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FINAL LETTER CONTRACT REPORT

Contract N00014-89-0025

Principal Investigator: Georges L. CHAHINE

a Foreword

This report contains copies or reprints of publications made under contract No. N00014-89-
C-0025 funded by the Office of Naval Research, Fluid Dynamics Program under the technical
monitoring of Dr. Edwin Rood.

It is intended to document the technical achievements accomplished under this contract. In
reverse order of dates, the following documents are included:

1. G.L. CHAHINE, "Bubble Dynamics and Cavitation Inception in Non-Uniform Flow Fields,"
to appear in Proceedings of the Twentieth ONR Symposium on Naval Hydrodynamics",

Santa Barbara, CA, August 1994..

2. G.L. CHAIIINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN,

ed., to be published by Kluwer Academic, 1994.

3. G.L. CHAHINE, "Cavitation Dynamics at Microscale Level," Journal of Heart Valve
Disease, vol. 3, 1993.

4. G. DESGRESS DU Lou, T. SARAZIN, AND G.L. CHAHINE, "Viscous Interaction Between
Bubble and Line Vortex," DYNAFLOW, INC. Technical Report, 6.002.5, 1993.

5. Y.L. GUERRIEIt, "Thc Motion or a Spherical Body Below a Free Surface," DYNAFLOW,

INC. Technical Report, 6.002-14, 1993.

6. A. VAN DER BEKEN, R. DuRASWAMI, AND G.L. CHARINE,"Study of Jet Instability
Formation on Free Surfaces," DYNAFLOW, INC. Technical Report, 6-002-13, 1993.
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7. S. ZHANG, J. DUNCAN, AND G.L. CHAHINE, "The Final Stage of the Collapse of a

Cavitation Bubble Near a Rigid Wall," J. Fluid Mech., vol. 257, 1993.

8. G. L. CHAHINE, E. DELEPOULLE, AND P. HAUWAERT, "Study of the Interaction Be-

tween a Bubble and a Vortical Structure," Proceedings Cavitation and Multiphase Flow

Forum, New York, 1993.

9. M. REBUT AND G.L. CHAHIuI 4k.--'-ptotic Study of Bubble Dynamics in a Nonuni-

form Potential Flow," in Proceead..gs, A. 1,ME Cavitation and Multiphnse Flow Forum, Los

Angeles, 1992.

10. R.DURAISWAMI AND G.L. CHAHINE, "Analytical study of the interaction a gas bubble

and a line vortex," in Proceedings ASME Cavitatiwa and Multiphase Flow Forum, Los

Angeles, 1992.

11. G.L. CHAHINE, R. DURAISWAMI, AND M. REBUT, "Analytical and Numerical Study

of Large Bubble/Bubble and Bubble/Flow Interactions," Proceeding.s of the Nineteenth

ONR Symposium on Naval Hydrodynamics", Seoul, S. Korea, 1992.

12. J.B. VILLE AND G.L. COAHINE, "Asymptotic Study of Bubble Dynamis in a Slightly

Compressible flow," DYNAFLOW, INC. Technical Report, 6.002.-12, 1992.

13. L. MAUDUIT AND G.L. CHAHINE, "Asymptotic Study of Bubble Cloud Dynamics in the

Proximity of a Body in Potential Flow," DYNAFLOW, INC. Technical Report, 6.002.11,

1992.

14. G.L. CHAHINE, R. DURAISWAMI, AND A.N. LAKSHMINARASIMHA, "Dynamical Inter-

actions in a Bubble Cloud," ASME J. Fluids Engg., vol. 114, 1992.

15. G.L. CHAHINE, "Dynamics of the Interaction of Non-Spherical Cavities," in 'Mathemat-

ical Approaches in Hydrodynamics, (ed. T. Miloh), SIAM, PHILADELPHIA, PP. 51-67,

1991. Accesion For

NTIS CRA&I
DTIC TAB
Unannounced ul
Justification
By .. .

Distribution I
Availability Codes

Avail and I orDist Special

N uI tll iiRII|I



DYNAFLOW, Inc. - 88001-Final Repart - 3

b Summary

The primary focus of the work conducted under this contract is the investigation of the mech-
anism of interaction between bubbles and underlying flows, and of the mutual interaction of
bubbles. The tools developed and the knowledge gained will be useful to us and other re-
searchers and engineers to model and understand the problem of cavitation inception in various
circumstances. This is of relevance to Navy applications where cavitation and bubble dynamics
can generate noise, adversely affect the flow, or negatively impact on the performance. Our
main emphasis during this research program was to develop a description of the dynamics of
strong interactions on the microscale level (the dynamics of bubble nuclei) and its implications
on the macroscale level (cavitation inception, emitted noise).

Since the fine and precise modeling of the overall phenomenon of cavitation is very compli-
cated, and understanding of many of its aspects has confounded scientists and engineers, we
concentrated attention on some relatively simple but practically important flow situations, so
that the basic physics of the problem could be understood. This understanding of the fun-
damental mechanisms is essentýiil to the understanding of more complicated flows involving
bubbles, and allow one to justify or discount assumptions made in other studies of more com-
plex flow situations. We have sought to achieve this goal by using numerical, analytical, and
experimental methods.

Tools which we used and/or developed in this study, and in the computer programs that
have resulted, are based on Matched Asymptotic expansions, axisymmetric and 3-D Boundary
Element Methods (BEM) , and Vortex Element Methods. In addition, in order to study viscous
flow / bubble interactions a simple finite difference code coupled with a Runge-Kutta model
was developed for the axisymmetric problem of bubble / vortex viscous flow interaction.

In this letter report we will not go into the details of our results. These are described in the
various publications (listed in Appendix A) that arose from work on this contract (copies of
the most relevant publications are attached). Instead we will concentrate here on some aspects
of the results, and their implications on future fundamental and/or numerical work and on
applications.
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c Bubble Flow Interaction

This section relates to the dynamics of bubble nuclei (cavitation inception) in boundary layers,
shear layers and in vortex flows. After developing the method of approach, particular attention
was given to bubble behavior in vortical flows and close to a boundaries. In all cases sin-

gle and multiple bubble dynamics were considered. Whenever possible comparison was made

with existing experimental evidence or with small scale experiments conducted in parallel at

DYNAFLOW. Specific areas which we have addressed are:

* Interaction between multiple bubbles (cloud cavitation)

* Influence of shear and vortical flows on single and multiple bubbles (cavitation in-

ception in boundary layers and trailing vortices)

* The description of large bubble deformation near a submerged body (bubble dynam-

ics near head forms, also applicable to underwater explosion bubble dynamics)

o Development of an asymptotic model of a cavitating bubbly flow.

o Bubble capture and behavior in a vortex flow (bubble capture, cavitation, and vortex

flow modification)

c.1 Bubbles in vortex line-flow

c.1.1 Bubble capture and deformation in a line vortex flow

To study bubble capture and interaction with the viscous flow field of a vortex line or a vortex

ring, a model where the interaction is restricted to the constraint that no additional vorticity

is generated by the bubble dynamics led to the following results:

1. Criteria for bubble capture, and for large bubble deformations during bubble interaction
with a vortex line flow were obtained.

2. Two key parameters on the bubble / vortex interaction appear to be the ratio between

bubble size and "viscous coreW size, and the ratio between ambient pressure and the

pressure drop at the vortex center due to the circulation in the vortex.

....
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3. Prior to bubble capture by the vortex and its centering on the vortex axis, the strongest
shear effects on the bubble occur in the region close the vortex core edge.

4. During strong bubble dynamics (as in cavitation inception conditions) bubble deviation
from spherical shape during bubble growth can be very significant, leading eventually to
jet formation and bubble splitting, and thus to sound emission very close to the inception
region.

5. In strong vortices, such as in a tip vortex, deviation from sphericity occurs even for the
smallest conceivable bubble sizes.

6. Once the bubble is on the axis, it tends to elongate significantly if the ratio between its
characteristic size and the viscous core radius is large. It then tends to subdivide into a
string of elongated bubbles along the axis.

7. The model was extended to the case of multiple bubbles in the vortex flow, and was able
to capture both inter-bubble and bubble-flow interactions.

Extension to a two-phase flow field

With a view towards large scale bubble flow simulations, the above approach was implemented
in an asymptotic approach which has the advantage of being much less constraining compu-
tationally both on time and memory, at the expense of restraining solutions to small bubble
deformations. The method of matched asymptotic expansions was used, the small parameter e

in these expansions being the ratio of the original bubble radius and the distance between the
bubble and the nearest line vortex. Analytical developments up to and including 0(e 2) were

made. The results were then expressed in terms of a series of ordinary differential equations
(in time) for the coefficients of the bubble shape function (in terms of spherical harmonics).

Experimental validation

A series of experiments on the interaction of spark generated bubbles and cavitating and non-

cavitating vortex rings was performed in order to confront the codes. A vortex ring was gen-
erated in a Plexiglas chamber maintained at pressures below the ambient. A spark generated
bubble was formed at various distances away from the ring, and high speed movies,video record-
ings and transient pressures in the liquid were recorded. A series of numerical simulations were
also performed with the BEM program in the same conditions and showed better than expected

0m
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agreement with the experiment despite the modeling assumptions of inviscid liquid away from

a thin viscous core, and despite neglect of vortex ring behavior modification due to the presence

of the bubble.

c.1.2 Elongated bubble full interaction with a viscous line vortex flow

As a first step towards a full bubble / viscous flow interaction study, the following simplified

problem of cavitation inception in a line vortex was addressed. The dynamics of an infinitely

elongated (cylindrical) bubble was considered in a vortex line flow field. The Navier Stokes

equations were then solved in this axisymmetric two-dimensional case. The bubble dynamics
was obtained in terms of a second order differential equation, similar to the Rayleigh Plesset,

but which is restricted to a cylindrical geometry, and contains a term which is an integral of

the angular velocities in the flow. This term constitutes the coupling with the viscous flow.

The viscous flow is then obtained, using a finite difference scheme, by resolution of a diffusion

equation (reduced NS equations) whose coefficients depend on the bubble characteristics. The

results of this study are as follows:

1. Starting from an imposed Rankine vortex flow field (sharp change in the slope of theS velocity profile, Oue/Or, b'eween the viscous and the inviscid parts), one observes that a

smoother profile is rapidly established.

2. The position, r,, and the amplitude of maximum tangential velocity, ue,=, strongly

depend on the bubble dynamics:

- r0 increases during the bubble growth and significantly decreases during collapse.

- u*,,- decreases during the bubble growth, and significantly increases during

collapse.

3. Vorticity concentrates near the axis, stretches during bubble collapse, and decays and

diffuses with time and during bubble growth due to viscous diffusion.

4. This results in a moderated bubble collapse and growth (compared to the idealized case
where the viscous basic flow is assumed independent of time) when viscous effects are

fully accounted for in the bubble/flow interactions.

S
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I
c.2 Bubble behavior in a shear layer near a flat plate

c.2.1 Asymptotic Analysis

During this contract we have studied bubbles in shear flows by means of the method of matched

asymptotic expansions, and by means of BEM simulations. A treatment of the behavior of a
bubble in a general potential flow was developed, under the assumption that the bubble size
was smaller than the characteristic length scale associated with the external flow. Equations
up to and including the O(C2) were developed.

The resulting equations were then specialized for the case of the flow past a semi-infinite
bluff body (the Schiebe half body). The equations obtained were then integrated, and showed

some interesting features. The formation of the reentrant jet was shown to be due to both a
combination of the presence of the wall and of the shear flow. In fact, the presence of the wall
(in terms of an image of the bubble) does not appear but at order e2, the main effect of the

wall at the leading order being its imposition of a shear velocity field.

c.2.2 Numrurical Simulation

A systematic numerical study of bubble behavior near a flat plate was conducted, using high
definition bubble discretization. This showed interesting results on bubble behavior during its

growth and collapse near a wall. For an increasing ratio, r, between the shear flow velocity at
the bubble center level (shear flow is zero at wall and increases linearly away from it) and the

bubble characteristic Rayleigl velocity the following is observed:

1. For increased values of r, the bubble deforms and elongates more and more during its

growth.

2. For small values of r, the re-entering jet deviates from the perpendicular direction to the

plate with increasing values of r.

3. For larger values of r, the re-entering jet formation is totally modified and the bubble

tends to cut itself into two bubbles.

4. An interesting lifting effect is observed with increasing values of r. The bubble centroid
is seen to move further and further away from the wall with increasing values of r. This
is probably due to an interaction between the wall shear flow and the effective rotation

of the bubble with time.

I
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c.3 Multiple Bubble Dynamics

The focus of our study on multiple bubble dynamics has been both computational and analyt-

ical. The computational part of the study involved the simulation of various multiple bubble
dynamics problems. Full simulations of clouds subject to step changes in the pressure were per-
formed. The BEM simulations were compared with the predictions of an analytical treatment

based on the method of matched asymptotic expansions, with the small parameter chosen to
be the ratio of characteristic bubble size and characteristic inter-bubble distance. As would be

expected, the two methods predict similar solutions for small values of e, but diverge when the
value of e is increased. These comparisons serve to provide a means of mutual validation of the

analytical technique and the numerical algorithm. A series of numerical experiments were then
performed to bring out various features of the dynamics of bubbles. The following conclusions

were brought out.

1. Multibubble effects result in a cumulative pressure build-up.

2. Pressure much higher than due to summation of the pressures due to the individual

bubbles are obtained. However, overestimates of these pressures are obtained with the

asymptotic approach. "-

3. While growth of a cloud of very close bubbles does not deviate much from the case of

weak interactions, collapse of a cloud proceeds in a very directive way. Bubbles on the

outer shell of a cloud collapse first, leading to a propagation of the collapse front towards

the inside of the cloud.

4. Most striking are screening influences of the bubbles - outer members of the cloud respond

in a manner markedly different from the ones on the inside of the cloud.

An asymptotic analysis was also performed to study the effect of compressibility on the

dynamics of a bubble cloud. This analysis, similar to that used by other workers to study

single spherical bubble dynamics, replaces the Rayleigh-Plesset equation by a Keller-Herring

(or other compressible equations). However, the analysis is complicated by the appearance of

two small parameters - the Mach number and the ratio e of typical bubble size to inter bubble

distance. Corrections due to the compressibility were obtained. The analysis was performed

up to e3, and for the first order in Mach number.
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d A New BEM Technique for Study of Liquid-Liquid

Impact

While the BEM programs developed during the conduct of this study are much more effi-
cient than other methods used to simulate free surface problems, they suffered from a major
breakdown when the bubble surface became multi-connected (penetration and touchdown of
a re-entering jet). This affected for instance our simulations in the case of strong interac-

tions between multiple bubbles. In this case, the validity of the simulation is controlled by the
shortest period of the bubbles in the cloud. As soon as the shape of that bubble becomes multi-
connected the method fails and the computation stops. Thus a key extension of the simulations,

is determining the bubble dynamics beyond the point where bubble splitting, or reentrant jet
penetration and touch-down occurs. This is also interesting because the collapsing bubbles are
themselves capable of forming vortical structures following the non spherical collapse. This issue
is one of both practical and theoretical significance. Practically, these structures appear to be
associated with cavitation damage. Fundamentally, this highlights a mechanism by which a
flow that starts off being potential is later on able to develop vorticity by the collapse of various

pieces of the boundary onto each other.

Equations for the further flow were developed. The key feature of the methods is that
the surfaces formed by the touching parts of the bubble are treated as material vortex sheets.
This enables us to treat the problem with the boundary element method. A BEM program
capable of simulating bubble collapse past the touchdown point for axisymmetric geometries
was developed. This technique is presently being implemented in the 3-D code.

e BEM algorithm improvement for free-surface flow

Since the BEM programs developed deal essentially with the large deformation of free surfaces
(here mainly bubble interfaces), these same codes can be used after some adjustments to more
conventional free surface flows. During this contract, we applied these technique to study high

velocity jets that develop from the movement of a free surface suddenly generated when the
bottom of an empty cylinder open at both end is suddenly raised from the bottom of a container
full of water. The results correlated reasonably well with those observed experimentally using
high speed photography. Similarly, the flow due to a droplet impact on a free surface and to
bubble dynamics below a free surface were studied in small students projects.
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f Conclusions and Future Plans

The above described work forms the basis of our on-going develo.pment of a powerful free surface
large nonlinear motion codes including vortical effects and two-phase flows. By combining all
the various tools described above, a large simulation code to run on supercomputers or parallel
machines is now conceivable. Most of the fundamental issues have been worked out under
this contract and other IR&D parallel efforts. Similarly, we are presently coupling a Vortex
Element Method with the BEM codes described above to study vortical flows / bubbly flows
interactions. We are also coupling our BEM code with a finite element (shell) method provided
by Laurence Livermore National Laboratories to study fluid structure interaction. We hope
to be able to achieve such a useful tool in the near future, in order to take advantage of the
ever-improving hardware computational capabilitia.

A List of Publications

1 Papers Published in Refereed Journals

1. G.L. CHAHINE AND R.-.DURAnSWAMI "Dynamical Interactions in a Bubble Cloud,"
ASME J. Fluids Engg., vol. 114, pp. 680-686, (1992).

2. G.L. CHAHINE, G.S. FREDERICK, AND R.D. BATEMAN, "Propeller Tip Vortex Cavi-
tation Suppression Using Selective Polymer Injections," ASME J. Fluids Engg., vol. 115,

(1993).

3. S. ZHANG, J. DUNCAN AND G.L. CHAHINE, "Dynamics of a bubble past the point of
collapse," J. Fluid Mech., vol. 257, pp. 147-181, (1993).

4. G.L. CHAHINE, "Cavitation Dynamics at Microscale Level," Journal of Heart Valve
Disease, vol. 3, (1993).

2 Books, or Chapters of Books

1. G.L. CHAHINE, "Dynamics of the interaction of non-spherical Cavities," in "Mathemat-
ical Approaches in Hydrodynamics," (ed. T.MImoH), SIAM, Philadelphia, pp. 51-67,

(1991).
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2. G.L. CHAHINE, "Bubble Interactions with Vortices," in "Vortex Flows," S. GREEN,

ed., to be published by Klttwer Academic, (1993).

3. G.L. CHAHINE, K.M. KALUMUCK, AND R. DuRXwAmi, "Coupling of a Fluids BEM
Code with a Structures FEM code for Fluid Structure Interaction," in "Boundary Ele-
ments 15, Vol.2: Stress Analysis" C.A. BREBBIA AND J.J. RENciS ED., Elsevier Applied

Science, (1993).

4. G.L. CHAHINE, "Dynamique des Bulles Non-Sph~riques," Chapter to appear in " CAV-
ITATION", EDITOR: J.P. FRANC, France (1994).

A.1 Technical Reports, Non Refereed Papers

1. G.L. CHAHINE, R. DURAISWAMI, AND A.N. LAKSHMINARASIMHA, "Dynamical Inter-
actions in a Bubble Cloud," Proceedings ASME Cavitation and Multiphase Flow Forum,

Portland, pp.49-54. 1991

2. G.L. CHAHINE, K. WENK, S. GUPTA, AND P. ELMORE "Bubble Formation Following
0 Drop Impact at a Free Surface," Proceedings ASME Cavitation and Multiphase Flow

Forum, Portland, pp. 63-69. 1991

3. G.L. CHAHINE, G.S. FREDERICK, AND R.D. BATEMAN, "Propeller Tip Vortex Cav-
itation Suppression Using Selective Polymer Injections," DYNAFLOW, INC. Technical

Report 9100L1.

4. M. REBUT AND G.L. CHAHINE "Asymptotic Study of Bubble Dynamics in a Nonuni-
form Potential Flow," in Proceedings, ASME Cavitation and Multiphase Flow Forum, Los

Angeles 1992.

5. R.DURAISWAMI AND G.L. CHAHINE "Analytical study of the interaction a gas bubble
and a line vortex," in Proceedings ASME Cavitation and Multiphase Flow Forum, Los

Angeles, 1992.

6. K. KALUMUCK AND G.L. CHAHINE "Large Reynolds Number Cavitating Vortex Ring

Propagation and Scaling," in Proceedings ASME Cavitation and Multiphase Flow Forum,

Los Angeles, 1992.
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7. S. ZHANG, J. DUNCAN AND G.L. CHAHINE, "Dynamics of a bubble past the point of
collapse," ASME Cavitation and Multiphase Flow Forum, Los Angeles, 1992.

8. R. DURAJSWAMI AND G.L. CHAHINE, "Bubble Nuclei Size Determination via an Inverse
Acoustic Scattering Technique," DYNAFLOW, INC. Technical Report 92004-1.

9. E. DELEPOULLE, and P. HAUWAERT, "Experimental and Numerical Study of the In-
teraction Between a Bubble and a Vortex Ring," DYNAFLOW Technical Report 6.002-10,

1991.

10. L. MAUDUrr and G. L. CHAHINE, "Asymptotic Study of Bubble Cloud Dynamics in a
Slightly Compressible Fluid," DYNAFLOW Technical Report 6.002-11, July 1992.

11. J-B. VILLE AND G.L. CHAHINE, "Asymptotic Study of Bubble Dynamics in the Prox-

imity of a Body in Potential Flow," DYNAFLOW Technical Report 6.002-12, July 1992.

12. M. MORGAN, D. ROQUELET, and G.L. CHAHINE, "Cavitation Bubble Behavior in

Vortical Structures," Technical Report 6.002-13, October 1992.

13. G.L. CHAHINE, R. DURAISWAMI, AND M. REBUT, "Analytical and Numerical Study
of Large Bubble/Bubble and Bubble/Flow Interactions," Nineteenth ONR Symposium on
Naval Hydrodynamics, Seoul, S. Korea"

14. G.L. CHAHINE, G.S. FREDERICK, AND R.D. BATEMAN, "Propeller Tip Vortex Cavita-
tion Suppression Using Selective Polymer Injections," presented at the 2nd International

Symposium on Propeller and Cavitation, Hangzhou, China

15. G. L. CHAHINE AND R. DURAISWAMI, "Boundary Element Method for Calculating f-D
and 3-D Underwater Explosion Bubble Behavior in Free Water and Near Structures,"

NSWC Ship Structures and Protection Department Research and Development Report
NSWCDD/TR-93/44, September 1993.

16. G. L. CHAHINE, E. DELEPOULLE, AND P. HAUWAERT, "Experimental and Numerical
Study of the Interaction Between a Bubble and a Vortex Ring," Proceedings Cavitation
and Multiphase Flow Forum, ed. 0. Furuya, FED vol. 153, ASME, New York, (1993).

17. R. DURAxswAMI, "A Pseudospectral Mapping Technique for the Accurate Simulation
of Viscous Flows in Complex Geometries," NASA Phase I SBIR final report, also Dy-

NAFLOW, INC. Technical Report 93004-Inasa.
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18. R. DuRAISwAMI, C.J. GRAY, AND G.L. CHAHINE, 'A User Manual for the Azsaym-

metric Boundary Element Bubble Dynamics Code 2DYNAFS-PC," DYNAFLOW, INC.

Manual 2DYNAFS-PC-pI, March 1993.

19. R. DURASwAMI, "Bubble Nuclei Measurement via an Inverse Acoustic Scattering Tech-
nique," Proceedings Cavitation and Multiphase Flow Forum, ed. 0. Furuya, FED vol.

153, pp. 67-74, ASME, New York, (1993).

20. K.M. KALUMUCK AND G.L. CHAHINE, "The Influence of Cavitation on Submerged
Water Jet Velocity and Spreading," Proceedings Cavitation and Multiphase Flow Forum,

ed. 0. Furuya, FED vol. 153, ASME, New York, (1993).

21. A VAN DER BEKEN, R. DURIswAMI, AND G.L. CHAHINE,"Study of Jet Instability
Formation on Free Surfaces," DYNAFLOW, INC. Technical Report, 6-00-13, (1993).

A.2 Presentations

1. R. DURAISWAMI AND G.L. CHAHINE, "Multiple Bubble Interactions in a Slightly Com-
pressible Liquid: AsymptQtic Analysis." presented at International Conference on Indus-
trial and Applied Mathematics, Washington D.C. July 1991

2. G.L. CHAHINE AND A.N. LAKSHMINARASIMHA, "Large Free Surface Deformations using
a 3D Boundary Element Method," presented at International Conference on Industrial

and Applied Mathematics, Washington D.C. July 1991.

3. R. DURAISWAMI AND A. PROSPERETTI, "Effective Equations for Sound Propagation
in Fogs," presented at International Conference on Industrial and Applied Mathematics,

Washington D.C. July 1991.

4. G.L. CHAHINE, R. DURAISWAMI, AND A.N. LAKSHMINARASIMHA, "Dynamical Inter-

actions in a Bubble Cloud," ASME Cavitation and Multiphase Flow Forum, Portland,

1991.

5. G.L. CHAHINE, K. WENK, S. GUPTA, AND P. ELMORE "Bubble Formation Following

Drop Impact at a Free Surface," ASME Cavitation and Multiphase Flow Forum, Portland,

1991.
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6. G. L. CHAHINE, E. DELEPOULLE, AND P. HAUWAERT, "Experimental and Numerical

Study of the Interaction Between a Bubble and a Vortex Ring," Proceedings Cavitation
and Multiphase Fow Forum, Washington D.C., June, (1993).

7. R. DURAISWAMI, "Bubble Nuclei Measurement via an Inverse Acoustic Scattering Tech-
nique," Proceedings Cavitation and Multiphase Flow Forum, Washington D.C., June,

(1993).

8. K.M. KALUMUCK AND G.L. CHAHINE, "The Influence of Cavitation on Submerged
Water Jet Velocity and Spreading," Proceedings Cavitation and Multiphase Flow Forum,

Washington D.C., June, (1993).

9. G.L. CHAHINE, K.M. KALUMUCK, AND R. DuRAISWAMI, "Coupling of a Fluids BEM
Code with a Structures FEM code for Fluid IStructure Interaction," Boundary Element
15, Worcester Polytechnic Institute, Worcester, MA, August, (1993).

10. K.M. KALUMUCK, G.L. CHAHINE, AND G.S. FREDERICK,"The Influence of Ambi-
ent Pressure and Nozzle Shape on Submerged Water Jet Velocity and Spreading," 7th
American Water Jet Tecknology Conference, Seattle, August 1993.

11. G.L. CHAHINE, "Bubble Interactions with Shear Flows," IUTAM meeting on Bubble
Dynamics and Interface Phenomena, Birmingham, September 1993.

B Lists of Honors/Awards

1. Dr. Chahine was an organizer of the IUTAM meeting on Bubble Dynamics and Interface
Phenomena, and presented an invited talk. This meeting was held at Birmingham in
September 1993.

2. The Knapp Award for the best paper in Multiphase Flow in the ASME Journal of Fluids
Engineering in 1992, was awarded to Dr. Chahine and Dr. Duraiswami,

3. Dr. Chahine was awarded a travel award by AGARD to lecture in France in 1992, 1993
and 1994.
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BUBBLE DYNAMICS AND CAVITATION INCEPTION IN NON-UNIFORM
FLOW FIELDS

Georges L. Chahine
DYNAFLOW, INC.

7210 Pindell School Road
Fultou, Maryland 20T59

ABSTRACT (d) Explosive growth of bubble clouc- and at-

The study of cavitation inception in non-uniform tached cavities or a vibrating surface.

flow fields requires complez and soplhisticated meth- (e) Sudden appearance of rotating filaments, or vor-
ods. These need to account for the interaction be- tex cavitation.
tween the nuclei and the underlyng flow, oflte in
the neighborhood of walls, is shear layers, in sep.- Upon further scrutiny, all of these forms can be
rated regions., and in turbulent flowfields. Thi paper related to the explosive growth of pre-existing nuc • •
describes our contributions towards the development in the liquid when subjected to pressure drops gener-
of techniques for the study offully 3D bubble/bubble ated by various forms of local pressure disturbances.
and bubble/flow interactions. With the advent of fat These are either acoustically imposed pressure varia-
and aftordable computers such techniques have be. tions, uniform pressure drops due to local liquid ac-
come more and more practical, and can be effectively celerations, or strongly non-uniform pressure fields
used as tools for the description of large scale bub, due to streamwise or transverse large vortical struc-
ble/vortical flow field interaction simulations. tures. The presence of nuclei or weak spots in the

liquid is therefore, essential for cavitation inception
INTRODUCTION to occur. Indeed, a pure liquid free of nuclei can

sustain very large tensions, in the hundreds of auno-
In order to achieve a cavitaion free design of a spheres, before a cavity can be generated through

submerged body such as a propeller, or to test a separation of the liquid molecules. Any fundamen-
scale model in a laboratory environment, it is nec- tal analysis of cavitation inception has to start from
essary to establish criteria for cavitation inception the observation that, any real liquid contains nuclei
and to define scaling parameters between models which when subjected to variations in the local ambi-
and full scale. The traditional cavitation number ent pressure will respond dynamically by oscillating
based on the engineering definition of cavitation in- and eventually growing explosively (i.e. cavitate).
ception: a liquid flow experiences cavitation if the In mot real flow conditions which involve non-
local pressure drops below the liquid vapor Fressure uniform flow fields the conditions leading to cavi-
is obviously not always adequate. A large number of tation inception involve subjection of the cavitation
studies over the years have aimed to replace this cri- nuclei not only to significant pressure drops, but also
terion with a more adequate one based on spherical to equally significant pressure and/or velocity gradi-
bubble dynamics, following introduction of the con- ents. The spherical model, despite all the help it
cept of critical pressure to replace vapor pressure. In has provided over the years, fails to address these
fact, cavitation very seldom occurs under the format conditions because it assummes that the bubble fo-
of spherical bubble growth and collapse. Cavitation Iows the flow, and that its sm remains smaller than
inception appears in several forms [1, 2], the most the length scales of the pressure and velocity fluctua-
recognised being : tions. However, detailed and precise observations of

flow fields in even the most simplified flow conditions
(a) Exploive growth of individual bubbles, (hemispherical body, simple two-dimensiona blades,
(b) Sudden appearance of transient cavities or linear tip vortices, vortex rings, submerged jets, etc.)

"flashes" on boundaries, show that the velocity and pressure fluctuatios in
these flow fields are on the scale of strong eddies

(c) Sudden appearance of attached partial cavities, of the same size as the microbubbles present in the
or sheet cavities, liquid. These observations gain further importance



when one notices that all laboratory scale model ex- Let us then define the bubble flow velocity and
periments are inevitably done under conditions in pressure variables, Vb and P&, as follows:
which the eddies and the bubbles are not scaled in
the same proportions (if bubbles are scaled at all). Vb = V - V., PA = P - P.- (3)
The study of bubble dynamics in non-uniform flow
fields then stands out as being as fundamental and We now consider the case where, because we are
important as spherical bubbles have been for the interested in cavitation bubbles with high but sub-
past decades. sonic bubble wall velocities, the "bubble flow* field

In this paper we describe our efforts towards the is potential.

understanding of this problem and complement our Vb = 74,, = 0, (4)
contribution at the previous symposium (3]. To do so
we consider three fundamental problems of relevance We now subtract (1) from (2) accounting for (4)
to real flow field configurations: I. bubble dynam- to obtain
ics in the boundary layer of a fiat wall, 2. bubble
dynamics in the boundary layer of a head-form, and V = Vb x (V x V.), (5)
3. Bubble dynamics in a vortical flow field. This
should enable one to deduce criteria for cavitation Aj = -s.- + V 2 ++
inception accounting for large bubble deformation P-+2 Vb +V.•VJ,+ p (6)

and splitting. In addition, in the case of the bub- This equation, once integrated, is to replace the
ble dynamics in a vortex flow, we present schemes to classical unsteady Bernoulli equation.
model flow modification by the bubble dynamics. The assumption of potential "bubble flow' may

imply that no new vorticity can be generated by the
SOLUTION METHOD bubble behavior with the chosen model. However, if

One of the numerical methods that has proven to we allow the basic flow to interact with the bubble

be very efficient in solving the types of free bound- dynamics and be modified by it in a unrestricted

ary problems associated with bubble dynamics is and rotational manner, as done later below, we can

the Boundary Element Method. Several investiga recover generation and modification of vorticity by

tors [4, 5, 6, 71 used this method in the solution of the presence and dynamics of the bubble.

axisymmetric problems of bubble growth and cl- For the particular cases considered in this paper,

lapse near boundaries. This method was extended the following integrations can be made. In the case of
to three-dimensional bubble dynamics problems by a flat wall boundary layer flow such that all velocity
tohreetdimensal. bubbl].We dynamics peret mobelem b vectors are parallel to the wall, and depend only on
Chahine ei @1. [8, 9]. We describe here the model, the distance to the wall, V, = fe(z).e., where e.

then apply it to various cases of bubbles in a vorti- is the uitaveto the flow direction, and e, is

cal flow. More analytical methods such as those we the unit vector in the direction perpendicular to the

presented at the previous ONR Symposium [3], give wall, Equation (6) becomes:

very good insight into the dynamics but are limited

to small bubble/flow field interactions.

SP = constant in the e. direction. (7)Statement of the problem

Let us consider the dynamics of bubbles oilla For the case where the basic flow field is composed ofLetuscosierth dnaicsofbubls sclltig linear vortices of axis direction, ez, V. = V. .ee, with
in a non-uniform flow field ("basic flour) of velocity v orth e tanenia vec tion ( bomes:

V. that is known (or determined by the problem so- V# the tangential velocity, Equation (6) becomes:

lution) and which satisfies the incompressible Navier
Stokes equations: 9 = constant in the e, direction . (8)

--A--+ V0. VV. = -jVpo ,vv 1
p v + "V2 V, Bubble Flow Equations

Without any additional assumptions, in the As stated above, we consider the cases where the
presence of oscillating bubbles the resulting velocity presence of bubbles in the flow has significant effects,
field, given by V, also satisfies the incompressible that is cases where bubble volume variations are not
Navier Stokes equation: negligible. This implies large but subsonic bubble

wV Wall velocities. Therefore, we consider a bubble flou
+•-+V. = -Vp +vV2V. (2) that is potential.
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The solution must satisfy initial conditions and the domain of the fluid (field points P) if the ve-
boundary conditions at infinity, at the bubbles wall locity potential, Ob , and its normal derivatives are
and at the boundaries of any nearby bodies. At all known on the fluid boundaries (points M),
moving or fixed surfaces (such as a bubble surface or

-- a nearby boundary) an identity between fluid veloci- , _
ties normal to the boundary sad the normal velocity P + 4 - da .fl4L, (12)
of the boundary itself is to be satisfied: On I'nI=PI(

where n is the solid angle under which P sees the

fluid. fl = 4 if P is a point in the fluid; fl = 2r if
where n is the local unit vector normal to the bubble P is a point on a smooth surface, and Q < 41r if P is
surface and Vs is the local velocity vector of the a point at a sharp corner of the surface.
moving surface. If the field point is selected to be on the surface

The bubble is assumed to contain noncondensi- of any of the bubbles or on the surface of the nearby
ble gas of partial pressure, P., and vapor of the sur- boundaries, then a closed set of equations can be ob-
rounding liquid of partial pressure, P.. Vaporization tained and used at each time step to solve for values
of the liquid occurs at a fast enough rate so that the of a4,/bt (or 4b) assuming that all values of 4, (or
vapor pressure may be assumed to remain constant 84b/On) are known at the preceding step.
throughout the simulation and equal to the equilib-
rium vapor pressure at the liquid ambient tempera- Discmretization
ture. In contrast, since time scales associated with To solve Equation (12) numerically, it is necessary
gas diffusion are very large, the amount of noncon- to discretize each bubble into panels, perform the
densible gas inside the bubbles remains constant and integration over each panel, and then sum up the
the gas pressure is assumed to satisfy the polytropic contributions to complete the integration over the
relation, entire bubble surface. To do this, the initially spher-

p1 yk = constant, (10) ical bubbles are discretized into geodesic shapes us-

where V is the bubble volume and k the polytropic ing flat, triangular panels. To evaluate the integrals
constant, with k = I for isothermal behavior and over any particular panel, a linear variation of the
k = c,/c, for adiabatic conditions. potential and its normal derivative over this panel

The pressure in the liquid at the bubble sur- is assumed. In this manner, both 40 and 64,/On
face, PrL, is obtained at any time from the following are continuous over the bubble surface, and are ex-
pressu:e balance equation: pressed as a function of the values at the three nodes

which delimit a particular panel.

C+,, Equation (12) then becomes a set of N equa-P\V = P. + P )' - tions (N is the number of discretization nodes) of
index i of the type:

where Ps. and V. are the initial gas pressure and vol-
ume respectively, -f is the surface tension, C is the N IV

local curvature of the bubble, and V is the instants- L (13)
neous value of the bubble volume. In the numerical j=1 jif
procedure P.. and Vo are given quantities at t = 0. where the matrices A,, and B,, are the discrete

3-D Boundary Integral Method equivalent of the integrals in (12).

In order to render possible the simulation of sin- Curvature and tangential velocity computations
gle or multiple bubble behavior in complex geometry In order to proceed with the computation of the
and flow configurations including the full non-linear bubble dynamics several quantities appearing in the
boundary conditions, a three-dimensional Boundary above boundary conditions need to be evaluated at
Element Method was developed and implemented each time step. The bubble volume presents no par-
(8, 9, 10, L1]. This method was chosen because of ticular difficulty, while the unit normal vector, the
its computational efficiency. By considering only the local surface curvature, and the local tangential ve-
boundaries of the fluid domain it reduces the dimen- locity at the bubble interface need further develop-
sion of the problem by one. This method provides ment. In order to compute the curvature of the bub-
a solution of the Laplace equation (4) in terms of ble surface, a three-dimensional local bubble surface
Green's equation, which provides 4f anywhere in

3



fit, f(z, y, z) = 0, is first computed. The unit normal
at a node can then be expressed as:

U (14)

with the appropriate sign chosen to insure that the Q * @ C 0 G
normals are always directed towards the fluid. The P
local curvature is then computed using SAM .....

C = n. (15)

To obtain the total fluid velocity at any point _ _ _ _

on the surface of the bubble, the tangential veloc- Y -

ity, Vt, must be computed at each node in addition
to the normal velocity, V, = 04./an n. This is
also done using a local surface fit to the velocity po- Figure 1: Influence of a linear shear velocity on the
tential, 41 = h(z, y, z). Taking the gradient of this collapse of a bubble near a solid wall. Vh..r is nor-
function at the considered node, and eliminating any malized with the Rayleigh velocity • .
normal component of velocity appearing in this gra-
dient gives a good approximation for Vt :

throughout the bubble growth and collapse, result-
Vt = n x (V$4 x n). (16) ing in a shape history of the bubble.

The developed code and method were validated
Time stepping using comparisons with known results in the litera-

The basic procedure can then be summarized as ture for spherical or axisymmetric bubble configura-
tions. Convergence of the 2-D and .3-D model werefollows. With the problem initialized and the veloc- then established for cases of interest using increased

ity potential known over the surface of the bubble, numbers of grid points. Such detailed comparisons
an updated value of d5./On can be obtained by per- cabefudi I.

forming the integrations in (12) and solving the cor-

responding matrix equation (13). D5,/Dt is then BUBBLE COLLAPSE NEAR A FLAT
computed using the "modified" Bernoulli equation WALL I A SHEAR. FLOW
(7) or (8). Using an appropriate time step all val-
ues of 4b on the bubble surface can then be updated In most previously published studies of bubble dy-
using 4b at the preceding time step and, namics near solid walls, the wall was considered rigid

S0 (and infinite, and the liquid quiescent in the absence
-+ 5+Vt • vs.. (17) of the bubble. The only asymnmetry in the problem

t Vt) is then due to the presence of the infinite wall. and

In the results presented below the time step, the bubble behaves axisymetrically. In this case, the
dt, is based on the ratio between the length of the bubble forms a reentering jet perpendicular to the
smallest banelsedon e, rtio b end the lagegth ofe te- plate during the collapse phase. Such a model hassmallest panel side, ', vm and the largest node ye- been extensively used by many authors both for ex-

locity, Vma#. This choice lin~its the motion of any peental an d a ytianumer s mainly

node to a fraction of the smallest panel side. It has perimental and analytical/numerical studies mainly

the great advantage of constantly adapting the time aimed at studying erosion due to cavitation bubbles,

step, by refining it at the end of the collapse - where and was justified in the absence of more advanced

Imin becomes very small and Vn, nvery large - and techniques. It is however, obvious that this config-
by increasing it during the slow bubblae varia. uration is rarely encountered in practical cavitatingby icresin it urig te slw bbbl siz vaia- flow fields.
tion period. New coordinate positions of the nodes f igureldsh
are then obtained using the displacement: Figure I shows the results obtained with a rela-

tively simple model for the wall flow using our BEM
a-( ," n + Ve, + V.) dt, (18) code 3DynaFS. The velocity is assumed to vary lin-

dM O= -nl')i early from a value, VI.A.r at a distance Rm. from

the wall to zero at the wall. The "baiuc pressure.
where n and et are the unit normal and tangential Prmb, is assumed constant across the shear layer
vectors. This time stepping procedure is repeated and is an input of the problem as is the initial gas
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pressure inside the bubble, Ps,. The bubble cen-
ter is located at a distance L from the wall. The C.7
bubble behavior strongly depends on the parameter,
4= R,..I/L, characterizing wall proximity, and on
a shear parameter, x, ratio between the shear ve-
locity, V.%..,, and a characteristic bubble dynamics c'
velocity: X V=us~4r/v17•. body shac

Figure 1 shows selected bubble contours of the
bubble during its growth and collapse. These are ..
cross cuts of the 3-D bubble shapes obtained along
the plane of symmetry (perpendicular to the wall -c.
and parallel to the flow direction). The presence of
shear is clearly apparent during the bubble growth:
downstream bubble points move away from the ini- 0. 0. 0.3 0.4 16 0. 7 0. U. 1.

tial bubble center much faster than upstream points.
This follows the simple intuitive reasoning that each
point on the bubble surface moves with a velocity Figure 2: The hemispherical Rankine body shape
composed of the velocity it would have in absence of ue in the simulations and the corresponding pres-
shear plus the local velocity of the "sic flow'. For sure coefcient, c,, distribution.
instance the farthest upstream bubble points sees
its undisturbed growth velocities increased by V,,%.., BUBBLE DYNAMICS NEAR A HEMI-
while the farthest downstream point has its velocity SPHERICAL BODY
decreased by VI,,.. The opposite is true during the
collapse phase. As can be seen by comparing the var- Cavitation on hemispherical bodies has been stud-
ious cases of increasing X in Figure I "stretching" of ied for a long time. The Schiebe body for instance
the bubble in the flow direction increases with the has been used in various laboratories for studying
shear intensity. cavitation scaling effects. More recently, an exten-

During the bubble collapse an even more signif- sive program for the study of cavitation inception for
icant effect of the presence of shear on the bubble various Schiebe body sizes was conducted at Caltech
dynamics can be seen. The formation and develop- and in the Large Cavitation Tunnel (LCC) in Mem-
ment of the reentering jet seems to be very dramati- phis (13, 141. Very interesting observations of bubble
cally modified. Even when the shear velocity is very behavior on these headforms were made. These ob-
small, the jet is very much delayed and weakened servations indicated strong interaction between the
in comparison with the case of the absence of shear. bubbles and the boundary layer on the headform.
Let us note that in the absence of a "basic flow' Large deviations from spherical bubble shapes were
the jet is directed towards the wall, and that in the observed, including bubble splitting and breakup,
other extreme case, i.e. no wail and uniform flow, formation of a weak reentering jet during bubble
the reentering jet is directed upstream. For a finite growth, and formation of long 'secondary cavitation'
value of X one would expect a jet angled towards the or a trail behind the bubble. We present in this sec-
wall and upstream. tion a numerical simulation of these effects using the

For increased values of X, the bubble deforma- methods described above. The objective here is not
tion and elongation is enhanced during the growth. to reproduce all the characteristics of the experimen-
During collapse for small values of X, the re-entering tal studies, but to observe which characteristics can
jet is deviated for increasing values of x from the per- be captured by the present solution method.
pendicular to the plate. For larger values of X, the To do so, the flow field around the Schiebe body
re-entering jet formation is totally modified and the was simulated using a very elongated Rankine oval
bubble tends to cut itself into two bubbles. In ad- closed body. Figure 2 shows the hemispherical body
dition, an interesting lifting effect is observed. The shape and the corresponding pressure distribution
bubble centroid is seen to move further and further along the body. One can clearly observe the pres-
away from the wall with increasing values of X. This ence of a very sharp pressure drop at the upstream
is probably due to an interaction between the wall body at location z/L = 0.05, followed by a pressure
shear flow and the bubble rotation. rise which is maintained until the downstream loca-

tion, zIL = .95, where a second symmetric pressure
drop is present. The "basic floW for the problem
here is defined as that due to the superposition of
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Figure 3: Simulation of the behavior of a bubble Figure 4: Bubble behavior in the boundary layer
near a hemispherical Rankine body shape showing of a cambered lifting surface showing the formation
formation of indentation and trail, of a long trail behind the bubble (from (151)

a uniform flow, Voo, and two sources of intensity Q. simulated 'boundary layer' of the body, find them-
To maintain the body shape for various values of selves quasi-trapped in that lavyr. As a result, these
the uniform flow velocity, the ratio Voo/Q was main- points lag behind the rest of the bubble and a bub-
tained constant. In order to account for the presence ble 'trail' appears. With the simple model used here,
of a boundary layer on the body, this inviscid flow this trail differs from that in the experiments by the
field was modified arbitrarily in the neighborhood of fact that it issues from the center part of the bubble
the hemispherical body shape, in such a way that the and not from its side. This could also be a scaling
velocity was decreased linearly to zero on the body. effect, in the sense of differing ratios between the

In the following figures, the selected Rankine bubble and the body sizes. Figure 4 taken from ob-
body had a radius of 4 inches, and a length of 55 servations on a lifting surface [15] shows a trail which
inches. In the simulations we have conducted the resembles very much those obtained by the present
bubble sizes were varied from 10 to 1000pm, and the numerical simulations.
flow velocities from 0 to 20 m/s. The cases presented Figure 5 shows the case of a bubble where the
here are selected because they reproduce many of the rolling motion of the bubble points is not strong
characteristics of the experimental observations in enough for the reentering point to relocate itself
(13, 14]. Figure 3 shows bubble contours at various above the wall. Instead, the indentation occurs early
times, and illustrates clearly several key experimen- on in the downstream portion of the bubble leading
tal observations: the formation of an indentation on to a fission of the bubble and the formation of a long
the bubble top while the bubble is being convected trail.
downstream by the hemispherical body, the forma- Figure 6 shows the case where fission of the
tion of a wedge shape on the downstream portion of front of the bubble is very obvious. This case re-
the bubble, the lifting of this portion of the bubble sembles very much to the experimental observations,
from the wall, and the formation of a 'trail' behind and precedes bubble collapse and rebound.
the bubble during its motion.

The indentation appears due to the opposing BUBBLE /VORTEX INTERACTIONS
effects on the upstream bubble portion of the basic
flow and the bubble growth velocity. This bubble A fundamental aspect of cavitation in turbulent
portion moves away the least from the initial bubble flows, and in boundary and shear layer flows con-
center. With time due to the presence of the shear, cerns the interaction between bubbles and vortices.
as in the flat wall case, this bubble region rolls away A simple example is that of a 'tip vortex' cavitation
from the body into the flow direction and, then, en- on propellers and three-dimensional airfoils. The in-
counters a pressure rise which enhances the motion teraction between bubbles and vortex flows is in fact
of the indentation towards the body wall. On the of relevance to several fluid engineering problems in-
other hand, the bubble points that penetrate the volving submerged jets. flows behind constrictions

and orifices, in wakes and in separated flow areas.



Mechanistic Description

When a bubble approaches a region of high vortic-
I ity in a liquid, it is accelerated towards the center

of rotation due to the highly asymmetric pressure
field. On its path the bubble experiences a decreas-

0. ing ambient pressure which leads to an increase in
its volume. Simultaneously, since the non uniformity
of the pressure field increases with proximity to the
vortex axis, bubble shape deformation increases.

-1 Over the last decade several investigators have
addressed the phenomenon of bubble capture by a
vortex [16, 18, 191. These studies made the simplify-
ing assumption that the bubble, even though able to
undergo volume changes. remains spherical. In ad-
dition, the type of interactions they considered was
one-sided, since they did not consider vortex flow

-.3 modification by the presence and behavior of the
bubble. More recently we considered a broader ap-
proach where bubble deformation and motion were
coupled while neglecting flow field modification by

Figure 5: 3-D view of the bubble shape near a the bubble presence [(1. 20i. This study showed
hemispherical Rankine body shape after formation that the pressure gradient across the bubble can lead
of a trail. to significant departure from bubble sphericity, and

led to the suggestion that the deformation and later
splitting of the bubble during its motion towards the
vortex center is, in addition to its volume change, a
main source of noise in tip vortex cavitation. This
appears to explain the reason for the location of tip
vortex noise at cavitation inception very close to thep blade (22J, and is in agreement with recent obser-
vations by (23] about bubble capture in tip vortex
cavitation.

One can distinguish three phases in the inter-
active dynamics of bubbles and vortices: a) bubble
capture by the vortex, b) interaction between the
vortex and the bubble, c) dynamics of bubbles elon-
gated only on the vortex axis. We consider these
aspects below.

Order of magnitude considerations

In order to discuss the problem of bubble capture
and behavior in a line vortex let us consider a Rank-
ine vortex flow field. We define r as the vortex line
circulation, and up the only non-zero velocity com-
ponent. For distances r smaller than R,, the radius
of the viscous core, the flow has a solid body rota-
tion behavior while for distances r larger than & the

Figure 6: Bubble end splitting near a hemispherical flow behaves as an ideal inviscid irrotional vortex:

Rankine body shape. Up r <=

1.,-FueT~; . rr R.(9

For such a flow the pressure field. p(r), is known. Its
value and the corresponding pressure gradient areS



given by the following normalized expressions.

?)= I- fl/- 2 ; OP/OF = 20/?3; F>1, 7,,.,,,, = (R. I
P(F) = 1 - fl (2 - F2) ; /OF = 2flF; F 5 1 This expression underlines the importance be-

with (20) tween the ratio of characteristic bubble size R4, to
r/)21) viscous core size R, . Keeping the surface tension

parameter the same, the larger the ratio (25) is, the

The parameter , fl, defined as more important bubble deformation will be. Tkis

1g rremark has important implicutions concernmia scale
_ = 2-p -) 2 /p. , (22) effects where R, and & do not increase in ihe some

2 21r& proportion between model and full scale, since in most
characterizes the intensity of the pressure drop due practical cases bubble distributions and sizes re
to the rotation relative to the ambient pressure, poo. uncontrolled and typically cannot be scaled much,

The pressure gradient steepens in the inviscid while sizes of the vortical regions depend on the se-
region when the viscous core is approached, achieves lected geometry and velocity scales.
its maximum at F = I, and levels off in the viscous The ratio (25) is only an indication of the rel-
core close to the vortex axis. In this pressure field, ative importance of bubble growth and slip forces
the bubble experiences a higher pressure on its right at a given position. In fact the relative importance
side than on its left side, the difference being greater of these competing forces changes during the bub-
the larger the bubble is. Similarly, the bubble is ble capture process. For instance, the acceleration
'sheared', since fluid particles on the bubble/liquid of the bubble toward the vortex axis increases with
interface experience different velocities. The type of its proximity to the viscous core while the growth
shearing action depends on the position of the bub- rate tends toward a constant value (decreasing pres-
ble relative to the viscous core/inviscid fluid bound- sure gradient). This indicates that strong deforma-
ary, B. If the bubble is fully immersed in the invis- tion becomes predominant relative to volume change
cid region of the flow, fluid particles on its left side when either the bubble is very close to the axis or
will experience larger velocities, while if it is fully im- when Q becomes large.
mersed in the solid body rotation region of the flow, Another important physical factor which affects
fluid particles on its right side will experience larger bubble shape is the surface tension. A normalized
velocities. The most complex situation is when the value of this pressure can be obtained as a ratio of
bubble is partly in the viscous core and partly in the the surface tension pressure and either the pressure
inviscid region. difference between the inside and the outside of the

The degree of bubble shape deviation from bubble, or the amplitude of the variations of the lo-
sphericity is a function of the relative orders of mag- cal pressures (pressure gradients) around the bubble.
nitude of the pressure gradient, the bubble wall ac- The first number, W.,, is given by:
celeration due to volume change, and surface tension
forces. An evaluation of the bubble wall acceleration W.1 = R4 [pi - p.G(l - Q)]/A, (26)
can be obtained from a characteristic bubble radius, where pi is the pressure inside the bubble. The sec-
Rb, and from the Rayleigh time, r•', time needed ond number, W., is given by:
for an empty bubble to collapse from its radius i v
to 0, under the influence of the pressure outside the W.2 = R6 (Op/Or) / (7/&4), (27)
bubble. If we take for characteristic outside local
pressure the pressure at r = &, the characteristic which can be written for r = R,:
bubble wall acceleration, 7orewts, is : W 2 (28)

7grewth = Poo(G - W)/pR. (23)

This value is to be compared with the acceler- For small values of either of these two numbers,
ation force 71ra~dint due to the pressure gradients surface tension forces are predominant and prevent
expressed in (20): bubble distortion and deviation from sphericity. Ex-

pressions (28) shows that this is possible only if 0 is

7grain JR=,. = 2flpco/p&,•, (24) small and if R. is much smaller than R. Therefore,

The ratio between these two accelerations is: as for the discussion on the acceleration forces, one
should expect larger bubble deformations for strong
vortex circulations and large bubbles.

S•



Bubble capture by a vortex

Despite several significant contributions to the urs, - a. ( 1705 (32)
study of bubble capture by a vortex, to our knowl- 2
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edge no complete approach has yet been undertaken. This implies for a tip vortex flow field, for in-
The complexity of the full problem due to bubble de-
formation during its capture has led the various con- ane th at o y ule pres a sm oll in-tributors to neglect one or several of the factors i are rapidly attracted by the vortex and strongly in-

teract with it, which explains difficulty in observingplay, and therefore to only investigate the influence with some precision tip vortex cavitation inception
of a limited set of parameters. events.

The order of magnitude of the bubble capture

time by the vortex can be easily obtained (16, IT] if
one considers, the case where the rate of change of Numerical Results: Large bubble growth
the bubble volume is negligible relative to the other rate, low surface tension
terms. In this case, the distance between the sphere As expected from the discussion presented above nu-
center and the vortex center, Q(t), is given by: merical simulations using the fully three-dimensional

numerical code 3DynaFS reveal potential for strong
(- + (V-".2 7- 3) C2 < V1- 3i, (29) bubble deformation during capture by a vortex. The

numerical results indicate that this is the case for a
where C is normalized with the initial bubble posi- very wide range of bubble sizes and initial values of
tion, C., time is normalized with (2,-r(/r), and -;o. the pressure difference between the inside and the
is the initial bubble tangential velocity normalized outside of the bubble.
by (r/2,.r(.). Figure 7 shows bubble behavior in the case

The capture time, T,, for a bubble initially at where the ratio between the pressure inside the bub-
rest in the fluid (V-#. = 0) is therefore of the order: ble and the ambient pressure is significantly large.

pi/po,, = 584. This would be the case where the
S21r(;. bubble in equilibrium in a high ambient pressure en-

t or T, (30) vironment is suddenly subjected to the flow field of
a vortex, as for instance when a propeller tip vor-

In fact, for a sphere, only viscous friction forces tex suddenly captures a cavitation bubble (23, 24[.
are responsible for bubble entrainment with the flow. In a Cartesian system of coordinates, the bubble is
The characteristic time of viscous effects, or the time initially centered at (0,0,0), and the line vortex is
needed by the bubble to be entrained by the flow is parallel to the Z axis, at X = X .,, = 2R,

is the maximum size the bubble would have if al-
T,, = a2 (31) lowed to grow under the same pressure difference in

an infinite medium). The core size is 4R.,,. With
The qualitative nature of the capture depends on the this geometry the bubble center remains in the plane
relative size between T, and T,. Z = 0.

If Tr > T, the capture time is too long, viscous Figure 7a gives a projected view of the bubble in
effects are predominant, and the bubble is entrained the XOY plane at different instants. The observer
by the liquid and it swirls around the vortex while is looking down on the XOY plane from very far
approaching the center very slowly, on the Z axis. The bubble is seen spiraling around

If T, < T, the opposite situation occurs. Vis- the vortex axis while approaching it. At the same
cons effects are very slow to take effect and the bub- time, due to the presence of the pressure gradient.
ble is practically sucked into the vortex and moves the bubble strongly deforms and a reentering jet is
towards its center almost in a purely radial fashion. formed directed towards the vortex axis, indicating

Finally, for T,, : T, entrainment by the liquid the presence of a much larger dynamic pressure on
and attraction towards the center of the vortex oc- the bubble side opposite to the vortex axis.
cur on the same time scale. Therefore, the bubble Figure 7b shows a projected view of the same
approaches the axis in a spiral fashion. bubble in the YOZ plane seen from the OX axis.

The above reasoning allows one to define a "vio- Here some moderate elongation of the bubble is ob-
lent capture radiud' around the vortex which is bub- served along the axis of the vortex as well as a very
ble radius dependent. A bubble of radius a. will distinct side view of the re-entrant jet. This result is
be sucked in by the vortex if it is within the radial totally contrary to the usaally held belief that bubbles
distance R&ap,•ur:
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texm axt OX an midaz pon ,vrsstms = 0.474, /p =5.,

te t X=,R .,w = 0. Pin = 584 .3 , vortex behind a foil, such as in the experim ents de-

= .Poetdve ) in the XOY plane; scribed in [23, 241, r = 0.152 m2'/s. Three bubble
b)inth XZ lae.sizes are considered: 10 jur, 100 jur and 1000 prm. ,

As expected, bubble deformation increases with the q
constantly grow during their capture until they reach bubble size. The deformation is small for a.= 10 prn,
the azi and elongate along it. becomes very significant for a.=100 prn, and is ex-

Figure 8 shows in the XOY plane perpendicu- tremely important for a,,= 1000 prn. In all cases, the
lar to the vort.ex axis the motion of two particular bubbles, while remaining in the inviscid region, are.
points on the bubble, A and B, initially along OY. seen to be sheared very strongly by the flow. The
Also shown is the motion of the midpoint, C. While smal'ler bubbles appear to deform in the expected
C seems to follows a path similar to the classical way in a shear flow. The larger bubble case (a.= 1000
logarithmic spiral, A and B can follow more compli- urn) shows extreme bubble elongation and wrapping
cared paths, even moving away from the vortex axis around the viscous core region.
at some point in cimne for case (b) where the vortex
axis was initially at X = 1.

Small growth rate and surface tension .

Figure 9 considers the influence of bubble size ""•
on bubble behavior during the capture process. In "
all three came shown in the figure a ratio between "
the pressures inside and outside the bubble equal
to one is considered, pi/p,ý= . In all cases, the .... •;.!
viscous core radius is chosen to be Re=2.2 mam,
while the initial distance between the vortex cean-
ter and the center of each bubble is chosen to be

•o•1.5R, = 3.2 mam. The dimensions shown are Figure 9: Bubble contours at various tiume.

normalized with the initial bubble radius for each r" = 0.1527m-/s, pi = pc,, a. = 2.2ram, vortex

case. The circulation in the vortex is chosen to cor- at X = 3.2ram, with a, = a) 10,um. b) 100jim, c)

respond to a practical value for the case of a tip 1000pro.

I I _ ____ _____ ____
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field of Figure 8 before collapse of buble No. 1. View
Figure 10: Behavior of 5 bubbles in a vortex line from a) OZ axis, b) OX axis.
flow - Contour shapes at various times. The vor-
tex line is perpendicular to the page and centeredon Y = 1.5mm. Re = 2.2ram, 1" = 0.1573m'2/s. in the inviscid flow region. AMl five bubbles consid-
S= 0.872. All bubbles have a0 = 100pm. ered have an initial radius of 100 um. Figure 10shows contours of the bubbles as they rotate around

the vortex axis at various times. This figure clearly
Multiple Bubbles shows the presence of a non-uniform flow field. In-

dee" Bubble No. 3 which is the closer to the region
One of the key question that one needs to address in of highest angular velocity of the "basic flow" is seen
the practical studies of bubble/vortical field interac- to swirl around tue vortex center at the fastest rate,
tion is how does a distribution of bubbles modify the while Bubble No. 2, which is the closest to the vor-
flow field. In order to address such a problem the tex center is seen to practically rotate around itself.
program 3DynaFS is being modii¶ed for effective Similarly, the highest shear is seen to occur close to
implementation on a supercomputer. Indeed one of the viscous core edge where the pressure gradients
the difficulties of such a study is the required large and their variations are steeper.
number of discretization points which prevents sig- Since all bubbles were chosen to have the same
nificant runs on typical memory and speed limited initial radius and internal pressure. the natural pe-
computers. Some preliminary multibubble interac- riod of oscilation of each of the selected bubbles in-
tions were considered in (27, 261 creases with the proximity to the vortex axis. A.- a

Figure 10 shows the case of a 5-bubble configu- result, the farthest bubble from the axis, Bubble No.
ration. This run has the advantage of including both 5, collapses first while stretching and deforming.
vortex/bubble and bubble/bubble interactions. All Figure 11 shows two thee-dimensional views offive bubbles are chosen such that in absence of the the bubbles before the collapse of bubble No. 1.
vortex flow field, the pressures inside and outside These views enable one to have a better idea of the
each of them is the same and equal to 0.74 atm, bubble shape deformation and elongation during the
Pi/Poo = I. The viscous core radius and the cir- capture phenomenon. Similar experimented obser-
culation are again chosen to be in the same ranges vations were seen in (24].
as those in the experiments described in [23, 24].
The viscous core is chosen to be R. = 2.2mm, while
r = 0.1573 m 2 /8, fl = 0.872. The initial bubble cen-

ters are selected to be on OY axis at Y = 0, 2,3,4 Let us consider now the case where the bubble is
and 5 mm. The vortex line is parallel to OX axis captured by the vortex and placed at its axis. Such
and is centered on Y = 1.5 mm. As a result, bub- a problem was considered earlier in (211 for an elon-
bles No. 1, 2 and 3 are initially located in the via- gated bubble. Unfortunately. that study neglected
cous core, while bubbles No. 4 and 5 are located an essential element of vortex dynamics: i.e. the
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Figure 12: Comparison between the contours of an Figure 13: Bubble dynamics on the axis of a vor-
elongated bubble during its collapse in the absence tex line. Left side shows 3D shapes at selected
and in the presence of swirl. Initial elongation ratio times. Right side shows bubble contours at in-
of 3. po/pi = 3.27. a) No swirl. b) Q• = 0.56. creasing times. r = 0.005m 2/$. R. = 100pm.
RelR., = 3. a)pl/p. = 2, Re/Ro = I . b) pi/p, = 2. RelRe = 1.

c) pi/p.. 1, R./R. = 0.57.

presence of an azimuthal velocity, and a strong jet
which initiated at both extreme points of the bub- ble behavior depends significantly for a given value
ble along the axis of symmetry was obtained. As of the swirl parameter, fi. on the normalized core ra-
shown in Figure 12a such a behavior is reproduced dius Rý, ratio of R. to R,,z,. In all cases where R,..
using the program 2DynaFS when the vortex flow is larger than & it appears that the bubble lends to
field is neglected. However, the opposite effect is adapt to the vortex tube of radius R.. This could lead
in general obtained when the rotation in the vortex to various bubble shapes as shown in the following
flow is included. Figure 12b illustrates this for par- figures ending up with a very elongated bubble with
ticular values of Q1 and the normalized core radius, a wavy surface for large values of Rm.I/Re.
X = &I/R,,.. Figures 13a - c show bubble contours at vari-

In both cases shown in Figures 12a and 12b the ous times during growth and collapse for increasing
initial length to radius bubble elongation ratio was values of the core radius. R,, and decreasing values
three. It is clear from the comparison that the swirl of p,/po. Also shown are selected 3D shapes of the
flow has a conclusive effect on the bubble dynam- bubbles at various times. It is apparent from these
ics. Bubble surface portions away from the vortex figures, that during the initial phase of the bubble
axis experience much higher pressures than bubble growth, radial velocities are large enough to over-
surface portions on and close to the vortex axis, and come centrifugal forces and the bubble first grows
therefore move much faster during the collapse phase almost spherically. Later on. the bubble shape starts
generating, instead of the sharp jets on the axis as in to depart from spherical and to adapt to the pressure
Figure 12a, a constriction in the mid-section of the field. The bubble then elongates along the axis of
bubble. This generates an hourglass shaped bubble rotation. Once the bubble has exceeded its equilib-
which then separates into two tear-shaped bubbles. rium volume, bubble surface portions away from the

axis - high pressure areas - start to collapse, or to
In the following figure 13a -c, various configura- return rapidly towards the vortex axis. To the con-

tions of initially spherical bubble dynamics are stud- trary, points near the vortex axis do not experience
ied. The initial internal pressures inside the bubbles rising pressures during their motion, are not forced
ar taken to be larger than the pressure on the vor- back towards their initial position, and continue to
tex axis, and the bubbles are left free to adapt to this elongate along the axis. As a result, a constriction
pressure difference. The figures show that the bub- appears in the mid-section of the bubble. The bub-
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ble can then separate into two or more tear-shaped
bubbles. It is conjectured that this splitting of the Z
bubbles is a main contributor to cavitation inception "
noise. This behavior is very similar to that observed
for bubble growth and collapse between two plates a'

(151, which results in the formation of a vortex line!
Keeping C constant while reducing the core size

R, has the effect of steepening the radial pressure
gradient along the bubble surface and increasing the
rotation speed inside the viscous core. This enhances
the deviation of the bubble shape from a sphere, and Ia
increases the centrifugal force on the fluid particles ,,
closer to the vortex axis. This has the consequence vo
of increasing the elongation rate of the bubble and

results in more and more complex dynamic shapes of 1 - 3 4 • r
the elongated bubbles. The bubble can then become
subdivided into three, four or more satellite bubbles Figure 14: Bubble dynamics on the axis of a vis
during the collapse. The elongated and wavy shapes cous line vortex. Contour shapes versus time. Basic
obtained have been observed on cavitation on the field obtained using a viscous flow solver with vis-
axiscous diffusion along z and r. Viscous core size mm,

Observation of the elongated bubble dimension i au b si z and r.
variations with time are very revealing (10, 26]. Nor-
malizing lengths by R,,. and time by the Rayleigh
time based on R,,,a and the pressure difference be- with B = pr/2rb and X = r/26. This flow and
tween P,. and the pressure on the vortex axis, one pressure field were used to study bubble dynamics
finds that the bubble length along the rotation axis on the vortex axis. When the bubble in initially
strongly depends on f2. However, the bubble cross- centered at the origin of coordinates it has again a
section radius closely follows the classical Rayleigh symmetric behavior. However, a much faster bubble
model and is very little dependent on Q. Variations elongation with time is then seen, but here again the
of Q between 0.1 and 0.94 modify the normalized bubble cross section does not exceed the core size.
bubble period by less than 10 percent. One should Figure 14 show an example of bubble behavior
notice, however, that bubble period is here defined in an even more realistic vortex line flow field. In
as the time needed for the bubble to subdivide into this case the flow field of the vortex line is obtained
two secondary bubbles. by solving the viscous flow field due to an imposed

Rankine vortex flow plus a uniform axial velocity at
More realistic vortex line model z = 0. This is to simulate the diffusion of a vortex

line generated at the tip of a three-dimensional foil.
hethe fundamental ls ofbubbl/voryhex u i ction, itdy The commercial Navier Stokes solver Fidap was thenthe fundamentals of bubble/vortex interactions, it used at the Ecole Navale at Brest to obtain the dif-

does not allow one to capture other features such as fusion of such a flow along the z axis, and included
flow and bubble motion along the axis of rotation, an axial flow at z = 0. The resulting flow field was
In (281 we conducted a study where a Burgers vortex then used as a basic flow to study 3-D bubble behav-
line flow field was considered. ior using 3DynaFS. In this case pressure gradients

i,. = -Cr, u, = Cz along the vortex axis are important enough to pro-
duce a reentering jet along the vortex axis while the

Us [ - exp4 (33) bubble is entrained along the vortex line by the z
2r I46 2 Jcomponent of the flow.

where C is a constant, and 6 is the viscous core ra-
dius. The pressure distribution can then be obtained Experimental validation study
by solving the momentum equation: In order to validate the numerical studies on bub-

p(r, z, t) = p.. - 2pC 2 Z2 - 2pC262 X2 - B/2X2+ ble vortex interactions, a fundamental experiment
B [exp(-X 2 ) - exp(-2X')/2] /X 2 + was conducted. This consisted of the controlled ob-

B [E,(-X 2 ) - Ei(-2X2)] , servation of the interaction between a vortex ring
(34) and a bubble. The results of the experiment were
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then compared with thos obtained with 3DynaFS
described above [25, 26). The vortex ring was gen- '1
erated in a Plexiglas tank using a cylinder equipped
with a 2.5 cm radius piston. The cylinder had a J.
sharp lip exit to enhance the roll up of the fluid vor- ', .
tex generated at the lip. This results in a vortex
ring with a diameter slightly larger than that of the xa i-wa IFr 4Hlaw -ad
cylinder. A spark generated bubble was produced now (to
where desired in the vortex ring flow field. The in- , -

teraction between the generated ring and bubble was
then observed using high speed photography. A trig-
gering line allowed one to synchronize the departure
of the piston and the triggering of the spark gener-
ator using pressure transducers to precisely detect I"

tevortex ring motion. .
Both the experimental observations and the nu-

merical computations showed very similar behaviors.
The results of these comparisons can be found in 1 13" M son IM M
(25, 26]. Bubble shearing and splitting along the ft" .'
flow direction appears common. This can be quali- Figure 15: Dynamics of the interaction between a
tatively understood by considering the velocity and cylindrical bubble and a line vortex. r = 0.5 m2 /s.
pressure fields around the bubble. The motion of Pg =hxilOPa, Po=l.3xiO5Pa a) Bubble radius.
each point on the surface of the bubble is the r- value of maximum azimuthal velocity u. max, and po-suit of the combination of the underlying fluid re- sition of &.... b) Bubble radius versus time with
locity and of the velocity due to the bubble growth and without viscous interaction.
or collapse. The effect of the underlying fluid flow is
usually small during initial bubble growth and later FULL VISCOUS INTERACTION BE-
bubble collapse phases due to the large bubble wall TWEEN A CYLINDRICAL BUBBLE AND
velocity during these phases, but becomes most imr- A LINE VORTEX
portant at the end of the growth where bubble wail O
velocities reach a minimum. For a bubble in a uni- One weakness of the numerical approach presented
form flow, the presence of the underlying flow re- above is the fact that, while the influence of the flow
flects on the bubble shape during the growth by a on the bubble was fully accounted for, the modifica-
larger extension of the bubble in the downstream di- tion of the flow by the bubble presence and dynamics
rection and by a flattening of the bubble shape in was restricted to the case where the "bubble flow"

the upstream direction. Later on due to inertia, the was potential. In the present section, we will remove
downstream bubble part that has extended further this restriction in the simple case of the interaction

between a cylindrical bubble and a line vortex. Thiscollapses faster forming a reentering jet directed up- crepnst ae hr h ievre a h

stream. corresponds to cam where the line vortex has the
When the flow is not uniform, a similar phe- central part of its viscous core gaseous or vaporous.

notnenon occurs but is stronger on one side of the Such an analysis is important to determine criteria
bubble than on the other due to the typical asymme- for unstable bubble growth (cavitation inception),
try of a shear flow. In addition, the fact that the un- and to describe how bubble dynamics affects the vis-
derlying shear flow becomes at some point during the cous flow itself. To do so. we consider the case where
bubble history stronger than the local bubble wall an axisymmetric elongated bubble of initial radius a.
velocity creates the opportunity of a jet generated is located on the axis of a fully viscous line vortex.
by the underlying flow, which can be opposite to the For illustration, we consider the case where, at t = 0,
one described above and directed downstream. This the vortex line is a Rankine vortex. From there on,
leads to the formation of a constriction all around the vortex diffuses with time and interacts fully withthe bubble with a tendency for bubble splitting. the bubble. The generated flow satisfies the axisym-

metric incompressible Navier-Stokes equations.

Denoting the radius of the bubble as a (i), and
its time derivative, a (t), the continuity equation
leads to:
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up = (t) i W/r. (35) In s (41)

Replacing i, by its expresion in the momentum with
equations one obtains:

r P = 4/-.P (42)
1(a+ - -2- =) (36)-

a -2 Initial and Boundary Conditions

The initial conditions considered are as follows. For
ft +~ a(4 (!)) (37) the bubble,

This set of coupled equations allows one to describe a(O) = a., a (0) = 0. (43)

both the bubble dynamics and the flow field modifi- For the line vortex, the equation at t = 0, is that of a
cation accounting for two-way interaction. Rankine vortex. In addition, the following boundary

condition is imposed at the bubble interface:
Method of Solution

In order to obtain a differential Equation for the bub- P(a ) = p,, + pg. - - + 2t! -) (44)
ble radius variations, similar to the Rayleigh Pies- a &
set Equation, Equation (36) is integrated between where # is the dynamic viscosity, and the gas corm-
r = a(t) and a very large radial distance, r = R-/,, pression law is given by:
beyond which the vortex flow is asumed to be in-
viscid (vortex line of circulation r). This leads to an = s.
integral term containing U2. In order to obtain this a
term, a space and time integration of Equation (37) To close the problem, the following condition is
is needed. This is obtained using a Crank-Nicholson imposed on the pressure at the distance, R,,,.:
finite difference integration scheme. To do so, the
domain of integration is made time independent Us-
ing the variable change, P(PA.t) = P.e - 2 p 2rra(t)) " (46)

s = r/a(t). (38) Some Preliminary Results

The integration region becomes for all times (1; sajr, Figures 15a and 15b illustrate both the bub-
with R,.,1 (t) = a(t)si.a . Equation 37 becomes: ble/vortex flow field interaction and a cae where

there is a need to include this full interaction in the
_# s!M M _ • • dynamics. In these two figures, the bubble has an
N I O s 8s 72".35. initial radius of Imm while the viscous core of the

vortex has an initial radius of Icn. The initial cir-

(n +! (39) culation in the vortex is 0.5 m2/s, and the initial
j2F" L98a2 + 88 ;2- pressure in the bubble is 5xlO3Pa, while the an-

with bient presstre is 1.3x10Pa. Therefore, the bubble
starts its dynamics by collapsing. Figure 15a shows

I/o= simultaneously three characteristic quantities of the
P- (40) problem verums time. The first quantity is the bub-

1 a P Vble radius versus time, while the other two quantities

Similarly, Equation (36) becomes: are the radial position, Re., of the maximum as-
imuthal velocity, uo ., and the value of this veloc-

2 j -i ,~. ~2ity. In the previous sections, thin two last quantities
S a - +1 + I -d, remained constant with time. A very important first

2lat[in( In J i 8 result very clearly shown in Figure 15a is that both

r r 2the position of ROm.z, and the value ofut. both
-rl ~p+ (!' j directly depend on the variation of a(t). The vis-

-- -'f L -- • - ' cous core (of radius R#m..) is seen to decrease with

o i. . .
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the bubble radius during bubble collapse, and to in- -

crease with the bubble radius during bubble growth.
This tendency of the viscous core to get displaced I -
with the bubble wall, corresponds to intuition, but
is proven numerically to our knowledge for the first. .-- "
time here and in (281.

Viscous effects appear more prominently when *'

following the bubble dynamics over more than a sin-
gle period of oscillation. Both maximum values of
R max and Uomsx are seen to decrease with time.
Through conservation of momentum, the azimuthal |
velocity follows an tendency opposite to the core -
size. As the bubble wall moves inward the viscous 1
core shrinks, simultaneously increasing the tangen-
tial velocity to a maximum when the bubble reachesI
maximum size. As the bubble grows again, the core
expands and the tangential velocity decelerates to a - .

minimum at the maximum bubble radius. When the "" ''

fluid particles are pulled in towards the vortex axis F

they accelerate tangentially. This is similar to the Figure 16: Dynamics of the interaction be-

phenomenon of vortex stretching . tween a cylindrical bubble and a line vortex.

Figure 15b shows the importance of the inclu- P.,., 7xlO'Pa. a) Influence of the initial bub-

sion of full viscous flow / bubble interaction in the ble pressure, P,., on bubble radius and position of

dynamics. The figure shows also the case where the /max. &/a. = 2. b)Influence of &4/a. on the bub-

underlying flow field is forced to remain that of a ble radius and position of &ma-. Pg. = 1.5 x 101 Pa.

Rankine vortex. In that case, the bubble oscilla-
tions are repeatable with time, and no viscous decay when the initial distance between the bubble wall
of the amplitude of the oscillations-are visible. To and the core radius is decreased.
the contrary when the underlying flow is modified The case of initial bubble growth instead of col-
through viscous diffusion and interaction with the lapse is not shown here because it presents the same
bubble, the bubble radius oscillations decays very character as observed in the rebound cases in the
much after the first collapse, and the flow field char- above figures.
acteristics are modified as described in Figure 15a.

Figures 16a and 16b show, respectively, the in- INTERACTION BETWEEN A BUBBLE
fluence on the problem dynamics of the initial gas AND A VORTICAL FLOW
pressure inside the bubble, Ps,, and the ratio of ini-
tial core radius to initial bubble radius, &/a.. For In order to extend the methods presented above
an initial pressure on the vortex axis of 7x 10SPa, to the more general case of the interaction between
Figure 16a shows the dynamics of the bubble and a bubble and a general rotational field, the BEM
the viscous core size when the initial pressure in the method was coupled to a vortex element method.
bubble decreases from 5x 10' Pa to 1.5 x 10sPa. For With this approach the basic vortical flow is repre-
Poo = 5 x 10iPa the bubble collapse is very weak. sented by a distribution of three-dimensional vortex
and the core radius is seen to follow the bubble wall elements, and if need be, by the addition of a po-
oscillations. For all three other smaller values of P,. tential component. The procedure then is to track
starting from Pi. =4x 10's Pa the bubble collapse is in time both the bubble free surface motion and the
strong enough to result in a full collapse of the vis- vortex elements motion. By doing so, one is able
cons core which practically disappears (maximum to obtain not only the bubble motion and defor-
azimuthal velocity at the bubble wall) during the mation, but also the vorticity distribution variation
later phases of the bubble collapse. This is followed with time. Modification of the vortical field by the
by a much stronger rebound of the viscous core than presence of the bubbles is thus an outcome of the
the bubble rebound. interaction method.

Figure 16b shows a behavior similar to the pre- The above is based on the basic principle that
vious figure when the ratio, l/a., increases. Here any arbitrary basic flow field may be decomposed
again a strong core collapse and rebound is observed
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intoa potential part, O., and a rotational part,A:

a-=-0+u- =V• -+7 x A. (47) 4Q
The rotational put of the velocity u. derives

from the vector potential A which satisfies - 1
VA ,(48)

where w is the vorticity. The velocity is obtained by COLLAPSE
the Biot-Savart law: /

SIx- yl(49)(

For numerical simulation, the vorticity field is
discretised using a desingularized representation of
vorticity [29, 30, 31]. -,,

N Figure 1T: Interaction between a bubble and a fi-
w (x,0) = Ewi/f (x - X1) dVi (50) nite thickness line vortex represented by 3D vortex

i=0 elements. Crosscut in the plane of symmetry z--0.
where Xi are the centers of the vortex elements,and Note motion of the vortex line points close to the
fe is a spherical rapidly decaying core function or bubble deviate significantly from a pure circular mo-
mollifier (291, which is chosen to be tion as away from the bubble.

fa (r) 6 -4-e _ (51) a given vorticity distribution in the flow field of in-

following [31]. With the discretized vorticity dis- terest, a geometric distribution of three-dimensional

tributed over vortex elements, we may also write vortex elements is selected. In the examples below a

d~i = dA. x dxi,and hence Gaussian distribution is selected. The inverse prob-
lem of (50) is then solved to obtain the values of the

S= r dX. (52) elementary circulations, ri, associated with each fi-
nite line element. With the knowledge of this initial

where ri is the elementary circulation associated vortex element distribution, and the initial bubble
with the i-th line element. By virtue of Kelvin and discretization, one can proceed with the time step-
Helmholtz theorems rF remains invariant in time, ping to solve the problem. The influence of all bub-
and the elements follow the local velocity field en- ble panels and all vortex elements on the bubble and
abling stretching and tilting of the elements. The vortex nodes are computed. This allows determi-
change in the vorticity is represented by a change in nation of the new values of the velocity on all the
the line element dXi. The discretized velocity expres- bubble nodes. Knowing all values of Ob and tb,/On
sion is: on the boundaries one can deduce the velocity any-

where, and in particular at all nodes of the vortex
N Ielements whose position can then be updated using

io 41r IX- X)1x 3 The case of a finite thickness line vortex was

considered and represented with 18 vortex lines dis-
= - p (53 cretized into 3D elements. One can then obtain asshown in Figure 17 both the bubble and the vortex

The element positions are updated by the velocities line deformations. Figure 17 shows the intersection
at their end points at various times during bubble growth and collapse

between the plane z = 0 and the bubble and the
Xj(t + dt) = Xi(t) + u(Xj, t)dt. (54) vortex elements. This shows both bubble and vortex

The convergence of this vortex method was elements motion with time. Note that the motion of

proven in [32]. The procedure is as follows. For the vortex line point close to the bubble deviate sig-
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nificantly from a pure circular motion. Those aay
from it just rotate around the central point due their
mutual interaction and to the symmetry of the distri-
bution. Figure 18 shows a 3D snapshot of the bubble

-0ý •and vortex line shapes for the example of a bubble
immersed in the vortical field. Figure 19 shows how
the vorticity distribution along the OY axis has beean
modified by the dynamics and presence of the bub-
ble. It is apparent in this case that very significant
redistribution of the vortex field is possible during
the bubble motion.

The above example is shown as an illustration of
the method being developed. More detailed descrip-
tions and a more extensive analysis are in prepara-
tion t331.

CONCLUSIONS

Figure 18: Interaction between a bubble and a fi- The study of bubble dynamics in non-uniform flow
nite thickness line vortex represented by 3D vortex fields is complex but essential to any real attempt to
elements. 3D view at maximum bubble size of the study bubble dynamics in realistic flow conditions.
bubble and vortex line shapes Due to the difficulties involved in both experimental

and analytical approaches, the trend is to address
the problems by a two-pronged effort involving nu-
merical and experimental simulations. This is made
possible by the development of advanced high speed
computers which render direct numerical simulations

0 .05 . ,possible in reasonable amounts of time. The stud-
ies presented above addressed various aspects of the
problem, namely bubble behavior in the vicinity of

0.04- boundaries, bubble capture by a vortex and bubble
dynamics in a vortical flow field. The most interest-

Sto ing development is the capability to study the influ-
0.03 ence of the bubble's presence on the vortical field it-

t self. Our attempts in this direction were briefly pre-
o sented and are presently very actively being pursued.
> 0.02 It is hoped that a matching between a flow solver, at

least in the vortical region, and a bubble dynamics
/tt solver such as 2DynaFS or 3DynaFS will enable

0.01 -one to describe with some acceptable accuracy the
full interaction between the bubbles and the vortical
flow field. This is of great importance since it would
allow the user to understand the mechanics involved

0.0220 -10 a 10 20 thus enabling one to manipulate the phenomena for
Y DIRECTION technological advantage in applications such as, in

ship wakes, bubble drag reduction, or cavitation in-

ception delay.

Figure 19: Vorticity distribution modification ACKNOWLEDGMENTS
along the OY axis during bubble oscillation in a I-
nite thickness line vortex represented by 3D vortex We are grateful for the support of the Office of
elements. Naval Research, under Contract N00014-89-C-0025

monitored by Dr. Edwin Rood. The author would
like to acknowledge the contributions of colleagues
at DYNAFLOW, INC. especially Drs. Kausik Sarkar,

TAB



Rlanani Duraiswami and Kenneth K.Jumuck. The (11] Chahine, G.L., 1990b, "Numerical Medal-
author would also like to thank Drs. J.Y. Billard ing of the Dynamic Behavior of Bubbles in
and P. Cerrutti from the Ecole Navale for providing Nonuniform Flow Fields' ASME Symposium
the viscous flow vortex results and for the significant on Numerical Methods for Multiphase Flows,
contribution of their students while at DYNAFLOW Toronto, FED-Vol. 91, pp 57-65.
to several aspects of this study. [12] Chahine, G.L., Duraiswami, kt, 1993, "Bound-

References ary Element Method for Calculating 2-D
and X-D Underwater Erplosion Bubble Be-

(11 Rood, E. P., 1991, "Review - Mechanisms of Aayor in Free Wazer and Near Structures,'
Cavitation Inception," Journal of Fluids Engi- Naval Surface Warfare Center, Dahlgren

neering, Vol 113, June. Division, White Oak Dtachment, Report
NSWCDD/TR-93/44.

(2] Rood, E. P., 1992, "Cavitation Inception Re-

search - Focus and Direction", Report on the (13] Ceccio, S.L., Brennen, C.E., 1991, 'Observa-
Advisory Council on Cavitation Events, ONR tion of the dynamics and acoustics of travelling
meeting, Memphis, TN, May 20th, 1992. bubble cavitation,* Journal of Fluid Mechanics,vol., 233, 633-860.

(3] Chahine, G.L., Duraiswami, R., Rebut, M.,

1992, "Analytical and Numerical Study of Large (14] Dechizelle, Y.K., Ceccio, S.L., Brennen, C.E.,
Bubble/Bubble and Bubble/Flow Interactions," Shen, Y., 1992"Cavitation Scaling Experiments
Proc. 19th ONR Symposium on Naval Hydro- with Headforms: Bubble Acoustics', Proceed-
dynamics, Seoul, S. Korea. ings Second Internatinoal Symposium on Pro-

(4] Guerri, L., Lucca, G., and Prosperetti, A., 1981, peller and Cavitation, Hangzhou, China.

"A Numerical Method for the Dynamics of Non. [15] Chahine, G.L., 1979, *Etude Locale du
Spherical Cavitation Bubbles,' Proc. 2nd Int. Phinomine de Cavitation -Analyse des Fac-
Coll. on Drops and Bubbles, JPL Publication teurs Regissant Ia Dynamique des Interfaces.'
82-7, Monterey, CA. Doctorat D'Etat Es-Sciences Thesis, Universite

O5] Blake, J. R., Taib, B.B. and Doherty, G., 1986, Pierre et Marie Curie.

"Transient Cavities Near Boundaries. Part L (16] Bovis, A.G., 1980a, "Asymptotic Study of
Rigid Boundary,' Journal of Fluid Mechanics, Tip Vortex Cavitation', ASME Cavitation and
vol. 170, pp. 4T9-497. Polyphase Flow Forum, New Orleans, pp. 19-

[61 Blake, J. R, and Gibson, D. C., 1987, "Cavi- 21.
ration Bubbles Near Boundaries, " Annual Re- [17] Bovis, A.G., 1980b, "Etude Asymptothque
view Fluid Mechanics., Vol. 19, pp. 99-123. du Pldnomene de Cavitation. Cavitds non-

[71 Wilkerson, S.,1989, "Boundary Integral Teck- sphiriques," Thise de Docteur Ingdnieur.
nique for Explosion Bubble Collapse Analysis,' Universiti Pierre et Marie CURIE, Paris.
ASME Energy Sources Technology Conference [18] Latorre, R., 1982, "TVC Noise Envelope - An
and Exhibition, Houston Tx. approach to Tip Vortex Cavitation Noise Scal-

(8] Chahine, G.L., Perdue, T.O., and Tucker, C.B., ing*, Journal of Ship Research, Vol. 26, No. 1,
1988, "Interaction Between an Underwater Ex- pp. 65-75.
plosion and a Solid Submerged Structure,' Dy- (19] Ligneul, P. and Latorre R., 1989, "Study of the
NAFLOW, INC. Technical Report 89001-1. (9 inuP n aor . 99 Suyo hCapture and Noise of Spherical Nuclei in the

[9] G.L. Chahine and T.O. Perdue, 1989a, "Sim- Presence of the Tip Vortex of Hydrofoils and
ulation of the Three-Dimensional Behavior of Propellers", Acustica Vol. 68.
an Unsteady Large Bubble Near a Structure,"
in "Drops and Bubble? edited by T.G. Wang, [20] Chahine, G.L., Duraiswami, R., 1992, "Aualyt-
A.I.P. Conference Proceedings, 19T, 169-187. ical Study of a Gas Bubble in the Flow Field of

a Line Vortex," Proceedings, ASME Cavitation
[101 Chahine, G.L.,1990a, "Nonspherical Bubble Dy. and Multiphase Flow Forum, Los Angeles.

namics in a Line Vortex," in Proceedings of the
ASME Cavitation and Multiphase Flow Forum, [211 Crespo A., Castro F., Manuel, F., and Hernan-
Toronto, FED- Vol. 98, pp. 121-127. des J., 1990, "Dynamics of an Elongated Bubble



Dorisg Collapu', Journal of Fluids Engineer-
in& Vol 112, 232-237.

[221 Higuchi, f., Arudt, L.A. and Rogis, M.F.,
1980, 'ChMrocterisgic of Tip Vortex Cavitation
Noei', Journal of Fluids Engineering, VoL 111,
No 4, pp. 496-502.

(231 Maine@, B.H., and Arndt, RE.A., 193, 'De6-
ble Djumnic of Catation Inception is a Wis#
Tip Vortei, ASME Cavitation and Multiphase
Flow Forum, Washington D.C., FED-VoL 153,
pp. 93-99.

(24] Green, S.I., 1991, "Correlatiag Single Phase
Flow Measurerment with Observatioes of Ti-
in# Vortex Camteatioie, Journal of Fluids Engi-
neering, Vol. 113, No 1, pp. 125-130.

(25] Chahine, G.L., Delepoule, E., and Hauwaert,
P., 1993., "Study of the Interaction Between a
Bubble and a Vertical Structure, '1993 ASME
Cavitation and Multiphase Flow Forum, Wash-
ington D.C., FED-Vol. 153, pp. 39-47.

(26] Chahine, G.L., 1994, "Bubble Interactions with
Vortices,' in Fluid Vortices Ed. Sheldon Green
to be published by Kiuwer Academic.

[27] Chahine, G.L., 1991, 'Dynamics of the Inter-
action of Noe-Spherica Cavities,' in IMath.-
matical Approaches in Hydrodyamics," ed. T.
Miloh, SIAM, Philadelphia.

[28] Deogrees du Lou, G., Sarauin, T. and Chahine,
G.L., 1993, "Viscous Interaction Between Rub-
ble and Lime Vortex," DYNAFLOW, Itc. Tech-
nical Report 6.002-15.

[29] Leonard, A., 1985, "Computing Three- Dines-
sieoal Incompressible Flow with Vorter Bie-
ments," Ann. Rev. Fluid Mech., 17, 523460.

[30] Sarpiaya, T., 1989, "Computationa Method.
with Vortices- The IMS Preemn Scholar Lec-
fSre,* J. Fluids EnU., ill, 5-52.

[31] Knio, 0. M., and Ghoaniem, A. F., 1990, "N'u-
merical Study of a 7Tree-Dimessional Vortex
Method;, J. Comp. Phys., 86, 75-106.

[32] Beal, J. T., and Majda, A., 1985, "Higher Order
Accurate Vortex Methods with lzplicit Vdocity
Kernels, 'J. Comp. Phys., 58, 188-208.

[331 Sarkar, K., and Chahine, G.L., 1994, "A Cou-
pled Three-Dimnenime Boundary ltelmst-
Vertex Method for Vertical Flows-Bubble Inter.
actions', DYNAFLOW, Inc. Technical Report
6.002-20 (in preparation).

Um



To be published by Kluwer Academic, 1994.

__Chapter 19

BUBBLE INTERACTIONS WITH VORTICES

Georges L. Chahine'
DYNAFLOW, Inc.

7210, Pindell School Road
Fulton Maryland 20759

Abstract
The understanding of the fundamental mechanisms involved in the interaction between bubbles
and vortices is of relevance to many important engineering applications. Classical assumptions
of bubble sphericity and decoupling between bubble and flow behavior prevent one from
capturing essential elemenLq of the interaction. Bubble motion and deformation are seen to be
of great importance for most bubbles in the size spectrum. In this chapter studies on bubble
capture by a vortex, bubble motion and deformation during that capture, and bubble behavior
once the bubble is on the vortex axis are described. Flow field modifications once the bubble is
on the vortex axis are also briefly considered. The most promising approach appears to consist
of a coupling between a boundary element method to describe the bubble behavior and a viscous
flow solver to describe the basic flow.

19.1. INTRODUCTION
The simultaneous presence of bubbles and vortices is typical of many high velocity turbulent
flows. Spectacular examples can be observed with propellers, where at high rotational speeds
the helicoidal tip vortices formed at the tip of each blade 'cavitate' and become sites of
bubble concentration and fluid vaporization into what is termed 'tip vottex cavities' (see
photograph in Figure 19.1a). This phenomenon is addressed in more detail in Chapter 17.
While for practical reasons engineers tend to superficially address the fundamental problem -
by stating, for example, that cavity formation in the vortex will occur if the pressure on the
center line drops in the monophase model below the liquid vapor pressure-, a closer look at
the fundamental processes at work reveals that the actual phenomenon is rather very complex
and very poorly understood. Questions such as how does a microscopic bubble behave in
the presence of the vortex ... , or how and to what extent the presence of bubbles modifies
the flow field of the vortex ... have, at this point, only preliminary answers or no answers
at all. The interaction between bubbles and vortex flows is in fact of relevance to several
fluid engineering problems. Important examples include cavitation in shear layers, boundary

* heseamh Profes.r, The Johns Hopkins Univemsity, Balthnore, MD
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V0

a
b

Fig. 19.1. Practical examples of bubbles and vortices, a) Tip vortex cavitation on a propeller (Chaahine
et al., 1993b), b) Vortex cavitation in the separated region behind a cylinder (courtesy cc. J. Y Billard,
Ecole Navale, Brest, France).

layers, tip vortex cavitation, bubbles in the shear layer of submerged jets, cavitation behind
orifices, bubbles in separated flow areas (see Figure 19.1b), microbubbles in boundary layers,
... etc. In the above mentioned flows, bubbles are held responsible for dramatic effects such as
noise generation, materials erosion, and bubble drag reduction. These effects, experimentally
observed and widely accepted, are not yet completely understood. Therefore, a satisfactory
control of the deleterious effects is not presently possible.

This chapter will try to highlight the problems, present some proposed explanations and
methods for solution, and provide some preliminarily confirmed results. However, it does
not claim to answer all the complex and presently unanswered questions, and likely fails to
address some of the problems that will appear to be important in some configurations in future
research.

19.1.1. Mechanistic Description When a bubble approaches a region of high vorticity
in a liquid, it is accelerated towards the center of the vortex. The asymmetric pressure
field pushes the bubble towards the vortex axis while it is swirling. On its path the bubble
experiences a decreasing ambient pressure which can lead to an increase in the bubble size.
Simultaneously, since the non uniformity of the pressure field around the bubble increases with
proximity to the vortex axis, bubble shape deformation increases. An explosive bubble growth
is provoked if the pressure in the vortex field drops below the bubble 'critical pressure', pc.
For a bubble of radius r. in static equilibrium when the ambient pressure is P., this pressure is
defined as the pressure below which an equilibrium bubble radius does not exist. In cavitation
studies within the assumption of an isothermal law of behavior of the gas included in the bubble
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(see Section 19.4.1, Equation (19.37)) this pressure is defined by2

(19.1) pc.=P -4

3r.'

where a is the surface tension parameter, and r, is the 'critical radius' given byLY,(P 2,o)]"
(19.2) r=2 .- , + ,.

where P, is the liquid vapor pressure (see for example Hammitt 1980).
Over the last decade several investigators have addressed the phenomenon of bubble

capture by a vortex (Bovis, 1980a,b; Latorre, 1982; Ligneul, 1989; Ligneul and Latorre, 1989).
However, these studies made the strong simplifying assumption that the bubble, even though
able to undergo volume changes, remains spherical. In addition, the type of interactions they
considered was one-sided, since they did not consider vortex flow modification by the presence
and behavior of the bubble. More recently, Chahine (1990) considered a broader approach
where bubble deformation and motion were coupled while neglecting flow field modification
by the bubble presence. This study showed that the pressure gradient across the bubble
can lead to significant departure from bubble sphericity, and led to the suggestion that the
deformation and later splitting of the bubble during its motion towards the vortex center is,
in addition to its volume change, the main source of noise in vortex cavitation. This appears
to explain the reason for the location of tip vortex noise at cavitation inception very close to
the blade (Higuchi et a4 1989), and is in agreement with recent observations by Arndt and
Maines (1993) about bubble capture in tip vortex cavitation. We will consider the details of
such approaches in the following sections.

One can distinguish three phases in the interactive dynamics of bubbles and vortices:
a) bubble capture by the vortex, b) interaction between the vortex and an initially quasi-
spherical bubble on its axis, c) dynamics of elongated bubbles on the vortex axis. After some
phenomenological and order of magnitude considerations of the phenomena at hand, we will
consider each of the three phases and the method of solution proposed for their study.

19.2. ORDER OF MAGNITUDE CONSIDERATIONS

In order to analyze the problem of bubble capture and behavior in a line vortex let us
consider as an example the Rankine vortex flow field described in Section 1.1. We adopt a
notation consistent with that section, denoting r the vortex circuiation, and u# the only non-
zero velocity component. However, in order to avoid potential confusion with the bubble radius
definitions later, we will use R, for the radius of the viscous core (R is used in section 1.1).
For distances r smaller than X. the flow has a solid body rotation behavior (velocities vary
as r), while for distances r larger than R, the flow behaves as in an ideal inviscid irrotational
vortex (velocities vary as I/r). The expression of the velocity is given in Equation (1.1.14).
For such a flow the pressure field is known and its value p(r) is given by Equation (1.1.16). A
key parameter which appears in the pressure expression is the "wir parameter", 0, defined
as

D t..t ob,, ined by c(6.duig Eqmdon (19.3), imin V =Irr, and Y,4r8 , ad sokiq for the 9inium of the'function PL (r).
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(19.3) = ( )
PoM

which characterizes the intensity of the pressure drop due to the rotation relative to the
ambient pressure, po,. To illustrate the importance of this parameter, we nrrnnalize the
pressure with po,, to obtain the following normalized expressions for the premsure and the
pressure gradient:

•(•) 20 _n-°• - > 1,
fl = 21f; <1

(19.4) 1()=I - 0 (2 - ,2); MY; r<1

with
W; POO)(19.5) W- • (i) = --

Poe

Note that the pressure on the vortex axis is (1 - 2fl) and goes to zero when Q approaches 1/2.
As seen in Figure 1.1.5 the pressure gradient steepens in the inviscid region when the

viscous core is approached, achieves its maximum at If = 1, and levels off in the viscous core
close to the vortex axis. If a bubble is subjected to the pressure field shown in the figure, it will
experience a higher liquid pressure on its right side than on its left side, the difference being
greater the larger the bubble is. Similarly, the bubble is 'sheared', since fluid particles on the
bubble / liquid interface experience different velocities. The type of shearing action depends
on the position of the bubble relative to the viscous core / inviscid fluid boundary, R,. If the
bubble is fully immersed in the inviscid region of the flow, fluid particles on its left side will
experience larger velocities, while if it is fully immersed in the solid body rotation region of
the flow fluid particles on its right side will experience larger velocities. The most complex
situation is when the bubble is partly in the viscous core and partly in the inviscid region. In
that case, it is expected that the bubble behavior will be vortex flow model dependent, since
in fact the sharp separation between the two regions is purely mathematical, and is a very
schematic representation of the physical reality.

Due to the pressure and velocity gradients the bubble is accelerated toward the axis while
somewhat growing and deformmg. Therefore, depending on its size and position, the bubble
experiences a pressure variation along its surface and a slip velocity relative to the surrounding
fluid. This results in some degree of bubble shape deviation from sphericity. The importance
of this deviation is a function of the relative orders of magnitude of the pressure gradient, the
bubble wall acceleration due to volume change, and surface tension forces.

An evaluation of the bubble wall acceleration can be obtained from a characteristic bubble
radius, 14, and from the Rayleigh time, "R, time needed for a empty bubble to collapse from
its radius R4 to 0, under the influence of the pressure outside the bubble (Rayleigh, 1917). For
the present problem let's take for characteristic outside local pressure the pressure at r Re,
that is ( = 1 - il) as the typical local ambient pressure, the Rayleigh time is then:

(19.6) 'e- = 14fl)-

The characteristic bubble wall acceleration, , at r = R, is then:
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'A , ti.."

This value is to be compared with the acceleration force 7r. due to the pressure
gradients expressed in (19.4):

1 aP

(19.8) 2pw

pR'
The ratio between these two accelerations can be evaluated, for instance at r = R,, to

yield the simple expression:

(19.9) =gdient 2Rb. !n

This expression underlines the relative importance between the characteristic bubble size
R6 , and the viscous core size R, . Keeping the surface tension parameter the same (see
discussion on the Weber number below), the larger the ratio (19.9) is, the more important
bubble deformation will be. This remark has important implications concerning scale effects
where Rb and R& do not increase in the same proportion between scale and model, since in most
practical cases bubble distributions and sizes are uncontrolled and typically cannot be scaled
much, while the size of the vortical regions depend on the selected geometry and velocity
scales.

The ratio (19.9) is only an indication of the relative importance of bubble growth and slip
forces at a given position. In fact the relative importance of these competing forces changes
during the bubble capture process. For instance, the acceleration of the bubble toward the
vortex axis increases with its proximity to the viscous core while the growth rate tends toward a
constant value (decreasing pressure gradient). This indicates that strong deformation becomes
predominant relative to volume change when either the bubble is very close to the axis or the
vortex circulation (the "swirl parameter", fl) becomes large.

Another important physical factor which affects bubble shape is the surface tension. A
normalized value of the corresponding pressure, a Weber number, can be constructed by
combining the surface tension pressure (coefficient, a) with either the pressure difference
between the inside and the outside of the bubble, or the amplitude of the variations of the
local pressures (pressure gradients) around the bubble. The first number. We1, is given by:

(19.10) W', = p Poo( 1 -')

where pi is the pressure inside the bubble. The second number, W.,, is given by:

(19.11) W.2 R

which can be written for r = R,:

(19.12) W,, = Mf ( )0 - -f fl-(~ ) R."
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For small values of either of these two numbers tension forces are predominant and prevent
bubble distortion and deviation from sphericity. Expressions (19.12) shows that this is possible
only if fl is small and if Rb is much smaller than R,. Therefore, as for the discussion on
the acceleration forces, one should expect larger bubble deformations for stronger vortex
circulations and larger bubbles.

19.3. BUBBLE CAPTURE BY A VORTEX
Despite several significant contributions to the study of bubble capture in a vortex, to our
knowledge, no complete approach has yet been undertaken. While the overall approach, in
terms of the investigation of the bubble motion has several similarities to the problem of the
interaction between vortices and solid particles (see Chapter 20), the bubbles, unlike solid
particles, will deform and change volume while interacting with the vortex flow field. The
complexity of the problem has led the various contributors to neglect one or several of the
factors in play, and therefore to only investigate the influence of a limited set of parameters.
The first approaches to the problem were attempted independently at about the same time by
Bovis (1980a), and Latorre (1980). While both studies accounted for volume change during
bubble motion, the basic assumptions and effects taken into account were quite different. Bovis
(1980a,b) considered the case where the flow velocities in the vortex flow are large enough to
justify the assumptions of inviscid potential flow. This simplification, valid for instance in tip
vortex cavitation where very large tangential velocities come into play, and when the bubble is
not too close to the vortex axis, allows one to consider other important effects. For instance,
one can then consider in a consistent fashion important phenomena such as the modification
of the vortex flow by the presence of the bubble and the volume change and shape deformation
of the bubble (Duraiswarni and Chahine, 1991). On the other hand, Latorre (1980) and in
following studies (Ligneul and Latorre, 1989), in a more pragmatic approach, considered real
fluid effects to determine the bubble motion equation, neglecting bubble shape deformation
and modification of the flow by the bubble behavior. They coupled these equations with a
spherical bubble dynamics model to deduce noise emission in tip vortex cavitation.

In the potential flow approach, the expression of the modified flow field due to the presence
of a spherical bubble is based on Weiss' theorem (see Milne-Thomson, 1968). In a spherical
system of coordinates centered at the sphere center, if the undisturbed potential flow in absence
of the sphere of radius a, is 00(r, 0, 4),the velocity potential of the modified flow due to the
presence of the fixed sphere is O(r, 0, 0) given by the equation:

(19.13) 4(r, 0, 0) = lo(r, 0,• ) + 1_ z 81o(, 0, 0) d.
a I Ox

0

Using the notations in Figure 19.2, the expression of the velocity potential of the vortex
flow is:

(19.14) fo(r, 0, 0) = r tan-' r)sin + sin 0

Tv C(t) + rsin'$cos'

where IP is the vortex circulation and C(t) is the instantaneous distance between the vortex
and the bubble center.

Similarly, the expression of the velocity potential of the flow due to the bubble radius time
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Fig. 19.2. Sketch of the geometric quantities involved in the analytical description of bubble capture
in a vortez line.

variations, a (t), is

(19.15) §i(r,,$) 0, a2(t) a (t)

where o indicates time differentiation. If we account for a relative velocity (V - VB) between
the spherical bubble and the fluid the modified bubble velocity potential becomes:

(19.16) Ob(r,0,) = -a2(t)(t) .a 3(t) r-(V -VB),

where V(t) and VB(t) are the instantaneous fluid and bubble center velocities. The absolute
velocity potential in the fixed coordinate system attached to the vortex, §,, which accounts
for bubble motion and radius variations is then:

a2 a aS(t) 12 [ /I(je$)

(19.17) a= -o _ tr-(V- VB) +- X
r 2r3a I "d

0

The equation of motion of the sphere can now be obtained by using Bernoulli's equation
and integrating the pressure over the surface of the sphere. The resulting force leads to the
following dynamic equation:

(19.18) !ra p!ýB = pJJ[Wj + 2 ads,

where p and pb are the liquid and bubble content density, a the bubble radius, n the normal
vector to the bubble surface, and dVB/dt the bubble acceleration. The evaluation of the
expression (19.18) in the general case is rather complex. A simplified asymptotic expression
can however be obtained when the radius of the bubble is small relative to the distance from
the vortex axis, a0
(1919) = 1

* Co
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The expression of the two nondimensional components of the acceleration are then:

(19.20) + + a +

(19.21) =- a*+a _
i C

where the velocities are normalized by the tangential velocity at the location C. of the center
of the bubble at t = 0, and time by the ratio between the distance C., and that characteristic
velocity, v,= / 2-°

(19.22) 7=t

Similarly, C is normalized with the initial position, • = C/C.. Note that Vb, = dCl/dt, and
that for a bubble pb/p is negligible. The third component along 0 is obviously zero due to
the symmetry of the problem (see Darrozes and Chahine, 1983, for further discussions and
derivations of the above equations).

In the studies of Ligneul and Latorre (1989) the bubble equation (19.18) is replaced by an
empirical force balance equation first given by Johnson and Hsieh (1966):

dVB 3( - 3vp +__t- .
(19.23) d -3(V Vs 3  p +C IV-VEI,

where Cd is a viscous drag coefficient. The first two terms on the right hand side come from
inviscid flow considerations and are therefore included more formally and more accurately
in Equation (19.18). The first term which results directly from the integration in (19.18)
of the third term in Equation (19.17). It reflects the fact that any slip velocity between
the bubble center and the surrounding fluid increases with an increase of the bubble wall
velocity and a decrease of the bubble radius. Therefore, the bubble center decelerates during
bubble growth and accelerates very much during the bubble collapse where both a and a-'
are very large. The second term is in fact an acceleration term of the relative or slip velocity,
(V - VB), whose expression has been often debated in the multiphase flow community (Van
Wijngaarden, 1980). The third term is a viscous drag term where the drag coefficient Q•
depends on the Reynolds number of the relative flow, R,,. Ligneul and Latorre (1989) used
the expression:
(19.24) Q = 24 [1 + 0.197TR•, + 2.6 x with R,, = 2aIV VB

Other authors add a memory term (Basset term) which accounts for the full history of the
slip velocity through an integration between 0 and t. Based on equation (19.23) the equations
of motion of the bubble become for a Rankine vortex of viscous core radius, R.:

- =-6V+ 3r2  ;
dt4a 4r2R2 \R.
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(19.25) C ds= -2 CVie + 3f[,a*+4,

S=-3z + 4

V' (6V 2 + V2+V

/ 1=--, 1= 4 & >')(19.26) 1 -AL

fj ýj'C r_ dV4 .

Both approaches (Bovis, 1980a, Latorre, 1980) used the spherical bubble dynamics
equation - known as Rayleigh Plesset Equation (Plesset, 1948) - to determine the bubble
radius vaLiation with time:

(19.27) p (aa j a3, 4#•-=- -P(t)+ P,+/)§o(!0)* -2'1

where # is the dynamic viscosity, P., the initial gas pressure with k the polytropic gas constant,
P, the vapor pressure, and 7 the surface tension coefficient. Assumptions leading to this
equation are described further in Section 19.4.1.

19.3.1. Capture Time In order to get an idea about the characteristic time for bubble
capture by the vortex let us consider equations (19.20) and (19.21). If one considers - for
an order of magnitude evaluation- the case where the rate of change of the bubble volume is
negligible relative to the other terms, then the two equations of motion degenerate to:

3 V2

d?

(19.28) -

where

(19.29) M= Pb+
p 2

Equations (19.28) can be integrated to give the position of the non deforming bubble
relative to the vortex axis versus time. Using d(/dt as an intermediary variable to express
d/dt as d/dC-.dC/dt, and assuming that the bubble center has no initial radial velocity (v,. = 0),
while the initial tangential velocity is vo,, Equation (19.28) leads to:

(19.30) Va(t) =

Equation 19.30 is very instructive in terms of the motion of a particle of density pb in
a vortex flow field. Depending on the sign of I L-- )the particle will be attracted or
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repelled by the vortex. This term in fact expresses a balance between inertial (centrifugal)
and pressure forces. For bubbles entrained in the flow field of the vortex, vs. is between 0 and
1, and M is very close to 1, since p/p < L. As a result

(19.31) _<

The capture time, T,, for a bubble initially at rest in the fluid (r#-.(0) = 0) is therefore

(19.32) 71 3 c = T 73

In fact, for a sphere, only viscous effects can be responsible for bubble entrainment with the
flow, since with the inviscid model Equations (19.18) clearly indicate that only radial forces
on the sphere are non-zero. In the presence of viscosity friction forces enable entrainment of
the bubble with the fluid. The characteristic time of viscous effects, or the order of magnitude
of the time needed for the bubble to be entrained in the flow being

a2
(19.33) T

the qualitative nature of the capture depends on the relative size between T. and T,.

If T. > T, the capture time is too long, viscous effects are strong enough for the bubble
to be entrained relatively rapidly by the liquid and it starts swirling around the
vortex. It approaches the vortex axis little by little but very slowly.

If T, < T, the opposite situation occurs: viscous effects are very slow to take effect and
the bubble is practically sucked into the vortex moving towards its center almost
in a purely radial fashion.

Finally, for T, :. T, entrainment by the liquid and attraction towards the center of the
vortex occur on the same time scale. Therefore, the bubble approaches the axis
in a spiral fashion. The above reasoning allows one to define a "violent capture
radius" around the vortex which is bubble radius dependent. A bubble of radius
a. will be sucked in by the vortex if it is within the radial distance R.,.

(19.34) R,,•,. = ao VFw

19.4. NUMERICAL STUDY

Due to the difficulty of the problem at hand and to the improved performance of high speed
computers, numerical methods offer presently the best hope for solutions. Coupled with
guidance from analytical, experimental and order of magnitude or phenomenological studies,
a numerical approach can enable minimization of the number of physical phenomena to take
into account. One of the numerical methods that has proven to be very efficient in solving
the type of free boundary problem associated with bubble dynamics is the Boundary Element
Method. Among others, Guerri et al. (1981), Blake et al. (1986, 1987), and Wilkerson (1989)
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used this method in the solution of axisymmetric problems of bubble growth and collapse near
* boundaries. This method was extended to three-dimensional bubble dynamics problems by

Chahine et al. (1988, 1989). We describe here the model, then apply it to the case of bubbles
in a vortex flow.

19.4.1. Bubble Flow Equations Let us consider the cases where the presence of a
bubble in the flow has significant effects, that is cases where bubble volume time variations
are not negligible. This implies large but subsonic bubble wall velocities. Therefore, one
can neglect viscosity and compressibility effects on the bubble dynamics. These assumptions,
classical in cavitation bubble dynamics studies, result in a flow that is potential, (velocity
potential, 4), and which satisfies the Laplace equation,

(19.35) V 2 $ = 0.

The solution must in addition satisfy initial conditions and boundary conditions at infinity,
at the bubble walls and at the boundaries of any nearby bodies.

At all moving or fixed surfaces (such as a bubble surface or a nearby boundary) an identity
between fluid velocities normal to the boundary and the normal velocity of the boundary itself
is to be satisfied:
(19.36) V . n = V.- n,

where n is the local unit vector normal to the bubble surface and Vs is the local velocity
vector of the moving surface.

The bubble is assumed to contain noncondensible gas as well as vapor of the surrounding
*liquid. The pressure within the bubble is considered to be the sum of the partial pressures of

the noncondensible gases, P,, and that of the liquid vapor, P.. Vaporization of the liquid is
assumed to occur at a fast enough rate so that the vapor pressure may be assumed to remain
constant throughout the simulation and equal to the equilibrium vapor pressure at the liquid
ambient temperature. In contrast, since time scales associated with gas diffusion are much
larger, the amount of noncondensible gas inside the bubbles is assumed to remain constant
and the gas is assumed to satisfy the polytropic relation,

(19.37) pg12 = constant,

where V is the bubble volume and k the polytropic constant, with k = 1 for isothermal
behavior and k = c.,1c for adiabatic conditions.

The pressure in the liquid at the bubble surface, PL , is obtained at any time from the
following pressure balance equation:

(19.38) PL P + P., 1 -C.,

where P.. and Vo are the initial gas pressure and volume respectively, a is the surface tension,
C is the local curvature of the bubble, and V is the instantaneous value of the bubble volume.
In the numerical procedure P., and VO are known quantities at t = 0.

19.4.2. Boundary Integral Method for Three-Dimensional Bubble Dynamics
In order to render possible the simulation of single or multiple bubble behavior in complex
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geometry and flow configurations induding the full non-linear boundary conditions, a three-
dimensional Boundary Element Method was developed and implemented by Chahine et aL
(1988-1991). The Boundary Element Method was chosen here because of its computational
efficiency. By considering only the boundaries of the fluid domain it reduces the dimension of
the problem by one. This method is based on Green's equation which provides 0 anywhere in
the domain of the fluid (field points P) if the velocity potential, 0 , and its normal derivatives
are known on the fluid boundaries (points M), and if I satisfies the Laplace equation:

(19.39) J• J[ € p 1  +(19-39) ~o KI MP I + 4;IMP I)Id = " €-( P),

where anr = 0 is the solid angle under which P sees the fluid.
a = 4, if P is a point in the fluid,
a = 2, if P is a point on a smooth surface, and

a < 4, if P is a point at a sharp corner of the surface.

If the field point is selected to be on the surface of any of the bubbles or on the surface of
the nearby boundaries, then a closed set of equations can be obtained and used at each time
step to solve for values of at/On (or f) assuming that all values of 1 (or 8$/O'n) are known
at the preceding step.

To solve Equation (19.39) numerically, it is necessary to discretize each bubble into panels,
perform the integration over each panel, and then sum up the contributions to complete the
integration over the entire bubble surfi•ce. To do this, the initially spherical bubbles are
discretized into a geodesic shape using flat, triangular panels. This discretization of a bubble
shape is described in Chahine et al. (1988 and 1993c). Equation (19.39) then becomes a set
of N equations (N is the number of discretization nodes) of index i of the type:

(19.40) £Aiio-•)= (Bi,0Oj) - ar,; i =1.,N"

where A,, and Bi are elements of matrices which are the discrete equivalent of the integrals
given in Equation (19.39).

To evaluate the integrals in (19.39) over any particular panel, a linear variation of the
potential and its normal derivative over the panel is assumed. In this manner, both @ and
0$/On are continuous over the bubble surface, and are expressed as a function of the values
at the three nodes which delimit a particular panel. Obviously higher order descriptions are
conceivable, and would probably improve accuracy at the expense of additional analytical
effort and numerical computation time. The two integrals in (19.39) are then evaluated
analytically. The resulting expressions, too long to present here, can be found in Chahine et
al. (1988).

In order to proceed with the computation of the bubble dynamics several quantities
appearing in the above boundary conditions need to be evaluated at each time step. The
bubble volume presents no particular difficulty, while the unit normal vector, the local surface
curvature, and the local tangential velocity at the bubble interface need further development.
In order to compute the curvature of the bubble surface a three-dimensional local bubble
surface fit, f(z, y, z) = 0, is first computed. The unit normal at a node can then be expressed
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as:

(19.41)

with the appropriate sigp chosen to insure that the normal is always directed towards the
fluid. The local curvature is then computed using

(19.42) C = V. n.

To obtain the total fluid velocity at any point on the surface of the bubble, the tangential
velocity, Vt , must be computed at each node in addition to the normal velocity, Vn = ff/an
n. This is also done using a local surface fit to the velocity potential, 01 = h(z, y, z). Taking
the gradient of this function at the considered node, and eliminating any normal component
of velocity appearing in this gradient gives a good approximation for the tangential velocity

(19.43) Vt = n x (Vo• x n).

The basic procedure can then be summarized as follows. With the problem initialized
and the velocity potential known over the surface of the bubble, an updated value of 04/an
can be obtained by performing the integrations in (19.39) and solving the corresponding
matrix equation (19.40). Dt/Dt is then computed using a "modified" Bernoulli equation
(see Equation (19.51) below). Using an appropriate time step all values of 0 on the bubble
surface can then be updated using 0 at the preceding time step and D/IDt,

(19-44)N DO- + (2n+ VtVt

In the results presented below the time step, dt, was based on the ratio between the length
of the smaller panel side, ,.,. and the highest node velocity, ViL. This choice limits the
motion of any node to a fraction of the smallest panel side. It has the great advantage of
constantly adapting the time step, by refining it at the end of the collapse - where 4,,.,, becomes
very small and V,.,, very large - and by increasing it during the slow bubble size variation
period. New coordinate positions of the nodes are then obtained using the displacement:

(19.45) dv = (-n +•Vtet +Vo+ dt

where n and eg are the unit normal and tangential vectors. This time stepping procedure
is repeated throughout the bubble growth and collapse, resulting in a shape history of the
bubble.

19.4.3. Pressure / Velocity Potential Relation Let us consider the case of a bubble
growing and collapsing in a nonuniform flow field ("basic floe") of velocity Vo that is known
and satisfies the Navier Stokes equations:

OVo _1p
(1946)at + V0. VV 0 =--VP 0 + vV2VO.
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Also assume that in presence of the oscillating bubbles, the resulting velocity field, given
by V, also satisfies the incompressible Navier Stokes equation:
(19.47) OV _1

•.+v -VP+vVV.
Both V and Vo also satisfy the continuity equation. We can now define bubble flow

velocity and pressure variables, Vb and A, as follows:

(19.48) V& = V- VO, A = P- P0 .

If we consider the case where "bubble flow' field is potentials:

(19.49) V4 = V46, V=O, = 0,

and subtract (19.46) from (19.47) accounting for (19.49) we obtain

(19.50) VIP = V [ + I V&P +VO-v&+ = V, x (V x Vo).

The assumption of potential "bubble flow" implies that, even though the basic flow is
allowed to interact with the bubble dynamics and be modified by it, no new vorticity can be
generated by the bubble behavior with the chosen model Equation (19.50) can be integrated
to obtain an equation similar to the classical unsteady Bernoulli equation. For the particular
case of the Rankine vortex Equation (19.51) can be written in cylindrical coordinates, when
the "bubble flow" does not have any ee components:

=--0, rL = 2%, -'"-0.
1,8' alp

In this case the Bernoulli equation is to be replaced by:

(19.51) + I V= constant in ang radial direction.

Accounting for at-infinity conditions, the pressure in the liquid at the bubble wall, PL,
given by (19.51) is related to $j and the pressure field in the Rankine vortex Po by:

(19.52) [P = P0 -W-- IV ]

19.4.4. Specialization to Axisymimetric Problems In axisymmetric problems, the
physical variables (velocity potential and pressure) are independent of the angular coordinate.
Thus the angular coordinate only enters the formulation through the argument of the Green's
function in Equation (19.39)
(19.53) G(MP)=1/IMPl.

The integration of these dependent quantities can be explicitly carried out. Let C represent the
trace of the geometry under consideration in a meridian plane. Let r, 0,z be the cylindrical

in* s ouem i Um ly a m& u mmdii. I. tamoydh fwi=. z n tim mbjet, Setio 1. pmmtina, ht' atop in that d&'sctioin.
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Fig. 19.3. Comparison between Rayleigh-Plesset solution and the azisyrmetric BEM code 2DynaFS
and the 3D BEM code 3DynaFS. Computations started with an initial bubble pressure 584 times
larger than the ambient pressure. a) Over bubble period. b) End of collapse.

coordinates of point M, running point on the boundary, and without loss of generality we

select the coordinates of P to be (R, 0, Z). The integral equation (19.39)can then be written

(19.54) O(R, 0, Z) 0 (r, z)r .- (j GdO) dam - j 9 -rj GdG d.sM,

In writing the above expression the fact that the normal to an axisymmetric surface is
independent of the angular coordinate has been used. Thus, integration over the angular
variable is reduced to evaluation of one integral

(19.55) 1 = J2  0, z; R, Z)d = - 2 2rRc +(Zz'

which is nothing but the complete elliptic integral of the first kind, K(m), with

(19.56) m -= - ; A=/(R+r)2+(Z-z)2.

The equation for the potential may then be written as:

(19.57) 2( - J) 0(r, z)r-a-. ( AL) dam + I o (r, z) 4K(m)r .

Further details of the method can be found in Taib (1985).

19.5. NUMERICAL RESULTS AND DISCUSSION
19.5.1. Validation of Numerical Codes The use of the Boundary Element Method
to study axisymmetric bubble dynamics has been validated by the various authors quoted
earlier. This has included both comparisons with a quasi-analytical solution for spherical
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bubbles - Rayleigh-Plesset Equation (19.27) - and experimental validation for the relatively
simple cases of spherical and axisymmetric bubble collapse near flat solid walls. Figures 19.3a
and 19.3b show comparative results between the codes used below (axisymmetric 2DynaFS
and fully three-dimensional 3DynaFS) and the semi-analytical results.

Comparison of the results of the 3D code used in the examples shown below against
previously published and confirmed results in the literature for the relatively simple cases
have been very favorable. For spherical bubbles, comparison with the Rayleigh-Plesset "exact"
solution revealed that numerical errors for a "coarse" discretization of a 102-node bubble (not
shown in the above figures) was about 2 percent of the achieved maximum radius, but was
very small, 0.03 percent, of the bubble period. The error on the maximum radius was less than
0.14 percent for a discretized bubble of 162 nodes (320 panels), and dropped to 0.05 percent
for 252 nodes (500 panels). Comparisons were also made with studies of axisymmetric bubble
collapse available in the literature (Guerri, et al, 1981, Blake et a4, 1986, 1987), and have
shown, for the coarse discretization, differences with these studies on the bubble period of
the order of 1 percent. Finally, comparison with actual test results of the complex three-
dimensional behavior of a large bubble collapse in a gravity field near a cylinder shows very
satisfactory results, (Chahine, 1988, 1991). The observed difference in the period was shown
to be related to the confinement of the experimental bubble in a cylindrical container.

19.5.2. Bubble Capture

Large bubble growth rate, low surface tension case As expected from the mechanistic
considerations analysis presented in Sections 19.1.1 and 19.1.2 numerical simulations using the
fully three-dimensional numerical approach reveal potential for strong bubble deformation
during capture by a vortex. The numerical results indicate that this is the case for a very
wide range of bubble sizes and initial values of the pressure difference between the inside and
the outside of the bubble.

Figure 19.4 shows three-dimensional bubble behavior in the case where the ratio between
the pressure inside the bubble and the ambient pressure is significantly large, pl/p., = 584.3.
This would be the case where the bubble in equilibrium in a high ambient pressure environment
is suddenly subjected to the flow field of a vortex, as for instance when a propeller tip vortex
suddenly captures a cavitation bubble (see Maines and Arndt, 1993, and Green, 1991). In a
Cartesian system of coordinates, OXYZ, the bubble is initially centered at (0,0,0), and the
line vortex is located parallel to the Z axis, at X = X/R.= = 2 (two times the maximum
size, R•., the considered bubble would have if allowed to grow under the same pressure
difference in an infinite medium). The core size considered here is 4R.,=. With this geometry
the bubble center remains in the plane Z = 0.

Figure 19.4a gives a projected view of the bubble in the XOY plane at different instants.
The observer is looking down on the XOY plane from very far on the Z axis. The bubble is
seen spiraling around the vortex axis ( perpendicular to the figure) while approaching it. At
the same time, due to the presence of the pressure gradient, the bubble strongly deforms and
a reentrant jet is formed directed towards the axis of the vortex, thus indicating the presence
of a much larger dynamic pressure on the bubble side opposite to the vortex axis.

Figure 19.4b shows projected view of the same bubble in the YOZ plane seen from the OX
axis. Here some moderate elongation of the bubble is observed along the axis of the vortex
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Fig. 19.4. 3D bubble shapes at various times. Bubble initially at the origin of the cartesien coordinate
system, and vortex at X = 2RP... fl = 0.474, pi/p., = 584.3, RC/RUG= = 4. Projected view a) in
the XOY plane; b) in the XOZ plane.

I as well as a very distinct side view of the re-entrant jet. This result is totally contrary to the
usually held belief that bubbles constantly grow during their capture until they reach the axis
and elongate along it.

Figure 19.5 shows in the XOY plane perpendicular to the vortex axis the motion of two
particular points on the bubble, A and B, initially along OY. Also shown is the motion of
the midpoint, C. While C seems to follows a path similar to the classical logarithmic spiral,
A and B can follow more complicated paths, even moving away from the vortex axis at some
point in time for case (b) where the vortex axis was initially at X = 1.

Small growth rate and surface tension Figure 19.6 considers the influence of bubble size
on bubble behavior during the capture process. In all three cases shown in the figure a ratio
between the pressures inside and outside the bubble equal to one is considereq, p/pa. = i.
In all cases, the viscous core radius is chosen to be R, = 2.2 mm, while the initial distance
between the vortex center and the center of each bubble is chosen to be C. i..5&R = 3.2 mm.
The dimensions shown are normalized values with the initial bubble radius for each case. The
circulation in the vortex is chosen to correspond to a practical value for the case of a tip vortex
behind a foil, such as that used in the experiments described by Maines and Arndt (1993)
and Green (1991), r = 0.152 m2/s. Three bubble sizes are considered: 10 pm, 100 pa and
1000 /pm. As expected, bubble deformation increases with the bubble size. The deformation
is small for a.=10 pm, becomes very significant for a0 =100 prm, and is extremely important
for a.=1000 pm. In all cases, the bubbles while remaining in the inviscid region, are seen to be
sheared very strongly by the flow. The smaller bubbles appear to deform in the expected way
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Fig. 19.5. Motion of the two points initially on axis OX, A and B, and the mid point C between A
and B, versus times. fi - 0.474, pi/p, = 584.3, a,/lnz = 4. Vortex located at a) X = 2P'n' ; b)
X = RP•x.

in a shear flow. The computations were stopped when significant bubble shape deformations
necessitated finer time steps. The larger bubble case (a.=1000 ym) shows extreme bubble
elongation and wrapping around the viscous core region.

19.5.3. Multiple Bubbles One of the key question that one needs to address in
bubble/vortex interaction practical studies is how does a distribution of bubbles modify the
flow fieid in a vortex line. In order to address such a problem the program 3Dyna.FS is being
modified for effective implementation on a supercomputer. Indeed one of the difficulties of
such a study is the required large number of discretization points which prevents significant
runs on typical memory and speed limited computers. Figure 19.7 shows a case run in the
case of a field of bubbles in absence of a vortex field on a Cray machine. In the figure case
two planes of symmetry were assumed to minimize computation times. In the presence of a
vortex line use of such a symmetry is not warranted since, due to various rates of rotation of
each b, .bble in the vortex field, the symmetry is not preserved during the bubble motion. In
addition, due to the high shear rates that bubbles can experience, a relatively large number
of discretization points is needed to describe each bubble.

Figure 19.8 shows the case of a 5-bubble configuration. This run has the advantage of
including both vortex / bubble and bubble / bubble interactions. All five bubbles are chosen
such that in absence of the vortex flow field, the pressures inside and outside each bubble
are the same and equal to 0.74 atm, pi/p,- = 1. The viscous core radius and the circulation
are again chosen to be in the same ranges as those in the experiments described by Maines
and Arndt (1993), and Green (1991). The viscous core is chosen to be X = 2.2mm, while
r = 0.1573 m 2/s, fl = 0.872. The initial bubble centers are selected to be on OY axis at the
coordinates: Y = 0,2,3,4 and 5 mm. The vortex line is parallel to OX axis and is centered
on Y = 1.5 mm. As a result, bubbles No. 1, 2 and 3 are initially located in the viscous core,
while bubbles No. 4 and 5 are located in the inviscid flow region. All five bubbles considered
have an initial radius of 100 prm. Figure 19.8 shows contours of the bubbles as they rotate
around the vortex axis at various times This figure clearly shows the presence of a nonuniform
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Fig. 19.8. Dynamical behavior of 5 bubbles in a vortex line flow . Bubble contours at various
times. The vortex line is perpendicular to the page and centered on Y = 1.5mm. R, = 2.2mm,
r = 0.1573m 2/s. fl = 0.872. All bubbles have ao = 100pm.

flow field. Indeed, Bubble No. 3 which is the closer to the region of highest angular velocity
of the "%asic flow" is seen to swirl around the vortex center at the fastest rate, while Bubble
No. 2, which is the closest to the vortex center is seen to practically rotate around itself.
Similarly, the highest shear is seen to occur close to the viscous core edge where the pressure
gradients and their variations are steeper.

Since all bubbles were chosen to have the same initial radius and internal pressure, the
natural period of oscillation of each of the selected bubbles increases with the proximity to
the vortex axis. As a result, the farthest bubble from the axis, Bubble No. 5, collapses first
while stretching and deforming. In order to be able to continue the computation following
break up of a bubble, that bubble was removed and the computation was continued with the
bubbles left.

Figure 19.9 shows two thee-dimensional views of the bubbles before the collapse of bubble
No. 1. These views enable one to have a better idea of the bubble shape deformation and
elongation during the capture phenomenon.

Figure 19.10, courtesy of Sheldon Green, is an unpublished photo of a bubble in the
viscous core of the trailing vortex of a NACA 66-209 hydrofoil (see Green,1991, for details of
the experiment). The photograph is a double exposure, the time of separation between the
two pictures being 150 ps. The three bubble shapes in the top of the figure are aligned along
the axis of the vortex. The diameter of these shapes is of the order or 200 pm. The bottom
two shapes are those of the same bubble at two instants 150 p#, and illustrate very clearly
the large deformations of the bubble during its capture by the vortex. As in the numerical
simulations presented above, this behavior appears to be related to the large shear stresses
experienced by the bubble while approaching the vortex axis. In the first of the two pictures
the bubble is very elongated due to shear, while 150 pa later, it appears to have grown in
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size - due to the pressure drop in the vortex,- while conserving a strong deformation on its
downstream surface.

19.5.4. Bubble on Vortex Axis Let us consider now the case where the bubble is placed
at the vortex axis at t = 0 and starts to grow due to the excess between the internal pressure
and the local ambient pressure. Such a problem was considered earlier by Crespo et al (1990)
who studied the dynamics of an elongated bubble. Unfortunately, his model neglected essential
elements in the bubble / line vortex dynamics: i.e. the presence of an azimuthal velocity flow
field, a rotational and viscous flow, and a pressure "well" on the axis. Crespo obtained a strong
jet which initiated at both extreme points of the bubble along the axis of symmetry. As shown
in Figure 19.1la such a behavior is reproduced using the program 2DynaFS when the vortex
flow field is neglected. However, the opposite effect is in general obtained when the rotation in
the vortex flow is included. Figure 19.1lb illustrates this for particular values of the circulation,
r, (or the swirl parameter, fl) and the normalized core radius, 'K = F4/RP,.,. Modifications
in the results when f0 and 7ZR are changed are discussed in the following paragraph.

In both cases shown in Figures 19.1la and 19.11b the initial bubble shape elongation ratio,
bubble length to radius, was three. It is clear from the comparison that the swirl flow has a
conclusive effect on the bubble dynamics. Bubble surface portions away from the vortex axis
experience much higher pressures than bubble surface portions on and close to the vortex axis,
and therefore move much faster during the collapse phase generating, instead of the sharp jets
on the axis as in Figure 10a, a constriction in the mid-section of the bubble. This generates
an hourglass shaped bubble which then separates into two tear-shaped bubbles.

In the following figures 19.12a - c, the dynamics of initially spherical bubble positioned
at t = 0 on the vortex axis are studied. The initial internal pressures inside the bubbles are
taken to be larger than the pressure on the vortex axis, and the bubbles are left free to adapt
to this pressure difference. The figures strongly indicate that the bubble behavior depends
significantly for a given value of the swirl parameter, fl, on the normalized core radius A,



22 FLUID VORTICES

Fig. 19.10. Double exposure photo of a bubble in the viscous core of the trailing vortex of a .VACA
66-209 hydrofoil (see Green, 1991). Time of separation between two exposures =150 Ats. Scale 19.
pam./cm. R, = 6.81o0, r = 0.232m 2/3. Courtesy of Sheldon Green.

ratio of R, to R.z, the maximum radius the bubble would achieve if it was in an infinite
medium with an ambient pressure equal to that on the vortex axis. In all cases where the
bubble maximum radius, R. is larger than R, it appears that the bubble tends to adapt
to the vortex tube of radius R,. This could lead to various bubble shapes as shown in the
following figures ending up with a very elongated bubble with a wavy surface for large values
of R./Ro.

Figures 19.12a - c show bubble contours at various times during growth and collapse for
increasing values of the core radius, R., and decreasing values of p./p". Also shown are
selected 3D shapes of the bubbles at various times which have the advantage of being much
more descriptive. It is apparent from these figures, that during the initial phase of the bubble
growth, radial velocities are large enough to overcome centrifugal forces and the bubble first
grows almost spherically. Later on, the bubble shape starts to depart from spherical and to
adapt to the pressure field. The bubble then elongates along the axis of rotation. Once the
bubble has exceeded its equilibrium volume, bubble surface portions away from the axis -
high pressure areas - start to collapse, or to return rapidly towards the vortex axis. To the
contrary, points near the vortex axis do not experience rising pressures during their motion,
are not forced back towards their initial position, and continue to elongate along the axis.
As a result, a constriction appears in the mid-section of the bubble. The bubble can then
separate into two or more tear-shaped bubbles. It is conjectured that this splitting of the
bubbles is a main contributor to cavitation inception noise. This behavior is very similar
to that observed for bubble growth and collapse between two plates (Chahine, 1989), which
results in the formation of a vortex line! (see Figure 19.12).

Keeping fl constant while reducing the core size R. has the effect of steepening the radial
pressure gradient along the bubble surface and increasing the rotation speed inside the viscous
core. This enhances the deviation of the bubble shape from a sphere, and increases the
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Fig. 19.13. Bubble collapse between two solid parallel plates resulting in the formation of an hourglass
shaped bubble and a line vortex perpendicular to the two plates.

Fig. 19.14. Cavitation bubble shapes observed at the exit of a vortex tube.
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Fig. 19.15. Influence of solid wall distance on bubble collapse in a line vortex. f = .475, pi/Poe = 584,
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centrifugal force on the fluid particles closer to the vortex axis. This has the consequence of
increasing the elongation rate of the bubble and results in more and more complex dynamic
shapes of the elongated bubbles. The bubble can then become subdivided into three, four
or more satellite bubbles during the coliapse. The elongated and wavy shapes obtained have
been observed in unpublished tests that we have conducted on cavitation on the axis of the
vortex formed in a vortex tube (see Figure 19.14).

19.5.5. Bubble on Vortex Axis Near a Wall The series of Figures 19.15a - c show the
collapse of a bubble trapped in a line vortex perpendicular to a solid wall at vi-ious distances
from this wall. The boundary is at y = 0 and its distance to the initial buuule center, L, is
normalized with R.,.. The presence of the wall is accounted for by the incorporation of an
image bubble. The uneventful growth phase ends with the elongated spheroid shaped contours
shown at the center of each figure. Then, the overall bubble behavior appears to be similar to
that in absence of the wall; namely, bubble elongation along the axis followed by a splitting
into two bubbles. The presence of the wall is felt by an asymmetry between the two secondary
bubbles. In all cases, computation was stopped at bubble splitting. A special treatment to
the bubble shape discretization needs to be done after that point (panel removal) and is being
implemented. It is speculated, based on previous bubble dynamics observations, that very
strong jets bringing back the two pointed tips (in the splitting region) of the two secondary
bubbles inside each bubble will be generated. This phenomenon. is expected to be stronger
for the secondary bubble close to the wall since that bubble has a much more elongated tip.

Figure 19.16 shows the influence of the circulation parameter, fl, on the bubble behavior
for fixed values of the core radius and the distance to the wall. This figure contains significant
information on the scaling of bubble behavior in a vortex flow. Three characteristic dimensions
of the bubble are shown as a function of time. These are the bubble radius along the plane
perpendicular to the line vortex, R., and the distances between the initial bubble center
and the two extreme points on the vortex axis, Z,,(l) and Z,,(100). Figure 19.16 shows
time variation of these three quantities normalized with R,,.. Time is normalized with the
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Fig. 19.16. Influence of 01 on the motion of bubble axial and longitudinal dimensions versus time for
a bubble trapped in a line vortex perpendicular to a solid wall. Distances are normalized with R..
and times are normalized with Rayleigh time. p./p. = 584, %,/R,., = 0.4, L/IR = 4.

Rayleigh time based on R., and the pressure difference between PF. and the pressure on
the vortex axis. It is apparent from this figure that R. follows the classical Rayleigh model.
Variations of fl between 0.1 and 0.94 modify the normalized bubble period by less than 10
percent. One should notice, however, that bubble period is here defined as the time needed for
the bubble to subdivide into two secondary bubbles, and that no bubble surface instability,
as described earlier, occurred in that case. Bubble elongation, on the other hand, depends
strongly on f), as can be seen from the Z. curves. The elongation of the bubble part close to
the wall is seen to be affected for large values of M.

19.6. VALIDATION STUDY: BUBBLE / VORTEX RING INTERACTION.

19.6.1. Experimental Study In order to validate the numerical studies on bubble /
vortex interactions, a fundamental experimental and numerical study was conducted. This
consisted of the controlled observation of the interaction between a vortex ring and a bubble.
The results of the experiment were then compared with those obtained with the 3D free surface
dynamics numerical code 3DynaFS described above (Chahine et al, 1993).

A vortex ring was generated in a Plexiglas tank using a cylinder equipped with a 2.5 an
radius piston. The cylinder has an sharp lip exit to enhance the roll up of the fluid vortex
generated at the lip. This results in a vortex ring with a diameter slightly larger than that of
the cylinder (Kalumuck and Chahine, 1990). The water in the tank is degassed using a vacuum
pump and a spark generated bubble is produced using two tungsten electrodes submerged in
the tank which can be manipulated from outside the tank to be placed where desired. The
spark is produced by discharging during a very short time period (t_ 10-4s) a high voltage
(6000 volts) from a series of capacitors. The interaction between the generated ring and bubble
was then observed. A spark generating the bubble has the advantage of simulating cavitation
bubbles and allowing one to choose precisely when and where the bubble is generated, which
is essential to coordinating the positions of the bubble and the ring, and the starting time of a
high speed camera. A triggering line allows one to synchronize the departure of the piston and
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Fig. 19.17. Partick trectory around the ring viucous co.

the triggering of the spark generator using pressure transducers to precisely detect the vortex
ring motion. As the piston starts to move down, a pressure pulse is created in the tank by
the fluid impulsive motion. This is detected by the transducer probe and amplified to trigger
a delay generator. The output signal (a very short pulse) then triggers the spark generator.
Visualization was performed using a HYCAM ii high speed camera capable of 11,000 frames
per second.

On several of the motion pictures taken very small gas bubbles were present under the
piston. The visualization of the motion of these bubbles allows one to observe their trajectory
around the vortex ring. The existence of a "viscous core" was apparent from the velocity
profile obtained by tracing the microbubbles' motion, whether or not the vortex ring was
cavitating. For the cavitating cases, the "viscous core" surrounded the vaporous/gaseous
core. A typical trajectory of the small bubbles is shown in Figure 19.17. Also shown in this
figure is a sketch of a bubble and the particle trajectory line (T). Figure 19.17 also shows the
geometric characteristics of the bubble/ring positions. DI is the distance between the bubble
center and the viscous core center when the bubble is at its maximum volume and has the
equivalent maximum radius R,.. D2 is the horizontal distance between the bubble and the
center of the viscous core. The normalized quantities T• = DI/R?. and 1) = D2/ R.
characterize the bubble / vortex ring interactions. As expected, it is observed that smaller
TI- and f correspond to stronger interactions and larger bubble deformations.

Figure 19.18a - c drawn in the ring reference frame shows the bubble motion and
deformation with time for three selected cases of increasing bubble/shear interaction. The
electrodes position shown on each graph is the one at the instant of the spark generation. The
vortex ring side view indicates the position of the reference frame.

As can be seen from the pictures in Figure 19.19a (TD = 2.16, ; = 0, V,, = 0.28m/s)
and from the contours in Figure 19.20a , the bubble remains practically spherical during its
growth. The interaction is weak due to the relatively large distance between the bubble and
the ring, and also due to the relatively small circulation of the ring. The first collapse is too
fast, and no significant deformation of the bubble is seen until the rebound when a reentrant
jet appears on the bottom face of the bubble followed after the rebound by an outgoing
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jet on the top face. It appears that during the first bubble oscillation period the bubble
translation velocity is smaller than the vortex generated fluid velocity. The bubble therefore
sees a flow moving upward. The jet direction (including the reentrant and the outside jet) is
on a pathline of shear flow, and the bubble motion after the collapse follows a particle path
line while oscillating and cutting itself in two.

In Figure 19.19b (ZD = 2.38, I = 1.5, V., = 0.78m/s) the bubble first grows spherically,
then it starts to stretch into an ovoid shape: the bottom face is less curved and the top face
more curved than in the spherical case. Here the distance IT is not too different from the
previous case but the circulation in the vortex ring is about three times larger. When the
bubble volume decreases, the stretching due to the shearing action becomes more pronounced
and a constriction along the bubble periphery appears along the pathilnes (T). The bubble
then rebounds with a dumbbell shape.

In Figure 19.19c (7T, = 1.1, T = 0.37, Vyig = 0.82m/s) the bubble appears to be
stretched more and more in the pathlines' direction during its growth, with the top region
more stretched than the bottom one, and the top right part growing more than the left one.
When the bubble collapses, its left side continues to be sheared by the flow into a pathline
direction and a 'beak' forms at the top left part and becomes more pronounced once the
volume of the bubble starts to decrease. Then, there is a constriction all around the bubble
which appears first on the top face of the bubble. The bubble then cuts itself in two and
rebounds as two side-by-side very distorted bubbles (or bubble clouds). The left one then
touches the cavitating Ling and splits again into two parts. The deformations of the bubble
are more significant in this case than in the two previous cases, because the bubble is closer
to the center of the ring core and experiences a strong shear flow. In addition, there appears
to be a "venturi effect" between the bubble and the viscous core that further increases the
stretching of the left part of the bubble

Within the margin of errors of the measurements, comparison of the time variation of the
average radius of each bubble shows no significant effect of the presence of shear on the bubble
period. However, indications of a lengthening effect of the bubble period can be seen on the
characteristic distances between the bubble 'center' and the two upstream and downstream
points along a particle pathline (direction (T)). This effect however seems small in the cases
presented here and should be investigated further.

Physical explanations The observations made above can be qualitatively understood by
considering the velocity and pressure fields around the bubble. The motion of each point
on the surface of the bubble is the result of the combination of the underlying (shear) fluid
velocity and of the velocity due to the bubble growth or collapse. The effect of the underlying
fluid flow (whose characteristic speed is about 2m/.) is minor during initial bubble growth
and later bubble collapse phases, but becomes most important at the end of the growth and
at the beginning of the collapse where bubble wall velocities reach a minimum. Indeed, right
after the spark generation, the speed of each point of the bubble surface is very high (about
40m/s). It then decreases to zero at about the maximum radius, and then increases during
the bubble collapse. For a bubble in a uniform flow, the existence of the flow reflects on the
bubble shape by a larger bubble growth in the downstream direction and by a flattening of
the bubble shape in the upstream direction. Later on due to inertia, the downstream part
that has extended further collapses faster forming a reentrant jet directed upstream in the
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plane of symmetry of the bubble.
When the flow is not uniform, a similar phenomenon occurs but is stronger on one side of

the bubble than on the other due to the typical asymmetry of a shear flow. In addition,
the'possibility that the underlying shear flow becomes at some point during the bubble
history stronger than the bubble wall velocity creates the possibility of a jet generated by the
underlying flow, which can be opposite to the one described above and directed dowustream.
In the case of the figures shown here, the velocity profile seen by the bubble decreases from
left to right. When the bubble starts to grow, the speed of each point is much more important
than the velocity of the fluid flow: the bubble is therefore almost spherical. Then, when the
speed of each point decreases, the influence of the fluid flow increases. The top part of the
bubble grows more than without the presence of the basic flow and, due to the shear, the
left part grows more than the right one. In addition, the top face is more stretched than the
bottom face because on the top face the speeds add up, while they subtract on the bottom.
The opposite is true during the collapse where velocities add up on the bottom part of the
bubble and subtract on the top.

As the fluid flow moves upward in the case shown in the figure, the reentrant jet is expected
to appear on the top face. However, due to the strong shear, the left part of the bubble is
prevented from collapsing forcing a compensating middle of the bubble constriction all along
the bubble, with a tendency to form reentrant jets on both ends of the bubble along the
pathline. This constricted shape of the bubble is similar to that obtained with a bubble
collapsing between two walls.

19.6.2. Numerical Modeling In order to model the bubble/shear flow interaction
described above, the Boundary Element Method (BEM) code described above, 3DynaFS,
was used. The flow field of the moving vortex ring was modeled using the following classical
expression for the velocity potential at the point M produced by a vortex ring (*R):

-~ r 1e asp,
(19.58) O() -TJJ- sitdIsM1

SR

where SR is any surface limited by the ring vortex ring line (R.), and et is the tangential
direction along (R). This enables one to determine the velocity and pressure field outside of
the viscous core region of the vortex ring.

Figure 19.20c shows simulations for these same experimental conditions as in Figure 19c
with r = 0.12m 2 /s, while Figures 19.20a and 19.20b show the same conditions but for
r = 0.25m 2/s and r = 0.10M2 /s. As in the experiment Figure 19.20c shows elongation
of the left side of the bubble in the shear flow direction. The formation of a beak at the
end of the bubble growth is also evident but not as pronounced as in the experiment. Later
a constriction in the bubble shape along the fluid pathline is also apparent. The overall
comparison between this numerical modeling and the experiment is encouraging. However,
the strong shearing effect on the beak preventing the bubble top from collapsing from the left
side is not as strongly reproduced in the numerical simulation. This is most probably due to
the fact that the simulation neglected the vortex bubble ring behavior and did not include any
modification of the flow due to the growth of the ring bubble near the spark-generated bubble
creating the venturi effect we mentioned earlier.

At the smaller circulations the tendency of the bubble to elongate and then cut itself into
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V~,g=0.82m/s.; r = a) 0.025M2/s; b) 0.10M2/8; c) O.12M2/s which corresponds to Figure 19.18c.

two is also clearly apparent as in the experiments.

.@ 19.7. OTHER RELEVANT STUDIES
One other relevant aspect of bubble / vortex interactions concerns the case where the gaseous
phase or cavitation is so developed that the vortex center is filled with gas or vapor. The
dynamics of such cavities have been considered in the particular cases of cavitating vortex
rings and well developed tip vortices. As for the studies presented above, various simplifying
assumptions were made by the various authors in order to address these problems. For the
sake of brevity we will not consider these studies here. However, we refer the readers to the
following publications on cavitating vortex rings (Chahine and Genoux, 1983, Genoux and
Chahine 1984, Chahine and Kalumuck, 1988 and Kalumuck and Chahine, 1990). Concerning
elongated developed tip vortices, the readers can consult the following publications (Bovis,
1980a, Ligneul and Latorre, 1989, and Ligneul, 1989).

19.8. FULL VISCOUS INTERACTION BETWEEN A CYLINDRICAL
BUBBLE AND A LINE VORTEX

One weakness of the numerical approaches presented above is the fact that, while the influence
of the flow on the bubble was fully accounted for, the modification of the flow by the bubble's
presence and dynamics was restricted to the case where the "bubble flow" was potential
(see Section 19.4.3). In the present section, we will remove this restriction in the simple
but interesting case of the interaction between a cylindrical bubble and a line vortex. This
corresponds to cases such as described in the previous section, where the line vortex has the
central part of its viscous core gaseous or vaporous. As illustrated below, such an analysis
is important to determine criteria for unstable bubble growth (cavitation inception), and
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to describe how bubble dynamics affects the viscous flow itself. To do so, we consider the
case where an axisymmetric elongated bubble of initial radius a, is located on the axis of a
fully viscous line vortex. For illustration, we consider the case where, at t = 0, the vortex
line is a Rankine vortex. From there on, the vortex diffuses with time and interacts fully
with the bubble. The generated flow satisfies the axisymmetric incompressible Navier-Stokes'
equations in cylindrical coordinates. With all derivatives with respect to z and 0 being null,
the continuity and momentum equations reduce to:

(19.59) 1 a
& a r;Pa5; (Tr' I o. 7r

(19.60) aor +- [;cu +u O= 01- rg'P r r ý O; (r-O -- + u,- -- t,-

Denoting the radius of the bubble as a (t), and its time derivative, a (t), the continuity
equation leads to:

(19.62) Ur = a (t) a (t)
r

Replacing u,. by its expression in 19.60 and 19.61 one obtains:

(19.63) I a + a2 u 0 r

r po

(19.64) -! + -I- (!o+-I &I -(ruo)]
t r or r "Or IrX

This set of coupled equations allows one to describe both the bubble dynamics and flow field
modification with time accounting for the interaction with the bubble.

19.8.1. Method of Solution In order to obtain a differential Equation for the bubble
radius variations, similar to the Rayleigh Plesset Equation (19.27), Equation (19.63) is
integrated between r = a(t) and a very large radial distance r = R-.f, beyond which the
vortex flow is assumed to be inviscid, and that due to a line vortex of circulation r. This
leads to an integral term containing U2. In order to obtain this term, a space and time
integration of Equation (19.64) is needed. This is obtained using a Crank-Nicholson finite
difference integration scheme of the partial differential equation (19.64). To do so, the domain
of integration is made time independent using the variable change,

(19.65) r
4(t)

The integration region becomes for all times [1; sw] , with lRiq(t) = a(t)sjf. With a, a known
at a given time step through the solution of Equation 19.63, Equation 19.64 becomes:
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Similarly, Equation (19.63) becomes:

1r 1 1 1

(19.68) go(s) = I2,r v-

with
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19.8.2. Initial and Boundary Conditions The initial conditions considered are as

follows. For the bubble,

(19.7T) a(0) = a., 'a (0) = 0.

For the line vortex, the equation at t = 0, is that of a Rankine vortex as described in Section

(1.1.14), with

(19.71) u,(r,t = O) = 0.

In addition, the following boundary condition, similar to Equation (19.38), is imposed at

the bubble interface:

(a,\~ a olu,-(a)
(19.72) P(a) = p+p. + a'+ 2- A

where I is the dynamic viscosity, and the gas compression law is given by:

(19.73) Ps =.. (s•

In addition, the following 'at-infinity' condition is imposed on the pressure at the distance,

(1.7 :Pr ) 2

(19.T4) P(ea) = w, - 2p, r2.=t
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Fig. 19.21. Dynamics of the interaction betWeen a cylindrical bubble and a line vortex. =
0.5 m2/3, P.0 =5X103Pa, P.=1.3x 10Pa. a) Bubble radius, value of maximum azimuthal
velocity u.x, and position of Re... b) Bubble radius versus time with and without viscous
interaction.

19.8.3. Some Preliminary Results Figures 19.21a and 19.21b illustrate both the bubble
/ vortex flow field interaction and a case where there is a need to include this full interaction
in the dynamics. In these two figures, the bubble has an initial radius of 1mm, while the
viscous core of the vortex has an initial radius of 1cn. The initial circulation in the vortex
is 0.5 m2 /s, and the initial pressure in the bubble is 5xl03Pa, while the ambient pressure
is 1.3xl0sPa. Therefore, the buzble starts its dynamics by collapsing. Figure 19.21a shows
simultaneously three characteristic quantities of the problem versus time. The first quantity
is the bubble radius versus time, while the other two quantities are the radial position, R..,
of the maximum azimuthal velocity, ue.,, and the value of this velocity. In the previous
sections, these two last quantities remained constant with time. A very important first result
very clearly shown in Figure 19.21a is that both the position of R#.., and the value of uti.,
both directly depend on the variation of a(t). The viscous core (of radius B.e.) is seen to
decrease with the bubble radius during bubble collapse, and to increase with the bubble radius
during bubble growth. This tendency of the viscous core to get displaced with the bubblewall, corresponds to intuition, but is proven numerically to our knowledge for the first time
here and in Desgrees du Lou et al., 1993.

Viscous effects appear more prominently when following the bubble dynamics over more
than a single period of oscillation. Both maximum values of R.. and uom are seen to
decrease with time. Through conservation of momentum, the azimuthal velocity follows antendency opposite to the core size. As the bubble wall moves inward the viscous core shrinks,
simultaneously increasing the tangential velocity to a maximum when the bubble reaches
maximum size. As the bubble grows again, the core expands and the tangential velocity
decelerates to a minimum at the maximum bubble radius. When the fluid particles are pulled
in towards the vortex axis they accelerate tangentially. This is similar to the phenomenon of
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vortex stretching,.
Figure 19.21b shows the importane of the inclusion of full viscous flow / bubble interaction

in the dynamics. One graph in the figure considers the case where the underlying flow field is
forced to remain that of a Rankine vortex. In that case, as apparent in the figure, the bubble
oscillations are repeatable with time, and no viscous decay of the amplitude of the oscillations
are visible. To the contrary when the underlying flow is modified through viscous diffusion
and interaction with the bubble, the bubble radius oscillations decays very much after the
first collapse, and the flow field characteristics are modified as described in Figure 19.21a.

Figures 19.22a and 19.21b show, respectively, the influence on the dynamics of the initial
gas pressure inside the bubble, P.., and the ratio of initial core radius to initial bubble radius,
R=/ao. For an initial pressure on the vortex aids of 7 x lOSPa, Figure 19.2'2a shows the dynamics
of the bubble and the viscous core size when the initial pressure in the bubble decreases from
5 x105Pa to 1.5bxION. For P.. -- 5 x 10Pa the bubble collapse is very weak, and the core
radius is seen to follow the bubble wall oscillations. For all three other larger values of Pg.
starting from Pc,, =4 xION the bubble collapse is strong enough to entrain a full collapse
of the viscous core which practically disappears (maximumn azimuthal velocity at the bubble
wall) during the later phases of the bubble collapse This is followed by a much stronger
rebound of the viscous core than the bubble rebound.

Figure 19.22b shows a behavior similar to the previous figure when the ratio, R/ao,,
increases. Here again a strong core collapse and rebound is observed when the initial distance

Sbetween the bubble wall and the core radius is decreased.
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trend is to address the problems by a two-pronged effort involving numerical and experimental
simulations. This is made possible by the development of advanced high speed computers
which render direct numerical simulations possible in reasonable amounts of time. The studies
presented above addressed various aspects of the problem, namely bubble capture by the
vortex and bubble dynamics in the vortex flow field. Very much lacking and presently a
subject of active work at our research center is the influence of the bubble's presence on
the vortex behavior. It is hoped that a matching between a viscous solver, at least in the
vortex viscous core region, and a bubble dynamics solver such as 2DynaFS or 3DynaFS
would enable one to describe with some acceptable accuracy the full interaction between the
bubbles and the vortex flow field. This is of great importance since it would enable the user
to understand the mechanics involved thus enabling one to manipulate the phenomena for
technological advantage such as is bubble drag reduction or cavitation inception delay.
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* Cavitation Dynamics at Microscale Level
Georges L. Chahine
Dynaflow, Inc., Fulton, Maryland and John Hopkins University, Baltimore

Cavitation in a liquid Is known for its deleterious lem are highlighted and briefly addressed, new areas
effects, namely erosion, noise and loss of perfor- of research in non-spherical and bubble cloud
mance. In a mechanical heart valve, stresses generat- dynamics are then considered. The importance of the
ed by cavitation could lead to catastrophic failure. inclusion of these collective and non-uniform flow
These deleterious effects are directly connected to the effects in the dynamics of bubbles in a realistic cavi-
dynamics of pre-existing microscopic nuclei in the tating flow field is also elucidated.
liquid medium. To highlight this, a selective review
of the dynamics of the bubbles at the microscopic lev- The Journal of Heart Valve Disease 1994"3 (Suppl. I):
els is considered here; the various aspects of the prob- S 102-116

Cavitation and bubble dynamics have been the sub- Cavitation inception
ject of extensive research since the early works of Background
Besant (1) and Lord Rayleigh (2). The phenomenon has Backgroundbeen studied mostly for hydrodynamic applications, Despite a large number of investigations and publi-b e st d e motyf rh d o y a i ap lcto s cations on the subject - including several well docu-

W where its presence is associated with deleterious ctoso h ujc nuigsvrlwl ouwher it prsene i asociaed ithdelterous mented books and review articles (6-9) - the funda-
effects; i.e. performance deterioration, material ero- mented ok an review rile the punda-
sion, and noise generation. More recently, cavitation mentads of cavitation relpor
has been studied for useful purposes including sound und erso d Iode touch a avationee esign
generation, cutting, drilling, cleaning, enhancement of of a submre bodyt(such as a v opelle etc.),or to simulate cavitation and test a model scale in a lab-
mixing and chemical reactions, emulsification, etc. ( oratory environment, it is necessary to establish criteria

This article studies the damaging effects of cavitation for cavitation inception, and to define scaling parame-

on implants such as mechanical heart valves, and its ters between model and full scale. From talking to engi-

negative effects on biological cells and tissue in vivo. In neers and practitioners of fields where cavitation is a

both these cases stresses generated by cavitation lead to problem, the most commonly used definition of cavita-
undesirable effects; in a mechanical heart valve, failure tion is based on an over-simplification that serves the

of the valve could result from the development of purpose in most engineering cases but could lead to

cracks, while cells could be damaged or induced to col- erroneous conclusions if used to explain or model new

lect around bubbles. problems areas. This traditional engineering definition

This presentation does not intend to be a complete is that a liquid flow experiences cavitation if the local

and inclusive review of the phenomenon of cavitation, pressure drops below the liquid vapor pressure, p,.

Instead it will consider some aspects of the subject rel-
evant to cavitation erosion from a microscopic point of Definition of the cavitation number
view of the bubble dynamics. Our aim is to give an A dimensional analysis of the flow around an obsta-
overview of the problem areas where significant che (e.g. foil or a valve) of streamwise and transverse
knowledge has been accumulated and to discuss characteristic length scales, L and W, shows that the
important aspects of the dynamics which either have pressure, PM' at any point M, can be written as a func-
not yet been addressed properly or are the subject of tion, F, of the following variables:

on-going intensive research. PM = F (PaLWpV.,g), (1)
S Address for correspondence

Georges L Chahine, Dynaflow Inc., 7210 Pindell School Road, where a is the incidence angle of the flow relative to the

Fulton, Maryland 2•759, USA obstacle, P. and V_ are the characteristic pressure and

0 Copyright by ICR Publishers 1994
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flow, or in a biological application, liquid vaporization
can only occur through the presence of "micro free sur-

___ faces" or microbubbles, also called "cavitation nuclei".
1 Indeed, a pure liquid free of nuclei can sustain very
I olarge tensions, measured in hundreds of atmospheres,

.. , O k"..Wagm before a cavity can be generated through separation of
the liquid molecules. Therefore, any fundamental
analysis of cavitation inception has to start from the•JM 0observation that any real liquid contains nuclei which

3"b "WWwhen subjected to variations in the local anmbient pres-
= --ý sure will respond dynamically by oscillating and even-

tually growing explosively (i.e. cavitate). A more pre-
cise definition is presented in the next section.

Cavitation inception appears under several forms,
the most recognized being (14):

0 1 (a) Explosive growth of individual bubbles,
.'4 " (b) Sudden appearance of transient cavities or "flashes"

_ 1000 on boundaries,
(c) Sudden appearance of attached partial cavities, or

sheet cavities,
(d) Explosive growth of bubble clouds, behind attached

- 3M cavities or a vibrating surface.
(e) Sudden appearance of rotating filaments, or vortex

cavitation.
Upon further analysis, all tht.s forms can lxe relatedFigure 1: Curves of bubble static eq~uilibriuu, to the explosive growth of pre-existing nuclei in the liq-

uid when subjected to pressure drops generated by var-
velocity of the flow, respectively, and p and p are the ious forms of local pressure disturbances. These are
liquid density and kinematic viscosity, respectively, either acoustically imposed pressure variations (ultra-
Based on the above engineering definition of cavita- sound applications), uniform pressure drops due to
tion, from a cavitation inception standpoint, any pres- local liquid accelerations, or strongly non-uniform pres-
sure, PM' in the liquid flow is important only in terms of sure fields due to streamwise or transverse large vorti-
the pressure difference, PM c Pa, since the liquid cavi- cal structures. The presence of nuclei or weak spots in
tates when PM = " In this case, Equation (1) becomes the liquid is therefore essential for cavitation inception
at the inception of cavitation: to occur when the local pressure in the liquid drops

_ PV o a , ( below some critical value, 1,, which is addressed next.
or P 7 (aW, pVFL (,

1/2p V A, I Bubble static equilibrium
The first level of sophistication for the definition of a

9e is the Reynolds number, G is a geometric character- cavitation inception criterion is based on the concept of
istic (shape parameter) of the obstacle, and a is the static equilibrium of a bubble in a liquid. The criterion
"cavitation number" defined as: predominantly used is based on a spherical bubble

P_ - PV model, even though it applies only to a limited number
(3) of the cavitation forms listed above. In this model, the

1/2 PV-2  bubble is assumed to contain non condensable gas of
Scaling various cavitation experiments or a model con- partial pressure, P , and vapor of the liquid of partial
figuration to a full scale configuration is obtained by pressure, pv (6-9). herefore, at any point M on the bub-
conserving c. ble surface, the balance between the internal pressure,

the liquid pressure, and surface tension can be written:

Presence of cavitation nuclei 2y
The above definition of cavitation inception is only PL=P 90+ PS0  Ro'

* true in static conditions when the liquid is in contact
with its vapor through the presence of a large free sur- where PL. is the pressure in the liquid, y is the surface
face. For the more common condition of a liquid in a tension parameter, and Ro is the bubble radius.
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Figure 2: Influence of viscoelastic properties on spherical bubble dynamics. A, and X2 correspond to Newtonian fluid. a) Bubble oscil-
lations case, X,1 = 2. b) Bubble collapse case; X, = 103. Reprinted from (10).

If the liquid ambient pressure changes very slowly, where the notation, PL(R), is meant to associate the liq-
the bubble radius will change accordingly to adapt to uid pressure, PL, to the bubble radius, R.
the new value. This is accompanied by a modification of An understanding of the bubble stable equilibrium
the pressure inside the bubble. The vaporization of the can be obtained by considering the curve, PL(R). As
liquid at the bubble-liquid interface occurs very fast rel- illustrated in Figure 1, this curve has a minimum below
ative to the time scale of the bubble dynamics, so that the which there is no equilibrium bubble radius. Only the
liquid and the vapor can be considered in equilibrium at left side branch of the curve corresponds to a stable
every instant, and the partial pressure of the vapor in the equilibrium.
bubble is always constant. On the other hand, gas diffu- If the pressure in the flow field drops below the min-
sion occurs over a much longer time scale, so that the imum of the curve, or critical pressure, pc, an explosive
amount of gas inside the bubble remains constant. This bubble growth (cavitation) is provoked. This provides
results in a gas partial pressure which varies with the an improved definition for cavitation inception which
bubble volume. Since we are interested in a quasi-steady depends on the size of the nuclei. The "critical pres-
equilibrium, P. is considered to follow an isothermal sure" is obtained by solving for the minimum of PL(R),9
compression law, and is related to the reference value, using Equation (6) and can be expressed as:
P.., and to the new bubble radius R, through: 41

PcPC = pV (7)P g = Pgo (L)3. (5) 3e

where I is the surface tension parameter, and r. is the
The dynamic equation at the bubble wall becomes: "critical radius" given by:

-- r - + (8)
PL(R) = P + P -13 -2 (6) 2yR0 T

(R= . R'R For a given ambient pressure, PL., any bubble larger
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Figure 3: Emission of a shock uwave during bubble collapse and
rebound. Reprinted from (13).

than r, will cavitate. This definition is much more accu- 0
rate than the engineering definition, but lacks consid- 5-

eration of any dynamic or non-spherical effects, which
can be p.reominant in some situations. 4

This new definition of cavitation inception high- .
lights the fact that a correct scaling of the cavitation ...... ..........
phenomenon has to account not only for the conserva-
tion of the parameters shown in Equation (2), but also
for the nuclei size distribution between the model and
the full scale. Lime(s)

Spherical bubble dynamics Figure 4; Gas pressure inside the bubble as a function of time
Newtonian incompressible model - for a bubble subjected to a sudden pressure drop. Comparison
Rayleigh-Plesset equation between an incompressible medium case (c=linfinityl) and a

The most commonly used bubble dynamics model is compressible medium.

based on the assumption of a spherical bubble in an where the constant k is between 1.0 (isothermal) and
Aompressible liquid. In this case, the radial velocity of c,/c. (adiabatic), and Vo and V are the reference and
#Me liquid, ur, at a distance, r, from the bubble center, is instantaneous values of the bubble volume respectively.

directly related to the bubble wall velocity through the The pressure balance at the bubble interface then
continuity, or mass conservation equation: becomes:

ur [ Rt--- (9) PL(M) = P, + Pg,,(_) - -4L - - (12)

where R(I) is the bubble radius at time t, and R(t) is the A number of effects such as gas diffusion or heat trans-
bubble wall velocity. This equation accounts for the fer have been neglected in the above equation, and are
kinematic condition at the bubble wall - i.e. the veloci- usually unimportant in the case of a growing and col-
ty of the bubble wall is identical to the liquid velocity at lapsing bubble in a cold liquid. For an oscillating bub-
this wall. This obviously neglects any flow (mass trans- ble, however, rectified diffusion can be very important.
fer) across the bubble interface. A second boundary If we replace Equation (9) in the liquid momentum
condition at the bubble wall, which is dynamic, equation, integrate that equation between the radius of
expresses the balance of the normal stresses at the wall. the bubble and infinity where the imposed pressure is
For a Newtonian fluid it can be written: P_(t), and account for Equation (11), we obtain the well

R 2y known Rayleigh-Plesset (RP) Equation (2,9) where dots
PL(R) + 41g = PiR- R (10) denote time derivatives:

where PL(R) is the pressure in the liquid at the bubble p[RR+. 2  + 41g -- = P~o + P-P(t) - -

wall, Pi the pressure inside the bubble, I the surface ten- 2 R 8O R R
sion, and p the kinematic viscosity. As above, the bub- (13)
ble contains vapor of the liquid at the constant partial This differential equation describes the bubble radius
pressure, p,, and non-condensable gas at the partial versus time when the time variations of P_ are known.
pressure, Pg, which is related to the reference value Pg. Integration of this equation enables one to obtain con-
through: ditions for bubble oscillations, or rapid bubble growth

P=P go ((11) and collapse. In addition, this equation provides the
necessary input to compute the pressure generated
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where the last two terms have replaced the more con-

ventional viscous terms, and in the stress balance equa-
liun al i Ihe I)bl(bbh, inlh-f'(c, which beconems:

Figre 5: Nitnwrical sinutahtion of lu,,lbh'tl h apse aear a solid (R )3k+ 2y
wall using 2DynaFS. Bubble contours at various times during f',(M) R P - -- rr. (16)

collapse.'" R

Finally, for an incompressible isolated bubble the
during bubble collapse. Thiese pressures can be very differential equation describing the bubble radius ver-
large. They decrease with an increase in the amount of time becomes:
initial gas in the bubble. They will be considered as ref- sti c
erence values in comparison~ with other models in thle 3Rk 2y
following sections. p RR=+ R + P, - -P(t)

Viscoelastic liquid: modified Ri' equation tgo i -R I
When the liquid in which cavitation occurs does not - 41pu [(M

have Newtonian properties, the above RP dynamics R Tg2 I

e(luation :iusl be modi'fied to account for a non-linear lR2((X)R(i ?((X( R( 1)
stress-strain relationslip. 'Ihis is the case lor instance in log dut]. (17)
blood flow, or in hydrodynamics when polymer addi- R:() - R(I) R3 (I)

tives are used to reduce drag. The question is then to Figure 2 shows a comparison between the oscillation
evaluate to what extent accounting for the fluid's non- Figure ow a cparison beten t scllation
Newtonian behavior is important from the cavitation and collapse of a spherical bubble in a viscoelastic liq-
view point. In previous studies (10-12), we considered uid and water. Negligible effects are seen for a strong
theoretically (10), and experimentally the behavior of bubble collapse unless for very large unrealistic values
spherical and non-spherical (11,12) bubbles in a vis- of . = p02 /641. and 2= trl9po/6413 . Viscoelastic
coelastic fluid medium. The equation of state of the effects appear less negligible for weaker bubble oscilla-

fluid was taken to be a general 3-parameter Oldroyd tions, and when several bubble periods are considered

model such that the stress-strain relationship (o and e (10). Experimental results relative to the viscoelastic

are the stress and strain tensors) is given by: effects are presented below.

Influence of liquid compressibility

S)1(ij=p L + 0 (14) Even though generally neglected in bubble dynam-

"ftl dt i ics studies, compressibility of the liquid medium can
become important when the speed of the bubble wall

where T r, , and p are characteristic relaxation times during collapse or rebound approaches the sound
and the'dynamic viscosity of the non-Newtonian fluid. speed in the liquid. This is illustrated in Figure 3, where

For a spherical bubble this fluid behavior shows up in shock waves are emitted at bubble collapse (13). In
both the momentum equation: order to model the liquid compressibility, an equation
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tively, for water. The model that has been shown to be

.ypothesis states that the disturbance of any fluid

basedro the folwigTitkequation (16-) hptsis Theds

W •property propagates along an outgoing characteristic Figure 8. High speed photography observation of bubble
of velocity of propagation of u + c, the sum of the local dynamics between two solid walls.
velocity of the fluid and the sound speed. In this case
the equation of motion of the bubble wall can be writ- The velocity of the fluid along the characteristic surface
ten: is given by:

dt + - u)r2 L

(in+ (19) with i = (h - , 2/2)/r. Using as the initial condition the
dt c velocity and radius of the bubble wall, the above equa-

where c is the sound speed at the bubble wall. H is the tion can be used to compute the velocity along the char-
difference between the enthalpy at the bubble wall and acteristic. Equation (20) then gives the corresponding
at infinity, and with an isentropic liquid compression pressures.
assumption is dtfined as: The former expressions reduce to the incompressible

ones as the quantity Rtc drops below 0.2. In general aVRp eP dp slightly compressible model can be used to replace the
H(p)of dh . (20) Rayleigh-Piesset equation with the Keller-Herring

Jp'.o 'tjlldtit)I1 (8):
The pressure in the liquid is then given by the fol-

lowing equation at a given location r:

p ==p -) ( .tl (-- ( + -- dt)[PL-PlJ (23)
n/(I-k () 

p- c c,] B. (21) where:

di 
2 t ,( 2
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P-P (R 3k 2a 24 Bubble dynamics model:
Pl. RI + R2 numerical boundary element method

For cavitation bubbles, large but subsonic bubble
Figure 4 compares the pressures in the bubble when wall velocities are involved and, as a result, viscous

compressibility is taken into account and when it is not and compressible effects in the liquid can be neglected.
for a particular case of a spherical bubble collapse. Both This results in a flow due to bubble dynamics that is
an increase in the bubble period and a decrease in the potential (velocity potential, Ob)e and which satisfies the
maximum bubble pressure can be observed when a Laplace equation:
finite sound speed in the water is considered.(

Non-spherical bubble dynamics Boundary conditions are such that at all moving or

Introdctionfixed surfaces in the flow field an identity between
Int mot i fluid velocities normal to the boundary and the normal
iunbmos pre aplomp ated or ssure s iwhe e avtaeti hn ocus velocity of the boundary itself is to be satisfied. The

bublesaresedomisoate o sperial.Ths i th cae, bubble is assumed to contain non-condensable gas as
for instance, in biological applications when blood flows in well as vapor of the surrounding liquid, as above.
and out of the heart through a heart valve. During closure The three-dimensional Boundary Element Method
of the valve, flow eparation and increased velocities can developed (3DynaFS, with an axisymmetric version
induce bubble nuclei explosive growth followed in the 2DynaFS (17-19)) uses Green's equation to determine a
higher pressure regions cy bubble collapse. Fortunately, solution to the Laplace equation. If the velocity poten-
with the recent advent of modern computational, exped- tial, 0,, and its normal derivatives are known on the
mental, and analytical techniques, the often-neglected fluid boundaries (points M), and *b satisfies the
bubble flowand bubble boundary interaction and defor- Laplace equation, then s 1, can be determined at any
mation effects can be addressed. To do so, we develope6 a point P in the fluid domain using:
numerical method which accounts for strong bubble/bub-
ble and bubble/flow interactions. This method has been bbe b 1 a t a I n d
used to date to study interaction between bubbles, bubbles, f , l I .MPI, +0, a"( M1) dS = nf])
and nearby rigid or deformable/movable foundlaries, and iMg (26)
bubble behavior in non-uniform flows when the underly-
ing flow is viscous. Two particular shear flow cases of rel- an = Q is the solid angle under which P sees the fluid.
evance to cavitation in separated flows are briefly consid- The advantage of this integral representation is that it
ered here; a boundary layer flow near a flat wall and the effectively reduces by one the dimension of the prob-
flow field of a line vortex. lem. If P is selected to be on the boundary of the fluid

Shear and boundary interactions ar e probably domain, then a closed system of equations is obtained
important for flow around heart valves. In both cases and used at each time step to solve for values Of 4b/n
significant modifications of the bubble dynamics are (or e assuming that all values Of 1b (or &,b/n) are
associated with the presence of the shear and its corn- known at the preceding time step.
bined effects with nearby boundaries. To solve Equation (26) numerically, the initially
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Figure 11: Influence of the presence of a linear shear elocity o . . :- "
on the collapse of a bubble near a solid vall. Vbhcr is norimal- .

ized with the Rayleigh velocity VAPp. 7

spherical bubble is discretized into a geodesic shape o . 2 3 4 5
with flat, triangular panels. To evaluate the integrals in nomalized time
Equation (26) over any particular panel, linear varia- Figure 12: Comparison of the pressures at the cloud center pre-
tions of the potential and its normal derivative over the dicted by 3DynaFS and the asymptotic analysis code. e =
panel are assumed. Rmax/1 0 = 0.047. Pressures are normalized by maximum value

With the problem initialized and the velocity poten- for isolated bubble. Reprinted from (24).
tial known over the surface of the bubble, an updated
value of &8b/S1n can be obtained by performing the inte- For cavitation in a line vortex, Equation (28) becomes
grations expressed above and solving the correspond- (18):
ing matrix equation. The unsteady Bernoulli equation
can then be used to solve for Deb/lDt, the total material 4 1 P1# erivative of 86, while following a particular node dur- 6t 2 p

W ig its motion. Using an appropriate time step, all val-
ues of 4b on the bubble surface and all node positions
can be updated. This time-stepping procedure is In the case of a flat wall boundary layer flow such
repeated throughout the bubble oscillation period, that all velocity vectors are parallel to the wall (unit
resulting in a shape history of the bubbles. The details direction, ex), and depend only on the distance, z, to the
of the numerics are described in a report by Chahine et wall, Vo = ffz).ex, Equation (28) becomes (19):
al. (17).

__k~ + lVbl 2 + Vo"Vb+--
Presence of a basic flow 8-"t 2 p

To study bubble dynamics in a non-uniform flow

field, the following model was used. Denoting the = constant along the y direction. (30)
velocity of the non-uniform "basic flow" as V., and the These two expressions were used in conjunction with
resulting velocity field in the presence of oscillating the numerical model described above to conduct the
bubbles as V1. we defined the "bubble flow" velocity simulations shown below.
and pressure variables, Vb and Pb, as:

Vb = VI - Vol Pb = P1 - PO- (27) Interaction with a nearby deformable structure
To study bubble interaction with deformable struc-

By noticing that, for cavitating flows, this "bubble tures, the above described BEM codes were coupled to
flow" field can be considered to be a i)tential modil, existing solid ine.hanics/strtural dynamics codets,
we were able to use a method similar to the one Nike3l) and Nike2I), developed by Lawrence Liver-
described in the previous section to study the dynam- more National Laboratories. These codes have the abil-
ics. We then obtained the following modified Bernoul- ity to include complex material and structure proper-
li equation (1 8,19,23): ties. The coupling between the two sets of codes is

achieved through the dynamic condition at the bound-

r 2 + V [,v 1+ P, aries of the deformable boundary. At these boundaries,
1t1 V2 IX V"). the pressure from the liquid obtained through solutionW 2 p of the BEM liquid problem is used as the input or dri-

(28) ving force for the structural model. The resulting

l_
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Figure 13: Gr(owt h and collapse offive bubbles having thesamie -100 0
initial size and internal pressure. Influence of the initial bubble

geometry distribution on dynamics. e = 0.474, Pgo Pamb
283. Reprinted from (23). ii

motion of the structure is then fed back into the BEM -20 -10 0 IS to
code to calculate the fluid motion at each time step, as Figure 14: Simulation of the dynamic interactions between a
described above. The velocity and position of each cloud of 21 bubbles using 3DynaFS on a Cray. Two planes of
node are transferred to the fluid model. This coupling symmetry are used; each bubble has 102 nodes and 200 panels.
results in a fully interactive calculation (26). a) Growth. b) Collapse.

Illustrative numerical results and experimental been established (7). The electrodes were mounted in a
observations: spark-generated bubbles large vessel which was hermetically sealed and con-

In all the experiments reported here vapor bubbles nected to a vacuum pump. Lowering the ambient pres-
(with some non-condensable gas) were generated in sure was used for degasing and, when desired, for
water by discharging a capacitor across a pair of plat- increasing the bubble size, thus slowing down the phe-
inum or tungsten electrodes for a very brief period of nomena observed. This enabled the use of a moderate
time. The generators used were capable of capacitor framing rate high-speed camera, a HYCAM, whose
charge up to 10 kV. Such a system has been widely maximum capability was 10,000 frames per second.
used by various authors for bubble dynamics studies,
and the validity of the analogy between the collapse of Behavior near a solid wall
the bubbles it produces and cavitation bubbles has The physical mechanisms by which bubble collapse

......................--.----------- ----- -saw-
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Figure 15: Bubble dynamics on the axis of a vortex line. Left n
side shows 3-D shapes at selected times, right side shows bub- r o
ble contours at increasing times. a) Initial elongation ratio of m

3, pi/p. i) No swirl, ii) 0= 0.56, Rc/Rma. = 3. b) r = 0.005
m2 /s, Ro = 100 jim. i) pilp = 2, Rc/RO = 1, ii) pi/p- = 1,

Rc/Ro = 1, iii) pi/p_ = 2, Rc/Ro = 0.57. Reprinted from (25). .m

near a solid wall causes material erosion have been (1) and theoretical (2,21) studies on a spherical bubble
the subject of controversy for a long time. Indeed, a growth and collapse have shown no significant differ-
shock wave can be generated at bubble collapse (Fig. ences between a Newtonian and a viscoelastic fluid.
2). In addition, bubble collapse near a solid surface This conclusion was supported by our high-speed pho-
proceeds with the formation of a damaging microjet. tographic observations of spark-generated bubbles in
During its implosion the bubble first elongates per- an unbounded fluid (4).
pendicular to the wall, then the side away from it flat- However, these observations showed that a Polyox
tens and a re-entering region is formed initiating a WSR 301 solution has a noticeable influence on non-
microjet which can pierce the bubble and hit the wall. spherical bubble dynamics near solid walls, compared
Figure 5 shows a numerical simulation of this collapse to a liquid having the same viscosity (water + glycerin).
using 2DynaFS. Very beautiful pictures of the phe- The effect of the presence of the additives is to bring the
nomenon were taken by Lauterborn (20) who gener- bubble behavior closer to that of a spherical cavity. In
ated the bubbles using a laser. Figure 6 presents some order to compare bubble behavior in water and in a vis-
of our high speed photographs using the spark gener- coelastic liquid, diluted poalymer solutions of lVolyox
ated bubbles (21). were used in the set up described above. In ,he first

series of tests (11), a cylindrical aluminium specimen,
Influence of fluid properties on the bubble behavior used to record the damage due to the implosion, was

Drag-reducing polymers are known to greatly fitted under the electrodes in a hole drilled in a Plexi-
reduce the cavitation inception index for several types glas plate. It was observed later, while analyzing the
of flows. The onset of cavitation is also delayed in motion pictures, that this specimen, not being tightI~coustic cvttoina s~agnant fud(16). Inaddition, enough in the hole, was being slightly sucked up

cavitation erosion has been reported to be greatly mod- towards the bubble during its growth and then
ified (in both directions) with additives. Experimental returned after the implosion.
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Figure 17: Collapse of spark-generaled bubbles below a plate.
a) Rigid 0.475 in. Plexiglas plate. b) Flexible 0.125 in. nylon

plate.

Figure 16: Comparison of calculated bubble collapse contours Behavior between two solid walls
using 2DynaFS and Nike2D. Top to bottomn: fixed, rigidly The collapse of bubbles between two solid walls is

moving, and deforining structure. Reprinted from (26). interesting from the practical view point of cavitation

in confined areas. The large deformations involved are
also of interest from the fundamental dynamics pointThis was in fact fortunate since it allowed the study of view. When E < 1, a bubble at equal distance from the

of the influence of wall motion on the bubble dynam- walls first elongates parallel to the walls (direction of
ics. In that case the curves RA/Rcmax f(t/r;,,)(see Fig- most freedom) during its growth, then perpendicular-
ure 7 also for definitions), where rph is the period of ly when the implosion starts. Later the bubble con-
oscillation of the spherical bubble obtained in the same stricts in the medium plane of symmetry and splits in
conditions show that the period of oscillation of the two parts. This is observed experimentally in Figure 8
bubble decreases when E = Rex//,, increases. This and simulated numerically in Figure 9 using the code
behavior, comparable to that near a free surface, is the 3DynaFS. Later on each of the two bubbles formed col-
opposite of what happens near a fixed solid wall. lapses with the formation of a microjet directed to the

The experiment was then repeated with a fixed wall. closer wall. When c > 1, the bubble behaves as a cylin-
The lengthening effect on the bubble life was verified drical cavity until the final stages of collapse where it
and increased with E (Fig. 7). In both cases described constricts and splits in two parts (7,9).
above, the bubble was violently attracted towards the Quantitatively the presence of the two walls aug-
wall during its successive collapses and rebounds. ments the bubble lifetime significantly. This lengthen-

In the presence of polymer additives the following ing effect increases dramatically with E (Figure 10).
observations were made. In the vicinity of the moving When E is approximately equal to 0.7 the period
solid wall, for the same F, the addition of a 250 ppm of increases by 50% (compared to only 7% in the presence
Polyox delayed the creation of the microjet thus of a single wall) and when c is approximately equal to
increasing the bubble lifetime and moving the curves 2 it is doubled.
RA = f(t) toward the spherical case curve. Near a fixed In the presence of polymer additives a shortening of
solid wall the apparently opposite effect (shortening of the period of oscillation tends, as for the single wall, to
the period of oscillation) in the presence of polymers reduce the differences between the considered case and
was also seen to reduce the differences between the the spherical case.
considered case (given c) and the spherical case (11,12).
This seems to indicate a stabilizing effect on bubble Bubble collapse near a flat wall in a shear flow
departure from sphericity due to the presence of the While most numerical simulations and experimental
viscoelastic fluid. However, as shown in Figure 10, the observations of fundamental bubble dynamics have
opposite effect was observed in the presence of a free been made in a quiescent liquid near an infinite wall, it
surface (12). is obvious that cavitating bubbles most often occur in a
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simple addition of single bubble effects. This explains0 (3- O the very high erosion rates observed when cloud cavi-
tation occurs. However, this model diverged when the
number of bubbles increased or when the bubble spac-(3 ) ) 0 ing decreased. Using the BEM method, these limitations
can be removed and more realistic and accurate results

(2)c> Q obtained. Figure 12 compares the results obtained with
K9 • K) 3DynaFS with those using an asymptotic approach

(22,24). Note that the asymptotic approach is already an
improvement over most previous studies, which totally

o3 D0 neglected the interactions. The bubble cloud is subject-
ed to a sudden pressure drop, and cloud configurationso of 1, 2, 4 and 8 bubbles are considered.

For the 2-bubble case the bubble centers are separat-
ed by a distance !0, and the initial gas pressure in each( ) 0 a. bubble is such that the bubble would achieve a maxi-
mum radius R.. = RbO = 0.04710 if isolated. The four-

bubble configuration considers similar bubbles cen-Figre18:Siultio o th gowh ad ollps o a uble tered on the comers of a square with sides of
near a ghlbule. Bubble and globule shapes versus time. Indices dimension 10. Finally, the eight bubbles are located on

1 and 2 are for bubble and globule respectively, a) Rmax1 = the comers of a cube of side to. The figure presents the
Rua,2" al= c2 = 0.77 N/m, k1 = 1.25, k2 = 10. b) Rmxl = variations with time of the pressure measured at the

Rx2 a,= 0.77 N/m, iY2 = 104 N/m, k, = 1.25, k2 = 10. c) "cloud center" normalized by that obtained with an
R., = 2R.a,2, a, = c2 = 0.77 N2/s, k1 = 1.25, k2 = 10. isolated bubble. As expected, the asymptotic approach

gives a very good approximation for a small number of
flow with a slip velocity between the bubble and the bubbles, N. H-lowever, the pressures predicted by the

*liquid. These effects can be simulated numerically asymptotic analysis are seen to become much higher
using 3DynaFS. Figure 11 illustrates the results of bub- than the more accurate 3D results for an increasing
ble behavior near a flat plate in the presence of a shear value of N. Similar results are observed when the cloud
flow. The shear flow is such that V0 = 0 at the wall and void fraction or the ratio, ex = rbo/lo, increases (24). This
grows linearly away from it to attain Vshear at the loca- result qualifies earlier conclusions about extremely
tion of the bubble center. The figure shows interesting large pressures generated by a bubble cloud collapse.
results for bubble behavior during bubble growth and Figure 13 illustrates another important effect due to
collapse. asymmetries in a bubble cloud configuration. It consid-

For an increasing ratio, r = Vshr/ 4 A~p/, between the ers an asymmetric five bubble configuration. All bub-
shear flow velocity and the characteristic bubble col- bles have the same initial radius and internal pressure,
lapse velocity, the bubble deforms and elongates more and are initially spherical and located in the same
and more during its growth. For small values of 'r, the plane. The most visible effect is that observed on the
re-entering jet is deviated from the perpendicular to the center bubble; its growth is initially similar to that of
plate with increasing values of r. For larger values of -, the other bubbles, but it ends up being the least
the re-entering jet formation is totally modified and the deformed. Later on, as the collapse proceeds with the
bubble tends to cut itself into a toroidal bubble. With development of a re-entrant jet directed towards the
increasing values of t, an interesting lifting effect is central bubble, this bubble appears to be shielded by
observed, and the bubble centroid is seen to move fur- the rest of the cloud. Its period is at least double that of
ther and further away from the wall. This results from the other bubbles. Very similar effects are seen when
an interaction between the shear flow and the rotation the number of bubbles is increased. Figure 14 shows a
imparted to the bubble. 21-bubble configuration, where again growth occurs

without too much interference between the bubbles.
Interaction between multiple bubbles However, collapse proceeds from the outer bubble

In a cavitating flow field bubbles are seldom isolated, shells towards the inside, indicating a cloud period of
so there is a need for simulation tools for multibubble oscillation much larger than that of individual bubbles,
interactions. The first model we developed was based as predicted by cloud cavitation models (8).
on matched asymptotic expansions (22). This model
explaiped the fact that collective bubble dynamics can Bubble dynamics on the axis of a vortex
generate pressures much higher than expected from the Let us now consider the case where the bubble is
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'placed at the axis of a vortex line at t = 0 and starts to study of bubble dynamics. This has been illustrated
grow due to the excess between the internal pressure indirectly in the above experiments, where the motion
and the local ambient pressure. During the growth of an impacted sample significantly modified the histo-
phase the bubble elongates along the vortex axis, then ry of the jet point. Figure 16 shows the behavior of a
starts its collapse from a significantly elongated shape large bubble near a spherical structure. Three charac-
(25). As shown in Figure 15a, this elongation is not the teristic interaction cases are considered (26). In the first
key parameter to the stibsequienl bubble behavior. If the case the sphere is rigid and does not move or deform.
rotation velocity is neglected, the collapse would pro- In that case, as for a bubble collapsing near an infinite
ceed as for elongated bubbles with two opposing jets wall, the bubble collapse proceeds with the formation
formed at the bubble points along the aixis (Fig. 14). of a re-entering jet perpendicular to the sphere. In the
However, the opposite effect with a radial jet forming is second case, the sphere is allowed to move rigidly in
in general obtained when the rotation in the vortex flow response to the bubble pressure field. A very signifi-
is included. The bottom of Figure 14a illustrates this for cant modification of the bubble behavior is observed,
particular values of the vortex circulation, r, and the leading to a constriction of the bubble top prior to the
normalized viscous core radius, RC = Rc/Rmax. formation of the re-entering jet. Finally, in the third

In Figure 15b, the initial pressures inside the bubbles case, a full coupling between the structure motion and
are taken to be larger than the pressure on the vortex deformation and the bubble behavior is considered
axis, and the bubbles are left free to adapt to this pres- using the coupled 2DynaFS and Nike2D codes. In that
sure difference. For a given value of the circulation case, a bubble behavior between the above two cases is
(normalized parameter, [equ 301), the bubble behavior observed. A re-entering jet is still formed, but it is
strongly depends on the ratio of the core radius RC to wider and slower than that achieved in the presence of
Rmax. In all cases where Rmax is larger than RC, it a rigid sphere. However, the pressure felt by the
appears that the bubble tends to adapt to the vortex deforming structure is larger (26).
tube of radius Rc. This could lead to various bubble Figures 17a and 17b compare the experimental obser-
shapes, as shown in Figure 15b, ending up with a very vations of large spark-generated bubble behavior near a

* elongated bubble with a wavy surface for large values solid and a flexible plate. In both cases, a relatively large
of Rmax/RC. The figure shows bubble contours at vari- bubble is generated through a reduced ambient pres-
ous times during growth and collapse for various val- sure in the bubble chamber, and the bubbles are spark-
ues of the core radius, RC, and the ratio of the initial generated below horizontal plates. In Figure 17a, the
bubble and ambient pressures. Also shown are selected plate is made of thick Plexiglas (0.475 inch), while in
3D shapes of the bubbles at various times which have Figure 17b, the plate is made of thin (0.125 in) pliable
the advantage of being much more descriptive, plastic. The bubbles are generated under identical con-

It is apparent from these figures that during the ini- ditions and would have the same radius if in an infinite
tial phase of bubble growth, radial velocities are large medium. The difference in the behavior of the two bub-
enough to overcome centrifugal forces and the bubble bles is, however, very obvious. Two important charac-
first grows almost spherically. Later on, the bubble teristics of the rigid wall case are the formation of a bub-
shape starts to depart frpm the spherical and adapts to ble re-entering jet directly towards the plate, and the
the pressure field. The bubble then elongates along the reflection of an expansion wave at the plate wall which
axis of rotation. Once the bubble has exceeded its equi- creates a secondary bubble from minute air bubbles
librium volume, bubble surface portions away from the trapped under the plate (Fig. 17a).
axis - high pressure areas - start to collapse, or to return In the flexible wall case shown in Figure 17b, the re-
rapidly towards the vortex axis. entering jet is practically eliminated, and the bubble

On the other hand, piints near the vortex axis do not collapses almost spherically without moving towards
experience rising pressures during their motion, and the plate. Due to some asymmetry in the plate position
are not forced back toward- their initial position, thus relative to the bubble, a small motion sideways and
continuing to elongate alor.X !he axis. As a result, a con- away from the plate is observed. The formation and
striction appears in the mid-section of the bubble. The growth of a bubble layer near the solid plate is replaced
bubble can then separate into two or more tear-shaped in the flexible plate case with a very fine sheet of tiny
bubbles. It is conjectured that this splitting of the bub- bubbles which move away from the plate. This again
bles is a main contributor to cavitation inception noise illustrates the importance of nearby wall motion and
which can be used as a means of detecting cavitation, deformation on bubble dynamics.

S Bubble collapse near deformable bodies Bubble collapse near simulated cells
This section illustrates the importance of accounting The last example presented in this communication

for the motion and deformation of a nearby body in the concerns the behavior of a bubble near simulated blood

lT
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Statenit of work"

Theory: The theoretical part aims at showing the effects of the interaction on

bubble behaviour and on the vortex flow behaviour.
A first approach examine the 2D axisymmetric interaction, considering that

the fluid is perfect.

In a more general chapter, we take a fully viscous interaction into account.
Results: Two vortex models lead to realistic evolutions of the bubble and of

the vortex flow, with the influence of an axial velocity.

A ID model shows, for the first time, that the interaction seems to be non

linear.

Synthesis and conclusion: We propose a matching of the two solutions for an
axisymmeuic and finite bubble, which would lead to understand the non linear viscous

interaction, taking the axial flow of the vortex into account.
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NOMENCLATURE

a bubble radius.
a. initial bubble radius.
Ac Rankine's core radius.
C Burgers constant.
c local curvature on the bubble surface.
- Lagrangian or material derivative.
dt time step.
g gravity field.
j number of the time step.
k polytropic constant for PVk =constant.
P pressure field.
Pg. initial partial gas prosure in the bubble.
PI pressure in the liquid.
P. pressure at 0, the stagnation point of the initial Burgers vortex.
P. partial vapor pressure.
P. pressure at infinity.
Re Reynolds number
s variable: s = r/a.
T stress tensor.
t time.
U velocity field: U = U,t, + UsTo + U,7,
V bubble volume.
V0 initial bubble volume.
We Weber number
6 Burgers core radius.
6. initial Burgers core radius.
r circulation of the fluid.
p dynamic viscosity coefficient.
Y cinematic viscosity coefficient.
0 velocity potential.
p fluid density.
a, surface tension.
w vorticity.

2

-.- diS/NU



INTRODUCTION

The presence and dynamics of bubbles in a flow field can have significant
effects of relevance to engineering applications of great importance. These ef-
fects include erosion, noise generation, damping of acoustic signals, degradation
of performances. This has instigated a great interest in the study of the problem,
especially in high vorticity regions. These regions can be found at the tip of pro-
pellers' blades or in swirl chambers for example. The presence of cavities in such a
tip vortex can have significant effects on the behavior of the flow and on its char-
acteristics, in relation to transportation and exchanges of energy. These effects
cannot be understood without adressing complicated, but nonetheless fundamen-
tal phenomena associated with the interactions and the motion of the bubble. The
complexity of the general physical and mathematical problem can be approached
by making assumptions, which simplify the problem. Then, once the problem has
been posed, we solve it by using computational methods. In the first approach,
we consider a bubble in a vortex, taking an axial velocity into account, where the
vorticity is due to the initial flow. Thus the interaction is linearized, considering
the addition of the flow generated by the bubble with the initial "basic flow". In
a parallel approach, a fully viscous interaction between the bubble and the flow
is considered. The viscous solver is one-dimensional as we look at an infinitely
long cavity such as one can find on the axis of a tip-vortex behind a propeller.
In the third part we try to propose a solution to the matching of the two meth-
ods, so that the interaction between the vortex flow and the bubble may be fully
understood.
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1. Generalities.

1.1. Cavitation.Bubble dynamics.

The variations of the pressure field in a fluid containing nuclei (cavitation germs)
may produce large cavities of gas and liquid vapor, in other words bubbles.

The dynamics of these bubbles in respect to the flow around them is a complex
problem which has been solved in different cases.

The cavity, submitted to force •y also be deformed, rebound or collapse;
in accordance to the ambiant med.

1.2. Vorticity. Vortex models

The whole of this study is axisymmetric. Figure I shows the referential we are
using.

A newtonian fluid in motion can rotate about itself. To measure this effect,
we use a vector quantity named vorticity: defined by

W = V x U,

which physically coresponds to the angular velocity of two line segments it the
fluid mutually normal to n. (See figure2)

Figure (2) is an intuitive illustration of vorticity. The cross represents two lines
of fluid particles. At time step one the cross has right angles. It is then conve0ed
in the fluid. At time step two the a m has changed it angles. We have observed
the rate of change of the angle between these two segments. This angular velocity
corresponds to vorticity.

1.2.1. The vorticity equation.

The momentum equation, written in an inertial frame of reference is:

DU U + V -. + + .

4
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Replacing (U.V)U by 7 ((U.U) /2) - U x w,
and taking the curl of equation (3.25) leads to:

Dw =-W(VU) + (VwU+ VPXVP- IV,*X (VT + 1V X (VT) + VXg
Dt p2 2

If we consider the flow of a Newtonian fluid of constant density and
viscosity, with only potential body forces, the vorticity equation becomes

Dw
-w = w(VU) + vV2w. (1.2)

This equation has the form of a convection-diffusion equation, like a thermal
diffusion equation, and characterizes the diffusion of vorticity due to the
action of viscosity.

A fluid vortex is a region of concentrated vorticity and a vortex line is a line
everywhere tangeant to the local vorticity vector.

Different models of vortex flows have been given through the years. We will
describe two of them here.

1.2.2. Rankine vortex.

This is probably one of the most basic axisymmetric vortex flows. It consists in a
rotating core of very viscous fluid and an outer region where the fluid is assumed
to be perfect.

Mathematically, the expression of the velocity components amounts to:

r~cUs = r--cr, r<:5Ac.

2rŽAc

"U= = 0

5
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1.2.3. Burge•s vortex.

BURGERS (1948) solved equation (3.26), demonstrating the vortiaty enhance.
ment by stretching. A vortex in an incompressible, Newtonian, body force free
fluid must satisfy the vorticity equation.

If the vortex is axisymmetric, aligned with the z-direction, and placed in a
uniaxial straining field along its length, then U, = 2Cz , where C is the Burgers
constant.

The continuity equation dictates the presence of a radial influx of fluid:

U, = -Cr

and equation (3.26) has the following solution:

U. - 2Cz,

U, = -Cr,

u0 = (- L-)],(see figure (3))

r 2
and w8. = _- L);

where C ffi e (-Ct).

6 may be defined to be the vortex core radius at any time t, and 6. the
initial vortex core radius.

Figure (4) describes the evolution of 6 in time versus C.
At t = 0, and for C = 0, we find the formulation used by some researchers:

U. = U, = 0,

u8 = -L (1.3)

One should note however, that this particular expression (at trO) cannot be
considered to hold at all times since (1.3) taken to be true at all times does not

satisfy the general equation (3.25).

6
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1.2.4. Diffusion of vorticity in a viscous fluid.

The code described in chapter 3 (see figure (5))enables us to observe the effect
of viscosity on a Rankine vortex flow. We insert a cylinder of constant radius
in the vortex. According to the transport of momentum principle, the vorticity
spreads out and diffuses in the medium. Another illustration of viscosity would be
Couette's experiment: he takes one cylinder which he inserts into a larger whoilow
cylinder. He then pours fluid in between these cylinders and has the inside one
start spinning. Through viscosity the second one also starts spinning around a
little while later.

1.2.5. Viscous interaction between bubbles and flows.

The understanding of the interaction phenomena remains up to now one-sided.
The effects of the flow on the bubble has been instigated in several of studies.
Recent studies have shown that in a region of high vorticities the bubble is accel-
erated to the axis of the vortex. On its way the variations of ambient pressure
deforms it and once on the axis the bubble can split into elongated bubbles. The
effects of the bubble on the flow are yet to be fully understood. Phenomenas
related to viscosity should enable us to find leads to consistent explanations. In
the following chapters we will deal with both sides of the interaction theoretically
and numerically, restricting the study to cas where the bubble is on the axis.

2. 2D-analysis of Burgers vortex.

2.1. Vortex without bubble.

2.1.1. Discussion.

This model is only valid near the axis of the vortex, since U, and U. increase lin-
early with r and z. Unlike Rankine's vortex, it does not present any discontinuity,
and is physically more realistic, according to experimental studies.

9 For . if 6, is less than V 'C, 6 will increase in time, viscous diffusion
being predominant.

On the other hand, if 6. is greater than V/7I (the asymptotic value of 6),
it will decrease in time. w,(r = 0) will then increase in time, which occurs
with vortex stretching and compression.

7
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* If C<0, 6 increases whithout bound.

2.1.2. Calculation of the pressure distribution.

Replacing U. and U, in the Navier-Stokes equation by their Burgers vortex ex-
pressions leads to:

" , - (2.1)

a' = -4pC 2 z, (2.2)

Tz
and, because of the axisymmetry,

CIPre =o . (2.3)

@ Equation (2.2) implies that P(r, z, t) = -2pOz 2 + F(r, t).

e To solve equation (2.1), we set X - r/26, and A = (r/2r)3 p/863.

pUj/r becomes
fý! A - A ep(X)+A ep(22

So we integratc.

U e -X2) dX =_!X-2 exp(-X 2 ) - 1 E,(-X 2 )

and

exp (-2X2) =) - X-2 eXp(-2X2) - E,(-2X2)

(integration by parts, and change of variable u = X 2)
where Ei is the Exponential integral:

E,(az) - Jo exp (-at)

8
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We set B = 2A6, and we get

P(r, z, t) m -2pC262X 2 - J1, + -A exp(-X2) - J;. exp(-2X2)
+B (E,(-X2) - E,(-2X2)) + G(z, t) .

* For the boundary conditions, a TAYLOR's series expansion indicates that
the point O(r=O•z=O) is a stagnation point, where the pressure is P..

Thus we finally have

P(r, z, t) = P, - 2pC 2z2 - 2pC262X2 -

(exp(-X2) -. exp(-2X2 )) (2.4)
+B (E,(-X 2 ) - E,(-2X2 ))

pr r
where B = ;- and X =

(see figures (6),(7),(8))

2.2. Bubble in a Burgers vortex.

2.2.1. Navier Stokes equations.

Let's consider the case of a bubble growing and collapsing in a known flow field.
Let the isaated Burgers vortex constitute this basic flow, U., P.; it satisfies the
Navier Stokes equation:

a-- + U..Vu. =--VP. + vU.. (2.5)

In presence of an oscillating bubble, the resulting velocity field, given by U,
also satisfies the Navier Stokes equation:

-F + u.v 1: - P (2.6)

Both U, and U also satisfy the continuity equation:

9
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V.Uo = V.U = 0.

Since we are interested in the modification of the basic flow by the pres-
ence of the bubble, it is convenient to define the "bubble flow" velocity and
pressure variables, U, and PA, as follows:

U,-=U-U,, P= P-P..

If we assume that the "bubble flow" is potential,

FU, = (2.7)

where $, is the reduced or bubble potential.
Because of continuity, O, satisfies Laplace's equation:

We now substract equation (2.5) from equation (2.6), taking equation (2.7)
into account, and we obtain

v + IU l+ ..U +] =Ux (V x U.) (2.8)

The assumption of potential "bubble flow" implies that, as the basic flow
interacts with the bubble dynamics, and is modified by it,

the bubble cannot generate any new vorticity. An attempt to remove
this constraint is undertaken in chapter 3.

Equation (2.8) is now to be integrated at any point within the liquid, to obtain
an equation similar to the classical unsteady Bernoulli equation.

The component of U, in the T direction must be zero, because the contri-
bution in this direction of the velocity field can only come from the axisymetric
basic flow; so we get

10
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- + - (Vf,)2 - Cr-- + 2C - + = Constant in direction.
Ot 2 nr ey p

Very far from the bubble, the pressure tends towards the basic pressure, so
the constant is zero.

At the bubble surface: the pressure in the liquid balances with the surface
tension and the pressure in the bubble, so we know there the "bubble pressure":

V. kA.= A- P. = P,+P,,(-v) - co -P..

and so

M + I (V ,,) 2 -_Cr!--- + 2cza- =--. (2.9)
W 2p p

2.2.2. Non-dimensionalization.

We normalize all variables as follow: lengths are non-dimensionalized by R.,
the maximum radius the bubble would achieve if isolated in the absence of flow,
and pressures by P. the initial pressure at the stagnation point (r-0).

According to the Rayleigh-Plesset equation, the program estimates a value of
R.•,, considering the case of a single bubble in an infinite fluid.

Thus, the time scale is normalized by its characteristic time, the Rayleigh time
whose value is

R.
A10.A=

This leads to a new non-dimensionalized form of equation (2.9) used in the
axisymmetric Fortran code:

D'6 + 1(••)'l .• 2- +,..h• J-• (2.10)

11
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where
-1 - 7 -2-21 +-

TP 1 2+~ (exp (~ 2)- eXp (_2X 2))
+T (Ei(-X") - Ei(-2X))

-4!7

In all the following, we now consider each variable as non-dimensionalized.

2.2.3. The Bnundary Element Method.

This method was developed by DYNAFLOW in the code 2DynaFs that we had to
modify. This program considers closed surfaces such as bubbles in an infinite
domain of fluid. We had to adapt it to take a "basic flow" interacting with a
bubble into account. We now sum up the main steps tG implement the method
for an axisymmetric problem.

In order to calculate the time evolution of the bubble surface, the axisymetric
Boundary Elements Method is used, which reduces the dimension of the problem
by one. This method is based on Green's identity, which provides Ob anywhere
in the fluid, if this potential or its normal derivatives are known on the bubble
surface.

Implementation. Considering the fact that Ob satisfies Laplace's equation, and
defining the bubble boundary by S, we can write the following expression for the
potential at any point z in the field

*b (z) =fL [(4(y)V7G(z, y) - G(z, y)V,'.( y )] .n~dS, (2.11)

where y is the variable of integration of the bubble surface and G is the Green's
function for the Laplace operator, explicitly given by

1 1
G(z, y) =

As we consider an axisymmetric problem, the only function which can depend
on 0 is the mathematical Green's function (all physical quantities are independent
of the angular coordinate). Let us define the trace of the bubble surface in a

12
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meridional plan by C. We select this plan to be 0 = 0 in our cylindrical system
of coordinates. Let the coordinate of the point x in the plan 0 = 0 be (R, 0, Z),
and the coordinates of the variable of integration be (r, 9, z). As the normal to
the bubble surface has no components along the angular coordinate, the integral
equation (2.11) becomes:

• r., 1, , r. "(V z) ,o 1
Ob (R, Z) =] r6 (r, Z) 2 J G(z, y)dOJ dS-J [2' r G(z,, y)dOJ dS

Thus the integration over the angular variable is reduced to the integral

I = fo2 G(r, 0, :, R, Z)dE.

Replacing the Green's function by its expression, and using the substitutions

A = (R + r)' + (Z - z)', m =- -7z R = cos(i),

* we get

I =-•K(,.

where

K(m) a _ -- _ Z 2)

is the complete elliptic integral of the first kind.
The equation for the potential can then be cast in the form

2z-Ob(R, Z) =- j[rfb(r, z)h(r, z,R, ZJdS + 00 [ r,~ z) g(t z, R, Z)] dS

(2.12)
where g(r, z, r, Z) = K(m)/vrXA , and h(r, z, A, Z) = nO9/8r + n, 0g/Bz ,

n, = dz/dS , and n, = -drIdS
To solve equation (2.12) , we discretize the geometry of the contour of the

bubble into N panels. We assume that the potential 46 is distributed linearly over
each panel, while ifb/8n is assumed to be constant over each panel. Equation
(2.12) then becomes a set of N equations of index i of the type:

13
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21Ok=-(B$.j) +~ "On)I
jul jul

which can be rewritten as

N N(i*j=F (2.13)

where Aj and Bi are the discrete equivalent of the integrals given in equation
(2.12).

So we perform the integration over each panel, using a Gaussian quadrature,
and sum up the contributions to complete the integration over the entire contour
of the bubble surface.

Time stepping To advance the points on the bubble surface, we assume that
they move with the fluid at velocity 7% + %J. The normal "bubble velocity"
(t) is known from the solution of the integral equations, while the tangen-
cial "bubble velocity" is obtained by differenciation of *&(c) (c is the arc length
parameter along C). The nodes Ni are then advanced according to

ON• = ONi + (VT, + Uo)dt.

To advance the potential, we need Dh , which is given by equation (2.10).
The time step dt is determined as

dt = (d%),
I +o.5V '

where V. is the maximum velocity obtained at time t. That ensures that smaller
time steps are chosen when rapid changes in the potential occur, while larger one
are chosen for less rapid changes.

Results
The results related to this study are in chapter 4.1 to 4.2.

3. Problem formulation

Results of 2DynFs with a Burgers Vortex (see chapter 4.1), have shown that the
bubble in a vortex flow can be elongated in such a way that the ratio of the

14 0
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bubble's radius over its length can be very large. In that case if we are near the
bubble and far from its ends, we may assume that it is infinitely long.

This element allows us to use an axisymmetric model of an elongated bubble
in a fully viscous flow.

To solve the interaction between the bubble motion and the flow into account,
without making any assumptions on the flow being potential or not, & starting
point can be the Navier Stokes equations applied to the model. Once determined,
the equations will have to be solved numerically.

3.1. Model definition

Figure (8) shows the model we are studying. The bubble is infinitely long. It is
located on the axis of a Rankine vortex flow. The fluid is viscous. Cylindrical
coordinates are used for all variables. The symmetry of the figure shows that as
long as the axial flow is considered to be constant the problem we are dealing with
is one-dimensional and located from the bubble wall out along the r-axis.

3.2. General equations

To study the problem we start from the Navier-Stokes' Equations, so we can
fully determine the interaction between the bubble and the flow. Cylindrical
coordinates used due to the geometry of the problem.

The Navier-Stokes equation are written:

VU = 0,

DU Vp VT
Dt p p

where 'T is the stress tensor. In cylindrical coordinates they can be written:

divU = O *s! (rpu, ) + a (PUOl + 1 (PU-) = o. (3-1)

au, +,,,. + . L,. +,U.8*",
aF & ra89 r 8~z

= 1Op+V1 ý1dr! ' +V I 8 0 2. & + aU,. (3.2)
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"+ + + +"= + us

.+l 8 + ns8idertio (3.3)
pr M dr l dri r2 W9 2 8z2)

The bubble is infinitely long and axisyinmetric, so all variables are independent
of U and z :

au, + uA. + u. +

-la +o a2U= , +- =o_ Uo

(=IoL I o, ,•'o, (3.

3.4. AxGsymetric formulation

The axial flow is assumed constant axions the r-ais. This slug axial flow hae no

consequences on the bubble dynais•. It corresponds to an axial translation of
the referential.

So we assume:

uz = 0.
The general equations become (3.1), (3.3), (3.2), (3.3) and (3.4)

(rp1( ) = 0. (3.5)

&4+ U2+V [ r , (3.6)•
& r. -ip ar a drrd

16



-ue + Ou,- + Uu, = 1I -- (ruo)]8rt r+ dr Lrdr J 37
The radius of the bubble is a (t); and its time derivative venus time A (t) also

represents the radial velocity of the bubble wall. We can integrate Equation (3.5)
over [a (t), r] and write

4() O (rpu,) dr = 0, (3.8)

which leads to

rt, = a() a(t). (3.9)

This continuity equation gives us a straight forward connection between the flow
and the bubble behaviour.

By replacing the radial velocity in (3.6) (3.7) by the expression given in (3.9)
and knowing that

•(La,) = 1 j2 =0,a
(46 _ a 4,

(M) r -4& 0,

the Navier-stokes equations now become:

1 .2 a 2,i2 u -=I P,

"-+-- +-+-- - -a- (ru!) , (3.11)
Fi r Or r r d,- L7rd(rF) I

We end up with a set of coupled equations that describes the whole region of our
particular vortex flow, in the presence of an interacting bubble.

17
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3.5. Initial conditions and boundary conditions

3.5.1. Initial conditions

Bubble aynamics under water are controlled by the difference between the pressure
inside the bubble and the ambient preusure. The initial conditions are simply
stated as a prescribed initial bubble size and internal pressure and the value of
the ambient pressure.

The initial radius of the bubble is

G(O) M a., (3.12)

and its initial rate of growth

a (0) = 0. (3.13)

The initial vortex flow in which the bubble is located is based on the axisym-
metry of the problem and the fact that we are interested in viscous vortex flows.
The radial component must be zero due to the continuity equation (3.9) and initial
conditions (3.13)

(U,(r)).o = 0.

The Rankine flow described in chapter (1) can be used as an initial condition.

3.5.2. boundary conditions

The cavity contains non condensible gas of partial pressure P, which follows a

polytropic law p, = pg. (f)t2)and liquid vapor of partial pressure p., which bal-
ance the external stresses on the bubble surface and the pressures due to the
surface tension a through the equation:

P(a) = P. + P,. !' k- + 2;& ,

with
21 A(a = -2pt*-,i

and the pressure at the infinity remains constant and equal to the ambient pressure

pM - const.

18
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3.5.3. Non-dimensionalization

The problem will be non-dimensionalized in order to keep the parameters of the
same order.

The scale chosen for the length is the initial bubble radius, ..
Density is normalized by p and the pressure is non dimensionalized by the

ambient pressure p.0
The different scales for velocity, time and accderatiom are given by:

velocity: U..

time: T,-a.

where T, is the Rayleigh time for a bubble in a fluid in the absence of gravity.

acceleration: Poo.Pao

The normalized equations are written, where the bars denote noudimensional
variables.

(3.14)P

1 2 +a 2i2 0 w2  -.

+ 8007 + r • =,(3.16)

where Re the Reynolds number is defined as:

The nondimensionalized boundary condition on the bubble surface is:

P(•)=p;+p ()2k -1 2-
-o G)-a (3.17)

where
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p.

and We is the Weber number:.

We -ap.
a

3.5.4. Discussion on the integration boundaries. Change of variables.

The problem will be solved once the equations have been integrated. The choice
of the region over which we integrate the equations is relevant in this cae because
one of the boundaries - the bubble surface - is in motion.

The initial integration region is

If we make the change of variable

a = f-•

the integration region becomes for all times

[1; +00.
We may also encounter problems on the left boundary: +oo.
The termn in j of equations (3.15) and (3.16) once integrated out to infinity

will diverge like In(r).
To avoid this problem we limit the integration region to a maximum distance,

the domain then becomes:

with
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In our cane we will assume that far distances larger than ain. from the bul hie
the flow is once again potential. This means that the region we are now studying is
separated into two domains: the viscous region on one side, a potential extending
to infinity on the border of which the pressure is:

P(r.) pw - 2p (F)

or

where the circulation F is expressed non dimesionally

r = r,"' PI
a. p.

Use of the variable s has implications on the time and space derivatives. For
a point P in the transformed domain 11; s...] time variations of all the quantities
are in fact made in the real domain while following a particle moving at the speed
S(t) Therefore time changes of quantities (such as uo) can be written:

W = wo-S+ -K = "'-ri+' M,

In addition expressions of derivatives relative to s can be obtained as follows:

.8S a, 2 e~aS
818 1818 1 185a( (a) lZ(II(ST)) =1 ( av + la 2i) '

W rd 2dssd 2 (a + 8. aS 2

Equations (3.14), (3.15), and (3.16) become

MV =(3.18)
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+ -= (3.19)

Du a Ou . ua 1 'a (8'j,1
-+-+ --#8 -++-+ 0-% , (3.20)

ff 8. as S .as~ StaI 2 k,2 a8 as S

By isolating if in equation (3.20) it becomes:

Me- .. 8 1.Of t. 1 8 i~~z (3.21)

Equation (3.21) shows us that if we know a, * we have a partial differential
equation for ue that we can solve numerically as a function of s.

Equation (3.19) can then be solved to provide the bubble dynamics and the
pressure field along the axis.

Elongated bubble dynamics.
Equation (3.19) can be expressed as a differential equation of the form

t= Rk(a, ,t),
where Rk is a function.
By integrating this equation along [1; s.,.) one can obtain the bubble radius

evolution in time.
We integrate (3.19) from the bubble's surface to s...:

s o--.. ._T

i2 j pnS)SS L(j 2 __j J s

and by isolating U the equation becomes:

j2+ 1 1*2[- - I @ -#d
()+ i j 7'

1 Za~ pj
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But we also have

"di- ,(s.u) -,p(1),

because the pressure at that boundary is that of a potential vortex flow:

P (S ) ="a-- = 1 - 2

POO

and (3.17) gives us information on the pressure at the bubble surface

-(Sý=) - PM-• -F (so.) - 9 + To-W- aWdRa'

so the equation is finally written:

1.2 1 (i..2 + 1Q1
U=~U +ln(s.) "kL232 2 j -l(

I
(2y ( 1 )2 2 i1[ \21i.• Wa

( + W Rex (3.22)

with
wihQ 2 ~as. (3.23)

Equation (3.22) can easily be solved numerically as described below.

Second set of information: Pressure field along the s-axis.
By integrating (3.17) over [s.; s] we will obtain the pressure at any point of

the s-axis:
The integration gives us:

2$2 L~J-a N..

but we also have
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e4 - (s) - ( )= p (j.) () - 1-2•,
as 1 - -

so the expression becomes

and the pressure field along the s-axis is finally described by

•(o)= r- - ) ( - [l t(o)]:_ - t zc)t (.,

+( + f 1. ds.

So the final set of equations we possess to solve our problem is:

btr * 3-8as 823 ~Re -2 498s2 + 83 52)(3

1. 2 1 r - 1 1• I

r 2 ~+Q 2 k~ 4 ~, (

p(s) = 1- ( )2- 2 n(s)]J.. -G) [ln(a)], (3.27)

Each of these equations are ada~pted to numerical solutions.
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3.6. Method of solution

3.6.1. Discretisation

The gridding of the a-axis is a basic linear discretization using a constant grid-step,
ds.

s=l+ids; i =l,n

The parameters are discretized in time or space and both if required. The time
and space stepping is given by:

(•÷' = (A)i + dt-8A

(A),, (Ay + 8A

with

A =w "o or Tand dt being the time step

and

(O)j+,= (W)j + d-L

with

a=Uor t or

3.6.2. Numerical tools available

Equation (3.25) is a partial differential equation of one form of a combined advection-
diffusion equation:

Dro-

The numerical method used to solve this type of equation is typically a Crank-
Nicholson's method. It can be expressed by:

(2 ) ol-WI1= 1 (F (w)+ F' (Wt*')) . (3.28)
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In our cue at time step j, F is the function:

/~~~~ 1 IA i 1- 1 a i 2 X(F(X))j = - - -Xa 2 a12

Both left and right hand sides of equation (3.28) are centered at time step
-1) so the method is second order accurate in time.
The character of this scheme is semi-implicit. The right hand side of equation

(3.28) has terms of time step j and of time step j - 1.
To calculate the spatial derivatives we use centered differences which can be

written:. I -
83 24.

-.9 d,92
By replacing the discretized expression of the de-rivatives in the developed form

of (3.28) we obtain a set of simultanous linear equations that fortunatly forms a
tridiagonal system.

By grouping the terms according to their time step in (3.28) we get:

f(i)ov;I_, + g(i)u7 + h(i) U+ 1 = fi(i)'I-- + g,(i)'iZ,- 1 + hI(i
i = 1,2 2... n - I

(the values of the variables at time-step j are placed on the left and those of
time-step j - 1 on the right hand side of the equation)

In a matrix form this can be written(g(1) hla() 0 0 0 u gi(1) hi(l) 0 0 0
f(2) g(2) h(2) 0 0 fi(2) gl(2) /t(2) 0 0

0 0 = 0 0
0 0 .0 0 0 .0

0 0 0 f(n) g(n) uk 0 0 0 fin) gi(n) uL'

The only unknowns here are (u,)=1... The right hand side only contains in-
formation from the previous time-step (j- 1) and the matrix on the left hand

26 0

d S•. . . . ..M. . . . . . . .. . .. .U.. .. .. . . . .. . . .. . . . . . . . .. . .



side needs information on the bubble dynamics at time step (j). This will have a
consequence in the logical order needed to solve our problem.

To solve this matrix equation we use an algorithm given for tridiagonal matrix
equations.

Equation (3.26) as an ordinary differential equation.

i- Rk a

with

RA:(d,i t= *2 + ( j)2 + 2] +

.1 1) -Wedi e

is can be reduced to the study of a set of first order differential equations

t= 11

hello
The numerical solution chosen to solve this set of equation is the most used

fourth order Runge-Kutta method. At each time step the derivative is eval-
uated four times: the initial point, twice at trial mid-poinnts and at a trial end
point. These derivatives then give us the final value of the function

The 4 ", order Runge Kutta scheme is the following:

k, = dtRkl(t, bj),
k2 = dtRk'(t + A + 4 ),
k3 =dtRk'(t +L: bi +
k4 = dtRk•( + dt, b + k3 ),

with ki, k2, k3, k4 corresponding to the four evaluations of the derivatives we obtain

k+ k2  k3  k4
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In our case we will also have to evaluate (3.23) at each time-step. A basic
trapezoidal method was used:

Qj( -f [ +

3.7. Algorithm of solution

By contrast with equation (3.25) in which the semi implicit method used implie
that we need information on the bubble dynamics of the current time step to
determine the unknown (Viii, equation (3.26) only needs the initial conditions
of the bubble dynamics and the initial flow. Thus (3.26) will be delt with before
(3.25).

At this point a flow chart is needed to show the algorithm :see fgure(9)

3.8. Description of the code

The program solves the Navier Stokes Equations for an infinitely elongated bubble
in a viscous vortex. The input allows the user to specify the following parameters:

a,

r

and
Ps.

The Reynolds number and the Weber number are automatically calculated in
the program.

3.8.1. Convergence study

Numerical methods need a test on the convergence. This is to check stability and
convergence due to accumulating errors. The scheme applied here is to reduce
the time step and grid size simultanously, keeping a constant ratio between them.
Figure (10) illustrates the scheme. Each curve is related to a different timestep
and grid size. As the latter decrease the curves converge to a smooth curve.
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Between dt-0.002 and 0.001 the difference in the curves was undetectable. For
running the tries that are studied in capter 4 we chose 0.001 as a time step and
0.01 as a grid size.

3.8.2. Varying time steps and grid size in time.

The runs that we made showed that in some conditions a too sudden bubble
collapse could stop the code from running due to large errors.In other cases when
the bubble wall velocity is at very low the time step could then have been increased
to speed up the execution. A variable time step scheme still has to be implemented
on the code. It would shrink the time step in cases of high rates of growth and
keep the ratio between the time step and the grid size constant.

3.8.3. Case of the axial flow.

The study has been neglecting the axial flow.We could observe the Navier-Stokes
equations now with the axial flow:

S%, aue,,o,-W #0 , - :0#0

rW +' =-' + Vj + a2
+= --U+p- r 1-(rt)+ -ar r az par dr Ir drO2

Dt r~~ az dr dr &

Du, + U~UU u,!s+u*e+ u =.fr+Op + [+I 1  82U..
D. &+r .+9Z p z r-dr dr ) a'

and the continuity equation

188divU = 0 w (rput) + (+ .) = 0

The assumptions on axisymetry remain valid but the problem has gained one
dimension in its geometry.
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4. Results analysis.

This chapter sums up the results obtained from the two methods develloped in
the two previous chapters. The shortage of time has a considerable impact on the
range of parameters we were able to study. This needs to be taken into account
when reading any conclusions concerning the results.

4.1. 2D bubble in Burgers flow.

For each run, the value of the initial radius of the bubble was equal to 10-2 m,
the value of the initial core radius was 5. 10-2, and the initial pressure inside the
bubble was 5. I01 Pa, while our reference pressure, P., was I0V Pa.

The first set of trials that we conducted aimed at determining the infuence
of C, the Burgers constant, on the flow, and as a result on the evolution of the
bubble, while the vorticity diffusion is only due to the evolution of 6 in time.

We may define by T the "top point" of the bubble, moving on the z-axis, for
z positive if the bubble is centered on 0. B is the 'bottom point" of the bubble,
moving on the z-s.ads as well, where z is negative if the bubble is centered. Let I
be the "side point", moving on the r-axis during the evolution of the bubble. (see
figure(t1)).

4.1.1. Strong basic velocities.

Let us consider the case where C is positive (this is the most physical case).
According to the formulation of the vortex core radius, the variation of 6 in time
should lead to two physical cases: either the bubble is within the viscous core
(a(t) < 6(t)), or the bubble radius is greater than the vortex core radius. If C is
strong enough, we can observe the variation of 6 in time. But in this case, we also
notice that U, and U. cannot be neglected. Thus if C is of the order of magnitude
of 1, a bubble in the vortex is submitted to these velocities, and is very quickly
stretched to become an elongated cylinder along the z-axis. The ratio 9 can
even reach 103 before the bubble divides into two elongated bubbles, which then
move along the z-direction.

The more C increases, the quicker the bubble is stretched and subdivides, and
6 has no time to change (we cannot observe any vorticity diffuson), and so has
no influence on the deformations of the bubble, because of the collapsing speed,
which depends more on U, and U, than on Us.
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So the resulting velocity and pressure field are mostly due to the basic flow,
which is hardly modified by the "bubble potential. It means we cannot define
any region of interaction dominated by the bubble dynamics. A large number of
trials showed this was still true while C > 10-2.

4.1.2. Strong interaction of the bubble with a low velocity field.

This case deals with trials performed with a small Burgers constant. The previous
subsection leads to run the code with lower Burgers velocities, when C is Iess than
10-3.

If the initial pressure inside the bubble is greater than the pressure in the
liquid near its boundary, the bubble has time to grow, and we then can define a
zone where it has a real influence on the basic flow, in terms of pressure and of
velocities.

Bubble on the axis. When the bubble is centered on the axis and in the initial
conditions shown figure(12), it first grows up to twice its initial volume, and then
collapses (see figures 13). During the second growth, we can observe an elongation,
but only such as the ratio OT/QI reaches 2.

We must notice the presence of a stagnation point, where the "bubble velocity"
cancels the basic velocity. It means there is a stagnation ring around the bubble.
G, the stagnation point in the plane 0 9 0, is moving

"* on the r-aids when the bubble grows (figure (14)),

" on the bubble surface when the distance of the side point from the origin
is decreasing while the distance of the top point from the origin increases
(figure (15)),

"* and on the z-axis during the collapse (figure (16)).

The analysis of the resulting pressure distribution leads to considerations about
the location of the highest pressure points: during the first period of the bubble, we
notice, around the bubble, the presence of a high pressure ring, whose intersection
with the plane 9 = 0 is the point H (see figure (17)). The distance between H
and the surface of the bubble varies in the same way as the distance between
the bubble surface and the stagnation point. This evolution first shows a short
unsteady period right after the begining of the growth, after which H oscillates
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around a medium position in an almost steady pressure distribution, until the
pressure in the bubble reaches its peak. It occurs at time 4 on the drawing, and
the highest pressure point in the liquid is then at the bubble surface.

The explanation comes from the continuity at the bubble surface, where the
pressure in the bubble, and the surface tension balance the pressure in the liquid.
This implies that the pressure in the liquid near the bubble must follow the pres-
sure inside the bubble. The growth of the bubble, due to a low pressure zone near
the boundary implies that the highest pressure point is near the bubble at the
begining, and then moves, because the pressure in the bubble decreases. At the
end of the collapse, the pressure increases in all the liquid, because of the peak in
the bubble.

Thus point H characterizes the bound between the "bubble" or the basic flow
predominance: beyond H, the resulting flow may be considered as following a
displaced Burgers distribution still depending on the interaction; within H, the
bubble flow is predominant.

Bubble moving on the s-axis. Figure(18) illustrates the evolution of the
caracteristic points in this case. With the same initial conditions as the previous
case, except for the location of the bubble, which is now initially off-centered on
the x-axis at Z. > 0. During the growth of the bubble, the x coordinate of the
stagnation point follows the center of the bubble (figure(19)), moving on the z-
axis. As the high pressure point is far from the bubble, it does not present any
particular evolution due to the non symmetrical evolution of the bubble. Figure
(20, 21, 22) describe the velocity field evolution in time. (t=4,5,6,7).

4.1.3. Intermediate interaction and stretching.

The case of C = 10-3 is an intermediate case where the bubble is quickly stretched
along the z-direction (figure (23)), while the side point oscillates as in the previous
case. The bubble has time to grow and to collapse during its elongation. As the
distance of the top and the bottom points from the origin always increase in time,
the stagnation point remains on the r-axis, moving between the bubble surface
and its maximum value (figure (24) to (27)).

The highest pressure point remains close to the elongated bubble; it means
that the Burgers pressure distribution, as the velocity field, is modified only near
the axis at the bubble surface, where it is influenced by the bubble dynamics.
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4.2. A more realistic vortex.

As the 2D-auisymmetric code runs with any basic fow, it becom more interesting
to deal with a physically more realistic model of the vortex. That is what we did,
considering the results obtained with a Navier Stokes solver (FIDAP) using as
boundary conditions a Rankine Vortex and a uniform axial velocity at z = 0, and
allowing the vortex to decay with distance x increasing, sent to Dyadlow by the

LABORATOIRE D'HYDRODYNAMIQUE DE L'ECOLE NAVALEV. Figres
(28) to (33) describe the results in absence of bubble. This flow is used as a
basic flow. We modified the axisymetric code so it could read in the Fidap
output file each time the axisymmetric code needed the basic flow. Since Fidap
uses a predefined fixed grid, as the bubble is in motion, the basic flow at each
node was calculated by linear interpolation.

In this case, the results show that the bubble has more complicated deforma-
tions than in a classical Rankine or Burgers case. These deformations am charac-
teristic of a bubble moving with a lower speed than the fluid. The consequence is
a reentrant jet moving downstream in the direction of the z-axis when the bubble
collapses. Figures (34) and (35) show the evolution of the three chmarcteristic
points of the bubble, and its deformation in time.

4.3. ID viscous solver.

Our interest lies in the interaction between the bubble and the flow. Therefore
we will analyse data related to the bubble motion:

-bubble radius and velocity,
-bubble collapse period and amplitude,
and related to the flow:
-flow field,
-magnitude of the maximum tangential velocity and of the velocity.
-motion of the core radius.

4.3.1. Physical Parameters.

The physical parameters modified for each run of the code are

,t r
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The ratio of the initial core radius and the initial bubble radius relate, infor-
mation on the influence of the se of the viscous core on the bubble.

The circulation ratio gives us the efect of the swirl's strength on the bubble
dynamics.

The ratio between initial gas pressure in the bubble and the initial pressure
on the axis determines its reaction to the ambient medium.

4.3.2. Evidence of the interaction.

To show some evidence of the interaction between the bubble and the viscous
vortex we considered two cases: one where we forced the flow not to interact and
another where the flow was interacting. Figure (36) illustrates the differences in
the bubble dynamics anf figure (37) shows how the flow is modified by the bubble.

Analysis of the interactiv bubble. In figures (36) and (37) the initial
pressure inside the bubble is lower than the outside pressure, therefore the bubble
starts by collapsing. As the bubble wall moves inward the viscous core shrinks,
simultanously enhancing the tangential velocity to a maximum when the bubble
rebounds. As the bubble grows again the core expands and the tangential veloc-
ity decelerates to a minimum before the bubble collapses a second time. When
the fluid particles are pulled towards in towards the vortex axis they accelerate
tangentially. This is similar to the phenomenon of vortex stretching. As the core
is compressed the stream of vortex lines is also compresed so the vorticities are
stretched and the swirl around the bubble becomes stronger.

The fact that the core moves is a relation between the diffusion through vis-
cosity and the bubble motion. It has been observed that in physics transfers
of matter, energy and momentum always tend to bring the material towards an
equilibrium. In our case the bubble is growing inside the fluid; the velocity being
non-uniform along the r-axis, tangential components of the local stress appear in
the fluid. The layers of fluid around the bubble have different tangential velocities

This derivative is related to the shear through the expression:

0'1 "-I-•

where or is the stress tensor.
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The growth of the bubble adds a radial velocity to the layers of fluid, so they
move back, which explains why the core is expanding. But as the distacce between
one fluid particle and the axis of the swirl increase its tangential velocity drops.
This is due to conservation of the total momentum in the fluid.

On a larger time scale viscosity also has an elect on the field. This effect is
illustrated by a constant decrease of the peaks of u#e. in time and can be related
to the diffusion effect quoted in chapter 1.

Thus a viscous interaction is taking place between the bubble and the flow.
Now we need to determine a criteria on the different physical parameters that
tells us in which conditions the viscous interaction is most likely to be relevant.

4.3.3. Parameter analysis

This set of results allows us to find out which parameters we should vary to bring
out the key elements on the viscous interaction between the bubble and the flow.

a. Circulation
By changing the circulation of the vortex, we simultanously change the initial

tangential velocity in the kuid and the pressueon the axis. In this cae when
analysing the results we would need to find out which of the parameters r or
are acting most in the behaviour of the interacting bubble. peas

Figure (38) illustrates the drop of the initial pressure on the axis due to an
increasing circulation. The bubble experiences growth in one case (r = 0.6) and
collapees in the other (F = 0.1).

Figure (39) shows the interaction of the bubbles with the vortex is shown as
we plotted the size of the viscous core and the bubble radius on the same graphic.
We can observe (see figur (39)) that the viscous core practically vanishes at bubble
collapse.

Figure (40) shows that the absolute pressure at collapse (curve 1) reaches 7
atmospheres.

The tangential velocity is modified at each collapse as we explained in 4.3.2.
When the bubble grows from its initial value the effect on the magnitude of ue is
less apparent (see figure(41)).

b. Changing & by modifying A,.
The modification of the core radius influences the initial pressure on the axis.

The two cases in Figure(42) and Figure(43) show a bubble collapsing and a bubble
growing from their initial positions and the motion of the viscous core with the
bubble. A growing bubble generates a pressure drop around it (see figure(44)).
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This pressure drop seems to increase the size of the core and decreases the ma-
nitude of the tangential velocity. A collapsing bubble sees a premsure increase
around it, which compresses the viscous core and increases the bubble velocity.

It is still too early to make conclusions on the interaction laws of a bubble and
a viscous vortex. These first results have shown that the physical parameters we
can modify to find an interaction criteria are:

and
A.
a*

(by changing a only).
The caracteristics that seem most relevant to our study ate: the bubble radius

vs. time and the ratio of the core size over the bubble radius vs. time.
These two caracteristics give us information on bubble behaviour and simul-

tanously of the effect it has on the viscous flow.
c. Varying parameter: -.&
The cae of a very strong collapse for .. = 10-1 on fgure(45) has a relevant

influence on the size of the viscous core (figure(46)). At the rebound (t=2.1) the
core size increases as much as 8.5 times the initial buble radius and stops growing
as the bubble motion decelerates. For lens sudden collapses (21.-- = 0.4) the core
interacts with the bubble in the same way as in previously !Isn collpses. In
the case of an initial gas pressure inside the bubble close to that on the axis , the
small variations of bubble radius in time (figure(47))have hardly any influence on
the core. Let pg, be three times that of the pressure on the axis. The bubble
then grows and collapses at a given period (flgure(48)), the core behaves like the
bubble: it grows and decreases with time.

A first conclusion would be that the influence of the bubble on the viscous
core is diminished as -he- nears 1.

d. Varying parameter., where a. is being modified.
Looking at the ratio of the core radius and the bubble radius can teach us how

the interaction between the bubble and the core is modified when one size is small
compared to the other.

In this study, we do not investigate initial bubble sizes larger than core sizes.
Figures (49) and (50) show the evolution of the interaction when the.ratio A

is haWfed. The period of rebounds of the bubble is decreasing; It seems that the
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closer the high tagential velocities are to the bubble(u. corresponds to the core
boundary) the collapse nd the rebound of the bubble occur.

The amplitude of the core size variations increase. with the ratio . In figures
(51) and (52), as the ratio -& decreases the period of rebounds still decreases, but
by measuring the amplitude of the bubble motion, we observe that between a. =
1mm and a. = 7mm, the trend in the amplitude variations has changed. Figure
(53) shows this non linear phenomena.We see that the bubble radius minima vs.
time is increasing and then decreasing.

The only conclusion we can make at this point of the experiments is that the
interaction between the bubble and the viscous vortex flow around it seems to be
non-linear.

5. Synthesis

In the two previous chapters we studied the interaction between a bubble and a
viscous vortex flow from two points of view: one makes the assumption that a
basic flow around the bubble is modified linearly by a flow created by the bubble
through the equation:

U = U. + U,.i.

and the second uses a viscous solver.

5.1. Matching the solutions.

In order to match these two solutions: a viscous solver should be coupled to the
code 2DynaFs.We would need to extend the viscous solver to the case where the
axial flow is taken fully into account. Then the bubble studied would both be
axisymmetric and finite.

2DynaFs showed that the bubble on the vortex axis elongated before splitting
up. The infinitely elongated bubble viscous solver enables us to illustrate the vis-
cous interaction with the vortex in a region far from the ends of that same bubble.
The stretching of vorticity and the motion of the core radius related to the bubble
dynamics only occurs in particular domains of the physical parameters. Outside
these areas we can always implement 2DynaFs without the viscous solver. In the
regions where viscous interaction is strong, we would need a 2D (Axisymmetric)
viscous solver. So the cases where the bubble generates a potential flow in absence
of shear flow could then be complemented by adding the effects of viscosity.
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CONCLUSION

Significant results have been obtained in this parallel study of bubble and flow
interaction. On one side the influence of C (Burger's vortex), and mostly of u,
on the bubble motion, interesting results concerning FIDAP's vortex flow and its
interaction with the bubble were obtained. On the other side the effects of viscous
interaction on bubble behaviour and vortex flow behaviour were highlighted for
the first time.

The general problem of bubble and flow interaction, especially the viscous
interaction point of view which still needs to be develloped in 2D or even 3D,
remains a domain not yet fully understood. Step by step and from various direc-
tions we get closer to the resolution of the problem. In our case we decided to take
one approach from the point of view of the flow by studying bubble motion with
new vortex models containing axial flows and which were more realistic physically.
The other approach tried to take bearings from the point of view of the bubble
and of the flow simultanously in a simple ID model of fully viscous interactions.

Further studies, experimental as well as numerical, should enable the under-
standing of bubble and flow interaction in a near future.
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Abstract

This study computes the deformations of the free surface of a liquid
when a sphere is oscillating below the surface. The code 2DynaFS was
adapted to this problem and, after determining some fundamental param-
eters, we proved that the surface tension effect can often be neglected. We
primarily studied the importance of gravity and showed its effect on the
amplitude of the resulting waves. The sphere frequency also seems to de-
termine the amplitude. A brief experimental study was conducted which
verified the conditions we had choosen and confirmed some of the numerical
computations. A video recording of the observations is available.
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1. Introduction

Waves are often studied in hydrodynamic circles because they carry energy. This
energy can be due to the wind: the study of swell and waves breaking on shore
helps to determine a way to avoid shore erosion. The study in this report is mo-
tivated by wave-resistance: when a submerged body moves below a Free Surface,
it generates waves which extract energy from the body motion. We will here only
study the deformations of the free surface when a sphere is oscillating below this
free surface.

We conducted experiments in the laboratory DYNAFLOW in order to validate
some of the computed results. Observations are available on a NTSC video tape.

1.1. Nomenclature

FS: Free Surface ht: time step d.,go: initial depth of sphere

0: velocity potential t: absolute time "r: vertical deformation of FS

T: mathematical function p: density of the fluid V: normal vector
V: gradient operator PI: pressure in the fluid Vq,h: velocity of the sphere
z: Horizontal position P,: atmospheric pressure fi: domain of the study
y: Vertical position V.: normal speed S : boundary of fl
R: radius of the sphere Vt: tangential speed c(p) : solid angle at p
Amp: amplitude of the g: gravity acceleration p: point where the influence

sphere motion (0, ", i): reference frame of every ,>anel is computed
w: frequency of the a: surface tension q: moving point on a panel

sphere motion (!.) C.,.: curvature of the FS FT: final time
T: period (- 6.: delta-function 7y(p): discrete function of p
V 2: Laplacian operator =0 except at p: =1 L.,,: fluid layer on the sphere
.Fr: Froude number W&eb Weber number wJ•7: non-dimensionalized var
X: partial derivative A: total derivative nFS: number of panels on FS

Amplitude: computed Average pos: time averaged Frequency: frequency of
amplitude of node A ordinate of the node A the FS waves
.: curvilinear abscissa NHp: number of half periods

All figures are located in Appendix A.
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2. Hydrodynamic problem

2.1. Equations

The conservation of the mass in the liquid of density p leads to the continuity

equation for a flow with velocity V:

S+ div(pV) =0

We assume that the fluid is inviscid, incompressible and irrotational. Then it
satisfies the following equations:

div( 0) -,

Thanks to these conditions, the flow is a potential flour.

-- =9rad( O•) ,

where 0 is the velocity potential. We can then write the Laplace equation:

Vt = 0 inside the fluid domain fA. (2.1)

The motion of the sphere is forced and the location of its surface isprescribed
by the relation:

z(O) = R-cos() 0 E[-;+ (2.2)
y(zt) = R. sin(arccos( f)) + Ap . sin(w.t)

The velocity potential 0 also has to satisfy the Bernoulli equation:

-a -p- - -~ 2. (V +,)+9"= Constant(.3

8 1 
(2.3)
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2.2. Boundary and initial conditions

The pressure balance on the free surface can be written:

A• - P, = -9. CW. (2.4)

On the Free Su the normal potential variation determines the motion of
the FS:

-= - y.n where Yj= y - Deptho (2.5)

On the sphere, the potential gradient normal to the sphere surface is set equal
to the normal velocity of the sphere surface:

S. V, = -V.v. (2.6)

The initial conditions are the following:
FREE SURFACE:

0 5=0 •=0 att =O

SPHERE:

y=-A, at(t =02 =o0 =o0)
This last condition determines the functional form for the speed of the sphere:

sine instead of cosine, in order to avoid any discontinuity in the sphere speed.
The radiation condition consists in forcing both the abscissa and ordinate of

the node Inf (Fig.3.5.B) not to change. We also impose a minimum layer of liquid
on the sphere in order to allow the abscissa of the node A not to change. The
value of this layer is choosen equal to 5% of the sphere radius.
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3. Mathematical resolution

3.1. Laplace equation

We use the Green's identity:
fffn div(V7) . dfl f= ff$ s .dS
to modify the Laplace equation by introducing a regular function I@ that is

C* in our domain fl (except at a finite number of points):
o = fffa V2§" "*d= -fffoQV#V* .dfl+ffs '" .TdS
We can apply the Green's identity on the first term on the right hand side:
fffn V7. V dfl - fffa ". V2* . dfl + ffs. ." dS
And thcn obtain:

/oon - s-1 0* s N -2*d 31

S S 0

A convenient function T is :
IV (p, q) = MI, where Ip - 1 V(z-p - zxq) 2 + (yi, - j
Where p is the point where the influence of every panel is computed, q is a

moving point on the panels.
The Laplacian of * is then quite simple: V2T (p, q) = -_y(p). $P
6p is the delta function: 6p = 1 at point p, 6s, = 0 anywhere else.
7(p) depends on p := 4v if p E fA

= 2r if p E S (regular point)
= c(p) = solid angle if p E S (angular point)

And the expression of the third term in equation (3.1) is:

N J . V2'%• di - 4-(p).

The final equation is:

S"@.#- dS- d. -d -y(p). -0(p) - 0 (3.2)
$ $



At this step, all the equations are true for both the axisymmetric and the 3D
problems. We now consider the axisymmetric problem. We can observe that we
have reduced the dimension from 3 to 2. The next step consists in discretizing the
boundaries of the free surface and the sphere into panels whose size is discussed
in 4.1.1.

The power of the Boundary Element method consists in its ability to solve
these integrals once we know either 4, or . on the boundaries (there can be a
mixing of the two of them). For more complete explanations, the reader may refer
to A.A. BECKER 'The Boundary Element Method in Engineering: a complete
course .

We grid the boundaries and then fill the matrix of influence of every panel on
each node. The matrix equation system obtained is:

[x. $- [" +[(Y]- [1,l + [z] = o
LOnj

As we know 0 for some boundaries and ME for the others, we can arrange this
system to represent it in this way:

(Al. /On B, -0, + C,

[A] ftiOn A, ° bi + C~i

[A]. ti+• Bj+÷ - O$i+'/On + Cj+j

on, Bn - OO,,/Dn + C,,

unknown known

7



The matrix A is fully populated with non-zero coefficients. This would have
made too long and imprecise any iterative solution method. The Gaussian elimi-
nation has been chosen because of its robustness and absence of iteration.

We then obtain :

a~l/•nlB,. - + C,

00,/on = [A]-'. B, - ,, + C,

4641 Bi+I " C@i+ 1/n/+ 1 + C,+1

i L B,.. -&*/N., + C,.

At this step, both 0 and - are determined at each node and interpolated on
each panel. We can now implement these results in the equations.

8
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3.2. Non-dimensionalization

The original code, 2DynaFS, had all its subroutines made to solve non dimensional
equations (and therefore needed non-dimensional variables). As we will show
below, two characteristic numbers appear in the non-dimensionalization of the
Bernoulli equation.

The characteristical scales are:
R = radius of the sphere (L)
T -2M, period of sphere motion (T)
p - density of the fluid (M.L)

The other parameters are non dimensionalized according to their units:
f (L2 - T-1) P (L-1) V (L- 1)

(3.2) becomes:
ffs %F P dS - ffs . dS - (p) " O(p) = 02d_3 ff R".R, f/•? . R 2Z -y(p) .PFT(p) 0

W -• .Zd - f . • d - y()"(p) = 0 (3.3)
$ S

(2.2) is immediately expressed:

= - cos(0) e E [-,; +,]
(z,t) = V + (A�A) sin(W t) (3.4)

(2.5) becomes:

a= ej = +• ( on the free urface)

(2.6) becomes:

I R2k7""R) VT• " (-R) "V7 •. V (3.6)

V7 SVh. Ti on the sphere surface

9
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3.3. Bernoulli equation

Far from the axis of the sphere motion, 0 is constant, the velocity is 0, Z = deptho,
the pressure is P.. (2.3) can be written :

"a- _- 1.(V 2+V2)+g.Z= 0-f -0+g.&dc ho

+ I~.) +j(I +V ) (Y -deptho)

If we insert (2.4) :

Pi - P. = CM,v
S= Y- deptho

We finally obtain :

S .(V, + V )) - g . ,.

Units of additional parameters: a (M.T- 2) C,,., (L- 1) P (M.L- 1 .T- 2)

TV- 'R.V,+ Vt) _ g 7 .2 ,r .

SV-nT2n ) - Web (3.7)

Yr = Web= (
\R ao'T2 /

Here Yr is the Yroude number and Web is the Weber number.

10



3.4. Implementation

With • on each panel,a subroutine computes the velocities of the nodes:

dI (9 .,-ac.-., Vtj+, = +R(R1+ - ,R,).ds
R RT•n x ""- Vn+t -- R R. + (R&i+j -- R A) " d s

RZ, - VV.+ =VPi+(RR +1-RR-).,y
,- ,,•n =+RT•" "" Vz,+l = RZ, + (RZ1+j - RZ). ds

The indices i refers to the spatial gridding. All these results will now only have
the extension new.

The code determines the time step: ht = D$O. - Here DO. is an

input parameter, equal to 10-2 for all the runs ; V,. is the highest velocity com-
puted at the nodes. This is made to keep the velocities in a limited range to avoid
both unnecessary long runs and error in the time stepping. The displacements of
the nodes are as followed:

X,• = Xpr, + ½.(Vrn,• + Vrpr,.) • ht

and we can determine the positions of the panels. A subroutine gets the curvature
of the free surface.

The code can then compute -"F thanks to the non-dimensional Bernoulli equa-
tion :

+2tWeb

With the previous values of t, we can then obtain the new value of the po-
tential 0:

Tn, = -- t•,, + + •T ,•+g, ht

The code averages the variations of the velocities and the potential normal
derivatives. This is made to minimize error accumulation.

The code realizes a regridding if necessary, implements the absolute time with
the time step and then use the new values of 0 and M to redo the same work.
The code ends when the time exceeds an imposed limit : FT.

11



3.5. Gridding

The Boundary Element Method consists in computing integrals of the influence
of panels on each node. The gridding is important to obtain valid results.

In this code, the distribution of the nodes on the sphere is uniform (fig. 3.5.B).
The length of the panels is constant and equal to 0.1416 * R. This length was
choosen because of the curvature of a sphere: 10 panels on half a perimeter make
the gridding of the sphere precise enough.

The free surface is regularly gridded from the node we assume to be at infinity
to the axis (fig. 3.5.A) but the distance between the nodes may change in time.
The code calculates, at e~ch time step, the position of each node. It then inter-
polates the positions of the points between the nodes. The code can then regrid
the free surface in order to concentrate the panels in the fast moving zones. This
option is important when the amplitude of the free surface becomes large.

The node we assume to have the highest displacement is the node above the
top of the sphere. This node, number nseg + 1 is called node A.

3.6. Computational power

The codes were ran on three computers:
Computer Capacity

MIPS RISComputer R1S 2030 12 million instructions per second
MIPS RISComputer RC 3240 20 million instructions per second
Silicon Graphics IRIS Indigo 85 million instructions per second

12
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3.7. Data analysis

The code generates two data files: POLES which contains the ordinate of nodes
A, B and C (Fig. 3.5.B) every 10 time steps; and 2DCONTC which contains the
coordinates of every nodes - sphere and free surface - every 100 time steps.

We only focus on the node A because we estimate that the history of its
ordinate has the largest variations. The second reason consists in that the abscissa
of only two points cannot vary: node A and node Inf. As the node Inf is supposed
not to move, we follow the node A.

We wrote a small fortran code, spectral.f (Appendix B), to analyze the POLES
data. A subroutine calculates the Fourier transformation of the ordinate of node
A. As the time step may vary, this transformation read the current time step
in POLES. The evolution of node B (the top of the sphere Fig. 3.5.B) is also
analyzed as a reference. A subroutine determines the maxima of the transform
and arranges them in decreasing order.

The frequency that has the largest weight will be refered as the first frequency
the frequency that has the second largest weight will be refered as the second
frequency.

Another subroutine computes the time average of the ordinate of node A, the
result is Average pos. The code then determines the amplitude of all the half
periods of A and then divides their sum by the number of amplitudes computed;
the result is Amplitude.

Average pos = {A(7)- ti~)}
F Et=_o i7 --

Amplitude= 1-•p £= i

These computations are explained on the figure 3.7.A in Appendix A.
The second file 2DCONTC is used to obtain graphic representation of the

evolution of the free surface. We wrote a fortran code, smart.f (Appendix B),
to represent the evolution of the free surface in time, using a convenient format:
abscissa = abscissa -- • Time
ordinate = ordinate - Time

These figures are shown in 3.7.B in the Appendix A.
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4. Results and Interpretations

4.1. Reference run

4.1.1. Panel-Width

The first part of the runs consisted in determining the range of validity of the
code. We first focused on the size of the panels on the Free Surface. This was
made in order to have the widest panels but without any larger than • of the wave
length of the generated waves when the amplitude was above - of the wave length
of these waves. The average size that we determined is ½ of the Sphere radius :R.

On the sphere, the size of the panels is: -M • R = 0.3142•* R10
Figures 3.5.B

4.1.2. Free Surface Width

We then determined the width of the Free Surface (fig. 3.5.A). We wanted to have
the smallest free surface without any change in the results (the indicator was the
behavior of node A). It appeared that this FS-width is in some way related to the
frequency of the sphere movement : FS-Width. = 20 R for w > 4 ".r When
w = 2 * and FS-Width= 40 R, the history of the node we are following does
not match the history of the same node when FS-Width= 20R for more than 5
periods. These both conditions are valid for our runs.

The number of panels is related to the FS-Width: as the panel size is -R, the
number of panels on the free surface is nFS = 2.FS - Width. As the computation
time is related to n3, where n is the number of panels, we definitely needed to
have the smallest value for n. We decided to keep the sphere pulsation w > 7.5 in
order to be allowed to have n 1 10 + 2•. 2 50 panels.

14



4.1.3. Initial depth of the sphere

In the series 1.1 (1 to 6), the initial depth is the only parameter that changes. The
goal was to obtain the largest deformation but still stay in a parameter range in
which the calculations are stable. The code is not made to deal with the sphere
contacting the air. With an initial depth below 1.5R, the code failed to compute
20 periods because a liquid separation appeared (drop).

The average position of the node A (Fig. 4.1.3.A) is equal to the initial depth
as long as the initial depth is larger than 2.5 R. At smaller initial depths, the
average position stays above the initial depth as if there were a natural layer of
water on the sphere. We can easily check that this layer is not the imposed layer
because its value is between IR and 1R as the imposed layer was -- R.

The amplitude increases as the initial depth decreases, keeping the variation
of the sum of Average position and Amplitude small compared to the magnitude
of this sum.

We can now notice that when the initial depth is 2.25 R, neither the amplitude
nor the average position seem to follow the general trend. We might be in a
particular case where the conditions imposed excite a resonant frequency of the
system.

A run was made with an initial depth = 10.R. This was to check the validity of
the code without the FS / SPhere interactions. We can observe that the amplitude
is almost null and the spectral distribution is then quite flat.

In all these runs, the main frequency is always 1*sphere frequency (Fig. 4.1.3.B).
Its weight in the spectrum is always the highest one (Fig. 4.1.3.C) and above 40%.
This means that with these conditions, the response of the FS is periodic with
the same period as the excitation.

The second frequency, 1.15*sphere-freq in most of the cases, can be inter-
preted as a modulation of the main signal by one of its harmonic responses whose
frequency is 1 of the main frequency:

y = (Amp + B. cos(!!,))- cos(w.t)
= Amp. cos(w, t) + B. cos(-) - cos(w t)

y = Amp , cos(wt)+B(Cos( + W. t)+ cos(l-r" t))
y = Amp. cos(•, t)+ B. - (ce ..t)+B o- ((-.w•Bo . t)

8-,,,1.15 (§-_.' 85)

15
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4.1.4. Sphere frequency

The series 1.2 (8 to 13) have w as varying parameter. The .Froude and Weber
numbers are both varying with w :

Y'r=g-v-g- 4=g

Web= -~ 
:

a 4wy

As w increases, Fr decreases and Web increases. We can see that in the
Bernoulli equation (3.7) : -- (-V2+ V2)- 'r.17- -,"

at 2 S
gravity (.Fr) and surface tension (Web) yield their importance to the inertial

effects.
As w increases, the average position increases and the amplitude decreases.

On figures 4.1.4 we can see that the sum of Average Poe and Amplitude varies
smoothly with w.

We must be aware that in the meantime, the characteristics of the excitation
have changed. We will only be able to further this study when the importance of
the Froude and Weber numbers will be better known.

4.1.5. Amplitude 0
The amplitude of the sphere displacement were kept equal to R. This was kept
constant in order to only focus on the effect of the Froude and Weber num-
bers. We are here mainly interested in large amplitudes. The reader may refer to
A.Ergin Journal of Ship Research Vol.36 1992 for experiments with small ampli-
tudes.
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4.2. Importance of the surface tension

The effect of the surface tension is expressed in the Bernoulli equation through
the inverse of the Weber number. In our runs we decreasesd the Weber number
from 1394 to 1. while maintaining the values of the other parameters (gravity and
inertia).

The figures 4.2 A, B and C show us that the surface tension has no real effect
on the FS deformation either for the amplitude or for the frequencies or their
distibution.

AAverage Pos. = 0.7%
AAmplitude.• = 0.8%

AFrequency 1 = 0 AFrequency 2 = 0
AWeight 1 = 4% AWeight 2 = 13%

The average amplitude remains constant as the Weber number decreases; its
value smoothly increases as Weber number is less than 1 (coefficient greater than
1).This case is reached when the surface tension is greater than 100. This value of

Sthe coefficient could be reached when the radius of the sphere is very sm all (but
the .'roude number would then be very large).

The high variation of the Weight of the second frequency indicates the begin-
ning of the zone where the Surface Tension effect should no more be neglected.

17
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4.3. Importance of the gravity

The effect of the gravity is expressed in the Bernoulli equation through the .roude
number. We noticed in the previous paragraph that the surface tension had no
effect on the deformations of the FS, so the Bernoulli equation can be written:

- TV- .- '. + V ) --•'r • T(41

rt IS %- %0 -- 1(4.1)gravity

As there is no coefficient for the inertia effect, we can only increase or decrease
the importance of the gravity. In many studies, the cases considered have either a
Y'r > I or 'r < I in order to either consider the gravity as the main effect
or neglect it to easily linearize the Bernoulli equation.

As we have no intention to linearize this equation, it appeared interesting to
study the particular case of Fr = 1. The results can be observed in the series
If.1, figures 4.3. A, B and C.

In these figures, V!? show the aborted runs (less than 20 periods) caused by
the apparition of drops; in these particular cases the results are altered by too
limited data analysed.

The average position (Fig. 4.3.A) of the node A has no large variations (max-
imum 5%) except in the case Yr % ' but this case could be interpreted as the
beginning of the category Yr < 1.

The amplitude seems to increase with the )'roude number. We can expect a
physical limit to this amplitude because of the energy limitation.

Except in the runs #55 and #51b that failed to compute the 20 periods, the
sphere frequency always appears in the wave frequencies (Fig. 4.3.B) with the first
or second highest weight. The value of the harmonic frequency increases from 110
to 1 as Fr increases from -1 to 50. Then the value of this harmonic frequency,

10
after a short stay at = 1.15, seems to drop to -L and then re-increase but at a
slower rate than in the previous zone.

The fast decay of the weights (Fig. 4.3.C) of both the first and second frquen-
cies reduces the meaning of the values of these frequencies. But we can also
understand this decay as a flater spectrum of the wave frequencies as the Y•roude
number increases. When the sum of the weights of the two first frequencies be-
comes smaller than 40%, this diffusion of the frequencies is too important to
consider any regular oscillations.

18



4.4. Experiments

The experimental setup is descibed in figure 1. The phenomena were recorded on
a video tape from 3 points of view, always in the vertical mid-plane of theside of
the tank. The first view is in the plane of the free surface. The second one is
looking down at the free surface at an angle ; 30" to the horizontal. The third
one is looking up at the free suface at an angle ; 150.

The experiments were made with a ping-pong ball R - 1 inch. The tank was
square of width equal to 2 * 3 feet and then free surface width = 2 * 12 * 3R -
72R. The frequency of the sphere was in the range 2.3Hz to 8Hz. As the free
surface is larger than 60R, the results obtained for the small sphere frequencies
are valid.

The initial depths (non dimensional) studied are 1.8, 1.6, 1.4. 1.2. In the last
experiment, the sphere gets in contact with the air.

The experiments show that as the sphere frequency increases, the amplitude
of the waves decreases. This verifies the global trend of the results obtained in
the series 1.2.

We also noticed, and this may be a consequence of the amplitude decay, that
the perturbed zone around the sphere decreases as the sphere frequency increases.
This phenomena is consistent with the numerical calculations in the series 1.3 and
supports the values selected for the free surface width and the sphere frequency
range for the calculations.

19



5. Conclusions

The study shows that, when s sphere is oscillating below the free surface at low
frequencies, the surface tension can be neglected. The average amplitude of the
free surface waves increases with the gravity and a resonance mode may exist.
The average amplitude is also related to the inverse of the the sphere frequency
and the experimental observations validated this important phenomena (relation
to the free surface width and then to the computational time).

The experiments we conducted support the choices we made for the reference
parameters and the experimental observations are consistent with the trends of
average amplitude and average position predicted by the numerical calculations.

0
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6. Appendix A

Figure 3.5.A : Physical definition of the free surface
Figure 3.5.B : Gridding definition
Figure I : Experimental setup
Figure 3.7. Definition of the data analysis
Figure 4.1.2: Comparison 40/80 panels run #3 & #3b
Figure 4.1.2: Comparison 40/120 panels run #8 & #8b
Figure I : Datas sheet series I
Figure 4.1.3.A, Abis, Ater: Deformation versus initial depth
Figure 4.1.3.B : Waves frequencies versus initial depth
Figure 4.1.3.C : Weights repartition versus inital depth
Figure 4.1.4.A, Abis : Deformation versus sphere frequency
Figure 4.1.4.B, Bbis : Waves frequencies versus sphere frequency
Figure 4.1.4.C : Weights repartition versus sphere frequency
Figure II : Datas sheet series II
Figure 4.2.A, Abis : Deformation versus Weber number
Figure 4.2.B : Wave- frequencies versus Weber number
Figure 4.2.C : Weights repartition versus Weber number
Figure 4.3.A,Abis : Deformation versus Froude number
Figure 4.3.B, Bbis: Waves frequencies versus Froude number
Figure 4.3.C, Cbis: Weights repartition versus Froude number
Figure 3.7.B : semi 3D visualization : run#3 : reference
Figure 3.7.B : semi 3D visualization : run#54 : reflecting waves
Figure 3.7.B : semi 3D visualization : run#54 : standing waves
Figure 3.7.B : semi 3D visualization : run#3 : reference

7. Appendix B

Fortran code spectral.f : data analysis ( Fourier transformation)
Fortran code smart.f : semi 3D visualization

21
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Tue Oct 26 15:25:25 1M9 C:/USER/YANN/SPECTRALF Page
1 *
2 *program for a spectral analysis of the output of FSURFS
3 *YG 9/93

5 program spectral
6implicit none

7 real z~freq,ampli,ave,froqO
8 real freqs(100),freqf(100),,props(100),propf(100)
9 real*8 tsonx(163S4)

10 roal*S sonx(16384),a(10000),b(l0000)
11 realB* sonx2(16384) ,a2(10000) ,b2(l0000)
12 integer i,k.1.kf,ks
13 integer jnax.ilen,col.ref
14 character*20. film. filout
15
16
17 write(*,*), Enter the name of the tiles,
18 write(*,*), Input :'

19 read (5,'(A)')filin
20 write(*,*), output :'
21 read (5, '(A)')filout
22 *write(*,*), Enter the number of records,
23 *read (5,*)Jnax
24 *write(*,*)' Enter matx freqency'
25 *read (5,*)ilen
26
27
28 open (unit-i, filemfilin,status='old')
29 jnaxa-l
30 lO0continue
31 read(1,*,end=l000),z
32 Jnax-jnax+1
33 goto 100
34 1000continue
35write(*,*)jnax., Records'

36 close(l)
037

38 open (unit=1. file=filin~status='old')
39 do iwl,Jnax
40 read(1.*)tsonx(i),sonx(i),sonx2(i)
41 enddo
42 close(l)
43
44 ref=tsonx(Jnax) +1
45 ilenul-.5Sref
46 print*,ilen
47
48
49 call ftrfm(jnax, tsonx, sonx, a, b,ilen)
50 call ftrfm(jnax,tsonx,sonx2,a2,b2, ilen)
51
52
53 open (unit=2, filezfilout,status='unknoiwnt)
54 do i=2,ilen+1

56 $ 100.*sqrt(a2(i)**2+b2(i)**2),rea1(i-1)/real(ret)
57 write(2,*)real(i-l),0.O,real(i-l)/real(ref)
58 write(2,*)
59 *nddo
60 close(2)
61
62
63 call frequency(filout,ilen,1,1.,lcs.props,freqs)
64 call reorder (props freqs,ks)
65
66 call frequency(filout~ilen,2,freqs(1),kf,propf,treqf)
*7 call reorder (propf,freqf~kf)

69 avewO
70 do izi,jmax-i
71. avewave~sonx2(i)*(teonx(i+1)-tsonx(i))
72 enddo



Tue Oct 26 15:25:25 1993 CJUSER/YANM~PECTRALF Pape 2
73 aveaave/(tsonx(Jnax)-tsonx(l))
74
75 call getampli(filin~jnax,k,amp1i)
76
77 writ*(*,*)' File :',filin

79 write(*,*)kfu frequencies for the FS'
80 do ial,kf
81 if (propf(i).gt.propf(l)/20.) then
82 write(*,*)freqf(i),1 weight a ,propf(i)*100.
83 endif
84 enddo
85 writ*(*,*)
86 write(*.')ks,' frequencies for the sphere'
87 do iml~ks
88 writ*(*,*)freqs(i)/ref,1 weight u fprops(i)*100.
89 enddo
90 write(*,*)
91 writW(**)' Average position at y :',avo
92 writ*(*,*)' Amplitud is there :',ampli

94 write(*, *)' There were about ', k,'I pseudo-periods'
95 write(*,*)
96 write(*.*)' Et voila ptit gars'
97 end
98
99
100 C
101 C SUBROUTINE TO CALCULATE COEFFICIENTS USING FOURIER TRANSFORM
102 C COEFFICIENTS FIT EQUATION OF THE FORM:
103 CS(t)=Ao/2 + AnCOS(nwt) + BnSIN(nwt)
104 C ****************************,*

105 SUBROUTINE FTRF?4 (JNAX, TSONX, SONX, A, B, ILEN)
106 IMPLICIT REAL*8(A-G,O-Z)
107 DIM4ENSION MI.0000) ,B(10000) ,TSONX(16384) ,SONX(16384)0
108 DIMENSION DELT(16384) ,HTSONX(16384)
109 DATA P1/3.14159/
110 T=TSONX(JNAX)
Ill WI4AIN =2.*PI/T
112 DO 210 Jn1,JNAX-1
113 21ODELT(JzTSONX(J.1)-TSONX(J)
114 Di 211 Kzl,JNAX
115 211HTSONX(K)=TSONX(K)
116 TA=2./T
117 DO 75 NN=1,ILEN+l
118 NmNN-1
119 WmFLOAT(N)*WMAIN
120 ASUJ4-0.
121 DSUIMuO.
122 FCLAST=SOHX(1)
123 FSLASTzO.
124 DO 50 J.1.JNAX-1
125 L=J.1.
126 HAk=Q=W*HTS0lN (L)
127 FCNEXTmSONX(L) *COS(HANQL)
128 FSNE3T=SO*NC(L) *SfIN(HANGL)
129 FCOS= (FCLhST+FCNEXT) /2.
130 FSINu (FSLAST.FSNEXT) /2.
131 FCLASTmFCNUET
132 FSLAST=FSNEXT
133 ASUMmASUK. (FCOS*DKLT(J))
134 DSUMuBSUK+ (?SrN*DLT (j))
135 50 CONTINUE
136 A(NW uTA*ASUM
137 B(NN)uTA*BSUM
138 75 CONTINUE
139 20ORSTURN
140 EDD
141
142
143 *subroutine to determine the main frequencies of a signal
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145 subroutine frwqu~ncy(filout.ilen. ccl.fre.keprops. freqs)
146 Implicit none147 real props(100),froqs(l0oobspaa(2).ii.aa(2).mini.fre.tot.4alf
148 integer ile.ni,ks.escol.149 character*20. filout
150
151 open(unit=2. fileintilout,statusu'unknown')
152 ks=O
153 *owl
154 tot=O.
155 read(2.*)ii~spaa(l),spaa(2)
156 road(2,*)alf
157 do i=2,ilien
158 read(2,*)ii~a&(l),aa(2)
159 read(2,*)alf
160 if (aa(col).lt.spaa(col)) then
161 if (es.eq.1) then
162 esw--
163 ksmks+1
164 freqs(ks)=(ii-1)/fr*
165 prope(ks)mspaa(col)
166 totutot4.spaa(col)
167 endif
168 else
169 if (es.eq.-l) then
170 es-i
171 mini~spaa(col)
172 endif
173 endif
174 spaa(col)-aa(col)
175 enddo
176 do i=1,ko
177 props(i)-props(i) /tot
178 enddo. 79 close(2)
80O return

181 end
182
183 ***********************************

184 *subroutine to compute the aamplitud of the signal (average)
185 ***********************************

186 subroutine getaiupli(filin,jnax,k~ampli)
187 implicit none
188 real ori,son2,son2p,amp(1000) .ampli,a
189 integer Jc.ev.i.jnax
190 character*20. filin
191
192 kw0
193 evul
194
195 open(unitul. fileufilin. statusulunknown')
196 read(1,*)a,ason2p
197 ori=son2p
198 do i=2,jnax
199 read(1,*)a,a~son2
200 if (son2.gt.son2p) then
201 if (ev.eq.-1) then
202 ev=1
203 kmkel
204 amp(k) =ori-son2p
205 oriason2p
206 endif
207 else
208 if (ov.eq.1) then
209 evu--

0 knk+l
1 am(k) uson2 -cr1
2 rimson2p

213 endif
214 endif
215 son2pason2
216 anddo
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217 close(l)
218
219 mawli=O.
220 do iml,k
221 ampli:amplitaap(i)/k
222 enddo
223 return
224 end
225
226 **************t* * *******tt**t********.*

227 *subroutine to reorder a vectors in a decreasing order and make
228 *th* same change in a another vector
229 ********************************************************************
230 subroutine reorder (propf,freqs,kf)
231 implicit none
232 real propf(l:l),freqs(l:l),p,f
233 integer kf,i,j
234
235 do i=2,kf
236 p=propf(i)
237 f=freqs(i)
238 do Jai-1,1,-I
239 if (propf(j).ge.p) goto 10
240 propf(j+1)upropf(j)
241 freqs(j+l)mfreqs(J)
242 enddo
243 J-O
244 10 propf(j+l)=p
245 freqs(j+l)=f
246 enddo
247 return
248 end
249
250 *
251 *
252 *well, now it's done I Shall I have a fag ?
253 *
254 *
255

0
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I1*
2 *The front-cover of '3rd days of hydrodynamic'
3 *give me an idea I gonna try to adapt to my case

* 4 *YG 10/93

6 program smart
7 implicit none
8 real a,b(5000,140).c(5000,140),var~cor,alf
9 integer i,j,numb,tirst~nod.maxi

10 character*20, filn, filout, filopti
11
12 write(*,*)' Enter the name of the files'
13 write(*,*)' Input :'
14 read (5,'(A))filin
15 write(*,*)' Enter the number of nodes'
16 read(5,*)nod
17 write(*,*)' Output :2d type'
18 read (5,'(W))filout
19 write(*,*)' Output :optical type'
20 read (5,'(A)')filopti
21
22 maxi=0
23 open (unitzl, filezfilin,status-'old')
24 lO0continue
25 read(i. *,nd=1000)alf
26 maxiumaxi+1
27 goto 100
28 l000continue
29 close(l)
30 maxiumaxi/nod
31
32 write(*,*)' Enter the number of sequences'
33 write(*,*)' Maximum a ',maxi
34 read (5, *)num

*35 write(*,*)' Enter the number of the first sequence'
36read(5,*)first

37 write(*,*~)' Enter the x correction ( indice P'
38 read(5,*)cor
39
40 open (unitul, file=filin,status='old')
41 open (unit=2, file=filout. status='unknown')
42 do imi first-i
43 do j=1,nod
44 read(l,*)alf
45 onddo
46 enddo,
47 do Ju1,numb-first
48 read(l,*)a,b(j,l),c(j,1)
49 var=x(a-alf)
50 b(j.1)zb(j,l)-var*cor
51 c(j1l)=c(j,l)-var
52 write(2,*)b(j,l),c(j,1)
53 do i=2,nod-11
54 read (l,*)a~b(j.i),c(j.i)
55 b(j,i)=b(j,i)-var*cor
56 c(j,i)uc(j,i) -var
57 write(2,*)b(j~i).c(j,i)
58 onddo
59 write(2'*)
60 do i=1,11
61 read(1,*)a
62 enddo
63 *nddo
64 close~i)
65 closo(2)
66S 7 open (unit=3. filemfilopti,status='unknown')
Sdo imi nod-il

69 do jul,numb-first
70 write(3,*)b(j,i).c(j~i)
71 *nddo
72 wrrito(3.*)
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73 onddo
74 closo(3)

76writo(*,*)' zt voila ptit oars,
77 end
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Introduction

The study of free surfaces can be interesting in many respects. Any surface sepa-
rating a liquid from a gaz could be called a free surface, though for a finite volume
of gaz in a liquid, the term bubble is certainly more accurate. The typical example
of free surface is the surface of the ocean.

When a free surface presents a deformation in one special direction, the stream
of liquid created is called a jet. Jets have been used since earliest times and their
behpvior has been studied by scientists since the 16th century at least. Recently,
studies on jets have shown new possible applications, especially since it has been
discovered that they were involved in cavitation phenomena.

Simple steady jets have be studied analytically. One of the oldest hydraulic
problems has been the determination of the discharge rate and contraction coeffi-
cient of an orifice.

With the advent of new computational tools, further research in the under-
standing of jets has become possible.

In this report, we present the continuation of a numerical study of a selected
example of axisymetric free surface which leads to the formation of a high speed jet
on the axis. The problem concerns the modelisation of the motion of an air/water
free surface created by suddenly lifting an initially empty cylinder in a tank filled
with water.

The method used to solve Laplace eqiiation is the Boundary Element Method,
for which a fortran code (2DynaFS) had already been tested by DYNAFLOW,
INC.

Different hypothesis were made about the general boundary shape to be mod-
elled and about the initial conditions to be imposed at the free surface. First,
we shall report results obtained ignoring the part of the free surface located out-
side the cylinder, with a fixed cylinder in an infinite medium and when the liquid
initially forming a flat free surface at the cylinder bottom is suddenly allowed to
enter the cylinder. In fact, the modelisation of these much simpler cases turned
out to be necessary to test the reliability of our code. Then we shall present our
conclusions on a more physical modelisation, taking into account the presence of
the tank below the cylinder and the whole free surface. Neverthless, we will keep
for a future study the case of a moving cylinder.

Computational schemes were introduced to speed up the code or to produce
a better modelisation of the physical problem. They are also reported in the
following sections.
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1 Problem formulation

1.1 Description of the physical phenomenon studied
The problem consists in modeling the free surface created by lifting a cylinder
initially empty, opened at its bottom, and immerged in a tank of water. The
problem is assumed to be axisymetric. We distinguish two free surfaces, the first
one being limited by the interior surface of the cylinder, the second being limited
by both the outward surface of the cylinder and the sides of the tank.

z

ftd POWm

1.2 Results from previous studies
The following phenomena had been both studied numerically and observed exper-
imentally.

1.2.1 Report from previous numerical study

The rise of liquid in the cylinder has been reported in DYNAFLOW's Bertin report
[71 as sequenced into five different phases:

- A first phase where two water fronts converge simultaneously toward the axis
of the cylinder from all around the cylinder

- Then, a possibility of capture of an air-bubble as the water fronts reach the
axis in a violent impact

- Creation of an ultra-thin jet on the axis of the cylinder
- The rest of the free surface follows the ultra-thin jet while the jet itself can

rise up to several times the initial depth of water in the tank
- The water touchs the cylinder sides. Oscillations start in the cylinder.
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1.2.2 Report from previous experimental studies

Experiments have been carried out at DYNAFLOW using different depths of water
and different ways to rise the cylinder. Experimental observations were made
possible by using a high speed camera. They showed that the region of high
vclocity is localiscd in the vicinity of the bottom of the cylinder and inside the
cylinder while the second free surface apparently did not move (the shape remains
flat), velocities involved in that area being quantitatively small, except for the fluid
displaced by the motion of the cylinder.

1.3 Behaviour of the fluid

1.3.1 Hypothesis

Reynolds numbers in the studied phenomenon are supposed to be large enough so
that viscosity effects can be neglected in the equations of the fluid. The fluid is
considered irrotationnal. The study will be restricted to cases where flow velocities
remain small ,-ompared to the speed of sound in water. As a result, compressibility
effects are also neglected.

The two previous assumptions lead us to consider a potential flow which follows
Laplace's equation in the whole domain fl considered :

SV-6 - 0 where 6 is the potential for velocity Vi =-

and where 0 = O(r, z) since the problem is axisymetric

1.3.2 Equation of motion

The equation of motion is :

V -V(p +pgz)

The assumptions made above make it possible to re-write the equation of mo-
tion as Bernoulli's equation :

OID u2  p
T" +-I " + gz = Constant (1)

1.3.3 Surface tension

Surface tension has to be taken into account, especially in the vicinity of the axis
of the cylinder where the formation of the jet leads to high curvatures. To the
contrary, surface tension effects are negligeable away from the axis and on the
second free surface.
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Given the atmospheric pressure Pc,., the pressure inside the liquid at the

free surface is :
S= P't .. + 0C (2)

where C is the local curvature of the free surface.

1.3.4 Boundary conditions

Since the phenomenon we want to study first is localised near the cylinder, and
since it appears to be of less interest to know the velocity field in the vicinity of
the sides of the tank, we decided to consider the dimensions of the tank as infinite.
Therefore, the domain fl considered for the fluid is limited by the cylinder itself
and the free surface initially at the bottom, the second free surface outside of the
cylinder, and a wall representing the bottom of the tank. At infinity, we assume
that 0 --ý 0 and at least that r.0 is limited.

T-.&W v-.Ow
We shall then keep in mind for the future the hypothesis:

* -- 0 at least like -- where A is a constant. (3)
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*2 Numerical resolution

2.1 The Boundary Element Method
The method used to determine the time evolution of the free surface is the Bound-
ary Element Method. This method uses Green's identity to solve Laplace's equa-
tion. We shall sum up the main ideas of the method for an axisymetric potential
problem in the following lines. For futher details, the reader may refer to [51 and
[4].

Let us take $(z,y,z) regular enough and let us suppose ••# = 0. Let us
take TI, another function of space supposed to be CIO in the considered domain fl
limited by the surface S(fl).

Green's formula gives us a first equation

V 2 .'.dflf = - oV.V'.dfl+ .V.SfO

A second integration using the same identity gives

fj .T.dS- 4.al.pdS + @.V2'k.dfl = 0

This equation remains true in the cae where 4 and 'P are lea regular, as long
as the above integrals exists. As a consequence, if p(zp, y,, z,) and q(z, y, z) are
points inside f) or on the Boundary S, we may take for % the expression

1 1

%(q) = I '____- = -

SI(-ZP)2 + (y - yp)2 + (Z -z,)21i Ip- q-

Several cases are now to be distinguished:
-p is inside fl :

We know that V2 -4w6, which means

V,2( ).$(q).dfl, =j41r6,.*(q).d(I, =4*()

-p is a regular point on the boundary S:
we have V2=(5-.) = -2r6, then

J. V2(j•_ I ).*(q)'d(, f= -2irf(p)

-p is an angular point on the boundary S:
we have ,j) = -c(p).bp where c(p) is the solid angle from which p ses

fand

2 V~.j).,(q).d -c(p).O(p)
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If we only consider regular surfaces in our following study, which seems an
understandable hypothesis for a physical surface defined by the motion of a fluid,
we therefore come to the following identity:

c(p).$(p) + fS$ (q).'Nl.dS,, = f- "(q).S-,1.d(4
c(p) = 4r if p belongs to f? and c(p) = 2v if p belongs to the boundary S (4)

The advantage of this integral representation is that it effectively reduces the
dimension of the problem by one. If the field point p is selected to be inside the
fluid domain fl, knowing $ and • on the boundary S appears to be enough to
determine $ everywhere else. If the field point p is selected on the boundary S,
(4) gives a relation between 0 and -M on the boundary S. After discretisation
of this boundary (4) gives in fact a system of equations relating 0 and " at the
nodes of the selected discretisation.

The Boundary Element Method in the case of a potential problem consists
in solving this system of equations. Major benefit is due to this formulation,
especially since it does not necessitate an heavy discretisation of the whole 3D-
domain fl.

In axisymetric problems, the integrals in (4) can be re-written in the following
expression where r stands for the trace of the boundary S in a meridional plane:

+1 0 e02
c(p).$(p) + f* (q).r, dr,._in -2 -L.dq= 1d,. -. d ,

-r().rdr,. I = -
(5)

since O(q) and M(q) do not depend on the e-coordinate of point q.
Let us set

p = (rot,09zo)
q = (r,0,z)

4r(e)ro
k2(e) = + ro)2 + (z(C) - Z.)2

Where {(•)}is a given parametrisation for r. As reported in [6), it is possible
to use the complete integral of the first kind K(k) and the complete integral of the
second kind E(k) to rewrite (5) since we have for any surface S:

_1 qLd5 - I1  4r(e) [(-b)2 + (*)2I K(k)

S p- qJ 1 (r(e) + ro)2 + (Z(C) - Z)1

and

fs8- (--) dS = -4 rfo-',
(r1e) +" -o -o I (,.(()+,.g)2 ,+(,V_,~n

d V2 (o)WroJ XmI +
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Expressions of E(k) and K(k) were not necessary to reprogram since we used
a previous axisymetric code in which the corresponding subroutine had already
been made and tested by DYNAFLOW. They are available in [81.

After discretisation of the only r section, it is possible to perform the integra-
tion of the above expressions so that (5) becomes of the form

Bfij_.$, + 2 1$i = i -84

which can again be rewritten as

Bij.-0 Aij.(%), (6)

by including the 2z term in the matrix Bij. The expressions of the elements of
Ai, and B,, are obtained after integration over a panel, here performed using a
Gaussian quadrature.

2.2 Application to our problem

2.2.1 Case of the cylinder in an infinite medium

The previous 2DynaFS code developped by DYNAFLOW would consider close
surfaces such as bubbles in an infinite domain of fluid. In this case, the r figure
which needs to be discretised is just a cross-section of the bubble, the contribution
of the surface at infinity being zero according to our hypothesis (3). For a bubble,
the Boundary Element Method assume that we know 0 on the surface of the
bubble at each step, so that we can compute L by solving system (6).

For the problem of the cylinder, our first studies considered also a closed surface
in an infinite domain of water to modelise the rise of the water in the cylinder. That
solution turned out to be the easiest way to re-use the already existing 2DynaFS
code with few modifications. A part of that surface is representing the free surface
itself, another part is representing the sides and a fictitious top for the cylinder as
shown below in figure 1. The introduction of that fictitious top has been necessary
to close the surface S.
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ICs ently, if system (6) is equivalent to

[82,, B4,,J[ fill, J AZ1  A,j If=0, (8)

we may replace it by

Ili -B: :li I "11, 9

A2, -~j Bj0 0 ]
The above system is solved using a L-U decomposition.

2.2.2 Case of a cylinder near a bottom wall

In the case where we want to consider a small distance between the cylinder and
the bottom of the tank, we decide to keep from the tank only the bottom part
which appears as an infinite =re as said before. The correspondant figure is the
above figure 2.
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SThe problem is to find a potential 0 with given values on the free surfa such
as before, which still satisfies Laplace's equation in the domain above the wall and
satisfies the extra boundary condition:

O4

We use here the well-known method of the image. By considering an identical
twin system located symmetrically to the wall, with the same boundary conditions
(same t on the image free surface and (j) = 0 on the sides of the image cylin-
der), we create another problem whose solution is identical to the solution of our
problem. If we use 1 as the indice for the upper (real) system and 2 for the lower
(image) system, previous equation (4) remains unchanged as long as we note:

S = 31l + S2

We then have
I 8

P 1, ~p.Op + O~).( .dl - -. (O(q)).dj
.ds-,l 1  -J O

+ +*(q).n( )d-9, - I ]O((q)).dS, 2  0 (10)

System (8) has to be replaced by:[Blii B5i, BI 21 i B52 ,3 ir ] 1
B2,i B6,i B221i B621  j IV -_

BMij B7ij B321 B72ji *Jc1
B4ij B~ij B42•i B~ziij Oi " jJ,•

Al, ASi A12Ii A52ij
A2, A6,, A221, A62 , Ij 0
A3ij A7ij A32 , A721i .! 0 ]
A4ij A8ij A42ij A8 21i

And (9) becomes

Al,, -Bi -Bl2i1 A5 2,, 1o 1 l,, 0 0 B52jj Ojir
AZj -B6, 1  -B2 2ii A628 j § lF B2,i 0 0 BD6,j 0

A3•i -B7i 1  -B3 2 ij A72 ii [Lj 10 [ B3ij 0 0 B72ij 0
A4,, -B8,1  -B4 21 , A82., J " j B4ij 0 0 B82ij ,,ll,

01@1



Like previously, our system could be solved using a L-U decomposition of ma-
trix (M). Nevertheless, our problem has in addition the following symmetries:

The system may then be reduced before being solved in a system of the same size
as (9), by adding columns (m - j) of matrix (M) to columns j ( where m is the
size of matrix M) and by keeping only the first resulting quarter of the matrix so
as to obtain:

[Clii C3,, a[nj 1  . Bl,, 0 0 B521, 0
C2ij C4q] .i 1 1 J[ B2,, 0 0 B62 ,J 0

What remains to be solved takes therefore about the same time as in the
previous case without the wall. In practice, it turned out that cases with a wall
ran much slower than without. It must not be forgotten that the above reduction
supposes known expression (11) and that consequently the integration has to be
performed on all the panels (image included).

Nevertheless, two remarks can be made:
- firstly, by symmetry, the influence of the panel(i) of the object system on the

panel(j) of the image system is identical to the influence of the panel(i) of the
image system on the panel(j) of the object system. Therefore, we do not need to
complete (2N)2 integrations but only 2N 2 .

- secondly, another way to say the same thing would be to notice than since
the potential I' and its normal derivative ME are identical on the image and on the
object, (10) can be re-written as:

pE fl, c(p).$(p)+, 0(q).( +  ).ds,-J(,p + (()).ds = 0

where ? stands for the the image of q. The above expression halves too the
integration work (N2 bigger integrations and equivallent to 2N 2 are needed) and
gives directly a reduced system between 4 and ". It enables a discretisation on
a cross-section r only (and not its image) which reduces the memory space used.

These remarks have unfortunately not yet been exploited in the code.

2.2.3 Case of a second free surface outside the cylinder

We have also developped a code to take into account the second free surface,
outside the cylinder. The presence of the wall is treated the same way as before
and will not be re-explained here.

The corresponding figure is figure 3.
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If we call ft, and fanr the two free surfaces considered, and their possible
images fs92 and f3112, system (9) is, in the case there is no wall, replaced by

[Al,, -P4,1  AT,, 1 Ffs B ~~ l, 0 B,,ir 41fe
A2j, -B5,j A8ij 4t1 , B2,j 0 B8,i 0
MA3, -B6.j A9i 11 IjJl B3j, 0 B91 , 41L .1

and by a similar expression four times bigger if there is a wall (but it can be
reduced after the integration had been made on all the panels, image included, as
said previously, and by the same method). The system is then solved as before
to get the normal velocity on the two free surfaces and the potential on the rigid
boundary.

2.3 Time stepping

The previous sections have shown how Laplace's equation was solved at a given
time. To determine the evolution of the shape of the free surface(s), it is necessary
to introduce a time discretisation and to give a speed for each node of the dis-
cretisation. Given the solution to the Laplace's problem at a time t, time stepping
operations consist in defining new positions for the nodes and new boundary con-
ditions at a later time in order to prepare the next resolution of Lapace's problem.

2.3.1 For the cylinder

For the cylinder, time stepping operations are very simple. The boundary condi-
tions used to solved Laplace's equation are always the same. As said before in (7),
these conditions require that the normal velocity be zero near the cylinder.
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In the case of a fixed cylinder, the nodes remain unchanged during the whole
evolution if the second free surface is not taken into account. Otherwise, nodes
are equally redistributed at each time step according to the new position given to
the first node of the second free surface. The node located at the bottom of the
cylinder does not move.

In case of a moving cylinder, we could define the movement of the nodes ac-
cording to a supposedly given displacement of the cylinder, and following here
again a regular distribution as it has been done in previous Bertin's study [7].

2.3.2 For the nodes on the free surface

The method used is the same for both free surfaces described in the previous
section. At each time step, after system (6) or an equivallent system is solved
for time t, we know -(t) on each panel of discretisation. In addition, we can
differentiate the potential and compute 7-*(t) if we first calculate the length of
each panel. We therefore come to know the two components of the velocity V.(t)
and Vl,() on each panel, and on each node by interpolation. Consequently, we can
set a new position for each node using the Adams-Bashforth method of second
order:

de V(t dt2
X(t + dt,,.,) = X(t) + (d... + Q1) * V() -- V(t - dt.,) (12'

dt + dt2 It .1d (12Y(t + dt..e) = Y(t) + (dt , + Vu-) * V,(t) - 2 * Vy(t -dtd)

To use the above expression, it is necessary to explain how to define dt,,,
and dtoad. We could have set once for all dt to a very small numerical value and
use dt.,., = dtoLd = dt in (12). Nevertheless, the velocity field present in the
fluid changes with time, especially in a problem where a high speed jet is created.
A constant dt for time stepping would either mean very large computation time
by choosing a small dt, acceptable for any range of speed encountered, or give
wrong results if the selected dt is too large. Consequently, an adaptative time
discretisation was used, by calculating at each time step the maximun velocity V,.
reached on the nodes and by adapting di relatively to that velocity. At each step,
dtad is given the former value of dtn,, and dt,,.. is re-set according to the following
expression:

dt", = dphi,,i+v

where dphi. is a selected parameter to measure the quality of time discretisation.
For the free surface(s), the boundary condition needed to solve Laplace's equa-

tion at time t + dt,,. is the potential f(t + dt..). Bernoulli's equation (1) can
then be used:

8, U2  P
-+ - + - + gz = Cons tan t

OW 2 p
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"and transformed using expression (2) for the pressure at the free surface:

CO U2

w~+-2+aC+gz=gH

if we suppose that the fluid is motionless at infinity where z = H and • = 0.
We also have:

TjW= W- Ut. V6)()(t) + tow,

Consequently, we obtain the following expression:

.. (t) = (t)+ .(H - z)] (t) - oC(t) (13)
dl 2'

This can be used to define the new value of t using again the Adams-Bashforth
method:

it2  cit2d d$ r,) (4
0(t + dt,,) = O(t) + (dt,,w + d!2- ) * "O(t) - dt * Lt - o) (14)

2dt1,ld dt 2dt. 4  cit

2.4 Summary and flowchart

Let us summarize now the previous statements:
- We suppose that we know 0 on the free surface at the beginning time to (In

practice, we took zero for the initial potential on the free surface). We also know
the shape of the free surface and that the normal condition (7) is satisfied on the
cylinder.

- We compute using Green's Identity the value of "(to) at the same time to.
- We deduce the velocity on the boundary S.
- We define dt,n,, relatively to the maximum velocity found on the free sur-

face(s).
- We can set the new values of X(to + dr.,,) and Y(to + dt,.) at each node

using the Adams-Bashforth method.
- We use (13) and (14) to define 0(to + ct,,.,) at each node.
- We are ready to start another iteration at time to + di,,.,,.
A more detailed flowchart of the last version of the code used is given in figures

[2.4.0] and followings [2.4.1] to [2.4.9]. [2.4.01 takes into account other computa-
tional tools that will be seen in the following sections.

2.5 General assumptions made in the study

2.5.1 Assumptions

The thickness of the cylinder has been neglected.
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The problem of the shape to be given initially to the free surface remains

unsolved. Therefore, in most cases, it was considered an initially flat free surface
inside the cylinder. The initial conditions corresponding to such a hypothesis were
unfortunately unknown too. Consequently, as said before, we took 0 = 0 on the
initial free surface for the first time step which corresponds to assu,ning that all
the fluid is motionless when we start.

2.5.2 Notations

We haved used the following physical parameters in our study:

H:depth of water
R: radius of the cylinder
*(r, z): velocity potential

1: height of the cylinder
d: distance between the cylinder and the wall

o: surface tension parameter
p: density of water

g: gravity

2.5.3 Non-dimentionalisation

We use H as the parameter to non-dimentionalise distances so that:

H R I d

We set to 1 the value of gravity which is equivalent to non-dimentionalise times
by V/?T"

V-ffi H. vrgH' Vg/.H' p g.H 2

Pressures do not need to be non-dimentionalised since they do not appear in
equation (13).

1
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0. 3 Test of the reliability of the code

3.1 Necessity of the 'Regridder'
When the shape of the free surface changes, the geometrical repartition of the
nodes changes too and may become uneven after a certain number of iterations.
The purpose of a 'Regridder' is to prevent such an uneven distribution by a regular
re-distribution of the position of the nodes after a certain number of time steps.
First, it appears to be necessary to define a curvilinear abscissa s on the cross-
section r'. Then the length of the free surface is divided equally into the number
of panels to assign a new curvilinear abscissa for each node. Finally, for each
node, the value of X, Y, $, 7f V, Vj, is re-set using a cubic interpolation of the
corresponding function of s.

It is possible not to divide equally the length of the free surface in order to
emphasize the accuracy and precision of the discretisation in a certain region of
the free surface. In the case of the present problem, the axis of symmetry is very
important since it is the location of the jet and the region of the highest velocities.
So, it was decided to emphasize that region by subdividing the total free surface
length according to the following distribution:

a(i) = S(N~b...).(NVb,'' 1) (15)

where i is an indice for the nodes, starting at the axis, Nb/. the number of nodes
on the free surface, and a a real parameter.

Results showed that this 'regridding' subroutine do not modify too much com-
putation times. Consequently, it was used at each time step. To prevent a loss
of information on the regions away from the axis of symmetry, the concentration
procedure corresponding to (15) has been used only every other step (staggered
regridding). Otherwise, we kept a linear re-distribution (a = 1).

The differences introduced by the 'Regridder' appeared to be significant as is
shown in figures [3.l.1]J3.1.2],[3.l.3].[3.1.3J shows that without 'Regridder', the
computation is stopped very soon because the nodes are not equally distributed.
We can see the formation of two numerical instabilities, near the sides of the
cylinder. These instabilities are removed thanks to the 'Regridder' on figures
13.1.11,13.1.21.43.1.11 is a case of 'staggered regridding' and proves to be a better
way of 'regridding' than [3.1.2], a case of linear regridding.

Different values of a were tried after we decided to use a 'staggered regridding'.
First we took a = 2 like on [3.1.1] and thek, a was reduced to 1.1, because it

turned out that the nodes were too concentrated on axis with a = 2, especially
after a great number of time steps as it is shown on figure [3.1.4].

Finally, we choose not to use any linear re-distribution but a two stage 'Re-
gridding', using alternatively a = 0.9 and a = 1.1 and a good space discretisation.

0
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In fact, it would have been very interesting if we could have replaced a good dis-
cretisation by a concentration of panels on the axis. But as said before, it had not
been possible to do so because of problems at the end of computation as seen on
[3.1.4].

Other different ways of regridding were also tested, such as a three stage 'Re-
gridder', concentrating the panels on axis, then on the other extremity, and finally
without concentrating any region (linear distribution). They did not give a better
smoothing of the shape than the previous one, with the same number of panels.

3.2 Convergence Study on the number of panels and on
time discretisation (without averaging)

After having selected a good regridding option, the first studies carried out on the
code were directed to demonstrate that we had a convergence of the results on the
number of panels and on time discretisation. We did not take into account the
presence of the wall nor did we average here. Similar results obtained using an
average procedure will be presented in the next section.

3.2.1 Effect of the discretisation on the free surface

Results are shown on figures [3.2.1.1] and [3.2.1.2]. As one can see, the position
of the first node in time converges to a limit position when the number of panels
increases from 14 to 40. The same observation can be made for the velocity of the
first node.

3.2.2 Effect of the discretisation on the cylinder

Results are shown on figures [3.2.2.1], [3.2.2.2] and [3.2.2.3]. Here again, the con-
sistency of the code turned out to be very satisfying and one can observe that
both figures corresponding to the first node position and the first node velocity
converges when the number of panels is increased from 6 to 20.

3.2.3 Effect of time discretisation

One free surface Figures [3.2.3.1] and [3.2.3.2] show respectively the position
of the first node and the position of a point located at absciss 0.2 m for different
values of time discretisation, by using a height l=4m for the cylinder. We notice
that the convergence is quite good for the beginning of computation (before 0.3
second). We also present on the same figures (doted line) the case where the height
of the cylinder is increased to 6 meters.

After 0.3 second, the convergence is not satisfying at all. Especially, the fact
that the two drawings corresponding to dphi=0.008 are so different proves that
the height of the cylinder is very important. In fact, what we observe at this time
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is mostly the influence of the top of the cylinder, obviously less important when
the height of the cylinder is 6 meters. That is why it is observed that the jet
rises more slowly for a height of 4 meters than for 6 meters. Not satisfied with
these results, two possibilities were offered to us. Either we would increase the
height of the cylinder to 6 meters and re-do the same study, or we would test
the convergence on time discretisation taking into account the two free surfaces to
remove the problems created by the top of the cylinder. We decided to focus on
that second possibility.

Two free surface The study was carried out with the same parameters as
previously. Results are shown on figures [3.2.3.3] and [3.2.3.41. This time, the
convergence is better, even if computation was not made last as long as before.
Hardly any differences can be seen between the different cases of time discretisation
tested before 0.6 second for the position of the first node.

3.2.4 Interpretation-Conclusion

The tests made above were very important. They proved the reliability of the code
and gave an idea of the level of discretisation to be used for real studies.

A last remark must be made about the above convergence study on discreti-
sation (time and panels). We have shown that a quite satisfying convergence was
observed for the position of the top node, for its velocity and for the position of
a node at absciss =0.2m. That does not really prove that the whole shape con-
verges so fast. An illustration is given with figures [3.2.4.1] and [3.2.4.2], which
present a case made taking into account two free surfaces, and using a good space
discretisation. Even if we had previously observed that the position of the first
node was unchanged for dphi=0.008 and dphi=0.005, the corresponding shapes
are different. Since the drops observed on [3.2.4.1] are removed with a better time
discretisation on [3.2.4.2], they are probably not real, as we first thought they
were. Figures [3.2.4.31 and (3.2.4.4] prove that time discretisation must also be
adapted to the physical problem, and to the order magnitude of the velocities
encountered. They represent the shape of the free surface at the beginning of the
computation, with a unsually large depth of water (2m). The higher velocities
involved make the computation stop in (3.2.4.3] (dphi=0.008), while it goes on for
[3.2.4.4] (dphi=0.004)

3.3 Effects of averaging
Some numerical instabilities or perturbations can appear during the evolution of
the free surface, and grow uncontrolled by the code, while in reality perturbations
are smoothed and controlled by fluid viscosity. As a result, some very high speed
non-physical velocities (100 m/s for instance) were sometimes encountered during
computation. This is due to our modelisation which supposes the fluid to be
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ideal. To prevent the formation of these instabilities, the option of averaging was
made possible. An average parameter N,, was used with different values, and
corresponds to the following expression:

N..#.q(i) + q(i + 1) + q(i - 1)
No,,s +2

where q(i) is any quantity depending on the node indice.
First, we applied the averaging to the coordinates and to the velocity potential,

but it turned out that the code was not consistant in this case and that this
method was not necessary for computation. We went on with averaging only on
the velocity potential.. Effect are shown on figures [3.3.1] to [3.3.4]. On these
figures, the attention is laid on the fact that each drawing corresponds to the
shape of the free surface at a time, without any similarity of time between figures.
They are just shown to give an idea of the general evolution of the shape in each
case. Figures [3.3.5] and [3.3.6] show the position in time of the first node and the
position of a node at absciss=0.2 m.

It is clear that even a large number of N,,,, (like 100 for instance) might be
dangerous and smooth the shape too much. Another important remark is that
average effects depend strongly on time discretisation as it is proved by figures
[3.3.7] to [3.3.11]. These represent a comparison of the shape of the free surface
when the parameter for time discretisation varies from 0.03 (bad) to 0.002 (good).
A good time discretisation means a lot of time steps and a lot of averaging (and
therefore loss of information) per unit of time. That is why it has been observed
that a better time discretisation gave worse results than a coarse one when
using averaging. The parameter for average is the same in the five figures [3.3.7]
to [3.3.11] : N,,,g = 100. As one can see, the jet is killed by using a good time
discretisation and undirectly averaging so much that the shape is flatened on the
axis (figures [3.3.11] and [3.3.12]).

Nevertheless, as different as figures [3.3.1] to [3.3.1] and [3.3.7] to [3.3.11] may
look, it has been observed that they were very similar except for the region were
the jet is localised. If we consider, for instance, the vertical position of a point
located at half the radius of the cylinder from the axis, for different parameters
N..g = 30,100,300, and oo (no average), keeping constant the time discretisation,
the corresponding figures are very similar as shown in figure [3.3.6]. The same
observation can be made by keeping the same average parameter (N.,, = 100)
and by changing time discretisation (figure [3.3.13]).

3.4 Effects of surface tension

Surface tension was introduced in this study since it was not present in the pre-
vious code used by DYNAFLOW in [7] and Bernoulli equation was replaced by the
expression (13) as seen before . The curvature C is computed by calculating for
each node the coordinates of the center of the circle going through this node and its
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two neighbour nodes. As a general rule, tested cases turned out not to depend on
whether surface tension was taken into account or not for the physical value of the
a parameter for an air-water surface (see figure [3.41). But, it is to be noticed that
this is probably normal since our results never showed especially high curvatures,
except may be on the axis.

3.5 Introduction of a numerical viscosity

To stabilize the computation when numerical instabilities would occur, especially
on the axis, in the area of the jet, an artificial numerical viscosity scheme was
implemented. The purpose of this research was to take into account as many
terms as possible from the Navier-Stokes equations by changing the time stepping
expression (13). We report here the main ideas.

The Navier-Stokes equation of motion is:

..-. = _!V(p + pgz) + V(Adi/,6) + 2ds•u(I)
dt p

with d = -(V1 + (•)1).
We still neglect the fluid compressibility effects (div-- = 0) and we keep

rot-6 = 0. That means that we keep the assumption of a velocity potential
in presence of viscous effects. As a consequence, p is still supposed constant and:

Therefore, expression (13) has to be replaced by:

db U2
-T = "- - gz - oC + 2±(.n).n

where n is the normal vector as shown in the scheme below:
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we should therefore find an evaluation of (j.n).n. In the code, we compute
the vector _q normal to the boundary which can be expressed in the cylindrical
coordinates system (i,, 'C,) as:

= + with a 2 +P__1

where a and are known. We also have:

r - 0 12,(t+•)
_0 k 0

(d.-). 2= + 2,,#(... + ..•.) +

Or Or

Let us computeT"' :*ej

__ 4, 024 0 , 8 a
". = .. +)- .(-Ct)

al -z 2cfý;- + -8~a

8820 0-= -&2 0 + ~ -ý-p O[,2a

Consequently, we get

(2•)=- ' + + a6-+.240 + L (L- a
W-8.A 2 Or2  qz2 Or88 OZ 88

82$ 18 CI 0C.2).n = .V-- -S ,. V

21



Finally, since A = - - ai = 'F + 2; 7,, we have:

d• U 2 g z - aC + 2 -' + ( '(_ + t'- ))

= T - -32 d32 ++ , 4

The above expression does not depend on the orientation chosen for the normal
vector, and remains correct for all types of geometry. It was used in the code
instead of (13) after the second derivatives ! and £* have been computed. The
quantity H has been non-dimentionalized as:

A

The results were not actually satisfactory and the expected smoothing effects were
not obtained for a physical value of the viscosity parameter p. Results are shown on
figure [3.5]. As one can see, no difference has been observed with and without using
an artificial viscosity as long as we kept it = 10- 3 kg.m - 1.S-1 which correspond to
the real value. For larger values of p, a difference has been observed, but not in
the right direction. On the opposite, the jet appeared more prononced and with a
faster velocity field for p = 10-2 kg.m-'.s-' than for p = lO- 3 kg.m-'.s-1 .

We were unfortunately unable to understand the reason of such results, except
that such an artificial implementation of viscosity may not be compatible with a
potential modelisation.

3.6 Adaptative space discretisation

In order to reduce computation times while improving accuracy, the idea of an
adaptative space discretisation was introduced. It turned out to be easy to add
to the code since the distribution of panels was already changed regularly with
the 'Regridder' subroutine. As the length of the free surface changes, we adapt
the number of panels proportionaly in order to gain time at the beginning of
computation when that length is small. It was necessary to define a maximun
number of nodes accepted, to keep the discretisation inside an acceptable range of
values. The results were not very encouraging since they were in most cases the
same as those obtained with an intermediate constant space discretisation nearly
equivalent to the worse one in the sellected range.

3.7 Conclusions

Best results were obtained using:
- a staggered regridding using both a = 1.1 and a = 0.9 with the previous

notations.
- no averaging. If averaging is necessary (for instance to go on the computation

after the jet as become very thin), an average parameter of 500 is acceptable.
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- no adaptative space discretisation, but as good a discretisation as possible
(up to 100 panels was possible for the entire discretisation).

- results were independent of whether surface tension and numerical viscosity
were considered or not.

The following observations can be helpful for the future studies:
- The code is very sensible to time discretisation. Dphi=0.02 is usually too

coarse. Changing for a better time discretisation is often the solution to remove
numerical instabilities which stop the computation.

- The space discretisation must be adapted to the physical problem. If the
important region is the jet, concentrating the panels on the jet is a necessity.

- In our problem, the bottom of the cylinder was more important than the top.
Concentrating at the bottom has improved the quality of the results.

- Space and time discretisation must be adapted together. We have observed,
for instance, instabilities for 50 panels on FS with dphi=0.02, and no problem
for 24 panels with dphi=0.02. This is because dphi=0.02 is too coarse, and some
nodes would touch each other with 50 panels and not 24.

- Averaging should be used if necessary only, relatively to time discretisation.
- In case the liquid has a deformation in one special direction, scaling problems

must be looked at seriously.
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* 4 Results

4.1 Analytical approach

It is possible to get an idea of the velocity fields involved in our problem by trying
to find an analytical solution of a much simpler problem. Keeping to the case
where the bottom of the tank is far away from the cylinder so that it can be
neglected, and also supposing the cylinder to be rigidly fixed, a solution can be
easily found if we assume that the whole free surface rises with the same speed so
as to remain flat all the time.

If Z(t) is the vertical position of the free surface, and v(t) its vertical speed
(supposed uniform), the potential is at each time:

(z,' Y, z, t) = V(t).z

Bernoulli's equation gives us the equation of motion of the free surface very
easily and we have:

d 2 Z-.Z + I., dt , + gZ g.H

Non-dimentionalised as before, it becomes:

* z +1!2=1 (16)

We must notice that no solution satisfies both (as it is in reality):

(t 0=0)=0 (17)
X= 0) = 0

We set k(X) = (-")2 so that (16) becomes:

A k 2(_ - z)

for which a solution is:

where C is a constant.

If we assume that instead of (17) , we can take:

Mt0) =0X(t =0) 8

where 8 = o(1), the solution is given by:

dx + 8( ý(6 2)

-•= - (+ 24
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Results of such a modelisation are given on figures [4.1.11,[4.1.2].
We notice that the speed of such a free surface increases fast at the beginning

to reach 3.7 meters per second approximatively after I second in our example
(depth=1m). The movement of the free surface is characterised by oscillations, as
one could have obviously imagined, the frequency being around 2 seconds for a
depth of I meter. Since this model ignores viscosity, oscillations do not decay but
remain of constant amplitude while in reality, oscillations would cease after a few
seconds.

We will compare the order of magnitude of our numerical results with these
ones.

4.2 Numerical results

A complete convergence study on panels has not been made with the last version
of the code though no difference has been noticed among all the results that were
obtained with it using at least 40 panels on the first free surface (for R=0.4 m), 8
panels per meter at least on the sides of the cylinder, and 10 per meter at least on
the second free surface. The radius of the cylinder was set to R=0.4 m. When the
dcpth of water is not prcciscd iii the following results, it is meant 1 meter of water
above the bottom of the cylinder. In all the cases presented below, the staggered
regridding selected in 3.1 was used. When the radial distance of any node would
become smaller than a very small value, averaging would start automatically in
the code with a parameter N.,, = 500.

In all the cases, it was necessary to prevent the nodes to touch the sides of
the cylinder to enable the computation to continue. Is was also found, especially
without averaging, that the high velocity field encountered in the jet area was
slowing down the computation because of our adaptative time discretisation. As
soon as highly non-physical speeds were found, computation was stopped.

A particular phenomenon observed was the creation of a drop on the top of the
jet as it can be seen on figures [4.2.2.2] to [4.2.2.7], [4.2.2.8] to [4.2.2.12J,[4.2.2.13]
to [4.2.2.161,[4.2.2.17] to [4.2.2.19] and [4.2.3.1] to [4.2.3.5]. A second drop due
to the constriction of the jet at its basis (figures [4.2.2.12],[4.2.2.19],[4.2.3.51) may
also appear. These drops have also been reported in the experiments. We tried
once to carry on the computation after removing the top drop, but this did not
prevent the code from slowing down because of the high speeds in the jet area.
Nevertheless, this showed the creation of another drop at the same place as if to
replace the one that had been removed.

4.2.1 Influence of the second free surface

It was found that the motion of the second free surface is very limited for H = Im
and no wall under the cylinder. Consequently, another case was considered by
using a larger cylinder radius and a lower height of the water to force the water
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"rising in the cylinder to come from near the second free surface. We took R = Im
and H = 0.5m and we only considered the case without wall. It appeared that
the shape of the first free surface was nearly the same as without the second free
surface even in this case. Results are given on figure [4.2.1.11,[4.2.1.2],[4.2.1.3]
where we can also see that the introduction of the second free surface has not
changed too much the speed of the first node or its position in time by far.

We focus on the position of the second free surface at different times on figure
[4.2.1.4], [4.2.1.4'] and [4.2.1.4"]. Since the depth of water used in that example
is one meter, the initial shape of the second free surface is a horizontal flat line
at Z=1 meter. Near the cylinder, the water seems to fall at first while it is rising
in the cylinder (fig [4.2.1.4]). Then a small wave can be observed rising near the
cylinder between 0.54 second and 0.71 second as the average level of water starts to
decrease in the cylinder (fig [4.2.1.4']). It looks as if that wave starts to propagate
away from the cylinder, as it is suggested by figure (4.2.1.4"] corresponding to
time=0.739 second to 0.871 second.

Figures [4.2.1.5] and [4.2.1.61 show the velocity field at time 0.48 second. It
appears that the water comes more from the sides and from under the cylinder
than from the region of the second free surface. It is to notice that velocities are
far more important near the bottom of the cylinder, as one would have expected.

4.2.2 Influence of the wall

Results without the wall were compared with satisfaction to the theoretical model
described above. Figure [4.2.2.1] shows the speed of the free surface in the two
cases. For the previously studied modelisation, the doted line shows the quantity
_. while the continous line corresponds to the speed of a point located at half thedt

radius from the axis, which can be considered as a kind of average speed of the
free surface. Though the two problems are completely different, we were surprised
to observed that the two figures are very similar. We can also notice that after 0.6
second in the case studied, the average speed on the free surface is negative, which
means that the level of water has reached its top position and is starting to decay
and oscillate. Instabilities observed later are due to the very thin jet on axis and
to contacts between some nodes of the discretisation.

The results of the study made on the distance of the wall are shown on figures
[4.2.2.2] to [4.2.2.19]. Distances to the wall vary in the range [0.1 meter-1 meter].
These figures are shown seperately to see the position of the free surface vary in
time for different distances to the wall.

A first observation shows that the computation lasts longer when there is no
wall and then when the wall is far, because the proximity of the wall creates higher
velocities which slow down and stop the code as said before. For instance, at 0.514
sec, the jet has already reached a height of 5.9 meters (probably non-physical) if
the wall is at 0.1 meter, while it has only reached 3.2 meters if the wall is at 0.3
meter and 3.4 meters if the wall is at 1 meter.
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We notice that the wall does not always create higher velocity fields. The jet

is higher without a wall than for a 0.3 or 1 meter away wall for times 0.514 and
0.625 sec. Nevertheless, we fortunately remarked that when the distance to the
wall increases, the shapes converge to the one corresponding to the absence of wall.
This observation is probably more obvious on figure [4.2.2.201 were we compare
the speed of the first node on the jet for different values of the distance to the wall.
It is interesting to notice that without a wall or with a far distant wall, that speed
increases immediately, while it takes nearly 0.1 second when the wall is 0.1 meter
far. This correspond to the time for the water fronts to converge toward the axis
since there is no water to rise under the cylinder in that case.

Velocity fields are shown for two distances of the wall (0.1m and 0.3m) on
figures [4.2.2.211,[4.2.2.221 at time 0.25 s.

4.2.3 Influence of the depth of water

A few runs have been made with different depths of water. We have already re-
ported (figures [3.2.4.3] and [3.2.4.4]) that with a higher depth (2 meters here),
a greater velocity field was observed, as expected, and that it causes some com-
putional problems since we had to improve by a factor of two the parameter for
time discretisation to go on. Results for the shapes are reported in figures [4.2.3.1]
to [4.2.3.5] and must be compared with [4.2.2.17] to [4.2.2.19]. The general shape
is the same as for the 1-meter depth of water except that times are reduced. Before
0.3 second the jet is already very high and the previously reported drop already
created. Figures [4.2.3.6] and [4.2.3.7] show well how much speed varies with the
depth of water, while all the other parameters are unchanged (distance to the wall
- 0.1m).

Conclusion

This study has helped understand better the behaviour of free surfaces and jets in
a particular case.

Many computational tools were tested and introduced to take into account
physical realities which we had first intended to neglect, such as a numerical vis-
cosity. Other improvements have to be completed.

The code used for this study may be suitable with few modifications to modelise
other phenomena where free surfaces are involved. Even if our attention has been
mainly focused on the problem of the cylinder, the study could be extended to
air-water free surfaces in general. For instance, the code used could be easily
transformed with benefit to describe what finally happens when an air bubble
rises in a liquid, collapses and touch the air-water surface.

We give a few examples with figures [5.1] and following.

2
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Effect of the discretisation on the cylinder
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Effect of time discretisation without average, one free surface
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Effect of time discretisation without average, two free surfaces
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Effect of time discretisation on the creation of drops
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Effect of time discretisation using a constant average parameter
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Effect of surface tension
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Results of the theoretical model
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Effect of the second free surface
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Velocity field at time 0.48 second
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Wall (dist = Im). depth = 2m

Time : 0.21014 see Time : 0.390 see

3.9 3.9

2.9 LS

.9 1.9

0.9.

--0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 --0.- 0.0 0.1 0.2 0 0.40

FIG 4.2.2.8 FIG. 4.2.2.9

Time = 0.514 sec Time : 0.025 see
6.9

5.9 5.9

4.9 4.9

3.9 3

1.9 .

-0.9 -.

, -- 00.-0-02-. GA 6.t U.0j 0.4 &3S

-%.-0.-4-G.-0.2-4.I 0.0 0. 0.2 0.3 0.4 o

FIG. 4.2.2.10 FIG. 4.2.2.11

Time = 0.739 see

Pie sFrete rI. 2
waIl: yen (dtI,,m)
radlu[ R-O.4im
cylinder beight luydaytig

U depik lJo2m (Ira ABOVE cyL)
avesug. IO

2.9 egrd:L uaggmufd (0.9-1.1)
.r :, Irface nsc t. yes

dphi: 0.009
0. - pes48cuaFSl

12- on cyPid
-0..-0.4-0:-GJ -41 GA a 0.1 0.43 0.4 0.5 26 an P52



PIu nafafce(s): 2
wMil: yes (dist-0.3m)
R= RR0.4m

cylinder height l-mnything
d&p&h: H-t3m (Im ABOVE c;-,)
svefwl no

stanered(0.9-1.1) Wall (dist = 03m). depth = 13m
'nsiotr- yes
af'ace tmion: yes
dphi: 0.008
panelc 49 on FS1

12 on cylinder
26 on P32

Time 0.2108 see Time = 0.390 see
6.g ' ; ;$66. ; I . ,

3.9 
is

to to

1.9 1.9

0.9

-. 5-0.4-0.,-0.0.. 0.0 0.1 0.1 0.. Ga 0. 5 " . - &. -. .0.1 a. 0 0.. 0. &Z J 0.4 0.5

FIG. 4.2.2.13 FIG. 4.2.2.14

Time 0.514 see Tim = 0.625 see

4.10

-S-.-=1-J0. . 0.1 0.2 Oi 0.4 0.5 4J M 1
-.-. 4-44J-&Z-0.I W 0., &41 U.6

FIG.4.2.2.15.4

2.e -- IG 4.2.2-16• u



"* Wall (dist = O.m). depth = 1.lm

Time =0.2108 seC Time =0.390 see

5.9 Is

4.9 4.9

s' 'Ig

0. - 0."

_S . 0 O. *.2 .4 -. -. 4-0.3 -0.2 -0.1 0.0 0.1 0 0. -u Gj 0. 8

FIG. 4.2.2.17 FIG. 4.2.2.18

Time =0.5L4 see.

3,� .: ;ufe(s) 2
waLk yes (diu.1Am)

Lifai RPO.4m

1.s deptk I.1.l1 (Ir ABOVE c.

05 .id: . taggerad (0.-1.1)

-0.1 lm'cend=IiIO yes
-05-.40.-01 0. 00 . 0.2 U. 0. 0. dpbk mo0os

FIG. 4.2.2.19 ". on cylinde
12m on ld26cm 1=S2



Effect of the distance of the wall
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Simulation of a falling wall of water
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Non-dimentionalisation of figures
4.2.3.6 and 4.2.3.7

Position with time and Z non-dimentionalised

Position with Z only non-dimentionalised

Velocity with time and speed non-dimentionalised

Velocity with Velocity only non-dimentionalised
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Rksume6

Depuis les premiers travaux de Rayleigh et Besant, beaucoup do
documents out 6t~s consac~s 1, l'tude d'6coulements contenant des cavitds
gazeusei. Avec 'a~pparition d'outils informatiques puissants et de m~thodes
i. 6l6ments finis rapides. l'attention a. k6 port~e i ddvelopper des codes do
calcul tri-dimmensionnels. L'approche par diveloppements asymptotiques
raccord~s permet tine itude plus qualitative des rdsultats car elle permot de
ddgager directement les paramitres importants dui problime.

Le but de ce travail est N'tude do l'effondrement do bulbes do cavi-
tation au voisinnage d'une paroi solide dans; tn 6coulement potentiel, par la.
mithode des diveloppements asymptotiquos raccord~s. Le type do problame
constoidgr se limite I l'6tude do builes do dimensions potites relativement aux
dimensions de I'4coulement. Nous adoptons donc le param~tre e, rapport
du rayon initial do la. bulb A6 la dimension caract~ristique do l'dcoulement.
A chaque 6tape, le probl~me so dicouipose en deux parties:

- un problime int~rieur, c'est-i. -dire, i 1'6chelle do la. bulbe, oji la paroi
solide repr~sent~o par l'ogive est considirko comme 6tant 'a l'infini.

- tin problime ext6rieur, c'est-i -dire &. l'4heill do l'4oulement, oix Ia
bulle est considirie comme perturbation do 1'6coulemont initial.

A chaquo itape, ces deux probliumes sont relis Puin 16 lautre par uno condi-
tion do raccordement: dans tine zone d'espace d'&helle intermddairo entre
les doux problimes, ils doivont aboutir &. la mi~me solution.

Los ddformations d'une bulbe de cavitation, et en particulier l'observation
d'un jot r~entrant (origin. du bruit do cavitation) pouvont rouver deux
origines: l'origino physique duo directoment 16 l'instabilit6 do la bullb dans
l'4coulemont en 6gard aux conditions do pression et do vitesse do celui-
ci; ot l'origine math~matique, duo an fait quo lo diplacement du repar et



l'lntensitd du jet observi dana ce rep&re ne sont pas ind~pendants. 11 eat
cependant ndcessaire d'adopter un rdfirentiel mobile pour lea calculs, car lea
calculs prdsentds doviennont faux d~s que l'origiue du rep~re sort dc I& buile.
Uls devionnent donc tris rapidemcnt faux si l'origine du rep~re ne se deplace
pas avec la buile.

Les calculs de d~formationa pr~sentis jusqu'&. la section 4 sont ef-
fectu4s dana un repore se diplagant de la mime fagon qu'un point matdriel
dana l'icoulement potentiel initial. Appliquis au cas particulier que nous
avons adopti pour lea e4tudes numdriques, celui d'un corps de Rankine, c'est-
a -dire un potentiel pour l'&oulement initial igal i la superposition d'une
source et d'un icoulement uniforme, ls; permettent l'observation (figures 2
et 3) d'un jet r~entrant orienti vera la paroi solide et opposd au diplacement
de la bulle.

La section 5 prdsente lea calculs effectuds dans un repire dont l'origine
eat prise Is chaque instant 6gale au centre de gra~vitA de la buile. Ce choix
6limine toutes lea diformations non-sphiriques de la buile; c'est pourquoi lea
comparaisons montriea par lea figures 4 permettent de constater l'abseuce
de jet dana ce repe're. Ce type de calcul n'a iti effectui que jusqu'i. lordre
e. Uls peuvent itre sans difficultds poursuivis pour lea ordres supirieura, afin
d'allongcr la durde de validit6 des calculs. A l'ordre C2, en particulior, ceci
permettrait d'observer des ddformations plus importantes.

La section 6 dtudie le probirne de la reprisentation de liges de
coura~nt. Son but eat de dimontrer que la meifleure mithode de reprisentation
reate la mithode d'Euler et non la recherche d'une pseudo fonction de
courant.

La derniire partie de ce travail (section 7) prdeente lea calculs du
de'veloppement de la forme de la buile A6 lordre e2. Ceux-ci sont effectuis
dana un rifdrentiel dont l'origine se ddplace i. la vitesse du point matdrliel
iquivalent dana 1'6coulement initial. Cea calculs; reatent .1 vdrifier. Leur
application au cas particulier que nous avons choisi montrent de fortes
ddformations des bulbes dc cavitation.

La complexit6 formeile, due i. la mithode des diveloppementa asymp-
totiques elle-mime, entraine rapidement des erreurs numiriques. U paraft
donc indispensable dWen comparer lea rdsultats avec ceux fournis par un cal-
ciii fondi sur la mithode des dldments fiis.
Outre ces remarquea d'ordre numirique, plusieurs points reatent ouverta.
Ainsi, nigliger lea efforts de tension superficielle n'est pas ndcessairement un



choix pertinient. 1), -,ee, lee choix do repares mobiles effectuis reprdsentent
deux types de choix extrdmes : dans un cas, tons lee diplacements sont
comptabilis4s comme diformations, dans 'a~utre, aucun, jet r~entrant ne peut
itre observd. U est possible d'introduire dans 1e modge un paramitre per-
mettant de choisir la, mobillt6 dui repire de faron i se situer entre ces deux.
cas extrdmes. Un tel mode de calcul conduirait vraisemblablement i un
choix optimal de ce paramitre, et donc & une repr~sentation optimale du
ph~nomime d'effondrement. Enhin, une introduction de la, viscositi dans le
modgle permettrait une extension de son champs d'application.
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Abstract

The behaviourof a bubble in a flow field near a body is studied using
a matched asymptotic expansion, the small parameter (ao/to) being the
ratio of the initial bubble radius to the initial bubble standoff distance
to the wall. Assuming the bubble to be small compared with the flow
field length scale, a Taylor expansion of the pressure and velocity of
the flow field can be done. The nature of the interaction between the
bubble and the flow becomes more complex as the expansion increuss.
The theory is applied to the problem of a bubble collapsing near a mss-
infinite bluff body in a uniform flow field. Results obtained at order
Sand order 0 show the formation of a curved jet moving opposite to
the bubble trajectory and towards the wall and an imparted rotation
of the bubble. Analytical results from at w are given, and have been
computed. In order to lengthen the validity lap of the calculatioms, a
translation velocity of the center of the frame has been introduced at
order c. Results have still to be compared with a 3D boundary elment
method.



Introduction
The understanding of bubble and cavity dynamics has preoccupied re-
serchers and engineers over the past several decades. Since the early
work of Rayleigh and Besant, numerous papers and books have been
devoted to the study of cavity flows. With the advent of new mathe-
matical and computational tools, increasing attention has been given
to develop three-dimensional nonlinear numerical codes. Approximate
theoretical approaches are very useful, since they give results at a much
lower cost but they may be somewhat les precise than fully 3D meth-
ods. Bovis studied the collapse of a bubble near a wall using the
simplifying assumption of neglecting the pressure and velocity gradi-
ent across the bubble. In this study we shall present results from a
numerical and analytical study of the growth and collapse of a bub-
ble in a general potential flow in the vicinity- of a solid object. The
selected analytical approach consists of using the method of matched
asymptotic expansions. The small parameter of the expansion (e), is
chosen to be the ratio of the initial bubble radius to its distance to
the wall. At every order the problem is decomposed into two pieces:
an 'inner' problem where the characteristic length is the bubble radius
and an 'outer' problem characterised by the bubble standoff distance
from the wall. The effect of the wall appears only as a limit condition
at infinity for the inner problem, and for the outer problem the bubble
appears as a perturbation at the origin. A new fictitious flow is in-
troduced by substracting the the initial flow (no bubble) from the real
flow (presence of the bubble and the object). Studying this flow has
the advantage of having staightforward boundary conditions at infin-
ity. The calculations are done in a frame moving with the bubble so as
to follow the bubble behaviour over a longer period of time otherwise
the results become wrong as soon as the origin of the frame is outside
the bubble. The bubble is assumed to be filled with liquid vapour and
non-condensable gas which follows the polytropic law PV -= constant.
A dimensional analysis will leads us to make assumptions on the ini-
tial flow, for example the initial radius of the bubble has to be small
compared with the length scale of the flow. The theory developed here
can be applied to any potential flow which has at least one plane of
symmetry (easier calculations) and will be applied to the problem of
a bubble collapsing near a semi-infinite bluff body in a uniform flow
field. In the example presented, the potential used is that of a source
in a uniform flow field so that the complete problem has a plane of
symmetry.



1 Problem formulation

We first set the system of equations of our problem in a moving frame which we take
such as its origin is inside the collapsing bubble. Its characteristics regarding to a fixed frame
are given by its velocity ff, and its rotation 0. We will note :

A the velocity due to the initial potential flow without the bubble
0 the additionnal potential due to the presence and dynamics of the bubble, in the mov-

ing frame
r = R(8, 4, t) the bubble shape equation in the moving frame.

Let us note 0 the frame center, fi the normal to the bluff-body wall or to the bubble wall,
p(r,t) the pressure due to the initial flow po(O,t) the pressure due to the initial flow at point
0, and M a field point. Therefore, the equations of the problem are:

V20 = 0(i

im 40 = 0 (2)

{V b.• .•= = 0 (3)

{V4.l.Ra = L- + {[(1, - fo(o,t))+a x 0o11-l.,. (4)at

{ +a •(v4.)+ (Vo(rt)_- V6 - xo ).VO+ (V2(r t)- V(ot))+?}ri P-(t)()

Taking into account the fact that the pressure inside the bubble is supposed to be spatially
uniform and that the gaz inside the bubble follows a polytropic law (p1" = constant), we may
transform the last equation of our initial system in:

P{'o+ I(V4.)2 + (Vo(F~t) - Vro - 4 X 0as).VO+ '(Vo2(r, t) o,, )

V-k 2-7(°, V- vok• e
(PO( - pinit) + (p-.it - PV)(1 - -- ) +2(y -

+O ((6)-~

p. -= initial partial vapour pressure in the bubble
ppit = initial total pressure inside the bubble
ro = initial bubble radius

where: Vo = initial bubble volume
V = bubble volume
C = bubble surface curvature
7 = surface tension coefficient

@1
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2 Non-dimmensionnalization of the problem

In so far as we limit our study to problems such as the bubble dimensions are small compared
to the characteristic initial flow field dimension, we will use the matched asymptotic expansion
method to calculate the complete flow field evolution, including the bubble collapse. This will
lead us to set a small parameter that we will denote e to separate the scales of the inner and
the outer problem.

2.1 Notations

Two problems have to be solved simultaneously:
- An inner problem, that is to say, the problem of the bubble behaviour in the potential

flow, whose scale is given by the characteristic size of the bubble ("o), and whose variables will
be denoted X:

t =TV

A =VO'O
VVo = M(V'Vo)
VVVo = N(Vt'vo)
W =W

- An outer problem, that is to say, the modification of the initial flow due to the presence
of the bubble, whose scale is defined by the characteristic size of the flow : the radius of the
semi-infinite bluff-body (lo); and whose variables will be noted X.

Therefore, the small parameter we use to expand these two problems is the ratio between the
two scales :

'"0

and we will use the following asymptotic expansions for the problem unknowns:

4v' , 0++(82)R(9,j ~,~ 0(fi ) + sjI(f 9, , )+ C2 j1 1 (9, 9, I)+ 0(~2)

2



To match both problems, we write that they give the same solution in an intermediate-range
zone:
for ro < r < Io we must have: =

2.2 Expansions calculatiokls

We develop the following expressions using Taylor series:

2.2.1 Initial velocity field

We will first use a moving frame which origin moves at the equivalent material point in the
initial flow velocity, and which z axis is always parallel to this velocity : .= - o(O,t) and,
•o(O, t) = vot,•(t)4F in the moving frame. Therefore, we can write a Taylor series expansion as
follows:

fr t(o, t) - 17, Mfo fvo(O) + rO2•N-.V'Vvo(O).;-+...
(Voo, t) - ,).VO = .(MTo.6Ff7V(O) + JNTo7ro'.VkVio(O)."+ ... )

-V2) = A(MT2-MF&V0 (O) + JT2ONf- VVT(O).f:77(O)
+j(MToirIVo(O))2 +...)

We suppose the problem to be symmetrical about the (Oxz) plane in the moving frame. Thus,
recalling that V.TVo = 0 and V x 1o =-), we must write:

a, 0 a2
fVo(o)= 0 0

o!2 0-C91

Calculating fVto. - and k"VVVo.r'in the moving frame polar coordinates we obtain:

F2a2h*in 0co.9Pcos # + a,(sin2D e 1O20- 02
. r a, sin 0i W (COS2+1)+a 2coS cos 20

I -a. sin 0 cos sn io - a2 sn # Cas 0~ p.e

G,( O, */)
= , ,(9,•~)

r Go,(# , ,)

ee ,# ,•,



and:

Ho.. .= 2 [rHs. *
with:

8 z _9_ 8a2  8az
H, =, 8=+2O )(co, 2 9.inO €o.#) +, 0+2-•--)(coa0 sin2 9coe2 #)

2.2.2 Moving frane rotation

Since the problem has a plane of symmetry, we shall take j = w(t)ty.

Sx Oil = wr(y x 4) -. (7)0 °1
= Cos (8)- sin o sin 0 .,•

(a x o ), = Lo o, ,,O (9)
-w (,,, a#-,,,To"/ -Ia' (o

(lokx oC).oV= To 0 (.0E

Let n be the characteristic rotation speed of the frame. We shall assume that gi To is of order c.

wT 0 = aer

4



2.2.3 Geometrical data expansions

VOLUME:
The expansion of the volume is necessary to know the pressure terms:

3 f r2 sin 0dr d9dio

- ft d~~,b j sin 0 (A~ + 3eA~. 1 +3 2 RRI+RR 1 )d

: + 3egRioo
I(AR11012 +4A2+I 21 +I2 +6R2 1 2

+3e(~io +1 o 121 +f

at order e2.

CURVATURE:

In the same way, we can work out the expansion of the curvature, to develop the surface
tension terms: if B(8, ,) = - Ro - &R1(9, i) - C' AI(e, 0),

- I VB\
\IVB))

A,1 cooe akat 1 a2f, 1 A
+ 8 - ______

2Rs298 243 8e2  2(4 hin 0)28#

2 OS t, aft, CO so 0'e Ikt, a2 r k t, a2f~tz
Rg sin$ fo 89 2R1qn9n 89 k89 2Ag89

A, a2kAt 1 ae2 rk 1 a2t)
2R~in2 8i2 2(to Sin a)2 8  + 2RaSin20 a0,2

NORMAL:
Using the same function B as before, we have:

VBIVBI

since the scalar product with other terms will lead to higher order terms, we jut need to know
the expansion of the normal till order e :

94 Ofa~ 4+ 1 ".4)l = f-- sin9 +

5



2.3 Consistency of the different scales

By application of least degeneracy principle to equations (4) and (6), we get the relative
values for the different variables we need : we must have:

AP To?
-= 1

MTo=e

NroTo = e2
11 TO = e

To complete the non-dimmensionnalization of the inner pro! kzm, let us define:

To

Pinit - Pv
AP m1 _ 27 '-

w - 'roAp
(11)

3 Problem formulation till order e

3.1 Outer problem

Till order e2, we can approximate the shape of the bluff-body as seen by the bubble by
a fiat plane : we shall take {n-}b.4j.wl = E.. The outer problem obeys the following system :

V• 2 - 0 (12)

lim, =o (13)

{V.'.} , = 0 (14)

6



3.2 Inner problem

We neglect the surface tension strength, in order to simplify the future developments on
spherical harmonics. The expansion of equations (4) and (6) give us the system of equation for
the inner problem till order c

V2 - 0 (15)

{ _ jn t + -j{(tV0Vo(o) + X +"- = (16)

2- ++ +_o = ) + 3CkP (17)

* 4 Resolution

4.1 Order e0

4.1.1 Outer problem at order c0

System of equation (12) to (14) for the order zero becomes:

V2o = 0 (18)

lio 4jo =- 0 (19)

0= (20)

The general solution to this problem is a combination of spherical harmonics, such as:

. iM

Y2(#- ' + 1 m il

T



where Yi,,, are spherical harmonics depending on the values of the angular positions (see equation
(42), section 4.2.2). To satisfy equation (19), we have to leave out all the terms in r. To respect
the condition given by equation (20) we have to introduce an image bubble, symmetrical about
the solid-body wall. If we write r' the distance between M and the center of this new bubble,
and take into account the preceding remark, we can develop the outer potential at order 0 as:

001 1i= Bn(tý P.(cos 0) ( + • )(21)
n=0

Pa are the Legendre polynomia of degree n.

4.1.2 Inner problem at order c°

System of equation (15) to (17) for the order zero becomes:

V O = 0 (22)

g~o (23)

• 1 8�8�2� D�vk 1 -V-k
0 + I *_f = t)+ (1 -V-)+ •(d-- ) (24)C

From (23) we get the solution

- with q = -•o2 o (25)

where •o(t is determined by the Rayleigh-Plesset equation:

- - 3 -2 -( + ( • - 3K I 1) 1 - W--s 1
= A0 + 0 AP)+ (A 0  1) + -W(f- ) (26)

the initial conditions are AO = 1 and AD = 0

4.1.3 Matching condition at order zero

If we replace the potentials by their expansions, the matching condition is:

j~ (jo&r) + 4C(&.) + .2j 1(-L) + 0~g -6=t (jo(L) + C4I(.) + 62I(n + 0(C3))(2T)

The solution to #0 is o= 1(t)P,(co) + 1

jois 4 =!+C C is a constant to be determined

8



At leading order we have:

C= o (29)

TO (30)

B.() = J,,o q() (31)

To obtain the limit condition on *a, we must continue the expansion.

j,(M) + + O(C2) = s 41(.) + (32)

Sis of order 0(c) so equating terms at leading order give us:

limo 2f= (33)

* 4.2 Order e

4.2.1 Inner problem at order e

Remembering that Ao and jo only depend on time, at order c the problem becomes:

Air =-0 (34)

2

oil + AI't },2J &F ao, G (36)

82;0 + i #0o 09 -2+ir + -A=G,- 4 -+ =

3KPA1 AJk3K- 1  (37)

where G, = 2a2 coo 0 usin coo # + e, (silo 0coo #- -C08 2 ) (38)
P = aiSin*co,*+aQ2 C0 (39)

9



4.2.2 Resolution of the order s

Let us take:
00 =Bv.

00 j
A1 = �~ ZRjYj , (41)

j=O M=-j

Ypm are the spherical harmonics:

SPM(cos; ) cos mb form > 0 (42)

""P,'(cos 0) sin ImlO form < 0

The limit condition at infinity on j, leads us to take:

Ali. = fio q (43)

Since the problem is symmetrical about the (Ozz) plane, there will not be any terms in sin 4,
we do not have to consider m < 0. Knowing that

cos 0 sin e cos = Y21  (44)

sin2 a COS2  C092 # = 20 + 2 (45)

6

Equation (36) and (37) become:
i+ 1 _2q 2 - 122)

+B~r-Y- + Ajv~n= Rf.j* jta l+ alA0 (Y2O (46)

___, i+ 12 alYj+n -L+, Y-. -g+,IF zj.Yj-.m _-ttiYi - 2 1

V__AI Jim A~L~~ ,Y 3  Ro* Y

-qa,(-Y2o + 2- + jAov,(aiY +, 2Yio) = A,0 0Y3o-f0 3 K -' (47)
ito 6

For j > 2 we have a homogeneous linear differential system where the initial conditions are
zero. The solution is therefore Rg/m,, = B, = 0 Vj > 2

10



4.2.3 Resolution forn=j = 0

We have to solve the following differential system:

Bl0o A- _oo

2q--3 = Rioo (48)

+ + -L B,00 - 2 + -L)ft,00 = ftoof{3KP, 3 - + 1(3KA3- - )149

Aloo is the solution of the linear differential equation:

RoR,0 o+3R0 Rg00 +RoR,0 0 = AR _jq oAo{K 0343-t*)}(50)

and B10o is computed using:

Beoo = -(gkroo + 2RRoAlooo) (51)

4.2.4 Resolution for j = I

We have the same differential system to solve for ARlo and A-11 . We just have to replace at
and A110 by a 2 and Al, in the system giving RA1o to obtain the system leadding to Rln.

Resolution for m - 0 We have to solve the following differential system:

- to+ 2q, lo = Rao (52)

" + 24-310 _ + q +,,V.oI =0 (53)
..- a.

Allo is the solution of the lineaz differential equation:

Rlt,1 o + 3•,o,,o = 21,Ioav, (54)

Ano = -J 2•&AJ,,adt (1,)

and BIlo is computed using.

B,no = -1,•, 10 - AR-0Ao (56)

2



Resolution for m = 1 111, and Bil are computed using:

Bill = 1j2pAq~a~dt (5)

1 •
Bill = -- AkA, 1 - A-0A,11  (58)2

4.2.5 Resolution for j = 2

We have the same differential system to solve for -r 2 l and Af,. As before, to get the system
giving A•f from the system giving A121, we just have to replace at by Ja2.

Resolution for m = 1 We have to solve the following differential system:

+ 2q&- = R021 - jR 0 a2  (59)

J§122 -B~ 29 - 2qB1 - + 3-,B121 - 2q+ 2  
1  --2 = 0 (60)

As AS A8 Al121 3 Ra2~

A1 21 is the solution of the linear differential equation:

10 2
oRI,21 + 3&A0R 21 - ReRi21 = 3 2 + 2 (61)

and B1 21 is computed using:

B121  A _.3R122 - 510-1122 + IR4a2  (62)

Resolution of the coefficient in front of Y! Alf is the solution of the linear differential
equation:

A if+ 3oRift - BA0R, = 5Ao~oa1 + A~cIL (63)
and B,1 is computed using-

Bif =-- - VAol + 1, 0, (64)
3 33

The potential and radius at order s are

2 + +"-- + I(Bolcam0  + Bll ,ji cos 0)+

x.(3BI21 *in# cosa cos # + BrI(sin2 9cos2  - co 9)) (65)Co

12



I rjoo + Arlocoa9 + AI.Inl Isin# co + 3 1 2 1sinl coaf coeo*+

k11 (sin2 9 coS2 # - cos 2 9) (66)

5 Recentring the moving frame

5.1 Problem formulation

In this section, we fix the origin of the moving frame in which we caculate the bubble
shape to the center of gravity of the bubble. To do so, we introduce a translation velocity 1 in
the primary set of equations: writing 17, = 0o(O, t) + ft , the system to solve is:

lm = 0 (68)
00

{v•.d,,,,U =o0 (69)

{V }r R = + {(17o(O,t) + t - o(r,t) + c• X Okl.•,-R (M0)

8~ 1t)A ,gXO]).VO+j(V _V=

If we expand this translation velocity by developing it :fr = Vo + ef, + C2f_ + ... ,
the system at order 0 just contains jo and AD which have only spherical deformations. At order
0, the origin of the frame, moving with the equivalent material point in the low field is fixed
to the center of the bubble. Thus, we shall take 170 = 0 and only consider ! for order e and
further.

Let us choose a scale for '71 in order to non-dimmensionnalize the set of equations. If we
take V1 = V1i. , the system at order e becomes:

¢, = 1 .V'f (72)

V3.) sinI cos *+(VI.4)sin# sin#+(tIX.)cos9(73)

13



-00 ((ýX.e) o j cos# + (•0.,),o sin 0 + ca.s)co) = 3kPAAj 1-- (74)

if we neglect the surface tension.
Let us write the condition for the origin of the frame to be at the center of the bubble.

5.2 Conditions on the value of Ar

If 0 is the center of the bubble, then

With =(A(t) + .k,(e, 0, t) + C2

Expressing this condition :

J JJ 166 dfl = JL 4(04+ Cji)4 Sin g4dodl# (7T)

At order e, .(A&o + el)4 = IJJ + .SAI, + O(.2)

Thus, the condition has to be written, at order e:

J J n jidnn e 4ded# = o (77)

Recalling that

Ai, = Aioo+Ario cos 9 +IAi sin 9 wo. +31121 .in*• I c•oa o +Agj(.u 2 Icas2 #-coO 0)(78)

F,($,#) =Cos f.+ sin SflpcOA# + sin 0sin # E, (79)

we obtain the condition, at order e (taking into account the symmetries of the problem):

I'M = Arlo = 0 (80)

14
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5.3 Calculation of the translation velocity

Let us note PI, = 'PI. , = •i.J, V1 - t.t.
If we re-write the projection of the system on the spherical harmonics, we have now the new
linear system :

j+ 1_ 22 + --
BBimy,•i + ]gRjmym AIj-Yj- iRo 2yn + A,(Y 0  L2(81)

+W2 6a2Y~n-
2jj '.j, + (1+ 1)+ qBjmy

ja ( -a(Y~o + !2+ 4AOvs(t)(az1 Y1 1 + a2Yio) + 4-(frYll + f:'rY 10 + f'jr1,in 0 sin)=

3RiooYookP4 1

As no term of the development -contains spherical harmonics in sin , we may immediately
deduce: VtI = O.
We re-obtain the same system for j = 0,m = 0;j 2,m = 0,1,2. Forj = 1, the system is
different, because of the condition Ano = • =11, 0. For j = 1, the two linear systems are
transformed into:

m=O

bio + 2 -LBno + Islotv + q..1. -- 0 (83)

2B110 =(84)

which gives:

21&

+ 2 Bll +AQ2V + 0(85)



2O
- = ",>, (86)

which gives:

6 Streamlines

The purpose of this section is to show that the most convenient way to draw streamlines in 3-D
problems is to use Euler's method. We will apply it, afterwards, to the flow we are studying
(including the bubble).

6.1 2-D problem

In two dimensions, the most convenient way to draw streamlines is to introduce a stream-
function defined by the system:

ey

(87)

Along a line such as #(:,u) = constant, we have:

t(u, ) = #(,)- constant = 0

which gives:

V![

That is to say, the normal to the line at each point is normal to the velocity of the point in the
flow field. In other terms, tangentes to points on lines such as #(z, V) = constant are equal to
velocities. Thus, these lines are streamlines.
Let us remark that such a definition is made mathematically consistent by the fact that V2# = 0.
(To define a stream-function, we shall have:

16



82,p 82#0

This condition, in terms of is equivalent to V2# - 0)

6.2 3-D problem

In three dimensions, let us show that the previously described kind of approach is not
applicable :
If the problem has no special symmetry (plane of symmetry, axis of symmetry), it is not possible
to exhibit a stream-function : let us suppose an equation such as O(z, y, z) = 0, this equation
gives a surface and no line (except in the unlikely case of degeneracy).
Thus, it is not consistent to try to describe a streamline by such an equation in most general
cases.
Let us assume the flow field to have a plane of symmetry. Let z = 0 be this plane. In this plane,
we have :

-=00

A stream-line beginning with a starting point belonging to the plane must belong to the plane.
Thus, in the plane (Oy), we may describe this curve as:

All the stream-lines belonging to the plane of symmetry may be described by 0(c,v) = constant,
where the constant depends on the starting point.
The condition on this 2-D stream-function to fit the problem is that its gradient is perpendicular
to the velocity :

a6_ = (88)

8 = k(a, y).-80 (89)

Trying to solve the problem in the same terms as a. 2-D problem leads to:

a# 4 (90i)
ax ay

a# a# (91)ay+ as

and the consistency condition:

17



a2• a2¢

82Y- O=8:8y 8y83

leads to :
02• 0 +a#•'2'• y =2

which is not valid in most cases, since
82# + C92 + a-24 =082-2 8V2 82*

Thus,we must introduce a coefficient k(z,y) in the system (90)-(91), which gives the system
(88)-(89).

To have the superposition property, we shall impose that V2tp - 0. (This is obviously
respected in the 2-D calculations). Let us figure out this condition:

,&20 82 80 A822, 8_ a82* * k

8,21 Lk(z Y)_( 820) +80O
8=2 LWaY" az*3

(92)

As we have imposed V2 0 = 0, this gives:

8*8Ok 80*8k 0
8p¢w 86 a8y

8k
which is: ,a - where a is a proportionnality coefficient, not depending on position.

The mathematical consistency condition may then be expressed as:

820 =- k ) 82* 89*)2
OzOy -' 2 k(,)._• )
82,p = k(z, y).fo + a( ,)2

(93)

which leads to
k(z, y). t82# + 82# =-CI ((I) +t (1)2

We know that V2* = 0, therefore, we must have:

8~,y) 2* = a(!12+*))

18



From:
-l a•

Sh 0#

-• = a•
(94)

we get: k = ao + P; then:

(aO +/)92 aCL ("') +

which leads to:
" 2 + 102 + )2+ f _ = Constant

This condition is not always respected for any kind of potential one can take (respective of
the plane symmetry condition).

If we just try to solve the: problem for each case separately, the approach is exactly' the same, but, the single condition to'remain is the mathematical consistency one:
O2• 8# Ok 8• Bkk(z, y). L924' = 00.'a + 80 A

Therefore, to find out the streamline we are looking for, we have to compute the following
system:

82# Oe* k OaO
h ( )(a= + a+8 4 $

a*a -k(c, y).-
FX a,
L = k(x,y).ao

and, afterwards, to solve the equation : %6(m, 1) = constant
This system is more complicated to solve numerically than the implementation of Euler's method,
that is to say, at a given instant, to start fr-om a chosen point in the field and to find out the
next point of the streamline by expressing the fact that the streamline from one point to the
next is equal to the velocity given by the flow field on this little step of space.

19
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6.3 Results

The pictures show streamlines calculated by Euler's method, at order e in both cases of
a growing bubble and a collapsing bubble.

7 Inner problem at order e2

7.1 Terms of order c2

We need the terms of order e2 for the following expressions:

16 02j, 02o 1_8i

i afete i er a ,t
1 aj Bit Oil alt

.&2.jn2q 80 80 : AASin 2g 810 8%0

(17, eA- 170 - -!R -jj-G#& G#Ot

k .. A#- [to sine- 4 + V11.i.a # 89

8i', i f•# C015W
1 •") - - -=-- + &r-l- - , . + IftA,--A-) +

S+ jJ(-W20 + &-2

(A- ) 214 ( af)2
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2R2ain2e ( 2Rý ) (9 0)ai

(£o-1,).v 162 &,.O,,--+ G,.(R +A-=-. +Ge 9 ±•+G, 8 •-

S(v.3 - V0(o, t)) : Iv,(t)I(a, Co. 0 +=, ,i,.,o ,)+ a (Gn + GJ + 0,2)

+Ij&X~tjM(fICj~e+ 1r3'sf e Cose9 Cos
2

+ (a - ra v'P r •in + -t/i coo 6 ao •

7.2 Problem formulation

As before, the problem is described by the following system:

v2 2 =.0 (95)
LU+ A.R 11 - &L B (96)

ao= + ,., + . aH B (97)

where the 0i order unknowns are •rI and All. A, B, C, D and E are functions depending on
time and on position for C, E, D ; given directly by the asymptotic expansions of the primary
system.
If we work out the values of these coefficients, we obtain:

A = 2•

8o•

ar-2 a G, a~j +r .~ 1• . = a Jr,
+B -ArLa-Te + -(oH,- - G,,n,r- , 2 aP Aj O 1s , f a,*

D= oi
Ssin ai2



0

2j -A ; g- _ ,Z a WI,82, 84 3 .-io

Mtf 2 FtOf 8• a'" 2 82 #3 2 )-2
-t-•j (!24 1 4 1' 843'ri ,-iT

-T __o)2 ,,loo a i, _ , (_)a- AP . r )2#-(80)2)
2 8 8,8f~ 2RS 89 n2  81

-Gr(A8ailo -+Go 8. Go oilg

-pv,(t)A,(c2coao o+ a, sin# cos ,o) - .g(Gr + G2 + G2)

-V.(t))M(-tco&2 9 + -3 sine cos e cos

+-F(o s'k -u in O '-• - )• + 3kP( 4'o__Z ioo +....)
89 sjinG 8S. 8• • . o

+.rx, + V1-.1,-aif

7.3 Inner problem expansion on spherical harmonics

The matching condition of the inner and the outer problems enables us to limitate the
development of Oll on spherical harmonics. The outer problem's solution at order e is like:

1K( + _1) + Kr( K is a constant to be determined

In equation (32), we can replace $! by its value:
2 Fm

Thus:

Bloo + gn.(L) + o(.•)_ =K(1 +-2)+ .---I .0 +L-
10 to TO 2 1o 4t0olo

We can take = tf < 1, term which shall appear with ill. Fmially K = B1oo.

,•()+ o(c) = B102+L+0+0( r2

ro2 4 to rolo

*,lim (j4l(,) - B - L - 1,f-cos 0) =0f-W2 4
Therefore, we shall use the following development on spherical harmonics:

=, Bjoo(t) + L + 1(t fcos + E li ()Y"

In the same way, we are going to develop RAl as:

Al1 E~ Alij. (04. (99)
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7.4 Resolution of the problem

Using developments (98) and (99) found in section before, we now can work out system
(96) and (97) in terms of the independent spherical harmonics Yi3 :

j~o- (j + 1 B11 Yim + A= jii& ArY, ii (100)B_0q 1-4,o•. ,..

+ Coso a • 1 Y +-i,, 3 , (101)
2-4-++ "&".Y. +4

-D (ho o- E (j + 1) Bjnj
(4 j+, s~~S) = F, Vj'.Yj.

We have developed the previous equations respective of the fact that:

A = Aoo(i)Yoo; C = Coo(f, OYoo; D = Doo(F, t)Yoo

from (100), we get an expression for Bhiuh:

ijm = .(B. + - - A+ -- +(B, + - i.)(102)

Then, we can replace J~ri. by its value in equation (101) to obtain a second-order in time
differential equation on coefficients R•gg.:

- -A -+2: - (103)Ri jmV + 1 RziM (Aj+ i+RO -D

+ +L±2AAO + C + AD) = 3i + DBim+L+2 - -i
+ i j+(A j +1 - 313 ++

for (j, m) = (0,0) and (j,m) = (1,0), the second member of the previous equation has to be
completed by the following additional terms:

(j, m) = (:1,o0) : -2q- ..o_3A

(,m) = (0, 0) : -- + (3kP)A 2  - 3k(h++ j,,o + !.,I + .& +

2 (2 zo) + + 1 5 3

The calculation of the differential equation coefficients gives:

A= -

0 23



dA 2 2 2 '

D = 1to

We now can sum-up these results by the following differential equation:

Co(j)Aij.m + Cl(j)Riijm + C2(j)kii, = Bj, + C3(j)Bji + C4(j)•,. (104)

at which we add the following terms, in both cases (j,m) = (0,0) and (j,m) = (1,0):

(Im) = (0,0) : o+ (3kP)A - (1 3k(+ 1)) (-o + 110 + - 12" + •'j 2+.fi6 - )
(jM)=(1,0) :21 + 2o

8 -R,•0 -,.•

The coefficients C,(j) are given by the following army:

j CO C1 C2 C3 C4

0 -o - & O -Ro-4*--3kPR-- 3pt Ao

__ _ _ f tojA

2- 4 -Ao, jA-4 l
3 -4 -- o jo-4 4 Ro 14Ao

4 -4 -- R 4t___ _ AD jk0

Terms of order 1, A- and jj are componed of harmonics up to order 2. Their product will
lead us to harmonics up to order 4; that is to say, we are going to develop 15 independent
differential linear equations from Y0o up to Y44.
Let us write EBm the sum Ej. + C3(j).Bjm.

Results for calculations of terms B,,. and B;. for the 15 spherical harmonics are given in the
following pages:
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Resolution for j0o

Bo '=Bo + 31toA 0A10) -RIZO(!Bj + AA,)-RI(B+AAA 1 )

1 121 (18 21b -AR L--B121 + 3A0A8A1~j -u( r-c5/I o

-ý = R00(4A0AO + 2A 0 Boo + iA0AZAO + A~j 1 O)

-11 22.&1 _ 2-.3R TRoBI1o + Ro04R110 + ýft0 B,1 0 - a2V.AL%)

3R 3 33

A121, 18 *-2 107~2ROR-~B,Aj R0 Aq. 121 + ':A4A121 - -- B121R 5t

+4 yRoRAg.If + AoARA,, !RBif - 6ai~oA + jAgB,1)

B-002 Br, 2  7 ~~wBi2 B,21 3 B121 13
-ilf- --- --f2,4B1 +W(--V+ TO-2)

___ 11__ 2 2)

12 3 3 5 3
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Reowlution for j=1, nz=O

Blo=-~(Bi 6At~~ 0 -~(2Bgoo - 18

(!-B1 21- 3 Ao~l 1 - -D

+!4'- Br- -aC( A110 - -IC13ARl + -La2it[2 - WRI 1 4( -y-(3 + 2-13)5 510 10 10

Ello = A(2.&ohjio - 20O.-oBno - 2O0B1Z4Auo + 24 R'Ollom - PwxC2A4)

-A 9RRB1.+ oRR0 , ~R4, ~RB1  6 RB 1 1

- RD~n ~R~Ro -1AAR,, -~ +LRo~a2 - 3Rozr -To01A)

45 5

A,,,(Ljt.&.ýL-: RB"2o + 6~2iA + t 2oA23 SOA 5'

+ 2W3 + o~ -(1 +oa +a~ +P2s + ~ i~ 2 + a: + 5
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Resolution for J1i, ==x

B1 1  (6Bgu + 6A0Al, 11) BA,1 2 + 18An.rj

£11(242Bm + + -L18f

9 An~io- 6 ~-Bnriifr+ la2R110 - ~a~u+ !Ea 2 fA1, - 19ft+ 274)

T1- Aiao(2 f 8- 10~, +-1A 0 ~

Amjll 123 J10 jfo 1

189 ~57-2 6J'no~ - M-AgBI21 35RAVmt + 3-A.AkA, - Y-02&4A)

+ R11 Wm+ !R. 1 1,z - ý!qil + !!Altgrf - TR%.A4Bmoo - !Bfia 1.Ref)

+ 121 6 AA 8bz A _37olo!mv4

+t 5 5 +875

-SJ7;Brf~ll -BroB,2A - kBm~ioot -~ Bi

10- WZZ --A74)

B,10 1237 B11 3 123
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Resolution for J=2, :n-=O

B20 = K(lB+ kA 1 )

An_ 14 Jt, An1 Z'j .13-(2Ao0 'AjA1 0 + -B 1 1 0o) + 6 4fj

g--Ii-2 + 7B[2) - Wy-f + TAoPSA 11)

A-B,1,, - L1 + I421+ aikiroo - 3wR1 n1

55 3

1t.- 84&2. 1. 0 + P.A~i. - i-AA4B.I - lvf
A433i 9 3

Ja'l + J:AI.'. 11 - !oAriu 133 Iof,+ avA

+-'--ot. +241pý+ 71 toR~ + -T AB,11-+ifa2ThIA 7p

21 3 -2 ~RAA - 5a - 26~~ - U1

+ (A_ I - BO4- j1Ifj;4+ lo 566~ + -BASOIA - 124A

l~o 3 38 3~k~oh 3B121
13zi + B,11

2 + I 2 1ABf2+a

14 Ag 3



NRsOlutiou for J=2, mz=l

B2 1 M2 + 7J4pl +~ 7ll~

2 Broo[21 -ia ±210 71ln + Jlr11(a2 - W

£21 = ""o(31o.612 , - 244AAtign + 2A0AU~t1 21 - WB0B121 -

+Jta ii 3814&SAII1 + IR~oqlt4Rz- -&9oBlu - av

diii -9. - B79. 1

+W~(A6.Pm - N-oBI.J + l-"a jg + ~A 1 ..
+-a2Bgooa W)

13
31 19

-- v,.p2.3 + I B,1 17 B2,1 1B,
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Resolution for J=2, m=2

B2= -W(2B, 1 + A0APA11)

RA812 + 59'9~u - j)
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We give the values of the 15 harmonics used as a reminder for numerical computation:

Y10 = Cose
Y, I = sin0cos

y= = !Co.2 e-_
2 2

Y21 = 3 sin 0 cos 9 cos

Y4 = 3inM2 cos 20
Yf = uin2 1coC2 , _ -OS2 0

3 = ŽC3 3.--coeD
2 2

Y31 = 1 esin(5cos 2 9- 1)coam

Y3 = 15 sin2 0 cos 0 cos 2#

Y33 = 15 sin3 0 cos 31

Y4o = 1(35 co4 9 -30 cos2 -+3)
* 1 3

41= ý(35o 915 cos 9) sin 8cos#

Y42 = 1(105coe29 15)uin 2 gCoS20

Y43 = 105 cos u sin3 0 cos &3
Y" = 105 jin4 0 cos 4#

To calculate &1 and jr, we use the expressions found previously:

Al = 10oo + AR0 oXo + ,111Y11 + 1A21Y 21 + RitY 1

= +1-0-- + I(BlioYrno + BiuYri) + L(B,2lY2 + BDiY1)

Potential at order 1 and q (intensity of the equivalent source for the bubble at order 0) are
computed using the expressions found previously:

B110 =

2 10 =- ARArA1
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,a which didn't appear in the previous equations is calculated as follows:

So(10V5)IV = o-(, x -0-)
012l dt

where Vo is the velocity of the origin of the frame. The normalisation of w is given by the scale
f such as : fITo = e. In the particular case where the origin of the frame is foUowing a material
point in the initialflow field, the expression of w is easy to find: if we denote W,4 + I the
velocity of this point,

d to d ... (., - w, dr.
-dt dr -+-.(1o -'e,) (06)

which gives:

W= -sin vw-(W, + V. co )(s (107)

0
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8 Conclusion

Application of the theory previously described has been made in the
case of a Rankine body, described by the initial flow potential:

0 = .

The broadth of the body at infinity is : R = 2 '
and the stagnation point occurs for:. a = -A4

Figures 1,2 and 3 describe the conditions of calculations, and show results
for a frame moving with the equivalent point on the streamline at order e
(section 4).

Figures 4 show the comparison at order £ between results obtained in a
frame moving with the equivalent point on the streamline and a frame fixed
at the center of the bubble (section 5).

Figures 5 are results for streamlines at order 1 for the inner problem: they
encounter of the streamlines obtained in the potential #0 + #..t#o, in both
cases of a growing bubble and a collapsing bubble (section 6).

Figures 6 are results for bubble shapes at order C2. They enable the com-
parison with results of order e. The frame center is moving as the equivalent
material point in the initial potential flow. The re-entering jet is rotating
increasingly towards the body wall as grows. (a axis is directed towards
the trajectory, y axis is directed opposite to the body wall). Taking a frame
center moving as the bubble mass center would allow results closer to the
end of the collapse.
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9 Improvments

In order to describe the evolution of the bubble collapse longer, a
translation velocity of the frame should be introduced. The description of
the reentering jet has two causes: the bubble collapse is the physical one, the
movement of the frame is the second one. Using the fact that the frame is
moving with the equivalent point on the streamline or that the frame is fixed
to the center of the bubble are two different assumptions, and, therefore,
the results obtained are different. The most interesting description would
probably be to use a frame moving with a velocity belonging to the two
extreme cases we have selected. This has to be completed.
The introduction of the surface tension at orders el and C2 would also be an
improvment.
Finally, results should be compared with those of the three dimensional
boundary element method (3DYNAFS).
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Introduction

Every liquid which is not completely pure contains many microscopic
bubbles. In an oscillating pressure field these bubbles can grow explosively
and collapse developing high pressures: this phenomenon is called cavitation.

Useful or harmful cavitation can arise in numerous applications, anti-
submarine warefare is surely the most famous one. In fact, naval research
programs include a great part on cavitation. Localization and identifica-
tion of submarine can be facilitated by cavitation, also erosion of propeller
blade is caused by cavitation. The power of underwater explosion can be
increased thanks to progress in control of the generated bubble collapse.
Cavitation is used for medical purposes like eye surgery. Industry needs
cavitation to emulsify a system of two immiscibe liquids such as oil and wa-
ter. It is used in ultrasonic cleaning systems. Recently it has been reported
that a Japanese company plans to market ultrasonic washing machines and
dishwashers. The cavitation which appears sometimes in nuclear reactors
becomes very harmful for the cooling system.

Although cavitation mostly occurs in a cluster of microbubbles, most of
the models are developied using a single bubble dynamics. However most
of the time the interaction with the collapse of surrounding bubbles cannot
be neglected. Thus in this report we will try to modelise the dynamic of
a bubble cloud. Indeed the past studies proposed by G. Chahine [3J gave
us a model neglecting the compressibility of the fluid. The object of this
work is to introduce the influence of compressibility in the equations and to
compute the change using Chahiwe's software.

The first part of this report shows the influence of the compressibility of
the fluid at order 0 using Keller-Herring equation [ and Chahine's numerical
code (31. In the second part we try to develop a model of bubble cloud taking
into account the weaknesses of previous studies: the medium is compressible
not only because of the fluid itself but also because of the presence of gas.
We will try to combine the approaches of Prosperetti and Lezzi [5] and that
of D'Agostino and Brennen (6].
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1 Cloud behaviour in a slightly compressible flow

1.1 Asymptotic theory for bubble flow interactions

Consider a cloud of N bubbles of radius rL, i = 1,..., N immersed in a
liquid. The bubbles are initially assumed to be at rest and at equilibrium
with the surrounding fluid. The characteristic radius of the bubbles is ro .
We denote the initial distance between bubbles i and j as ly, which we take
to be of the order of the characteristic distance Io.

The asymptotic method that we have developed is centered on the fol-
lowing approach. The problem is addressed by a decomposition of both time
and space domains into multiple scales. For instance, the dynamics of any
bubble is obtained by considering an inner problem of scales rh and T, (a
characteristic inner problem time scale), and a outer problem of scale 1. and
T.. An asymptotic analysis of the problem can be developed when these
various scales are of different orders of magnitude. For the bubble inter-
actions the expansion may be realised when the scale of the inner problem
and the outer problem are really different. We introduce in this case a small
parameter that will be responsible for the perturbation. Let's call c this
perturbation parameter- e = !. We assume in the following e < 1.

In sections 2.2 and 2.3 the outer problem is associated with the macro-
scopic behaviour of the cloud. A bubble then appears as a superposition of
singularities of various orders, whereas the inner problem provides the mi-
croscopic details of the behaviour of the flow in the vicinity of an individual
bubble center Bi. The boundary conditions at infinity for the inner problem
are therefore obtained at each order of approximation by the asymptotic
behaviour of the outer solution in the vicinity of Bi. Thus if one knows
the behaviour of all bubbles except B,, the motion, deformation and pres-
sure field due to this cavity can be determined by solving easier linearized
forms of the equations. At the lowest order, e = 0, each bubble (of index
i) behaves spherically. The combination of all these first approximations of
each inner problem provides a description of the whole first order flow fid
(i.e. a distribution of sources or sinks representing all bubble osciliatioms).

The behaviour of this outer flow field in the vicinity of each bubble sets the
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boundary conditions at infinity at the following order of approlomation, e,
for the corresponding inner problem. A'he same process is then repeated for
the successive orders.

1.2 Incompressible fluid

The study of the cloud in an incompressible fluid, using the preceding
method, has been done by G. Chahine, K. Kalumuck and T. Perdue (31.

For this work we will use the numerical codes they have created where
tLey neglect not only the viscosity and the compressibility but also the heat
and mass transfer. The great contribution of these reseachers was to discover
that until order O(e3) the problem of the cloud was similar to a problem
of two bubbles: the bubble i and an equivalent bubble Gi (figure 1). This
constatation simplifies a lot the problem without affecting the precision of
the calculation.

figure 1: I.ultibubble Interaction Equivalence Concept
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During this study we showed using the work of Takabira and Akamatsu
(7] that at higher orders the above approximation was not justified. We
will not explain all the resolution of Chahine's work, but we just give the
most important equations to understand the goal of the work. Thanks to
the concept of equivalent bubble the equations are easier, at least for the
lowest orders. Neglecting the compressibility Chahine considers two different
problems: the inner and the outer problem. In the next section we will come
back on this assumption.

The equimalent bubble is centered at Gi. The growth rate and position
of this equivalent bubble are determined by the distribution and the growth
rate of the other cavities. In general, this fictituous bubble equivalent to the
"rest-of-the-cloud", and the corresponding "cloud center" and "equivalent
bubble intensity" are different for each bubble. If fig is the angle between the
centers' direction BiGi and the direction of a field point BiM, the equation
of the surface of the axisymmetric bubble Bi can be written in the form:

R(O9,,, t) = 4(t) + e,(t) + [82 W()+ f().co,,]I [4(t) + A iC~e
+8 [4t 3 (t)._coSi, + ygi(t)p 2 (COSO,#)J + O(C3)

where P2 is the Legendre polynomial of order 2, and argument cosj,. The
components, ai, f and g', satisfy linear second order differential equations 0
which can be written in symbolic form as follows:

o,(,0 -ii -: - ,,YiI . (.Oo,).

Here D2 (yi) represents a differential operator of the second order in
time acting on the radius component Y£ (one of a, j, gi) of the bubble i;
m is an integer indicating the order of the spherical harmonic.

The behaviour of B, can be computed by integration of the obtained
system of differential equations using a multi-R.unge-Kutta procedure. the
behaviour of the whole cloud is thus obtained. Earlier studies have shown
that collective bubble behaviour can have a dramatic eff'ect on both bubble
growth and implosion. Specifically, bubble growth is inhibited by bubble
interactions, while bubble collapse is enhanced. This cumulative effects
come from the fact that the interaction reduces any driving pressure drop
as a result of the other bubble growth, while it incrases the collapse driving
pressure as a result of the other bubble collapse. Due to the cumulative
effects of the collapse of all the bubbles in the cloud, each bubble ends its
collapse under the influence of a pressure which is orders of magnitude higher
than that for an isolated bubble.
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S 1.3 Slightly compressible fluid.

We will not go into the details ofobtention of the equations whick we will
do in the next section. We will say that the component ;&(t) of the bubble
i (r = AR(Oil,0.t) = &(t) +,4(t) +..- verifes the RayleohPleuset
equation (Equation 1).

S[aa + 12 al =P9 p -pM (1)

where P" is the pressure at the bubble wall:

PP," +PRO C, (2)

where pgo and Vo are the initial gas pressure and volume respectively, 'r is
the surface tension, C the local curvacure of the bubble, V the instantaneous
value of the bubble i volume, and - the polytropic constant, with 7 = 1 for
isothermal behaviour and -1 = 1.4 for adiabatic conditions. Here p34o and To
are known quantities a; t = 0.

In fact introducing tie compressibility of the fluid at order 0 modifies the
equation of the radius of the bubble. The classical Rayleigh-Plesset equation
becomes of the Keller-Herring form (Equation 3).

This equation can be written as

+- .+• I I_-ý, = (1+ +-(3)

where c is the sound speed.
To nondimensionalize this equation we need to introduce a new petur-

bation parameter J( which is a Mach number:.

M = N"I• (4)

Cr,'

where e, is the sound speed in the Amid at rest.
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Let's cal

U = (Vo/V)r

.= (o 4.- P,)l/AP

W = (r•AP) /2r: Weber number

AP = max IP00(t) - Po.

a = a(t)radius of the bubble at time t

P0. initial pressure at infinity
ao initial radius of the bubble

Equation (3) becomes:

(I - Mi) a& + ! (1- Ma) a.

U 3-yMUi +M)

- + Ma) + (5)

Taking M = 0 in (5), we find the classical equation of Rayleigh-Plesset (1).

This equation verified at order c° by the component of the radius ca of
each bubble shows that the compressibility at order M is only a correction
of the Rayleigh evolution of each bubble. As we know that the behaviour
of each bubble has a cumulative effect on the collapse of all bubbles, we
may predict that the compressibility can have a strong effect on the doud.
To verify this assumption and to know how strong is the effect of the com-
pressibility on the cloud, we have investigated the effects of this equation on
Chahine's code. In most figures shown below the bubbles are in the same
plane OYZ. This simplification could seem useless if we know how Chakine's
code proceeds: each bubble is computed using the equivalent babble coa-
cept. One could have used more general cases. Our choice was motivated by

6



two reasons. The first one is because it is easier to understand the changes
of the cloud seeing the aft babbles together. The most accurate representa-
tion is to cut the cloud by a plane including all the shapes. Then one has
only to compute the translations and the rotations of all the bubbles. The
second reason is that we could compare the results of this code with those
obtained with a completly different method which accounts for lar bubble
deformations. Indeed Dynadow Inc. is working on a 3D code (3Dyn&FS).
Most of the studied cases were in a plane.

1.4 Figures:

Figure 2 shows R(Oi. = 0, t) versus time for one bubble in a 6-bubble
cloud. The bubbles are at equilibrium at t = 0 when they are subjected to
a sudden pressure drop. The bubbles have an initial radius of 0.01 cm and
are arranged at equal distances from the origin along the three coordinate
axes:

O • -- 10-4 M

a = 0.07
a = 7.28x10- 2 N/m

W =2- 6
HI -.•- -680

max po. 10= oPa
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The solid LiUn indicates the incompressible solation. Also plotted is the
corresponding curve for M = 0.01 (small dashes), M = 0.03 (small dash-
dot), and M = c = 0.07 (dash dot). Even if for M = e our approximation
is not completly justified this figure gives a good idea of the effect of the
compressibility. Not only the compressibility reduces the magnitude of the
radius variation but also it changes slightly the requence of the oscillations.
This is fundamental from an acoustician point of view.

Figure *
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Figures 3, 4, 5, $ shows a 6-bubble cloud evolution in a liquid more or
less compressible. The bubbles are at equilibrium at t = 0 when they are
subjected to a- sudden pressure drop. The bubbles have an initial radius
of 10-3 m and are tranged in the plane OYZ symetricaly with respect of
the two coordinate axes: figure 3 shows ,R(#iG = 0, t) venus time, the solid
line indicates the incompressible solution which breaks down at t = 3.2.
Also plotted is the corresponding curve for M = 0.08 (small dashes), and
M = c = 0.2 (dash dot). Figure 4 shows growth and collapse of the bubble
cloud in an incompressible fluid. Figure 5 shows growth and collapse of the
bubble cloud in a slightly compressible fluid: M = 0.08. FigRe 6 shows
growth and colapse of the bubble cloud in a compressible fluid: M = 0.2

1-% = 10-3

9 = 0.2
or = 7.28x 10-2 N M

W r P- =680

2.5 ,
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The Awes 7, 8, 9, 10 shows a 4-bubble cloud evolution in a liquid

compressible or not. The bubbles are at equilibrium at t = 0 when they are
subjected to a sudden pressure drop. The initial radius of the big bubble is
5 x 10-3 m and 10-3 m for the small one. They are &nwed in the plane
OYZ symetricaly with respect to the two coordinate ages:

FPiTum 7 shows R(ig, = 0,t) versus time of the big bubble. Figure 8
shows R(Ois = 0, t) versus time of the small bubble. The solid line iadicates
the incompressible solution. Also plotted is the corresponding curve for
M = 0.2 (sma4 dashes). Figure 9 shows the cloud in a compressible duid
M = 0.2. Figure i0 shows the cloud in a incompressible luid. On this
figures we observe clearly the formation of the jet. The collapse in the
compressible fluid is slightly delayed.

N~o = 5 x 10-3 m
C = 0.25
o" = T.28x10-2 N/m
P = = 0.5

W = r -P- -6M

1.4 0.4

~i

1.3

1.2 CU

1.0 3 4

0 1 2 3
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S
These foUowing figu show a 12-bubble cloud in an incompressible htaid.

All bubbles have not the same initial size. Initial radius of big bubbles
is 5 X 10-3 m, initial radius of medium bubbles is 2.5 x 10-3 m, initial
radius of small bubbles is 10-3 m. The reason for taking different sizes of
bubble is that the code is limited by the collapse of bubbles. With same
size bubble cloud the collapse of bubbles which are inside the cloud appears
too early. Then the collapse of the cloud is not interesting. Thus we have
chosen a bubble cloud with two big bubbles inside and four small bubbles
at extremities. The bubbles are at equilibrium at t 0 when they are
subjected to a sudden pressure drop.

rbo = 5 x10-3m
£ = 0.25

T = 7.28x10-2 N/m
P = P = 5x10-3

WV = =- =680
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0

These figuru represent the same cloud with the same initial conditioas
but in a. compresible fluid M = = 0.25.
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2 Dynamic of the cloud

2.1 Problem statement

The reader should have certainly noticed the different approximations made
in the previous problem. In this section we try to take into account most
effects of the compressibility. The resolution of the "inner" and the "outer"
problems will be very similar to Chahine's study, the difference is that we
include the compressibility of the fluid. However, a very important change
occurs when compressibility is included. The pressure imposed at infinity in
the "inner" and "outer" problems now depends on the local volumic mass
i.e. at the scale of the cloud on the void fraction. Therefore at the bubble
scale or at the cloud scale the fluid has to be considered differently. In fact
we need to consider two different global scale: the microscale problem and
the macroscale one. In the first one the fluid is seen as a compressible fluid
with bubbles inside it, in the second one the liquid is a two-phase medium
and the compressibility comes mainly from the presence of the gas phase
and not from the compressibility of the fluid itself.

Characteristic scales:

microscale inner: NI, T
outer: toTo

cloud: I.,T.
o far a-w-y: I, T1



microscale

o 00
C,0

Do e o0

o 0 ~ 0
0 ~0

macroscale

fm aw r If 71
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2.2 Microscale problem

The microscale problem is a zoom on the bubble cloud and it can be
decomposed into an "inner" and an "outer" problems. Thus there is not a
single "inner" problem but as many "inner" problems as there are bubbles.
To each "inner` problem corresponds an "outer" problem.

At the length scale of the microscale problem each bubble being far away
for other bubbles, sees a compressible liquid. Explicit expressions for the
sound speed, c. and the enthalpy, h, will be needed. To this end we make
use of an equation of state of the modified Tait form for water.

p+B (6)
pvef + B Pre 

(
Here the reference is chosen in the undisturbed liquid (subscript ref). The
values B = 3049.13 bars, n = 7.15 give an excellent fit to the experimental
pressure-density relation for water up to 105 bars (Fujikawa and U-amatsu
1980). With (6) we find the following relation:

±* =p C2= (p + B) (7)
d p P

c2, = n(p,.fe + B)/p..f is the square of the undisturbed speed of sound in
the liquid.

2.2.1 "Inner" problem

Mathematical formulation:

Let's call p(M, t) the pressure at a point Ud in the liquid at time t in the
"inner" problem. Let's call pi.(t) the pressure at time t at infinity at the
scale of the "inner" problem. Let's call pe(M, t) the pressure at a point M
in the liquid at time t in the "outes problem. Let's call pjOo(t) the pressure
at infinity at the scale of the "outer" problem. The value of pj.(t) is given
by the boundary condition of the "outer" problem:

21
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PL=ur Pi(M, t) mm lm e(m, t)()
,4-,s

Let's take the nondimensionalized pressure parameter 4•P:

Api max IpAM, t)- PO.) I

We denote ~~~s

Let'scal ,I and asrme that Vi < 1.

We have:

*i+ B _ (1 + , -Pv(__.. , -' • _ _+-_

PProf ( p,.f +B)

I+ (pi - P0.!

We can do the following expansion for qj < 1 up to order O(q.•):

1 1 (1 n+" '

Thanks to this expansion we can express hi up to order O(qi2).

T ý= = -r AP

Using the same kind of expansion weget r :

P P
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p

+ +-n)Pq

First, we will consider the expansion until order o(tp,), equation (11) and
(12) become:

I I + (I + -,)h,2,+,,(7,3)) ('13)

hi +,,(,( - ji))1 (14)

Motion equaions..

The bubble behaviour and the motion of the liquid in the nekoborhood
of each bubble is governed by the equation of continuity

-9 +,7 (P,,)=o,
and the momentum equation

f aui )P'.. + t '): + V P=o0. (16)

Furthermore with the assumption tL--t the motion is inrotationsl, we may
introduce a velocity potential 4 such thw. usi = V •.With this defiiton
equation (15) may be rewritten as

i ak +v#4vWa +V20#= o. (17)

while equation (16) may be inte~ate once to give

12



•+ •IvI+h = O. (1.)

To complete this mathematical formulation we need the kinematic boundazy
condition at each bubble wail r = R'(t)

for each bubble i: (V #'. n' =•(t) = !V(o-ni (19)

where ni represents the :iormal at the bubble i surface , r = Ri(t) is the
equation of its surface, e,.i is the radial vector in a frame linked to the center
of the bubble.

The pressure in the liquid at each bubble Bi surface:

where p;o and Vý are the initial gas pressure and volume respectively, a is the
surface tension, Ci the local curvature of the bubble, Vi the instantaneous
value of the bubble i volume, and y the polytropic constant, with y = 1 for
isothermal behaviour and -y = 1.4 for adiabatic conditions. Here p.0.and V
are known quantities at t = 0. The curvature Ciand the normal n' to the
surface Bi are given by:

c'= V' V B= (21)

Nond-Umnsionalisations

In the inner problem the paramneters we will use for the nondimensioa-
alisation are:

r N : the initialcharacteristic bubble radius
max pi(M, t)-p = po A :presuur changescale
t - T, T,:thecharacteristiccollap time

- 4#j : iner velocity potential scale

M M : Mach number
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we will f • =•".(J A,W&V + JAM)

Previous equaioas (17), (18), (19) become:

ly,," 4v23+

' paso, (22)
be

8i + 10,

~(i- ~ !%, 'i(#+.)+ (23)
±.bo , .) O 

- e. n' for each bubble i. (24)

The Immst doepueacy Of equatiozt (24) gives the order of#:

(25)
The least degeneracy ofequatioat (23) gives the order of : • 1:

V 4Fj(26)
which gives the vluae of lIn:

,7i2 = _p

25
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it means that q is exactly the previous Mach number M. Thus the assump-
tion we made about ni is justified for a slightly compressible uid.

The inner problem equations are:

2 v + -2)I g +p .=+O(M4)=0 (28)

(v n. ')' ) - " for each bubble i. (30)

( l -Pf + ý V

2.2.2 Outer problem

Mathematical formulation:

Let's call jp(Mt) the pressure at a point M at time t in the outer
problem. Let's call peo(t) the pressure at time t at ininity at the scale of
the outer problem. Let's call pe(M, t) the pressure at a point M at time t in
the cloud problem. The value of je(t) is given by the boundary condition
of the cloud problem:

Jco = ,..•A,• f, 0 = ,,,"AM, t1 (32)
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Let's cal rhe scale pressure pmmmter ,.. We have
P •m o -t )0 , ( t -

A.p (33)

Let's caHl q.2 ---• =esue A~e4

We have like in the previous section:

1 ;p-+ B - =-L (I+ni,2)-
P v~ P~j+B) A.#/ p~,

We canme the same expansion for q. c I up to order O(q) and we Pt
A* and c

Thanks to this exlp=iauinwe Can 0xpand ho up to order O(Iyg),

IP

f a- 1 (#1 _ .r2q) 2 f+ = a3... o.I37

170 6 4I))mw, (35)

and e up to order o(,g).

2n JP +i o(

2?



First, we will consider the expnsion until order O(wi):

11
1 = (37)

Motion equations

With the assumption that the motion is irrotational, we find again the
same motion equations:

aho V~vh +v2=O.(39)

a*++Il IV # -+ =0. (40)
Wt 2

In this case the kinematic boundary conditions derived from the fact that
there are singularity points located at the center of each of the bubbles.
These singulaties ame sources to the first order of approximation.

Nondimansioalisations

In the outer problem the parameters we will use for the noudimension-
alisation are:

R = 4 4 : the characteristic distance between
two bubbles

p(M, t) - p,.. = AP4 AP o: pressum change scae
t = T.i T. : the haratistsiccollas time
0 , *. j# *: outer veocity potential scale

M
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Previous equaztions (38) and (39) become:

72 j +• fl + ýL +

_7 (1 1+#,)) + ± (V ) = o

i.e. .v 2 i + -. ±! I V ý 12 +
17-,24,+ (9.2) ((-p +o+'= +(0

82o= (44)

the machn cedition is :

• . =@4 = • hm i (45)

iF-e.
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Iim AP.j lim Api (48)
F--O F-00

The least degeneracy of equation (44) using the kinematic boundary condi-
tions gives the order of :

ý = 90i (47)
Ti

The least degeneracy of equation (42) and (43) give the following order.

172 = .2ji_ = 1 (48)

and

2 T. (49)

thus "I

17 = - (50)

T = MT• . (51)
C C,.!

The previous equations (42) and (43) become:

V72 + {-+MS2(V•. V)}(p-p.)

-Ma2  + [,Mo(V V I v u )} f.)
2(52

a;+ IMI2 1,7j 1

+ (J-,Pa) (1 -IM'.2(13+,. +o(.')=o (53)

3(
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i.e.:

+ 2rV-v) - 1 i + O(3 -D)

+O(c') = 0(54)

+• IMC21v 12

+(-.) (i- j 2(p'+f,)) + O(C4) = 0 (55)

But the equation (50) shows that the speed at this scale is of order C,./
it doesn't agree with the previous assumption. The perturbations don't
include shock wave. Thus we need to use the second order of degeneracy.

T,2 - ~T 0  (56)

= TTs

thus

1o = 9 2 o*Io (58)

lo = (59)

The outer problem equations are
V2 j +.M C •_ V . ) (2-. + 0(C4) =0 (60)

f 1 + ( 1 ' )

+ 7IV +j-1.) i- s 4 j 2 (p+6) +O(C4)=0 (61)

31



i.e.:

V 2 j +o(C4)=o (62)

-+a 11 j1 +(fi- ) +O(c4)=0 (63)

2.3 Macroscale problem

In the macroscale problem we consider the medium as a continuous mix-
ture of liquid and gas. This is the classical point of view of two-phase flow
studies. The compressibility of the liquid can be neglected with respect to
the compressibility due to the presence of the bubbles.

2.3.1 Cloud problem

Mathematical formulation:

The medium is composed by a liquid and a gas, the void fraction is
a(M, t). The liquid and the gas are assumed inviscid and incompressible,
with a respective density pf and p.. We assume that no bubbles are created
or disappear. The volumic mass of the medium is:

p = p(1 - a(M, t)) + p, a(, t) (64)
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The void fraction a(M, is taken in the small volume element dV = JrJ3

which contains n(M) bubbles at the point M, 1. being the scale of the outer
problem in the microscale. The order of a(M, t) is:

a(Mt) = nc 3 a'(M,t) (a(Mt) < I for, eC 1). (65)

where n is the average value of n(M) in the cloud. a°(M, t) is of order unity.

Thanks to the work of Van Wijngaarden [4], we know how the sound
speed is modified in a two-phase medium. Under the further assumption
that gas and fluid move at the same velocity, the mass of gas in a unit mass
of the mixture is constant,

pgca(M, t) = constant. (66)
pj(1 - a(M, t))

In a homogeneous mixture, as envisaged here, the pressure p in the mix-
ture equals the pressure p2 in the gas, which is at constant temperature T
proportional to p.7 (isentropic case),

P a(M, t) =con~stant. (6 7)
pj(I - a(M, t))

For the sound velocity c, we have from equation (63),

1=(1 _ a(M, t))-Lf+ a(M, t) dp, a ,t
7-. =(dp dp + (PO_- )dA( (68)

i.e.

1 = (t-a(M,t)) a(M,t) da(M,+t) (69)
72  Cf + -+ (PS -PA.

Let's note a(M, t) by a. Differentiation of equation (65) gives:

P1z = ( ) p p) (70)

Differentiation of equation (66) gives:

do=a(--a)( ±P.! L) (71)
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Using (69) and (70)

1 (,_a)2 a2 pa(-a)+£L (1-a)
72. = c2 + (72)

We have assumed that pp. = conutant i.e.:

dI = _ pg (73)

dp cjI yp

thus we can write :

1 (1 -a)2 a 2  pf a(_-a) pa(l-a)
72 = C2 + 2- ' +! (74)

Using equation (73) the speed of sound in a bubbly fluid is lower than the
speed of sound in a pure gas. We know that a - a 3 , for water f - 254,

and p! - 1000pg. With the assumption that a > (p#, / pfp~) i.e. 1W31

1/25000, the speed can be approximate in an isentropic case by:

d =±p (75)
dp pf(1 -a(M, t)) a(M, t)

According to equation (66) we have:

P a)', (76)

P. is given by the initial conditions.

= P"1o Y (77)

where p. is the pressure in the fuid at rest at t =0 and a, is the void
fraction in the bubble cloud at t =0. Then

2= .yP. (1 - a)7'- (78)
P1 a 1+7

Moreover

P=P,(1-a)+Pga=P(1 ne 3e) + Ponsa'•. (79)

With the pre•ious assumption we may approximate p with:

"P~P1 (i- 3 a') (80)
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Motion equations

Let's call p'(M, t) the pressure at the point M at time t in the cloud
problem. Let's call pg.(t) the pressure at time t at infinity at the scale of
the cloud problem. Let's call pl(M,t) the pressure at the point M at time
t in the far away problem. The value of pt.(t) is given by the boundary
condition of the cloud problem:

P.* = •_ pC(M, t) = li(AM, t) (81)

where C is the fictituous center of the bubble cloud. In our problem where
the fluid is at rest the pressure p~c is a known of the problem, this is the
pressure imposed on the bubble cloud. We find using (76) and (77) that

V p=-pC2V a (82)

. The medium behaviour is governed by the equation of continuity.
ap

S+ V(,)=0 (83)

where u is the speed of the medium, and momentum

, + U v u) + V p=0. (84)

These equations give

V u- - +tLV 0 (85)

-=O+U.VU- 2 Va-o. (86)
Tt 1 -a

We may consider the cloud like a bubble with its own oscillations, the
boundary conditon is also

(u.n),.A(t) = A(t)e,. n (87)
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where n represents the normal at the cloud surface, r = A(t) is the equation

of its surface, e,. is the radial vector in a frame linked to the center of the
cloud.

Nondimensionalisations

In the cloud problem the parameters we will use for the nondimension-
alisation are :

r = le" l: the characteristic distance of the bubble cloud

t = T,: t T,: the characteristic time of the bubble cloud
U = U".U"

= nC3 a-

We will use the following expansion for 1/25000 C w3 -C 1:

S=1 _ a*) + nC a, + O(C4) (88)

Expansion of c2:

2 = 7p-o (1 - a)"-'

pf a0"Y

;P"rw amf( )~ a + O(C4)]

= 7- J2!.C_2 (89)

where e is of order unity. Previous equations (84) and (85) become:

v - 1 - - + ' ." (90)

36



0

The leaut degeneracy of equation (89) gives the Chanctexistic speed U0 :
0= n .a 

(92)
and the least degeneracy of equation (90) gives the char-cteatic time T.:

T0 O4 f- " 
(93)

Thus equation (89) and (90) give:

7 -- (I-+ n&3 am + O(e4)) ('0: + n&3u'.Va (94)
+n +. .'.e .V Um + •e am + o(,)) C w2 V am 0. (95)

i.e. up to order o(,):

V 84-• +o( 0
a, -C02 + 0"-+ 

(97)

If c 2 was constan, we would mud the dasuic wave equtoxi

or
2z a" a"-2 0 

(99)

at.



2.3.2 Far away problem

This problem is rasier, the cloud is only a small disruptibn at the center of
the frame. We just need to write the equations of the outer problem of an
incompressible fluid with a single bubble.

V2 # = 0 (100)

and the boundary condition:

lim VO=O (1C01)
r--•

pfj•t) is given by the user.

Conclusion:

The first part of this report has showed how strong could be the infiuence
on a. bubble doud of a. slightly compressible fluid. The second part has
lightened all the assumptions made in the first one, and raised the equations
we need to solve numerically for the problem which takes into account all
the effects of the compressibility.

At t = 0, we know the pressure every where in the fluid. We may solve
step by step, the inner, the outer, then the cloud and at least the far away
problem. We get the behaviour of the cloud at time dt i.e. the value of
a(M, de) every where in the cloud and the pressure at this time. We need to
go back step by step to the inner problem and we obtain the motion of each
bubble. This recurrence is easy to compute using the concept of equivalent
bubble.

In fact the main application of this modelisation is to know precisely the
growth and the collapse of the bubbles in the cloud near a certain profile.
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The final stage of the collapse of a cavitation
bubble near a rigid wall
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During the collapse of an initially spherical cavitation bubble near a rigid wall, a re-
cntrant jet forms from the side of the bubble farthest from the wall. This re-entrant jet
impacts and penetrates the bubble surface closest to the wall during the final stage of
the collapse. In the present paper, this phenomenon is modelled with potential flow
theory, and a numerical approach based on conventional and hypersingular boundary
integral equations is presented. The method allows for the continuous simulation of the
bubble motion from growth to collapse and the impact and penetration of the re-
entrant jet. The numerical investigations show that during penetration the bubble
surface is transformed to a ring bubble that is smoothly attached to a vortex sheet. The
velocity of the tip of the re-entrant jet is always directed toward the wall during
penetration with a speed less than its speed before impact. A high-pressure region is
created around the penetration interface. Theoretical analysis and numerical results
show that the liquid-liquid impact causes a loss in the kinetic energy of the flow field.
Variations in the initial distance from the bubble centre to the wall are found to cause
large changes in the details of the flow field. No existing experimental data are available
to make a direct comparison with the numerical predictions. However, the results
obtained in this study agree qualitatively with experimental observations.

1. Introduction
Cavitation is an important engineering phenomenon that commonly occurs in fluid

machinery, piping systems, liquid jets and a variety of boundary-layer flows. The major
harmful effects of cavitation are erosion, noise and decrease in fluid-machinery
efficiency (Hammitt 1980; Arndt 1981). In an effort to understand the fundamental
physics of cavitation phenomena, a number of researchers have investigated the growth
and collapse of individual bubbles near rigid boundaries. Experiments have been
performed by Benjamin & Ellis (1966); Gibson (1968); Lauterborn & Bolle (1975);
Chahine (1979, 1982); Gibson & Blake (1982); Tomita & Shima (1986); and Vogel,
Lauterborn & Timm (1989). Using spark-generated or laser-generated cavitation
bubbles and high-speed photographs it was found that, once generated, the bubble
grows to a maximum size, and then starts to collapse, inducing a radial flow directed
toward the bubble centroid. As the collapse proceeds, the surface of the bubble farthest
from the wall moves much faster than the surface closer to the wall. This asymmetric
motion creates a wall-directed re-entrant jet as the volume of the bubble decreases.
Eventually, a liquid-liquid impact occurs between the front of the re-entrant jct and the
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opposite side of the bubble. During this impact process, the jet penetrates the slower- 0
moving fluid close to the wall.

Numerous theoretical and numerical studies of an individual bubble collapsing near
a rigid boundary have also been made (see review articles by Prosperetti 1982; Blake
& Gibson 1987). Because the available theoretical analysis is limited to asymptotic
studies in which the deformation of the bubble is confined to a small perturbation
range (Chahine 1982). numerical simulation has become an important tool for
investigating the detailed physics of this phenomenon. Using a finite-diffcrence
approach, Plesset & Chapman (1971) conducted the first fully numerical study. Later,
Mitchell & Hammitt (1973) used a modified Marker-and-Cell method to simulate
similar cases. An approximate integral-equation approach was introduced by Bevir &
Fielding (1974). In this work, sources and doublets were distributed along the axis of
symmetry inside the bubble. Though this method requires less computational effort
than the finite-difference method, it failed to simulate the formation of the re-entrant
jet. Gibson & Blake (1980) and Blake & Gibson (1981) modified this method to study
the bubble collapse near a rigid wall and a free surface. Based on Green's theorem and
the direct boundary-integral approach, miore detailed studies of cavitation bubbles
near rigid boundaries have been presented by Guerri, Lucca & Prosperetti (1981);
Cerone & Blake (1984); and Blake, Taib & Doherty (1986) for axisymmetric cases and
by Chahine & Perdue (1988) and Chahine (1991) for three-dimensional cases. The
numerical calculations of the migration of the bubble toward the rigid wall, the profiles
of the bubble and the formation of the re-entrant jet were found to be in excellent
agreement with experimental observations (Blake et al. 1986).

Once the re-entrant jet begins to penetrate the opposite side of the bubble, difficulties
in experiments, theory and numerical calculations appear. Most experiments use
photographs to track the bubble surface. Unfortunately, the jet impact process occurs
inside a toroidal bubble and the images are consequently blurred and difficult to 0
interpret. Theoretical analysis of the jet impact and penetration process is difficult
because of the nonlinearity associated with the large motions of the bubble surface.
Benjamin & Ellis (1966) postulated that upon jet impact the bubble must be
transformed into a vortex ring bubble in order to conserve the Kelvin impulse of the
flow. Several attempts have been made to simulate the jet impact and penetration
processes numerically. Rogers et al. (1990) and Szymczak et al. (1993) have assumed
an inviscid incompressible flow and used a finite-difference field approach. They
demonstrated the capabilities of the method by simulating a single bubble collapse near
a rigid wall including the impact of the re-entrant jet. Owing to limits in computing
time and memory, the calculation was done at low resolution. It was therefore difficult
to resolve the impact interface and there was a non-physical energy loss before impact.
Attempts to use the direct boundary element method without modification to simulate
the penetration process have failed. The failure is due to the inherent mathematical
degeneracy of the conventional integral equation under this circumstance. In an effort
to avoid this degeneracy problem, Best (1993) devised a two-phase procedure to carry
out the calculations with the conventional boundary integral equation. The first phase
includes the growth and collapse of the bubble up to the point in time when the north
and the south poles of the bubble meet. Then, in the second phase, a ring bubble is
assumed with a continuous velocity field everywhere in the fluid. The initial conditions
for the ring bubble problem are based on the fluid motion just before impact and some
ad hoc assumptions about the geometry of the ring bubble and the fluid velocity in the
vicinity of the impact surfaces. The entire impact process occurs instantaneously in this

0
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model. A similar two-phase method with a boundary integral approach was also
reported by Lundgren & Mansour (1991) for the simulation of a vortex ring bubble.

In the present paper, the physics of cavitation bubbles is studied with a new
boundary-integral technique that can compute the growth and collapse of the bubble
including the impact and penetration of the re-entrant jet. This method allows for a
continuous liquid-liquid impact as the two curved sides of the bubble collide, the
penetration of the re-entrant jet into the fluid close to the wall and the formation of a
shear layer along the impact interface. The physical and mathematical modelling of
these processes is presented in §2. This modelling uses modified conventional and
hypersingular boundary integral equations with non-regular boundaries to form a
well-posed problem for times before and during jet impact and penetration. The details
of the numerical scheme are discussed in §3. This scheme i- verified and tested in §4
by computing static and dynamic problems with known solutions. The results of
simulations are presented in §5. These results include velocity and pressure fields and
bubble profiles. Calculations showing changes in the circulation and energy of the flow
during jet impact and penetration are also computed and discussed in this section. The
concluding remarks of this study are given in §6.

2. Mathematical formulation
2. t. Physical assumptions, definitions and coordinates

In the present paper, as well as numerous previously published studies of bubble
collapse, the fluid motion is treated by potential theory. Viscous effects are neglected
on the grounds that the timescale for viscous diffusion is much longer than the timesale
for the collapse. Thus, the vorticity generated at the boundaries does not have sufficient
time to diffuse into the flow. The extension of these studies to include the penetration
phase of the motion does not alter this conclusion. In studies of bubble collapse before
jet impact, the assumption of incompressibility has been made based on the idea that
only a small fraction of the energy of the bubble motion is radiated away as sound. In
the present case, the jet impact will cause an increase in the radiated sound; however,
it will be shown that the potential flow model allows for the loss of energy due to
impact. Surface tension effects are also neglected in the present calculations. Though
the influence of surface tension grows as the bubble volume becomes very small, it has
been shown that the inertia and pressure terms are still dominant (Hammitt 1980).

Profiles of a cavitation bubble just before the impact of the re-entrant jet and at a
time later in the evolution of the bubble are shown in figures 1 (a) and 1 (b), respectively.
These profiles are from the results of the present numerical model. From figure 1 (a),
it can be seen that the radius of curvature at the north pole (Np, defined as the point
on the bubble axis that is farthest from the wall) is less than the radius of curvature at
the south pole, Sp. Thus, the jet impact process begins with impact at a single point.
This instant in time is defined as the initial impact. As the process continues, more and
more of the two surfaces impact in a continuous manner and the bubble volume
decreases. The fluid that was originally above the bubble in the figure penetrates into
the fluid that is below the bubble creating the profile as shown in figure 1 (b). In a real
flow, the interface between the fluid from above and below the bubble (called the
impact or penetration interface in this paper) contains a mixture of gas, vapour and
micro-bubbles, and a local shear layer is generated with the fluid in the jet moving
toward the wall and the fluid outside the jet moving away from the wall. In the present
potential flow approximation, the penetration interface is represented as a sheet with
infinitesimal thickness. This sheet has the properties of a vortex sheet in that the
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FIGuRE 1. A cylindrical coordinate system and two axisymmetric bubble proflk3 corresponding to
stages (a) before and (b) after penetration. The profiles have been separated vertically for clarity. S.
represents a regular surface, S* and S- comprise a common surface which is connected to S, at the
triple point T, and S. denotes an infinite rigid wall. N, and S, are respectively the north and south
poles on the bubble surface.

pressure and normal velocities of the fluid are required to be continuous across the
sheet while the tangential velocities are allowed to be discontinuous. The remainder of
the bubble is toroidal in shape and is called a ring bubble. The circular line at which
the vortex sheet attaches to the ring bubble is called the triple-point line and its
intersection with the plane of the paper is denoted by the point T in figure 1 (b). In the
experiments, the ring-bubble contains some non-condensible gas which will cause the
bubble to grow again after reaching a minimum volume. In the present model, the
pressure in the bubble is assumed to be constant, therefore rebound will not occur.
Current efforts are being directed toward simulating the rebound process with a
volume-dependent pressure inside the bubble.

A cylindrical coordinate system is used to describe the motion of the fluid and bubble
surface, with r, 0 and z representing the radial, circumferential and axial coordinates,
respectively. The fluid motion is assumed to be axisymmetric. A rigid wall is located
in the plane z = 0 and extends to infinity. The pressure in the fluid far from the bubble,
P., is maintained constant as is the pressure in the bubble, P.. Before initial impact, the
bubble surface, as shown in figure 1 (a), is entirely a regular surface (Kellogg 1953) and
the fluid domain, D, is a simply connected region bounded by the bubble surface, S.,
the rigid wall, S., and an imaginary boundary at infinity, S. After initial impact, S,
is transformed into an irregular surface as shown in figure 1 (b). This surface consist'i
of two different regions: a common surface region which comprises the two surfaces S*
and S-, representing the vortex sheet, and a regular surface region S. which includes
the ring bubble. The fluid domain is still simply connected when the internal boundary
is taken as the union of Sb, S'* and S-.

The lengthscale for the problem is taken as R,, (the maximum radius the bubble
would have achieved in an infinite fluid), the timescale is taken as R.Jp/(P.-P.)I
(the collapse time of a spherical bubble in an infinite fluid of density p), and the
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pressure scale is Po - P. - AP. With respect to the three scaling parameters, the non-
dimensionalized coordinates, r* and z*, time t* and pressures P* can be expressed as

r , z t (' P, L (I){r.,z.,P•,}= R,.-.' •- .R---.-• k7 J' (J*

Other geometric, kinematic and dynamic quantities in the following mathematical
formulations are non-dimensionalized in the same manner. In the remainder of this
paper, all variables are dimensionless and the superscript * is dropped for c nvenience.

2.2. Mathematical statement of problem
Based on potential flow theory, the velocity u can be represented by the gradient of the
velocity potential q0, u = V0, with 0 satisfying Laplace's equation inside the fluid
domain D, Vq0(x, t) = 0, x e D, (2)

where x is the spatial coordinate. Initially, the bubble boundary is assumed to be a
spherical surface with radius R.. Over this surface, a uniformly distributed velocity
potential qS is prescribed using Rayleigh's (1917) spherical bubble theory:

00 [ 3= R k Res )0" (3)

The boundary conditions before the impact of the re-entrant jet are as follows. The
kinematic boundary condition on Sb is

d4!z = V , x e So, (4)
dt 

(

where xP is the position vector to a material point p. The kinematic boundary
conditions on the rigid wall, S,' and at infinity are, respectively,

n -- 0, (5)

and IVOI -"0. (6)
The dynamic boundary condition on Sb is

P(x,, t) = P0, xP 6 Sb. (7)

After initial impact, the boundary conditions (4) and (7) still apply w;thout
modification to fluid particles on Sb; however, matching conditions must be introduced
on the common surface, S+ n S-. The component of the velocity normal to the
common surface must be continuous across the surface,

WI -2 (8)
an; I,.s+ an; ,.S-(

where n' and n; are outward normals (directed away from the fluid) to S÷ and S- at
p+ and p-, respectively. The pressure across the common surface must also be

continuous,
PI,.3÷ - PIp.s-. (9)

Note t!:at the pressure varies along the common surface and is not in general equal to
P..
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In order to solve the problem, the dynamic boundary conditions on the bubble
surface and the common surface, (7) and (9), must be written in terms of 0. On S,, the
condition on 4 is Bernoulli's equation written in material derivative form:

D__0= yv 01,+e 0- Pe° P cs .. (10)Dt P-

To derive the equation for 4 on the common surface, consider Bernoulli's equation
written for p+: a•+ /:•÷\2  1[ r/a+\, t89$+\,1 P -• Pl)

_ ,rao+-2'
ao.- +(aoS\' I r(as-' () k' P-P

and for p-": "-+-±to- = - -ta-/ J+ a (12)

The left-hand sides of these two equations are the time rates of change of 0 following
the component of the fluid motion in the direction normal to the common surface.
After subtracting (12) from (11) and employing the matching conditions (8) and (9), the
above equations become

DQA+- 0) _ 1 [(10+ 2 9a'-1 (13)D, t =2 Lt \ -s ta7-T

where the subscript n indicates the derivative following the normal component of the
flow.

2.3. Conditions at the instant of impact
As was pointed out in §2.1, the liquid-liquid impact occurs continuously. In the
numerical model, this continuous impact will be simulated by a finite number of
discrete impacts of surface panels of finite size. Each panel impact generates pressure
impulses and, as is shown below, temporal discontinuities in 0b and V0S at the instant
of the impact. The pressure impulse, I, is defined by

I= lim Pdt, (14)

where P is the impact pressure and t' and r represent the instants just before and just
after the impact, respectively. Since the interval from t' to t' is infinitesimal, it can be
shown from Bernoulli's equation that the velocity potential and pressure impulse
satisfy the following relation (Batchelor 1967):

00-0, = -- lP, (15)

in which 0' and 0' are, respectively, the velocity potentials just before and immediately
after the impact. This equation states that whenever an impact occurs, the velocity
potential is discontinuous at that instant and has a jump which is equal to - I/p. For
any two impacting material points (p+ and p-) on the bubble surface, the above
condition can be written as

•"+(x,+, 1) = 0"`(x,., t) - Ip, (16)

0'-(x,-, t) = 0'-(x,-, t)- -1p. (17)

Subtracting (17) from (16) and noting that I+ is equal to I- at the impact point, a
relation for the difference in 0 azross the impact surface at the instant of impact is
obtained,

0,1xV+, t) -b (xS-, t) = 0'+(xp,, t)-e/-(xp-, t). (18)
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This relation states that the difference in 0 between two impacting points remains the
same during the impact. In the present model, the difference in 1 varies along the
impact interface- Best (1993) derived the same relationship, but applied it only to the
impact of the north and south poles. After impact, he created a simply connected fluid
domain by using a fictitious cut along which the difference in # was assumed constant.

2.4. Buunkary iniegral equatiou
The initial boundary value problem for the velocity potential 0 as defined in the
previous subectins, is solved by the boundary integral equation method. For ties
before initial impact, the numerical solution method, which is ezplauned in the
following section, is the one used by Blake et al (1996) and others In this method, the
boundary conditions. (4) and (10). are integrated over each time step to yield the new
position of S, and the value of ( on this surface. To proceed on to the next time step.
the values of 0-/fn on S, must be determined This problem is solved with a well-
known boundary integral representation derived from Green's theorem:

f., •Jnt ýnq 4R(p). pOD,

where p it a field point, q is a source point varying as an integration variable on the
surfaces S, u S.. dS, is the differential area element of S. u S,. % is the normal to
S. ii S. at q directed outward from the Ouid and the kernel Qp. q) is equal to I llp- qj.
Equation 1t19) is often called the conventional boundary integral equation (CBIE) in
the se." that the kernels nvolved are wieakly Unngular for G(p. q) and Cauchy singular
for N.A(p, q)/int. which are inte•nble without the need of any special treatment,

Unfortunately, the above approach (as when the reentrnt jet approaces the
opp site surface of the bubble in the linal uatag o( the collapse Ths failure is caused
by two problems with the CSIE Firnt. just bforet imtl impact an equation written
for a point on the tip of the rvernrant jet will be nearly mientical to that wnten for a
corresponding point near the iouth pole of the bubble Thu. for instance. if one is
soiVnig for i,/n with Inoan e. an lt.cond~toewd or nearly Ungular coeflksent matrix
will mull in the boundary leenwat calculations Second. lust afn"r initial impect. due
to the maktcng condition IS) the integal oG'i#/Nv along S' and S oJ l cancel Thus.
additional equations at* neded to calculate ý*/lx along the common surface In the
following a now ppr•oach 0s presnted in which the CIE is modied to aount for
the common surface and a hypenwgular boundary tnteWil eqmmon (HBIE) is
introduced to form a ciaed equatmo sysem With tins new approacb. the cakluatiox
* bad on the boundary integrl equation method can be carrmed out conuauvwhy from
beforl initial impact into the pmeetration proen

Making uw of the psopurtuS O( urngie and doobl-yelr poutnbas (GO•ter IW.
Burton A Mlller 9I 17) •s wod as the matchng CoMnton (5). the CSIE (19) ins
in Appinrdt A for casms with a coSWmoM srface to yied

-f j(P 'j(q)-#(9qJ$; - (20)S
pas,

In this modied CUtE. the equatmi a wilen with mspect to p#S' what the feled
point p to on the commo•n-rface S n S- In the folonwig action. on the numerical
technsque. it will be showo that during penatration the boundary conditons can be

lu2J

0 II I
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integrated over each time step to yield the new positions of the surfaces S, and S* n s-,
the values of 0 on S, and the values of 0*- #- on S n SS-, With these values,. /8n
on S, and 0*+#- on S* n S- can be determined from (20). However, ao/an on the
sheet is still unknown.

In order to find an analytical expression for ao/au on the common surface, the
modified HBIE is derived in Appendix A by performing a directional derivative of the
CBIF with p inside the domain D and then ktting p approach the boundary along a
direction normal to the boundary. The expreson of the modified HBIE has the form

fS. nd~eq 14 a#*p)la,* pvs'us
Ji'bI) ) [*q ) - -()]Jd'S;• e ,4 ()/ ,.1. *iq~jS -{~E~~.;PS*S 1~ (21)

where n in the outward normal of the surface at p. Like (20). this modified HBIE is
valid for thc field point p either on the common surface or on the rest of the boundaries.
From (21). ('#/Mw on both S* nS- and S. can be determined as long as # on the
surfaces S, u S, and •-- on S" ate prescribed.

2.3. Emvij conssieratioeu
The equation governing the enerly of the Bow is

WdV Wd+ r P VO(0)-V)) - 0. (22)

where the integration limits V/() and Vj( 0) am the fluid volumes at times r and i - 0.
respectively, and V.(t) and VAO) am the volumes of the bubble at times t and t - 0.
respectively (•se Duncan & Zang 1991. equation (12)). The Arm two terms on the left
ate the kinetic energies of the flud at the two times and can be calculated from surface
intepals over the bubble and the commie surface (Lamb 1945):

JWdVu. ! Lo (23)

where S a the internal boundary Su S u V. The third term in (22) is the potential
energy defined as the work don apaist the pmewe at muikty due to cdauns it the
bubble volume.

For times up to the insuant before initial tmtpwt, the total energy of the sysem is
constant Duna# the colae phase before impct the potential energy decmam and
the kinetic energy mcreases by equal amounts, However, them is a loss of kinetic
energy assocuated with the bqlwd.4qid impact and this energy as sot momn to
poentail energy Thas. the total energy decresm. This kinetic ener lows is given by
the rollowing equaten which is denied in Appendix :

&E - - ip(V#-r d V - - ! - V(#V)-)-V n. dS. (24)

Roges eft . (1990) and Sapyncuak etdt. (1993) also soled an ceer lk during impact
and prese d a similar formufL It the above equation. the value of r is a positive
mam•ium at the impact interface ine the gradient of I must accPIPle the flid on
both ides of the itrface in directions away from te islerface. The diferimce in the
normal compones of the vetlocitm imside the brackets is always poeitive as long as
there is an impact. Thus. &E. mint be lens than aro. It should be noted that the above 0'
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expression was derived on the assumption that the colliding surfaces stick together
after impact. It is this assumption that causes the loss in energy.

As an example of a simple impact problem demonstrating the energy loss, consider
two parallel liquid layers of infinite extent in planes normal to the z-axis. One layer is
above the z - 0 plane and has a uniform velocity v = - Vi and a thickness h* while
the other layer is below the plane z - 0 and has a uniform velocity v - Vi and a
thickness h-. Impact occurs when the 'inner' surfaces meet at z - 0. In this example,
the divergence of equation (B I) yields

S- -2pV+(), (5

which has the solution
1. - 2p Vh- (26)

in the upper layer. Evaluation of (24) in this case yields

,k M 2pv1 Ph-- (27)

per unit area Thus, for the case when k" - "- H. the kuietic energy change is
-pV'H per unit area. This change is equal to the total kinetic energy before impact
and indicates that, as expected, the two layers will come to rest after impact.

I. Numercal scheme
The numerical schemes to be discussed in this section de1 with two iue: the

accurate solution of the integral equation system (20) and (21) at a given time instant
and the time advancerment of the boundary conditions (4). (10) and (13). For the first
issue. it is important to note that while the inuoduction of the modified HBIE (21)
produces a well-posed system of equations during peneotratin it unfortunately makes
the numerical scheme more complicated than schemes that use the CBIE alone in cases
before penetration These comphcatoioms arise out of the need for regularizing the
hypersingular kernel. making the solutions Unique and diwretizing the geometry and
density functions property For the second isue, the kinematic boundary condition
must be modifted slightly to treat the node points on the vooe shet

3. 1. egu,,,i,. @ ion of, Mr, *,,ad, hegnd
As can be seen from (21). the kernel p.)lq)fa,*,&% has a fthi-ode angularity
(I /lp - q) as p approaches q. which makes it noe-integnble in the ordinary sene-
Several regularization technques to treat integral of ths kind exis (Meyer. Bell &
Zinn 1978. Ingber & Rudolph 1990. Krshnasamy et at. 1990). In this paper. the
hypersnngular kernel has been transformed to a Cauchy-sangular kernel. The reiation
between the two kernels can be expresfe in the identity (lagber & Rudolph 1990)I. o(q) S sL(A,,x•,, aipVM ()ll, x V,.G(p.f)IdSr (28)

where the gradient operator with a subscript indicates that the operatio is carried out
with that subscript as a variable. The decompoastko of this itegral in a cylidrical
coordinate system with axisymmetry transforis the density tniction O(q) in (28) to the
denmily furtifon , /q)]i.\vr Where s is the amrkenth al"Og the surface. The
corresponding derivatiom related to this decompostion and expressiorts ror other
terms in (21) can be found in Appendix C.
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3.2. Uniqueness of solutions of the hypersingular integral equation
. the hypersingular integral equation (21) alone to solve the Dirichlet problem of

Laplace's equation will result in non-unique solutions. (Solutions are only unique up
to an additive constant.) This non-uniqueness can be easily deduced from the identity
(28) in that, if O(q) is a constant along the surface, the integral with the hypersingular
kernel is identically equal to zero; thus, (21) will yield (V/M - 0 at all points on the
surface. However, this contradicts the Mveil-known case of a Rayleigh spherical bubble
in an infinite fluid where a uniformly distributed 0 on the bubble corresponds to a non-
zero 8/i0,n on the surface. In the present work, this non-unhiqueness is resolved by
introducing a combined scheme in which the modified CBIE and HBIE are jointly
used. In this combined wcherne. the CBIE is responsible for recovering the constant in
Salong the surface .'"ich would be lost if the HBIE were used alone.

;. Time adrawemen algorithm
The time advancement techniques for times before arnd during penetration are
discussed separately a., i s, 'ýsection. All of the temporal integrations are performed
by the following predictor-corrcctor scheme. Given an ordinary differential equation
dy/dt - At. y) with an initial cotction yt,) y Y,. the numerical solution for y at step
i+ I(i-0, l .... givenby

predictor step y"'., -y, + 0.. - ,J(t, y,). (29)
corrector step: Y1,, - y, + K1,.I- Id)(t,.yJ +f(,,.,.i . )O. (30)

For ease of presentation, only the predictor step is piense an the following.

3.3. I Time marching bW/ore aveilat 6mpect
Let us asume that at time t all quantities am known. To proceed on to t +At. the

boundary conditions (4) and (10) are integrated folowing the fluid particle p on the
surface Sb.

z,(t + t) ()+V~ 1 ,m6.(1

( ,,I + 6) - 000r) ( + astmo ,,)r+f4- (32)

That equations yid the new postwon of 5, and the values of # on this surface at
t + tt. From this information, the derivte of # in the direction tangert to the surface
can be computed. In order to prcieed to integrate (4) and (10) over the oeat tame step
the value of a/ln are requred These vadues an obtained by solving the integral
equations,

3.3.2. Tbe nwchng #/4r wtkiil bwpwt
After inmial impact. mafteal pown on the toroedal bubble awe treated like those

before impact by integrating (4) sad (10). The integation of the boundary contions
for pMnts on the common surface is smewat more complicated Usne two fluid
particles. p' on S* and p- on S-, occupying the sme locabon on each side of the
surface at time t will in paeral no( be togeher at the cmt time step (te tangetial
veloates are not equal on each side of the shee). The relation between the velocity of
a fluid particle p and the vlocty of its projection in the davam normal to the surface
is

.) - a" -d(33)(#jgJ~ ~- di



Collapm of a cvitaton bubb near a rigid wafl 157

where x, is the position vector of the projection of x. in the normal direction a,.
Writing this relation at p* and p- on S÷ and S- for the predictor step yields

-+ A) - •.) + As, + a*. (34)

and x(l+ A) - x-)+Al• a. (35)

respectively. In view of the matching conditions (8) and the fact that a; - -n, tht
above equations reduce to a ungle equation yielding the new position of the common
surface at time t + A. The boundary condition (13) integrated for the predictor step is

#*(I + Wl) - :(t + &I) - #(')-) - #;(I) - as - (ý)i' (36)

whare the subscript x indicates the values of $ at a point following the normal Bow.
It should be emphasized that it is the values of 0 on the bubble surface (S) and the

values of A( - $" -$0) on the impact interface (S" n S-) that are advanced in time
by (32) and (36). Both quantities are continuous with respect to time.

3.3.3. TIim itep deteraimalton
In the time advancement, a variable time step uchnique is adopted- At oustep, the

ban increment W is determined by
C'

At 0 ,(37)

where V., is the majumum velocity on the bubble surface at the currfet time step sod
C is a constant that is taken as 0.04 befoor penetralko when the CSIE is used and 0.01
dunng penetration when the combned s icme s empklyed. The determination of these
values of C is explored in 4 3-

3.4 Nisvuhcelonotmsw~i.. of Ath buWd eNodem
The modified CDIE (20) and HBIE (21) are svad by the boundary element method.
The infinite nigd watl is simulated by an mop bubble • The bubble surface is
discueti"d by a, penels. Given the r- an :coordinaft of % + I pael mod" alout the
surface, the coordln, ats 'and s along uch pael cas be wnitam a function ofa cubic
spline parameter. . whic• a chosen as a variable along the cbord length of easc pIed
(Dommermuth A Yue 1"7. and Prem et 4d. 1919).

r t "(C), I - -AD€. (381)

Thus, the arcengtb coordina. s. along each pasel can be calculaeed by

J(C)- d [(Y ()V (39)
Other omnetric quantitus in the tral eqbowwe sh as G(p. q) mad VG(p. q) are
computed from the above equabons. The moa stable adetdtiow were perfornmd with
the dmefty functions # and a/?, in"deac panel ismopolatm as cubic qiue and
linear rumtbo of . respecti•ely-

The s•pine fitting of the surface dur penetrat is cospbclted by the p rf
the triple point whet the comumo surface attaches to the ring bubble. In the pimet

Is



158 S. Zhang, J. H. Dwnca .md G. L. Chabw

work, the surface is fitled coninuously from the north pole to south pole by a path
covering S+, S., and S- sequentially. As a result, the normal to the surface directed into
the fluid changes continuously during the integration around the surface and a cusp is
formed in the bubble at the triple point (see figure I b). This treatment is based on the
fact that at the final stage of the bubble collapse, the speed of the surface of the re-
entrant jet is generally on the order of 10-103(AP/po while the fluid near the wall is
moving more slowly in the opposite direction. Thus, there exists a strong shear layer
in the region close to the triple point. In experiments, this shear layer contains a layer
of gas. A similar Bow is generated when a liquid jet impat on a lat water surface and
air entrainment occurs along the periphery of the jet. Surface tension forces have the
tendency to round the cusp. but in the present case this does not occur owing to the
effects of inertia and the short timeicale.

Since the problem is axuymmetri about the z-xis. the terms in the integral
equations can fint be integrated analyntcally with r to the circumferential
variable 0. The resulting terms then involve elliptical interals of the frt and second
kinds as functions of the arvlength s in the 0 - 0 plane (see Appendix C). The field
points (collocation points or nodes) ar taken at the edge points of the pawls As a
result, the integral equations (20) and (21) can be written in discretizd forms within
each panel,

'ZJ [c% + D s,,+ JDJ(?'Y-(-I a+J

"2K+K); -.... (40)

F.[( #+ .Y. ..+ ,-,+ I(4

"!, l *h; -l,...,m. (l

where m W the index othe trpl point; i uj doept the indexes of the Ald point
and source panel, respectively; 41,i the arciangt of pade J; A~ and A ame the terms
corvsponding to the coanbutiou wrom the ampbubbleN C,, Dip 4. and F are
functions of the edliptic ntepgars sad can be found w Appendix C. #1. (ab,,wad
( are rfucti of the arclegth made the pg j. and • ad (ati area
at the point i. Gewus-Lepde quadrature formulae were ud to calculate the
integrals in (40) and (41). in which the regular nt gands wat integrated with a S-point
formula while the non-regular mtegak nds which contai logarithmic iagulintifta
were treated with the formulation given by Anderson (1965)ý Tbe howimyaemy or
algebraic equations formed to this way were woved with the LDU A*Pfm (Press
Ot at, 1919).

Various combimnabo of (40) and (41) we applied at the node during different
phas of the calculatios Focr cam itbout a omm surface, twv combmnatio
were used. In sn-n cams the CBIE *a applied at aN the nodes. In other cam, the
HDIE was applie at the Amt mi nodes on top o(tbe bubble starting with the softh pole
and the last e nuoes ending with the south pole whle the CBIE wM appied at the
remaining ,% e I - 2, nodes. In cae dring penettio th at double nod= along
the common surface. the HBIE was applied at the ktm %+ I -m nodes starting with
the north pole and the C91 E was applied to the last m od10s ending with the south
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The adjustment of the time step during the impact of adjacent nodes was found to
be critical to achieving an accurate calculation. The general technique employed here
was to adjust the time step so that, given the distance and relative velocity between the
nodes at the current time, the nodes would impact at the end of the time step. To
implement this scheme a minimum distancec was chosen. If the distance between one
or more pairs of nodes on the ring bubble adjacent to the triple point was less than e,
the time step was adjusted so that all of these pairs collided by the end of the time step.
In performing the calculations, it was found that as e was decreased the cakulation
converged initially. However, if e was too small, an overlapping of the nodes on the
ring bubble near the triple point occurred at the next time step. It is thought that these
problems arise because the Green's function between nearly touching nodes from
opposite sides of the bubble becomes singular as the distance between the nodes tends
to zero. Thus, for small enough e the solutions of the boundary integral equations are
probably inaccurate. After a number of test calculations, it was found that c - 0002
was a typical minimum valuc ihat producLd a comrerged cak-ulation without
overlapping of adjacent nodes. This value was used for all the calculations presented
in this paper.

3.5. Nuencal uutnbdites
The numerical method presented above e2lubits unstable behavour when the volume
of the ring bubble approaches the initial volume of the bubble. The causes of the
numerical instability are not clear There is no theoretical analysi available to examine
the numerical instabilty because the boundary conditions (4), (10) and (13) are coupled
and the conditions 110) and t13) are nonlinear Several researchen (Longuet-Hggins
& Cokelet 1976. Dommermuth & Yue 1917. Oivz & Prospetu 1990) have reported
similar instabilities encountered io boundary element calculatios employtng higher-
order elements when simulating nonlinear waves end water droplets.

To cope with the iritabilhties. a 5-poqnt smoothing technue (Mathematical
Handbook 1977. pp. 907-906) was introduced- Civen a data set y14 w 0. 1.e .... m).
the modilied data set y*( -0. 1. 2,. .,m,) is computed by the following smootlung
formulations:

yv ,m•l-..4.,v,,y,.l+2(y,.,÷y.,)+17y.vJ i,2.,...,s-2. (42)

y. -o m(3Iy + 9y,- 31, - Sy,+ 3y,. (43)

y,--•(9Y, + 13y, + 12y, +6Y,1 -5 (44)

.- - , 4.6,., + 12y.., ÷ 1 3 7., 9,).(45)

Y; - J().-., - Si..a - 3y.,.I + 91.i., + 3,ly.), (46)

Msh regridding is also adopwed to keep equal pae um during the me suppig

4. Verldicadon of the ameteal mo g

In this section. the results of several static and dynamic tats deagned to Verify the
mathematical model and to ans the performancu of the combted numerical s-eame
developed in 1Z and 3 are prVsond.

4-1. A sk• toeet lw a oroidd

The Aint test of the numerical model a to ea the acrwcy of the boundar
element smover with the combivied a"heme on a static problem It order for ths test to
have relevance to the penetration problu, it must safy the foowin cuotditons the
boundary geometry mint mclude both regular and coommo srfame arosu the
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XM assh~q)(47)

cosh(q)-cce(PY
Thou Otecrsectiou ooftOw todisimnbyq-jv -%i4#iQaad*mOmthe

(y&)syitm or (.w- ecoth %I+e m s/sb(y.) sod y -0 inathe(x,.y.z) syaMs.
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peueintao. (a) The h of the snorh pob •wm tidm; (b) the aomal wlo ty of the north ad
south Pon imv tums. -. . .-.32-. - -. . m- -. .,- 64. T dmoom tei kuwmf of

bubble profiles at the same time. The heights of the north and south poles, the velocity
potentials at the north and south poles and the kinetic and potential ener of the
flow are plo'ted versus time in figur 4(a). 4(b) and 4(c), respectively, for both
schems. There is good alpr-e, t in al casem.

4.3. C*Pwwgmw usudki
Severa computations aimed at euaunimg the €oavapguc of the combineds
venue panel me and time step an during peneation imulatios were also made.
Figure 5(a) and S(b) show the height and velocity of the north pole from before
penetratioo through the penetration p•r for various panel numbers. As can be sees
from the figur the remulb conver as the number of panels incrase• . Figures 6(a)
and 6(b) show the same quantities converging as the time step decreaes. The number
of panels and time step rsed in the preent results are given in the following section.
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Ficuas 6. Convergence as a function of time step size for the combined scheme before and after
penetration. (a) The height of the north pole versus time; (b) the normal velocity of the north and
south poles versus time.- .-.--, C - 0.06; -, C - 0.04; ........ , C - 0.02'- , C - 0.01. The
parameter Cis related to the variable time step, At - C/(I +0.5•,.). T denotes the instant of initial
impct.

The tests conducted in this section show that the combined scheme developed in 02
and 3 is valid in both static and dynamic cases.

5. Simulation of the penetradon process
The calculations presented in this section were done with n, - 64 and R. - 0.1.

From the initial instant up to the time when the distance between the north and south
poles becomes less than 0.03, the CBIE method is used for all nodes. At this point, the
scheme is switched to the combined CBIE-HBIE method with n,, w 32. When
penetration begins, the scheme is again switched to that described in §3.4 for cases with
a common surface. The parameter C for time stepping is taken as 0.04 before
penetration and 0.01 during penetration. The value or. is chosen as 0.002 (see §3.4).
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In the following, results are presented for Z, I 1.1. 1.25, .5 and 1.75. The results for
Z. - 1.5 and I. 1 are presented first and in more detail than those for the other Z,
values. For reference throughout the discussion. table I gives the time (Ti), the height
(Z,). the velocities of the north and south poles of the bubble (IV, and VJ at the instant
before initial impact and the velocity of the north pole of the sheet (V) as well as the
circulation (r., defined below) at the instant after initial impact for all four values of

5 1 Bub, ,k pwofies and velocity *Usd

The general features of the flow field just before and durng pnetraton ane illustrated
in figure 7- for Z,- 1.5. Figure 7(a) shows the flow fied one time step before
penetration. The re-entrant jet has formed at the top of the bubble surface and is
moving toward the ngid wall. The fluid on the lower side of the bubble has not yet
,ensed the jet and is still moving away from the wall. The relative normal velocity
between the north and south poles at this instant is 15.05 (see table I) The poles of the
bubble meet at , - 073 and the flow field soon after penetration is shown in figure
7(b) As can be seen In the figure. the geometry of the bubble surface has become a nng
bubble with an attached sheet. The flow pattern has suddenly changed such that the
flow on the lower side of the bubble has re•v•ed direction and it now moving toward
the wall The velocity of the re-entrant jet is still directed toward the wall but with a
much smaller magnitude (406) than before impact (11 57). The velocity components
tangent to the common surface and the ring bubble surface are directed mainly toward
the axis of symmetry on the )et sde of the common surface and bubble and away from
the axis on the other Wie. this indicates that there are vortex elements along the sheet
and in the bubble that circle the :-axms. The mechanism that brinp about this sudden
change in the flow field is the hquwd-liquId umpact during jet penetration.

Further development of the penetration process is shown in figure 7(c). The
dominant changes in the bubble profile are the drastic reduction in the volume of the
ring bu•lble aid the extension of the vortex sheet due to continuing impacts of the
surface panels of the nag bubble Ther is also some translational moton of the bubble
and the sheet in the direction of the rigid wall. In figure 7(d). the volume of the ring
bubble has reached about 0 72 times the initial bubble volume. The calculation becomes
unstahle soon after this time It is piresumed that if gas were incduded in the bubble, the
bubble would begin a second growth phase at approizmately this time, depending on
the amount of gas The flow pattern to figure 7(d) is charactenwS by a arg Vorte
sheet attached to a sall ring bubble with a rotating flow concentrated tn the area
around the rng bubble in the vicinity of the triple point.

Bubble profiles and velocity ields for Z,- I. I are gven in figure $, As in the
previous case. the impact of the reentrant jet results in the formation of a nng bubble
and a vortex sheet. At the instant before initial imp•ct the north and south poles of
the bubble are much ckloer to the wall (: - 0. 10) than in the previous cae and the
relative normal veloci•t between the north and south poles is 9. 10 compared to 15.05
for Z. - I 5. wee table 1. The remaining bubble volume at the instant of impact (46.19
for Z. - II) is much larger than in the case for Z, - I 5. Later in the penetration
process, the tip of the vortex sheet hjts the rigid wall for Z, - I1. (figure c, d) while
the tip of the sheet for Z. - 1.5 is sill relatively fat away from the wall even at the end
of the firt collpse The shape of the vortex sheet also shows marked differences
between the two cases s For Z,- I 5. the nrex sheet isU'Ushaped while for Z,- I.1
the sheet rolls up at the Wes due to the stronger influence of the wall. The calculation
for Z, - I I is terminated when the bubble volume is reduced to about 7. I times its
inrtial volume becamuse of numerical instabilities
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5.2. Pre~snsefIe-Pd
The presure at any point in the ftui domain was computed from tbs non-dimeneional
Bernoulli equation.

The required spatial and temporal derivaie of # wme calculated by finite ddkne.
from local values of # that are calculated from the integral equations (A 7) and (A 13)
in Appendix A using values of # and a#/an on the surface of the bubble and the vorte
sheet. Note ftht the presus= can be computed after the calculatio of the bubble
motion is completed. Unfortunatitly, during peneration. at etch time instant when
new surface panel of finite se come together. . goes through finite jumps as can be

0. . . .. , ,+ , ,. . , + . .. . . . . . . . . . .
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seen from (IS). Tbe jumps cause the derivative of# with respect to time, and thus the
pressure, to fluctuate wildly. Ir the panel size w•e infinitesimaj these jumps in 0 would
also be infinitesimal and the pressure would vary rapidly but in a smooth manner. To
remedy this problem, a linear est-squares fitting technique was used to smooth # in
a given time interval before computing a#/& and the pressures.

Corresponding to the Bow fields in figure 7(&-d) for Z,, - 1.5, four plots of the
pressure contours are presented in figur 9(a--d). respectively. The pressure contours
are given as solid lines while the profiles of the bubble are shown as dotted lines. The
pressure Field one step before petratiou is given in figure 9(a). The highest preure
region in the fdd is within the contour with manitude 29 which is located on the z-
axis above the bubble. The pressue field just after impact, figure 9(b), is dramatically
different than that before impact. The highest pressure region in figure 9(b) is at the tip
of the jet where the magnitude of the enclosing contour is s0. This high-pressure
buildup at the penetration interface in turn causes a large deceleration of the fluid in
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* the re-entrant jet and an acceleration toward the wall of the fluid between the sheet and
the wall. From the pressure contours in figure 9(c, A it can be seen that the pressure
at the penetration interface continues to increase, reaching 165 in the final figure The
pressure contours far from the bubble are nearly circular at this time.

The pressure contours corresponding to the velocity fields in figure8 3(&A for -

1.1 are presented in figure 10(*-d) respectively. As can be seen from figure 10(a), at
the insant just before penetration, a high-pressure region is again located on the z-axis
above the bubble. The maximum pressur contour in this case is 9, considerably less
than in the case for Z, - 1.5. Immnediately following the initial impact. figure 10(b),
large pressures are located around the impact interface. The pressure contour
surrounding this region has a magnitude of 30 and intersects the wall. The further
developmoent of the pressure fieds is given in figure 10(c, d) fromz which it can be seen
that the pressure reaches more than 45 at the penetration interface and the wall. It
should be noted that the high-pressure region on the wail covers a smaller area for
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Ze- 1. 1 compared to Z, - 1.5. This concentration may be partially responsible for the
well-known increase in the potential for surface damap as Z, is decreased. Also of
interest in figure 10(d) ar the two pairs of closed low-pressure contours. The upper
pair endoses the ring bubble while the lower pair, which is located near the bend in the
vortex sheet, indicates the presence of a localized vortex-ring-like structure. This
structure is also visible in the velocity contours in figure 8(d).

5.3. Meotion of tsh north and south pok~s
In this and the following subsections, selected quantities from four calculations with
Z. - 1.75, 1.5, .25 sand 1.1 are examined as functions of time. In order to make
comparisons of various quantities after initial impact, it was decided to define a
common time orisin. T,, the time when the north and south poles of the bubble meet
at the instant of initial impact. From the data in table 1, it mn be seen that T, i
with decreasing Z, The heights of the north pole for the four cases are plotted in figure
II. After initial impact. the north pole is defined as the point where the vortex sheet
intersects the :-axi. As can be seen from figure II, the north pole continuae moving
toward the wall afte the initial impact in all cases. The relative velocity of the north
and south poles of the bubble just before initial impact can be found in table I along
with the velocity of the vortex sheet just after initial impac The relative velocity,
V,- V,. decreaeP steadily from 16.S6 at Z,- 1.73 to 9.10at Z-- !.!; however, the
speed of the jet tip ust after initial impact is between 4.1 and 4.25 in all four cases. The
slope of the curves in figure II indicates the velocitis of the north poles. As can be sen
from the figure the velocity as relatively constant afte fti impact for the larer Z4;
however, for small Z, the velocity decreases with time and is neady zero at the end of
the collapse for Z ,,1. 1.

5.4. Pwer at the mi'ef hew mug
in figures 12(a) and 12(b), the velocity potential # and the pssume on the wall directly
under the centre of the bubble ((r, -) - (0,0)) ame plotted versa time for different 4
Note that the plot of 0 starts at t - 0 while the plot of the pressure starts fairly late in
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the collapse phase, t - 1.80. From leraoulli's equation (52), the pressure at the emre
of the wall is equal to - a#/l sin=e n - 0 at this location. Thus, the pressur plotted
in Rigume 12(b) were obtained by diffeentiating the curves oft4 in figure 12(a). Defore
differentiation, the p-data were smoothed with a running 40-point least-squars fit of
a second-order polynomial in order to eliminate the jumps in # caused by the paie
impacts. Each pressure curve has a short gap near the time of the initial impact. This
gap is due to the inability of the second-order polynomial to fit the #-data well due to
the rapid fluctuations at that point in time. All cases show sudden rises in the pressure
during jet penetration. For the cme of Z - 1.1. there is a plateau in the pressure after
initial impact at about the time when the vortex sheet reaches the wall.

Figure 12(b) provids uwUs information of the time history of the pressure at the
centre of the wall. However, it should be pointed out that the' maximum' values in this
plot occur while the prssur is still rising at the point when the calculations terminate
due to numerical instabilities. To obtain a true maximum value of the impulsive

0
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pressure on the wall, a rebounding mechanism such as that provided by a non-
condensible gas inside the bubble must be considered. A study of the imlsive
pressure due to a gas bubble collapse and rebound is currendy underway.

5.5. Crcvldali
Before penetration, the fluid domain is simply connected and the bubble boundary is
a regular surface. In this case, there is no circulation along any dosed path inside the
fluid. However, after initial impact, if a closed path is drawn such that it piures the
vortex surface, the circulation along this path is not urn, and the fluid domain is no
longer simply connected. The generation of this circulation is due to the liquid-liquid
impact rather than viscous eflect& Ifr closed path is drawn starting from the south pole
and ending at the north pole of the bubble and elosing the sheet and ring bubble, the
cirulation for this path r is given by (-)evaluated at r -O. From (13) its
easy to show that

dr. . ± J(# -0 (53)
d i Dt L

since 8/as - 0 at r -0. This finding was used in the two-step method of Best (1991)
to choose a value of te circulation for the ring bubble. The values of r. am gren in
table 1. As can be seen from the table the ciculatioa increases monotonically from 4.37
to 5.40 as Z. decreases from 1.75 to I.1. It is also interesting to examine the diviion
of the source of the circulation between the vortex sheet and the ring bubble. This
division can be seen by comparing the total circulation, r. to the circulation aroumd
the ring bubble, rP, which is obtained with a path that stats at the triple point on the
underside or the bubble, extends around the outer side of the bubble and ends on the
top side of the bubble at the triple point. Thus, r* - .-. where the subscript T
refers to the triple point. The values of the two circulations are plotted versus time in
figure 13 for the four values of 4 The solid lines in this figure represent the
circulations associated with the ring bubbles, r. while the diffrences between the
dotted and solid lines are the circulations asciated with the vortex sheets for different
Z, As noted in the previous subsections, the step-like appearance of the plot is due 0
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to the discete, -ae impacts. This figure shows that for afl four cases, after penetration
the circulation associated with the ring bubble decreases with timte and, ainm the total
circulation is constant, the circulation associated with the shaet increases with time. As
Z, decreases, the rate of increase of circulation associated with the vortex sheet
increases. At the end of the simulatiom the pe rcntage of the total circulation
associated with the sheet is on the order of(50% for the case with larWe ,

5..' &mw
The potential and kinetic enerpes of the flow were calculated using (22) and (23).
Flgure 4(c) is a plot of the potmndaL, I knei and total enegy versus time from t - 0
up to the instnt before initial impact for Z, - 1.5. As can be seen from the figure, the
total energy is constant. Figre 14(s) and 14(b) give informiation on the energ venu
timne after initial impact. The potential enegy is proportional to the bubble volume,
which is plotted in figure 14(a). As can be -ee from the figure, the volume at the fims
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instant of impact increases with decreasing Z.. For example, the bubble volume for
Z. - 1.75 has reduced to almost its initial volume at I - T, while the corresponding
volume for Z, 1 1. 1 is about 48 times as large as its initial value. Note also from figure
14 (a) that the bubbles with larger volume at the first instant of impact take a longer
time to reach minimum volume while the rate of decrease in volume with time does not
vary appreciably with Z.. The total mechanical energy versus time after initial impact
is presented in figure 14(b). As was noted in §2.5. the total mechanical energy of the
system should decrease with time for t > T, owing to the liquid-liquid impacts of the
panels. Energy loss should only occur at the time steps where an impact between two
or more surface panels occurs. This behaviour is generally evident in the results of the
calculation as is shown in figure 14(b) at early times for Z, - 1.25 and 1. 1. It is believed
that the changes in energy between impacts in the other calculations are caused by the
extensive regridding of the surfaces necessitated by the movement of the panels from
S, to S* U S- combined with finite panel sizes and time steps. In general, the rate of
energy loss with time increases as Z. is increased. For Z, - 1.75, the flow loses about
18% of its total energy by the time the calculation becomes unstable. When the
calculation for Z, - I. I becomes unstable, the energy loss has reached only 7% of its
original value. In a compressible flow this energy would primarily be radiated away in
the form of sound or shock waves. In the present incompressible calculations this
energy is effectively radiated away at infinite speed.

6. Conclusions
The final stage of the collapse of a cavitation bubble near a rigid wall has been

simulated with a boundary element method. The method allows for the simulation of
the growth and collapse of the bubble including the re-entrant jet impact and
penetration processes that occur toward the end of the collapse. During the impact 0
process, the bubble is transformed into a toroidal-shaped cavity (ring bubble). This
ring bubble is attached to an impact interface that separates the fluid masses that were
initially on opposite sides of the bubble. The impact interface is assumed to be
infinitesimally thin and the pressure and the normal velocity across the interface are
assumed to be continuous. This modelling allows for the formation of a vortex sheet
along the interface.

The results of the calculation show that the impact of the re-entrant jet starts at a
single point on the north and south poles of the bubble. As the process continues, more
and more of the surface of the bubble participates in the impact process. Before initial
impact, the fluid in the re-entrant jet is moving toward the wall with high speed and
the fluid on the other side of the bubble is moving away from the wall. The relative
velocity of the poles of the bubble at the instant before initial impact increases with
increasing Z, (the initial distance of the bubble centroid from the wall). During impact,
a high-pressure region that is generated around the vortex sheet dramatically
decelerates the fluid in the re-entrant jet and forces the fluid on the other side of the
bubble to accelerate toward the wall. The impact process generates circulation in the
potential flow system. The circulation along a dosed path that starts at the north pole,
ends at the south pole and encloses both the impact interface and the ring bubble is
constant after the initial instant of impact. This circulation increases with decreasing
Z,. Just after initial impact, the source of this circulation is a bound vortex in the ring
bubble. However. by the end of the calculation as much as one-half of this total
circulation is associated with the vortex sheet. The liquid-liquid impact process results
in a loss of energy in the potential flow system. The energy loss increases with

0
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increasing Z. and its value at Z, - 1.75 is about 17% of the total flow energy. In a
compressible flow this energy would primarily generate pressure waves. It is thought
that in the potential flow system this energy is radiated away suddenly by the infinite
sound speed. When ZO is small (on the order of the maximum bubble radius), the
impact interface forms very close to the wall and the pressure on the wall directly under
the bubble increases suddenly upon initial impact. This high-pressure region is quite
small in radial extent. As Z. increases, the pressure rise at the wall due to impact is
spread over a larger area. This may explain the enhanced potential for cavitation
erosion with small Z, values.
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Appendix A. Derivations of the integral equat/ons with regular and non-
regular surfaces

Let D, and D, be defined as the interior and exterior regions, respectively, in a three-
dimensional space. An interior boundary dividing D, and D. is denoted by S. The field
point is represented by p which can be inside D, or D. or on S. while the source point,
q, is on S only. Based on potential theory (Glnter 1%7; Burton & Miller 1971). the
single-layer and double-layer potentials are, respectively,

,(p)l f G(j., q) a(q) dS,, (A l)

and w P)J f] = (p• ) (q) dS, (A 2)

where ff is the density function. Assuming that or is sufficiently continuous on S. as the
field point p approaches the boundary S from D, or D,, the single-layer potential and
the normal derivative of the double-layer potential are continuous across the
boundary.

110) Is = K(ol I4., -Ka) ,,,(A 3)

a ,, 'a 3 = a I' (A 4)

where in (A 3) and (A 4), S. int and ext subscripts represent the limit values of a function
ofp for the cases ofpe S. p - S from D, and p --a S from D,, respectively, and n, is the
outward normal to S at the field point p. However, the double-layer potential and the
normal derivative of the single-layer potential are discontinuous as p crosses S. These
discontinuities satisfy the following relations:

RoV an, aVon
-Is ,- 2.. -= (A 6)

0
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According to these fundanental relation., the modified conventional and hypersingular
boundary integral equations with common points are derived as follows.

A. 1. Modified CBIE with a common srface
In view of the fact that the surface S is composed ofa regular surface S, and a common
surface S* A S- (see figure 1 b). and on the common surface is imposed

41,P) 80(4)

the CBIE (19) can be rewritten as, for paD1,

- .t) ( -- (q))dS*. (A7)

As p approaches S+ from D,, the discontinuity condition (A 6) requires that

J GO~ -f 2E#d, 2# (AS8)

Thus, the intepral along S in (A 7) becoman

- 2x('(-p) -- (p))- (A 9)

The substitution of (A 9) into (A 7) yields the modified CBIE with a common surface
S* nS- for p.S*:

2qO(F +,(.)1- f(G, [ . q) #•- L)- t- ? (q)jdS*

( )(A 10)

For p5•,, the left-hand side of (A 10) become 2at#p) and ther is no change on the
right-hand side.

A.2. Moed HBIE wikh a comwon zmw•fe
A hypersingular integral equation with a common surfac can be derived in a similar
fashion. First. the ditecional diflerentiation of (A 7) with repect to , with pa Dg

SR . t SR. an, a R,a R J

-J. a,,(P -- dS,. (A 11)

Then. let xv be an outward normal to the boundary S at the inner limit of p on S and
pas the limit ofp from D, along the normal n, to the boundary S. From (A 5). only
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0 the derivative of the single-layer potential, the first integral in (A 11), has a jump
according to the relation

Jýý2dS. f - ! 2tdn'+2x2 (A 12)
.f. ,n , )ant o ampa% Is am

while the other two integrals along S, and S in (A 1I) are continuous according to
(A 4). Thus, (A 1I) becomes

( *•)m C [r(#, q) a#q) _'G(pq) O(q) d1'

-L a•(P')CO÷ql-0(q))s"(A 13)

where c• satisfies
0, peD.

c€ - 2x, poeSf4x, peDOUS*.

Appendi B. Derivation of the equation for the enery kom
The first step in the analysis that demonstrates the energy loss due to impact is to

take the gradient of the pressure impulse equation (IS):

re" - -V/p+ V',. (B 1)

where 0' and 0' am the velocity potentials of any point inside the fluid domain at the
instants just before and just after the impact, respectively. Next, the diferece in the
kinetic energy per unit volume before and after the impect. A,. is calculated by
squaring (B 1) and rearranging the teram:

ae,- w Jp(y')'- ip(v4)# - v V#+ (VI)'/2p. (3 2)

Snce the boundanes of the Bow move only an infiniteamal amount over the time of
the impulse, the total energy loss is found by integating e. over the simply connected
volume bounded internally by S. S and S- and externally by S and S:

-E WJfe *dVm fe- I.v#'dV+Jfa(W?/2pdV. (93)

The fAt term on the right-hand side can be manipulated a"S the chain rule to obtain

fo V.V.'dv, f V.(,V#,)dV-JIoV.#.dV. (84)

The last term on the right in the equabon is equal to wo since the Bow field is
incomp'euabie before (and aftr) impa and D is a simply coanected reion. Using
Gowns theorem and the fact that 1-0 on S& and S.. Y '.- .m0 on S, and
a.- - - a. and r - -on the com• o swuface, the fit term on the righIt of (B 3) can
be written as

J1Vi.,dP- 1d . -' w-) (-) . dS) (5)

0
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The second term on the right of (B 3) can be manipulated in a similar manner. First,
the chain rule is used to obtain

fo (VI)dV - foV.(IV[dV- fiv'IdV. (B16)

The second term on the right of this equation is equal to zero since the Laplacian of
the pressure impulse is zero in D, as can be seen by taking the divergence of(B I). Using
Gauss's theorem, and the conditions I - 0 on S. and Sb,

VI. n. - p(V.'.n.-V. n,) - 0 on S.

(see (B I)), and I+ - I- and n- - -n 4 on the common surface, the first term on the
right of (B 6) can be written

f V.(IVl)dV = fs +I(V÷-VI-).n dS. (B7)

This last integral can be further manipulated using (B 1) and the matching condition
on the common surface (8) just after impact to obtain

fa V.(JVl) dV - p fI#(V(O') - V(')-)-.n+ dS. (B 8)

Finally, plugging (B 5) and (B 8) into (B 3) the equation for the change in kinetic
energy is obtained:

AE, - -JI+(V(0') - V(01')-. n+ dS. (B 9)

Appendix C. Representation of the hypersingular integral equations in
terms of elliptical Integrals

Assume a cylindrical coordinate system (r, e, :), and let the three unit vectors it, the
r-, 0- and z-directions be denoted by e, e, and e,. respectively. Assume that both the
source point q(r,. Or :z) and the field point p(r,, 8,. z.) are on the surface Sb and that
9, - 0, Since the problem is axisymmetric about the z-axis, the two unit vectors
representing the outward normals to S, atp and q are given by n,(sin a, 0, cos ap) and
n,(sin c,. 0. cos a,), respectively, where a. (or a,) is the angle between n, (or n,) and the
positive r-direction. With the above assumptions and definitions, (28) can be written as

/,q) , G(P q) _ n- f[x I V, Oq)]. n, x V,G(p.,)JdS.

___( o8_ co s 8J ]8(dS, (C 1)

f [$i a 8(v e. 0, P 8 ~ . ( I

The above equation can aiso be written as

Is + f~a~ cos'a I(Gcosse)d]2dS, (C 2)

by using the relation V.G(p, q) - -VIG(p,q). This latter equation is easier to treat
than (C I) as r,-.0.
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The integral equations in §2 can be integrated analytically in the O-direction and
represented in terms of elliptical integrals. Introducing the elliptical integrals of the first
kind K(m) and the second kind E(m) as

K(m) d-f ' (C 3)

-mssinfliý'

E(m) , (1 -m2 sinp-0d8, (C 4)

where ml - 4r, r,/A and A - (r. + rP)s + (z,- z*)', the terms resulting from the 6-
integrations in (21) are

1, - 4K(m)/Ai, (C 5)
1, - [((K(m) - E(m))/m' - 4K(m)I/Ai. (C 6)

Substituting these relations into (19) and (21) yields

cpO() - [C,. q-)+ D,. q)]dL.. (C 7)

"-•","," [E,.L 1•,- + -.01)]"dL,, (C8)
anp andth at

where L is an intersection curve between S,, and the plane e - 0, and
C,, - r,',, (C 9)

DPM- - r#c 1 "nr (C 10)
E,,, - ,lal/,/i,, (C 11)

With the relations FM sin a. U,/ar,+cos z,8If/8).

dX(m) (- IE -m-K(m))) (C 13)

dE(m). E(m)- K(m) (C 14)
dm m

the partial derivatives of Il and I, needed to calculate D., E., and Fp can be expressed
as follows al . (!4- rd E= m ) 2(,K(m ) - Elm )) ( 5a,,, ^ ¢k -ml) Alr, ' ¢

aL.4(zX - zjElm) (C 16)as, = Akl-n,,) ' ( 6

=al _4(r -r•_ m) 2( g(m) -E(m)) ( 7

1," (C 19)ax, = kI -ml) '

all• gz- dKm -'4m)), ,4(z4-,z.) E "m (C 19)
a

0
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ABSTRACT tained with a numerical model based on the 3D free
Some aspects of the interaction between bubbles and surface dynamics numerical code 3DynaFS.
shear flows were simulated experimentally and nu-
merically. In the experimental set-uip the shear flow L STUDY.
was obtained using a vortex ring. A spark-generated EXPERIMENTA
bubble is produced where needed and interacts with A Plexiglas cylinder equipped with a 2.5cm radius
the ring. The degree of interaction between the vor- piston was attached to the top cover of a Plexiglas
tex shear flow and the bubble is modified and inves- tank of inner dimensions: 37.6cm x 37.6cm x 27.3cm
tigated. The dynamics of both the vortex ring and filled with water. A shaft is attached to the piston
the bubble are observed using dye injection and high and crosses the cover of the tank through a sealed
speed photography. Bubble deformation is seen to hole to interact with an electro-magnet. A magnetic
significantly increase with shear. These observations plate located outside the tank holds the piston/shaft
are used to check a 3D numerical method developed assembly in its high position when the electro-magnet
to stdly large bubble deformations. Good compari- is powered. The pressure on both faces of the piston
son between the model and the experimental obser- can be controlled by pumps. Once the electro-magnet
vations can be seen. power is turned off, the piston moves due to the differ-

ence of pressure between its two faces and pushes the

INTRODUCTION water out of the cylinder, generating a vortex ring.
To minimize pressure variations behind the piston an

Practical liquid flows contain many microscopic bub- additional reservoir maintained at the same pressure
bles which respond dynamically to the flow. These is connected to the volume behind the piston. The
bubbles can grow explosively and collapse, leading to cylinder has an sharp lip exit to enhance the roll up
cavitation noise, erosion and decrease in performance, of the fluid vortex generated at the lip. This results
A better understanding of the bubble dynamics may in an vortex ring with a diameter slightly larger than
give new solutions for delaying cavitation inception that of the cylinder (2].
or using cavitation's destructive effects for useful pur- The water in the tank is degassed. A gap between
poses. In practice, unlike for most cavitation mod- the surface of the water and the tank cover is left to
eling studies, the bubbles grow and collapse in non- allow air evacuation and creation of a partial vacuum
uniform flows and do not remain spherical or axisym- in the tank. Most of the case studies presented here
metric. Such flows can be due either to the presece were conducted with a partial vacuum (=5000 Pas-

" of nearby solid walls flow or to vorticity shed from cals) maintained in the tank. Two manometers are
obstacles(l]. In this paper we will consider bubble used to read the pressure in the tank and behind the
behavior in such a flow both experimentally and nu- piston.
merically. To do this a fundamental experiment con- The spark generated bubbles are produced using
slating of the observation of the interaction between two tungsten electrodes submerged in the tank which
a vortex ring and a bubble is considered. The results can be manipulated from outside the tank to be
of the experiment ate then compared with those ob- placed where desired. The spark is produced by dis-

"Studntms on Practical Traning from Ecole Navale, Brui, charging during a very short time period (= 10' 4s.). France. a high voltage (6000 volts) from a series of capacitors.
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The pressure and temperature of the plasma gener- of the pressure signals depends on whether or not the
ated by the spark are much higher than those of the ring is cavitating.
surrounding water. This forces a vapor/gas bubble to
grow until fluid inertia prevents further growth. The EXPEPIMENTAL RESULTS
bubble then reaches its maximum radius with an in-
ternal pressure much lower than the fluid preure. A total of seventeen high speed movies were taken
then starts to implode and its behavior is governed covering a large range of shear rates obtained by vary-

by the pressure differences a for a cavitation bub- ing either the relative distance between the generated

ble. This classical way of generating simulated cav- bubble and the initial vortex ring center or by vary-

itation bubbles allows one to choose precisely when ing the ring circulation. The ring diameter varied

and where the phenomenon will occur which e between 6 and 6.4cm while its velocity varied be-

sential to coordinating the positions of the bubble tween 0.2 and 0.8m/s giving ring Reynolds numbers
antid the oording atin the statintiome of the high eed between 1.2 x 104 and 5 X 104. A reference movie was
and the ring and the starting time of the high speed ealso taken with the bubble isolated in the absence of
camera. the vortex ring.

On three of the films and on many of the videos
Measurement equipment very small gas bubbles were left under the piston

The pressure at selected locations in the tank was when the movie sequences were taken. The visual-
measured using a BNC model 101A05 transducer. ization of the motion of these bubbles allows one to

The pressure signal was recorded using a digital stor- observe their trajectory around the ring. The ex-

age oscilloscope and a PC with a GPIB interface. istence of a "viscous core" was apparent from the

A triggering line (Fig. 1) allows one to synchronize velocity profile whether or not the vortex ring was
the departure of the piston and the triggering of the cavitating. For the cavitating cases, the "viscous
spark generator. It includes the piston magnet, the core" surrounded the vaporous/gaseous core. A typi-

transducer power supply, a delay generator, an am- cal trajectory of the small bubbles is shown in Figure
plifier and a power generator. The operator turns off 2. Also shown in this figure is a sketch of a bub-

the magnet power supply at time To. As the piston ble and the particle trajectory line (T). Figure 2

starts to move down, a pressure pulse is created in also shows the geometric characteristics of the bub-
the tank by the fluid impulsive motion which is de- ble/ring positions. D, is the distance between the
tected by the transducer probe 3.3 x 10-45 later the bubble center and the viscous core center when the

time to travel the distance (50cm) between the piston bubble is at its maximum volume and has the equiv-

and the probe. This delay is very small compared to alent maximum radius Rm . D 2 is the horizontal

the time needed for the ring to reach the electrodes distance between the bubble and the center of the vis-
(= 0.5s). The output of the transducer is amplified cous core. The normalized quantities Y, = DI/Rm

to trigger the delay generator. The output signal, a and TD = D2 /Rm characterize the bubble / vortex
very short pulse, then triggers the spark generator. ring interactions. It is expected and confirmed be-

Visualization was obtained using a high speed low that smaller and T correspond to stronger

era, a video camera and a regular reflex camera. High interactions and larger bubble deformations.

speed photography was employed using a HYCAM
2 camera with a rotating prism capable of 11,000 Bubble shape deformation
frames per second. Before taking a film with the Figure 3a-c drawn in the ring reference frame shows
high speed camera, a video camera was used to check the bubble motion and deformation with time for
each case and to determine in first approximation the three selected cases of increasing bubble/shear inter-
characteristics of the ring (its velocity, diameter). action. The electrodes position shown on each graph

The pressure signal detected by a transducer lo- is the one at the instant of the spark generation. The
cated on the axis of the vortex ring was used to deter- vortex ring side view indicates the position of the ref-
mine the correct time to initiate the spark-generated erence frame..
bubble for a given vortex flow configuration. After As can be seen from the pictures in Figure 4a (
the initial pressure signal following the 'impulsive' Y1 = 2.16, D = 0, V,.p = 0.28m/s) and from the
ejection of the water from the cylinder the transducer contours in Figure 3a , the bubble remains practi-
detects the pressure field of the translating vortex cally spherical during its growth. The interaction is
ring. When the ring plane is at the level of the probe weak due to the relatively large distance between the
the detected pressure is at its minimum. The shape bubble and the ring, and also due to the relatively



small circulation of the ring. The first collapse is too indications of a lengthening effect of the bubble pe-
fast and no significant deformation of the bubble is riod can be seen on the characteristic distances be-
seen until the rebound when a reentrant jet appears tween the bubble 'center' and the two upstream and
on the bottom face of the bubble followed after the downstream points along a particle pathline (direc-
rebound by an outgoing jet on the top face. It ap- tion (T)) . This effect however seems small in the
pears that during the first bubble oscillation period cases presented here and should be investigated fur-
the bubble translation velocity is smaller than the ther.
vortex generated fluid velocity. The bubble therefore
sees a flow moving upward. The jet direction (includ-
ing the reentrant and the outside jet) is on a path- hysical explanations
line of shear flow, and the bubble motion after the The observations made above can be explained by
collapse follows a particle path line while oscillating considering the velocity and pressure fields around
and cutting itself in two. the bubble. The motion of each point on the surface

In Figure 4b (L7 = 2.38, Y = 1.5, V,,, = of the bubble is the result of the combination of the
.78m/s) the bubble first grows spherically, then it underlying (shear) fluid velocity and of the velocity0.7a/s)thebubbe 6at rowssphricllythe it of the bubble growth or collapse. The effect of the

starts to stretch into an ovoid shape: the bottom face
is less curved and the top face more curved than in underlying fluid flow (whose characteristic speed is
the spherical case. Here the distance fuve is not to about 2m/s) is minor during initial bubble growth
different from the previous case but the circulation and later bubble collapse phases, but becomes mostimportant at the end of the growth and at the be-
in the vortex ring is about three times larger. When imprtn at the end ofethero and at telcbe-
the bubble volume decreases, the stretching due to ginning of the collapse where bubble wall velocities
the shearing action becomes more pronounced and reach a minimum. Indeed, right after the spark gen-
tworeentrarnt jetsi(or ratheraco nstrictionounongt eration, the speed of each point of the bubble surfacetwo reentrant jets (or rather a constriction along the is very high (about 40m/s). It then decreases to zero
bubble periphery) appear. This constriction appears at about tm mu s, an then increase dur-

along the pathlines (T) around the bubble. The bub- at about the maximum radius. and then increase dur-
ble then rebounds with a dumbbell shape. ing the bubble collapse. For a bubble in a uniform

flow, the existence of the flow reflects on the bubbleIn Figure 4c ( = 1.1, r2 = 0.37, V,,n, = shape by a larger bubble growth in the downstream
O.82m/s) the bubble appears to be stretched more direction and by a flattening of the bubble shape in
and more in the pathlines direction during its growth, the upstream direction. Later on due to inertia, the
with the top region more stretched than the bottom downstream part that has extended further collapses
one, and the top right part growing more than the faster forming a reentrant jet directed upstream in
left one. When the bubble collapses, its left part the plane of symmetry of the bubble.
continues to be sheared by the flow into a pathline When the flow is not uniform, a similar phe-
direction and a beak forms at the top left part and nomenon occurs but is stronger on one side of the
becomes more pronounced once the volume of the bubble than on the other due to the typical asymme-
bubble starts to decrease. Then, there is a constric- try of a shear flow. In addition, the possibility that
tion all around the bubble which appears first on the the underlying shear flow becomes at some point dur-
top face of the bubble. The bubble then cuts itself in ing the bubble history stronger than the bubble wall
two and rebounds as two side-by-side very distorted velocity creates the possibility of an underlying flow
bubbles (or bubble clouds). The left one then touches generated jet which can be opposite to the one de-
the cavitating ring and splits again into two parts. scribed above and directed downstream. In the case
The deformations of the bubble are more significant of the figures shown here the velocity profile seen by
in this case than in the two previous cases, because the bubble decreases from left to right. When the
the bubble is closer to the center of the ring core and bubble starts to grow, the speed of each point is much
sees a strong shear flow. In addition, there appears more important than the velocity of the fluid flow:
to be a "venturi effect" between the bubble and the the bubble is therefore almost spherical. Then, when
viscous core that further increases the stretching of the speed of each point decreases, the influence of the
the left part of the bubble fluid flow increases. The top part of the bubble grows

Within the margin of errors of the measurements more than without the presence of the basic flow and,
comparison of the time variation of the average ra- due to the shear, the left part grows more than the
dius of each bubble shows no significant effect of the right one. In addition the top part is more stretched

Spresence of shear on the bubble period. However, than the bottom face because on the top, the speeds
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add up while they subtract on the bottom. The op- position at the previous time step and the knowledge
posite is true during the collapse where velocities add of the boundary velocities.
up on the bottom part of the bubble and subtract on This time stepping procedure is repeated through-
the top. out the bubble oscillation period, resulting in a shape

As the fluid flow is moving upward, the reentrant history of the bubbles. This method has been ex-
jet is expected to appear on the top face [7, 10]. How- tended to the case where the bubble is embedded in
ever, due to the strong shear the left part of the an underlaying fluid flow characterized by its veloc-
bubble is prevented from collapsing forcing a com- ity field V0 and pressure field P. . If we then define
pensating middle of the bubble constriction all along bubble flow velocity and pressure variables, Vb and
the bubble, with a tendency to form reentrant jets P6, as follows:
on both ends of the bubble along the pathline. This
constricted shape of the bubble is similar to that ob- Vb = V - V0 , A& = P - PA. (3)
tained with a bubble collapsing between two walls.

and assume that this bubble flow field (Vb and Pb) is

NUMERICAL MODELING potential, we can use the BEM to study the bubble

In order to model the bubble/shear flow interac- dynamics. Within this restriction, Equation (2) is

tion described above, DYNAFLOW'S 3D Boundary El- replaced by a modified Bernoulli equation

ement Method (BEM) code for the description of '7[0 1 2 + V + P&=
free surface deformations, 3DynaFS was used. The + I Vb 12 +V0 Vbx(VxVO).
BEM method uses Green's identity to solve Laplace's (4)
equation. If the velocity potential, 4 , or its normal
derivative is known on the fluid boundaries (points
M), and 4 satisfies the Laplace equation, then 4 can THE VORTEX RING
be determined anywhere in the domain of the fluid In order to simulate the problem at hand in the above
(field points P) using the identity: described experiments, the flow field of the moving

vortex ring was modeled using the following classical
S+01- 1- )]ds = airO(p), expression for the velocity potential at the point M

where 1 (1) produced by a vortex ring (R):

where ar = il is the solid angle under which P sees O(M) r et.PMdspthe fluid. a -- 4, if P is a point in the fluid, a = 2, if 4(M) if -I- Mj •

P is a point on a smooth surface, and a < 4, if P is a s
point at a sharp corner of the discretized surface. where r is the circulation, and S is any surface lim-

If the field point P is selected to be on the bound- ited by the ring vortex ring line (R), and es is the
ary of the fluid domain, then a closed system of equa- tentie direction along (R). This enables one to
tions can be obtained and used at each time step to dtnein the velocity and pressure field outside ofsolve for values of 04'/On (or 4') assuming that all dtrietevlct n rsuefedotieo
values of 4' (or 0)/0n) are known at the preceding the "viscous core" region of the vortex ring. The
step. The method was described in details in previong velocity in the core region is modeled using a match-
publications [4-7]. The above equation is subrevted ing solution to an infinite vortex line model. Since,

subjec for a non-zero value of the viscous core the velocity
to kinematic and dynamic boundary conditions on
the bubble wall. In absence of underlying flow the obtained from the inviscid solution is not the same
liquid pressure at the bubble interface is given by the we the vous ri s a p from the inside
unsteady Bernoulli equation which is used to solve at the center line was set to be the average value
for DO/Dt, the total material derivative of 40, between the pressure at each end of the core diame-

D4= V0 12 - -PI ter. The two points on the edge of the viscouscore

4N= P Z+ 2  12. (2) were then connected to the value on the axisusng

"two sections of parabola whose tangents are horizon-
Using an appropriate time step, all values of 4 on tal when r = 0. These approximations were needed
the bubble surface can be updated using 4 at the to start the computation but had little influence on
preceding time step and DOIDt. New coordinate the results since the studied bubbles were outside of
positions of the nodes are then obtained using the the viscous core most of the time.
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NUMERICAL RESULTS 2. The capability of the program 3DynaPS to sim-
In order to test the code the conditions of Fig. 4c ulate such a flow was demonstrated.
were reproduced, then the circulation was reduced
to obtain other cases in the same physical condi- The shear flow was seen to significantly influence
tions but with a smaller circulation of the vortex the bubble behavior. During the collapse and re-
ring. This simulates qualitatively only the two other bound the bubble shape deformation was seen to
cases shown above. The cross-sections obtained with always be significantly affected. During the bubble
a plane perpendicular to the ring axis and which con- growth the bubble behavior and shape is the more af-
tain the initial bubble center are shown in figure 5&-c. fected the larger is the degree of interaction between
The viscous core radius was assumed to be 0.6cm, a the bubble and the vortex; that is the closer is the
value given by movie analysis. The ambient pres- bubble to the vortex core center, or the greater is the
sure, ring velocity and initial position of the bub- vortex circulation.
ble are those of Fig. 4c. A set of runs was made
with the bubble discretized with 162 nodes and 320 ACKNOWLEDGMENTS
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Fig 3. Bubble contours at various times from HS se- '-
quaec of Fig 4. a)t'D - 2.16, 1: -0 , VK., = 0.28m/r,
b) 31- - 2.38. D -1.s, V,,,, = o.7,,m/; c) D =1.1,

- 0.37, V;.,,,, 0.82m/l.

Fig S. Numerical smulatlon of bubble/vortex ring ia-
teraction a) irculationE 0.025 m 5/.; b) irculation: 0.10
m 2 /,; c) cirulatio•: 0.12 m2/, : corresponds to Fig 3c
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abstract
The dynamic behavior of a bubble In a nonuniform nlow is staid. to its distance to the wall. This approach follows earlier workied uasing a matched asymptotic expansion method, the small W by Chahine and Bovis (1993) who studied the axiaaiipnist ric CaM-rameter ir bein* the ratio of the initial bubble radius, ,*o, toth of the collapse of a bubble nar a wall, and later the studies ofinitial bubble distance to the body wall, to. The theory is applied CQaline et al. (19 ) who considered the dynamical behavior of ato the Problem of a bubble collapsing in the &hear r e& "ar a bubble cloud.

semiinfnit blff bdy dvacin at costat seed.itetut ~.At every order of approximation the Problem is decosuii-eiedtaed at ordniera bluff bo y adacnth Aponsitiant oped a eut ob- into two 6ubproblems:. an anetý problem where the ch~aracteristicbubbnedaoresc and eso the formaition of a rot p tr atio and thea length is the characteristic bubble radius said ail uaste robeithe wal.- As the order of thte exausos incrae, more onmpe where the characteristic length is the standoff distance Iicween~aspets f te iterctin btwmthebuble nd he lowarethe bubble and the wall. The effect of the wall appears onilyapcvred. h inteacytical beutwee th bubl a t flo amI through the limit condition at infinity for the inner probilema. Forcolured.onsaofthe a equatios at thtrder 2 arej gie hl ueia the oster problem the bubble appears as a singular pert urbatione
are given Up to Order C o the c~e ofa bubble Asa a atakn thone org= The calculations are performed in a fraine of ref.
Ogive body. fo ~ hn rne atahd to the bubble so as to follow its belaivior over

a longer period of time, otherwise the mathiematical exprnsaiositi
become non-univocal as soon as any bubble wail pouast cromea, the

Introducion origina of coordinates. The bubble is assumted to be filledl with, vm.po f the host liquid and nomi-condessible gas with a polytropicThe understanding of bubble and cavity dynamics has preccunied coin reissinlw
researchers and engineers over the past several decades. iw isute of the theory presented here cxi. be applied to diis
ever, due to the complexIty of the general problem, most flbpte illow which has a plane of symmet ry piarallel to the hhowableadynmic studies have either neglected bubble defocrmation'aa direction (non fundamental assumption only used to siusiplifyv thebase their approach on isolated spherical bubble dynamics, or anltia exupressions).. As illustration thme problein of a bubbleconsidered axisymmetric deformations. With the advent of cos CoU;Lpsing near a sem-infinite bluff axisymustetric body it. a utti-puttational techniques and facilities, significant attention has been fsed Bo is l scniee.I that oft ah source inenia a nfomowed

onover the lami, decade to the study of axisyntmetric bubble ford fofiels scniee.I that case touece insacnpotemntialfield
lynamics, Particularly in the vicinity of a solid infinite wall or afree surface (Shimsa et al., 1977, Guerri at al., 1981, Chahine et aL,Prbe frm atn1982, 1983 ; Blake et al., I98G 1987, Wilkersion, 1989, Dencian, 1rbe om lto

1990). However, deviations 6;om this simplifying axusymmetry all- Le us consider a bueak flow field (flow in abaesisce of the bubblelt)sumption which render the problem fully three-dimensional andarc expetdt infcnl fetterslswr o md that is potential, with a velocity vector 176(M) derivm1 froue the
ered. For instance, near aL solid wall and in the presence of a prss potential 0g(M). Let the ressure be po( MI said tne- liquind Jelissil
suj radient Or a nonuniform flow a relative velocity between th p. The velocity poten tial? satisfies the Laplace equation and th'ebu be and the flow exist leadiing to significant three- dimensional Ber:oulli equation:effuc"~ oso the bubble dynamics. To address ths general problem A0 .(1)

a ful!v three-~dimensionalJ approa'ch is baing developed (Chahmineet
al. li9sb. 199o, 1991). However, this method is purely numerical , i? o"dss,;dbe supplemented by an analytical apprg-ach. even if -(Vocs + 12Approximate, since this will enable, at a much lower cost, a better2
uhderstamiding of -he influence of the parameters in the domain ofTa ofwcndtnarosheubegebd:wri.
vaJidity of the mnetz~od.Th ofocodtoacoste6lierdtc4%w s.

In thiz Paper we will preseL: such an anallYtical study of the 6".=0 3groUth, and coIhzLpsr of a bubble in a gere:.l potential flow in the(
vicii~IN' of 4 so06d object. This approacl. is, based on the method Let W'. V1' and je be the potentiid. thmei-betid said prasur is,of m~atched asy*mpto*tic exparsious, The smal!l paramete- of the preiaer.ce of the bubble. and We r a Jr~a,.1rV, be. tb. builI'rex azcsior.. 4. is chobes. to be the ratio of the initial bubble radius w;6Z equatior.. We now have sinciila equisitio s, &&! 3-wit the-.

_______________________cormptete flow variable. Isi additioit.. a fourtL. eqik.ldk.: a~ift.lea
*Lccole PoI~techr,.qur. Pallaugas. France the coctiuuit% of the normal velocitiesl al the bubbiet %Z
t alkt Reward~, Profit-o The John Bopkia, Unaltersit,. Daltimoe. MD



{y* )~ o(r-7(4 Matched Asymptotic Expansions
A We consider the case where the ratio s between the bubble radius to

and far away from Ase bubble. we have tV s#. and the distance Inbetweenthe centerof bubble and the wall ias nail:
We wil consider now the bubble Plessiul, 0, wdfrac fthe 6 - T/Is1. C (11;)

ptnil V ad#. Using the watched asymptotic e"pansions method the problent c~ai
06(5) be subdividied into two subproblems: an saner problent where the-

Sinc atinfnit V5andA dcayto ero an ~ e ~ th characteristic length is the bubble radius ro and the wall is cojisildeud
Sine a ininiy V an #6decy t auo, nd he resureis 10,the to be atinfinit, and an otter problem Where the Ch&1raCterislic leasgille

Blernoulli equation becomes: is to and the bubble appears Vpy as a singular perturbation at the

!L +(V6)+ V3+#6voe is 1 I+ origin.

St 2 P( Outer problem
If we limit the study to the case where the basic low is steady, In the outer problem we only have Equations (10).(ll) aced (J2) to

=t/S 0. the right hand side of the equation is a constant of satisfy. They can be written using non-dimensional variables r a t
the basic flow held, which can be written for instance at any seece and * . ,as:

reference point, 0. (9
Let us choose now a general frame of reference 2 with rotation Ai 0.

relative to the fixed frame defined by J, and whose origin 0 has a u.m 0 , (2u)
translation velocity V. (se figure I for definitions). Since: F-OD

1VM - . +, x 011. (7) (i-0
We now have the relationships: Vanne problem

V# ** 1) # 8 In the minner problem we noudimensionalize Equations (15) throuugim
- -~-9.. - a x011)V#.(6) (16) using the following normalizations:

AR R rt re: the initialjbubble radius
- ,e,9.axkp - &P# ap characteristic Prc.3sUfe

where * is thes bubble veoiy oe in th moing rmeI. h change in the initial nlow
system of equations of the problem then becomes: t TO i To .Characteristic coll'syme timle

40~~~~~i. c .(0 e av haracteristic inaitial
lime 0 (11)low velocity

V# 0 VI'. = M OVO Mf characteristic initiial flow

IV sal 0, (12)' N~iO. ) -p,.. =&AP SA velocity gradient

ea - Matching conditions
{V* cisiR -t + ((7. - 9.0) +,2 x 01) - t),,isx. (13) The matching conditions between the iarnie? and the outer atuluiulls

these beg nothing but two approximatioub of the saeier wiluciiy
+ 1 V~r (1p - 011 -v+ = tial which awe valid in two separate regions - 6 obht.,,mwd by)

lormalY writing that there exists an intermediate region clhavartefiied
by r*. where b~oth solutions awe valid. For the slier proble-iu. Ilhai
region must be at infinity so that P* 3o ?g, whereas tul the outer

+!V2- 02i fi IVA .S (14) problem, it must be close to the origin so P* 4C lo. This cani he
2J, p written as:

Pressuret inside the bubble FriC F* C o()

We Will assume that the Pressure inside the bubble is saially uniform * ('a .() where, a rui lot (2j)
and thus only depends on time. pi being the initialprssr inside V8 (4the bubble, we can write.: ()-0 ()(4

whee P i th vaorpresur ad j.Ptheiniia socoae (15) S Taylor series expansions of the basic velocity field
whee ,is hevapr pessre anthiiia ocdeibeP Since we are considering the Case Where the site Of the~ tunetr rt~kile

Pressure which obeys the polytropic law PV* a cosanta. At any is small comipared to the characteristic length, of the basic &pw, wetime the balance of pressures an the surface of the bubble can be can express the velocity field in the imine region as a 1.3 luce series
written: exPanson about the selected origin 0.

P(A. t) = p,. + Ps - 27C (1679(ri = 9.40O) + F - VlP'.(0) + !I " )-F+O "j (5
where C is the local curvature of the bubble surface and 7 the surface 2e ,b h hrceitcvlctyO h o il.Uii-r~u

tension. We' finally obtain for equation(14): Ltetn eth hratrstic dvelosioy of the lowit radu field . M th o- rh.,.eir.a

p 1* , (*) 11 - V dimensioa of the velocity bigradient. We wil! choosew Su ortheegin.iesl
+9 2Vt _ 1;. - x 01).j V#+ coordinate system fixed to a streamline so that 17. = 9.70gjolpW th..

+ 1 VO2- V0(o.uko~. 1 - A-)+the 
&-axis is parallel to Vo(0J.

+ (P.."e ~ -NX (9 - No7 hte that wo is the characteristic vahocii% of the maiwua flu. &ad is.a
constant where&& te(m, is a fuzecuoa: of tillo

~ ~ o In orde: to compute the various terzub in Lqa6at&oa. t114, we fternJ
the following quantitiel.



S. The chuarterisuic rotation speed at thet scale of the inner prob-
Mw'f.* )+! NkY~i(O)+.<7)km is fIaz male than the collapse veoicity:

No) .)-V# V -( ok-*V() 24f k TO aa-mft ss) (39)

-VV10(),ý .. )(2) 6. The colla-s velocity is directly relate to the local pressure by:

71' - o 0(0) (40)
+170va M 7 ý.JV0())'...~q) The~a bubb e i oa o be cloeto tbm uberged Ibotyb

tha at leading orderc ,is h ue polm body mcosi
If we consder the case where the probliem is symtrc. abu th to be a mt at e At ote o% rders, the curvature is tamllssr hiatse(Ouzr) plane then account. ldatbematically this means that the ratio of tlse buabbli:

a, odof distance to the =oa curvature of thme body is of order. i -fiat 1 3h itg problem, the, effect of the wall is see* first,61 urderi stfs09()- j0 0 0 J(30) the potential aad at order s3 Wo the bubble rudlivo. TL& e ffet I of Ilse102 0 0Q esee curvature oaly interferes at order es on the potential aiid will utsly

Choosing such an arbitrary gradient is oconsistent with having a po- add a constant to the sequations.
teatial low mince we still have 9 . l70 = 0 and V X 170 a 0. Rewritten
also in pola coordinats we have: Resolution

018 02 [t 01+ Ofs #j We will uje the folowing notations (r the expansiacs:

41se.sp~s..'.a 74 + 2 b"s icy.,,
where:Order 0

803 Sol Outer eoblesisamomdere
*5~~() The systmofuauwioa(30)to (22) frthe order wo becosess:

Since the probisem has a plause at symmetry. we saltake I; u (

4;X0i - W V Vy X 4.xd (33 t i 0(5

and Mss e 'All the characteristic rotation speed of then fraime P4-4"h-0(4b)

I The general solution to this Problem is a comsaha cseo of &PLC# 10.l
Discussion on the relative size of the problem eshees ha?1onica which deca a infanity and iadode thte image of tIse Lbaktwe

Theprolemha exwadmejo& paameer tie rti s yammettic with respect to the via at a dist&* ,' from the "ed p~
selected size relaivse to 4 the main parameter o( ther problem. The As 60 *c0) +()
choice Of the4 relative &s*z was dettermined lust by a least dteenac
principle to conserve the maxiinum terms, then by a relaxatios =fti
constrint hre sme parameters in order to be able to obtain solutions A() are the Legmadre powynomwa of degreea..
is some practical physical coniguraicas.

I. The characteristic length of the i"ne problem is muchMusa'm lao V nlmae Odes as
than that o( the esaw problem: The sYstem at equa.tions (10) gto (14) har the Order aso become..:

p. (35) Adu.(4s)

2. The characteristic velocity of the isitial saw, go. is of same order ~ A) h.j~
as the characerstic collapse velocity, Page :

U-- a 001) (36) DAo +~ - I( V-&

3. The characteristic veloctly gradiett. aI the scale 0f the mWeri From (48) wegt the solution
problem ia far smaller than that of the easer problem:

M ,- with g-jA,Ah. (511
MToa- of u au00) W ')

where 10(4) 0 determined by the lAYIN-laamiatet squat..e
4l The charsc'enstic veloctmi bigraodient at the scale of the emstate -tpuobmier is far smaller than that of te "MWt problemL 2 " -3

PT.~.u....Laie'ajai (&~ witt theaaist.a: conditions JL a sandk 0.



M"tching 4a0d"t4o1 a& o aw Resolution of the order'

If we replace the powetial6 by the, expanibons, Equation (25) be- The general solution. of the L&plac equation can be writte.:

Come: 
I jri~j, -1~ E F.,5Js. - + (W6)

j wj+ 8 vi&! + + fl- OWm jina-j +f*i

The tons aere d j 0
T sl ons an 

Yj. are the sphencal harmonica:

*o fv(oP.Co,*x. + Cos0) Couin#0; form? O
"(P (cos ) sin Imrni; form < 0

;I + C where C " a constant to be determined ITh,
lThUit condition at infinity on ij leads us to take:

Replace in (54): Al.- , ,-A

To (P ÷ ) Since the problem is symmetrical about the (Osx) plalie, 1tw..r. .tr.I,
terms in sin #,and we do not have to consider rn < 0. Umils thin L.44t

that
30.() P16(c059) + +1 + (j-' 4- (i() . ) ~ un o Y1 ,(U

At leading order we then have-8

C 0 (55) snEo'-o 2 zY +jzYi. (71)

OW v (56) Equation (18) becomes:

A -• = .0 f(s (37) -i2+ 2#

To obtain this lmit condition an ~i. we an coninu th -rasin

Y22i& )+fil! +e 0 2 d) + s '+Sl~ +QIAo(Y30 T (72)

P/o16 is o e) -equatintemasaeding ore ee 2 Y 2 1  q L Y2 2

S+ i•t, r,. - jX*Y -,., + -*I,,.Y,.

(50) R

p ki'3.(,oY, + a2 Y 0o) - Alo9?sv3P•j'-j (73)
Order c Forj > 2 we have a homogeneous linear differentiaJ systemn whim-r the

Ianer problhiI orders I Ii•ial coaditious am wero. The solution is therefore *1,,. B l.

Since t.o ad jo only depend on U.e. at older, f e equations 0 e 0;Vj>"2.

peoblem become: 1 mRolution for m = 0
Ail (60) We have to solve the Wlowing dermt system:

(61)1 Dim+21 1=A,. (74)

T so (-.)- + W + Bloc - (-Ksq + 6)*Moo

We-# *0j~ + W2- ,- 0# Jk 0 0 (3KPk3W'1+ w(3KRji" - (75)

PI.(,)A. P(O,}.& = 3JC ;" (43) Ao1 is the solution of the linear difereatial uquatiom:

where Aclo+ 3LAu,..o *6~0 otas =J .2 ,L

C. a 204 coo e sa•n' 0 + s e 1 (ss,' oc,,, '#- ) (64)

a*,"no ass# +*It"# (6) -A, 00 (3KPR3A-' + J - *-l %

aim Kw is computed using

Rim -Ai~io + 2" lou(77,1



*Resolution for m I -(3I ,si#osalo Bj&n8cfo-62)91

We have the same differentia system to solvg for Rtlo and Bil. The U.S

Resolution for Mn M 0 We have to solve the folloing izgdereatial 3*, 1 a in 0c"0coo # + 111(60 0cos3 0- cos2) (912)system:

-B~lo + 2 ,Ato TS Outer problem at order e
A~. (78) At this older the otter problem sees a singularity at the origin due to

the presence and behavior of the bubble, and also the curvature of tIe
B110  41 Wq 11 ~ body (see Fi~ure 2). The solution can again be obtained by placioig

+ 2 Ban, - I-T + -.- 4h,, - MGa 0 9) an identical singularity symmettrncity about the wall and 16y attdioit a
RA ~ J~ A d*stribution of sources on the body. The singularity dibtributiou will

induce a change, L, in the velocity potential at the origiu. Tie outer
Ano is the solution of the linear differential equation: problemn's solution at order e is then:

.Roino + 3RAo,, 0 = WMooly. (80) * 1 =C(I + ) +I(F) with L(O) =L J)

.100 Order -2

and Dim is Computed Using: To continue the asymptotic expansions, we need to evaluate tise bi-

B110 - -lAgA, 10 - 2AIRA41 it (2 gradient of the velocity field.

Matching condition at order c
Resolution for mn = I Ail, and oil, ae computed using: Using the solution of the outer problem at order s, (94), where the

I ntan C has been evaluate
i ll1 I i f 2p*., uov a dt (83) , . + ! 94

B, 1 1  ~k~i 1 1 2Ao~A,,awe obtsai::

Resolution &731 2- 1`0
We have the same differentia system to solve for Rh, and Al. The MCStCBo.
onlydifference is that we have J02 ,stgad of*,.B1 o #V

Resluton ar n =i W hae t sove :I()+O(a)=.2 +1+i_0"uD+O(;;_) (96)

Sin2 4
-352 +~ 2g to(5

W W 3 Resolution of the lnner problemn at -order g3

+3 +m * )kn - 73 Cs-0 (86) the following expressions:

A123 is the soilution of the linear differeatial equation: Bill + # _

An3 3 ( 17) 1e1 b(99)

and Bill is computed Using: a(L i (99

3 3 t i; i; 42&adnl S (100)

Resolut ion of the coefficient in front Of Y1  fi is the. soution 1 2  8 i G k

of th~e linear differential equation ((,-o s1 .A:-wo-r i t,-j Rjj (I0

Xii+ ,,AI - (89 ' = jxoul +Igo*(R9 sin I coOV*

The potezatial and radus at order t are: 05f~u ai + 2i~n biscmue uig'. . i.ca-- .1 9,8!9, **2 l 1 '. IIJ
+ +-+ 2 (Bioc"Oa+ Bill sin#coa#)+ -j+RiA - +Ziijl r



+1 + 144L 1I,)2h3± + !A 43+Al O - + L + -fee. Yi
(104) -0 2 4 #J+3

1 ~.2 and if are functions of spherical harmonics up to the order Y2,.
(1_) Atprdut of these functions give us harmonics up to the oider 4.

2A i)b* (0) which~ leads to 15 inidependent linetar differentia~l equations to solve.

(84,in (12 Application to Bubble Dynamics near a Head-
2R2-.0 4 ) h. I 4il 16 form

Ina this section, we put into application the asymaptotic expisissiots hey
{(9o~ ~ N1)1 ~z~+G velocity potential considered is that due to a superposition of a unii-

form flow and a source of intensity Q:
I i n4 o4,-GLl(107) (15

1 (yJ - VJ(o, t)) :,v()(o e*+ a, oinf C"#)+ It simulates the flow around the Rankine ogive of radius R at infinity:

The stagnation point occurs for X = -R/2.
oil sin coo il (1o9) At order ca', the outside pressure ApQf) is takens to be tlit prewureOM x01 &1(Cos#j sin# in the fluid in absence of the bubble along the trajectory of a fluid

:particle. At higher orders of e, the gradient and bigradient are also
The sytmbcmi:taken into account while following a fluid particle. Figure 3 Shows the

syste becmes:streamlines around the headform.
=(110) A fourth order Runge-Kutta procedure is used to solve tl,- diffvr-

,dtil - iential equations presented earlier. To illustrate the method, a lltusskisse
J11011body with a radius of 10 centimeters advancing at a constant velocity

~()I - lbe~s) 0 (111) of 1 rn/s was selected . Figures 4 through 7 show some results obtained
--s2 4 on bubble behavior near the Rankine body. Figures 4a through 4d

~ s how a case where the interaction between the bubble and the og~siv

___iur 4b show 2h trjcoyo the bubble center along the body.oi SA #Algu~ adire 4c shows the variations of the pressure in time imposed osaL.A. - ble. In the initiail phase t < 1.7 the bubble sees a Iressure drup
and as a results it grows, later on, the pressure rises bark towiards

G# SAIthe ambient pressure and the bubble collapse. Figure 4d. shows
.4 te eocity of the fluid along the bubble trajectory. This velucity is

isin sobubblha chosen for translating tht origin of coordinates is. which. the
bubeshape is prescribed. Figure 4a shows, overlad on each other,

# -in cast bA 11) te bubble contours at different times during the bubble growth &aid
~*(112). ctollapse. The orientation of the bubble relative to the body is thie anse

0 8as& illustrated in Figure 4b which shows bubble poitiont, veraus liaise.
- - -It is apparent from the contour plots that the bublble sssoves touard

fil +Al l Al P4 iA)Pi + o ! * ii # the body wallduring its collapse. Due to the velocity amid presaire
2 NP O f gradient around the body the bubble elongates and in fact rotates

around its center of mass. Initially, the side of the bubble. surface
e * ~, 1.*9~oD'Afacin an intermediary direction between the downstreant diruction

+D tW !L +i !A84 2 &";` + andi tle wall direction flattens out. A reentrant jet is then producedof N OF3 2perpendicular to that face. The direction of the jet alppearis to change
aith time in a fashion indicating increased influence of the presence

1 *~j iAI(O~2a~lB 2 O I ±±AIof the wall with time. The computations shown in the figusre ttlopgwd
2 N 2 2 N2~ 2  + I ~~ 1 93 E M when the bubble wall touched the origitn of coordinates. Thib itionivitt

V can be delayed in future computations by adding a cons ipoiesit to the
* ~~trahslation of the origin of coordinates that is predicuhar to the

I D, "i so ,L* . (A 84+ o I)WAD.
8*l~n AAis so C +A f Figure 5 shows the influence of the diblstasr P of tls Ibull-I. it I, thr,

waill. or con its shape history. In all three cashe, aslsua itc 0 1...3
and 0.7 only bubble collapse contours are showsn. As esp'es Itr'[ di'.'.1

G, &' + ct(O ,oo I. + a, irin 0 ~e#)+ tioi, from sphericity is enhsanced with the proximity to si a..l h'A.11 1'
80 s to stronger shearing action closer to the body alsproch~s~ii.g 11...hh1

ha& the effec: of increasing bubble stretch~ing as.d elui,.ta.mo durisip
+AU1G!+ G + I )+ !v,()Pt-rcoj*+iti growths. ther. reiznforcing the- reentrasia je; forsssatu... db:..s*.z ihi

11 2co!ltpse. Fori £= 0.3 and c = 0.7 the conipu;atius. Stu,,g.,*, 110...tI-
bubbie surfatce tou~hsed the orig:t. of coordi-..tu-h''., dui' ?I-

oil iiin Cos D oil waksi ature. of tht interactiot, fa: i = 0.1 alitrl!;'.a
73#n 9 cost cojoa$+ Z(cos#.j- with, no reertrai,: jet anid is follutied b% a, bubble rebu%,i..! ur Weu.Vb.

00 in growti. that is zaot bhsowi, os, ilth is hjIrv
Also, as expected. a sin" iii effet-cima hsr.v' 5 1,,,h:...jIs.

- 3X (KA~ AtA 2 ~ 01Aij11 0 '~(113) dist~tat to the bod% is rnsat.taiii-d coi~a.*&! ut-,: 1I, b2t.
UC JA1uk3 - ;cht.;.re2 Figt~e 6 sbowý such, at cam.a. alherf *1.. sL,. .. '.--S

Thelsn~t ondtio a ianjt leds .~ -bub..Ae cente. ax.e the wall IS maariziguee at 10,'3 cD5.. Whitt thr 6,~.;66



size is changed from 0.5 cm (C a 0.15), to I cm (e-0.3), to 2 cm
(a = 0.6). Here too the jet is seen to rotate to become closer and
loser to a perpendicular to the wail.

1 hmbmd

Conclusions and suggested improvements
• • We have presented in this paper &a analytical approach based on a

matched asymptotic method to study the behavior of a bubble in a
nonuniform potential flow field. The analysis was conducted up to or- Y
der e2 where & is the ratio initial bubble size to intial bubble distance
to the nearby wall generating the nonuniform flow field. Numerical baIbld
results calculated up to the order e show the formation ofajet moving
opposite to the bubble trajectory and towards the wall on a curved 9 a

trajectory which approaches a perpendicular to the wall with time.
A lengthening effect on the bubble period is observed as well as an
imparted rotation of the bubble.

Improvements on the numerical approach should include using a
motion of the frame of reference which incorporates,in addition to the Figure 1: Coordinate system of the moving frranc K

motion parallel to the fluid particle trajectory, a component perpen-
dicular to this trajectory so as to account for the bubble motion to-
wards the wall and retard as much as possible crossing of the origin of
coordinates by the bubble surface. This will enable the description of
the bubble dynamics for a longer period of time in the latest phases
of the collapse. The results of this approximate analytical method
should also be compared with those obtained with the available three
dimensional boundary element method SDynaFS.
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Analytical study of a-gas bubble in the
flow field of a line vortex.

RAMANi DURMASWAIG AND GEORGEs L. CHAMINE1

DYNAFLOW, Inc.
7210 Pindeli School Road

Fulton, MD 20759

abstract of this problem. The stutdy assumes that the bubble is out-
siethe viscous core .the vortex. Consequently the flow

The flow surrounding a bubble in the flow field of & Bwn may be assumed potential - an assumption standard in cav-
vortex is investigated by means of an asymptotic analysis. itation bubble dynamics. The asumton that the ratio of
The flow is potential, and the lenglth scale characteristic at the bubble radius to its distance fromn the line vortex is a
the bubble is assumed to be much smaller than the distanc small quantity (c) then allows us to treat the problem sing
from the bubble to the vortexz. The analysis is performed in an asymptotic technque. The results are accurate to 0(02 ).
a coordinate system moving with the bubble. Preliminary The novel feature of our analysis is that it represents one
results show that the bubble moves with thei flow, at a rate of the Anrt analytical studies of the motion of a deforming
faster than the regular flow, and that a jet on the side away bubble in a law field where the velocity is not negligible.
from its direction of motion, directed towards the vortex axi Indeed in our scaling the velocity of the flow and the bub-
is forned. ble collapse velocity are of the same order. The crucial part

of the analysis is in performing the analysis in a coordinateW 1 ntrducionsystem which approxdimates the bubble motion. This is in
I Inrodutioncontralst to emrber studies which relied on an approximate

model, e~g. Davis (1960), where the Rayleigh Plesset equa-
The problem of the interaction between bubbles and vertical tion was combined with a model of a spherical bubble in
flows is of relevance to several fluid enioneering problems the flow field of s. vortex. Preliminary resualts are presented,
Important examples indlude cavitation in shea layers, tip which qalitatively agree with observations and the simula-
vortex cavitation, bubbles in regions of flow separation, and tions ofC~hahtine (190).
bubbles in boundary layers. In these flows it has been" s
tul~ated that the bubbles cause seiveal dramatic effects rel.s
anoise generation, material erosion, drag reduction) (Young 2 Problem formulation
1989, Rood 1991, Ha~mmit 1980, blake and Gibson 1987).
However, the mechanisms by which the bubbles play a role Consider an initially spherical bubble in an incompressible,
have not been fully understood. While a number of studies in inviscid liquid of density p, in an infinite domain at a distance
the past have elucidated important mechanisms in acoustic d from a line vortex of strength r. The bubble is initially
cavitation, in the field of flow/vortax cavitation not Much at rest with a radius R. and has gas at pressure 9.*. The
progress has been made. In this paper we hope to obtain pressure at infinity is p4 and the Raid is at rest there. The
some understanding of the interaction of bubbles and vertex velocity due to the vortex alone (i~e. excluding any bubble
str-uctuares by studying a relatively simple problem - the efects) is denoted V.
interaction between a Rankine line vortex and a gas bubble. Figure 1 indicates the situation considered. The size of

Whjen a bubble approaches a region of high vorticity in a the bubble is assumed small compared to the distance d. To
fluid, it is. accelerated towards the center of the vortex struc. performn the calculations we shall consider two coordinate
ture because of the pressure gradient it sees. The bubble fames. The first is the Airedfre'ne which is cor~vefuent fu.r de-
undergoes a corresponding increase in volume and may split scribing the overall flow, and through the origiu of which tile
because of the dynamics of its motion. Explosive growth vortex passes, while the second is the mtotrn1 frarn which
may occur if the bubble pressure drops below its critical has its origin initially at the center of the bubble and ntvcs
r~essure. This phenomenon was recently numerically simu- at the rate the liquid would in the absence of the bubble.
raed by Chahine (1990) usir~g a boundary element method. We denote the locition of the moving origin by b.

This study is intended to complement that work. We choose a cylindrical coordinate system. (93 ,with
Wec present preliminary results from an analytical study the vortex axis along the:- axis, and the origini in &:. oribug

ona plane contalinting the instiaa bubble center. Sit.re tile
'At-. Rftea,:l. Proiefto: Deartanmm of mcrkaascal Engineering. motian is irrotationa] we may dceine a potentiaa Vx.i) soT6. Jol.:.1 MOP.LI. Cibiversiq Bal;mioree.M, tha:



S. .(1) with the new coordinates changing with time. We may thus write a

given function #(a.t) as

The equations of motion are V'(z, ) aV(z' + b, )) a 9(z') (15)

V • m V# M 0, (2) where the functions and 9 have the same values at a giveu phybicai
location, but have different functional form (snd are heUsce iiedirated

sad with different symbols). To clarify the behavior of thit repreaenntatnon W,
,(3) of the potential we note

q~~-V •t -- a -_Po.-. P 3)Db (16)

These equations are subject to the conditions that - as:

lir p""P. lira u = Vo -. 0 (4) and
iul-.M il-.. *t *9 *• D 9 .

The equation of the surface of the bubble may be assumed to be - = of+ 0.-a- s- - Ob. (17)

represented in the form B(z,t) = 0. Determining this function is an K K yz W s 8
objective of this study. Thus in what follows all conservation equations are written in an iner-

The bubble is assumed to undergo deformations according to a tiai system of coordinates, but the scalar representationa of the i.uhru.k,
polytropic law. Thus (in terms of the potential) may be expressed in terinia of O•u.riisaatea,

belonging to a moving system. In particular 1163. implict that intr-
constant, ( tial accelerations (such as centrifu~al or Corioli, furct.a etc. ) will not

where V is the volume of the bubble, and k the polytropic exponent have to be considered. The potential * may be called a 'nix•" ti P-

The mass of the g~as in the bubble is assumed to remain constant tential. and we must be careful to reverse the trahforunationa while

and equal to m. The kinematic boundary condition requires that the interpreting results.

bubble surface be a material surface The velocity V is expressed in the moving frame as

- O. (6) V =gale'- , (8,

The balance of the normal stresses at the interface yields where e@ is a unit vector along the shortest line joining the point at
which the velocity is to be measured and the a axib of the Axed •y•teanl,

pis =P,+P -cc, (7) and I the length of this line. This quantity is evaluated explicitly in

where p, represents the pressure of the gas inside the bubble, p. the the appendix. At the origin of the moving system it is

vapor pressure, v the surface tension coefficent and C the curvature
ofthesurface S. The normal to the surface is even by ! gi = S 011, +- cost a2r.

a '(8) where we denote the Velocity of the basic fow at the origin of the inuv-
- ing coordinate system by VO. The advantage of defining the movint,

The curvature may then be computed from the formula system is, of course, that the equation of the bubble surface uway he
represented in a single-valued dosed form more conveniently. Ideally

V 1 1 such a system should be centered at the bubble centroid. However for

CIV = V. -S V23+V (0) ths asymptotic study it is sufficient to let the origin of the moving
;system be initially at the bubble center, and let it move with the ve-
locity a liquid particle at that location would have had in the absence

Since we are interested In the modification in the low caused by of the bubble. This restriction could perhaps be lifted at the exiwue
the presence of the bubble it is convenient to introduce the reduced of more complicated analysis. Let F(x',t) represent the equation of
potential +, defined by the bubble in the moving system. In the fixed system the equation of

( the bubble may then be written as F(z - b, t). Thus the condition
(10) that the bubble surface is a material surface requires

2z DP
where # is the angular cylindrical coordinate in the fixed frame. The - = 0,
quantity V. represents the change to the potential of the low because Dc

of the presence of the bubble. Because oflinearity, the function # also which may be written as
satisfies Laplace's equation. The boundary conditions it is subject to O+8F OF Vb. , , ,
on the bubble surface are -+ +V A-V'F = + -

n- Vj = IBe. - Vi.1 n, (11) In the moving frame we introduce a spherical coordinate sy.tean (P,.. P).
centered at the point b. The equation of the bubble free surface may

which is a restatement of the kinematic boundary condition, and then be written as
r = -20, 1, 9). (20)

÷+ i 1 'V.P1  +-V =p jp- -p.-•4 ,+ (12) The governing equations may then be written as

which is a restatement of the dynamic boundary condition. Here we V't = 0. subject to

have used the symbol V to indicate the quantity V#,,. Additionally,
far from the bubble, the potential is expected to reduce to that ofthe 9 .u,,• = u, + (VOR=, -V,) n. 12l)

vortex, and so we require

-i = (13)lzi-- L + V1 1 + (V _,V,,). V* - V21,.

We now consider a moving system of coorditsates. The coordinates atv 2 2

are initially coitcident with the bubble center, and move at the rate b. lL It: DO -P.-- + f.
the flow at that location would have in the absence of the bubble. In P P, V pQ. p .
the moving franme we let the Cartesian axes remain parallel to those
in the fixed frame. Let z denote a vector referred to the fixed frame hrn. 9 = 0

and z' the "lmre vector referred to the moving frame. Then

z =z' + b(,. (14)



.3 Dimensional Analysis (V~lt -VO) - JtVVI - 6!!- (30)
The low is assumed to be divided into two regionst, an external reagio I
where the effects of the vortex dominate, while the 1`11601 close t0 the Denoting
bubble is dominated by its dynamics. The length saechanateistic
of the bubble mon is R.0, the intial bubble radius. T~e time cale isV-o

taken as To (to be determi ned), and the scale of the plessure is taken V-O= !f;/'(31)
to be the initial value of the impoe pressure field at infinty. The T

* idea is to exploit the fact that th bubble siss is muck smaller than where we have used the symbol Vd to denote the nondineawaonaul
the length scale associated with the vortex flow, by using perturbation velocity difference term, and
techniques.

The physical quantities entering the problem are pio and R.o (from W.= -- !2 p P...~,(
the bubble), and p..,r, and p, from the liquid. The distance between PinAO An P40
the bubble and the vortex, d is taken to be the length scale of the
"outer" problem, while the initWa bubble radus is characteristic of (where W is a Weber number), the complete ainner problem may be
the "inner" one. We define written as

AG? ' 1, (22) '026. (3Z1)

and will use it as the small parameter in the asymptotic treatment. [+ v 4 + efv'd -*+i~n2V2] - (34)
2* 2 2

3.1 T he inner problem 
1 _ 8 14 _P =e

We non-dimensionalize the inner problem first, using V

lIn what follows, primes denoting relative variables will be dropped
when we are concerned with the inner problem. Upon substitutionan Anipratqaitsi h oainfeunc faptieao
the eq1uations of motion we hahe Animortex t li ane.tisy is given byainfeuec faprtceaon

02i .O. (24) thro"ln.Ti sgvnb

Tbe problem scaling is determined by the boundary conditions. The w ( 2,)/(r/2'd) a 2wd2 (ll
kinematic boundary condition leads to

#0 0 In the current caling the ratio ofthifrequency and the Rayleigh
X a -~ u(V- VO) - a+ TORAI, - frequenicyis soento be

We are interested here in situations where the initial bubble nucleus T0 = !F/2sd .0(s). (3?)
grows quite rapidly. Consequently the proper scaling is w 0 ~

03.2 The outer problem

* We shall ret'trn to the scaling of the velocity difference term an the Since the outer problem for 9 has so boundary conditions except reg-
right hand uide after detterminjun; the proper time scale. Upon usn alsarty at infinity and matching with the inner solution, the soluitiot,
the above scaling for the potential the. dynamic boundary condito can be obtained easily by replacing the inner variable with, th: ouucr
yields one, and retaning terms of appropriate order. Thus it need nut be

+* 1'fJ+ ( _O-* 11T T'a considered separately. To enforce regularity we just add the cotedi anon

AD li 4 0, (36)
X0'- ( Iv- P1-rn

!Mal, Mt 05- &i .!j-~ + -~-1(25) to the inner problem. With this in view, and for eaw of exprcimi-dns
PAI~ Pins ~V POnsDo~m the tildes indi cating non-dimensional variables are dropped in what

Balancing terms, follows.

To. Doy (U fK,) 14 Asymptotic expansions

which is the Rayleigh scaling for the time. The principle of least The above equations awe solved up to and including termss of 0(c)
degeneracy leads to the condition that the scaling for the velocity V though some of the work for the 0(02) problem has been dotir, and
be such that it is of the same order as the bubble deformation velocity these results are also gIven where available. We write the potential

We I - r _ JtJ(7 and the expression for the bubble surface as ('i

2rd To 9 = 9+t93 +e.92+@*C) (
Wedenote # Q R(,, OR(99 tt 2 g). 1u

r /2rd (2) It has beetn assumed here thist the leadinagordter terits, its tin le tp. i.I.s-
(2) fo- the bubble radius is indepemadetat of the angular variablea. a,%il

be justified a posetrioria. Additionailly we suippoin. ti.. th~e fuiatctaoaas
The noncldimensional velocity isaben; defined by 21 and R2 are regular so that we may expaud thens as

V - (291
76 2=0 V.~ P.0 Z~9t,) ,+~ rid P~(. aY10 ,'A ), s = 1, L (411

Returning to the kinemnatic boundaary condition. since the velocity is ltM-
assunced to be regular. and the bubble size small ii, comparibol. to wzi.L Y.'tfo, ) the surfabce spherica! karmonics seet th I-iiv~nji.. fo,
ius scaie of variatior.. the vecicit% differenace tern, is seen to be Oicj. e.2
Forrr.*llý this imposes the followuag restriction the gradient of the
vortex velocity fieel



Orders e0 2rf

-0, i (42) #sawj(ii. + 2
-Pnow + O(A5 e 43 A 'd# )) (55)

subject to - 2L2+ Flm3 5?~lWM 2W!',aw (

ad y(- X(l+ 1) + n(A5•F2 +•'6'-2 )+O 7 ++ '6•"' ),

lira to M O, (44)
r -- o 0whom the oefficients A A'^o0' an gven in the appendix. Hlereg

The spherical symmetry of the problem is obvious, and this justifies indicates complex conjugation. r l tExamination of the voe equationreesthexptorI )=
ourgrevious expansion for the bubble shape function. r~~aino h bv qainrva$taecp o 1M

ios problempassolution f h(2,2), (2.-2), (1.1), and (1,-1) the equations are hoaaogeueou. iWc-
This problem ha solution ond order linear differential equations (initial value problemn); Since

t . (45) we have assumed the bubble starts from a spherical shape. uasd is ini.-

o 4 tially at rest, the solutions to these equations will vanish idvuaticaJly.
For the four non-trivial cases, the differential equation satitfied by the

Application of the kinematic boundary condition yields particular radial component may be written as folows

go = _42i, (46) Wi1 , + 3&111 - 42tits o 4(

where the dot indicates a time derivative. Substituting the above a

solution in the dynamic boundary condition i2 It31tt.-i - a4(-.-)8#0+ 1d~l.- + 01._l- 4ý ill= 4 4- + 20 " (37)

Sto 2 ( f*2 )' + W0( P. . + . e(41)

yields the following equation for a a 3 +2 3 3

* +f22. 2+Gf1_.W2 (p.(+ -221). -2 W12.-22F2- 02- ± + !, -. W-,+

This may be tzed asa variation on the conventional RayW -
Plesset equation (Plesset and Prosperetti, 1977) for spherical bubbe(2 1. ()
dynamics. +0 ( --

Order el O The co Aiients A A*. a. are complex numbers, and it would hI

The equations at 0(e) are convenient instead to seek solutions of real conibnationa of them. Aimexamination of the differential equations sati.lied by Pi2J and nj.-z _

V2• 1 = 0 (49) reveals that they are complex ConAjUgts. Similarly the equhtiosi W
for Pill and ti -1 indicate that they too are complex conjusates.

subject to Consequently if we define instead the new variables

Sol Ril a Till +n inPjjPl.- A 1 iI'1.- (W)

-2'lX, at-O~~r (w, 522l)

and Ain' = in + ia.-2 R12.- - ,)

L-2-+ ( + + V.,+VoVobtainfourequations in real quantities. These.amgien b

- a ~~~,((a...1Xshlll+Uhl, -el+3 R 1 4*5111l = 4
- '- - 2Akeow (J

5.5* E . 2  , WRmaImr 2

Sol..j36 1 -r 4 za.m 41 +2vf20 sa-um4(tij)

bItroducing the expansion for the function 
2 1, setting a

e,= "•'• ,,, -••,,(52) AM+ iASn- 2± + 4 Ri,,6=

and taking scalar products with a generic spherical harmonic, the 2e3A~ sill 2A.t--cl (6,4)
kinematic boundary condition may be written as

_ 1V + ' - , = # , +. + fl( + A '• -) - (53) ; i ,. .2  + 4A I 2.- 2 - (2 L ++ 4 R u..i =

Hlere A and A* are complex constants (functions of time), given in the

appendix. and ,16- is the Kronecker delta in two indices, with value 21 fl - cot 2 wt + - sin 2.;t,
unity if M = n a2nd i = a, nad is zero otherwise. From this equatio.A
we get In terms of these new coeff•clezst time surfarc of the bubble Jll the

* aI"( + 21 + OlAI2 + A ')). (5s moving coordmate Systenl) it given b)

1 : a + c [(R1 1l cos v - i.,, tp, •H

Substituting in the dynamic boundary condition we get + (R1• Cob 2W - X12.-? sin 2 t Isir.2 01 1- Ot1j.



5 Results and Conclusions 1S1 G.L. CANIAN111, S199I).*DYamics Of the Interartlo of non-
spherical cavities, is Mathematical approaches is hydrodyamm

We present here some mults from & numerical study using the above Ics," ed. T. MILOS, SLAM, Pluhdiaki"
equations. The equations involve 4 parameters - P*,W,,. fl. W and the
perturbation parameter c. In the folowing we have not attempted to 151 G.L. CNillA11119 AviD R. DUILAISWAMI. (1992). *Dyaantical latter.

Map the Parameter space of the above equations, but. rather demon- actions in a multi-bubblo cloud. " to appear in ASME J. Pla&d
strate the characteristics of their solutions for a paricular choice Of .5~aguswujg* the parameters and show that they make physicr~al se. We choose 7L.GINAD(98)TeRpdEvlainoPonia

w the following for the physical parameters: Fields in Particle Systems,* MIT Pfts, Camibridoc. ta
=1.03 x 105Pa, R0o = 10-3m, d= 5 x 10-3m 18] T.M. MCROSnai, (1967.) *Spherical Hairmonics," Std ad.

r - 1.21n2/s. P. = 2 x 10APa, o 7 x iD0f/Ns, Peo mn Wort~
19] A.H. NAYYflu, (1973). 'Perturbation Methods." Wqt, New

Pvr =3 x 1Opa p103 k al.4. Yf
This yields the following for the non-dimensional parameters (101 !AS. PL.1ssI? AND A. PbospicsalTl.(1977). *Bubble Dynaam-

V, -2.926 10- V.- 19417x 1-1 = 6796 x 0-4ics and Cavitation,' Ania. Rev. Mauid Mick., S. 145-185.

P. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [1 292 0 ,-191 0 W=6791x1 W.H. Piass, B.P. FLAPNNCfY. S.A. TtuNiOLSKY. ANDI W T.

fl =3.764 x10 T =98 10-1 ~ a 107.53 . VETTZ.LINO, (1989), *Numeuical RAicipes," Cambiridge Univer-

The equation systems at 0(1) and 0(c) are integrated uinslg a 1121 E.P. Rooo, (1991.) *Review - Mechanics of cavitation incep-
simple fourth-order accurate Runge-Kutta scheme (Press at 4l 1989). tion," ASMS J. FPhid& Eg., 113, 163-175.
TIe equations at 0(e) are linear, and consequently do not pose a
difficult numerical task to integrate. 113] P.R. YOUNGo, (1989). *Cavita.tion,* M.cGrawu-Hil, Londoma

The results from this trial run are shown in Figures 2-7. The
results indicated that the expression for the bubble becomes multival-
ued for times after 4.670, i~e. the origin of the local coordinates He Appendix
outside the bubble after this time. Thus results of the integration to
this time are shown. Figures 2-4 show the behavior of the radius coef The presence of the non uniform flow field makes the anialytiis a litt le

ficients a,R, O1 -1 ,R2 2 and R2._2 as functions of time. The growth involved. Here we present a summary of the relations uaied to lk-rfurma
of the nnprc moaes with time indicates the asymmetric naur the analysis. Ucftobert (1967) and Greengard (1988) were useful for

of thbubberbhaior. material regarding the spherical harmonics.

Figure 5 shows a cross-setional view of the bubble in the s.,i
plane. The bubble motion and deformation, and the formation of the

jet are dearly seen. The bubble initially collapses almost spherically Spherical Harmoniscs
(while moving with the vortex tow), and reaches.a minimum at a -
proximately 145T2O, and grows till it reaches a maximum size at 2.978. Laplace'a equation in spherical coordinates (r'9, 0.f) may he written as

It subsequently collapses and shows the formation of a jet on the side Vat ,2* iin I
Opposite to its direction of motion, and directed towards the vortex 3 7 in f## So
axia. The Computations are stopped at 4-67a when the bubble no 1 )

lonl r contains the origin of coordinates. Figure 6 shows the motion I =---y 0 (67)
* Of tLe V=O0 and ip = r Points in this cross-section. Finally Figure 7 F n07;

shows cross-sectional views of the bubble at the same times, but in a
normal plane. Thus Plane contains the z axis and the line connecting The finite solutions of Laplace equations in an unbounded region wsay
the moving coordinate origin and the vortex. The fact that the jet is be represented as
directed towards the vortex axis becomes apparent in this view. go WkA+ * Y~(,)(~

Quite obviously a more systematic study of the parameter space # A E 1 :Y_#V
is required. Also, as in Chahine and Duraiswami (1992) the reslts (b

Of the asymptotic analysis and of the 3D boundary element program 1=0InM
3DynaFS must be compared. Qualitatively the same type of reults weetecefcet :aecntnadY¶,~ r h peia

areobsrve. Te epresio usd or the motion of the moving co harmonica. These are defined by
ordinate system must be refined to prevent bubble function becoming
multi-valued so early in the collapse. These and related aspects are m),., epm) ()
items of current research. )=V(n - Itm I)),!p
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3xpIreas@D for the normal Bubble volume

The Taylw oa"ere for the expressios for the atessmal to 'he surface 8 The radius Is expanded a

r - (t) - C l ( , V -22( .() a0 ( 2) he olu e o th bublemay be written a

aboutth ulcrwaisVMLwWrSikdm

Expression for the Curvature 4j10 .~u~~ 2  df i
Consider the equation of the surface given by Uf the functions X,. i - 1. 2 aue expanded in terms of spherical bar-

B : r a a + gal(#. j) + 8312o(eV) + o(e 2) (74) monica as

The expression for the curvature of the surface is , ~ +f EI OW,~"D,~,()
C=V .saIV[j 1 Jvs+~ ~ -VS; thn MaD hetehrmnC. inn

LIV-191 A (D then, using the orthogonality of tehrois a rt

where A = (VOI (75) V &3 +4r s 41w 32W +s 82 M u~2 -i?)a(7

We estimate the terms in the above equation upto @(a2 .Terdet ~
of the surface is

V r -[. -11 Ca + fl2). ±.. (ar + e22)(711) "Wher
r so ;an8)+

The quantity A = IVOI may be estimated! as N

rszI+2( 2  +~! l Asymptotic development of the basic Row velocity
A~1 l~i2i. si 2 ejj -The equations (33) involve several expressions for the vortex iiuiuccd

velocity expressed in the moving system of coordinate. These expres-
a2 osis are developed in asymptotic seoia here.

+ 2 + 1 )1 0(,2. (7) _In the fixed system ofcoordinates
20 ~ (21# +lu + r,~)_

Thus(8)

2 2~ To express this in the moving system at a point P, we denote the
-1 I_._ 21 + ,-12+. ( (78) intersectin of the &I plane through P with the s axis as 0. Tb=

Consequently, IO10 O IOie tp

Performing the indicated crossproduct

A (79 ro V (fsinfcosv + sizWOO. + (fsiaasiom +csi*e
I ~2nd I+ 2Fsin~cosw9 - v) + Osiul

The second term on the right hand side of eq. (75), denoted C11, may We introduce the son-ditnensionalization of 53.1, but drop the tilde
be estimated as notation for the non-dimensional variables.

C11 V -Vs = _ (2 + 80) = (evsin Dcosip +sinWI)e 5  (train Dsian y+ cosuwt)ej,

(1) r3 10 VI ?.n 8 l+2erain~cos(w1-V)+ezfJsin2 E

The irs ta ineq. 73) deote C1,maybe r~e asExpanding the denominator binomially

The irs tem i eq (7), enotd C, my b wrtte asV = H-smuwt + grainst*in P)e, + (coswt + grainecog V9e,J90)

:This expression has to he expanded in Taylor series about the surface
where VS2 denotes the part of the spherical Lapadan operator con- -I = a + t2 I + OX23. Such vectorial manipulations are most easily
ta;in derivatives with respect to the anguar variables, and is defined 'done in a Cartesian representattion, and accordingly we express the
in q.(70). Combining the expressions for C1 Lad C11, we get -above as

~ [~ V 2i (82 = [-(sin W9+ rp)e. + (cOost + )ej (

1 2x j1 - 2c (scosul + Vsinwt) - Os'(ainut csd]*

The above expression is to be expanded in Taylor series about r = a. Expressing the above to consistent order
The fina! formult.for the curvature thetis V [-sin wte, + owe (I lioi o-f+Iau-0e

of 2 5 - a ai'7 ] +( - 2cosw.t(zws~wt+psindt)ele,)+52 (szc caaai

+9 [I ';2 1 V 2 (3)JI + 4(,2). (83) 2V, ZCos..,( + IFgin ,t))ea. _(CCs. iswt -6i.: 1 (2

The terms involving the spherical surface Laplacian may be simplified +2zj r coswt- I* sin wt)) eb!) + s~~)
b)use of the idenutit (71).



valuatlon as 0(4)

"At 0(s) the preasioas for the qmasttlaes nqid we.
(V-Vo).., = (-BZt.€.c.€S )•

(,, - 2c,,i(e med + uu•,.4))~ !Radius vs. norminazed time
42Z) . CMs(2•t). (0)

This can be expressed in terms of the spherical lhanonica by using 1.0
the relations given previously as

(V - Vo)j,.. -e, -,AY 2'(. ,p) + A'V 2 (G. W), (94) 0.9
wheom

AusA (sin 2.8+ icos 2.t), (95) u0.8

and the supercript * indicates complex coejuSation. 0.7
The other expresion requiring evauasos at this order is:

Vo. Val,.. , -0 cowt + finwl. 0.6
fy , + Y -1 . l , _y ,-1 _

"-- -wt" - n a--t- 0.5

0 1 2 3 4 5

This may be written in the farm F'Ague 2: Idlu componenta St OA(s) platted vs. Amor time.

v. v = (.yj'e(, V) + 'Yg-'(e, r)),

Where,
a - (Cosw,- •isin#A. (97)
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Abstract Introduction
The presence of ca•ities in a liquid am ham

signiftcant effects on its behavior and it flow The presence and dynamics of bubbles and cavities in
characteristics. in practical flow situations, theme a flow field can have significant effects of relevance to
effects cannot be fally understood or predicted engineering applications. These effects include erosion,
without addressing complicated, but nonetheless noise generation, damping of acoustic signals, degrada-
fundamental phenomena associated with the dy. tion of per'ormance...etc 1,. 2, 3, 41. This has instigated
namics, inteructions, and deformation of bab- a great interest in the study of the problem, and thou-
bles. The importance of then phenomena As" sands of publications have been devoted to the study
long been rmcog.iil, but has lrely bean ne- of cavity flows since the early work of Rayleigh [5) and
glected due to the diufculty of the asociated Besant [61. Due to the complexity of the general math-
mathematical problems. In this contribution, ematical and physical problem, most appoches have,
forbbme shpe flo ie ions in mdod to nontni- however, been limited to the study of spherical. isolatedform flow fieds b nd/oe a ue to tns ir fersug oa bubbles, or to elon•ted linearized two-dimensional cav-mahther u a onsidered using both 4 ities. More recently, with the advent of new maLhemat-
fully -boundary integal me" ical and computational tools, increasing attention has

R from boto ac in a f been given to the study of more practical cavity con-
titular cams am compervd, and the finu of figurations: namely noaspherical bubbles and bubble
applicaton of these methods f. then cam is clouds. Nouspherical axisymmetric bubble dynamics,
assessed, such as in the vicinity of a solid wall or a free surface

were most particularly studied (7, 8, 9, 41. All these
studies were restricted to the simplified case where theNomenclature bubble is in a quiescent fluid and where external forces,

rio, characteristic bubble size, if any ame potential, and act in a direction perpendicular
r, characteristic bubble time scale to any nearby rigid or free boundary. Advantage was
Lo, outermost characteristic flow lengthsale taken of the axisymmetry of the resulting problem. De-
o, chracterstic now time scale viations from these simplifying assumptions could sig-T0, buhble/boundary distance scale nificantly influence the results. In fact, in most practi-

To, interaction time scale, cal cases bubbles are neither isolated, nor in a uniform
C, ratio between rso and flow or in a quiescent fluid. Common examples include
t, time cavitation bubbles near propeller blades, age cavity

0, bubble velocity potential in moving frame dynamics near complex geometries in a gravity field,
#G, bubble velocity potential - - dynamics of bubble clouds, and bubble dynamics in a
4V, total velocity potential shear or boundary layers.
#o, basic velocity potential The dynamics of bubble clouds have als recently re-
9, velocity gradient sale ceived a lot of attention [10, 11, 12, 131, especially since
'h, velocity bigradient scale they have been observed to produce dramatic deleteri-
A,, ith component of the bubble radius ous effects, which cannot be explained with approaches

based on single bubble dynamics.
*also Reserh Professor The Johns Hopkins Univenity.
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All these studies but [9, 111, have considered only which satisfies the Laplace equation,
the contribution of the bubble volume change on the V106 (1)
cloud dynamics, and have either neglected bubble fluid
relative motion and bubble deformation, or restricted In our numerical work this assumption is not imposed

their approach to acoustic perturbations. on the "basic flow," i.e. to the underlying flow existing W

In a first approach, based on the method of matched in absence of the bubble,. In addition, compressibility

asymptotic expansions, we consider these effects in the of the liquid, or of the bubbly medium in the case of a

limiting configuration where the bubble size is small bubble cloud, can be considered in an wad-hoc" fashion

compared to inter-bubble distance (small void fraction), through a delay time for the propagation of inf3rmation

or where the bubble size is much smaller than some between the source and a field point, as well as through

characteristic length sca"' of the surrounding flow. a compressible model for the spherical component of the

These include problems of bubble dynamics in nonuni- bubble oscillations. The solution must in addition sat-

form flow fields (bubble dynamics in the flow field of a isfy boundary conditions at infinity, at the bubble walls

vortex or near a headform) and the inclusion of com- and at the boundaries of any nearby bodies. At all

pressibility. In these cases, the small perturbation is moving or fixed surfaces (such as a bubble surface or

chosen to express small but not negligible interactions, a nearby boundary) an identity between fluid velocities

This limitation is removed in a second parallel ap. normal to the boundary and the normal velocity of the

proach where a fully three dimensional numerical method boundary itself is to be satislied. For instaice, at Elie-

is developed. 'his method has been tested for bubble bubble-liquid interface, the normal velocity of the mcov-

dynamics in a quiescent fluid [14, 151, and has been re- ing bubble wall must equal the normal velocity of the

cently used for the investigation ot bubble dynamics in fluid, or,
complex flow fields such as vortical, boundary and shear V6b• n = V. - n, (2)
flows [16, 17). where n is the local unit vector normal to the bubble

In this contribution we will present first the model surface and V. is the local velocity vector of the mov-
used for the bubble dynamics (Section 1). We will high- ing surface. This equation expresses the fact that the
lig!' -ffects taken into account and attempt to describe bubble surface, 8(r, e, 0, t), is a material surface of the
the limits of validity of the model. We will then describe liquid
in general terms the asymptotic approach used (Section DB
2). In Sections 3 to 5 bubble behavior in nonuniform - = 0. (3)
flow fields, partik:ularly the flow about a headform and DThe bubble is assumed to contain noncondensible
in a vortex flow are described. In Section 6 the same gas as well as vapor of the surrounding liquid. The
method is used to describe the particular configurations pressure within the bubble at any given time is con-
of multibubble clouds with a particular note on the ex- sidered to be the sum of the partial pressures of the
tension of the method to the cas where the bubbly noncondensible gases, P1, and that of the vapor, P•.
medium is slightly compressible. In the following sec- Vaporization of the liquid is assumed to cccur at a fast
tions the studies described above will be extended to enough rate so that the vapor pressure remains constant
very large deformations and interactions. The numer- throughout the simulation and equal to the equilibrium
ical method used will be described in Section 7 while vapor pressure at the liquid ambient temperature. In
Sections 8 will consider the particular cases of bubble contrast, since time scales associated with gas diffusion
behavior in a sheared flow field near a solid wall, in a are much larger, the amount of noncondensible gas ii-
vortex flow, and for a multibubble configuration. Fi- side the bubbles is assumed to remain constant and
nally some conclusions are drawn from the results. the gas is assumed to satisfy the polytropic relation,

PsV" = constant, where V is the bubble volume and

1 Bubble Dynamics Model k the polytropic constant, with k = I for isothermal
behavior and k = %/c,, for adiabatic conditions. In

We will consider mostly cavitation bubbles where rel- previous studies the influence of heat transfer [181, amd

atively large bubble wall velocities are involved and gas diffusion [19] on the dynamics of a bubble cloud was

where, as a result, viscosity has no appreciable effect considered. We will neglect these effects in this presen-

on the growth and collapse of the bubbles. The study tation.
will also be restricted to the case where the flow veloc- The pressure in the liquid at the bubble surface,

ities remain small compared to the speed of sound in PL, is obtained at any time from the following pressure

water, and as a result, we can neglect or approximately balance equation:

account for compressibility effects. This is usually valid ,,) k
until the latest collapse plha.se. The above two ass., -np- PL = P. +Pm•) - Co, (4)
tions, classical in cavitation bubble dynamics studies,
result in a flow due to bubble dynamics that is poten- where P,, and VO are the initial gas pressure and vol-

tial (velocity potential, 06(x,t)) so that u& = Vq4, and ume respectively, a is the surface tension, C the local
curvature of the bubble, and V the instantaneous valu(



of the hibble volume. Here P, and Vo are known quan- by solving linearized forms of the equations presented
tities at t = 0. The curvature and the'normal, n, to the in the previous section. At the lowest order, e = 0,
surface 8 are given by: each bubble (of index i) behaves spherically as if in

V8 an infinite medium and the time dependence of its ra-
C = V • n iVy;. (5) dius, a•(t), is given by the Rayleigh-Plesset equation if

the medium compressibility is neglected, [20), or by the
Keller-Herring equation [21, 24) for example if a slight

2 Asymptotic Theory for Bub- compressibility of the medium is taken into account (see

ble Flow Interactions section 6).
The combination of all these first approximations of

The asymptotic method that we have developed is cen- each inner problem provides a description of the whole
tered on the following approach. Whether the prob- first order flow field (i.e. a distribution of sources or
lem considered is that of bubble interactions in a cloud sinks representing all bubble oscillations). The behavior
or that of the interaction between bubbles and a non- of this outer flow field in the vicinity of each buihble
uniform complex flow, the problem is addressed by a de- sets the boundary conditions at infinity at the following
composition of both time and space domains into mul- order of approximation, e, for the corresponding ymner
tiple scales. For instance, the dynamics of any bubble is problem. The same process is then repeated for the
obtained by considering an inner problem of scales rwo, a successive orders.
characteristic bubble size, and rTo, a characteristic bub- At all orders solutions of the Laplace equation are
ble time scale. The overall flow field, on the other hand expanded in general form as pherical harmonics and
is addressed by considering an outermost problem with the bubble radius equation is expanded in surface har-
scales Lo, a characteristic flow length scale, and To, a monics:
characteristic flow time scale. Using the same proce- -B
dure, an intermediate outer problem is introduced with 0(r, 0,up, t) =F, , (AjmT + -)Y (0,•), (7)
outer scales such as a characteristic length scale of inter- j=0 ,=-Jf
bubble distances or bubble/boundary distances, 10, and
an interaction time scale, r0 . Finally, a far-field acoustic 00 = ( = RIjm(t)}'jm(O,,), (8)

field scale can be introduced based on the length, cr6,, j=0 ,=-,
where c is the s'und speed in the liquid. In what follows, quantities indicated with a superscript

An asymptotic analysis of the problem can be de- " are inner variables, while those with a superscript -
veloped when these various scales are of different orders refer to outer variables. The Yp, are given by:
of magnitude. For instance, for bubble/bubble interac-
tions in a cloud or for bubble/flow interactions near a Y. P"-(cos 0) cos mtap; form > 0
boundary an asymptotic approach can be introduced jmn PI(cos 9) sin ImIV; form <0 (9)
when rbo is much smaller than lo, in which case one
could use the ratio between rho and 1o as the small per- panded in powers of a efo

turbation parameter, e. panded in powers of c as follows:
r X = Xo + eXl(r,,0V, t) + C X2(r,O, v, t) + O(c 3). (10)r= o (6)
To

The outer problem is associated with the macroscopic 3 Bubble Behavior in a Nonuni-
behavior of the bubbles in a bubble cloud or in a corn- form Flow Field
plex flow geometry. A bubble then appears as a super-
position of singularities of various orders. If more then Let us consider a basic flow field (flow in absence of
one bubble is involved, the summation is to be carried the bubble) that is potential and steady, with a veloc-
out over all the bubbles. The inner problem obtained ity vector V0 deriving from the potential 00. Let the
when the lengths are normalized by rjo, provides the pressure be po and the liquid density p. The velocity po-
microscopic details of the behavior of the flow in the tential satisfies the Laplace equation and the Bernoulli
vicinity of an individual bubble center (Bi). The pres- equation:
ence of the other bubbles or boundaries, all considered 1
to be at infinity in the inner problem, is sensed only by V7q 0 = 0, -(Vqo) 2 + = constant. (11)
means of the matching condition with the outer prob-2 p
lem. The boundary conditions at infinity for the inner Let 0' and p' be the potential, the speed and pressure
problem are therefore obtained at eadi order of approxi- in presence of the bubble. We now have similar equa-
mation by the asymptotic behavior of the outer solution tions as (11-12) with these complete flow variables. In
in the vicinity of B,. Thus, if one knows the behav- addition, far away from the bubble, we have
ior of all bubbles except Bj, the motion, deformation
and pressure field due to this cavity can be determined e = 00



and the continuity of the normal velocities at the bubble The matching conditions between the inner and the
wall can be written: outersolutions is obtained by formally writing that there

{V., ~ = ~ } 12 exists an intermediate region characterized by r*, ro <
( .n},.=m IF *•', n ,(12) r" <o 1 where both solutions are valid. This leads to:

We will consider now the bubble potential, g6, differ- rI iL) = 0. i(o)" (17)
ence of the potentials 0' and 4. To ra

0, = 0' - 00. (13) Taylor series expansions of the basic velocity

Since at infinity V6 and 4, decay to zero, and the pres- Since we are considering the case where the size of the
sure is po, the Bernoulli equation becomes: inner region is small compared to the characteristic

length of the basic flow, we can express the velocity

O+ 2 + V6. V 0 + E,,.= field in the inner region as a Taylor series expansion
t 2about the moving origin o.

= {42 2E) (14) Vo(-L = Vo+ F. VVoI+ t. Vo .i + +(('O)

where we have limited ourselves to the case where the In order to compute the various terms in Equation
basic flow is steady. The right hand side of the equation (16) we need the following quantities:
is a constant of the basic flow field.

At this time we can transform the above equations Vo(r) - V. = 9 ro i - 'Vo(o) +
to those in a coordinate system with origin o moving j 2
with a velocity prescribed VU, and decompose this ve- +
locity as (18)

VU = VeX + 0 x OM, (15) r4. - (QToI" VV'o) +

where V. is the translation velocity of o, and a is the (Vo(r) - V,)- o=
rotation velocity with respect to the fixed frame. I%7,02r0 F- ttva(o) • F +

Making the transformation, the system of equations
of the problem becomes, 4 being the velocity potential I 2 ( - T Va(o) Vo(o) + O
of the bubble flow in the moving frame: 2(Y•(r) - V.) r0
A-0=0; lim ==O; (V4..n)_,,g= o, ½ T7• H F. -tV o(o). I. Vo(o) +

{ OR } ~1. (g To -Oao)
V4. n = a- + (Ve - Vo) + 0 x aM. n2 , ( t .(o)) 2 +.- (19)

"="at where vo is the characteristic velocity of the flow field,

/ + I(VO)2 + (V0 -V.- _ a oM) . VO+ g the characteristic dimension of the velocity gradieint
at 2 and 'H the characteristic dimension of the velocity bi-

+(V2 2) + = PO(o) gradient.+ 2 ( - v )+ ; , ., = P ( 1 6 )
The pressure at the bubble wall and the pressure inside 4 Problems with a Plane of Sym-
the bubble are related through Equation (4). metry

Nondimensionalizations We now consider the problem of a bubble in a flow in the
case where there is a plane of symmetry. This assump-All equations can be normalized using the following tion is not fundamental and has been made to simplify

scales. In the outer problem: the analysis. The general theory is first developed, and
r = lo F 1o : the initial bubble wall distance is then applied to the problem of a bubble collapsing
4 fi.O = • 4 .t : outer velocity potential scale near a semi-infinite bluff axisymmetric body in a uni-

In the inner problem: form flow field.
R ro A r3 : the initial bubble radius
p = Ap1 3 Ap: pressure change scale Problem formulation
t = r To : characteristic collapse time We will choose a coordinate system Ozyz fixed to a

4 -ý/To r02/7o: inner velocity potential scale streamline, V, = Vo(o(t)), so that the z-axis is parallel
Vo = voV0 vo: basic flow velocity scale to Vo(o); Vo = v.(t)e.. If we consider the case where
VVo = a N : basic velocity gradient scale



the problem is symmetrical about the (Ozz) plane then 5. The characteristic rotation speed at the scale of
[ 0 ] 0 -at 1the inner problem is smaller than the collapse velocity:

0Vo(o) = o 0 o = (20)(a 0 0 ](0) 6. The collapse velocity is directly related to the
020l pressure by pvi.,d./Ap = 0(1).

As a result -.VVo(o) and F.VVVo(o).F can be written: The bubble is considered to be close enough to the
r ~ r 1submerged body so that at leading order, 0', in the

vo(o) + 2 outer problem, the body appears as an infinite flat wall.0• I +( a ] At subsequent orders, the curvature is taken into ac-
exe -0Z + 2Z , count. This means that the ratio of the bubble standoif

[Gr(0, 0') 1 distance to the local radius of curvature of the body is
= r G*(O, 0) of order e. In the inner problem, the effect of the wall

G# (e, 4,) is seen first at order c for the potential and at order C2

"for the bubble radius. The effect of the curvature only
intervenes at order 62 on the potential and only adds a

y Y= constant to the equations.

H, r 10 The system of equations described above reduces at or-71z
2 + 2'yz [ H, Order eo

74X2 + 2aZZ J, H# J der e0 in the inner problem to that of an oscillating

where we have transformed the quantities from carte- spherical bubble:
siern coo ae rdinat sfre the qunite fro cat- shriaube
sian coordinates (t, y, z) to spherical coordinates (r, 0, 0) o / with q = -2 , (2J)
with the polar axis along the z axis. In the above equa-
tions: where &0 is determined by the Rayleigh-Plesset eqtia-

Oa2 8a2 tion
^1 a7' 8:2 O. 3 - fD3

0a, 4=a (21) 2oo+i4 )(4

Since the problem has a plane of symmetry, we shall 2V I
take •=•w(t)ey, /

Sx oM =w r (ey x e,). (22) where W = APRo/o' and P = (p.. - p.)/AP, with the

initial conditions: a0 = I and Ro = 0. In the outer
We nondimensionalize w as w = fl(C, where fl is the problem the general solution (7) reduces to
characteristic rotation speed of the frame. 1 1

= o(i) Po(coeo) +~~r)(5

D o m a in o f v a lid ity o f t h e a s y m p t o t ic T h m atchin g co n b w th e t pro ble m s

solution The matching condition between the two problems
can be written

T he choice of the relative sizes of the six nondim ensional + Cj I(F) + C2ý 11(f) + O ( 61)

parameters of the problem to consider was determined [o +
first by application of the least degeneracy principle. + 21
This was then relaxed in order to obtain solutions in 0. [•(') + e4,(i) + ez,,(i) + O(e)j (26)
some practical physical configurations. The analytical which leads to:
and numerical solutions presented below are based on
the following sizes of these parameters relative to e. c= B0 Q) = q(1); lim, = (27)

1. The characteristic length of the inner problem is
smaller than that of the outer problem, ro/lo << 1. Order c

2. The characteristic velocity of the initial flow, o, After accounting for the solution at 0(*) the equations
is of same order as the characteristic collapse velocity, ofteroblemunt f(r become:
V0 = O(ro/To). of the problem at 0(e) become:

3. The characteristic basic velocity gradient is of the , 0; lim "
order of e in the inner problem: OTo = 0(c). =-Cm 2

4. The characteristic velocity bigradient at the scale + ýj -2of the inner problem is far smaller than that of the inner GrAo
problem: _Toro =- 0(c). O9 &2 'f=' &



fa; + i a ,0,*0 a824o+ (28) At order e0 , the outside pressure Ap(t) is taken to be

W, + +1 FINf &
2  the pressure in the fluid in absence of the bubble along

MVOt)AO Fthe trajectory of a fluid particle. At higher orders of c,

of---e + p,(t)A F(O, 0) 3=;3Kx-' the gradient and bigradient are also taken into account
Jf.R0  while following a fluid particle.

where A fourth order Runge-Kutta procedure is used to

solve the ordinary differential equations presented ear-

G, = 2a2cos0sinGcoso +a1(sin 2 0 Co-2 p _ co02 9) lier. To illustrate the method, a Rankine body with a

F = al Sin a cos 0' + a2 COS (29) radius of 10 centimeters with flow at infinity advanc-

ing at a velocity of 1.15 m/s was selected. Figures 1

Resolution of the order c through 4 show some results obtained on bubble be-

havior near the Rankine body. Figures la through Ic

Using the general solution of the Laplace equation, the show a case where the interaction between the bubble

limit condition at infinity on 01 leads us to take: and the flow field is significant. The initial bubble ra-

dius is ro = 1 cm. and its distance, 10, from the wall is

A13,,, = 6j q/2, (30) such that e = ro/Jo is equal to 0.3.

Since the problem is symmetrical about the (Ozz) plane, Figure lb shows the trajectory of the bubble cen-

there are no terms in sin V.,and we do not have to con- ter along the body, and Figure ic shows the pressure

sider m < 0. Equation (16) becomes: and velocity variations with time. In the initial phase

t < 2.0 the bubble sees a pressure drop. Later, the

-+ + 1 29= . pressure rises back towards the ambient pressure. This

k3+ velocity is also that chosen for translating the origin

2 Y22 of coordinates in which the bubble shape is prescribed.

3A00o2Y2, +alf? o(Y 2o - )' Figure la shows, overlaid on each other, the bubble coil-

SB1  Y + + 1tours at different times (from t - 0.ITo to 2To during

2+ 'j , - M j nq-.+ BimYJm + A,the bubble growth and collapse. T he orientation of the
2 ~ o;bubble relative to the body is the same as illustrated

S2q2.Rin,,, -2-.qay2l + :in Figure lb which shows bubble positions versus time.
3fto .It is apparent from the cointour plots that the bubble

__% Crl(-_- Y2o) + p/ov.(OlY1 l + a 2 Y1o) moves toward the body wall during its collapse. Due toW
RO 6 the velocity and pressure gradient around the body the

- /woY3K-p/311c- (31) bubble elongates and in fact rotates around its center

of mass. Initially, the side of the bubble surface facing
For j > 2 we have a homogeneous linear differential sys5- an intermediary direction between the downstream di-

tem where the initial conditions are zero. The solution rn anthedwall direction fltten t. Aoentrant
is tereoreRij = Bp. 0;Vj 2.rection and the wall direction flattens out. A reentrant

is therefore Rtio = Bthe n- 0; V t > 2. jet is then produced perpendicular to that face. The

The equations for the non-zero terms at order e as direction of the jet appears to change with time in a

well as all equations obtained at order t e can be found fashion indicating increased influence of the presence of

in Reference b 221. At order f the bubble behavior is the wall. The computations shown in the figure stopped
modified by both the presence of the wall, which at when the bubble wall touched the origin of coordinates.

this order only appears as a flat plate, and the presence This moment will be delayed in future computations by

of a pressure gradient. At the following order a2 the selecting an adequate translation of the origin of coor-
curvature of the wall comes into play as well as the dntsta spredclrt h al

velocty bgradent.dinates that is perpendicular to the wall.

velocity bigradient. Figure 2 shows the influence of the distance of the

bubble to the wall, or e, on its shape history. Bubble

Application to Bubble Dynamics near collapse contours are shown for = 0.15,0.3 and 0.6. As

a Headform expected, deviation from sphericity increases with the
proximity to the wall. Due to stronger shearing action

We consider now the dynamics of a bubble near a semi- closer to the body approaching the wall has tib effect

infinite bluff body. The velocity potential considered of increasing bubble stretching and elongation during

is that due to a superposition of a uniform flow and a its growth, then reinforcing the reentrant jet formation

source of intensity Q located at the origin: during the collapse. For e = 0.3 and e = 0.6 the com-

Q ( putation stopped when the bubble surface touched the

S= VoaZr+ __ (32) origin of coordinates. However, due to the weak nature
T of the interaction for c = 0.15 the collapse is completed

Thidssimulates the dflowfield about a Rankine bodY-of with no reentrant jet and is followed by a bubble re-

radius, R = 1/V and stagnation point at X =-R/2.w



bound or second growth that is not shown on the figure. the fixed frame. The quantity #& represents the change
Also, as expected, a similar effect as in figure 2 is to the potential of the flow because of the presence of

obtained if the distance to the body is maintained con- the bubble. Because of linearity, the function o, also
stant while the bubble size is changed. Figure 3 shows satisfies Laplace's equation and conditions described in
such a case, where the distance between the bubble cen- Section 3.
ter and the wall is maintained at 3.333 cm, while the We now consider the moving system of coordinates.
bubble size is varied from 0.5 cm (e = 0.15), to I cm The coordinates are initially coincident with the bubble
(= = 0.3), to 2 cm (e = 0.6). Here too the jet is seen to center, and move with the flow at that location in the
rotate to become closer and closer to perpendicular to absence of the bubble while the Cartesian axes remain
the wall. parallel to those in the fixed frame. Let 0 denote the

bubble velocity potential in the moving frame.

5 Bubble/Vortex Interaction 06(x, t) = (x' + o, t) = W(x', t) (34)

One of the most fundamental phenomena observed in where x' is x referred to the moving frame. The velocity
flow cavitation is the capture of bubbles/nuclei by vor- V is expressed in the moving frame as
tices. The problem of the interaction of a single gas bub- r
ble and a Rankine line vortex is amenable to treatment V = -e,, x el, (35)
via analytical techniques. Here we also apply to this , I

problem the method of matched asymptotic expansions where e, is a unit vector along the shortest line joining
described above. To do so we assume that the length the point at which the velocity is to be measured and
scale characteristic of the bubble, rb, is small compared the z axis of the fixed system, and I the length of this
to the initial distance from the bubble to the vortex, d. line. The velocity of the moving coordinate system is

The analytical results have been tested for a plau- then:
sible set of parameters, and yield physically reasonable r
solutions. The solution shows that the bubbles are at- Vo = - [- sinwt el, + coswt e2.,, (36)
tracted towards the vortex center, and that a jet ap-
pears on the side of the bubble opposite to the flow By maintaining the roving cartesian axis parallel to
direction. Further investigation of the parameter space
and computation of higher order corrections are cur- 4) as in Section 3, with w = 0.
rently underway. Dimensional Analysis

As in the previous section the flow is assumed to be
Problem formulation divided into two regions, an external region where the

effects of the vortex dominate, while the region close toConsider a spherical bubble initially at rest in an in- the bubble is dominated by its dynamics. The length
compressible, inviscid liquid at a distance d from a line scale characteristic of the bubble region is rf., the initial
vortex of strength r. The pressure at infinity is pe, bubble radius, while the outer problem has as scale d.
and the velocity due to the vortex alone (i.e. excluding We will consider the case where e = rio/d is small. The
any bubble effects) isVo. To perform the calculations physical quantities entering the problem are p~o and rb.
we consider, as in the previous section, two coordinate (from the bubble), and po, r, and pt from the liquid.
frames. The first is a fiaed frame which is convenient for The matching between the inner and outer problem
describing the overall flow, one axis of which coincides and the application of the principle of least degeneracy
with the vortex axis. The second is a moving frame leads to the condition that the scaling for the velocity
which has its origin initially at the center of the bubble V be such that it is of the same order as the bubble
and moves at the liquid velocity in the absence of the deformation velocity
bubble. We denote the location of the moving origin by ro. IVl "" 2--• o (37)

With the same assumptions as in the previous sec- V zd T(

tion the equations of the problem, both for the flow The nondimensional velocity is then defined by
and the boundary conditions on the bubble are the ones -= wF/2rd
presented in Section 1. Since we are interested in the t0  (38)
modification in the flow caused by the presence of the
bubble, it is convenient to introduce as in Section 3 the This imposes the following restriction on the gradient
reduced or bubble potential Ob, defined by of the vortex velocity field

26 = D = 0,'- 0. (33) (VI - Vo) - rio-VV t (39)

where 4). is the velocity potential due to the isolated We will denote
vortex and f is the angular cylindrical coordinate in V - Vo = e -bolVd, (40)



An important quantity is the rotation frequency of a, 3 ) (
particle around the vortex line. This is given by +fl(MA6 2 + A'- )} + -o a + 2r.+

r= (41) + n(A6,-'2  + A ) + )( rig. =

The ratio of this frequency and the Rayleigh frequency _3k(Isr, 2Wr-. ( (1-1)( + 1))
is seen to be +4• +" R. k 2 +

w T . r/2wd (42) +n(A6j2 + A'06 ) + fl2 (Pu6', + R6''),
dTo -- () where

-Ro

Asymptotic expansions - (cowt - isinwt). (49)

After expanding the equations of the problem described Examination of the above equation reveals that, ex-
earlier as indicated in Section 2 these are solved up to cept for (l,m) = (2,2), (2,-2), (1, 1), and (1,-1) the
and including terms of 0(c). As in the previous sec- equations are homogeneous second order linear differ-
tion problem upon introducing the expansions, the lead- ential equations (initial value problems). Since we hIave
ing order problem 0o reduces to the spherical oscillating assumed the bubble starts from a spherical shape, and
bubble problem. This problem has solution is initially at rest, the solutions to these equations will
•o = qo/r = -]•Ao/r, (43) vanish identically. For the four non-trivial cases, the

differential equation satisfied by the particular radial
which yields the following Rayleigh-Plesset equation for component may be written as follows:

Ro l+ 3R 
1 - 4&R 1 1 1 =

22W-1

where 4- -2v2flRoc wt; (50)
P9 = L901; 7P. = P" (45) 1_pea _o a,- •z,_

(4O POO-+3RoJ ll._m - 4& i ,-1
Order e' WR,..-. -2v"2-fl2 Rosinwt; (51) O

The equations at 0(c) are +a

V21= 0 (46) RD4 + tI_(2A + 1h)R122
subject to T + 3

8r-2% , - +flVd.er, (47) -- + 2  &A sin2wt- U-1---c2wt ;(52)

an d & A M 2 A 1. - - i ( 2 - \ & R 2 -

+o+ ( +- R,+ (2 4ffie 2+.51T 2  =at, 2•R VR 2- 2 &A

+AoflVd - e, + Vo. -VlI, UP,& r + +2 n ( o 2wt + sin 2wt ,(53)

_ _2W _i (1-1)(1+2) (48) where

out RC Rill rill +" rll.-I I.-I ""rill -- rim.-n

Introducing the expansion for the function R, and 0 i='
similar to that in Section 2, with the difference that the R12 2 r122 + r,,,_2 R1 2 .- 2 = 1 22 -2 r2.-2 (54)

,.(0, o,) are defined here as i

In terms of these new coefficients the surface of the
\[ (n - ImI)fp~l~ e)xpimo bubble (in the moving coordinate system) is given by(- + -Iml)!
' - (n +IlmI)! r = Bo + c [(Ril cosp - Rii.,_ sin v) sin 0+

the dynamic boundary condition becomes: ( 1 2 2 coiS 2W - R12 -,2 sin 2w) sin2 e] + O(e2 ). (55)

& {l- . + 2 (jigim - (&) , + +



Results and Conclusions 6 Bubble Cloud Study
We present here some results from a numerical study Consider a cloud of N bubbles of radius rb, i = 1,--- , N
using the above equations. The equations involve 4 P&" immersed in a liquid. The bubbles are initially assumed
rameters - 7P,, ., fl, W and the perturbation parame- to be at rest and at equilibrium with the surrounding
ter c. In the following we have not attempted to map fluid. The characteristic radius of the bubbles is rio.
the parameter space of the above equations, but rather We denote the distance between bubbles i and j as 1,,1
demonstrate the characteristics of their solutions for a which we take to be of the order of the characteristic
particular choice of the parameters and show that they distance o. We define as before t as ria/io.
make physical sense. We choose the following for the The matched asymptotic expansions nethod
physical parameters: P. = 1.03 x IONPa, RO = 10- 3 m, described in the previous sections was impleoented ear-

d 7 5 x 10- 2m, 1' 1.2m 2/.s, P. = 2 x P10 3 Pa, k = Iier in [11, 251 to study the behavior of such a bubble
7 x 1TiN/m, Py o =h 3 x 10fPa, p = lOkg/m3 , k fio 1.4. cloud. Here we will only sketch an outline of the model.

This yields the following for the non-dimensional pa- We assume that the characteristic geometric scale of
rameters: = = 2.9126 x 10-l,, f = 1.94174 x I0', , the cloud (Io), is small compared to the outside driving

9 6.7961 58, = 0.w = 7 3 764 x0-3. 1 -i = pressure field scale (Lo), but is much larger than the
9.85 x e0-aion = s.05w a0( 7.53 x 10-i. typical bubble radius rwo. Therefore, to first approxi-The equation systems at 0(1) and 0(e) are inite- mation, the same driving pressure is a~suimed to be. fr1

grated using a simple fourth-order accurate Runge-Kutta at the same time by all bubbles in the cloud. Varia-

scheme. The results from this trial run are shown in Fig- tions of this pressure due to the position of each bubble

ures 4-6. The results indicate that the expression for the

bubble becomes multivalued for times after 4.6T0 , i.e. are only seen at the higher orders. In a more general
case, the pressure felt by each bubble is dependent onthe origin of the local coordinates lies outside the bub- the bubble location and on the modification of the out-

ble after this time. Thus results of the integration up to* side flow field by the presence of the bubble cloud. We
this time are shown. Figure 4 shows a cross-sectional are presently implementing such an approach which ac-

view of the bubble in the z, y plane at various times. c ut fre the cmp res bi ty ofc h a wo-phaseibubbly
The ubbe mtio an deormaion an th foma- counts for the compressibility of the two-phase bubbly

The bubble motion and deformation, and the forma- medium.

tion of the jet are clearly seen. The bubble initially col- Since e is the ratio rw/lo, it is directly related to the

lapses almost spherically (while moving with the vortex void fraction here assumed to be low. At the lowest or-
flow), and reaches a minimum at approximately 1.55T0, der, e = 0, each bubble (of index i) behaves spherically
and grows till it reaches a maximum size at 2.9To. It as if in an infinite medium and the time dependence ofsubsequently collapses and shows the formation of a jet its radius, ai,(t), is given by the Rayleigh Plesset equa-
on the side opposite to its direction of motion, and di- tion, [201. If the compressibility of the medium is to be
rected towards the vortex axis. The computations are included, then an equivalent equation such as in [24] can
stopped at 4.6To when the bubble no longer contains be used. This first approximation of the whole flow field
the origin of coordinates. Figure 5 shows the trajectory (a distribution of sources or sinks representing all bub-
of the v- = 0 and cp = ir points in this cross-section. Fi- ble oscillations) sets the boundary conditions at infinity
nally Figure 6 shows cross-sectional views of the bubble at the following order of approximation. The same pro.
at the same times, but in a normal plane. This plane cess is then repeated for the successive orders. Up to
contains the z axis and the line connecting the moving the order 0(0), one can show, [11, 251, that the influ-
coordinate origin and the vortex. The fact that the jet ence of the remaining bubbles on each bubble Bi, can
is directed towards the vortex axis becomes apparent in be schematically replaced by the influence of a single
this view. equivalent bubble centered at Gi. The growth rate and

Quite obviously a more systematic study of the pa- position of this equivalent bubble are determined by
rameter space is required. Also, as in Reference [28] the distribution and the growth rate of the other cavi-
the results of the asymptotic analysis and of the 3D ties. In general, this fictitious bubble equivalent to the
boundary element program 3DynaFS must be corn- "rest-of-the-cloud" and the corresponding "cloud cen-
pared. Qualitatively the same types of results are ob- ter" and "equivalent bubble intensity" are different for
served. The expression used for the motion of the mov- each bubble. If fi, is the angle between the centers'
ing coordinate system must be refined to prevent bubble direction BIGI and the direction of a field point BIM,
function becoming multi-valued so early in the collapse. the equation of the surface of the axisymmetric bubble
These and related aspects are items of current research. BA can be written in the form:

R(G#,,'p, t) = a',(t) + Fai(j) + 62[ai (t) + f()Co3s0,,l
+f3[a;(L)+ f+3 (). cos oi, + g C(t)p 2(cos o,,)l + 0<f),

where P2 is the Legendre polynomial of order 2, and ar-
gument cosOij. The components, a,, f. and g',, satisfy



linear second order differential equations which can be Substituting from (59) for the velocity in the equations

written in symbolic form as follows: of motion we obtain

1, )P.(o, CO,. 70+L [. -+(V..# h] =0, (61)

Here Pi(yp) represents a differential operator of the sec- and
ond order in time acting on the radius component mi. ( 8# 1
one of , of the bubble i ; l'oj is the initial dis- 2t +2 i + h = 0 (62)
tance between the bubbles Bi and Bi; j((yz. ...... y'-i) We now consider the cases where the length scale
is a known function of the terms (yi), determined at the
preceding orders; m is an integer indicating the order of L. s ¢..io is much larger than the length scalesta and
the spherical harmonic; 8j, is the polar angle measured r&, so that
wth respect to the line connecting the center of the bub- rio < to < L, (63)
ble i and the center of the equivalent bubble B.; and n
is an integer indicating the order of the approximation. and define a new parameter M such that

The detailed expressions can be found in Reference riao rio/ro ((14)
[11. The behavior of B, can then be computed by inte- M - = .
gration of the obtained system of differential equations
using a multi-Runge-Kutta procedure. The behavior We can identify M with the Madc number, anid use it
of the whole cloud is thus obtained. Earlier studies as a perturbation parameter. The details of this calcu-
[11, 25, 181 have shown that collective bubble behavior lation will be demonstrated in a later paper [291, and
can have a dramatic effect on both bubble growth and we only outline the approach here, and present some
implosion. Specifically, bubble growth is inhibited by preliminary results.
bubble interactions, while bubble collapse is enhanced. The problem can be decomposed into an acoustic
This cumulative effect comes from the fact that the in- part and a hydrodynamic part. The acoustic part con-
teraction reduces any driving pressure drop as a result sists of the "far" field corresponding to the pure liquid
of the other bubble growth, while it increases the col- far away from the cloud region, while the 'near" field
lapse driving pressure as a result of the other bubble is that in the neighbourhood of the bubbles, and corre-
collapse. Due to tht. cumulative effects of the collapse sponds to the hydrodynamic part of the problem. The
of all the bubbles in the cloud, each bubble ends its col-. near field can be decomposed, as before, into an -inner"
lapse under the influence of a pressure which is orders of' (corresponding to the neighborhood of a bubble) antd
magnitude higher than that for an isolated bubble (see *outer" field (corresponding to the rest of the cloud).
Figure 9 described below and corresponding discussion) It turns out that if we take M - c 3 the inner equa-

tions are almost identical to the incompressible ones
Extension to a slightly compressible liquid until O(M), except that they account for the time re-

tardation due to the compressibility of the medium.
The incompressibility approximation assumed above can Performing the analysis with this assumption yields
be relaxed. In this section we extend our asymptotic that the preceding equations hold, with the equation of
treatment of a bubble cloud to the case of a slightly the bu -le radius at 0(c') modified from a Rayleigh-
compressible liquid. Briefly the method followed is that Plesset form to a Keller-Herring form [211
of expansion in two parameters - the Mach number This equation can be written as
M, and the parameter e introduced earlier. We de-
rive O(M) corrections to the in.-mpressible equations p 3( -)ai + (1 - - =
(valid till O(c3) discussed above. c 3c

To consider the effect of compressibility we consider + it + +a d (65)
the following equations of motion: P \ C - ],5

R ( + (u.V)P) + U =0 (57) where
atP = Poo +P -- (66)

( ) a

" + u p (58) and c is the sound speed.
This model is being used in in combination with the

dp = C2. h - dp (59) bubble interaction model to extend the study to the
do j ". Pcase where a slight compressibility of the liquid is taken
The flow is assumed irrotational, so that we can define into account. Figure 7, for instance shows the influence

Sof a finite sound speed on the behavior of a bubble in aa velocity potential o iiecniuain
6-bubble configuration.u= (60)



7 Boundary Element Method for present here, can be found in (271. In order to proceed
with the computation of the bubble dynamics several

Three-Dimensional Bubble Dy- quantities appearing in the above boundary conditions
need to be evaluated at each time step. Tile bubble

namics volume presents no particular difficulty, while the unit

In order to enable the simulation of bubble behavior normal vector, the local surface curvature, and the local

in complex geometry and flow configurations includ- tangential velocity at the bubble interface need further

ing the full non-linear boundary conditions, a three- development. In order to compute the curvature of the

dimensional Boundary Element Method was developed, bubble surface a local bubble surface three-dimensional

This method uses Green's identity to solve Laplace's fit, f(z, y, z) = 0, is first computed. The unit stormal

equation. If the velocity potential, 4,, or its normal at a node and the local curvature can then be expressed

derivative is known on the fluid boundaries (points M), using Equations (5).
and 0, satisfies the Laplace equation, then 4 can be To obtain the total fluid velocity at any point on the
determined anywhere in the domain of the fluid (field surface of the bubble, the tangential velocity, Vg, must

deerined a)usnywther idnthedmanoftefli:(il be computed at each node in addition to the normal
points P) using the identity: velocity, Vn = 0l/an n. This is also done usi,,g a local

ro ~ aI 1surface fit to the velocity potential, 01 = h(.r, yg, :C'J M- I an IMP MP I(n ing the gradient of this function at the considered node,
and eliminating any normal component of velocity ap-

where as - f= is the solid angle under which P sees the pearing in this gradient gives a good approximation for
fluid. the tangential velocity

a = 4, if P is a point in the fluid Vt = n x (V41 x n). (69)
a = 2, if P is a point on a smooth surface

With the problem initialized and the velocity poten-
a < 4, if P is at a corner of the discretized surface. tial known over the surface of the bubble, an updated

The advantage of this integral representation is that it value of a4,/an can be obtained by performing the ilte-

effectively reduces the dimension of the problem by one. grations outlined above, and solving the corresponding

If the field point P is selected to be on the boundary matrix equation. The unsteady Bernoulli equation canl

of the fluid domain (a bubble surface or on any other then be used to solve for D4,/Dt, the total material

boundary), then a closed system of equations can be derivative of 0,

obtained and used at each time step to solve for values D04 Ah+ P - P6 gL + L 2 (

of 04,/On (or 40) assuming that all values of 4 (or 04S/On) D" 02 p g.
are known at the preceding step. D40/Dt provides the total time variations of o at any

To solve Equation (66) numerically, it is necessary node during its motion with the fluid. The second term
to discretize the bubble into panels, perform the inte- on the right hand side is the hydrostatic pressure and
gration over each panel, and then sum up the contribu- is introduced to account for cases where the influence
tions to complete the integration over the entire bubble of the gravitational acceleration is not negligible. Using
surface. To do this, the initially spherical bubble is an appropriate time step, all values of 46 on the bubble
discretized into a geodesic shape using flat, triangular surface can be updated using 0 at the preceding time
panels. After discretizing the surface, Equation (66) step and DO/Dt. In the results presented below the
becomes a set of N equations (N is the number of dis- time step was based on the ratio between the length of
cretization nodes) of index i of the type: the smaller panel side, i•,,. and the highest node veloc-

.( ) = F(68) ity, V,,.. This choice limits the motion of any node to
n - (Bij • 4j) - ar4i, (68) a fraction of the smallest panel side. It has the great

advantage of constantly adapting the time step. by re-

where Aij and Bij are elements of matrices which are fining it at the end of the collapse - where I.n becomes

the discrete equivalent of the integrals given in Equa- very small and V,.. very large - and by increasing it

tion (66). To evaluate the integrals in (66) over any during the slow bubble size variation period. New co-

particular panel, a linear variation of the potential and ordinate positions of the nodes are then obtained using

its normal derivative over the panel is assumed. In the position at the previous time step and the displace-

this manner, both 4$ and 80/Oan are continuous over ment,
the bubble surface, and are expressed as a function of im
the values at the three nodes which delimit a particular dM= In+Vt& d. (71)

panel. Obviously higher order expansions are conceiv-

able, and would probably improve accuracy at the ex- This time stepping procedure is repeated throughout
pense of additional analytical effort and numericalhn cm- the bubble oscillation period, resulting in a shape his-

pense ~ ~ ~ ~ ~ ~ ~ tr of addtina anlyialebotanlnmriascm
putation time. The two integrals in (66) are then evalu-
ated analytically. The resulting expressions, too long to



8 Presence of a Viscous Basic Accounting for at-infinity conditions, the pressure at

Flow the bubble wall, PL, is related to the pressure field in
the Rankine vortex, PO, by:

Cavitation bubbles seldom grow and collapse in a qui- [Pt. P0  O, [,12
escent fluid or in a uniform flow field. To the contrary, L - a 2 (79)
cavities are most commonly observed in shear layers, P t 2 I V a bubble wall
boundary layers and vortical structures. To study bubt- The nondimensional basic flow pressure, 70, normalized
ble dynamics in a nonuniform flow field, let us consider with the ambient pressure, Ps., is known and is given
the case where the "basic flow* of velocity Vo is known by:
and satisfies the Navier Stokes equations:
avo = y -n I -

+ Vo. VVo =-VPo + 'V 2 VO. (72) 2 a,

If the basic flow is potential the application of the Bound- 7 0 (0) = 1 - 2 F > N,
ary Element Method is straightforward and there is no 2 10,-
need for any additional assumptions. where lengths are normalized by R..,, the maximum

In the presence of the oscillating bubbles, the veloc- radius the bubble would achieve in an infinite medium
ity field is given by V which also satisfies the Navier if the pressure drops to the value on the vortex axis.
Stokes equation: The swirl parameter fl, defined as,oV pO- + v. vv = -- vP + vv. (73) n = --( r (80)WP P.. 2ra, 80
Both V and Vo also satisfy the continuity equation.We can now define bubble flow velocity and pressure characterizes the intensity of the rotation-generated pres-
variables, Vb and Pb, as follows: sure drop relative to the ambient pressure. The pressureon the vortex axis is (1 - f0) and goes to zero if it = I.
Vb = V - V, AP = P - Po. (74)

If we assume that this bubble flow field (Vb and Al) is 9 Computational Results and Dis-
potential, we can use a method similar to the one de- cussion
scribed in the previous section to study the dynamics.
This assumption implies that, even though the basic We present in this section some results obtained with
flow is allowed to interact with the bubble dynamics the Boundary Element Method code (3DynaFS), and '
and be modified by it, no new vorticity is allowed to be compare them with results from the a: iiptotic expan-
generated by the bubble behavior. Within this restric- sion method. The accuracy of the numerical code was
tion, we have evaluated by using simple test cases known in the liter-

ature such as the collapse of spherical and axisymmet-
Vb = b, 0. (75) nic bubbles. For spherical bubbles, comparison with

By subtracting (72) from (71), and accounting for (74) the Rayleigh-Plesset "exact" solution revealed that nu-
we obtain merical errors were less than 0.14 percent for a dis-

cretized bubble of 162 nodes. The error dropped to

+2 + Vb 0V.V+ 2 +VbX(VxV).(76) 0.05 percent for 252 nodes. The two discretizations -
[Ot 2 P] 162 nodes (320 triangular panels) or 252 nodes (500

This equation, once integrated, may be considered the panels) - are usually selected for most of our nonspher-

equivalent of the classical unsteady Bernoulli equation ical bubble dynamics runs. However, for the purpose

in potential flow. As an illustration consider the case of studying multibubble interactions we were limited to

where the basic flow field is that of a two-dimensional 102 node bubbles (200 panels) due to the limitations
wRaie vthex bc flowield wisthat oof our 32 MBytes MIPS RC3240 computer. For an 8-bubble configuration the code uses about 30 MBytes

1" for 102-node bubbles. With this "coarse" discretizationV* = 2rr r > ;the error is about 2 percent on the achieved maximum

[rr radius, but is very small, 0.03 percent, on the bubble pe-
Vs = wr = F- r < a,, (77) riod. (This can be seen in figure 9). Comparisons were

2rae' also made with studies of axisymmetric bubble collapse
available in the literature [8, 41, and have shown, forwhere ac is the radius of the viscous core, [" the vortex aviblinteierue184,adhvesofrcirculato and i theradiu f tagent v lcousci. I thartex the coarse discretization, differences with these stud-circulation and Ve the tangential velocity. In that case

the Bernoulli equation can be replaced by:

"-+1 I bI2+p = constant along radial direction.(78)0
2 p



ies on the bubble period of the order of 1 percent. Fi- sical case of bubble collapse near a solid wall. In all
nally, comparison with actual test results of the complex cases, the reentrant jet formed is directed towards the
three-dimensional behavior of a large bubble collapse in center of the bubble cloud, or here, the center of the
a gravity field near a cylinder shows very satisfactory square. As expected, the asymptotic approach gives a
results, [15] (see Figure 8). The observed difference in very good approximation at low values of t, but fairs
the period was shown to be related to the confinement poorly for high values of e (note that for e = 0.5 the
of the experimental bubble in a cylindrical container bubbles touch at their maximum size). The above con-
[271. clusions on the asymptotic approach have to be tern-

Figure 9 compares the results obtained with the 3D pered by the fact that all cases presented addressed rel-
code with those given by the asymptotic approach. The atively intense bubble collapse (with a strong reentrant
bubble cloud is subjected to a sudden pressure drop, jet formation). The relevant nondimensional param-
and for ease of interpretation, only symmetric cloud eter to characterize the collapse intensity is the ratio,
configurations are considered. Results for one, two, four P9 ,,., of the gas pressure to the outside pressure at max-
and eight-bubble symmetric configurations are shown. imum bubble size. This ratio is about 0.06 for the cases
For the two-bubble case the bubble centers are sepa- shown above. For higher values of P71,. a smoother col-
rated by a distance lo, and the initial gas pressure in lapse followed by a rebound occurs, and the asymptotic
each bubble is such that the bubble would achieve a approach fairs much better (281. Figures 1I1 ald 12 il-
maximum radius Rm,,5 = R60 = 0.0710 if isolated. The lustrate further the three-dimensional behavior of the
four-bubble configuration considers similar bubbles cen- bubble, using 198-node bubbles. Figure 1 I shows two
tered on the corners of a square with sides of dimension cross-sectional views of the bubble shapes at various
lo. Finally, the eight bubbles are located on the corners times during the collapse for a strong interaction case
of a cube of side lo. The figure presents the variations (e = 0.498), for a 4-bubble configuration. The first view
with time of the distance between an initial bubble cen- shows bubble contours in the Z = 0 plane, plane of the
ter and both the point closest to (< 0), and the point four bubble centers. In this plane all four bubbles can
farthest (> 0) from the "cloud center". These points be seen, and the reentrant jet appears very wide giving
are selected because they lie along the direction of de- the bubble at the end of the collapse the appearance of
velopment of the reentrant jet the farthest point be- a "deflated balloon". The second view is a diagonal cut
coming the tip of the jet which penetrates the bubble though the centers of two of the bubbles. In this view,
during the collapse. As we can see from the figure, the the reentrant jet appears much more pronounced. 'rhe
BEM method clearly shows that for bubbles oscillat- combination of the two views illustrates very clearly the
ing in phase the period of oscillation increases with the reentrant jet formation, its direction towards the center
number of interacting bubbles. The maximum bubble of the square, and gives a qualitative idea about the
size along the jet axis is however not significantly mod- intensity of the collapse. In this case, due the geome-
ified. The jet advancement towards the "cloud center" try of the configuration, the jet has a two-dimensional
increases with the number of bubbles. This is seen by flat shape, rather than a conical axisymmetric shape.
the crossing of the r = 0 line by the upper curves on This clearly provides one reason for the failure of the
the graph which becomes more and more pronounced asymptotic approach for this case, since the expansions
with an increase in the number of bubbles. This effect in that approach were stopped to an order (03 ) which
is more pronounced for larger values of e (see Figure does not allow the description of any azimuthal bubble
10). shape variations. Figure 12 presents a 3D view of the

Figure 9 also compares the results of the BEM code bubbles towards the end of a relatively weak collapse
with the asymptotic approach. It illustrates the lira- of a 4-hubble configuration (e = 0.185). Since the case
itations of the incompressible asymptotic approach as shown is symmetrical and all bubbles have the same
it stands now. When the number of bubbles increases shape, this diagonal view can be interpreted as showing
the method diverges towards the end of the collapse the shape of the same bubble from different view angles.
and predicts either a much faster collapse than obtained The reentrant jet is here again seen to be wide, pointed,
with the more accurate BEM method (N=2 and 4), or and well advanced towards the other side of the hub-
an unexplained early bubble rebound (N = 8). This be- ble. A complete history of the advancement of the jet
havior occurs earlier when either the number of bubbles in the bubble can be deduced from figure 10. Figures 13
or the value of e increases, through 17 illustrate various important effects due to ei-

Figure 10 shows the influence of e on the bubble ther asymmetries in the bubble configuration, or due to
dynamics for a 4-bubble configuration. Using the BEM the presence of an underlying nonuniform flow. Figure
3D results enables one to study the influence of reducing 13 shows the case of an asymmetric five bubble config-
bubble inter-distance on the dynamics of each bubble. uration. All bubbles have the same initial radius and
Increasing the proximity between the bubbles, or in- internal pressure, and are initially spherical and located
creasing the number of bubbles is seen to increase the in the same plane. The most visible effect observed is
lengthening effect on the bubble period, while enhanc- that on the center bubble. Its growth is initially sim-
ing the reentrant jet formation, as in the more clas- ilar to that of the other bubbles, but it ends up being



the least deformed. Later on, as the collapse phase ad- the axis and elongate along it. Finally, Figure 17 shows
vances with the development of a reentrant jet directed in the XOY plane perpendicular to the vortex axis the
towards the central bubble, this bubble appears to be motion of two particular points on the bubble, A and
shielded by the rest of the cloud. Its period appears to B, initially along OY. Also shown is the motion of the
be at least double that of the other bubbles. Unfortu- mid point, C. While C seems to follows a path similar
nately, the code cannot presently follow the dynamics to the classical logarithmic spiral, A and B follow more
beyond this point since it fails following the touchdown complicated paths, even moving away from the vortex
of the first reentrant jet on the other bubble side. Here, axis at some point in time.
this occurs before any significant progress of the collapse Figures 18 and 19 , address the behavior of a bub-
of the central bubble is observed. The issue of con- ble near a solid wall in the presence of a nonuniform
tinuing the computations beyond this point is clearly flow field and as a result of a relative velocity between
important and is presently the subject of an ongoing the bubble and the flow. In the example shown a sie-
research at DYNA F OW. Reference (30] gives results of ple linear velocity profile is used to simulate the the
our first attempt towards solving this problem. Figure boundary layer flow near the wall in which the bubble
14 shows a 4-bubble configuration where the bubbles dynamics is considered. The basic flow velocity varies
are centered on the corners of a square. All bubbles from a value, V,,,,., at a distance rbo from the wall to
were chosen so that they would behave identically if zero at the wall. The basic pressure is assumed constant
in an infinite medium. However, a time delay between across the shear layer and is an input of the problem,,
the bubble oscillations was imposed. As a result, at P..b, as is the initial gas pressure inside the bubble,
t = 0 the bubbles had relative initial sizes in the ra- Po. The bubble center is located at a distance 10 from
tios 2, 1,3, 1 counter-clockwise starting from the bubble the wall, the ratio rbo/lo being a key parameter char-
centered at the origin. This results in a very asym- acterizing the bubble / wall interaction. Here, another
metric behavior of the cloud configuration. The bubble important parameter is the ratio between the charac-
periods appear to be lengthened the most for the larger teristic shear velocity and a characteristic bubble dy-
bubbles at t = 0. The "delayed" bubbles (the smaller at namics velocity [161, for instance X = V, heo,/IVTI-1.
t = 0) are prevented by the other bubbles from growing Figure 18 shows an example of bubble growth and col-
significantly, and end up collapsing very early in their lapse shape contours obtained with 3DynaFS near a
history. These bubbles on the other hand significantly solid wall in the absence of shear. Figure 19 shows for
influence the "earlier" ones by increasing at some point the same conditions the bubble collpase in the presence
the pressure drop these bubbles sense and then by pre- of the nonuniform flow. A very significant effect of the
venting them later on from collapsing. Since the code wall flow is seen on the development of the reentrant jet.
presently breaks down before a significant collapse, we The jet is seen to be much weakened and delayed. Since
car, only speculate that a very strong collapse of the we have made these numerical observations in 1990 in
larger bubbles would ensue, because of the large pres- [161, tests conducted by other researchers in the Large
sure produced by the collapse of the smaller bubbles. :Cavitation Channel appears to confirm experimentally
This can be illustrated by observing the modification of at least some aspects of these observations.
the imposed pressure drop by the behavior of an indi- Figure 20 shows the strong interaction between a
vidual bubble. As shown in figure 15, the bubble growth ;growing and collapsing bubble and a vortex ring. Figure
initially reduces the effective pressure drop that would 20a shows a high speed movie sequence where the vortex
be felt by a second bubble at the distance lo, this trend ring, the axis of which is on the left edge of the succes-
is later reversed, and is followed by a significant pressure sive pictures, was generated using the impulsive motion
rise during the bubble collapse. of a piston in a tank where a reduced ambient pressure

Figure 16 shows the three-dimensional behavior of was imposed [45]. The bubble was spark-generated us-
a bubble in a line vortex. The bubble is initially po- ing submerged electrodes positionned where the initial
sitioned at a distance of 2R,.., from the vortex axis bubble center is sought. The figure shows that the bub-
located at " = 2. The normalized core size is 4 in this ble grows initially almost spherically, then the shear
case. Figure 16a gives a view in the XOY plan of the flow due to the vortex ring becomes very important
bubble at different instants. The bubble is seen spiral- leading to a stretching and elongation of the bubble
ing around the vortex axis ( perpendicular to the fig- along a stream line of the vortex flow. The bubble then
ure) while approaching it. At the same time, due to the collapses in a very unusual manner producing a con-
presence of the pressure gradient, the bubble strongly striction along the vortex flow line, then decomposing
deforms and a reentrant jet is formed directed towards into two bubble clouds. A set of various bubble / vortex
the axis of the vortex. Figure 16b shows the same bub- interaction intensities is presented in (451. Figure 20b is
ble seen from the OX axis. Here some elongation is a direct numerical simulation of the experimental case
observed along the axis of the vortex as well as a very shown in figure 20a. The vortex ring flow was simu-
distinct side view of the re-entrant jet. This result is lated assuming a Rankine model and a viscous core size
totally contrary to the usually held belief that bubbles as observed from other tests where microbubble motion
constantly grow during their capture until they reach inthe vortex flow were visualized. Given such a crude



model of the vortex ring and given that the modification 5. Bubble capture, growth and collapse in a line vor-
of the vortex flow by the bubble dynamics neglected, tex flow field is seen to involve significantly no" spheri-
the similitude between the numerical simulation and the cal effects which have been systematically neglected by
experimental result is quite satisfactory and is able to previous studies. For instance, noise generation at the
capture most of the feature of the bubble behavior. An inception of tip vortex cavitation can probably be ex-
"improved viscous model and the inclusion of the basic plained by the deformation, collapse and splitting of the
flow modification will enable an even better correspon- bubble while being captured.
dence. The study of such an interaction is essential to 6. The study of the interaction between bubbles and
the understanding of the the interaction between mi- large organized structures provides some hints about
crobubble and large organized viscous structures which the complexity of bubble dyanmics in real full scale flow
occur in boundary layers. These interactions are ex- fields.
pected to be much more significant at full scale than On-going areas of improvement of this study include
in the laboratory, particularily due to a significant in- extension of the asymptotic approach to the case of a
crease of the ratio between hydrodynamics scales and compressible fluid and coupling of the multibubble ap-
bubble scales. proach to a two-phase medium model. The Boundary

Element Method approach is being improved to include
the full description of tie reentrant jet piercing of the

10 Conclusions bubble and its subsequent advancement in the fluid.
othe interaction The 3D code 3DynaFS is also being exercised on a

In this contribution the dynamics of theractio Cray Y-MP and implemented on a parallel Connectionbetween bubbles and nearby boundaries (other bub- Machine in order to significantly improve computationl

bles or complex geometries) or nonuniform flows was time, and to allow practical consideration of a much

considered using an asymptotic method and a three-

dimensional Boundary Element model. Both approaches larger number of elements than at present.
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Figure 2&-e: Bubble contours at various times for c = 0.15,0.3 and 0.6. Here the initial bubble radius was kept
constant at 1 cm, while the initial standoff from the head form was varied to change c. Increasing interaction is seen
with decreasing standoff.
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Figure 3a-c: Bubble contours at various times for c = 0.150 0.3 and 0.6. Here the initial standoff distance la was kept
constant at 3.333 cm, while the initial radius was varied to change e. Increasing interaction is seen with increasing
initial bubble size.
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Figures 4-6: The interaction of the bubble with a line vortex is shown in these figures (see Section 5). Fig. 4 shows the

cross-section of the predicted bubble shape in the r - V plane (normal to the vortex axis). The vortex passes through
(z, Y) = (0,0) along the z axis (normal to the plane of the paper). Fig. 5 indicates the motion of the points initially

farthest from and closest to the vortex axis in Fig. 4. Fig. 6 shows the cross-section of the predicted bubble shape in
a plane containing the vortex line and the center of the moving coordinate system. The vortex axis is at -20, on the
abscissa.
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6-bubble cloud. The figure shows R(9is = 0, 1) vs. time for

one bubble. The bubbles have an initial radius of 0.01 cm
and are arranged at equal distances from the origin along Figure 8: Large bubble collapse near a cylinder. Com-

the coordinate axes, so that c = 0.07. The bubbles are at parison between our three-dimensional BEM code and the

equilibrium at t = 0 when they are subjected to a sudden experimental results of Goertner ct z.
pressure drop. here P = 2.0, and W = 679. The solid
line indicates the incompressible solution. Also plotted
is the corresponding curve for M =0.01 (small dashes),

M =0.03 (small dash-dot), and M =0.07 (dash-dot). The
strong effect of increasing compressibility can be seen.

S • •to the cloud center versus time for a 4-bubble symmretric
configuration. Comparison between 3D code results and
the asymptotic analysis. Influence of bubble proximity or

Tý 91. -.-. Pto/ P, = 283.

Figure 9 : Motion of the bubble points farthest and clos-
est to the cloud center versus time for 1,2,4 and 8-bubble
symmetric configurations. Comparison between 3D crua

results and the asymptotic analysis. c = 0.07, P8o/P., :
283.



a .

Figu•e 11: Bubble contours during collapse of a 4-bubble
configuration. a) Cross sectional view in the plane Z = 0. -2
b) Cross sectional view in the plane Y = X. c = 0.498
based on the maximum radius. Note the non-axisymmetric .3 ------------

shape of the jet during collapse.
Figure 12: Bubble Contours for the collapse of a 4-bubble
cloud for e = 0.185. Since the case shown is symmetrical
and all bubbles have the same shape, this diagonal view
can be interpreted as showing the shape of the same bubble
from different view angles.

Figure 13: Growth and collapse of 5 bubbles having the
same initial size and internal pressure. Influence of the
initial bubble geometry on dynamics. c = 0.474 based on
the maximum radius. The center bubble is seen to have a
remarkably different behavior.

Figure 14: Growth and collapse of 4 identical bubbles ini-
tially symmetrically distributed but with different initial
radii (2.1.3,1 clockwise starting from origin). The figure
shows the influence of 'phasing' on the dynamics.

@ W-&

Figure 15: Pressure at distance to from a bubble following a sudden pressure drop. c 0.3, Po/P.,, - 283.
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Figure 18-17. These figures show bubble vortex interaction
for 11 = 0.948, a, = 4R,,ag, and Pso/Psia = 584. Figure
18 shows three dimensional bubble shapes at various times
during bubble capture in a vortex line, a) View in the
XOY plane. b) View in the XOZ plane. Figure 17 shows
the motion of the two bubble points initially on sxis GY
and their mid-point vs. time. a) Vortex at X =2. b) Figure 19:
Vortex at X = 1. Figure 18-19: These figure show the influence of a shear

nlow in the growth and collapse of a bubble in the vicinitY
of a wall.p~O/P.,.& = 23. LIR.,, = 1.77 Fig. 18 shows a
case where and there is no shear flow. Fig. 19 shows the
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1 Introduction fee surfaces within the domain). Distributed in this liquid are
dN bubbles, numbered 1, .... N. Since we shall be concerned withPraictic~al iquid flows ontain many microscopic bubbles which cavitation bubbles where relatively large wall velocities are in-respond dynamically to the flow. These bubbles can grow explo. volved, viscosity has no appreciable effect on the dynamics ofsively and collapse, leading to cavitation and all its deleterious the bubble. Additionally we restrict the case to flows whereeffects [1,21. These bubbles seldom occur singly, and their mu- the Mach number is small enough so that the incompressibil-tual interaction is likely to play an important Part is the fluid ity assumption holds. (We are currently working to relax thisdnamics., However, most previous studies consider only the assumption).These two assumptions are classical in cavitationproblem of single bubbles (including only spherical or axisym- bubble studies, and with suitable initial conditions the flow ismetric deformations in their models), or consider highly simpli- irrotational. Following standard procedure we introduce a ve-fled models of multiple bubble interactions. To study cavitation locity potential #, in terms of which the conservation laws inin practical flows one needs to be able to properly model these the liquid may be stated in the form@ interactions. Mathematically the problem is a difficult one, as V2# (W it is intrinsically three-dimensional, and involves multiple freesurfaces (with the associated non-linearity). Purely analytical and

progress into the problem is clearly out of reach presently. P + pL + 1IV#12) cntat 2Our studies into this subject have proceeded along two differ- 8t 2+ onstat (2)ent paths In the first, [3-7,13,141, an asymptotic approach wasemployed, using the assumption that the characteristic int- Here (2)the mo u equaton.bubble distance was large compared to characteristic bubble We shall study the reaction of this system to a prescribed pres-size. Solutions valid to the third order in this parameter were sure field at infinity, P,.(t). These equations are subject toob~tained. Our more recent efforts have been devoted to the de- initial conditions for the potential, and boundary conditions onve.opment of a completely three-dimensional boundary element the surfaces of the bubbles (and on any rigid surfaces in themethod capable of handling multiple free-surfaces, and rigid domain). At all boundaries we impose the condition that thesu-'aces and particles. A computer program (3DynaFS) iam- surface is a material surface and moves with the flow, so thatPlementing the method has been developed. It has been applied . = n . V, (3)t problems involving single bubbles in a variety of coafgm 3topo, andm moreln sently tobproblems involving several afciurs where V, is the velocity of the surface, and n is the local unittioswuand more rentlt proems eithenvosheflvng severa ibubbles vector normal to the surface. In addition on the surface of theand where the bubbles are in either a shear flow or in the flow bubble we must balance the normal stresses in the liquid andfleid of a Rankine vortex [8-12). the gas. The bubble is assumed to contain both non-condensiblenthispai e permet weth prent some preliynar. resultsy f nu- gas and vapor. Within the bubble the pressure is assumed notmerical experiments with the code 3DynaFS. We study a num- to vary spatially, and to be given by the sum of the partialber of flows involving a few bubbles, with particular emphasis pressures of the noncondensible gases, Ps, and that of the va-on the effects of various parameters on bubble growth and col-laose. Additionally the "exact" numerical solutions from the por, P,. Vaporization of the liquid is assumed to occur at a fast
bo~undary element technique are used to obtain a domain of enough rate so that the vapor pressure can be assumed constantvalidity for the asymptotic studies, throughout the simulation and equal to the equilibrium vapor

pressure at the liquid ambient temperature. Since time scales
"associated with gas diffusion are much larger than those of ir-2 Mathematical Formulation terest, the amount of non-condensible gas inside the bubblet
is assumed to remain constant. This gas is assumed to satisfyConsider an incompressible liquid in an infinite domain (this the polytropic relation, PVk = constanM, where V is the bubblerestriction can be relaxed to allow rigid boundaries or other volume, and k the polytropic index, with k = 1 representing
isothermal behavior and k = CJ/C. adiabatic behavior. With

:1Lso Resar.h Professor. Department of Mechanical Engineering. The these assumptions the condition of normal stress balance, atonzs Hopkins UrnGverhi:y. Baltimore. MD 21218. any time t. on any point xc on the surface. may be stated as



I v0  the adaptive time integration scheme can be found in [8,9,11].
PL(XS, t) = P. + P,, (1) - wC(xs,t), (4) Results of the validation of this code may be found in 19,7,12].

V- If the potential at a point within the domain is needed, (6)
where PL is the liquid pressure at the bubble wall, Pd, and Vo (or its discrete equivalent (7)) can be used. The known values of
are the initial gas pressure and volume respectively, u is the # and 84/On on the boundary are used to compute the integrals
surface tension coefficient, C the local curvature of the bubble, on the left hand side. To calculate velocities at an interior point
and V the instantaneous value of the bubble volume. Here Pa, the potential in a neighborhood of the point is obtained and
and Vo are known quantities at t = 0. The curvature of the local finite-differencing used, while the pressure is obtained viaw
bubble can be computed using the relation C = V. n. The the Bernoulli equation (2).
pressure at the bubble surfaces can be related to the potential
using Bernoulli's equation, to give Asymptotic solutions

pL + I jvIl p pP.(t)- .P, (! + rV . n(S) We seek asymptotically valid solutions to Equations (1-5), under
2 s - the assumption that the characteristic size, "io, of the bubbles

On any moving rigid surfaces, we need an equation similar to (5) is small compared with a characteristic inter- bubble distance
relating the velocity of the surface to the pressure. Equations lo. The small parameter used to linearize the system is the ratio
(1-5), along with prescribed initial conditions, form a complete between ri" and 0 denoted e. The zero order approximation (e =
system of equations for the variables 4, is, Pl,and determine 0) reduces to the case of a single bubble in an infinite medium.
the location and geometry of the bubbles, and the pressure and In the absence of relative motion with respect to the surrounding
velocity in the domain. The two methods used to solve this fluid, each of the bubbles reacts to the local pressure variations
non-linear problem are described briefly in what follows. For spherically, as if isolated.
more complete descriptions see [5,8,9]. At higher orders of approximation (e 6 0), mutual bub-

ble interactions and individual bubble motion and deformation
come into play. These approximations are obtained by means

Boundary element solution of the method of matched asymptotic expansions. The "outer
The boundary element method (BEM) uses Green's identity to problem" is that obtained when the reference length is chosen
solve Laplace's equation. If the velocity potential, 4, (or its to be 1o. This problem is associated with the macroscopic be-
normal derivative, aO4/8n) is known on the boundaries of the havior of the cloud, and each bubble appear in it only as the
domain, and 0 satisfies the Laplace equation, then 0 can be summation of singularities of various orders. The "inner prob-
determined anywhere in the domain of the fluid by using the lem" is that obtained when the lengths are normalized by rt0.
identity: The solution of this problem provide, the microscopic details of

the behavior of the cloud, i.e., in the vicinity of an individual
/ L2~ŽL.. (----~1 S, =air,(x)(6) bubble center (Be). The presence of the other bubbles, all con-

sL ny I x - y \II-YI) sidered to be at infinity in the "inner problem," is sensed only

We first select x on the boundary to determine 84,/8n (or #) on by means of the matching condition with the "outer problem."
The boundary conditions at infinity for the "inner problem" are

determinhe boundry, atd then requiredsing the knowni valueson the Hereboundary obtained, at each order of approximation by the asymptotic be-
deeri n the rolidanglequnderhirhed poin inthe dm. s e rhe fuid, w havior of the outer solution in the vicinity of Bi. Thus, if one
is the solid angle under which the point x sees the fluid, with knows the behavior of all bubbles except Bi, the motion, defor-

S= 2 if x is a point on a smooth surface mation and pressure field due to this cavity can be determined
* < 4 if x is a point at a smohap c erote bby solving linearized, non-dimensional versions of Equations (1-

T < 4 if x is a point at a sharp corner on the boundary. 5). The non-dimensionalization yields the following parameters
The advantage Of this representation is that it reduces the £ , •W, a, N. These are defined by

dimension of the problem by one. If the point x is selected to

be on the boundary of the fluid domain (a bubble surfr. or on r60 P = (0) - P.
any other boundary), then a closed system of equations can be 0 AP
obtained and used at each time step to solve for values of 84/On rWAP
(or 4,). The points on the moving boundaries (bubble surfaces) W = = o. (8)
are advanced in a Lagrangian fashion using the calculated ye-
locities, while the potential at the subsequent times is obtained Here e is a measure of the void fraction in the bubble cloud, V
by integrating (5). is a 'cavitation number,' W is a Weber number, P is the ratio of

To solve (6) numerically, we discretize the bubble surfaces as the forcin nueny w and the ratio a b
well as other boundaries into panels. A local linear basis for 4 th, forcing frequency w and the natural frequency of a bubble
and 84,/On is assumed over each pacA4. Integration is performed with radius tio, while pois the characteristic pressure variation
over each panel, and the results s ,mmed up to complete the associated with the forcing Pe .integration over the complete bound.~ry. The initially spherical At the lowest order, e = 0, each bubble, B,, behaves spher-
b is discretized into a geodesic u hape ing filat, triangular ically as if in an infinite medium and the time dependence of
bubble i iceieinoagoei hpusnflttrauar its radius, 4~(t), is given by the R~ayleigji-Plesset equation,1i].panels. Equation (6) then becomes a set of M linear equations
(M is the total number of discretization nodes) of index i of the This first approximation of the whole flow field (a distribution
type: of sources or sinks representing all bubble oscillations) sets the

boundary conditions at infinity at the following order of approx-
/(A. ( imation. The same process is then repeated for the successive

~A,, • -- E (B,,. 4,,) - air,, (7) orders. One can show, [5,6], that up to the order 0(0), the
jail jwl influence of the remaining bubbles on each bubble B,, can be

schematically replaced by the influence of a single equivalent
where A,, and B,, are elements of matrices which are the dis- bubble centered at G, (see Figure 1). The growth rate and
crete equivalent of the integral operators given in Equation (6). position of this equivalent bubble are determined by the distri-
Details of the calculation of these matrices, of the geometrical bution and the growth rate of the other cavities. In general,
quantities needed (normal, curvature, volume), the other phys- this fictitious bubble equivalent to the "rest-of-the- cloud" ad O
ical variables (tangential and normal velocities, pressure)



the corresponding "cloud center" and "equivalent bubble inten- the initial pressure drop were chosen corresponding to values
sity" are different for each bubble. If eig is the angle between the for Pof 1.004 (a very large drop) and 2.508 (a relatively milder
direction of the center, .B G., and the direction of a field point drop). The number of bubbles varied frmn 2 to 8, while the value
BM, the equation of the-s-urfac of the axisymmetric bubble of epsilon was also varied. The studies were performed for large
Xrn be written in the form: W (corresponding to large bubbles). Symmetric bubble config-

urations were chosen for ease of visuliaion, and efficiency in
3, ) t= [4 (t) + .a (t) + 2[.(t) + f(t). coo 0,,] + computation. The bubbles were arranged respectively at the

+ A (t).cos 9,i + 9g(t)Pi(cosej)I + o(), (9) edges of aline, a square, and a cube. In each case the bubble
oscillations caused "collapse" of the bubble in the direction to.

where P2 is the Legendre polynomial of order 2, and argument wards the center of the cloud. The data for the "radii" reportedcos 9ii, while the W dependence is not seen till the order of the are for points on a bubble which are closest to the cloud cen-
included terms. ter initially (the positive radii in Figure 2) and that which are

The first component, 4(t), is given by the Rayleigh-Pleset farthest from the cloud center (the negative radii).
equation, while the other components, ad, f'. and g.,, are given As can be seen (Figure 2) the BEM code shows that theby similar second order differential equations which can be writ, time period of the oscillation of the bubbles increases with the
ten in symbolic form as follows: number of interacting bubbles. The maximum bubble size along

the jet Lxis is however not much modified. The jet advancement
V2• (Y ( • ,. ....,,_,)P,. (COS0). (I0) towards the cloud center increases with N. This is seen from

the fact that the upper curves in the graph cross the r = 0 axis
earlier as N incxeases. This effect is more pronounced as e is in-

Here V2(yi,) represents a second order, non-linear, differential creased (Figure 3). The asymptotic code predicts substantially
operator in time, acting on the radius component yi (one of the same curves for small N (Figure 2) and low e (Figure 3),nbut begins to dvreat higher values. The method predicts ei-
a,', f' ,,9) of the bubble i; r0' is the initial distance between the divergebubbles"Bi and Bj; P(yo. ..... y'-,) is known (it is a function of ther a much faster collapse for N = 2,4 or an unexpected earlybubeterms B, an -mined Ba; the.recedis g nowne ; ( isundcatin o rebound for N = 8 in Figure 2.
the terms (y4), dete "mined at the preceding orders); n indicates In the cases addressed in Figure 2 and 3 the collapse of thethe order of the phecinal harmonic; 9,b is the angle between the bubbles was relatively intense. This may be seen that the value
direction B,B, connecting the bubble centers and the direction of P =1.001, corresponds to a pressure drop of 240 times the
of motion of-'bubble i toward the cloud center, B,; and n indi- original. Thus it is unreasonable to expect good agreement from
cates the order of approximation. The detailed expressions cam the asymptotic analysis. To check if the method fares better inbe found in [5]. The behavior of B, can then be computed by case the pressure drop is milder, a case where P&, is reduced to
integration of the obtained system of differential equations us- approximately 40% of its original value was studied, correspond-ing a Runge-Kutta procedure. The behavior of the whole cloud ing to P =2.508. Results from such a study are shown figures 4"thus obtained, and 5. The agreement between the asymptotic method and the

Earlier studies (3,5,61 have shown that collective bubble be. BEM code is seen to be quite good at low e. Figure 4 presents
havior can have a dramatic effect on both bubble growth and the influence of changing N while figure 5 presents results forimplosion. Specifically, bubble growth is inhibited by bubble in- a four bubble study where e is varied from 0.05404 to 0.386.O teractions, while bubble collapse is enhanced. This cumulative (Note that the bubbles would touch for e = 0.5, as the scaling
effect comes from the fact that the interaction reduces any driv- is based on the radius.)
ing pressure drop as a result of the other bubble growth, while The relative influence the dynamics of an individual bubble
it increases the collapse driving pressure as a result of the other has on its neighbors may be best understood by examining tLebubble collapse. Due to the cumulative effects of the collapse of pressure at a point and compare it with its value in the absence
all the bubbles in the cloud, each bubble ends its collapse under of the bubbles. Figures 6 and 7 show the pressure at the center
the influence of a pressure which is orders of magnitude higher of the cloud, non- dimensionalized with respect to the maximumthan that for an isolated bubble (see Figures 6 and 7). pressure that would have been induced by a "Rayleigh-Plesset

bubble" (i.e. an isolated bubble at a distance lo/2 away. The
pressure predicted by the asymptotic analysis is seen to be much

3 Numerical Experiments higher during collapse. This high value is explained by the much
higher values of the velocity during collapse predicted by the

Comparison of the two methods asymptotic analysis (see Figure 2,3,4) than by the BEM code.
Again the influence of increasing N or increasing e is to makeWhile the BEM code represents a significant advance in that it the asymptotic analysis less accurate.allows us to simulate flows with very strong bubble interactions An explanation of why the predictions of the asymptotic

in a relatively accurate way, it is computationally intensive com- method are in error during the collapse phase is provided bypared to the asymptotic code. While the latter requires O(N) Figure 8, which shows the collapse of a 4 bubble cloud. Here
floating point operations per time step, where N is the number the value of i = 0.4. Here two cross-sectional cuts of the cloud
of bubbles, the BEM code requires O(MP) operations per time are shown, the first being a top-view, while the second is a viewstep where M is the total number of nodes in the discretization. from the plane of the bubbles with the viewing angle perpen-
It is thus a matter of some interest to determine the region in dicular to an edge. The fact that the bubbles are distributed in
the parameter space (see (8)) for which the asymptotic analysis a plane is clearly visible from the appearance of the jet, which
holds. A complete map of the parameter space is a matter of is seen to have a two-dimensional flat appearance, rather thancurrent study. Here a few prelimi - try results are presented. a conical axisymmetric shape. Since the asymptotic method, to

In all cases presented for comparison here the ratio e is the the order we have solved for (O(0)), only allows for deforma-
ratio of the initial radius of the bubble, and the minimum dis- tions expressible in terms of the first two Legendre modes, ittance (at t = 0) between any two bubbles in the configuration. becomes inaccurate during the final stages of the collapse. TheThe study was restricted to one particular form of the driving error made in the pressure is much higher since it depends onpressure field-a drop in the pressure field at time t = 0. Thus the time derivative of the shape (the velocity).
the influence of the parameter Y is not studied. Two values of From these experiments we may conclude that, as expected,



the asymptotic method is good for relatively large inter bubble
separation, for a small number of bubbles, and when the bubble the bubble dynamics and shape. For identical bubbles acting
collapse is weak. in concert, an increase in the bubble period is observed without

significant modification of the bubble maximum ese when the
number of bubbles increase or when their separation distanceOther Experiments decreases. For violent interaction the asymptotic approach al-

Here we report the results of some numerical experiments per. lows one to follow the dynamics only partially during the col-
formed with 3DynaFS on some asymmetric bubble configura. lapse. The pressures that it predicts during the collapse increase
tions. The effects of phasing (i.e. the introduction of differences tremendously at the "cloud center" with the number of bub- W
in the temporal response), and the screening effect of the outer bles. Comparisons with the BEM code results show that the
bubbles in a cloud on their inner members are studied. asymptotic approach can significantly overpredict the velocities

Figure 9 shows a 4-bubble configuration where the bubbles at the end of the collapse, which implies that the conclusions
are centered on the corners of a square. All bubbles were chosen on the pressures, while still correct, need to be tempered. Sim-
so that they would behave identically if in an infinite medium. ilarly, other real fluid flow conditions, such as the presence in
However, a time delay between the bubble oscillations was im- the cloud of various bubble sizes, the presence of a velocity or
posed. As a result, at t = 0 the bubbles had relative initial pressure gradient, etc., moderate the conclusions drawn from
uses in the ratios 2, 1, 3,1 counter- clockwise starting from the simplified symmetric models. These various effects can be con-
bubble centered at the origin. A dramatic modification in the sidered and analyzed using the 3D code.
behavior of the cloud is seen. The bubble periods appear to The phasing study indicates that the influence of compress-
be increased for the larger bubbles at t = 0. The "delayed" ibility on the dynamics of multiple bubbles is likely to be sig-
.bubbles (the smaller ones at t = 0) are prevented by the other nificant. Similarly the screening effect observed in the multiple
bubbles from growing too much, and end up collapsing very bubble simulations shows that the dynamics of a cloud of bub-
early in their history. These bubbles on the other hand signifi- bles is very different from that of a single bubble.
cantly influence the "earlier" ones by increasing at some point We are presently attempting to repeat our asymptotic Lanl-
the pressure drop these bubbles sense and then by preventing ysis by including compressibility. The results from the phasing
them later on from collapsing. Since the code presently breaks study indicate that the compressibility of the medium is likely
down during the last stages of a violent collapse, we can only to play an important role, as identical bubbles would receive
speculate that a very strong collapse of the larger bubbles would pressure information at different times, and consequently could
ensue, because of the large pressure produced by the collapse of have very different behavior. The large reduction of the sound
the smaller bubbles. This can be illustrated by observing the speed (from its value in pure water) in a bubbly medium makes
modification of the imposed pressure drop by the behavior of it important that such an effect be included.
an individual bubble. As shown in figure 8, the bubble growth While the BEM code 3DynaFS represents a significant ad-
initially reduces the effective pressure drop that would be felt by vancement in our ability to computationally treat problems
a second bubble at the distance 1o, this trend is later reversed, hitherto impossible in an efficient way, its application to more

realistic problems requires much further work. In a currentand is followed by a significsant pressure rise during the bubble sudatD AF Wweretem intoaeadnagth
collapse. study at DYNAFLOW we are attempting to take bdvyatage the

Figure 10 shows the case of an asymmetric five bubble con- inherent paralleliabIty of the BEM technique by implement-
figuration. All bubbles have the same initial radius and inter- ing it on a Connection Machine.
nal pressure, and are initially spherical and located in the same
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* Chapter 4

Dynamics of the Interaction of Non-Spherical
Cavities

Georges L. Chahine

Abstract

The presence of cavities in a liquid can have significant effects on its behavior and its flow

characteristics In practical flow situations, these effects cannot either be fully understood or
predicted without addressing complicated, but nonetheless fundamental phenomena associated with
the dynamics, interactions, and deformation of bubbles. The importance of these phenomena has long
been recognized, but has largely been neglected due to the difficulty of the associated mathematical
problems. In this contribution, bubble shape-oscillations in response to nonuniform fow fields and/or
due to their interaction with other bubbles are considered using both a fully three- dimensional
boundary integral method and a previously developed matched asymptotic expansions technique.
Results from both approaches un a few particular cases are compared, and the limits of application

of these methods for these cases is assessed.

4.1. Introduction

The understanding of bubble and cavity dynamics has preoccupied researchers and
engineers over the past several decades. Since the early work of Rayleigh (1] and
Besant [2], numerous papers and books have been devoted to the study of cavity
flows. However, due to the complexity of the general mathematical problem, most
approaches have been limited to the study of spherical bubbles, or elongated linearized
two-dimensional cavities. More recently, with the advent of new mathematical
and computational tools, increasing attention has been given to the study of more
practical cavity configurations: namely nonspherical bubbles and bubble clouds.
This contribution presents a recently developed three-dimensional nonlinear numerical
approach whose results will be compared with an earlier contribution, presently being
improved, which uses an asymptotic approach.

Since the late seventies considerable attention has been given to the study of
nonspherical bubble dynamics, but restricted to the axisymmetric cases in the vicinity
of a solid wall or a free surface (3,4,5,61. All these studies were constrained to the
simplified case where external forces act in the same direction as the nearby rigid
or free boundary and took advantage of the axisymmetry of the resulting problem.
Deviations from this simplifying assumption were not considered, even though such
deviations can be expected to have significant influence on the results. Examples of

* where this assumption fails include large cavity dynamics near complex geometries in
a gravity field, the dynamics of a cloud of bubbles, and bubble dynamics in a shear
or boundary layer. The study presented here dinfers from all previous investigations
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in that it considers both the fully three-dimensional dynamics of the bubble and that
it accounts for the strong interaction between bubbles in a "cloud" or multi-bubble
system.

The dynamics of bubble clouds have also recently received a lot of attention
[8,9,10], as they have been observed to produce dramatic deleterious effects (erosion,
noise, .. etc.), which cannot be explained with approaches based on single bubble
dynamics. All these studies but [5,9], have considered only the contribution of the
bubble volume change on the cloud dynamics, and have neglected bubble/fluid relative
motion and bubble deformation. Our own previous contributions considered these
effects in the limiting configurations where bubble size is small compared to inter-
bubble distance (small void fraction).

In the numerical method presented here this limitation is removed. A more
complete three-dimensional dynamic behavior of the bubbles including the fully
nonlinear boundary conditions of the problem is considered. The method, already well
tested for bubble dynamics in a quiescent fluid [11,12], is presently being extended to
the investigation of bubble dynamics in complex flow fields such as vortical, boundary
and shear flows [13,14]. Some of these results are shown below. The use of the method
for the study of multiple bubble dynamics is here illustrated and the results compared
with the results of the matched asymptotic expansion method.

In the following sections we present the general model used for the bubble
dynamics. The assumptions needed for the asymptotic approach are then presented,
and the steps needed to expand the various orders of approximation are outlined.
The following two sections are devoted to the numerical approach and describe its
implementation for nonspherical bubble dynamics in the presence or absence of an
underlying base flow. This is followed by a section presenting and discussing some
particular results using both the asymptotic and the numerical methods.

4.2. Bubble Dynamics Model

This study will consider cavitation bubbles where relatively large bubble wall velocities
are involved, and where, as a result, viscosity has no appreciable effect on the growth
and collapse of the bubbles. The study will also be restricted to the case where the
flow velocities remain small compared to the speed of sound in water, and as a result,
compressibility effects are neglected. This is valid until the last phases of bubble
collapse. The above two assumptions, classical in cavitation bubble dynamics studies,
result in a flow due to the bubble wall motion that is potential (velocity potential, 41)
and which satisfies the Laplace equation,

(4.1) = o.

The solution must in addition satisfy initial conditions and boundary conditions
at infinity, at the bubble walls and at the boundaries of any nearby bodies.

At all moving or fixed surfaces (such as a bubble surface or a nearby boundary)
an identity between fluid velocities normal to the boundary and the normal velocity
of the boundary itself is to be satisfied. For instance, at the bubble-liquid interface,
the normal velocity of the moving bubble wall must equal the normal velocity of the
fluid, or,
(4.2) Vo. n = Vs -n,

where n is the local unit vector normal to the bubble surface and Vs is the local
velocity vector of the moving surface.
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The bubble is assumed to contain concondensible gas as well as vapor of the
surrounding liquid. The pressure within the bubble at any given time is considered to
be the sum of the partial pressures of the noacondensible gases, P,, and that of the
vapor, P.. Vaporization of the liquid is assumed to occur at a fast enough rate so that
the vapor pressure may be assumed to remain constant throughout the simulation
and equal to the equilibrium vapor pressure at the liquid ambient temperature. [E
contrast, since time scales associated with gas diffusion are much larger, the amount
of noncondensible gas inside the bubbles is assumed to remain constant and the
gas is assumed to satisfy the polytropic relation, PVk = constant, where V is the
bubble volume and k the polytropic constant, with k = I for isothermal behavior and
k = c./c, for adiabatic conditions.

The pressure in the liquid at the bubble surface, PL , is obtained at any time from
the following pressure balance equation:

(4.3) PLr = P + pga ( )k _ Co.,
V

where P,0 and Vo are the initial gas pressure and volume respectively, a, is the surface
tension, C the local curvature of the bubble, and V the instantaneous value of the
bubble volume. aere P.. and V0 are known quantities at t = 0.

4.3. Asymptotic Theory for Multiple Bubble Dynamics

Let us consider a finite number of bubbles clustered in a cloud. If the characteristic
size, rbO, of the bubbles in the cloud is small compared with a characteristic inter-
bubble distance 1o, then an asymptotic analysis of the bubble dynamics can be
developed using the ratio between rbo and lo as the small parameter, c. Thus, the first
order approximation (e = 0) consists in neglecting interactions between the bubbles.
In the absence of relative motion with respect to the surrounding fluid, each of the
individual bubbles reacts to the local pressure variations spherically, as if isolated.

At higher orders of approximation (c i 0), mutual bubble interactions and
individual bubble motion and deformation come into play. These approximations
are obtained by means of the method of matched asymptotic expansions. The "outer
problem" is that obtained when the reference length is chosen to be lo. This problem
is associated with the macroscopi.; behavior of the cloud, and each bubble appear in
it only as the summation of singularities of various orders. The "inner problem" is
that obtained when the lengths are normalized by rbo. The solution of this problem
provides the microscopic details of the behavior of the cloud, i.e., in the vicinity of an
individual bubble center (B1 ). The presence of the other bubbles, all considered to be
at infinity in the "inner problem," is sensed only by means of the matching condition
with the "outer problem." The boundary conditions at infinity for the "inner problem"
are obtained, at each order of approximation by the asymptotic behavior of the outer
solution in the vicinity of Bi. Thus, if one knows the behavior of all bubbles except
Bi, the motion, deformation and pressure field due to this cavity can be determined
by solving linearized forms of the equations presented in the previous section.

The following assumption was adopted for the numerical examples presented
below. The characteristic geometric scale of the cloud is small compared to the
outside driving pressure field scale. Therefore, to first approximation, the same driving
pressure is assumed to be felt at the same time by all bubbles in the cloud. Variations
of this pressure due to the position of each bubble are only seen at the higher orders.
In a more general case, the pressure felt by each bubble is dependent on the bubble
location and on the modification of the outside flow field by the presence of the
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*• bubble cloud. We are presently implementing such an approach which accounts for
the compressibility of the two-phase bubbly medium.

At the lowest order, c = 0, each bubble (of index i) behaves spherically as if in an
infinite nredium and the time dependence of its radius, ad(t), is given by the Rayleigh-
Plesset equation, (15]. If the compressibility of the medium is to be included, then
an equivalent equation such as in [7] can be used. This first approximation of the
whole flow field (a distribution of sources or sinks representing all bubble oscillations)
sets the boundary conditions at infinity at the following order of approximation. The
same process is then repeated for the successive orders. One can show, [9,16], that
up to the order 0(0), the influence of the remaining bubbles on each bubble Bi,
can be schematically replaced by the influence of a single equivalent babble centered
at Gi. The growth rate and position of this equivalent bubble are determined by
the distribution and the growth rate of the other cavities. In general, this fictitious
bubble equivalent to the "rest-of-the-cloud" and the corresponding "cloud center" and
"equivalent bubble intensity" are different for each bubble. If 8i. is the angle between
the centers' direction BiG, and the direction of a field point BiM, the equation of the
surface of the axisymmetric bubble B, can be written in the form:

RCjij, pt)=a'(t + ca'(t) +22 [a(t) +f(t.cos 0, ] +
(4.4) + c3[a•(t) + p3(t). cos0G, + gi(t)'P2(cos9,,)] + o(C3 ),

where ?2 is the Legendre polynomial of order 2, and argument cos Gjj.
The first component, a'(t), is given by the Rayleigh-Plesset equation, while the

other components, a, ', and 9y, are given by similar second order differential
equations which can be written in symbolic form as follows:

(4.5) = E 0 ,L(4.5) V2(y~) = ................................. ,Yai)'(cos Oii).

Here D2(Y,) represents a differential operator of the second order in time acting on
the radius component y• (one of a', P., g') of the bubble i ; l•j is the initial distance
between the bubbles Bi and Bj; Pj (yo0 .... .Y/n-1) is a known function of the terms
(y'), determined at the preceding orders; m is an integer indicating the order of the
spherical harmonic; 0ij is the angle between the direction BiB, connecting the bubble
centers and the direction of motion of bubble i toward th-e cloud center, BS; and n
is an integer indicating the order of approximation. The detailed expressions can be
found in reference (91

The behavior of Bi can then be computed by integration of the obtained system
of differential equations using a multi-Runge-Kutta procedure. The behavior of the
whole cloud is thus obtained.

Earlier studies [9,16,17] have shown that collective bubble behavior can have a
dramatic effect on both bubble growth and implosion. Specifically, bubble growth is
inhibited by bubble interactions, while bubble collapse is enhanced. This cumulative
effect comes from the fact that the interaction reduces any driving pressure drop as
a result of the other bubble growth. while it increases the collapse driving pressure
as a result of the other bubble collapse. Due to the cumulative effects of the collapse
of all the bubbles in the cloud, each bubble ends its collapse under the influence of

-*a pressure which is orders of magnitude higher than that for an isolated bubble (see
Figure 4.8 and corresponding discussion).

ip
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4.4. Boundary Element Method for Three-Dimensional Bubble Dynamics

In order to enable the simulation of bubble behavior in complex geometry and flow
configurations including the full non-linear boundary conditions, a three-dimensional
Boundary Element Method was developed. This method uses Green's identity to solve
Laplace's equation. If the velocity potential, 0 , or its normal derivative is known on
the fluid boundaries (points M), and ý satisfies the Laplace equation, then 0 can be
determined anywhere in the domain of the fluid (field points P) using the identity:

(4.6) J [_0L 1 + 8 1f .arn I MP I -Tn 'I P I

where ar = Q is the solid angle under which P sees the fluid.
a = 4, if P is a point in the fluid,
a = 2, if P is a point on a smooth surface, and
a < 4, if P is a point at a sharp corner of the discretized surface.

The advantage of this integral representation is that it effectively reduces the
dimension of the problem by one. If the field point P is selected to be on the boundary
of the fluid domain (a bubble surface or on any other boundary), then a closed system
of equations can be obtained and used at each timestep to solve for values of a0/an
(or 0) assuming that all values of 0 (or 8l/an) are known at the preceding step.

To solve Equation (4.6) numerically, it is necessary to discretize the bubble into
panels, perform the integration over each panel, and then sum up the contributions
to complete the integration over the entire bubble surface. To do this, the initially
spherical bubble is discretized into a geodesic shape using flat, triangulai panels. After
discretizing the surface, Equation (4.6) becomes a set of N equations (N is the number
of discretization nodes) of index i of the type:

(4.7) E(Aii •Bi-O) r
j=1j

where Aij and B1j are elements of matrices which are the discrete equivalent of the
integrals given in Equation (4.6).

To evaluate the integrals in (4.6) over any particular panel, a linear variation of
the potential and its normal derivative over the panel is assumed. In this manner,
both 0 and a0/8n are continuous over the bubble surface, a:.i are expressed as a
function of the values at the three nodes which delimit a particular panel. Obviously
higher order expansions are conceivable, and would probably improve accuracy at
the expense of additional analytical 4ffort and numerical -omputation time. The two
integrals in (4.6) are then evaluated analytically. The resulting expressions, too long
to present here, can be found in [18].

In order to proceed with the computation of the bubble dynamics several
quantities appearing in the above boundary conditions need to be evaluated at each
time step. The bubble volume presents no particular difficulty, while the unit normal
vector, the local surface curvature, and the local tangential velocity at the bubble
interface need further development. In order to compute the curvature of the bubble
surface a local bubble surface three-dimensional fit, f(z, y, z) = 0, is first computed.
The unit normal at a node can then be expressed as:

(f4
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with the appropriate sign chosen to insure that the normal is always directed towards
the fluid. The local curvature is then computed using

(4.(4) C= V-n.

To obtain the total fluid velocity at any point on the surface of the bubble, the
tangential velocity, Vt , must be computed at each node in addition to the normal
velocity, Vn = 80/0n n . This is also done using a local surface fit to the velocity
potential, 1 = h(z, y, z). Taking the gradient of this function at the considered node,
and eliminating any normal component of velocity appearing in this gradient gives a
good approximation for the tangential velocity

(4.10) Vt = n x (Vol x n).

With the problem initialized and the velocity potential known over the surface
of the bubble, an updated value of ao/8n can be obtained by performing the
integrations outlined above, and solving the corresponding matrix equation. The
unsteady Bernoulli equation can then be used to solve for DI/Dt, the total material
derivative of 0,

(4.11) D 12= P - PP L z + 1 12

DOi/Dt provides the total time variations of 0 at any node during its motion with
the fluid. The second term on the right hand side is the hydrostatic pressure and is
introduced to account for cases where the influence of the gravitational acceleration
is not negligible.

Using an appropriate timestep, all values of 0 on the bubble surface can be updated
using 0 at the preceding time step and DO/Dt. In the results presented below the
timestep was based on the ratio between the length of the smaller panel side, l,.i.
and the highest node velocity, Vm,,.. This choice limits the motion of any node to a
fraction of the smallest panel side. It has the great advantage of constantly adapting
the timestep, by refining it at the end of the collapse - where ,n" becomes very
small and Vmaz. very large - and by increasing it during the slow bubble size variation
period. New coordinate positions of the nodes are then obtained using the position at
the previous time step and the displacement,

(4.12) dM = (00/0n.n + Vt)dt.

This time stepping procedure is repeated throughout the bubble oscillation period,
resulting in a shape history of the bubbles.

4.5. Presence of a Basic Flow

Cavitation bubbles seldom grow and collapse in a quiescent fluid or in a uniform flow
field. To the contrary, cavities are most commonly observed in shear layers, boundary
layers and vortical structures. To study bubble dynamics in a nonuniform flow field,
let us consider the case where the "basic flow" of velocity V0 is known and satisfies
the Navier Stokes equations I :

(4.13) +V 0 . VVO = -1Vpo + vV2 VO

'"IJf"the basic flow is potential the application of the Boundary Element Method is straightforward
and there is no need for any additional assumptions
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In the presence of the oscillating bubbles, the velocity field is given by V which also

satjsies the Navier Stokes equation:
oV

(4.14) G- + V. Vv = + V2V& P

Both V and VO also satisfy the continuity equation. We can now define bubble
ifow velocity and pressure variables, Vb and Ph, as follows:

(4.15) Vb = V- VO, A = P- Po.

If we assume that this bubble flow field (Vb and Pb) is potential, we can use a

method similar to the one described in the previous section to study the dynamics.
This assumption implies that, even though the basic flow is allowed to interact with

the bubble dynamics and be modified by it, no new vorticity is allowed to be generated

by the bubble behavior. Within this restriction, we have

(4.16) Vb = V= .

By subtracting (4.14) from (4.13), and accounting for (4.16) we obtain

(4.1) V, + I I Vb 2+Vo b+ =vbx (v v .

2~ 2 P
This equation, once integrated, may be considered the equivalent of the classical

unsteady Bernoulli equation in potential flow.
As an illustration consider the case where the basic flow field is that of a two-

W dimensional Rankine vortex, V0 = V,.e#, with

F

rr

(4.18) V = Wr = 2Tra r < a,

where a. is the radius of the viscous core, r the vortex circulation and Ve the tangential

velocity. In that case the Bernoulli equation can be replaced by:

(4.19) + + = constant along radial directions.

Accounting for at-infinity conditions, the pressure at the bubble wall, PL, is related

to the pressure field in the Rankine vortex, Po, by:

(4.20) [. P § Po O,(420)t 1 [Vb 12 1at bub•/e wall

The nondimensional basic flow pressure, FO, normalized with the ambient pressure,

P,,, is known and is given by:

Po °(7) = I - n - ()< ;

2 3C
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where lengths are normalized by R.., the maximum radius the bubble would achieve
in an infinite medium if the pressure drops to the value on the vortex axis. The swirl
parameter 0, defined as,

(4.21) P=

characterizes the intensity of the rotation-generated pressure drop relative to the
ambient pressure. The pressure on the vortex axis is (1 - 0) and goes to zero if
0fl=1.

4.6. Computational Results and Discussion
We present in this section some results obtained with the Boundary Element Method
code (3DynaFS), and compare them with results from the asymptotic expansion
method. The accuracy of the numerical code was evaluated by using simple test cases
known in the literature such as the collapse of spherical and axisymmetric bubbles.
For spherical bubbles, comparison with the Rayleigh-Plesset "exact" solution revealed
that numerical errors were less than 0.14 percent for a discretized bubble of 162 nodes.
The error dropped to 0.05 percent for 252 nodes. The two discretizations - 162 nodes
(320 triangular panels) or 252 nodes (500 panels) - are usually selected for most of our
nonspherical bubble dynamics runs. However, for the purpose of studying multibubble
interactions we were limited to 102 node bubbles (200 panels) due to the limitations on
our 32 Mbytes MIPS RS3240 computer. For an 8-bubble configuration the code uses
about 30 Mbytes for 102-node bubbles. With this "coarse" discretization the error
is about 2 percent on the achieved maximum radius, but is very small, 0.03 percent,
on the bubble period. (This can be seen in figure 4.2). Comparisons were also made
with studies of axisymmetric bubble collapse available in the literature [4,6], and have
shown, for the coarse discretization, differences with these studies on the bubble period
of the order of 1 percent. Finally, comparison with actual test results of the complex
three-dimensional behavior of a large bubble collapse in a gravity field near a cylinder
shows very satisfactory results, [12] (see Figure 4.1). The observed difference in the
period was shown to be related to the confinement of the experimental bubble in a
cylindrical container [18].

Figure 4.2 compares the results obtained with the 3D code with those given by
the asymptotic approach. The bubble cloud is subjected to a sudden pressure drop,
and for ease of interpretation, only symmetric cloud configurations are considered.
Results for one, two, four and eight-bubble symmetric configurations are shown. For
the two-bubble case the bubble centers are separated by a distance to, and the initial
gas pressure in each bubble is such that the bubble would achieve a maximum radius
RmaX = /40 = 0.0710 if isolated. The four-bubble configuration considers similar
bubbles centered on the corners of a square with sides of dimension 1o. Finally, the
eight bubbles are located on the corners of a cube of side lo. The figure presents the
variations with time of the distance between an initial bubble center and both the
point closest to (< 0), and the point farthest (> 0) from the "cloud center". These
points are selected because they lie along the direction of development of the reentrant
jet the farthest point becoming the tip of the jet which penetrates the bubble during
the collapse.

As we can see from the figure, the BEM method clearly shows that for bubbles
oscillating in phase the period of oscillation increases with the number of interacting
bubbles. The maximum bubble size along the jet axis is however not significantly
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Fig. 4.1. Large bubble collapse near a cylinder. Comparison between the three-dimensional
BEM code results [18] and experimental results of reference 19.

modified. The jet advancement towards the "cloud center" increases with the number
of bubbles. This is seen by the crossing of the r = 0 line by the upper curves on the
"graph which becomes more and more pronounced with an increase in the number of
bubbles. This effect is more pronounced for larger values of e (see Figure 4.3).

Figure 4.2 also compares the results of the BEM code with the asymptotic
approach. It illustrates the limitations of the incompressible asymptotic approach
as it stands now. When the number of bubbles increases the method diverges towards
the end of the collapse and predicts either a much faster collapse than obtained with
the more accurate BEM method (N=2 and 4), or an unexplained early bubble rebound
(N=8). This behavior occurs earlier when either the number of bubbles or the value
of e increases.

Figure 4.3 shows the influence of e on the bubble dynamics for a 4-bubble
configuration. Using the BEM 3D results enables one to study the influence of reducing
bubble inter-distance on the dynamics of each bubble. Increasing the proximity
between the bubbles, or increasing the number of bubbles is seen to increase the
lengthening effect on the bubble period, while enhancing the reentrant jet formation,
as in the more classical case of bubble collapse near a solid wall. In all cases, the
reentrant jet formed is directed towards the center of the bubble cloud, or here,
the center of the square. As expected, the asymptotic approach gives a very good
approximation at low values of e, but fairs poorly for high values of e (note that for
e = 0.5 the bubbles touch at their maximum size).

The above conclusions on the asymptotic approach have to be tempered by the
fact that all cases presented addressed relatively intense bubble collapse (with a strong
reentrant jet formation). The relevant nondimensional parameter to characterize the
collapse intensity is the ratio, P.m, of the gas pressure to the outside pressure at
maximum bubble size. This ratio is about 0.06 for the cases shown above. For higher
values of Pym a smoother collapse followed by a rebound occurs, and the asymptotic
approach fairs much better (5].

Figures 4.4 and 4.5 illustrate further the three-dimensional behavior of the bubble,
using 198-node bubbles. Figure 4.4 shows two cross-sectional views of the bubble
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Fig. 4.2. Motion of the bubble points farthest and closest to the "cloud center' versus time

for 1, 2, 4 and 8-bubble symmetric configurations. Comparison between 3D code results and
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time for a 4-bubble symmetric configuration. Comparison between 3DynaFS code results and
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Fig. 4.4. Bubble contours during collapse of a 4-bubble configuration. a) Cross sectional view
in the plane Z=O. b) Cross sectional view in the plane Y=X. c = 0.498, P9o/P.mb = 283.

shapes at various times during the collapse for a strong interaction case (= 0.498),
for a 4-bubble configuration. The first view shows bubble contours in the Z = 0
plane, plane of the four bubble centers. In this plane all four bubbles can be seen,
and the reentrant jet appears very wide giving the bubble at the end of the collapse
the appearance of a "deflated balloon". The second view is a diagonal cut though
the centers of two of the bubbles. In this view, the reentrant jet appears much more
pronounced. The combination of the two views illustrates very clearly the reentrant jet
formation, its direction towards the center of the square, and gives a qualitative idea
about the intensity of the collapse. In this case, due the geometry of the configuration,
the jet has a two-dimensional flat shape, rather than a conical axisymmetric shape.
This clearly provides one reason for the failure of the asymptotic approach for this
case, since the expansions in that approach were stopped to an order (0) which does
not allow the description of any azimuthal bubble shape variations.

Figure 4.5 presents a 3D view of the bubbles towards the end of a relatively weak
collapse of a 4-bubble configuration (e = 0.185). Since the case shown is symmetrical
and all bubbles have the same shape, this diagonal view can be interpreted as showing
the shape of the same bubble from different view angles. The reentrant jet is here
again seen to be wide, pointed, and well advanced towards the other side of the bubble.
A complete history of the advancement of the jet in the bubble can be deduced from
figure 4.3.

Figures 4.6 through 4.10 illustrate various important effects due to either
asymmetries in the bubble configuration, or due to the presence of an underlying
nonuniform flow. Figure 4.6 shows the case of an asymmetric five bubble configuration.
All bubbles have the same initial radius and internal pressure, and are initially
snherical and located in the same plane. The most visible effect observed is that
".. the center bubble. Its growth is initially similar to that of the other bubbles, but it
ends up being the least deformed. Later on, as the collapse phase advances with the

Sdevelopment of a reentrant jet directed towards the central bubble, this bubble appears
to be shielded by the rest of the cloud. Its period appears to be at least double that
of the other bubbles. Unfortunately, the code cannot presently follow the dynamics

.41
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Fig. 4.5. Three-dimensional miew of bubble shape at i 1.8 during collapse of a 4-bubble
configuration. c = 0.184, Pgo/P.,. = 283.

beyond this point since it fails following the touchdown of the first reentrant jet on
the other bubble side. Here, this occurs before any significant progress of the collapse
of the central bubble is observed. The issue of continuing the computations beyond
this point is clearly important and is presently the subject of an ongoing research at
DYNA FLOW.

Figure 4.7 shows a 4-bubble configuration where the bubbles are centered on the
corners of a square. All bubbles were chosen so that they would behave identically
if in an infinite medium. However, a time delay between the bubble oscillations was
imposed. As a result, at t =0 the bubbles had relative initial sizes in the ratios 2, 1,3, 1
counter-clockwise starting from the bubble centered at the origin. This results in a
very asymmetric behavior of the cloud configuration. The bubble periods appear
to be lengthened the most for the larger bubbles at t = 0. The "delayed' bubbles
(the smaller at t = 0) are prevented by the other bubbles from growing significantly,
and end up collapsing very early in their history. These bubbles on the other hand
significantly influence the "earlier" ones by increasing at some point the presure drop
these bubbles sense and then by preventing them later on from collapsing. Since the
code presently breaks down before a significant collapse, we can only speculate that a
very strong collapse of the larger bubbles would ensue, because of the large presure
produced by the collapse of the smaller bubbles. This can be illustrated by observing
the modification of the imposed pressure drop by the behavior of an individual bubble.
As shown in figure 4.8, the bubble growth initially reduces the effective pressure drop
that would be felt by a second bubble at the distance to, this trend is later reversed,
and is followed by a significant pressure rise during the bubble Collapse.

Figure 4.9 shows the three-dimensional behavior of a bubble in a line vortex. The
bubble is initially positioned at a distance of 2R,,~ from the vortex axis located at
7 = 2. The normalized core size is 4 in this case. Figure 4.9a gives a view in the
XOY plan of the bubble at different instants. The bubble is seen spiraling around the
vortex axis ( perpendicular to the figure) while approaching it. At the same time, due0
to the presence of the pressure gradient, the bubble strongly deforms and a reentrant
jet is formed directed towards the axis of the vortex.
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Fig. 4.6. Growth and collapse of 5 bubbles having the same initial size and internal pressure.
Influence of the initial bubble geometry distribution on dynamics. e = 0.474, Pqo/P..6 283.
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Fig. 4.T. Growth and collapse of 4 identical bubbles initially symmetricaly distributed but
with different initial radii (2 e 1,3,1 clockwise starting from origin). Influence of phasing on
dynamics. Pqo/P.,.6 283.
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Fig. 4.8. Pressure at a distance Io from a bubble followmng a sudden pressure drop. c =
R,."llo = 0.3, P9o/Parnb = 283.

Figure 4.9b shows the same bubble seen from the OX axis. Here some elongation
is observed along the axis of the vortex as well as a very distinct side view of the
re-entrant jet. This result is totally contrary to the usually held belief that bubbles
constantly grow during their capture until they reach the axis and elongate along it.

Finally, Figure 4.10 shows in the XOY plane perpendicular to the vorte" axis the
motion of two particular points on the bubble, A and B, initially along L Y. Also
shown is the motion of the mid point, C. While C seems to follows a path similar to
the classical logarithmic spiral, A and B follow more complicated paths, even moving
away from the vortex axis at some point in time.

4.7. Conclusions
In this contribution the dynamics of a multi-bubble system was considered using
an asymptotic method and a three-dimensional Boundary Element model. The
emphasis in the presentation was placed on the 3D BEM results since they are
both more accurate and constitute a more recent development in our efforts. While
the asymptotic method is simple and satisfactory for relatively weak interactions
and non-violent bubble oscillations, the 3D numerical approach is more involved
computationally, but allows one to study both very large deformations and very intense
oscillations. For multibubble interaction the 3D code shows significant modifications of
the bubble dynamics and shape. For identical bubbles acting in concert, an increase in
the bubble period is observed without significant modification of the bubble maximum
size when the number of bubbles increase or when their separation distance decreases.
For violent interaction the asymptotic approach allows one to follow the dynamics only
partially during the collapse. The pressures that it predicts during the collapse increase
tremendously at the "cloud center" with the number of bubbles. Comparisons with the
BEM code results show that the asymptotic approach can significantly overpredicts
the velocities at the end of the collapse, which implies that the conclusions on the
pressures, while still correct, need to be tempered. Similarly, other real fluid flow
conditions, such as the presence in the cloud of various bubble sizes, the presence of
a velocity or pressure gradient, ..etc. moderate the conclusions drawn from simplified
symmetric models. These various effects can be considered and analyzed using the 3D
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code. In this communication, an example of these effects related to the problem
of bubble capture, growth and collapse in a line vortex flow field was presented.
Nonspherical effects, commonly neglected, were shown to significantly modify our
understanding of the phenomenon. As a result, noise generation at the inception of
tip vortex cavitation can now be explained by the deformation, collapse and splitting
of the bubble while being captured.

On-going areas of improvement of this study include extension of the asymptotic
approach to the case of a compressible fluid and coupling of the multibubble approach
to a two-phase medium model. The Boundary Element Method approach is being
improved to include the full description of the reentrant jet piercing of the bubble and
its subsequent advancement in the fluid. The 3D code is also being implemented on a
parallel Connection Machine in order to significantly improve computation time, and
to allow practical consideration of a much larger number of elements than at present.
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