AD-A231 923

Ib. RESTRICTIVE MARKINGS

3. DISTRIEUTION/AVALLABIGITY OF REPORT
Approved for public release;
distribution is unlimited
5. MONITORING ORGANIZATION REPORT NUMBER(S)

$$
\left.\begin{array}{llll}
\text { AFOSR.TR. } & 9 & 1 & 0
\end{array}\right): 22
$$

6.. NAME OF PERFORMING ORGANIZATION

6b. OFFICE SYMBOL (If applicsb/e)
$\left.\begin{array}{lllll}-\cdots & \text { AFOSRTR. } & 9 & 1 & 0\end{array}\right): 2$
7a. NAME OF MONITORING ORGANIZATION

6C ADDRESS (Chy, State, and ZIP Code)

Dayton, OH 45469-2357
8. NAME OF FUNDING/SPONSORING ORGANIZATION
AFOSR
Bc. ADORESS (City, Stite, end 2IP Code)
Building 410, Bolling AFB DC
20332-6448

AFOSP/NC
7b. ADORESS (Chy, State, and IIP Code)
Building 410, Bolling AFB DC 20332-6448
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-88-OOKL
10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO. $61102 F$	PROJECT	TASK	WORK UNIT
NO.	2303	NO.	ACCESSION NO.

11 TITLE (include Security Classification)
(U) X-RAY DIFFRACTION STUDIES OF THE STRUCTURE OF ORDERED POLYMERS AND RELATED ELECTRO-ACTIVE MATERTALS
12. PERSONAL AUTHOR(S)

Albert V. Fratini

134. TYPE OF REPORT Final Report	136. TIME COVERED FAOM11-01-87 TO $11-30-9$	14. DATE OF REPURT (Year, Month, Day) December 31, 1990	15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

COSAII CODES		
FIELD	GROUP	SUB-GROUP

Abstract

18. SUBJECT TERMS (Cortinue on rewerve if necessary and identify by Dock number) Polyphenyls, polyparaphenylene oligomers, Electro-active Materials, molten salt precursor, quasi-particles, rigid-rod polymers, hyerpolarizabilities, crystal structure

19. ABSTRACT (Continue on reverse if necessery and ldentify by block number)

The structures of poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBO) fibers have been determined by fiber diffraztion techniques (see Reprint 4 for details). D-spacings were diffractometer. Intensity data were derived from x-ray on a four-circle taken on Weissenberg and vacuum cylindrical cameras. found to be monoclinic and non-primitive, each containing cells were cell. The conformational torsion angle petw containing two chains per phenylene units and the orientation of between the bisthiazole and obtained from a linked-atom least-squains within the unit cells were A packing model has been proposed for each (LALS) refinement procedure. molecular chains are displaced longitudinally in which two independent random increments. primitive unit cells ($z=1$) discrete rather than
DISTRIBUTION/AVAILAQILITY OF ABSTRACT

DUNELASSIFIEDNNLIMITEO \square SAME AS RPT. \quad D DTIC USERS | 21. ABSTRACT SECURITY CLASSIFICATION |
| :---: |
| UNCLASS IFIED |

22. NAME OF RISPONSIILE INDIVIDUAL
23. TELEPHONE (include Aree COOE) 22C. OFFFE SYMDOL

Lt Col 1 P Davis
perfect axial registry of molecular chains, suffered from the occurrence of short intermolecular contacts and were rejected from further consideration.

In another phase of the research on polyparaphenylene oligomers,
variable temperature crystal data for the unsubstituted p-quinquephenyl (PQP), p-sexipheņl (PSP), p-septiphenyl (PSeptip), as yell as the substituted $2^{2}, 4^{5}$-diphenyl-p-quinquephenyl (DPQP), $2^{2}, 6^{5}$-diphenyl-p-septiphenyl (DPSP), and 1,2,4-triphenylbenzene (TPB) oligomers are reported. The unsubstituted oligomers exhibit a solid state transition when cooled from room temperature to 110 K , as indicated by a change in crystallographic space group. No transition is observed for the substituted oligomers other than the usual contraction of the unit cell. The transition observed for the unsubstituted oligomers is interpreted in terms of a conformational change from an "average" planar structure to a static non-planar one. Comparisons of the room and low temperature crystal data are presented.

The crystal structure analysis of the molten salt precursor, 1-methyl-3-ethylimidazolium chloride (MEICl), was completed as part of an investigation of the ion-ion interactions in room temperature melts, where mole fraction N of AlCl_{3} is less than 0.5 . Hygroscopic crystals of MEICl were grown in acetonitrile and sealed under helium gas in a capillary tube. The MEI ${ }^{+}$ions cluster in four distinct layers perpendicular to the c-axis. Similarly, the arrangement of Cl ions is a layered one. Each Cl ion interacts with three MEI ${ }^{+}$ions and each MEI ${ }^{+}$ion is associated with three nearest Clions. Cl ions are situated in reasonable hydrogen-bonded positions rather than at random, suggesting this interaction to be a weak hydrogen bond. Evidence for hydrogen bonding of Cl^{-}ions at the three ring $\mathrm{C}-\mathrm{H}$ bonds in basic MEICL/AlCl ${ }_{3}$ melts is presented.

In the area of research on electro-active materials, the effect of alkyl substitution on the amino group and the placement of bulky groups on the aromatic ring in nitroaniline derivatives have been investigated through a determination of the crystal structures of 2-[2-(N,N-dimethyl-amino)-5-nitrophenyl]benzothiazole, 2-[2-(N-methylamino)-5-nitrophenyl] benzothiazole, 2-[2-(N,N-diethylamino)-5-nitrophenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline. In all four compounds, the alkyl groups attached to the amino nitrogen atom prevent the formation of intermolecular (N)-H... 0 hydrogen bonds between amino and nitro group:. Instead, the molecules exhibit (C)-H... O intermolecular interactions between the nitro group and hydrogen atoms of the aromatic ring and alkyl groups. Two distinct types of packing, herringbone patterns and planar stacks, are observed with the closest interactions associated with the planar stacking of molecules.

In the area of computational chemistry, semiempirical AM1 calculations have been performed for the second hyperpolarizabilities, , of poly-pphenylene and polythiophene oligomers. Calculated values are compared with experimental degenerate four wave mixing results and static field estimates from these experimental results. The relative calculated values agree well with experimental values when the latter are corrected for dispersion effects. Another area is the study of the electronic structure and statistical properties of quasi-particles in polymeric materials. Solitons, antisolitons, polarons, and bipolarons are known to play a role in the conduction of electric current in these polymeric materials. Pristine and doped polyacetylenes have been used initially to study the geometrical and electronic distortions in oligomers and infinite polymers. The computational approach has been based on the semiempirical self-consistent LCAO-MO theory at the AM1 level of approximation for finite systems and the corresponding LCAO-CO theory in the tight binding approximation for infinite systems.

X-RAY DIFFRACTION STUDIES OF THE STRUCTURE OF

 ORDERED POLYMERS AND RELATED ELECTRO-ACTIVE MATERIALSAlbert V. Fratini
Department of Chemistry
University of Dayton
Dayton, Ohio 45469

Final Technical Report, November 1, 1987 - October 31, 1990

Grant AFOSR-88-0044

Air Force Office of Scientific Research

The structures of poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBO) fibers have been determined by fiber diffraction techniques (see Reprint 4 for details). D-spacings were obtained from equatorial and meridional scans recorded on a four-circle diffractometer. Intensity data were derived from x-ray rotation patterns taken on Weissenberg and vacuum cylindrical cameras. Unit cells were found to be monoclinic and non-primitive, each containing two chains per cell. The conformational torsion angle between the bisthiazole and phenylene units and the orientation of chains within the unit cells were obtained from a 'linked-atom least-squares' (LALS) refinement procedure. A packing model has been proposed for each fiber in which two independent molecular chains are displaced longitudinally by discrete rather than random increments. Primitive unit cells (z $=1$), besides requiring perfect axial registry of molecular chains, suffered from the occurrence of short intermolecular contacts and were rejected from further consideration.

In another phase of the research on polyparaphenylene oligomers, variable temperature crystal data for the unsubstituted p-quinquephenyl (PQP), p-sexiphenyl (PSP), p-septiphenyl (PSeptiP), as well as the substituted $2^{2}, 4^{5}$-diphenyl-p-quinquephenyl
$2^{2}, 6^{5}$-diphenyl-p-septiphenyl
(DPSP),
(DPQP),

1,2,4-triphenylbenzene (TPB) oligomers are reported (see Reprints 1 and 2 and Preprint 1 for details). The unsubstituted
oligomers exhibit a solid state transition when cooled from room temperature to 110 K , as indicated by a change in crystallographic space group. No transition is observed for the substituted oligomers other than the usual contraction of the unit cell. The transition observed for the unsubstituted oligomers is interpreted in terms of a conformational change from an "average" planar structure to a static non-planar one. Comparisons of the room and low temperature crystal data are presented.

In collaboration with a group at the Frank J. Seiler Research Laboratory, United States Air Force Academy, the crystal structure analysis of the molten salt precursor, 1-methyl-3-ethylimidazolium chloride (MEICl), was completed as part of an investigation of the ion-ion interactions in room temperature melts, where mole fraction N of AlCl_{3} is less than 0.5 (see Reprint 3 for details). Hygroscopic crystals of MEICl were grown in acetonitrile and sealed under helium gas in a capillary tube. The asymmetric unit contains four MEI^{+}...Cl ${ }^{-}$ion pairs. The MEI^{+}ions ciuster in four distinct layers perpendicular to the c-axis. similarly, the arrangement of Cl^{-}ions is a layered one. Each Cl^{-}ion interacts with three MEI ${ }^{+}$ions and each MEI ${ }^{+}$ion is associated with three nearest Cl^{-}ions. The distance of a Cl^{-}ion from a ring carbon atom averages 3.55 A . Cl^{-}ions are situated in reasonable hydrogen-bonded positions rather than at random, suggesting this interaction to be a weak hydrogen bond. Evidence for hydrogen bonding of Cl^{-}ions at the three ring $\mathrm{C}-\mathrm{H}$ bonds in basic MEICL/AlCl ${ }_{3}$ melts is presented.

In the area of research on electro-active materials, the effect of alkyl substitution on the amino group and the placement of bulky groups on the aromatic ring in nitroaniline derivatives have been investigated through a determination of the crystal structures of 2-[2-(N,N-dimethylamino)-5-nitrophenyl]benzothiazole, 2-[2-(N-methylamino)-5-nitrophenyl]benzothiazole, 2-[2-(N,N-diethylamino)-5-nitrophenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline isee Preprint 2 for details). In all four compounds, the alkyl groups attached to the amino nitrogen atom prevent the formation of intermolecular (N)-H...O hydrogen bonds between amino and nitro groups. Instead, the molecules exhibit (C)-H...O intermolecular interactions between the nitro group and hydrogen atoms of the aromatic ring and alkyl groups. Two distinct types of packing, herringbone patterns and planar stacks, are observed with the closest interactions associated with the planar stacking of molezules. The dialkylamino substituents extend above and below the molecular plane, which is comprised of essentially coplanar ring systems.

In the area of computational chemistry, semiempirical AM1 calculations have been performed for the second hyperpolarizabilities, γ, of poly-p-phenylene and polythiophene oligomers (see Preprint 3 for details). Calculated values are compared with experimental degenerate four wave mixing results and static field estimates from these experimental results. The relative calculated values agree well with experimental values when the latter are corrected for dispersion effects.

Another area of the computational chemistry effort is the study of the electronic structure and statistical properties of quasi-particles in polymeric materials. Solitons, antisolitons, polarons, and bipolarons, in one way or another, are known to play a role in the conduction of electric current in these polymeric materials. Pristine and doped polyacetylenes have been used initially to study the geometrical and electronic distortions associated with quasi-particles in oligomers and infinite .. polymers. The computational approach has been based on the semiempirical self-consistent LCAO-MO theory at the AM1 level of approximation for finite systems and the corresponding LCAO-CO theory in the tight binding approximation for infinite systems (see Preprint 4 for details).

II. RESEARCH OBJECTIVES

The structures of poly(p-phenylene benzobisthiazole) (PBZT) and poly(p-phenylene benzobisoxazole) (PBO) have been of interest for the past decade. Numerous publications have advanced the understanding of the fiber and film structures of these rigid rod chains [1-3]. Our approach has been to apply the linked-atom least-squares (LALS) method to PBZT and PBO fibers exhibiting the highest order observed to date. The results, representing the equilibrium crystal structure, serve as a vehicle by which one can measure progress in reaching a fully ordered structure by processing improvements. The goal is to understand changes in structure and morphology imparted by chemical or physical means (in fiber processing, for example), and to relate these changes to the properties observed for these rigid-rod materials.

The study of oligomers of poly-p-phenylene (PPP) is part of the continuing research on the structure and morphology of rigid-rod polymers. Aerospace applications of these materials require a broad range of operating temperatures and conditions. Basic morphological information is needed about factors such as the relative orientation of phenyl rings, crystal packing forces, and the nature of the structural transitions observed at low temperatures in crystalline samples. Tedious synthetic procedures coupled with a high melting point and low solubility have made PPP a difficult polymer to prepare and fabricate. Paraphenyls of specific chain length which incorporate pendant groups have recently been
prepared by a new synthesis procedure utilizing intermolecular cyclization [4]. Single crystals of sufficient size for structural analysis have been grown by sublimation and recrystallization techniques.

Research objectives in computational chemistry have been concentrated in two main areas. First, ways to compare calculated static values of the hyperpolarizability with experimental values, measured at a particular frequency, have been investigated. As expected, the effect of the radiation frequency is considerable, even for resonant frequencies. Since comparisons between calculations and experiment are usually made without allowing for the frequency effect, the discrepancies come out to be larger than they should be. This was the case particularly with oligomers of p-phenylene and thiophene, as had been previously pointed out by Goldfarb, Reale and Medrano [5].

Secondly, the discovery that doped polyacetylene and other polymers can have electrical conductivity which are several orders of magnitude larger than for pristine material prompted a world-wide research effort. It was soon realized that quasi-particles were being created by the doping process (they can also be photoregenerated), and that it was necessary to understand the associated geometrical and electronic structure, as part of the whole picture. A study of the electronic structure of quasi-particles such as solitons and polarons in infinite polymers was initiated.

III. STATUS OF RESEARCH EFFORTS

Computational Chemistry. It is possible to estimate the effect of dispersion on degenerate four wave mixing (DFWM) experiments under the assumption that most of the nonlinearity of a delocalized pi-cloud comes from the lowest excited state by the formula,

$$
\gamma(0)=\left[\left(w_{0}^{2}-w^{2}\right)^{4} / w_{0}^{8}\right] \gamma(w)
$$

This gives the static value $\gamma(0)$ in terms of the frequency w at which the DFWM experiment was performed in obtaining $\gamma(w)$. The experimental results for the above-mentioned oligomers, as a function of the number of repeat units, were thus corrected, leading to a dramatic improvement in the agrrement between calculated and measured values. A paper (see Preprint 3) reporting these results has been submitted for publication in the Journal of Chemical Physics. This work has been undertaken in cooperation with H. Kurtz at Memphis State University.

For the study of quasi-particles in polymeric materials, most of the calculations performed to date have used the $S u$, Schrieffer and Heeger (SSH) hamiltonian [6]. The SSH approach however is still too crude for the kind of accuracy that is needed since it is basically a Huckel-type approximation with sigma bond compressibility, and electron-electron Coulomb interactions are completely neglected. On the other hand,
several self-consistent LCAO-MO calculations have been performed on finite oligomers of polyacetylene, both semiempirical and ab initio.

It was felt necessary to undertake a reliable and comprehensive study of quasi-particles, mostly in infinite polymers, since these are a better approximation to real systems. Additionally, the effect of the dopant cannot be disregarded and should be included in the calculation, which should be performed at the SCF-MO-LCAO level of theory. The repeat units used for the polymer calculation have to be quite large in order to prevent the concentration of quasi-particles to become unrealistically high. Even at the semiempirical AM1 level of approximation, these calculations are extraordinarily demanding of cpu time. The first results which were obtained have already been accepted for publication (see Preprint 4) [7]. There is still much to be done, especially with regard to the calculation of the band structure of materials containing quasi-particles, before a more complete picture begins to emerge. It is felt that our calculations are sufficiently sophisticated and reliable for systems of such large size to contribute to the understanding of the electronic structure of organic conductors.

1. W.W. Adams, L.V. Azaroff, and A.K. Kulshreshtha, Z. Kristallogr. 150, 321 (1980).
2. E.J. Roche, T. Takahashi, and E.L. Thomas in Eiber Diffraction Methods, edited by A.D. French and K.H. Gardner (American Chemical Society Symposium Series, No. 141, 1980), p. 303.
3. J.A. Odell, A. Keller, E.D.T. Atkins, and M J. Miles, J. Mater. Sci. 16, 3309 (1981).
4. M.R. Unroe and B.A. Reinhardt, Synthesis, 11, 981 (1987).
5. I.J. Goldfarb, H.F. Reale and J.A. Medrano, in "Theoretical Prediction of Nonlinear Optical Properties of Molecules and Polymers," Materials Research Society Symposium Proceedings, 134, 609 (1989).
6. W.P. Su, J.R. Scheiffer and A.J. Heeger, Phys. Rev. Lett., 42, 1698 (1979).
7. J.A. Medrano and D.S. Dudis, "Quasi-particles in Polymeric Conductors," Proceedings of the International Conference on Organic Superconductors, Plenum Press, 1990.
8. "Structure of a Dioxabicyclic Fluoro Octane Derivative," P.G. Lenhert and A.V. Fratini, Acta Cryst., C43, 1929-1932 (1987).
9. "Hydrogen-Bonded Ion-Ion Interactions in a Molten Salt Precursor: The Crystal Structure of 1-Methyl-3-Ethylimidazolium Chloride," C.J. Dymek, D.A. Grossie, A.V. Fratini and W.W. Adams, AFWAL Tech. Rep. 88-4165, June 1988.
10. "Structural Transformations in Crystalline Oligomers of Polyparaphenylene," K.N. Baker, A.V. Fratini, H.C. Knachel and W.W. Adams, Proceedings of Materials Research Society, 134, 497 (1989).
11. "Molecular Packing and Crystalline Order in Polybenzobisoxazole and Polybenzobisthiazole Fibers," A.V. Fratini, P.G. Lenhert, T.J. Resch and W.W. Adams, Proceedings of Materials Research Society, 134, 431 (1989).
12. "Single-Crystal Diffraction Analysis of 2-(Trimethylsilyl-ethynyl)-4-Nitro-N,N-Dimethylaniline," D.A. Grossie, A.V. Fratini, and W.W. Adams, Tech. Rep. WRDC-TR-89-4120 July 1989.
13. "Crystal Structures of Poly-Paraphenylene Oligomers Containing Pendant Phenyl Groups, " K,N. Baker, A.V. Fratini and W. W. Adams, Tech. Rep. WRDC-TR-89-4121 Sept. 1989.
14. "Evidence for the Presence of Hydrogen-Bonded Ion-Ion Interactions in the Molten Salt Precursor, 1-Methyl-3-Ethylimidazolium Chloride," C.J. Dymek, D.A. Grossie, A.V. Fratini and W.W. Adams, J. Molecular Structure, 213, 25-34 (1989).
15. "Crystal Structures of Poly-Paraphenylene Oligomers Containing Pendant Phenyl Groups, " K.N. Baker, A.V. Fiatini and W. W. Adams, Polymer, 31, 1623-1631 (1990).

PROFESSIONAL PERSONNEL

1. Dr. A. V. Fratini, Principal Investigator, Professor of Chemistry, University of Dayton.
2. Dr. K. Baker, Postdoctoral Associate, University of Dayton.
3. Dr. J. Medrano, Senior Research Associate, University of Dayton.
4. Mr. T. Resch, Research Student, University of Dayton.
5. Ms. L. Staley, Research Student, University of Dayton.

PRESENTTATIONS

1. Annual Meeting of the American Crystallographic Association, University of Washington, Seattle, WA, July 23-29, 1989.
2. Dayton Section of American Chemical Society, Dayton, $\mathbf{O H}$, March 1989.
3. Dayton Section of American Chemical Society, Dayton, OH , February 1990.
4. AFOSR/NLO Review, Washington, DC, April 1988.
5. AFOSR/NLO Review, Long Beach, CA, September 1989.
6. 22ND Central Regional Meeting, American Chemical Society, Saginaw Valley State University, University Center, MI, June 1990.
7. American Crystallographic Association Annual Meeting, New Orleans, LA, April 1990.
B. Materials Research Society Meeting, Boston, MA, November 1988.

STRUCTURAL TRANSFORMATIONS DN CRYSTALIRE OLIGOMIRS OF POLYPARAPFIENYLENE

KENNETH N. BAKER*, HOWARD C. KNACHEL*, ALBERT V. FRATINT*, and W. WADE ADAMS ${ }^{\circ}$
- Deperumear of Chemisry, Univerity of Dayton, 300 College Purk, Dayton, OH 45469. -Materials Lebortory, Wright Research and Developenear Center, WPAFB, OH 45433 6533.

Abstract

We report the room and low temperature erystal structures of the unsubstituted pquinquephenyl (PQP) and p-sexiphenyl (PSP), and substituted $2^{2}, 4^{5}$-diphenyl-pquinquephenyl (DPQP), $2^{2,65}$-diphenyl-p-sepriphenyl (DPSP), and 12,4-riphenylbenxene (TPB) polyparaphenylent oligomers. The unsubsciused oligomers exhibit a solid state ransition when cooled from room temperanure so 110 K , as indicated by a change in crystellographic space Eroup. No urasition is observed for the substiunted oligomers other thas the usual thermal contraction of the unit cell. The transition observed for the unsubstitured oligomers is interpreted in terms of a conformational change from an and low menperanue crystil dian are presented.

INTRODUCTION

Olizoraers of polyparaphenylene (PPP) have been of interest in our laboratory as pan of continuing research on the structure and morphology of rigid-rod polymers. Aerospace applications requiring a broad range of operating rempermures and conditions require that any structural rransition remperatures muss be known. Much basic morphological infarmation is still needed about factors such as the crientation of one coaxial ring to another and cryssal packing forces in high performace polymers of this rype.

Tedious symhetic procedures coupled with a high melting poina and low solubility have made PPP a difficull polymer so prepare and fabricate(1,2]. P-polyphenyls wich a specific chain leagth and incorporating pendana groups have been recently prepared using a new syubhesis procedure uxilizing inzermolecular eyctiztion[3].

We have obrained high puriry samples of PPP oligomers from which single crystals of sufficient size for structure analysis were sublimed or recrysullized. In a continuing investigation of the molecular surverre, crystal packing, and stucrural arasformations of PPP oligomers, we have studied p-quinquephenyl (PQP), p-sexiphenyl (PSP), $\mathbf{2}^{2}, 4^{5}$. diphenyl-p-quinquephenyl (DPQP), 22,65-diphenyl-p-septiphenyl (DPSP), and 1,2,4siphenylbenzene (TPB). The firs four corapounds tave the general swerare (1)

where $n=1$ and $R=H$ for POP, $n=1$ and $R=\varnothing$ for DPQP, $n=2$ and $R=H$ for PSP, and $n=3$ and $R=\varnothing$ for DPSP. TPB was inciuded in this presens study since its room verpernaure surveture has nor been reporied.

EXPERIMENTAL METHODS

Samples of PQP, PSP, DPQP, DPSP, and TPB were obvined from Bruce Reinherdt Manerinis Laborany, Wright Paterson Air Force Base. PQP and PSP samples were sublimed to obovin good quality crymuls; ocherwise, the samples meeded no addizional purificaion. Data were collected on an Enref Nonius CADA difinctometer inverficed to a Bicina Equipmens Corporaion Miaro PDP-11 computer. Data refinement and suructure devermination were sccomplished asing the Struepare Desermination Pratage (SDP)[4] sofiware on a Digina Equipment Corportion VAX $11 / 730$ computer. The final R values and the corresponding ntio of the number of mique reflections wo the mumber of permeters varied are 0.050 (663:136), 0.062 (623:163), 0.049 (1061:190), 0.046 (1537:244), and 0.036 (1839:219) for PQP, PSP. DPQP. DPSP. and TPB, respectively. Complete suructural informaion will be given in another poblicatioa [15]. Cooling of de crysme was mecomplished with an Enraf Nonius FRS58NH liquid nitrogen cryostat for the CAD4 imsurnean.

RESULTS AND CONCIUSIONS

Table I summstizes current results along with poblished results for biphenyl(BP). p erphenyl(PIP), and p-quarerphenyl(PQuup) and one can see several reads. As the murmber of phenyl uairs in the oligomer chain increases, one observes a dirtect increase of approximanely 4.1λ in the c lanice dimension of the monoctinic umir cell per peraphenylene unir This distrnce is slighly less than the lengh of a phenylene unit so ore would expect the oligooner axis to be approximmely aligned with the ccrymellopraphic axis. The unir cell diagrems included in Figure 1 coafinm that the digomer axis is preferencielly aligned with the cerystillographic axis.

The low tempernaure unit cell is a superiutice of che rooon temperature unit cell with paramerers a and b doubled to account for the greater displacement of the non-planar oligomer. The low remperaure crystal structures of $P 1 P(8)$ and $P Q u a P P(10]$ were solved usion a rielinic unin cell. At room temperture the erystul sructure indicates a planar oligomer probably resultiag from the average of several mon-planer conformaioas. At low emperarie a specific son-planar seomery is preferred

Figure 2 summarizes the melining points of p-polyphenyls and wheir respective ransioion zemperanres. A stendy ise in temperature is observed es the oligomer increases in lengit 80 that the predicted urusition tetuperaures for $P Q P$ and $P S P$ should be above room temperamire. However we reporn here that the strectures of PQP and PSP remain planar at roon teriperaure and Differmini Scanning Calorimery (DSC) measurements indicate thas there is no uransicion octer than melting at higher seruperantes. Upon cooling of $P Q P$ and PSP single crysuls to 110 K , unis cells very sivilar to the rocom semperaure unit cells were found initially. However, ffure 24 hours a cyysel phase ransidion had occurred. Boch DSC analysis and X-ray powder diffinction paterns ruken as low as 143K and held for several
 beiween 143K and 110K, as indiezied by we error bars in Figure 2 , and is sime dependent. This ransition could be mon-firs order as observed for biphenyl(5,6] in which a sofm mode exists below its transition teumperaure. More experiments are planned to swody this phenomenor.

As is the case for most high sermperaure-resimant polymers, PPP degrades before it melts: however, for compmerison purposes there is inmerest in knowing the theorecical meling poins of the polymer. Literaure repors PPP io be infusible (11], but by the exrapolation of experimenav meling points of PPP oligomers (Figure 3) we estimaxe the melting point of PPP wo be 1020 K . Exrapolaved melding poinss of 620 K and 1260 K have been reporred for poly(terafluoroethylene)(12] and KeviarTM [131, respectively. Those exrapolations are beced on melting poins depression assocised with end group concenuruion in polymers (14).

The low empenaree cryseal strucare of DPQP is isoservemanal with is room semperaure cyyul strucure indicuing no surearral ernasition. In a paper io be published elsewhere[15] we ripont that the addition of pendant proups so the PPp oligomer results in a distorion of planany of the unsubsciauted oligomer, but the worsion angles change less than an averge of

 $\begin{array}{llllllll}\text { 言 } & 88 & 28 & 28 & 28 & 88 & 2 & 28 \\ \text { ले } \\ \text { § }\end{array}$

VARIABLE TEMPERATURE CRySTAL DATA

PQP

Figure 1. Fim, aide and min eell views of PQP and PSP.

Figure 2. Piot of trasition ($\rightarrow \mathbb{K}$) and melting point ($-\infty, \mathbb{K}$) vs. aligoreer length (n). Mething poins dars niken from DSC measurewents, are as follows: 279K[2]. 343K(2), 483K(2], S9IK(2], 661K(3), 710K(3), 741K[3], and 764K[3] for $n=1$-8. sespecively. Transition remperanies are 40K[6]. 191K[7]. and $243 \times(10)$ for $n=2-4$, respectively. fror bers an $n=5$ and 6 indicate tempenaure range for observed transivion.

Figure 3. Pror of log of inverse melding point (log (1/T)K) vs. inverse oligoner length ($1 / \mathrm{n}$) ghowing the extupolased melving point of high polymer PPP.

DPSP

TPB

Figue A. Moleculer views of DPOP, DPSP and TPB.

10 berwien recm and low emperture. As the leagh of the subscioxted PPP oligomer increases, a gywemasic decrease in symmetry is oberved as a chasge in space proup. The
 in the umin cell. More coupounds in this furime se bring suatied.

Molecular modeling studies of PPP oligomers ere complementing surnetme invertigations. The ellculated turcion anjef for bipheayl is spproximately twice that calculated for the rigid-sods poly(p-phenylesebensobisthiasole) (PBZI) and poly(pphenylenebensobisorasole) (PBO)(16.17). The wrica angles ealculaved for a phenyl mbocisued biphenyl molecule in iss lowerr energy comformaica agree with crysullographic data for substinused PPP oligomers. PPP conformations simplated in che absence of crystal pecking forves have the sings perpendiculy to each oher. This sugfests that the conseruinus withia the mit cell sre gucog enongh so overeome the ortho-hydrogen repulsion. Receat calculations show PPP to have a high theoretical axial zeasile modulus and a high compressive surength, which encourages continued inserest in PPP oligomers as potentin sucucturl manials(17).

REPERENCES

1. G.K. Norea and J.K. Saille, J. Polym. Sci Macromol. Rev. 5, 385 (1971).
2. J.G. Speight, P. Kovacis, and F.W. Koch, J. Macromol. Sci. Rev. Macromol. Chem 5, 295 (1971).
3. MR. Urwe aod B.A. Reinherdh, Polymer 11 981 (1987).
4. B.A. Freaz and Associates. . Inc. (1985). College Stasion. Texas, 77840.
5. A. Bree and M. Edelson, Ciem. Phys. Lent. 16 (3). 500 (1977).
6. \& Crillean JL. Baudour, and C.ME Zeyen, Acta Cryst B35, 426 (1979).
7. H. Crillear and A. Dworkin. Mai. Cryst. Liq. Cyst 50, 217 (1979).
8. JL. Bandour, Y. Delugeard, and H. Caillean, Acta Cyst B32, 150 (1976).
9. B.A. Bolma and P.N. Prased, Chem. Phys 35, 331 (1978).
10. IL. Bandour, Y. Delugeard, and P. Rivet, Acti Crys. B34, 625 (1978).
11. P. Kovacie and A. Kyrinkis, J. Am. Chem Soc. 85, 454 (1963).
12. H.W. Sturkweather, Macromalecules 12 1131 (1986).
13. K Gerdner (Privite Conmarication).
14. P.J. Flory, Pringiples of Polvmer Chemistay (Cornell Uaiversity Press, ithaca, New Yock, 1953) p. 370.
15. KN. Baker, HLC. Kiachel, A.V. Fratini, and W.W. Adams, to be published.
16. B2. Farmer (Pitvate Commomization).
17. S.G. Wierchbe, AEWAL-TRaH8-4201 (October 1988).

Crystal structures of poly-paraphenylene oligomers containing pendant phenyl groups

Kenneth N. Baker and Albert V. Fratini
Deparemem of Chomistry. University of Dayton, Dovion, OH 45469, USA
and W. Wado Adams*
Polymer Branch. Moteciels Leboratory, Wright Rescurch and Development Center, WPAFB. OH 45433-6533. USA
(Received 11 July 1989; novised 25 Saptember 1989; accepted 30 Saptember 1989)

Abstract

 quisquephenyl (DPQ), $\mathrm{C}_{62} \mathrm{H}_{30}$; and $2^{2} .6^{5}$-diphenyl-p-mptiphenyl (DPS), $\mathrm{C}_{86} \mathrm{H}_{30}$, have been investigated as part of a sumarch programus in rigid-rod polymers, mastrials which are of great interea for aerospace and electro-aptical applications. The molecules are non-planar. in contrast io the planar structures found at room cemperature for the manbstituted polyphenyls. The oligomer axis does not align with any of the eryitallographic axes. The pendant-oligomer bond. however. does aliga with the longest crysuallographic axis. The peadant torsion angle is greater than 45° and increases with increasing chain length. Knowledge of molecular etructure and arystal pecking of oligomeric model compounds will be ueful in further calculations of mechanical. opticali and electro-optical properties for the corresponding rigid-rod polymer structures.

INTRODUCTION

The past few years have seen the activity in the area of conducting polymers grow at a very rapid rate. The widespread interest in conducting polymers cearly reflects their perceived technological potential ${ }^{1}$. Attention has focused on the pi-bonded polymers such as polyparaphenyiene (PPP) for several reasons. It can be oxidized to a polymeric cation rather than undergo other chemistry and thereby be made electrically conducting; it is thermally stable: pi-orbital overlap may create interesting non-linear optical (NLO) properies: and improved methods have been reported for the synthesis of oligomeric soluble prepolymer².
The generation of charge carriers in the polyphenyls occurs by doping and the subsequent formation of ionic species. e.f., a polymeric cation and a counter ion. Electrical conductivity as high as $500 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ has been achieved with dopants such as Li . K, and AsF; (ref. 3). The polymer chains. as for organic molecules in general. adopt a differeat conformation in the ionized state compared to the neutral state. Conformation differences would lead to changes in the amount of pi-orbital overtap along the polymer axis as well as aficet the electro-optical properties of the polymer.

In as ongoing study of PPP is new electrically conducting rigid-rod polymers, the room temperature structures of $2^{2} 4^{3}$ diphenyl-p-quinquephenyl (DPQ), $2^{2} .6^{3}$-diphenyl-p-aptiphenyl (DPS), and 1.24 -triphenylbenzene (TPB) have been determined. TPB was included tin the present study because its room temperature crystal structure had nor been reported. The first two compounds

[^0]have the general structure,

where $n=1$ for DPG and $n=3$ for DPS. Letters (A, B, etc.).refer to the connecting bond aloag the main chain and the Greek letters (\downarrow and x) refer to the torsion angles between adjecent phenyl groups. These compounds were syathesized in order to obtain a better understanding of how rigid-rod molecules pack in solids and how chain teagth affects packing. In addition. recent calculationst have indicated that PPP is a very stifi molecule which. if processed into fibres usin high molecular weight polywer. would have very high tessile modulus.

EXPERIMENTAL

Oligomers were syathesized by Eruce Reinhardt. Materials Leboratory, Wright Patterson Air Force Base, according to a dew method which involves intermolecular cyclization'. The highly erystalline samples required no additional purification and/or crystal growth. Density
measurements were made by flotation in mixed solvents containing methyl alcohol and methylene chloride.
Refection data were collected on an Enraf Nonus CADA diffractometer coupled with a DEC micro PDP-11 compurer and processed on a VAX 11/730 using software in the Structure Determination Package (SDP) ${ }^{3}$. Structure colutions were determined by MULTAN $11 / 82^{\circ}$ and SHELXS-86'. The method of refinement followed the general scheme: (1) isotropic refinernent of carbon atoms using unit-weighted reflections; (2) isotropic refinement of carbon atoms using unit-weighed refections; hydrogen atoms, with fixed thermal factors, positioned in idealized geometries and construined to its attreched carbon atom with a bond length of 0.95 A ; (3) anisotropic refinement of carbon atoms using unit weights with hydrogen atoms still constrained to attechod carbon atoms; (4) anisotropic sefinement of carbon atoms to convergence using $1 / \sigma^{2}(F)$ weights with hydrogen atoms riding on atteched carbon atoms. Subsequent isotropic refinement of hydrogen atoms. as expected, did not yield appreciably better results due to the reduced data-to-parameter ratio.

RESULTS

Table 1 lists crystallographic and data collection parameters. and final refinement results. Figure 1 shows the TPB molecule with the carbon atoms labelled. Tables? and 3 contain the atomic positions, bond distances, and bond angles. respectively. Figure 2 shows a stereo view of the molecular packing in the unit cell.

DPQ is shown in Figure 3 with the carbon atoms of the asymmetric unit labelled. Tables 4 and 5 present the atomic positions. bond distances, and bond angles. respectively. The stereo view of the molecular packing in the unit cell is shown in Figure 4. The molecule possesses a centre of symmetry.
The DPS moiecule with the carbon atoms of the asymmetric unit labelled is shown in Figure S. Atomic positions. bond distances. and bond angles are presented

Talle 2 Alomic positions of 12 Atripheaylbernace. Numbers in prowhem are matitud stasdard deviasion in the bast sipmilicant dipis

Acom	2	y	8	$\theta\left(A^{2}\right)$
C1	06605(2)	$0.106611)$	-0.02818(9)	$3.51(3)$
C2	0.623(2)	0.0367(1)	-0.0998(1)	3.95(4)
C3	0scger 2)	0.1542(1)	-0.1390(1)	4.38(4)
C4	0.5316(2)	$0233311)$	-0.1076(1)	4.76(\$)
C5	0.5875(3)	$0.2341(1)$	-0.0369(1)	5.76+5)
$\boldsymbol{6}$	0.64192)	0.176411	0.0022(1)	5.17(5)
67	0.7186(2)	0043(1)	0.01392(9)	3.4613)
C	0.67042)	-0.0279(1)	$0.0092(1)$	3.87(4)
C9	$0.7261(2)$	-0.0854(1)	0.0482019)	3.81(4)
C10	0.3327(2)	-0.0736(1)	0.0926491	3.38(3)
C11	0.815(2)	-0.0007(1)	0.09859191	3.343)
$C 12$	0.832(2)	$0.0567(1)$	0.0592191	3.65(4)
C13	0.930512)	-0.1397(1)	$0.12927(9)$	3.57(4)
C14	0.8133(2)	-0.1891(1)	0.1676111	4.24(4)
C15	$0.4641(2)$	-0.2526(1)	$0.1991(1)$	5.05(5)
C16	$0.9928(3)$	-0.263(1)	$0.1922(1)$	5.53(5)
$\mathrm{Cl7}$	$1.0707(2)$	-0.2197(1)	$0.1547(1)$	5.5315)
C18	$1.10206(2)$	-0.1558(1)	$0.1236(1)$	4.4914)
C19	$0.9919(2)$	0.01889(9)	0.14651(9)	3.41(4)
COO	0.9938(2)	-0.0032(1)	$02188(1)$	4.2614)
C21	1.036012)	$0.0181(1)$	02634(1)	5.17(5)
C22	$1.1940(2)$	$0.0621(1)$	$02362(1)$	S.21(5)
C3	1.1915(2)	0.0842(1)	0.1647111	5.02(5)
C34	1.0910(2)	0062911)	0.1201111	4.15(4)
H2	0.637	0.050	-0.122	5.0
H 3	0.543	0.146	-0.188	5.6
H4	0.516	0.263	-0.135	6.0
HS	0.575	0282	-0.015	6.9
H6	0.666	0.184	0.051	6.5
H8	0.599	-0.038	-0.022	5.0
H9	0.691	-0.134	0.045	4.8
H12	0.857	0.106	0.063	4.6
H14	0.724	-0.179	0.172	5.3
H15	0.810	-0.286	0.226	6.4
H16	1.028	-0.312	0.213	7.0
H17	1.160	-0.230	0.150	6.9
H18	1.076	-0.122	0.098	5.7
120	0.929	-0.034	0237	5.4
H21	1.097	0.003	0.313	6.6
H22	1.263	0.077	0.267	6.5
H23	1260	0.114	0.146	6.6
H24	1009	0.079	0.071	5.4

Tatie I Cryual data

Name	124Tripbenyl bearene	$22^{3} 3^{3}$-Diphenyl-p-quisquephenyl	22.63-Diphenyl-p-mptiphenyl
Formula	$\mathrm{C}_{20} \mathrm{H}_{16}$	$\mathrm{C}_{42} \mathrm{H}_{30}$	$\mathrm{C}_{20} \mathrm{H}_{31}$
	${ }_{123} 3$	$\begin{aligned} & 53.9 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 656.9 \end{aligned}$
Spece group	Pbea	P2, $\mathbf{2}_{\text {c }}$ ¢	PI
2			
- (A)	10.3646)	63043)	11.71312)
((A)	1789844)	3143791	135962)
C (A)	18.474(5)	7.65113)	6.138121
2 delegres	90.0	90.0	10233(2)
A degres)	90.0	106.184)	$9.51(2)$
- (depres)	90.0	90.0	102.71 (1)
Vol (13)	3428.341	11856.421	918.3181
	1.187	1919	1242
Dumsity cop $^{\text {(}}$ (cm^{3})	1.186	1.188	1.236
Number of toul reflestions	19698	5304	3358
Number of uaique refections > 30	1839	1061	1537
Number of parmmers varied	217	190	24
${ }^{+}$	0.036	0.049	0.046
RW*	0.050	0.061	0.062

$$
\cdot R=\frac{\sum M F_{d}-\left|F_{d}\right|}{\sum \mid F_{d}}
$$

$\cdot R W=\sqrt{\frac{\Sigma W\left(I F A-\mid F_{d} \|^{2}\right.}{\Sigma W^{\prime}\left(F_{0} I^{2}\right.}}$

Atea 1	Atom 2	Dimance ($\hat{\prime} \mid$	Atom 1	Atomin 2	Dimance (A)		
Cl	C2	1300 (2)	C11	C12	13\%63)		
C1	c\%	1342(3)	C11	C19	1.4098 (2)		
C1	C7	1406(2)	C13	C14	1.387(3)		
0	C3	1377(3)	C13	CII	1313(3)		
C3	C4	13793)	C14	Cls	1322(3)		
C4	Cs	1373(3)	C15	C16	$1309(3)$		
C3	C6	[3113)	C16	C17	1.373(3)		
C7	c	1.3920)	C17	C18	13224)		
C7	C12	1387(2)	C19	C20	13943)		
c8	C9	1.313(3)	C19	C24	13943)		
69	C10	1.393(3)	C20	C1	130044		
C10	C11	1,405(2)	Q1	$C 2$	1381(3)		
C10	C13	1ath(2)	$\underline{2}$	${ }^{2} 3$	1.300 (3)		
			${ }^{23}$	84	1322(2)		
Atom 1	Arom 2	Anem 3	Ande (les)	Aten 1	Anow 2	Alom 3	Aagle ides)
C2	CI	©	117.8(2)	C12	CII	C19	118.012)
C2	Cl	C7	$121.0(2)$	C7	C12	Cl1	199.5121
C6	C1	C7	121312)	C10	Cl3	C14	120.4121
C1	${ }^{C}$	C3	121.212)	C10	C13	Cis	$1215(2)$
C2	C3	c	120.42)	C14	C13	C18	$118.012)$
C3	C4	C5	119.42)	C13	C14	C15	$121.2(2)$
C4	C5	C6	120.2131	C14	CIS	C16	120.0121
Cl	C6	C5	$121.3(2)$	C15	C16	$C 17$	119.431
Cl	67	${ }^{\text {c }}$	1212(2)	C16	C17	C18	120.912)
Cl	C7	$\mathrm{Cl2}$	$121.1(2)$	C13	C18	C17	120.414
${ }^{C 8}$	C7	C12	$117.7(2)$	C11	C19	C30	121.7(2)
C7	C8	C9	120.6121	C11	C19	C24	119.712)
${ }^{\text {c8 }}$	69	C10	121.812)	C20	C19	C34	118.6121
$C 9$	C10	C11	$1182(2)$	C19	C20	C11	[12.062)
C9	C10	$\mathrm{Cl3}$	117.912)	C31	C21	C3\%	119.712)
Clı	C10	C13	$123.9(2)$	C2l	C22	${ }_{C 3}$	130.0121
C10	CII	C12	$119.2(2)$	C29	C23	C34	120.4(2)
Clo	Cl1	C19	122.9(2)	Ci9	C24	03	120.4(2)

 a the 50% probability livel
in Tables 6 aad 7. respectively. Figure 6 depicts a stereo view of the molecular packiag of the structure in the unit cell. This molecule also possesses a centre of symmetry. (Observed and calculated structure factor amplitudes and other detnils of the structure amalysis have been deposited at the British Library Copyright Receipt Olfice: as supplementary material so this paper.)

DISCUSSION

Table 8 summarizes the bond lengths between neighbouring phenyl units for structures determined at room
${ }^{-}$Eritish Library Copyigitr Receipr Oflse. I Sheraten Strmet. Lomdon wiv 4BH. UK
temperature. The values are not significantly different than the corresponding distances in the unsubstituted PPP ${ }^{t-11}$. A significant shortening of these bond distances in the substituted oligomers would have indicated more double bond character and increased electron delocalization. It should be noted that the contribution of the quinoid resonance structure is believed to increase upon doping of PPP' with alkali metals. This is sccompanied by a decrease in aromaticity and an increase in electron delocalization. Thus, it is not certain whether pendantcontaining PPP could therefore be doped with alkali metal ions to produce better electronic conductors and/or NLO materials.
The bond angles are very close to the expected 120° value with the largest deviations in angles associated with connecting phenyl units. The oligomer axis of each molecule is essentially coaxial and small deviations are probably due to steric hindrance of the phenyl pendant groups. Deviations of the oligomer axis carbon atoms from the beat least equares line fit. plotted in Figure 7. show that DPS is distorted the most of the three oligomers. Whes viewed down the chain axis. DPQ has a small sinusoidal-shaped wave perpendicular to the plane of the central ring, whereas TPB and DPS are bowed. The terminal phenyl ring of TPB (C13-C18) is TF from beins collipear with the oligomer axis. These contortions of the oligomer axis are shown in Figure 8.

In all three oligomers, the oligomer axis does not align with any of the crystallographic axes: however. the bond connecting the pendant to the oligomer aligns preferentially along (or nearly so) one of the crystallographic axes. In TPB the peadant-oligomer bond aligns close to

 cis is borizontal and ite c aris in vertical

Fyare $32^{2} 4^{2}$.Diphenyi-pquiaquepheryl with cartoa acoun ellipeoids drawn at the 50% probability level

Flowe 4 sterno sinw of DPO strowine molecular pecting in unit eefl. Molecules poevinioned on front corners are omitted for cticrity. The c ander is hormential and ithe axis is verical

Takit 4 Atomic ponitions of $2^{2} 4^{3}$ diphenyl-pquinquephenyl. Numters in pareatheas are samated standard deviations in the leatt cipnifoent digit

Atom	x	y	2	$B\left(A^{2}\right)$
Cl	0.2032(5)	$0.0213(1)$	0.904814)	3.68(7)
C2	1.1965(5)	0.0219(1)	1.058615)	4.48181
C3	1.0016(5)	$0.0428(1)$	$0.9683(5)$	4.40181
C4	0.5973(5)	0.0439(1)	0.508441	3.67(7)
Cs	0.5635(5)	$0.0868(1)$	0.8359(4)	3.79(7)
C6	0.3824(5)	$0.109311)$	0.7367(4)	3.42(7)
C7	0.2203(5)	$0.0877(1)$	$0.6023(4)$	3.6771
C8	0.2476(5)	$0.044611)$	$0.5776(4)$	4.25181
C9	0.4317(5)	$0.0227(1)$	0.6810(5)	422181
C10	$0.0256(5)$	$0.1101(1)$	0.4820411	3.66171
C11	0.0476(5)	$0.146711)$	$0.3885(5)$	4.5181
C12	-0.135316)	0.16991)	0.2777(5)	5.3(1)
C13	-0.3438(6)	$0.1512(1)$	$0.2611(5)$	5.4111
C14	-0.368816)	$0.1145(1)$	$0.3490(5)$	5.37191
C15	-0.1869(5)	0.093711	0.4609(5)	4.4818)
C16	$0.3637(5)$	$0.1548(1)$	0.7810 (4)	3.8318)
C17	$0.1831(6)$	$0.1700(1)$	0.8328(5)	4.92(9)
C18	$0.1711(7)$	$0.2117(1)$	0.8807(6)	$6.2(1)$
$C 19$	$0.3376(7)$	$0.2395(1)$	0.8793161	6.6111
C20	0.5186(7)	$0.2252(11$	0.828816)	6.0111
C1	0.5316(6)	$0.1832(1)$	0.798(5)	4.70191
12	0.665	-0.044	0.874	4.0
H3	1004	0.073	0.947	5.2
HS	0.678	0.101	0.926	4.5
H8	0.138	0.030	0.88	5.5
149	0.445	-0.007	0.663	5.5
111	0.191	0.154	0.402	3.3
412	-0.117	0.192	0.212	6.4
$\mathrm{H13}$	-0.471	0.165	0.190	6.9
H14	-0.512	0.103	0.333	6.5
H15	-0.206	0069	0.524	5.8
H19	0.066	0.151	0.835	6.0
H18	0.048	0.27	0.917	7.9
119	0.330	0.304	0.914	8.2
120	0.633	0.245	0.85	7.1
H21	0.657	0.173	0.146	5.6

a. while the pendant-oligomer bond in DPQ and DPS aligns approximately parallel to the b axis. In results to be published. para-quinquephenyl and para-sexiphenyl have their oligomer axes preferentially aligning with b (ref. 12). Thus, with the exception of TPB, the pendantoligomer bond alizns with the longest crystallographic
 -ignificant digit

Atom 1	Alosi 2	Distance (A)	Atom 1	Atow 2	Dintesce (A)		
C1	C3	1.381(4)	C	C9	1388(4)		
C1	C_{2}	134004)	C10	Cl1	1.382(5)		
C	C3*	1.39214)	C10	C15	$1.101(4)$		
C3	${ }^{\circ}$	1.392(4)	CII	C12	(137914)		
Cl	C4	1.49014)	C12	C13	1. $379(4)$		
C4	Cs	1.345(4)	C13	C14	t-3676)		
C4	C9	1.30644)	C14	C13	1.3775)		
C5	C6	1.389(5)	C16	C17	1390(s)		
C6	C	1.405(4)	C16	C21	1385(5)		
C6	C16	(A13(4)	C17	C18	1.367(5)		
c7	${ }^{C}$	1.385(5)	C18	C19	$1.367(6)$		
C7	C10	1.4894)	C19	$C 2$	$1.377(6)$		
			30	$\mathrm{C} 1$	$1.322(5)$		
Atom 1	Atom 2	Atom 3	Angie (des)	Atom 1	Atom 2	Atom 3	Angic (des)
C	C1	C3	117.1(4)	C4	C9	C8	120.53)
C1	C2	C3*	120.5(4)	C7	C10	CII	122.013)
Cl	C3	C\%	$121.7(4)$	67	C10	C15	119.5(4)
C2	C3*	Cl^{+}	121.7(4)	C11	C10	CIS	118.53)
C3	Cl°	C1*	120.5(4)	C10	Cll	C12	120.9(3)
C3	Cl	C4	121.044)	Cll	C12	C13	120.314)
C1	C4	C5	121.2(3)	$C 12$	C13	C14	119.7(4)
C1	C4	C9	120.9(3)	C13	C14	C15	[20.9(4)
Cs	C4	C9	118.1(3)	C10	Cls	C14	119.8(4)
C4	C5	C6	122.4(4)	C6	C16	Cl 1	121.514)
C5	C6	C7	118.814)	C6	C16	C21	120.7131
C3	C6	C16	118.113)	C17	C16	C21	117.9131
C7	C6	C16	123.013)	C16	C19	C18	121.1151
C6	C7	C8	118.7(4)	Cl 7	CIf	C19	120.714)
C6	C7	C10	122.133	C18	C19	C20	119.414)
C8	C7	C10	119.44)	C19	C20	C21	120.3(4)
C7	C8	C9	121.613)	C16	C21	C20	120.714)

Figue $52^{2} .6^{3}$-Dipheny-perptiphenyl with earbon atom ellipsoids drawn at the 50% probability level

Finwe 6 The e agin stereo view of DPS showing molecular packing in unit cell. Molecules on rear cormers are omitted for ciariy. The of axis is hormontal

Alom	\pm	y	2	$B\left(A^{2}\right)$	Atom	x	y	Σ	- $\left(^{2}{ }^{2}\right.$
Cl	$0.595812)$	0.5334(2)	Qxas7(5)	$3.716)$	C24	1.1891(3)	8.0774(2)	-02422(6)	5.77(9)
C2	$0.5515(3)$	$0.64012)$	$05322(5)$	43971	C25	12395(3)	1.1418(2)	-0.0761(6)	5.46 (8)
C3	$0.5417(3)$	$0.4279(2)$	$0.3591(5)$	435(7)	C26	12498(3)	$1.1005(2)$	0.102616	\$.63(9)
C4	$0.681(2)$	OS881(2)	07739(4)	3.646)	C7	12106(3)	0.9936(2)	$0.0831(5)$	4.26(8)
Cs	$0.6946(2)$	0.5223(2)	com945)	4.1477	112	osst	0.696	0.542	40
C6	$0.782(2)$	$0.5537(2)$	-0.0607(5)	$4.02(7)$	13	ass1	0.376	0252	4.0
C7	$0.8867(2)$	$0.6335(2)$	0.054341	3646)	85	0.616	0.461	-0.056	5.3
C	$08385(2)$	$0.6795(2)$	$02815(5)$	4.0077)	186	270	0.520	-0:5	5.1
C9	0.794912)	$0.472(2)$	0.3893(5)	3,967	H8	0.965	0.737	0.377	5.1
C10	$0.9859(2)$	$0.6701(2)$	-0.0532(4)	3.72 (6)	89	0801	0.681	0.560	5.0
C11	$1.0350(2)$	$0.600312)$	-0.2050(5)	4.1007)	H11	0.999	0.519	-0.023	5.3
C12	1.124012)	$0.6361(2)$	-0.3156(51	$4.02(7)$	HH^{2}	1.164	0.586	-0.415	5.3
C13	1.1701(2)	$0.7422(2)$	-0.2227(5)	$3.71(6)$	H15	1.001	0388	0.064	48
C14	$1.1220(2)$	$0.813312)$	-0.1541(4)	3446)	417	1.188	0.679	-0.719	3.7
C15	10324(2)	$0.7763(2)$	-0.0412(5)	3.796)	H18	1337	0.717	-0.932	7.4
C16	$12659(2)$	$0.7753(2)$	-0.4146(5)	317(6)	H19	1.520	0852	-0.735	7.6
$C 17$	$12621(3)$	$0.7288(2)$	-06430(5)	4.42(7)	820	1.536	0.938	-0.309	7.2
C18	13543(3)	$0.7581(2)$	-0.754(5)	$5.7018)$	H21	1.37	0.882	-0.126	6.0
C19	1.45443)	08336(2)	-06477(6)	6.009)	8123	1.103	0.920	-0.476	6.0
80	14637(3)	0.8798(2)	-0.4215161	5.67(9)	8124	1.172	1.102	-0.430	7.4
Q1	$1.3727(2)$	0.8515(2)	-0.3039(5)	4.57(7)	H2S	1274	1230	-0.048	6.8
C22	1.162421	0.9279(2)	-0.1274(5)	3.77(6)	H26	1291	1.148	0.283	7.1
23	1.1510(3)	$0.9711(2)$	$-0.3105(5)$	4.89(8)	H27	1.221	0.967	0224	6.1

Table 7 Bond dirances and angles for $2^{2} .6^{3}$-diphenyl-p-appiphenyl. Nutabers in parsethems are extimated standard deviatioas in the least sipnificant digit

Atom 1	Atom 2	Distance (A)	Atom 1	Atom 2	Diseance (A)		
CI	C2	1.387(4)	C13	${ }^{14}$	1.40414)		
C1	C3	1.397(3)	C13	C16	1.487(5)		
C2	C3*	1.38014)	C14	C15	1.3844)		
C3	C2*	1.380(4)	C14	C22	1.493(3)		
Cl	C4	1.481(4)	C16	C17	1.395(4)		
C4	C5	1.387(4)	C16	C11	1.404(3)		
C4	C9	$1.393(4)$	Cl_{17}	Cis	1.390(5)		
C5	C6	[.383(4)	C18	$C 19$	$1.372(4)$		
C6	C7	1.394(4)	C19	C20	1.378(5)		
C7	C8	1.397(4)	C20	C21	1384(5)		
C7	C10	1.486(4)	C2	C23	1.382(4)		
C8	C9	1.384(4)	C22	C21	1.380(4)		
C10	C1I	1.393(4)	C23	C24	(1.38414)		
C10	C15	(1.39913)	C24	C25	1.386(4)		
Cll	C12	1.382(5)	C 25	C26	1.374(5)		
C12	Cl3	1395(4)	C36	C7	1.393(4)		
Alom 1	Atom 2	Alom 3	Angle (des)	Arom 1	Alom 2	Atom 3	Anple (def)
C2	Cl	C3	117.13)	C12	CII	C14	118.713)
C2	Cl	C4	121.512)	C12	C13	C16	118.6(2)
C3	Cl	C4	121-421	C14	C13	$C 16$	122.812)
CI	C4	CS	120.912)	Cl 3	C14	C15	119.3121
C1	C2	${ }^{\text {c }}$	121.812)	Cl	C14	C29	122.2(2)
Cl	C3	C2	121.121	C15	C14	C29	118.512)
C	C3*	C1*	121.112)	C10	Cis	C14	122.4131
C3	C2*	Cl°	121812)	C13	C16	C17	120.5131
C)	C4	c9	120.912	C13	C16	CIt	121.6121
CS	C4	C9	118.2(3)	C17	C16	C21	117.813)
C4	cs	C6	$121.5(2)$	C16	C17	C18	121.1(2)
C	C6	$C 7$	120.312)	C17	C18	C19	120.13)
C6	C7	c 8	$118.2(3)$	C18	C19	C30	119.9131
C6	$C 7$	c10	130.812)	C19	0	C21	120.8121
c	$C 7$	C10	121.012)	C16	C21	C30	120.313)
7	$C 8$	C9	121.13)	C14	C22	Cl^{2}	121.212)
C4	69	C	120.612)	C14	$\mathrm{C22}$	C27	120.431
C7	C10	C11	121.612)	C23	$\mathrm{C2}$	$\mathrm{C27}$	118.42)
7	C10	Cis	120.712)	C22	03	C24	120.912)
Cll	C10	CIS	117.713)	C23	C24	C23	(20.5(3)
C10	CII	C12	120.6121	C24	C85	C26	119.5(3)
C11	C!2	C13	121.43)	C25	C26	C_{27}	120.13)
				C22	C27	${ }^{\text {c }} 6$	[20.644]

 meass phasar coaformation and N meass soo-phasar conformation

Compored rame	A (A)	B (${ }^{(1)}$	C(A)	$\underline{E}(\lambda)$	Conformation
Eiphenyip	1.49S(5)	-	-	-	P
-Terpheny ${ }^{10}$	1.505(5)	-	-	-	P
-Quaterpheay ${ }^{13}$	$1502(4)$	1 ARS(S)	-	-	P
Duisquephenyl ${ }^{12}$	1.481(5)	1482(5)	$\overline{-}$	-	P
-Sexipleny ${ }^{12}$	150616)	1.501(8)	1.461(8)	-	P
12.4 Triphany-beareae	1.48612)	1.49\%(2)	-	1.489(2)	N
$23^{2} 4^{3}$ - Diphenyl-pquisquephenyl	1.490(4)	1.4984)	-	1.433(4)	\mathbf{N}
$2^{2} \delta^{3}$-Diphenylopeptiphenyl	1.481(4)	1A16(4)	1487(5)	1.493(3)	\mathbf{N}

Fhure 7 Deviation of the earbon atoms eomposing the oligomer axis from least squares line
axis. The short chsin axis of TPB and lack of molecular symmetry appear to play an important role in this alipnment.
The addition of the phenyl pendant groups disrupts the planarity of the polyphenyls observed in the room temperature structures of biphenyl ${ }^{13}$, para-terphenyl ${ }^{14}$, para-quaterphenyl ${ }^{11}$, para-quinquephenyl and para-sexipheny ${ }^{12}$. as seen in Tables 9 and 10. This is most probably due to steric hindrance of the pendant groups with the oligomer chain and crystal packing forces. Hydrogen-to-hydrogen distances between phenyl rings (H2-H9 in DPS, for example) are approximately equal to 2.5 A. Hydrogen atoms on the terminal phenyl ring closeat to the pendant group are approximately equidistant from one of the ortho hydrogen atoms on the pendant group. In DPQ, for example. H11 and H15 on the terminal phenyl ring are both approximately $3.6 \AA$ from H17 on the pendant ring (see Figure 9). The corresponding values in DPS are 3.7 A . For the three pendant-substituted oligomers, the pendant hydrogen atom-to-terminal phenyl hydrogen atom contact increases with olifomer length (from approximately $3.5 \AA$ in TPB to $3.7 \AA$ in DPS).
The average torsion angle within the oligomer chain

778

DPE

ops

Fures View down diporner ares of TPB. DPQ. and DPS showing tornosity of uxis

 ia a phenyl mait the tonion angle rifers wo the searest chain link (one ormeral structure)

Name	Formule	Temperature (X)	$\psi_{1}(\mathrm{deg})$	$\omega_{2}($ deg $)$	$\psi_{3}($ deg $)$
Sipbeayl	$\mathrm{C}_{12} \mathrm{H}_{10}$	$298{ }^{13}$	0	-	-
			10		
-1eppaenyl	$\mathrm{Cl}_{10} \mathrm{H}_{16}$	110^{19}	16	-	-
-Quaterpbenyl	$\mathrm{C}_{20} \mathrm{H}_{10}$	29811	${ }^{0}$	$\begin{gathered} 0 \\ 227 \end{gathered}$	-
PQuinquephenyl	$\mathrm{C}_{50} \mathrm{H}_{28}$	$298{ }^{12}$	0	0	-
-Sexipheny	$\mathrm{C}_{30} \mathrm{H}_{26}$	110 29812	Work in	0	0
Preripland		110	Work in		
-Sepripheayl	$\mathrm{Cas}^{2} \mathrm{H}_{30}$	$\begin{aligned} & 29 \\ & 110 \end{aligned}$	Work is Wort is		

 group to which it is ansebod tee geneni structure)

Frume 9 Hydrogen atom reputsion distanoes berween peadaat and oligomer axis for $2^{2} \boldsymbol{A}^{3}$ diphenyt-mquinquiphenyl
is 45°. which is approximately twice the value of $\mathbf{2 3}$: predicted for PPP from structural data and further supported by ab initio quality quantum mechanical calculations ${ }^{3}$. The exception is DPQ which has tortion angles of approximately -28° at the centre ring, but angles of 51 -for the terminal ring. The reason for this

Fizure 10 Graph of peadant torsion angle w. cotal aumber of phenyl usius in oligoret chain
large difference unique to this oligomer is not clear at this time.
The torsion angle between the pendant group and the oligomer chain is greater than 45°, increasing with chain length. As the hydrogen atoms of the main chain approach the hydrogen atoms of the pendant group. the pendant torsion angle decreases. This trend is not yet understood and more measurements on different model systems are under consideration. Fully-optimized

AMPAC AM1 conformational calculations for the low energy structure of ortho-phenyl-substituted biphenyl reveal torsion angles of approximately 40° (ref. 17). A line with a positive slope is obtsined when the pendant corsion angle is plotted against the number of phenyl units in the oligomer chain (see Figure 10).

CONCLUSIONS

The non-planar structures of the phenyl-substituted oligomers contrast with average planar structures observed for the unsubstituted polyphenyls. The average corsion angle along the oligomer chain is 45°. The oligomer axis does not align with a crysallographic axis: however, the pendant conneet bond prefers to align paraliel to one of the crystallographic axes. The pendant torsion angle increases with chain length. More research is needed on oligomers with even aumbers of phenyl units along the main chain to compare and contrast with those which have an odd number. Also the pendant groups of the title compounds occupy positions closeat to the terminal phenyl unit. Similar measurements of compounds where the pendant group is attached closest to the central phenyl unit are peeded to identify the major reasons for variations in the torsion angles along the oligomer axis.

ACKNOWLEDGEMENTS

Research was sponsored in part by the Air Force Olfice of Scientific Rescarch. Air Force Systems Command. AFSC. under Grant Number AFOSR-88-0044. Further acknowiedgements go to Timothy Resch for X-ray photography and density measurements and to Edward Soloski for d.s.c. analysis.

REFERENCES

1 Duke. C. I. and Gibsoa. H. W. in Wirt-Onherer Encyelopedia of Chemicen Techaology' Jrd Eda. Wiky, New York. 1982. vol. 18. p. 735

2 Uwroe. M. R. and Reimherth, B. A. Syminete 1987. 11.981
3 Eughmea. R. H., Erodes. J. L. Chepe. R. R., Elopbaumer. R. J. and Shectletce. L. N. Chem. Rev. 198282209

4 Wimathe, S. G. in The Meleriat Scivase asd Eaginaring of Rigid-Rod Polymen;, (Eds W. W. Adamar. R. K. Eby. and D. E. Melemore) Meter. Res. Soc. Proc. 1999. 134. 313
5 Freaz. B. A. and A Mocinman. Isc. SDPNAX Sirveturt Determi-
 Nonius. Duin. The Nethratads. 1985
6 Main. P. Ed. Multan 11 12. A Syatur, of Computer Programs for the Ansomatic Solution of Cryuel Struapurse from X-ray
 York. UK. 1982
7 Sheldrict. G. M.in Crystallopraphic Compotiag 3', IEds G. M. Steldrick. C. Kraper and R. Goddardh Oxford Univetsity Press. Onford. 1985. p. 175
8 Imerational Tables for X-Rey Crypailography 1968. Vol. III. Tis Kywoct Prove Birainghem. UK. p. 276

- Crillatu. H. Baviour. J. L. asd Zeyen. C.M.E. Acta Crys. 1979. 835.426

10 Enadour. J. L. and Cillican. H. Acra Crym. 1971. B33. 1773
11 Ddugeard. Y. Desuche. L. and Beudour. J. L. Acta Crist. 1976. 832.702

12 Eeker. K. N. Kaschel. H. C. Fraini. A. V. and Adams. W. W.. im preperation
13 Troter. J. Acta Cryst. 19\%1, 14. 1135
14 Rierveld. H. M- Macien. E. N. and Clews. C. J. B. Acta Cryst. 1970. B26. 693

15 Baudour. J. L.. Delugeard. Y. and Caillenu. H. Acta Crys. 1976. B32 150
16 Baudour. J. L. Delugeard. Y. and Rivet. P. Acta Crys. 1978. 334. 625

17 Farmer. B. L. and Adans. W. W. in The Materials Science and Enginecring of Ripid-Rod Polymers; (Eds W. W. Adams. R. K. Eby. and D. E. McLemore। Matr. Res. Soc. Pror. 1999, 134. 447

EVIDENCE FOR THE PRESENCE OF HYDROGEN-BONDED ION-ION INTERACTIONS IN THE MOLTEN SALT PRECURSOR, 1-METHYL-S-ETHYLMIDAZOLIUM CEILORIDE

C.J. DYMEK, JR.*

The Frank J. Seiler Reaearch Laboretory, United States Air Porce Acedemy, Colorado Springs, CO 80840 (U.S.A.)
DAVID A GROSSIE
Department of Chemistry, Wright State Univeraity, Dayton, OH 45435 (U.S.A.)
ALBERT V. ERATINI
Department of Chemistry, University of Doyton, Doytor, OH 46469 (U.S.A.)
W. WADE ADAMS"

Materials Laboratory, Air Force Wright Aeronautical Leboratorien, Wright-Patterson Air Force Base, OH 45433 (U.S.A.)
(Received 10 January 1989)

ABSTRACT

The cryatal structure analynis and IR study of the molten salt procursor, 1-methyl-3-ethylimidarolium chloride (MEICL) has been undertaken as part of an invertigation of the ion-ion interactions in room tamperature metts, where the mole fraction of ACl_{3} in has than 0.5. Hy proscopic eryetals of MFICl have been prowa in ceetonitrile and sealed uader belium qus in a capillary tube. The orthorbombic epece proup is $P Z_{1} 2_{1} 2_{1}$, with $a=10.087(1), b=11.179(1), c=28.733(4) \AA$, $V=3240.0 \lambda^{3}$, mol $\omega t=146.62$ and $D_{\text {mak }}=1.204 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=16$. The asympatric mit contains four $\mathrm{MEI}^{+} \ldots \mathrm{Cl}{ }^{-}$ion pairs. The MDI^{+}ions churter in four dintinct hyess perpendicular to the C

 carbon atom averages 3.55 A . Cl^{-}iom axe situred in hydrogen-bonded positions rather than at madom, charecteristic of a $\mathrm{C}-\mathrm{H} \cdot \mathrm{ClCl}^{-}$- hydrogam-bond intersection. Evidance for the proence of

INTRODUCTION

Mirtures of 1-methyl-3-ethylimidarolium chloride, MEICl, and AlCl_{3}, where the mole fraction (N) of AlCl_{3} is between 0.33 and 0.67 , are molten salts at

[^1]

Fig. 1. Structure of ove of the four MEI* ions in the eyymmetric unit Selected average bond distances (\AA) and bond angles (${ }^{\circ}$) are: N1-C2 1.27; C2-N3 1.30; N3-C1 1.39; C1-C5 1.38; C5N1 1.41; N1-C6 1.55; C6-C7 1.43; N3-C8 1.48; C2-N1-C5 109; N1-C2-N3 110; C2-N3-C4 111; $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C5} 104 ; \mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$ 106; C2-N1-C8 180; C5-N1-C8 121; C2-N3-C8 128; C4-N3-C8 123; and N1-C6-C7 104. ME1 ${ }^{+}$(3) viluee for $\mathrm{N} 1-\mathrm{C} 8$ and $\mathrm{C} 6-\mathrm{C} 7$ are omitted from the average bond distances promented. Maximmen entimeted standerd deviations for individual bond dietances and bond angles are $0.05 \boldsymbol{\lambda}$ and 4°, rupectively.
and well below room temperature $[1,2]$. Pure MEICl has a melting point of $87^{\circ} \mathrm{C}$. These melts are of interest as electrolytes in high energy-density batteries [3,4], as solvents for studying ionic complexes [5], and as catalytic solvents for organic reactions [6]. The potential utility of these melts has prompted studies into the nature of the ionic interactions in the melts.
IR spectroscopy [7] recently showed that the MEI ${ }^{+}$ion interacts with Cl^{-} ions present in basic melts ($N<0.5$) at the $\mathbf{C 2}, \mathrm{C} 4$, and $\mathbf{C 5}$ positions shown in Fig. 1. This result differs from the ion-pair model in which Cl^{-}is hydrogen bonded solely at the C2 position. An alternative model was eurgested but not satisfactorily demonstrated in which the MEI ${ }^{+}$ions are stacked parallel to each other with Cl^{-}and AlCl_{-}^{-}anions positioned such that Cl^{-}can interact with all three ring $\mathrm{C}-\mathrm{H}$ bonds. Since the IR spectra of solid and liquid $\left(90^{\circ} \mathrm{C}\right)$ MEICl were shown to be very similar, the structure analysis of MEICl was undertaken to determine the nature of $\mathrm{MEI}^{+} \ldots \mathrm{Cl}^{-}$interactions in molten salts.

EXPERIMENTAL METHODS

Solid MEICl was prepared by the reaction of 1-methylimidazole and ethyl chloride in airless glassware as described previously [1]. The solvent of recrystallization was acetonitrile rather than ethyl acetate, a procedure which enhanced crystal quality. Unfortunately, the crystals were obeerved to retain a coating of mother liquor even after nine days under vacurum.

A small, irregularly-ahaped crystal of MEICl with dimensions $0.25 \mathrm{~mm} \times 0.25$ $\mathrm{mm} \times 0.35 \mathrm{~mm}$ was mounted in a glass capillary under dry bor conditions. Preliminary examination and data collection were performed with Mo K α radiation ($\lambda=0.71073 \AA$) on an Enraf-Nonius CAD 4 diffractometer equipped with a graphite crystal incident beam monochromator.

Cell constants and an orientation matrix for data collection were obtained
from leart-squares refinement, using the setting angles of 25 rellections in the range $5.0<\theta<16.3^{\circ}$. The orthorhombic cell parameters and calculated volume are: $a=10.087(1), b=11.179(1), c=28.733(4) \mathcal{A}, V=3240.0 \AA^{3}$. For $Z=16$ and $M W=146.62$, the calculated density is $1.208 \mathrm{~cm}^{-3}$, which compares with the meacured density of $1.204 \pm 0.004 \mathrm{~g} \mathrm{~cm}^{-3}$ obtained by flotation in a benzene/ carbon tetrachloride mixture. From the observed systematic abeences and subsequent least-Equares refinement, the apace group was determined to be $P 2_{1} 2_{1} 2_{1}$ (No. 19).
The data were collected at room temperature using the $w / 2 \theta$ scan technique. The scan rate was calculated from the results of a fact pre-scan, and varied from 0.69 to $2.78^{\circ} \mathrm{min}^{-1}$ (in omega). Data were collected to a maximum 2θ of 50.0° ($h=0-12, k=0-13, l=0-34$).

Three representative reflections were measured every 30 min as a check on crystal and electronic stability. The intensities of these standards remained constant within experimental error throughout data collection and no decay correction was applied. The extremely hygroncopic crystal moved slowly inside the capillary during data collection. This movement was carefully monitored by periodically examining the orientation check reflections. Reorientation of the crystal occurred on average every 125 reflections; 3284 unique reflections were collected. Lorente and polarization corrections were applied to the data. The linear absorption coefficient was $3.9 \mathrm{~cm}^{-1}$ for Mo $K \alpha$ radiation and no absorption correction was made.

The structure was solved by direct methods [9]. Hydrogen atoms were located and added to the structure factor calculations but their positions were not refined. The structure was refined by full matrix least-squares [10] where the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{\mathrm{e}}\right|\right)^{2}$ and the weight w is defined as the reciprocal of the standard deviation of F_{0} squared. Atomic scattering factors were taken from Cromer and Waber [11] and the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer [12].

865 Reflections having intensities greater than 3.0 times their standard deviation were used in the refinements. The final cycle of refinement included 159 variable parameters and converged (largest parameter shift was 0.07 times its eatimated standard deviation) with unweighted and weighted agreement factors of 0.10 and 0.13 , respectively. The standard deviation of an observation of unit weight was 3.63 . Because of unresolved problems associated with the refinement of C26 and C27, their positions were held fixed during the final cycle of refinement. The higheat peak in the final difference Fourier map had a height of $0.44 \in \AA^{-2}$ with an estimated error based on ΔF of 0.10 , while the largest negative peak had a height of 0.41 e \AA^{-2}. The two largest positive density peaks were located in the vicinity of C26 and C27; others were randomly located throughout the unit cell.

Fractional coordinates and equivalent isotropic thermal parameters for the 36 nonhydrogen atoms are reported in Table 1. Obeerved and calculated struc-

TABLE 1
Fractional coordinates and equivalent inotropic thermal parameters and their extimated atandard devintion

	Atom	x	y	2	$B\left(\lambda^{2}\right)^{6}$
MEI+(1)	N1	0.834 (3)	0.673 (2)	0.5846 (8)	6.3(7)
	C2	0.758(3)	0.742(3)	0.562(1)	7(1)
	N3	0.680(2)	0.800(2)	0.5907(7)	4.8(6)
	Cs	$0.701(3)$	$0.765(2)$	0.6355 (8)	3.4(6)
	C5	$0.804(3)$	0.680(3)	0.6325 (9)	5.8(8)
	C6	0.944 (3)	0.599 (3)	0.568(1)	8(1)
	C7	0.913(4)	$0.478(4)$	0.568(1)	15(2)
	C8	0.581(3)	0.883 (3)	0.577 (1)	6.3(9)
MEI ${ }^{+}$(2)	N11	-0.065 (2)	$0.014(2)$	0.4069 (8)	5.5(7)
	C12	-0.118(3)	-0.054 (3)	0.3799(9)	5.3(8)
	N13	-0.072(2)	-0.050(2)	0.3393 (7)	8.0(6)
	C14	$0.019(3)$	0.047(3)	0.334(1)	6.4 (9)
	C15	0.044 (4)	0.078(3)	0.381(1)	9(1)
	${ }^{\text {C16 }}$	-0.090(3)	$0.052(3)$	0.460(1)	6.8(9)
	Cl_{17}	$0.008(4)$	-0.032(3)	0.481 (1)	11(1)
	C18	-0.129(3)	-0.121 (3)	0.2984 (9)	6.1(9)
MEI* (3)	N21	$0.752(3)$	0.289(3)	$0.341(1)$	9.4 (9)
	C22	0.813 (3)	0.366(3)	0.3668(9)	6.0(9)
	N23	$0.783(2)$	0.340(2)	0.4104(7)	4.1.6)
	C24	0.685 (3)	0.250(3)	0.4096 (9)	4.8(8)
	C25	0.671 (4)	0.217 (3)	0.364(1)	9(1)
	C26	$0.807^{\text {b }}$	0.250^{6}	0.285 ${ }^{\circ}$	12(1)
	C27	0.723^{6}	0.279^{6}	0.262^{6}	16(2)
	C28	0.822(3)	0.398(2)	0.4538(9)	5.0(8)
MEI ${ }^{(4)}$	N31	$0.642(2)$	-0.060(2)	0.1583(7)	4.0(5)
	C32	0.565 (2)	-0.001 (2)	0.1866(8)	3.0(6)
	N33	0.482(2)	0.063 (2)	0.1623 (7)	3.7(5)
	C34	0.495(3)	0.043(3)	$0.1169(9)$	4.4(7)
	C35	0.589(3)	-0.039(3)	0.115(1)	5.0(8)
	C36	$0.764(3)$	-0.145(3)	0.167 (1)	7(1)
	C37	0.714 (3)	-0.232(3)	0.197(1)	$8(1)$
	C38	0.390 (3)	$0.154(3)$	$0.184(1)$	7(1)
	Cl	$0.2339(9)$	$0.7793(8)$	0.5556(3)	58(2)*
	C12	0.476(1)	0.9408 (8)	0.7042 (3)	6.6(2)*
	Cl3	-0.173(1)	0.8055 (8)	1.0402(3)	6.6(2)*
	C4	-0.4661(1)	0.9774 (8)	1.3019(3)	6.4(2)*

-An asteriak indicates that the atoms were refined aninotropically and are siven in the form of the inotropic equivilent thermal parameter defined as: (4/3) $\left[a^{2} B_{11}+b^{2} B_{n}+c^{2} B_{n}+a b(c o s y) B_{12}+\right.$ $\left.\alpha c(\cos \beta) B_{19}+b c(\cos \alpha) B_{n}\right]$.
"Parameter was fixed during the finsol cycie of loset-equarea refinement.
ture factor amplitudes and other details of the structure analysis are available from B.L_I.D. as Supplementary Publication No. SUP 26375 (6 pages).

Infrared spectra were recorded on an IBM IR/32 FTIR spectrometer. The liquid MEICl sample was a thin film between NaCl plates with no spacers.

DISCUSSION

MEI^{+}cation

The asymmetric unit consists of four MEI ${ }^{+}$...Cl- ion pairs. Figure 1 shows a view of one of the four substituted imidarolium ions. The endocyclic bond distances and angles in the four MEI ${ }^{+}$ions vary markedly from ring to ring (1.21-1.51 \AA and $101-114^{\circ}$). The exocyclic alkyl groups are attached to the ring with bond distances of $1.43-1.74 \AA$. In $\mathrm{MEI}^{+}(2)$ and MEI^{+}(4) ions, the β carbon of each ethyl substituent is above the mean plane of the five-membered ring, with tortion angles ($\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 32-\mathrm{N} 31-\mathrm{C} 36-\mathrm{C} 37$) of 96.3 and 55.7°, respectively, while in the MEI^{+}(1), the beta carbon is below the ring, with a torsion angle (C2-N1-C6-C7) of - 107.3°. Atoms C26 and C27 of the ethyl substituent in (MEI ${ }^{+}$(3)) are disordered. This observation reflects one of the difficulties in the cyystallographic examination of these molten salt precursors.

Unit cell

As shown in Fig. 2, the ion pairs pack into the unit cell in ways similar to both planar molecules and simple inorganic salts. The MEI ${ }^{+}$ions cluster in four distinct layers, perpendicular to the c axis, with interlayer separations of 6.741-7.568 \AA as defined by the average distances between ring centroids. Within a layer, each molecule is separated from its neighbor by 3.792-4.091 \AA as measured along the diagonal, while the edge-to-edge separation is 7.381$7.704 \AA$. The middle layers differ in orientation in the same manner as the first and fourth layers.

As described for the MEI^{+}ions, the arrangement of Cl^{-}ions is a layered one, comprising four different patterns of anions. The first two patterns at $z=$ -0.05 and 0.05 are related by space group symmetry, each consisting of a pair of Cl^{-}ions situated approximately on ab cell diagonals. The third and fourth patterns are found at $2=0.30$ and 0.70 , the former consisting of four ions located approzimately on the ac and bc faces of the unit cell, while the latter is comprised of a plane of five ions, one close to each cell edge and the fifth approximately in the center of the cell. These four patterns occur cyclically along the c-axis, the first occurrence of the first and second patterns being split by the bottom ab face of the unit cell. The fourth pattern occurs after this, fol-

Fig. 2 Stersoriew of the MBICl unit cell. The c axis is vertical and a is borizontal.
lowed by the third. In the center of the cell, the first and recond patterns repeat, after which the third and fourth patterns repeat, and so on.

Interlayer interactions

The relative orientations and connectivity of the MEI^{+}and $\mathrm{Cl}-$ layers are alternately depicted in Fig. 3. In this drawing, the cations are shown arranged in rows (designated $\mathrm{a}-\mathrm{h}$) in which the MEI ${ }^{+}$ringe share a common plane. The rows in the plane of the drawing ($\mathrm{a}, \mathrm{c}, \mathrm{e}$ and g) reprecent a cross-rection of the layers formed by the ataggered stacks of MEI^{+}running parallel to the plane of the drawing. The alternating rows running perpendicular to the plane of the drawing (b, d, f and h) represent a similar cross-section. The heavy dashed line (the caxis of the unit cell) is at the interrection of these two cross-rections. Note that the rows labelled a and e are equivalent. The light dashod lines connect Cl^{-}and MEI^{+}ions which are nearest neighbors. By oramining the Cl^{-} ions on the intersection line, it can be seen that each Cl^{-}- interacts with three MEI ${ }^{+}$ions, two of which share a plane which is perpendicular to the plane of the third. Also, each MEI ${ }^{+}$is aceociated with three nearest Cl^{-}- ions which are in the same plane as the MEI^{+}ring.
There are two rows of Cl^{-}ions ascociated with each row of MEI^{+}ions. One has Cl^{-}ions interecting with just a single ring carbon atom (alternating between C 2 and C 5) of the MEI ${ }^{+}$ion in an ascociated row, while another (on the

Fis. 3. MEICl structure showing relative orientation and connectivity of adjacent layers. Rows a and e are equivalent. The beavy dathed line represents the direction of c axis.
side of the MEI ${ }^{+}$row) has each Cl^{-}interacting with ring carbon atoms from two adjacent MEI ${ }^{+}$ions in the row. In Fig. 3 these would be the top and bottom Cl^{-}rows, respectively, interacting with row a of MEI ${ }^{+}$ions. These rows are drawn with uniformly epaced Cl^{-}ions; however, in the crystal the spacings are alternately large and small. In the top row, the Cl^{-}ions interacting with C 2 are directly above the MEI ${ }^{+}$, while those interacting with C5 are forced to shift in the direction of the $\mathrm{C} 5-\mathrm{H}$ bond and as a consequence away from positions directly above the MEI+ . If the interaction of Cl^{-}with MEI ${ }^{+}$were non-specific, the Cl^{-}ions would be expected to be uniformly spaced to achieve maximum separation. This uneven apacing is seen as evidence for Cl^{-}ions interacting specifically with MEI ${ }^{+}$through hydrogen bonding.

Ion-ion interactions

Figure 3 shows that the stack model in which Cl - ions are positioned between stacked MEI ${ }^{+}$ions is not supported by the crystal structure and that the $\mathrm{C} 2-\mathrm{H} \cdot \cdot \mathrm{Cl}$ - hydrogen-bonded ion-pair model is preferred. The triple interactions of each ion in the structure are illustrated in Fig. 4. The distance of

(a)

(b)

Fig. 4. (a) Reprewentative triple interaction of Cll with three mearest $\mathrm{MEI}{ }^{+}$ions. (b) interaction of MEI^{+}(1) with three nearest Cl^{-}ions. Distances $(\mathbb{\AA})$ shown are $\mathrm{C} \cdot . \cdot \mathrm{Cl}^{-}$contacts.
a Cl^{-}from a ring carbon atom averages about $3.55 \AA$, ranging from 3.34 to 3.80 \AA. This is in good agreement with the accepted criteria for $\mathrm{C}-\mathrm{H} \cdot \mathrm{Cl}-\mathrm{C}$ hydrogen bonding [8]. The fact that the Cl^{-}ions are situated in potential hydrogenbonded positions ($\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}^{-}$angle ranges from 132 to 167°) rather than at random also strongly suggests this interaction to be hydrogen bonding. Further evidence for a hydrogen-bonded interaction is provided by ring $\mathrm{C}-\mathrm{H}$ stretching bands which shift to lower frequencies (by about $100-150 \mathrm{~cm}^{-1}$) and become broader and more intense as more Cl^{-}is present in basic $\mathrm{MEICl} / \mathrm{AlCl}_{3}$ melts [7]. Thus, the $\mathrm{C} 2-\mathrm{H} \cdots \mathrm{Cl}$ - hydrogen-bonded ion pair model should account for a C-H...Cl- type interaction at all three ring carbon atoms. Structural evidence for the presence of discrete hydrogen-bond ion peirs (r\{C2$\left.\mathrm{H} \cdot \cdots \mathrm{I}^{-}\right\}=2.93 \AA$) in crystals of 1 -methyl-3-ethylimidazolium iodide has recently been reported [13].

Extension of model to liquid phase

The shift in frequency and broadening of the MEI^{+}ring $\mathrm{C}-\mathrm{H}$ stretching band observed in basic MEICl/ AlCl_{3} melts [7] is certainly consistent with the aforementioned hydrogen-bonding model. An equally compelling observation is the comparison of the IR spectra of solid and liquid MEICl shown in Fig. 5. This previously presented [7] but unpublished result supports the conclusions that the interactions with Cl^{-}affecting the ring $\mathrm{C}-\mathrm{H}$ stretches in MEI^{+}are virtually the same in the solid and liquid phases of MEIC. The presence of AlCl_{4}^{-}in basic melts may alter the $\mathrm{MEI}{ }^{+} \ldots \mathrm{Cl}^{-}$interaction only slightly since the peaks of the ring $\mathrm{C}-\mathrm{H}$ stretching bands in liquid MEICl and basic MEICl/ AlCl_{3} melts are also virtually the same (the "Cl-interaction band" is at 3049

Fig. 5. FTIR spectra of solid and liquid MEICl [7].
cm^{-1} [7]). Thus the MEI ${ }^{+} \ldots \mathrm{Cl}^{-}$interactions in basic melts are characterized as hydrogen-bonding of Cl^{-1} at the three ring $\mathrm{C}-\mathrm{H}$ bonds.

CONCLUSIONS

The structure of crystalline MEICl is characterized by layers containing MEI^{+}ions interspersed with layers of Cl^{-}ions. The directions of the stacks in adjacent layers are rotated 90°. Each MEI ${ }^{+}$ion appears to be hydrogen bonded to three nearest Cl^{-}ions. The results suggest that in basic MEICl/ AlCl_{3} molten salts, the Cl^{-}ions also interact with MEI^{+}by hydrogen bonding at the three ring carbon atoms.

REFERENCES

1 J.S. Wilkes, J.A. Leviaky, R.A. Wikon and C.L. Hussey, Inorg. Chem. 21 (1982) 1263.
2 A.A. Fannin, Jr., D.A. Floreani, L.A. King, J.S. Landers, BJ. Piermm. D.J. Stetch. R.L. Vaughn, J.S. Wilkes and J.L. Williams, J. Phys. Cbem., 88 (1984) 2614.
3 G.F. Reymolde and C.J. Dymek, Js., J. Power Sources, 15 (1985) 109.
4 C.J. Dymek, Js., G.F. Reynolds and J.S. Wilkes, J. Electrochem. Soc., 134(7) (1987) 1658.
5 C.L. Huseey, Adv. Molten Salt Chem., 15 (1983) 185.
6 J.A. Boon, J.A. Lavisky, J.L. Paug and J.S. Wilkes, J. Org. Cbem., 51 (1986) 480.
7 K.M. Dieter, CJ. Dymek Js., N.E. Heimer, J.W. Rovang and J.S. Wilkes, Ionic structure and interactiona in 1-methyl-3-ethylirmidazolium chloride/ NCl_{3} molten salts. Proc. Joint Int. Symp. on Molten Salts. The Electrochemical Society, 1987, Vol. 87-7. page 414.
8 R. Taylor and O. Kennard. J. Am. Cbem. Soc., 104 (1982) 5063.

9 P. Main (Ed.). MULTAN 11/82. A Sytem of Computer Programs for the Automatic Solution of Crytal Structures from X-ray Diffraction Data. Univernity of York, GL. Britain. 1982.
10 Enraf-Nonius. SDP/VAX. A System of Progrems for Cryital Structure Determination. 1982.
11 D.T. Cromer and J.T. Waber. International Tables for X-Ray Crymallography, Kynoch Press, Birmingham, 1974 , Table 22 B, p. 99.
12 D.T. Cromer. ibid. Table 23.1. p. 149.
13 A.K. Abdul-Sedn, A.M. Greenway, P.B. Hitchcock, T.J. Mohammed, K.R. Seddon, and J.A. Zora. J. Chem. Soc., Chem. Commun., (1986) 1753.

MOLECULAR PACKING AND CRYSTALLINE ORDER IN POLTBEMZOBISOXAZOLE AND POLYBENZOBISTHLAZOLE FIBERS

albert v. FRATINI** P. EAIEN LEMERT ** TMOTAT J. RESCH** AND W. HADE ADNYS
Department of Chomistry, Daiversity of Dayton, 300 College Park, Dayton, OR 45469
Department of Shysics, Vanderbilt Dniversity, Rashville, 72 37335
Wright Research and Development Center, Materials Laboratory, WPAFB, OZ 45433-6533

Abstract

The structures of poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylencbenzobisoxazole) (PBO) libers have been investigated by fiber di£fraction techaiques. d-spacings were obtained from equatorial and meridional scans recorded on a four-circle diffractometer. Intensity data were derived fram x-ray rotation patterns taken on weissenberg and vacuum cylindrical cameras. Unit cells were found to be monoclinic and non-primitive, each containing two chains per cell of dimengions $a=11.79(2), b=3.539(5), c=12.514(9) \quad A, \gamma=94.0(2)^{\circ}$ for $\gamma=101.3(1)^{\circ}$ for PBO. The fiber axes correspond to c. The conformational torsion angle between the bisthiazole and phenylene units and the orientation of chains within the unit cells were obtained from a 'linked-atom least-squares' (INLS) refinement procedure. A packing model is proposed for each polymer in which two independent molecular chains are displaced longitudinally by discrete rather than random increments. Primitive unit ceils $(2=1)$, besides requiring perfect axial registry of molecular chains, suffer from the occurrence of short intermolecular contacts and are rejected from further consideration.

INTRODOCTION

The structures of poly(p-phenylene benzobisthiazole) (PBZT) and poly(p-phenylene benzobisoxazole) (PBO) have been of interast for the past decade. Numerous publications have advanced the understanding of the fiber and film structures of these rigid rod chains [1-3]. Besed on diffraction patterns which show molecular transform scattering on layer ilnes and diffuse (biaxial) reflections along the equator, the as-spun polymer is viowed as momatic solid with a high degree of orientational order but vith axial translational disorder. Heat treatment induces crystallization of the chains, as seen by axial bright field lattice imaging (4,5). The crystallization process is reported to be more extensive for PBO than for PB2T; thus a considerable amount of axial disorder is expected in the final fismer structure of pazt [6]. The axtent of ordering still does not approach the 30 crystaliinity of the chomicaliy similar, extended-chain poly-2,5-benzoxazole (ABPBO) and poly-2,6-beazothiazole (ABPBT) molecules, as well as the stiff-chain poly(p-phenylene terephthalamide) (PPTA) fibers [6,7]. Our approach has been to apply the liaked-atom leastsquares (LALS) thod to PB2T and PBO fibers axhibiting the
highest order observed to date. she results, representing the equilibriun crystal structure, serve as a vehicle by vhich one can masure prograss in reaching a fully ordered structure by processing improvements. The goal is to understand changes in structure and morphology imparted by chemical or physical mans (in Eiber processing, for example), and to relete these changes to the properties observed for these rigid-rod materials.

EXPRITAMN Divancs

Materials. PBET samples vere obtained from the E.I. Dupont and Boechst Celanese Companies (AFTECH I and II). PBO Eibers vere spun by W.-F. Ruang (currently with the Dow Chemical Company) while he was affiliated with the Dniversity of Dayton Research Institute [6]. Fibers vere spun at elevated temperatures from liquid crystalline solutions in methanesulfgnic ecid. Heat treatment twaratures ranged from 525 to $700^{\circ} \mathrm{C}$ for pBet, and 600 to $710^{\circ} \mathrm{C}$ for P80.

Fiber densities were masured by the flotation method in mixed carbon tetrachloride-chloroform and chloroform-tetrachloro ethylene solvents. Comparable densities vere obtained in each solvent system.

X-Ray Photography. Fiber bundles of sub-millimeter diameters were prepared by winding single filaments around a cardboard support. specimens were mounted so that the fiber axis vas normal to the incident beam. x-ray diffraction patterns were recorded on Weissenberg, Buerger precession and 57.3 mm radius vacuum cylindrical cameras using Ni-filtered Cuka radiation. The latter canera was amployed to resolve, at least partially, diffuse overlapping spots and to reduce the effects of air scatter, whereas the primary tunction of the precession camera was to survey fiber specimens and not to collect diffraction intensities. The precession camera recorded a plane in reciprocal space in which c is vertical and paraliel to the fiber direction. The multiple-film method was used to collect the entire range of intensities.

Diffractometer Sanns. Mickel-filtered Cuka radiation vas produced by Rigaku R0200 rotating anode generator with a 0.3 x 3nim source size. Equatorial and maridional scans vere recorded on a picker four-circle diffractometar which had previously been modified for modulus studies [8]. An advantage of this technique is the ability to observe veak refiections at high 20 by adjusting step scan intervals and counting times. overlapping reflections were resolved by using a curve fit program which also corrected for background, ip factors, absorption, and air and compton scattering. Areas under the peak profiles afforded estimates of the intensities of equatorial reflections.

Microdensitometry: Integrated intensities of equatorial and off-axis reilections, corrected for backoround and Ip factors, vere obtained by scanning fiber rotation photographs on a Joyce-Loebl microdoasitometer. Details of the procedure have been discussed elsewhere [7]. Rellections which could not be resolved were trated as an overlapping group and assigned a composite intensity value.

RESULTS

The chemical structures of the molecules and atom label designations are shown in Figure 1.

Figure 1. Chemical structures of PBZT and PBO showing atom label designations.

The measured monofilament fiber densities, of PBZT and PBO are $1.57+/-0.01 \mathrm{~g} / \mathrm{cm}^{3}$ and $1.50+/-0.01 \mathrm{~g} / \mathrm{cm}^{3}$. respectively. No detectable differences vere observed in the values for es-spun and heat treated fibers.

PB2T and PBO samples yielded well-defined diffraction data. Representative fiber rotation patteras are shown in Figure 2. 8trong equatorial and multiple meridional reflections are general features of the diffraction patterns of both polymers. Heat treated fibers show a 11 mited number of off-axis (hkl) reflections, indicating the presence of 3D order. For example, hk2 reElections es well as discrete bks reflections are clearly visible for each polymer (see Figure 2).

Figure 3 pregents equatorial scans which show reflections beyond a 20 of 90°. Corresponding meridional scans, published elsewhere in these procendings [8], revealed up to twelve orders of diffracted intensity. The curve fit program used the leastsquares method to match a combination of Gaussian and Lorentzian peak profiles to the corrected intensities. Figures 4 and 5 show representative curve fits for several regions of overlapping intensity along the equator.

Pigure 2. Fiber rotation patterns (fiber axis vertical) of PBZT (top) and PBO (bottom): Cukaradiation, Ni filter, camera radius 28.6 mm .

Fioure 3. Equatorial scan of heat treated Pegt (top) and pso (bottom) Eiber bundle (Cuka radiation vith Ni Eilter, intensity after experimental corrections).

Figure 4. Curve fit analysis of two equatorial regions for pBer. circies denote experimontal points, dashed line is background, dotted curves show individual peak ás calculated, and solid line is the sum of peek plus background. Two thete in degrees.

Figure s. Curve fit analysis of two equatorial reqions for PBO. Circles denote experimental points, dashed line is background, dotted curves show individual paak as celculated, and solid indo is the sum of peak plus beckground. Two thete in degrees.
d-spacings, obtained by least-squares, were satisfactorily indexed using both primitive and non-primitive* cells. Celi constants were obtained by ninimizing the sum of the squares of the differences between observed and calculated d-spacings. a weighting schame bused on the iatonsities nad vidths of Eitted peak profiles vas applied in which completely resolved reflections wore assigned larger weights than partially resolved or unresolved reflections. best-iit lattice parameters for non-primitive unit cells are listed in fable i. The measured equatorial d-spacings used to compute them are tabulated in Tables II and III, along with calculated velues using alternate indexing schemes. spacings along c vere obtained independently from a least-squares ilit of meridional reflections. Odell's assignent of indexes for PBzT, shown in Table II, vas judged to give a less satistactory match between observed and calculated values. The same conclusion was reached for PBO, Cell B, presented in Table III.

Table I. son-primitive Uait Cedls for PB2T and PBO

a (i)	$\frac{987 x}{21.79(2)}$	$\frac{\mathrm{PRO}}{11.20(1)}$
b (A)	$3.539(5)$	$3.540(2)$
c (A)	22.514(9)	12.050(3)
γ (deg)	94.0(2)	101.3(1)
Crystal system	monoclinic	monoclinic
Molecules per cell (2)	2	2
Cell volume (A^{3})	536.4	468.4
Calculated density (9 cm$)^{-3}$)	1.71	1.66
Observed density (g cm ${ }^{\text {c }}$)	1.57	1.50
Formula Repeat	$\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}\right]_{n}$	$\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right]_{n}$

The indexes corresponding to the best-fit primitive cells are given in Table IV, which for Part is similar to Unit Cell I previously reported by Roche ${ }_{3}\left(a=5.83, b=3.54, c=12.35\right.$, $_{\text {, }}$ $y=96$, Dcalc $=1.74 \mathrm{~g} \mathrm{~cm}{ }^{3}$; 2$]$. The best-fit primitive cell for PBO is essentially that reported by Rrayse et.al. (a $=5.65$, $b=3.58, c=11.74 \hat{1}$, and $\gamma=102.5^{\circ}$ (6]). for reasons discussed later, primitive cells vere deamed unacceptable and aliminated from further consideration.

The LALS techaique has been amployed in the analysis of the structure of ordered polymers [9]. Its application to P82T and gBO involved reducing the number of variables by constraining bond lengths and bond angles to the values shown in Table V, which are obtained from model compound studies $[10,11]$. The

- The terms 'primitive, non-primitive and monoclinic' are not used in the strict erystallographic sense since the asymmetric unit lacks the requisite point symmetry. In space group P2, for example, polymer chain located at $0,0, z$ is required to have a two-fold rotation axis coincident with the unique axis. Neither PB2T nor P8O possesses the required symuetry. In this paper, is well as in those of carlier researchers, the terms primitive and non-primitive imply acall containing one and two chains per cell, respegtively. The term monoclinic simply denotes a cell with two 90° angles for which a satisfactory fit exists between observed and cajculated d-spacings.

Sabie II. Comparison between Observed and Calculated Equatorial spacings (i) for two PBET Mon-prinitive Onit Cells

Observed	Index and calculated d-spacing this york (a) odell (b)				Observed Intensity (c)
d-spaging					
5.828	200	5.882	200	5.87	15.1
3.509	010	3.531	-110	3.534	100.0
3.129	-210	3.125	110	3.285	29.3
2.932	400,210	2.939	400	2.935	11.2
1.964	600	1.961	-	-	2.3
1.823	-	1.825	-220	1.767	14.9
1.768	020,-610	1.766	020	1.745	27.9
1.666	220,610	1.662	120	1.643	13.0
1.579	-420	1.563	220	1.593	1.3
1.455	420	1.469	-	-	0.93
1.187	030	1.177	-	-	16.0
1.121	-430	1.120	-	-	0.94

(a) Calculated using cell in Table 1.
(b) Odell's cell, hki's and observed spacings taken from [3].
(c) Derived from peak areas from diffrectometer scans and scaled to a maximum of 100.

Table III. Comparison between Observed and Calculated Equatorial spacings (A) for Two Best-Fit PBO Non-primitive Cells

Observed d-spac	Index and calculated d-spacing this york (a) celf 8 (b)				Observed Intensity (c)
5.501	200	5.491	200	5.505	26.2
3.481	010	3.472	010	3.481	71.7
3.256	-210	3.233	110	3.259	100.0
2.756	400	2.746	400,210	2.752	11.3
2.360	-410	2.392	-	-	0.74
1.996	410	1.975	-	-	5.8
1.835	600	1.830	600	1.835	5.4
1.768	-120	1.769	-	-	30.6
1.702	-320	1.702	120	1.702	7.7
1.615	-420	1.617	-320	1.611	22.3
1.371	800	1.373	800	1.376	0.56
1.198	810	1.199	-		5.1
2.157	030	1.157	030,-130	1.160	11.7
1.091	230	1.091	-430	1.093	4.7

(a) see Table I.
 $\gamma=93.6(1)^{0}, V=462.4 \lambda^{3}$, Dcalc $=1.68 \mathrm{~g} \mathrm{~cm}$
(c) Derived from peak areas from diffractometer scans and sceled to a maximu of 100.

Table IV. Comparison between Observed and Calculated spaciags (A) for the Best-Fit Primitive Cells

Index (a)	2829		28.9		
	Observed	Calculated		Observed	Calculated
	d-spacing	d-spacing	Index (b)	d-spacing	d-sparing
100	5.828	5.882	100	5.501	5.491
010	3.509	3.531	010	3.481	3.473
-110	3.129	3.225	-110	3.256	3.234
200	2.932	2.941	200	2.756	2.746
300	1.964	1.961	-210	2.360	2.393
-	1.823	-	-	1.996	-
020	1.768	1.765	300	1.835	1.830
310,120	1.666	1.662	-310,-120	1.768	1.768
-220	1.579	1.563	-	1.702	-
-	1.455	-	-220	1.615	1.617
030	1.187	1.277	400,-410	1.371	1.372
-230	1.121	1.120	410	1.198	1.199
			030,320	1.157	1.155
			130	1.091	2.091

(a) $a=5.896(23), b=3.539(5), c=32.514(9) \lambda, r=94.0(2)^{0}$, $v=260.5 \mathrm{~A}^{3}$, Dcalc $=1.70 \mathrm{~g} \mathrm{~cm}^{-3}$. Based on 9 degrees of freedom.
(b) $a=5.598(6), b=3.540(3), c=13.050(4) \lambda, r=101.2(1)^{0}$, $V=234.2 \mathrm{~A}$. Dcalc $=1.66 \mathrm{~g} \mathrm{~cm}$. Based on 24 degrees of freedom.

Table V. Fixed Bond Distances ((\boldsymbol{A}) and Bond Angles (${ }^{(0)}$ in Polymer Repeat Units (a)

Bond	P879	PRO	Anale	P89\%	280
C2-S(0)	1.736	1.383	C2-5(0)-C4	88.9	104.1
C4-5(0)	1.758	1.370	C3-N-C4	110.8	104.4
C3-N	1.385	2.399	C2-C1-C3'	127.3	112.5
C4-N	1.292	1.300	C1-C2-5(0)	128.6	127.0
C1-C2	1.376	1.385	C3-C2-8(0)	109.0	107.1
C1-C3'	1.389	1.385	C3-C2-c3	122.4	125.8
C2-C3	1.422	1.405	C1 ${ }^{\text {- }}$ C3-8	124.6	129.7
C4-C5	1.469	2.464	C2-C3-N	115.1	108.6
C5-C6	2.383	1.387	C2 ${ }^{-1-C 3-C 2 ~}$	120.4	121.7
C5-C10	1.392	1.387	y-Cs-s(0)	126.3	115.6
C6-C7	1.385	1.387	C5-C4-8(0)	119.9	122.2
C7-C8	1.371	1.387	C5-C4-8	123.8	122.2
C8-C9	1.378	1.387	C4-C5-C6	121.6	120.0
C9-C10	1.377	1.387	C4-C5-C10	129.3	120.0
			C6-C5-C10	119.1	120.0
			C5-C6-C9	120.0	120.0
			C6-C7-C8	120.0	120.0
			C7-C8-C9	120.0	120.0
			C8-C9-C10	120.0	120.0
			C9-C10-C5	120.0	220.0

(a) C-H distances are fixed at 0.94 A, C-C-B angles at 120°. atoms in parentheses correspond to PBO.
overall isotropic temperature factor a was fired at 6.0, ${ }^{2}$. A scale factor, one torsion angle per polymer repeat (T), and three angles which define the orientetion of chains in the unit cell mare refined. Final fractional atomic coordinates of the repeat units are presented in Table VI.

Drscussro:

Based on the observed fiber period and model compound data, the chain direction in both polymers is parallel to the fiber axis (c-axis). The length of the c-axis corresponds to the repeat distance of a single mer unit, which is comprised of a bisbenzazole and attached p-pheaylens segment.

The b-axis is roughly the perpendicular distance between the faces of two overiapping heterocyclic rings, while the a-axis is the approximate distance between equivalent edges of side-by-side heterocycilc rings. The structure and cell parameters of PBO are similar to those of PB2T, except that the a and c-axes in pB2T are slightly larger, probably due to conformational differences between chains and the larger size of the sulfur atom.

Retioement of Primitive Cells. Analysis of the packing of molecules in primitive cells revealed some serious shortcomings. First, inclusion of longitudinal and lateral disorder to any significant degree in the final structure is precluded since primitive cells require perfect registry of adjacent chains. In addition, close intermolecular contacts, which could not be eliminated by refinement of the variable parameters, were observed. The closest contacts (B1....月1'. 1.73A; H7.... 19 , 1.96A) and H6...H1O, 1.99A for PB2T, and H1...H1:, 1.76A; H6...H1O, 1.90A; and H7...A9, 2.90 A for PBO) occurred between neighboring molecules positioned along a. Thirdly, a close examination of the x-ray photographs (see Figure 2) showed an inner row of diffraction maxima which could not be indexed in primitive cell. This latter observation is consistent with the appearance of a weak innermost equatorial peak $(d=11.5 \hat{l})$ for PB2T film, which was indexed 100 in non-primitive cell [3]. For these reasons, further refinement of primitive cells was discontinued. It should also be noted that refinment of primitive cells tor each polymer producgd non-planar strucfures with reasonable torsion angles ($\mathrm{T}=18.9^{\circ}$ for PBZT and 12.0 for PBO).

Refinoment of Non-Primitive Celle. The problems just described Ior primitive cells are virtually eliminated with mon-primitive unit cells (2 m 2). The close $\mathrm{H} . . . \mathrm{H}$ intermolecular contacts are relieved, increasing to over 2.0í for the closest H... $\mathrm{H}_{\text {c contact. }}$ Contacts larger than 2.1 A are considered to be acceptable. The non-primitive cells are constructed by doubling the length of the e-axis of the primitive cells. This permits esecond chain to be added at $0.3,0, v$ (relative to the first at $0,0,0$), thereby allowing axial shifts between wall-aligned chains. iv can range over one transiational interval along c. If v is zero, the non-primitive cell reduces to primitive one, and if v is 0.5 , the cell becomes centered and nkl reflections are absent if $h+1$ is odd.

Additional lateral disorder can also be incorporated into the overall structure by allowing the second chain to have a

Table vI. Fractional Atomic Coordinates of lepeat Units
PBET

$\frac{\Delta t o m}{C \ell^{\prime}}$	0.0000	0.0000	0.0000
Hi^{\prime}	-0.0877	0.0140	0.0613
C3'	-0.0562	0.0080	0.1679
C2'	0.0622	-0.0115	0.1866
8^{\prime}	0.1320	-0.0221	0.0646
Cl	-0.1312	0.0197	0.2533
C2	-0.0859	0.0216	0.3545
C3	0.0325	-0.0080	0.3732
C1 ${ }^{\prime}$	0.1076	-0.0197	0.2879
8	-0.1558	0.0222	0.4765
C4	-0.0240	0.0001	0.5410
N	0.0639	-0.0139	0.4798
C5	-0.0185	-0.0017	0.6583
C6	-0.0925	-0.2341	0.7189
C7	-0.0856	-0.2305	0.8294
C8	-0.0050	0.0047	0.8795
C9	0.0692	0.2375	0.8199
C10	0.0631	0.2363	0.7100
81	-0.2097	0.0327	0.2424
H1]	0.1861	-0.0327	0.2990
\%6	-0.1463	-0.3910	0.6846
H7	-0.1374	-0.3930	0.8691
49	0.1277	0.4082	0.8555
H10	0.1170	0.4056	0.6654
PBO			
C4*	0.0000	0.0000	0.0000
$8{ }^{\circ}$	-0.1002	-0.1142	0.0555
C2'	-0.0643	-0.0755	0.1668
C3'	0.0619	0.0671	0.1710
0°	0.1026	0.1149	0.0626
C1'	-0.1334	-0.1553	0.2623
H1'	-0.2224	-0.2558	0.2622
C3	-0.0642	-0.0787	0.3579
C2	0.0620	0.0641	0.3538
C1	0.1311	0.1438	0.2582
H1	0.2201	0.2444	0.2583
8	-0.1000	-0.1210	0.4692
C4	0.0003	-0.0086	0.5247
0	0.1030	0.1085	0.4620
C5	0.0032	-0.0074	0.6461
C6	0.1060	0.1835	0.7017
46	0.1780	0.3203	0.6588
C7	0.1087	0.1847	0.8168
日7	0.1828	0.3223	0.8568
co	0.0088	-0.0050	0.8763
C9	-0.0940	-0.1959	0.8207
49	-0.1661	-0.3326	0.8637
C10	-0.0870	-0.1972	0.7057
a10	-0.1709	-0.3347	0.6656

differant eximuthal orientation relative to the first chain. The refinement of this angle was not nodertaken due to the sall number of observed reflections, especially off-axis reflections. In the case of pyo, an aximuthel rotation of the second chain by 180° could occur in a more or less random sashion. fuch would not be the case for pazt since the bisthiazole ynit is centrosymantric and a flip of the second chain by 180° ean be seen to be equivaleat to a transiation elong $\mathrm{C}_{\text {. }}$

PR7T. Figure 6 shows a c-exis view of the packing. As expected Erom the crystal structures of model compounds, pert adopts a mon-planar conformation in the non-primitive cell given in Table I. shifts of $¥=+/-0.3$ (approximately $\left.+/-A^{\prime}\right)$ by the second chain produce optimum intermolecular contacts (ninjmum H.... contacts are 2.4i). The mean torsion angle (r) is 46°. shifts of $⿴=+/-0.5(+/-6 \AA)$ are elso possible, but produce a slightly higher a indsx.

Recent sami-ampirical calculations on an isolated PBer unit support a non-planar conformation for the polymer by predicting a torsion angle of 29° for the minimum energy conformation [12]. Molecular mechanics calculgtions reach a similar conclusion, the torsion angle being 20 . semi-empirical ${ }_{0}$ calculations also reveal a small barrier ($0.11 \mathrm{kcal} / \mathrm{mole})$ at 0°, and a larger one (0.74 kcal/mole at 90° [12]. The small barrier is consistent with the proposal that the conformation may be subject to packing considerations in the polymer and processing conditions.

Figure 6. e-axis viow of the molecular packing of pBet (top) and PBO (bottom). The -axis is horizontal.

P8. PSO molecules also adopt a slightly mon-planar conformationoin cell shown in Table I. The mean torsion angle (r) is 13°. This contrasts with the planar conformation observed in the erystal structures of model compounds [11]. s^{2} ifts of $\quad=+/-0.10(+/-1.2 i)$ and $+/-0.5(+/-6 i)$ yield the optimum intermolecular contacts. shifts of $=+/-0.3(+/-3.6 \dot{A})$ are also possible but only at the expense of a higher R index. Figure 6 also presents a view of the molecular packing.

The final orientation angles, R index (calculated on the basis of observed reflections only and equal to (E|AF|/E|Fo|) and observed and calculated structure factor amplitudes are given in Table VII.

For molecules atacked directiy above one enother, the theoretical prediction of the minimum energy arrangement is that chains are out of register by 2.5 A for pazt and as much as 3.0 A for PBO (13]. D. Hartin is currently using electron diffraction data to investigate quantitatively the type of disorder [14].

Table VII. Observed and Calculated Structure Factor Amplitudes for PBZT and PBO

PB2T PBO

brel			E0	Ec (a)		has		$\frac{50}{86}$	$\frac{78}{86}(b)$	
2	0	0	87	92	2	0	0			
0	1	0	139	144	0	1	0	104	108	
-2	1	0	76	66	-2	1	0	132	136	
12	1	01			12	1	01			
14	0	01	48	51	14	0	01	38	40	
6	0	0	12	2	6	0	0	24	20	
1-6	1	01			(-2	2	$0)$			
10	2	01	59	53	-1	2	0			
16	1	01			0	2	$0)$	69	56	
12	2	01	36	22	1-4	2	01			
2	0	2	5	7	1-2	2	01	44	41	
					0	1	2	19	9	
					3	1	3	28	19	
					14	0	41			
					12	1	41	18	7	
					1-1	1	51			
					11	1	51	21	26	

(a) Fc values are based on shifts of $w=+0.30$ for the second chain. The plecement of the first chain in the unit cell is eccomplished by placing the root atom (C4' in each case) at the orjgin vith the bond to its precursor (C8') pointing along the positive x-axis and its precursor (C7' for PB2T and C9: for pBof in tura lying in the $(x,-y)$ half-plang. Orientation angles x, I and z are -40.8 , -92.7 and 9.3°. respectively. They refer to the angle about a, b and c, respectively, required to bring the chain into its correct orientation. Positive rotation is counterclockwise when viewad from positive infinity. chain continuity is maintained via coincidence constraints imposed on pairs of atoms related by translational symetry elong C. The R index is 12.08 based on 8 Bragg maxima.
(b) $\quad=0.10$ for the second chain. X, Y and 2 angles are 90.3 , -91.3 and 158.1 , respectively. R is 11.41 besed on 11 reflections.

accounticentir

Support for this work was provided by the גir Force 0ffice of scientific Research under Grant ArosR-88-0044. One of us (PGL) is the recipient of a ArsC University Resident Research Program Appointment.

ExTERHMCES

1. W.W. Adams, L.V. Azaroff, and A.E. Iulshreshtha, z. Eristallogr. 150, 321 (1980).
2. E.J. Roche, T. Takahashi, and E.L. Thomas in Eiber Diffraction Methods, edited by A.D. French and R.H. Gardner (American Chamicel Society symposium series, No. 141, 1980), p. 303.
3. J.A. Odell, A. Keller, E.D.T. Atkins, and M.J. Miles, J. Hater. Sci. 16, 3309 (1981).
4. R. Shimamura, J.R. Minter, and E.L. Thomas, J. Mat. sci. Lett. 18, 54 (1983).
5. W.W. Adams, S. Kumar, D.C. Martin, and R. Shimamura, Polymer Commanications (1989), in press.
6. S.J. Irause, T.B. Haddock, D.L. Vezie, P.G. Lenhert, W.-F. Hwang, G.E. Price, T.E. Helminiak, J.F. O'Brien, and W.W. Adams, Polymer 22, 1354 (1988).
7. A.V. Fratini, E.M. Cross, J.F. O'Brien, and W.W. Adams, J. Macromol. Sci. -Phys. B24(1-1), 159 (1985-1986).
8. P.G. Lenhert and W.W. Adams, Proc. Mater. Res. Soc. Symp., 134,
(1989).
9. A.V. Fratini, E.M. Cross, R.B. Whitaker, and W.W. Adams, Polymer 21. 861 (1986).
10. M.W. Wellman, W.W. Adams, R.A. Wolff, D. Dudis, D.R. Wiff, and A.V. Fratini, Macromolecules 24, 935 (1981).
11. M.W. Wellman, W.W. Adams, D.R. Wiff, and A.V. Fratini, APIL-TR-79-4184, February (1980).
12. B.L. Farmer, S.G. Wierschke, and W.W. Adams, Polymer, 1989.
13. D. Bhamik, W.J. Welsh, H.H. Jaffe and J.E. Mark, Macromolecules 14, 951 (1981).
14. D.C. Martin, Ph.D. dissertation, Dniversity of Massachusetts, (1989).

CRYSTAL STRUCTURES AND PHASE TRANSITIONS OF POLY (PARAPHENYLENE) OLIGOMERS

Kenneth N. Baker, Albert V. Fratini, Timothy Resch and Howard C. Knachel Department of Chemistry
University of Dayton
300 College Park
Dayton, Ohio 45469-2357

W. Wade Adams

Polymer Branch
Nonmetallic Materials Division
Wright-Patterson Air Force, Ohio 45433-6533

Abstract

The room temperature crystal structures and the temperature related structural transitions f p quinquephenyl (PQP), $\mathrm{C}_{30} \mathrm{H}_{22}$; p-sexiphenyl (PSexiP) $\mathrm{C}_{36} \mathrm{H}_{26}$; p-septiphenyl (PSeptiP) $\mathrm{C}_{40} \mathrm{H}_{30}$, have been investigated as part of a research effort toward rigid rod polymers which are of great interest for aerospace and electro-optical applications. The molecules are planar at room temperature, observe the herringbone type of crystal packing and have a setting angle θ of 56°, which is similar to that reported for the polymer poly(paraphenylene) (PPP). In contrast to PPP, the oligomers align in the unit cell parallel to the (010) face and intersect the (100) face at an angle ω. At room temperature the cell dimension a increases by $4.1 \AA$ for each additional benzene ring added to the oligomer, while b and \mathbf{c} remain more or less constant. At low temperature the unit cell parameters \mathbf{b} and \mathbf{c} are approximately doubled and a remains the same as in the room temperature cell. Unit cell changes are similar to that observed in previous measurements on the shorter polyphenyls. A time- dependent structural transition, in contrast to the lower oligomers, was observed for PQP, PSexiP, and PSeptiP at 110 K ; however, efforts to determine the exact transition temperature were unsuccessful and a low temperature structure could not be refined. High temperature measurements indicate the oligomers to be thermotropic liquid crystals and the crystal \rightarrow smectic transition temperatures were obtained for PQP, PSP, PSeptiP, and p-octiphenyl (POP) $\mathrm{C}_{46} \mathrm{H}_{34}$.

INTRODUCTION

Poly (paraphenylene) (PPP) has been reviewed quite extensively. ${ }^{1-3}$ It can be synthesized by many routes illustrated in Figure 1 with the two most common being the Kovacic method ${ }^{4}$ and the Yamamoto method ${ }^{5}$. PPP is an insoluble and infusible dark brown material commonly called "brick dust". Its lower oligomers shown in Table I and derivatives with phenyl pendant groups ${ }^{6}$ exhibit measurable melting points and limited solubilities, but is difficult to process. Yet PPP has been applied to many structural uses ranging from solid state lubricants ${ }^{7-10}$ to fibers ${ }^{11}$ and ribbons ${ }^{12}$. Tensile bars have been fabricated out of PPP powder by powder-forming techniques ${ }^{13}$ and hydrostatic pressing 14 which exhibit tensile strengths up to 35 MPa (5000 psi). Recent calculations ${ }^{15}$ indicate that if PPP could be obtained in high molecular weight and fabricated into fibers, it would possess excellent compressive strength, surpassing other rigid-rod polymers such as poly (paraphenylenebenzobisoxazole) (PBO) and poly (paraphenylenebenzobisthiazole) (PBT), but have a limited tensile modulus. Objects made from PPP powder exhibit ablationcompaction properties which allow fabricated parts to undergo controlled uniform shrinkage from up to 80% of the original. ${ }^{16}$

In general, the mechanical properties of fabricated PPP fall in between those of polyimide and graphite. 14 PPP has excellent heat and solvent stability in addition to the good macroscopic structural properties mentioned above. However the polymer has even more interesting microscopic molecular properties. PPP becomes highly conducting n - or p - type materials when it complexes with either electron donors ($\mathrm{Na}^{+}, \mathrm{K}^{+}$, or Li^{+}) or acceptors (AsF5, SbFs, $\mathrm{BF}_{5}{ }^{-}$, or $\mathrm{PF}_{6}{ }^{-}$), respectively. ${ }^{17}$ The highest conductivity occurs with AsF F_{5} increasing the conductivity of the virgin polymer from approximately 10-12 ohm ${ }^{-1} \mathrm{~m}^{-1}$ to greater than $10^{4} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$ for the doped polymer - an increase of 16 orders of magnitude! Different model structures have been proposed for the two types of conducting materials. An intercalation model (see Figure 2) has been suggested by Pradere, et al. 18 based upon the diffraction pattern of heavily doped PPP with AsF5. Fibers of PPP increased in diameter by approximately 50\% upon AsFs doping suggesting diffusion of dopant molecules inside the fiber.

Figure 3 shows the other model proposed by Baughman, et al. 19 in which the K^{+} ions aggregate in columns between two parallel polymer chains. In this model the K^{+}ions do not stack over the center of the phenyl rings but over the midpoint of the HC-CH bonds parallel to the molecular axis. This model lends credibility to the belief that PPP conduction is strongly influenced by the ability of the molecule to form the quinoid resonance structure ${ }^{23,24}$ since the quinoid resonance structure would have greater electron density over the HC-CH bonds parallel to the molecular axis in contrast to the benzoid structure where "doughnuts" of electron density exist above and below the ring planes.

c Yamamoto,T.Hayash, Y.: and Yamamoto, A, Bull. Chem. Soc. Jph. 1978, 51, 2091. $1981,19,85$.
d Tayjor,S. K.; Bemmen,S. G.; Kloury,1.; and Kovacic, P. J. Foy m. Sa., 515.

- Aeyrach,S. and Lacaze,P. C. J. Potym. SCL, Potym. Chem. 1969, 27, 515. Shacklote,L. W.; Eck Gordi,H.; G. J. Poby. Sci. 1955, 16, 569.

I Marvel.C. S. and Harizell,G. E. Chem. Abstracts 1959, 53, 14966 t .
- AsFs doped polymer formed.
Figure 1. Synthesis routes to PPP.

TABLEI

PPP Oligomer Melting Points and Solubility

Oigomer	Meling Point ${ }^{\circ} \mathrm{C}$	Solubility, e/L
	70^{2}	440 in Toluenca
	2108	8.5 in Toluene ${ }^{\text {a }}$
	$320{ }^{\text {a }}$	0.22 in Toluene ${ }^{\text {a }}$
	$\begin{aligned} & 395^{a} \\ & 388^{b} \\ & 388^{c} \end{aligned}$	<0.1 in Toluene ${ }^{\text {a }}$ good in 1,2,4-Trichlorobenzene ${ }^{b}$ unavailablec
	$\begin{aligned} & 475 a \\ & 437 b \\ & 429 c \end{aligned}$	<0.01 in Toluene ${ }^{2}$ poor in 1,2,4 Trichlorobenzeneb unavailablec
	$\begin{aligned} & 545^{a} \\ & 468^{b} \end{aligned}$	insolublea very limited in $1,2,4-$ TCB $^{\text {b }}$
	491^{b}	very limited in $1,2,4-$ TCB $^{\text {b }}$
	infusibled	insolubled

a Kern, W., Ebersbach, H. W., and Ziegler, I. Makromol. Chem. 1959, 31, 154.
b Unroe, M. R. and Reinhardt, B. A. Synthesis 1987, 11, 981.
C Kambe, H., Mita, R., and Yokota, R. Thermal Anal. 1971, 3, 387.
d Kovacic, P. and Kyriakis, A. J. Amer. Chem. Soc. 1963, 85, 454.

Figure 2. Intercalation model of arsenic pentafluoride doped PPP showing d-values obtained from diffraction pattern. Figure is adapted from reference 18.

Figure 3. Stacking model of potassium doped PPP showing d-values. Figure is adapted from reference 19.

The electronic properties of PPP also suggest that it has good nonlinear optical (NLO) properies. Recent calculacions 2223 on the electronic band structures of p-quaterphenyl, pquaterpynole, and p-quaterhiophene indicate that the undoped oligomer is more polarizable chan iss heteroatom counterparts. Moreover, when doped with sodiam atoms the polarizabilities of these oligomers increase. The largest increase is with p-quaterphenyl which doubles its mean polarizability to 159.34 ev and almont triples its linear polarinibility along the molecular axis to 790.00 ev . This significant increase in linetr polarivability (α) is expected to lead to an even larger increase in the thind order polarizability ($\boldsymbol{\gamma}$), due to the scaling relationship berween α and γ^{23} PPP has a band-gap of $3.2 \mathrm{ev}^{24}$ which decreases when the oligomer length ${ }^{25}$ and the quinoid character of the oligomer backbone ${ }^{26}$ increases. Cllculations ${ }^{2728}$, optical measurements ${ }^{29}$, and EPR atudies 30 demonstrate that upon heavy doping with alkali metals or AsFs spinless bipolarons are formed in coexistence with polarons. Optical measurements ${ }^{26}$ suggest a polaron-exciton defect to occur over about five phenyl rings.

Since PPP is the simplest type of rigid-rod polymer it represents the least complicated case of shape anisotropy. Paul Flory writes:

These homologues (of PPP) offer unique examples that (i)
are rigid with respect to the rectilinear axis, (ii) are
effectively cylindrically symmetric about this axis, and (iii)
are devoid of possible vitiating effects of polar groups." ${ }^{\text {. }}$ "
PPP oligomers are thermotropic liquid crystals to which theoretical calculations involving the relationship of shape anisotropy to intermolecular forces ${ }^{32}$ and experimentation ${ }^{33}$ are devored to betuer understand and someday exploit liquid crystal transitions.

The foundation of this work lies in the Air Force Ordered Polymer program which has as one of its objectives the research and development of new materials for aerospace applications. PPP has been around a long time but due to its intractability has not been exploited as well as other materials. Also the existing synthesis methods produce ortho and meta substituted products in addition so the desired para substituted isomer. For this reason a new synthesis procedure was developed to produce pure para substituted product. This procedure proved very successful not only in preparing pure para oligomers of PPP up to nine benzene rings long in high yield, but also in the selective substitution of pendans phenyl rings on the oligomer chain in an effort to increase the solubility of PPP allowing for routine processing of the polymer by conventional means. The latter goal (wo increase PPP's solubility) has not been significantly realized wo-date, but it has given us an excellent opportunity wo study the structure of extended oligomer chains of PPP.

Why would one perform a crystal structure when structural information can be obrained through \mathbb{R} or NMR spectrometry? With a good crystal structure one can obtain accurate unit cell parameters, atomic coordinates, and bond distances and angles. In a
concise description of the technique, X-rays record areas of high electron density from which atoms can be located. So the basic information obrined from such a surdy is atomic coordinates from which we obtain bond distances, boad angles, dihedral angles, ring planarity, and atomic thermal factoss which describe the dynamics the atoms are experiencing. If unit cell information is incloded, close packing diagrams and interatomic distances and angles are obtained. This information is important to both synthetic and theoretical chemists whom are designing other systems. For example, the polymers poly(paraphenylene sulfide) PPS, poly(paraphenylene visylene) PPV, and poly(paraphenylene bisthiophene) PPBT are being considered for their NLO and conduction properties. Structural information about para substituted phenyl mits is important to optimize the molecular geomery in order to achieve the desired Efect, whether it be π electron conjugation or stuctural strength. Our work on the pendant PPP oligomers has been published elsewhere and in this report is recent findings on the crystal structures and phase transitions of the non-substituted PPP oligomers p-quinquephenyl (PQP), psexiphenyl (PSP), and p-septiphenyl (PSeptiP).

EXPERIMENTAL METHODS

Samples of PQP, PSP, and PSeptiP were obtuined from Bruce Reinhardt of the Polymer Branch in polycrystalline form. The semples were further purified by sublimation in order to obtain single crystals suitable for structure determination. Density measurements were made by flotation in solvent mixtures contruining dictloromethane ($\rho=$ $1.316 \mathrm{~g} / \mathrm{cm}^{3}$) and methanol ($\rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$).

Crystals were selected from representative samples, discriminating on the basis of size and well defined crystal faces. They were observed under crossed polarized filters to determine extinction boundaries. Single erystals when viewed under crossed polarized filters are birefingent and when rotated on the microscope stage will 80 completely dark at some angle of rocation. Crystals not meeting this criteria were rejected as being twinned or polycrystalline aggregates. Good crystals were mounted on glass fibers using cyanoacrylate adhesive, the fibers were inserted into standard brass or stainless steel pins and the pins mounted into goniometers. for X-ray analysis.

Upon mounting the goniometer on the Enraf-Nonius CAD4 diffractometer and centering the crystal in the X -ray beam, a rotation photograph was taken using two complete rotations of the crystal. Observation of this photograph usually revealed:
a) if the crystal diffracted well enough and far enough out in the 2θ range to collect a suitable data set for structure determination and
b) if the beamp collimator needed to be changed so that the cross-section of the X-ray beam matched the crystal size.
Automatic search routines for strong diffraction peaks were initiated on crystals which showed promise. Once a suitable unit cell was found, reflection data sets were collected on the CAD4 interfaced to a DEC Micro PDP-11 computer. Data sets collected at room temperanure (approximately $22^{\circ} \mathrm{C}$) were followed by low temperaure data sets (110 K or $-163^{\circ} \mathrm{C}$). The crystal was cooled to low temperature using the Enraf-Nonius FR558 Liquid Nitrogen Cyyostat.

Raw reflection data were copied onto a VAX 11/730 computer and processed using software in the Structure Determination Package (SDP) ${ }^{34}$. Structure solutions were found by the software MULTAN $11 / 82^{35}$ and/or SHELXS-8636 and were subsquently refined by full matrix least-squares treatment of all non-hydrugen atoms. Hydrogen atoms were placed in idealized positions since subsequent isorropic refinement of hydrogen atoms did not yield apprecibly better results due to the reduced data-to-parameter ratio.

The temperature programmable Enraf-Nonius FR553 Guinier-Simon camera equipped with another Enraf-Nonius FR 558 Liquid Nitrogen Cryostat was used to obtain variable low temperature structural data on PQP, PSP, and PSeptiP. The moving film/ramping temperaure option on the camera's controller facilitates the determination of
structural transitions. Differential scanning calorimetry (DSC) measurements were performed on a Dupont 910 apparatus interfaced with an Omnitherm 35053 three module controller.

RESULTS

Table II summarizes the crystallographic and data collection parameters, and final refinement results for the structures determined at room temperature. Complete data sets could not be collected at low temperature due to problems with the crystals. Space group and unit cell information for the room and low temperature polyphenyls are summarized in Table III. Experiments are in progress to obtain better structural data for the low temperature structures of PQP, PSP, and PSeptiP.

Figure 4 shows the PQP molecule with the carbon atoms of the asymmetric unit labelled. Tables IV and V contain the atomic positions, bond distances and bond angles respectively. Figure 5 shows a stereoview of the crystal packing in the unit cell. PSP is shown in Figure 6 with the carbon atoms of the asymmetric unit labelled. Atomic posicions are in Table VI and bond distances and angles are contained in Table VII. The stereodrawing of the crystal pacling within the unit cell is shown in Figure 7.

The PSeptiP molecule with the carbon atoms of the asymmetric unit labelled is shown in Figure 8. Atomic positions, bond distances and bond angles are presented in Tables VIII and IX, respectively. Reflection data for PSeptiP were not of sufficient quality to refine all of the carbon atoms anisotropically. Figure 9 depicts a stereoview of the crystal packing in the unit cell.

Literature reports PPP to be infusible ${ }^{4}$, but for comparison purposes its theoretical melting point has been determined to be 1020 K by the extrapolation of experimental melting points of PPP oligomers (see Figure 10). Using similar methods, extrapolated melting points of 620 K and 1260 K have been reporred for poly (tetrafluoroethylene) ${ }^{37}$ and Kevlar ${ }^{38}$, respectively. It should be noted that these polymers mentioned above are expected to degrade before reaching these theoretical melting points. Extrapolations of this kind are based on melting point depression association with end group concentration in polymers. ${ }^{39}$ An extrapolated crystal density of $1.36 \mathrm{~g} / \mathrm{cm}^{3}$ has been calculated (see Figure 11) using experimental densities from crystalline oligomer model compounds. This theoretical density is smaller than that measured for PBO and PBT (1.65 and $1.69 \mathrm{~g} / \mathrm{cm}^{3}$, respectively) which is consistent with calculations ${ }^{15}$ that PPP fibers would have a lower modulus since modulus is directly proportional to density. However the force constank, K , which is derived from the energy/strain curve fit, is larger for PPP than for PBO or PBT making PPP more resistant to strain. Indeed, calculations ${ }^{15}$ on PPP indicate that it will not fail with up to 15% tensile strain and 3% compressive strain.

TABLE II
Crystallographic Data

NAME	p-Quinquephenyl	p-Sexiphenyl	p-Septiphenyl
Formula	$\mathrm{C}_{30} \mathrm{H}_{22}$	$\mathrm{C}_{36} \mathrm{H}_{26}$	$\mathrm{C}_{42} \mathrm{H}_{30}$
FW	382.51	458.61	534.70
Melting Point, ${ }^{\circ} \mathrm{C}$	388	437	468
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space Group	$\mathbf{P 2} / \mathbf{c}$	P21/c	P21/c
Z	2	2	2
a, \AA	22.056(4)	26.241(5)	30.65(2)
$\boldsymbol{b}, \boldsymbol{A}$	5.581(1)	5.568(1)	5.564(3)
c, \AA	8.070(1)	8.091(3)	8.056(5)
$\alpha{ }^{\circ}$	90.0	90.0	90.0
B, ${ }^{\circ}$	97.91(1)	98.17(2)	100.57(5)
γ°	90.0	90.0	90.0
Volume, $\boldsymbol{\wedge}^{\mathbf{3}}$	982.9(5)	1170.2(8)	1350.1(8)
Density ${ }^{\text {al, }} \mathrm{g} / \mathrm{cm}^{3}$	1.292	1.302	1.315
Density ${ }_{\text {exp, }} \mathrm{g} / \mathrm{cm}^{3}$	1.291	1.288	1.311
Crystal Dimensions, mm	$0.29 \times 0.28 \times 0.05$	$0.35 \times 0.50 \times 0.05$	$0.10 \times 0.10 \times 0.50$
Crystal Shape	Flat Plate	Rectangular Plate	Needle
Cell Determined	25 Reflections $9^{\circ}<20<36^{\circ}$	25 Reflections $9^{\circ}<20<25^{\circ}$	25 Reflections $9^{\circ}<20<36^{\circ}$
Radiation	Mo (graphite)	Mo (graphite)	Mo (graphite)
Scan Type	$\omega / 20$	$\omega / 20$	$\omega / 2 \theta$
Scan Rate, \%/min.	1.27-5.49	1.27-5.49	1.27-5.49
ScanAngle, ${ }^{\circ}$	$0.80 \times 0.34 \mathrm{Tan} 0$	$0.80=0.34 \mathrm{Tan} \theta$	$0.80+0.34 \mathrm{Tañ} \theta$

Power	45KV/20ma	45KV/20ma	45KV/20ma	Preprint 1	
Detector Apeure	4.00 mm	4.00 mm	4.00 mm		
Check Reflections	$\begin{gathered} 3 \text { every } 200 \text { refl. } \\ 12^{\circ}<0<24^{\circ} \end{gathered}$	$\begin{gathered} 3 \text { every } 200 \text { refl. } \\ 12^{\circ}<20<4^{\circ} \end{gathered}$	3 every 200 ref $22^{\circ}<20<66^{\circ}$		
Orientation Reflections	3 every 2 hrs. $16^{\circ}<0<36^{\circ}$	3 every 2 hrs. $18^{\circ}<20<4^{\circ}$	3 every 2 hrs. $22^{\circ}<20<6^{\circ}$		
Temperanure ${ }^{\circ} \mathrm{C}$	22	22	22		
20 Range, ${ }^{\circ}$	2-50	2-50	2-50		
Data Collected, h, $\mathbf{k}, 1$	$\pm 31,0-7, \pm 11$	$\pm 31,0-6, \pm 9$	0-36, $\pm 6, \pm 9$		
Total Number of Reflections	5776	4593	3188		
Unique Number of Reflections $\mathbf{>} 3 \sigma$	663	623	527		
Number of Parameters Varied	136	163	73		
Average Decay Correction	1.006	1.004	1.004		
Absorption Coefficient, cm^{-1}	0.7	0.7	0.7		
Absorption Correction	none	none	none		
R	0.050	0.062	0.067		
RW	0.060	0.091	0.074		
Maximum Shifverror in final cycle	0.03	0.01	0.01		
$\mathrm{R}=\frac{\sum \\|}{2}$		$R W=\sqrt{2}$	$\frac{N\left(\left\|F_{0}\right\|-\left\|F_{c}\right\|\right)^{2}}{\sum W\left(F_{0}\right)^{2}}$		

TABLE III
VARIABLE TEMPERATURE CRYSTAL DATA

Compound	Temperature (K)	Space Group	a ${ }^{(\lambda)}$	b(A)	c ${ }^{(1)}$	$0\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	Y°)
Biphenyl	$\begin{aligned} & 298^{a} \\ & 40^{b} \end{aligned}$	$\begin{aligned} & \mathbf{P} 2 \mathbb{1} / \mathbf{c}^{*} \\ & \mathbf{P} \mathbf{1}_{1} / \mathbf{c}^{*} \end{aligned}$	$\begin{aligned} & 9.51(2) \\ & 9.51(2) \end{aligned}$	$\begin{gathered} 5.63(1) \\ 11.26(2) \end{gathered}$	$\begin{gathered} 8.12(2) \\ 16.24(4) \end{gathered}$	90 90	$\begin{aligned} & 95.1(3) \\ & 95.1(3) \end{aligned}$	90 90
P-Terphenyl	$\begin{aligned} & 298 \mathrm{c} \\ & 191^{c} \end{aligned}$	$\begin{aligned} & \mathbf{P} 2 \mathbb{1} / \mathbf{c}^{\boldsymbol{*}} \\ & \mathbf{P} 2 \mathbf{V} \mathbf{c}^{* \dagger} \end{aligned}$	$\begin{gathered} 13.613(6) \\ 13.53(3) \end{gathered}$	$\begin{aligned} & 5.613(2) \\ & 11.09(3) \end{aligned}$	$\begin{aligned} & 8.106(4) \\ & 16.01(3) \end{aligned}$	90 90	$\begin{aligned} & 92.2(2) \\ & 92.0(2) \end{aligned}$	90 90
P-Quaterphenyl	$\begin{aligned} & 298{ }^{\mathrm{d}} \\ & 2433^{\mathrm{e}} \end{aligned}$	$\begin{aligned} & \mathbf{P} 2 \mathfrak{V} / \mathbf{c}^{\boldsymbol{*}} \\ & \mathbf{P} 2 \sqrt{ } \mathbf{c}^{\boldsymbol{*} \dagger} \end{aligned}$	$17.91(1)$ $17.70(3)$	$5.610(4)$ $11.16(2)$	$8.110(6)$ $15.97(3)$	90 90	$\begin{aligned} & 95.80(6) \\ & 95.61(8) \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$
P-Quinquephenyl	$\begin{aligned} & 298 \\ & 110 \end{aligned}$	P21/c monoclinic, C centered	$\begin{aligned} & 22.056(4) \\ & 22.014(3) \end{aligned}$	$\begin{gathered} 5.581(1) \\ 11.029(4) \end{gathered}$	$\begin{aligned} & 8.070(1) \\ & 15.968(6) \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 97.91(1) \\ & 98.18(2) \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$
P-Sexiphenyl	298 110	P21/c monoclinic, C centered	$\begin{aligned} & 26.241(5) \\ & 26.282(8) \end{aligned}$	$\begin{aligned} & 5.568(1) \\ & 10.999(4) \end{aligned}$	$\begin{gathered} 8.091(3) \\ 15.995(9) \end{gathered}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 98.17(2) \\ & 99.79(4) \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$
P-Septiphenyl	298	$\mathbf{P} 21 / \mathbf{c}^{*}$ orthorhombic, C centered	$\begin{gathered} 30.65(2) \\ 30.064(6) \end{gathered}$	$\begin{aligned} & 5.564(3) \\ & 11.005(2) \end{aligned}$	$\begin{aligned} & 8.056(5) \\ & 15.972(2) \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$100.6(5)$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$

Figure 4. P-quinquephenyl with carbon atom ellipsoids drawn at the 50% probability

TABLEIV

Positional Parameters, Equivalent Isorropic Thermal Factors, and Their Estimated Standard Deviations for p-Quinquephenyl

Atom	X	y	2	$B\left(\mathcal{S}^{2}\right)$
C3	$0.3384(2)$	-0.1788(9)	0.2567(5)	4.1(1)
C4	0.3163(2)	0.0007(8)	0.3521(4)	2.63(8)
C7	0.2515(2)	$0.0042(7)$	0.3830(4)	2.71 (8)
C8	0.2115(2)	-0.1726(9)	0.3206(6)	5.1(1)
C9	0.1511(2)	-0.1737(8)	0.3475(5)	4.8(1)
C10	0.1263(2)	-0.0020(7)	0.4393(4)	2.62(8)
Cll	0.1663(2)	0.1751(9)	0.5007(6)	4.8(1)
C12	0.2267(2)	0.1775(9)	0.4743(5)	5.0(1)
C13	0.0614(2)	-0.0037(7)	0.4698(4)	2.59(7)
C14	0.0204(2)	-0.1789(8)	0.4079(5)	4.6(1)
C15	0.0397(2)	0.1773(9)	0.5622(5)	4.3(1)
C1	0.4390(2)	-0.0065(9)	0.2967(5)	4.1(1)
C2	0.3989(2)	-0.1807(9)	0.2300(5)	4.6(1)
C6	0.4180(2)	0.1739(9)	0.3906(5)	4.4(1)
H1	0.481	-0.012	0.281	5.4*
H2	0.413	-0.302	0.162	6.0*
H3	0.312	-0.302	0.209	5.3*
H5	0.343	0.299	0.485	5.5*
H6	0.445	0.297	0.436	5.4*
H8	0.226	-0.301	0.260	6.6*
H9	0.125	-0.298	0.298	6.2*
H11	0.152	0.304	0.562	6.1*
H12	0.253	0.302	0.523	6.9*
H14	0.034	-0.297	0.337	5.8*
H15	0.066	0.305	0.601	5.1*

Starred atoms were refined isotropically.
Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}\right.$ $\left.+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3}\right]$

TABLE V
Bond Distances (\AA) and Bood Angles () for p-Quinquephenyl
Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance

C3	C4	1.392(6)	C10	C13	1.482(5)	C8	C9	1.376(6)
C3	C2	1.378(6)	C11	C12	1.373(6)	Cl	C2	1.374(6)
C3	H3	0.950(4)	C11	H11	0.950(5)	C8	H8	0.951(5)
C4	C5	1.386(6)	C12	H12	0.951(4)	C1	C6	1.379(7)
C4	C7	1.481(5)	C13	C14	1.378(6)	C9	C10	1.372(6)
C5	C6	1.388(6)	C13	C15	1.380(6)	C1	H1	$0.951(4)$
C5	H5	$0.951(5)$	C14	C15'	1.378(6)	C9	H9	0.951(4)
C7	C8	1.372(6)	C14	H14	0.950(5)	C2	H2	0.950(5)
C7	C12	1.376(6)	C15	H15	0.950(4)	C6	H6	0.950(4)
C10	C11	1.373(6)	C15	C14'	1.378(6)			

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Alom 3	Angle
C4	C3	C2	120.7(4)	C12	C11	H11	117.8(4)
C4	C3	H3	120.3(4)	C7	C12	Cl1	122.8(5)
C2	C3	H3	119.1(4)	C7	C12	H12	118.4(4)
C3	C4	C5	117.7(3)	C11	C12	H12	$118.8(5)$
C3	C4	C7	121.3(3)	C10	C13	C14	122.8(4)
C5	C4	C7	121.0(4)	C10	C13	C15	119.9(3)
C4	C5	C6	121.4(4)	C14	C13	C15	117.3(4)
C4	C5	H5	119.1(4)	C13	C14	C15'	122.0(4)
C6	C5	H5	119.5(4)	C13	C14	H14	$117.7(4)$
C4	C7	C8	120.9(4)	C15'	C14	H14	120.2(4)
C4	C7	C12	124.3(4)	C13	C15	C14'	120.8(4)
C8	C7	C12	114.9(4)	C13	C15	H15	119.0(4)
C7	C8	C9	122.14)	C14'	C15	H15	120.1(4)
C7	C8	H8	119.4(4)	C2	C1	C6	119.1(4)
C9	C8	H8	118.5(4)	C2	C1	H1	120.7(4)
C8	C9	C10	123.2(5)	C6	C1	H1	120.3(4)
C8	C9	H9	118.3 (5)	C3	C2	Cl	121.1(4)
C10	C9	H9	118.4(4)	C3	C2	H2	119.5(4)
C9	C10	C11	114.6(4)	Cl	C2	H2	119.3(5)
C9	C10	C13	123.4(4)	C5	C6	C1	120.0(4)
C11	C10	C13	122.1(4)	C5	C6	H6	119.9(5)
C10	C11	C12	122.6(4)	Cl	C6	H6	120.2(4)

Numbers in parentheses are estimated standard deviations in the least significant digits.

P-SEXIPHENYL
Figure 6. $\quad \begin{aligned} & \text { P-sexiphenyl with carbon atom ellipsoids drawn at the } 50 \% \text { probability } \\ & \text { level }\end{aligned}$

TABLEVI

Positional Parnmeters, Equivalent Isoropic Thermal Factors and Their Estimated Sundard Deviations for p-Sexiphenyl

Alom	x	y	2	$B\left(\AA^{2}\right)$
C1	$0.0276(2)$	0.007(1)	. $0.0409(6)$	2.5(1)
C2	$0.0620(2)$	-0.174(1)	0.0066(8)	4.5(2)
C3	0.1117(3)	-0.174(1)	0.0849(8)	4.5(2)
C4	0.1321(2)	0.001(1)	0.1953(6)	1.6(1)
C5	0.0982(2)	0.179(1)	$0.2214(8)$	3.9(2)
C6	0.0456(3)	0.179(2)	0.1529(9)	5.7(2)
C7	$0.1875(3)$	-0.008(1)	0.2729(7)	3.6(2)
C8	$0.2220(3)$	-0.181(2)	0.2399(9)	5.4(2)
C9	0.2696(2)	-0.178(1)	0.3188(8)	4.4(2)
C10	0.2910(2)	0.002(1)	0.4253(7)	3.1(1)
C11	0.2569(3)	0.175(1)	0.4563(9)	5.3(2)
C12	0.2051(2)	0.173(1)	0.3828(9)	4.6(2)
C13	0.3443(2)	$0.001(1)$	0.5074(7)	2.7(1)
C14	0.3781(2)	-0.174(1)	0.4752(8)	4.1(2)
C15	0.4320(2)	-0.177(2)	0.5448(9)	4.7(2)
C16	0.4488(3)	0.003(2)	0.6560(9)	5.3(2)
C17	0.4149(3)	0.179(2)	0.6951(9)	4.9(2)
C18	0.3661 (2)	0.183(1)	0.6192(8)	3.4(1)
H2	0.052	-0.296	-0.074	5.2*
H3	0.133	-0.304	0.064	5.6*
H5	0.111	0.314	0.286	4.5*
H6	0.023	0.293	0.189	7.1*
H8	0.212	-0.293	0.153	6.8*
H9	0.290	-0.316	0.310	5.7*
H11	0.270	0.306	0.525	6.5*
H12	0.182	0.293	0.411	5.8*
H14	0.365	-0.306	0.408	5.8*
H15	0.455	0.291	0.510	5.1*
H16	0.484	0.005	0.707	6.4*
H17	0.426	0.295	0.779	6.6*
H18	0.345	0.316	0.639	4.2*

Starred atoms were refined isotropically.
Anisorropically refined atoms are given in the form of the isorropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}\right.$ $\left.+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3}\right]$

TABLE VII
Bond Distances (\mathcal{A}) and Bood Angles ($\%$ for p-Sexiphenyl
Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance

Cl	C1'	1.506(6)	C9	H9	0.951(7)	C5	125	0.950(6)
C1	C2	1.41(1)	C10	Cl1	1.36(2)	C16	C17	1.39(1)
Cl	C6	1.36 (2)	C10	C13	1.461(8)	06	H6	0.951(9)
C2	C3	1.366(9)	C11	C12	1.40(1)	C16	H16	0.950(8)
C2	H2	0.951(7)	C11	H11	$0.950(7)$	C7	C8	1.38(2)
C12	H12	0.950(7)	C17	C18	1.339(8)	C9	C10	1.386(9)
C3	C4	1.378(8)	C13	C14	1.37(1)	C7	C12	1.38(1)
C3	H3	0.950(7)	C13	C18	1.426(9)	C17	H17	0.951(8)
C4	C5	1.366(8)	C14	C15	1.446(9)	C8	C9	1.321(9)
C4	C7	1.501(8)	C14	H14	0.950(7)	C18	H18	0.950(7)
C15	C16	1.38(2)	C8	H8	0.950(8)	C15	H15	0.951(8)
C5	C6	1.413(9)						

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C1 ${ }^{\prime}$	C1	C2	118.7(6)	C8	C9	H9	117.2(7)
C1'	C1	C6	123.5(6)	C10	C9	H9	117.0(6)
C2	Cl	C6	117.8(5)	C9	C10	Cl1	114.0(6)
C1	C2	C3	120.2(6)	C9	C10	C13	123.7(7)
C1	C2	H2	121.0(6)	C11	C10	C13	122.1(6)
C3	C2	H2	118.7(7)	C10	Cl1	C12	122.5(7)
C2	C3	C4	124.0(7)	C10	Cl1	H11	117.3(6)
C2	C3	H3	118.1(7)	C12	C11	H11	120.2(7)
C4	C3	H3	117.9(6)	C7	C12	C11	119.8(7)
C3	C4	C5	114.3(5)	C7	C12	H12	120.2(6)
C3	C4	C7	120.8(5)	C11	C12	H12	120.0(8)
C5	C4	C7	124.9(5)	C10	C13	C14	121.5(6)
C4	C5	C6	124.1(6)	C10	C13	C18	123.8(6)
C4	C5	H5	117.6(5)	C14	C13	C18	114.7(5)
C6	C5	H5	118.3(6)	C13	C14	C15	123.9(6)
C1	C6	C5	119.3(7)	C13	C14	H14	117.7(6)
C1	C6	H6	120.3(6)	C15	C14	H14	118.4(7)
C5	C6	H6	120.3(8)	C14	C15	C16	117.0(7)
C4	C7	C8	124.5(6)	C14	C15	H15	121.7(7)
C4	C7	C12	117.6(7)	C16	C15	H15	121.4(6)
C8	C7	C12	117.9(6)	C15	C16	C17	120.3(7)
C7	C8	C9	119.9(7)	C15	C16	H16	119.4(8)
C7	C8	H8	119.0(6)	C17	C16	H16	120.3(8)
C9	C8	H8	120.9(8)	C16	C17	C18	120.7(8)

Bond Angles (${ }^{\rho}$) for P-Sexiphenyl (Continued)
Atom 1 Atom 2 Atom 3 Ante Atom 1 Atom 2 Atom 3 Angle

C 8	C 9	C 10	$125.7(7)$	C 16	C 17	H 17	$119.9(6)$
C 18	C 17	H 17	$119.4(7)$	C 13	C 18	C 17	$123.3(7)$
C 13	C 18	H 18	$117.9(5)$	Cl 7	C 18	H 18	$118.8(7)$

Numbers in parentheses are estimated standurd deviations in the least significant digits.

Figure 7. Stereoview of PSexiP showing molecular packing in unit cell. The a sxis is vertical and the b axis is horizontal.

Figure 8. P-septiphenyl with carbon atom ellipsoids drawn at the 50% probability

TABLE VIII

Positional Panmeters, Equivilent Isocropic Thermal Factors and Their Estimated Standard Deviations for P-Sepiphenyl

Atom	x	y	2	$B\left(\underline{A}^{2}\right)$
C1	0.044	0.501	0.480	2.1
C2	0.028	0.323	0.568	4.4
C3	0.016	0.681	0.411	3.8
C4	0.092	0.502	0.457	2.1
C5	0.121	0.320	0.524	4.3
C6	0.166	0.318	0.503	3.6
C7	0.182	0.504	0.415	2.6
C8	0.153	0.677	0.345	4.1
C9	0.109	0.677	0.366	4.3
C10	0.2289(2)	0.497(2)	0.3923(9)	2.8(2)
C11	0.259	0.322	0.456	5.0
C12	0.302	0.321	0.437	4.7
C13	0.3196(2)	0.501(2)	0.3504(9)	2.4(2)
C14	0.290	0.674	0.284	5.1
C15	0.246	0.673	0.303	4.8
C16	$0.3664(2)$	0.500(2)	0.327(1)	2.4(2)
C17	0.3966 (3)	0.324(2)	0.401(1)	4.0(2)
C18	$0.4406(3)$	0.326(2)	0.384(1)	5.1 (3)
C19	0.4563(3)	0.505(2)	0.293(1)	3.6(2)
C20	0.4267(3)	0.680(2)	0.219(1)	4.7(3)
C21	0.3828(2)	0.683(2)	0.236(1)	4.2(2)
H5	0.115	0.212	0.606	5.1*
H6	0.186	0.215	0.591	4.2*
H8	0.164	0.808	0.268	4.4*
H9	0.097	0.811	0.321	4.6*
H11	0.252	0.219	0.536	5.3*
H12	0.324	0.211	0.518	5.0*
H14	0.297	0.812	0.202	5.0*
H15	0.227	0.808	0.235	5.1*
H17	0.386	0.197	0.462	4.3*
H18	0.460	0.201	0.432	5.2*
H19	0.487	0.508	0.282	4.5*
H2O	0.437	0.805	0.155	4.5*
H21	0.363	0.808	0.188	4.4*
H3	0.0297	0.8067	0.3196	4.0*
H2	0.047	0.197	0.647	4.0*

Starred atoms were refined isotropically.
Anisotropically refined atoms are given in the form of the isoropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}\right.$ $+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3]}$

TABLE D
Bond Distances (\mathcal{A}) and Bond Angles (${ }^{\circ}$) for P-Septiphenyl
Atom 1 Atom 2 Distance
Atom 1 Atom 2 Distance
Atom 1 Atom 2 Distance

C1	C 2	$1.361(9)$	C11	H11	0.92(1)	C8	C9	1.39(1)
C1	C3	$1.369(9)$	C12	C13	$1.389(9)$	C18	H18	0.95(2)
C1	C4	$1.522(9)$	C12	H12	$1.043(9)$	C8	H8	$1.06(2)$
C2	H2	$1.046(9)$	C13	C14	$1.360(9)$	C19	C20	$1.40(1)$
C3	H3	$1.150(9)$	C13	C16	$1.49(2)$	C9	H9	0.88(1)
C4	C5	$1.38(2)$	C14	C15	$1.38(2)$	C19	H19	0.951(8)
C4	C9	$1.36(2)$	C14	H14	$1.06(2)$	C10	C11	$1.366(9)$
C5	C6	$1.41(2)$	C15	H15	$1.06(2)$	C20	C21	$1.38(1)$
C5	H5	$0.94(2)$	C16	C17	$1.40(1)$	C10	C15	$1.38(1)$
C6	C7	$1.39(1)$	C16	C21	$1.40(1)$	C20	H20	0.96(2)
C6	H6	$1.03(1)$	C17	C18	$1.38(1)$	C11	C12	$1.36(2)$
C7	C8	$1.36(1)$	C17	H17	0.96(2)	C21	H21	$0.950(9)$
C7	C10	$1.489(8)$	C18	C19	$1.38(1)$	C2	C3'	$1.394(8)$
C3	C2	$1.394(8)$						

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

Cl	C2	C3'	121.9(6)	C1	C3	C2'	119.6(6)
C2	Cl	C3	118.5(9)	Cl1	C10	C15	114.1(5)
C2	C1	C4	121.3(5)	C10	C11	C12	123.7(4)
C3	C1	C4	120.2(4)	C10	C11	H11	119.3(4)
Cl	C2	H2	126.7(4)	C12	C11	H11	115.3(4)
C1	C3	H3	115.1(4)	Cl1	C12	Cl3	122.2(3)
C1	C4	C5	120.5(3)	Cl1	C12	H12	117.3(3)
Cl	C4	C9	121.7(3)	C13	C12	H12	118.3(3)
C5	C4	C9	117.7(3)	C12	C13	C14	114.7(5)
C4	C5	C6	121.1(5)	C12	C13	C16	122.5(7)
C4	C5	H5	123.6(7)	C14	C13	C16	122.8(8)
C6	CS	H5	113.9(8)	Cl3	C14	C15	122.7(4)
C5	C6	C7	120.0(4)	Cl3	C14	H14	123.8(3)
C5	C6	H6	113.8(3)	C15	C14	H14	113.1(3)
C7	06	H6	122.3(3)	Cl 0	C15	C14	122.7(3)
C6	C7	C8	117.7(3)	C10	C15	H15	123.3(3)
C6	C7	C10	119.2(4)	C14	C15	H15	114.0(4)
C8	C7	C10	123.0(4)	C13	C16	C17	122.0(8)
C7	C8	C9	121.7(8)	C13	C16	C21	120.7(8)
C7	C8	H8	117.5(8)	C17	C16	C21	117.2(7)
C9	C8	H8	120.7(7)	C16	C17	C18	122.2(9)
C4	C9	C8	121.6(9)	C16	C17	H17	118.7(8)
C4	C9	H9	131.5(8)	C18	C17	H17	119.1(9)
C8	C9	H9	106.6(9)	C17	C18	C19	120.3(9)

Bond Aagles (${ }^{\circ}$) for P-Septiphenyl (Continued)

Atom 1	Arom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
C7	C10	C11	124.5(7)	C17	C18	H18	120(2)
C7	C10	C15	121.5(7)	C19	C18	H18	119.4(8)
C18	C19	C20	118.3(8)	C21	C20	H20	118.0(9)
C18	C19	H19	120.5(9)	C16	C21	C20	119.6(8)
C20	C19	H19	121.3(9)	C16	C21	H21	119.3(8)
C19	C20	C21	122.4(9)	C20	C21	H21	122(1)
C19	C20	H2O	119.5(8)				

Numbers in parentheses are estimated standard deviations in the least significant digits.

Figure 9. Stereoview of PSeptiP showing molecular packing in unit cell. The a axis

The unit cell parameters of the $n=5,6$, and 7 polyphenyl series (where n is the number of phenyl units in the molecule) agree well with the $n=2,3$, and 4 oligomers, mamely biphenyl, p-terphenyl, and p-quaterphenyl, allowing for space group transformations as shown in Table III. The a cell parameter is increased by approximately $4.14 \AA$ with the addicion of a phenyl group to the end of the molecule, which is less than the length of the phenyl structural mit (approximately $4.3 \AA$). Direct alignment with the long axis of the unit cell is difficult to achieve and a structrinl anomaly is predicted to occur such as a:
(i) Phenyl ring deformation (chain compression or expansion),
(ii) Molecular axis linear deviation (chain bending or kinks), and
(iii) Cell axis alignment deviation (chain tilling).

Simple observation of the stereoviews of the oligomers in Figures 5,7, and 9 re:eals that the molecular axis is tilted away from the long crystallographic axis. Bipheny140, pterphenyl ${ }^{41}$, and p-quaterpheny ${ }^{42}$ also possess this anomaly. Figure 12 presents different views of PSeptiP showing how the molecules align parallel to the ac or (010) plane and the setting angle θ as the angle the benzene planes of the "averaged" oligomer make with the ac (010) plane of the unit cell. Figure 12 also shows the molecular axes intersecting with the $a b$ (001) and bc (100) planes defining an intersection angle ω and ϕ, respectively. This angular data is tabulated below in Table X and shown in Figure 13.

TABLE X
Intersection Angles and Sering Angles for p-Polyphenyls

COMPOUND	$\omega, \pm 0.3^{\circ}$	$\theta, \pm 0.3^{\circ}$	$\phi, \pm 0.3^{\circ}$
Biphenyl	22.5	56	72.5
p-rerphenyl	19	57	73
p-quaterphenyl	11.5	56.5	73
p-quinquephenyl	9.5	56.5	73
p-sexiphenyl	26	55	71
p-septiphenyl	6.5	57	72.5

Figure 13. Intersection angles ω and ϕ and the seting angle θ for p-Polyphenyls.

PPP polymer has been determined ${ }^{43}$ to have $\theta=57^{\circ}$ by incorporating the setting angle into the data refinement and defining the molecular axes to be perpendicular to the (100) plane and parallel to the (010) and (001) planes. The average seting angle of $56.3 \pm$ 0.3° observed for the PPP oligomers agrees very well with that derived for the polymer.

* The intersection angle ϕ semains relatively stable at approximately $72 \pm 0.3^{\circ}$ and does not appear to approach 90° defined for PPP. The intersection angle, ω, however, fluctuates with oligomer chain length. With p-sexiphenyl being the exception, ω decreases with oligomer chain length approsching a value of zero defined for PPP. At this time it is not
clear as to why PSP does not fit the datn trend. Perhaps PSP exists as a polymorph and changing the conditions of arystallization will influence the crystal strucurre. p-Sexiphenyl has been suggested ${ }^{\text {th }}$ to be good roodel compound far PPP due to highly similar X-ray Photoelectron Spectroscopy (XPS) spectra. We report that, structurally speaking, psexiphenyl, possessing the maximum ω of 26°. is a poor model for the polymer.

PQP, PSP, and PSeptiP all possess a center of symmery making one half of the molecule identical to the other. Observations of edge-on drawings of the oligomers (see Figure 14) confirmed by a calculation of the angles between the atoms making up the molecular axis (see Table XI) revealed that the oligomers are straight. Interestingly enough, the largest deviation is again with p-sexiphenyl with a 3.6° kink between phenyl rings 3 and 4 (at the asymmetric point) and a 3.3° hink berween phenyl rings 2 and 3 setring the terminal phenyl ring as 1.

The C-C bond distances within and between the phenyl rings of PQP, PSP, and PSeptiP all agree quite well with expected values. The endocyclic bond angles of the chain axis carbon atoms are less than the expected 120°, which is consistent with the lower oligomer structures ${ }^{38-40}$. This narrowing of the benzene ring would make the overall oligomer or polymer slightly longer than expected from calculation making direct alignment with the long crystallographic axis difficult. p-Sexiphenyl, once again, has the widest range of these endocyclic bond angles varying from 114.0° to 120.3°. The other bond angles agree well with the expected values. In summary, out of the three structural anomalies predicted to occur, anomalies (i) and (iii) are the largest and probably the mosi important factors in accounting for the discrepancy between the the calculated and observed unit cell parameters.

Fitting all of the carbon atoms to a least-squares plane reveals that for the room temperature structure of the oligomer all of the phenyl rings lie in the same plane (see Figure 14). This planar structure is thought to be the averaged structure of all the rotational degrees of freedom belonging to the phenyl units of PPP oligomers. Measurements of libational tensors for the lower oligomerstl reveal that the rings do have a high degree of torsional motion. The largest deviation from the oligomer plane was $0.05 \AA$ for $C 9$ of PSeptiP. Measurement of inter-ring torsion angles confirmed this averaged planarity in PQP, PSP, and PSeptiP. PPP conformations simulated in the absence of crystal packing
 inter-ring torsion angles of approximately 50°. This suggests that constraints within the unit cell are strong enough to overcome the artho hydrogen repulsion. A double well potential4 exists as a result of the competition of these two forces.

The oligomers in this study pack in a herringbone (non-parallel) structure ${ }^{47}$ also observed in the lower oligomers and calculated to occur in the polymer. No close

Table XI
Angles (") Between Molecular Axis Curbon Atoms

	Tables	Angles
PQP	C1-C4-C7	179.5
	C4-C7-C10	178.5
	C7-C10-C13	179.5
	C10-C13-C13'	178.7
PSP	Cl'-Cl-C4	176.4
	Cl-C4-C7	178.2
	C4-C7-C10	177.6
	C7-C10-C13	178.3
	C10-C13-C16	178.0
PSeptiP	Cl'-Cl-C4	179.6
	$\mathrm{Cl}-\mathrm{C4}-\mathrm{C} 7$	179.8
	C4-C7-C10	178.2
	C7-C10-C13	178.0
	C10-C13-C16	179.2
	C13-C16-C19	178.1

PQP Asymmetric Unit

PSP Asymmerric Unit

PSeptiP Asymmetric Unit
molecular interactions of any gignificance are found, the closest one being (C2)-Cl -H 6 at $2.9 \AA$ and 90° (the $\mathrm{Cl}-\mathrm{H} 6$ distance is $2.6 \AA$) occurring in p-sexiphenyl.

Low semperature (110 K) structure determinations for PQP, PSP, and PSeptip are currently underway. Research done on the lower polyphenyls ${ }^{18}$-50 have discovered that a structural transition occurs such that the "averaged" planar structure observed at room remperature changes to a nonplanar configurntion at lower temperature. The low remperature unit cell is a superstructure of the room temperature unit cell with the parameters b and c approximately doubled to account for the greater displacement of the monplanar molecule. The temperatures of these transitions are presented in Table III and are plotted in Figure 15 along with the melling points of the PPP oligomers up to p octiphenyl.

Figure 15. Plot of transition $-\infty \rightarrow$ and meloing point $\rightarrow \rightarrow$ vs. oligomer length (n). Eror bars at $\mathrm{n}=5-7$ indicate emperature range for observed transition.

Preliminary experiments on PQP, PSP, and PSeptiP have produced very interesting results which we are in the process of confirming. Information from Figure 15 suggests that the transizion temperatures for PQP, PSP, and PSepiP to be above room temperature, but the room temperature structures are planar and DSC measurements indicate that no transitions occur unil the vicinity of the melting point is reached. Upon cooling to 110 K , both PQP and PSP single crystals index to unit cells slightly larger than the room temperature unit cells. After approximately one day, a structural transition occurs to a
monoclinic unit cell where band care approximately doubled from the original unit cell. PSeptip transformed to an orthorhombic mit cell with b and capproximately doubled from the ociginal mit cell within the time it took the sofrwaremo find 25 stroag seflections and index them - approximately 1 to 2 hours. Unfortuastely, it has not been possible yet to resolve the low temperature reflection datn to a structure or space eroup verification.

We believe these oligomers to have a time dependent phase transition. DSC measurements tuken on polyerystiline samples cooled to $-140^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. show no transition. Low temperature X-say photographs cooling as low as $-130^{\circ} \mathrm{C}$ and holding the sample there for as long as five days shows no transition taking place. We conclude that the transition temperature must exist between these two temperatures (between 143 and 110 K) as indicated in Figure 15 by the error bars and is time dependent. This transition temperature, being much lower than the other polyphenyls and to have a time dependency, could be explained by a non-first order phase transition such that is observed for bipheny188.51 for which a sofi mode exists below its transition temperature.

DSC measurements on PQP, PSP, PSeptiP, and p-octiphenyl (POP), shown in Figure 16a-d, respectively, indicate that the samples undergo transitions around the meling point which have been attributed to liquid crystal transitions. PQP (Figure 16a) shows a small peak at $418^{\circ} \mathrm{C}$ probably indicating the nematic \rightarrow isotropic transition after the meling point at $388^{\circ} \mathrm{C}$ in total agreement with previous reports. ${ }^{34,36}$ PSP (Figure 16b) likewise shows good agreement with previous research ${ }^{34,52}$ with peaks at $410^{\circ}, 440^{\circ}$, and $474^{\circ} \mathrm{C}$ probably indicating a high temperaure crystal \rightarrow crystal transition, crystal \rightarrow smectic phase transition, and a smectic \rightarrow nematic phase transition. We observe a higher temperanure for the crystal \rightarrow crystal transition than that reported by Wunderlich, et al. 17 Unfortunately decomposition of the sample did not permit the observation of the nematic \rightarrow isotropic phase transition. ${ }^{34,52}$ The DSC of PSeptiP (Figure 16c) shows three peaks at $420^{\circ}, 473^{\circ}$, and $486^{\circ} \mathrm{C}$ probably indicating a crystal \rightarrow crystal transition, crystal \rightarrow smectic phase transition, and a smectic \rightarrow nematic phase transition in the same manner as PSP. Wunderlich, et al. 53 repors a smectic \rightarrow nematic transition at $534^{\circ} \mathrm{C}$ which is approximatly 50° higher than what we observe. This discrepancy can nor be explained at this time. POP (Figure 16d) shows two peaks probably indicating a smectic \rightarrow nematic transition at $510^{\circ} \mathrm{C}$ after the melting point (sharp peak at $489^{\circ} \mathrm{C}$). Sample decomposicion did not permit going to higher temperatures for PSeptiP and POP. Single erystals of POP are attempting to be grown in order to perform a structure determination completing this series.

Our findings are ploted next to published values 34.53 in Figure 17.

Figure 16. DSC measurements of PQP (a), PSexiP (b), PSeptiP (c), and POctiP (d).
Scan rate was $10^{\circ} \mathrm{C} / \mathrm{min}$.

Figure 17. Plot of high temperature liquid crystal phase transitions for PPP oligomers $n=4-8$.

If PSeptiP and POP follow the examples of the lower polyphenyls, the nematic \rightarrow isotropic transitions could be as high as 700° and $800^{\circ} \mathrm{C}$ for PSeptiP and POP, respectively. These temperatures are much higher than thermal decomposition ${ }^{54}$ will allow stability to the polymer and any practical use of the mesophase region will require special containments such as high-pressure, inert atmosphere cells.

Also the plot indicates that a high temperature phase transition exists between the crystal \rightarrow crystal transition and the melting point. In addition is the low temperature phase transition mentioned earlier (see Figure 15). Nuclear magnetic resonance (NMR) studies 55.56 in this temperature range indicate that the phenyl rings undergo 180° flips along the molecular axis for the amorphous phase. The rate of Ilipping is rapid at room temperature and increases dramatic: \because g as the temperature rises. At low temperature the rate of ring flips 52 decreases to about $20-30^{\circ}$ and the low temperature cell and structure predominates.

Slow scan rates ($10^{\circ} \mathrm{C}$ min.) were used primarily to obtain accurate melting point data. Decomposition, which is so common with the polyphenyls, may be preventing the observation of many liquid crystal transitions. Additional DSC experiments using a faster scan rate and pressurized containers are suggested in hopes of fully studying the phase transitions of the higher polyphenyls.

OONCLUSIONS

The higher oligomers of PPP follow the same pattern as the lower oligomers previously studied. The unit cell parameters are very similar with the exception of crystallographic axis a increasing with oligomer length to accomodate the growing chain. All the oligomers have similar space groups, bond distances and bond angles. Linear, planar molecular structures are observed in all but the heringbone crystal structures are very different. The longer even numbered oligomers are shewed in the unit cell much more than the longer odd numbered oligomers. The seting angle for the oligomers match that of PPP polymer.

Low temperaure transitions for PQP. PSP, and PSeptiP exist between 110 K and 140 K and are time dependent, but detailed molecular structures could not be resolved nor could a transition temperaure be pinpointed. Liquid crystal transition states were observed but due to sample decomposition at temperatures above $500^{\circ} \mathrm{C}$ need to be studied furcher.

REFERENCES

1. Noren, G.K. and Stille, J.K. J. Pohym. Sci. Macromol. Rev. 1971, 5, 385.
2. Speight, J.G., Kovacic, P., and Koch, F.W. J. Macromol. Sci. Rev. Macromol. Chem. 1971, 5, 295.
3. Kovacic, P. and Jones, M. B. Chem. Rev. 1987, 87, 357.
4. Kovacic, P. and Kyriakis, A. J. Am. Chem. Soc. 1963, 85, 454.
5. Yamamoto, T., Hayashi, Y, and Yamamoto, A.Bull. Chem. Soc. Jpn. 1978, 51, 2091.
6. Unroe, M.R. and Reinhardt, B.A. Pohymer 1987, 11, 981.
7. Marinek, T. W., Haines, R. M., Weichman, R.L., snd Trainor, W. J. U.S. Patent 3476687, 1969; Chem. Abstr. 1969, 72, 14472 d.
8. McMahon, M. A., Jr., Chafez, H., and Coppoc, W. J. U.S. Patent 3384588, 1968; Chem. Abstr. 1968, 69, 20938q.
9. McCarthy, P. R. and Tempalski, C. S. U.S. Patent 3291733, 1966; Chem. Abstr. 1966, 66, 57627b.
10. Agnew, R. J. and Dille, K. L. U.S. Patent 3278429, 1966; Chem. Abstr. 1966, $66,12765 \mathrm{~d}$.
11. Accountis, O. E. U.S. Pasent 3443899, 1969; Chem. Abstr. 1969, 71, 22829v.
12. Sato, M., Yamazaki, H. and Yamaguchi, S. Japan Patent 63/102982, 1988; Chem. Abstr. 1988, 109, 160647p.
13. Gale, D. M. J. Appl. Polym. Sci. 1978, 22, 1955.
14. Ostrum, G. K., Lawson, D. D., and Ingham, J. D. Polym. Prepr., Am. Chem. Soc., Div. Polym. 1966, 7, 895.
15. Wierschke, S.G. in The Materials Science and Engineering of Rigid-Rod Polymers, edited by W. W. Adams, R. K. Eby, and D. E. McLemore (Mater. Res. Soc. Proc. 134, Boston, MA 1988) p 313; AFWAL-TR-88-4201 (October 1988).
16. Gale, D. M. J. Polym. Sci., ${ }^{\circ} \mathrm{O}$ olym. Lett. Ed. 1977, 15, 439.
17. Ivory, D. M., Miller, G. G., Sowa, J. M., Shacklette, L. W., Chance, R. R., and Baughman, R. H. J. Chem. Phys. 1979, 71, 1506.
18. Pradere, P. and Boudet, A. J. Mater. Sci. Letr. 1988, 7, 10.
19. Baughman, R. H., Shacklette, L. W., Murthy, N. S., Miller, G. G., and Elsebaumer, R. L. Mol. Cryst. Liq. Cryst. 1985, 118, 253.
20. Baughman, R. H., Bredas, J. L., Chance, R. R., Elsebaumer, R. L., and Shacklette, L. W. Chem. Rev. 1982, 82, 209.
21. Patil, A. O., Heeger, A. J., and Wudl, F. Chem. Rev. 1988, 88, 183.
22. Bredas, J. L., Dory, M., Themans, B., Delhalle, J. and Andre, J. M. Synthetic Metals 1989, 28, D553.
23. Dory, M., Bodart, V. P., Delhalle, J., Andre, J. M., and Bredas, J. L. in Nonlinesr Oprical Broperties of Rolvmers, edited by A. J. Heeger, J. Orenstein, and D. R. Ulrich (Mater. Res. Soc. Proc. 109, Piusburg, PA, 1988) p 239.
24. Bredas, J. L., Chance, R. R., and Baughman, R. HJ. Chem. Phys. 1982, 76, 3673.
25. Leising, G., Leimer, O., Aldrian, F., and Kahlert, H. Syminetic Metals 1987, 17, 635.
26. Bredas, J. L. J. Chem. Phys. 1985, 8®, 3208.
27. Bredas, J. L., Themans, B., Tripiat, J. G., Andre, J. M., and Chance, R. R. Phys. Rev. B: Condens. Matter 1984, 29, 6761.
28. Yi, X., Xiaoming, L. and Duanming, Z. J. Mol. Sci. 1987, 5, 229.
29. Pelous, Y., Froyer, G., Herold, C. and Lefrant, S. Synthetic Metals 1989, 29, E17.
30. Kispert, L. D., Joseph, J., Miller, J. J., and Baughman, R. H. J. Chem. Phys. 1984, 81, 2119.
31. Irvine, P. A., Wu, D. C., and Flory, P. J. J. Chem. Soc., Faraday Trans. I. 1984, 80, 1795.
32. Flory, P. J. and Ronca, G. Mol. Cryst. Liq. Cryst. 1979, 54, 311.
33. Smith, G. W. Mol. Cryst. Liq. Cryst. Lett. 1979, 49, 207.
34. Frenz, B.A. and Associates, Inc. (1985), College Station, Texas, 77840 and Enraf-Nonius, Delft, The Netherlands.
35. Main, P. (1982), editor, MULTAN 11/82, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Department of Physics, University of York, York, England.
36. Sheldrick, G. M. in Castallomphic Compurting 3, Eds. G. M. Sheldrick, C. Fruger, and R. Goddard,(Oxford University Press, 1985), pp. 175-89.
37. Starkweather, H.W. Macromolecules 1986, 19, 1131.
38. Gardner, K. (Private Communication).
39. Flory, P.J. Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953) p. 570.
40. Charbonneau, G.-P. and Delugeard, Y. Acta Cryst. 1977, B33, 1586.
41. Baudour, J. L., Delugeard, Y., and Sanquer, M. Acta Cryst. 1974, B30, 691.
42. Delugeard, Y., Desuche, J. and Baudour, J. L. Acra Cryst. 1976, B32, 702.
43. Kawaguchi , A. and Petermana, J. Mol. Cryst. Liq. Cryst. 1986, 133, 189.
44. Seki, K., Kailsson, U. O, Engelhardt, R, Koch, E-Enand Schmidt, W. Chem. Phys. 1984, 91, 459.
45. Farmer, BJ., Personal Communication.
46. Cailleau, H., Bavdour, J1, Meinnel, J., Dworkin, A., Moussa, F, and Zeyen, C.M.E. Faroday Discussions Chem. Soc. 1980, 69,7.
47. Desiraju, G. R. and Gavezzotti, A. Acta Cryst. 1989, B45, 473.
48. Cailleau, H., Bandow, JL_and Zeyen, CME. Acta Cryst. 1979, B35, 426.
49. Cailleau, H. and Dworkin, A. Mol. Cryst. Liq. Cryst. 1979, 50, 217.
50. Baudour, J. In, Delugeard, Y., and Rivet, P. Acta Cryst. 1978, B34, 625.
51. Bree, A. and Edelson, M. Chem. Phys. Letr. 1977, 46 (3), 500.
52. Lewis, 1.C. and Bars, J. B. Mol. Cryst. Liq. Cryst. Lert. 1981, 72, 65.
53. Wunderlich, B., Moller, M., Grebowicz, J. and Baur, H. Adyances in Polymer Science 87. (Springer-Verlag Berlin, Heidelberg 1988).
54. Windle, A. MRS Bulletin 1987, 12, 18.
55. Toudic, B., Gullieu, J., Rivet, P., and Delugeard, Y. Chem. Phys. 1985, 99, 275.
56. Dumais, J. J., Jelinski, L. W., Galvin, M. E., Dybowski, C., Brown, C. E., and Kovacic, P. Macromolecules 1989, 22, 612.

Appendix A

General Displacement Parameter Expressions, Us, for P-Quinquephenyl

Name	$U(1.1)$	$U(2,2)$	$U(3.3)$	$U(1.2)$	$U(1.3)$	$U(2.3)$
C1	$0.036(2)$	$0.062(3)$	$0.058(2)$	$0.008(3)$	$0.011(2)$	$0.003(3)$
C2	$0.048(2)$	$0.054(3)$	$0.074(3)$	$-0.007(3)$	$0.008(2)$	$-0.013(3)$
C3	$0.037(2)$	$0.059(3)$	$0.063(3)$	$0.001(3)$	$0.015(2)$	$-0.013(3)$
C4	$0.028(2)$	$0.041(2)$	$0.031(2)$	$0.008(2)$	$0.004(1)$	$0.004(2)$
C5	$0.046(2)$	$0.053(3)$	$0.060(2)$	$-0.015(3)$	$0.011(2)$	$-0.014(2)$
C6	$0.039(2)$	$0.061(3)$	$0.069(3)$	$-0.012(3)$	$0.013(2)$	$-0.005(3)$
C7	$0.036(2)$	$0.032(2)$	$0.033(2)$	$-0.010(2)$	$-0.001(2)$	$0.002(2)$
C8	$0.035(2)$	$0.060(3)$	$0.105(3)$	$0.005(2)$	$0.036(2)$	$-0.033(3)$
C9	$0.053(2)$	$0.050(2)$	$0.082(3)$	$-0.010(3)$	$0.014(2)$	$-0.044(2)$
C10	$0.045(2)$	$0.026(2)$	$0.028(2)$	$-0.014(2)$	$0.001(2)$	$-0.002(2)$
C11	$0.034(2)$	$0.058(3)$	$0.096(3)$	$0.002(3)$	$0.027(2)$	$-0.032(3)$
C12	$0.051(2)$	$0.054(2)$	$0.086(3)$	$-0.012(3)$	$0.018(2)$	$-0.044(2)$
C13	$0.028(2)$	$0.042(2)$	$0.029(1)$	$0.015(2)$	$0.006(1)$	$0.003(2)$
C14	$0.056(2)$	$0.048(2)$	$0.069(3)$	$-0.022(3)$	$0.007(2)$	$-0.034(2)$
C15	$0.024(2)$	$0.055(2)$	$0.087(3)$	$-0.016(2)$	$0.019(2)$	$-0.021(3)$

The form of the anisorropic displacement parameter is:
$\exp \left[-2 \pi^{2}\left(h^{2} a^{2} U_{1,1}+k^{2} b^{2} U_{2,2}+1^{2} c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}\right.\right.$
$\left.\left.+2 \mathrm{klbc} \mathrm{U}_{2,3}\right]\right]$ where a, b, and c are reciprocal latice constants.

Appendia A
General Displacement Peramener Exprestions, Us, for p-Sexiphenyl

Name	$U(1.1)$	$U(2.2)$	$U(3.3)$	$U(1.2)$	$U(1.3)$	$U(2.3)$
C1	$0.017(3)$	$0.049(3)$	$0.030(3)$	$-0.001(3)$	$0.010(3)$	$-0.000(3)$
C2	$0.041(4)$	$0.060(4)$	$0.064(5)$	$-0.020(4)$	$-0.014(4)$	$-0.027(4)$
C3	$0.058(4)$	$0.044(4)$	$0.064(4)$	$0.029(4)$	$-0.007(4)$	$-0.028(4)$
C4	$0.015(3)$	$0.012(3)$	$0.036(3)$	$0.001(2)$	$0.017(2)$	$0.000(3)$
C5	$0.032(3)$	$0.027(3)$	$0.086(5)$	$0.014(3)$	$0.001(4)$	$-0.032(4)$
C6	$0.048(5)$	$0.079(5)$	$0.083(6)$	$-0.009(5)$	$-0.009(4)$	$-0.042(5)$
C7	$0.059(4)$	$0.048(4)$	$0.026(3)$	$-0.008(4)$	$-0.005(3)$	$-0.001(4)$
C8	$0.043(4)$	$0.076(5)$	$0.085(5)$	$0.007(4)$	$0.003(4)$	$-0.037(5)$
C9	$0.029(4)$	$0.053(4)$	$0.081(5)$	$0.007(4)$	$0.002(4)$	$-0.031(4)$
C10	$0.032(4)$	$0.051(4)$	$0.031(3)$	$-0.011(4)$	$-0.007(3)$	$0.006(4)$
C11	$0.046(4)$	$0.074(4)$	$0.076(5)$	$0.027(4)$	$-0.013(4)$	$-0.045(4)$
C12	$0.029(4)$	$0.055(4)$	$0.085(5)$	$0.002(4)$	$-0.011(4)$	$-0.018(5)$
C13	$-0.045(4)$	$0.025(3)$	$0.032(3)$	$0.005(3)$	$0.010(3)$	$0.009(3)$
C14	$0.051(4)$	$0.049(4)$	$0.053(4)$	$0.029(4)$	$-0.009(4)$	$-0.005(4)$
C15	$0.038(4)$	$0.065(4)$	$0.070(5)$	$0.014(4)$	$-0.008(4)$	$-0.010(5)$
C16	$0.074(5)$	$0.070(5)$	$0.053(4)$	$0.014(5)$	$-0.007(4)$	$0.008(5)$
C17	$0.049(4)$	$0.071(5)$	$0.060(5)$	$-0.004(5)$	$-0.013(4)$	$-0.006(5)$
C18	$0.026(3)$	$0.047(4)$	$0.054(4)$	$0.010(3)$	$0.004(3)$	$-0.014(4)$

The form of the anisotropic displacement parameter is:
$\exp \left[-2 \pi^{2}\left(h^{2} a^{2} U_{1,1}+k^{2} b^{2} U_{2,2}+1 c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}\right.\right.$
$\left.\left.+2 \mathrm{klbc} U_{2,3}\right]\right]$ where a, b, and c are reciprocal latice constants.

Appeadix A
General Displacement Permeter Expressions, U's, for P-Septiphenyl

Name	U(1,1)	U(2.2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
C1	0	0	0	0	0	0
C2	0	0	0	0	0	0
C3	0	0	0	0	0	0
C4	0	0	0	0	0	0
C5	0	0	0	0	0	0
C6	0	0	0	0	0	0
C7	0	0	0	0	0	0
C8	0	0	0	0	0	0
C9	0	0	0	0	0	0
C10	0.029(5)	0.062(7)	0.014(4)	0.003(6)	-0.001(4)	0.003(6)
C11	0	0	0	0	0	0
C12	0	0	0	0	0	0
C13	0.024(4)	0.047(6)	0.019(4)	-0.006(5)	0.002(4)	0.006(5)
C14	0	0	0	0	0	0
C15	0	0	0	0	0	0
C16	0.036(5)	0.019(5)	0.037(5)	-0.002(5)	0.006(4)	-0.009(5)
C17	0.037(5)	$0.055(7)$	0.064(6)	0.007(6)	0.025(4)	0.013(7)
C18	0.059(7)	0.081(9)	0.054(6)	$0.014(7)$	$0.014(5)$	0.020(7)
C19	0.020(4)	0.070(7)	0.052(5)	0.005(6)	0.020(4)	-0.004(7)
C20	0.052(6)	0.072(8)	0.056(7)	-0.002(7)	0.016(5)	0.014(7)
C21	0.030(5)	0.060(7)	0.077(7)	-0.019(6)	0.024(4)	0.011(7)

The form of the anisotropic displacement parameter is:
$\exp \left[-2 \pi^{2}\left[h^{2} a^{2} U_{1,1}+k^{2} b^{2} U_{2,2}+1^{2} c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}\right.\right.$
$\left.\left.+2 \mathrm{klbcU}_{2,3}\right]\right]$ where a, b, and c are reciprocal lattice constants.

(C)-H...O INTERACTIONS IN NITROANILINE DERIVATIVES

Kenneth N. Baker and Albert V. Firtini
Department of Chemistry, University of Dayton, 300 College Park, Dayton, OH 45469-2357

W. Wade Adams
Materials Laboratory, Wright Research and Development Center, WPAFB, OH 45433-6533.

David A. Grossie
Department of Chemistry, Wright State University, Dayton OH, 45435

Abstract

The design of organic second order nonlinear optical (NLO) materials depends on factors such as the nature and position of substituents on the aromatic ring and the hydrogen bonding patterns of donor and acceptor groups. In order to investigate the effect of alkyl substitution on the amino group and placemeni of bulky groups on the aromatic ring of nitroaniline derivatives, the crystal structures and unit cell packing of 2-[2-(N-methylamino)-5nitrophenyl]benzothiazole, 2-[2-(N, N-dimethylamino)-5-nitrophenyl]-benzothiazole, 2-[2-(N, N-diethylamino)-5-nitrophenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro\mathbf{N}, N-dimethylaniline have been determined. In all four compounds, alkyl groups attached to the amino nitrogen atom prevent the formation of intermolecular hydrogen bonds between amino and nitro groups. Instead, the molecules exhibit (C)-H...O intermolecular interactions between the nitro group and the hydrogen atoms on the aromatic ring and alkyl groups. Two distinct types of packing - herringbone pattems and planar stacks - are observed, with the closest interactions associated with the planar stacks. The dialkylamino substituents extend above and below the molecular plane, which is comprised of essentially coplanar ring systems.

INTRODUCTION

The currememphasis in designing second order nonlinear optical materials is to combine electron conjagation, polarivability, and acentricity into a molecular solid. Polymers are very sood candidates for the firat requirement becmse of their extensive x electron conjugation. Nitromiline derivatives (2 -methylnitroaniline ${ }^{1}$ and 2 -methyinitromethylaniline ${ }^{2}$, for example), having conjugation and polarizability, are known to exhibit etrong $X^{(2)}$ optical nonlinearities. Quite often compounds that have the former factors crystallize in a morphology that includes a center of symmetry, negating the effects of conjugation and polarizability and mullifying the $X^{(2)}$ response. In order to increase our knowledge of the factors that influence the $\chi^{(\rho)}$ susceptibility of an organic material, a aries of compounds were synthesized and aubjected to x-ray crystallographic analysis. This sexies includes: $2-\left[2-\left(N_{,}, N-d i m e t h y l a m i n o\right)-5-n i t r o p h e n y l\right]-$ benzothiazole, 1; 2-[2-(N-methyl-amino)-5-nitrophenyl]-benzothiazole, 2; 2-[2-(N,N-diethyl-amino)-5-nitrophenyl]-benzothiazole, 3 ; and 2-(trimethylsilylethynyl)-4-aitro- N, N-dimethylaniline, 4.

Each of the four compounds crystallizes in a centric lattice which eliminates a second order NLO response. In spite of their similarities, the compounds exhibit two types of packing motifs and have some interesting close contects that are different from those nomally found in nitromilines. ${ }^{3 / 4}$

1

2

3

4

- -

EXPERIMENTAL

The compounds were synthesized by Bruce Reinhardt, Materials Laboratory, WPAFB. Suitable crystals were selected from bulk crystalline samples and observed under crosed polarizing filters to determine extinction boundaries. Single crystaks were mounted using cyanoacrylate adhesive onto glass fibers attached to long Huber pins and inserted into arcless goniometer heads. The crystals were centered on a Enraf-Noaius CAD4 diffractometer for data collection and rotation photographs taken to judge how well each crystal diffracts. Reflection data were transferred to a VAX $11 / 730$ computer for further analynis using SDPNAX ${ }^{5}$. Space group identification was accomplished with the aid of the computer program LOOK ${ }^{6}$ which confirmed the systematic absences found in the refiection files. Structure solutions were found using SHELXS ${ }^{7}$ or MULTAN ${ }^{8}$ and refined using full-matrix least-equares. Hydrogen atoms were placed in idealized locations calculated from geometric considerations and assigned a fixed C - H bond distance of $0.95 \AA$. Subsequent isotropic refinement of hydrogen atoms did not significantly improve the structure due to the reduced data-to-parameter ratio. Crystal data and data collection parameters are tabulated in Table I.

RESULTS

The molecular structures of 1, 2, 3, and 4 are ahown in Figures 1, 3, 5, and 7, respectively, with the non-hydrogen atoma labeled and the hydrogen atoms omitted, excepp for H 1 in 2 which 'forms an intramolecular hydrogen bond with the nitrogen atom of the benzothinzole ring. Tables - II, IV, Vi, and VIII aummarize the reepective anomic coordinates. Bond distances and angles are listed in Tables III, V, VII, IX. Stereoviews of the molecular packing in the unit cell are ahown in Figures 2,4,6, and 8. The close interactions in the forementioned compounds are summarived in Table \mathbf{X}.
$*$

DISCUSSION

All four compounds reported here crystallize in centric space groups, thus eliminating the possibility of $\chi^{(2)}$ activity. Two differunt types of unit cell packing are observed. Both of the dialkyl benzothiazole derivatives, 1 and 3 , pack in the beringbone or non-parallel motif. This is the simplest type of packing for polyaromatic compounds. ${ }^{10}$ Compound 1 (see Figure 2) displays a more complex herringbone dingram then 3 (see Figure 6). This is probably due to more restricted room in the unit cell than is ideal to accommodate the bully benzothiazole group which prefers to orient slong the b axis. If the $\mathbf{C l}-\mathrm{Cl}$ bond (the bond connecting the benzothiazole group to the nitroaniline root) is extended through the molecule, the molecules -within the unit cell intersect at $m 115^{\circ}$ and $=146^{\circ}$ for 1 and 3 , respectively. This makes the nitroaniline plane of 3 to lie closer to a crystallographic face than that of 1 . However, the nitroaniline plane is not as important as the nitroaniline axis, also called the polar axis. The poler axis of 2 is just 2.5° off from being in the ac (010) plane, whereas the polar axis of 3 is 22° out of plane with the ($\mathbf{0 1 0}$) plane. Moreover, the polar axes for both 1 and 3 are directed along the \mathbf{c} axis making the \mathbf{c} axis the mode of charge carrier motion.

Compounds 2 and 4 pack in a layered motif as shown in Figures 4 and 8, respectively. Compound 2 is the only one of the four studied that did not crystallize in a monoclinic space group. In addition, 2 is also the only compound out of the four studied that does not have its nitromiline plane or polar axis directly related to a crystallographic plane or axis. The molecules of 4 are stacked along the \mathbf{c} sxis. The polar mis of compound 4 is only 7° from being parallel to the b axis and is 19° from occupying the $a b$ (001) plane making the b axis the mode of charge carrier motion in this case.

Compound 2 does not order well in the unit cell. The molecule stacks parallel to the a sais, with the molecules being tilted 25° from being perfectly perpendicular to the a axis. The nitromiline plane is 23° from occupying the (101) plane within the unit cell (cee Figure 4). The polar axis of the mitromiline moiety does not correapond well to any crystallographic axes.

In describing the molecular structure, two categories clearly emerge - the benzothizzole derivatives of nimoeniline and the silyl derivative of mitromiline. The aromatic singe are easentinlly coplanar in the bensothinzole derivatives, with the dihedral angle between the nitromiline and the benrochiscole rings systems of $5.1,0.4$, and 5.6°, for 1,2 , and 3 , reopectively. More noticable deviaions are found when examining the amino and nitro groups.

The diallylamino groups turn relative to the nitromiline plane so that amino carbon atoms extend out of the nitroaniline plane in order to maximize the distance between them and the fulfur atom of the benzothiazole ring. The sngies about the dialkylamino nitrogen atoms in coumpound 1 and 3 are all wirthin 7.4° of the 109.5° expected in an ideal spp hybidired atom. However, in the methylamino function of compound 2 , the methyl group is coplanar with the aromatic ring syatem, and the angles around the nitrogen atom are within 4° of 120°. This indicetes that, while the dimethyl- and diethylamino groups of 1 and 3 are tetrabedral, the methylamino group of 2 is trigonal planar. This change in the configuration of the nitrogen atom may be traced to two discrete factors: (1) the steric interaction of an alkyl group with the benvothiszole sulfur atom 3 if the nitrogen is planar, and (2) the conjugation of the amino nitrogen atom to the aromatic ring. This latter factor is realized with the observed shortening of the C2-N3 bond distance in 2 vs. 1 and 3 ($1.353,1.421$, and $1.426 \AA$, respectively).

In the dialkyl benzothiazole derivatives, compounds 1 and 3, the sulfur atom is cis to the amino group, but is trans in 2 , the monoalkyl derivative, via the $\mathbf{C 1 - C 7}$ bond. The trans geometry observed in 2 is probably due to an intramolecular hydrogen bond forming with the amino hydrogen atom, H1, and the benzothiazole nitrogen atom, N1 (see Figure 3). The hydrogen bond is observed with a $\mathrm{N}-\mathrm{N}$ contact of 2.7 A . In this case of compound 2, the orientation in which a hydrogen bond can form would be preferred. The cis orientation found in the dialkyl benzothiazole derivatives is due to a lesser level of ateric repulsion between the amino nitrogen atom and the benrothiazole sulfur atom when compared to the repulsion between adjacent nitrogen atoms if a near planar ring confomation is adopted. Molecular modelling calculations using PCMODEL of the two possible planar configurations for the dimethyl derivative indicate that the cis arrangement is more stable.

In the silyl derivative of nitromiline, the silyl group tintersects the benzene ring with an angle of about 11°. The carbon-carbon triple bond deviates alightly ($\omega 5^{\circ}$) from linearity making the group alightly bent. The rather large thermal ellipsoids of the three carbon atoms attached to the silicon atom indicate that the C22-Si bond is rotating rapidly. The dimethylamine group is slightly twisted (-17°) from coplanarity with the benrene ring.

The nitro groups in all four compounds are virtually identical, only differing in the degree of coplenarity with the bensene ring, $8.29^{\circ}, 2.45^{\circ}, 8.49^{\circ}$, and 2.50° in $1,2,3$, and 4 , reapectively. The preater deviation for the dialkylamino compounds, 1 and 3 , may result from the uneven
intermolecular contact between the nitro oxygen atoms and a neighboring molecule.
ORTEP diagrams of the close interactions most resembling hydrogen bonds of $1,2,3$, and 4 are shown in Figures 9 through 12, respectively. The close internction distances and angles are also presented in Table X. Although these interactions are not close enough to be considered bydrogen bonds", they do influence the centricity and close packing relationships discussed above.

Two types of (C)-H.-O interactions are observed involving 1) hydrogen atoms from the aromatic benzothiazole ring system and 2) hydrogen atoms from the alkylamino group. The shortest distances in all four compounds are associated with the hydrogen atoms of the benzothiazole ring and of these, the most interesting occur with the layered structures 2 and 4. These compounds appear to maintain the network structure needed to propagate a charge over large distances. All of the benzothiazole ring hydrogen atoms appear to favor this interaction while the majority of the alkylamino hydrogen atoms appear to favor crosslinking two parallel layers. This crosslinking is probably due to the close proximity of the molecules caused by the screw axis of the monoclinic space group. ox-Glycine ${ }^{12}$ also contains this type of crosslinking. The C3-H3...O2 interaction seen in 4 is the shortest observed and the observed angle of 154.2° is very close to 152.7° which is the average of 59 (C)-H..O bydrogen bond containing structures ${ }^{13}$ found in the Cambridge Structural Database ${ }^{14}$.

Once again 2 is unique in this study to have an amino hydrogen atom available (N)-H...O interactions. Interactions of this type hold a great deal of interest in this atudy ${ }^{34}$ with the desire to produce acentric materials through hydrogen bonding. Unfortumaty a search for mearest neighbors revealed no oxygen atoms within $3.6 \AA$ of the amino hydrogen atom. Indeed, the amino hydrogen atom forms a good intramolecular hydrogen bond with the nitrogen atom of the benzothiazole ring system and with nothing else.

CONCLUSIONS

The frequency of (C)-H...O contacts in aubstituted nitroaniline derivatives suggests that they play a significant role in determining the packing arrangement and thus the observed centricity of these structures. Bulky substituents, such as benrothiszole and trimethylsilyl, in addition to being electron donors to the nitrosniline ring, may dismpt the (N)-H...O interaction, but no definite effect on centricity is observed. The (C)-H...O angle does not correlate with the values expected for a typical hydrogen bond when the H..O contact is beyond 2.8A. A network of (C) $-\mathrm{H} \cdots \mathrm{O}$ contacts is favored over isolated (C)-H...O interactions. Compounds 2 and 4 pack in a layered motif presumably favored by the extensive network of (C) $\mathrm{H} \cdots \mathrm{O}$ interactions and the shortest contacts are associated with this layered motif.

REFERENCES

1. Lipacomb, G. F.; Garito, A. F.; and Narang, R. S. (1981) J. Chem. Phys., 75, 1509-1516.
2. Sutter, K.; Bosshard, C.; Ehrensperger, M.; Gunter, P.; and Twieg, R. J. (1988) IEEE J. Quantum Electron., 24, 2362-2366.
3. Vinson, L. K. and Damnenberg, J. (1989) J. Am. Chem. Soc., 111, 2777-2781.
4. Pemunto, T. W. ; Urbanczyk-Lipkowska, Z.; Johnson, R.; Etter, M. C. (1987) J. Am. Chem. Soc., 109, 7786-7797 and references therein.
5. Frenz, B.A. (1978) "The Enraf-Nonius CAD-4/SDP-A Real-Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination," Computing in Crystallography, H. Schenk, R. Olthof-Hazelkamp, H. van Konigsveld, and G. C. Bassi, Eds., Delft University Press, Delft, Holland, pp. 64-71.
6. Chapius, G. (1984) "LOOK. A FORTRAN Program for Generating Simulated Precession Photographs from Diffraction Data," University of Lausanne, Switzerland.
7. Sheldrick, G. M. (1986) "SHELXS-86. A FORTRAN-77 Program for the Solution of Crystal Structures from Diffraction Data," in Crystallorraphic Computing 3, Eds. G. M. Sheldrick, C. Fruger, and R. Goddard, Oxford University Press, pp. 175-89.
8. Main, P. (1982) "MULTAN 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data," Department of Physics, University of York, York, England.
9. Solutions to monomethyl end diethyl were found using SHELXS and solutions to dimethyl and silyl were found using MULTAN.
10. Desiraju, G. R. and Gavemoti, A. (1989) Acta Crystallogr., B45, 473-482.
11. A hydrogen bond is considered to be $2.5 \AA$ taking the van der Wals radii of a hydrogen atom and an oxygen atom to be 1.00 and $1.50 \AA$, reapectively. The values used are from Bondi, A. (1964) J. Phys. Chem., 68, 441-451.
12. Bedkovitch-Yellin, Z. and Leiserowitz, L. (1984) Acta Crystallogr., B40, 159-165.
13. Taylor, R. and Kemand, O. (1982) J. Am. Chem. Soc., 104, 5063.
14. Allen, F. H.; Bellard, S.; Brice, M. D.; Cariwright, B. A.; Doulbleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, B. G.; Kennard, O.; Moterwell, W. D. S.; Rogers, J. R.; Watson, D. G. (1979) Acra Crystallogr., B35, 2331-2339.

Table I. Crystal Data and Data Collection Parameters

	1	2	3	4
Pormula	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{Cr}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$
Color	Brown	Yellow	Yellow	Yellow
FW	29935	283.3	327.41	262.39
F(000)	624	296	688	560
Crystal Dimensioas, mm	55x. $6 \times$. 88	. $05 \times .15 \times .5$. $1 \times .15 \times .75$	3x $5 \times .6$
Shape	Dimmond	Rectungular	Needile	Rectingular
Rediexion	MoKa	MoKa	MoK α	MoKa
Wavelength, λ	0.71073	0.71073	0.71073	0.71073
Temperature	23°	23°	23°	23°
Crytal Fom	Mosoclinic	Triclinic	Momoclinic	Monoclinic
Space Group	P2, \mathbf{n}^{1}	$\mathbf{P 1}$	$\mathbf{P 2}$, \mathbf{n}	P2/c
Reflections used for cell constunts				
number	25	23	25	23
θ range	15-26	4-18	6-18	6-12
Cell Constants				
, $\boldsymbol{\lambda}$	9.070(1)	11.956(1)	7.466(6)	20.258(6)
b, \boldsymbol{A}	15.432(1)	4.188(1)	20.884(2)	10.444(4)
c, $\boldsymbol{\lambda}$	10.147(5)	3.896(1)	10.714(2)	7.129(2)
$a^{\circ}{ }^{\circ}$	90.0	92.20(1)	90.0	90.0
$\beta{ }^{\circ}$	91.32(2)	$90.2011)$	109.96(2)	93.05(2)
γ°	90.0	106.18(1)	90.0	90.0
Cell Volume, \boldsymbol{A}^{3}	1419.9(10)	634.2(3)	1570.1(20)	1505.9(20)
2	4	2	4	4
Culculated Depsity, f/cm	1.40	1.49	139	1.16
Absorption Coefficiert, cm^{-1}	2.2	2.5	2.1	1.5
Scmo Type	0/20	0/20	00/20	c/20
Scm Rate, \%min.	1.0-5.5	0.7-2.8	0.3-5.5	0.57-2.79
Scm Widh	$0.55+0.34$ and	$0.8+0.34 \tan \theta$	$0.55+0.34000$	$1.2+0.34 \tan \theta$
Reage of Data				
0°	0-41	0-30	0-30	0-32
b	$0 / 16$	-16/16	-10/10	-10/10
k	-28/28	$0 / 19$	$0 / 29$	$0 / 15$
1	-18/18	-5/3	-15/15	$0 / 30$
Numerical Abs.				
mas. trene. coeff	0.9911	0.9885	-	0.9606
min. trass. coefil	0.8541	0.9446	-	0.9329
Reflectione Meas.				
Toul	21220	6094	9360	5592
Unique	6606	2979	4697	5266
Oberved, $\mathrm{PO}^{2} 330\left(\mathrm{PO}^{2}\right)$	2540	1888	2332	1536
Averaging apremert on I	0.016	0.025	0.029	0.044

Table I. Crystal Data and Data Collection Parameters (continued)

	1	2	3	4
Permecters	231	225	276	164
R	0.048	0.074	0.042	0.085
Rw	0.055	0.070	0.062	0.108
S	1.96	0.75	1.45	2.98
($4 / 0)_{\text {max }}$	0.08	0.01	0.06	0.01
$(\Delta) \max \left(e / \lambda^{3}\right)$	0.31(6)	0.27(5)	0.33(5)	0.30(5)
(Δ) $\min \left(e / \lambda^{3}\right)$	-.39(6)	-.23(5)	-.25(5)	-.27(5)

Table II. Positional Parameters and Equivalent Isotropic Thermal Factors for $2-[2-(\mathrm{N}, \mathrm{N}$-dimethylamino)-5-nituophenyl]-benrothiarole

Atom	$\underline{ }$	$\underline{7}$	ε	$B\left(\lambda^{2}\right)^{-}$
S1	0.51307(6)	0.42708(4)	$0.73034(5)$	4.71 (1)
01	1.0399(2)	0.6326(1)	1.2233(2)	$6.52(4)$
02	0.8941(2)	0.5306(1)	1.2831(1)	6.33 (4)
N2	0.9408(2)	0.5802(1)	1.2006(2)	4.60(4)
N3	0.6809(2)	0.5698(1)	0.6909(2)	4.16 (4)
N1	$0.5905(2)$	0.3749(1)	0.9643(2)	$4.01(4)$
C2	0.7503(2)	0.5724(1)	0.8178(2)	3.74 (4)
C1	0.7150(2)	0.5080(1)	0.9095(2)	3.23(4)
C6	0.7791(2)	0.5119(1)	$1.0356(2)$	3.48(4)
C5	0.8758(2)	0.5771(1)	$1.0668(2)$	3.69(4)
C4	0.9145(2)	0.6394(2)	0.9779(2)	4.95(5)
C3	0.8509(3)	0.6367(2)	$0.8534(2)$	5.36(5)
C14	0.5976(3)	0.6464(2)	0.6582(3)	10.68(9)
C15	0.7759(3)	0.5463(2)	0.5857(2)	6.68(7)
C7	0.6128(2)	0.4361(1)	0.8795(2)	3.30(4)
C9	0.4903(2)	0.3147(1)	$0.9141(2)$	3.91 (4)
C10	$0.4443(3)$	$0.2406(2)$	$0.9795(3)$	5.48(6)
C11	0.3449(3)	0.1866(2)	0.9155(3)	6.27(6)
C12	0.2916(3)	0.2044(2)	$0.7894(3)$	5.73(6)
C13	0.3344(2)	0.2772(2)	$0.7236(2)$	5.09(5)
C8	0.4360(2)	0.3328(1)	0.7876(2)	4.01(4)
H6	0.759	0.470	1.091	1.57
H4	0.982	0.683	0.997	3.60
H3	0.866	0.679	0.796	4.20
H14a	0.523	0.632	0.587	7.41
H14b	0.546	0.665	0.739	7.50
Hi4c	0.663	0.694	0.627	7.50
H15a	0.718	0.535	0.508	4.14
H15b	0.821	0.599	0.571	7.98
H15c	0.832	0.493	0.613	10.58
H10	0.472	0.229	1.067	3.67
H11	0.309	0.139	0.962	4.53
H12	0.224	0.165	0.747	3.04
H13	0.291	0.294	0.636	3.41

\because *Ansotropically refined atoms are given in the form of the isorropic equivalient displacement permener defined $\mathrm{az}:(4 / 3)\left[a^{2} \mathrm{~B}_{11}+b^{2} \mathrm{~B}_{22}+c^{2} \mathrm{~B}_{13}+a b(\cos \gamma) \mathrm{B}_{12}+\operatorname{ac}(\cos \beta) \mathrm{B}_{13}+b c(\cos \alpha) \mathrm{B}_{21}\right]$
"Hydrogen atoms were refined inotropically.

Table II. Boad Distuces (\mathcal{A}) and Bond Angles (${ }^{()}$for $2-[2-(N, N-d t m e t h y l m i n o)-5-n i t r o-$ phenyll-benzothinsole

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distunce
S1	C7	1.751(2)	C1	C6	1.394(2)	C6	H6	0.873(3)
S1	C8	1.721(2	C1	C7	1474(3)	C4	H4	0.928(3)
01	N2	1.228(2)	C6	C5	1.367(3)	C3	13	0.884(3)
02	N2	1.217(2)	C5	C4	$1.369(4)$	C14	H14a	$1.000(2)$
N2	C5	1.469(2)	C4	C3	1.378(3)	C14	H14b	$1.001(2)$
N3	C2	1.421(2)	C9	C10	1.391(3)	C14	H14c	0.999(3)
N3	C14	1.438(4)	C9	C8	1.393(3)	C15	H15a	0.951(3)
N3	C15	1.433(4)	C10	C11	$1.378(4)$	C15	H15b	0.927(2)
N1	C7	1.298(2)	C11	C12	$1.386(4)$	C15	H15c	1.002(4)
N1	C9	1.388(3)	C12	C13	1.367(3)	C10	H10	0.934(3)
C2	C1	1.403(3)	C13	C8	1.406(4)	C11	H11	0.935(2)
C2	C3	1.389(3)	C12	H12	0.956(3)	C13	H13	1.018(4)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C7	S1	C8	88.94(9)	C6	C5	C4	122.5(2)
01	N2	02	123.4(2)	C5	C4	C3	118.3(3)
01	N2	C5	118.1(2)	C2	C3	C4	$121.2(3)$
02	N2	C5	118.5(2)	\$1	C7	N1	115.5(1)
C2	N3	C14	113.9(2)	S1	C7	Cl	123.3(1)
C2	N3	C15	115.0(2)	N1	C7	C1	121.2 (2)
C14	N3	C15	110.9(2)	N1	C9	C10	125.1(2)
C7	N1	C9	110.7(2)	N1	C9	C8	114.8(2)
N3	C2	C1	118.5(2)	C10	C9	C8	120.1(2)
N3	C2	C3	122.0(2)	C9	C10	C11	118.1(2)
C1	C2	C3	119.4(2)	C10	C11	C12	121.8(2)
C2	C1	C6	118.9(2)	C11	C12	C13	121.2 (2)
C2	C1	C7	123.3(2)	C12	C13	C8	117.8(3)
C6	C1	C7	117.9 (2)	S1	C8	C9	110.1(1)
C1	C6	C5	119.7(2)	S1	C8	C13	128.8(2)
N2	CS	C6	118.7(2)	C9	C8	C13	1212(2)
N2	CS	C4	118.9(2)	C1	C6	H6	117.9(2)
C5	C6	H6	122.3(2)	C5	C4	H4	123.3(2)
C3	C4	H4	118.4(2)	C2	C3	H3	117.8(2)
C4	C3	H3	120.7(2)	N3	C14	Hi4m	108.8(2)
N3	C14	H14b	108.0(2)	N3	C14	H14c	111.6 (2)
H14a	C14	H14b	109.5(2)	H14a	C14	H14c	109.5(2)
H14b	C14	H14c	109.5(2)	N3	C15	H15a	109.2(2)
N3	C15	H15b	100.0(2)	N3	C15	H1Sc	107.9(2)
H15a	C15	H15b	105.3(2)	H15a	C15	Hisc	110.8(2)
H15b	C15	H15c	122.7(2)	C9	C10	H10	122.2(2)
C11	C10	H10	119.5(2)	C10	C11	H11	$117.7(2)$
C12	C11	H11	120.4(2)	C11	C12	H12	119.9(2)
C13	C12	H12	119.0(2)	C12	C13	Hi3	122.7(2)
C8	C13	$\mathrm{H13}$	119.4(2)				

Table IV. Positioual Parameters and Equivalent Isotropic Thermal Pactors for $2-[2-(\mathrm{N}$-methyimmino)-5-nitropheay $]$ benrothiazole
i

Atom	x	Y	2	$B\left(8^{2}\right)^{0}$
S1	0.50343(5)	0.11315(4)	0.3093(2)	2.89(1)
01	1.0363(2)	0.3242(2)	-0.0363(7)	6.0016)
02	0.9035(2)	0.1869(2)	-0.0970(7)	5.83(6)
N2	0.9365 (2)	0.2725(2)	0.0025(7)	3.88(5)
N3	0.6205(2)	0.4451(1)	0.6434(6)	3.18(5)
N1	0.4600 (2)	0.2672(1)	0.5849(6)	2.79(4)
C2	0.6963(2)	0.4022(2)	0.4899(6)	2.46(5)
C1	0.6615(2)	$0.3004(2)$	0.3845(6)	2.39(5)
C6	0.7423(2)	0.2599(2)	0.2262(7)	2.71(5)
C5	0.8546(2)	0.3167(2)	0.1723(7)	2.76(5)
C4	0.8895(2)	0.4150 (2)	0.2717(7)	3.10(5)
C3	0.8117(2)	0.4571(2)	$0.4274(7)$	3.02(5)
C14	0.6527(2)	0.5463(2)	$0.7726(8)$	3.61(6)
C7	0.5430(2)	0.2376(2)	0.4399(6)	2.40 (5)
C9	0.3579(2)	0.1902(2)	0.5993(7)	2.64(5)
C10	0.2526(2)	0.1975(2)	0.7348(8)	3.46(6)
C11	0.1592(2)	$0.1148(2)$	0.7315(8)	3.80(6)
C12	0.1688(2)	0.0259(2)	0.5935(9)	3.89(6)
C13	0.2718(2)	0.0168(2)	0.4560(8)	3.30(6)
C8	0.3606(2)	0.1003(2)	0.4612(7)	2.63(5)
H6	0.722(2)	0.193(2)	0.151(6)	0.7(5) ${ }^{\text {c }}$
H4	0.969(2)	0.450(2)	0.230(7)	$1.5(6)$
H3	0.837(2)	0.526(2)	$0.501(7)$	0.7(5)
H1	0.550(2)	0.406(2)	$0.674(7)$	1.0(6)
H14c	0.712(3)	0.558(2)	0.959(8)	2.7(7)
H14a	0.591(3)	0.559(2)	0.879(8)	3.5(8)
H14b	0.680(2)	0.590(2)	0.595(8)	2.3(7)
H10	0.248(2)	0.256(2)	0.841(7)	$1.0(5)$
$\mathrm{HH1}$	0.086(2)	0.117(2)	0.828(8)	1.9(6)
H12	$0.101(2)$	-0.030(2)	0.588(8)	1.9(6)
H13	0.277(2)	-0.044(2)	0.347(7)	1.8(6)

"Ansoriopically refined atoms are given th the form of the isorropic equivalent dieplecement permeter cetined as: $(\alpha / 3)\left(a^{2} B_{11}+b^{2} B_{2}+C^{2} B_{n j}+a b\left(\cos \eta B_{12}+\operatorname{sc}(\cos \beta) B_{13}+b C(c o s \alpha) B_{n}\right]\right.$

Mydrogen atoms were refined inotropically.

Table V. Boad Distances (A) and Bood Angles (") for 2-[2-(N-methyimmino)-5-nitrophenyl]benzomiarole

Atom 1	Atom 2	Dimace	Atom 1	Atom 2	Distance	Alom 1	Atom 2	Distance
S1	C7	1.124(2)	Ca	C3	1.369(4)	CS	C4	1.380(3)
S1	C8	1.728(2)	Ca	H4	0.96(2)	C13	H13	0.96(3)
01	N2	1.227(3)	C3	H3	0.97(2)	C6	H6	0.95(2)
02	N2	1.215(4)	C14	H14c	0.99(3)	C13	C8	1.393(3)
N2	C5	1.450(4)	C14	H14a	0.90(3)	C6	C5	1.382(4)
N3	C2	. 1.353(3)	C14	H14b	0.95(3)	C12	H12	0.96(2)
N3	C14	1.449(3)	C9	C10	1.395(4)	C1	C7	1.470(3)
N3	H1	0.89(2)	C9	C8	1.397(4)	C12	C13	1.382(5)
N1	C7	1.303(3)	C10	C11	1.376(3)	C1	C6	$1.390(4)$
N1	C9	1.396(3)	C10	H10	0.93(3)	C11	H11	0.96(3)
C2	C1	1.430(4)	C11	C12	1.388(4)	C2	C3	1.410(3)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C7	S1	C8	89.3(1)	C5	C4	H4	118(2)
01	N2	02	123.1(3)	C3	C4	H4	123(2)
01	N2	C5	118.0(2)	C2	C3	C4	121.5(2)
02	N2	C5	119.0(3)	C2	C3	H3	120(1)
C2	N3	C14	123.5(2)	C4	C3	H3	119(1)
C2	N3	H1	116(2)	N3	C14	H14c	112(2)
C14	N3	H1	121(2)	N3	C14	H14a	109(2)
C7	N1	C9	111.0 (2)	N3	C14	H14b	111(2)
N3	C2	C1	$121.2(2)$	H14c	C14	H14e	103(3)
N3	C2	C3	120.7(3)	Hi4c	C14	H14b	110(2)
C1	C2	C3	118.2(2)	H14a	C14	H14b	111(3)
C2	C1	C6	119.0(2)	S1	C7	N1	115.2(1)
C2	C1	C7	121.9(2)	S1	C7	C1	120.0(2)
C6	C1	C7	119.2(2)	N1	C7	C1	124.9(2)
C1	C6	C5	120.7(2)	N1	C9	C10	125.5(2)
C1	C6	H6	121(1)	N1	C9	C8	114.6(2)
C5	C6	H6	119(1)	C10	C9	C8	119.9(2)
N2	C5	C6	119.4(2)	C9	C10	C11	118.9(3)
N2	C5	C4	119.5(2)	C9	C10	H10	120(1)
C6	CS	C4	121.1(2)	C11	C10	H10	121(1)
C5	C4	C3	119.5(2)	C10	C11	C12	120.8(3)
C10	C11	H11	121(2)	C12	C13	H13	122(2)
C12	C11	H11	118(2)	C8	C13	H13	121(2)
C11	C12	C13	121.6(2)	S1	C8	C9	109.9(2)
C11	C12	812	119(2)	S1	C8	C13	128.8(2)
C13	C12	H12	119(2)	C9	C8	C13	$121.2(2)$
C12	C13	C8	117.7(2)				

Table VI. Poxitional Perameters and Equivalent botropic Thermal Factors for 2-[2-(N, N -diethyl-amino)-5-nituopheryil]benzothiarole

Atom	π	1	2	$B\left(i^{2}\right)^{0}$
S1	0.8974(1)	0.05716(3)	$0.74746(5)$	3.37(1)
01	0.4498(3)	-0.2005(1)	0.2461(2)	$5.69(6)$
02	0.5576(3)	-0.1149(1)	0.1852(2)	5.47(5)
N1	0.8086(3)	0.05875(9)	0.4919(2)	$3.02(4)$
N2	0.5325(3)	-0.1488(1)	0.2700(2)	3.81(5)
N3	0.8410(3)	-0.06865(9)	0.8046(2)	$2.93(4)$
C1	0.7522(3)	-0.0457(1)	0.5682(2)	$2.63(4)$
C2	0.7556(3)	-0.0888(1)	0.6700(2)	$2.66(4)$
C3	0.6767(4)	-0.1499(1)	0.6375(2)	3.68(5)
C4	0.5996(4)	-0.1694(1)	0.5068(2)	3.73 (6)
C5	0.6062(3)	-0.1275(1)	0.4085(2)	3.11 (5)
C6	0.6801(3)	-0.0670(1)	0.4362(2)	2.94 (5)
C7	0.8152(3)	0.0212(1)	0.5905(2)	$2.58(4)$
C8	0.9268(3)	0.1283(1)	0.6734(2)	2.95 (5)
C9	0.8707(3)	0.1199(1)	0.5360(2)	2.88(5)
C10	0.8808(4)	$0.1712(1)$	0.4556(2)	3.75 (6)
C11	0.9480(4)	0.2292(1)	0.5139(3)	4.23 (6)
C12	1.0082(4)	0.2367(1)	0.6513(3)	4.13 (6)
C13	0.9967(4)	0.1869(1)	0.7322(3)	4.000
C14	1.0506(4)	-0.0797(1)	0.8601(3)	$3.74(6)$
C15	1.1108(4)	-0.1479(2)	0.9058(3)	5.08(8)
C16	0.7420 (4)	-0.0859(1)	0.8963(2)	3.68 (5)
C17	0.5441(4)	-0.0558(2)	0.8563(3)	5.3688
H3	0.677	-0.178	0.707	$5.3{ }^{\circ}$
H4	0.543	-0.210	0.485	5.3
H6	0.681	-0.039	0.366	4.2
H10	0.843	0.165	0.362	5.1
H11	0.955	0.265	0.460	5.7
H12	1.053	0.277	0.689	5.5
H13	1.039	0.192	0.826	5.5
H14a	1.083	-0.069	0.808	4.0
H14b	1.126	-0.051	0.945	4.0
H15a	1.044	-0.168	0.862	4.0
H15b	1.169	-0.134	0.918	4.0
Hise	1.044	-0.167	0.972	4.0
H16a	0.834	-0.068	0.999	4.0
H160	0.709	-0.134	0.890	4.0
H17a	0.584	-0.034	0.861	4.0
H17b	0.462	-0.081	0.780	4.0
H17c	0.501	-0.066	0.944	4.0

-Anfootropically refined anoms are given in the form of the isoropic equivaleal displacement perameter

Tiydrogen anome were refined inotropically.

Table VII. Bond Distances (\mathcal{A}) and Boad Angles ($\left.{ }^{(}\right)$for $2-(2-(N, N-d i e t h y l m i n o)-5-n i t r o-$ pheayl]bempothiazole

Atom	Atom 2	Distunce	Atom 1	Atom 2	Distence	Atom 1	Atom 2	Distance
S1	C7	1.751(3)	C3	C4	1.381(3)	C12	H 12	0.951(3)
S1	C8	1.733(2)	C3	H3	0.951(3)	C13	H13	$0.951(3)$
01	N2	1.226(3)	C4	C5	1.382 (4)	C14	C15	1.525(4)
02	N2	1.216(3)	C4	H4	0.950(3)	C14	H14a	0.721(4)
N1	C7	1.304(3)	C5	C6	1.371(3)	C14	H14b	1.069(2)
N1	C9	1.387 (3)	C6	H6	0.950(2)	C15	H15a	0.694(3)
N2	C5	1.466 (3)	C8	C9	1.397(4)	C15	H15b	0.494(4)
N3	C2	$1.426(3)$	C8	C13	1.395(3)	C15	H15c	1.075(3)
N3	C14	1.490 (3)	C9	C10	1.392(4)	C16	C17	1.526(5)
N3	C16	$1.462(4)$	C10	C11	1.379(4)	C16	H16a	1.140(2)
C1	C2	1.408(3)	C10	H10	0.950(2)	C16	H16b	1.031(3)
C1	C6	1.403(3)	C11	C12	1.393(4)	C17	H17a	0.544(3)
C1	C7	1.466(3)	C11	H11	0.950(3)	C17	H17b	0.994(3)
C2	C3	1.400(3)	C12	C13	1.375(5)	C17	H17c	1.115(3)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C7	S1	C8	89.2(2)	C1	C6	H6	120.1(2)
N3	C14	H14a	103.1(2)	N3	C14	H14b	115.4(2)
C7	N1	C9	111.2(2)	C5	C6	H6	120.0(3)
01	N2	02	123.5(2)	S1	C7	N1	115.1(2)
C15	C14	H14a	113.8(3)	C15	C14	H14b	103.6(2)
01	N2	C5	117.8(2)	S1	C7	C1	123.7(2)
02	N2	C5	118.7(2)	N1	C7	C1	121.3(2)
H14a	C14	H14b	105.8(3)	C14	C15	H15a	105.93)
C2	N3	C14	113.9(3)	S1	C8	C9	109.6(2)
C2	N3	C16	116.9(2)	S1	C8	C13	$129.2(2)$
C14	C15	H15b	72.0(4)	C14	C15	H15c	:14.3(3)
C14	N3	C16	113.3(2)	C9	C8	C13	121.1 (2)
C2	Cl	C6	118.6(3)	N1	C9	C8	114.8(3)
H15a	C15	H15b	152.2(7)	H15a	C15	H15c	$80.7(4)$
C2	Cl	C7	124.2(2)	N1	C9	C10	125.4(3)
C6	C1	C7	117.3(2)	C8	C9	C10	$119.7(2)$
H15b	C15	H15c	126.1(4)	N3	C16	C17	$111.9(2)$
N3	C2	C1	118.6(2)	C9	C10	C11	$119.0(2)$
N3	C2	C3	121.7(3)	C9	C10	H10	120.2(2)
N3	C16	H16a	106.8(2)	N3	C16	H16b	1112(2)
C1	C2	C3	119.7(2)	C11	C10	H10	120.8(3)
C2	C3	C4	121.1(2)	C10	C11	C12	120.9(3)
C17	C16	H16a	109.9(2)	C17	C16	H16b	101.3(2)
C2	C3	H3	119.0(2)	C10	C11	H11	119.5(3)
C4	C3	H3	120.0(3)	C12	C11	H11	119.6(3)
H16a	C16	H16b	115.7(2)	C16	C17	H17a	83.1(3)
C3	C4	C5	118.3(2)	C11	C12	C13	120.9(2)

Table VII (continued)
Atom 1 Alom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle
;

C3	C4	H4	121.1(3)	C11	C12	H12	119.4(3)
C16	C17	H17b	106.13)	C16	C17	H17c	102.3(2)
CS	C4	H4	120.7(2)	C13	C12	H12	119.7(3)
N2	C5	C4	118.9(2)	C8	C13	C12	118.3(2)
H17a	C17	H17b	1343(4)	H17a	C17	H17c	113.0(4)
N2	C5	C6	$118.9(2$	C8	C13	H13	120.5(3)
C4	C5	C6	122.3(3)	C12	C13	H13	121.2(3)
H176	C17	H17c	108.6(3)	N3	C14	C15	115.3(2)
C1	C6	C5	119.9(2)				

Table VII. Positional Parameters and Equivaleat Isoropic Thermal Factors for 2-(Trimethylsilyl-ethynyl)-4-nitro-N,N-dimethylaniline

Atom	π	y	2	$B\left(\lambda^{2}\right)$
Si	0.87838(9)	0.0253(2)	0.3013(3)	6.47(4)
01	0.6651(2)	0.5391(4)	-0.0576(6)	7.2(1)
02	0.5645(2)	0.5119(4)	-0.1628(7)	7.6(1)
N1	0.6519(2)	-0.0613(4)	-0.0821(6)	4.9(1)
N4	0.6180(2)	0.4706(4)	-0.1064(6)	5.4(1)
C1	0.6450(2)	0.0688(5)	-0.0848(7)	3.9(1)
C2	0.6973(2)	0.1524(5)	-0.0226(6)	3.6(1)
C3	0.6872(2)	0.2834(5)	-0.0340(6)	3.8(1)
C4	0.6277(2)	0.3328(5)	-0.1008(7)	4.1(1)
C5	0.5755(3)	0.2529(5)	-0.1544(7)	4.6(1)
C6	0.5844(3)	0.1230(5)	-0.1444(7)	4.5(1)
C11	0.5934(3)	-0.1428(6)	-0.1179(9)	6.5(2)
C12	0.7140(3)	-0.1266(6)	-0.105(1)	$6.4(2)$
C21	0.7575(3)	0.1112(5)	$0.0714(7)$	4.1 (1)
C22	0.8074(3)	0.0842(5)	$0.1594(8)$	5.1(1)
C23	0.8559(5)	0.009(1)	0.546(1)	13.1(3)
C24	0.9012(5)	-0.1239(9)	0.225(2)	23.5(4)
C25	0.9428(5)	0.139(1)	0.307(2)	18.7(4)
H3	0.724	0.344	0.006	$5.0{ }^{\text {c }}$
H5	0.532	0.290	-0.199	5.0
H6	0.547	0.065	-0.181	5.0
H11b	0.558	-0.119	-0.023	5.0
Hilc	0.606	-0.239	-0.101	5.0
H11a	0.574	-0.128	-0.254	5.0
H12b	0.730	-0.172	0.019	5.0
H12c	0.749	-0.059	-0.140	5.0
H12a	0.708	-0.194	-0.212	5.0
H23c	0.817	-0.055	0.554	5.0
H23a	0.896	-0.024	0.630	5.0
H23b	0.842	0.099	0.593	5.0
H24c	0.913	-0.115	0.085	5.0
H24a	0.942	-0.159	0.303	5.0
$\mathbf{H 2 4 b}$	0.862	-0.187	0.234	5.0
H2Sc	0.967	0.137	0.182	5.0
H2Sb	0.922	0.230	0.326	5.0
H25a	0.976	0.119	0.419	5.0

-Anisotroplcally refined atoms are given in the form of the isoropic equivalent dieplacement parameter deffined as: $(4 / 3)\left[a^{2} B_{11}+b^{2} B_{21}+C^{2} B_{33}+a b\left(c o s \eta B_{12}+a c(c o s \beta) B_{13}+b c(c o s \alpha) B_{n 1}\right]\right.$
"Hydrogen atoms were refined isotropically.

Table IX. Boad Distances (A) and Boad Angies (V) for 2-(Trimethybilylethynyl)-4-ntroN, N-dimelhylenikioe

Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance

Si	C22	1.819(6)	N4	C4	1.455(7)	N1	C12	1.447(7)
Si	C23	1.832(8)	C1	C2	1.426(7)	C21	C22	1.195(7)
Si	C24	1.72(2)	Cl	C6	1.396(8)	N1	C11	1.471(7)
Si	C25	1.77(1)	C2	C3	1.387(7)	C5	C6	1.371(8)
01	N4	1.227(6)	C2	C21	1.425(7)	N1	C1	1.368(7)
02	N4	1.215(6)	$C 3$	Ca	1.373(7)	C4	CS	1.385(7)
C3	H3	1.000(7)	CS	H5	0.999(6)	C6	H6	$1.000(7)$
C11	H11b	1.04(1)	C11	Hilc	1.041(7)	C11	Hila	1.039(6)
C12	H12b	1.040 (6)	C12	H12c	1.040(8)	C12	H12a	1.040(7)
C23	H23c	1.040(7)	C23	H23a	1.039(7)	C23	H23b	1.041(6)
C24	H24c	1.039(6)	C24	H24a	1.039(6)	C24	H24b	$1.04016)$
C25	H25c	1.039(6)	C25	H25b	1.041(6)	C25	H25a	1.039(6)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C22	Si	C23	109.4(4)	N1	Cl	C6	119.7(5)
C22	Si	C24	110.4(4)	C2	C1	C6	118.1(5)
C22	Si	C25	$110.1(4)$	Cl	C2	C3	118.9(4)
C23	Si	C24	107.5(5)	C1	C2	C21	124.2(4)
C23	Si	C25	105.2(5)	C3	C2	C21	116.5(4)
C24	Si	C25	114.1(5)	C2	C3	C4	121.0(4)
C1	N1	C11	119.6(4)	N4	C4	C3	119.7(4)
Cl	N1	C12	123.8(4)	N4	C4	CS	119.4 (4)
C11	N1	C12	113.8(4)	C3	C4	C5	120.8(5)
01	N4	02	123.4(5)	C4	C5	C6	$119.1(5)$
01	N4	C4	118.0 (4)	Cl	C6	C5	122.0(5)
02	N4	Ca	118.6 (4)	C2	C21	C22	175.05)
N1	C1	C2	122.1(4)	Si	C22	C21	173.0(6)
C2	C3	H_{3}	120.0(4)	C4	C3	H3	119.0(4)
C4	CS	H5	119.7(4)	C6	C5	H5	121.2(4)
C1	C6	H6	119.0(4)	C	C6	H6	119.1(5)
N1	C11	Hilb	108.9(5)	N1	C11	Hilc	110.0(4)
N1	C11	Hila	109.5(4)	H116	C11	Hilc	109.5(4)
H11b	C11	Hila	109.5(4)	Hilc	C11	Hila	109.5(4)
N1	C12	H12b	110.3(5)	N1	C12	H12c	108.6(4)
N1	C12	H12a	109.5(4)	H12b	C12	H12c	109.5(5)
H12b	C12	H12a	109.3(4)	H12c	C12	H12a	109.5(4)
Si	C23	H23c	110.3(4)	Si	C23	H23a	110.64)
Si	C23	H23b	107.7(4)	H23c	C_{2}	H23a	109.4(4)
823c	C23	H23b	109.6(5)	H23a	C23	H23b	$109.5(4)$
Si	C24	H2AC	107.6(4)	Si	C24	H24a	$111.2(5)$
Si	C24	H24b	109.6(4)	H24c	C24	H24a	109.5(4)
H2Ac	C24	H24b	109.5(5)	H24a	C24	H24b	109.4 (4)
Si	C25	H2Sc	110.2(4)	Si	C2S	H25b	108.6 (4)
Si	C25	H25a	109.6(4)	H25c	C2S	H25b	109.4 (4)
H2Sc	C25	H25a	109.5(4)	H25b	C25	H25a	109.5(4)

Table X.
Summary of Close Interactions

Interaction

C10- $\mathbf{H 1 0}$... 01
C15 - B15c... 01
C15 - H15c … 02
C15-H15a ... 02
$\mathrm{C} \ldots \mathrm{O} \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{O} \quad \mathrm{H} \cdots \mathrm{O}$
1

$3.46 \AA$	150.47°	$2.601 \AA$
$3.744 \AA$	160.22°	$2.785 \AA$
$3.458 \AA$	133.12°	$2.694 \AA$
$3.284 \AA$	111.09°	$2.818 \AA$

2
C11-H11 .. 02
C12-H12 ... 02
C13-H13... 02
C3-H3 ... O 1
C10-H10 ‥ O 1
$3.542 \AA$
$3.419 \AA$
$3.316 \AA$
$3.535 \AA$
$3.633 \AA$

3
$3.456 \AA$
$3.604 \AA$
$3.640 \AA$
$3.823 \AA$
$3.823 \AA$
$3.702 \AA$
$3.709 \AA$
$3.884 \AA$

4

C3 - $\mathrm{H} 3 . .02$	3.446 \&	154.21^{\bullet}	2.5248
C12-H12b-01	$3.646 \AA$	167.02 ${ }^{\text {- }}$	2.622 A
C12 - E12b -02	3.670 A	145.07°	2.765 A
C12-H12a ... 02	3.596 A	133.73 -	2.796 A
C12-H12c... O 1	3.685 A	119.54°	3.061 A
C12-H12c.. O 2	4.128 A	157.20°	3.151 A
C13-H13C.. O	3.445 A	104.45 ${ }^{\circ}$	3.035 A

CAPIIONS FOR ILLUSTRATIONS

Figure 1. Molecular structure of 2-[2-(N,N-Dimethylamino)-5-nitrophenyl]benzothiazole (1). Hydrogen atoms have been removed for clarity.

- Figure 2. Stereoview of the unit cell for 2-[2-(N,N-Dimethylamino)-5-nimophenyl]benzothiazole (1) looking down the c axis.

Figure 3. Molecular structure of 2-[2-(N-Methylamino)-5-nitrophenyl]benzothiazole (2). Hydrogen atoms have been omitted for clarity, except for the hydrogen atom involved in the internal hydrogen bond.

Figure 4. Stereoview of the unit cell for 2-[2-(N-Methylamino)-5-nitrophenyl]benzothiazole (2) with the unit cell axes labeled.

Figure 5. Molecular structure of 2-[2-(N,N-Diethylamino)-5-nitrophenyl]benzothiazole (3). Hydrogen atoms are removed for clarity.

Figure 6. Stereoview of the unit cell for 2-[2-(N,N-Diethylamino)-5-nitrophenyl]benzothiazole (3) viewed down the c axis of the unit cell.

Figure 7. Molecular structure of 2-(Trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline (4). Hydrogen atoms are removed for clarity.

Figure 8. Stereoview of the unit cell for 2-(Trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline (4) looking down the b axis of the unit cell.

Figure 9. Close (C)-H...O interactions for 2-[2-(N,N-Dimethylamino)-5-nitrophenyl]benzothiazole (1).

Figure 10. Close (C)-H...O interactions for 2-[2-(N-Methylamino)-5-nitrophenyl]benzothiazole (2).

Figure 11. Close (C)-H...O interactions for 2-[2-(N,N-Diethylamino)-5-nitrophenyl]benzothiazole (3).

Figure 12. Close (C)-H...O interactions for 2-(Trimethylsilylethynyl)-4-nitro-N, N -dimethylaniline (4).

Preprint 2

Preprint 2

Preprint 2

Preprint 2

Appendix A. General Displacement Parameter Expressions, U 's, for 2-[2-(N,N-dimethylamino)-5-nitrophenyl]-benzothiazole

Name	$\mathrm{U}(1,1)$	$\mathrm{U}(2.2)$	$\mathrm{U}(3,3)$	$\mathrm{U}(1,2)$	$\mathrm{U}(1,3)$	$\mathrm{U}(2.3)$
S1	$0.0615(3)$	$0.0758(4)$	$0.0411(2)$	$-0.0176(3)$	$-0.0079(2)$	$0.0061(3)$
O1	$0.087(1)$	$0.085(1)$	$0.074(1)$	$-0.0086(9)$	$-0.0241(8)$	$-0.0242(9)$
O2	$0.084(1)$	$0.112(1)$	$0.0440(8)$	$-0.004(1)$	$-0.0106(8)$	$0.0050(9)$
N2	$0.0543(9)$	$0.070(1)$	$0.0501(9)$	$0.0104(9)$	$-0.0072(8)$	$-0.0177(9)$
N3	$0.0526(9)$	$0.067(1)$	$0.0382(8)$	$-0.0045(9)$	$0.0000(7)$	$0.0099(8)$
N1	$0.0564(9)$	$0.0470(9)$	$0.0488(9)$	$0.0012(8)$	$-0.0068(8)$	$0.0043(8)$
C2	$0.0455(9)$	$0.058(1)$	$0.0389(9)$	$-0.001(1)$	$0.0031(8)$	$0.0015(9)$
C1	$0.0385(9)$	$0.046(1)$	$0.0377(8)$	$0.0041(8)$	$0.0032(7)$	$-0.0027(8)$
C6	$0.0454(9)$	$0.049(1)$	$0.0379(8)$	$0.0068(9)$	$0.0023(8)$	$0.0006(9)$
C5	$0.0443(9)$	$0.055(1)$	$0.0408(9)$	$0.0069(9)$	$-0.0004(8)$	$-0.0103(9)$
C4	$0.063(1)$	$0.065(1)$	$0.061(1)$	$-0.018(1)$	$-0.004(1)$	$-0.005(1)$
C3	$0.074(1)$	$0.076(1)$	$0.054(1)$	$-0.027(1)$	$-0.002(1)$	$0.012(1)$
C14	$0.137(2)$	$0.181(3)$	$0.086(2)$	$0.102(2)$	$-0.042(2)$	$-0.036(2)$
C15	$0.079(2)$	$0.125(2)$	$0.050(1)$	$0.022(2)$	$-0.007(1)$	$-0.019(1)$
C7	$0.0428(9)$	$0.046(1)$	$0.0363(8)$	$0.0050(9)$	$0.0013(7)$	$-0.0001(8)$
C9	$0.052(1)$	$0.042(1)$	$0.055(1)$	$0.003(1)$	$0.0033(9)$	$-0.0007(9)$
C10	$0.080(2)$	$0.053(1)$	$0.075(1)$	$-0.002(1)$	$-0.002(1)$	$0.009(1)$
C11	$0.081(2)$	$0.049(1)$	$0.108(2)$	$-0.010(1)$	$0.012(1)$	$0.003(1)$
C12	$0.063(1)$	$0.061(1)$	$0.094(2)$	$-0.009(1)$	$0.005(1)$	$-0.020(1)$
C13	$0.056(1)$	$0.072(1)$	$0.066(1)$	$-0.009(1)$	$0.001(1)$	$-0.014(1)$
C8	$0.046(1)$	$0.056(1)$	$0.050(1)$	$-0.001(1)$	$0.0050(9)$	$-0.007(1)$

The form of the anisotropic displacemeat parameter is:
$\exp \left[-2 p^{2}\left(h^{2} a^{2} U_{1,1}+k^{2} b^{2} U_{2,2}+l^{2} c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}+2 k l b c U_{2,3}\right)\right]$
where a, b, and c are reciprocal latice constants.

Appendix B. General Displacement Parmmeter Expressions, U's, for 2-(2-(N-methylamino)-5-nitrophenyl]benzothiazole

Name	$U(1,1)$	$U(2,2)$	$U(3,3)$	$U(1,2)$	$U(1,3)$	$U(2,3)$

S1	$0.0301(2)$	$0.0273(2)$	$0.0509(3)$	$0.0064(2)$	$0.0051(2)$	$-0.0048(2)$
O1	$0.036(1)$	$0.065(1)$	$0.119(2)$	$0.0032(9)$	$0.029(1)$	$-0.013(1)$
O2	$0.050(1)$	$0.049(1)$	$0.120(2)$	$0.0113(8)$	$0.023(1)$	$-0.004(1)$
N2	$0.034(1)$	$0.047(1)$	$0.065(2)$	$0.0095(9)$	$0.013(1)$	$-0.002(1)$
N3	$0.036(1)$	$0.0270(9)$	$0.057(1)$	$0.0077(7)$	$0.003(1)$	$-0.0068(9)$
N1	$0.00305(9)$	$0.0273(9)$	$0.047(1)$	$0.0069(7)$	$0.0052(9)$	$-0.0012(9)$
C2	$0.032(1)$	$0.028(1)$	$0.033(1)$	$0.0080(8)$	$-0.000(1)$	$0.001(1)$
C1	$0.028(1)$	$0.026(1)$	$0.036(1)$	$0.0057(8)$	$-0.000(1)$	$0.000(1)$
C6	$0.033(1)$	$0.027(1)$	$0.041(1)$	$0.0065(8)$	$0.001(1)$	$-0.000(1)$
C5	$0.029(1)$	$0.037(1)$	$0.039(1)$	$0.0088(9)$	$0.003(1)$	$0.001(1)$
C4	$0.031(1)$	$0.038(1)$	$0.044(2)$	$0.002(1)$	$0.002(1)$	$0.001(1)$
C3	$0.037(1)$	$0.028(1)$	$0.046(2)$	$0.0037(9)$	$-0.000(1)$	$-0.000(1)$
C14	$0.051(1)$	$0.031(1)$	$0.056(2)$	$0.014(1)$	$0.003(1)$	$-0.007(1)$
C7	$0.031(1)$	$0.0263(9)$	$0.033(1)$	$0.0080(8)$	$0.000(1)$	$-0.0000(9)$
C9	$0.029(1)$	$0.031(1)$	$0.040(1)$	$0.0080(8)$	$0.002(1)$	$0.001(1)$
C10	$0.036(1)$	$0.042(1)$	$0.055(2)$	$0.0133(9)$	$0.008(1)$	$-0.001(1)$
C11	$0.032(1)$	$0.051(1)$	$0.062(2)$	$0.0121)$	$0.008(1)$	$0.000(1)$
C12	$0.028(1)$	$0.044(1)$	$0.069(2)$	$-0.001(1)$	$-0.000(1)$	$0.003(1)$
C13	$0.034(1)$	$0.032(1)$	$0.056(2)$	$0.002(1)$	$0.000(1)$	$-0.001(1)$
C8	$0.026(1)$	$0.033(1)$	$0.041(1)$	$0.0066(8)$	$0.003(1)$	$0.001(1)$

The form of the anisotropic displacement parameter is:
expl-2 $\left.p^{2}\left(h^{2} a^{2} U_{1,1}+Y^{2} b^{2} U_{2,}+I^{2} c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}+2 k b c U_{2 ;}\right)\right]$ where a, b, and c are reciprocal latice constants.

Appendix C. General Diaplacement Parmeter Expressions, U's, for 2-[2-(N,N-diethylamino)-S-nitrophenyl]benrothiazole

Name	$\mathbf{U}(1,1)$	U(2,2)	U(3,3)	U(1,2)	$\mathbf{U}(1,3)$	U(2,3)
S1	0.0620(3)	0.0360(3)	0.0268(2)	-0.0075(3)	0.0112(2)	-0.0007(2)
01	0.092(1)	0.062(1)	0.055(1)	-0.019(1)	0.016(1)	-0.0273(9)
02	0.098(1)	0.068(1)	0.0355(8)	0.003(1)	0.0153(9)	-0.0058(9)
N1	0.046(1)	0.037(1)	0.0302(7)	-0.0004(8)	$0.0101(7)$	$0.0010(8)$
N2	0.052(1)	0.049(1)	0.0384(9)	$0.004(1)$	0.0084(8)	-0.0147(9)
N3	0.0412(9)	0.040(1)	$0.0271(7)$	-0.0012(8)	$0.0074(7)$	$0.0017(7)$
C1	0.036(1)	0.034(1)	0.0293(8)	0.0006(9)	$0.0093(7)$	-0.0008(8)
C2	0.036(1)	0.035(1)	$0.0290(8)$	-0.0010(9)	$0.0096(7)$	-0.0015(8)
C3	0.059(1)	0.040(1)	0.042(1)	-0.009(1)	0.0182(9)	-0.003(1)
C4	0.054(1)	0.042(1)	0.046(1)	-0.012(1)	0.017(1)	-0.011(1)
C5	0.038(1)	0.043(1)	0.0323(9)	0.002(1)	0.0058(8)	-0.0096(9)
C6	0.040(1)	0.038(1)	0.0312(9)	0.0015(9)	0.0086(8)	-0.0025(8)
C7	0.035(1)	0.036(1)	0.0253(8)	0.0007(9)	$0.0080(7)$	$0.0003(8)$
C8	0.044(1)	0.034(1)	0.0345(9)	-0.0004(9)	0.0138(8)	$0.0011(9)$
C9	0.038(1)	0.037(1)	0.0345(9)	0.0017(9)	0.0124(8)	0.0018(9)
C10	0.058(1)	0.046(1)	0.040(1)	-0.002(1)	0.0187(9)	$0.009(1)$
C11	0.066(1)	$0.042(1)$	0.059(1)	0.000(1)	0.029(1)	0.012(1)
C12	0.064(1)	0.036(1)	0.063(1)	-0.007(1)	0.030(1)	-0.002(1)
C13	0.070(1)	0.041(1)	$0.044(1)$	-0.008(1)	0.023(1)	-0.004(1)
C14	0.041(1)	0.047(1)	0.045(1)	-0.000(1)	0.004(1)	0.003(1)
C15	0.063(2)	0.060(2)	0.064(2)	0.004(1)	$0.014(1)$	$0.011(1)$
C16	0.057(1)	0.051(1)	0.0314(9)	-0.003(1)	$0.0140(9)$	$0.002(1)$
C17	0.054(1)	0.104(3)	0.050(1)	-0.001(2)	0.024(1)	-0.004(2)

The form of the anisotropic displacement parameter is:
$\exp \left[-2 p^{2}\left\{h^{2} a^{2} U_{1,1}+k^{2} b^{2} U_{2,2}+I^{2} c^{2} U_{3,3}+2 h i \operatorname{la} U_{1,2}+2 h i a c U_{1, p}+2 k i b c U_{2,3} \mid\right]\right.$ where a, b, and c are reciprocal latice conatints.

Appendix D. General Displacement Parameter Expressions, U's, for 2-(Trimethylsilylethynyl)-4-nitro- $\mathrm{N}_{\mathrm{p}} \mathrm{N}$-dimethylmiline

Name	$\mathbf{U}(1.1)$	U(2.2)	U(3,3)	U(1,2)	U(13)	U(2,3
			-			
Si	0.0575(9)	0.084(1)	0.102(1)	0.0159(9)	-0.0179(9)	0.004(1)
01	0.101(3)	0.057(2)	0.113 (3)	0.005(2)	-0.006(3)	-0.002(2)
02	$0.094(3)$	0.076(3)	0.119(3)	0.036(2)	-0.011(3)	0.009(2)
N1	0.065(3)	0.054(3)	0.066(3)	-0.007(2)	0.007(2)	-0.003(2)
N4	0.079(3)	0.064(3)	0.062(3)	0.016(2)	0.004(3)	0.004(2)
C1	0.050(3)	0.057(3)	0.040(3)	-0.003(2)	0.001(2)	$0.004(2)$
C2	0.043(3)	0.054(3)	0.040(3)	0.001(2)	0.004(2)	0.005(2)
C3	0.053(3)	0.052(3)	0.041(3)	-0.001(2)	0.001(2)	$0.002(2)$
C4	0.055 (3)	0.056(3)	0.043(3)	0.009(3)	0.006(2)	0.004(2)
C5	0.051(3)	$0.076(4)$	0.048(3)	0.013(3)	-0.005(2)	0.002(3)
C6	0.050(3)	0.069(3)	0.051(3)	-0.004(3)	-0.005(2)	-0.001(3)
C11	0.088(4)	0.062(4)	0.096(5)	-0.024(3)	0.012(4)	-0.011(3)
C12	0.077(4)	0.055(4)	$0.111(5)$	0.010(3)	0.003(4)	-0.012(3)
C21	0.051(3)	0.050(3)	0.055(3)	-0.002(2)	0.000(2)	-0.002(2)
C22	0.055(3)	0.065(3)	0.071(4)	0.005(3)	-0.005(3)	-0.007(3)
C23	0.161(8)	0.22(1)	0.119(7)	$0.064(7)$	-0.008(6)	0.045(6)
C24	0.285(8)	0.289(9)	0.30(1)	0.220(6)	-0.182(7)	-0.163(8)
C25	0.136(8)	0.26(1)	0.30(1)	-0.059(8)	-0.111(7)	0.128(9)

The form of the anisotropic displacement perameter is:
$\exp \left[-2 p^{2}\left[h^{2} a^{2} U_{1,1}+1^{2} b^{2} U_{2,2}+1^{2} c^{2} U_{3,3}+2 h k a b U_{1,2}+2 h l a c U_{1,3}+2 k b c U_{2,3}\right)\right]$ where a, b, and c are reciprocal lattice constants.

Hyperpolarizabilities of Polythiophene and Poly-p-phenylene Oligorners

Henry A Kurtz, Department of Chemistry Memphis State Universtly
Memphis, TN 38152
Jorge A Medrano.
Department of Chemistry
University of Dayton
Dayton, OH 45469
and Douglas Dudis
AFWAL/MLBP
Wright-Patterson Air Force Base
Ohio 45433

ABSTRACI

Semiempirical AMy calculations are presented for the second hyperpolarizabitiles, y, of poly-p-phenglene and polythiophene ollgomers. Calculated resuhs are compared whth experimental degenerate four wave mbing resuits and static field estimates from these experinertal resutts. The relative calculated values are shown to agree quhe well whit the experfmental values when the latuer are corrected for dispersion effects.
introduction
Many recent studies of non-inear opticel properties have shown that gycterns whith clectrons capable of delocallzation over a large distance, such as polyacteylenes and polyphenylenes, eccibis large second typerpolatibabilites $(\boldsymbol{f}$) (dso referred to as third-order Iyperpolartabillies or third-order microscopic optical norlinearties).' The question arises as to what is the dependence of y on chain lengith, or the number of repeat units, in an oligomeric series. The purpose of this paper 4 to compare experinerital and calculated results for poly-p-phenylene and all trans polythiophene oligomers of various lengths. This comparison is usually complicated by the fact that most measurements are made at laser frequencies (Le. dynamic or time-dependent fields), while calculations using the finite field (FF) approximation can only predict static (time independent) hyperpolarizabilties. If this fact is allowed for however, the applicablity of semiempirical based FF calculations in providing test, accurate estimates of static typerpolarizabilities will be demonstrated.

An FF method has been implemented in the MOPAC program² and is used in this work to calculate the hyperpolarizabilties. This method is basod on the following expressions for the energy and dipole moment of a molecule interacting with an dectric field

$$
\begin{equation*}
E(F)=E(0)-\mu_{i} O_{i}-(1 / 2!) a_{i j} F_{i} F_{j}-(1 / 3!) A_{j k} F_{F} F_{j} F_{k}-(1 / 4!) \gamma_{j k} F_{i} F_{i} F_{k} F_{1}-\ldots \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{i}=\mu_{1}^{0}+\alpha_{i j} F_{j}+(1 / 2) A_{j k} F_{j} F_{k}+(1 / 6) \tau_{j l d} F_{j} F_{k} F_{1}+\ldots \tag{R}
\end{equation*}
$$

Where the Einsteln convention of summed repeated indices has been used, $\mu^{\mathrm{O}} \mathrm{y}$ the permanent
 and second myperpolarteabilities, respectively, of the molecule. ${ }^{3}$ The detals of the FF method and is implementation in the MOPAC program have been given elsewhere. ${ }^{4}$

Poly-p-phenylene Oligomers

The orientational averuge of the 7 tensor, which is defined in terms of hes components as

$$
\begin{equation*}
\left.\langle\tau\rangle=(1 / 5)\left\{7_{x c o x}+7_{y y y}+\tau_{z z z}+2 f_{x y y}+\gamma_{x c z z}+7_{y y z}\right)\right\} \tag{3}
\end{equation*}
$$

was calculated for the planar conformation of poly-p-phenylene oligomers, $\mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)_{n} \mathrm{H}$. The shorter oligorners might depart somewhat from planarity in the gas phase, bue the present approach is considered to be adequate to compare our calculations against expermental values obrained in solution.

Table 1 shows the calculated resuts for $\langle\gamma\rangle$ using an AM1 hamititonian ${ }^{5}$ and the experimertal results by Zhao of al. ${ }^{1}$ (Iabeled Exp). The experimental tectnique used was degerierate four wave mbxing (DFWM), which yields $7(\omega ; \omega, \omega, \omega)$. his well known that frequency dispersion effects can greatly infiuence the $\langle\boldsymbol{\gamma}\rangle$ values, rendering it larger than the static limit. This is also complicated by the fact that difierent experiments have difierent dispersion effects. For example, the dc electric field induced second-harmonic (EFISH) generation technique gives $7(-2 \mathrm{u}$; $\omega, \omega, 0)$. Zhao et al. ${ }^{1}$ have estimated the effect of dispersion in DFWM, under the assumption that most of the nonlinearity of a delocalizedx cloud comes from the lowest excited pate, by the formula

$$
\begin{equation*}
\gamma(0)=\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{4} / \omega_{0}^{8}\right] \tau(\omega) \tag{4}
\end{equation*}
$$

where $\boldsymbol{\gamma}(0)$ and $\boldsymbol{y}(\omega)$ are the static and trequency dependert values, respectively. Alsow $=$ $2 r c \lambda_{\text {max }}$ and $\omega=2 r c \neq$ when c the velociny of light and λ the wavelength at which the DFWM experrinerx wes performed. The experimental resuts were thus corrected using eq. 4 and the results are also shown in Table 1 in the colurn labeled Exp-corr. I can be seen that the agreement between the estimated static expertmental values and the calculated AMI values is now very reasonable, given the approximations involved. The expertmental values listed for $n=5$ are
which oxydecyl groups $\left(\mathrm{OC}_{10} \mathrm{H}_{21}\right)$ para-dibubstinited to one anctiver on the central ring. These groupt are necesesty for solubility but ateo make compersons whit this date unroliable. The values of y could be modified by chler geomeatical changes in the cligorner or chits in the - absorption spectrum. The UV spectre of Zhao \mathbb{C} ad. ${ }^{1}$ molicate then max for $n=5$ does not fall slong the curve generated by $n=i$ to 4 . Boch of these affects could be quite substantial.

Equation 4 probably overestimates somowhat the correction due to the dispersion effect due to the approxdrnations involved; mannly the inclusion of only one excitied state in the tratrmert ${ }^{1}$ it can be seen in Figure 1 however, that there is indeed an inprovernent of the agreement betwoen calculated and experimental values ahter including the eq. 4 correction for dispersion

The largest discrepancy is observed for benzeme kseff. However, ey > reported trom an EFISH measurement on benzene $(Q=1.06 \mu \mathrm{~m})$ is 14.04×10^{-36} ess ${ }^{6}$. Whathout any correction this result comes closer to our calculated value, indicating the difierence in experinemeal dispersion effects mentioned above. In any case, our predicted value for benzene is undoubtedly below the experimental resuts from whatever source. Our calcuiated components of the 7 tensor can be compared whth those reported by Perin ot all ${ }^{7}$, obtained using ab inhtio methods at both the SCF level and including correlation in the MP2 approximation. With a 4-31G basis augmented on carbon with a diffuse p and d tunction of exponent 0.05 , the $\left\langle\gamma>\right.$ value is $7.6 e \times 10^{-36}$ esu at the SCF level and 10.25×10^{-36} esu at the MP2 fevel. The moat important conclusion is that theiry $\mathbf{z z z}$
 the semiempirical resits give only 1.2% for the same ratlo. A siniler undorestimation of the same $72 z z 2$ componemt has been observed for polyculyiene oligorners. ${ }^{8}$ One reason for that must lie In the fack of fexbliny of the small basta set inplick in these semi-mpitical calcutations, causing them to strongly underestimating the component of the 7 tensor associated whit the direction perpendicular to the ring. However, as the length of the chain grows, Ixcoox grows faster than 72022 and eventually dominates the vilue of $<y>$ lessening the sforlicance of the discrepancy.

Pohdthiophene Oligomers

Expertinental date are also avaluble for the thiophene oligomers. ${ }^{1}$ Here again the disagreement between culculated and experimerted values hacreases rapldy with the number of nepent Units, as was porited our by Goldiarb at al. ${ }^{9}$ The difierences here are oven more pronounced than in the previous p-phenyiene case and the values of 7 are larger. There are several possible conformations for thiophene oligomers and, for reasons discussed in detal by Goldtab at al. ${ }^{9}$, calculations in this work are restricted to the "all trans" form in which the intra-unit S-C-C-S dithedral angle is 180.0. Table 2 shows the AM1 calcuitued values ${ }^{10}$, the experimertal DFWM resuts ${ }^{1}$ and experimental-corrected values using equation 4. The experimental-corrected estimate of the static hyperpolarizablity again shows a greatly froproved agreemern with the sumiemplical results. Aso the growth as a function of in no longer has the essentially exponential growth of the experimental <7 $(\omega)>$ values, as can be cleaty seen in Figure 2 . The rerralining discrepancy can probably be explained in a simlar manner to the p-phenylene digomers case. and can thus not be corrected whithin this approach, whthout hereasing the basis size.

Conclusions

The results of this study indicate that the semiempirical calculation of second Hyperpolarizabilities developed whthin the MOPAC program is indeed capable of obtaining reasonable estimates for these systems. Even more Importantly, thls study demonstrates the importance of accourting for frequency dependence in calcuiating tryperpolatzabillies. These effects are shown to be very large in some cases and are almost cortainly farger than corrclation errors in the calculated static values. It should be born in mind that our semiemplical calculations are abous four orders of magnitude fater than ab inhio calculations whin medhum-dzed basts sets and incorporating correlation at the MP2 leval, which is the minimum ievel of ab intitio theory necessary to knprove agreemert whin experimental results in a significant way.

A study of the energetics, structure, and hyperpolartabillies of other conformations of small thiophene oligorners and related cyclic-diene syztems is underway.

Acknowledgements

Support is acknowiedged from the At Force Olice of Scientific Research through grants AFOSR-s4004 (JAM) and AFOSR-00-0010 (HANG as wall as the Memphis State Universily Computer Center (HAK).

References

1. Zhao, M.-T.; Samoc, M.; Singh, B. P.; Prasad, P. N. J. Phys. Chem. 1989, 93, 7916.
2. Stowart, J. J. P. QCPE Program 455, 1983; version 3.1 (1986), version 5.0 (1989).
3. Fytzanis, C. Theory of Nonlinear Optical Susceptibilies", in Quantum Electronics, Rabin, H. and Tang, C. L. Ed.; Academic Press, New York, 1975.
4. Kutz, H. A; Stewart J. J. P.; Dieter, K M. J. Comp. Chem. 1990, 11, 82.
5. Dewar, M. J. S.; Zoebish, E. G.; Healy, E. F.; Stewart J. J. P. J. Amer. Chem. Soc. 1985, 107. 3902.
6. Levine, B. F.; Bethea, C. G. J. Chem. Phys. 1975, 63, 2666.
7. Perrin, E.; Prasad, P. N.; Mougenot, P.; Dupuis, M. J. Chem. Phys. 1989, 91, 4728.
8. J. Medrano and D. Dudis, unpublished resuts.
9. Goldfarb, I. J.; Reale, H. F.; Modrano, J. A. in Theoretical Prediction of Nonlinear Optical Properties of Molecules and Polymers", 1088 MRS Fall Meeting Symposium, MRS Symposium Proceedings 1989, 134, 609.
10. The AM1 parameters used for S are from a private communication

Table 1: Second Hyperpolartabilibies <7> for poly-p-phemylene ollgomers."

Number of Subunlits	$\begin{aligned} & \text { AM1 } \\ & \boldsymbol{T}(0) \end{aligned}$	$\begin{aligned} & \text { DWFM, }{ }^{\text {b,c }} \\ & 7(\omega) \end{aligned}$	OWFM $\cot 7(0)$
1	0.7	38.4	23.6
2	16.2	174.0	83.3
3	77.4	810.0	198.8
4	197.2		18.8
5	367.3	$1280.0^{\text {d }}$	297.3
6	573.5		
7	804.6		

${ }^{2}$ Units are 10^{-36} esu.
Expertmental values from Ref. 1 have been mutiplied by 610 make their series expansion consistent whih our eq. 1.
CThe value of $\mathrm{N}=4$ was not reported in Ref. 1.
${ }^{0}-\mathrm{OC}_{10} \mathrm{H}_{21}$ derivative

Table 2. Second Hyperpolarizabikies $<\boldsymbol{>}$ > for polythiophene oligomers. ${ }^{\text {a }}$

Number of Subunits	AM1 $7(0)$	DWFM b $7(\omega)$	DWFM est $7(0)$
1	1	25	13
2	22	138	43
3	103	960	184
4	284	4800	539
5	544	15600	1246
6	931		

[^2]Figure Captions

Figure 1: Second Hyperpolarizability versus number of units for poly-p-phenytene digomers. The curve labeled "Exp" is the DFWM resut from rel 1 and the one label "Cor-Exp" is the same result corrected for dispersion using equation 4.

Figure 2: Second Hyperpolartability versus number of units for polythiophene oligomers. The curve labeled "Exp" is the DFWM resut from ref 1 and the one habel "Corr-Exp" is the same resut correctod for dispersion using equation 4.
1

Preprint 3

QUASI-PARTICLES IN POLYMERIC CONDUCTORS

Jorge Medrano and Douglas Dudis*
- University of Dayton, Chemistry Department 300 College Park Dayton, OH 45469
-Douglas Dudis
Wright Research and Development Center Materials Laboratory Wright-Patterson AFB, OH 45433-6533

Abstract

The studies reported here are part of an effort to understand the electronic structure and statistical properties of quasi-particles in polymeric materials. These are solitons, antisolitons, polarons, and bipolarons, and in one way or another each of them is known to play a role in the conduction of electric current in those materiais. We have used pristine and doped polyacetylene as our example to study the geometrical and electronic distortions associated with quasi-particles in oligomers and infinite polymers. The computational approach has been based on the semiempirical self-consistent LCAO-MO theory at the AM1 level of afproximation for finite systems and the corresponding LCAO-CO theory in the tight binding approximation for intinite systems.

INTRODUCTION

Athough conducting polymers in general and polyacetylene in particular have received much attention in recent years, there are comparatively few first-principles theoretical calculations aimed at understanding the electronic structure of quasi-particles. Most of the calculations performed have used the Su, Schriefter, and Heeger (SSH) hamithonian [1]. This work was indeed a very important stepping stone, mainly because it showed that the soiton model of polyacetylene could be used to explain a number of properties of this material; optical, electrical, and magnetic. No other model can claim such an accomplishment. This success prompted other work and different extensions and modifications of the SSH hamitonian, too numerous to quote. Most notably however, H. Fukutome has very recently periormed a very complete study of a Pariser-Par-Pople (PPP) unrestricted Hartree-Fock (UHF) model of pohyacetylene [2]. The SSH approach however, is still too crude for the kind of accuracy that is needed since it is basically a Huckel-type approximation with sigma bond compressibility and electron-electron Coulomb interactions are completely neglected. Moreover, the SSH model does not have an anahytical sohtion and needs a number of empirical parameters spectic to polyacetylene (or the particular polymer under study) in order to be able to make some quarditative predictions.

On the other hand, a few sell-consistent LCAO-MO calculations have been performed on finite oligomers of polyacetylene, both semi-empirical [3] and ab initio [4]. The excellent agreement that we report below between one of our semi-empirical calculations and the ab initio result reported in ref. 4, convinced us that the SCF-LCAO-MO semi-empinical theory is completely adequate tor the purpose of a systematic study of the electronic structure associated with quasi-paricies. This methodology is still first-principles based and athough there are indeed parameters incorporated trito the theory, these are atomic in nature. Therefore, the same theory with the same parameters
can be used to study any molecule or infinite polymer without the need for information about the specific system.

We can mention here the onfy calculation of the intinite polymer of which we are aware; that of Staistrom and Bredas [5], who used the Valence Electron Hamiltonian (VEH) method to study the band structure at various doping levels.

Many fundamental aspects of the electronic and stuctural properties of the conducting polymers (in particular the highty conducting ones) are not woll established, and at this time theoretical understanding lags behind the rapid experimental developments. In what iolloys we expect to contribute information that will uhtimately prove useful for a thorough undersianding of the mechanisms of conductivity in polymers.

METHOD

The theoretical method used for the calculations was the semi-empinical SCF-MO theory at the AM1 level of approximation [6] as implemented in the MOPAC 5.0 program (CCPE 4455). The AM1 hamif \quad nian has been shown io correct for some deficiencies present in the older MNDO hamittonia;. The geometries of all the systems studies were fully optimized with due allowance for the symmetry constraints in each case. Convergence of the calculation was difficult in some of the examples, especially for doublet and triplet states. In each case the optimization was very carefully performed by running a first step with the keyword PRECISE (thus increasing the criteria for terminating all optimizations, electronic and geometric by a factor of 100). In subsequent runs, the gradient was decreased even further by using the SIGMA method due to Komornicki and Mclver [7] while at the same time making the criterion for sell-consistent * convergence even stricter (using the keyword SCFCRT $=10-10$ or SCFCRT $=10-11$). In this way the gradient norm was usually reituced to less than 1 (in kcaVA or keal/degree) even when more than seventy geometrical variables were simultaneoushy optimized. For infinite systems we used the "chuster approximation" developed by Stewart [8] fthe name is misleading because Born-von Karman cylic boundary conditions are actually used; it is thus an approximation to a full crystal orbital (CO) calculatic n). This approach is known to be an excellent approximation to the full CO result when the unit call used is large enough to ensure that atoms at one end of the repeat unit have a negligible density matrix element with atoms at the other end. Since the repeat units we used are almost $27 \AA$ long, this condition is very rigorously met even in the examples studied, where there is an extended x system. However, in at least one example (see below) the full CO calculation was performed as a check (using the MOSOL program, OCPE \#495), thus verifying that the results were the same to four significant digits for the optimized geometrical variables, heats of formation and degrees of bonding. Obtaining the band structure however, requires the iull solid state calculation involving sampling of the Brillouin zone using a regular mesh. The advantage of the approximation is of course that it takes $1 / 5$ to $1 / 10$ of the CPU time required by the full CO calculation.

We mimicked the effect of a dopant in the repeat unit by using the "sparkles" provided in the MOPAC program. These are uncharged species which immediately ionizes the polymer. They can be regarded as unpolarizable ions of diameter 1.4A. We used an acceptor dopant in the polaron caiculations; the effect of the sparkie being that a net positive charge is laft in the x system.

The degrees of bonding were calcuilated from the densty matix using the definitions given by Medrano et al [9], for molecular and infinite polymers as weli. These are known to be an accurate measure of the integrated electron density essociated with a bond, and have the important advantage that the same basic formalism (based on the first-order reduced density operator) is used both for molecuies and infinite polymers. In the cases we studied, the degrees of bonding give a much better description of the bond altemation (or tack of it) than the bond lengthe, since the former are more directly associated with the electronic structure.

For almopt all the examples, we canied out calculations both at the open-shel restricted HartreaFock (ROHF) and unrestricted Hartres-Fock (LHF) lev : $\$$ of the theory. The differences botween both descriptions is discuseed below.

DESCRIPTION OF THE SYSTEMS STUDIED
As already stated, h was our purpose io study the ebectronic structure of quesi-perticies such as soltions, polarons, etc. A static neutral coltion (S) can be considered the same as a radical. The eftect of the soltion on the geometrical structure ts to lip the bond alternation from one to the

CHARGE and SPIN RELATIONSHIPS OF QUASI - PARTICLES

	Charge	Spin
Neutral Soliton (S)	0	$1 / 2$
Charged Soliton $\left(S^{+}\right)$or $\left(S^{-}\right)$	± 1	0
Soliton - Antisoliton Pair (SS)	0	$0, \pm 1$
Polaron $\left(\mathrm{P}^{+}\right)$or $\left(\mathrm{P}^{-}\right)$	± 1	$1 / 2$
Bipolaron (bP ${ }^{++}$) or $\left(\mathrm{bP}{ }^{--}\right)$	± 2	0

Other of the two degenerate phases in the material. A soliton can be positively charged (carbenium ion) or negatively charged (carbanion). The three situations are depicted in Fig. i. These schemes in Fig. 1 should not be taken 100 strictly however, since they do not show the essentially delocalized nature of the quasi-particles, but are intended to allow easy electron counting. Now, solitons are known to be topological particies. Therefore, in infinite systems they are always created in pairs, called soliton-antisoliton pairs (SS') (This can also be seen as anising from stability conditions.) Any of the two members of the pair will cancel the effect of the other member next to tt, so to left and right of the pair the bond alternation will be the same (cf Fig. 2).. What happens in between, and how that depends on the distance between soliton and antisoliton, can only be determined by calculation and will be discussed below. One such pair can also be regarded as a (singlet or triplet) biradical.

One electron can be removed from or added to a region of the material where a solitonantisoliton pair has been created, giving rise to a positive or negative polaron respectively (P^{+}or \mathbf{p}^{-}). (They can also be reganded as a radical cation or radical anion respectively in the static case.) Removal or addition of two electrons results in a positive or negative bipolaron (bP'or bP ${ }^{\text {a }}$) or a cication or dianion respectively. Figure 3 attempts to give a graphical representation of polarons and bipolarons, while at the same time emphasizing the delocalized nature of the particles. Again, both at right and left of a polaron or bipolaron, the bond alternation is the same; i.e. we have either phase A or phase B at both sides of the quasi-particle in a polyacrtylene chain (cr. Fig 3). Once again the detailed geometrical and electronic structure can onty be determined by calculation.

These particles have very unusual relations of charge-spin, in most cases at variance with elementary particies such as protons and electrons. Table 1 gives a summary of the charge and spin associated with solitons, soliton-antisoliton pairs, polarons, and blpolarons.

The actual systems we used as case studies are: (1) The polyacetylene oligomer chain $\mathrm{C}_{21} \mathrm{H}_{23}$ for studying the lsolated collion and the repeat unit $\mathrm{C}_{22} \mathrm{H}_{22}$ for studying the (SS°) pair in an infintte system. We used the same repeat unit to study the polaron ${ }^{+}+$created from the (SS") by tnchuling an acceptor "aparkle" in the calculation. These systems are deplcted in Figure 4.

RESULTS AND DISCUSSION

1. Solitons

We fully optimized the geometry of the $\mathrm{C}_{21} \mathrm{H}_{23}$ oligomer when a neutrial soliton at the central carbon atom, under $\mathrm{C}_{2 \mathrm{u}}$ symmetry as described above. The ground state of the system is of course a doubiet, and we performed the calculation both at the UHF and ROHF lavol of theory. The UHF resut gives no bond length alternation and no degree of bonding ahemation, except close to the ende of the chain, due to the serminal effiects. Close to the soltion ste, all bond

rigure 7. Solitons in polyacetylene

Neutral (Radical)

Positive (Carbenium ion)

Negative (Carbanion)
Figure 2. Soliton-antisoliton pair

Singlet or Triplet Birradical

Figure 3. Polaron and Bipolaron

Figure 4. Systems used for the studies

Figure 5
Bond length alternation in A in neutral
and positive solitons in C 21 H 23 oligomer

Figure 6 Degree of bonding alternation in neutral and positive solitons in C21H23 oligomer

Fengths are 1.40ג and all degrees of bonding are 1.33. Now, the UHF wavetunction is nof an elgenfunction of the operator that represents the epin squared, 8^{2}. The theoretical value for this case is $S^{2}=0.75$. The UHF result is $S^{2}=3.68$, ie. there is a very large spin contanination. This is probably due to low lying exctied states of higher epin mulliplicity such as quartet, sextet, etc. These oxcited states probably have no bond length ahemation. In any case this lovel of spln contamination incieates that the UHF wavelunction is not a sulliciently accurate representalion of the doublet. It appears the UHF description exagoerates the opaning of the shells due to the magnetic infersetions that originates in the unpaired spin. On the other hand, because of the way Kis obtained, in the ROHF wavelunction, only the singly occupled ortital contaitutes to the spin density wave away from the soliton, which is unrealistic. So nelither type of wavefunction can give en eccurate description of ath the properties of lrierest, when the number of α and β spins is not the same. It will probably be necessary to resort to some method for incorporating correlation to improve over both the UHF and ROHF descriptions. Some preliminary calculations along that direction have already been carried away in our laboratory at the MP2 lovel, and they contirm, as expected, the above discussion. As regurds the bond lengths and degrees of bonding atiemation, the ROHF calcutation pives quite accurate result. At the same time the agreement between those fragment-based approximate ab initio calculations [10] and ours, lends additional credibility to the semi-empirical approach in these situations.

Therefore, we used the ROHF/AM1 calculations hereatter, which is of course the same as closed-shell RHF/AMI in the cases where there is the same number of a and β spins.

Figure 5 shows the difterence in adjacent bond lengths Δr, plotted against carbon site distance from the soliton, for both the neutral and the positively charged quasi-particles. Only the right hall of the molecule is included in the plot, since the other hati can be derived by symmetry. $\Delta r=0$ implies no bond alternation, and this happens precisely at the sofiton center.

The plot in Figure 5 also shows a horizontal line drawn at the value of $\Delta t_{s, ~}=0.095 \AA$ corresponding to infinite polyacetylene, as obtained through a full CO calculatien with the MOSOL program. This value is in very good agreement with the experimental result of $\Delta r_{\infty}=0.104 \hat{A}$. The end effect is cleaty visitie in Figure 5 in that the values of Δr for the last carbon atoms exceed the infinite polymer value.

Both curves for the neutral and positive solitons, can be approximated by a function of the form $\Delta r^{=} \Delta r_{m} \tanh (\mathrm{n} /)$ as proposed by Su el al, In ref. 1. Taking for $\Delta \mathrm{r}_{\mathrm{p}}$ the value quoted above, we obtain the best fit for the neutral soliton when ha. This is a measure of the extent of the quasiparticle, and is in very good agreement with the result obtained by Boudreaux ef al. [3], who found ins through a calculation on $\mathrm{C}_{4} \mathrm{H}_{4} 43$ using the MNDO hamitionian and $\mathrm{Ar}_{\infty}=0.106 \mathrm{~A}$ (in ref. 1 , the authors came up with $l=7$).

The values of Δr for the positive soliton are in excellent agreemert with those obtained by Villar ot al. [4] who carried out an ab initio calculation on the same oligomer $\mathrm{C}_{21} \mathrm{H}_{23}$ as we did, using a couble-zeta 6-31G basic set. All the bond lengths we obtained by geometry optimization agree within 1\% wht the ab initio ones. The hyperbolic tangent that best interpolates among the calculated points is calculated with l-7 $4 \Delta r_{5}=0.112$ is used (as in ref. 5) or with $1=6$ H $\Delta r_{0}=0.095$ is used, as we did for the neutral solion. in any case this is somewhat larger than the value lu5 obtained in ret. 3. The difference could be due to the tact that we used the AM1 hamilionian and Boudramx of al. used the MNDO one. The agreement is still very good however.

We also calculated the degrees of bonding BAB between consecutive carbon atoms, and $\triangle B_{A B}$ analogously to Δr for both the neutral and positive coliton. Except for the last three points where the discrepancy is slighty larger, we again have an agreement within 1% with the ab Intio values in ref. 4 for the positive soliton. This, and the agreement for the bond lengths mentioned sbove, gave us an assurance that the semi-empirical method we used is sufficientily reliable for this pupose. The resufi for $\triangle B A B$ versus carbon stie distance from the center, are ehown in Figure 6. Once again the value for the infinite polymer is shown as a horizontal lune, as calculated with the MOSOL program. Again, the end eftects are vistbio in the tast fow points. It is an miteresting and completely now result that a hyperbolic tangent interpolates very woll among the calculated polnis, with has for the neutral solton, and beb for the potitive one. This tiveans that the relation botween these curves and the colution of the solitary wave equation in 44 fiold theory [11) poes beyond the geommerical distribution cmused by the defect, and rofiects in the aseociated elbctrondenaliy diatibution.

2. Somion-Antisoliton Pairs

We calcutated the singlet state of neutral solition-ancisoliton pairs in infinite systems using the cluster approximation described above, and $\mathrm{C}_{22} \mathrm{H}_{22}$ as the repeat unit. Besides, we repeated the calcuiation for separation of $R=1,5,8$ and 11 bonds between the soliton and antisolition. Table 2 shows the heats of formation of the system for the difierent separations and the heat of formation of the $\mathrm{C}_{22} \mathrm{H}_{22}$ repeat unit when M is used to represent pistine polyacetyiene. This comes out to be $141.65 \mathrm{kcal} / \mathrm{mol}$ or $12.87 \mathrm{kcal} / \mathrm{mol}$ per CH unit. The full CO calculation with the MOSOL program gives 12.93 kcal/mol for the same quaniliy; showing that the cluster approximation is providing the correct energles to within hundredths of a kcalmol. As Table 2 shows, the calculated heats of formation are independent of the collitor-antisoliton separation, within the uncertainty of the method of a fow hundrecths of a kealmol. This resulk is at variance with a provious calculation by Bredas et al. [12], who used a Huckelitype method with sigma bond compressibility and cyclic polyene molecules with about 110 carbon atoms to represent the system. These authors find an attractive interaction between solition and antisoliton in the electronic ground state of the system, l.e. the energy of the system when the soliton and amisoliton are in close proximity is about 0.9 eV tower than that corresponding to a large separation. This is tantamount to stating that when they are in close proximity we have the perfectly dimerized state, and when they are separated by a distance larger than approximately twice the width of a soliton, then we have two transtions: for instance, $A \rightarrow B \rightarrow A$. (This meaning that the system is in phase A left and right of the pair and in phase B in between.) The energy would then rise rapidly when R goes to indinity, to tis asymptotic value of twice the energy of one tsolated solition. The two limits $R \rightarrow 0$ and $R \rightarrow \infty$ cannot be argued of course, but the total energy should depend on the exact shape of the soliton pair at intermediate distances. Interestingly, we obtained an unexpected result regarding this point. The two bond lengths adjacent to the soliton and to the andisoliton are constrained to be equal, but in spite of that, the bond length alternation is not changed by elther particle. Thelr athemation to the right of each soliton for example, secovers to what 1 i was to the left two bonds past the quasi-particie. This picture is even clearer when the degree of bonding allemation is examined. It decreases somewhat together with the bond lengit attemation, without ever vanishing, and recovers together with the latter, too. In fact h decreases trom tis infinite polymer value of 0.74 to 0.65 at the center of each soliton, i.e. less than 0.11 This implies that the two bonds at each side of elther soliton have the same length but very different degrees of bonding: one is a double bond, BAB=1.75 and the other is single, $B_{A B}=1.10$. Figure 7 shows precisely that, tor the case when both quasi-particles are nine bonds apan, but the same is true frrespective of the separation. In case there were an influence of a different environment left and right of each particle, we checked carefully the situation when they are eleven bonds apart. Then each of the particles has its left and right neighbor at exactly the same distance in a $\mathrm{C}_{22} \mathrm{H}_{22}$ repeat unit. The same picture is obtained also in this case. This is of course consistent with our finding that the energy is the same irrespective of the separation. n is also conslistent with the small energy of creation of the solitor-antisoliton pair. Acconding to the results in Table 2, this is only 5.55 kcalmol (or 0.24 eV . Exactly at what distance, both parts of the pair start behaving as independent particles we of course do not know. Trying larger separations would entail using larger repeat units, making the system irtractable at this level of the theory. The question immediately arises regarding the nature of the interaction between both particles. In other words, how does each of them know about the presence of the other when their separation is as large as cleven bonds? (in should be kept in mind that their width is two bonds or three bonds to each side of the certier.) The answer to this question is not clear to us at the presert time.

The description based on the more simplistic plcture (based on a SSH-type of calculation) described sbove has already been published in a book on the subject [13] by S. Kivelson. According to wir study however, the detalts of the shape of the pair are at ine very least debatable matter. Morsover, we can conclude that due consideration of electron-electron interactions is absolutily nocessary for an accurate desertption of the detaits of the efectronic structure of these systems.

3. Polarons

Alhough the polaron calculations are still beling run, the two values for the energy that we aready have, one for the cturetion whth the two parts of the sytern nine bonds apart and the other Ave bonds apart, show that there is indeed an attractive interaction in this case. The values are $E\left(R_{2} 9\right)=271.10 \mathrm{kca} / \mathrm{mol}$ and $\mathrm{E}(\mathrm{R}=5)=266.30 \mathrm{kca} / \mathrm{mol}$. Their difterence amourts to 4.8 kcal mol , or 0.21 oV . In this case, we find a botter agreement whin Bredes ol al. calculation [12] of an stenctive imeraction of 0.35 oV .

	$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kcal} / \mathrm{mol})$	$\Delta \Delta H_{f}$
Normal $\mathrm{C}_{22} \mathrm{H}_{22}$ n R	141.65	
01	147.20	5.55
25	147.19	5.54
49	147.26	5.61
511	147.28	5.63

In both our calcuilations, we placed the copant above the plane of the polymer, 3.5λ on top of the hydrogen bonded to the carbon atom where the center of the left solition is. This of course destroys the $\mathrm{C}_{2 n}$ symmetry and gives rise to a targe clipole momert, of about 18 debyes.

Energetically, It takes about $121 \mathrm{kcalimol}($ or 5.2 eV) to introduce the dopant (i.e. borize the polymer) and create the polaron, as compared with the energy of the system with a neutral solitionantisoliton pair. A more detailed study of the electronic structure is presently undenway.

LINES OF FUTURE RESEARCH

This research can be extended to include negative polaront and positive and negative bpolarons in polyacetylene. Several issues regarding this sublect need clarification.

Also, other interesting highly conducting polymers can be studied with these techniques, inctuding (SN)x which is know to be superconducting at very low temperature.

Figure 7
Bond length and bond order alternation In polyacetylene (C221122 repeat unii) with meutral solitomanticoliton pair

Then, the next step would be the detalled study of the band structure associated with quasiparticles. The tew publications on this subject are not in agreement with one another. For example, Fukutome's calculation [2] (see above) gives a structure of lovels in the band gap very ditferent from what is routinely sccepted from the SSH-yype of work. This is a challenging calculation in any case, because Hatree-Fock based methods, whether ab initio or sem-empirical are know to exaggerate notoriously the band gap and not give very accurate densities of states.

There are also some very mportant theoretical issues to explore. For instance, which is the relation (if any) between conductivity and myperpolarizablities. This subject can be investigated with the same tools described here.

The statistical mechanical aspects of quasi-panticies, are also essentially unexplored, for Instance the coupling of two fermious into a boson, as in the formation of a soliton-antisoliton pair. Can this be considered a pairon? Does it obey a strict Bose Einstein statistic? Does it bear any relation with Cooper-type pairs? These are only a few examples of unanswered questions.

Finally, in would certainly be worth exploring in more detail an interesting, very recent suggestion by Mazunder and Ramasesha [14] about a blpolaronic mechanism for superconductivity in organics to see it the same idea can be applied to polymers of other structures and compositions.

Some of these issues will be addressed in our laboratory, and the results published elsewhere.

CONCLUSIONS

We have been able in this investigation to use some new tools and ideas and have found some previously unreported aspects of the electronic structure of quasi-particles.

Ours is one of the first calculations of intinite polymers when quasi-particies are present, and the first to our knowledge in which the dopant is explicitly taken into account. This is also the first calculation (at this level of theory) of the interaction between the two parts of the system in a soliton-antisoliton pair or in a polaron.

The difference between the ROHF and UHF descriptions had not been pointed out before. The question still remains, if correlation has to be included, which is the minimum level of theory necessary for an accurate description of all the properties of the system. We intent to address this issue.

We also believe that the use of the "degree of bonding wave" (DOBW) is the most descriptive tool available to understand, in the most pictorial way, the characteristics of the electron density distribution. We have shown as well that the DOBW also can be described by a hyperbolic tangent functional dependence with the distance from the center of the soliton.

Finally, we have found some unexpected features of the electron stucture associated with a soliton-antisoliton pair, that we believe are inportant for the detailed understanding of this, and probably other quast-particies.

REFERENCES

1. W. P. Su, J. R. Schriefier, and A. J. Hegger, Phys. Rev. Lett. 42,1608 (1979).
2. H. Fukntome, J. Molec. Stuct. (Theochem), 188, 337 (1989).
3. D. S. Boudroaux, R. R. Chance, d. L. Bredas, and R. Eibey, Phys. Rev. B 28 , 6927 (1983).
4. H. O. Vilar, M. Dupuis, and E. Chmenti, Plys. Rev. 8372520 (1988).
5. 8. Etutatrom and J. L. Erodes, J. Molec. Struct. 182 393 (1989).
1. M. J. S. Dowar, E. G. Zoetrich, E. F. Healy, and J. J. P. Siewat, J. Am. Chem. Soc. 107, 3902 (1985).
2. (a) A. Komornickd and J. W. Mctver, Chem. Plys. Lett. 10,303 (1971); (b) A. Kornomicki and J.
W. Mchver, J. Am. Chem. Soc. \&A, 2625 (1981).
3. J. J. P. Stowar, Now Polymeric Mat. 1.53 (1987).
4. (a) M. A. Natiello, H. F. Reale, and J. A. Medrano, J. Comp. Chem, G, 108 (1985); (b) R. C. Bochicchio, H. F. Reale, and J. A. Medrano, Phys. Rev. B 40,7186 (1989).
5. G. P. Das, Chem. Phys. Lett. 147,591 (1988).
6. A. S. Davidov in "Solitons in Molecular Systems," D. Reidel Publisting Co., 1985.
7. J. L. Bredas, R. R. Chance, and R. Sibey, Phys. Rev. B 26, 5846 (1982).
8. S. Kivelson, "Soliton Model of Polyacetylene," in "Solitons," page 325; V. M. Agranovich and A. A. Maradudin, editors; North Holland Publishing Co., 1986.
9. S. Mazumdar and S. Ramasesha, Synth. Mitals 2Z. A105 (1988).
\%
$2 \cos$

[^0]: - To mom cornepondemer should be eldouned

[^1]: -Prowni addreas: Buropean Office of Aerospece Remearch and Dewlopment, Unitod States Air Foree. 223/231 Old Marylabone Rd, London, NW1 5TH, GL. Britnin.
 *"Author to whom corrmpondence should be eddramed.

[^2]: Unte are 10^{-36} esu.
 ${ }^{\text {E Experimentel values from Ref. I have been multiplied by } 6 \text { to make their series }}$ expansion conslatent with our eq. 1.

