 

The choice of the selection method seems to 
be one of the most important factors in genetic 
optimization procedures. It is shown that the 
selection procedures may significantly reduce 
the total number of iterations required in the 
optimal search. In our opinion a search for the 
best (effective) selection procedures is neces- 
sary. Now, however, not only is numerical 
implementation of different variants of genetic 
algorithms required, but also a deeper, theoreti- 
cal explanation of the assumed choice. 

The present study shows the effectiveness of 
genetic methods for optimal design of shells 
using both FSDT and the classical L-K theory. 

It is worth emphasizing that for laminated 
thin-walled structures, the resulting optimal 
laminate topologies and failure loads are very 
sensitive to the applied type of 2-D shell 
approximations and to the thickness t/R ratio. 

It has been proved that the use of classical 
shell theories may lead to completely wrong 
results in both the estimation of buckling loads 
and in the determination of optimal laminate 
configurations (strings) for orthotropic 
materials. For a more accurate description of 
the optimization problems under buckling and 
FPF constraints it is necessary to apply more 
refined shell theories based on the local (1am- 
inatewise) rather than the 3-D models as e.g. 
delamination problems will be taken into 
account. 

Upon increasing the number of plies, optimal 
buckling pressure become insensitive to the 
variations of N. 

ACKNOWLEDGEMENT 

The support from KBN grant PB-232/T07/95/08 
is gratefully acknowledged. 

REFERENCES 

1. Noor, A.K. and Burton, W.S., Assessment of compu- 
tational models for multilayered composite shells. 
Appl. Mech. Rev., 1990, 43, 67-97. 

2. Koszevoy, I.K., Buckling of nonhomogeneous spheri- 
cal shells. Prikladnaya Mech., 1982,18, 39-44. 

3. Librescu, L., Khdeir, A.A. and Frederick, D., A shear 
deformable theory of laminated composite shallow 
shell type panels and their response analysis, I: Free 
vibration and buckling. Ada Mech., 1989, 76, 1-33. 

4. Muc, A., Transverse shear effects in stability problems 
of laminated shallow shells. Composite Structures, 
1989,12,171-180. 

5. Soldatos, K.P., Nonlinear analysis of transverse shear 
deformable composite laminated shells. Pressure Vessel 
Techn., 1992, 114, 105-114. 

6. Tasi, J., Feldman, A. and Stang, D. A., The buckling 
strength of filament-wound cylinders under axial com- 
pression. NASA-CR-266, NASA, July 1965. 

7. Hirano, Y., Buckling of angle-ply laminated circular 
cylindrical shells. /. Appl. Mech., 1979, 46, 233-234. 

8. Uemura, M. and Kasuya, H., Coupling effects on axial 
compressive buckling of laminated composite cylindri- 
cal shells. Proc. ICCM-TV, (1982) 583-590. 

9. Onoda, J., Optimal laminate configurations of cylin- 
drical shells for axial bucking. AIAA J., 1985, 23, 
1093-1098. 

10. Narusberg, B. L. and Teters, G. A., Buckling and opti- 
mization of composite shells. Riga, Zinatne, 1988 (in 
Russian). 

11. Muc, A. and Saj, P., Transverse shear effects in dis- 
crete optimization of laminated compressed plates 
under buckling and FPF constraints. Proc. ICCM-11, 
1997. 

12. Muc, A., Optimal fibre orientation for simply-sup- 
ported, angle-ply under biaxial compression. 
Composite Structures, 1988, 9, 161-172. 



Composite Structures Vol. 38, No. 1-4, pp. 499-507, 1997 
© 1997 Elsevier Science Ltd. All rights reserved 

Printed in Great Britain 
0263-8223/97/S17.00 + 0.00 

ELSEVIER PII:S0263-8223(97)00085-8 

Tfao-dimensional modelling of solid-fluid 
composites 

Tsutao Katayama 
Department of Mechanical Engineering, Doshisha University, Tanabe-cho, Tuzuki-gun, Kyoto-fu 610-03, Japan 

Hidetake Yamamoto 
Faculty of Mechanical Engineering, Kobe City College of Technology, Gakuenhigashi-cho, Nishi-ku, Kobe 651-21, Japan 

& 

Kazuo Nishitani 
Postgraduate Course, Doshisha University, Tanabe-cho, Tuzuki-gun, Kyoto-fu 610-03, Japan 

The purpose of this paper is to apply biomimetic-designed composites to 
artificial structures. From the results of numeric modelling analysis in 
biomechanics, we have learned the bone structures optimized to lighten 
weight and understood that the solid-fluid composite structure of the 
cancellous bone at the joint part works to distribute the joint load perfectly. 
In this paper, the two-dimensional honeycomb structure filled with fluid was 
investigated by way of a simplified solid-fluid composite material model of 
the cancellous bone. Hybrid finite element analyses illustrated that the 
solid-fluid phase interaction is effective in dispersing compressive load. In- 
plane indentation tests were carried out and in-plane deformation 
distributions of the solid-fluid composite specimens were measured. 
Consequently, as for the solid-fluid composite specimens whose cells were 
filled up with glycerine, a good enough cell deformation mode was 
obtained. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Fibre-reinforced composites have attracted 
attention by way of tailored materials and have 
been studied. But they are used in practice as 
quasi-isotropic materials and their functions are 
not utilized effectively. However, it has been 
shown in many reports that biomaterials have 
fibre-reinforced composite structures and are 
optimally designed to loadings. We have studied 
bone structures from the viewpoint of compo- 
site materials and learnt the mechanism of 
optimum structures of the bone [1,2]. It was 
found from biomechanical results that the 
natural structures are perfectly optimally 
designed. The aim of this research was to 
develop biomimetic-designed composites. From 
the results of our biomechanics research we 

have considered applying the mechanical func- 
tions of the bone's composite structure to new 
material designs. We have recognized the solid- 
fluid composite structure of the cancellous bone 
in the bio-joints to be a material system and 
investigated these functions as an intelligent 
material; we will try to develop new materials 
given these functions artificially. 

The purpose of this study is to learn from the 
cancellous bone, which has a good load dis- 
persive and a high shock absorptive 
bio-structure, and to develop an artificial 
material prepared from those properties. The 
solid-fluid structure of the cancellous bone con- 
sists of the trabecular bone as a three- 
dimensional (3-D) open-cell structure and the 
marrow in the bones as a viscous fluid. But 
simplified modelling appears to be effective in 
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analysing the essential functions of the cancel- 
lous bone because 3-D analysis complicates the 
problem. In this paper, the two-dimensional 
(2-D) honeycomb structure filled with fluid is 
investigated by way of a simplified solid-fluid 
composite material model for the cancellous 
bone. To evaluate the load-support system 
under compressive loadings, a 2-D closed hex- 
agonal cell filled with fluid is used. At first, 
hybrid finite element analyses were used to esti- 
mate the influence of the solid-fluid phase 
interaction on the compressive deformation of 
the material. To verify the numeric result, in- 
plane indentation tests were carried out and the 
load-indentation depth curves are obtained. 
And the cell's in-plane deformation distribu- 
tions of the solid-fluid composite specimens 
were measured. 

MODELLING ANALYSIS OF CANCELLOUS 
BONE STRUCTURE 

Finite element modelling analysis of the can- 
cellous bone in the bio-joints was investigated in 
order to obtain a biomimetic design of the new 
composites. The hexagonal unit used to repli- 
cate the solid-fluid composition of the 
cancellous bone is shown in Fig. 1. It is possible 
to express the dynamic behaviour of the solid- 
fluid composite systems in the  hybrid finite 

element model with the following two assump- 
tions [1]: the solid-fluid composition of the 
cancellous bone will be reproduced two-dimen- 
sionally by combining the hexagonal frame, 
which has a framework of two-noded beam ele- 
ments rigidly jointed to each other, with the 
core which has six three-noded triangular ele- 
ments [2]. Each hexagonal core will have a 
compressive modulus alone corresponding to 
the resistance of the bone marrow to the 
dynamic compressive stress and will contribute 
to the stress transmission of the cancellous bone 
independently. By assuming geometrical sym- 
metry of the human proximal tibia to simplify 
the treatment, a 2-D model was applied to the 
right half. Figure 1(a) shows the hybrid finite 
element model of the tibial cancellous bone. 
The hybrid model consists of triangular ele- 
ments for the bone marrow, beam elements for 
the trabecular bone and triangular elements for 
the cortical bone. The material properties given 
to the finite elements are listed in Table 1. In- 
plane elastic moduli of triangular elements for 
the bone marrow were calculated as an iso- 
tropic body. However, the Poisson ratio of an 
incompressive fluid is 0.5, so 0.49 was selected 
in order to enable the numeric analysis to be 
carried out. The left-hand sides of the models 
were fixed in the horizontal direction only, and 
the bases were fixed in both the vertical and 
horizontal   directions.   A   large   displacement 

Forced displacement Forced displacement 

Beam element 
for trabecula 

Hybrid element 
hexagonal unit 
for cancellous 
bone 

Beam element   Triangular 
for trabecula      element for 

bone marrow 

( a) Using hybrid element modelling 

Triangular 
element for 
cortical bone 

( b ) Using mono element modelling 

Fig. 1. Finite element model for cancellous bone of the proximal tibia, (a) Using hybrid element modelling and (b) using 
mono-element modelling. 
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Material 
(finite element) 

Trabecular bone (beam) 
Bone marrow (triangular) 
Cortical bone (triangular) 

Table 1. Material properties for finite element models 

Young's 
modulus 
(MPa) 

5000 
1000 

14000 

Shearing 
modulus 
(MPa) 

Poisson's 
ratio 

3500 
0.49 
0.35 

corresponding to the dynamic compressive load- 
ing was applied, and the incremental finite 
element analyses were carried out. 

Figure 2 shows distributions of the maximum 
principal strain of the hexagonal units assuming 
that the cancellous bone is under compressive 
loading by the finite element method (FEM). 
Although the load is expected to be uniformly 
distributed on the articular surface in the ideal 
case, the stress propagation behaviour under 
one-point concentrated compressive loading was 
simulated in order to examine more clearly the 
pattern of stress dispersion under the great 
force assuming dynamic compressive loading. 
Figure 2(a) and (b) shows the results using 
hybrid element modelling and mono-element 
modelling for the cancellous bone, respectively. 
From Fig. 2(a), appropriate maximum principal 
strains were distributed sufficiently in the can- 
cellous bone. It is expected that the applied 
compressive force on the articular surface is dis- 
persed perfectly through the cancellous bone 

and is transmitted to the cortical bone as a uni- 
form compressive stress. However, large 
maximum principal strains will be distributed 
near the loading point because of the consider- 
ably high compressive stresses applied locally in 
the analysis. To emphaisize the effect of the 
solid-fluid interaction, the numeric results for 
the case of disregarding the solid-fluid inter- 
action are shown in Fig. 2(b). The result 
indicates that the bone marrow only flows in the 
trabecular bone framework under compressive 
loading and does not contribute to the stress 
propagation through the cancellous bone. From 
the figure it was found that large maximum 
principal strains were distributed from the load- 
ing point through a part of the cancellous bone 
near the cortical bone and that maximum 
principal strains were not distributed sufficiently 
in the cancellous bone. Particularly, consider- 
able large maximum principal strains were 
distributed under the loading point. Therefore, 
comparing Fig. 2(a) with (b), if the bone mar- 

0.013 

o.oio 

0.008 

0.005 

0.003 

(a) Using hybrid element modelling (b) Using mono element modelling 

Fig. 2. Distributions of maximum principal strain by FEM. (a) Using hybrid element modelling and (b) using mono- 
element modelling. 
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row was out of all relation to the stress 
propagation through the cancellous bone, 
'micro-buckling' of the trabeculae would occur 
in the cancellous bone. Then, it is expected that 
the compressive loading is spent in the micro- 
fracture of the trabeculae and is poorly 
propagated to the cortical bone. The results 
coincident with the behaviour of the solid-fluid 
composite system under compressive loading 
were obtained from this analysis. 

NUMERIC ANALYSIS OF 2-D SOLID- 
FLUID COMPOSITES 

From the numeric results of the cancellous 
bone we propose solid-fluid composites for the 
stable support of compressive loadings. Hybrid 
finite element analyses were done in order to 
estimate the influence of the solid-fluid phase 
interaction on the compressive deformation of 
the following material models. The deformation 
of the specimens was regarded as a plane strain 
condition due to the experimental conditions. 
Figure 3 shows the 2-D finite element models 
for the solid-fluid composites (following the 
type A specimen) and the solid material (fol- 
lowing the type C specimen). The hybrid 
hexagonal model unit for the solid-fluid com- 

posites consists of six beam elements with two 
rigid joints and six triangular elements with 
three nodes. The material properties given to 
the finite elements are listed in Table 2. The 
bulk modulus of the water under ordinary tem- 
perature and normal pressure was applied to 
the triangular elements. That is to say, the in- 
plane elastic moduli of the triangular elements 
were calculated as an isotropic body. However, 
the Poisson ratio of an incompressive fluid is 
0.5, and 0.49 was selected in order to enable the 
numeric analysis to be carried out. Considering 
the symmetry of the boundary conditions, the 
right-hand half of the specimen was analysed. 
The left-hand sides of the models were fixed in 
the horizontal direction only, and the bases 
were fixed in both vertical and horizontal direc- 
tions. A displacement corresponding to the 
experimental results was applied, and the incre- 
mental finite element analyses were carried out. 

Figure 4 shows the deformation distributions 
of the solid-fluid composites and the solid 
material by FEM. As for the solid material, 
positive large deformations were distributed in 
the central part and along the diagonal line. 
Negative large deformations existed in the 
small-side part. The solid material supported 
the compressive load along the anisotropic axis 
of the honeycomb material. As for the solid- 

Forced displacement Forced displacement 

Beam 
element 

Triangular 
element 

(a) For solid-fluid composites (b) For solid materials 

Fig. 3. Finite element models, (a) For solid-fluid composites and (b) for solid materials. 

Table 2. Material properties for finite element models 

Material 
(finite element) 

Young's 
modulus 
(MPa) 

Bulk 
modulus 
(MPa) 

Poisson's 
ratio 

Yield 
stress 
(MPa) 

A5052H (BEAM) 
Glycerine (triangular) 

7100 
132 2200 0.49 

340 
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( a) For solid-fluid composites 

Aa |deg. 

( b) For solid materials 
Fig. 4. Distributions of a cell's in-plane deformation by FEM. (a) For solid-fluid composites and (b) for solid materials. 

fluid composites, positive large deformations 
were distributed in the central part, and nega- 
tive large deformations were distributed in the 
part along the horizontal line. The solid-fluid 
composites supported the compressive load in 
the wide part of the surface not only in the solid 
material but also in the fluid material. Conse- 
quently, these results illustrated that the 
solid-fluid phase interactions worked well on 
the load-support system of the solid-fluid com- 
posites. 

EXPERIMENTAL SOLID-FLUID 
COMPOSITE MODELS 

Aluminium honeycomb sheet was used for the 
2-D experimental model of the solid-fluid com- 
posite because aluminium alloy is easy to 
assemble. The honeycomb was made of alumin- 

ium foil (A5052H) of 0.025 mm thickness and 
23 mm width. The dimensions of the hexagonal 
cells are shown in Table 3. Honeycomb sheets 
were cut into pieces 85 mm high and 120 mm 
wide. The dimensions of the test piece are 
shown in Fig. 5. 

Four kinds of specimens were prepared to 
characterize the mechanical functions of the 
solid-fluid composite. Theses are listed in 
Table 4. Both type A and type B specimens are 
solid-fluid composite models, and both type C 
and type D specimens are solid material 
models. Type A and type B specimens are the 
solid-liquid composites and the solid-air com- 
posites, respectively. The hexagonal cells of the 
type A specimens and type B specimens were 
all filled with glycerine and air, respectively, 
under ordinary temperature and normal pres- 
sure to observe the effect of the compressibility. 
Both side surfaces of type A, type B and type C 

Material 

A5052H 

d (mm) 

4.56 

Table 3. Dimensions of hexagonal cells 

t (mm) 

0.025 

b (mm) 

23.00 

0 (degress) 

101.0 
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Indenter 
Indenter 

Specimen 

=    Rigid base 
120 

Enlarged figure of the loading point 

Fig. 5. Experimental conditions of the in-plane indentation test. 

specimens were all sealed with polyvinyl film 
using an epoxy elastic adhesive. But type C 
specimens were made of aluminium foil with 
holes of about 10 /mi diameter. Type C speci- 
mens were used in order to determine the 
influence of the film, so the deformation of the 
specimens is not influenced by pressure in the 
hexagonal cells. Type D specimens have a 
honeycomb structure only. 

LOAD-INDENTATION DEPTH CURVES 

An in-plane indentation test was proposed in 
order to evaluate the deformation in the speci- 
mens under compressive loading. The 
experimental conditions of the in-plane indenta- 
tion test are shown in Fig. 5. However, 
honeycomb sheets are stable to out-of-plane 
compression, the in-plane compressive deforma- 
tions are anisotropic and complex because of 
the geometric deformations of the hexagonal 
cells. However, the in-plane deformations are 
evaluated easier when compressing honeycomb 
sheets, as shown in the figure. The indenter 
which has a flat head was set on the load cell of 
the universal testing machine. The specimens 
were set on the base to connect the indenter 
with the centre cell which was stiffened with 
polyester resin to obtain symmetric in-plane 
deformation and stable deformation. Indenta- 
tion tests were carried out statically using the 

testing machine at a cross-head speed of 5 mm/ 
min, and the load-indentation depth curves 
were obtained. Figure 6 shows typical load- 
indentation depth curves of four types of the 
specimen. 

The curve of the type D specimen is linear 
until the indentation depth reached 3 mm and 
shows temporary drops and rises in the load 
after the indentation depth went above 5 mm. 
The first knee point of the curve is the indenta- 
tion depth of 3 mm because the initial 
deformation of the specimen shows simple elas- 
tic behaviour. When compressing cellular 
materials, the geometric rigidity decreases 
because of buckling. The curve becomes non- 
linear over the knee point because of the 
buckling of the hexagonal cells. Structural con- 
densation by the collapse of the hexagonal cells 
causes the load to rise. Although they have an 
energy absorption property, they do not suit the 
load-supporting material. The type C specimen 
shows itself to be a little more rigid than the 
type D specimen because both side surfaces of 
the type C specimen were sealed with polyvinyl 
film. But the type C specimen also shows linear 
behaviour until the indentation depth reached 
3 mm and temporarily drops and rises with the 
load. The curve of the type C specimen is the 
same result as that for the type D specimen. 
That is to say, sealing with polyvinyl film did not 
change the in-plane compressive deformation 
pattern of the honeycomb sheet. 

Table 4. List of specimens 

Specimen name Base material condition Fluid material 

Type A specimen 
Type B specimen 
Type C specimen 
Type D specimen 

Side surfaces condition 

Without holes 
Without holes 
With holes 
Without holes 

Glycerine 
Air 
None 
None 

Film adhesion 
Film adhesion 
Film adhesion 
Free 
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Fig. 6. Measurement of a cell's in-plane deformation. 

A significant difference is seen between the 
curves of the type B and type C specimens. The 
curve of the type B specimen stayed linear until 
the indentation depth reached 3 mm, but did 
not have temporary drops and rises in load 
above 5 mm indentation depth. The curve had 
only one knee point because it was almost 
linear above 3 mm in the indentation depth. 
The initial deformation of the type B specimen 
was the same mechanism as with the type C 
specimen. It was considered that the difference 
between the curves of type B and type C speci- 
mens after the knee point was caused by 
increasing the air pressure in the hexagonal 
cells. When the curve is over the knee point, 
the geometric rigidity of the specimen 
decreased, and then the compressive deforma- 
tions of the hexagonal cells raise the air 
pressure in the cells locally, which as a result, 
contributes to support the load. For the type A 
specimen the curve was linear until the indenta- 
tion depth reached 8 mm. It was observed that 
polyvinyl film rose from the side surface of the 
hexagonal cells under the indenter because of 
the high liquid pressure of the glycerine. 

IN-PLANE DEFORMATIONS OF THE CELL 

The load-support system of the solid-fluid com- 
posites was examined by measuring the side 
surface deformation of the specimens. The side 
surface pictures were taken using a camera 
during the indentation tests. In order to mini- 
mize an error of measurement, the in-plane 
deformation of the specimens was carried out 
using the shifts of the joints between the hex- 
agonal cells. The shifts of the joints were 
measured by the difference between the 
pictures under the indentation tests and the 
initial condition. 

From the side surface pictures of the speci- 
mens, three in-plane deformation modes of the 
hexagonal cells were found around the loading 
point, as shown in Fig. 7. Mode I deformations 
came from vertical compression of the rigid cell 
walls and were distributed in the central part of 
the specimens. Mode II deformations came 
from the horizontal compression at the joints 
between the thin cell walls on both sides of the 
mode I deformations and mode II deformations 
were distributed in both sides of the specimens. 
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Thin cell wall   Rigid cell wall 

Rigid base 
120 

Aa, = ao - a 

'. Aa is a parameter 
measuring cell's 
deformations 

Thin cell wall 

Initial condition 

Mode II Mode III 

in-plane deformation modes of hexagonal cells 

Fig. 7. Typic load-indentation depth curves. 

Mode III deformations came from the diagonal 
compression of joints between the rigid and the 
thin cell walls under both mode I and mode II 
deformations and were distributed in the parts 
between the mode I and mode II deformations. 
The in-plane deformation distribution including 
these three modes can be evaluated by measur- 
ing the change of angle between the thin cell 
walls as a parameter. Then the type A specimen 
is expected to have an good load dispersion 
property because the sufficient liquid pressure 
of the glycerin in each cell acts effectively on 
the load transmission. Mode I and mode III 
deformations are distributed where the changes 
of the angle are positive, and mode II deforma- 
tions are distributed where the changes of the 
angle are negative. 

Figure 8 shows the in-plane deformation dis- 
tributions of type A, type B and type C 
specimens at an indentation depth of 5.0 mm. 
As for the type C specimen, positive large 
deformations were distributed in the central 
part and along the diagonal line. The maximum 
deformations under the loading point are mode 
I deformations, and the large deformations in 
the part along the diagonal line are mode I or 
mode III deformations. Negative large deforma- 
tions existed in the small side part. The type C 
specimen supports the compressive load along 
the anisotropic axis of the honeycomb material 

because only the solid material supports the 
load. When the hexagonal cells collapse by 
mode I deformation under the loading point, 
large buckling comes out of mode I or mode III 
deformations in the part along the diagonal 
line. As for the type A specimen, positive large 
deformations were distributed in the central 
part, and negative large deformations were dis- 
tributed along the horizontal line. The positive 
large deformations in the central part are mode 
I deformations, and the negative large deforma- 
tions along the horizontal line are mode II 
deformations. The type A specimen supports 
the compressive load in the wide part, because 
there not only solid material but also liquid 
material supports the load. Considering the 
experimental conditions large buddings never 
came out of mode II deformation along the 
horizontal line. As for the type B specimen, the 
cell's in-plane deformation distribution dis- 
played a result in between the type A and type 
C specimens. 

CONCLUSION 

From the viewpoint of the biomimetic design, 
the 2-D honeycomb structure filled with fluid 
was investigated by way of a simplified solid- 
fluid    composite    material    model    from    a 
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Fig. 8. Distributions of a cell's in-plane deformation, (a) Type A specimen, (b) type B specimen and (c) type C specimen. 

cancellous bone at the joint. The results of a 
hybrid finite element analysis pointed out the 
efficiency of the solid-fluid phase interaction of 
the solid-fluid composites on the load disper- 
sion. In-plane indentation tests were carried out 
and the load-indentation depth curve of the 
solid-fluid composites showed a good load 
support. The cell's in-plane deformation distri- 
bution of the solid-fluid composites displayed a 
high load dispersion property. 

REFERENCES 

1. Katayama, T., Yamamoto, H., Ishiyama, H., Hirasawa, 
Y., Inoue, N. and Watanabe, Y., A study on initial 
fixation of prosthesis based on biomechanical 
behaviour of subchondral bone. In Proceedings of the 
2nd World Congress of Biomechanics, Amsterdam, Vol. 
1,1994, p. 106A. 

2. Katayama, T., Yamamoto, H. and Inoue, N., Optimum 
design of artificial joints considering initial fixation of 
prosthesis. Composite Struct., 1995, 32, 427-433. 



Composite Structures Vol. 38, No. 1-4, pp. 509-515, 1997 
© 1997 Elsevier Science Ltd. All rights reserved 

Printed in Great Britain 
0263-8223/97/$17.00 + 0.00 

ELSEVIER PII:S0263-8223(97)00086-X 

Damage growth analysis of low velocity 
impacted composite panels 

L. Reis & M. de Freitas 
Institute Superior Teenico, Dept. Eng. Mecänica, Av. Rovisco Pais, 1096 Lisboa, Portugal 

Low velocity impact loading in aircraft composite panels is a matter of 
concern in modern aircraft and can be caused either by maintenance 
accidents with tools or by in-flight impacts with debris. The consequences of 
impact loading in composite panels are matrix cracking, inter laminar 
failure and, eventually, fiber breakage for higher impact energies. Even 
when no visible impact damage is observed on the surface at the point of 
impact, matrix cracking and inter laminar failure can occur, and the 
carrying load of the composite laminates is considerably reduced. The 
greatest reduction in loading is observed in compression due to laminae 
buckling in the delaminated areas. 

The objective of this study is to determine the limit loading capacity and 
the damage growth mechanisms of impacted composite laminates when 
subjected to compression after impact loading. For this purpose a series of 
impact and compression after impact tests were carried out on composite 
laminates made of carbon fiber reinforced epoxy resin matrix. Four stacking 
sequences representative of four different elastic behaviours were used. 
Results show that the compressive, after impact, failure stress is influenced 
by the stacking sequence but a relatively independent strain to failure is 
observed. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Composite panels are widely used in aeronautic 
and aerospace structures due to their high 
strength to weight ratio. The stiffness and the 
strength in the through-the-thickness direction 
of laminated composite panels is poor since no 
fibers are present in that direction. Impact 
damage may be caused by low-velocity impact 
or ballistic impact. Low velocity impact loading 
in aircraft composite panels is present either 
due to maintenance accidents with tools or in- 
flight impacts with debris. Low-velocity impact 
is considered potentially dangerous mainly 
because the damage might be left undetected. 
In many situations [1-3], the level of impact at 
which visible damage is formed is much higher 
than the level at which substantial loss of resi- 
dual properties occurs. The low-velocity impact 
of CFRP laminates creates damage which may 
involve indentation, matrix cracking, fiber 
matrix debonding, delamination, inter laminar 
failure   and,   eventually,   fiber   breakage   for 

higher impact energies. Even when no visible 
impact damage is observed at the surface 
(energies below Barely Visible Impact Damage, 
BVID), matrix cracking and interlaminar failure 
can occur, and the carrying load of the compo- 
site laminates is considerably reduced. Visible 
damage occurs if an impact is above a threshold 
impact energy which depends on the laminate 
stiffness [4,5]. The greatest reduction in after- 
impact loading is observed in compression due 
to laminae buckling in the delaminated areas. 
The residual laminate strength and modulus 
after delamination depend on the stacking 
sequence and the location of the delamination 
in the laminate. In certain cases, the lay-up of a 
delaminated sublaminate also influences the 
strength and modulus. Considerable research 
[6-10] has, therefore, been devoted to analyzing 
the impact properties and post-impact compres- 
sion behaviour with a view to improving impact 
damage tolerance. 

The objective of the present study is to deter- 
mine the limit loading capacity and the damage 
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growth mechanisms of impacted composite 
laminates when subjected to compression after 
impact. For this purpose a series of tests were 
carried out on composite laminates made of 
carbon fiber reinforced epoxy resin matrix. Four 
stacking sequences representative of four dif- 
ferent bending and compression behaviours and 
an instrumented falling weight impact machine 
were used. A discussion and some concluding 
remarks are presented. 

MATERIALS 

Composite panels were made of unidirectional 
prepregs of carbon fibers IM7 on an epoxy resin 
977-2 from Fiberite and manufactured by Per 
Udsen. The nominal thickness is 0.135 mm for 
60% Vf, and four stacking sequences of 24 lay- 
ers were used: 

lay-up B: [453/03/-453/903]s 

lay-up C: [45/0/ - 45/90/45^2/ - 452/902]s 

lay-up D: [454/-454/03/90]s 

lay-up E: [453/-453/05/90]s 

The elastic properties of the individual lam- 
inae and global properties for each panel are 
listed, respectively, in Tables 1 and 2, and were 
obtained by identification of the material 
properties using experimental vibration data 
[11]. Directions 1 and 2 are, respectively, the 
longitudinal and transverse direction of each 
laminae, and x and y are the 0° and 90° direc- 
tions of the laminate, respectively. Lay-ups B 
and C correspond to a quasi-isotropic stacking 
sequence; in lay-ups D and E different global 
elastic properties are obtained for each direc- 
tion. 

Specimens with dimensions of 150 x 100 mm 
were cut from the panels; for each lay-up, five 
specimens with the 0° direction aligned with the 

100 mm width (lay-up B, C, D and E) and three 
specimens with the 0° direction aligned with the 
150 mm length (lay-up B*, C*, D* and E*) 
were obtained. 

EXPERIMENTAL PROCEDURE AND 
RESULTS 

Impact testing 

A wide range of impact energies were chosen in 
order to obtain different delamination areas. 
An instrumented falling weight impact machine 
was used where the different nominal impact 
energies were obtained through discrete masses 
of 2-10 kg and a variable height up to 2 m. 

The instrumentation associated with the 
impact machine measures the force during 
impact using a force transducer just above the 
impactor indentor. The system also provides for 
the measurement of the velocity at the moment 
of impact. The velocity during impact is cal- 
culated by integrating acceleration over time, 
where the acceleration is given by the force felt 
by the drop mass, divided by its mass. The cal- 
culated velocity is then used to derive the 
displacement of the impactor during impact 
(and consequently the deflection of the speci- 
men) using further integration. The energy is 
calculated by integrating force over distance. 
With this measurement and calculation pro- 
cedure, one not only obtains the impact energy 
but also the absorbed energy through the 
energy-time curve. 

The impactor used was a hemi-spherical steel 
of 16 mm diameter and was clamped in a 
standard impact testing fixture with a window of 
125 x 75 mm, as described in Airbus Industry 
Test Method (AITM 1.0010). 

Material 

IM7 

£i(GPa) 

160.0 

Table 1. Elastic properties of laminae 

£2(GPa) G12(GPa) G13(GPa) 

9.0 6.9 3.8 

G23(GPa) 

4.3 0.20 

Table 2. Elastic properties of laminates 

Stacking £*(GPa) £,(GPa) G^(GPa) G^(GPa) 

4.0 
<v(GPa) 

4.0 
V 

B 62.1 62.1 24.2 0.28 
C 61.9 61.9 24.1 2.7 2.7 0.28 
D 63.8 41.7 31.5 2.8 2.0 0.49 
E 83.0 37.6 23.8 4.8 4.7 0.46 
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An example of two plots of an impact test for 
a specimen with lay-up B, unfiltered load versus 
integrated displacement and calculated energy 
versus time history are shown in Fig. 1(a) and 
(b), respectively. 

Delamination area 

A C-scan NDI ultrasonic technology with a 
pulse-echo and an immersion scanning method 
from Physical Acoustics was used, with the fol- 
lowing C-scan data: 

• Scan frequency: —5 MHz 
• Scan speed (X axis): — 30mm/s 
• Index axis: — Yaxis 
• Scan interval index: —0.05 mm 

There are two kinds of data processing in pulse- 
echo C-scanning: echo amplitude (AMP) view 
and time of flight (TOF) view. The latter data 
can be converted into a delamination depth 

(a) 
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i 
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10 
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>   \ 

0 

Fig. 1. (a) Force versus deflection in low velocity impact 
tests, (b) Impact energy versus time in low velocity impact 

tests. 

view through the transverse sound velocity in 
CFRP laminates. The TOF files obtained 
together with an image processing software 
allowed the determination of the delaminated 
area for each specimen and energy level. An 
example of the images obtained by the C-scan 
procedure and TOF data are shown in Fig. 2(a) 
and (b), respectively, for after impact and after 
compression after impact of one of the speci- 
mens with lay-up B impacted with 12.1 J. It 
shows that for a quasi-isotropic stacking 
sequence and a low level impact energy, a small 
and symmetrical delaminated area is obtained. 

Compression after impact 

The compression after impact tests of the speci- 
mens were conducted on a universal testing 
machine. The tests were conducted in displace- 
ment control with a velocity of 0.5 mm/min. The 
testing fixture described in the Airbus testing 
procedure (AITM 1.0010) was used. In this fix- 
ture, and to prevent global buckling during 
compression, the specimens were clamped at 
both ends and simply supported at the side 
edges.   In   order   to   establish   the   buckling 

(b) 

Fig. 2. C-scan views: (a) after impact; (b) compression 
after impact. 
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behaviour of the delaminated area during test- 
ing and final failure, three LVDT were attached 
to the specimen: one at the center of the impact 
zone, the second one at the opposite side and 
the third one on the testing fixture to monitor 
the vertical displacement of the specimen 
during the test. A schematic view of the instru- 
mented compression after impact (CAI) testing 
fixture with a specimen and the three LVDT in 
their testing positions, is shown in Fig. 3. The 
different buckling behaviours were analyzed, 
and three types of buckling were observed, 
shown schematically in Fig. 4(a), (b) and (c). 
More than 50% of the specimens failed under 
the buckling behaviour shown in Fig. 4(a), 
meaning that the displacement of the surfaces 
during buckling are in the direction of the 
impact displacement. This is a logical behaviour 
due to the permanent indentation observed 
after impact. The buckling behaviour presented 
in Fig. 4(b), represents about 35% of the 
results, and corresponds to a variant of the pre- 
vious behaviour, where the delamination 
buckling occurs for both sides of the lateral sur- 
faces. 

Concerning the damage growth during com- 
pression, it corresponds to a typical buckling 
failure where the damage growth is obtained 
suddenly leading to the complete failure of the 

specimen. As can be seen on the C-scan images 
of Fig. 2(a) and (b), the delamination growth is 
obtained in the lateral direction, perpendicular 
to the applied compression load. Only very 
small delaminations were observed in the verti- 
cal direction. 

Fig. 3. Instrumented compression after impact test fixture. 

Impact Impact Impact 

(a) (b) 

Fig. 4. Delamination buckling models. 

(c) 
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DISCUSSION 

Several specimens were tested at different 
impact energy levels ranging from 4 to about 
80 J. These energy levels allowed increasing 
damaged areas in the specimens up to perfora- 
tion. After impact, the delamination area of the 
specimens and the permanent indentation 
depth of the impact point were measured. The 
latter one is the procedure prescribed in AITM 
1.0010 to establish the visibility of the surface 
defect. Figure 5 shows the indentation depth 
obtained for the range of impact energies used. 
Despite the scatter of the results, a direct corre- 
lation exists between the impact energy and the 
surface indentation depth. The AITM considers 
as BVID energy level (Barely Visible Impact 
Damage), the energy necessary to put a perma- 
nent indentation depth of 0.3 mm, and for these 
lay-ups we have obtained approximately 20 J of 
impact energy. 

Concerning the delamination obtained, the 
shape of the delamination was identified and 
the delaminated areas measured. Figure 6 
shows the delaminated area as a function of the 
absorbed energy determined as described 
before. Again a direct correlation exists 
between the two quantities, but for perforation 
energy levels the delaminated areas are smaller 
than expected. There was no practical influence 
of the stacking sequences on the indentation 
depth and delaminated areas, since the influ- 
ence of the impact energy is the leading factor. 
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Fig. 6. Area delaminated as a function of the absorbed 
energy. 

It has been remarked that the residual com- 
pression strength of delaminated composite 
laminates is highly affected due to the buckling 
mechanisms of the delaminated laminae. As 
four different stacking sequences were tested in 
two testing directions, the results are analyzed 
in two graphs. Figures 7 and 8 show the com- 
pressive residual strength as a function of the 
delaminated area for the B, C, D and E and B*, 
C*, D* and E* stacking sequences, respectively. 
As expected the E stacking sequence presents 
the smallest residual compressive strength while 
the E* stacking sequence presents the greatest 
compressive residual strength. This is due to the 
presence of the 0° and 90° plies, corresponding 
to higher elastic modulus in those directions. 
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For the B, C and B*, C* stacking sequences, 
since they represent quasi-isotropic stacking 
sequences, the direction of loading does not 
affect the compressive residual strength. 

These results can be analyzed as a function of 
strain to failure, based on the elastic properties 
of each stacking sequence. The compressive 
residual load is then transformed in stresses and 
in strains and through the delaminated area 
related with the absorbed energy. The results 
presented in strains show a smaller scatter and 
a uniformity of the strain to failure as a func- 
tion of the delaminated area and of the 
absorbed energy. This is shown in Fig. 9, 
together with a linear regression of the points. 
It is clear that the composite panels with dif- 
ferent elastic moduli present similar strain to 
failure for the wide range of absorbed energies. 
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Fig. 9. Strain as a function of the absorbed energy 
specimen numbers 1-8. 

CONCLUSIONS 

Low velocity impact and compression after 
impact tests of laminate composite panels were 
carried out and allow the following conclusions 

• the delaminated area is a function of the 
impact energy and relatively independent of 
the stacking sequences used in this study 

• unstable damage growth was obtained by 
compression after impact due to a buckling 
mechanism in the delaminated area 

• the residual strength is influenced by the 
delaminated area which is a function of the 
impact energy 

• the residual strength when considered in 
terms of failure load (failure stress for the 
same thickness) depends on the stacking 
sequence, but the strain to failure is not. 
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Sheet Moulding Compound (SMC) is suitable for mass production of FRP. 
It is usually formed by compression moulding. Though compression 
moulding can make production time short, this moulding method needs a 
huge forming energy because of the hydrostatic stress in the mould. Roll 
forming needs a smaller forming energy than compression moulding, 
because most of the forming load works as deviatoric stress. We proposed 
to apply roll forming to SMC, expecting a decrease of the forming energy, 
a short production time and a controllability of the fibre orientation. 

In this paper, we investigate the effect of the reduction, the roll velocity 
and the roll diameter on the forming pressure and the deformation 
behaviour of the materials. Considering these results, we try to construct a 
design system for roll forming of SMC. © 1997 Published by Elsevier 
Science Ltd. 

INTRODUCTION 

Sheet Moulding Compound (SMC) has some 
excellent characteristics such as a surface bril- 
liance, formability and excellent mechanical 
properties, and is used in a wide range of auto- 
mobile parts, housing equipment and so on. 
SMC is usually formed by compression mould- 
ing. This method can make production time 
short, but it requires large and expensive press 
forming machines and a huge energy for the 
forming because of an increasing hydrostatic 
stress domain generated in the mould. And with 
this method, it is difficult to form long products 
which are usually used as structural members, 
because of the limitation of the size of the 
forming machine and mould. 

In the field of metal forming, roll forming is 
usually used to form long products. This is the 
process of continuous micro-reduction by driven 
upper and lower rollers. When this method is 
applied to SMC forming, there are some advan- 

tages compared with compression moulding. 
During roll forming, most of forming load 
works as the deviatoric stress, so it is possible to 
reduce the forming energy [1,2]. As a result, it 
is possible to minimize and simplify the forming 
machine. Moreover, because roll forming is 
continuous forming, it is easier to form long 
products than by compression moulding. 

In previous studies, the influence of the 
reduction and the tension between roll stands 
has been investigated [3,4]. However, the influ- 
ence of the other basic parameters such as the 
roll velocity and roller diameter have not yet 
been investigated, nor have suitable conditions 
for forming the products with a channel shaped 
cross section and a parallel flange at a short 
production time. 

In this paper, we investigate the effects of 
reduction, roll velocity and the roller diameter 
on the forming pressure and the deformation 
behaviour of the materials. Considering these 
results, we devise a method of determining the 
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forming conditions and we evaluate whether 
this determining method is useful or not. 

SMC ROLL FORMING 

Concept of SMC roll forming 

SMC roll forming is to gradually deform SMC 
with multiple roll stages and to form various 
cross-sectional shapes of long products. After 
forming, deformed materials are cured in the 
curing oven. Alhough the method is the same as 
that in metallurgical technology, the materials 
have heterogeneity and anisotropy. The 
materials have to be deformed in the lateral 
direction in order to control the fibre orienta- 
tion, because only longitudinal spread, like 
metal, results in too strong an anisotropy. So, 
we must consider the deformation character- 
istics of these materials. 

SMC used in this study 

The contents of SMC used in this experiment 
are shown in Table 1. This SMC is cut into 
75x600 mm pieces and five SMC sheets are 
laminated. The thickness of the laminated 
materials is 9 mm. 

Roll forming machine 

The roll forming machine shown in Fig. 1 is 
used in this experiment. The reduction and the 

Table 1. Contents of SMC 

Upper roll 

Components Wt% Relative 
density 

Resin (UP, TP, etc.) 
Glass fibre 
CaC03 (filler) 

31.3 
28.0 
40.7 

1.10 
2.54 
2.70 

unit: mm 
Fig. 2. Sectional view of rolls. 

roll velocity that will influence the formability 
are set up at each stand. The cross section of 
the roller is shown in Fig. 2. 

Forming method and measurement of 
experimental parameters 

The product with a channel shaped cross sec- 
tion is formed by continuous roll forming. The 
product has a cross section of 75x20x4 mm 
( = width x flange height x web thickness, see 
Fig. 3). Laminated materials are inserted in the 
arrow direction as shown in Fig. 1 and are 
formed repeatedly until the web thickness 
becomes the target thickness. The elongation, 
the flange height and forming load are mea- 
sured during forming. 

The elongation at the web part is measured 
to observe the longitudinal deformation of 
materials during forming. To obtain the elonga- 
tion, the lines in 300 mm are marked at the 
centre of the material's surface after laminating. 
The length of the marked lines are measured at 
each insertion into the machine. Elongation is 
calculated by the formula 

Et = ln(eln/e!0) (1) 

Flange 

4th       3rd       2nd       1st 
Stage Stage    Stage   Stage J 

upper ciir "Hir cgJT' 
roll   t^*^ t=±=i t=frn 

Handle 

Fig. 1. Roll forming machine. 

unit: mm 

Fig. 3. Shape of final product. 
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where Et is the total strain of elongation after 
the n-th pass, eln is the length of the marked 
lines after the n-th pass, and el0 is the initial 
length of the marked line. 

To observe the lateral deformation of the 
materials during forming, the flange height is 
also measured. The flange height is calculated 
as follows 

Ft = \n(fjfl0) (2) 

where Ft is the total strain of flange height after 
the n-th pass, fln is flange height after the n-th 
pass, and //0 is the initial flange height (same as 
the thickness of laminated materials = 9 mm). 

The forming load is measured by strain gau- 
ges which are attached to the support bars 
shown in Fig. 1. 

INFLUENCE OF EACH PARAMETER ON 
FORMING LOAD AND DEFORMATION OF 
MATERIALS 

In this section, we investigate the influence of 
each parameter such as the reduction, the roll 
velocity and the roller diameter on the forming 
load and the deformation behaviour of the 
material. We then try to clarify what parameter 
contributes to forming at lower forming loads 
and shorter forming times. 

Forming conditions 

Forming conditions are shown below. 

1. Variation of reduction 
Reduction: 0.2, 0.4, 0.6 (mm) 
Roll velocity: 1.0 (m/min) 
Roll diameter: 200 (mm) 

2. Variation of roll velocity 
Reduction: 0.4 (mm) 
Roll velocity: 0.5, 1.0, 1.5 (m/min) 
Roll diameter: 200 (mm) 

3. Variation of roll diameter 
Reduction: 0.4 (mm) 
Roll velocity: 1.0 (m/min) 
Roll diameter: 200, 125 (mm) 

In each condition, the initial thickness of the 
material is 9.0 mm and the final thickness of the 
material is 4.2 mm. The forming load, the total 
strain of elongation and the total strain in the 
flange height are measured. 

E 
E 
z 

1500 

1000 

500 

c 

Reduction = 0.2 [mm 
Reduction = 0.4 [mm 
Reduction = 0.6 [mm B 

o 

<*' 
6° 

Dig 
g060oO° coo*- 

■>o°° °o 

60 

Fig. 4. 

0       10      20      30      40      50 
Reduction ratio in thickness [%] 

Relation between forming pressure and reduction 
in thickness ratio. 

Results 

Figure 4 shows the relation between the form- 
ing pressure and the reduction in thickness ratio 
under the conditions of the variation of the 
reduction. The forming pressure, Y axis, is 
determined by dividing the forming load by the 
contact arc length between the roll and the 
material. The contact arc length L is calculated 
by eqn (3) 

L = R cos" 1- 
Ah 

2R 
(3) 

where R and An is the roller radius and the 
reduction at each stage, respectively. 

Under every forming condition, the contact 
width between the roller and the material is 
constant, so we can consider this value in the Y 
axis as forming pressure. 

The value in the X axis denotes the reduction 
in thickness ratio, rn, determined as follows 

he 
r„ = 

hn 
xlOO (4) 

where h0 is the initial thickness of the material 
and hn is the thickness of the materials after the 
n-th pass. 

In Fig. 4, the forming pressure slightly 
increases with each increment of the reduction. 
This seems to be caused by an increment of the 
deformation velocity in the thickness direction. 
When the reduction increases, the forming 
pressure does not vary much but the forming 
load increases because of the increment of the 
contact arc length. So, this increment in the 
forming load causes the failure of the forming. 

In addition, for the other two conditions, the 
following results are obtained. 
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1. When the roll velocity increases, the 
materials tend to deform lateral to the roll- 
ing direction. 

2. When the roller diameter increases, the 
material tends to deform lateral to the roll- 
ing direction. 

3. When the reduction increases, the forming 
stages decrease and the production time 
becomes short. 

4. When the roll velocity increases, the produc- 
tion time becomes short. 

DETERMINATION OF SUITABLE 
FORMING CONDITIONS 

In the previous section, we described the influ- 
ence of the parameters such as the reduction, 
the roll velocity and the roller diameter on the 
forming load and the deformation behaviour of 
the material. In this section, based on these 
results, we try to construct the design system for 
roll forming to be suitable for forming the 
products with the channel shaped cross section 
and the parallel flange at the short production 
time. We evaluate this determining method by 
experiment. 

Concept of determining the forming conditions 

From the results of the previous section, the 
factors which contribute to the deformation in 
the lateral direction and the short production 
times were found. However, if the forming con- 
ditions are only determined by these factors, 
there is a possibility of failure of the forming 
because of the increment in the forming load. 
Therefore, some criterion that does not fail in 
forming is required in determining the forming 
condition. 

Noticing the forming load, let the load value, 
Fmax, be the load at the failure in forming. We 
determine the forming conditions considering 
this criterion. That is, the forming load which 
completes the next equation 

F
max>Fn (n=l,2, ..., stage number) (5) 

where Fn is the forming load value at n-th stage. 
From the results of the previous section, the 

forming pressure is a function of the reduction 
in thickness ratio, the reduction, the roll velo- 
city and the roller diameter, i.e. 

where P„, rn, Ahn, Vn and Dn are the forming 
pressure, the reduction in thickness ratio, the 
reduction, the roll velocity, the roller diameter 
at n-th stage, respectively. The forming load is 
calculated using the forming pressure and the 
contact arc length at the «-th stage by the equa- 
tion 

F =P T 1 n     rnL-'n (7) 

Method of determining the forming conditions 

We set up the reduction in thickness ratio, the 
reduction, the roll velocity, the roller diameter 
so as to complete eqns (5) and (7). 

Considering forming pressure 
In order to determine the practical forming 
conditions, an equation which predicts the 
forming pressure at any reduction, roll velocity 
and roller diameter is required. On the other 
hand, using this equation, we can set up the 
reduction, the roll velocity and the roller diam- 
eter at any forming pressure. Therefore, we 
describe the general equation deriving the 
forming pressure. 

At first, the relational equation between the 
forming pressure and the reduction in thickness 
ratio is derived in the case that the reduction is 
0.4 mm, the roll velocity is l.Om/min and the 
roller diameter is 200 mm. We consider this 
equation as a basic case. 

The relationship between the forming pres- 
sure and the reduction in thickness ratio is 
derived by Fig. 4 as follows 

Pn = Pn[rn, 0.4, 1.0, 200] =0.013 r\- 1.102 r2
n 

+41.881 r„-54.714 (8) 

In the case that the reduction, the roll velo- 
city and the roller diameter are varied, we 
consider that the forming pressure is calculated 
as follows 

P„ = CvC2-C3Pn[r„,0A, 1.0, 200] (9) 

where Cx, is coefficient of reduction depend- 
ency, C2 is the coefficient of velocity 
dependency and C3 is the coefficient of diam- 
eter dependency, and these coefficients are 
calculated using the next equations 

Pn = Pn[rn,Ahn,Vn,Dn] 
r - -   v    P*[r*' Ahk' 10' 200] 

(6) n   *=i    Pk[rk, 0.4, 1.0, 200] 
(10) 
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C2 = 
_1_    n     pk[rk, 0.4, Vk, 200] 

n   *-i   PJr*, 0.4, 1.0, 200] 

c -- i  Pk[rk'°-4, L0'DJ 
3
~ n   *=i   PJr*, 0.4, 1.0, 200] 

(11) 

(12) 

These coefficients are calculated at each stage 
and the average of the coefficients are used. 
Needless to say, if the reduction is 0.4 mm, 
Cx = 1 and if the roll velocity is 1.0 m/min, C2 = 
1 and if the roll diameter is 200 mm, C3 = 1. 

From the experimental results, the relation- 
ship between Cj and the reduction, C2 and the 
roll velocity and C3 and the roll diameter is 
shown in Fig. 5. Q, C2 and C3 are calculated by 
next equations, respectively, considering n 
power in the consistent equation 

(13) C1 = 1.2301 AK 0.24 

0.547 V„ C2 = 0.5756 e' 

C,= 0.003 £>+0.3668 

(14) 

(15) 

Therefore, eqn (9) is rewritten by substituting 
eqns (13)-(16) 

Pn = (1.2301 A/£24)(0.5756 ea547K") 

(0.003 Dn+0.3668) 

(0.013 ^-1.102^+41.881 rn-54.714) 

(16) 

Using this equation, we can predict the form- 
ing pressure at any reduction, roll velocity and 
roller diameter. 

In opposition, we can set up the reduction, 
the roll velocity and the roller diameter which 
will complete eqns (5), (7) and (16) at any 
forming pressure. 

velocity is not 1.0 m/min and the roll diameter 
is not 200 mm at the stage. 

eln_x and Vn are already known (e/0 and Vx 

are already known), the roll velocity after the 
stage, Vn+1 is determined by e*ln. So the elonga- 
tion in the longitudinal direction rolled at the 
n-th stage must be estimated. 

In the case that the roll velocity is 1.0 m/min 
and the roller diameter is 200 mm, the relation- 
ship between the total strain of elongation and 
the reduction in thickness ratio is derived from 
the experimental results as follows 

\n(eln/el0) = 0.000036 ^+0.005357 rn-0.008956 

(18) 
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(b) Coefficient of velocity dependency 

Considering elongation in the longitudinal 
direction of the material 
The material rolled at one stage deforms in the 
longitudinal direction, so the roll velocity after 
this stage must be faster than before. Therefore, 
the roll velocity after the stage is calculated as 
follows 

vn+1=(4/4-!)-vn (17) 
where Vn, Vn+1, e*ln and e]n_x are the roll velo- 
city at trie n-th stage and (n+l)th stage and the 
length of the marked line at the «-th stage and 
(n-l)th stage, respectively. The suffix '*' at the 
length of the marked line shows that the roll 

ü 
>. o 

t c 
O   CD 
— -o 
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CD CD 
Ü   Q. 

3| 
E 
CO 

1.5 
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C3 = 0.003 Dn + 0.3668 
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Roll diameter Dn [mm] 

(c) Coefficient of diameter dependency 

Fig. 5. Relation between coefficient and parameters for 
forming pressure, (a) Coefficient of reduction depend- 
ency,    (b)    Coefficient   of   velocity   dependency,    (c) 

Coefficient of diameter dependency. 
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In the case that the roll velocity and the 
roller diameter are varied, we consider that the 
total strain of the elongation is calculated as 
follows 

C4C5ln(eIn/eln_ !> = ln(e*n/e*n_1) (19) 

where C4 and C5 are also coefficients of velocity 
dependency and diameter dependency, respec- 
tively, and these coefficients are calculated by 
the following equations 

C,= -0.0016 A.+1.3283 (23) 

Consequently, substituting the roll velocity to 
eqn (16), the reduction which completes eqn (5) 
is derived and substituting the elongation at the 
stage into eqns (18)-(23), the roll velocity at 
the next stage is obtained. 

Repeating this procedure until the thickness 
of the material becomes 4 mm, the forming con- 
ditions (the reduction, the roll velocity and so 
on at each stage) is obtained. 

C4 = 
1     »     ^[V* 200] 

n   *=i   £^[1.0,200] 

1     »     £,,,[1.0, Z)J 
C5=-   Z 

n  *=i   Eik[l.0, 200] 

(20) 

(21) 

From the experimental results, the relation- 
ship between C4 and the roll velocity and C4 

and the roller diameter is shown in Fig. 6. C4 

and C5 are calculated by the following equa- 
tions, respectively 

C4= -0.3313 V„+1.3313 (22) 
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Fig. 6. Relation between coefficient and parameters for 
longitudinal   deformation,   (a)   Coefficient   of   velocity 

dependency, (b) Coefficient of diameter dependency. 

Determining the forming conditions 

We attempt to apply this design system to an 
example of roll forming. 
First stage 
When the forming is performed under the con- 
ditions that the reduction is constant, 0.6 mm, 
there is the possibility of failure of the forming 
at the latter stage of the forming. Therefore we 
let this forming load value (9000 N) at the latter 
stage of the forming be Fmax. 

At first, because the roller diameter is 
200 mm and the roll velocity (Vj) is 1.0 m/min 
at the first stage, the reduction, the reduction in 
thickness ratio and the forming load at this 
stage are derived from eqns (5), (7) and (16) 

AA, = 1.85(mm) rt = 20.6(%) Ft = 8765.8(N) 

Second stage 
en is derived by substituting r1 to eqn (18) and 
e*n is derived by en. From eqn (17), the roll 
velocity at the second stage is derived as follows 

^2 = (^,/4)^1 = 1.12(m/min) 

where e]0 = e!0, e*n = en (because Vx = 1.0 m/ 
min, C4 =1, C5 = 1). From eqns (5), (7) and 
(16) 

A/*2=1.15(mm) r2 = 33.3(%) F2 = 8722.8(N) 

After that the forming conditions are deter- 
mined by the same procedure. 
Final stage 
At the 6th stage 

Afc6 = 0.35(mm) r6 = 57.8(%) 

However, because the final thickness of the 
product is 4.0 mm, the total reduction is 
5.0 mm. If Ah6 is 0.35 mm, the final thickness of 
the products becomes 3.8 mm. So we adjust the 
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reduction so as the final thickness of the 
product becomes 4.0 mm 

A/*6 = 0.15(mm) r6 = 55.6(%) F6 = 4238.6(N) 

Figure 7 shows the determining procedure of 
the forming condition and Table 2 shows the 
forming conditions that we determined. 

Estimation of this design system 

Under these conditions, a roll forming test was 
carried out and we estimated this design system 
by comparing it with the conventional forming 
condition (rn = 0.4 mm constant, Vn = 1.0 m/min 
constant). 

Figure 8 shows the relationship between the 
forming pressure and the reduction in thickness 
ratio and the relationship between the forming 

1 st stage     2nd stage 3rd stage 

Table 2. Forming condition 

 -«—'—■—^- ^ ' l_ 

Vi, Di, elo 
* 

1st 
stage 

(1) Fmax>Fi [n,Ahi, Vi,Di] 

—» Ahi, n 

(2) Eq.(18)        —♦ eh 

J 
V2 = (eh/ elo) Vi 

I 
2nd (1)   Fmax > F2 [ 12, Ah2, V2, D2] 

stage —•■ Ah2, X2 

(2) Eq.(18)        —► eb 

(3) Eq.(19)       —* el2* 

I 
V3 = (el2*/eh)V2 

1 
3rd (1) Fmax > F3 [ rs, Ahs, V3, Da] 

stage —■• Aha, rs 

(2) Eq.(18)       —► ela 

(3) Eq.(19)       —» els* 

1 
V4 = (eb*/ el2) Va 

Stage Thickness Reduction Roll 
(mm) (mm) velocity 

(m/min) 

0 9.00 — — 
1 7.15 1.85 1.00 
2 6.00 1.15 1.12 
3 5.20 0.80 1.23 
4 4.60 0.60 1.31 
5 4.15 0.45 1.38 
6 4.00 0.15 1.44 

load and the reduction in thickness ratio. In this 
figure, the calculated value of the forming pres- 
sure is equal to the experimental value. The 
experimental value and the calculated value of 
the forming load are the same. Moreover, the 
failure of the forming does not occur. So this 
method of determining the forming conditions 
seems to be correct. 

Figure 9 shows the relationship between the 
total strain of elongation and the reduction in 
thickness ratio, and Fig. 10 shows the relation- 
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Relation between elongation of the longitudinal 
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ship between the total strain in flange height 
and the reduction in thickness ratio. In these 
figures, compared with the conventional condi- 
tion, the elongation is smaller and the flange 
height is larger. So these forming conditions 
contribute to the deformation in the lateral 
direction (the formation of the flange). 

Under these conditions, the number of form- 
ing stages decreases from 12 to 6 (50% down), 
and the final flange height increases from 20.1 
to 24.6 mm (22.6% up). 

Consequently, we suggest these conditions 
(shown in Table 2) as the suitable conditions 
for forming products with a channel shaped 
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.     Reduction   = 0.4 [mm] 

Roll velocity = 1.0 [m/min] 
Fig. 10. Relation between flange height and reduction in 

thickness ratio. 

cross section and a parallel flange in a short 
production time. 

CONCLUSION 

In this paper, we have investigated the effects of 
the reduction, the roll velocity and the roller 
diameter on the forming pressure and the 
deformation behaviour of materials in order to 
clarify the factors which contribute to the defor- 
mation to the lateral direction and the short 
production time. Considering these results, we 
have devised a method of determining the 
forming conditions, the design system for form- 
ing products with a channel shaped cross 
section and a parallel flange in a short produc- 
tion time. 

Consequently, the following results are obtain- 
ed. 

1. The factors which contribute to the deforma- 
tion to the lateral direction are the 
increment of the roll velocity and the roller 
diameter. 

2. The factors which contribute to short pro- 
duction time are the increment of the 
reduction and the increment of the roll velo- 
city. 

3. The determining method of the forming con- 
dition which we construct in this paper is 
appropriate to form products with a channel 
shaped cross section and a parallel flange in 
a short production time. 
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A tape automated bonded (TAB) package is basically a composite 
structure. A three-dimensional finite element fracture analysis was 
performed to evaluate the effects of cracks in a TAB package under 
thermal cycling conditions. The lead-tin solder in the outer lead bond as 
well as the copper beam lead were taken as elasto-plastic materials. 
Interface cracks between the copper beam lead and the solder were 
included in the analysis. It was found that the prescribed cracks created 
new sources of stress concentrations, which are fairly mild. This result 
showed that the configuration of the outer lead bonds in TAB packages is 
generally resilient to thermal cycling, even with the presence of defects such 
as cracks. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Modern electronic assemblies consist of a few 
materials. For example, printed circuit boards 
(PCB) are usually constructed using FR-4 
woven glass fibre reinforced composite plates. 
Because of the nature of their construction, it is 
appropriate to analyse these assemblies as com- 
posite structures. For example, finite element 
analyses have been found useful in predicting 
thermal and mechanical stresses in a surface- 
mounted component on a PCB. 

Tape automated bonding (TAB) was intro- 
duced in the late 1960s, for packaging of 
electronic components. TAB uses a linear flex 
circuit beam lead pattern, in a polymer-metal 
cinematography format, to support, transport 
and perform lead interconnection to semicon- 
ductor chips. It has been considered as a viable 
means of reducing the cost of electronic compo- 
nents for the past 20 years. 

The value of TAB in semiconductor fabrica- 
tion has been established by its application by 
major international corporations. Wire-bonding 
assembly  limits  are  pushed  back while  pad 

density, interconnection integrity, performance, 
test, and reliability are enhanced, leading to 
lower overall costs and a better product. TAB 
has been applied to the even more demanding 
field of very large scale integration packaging 
for a variety of consumer, medical, security, 
computer, peripheral, telecommunication, auto- 
motive and aerospace products. A 
comprehensive overview of TAB technology is 
available in ref. [1]. 

A TAB package is typically composed of 
components made up from various materials 
with different thermal expansion characteristics. 
This produces thermal stresses in the package, 
even under normal power cycling of the elec- 
tronic equipment. On top of the thermal effects, 
the package is subjected to mounting con- 
straints, resulting in externally applied stresses 
to the package. Repeated duty cycling can cause 
fatigue at joints, at interfaces between different 
materials, at interconnection locations or cause 
delimitation of the FR-4 material. 

The outer leads in a TAB package are some- 
times connected to PCBs or directly to liquid 
crystal display glass panels. The joints at the 
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outer leads not only function as electric conduc- 
tion paths, but also act as important structural 
members of the whole package. Prediction of 
thermally induced stresses towards failure of 
these joints is therefore critical in assessing the 
reliability of the TAB package. Thermal stress 
analysis of multi-chip packages with a flip-chip 
configuration and a conduction cooling module 
has been carried out by Darveraux et al. [2]. 
The authors pointed out that even if a package 
design is optimized to be thermal-expansion 
matched under operating conditions, significant 
thermal stresses may develop during a transient. 
Lau et al. [3]. have performed a stress analysis 
for a TAB package with a 48-lead chip. Ther- 
mally induced stresses have been calculated and 
critical components more prone to fatigue 
failure have been identified in this paper. Jog et 
al. [4] have performed a three-dimensional 
(3-D) thermal stress and strain analysis of a 
TAB package subjected to accelerated thermal 
cycling. Transient temperature, stress and strain 
distributions have been obtained in the package 
see also ref [5]. 

It is well known that undetectable defects 
such as voids may exist in all electronic connec- 
tions. This is no exception to TAB joints. It is 
therefore important to analyse the problem of 
TAB with built-in defects. 

In this paper, a 3-D stress and strain analysis 
was been carried out by including an interface 
crack between the outer lead and solder in the 
TAB package. Thermal stresses and strains 
have been obtained. 

FORMULATION 

Generally the theory of uncoupled thermo- 
mechanics is used to analyse the temperature 
and thermal stresses in the TAB package. It 
means that the interaction between strain and 
temperature is ignored and the effects of 
change in dimension of the package on tem- 
perature distribution are negligible. The 
transient energy conservation equation govern- 
ing the 3-D temperature distribution in a TAB 
assembly is 

67/ 
pC =V(KVT)+W 

dt (1) 

the temperature and W is the heat-generation 
rate. 

The resulting temperature distribution is 
employed in the following simultaneous govern- 
ing equations to get the stress and the strain 
fields in the TAB package. The stress equili- 
brium is given by 

°UJ = 0 (2) 
The constitutive equation for an isotropic linear 
elastic solid and plastic solid including thermal 
strain may be written as 

{v} = [Ce]{e)-[Ce]{ocKT-T0) (3) 

{da} = [Cep\{de}-[Cep]{<x}dT (4) 

The strain-displacement relations are 

1 
eu=-(uiJ+ujJ) (5) 

where p is the density, C is the specific heat, K 
is the thermal conductivity of the material, T is 

where T0 is the reference temperature, atj is the 
components of the stress tensor, Etj is the com- 
ponent of the strain tensor, a is the coefficient 
of thermal expansion, ut is the components of 
the displacement vector, [Ce] is the elastic 
matrix and [Cep] is the plastic matrix. 

Details on the theory of uncoupled thermo- 
mechanics can be found in refs [6] and [7]. 

The temperature distribution in the electron- 
ics package is calculated by solving the heat 
conduction equation (1) with the prescribed 
initial and boundary conditions. Displacements, 
strains and stresses everywhere inside the pack- 
age are then determined by solving eqns (2)-(5) 
with the prescribed stress-displacement bound- 
ary conditions and with the calculated 
temperature distribution. 

The determination of temperature distribu- 
tion and stresses in TAB packaging is not an 
easy task. The finite element method [6,7] is 
one of the best candidates for obtaining 
numerical results for the temperature distribu- 
tion and the thermal stresses in TAB package. 
We use a finite element code, ABAQUS [8], to 
calculate the temperature and stresses in the 
TAB package. 

DESCRIPTION OF THE PROBLEM 

A thin slice of a TAB package was analysed in 
ref. [3]. In the present investigation, a similar 
model as that given in ref. [3] has been made 
and is shown in Fig. 1. Figure 2 shows the pack- 
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age in the x-y plane. It can be seen from this 
figure that the TAB package consists of six 
major parts: the silicon chip, the gold bump, the 

polyimide ring, the copper beam lead, the lead- 
tin solder layer, and the FR-4 PCB. The 
dimensions of the various components have 

Fig. 1. A section of a TAB package. 

polyimide ring 

Silicon chip inner lead bond copper beam lead 

L 

printed circuit board 

solder layer 
(outer lead bond) 

Fig. 2. The TAB package in the x-y plane. 
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Table 1. Material properties of the TAB package 
Material 

,p C K a E V 
(1U g/mm ) (J/gK) (W/mm K) (10"6/K) (MPa) 

Pb-Sn solder 8.41 0.1498 0.04979 21.0 10,340 0.40 
Copper 8.94 0.3815 0.3978 17.0 121,000 0.35 
Polyimide 1.53 1.09 0.00012 20.0 4140 0.30 
Gold 19.3 0.1292 0.3151 15.0 78,000 0.30 
Silicon 2.33 0.7071 0.1481 2.9 131,600 0.30 
FR-4 3.0 0.1 0.000262 15.0 11,000 0.28 

been given in ref. [3]. The physical and mechan- 
ical properties for various materials in the TAB 
package are given in Table 1 [9]. 

For the present analysis, the silicon, the gold, 
polyimide and FR-4 are assumed to be linear- 
elastic. The copper and solder are assumed to 
be isotropic and under isotropic and elasto-plas- 
tic strain-hardening rule. The strain-hardening 
equation used to describe the elasto-plastic 
stress-strain behaviour is 

s= — + ■ 
E ßE (6) 

where ay is the material yield stress and ß is the 
strain-hardening parameter. For copper, 
(7, = 62 MPa, ß = 0.0075. For lead-tin solder, 
oy = 8.27 MPa and ß = 0.1. 

To simulate the effects due to temperature 
cycling, it is assumed that the TAB package is 
subjected to temperature variation from -55 to 
125°C. Residual stresses due to soldering and 
other manufacturing processes are not con- 
sidered. That is, the package is assumed to be 
stress-free at the starting temperature. Defects 
in the OLB solder joint are included in the 
form of interface edge and inner cracks. The 
finite element model contained 2796 3-D iso- 
parametric elements. Each element has 20 
nodal points. A total of 14,641 nodes were used 
in the model. 

RESULTS AND DISCUSSION 

Three cases were analysed in this paper. In 
order to compare the results of the present 
analysis with those of previous investigators, the 
configuration of the present TAB package is 
taken as that in ref. [3]. In case 1 of the analy- 
sis, there is no interface crack in the TAB 
package. The finite element mesh for this case 

is shown in Fig. 1. It can be seen in this figure 
that a thin slice of the whole TAB package is 
modelled. In case 2, an interface edge crack 
between the solder and the beam lead at the 
OLB is included. This crack starts at the left- 
hand end of the solder layer shown in Fig. 2. 
The length of this crack is 0.031 mm. In case 3, 
a different interface crack between the solder 
and the beam lead at the OLB is included. This 
crack starts at a position 0.046 mm from the 
left-hand end of the solder layer, and has a 
crack length of 0.146 mm. Apart from the tem- 
perature variation from -55 to 125°C, no 
external forces are imposed on the package. 

Figure 3 shows the 3-D deformation pattern 
of the package in case 1. By inspecting the 
deformation in close detail it was found that the 
chip was displaced further upwards away from 
the PCB, and that the beam lead together with 
the polyimide ring sagged down in the middle 
position. The deformation patterns in cases 2 
and 3 were very similar to that in case 1 so they 
are not shown. However, by inspecting the 
deformation pattern at and near the crack, it 
was found that, as a result of thermal cycling, 
the cracks in both cases of crack inclusion in the 
model had been opened. This phenomenon is 
shown in Fig. 4, where the vertical displace- 
ments along the length of the OLB solder joint 
around the crack positions are given for all 
three cases. In general, the vertical displace- 
ment starts from a high value, gradually 
decreases along the solder length to a certain 
minimum value, and gradually increases again 
further along the solder length. In particular, 
the magnitude of vertical displacement is 
highest for case 2, followed by that in case 1, 
and lowest for that in case 3. The largest crack 
opening displacement occurred at the left-hand 
end of the solder layer for case 2, and has a 
value of 0.055 ^m. For case 3, the largest crack 
opening displacement is 0.025 [im and occurred 
about half way along the crack length. 



Effects of cracks on thermal stress and strain of a TAB package 529 

DISPLACEMENT MAGNIFICATION FACTOR = 57. 

TIME COMPLETED IN THIS STEP 1.000E+06 TOTAL ACCUMULATED TIME 

ABAQUS VERSION:  5.4-1 

STEP 1 INCREMENT 77 

Fig. 3. Deformation of the TAB package. 

Von Mises stresses in the TAB package were 
obtained for all cases. The stress distribution 
obtained in the package for case 1 is generally 
comparable to that in ref. [3]. It is clear that the 
main concern of the present investigation is at 
the OLB connection. Therefore von Mises 
stresses are only presented in this area. In par- 
ticular, von Mises stress distributions are 
presented at the beam lead-solder interface for 
the beam lead and the solder. Figure 5 shows 
the variation of the von Mises stress for the 
solder at the beam lead-solder interface along 
the solder length. It can be seen in case 1 of the 

analysis, i.e. without any inclusion of cracks, the 
magnitude of the von Mises stress is about 
11.5 MPa in the main part of the solder. Again, 
this is comparable to the stresses obtained in 
ref. [3]. There exists a small stress peak near the 
left-hand end of the solder. This general stress 
distribution pattern is altered by the inclusion 
of cracks. As shown in the stress distribution for 
case 2 in Fig. 5, the stress peak now occurs very 
close to the prescribed crack tip. Stress increase 
at both crack tips was found in case 3. Since the 
position of the crack nearly coincides with the 
position of peak stress where no crack was 

0.1 0.15 0.2 0.25 

Distance from solder left end (mm) 

0.35 

Fig. 4. Vertical displacement at the beam lead-solder 
interface. 

10 

0.05 0.3 0.35 0.1 0.15 0.2 0.25 

Distance from solder left end (mm) 

Fig. 5. Von Mises stress distribution in the solder at the 
beam lead-solder interface. 
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64.35 

0.35 

Fig. 

0 0.05 0.1 0.15 0.2 0.25 0.3 

Distance from solder left end (mm) 

6. Von Mises stress distribution in the beam lead at 
the beam lead-solder interface. 

analysis. The uncoupled thermomechanics for- 
mulation was used. The temperature 
distribution in the package was obtained, 
followed by the solution of stress and strain 
fields using the temperature distribution. It was 
found that the existence of cracks created addi- 
tional, but mild, stress concentrations. This 
showed that the configuration of the OLB in 
TAB packages is generally resilient to thermal 
cycling conditions, even with the presence of 
defects such as cracks. 

present, the amount of stress increase in case 3 
is fairly high. 

The von Mises stress distribution for the 
beam lead at the beam lead-solder interface 
along the solder length is presented in Fig. 6. 
The stress level is about 64MPa for all cases 
and is about the same as that in ref. [3]. The 
variation in stress along the solder length can 
be observed to be very similar to that in Fig. 5. 

The present analysis has demonstrated that 
the inclusion of cracks at the beam lead-solder 
interface has created sources of stress concen- 
trations. However, when comparing the present 
magnitude of stress concentrations with that 
created in similar studies with crack inclusions 
for surface mount assemblies, the present mag- 
nitude is not high, and should not be a concern. 
It should be noted though, that the inclusion of 
cracks at the solder-PCB interface is expected 
to produce slightly higher stress concentrations 
than those in the present investigation. 

CONCLUSIONS 

The effects of cracks in a TAB package under 
thermal cycling condition were evaluated by a 
3-D finite element fracture analysis. The lead- 
tin solder in the OLB as well as the copper 
beam lead were taken as elasto-plastic 
materials. Interface cracks between the copper 
beam lead and the solder were included in the 

ACKNOWLEDGEMENTS 

This work was supported by the Competitive 
Earmarked Research Grant of the University 
Grants Committee of Hong Kong Strategic 
through grant number 9040161. 

REFERENCES 

1. Lau, J. H., Erasmus, S. J. and Rice, D. W., Overview of 
TAB technology. In Electronics Materials Handbook, 
Vol. 1, Packaging, ASM International, 1989, pp. 
274-296. 

2. Darveraux, R., Turlik, I., Hwang, L.T. and Reisman, 
A., Thermal stress analysis of a multichip package 
design. IEEE Trans Components, Hybrids, Manuf. Tech- 
no!., 1989, CHMT-12, (4), 663-672. 

3. Lau, J.H., Rice, D.W. and Harkings, CG., Thermal 
stress analysis of TAB packages and interconnections. 
IEEE Trans Components, Hybrids, Manuf. Technol, 
1990, CHMT-13, (1), 182-187. 

4. Jog, M.A., Cohen, I.M. and Ayyaswamy, P.S., Analysis 
and simulation of thermal transients and resultant 
stresses and strains in TAB packaging. Trans ASME, J. 
Electronic Packaging, 1993,115, 34-38. 

5. Lau, J.H. and Harkins, CG., Thermal-stress analysis of 
SOIC packages and interconnections. IEEE Trans. 
Components, Hybrids, Manuf. Technol, 1988, CHMT-11 
(4), 380-389. 

6. Lau, J. H., Thermal Stress and Strain in Microelectronics 
Packaging. Van Norstrand Reinhold, 1993. 

7. Hsu, T. R., The Finite Element Method in Thermo- 
mechanics. Allen & Unwin, 1986. 

8. ABAQUS User's Manual, Hibbitt, Karlsson & Sorensen 
Inc., Providence, RI, 1993. 

9. King, J. A., Material Handbook for Hybrid Microelec- 
tronics. Artech House, Boston, 1988. 



Composite Structures Vol. 38, No. 1-4, pp. 531-539, 1997 
© 1997 Published by Elsevier Science Ltd. All rights reserved 

Printed in Great Britain 
0263-8223/97/$17.00 + 0.00 

ELSEVIER PI I:S0263-8223(97)00089-5 

Development of a composite boring bar 

Shuzo Nagano, Takayuki Koizumi, Toru Fujii, Nobutaka Tsujiuchi, Hiroki Ueda 
& Kobe Steel 

Doshisha University, Tanabe, Kyoto 610-03, Japan 

A composite boring bar, whose stability against chattering is superior to not 
only conventional steel bars but also cemented carbide bars, has recently 
been developed. The main material of this composite bar is pitch-based 
carbon fiber reinforced plastic. Carbon fibers aligned unidirectionally in the 
longitudinal direction of the bars give high bending stiffness. Four types of 
bar having different shaped steel cores were designed by FEM analysis and 
produced for actual testing. A bar having a cross-shaped steel core shows 
the best cutting capability and stability amongst all bars designed. This bar 
can be used when the length (L) and diameter (£>) ratio LID is 7 or even 
at severe conditions while a cemented carbide bar cannot control the 
chatter vibration even if the LID is less than 6. Emphasis should be placed 
on the fact that the cross-shaped steel core can increase the bending 
stiffness of the bar in both tangential and radial directions by constraining 
the shear deformation of the fiber layers without sacrificing the increase of 
resonant frequencies. © 1997 Published by Elsevier Science Ltd. 

INTRODUCTION 

When cutting long holes into the internal sur- 
face of machine components, chattering 
frequently occurs due to the low bending stiff- 
ness and low damping ability of the boring bar 
when the arm of the bar is long. Once the chat- 
tering occurs, the roughness of the surface of 
the machine components becomes unacceptable 
to any standard, including the dimensional 
accuracy, and the cutting edge is often broken. 
In the case of conventional steel boring bars, it 
becomes impractical to cut any metal compo- 
nents due to chattering when the ratio of bar 
length L to bar diameter D {LID) is larger than 
4-5 [1]. Therefore, bars made of cemented car- 
bide are usually used when LID is 4-6. When 
LID exceeds 5-6, specially devised boring bars 
having anti-vibration mechanisms are some- 
times required [2,3]. However, these are 
expensive. 

Chattering during cutting occurs as self 
excited vibration. According to the chattering 
theories based on the 1-DOF vibration system, 
the bending stiffness and resonant frequencies 
of boring bars govern chattering as well as the 
damping ability of the bars. In order to increase 

the stability against chattering for boring bars, 
one must use materials which have a high stiff- 
ness but low density. Carbon fiber reinforced 
plastics (CFRP) could meet such requirements 
if high modulus fibers were to be used. Not only 
high stiffness and high resonant frequencies, but 
also high damping can be expected because of 
the polymer matrix of CFRP [4]. 

The objective of the present work is to 
develop a new boring bar using CFRP which 
can be used at a wide range of LID over 6. How 
to design the bar and its performance are dis- 
cussed and shown in this paper. 

DESIGN OF CFRP BORING BAR 

Chattering 

Vibration during operation is classified as 
forced vibration and self excited vibration. 
Chattering of boring bars during internal 
cutting is due to the self excited vibrations 
having a regenerative feedback, generally called 
regenerative chattering. In practice, boring bars 
are designed to be stable against regenerative 
chattering.   Figure   1   shows  the  regenerative 
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Workpiece Horizontal 

Fig. 1. Merritt's model. 

chattering model based on the 1-DOF vibration 
system gived by Merritt [5]. Considering outer 
cutting in this model, the short tool is fixed 
while the workpiece is sustained by a spring and 
a damper. For inner hole cutting using a boring 
bar, a workpiece is large enough to be fixed 
while the bar should be represented by a mass- 
spring-damper combination as shown in Fig. 2. 
In the figure, F1 is the cutting force acting in 
the tangential direction. Due to this force, the 
bar is bent in the vertical plane. FH is the radial 
force acting in the radial direction of the hole 
(radial force is known as shear force in outer 
cutting). This force causes the bar to bend in 
the horizontal plane. Figure 3 illustrates how 
the regenerative effect due to former cutting 
traces occurs. 

Actual cutting depth u(t) at time t is defined 
as 

u{t) = uQ-y(t)+ny(t-T) (1) 

where w0 is the initial cutting depth: y is the 
displacement of the cutting edge in the direc- 
tion of the radial force: \i is all overlap ratio of 
the cutting edge determined by cutting edge 
shape, cutting depth and feed: p governs the 
magnitude of the regenerative effect; T is a 
periodic time for the workpiece revolution. The 

Boring-Bar 

Workpiece/ 

Fig. 2. Modified model. 

Vertical Tool moving line 
Machined surface of 
1 revorution before 

Fig. 3. Conceptional illustration of the regenerative effect. 

cutting force F is a function of u(t) and is given 
as 

F(t) = kc(u)t (2) 

where kc is a cutting stiffness varying according 
to cutting conditions such as workpiece 
material, cutting speed, feed and stiffiness of 
the lathe. Based on the 1-DOF system shown in 
Fig. 2 the governing equation for a boring bar is 
given by 

F(t) = my(t)+cy(t)+ky(t) (3) 

where m is an equivalent mass of the boring 
bar, c and k are an equivalent damping coeffi- 
cient and an equivalent stiffness of the bar, 
respectively. By solving eqn (3) in conjunction 
with eqns (1) and (2), it is obvious that high 
equivalent stiffness and damping ability give 
high chattering stability to boring bars. 

It is known that the frequency of chattering is 
almost equal to the first resonant frequency of a 
boring bar. From eqn (4), if the maximum 
acceleration of a cutting edge, a, is constant, the 
displacement of the cutting edge ö decreases 
with increasing chattering frequency/ 

l«Lax=l(27r/)2«5sin(27r/r)|r (4) 

Equation (5) shows the well-known relation- 
ship between/, m and k 

(5) 

So, / increases with decreasing m. Thus, light- 
weight  bars  have  the  advantage  of stability 
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against chattering. In this point CFRP is one of 
most attractive materials for a boring bar. 

Carbon fibers 

The previous section reveals that high stiffness 
k, high damping c and small equivalent mass m 
give a high stability of the bar for regenerative 
chattering of the system. These qualities are 
also preferable for anti-chattering. Therefore, 
high stiffiness and light weight CFRP is an 
attractive material for boring bars. Today, 
graphite/epoxy composites are widely applied 
not only on aero or astronomic structures but 
also general products such as sports goods. For 
such applications, virtually only pan-based fibers 
are used. The cost of these fibers is reasonable 
but the Young's moduli of such fibers are not 
enough to give bars enough bending stiffness as 
compared to conventional steel bars. The 
Young's modulus of CFRP applied to boring 
bars must he higher than 200 GPa (the Young's 
modulus of steel). The longitudinal Young's 
modulus EL of CFRP can be estimated by the 
law of mixtures as follows when fibers are 
aligned unidirectionally. 

EL = EFVF+Em{\ - VF) = EFVF (6) 

where EF and Em are the Young's moduli of the 
fibers and the matrix, respectively; VF is a fiber 
volume content. Usually, Em is much lower than 
EF and VF is higher than 50%. Therefore 
Em(l-VF) in the above equation is negligible. 
According to eqn (6), EF must be higher than 
400 GPa which implies the same stiffness as 
steel bars. Pitch-based carbon fiber, whose 
Young's modulus is higher than 700 GPa is now 
commercially available. Considering the varia- 
tion of material data, pitch-based carbon fibers 
which has a nominal Young's modulus of 
700 GPa was adopted for the prototypes of 
CFRI boring bars. The average fiber volume 
content was about 55% and the observed 
Young's modulus of CFRP was 300-350 GPa. 

Construction of boring bars 

The diameter of the boring bar is to be 32 mm, 
considering fabrication and the standard tool 
size. As the cutting head, which holds a cutting 
tip, cannot be attached directly to the CFRP 
bar, a steel adapter was developed. Figure 4 

"^jfr~   mP^ 
4 Cutting head Steel 

3 Adhession Epoxy 

2 Adapter Steel 

1 Rod CFRP 

Steel Adapter and CFRP rod are assembled 
by adhesslve and cutting head is screwed 
on adapter. 

Fig. 4. Total assembly of the CFRP boring bars. 

shows the schematic view of the CFRP boring 
bars manufactured by way of trial. The adapter 
whose inner hole was tapered, was bonded to 
the bar using an epoxy adhesive. The commer- 
cially available cutting head is fixed to this 
adapter using three bolts. When the CFRP bor- 
ing bars are fixed to a lathe, a specially devised 
bar holder is used because the bars cannot be 
subjected to concentrated loads given by 
standard fastening bolts. For sufficient fixing of 
boring bars made from unidirectional CFRP, 
four types of different shapes of steel core were 
considered. 

Type P 
In the case of a Type P boring bar, a steel pipe 
was used as the center core of the bar (as 
shown in Fig. 5(a)) since lubricant is often used 
during the cutting operation. The outer diam- 
eter of the pipe is 15 mm while inner diameter 
is 8 mm. This steel pipe core is also useful to 
give an accurate diameter of the bar by machin- 
ing after fabricating the bar in an auto clave 
using unidirectional prepreg. 

The effect of shear deformation is appreci- 
able when the cantilever beam bar is relatively 
short since the shear modulus of CFRP is over 
100 times lower than the longitudinal modulus 
of CFRP. It is expected that this small center 
core cannot restrict shear deformation due to 
the cutting and radial forces. 

Type V 
In order to improve the bending stiffness, addi- 
tional deformation due to shear deformation of 
CFRP layers should be reduced. For such a 
requirement, different types of steel core were 
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considered. Near the neutral axis of a beam, the 
shear stress becomes high when the beam is 
subjected to not only a bending moment but 
also a shear force. Therefore, if a material with 
a high shear rigidity is used as the center plate 
core of the composite bar, the total deflection 
of the bar can be reduced. Figure 5(b) shows a 
Type V CFRP composite boring bar with a 
2 mm center plate core embedded in the verti- 

CFRP 

Steel core 
(d) Type C 

Fig. 5. Constructions of CFRP boring bars, (a) Type P. (b) 
Type V. (c) Type H. (d) Type C. 

cal plane. The vertical plate is effective for the 
shear deformation due to cutting force. 

Type H 
Type H CFRP composite boring bar has a 
2 mm center plate core horizontally embedded. 
The horizontal plate is effective for shear defor- 
mation due to the radial force. Usually, the 
radial force is smaller than the cutting force. 
Figure 5(c) shows Type H bar. This bar is made 
by rotating the Type V bar on its longitudinal 
axis by 90°. 

Type C 
Type V and Type H bars can constrain only 
unidirectional shear deformation. However, two 
plates should be used in both directions as the 
core of a composite bar if both forces are rela- 
tively large. For such a case, a cross-shaped 
steel core as shown in Fig. 5(d) must be effect- 
ive even if the total weight of the bar is 
sacrificed to some extent. 

FEM ANALYSIS 

The bending stiffness and the first resonant fre- 
quency of all types of CFRP boring bars were 
calculated by FEM analysis using SDRC 
1-DEAS. 

For a Type C boring bar, the stiffness is esti- 
mated when the thickness of the steel core 
varies. Figure 6 shows FE divisions for all bor- 
ing bars. Both steel and cemented carbide 
boring bars are also analyzed using the same FE 
division of Type C. Solid elements having eight 
nodes were used. Each node has three degrees 
of translation. The material data for calculation 
for composite bars are given in Table 1. These 
values were estimated by material test. Bound- 
ary conditions of the FE model is shown in 
Fig. 7. The overhang of the boring bars is 
224 mm and the diameter of the bars is 32 mm 
{LID = 7). All degrees of freedom of the sur- 
face nodes contacting the internal surface of the 
boring bar holder are constrained, as shown by 
the gray area in Fig. 7. 

Bending stiffness 

The bending stiffness of the composite bars is 
calculated by concentrating a force on the node 
located at the free edge of the boring bar when 
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(a) Type P CFRP boring bar (b) Type V CFRP boring bar 

(c) Type H CFRP boring bar (d) Type C CFRP boring bar 

Fig. 6. FE divisions of CFRP boring bars, (a) Type P 
CFRP boring bar. (b) Type V CFRP boring bar. (c) Type 

H CFRP boring bar. (d) Type C CFRP boring bar. 

set-up as a cantilever beam in the vertical direc- 
tion. 

Figure 8 shows a comparison of bending stiff- 
ness in the direction of cutting force among 

Table 1. Material properties of the CFRP used in FEM 
analysis 

Young's modulus 
(GPa) 

Ex Ey Ez 

6.85 6.85 320 

Shearing modulus 
(GPa) 

G*y Gyz Gz* 

0.533 2.54 2.54 

Poisson ratio v*y V Vzv 

0.23 0.004 0.004 

Boring bar holder 

Cuutlng head 

• Type V boring bar 

□ Type H boring bar 

Fig. 
core 

0     12     3    4      5     6      7 
Thickness of the steel part of 
the CFRP boring bars, mm 

8. Relationship between the thickness of the steel 
of the CFRP boring bars and bending stiffness {LI 

D = 7). 

Fig. 7. Boundary conditions of the FEM models. 

CFRP, steel and cemented carbide bars at LI 
D = l. The variation of bending stiffness with 
respect to core thickness is also given for a 
Type C boring bar. The ordinate is normalized 
by that of the steel boring bar. 

If a whole bar is made of CFRP instead of 
steel, the tensile stiffness or bending stiffness 
under a pure bending moment would be 160% 
(320 GPa) higher than those of steel. However, 
the bending stiffness under both bending 
moment and shear force becomes 87% of that 
for the steel boring bar. Use of CFRP does not 
always increase the bending stiffness of canti- 
lever beam bars. The reason of this low stiffness 
was explained in the above section. From Fig. 8, 
even a 1 mm thick cross-shaped steel core is 
effective to constrain shear deformation. Up to 
6 mm, the bending stiffness of the composite 
bar increases with increasing thickness. Shear 
deformation is much constrained with increas- 
ing thickness of the steel core, but a thicker 
core also reduces the bending stiffness more, 
due to the low Young's modulus of steel. The 
maximum increase in bending stiffness is 
around 20% using CFRP. The Type H com- 
bination has a lower bending stiffness than that 
of the steel bar since the steel plate core does 
not constrain the shear deformation of CFRP 
layers in the Y-Z plane. For a Type P boring 
bar, the bending stiffness is only 4% as high as 
that of the steel bar. The difference in bending 
stiffness between a Type P bar and steel 
becomes less with a decrease of LID. Finally, 
the bending stiffness for a Type P bar becomes 
lower than that of the steel bar. The Type V bar 
has a similar stiffness to Type C bar since the 
core plate vertically aligned is effective in con- 
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straining shear deformation of CFRP layers in 
the Y-Z plane. On the other hand, the cemen- 
ted carbide boring bar has a bending stiffness 
2.37 times higher than that of the steel boring 
bar. One resolution to improve the bending 
stiffness is to use carbon fibers with a higher 
Young's modulus. Although some fibers have 
Young's modulus higher than 1000 GPa, they 
are not yet commercially available. 

Resonant frequency 

Modal analysis of the models was also con- 
ducted to estimate the first resonant frequencies 
of the bars (bending mode I). In Fig. 9, a com- 
parison of the first resonant frequency for 
CFRP, steel and cemented carbide bars at LI 
D = l is given. The variation of the first 
resonant frequency with respect to core thick- 
ness is also given for the Type C boring bar. 
The ordinate is normalized by that of the steel 
boring bar as well as in Fig. 9. 

In contrast to bending stiffness, the resonant 
frequencies of CFRP boring bars are always 
higher than that for the steel bar. They are also 
comparable to the resonant frequency of the 
cemented carbide bar because the composite 
bars are one third to one quarter lighter than 
the steel bar. The cemented carbide bar has a 
higher bending stiffness but it is extremely 
heavy. From a viewpoint of resonant frequen- 
cies, high performance of CFRP boring bar can 
be expected. It is obvious that the first resonant 
frequency increases once with increasing in 
thickness and then it decreases from the Type C 
bar result. The maximum increase in resonant 
frequency is about 30% at 2 mm thickness while 

for bending stiffness, the maximum gain is 
obtained at 6-7 mm. In the present study, the 
thickness of all steel plate cores is 2 mm as it is 
expected that the resonant frequency is effective 
for the chattering stability. 

CUTTING EXPERIMENTS 

Cutting experiments were conducted to evaluate 
cutting performance and stability against chat- 
tering for CFRP bars (Type P, Type V, Type C, 
Type H and Type C) as well as conventional 
steel and cemented carbide bars. The diameter 
of all bars is 32 mm. A conventional lathe (not 
a NC lathe) was used for the tests. Here, all 
boring bars were fixed using the specially 
devised bar holder to provide equal conditions 
of holding in the tool fixture as shown in 
Fig. 10. An overhang of 224 mm gives an LI 
D = l. Thick cylindrical pipes (inner diameter: 
60 mm, outer diameter: 100 mm) whose 
material was mild steel were used as a work- 
piece for the tests. Before the cutting 
experiment, the surface of the workpiece was 
smoothed to give a constant testing condition. 
Two tiny accelerometers were attached on the 
cutting head near the cutting edge to measure 
accelerations in the tangential and radial direc- 
tions during the cutting operation. Cutting 
conditions are given in Table 2. 

As noise occurs and chatter marks can be 
distinguished on the cutting surface of the 
workpiece when chattering occurs, it is easy to 
identify whether chattering has occurred or not. 

RESULTS AND DISCUSSION 

£-: i.4o 

c 

1.30 

1.20 Ö 

■p   1.10 

1.00 

»   0.90 

Cemented carbide 
oring bar 

Type P boring bar 

D 

Steel boring bar 

• Type V boring bar 

□ Type H boring bar 

Fig. 
core 

012345678 
Thickness of the steel part of 
the CFRP boring bars, mm 

9. Relationship between the thickness of the steel 
of the CFRP boring bars and first resonant frequency 

{LID = 7). 

Cutting limits for all boring bars are plotted on 
a feed-cutting depth map (Fig. 11) at LID = 7. 

Workpiece Boring bar 
holder 

Screw of 
tool post 

Fig. 10. System for cutting test. 
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Table 2. Cutting conditions in the measurement 

Revolution Cutting Feed 
(rpm) depth 

(mm) 
(mm/rev) 

630 0.4 0.3 
0.2 

0.2 0.3 
0.2 

500 0.4 0.3 
0.2 

0.2 0.3 
0.2 

As before mentioned, the steel bar was not able 
to cut without chattering when the LID value 
was greater than 4. Even when LID was smaller 
than 4, it was difficult for the steel bar to cut 
without chattering under several conditions. No 
marks in the figure mean that smooth cutting 
without chattering was not attained for the 
corresponding bars. Therefore, a mark for the 
steel bar cannot be found in this figure. It is 
found that the Type C CFRP bar has excellent 
performance. Although the cemented carbide 
sometimes attained smooth cutting at lighter 
conditions than those for the Type C bar, even 
at LID = 7, it was not always stable. Once chat- 
tering occurred, it did not stop for the 
cemented carbide bar while the Type C CFRP 
bar was always stable. Good stability and 
cutting performance could not be obtained for 
both Types V and H bars. In particular, the 
Type V bar shows a high bending stiffness 
almost equal to the Type C bar and the first 
resonant frequency is higher than that of the 
Type C bar in the cutting force direction. How- 
ever, the bending stiffness of the Type V bar in 
the radial force direction is equal to the bend- 
ing stiffness of the Type H bar and it is much 
lower than that of the Type C bar. It is shown 
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<D Type V boring bar 
0 Type H boring bar 
O Type P boring bar 
© Cemented carbide 

boring bar 
O Steel boring bar 

0.1      0.2     0.3     0.4 No mark means 
impossible to cutting 

Feed, mm/rev 
Fig. 11. Cutting limit of the boring bars. 

that the bending stiffness in the radial force 
direction is also as important as the bending 
stiffness in the cutting force direction. 

Figures 12 and 13 show the dynamic response 
for Type C CFRP and steel bars during cutting 
operation. Parts (a) are the acceleration-time 
history plots, parts (b) are the power spectra for 
trace (a) and parts (c) are the Lissajious plots 
of acceleration in X and Y directions. It must be 
noted that the surface of the workpiece cut by 
the steel boring bar was extremely rough and 
chattering occurred. Even for the Type C bar, 
oscillation occurred but the magnitude of oscil- 
lation is much smaller than that for the steel 
bar. The period of the main oscillation corre- 
sponds to the first resonant frequency for both 
cases. 

Here, the maximum acceleration of Type C 
and steel bars are 11 and 280 G and the fre- 
quency of oscillation for the bars are 500 and 
375 Hz, respectively. Maximum displacement of 
the cutting edge of the Type C and steel bars 
are calculated as 0.011 and 0.43 mm, respec- 
tively, from eqn (4). It is found that the 
machined surface cut by the Type C bar is 
acceptable for the roughness and dimensional 
accuracy. However, it is realized that the maxi- 
mum displacement of the cutting edge of the 
steel bar is larger than cutting depth and the 
cutting edge was beating the surface of the 
workpiece. In this point, the advantage for chat- 
tering stability of the Type C bar is obvious. 

Although the Type C bar has a high cutting 
ability and chattering stability as above, it has 
no problem entirely. From Fig. 12(b) and 
Fig. 13(b), the resonant frequency for the Type 
C bar is higher than that for the steel bar. How- 
ever, an increase of the resonant frequency is 
not remarkable, as expected in Fig. 9. No 
apparent reasons could be found for this dis- 
crepancy. Holding CFRP boring bars tightly is a 
problem and this could be one of reasons for 
the above discrepancy. The method for holding 
the bar must be considered in the near future as 
well as how to attach the cutting head to the 
bar. Surface protection for lubricant and tips is 
also one of issues to be considered for practical 
use. 

CONCLUSIONS 

1. A   boring   bar   made   from   unidirectional 
CFRP which has a high stability against chat- 
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Fig. 12. Dynamic response for the Type C CFRP boring 
bar (630 rpm, cutting depth = 0.4 mm, feed = 0.3 mm/rev): 
(a) acceleration-time history, (b) power spectrum for (a), 

(c) Lissajious plot of acceleration in X and Y directions. 

tering under severe conditions at LID = 7 
was successfully developed. 
The   cross-shaped   steel   core   embedded 
CFRP boring bar can constrain shear defor- 
mation and improves the equivalent bending 
stiffness of the boring bar. 
An    optimized    cross-shaped    steel    core 
improves the dynamic characteristics of the 
total structure of the boring bar. 
Compared with the cemented carbide boring 
bar, chattering can be completely suppressed, 
even in the range of LID ratios greater than 
7. 
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A description is given of the PASSAS finite strip software package for 
predicting the buckling stresses and natural frequencies of composite 
laminated prismatic plate and shell structures of complicated cross-section 
and general lamination. The basic equations underpinning the development 
of the properties of a transversely curved finite strip are presented in the 
context of first-order shear-deformation shell theory and, by reduction, in 
the context of thin shell theory. The B-spline finite strip method is used and 
this enables the specification of a wide range of end conditions. The major 
features of the software package are described, and these include a range of 
strip models, the use of multi-level substructuring techniques across the 
structure, including superstrips, and the use of an efficient and reliable 
solution procedure. Results are presented of the application of PASSAS to 
the solution of a small number of shell buckling and vibration problems. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

Plate and shell structures made of fibre-rein- 
forced composite laminated material are used 
frequently as major load-bearing components in 
a number of branches of engineering, including 
aeronautical and marine engineering. The struc- 
tures are often prismatic, being formed of flat 
and/or transversely circularly curved component 
plates which are rigidly connected together at 
their longitudinal edges to form structures of 
arbitrary cross-sections, such as stiffened panels, 
box sections, etc. In the design of such struc- 
tures there is often a requirement to predict 
accurately their buckling stresses or their 
natural frequencies of vibration. 

The finite strip method is an efficient and 
very useful method for the analysis of compli- 

cated prismatic plate and shell structures, 
particularly for eigenvalue-type problems. The 
method exists in a number of variants, the most 
important of which at present are the semi-ana- 
lytical finite strip method (or S-a FSM), which 
was developed first (see Cheung [1]), and the 
spline finite strip method (or spline FSM) intro- 
duced more recently [2]. A detailed description 
of the use of the two variants in predicting the 
buckling and post-buckling behaviour of flat 
plate structures has been given recently by 
Dawe [3] wherein many relevant publications 
are cited. The FSM has been developed in the 
context of shear-deformation theory as well as 
in the context of classical or thin theory [3]. 
Less development has been reported in the 
realm of the analysis of shell structures but 
Mohd & Dawe [4,5] have described the use of 
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the S-a FSM in predicting buckling stresses and 
frequencies of composite laminated shell struc- 
tures. 

The S-a FSM is often a very appropriate pro- 
cedure for the analysis of prismatic structures 
but it does lack versatility in dealing with a 
range of end conditions, particularly when 
anisotropic materials are involved and/or when 
analysis is conducted in the context of thick 
plate or shell theory. The spline FSM can be 
applied much more generally, and for that 
reason the authors have developed the PASSAS 
software package [6] which incorporates the 
spline FSM and which is the focus of attention 
in this paper. The use of the spline FSM to 
predict the buckling stresses and frequencies of 
flat plates and plate structures has been 
described earlier by the authors [7,8]. In the 
present paper the scope of these studies is 
broadened considerably to include shell struc- 

tures. The developed capability allows for 
arbitrary lamination of component flat or 
curved plates and for an analysis to be con- 
ducted within the context of first-order 
shear-deformation plate/shell theory or of thin 
theory. The new spline capability incorporates 
all the advanced analysis features, such as multi- 
level substructuring, superstrips, solution 
procedure, etc., which have been described by 
Dawe & Peshkam [9] and used later by Dawe 
[3], Mohd & Dawe [4,5] and Dawe & Wang 
[6-8]. 

Here, the main equations on which the 
properties of the shell finite strip are based are 
presented in the next section. The PASSAS 
software package is described in general terms 
in Section 3. A few selected applications of the 
package are then described in Section 4 and 
concluding remarks are made in Section 5. 

THE BASIS OF FINITE STRIP PROPERTIES 

A shear-deformation shell theory (SDST) curved plate strip which is assumed to form part of a 
prismatic structure is shown in Fig. 1(a). The finite strip has length^, uniform middle-surface radius 
of curvature R, uniform thickness h and curved breadth b at the middle surface. The local axes x, y 
and z are surface ones, i.e. are axial, circumferential and normal ones. The corresponding transla- 
tional displacements at the middle surface are u, v and w, and the independent rotations of the 
middle-surface normal along the x- and y-directions are i//x and \j/y, respectively. The finite strip may 
be subjected to the applied uniform axial (<r°), circumferential (o£) and shear (T^) stresses shown in 
Fig. 1(b), leading to buckling or it may be undergoing harmonic motion whilst vibrating in a natural 
mode with circular frequency/?, or both these influences may be present. All displacement quantities 
are in fact perturbation displacement quantities representing changes that occur at the instant of 
buckling following the application of the applied stress system at its critical level, or representing 

(a) (b) 

Fig. 1. A curved finite strip: (a) geometry and displacements; and (b) applied stress system. 
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changes that occur during vibration about a datum state which corresponds to some prescribed value 
of the stress system. 

The linear expressions for the five significant strain components, at a general point, of the 
enhanced Koiter-Sanders SDST [10,11], which are used here as the basis for the strain energy 
expression, are 

dw v dw 
EX = £*X+ZKX,   Ey=s*y+zKy,   yxy = y*xy+zKxy   ^

="T7+^-"^'   7z*="fo~"H^ (1) 

where 

9M 9v     w du     9v 
£>—   £=— + — ,   yxy=— + —,   Kx = d^Jdx,   Ky = dxjjyldy, 

dx     y     dy     R 9v     9* 

*"-   dx 

d\j/y     dij/x 
 — 4-   

dy 

1   9v      9u 

2R 9x       oy 
(2) 

Here ex and % are in-surface direct strains and y^ is the in-surface engineering shear strain at a 
general point, whilst ex*, £y* and y^* are the corresponding strains at the middle surface and KX, Ky 

and K^ are the two direct curvatures and the twisting curvature. Also, yyz and y^ are the through- 
thickness shear strains. 

For arbitrary lamination the constitutive equations for the laminate are 

t      \ 
Nx ~An 

* A 
zx 

Ny Al2 A22 £y 

Nxy ■^16 -^26 ^66 Symmetric ¥ xy 

Mx 

My 
\ = 

#11 

#12 

#12 

#22 

#16 

#26 

Dn 

D12 D22 
j Kx 

Ky 

Mxv #i6 #26 #66 Die D26   D66 K
Xy 

ÖV 0 0 0 0 0       0     A44 yyz 

[Qxj _ 0 0 0 0 0       0     A45   A55_ \yZxt 

or 

F = Le (3) 

Here Nx, Ny and N^ are the membrane direct and shearing forces per unit length; Mx, My and M^ 
are the bending and twisting moments per unit length; and Qx and Qy are the through-thickness 
shear forces per unit length. The laminate stiffness coefficients are defined as 

hll hl2 

(A,,,ß,,,A7)= _I/2ß0(l,z,z2)dz   (U=l,2,6),   Aij = kikJ _l2Qijdz   (U = 4,5) (4) 

where Qtj for /, ;' = 1, 2, 6 are in-surface reduced stiffness coefficients and Qy for i, j = 4, 5 are 
through-thickness shear stiffness coefficients. The kfc are the prescribed shear correction factors of 
the first-order theory. 

The strain energy of the curved finite strip can be expressed as 

\       b/2      A 
U=—    I     J"eTLedjcdy 

2     — b/2    O 
(5) 
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and is such that only first derivatives of the five fundamental displacement quantities occur in it: 
hence only C°-type continuity is required for these quantities. 

The potential energy of the applied stresses is 

1 b/2      A  ( V
g=~

h    /     /K 

+ 2C 
&V du   du    dv j  dv     w 

dx   dy    dx\dy + R J    Sx 

12 + o\ 

+ 2x°xy 
#,   tyx     8<Ay   dif,y 

dx     dy       dx     dy 
jdxdy (6) 

The kinetic energy of the finite strip when vibrating with circular frequency/? (with the fundamen- 
tal displacement quantities then regarded as amplitudes of the motion) is 

1 b/2       A 

T=~p2    J     J ph 
2 -b/2    o r u+r+^+ — (fö+*lG) dxdv (7) 

where p is the material density (which is assumed here to be uniform). 
The displacement field of the finite strip is defined by expressions for the five fundamental 

quantities, each of which is represented as a summation of products of B-spline functions in the 
longitudinal x-direction and polynomial functions in the crosswise or circumferential y-direction The 
field is 
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n+1 0 #,- 0 0 0 0 \ 0 0 0 dv 

w 
f          i— 1 

0 0 Ni 0 0 0 0 h 0 0 )dw 

ty 0 0 0 N, 0 0 0 0 ek 0 d*> 
4>x 0 0 0 0 Nt 0 0 0 0 ö*_, &+* 

(8) 

In eqn (8) i denotes the number of a reference line (at which degrees of freedom are located) and 
there are (n+1) reference lines for a finite strip, where n is the order of the polynomial representa- 
tion of each of the fundamental quantities in the circumferential y direction. The Nt = Nfy) are 
standard Lagrangian shape functions which define this representation. The finite strip shown in 
Fig. 1(a) corresponds to n = 3 (i.e. cubic polynomial representation across the strip) with four 
reference lines, but other types of strip are available for selection. The d", dv, dw, d*> and d** are 
column matrices of values of generalized displacement parameters at the reference lines, relating to 
u, v, w, ij/y and \jjx, respectively. 

Also in eqn (8), 0k and 0k_l are modified B-spline function bases of polynomial orders k and 
(k-1). In using the spline functions the lengths of a finite strip is divided into q spline sections, as 
shown in Fig. 2(a), which are taken to be of equal length d, with q+1 spline knots (labelled 0-q) 
within the length A and some other knots (required for the prescription of end conditions) located 
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1     2 

(a) 

q-1 —•- 
q+1 

(b) d   I  d   I  d   I  d 

(c) 
Fig. 2. Spline representation: (a) spline sections and knots; (b) local cubic spline function; and (c) a combination of local 

cubic spline functions. 

outside of the length A. Figure 2(b) shows a local spline function and Fig. 2(c) shows the combina- 
tion of local functions which contributes to the modified B-spline function basis. It is noted that 
Fig. 2 relates specifically to cubic spline functions, with k = 3. For a fuller description of spline 
representation the reader is referred to the related earlier studies of the authors [7,8]. It is noted 
that eqn (8) indicates that the so-called Bk k_x approach [7,8] is again used, i.e. the spline represen- 
tation of \\ix is one order lower than that of w to avoid the shear locking problem that can otherwise 
occur when analysing thin structures in the context of first-order SDST. 

The elastic stiffness matrix k, geometric stiffness matrix kg and consistent mass matrix m for the 
SDST curved-plate finite strip are obtained by using the displacement field of eqn (8) in the 
expressions for strain energy, eqn (5), for potential energy of applied stresses, eqn (6), and for kinetic 
energy, eqn (7), respectively. The details of this are recorded in Dawe and Wang [6-7] and are also 
similar'to the details given in Dawe and Wang [7] for a flat finite strip. 

The above description and equations relate to SDST analysis. For thin shell theory (TST) analysis 
the basis for the development of the properties of a finite strip can be described concisely as a 
simplification of the above approach. In moving from shear-deformation shell theory to thin shell 
theory the main simplification is associated with invoking the Kirchhoff normalcy condition, which 
means that the through-thickness shear strains, yyz and y^ of eqn (1) vanish. It follows, of course, 
that the rotations \j/x and \j/y are then directly related to v and w by the equations 

^x=- 

dw 

dx *>=-- 
9vv 

(9) 

This means that i//x and $y are no longer independent quantities and hence u, v and w are the only 
fundamental quantities of TST. The basic equations of TST are obtained by substituting for \j/x and 
\\i, given by eqn (9), in eqns (1) and (2), by reducing the set of constitutive equations in eqn (3) by 
removing Qy, Qx, yyz and y^ from consideration, by ignoring the second of equations in eqn (4), and 
by removing the contributions associated with \\ix and \\/y from the expressions for Vg and T in eqns 
(6) and (7). Also, the displacement field of eqn (8) is reduced in the TST analysis by removing the 
expressions for \jf and i//x. A further modification to this field is that in the expression for w in the 
TST context the shape functions Nfy) become Hermitian shape functions to reflect the fact that 
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there is a requirement for CJ-type continuity of w. In the TST approach only a single type of 
crosswise polynomial interpolation is considered (i.e. cubic interpolation for each of u, v and w). The 
corresponding finite strip model can still be represented by Fig. 1(a), with four reference lines. For 
u and v the values of the generalized displacement parameters are located at all four reference lines, 
as in the SDST approach, whilst for w they are located only at the two outside reference lines 1 and 
4. 

THE PASSAS SOFTWARE PACKAGE 

The basis of PASSAS is, of course, the indivi- 
dual finite strip, with its properties developed as 
described in the previous section. However, 
there are numerous different finite strip models 
available within PASSAS and, beyond this, 
there are incorporated into the software pack- 
age some powerful and sophisticated techniques 
to enable solutions to be obtained efficiently to 
complex problems. 

In the context of SDST, the variety of curved- 
plate finite strip models available to the user of 
PASSAS arises chiefly in the specification of the 
strip displacement field (eqn (8)) but also in the 
manner in which the integrations involved in 
determining k, k^ and m are evaluated in the 
circumferential direction. So far as the displace- 
ment field is concerned, selection can be made 
regarding the variation of the five fundamental 
quantities in both the circumferential and the 
longitudinal directions. In the circumferential 
direction the order n of Lagrangian interpola- 
tion can be chosen to be 1, 2, 3, 4 or 5, i.e. the 
strips are referred to as linear, quadratic, cubic, 
quartic or quintic strips.  In the longitudinal 
direction,   with   the   B^ A._1-spline   approach, 
values of k can be chosen to be 2, 3, 4 or 5, i.e. 
the choice lies between B21-, B32-, B43- and B54- 
spline representation. Integrations to evaluate 
strip  properties  are  carried  out  numerically 
using Gauss quadrature in the circumferential 
and longitudinal directions. In the longitudinal 
direction, full integration is used with six Gauss 
points in each spline section. In the circum- 
ferential   direction,   a   choice   can   be   made 
between   using   full   or   reduced   integration 
where, for a strip based on polynomial inter- 
polation of order n, full integration corresponds 
to (n + 1)  Gauss points across the strip and 
reduced integration to n points. 

In the context of TST only a single order of 
circumferential polynomial interpolation is con- 
sidered in PASSAS and, as intimated earlier, 
this order is cubic. However, there does exist 
choice in regard to the variation of the displace- 

ments u, v and w in the longitudinal direction. 
In the B^-spline approach, k can have the values 
3 or 4 or 5, i.e. the choice lies between B3-, B4- 
and B5-spline representation. In determining 
strip properties, the numerical integration 
scheme uses four Gauss points across the strip 
and six Gauss points in each spline section 
along the strip. 

Beyond the stage at which the properties of 
individual finite strips are established, the pro- 
cedures   in   PASSAS   which   lead   to   the 
calculation of buckling stresses or natural fre- 
quencies are very much the same as described 
in earlier related works [5-9], and hence only a 
brief summary is needed here. The superstrip 
concept [9] is invoked, such that usually each 
component curved or flat plate of a structure is 
represented   by  one   superstrip  which   is   an 
assembly of 2C identical individual strips (where 
c = 0, 1, 2, ...). This is done through an efficient 
repetitive substructuring scheme and the assem- 
bly of 2C strips is called a superstrip of order c, 
or simply a SuperstripC. The superstrip has 
degrees of freedom located only at its outside 
edges and if c is chosen typically to have the 
value 5, say, it is a very accurate model of cross- 
wise structural behaviour. A prismatic structure 
is usually modelled as an assembly of super- 
strips, with rotation transformations applied as 
necessary   to   each   strip   edge   to   transform 
properties to a global co-ordinate system. An 
eccentricity transformation [9], to account for 
off-set  connections,  may  also  be   applied  if 
deemed to be of significance. Beyond the super- 
strip level, higher levels of substructuring can 
often be invoked when using PASSAS if the 
structural cross-section has a repetitive nature, 
and this helps further in reducing the number 
of effective degrees of freedom. In total the 
multi-level     substructuring    procedures    can 
readily reduce a problem having a few hundreds 
of thousands of freedoms to around 100 effect- 
ive freedoms. The final eigenvalue problem is 
non-linear and in PASSAS determination of the 
eigenvalues is made using an extended Sturm 
sequence-bisection approach. The details of this 
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are as given in Dawe & Wang [7] and Dawe & 
Peshkam [9], wherein a description is also given 
of the manner in which the mode shapes of 
buckling or vibration can be obtained. 

PASSAS provides an efficient and accurate 
means of determining the buckling stresses 
under dead loading and the natural frequencies 
(and mode shapes) of very complicated pris- 
matic plate and shell structures which may be 
made of laminated material of arbitrary lay-up 
and may have general end conditions. Its scope 
also includes the facility to deal with problems 
of buckling under a system of both dead and 
live stresses and with problems of free vibration 
in the presence of a dead stress system. 

SELECTED APPLICATIONS 

General remarks 

PASSAS has been used to generate results for a 
considerable number and range of buckling and 
vibration applications involving plate and shell 
structures. Many such applications are 
described in a report [6] by the authors, whilst 
for plate (but not shell) structures some appli- 
cations have been presented during the 
development stage of the software in more 
readily available sources [7,8]. The results of 
these latter applications have demonstrated 
clearly the accuracy and versatility of PASSAS 
for the solution of plate structure problems. In 
the present paper it is only possible to present a 
very limited number of applications and these 
are selected to be for shell structures. 

In the applications described here, one 
specific type of strip model is employed in the 
context of TST and one specific type in the 
context of SDST. For TST analysis the B3-spline 
representation is used longitudinally (and, as 
stated earlier, cubic crosswise polynomial inter- 
polation is used for all TST models). For SDST 
analysis the B32-spline representation is used 
longitudinally, the cubic Lagrangian interpola- 
tion is used crosswise, and full integration is 
used. 

Vibration of thin, boron-epoxy, circular 
cylinders 

Bert et al. [11,12] have presented results for the 
natural frequencies of thin, composite, complete 
circular cylinders with diaphragm ends, based 

on the use of Love's thin shell theory. Here, two 
problems considered in this earlier work are 
examined using PASSAS. In both problems the 
cylinder wall is a two-layer laminate of boron- 
epoxy material, with the layers of equal 
thickness. The material properties and geo- 
metry are defined as [11] £L = 213.738 N/m2 

(31 x 106 lb/in.2); ET = 18.615 GN/m2 (2.7 xlO6 

lb/in.2); GLT = G^ = 5.171 GN/m2 (0.75 x 106 

lb/in.2); vLT = 0.28; p = 2051.88 kg/m3 (192 x 
10-6lb.s2/in.4); h = 0.508 mm (0.02 in.); R = 
63.017 mm (2.481 in.); A = 800.1 mm (31.5 in.). 
The two problems have also been considered by 
Mohd & Dawe [5] using the S-a FSM. 

In the first application the cylinder wall is an 
unbalanced cross-ply 9070° laminate of two 
equal-thickness layers (with the outer layer 
being the 90° one, i.e. with fibres running cir- 
cumferentially). Bert et al. [11,12] have 
presented values of natural frequencies which 
correspond to modes having particular numbers 
of half-waves in the longitudinal direction (ra0) 
and of full waves in the circumferential direc- 
tion (n0). These values are given in Table 1 
along with the SDST S-a FSM values from 
Mohd and Dawe [5] and the results obtained 
using PASSAS in the context of both SDST and 
TST. In the latter approach the full cylinder is 
modelled using one Superstrip8 (i.e. 256 finite 
strips) and q = 6. The results shown in Table 1 
reveal a very close comparison of the PASSAS 
predictions with those of the earlier studies and 
also show, as expected for this thin geometry, 
only very small differences between the predic- 
tions based on the use of SDST and of TST. 

In the second application the problem specifi- 
cation is changed only in that the inner layer is 
now orientated at 45° to the cylinder axis, giving 
a 90745° laminate. Of course, this results in 
significant anisotropy and the vibrational modes 
would be expected to be skewed. Bert et al. [12] 
have generated solutions, in the context of TST, 
for the natural frequencies of this cylinder 
based upon the assumption of helical forms of 
the displacement components and presented in 
graphical form. The lowest natural frequency, 
corresponding to two circumferential half- 
waves, is quoted as being approximately 123 FIz. 
Here, using the SDST spline FSM with PAS- 
SAS, the complete cylinder is again modelled 
with one Superstrip8 and convergence of the 
first six natural frequencies, with an increase in 
q, is examined. Results are presented in Table 
2. A good manner of convergence is exhibited 
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Table 1. Natural frequencies of a thin, 9070° boron- epoxy, circular cylinder with diaphragm ends 

Mode designation Natural frequencies (Hz) 

m0                          h0 Love's SDST S-a B -spline 
theory [11] FSM [5] FSM (PASSAS) 

SDST TST 

1                             1 532 532.2 532.2 532.2 
2 235 235.4 235.4 235.4 
3 253 252.8 252.8 252.8 
4 444 443.9 443.9 444.2 
5 714 713.4 713.4 714.1 
6 1047 1046.0 1045.8 1047.4 
7 1442 1439.2 1438.9 1441.9 
8 1897 1892.7 1892.1 1897.1 

2                            1 1287 1286.8 1286.7 1286.7 
2 676 676.2 676.2 676.2 
3 443 442.6 442.7 442.7 
4 497 496.5 496.5 496.7 
5 728 727.1 727.0 727.7 
6 1051 1049.5 1049.4 1050.9 
7 1442 1440.0 1439.6 1442.6 
8 1897 1892.6 1892.1 1897.1 

for the six frequencies and the lowest frequency 
forecast by PASSAS (122.7 Hz) agrees very 
closely with the approximate prediction of Bert 
et al. [12] (123 Hz). 

Buckling and vibration of the NASA advanced 
structural panel 

Viswanathan and Tamekuni [13] have con- 
sidered the buckling of a number of stiffened 
plate and shell panels in their analytical study 
which is of the single-term 'exact' FSM type in 
the context of TST. One of these 'advanced 
structural panels' has the complicated cross-sec- 
tion shown in Fig. 3 and the behaviour of this 
panel is considered here. 

In Viswanathan & Tamekuni [13] the panel 
shown in Fig. 3 is assumed to be made of iso- 
tropic material and to be subjected to uniform 
longitudinal compressive stress a°. The quoted 
properties     are     that     Young's     modulus 

Table 2. Natural frequencies predicted by PASSAS  (SDST) for a thin, 90745° boron-epoxy, circular cylinder with 
diaphragm ends 

E = 71.016 GN/m2 (10.3 x 106 lb/in.2) and Pois- 
son's ratio v = 0.33. The longitudinal edges of 
the panel are clamped against bending. For 
analysis purposes the length of the panel is 
taken to be one half-wavelength of the buckling 
mode, whose shape is purely sinusoidal in the 
longitudinal direction for all half-wavelengths: 
effectively the ends of the half-wavelength are 
diaphragm supported. By assuming a variety of 
prescribed half-wavelengths the buckling of the 
panel is represented graphically in the form 
reproduced here in Fig. 4. 

In applying PASSAS to this problem the 
analysis length is again taken to be a prescribed 
half-wavelength and four spline sections are 
used over this length. The whole cross-section is 
modelled using one Superstrip5 to represent 
each of the 22 flat or curved component plates 
in the context of TST. (The effect of through- 
thickness shear deformation is tiny here.) The 
PASSAS results are shown superimposed on the 

q Natural frequencies (Hz) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
l 132.4 251.5 331.8 360.5 485.7 499.1 
2 124.2 250.6 327.5 339.2 484.2 498.5 
3 122.9 250.1 304.1 337.8 448.0 480.7 
4 122.7 249.9 292.8 337.6 428.2 477.2 
5 122.7 249.8 290.1 337.6 423.0 474.7 
6 122.7 249.8 289.3 337.5 422.4 473.8 
7 122.7 249.8 289.1 337.5 422.1 472.6 
8 122.7 249.8 289.0 337.5 422.0 472.3 
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earlier results in Fig. 4. It can be seen that the 
two sets of results compare very closely. 

We now modify this problem whilst maintain- 
ing the cross-section shown in Fig. 3, except for 
some changes in thickness. In doing this the aim 
is to show the versatility of PASSAS and to 
provide benchmark solutions. The length of the 
structure is set at 508 mm (20 in.) and the 
material is changed to composite laminated 
material. The curved component plates become 
balanced cross-ply laminates of 07907079070° 
lay-up, with plies of equal thickness and with a 
total thickness of 0.762 mm (0.03 in.). The flat 
component plates, forming the main plate of 
the   panel,   become   single-layer   anisotropic 

All dimensions in mm 

Fig. 3. Cross-section of the NASA advanced structural 
panel. 

plates with fibres at 45° to the longitudinal axis 
and with an increased thickness of 1.524 mm 
(0.06 in.). The material properties are taken to 
be as those specified earlier for boron-epoxy. 

The buckling of this modified structure under 
uniform longitudinal compression has been 
studied using PASSAS when the ends are dia- 
phragm supported, and calculated values of the 
buckling stress, (c°)cr, are recorded in Table 3 
in the form of convergence studies with increas- 
ing q, in the contexts of both TST and SDST. A 
good manner of convergence is evidenced. 

The free vibration of the modified structure 
has also been considered for the situations in 
which first both ends are diaphragm supported, 
and then both ends are fully clamped. Details of 
the convergence with q of PASSAS results for 
the first six modes of vibration, in the context of 
SDST, are recorded in Table 4. For the dia- 
phragm-ends case the convergence is rapid and, 
to four-figure accuracy, full convergence is 
achieved at q = 4. This reflects the fact that the 
vibrational mode shapes are simple in the longi- 
tudinal direction, with just one half-wave for 
each of the first six modes. For the clamped- 
ends case the convergence is markedly slower, 
probably due to the increased complexity of the 
mode shapes, but nevertheless convergence 
does occur in an orderly fashion. 

CONCLUSIONS 

A description has been given of the PASSAS 
software package for predicting the buckling 
stresses  and  natural  frequencies,   and  mode 

500 r 
Ref. 13 results 
PASSAS results 

400  - 

MN/m2 
300 

200 

100 

0      100    200    300    400   500   600   700    800    900    1000 

Half-wavelength (mm) 
Fig. 4. Buckling results for the NASA advanced structural panel. 
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shapes, of prismatic plate and shell structures. 
The package is based on the use of the B-spline 
finite strip method, and strip properties can be 
selected to be based on the use of first-order 
shear-deformation theory or of classical or thin 
theory. 

The analysis capability contained within PAS- 
SAS is rather versatile. Allowance is made for 
arbitrary lay-up of composite laminated compo- 
nent plates and for a broad specification of 
structure boundary conditions, and there is no 
restriction on the type of buckling (local, over- 
all, coupled, etc.) that can be predicted under 
an applied stress system that includes shear 
stress. The analysis capability is also accurate 
and very efficient as it embodies multi-level sub- 

Table 3. Buckling stress (Ocr predicted by PASSAS for 
the modified advanced panel with diaphragm ends 

(Ocr (MN/m2) 

TST SDST 

360.62 
356.17 
355.90 
355.85 
355.85 
355.85 
355.84 
355.84 

359.01 
354.55 
354.28 
354.24 
354.23 
354.23 
354.23 
354.23 

structuring techniques across the structure, 
including superstrips, in conjunction with a 
highly reliable solution procedure. 
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Use of woven CFRP for externally pressurized 
domes 

J. Btechut & L. Dong 
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Sensitivity of bifurcation buckling, first-ply failure (FPF) and last-ply failure 
(LPF) to the different modelling methods of woven cloth is examined 
numerically for a range of torispherical shells. Axisymmetric and two two- 
dimensional models are used for externally pressurized multi-ply domes. In 
the first two-dimensional model, angles between warp and weft directions 
on torispheres are obtained through an optical projection of an initially 
orthogonal woven net. In the second type of modelling, a planar/orthogonal 
mapping is preserved on the torispherical geometry. Bifurcation buckling 
seems to be insensitive to the method of modelling. Results for FPF show 
that differences between axisymmetric and planar models can be as high as 
50%, whilst the differences for optical and planar models can reach 30%. 
The magnitude of LPF pressures is also sensitive to the two-dimensional 
modelling method adopted. Ultimate collapse loads, associated with LPFs 
and based on optical modelling, are up to 30% higher than those obtained 
for planar modelling for carbon cloth. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The use of carbon-fibre reinforced plastic 
(CFRP) for pressure hulls of underwater 
vehicles has been explored for a number of 
years. Different concepts of composite pressure 
hull configurations, material selection and their 
performance are discussed in Smith [1], 
Vaughan [2] and Graham et al. [3]. Most of the 
proposed pressure hull configurations would 
require domed closures. A number of manufac- 
turing techniques (i.e. filament winding, vacuum 
bagging, autoclave, etc.) were examined in 
order to identify a suitable method of building a 
reliable pressure hull end closure [4-7]. 
Vacuum bagging of woven carbon pre-preg 
proved to be a promising way of building 
domed closures capable of withstanding large 
external pressures. 

There are, however, a number of outstanding 
issues, both theoretical and practical, which 
need to be addressed. One of them is the 
modelling of the draping of woven material and 
its influence on the magnitude of buckling and 
collapse pressures. Various models were sug- 

gested to capture the behaviour of woven cloth 
when it is draped onto a curved surface (e.g. 
stretching, slippage, trellis effect, etc.; [8-13]). 
A recent literature review of existing computa- 
tional models describing draping of woven 
fabrics on arbitrarily curved surfaces can be 
found in Trochu et al. [14]. 

This paper investigates the effect of local 
fibre distribution due to the draping of woven 
cloth on the bifurcation buckling, first-ply 
failure and last-ply failure in externally pressur- 
ized domes. Comparison is made between solely 
axisymmetric modelling, two-dimensional 
modelling using a planar distribution of fibres 
and two-dimensional modelling using an optical 
mapping of orthogonal distribution of fibres 
onto the torisphere. The paper is a numerical 
study but an experimental programme is under 
way and the corresponding results will be 
reported separately [15]. 

BACKGROUND INFORMATION 

Hemispherical and torispherical geometries are 
by far the most frequently used shapes for 

553 
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domed closures made of steel. The above geom- 
etries have also been investigated for composite 
domes where a variety of manufacturing tech- 
niques were explored. It is assumed that all 
composite domes will operate without an inter- 
nal mandrel. A typical view of a collapsed 
torisphere made from 50-ply woven cloth is 
shown in Fig. 1. 

Let us consider a torispherical shell with 
radius Rs for the spherical part and radius r for 
the knuckle segment. The short flange, of 
length L, is to be taken as fully clamped at the 
base. The wall is made from N, differently 
stacked, plies of woven cloth giving the total 
wall thickness, t (see Fig. 2). It is assumed that 
the wall thickness remains constant and the 
dome's geometry corresponds to the mid-sur- 

face of the shell. Material properties will be 
taken from Table 1. 

Detailed information about modelling of the 
woven material is provided below. 

MODELLING OF WOVEN CLOTH 

Let us consider CFRP domes made by sequen- 
tial draping of a single sheet of pre-preg woven 
cloth into a moulding tool. Non-axisymmetry of 
material properties is included in the analysis. 
Full two-dimensional modelling is made using 
doubly curved shell elements, S8R [16]. For a 
given ply, a local co-ordinate system, (Tt,T2,T3) 
is introduced. The fibre orientation angle, a, 
changes from point to point in the model. The 

(a) 

(b) 

Fig. 1. A typical view of a collapsed 50-ply composite torisphere loaded by external pressure, (a) Outer surface, (b) Inner 
surface. 
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Fig. 2. Geometry of a torispherical dome. 

positions of global (X,Y,Z) and local {TX,T2,T3) 
co-ordinate systems are sketched in Fig. 3. The 
angle a needs to be provided for each Gauss 
point used in the model. This is done through 
the User's Subroutine ORIEN in the ABAQUS 
code [16]. Appendix A provides details on how 
the angle a is calculated. The angle a is mea- 
sured between the local axis, 7\, and the fibre. 
This is illustrated in Fig. 3(b) and (c) for two 
plies, i.e. 0 = 0° and 0 = 25°. Figure 3(b) shows 
a small piece of woven cloth, assumed to be 
locally flat, in which the weft direction coincides 
with the X-axis. The local (7\,r2) co-ordinate 
systems are shown in Fig. 3 at three arbitrary 
Gauss points, each lying on meridians <P = 15°, 
<P = 50° and $ = 90°, respectively. The angle a is 
equal to zero for all three points shown in 
Fig. 3(b). However, in Fig. 3(c), the angle a 
varies along the arc as its length increases from 
the apex, through the knuckle and into the 
cylindrical flange. Figure 4 shows the variation 
of the angle a along the arc length for several 
meridians. It is seen that the largest variation of 

a occurs in the knuckle. Within the cylindrical 
flange the angle a equals 90° for all meridians. 
Once the ply is rotated, say by 0 = 25° against 
the X-axis (see Fig. 3c), the angle a will have to 
be re-calculated for all Gauss points in the 
model. 

RESULTS 

Bifurcation buckling 

Although the dome remains an axisymmetric 
component its deformation due to external 
pressure is not axisymmetric. Contours of nor- 
mal displacements of a single-ply torisphere 
with a geometry given by r/D = 0.10, RJD = 1.0, 
LID = 0.05, D/t = 500 and loaded by an external 
pressure/» = 0.05 MPa are shown in Fig. 5. Four 
different values of 0, i.e. 0°, ±45° and 90°, were 
taken to illustrate the non-axisymmetric struc- 
tural response of the axisymmetric component 
subject to axisymmetric loading. The aim here 
was to check the arrangements for the distribu- 
tion of a once the ply is rotated. Contours of 
normal displacements for a six-ply torisphere 
[07607 -60°]s are shown in Fig. 6. The dome 
has the same geometry as above and it is loaded 
by external pressure p = 0.05 MPa. It is seen 
here that dome deforms axisymmetrically des- 
pite non-axisymmetric material properties of 
the draped woven material. The above dome 
will bifurcate into an asymmetric mode, and the 
buckling pressure was computed using both the 
ABAQUS and BOSÖR-4 codes [16,17]. The 
latter uses purely axisymmetric modelling and it 
can be seen, from Table 2, that there is about 
10% difference between an approximate, i.e. 
BOSOR-4 modelling, and a more rigorous 
modelling of woven cloth using an optical pro- 
jection. There is also a difference between 
predicted wave number at bifurcation, i.e. six 
from BOSOR-4 and eight from ABAQUS. The 
eigenmode, as obtained from ABAQUS, is 
shown in Fig. 7. By far the simplest modelling 
of woven cloth would be to assume that the 

Table 1. Material properties of the woven CFRP pre-preg 

(GPa) 
E2 

(GPa) 
G12 

(GPa) 
Vl2 

(MPa) (MPa) 
Xc 

(MPa) (MPa) 
5 

(MPa) 

70.0 70.0 5.0 0.1 600.0 600.0 570.0 570.0 90 
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orthogonal grid does not deform when draped 
into torispherical shape. Each element in the 
FE model models a planar and undistorted 
piece of cloth. Comparison of bifurcation pres- 
sures for a range of torispherical geometries, 
with the diameter to thickness ratio of 300, is 
shown in Fig. 8 for three types of modelling, i.e. 
axisymmetric (BOSOR-4), two-dimensional 
optical and two-dimensional planar (ABA- 
QUS). It could be concluded that all three 
approaches to the modelling of woven cloth 
result in similar magnitudes of bifurcation buck- 
ling pressures, i.e. they seem to be insensitive to 
the way in which carbon fabric is modelled. 

Bifurcation pressure in externally pressurized 
domes usually leads to the loss of structural 
integrity due to the lack of post-bifurcation 
load-carrying capacity. There are possible 
failure modes other than bifurcation and, in 
general, they depend on geometrical and 
material configurations. In the next two sections 
results are provided for failures through a 
brittle cracking associated with a first-ply failure 
and last-ply failure. 

First-ply failure (FPF) 

The Tsai-Wu interactive failure criterion writ- 
ten in stress space is adopted here [5,18]. 
Stresses are evaluated at the top and bottom of 
each ply. Several stress evaluations are usually 
required to obtain FPF pressures for a given 
material and geometrical configuration. The 
above-mentioned three types of modelling, i.e. 
axisymmetric, two-dimensional optical mapping 
of cloth and two-dimensional planar mapping of 
cloth, were used for the evaluation of FPFs. It 
was established numerically that for the diam- 
eter to thickness ratio of 100 the first-ply failure 
mechanism remains the controlling mode of 
failure in torispheres over a wide range of 
geometries. A sample of results for six-ply tori- 
spheres is shown in Fig. 9. It is seen here that 
the magnitude of predicted FPF pressures is 
significantly affected by the adopted method of 
cloth modelling. Predictions of FPF pressures 
obtained for axisymmetric and planar models 
differ by 25-50%. At the same time, the differ- 
ences for 'optical' and 'planar' models vary from 

(b) 

* = 50° 

Fig. 3. (a) Multi-ply composite dome, (b) Position of local co-ordinate systems for a single-ply cover orientated at 
Also the same ply configuration stacked at 4> = 25°. 

> = 0°. 
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10 to 30%. The lowest values of FPF pressures 
are always obtained for planar modelling. The 
highest values, on the other hand, are associ- 
ated with axisymmetric modelling. Similar 
trends have been noticed for 48-ply torispheres 
shown in Fig. 10. 

The next section discusses the influence of 
fibre modelling on last-ply failure. 

Last-ply failure (LPF) 

The ultimate load-bearing capacity of a dome is 
always a desirable quantity for a designer. Some 
previous calculations have shown that, in exter- 
nally pressurized multi-ply domes, the last-ply 
failure could be 5-27% larger than the corre- 
sponding FPF pressures [19]. A comparison of 
results obtained for 'two-dimensional optical' 
and 'two-dimensional planar' FE models is 
depicted in Fig. 11. The last-ply failure loads 
were obtained through successive degradation 
of ply properties in warp/weft directions and 
through sequential FE re-analyses (see Blachut 
and Dong [19] for more details). It is seen here that 

Sphere Knuckle  Cylinder 

Fig. 4. Distribution of the local fibre orientation angle, a, 
along different meridians, i.e. tf> = 0°, 5°, 15° and 45°. Two 

orientations are shown: (a) 0 = 0° and (b) 0 = 25°. 

LPF pressures also depend on the adopted model- 
ling of woven fabric. The difference between 'planar' 
and 'optical' LPFs varies from 10 to 30%. 

CONCLUSIONS 

Numerical results presented in this paper con- 
stitute a contribution to understanding of ways 
in which the load-bearing capacity of externally 
pressurized, doubly curved domed closures 
could be evaluated. Results show that certain 
mechanisms of failure, e.g. bifurcation buckling, 
do not seem to be sensitive to detailed model- 
ling of composite material. Other mechanisms 
of failure, such as first-ply failure or last-ply 
failure pressures, are sensitive to the adopted 
FE modelling. It is therefore imperative that 
other methods of modelling woven fabric 
draped onto doubly curved surfaces are also 
examined in order to assess the load-bearing 
capacity of the shell. 
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APPENDIX A 

Local orientation of woven material 
An end closure made from woven material is an 
axisymmetric component but its materials 
properties are not axisymmetric. Initially the 
rectangular woven grid distorts when a flat cloth 
is draped onto a doubly curved moulding tool, 
e.g. of torispherical shape. A model, based on 
an optical projection analogy, is described now 
in order to quantify this distortion and to 
evaluate the local fibre orientation in a doubly 
curved shell. A torispherical dome consists of 
two segments, i.e. spherical with radius Rs and 
toroidal, sometimes called knuckle, with radius 
r. A short cylindrical flange of length L is also 
included  in   our  case.   This   arrangement  is 

2 

3 1 

(a) o = 0" (b) e = 45" 

2 

h ! 

(c)e =-45° 

2 

b    i 

(d) 0 = 90" 

Fig. 5. Contours of normal deflections for an externally pressurized dome made from a single woven ply. Fig. 4(a)-(d) 
corresponds to 6 = 0°, +45° and 90°, respectively. External pressure p = 0.05 MPa. 
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2 

b i 

Fig. 6. Contours of normal deflections for a six-ply torisphere [07607 -60°]s subjected to external pressure p = 0.05 MPa. 
Note the axisymmetric deformations. 

sketched in Fig. 12, where the diameter of the 
torisphere is denoted by D. Equations of the 
spherical, knuckle and cylindrical portions can 
be written in the following form 

xz+y*+z-R; = 0 (Al) 

Jx^y2- — +r j+(z-zcf -r2 = 0 (A2) 

2      2 x +y ■ (A3) 

Let us assume that a flat woven cloth is 
placed horizontally above the dome. Next, the 

cloth is draped onto the dome in such a way 
that each fibre, initially represented by a 
straight line in the x-y plane, becomes pro- 
jected by a vertical beam of light onto the shell 
surface. The fibre trajectory on the shell surface 
can be obtained as an intersection of a vertical 
plane with the torisphere. The vertical plane, 
which is perpendicular to the x-y plane, is given 
by 

k(x-xo)-(y-yo) = 0 (A4) 

where k = tan 6. 
The angle 6 is measured between the jc-axis 

and the vertical plane G (see Fig. 13). Point (x0, 
y0) is an arbitrary point on the vertical plane G. 

The fibre trajectory is obtained by solving the 
following sets of equations corresponding to 

Table 2. Comparison of bifurcation and first-ply failure pressures for axisymmetric and two-dimensional modellings of 
woven cloth (r/D = 0.1, RJD = 1.0, LID = 0.05 and D/t 300). Values of the failure index (FI) are also given 

/>bif 
(MPa) 

PFPF 
(MPa) 

FI 
(at bifurcation) 

BOSOR-4 
ABAQUS (optical) 
ABAQUS (planar) 

0.360(6) 
0.325(8) 
0.345(9) 

0.400 
Collapse at 0.325 MPa 

0.312 

0.732 
0.754 
1.320 
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Fig. 7. A view of the torispherical shell at bifurcation buckling pressure (with eight circumferential waves). 

spherical cap, knuckle and cylindrical flange,       knuckle segments are as follows 
respectively 

(spherical cap) 
F = xA+yz+z-Ri = 0 

G = k(x-xo)-(y-yo) = 0 

1 = 

(A5) 

/ D 
(knuckle) F = ■ vx2+y2 — — +r 

m = 

n= — 

J(l+k2)(zy+[ß(x+ky)]2 

kz 

ja+k2)(Zy+[ß(x+ky)]2 

ß(x+ky) 

J(l+k2)(zy+[ß(x+ky)]2 

(A8) 

+(z-zc)
2-r2 = 0 

G = k(x-x0) - (y -j0) = 0 

where the parameters z* and ß are defined 
separately for the spherical and knuckle seg- 
ments. For the spherical portion they are given 
by 

(A6) 

(cylindrical flange) 
F = xz+y2-(D/2y = 0 

G = k(x-xo)~(y-yo) = 0 

(A7) 

z =z\ 

ß=l. 

and for the knuckle they become 

z* = z—zc 

(A9) 

The corresponding direction cosines (/, m, n) 
of the intersection lines in the spherical and 

ß = 

U +y — — +r 
2 

Ix^W 

(A10) 
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AbaquSp|a„ar 

4.0 

1.25 
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r/D 

Fig. 8. Bifurcation buckling pressures obtained from 
BOSOR-4 axisymmetric, and two types of two-dimen- 
sional ABAQUS modelling of woven cloth. All 
torispheres have the same stacking sequence, i.e. 

[07607-60°]s. 

3.0 

On 

2  2.0 

1.0 

- 

  Bosor 4 
 Abaqusoptica|                                      S 
 Abaqusp|anar                                / 

-        Is. = 1.0 ; —= 0.05                //        / 
D                     D                             /            / 

([0<760°/-60°]8)s                //      / 
/ /     / 
/ /    / 

/y / 
//'     /—-^ First Ply Failure 

o    r/-         ' 
7 \' S «l-V- 

o 

']       j~  |                       Bifurcation 
°l"    F?F     1   (Irrespective of Modelling) 

0.10 0.20 0.30 

r/D 

Fig. 10. Influence of cloth modelling on the bifurcation 
buckling pressures (D/t = 300) and on the FPF pressures 

(D/t = 100) in 48-ply torispheres. 

6.0 - 

5.0 

4.0 

3.0 

2.0 

1.0 
CoIlapS' 

First Ply Failure 

 I 

06 \0 

0.10 0.20 0.30 

r/D 

Fig. 9. Influence of cloth modelling on the first-ply failure 
pressures in six-ply torispheres. Note that for RJD = 1.25 

domes can collapse before reaching the FPF state. 

4.0 

3.0 

2.0 

1.0 

: 0.05; - = 100 

([0°/60°/-60°]8)s 
*?>\ 

0 & 

■ Trough-Thickness (Optical) f^i    // 

FPF (Optical) 

'FPF (Planar) 

"LPF (Planar) 

LPF (Optical) 

0.10 0.20 0.30 

r/D 

Fig. 11. Comparison of the first-ply failure and the last-ply 
failure pressures when two different modelling methods 
for the fabric are adopted. Numbers in brackets indicate 
the amount of damaged plies, i.e. («damaged-"total)/ 

ntotal x 100%. 
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The trajectory in the cylindrical part is a 
straight line which is parallel to the cylinder axis 
and in this case the direction cosines (/, m, n) 
are 

/ = 0 
m = 0 
n= — sign(x+ky) 

(All) 

where 

sign(x) = 
lforx>0 

—1 for x<0 
(A12) 

Fibre orientation in the FE code ABAQUS is 
defined with respect to a local co-ordinate sys- 
tem (Tx, T2, T3). The local axis, T3, is taken in 
the direction of the normal vector, N*, to the 

reference surface of undeformed shell, i.e. sur- 
face F in Fig. 13 

.     dF      dF      dF 
N = —— i+ j+ k 

ox       9y       dz 
(A13) 

The unit normal vectors N for the sphere, 
knuckle and cylinder are given by 

N = 
|N* 

x .   y .   z 
l+— J+ R R. R, 

I ß* .   ßy .  z-zc 
= \ —1+—J+  

r r r 

i+ 
y 

,  Jx2+y2      Jx2+y 

k sphere 

k knuckle 

j cylinder 

(A14) 

Intersection Line 

F (Dome Surface) 

. G (Vertical Plane) 

Fig. 12. Adopted notation for the torispherical dome. Fig. 13. Optical projection of a fibre onto a dome. 

Table 3. Fibre orientation a at 32 Gauss points lying on a meridional line rotated by $ = 10°. \The ply orientation 0 = 0° 
Segment Gauss points X 

(mm) 
y 
(mm) 

z 
(mm) 

/ m n r,2 T22 r32 a 

o 
Spherical 
Spherical 

1 
2 

8.2295 
16.6191 

1.4511 
2.9304 

299.8836 
299.525 

0.9996 
0.9985 

0 
0 

-0.0274 
-0.0554 

0 
0 

1 
1 

-0.0048 
-0.0098 

0.00573 
0.02865 

Spherical 
Knuckle 
Knuckle 

18 
19 
20 

128.5465 
132.5365 
135.7155 

22.6663 
23.5365 
23.9303 

270.1147 
268.0855 
266.0093 

0.9030 
0.8771 
0.8090 

0 
0 
0 
0 

-0.297 
-0.4804 
-0.5878 

0 
0 
0 

0.9965 
0.9954 
0.9919 

-0.0836 
-0.0961 
-0.1271 

2.057 
2.647 
4.286 

Knuckle 
Knuckle 
Cylindrical 

27 
28 
29 

147.2691 
147.6878 
147.7209 

25.9675 
26.0414 
26.0472 

247.092 
243.2776 
240.2828 

0.1768 
0.0477 
0 

0 
0 
0 

-0.9843 
-0.9989 
-1 

0 
0 
0 

0.7135 
0.2615 
0 

-0.7006 
-0.9652 
-1 

43.61 
74.58 
90.0 

Cylindrical 32 147.7209 26.0472 228.4527 0 0 -1 0 0 -1 90.0 
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Table 4. Fibre orientation a at 32 Gauss points lying on a meridional line rotated by $ = 10°. The ply orientation 0 = 25° 

Segment Gauss points 

1 
2 

X 

(mm) 

8.2295 
16.6191 

y 
(mm) 

1.4511 
2.9304 

z 
(mm) 

/ m n r,2 T22 T32 
a 

o 
Spherical 
Spherical 

299.8836 
299.525 

0.9060 
0.9050 

0.4225 
0.422 

-0.0269 
-0.0543 

0 
0 

1 
1 

-0.0048 
-0.0098 

25.00 
24.99 

Spherical 
Knuckle 
Knuckle 

18 
19 
20 

128.5465 
132.5365 
135.7155 

22.6663 
23.3698 
23.9303 

270.1147 
268.0855 
266.0093 

0.8212 
0.7984 
0.7381 

0.383 
0.3723 
0.3442 

-0.423 
-0.4732 
-0.5803 

0 
0 
0 

0.9965 
0.9954 
0.9919 

-0.0836 
-0.0961 
-0.1271 

24.64 
24.59 
24.53 

Knuckle 
Knuckle 

27 
28 

147.2691 
147.6878 

25.9675 
26.0414 

247.092 
243.2776 

0.1632 
0.0441 

0.0761 
0.0206 

-0.9836 
-0.9988 

0 
0 

0.7135 
0.2615 

-0.7006 
-0.9652 

48.04 
75.77 

Cylindrical       29 147.7209       26.0472       240.2828 0 0 -1 0 0 -1 90.0 

Cylindrical       32 147.7209       26.0472       228.4527 0 0 -1 0 0 -1 9O0^ 

where the radii of curvature are given by eqns This leads to the following definitions of the 
(Al) and (A2). local axis, T2 

{   Nxi ,     ■ 
for Nx > cos(0.1°) 

T2 = 
i|Nxi| 

Nxk 
(A15) 

for N! < cos(0.1°) 
J\Nxk\ 

After substitutions the axis T2 is expressed as 

Ta = 

z . ßy 
mW?'" KßyjHzf k sp^/k™^for "i > cos(°-10) 

-sign(y)k cylinder (A16) 

y x 

Jxz+y2       ^+? cylinder for A^ < cos(0.1°) 

Finally, axis Tx is taken as 

Once the local co-ordinate system has been defined the fibre orientation a can be specified. If L 
denotes a local direction of the fibre, then the angle a between the axis Tx and L is given by 

cos(90° - a) = T2-L = Tl2l+T22m+T32n (A18) 

Components of the above scalar product are tabulated in Tables 3 and 4 for a torispherical 
geometry specified by: r/D = 0.10, RJD = 1.0 and LID = 0.05. A meridional line rotated by <P = 10° is 
taken for detailed calculations together with the stacking sequence 0 = 0° (Table 3) and 6 = 25° 
(Table 4). It is seen from the last column in Tables 3 and 4 that the largest variation of the angle a 
occurs in the knuckle segment. 
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In this paper the exact deflections of generally laminated piezoelectric 
composite beams are found using a new method, which includes the effect 
of rotary inertia and shear deformations. The effect of shear in laminated 
beams is more significant than in homogenous beams due to the fact that 
the ratio of extensional stiffness to the transverse shear stiffness is high. 
The exact stiffness matrix is derived, and then any set of boundary 
conditions, including elastic connections and assembly of members, can be 
solved as in the classical direct stiffness method for framed structures. In 
this paper several examples are given, and the posibilities for shape control 
are investigated. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The ongoing efforts to improve weight, per- 
formance, temperature stability and versatility, 
together with enhanced reliability of aerospace 
and mechanical components, led to the 
development of a new generation of composite 
structures, based of what is often called 'smart/ 
intelligent or adaptive materials'. In recent 
years a considerable effort was directed to the 
development of these materials and structures. 
Yet, it is our feeling that the vast potential of 
smart structures still remain to be addressed. 
New avenues, like the development of smart 
composites having enhanced inherent capabil- 
ities to adapt their static and dynamic response 
and to sense the type, location and extent of a 
possible damage, are yet to be explored. To 
perform this task basic theoretical models, 
which correctly represent the electromechanical 
state of the structure and how to exploit the 
inherent conditions of the piezolaminated com- 
posite, have to be developed. It is the aim of 
this paper to address this issue. 

A common form of a smart/intelligent struc- 
ture is a thin type structure equipped with 
sensors and actuators. These included fibre 
optics, electro-rheological fluids, magneto-stric- 
tive materials, shape memory alloys and 
piezoelectric   materials.   The   most   common 

forms of the piezoelectric materials are poly- 
vinylidene fluoride (PVDF) — a piezoelectric 
copolymer film — or lead zirconia titanate 
(PZT) — a piezoceramic-based material avail- 
able at present in relatively small rectangular 
patches. The merit of such materials is their 
capability for transducing electric fields into 
mechanical strains, and mechanical strains into 
electrical charges. The piezoceramic materials 
can be incorporated into a laminated composite 
structure, either by embedding it or by mount- 
ing it onto the surface of the structure [1-5]. 
These 'active' laminae are used either to 
actuate the hosting structure by inducing strains 
in the non-piezoelectric, 'passive' laminae, or to 
sense deflections of the hosting structure by 
measuring the local strain fields. The active 
laminae, the actuators, can be continuous over 
the entire domain of the structure, as in the 
PVDF case, or discontinuous as in the case of 
piezoceramic (PZT) patches. 

While the use of piezoelectric materials to 
control the response of structures has been 
extensively studied [1-5], the subject of control- 
ling the shape of the composite structures has 
received less attention. Such works include the 
recent study by Donthireddy & Chandrashe- 
khara [6] on laminated composite beams with 
continuous piezoelectric actuators, and the 
recent study by Lin et al. [7] on plates with 
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discrete piezotransduces, taking into account 
the thickness of the adhesive. Both studies used 
the finite-element method to predict the shape 
of the structures. Kokonis et al. [8] applied a 
first-order shear-deformation theory to derive 
the governing equations of a composite plate 
equipped with piezoelectric actuators. The solu- 
tion was then obtained, using the Ritz method. 
Main et al. [9] tried to solve the question of the 
optimal placement and sizing of paired piezo- 
transducers incorporated into isotropic beams 
and plates, while neglecting the thickness of the 
adhesive. 

It seems that correct selection and placement 
of the piezoactuators into a proper hosting 
structure would generate enough forces to con- 
trol the shape of the structure. Such a structure 
can be modelled as a beam made of non-sym- 
metric laminates, which would induce coupling 
between the axial and lateral motions of the 
beam yielding new shape control capabilities, 
which to the best of our knowledge has not 
been covered in the literature. 

It is the aim of the present study to apply a 
variant of the finite-element method, the exact 
element method [10], based on a first-order 
shear-deformation theory to control the shape 
of a piezolaminated composite beam. Unlike 
other finite-element methods, the exact element 
method uses the exact shape functions of the 
beam that are represented by a converging 
infinite series. Using these shape functions the 
solution can be obtained with any desired accu- 
racy, yielding the exact one, without the need to 
divide the beam into elements and checking the 
convergence vs the number of elements. 

First, the three coupled equations of a non- 
symmetric piezolaminated composite beam and 
its corresponding boundary conditions are 
derived. The shape control is performed using 
continuous piezoceramic layers either 
embedded or bonded to the surface of the 
structure. The displacement field is based on a 
first-order shear-deformation theory, which was 
shown by the authors to be adequate for these 
laminates [11]. Then, the exact element method 
is applied to solve the equations of motion to 
yield the in-plane and out-of-plane beam's 
deformations. 

To validate the present approach the com- 
puted results were first compared with ones 
presented in the literature, yielding a very good 
match. A parametric study was then performed 
to investigate the influence of boundary condi- 

tions, lay-up orientation and sequence, as well 
as the voltages applied to the piezoceramic lay- 
ers, on the change in the shapes of symmetric 
and non-symmetric piezolaminated composite 
beams with and without external mechanical 
loads. 

DERIVATION OF DIFFERENTIAL 
EQUATIONS 

The constitutive equations for the fcth layer in 
the beam is 

°k = [Q]A-[e]jEk (1) 
where e is the strain, a is the stress, E is the 
electric field intensity, [Q] is the elastic stiffness 
matrix and [e] is the piezoelectric coefficient 
matrix. In expanded form eqn (1) is written as 

yz 

LxyJ 

"Ö11 

Ö12 

0 
0 

Ö.6 

Ö12 

Ö22 

0 
0 

Ö26 

0 
0 

Ö44 

Ö45 

0 

0 
0 

Ö45 

0 

Öle' 

Ö26 

0 
0 

Ö66 

/ 

{Vyz    - 
y« 

\ < ^xy. 
k 

0 

0      0 
0     d 

d15 

0 

0     d3{ 

d3l 

0 
0 
0 

15 

0 
0 

(2) 
For the beam problem ay = xyz = x^ = 0 while 

the strains ey¥=yyz^y^^0 to obtain the follow- 
ing reduced constitutive equations 
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The laminated beam displacement field based 
on a first-order shear-deformation beam theory 
can be expressed as 

U = u(x)+z(j)(x) (6) 

W = w(x) (7) 

The strains associated with the displacements 
are given by (without external electric field, 
E = 0) 

sx=-— =u'(x)+z(f>'(x) 
ax 

dW     dU 
IXZ 
 + — 
djc      dz 

= w'(x)+(f)(x) 

(8) 

(9) 

Substituting eqns (8) and (9) into eqn (3) and 
integrating through  the  thickness yields  the 
beam constitutive equations 

Nx = Anu'+Bn(l>'+En (10) 

ß« = A55(0+w') (11) 

Mx = Buu'+Du4>'+Fn (12) 

where 

{An,Bn,Dn) = b   I    Qn(hz,z2)dz 
— ft/2 

h/2 

A55 = kb   j    Q55dz 

(13) 

(14) 

where k is the shear correction factor, b is the 
beam width, 

(En,Fu) = b X Qp
uVdp

3l(l,zf) 
(=i 

(15) 

Note that V in eqn (9) can be DC (a constant 
value) or AC (time-dependent voltage V(t)). 
Also the piezoelectric induced strain is given by 

m    Vi(d3l)i 

'=1       h. 
(16) 

where ht is the thickness of the z'th piezolayer. 
From the above relation we have the equili- 
brium equations as 

_d_ 

dx 

_d_ 

dx 

(dw 

IT* = q(x) 

du d(j) 

dx dx 
= m(x) 

(18) 

(19) 

where n(x), q(x) and m(x) are the distributed 
axial load, the distributed later load and the 
distributed bending moment along the beam, 
respectively. 

If we normalize eqns (17)-(19) using the 
relation £ =x/L, and choose for the solution the 
following polynomial series 
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Substitution of these expressions and their deri- 
vatives in the differential equations yields 
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Equating terms with the same power of £ in 
these equations, we arrive at the following 
recurrence formulae for ui+2, wi+2 andfi+2 

-1 

(i+l)(i+2)An 

U:^ = 

1 
Wi+2 = 

(i+l)(i+2)A 

(29) 

(qi-A55L(i+l)fi+1)    (30) 
55 
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and we have all the uh wt and ft coefficients 
except for the first two, that should be found 
using the boundary conditions. For the stiffness 
matrix derivation the beam is unloaded and nt, 
qh nii = 0. The terms for ui+2, wi+2 and fi+2 

converge to 0 as /->oo. For this case we choose 
as degrees of freedom in the formulation the 
axial displacement, the lateral deflection, and 
the flexural rotation at the two ends of the 
beam element. At £ = 0 we have 

u0 = w(0) 

wo = w(0) 

/o = /(0) 

(32) 

(33) 

(34) 

so the first three terms are readily known from 
the boundary conditions. The terms ux, wx and 
fx are found as follows: all the up, w,s and fa 
are linearly dependent on the first two in each 
series, and we can write 

w(l) = Cxu0+C2ul+C3w0+C4wl+C5f0+CJ1 (35) 

w(l) = C7u0+Csui+C9w0+Cww1+Cl Jo+Cl2fl 

(36) 

/(l) = C^Uo+C^u^C^Wo+C^w^Cufo 

+Clsfi (37) 

The eighteen C coefficients are functions of the 
axial, shear and flexural stiffness of the element. 
Cx, for example, is the value of a(l) calculated 
from eqns (20)-(22) using the recurrence for- 
mulae in eqns (29)-(31) for u0 = 1 and 
u1 = wo = w1=fo=f1 = 0. For the derivation of 
the stiffness matrix we have to apply unit dis- 
placement or rotation at each of the six degrees 
of freedom of the element, one at a time and 
calculate all the terms in the series for u, w and 

0 using the recurrence formulae. Then the axial 
force, shear force and the bending moment at 
the two ends of the element (£ = 0 and t, = 1) 
will be the stiffnesses for the member. 

Thus, there are six sets of geometrical bound- 
ary conditions as follows 
1. M(0) = 1; w(0) =/(0) = u(l) = w(l) =/(l) = 0; 
2. w(0) = 1; M(0) =/(0) = u{\) = w(l) =/(l) = 0; 
3. /(0) = 1; u(0) = w(0) = u(l) = w(l) =/(l) = 0; 
4. u{\) = 1; u(0) = w(0) =/(0) = w(l) =/(l) = 0; 
5. w(l) = 1; M(0) = w(0) =f(0) = u(l) =/(l) = 0; 
6. /(I) = 1; u(0) = vv(0) =/(0) = M(l) = W(l) = 0. 
Corresponding to these six sets there are six 
solutions (U,; i = 1, 6 for u{£), W,; / = 1, 6 for 
w(^) and F,; i = 1, 6 for /(£)) which are found 
using eqns (33)-(35) and eqns (36)-(38). These 
are the shape functions for the laminated beam 
model. Then, the holding actions, i.e. stiffnes- 
ses, are 
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The equivalent end forces at the ends of the 
members due to the loads are found using the 
same procedure but the loads n(x), q(x) and 
m{x) are used and all the end conditions are 
taken as zero. The end actions are the stiffness 
terms obtained using eqns (39)-(43). 



Shape control of piezolaminated composite beams 569 

RESULTS AND DISCUSSION 

Based on the formulation of the problem pre- 
sented in the preceding section, several beams 
with different boundary conditions, symmetric 
and non-symmetric lay-ups, applied voltages 
and length to thickness ratios were solved and 
the results are given here. The results are given 
both in figures and numerical tables for com- 
parison with other researchers. Table 1 presents 
the mechanical properties of the materials used 
for the present results. The beams analysed in 
this paper had the following lay-ups: for the 
symmetric lay-up the sequence was PZT/ 
0790790707PZT and for the non-symmetric 
lay-ups PZT/0790707907PZT. In Table 2 the 

normalized constants for the example beams 
are given. For all the cases presented here only 
one element is needed for the exact results of 
the analysis. The shear correction factor k was 
taken as 5/6 in all cases. 

The first example is of a cantilever beam 
loaded by a distributed load q, and by an 
applied voltage. In Table 3 the results for the 
tip deflection, as a function of the slenderness 
ratio for the beam, for several applied voltages 
are given. In Fig. 1 the deflected shape of one 
of the cases in Table 3 is shown. It is evident 
that one can control the shape by applying an 
electric field to the PZT layers. 

In the second example the results are given 
for a simply supported beam in Table 4 and 

Table 1. Material and geometric data 

Material 
(N/m2) (N/m2) (N/m2) (N/m2)        (N/m2) 

d31 = d32 
(m/V) 

Thickness 
(m) 

G-1195 piezoceramic 
AS/3501 graphite- 

epoxy 

63.x 109 

144.8 x 109 
63. x 109 

9.65 x 109 
24.8 x 109 

7.1 x 109 
0.28 
0.30 7.1 x 109     5.92 x 109 

-106.x 10" 0.0002 
0.000127 

Table 2. The normalized constants for the examples 

Normalized constant PZT/0790707907PZT 
non-symmetric 

PZT/0790790707PZT 
symmetric 

V 

q0-- 

/o = 

AnL2 

Du 

BUL 

Du 

A55L
2 

Du 

.3lL 
'  Du 

FUL2 

Du 

0.246755(L/02 

0.0638(L/f) 

0.012197A:(L/02 

0.938 x 10"9(L/03 

0.23362 x 10~Vj(L/0 

0.2188627(L/02 

0 

0.0108183&(L/02 

0.832 xl0"9(L/03 

0.207 x 10" Vi(L/0 

Table 3. Tip deflection for loaded clamped free beams with different Lit ratios for symmetric and non-symmetric lay-up 
beams 

V PZT/0790790707PZT PZT/0790707907PZT 

Lit = 500 Lit = 700 Lit = 1000 Lit = 500 Lit = 700 

0 -0.01302307 -0.0357043 -0.10404614 -0.01492519 -0.0409237 
50 -0.00940057 -0.0320818 -0.09887114 -0.01195596 -0.0373012 
100 -0.00577807 -0.0284593 -0.09369614 -0.00898673 -0.0336787 
200 0.00146693 -0.0212143 -0.08334614 -0.00304827 -0.0264337 
300 0.00871193 -0.0139693 -0.07299614 0.00289019 -0.0191887 
400 0.01600267 -0.0066588 -0.06254712 0.00887466 -0.0118779 
500 0.02320193 0.0005207 -0.05229614 0.01476711 -0.0046987 
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C-F non-symmetric 
beam mechanical loading, L/t=700 

V= Ovolt 

V= 50 volt 
V= 100 volt 

V=200volt 
V=300 volt 
V=400 volt 
V=500volt 

x/L 

Fig. 1. Deflections of a non-symmetric cantilever beam under distributed lateral load and applied electric voltage. 

Table 4. Central deflection of loaded simply supported 
beams with different Lit ratios for symmetric and non- 

symmetric lay-up beams {Lit = 1000) 

PZT/07907907 
07PZT 

0 
200 
500 

-0.1084487 
-0.00566987 

0.00209263 

PZT/079070° 
/907PZT 

-0.01242993 
-0.00649143 
0.00241632 

Fig. 2. In Table 5 the effect of restraining both 
ends of the simply supported beam axially is 
shown. 

SUMMARY 

In this paper the exact shape functions for the 
deflection and bending slope of composite lami- 

S-S symmetric 
beam 

mechanical loading, L/t=1000 

-V= Ovolt 
-V=200volt 
-V=500volt 

x/L 

Fig. 2. Deflections of a symmetric simply supported beam under distributed lateral load and applied electric voltage. 
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Table5. Central deflection of loaded simply supported 
beams (Lit = 1000) for non-symmetric lay-up and with 

axial restraints 

w(0) = u{L) = 0 u(0)=u'(L) = 0 

0 
200 
500 

-0.01206120 
-0.00628658 
0.00278505 

-0.01242993 
-0.00649143 

0.00241632 

nated beam elements were used to derive the 
exact stiffness matrix for the beam. The element 
has only six degrees of freedom, as for the clas- 
sical beam element. The advantage of the 
presented method is its the ability to deal with 
general lay-ups and geometries of the structure, 
and its boundary conditions, with the ease of 
the general finite-element method, using a mini- 
mal number of elements, but yielding exact 
results. 
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Compression failure of sandwich composites made of fibrous carbon-epoxy 
skins and foam core was investigated using an experimental study. The 
sandwich specimens had holes and/or partial delamination between the skin 
and core, and they were subjected to compressive edge loading. Different 
core thicknesses of sandwich specimens were considered, and hole sizes and 
locations were varied to examine their effects on the compression failure. 
The study also included compression of delaminated specimens. In order to 
better understand the failure mechanism, a numerical study was also 
conducted. Major modes of failure were core shearing, delamination and 
skin fracture. Depending on the given parameter, the failure mode was 
different. The study examined the transition of the failure mode from one 
kind to another depending on the variation in the parameters such as 
delamination and hole size and location. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

Sandwich structures are made of strong and 
stiff skin materials, and light and relatively soft 
core materials. In particular, fiber-reinforced 
composite materials have been used for the skin 
material. Sandwich composite structures have a 
high strength and stiffness to density ratio, a 
high resistance to corrosion and an increased 
fatigue life. As a result, they have been used in 
the design and construction of various compo- 
nents of many civil and military structures. 

Sandwich structures have complicated failure 
modes under compression load. Compression 
failure depends on the relative strength and 
stiffness of the skin and core materials. Some of 
the previous studies on sandwich composite 
structures are given in the References [1-9]. 
Pearce & Webber [1,2] studied compression 
failure of simply supported sandwich panels 
made of fibrous composite skins and a honey- 
comb core. Vinson [5,6] gave expressions for 
compressive strengths for various failure modes, 
and he determined the optimum skin thickness, 
core thickness, and cell thickness and size of a 

honeycomb core for compression failure. Ana- 
lytical expressions for compressive strengths 
were developed for symmetric sandwich compo- 
sites made of boron-epoxy laminated skins and 
a honeycomb core [3]. Somers et al. [10,11] 
examined the effect of delamination on the 
buckling and post-bückling behavior of sand- 
wich beams. They derived analytical expressions 
to determine failure loads of partially delami- 
nated sandwich beams for different failure 
modes such as dimpling, shear crimping and 
wrinkling failures. They found that delamina- 
tion located at the core-skin interface was very 
critical to the failure of sandwich structures. 

The objective of this study is to further 
understand the failure mechanisms in sandwich 
composite structures with initial defects such as 
holes and delamination, which are subjected to 
compressive loads. Both experimental and 
numerical studies were conducted for sandwich 
composites made of carbon-epoxy laminated 
skins and a foam core. Sandwich composite 
specimens with different core thicknesses were 
considered. The sandwich composites had a 
partial delamination and/or holes. Crack and/or 
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hole sizes, as well as their locations, were 
varied. The present study investigates how the 
compression failure loads and modes changed 
as the delamination crack and/or holes were 
varied. 

EXPERIMENTAL PROCEDURES 

SG3 SG5 

SG4 SG2 SG6 

Fig. 2. Typical strain gauge locations. 

This section provides detailed descriptions, 
illustrations and procedures of the testing 
carried out. The tests performed were edge-wise 
compression. The Instron Model 4507 tensile- 
compression test machine was used with a 
200 kN load cell. Load and displacement data 
were obtained using the Instron Model 4500 
data aquisition system with the Instron series 
IX automated materials testing software. 

Testing fixtures were designed and fabricated 
to ensure simply supported end conditions on 
the loaded ends of the test specimen. The com- 
pression test specimen fixtures are shown in 
Fig. 1. The unloaded sides of the test specimen 
were unconstrained, while the loaded ends were 
aligned in the test fixtures with shims to ensure 
loading on the neutral axis. The cylindrical 
shafts of the test fixtures were free to rotate in 
the journal of the fixtures. The freedom of rota- 
tion ensured the simply supported end 
conditions prevailed throughout the duration of 
the compression test. 

The specimens used throughout this study 
were from a symmetric sandwich composite 
with graphite-epoxy (027902702°) top and bot- 
tom skins and a Rohacell polymethacrylimide 
rigid foam inner core. All test specimens were 
38.1 cm (15 in.) in length and 3.81 cm (1.5 in.) 
in width. The graphite-epoxy skins were nom- 

INSTRON 4507 

© 

A ® 

® Loadcell 
© Upper test fixture 

Q) Specimen 

0 Lower test fixture 
© Dial gage 

Fig. 1. Test equipment and specimen. 

inally 0.096 cm (0.038 in.) thick. The specimen 
foam thickness was 0.30 cm (0.118 in.), 0.635 cm 
(0.25 in.) or 1.27 cm (0.5 in.). Some samples had 
delaminations between the skin and core. The 
delaminations were located on one side of the 
skins only at the center of the specimens. The 
delamination ran across the total width of the 
test sample, and the longitudinal length of dela- 
mination varied from 1.27 cm (0.5 in.) to 
2.54 cm (1.0 in), 5.08 cm (2.0 in), 10.16 cm 
(4.0 in) and 15.24 cm (6.0 in). All delaminated 
samples had foam cores 0.635 cm (0.25 in.) 
thick. 

The test specimens were instrumented with 
1.27 cm (0.5 in.) Measurements Group, Inc. 
CEA-13-250UN-350 precision strain gages 
mounted longitudinally and back-to-back on 
both sides of the specimens. A typical strain 
gage location is shown in Fig. 2. The gages had 
a gage factor of 2.12. Gage outputs were con- 
nected to a Measurements Group SB-10 Switch 
and Balance Unit, and the strain readouts were 
provided by a Measurements Group P-3500 
Strain Indicator. With the mounting fixtures 
installed on the compression test machine, the 
test specimen was fitted into the mounting fix- 
tures and aligned with shims of various sizes. 
The center and axial deflections were measured 
with Sterrett dial indicators. Figure 1 illustrates 
the test specimen in the mounting fixtures for 
the typical compression test set-up. 

Multiple identical compression tests were 
conducted on samples of the same type. The 
results of the multiple tests were almost identi- 
cal, thereby the averge data are used for the 
results and discussion. Figure 3 shows four dif- 
ferent types of samples tested: (a) specimens 
with no hole and no delamination; (b) speci- 
mens with delamination only; (c) specimens 
with holes only; and (d) specimens with both 
delamination and holes. A hole may be located 
outside the delamination zone. The detailed 
descriptions of these specimens are provided in 
the next section, where experimental results are 
discussed. 
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(a) sample with no hole and no delamination (b) sample with delamination but no hole 

o o 

(c) sample with hole but no delamination (d) sample with both delamination and hole 

Fig. 3. Different types of specimens. 

EXPERIMENTAL STUDY 

Samples with no hole and no delamination 

The samples consisted of the symmetric sand- 
wich composite with each sample having either 
a 0.3 cm (0.118 in.), 0.635 cm (0.25 in.) or 
1.27 cm (0.5 in.) foam thickness. Figure 4 shows 
the general trend in the compression tests 
exhibited by all test samples. The test specimens 
displayed linear compression up to the critical 
point for buckling. Loading continued into the 
buckling regime until the ultimate load in com- 
pression was obtained and the sample began to 
shed the load quickly. Figure 5 shows the maxi- 
mum compressive (i.e. failure) load vs core 
thickness for the non-delaminated samples. 
Figure 5 shows that the compressive failure load 
increases almost linearly as the core thickness 
increases. 

Upon loading, the test samples generally bent 
in a half-sine shape until maximum compressive 

loads were reached. After the maximum load, 
the load continuously dropped and the sample 
changed from a half-sine shape to an S shape. 
The initial failure of the specimens (i.e. reach- 
ing the maximum compressive load) was overall 
buckling, and the post-buckling failure was core 
shearing and delamination, as observed in other 
sandwich samples [12]. Figure 6 shows the typi- 
cal S shape of the sample after core shearing. 
The core shear of the non-delaminated samples 
generally originated from points between the 
center and a quarter-length point on the 
samples. 

Sample with delamination but no hole 

All delaminated samples had a 0.625 cm 
(0.25 in.) foam thickness and a delamination 
length of 1.27 cm (0.5 in.), 2.54 cm (1.0 in.), 
5.08 cm (2.0 in.), 10.16 cm (4.0 in.) or 15.24 cm 
(6.0 in.). The delamination was located between 
the skin and the core on only one side of the 
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Fig. 4. Load versus strain under compressive load. 
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Fig. 5. Compressive failure load versus core thickness. 
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sandwich specimen. The delamination was also 
located at the center of the specimen along its 
length and through the width of the specimen. 
Figure 7 displays the maximum compressive 
load vs delamination length of the delaminated 
samples. There appears to be a threshold value 
of approximately 1112 N (250 lb/ft) where both 
the 4 and 6 in. delamination samples failed. The 
maximum compressive load was an almost 
linear function of the delamination for the 2, 1 
and 0.5 in. delaminations. 

The delaminated samples failed by core 
shearing, except for the samples with a 1.27 cm 
(0.5 in.) delamination. They showed no prefer- 
ence in bending toward or away from the side 
with delamination. The core shear of the dela- 
minated samples always originated at the edge 
of   the   delamination.   The   samples   with   a 
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Fig. 6. Specimen with core shear failure. 
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Fig. 7. Compressive failure load versus delamination size. 

1.27 cm (0.5 in.) delamination failed initailly by 
overall buckling followed by core shearing as 
post-failure. The core shearing did not initiate 
from the delamination crack tip. Instead, it 
occurred at points between a quarter-length 
point and the near end support of the speci- 
mens. The maximum compressive force for 
samples with a 1.27 cm (0.5 in.) delamination 
was almost the same as that of the sample with- 
out delamination. The results showed that there 
was a threshold value for the delamination 
crack size under which the compressive failure 
load was not affected by the delamination 
crack. For the present samples, the threshold 
delamination crack size was between 1.27 cm 
(0.5 in.) and 2.54 cm (1.0 in.). 

Samples with holes but no delamination 

The first set of tests were conducted for sand- 
wich specimens with holes at the center. 
Different sizes of holes were considered for the 
specimens with the same foam thickness. Speci- 
mens with 3 mm (0.12 in.) thick foam had two 
sizes of holes: 12.70 mm (0.5 in.) and 22.23 mm 
(0.875 in.) hole diameter. The specimen with a 
12.70 mm (0.5 in.) hole initiated a core shear 
failure around a quarter-length point along the 
length of the sample. Core shearing continued 
into delamination between the skins and core. 
The failure load was 2.74 kN which was about 
80% of the failure load without a hole. 

Specimens without holes experienced a 
higher foam core shear stress around a quarter- 
length point along the specimen length than 
other locations. This is explained further in the 
following numerical study. The center hole 
introduced a stress concentration on the bend- 
ing stress of the skin. However, the center hole 



Compressive failure of carbon-foam composites 577 

made the specimen more flexible compared to 
those without a hole. As a result, core shear 
stress around the quarter-point increased with 
the hole. However, the skin material has a 
much greater failure strength than the core 
material so that the bending stress at the hole 
with added stress concentration did not reach 
the failure strength of the skin material. Hence, 
failure occurred around a quarter-length point 
of the foam core at a lower load. 

As the hole diameter was increased to 
22.23 mm (0.875 in.), failure occurred at the 
center of the skin material. That is, bending 
failure occurred instead of core shear failure. 
Higher bending stress with a larger hole caused 
skin fracture next to the hole. The failure load 
was 2.61 kN which was lower than that for 
specimens with a 12.70 mm (0.5 in.) hole. The 
numerical study in the next section confirmed 
this result. 

A similar observation was made for speci- 
mens with higher core thicknesses. Specimens 
with a 6.35 mm (0.25 in.) thick core had core 
shearing failure around the one-eighth point of 
the specimen length when a 12.70 mm (0.5 in.) 
diameter hole was drilled in the specimen. On 
the other hand, a specimen with a 19.05 mm 
(0.75 in.) diameter hole failed by skin fracture 
at the center. For specimens with 12.70 mm 
(0.5 in.) thick core, a center hole with a 
6.35 mm (0.25 in.) diameter caused core shear 
failure, and a center hole with a 12.75 mm 
(0.5 in.) diameter resulted in skin fracture. 

The experimental results showed that there 
was a threshold hole size for the carbon-epoxy 
skin-foam sandwich composite on which the 
failure mode varied from core shearing to skin 
bending fracture. Skin bending fracture occur- 
red for a hole larger than the threshold size, 
while core shearing occurred for a smaller hole. 
As the core thickness increased with the same 
skin thickness, the threshold hole size 
decreased. A thicker core made a stiffer sample 
which had less bend compared to a thinner core 
specimen when subjected to edge compression. 
The stress concentration factor is larger for in- 
plane deformation than for bending 
deformation. As a result, a thicker core speci- 
men has a greater stress concentration factor 
which results in skin bending failure at a smaller 
size of hole. 

When subjected to a 12.70 mm (0.5 in.) hole 
at the center, the failure load increased by 
124%  when  increasing  foam  thickness  from 

3 mm (0.12 in.) to 6.35 mm (0.5 in.). A compari- 
son cannot be made for the sample with 
12.70 mm (0.5 in.) thick foam as the sample 
failed by skin fracture vice core shearing. When 
subjected to a 19.05 mm (0.75 in.) hole at the 
center, the failure load increased by 96% when 
increasing from a foam thickness of 6.35 mm 
(0.25 in.) to 12.70 mm (0.5 in.). For specimens 
with a hole the failure load was quite linear to 
the core thickness, as was the case for no-hole 
specimens. 

Because core shearing occurred around the 
quarter-length point of the specimen, a hole 
was drilled at this quarter-point to determine its 
effect on failure. Sandwich specimens with 
12.70 mm (0.5 in.) thick foam had a 6.35 mm 
(0.25 in.) hole at one quarter-point, a 6.35 mm 
(0.25 in.) hole at both quarter-points, and a 
6.35 mm (0.25 in.) hole at each quarter-point 
and at the center. These specimens failed by 
core shearing around the quarter-point at 
almost the same magnitude of load. That is, 
changing hole locations and the number of 
holes did not change the failure load and failure 
mode as long as core shearing was the failure 
mode. 

Samples with both delamination and a hole 

Four compression tests on delaminated samples 
were conducted to study the interaction 
between a hole and a delamination. All four 
samples had a foam thickness of 6.35 mm 
(0.25 in.) with a 12.70 mm (0.5 in.) hole at one 
quarter-point. In all cases, the delamination was 
on one side only and was centered length-wise. 

The results showed that specimens with a 
delamination crack longer than the critical 
crack length were not affected by a hole as long 
as the hole size was less than the critical size, 
and they failed by delamination crack propaga- 
tion. There was almost no change in the failure 
load when compared to that for the specimen 
with delamination only. That is, the hole did not 
affect the failure in these cases. On the other 
hand, when the delamination crack length was 
smaller than the critical crack length, failure 
was caused by bending at the hole. The failure 
loads with a hole were lower than those without 
a hole. That is, failure mode and load changed 
because of the hole. No core shearing failure 
was observed for the present specimens. 

Specimens with a delamination length greater 
than or equal to 50.80 mm (2.0 in.) failed by 
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Nodes : 766 
Elements : 680 

Fig. 8. Finite element mesh for a plate with a hole. 

delamination crack propagation, while speci- 
mens with a delamination crack length less than 
or equal to 25.40 mm (1.0 in.) failed by bending 
failure at the hole. Therefore, the critical dela- 
mination crack length for the present specimen 
should be between 25.40 mm (1.0 in.) and 
50.80 mm (2.0 in.). 

NUMERICAL STUDY 

A finite-element analysis was conducted to bet- 
ter understand the experimental results. The 
ANSYS finite-element analysis program [13] 
was used to conduct the numerical modeling. 
Five models were constructed representing the 
no-hole case, the center hole case, the quarter- 
point hole case, the case with a hole at each 
quarter-point and the case with a hole at each 
quarter-point and at the center. Figure 8 shows 
a typical element mesh. 

A linear buckling analysis was conducted first. 
Four-node shell elements were used to model 
the specimens. For the samples with core thick- 
nesses of 3 mm (0.12 in.) and 6.35 mm 
(0.25 in.), the experimental failure loads are 
consistently higher than the numerical linear 
buckling loads. The experimental failure load 
was 3.47 and 6.32 kN for 3 and 6 mm thick 
plates with no hole, respectively. The numerical 
failure load was 1.29 and 4.18 kN for both 
plates, respectively. On the other hand, the two 
plates with a 12.70 mm (0.5 in.) hole at the cen- 
ter had failure loads of 2.74 and 6.13 kN from 
the experiment, and 1.24 and 4.04 kN from the 
numerical study. This may be explained by fric- 
tion in the experimental boundary fixtures. The 
friction caused the actual experimental bound- 
ary conditions to be other than ideal freely 
rotating end conditions, which caused the 
experimental results to be higher than the 
numerical results. 

For the samples with a core thickness of 
12.70 mm (0.5 in.), the higher compressive loads 
overcame the friction and the end fixtures 
behaved more like simply supported boundary 
conditions. Therefore, the numerical results 
agreed   with   the   experimental   results.   The 

M0 
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M„ 

Fig. 9. Simply supported beam with end moments. 

experiment showed that the failure loads with- 
out or with 6.35 mm holes at both 
quarter-points of the plate were 14.23 and 
13.21 kN, while the numerical results gave 14.31 
and 14.17 kN, respectively. The friction at the 
end support can be modeled by moments 
applied at the boundaries, as shown in Fig. 9. 
The governing equation is 

d2v     , 1 
■+k2v=- —M„ 

dx2 El (1) 

where 

(2) 

v is the transverse deflection of the beam, El is 
the beam rigity, M0 is the end moment caused 
by friction and P is the compressive axial force. 
The solution to eqn (1) is 

M0   cos(fcL) — 1 
v = 

M„ 

sin(fcL) 

■(cos(fac) —1) 

sin(fcc) 

(3) 

where L is the length of the beam. This solution 
is also given in Timoshenko & Gere [14]. The 
shear force V is obtained from eqns (3) and (4) 

MQk I kL 
V= sin   —— kx 

kL        \   2 
cos —        x ' 

Shear force V is a maximum when 

(4) 

kL % 

2   ~ X~ 2 

Solving for x yields 

(5) 

(6) 
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where Pf is the failure load and Pcr is the Euler 
buckling load 

Pcr = 

n2EI 
(7) 

The failure load was obtained from the experi- 
ment. 

The sample with a core thickness of 3 mm 
(0.12 in.) had a failure load of 3.47 kN and a 
Euler buckling load of 1.29 kN. For this sample 
the analysis yields x = 0.2L. The sample with a 
core thickness of 6.35 mm (0.25 in.) had a 
failure load of 6.32 kN and a Euler buckling 
load of 4.18 kN. For this sample the analysis 
yields x = 0.1L. The failure locations observed 
from the experiment for these two samples 
agreed very well with the predicted failure loca- 
tions. 

The bending moment is 

M = 
M„ 

kL 
cos! kx — — I (8) 

cos 

The maximum bending moment occurs at x = LI 
2, i.e. at the center of the beam. Examination of 
the tested samples showed that failure at the 
hole was due to bending while failure away 
from the hole was due to foam core shearing. 

A stress analysis using an eight-node layered 
shell element was conducted to take a closer 
look at the stresses within the different compo- 
site layers to support the experimental findings. 
The analysis showed that a sample without a 
hole subjected to a given compressive load had 
a greater foam core shear stress around the 
quarter-point than at the center. With a hole at 
the center, the foam core shear stress around 
the quarter-point increased as the hole diam- 
eter increased. However, the carbon skin 
bending stress beside the hole increased at a 
faster rate than the foam core shear stress 
around the quarter-point because of the stress 
concentration around the hole. When the hole 
diameter reached a critical diameter, the bend- 
ing stress at the hole became more critical in 
failure than the core shear stress around the 
quarter-point. As a result, the failure mode 
changed from foam core shear failure at the 
quarter-point to skin bending fracture at the 
hole. Figure 10 shows the rate of increase for 
both  stresses with  increasing  hole  diameter. 
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Fig. 10. Bending and shear stresses versus hole diameter. 

With a 6.35 mm (0.25 in.) hole, the sample 
failed around the quarter-point due to foam 
core shear failure. With a 12.70 mm (0.5 in.) 
hole, the bending stress at the hole was more 
critical than the core shear stress at the quarter- 
point and the sample failed at the hole. 
Between these two points, the failure mode 
made a transition from foam core shear failure 
around the quarter-point to bending failure at 
the hole. 

CONCLUSIONS 

The compressive failure load was almost lin- 
early proportional to the core thickness of 
samples with no delamination and no hole. For 
these samples, overall buckling was the initial 
failure (i.e. dropping from the maximum com- 
pressive load) and core shearing occurred 
post-failure. With a partial delamination crack 
between the skin and core, core shearing initi- 
ated at the crack tip with decreasing failure 
loads. However, a 0.5 in. delamination crack did 
not change the failure mode and failure load. 
Thus, there was a threshold value for the dela- 
mination crack size. If the crack was smaller 
than the threshold value there was no effect of 
the crack on the failure. 

With a hole at the center, the foam core 
shear stress at the quarter-point increased as 
the hole diameter increased. However, the car- 
bon skin bending stress at the hole increased at 
a faster rate than the foam core shear stress due 
to the stress concentration. When the hole 
diameter reached the critical diameter, the 
bending stress at the hole became more critical 
in failure than the core shear stress around the 
quarter-point. As a result, the failure mode 
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changed from foam core shear failure around 
the quarter-point to skin bending failure at the 
hole. The critical diameter decreased as the 
foam core thickness increased. When thick core 
composites were used, the critical diameter was 
small and failure occurred by skin fracture. 

For specimens with both holes and delamina- 
tion cracks, there was minimum interaction 
between the hole and the crack as long as the 
crack is large and the hole is small. That is, 
failure initiated at the crack tip and there was 
almost no change in the failure load. However, 
when the hole size increased and the crack size 
decreased, the failure was caused by skin frac- 
ture at the hole and the failure load decreased. 

The experimental compression failure loads 
were higher than the numerical linear buckling 
loads for samples with core thicknesses of 3 mm 
(0.12 in.) and 6.35 mm (0.25 in.). This was 
explained by friction in the experimental bound- 
ary fixtures. The friction at the end supports 
was modeled by moments applied at the bound- 
aries. The failure location was predicted and the 
prediction agreed well with experimental obser- 
vation. 
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'Good vibrations', the science and application 
of intrinsically damped composite materials* 
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The work presented in this paper shows how the viscoelastic properties of 
an epoxy resin system can be modified to produce an intrinsically damped 
composite (IDC) material. Through the addition of chain extension 
modifiers, peak loss factors of up to 0.4 have been achieved compared to 
0.005 for traditional glass reinforced epoxy (GRE) materials. Both dynamic 
mechanical analysis (DMA) and vibroacoustic measurement techniques 
were used to determine the loss factors of the IDC materials. The DMA 
technique was less sensitive to changes in damping due to different fibre 
orientations. In conclusion, potential areas of application for these novel 
composite materials are described. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

One of the principal benefits offered by compo- 
site materials is the ability to tailor their 
mechanical properties for different applications. 
One area which is only recently being investi- 
gated is the ability of composite materials to 
provide considerable reductions in the levels of 
vibration and noise generated by a structure. By 
altering the fibre alignment it is possible to 
increase the vibrational loss factor of a compo- 
site material. However, this usually requires a 
high proportion of fibres to be orientated at 
+ 45° to the primary loading direction (i.e. the 
0° direction), resulting in a considerable reduc- 
tion in mechanical stiffness of the material in 
that direction. One approach to overcome this 
limitation is to use alternative fibres which pos- 
ses, intrinsically, higher levels of damping. 
Investigations of this type have been carried out 
by Yu and Song at the US Army Natick 
Research Laboratories [1-3] who have studied, 
predominately, the damping levels achieved by 
using Kevlar 29 and Spectra for ballistic protec- 
tion. Other workers have investigated the 
benefits gained through the use of interleaving 
in angle-ply carbon fibre epoxy laminates [4]. 

♦Reproduced with the permission of the Controller of Her 
Britannic Majesty's Stationery Office. 

All these techniques show some improvements, 
but none of them have achieved loss factors 
greater than 0.05 for a composite material at 
frequencies above 10 Hz. Some workers [5] 
have speculated that the only way to achieve 
high loss factors would be through modifying 
the resin system and it is this approach which is 
described in this paper. 

Currently, a wide range of resins are used for 
fibre consolidation in composite materials 
including polyesters, vinyl esters, phenolics and 
epoxies. All these resin systems exhibit viscoe- 
lastic properties, but only at high temperatures, 
typically in the region of 80-230°C. For a 
homogeneous polymer, the viscoelastic region 
(also known as the transition region because it 
corresponds to material behaviour which is 
neither glassy or rubbery, but somewhere in- 
between) occurs over a range of temperatures 
centred around the glass transition temperature 
(Tg). This region is characterised by a decrease 
in the real component of Young's modulus (£') 
in addition to an increase then decrease of both 
the complex component of Young's modulus 
(£") and the loss factor (tan ö = ET IE'). Gener- 
ally, composite materials such as GRP have a 
loss factor of 0.005 which is only marginally 
superior to that of mild steel with a value of 
0.0001. In many areas of application (particu- 
larly    for    the    aerospace    industry),    resin 
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manufacturers have neglected material damping 
performance, tending to develop polymers with 
higher glass transition temperatures so that 
mechanical stiffness is maintained at elevated 
temperatures. However, in many applications, 
structural damping performance will be a major 
consideration. It is possible to develop resin sys- 
tems with relatively low glass transition 
temperatures so that the viscoelastic region is 
encountered at expected operating tempera- 
tures and, consequently, higher levels of 
damping can be exploited. Intrinsically damped 
composite (IDC) materials containing 4 ply 
0/90° woven XAS carbon fibre and consolidated 
with highly damped epoxy resin systems have 
shown loss factors of up to 0.4. 

Obviously there is a trade off between the 
level of damping which is achieved and the 
mechanical properties, however, for many 
secondary structures these limitations can be 
overcome. Furthermore, if careful thought is 
given to the vibroacoustic environment a struc- 
ture may experience during its life time, 
considerable cost savings can be made by using 
these composite materials in the early design 
phase, rather than adding additional parasitic 
damping whilst in service. This paper will 
describe the work carried out by the UK 
Defence Evaluation and Research Agency 
(DERA) in formulating these highly damped 
epoxy resin systems, providing information on 
their dynamic mechanical characteristics and 
typical areas of application. 

COMPOSITE MATERIAL FABRICATION 

The time and effort required to develop a com- 
pletely new matrix system with enhanced 
damping properties would be immense. Conse- 
quently, the approach taken was to use 
proprietary resins and chain modifiers with the 
aim of reducing both development and eventual 
unit production costs. 

At an early stage a decision was made to 
focus resources by studying only epoxy based 
systems, since flexibilised epoxy resins are 
widely used for industrial flooring and also in 
the electronics industry for the encapsulation of 
electronic devices. Chain modifiers manufac- 
tured by two independent suppliers have been 
investigated in combination with standard 
bisphenol A epoxy resins. The assessment of 
candidate matrix systems has been made by 

considering the mechanical performance and 
the processibility of the resin systems con- 
currently. Since many of the most effective 
flexibilising additives are highly viscous it was 
necessary to make some performance trade-offs 
to arrive at a viable practical solution. The 
resins investigated in this report have been 
designated R1816, R1818 and RF69. 

Economic and environmental pressures have 
increased the attractiveness of using closed 
mould and filament winding techniques to fabri- 
cate composites. To be readily processed using 
these production methods, a matrix system must 
have a low viscosity, long pot life and only 
require moderate post curing. Such considera- 
tions are equally important for highly damped 
composites, and careful attention has been 
made to address these issues early in the resin 
development stage. 

Viscosity measurements were performed on a 
Brookfield viscometer immediately after mixing 
together the matrix components. The pot life 
measurements are values of the useable life of a 
resin system when stored in a typical 2 litre 
laminating bucket, based on experience gained 
from manufacturing laminates using the various 
resins. In all cases the ambient temperature was 
22°C. A summary of results is shown Table 1; 
note the comparison with a typical medium vis- 
cosity resin used for the resin transfer moulding 
(RTM) of components. 

The RF69 system has been successfully pro- 
cessed using RTM and filament winding. 
Vosper Thornycroft Ltd (UK) have fabricated a 
30 mm thick composite using RF69 and the 
Seeman composite resin injection moulding 
process (SCRIMP) with few processing difficul- 
ties. Attempts were made to RTM using the 
R1816, however these efforts were unsuccessful 
due to a combination of the high viscosity and 
the short pot life. 

An analysis of the cure kinetics of the RF69 
resin has been performed from results mea- 

Table 1. Processing properties of viscoelastic resin sys- 
tems at 22°C 

Resin type Viscosity 
(MPa s) 

Pot 
life 
(h) 

RF69 
R1816 
R1818 
Derakane 411-45 (Dow) 

1100 
4600 
4600 
500 

-6 
~1 

~2.5 
0.75-3 
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sured on a thermal analysis (TA) 2920 
differential scanning calorimeter (DSC). DSC 
tests were conducted from -20 to 250°C using 
a 10°C/min ramp rate. These measurements 
were then used in conjunction with a kinetics 
analysis package (B and D kinetics) to predict 
the time required to post cure the matrix at 
various temperatures, see Fig. 1. 

It should be noted that the conditions within 
the DSC are not wholly representative of those 
found in a 2 mm thick laminate where larger 
amounts of resin will be reacting with less 
opportunity for the transfer of heat from the 
laminate. However, the effect of this will be to 
underestimate the time taken for the resin to 
cure. The data presented above shows that not 
only does the RF69 resin system have a rela- 
tively low viscosity and long pot life, but it can 
also be satisfactorily post cured at moderate 
temperatures over a short period of time. 

The IDC materials used for dynamic mechan- 
ical analysis and vibroacoustic measurements 
have all been manufactured using hand lay-up 
or RTM techniques. To allow a direct compari- 
son of results, spacers were used during hand 
lay-up to ensure that the panel thickness 
remained constant (i.e. to maintain a volume 
fraction of 40% fibre by weight). All laminates 
were cured at room temperature for 24 h 
followed by a post cure at 60°C for 3 days 
(4320 min). 

DYNAMIC MECHANICAL ANALYSIS 
(DMA) 

Dynamic mechanical analysis (DMA) provides a 
convenient method of testing large numbers of 
resin   formulations   and   composite   systems 

quickly and simply. Test samples were cut from 
hand layed-up laminates panels made from four 
plies of plain weave Courtaulds XAS carbon 
fibre and tested in three point bending using a 
Netzsch 242 DMA. Specimen dimensions were 
approximately 1.8 x 12.0 mm and measurements 
were made on a sample holder with a free 
bending length of 40 mm and at a frequency of 
10 Hz. 

Figures 2 and 3 show the results for three 
highly damped composite laminates measured 
in both 0/90° and ±45° fibre orientations. When 
measured at 0/90° the R1816, R1818 and RF69 
exhibited a loss factor (tan <5) of approximately 
0.45. However, as the temperature increased 
this rapidly fell to around 0.1. This represents a 
1-2 order of magnitude improvement compared 
to traditional carbon fibre composite materials. 

If the data presented in Figs 2 and 3 are then 
compared, as expected, the Young's modulus 
for the 0/90° fibre orientation is approximately 
four times that in the +45° direction. However, 
the values for tan S are similar in magnitude, 
irrespective of the fibre orientation. The peak 
values of tan ö appear to be actually higher for 
the 0/90° laminates, although for the ±45° 
specimens the peak is broader. These results do 
not comply with the analytical model previously 
described by the authors [6], however, there are 
a number of potential explanations for this. 

In a composite laminate, damping occurs as a 
mixture of two mechanisms. One relies on 
damping between the fibre and resin within the 
laminate plies and the other on damping 
between the plies. Measurements made on the 
DMA are achieved by cyclic flexure of the com- 
posite beam samples in three point bending at 
constant amplitude and frequency. Damping in 

360  720  1080  1440 1800 2160 2520  2880 3240 3600 3960 4320 

Time (min) 

Fig. 1. DSC plot of percentage cure state vs. post cure time at different temperatures for RF69. 
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Fig. 2. DMA performance at 10 Hz of 0/90° plain weave carbon fibre, consolidated with a range of highly damped epoxy 
resin systems. 

a flexural mode is largely due to shear effects 
between plies in a laminate which is analogous 
to constrained layer damping [7] and is domi- 
nated by inter-ply effects. Thus, the damping 
performance measured on the DMA is less sen- 
sitive to the properties of the individual plies 
than on the effect of shear in the matrix 
between the plies. Due to the higher stiffness of 
the 0/90° plies, the amount of energy that can 
be transferred into the matrix may be propor- 
tionally higher than for the +45° plies, leading 
to the higher value of peak tan <5. 

An alternative view is given by the theoretical 
studies carried out by Sun and Gibson [8] on 
predicting the material damping of laminated 

polymer matrix composites. Classical lamination 
theory is used to show that when beams with a 
very small fibre length to diameter (L/d) ratio 
are numerically analysed there is very little dif- 
ference in the value of tan <5 for different fibre 
orientations. It is only when L/d ratios > 5000 
are achieved that significant differences 
between fibres orientations are shown. If we 
make a gross simplification of the mechanisms 
occurring in an IDC composite material and 
liken the fibre tows to the individual fibres 
described in the work of Sun and Gibson, it is 
conceivable that the L/d ratio of the 40 mm 
long beams used by the DMA are too short to 
characterise the effects of fibre orientation. 

10.5 

20 30 40 

Temperature (°C) 

Fig. 3. DMA performance at 10 Hz of +45° plain weave carbon fibre, consolidated with a range of highly damped epoxy 
resin systems. 
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A further consideration when using the DMA 
is to remember that it does not measure the 
damping due to longitudinal waves. It might be 
expected that the longitudinal waves are 
dependent on the damping performance of the 
sum of the individual plies (i.e. shear effects 
within the plies) and rather less due to the 
shear effects between plies. If this is the case 
the +45° beam would be much more effective 
at damping longitudinal waves when compared 
with the 0/90° beam due to the higher in-plane 
stiffness of the 0/90° fibres. It is therefore neces- 
sary to establish the most dominant type of 
vibration in potential applications so that a cor- 
rect value for the damping performance can be 
applied i.e. have multiple values for tan Ö, one 
for flexural and the other for longitudinal vibra- 
tion modes. An alternative technique for 
determining damping performance is given by 
full size beam measurements. 

VIBROACOUSTIC MEASUREMENTS 

To demonstrate the representative loss factors 
generated by this technique, the vibroacoustic 
performance of a plain weave E-Glass/Cycom 
919 epoxy (GRE) composite material has been 
compared with an IDC XAS Carbon/RF69 
material. The analysis was carried out using a 
hammer with a force gauge mounted on the 
head and a laser accelerometer as shown sche- 
matically in Fig. 4 below. The signals from these 
two transducers were then analysed and the 
Fourier spectrum of each calculated. The out- 
put spectrum was then divided by the input 
spectrum to give the transfer function. The 
composite beams were cut to dimensions 
215 x 37 x 3.5 mm, with the fibres orientated at 
0/90° and +45°. 

The   transfer   function   for   a   given   beam 
sample will give the resonant frequencies of 

Reflective Tape For Laser 
Velocity Transducer Wire Supports at 

nodal lines 

Fig. 4. Schematic diagram of vibroacoustic measurement 
technique. 

that beam. By taking the half power points of 
the modes the loss factor can be calculated. 
With further knowledge of the beam using the 
following beam equation [9] it is possible to 
calculate the Young's modulus 

(1) 

Where 

/ = Fundamental frequency 
/ = Length of beam 
K = Radius of gyration 
E = Young's modulus 
a = Beam thickness 
p = Density 

K = aljn (2) 

To prevent any interference from the mount- 
ings and the transducers a Bruel and Kjear 
Laser Velocity Transducer was used and a small 
Dytran hammer was selected to excite the struc- 
ture. The signal processing was performed using 
a Bruel and Kjear spectrum analyser 2035 in 
two channel mode. The beam samples were 
supported by wire loops at the nodal lines for 
the fundamental mode to reduce interactions 
between the supports and the beam. All tests 
were conducted in the flexural mode. The fre- 
quencies for the first four modes of each of the 
two resin types were taken and the loss factors 
calculated (see Figs 5 and 6). 

As can be seen from the loss factors pre- 
sented in Fig. 5, this technique gives a value of 
between 0.005 and 0.01 for the standard E- 
Glass/Cycom 919 sample. This provides 
confidence in this test method as these values 
are similar to the loss factors traditionally 
quoted for GRE. The Young's modulus for this 
material is specified by Cytec (the manufactur- 
ers) as 26 GPa and analysis via the vibroacoustic 
method has given a value of approximately 
24 GPa. If we now examine the data for the 
IDC material presented in Fig. 6 we can see 
that the loss factors for the +45° and the 0/90° 
fibre orientations are approximately 0.2 and 0.1, 
respectively. These data conform to the theo- 
retical models presented in [Refs 6 and 8] 
where the ±45° fibre orientation imparts 
greater shear into the resin system thus intro- 
ducing a higher level of viscoelastic response. 
However, there is some discrepancy in the mea- 
sured    value    of    Young's    modulus    when 
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Fig. 5. Loss factor and Young's modulus for standard GRE composite material. 0790°. 

compared with the DMA results, particularly 
for the 0/90° orientation (the DMA measures 
-12 GPa at 10 Hz for the 0/90° and ~2GPa 
for the +45°, cf. Fig. 6). One explanation may 
be the inferior quality of these early hand layed 
up laminates compared to the test samples used 
for the DMA measurements which were pro- 
duced by RTM. Clearly further testing is 
required before the definitive technique for 
characterising the damping properties of the 
IDCs (and other composites) can be specified 
but until then care should be taken to describe 
the test conditions when quoting loss factors 
and excitation mode. 

APPLICATIONS 

There are a wide range of applications for vis- 
coelastically tuned composite materials. Many 
of the papers listed in the reference section 
show the potential benefits to be gained in bal- 
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listic impact performance but a number of other 
examples are given below. 

Currently many deep water oil and gas plat- 
form operators are replacing their existing sea 
water pipe systems with pipework manufactured 
from filament wound glass reinforced epoxy 
(GRE) composite materials. If these pipes are 
exposed to a continuous flow rate greater than 
5ms-1 then cavitation erosion can occur at 
bends and fittings. Work carried out by SINTEF 
in Holland [10] showed that under accelerated 
testing GRE had an erosion incubation time of 
1.7 h at a flow rate of 50 m/s compared to > 30 
h for a 6 Mo steel. It is known that that the 
erosion resistance of a composite material is 
resin dependant and relies on its capacity to 
resist the impact energy imparted by the col- 
lapsing cavitation bubbles. Consequently, if the 
first layers of a pipe were wound in E-glass/ 
RF69 IDC material this could overcome the 
additional expense of using an internal thermo- 
plastic liner. In addition, potential benefits 
could be gained in reduced noise, vibration 
transmission and hence fatigue damage to con- 
nected equipment due to the higher levels of 
structural damping. A more extreme cavitation 
environment is produced by composite marine 
propellers and IDC materials are currently 
being developed to provide erosion and impact 
protection under these conditions. 

Another area associated with the oil and gas 
industry is the protection of drilling riser arrays 
from clashing damage. This problem became 
more significant as exploration companies 
began developing oil fields at depths greater 
than 1000 m. Initial investigations considered 
the use of a polyurethane coating, but these 
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proved to be too brittle to resist repeated 
impact. Consequently, a filament wound polye- 
ster fibre/R1816 is currently being evaluated. 

One of the most significant areas of applica- 
tion for IDC materials is in the reduction of 
radiated noise from machinery rafts. These are 
used in marine applications for the siting of 
diesel generators, gearboxes, engines etc. Cur- 
rently they are manufactured from steel or 
aluminium and are then isolated from the 
machinery and deck via rubber isolation 
mounts. By constructing the space frame struc- 
ture from box sections filament wound at +45° 
from T300/R1816 IDC material, vibrational 
power transmission levels have been reduced 
between 10 and 20 dB across a broad frequency 
range. 

CONCLUSIONS 

A range of intrinsically damped composite 
(IDC) materials have been produced containing 
XAS/T300 carbon or E-glass fibres and consoli- 
dated with a highly modified bisphenol A epoxy 
resin system. Dynamic mechanical characterisa- 
tion has revealed that highly damped thermoset 
resin systems can produce much higher loss 
factors than previously shown by technique such 
as interleaving. Due to the compromise made 
between Young's modulus and loss factor these 
materials are more suitable for use in secondary 
structures. Additional work is required to 
broaden the temperature range over which the 
high levels of loss are produced. 

Two techniques were used to dynamically 
characterise the IDC materials. Generally it was 
found that the dynamic mechanical analysis 
(DMA) was less sensitive in measuring the 
changes in loss factor due to fibre direction 
than a more global vibrating beam method. 
Also the level of loss predicted by the DMA 
was higher than found on larger scale samples. 

Consequently great care must be taken when 
quoting loss factors for composite materials to 
ensure the test technique and mode of excita- 
tion (i.e. flexural or longitudinal) are stated. 
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Compressive behaviour of large undamaged 
and damaged thick laminated panels 
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Both intact and impact-damaged laminated panels under in-plane 
compressive loading are investigated with a purpose-built anti-buckling 
support. The readings of back-to-back strain gauges of selected locations 
are used to deduce panel behaviour in addition to post-mortem 
observation. The compression failure of intact panels is found to be close to 
the potted end. The failure characteristics of impact-damaged panels are 
dependent slightly on composite systems although they all failed in 
compression in the impact-damaged region with a kink shear band passing 
through the mid-section. E-glass/polyester panels with a greater shear angle 
do not seem to involve global buckling like S-glass/phenolic panels with 
small shear angles. The fact that the region covered by a kink shear band 
from impact surface to the distal surface is considerably less than the 
delamination area suggests that the initiation of overall failure is due to the 
collective result of flexural stiffness reduction compounded by the local 
impact damage and the associated change of fibre curvature. As a result, 
the residual compressive strengths are reduced significantly. Further 
outward propagation of the existing delamination(s) along the mid-section 
during loading is visible only for E-glass/polyester panels but is not 
significant. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

The in-plane compressive behaviour of fibre- 
reinforced laminated panels has been under 
extensive investigation in the past two decades, 
due primarily to its importance as well as its 
complexity with particular reference to impact 
damage. It has been well recognised that the 
compressive strengths of most composite lami- 
nates are much less than the tensile strengths, 
and especially the compressive strengths of 
damaged laminates suffer reduction more signi- 
ficantly than the tensile and other strengths. 
The latter limits allowable design strain to a 
level of about 0.3% so that most of the weight- 
saving potential is yet to be fully explored, and 
a further increase of allowable strain up to 
0.6% would offer greater commercial weight- 
saving benefit. Therefore, this area has an 
extremely important role to play in damage 
tolerance assessment of laminated composite 

structures. The complexity of compressive 
behaviour of laminated panels is well known 
due mainly to two factors. One is that three 
types of load introduction exist, namely end 
loading, surface-shear loading and the combina- 
tion of the two. Although all three types of 
loading are used to determine intrinsic compo- 
site compressive properties, the end loading 
type has been dominant for the compression of 
large composite panels. The other is the exist- 
ence of multiple failure mechanisms such as 
end-brooming, kink-band shear, delamination 
opening and global buckling, partly associated 
with the loading types. Different failure mech- 
anisms give different failure stresses, indicating 
a complex state of stress. A really challenging 
additional factor is that panels in compression 
contain impact damage of varying severity 
dependent on the level of impact force or inci- 
dent kinetic energy (IKE). Due to the fact that 
impact damage not only appears in various 
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forms such as matrix cracking, delamination and 
fibre fracture but also results in the change of 
local fibre curvature in the contact area, such 
preconditions which may act as an introduced 
misalignment in a subsequent compression test, 
often called compression-after-impact (CAI) 
test, could cause significant strength reduction. 
In particular, invisible internal delamination in 
an impacted panel may further propagate in 
compressive loading. It is really not surprising 
that impact damage, consisting of both material 
degradation and geometric change, has been 
found to be most detrimental to the in-plane 
compressive behaviour when compared to other 
preconditions such as voids, holes and 
embedded delamination [1]. Therefore, it is 
very important to understand the in-plane com- 
pressive behaviour of such impact-damaged as 
well as intact laminated panels. 

In this paper, both intact and impact- 
damaged laminated panels under compressive 
loading are investigated with a purpose-built 
anti-buckling support. The associated damage 
mechanisms are closely examined with the back- 
to-back strain gauge readings from selected 
locations so that the factors controlling their 
initiation and propagation can be identified. 
Particular attention is focused on the likelihood 
of further propagation of impact-induced dela- 
mination under compressive loading. 

DESIGN CONSIDERATIONS OF CAI TEST 
METHODOLOGY 

The existing CAI test methods [2-5] have been 
designed for specific laminate systems of certain 
laminate thicknesses with different support 
strategies. While the former three methods are 
primarily for relatively brittle carbon fibre-rein- 
forced laminates less than 6.4 mm thick and 
uses an edge clamping support strategy, the 
latter is mainly for glass fibre-reinforced lami- 
nates of more than 10 mm thick and uses the 
near-edge surface simple support strategy [5]. 
This technique is particularly necessary in the 
consideration of the fact that the present large 
thick impacted woven roving laminated panels 
not only suffer stiffness reduction, thereby 
reducing buckling resistance, but also show a 
certain amount of localised 'dishing', in addition 
to some inherent fibre waviness, so that they are 
prone to global buckling without proper 
support. 

Unlike a material property-oriented compres- 
sion test in which the gauge length and width of 
a specimen are often selected so as to avoid 
specimen instability during testing without anti- 
buckling support. The size of CAI test panels 
with reference to the delamination area has a 
significant influence over its compressive 
strength. The choice of panel dimensions for 
these thick laminates is completely governed by 
a trade-off among four factors, namely desire 
for large enough impact testing area to cover a 
delamination of unknown size associated with 
the maximum IKE, buckling load, uniaxial com- 
pressive strength (UCS) and load capacity of 
the available testing machine. This complex 
coupled situation stems from the fact that the 
CAI panel dimensions are very much con- 
strained by the dimensions of impact specimen 
which are chosen in the consideration that they 
are large enough to well contain the greatest 
delamination area generated by a given maxi- 
mum IKE, which in turn is unknown before an 
impact test is even conducted. In other words, 
once the dimensions of impact specimen are 
chosen, the maximum possible dimensions of a 
CAI panel is very much bounded. If impact 
tests carried out at the maximum IKE generate 
the size of delamination area reaching the peri- 
phery of testing area, it is not possible for the 
CAI panel to contain such a delamination area. 
Moreover, as the testing of unimpacted panels 
with identical dimensions is essential to provid- 
ing reference values, a panel width thus has to 
be narrow enough not only for the thinnest 
unimpacted panel to fail in compression before 
buckling but also for the thickest unimpacted 
panel to fail at a load level which is within the 
load capacity of the available testing machine. It 
is against this background that the current CAI 
test methodology was developed. 

COMPOSITES AND EXPERIMENTAL 
PROCEDURES 

Panels are made of woven roving E-glass/polye- 
ster and S-glass/phenolic laminate systems both 
with a nominal fibre volume fraction of 60%. 
While the former has nominal thicknesses of 10 
and 25 mm, the latter has nominal thicknesses 
of 14 and 19 mm. For both types of laminate 
systems, their interlaminar shear strengths are 
only one-sixteenth and one-tenth of their com- 
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pressive strengths, respectively, which in turn 
are less than their tensile strengths. 

A circular plate of 500 mm diameter testing 
area was used for impact testing. Low-velocity 
and high-energy impact tests with an IKE range 
of 334-3000 J were carried out using an instru- 
mented drop-weight test rig. The detailed 
examination of impact response, damage mech- 
anisms and their energy-absorbing 
characteristics is given in Refs [6-11]. Delami- 
nation and fibre shear-out are found to be 
dominant damage mechanisms. Because of the 
nature of woven roving fabric fibre reinforce- 
ment in a single ply, the current thick laminates 
are more likely to yield a single delamination 
than that made of unidirectional prepregs, 
especially at relatively low to medium IKE 
within the present range. Obviously, at high 
IKE, more than one delamination could be 
observed, especially when IKE is sufficient 
enough to induce ply shear out. 

Rectangular panels of 350 mm long by 
250 mm wide were extracted from a 500 mm 
diameter impact-damaged circular plate. In 
order to avoid end-brooming and to enhance 
stability, both ends of each panel is potted using 
epoxy and then the potted ends are carefully 
machined to be parallel to each other. An anti- 
buckling support fixture was used to avoid the 
global buckling of the panel at the initial stage 
of loading. The central mechanism of the anti- 
buckling support fixture, as shown schematically 
in Fig. 1(a), consists of two pairs of simple mov- 
able steel plates with a cylindrical edge on the 
support side. These two pairs of plates are ori- 
ented such that they are normal to the surfaces 
of laminated panel and are parallel to the load- 
ing direction. Two support plates on the same 
side are 180 mm apart along the panel length 
and are 5 mm short of the end pots at each end 
to allow for panel compression. Bolts on the 
support fixture drive the support plates to the 
panel surfaces and were finger-tightened only in 
each test. Loading was directly introduced to 
both ends of the panel through a 250-ton panel 
tester at a constant speed of 1 mm/min. In 
order to predict dominant failure mechanisms, 
three pairs of back-to-back strain gauges were 
bonded to a number of selected locations as 
shown in Fig. 1(b) for impact-damaged panels 
and their data presented in terms of bending 
(difference of two back-to-back strain gauges) 
and mean (average of the two) strains against 
loads were used to deduce the characteristics of 

failure modes such as global buckling, delami- 
nation opening, global/local mechanism and 
kink-band shear (see Fig. 7). The linear variable 
displacement transducers (LVDT) were used to 
measure both end shortening and lateral deflec- 
tion at the centre of panel. A total of either 
seven or nine pairs of back-to-back strain gau- 
ges were used to characterise the behaviour of 
undamaged panels. 

TEST RESULTS AND DISCUSSION 

Undamaged laminated panels 

Testing of undamaged laminated panels pro- 
vides not only reference compressive strength 
values needed in later stages for gauging an 
amount of strength reduction of damaged 
panels as mentioned earlier, but also an import- 
ant physical insight into the complex panel 
behaviour during compressive loading. It is 
anticipated that examination of back-to-back 

Fixed crosshead 

a - Anti-buckling guide 

b - Potted epoxy end 

(a) 

Anti-buckling guide 

Damaged panel 

(b) 

Fig. 1. (a) Experimental setup for CAI test, (b) Strain 
gauge locations on CAI panel. 
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strain gauge readings facilitates the understand- 
ing of a state of stress within a panel without 
the interference of impact damage. 

The compressive load is applied to a lami- 
nated panel by uniformly displacing its potted 
ends as illustrated in Fig. 1(a). Obviously, when 
a panel is not damaged, the distinction between 
displacement and stress loadings is not neces- 
sary. The anti-buckling support plates are 
placed on the panel surfaces 90 mm away from 
the longitudinal axisymmetric axis and 5 mm 
short of each end pot as illustrated in Fig. 1(a) 
and (b). Thus, the panel is free to move both 
longitudinally and transversely in the panel 
plane. It is also free to deform in the out-of- 
plane direction but is constrained only along the 
tiny contact areas underneath the support plates 
which is hence analogous to a frictionless hinge. 
Since the support plates are gently tightened to 
the panel surfaces using fingers, a small out-of- 
plane    displacement    (say    about    0.25 mm) 

underneath the support plates is not entirely 
impossible in practice, especially in considera- 
tion of the inherent uneven surfaces of woven 
fabric laminates. This implies that the anti- 
buckling support plates are believed not to 
distort the major characteristics of panel 
behaviour. 

Figure 2(a) and (b) shows that the variation 
of both bending and mean strains with com- 
pressive loading from a 25 mm thick 
E-glass/polyester laminated panel. It can be 
observed that stress distribution along the panel 
width is reasonably uniform as the mean strains 
of all seven pairs of back-to-back strain gauges 
are virtually indistinguishable and slight bending 
from one end (pairs 1/8 and 2/9) seems to have 
occurred at the initial stage of loading, although 
it soon became stable until the final failure. A 
tiny twist at the other end is also indicated. In 
Fig. 3, compression failure with a kink shear 
band is readily observed. It was not surprising 
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Fig. 2. (a) Load-bending strain curves and (b) load-mean strain curves of virgin panel test in 25 mm glass/polyester 

laminate. 
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that failure occurred near one of the ends 
where stress concentration usually develops for 
an undamaged laminated panel. 

It is also interesting to mention that, although 
the axial compressive strain at failure of about 
1% is identical to that measured in an intrinsic 
property test using an ICSTM method [12], the 
present compressive strength of 195 MPa is 
25% lower than UCS from the latter test. 

Impact-damaged laminated panels 

Impact damage present in CAI panels has both 
local and global effects [5,13] which may be 
related to the failure mechanisms of CAI panels 
in compression. The local effect comes collec- 
tively from some of matrix cracking, fibre/matrix 
debonding,   surface   microbuckling   and   fibre 

Fig. 3. Compression failure of 25 mm thick E-glass/polye- 
ster intact panel with kink shear band. 

breakage (including both shear-out and tensile 
fracture for some panels), all surrounding the 
slightly dented local impact contact area. The 
projected area on the distal surface through the 
thickness with about a 45° shearing angle pro- 
vides a slightly larger area. It is expected that 
breaking of load-bearing fibres leads to the 
reduction of residual compressive strength. 
However, the other local damage mechanisms 
distributed through the thickness result in local 
changes in fibre curvature so that they are also 
likely to contribute to the initiation of local 
compression failure by shear with a kink band. 
On the contrary, the global effect from single or 
multiple internal delaminations spreads outside 
the shear-coned region. The existence of such 
delamination(s) divides effectively the laminate 
in the delaminated region into two or more sub- 
laminates so that the flexural stiffness of these 
sublaminates is significantly reduced. As a 
result, these sublaminates with increased buck- 
ling possibility may buckle or open up, 
facilitating a panel failure at a load level that is 
considerably lower than that of an unimpacted 
panel. Moreover, it is of even greater concern 
to find out whether or not such delamination 
will further propagate under compressive load- 
ing, which would be an additional menace. To 
this end, comparing the relative magnitudes of 
strain readings from three pairs of back-to-back 
strain gauges provides us an important physical 
insight into such development. 

Figure 4(a) and (b) shows both load-bending 
strain and load-mean strain curves of three 
pairs of back-to-back strain gauges from a 
damaged 10 mm E-glass/polyester panel. 
Assuming a circular shape (which is almost jus- 
tifiable as shown in Fig. 6(a) of Ref. [8] and in 
Fig. 6 of Ref. [13]), the delamination area of 
8961 mm2 is then converted to a circle of 
107 mm in diameter, as shown in Fig. 4(a). 
When all three bending strains are either 
greater or smaller than three mean strains, 
respectively, a panel would experience either 
global buckling or delamination opening 
accordingly. Therefore, two other failure mech- 
anisms are bounded by these two extreme cases. 
All four cases are illustrated in Fig. 7. Examin- 
ing the strain gauge pair 1/4 indicates that 
global buckling did not occur until failure was 
approached. The fact that both bending and 
mean strains of the strain gauge pair 2/5 are 
relatively large suggests that the local buckling 
and delamination opening could occur simulta- 
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neously. Further examination of bending and 
mean strains of the strain gauge pair 3/6 still 
shows that both were taking place so that slight 
sideways propagation was possible. However, 
the permanent change of local fibre curvature 
and more severe local damage of the impact 
side makes a CAI panel completely unsymme- 
trical locally, thereby undoubtedly favouring a 
local buckling. This is confirmed by a photo- 
graph of the failed CAI panel in Fig. 6(a) 
showing compression failure with a kink shear 
band. The local delamination opening is also 
visible. 

In Fig. 5(a) and (b), similar strain gauge 
responses are presented from a damaged 
14 mm S-glass/phenolic panel. Judging from the 
developing trend of strain gauge pairs 2/5 and 
3/6, local buckling and delamination opening 
might again have occurred simultaneously. 
Moreover, examining the strain gauge pair 1/4 
also indicates some global buckling. The final 
panel failure is shown in Fig. 6(b) with a clear 

kink band. This, in conjunction with all three 
pairs of strain gauge readings, suggests that the 
CAI panel twisted during loading in the form of 
the second buckling mode. 

Photographs in Fig. 6(c) and (d) show typical 
failed thicker CAI panels from both E-glass/ 
polyester and S-glass/phenolic systems. The only 
difference here is that these thicker panels have 
multiple delaminations so that each sublaminate 
fails in compression through its own kink shear 
band. Therefore, adjacent kink bands may coal- 
esce to form a major one, albeit not all the way 
through from one surface to the other as shown 
in Fig. 6(c). The other noticeable features are 
that the E-glass/polyester panel has a much 
greater shear angle formed between loading 
direction and the kink band than not only the 
undamaged E-glass/polyester panel but also the 
S-glass/phenolic panel, and that its kink band is 
more rugged than that of the latter, probably 
due to severe interference of the local damage. 
As a whole, it seems that CAI panels fail pre- 
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Fig. 4. (a) Load-bending strain curves and (b) load-mean strain curves of CAI test for 10 mm glass/polyester laminate. 
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dominantly in compression with a kink shear 
band developed around the mid-section. 

Figure 7 summarises the qualitative variations 
of bending and mean strains corresponding 
graphically to all four failure mechanisms of 
CAI panels as discussed above. 

CONCLUDING REMARKS 

Both intact and impact-damaged laminated 
panels under in-plane compressive loading are 
investigated with a purpose-built anti-buckling 
support. The readings of back-to-back strain 
gauges of selected locations are used to deduce 
panel behaviour in addition to post-mortem 
observation. The compression failure of intact 
panels is found to be close to the potted end. 
The failure characteristics of impact-damaged 
panels are dependent slightly on composite sys- 
tems though they all failed in compression in 
the impact-damaged region with a kink shear 

band passing through the mid-section. E-glass/ 
polyester panels with a greater shear angle do 
not seem to involve global buckling like S-glass/ 
phenolic panels with small shear angle. The fact 
that the region a kink shear band covers from 
impact surface to the distal surface is consider- 
ably less than the delamination area suggests 
that the initiation of overall failure is due to the 
collective result of flexural stiffness reduction 
compounded by the local impact damage and 
the associated change of fibre curvature. As a 
result, the residual compressive strengths are 
reduced significantly. Further outward propaga- 
tion of the existing delamination(s) along the 
mid-section during loading is visible only for E- 
glass/polyester panels but is not significant. 
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Size effects in thin CFRP panels subjected to 
impact 
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The static indentation and impact behaviour of three- and nine-ply CFRP 
panels circularly clamped with rings of 100 and 300 mm diameter have been 
evaluated. The maximum static force is similar for small and large panels 
for both three- and nine-ply laminates. Increasing the panel size of the 
three-ply laminates subjected to impact only appears to affect the threshold 
of perforation. For the nine-ply laminates an increase in panel size 
produced a reduction in delamination area and backface cracking. 
Interpretation of energy maps is suggested as a means of identifying when 
the peak impact force has occurred and the threshold of perforation. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

The increasing use of composite materials in 
aerospace structures is producing a demand for 
more competitive designs and a reduction in 
manufacturing costs. Previously, full-scale com- 
ponents and structures have often been 
fabricated and tested as part of the design 
evaluation phase. This is both expensive and 
time-consuming, and alternative routes are 
required if composite materials are to compete 
with developments in advanced metallic alloys. 
One way forward is to undertake model simula- 
tion techniques as a means of predicting the 
behaviour of large components and structures. 
However, for composite structures subjected to 
varying levels of impact damage the issues are 
not straightforward. For example, similar struc- 
tures, except for differences in size, may react 
quite differently when subjected to similar 
impact energies due to the complex interaction 
of the various fracture processes such as inden- 
tation, matrix cracking, delamination or fibre 
fractures. Therefore, initially, a more useful way 
forward is a combination of experimental evalu- 
ation of some of the scaling effects in order to 
enhance modelling methods. 

The scaling effect of FRP composites sub- 
jected to impact loading has been considered by 
a number of workers using a dimensional analy- 

sis approach. Morton [1] showed that scaling 
laws may be applied to the elastic behaviour of 
undamaged carbon-epoxy beams. However, he 
identified difficulties in trying to satisfy the 
requirements for rate-sensitive and notch-sensi- 
tive materials. Impact tests on different sizes of 
carbon-epoxy plates by Qian et al. [2] also 
showed that scaling rules may be used to 
describe the undamaged response. In addition, 
they suggested that damage in terms of delami- 
nation area scales in agreement with fracture 
mechanics concepts. Wu and Springer [3] have 
identified a procedure for predicting the loca- 
tion and size of delaminations in carbon-epoxy 
plates subjected to impact using a fracture 
mechanics approach. Robinson and Davies [4] 
have shown that increasing the size of GRP 
specimens increases the impact energy to cause 
the same damage signature, and suggested that 
a damage energy approach may be used to pre- 
dict the impact energy to produce a similar 
response in a different sized specimen. Davies 
and Zhang [5] have suggested that scaling 
effects in absorbing elastic energy may be 
removed by recognizing the different effects of 
damage in flexible and rigid plates. For the for- 
mer, large bending strains produce tensile 
failure of the backface whilst a significant 
impactor force gives rise to matrix cracking and 
delamination in thicker rigid plates. Davies and 
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Zhang [5] showed that force maps may be used 
to predict initiation of delamination in terms of 
maximum force for a particular thickness of car- 
bon-epoxy plates subjected to impact. 

The overall aim of our programme of work 
on impact behaviour of FRP composites is to 
study the effect of static indentation, and single 
and repeated impacts on plain and stiffened 
panels, and to assess their damage tolerance. 
This paper reports our preliminary findings on 
the effect of panel size on the static indentation 
and impact behaviour of thin, plain CFRP 
panels. 

EXPERIMENTAL 

The material was a five-harness satin weave car- 
bon fibre-epoxy resin supplied in prepreg 
sheets by Ciba-Geigy, designated 914C-713-40. 
The panels were laid up as three-ply (0790°, 
+ 45°, 0790°) and nine-ply (0790°, +45°, 
0790°)3 laminates and autoclave moulded by 
Hurel-Dubois UK (Burnley, UK) to a thickness 
of 0.96 and 2.83 mm, respectively, at a nominal 
58% fibre volume fraction. The quality of the 
laminates was assessed by Hurel-Dubois using 
the ultrasonic c-scan technique. 

An instrumented dropweight impact rig, 
briefly described in Kumar et al. [6], was used 
for both static indentation tests and single 
impact tests. The test rig has recently been 
modified to permit the clamping of panels 
between two annular rings ranging from 100 to 
300 mm internal diameter and also to accom- 
modate stiffened sections [7]. Static indentation 
tests were performed on three- and nine-ply 
laminates using clamping rings of 100 and 
300 mm internal diameter. Indentation was 
determined by measuring the difference 
between the upper and lower laminate surface 
displacements beneath the hemispherical inden- 
tor of 12 mm diameter. Electrical resistance 
strain gauges mounted on the indentor mea- 
sured the applied load in terms of strain. 

Dropweight impact tests were conducted 
from a height of 0.5 m for all tests, whilst the 

mass was varied to produce a range of incident 
impact energies. Impact tests were carried out 
on three- and nine-ply laminates up to perfora- 
tion with annular clamping of 100 mm internal 
diameter. For the three- and nine-ply laminates 
clamped with 300 mm internal diameter annular 
rings only a few tests have been performed to 
date. The impact forces and displacements were 
obtained from data that were processed through 
a low-pass filter at a cut-off frequency of 
3.5 kHz. 

As this is a preliminary investigation into the 
scaling effects of thin CFRP panels, no attempt 
was made to undertake true scaled testing. 
However, for both static indentation and impact 
tests clamping of the laminates was to the same 
ring pressure for both 100 and 300 mm annular 
rings. In addition, the impact tests were con- 
ducted from a constant height to produce an 
impact velocity of the impactor of approxima- 
tely 3 m/s. 

Damage was assessed after the impact tests 
using X-radiography and microscopy techniques 
in order to determine the principal failure 
mechanisms of delaminations, backface cracking 
and permanent indentation of the frontface. 

RESULTS 

The results for static indentation of three- and 
nine-ply laminates when circularly clamped at 
100 and 300 mm diameter are summarized in 
Table 1. The force to produce initiation of 
damage in the panels was consistent with the 
first small reduction in force on the force-dis- 
placement curves. In all cases the peak force 
was sustained over an indentor displacement of 
approximately 2 mm. For the 100 mm panels 
there was then a gradual reduction in force with 
increasing displacement, whilst for the 300 mm 
panels there was a rapid reduction in force 
leading to perforation of the laminates for both 
the three- and nine-ply laminates. 

Some typical force-time responses for impact 
loading of undamaged panels in Fig. 1, and 
those for damaged panels are shown in Figs 2 

Table 1. Summary of static indentation tests 

Laminate Three-ply Nine-ply 

Panel diameter (mm) 
Initial damage force (N) 
Maximum force (N) 

100 
400 
550 

300 
430 
600 

100 
2100 
2700 

300 
2150 
2750 
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and 3. Whilst the force-time histories of the 
undamaged panels are of different incident 
impact energies, due to the greater threshold of 
damage initiation in the nine-ply laminate, the 
responses clearly identify the different 
behaviour of the very thin three-ply laminate. 
The influence of panel size is shown in Figs 2 
and 3 for the three-ply and nine-ply laminates, 
respectively. Comparisons are made at incident 
kinetic energies associated with the estimated 
threshold of perforation, which for the 100 mm 
diameter panels was 2.35 and 11.4 J, respec- 
tively, for the three- and nine-ply laminates. 

For the three-ply panels of 100 mm diameter 
the average peak impact force was 510 N and it 

first reached this value at an incident kinetic 
energy of 1.13 J. Up to the threshold of perfora- 
tion of the laminate further increase in mass 
produced more damage and increased the 
impact duration and the duration of the peak 
force. At energies beyond the threshold of per- 
foration the impact duration shortened and 
large oscillations in the accelerometer signal 
were observed, thought to be caused by the 
influence of the damaged material on the back- 
face on the motion of the impactor. 

For the nine-ply panels of 100 mm diameter 
the average peak force was approximately 
3500 N, which corresponds to a minimum inci- 
dent kinetic energy of 5.4 J. The behaviour up 
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Fig. 1. Force-time histories for undamaged 100 mm diameter panels for (a) three-ply and (b) nine-ply laminates. 
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Fig. 2. Force-time histories for damaged three-ply laminates for 100 and 300 mm diameter panels. 

to the threshold of perforation was similar to 
that for the three-ply material. However, 
beyond the threshold of perforation the magni- 
tude of oscillations was far greater in the 
nine-ply material, thought to be due to the 
higher panel inertia and stiffness which together 
with the larger mass excites a greater dynamic 
effect. 

Damage plots of increasing incident kinetic 
energy are presented in Figs 4-6 for permanent 
indentation of the frontface, crack length in the 
backface and projected delamination area, 
respectively.  On this occasion smooth curves 

have been drawn through the data in order to 
identify trends and for ease of comparison with 
the limited data for the larger 300 mm diameter 
panels. In Fig. 4 the arrow indicates the kinetic 
energy at or near the threshold of perforation 
of the laminate. Permanent indentations greater 
than the laminate thickness were observed as 
the relative low velocity of these impacts cause 
extensive local damage of the backface, pushing 
out broken material prior to perforation of the 
laminate by the impactor. It is interesting to 
note that for the three-ply laminate the data for 
the 300 mm diameter panels appear to fall on 
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Fig. 3. Force-time histories for damaged nine-ply laminates for 100 and 300 mm diameter panels. 
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the same extended curve as for the 100 mm 
diameter panels. For the nine-ply laminates it 
may be fortuitous that the test at the higher 
impact energy for the 300 mm panel falls on the 
extended curve for the data for the smaller 
panel. 

In a previous paper [7] we have reported 
backface cracking in terms of the largest cracks 
which occur in the 90° direction for this 
material. However, significant cracking also 
occurs in the 0° direction. In Fig. 5 we present 
the total backface crack length by summing the 
major crack lengths in both the 0° and 90° 

directions. This is justified because crack propa- 
gation in both principal directions contributes 
to the absorption of impact energy. Further- 
more, there appears to be less scatter in the 
data when presented on a basis of combined 
crack length. The shape of the curves are signi- 
ficantly different for the three-ply and nine-ply 
laminates. As cracking of the backface is associ- 
ated with tensile bending stresses there are 
additional membrane stresses in the thin three- 
ply laminate. The horizontal line indicates that 
the threshold of perforation has been reached 
such that further increases in energy produce 
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Fig. 4. Permanent indentation of the frontface for (a) three-ply and (b) nine-ply laminates. 
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no increase in crack propagation. The influence 
of increasing panel size suggests that crack 
length may be less than that for small panels, 
although the impact test at the lower energy 
level for the 300 mm diameter three-ply lami- 
nate appears to be similar to that for small 
panels. 

Figure 6 suggests that in terms of delamina- 
tion area there is little difference in behaviour 
with increasing panel size. Whilst a smooth 
curve fits the data up to perforation of the lami- 
nates it clearly masks the changing mechanisms 
suggested by the dotted line. 

DISCUSSION 

For the thin three-ply panels of 100 mm diam- 
eter the average peak force during impact 
loading was similar to the maximum force sus- 
tained during static indentation. This was 
expected because these panels have a relatively 
low inertia. However, for the thicker nine-ply 
panels of 100 mm diameter the average peak 
force was significantly higher than that observed 
during static indentation and, furthermore, 
there was considerable scatter in the data. For 
these panels inertia and dynamic effects are sig- 
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nificant and hence peak loads are much higher 
during impact than static loading. An increase 
in panel size from 100 to 300 mm diameter only 
gave a relatively small increase in the maximum 
static force of < 10% for the three-ply laminate 
and <3% for the nine-ply laminate, i.e. within 
the expected scatter of test data. 

Whilst Davies and Zhang [5] have shown that 
damage initiation during impact is best repre- 
sented in terms of force, we consider that 
energy is perhaps a better indication of changes 
in damage from initiation to perforation as after 
limited   damage   the   average   peak   force   is 

approximately constant. Furthermore, we have 
found that by careful inspection of energy maps 
it is possible to identify the minimum energy 
associated with the peak impact force and to 
determine the energy at the threshold of perfor- 
ation. Both these events appear to correspond 
to changes in the rate of damage growth with 
increasing incident kinetic energy. Taking an 
average value from the damage maps for 
100 mm panels shown in Figs 4-6 we deter- 
mined that the minimum energy at which the 
peak impact occurs was 1.1 J for the three-ply 
laminate and 4.8 J for the nine-ply laminate 
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compared with values of 1.13 and 5.4 J, respec- 
tively, estimated from the plots of force vs 
energy. By inspecting the progress of damage in 
the laminates we earlier estimated the threshold 
of perforation to be 2.35 and 11.4 J for the 
three- and nine-ply laminates, respectively, for 
the 100 mm panels. The corresponding average 
values obtained from the damage maps were 
2.43 and 10.5 J, however if we ignore the signifi- 
cantly lower value obtained from the 
indentation measurements for the nine-ply 
material we get a value of 11.3 J. For the 
100 mm panels, the principal damage mechan- 
isms initiated at a similar impact energy for the 
three-ply material. For the nine-ply laminates 
indentation was first observed at a slightly lower 
energy than for backface cracking or delamina- 
tion. 

For the limited tests on the larger 300 mm 
panels the results suggest that the increase in 
panel size does not appear to have much influ- 
ence in terms of damage for the three-ply 
material except that the threshold of perfora- 
tion will occur at higher energies. For the 
nine-ply laminates the increase in panel size 
suggests a reduction in backface crack length 
and delamination area at similar energies com- 
pared with the 100 mm panels. An increase in 
panel size produces a reduction in stiffness and 
hence reduced delamination would be expected. 
In addition, there will be increased membrane 
effects in the larger panels that control the 
backface cracking. Although tests in the larger 
panels were undertaken at energies to produce 
threshold perforation in the small panels there 
was no perforation observed in the larger 
panels. 

For this preliminary investigation into scaling 
effects of thin CFRP panels subject to impact 
loading, it is only possible to draw a few tenta- 
tive conclusions at this stage mainly due to the 
limited tests for 300 mm panels. These will be 
extended over a wider range of impact energies 
to more clearly identify the present trends. In 
addition, it is proposed to examine a six-ply 
laminate of the same material with a lay-up of 
(0790°, 45°, 0°/90°)2 for which it will be possible 
to undertake scaled tests comparable with the 
nine-ply laminate using the present test rig. 
True scaled tests were not possible between the 
three- and nine-ply laminates because this 
would have required a significant reduction in 
mass applied to the three-ply laminates for 
which   the   existing   carriage   containing   the 

impactor is close to its minimum mass. When 
these further tests have been completed we will 
be in a better position to modify our models 
and attempt to predict the behaviour of larger 
panels, as well as stiffened sections. 

CONCLUSIONS 

Whilst no specific scaling effects have been 
identified during this preliminary investigation 
we can offer the following comments. An 
increase in panel size from 100 to 300 mm 
diameter does not appear to affect the maxi- 
mum static force for three- or nine-ply 
laminates. For the three-ply laminates, increas- 
ing the panel size has little influence on damage 
except that the threshold of perforation will be 
at a higher impact energy. For the nine-ply 
laminates, a reduction in delamination area and 
backface crack length was observed in the larger 
panels. 

In addition we observed that combining the 
major cracks in the 0° and 90° directions gives a 
better indication of energy absorption for this 
material with reduced scatter. Analysis of the 
energy maps shows that the minimum energy at 
peak impact force and the threshold of perfora- 
tion of the laminate can be clearly identified. 
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This paper investigates the influence of cut-out diameter and the width of 
the circular reinforcement rings upon the buckling stability of square CFRP 
panels. The study undertaken at Cranfield University uses MSC/NASTRAN 
Finite Element Analysis (FEA) extensively for this investigation. The FEA 
results have been compared with results from practical tests and good 
agreement was found. Diagrams showing the influence of cut-out diameter 
and reinforcement ring width on the buckling stability of simply supported 
CFRP panels are presented. The results are shown for approx. 2 mm-thick 
(( + 45/0)s)s square CFRP panels with 0-50 mm wide reinforcement rings 
bonded around the central circular cut-outs. The panels are loaded in pure 
shear or in compression. The results presented can be used to find the 
optimum reinforcement ring width for square CFRP panels with central 
circular cut-outs. © 1997 Elsevier Science Ltd. 

NOTATION G 

t: 
d: 
tR: 
EL: 

E- 

G LT- 

Panel length or width (square panels 
only) (mm) 
Panel thickness (mm) 
Cut-out diameter (mm) 
Reinforcement ring thickness 
Longitudinal material elastic modulus 
(N/mm2) 
Transverse  material  elastic modulus 
(N/mm2) 
Longitudinal lamina elastic modulus 
(N/mm2) 
Transverse lamina elastic modulus (N/ 
mm2) 
In-plane material shear modulus (N/ 
mm2) 

xy- 

VLT- 

L- 

Lcr: 

[Kaa]: 

AK: 

In-plane  lamina  shear modulus  (N/ 
mm2) 
Poisson's ratio of material 
Poisson's ratio of lamina 
Critical  load  under which  buckling 
occurs in panel without a cut-out (N) 
Critical  load  under which  buckling 
occurs in panel with a cut-out (N) 
Elastic stiffness matrix of structure 
Geometric  (or  differential)   stiffness 
matrix of structure 
Stiffness matrix of structure at non- 
linear load step n 
= Kn-Kn_1:  Difference in  stiffness 
matrix   between   nonlinear   loading 
steps 
Eigenvalues 
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{ua}:       Displacement vector 
<Pai: Eigenvectors 

INTRODUCTION 

Cut-outs are often required in structures for 
access, inspection or structural reasons. The 
stress concentration created by this disturbance 
in the load path and/or the requirement to 
increase the structural stability of these struc- 
tures makes reinforcement of the cut-out often 
necessary. For the design of light weight struc- 
tures, it is important to know the influence of 
the reinforcement on the structural behaviour 
and to know the most efficient type of rein- 
forcement geometry. 

Composite materials are increasingly used in 
the design of lightweight structures for their 
high stiffness to weight ratio. However, due to 
the relatively late introduction of composite 
materials compared to metal and the more 
complex behaviour under load due to the highly 
orthotropic material properties there is far less 
information available than for metal structures. 

Thin composite panels with symmetrically (on 
both sides of the panel) reinforced cut-outs 
loaded in pure shear or compressive displace- 
ment behave linearly as long as the material 
allowables are not exceeded and the structure 
does not deflect out-of-plane. When buckling 
occurs, the loading type, panel boundary condi- 
tions and geometry of the panel and the 
reinforcement ring determine both the buckling 
behaviour and the shape and magnitude of the 
resulting out-of-plane deflections. If the load is 
further increased then the magnitude of the 
out-of-plane deflection increases until the 
material limitations are exceeded and first ply 
failure occurs. 

This paper is intended to provide additional 
information about the influence of the rein- 
forcement ring width on the buckling stability of 
square composite plates with central circular 
cut-outs loaded in uniform shear or uniaxial 
compressive displacement. Cut-out diameters of 
0.1 and 0.25 times the length of the panel and 
circular reinforcement rings between 5 and 
50 mm wide, have been considered in this 
investigation. The CFRP composite panels are 
manufactured from four layers of ( + 45/0) NCF 
fabric, resulting in approximately 2 mm thick 
(( + 45/0)s)s laminated panels. The reinforce- 

ment rings are equally manufactured from 
2 mm thick ((+45/0)s)s laminated panels. Fol- 
lowing the results of previous investigations 
[1,2] indicating that the buckling mode is 
largely unaffected by the boundary panel 
boundary conditions, only the case of simply 
supported panel edges has been considered. 

Finite Element analysis (NASTRAN) has 
been used to determine the bifurcation buckling 
load and the buckling shapes for the different 
configurations considered. Selected data points 
of the theoretical results were verified by com- 
parison with data obtained from mechanical 
tests conducted. Reasonably good agreement 
between the FE analysis and the practical test 
results could be established. 

LITERATURE REVIEW 

In 1947, Levey et al. [3] published the first signi- 
ficant buckling analysis of a simply supported 
square metal plate with a reinforced central cir- 
cular cut-out under uniaxial compressive 
loading. This early work is based on Timo- 
shenko's [4] energy method for determining the 
buckling load of rectangular plates of constant 
thickness. Work by Kumai [5], Schlack [6,7] and 
Yoshiki et al. [8] followed in the 1950s and 
1960s. The Rayleigh-Ritz energy method could 
be applied in these analyses. With the develop- 
ment of computers in the late 1960s it was then 
possible to find suitable functions which satisfy 
practical kinematic boundary conditions. Deter- 
mination of the pre-buckling stress distribution 
is usually the most difficult part in using the 
Rayleigh-Ritz method. This is why Kawai [9] 
and Ritchie and Rhodes [10] used the Finite 
Element method to determine the pre-buckling 
stress distribution in an isotropic plate with a 
cut-out and then used the Rayleigh-Ritz 
method to find the buckling load. Rockey et al. 
[11] in 1967 used the Finite Element method to 
determine the relationship between the buck- 
ling load of a plate under shear and the 
reinforced or unreinforced cut-out diameter. 
During the early 1980s when computer power 
became more easily available and Finite Ele- 
ment systems easier to use, more knowledge 
about the influence of boundary conditions, cut- 
out size, shape, location and reinforcement type 
on the buckling behaviour of isotropic plates 
was gained. A vast number of papers have been 
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published over the years relating to isotropic 
construction. 

Compared with the knowledge of cut-outs in 
isotropic panels, it is clear that very little is 
known about the structural behaviour of cut- 
outs in composite panels. This is partly due to 
the fact that composites have only been in use 
for approximately 20 years and have only 
recently been considered for serious applica- 
tions. 

This need has been recognized and the 
amount of information about cut-outs in com- 
posite plates and their influence upon the 
buckling stability is gradually increasing. 

Martin [12] was among the first in 1972 to 
publish work regarding the buckling of compo- 
site plates with cut-outs loaded in uniaxial 
compression. An experimental investigation of 
the buckling behaviour and failure character- 
istics of compression-loaded rectangular CFRP 
plates with a central circular cut-out was pre- 
sented in 1978 by Knauss et al. [13]. In his 
experiments the displacement loaded edges are 
clamped and the unloaded edges are simply 
supported by knife edge supports. The influence 
of central circular cut-outs or holes in simply 
supported composite plates on the buckling 
load is also the main topic of papers published 
by Marshall et al. [14-18] from 1984 onwards. 
Using the Rayleigh-Ritz method he analyzed 
the stability of composite plates with circular 
holes under uniform compressive strain or 
stress loading and obtained approximate analyt- 
ical results up to d/a = 0.5 and had good 
agreement with experiments, as the prebuckling 
stress field is approximated for an infinite panel. 
A different but also very complex approach to 
solving the buckling problem of rectangular 
compression loaded panels with central circular 
cut-outs can be found in papers by Nemeth 
[19-22]. He used an analysis based on the Kan- 
torovitch [23] variational method and reduced 
the classical two dimensional analysis for deter- 
mining the plate buckling load to an equivalent 
one-dimensional form by approximating the 
plate displacements with kinematically admis- 
sible series and compared the results obtained 
with FE results. FE analysis has been directly 
used by Larsson [24] and Lee [25] to find the 
buckling load of orthotropic plates with circular 
holes. Composite panels loaded in shear with 
central circular cut-outs have been analyzed at 
first by Herman [26] using the finite element 
method. Klang [27] introduced for this type of 

problem a new analysis method based on Lekh- 
nitskii's complex variable equations, boundary 
collocation and the Ritz method. 

Cut-outs or holes in real structures are often 
reinforced with rings in order to keep the stress 
in the surrounding area within the material 
limitations or in order to enable the attachment 
of an access cover. These reinforcements 
change the stress distribution in the panel and 
influence the stability. For metal structures this 
influence on the structural behaviour of the 
panel has been gathered through the research 
carried out by many authors. However, for com- 
posite structures very little is known about this. 
Sullivan [28] analyzed the stress/strain concen- 
trations around circular 1 in. cut-outs with 
reinforcements in a honeycomb sandwich panel. 
Circular holes with reinforcements in quasi iso- 
tropic composite laminates have also been 
investigated by Lee [29]. He performed tension 
and compression tests to analyze the strength 
and modes of failure of reinforced circular 
holes. However, the holes considered are very 
small compared to the panel size and do not 
represent large cut-outs. 

The purpose of this research is to determine 
the effect of reinforcement ring width on the 
buckling behaviour of CFRP panels loaded in 
pure shear or in uniaxial compressive displace- 
ment. 

As traditional mathematical analysis can only 
give solutions for certain boundary conditions 
and configurations and would nevertheless most 
certainly require the use of computers, it was 
decided to use the established and widely avail- 
able MSC/NASTRAN Finite Element System 
for this research and verify the results with 
practical tests. 

PLATE GEOMETRY, MATERIAL 
PROPERTIES, LOAD AND BOUNDARY 
CONDITIONS 

Details of the plate geometry and the coordi- 
nate systems used are shown in Fig. 1. All test 
panels are cut to a size so that the free test area 
in the compression or shear test rig is 300 mm 
square for clamped or simply supported bound- 
ary conditions. The circular cut-outs are placed 
in the centre of the panel. The panels are 
balanced and symmetrically laminated from 
NCF (Non Crimped Fabric) CFRP 
([[±45/0]s]s) material, resulting in a total thick- 
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Fig. 1. Plate geometry. 

ness of the panel of approx. 2 mm after curing 
in the autoclave. The 0° fibres and the 45° fibres 
are, respectively, 0.184 mm and 0.1578 mm in 
diameter. The material properties of NCF 
CFRP differ from the Ciba-Geigy Fibredux 
913C-XAS pre-preg material properties due to 
the NCF material manufacturing method [30] 
The NCF and pre-preg material properties 
[28,31] at room temperature are listed in Table 
1. The resulting properties for the panel 
and reinforcement ring laminate are listed in 
Table 2. 

As the only variables are the cut-out diameter 
and the width of the reinforcement rings, it is 
possible to describe the plate geometry in terms 
of just two parameters. The hole-size ratio d/a 
(cut-out diameter d over the panel width a) and 
the width of the reinforcement rings. Rings 
manufactured from NCF CFRP were used for 
the reinforcement of the circular cut-outs. The 
lay-up used for the reinforcement rings is 
[[ + 45/0]s]s, thickness: 1.998 mm. 

The redux 420 adhesive which has been used 
to bond the reinforcement rings to one or both 

sides of the panel is assumed not to influence 
the structural behaviour of the panel. The 
bonding layer has been kept to a minimum 
thickness. 

The panels were tested in pure shear and 
under uniform compressive edge displacement 
(the panel edge was kept straight under the 
compression loading). It has to be pointed out 
that uniform compressive edge stress is a dif- 
ferent loading case, creating a different 
pre-buckling stress field [32] and has therefore 
with increasing cut-out size a different buckling 
response as shown in Refs [15,16]. 

The pre-buckling stress field depends not 
only on the type of loading applied, but also on 
the cut-out diameter, reinforcement type, and 
the boundary conditions at the four panel 
edges. The unloaded edges of the panel loaded 
in uniform compressive displacement are not 
restrained transverse in-plane. These edges 
therefore deform according to the poissons 
ratio. Under shear loading all four panel edges 
were kept straight and in plane. 

NASTRAN BUCKLING ANALYSIS 

Buckling theory presumes the existence of a 
bifurcation point where two infinitesimally close 
equilibrium configurations are possible for the 
same applied load (bifurcation buckling load). 
This is true if the structure is perfectly straight, 
uniform, free of end moments and lateral loads, 
with the applied loads perfectly centred and 
axial. The general form of the eigenvalue prob- 
lem for buckling is in this case expressed 
mathematically as [33] 

[Kaa-XiK
d

aa\{ua}=0 

In reality imperfections exist in structures. 
The real structure with imperfections does not, 
in general, display a bifurcation point but a 

Table 1. Material properties 
Material EL [N/mm2]                     ET [N/mm2]                     GLT [N/mm2] VLT 
NCF CFRP 
CFRP Pre-preg 

135200                               9000                                4875 
(913C-XAS)                         140000                              10000                                5000 

0 
0 

Table 2. Calculated laminate membrane engineering constants 

Ring reinf. 
Panel 

tx LN/mm'J                             Ey [N/mm2]                             G^ [N/mm2] %- 
61356                                      24068                                       23848 
61356                                      24068                                       23848 

0 
0 
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limit load above which the gradient of the out 
of plane deflections becomes excessive. A 
'Linear Buckling Analysis' ignores the effect of 
structural imperfections on the behaviour of the 
structure under load and yields a buckling load 
for a perfect structure which is always higher 
than the buckling load which is found in tests 
on real structures. The results obtained by 
NASTRAN solution sequence 105 for buckling 
analysis are therefore for perfect structures and 
give the upper limit for the buckling load on 
real structures. The closeness of the theoretical 
and practically obtained buckling loads can be 
an identification how 'perfect' a structure is. 

A typical FE model of a panel with a cut-out 
has been modelled with 1000-2500 QUAD4 
elements, depending on the cut-out size and 
whether a reinforcement ring is included. The 
panel with a cut-out and reinforcement ring is 
modelled with QUAD4 elements. QUAD4 shell 
elements were chosen over QUAD8 shell ele- 
ments as QUAD8 shell elements are not 
necessarily more accurate [34] for flat plates but 
simply double the number of grid points and 
substantially increase the CPU processing time. 
Care had to be taken to keep the distortions of 
the elements within the limits suggested in the 
NASTRAN user manual. Element aspect ratios 
of up to 5 and skew up to 60° could be accepted 
according to information provided. However, 
checks were carried out on the results obtained 
to make sure no locking up of elements occur- 
red. If unexpected behaviour was detected the 
model was re-meshed and analyzed and the 
results compared. Figure 2 shows a typical FE 
model meshed with 1840 QUAD4 elements. 

MANUFACTURING OF TEST PANELS 

As a safeguard against variations in the material 
properties, all the test panels were manufac- 
tured from the same batch of NCF CFRP 
material. Large (1250 x 950 mm) approx. 2 mm 
thick panels were laminated and cured in the 
autoclave under the same process conditions. 
Once cured, the NCF CFRP composite panels 
were sent for ultrasonic C-scan to detect pos- 
sible defects in the panels which could influence 
test results. The panels were then cut with a NC 
controlled 40000 psi water jet to the exact size 
required so that the free unsupported area in 
the test fixtures is exactly 300 x 300 mm. The 
water jet creates delaminations when it initially 
punches through the panel. To avoid this, the 
initial punch through was done in an area which 
is cut away, i.e. the centre of a the circular cut- 
out. 

The 30 mm wide circular reinforcement rings 
were cut from CFRP panels, with the appro- 
priate lay up, in the same way. The 
reinforcement rings were then bonded with 
redux 420 at room temperature to the panel. 
The rings had to be precisely located around 
the cut-out and the fibre orientation of the rings 
had to be lined up accurately to the fibre orien- 
tation of the surrounding panel. Strain gauges 
were then applied to the panels at determined 
locations (see Figs 3 and 4). 

EXPERIMENTAL INVESTIGATION 

To verify the FE results, it was considered 
essential to perform practical tests. However, 
due to costs and time required for production 
and testing of CFRP panels with cut-outs, only 
a limited number of tests could be performed to 
date. 
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Fig. 2. Panel with cut-out meshed with QUAD4 elements. 

Fig. 3. Location of strain gauges on panel loaded with 
uniform compressive edge displacement. 
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Electrical resistance 3-Axis rosette strain gau- 
ges were employed to measure the strain at 
several locations on the panel (see Figs 4 and 
5). It was only necessary to apply the strain 
gauges to one quarter of the panel, due to the 
symmetric loading and boundary conditions. 
This was verified by the application of strain 
gauges to additional locations on the panel and 
made it possible to analyze the strain distribu- 
tion in the panel. 

To detect the start of the out of plane deflec- 
tions and buckling, strain gauges were attached 
at the same locations on the front and back side 
of the panel. Different strain values indicated 

VY 

/<2              3^ 

\ 
I Di>l Gauges 

V w 
^—--" 

Front side 

Fig. 4. Location of strain gauge on panel loaded in pure 
shear. 

that the panel was no longer flat and out of 
plane deflections were present. To find the 
buckling load, the 'membrane strain method' 
has been employed. The membrane strain 
values were calculated from the two opposite 
strain gauges and plotted versus applied load. 
The buckling load was estimated by locating the 
point where the membrane strain is maximum. 

In addition to this, the out of plane deflec- 
tions of the panels were measured directly with 
dial gauges at certain locations on the panel. 
This shows the magnitude and progress of the 
out of plane deflections with increasing load 
and gives an additional method to identify the 
start of buckling by using the 'point of inflection 
method'. Here the buckling load is estimated by 
locating the intersection point of tangents to the 
load deflection curve in the pre-buckled and 
post-buckled regions. 

Also measured was the in-plane deformation 
of the shear or compression loaded panel edge. 
This measurement plotted against the applied 
load represents the in-plane stiffness of the 
panel and can also be used to illustrate the 
change in stiffness when buckling starts. 

In the tests, the strain gauge outputs were 
amplified, read with a data logger and stored on 

Reinforcement ring width [mm] 

Fig. 5. LJL0 versus width of reinforcement ring for CFRP panels loaded in shear displacement with centrally located 
circular cut-out and simply supported boundary conditions. Reinforcement rings applied on both sides of the panel. 



Composite panels with circular cut-outs 615 

a hard disk. Two tests were performed on each 
panel. After each test the test panel was 
checked to ensure that no permanent damage 
occurred. The dial gauge measurements were 
recorded manually. To accomplish this, the load 
was increased in steps and held constant when 
the dial gauge readings were taken. The 
measurement of the out-of-plane deflections 
was therefore done in a separate loading of the 
test panel. 

INFLUENCE OF REINFORCEMENT RING 
WIDTH 

Uniform shear displacement (square panel, 
central circular cut-out, simply supported B.C., 
uniform shear displacement, reinforcement 
rings on both sides, reinforcement ring 
material NCF [[ ±45/0] s]s) 

The MSC/NASTRAN FEA determined buck- 
ling loads presented in Fig. 5 have been 
normalized towards a panel without a cut-out. 
The buckling mode and deformed shape has 
been determined in the FEA for every data 
point presented in order to detect changes in 

the buckling mode. However, for clarity pur- 
poses it was not possible to illustrate in Fig. 5 
the deformed shapes for every data point. The 
change in buckling shape with increasing rein- 
forcement ring width is illustrated in Fig. 6 for 
reinforcement rings of 5-50 mm width. 

For both cut-out sizes the buckling stability 
increases with increasing reinforcement ring 
width. Both curves display a convex-concave 
behaviour with the initial slope of the curves 
decreasing with increasing reinforcement ring 
width. Before a horizontal tangent is reached 
the slope starts to increase again with increasing 
reinforcement ring width. This change-over 
occurs for both curves at a reinforcement ring 
width of approximately 15 mm. Of interest is 
that the curve representing d/a = 0.1 indicates 
up to a reinforcement ring width of approxima- 
tely 40 mm a higher buckling stability than the 
curve for d/a = 0.25. Due to the higher initial 
slope of the curve representing d/a = 0.25, the 
two curves cross over at a reinforcement ring 
width of approximately 40 mm. For larger rein- 
forcement ring widths, the panel with a cut-out 
of d/a = 0.25 is more stable against buckling at 
the same reinforcement ring width than the 
panel with d/a = 0.1. Both curves approach a 

20000 30000 40000 50000 60000 

Reinforcement Ring volume [mmA3] 

70000 80000 

Fig. 6. Change of buckling shape with increasing reinforcement ring width. 5-10-15-20-25-30-35-40-45-50 mm 
reinforcement rings. 
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parabolic shape at large reinforcement ring 
widths. 

The buckling shapes illustrated in Fig. 5 
indicate that the buckling mode changes 
with increasing reinforcement ring width. At 
d/a = 0.1 the panel buckles antisymmetrically to 
the panel diagonal for reinforcement ring width 
of 10 mm or more. The reinforcement ring has 
sufficient stiffness to prevent the area around 
the cut-out from deforming and therefore the 
reinforcement ring deflects through the plane of 
the panel without being significantly deformed. 
For smaller reinforcement ring widths, the 
analysis determined a symmetrical buckling 
mode for a reinforcement ring width of 5 mm. 
In this case the panel deforms symmetrically to 
the panel diagonal. The area around the cut-out 
deforms in out-of-plane bending. 

For d/a = 0.25 the same behaviour can gener- 
ally be observed. For reinforcement ring widths 
of less than 20 mm the reinforcement ring is not 
sufficiently stiff to prevent the area around the 
cut-out from out-of-plane bending. The panel 
buckles symmetrically to the panel diagonal. If 
the reinforcement ring width is increased the 
reinforcement ring prevents deformations 
around the cut-out and the panel buckles anti- 
symmetrically to the panel diagonal, with the 
reinforcement ring deflecting through the plane 
of the panel. 

In order to determine the influence of the 
reinforcement ring volume on the buckling 
stability, the buckling loads, normalized towards 
a panel without a cut-out, are plotted in Fig. 7 
versus the reinforcement ring volume. The 
deformed buckling shapes are illustrated for 
selected data points. Both curves in Fig. 7 
exhibit a very similar behaviour as observed in 
Fig. 5. 

For small reinforcement ring volumes, the 
panel with a cut-out of d/a = 0.1 is more stable 
against buckling than the panel with a cut-out 
of d/a = 0.25. With increasing reinforcement 
ring volume the difference between the two 
curves is decreasing and they cross over at a 
reinforcement ring volume of approximately 
12500 mm3. For larger reinforcement ring 
volumes the panel with d/a = 0.25 exhibits a 
higher buckling stability than the panel with 
d/a = 0.1. The initial slope of the curves is, up 
to a ring stiffener width of approximately 
15 mm, decreasing with increasing ring stiffener 
volume. If the ring stiffener volume is increased 
further then the slope of the curves remains 
approximately constant. 

From this behaviour it can be concluded that 
the buckling stability can be increased most effi- 
ciently by reinforcement rings with widths up to 
15 mm. The results of this investigation indicate 
that  wider  reinforcement  rings  increase  the 
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Fig. 7. LJLB versus volume of reinforcement ring for CFRP panels loaded in shear displacement with centrally located 
circular cut-out and simply supported boundary conditions. Reinforcement rings applied on both sides of the panel. 
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buckling stability further but less efficiently. To 
increase the buckling stability of a panel with 
dla = 0.1 from LJL0 = 0.9 to a value of 1.15, a 
reinforcement ring volume of 8476 mm3 (15 mm 
width) is required whereas a further increase 
from LJL0 = 1.15 to 1.40 requires an addi- 
tional reinforcement ring volume of 41750 mm3 

(50 mm width). 
In Fig. 8, the buckling loads of panels with 

dla = 0.1 and 0.25 have been plotted versus the 
total volume of the panel and reinforcement 
ring. The buckling load of a panel without cut- 
out and reinforcement ring has been indicated 
for reference purposes. 

Both curves in Fig. 8 exhibit a behaviour very 
similar to the behaviour observed in Figs 5 and 
7. They are of convex-concave shape with the 
initial slope decreasing with increasing total 
panel and reinforcement ring volume. At higher 
volumes the slope is again increasing slightly. 
No cross-over of the curves representing 
dla = 0.1 and dla = 0.25 has been detected. The 
results presented in Fig. 8 indicate that the 
panel with dla = 0.25 is, within the boundaries 
of this investigation, more stable against buck- 
ling than the panel with dla = 0.1. 

Uniform compressive displacement (square 
panel, central circular cut-out, simply 
supported B.C., uniform compressive 
displacement, reinforcement rings on both 
sides, reinforcement ring material (NCF 
[[ + 45/0]s]s)) 

The investigation conducted for panels loaded 
in compressive displacement is conducted simi- 
larly to the investigation of panels loaded in 
uniform shear displacement. The buckling loads 

and buckling shapes determined for reinforce- 
ment rings with widths between 0-50 mm are 
plotted in Fig. 9 for dla = 0.1 and dla = 0.25 
versus the reinforcement ring width. 

The change in buckling shape with increasing 
reinforcement ring width is illustrated in Fig. 10 
for reinforcement rings between 5-50 mm. 

For both cut-out sizes the buckling load of 
the panel is increasing with increasing reinforce- 
ment ring width. The curves exhibit a 
convex-concave shape where the slope of the 
curves is initially decreasing with increasing 
reinforcement ring width but is increasing again 
if the reinforcement ring width is increased fur- 
ther. For dla = 0.25 the change over from a 
convex to a concave curvature occurs approxi- 
mately at a reinforcement ring width of 10 mm. 
For dla = 0.1 the change over occurs approxi- 
mately at a reinforcement ring width of 5 mm. 
If no reinforcement ring is applied, an equiva- 
lent panel width with dla = 0.25 exhibits a lower 
buckling stability than the panel with dla = 0.1. 
The initial slope of the curve representing 
dla = 0.25 is higher than the slope of the curve 
representing dla = 0.1, so that the curves cross 
over at a reinforcement ring width of approxi- 
mately 2.5 mm. If the reinforcement ring width 
is increased further then the panel with 
dla = 0.25 exhibits a increasingly higher buck- 
ling stability than the panel with dla = 0.1. 

The buckling modes illustrated for several 
points in Fig. 9 reveal that for both cut-out sizes 
no change in buckling mode could be detected. 
All the panel configurations buckle symmetric- 
ally, deflecting in the post-buckling phase to 
one side out-of-plane. With increasing rein- 
forcement ring width the area around the 
cut-out which remains  after buckling occurs 

Fig. 8. LJL0 versus total volume of panel and reinforcement ring. CFRP panels loaded in shear displacement with 
centrally located circular cut-out and simply supported boundary conditions. Reinforcement rings applied on both sides of 

the panel. 
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Reinforcement ring width [ram] 

Fig. 9. LJL0 versus width of reinforcement ring for CFRP panels loaded in uniform uniaxial compressive displacement 
with centrally located circular cut-out and simply supported boundary conditions. Reinforcement rings applied on both 

sides of the panel. 
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Fig. 10. Change of buckling shape with increasing reinforcement ring width. 5-10-15-20-25-30-35-40-45-50 mm 
reinforcement rings. 
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parallel to the loading direction, is increasing, 
indicating the stiffening effect of the reinforce- 
ment ring. 

The influence of reinforcement ring volume 
on the buckling stability is illustrated in Fig. 11, 
where the buckling loads, normalized towards a 
panel without a cut-out, are plotted versus the 
reinforcement ring volume. Both curves in 
Fig. 11 exhibit a behaviour similar to the 
behaviour observed in Fig. 9. However, the 
curves in Fig. 11 are more linear at higher rein- 
forcement ring volumes than the curves in 
Fig. 9. 

The slope of the curves representing d/a = 0.1 
and d/a = 0.25 are initially decreasing with 
increasing reinforcement ring volume. Once a 
reinforcement ring width of approximately 
10 mm (11000 mm3) is reached then the slope 
of the curve representing d/a = 0.25 remains 
constant. For a panel with d/a = 0.1 the slope 
remains constant once a reinforcement ring 
width of approximately 5 mm (2000 mm3) is 
reached. Both curves remain relatively linear 
and parallel to each other at higher reinforce- 
ment ring volumes. 

The two curves cross over at a reinforcement 
ring volume of approximately 3400 mm3. From 
then on the results indicate that the panel with 
d/a = 0.25 is more stable against buckling then a 
panel with d/a = 0.1 if the same volume of rein- 
forcement ring material is applied around the 
cut-out. 

From the results presented in Fig. 11 it can 
be concluded that reinforcement rings of small 
width are more efficient than wide reinforce- 
ment rings. To increase the buckling stability of 
a panel with d/a = 0.25 from LJL0 = 0.89 (no 
reinforcement ring) to LJL0 = 1.22 requires 
(according to Fig. 11) a reinforcement ring 
volume of approximately 10700 mm3 (10 mm 
wide reinforcement ring). To increase the buck- 
ling stability further to LJL0 = 1.56 requires a 
reinforcement ring width of 35 mm (48 300 mm3 

volume). 
Figure 12 illustrates the relationship between 

the buckling stability of a panel with a cut-out 
of d/a = 0.1 or d/a = 0.25 and the total volume 
of panel and reinforcement ring. The buckling 
loads have been normalized towards a panel 
without a cut-out. 

170000 180000 190000 200000 210000 220000 230000 240000 250000 

Reinforcement Ring and Panel volume Immrt3] 

Fig 11 L JL  versus volume of reinforcement ring for CFRP panels loaded in uniform uniaxial compressive displacement 
with centrally located circular cut-out and simply supported boundary conditions. Reinforcement rings applied on both 

sides of the panel. 
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Fig. 12. LJL0 versus total volume of panel and reinforcement ring. CFRP panels loaded uniform uniaxial compressive 
displacement with centrally located circular cut-out and simply supported boundary conditions. Reinforcement rings 

applied on both sides of the panel. 

Both curves in Fig. 12 exhibit a convex-con- 
cave curvature with the initial slope decreasing 
with increasing panel and reinforcement ring 
volume. The curves develop into linear func- 
tions at higher total panel and reinforcement 
volumes. Over the range of volumes considered 
the curves are relatively parallel to each other. 
Figure 12 indicates that with the same total 
panel and reinforcement ring volume used a 
panel with d/a = 0.25 is more stable against 
buckling than a panel with d/a = 0.1, illustrating 
the advantage of shifting panel and reinforce- 
ment ring material to the supported panel edges 
away from the panel centre. 

COMMENTS ON TEST RESULTS 

Naturally there are differences between the 
idealised FE model and the real fabricated 
composite structure, leading to errors in deter- 
mining the buckling load and structural 
response. 

All the numerical methods which are avail- 
able to predict the theoretical panel buckling 
loads are based on the assumption of ideal 
linear elastic behaviour and an abrupt growth of 
out of plane deflections at a discrete point. 
Unfortunately, real structures exhibit some 
degree of non-linearity around the buckling 
point and in the post-buckling region, and have 

geometric imperfections (eg. initial curvature, 
changes in thickness and local differences in 
material properties among others). Controls 
were in place to try to detect and avoid im- 
perfections, but in reality the produced panels 
were of course not perfect. This could be seen 
throughout the experiments. Figure 13 gives an 
illustration of the practical buckling behaviour 
observed on a NCF CFRP panel with no cut- 
out. Comparing the test results of panels with 

Theory 

Bifurcation       ^*5 

buckling:loady
;' 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Out of plane deflections [mm] 

Fig.   13.  Influence  of imperfections  on  out  of plane 
displacement. 



Composite panels with circular cut-outs 621 

cut-outs to panels without cut-outs (LJL0) eli- 
minates the effect of imperfections to a certain 
degree as all the panels have been produced 
under the same conditions and batch of 
material and should therefore have similar 
imperfections. It also makes the results more 
generally applicable. The absence of a well 
defined bifurcation point clearly indicates that 
the determination of experimental buckling 
loads is an approximate process with varying 
degrees of error possible. 

CONCLUSIONS 

FE models for different loadings, cut-out sizes 
and reinforcements width have been created 
and analyzed to determine the influence of 
these parameters on the buckling load of CFRP 
composite panels. Practical tests have been con- 
ducted to verify these results with measured 
buckling loads. 

It was possible to predict the influence of the 
different parameters on the structural behaviour 
of the composite panel. However, as expected 
the measured buckling loads were lower than 
the predicted values due to imperfections in the 
test panels which could not be accounted for in 
the FE model and for differences in the test 
apparatus. Referring the test results of panels 
with cut-outs to panels without cut-outs does, to 
a certain extent, remove the effect of imperfec- 
tions and make the results in the diagrams 
presented more generally applicable. 

The relationships presented in this paper 
between cut-out size, reinforcement width and 
buckling load, can be used by design engineers 
to determine the required reinforcement and to 
gain a better understanding of the structural 
behaviour of structures with reinforced cut-outs. 

The buckling behaviour of panels loaded in 
shear is very different from the buckling 
behaviour of panels loaded in uniform compres- 
sive displacement and the influence of the ring 
reinforcement is also different for these two 
load cases. The following conclusions can be 
made: 

Panels loaded in uniform shear: 
1. The buckling mode of panels loaded in shear 

changes from symmetric to antisymmetric 
once the reinforcement ring exceeds a cer- 
tain stiffness. 

2. The reinforcement ring width and volume 
where the buckling mode changes from sym- 

metric   to    antisymmetric   increases   with 
increasing cut-out. 

3. Panels with large cut-outs yield in the area of 
antisymmetric buckling mode a higher buck- 
ling stability for the same reinforcement ring 
volume than panels with smaller cut-outs. 

4. Panels with large cut-outs yield a higher 
buckling stability at the same panel and rein- 
forcement ring volume than panels with 
smaller cut-outs. 

5. In the area of antisymmetric buckling, the 
volume required to increase the buckling 
stability further (slope of the curves) is very 
similar for d/a = 0.1 and d/a = 0.25. 

Panels loaded in uniform uniaxial compressive 
displacement: 
1. No change in buckling mode with increasing 

reinforcement ring stiffness could be 
observed. 

2. Panels with large cut-outs yields a higher 
buckling stability for the same reinforcement 
ring volume than panels with smaller cut- 
outs. 

3. Panels with large cut-outs yield a higher 
buckling stability at the same panel and rein- 
forcement ring volume than panels with 
smaller cut-outs. 

4. The volume required to increase the buck- 
ling stability equally of d/a = 0.1 and 
d/a = 0.25 (slope of the curves) is very 
similar. 

FUTURE WORK 

The work presented in this paper was only a 
part of the PhD programme completed. Practi- 
cal tests to verify the FE analysis are 
unfortunately quite time consuming and expen- 
sive and limited the amount of testing which 
could be conducted. The influence of panel 
aspect ratio, cut-out shape and cut-out location 
in the panel are useful information for the 
design engineer and have to be investigated. 
The influence of imperfections of different mag- 
nitude and forms has to be established. 
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cylinders with temperature dependent 
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Laminated composite cylinders are optimized with the objective of 
minimizing the material costs by means of hybridization. They are modelled 
as thick cylinders working under internal and/or external pressures. The 
optimal designs are subject to a lower bound on the failure pressure 
determined by the maximum stress criteria. The cylinders are constructed 
such that the stress patterns match the material properties by placing the 
stronger material in high stress areas and the weaker material in low stress 
areas. The resulting structure is of hybrid construction and the cost 
minimization is achieved not only by using an inexpensive material but also 
by minimizing the amount of the expensive material used in the design. The 
effect of temperature change on the stresses and the material properties is 
included in the analysis. Numerical results are given for graphite/glass 
hybrid cylinders and the efficiencies of the designs are shown to be 
substantial by comparing the costs of hybrid and non-hybrid designs. It is 
also shown that neglecting the effect of temperature on the stiffness and 
strength parameters of the materials would lead to underdesign and 
premature failure. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

An effective way of reducing the material costs 
of laminated structures is to match the material 
characteristics with the stress patterns. This idea 
leads to hybrid composites in which the 
material with superior properties is placed in 
high stress areas and the weaker material in low 
stress areas. Moreover by minimizing the 
amount of expensive material used in the con- 
struction, further cost savings can be achieved. 
The resulting structure provides a cost-effective 
solution for structures made of composite 
materials which are usually more expensive than 
their conventional counterparts. This idea has 
been previously applied to pressure vessels [1], 
vibrating laminates [2,3] and laminates under 
buckling loads [4] where it led to substantial 
savings in material costs. 

In the present study, cost minimization of 
thick cylinders under internal and/or external 
pressures and thermal loading is studied taking 

the effect of temperature on the material 
properties into account. Hybridization and opti- 
mization are combined to design the most 
cost-effective laminated cylinder, choosing a 
combination of expensive and inexpensive com- 
posite materials for different layers. The design 
objective is defined as the minimization of the 
thickness of the expensive material used in the 
hybrid construction subject to the requirement 
that the resulting structure does not fail under 
the specified pressure and thermal loads. 

The hybrid construction provides a design 
tool by which strong and weak materials are 
matched with high and low stress areas. The 
fact that high stress gradients exist in thick com- 
posite cylinders has been pointed out by Pagano 
[5]. More recent studies of stresses in thick 
composite cylinders include Refs [6] and [7]. 
The effect of thermal loadings on the stresses 
has been studied for composite tubes by Hyer et 
al. [8]. These studies show the importance of 
design optimization to improve the perform- 

623 



624 S. Adali, V. E. Verijenko 

ance of thick cylinders with curvilinear 
anisotropy. Optimal design results for non- 
hybrid fibre-reinforced cylinders were given in 
Refs [9-11]. The use of hybridization in the 
design of composite cylinders with a view 
towards material cost minimization is the sub- 
ject of the present study which includes the 
effect of temperature change on the material 
properties. It is well known that material 
properties as well as the structural behaviour 
are affected by temperature changes [12-15]. 
Since the optimal designs are sensitive to both 
elastic constants and strength parameters which 
can degrade under heating, taking the tempera- 
ture dependence of the material into account is 
essential in the design process. This approach 
leads to realistic values for the design param- 
eters in the presence of thermal loads [16]. 

The numerical results indicate that optimal 
use of hybridization leads to substantial savings 
in the material costs. Moreover a comparison of 
results with temperature independent and 
dependent material properties shows that neg- 
lecting the effect of heating on the material 
would lead to suboptimal designs and prema- 
ture failure by producing an underdesigned 
structure. 

BASIC EQUATIONS 

Consider a multilayered thick-walled cylinder of 
inner radius a and outer radius b. The cylinder 
may be subjected to internal and external pres- 
sures as well as a temperature change denoted 
hyp, q and Ar, respectively. Let r and 6 denote 
the coordinates in the radial and circumferen- 
tial directions. Due to axial symmetry only 
radial and circumferential stresses oek(r) and 
ogk(r) are nonzero where k indicates the layer 
number with k=l, 2, ..., K for a i^-layered 
cylinder. The expressions for stresses in terms 
of radial and circumferential strains srk(r) and 
s0k(r) are given by [17]: 

ark(r) = Erk[erk+vekeek-(ark+v9k<x0k)AT]V~' (1) 

o0k(r) = Eek[s6k+vrksrk - (ct0k+vrkark)AT] V~! (2) 

where V=l-vrkvek; Erk and E0k are Young's 
moduli in the r and 9 directions; vrk and vok are 
Poison's ratios; ark and a0k are thermal expan- 
sion coefficients in the r and 6 directions. Let 
Uk(r) denote the displacement in the radial 

direction of a point in the kth layer. Then the 
strains are 

£rk = Uk/r   s0k = dUk/dr (3) 

The equation of equilibrium for the kth layer 
in terms of stresses in the absence of body 
forces is 

d(rork) 

dr 
- (Tat = 0 (4) 

By substituting eqn (3) into eqns (1) and (2), 
and inserting the resulting expressions into eqn 
(4), the differential equation for displacement is 
obtained as 

r2U"k+rU'k-r,2kUk = [(v0k-rjl)oi0k 

+(l-vrkr]2k)ark]ATr (5) 

where k= 1, 2, ..., K; r\2k = E0kIErk = veklvrk and a 
prime denotes differentiation with respect to r. 

The boundary and interface conditions can be 
expressed as 

°ri(a) =-p,    orK(b) =-q (6) 

crk(ck) = ork+i(ck),    k=\, 2, ..., K-l 
Urk(ck) = Urk+1(ck),    k= 1,2..„K-l (7) 

where ck is the interface radius between the A;th 
and (&+l)-th layers. 

For a i^-layered cylinder, the solutions of K 
second order differential equations given in eqn 
(5) result in 2K integration constants. The con- 
ditions (6) and (7) provide 2+2(K~l) = 2K 
conditions to evaluate the unknown constants 
and provide a unique solution. 

OPTIMIZATION PROBLEM 

The minimum cost design refers to the problem 
of minimizing the material cost for a hybrid 
cylinder with given inner and outer radii and 
consisting of layers made of high-strength 
(expensive) and low-strength (inexpensive) com- 
posite materials. By minimizing the thickness of 
the high-strength layers subject to a lower 
bound on the failure pressure, the cost of the 
material used in the construction can be mini- 
mized. The inner and outer radii of the cylinder 
are specified as design inputs and the layer 
thicknesses are employed as design variables. 

Let Pls and Phs denote the failure pressures of 
cylinders made of a low-strength material only 
and a high-strength material only. Let P0 denote 
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the lower bound on the failure pressure Pf, i.e., 
the thickness of the high-strength layers is to be 
minimized subject to 

Pf>Po («) 

Clearly if P0<P\S, then the minimum cost 
design is given by a cylinder made of low- 
strength material only. On the other hand, if 
P0 > Phs then the solution does not exist for the 
specified high-strength material and P0 and with 
the given geometric dimensions. For a hybrid 
cylinder to provide the minimum cost design, 
the inequality 

As <Po< Phs (9) 

has to be satisfied. 
Let tls and ths denote the thicknesses of the 

low-strength and high-strength layers, respec- 
tively. Then the minimum cost problem can be 
stated as: "Determine the minimum value of ths 

for a cylinder of inner radius a and outer radius 
b subject to internal and external pressures p 
and q and a temperature change AT such that 
the failure pressure Pf satisfies the inequality 
(8)". 

Thus ths is to be minimized subject to eqn (8). 
with P0 satisfying the inequality (9) for a solu- 
tion given by a hybrid cylinder. 

METHOD OF SOLUTION 

The solution procedure involves the computa- 
tion of the failure pressure using a suitable 
failure criterion. In the present study, the maxi- 
mum stress criterion is chosen for this purpose. 
For the kth layer, let Xtk and Xck denote the 
tensile and compressive strengths of the compo- 
site material in the fibre direction and Ytk and 
Yck in the transverse direction. Then the 
requirements for non-failure can be expressed 
as 

Xck<c6k(r)<Xlk,    Yck<ork(r)<Ytk 

for a<r<b (10) 

The failure pressure is obtained by setting 

oek(r) = Xck,    aGk{r) = Xtk for a<r<b        (11) 

ork{f) = Yck,    ark(r) = Ytk for a < r < b (12) 

and computing the minimum failure pressure 
over r for each equation in (11) and (12). The 
procedure is repeated for each k = l, 2,..., K. 
Let Pik(r), P2k(r), P3k(r) and P4k(r) denote the 

failure pressures at r for each of the four equa- 
tions in (11) and (12). Then, P{ is given by 

Pf=  min   min   min \Pik(r)\ (13) 
k i r 

where k=l, 2,..., K, i = l, 2, 3, 4 and 
ck<r<ck+l. 

In order to implement the above procedure 
the stresses ark(r) and aek(r) need to be com- 
puted. The first step in this regard is the 
solution of the differential eqn (5). This solu- 
tion is given by 

Uk(r) = Akr'lk+Bkr-,lk+U (14) 

where 

4 = [A77(l -n2
k)][(vek-rt2k)(Xok+a ~vrkrj>rk\ 

(15) 

and Ak and Bk are the unknown integration 
constants to be evaluated from the conditions 
(6) and (7). By substituting eqn (14) into eqn 
(3), the strains can be computed which are 
inserted into eqns (1) and (2) to obtain the 
stress components. 

The optimization procedure involves mini- 
mizing the thickness ths of the high-strength 
layers subject to the constraint (8). Since 
P{ = pf(ths), a computational algorithm can be 
devised such that the minimum value of ths is 
determined with Pf(ths) <P0. In practice, this 
value corresponds to the equality Pf(ths) = P0- 

NUMERICAL RESULTS AND DISCUSSION 

In the numerical results, the high-strength 
material is specified as graphite/epoxy (T300/ 
5208) and the low-strength material as 
glass/epoxy (Scotchply 1002). The elastic con- 
stants and strength values for these materials 
are: 

Graphite/epoxy: E0 = 181 GPa, £r=10.3 
GPa, ve = 0.28, ae = 0.02xlCT6 K_1, ar = 
22.5 xlO"6 K-\ J^ = 1500 MPa, Xc= -1500 
MPa, Yt = 40 MPa, Yc = -240 MPa. 

Glass/epoxy: £e = 38.6 GPa, Er = 8.21 GPa, 
ve = 0.26, aö = 8.6xl0"6 K"1, ar = 22.1xl0"6 

K"\ Xt = 1062 MPa, Xc = -610 MPa, Yt = 31 
MPa, Yc= -118 MPa. 

The temperature dependent material proper- 
ties indicated by a superscript T are computed 
using the expressions 

ET
0=E0{l+xl,lAT),    ET

r=Er{l+^2^T) (16) 
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cc^aod+ß.AT),    aT
r=ar(l+ß2AT) (17) 

X^ = X,>C(1+^,AT),    Ylc=Yt,c(l+ils2AT)    (18) 

where ^=-0.005, i//2 = -0.004, ft = 0.004, 
ß2 = 0.003. These values are based on the 
graphs of the elastic constants and strength 
values plotted against the temperature as given 
in Refs [13] and [14]. The efficiencies of the 
optimal designs are assessed by comparing the 
thickness of the graphite layer in the optimal 
hybrid construction with the thickness of a 
cylinder made of graphite/epoxy only and satis- 
fying the constraint (8). Thus, the following 
efficiency index / is defined 

I=l00(tRT-tmin)/t min/' *gr (19) 

where tgr denotes the thickness of the all- 
graphite cylinder and tmin the thickness of the 
graphite layer in the optimum hybrid construc- 
tion with both designs satisfying the constraint 
(8). It is noted that in the case of all-graphite 
cylinder, the inner radius is specified as a and 
the outer radius becomes a+tgT, while in the 
hybrid construction inner and outer radii are 
specified as a and b, respectively. Clearly the 
index / indicates the percentage saving for the 
high-strength material which can be realized by 
an optimal hybrid construction as opposed to a 
non-hybrid construction using only the high- 
strength material. 

Numerical results are given for three example 
problems involving a two-layered cylinder under 
internal pressure only, a two-layered cylinder 
under external pressure only and a three- 
layered cylinder under internal and external 
pressures. 

Two-layered cylinder under internal pressure 

For this case the inner layer is specified as 
graphite/epoxy and the outer layer as glass/ 
epoxy. The reason for this choice is to place the 
stronger layer where the pressure acts. Figure 1 
shows the curves of tmJa and the efficiency 
index plotted against b/a for AT=0 and 
AT = 100 K. The constraint on the failure pres- 
sure is specified as P0 = 0.5(Pgl-hPgr) where Pgl 

and Pgr denote the failure pressures of the 
corresponding all-glass and all-graphite cylin- 
ders, respectively. It is noted that P0 changes as 
b/a changes since Pg, and Pgr depend on b/a. In 
particular P0 increases as b/a increases as the 
thicker thickness ration leads to higher failure 
pressures. It is observed that if the temperature 
dependence of material properties is neglected, 
tmin curves for AT= 0 and AT= 100 K become 
quite similar even though the efficiency indices 
differ. Taking the temperature dependence of 
the material properties into account leads to 
higher efficiencies. Next, the effect of the 
failure pressure on tmin and the efficiency is 
studied in Fig. 2 with b/a = 1.2. Efficiency of the 
designs drop as the pressure increases since the 
thickness of the graphite layer approaches that 
of an all-graphite cylinder. For the same pres- 
sure, higher temperature leads to thicker 
cylinders when the properties are temperature 
dependent, which is a physically expected result. 

Two-layered cylinder under external pressure 

Next, two-layered cylinders under external pres- 
sure only are studied placing the graphite/epoxy 

o.io 
 tmin/a (AT dependent) 
 tminA (AT independent) 
 Efficiency (AT dependent) 
 Efficiency (AT independent)   X^r. 

1.15 1.30 

b/a 
Fig. 1. Minimum thickness and efficiency vs. b/a for two-layered cylinders under internal pressure (q = 0). 
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Fig. 2. Minimum thickness and efficiency vs. failure pressure with b/a = 1.2 and q = 0. 

in the outer layer and the glass/epoxy in the 
inner layer. Again, the stronger layer is placed 
where the pressure acts. Figure 3 shows the 
curves of tmJa and the efficiency plotted 
against b/a for AT=0 and Ar=100K with 
P0 = 0.5(Pgl+Pgr). Comparison of Figs 1 and 3 
indicate that the curves of tmin and the effi- 
ciency show similar trends with respect to the 
thickness ratio b/a for internal and external pr- 
essures. However tmin is not affected by 
temperature increase for b/a <1.12, and tmin for 
AT = 100 K becomes much smaller for 
b/a > 1.12 in the case of external pressure. The 
values of the failure pressures corresponding to 
the thicknesses given in Figs 1 and 3 are shown 
in Fig. 4 with respect to b/a. Even though 
Pf = P0 increases as b/a increases, the rate of 
increase drops sharply for higher values of b/a. 
Figure 4 also shows that higher temperatures 
lead to thicker cylinders as expected. 

Three-layered cylinder under internal and 
external pressures 

In this case, the inner and outer layers are con- 
structed of equal-thickness graphite/epoxy 
material with the middle layer constructed of 
glass/epoxy. tmin denotes the combined thickness 
of the graphite layers. Figure 5 shows the curves 
of tmin/a and efficiency plotted against b/a for 
AT=0 and AT=50K with internal and 
external pressures given as p = 150 MPa and 
4 = 20 MPa, respectively. For higher tempera- 
tures a higher thickness of the stronger material 
is needed, and the efficiency becomes lower. It 
is noted that in this case tmin decreases with 
increasing b/a because the pressures are kept 
constant as opposed to the situations con- 
sidered in Figs 1 and 3. In Fig. 6, the internal 
pressure is specified as p = 150 MPa and the 
curves of minimum thickness and the efficiency 

Fig. 3. Minimum thickness and efficiency vs. b/a for two-layered cylinders under external pressure (p - 0). 
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Fig. 4. Failure pressure vs. b/a for two-layered cylinders with temperature dependent properties. 

o.io 

Fig. 5. Minimum thickness and efficiency vs. b/a for three-layered cylinders with/? = 150 MPa, q = 20 MPa. 
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Fig. 6. Minimum thickness and efficiency vs. external failure pressure for three-layered cylinders with b/a = 12 and 
p = 150 MPa. 
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are plotted against the external failure pressure 
for a cylinder with b/a = 1.2. It is interesting to 
note that tmin decreases as the external pressure 
is increased, indicating that the stresses in the 
cylinder drops as external pressure counteracts 
against the internal pressure. For three-layered 
cylinders, the efficiencies are, in general, lower 
than those of two-layered ones working under 
internal or external pressure only. 

CONCLUSIONS 

The cost of materials used in the construction 
of laminated thick cylinders is minimized by 
means of hybridization. The hybrid cylinder is 
composed of layers of high- and low-strength 
fibre reinforced materials. The locations of 
these layers match the high and low stress pat- 
terns generated by internal and/or external 
pressures acting on the cylinder and tempera- 
ture change. The cost, defined as the thickness 
of the high-strength layers, is minimized not 
only by use of the less expensive material in the 
lightly stressed areas, but also by using the mini- 
mum amount of the expensive material subject 
to the constraint that the failure pressure will 
be higher than a specified value. The thickness 
ratio b/a is specified as a problem parameter. 

It is noted that a hybrid cylinder gives the 
optimum design if the specified failure pressure 
P0 is higher than the failure pressure of the 
cylinder made of low-strength material only. 
Moreover a hybrid construction cannot be used 
if P0 exceeds the failure pressure of the cylinder 
made of high-strength material only. 

Numerical results are given for two- and 
three-layered cylinders using graphite/epoxy and 
glass/epoxy layers in the high and low stress 
areas. The effects of the thickness ratio b/a, the 
failure pressure and the temperature increase 
on the minimum thickness of the graphite layers 
and the efficiency of the designs are discussed. 
The efficiency is defined in comparison with the 
thickness of the corresponding cylinder made of 
the expensive material only. In the computa- 
tions, temperature dependent material 
properties are used and comparisons are given 
for different temperatures. It is shown that neg- 
lecting the effect of heating on the material 
properties would lead to underdesign and con- 
sequently to premature failure if the cylinder 
works under thermal loads. It is observed that 
the design efficiency drops as Pf increases. How- 

ever, the efficiency increases as the cylinder 
becomes thicker. Thus a hybrid design is more 
cost-effective at lower pressures and for thicker 
cylinders. 

The cost of advanced composite materials 
makes up a considerable portion of the total 
production expenses due to the high costs of 
such materials as graphite, boron and kevlar. 
Improving the cost-effectiveness of a composite 
structures by means of hybridization and design 
optimization will increase the use of composites 
in engineering applications by virtue of reducing 
the overall costs. 
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The behaviour of open and closed section 
carbon fibre composite beams subjected to 

constrained torsion 

J. Loughlan & M. Ata 
Structures and Materials Technology Group, College of Aeronautics, Cranfield University, Cranfield, MK43 OAL, UK 

A simple engineering theoretical approach is presented in this paper which 
is able to predict the initial constrained torsional response of a specific class 
of thin-walled open-section and single-cell closed-section carbon fibre 
composite beams. The flat walls of the composite beams are symmetrically 
laminated about their own mid-planes and possess membrane orthotropy. 
The laminated flats are assembled in such a way that the stiffness 
distribution round the section is of a symmetrically disposed nature and 
thus the flanges of a composite box-section, for example, can have a 
different lay-up configuration to that of the section webs. Beams of this 
type are essentially uncoupled in their overall stiffnesses and thus it is 
possible to apply axial load or bending to the sections without inducing 
torsional behaviour. 

The analysis procedures for such beams will, of course, be considerably 
less complex in nature than those associated with beams of a more general 
lay-up configuration. Indeed, the analysis approach adopted in this paper 
simply makes use of the existing theories of torsion appropriate to isotropic 
construction and these are then suitably modified to account for the non- 
isotropic nature of the composite material. The torsional and warping 
rigidities for use in the analysis of the composite beams are thus duly 
determined through the use of the appropriate equivalent engineering 
elastic constants of the individual thin composite walls and the concept of 
effective thickness is employed to account for the different stiffnesses in the 
walls. 

In the paper some detailed attention is paid to the effects of primary and 
secondary warping restraint on the torsional response of open section 
beams and the distinct differences between sections whose behaviour is 
governed predominantly by primary effects and those whose response is 
associated solely with secondary effects are discussed. The stress systems set 
up in open-section and single-cell closed-section carbon fibre composite 
beams when subjected to torsion with variable twist are examined in the 
paper and in particular it is shown that although the shear flow due to 
primary warping restraint in open-section beams serves in part to 
equilibrate the applied torque, that in closed box section beams is 
completely self equilibrating. Comparisons are given in the paper between 
theory and experiment and between theory and finite element solutions and 
these are shown to give good agreement for the Z, angle and box section 
beams considered. © 1997 Published by Elsevier Science Ltd. 

INTRODUCTION structural response [1-8]. In the work of Mans- 
field & Sobey [1], the authors examine the 

Much of the research pertaining to composite stiffness characteristics of simple fibre compo- 
structural sections, open or closed in nature, has site tube profiles with particular attention being 
been associated with the effects of warping paid to the possible advantages of induced 
restraint and of global stiffness couplings on       blade twist. The aeroelastic stability of a bear- 
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ingless composite rotor blade in the hover mode 
has been investigated, using a finite element 
formulation [2]. A beam finite element formula- 
tion incorporating the effects of warping has 
been developed by Lee & Kim [3]. The formu- 
lation is based on small deflection theory and is 
applicable to isotropic elastic materials. The 
finite element formulation developed by Stem- 
pie & Lee [4] is essentially an extension of the 
application of the approach of Ref. [3] and thus 
it is shown to be capable of modelling the com- 
bined bending, torsional and extensional 
behaviour of composite beams and through 
numerical tests, induced torsion and bending 
due to axial loading is demonstrated for 
selected fibre lay-up configurations. 

Tests on graphite-epoxy thin-walled box- 
beams have been carried out by Chandra et al. 
[5] whereby the use of symmetric and antisym- 
metric lay-up configurations for the box-beams 
permit the examination of bending-torsion 
coupling and extension-torsion coupling respec- 
tively. The behaviour of composite I-beams with 
elastic couplings has been studied both theo- 
retically and experimentally by Chandra & 
Chopra [6] and in this work it is shown that the 
local extension-twist coupling of the individual 
flange elements of the sections significantly 
influences the overall bending-torsion coupling 
of the I-beams. A generalised beam theory for 
open section laminated composite beams 
involving all possible coupling combinations has 
been derived by Zvarick & Cruse [7] using a 
strength of materials approach. Although 
generalised loading can be accommodated using 
their approach, it is to be noted that their 
theory is limited in its application to statically 
determinate beams and to cross-sectional geom- 
etries which are of a continuous curvilinear 
nature only. An asymptotically consistent theory 
has been proposed by Badir et al. [8] for com- 
posite thin-walled open section beams. Their 
approach yields closed-form expressions for the 
beam stiffness coefficients and for its stress and 
displacement fields and the influence of 
material anisotropy on the displacement field is 
readily identified. Their theory is shown to pro- 
vide favourable agreement with the 
independent test data of Ref. [6] pertaining to 
cantilevered composite I-beams. 

The torsional analysis of closed profiles which 
consist of one or more cells and experience 
variable twist, whereby the thin walls of the sec- 
tions are required to resist both shear and axial 

components of stress, is indeed an extremely 
complex process to undertake. With regard to 
isotropic construction, mention is made here of 
the detailed and informative contributions made 
by Von Karman & Christensen [9], Fine & 
Williams [10], Argyris & Dunne [11], Benscoter 
[12] and Waldron [13]. 

The analytical studies of Von Karman & 
Christensen [9] and Fine & Williams [10], 
although distinctly different in their approach, 
use the common assumption of neglecting the 
effects of the warping shear strains on torsional 
response and it is thus considered in their work 
that only the St. Venant shear strain has signifi- 
cance. 

A major contribution to the development and 
understanding of the complex analytical pro- 
cedures necessary for dealing with the 
torsional-bending response of beams of arbi- 
trary cross-section is given in the work of 
Argyris & Dunne [11]. The stressing of single or 
multi-cell tubes typical of that encountered in 
aircraft wing structures is dealt with by Argyris 
& Dunne [11] in a rational manner and their 
generalised theory is able, within the limitations 
of the closely spaced rigid rib assumption, to 
give exact solutions for a specific class of cylin- 
drical tube construction. 

The effect of shearing strains on beam deflec- 
tions is fully accounted for in the works of 
Benscoter [12] and Waldron [13] and this mani- 
fests itself, in their respective analyses, through 
a warping shear parameter which essentially 
serves to give a measure of that part of the rate 
of twist of the beam associated with axial warp- 
ing displacements. Neglecting the effects of the 
warping shear strains in analysis is shown, in 
this paper, through comparisons between the 
approaches of Von Karman & Christensen [9] 
and Benscoter [12] and with results from finite 
element studies, to result in significant inaccu- 
racies in the predictions of torsional response. 

The design and analysis procedures pertain- 
ing to composite box beam construction in 
particular, have been given consideration by a 
number of investigators [14-17]. The torsional 
stiffness of a composite box beam undergoing 
free torsion has been determined by Barrau & 
Laroze [14] using the finite difference method 
of analysis. The complexities associated with 
composite box beam construction typical of that 
used in aerospace applications are addressed in 
the works of Bicos & Springer [15] and Bau- 
chau et al. [16]. In the work of Smith & Chopra 
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[17], the effects of cross sectional warping due 
to torsion and of transverse shear due to bend- 
ing are appropriately accounted for in their 
analytical model of composite box beams and 
this is reflected in the good correlation of the 
model predictions with the experimental test 
data of Ref. [5]. 

In this paper the authors examine the tor- 
sional response of open-section and single-cell 
closed-section carbon fibre composite beams 
whereby the overall elastic couplings of the 
beams are eliminated through the use of con- 
stituent laminates which are symmetrically 
layed-up about their own mid-planes and which 
possess in-plane orthotropy. In particular, some 
specific attention is paid to the distinct differ- 
ences in the response of open sections which 
are governed, in the main, by the effects of 
primary warping restraint and those whose con- 
strained behaviour is determined solely from a 
consideration of secondary warping effects. 
Some detailed attention is also given to the 
quite different stress systems set up in open and 
closed-section carbon fibre composite beams 
when subjected to torsion with variable twist. 
The analysis procedures for composite beams 
with uncoupled stiffnesses will, of course, be of 
a less complex nature than those associated 
with beams of a more generalised lay-up con- 
figuration and thus the existing theories for 
isotropic construction can be modified in a 
simple manner to account for the effects of 
layered composite material and this approach 
has been employed with a considerable degree 
of success for such uncoupled beams. Ata [18] 
has examined the constrained torsional 
behaviour of open and closed-section carbon 
fibre composite beams using this approach and 
details of this work are reported in Refs [19,20] 
for open Z-section beams and with regard to 
single-cell closed box sections. 

THEORETICAL DETAILS 

The reactive response of thin-walled prismatic 
beams to torsional loading depends to a large 
extent on cross-sectional geometry and in par- 
ticular on whether the section is open or closed 
in nature. In the case of free torsion the stresses 
in the thin walls of the beam will be the same at 
every cross-section along its length. The stresses 
at any section are thus closed loop shear stres- 
ses which equilibrate the applied torque. These 

stresses vary linearly through the thickness of 
the thin walls when the beam is of open cross- 
section in which case they are zero at the wall 
mid-planes and are maximum at the wall sur- 
faces. For open section beams the closed loop 
shear stresses are well known as the St. Venant 
stresses. For closed section beams torsional 
equilibrium is achieved through a closed loop 
shear stress system in which the stresses are 
uniform through the thickness of the thin walls. 
These stresses are commonly referred to as the 
Bredt-Batho stresses. 

When a thin-walled beam is subjected to free 
torsion then the cross-sections of the beam will 
experience a free warping distribution. In this 
case the longitudinal generators of the beam 
profile are unstrained and thus all sections of 
the beam will experience an identical warping 
distribution. For open-section beams such as 
Zs, channels or I-sections both primary or 
membrane warping and secondary or through- 
the-thickness bending warping are present. 
Primary warping is predominant for these sec- 
tions and thus secondary warping is normally 
ignored in their analysis. Angle, T or cruciform 
sections, on the other hand, possess only 
secondary warping and this should be con- 
sidered in the analysis of such beams, 
particularly if they are of composite construc- 
tion. For closed-section beams the warping 
displacements to be considered are of a primary 
or membrane nature. 

In the case of torsion associated with variable 
twist resulting from warping restraint there are 
additional distinct differences between open- 
and closed-section beams with regard to their 
reactive response. If the longitudinal warping 
displacements are prevented in any way then, of 
course, additional stress states to those already 
discussed for the case of free torsion will be 
realised. 

For open-section beams subjected to con- 
strained torsion the St. Venant stresses still 
exist. They are, however, now associated with a 
variable rate of twist and thus their magnitude 
changes from section to section along the beam 
length. For those sections whose behaviour is 
governed predominantly by the effects of 
primary warping then secondary warping is 
ignored in analysis and thus the equilibrium of 
the applied torque will now be provided by the 
St. Venant shear stresses and the shear stresses 
due to constrained primary warping. The con- 
tributions   from   each   stress   system  will,   of 
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course, depend on the location along the beam 
length of the cross-section being considered. 
The warping shear stresses will provide the 
more predominant contribution in the vicinity 
of the constrained warping location and at 
increasing distances away from this location the 
St. Venant stresses will become more and more 
effective. 

For those sections whose constrained 
behaviour is governed solely by the effects of 
secondary warping it is found that the warping 
shear stresses are small compared to the St. 
Venant stresses and thus they are usually 
ignored and the applied torque is considered to 
be equilibrated, effectively, by the St. Venant 
stresses. Constrained secondary warping in sec- 
tions which do not possess primary warping can 
cause quite high direct stresses however at the 
restrained location and these have to be given 
consideration. This is particularly true if the 
section is of composite construction in which 
case sudden failures are possible and thus it is 
essential to be able to predict stress levels accu- 
rately. 

The response of closed box-section beams to 
constrained torsion is somewhat different to 
that of open-section beams. In this case the 
Bredt-Batho stresses still exist. These stresses 
are, of course, not a function of the section 
twist and thus a variable rate of twist along the 
beam length does not affect them. This means 
that, as in the case of free torsion, their magni- 
tude remains constant and is the same at all 
sections along the beam length for a given 
applied torque. The Bredt-Batho stresses are 
therefore solely responsible for equilibrating the 
applied torque and as a result the shear stresses 
due to constrained warping must now be self- 
equilibrating in nature with respect to torque 
about the section shear centre as well as to 
transverse effects. 

Composite construction 

The response to applied loading of thin-walled 
structural sections manufactured from sym- 
metrically laminated composite materials can be 
conveniently determined through the use of the 
appropriate engineering elastic constants of the 
laminated walls. The engineering constants will, 
of course, be prescribed differently when giving 
consideration to the membrane and bending 
modes of action respectively of the laminated 
walls and thus for the case of torsional loading 

care must be taken in the choice of constants 
for use in the analysis of different cross-sec- 
tional geometries. 

Clearly, the membrane stiffnesses of a sym- 
metric laminate will be unaffected by change in 
position of the plies in the stacking sequence 
but, of course, this will alter, significantly, the 
local through-the-thickness bending rigidities of 
the laminate and thus the torsional and warping 
rigidities of a composite structural section will 
be determined according to cross-sectional 
shape and in particular will be influenced by the 
lay-up configuration of the section walls. In this 
paper the constituent laminated walls of the 
beams considered are symmetrically layed-up 
about their own mid-planes and in addition 
each wall exhibits membrane orthotropy. 

The equivalent engineering elastic constants 
of a generally orthotropic symmetric laminate 
are given for the membrane mode of action as 
follows; 
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The corresponding elastic constants pertain- 
ing to the bending mode of action are then 
described by the following relationships; 
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In eqns (1) and (2), av and di} are the mem- 
brane stiffness and the bending stiffness 
compliance coefficients, respectively, and t is 
the laminate thickness. The superscripts m and 
b refer to the membrane and bending modes of 
action, respectively. The constants Ex and Ey are 
the mutually orthogonal compression moduli of 
the laminate, G^ is the shear modulus, v^ and 
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v x are the major and minor Poisson's ratios and 
the constants mx and my give a measure of the 
degree of coupling between normal and shear 
strains when considering membrane action of 
the laminate and between bending and twisting 
curvatures when considering laminate flexural 
action. 

In this paper we wish to examine the tor- 
sional response of open and single-cell closed 
composite sections whose flat walls are 
especially orthotropic in the membrane mode 
and thus mx and my are zero for this mode of 
action. Symmetric angle-ply and quasi-isotropic 
lay-up configurations, however, will be associ- 
ated with local bend-twist couplings and thus 
mx and my will not be zero in the local bending 
mode. The influence of local bend-twist coupl- 
ings on overall section behaviour has been 
shown in Ref. [6] to be small and as such their 
effect is precluded in this paper with respect to 
the overall torsional response of the composite 
beams considered. 

Open sections 

The positive components of the displacement of 
a point in the beam section wall are shown in 
Fig. 1. In the global sense these are u, v and w 
as indicated whereas in local coordinates vt, vn 

and w are used, the tangential, normal and lon- 
gitudinal or warping displacements, respectively. 
In Fig. 1, s is the local profile coordinate, n is 
the local normal coordinate measured from the 
mid-plane of the section walls through the wall 
thickness and 9 is the angle of twist of the 
beam. The local ns coordinate system is shown 
in Fig. 2, which illustrates the nature of the St. 

\ 
s 

J 
\ 

n 

-TH 
/ 

/ 
Fig. 2. Free torsion of a thin-walled beam. 

Venant stresses through the wall thickness when 
a beam is subjected to free torsion. 

The cross-sections of thin-walled open-sec- 
tion beams can experience two types of 
longitudinal warping displacement when sub- 
jected to torsional loading. These are referred 
to as primary and secondary warping, respec- 
tively. Primary or membrane warping is, in 
effect, the longitudinal displacements of the 
mid-plane of the cross-section and these are 
assumed constant across the wall thickness. 
Secondary or local bending warping on the 
other hand is the variation in longitudinal dis- 
placements across the section walls. Both types 
of warping are illustrated schematically in 
Fig. 3, with w and w* representing the primary 
and secondary displacements, respectively. 

Typical beam cross-sections which possess 
both primary and secondary warping are shown 
in Fig. 4(a). For such sections the effects of 
restrained secondary warping are usually neg- 
lected in analysis since they are generally much 
smaller than those associated with primary 
warping restraint. Not all sections possess 
primary warping and some typical examples of 
these are shown in Fig. 4(b). For these sections 
all of the constituent flat walls pass through the 
section shear centre at the single junction con- 
necting the walls and thus primary warping does 
not occur and only secondary warping is pos- 

(a) 

Fig. 1. Positive components of displacement of a point on 
the beam section. 

Fig. 3. Warping displacement across the wall thickness of 
an open-section beam: (a) primary, (b) secondary warp- 

ing. 
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Z-SecBon Channel Section 

(a) 

1-Secfion 

Angle Section T-Secb'on Ctucifonm Section 

(b) 

Fig.  4.  Typical  beam  cross-sections:   (a)  predominant 
primary warping, (b) secondary warping only. 

sible in this case. For sections which possess 
only secondary warping the effects of warping 
restraint can be significant and should not be 
ignored in analysis. 

Primary warping 

The constrained condition considered in the 
paper is that of the cantilevered beam of length 
L with torque T applied at the free end and the 
z coordinate measured along the beam from the 
fixed end. Giving consideration first to those 
open sections which possess both primary and 
secondary warping then secondary effects are 
ignored and the primary warping displacements 
w are described by 

dd 
w = — CD(S)  

dz (3) 

where (dö/dz) is the rate of change of the angle 
of twist of the beam at location z along its 
length and co(s) is the sectorial coordinate of 
the beam cross-section. With reference to 
Fig. 5, the sectorial coordinate of the beam 
cross-section is given by 

co(s) = J PRds (4) 

where the integral represents twice the area AR 

indicated. Clearly, PR is the perpendicular dis- 
tance from the shear centre R of the 
cross-section to the tangent at any point s in the 
mid-plane of the section as illustrated. Using 
eqn (4) the sectorial coordinate distribution for 
a Z-section beam of flange width b and web 

X(s=0, w=0) 

Fig. 5. Determination of the warping of an open-section 
beam. 

height h has been determined and this is 
detailed in Fig. 6. For this section it is of note 
that the warping displacements in the web will 
be the same everywhere and those in the flan- 
ges will be linearly varying with zero warping 
points occurring in the flanges at a distance d 
from the flange-web junctions. 

The warping shear flow in a thin-walled sec- 
tion resulting from constrained primary warping 
is written in terms of the sectorial shear func- 
tion Sco(s) of the beam cross-section and this is 
determined as follows 

Sa>(s)= ! co(s)tds 
0 (5) 

The sectorial shear function distribution has 
been determined, through the use of eqn (5), 
for the Z-section beam previously considered 
and this is illustrated in Fig. 7. It is clear that 
the warping shear flow around the section will 
be self equilibrating in the two mutually ortho- 

(b-d)h 
2 

*m 
A 

Fig. 6. Sectorial coordinate distribution for a Z-section. 
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th.b2 

Fig. 7. Sectorial shear function distribution for a Z-sec- 
tion. 

gonal directions perpendicular and parallel to 
the section web as is to be expected for the case 
of torsional loading. The shear flow is linearly 
varying in the web and is zero at the section 
shear centre. The maximum shear flow is noted 
to occur in the flanges of the section and this is 
at the zero warping locations at d from the 
flange-web junctions. It is evident that the 
warping shear flow distribution round the sec- 
tion will result in a torque about the section 
shear centre and this plus that associated with 
the St. Venant stresses then serve to equilibrate 
the applied torque on the beam. 

The warping torque at any cross-section of a 
constrained thin-walled beam depends effect- 
ively on the sectorial moment of inertia r of the 
beam cross-section or, as it is often referred to, 
the torsion-bending constant of the beam and 
this is expressed as follows; 

T=     I    oi\s)tds 
section 

(6) 

For open cross-sections which possess pre- 
dominantly primary warping then the 
engineering elastic constants of the composite 
material which are of major importance are Ex 

in the membrane mode for the evaluation of 
the warping rigidity of the section and G^ in 
the bending mode for the determination of the 
St. Venant torsional rigidity of the beam. This is 
presuming, of course, that the local x-direction 
of the section laminate walls is coincident with 
the global z-axis of the beam. 

For the composite section with different lay- 
up configurations in its flange and web elements 

the St. Venant torsional rigidity term GJ is thus 
given as follows; 

1 

3   «■=> 
(GJ)S=-   Z^ = 4S 

S, 

i   d 
(7) 

33, 

Also, for the section with different lay-up 
configurations in its component flats, we make 
use of the effective or average elastic compres- 
sion modulus for the whole section as described 
by 

F   = (8) 

The location of the zero warping points in a 
thin-walled composite open-section depend, not 
only on section geometry, but on the stiffness 
variation around the section resulting from the 
different lay-up configurations in the section 
walls. To account for this in analysis use is 
made of the concept of effective thickness and 
thus the zero warping points of the Z-section 
with different lay-ups in its flange and web ele- 
ments are determined for the case of torsional 
loading on the basis that the axial warping 
stress system is self equilibrating and hence d in 
Fig. 6 is given by 

d = 
b\fu 

hteff+2bteifi 

(9) 

where feffi and feff2 are the effective thickness of 
the flange and web, respectively. The effective 
thickness of the i-th wall of a composite open 
section is defined as follows 

1 
^eff, - 

Ea 
■t,= 

Ema 
(10) 

av"ll. 

Equation (4), when used in conjunction with 
eqns (9) and (10) for the zero warping position 
d, now fully prescribes the sectorial coordinate 
distribution for the composite Z-section with 
different lay-ups in its component flats. 

Equations (5) and (6) pertain essentially to 
isotropic construction and these are therefore 
appropriately modified, using the concept of 
effective thickness, to determine the sectorial 
shear function and the sectorial moment of 
inertia, respectively, for the composite beam. 
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For composite construction we may therefore 
write 

1    f   coO) 
SoeffO) = —— J  ds 

Ml, 

Feff — 
1     f   co2(s) 
— I  —~ d* 

(11) 

(12) 
Ml, 

For the composite section with different lay- 
up configurations in its flange and web elements 
the warping rigidity term ET can now be written 
in the following form; 

(ET)s = Eavreff= j 
co2(s) 

ds (13) 
Ml, 

For the case of the cantilevered composite 
beam of length L with torque T applied at the 
free end and with the z-coordinate measured 
along the beam from the fixed end we are now 
able to prescribe the primary warping displace- 
ments w, the direct stresses <rr due to 
constrained primary warping and the warping 
shear flow variation qr in the following manner; 

co(s)T 
w = 

(GJ)S 

1- 
cosh[/j,(L-Z)] 

cosh(^L) 

<rr = 
co(s)T sinh [nAL-Z)] 

cosh(ßsL) 

(14) 

K    (15) 

maximum shear stress at the wall surfaces then 
this can be written as follows for the case of the 
cantilevered composite beam 

4v, = + Gxy 

Ttf 

' (GJ)S 

1- 
cosh fo(L-Z)] 

cosh(jUsL) 
(18) 

The analysis approach, detailed in the pre- 
vious section on 'Primary warping', accounts 
only for the effects of constrained primary 
warping and thus its application is restricted to 
those sections for which primary warping is pre- 
dominant. The procedure outlined is able to 
predict the initial constrained torsional response 
of thin-walled open-section composite beams in 
a simple engineering manner and comparisons 
between the results determined using this 
approach and those obtained from finite ele- 
ment analysis and experiment have been found 
to be in good agreement. 

Secondary warping 

Giving consideration now to those sections 
which do not warp in a primary manner when 
subjected to torsional loading but whose warp- 
ing displacements w* vary linearly through the 
thickness of the section walls as shown in Fig. 3. 
Typical sections which possess this quality are 
shown in Fig. 4. The secondary warping dis- 
placements w* through the thickness of the thin 
walls of the cross-section are described by 

.,    dö 
w = -co (s) — 

dz 
(19) 

qr = 

where 

SmJMT 

(ET)S 

cosh [fis(L-Z)] 

cosh(ßsL) 

where  w\s)  is  referred  to  as  the  sectorial 
(16)       coordinate   of   the   beam   cross-section   for 

secondary warping. 
The sectorial coordinate for secondary warp- 

ing is given by 

H> 
(GJl 

(ET)S 
(17) 

In addition to the warping stresses we have, 
of course, the presence of the St. Venant shear 
stresses which vary linearly through the wall 
thickness. If we consider a St. Venant shear 
flow qvi in flat element i which is related to the 

ft 

co*(s) = I nRdn = nRn (20) 

where nR is the distance from the section shear 
centre R measured parallel to the tangent at 
any point s in the mid-plane of the cross-section 
as shown in Fig. 5 and n is the local through the 
thickness coordinate as indicated in Figs 2 and 
3. 
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For open-section beams which exhibit only 
secondary warping, the shear stresses resulting 
from warping restraint are found to be small in 
comparison with the linearly varying direct 
stresses through the section walls and thus they 
are usually ignored. In this case the applied 
torque is therefore effectively equilibrated by 
the St. Venant shear stresses and the engineer- 
ing elastic constants of the composite material 
which are of importance in analysis are thus Ex 

and Gxy both in the bending mode. Again, this 
presumes that the local x-axis of the section 
walls is coincident with the global z-axis of the 
beam. 

The local through the thickness bending 
stresses in the section walls due to restrained 
secondary warping are, of course, largely 
dependent on the sectorial moment of inertia 
T* for secondary warping and this is determined 
as follows 

1    s 

r* = — J t3n2
Rds 

12   o 
(21) 

For sections composed of flat elements and 
which exhibit only secondary warping, such as 
the angle, T and cruciform sections illustrated 
in Fig. 4(b), the section shear centre is at the 
junction connecting the individual flats and 
thus, in this case, nR = s and a more practical 
equation for Y* may be written as follows 

3*3 = —  E Sir 
36   »-1 

(22) 

Also, for such sections with different lay-up 
configurations in the component flats, the tor- 
sional rigidity (GJ)s of the section is as given 
previously by eqn (7) and the warping rigidity 
(ET*)S of the section, in the secondary mode, is 
determined from 

(ET\=-^-   i Ex»Stf=- 
36   ,=1 3 /=1   dlh 

(23) 

For the composite cantilevered beam con- 
figuration with torque applied at the free end 
and for the beam cross-section which is associ- 
ated only with secondary warping we are now 
able to prescribe the variations in the secondary 
warping displacements w* and the direct stres- 

ses o*r due to constrained secondary warping in 
the following manner 

w = 
w(S)T 

(GJ)s 

<rr=- 
co*(S)T 

H*(ET*)s 

cosh [ß*(L—Z)] 

cosh (n*L) 

sinh [)U*(L—Z)] 

cosh (fi*L) 

where 

*9 
ß   = 

(GJ)S 

(ET), 

(24) 

Eb
Xt(25) 

(26) 

The St. Venant shear flow qvi in flat element 
i of the cross-section can now be determined 
through the use of eqn (18) by simply replacing 
ßs by /. 

The theoretical procedure, detailed in the 
previous section on 'Secondary warping', is 
applicable only to those composite sections for 
which primary warping is non-existent under 
torsional loading. The approach is able to pre- 
dict the initial constrained torsional response of 
such sections in a simple engineering manner 
and this is achieved through the use of the 
appropriate engineering elastic constants of the 
composite material defined in the bending 
mode of behaviour. Comparisons given in the 
paper with finite element results and with those 
obtained from experiment are shown to corro- 
borate the simple, yet effective, theoretical 
approach outlined. 

Single-cell closed sections 

The applied torque to a closed-cell composite 
box is reacted through the membrane action of 
the section walls and thus the equivalent 
engineering elastic constants of the composite 
material which are appropriate for the analysis 
of such structural configurations are those 
defined in the membrane mode of behaviour as 
described by eqn (1). In the present case we 
wish to examine the behaviour of composite 
box-sections whose flat elements are specially 
orthotropic in the membrane mode and thus mx 

and my are zero in this instance. The behaviour 
of thin-walled, closed-section composite box 
beams with symmetric flat walls can then be 
determined with some ease using the isotropic 
equations   with   suitable   modifications   being 
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made to account for the effects of the compo- 
site material. This is achieved through the use 
of the appropriate equivalent engineering elas- 
tic constants of eqn (1). 

It is assumed that the ^-direction of the sec- 
tion laminate walls is coincident with the global 
z-axis of the beam. The St. Venant torsional 
rigidity term GJ for the composite box section 
with different lay-up configurations in its flange 
and web elements can be written as follows 

(GJ)BS = 
4Ä2 4A2 

() 
ds 

Gxyt 

a33ds 
(27) 

where A is the area enclosed by the mid-line of 
the box cross-section. 

If we now divide by the torsion constant / of 
the box then an effective shear modulus for the 
whole section is described. This takes the form; 

() 

Geff = 

ds. 
t 

a33ds 
(28) 

To account for the different stiffnesses in the 
composite section walls the concept of effective 
thickness is introduced. The effective thickness 
of the z'-th wall is thus given in terms of the 
effective shear modulus for the whole section as 
follows 

^eff, - 
Gxyti 

'eff 
(29) 

Use is made of equally spaced rigid dia- 
phragms along the length of the composite box 
beams in order to prevent cross-sectional distor- 
tion and thus transverse strains. The axial 
normal stresses and strains in the laminated 
walls of the composite box are then related 
through, as is referred to here, the apparent 
elastic modulus of the composite material. This 
is determined, of course, in this instance, from 
the two-dimensional stress-strain relationships 
of a specially orthotropic composite material 
and is defined here for the laminate as 

Ea = 
1 —V   V yxyyyx 

(30) 

where E„ v^ and vyx are given by eqn (1). 
It is convenient now, using the concept of 

effective   thickness,   to   define   an   effective 

apparent elastic modulus for the whole section 
as follows 

K = 
\Eajds     YKtßi 

ffeffds 2>eff£/ 
(31) 

The effective sectorial properties and other 
section constants of the composite box with dif- 
ferent lay-up configurations in its flange and 
web elements are now determined on the basis 
of the effective thickness concept. The effective 
sectorial coordinate distribution of the closed 
cell rectangular box is 

co. eff <*)= I   V <A eff 

'eff 

\ds (32) 

where 

<Aeff = 
2A 

ds 

'eff 

(33) 

Equations (32) and (33) have been applied to 
an isotropic single-cell box with flange width b 
and web depth a and with a constant wall thick- 
ness t. The sectorial coordinate distribution for 
this is illustrated in Fig. 8. As expected the dis- 
tribution is antisymmetric about the vertical and 
horizontal geometrical axes of symmetry of the 
box section resulting in zero warping of the sec- 
tion at these axes and maximum warping at the 
section corners. Clearly, such a distribution will 
provide an axial stress system due to warping 
restraint which will be self equilibrating and 
this, of course, is the natural response to the 
torsional loading of the box geometry. It is of 
note in Fig. 8 that for the square box, a = b, the 
warping is everywhere zero and a closed-section 
beam which possess this quality is commonly 
referred to as a Neuber tube. 

Fig. 8. Sectorial coordinate distribution for a rectangular 
box-section. 
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The effective sectorial shear function for the 
closed-cell composite box is determined as fol- 
lows 

S„,cJs) = S^Js) - -^ J Sw,„Js)PRds    (34) 

where 
s 

Sco*Js)= [coeff(s)tds (35) 

It is to be noted in eqn (35) that the actual 
thickness t is used and not teff. The effective 
thickness, as described by eqn (29), is that 
determined on the basis of the torsional rigidity 
of the closed box-section. Since eqn (35) 
describes the sectorial shear function distribu- 
tion for the box-section with an imaginary cut, 
i.e. the quasi-open section, then it is considered, 
in this instance, that the actual thickness is 
appropriate and thus the effective thickness is 
reflected in eqn (35) through the effective sec- 
torial coordinate distribution eoeff(s). 

Equations (34) and (35) have been applied to 
the isotropic box considered previously in Fig. 8 
and with b = 100 mm, a = 50 mm and t = 1 mm, 
the corresponding sectorial shear function dis- 
tribution around the box is as indicated in 
Fig. 9. The distribution shown will clearly pro- 
vide a shear flow system round the section due 
to constrained warping which will be self equili- 
brating in every sense and again this is the 
natural internal response to the torsional load- 
ing of the closed single-cell box. 

For the composite box with differing lay-up 
configurations in its flanges and webs, the 
effective torsion constant, polar constant and 
warping shear parameter are given, respectively, 
as follows 

Jea=2A\l/eB 

L.={P2
Rteffds ceff 

/Lff — 1 
'eff 

(36) 

(37) 

(38) 
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Fig. 9. Sectorial shear function distribution for rectangular 
box-section. 

The warping rigidity of the composite box- 
section is now determined according to the 
form defined by Benscoter [12] for isotropic 
beams. This is 

(EY)BS= —- I co2
eif(s)Ea

xteffds (39) 
""-eff 

The warping displacements and stresses for 
the cantilevered composite box beam configura- 
tion with torque T applied at the free end can 
now be obtained in the following form 

w = 
(GJ)BS 

aT = 

qr = 

ßs(ET)BS 

Sm.Js)T 
<«effV 

(ET) BS 

cosh [pis(L—Z)\ 

cosh (nsL) 

sinh |X(L—Z)] 

cosh (fisL) 

cosh [ßs(L—Z)] 

cosh (fisL) 

(40) 

El (41) 

£U42) 

where 

& 
(GJ) BS 

(ET) 
(43) 

BS 

The Bredt-Batho shear flow qB associated 
with the free torsion, or St. Venant torsion, of a 
closed cell box is given by the familiar expres- 
sion 

«B = 
2A 

(44) 

The total shear flow at any cross-section of 
the closed cell box beam subjected to restrained 
torsion is then given by 

q = qr+qB (45) 

The analysis procedure, outlined in the pre- 
vious section, is able to predict the initial 
constrained torsional response of a particular 
class of thin-walled, closed-section, composite 
box beams in a simple engineering manner. 
Essentially the composite beams are uncoupled 
in their overall deformations through the use of 
symmetrically laminated flat walls which possess 
membrane orthotropy. The method of approach 
allows  different  lay-up  configurations  in the 
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flange and web elements of the box-sections to 
be accommodated. It is considered to be simple 
and effective in nature and, indeed, compari- 
sons given in the paper between the results 
determined using this approach and those 
obtained from finite element analysis and 
experiment are shown to be in good agreement. 

SOME TYPICAL RESULTS AND 
DISCUSSION 

All results presented in the paper are those per- 
taining to the cantilevered beam configuration 
with torque applied at the free end and with z 
measured along the beam axis from the fixed 

end. The warping shear flow distribution round 
a composite zed and a composite channel sec- 
tion beam are shown in Figs 10 and 11, 
respectively, in comparison with isotropic solu- 
tions corresponding to the same structural 
geometry. Both of these sections are those 
associated with predominant primary warping 
and thus the shear flow variations indicated in 
Figs 10 and 11 are those determined using the 
analysis procedure detailed in the section on 
'Primary warping'. 

The beams are 600 mm long with 50 mm wide 
flanges, 100 mm deep webs and have a wall 
thickness of 1 mm. The composite beams are 
considered to be manufactured from high 
strength    carbon-epoxy   preimpregnated    ply 

Z-beam restrained torsion 
comparison of steel and composite beam 
warping shear flow distribution round the section 

— Steel 

-a-Composite beam 

75        100       125 

s-axis (mm) 
200 

2's 
Composite beam: Flange [0/45/-45/90] web I45/-45),] 
At z = 120 mm, T = 10000 N mm 

Fig. 10. 

Channel beam restrained torsion 
comparison of steel and composite beam 
warping shear flow distribution round the section 

0   25   50   75   100  125  150  175  200 

s-axis (mm) 

— Steel 

-a- Composite beam 

Composite beam: Flanges [0/45/-45/90]sweb I45/-45),] 
Atz= 120 mm, T= 10000 N mm s 

Fig. 11. 
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sheets with a ply thickness of 0.125 mm. The 
lay-up configuration of the flanges of the com- 
posite beams is quasi-isotropic in nature and of 
the form [0/45/-45/90] s whilst an angle-ply 
configuration of the form [(45/-45)2]s 

is 

employed for the webs of the beams. The 
appropriate engineering elastic constants of the 
laminated walls for use in the analysis of the 
composite beams have been determined using 
the following ply material properties: 
Ex = 140 kN/mm2, E2 = 10 kN/mm2, G12 = 5 kN/ 
mm2, v12 = 0.3. 

The isotropic results indicated in Figs 10 and 
11 are those pertaining to steel construction and 
correspond to the material modulus of 
E = 210 kN/mm2 and to the Poisson's value of 
v = 0.3. The comparisons shown between the 
isotropic and composite solutions in Figs 10 and 
11 are those at the cross-section which is at a 
distance of 120 mm from the fixed end of the 
beams and which correspond to an applied 
torque level of 10 kN mm at the free end. The 
warping shear flow in the composite beams is 
seen to be characteristically different to that of 
the isotropic beams whose flat walls are all of 
the same stiffness. The smooth transition of 
shear flow from flange to web with the common 
slope at the flange-web junctions is clearly not 
evident in the composite beams and this is due, 
of course, to the different lay-ups in the flat 
walls meeting at the junctions. 

It is of note that the warping shear flow in 
the web of the Z-section beams is linear and 
passes through zero at the section shear centre 
whilst that in the web of the channel section 
beams is non-linear and passes through two 
zero locations. The shear flow variations in the 
webs of the Z and channel beams are, indeed, 
self equilibrating and thus they do not contri- 
bute to the warping torque at the cross-sections 
being considered. The warping torque at any 
cross-section is associated only with the warping 
shear flow variation in the flanges of the beams 
and in addition to the St. Venant torque serves 
to equilibrate the applied torque. 

Comparisons are shown in Figs 12 and 13 
between the theoretical and finite element solu- 
tions pertaining to the torsional response of a 
composite angle-section beam. Angle sections 
exhibit secondary warping only and thus the 
theoretical variations indicated are those deter- 
mined using the analysis procedure outlined in 
the section on 'Secondary warping'. The angle 
beam has 50 mm flats with a 1 mm wall thick- 

Angle beam, restrained torsion 
10/90/45/-45]  layup configuration 
Force intensity and Shear flow/distribution along the length 
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Fl: Force intensity, SF: Shear flow 

Fig. 12. 

ness and is 500 mm long. It is considered to be 
manufactured from high strength carbon-epoxy 
preimpregnated ply sheets with a ply thickness 
of 0.125 mm and has a lay-up configuration 
which is quasi-isotropic in nature and of the 
form [0/90/45/-45]s. The properties of the ply 
sheets are the same as those mentioned previ- 
ously for the composite zed and channel beams. 
The finite element results are based on a model 
which has a sufficiently refined mesh at the con- 
strained end of the beam and which makes use 
of the QSL8 element, an eight noded semi-loof 
thin shell element, from the LUSAS finite ele- 
ment analysis system library. 

Figure 12 shows the variations in force inten- 
sity iV*< and the St. Venant shear flow q*v along 
the length of the beam and corresponding to an 
applied torque of 0.2 kN mm. The curves shown 
are those relating to the cross-sectional location 
of s = 50 mm from the section shear centre 
which is just at the free edge of the component 
flat as indicated. N*r is the maximum through- 

Angle beam, restrained torsion 
[0/90/45/-451s layup configuration 
Force intensity and Shear flow disribution around the section 
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the-thickness bending stress at this location 
multiplied by the wall thickness, and corre- 
spondingly q*w relates to the maximum St. 
Venant shear stress. It is clear from Fig. 12 that 
the effects of constrained secondary warping are 
fairly local in nature as indicated by the fact 
that the St. Venant shear flow has almost 
reached its free torsion level of 6 N/mm within 
a distance of the order of one-fifth the beam 
length from the fixed end and it is also of note 
that the force intensity level has almost dis- 
appeared within this same distance. 

The variations in N*r and q*v around the sec- 
tion are shown in Fig. 13 and these relate to the 
cross-section of the beam which is at a distance 
of 30 mm from the fixed end and correspond to 
the same applied torque level of 0.2 kN mm. 
The St. Venant shear flow is noted, as expected, 
to be the same everywhere and the force inten- 
sity distribution is seen to be zero at the section 
shear centre and to vary linearly to its maximum 
value at the free edge of the component flats. 
The comparisons between the theoretical and 
finite element solutions illustrated in Figs 12 
and 13 are noted to be remarkably good and 
thus it would appear that the simple engineer- 
ing approach detailed in the paper for 
determining the effects of secondary warping 
restraint is able to do so in a fairly accurate 
manner. 

Comparisons are given in Figs 14 and 15 
between the theoretical predictions and the 
experimental results associated with a compo- 
site angle-section test beam. The beam has 
50 mm flats with a wall thickness of 2 mm and is 
622 mm long. It is manufactured from high 
strength    carbon-epoxy   preimpregnated    ply 

Angle beam testing restrained torsion 
Force intensity disribution along the length 
10/0/90/901 

Angle beam testing restrained torsion 
Force intensity vs Applied torque 
[0/0/90/901S 

200   400 800  1000  1200  1400  1600 

Prop'd theory 0 24.65 49.30 73.90 
Test 0 23.20 48.70 73.80 

At s = 48mm and z = 20 i 

Torque (N mm) 

 Theory *Test 

Fig. 15. 

At s = 48mm and T = 1130 N mm 

Fig. 14. 

sheets with a ply thickness of 0.25 mm and with 
the following ply material properties: 
E1 = 140.3 kN/mm2, E2 = ll kN/mm2, G12 = 5.65 
kN/mm2, v12 = 0.34. 

The lay-up configuration of the angle-section 
test beam is a symmetric cross-ply of the form 
[0/0/90/90]s  and  the  test  results  have  been 
determined through the use of strain gauges 
located along the length of the beam on the 
wall surface at 48 mm from the section shear 
centre. Figure 14 shows the variation of the 
force intensity N*r along the length of the beam 
and corresponding to the applied torque level 
of 1.13 kN mm. Again, it is of note that the 
force  intensity  diminishes  rapidly  along  the 
length of the beam from its maximum level at 
the constrained end and both theory and experi- 
ment are seen to illustrate the same degree of 
decay along the beam. Indeed, the comparison 
between theory and experiment is shown to be 
extremely close. Figure 15 shows the compari- 
son between theory and test of the variation in 
force intensity N*r with applied torque at the 
first strain gauge location along the beam. This 
is at a distance of 20 mm from the fixed end of 
the beam and the comparison between theory 
and test is  shown to give  remarkably close 
agreement over the torque range considered. 

Figure 16 shows the force intensity variation 
Nr along the length of a composite Z beam and 
at the location on the cross-section which is at 
12.5 mm from the flange free edge. The cross- 
sectional dimensions, lay-up configuration and 
material properties of the carbon fibre beam 
are the same as those mentioned previously for 
the Z beam of Fig. 10. In Fig. 16 a comparison 
is given between the theoretical and finite ele- 
ment predictions for a beam of length 500 mm 
and corresponding to a torque level of 10 kN 
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Z beam, restrained torsion 
flanges [0/45/-45/90] Web [(45/-45)2]s 

Force intensity distribution along the length 

50       100      150      200      250      300      350      400     450      500 

z-axis (mm} 

XF.E. Theory 

T = 10000 N mm, at s = 12.5 mm 

Fig. 16. 

mm. Constrained primary warping is noted to 
have a significant influence all along the length 
of the beam with Nr reducing in a fairly gradual 
manner from its maximum value at the 
restrained end to zero at the free end of the 
beam. This is predicted by both the theory and 
finite element solutions and the comparison 
between the two is shown to give excellent 
agreement. 

Details are given in Fig. 17 of the comparison 
between theory and experiment pertaining to a 
carbon composite Z test beam. The lay-up con- 
figuration in the web of the beam is 
[(45/_45)2]s and that in its flanges is 
[45/_45/90/0]s. The web depth of the beam is 
100 mm, its flanges are 50 mm wide and the 
wall thickness of the cross-section is 2 mm. High 
strength carbon-epoxy preimpregnated ply 
sheets with a ply thickness of 0.25 mm were 
used in the manufacture of the beam and the 
ply material properties are the same as those 

detailed previously for the angle test beam of 
Fig. 15. The variation in force intensity yVr 

along the length of the beam is shown in Fig. 17 
and this is in the flange at 3 mm from the flange 
free edge. The comparison shown between 
theory and experiment is for a beam of length 
525 mm and relates to an applied torque level 
of 13.56 kN mm. The influence of constrained 
primary warping in open-section beams is noted 
again to be significant all along the beam length 
and this is predicted by both the theory and 
experimental results with the comparison 
between the two being exceptionally close. 

The shear flow variation around the section 
of a single-cell composite box beam is shown in 
Fig. 18 which indicates the comparative predic- 
tions between theory and finite element 
analysis. The flanges of the beam are 100 mm 
wide with 50 mm deep webs and the wall thick- 
ness of the box is 1mm. The shear flow 
distribution illustrated is that occurring at the 
cross-section which is at a distance of 39 mm 
from the fixed end of the beam and which 
corresponds to the applied torque level of 
100 kN mm. The length of the beam is 600 mm 
and the lay-up configurations in its flanges and 
webs are [0/45/-45/90]s and [(45/-45)2]s, 
respectively. 

The beam is considered to be manufactured 
from high strength carbon-epoxy preimpregna- 
ted ply sheets with a ply thickness of 0.125 mm 
and the ply material properties are those men- 
tioned previously with reference to the Z and 
channel composite beams of Figs 10 and 11, 
respectively. The shear flow detailed in Fig. 18 
is, of course, the total shear flow which is the 
sum of the warping and Bredt-Batho shear 
flows. The warping shear flow is self equilibrat- 

Z beam restrained torsion 
Flanges |45/-45/90/0]sWeb I(45/-45)2!s 

Force intensity distribution along the length 

Box section, restrained torsion 
Shear flow distribution round the section 
flanges |0/45/-45/901s, Webs [(45/-45)2]s 

100     150     200    250     300      350    400      450 

Prop'd theory 43.11 34.6a 24.72 15.45 6.44 

Test 49.20 43.98 33.93 24.46 15.36 6.54 

z-axis (mm) 

-Theory XTest 
At s = 3mm and T = 13560 N mm 

Fig. 17. 
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Box section restrained torsion 
Force intensity distribution along the length 

CT-VK&C 18.96 14.40 10.91 3.29 6.29 «.77 3.62 2.75 2.08 1.66 0.69 0.10 0.05 
15.22 13.05 11.19 9.61 8.24 7.07 6.07 5.21 4.47 3.83 2.42 0.83 0.52 

TEST 14 7.87 4.82 3.08 2 0.43 

z-axis 
~CT-VK&C-CT-BEN *Test 

Along the line at s - 33 mm, flange, T = 180800 N mm 

Fig. 19. 

ing in every sense and thus only the 
Bredt-Batho shear flow equilibrates the applied 
torque on the beam. For the beam under con- 
sideration the Bredt-Batho shear flow is noted 
to be qB = 10 N/mm. In Fig. 18, the theoretical 
curve for the composite beam is based on the 
isotropic analysis approach of Benscoter [12] 
and comparison of this with the finite element 
predictions is shown to provide favourable 
agreement. 

The force intensity distribution JVr along the 
length of a composite test box beam is shown in 
Fig. 19. The beam is manufactured from high 
strength carbon-epoxy preimpregnated ply 
sheets with a ply thickness of 0.125 mm and 
with the following ply material properties: 
Ex = 141.8 kN/mm2, E2 = 8.94 kN/mm2, 
G12 = 5.295 kN/mm2, v12 = 0.36. 

The lay-up configuration in the flanges of the 
box is [45/0/90/ -45]s and that in the webs is 
[(45/-45)2]s. The flange width, web depth and 
wall thickness of the box section are 100 mm, 
50 mm and 1 mm, respectively, and the length 
of the test beam is 530 mm. Two theoretical 
curves are shown in Fig. 19 for the composite 
test beam. One is based on the isotropic analy- 
sis approach proposed by Von Karman & 
Christensen [9] and the other is modelled on 
the analysis procedures for isotropic construc- 
tion detailed by Benscoter [12]. The test data 
illustrated in Fig. 19 have been determined 
from strain gauges located along the length of 
the beam and attached to the flange at 8 mm 
from the flange-web junction and this has been 
evaluated according to the applied torque level 
of 180.8 kN mm. 

In the work of Von Karman & Christensen 
[9] the warping shear strains are considered to 
be of a negligible magnitude in comparison with 

the St. Venant shear strain associated with the 
Bredt-Batho shear stress and thus they are 
ignored in their analysis. The effect of the 
shearing strains on torsional response is more 
fully accounted for in the work of Benscoter 
[12] however, through the use of an appropriate 
warping shear parameter and the comparison 
shown in Fig. 19 reflects the difference in the 
two approaches. It is of note that the experi- 
mental data tend to favour the composite 
theory based on the assumptions of Benscoter 
[12]. This is also the case with a number of 
other comparisons reported in Ref. [20] and 
thus ignoring the effects of the warping shear 
strain in analysis is seen, essentially, to lead to 
inaccurate predictions. 

CONCLUSIONS 

The constrained torsional response of open- 
and single-cell closed-section carbon fibre com- 
posite beams have been examined in this paper 
using simple theoretical engineering pro- 
cedures. The flat walls of the composite beams 
are symmetrically laminated about their own 
mid-planes and exhibit membrane orthotropy. 
The torsional and warping rigidities of the com- 
posite beams, for use in the analysis procedures, 
have been determined through the use of the 
appropriate equivalent engineering elastic con- 
stants of the individual thin composite walls and 
for sections with different lay-up configurations 
in their component flats, the concept of effect- 
ive thickness has been employed to account for 
the associated stiffness variation round the sec- 
tions. 

The effects of primary and secondary warping 
restraint on the torsional response of open sec- 
tion beams have been given some detailed 
attention in the paper and the distinct differ- 
ences have been highlighted between those 
sections whose behaviour is governed predomi- 
nantly by primary effects and those whose 
response is associated solely with secondary 
effects. For open-sections governed, essentially, 
by the effects of primary warping restraint, the 
Ex and G^ properties of the laminated walls for 
use in the associated analysis procedure are 
those of the membrane and bending mode, 
respectively. For those sections which exhibit 
secondary warping only, the appropriate Ex and 
Gxy properties for use in analysis are both of the 
bending mode. 
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It is indicated in the paper that the shear flow 
due to primary warping restraint in open-sec- 
tion beams plus the St. Venant shear flow serve 
to equilibrate the applied torque on the beam. 
It is also indicated that the warping shear flow 
in a closed-cell box is completely self equilibrat- 
ing and thus the applied torque on the box is 
equilibrated by the Bredt-Batho shear flow. For 
composite box-sections the appropriate Ex and 
G^ properties of the laminated walls for use in 
the associated analysis procedure are noted to 
be both of the membrane mode. Comparisons 
are given in the paper between theory and 
experiment and between theory and finite ele- 
ment solutions for Z, angle and box-section 
cantilevered beams and these are shown to give 
extremely good agreement. 
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edge cracks in panels subjected to acoustic 

excitation 
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The skin of an aircraft can vibrate as a result of pressure waves caused by 
engine and/or aerodynamic effects. In modern fighter aircraft such as the 
F/A-18, sound pressure levels have been recorded up to 170 dB over the 
surface of the skin. In the F/A-18 cracking has occurred in the lower 
nacelle, typically along the boundaries of the panel. These cracks often 
originate from a fastener line, grow along the boundary and then turn into 
the centre of the panel. In the case of the F/A-18, cracking was due to 
higher than expected pressure levels caused by an aerodynamic disturbance 
at the inlet lip. Attempts have been made to repair these panels with boron 
fibre patches, however the cracks have continued to grow. This paper aims 
at attempting to understand the mechanisms of cracking of the panels 
subjected to acoustic excitation and the influence of bonded repairs. Also, 
the analysis is extended to a feasibility study on the effects of enlarging the 
patch and increasing material damping on the stress intensity factor. © 
1997 Elsevier Science Ltd. 

INTRODUCTION 

Acoustic fatigue is due to a very high intensity 
excitation as a result of pressure waves caused 
by engine and/or aerodynamic effects. Acous- 
tically-induced cracking has occurred on the 
external surface of the lower nacelle skin on the 
F/A-18, illustrated in Fig. 1. In these regions 

overall sound pressure levels (OASPL) greater 
than 170 dB have been measured in flight. 
These high sound pressure levels appear to be a 
result of an aerodynamic disturbance at the 
inlet lip [1]. Typical cracks occur along a line of 
rivets or run parallel to the rivet line and may 
turn into the centre of the panel, as shown in 
the inset. Cracking generally occurs along the 

Fig. 1. Location of the cracking in the lower nacelle inlet. 

649 



650 R. J. Callinan, S. C. Galea, S. Sanderson 

longer side of the panel where the bending 
stresses due to out of plane vibrations are a 
maximum. Up to a third of the F/A-18s in the 
RAAF fleet are affected by these cracks. 

The standard repair for such cracking is to 
remove and replace the panel. The standard 
long term fix is to incorporate additional stiff- 
ened on the inside to stiffen the panel. This has 
two effects, firstly to reduce the panel's 
response, i.e. lower stress, for a given load, and 
secondly it increases the resonant frequencies of 
the panel to frequencies well outside the 
recorded excitation frequencies. 

In order to reduce the cost of repairing such 
cracked structures, a bonded composite repair 
would be preferred. Such a repair was designed 
and implemented on an existing cracked air- 
craft. The benefits of such a repair are reflected 
in the time required to carry out the repair, 
typically 60 h for the mechanical repair and 
approximately 15-25 h for the bonded repair. 
While in the past boron fibre patches have been 
used as a cost effective means of repairing 
cracked aircraft structures, in this case the 
cracks continued to grow. 

The work reported here will involve the esti- 
mation of the root mean square (RMS) 
response of the stress intensity factor (K) in the 
cracked and cracked/repaired cases as an 
attempt to understand the problems involved in 
patching cracks in such an environment. 
Various other patch lay-ups and geometries are 
also investigated. 

mined by computing the square root of the PSD 
area 

/  l    T 
7RMS=   /—   J Sj(co)dco (2) 

A similar application of finite element tech- 
niques to undertake a PSD analysis to acoustic 
fatigue problems has been reviewed by Climent 
and Casalengua [3]. 

Stress intensity factors 

In the finite element (FE) model, the depth of 
the plate is modelled using a single layer of 20 
noded brick elements and as such, will model 
bending behaviour of the skin. The skin thick- 
ness is approximately 1 mm, hence the 
condition of plane stress is assumed. The 
computation of the stress intensity factor may 
be determined directly from the crack tip ele- 
ment used around the crack tip or from 
displacements using a crack opening (COD) 
formula. The RMS crack tip stress intensity 
factors for modes I, II and III are derived from 
the standard asymptotic relations 

K 
EU RMS 2% 

I RMS" (3) 

THEORY 

Random response analysis 

The random response analysis capability of the 
NASTRAN program has been used to solve this 
problem [2]. This involves a solution in the fre- 
quency domain after the transfer function, 
H(co), is generated. Together with the power 
spectral density (PSD) of the excitation, S^co), 
the PSD of the response, Sj(co), is determined 

SJ(co) = \H((o)\%(co) (1) 

This analysis allows the statistical properties of 
the system to be evaluated. Random vibrations 
considered here involve all frequencies at any 
time. After calculating the PSD, the root mean 
square (RMS) of the response can be deter- 

Ku 

EV RMS 
RMS- 

^III RMS - GWRMS 

271 

2% 

(4) 

(5) 

where E = Young's modulus, G = Shear mod- 
ulus, URMS = mode I crack opening RMS 
displacement (ie. displacement out of the plane 
of the crack), FJW5 = mode II crack opening 
RMS displacement (ie. displacement in-plane, 
parallel to plane of crack), WRMS = mode III 
crack opening RMS displacement (ie. displace- 
ment in-plane, transverse to plane of crack), 
/ = length of the crack tip element. 
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j£ Clamped edges Crack length ratio=A/B 

Fig. 2. Geometry of plate used for the validation of the 
analysis. 

FEA METHODOLOGY VALIDATION 

The complexity of the random response analysis 
and the number of assumptions made was such 
that validation of the analysis was necessary. 
Both experimental and analytical work has been 
carried out by Byrnes [4]. In this case the plate 
used is that shown in Fig. 2 and the PSD of the 
acoustic excitation is given in Fig. 3. Dimen- 
sions of the plate are B = 500 mm, C = 166 mm 
and thickness =1.2 mm with a crack of length 
A. This plate was clamped along all edges 
except one, which was partially restrained. The 
unrestrained region represented a crack along 
one side. The length of the crack has been 
expressed as a ratio A/B. Material properties of 
the aluminium plate are given in Table 1, with 
the structural viscous damping ratio set to 
0.055. RMS strains were measured at a point 
25 mm ahead of the crack tip, the results are 
reproduced in Fig. 4 along with an analytical 
solution also developed by Byrnes [4]. 

The FE results are also shown in Fig. 4. Only 
three experimental data points were published 
in Ref. [4], and in each case the FE results are 

™_     coo 

E 

1 

S. 

Frequency (h^ 

Fig. 3. Power spectral density of the pressure excitation 
used in [4]. 

within 10%. However, disagreement does exist 
with the analytical solution for crack length to 
plate width ratios below 0.4 It is not clear why 
this difference occurs. The analytical solution is 
based on contributions from the first and 
second mode shapes only. However, the FE 
PSD of the response allows for many mode 
shapes. 

FEA OF CRACKED NACELLE INLET 

In order to study the cracking mechanisms of 
the cracked and repaired/cracked nacelle skin 
cases, a simplified model has been developed in 
which the skin is considered to be a flat rect- 
angle. However, to take account of all shear 
deformations the structure has been idealised as 
a fully three-dimensional structure using 20 
noded brick elements. The geometry of the 
structure is shown in Fig. 5. The mesh size of 
the skin structure is 75 x 60 elements, while the 
patch and skin is 40x40 elements. As shown, 
the unidirectional patch only extends partially 
across the panel. It also covers an adjacent 
panel as shown in the dotted outline. Sufficient 
elements have been used to define the mini- 
mum crack length considered. Material 
properties for the skin, adhesive and boron are 
shown in Table 1. The main reason that 20 
noded bricks were used in the skin is that calcu- 
lations for K can be made corresponding to a 
bending field. Also, the behaviour of the adhe- 
sive has been modelled as a three dimensional 
element, to allow for shear deformation. A 
structural viscous damping ratio of 0.032 has 
been used [1]. 

The boundary conditions for this model are 
considered to be fully clamped except for the 
crack region which is not restrained. The patch 
above the crack also remains fully constrained. 
Clearly, crack closure will occur at an increasing 
distance away from the crack tip, however the 
complexity in introducing such constraints has 
not been included in this preliminary study. The 
crack is initially 50 mm long with it's centre 
located within the patch. A number of crack 
lengths have been considered to simulate the 
crack growth. The crack is assumed to grow 
symmetrically until the left hand crack tip 
extends to the edge of the patch. At this point 
no more crack growth occurs due to the prox- 
imity of the panel boundary. The only growth 
that occurs is at the right hand crack tip. In this 
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Table 1. Material properties 
Material Young's 

modulus 
(MPa) 

Poisson's 
ratio 

Ratio of 
Young's 
moduli 
EJE2 

Shear 
modulus 
(MPa) 

Density 
(Mg/mm3) 

Aluminium 
Adhesive 
Boron 

71000.0 
2273.0 

207000.0 

0.33 
0.35 
0.21 

1.0 
1.0 

10.894 

26691.0 
842.0 

4800.0 

2.77 xl0~9 

1.2 xlO"9 

2.0xl0~9 

study the maximum crack length considered is 
196 mm. 

One-third octave sound pressure measure- 
ments [1], have been made in flight using 
microphones located at the nacelle inlet area, 

Table 2. Input power spectral density 

Frequency 
(Hz) 

31.5 
1000 
8000 

Pressure 
spectrum 

level 
(dB) 

140 
137 

124.1 

PSD 
(MPa)2/Hz 

4.0xl0~8 

2.005 x 10 "8 

1.028 x 10"9 

Z       300 

 Aialytic [4] 
■   Bperimental [4] 

-o—RE. 

Fig. 

0.0 02 0.4 0.6 0.8 10 

Crack ratio AB 

4.  Comparison of FE,  experimental  and  analytic 
results. 

~252mm 

137mm 

-120mm 

0 fibre direction 

Boron /=. 635mm 

2a-50mm 
*- 

Skin 1=1.143mm 

Adhesive t=.254mm 195mm 

2a—196mm 

" Short crack Long crack 

Fig.  5.  Dimensions of simplified F/A-18  nacelle inlet 
panel, with crack and patch. 

and this data is shown in Fig. 6. The spectrum 
level, relative to the overall sound pressure level 
(OASPL), is derived from this data and is also 
shown in Fig. 6. This spectrum is now used as 
the excitation pressure on the FE model 
described above. 

The relationship between the spectrum sound 
pressure level (SPL) and the RMS fluctuating 
pressure (p) is given in [3] as 

PRMS = 10 
SPLI20 — 4.69897 

(6) 

and the power spectral density of acoustic pres- 
sure, ie. PSD of the excitation, at any given 
frequency is given by 

PSD = p2
RMS= 10 tSPL/lO — 9.3979 

(7) 

The curve in Fig. 6 has been approximated with 
the three points shown in Table 2. 
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-55 
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n—1/3 octave band SPL (re OASPL) 

Frequency (Hz) 

Fig. 6. Spectrum and one-third octave band levels of 
sound pressure over nacelle inlet. 
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RESULTS AND DISCUSSION 

Shown in Fig. 7 are the natural frequencies ver- 
sus crack length for the cracked and unrepaired 
panel and also the repaired panel for the first 
three resonant modes. In the case of the 
cracked unrepaired structure, increasing the 
crack length significantly reduces the frequen- 
cies of the panel. Also as expected, repaired 
panels have little variation in natural frequen- 
cies   with   crack   length.   Furthermore,   the 

repaired panels have substantially higher 
natural frequencies for all modes than the unre- 
paired panels. The boron repair has a definite 
influence on the panel stiffness. 

Mode shapes have been computed corre- 
sponding to a short and long crack length for 
the repaired panel. The first six mode shapes 
for a short crack length (50 mm) which is 
covered by the patch, are shown in Fig. 8. 
Clearly, the mode shapes in Fig. 8 indicate that 
the crack tip behaviour is dominated by the 
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Fig. 7. Frequency versus crack length for unrepaired and repaired cases. 

^^ 
;'•»***,■,;•. »»few 

Mode 1,280.3 Hz Mode 2,414.9 Hz 

*■£§$$&« 

:*^m» 
-«_■ 

Mode 3, 626.5 Hz Mode 4, 687.8 Hz 

a**^..i^!>1i*r 

Mode 5, 817.0 Hz Mode 6,1021.1 Hz 

Fig. 8. Mode shapes for the repaired panel containing a short crack (2a = 50 mm). 
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mode I stress intensity factor Kv Figure 9 shows 
the mode shape corresponding to a long crack 
(196 mm) which extends outside the patch (see 
Fig. 5). These mode shapes indicate that the 
unsupported crack tip behaviour will now 
receive a significant contribution from the mode 
III stress intensity factor ^In. 

The modal analysis indicates that the mode I, 
II and III stress intensity factors will be signifi- 
cant. The mode I stress intensity factor Kt for 

the cracked unrepaired panel is shown in 
Fig. 10(a). As expected, the general response is 
an increase of Kx with crack length. The left 
hand crack tip is always closer to the clamped 
edge of the panel than the right hand crack tip, 
and since the bending stresses are a maximum 
midway along the boundary, the right hand tip 
gives the highest value of Kv The values of Kt in 
relation to the fracture toughness, are signifi- 
cant and explain crack growth. 

'■«I'Mmi 

Mode 1, 255.1 Hz Mode 2,400.2 Hz 

<*M. 
ÜfS»- -^ -4^Üi 

Mode 3, 554.4 Hz Mode 4, 674.3 Hz 

Mode 5,757.1 Hz Mode 6, 883.3 Hz 

Fig. 9. Mode shapes for the repaired panel containing a long crack (2a = 196 mm). 
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Fig. 10. (a) Stress intensity factor Kt in unrepaired panel for left and right hand crack tips, (b) Stress intensity factor K, 

in repaired panel. (Note the change in scale.) 
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In the repaired panel the neutral axis is offset 
and as a result Kt is evaluated at both inner and 
outer surfaces of the skin; the repair being 
applied to the outer surface. Being a one sided 
repair, the repair is more effective on the outer 
surface which is more closely restrained [6]. 
These bending effects are clearly shown in 
Fig. 10(b). The right hand crack results in the 
highest values for KY located on the inner sur- 
face. These values of KY are significantly high 
before the crack grows out from under the 
patch and explain continued crack growth. For 
a normal 'static' repair in which the only signifi- 
cant events are manoeuvre loads and gust loads, 
the repair would be successful. However, in the 
environment of acoustic excitation at a fre- 

quency of 300 Hz the repair will not be 
effective. 

The mode II stress intensity factor, Kn for the 
cracked unrepaired panel is shown in Fig. 11(a). 
Little through thickness variation of Kn has 
been found, hence values are only presented for 
each crack tip. Numerical values are similar to 
KY and the existence of Ku explains the ten- 
dency of long cracks to turn into the centre of 
the panel. For the case of the repaired panel 
shown in Fig. 12(b), Kn has been substantially 
reduced. 

The mode III stress intensity factor Km for 
the cracked unrepaired panel is shown in 
Fig. 12(a). The values of Kin increase signifi- 
cantly with crack length for both left and right 

35 
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Fig. 11. (a) Stress intensity factor Kn for unrepaired panel, (b) Stress intensity factor Kn for repaired panel. 
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Fig. 12. (a) Stress intensity factor Km for unrepaired panel, (b) Stress intensity factor KU1 for repaired panel. 
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hand crack tips, and the numerical value of Km 

is greater than Kv Clearly Km will contribute 
significantly to crack growth. In the case of the 
repaired panel, shown in Fig. 12(b), the values 
of Km for a crack not growing outside the patch 
are low, but not zero. However, once the crack 

grows outside the patch (i.e. for crack lengths 
> 120 mm) Kul increases significantly. 

For a crack length of la = 50 mm, the PSD of 
the displacement response is proportional to 
the mode I stress intensity factor, and is shown 
in Fig. 13(a). This corresponds to some of the 
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mode shapes shown in Fig. 8. The peak 
response occurs at a frequency of 280 Hz and 
corresponds to mode shape 1 in Fig. 8. With 
increasing frequency the peaks correspond 
sequentially to the higher modes. The contribu- 
tion of the modes to the response can be 
determined by a running integral of the 
response and is shown in Fig. 13(a). These 
results indicate that about 98% of the response 
is due to mode 1. 

In the case of the repaired panel containing a 
long crack of 196 mm the response for Kt is 
shown in Fig. 13(b). It is evident from the run- 
ning integral that mode 1 makes the major 
contribution to this response followed by modes 
4 and 5. However the response for Km shown in 
Fig. 13(d), clearly shows that mode 6 makes the 
major contribution at a frequency of 883 Hz, 
followed by mode 1. 

In the case of long cracks in the unrepaired 
panel, the response for KY and ^ni is shown in 
Fig. 13(c) and (e), respectively. In this case 
mode 1 makes the major contribution to these 
factors. 

Assuming that AKj = Kx then the reduction 
in crack growth for the large patch is given by 

da 

dN 

da 

dN 

K, 

K 
(9) 

ID 

where L denotes the large patch. 
The rate of crack growth observed after 

application of the original patch was 2.15 mm 
per flight hour. Using a value of n = 4 the 
expected crack growth rate is 

da 

dN 
= 2.15x(6/12)4 

= 0.134 mm per flight hour 

Normally a threshold limit exists for Kt for 
which no crack growth occurs. Limited data is 
available as shown in Fig. 15. This data indi- 
cates that this design is just below the threshold 
value. 

LARGE PATCH 

In an attempt to improve the performance of 
the bonded repair, a patch covering the com- 
plete panel has been analysed. The patch 
contains the five unidirectional layers of boron/ 
epoxy previously used. Again the growth of a 
crack is simulated, and the stress intensities 
have been calculated. These results are shown 
in Fig. 13(a), (b) and (c), and correspond to a 
structural viscous damping ratio of 0.032. These 
results show that the mode I stress intensity 
factor Ky shown in Fig. 14 is approximately 
6 MPa (m). Although results are not shown, the 
mode II and III stress intensity factors are 
reduced to values below 2 MPa (m). 

To assess the results use is made of the Paris 
equation, which is given by 

da 

dN 
= A(AK)n (8) 

DAMPING 

The use of constrained layer damping is well 
known and involves the use of a viscoelastic 
material sandwiched between two structural ele- 
ments. The energy of the vibration is dissipated 
in oscillatory shear that takes place in the 
damping material. In terms of the current 
patch, the adhesive would consist of a damping 
material in which the properties are not 
adversely affected. Multi-sandwich layers may 
be necessary to achieve the desired result. The 
literature indicates that such materials exist in 
which the damping may be increased by four 
times the damping in a conventional bonded 
joint. To investigate this, an analysis has been 
carried out for these damping levels and the 
corresponding values for K^ are shown in 
Fig. 16. In comparison to Fig. 14(a), Kx is 
clearly reduced. Again, the likely crack growth 
rate is given by 

where a is the crack length, A is a constant, N is 
the number of cycles, AK is the increment in 
stress intensity factor in each cycle, n is an 
exponent which for aluminium alloys lies 
between 3 and 4. 

da da K, 

\ dN JD   \ dN J \ KlD 

where D denotes damping 

(10) 
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Using the result for Kr from Fig.  16 the 
approximate crack growth rate is 

da 

dN 
= 2.15JC(3.8/12)

4 

= 0.022 mm per flight hour 

This predicted crack growth rate is signifi- 
cantly less than that for the low damped patch 
previously considered and gives an indication of 
the likely performance improvement using high 
damping materials in such applications. For a 
6000 hour lifetime this would correspond to a 
crack length of 132 mm. 

CONCLUSIONS 

Validation of the PSD method has been 
achieved from both experimental data and ana- 
lytical formula. 

The analysis carried out has simulated and 
characterised the growth of the crack in the 
cracked and repaired panel. It has been found 
that after patching a significantly high mode I 
stress intensity factor KY exists on the inner sur- 
face of the right hand crack tip which is likely to 
promote crack growth. 

For a short crack length in the repaired struc- 
ture, a running integral of the PSD of the 
displacement (a K^, has shown that mode 
shape 1 contributes about 98% of the response 
at the crack tip. In the case of a long crack in 
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the repaired panel, the running integral showed 
that mode 6 provided the major contribution to 
the response for ^in. For all other cases con- 
sidered mode 1 provided the major contribution 
to Kt and KIU. 

For the unrepaired panel it is expected that 
both KY and KUI will have a significant contribu- 
tion to crack growth. 

The use of a patch covering the complete 
panel is significantly more effective in reducing 
the stress intensity factors. 

The use of damping in bonded joints may 
significantly lower the crack growth rate in a 
panel subject to acoustic excitation. 
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Matrix crack-induced delamination in 
composite laminates under transverse loading 

J. Wang & B. L. Karihaloo 
Institute of Mechanical Engineering, Aalborg University, Pon 101, DK-9220, AalborgEast, Denmark 

Fibre-reinforced multidirectional composite laminates are observed in 
experiments under transverse static or low-velocity impact loading to suffer 
considerable delamination damage. The intensity of this damage depends 
on the difference in the ply angles above and below the interface. In this 
paper a fracture mechanics model is presented for investigating the role of 
matrix cracks in triggering delaminations and the influence of ply angles in 
adjacent plies on delamination cracking. The fracture mechanics analysis 
shows that for a graphite fibre-reinforced composite laminate containing a 
transverse intraply crack, the crack-induced largest interfacial principal 
tensile stress is a maximum when the difference between the ply angles 
across the interface is 90°, and it attains a minimum when the difference is 
40°. When the crack tips touch the interfaces, the minimum mode II stress 
singularity, which is weaker than the usual square-root type, appears when 
the difference between the ply angles is about 45° for one glass fibre- 
reinforced laminate and three graphite fibre-reinforced laminates. These 
results are in agreement with the experimental observation that the largest 
delaminations appear at the interface across which the difference between 
the ply angles is the largest, i.e. 90°. © 1997 Elsevier Science Ltd. 

INTRODUCTION 

It is widely known that under transverse static 
or low-velocity impact loading, matrix cracks in 
the laminae of a fibre-reinforced multidirec- 
tional laminate can cause delaminations 
between the laminae [1-6]. As the low-velocity 
impact-induced delaminations in laminates are 
the major source of the reduction in their post- 
impact compressive strength, the mechanisms of 
onset of the impact-induced delaminations has 
attracted the attention of many researchers in 
recent years [1,3,5,7,8]. There have been 
numerous experimental observations and finite 
element computations in this area. As the 
damage in laminates is always related to cracks 
(matrix and/or interfacial cracks), a strict frac- 
ture mechanics analysis is likely to provide a 
better physical insight into the damage mechan- 
isms in these materials than the finite element 
analysis. 

For fibre-reinforced multidirectional compo- 
site laminates under low-velocity impact, 
Chester & Clark [1] and Pavier & Clarke [5] 

found that the intensity of delaminations 
depended on the difference between the ply 
angles above and below the interface. Figure 1 
shows the relative intensity of the observed 

low-velocity impact 

+ 45° 

-45° 

0° 
90° 

0° 

0° 
90° 
0° 

-45° 

+ 45° 

i 

1 

Fig.  1. A composite laminate subjected to transverse 
impact and the relative intensity of delaminations at the 
interfaces caused by the impact (after Chester & Clark 

[I])- 
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delamination 

Fig. 2. A damaged composite laminate showing matrix 
cracks and delaminations caused by a transverse load or 

low-velocity impact (after Chester & Clark [1]). 

delaminations in a composite laminate caused 
by transverse impact. It is seen that the largest 
delaminations appear at the interface across 
which the difference between the ply angles is 
the largest, i.e. 90°. A damage model which 
shows the matrix cracks and delaminations in a 
composite laminate under transverse impact has 
been presented by Chester & Clark [1], and is 
reproduced in Fig. 2. 

In this paper an idealized fracture mechanics 
model is presented for investigating the role of 
a transverse shear crack in triggering delamina- 
tions and the influence of ply angles in adjacent 
plies on delamination cracking. The model con- 
sists of a cracked K±9)nJ(90)nJ(+9)nJ 
laminate. The inner layer is assumed to contain 
an intraply or interply crack, whereas the two 
outer layers are assumed to have no cracks 
[6,9]. A solution is obtained when the crack is 
subjected to transverse shear, i.e. mode II in 
fracture mechanics, for two crack configura- 
tions. First, when the crack is contained wholly 
within the inner layer, the crack driving-force 
and the crack-induced interfacial stresses are 
calculated. The fracture mechanics analysis 
shows that for a graphite fibre-reinforced com- 
posite laminate, when the transverse crack is an 
intraply crack, the crack-induced largest inter- 
facial principal tensile stress is maximum when 
0 = 0°, that is, the difference between the ply 
angles across the interface is 90°, and it attains 
a minimum when 9 = 50°. Secondly, when the 
crack tips touch the interfaces, the minimum 
mode II stress singularity, which is weaker than 
the usual square-root type, appears when 9 is 
about 45° for one glass fibre-reinforced lami- 
nate and three graphite fibre-reinforced 
laminates. 

FRACTURE MECHANICS MODEL 

The damage model in Fig. 2 clearly shows that 
the delaminations are related to the transverse 
cracks. Clark & Saunders [10] also noted that 
delaminations in fibre-reinforced composite 
laminates under impact appear to initiate at the 
crossover points of matrix cracks in adjacent 
plies. It is noted in Fig. 2 that the matrix cracks 
are mainly subjected to a shear stress in the xy- 
plane. Only when the top layer fails at this 
stress state can the transverse load be trans- 
ferred to the lower layer and the delaminations 
result. Jih & Sun [3] and Liu et al. [4] have 
classified the matrix cracks caused by a trans- 
verse load or low-velocity impact into two types: 
transverse shear cracks and bending cracks. The 
transverse shear cracks occur near the loading 
site due to the high transverse shear stress in 
this area, whereas the transverse bending cracks 
are mainly caused by the flexing of the lami- 
nate. It is concluded by Liu et al. [4] that the 
delaminations caused by a transverse shear 
crack are catastrophic in that, once formed, 
they propagate unstably. On the other hand, the 
delaminations caused by a transverse bending 
crack are stable. Therefore, in order to investi- 
gate the role of a transverse shear crack in 
triggering the delaminations, the idealized frac- 
ture mechanics model of the composite 
laminate shown in Fig. 3 [6,9] is used. 

In the idealized fracture mechanics model of 
Fig. 3, the two outer layers of thickness b are 
assumed to be each an (±9)„2 angle-ply lami- 
nate. They are regarded as transversely 
orthotropic in the Jty-plane whose principal elas- 
tic axes are parallel with the x and v axes, 
respectively. The elastic constants are calculated 
using the classical lamination theory [9]. The 
inner layer of thickness 2d is taken as a trans- 
versely isotropic material in the xy-plane. 
Figure 3(b) shows an intraply transverse matrix 
crack of length la which is in the center of the 
inner layer, whereas Fig. 3(c) shows an interply 
matrix crack whose tips touch the interfaces. 

SOLUTION OF INTRAPLY CRACK 

The fracture mechanics problems shown in 
Fig. 3(b) and (c) can be solved using the Four- 
ier transforms and superposition procedure 
[6,9]. We first give the results for the intraply 
crack problem of Fig. 3(b). For this problem, 
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(a) 

6 

2d HI 
b 

G>) (c) 

Fig. 3. A fracture mechanics model for investigating the role of a transverse matrix crack in triggering delaminations when 
the crack is subjected to an in-plane shear stress, mode II in fracture mechanics, (a) laminate configuration; (b) an intraply 

transverse matrix crack; (c) an interply transverse matrix crack. 

the most relevant parameters which are related 
to the damage of the laminate are the mode II 
stress intensity factor at the crack tips and the 
crack-induced interfacial stresses. The mode II 
stress intensity factor at each of the tips of the 
crack is 

Kn = FnJäx (1) 

where Fn is determined by the configuration of 
the laminate. 

For a typical graphite/epoxy fibre-reinforced 
composite material (Ml in Table 1), the varia- 
tion of Fu is shown in Fig. 4. In the figure, 
F(a/d) represents the value of Fu when the two 
outer layers are absent. It is seen that these 
layers considerably reduce the crack-driving 
force at the tips of the crack. From this point of 
view, the outer layers have the strongest con- 

straining effect on the propagation of the crack 
when 0 is 0°, that is, the laminate is a cross-ply 
one. The constraining effect decreases when 6 
increases from 0° to 90°. 

The presence of the transverse matrix crack 
will inevitably cause stress concentration in the 
areas ahead of the crack tips. As the interfacial 
area is generally a weak part of the laminate, 
we now consider the crack-induced interfacial 
stresses. The non-dimensional (normalized by T) 
crack-induced largest interfacial principal tensile 
stress aT, which occurs immediately ahead of 
the crack tips (x = ±d, y = 0), is shown in 
Fig. 5. 

The results show that the magnitude of aT is 
influenced by the outer ply angle 8. In contrast 
to the mode II intensity factor, whose magni- 
tude is determined by Fn, aT has the maximum 
value when 6 is 0°. The situation worsens as the 

Table 1. Material properties 
Property 

Materials EL Hi y GLT O'j'j" VLT V-j~p 

(GPa) (GPa) (GPa) (GPa) 

Ml: (Gr/Ep) 138.0 11.7 4.56 4.18 0.29 0.40 

M2: (Gl/Ep) 
M3: (Gr/Ep) 

41.7 13.0 3.40 4.57 0.30 0.42 
140.1 8.36 4.31 3.20 0.253 0.297 

M4: (Gr/Ep) 151.1 7.09 3.63 2.72 0.241 0.304 



664 /. Wang, B. L. Karihaloo 

l.J 

1.2 iF{a/d) 

1.1 -   y 0 = 90° 

i n _—--^^^        " 0 = 45° 

0,9 
0 = 0° 

 L_ 1 1         I 

0.0 0.2 0.8 1.0 0.4 0.6 

a/d 

Fig. 4. Variation of Fn with the relative crack length a/d 
and the outer ply angle 9. 

tips of the crack approach the interfaces, as the 
influence of 9 becomes more prominent. 

If the design objective is to minimize the 
crack-driving force at the tips of the crack so 
that the laminate is least prone to transverse 
cracking when subjected to a transverse load, 
0 = 0° should be chosen. However, if the design 
objective is to minimize the crack-induced inter- 
facial stress so that the risk of delamination is 
minimized or delayed, 9 should take on a non- 
zero value. We can deal with these conflicting 
design objectives by trying to find a compromise 
design using optimization techniques. The com- 
promise design can be obtained by solving two 
optimization problems [9]. 

In the first optimization problem, the crack- 
driving force, represented by Fu, is minimized, 
whereas constraints are imposed on aT, 
oy<(l+a), and the flexural rigidity of the lami- 
nate, D>(l-y)D0. D is the normalized flexural 
rigidity of the laminate, and D0 is its value, 
when 0 = 0°. a and y are tolerance factors on 
the stress gain and stiffness loss, respectively. 

Upper (9, b) and lower limits (6, b) are also 
placed on the design_ variables 9 and bid, 
respectively (0 = 90°, 6 = 4.0; 0 = 0°, £ = 0.0). 
From the solution of this optimization problem 
it was found that for small aid, the active con- 
straints were the lower limit on 9 and the upper 
limit on bid. The minimum of Fu always occur- 
red at 0 = 0°. When aid was large, the 
interfacial stress constraint became critical to 
the design. For the satisfaction of this constraint 
the design angle 6 had to take on a non-zero 
value. It was found that for a = 0.5, y = 0.15 and 
b = 4.0, when a/d exceeded 0.73, no optimum 
design was possible because of the violation of 
the constraint on interfacial strength. For this 
reason an alternative formulation of the optimi- 
zation problem was considered. 

In the second optimization problem, the larg- 
est interfacial tensile stress oT was minimized 
subject to the constraint that $(1) must not 
exceed 1.0 and that the flexural stiffness be ade- 
quate. The solution of this minimization 
problem is shown in Fig. 6. In this case, _aT 

reaches its minimum when 9 - 50° and b/d = b. 

SOLUTION OF INTERPLY CRACK 

In this section, we show the results of the frac- 
ture mechanics solution of the crack problem 
shown in Fig. 3(c). In this case, the problem 
leads to the solution of a singular integral equa- 
tion [6]. When the tips of the crack touch the 
interfaces, the asymptotic value of the stresses 
near the tips can be expressed as 

A-T 

2r 
ftJir, 9) 

.7-2   J'J (2) 

Fig. 5. Variation of the normalized crack-induced largest 
interfacial principal tensile stress with the relative crack 

length aid and the outer ply angle 8. 
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Fig. 6. Results of the optimization problem in which the 
normalized crack-induced largest interfacial principal ten- 

sile stress aT is minimized. 
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Fig. 7. Variation of the mode II stress singularity y2 with 
the outer ply angle 9 for four composites. Ml, M3 and 
M4 are graphite/epoxy composites, whereas M2 is a glass/ 

epoxy composite. 

where er,y (i, 7 = 1, 2) are the stress components 
in the jty-plane. Kn is the mode II stress inten- 
sity factor and y2 is the singularity of the stress 
field, r is the distance away from the tips of the 
crack, rndf^r, 6) are the angular functions with 
the origin of polar coordinates at the crack tip. 

The variation of the stress singularity y2 for 
the four composite materials (three graphite/ 
epoxy composites and one glass/epoxy 
composite) listed in Table 1 is shown in Fig. 7. 
The strongest and weakest mode II singularities 
are given in Table 2. It is seen from Fig. 7 and 
Table 2 that the mode II stress singularity has 
its minimum value when the outer ply angle 9 is 
about 45°, that is, the difference between the 
ply angles in the adjacent plies is about 45°. For 
the three graphite/epoxy composites the strong- 
est singularity occurs at 6 = 90°, that is when the 
composite laminate in Fig. 3(a) degenerates 
into a transversely isotropic layer. 

DISCUSSION AND CONCLUSIONS 

For a multidirectional composite laminate 
under transverse static or low-velocity impact 
loading, the matrix cracks are obviously caused 
by a combination of the tensile stress perpen- 
dicular to the fibre direction and the shear 
stress, as shown in Fig. 2. It was shown in Ref. 

Table 2. Strongest and weakest mode II stress singularities 

Materials Ml M2 M3              M4 

T2max 
a 
"max 

/2min a 
^min 

0.500 
90° 

0.468 
45° 

0.510 
0° 

0.468 
45° 

0.500 0.500 
90°              90° 

0.470 0.468 
41°              42° 

[11] that for quasi-isotropic laminates, the trans- 
verse shear stress near the impacted site is very 
high. Following this observation and the ana- 
lyses by Jih & Sun [3] and Liu et al. [4], it is 
quite reasonable to assume that the occurrence 
of transverse cracks near the loading point is 
dominated by the transverse shear stress. 

From the idealized fracture mechanics model 
presented above, the following conclusions may 
be drawn: 

1. When the transverse crack is wholly within 
the inner layer (intraply transverse crack), 
the crack-induced interfacial principal tensile 
stress is influenced by the difference between 
the ply angles in the inner and outer layers. 
When the difference between the ply angles 
is 40°, the stress reaches its minimum for the 
graphite/epoxy composite material con- 
sidered. 

2. For an interply transverse crack where the 
crack has run through the thickness of the 
inner layer, the mode II stress singularity 
reaches its minimum for the three graphite/ 
epoxy composites and one glass/epoxy 
composite when the difference between the 
ply angles is about 45°. 
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Adaptive post-buckling response of carbon 
fibre composite plates employing SMA 

actuators 

S. P. Thompson & J. Loughlan 
Structures and Materials Technology Group, College of Aeronautics, Cranfield University, Bedford, UK 

Restoration forces, associated with embedded activated pre-strained SMA 
wires, have successfully been employed to enhance the post-buckling 
behaviour of laminated plate structures while under the influence of a 
uniaxial load. The results of which will be presented. The manufacturing 
methodology of the hybrid SMA-carbon-epoxy plates is outlined. Optical 
micrographs illustrate the effect of embedding diametrical inclusions within 
a host composite. Thermal and structural finite-element analysis have been 
employed to predict the non-uniform temperature profile within the 
laminates and to provide insight to the SMA-hybrid structure adaptive 
response. It is shown that by utilizing the considerable control authority 
generated, even for a small actuator volume fraction, the out-of-plane 
displacement of the post-buckled laminates can be significantly reduced. 
Such displacement alleviation allows for the load redistribution away from 
the plate's unloaded edges, i.e. there is a tendency for the plate to conform 
to the optimal flat configuration beyond its critical buckling load. However, 
the stability of the adaptive response is very much dependent upon the 
laminate stacking sequence. It is envisaged that the range of operational 
performance for such an adaptive hybrid structure may be extended over 
conventional materials and structures. © 1997 Published by Elsevier 
Science Ltd. 

INTRODUCTION 

Enhancing the post-buckling performance of 
laminated plate structures utilizing adaptive 
control techniques, associated with the smart 
structure technology, is the subject of this paper. 
Such adaptive behaviour is provided for by the 
insertion of pre-strained nickel-titanium shape 
memory alloy (SMA) wire actuators into pre- 
fabricated laminated plate specimens, 
constraining the actuators sufficiently, and ener- 
gizing the actuators accordingly. The ability of a 
structure to modify its response to an applied 
load, or an environmental exposure, offers sig- 
nificant advantages, particularly for aerospace 
platforms. The selection of the nickel-titanium 
SMA over alternative induced strain actuators, 
i.e. piezoceramic or electrostrictive materials, 
was made based on the material's high authority 
actuation capability, a predominant requirement 

when wishing to control the behaviour of struc- 
tures subjected to high load levels. 

Integrating SMA actuators within laminated 
structures has been investigated for numerous 
control-structure schemes including vibration 
suppression, acoustic control, damage contain- 
ment and shape control. Investigations 
employing the material's unique behaviour for 
buckling/post-buckling control are limited. 

The feasibility of using SMA actuators for 
actively controlling the buckling of flexible 
structures was first conducted by Baz et al. 
[1-3]. An external SMA helical spring has been 
employed to enhance the buckling character- 
istics of long slender beams [1]. The SMA 
helical spring was connected to a pneumatic 
power cylinder which applied a compressive 
loading to an elastic member. The net effect of 
actuation was to reduce the compressive loading 
on this elastic member, i.e. the actuator recov- 

667 
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ery force counterbalances the applied load and 
prevents the beam from buckling. This work 
involves sensing the onset of bending, and using 
the SMA actuators to reduce the load on the 
column, thereby preventing out-of-plane defor- 
mation. 

The buckling characteristics of flexible fibre- 
glass polyester resin composite beams have 
been actively controlled by activating shape 
memory alloy wires embedded along the beam's 
neutral axis [2]. A closed-loop computer- 
controlled system was used to control the buck- 
ling of the beam, with dimensions of 
637.5 x 25.4 x 4.5 mm, reinforced with eight 
SMA wires, 0.55 mm in diameter. The results 
showed that the critical buckling load could be 
increased three times when compared to that of 
an uncontrolled beam. 

Investigations into the lateral torsional buck- 
ling of a transversely loaded cantilevered beam, 
with dimensions of 406 x 51 x 2.5 mm, incor- 
porating two 0.55 mm diameter SMA wires 
embedded symmetrically along the beams mid- 
plane, have shown that the buckled beam can 
be brought back completely to its unbuckled 
configuration with appropriate SMA activation 
[3]. 

Finite-element analysis was performed to 
investigate the potential for active buckling con- 
trol of two different stiffened panels by 
embedded SMA rods [4]. Changes in the pre- 
dicted buckling load increased with the 
magnitude of the actuation level for a given 
structural concept. Increasing the number of 
actuators yielded greater predicted increases in 
the buckling load. The practicality of the con- 
cept relies on the development of such high 
authority SMA rods, whereby the necessary 
shape memory elongation can be generated. 
Energizing finer diameter SMA wires would 
result in lower critical buckling values, attri- 
buted to the shape memory shortening. 

Preliminary results on the use of SMA fibre/ 
strips, integrated within graphite-epoxy 
composite panels, demonstrate that the SMA 
fibres can enhance critical thermal buckling 
temperatures and attenuate, or even eliminate, 
thermal post-buckling deflections [5]. Such find- 
ings are based on the generation of in-plane 
tensile forces within the host laminate resulting 
from the elongation of the activated. SMA fibre/ 
strips. The laminate under investigation was a 
[0°/+45790°]s with SMA volume fractions 
between 10 and 30%, initially pre-strained to 

3-5%. The critical buckling temperatures are 
seen to increase drastically to the point where 
they are unrealistic as they exceed the material's 
maximum service temperature, although such a 
high SMA volume fraction may be of benefit to 
high-temperature matrices such as those of car- 
bon-carbon composites. These results, as with 
the previous citation, rely on the shape memory 
elongation of the in-elastically deformed 
material, rather than the characteristic shorten- 
ing associated with the fine diameter wires. 

An analytical expression was formulated to 
predict the behaviour of composite laminated 
plates integrated with SMA fibres [6]. Account- 
ing for the large increase in Young's modulus, 
when nickel-titanium transforms to its auste- 
nite phase, is shown to increase the hybrid 
composite plate's critical buckling value. Utiliz- 
ing the recovery force generated when the SMA 
fibres are constrained to the host composite, the 
actuator may act to decrease the critical load. 
The analytical formulation developed, however, 
does not account for thermal effects. 

Piezoceramic actuation has also shown 
improvements in the load-bearing capability of 
compressive loaded members [7]. SMA actua- 
tors offer the greatest potential for buckling 
control or post-buckling deflection alleviation as 
the associated recovery force is several orders 
of magnitude greater than the induced force of 
piezoceramic actuators. They also allow for 
direct embedding within the host laminate with 
minimal disruption to the local reinforcement, 
thus minimizing the possibility of actuator 
damage if located on the surface. 

A numerical and experimental study of the 
post-buckling behaviour of laminated SMA- 
composite plates with arbitrary stacking 
sequences has been conducted. The adaptive 
capability is provided for by the insertion of 
SMA wire actuators through sleeves located 
within the manufactured specimens. The SMA 
characteristic behaviour, laminate fabrication 
methodology, detailed numerical analysis, test- 
ing procedure, and experimental/numerical 
results will be presented. From which, a conjec- 
tural assessment to the current post-buckling 
adaptive methodology can be drawn. 

CHARACTERISTIC SHAPE MEMORY 
ALLOY BEHAVIOUR 

Shape memory alloys, when heated, undergo a 
solid-solid   phase   transformation   from   their 
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low-temperature martensite phase to their high- 
temperature austenite phase [8]. When 
unconstrained SMA actuators are cooled below 
their martensitic transformation temperature 
and deformed, they remember, and return to, 
their original shape upon the application of the 
phase transition temperature. If constrained, 
the alloy will attempt to revert to its original 
shape resulting in the generation of a significant 
internal recovery force. Such a recovery force 
will be employed for the composite adaptive 
capability. Typically, strains of 6-8% can be 
completely recovered by heating deformed 
unconstrained nickel-titanium through its 
characteristic transition temperature. Alterna- 
tively, stresses of up to 800 MPa may be 
generated. 

Many materials are known to exhibit the 
shape memory phenomena, the most common 
being nickel-titanium. It is this commercially 
available alloy that is employed for this investi- 
gation. The alloy, in the form of a 0.4 mm 
diameter wire, has a nominal composition of 
49.8-50.0 at.% Ni and was annealed at 500°C 
for 1 h, thereby providing the shape memory. 

Phase transition can occur through an 
increase in the ambient temperature or through 
resistive heating, the latter is employed for this 
study. Their are four important temperatures 
characteristic to an SMA. These are martensite 
finish (Mf), martensite start (Ms), austenite start 
(As) and austenite finish (Af). Knowledge of the 
austenite transformation temperature is essen- 
tial so that a necessary power level can be 
determined to induce maximum recovery force. 
The phase transition temperatures were deter- 
mined by differential scanning calorimetry, the 
results of which are presented in Table 1. It is 
well known that the transformation tempera- 
tures are influenced by stress, a. They vary 
according to the following linear relationships 
[9] 

MS = MS((T = 0)+(T/CM 

Mf = Mf(a = 0)+<T/CM 

As = As(a = 0)+a/CA 

Table 1. Phase transition temperatures 

Af = Af(a = 0)+a/CA (1) 

Phase Temperature 
(°C) 

A 50 
Af 68 
Ms 25 
Mf 7 

The constants CA and CM are material 
properties and are assumed to be equal. It is 
seen within the published literature that the 
values vary between 4.5 and 13.8 MPa/°C. a = 0 
denotes the stress-free temperature (Table 1). 

Constraining an activated pre-strained SMA 
wire from returning to its memorized configura- 
tion results with the formation of a recovery 
stress. As stated, this stress will alter the trans- 
formation temperatures in an upward manner. 
If the activation temperature was equal to the 
stress-free austenite finish temperature, then 
only partial activation will result. The activation 
power level required to induce the full recovery 
stress must take into account the expected 
recovery stress. 

To ascertain the recovery force for an indivi- 
dual actuator, a sample was pre-strained to 6%, 
clamped at either end within an Instron Univer- 
sal Testing Machine, and cycled through the 
transformation temperature range. Clamping 
prevents contraction upon heating the 
deformed specimens. The recorded recovery 
force, for cycles 1, 5, 10 and 20, monitored at 
10 Hz, is shown in Fig. 1. A typical operating 
cycle is defined as heating the actuator to reach 
its peak recovery force, via the input of a step 
DC power source, maintain the force for a short 
period and then allow the specimen to cool 
back to the ambient temperature. Cool down is 
achieved by removal of the DC power source. 

Subjecting the actuator to the alternate heat- 
ing and cooling cycles results in degradation in 
the recovery force. It is clearly evident that the 
maximum recovery force is generated during 
the first cycle. Subsequent cycles show a 
decrease in the measured recovery force. The 
greatest reduction occurs during the first few 
cycles. After 20 cycles the recovery force 
becomes more stable. Such behaviour being 
typical of nickel-titanium. The recovery force 
degrades due to the formation of lattice defects, 
such as dislocations, causing an internal stress 
relaxation. Such defects occur more promi- 
nently when the alloy is subjected to a complete 
temperature cycle, i.e. austenite -»martensite 
[10]. The formation of defects occurs rapidly at 
first and then levels off. Defect formation is 
dependent upon the level of initial pre-strain, 
temperature cycle and heating rates. 

If the SMA is required to show repeatable 
recovery force characteristics over many cycles, 
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SMA Restrained Recovery 

Cycle 1 

200 300 

Time (s) 
400 500 

Fig. 1. SMA cyclic restrained recovery. 

then they should have a low initial pre-strain. 
This, however, will be at the expense of the high 
restoration force capability. The latter can be 
met by increasing the volume fraction of actua- 
tors in operation. 

The recovery force measurements provide an 
accurate means of predicting the adaptive struc- 
tural behaviour. The results of Fig. 1 have been 
applied to a non-linear FEA. Such analysis 
determines the post-buckling behaviour of lami- 
nated plate structures with an improved 
load-bearing capability provided for by the 
SMA control scheme. 

TEST SPECIMEN CONFIGURATION 

The dimensions of the plates under investiga- 
tion were 300 x300 mm. The following ply 
stacking sequences have been considered; 
[027902°]s, [07±45790°]s and [027+45°]s. Fiber- 
dux 913C-TS unidirectional high tensile 
carbon-epoxy, purchased from HEXCEL Com- 
posites, was employed for plate manufacture. 
Each specimen features SMA wires, pre-strai- 
ned to 6% and inserted through sleeves, which 
run throughout the laminate at the desired loca- 
tion. For each specimen the SMA orientation is 
perpendicular to the loading direction. It is not 
a requirement that the SMA wires adhere to 
the host laminate. Restrained recovery is met 
through external fixtures. 

Manufacture of such a laminate is as follows. 
The  individual plies  are placed  accordingly. 

PTFE tubing, with an inner diameter of 
0.46 mm and a wall thickness of 0.15 mm, con- 
taining steel wires with a diameter of 0.45 mm, 
are located on the neutral plane at the desired 
SMA positions. The embedded inclusions 
extrude out from the edges of the lay-up a finite 
distance and held taut, thus ensuring their 
desired alignment. The pre-preg material, 
featuring the embedded inclusions, are sub- 
jected to the manufacturer's recommended 
curing cycle. Once cured, the steel wires are 
withdrawn. The SMA wires are then inserted. 
The adaptive capability is provided for by con- 
straining the ends of the SMA wire to an 
external boundary and applying the necessary 
temperature for phase transition. 

The properties that make PTFE suitable for 
this application are its; (1) working temperature 
up to 260°C; (2) very low coefficient of friction; 
and (3) extremely high electrical resistance. To 
ensure suitable compaction during the curing 
process, 1.5 mm thick silicone rubber dia- 
phragms were place between the hybrid 
laminate surfaces and the curing apparatus. 

Optical micrographs for lay-up configurations 
[027902°]s and [027±45°]s (Figs 2 and 3, respec- 
tively) show the affect the embedded inclusion 
has on the host laminate surface topology and 
the disruption it can cause to the neighbouring 
carbon reinforcement. Placing the inclusion 
parallel to the neighbouring reinforcement is 
clearly advantageous (Fig. 2) as such a con- 
figuration imposes minimal reinforcement 
disruption. However, placement of the inclusion 
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Fig. 2. [027902°]s optical micrograph. 

at an angle to the reinforcement (Fig. 3) results 
in considerable reinforcement disruption and 
the formation of a lenticular resin-rich region 
extending approximately 2 mm from the inclu- 
sion interface. 

Based on the research conducted regarding 
embedded optical fibre sensors within compo- 
site laminated constructions [11], such local ply 
disruption will have profound implications on 
the ultimate compressive load-bearing cap- 
ability. This study is concerned with 
post-buckling deflection removal and the associ- 
ated post-buckled non-uniform stress 
alleviation, at which the applied stresses are 
lower than the ultimate. Therefore, at this 
stage, it seems suitable to orient the embedded 

inclusion in a manner best suited to achieve the 
desired structural response. 

NUMERICAL FINITE-ELEMENT ANALYSIS 

Thermal, linear buckling and structural non- 
linear FEA was employed to predict the 
improved post-buckling behaviour of the SMA- 
carbon-epoxy laminated plate structures. The 
actuators are placed so as to contain a particu- 
lar mode shape. The FE models were 
constructed using the pre- and post-processor 
P3/PATRAN. 

SMA activation results in a non-uniform tem- 
perature profile within the laminate. Such a 

Fig. 3. [027 + 452°]s optical micrograph. 
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temperature profile was determined by P3/ 
THERMAL. This pre-determined temperature 
profile can be superimposed on the structural 
mesh, thus accounting for thermal stresses and 
temperature-dependent effects. 

The FEA package MSC/NASTRAN was used 
to perform the buckling and geometric non- 
linear analysis. The linear buckling analysis, 
employing the Lanczos method, performs an 
eigensolution to predict the eigenvalues and 
eigenvectors, where buckling loads and their 
respective mode shapes can be determined. To 
predict the post-buckling behaviour, geometric 
non-linear analysis using the modified Newton- 
Raphson method was performed. 

Thermal FEA 

Activation of the SMA, through resistive heat- 
ing, will subject the neighbouring laminate to a 
significant increase in temperature. Based on 
the assumption of a uniform temperature distri- 
bution in a direction parallel to the SMA wires, 
a two-dimensional model was used to predict 
the plate cross-sectional temperature profile. 
The SMA orientation being normal to the two- 
dimensional representation. The specimen's 
cross-sectional area was represented by 1200 
thermal quadrilateral elements. The applied 
element material properties are listed in Table 
2. The composite directional-dependent thermal 
conductivity is accounted for by application of 
k = 15 W/m °C in a direction parallel to the car- 
bon reinforcement and k = 1 W/m°C in a 
direction transverse to the carbon reinforce- 
ment. A nodal heating source of 20.7 W/m was 
applied to the nodes at the SMA locations 
simulating the activation strategy. The natural 
convection heat transfer from the surface of the 
vertically inclined plate is calculated through 
the selection of an appropriate convection con- 
figuration available within the analysis solver. 
An ambient and initial specimen temperature 
was measured to be 25°C and applied to the 
model. 

Table 2. Thermal properties 

Table 3. Ply properties 

Property Value 

Property Carbon-epoxy 

P (kg/m3) 
cp(J/kg°C) 
k (W/m °C) 

1600 
837 
15 (longitudinal) 
1 (transverse) 

E22 

G12 

Vl2 
«11 
a22 

140 x 103 N/mm2 

10 x 103 N/mm2 

5 x 103 N/mm2 

0.3 
-0.3xlO-6

£/°C 
28xlO-6e/°C 

Structural FEA 

The laminated plates were modelled using 2304 
two-dimensional shell elements (CQUAD4). 
Such a mesh proved sufficient in terms of analy- 
sis convergence. The carbon-epoxy lay-up was 
represented by the NASTRAN PCOMP and 
MAT8 data entries, which are based on the 
assumptions of classical lamination theory. 
Owing to the anisotropic nature of two of the 
laminates considered, the whole model was 
analysed. Individual ply material properties are 
shown in Table 3. 

The boundary conditions applied to each 
edge simulate simply supported conditions with 
the unloaded edge supports allowing for in- 
plane translations. To simulate the uniform 
compressive edge displacement along the 
loaded edge, a rigid-body element (RBE2) was 
introduced by inserting an additional node 
(known as the independent node) at the mid- 
point along the top edge of the model where 
the compressive load is to be applied. The inde- 
pendent node's out-of-plane translation, along 
with all its rotations, are fully constrained. All 
the nodes along the top edge of the plate 
(known as dependent nodes) are connected to 
the independent node and their translations, 
but not rotations, are tied to that of the inde- 
pendent node. The dependent nodes are free to 
deform due to Poison's effect. In this manner, a 
uniform displacement is imposed along the top 
edge of the panel, which will not provide con- 
straint against either shape memory adaptation 
or thermal expansion-contraction. This condi- 
tion is identical to that enforced by the loading 
platen of the testing machine. 

Each SMA wire was modelled with 50 
CBEAM elements. The element and material 
properties are represented by the PBEAM and 
MAT1 data entries, respectively. Ten actuators 
where employed for lay-up configurations 
[027902°]s and [027±45°]s. Twelve actuators 
were employed for the lay-up [0°/+45790°]s. 
For each configuration, the actuator spacing 
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Table 4. Critical buckling values 
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Fig. 4. Finite element representation. 

was 12.5 mm, their location being in the vicinity 
of the crest of the buckle. Figure 4 shows a 
partial representation of the constructed mesh, 
with mesh shrink employed for illustrative pur- 
poses. It can be seen that each beam element 
has the same global edge length as the 
CQUAD4 elements. The topological nature of 
the beam elements is such that they are con- 
gruent with the CQUAD4 shell elements edge, 
and the associated nodes for each element are 
coincident. 

RBE2 elements are applied to each coinci- 
dent node set constraining the beam elements 
such that they translate vertically or out-of- 
plane in accordance with the motion of the 
CQUAD4 nodes. Should the beam elements 
wish to translate along their longitudinal direc- 
tion, they are free to do so. Such constraints are 
identical to those within the manufactured 
specimens where the SMA wires have a slide fit. 

Within the analysis, the adaptive capability is 
provided for by completely fixing one end of the 
line of one-dimensional elements, the other end 
having one degree of freedom (DOF) in the 
direction of the axial recovery force. At the 
required time of activation, a point load can be 
applied to the 1 DOF node placing the wire in 
the desired tensile stressed state. Alternatively, 
the adaptive capability can be provided for by 
completely constraining both ends of the line of 
one-dimensional elements and manipulating the 
SMA coefficient of thermal expansion such that 
with application of the transformation tempera- 
ture, the desired tensile recovery stress will 
result. 

The results of the linear buckling analysis are 
presented in Table 4. The first mode shape for 
each panel was a single half-wave in both direc- 
tions. The thickness of the laminate, away from 
the embedded inclusion, was measured to be 
1.1-1.12 mm. An effort was made to account 
for the increased plate thickness in the vicinity 
of the embedded inclusion, on the structural 
response, by adding a fictitious bending stiffness 
to the one-dimensional elements. A clearly 
evident observation of Table 4 is how the lay-up 
orientation can effect the critical buckling value, 
as expected. Such buckling analysis assumes 
that the structure is perfect, i.e. uniform, and 
free from eccentric loading. In reality, geomet- 
ric and material-related imperfections exist, 
such that when loaded in pure compression, 
lateral deformation is noticeable from the onset 
of loading. 

In order to simulate the geometric non-lin- 
earity, and ensure the non-linear load path, a 
lateral load of 0.005 N was applied at the point 
of peak buckling amplitude. Such a force pro- 
vides an initial maximum out-of-plane 
displacement of approximately 0.001 mm. 

Typically, plate-like structures can support 
loads well beyond their buckling load. There- 
fore, the numerical analysis and experimental 
procedure involved loading the laminated struc- 
tures to approximately three times the critical 
buckling value and then activating the optimal 
set of actuators. The actual applied load being 
1.9 kN for lay-ups [02°/902°]s and [027±45°]s, 
and 2.5 kN for the [07 + 45°/90°]s lay-up. 

EXPERIMENTAL SETUP 

The experimental set-up is shown in Fig. 5. 
Individual test specimens were located within a 
loading rig specifically developed for this 
investigation. The unloaded edges were located 
between knife edges and the loaded edges 
within flat locating grooves, 0.5 mm deep. The 
supports provide free transverse movement and 
prevent free lateral movement. The supports 
were initially well greased, therefore alleviating 
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Fig. 5. Experimental setup 

possible frictional effects. The pre-strained 
SMA wires were subjected to an initial tension- 
ing of 1.5 N then clamped within their external 
fixtures. An Instron Universal Testing Machine 
was employed to apply the required load. The 
machine was configured such that it maintained 
load control. The out-of-plane displacement was 
measured using an LVDT. Applied load, LVDT 
displacement and temperature output were 
recorded using PC-based data logging software. 
Later in the experimental programme the 
recovery force of a single SMA actuator, within 
the test set-up, was recorded. Experimental and 
numerical results will now be presented. 

RESULTS 

Results for the on-going research programme 
are first presented for the [027902°]s lay-up 
(Fig. 6). For illustrative purposes, the applied 
load and the corresponding peak amplitude 
deflection are shown with respect to time. Pre- 
senting the results against time allows us to 
break down the out-of-plane displacement curve 
into five evident phases. 

During phase 1, the applied load is ramped 
up to 1.9 kN. The corresponding out-of-plane 
displacement reaching a peak value of 
-2.79 mm.  At this point,  there is  excellent 

Experimental Behaviour - [0/0/90/90]s 
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Fig. 6. [027902°]s post-buckling deflection behaviour. 
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agreement between experiment and FEA. The 
FEA predicting an out-of-plane displacement of 
-2.74 mm. The negative sign indicates the ten- 
dency of the plate to deflect away from the 
LVDT. Rotating the plate within its fixtures 
would result in positive lateral deformation, 
therefore ensuring loading rig influences are 
negligible. 

Activation of the SMA actuators, connected 
in parallel, through application of a DC power 
source of approximately 140 W results in phase 
transition, phase 2. The resulting SMA restora- 
tion forces act to pull the plate back to the flat 
configuration. At the end of. phase 2, the ener- 
gized plate out-of-plane displacement is seen to 
be -1.67 mm, a reduction of 40.1% compared 
to the uncontrolled state. With the recovery 
force maintained for the duration shown, phase 
3, the out-of-plane displacement is seen to 
increase to a value of -1.84 mm, this value 
being 34.1% lower than the uncontrolled state. 
The slight increase in lateral deformation is 
attributed to degradation in the matrix proper- 
ties when exposed to the elevated temperature. 
At the end of phase 3, the plate deflection tends 
to its constant value as the temperature profile 
within the laminate approaches the steady state. 

When the actuator power source is removed, 
the out-of-plane displacement profile is seen to 
increase and overshoot the initial peak displace- 
ment amplitude, phase 4. The overshoot is the 
result of the degradation in the aforementioned 
material properties. As the plate cools, how- 
ever, the plate tends to the initial value of 

-2.79 mm. The test ends with the removal of 
the applied load, phase 5. As the load is 
removed, the lateral displacement is seen to 
decay to zero. 

The loading-activation-deactivation-unload- 
ing behaviour was shown to exist for many 
cycles, all of which show repeatable behaviour. 
The results presented in Fig. 6 correspond to 
the 10th cycle. 

FE results of the post-buckling alleviation, 
phase 2, predict an out-of-plane displacement of 
-0.3587 or -1.347 mm when restoration 
recovery forces of 75 or 55 N, respectively, are 
generated within the SMA. These forces 
approximate the initial cycle, and the repeatable 
behaviour of the transformed alloy (Fig. 1). 

The out-of-plane displacement can only be 
reduced by 34.1%, i.e. not quite realizing the 
desired FEA behaviour, as a result of the fol- 
lowing. The application of the power level to 
activate the SMA results in the surface tem- 
perature profile shown in Fig. 7. Experimentally 
recorded thermocouple readings are shown for 
comparison. It can be seen that the thermal 
FEA predicts the correct trend in thermal 
behaviour, however it does not account for the 
thermal boundary layer associated with the ver- 
tically inclined plate, the likely cause for the 
higher temperature readings of thermocouples 
4-7. The temperature distribution through the 
plate thickness was such that it can be assumed 
to be constant. 

From Fig. 7, it can clearly be seen that the 
temperature distribution at the outer actuator 
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locations is considerably lower than the adja- 
cent actuator locations. The net effect of the 
lower temperature will be a lower restoration 
force. The recovery force, for one of the inner- 
most actuators, was recorded to be 48 N. The 
outermost actuators are thought to be some- 
what less than this. This actuator recovery force 
was not seen to degrade by any significant 
amount with successive testing. The actual 
power levels applied to energize the actuators 
fall short of the amount required for complete 
phase transition, therefore only partial actua- 
tion results. Nonetheless, significant control 
authority is evident. Increasing the power level 
further, enabling greater restoration forces, will 
subject the laminate to a temperature in excess 
of 100°C. 

Employing a partially activated recovery force 
of 50 N for each SMA wire, within the FEA, 
results with an out-of-plane displacement of 
— 1.504 mm. Such restoration recovery forces 
not only reduce the peak displacement ampli- 
tude, they also alleviate stress concentrations, 
typical of post-buckled configurations. Figure 8 
shows the FEA longitudinal membrane stress 
distribution, along the plate's centre-line, when 
subjected to 1.9 kN with and without the adap- 
tive control. Utilizing adaptive control, it can 
clearly be seen that at the plate edges the stres- 
ses are reduced from —21.98 to 
—10.32 N/mm2, the negative sign indicating 
compression.   The  tendency  of  the   adaptive 

plate is to redistribute the loading back towards 
the plate's central region to the point where a 
uniform stressed state exists. 

The numerical analysis is currently being 
adapted to account for the temperature- 
dependent material properties. It is seen that, 
using data provided by the composite manu- 
facturer, the bending stiffness about the loaded 
axis is reduced by 11.7% at 80°C compared to 
that at room temperature. 

Similar results are shown in Fig. 9 for the lay- 
up configuration [07+45790°]s, with the 
exception that the applied load was ramped to 
2.5 kN. At the end of phase 1, a discrepancy 
exists between FEA and the experimentally 
determined plate deformation, FEA predicting 
a value of —3.37 mm. Such a discrepancy is 
thought to be due to the inadequate representa- 
tion of the increased bending stiffness 
associated with the increased plate thickness in 
the vicinity of the embedded inclusions. Work is 
under way to adequately account for such a sur- 
face undulation numerically and to reduce its 
affect experimentally. 

From the experimental results (Fig. 9) an 
initial reduction of 33.2% in the peak lateral 
deformation can be realized by activation of the 
low-volume fraction SMA material, although 
this will degrade to a 28% reduction owing to 
temperature effects. The surface temperature 
profile was found to be similar to that shown in 
Fig. 7. FEA utilizing the 75 and 55 N recovery 
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Experimental Behaviour - [0/45/-45/90]s 
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Fig. 9. [07±45790°]s post-buckling deflection behaviour. 

forces predict out-of-plane displacements of 
-1.255 and -1.976 mm, respectively, com- 
pared to the inactivated deflection of 
-3.37 mm. As with the previous lay-up, the 
magnitude of the displacement alleviation for 
the experiment does not quite realize the 
desired results of the FEA owing to SMA par- 
tial actuation. 

Figure 10 shows the experimental behaviour 
for lay-up configuration [027±45°]B, loaded to 
1.9 kN. The prominent features are the 49.1% 
reduction in post-buckled deflection, phase 2, 
and the proliferate deflection behaviour, phases 
3 and 4, attributed to the affects of temperature 
on the matrix material properties. The bending 

stiffness about the axis parallel to the loaded 
axis will degrade by 26% when subjected to a 
temperature of 80°C. The actual maximum tem- 
perature that the plate is exposed to is 
approximately 100°C, resulting in further mech- 
anical degradation. Such effects could be 
overcome be increasing the SMA volume frac- 
tion. 

CONCLUSIONS 

Activation of constrained pre-strained SMA 
wire actuators, located on a laminated plates 
neutral plane, at load levels approximately three 

-3- 

-2.5, 

-2. 

*     -1-5. 

O 
■J         -1, 

-0.5, 

0, 

Experimental Behaviour - [0/0/45/-45] S 

_-3 

. .-2.5 

? 
, .-2     v   B 

S3   s-"' 

I    * 
. 1-1-5 «M a 

O    g 

3 3 
, .-1   o 'S. 

1       , .-0.5 

1     40 
__ .0 

-2.95 mm 

14    ^*v-^,,| ^ 

-2.24 mm               _^^^                                                   1 
0\                ^^   -2.45 mm                                           gl 

1           / 
'     II    -1.14 mm 

 Load 
^■■"Displacement 

II                  120 240 360 

Time (s) 

Fig. 10. [027 + 45°]s post-buckling deflection behaviour. 



678 S. P. Thompson, J. Loughlan 

times the critical buckling value results in the 
significant post-buckled deflection alleviation. 
For the laminates considered, such post-buck- 
ling deflection alleviation is achieved by 
incorporating relatively low-volume fractions of 
the SMA material. The effect of such deflection 
alleviation is to redistribute the applied loading 
so that a state of uniform axial membrane stress 
exists. The stability of the adapted shape is 
dependent upon the laminate stacking 
sequence. Owing to the elevated temperatures 
required for SMA transition, the stacking 
sequence chosen should be such that the tem- 
perature-dependent matrix properties are of 
minimal influence to the structural perform- 
ance. 

Modifications are currently underway to 
improve both the numerical analysis and the 
experimental procedure. The numerical analysis 
requires the input of suitable temperature- 
dependent matrix properties and an adequate 
representation of the material extrusion from 
the nominal plate surface. Improvements to the 
manufacturing methodology may be met by uti- 
lizing the recovery force of an increased volume 
fraction of finer diameter SMA wires fed 
through micro-tubing. The employment of 
micro-tubing with a wall thickness of 0.025 mm 
is currently being investigated. Such a wall 
thickness would significantly reduce the cross- 
sectional area of the embedded inclusion 
resulting in less disruption to the neighbouring 
ply reinforcement and plate surface topology. 
Studies have commenced to ascertain the recov- 
ery behaviour of an alternative nickel-titanium 
SMA composition. Such material having transi- 
tion temperatures approximately 25°C lower 
than the material employed within this investi- 
gation. Should this composition exert similar 
recovery forces to those shown in Fig. 1, then 
powering the actuators to the current level will 
ensure full transformation and, therefore, 
generation of the complete recovery force. 

Many buckling critical aerospace structural 
components could benefit from such adaptive 
capabilities, particularly when the mechanically 
loaded structures are exposed to an elevated 
temperature, i.e. next generation supersonic 
civil aircraft. Such an increase in the ambient 
temperature manifests itself in actuator phase 

transition and, thus, structural self-strengthen- 
ing is provided for without the need for a 
sensory network, data processing or an electric- 
ally driven actuator input stimulus. 
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Numerical analysis of a sling support 
arrangement for GRP composite pressure 

vessels 

D. H. Nash & W. M. Banks 
Department of Mechanical Engineering, University ofStrathclyde, Glasgow, Gl 1XJ, UK 

A flexible sling support arrangement for horizontal glass reinforced plastic 
pressure vessels is examined using advanced finite element methods. A 
mathematical model is produced employing a suitable analysis capable of 
representing the non-linear behaviour of a sling supported GRP vessel. 
This system is used to examine the phenomena occurring at the interface 
between the vessel and the supporting belt. Each component is initially 
considered some distance apart and then brought together using three- 
dimensional contact surfaces. External loads are thereafter applied to the 
combined model. Although several numerical difficulties arise due to the 
difference in flexibility between the vessel shell and the sling support, these 
are overcome and the resulting vessel strains and contact interface 
pressures show good agreement with experimental work. The magnitudes of 
the strains at the location of the saddle horn are significantly reduced. 
Results of a parameter study are also presented which show the effect of 
the sling position together with the influence of the wrap-round angle and 
a number of recommendations are made with respect to design. © 1997 
Elsevier Science Ltd. 

INTRODUCTION 

Composite storage vessels can offer a distinct 
advantage over steel vessels, especially for the 
storage of hazardous liquids in the chemical 
process industry. Although many are aligned 
vertically with a skirt support, the horizontal 
vessel is particularly useful when there is a 
restriction on height and space. The most com- 
monly used support system is the 'twin saddle 
arrangement' which is similar to that of Zick [1] 
used for steel vessels. A second alternative is 
the ''longitudinal beam support' which forms an 
integral part of the structure and can run the 
full length of the vessel. The third alternative, 
the 'flexible sling system', provides support 
around the lower region of the cylindrical por- 
tion of the vessel. Although each of these three 
systems may be used in the support of GRP 
vessels, evidence is still required to enable a 
thorough failure assessment to be carried out, 

and to determine those applications and situa- 
tions where their use is most appropriate. 

Some guidance is provided in the British 
Standard BS4994 [2] and also in the ASME 
Boiler and Pressure Vessel Code [3], Section X. 
However this information is only qualitative, 
with the exception of a reference in BS 4994 
dealing with metallic pressure vessels. This indi- 
cates that in the case of a saddle support, the 
detailed analysis given in BS 5500 [4] may be 
used for GRP vessels providing caution is exer- 
cised with regard to the strain limitation. This 
somewhat simplistic, but safe, advice implies 
that it is relatively straightforward to determine 
the maximum strain from the analysis given in 
BS 5500. This treatment assumes the vessel is 
isotropic and does not address the multi- 
layered anisotropic case. In addition, the loose 
saddle support is recommended even though 
there are well known problems associated with 
this type of support. 

679 
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Both the saddle support and beam support 
systems have been studied extensively and the 
work is thoroughly documented [5,6]. However, 
although some experimental studies have been 
carried out on the sling supported GRP vessel, 
there is no suitable analytical treatment as yet. 
This is due, in part, to the complex nature of 
the flexibility of the sling support and the inter- 
action with the vessel shell. In this arrangement, 
a flexible sling fabricated from a strong 
material, say a Kevlar cloth, is used to carry the 
vessel rather than the vessel being supported by 
a more rigid steel saddle. Since the sling is 
highly flexible, it can change shape as the vessel 
deforms under load thus avoiding any rigid con- 
straint or abrupt changes of section that occur 
with rigid saddles. It is this rapid change of 
vessel shape that introduces highly localised 
bending stresses into the shell. This can lead to 
direct failure of the composite shell or reduce 
the life of the vessel by accelerating failure by 
fatigue for cyclically loaded systems. 

Recent experimental and theoretical work 
undertaken [6], based on thin shell theory and a 
Fourier series approach, has shown that the 
introduction of a flexible sling reduces the 
stresses arising at the traditional saddle horn 
location. Therefore, this type of support should 
have a potential application in GRP vessel 
design where displacements are larger than 
those found commonly in steel vessels and 
limiting the maximum vessel strain is often the 
major design criterion. 

PREVIOUS WORK 

Work by Tooth et al. [7-10], employs a shell 
analysis and Fourier series approach that evalu- 
ates the form of the contact interface pressure 
profile. This is undertaken by subdividing the 
contact region into a number of discrete areas 
around the circumference and across the saddle 
width. The flexibility of the support is intro- 
duced by the use of a flexibility matrix, 
generated by the application of unit loads on an 
equivalent model for the support. In the case of 
the saddle, this can be thought of as a tapered 
beam. Applying unit loads in the radial and tan- 
gential directions generates the flexibility 
matrix. Thereafter, the vessel shell is allowed to 
deform and by enforcing compatibility between 
the deformed surface and the imposed flexible 

support at the centre of the contact patch, the 
interface pressure can be evaluated and there- 
after applied to the shell to solve for 
displacements and strains. 

Although the method provides a reasonable 
agreement with the limited tests presented in 
the literature, there are several drawbacks 
associated with this method which may be of 
importance when applied to the sling support 
case. Since the form of contact pressure 
between the shell and the support is unknown, 
and may change depending on the state of load- 
ing; this may become important. In addition, it 
can vary during the loading sequence when a 
sling is used (for example, when the vessel is 
empty the self-weight induces one form of con- 
tact pressure profile). If the vessel is gradually 
filled, the contact pressure varies as the shell 
and slings adopt a new shape. If the filled vessel 
is subsequently pressurised, the shell stiffens 
and the sling adjusts its position. Therefore the 
form of contact pressure may vary and may not 
be uniform for all cases. The generation of a 
flexibility matrix for the support requires the 
sling to be modelled and the unit load displace- 
ment matrix to be evaluated. This is a 
reasonable approach for a steel saddle where 
the radial and tangential flexibility can be found 
using a beam analogy or by the use of finite 
elements. However, this is made somewhat 
more difficult when a sling is used, as the basic 
stiffness is very low and the sling behaves as a 
cloth material, therefore allowing the vessel to 
deform in such a manner that the problem may 
become non-linear. The sling is able to carry a 
significant load when in tension but less in 
bending. However the greater the tension, the 
stiffer the sling. 

Although Erzingatzian et al. [11], proposed 
an iterative method using finite element analysis 
to determine the reaction forces at the interface 
of a fluid loaded, filament wound, fibre rein- 
forced plastic pipe resting on twin rigid saddles, 
there are some drawbacks with his approach. 
This is due to the procedure of repeatedly 
modifying fixed boundary conditions until full 
contact has been achieved. Although the 
method shows qualitative agreement with 
experimental measurements, a quantitative 
solution is still required. In addition, the prob- 
lem of introducing the more flexible support 
remains [12]. 
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FINITE ELEMENT APPROACH USING 
GENERAL CONTACT SURFACES 

A fully parametric finite element model has 
been developed by the present authors [12] to 
address the problem of the difference in com- 
ponent flexibility. In addition, when using this 
approach the contact surface interface pressures 
are evaluated. This system has been used to 
examine the phenomena occurring at the inter- 
face between the vessel and supporting belt. 

Contact elements and contact stiffness 

In order to represent the contact between the 
flexible support and the stiffer shell, the vessel 
and belt are modelled as discrete components 
and 'general surface contact elements' were 
introduced to represent contact and sliding 
between the two mating surfaces in three 
dimensions. The contact elements have five 
nodes with three degrees of freedom at each 
node (see Fig. 1). 

Contact occurs when a contact node pene- 
trates the target base within some tolerance. 
Although  elastic Coulomb  friction  and rigid 

Target 
Component 

Fig. 1. Contact and target surface selection. 

Coulomb friction are allowed, a frictionless 
interface was assumed between the vessel and 
the sling. The interface contact stiffness KN, is 
required as input to the program and can be 
calculated using the relationship 

KN=cxBxh 

where c is a factor that controls contact com- 
patibility, usually between 0.01 and 100 [13], E 
is the smaller Young's modulus when consider- 
ing contact between two different materials, and 
h is the characteristic contact length. In three 
dimensional (3D) configurations, h should be 
equal to a typical contact target length, taken 
here as the square root of the target surface. 

In order to achieve convergence and ensure 
that contact occurs between the two compo- 
nents, one stiff and one flexible, a balance must 
be struck between the chosen contact stiffness 
value and the lower Young's modulus. A con- 
vergence study was undertaken for a two load 
step analysis. Firstly, the sling and shell are 
brought into contact by the use of a fixed dis- 
placement applied to the top of the sling 
denoted as LSI. The second load step is the 
application of gravity to the vessel (LS2). The 
compatibility factor, c, and the belt axial 
Young's modulus EYB were varied and the 
analysis time taken to achieve convergence 
observed. The criteria chosen to measure the 
capability of the model to converge were the 
total number of equilibrium iterations (iter.) 
and the number of bisections (bis.) used by the 
Newton-Raphson algorithm. 

From Table 1, it appears that the belt axial 
Young's modulus EYB does not have much 
influence on analysis convergence. Although the 
third series of tests run with composite shell 
element SHELL91 tends to show the contrary 

Table 1. Convergence test results for composite SHELL91 model 

Number of iterations and bisections 

Values of 
£0(N/mm2) 

Values of c* 

0.01 0.05 0.1 

LSI LS2 LSI LS2 LS 1                     LS2 

bis. iter bis. iter. bis. iter. bis.        iter. bis.        iter.        bis.        iter. 

25000 
20000 
15000 
10000 

5000 

0 
0 
0 
0 
0 

10 
10 
10 
10 
10 

1 
3 
0 
6 
1 

21 
21 
16 
27 
18 

0 
0 
0 
0 
0 

16 
16 
19 
14 
15 

12          46 
_ 

*For 0.1 <c < 100 failed to achieve convergent solutions. 
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revealing convergence failure for values under 
25000N/mm2 at c = 0.1. Concerning the com- 
patibility factor, evidence is that the higher the 
value, the longer it took to achieve converg- 
ence. From c = 0.1 to c = 100, no convergence 
was obtained in any of the cases. Therefore, 
from   the   convergence   study,   the   following 
values of the contact parameters were selected 
for the purposes of carrying out a geometric 
parameter study. 

c = 0.01. This value showed the best results 
and in addition matched with the require- 
ment  of a  smooth  contact  between  the 
vessel and the sling, i.e. a small value for the 
contact stiffness, KN. 

EY_B = 5000 N/mm2, although the results of 
the variation in belt axial stiffness were not 
significant. 

GEOMETRIC PARAMETER STUDY 

A fully-parametric finite element model of an 
orthotropic shell and flexible sling support was 
developed to allow a wide range of geometric 
parameters to be varied. As a result, a large 
number of parameters were involved in the 
model generation. In particular special atten- 
tion was paid to the parameterisation of the 
vessel 'sling zone' where contact occurs between 
the vessel and the belt and its neighbouring 
zone or 'study zone', where maximum strain 
levels were anticipated to occur. 

The data shown in Table 2 were used to 
define both the vessel and the belt models. For 
the vessel, two sets of data are provided refer- 
ring to an isotropic and an orthotropic 
approach to the problem. Indeed, given the 
difficulty of obtaining a converging orthotropic 

model, the isotropic structure was initially 
employed to help understand and implement 
the analysis procedure. Details of the isotropic 
results can be found in Ref. [16]. The informa- 
tion obtained allowed the generation of a 
correct orthotropic model, which was then com- 
pared to the isotropic one. All dimensions 
presented are in millimetres and the reference 
names in parenthesis designate the parameters 
used in the ANSYS program (see Fig. 2.). 

The wrap-round support angle was varied 
from 120° to 180° with an increment of 20°. One 
quarter of the structure was modelled due to 
the presence of two planes of symmetry; thus 
only half of the angle was necessary, varying 
from 60° to 90° with an increment of 10°. The 
vessel density was assumed to equal 2000 kg/m3. 
The properties given in Table 3 correspond to 
those of the orthotropic test vessel. 

The vessel was subjected to a three stage 
loading history. Since the shell and sling are 
modelled as discrete components a fixed dis- 
tance apart, the first load step effectively closes 
the gap and initiates contact. A second load 
step introduces the gravitational acceleration 
vector. This is followed by the third and final 
load step applying the hydrostatic fluid load in 
ten equal increments as used in previous experi- 
mental work [14]. 

RESULTS AND COMPARISONS 

The FE results closely match the experimental 
patterns recorded by Stafford [15]. Maximum 
strains were consistently found near the extrem- 
ities of the supports and located in a 
circumferential orientation irrespective of lay- 

Isotropic vessel 

Orthotropic vessel 

Belt 
Vessel half-length (L) 
Vessel mean radius (R) 
Dished end height (DEH) 
Belt width (W) 
Belt position (POS) 
Study zone beginning (Wl) 
Sling zone beginning (W2) 
Sling zone end (W3) 
Study zone end (W4) 

Table 2. Main geometric parameters and their variations 

Thickness (T_V) 

Outer layer thickness (TT_CSM) 
Middle-surface layer thickness (T_FW) 
Inner layer thickness (TB_CSM) 

Belt thickness (T_B) 
2000 
1016+(rtot/2) = 1021.375 
393 
200 and 400 
500, 750 and 1000 
POS-(1.5xW) 
POS- (0.5 xW) 
POS+(0.5xW) 
POS+(1.5xW) 

10.75 

4.01 
4.57 
2.15 

2.00 
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up and configuration. A typical strain 
distribution is presented in Fig. 3 for a support 
angle of 180°. 

With regard to circumferential strains at the 
point where the sling parts from the vessel the 
strain was found to be substantially lower than 
the saddle support case where the horn strain is 
maximum. However, the maximum outside 
compressive strain has moved to a new location 
some 10-20° before the 'horn'. This strain then 
reverses to a maximum tensile strain again at a 
distance between 10° and 20° after the belt loses 
contact with the vessel, which correlates with 
experimental results. Also, circumferential 
strains on the inside of the vessel were signifi- 
cantly lower than on the outside (see Table 5 
for details of strain values). In addition, strains 

Study zone 
beginning 

Sling zone 
beginning 

Belt 
Sling zone 
end 

Study zone 
end 

obtained at the vessel middle-span were also 
much less than those at the support. These 
results augur well for the sling-supported vessel. 
In particular, they indicate the absence of large 
bending strains, which are damaging at the horn 
of the conventional saddle-supported vessel. 

The following factors are worthy of particular 
note. 
1. The tensile strains are well below the damag- 

ing value of 2000 //e. 
2. The maximum tensile strain occurs on the 

outside of the vessel. This is of significance 

Table 3. (a) Material properties for vessel and sling 

CSM layers (outer and inner) — isotropic 

Young's modulus (E_CSM) 
Poisson's ratios (NU_CSM) 
Shear modulus (G_CSM) 

6160 N/mm2 

0.32 
2330 N/mm2 

FW layer (middle) — orthotropic 

Axial Young's modulus (EX_FW) 
Circumferential Young's modulus 

(EY_FW) 
Major Poisson's ratios (PRXY_FW) 
Minor Poisson's ratios (PRYZFW) 
Shear modulus (GXYJV) 

8270 N/mmz 

38600 N/mm2 

0.26 
0.0557 
4140 N/mm2 

Fig. 2. Main finite element parameters. 

(b) The following properties correspond to those for the 
sling 

Circumferential Young's modulus (EX_B) 125000 N/mm2 

Axial Young's modulus (EY_B) 5000 N/mm2 

Major Poisson's ratio (PRXY_B) 0.3 
Minor Poisson's ratio (PRYZJB) 0.06 

ANSYS   5.1        32 
OCT     4   199 6 
12:22:27 
PLOT NO.        1 
NODAL  SOLUTION 
STEP=12 
SUB   =2 
TIME=19810 
EPTOY (AVG) 
TOP 
LAYR=3 
RSYS=1 
DHX  =29.847 
SMN  =-0.001792 
SMX  =0.001213 
^      -0.001792 
S      -0.001458 
S      -0.001124 
5      -0.790E-03 
S      -0.456E-03 
HI      -0.123E-03 
r=i      0.211E-03 
g§H      0.545E-03 
E9      0.879E-03 
™"      0.001213 

Outside  circumferential   strain   -   180   snpport  anale I  

Fig. 3. Outside circumferential strain distribution for 180° sling for orthotropic vessel. 
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Ref-dense 
Ang-80 
Ang-70 
Ang-60 
Pos-1000 
Pos-500 
Width-400 

Table 5. Maximum circumferential strains for orthotropic models (/i«) 

Maximum Compressive strain Maximum Tensile strain 

Outer Inner Outer Inner 
1792 
2445 
2153 
2255 
2009 
1907 
1371 

924 
929 
944 
1023 
913 
889 
738 

1213 
1293 
1316 
1432 
1292 
1075 
1032 

626 
680 
728 
792 
704 
555 
511 

*Note: Locations of these maximum vary — see text and Appendix. 

when corrosive liquid is being stored. In the 
limit, some damage could be sustainable on 
the outside. The problem with strains 
exceeding the design limitation internally is 
the possibility of ingress of hazardous 
material into the glass fibre reinforcement 
thus initiating stress corrosion cracking. For 
the 180° support angle, the maximum inner 
tensile strain is 626 fie thus giving a fair mar- 
gin of safety. 

3. The compressive values are hovering near 
the 2000 fie level. However, a value slightly in 
excdss of this should not be considered a 
major problem, especially when severe strain 
gradients are not involved. The possibility of 
micro-buckling has, however, always to be 
borne in mind. 

The   above   results   gave   confidence   in   the 
method and the following parameter study was 
thus initiated. 

PARAMETER STUDY RESULTS 

Table 4 describes the variation in geometric 
parameters shown in Table 2, and associates a 
reference code which was used when undertak- 
ing the orthotropic analysis model defined 
earlier. 

In general terms it is noted, from Table 5, 
that the overall data recorded for circumfer- 
ential compressive strains are very close to the 
design limit of 2000 pe given by BS 4994 and 
even exceeded it in the 120°, 140° and 160° 
angle support cases. However, it should be 
remembered (as indicated above) that the limit 
is based on a tensile strain consideration. Com- 
pressive strain values are generally permitted to 
go a little higher. Strain plots are shown in 
Appendix A. These describe the variation in 
outside circumferential strain with varying geo- 
metric parameters and also indicate the 
locations for the maximum compressive and 
maximum tensile strain, denoted MN and MX, 
respectively, on the plots. 

Concerning the displacements, Table 6 gives 
details of the displacements at the central pro- 
file and Fig. 4 presents three different views of 
the vessel deformed shape. The overall sagging 
of the vessel at its centre can easily be seen on 
the front view. In the bottom view, the effect of 
the sling can also be noted. It creates a slight 
inflexion on the vessel generating tensile strains. 
The section view reveals interesting information 
about the belt action on the vessel and its con- 
sequences. It clearly shows that the vessel 
constrained by its sling support can only expand 

Table 6. Maximum displacements for orthotropic models 
(mm) 

* 
7pnirh Nadir 

displacement 
Difference Support angle Belt Belt Mesh displacement 

V x ALPHA) location width density at central at central 

180° 

(POS) (W) 

dense 

profile profile 
Ref-dense Ref-dense 26.4 29.8 34 Ang-80 160° 750 Ang-80 21.8 33.1 11.3 Ang-70 140° 200 Ang-70 17.4 31.2 13.8 Ang-60 120° dense Ang-60 16.7 34.4 17 7 Pos-1000 1000 Pos-1000 30.4 33.7 33 Pos-500 180° 500 Pos-500 21.6 25.0 34 Width-400 750 400 Width-400 23.3 24.6 1.3 
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above the horn. This explains compressive 
strains where contact exists and tensile strains 
where the belt parts from the vessel, giving a 
virtually zero strain transition zone at the horn. 

Considering the variation in geometric para- 
meters, the following comments are made. With 
respect to support angle, the experimental data 
did not show significant variation in results for 
different support angle The FEA results how- 
ever show a slight increase in the maximum 
strain as the support angle was reduced. Never- 
theless, these strain variations remain far less 
than those recorded with a saddle arrangement 
at the same point. 

Moving the sling from its initial position, i.e. 
750 mm from the edge of the vessel cylindrical 
shell, did not result in major differences in any 
of the strains In general, a variation between 
— 100 fie and +200 fie for the strains relative to 
the 750 mm location was observed; this with the 
same maximum displacement at the central pro- 
file. The strain difference may be due in part to 

the compact dimensions of the vessel under 
examination (length: 4 m; diameter: 2 m) which 
minimises bending effects on the vessel shell 
itself and thus the significance of the sling loca- 
tion. However, the results show that the closer 
the belt is to the vessel ends, the lower the 
strains and displacements, which is certainly 
due to the natural stiffness of the vessel ends. 

The variation in sling width from twice the 
original dimension showed interesting reduc- 
tions both on strain and displacement figures. 
In the circumferential direction, compressive 
strains (the larger values) were reduced by 
about 25% and to a lesser extent tensile strains 
by around 15%. In the axial direction, a signifi- 
cant reduction was obtained with values 12% 
lower (peak value at 27%) for compressive 
strains and between 5 and 10% for the tensile 
strains. From a displacement point of view, 
results were again encouraging, with a reduction 
of 62% in maximum deflection at the central 
profile. 

Fig. 4. Typical vessel deformed shape. 
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CONCLUSIONS 

Comparisons between the present analysis and 
published experimental results [14,15] show 
reasonable agreement. However, the finite ele- 
ment models produce results consistently higher 
than those measured experimentally. This 
points towards a useful design tool. Examina- 
tion of the deformed shapes of the models 
indicates the effectiveness of the system in 
offering a smooth contact interface. The model 
also presented an insight into the sensitivity of 
the system to sling stiffness and constraint 
condition. 

The parameter study showed some 
behavioural similarities to the conventional 
saddle support. Large wrap round angles 
proved slightly beneficial and locating the sling 
near the end of the vessel ensured additional 
support was achieved; this resulting in lower 
strain levels. Increasing the width of the sling 
showed the greatest benefit with, in some cases, 
a 25% reduction resulting. 

Perhaps the most significant conclusion is the 
lack of large bending effects, which are nor- 
mally present in the case of the saddle support 
vessel (the most common method of support). 
In addition, the tensile strains are significantly 
lower than the compressive values. Since the 
tensile strains are the most damaging, this leads 
to promising possibilities. 

While further work on more general cases is 
still required, the present treatment indicates 
potential for the sling-supported method. 
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APPENDIX 

The Figs 5-12 contained in this Appendix show the variation in circumferential strain (e) on the 
outside surface of the vessel. Figure Al represents the original position. Figures 6-11 show the 
variation in wrapround angle, sling width and sling position. 
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The Second International Conference 
On Composites In Infrastructure 

Short Course: January 3 - 4 1998 
Conference: January 5-7 1998 

Tucson, Arizona 

Organized by 

The National Science Foundation 
and 

The University of Arizona 

The Second International Conference on Composites in Infrastructure (ICCI '98) will be held in Sheraton El 
Conquistador Resort in Tucson in January 1998. Following a format similar to the first conference, a short 
course of Design and Retrofit of Structures with Composites will be offered on Saturday and Sunday (January 
3-4, 1998). Once again, the course will be taught by a team of experts and will cover a wide range of topics 
for design of new structures and repair and strengthening of existing structural elements. 

The conference will begin on Monday morning and will end on Wednesday (January 5 - 7, 1998). In addition 
to the increased number of research investigation on composites, the last couple of years have witnessed 
significant growth in field application of composites. Once again, ICCI will provide a broad-based forum for 
discussion of many subjects related to the use of composite materials in civil engineering construction. 
Participants are expected to include researchers, representatives from government and regulatory agencies, 
practising engineers and architects, contractors, and composites manufacturers. 

Further details from: 
Engineering Professional Development 

The University of Arizona 
1224 N. Vine Avenue 

Tucson, AZ 85719-4552 USA 

Tel: (520)621-3054 
Fax: (520)621-1443 

Email: epd@engr.arizona.edu 

Also please consult the conference website at http://engr.arizona.edu/~icci/ 
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EUROPEAN CONFERENCE ON COMPOSITE MATERIALS 

SCIENCE, TECHNOLOGIES and APPLICATIONS 

3 -6   JUNE   1998 

NAPLES, ITALY 

The ECCM series started in the early 1980s and conferences have so far been held in France, the 
United Kingdom and Germany. Organised by the Centra Materiali Compositi and the European 
Association for Composite Materials, ECCM-8 will take place in Naples, Italy and will consist 
of Symposia covering selected areas of the Science, Technology and Applications of composites: 

Symposium 1: Composites in Construction 
Symposium 2: Composites in Biomedical Applications 
Symposium 3: High Temperature and Metal Matrix Composites 
Symposium 4: Marine, Aerospace Automotive and Rail Applications 
Symposium 5: Composites: New Basic Concepts 
Symposium 6: Testing, Design, Damage, Tolerance, NDT 
Symposium 7: Cost/Reliability Ratio: Innovations in Fabrication 
Symposium 8: Fibres and Textiles 

There will also be a EU workshop on Industrial and Materials Technologies (BRITE-EURAM) 
and a NATO workshop on Innovations on Technologies. 

For further details, please contact: 

ECCM-8 Conference Secretariat 
DIMP-University of Naples 
Piazzale V. Tecchio 
80125 Naples 

Tel:+ 39 817682366/70/73 
Fax: + 39 81 7614212/7682362 

Email: crivisco@unina.it 

The Conference also has a website at http://www.eccm98.etruria.net for continuous updating. 



ANNOUNCEMENT 

On 16 July 1997, during the 11th International Conference on Composite 
Materials (ICCM-11) in Gold Coast, Australia, an inaugural meeting was held 
to promote the formation of the Asian-Australasian Association for Composite 
Materials (AAACM). Delegates from member countries, including Australia, 
China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, New Zealand, 

Singapore, Taiwan, Vietnam were invited, and 16 representatives 
attended the meeting. 

The formation of the AAACM was unanimously agreed and the following 
inaugural Executive Members were elected: 

President: 
Vice-President: 
General Secretary: 

Professor Y.-W. Mai, University of Sydney, Australia 
Professor M. Zako, University of Osaka, Japan 
Assoc. Professor J.-K. Kim, Hong Kong University of 
Science and Technology, Hong Kong 

The aims of the AAACM are: 

• to aid the advancement and dissemination of knowledge and 
technology in composite materials in general; 

• to encourage and foster research and development collaborations 
between the composite communities of the member countries and elsewhere; 

• to sponsor conferences, workshops and other scientific/technical 
activities among member countries. 

It was also decided that the First Asian-Australasian Conference on 
Composite Materials (AACCM-1) would be organized by the Vice-President, 

Prof. M. Zako, in Osaka, Japan, in October 1998. The first Call-for-Papers 
announcement will be made as soon as the Organizing Committee was formed. 

For further information: 
Assoc. Prof. J.K. Kim, General Secretary-AAACM, 

Hong Kong University of Science & Technology 
Department of Mechanical Engineering, Clear Water Bay, Kowloon, Hong Kong 
Phone: +852 2358 7202; Fax: +852 2358 1543; E-mail: mejkkim@usthk.ust.hk 
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