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1. INTRODUCTION

This is the second semiannual report on the research project entitled "Automated Handling
and Assembling of Non-rigid Objects", covering the period July 15, 1990 through January 14,
199 l."In this period, three topics were studied. The first topic addresses the strategies of

automated handling and assembling of non-rigid objects by using multiple end-effectors, the
second topic studies the shape reconstruction of two dimensional objects, and the third topic is
the const-ut. don of a laicr iange f'Ider for identification of the third dimension of an object.

The-purpose-of the first topic i"t investigate'optimal tool structures for handling one ano

two dimensional objects. Previously,,we proposed to uswpvacuum pads to pick up large
deformable sheet by the difference of the air pressure. Such a mechanism needs a large pad
when the object has a large surface area, which is often too heavy for numerically controlled

machine to carry. By using two ordinary end-effectors, just like the two hands of human

beings, deformable objects can be manipulated without using a large tool. -O3 study has
developed an optimal mechanism for coordinating the end-effectors such that the machine

consumes the minimum energy and no damage is made to the object.

-The prl-Mpof the second topic " identif4 the deformed shape of two-dimensional
objects. For two dimensional objects, there does not exist closed-form solution to the
governing equation of the deformation. Our goal is to sense a few data points on the deformed
surface. Based on these points, a numerical model can be driven which can reconstruct the
entire surface with a good approximation. This numerical model can also be modified in
accordance with the deformation behavior of the object.

,The prpose-of the third topic is- develop a laser range finder such that all three
dimensions of an object can be identified. The laser range finder is a very important tool for
our research, since a two-dimensional object becomes three dimensional once it is deformed.

For three dimensional objects, the third dimension is important to completely identify the shape

of an object even before the deformation occurs...--

The rest of this report describes the results or the status of the three topics as just

summarized as well as the research plan for the next period.



2. AUTOMATED HANDLING OF DEFORMABLE OBJECTS BY COORDINATED

MANIPULATORS

Traditionally, large two-dimensional objects are handled by vacuum pads. The pads are

designed to cover the most area of the object surface. When the space inside the pad becomes

vacuum, the material can be picked up by the difference of the air pressure. A vacuum pad,

however, may become very heavy and big when the object surface is large. This imposes a

large load on the machines on which the pad is installed. Human beings, on the other hand,

can effectively handle large deformable objects with two hands. This implies that by

coordinating two manipulators, the same object may be handled by ordinary end-effectors.

The mechanism for handling deformable objects, however, is very different from handling

rigid objects. A major difference is that the two end-effectors have certain degrees of freedom

in their relative motions. This motion freedom can be used to satisfy other requirements in the

automated handling of the objects. For example, reducing the distance between the two end-

effectors can reduce the workspace required by the automation process. The question is what

are the optimal motion trajectories for each end-effector in handling the objects?

We study this problem by using two criterion. First, the load imposed to the handling

machine should be as small as possible, and second, the possibility of damage to the object

should also be as small as possible. Since the flexibility of the object, the relative position and

orientation of the two end-effectors can be altered while handling the object. When the object

is deformed, however, deformation forces and moments are exerted on the end-effectors and

the objects. Large deformation forces and moments may damage the object and impose a large

load on the handling machine.

Three coordinating methods are suggested for the two manipulatcrs. The first method

allows the relative orientation between the end-effectors to be altered, but no relative position

changes. The second method allows the relative position to be altered, but no relative

orientation changes. The third method allows both the position and orientation to be changed.

Through the analysis of kinematic constraints, the first method is found not possible. Studies

are then concentrated on the second and third methods. The second and third methods are
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further compared through the study of deformation mechanics. It is shown that the third

method results in minimum reaction forces and moments between the objects and end-

effectors. It is identified as the best method for automated handling of two dimensional and

deformable objects.

Unfortunately, motion trajectories for the two manipulators to handle the object are very

complicated to compute, which is not adequate for real-time execution. For practical

applications, we further propose o simplified method in which the complicated trajectories are

replaced by piece-wise linear fu,.ctions. The reaction forces and moments in the simplified

method are also analyzed which are only slightly larger than the original method.

To veiify the proposed method, experiments are also conducted in our Advanced

Manufacturing Laboratory. The experiment results show that the third method (Fig. 1) is

better than the second method. By using the second method, the orientation of the two end-

effectors are kept unchanged while they approach each other in order to bend the object. This

exerts large reaction forces and moments on the objects, leaving two permanent crease on the

object surface. By using the third method, the end-effector simultaneously alter their position

and orientation while bending the object, and no permanent damage is made on the object. In

addition, the forces and moments exerted on the end-effectors are much smaller than that in the

second method.

A technical paper has been written based on the research results just described, which is

attached as Appendix A of this report. Technical details of the handling mechanism by two

manipulators can be found in the paper.

3. SHAPE RECONSTRUCTION OF TWO DIMENSIONAL OBJECTS

Shape reconstruction of two-dimensional objects is a special problem associated with the

automated handling and assembling of deformable objects. When a two-dimensional object is

picked up by an end-effector, the object is deformed. In order to precisely position it, the

deformed shape needs to be identified. There are two difficulties associated with this

identification task. First, the deformation characteristics of the object are unknown; therefore,

it is impossible to reconstruct the surface by using its deformation governing equations.

3



Fig. I A deformable sheet is handled by two nianipulat 
using the thir d metho

Note that both the position and orientaton of the two end-eff to are alterdas the object is picked up.Secondly, even the governing equation is identified (like what we have done for one-

dimensional 
objects), there is no explicit and closed-form 

solutiontwo-dimensional objects. to the governing equation ofWe propose to use numerical solutions to represent the deformed surface To precisely

represent the surface of the object, it appears that a great number of data need to be collected
from the object surface This imposes a heavy load on the sensing system, and makes the
methods inefficient. To Overcome this problem, we propClse a physicallybased method Twosteps are involved in the method. The first step is to determine how to describe a deformed

object by using only sparse data on the object surface, The second step is to decide sensing

strategies, i.e., how to select the points on the surface that need to be sensed.
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The principle of physically-based modeling for vision can be stated as follows: physical

properties and/or high level knowledge of the objects should be considered in both their

representation and ahc low level sensing tasks of the vision sensor. Thus the shape can be

reconstructed by using sparse data points of the surface as the rest of the surface should be

governed by the physical properties of the object. If this principle is applied to shape

reconstruction of a two-dimensional object, the deformation governing equations of the plate

should be used to derive the representation of the objects. However, as mentioned earlier, this
is not possible. Instead of strictly following the deformation governing equations, we propose

a physical constraint concept, i.e., physical constraints associated with a deformable object

should be considered when the shape is constructed. The physical constraints include the

elastic deformation of two-dimensional object, the shape of the object before deformation, and
the position and orientation of the gripper that holds the object. These constraints are already

known and should be taken into consideration in the process of reconstruction.

In order to reflect the elastic nature of the object, the shape of the object is proposed to be

reconstructed by minimizing the strain energy of the object surface. As the expression of the

plate's strain energy is very complex, it is simplified for the purpose of efficient computation.

This simplified strain energy happens to be the same as the energy functional of the thin plate

spline (TPS) used in visual surface reconstruction. A pioneering work in visual surface

reconstruction is accomplished by Grimson [1]. Terzopculos [2] gave a more rigorous proof

of the TPS in reconstructing the surface from given spErse data point. Both Grimson and

Terzopoulos used energy minimization methods to reconstruct the surface. Their method is

adopted in our reconstruction process.

In the work of visual reconstruction done by Grimson and Terzopoulos, the sparse set of

data points is provided by stereo visions. We propose to use a laser range finder in our shape

reconstruction process. The advantage of using the range finder is that we can control the

sensor to sense the data points we want. The range finder can be moved by a robot arm.

Hence, the sensor is dynamic. We thus have to decide sensing strategies for the range finder.

The basic strategy is that we need to sense dense data points from the region where the the

surface curvatures are large and sparse data points from the area where the surface curvatures
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are small. The physical constraints as mentioned earlier can determine whether the curvatures

on a particular part of the surface are large or small.

At the point of this writing, this reconstruction topic is still under active investigation. We

expect that a detailed technical report will be available when we submit next semiannual report.

4. THE CONSTRUCTION OF A LASER RANGE FINDER

In order to carry on experimental study in our research, a laser range finder was

constructed in this research period. The basic structure of the laser range finder is as shown in

Fig. 2. It consists of a laser and a CCD camera. The laser generates a beam light source which

is converted into a sheet of light through a cylindrical lens. This sheet of light is scanned

across the scene, producing a single light stripe for each position. When the light stripe is

sensed by the CCD camera, the camera view of the stripe shows displacements along a stripe

which are proportional to depth. Thus, a structured light source plus a two-dimensional sensor

can provide three-dimensional information. Three-dimensional information is essential for us

to study the deformation behavior of two and three-dimensional objects.

At the point of this writing, the laser range finder is already operational. Appendix B of

this report describes how to locate a point and a surface in a three-dimensional space knowing

only information about their image captured by the range finder.

5. RESEARCH PLAN FOR THE NEXT SEMIANNUAL PERIOD

In the next period, we plan to continue our research on the reconstruction of the two-

dimensional object as described in the third section of this report. In addition, we will start to

look at the virtual space issue as mentioned in our proposal. This issue is for planning the

motion control mechanism of the host machines which handle the object. The basic idea is to

use a virtual space to enclose the shape of a deformable object. As a result, the deformed shape

of an object does not need to be exactly identified as long as it falls in the virtual space. In this
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Fig. 2 The structure of the range finder

way, we can plan the motion trajectory of the host machine based on the virtual space, and can

still avoid collisions of the object with any other obstacles.
Another topic that we will initiate is the deformation of three-dimensional objects. We will

first study how a three-dimensional object is deformed under external forces and moments.

Then, we will investigate how to recognize a three-dimensional object when it is deformed.
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APPENDIX A

AUTOMATED HANDLING OF DEFORMABLE OBJECTS BY COORDINATED

MANIPULATORS

Ming Z. Chen and Yuan F. Zheng

Department of Electrical Engineering

The Ohio State University

Columbus, OH 43210

ABSTRACT

Coordinating two manipulators to automatically handle deformable objects is studied in

this paper. Because of the flexibility of the objects, the manipulator hands are allowed to have

certain degrees of freedom in their relative motions. However, kinematic constraints are still

imposed on the relative motions between the two manipulators. In this study, the kinematic

constraints are first derived from the flexibility of the objects. Then the investigation is

concentrated on the mechanisms for handling one-dimensional objects. Three coordinating

methods are identified for the manipulators. The first method allows the relative orientation

between the two manipulator end-effectors to be altered, but no relative position changes. The

second method allows the relative position to be alteretx, but no relative orientation changes.

The third method allows both the position and the orientation to be altered. Through the

analysis of the object mechanics, it is found that the first method is not adequate. Motion

trajectories of the end-effectors are then derived for the second and third methods. Analysis

also shows that the third method results in the minimum reaction forces and moments between

the object and the hands. It is best to use for automated handling of one or two dimensional

deformable objects. Finally, experimental results are presented to verify the theoretical studies.

ACKNOWLEDGEMENT: This work is supported by ONR under grant N00014-90-J-1516,

and by a Presidential Young Investigator Award of NSF to Yuan F. Zbeng (DDM-8996238).
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1. INTRODUCTION

In recent years, coordinating two or more robot manipulators for manufacturing
automation has received much research attention. An earl-er investigation was conducted by
Konstantinov and Markov [1]. In their work, some necessary conditions for the .;ollaboration

of two end-effectors in assembly operations were given. Later, multiple manir, lators working

in a common workspace were studied by Freund [2]. His main interest was to avoid

collisions among multiple manipulators, for which a hierarchical control system was
developed, and a nonlinear control mechanism was used in the systcin.

Theoretical studies of kinematic constrm ,its imposed on two coordinating robots handling
a rigid object were conducted by Mason [3]. Zheng and Luh later extended Mason's results

by identifying one manipulator as the leader, and the other as the follower [4,51. Kinematic
constraints were also formulated in [4,5] for the leader and follower when they handled rigid

objects as well as objects with degrees of freedom, such as a pair of pliers. Hemami [6], on

the other hand, gave another approach to study the coordination control of two moving arms,

in which the rigid body constraint equation was replaced by a symmetry rela*4nship between

the arms. More recently, Lee [7] extended the concept of the robot manipulability to redundant
dual-arm systems. He pointed out that the required motion and force trajectories of a given task

by a redundant dual-arm system could be abstracted by a series of desired manipulability

ellipsoids. Furthermore, task-oriented dual-arm manipulability could be mathematically

defined by quantifying how the manipulability of one arm affects the other and measuring the

geometrical close-:ss between the desired and the actual manipulability ellipsoids.

Dynamics of two coordinating robots have also been extensively studied. In [8,9], it was

revealed that two dynamic equations, one for each coordinating robot, could be combined to

form one unified dynamic equation when the two robots were handling a rigid object. In the

control aspects of two coordinating robots, Tam, Bejczy and Yun [10,11] d.-veloped a

nonlinear dynamic control method. The main feature of their method is that the nonlinear

feedback mechanism was integrated with an optimal error correcting loop and an optimal

coordinator. Ozguner, Yurkovich and AI-Abbass [12] established a hierarchical framework

which employed two levels of control hierarchy. The decentralized model reference adaptive

control approach using variable structure controller was applied. Hayati [13], and Yoshikawa

and Zheng [14] extended the theory of hybrid position/force control to the cis," of ,auliple
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coordinated robots. In [13], the solution was given by partitioning the object and considering
the object as part of the last link of -.ach arm, and cooperation was achieved by controlling

each arm such dLat the bu,.-n of actuation was shared between the arms in a non-conflicting
way. The method proposed in [14] could control the motion of the object as well as the

forces exerted on the object. In another work, Koivo [15] l-'ioposed that the two coordinated
robots could be controlled by an adaptive controller of a self-tuning type. The controller was

designed on the basis of the stochastic multi-variable discrete time mode!, in which the system
parameters were recursively estimated on-line by using a quadratic criterion.

While the studies on the coordination of multiple manipulators continue [16-201, one

aspect has never received serious attention, i.e., handling deformable objets by multiple

manipulators. In reality, however, there is a frequent occurrence, Jf non-rigid objects. For
irstance, in the shipbuilding, aerospace, and automobile industries, flexible plates have long

been used in the assembly of various kinds of vehicles. It is more noticeable in recent years

that non-rigid composite materials such as pre-preg have been used to replace metal in many
places [21]. Traditionally, to handle non-rigid materials, special toolings needed to be

designed such as a vacuum pad [21]. The pads are designed to cover the most area of the
object surface. When the space inside the pad becomes vacuum, the material can be picked up

by th, differerce of the air pressure. However, such a mechanism needs a large pad when the

object has a large surface area, which often becomes too large and too heavy to be carried by a
robot manipulator. Human beings, on the other hand, can effectively handle large deft- mable

objects with two hars. This reminds us that by coordinating two or more manipulators, it is

possible to handle deformable objects by using ordinaiy end-effectors. As a result, large and

heavy tools can be avoided. This, however, raises a new tchnical problem on coordination,

i.e., hcw to coordinate motion trajectories of the two manupulators such that the deformable

objects can be handled in an optimal way in terms of certain criteria? This problem will be

studied in this paper.
In reality, there are three fundamental types of deformable objects, which are respectively,

onc, two, or three dimension-al. The first two, however, occur more often than the third.

Furthermore, two dimensional objects can often be treated as one dimensional when it is picked

up by two manipulators. Consider a rectangular sheet picked up by two manipulators as

shown in Fig. 1. If the sheet is picked up in such a way that the end-effectors are positioned at

the center of the shorter dimension, the deformation is more likely to occur in the direction of
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the longer dimension. Once the deformation occurs in one dimension, the deformation in the

other dimension becomes negligible. As a result, two dimensional objects can be treated as one
dimensional. For the reasons just cited, we concentrate our study on one dimensional objects,

and the objects are simply called beams in the rest of the paper. We also assume that the

deformation is elastic. That is, when the deformation force does not exist, the object is not

deformed.
In the next section, we will define kinematic constraints for two coordinating manipulators

when they handle an elastic beam. Since the beam is deformable, the relative position and

orientation of the two manipulators are not necessary constant Instead, the constraint relations

can be described by inequality equations. This gives the two coordinated manipulators certain
degrees of freedom in programming their motion trajectories. Their relative position and

orientation can be modified to a certain extent to optimize some performance criteria. For

example, when a flexible beam is folded and moved by two manipulators, the required
workspace is smaller than when the beam is fully extended.

In the third section, we propose three methods for the two manipulators to handle an

elastic beam. In the first method, the relative orientation can be altered, but not the posit')n. In

the second method, the relative position of the two end-effectors can be altered, but not the

orientation. In the third method, both the relative position and orientation can be altered.

Through the study of the object mechanics, the first method is quickly eliminated. Thus, the

study concentrates on the second method. This method is investigated in terms of the

magnitude of the forces and moments exerted on the objects and end-effectors. It is clear that

in order to avoid any possible damage to the objects and heavy loads to the manipulators, the

reaction forces and moments between the objects and end-effectors should be as small as

possible.

In the fourd section, the study is concentrated on the third method. It is determined that

the third method results in less reaction forces and moments than the second method.

However, the motion trajectories of the end-effectors are more complex. In order to make the

motion planning feasible in practical applications, we further propose an approximation

approach. The behavior of the approximation approach is also analyzed.

In the fifth section, experimental results using both the secnnd and third methods are

presented. The paper is concluded by the sixth section, Conclusions.
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2. KINEMATIC CONSTRAINTS ON TWO MANIPULATORS HANDLING

A DEFORMABLE BEAM

In this section, we investigate kinematic constraints imposed on the relative position and

orientation of two manipulators when they handle a flexible beam, for which the following

review of notations of the manipulator kinematics is necessary.

According to the Denavit-Hartenberg convention [22], each link of a manipulator is
assigned a coordinate system (xi,Yi,Zi) for i=0,1 ,...,n, from the base link to the end-effector.

The generalized coordinate, qi, is the joint displacement of link i either rotating about or sliding
i

along zi. . Let Ai.I be the 4 by 4 homogeneous transformation matrix which tansforms a

vector with reference to coordinates (xi,Yi,Zi) to the same vector with reference to coordinates

(xi-, yi-1, zi-l). Then one may have

Ab (q)-Al (q,)A 2 (q2)'"An.l (qn)()

where q is an n-dimensional vector consisting of n joint displacements q1 ,q2 .... qn. A6 can be

represented as follows

n~ [(q) s(q) a(q) p(q)Ab (q)=[1(q 0 0 1 (2

where n(q), s(q) and a(q) are unit vectors of coordinates xn,Yn and zn, respectively, and p(q) is

position vector (Fig. 2). All vectors are with reference to the base coordinate. The orientation

of the end-effector is specified by the 3X3 submatrix of A6 (q):

R6 (q)=[n(q) s(q) a(q)] (3)

Once the position and orientation vectors of the manipulator end-effectors are determined, the

translational and angular velocities of the manipulator end-effectors v and (,) cn be derived
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from p(q) and Rg (q) [221. Then the robot joint velocities can be calculated from the following

equation

where J(q) is the Jacobian matrix.

We are now in a position to determine kinematic constraints imposed on the two

manipulators which handle a flexible beam (Fig. 2). Consider two manipulators each with n

joints. For convenience, one of the manipulators is named the leader and the other the

follower. It is assumed that there are no relative motions among the end-effectors and the

beam, and the length of the beam is inextensible.
I I I f f f

Let (xn , Yn , Zn ) and (xn , Yn , Zn ) be the coordinate systems of end-effectors of the

leader and the follower, respectively. Let rI be the vector with reference to (X, Yn , Zn)

(Fig. 2). Then the holonomic constraints on the relative position between the two robots can

be written as in [4, 5]

p(ql)+ R (q )p(qf) = 0. (5)

From (5), one may have

p(qf) - p(q) = R6 (ql) r (6)

Since the beam is flexible, the distance between the two end-effectors, i.e., rI is not a constant.

As a result, one may obtain the following inequality equation from (6):

rmin<1p(qf)-p(q')1= IR6 (qlYrI =Wrkl rma. (7)

where I"! represents the length of vector rI , and rmin and rmax are the mrinimim and maximum

length of Ir!. It is clear rmax must be less than or equal to the total length of the beam.
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Otherwise, either the beam is torn apart or the contacts between the beam and the end-effectors

are lost, both of which ae clearly not desired. To determine the minimum distance rmin is

rather involved, which will be studied in section 3.

Eq.(7) reveals that when two manipulators are coordinated to handle a deformable object,

either one or two dimensional, the manipulators have more motion freedom than when

handling a rigid object. This motion freedom can be utilized to optimize other performance

criterion of the manipulators. For example, avoid obstacles while handling the object, or

reduce the required workspace when the object is large (to be realized by the reduction of the

distance between the two end-effectors). etc. The detailed utilization of this advantage,

however, will not be further addressed here.

In addition to the flexibility of the relative position, the relative orientation is also allowed

to be modified in certain degree. The problem is how to formulate this motion freedom.

Recall that when the object is rigid, the holonomic constraints for the orientation are [4, 5]

n n~[R (q ) ]T P- (qf) = U (8)

where U is the constant matrix. When the two manipulators handle a flexible beam as shown

in Fig. 2, we assume that twisting of the beam is not allowed. That is, n(qI) and n(q f) are

always parallel. The holonomic constraints imposed on n(q1) and n(qf) can be described by the

following equation

nT(ql)n(qf)=l. (9)

However, the relative orientation between the two vectors a(q1) and a(qf) can be modified,

since the beam can be bent to a certain extent without being damaged. The holonomic

constraints imposed on a(q1 ) and a(qf) can thus be depicted by the following inequality

equation:

amin < aT(ql) a(qf) < amax. (10)
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It is clear that amin is equal to -1 which occurs when the beam has no deformation, and amax is

less than 1. When amax is equal to one, the relative orientation of the two end-effectors is

allowed to be zero. This will bend the beam as much as 9& by each end-effector.

In this section, we have defined kinematic constraints for two manipulators handling a

deformable beam. It has been pointed out that the relative position and the orientation of the

two end-effectors can be modified to a certain extent when handling deformable beams. How

the modification can be made and what the relationship between the modifications of the

positions and orientations remain unanswered. These topics will be studied in the following

sections.

3. HANDLING A DEFORMABLE BEAM BY TWO MANIPULATORS WITH
ONLY POSITION ALTERNATABLE

In this section, we investigate the strategies for handling a deformable beam by two

manipulators. The strategies will define the limitations of rmin and amax which appear in (7)

and (10), as well as the relationship between the positional and orientational modifications.

From the discussion of the previous section, it can be easily found that three methods are

theoretically possible to handle a flexible beam. They are:

Method A: the relative orientation is allowed to change, but the relative position is not.

Method B: the relative position is allowed to change, but the relative orientation is not.

Method C: both the relative position and the relative orientation are allowed to change.

With three methods proposed, it is natural to make comparison among them such that the

best one can be determined. Before doing so, a careful look at Fig. 2 reveals that method A

is impossible in reality. Since the beam is firmly grasped by the end-effectors, one cannot

change the relative orientations without changing the relative positions unless the portions

grasped by the end-effectors are torn off from the beam. The latter, however, is unrealistic.

We therefore can eliminate method A and concentrate on methods B and C.

To evaluate methods B and C, we select the reaction forces and moments between the

beam and the end-effectors as the criterion. This selection is based on the fact that the forces

and moments are exerted on the beam when the beam is deformed, and should be as small as
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possible. Small reaction forces and moments result in low external loads to the manipulators as

well as low possibilities of damage to the objects. This consideration amounts to analyzing the

deflection behavior of the beam under the external forces and moments for each method. In the

rest of this section, we will study the method B. Method C will be investigated in the fourth

section.

3.1 Deflection Behavior of the Beam when the Beam Has a Small Deflection

In this subsection, we analyze the deflection behavior of the beam when the beam has a

small deflection. It is first assumed that the beam is weightless. This assumption is based on

the consideration that we are dealing with deformable beams whose deformation caused by the

beam weight is relatively small. Only when external forces and moments are exerted on the

beam ends, will deformation become large. In reality, many deformable objects have this

characteristic, a practical example of which will be shown in the experimental studies.

Consider a beam held by the end-effectors at its two ends. For convenience, we call the

line that connects the two end points of the beam the reference line. When the beam completely

lies on the reference line, no deflection occurs. If the two end-effectors move towards each

other on the reference line with the orientation unchanged, the beam starts to be deformed.

According to classic mechanics [23, 24], the beam can be deformed in two different cases.

Fig. 3 shows the first case in which the deformation has only one buckle, and Fig. 4 shows the

second case in which the deformation has two buckles [23, 24].

In case 1, the beam is deflected to form a curve in the center, but the beam ends are still

aligned in the same directions of the end-effectors. In doing so, two infection points appear on

the beam. The curvatures at the infection points are zero; therefore, no moments are exerted on

the infection points. Thus the infection points are also called the points of zero moment (ZM)

[23, 24]. It is also pointed out in [24] that the points of ZM occur at approximately the quarter

points of the beam (Fig. 3).

Now just consider the portion of the beam between the two points of zero moment. Its

length is one half of the entire beam. Since the points of ZM do not provide any moment to the

beam, the points behave as hinges (recall that the hinges do not provide moments to the beam

but only the forces). Thus, the portion between the two points of ZM behaves as a hinged-
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hinged beam. For a hinged-hinged beam, however, the relationship between the external force
and the deflection is well defined (Appendix 1 of this paper provides the details). It can be

shown that if the defiection of the beam is small, the force exerted on the point of ZM can be

expressed as

2 2EI 47r2EI(
FIS = (L/2)2 = L2(1

where E is the stiffness of the beam material, Iz the moment of inertia of the cross-section of

the beam with respect to axis z, and L the length of the beam. Since the deformation is static
once the distance between the two end-effectors becomes constant, the end-effector has to
provide the same force, i.e., FIS to the beam end. In addition, if the deflection of the hinged
portion is 8, the total deflection of the beam will be 28 [23, 24] (Fig. 3). That is, the distance
from the point of ZM to the reference line is 8. As a result, the moment that is exerted on the
end-effectors can be expressed as

47C2EIz8
MIS = F1 5 8= - L2 (12)

Note that the deflection parameter 8 is very small in a small deflected beam, and no

formulation is provided to calculate it. In the large deflection case, 8 is no longer negligible,
and needs to be specifically calculated. This topic will be further addressed later.

In case 2, it is found[24] that the points of ZM (i.e. the hinges) occur at approximately L
0.7L 0 .7L

and 0 points, as shown in Fig. 4. Hence the portion of length 2 is in effect a hinged-

hinged beam. The behavior of the hinged-hinged beam in this case is also provided in

Appendix 1, and we find the force exerted on the hinge to be:

F2 - r2EIz 87r 2EIz (13)
F (0.7L12)2 - L2
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From (13) and Fig. 4, one can also obtain that the force exerted on the end-effector is F2S, and
the moment exerted on the end-effector is:

8ir 2E1
28

M2S- (14)

Since 5 is not specified in (12) and (14), the absolute value of MIS and M2s can not be calculated
unless one knows the exact deflection in reality. However, equations (11) - (14) reveal that for the
same amount of deflection, case I results in less forces and moments exerted on the end-effectors.
Therefore, case 2 should be avoided in practice.

In reality, if the beam is originally grasped by the end-effectors with no deflection, and
the end-effectors start to approach to each other on the reference line, case 1 will always occur
first. This is because the deformation forces and moments gradually grow as the distance
between the end-effectors decreases, and case I needs less forces and moments than in case 2.
Once case 1 occurs, case 2 will never occur. On the other hand, if the two end-effectors are off
the reference line, i.e., the two vectors, a(q), of the end-effectors are not aligned on the same
line, case 2 may occur first (Fig. 5). Therefore, to avoid case 2, one should maintain the two

end-effectors on the same reference line when they are approaching to each other.

3.2 Deflection Behavior of the Beam when the Beam Has a Large Deflection

The results obtained in the previous subsection are for small deflections. In the small

deflection case, the distance between the two end-effectors are virtually the same as the length
of the beam. Therefore, the end-effectors do not have too much freedom in their motion.
When the end-effectors are even closer to each other, the beam may have a large deflection.
Although the forces and moments exerted on the end-effectors will be different in the large
deflection case, the analysis of the forces and moments are still rooted in the small deflection

case.

Introduce a fixed-free ended beam under large deflection as shown in Fig. 6. Note that
one end of the beam is fixed on the wall and the other has a force F3L exerted on it. It is

shown in Appendix 1 that the behavior of this fixed-free ended beam is the same as the right
half of a hinged-hinged beam under small deflections. The convenience of this introduction,
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Ii

however, will be soon made clear. It is shown in [24] that for large deflections, the force
exerted on the hinge can be obtained from the following equation:

I F3L (2R(a).2
F3  7t )  (15)

where F3 is the force exerted on the end of a fixed-free ended beam when the deformation is
small, and its value can be calculated using the formulation described in Appendix 1. In (15)
R(QX) is obtained from the following integral:

01

R (a,01)= 0 si20 (16)

0

where k-sin2(CX/2), angle Cc is the deflection angle as shown in Fig. 6. When 01=:, (16) gives

R(Q). Also, for large deflections, the exact deflection, 8, can be calculated by the following
equation:

8 2
L= = sin(W2) (17)

where LI is the length of the beam. Furthermore, the distance, rI, can be obtained from

r, = 2P(a) -1 (18)
LI R(a)

where P(C) can be calculated from another elliptic integral:

P(a,0 1)= fJ\1-ksin2o do. (19)
0
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From (19), one may have P(X) =P (a,41 I 1=X

With the forthgoing analysis of the fixed-free ended beam, we can now further evaluate

Method B. From Fig. 3, it can be seen that in case 1, the entire beam can be divided into four

pieces of fixed-free ended beam, separated by the points of ZM. Starting from the left, the first

piece is from the left end-effector to the first point of ZM (consider that the end-effector as the

fixed point), and the second piece is between the first point of ZM and the center point (the

center point can be considered as the fixed point), etc. For every piece, we can determine the
hinged force F3L, the deflection 8 and the distance r I , from the deflection angle CX (here Cc is

the same as 0 shown in Fig. 3) using (15), (17) and (18). It should be noted that LI in (17)

L
and (18) is equal to 4'. It is clear that the hinged force is also the force exerted on the end-

effector. The total deflection of the beam, however, is twice as much as the calculated
deflection 8, and the distance between the two end-effectors, r 1, is four times as much as rr

Based on the above discussion, the behavior of the large deflection beam, as shown in
Fig. 3, can be expressed as follows (here FIL, the force under large deflection, is used instead

of FIs)

(4R(a)) 2 EIz  (20)FiL- L2  (0

Ir~ l=2P(a) -1) (21)
-kR(a)

and the deflection of the beam is equal to

28 - L sin (-) (22)
R(Ct) 2

The moment exerted on the end-effector can be calculated as

MIL = FILS. (23)
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One may note that the evaluation of (20) to (22) involves the computation of two elliptic

integrals. But in reality, R(ax) and P(a), corresponding to a certain deflection angle X, can be

found from a well developed table which is provided by many textbooks of mathematics and

mechanics. For example, the table shown in Appendix 2 is found in reference [25].

3.3 The Minimum Distance between the Two Grippers

With the results provided in the previous two subsections, we can further investigate the

minimum distance between the two end-effectors. The criterion to determine the minimum
distance rmin is based on two factors: the waximum stress that the deformable beam can

withstand without being damaged, and the waximum load that the manipulators can carry.

The procedure of the determination is as follows.
Consider a single piece ended by a ZM point and the end-effector in an entire beam

(Fig. 3). It behaves as a fixed-free ended beam, for which the following relationship must

always hold [243

FIL Ym FILS
0 dirt+Obending= iX <+ max (24)

where amax is the maximum allowable stress that the beam can withstand, adirwt is the stress

due to direct compression, and Obending is the stress due to bending. A is the area of the

cross section of the beam, Iz is the area moment of inertia with respect to axis z, and ym is the

distance from the center to the edge of the area where the bending occurs (Fig.7). Since both
FIL and 8 are functions of the bending angle a, finding the minimum distance amounts to

finding the angle a such that (24) is satisfied. However, because both the functions involve

elliptic integrals, solving for a from (24) is rather complicated. Instead, we can use a trial-

and-error method.
We may first arbitrarily select a deflection angle a. Based on aC, FIL can be calculated

using (20), and the deflection 8 can be calculated using (22). Substituting the calculated FIL

and 8 into (24). If it can be satisfied, we further enlarge a; otherwise it should be reduced.
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The same procedure is then tried again until a maximum deflection angle which satisfies (24) is

found.
The hinged force and moments thus found still have to satisfy the load criterion of the

manipulator. If MIL and FIL are less than the maximum capabilities of the manipulators, the

selected deflection angle is acceptable. Otherwise, they have to be reduced. Basically, if the
calculated force is greater than the capability of the manipulators, we have to use (20) to find
the maximum value of R(Z) (let FIL be the capability of the manipulator), and further find the

deflection angle from the lookup table. Likewise, (23) may be used to determine the deflection
angle if the calculated MIL is greater than the cLapability of the manipulator. Once the

maximum deflection angle is found, one may use (21) to find the minimum distance that the

two end-effectors can be at while handling a flexible beam.

4. HANDLING A DEFORMABLE BEAM BY TWO MANIPULATORS WITH
BOTH ORIENTATION AND POSITION ALTERNATABLE

In the previous section, we have studied method B in which the end-effectors are only

allowed to have position difference. In this section, we investigate method C in which both
position and orientation alterations are permitted. It is clear that there are many possible

combinations of the relative position and orientation between the two end-effectors. However,
not all of them are suitable for handling deformable beams. We should first select the best
combination from all the possibilities. Then the minimum distance and the maximum
orientation difference between the two end-effectors can further be investigated.

4.1 The Best Combination of the Relative Position and Orientation

To determine the best combination, we again use the force and moment criterion, i.e,
minimizing the force and moment exerted on the end-effectors as well as on the objects. To do

so, we propose and prove the following claim.

Claim: When the two end-effectors grasp the beam in such a way that the two end points of

the beam coincide with the ZM points of the beam, and the orientation of the end-effectors are

22



the same as the deflection angle of the beam (Fig.8), the end-effectors suffer the minimum

forces and moments.

Proof: We prove this claim for the forces and the moments, respectively, as follows. From

the discussion of the previous section, it can be seen that the force exerted on the ZM point is

related to the length of the portion between the two ZM points. Longer length results in small

forces in both the small and large deflection cases (see (11) and (20)). It follows that if the two

end points of the beam are at the ZM points while the beam is bent, the end points will behave

as hingers. Since the length of the beam is the maximum distance that the portion between the

two hinge points could be, the force exerted on the hinge points or the center of the end-

effectors (assume that the center of the end-effectors coincide with the end points of the beam)

becomes the minimum.

Next we consider the moments exerted on the end-effectors. Since the orientations of the

end-effectors coincide with the deflection angle of the beam, the curvature of the beam at t6e tip

of the end-effectors are null. If the curvature is zero, it follows from the following

formulation, which describes the deformation behavior of a elastic beam 123,24],

I M
p = El (25)

1
that the moments exerted on the end-effectors are zero, where - is the curvature of the beam.

Any deviation of the end-effectors orientation from the deflection angle will result in non-zero

curvature which will generate bending moments exerted on the end-effectors. #

With the claim just proved, we can further consider thr minimum distance and the

maximum orientation difference between the two end-effectors. This will be discussed in the

following subsection.

4.2 The Minimum Distance and the Maximum Orientation Difference between the Two End-

Effectors

The procedure applied in subsections 3.2 and 3.3 can be used again here. The beam now

behaves as two pieces of fixed-free ended beam (Fig. 8). The parameters associated with the
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deformation can be respectively calculated as foliows. First, the exerted force can be wrirten

as:

F - (2R()) 2E (26)

4L L2

Then, the distance between the two end-effectors can be calculated using:

irll -2P( 1), (27)L(R(i) "

and the deflecion of the beam is equal to:

8 - L sin C,( 8
2R(O)s(2) (28)

The minimum distance, between the two end-effectors can be determined using the procedure as

outlined in subsection 3.3 using (26), (27) and (28) instead of (20), (21) and (22).

Essentially, one needs to find a maximum deflection angle, amax. Once (Xm, is found, not

only the minimum distance can be found by using (27), but also the maximum orientation

difference can be obtained as:

aT(qI)a(q f) < amax = cos(2a 1 x). (29)

In reality, however, the exact value of the maximum stress is often not known; therefore,

mathematical computation of the minimum distance and the maximum orientation difference

may not be possible. In this case, we may have to practically bend the beam until the limit is

reached. In this regard, specifying the trajectories of the end-effectors while they are bending

the beam becomes a more important issue than finding the maximum orientation difference.

This topic will be discussed in the next subsection.
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4.3 The Relationship between the Positions and Orientations of the End-Effectors while

Bending the Beam

For simplicity, we concentrate our discussion on a single end-effector which is shown on

the right side of Fig. 8. Assume that when the end-effector picks up the beam, the beam is not

deformed, and the position and orientation of the end-effector is [x, y, (X] =[,0, 01. From the

discussion of the previous subsection, it can be found that the trajectory of the end-effector can

be expressed as:

P() 1

L (30)
y(Cx=R)-sin(WX/2)

Note that the x and y coordinates are complex functions of the end-effector orientation.

Essentially, we can use the end-effector orientation as an independent variable, and linearly

increase it as the end-effector bends the beam. The position of the end-effector can be

calculated by using (30).

There are two practical problems involved in this method. First, the computation involved

in (30) is rather complicated. It is practically impossible to execute the computation of (30) in

real time by the manipulator controller. Secondly, even if the computation can be handled by

the controler, for example by using a look-up table as shown in Appendix 2 (a much more

detailed version is needed though), executing such a trajectory by the practical manipulators is

very time consuming, since the manipulators have to execute point to point motion along the

trajectory. Between every pair of points, the motions have to be interpolated by a complicated

computation [25]. If one can reduce the intermediate points on the trajectory, the computation

can be simplified, and the manipulator motion can be sped up.

In reality, we coarsely divide the desired trajectories of the two end-effectors into a few

pieces. For example, every piece can cover about 10 degrees of the deflection angle. The

positions of the two end points of each piece can be specified by (30) or using a look-up table.

The motions between the two end points are simply linear. When using a PUMA manipulator,
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this motion can be programmed by using the instruction MOVES D(n), where D(n) is the end

point of the nth piece. The instruction means that the end-effector is linearly moved from the

end point D(n-1) to D(n). Since the trajectory between any two end points are not obtained

from (30) or a look-up table, the problem is how the force and moment situation will be

affected by using this simple approximation method. This topic will be studied in the

following subsection.

4.4 Behavior of the Approximation Method

For simplicity, we just consider one half of the entire beam. Assume that the end-effector

moves along the trajectory specified by (30), and the grasping point is located at point Q on the

trajectory which is a curve between the two end-points N and M (see Fig. 9). If we use the

line segment between N and M, instead of the curve, as the trajectory, the grasping point will

be at J as shown in Fig. 9. Without loss of generality, we assume that JQ is parallel to the axis

x. When the grasping point moves from point Q to J, the shape of the beam is converted from

OQ to be OJ as shown in Fig. 10, and the inflection points will occur on the beam instead at

the end points of the beam. The question is where those infection points are since the positions

of the infection points affect the forces and moments exerted on the end-effetors.

As mentioned in the previous section, the inflection point is the point of ZM, and the ZM

points occur at the quarter points of the beam when the end-effectors are aligned on the same

line. To take advantage of this conclusion, we extend the length of the original beam in such a

way that the infection points of the original beam are also at the quarter points of the extended

beam. Clearly, for the extended beam, the orientation of its two ends must be aligned on the

same line. For the right half of the extended beam, the deformed shape is shown as curve OH

in Fig. 10. It should be noted that the original beam OJ is now a segment of the extended

beam OI. For the extended beam OH, the results of the previous section can be used in our

analysis.

Assume that the angle between the end-effector and JQ is (p, and the deflection angle at
point G ( i.e., ZM point ) is CX,. For segment GH of the extended beam O'N, we may have

the following relationships [24]:
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sin sin (Q0/2) (31)si )-sin (MX/2)

2P(aCX,0 1) - R(aCx,o 1 )
t = LX ( R(ax) ) (32)

and

s=L x ( R( (Xx ) ) (33)

where Lx is one half of the length of the extended beam OH; t and s are as shown in Fig.10

(also see Fig. 6), and the other terms have previously been defined. For the extended beam,

(18) can now be written as:

T . 2 P ( aX )
Lx R(X)Lxx R(Czx) -1I(4

where rx is as shown in Fig. 10.

From (32) and (34), we obtain the following expression for t:

2P(cx,o I) - R(ax,o41)
t = rx ( 2P(Xx) - R(ax) (35)

Let

C = rX + (r.- t) = 2r x - t. (36)

From Fig. 10 we also have

=2Lx - s (37)

where L is the length of the original beam. Substituting (33) into (37), we obtain:
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L LR(x) (38)

x 4R(ax) - 2R(ax,, I)

From (34), (35), (36), and (38), we obtain:

C 2P(ax) -P(a(4 l) 1 (39)
L = 2R(ax) - R(aOx o 2

From the discussion of subsection 4.2, it is known that if the grasping point is at Q, one

has (see Fig.8 and (18)):

r1  (40)
L R(X)

L.et the length of JQ be A. C that is expressed by (36) can also be expressed as:

C = r1 - A (41)

Using (40) and (41), (39) becomes:

A P(aX) 2P(a.)'P(ax'o 1) (42)
L = R((X) - 2R(a. ) - R(ax,o l )

From the above discussion, one can see that if A and (P are specified, a. can be calculated

using (31) and (42). A is the position difference of the end-effector between points Q and J,

and (p can be assumed to be the same as a (recall that X is a. independent variable when

programming the motion trajectory). Once a x is calculated, one can proceed to find the forces

and moments exerted on the end-effectors.

For the extended beam OH (Fig. 10), one can use (15) to determine the force F. that is

exerted on the point of ZM, G, to be:

(R(Ocx)) 2EIz (43)
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It is clear that the force F is also the force exerted on the end-effector.
X

When the grasping point is at the point Q, the exerted force F4L can be calculated from (26).
From (26), (38), and (43) we obtain the following relationship between F. and F4L:

Fx 2R(ax.)" R(xXA0 1 ) )2. (44)

F4L-( R(a)

Since R(cx) is greater than R(ax,0 1) (the former is equal to the latter only when 01 is equal to

7t/2), and R( x) is greater than R(a), F. is greater than F4 L' However, as long as A is

small, the difference between F and F4L is still manageable.

To calculate the moment exerted on the end-effector, we have to calculate the force arm, h,

as shown in Fig. 10. From [24], it is known that the relationship between h and Lx as shown

in Fig. 10 can be expressed as:

2
2I (cosqp - cos(X ) = ((R(CXx)) 2 h2  (45)

Substituting L4 in (45) by (38), the force arm can be written as:

LV2(cosp-cosa x ()

h = 2(2R(Ccx) - R(axz,4 1)) (46)

Consequently, the moment exerted on the end-effector can be written as F h and calculated by

using (43) and (46). It should be emphasized that the moment is a completely new addition to

the total forces and moments that are exerted on the end-effector.

To summarize the discussion presented so far in this section, it can be seen that because

of the position difference caused by using the line segment to approximate the trajectory curve,

the forces and the moments exerted on the end-effectors are enlarged. If it is necessary, the

exact values of the forces and moments can be calculated by using the formulations that have

just been defined. In the next subsection, we will use a numerical example to illustrate how the

forces and moments are affected by the position difference of the end-effectors.
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4.5 Numerical Example for the Approximation Method

Consider that the arc, MN, in Fig. 9 is the trajectory of an end-effector specified by (30).

With the specified trajectory, the enc-effector bends the beam from a = 00 to a =100.

The equation for the line segment MN can be expressed by is:

L
-2 ' (47)x(10o)) L Wo1o)

where x(10") and y(1 00 ) can be calculated by using (30).

We now assume that at point Q, Cc = 50, which is in the middle of the bending process.

The reason for selecting 50 is that at the middle point, the difference between point Q and

point J is close to be the maximum, and the forces and moments are close to the maximum as

well.

The coordinates of point Q can be calculated from (30). That is:

P(
x(5 0)=L(so -U )S - (5o) -2 (48)

y(5 0 )R-'L sin(50 /2)

The coordinates of point J, on the other hand, can be calculated as:

L y(50) L
X T - y(10 o) " (49)

YJ y (50 )

Once x(50) and xj are calculated, the difference, A, can be expressed as:

A = x(5') - xJ (50)

The numerical values are calculated as follows:
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-4 x hA Fx
L 8.9193 X 10-4 , ax= 5.5 °, F4L = 1.63, and 0.01.

It can be seen that the force exerted on the end-effector, F , is 1.63 times as much as F4L due

to the difference A. If the trajectory represented by the curve, MN, is approximated by more

but shorter line segments, the force and the moment can be reduced.

5. EXPERIMENTAL STUDY

To verify the theoretical results, we have conducted experiments in our laboratory. The setup
of the experiement is as shown in Fig. 11. Basically, in the experiment, a large number of elastic
sheets needed to be assembled together to form a book. The book is then to be laminated to form a

board. This assembly procedure is typical in the manufacturing of a Printed Wiring Board (PWB).
Since each sheet has delicate circuits printed on the surface, and the circuits on multiple surfaces

must be precisely aligned (within 0.001 inch), the assembly of the book is not a simple issue.

For the alignment purpose, each sheet has four positioning holes. Those holes are used to

align the sheet with pins which are fixed on a base-board, which is used to hold the book (Fig. 11).

Since the tolerance between the pin and the hole is very tight, it is difficult to align all the holes

with the pins at the same time. Instead, in the assembly process, the manipulators bend the sheet,

such that the two middle holes can make contact with the pins first. Once the middle holes are

aligned with the middle pins, the manipulators extend the sheet such that the remaining holes are

aligned with the pins. In this process, the two manipulators first bend the sheet, following the

trajectories that have to be specified using the methods defined in the previous sections, and come

back to their original positions using the same trajectories.

We have tested both method B and method C in the experiment. In each method, the required

bending angle was 400. From the table shown in Appendix 2, we can see that the distance

between the two end-effectors needs to be reduced by about 12%. Since the dimension of the

sheet was 18 by 12 inches, and the end-effectors held the center of the short sides, this reduction

was equivalent to 2.1 inches. The experiment was conducted using an aluminum sheet (it was

used to cover and protect the PWB during the lamination process). When method B was used, we
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found that some permanent damage was made near the tip of the end-effectors. This is because

method B imposes a large force and bending moment on the end-effector as discussed earlier. This

clearly shows that me''iod B was not adequate to bend the elastic sheet.

We then turned to method C. In programming the motions of the end-effectors, we divided

the 400 deflection into four small pieces with 100 in each piece. Using the look-up table as shown
in Appendix 2, we specified the positions of the end-effectors at the end points of the pieces, and

used those points as the destination points for the end-effectors to move. Using the MOVES
instructions as mentioned earlier, the end-effectors executed a piece-wise linear motion to move the
two end-effectors to their final destination points at which the sheet was bent by 400. By using
method C the assembly was successfully completed without any damage to the aluminum sheet

(Fig. 12).

6. CONCLUSIONS

In this paper we have discussed the mechanism for two coordinated manipulators to
automatically handle deformable objects. After the kinematic constraints were analyzed for the
manipulators, we investigated the coordinating methods for the two manipulators. In this respect,

the main contributions can be summarized as follows:
(1) We have identified two coordinating methods for the two manipulators to handle one-

dimensional objects. The first method only allows the relative position to be altered between the

two end-effectors. The second method allows both relative position and orientation to be altered.

From the analysis, we identified that the second method is better than the first method.

(2) For the second method, we further specified the end-effector trajectories, while they are

bending an elastic sheet. The trajectories, however, were very complicated to compute. We further

developed an approximation method, which used piece-wise linear segments to substitute for the

trajectories. Furthermore, the behavior of the approximation method was also analyzed. Finally,

experimental results were given to prove that the second method as well as the approximation of

the method were effective for handling deformable objects.
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Appendix I

Consider a hinged-hinged beam (Fig. A-1) that is weightless and with a uniform EIz, and
the length of which, L2, is inextensible. According to Bernoulli-Euler law under the condition

of small deflection, we may have [23, 24]:

d2v M
dx2 =- Ek (A-1)

where v is the deflection in the direction y, M is the bending moment at any point t on the
beam, and EIz is the beam stiffness. In Fig. A-i, F is a horizontal force exerted on the end of
the beam, and 8=Vmax

In this case, one has:
M=Fv. (A-2)

Thus (A-i) becomes

d2v Fvdx2  -Elz  • (A-3)

Let
E =K 2.(A4

Iz

Eq. (A-3) can be written asd2v
d2 +K2 v=O. (A-5)

Now we verify that
v=C1 sin Kx (A-6)

satisfies equation (A-5), where Cl is a constant, not equal to zero.

It is easy to see that the boundary conditions of the beam are
v=O at x=O (A-7)

and
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v=O at x=L2 . (A-8)

The second boundary condition requires that
O=C 1 sin KL2 . (A-9)

This condition will be satisfied only if
KL 2=nt, n=1,2, ... (A-10)

By using Eq. (A-4), we can get

Fn r(A-11)

Now consider two subcases:
7E2E1z

subcase 1 (Fig A-2): when n=l, one has F1 = 27 , and (A-12)

41r2EIz
subcase 2 (Fig. A-3): when n=2, one has F2= 2 (A- 13)

We can employ the results obtained so far to find solutions for other support conditions in
the following manner. Consider a fixed-free ended beam as shown in Fig. A-4a. It has a
length L2 and a constant EIz. In Fig. A-4b, we show a hinged-hinged beam of length 21 2 and
with the same stiffness constant, EIz, as the fixed-free ended beam. It can be seen that one-half

of the hinged-hinged beam is identical to the fixed-free beam. Hence
2t2EIz

F3- (2L2 )2 , (A- 14)

i.e., 2EIz

F3= 2 (A-15)
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Appendix 2

LOOK-UP TABLE FOR COMPUTING THE END-EFFECTOR
POSITIONS

F3L Br
C.(o) R(X) P(L) F3  L1 L

0 1.5708 1.5708 1.000 0 1

10 1.5738 1.5678 1.004 0.1116 0.9924

20 1.5828 1.55,) 1.016 0.2193 0.9698

30 1.5981 1.5442 1.035 0.3239 0.9325

40 1.6200 1.5238 1.062 0.4221 0.8812

50 1.6490 1.4981 1.102 0.5126 0.8170

60 1.6858 1.4675 1.152 0.5930 0.7410

70 1.7312 1.4323 1.215 0.6626 0.6547

80 1.7868 1.3931 1.294 0.7195 0.5593

90 1.8541 1.3506 1.392 0.7625 0.4569
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Fig. 1 A rectangular sheet picked up

by two manipulators
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Fig. 2 The coordinate system and notations

for two manipulators
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Fig. 3 The beam has one buckle in its deformation
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Fig. 4 The beam has two buckles in its deformation
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Fig. 5 Two grippers are not aligned on the same line,

the deformation has two buckles
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Fig. 6 A fixed-free ended beam under large deflection
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Fig. 7 The cross section of a beam
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Fig. 8 The case of the minimum of the force and moment

when the beam is bent
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Fig. 9 The curve and the line segments
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Fig. 12 The physical experiments
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Fig. A-1 A hinged-hinged beam
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Fig. A-2 The beam has a deformation
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Fig. A-4 A fixed-free ended beam under small deflection



Appendix B

Determination of the Third Dimension of an Object by Using

a Range Finder

Rached Zantout & Prof. Yuan Zheng
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I. Point Location Using a Range-Finder

The goal is to locate a point in space (i.e. know its x, y
and z coordinates with respect to a reference frame) knowing only
information about its image, captured by a Range-Finder.

The Range-Finder consists of a camera and a laser beam
generator.

In the following, the system set-up and calibration will be
described. Then a way to determine the coordinates of a point of
interest is described. Finally, examples are given to prove the
validity of the described algorithm.

Set-uP and Calibration

A

z

f F

First, the camera and the Laser-beam generator are fixed and
a reference frame is chosen such that its origin (0) is mapped to
the middle of the screen (0'). The location of the camera
F(fxfy, fz), as well as the equation of the scanning plane
(Ax+By+Cz=D) are measured with respect to the reference frame.
Then, a cube is put in front of the camera with one of its faces
parallel to the camera's lens plane. A point (A) on that face is
identified and the distance OA measured. On the screen, the
distance between the images of those two points (0' and A') is
also measured.

O A
f=OF x OAOUAl

The orientation of the camera is then measured, and the

parameters in the following equations are determined.

h = hx.x + hy.y + h z .z

V = Vx.X + Vy.y + Vz.Z

a=ax.x + ay.y + az.z
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h and v define the coordinate frame of the image-plane.
a is the unit vector that is perpendicular to the image-
plane.
h, v, and a pass through F and are the image-plane frame.
Ji is the projection of vector j on axis i.

In the case of calibration (and to make the calculations
easier) the image-plane frame is taken to be at (-IOFI) on the y-
axis from the reference frame. The orientation of both frames
being the same.

Locating a Point of Interest

First, using a vision processor, the location of the image
point is determined with respect to the h.v frame. The h component
is "u" and the v component is 'v'. These coordinates are then
transformed to reference-frame coordinates by applying the
following:

Px = u.hx + v.vx + f.ax + Fx

py = u.hy + V.Vy + f.ay + Fy

Pz = u.hz + v.vz + f-az + Fz

The line on which the point of interest lies has the

following parametric equation:

x = Fx + (px - Fx).t

y = Fy + (py - Fy).t

z = F z + (Pz - Fz).t

The point of interest "R" is located on the intersection of
the scanning-plane with the above line (since we already know that
the point of interest is on the laser line). Combining the
scanning-plane equation with the equation of the above line, we
get:

= (p (D - (a.Fx + B.Fy + C.Fz))
((A.px + B.py + C.pz) - (A.Fx + B.Fy + C.Fz))

Replacing this value of "t" in the equations for the line
above, we get the coordinates of the point of interest.
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The following coordinates were obtained through physical
measurement:

F(0,-41,0)
B(0,0,0)
A(5.1,0,0)
C (5.1,0,-2.8)

On the screen, the images of A, B, and C were at (84,0),
(0, 0), (84,-38) .

From the above data:

A'B' 84
f=BFx-=41 x8

AB 5.1

the line (A'F) will have the following equation:

x -84*t

y = -41 - 675.294*t

z= 0

Knowing that C is on the plane (y = 0), then it is on the
intersection of that plane with the line (A'F). Applying this will
give us:

t = -0.061

then the coordinates of the point C were calculated to be:

x = 5.124

y = 0

z = -2.318

We remark here a discrepancy between the calculated and the
measured values for the coordinates of the point C. This is due to
the poor measuring instruments that were used during the
experiment. Still if we eliminate all these errors, there will
always be an error due to the round-off error of the CPU (which
will be very small) and the resolution of the camera-monitor
system (which will also be small).

Another set-up was made and this time, the intersection of
the line with the scanning-plane was used in order to prove the
validity of the algorithm presented above. A point "S" was located
on the laser line scanning an object. The plane of scanning was
determined to be:

y = 3.606
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The coordinates of that point on the screen were measured to

be:

(52, -33)

The camera-frame was:

h = -x

V = -Z

a =y

From the above information, the poin. under consideration was
determined to be on the line:

x -52*t

y = -41 - 675.294*t

z 33*t

The intersection of that line with the plane "y = 3.606" is:

x = 3.43 vs 3.606

y = 3.606 vs 3.606

z = -2.178 vs -2.800

Another source of error in the calculation above is the
determination of the plane of scanning by direct measurement.

The VALTY ProgrAm

A VALii program was written to perform the above. The listing
of that program follows:

u = 52
v = -33
xf = 0
yf = -41
zf = 0

f = 675.2942
asp = 0
bsp = 1
csp - 0
dsp = 3.606
xh = 1
yh = 0
zh = 0
xv - 0
yv = 0
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zv = 1
xa = 0
ya = 1
za = 0
xp = u.xh + v.xv + f.xa 6 xf
yp = u.yh + v.yv + f.ya + yf
zp = u.zh + v.zv + f.za + zf
temp = asp.xf + bsp.yf + csp.zf
templ= asp.xp + bsp.yp + csp.zp
t = (dsp - temp)/(templ - temp)
xr = xf + (xp - xf).t
yr yf + (yp - yf).t
zr zf + (zp - zf).t
type /B, x, c2
type /B, y, c2
type /B, z, c2

Future Work

Future work should:

1. Identify and implement a way to detect a laser beam on the
screen (using the vision processor).

2. Identify and imp-ement a way to detect a broken line (i.e.
equations of the straight lines constituting a broken line).

3. Further research towards the identification and nanaling of
non-rigid 3-D objects.
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II.Locating Surfaces Using a Range Finder

The program (listing given in III) analyzes an image provided
by a camera. It will search for bright lines in the image and
determine the equations and boundaries of those lines. From those
boundaries, the boundaries of the laser lines that are projected
on the object are calculated in 3-D coordinates. Thus the
equations of those lines are calculated and the surfaces on which
they are projected are determined.

Upper Boundary of Line

- The Screen

The Line Lower Boundary of Line

Boundaries of the Image of a Laser-Line

The program begins by assuming that there is a continuous
(vertical) laser-line from the top to the bottom of the screen. It
tries to locate the boundaries of that line. Beginning with the
top, it searches for a bright point. If that point is found, its
2-D position is saved; otherwise, the search is restarted at the
next level down the screen. Once the upper boundary of the line is
located, the same procedure is used to locate the lower boundary
(i.e. search for a bright point in the bottom of the screen, if
not found then move to the next level up). Once the two boundaries
are found, the equation of the assumed line is calculated. The
program then tries to locate a bright point midway between the two
levels.

If a bright point is located, then its coordinates are
checked whether they are on the assumed line (or near it by some
margin of error). If this is the case, then we have enough reason
to believe our earlier assumption. If the point is not on or near
the line, then the program assumes that there are two distinct
straight-lines and thus updates its list of lines to reflect the
presence of both lines (instead of the original line). Then the
procedure is started all over for each line in the list.

If two bright points were located (the program does not
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detect more than two points), the program assumes that there are
two distinct straight-lines, the two points just detected
correspond to the boundaries of those lines (the beginning of the
lower line and the end of the higher one). The list of lines to be
checked is updated accordingly and the procedure is repeated for
each line in the list.

If no bright point has been detected, then there are two
straight-lines, the upper boundary of one and the lower boundary
of the other are not known. The program locates those boundaries
using a modification of the procedure that located the boundaries
of the initially assumed line. After locating those boundaries,
the list of lines to be checked is updated and the procedure is
repeated for each line on the list.

Possible Patterns of Lines to be Detected

Once the boundaries of a straight-line and its existence are
established, the program returns its boundaries and moves to check
the next line on the list. This is done until all candidate lines
are checked.

The output of this program can be used by our earlier program
to get the boundaries of the laser-lines in 3-D coordinates.
Knowing those boundaries, we can derive the information we need
about the object (e.g. depth of the object is the distance between
the two shifted lines).

This program still needs some refinements:

1. Experiment with different objects to check the validity of the
algorithm described above.
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2. Currently, the program approximates curves by a series of two-
point lines. This matter must be studied further to determine the
best way to identify curves.

3. Many assumptions were made throughout the writing of this
algorithm. These assumptions are valid for the objects that were
under study (a cube and planar surfaces), the validity of those
assumptions must be determined for a larger number of objects (and
if possible investigate the theory behind them).

4. The program assumes ideal lines in the image (i.e. width of the
laser-line is 1 pixel on the screen), a way to identify lines with
varying width should be investigated. This should be done by
experimenting with different objects to identify the maximum width
of a laser line and how it varies with the type of material of the
scanned surface.

5. A method to speed up the search for lines should be
investigated if the current method does not meet our real-time
constraints.

Future research should also concentrate on object
recognition. A method should be found to recognize rigid as well
as non-rigid objects. The vision and range-finder information
integration must be studied as well. Also another area of study
towards the recognition of non-rigid objects, is the database of
objects that should be built and the Artificial Intelligence
aspect behind the recognition process.
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III. The Listingr of the Program

The program consists of a main routine (LASER.LINE) and
supporting subroutines.

The listings of all routines follow:

LASER. LINE

Call v.ini.
Threshold = 200
Call v.erase.graphics
Call v.scan
Call v.freeze
Call get.first
If level[1] == 255 goto 200
k = 0
plist 10
nlines 1
xbpoint[plist] =u[1]
ybpoint[plistj = v[l]
xepointlplist) = u2
yepoint~plist) = v[2)
Call LOCATE.LINE

200 Type /B,"No More Lines"

Initialize the
List of Lines

Locate the Lines
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GET .FIRST

level[1) = 0
level[2] = 255

1j =1
1ev = level[1)
Call DETECT.LIGHT
if (v.reply[1) < Threshold and level[1] < 255) then

levelfi) = levelti) + 2.
Call v.erase.graphics
Goto 1

End
if level(l] -= 255 then goto 100
Call GET.POINT

2 j =2
1ev = level [2)
Call DETECT.LIGHT
if (v.reply[1] < Threshold) then

level[2) = level[2] - 1
Call v.erase.graphics
Goto 2

End
Call GET.POINT

100 Return

Goto to Lower Level
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LOCATE.LINE
3 ull] = xbpointfplist)

v[1] = ybpoint~plist]
u[21 = xepoint~plist]
v(2] yepointtplist)
Call BRROKEN.OR.NOT
if shift then

xepoint[plist + 1) xepoint[plist]
yepoint~plist + 1] = yepoint'~plist]
xbpoint~plist + 1] =u[41
ybpoint[plist + 1) v[4]
xepoint[plist) = u[3)
yepoint(plist] = v[31
nlines = nlines + 1

End
If connected then

if broken then
xepoint~plist + 1] = xepoint~plistj
yepoint[plist + 1) = yepoint[plist]
xbpoint[plist + 1] = u[3]
ybpoint~plist + 1] = v[3)
xepoint~plist] = u[3]
yepoint~plist] = v[31
nlines = nlines + 1
Goto 3

End
xe~k] = xepointlplistj
ye[k] = yepointtplist]
xb[k) = xbpoint~plist]
ybilk] ybpoint~plist]
jPlist = plist + 1
Type /B, "k ",
Type /B, "xb =",xb[k],/Xl0,/S

Type /B, "yb =",yb[k]

Type /B, "xe =",xefkh,/Xl0,/S

Type /B, "ye =",yetk]

k -k + 1
nlines = nlines -1
if nlines goto 3
Return

Else
Call LOCATE. DISCONNECTION
nlines - nlines + 1
Goto 3

End
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OCATELINE
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Accordingly
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ine shifted ?
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ine Connect N
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ine broken ?
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Store Location of boundaries of line

Return
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BROKEN.OR.NOT

a = (v[1) - v[2])/(u[1] - u[2])
5 b = v[l) a*u[l]

level[3] 128 - (v[21 + v~lfl/2
1ev = level [3]
Call DETECT.LIGHT
if V.Reply[1] < Threshold then

connected =0 es

connected = 1
Call GET.POINT
if abs(v[3] :*u[3] b) > 2 then

broken =1

broken 0 0ls
End

End
Return

assumed line

Storepostioeo midpoint

midpoint on

asuedln
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DETECT.LIGHT

V.X = 0
v.y - lev
Call v.move.pointl
v.x = 255

Call v.move.point2
Call v.draw.line
v.spacing = 0
Call v.get.minmax
Return

Move cursor1 to the rightmost pixel on current level

Move cursor2 to the leftmost pixel on current level

Get the maximum brightness on the current level

Return
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GET.POINT

one =0
Call v.get.graph
For i = 1 to 255

if v.reply[i] > Threshold then
if one then j = 4 End
vI~j) = 128 - v..y
u[j] = 1 - 128
one=1

End
if one then shift End
one = 0
if u[41 < u[3) then

temp = v[3]
v[31 = v[4)
v[41 = temp
temp =u[3)
u[3] - u[4]
u[4] temp

End
End
Return
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LOCATE.DISCONNECTION

1ev = level[3]
4 lev -lev-lI

Call DETECT.LIGH-T
if V.Reply[1] < Threshold then

goto 4
else

j= 3
Call GET.POINT
xepoint[plist] =u[3]
yepoint(plist] = v(33

End
1ev =level[3)

5 1ev - 1ev + 1
Call DETECT.LIGRT
if V.Reply[1] < Threshold then

goto 5
else

j=3
Call GET.POINT
xbpoint[plist) = u[31
ybpoint[plist] = v[31

End
Return
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