

UNCLASSIFIED

19. ABSTRAC'I (Continued)
 \checkmark

developed algorithms include a directed vector-autocorrelation (DVA) technique for eliminating the 180° de quadrant ambiguity inherent in speckle interferometric measurements of the astrometry of binary stars. DVA is a simple extension of normal vector-autocorrelation and requires orders of magnitude less computing time that standard image reconstruction methods when applied to binary stars. The second new algorithm is known as the fork method and provides a means for a statistically based determination of the intensity ratio of a binary at any selected wavelength, thereby providing color information through the comparison of any two wavelengths. (2) Super Diffraction-Limited Detection - The very high accuracy of speckle astrometry provides a leveraging method for detecting close companions whose spatial separations are far less than the diffraction limit. In pinciple, this accuracy is sufficient to detect brown dwarf stars and high-mass planets in orbit around one component of a wide binary system. Very large amounts of data pertaining to this problem were collected at LO and analyzed for their limiting astrometric accuracy. The limiting accuracy with the presently available instrumentation would permit the detection of brown dwarfs but is not likely to detect Jovian planets within the sample of some 65 nearby binary systems. Work will continue in this area and will include the development of new filtering and centroiding algorithms to push to higher accuracy. For the first time, a submotion due to the presence of an otherwise unseen companion has been detected by speckle observations in the case of a new star in the system ADS 784. This detection has also been independently confirmed by a submotion in the residuals to spectroscopically obtained radial velocities of the system.
(3) Atmospheric Turbulence Studies - The very extensive data accumulated under this project at the two observing sites now extends over a period of seven years. These data have been analyzed for spatial information and lend themselves to the followup determination of the atmospheric turbulence related parameters r_{0}, τ_{0}, and the isoplanatic patch size. A principle difficulty of this analysis has been the removal of local seeing effects produced by dome and other structures, and particularly affected by local thermal sources such as electronic instrumentation, from the intrinsic "seeing" conditions afforded by the atmosphere. A series of measurements obtained outside the dome of the $1.8-\mathrm{m}$ telescope provided an estimate of the mean seeing conditions at the Flagstaff sile of 1.2 arcseconds, a quantity equivalent to $\mathrm{r}_{\mathrm{o}} \sim 10 \mathrm{~cm}$.

and fast methods were developed and applied to actual data which would enable the measurement of these parameters for large numbers of stars. Newly developed algorithms include a directed vector-autocorrelation(DVA) technique for eliminating the 180° quadrant ambiguity inherent in speckle interferometric measurements of the astrometry of binary stars.

DVA is a simple extension of normal vector-autocorrelation and requires orders of magnitude less computing time that standard image reconstruction methods when applied to binary stars. The second new algorithm is know as the fork method and provides a means for a statistically based determination of the intensity ratio of a binary at any selected wavelength, thereby providing color information through the comparison of any two wavelengths. (2) Super Diffraction-Limited Detection - The very high accuracy of speckle astrometry provides a leveraging method for detecting close companions whose spatial separations are far less than the diffraction limit. In principle, this accuracy is sufficient to detect brown dwarf stars and high-mass planets in orbit around one component of a wide binary system. Very large amounts of data pertaining to this problem were collected at LO and analyzed for their limiting astrometric accuracy. The limiting accuracy with the presently available instrumentation would permit the detection of brown dwarfs but is not likely to detect Jovian planets within the sample of some 65 nearby binary systems. Work will continue in this area and will include the development of new filtering and centroiding algorithms to push to higher accuracy. For the first time, a submotion due to the iesence of an otherwise unseen companion has been detected by speckle observations in a case of a new star in the system ADS 784. This detection has also been independently $r \quad{ }^{-2}$ by a submotion in the residuals to spectroscopically obtained radial velocities

1. (3) Atmospheric Turbulence Studies - The very extensive data accumulated under this project at the two observing sites now extends over a period of seven years. These data have been analyzed for spatial information and lend themselves to the followup determination of the atmospheric turbulence related parameters $r_{0}, \tau_{\text {carc }}$, and the isoplanatic patch size. A principle difficulty of this analysis has been the removal of local seeing effects produced by dome and other structures, and particularly affected by local thermal sources such as electronic instrumentation, from the intrinsic "seeing" conditions afforded by the atmosphere. A series of measurements obtained outside the dome of the $1.8-\mathrm{m}$ telescope provided an estimate of the mean seeing conditions at the Flagstaff site of 1.2 arcseconds, a quantity equivalent to $\mathrm{r}_{0} \sim 10 \mathrm{~cm}$.

FINAL TECXNICAL REPORT
to the
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
for the interval
15 May 86-14 November 89
GRANT AFOSR-86-0134

SUPER-DIFFRACTION LIMITED MEASUREMENTS THROUGH

 THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRYHarold A. McAlister
Principal Investigator

 distribution unlimitsi

Center for Iigh Angular Resolution Astronomy
and
Department of Physics and Astronomy
Georgia State University Atlanta, Georgia 30303 (404) 651-2.932

- Micai Giommation Divisicn - dexizyr ar an ron won revised and is

FINAL TECHNICAL REPORT
 to the
 AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
 for the interval
 15 May 86-14 November 89
 GRANT AFOSR-86-0134

SUPER-DIFFRACTION LIMITED MEASUREMENTS THROUGH THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRY

Harold A. McAlister
Principal Investigator
Center for High Angular Resolution Astronomy
and
Department of Physics and Astronomy
Georgia State University
Atlanta, Georgia 30303
(404) 651-2932

22 February 1990

SUPER-DIFFRACIION LIMITED MEASUREMENTS
 THROUGH THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRY

A. RESEARCH OBJECTIVES

During the interval 15 May 1986 through 14 November 1989, speckle observations with the GSU speckle camera system were obtained at the 1.8 -meter Perkins telescope of the Lowell Observatory near Flagstaff, Arizona and at the 4-meter telescope of the Kitt Peak National Observatory near Tucson, Arizona. This Final Technical Report describes the results of an AFOSR sponsored program of research involving the collaborative efforts of astronomers within GSU's Center for High Angular resolution Astronomy (CHARA) and Lowell Observatory Astronomer Dr. Otto G. Franz. This collaboration was directed towards the following scientific problems:

1. Speckle interferometry has been widely applied to the measurement of astrometric parameters of binary stars, i.e., in determining the relative separation and orientation of the components of these objects. Observations accumulated at Kitt Peak and Lowell Observatories were used to determine not only the astrometry of binaries, but were analyzed with a variety of algorithms in order to measure the relative intensity ratios of two stars in a binary system as well. The primary objective here has been to refine the algorithms in order to set up, for the first time, a program in which the differential photemetric properties of a large number of binary stars are measurable using speckle interferometric methods. No other means currently exists for routinely determining such properties. Pilot applications of these techniques have been applied to several binary star systems of astrophysical interest.
2. The high accuracy of spatial separation measurements of the components of wide binary star systems by means of speckle interferometry has been used to continue a long-term program with the goal of detecting possible submotions in such systems that might arise from the presence of low-mass planetary or brown-dwarf companions. Sixty-one binary stars with distances less than 25 parsecs from the sun constitutc the observing program carried out at nearly monthly intervals at the Perkins telescope. A submotion has been detected from speckle data for the first time in the case of the visual binary star ADS 784.
3. The large amount of data collected in the course of activities described in objec-
tives 1 and 2 provides a unique opportunity to measure the atmospheric properties over northern and southern Arizona. The analysis of these data in order to systematically characterize atmospheric turbulence by measuring the so-called Fried parameter (a measure of the scale size of turbulence cells), the isoplanatic patch size (a measure of the angular extent over which high spatial correlation exists), and the atmospheric redistribution time (a quantity dependent upon the altitude and velocity of the primary layer of turbulence) will continue beyond the term of AFOSR support. Of particular concern has been the difficulty of separating the locally induced turbulence associated with the telescope and dome from that inherent in the atmosphere. The local " seeing" effects may ultimately limit the usefulness of these data for atmospheric turbulence studies.

B. RESEARCH ACCOMPLISHMENTS

1. Observing Opportunities

Observing time on the 1.8 -meter telescope was provided by the Lowell Observatory on a guaranteed basis in response to the scientific programs outlined above. Opportunities at the 4-meter telescope on Kitt Peak were provided also on a contin .ng basis as a result of KPNO's designation of long-term status awarded to a complementary program of binary star astrometry carried out under the sponsorship of the National Science Foundation. We ere inus currently guaranteed 4-meter time through the end of 1991. During the interval of this period of AFOSR support, some 35 observing runs totalling more than 150 nights were scheduled on the $1.8-\mathrm{m}$ telescope in Flagstaff. Weather and/or inferior seeing conditions caused a loss of approximately 20% of these nights. Seven runs for a total of 33 nights were scheduled at the $4-\mathrm{m}$ telescope, and only five nights during this time were not useful for observing. These observing opportunities permitted the acquisition of an extraordinary amount of data.

2. The CHARA Image Processing Laboratory

The primary facilities in the CHARA "speckle lab" have been described in the final report to AFOSR Gant 83-0257 and resulted from a grant through the DOD-University Research Instrumentation Program. The hardware consists of a VAX 11/750 computer, with 6 megabytes of core memory and an International Imaging Systems Model 70F image processor connected to the VAX Unibus. This configuration has provided the workhorse capability needed to extract the astrometry from speckle observations of binary stars in
efforts supported by the AFOSR and by the NSF. It has been critically important i.) the success of all aspects of the GSU/CHARA programs of speckle interferometry. The speckle lab equipment was moved into new quarters adjacent to the astronomy offices in the fall of 1986. The new lab provides an environmentally controlled room for computer hardware and data archival and a spacious area for users. The remodeling of this new laboratory was carried out completely with state funding. For speckle photometry experiments and algorithm development a video digitizing capability was provided with a small grant from the U.S. Naval Observatory through the Office of Naval Research. A commercially available frame grabber board and auxilliary image processing board were purchased along with a Wyse pc-286 computer with 10 megabytes of expanded memory. This new system is allowing us to fully digitize large numbers of speckle frames that can be used for the development of algorithms for reconstructing images of binary stars, and the relatively inexpensive equipment is playing an important role in objective 1 and 3 of this AFOSR sponsored research. The system is being used not only for photometric applications of speckle interferometry, but it is also serving as a potential replacement to the now aging hardwired vector-autorrelator, a one-of-a-kind device that is becoming less competitive with software based processing. A grant from NSF provided for the replacement of the ICCD detector used since 1981 in the speckle camera as well as for an upgrade of CHARA computing facilities. The ICCD is losing gain dramatically through the decay of the microchannel plate intensifier stage, and the strong fixed pattern of the CCD has prevented us from undertaking observations of faint objects. At the time of this writing, the ICCD is being replaced with a PAPA camera built in a collaborative effect with Peter Nisenson of Harvard University. The new detector hardware was delivered to CHARA in February 1990, and is expected to be fully operational by the fall of 1990. In early 1989, several DECstation 3100 workstation type computers were delivered to CHARA and configured via ethernet to provide a significant enhancement of computer power. The new computers are some 20 times faster that the VAX 11/750, and the VAX will be retired (through donation to the Department of Physics, Astronomy and Geology at Valdosta State College) in the spring of 1990.

3. Binary Star Intensity Ratios

New algorithms were developed at CIIARA for recovering intensity information from speckle data for binary stars. GSU/CHARA astronomers W.G. Bagnuolo, Jr., J.R. Soweli-and graduate students Donald Barry and Brian Mason have optimized various image reconstruction methods for near real-time application with the video digitizing systems. A
first application has been the elimination of the 180° quadrant ambiguity for many speckle binaries, an ambiguity inherent in standard speckle interferometry algorithms. Bagnuolo's new algorithm, known colloquially as the "fork" method, possesses excellent linearity over a wide range of intensity ratios.

The first scientific results forthcoming from the binary star photometry program, an effort for which we have coined the term "speckle photometry", is the determination of the magnitude differences of the stars comprising the system 70 Tauri and Capella. The results as well as analyses of the individual components of the Capella system were published in THE ASTRONOMICAL JOURNAL. Those papers are attached as an appendix to this report.

4. Search for low-Mass Companions to Stars

The vary large volume of data that we have accumulated since 1981 at the Perkins telescope continues to be processed by our graduate student Ali Al-Shukri. Al-Shukri the analysis of these data, measuring the autocorrelation functions of the speckle series and has eliminated data obtained during poor seeing conditions from further consideration. The calibration of the Lowell data in a manner which allows their tie-in to the Kitt Peak data was performed. Al-Shukri is expected to publish these results in the form of his Ph.D dissertation prior to June 1990.

The procedure followed has been to determine which data sets have the highest signal-to-noise in their astrometric potential and then to calculate new, accurate visual orbit solutions in order to subtract out those motions. The residuals have then been analyzed for systematic effects indicative of submotions. In general, the results have been negative, i.e. except in the case of ADS 784 we set upper limits to the presence of unseen companions. This result has important consequences on the formation of stellar systems and on the frequency of low mass objects, including brown dwarfs and planets.

The system ADS 784 is a quadruple star system in consisting of a visual binary with a separation of approximately 0.2 arcsec and a period of 83 years. The secondary of this system was known to be a spectroscopic binary having a period just over 4 days. Our data has for some time indicated a sinusoidal set of residuals to the visual orbit, with a period of some 2000 days. Dr. Frank Fekel of Vanderbilt University independently noticed a long-period residual motion in his radial velocity measures of the 4 -day system. Through a combined analysis of Dr. Fekel's spectroscopic data and our speckle data, we conclusively detect a fourth component with period of 1700 days. This is the first time that such an object has been found due to submotions in both astrometric (in this case, speckle) and
spectroscopic data.
5. Measurement of Atmospheric Seeing Properties

The newly acquired video digitizing system provided the means for carrying out the proposed methods for measuring three properties of atmospheric seeing: Fried's parameter, isoplanatism, and correlation times. Graduate student Wean Tsay is pursuing the measurement of these properties at Kitt Peak and Anderson Mesa, the site of the Perkins telescope and the proposed site for the CHARA long-baseline telescope array. Tsay spent eight weeks on Anderson Mesa during the spring of 1988 measuring image profiles and motions using a CCD camera on a 14 -inch Celestron telescope. These results were analyzed along with micro-thermal data taken simultaneously by Dr. Fred Forbes of the National Optical Astronomy Observatories. A joint paper discussing Anderson Mesa as an interferometer site has resulted from this collaboration and is included in this report.

C. PUBLICATIONS

1. IC:CD Speckle Observations of Binary Stars. I. A Survey for Duplicity Among the Bright Stars. H.A. McAlister, W.I. Hartkopf, D.J. Hutter, O.G. Franz, and M.M. Shara, THE ASTRONOMICAL JOURNAL, 93, p. 183, (1987).
2. ICCDD Speckle Observations of Binary Stars. II. Measurements Duirng 1982-1.985 from the Kit.t Peak 4-m Telescope. H.A. McAlister, W.I. Hartkopf, D.J. Hutter and O.G. Franz, THE ASTRONOMICAL JOURNAL, 93, p. 688, (1987).
3. ICCD Speckle Observations of Binary Stars. III. A Survey for Duplicity Among High Velocity Stars. P.K. Lu, P. Demarque, W. van Altena, H.A. McAlister, and W.I. Hartkopf, THE ASTRONOMICAL JOURNAL, 94, p. 1318, (1987).
4. Gamma Persei-Not Overmassive but Overluminous. D.M. Popper and H.A. McAlister, THE ASTRONOMICAL JOURNAL, 94, p. 700, (1987).
5. ICCD Speckle Observations of Binary Stars. IV. Measurements During 1986 from the Kitt Peak 4-m Telescope. H.A. McAlister, W.I. Hartkopf, J.R. Sowell, ind O.G. Franz, THE ASTRONOMICAL JOURNAL, 97, p. 510, (1989).
6. Binary Star Orbits from Speckle Interferometry. I. The Hyades Binary Finsen 342 (70 Tauri) H.A. McAlister, W.I. Hartkopf, W.G. Bagnuolo, J.R. Sowell, O.G. Franz, and D.S. Evans, THE ASTRONOMICAL JOURNAL, 96, p. 1431 (1988).
7. Binary Star Speckle Photometry. I. The Magnitudes and Spectral Types of the Capella Stars W.G. Bagnuolo and J.R. Sowell, THE ASTRONOMICAL JOURNAL, 96, p. 1056, (1988).
8. Seeing Stars with Speckle Interferometry. H.A. McAlister, AMERICAN SCIENTIST, 76, p. 167, March-April (1988).
9. Binary Star Orbits from Speckle Interferometry. II. Combined Visual/ Speckle Orbits of 28 Close Systems. W.I. Harttkopf, H.A. McAlister, and O.G. Franz, THE ASTRONOMICAL JOURNAL, 98, p. 1014, (1989).
10. Binary Star Orbits from Speckle Interferometry. III. The Evolution of the Capella stars. W.G. Bagnuolo and W.I. Hartkopf, THE ASTRONOMICAL JOURNAL, 98, p. 2275, (1989).
11. ICCD Speckle Observations of Binary Stars. V. Measurements During 1988-1989 from the Kitt Peak and Cerro Tololo $4-\mathrm{m}$ Telescopes. H.A. McAlister, W.I. Hartkopf, and O.G. Franz, THe ASTRONOMICAL JOURNAL, (to appear in March 1990).
12. Results in Speckle Photometry. W.G. Bagnuolo, D.J. Barry, and E.G. Dombrowski, PROCEEDINGS OF THE SPIE, (to appear in 1990).
13. The CHARA Array. III. Anderson Mesa, Arizona as a Site for an Optical Interferometric Array. W.S. Tsay, W.G. Bagnuolo, H.A. McAlister, N.M. Whitc, and F.F. Forbes, PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, (to appear in 1990).

D. NEW INVENTIONS OR PATENTS

No new inventions or patents have resulted from this research effort to date.

E. PROFESSIONAL PERSONNEL

The following personnel were directly associated with research effort during the period of this grant. Asterisks indicate those persons who have contributed to this research but whose salaries have not been supported by AFOSR funds.
*Dr. Harold A. McAlister - Principal Investigator, GSU
Dr. Otto G. Franz - Senior Investigator, Lowell Observatory
*Dr. William I. Hartkopf - Senior Research Associate, GSU
*Dr. William G. Bagnuolo, Jr. - Senior Research Associate, GSU
*Dr. James R. Sowell - Research Associate, GSU
*Mr. Ali Al-Shukri - Graduate Research Assistant, GSU
Mr. Wean Shun Tsay - Graduate Research Assistant, GSU
Mr. Edmund G. Dombrowski - Graduate Research Assistant, GSU
*Mr. Donald J. Barry - Graduate Research Assistant, GSU

F. SCIENTIFIC PUBLICATION

The scientific publications listed under section C. above are included on the following to complete this final report.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. I. À SURVEY FOR DUPLICITY AMONG THE BRIGHT STARS

Harold A. McAlister, ${ }^{3}$) William I. Hartkopf, and Donald J. Hutter ${ }^{\text {a }}$
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303
MICHAEL M. SHARA ${ }^{2}$
'Space Telescope Science Institute, The Johns Hopkins University, Homewood Campus, Baltimore, Maryland 21218

Otto G. Franz ${ }^{\text {a }}$
Lowell Observatory, Flagstaff, Arizona 86001
Received 11 April 1986; revised 21 May 1986

Abstract

A survey of a sample of 672 stars from the Yale Bright Star Catalogue has been carried out using speckle interferometry on the 3.6 m Canada-France-Hawaii Telescope in order to establish the binary star frequency within the sample. This effort was motivated by the need for a more observationally determined basis for predicting the frequency of failure of the Hubble Space Telescope (HST) fineguidance sensors to achieve guide-star lock due to duplicity. This survey of 426 dwarfs and 246 evoived stars yielded measurements of 52 newly discovered binaries and 60 previously known binary systems. While the implications for HST operations are described elsewhere, we show that the frequency of close visual binaries in the separation range $0.04-0.25$ is 11%, or nearly three-and-one-half times that previously known.

I. INTRODUCTION

The frequency of binary and multiple stars has wide-ranging implications within astrophysics, and even relates to the question of the frequency of life in the universe. The observational limitations of the various techniques for discovering binary stars give rise to selection effects which, if well understood, permit reasonable estimates of the number of overlooked binary stars within a specific sample. For visual binaries, these selection effects are tied to the apparent magnitude of the binary star, the angular separation of the system, and the magnitude difference within the system. In their analysis of the Index Catalogue of Visual Double Stars (IDS) (Jeffers, van den Bos, and Greeby 1963), Poveda, Allen, and Parrao (1982) find that after eliminating more than one-fourth of the IDS entries as either optical or spurious pairs, it can be concluded that practically every field star is a potential visual binary. Most of these pairs remain to be discovered.
Speckle interferometry undertaken at the largest telescopes provides an extension of the methods of visual binary star astrometry routinely down to below 0.04 in angular resolution and to magnitude difference as large as 1.5-2.0 mag. Concerted efforts can increase the Δm sensitivity significantly. The accomplishments of binary star speckle interferometry prior to 1984 have been cataloged by McAlister and Hartkopf (1984). These accomplishments include the first direct resolution of some 120 bright binary stars and the accurate measurement of many previously known systems at separations difficult or impossible for other techniques. Although speckle observations have tremendous potential for discovering new pairs, no extensive survey programs exploiting this petential have been undertaken. This has been due to the limited amount of time available on large telescopes to speckle observers and to the obvious priority given to the resolution of known spectroscopic and close visual binaries for stellar mass and luminosity determinations. We report here the first systematic attempt to carry out a speckle inter-

[^0]ferometric survey for duplicity among a large sample of stars. This survey was motivated by the need for a more directly established estimate of the binary star frequency in the range of separations ($0.018-0.0$ "20) for which the Hubble Space Telescope (HST) fine-guidance sensors would fail to achieve lock. This frequency distribution could potentially lead to significant dead time for HST when all guide-star pairs for a given field contain resolved binaries. The implications of this survey for the HST are discussed elsewhere (Shara et al. 1987) and we will restrict our consideration here to the purely astronomical results derived from the observations.

II. SURVEY SAMPLE AND OBSERVATIONAL KESULTS

All of the speckle measurements published prior to this paper as a result of the Georgia State University program have been based upon a photographic speckle camera employing analog techniques for data processing (McAlister 1977). The data for our new survey were obtained using the GSU ICCD speckle camera (McAlister et al. 1982, 1987; Hartkopf and McAlister 1986) in which speckle pictures are initially processed digitally with a hardwired vectorautocorrelator and then finally reduced and measured with a VAX $11 / 750$-based image-processing system. The speckle camera has been used regularly at the 4 m KPNO telescope and 1.8 m Perkins telescope at the Lowell Observatory since late 1981. Approximately 2700 measurements of one thousand binary stars, including some 60 newly resolved systems, have been redured from the data gathered to date, and a detailed discussion of these collected results is to be presented in Paper II of this series. The ICCD data gathered at KPNO between July 1982 and January 1985 were recorded on videocassette tapes and post-processed through the hardwired vector-autocorrelator. The desirability of producing vector-autocorrelograms in real time, and thereby eliminating the effects of tape noise, compressed dynamic range, etc., was realized early on in our experience with the new camera, and provision was made for this in time for the HST-related observations discussed here.

Following experiments with potential HST guide stars (most with $V=12-14$) at the 2.5 m Hooker telescope of Mount Wilson and Las Campanas Observatories and the 3.0 m Shane telescope of the Lick Observatory in early 1985, we decided to restrict further speckle observations to bright stars from which we could statistically extrapolate the binary frequency to HST guide stars. Experience to date has shown that speckle observations can resolve systems with combined magnitudes as faint as $V=+15$, but these have invariably been for objects which have a priori evidence for duplicity. The speckle measurements of the Pluto-Charon system as recently summarized by Tholen (1985) are a case of particular interest and clearly demonstrate the method's ability to measure faint double objects. Autocorrelograms or power spectra produced from speckle data for faint objects are unavoidably of lower signal-to-noise than those for bright objects and are far more subject to the interpretation of noise fluctuations as features indictive of duplicity. In principle, long integration times and subsequent confirming observations can increase the confidence of a discovery, but both require a significant increase in the investment of telescope time. The reliability of speckle interferometry in discovering faint binary stars thus remains to oe established, although we believe that great potential exists in this area. On the other hand, speckle interferometry has now provided the first direct resolution of nearly 200 binary stars (McAlister and Hartkopf 1984; McAlister et al. 1987), most of which have been confirmed by subsequent observation. Only a few spurious cases of resolution are indicated by lack of confirmation, and most of these might be the result of closure below resolution limits at the epochs of subsequent observations rather than outright errors in interpreting speckle autocorrelograms.
The sample of stars used in defining the survey was obtained by selecting all stars from the Yale Bright Star Catalogue (BSC) (Hoffleit 1982) with equatorial coordinates ranging from 15^{h} to 23^{h} in right ascension and -20° to $+60^{\circ}$ in declination along with a visuzl-magnitude constraint such that $5.0<V<6.5$ (BSC limit). The positional constraints ensured that all objects observed would be within 40° of the zenith of Mauna Kea during the scheduled observing. Complete compensation for atmospheric dispersion using the Risley prisms in the GSU speckle camera requires zenith angles no larger than approximately 60°. The surveysample results are thus free of dispersion effects that might otherwise mimic duplicity. These criteria resulted in 1191 stars, or 13% of the BSC, as candidate objects for the survey. No selection criteria involving prior knowledge of duplicity were imposed, and all data were reduced blindly with respect to existing visual micrometer or speckle iesults for any of the visual binary stars that happened to be observed. As will be discussed in Sec. III, we emphasized the observations of dwarf over giant stars in this candidate sample in order to have a distribution of luminosity classes more closely related to that expected for faint HST guide stars.

Speckle observations were obtained on the four nights of 7-10 July 1985 UT using the GSU ICCD speckle camera at the Cassegrain focus of the 3.6 m Canada-France-Hawaii telescope on Mauna Kea. Seeing conditions were generally excellent with FWHM seeing disks estimated to be typically less than 0.7 , occasionally less than 0.5 , and only $2^{*} .0$ under the worst seang conditions encountered during part of the night of 8 July 1985 UT when occasional cirrus clouds appeared. Of particular interest is the atmospheric redistribu-
tion or correlation time, found to be comparable to that we have experienced on many nights over the years on Kitt Peak. There was certainly no indication of the very "fast seeing" that is occasionally mentioned for Mauna Kea. Although four nights are certainly insufficient for site comparison, we can unequivocably state that the seeing conditions encountered at the CFH telescope on these four nights were the best we have ever seen anywhere in nearly ten years of speckle observing.

A total of 763 separate objects were observed at the CFH telescope. Seventy-two of these objects were previously known visual or occultation binaries included in the final sample for calibration purposes, as well as a variety of objects in miscellaneous categories. In 13 cases, the primary and secondary components of wide binaries that could not be observed together in our field of 2.4 square were observed separately io search for close companions. Data for six objects were not included in the final analysis because of instrumental effecis or other peculiarities in the autocorrelogramswhich could not be removed. We thus obtained observations of 672 of the 1191 survey candidates. This represents an inspection of 7.4% of all BSC members for duplicity at a resolution limit of 0.038 , corresponding to the Rayleigh limit of a 3.6 m aperture telescope. All observations consisted of 60 s of video data (equivalent to 1800 individual speckie pictures) taken through a Strömgren y filier and with 10 ms exposure times. Integrated vector-autocorrelograms were stored on floppy disks for subsequent reduction and analysis at GSU in Atlanta. Calibration for scale and position-angle origin was obtained from the measurements of nine visual binaries that have been routinely observed in our program at the KPNO 4 m telescope and were in fact observed on Kitt Peak with the same equipment during a run that ended just five days before the Mauna Kea observing run began. The effect of orbital motion on this calibration is therefore totally insignificant. The spatial calibration procedure employed at KPNO continues to utilize a double-slit mask in the pupil plane as described by McAlister (1977). This method provides a truly external calibration procedure independent of any standard or reference binaries. The scale on the detector for the CFHT data was thus indirectly determined to be 0.00951 per pixel with an uncertainty indicated by the scatter for the nine calibration stars of approximately $\pm 0.5 \%$. The observational results of this survey are presented in Tables I-III.
Table I contains measurements of 52 newly resolved binary stars. The measured angular separation ranged irom 0.040 , just above the CFHT diffraction limit, to 0:965. The mean separation for this sample is 0 " 162 , reducing to 0 ". 140 when the two systems with separations exceeding 0 " 50 are excluded. Since autocorrelated speckle data cannot discern the true quadrant in which the secondary star lies, position angles inherently have a 180° ambiguity. In Table I we adopt $\theta<180^{\circ}$. Some of these new binaries have already been confirmed by speckle observations obtained at the KPNO 4 m telescope during November 1985. These confirmed objects are indicated by an asterisk preceding the HR number in Table I. Lack of confirmation at the present time is by no means an indication of decreased confidence in Table I, as only a minority of the new binaries were reobserved in November 1985. The conservative approach we have continued to apply in the inspection of autocorrelograms for duplicity gives us a very high confidence in the reliability of the results in Table 1 .

Table I. Newly resolved systems.

HR	MK	V	Epoch	θ	ρ	$\begin{gathered} d^{t} \\ (\mathrm{pc}) \end{gathered}$		$\begin{gathered} \mathrm{p}^{+} \\ (\mathrm{yr}) \end{gathered}$
5612	F6IV	6.65	1985.5171	$85: 4$	0.166	100	17	94
5715	A4V	5.66	1985.5172	155.4	0.217	85	19	78
5818	A2V	5.74R	1985.5172	14.9	0.514	120	61	420
5858	AOV	6.14	1985.5198	98.9	0.130	180	24	91
5895	A 3 Vn	5.11	1985.5199	25.3	0.126	75	9	26
6123	A5V	5.52R	1985.5200	174.3	0.195	75	15	56
6194	A3IV	6.93	1985.5146	96.3	0.145	250	36	198
6213	F2III	5.92	1985.5173	95.7	0.126	125	16	72
6286	K2III	6.00	1985.5173	121.1	0.292	215	63	360
6317	A7V	6.59	1985.5201	100.6.	0.128	100	14	48
6383	Alv	6.46	1985.5173	72.3	0.168	185	32	150
6412	A2V	6.17	1985.5201	70.1	0.136	135	18	72
6571	A 2 Vn	5.62R	1985.5220	74.0	0.080	105	9	24
6641	A2Vs	6.43	1985.5228	109.0	0.142	160	23	95
6656	A2V	5.02	1985.5228	112.8	0.120	80	9	26
6781	A3V	5.86	1985. 3228	173.8	0.106	100	11	32
*6851	B5V	6.30	1985.5231	46.2	0.054	430	24	65
6906	B9V	6.37	1985.5148	100.0	0.118	225	27	110
*6928	B8III-IV	5.73	1985.5148	131.2	0.078	200	16	30
*6941	B2V	6.69	1985.5148	172.8	0.149	1240	186	1165
6956	A4V	6.37	1985.5149	41.4	0.040	125	5	11
*6977	AOVn	5.78?	1985.5146	31.5	0.151	145	23	85
*6984	B5Vne	6.10	1985.5229	75.8	0.241	395	95	540
6987	F3V	5.45	1985.5148	97.0	0.141	45	7	19
7053	A8Vn	5.14H	1985.5176	66.6	0.184	50	9	30
7091	Alv	6.59R	1985.5175	124.2	0.219	185	41	215
* 7109	B8Vnn	6.14	1985.5231	99.3	0.104	250	26	95
7110	A7Vn	6.34	1985.5231	89.6	0.178	90	16	68
7263	F3V	6.23	1985.5233	63.8	0.171	60	11	45
*7272	G1V	6.74	1985.5232	173.0	0.089	40	3	10
7307	B9.5V	5.63	1985.5204	56.2	0.051	145	8	16
7386	F7V	6.19	1985.5233	71.5	0.181	45	8	31
*7436	A3In	6.61	1985.5233	173.8	0.137	160	21	95
7480	A3IV	5.67	1985.5149	41.4	0.084	120	10	30
*7554	B2.5IVe	6.51	1985.5149	82.9	0.057	1300	75	300
*7571	AOV+F8IV	6.48	1985.5150	8.9	0.291	200	59	370
*7677	ASVn	6.45R	1985.5177	55.6	0.050	110	6	12
7684	A2IV	6.01 R	1985.5178	23.4	0.340	180	61	426
7752	Aiv	6.27	1985.5177	57.1	0.176	165	29	130
*7755	A2Vn	6.31R	1985.5178	13.5	0.176	140	25	110
7767	09V	5.84	1985.5177	7.7	0.047	1720	80	240
7994	G1V	6.38	1985.5205	2.3	0.169	35	6	20
8246	AOV	5.75	1985.5179	64.2	0.043	145	7	13
8257	FOIV	6.31	1985.5178	110.4	0.184	100	19	90
8274	G9III	6.16	1985.5178	20.2	0.099	200	19	145
8507	F3V	6.39	1985.5208	108.5	0.104	70	7	24
8553	B2V	6.14	1985.5208	60.3	0.185	940	175	1060
8574	B9.5V	5.63	1985.5208	64.1	0.155	140	21	85
8581	F7V	6.14	1985.5151	84.8	0.094	40	3	10
8603	B2ve	5.73	1985.5182	127.0	0.042	780	33	85
*8617	G2III+A4V	6.408.	1985.5181	115.5	0.113	180	20	85
8690	B3IV:	5.92	1985.5154	124.0	0.965	650	630	7800

*Confirmed Nov 85 at KPNO 4 -m telescope.
+Modeled, not observed, paraneter.

Table II contains 76 measurements of 74 previously known binary stars. Fourteen of these measurements, indicated by an asterisk preceding the system identification, are for binaries observed for calibration purposes and are not systems that were part of the survey sample. All stars in the survey sample were checked against the Washington Double Star Catalog (WDS) maintained by C. E. Worley at the U.S. Naval Observatory. Three of the survey stars turned out to be binaries previously first resolved by speckle interferometry (HR $6409,8059,8704$), and three were discovered either by W. S. Finsen or R. H. Wilson using visual interferometry (HR 6676, 7441, 8355). The remaining 65 systems in Table II were all resolved with visual micrometer methods by a variety of observers. The mean separation for the known binaries among the survey sample is 0.504 , increasing to 0 " 562 when the six interferometric pairs are excluded. When compared with the mean separation for the measurements in Table I, the anticipaisd gain from the increased sensitivity of speckle interferometry to small angular resolutions is clearly
seen. As might be expected from our conservative approach to interpreting autocorrelograms, it is mainly the increased resolution rather than a gain in magnitude-difference sensitivity that is responsible for the new binaries in Table I.

Table III contains the HR numbers of 560 stars that were observed in the survey and for which no convincing evidence of duplicity was detected in the autocorrelograms. The effective field of view was determined by the size of the autocorre= lator address window and was limited to a rectangle with dimensions 1.22×2 ". 44 centered on the primary star and with the long dimension parallel to a position angle of approximately 30° on the sky. Thus the upper limit to any angular separation that would be detected in the survey was between 0.61 and $1: 36$ depending upon position angle. A search of the WDS for known binaries in Table III having separations falling within this window was made, and a list of such systems is presented in Table IV. From the comments accompanying Table IV, we can conclude that there is every indication that this survey has co rpletely detected

Table II．Measures of previousiy known systems．

ER／HD／BD	ADS／Disc．	MK	V	Epoch	θ	ρ
＊ BD 2880	ADS 450 AB	KOV	8.89	1985.5236	149.6	0.125
＊ AR 142	ADS 490 AB	P8V	5.20	1985.5236	286.9	0.264
＊ BR 5472	McA 40	COV	6．05R	1985.5226	79.9	0.061
＊RR 5477－8	ADS 9343 AB	A2III	3.86	1985．5145	304.0	0.965
＊ HR 5504	Fin 309	F7V	6.40	1985.5145	292.0	0.238
＊ BD 130669	ADS 9397	Y2V	8.6	1985.5226	152.2	0.148
㫙 5654	Cou 189	H4IIIab	5.89	1985.5171	143.2	0.454
日R 5728	ADS 9617	G3V	6．08H	1985.5171	9.7	0.827
㫙 5774	ADS 9688 AB	A5v	5.02	1985.5172	169.2	0.040
RR 5915	ADS 9834	85 V	5.94	1985.5199	122.0	0.556
日R 6255	ADS 10230	A2Vs	5.51	1985.5146	341.6	0.235
㫙 6329	ADS 10312 A	14 V	6.33	1：85．5201	186.8	1.246
良 6367	ADS 10355	AlV + F3V	6.06	1985．5201	12.8	0.444
＊HR 6377	ADS 10360 AB	A5＊	5.39	1985．5228	122.6	0.127
㫙 6469	KcA 47	F9Vn：	5.51	1985.5228	228.8	0.045
发 6488	ADS 10531 AB	P8IV	6.49	1985.5228	289.8	0.069
HR 6516	ADS 10598	G9IV－V	5.31	1985.5203	156.9	0.932
ER 6560	Mlr 571	A5V＋G5II；	6.17	1985.5228	349.0	0.140
＊+272853	Kui 83 AB	dMOp	9.2	1985.5228	305.0	0.225
㫙 6627	ADS 10795	Alv	5．72R	1985．5203	266.4	0.552
㫙 6676	Fin 38．	FSVn	6.38	1585.5203	279.3	0.102
＊日D 163640	McA 49	AOIII	7.4	1985.5229	67.9	0.083
RR 6689	ADS 10912	A3V	5.97	1985.5203	92.7	0.313
盟 6733－4	ADS 11005 AB	F5V	4.78	1985.5204	278.2	1.831
ER 6795	ADS 11111 A	F2V	5.73	1985.5204	320.2	0.369
HR 6798	ADS 11127	A4V	5.36	1985.5204	193.9	1.261
ER 6803	ADS 11123 AB	B9V＋F7III	6．09R	1985.5231	221.8	1.166
ER 6814	ADS 11149 AB	A3V	5．88R	1985.5229	64.1	0.098
HR 6898	ADS 11324	A9III＋F6III	6.15	1985.5148	355.2	0.836
HR 6904	ADS 11334 AB	$10 \mathrm{~V}+\mathrm{A} 4 \mathrm{~V}$	6.24 R	1985.5229	128.5	0.639
RR 6981	ADS 11483 AB	G2V＋G2V	6.21	1985.5148	160.5	1.697
㫙 6999	ADS 11520 AB	F9IV	6.49	1985.5149	349.0	0.141
日R 7002	ADS 11524	KIIII＋M6IIIe	6．4 H	1985.5148	135.9	0.453
ER 7017	Cou 1607	B9V	6.25	1985.5229	115.1	0.175
ER 7033	ADS 11593 Aa	B5V	6.47	1985.5175	303.3	0.145
日R 7048 A	ADS 11640 Aa	AlV + AlV	5.83	1985.5231	129.9	0.142
㫙 7048 B	ADS 11640 Bb	AlV＋alV	5.83	1985.5231	139.6	0.137
ER 7090	Hei 72	AIV	6．40R	1985.5176	215.8	0.489
㫙 7305	ADS 12239 AB	88 V	6.54	1985.5233	158.1	0.863
＊ $\mathbb{R}^{\text {R }} 7362$	Fin 327	A	5.03	1985.5231	84.5	0.081
HR 7441	Urh	AOV＋FBIII	5.38	1985.5233	266.2	0.053
ER 7486	Rui 93	B5V	6.01	1985.5149	309.1	0.178
［R17546	ADS 12973 AB	A3V	5.00	1985.5149	177.6	0.180
㫙 7599	ADS 13104 AB	F2V	6.51	1985.5149	296.0	0.173
日R 7637	Eo 276	F8V	5.88	1985.5150	295.6	0.233
ER 7657	ADS 13277	P2III	5.22	1985， 5177	120.5	0.851
日R 7737	ADS 13572 AB	B9IV－V	6.71	1985.5177	169.7	0.908
㫙 7784	ADS 13728 AB	Alv	6.23	1985.5234	108.9	0.329
＊ BD 195481	ADS 13944 AB	A3V	6.85	1985.5232	213.4	0.058
良 7840 A	ADS 13946 Aa	38 V	7.11	1985.5205	126.8	0.341
ER 7840 B	ADS 13946 BC	88V	7.11	1985.5205	295.2	0.108
＊ $\mathrm{ER}^{\text {P }} 7889$	ADS 14099 AB	86III	5.22	1985.5232	111.7	0.345
ER 7958	Kui 101	A3V	6.30	1985.5234	109.6	0.374
＊ $\operatorname{ER} 7963$	ADS 14296 AB	B5Ve	4.53	1985.5232	15.7	0.793
ER 7982	ADS 14360 AB	F5V＋F7V	5.99	1985.5205	12.9	0.982
IR 8038	Kui 102	FiVp	5.99	1985.5151	52.1	0.296
GR 8055	ADS 14573 AB	PSV	6.25	1985.5151	125.3	1.344
㫙 8059	McA 66 Aa	G4III	5．89H	1985.5208	232.6	0.045
㫙 8116	ADS 14761	A7Vn	6.27	1985.5150	58.8	0.090
＊ $\mathrm{HR}^{8} 8123$	ADS 14773 AB	$\mathrm{P5V}+\mathrm{GOV}$	4.49	1985.5234	13.8	0.202
GR 8258	ADS 15115	A4V	6.11	1985.5178	298.4	0.295
㫙 8355	Pin 358	39V	6.59	1985.5208	91.2	0.093
ER 8355	Pin 358	B9V	6.59	1985.5234	92.7	0.090
ER 8407	ADS 15578 AB	AOIV	5.60	1985.5179	3.4	0.939
ER 8532	ADS 15896 AB	F7V	6．04R	1985.5208	4.1	0.296
HR 8533	ADS 15902 AB	AOV	5.78	1985.5151	217.7	0.121
HR 8545	ADS 15934 AB	G1V	6.35 H	1985.5153	340.8	2.495
ER 8612	ADS 16130	GOIII + FOV	6.23	1985.5151	136.9	0.136
ER 8629	Xui 114	F6V	6.31	1985.5153	124.9	0.184
ER 8631	ADS 16173 AB	63V +68 V	5.71	1985.5153	97.7	0.216
［8R 8652	ADS 16214 AB	AIV + G：	6.39	1985.5154	306.2	0.492
日R 8704	McA 73	39115	5.80	1985.5153	284.3	0.073
最 8704	HCA 73	891II	5.80	1985.5234	283.3	0.074
ER 8708	ADS 16345 AB	43m＋F6V	5.81	1985.5154	210.8	0.910
㫙 8737	ADS 16417 AB	G2V $+\mathrm{G4V}$	6.43	1985.5153	345.7	0.290
日R 8739	ADS 16428	A8V + F6V	5.75	1985.5153	306.2	0.563

＊indicates those binaries observed but not on sinvey $115 t$

Table III. Negative results for bright stars.

Table III. (continued)

HR	HK	V	BR	MK	V
6538	C5V	6.56	7057	FOIVV	5.73
6541	F6V	5.64	7059	A2Vm	5.90
6544	88 Vn	5.55	7060	A2IV	6.11R
6548	A2V	5.81	7071	G5III	6.23
6551	ABVn	6.40R	7073	86V	6.04
6570	A5V	5.76R	7079	PBV	6.15
6589	A1V	6.34	7080	A2IV	6.52
6592	RIIII + F4V	6.36	7081	B3IVp	6.06
6594	14Vv	5.52	7084	82.5 Ve	5.88
6600	POV	6.39	7085	AIV	6.25
6601	81.5 V	6.30	7086	AIV	5.88
6609	AlIV-V	6.17	7096	A7III	6.13
6610	AOV	6.56	7098	AOVs	6.64
6618	12 V	5.75	7100	B3IV	5.91
6626	R3III + F7V	6.68	7102	13 V	5.25
6633	19.5 V	6.22	7115	B6IV	6.09
6642	A1V	6.12	7123	G9IVa	5.51
6655	A9V	5.98R	7126	Pay	5.79
6670	F3-5IV-V	5.77	7131	82.5 V	5.58
6679	A $\mathrm{VV}^{\text {V }}$	6.52	7132	Q4III	5.62
6681	AIV	5.89	7140	G8III +12	6.02
6684	82IV-V	5.82	7154	F3III	5.77
6696	AIV	6.36	7162	$\mathrm{P9V}$	5.22
6697	G2V	6.30	7171	37III-IV	6.50
6720	BeVne	6.50	7172	$78 V$	5.23
6732	39V	6.76	7173	12Vp	6.75
6741	83 Vn	6.21	7174	17IV	5.89
6744	AOV	6.50R	7179	83 V	6.22
6753	12V	6.21	7182	R2III	5.27
6754	POIV-V	6.34	7183	M3.5IIIab	6.29
6764	77V	6.52	7185	BSIV	6.41
6775	P7V	5.04	7196	G8III	6.30
6776	A2Vn	6.63	7200	B2IV-V	6.69
6782	13 V	5.90	7202	D5V	5.69
6792	12 V	6.32R	7207	A4V	6.40R
6797	P5V	5.69	7209	Alv	5.42
6806	R2V	6.40	7214	atv	5.83
6830	AVV	6.36	7215	A7V	5.01
6831	$78 V$	6.56	7231.	P1V	6.53
6843	A8V	6.31	7251	AOVn	5.38
6844	72 V	6.63	7258	33 V	6.49
6847	62V	6.29	7260	G5V	6.07
6849	r1v	6.37	7261	FOV	5.23
6852	89V	5.99R	7267	75IV-V	6.48
6873	B3ve	6.13	7269	B5Vn	6.34
6877	174	5.12	7279	33 V	5.34
6878	39.5 V	6.33	7284	A3V	6.18
6881	S8IV-Ve	5.73	7286	12Vn	5.93R
6883	12V	6.00R	7288	A3V	6.49
6885	RJIII	5.25	7293	G4V	6.75
6890	${ }^{7} 61$ III-IV	6.38	7294	G4V	6.57
6900	$19 \mathrm{~V}$	6.74	7301	${ }^{4} 4$	5.64
6902	C8III-IV + AOV	5.65	7313	Alvn	6.19
6918	COIII +A 6 V	5.21	7324	A3V	6.68
6919	B8V	6.20	7332	12v	6.02
6924	33 V	6.53	7345	G8V	6.31
6925	X3III	6.07	7346	89V	6.31
6935	XOIIE	5.39	7351	Alv	6.26
6944	AOVn	5.14	7364	39.50	6.40
6946	32 V	5.72	7368	G8V	6.37
6955	A 2 V	5.77	7384	AOV	6.31
6957	A6III	5.94	7390	AOV	5.63
6962	A2V	5.76	7403	B3Ve	6.34
6967	28IIIpSiSr:	6.42	7457	s8Vne	6.05
6970	C8III	5.14	7466	${ }^{85 V}$	6.43
6971	B6Ve	6.59	7476	K2III + P8V	6.2
6974	39.5 V	6.56	7516	B3III	6.48
6975	A3V	6.46R	7519	A3IV	5.91
6976	Alv	6.40R	7541	KSIII	6.04
6985	75III	5.39	7553	POV	5.39
6992	894	6.42R	7559	KSIII	6.13
6995	G8IV	6.29	7569	G0V	6.13
7000	FIIV-V	6.66	7572	B7V	6.54
7003	rov	6.26R	7580	89.5 Vn	6.53
7010	681II	6.28	7593	87Vn	3.71
7030	88 V	6.41	7594	88 V	6.49
7034	P7V	6.31	7596	A0III	5.61
7040	898	5.02	7598	A2V	6.15
7046	F1III-IV	5.70	7610	A1IV	5.28
7047	F6V	6.31	7622	29III	5.33
7051	$\mathrm{A6V}$	5.06月	7636	C8III	6.17
7052	F1V	6.02H	7649	A3V	5.71
7054	POVn	S.37H	7655	KOIII	6.20

Table III. (continued)

日R	HK	V	HR	MK	v
7656	B4V	5.88	8166	CBIV	5.68
7670	G6IV + M6V	5.71	8169	Alv	6.04
7672	GIV	5.80	8170	P8V	6.40
7675	Alvn	6.55	8178	13V	5.16
7683	G5IV	6.17	8182	STIII	6.05
7687	MiIIIa	6.14	8186	A19	6.63
7688	B3V	5.07	8187	Siv	5.49
7689	KOIV	5.36	8190	FIIV	5.71
7693	F3V	6.43	8194	A2V	6.15
7697	75V	5.85	8197	KOIII	6.32
7700	B3V	6.31	8198	A9III	5.68
7705	PSIV	6.48	8205	F5V	6.13
7709	B1V	6.49	8212	P3V	6.61
7711	A3III	5.52	8215	B3V	5.31
7715	P7V	5.85	8217	Alv	5.41
7719	B7ve	5.92	8220	FOV	5.80
7721	37 V	6.92	8222	FOV	6.57
7731	ATIVn	5.18	8231	B9.5V	6.08
7733	K4III	6.14	8250	F7V	6.47
7734	AOV	6.45	8261	68III-IV	6.36R
7743	KOIII	5.66	8263	A2V	6.25
7746	KIIII	6.13	8265	A2V	6.18
7753	G8III	5.32	8266	ASV	5.01
7756	FSV:	5.91	8267	FIIV	5.45
7757	86 III	6.48	8270	A9IV-Vn	5.67
7760	G9III	6.22	8272	A7III	6.20
7769	A2V	5.58	8276	P2V	5.85
7777	B2V	6.45	8283	G2V+GOV	5.18
7782	AOIII	6.57	8302	POV	5.99
7793	F8j	6.17	8307	AOV	5.65R
7803	39 V	6.15	8310	G2V	6.08H
7807	32Ven	5.90	3314	cov	5.94
7821	B9V	6.13	8319	Alv	5.58
7829	A7V	6.74	8328	A1V	5.64
7830	A3Vn	5.94	8330	P3V	6.21
7855	F6V	6.13	8332	ATV	6.17
7857	A2Vnn	6.56	8358	88V	6.12
7865	A 7 V	6.19	8341	B2V	6.29
7880	B9V	5.59	8343	Alvs	5.04
7883	A2V	5.43	8354	P6IV-Vvy	5.53
7887	FOV	6.49	8356	s3ve	5.08
7899	83 V	5.96R	8358	AOVs	5.68
7914	G5V	6.45	8372	KSV	6.38
7917	A2V	6.08R	8373	A2Vnn	5.54
7927	B2IV-Ve	6.66	8382	K2V	6.22
7947	F7V	5.14	8391	FSIII	6.40R
7953	AOV	5.58	8396	A2V+KOIİ	6.37
7954	AOVn	6.40	8403	8SIII	5.78
7973	FSV	5.98	8404	39.50	5.80
7974	AlVs	6.33	8406	09 V	5.56
7981	Alvs	6.528	8415	K2III	5.78
7983	B4Ve	6.33	8419	89 Vn	5.63R
8004	Alv	6.66	8421	M4IIIab	6.13
8006	A9Vn	6.55	8422	AOV	6.44
8009	B8Vnne	6.70	8424	RSIII	5.14
8012	A4V	5.58R	8427	B2V	6.27
8014	88 Vn	6.57	8429	43 V	6.19
8023	06 Ve	5.96	8434	AOIII	6.39
8041	G1V	6.21	8438	B7Vne	5.78
8044	M3IIIab	5.65	8441	PIIV	6.11
8054	86V	6.50	8442	G6III	6.32
8057	MIIII	6.31	8445	KSIII	6.42R
8058	A3V	7.3iH	8448	G2IV+KOIII	6.11
8066	KSIII	5.61	8451	AlVnn	6.27
8077	F8V	5.94	8455	GOV	6.18
8083	AOV	6.17	8459	${ }_{\text {h3III }}$	6.46
8085	K5V	5.21	8460	${ }^{\text {ABIV }}$	6.32
8086	K7V	6.03	8462	F2V	6.03
8088	K2IV	6.42R	8463 8467	ASV	5.40
8090	KSIII	6.15	8467	778	6.39
8094	E9Y	5.59	8472	F8V	5.24
8095	F5IV	6.45	8476	KOIII	6.30 5.39
8098	A2Vs	6.07 6.68	8482 8487	K2III	5.89 5.53
8101	AIV	6.68	8487 8489	A0III	5.53
8105	81vp	6.54	8489 8491	${ }^{12} 21 V_{n}$	5.68R
8121	H1III	6.38	8491 8495		6.21
8136	A2V	6.40	8495	${ }_{\text {ASVn }}$	6.15
8139	E2V	7.05	8503 8506	G9III	6.37 5.88
8141	358 3740	5.82	8506 8510	C8III	5.88
8144	${ }^{87 \mathrm{Vn}}$	6.19	8510	A91IIp	6.17
8149	K5III	5.96	$85 \cdot 2$	B8IIIPHn: Bg :	5.37
8158	86IV	6.29	8513	BSIV	5.37
8165	KIIII	5.57	8514	F6V	6.17

Table III. (continued)

ER	MK	V	HR	MK	V
8520	S2IV-Ve	5.01	8654	K51II + K2III	5.95
8528	D5V	6.41	8656	KOIII	5.08
8530	G6IIIBaII	5.93	8666	roill-IV	5.76
8534	66.51II	5.76	8670	G7III	5.26
8535	88III-IV	6.16	8673	AOV	5.66
8548	F7V	5.75	8676	A9III-IV	6.19
8549	B2V	6.46	8677	89.5IV	6.36
8554	BSIII	6.57	8681	POIV-V	6.54
8562	KSIII:	5.58	8682	BSVne	6.12
8565	F3IV	6.40	8688	KIIII	5.43
8567	Bevs	6.37	8697	E7IV	5.16
8569	A2v	6.56	8705	88V	6.46
8575	K2III	6.40	8706	B7IEI-IV	6.34
8583	ABIII	6.38	8710	R3III	6.19
8586	P1V	6.24R	8711	K2.5IIIb	5.56
8588	A6V	5.79 R	8712	n01II	5.81
8589	G8III	6.35R	8715	A7III	6.11
8594	G8III -IV	5.71	8716	KOIII-IV	5.72
8605	AlIII	8.40	8723	D7III	5.74
8606	B3v	6.29	8724	A3vs	6.51
8607	A3V	6.38	8725	B2IV	5.59
8610	K2III	5.03	8727	G9III	6.31
8621	M4III	5.21R	8729	G2.5IVa	5.49
8624	A2V	6.21R	8730	KIIII	6.28
8633	KOIII	5.93	8731	D4IIIep	5.43
8640	B2III	5.25	8733	B2IV-V	6.18
8643	G9III	5.94R	8734	G8IV	6.16
8645	ASV	6.45	8735	P0-2V	5.37
8647	AOVn	6.41	8738	Alv	6.33
8651	BIV	6.43	8741	KSIII	6.07
8653	G8IV	6.51	8745	B9III	6.43

those previously known visual binaries having geometries and magnitude differences falling within tive survey window of resolution. Previously known systems that were missed by the survey can be invariably excused on the basis of their currently exhibiting unresolvable separations and/or possessing very large magnitude differences.

III. DISCUSSION

The limiting resolution of speckle interferometry when carried out at 4 m class telescopes permits the detection of
binary star systems that would otherwise by overlooked by traditional visual micrometry surveys using large refractors or even by attempts to detect variable radial velocity. Although the direct resolution of spectroscopic binaries continues to be a major justification for binary star speckle interferometry, the great inajority of radial-velocity amplitudes that have and can be measured lead to semimajor axes too small to encourage direct resolution. This situation could be improved substantially if precision radial-velocity methods, such as those summarized by Campbell and Walker (1985),

Table IV. K- jisual binaries not resolved in survey.

㫙	ADS	Disc.	Epoch	Coment*
6388	-	Hc A	1985.5174	1
6484	10526	McA Ap	1985.5227	2
6697	-	McA	1985.5228	3
6918	11353	Stf 2316 Ap	1985.5148	4
7059	11667	HCA Ap	1985.5231	5
7209	-	A 3105	1985.5204	6
7466	12696	URH 23 Ap	1985.5234	7
7953	14293	Bu 65.	1985.5206	8

*Coments - Unreferericed dates of speckle observations refer to the catalug of HcAlister and Bartkopf (1984):

1. Unresnived at 10 epochs betveen 1977.49 and 1981.47 with separation of 0.039 on 1980.48 .
2. A companion vith a separation of $0: 29$ seen only on 1981.47; unresolved on 1985.25 by Ponneau et al (1985)
3. Rapidly moving pair closing from 0:114 to 0.065 betveen 1981.5 and 1984.3.
4. A companion vith a separation of $0: 25$ seen only on 1976.61; unresolved at four other epochs betveen 1976.3 and 1979.5.
5. A companion with separation of 0:13 seen only on 1980.48; unresolved on 1976.30.
6. Consistently unresolved at five epochs betveen 1977.48 and 1981.47.
7. Consistently unresolved at eight epochs betveen 1976.45 and 1981.70.
8. This system with an estimated an of 3.6 aagnitudes is probably also shoving a separation just outside the survey vindov.
were routinely applied to long-period binary systems. Thus speckle interferometry using large reflectors can realistically be considered as a technique that begins to bridge the gap between classical visual and spectroscopic detection of binary stars and provides important overlaps into the regimes of these two complementary methods. Among the 52 newly resolved binaries in Table I, there are 13 which are designated as spectroscopic binaries by the BSC. The longest spectroscopic orbital period in this subgroup is just over 13 days, and it can be concluded that none of the newly resolved systems can be associated with previously known spectroscopic orbits. There are ten stars in Table I for which the BSC designates the radial velocity as being variable and nine additional stars with suspected variable velocities. Whether or not these velocity variations can be attributed to the speckle companions remains to be established. Two of the stars in Table I show composite spectra: HR 7571, A0V + F8IV, and HR 8617, G2 III + A4 V, and it is likely that these spectral types correspond to the individual components now resolved by speckle interferometry. It is also interesting to note that we have discovereci a new close companion to component C of the famous visual multiple system ϵ Lyrae (HR 7053).

A few of the stars we have observed have been included in other surveys for the purpose of estimating duplicity frequencies. In their study of solar-type dwarfs, Abt and Levy (1976) found a constant radial velocity for HR 6987, a star which we find to be double with a separation of 0.141 . We estimate that HR 6987 would have a period of the order of 15 yr , with a maximum possible radial-velocity variation of approximately $10 \mathrm{~km} / \mathrm{s}$, a value that would be decreased according to the actual orbital inclination. The long period and likely small velocity amplitude are not inconsistent with the conclusion of Abt and Levy (1976). Three stars for which we failed to detect companions but for which Abt and Levy (1976) determined spectroscopic orbits are HR 5954 ($P=3100$ days), HR 7261 ($P=49.1$ days) and HR 8283 ($P=13.2$ days). In the case of HR 5954, the 8.4 yr period system could conceivably be resolvable by speckle interferometry at maximum angular separation, provided that the magnitude difference is not too large for this single-lined system. The shorter periods for HR 7261 and HK 8283 give no hope for direct resolution by single-aperture interferometric techniques. In nine other cases (HR 5968, 6091, 6458, 6594, 6775, 7172, 7947, 8472, 8697), Abt and Levy (1976) found constant velocities for stars which we also see as single while they suspect variable velocity for HR 6985, a star that is unresolved to us. The only star we have in common with the s:udy of B type dwarfs by Abt and Levy (1978) is HR 8520, an object for which neither spectroscopic nor speckle analysis find evidence of duplicity. The observational selection effects of spectroscopic methods and speckle methods do orerlap some in their sensitivity to binary star discoveries, but in the case of bright-star duplicity surveys the two approaches serve primarily as complementary rather than redundant means for discovery.

The complementary nature of speckle interferometry with spectroscopic and visual surveys for duplicity is exemplified in the case of the B stars. Abt (1983) discusses the duplicity frequency for a sample of $114 \mathrm{~B} 2-\mathrm{B} 5$ dwarfs, pointing out an absence of such binaries with periods between approximately $1 / 3$ yr and 270 yr. Our Table I includes two stars in this spectral range that have estimated periods of less than 100 yr and three more stars with periods less than 1000 yi . Even these few binaries in this perior range would significantly
alter the depression in the frequency distribution for B stars shown in Fig. 2 of Abt (1983).
Heintz (1978) defines an index $C=0.22 \Delta m-\log \rho$ as a "measure of difficulty" for visual detections based upon magnitude difference and angular separation. He states that for stars brighter than magnitude 9.5 binaries for which $C<0.5$ have been completely detected by surveys, while those for which $C>1.0$ are "virtually unknown." In the separation range of 0.038 to 0.25 , in which 47 of the 52 newly resolved binaries fall, the value of C ranges from 1.4 to 0.6 if we assume that the average Δm within this sample is approximately 0.5 mag. The majority of these new binaries thus have very small likelihood of ever contributing to duplicity surveys employing visual methods.

We can conclude that the great majority of the binaries newly resolved in this survey fall into an orbital-period regime not generally detectable by other methods and have thus not contributed to previous studies of the stellar duplicity frequency. Furthermore, these systems would not be discovered if this same sample were to be surveyed by classical spectroscopic and visual methods. If we estimate that the 47 new systems in Table I with separation less than 0.25 are uniquely discoverable by speckle interferometry at large telescopes, then we can conclude that duplicity surveys in the past have typically overlooked at least approximately 7% of the actual binaries because they fall into the selection regime between spectroscopic and visual methods. This addition to the overall frequency of binary stars must be considered a minimum value to the true increase because speckle interferometry does not completely bridge the gap between spectroscopy and micrometry. Although this survey is not intended to provide the means for independently modifying across all spectral types the binary frequencies that have been summarized by Abt (1983), the breakdown in frequency as shown in Table V offers comparisons supportive of the high frequency of duplicity and its variation with spectral type.

Our sample of 672 bright stars is not generally representative of the luminosity-class makeup of the BSC because this observed sample includes 424 dwarfs and 246 stars of luminosity class IV or brighter as indicated in Table V. Two stars,

Table V Summary of duplicity results by primary spectral type (no. of stars observed $/$ no. of stars resolved/ $\%$ resolved).

HR 7048 and HR 7840, contribute two systems each to Table II, hut the primary spectral types are included only once each in Table V. Thus there were 670 different primary spectral types available for the 672 stars observed. Dwarf primaries accounted for 63.5% of the survey sample, whereas dwarfs comprise approximately one-third of the complete BSC. Our selection of dwarfs over giants was based upon the need to extrapolate to the apparent-magnitude range ($V=9.0-14.5$) characteristic of HST guide stars in which dwarfs dominate over giants. For the 424 luminosity class V stars in our sample, 86 were found to be double with an overall frequency of occurrence of 20%. Forty of these dwarf binaries are newly discovered. There were 164 luminosity class III stars observed, of which 12 , or 7%, were found to be double. Five of the giant binaries are newly resolved. It is interesting to note that the fraction of observed binaries previously unknown is similar across all luminosity types and confirms the anticipated decrease in detected duplicity rate for evolved stars, owing to significant increases in magnitude difference when one star leaves its companion behind on the main sequence. The 9.4% increase in the overall fieninency of dwarf binaries found for the survey sample leads to the prediction that another 250 binary stars would be discovered in a complete speckle interferometric survey of BSC dwarfs. Our results would also imply the existence of an equal number of newly resolvable giants and subgiants. This is a substantial increase in the incidence of close visual binaries among the bright stars. Discovery and continued speckle measurement of these objects would eventually result in a significant increase in the number of binary stars for which fundamental determinations of masses and luminosities can be made. The routine observation of these stars by modern programs of high-accuracy radial-velocity measurement is extremely important to this potentially rich harvest.
Estimates of the orbital periods for the newiy resolved binary systems in Table I were calculated by assuming that Δm is typically 0.5 mag , that the total mass of each system is 1.8 times the mass of the primary for which the mass and absolute magnitude can be estimated from Allen (1973), that the unknown inclinations are randomly distributed and result in a mean projection factor of 0.64 , and that the orbits have a mean eccentricity of 0.5. The estimated values for the distances, orbital semimajor axes, and periods are given in the last three columns of Table I. Seventeen of the new binaries have periods in excess of a century, while 17 systems have periods of less than 40 yr. Five systems (HR 6956, $7272,7677,8246,8581$) have periods of 15 yr or less. Although the period estimates are based upon a model and thus are highly uncertain, they can serve as a guide for those objects that should be routinely measured by speckle observers and/or offer a possibility for the determination of spectroscopic orbits.
Figure 1 is a histogram of angular separations smaller than 0".64 measured for the survey sample. The sample is subdivided in Fig. 1 according to whether or not tiee system is newiy resolved, and furthermore, whether previously known binaries were discovered visually or with speckle interferometry. The figure omits 22 systems with angular separations exceeding 0.65 , including the newly discovered wide pair comprising HR 8690. Inspection of Fig. 1 leads to the conclusion that for separations exceeding 0.25 visual surveys have reached a completeness which cannot be substantially improved by speckle interferometry. For this "wide" separation regime, five new binaries were found compared to

Fic. I. The histogram of angular separations from 93 measurements of binary systems clearly shows the increase in newly resolved systems at separations less than 0.25 arcsec. An additional 22 measures of systems with separations exceeding 0.65 arcsec are not shown herc. Those "wide" binaries include only one newly resolved system.

53 previously known systems. For "close" binaries with separations less than 0.25 , our results nearly triple the incidence of duplicity by finding 47 new binaries compared with 26 previously known systems.
The sensitivity of speckle interferometry as a 1.001 for the discovery of close binaries is made even more apparent when it is realized that three of the 26 previously known binaries were originally first resolved by speckle rather than by visual micrometer methods and that another three were discovered by visual interferometry. Table VI lists for comparison the separations at both the survey epochs and the epochs of discovery for the ten visual binaries with current separations less than 0.150 . In nearly every case, the discovery separation was substantially larger than what we measured at 1985.5, when the average separation was 0." 109 compared with 0 ". 230 ar discover $\%$. It is likely that systems with separations less than 0 ". 12 would be overiooked by even the best micrometer observers so that another four visual binaries that we have measured would probably not have been previously resolved had their orbits not presented wider separations at earlier epochs. This discussion would lead to the conclusion that only approximately 14 of the 72 bright close visual binaries we have observed wouid be detectable by visual observers were the argument not biased by the lack of separation histories of the new binaries and by the fact that bright stars have not been systematically surveyed for many decades. We can only state in summary that, within our survey sample, 52 new binaries have been found by speckle interferometry in the separation regime of $0.04-0.25$, compared with 22 previously known visunl binaries. This implies a 240% increase in the known incidence of close visual binaries among the bright stars.

We can estimate the number of binary stars that have been overlooked in any separation interval owing to the finite lower limit of resolution imposed upon speckle interferometry by diffraction principles. For the CFHT, we take the diffraction limit as defined by the Rayleigh criterion and adopt a limiting resolution of 0.038. A simple model from which we can then estimate discovery incompleteness is provided by considering a sphere whose radius equals the upper limit R to an observable separation interval. The sphere then contains all possibie vector separations which we assume to be randomly distributed and which would project onto the

Table VI．Visual binaries with observed separations less than 0.150 arcsec．

㫙	ADS	Disc．	1985.5 Separation	Discovery Separation	Discovery Year
5774	9688	A 1634 AB	0：040	0.09	1907
6488	10531	磈 1179 AB	0.069	0.23	1905
6560		Mlr 571	0.140	0.18	1979
6814	11149	B 2545 AB	0.102	0.11	1958
6999	11520	A 88 AB	0.141	0.14	1900
7033	11593	B 2546 Ab	0.145	0.2	1958
7840 B	13946	Da 13 C	0.108	0.5	1841
8116	14761	时 767	0.090	0.17	1904
8533	15902	Du 172 AB	0.121	0.46	1875
8612	16130	A 2695	0.136	0.22	1913

plane of the sky bisecting the sphere to present the distribu－ tion of angular separations we attempt to observe．The frac－ tion of the vector separations that would be unresolvable is then given by the intersection of a cylinder of radius r ，the diffraction limit，with the sphere such that the cylinder＇s long axis is perpendicular to the plane of the sky and passes through the center of the sphere．The fraction of the binaries that would then be unresolved can be shown to be given by

$$
f=\left(2 r^{2} H+3 R h^{2}-h^{3}\right) / 2 R^{3}
$$

where

$$
H \equiv R \cos (\arcsin r / R)
$$

and

$$
h \equiv R-H .
$$

With the limitations of this simple model in mind，we show in Table VII the resulting incompleteness for observed sepa－ ration intervals beginning at the CFHT diffraction limit， where everything is unresolved，to a separation of 1 arcsec， where an insignificantly small percentage will be over－ looked．In the range of separations out to $0.12,10 \%$ of the binaries will be unresolved due to their orbital inclinations． This implies that approximately three close systems were overlooked in the survey sample due to this effect．The effect of nonzero orbital eicentricities will be to increase the prob－ ability of a given system being resolved because of the result－ ing bias，arising from Kepler＇s second law，toward larger separations．This effect is complicated and somewhat nulli－ fied by the distribution of the longitudes of perihelion．In the present estimate，we expect that a more realistic incomplete－ ness model would not alter the conclusion that three close systems have been overlooked due to the distribution of the orbital elements i, e ，and ω ．

IV．CONCLUSIONS

From a survey of 672 stars selected from the Yale Bright Star Catalogue and observed with speckle interferometry at

TABIE VII．Estimated incompleteness fractions．

\mathbf{R}	\mathbf{f}	\mathbf{R}	\mathbf{f}	\mathbf{R}	\boldsymbol{E}	
0.038	1.000	0.065	0.327	0.140	0.073	
0.040	0.829	0.070	0.284	0.160	0.056	
0.042	0.748	0.075	0.249	0.180	0.044	
0.045	0.655	0.080	0.219	0.200	0.036	
0.048	0.581	0.085	0.195	0.300	0.016	
0.050	0.538	0.090	0.174	0.400	0.009	
0.055	0.450	0.095	0.157	0.500	0.006	
0.058	0.407	0.100	0.142	0.600	0.004	
0.060	0.381	0.120	0.099	1.000	0.001	

the 3.6 m Canada－France－Hawaii telescope，we detected and measured the duplicity of 52 stars not previously directly resolved．The separations and position angles of 60 addi－ tional，previously known visual binaries have been measured with high accuracy．For 560 stars，our observations showed no indications of companions within a resolution window whose lower limit is approximately 0.038 and magnitude difference $\Delta m<2$ ．From these observations we conclude that：
（1）About 500 previously unresolved binary stars can be expected to be discovered from a complete speckle interfero－ metric inspection of all the stars in the BSC．
（2）These new binaries primarily fall into orbital－period regimes likely to be overlooked in traditional radial－velocity and visual－micrometry surveys for duplicity and conse－ quently serve to increase the known overall duplicity rates for stars．Without regard to spectral type，this overall in－ crease of duplicity frequency is approximately 7% ．
（3）The number of visual binaries in the separation range 0 ＊038－0＂．25 is found to be 11% of our sample．This more than triples the value based upon previously existing statis－ tics for classically resolved binaries．
（4）Continued discovery and measurement by interfero－ metric means of binaries among the bright stars can result in a substantial increase in the collection of fundamental data for stellar masses and luminosities，as well as in a significant refinement in our knowledge of the frequency of binary and multiple star systems．

This project was made possible with the generous support of the Space Telescope Science Institute，and we thank R． Giacconi，P．Stockmann，and R．Milkey for their encourage－ ment and for providing contingency funds for the project． We thank STScI staff members P．Garnevich and M．Potter for providing observing lists and finder charts，and J．Russell for her comments on the manuscript．We are especially grateful to G．Lelievre for providing Director＇s discretionary time on the CFHT，to B．McLaren for his advice and assis－ tance at the telescope，to K．Barton for his su－h job in operating the telescope，and to the entire CFHI ：ff for their kind assistance in adapting our instrumentation u the telescope and in helping with a tight shipping schedule．The task of handling the shipping with only five days between observing runs was skillfully managed by W．G．Robinson． Research activities in speckle interferometry at Georgia State University are supported by grants from the National Science Foundation and the U．S．Air Force Office of Scien－ tific Research．

REFERENCES

Abt, H. A., and Levy, S. G. (1976). Astrophys. J. Suppl. 30, 273.
Abt, H. A., and Levy, S. G. (1978). Astrophys. J. Suppl. 36, 241.
Allen, C. W. (1973). Astrophysical Quanuties, third ed. (Athlone, London), p. 200.
Campbell, B., and Walker, G. A. H. (1985). In Stellar Radial Velocities, IAU Colloquum No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 5.
Hartkopf, W. I., and McAlister, H. A. (1986). In Astrometric Techniques, IAU Symposium No. 109, edited by H. Eichhorn and R. Leacock (Reidel, Dordrecht) (in press).
Heintz, W. D. (1978). Double Stars. (Reidel, Dordrecht), p. 13.
Hoffeit, D. (1982). The Bright Star Catalogue, fourth ed. (Yale University Observatory, New Haven).

Jeffers, H. M., van den Bos, W. H., and Greeby, F. M. (1963). Publ. Lick Obs. No. 21.
McAlister, H. A. (1977). Astrophys. J. 215, 159.
McAlister, H. A., and Hartkopf, W. I. (1984). CHARA Contrib. No. 1, Georgia State University.
McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). Astron. J. (in press).
McAlister, H. A., Robinson, W. G., and Marcus, S. L. (1982). Proc. SPIE 331, 113.
Poveda, A., Allen, C., and Parrao, L. (1982). Astrophys. J. 258, 589.
Shara, M. M., Doxsey, R., Wells, E., and McAlister, H. A. (1987). Publ. Astron. Soc. Pac. (in press).
Tholen, D. J. (1985). Astron. J. 90, 2353.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. II. MEASUREMENTS DURING 1982-1985 FROM THE KITT PEAK 4 m TELESCOPE

Harold A. McAlister, ${ }^{\text {a) }}$ William I. Hartkopf, ${ }^{2}$ and Donald J. Hutter ${ }^{\text {a }}$
Center for High Angular Resolution Astronomy, Georgia State University, University Plaza, Atlanta, Georgia 30303.3083

Otro G. Franza)
Lowell Observatory, Flagstaff. Arizona 86001
Received 20 October 1986: revised 19 Nouember 1986

Abstract

This paper represents the continuation of a systematic program of binary star speckle interferometry initiated at the 4 m telescope on Kitt Peak in late 1975. Between 1975 and 1981, the observations 'were obtained with a photographic speckle camera, the data from which were reduced by optical analog methods. In mid-1982, a new speckle camera employing an intensified charge-coupled device as the detector continued the program and necessitated the development of new digital procedures for reducing and analyzing speckle data. The camera and the data-processing iechniques are described herein. We present 2780 new measurements of 1012 binary and multiple star systems, including the first direct resolution of 64 systems, for the interval 1982 through 1985.

I. INTRODUCTION

This paper is a summary of observational results from a program of binary star speckle interferometry carried out at the Mayall 4 m telescope on Kitt Peak during the interval June 1982 through November 1985. These observations were obtained with a speckle camera that incorporates an intensified charge-coupled device (ICCD) as the detector. All data were reduced digitally using a combination of hardware and software specifically developed for the efficient processing of large volumes of speckle data. Paper I in this series (McAlister et al. 1987) presented the results from this camera and analysis system for a survey of bright stars with the 3.6 m Canada-France-Hawaii telescope on Mauna Kea. Our binary star speckle-interferometry program is a secondgeneration continuation of an effort carried out between 1975 and 1981 on Kitt Peak, in which a photographic speckle camera was used to produce nearly 2800 measures of more than one thousand binary star systems. Those results appeared in a series of 11 papers, the last of which is that of McAlister et al. (1984).

A catalog of all modern interferometric observations of binary stars has been compiled by McAlister and Hartkopf (1984) with a completeness date of January 1984. Speckle observations dominate the catalog; more than 3200 measurements had been accumulated by several groups since Gezari et al. (1972) first observationally demonstrated the applicability of Labeyrie's method to binary stars. The mean separation of the catalog entries is 0 ".32, while the median separation is 0 "21. Approximately 700 of these measures, or 21% of the data, are for systems with angular separations between $0 " 021$ and 0.100 . The catalog contains 118 systems first resolved interferometrically, and there can be no doubt that speckle interferometry has become a major contributor to modern binary star astrometry.

We present here 2780 measures of 1012 binary stars, including the first direct resolution of 64 systems. These new observations double the overall contribution of our program

[^1]and provide a baseline of almost ten years in the measurement of orbital motion for many systems. We continue to place on our observing program objects which can benefit most from the high angular resolution and high accuracy obtainable from speckle observations at large telescopes. Such objects include potentially resolvable spectroscopic binaries; known visual binaries with small angular separations and rapid motions; occultation and astrometric binary stars; stars that indicate possibly resolvable duplicity through composite spectra, suspected variable radial velocity, and abnormal colors and luminosities; and survey samples of such groups as the bright stars, the nearby stars, Hyades cluster members, and high-velocity stars. Our observing program currently is comprised of some 3000 stars. Although the ICCD speckle camera has been found to be capable of observing stars as faint as $V=+16$, most of the program objects are brighter than $V=+10$. This routine limiting magnitude still represents a gain of 3 mag over the limit of the previously used photographic speckle camera.

II. THE SPECKLE CAMERA SYSTEM

The camera system employed in the speckle program of the Center for High Angular Resolution Astronomy (CHARA) at Georgia State University has been described in its developmental stage by McAlister et al. (1982). For the sake of completeness and to provide an updated description of the equipment in its actual operational configuration, we present here a comprehensive discussion of the instrumentation for collecting and reducing speckle data.

The heart of the camera is an RCA SID 53601-X0 allburied channel "thick" CCD for which RCA had modified its TC 1160 camera in order to provide a standard RS 170 video output from the chip. The RCA camera operates the chip in a frame-transfer mode, shifting an "A" register image into a covered " B " register for readout while another " A " image is being accumulated. The effective photosensitive area of the CCD is thus reduced by 50% to an array of 244×248 pixels. The readout-noise problem is completely eliminated by intensifying the CCD; this was accomplished by fiberoptically coupling an ITT F- 4144 dual microchan-nel-plate intensifier to the CCD. The MCP tube was pro-
vided by ITT with an 18 mm diameter photocathode. A D. 14 fiberoptic plug was bonded by RCA directly to the "A" register of the CCD in order to provide for coupling to the MCP intensifier. Our early experience with this method was disheartening in that the first CCD failed irretrievably during its testing phase and the second device failed in a similar manner in January, 1983, after working flawlessly for one year. With the assistance of RCA, who provided us with the last research-quality CCD of its type in stock, we traced both failures to differential expansion between the CCD substrate and the bonding material for the input fiberoptic that resulted in the failure of the chip preamplifier circuit. Successful bonding using a specially prepared ceramic collar was carried out for us by Lyle Broadfoot and his colleagues at the Earth and Space Sciences Institute in Tucson, Arizona, and the third device has operated continuously since late 1983.

The overall characteristics of the ICCD include a maximum gain of one million, with peak sensitivity at $\lambda 500 \mathrm{~nm}$ and 50% of peak sensitivity still available at $\lambda 400$ and $\lambda 670$ nm . The pixels are 30μ square and are contiguous. The detector is electronically shuttered by gating the photocathode voltage in synchronism with the video camera. This provides exposure times between 1 and 15 ms , a useful feature when confronted with rapidly varying seeing. The detector has high mechanical stability, is free from image distortions associated with other types of image tubes, and is capable of detecting single photon events. It is ideally suited to binary star astrometry requiring an accuracy of better than 1%, and its sensitivity and near linearity make it an effective detector for photometric purposes. Unfortunately, the CCD has a prominent fixed pattern involving some 15 pixels that contributes to autocorrelation algorithms not employing flat
fielding, such as the vector autocorrelation we use, and diminishes the detector's effectiveness on faint objects. Wè hope to secure a cleaner chip at a future date.
A schematic of the CHARA speckle camera system is shown in Fig. 1. The camera-head assembly contains optics for increasing the effective focal length in order to produce a highly magnified field of view and for collimating the beam in order to eliminate focusing variations due to variable thickness of filters and dispersion-compensation prisms. At the Mayall telescope, a choice from among three microscope objectives provides scales on the detector of $0.0161,0.0087$, 0.0051 arcsec per pixel corresponding to fields of view of $3.96,2.14$, and 1.25 arcsec square. We normally use a $20 \times$ microscope objective corresponding to the middle level of magnification. For object acquisition at telescopes not possessing an independent acquisition capability, the camera head was designed so that the microscope objective and collimating lens can be removed from the beam while an additional acquisition lens is inserted to provide a field of view with a diameter of nearly 1 arcmin . At the 4 m telescope, this capability is only used at the beginning of an observing run when it is necessary to provide a fiducial mark on the telescope television acquisition monitor for the small speckle field of view. A filter wheel assembly provides Strömgren u, v, b, y filters, an inter.nediate-bandwidth filter centered on y, and a clear position. L ita are routinely obtained through the Strömgren y filter. Design considerations for the atmospher-ic-dispersion-compensating Risley prisms are discussed in the description of the original photographic speckle camera used at Kitt Peak (Breckinridge et al. 1979). The prisms were designed to permit complete dispersion compensation for zenith angles of up to 65° over bandwidths of 1.5 nm .

GSU SPECKLE CAMERA SYSTEM

FIG. I. The GSU ICCD speckle camera system is shown here in schematic form.

All camera-head functions including filter selections, Ris-ley-prism setting, speckle or acquisition field selection, exposure times, integration times, detector gain, and the starting/ stopping of the videotape recorder are completely controlled by a Motorola 6809 microprocessor under the direction of an Osborne 1 host computer. This arrangement permits the rapid and accurate setup of the camera from the control room for each object to be observed. As a backup to the Osborne 1, the microprocessor can read/write a BurrBrown hand-held control/display panel that is otherwise used for local control of the camera head when necessary. This is especially useful during camera installation and testing in the telescope observing cage.

The videotape recorder selected for recording speckle frames is a version of a VHS recorder marketed by RCA and extensively modified by Gyyr Corporation. The modifications included replacing the capstan drive motors with mi-croprocessor-driven stepper motors and tape servo, changes to the recording heads, and the provision of a variable tape canting system. The recorders we purchased were then further modified to include an RS 232 interface port for remote operation by means of the camera-head microprocessor. These modifications of the recorder allow data taking at normal video rates, playback at various rates inlcuding still field, and complete computer control for automated data recording as well as possibly for automated data processing.

A typical observing sequence involves the acquisition of an object by the telescope operator, who then centers it in the speckle camera field of view. Speckle data are then accumulated typically for 60 s ; during this time 1800 speckle frames will be recorded on video tape. An example of one such speckle frame is shown in Fig. 2 [Plate 43]. This entire cycle lasts approximately two to three minutes, permitting an observing rate of at least 20 objects per hour. The storage of our 3000 -star observing list on the telescope-control computer gives some relief to the otherwise harried telescope operator.

Processing of the vast volume of data generated by the speckle camera is critically dependent upon a hardwired vector autocorrelator (VAC) built to our specifications by Digital Television Imagery, Inc., of Tucson, Arizona. The VAC operates by digitizing an incoming video frame and storing the (x, y) coordinates of only those pixels whose intensities are above an adjustable threshold level. A two-dimensional histogram of all coordinate-pair differences is then calculated and stored in a $128 \times 128 \times 16$-bit autocorrelogram memory. Autocorrelograms from individual frames are continuously coadded, and the result is displayed to the operator. This windowed autocorrelogram can be offset from the origin in order to measure known binaries. As described in Paper I, the autocorrelator was incorporated into the observing activities in the spring of 1985, following construction of an interface that enables the autocorrelogram memory to be read by a DEC Pro 350 computer that stores the autocorreiograms on fioppy disketies for further processing. Prior to that time, the VAC could only be operated in conjunction with a Perkin-Elmer 3220 minicomputer at Georgia State University, and all data processing required the playback of data recorded by the video cassette recorder, a device that now only serves for data archival purposes.

The CHARA speckle camera, whose detailed design and construction was carried out by Technical Development Corp., of Tucson, Arizona, has proved to be an extremely reliable instrument that has fulfilled our specifications in all respects. The camera has been transported to and used at six
different telescopes during some 200 nights without suffering any mechanical or electronic failures that could not be repaired prior to the start of the next night's observing.

III. AUTOCORRELOGRAM REDUCTION TECHNIQUES

Techniques developed for reduction of autocorrelograms (ACGs) have been outlined by Hartkopf (1984) and, more recently, by Hartkopf et al. (1985). The methods described here have been developed with two major objectives in mind. Foremost, of course, is accuracy; our goal is to derive astrometric information accurate to ± 0.0003 or better for binary stars ranging in separation from a few seconds of arc down to the Rayleigh limit (0.025 for a 4 m telescope). We have succeeded in reaching accuracies of this order for brighter binaries and accuracies of approximately 0.001 for all but the faintest pairs. Our second major objective is, of necessity, speed. As mentioned above and shown in Table I, observing has been streamlined to the point where 200 or more objects can be observed in a single night; as many as 1200 observations may be obtained in one Kitt Peak observing run. The speckle camera is also used in separate projects at other facilities, including observing runs averaging five nights per month on the Perkins 72 in. reflector at Lowell Observatory. It is essential, therefore, that data reduction be streamlined as well, in order to keep up with the continual influx of new observations. Most of the reduction steps described below are, in fact, carried out in a batch process, with human interaction usually needed only for selecting the binary peaks to be fitted. Alternatively, the entire reduction process may be carried out interactively for "problem" ACGs resulting from poorer observing conditions and/or fainter stars. All data reduction is carried out with the CHARA VAX 11/750 computer and image-processing system at GSU.

The memory of our VAC is limited to 16 bits (65 K , and

Table I. Observing run statistics.

Run	Dates included	Number of nights	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { observations } \end{gathered}$	Number of resolved measures	Notes
Jun 82	$\begin{gathered} 1982.5027- \\ 1982.5088 \end{gathered}$	3	244	83	
Oct 82	$\begin{gathered} 1982.7542- \\ 1982.7661 \end{gathered}$	5	$\begin{gathered} 518 \\ (+56) \end{gathered}$	219	
Jan 83	$\begin{gathered} 1983.0471- \\ 1983.0511 \\ 1983.0610- \\ 1983.0703 \end{gathered}$	2 4	$\begin{gathered} 254 \\ (+53) \\ 512 \\ (+29) \end{gathered}$	112 167	ISIT
Jun 83	$\begin{gathered} 1983.4141- \\ 1983.4342 \end{gathered}$	8	$\begin{array}{r} 750 \\ (+57) \end{array}$	334	
Sep 83	$\begin{gathered} 1983.7097 \\ 1983.7163 \end{gathered}$	3	$\begin{gathered} 460 \\ (+28) \end{gathered}$	302	
Jan 84	$\begin{gathered} 1984.0520- \\ 1984.0636 \end{gathered}$	5	$\begin{gathered} 692 \\ (+48) \end{gathered}$	251	
- イay 84	$\begin{array}{r} 1984.3724 \\ 1984.3870 \end{array}$	6	$\begin{array}{r} 866 \\ (+165) \end{array}$	339	
Sep 84	$\begin{gathered} 1984.7007- \\ 1984.7129 \end{gathered}$	5	$\begin{array}{r} 454 \\ (+65) \end{array}$	229	
$\begin{aligned} & \mathrm{Dec} / \mathrm{Jar} \\ & 84 / 85 \end{aligned}$	$\begin{gathered} 1984.9965- \\ 1985.0114 \end{gathered}$	6	$\begin{array}{r} 460 \\ (+356) \end{array}$	100	
Jun 85	$\begin{gathered} 1985.4729 \\ 1985.4730 \end{gathered}$	1	(3	3	Lowell $24^{\prime \prime}$
$\begin{gathered} \text { Jun/Jul } \\ 85 \end{gathered}$	$\begin{gathered} 1985.4812- \\ 1985.4985 \end{gathered}$	6	$\begin{gathered} 369 \\ (+383) \end{gathered}$	206	
Nov 85	$\begin{array}{r} 1985.8350 \\ 1985.8545 \end{array}$	8	$\begin{array}{r} 856 \\ +359) \end{array}$	435	
Total		62	$\begin{gathered} 6438 \\ (+1599) \end{gathered}$	2780	

65535 counts); any pixel exceeding this limit will "burst" and reset to zero. The central spike of an ACG will often burst one or more times; for a very bright star, less than a minute's worth of data may cause the entire central portion of the ACG to burst many times. The first step in reduction, therefore, must be to "deburst" the data-i.e., to add 65 K counts to each pixel as many times as is necessary to restore it to its correct value. Each row of pixels is scanned from both ends toward the center to look for the sudden drop of $>65 \mathrm{~K}$. that indicates bursting. This pixel is increased by $n \times 65 \mathrm{~K}$, then the next inner pixel is compared to it, etc. The entire process is repeated for each column in a similar manner. Safeguards added to the reduction program recognize and correct most noise spikes and dropouts as well.

This debursting technique seems to work quite well at restoring nearly al! pixels to their correct value. It can, however, break down for those pixels encompassing the central spike of the ACG; here the pixels have often burst so many times that it is impossible to correct them. This is not usually of major concern, however, since these pixels typically correspond to separations within the Rayleigh limit. Part (a) of Fig. 3 [Plate 44] illustrates an autocorrelogram of ADS 7158 after debursting. The central spike has been sumewhat clipped in order to show the secondary peaks r.ore clearly.

The second reduction step consists of removing the broad seeing-induced background slope from the ACG. Its purpose is twofold. First, this Gaussian-like background can noticeably alter the measured centroid of a secondary peak, even for a wide binary. The background slope varies greatly with distance from the center of the ACG, often in a nonradial manner owing to incomplete correction for atmospheric dispersion or to turbulence-induced asymmetry in the atmospheric point-spread function. Second, removal of this bright background is often necessary to permit detection of secondary peaks as faint as 1% of the background level.

Several background-fitting methods have been tested, including FFT's, radial least-squares polynomials, and a ro-tate-and-subtract algorithm. The technique now in use is a simple "boxcar" smoothing algorithm, which, in addition to being the most straightforward to calculate, seems to give the most consistently reliable results. A "smoothed" version of the ACG is created by replacing each pixel's value with the average value of an array centered on the pixel. The size of this array is adjustable; typical boxcar sizes are 9×9 or 11×11 pixels. This smoothed ACG is then subtracted from the original-the result is shown in Fig. 3(b).

The next step is to identify features thought to be secondary peaks arising from duplicity and to determine their centroid positions. A cursor is moved to each peak; the program then (1) scans about that position for a local maximum, (2) picks an array of points centered on that maximum, typically 3×3 or 5×5 pixels in size, (3) calculates a least-squares paraboloidal fit to these points, and (4) plots cross-sectional slices through that paraboloid, indicating the centroid positoon. The operator can then (1) accept the fit, (2) try fitung a different size array of points about the peak, (3) record an "eyeball-fit" cursor position (usually necessary only for very weak peaks or nolsy data), or (4) reject the peak altogether. Measured (X, Y) centrond positions are finally converted to (ρ, θ) using scaling factors determined by the calibration techniques described in Sec. IV.

This rather simple reduction and analysis procedure may not provide the maximuna sersitivity to large magnitude differences (we are currently experimenting with ways to de-
tect very faint peaks against high background levels), but it has proved a very efficient and dependable means for processing some 15 million speckie frames containing nearly one terabyte of information.

IV. CALIBRATION

Calibration of our speckle data is accomplished by two different methods. The primary calibration continues to be made by placing a double-slit mask over the entrance aperture of the telescope and observing a bright single star-in effect turning the telescope into a Michelson interferometer (see McAlister 1977). The ACG of one such calibration observation is shown in Fig. 4 [Plate 45]; the background has been removed by the boxcar technique described in Sec. III. The separations of these well-defined peaks depend only on the geometry of the telescope/camera system; that is, on the focal lengths of the optical components, the physical separations of the slits in the mask, and the location of the mask in the beam. Thus a scaling factor can be determined that is limited only by the accuracy to which these quantities are known. Calibration accuracies of $\pm 0.6 \%$ in separation and $\pm 0^{\circ} .2$ in position angle have been obtained (McAlister 1977). Variations in calibration occur from one observing run to the next owing to changes in the precise placement of the speckle camera at the Ritchey-Chretien focus of the KPNO 4 m telescope. The range of these variations amounts to approximately 2% in angular separation and 0.5 in position angle. It is therefore necessary to secure calibration data at least once during every observing run.

A secondary calibration of our speckle data is made by observing bright binary systems whose orbits are either very well determined or of extremely long period (see McAlister and Hartkopf 1983 for a list of suggested binary "standards"). These observations give us a useful check on the double-slit calculations. More importantly, they also provide scaling factors when the speckle camera is used on telescopes not equipped with calibration masks, or for which focal lengths, etc., are not known to sufficient accuracy. Because of orbital motion, use of binary stars as a primary calibration can be risky, and we strongly recommend that an external primary calibration procedure be used in order to fully exploit the high precision inherent in speckle interferometry.

V.THE MEASUREMENTS

The observational material incorporated in this paper was accumulated on 61 nights at the 4 m Mayall telescope between June 1982 and November 1985. In Table I we summarize the observing statistics. All data were obtained with the ICCD camera as described in Sec. II, except those between 1983.06 and 1983.07, for which an ISIT acquisition camera borrowed from KPNO was used in place of the failed CCD. We suspect that the ISIT measures may be of somewhat degraded accuracy in comparison with the ICCD values due to the spatial distortions inherent in ISITs. We include in this paper three measurements obtained at the 24 in . refractor of the Lowell Observatory during an experimental exercise aimed at demonstrating the practicability of speckle interferometry at refracting telescopes. While the measurement of HR 7417 (β^{\prime} Cyg = McA 55 Aa) for 1985.4729 does show a systematic departure from the 4 m measurements that bracket it, we find that speckle interferometry works quite well at refracting telescopes. The fourth column
in Table I lists the number of stars for which speckle data were obtained in the observing interval．Numbers shown in this column in parentheses indicate additional observations that were secured in separate efforts，such as for minor plan－ it duplicity，and，primarily，a sample of potential HIPPAR－ COS targets，that have been reduced and analyzed but have not been incorporated in the present paper．The number of actual binary star measurements extracted from the data and given in colum five of Table I shows that only 43% of the data actually resulted in detection and measurement of dou－ ble stars．This yield fraction is due to the exploratory nature of much of the program，in which we attempt to resolve systems never previously measured as＂visual＂binaries．Al－ though this approach inevitably leads to a large collection of
negative results，it also produced the first resolution of 116 binary stars with the new camera．

Binary stars are traditionally given a designation based upon the name of the discoverer．This practice works well in visual micrometry programs where a single person is respon－ sible for the entire effort．Speckle－interferometry programs tend to be dependent on a group of people，and our program has evolved into a team effort since the retirement of the original photographic speckle camera．We have therefore chosen to give the designation＂McA＂to the 76 binaries first resolved by the photographic system，and＂CHARA＂to the 116 new systems detected with the ICCD speckle camera． Table II is a collection of basic information for the McA stars，while such parameters are given in Table III for the

TABLE II．Binary stars first resolved by the K．PNO photographic speckle camera．

Nunb	$\begin{aligned} & c A \\ & b \in c \end{aligned}$		$\begin{aligned} & \text { HR/DM } \\ & \text { unber } \end{aligned}$	Nane	$\begin{gathered} \text { HD } \\ \text { Nusber } \end{gathered}$	$\begin{gathered} \text { SAO } \\ \text { Number } \end{gathered}$	ADS Number	$\begin{gathered} a, 8 \\ (2000) \end{gathered}$	$\stackrel{v}{\mathrm{Mag}}$	Spectral Classif．	$\begin{array}{r} \text { Disc. } \\ \text { Sep. } \end{array}$	$\begin{gathered} \text { Binary } \\ \text { Type } \end{gathered}$
1	Aa	HR	132	51 Psc	2913	109262	449	00323＋0657	5.7	89.5 V	0＊271	Occn
2		HR	233	－－m－m－	4775	11424	－－－－－	00507＋6415	5.4	89．5V＋GOIII－	0.045	Spe，SB
3		HR	439		9352	22389	－ーーーロ	$01334+5820$	5.7	$\mathrm{KOIb}+89 \mathrm{~V}$	0.133	Spr
4		＋08	0316	－ーーー	12483	110295	－	02026＋0905	7.8	G5IV	0.224	ocen
5		HR	649	c：Cet	13611	110408	－ーツー－	$02130+0851$	4.4	G6II－IIICN	0.056	SB，0ccn
6		HR	640	55 Cas	13474	12180	－ヘ－＊＊	$02145+6631$	6.1	B9V＋GOII－III	0.077	Spm
7		HR	763	31 入ri	16234	93022	－－－＊＊	$02366+1226$	5.7	F7V	0.078	SB，OCcr
8		HR	788	12 Per	16739	55793	－ーーー	$02422+4012$	4.9	F9v	0.055	SB
9		HR	825		17378	23637	－ーニー	$02495+5705$	6.3	ASIa	0.186	Spm，Var
10	Aa	HR	838	41 Ari	17573	75596	2159	02500＋2716	3.6	B8Vn	0.298	$S B$
11	Aa	HR	1043	－－－ー－ー－	21427	24062	2563	$03301+5922$	6.1	A2V	0.325	
12		HR	1129	－ー－ーーーー	23089	12891	－－－＊	$03461+6321$	4.8	GOIII＋A3V	0.045	Spm
13	Aa	HR	1252	36 Tau	25555	76425	2965	$04044+2406$	5.5	G0III＋A4V	0.041	ocen，Spm
14	Aa	HR	1331	51 Tau	2.7176	76541	－	$04185+2135$	5.7	FOV	0.080	SB，Hyad
15		HR	1411	$\theta^{2} \mathrm{Tau}$	28307	93955	－	$04286+1557$	3.8	KOIIIbFe－0．5	0.116	SB，Ocen，Hyad
16		HR	1497	t Tau	29763	76721	－－－－－	$04422+2257$	4.3	日3v	0.173	ocen，sb
17		HR	1569	6 Ori	31283	94197	－ーーー－	$04548+1125$	5.2	A3V	0.334	Var
18	Aab，c	HR	1788	nori	35411	132071	4002	05244－0224	3.4	$\mathrm{B} 1 \mathrm{~V}+\mathrm{B} 2$－	0.044	SB，var
19	Aa	HR	1808	115 Tau	35671	94554	4038	05271＋1758	5.4	B5V	0.095	OCcn
20		HR	1876	410r2	36822	122914	-	$05348+0929$	4.4	BOIEI	0.053	SB
21		＋38	1250	1	37614	58334	\sim	$05415+3811$	8.3	$A+G$	0.141	Spm
22		HR	2001	－ーツーーーー	38735	150814	－	05474－1032	6.0	AtV	0.159	SB，var
23		HR	2002	132．Tau	38751	77592	－	05490＋2445	4.9	G8IIIV	0.043	ocen
24		HR	2130	64 Ori	41040	95166	－－－－－	$06034+1942$	5.1	B8III	0.066	ocen，SB
25		＋26	1082	－	41600	77980	－－－m－	$06074+2640$	7.0	89．5V	0.097	ocen
26		HR	2304	ーーーーーーー	44927	78349	－ーーーー	$06256+2320$	6.1	A2Vn	0.054	Ocen
27		HR	2425	53 Aur	47152	78571	－	$06383+2859$	5.8	B9npEu	0.054	OcG
28		HR	2605	10 Gen	51688	78947	－ーロー	06595＋2555	6.4	B8III	0.080	Ocen
29		＋37	1645		52823	59741	－－－－－	$07043+3734$	6.6	AOV	0.158	Spio
30	Aa	HR	2846	63 Gen	58728	79403	6089	$07277+2127$	5.2	F5V＋F5V	0.044	ocen， 58
21	Aa	HR	2861	$65 \text { Gem }$	59148	79434	6119	$07298+2755$	5.0	K2III	0.038	S8
32		HR	2886	68 Gem	60107	97016		$07336+1550$	5.3	A1Vn	0.184	Ocen
33		HR	3109	53 Cam	65339	14402	－ーーーー	$08017+6019$	6.0	A2pSrcreu	0.044	SB，var
34		HR	3880	19 LeO	84722	98767	－ッロー＊	09474＋1134	6.4	A7Vn	0.046	Ocen
35		HR	4365	73 Leo	97907	99525	－	$11158+1318$	5.3	K3III	0.068	58
36		HR	4544	－ー－ーー－	102928	138445	－－ー	11510－0520	5.6	KOIIICN－0．5	0.173	Occn，5B
37		HR	4689	n vir	107259	138721	－200－	12199－0040	3.9	A2IV	0.118	Sb，ocen，var
38	Aa	RR	1963	θ Vir	114330	139189	8801	13100－0532	4.4	A1IVs＋AE	0.485	Sb，oecn
39		$+16$	2642	－－n－－－－	126269	101011	－－ーー－	$14241+1617$	6.8	F5V＋A2	0.053	Spi
40			5472	－	129132	83458	－ーーーー	$14403+2158$	5.1	GOV	0.057	SB
41		－14	4182		136406	159188	CHMHmbly	15210－1522	7.5	KOIII	0.365	Occn
42	$C E$		5985	$B^{2} \mathrm{Sc} 0$	144218	159683	9913	16054－1948	4.9	82V	0.127	ocen
43		－21	4279		144641	184141		16077－2124	7.9	G5	0.125	Spm
44		HR	6237		151613	30076	－－－＊－	$16453+5647$	i． 8	F2V	0.041	SB
45		HR	6388		155410	46524	.	$17095+4047$	5.1	K3III	0.039	SB
46		－19	4547	－ーーーーー	155095	160326	－－ma	17103－1926	7.0	B8．5V	0.127	occn
47		HR	6469	－ーーーーーー	157482	46664	－－－－	$17217+3958$	5.5	F9Vn：	0.036	SB
48	Aa	HR	6485	$p \mathrm{Her}$	157779	66000	10526	$17237+3709$	4.1	89．5III	0.286	
49	sa	＋18	3500	－ーーーーーー	163640	103226	10905	$17564+1820$	6.6	AOIII	0.088	
50		HR	6697		163840	85575	－－m－	$17572+2400$	6.3	$G 2 v$	0.110	58
51		－20	5068	17 Sct	167570	186575	－	18167－2032	7.1	C5IV＋${ }^{\text {c }}$	0.260	ocen．Spm
52		－17	5245	－- E -m	171347	161631	－ーース	18351－1653	7.0	A2V	0.156	Spm
53	did	HR	7059	5 Aql	173654	142606	11667	18464－0058	5.9	A2vm	0.127	Spm，sB
54		＋12	3818		178452	104515		$19083+1215$	7.5	CSIV＋A2	0.118	Spm
55	da	HP．	7417	B）Cys	183912	87301	12540	19307＋2758	3.1	$\mathrm{XIII}+80.5 V$	0.444	SB，Spm
50		＋ 58	1929		184467	31745	뇨 - －	$19311+5835$	6.6	$X 1 V$	0.117	S8
57		HP	7478	－Cyg	18573i	68637		19394＋3009	4.7	G8III－IV	0.030	S
58		＋18	＋ 4252	－- － $\boldsymbol{\square}$	187321	105288		$19487+1852$	7.1	GOI＋A	0.708	Spm
59	id	＋35	3930		190429	69324	13312	20035＋3602	6.6	05．8	0.118	
00	n่＊，B	HR	774%	23 Vul	192806	88428	－ッ．ッー	20158＋2749	4.5	K3IIICN－1	0.241	
¢1		＋49	3310	－ーッーーー＊	196089	49782	－＊－＊－	$20331+4950$	6.7	$\lambda \mathrm{O}+\mathrm{GOV}$	0.055	Spm

Table II．（continued）

McA Number	HR／DM Nusber	Name	$\begin{gathered} \text { HD } \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { SAO } \\ \text { Nusber } \end{gathered}$	$\begin{gathered} \text { ADS } \\ \text { Number } \end{gathered}$	$\begin{gathered} 8,8 \\ (2000) \end{gathered}$	$\begin{gathered} v \\ \operatorname{Mag} \end{gathered}$	Spectral Classif．	Disc． Sep．	$\begin{gathered} \text { Binary } \\ \text { Type } \end{gathered}$
62	HR 7922	－ーーーーーー	197226	70367	－－－－	20410＋3905	6.5	B6III	0.121	58
63 Ad	HR 7963	λ CYg	198183	70505	14296	20474＊3629	4.5	85v．	0.048	SB
64	HR 7990	$\mu \mathrm{AqG}$	198743	144895	－－m－＊	20527－0859	4.7	A3m	0.049	SB
65 Aa	HR 8047	59 Cyg	200120	50335	14526	20598＋4732	4.7	Sine	0.215	SB，Var
66 Aa	HR 8059	12 Aqt	200497	145064	14592	21041－0549	7.3	A3V	0.071	
67 Aa	HR 8119	1 Cep	202214	33210	14749	21118＋6000	5.6	BOII	0.052	
68	HR 8264	ε Aqr	205767	145537	－－ーー－	21377－0751	4.7	A7V	0.033	SB，0ccn
69 Ac	HR 8417	ε cep	209790	19826	15600	$22037+6437$	4.4	A3 ${ }^{\text {m }}$	0.055	58
70 Ab	HR 8485		211073	72155	15758	22139＋3944	4.5	K3III	0.524	S8
71	HR 8572	5 Lac	213310	52055	－－－	$22295+4743$	4.4	MOII＋B8V	0.122	SB，Sph
72	＋800731	－ーーーーーー	215319	3769	－ーーー	2239448123	6.9	$F 8+A 5 V$	0.170	Spm
73	HR 8704	74 Agt	216494	165359	－0－0－	22535－1137	5.8	B9III	0.071	ocen，Sb
74 Aa	HR 8866	94 Agr	219834	165624	16672	23191－1327	5.1	GSIV	0.212	SB
75 Aab	HR 9003	\checkmark And	223047	53355	$-\infty$	$23460+4625$	4.9	GSIb＋AOV	0.265	Spu
75 dac	HR 9003	－And	223047	53355	∞	23460＋4625	4.9	GSIb＋AOV	0.145	Sp：
76	H8 9064	$\downarrow \mathrm{P}$ •G	224427	91611	－ーツ＊	23578＋2508	4.7	M3III	0.191	

Table III．Binary stars first resolved by the GSU ICCD speckle camera．

CHA		HR／DM Number	Name	HD Nunber	$\begin{gathered} \text { SAO } \\ \text { Number } \end{gathered}$	ADS Number	$\begin{gathered} a, 8 \\ (2000) \end{gathered}$	$\stackrel{V}{\text { Mag }}$	Spectral Classif．	$\begin{array}{r} \text { Dise. } \\ \text { sef. } \end{array}$	$\begin{gathered} \text { Binary } \\ \text { sype } \end{gathered}$
1	Aa	＋520019	－ッーーーーーーー	761	21202	148	$00122+5337$	7.0	80	$0: 403$	
2		$+830020$	－－－ー－ーー－	5621	171		$01037+8436$	6.7	FSV	0.139	Spm
3		＋670131	－ーーールーーー	9015	11787	－ーーー－	01308＋6722	9.2	K0	0.247	
4	Aa	HR 526		11031	37536	1438	01492＋4754	5.8	A3v	0.141	S8
5	入a	HR 643	60 And	13520	37867	－－－m	02132＋4414	4.8	K3．5IIIBa0．5	0.187	SB
6	Ap	HR 707	1 Cas	15089	12298	1860	$02290+6724$	4.5	ASpSr	0.496	SE，Var
7	（1）	＋43 0576	－－－3－－mo－	17245	38335°		02475＋4416	6.7	FSU＋A	0.159	Spm
8		HR 952	－－－－－－－－－	19789	93327		$03114+1303$	6.1	KOIIIP	0.533	ocen
9		＋28 0532	UX Atı	21242	75927	－\％－om－	$03266+2843$	6.5	GSIV／V＋KOIV	0.432	Sb，Var
10		IfR 1036	UX 入12	21335	93436	－－m－	$03271+1845$	6.6	A3V	9． 0.076	ocen，Hyad
11		＋230496	－－－－－－－－－	23157	76103	－－－ー－	$03437+2339$	7.9	入9V	0.232	oecn
12		＋230523	－－－－n－m－	23489	76173	－ーシー	$03465+2415$	7.4	A2v	0.230	ocen
13		＋190662		25811	93759	－－＞－＊	$04063+1952$	8.6	FO	0.074	Ocen
14		＋230635		284163	－ーローー－	－ローーロ	$04119+2338$	9.4	KO	0.138	SB，Hyad
15		RO5S 29	G1 165	－－－－－＊	－ーー－	－ーー－	$04120+5016$	15.5	M5	0.989	Neacby star
16		HR 1375		27742	76585	－．．．－	$04235+2059$	6.0	B8IV－V	0.182	Ocen
17		＋140721	vB 96	285931	94009	－7317	$04340+1510$	8.7	K1	0.147	SB，Hyad
18	Aa	HR 1458	88 Tau	29140	94026	3317	$04357+1010$	4.4	λ^{3}	0.104	SB
19		HR 1528		30453	57444		$04493+3235$	5.9	A8m	0.041	Spm，SB
20		＋140770	v8 120	30712	94159	－ッツーツ	$04506+1505$	7.7	G5	0.072	SB，Hyad
21		＋431315	－－－ヘ－ー－ー－	36948	40487	－ーローー	$05373+4404$	7.5	F8＋AOV	0.225	Spm
22		HR 2273	7 Mon	44112	133114	－ーツ－	06197－0749	5.3	32.50	0.055	S8
23		＋231346		44926	78348		$06255+2327$	6.8	G5IV	0.104	Ocen
24		＋16 1273		48954	96097		$06468+1646$	6.7	F5＋A5V	0.489	Ocen，Spm
25		＋02 1483		51566	114692	－ッロ＊	06580＋0218	7.7	$A 2+G 0 V$	0.910	Sph
26		HR 2837	61 Gem	58579	79391	－ーーか	07269＋2015	5.9	F 2 Vn	0.030	SB，Occn
27		＋08 1791	－－－－	59604	115545	－ーロー	07309＋0833	7.2	$\mathrm{A} 2+\mathrm{GOV}$	0.261	Spm
28		$+202159$	40 Cnc	73666	80336		08402＋2001	6.6	A1v	0.425	overium
29		＋541323	－－ー－n－－－－－	233666	27352		09423＋5328	9.3	G0	0.354	Halo
30		HR 3973	14 Sex	87682	118112	－ッツ－＊	$10068+0537$	6.2	K1III	0.132	ocen
31		＋13 2274		91498	99185	－ーーーー	$10341+1222$	7.7	A3V	0.192	
32		＋12 2266	－	93993	99321	－ーローツ	$10511+1135$	6.8	KOIII	0.429	Ocer
33		H8 4291	58 Leo	95345	118610	－ーーー	$11006+0337$	4.8	KIIIICN－0．5	0.235	Ocen
34	Aa	＋30 2097	－－－ーーーーー	95515	62361	－ーーー	$11018+2952$	7.2	KOIII	0.242	
35		＋22 2411	－ーーーーーーー－	－－－m－	－－m－－－		11516＋2207	9.3		0.176	Ha10
36		－04 3155	TY Viz	103036	138451		11518－0546	8.2	K2	6.234	Halo
37		HR 4668	－ーッーーー－	106760	62928	－0．0．0－	$12165+3304$	5.0	K0．5IIIb	0.248	SB，var
38		HR 4891	38 Viz	111998	139022	ーーース	12532－0333	6.1	\％5V	0.442	Ocen
39	da	HR 4921	44 Vir	112846	139086	8727	12597－0348	5.8	A3V	0.107	Oecn
40		HR 5298	96 V15	123630	158385	－－－－－	14090－1020	6.5	G8III	0.287	oecn
41	$A C$	HR S 323	： 4 00e	124570	：00325	－00\％	14：12＋1250	5.5	FETV	0.190	S3
42	Aa	＋02 2844	\＆	128563	120569	9323	$14373+0217$	6.6	F8V	0.210	
43		HR 5612	－ーーーーーーーー	133484	45348	－－－－－	15031＋4439	6.7	FKエV	0.166	
44		－12 4227	－ーーツーーーーー	135681	159146	－0－7－	15168－1302	7.1	A2v	0.193	Ocen，SB，Vat
45	Aa	＋27 2477	－ーーーーーーーー	136176	83756	9578	15183＋2649	6.6	Fsv	0.333	Astror，var
46		HR 5715	－ーーーールーーー	136729	29487	－－－－＊	15201＋5158	5.7	$\lambda 4 v$	0.217	
47		HR 5818	－－ロー－ーーー－	：39493	29588	－－－－	$15360+5438$	5.7	A2V	0.514	
48		－194165	－－－	139364	159402	－ッ＊＊－	15384－1955	6.8	F2V	0.271	Ocen
49		HR 5858	26 t ser	140729	101712	－－ッ－	15447＋1716	6.1	AOV	0.130	SB
50	Aa	HR 5856	－	140722	183772	9775	15462－2804	6.5	F2\％V	0.216	
51		HR 5895	36 Ser	141851	140801	－－5	15513－0305	5.1	A3Un	0.126	
52	da	＋13 3091	49505	145958	102018	9969	$16133+1333$	6.7	$\mathrm{Es}+\mathrm{KO}$	0.209	
53	sa	HR 6103	CCrB	147677	65254	－－－－－	16221＋3053	4.9	KOIIE	0.153	Hẏad
59		－164280	－	147：73	159388	－ーーシ	16229－1701	6.7	FOV	0.081	ocen
55		HR 6123	25 Her	248293	65290	－ャーーツ	16254＋3724	5.5	ASV	0.195	

Table III．（continued）

		HR／DM Number	Name	HD Number	$\begin{gathered} \text { sio } \\ \text { Number } \end{gathered}$	ADS Nunber	$\begin{gathered} 0.8 \\ (2000) \end{gathered}$	$\stackrel{V}{\text { Mag }}$	Spectral Classif．	Disc． Sep．	Binary Type
56	Ba	$\text { HR } 6194$	36 Hes	150379	121774	10149	$16406+0412$	6.9	A3IV	0.145	＊
57		$\text { HR } 6213$	39 Her	150682	84543		$16416+2655$	5.9	F2III	0.126	＊SB
58		$\text { HR } 6286$		152812	46349		$16533+4725$	6.0	K2III	0.292	S
59		$\text { HR } 6317$		153653	121995		$17005+0635$	6.6	$A 7 v$	0.128	－SB
60	入a	HR 6383		155328	30262	10369	$17083+5051$	6.5	$\lambda 1 \mathrm{~V}$	0.168	
61		HR 6412	ーツーローーーーー	156208	122224		17162＋0211	6.2	A2v	0.136	
62	Aa	＋58 0946		960101	17568		$17365+6323$	9.2	$M B$	0.292	Astrom
63		HR 6571	79 Hes	160181	85264		$17375+2419$	5.6	$A 2 \mathrm{Vn}$	0.080	
64		HR 6641	－- －	162132	46954	－ッー＊	$17471+4737$	6.4	A2Vs	0.142	S 3
65		$\text { HR } 6656$	$30 \mathrm{Dra}$	162579	30591		$17491+5047$	5.0	A2V	0.120	S
66		$-19 \quad 4777$		163680	160947	$-2-\ln$	17582－1916	8.7	K2	0.392	Ocen
67	Aa	$H R 6781$	$100 \mathrm{Her}$	166045	85753	11089	$15078+2606$	5.9	A3V	0.106	－Var
68		$H R 6851$	－\rightarrow－$-\operatorname{mbc}$	168199	103578		$18180+1347$	6.3	$85 \mathrm{~V}$	0.054	
69		－16 4836		168701	161385		18218－1619	7.9	KOIII＋A	0.089	Spra
70		HR 6906		169820	103709	－ーロー	$18259+1458$	6.4	B9V	0.118	
71		HR 6928	－ッ－ッーーー－	170200	123516	－	$18280+0612$	5.7	B8III－IV	0.078	－ 58
72	Aa	HR 6941	ーローーーーツーニ	170580	123571	11399	$18301+0404$	6.7	日2V	0.149	S
73		HR 6956	－ーーールーーーロ	170902	161580	－ーーー－	18323－1439	6.4	A4V	0.040	＊
74		HR 6977		171623	103879		$18352+1812$	5.8	AOVn	0.151	－SB
75		HR 6984	-	171780	67134	－mon	$18352+3427$	6.1	85 Vn 。	0.241	－SB，Var
76	Aa	HR 6987		171834	123693	11496	$18367+0640$	5.5	F3v	0.141	SB
77	Ca	$\text { HR } 7053$	ε^{2} Lyt	173607	67315	11635	18444＋3937	5.1	$\text { A. } 8 \mathrm{~V}$	0.184	－Var
78		HR 7035		173117	187216	－ーーーー	18448－2501	5.8	B5：V	0.084	Ocen
79		$\text { H8 } 7091$	$\because-\cos -\boldsymbol{T}$	174369	86462	－ $\cos \boldsymbol{\pi}$	18492＋2503	6.6	Aiv	0.219	＊$\quad \mathrm{SB}$
80		HR 7109		174853	104196		$18520+1358$	6.1	B8vnn	0.104	
81		$\text { HR } 7110$		174866	142741		18530－0935	6.3	AフVn	0.178	
82	Aa	HR 7165	FFAql	176155	104296	11884	$18582+1722$	5.4	F8Ib	0.154	SB，Var
83		HR 7263		178476	86843		$19081+2142$	6.2	F3V	0.177	
84	At	HR 7272		178911	67879	12101	$19091+3436$	6.7	G1V	0.090	
85	Aa	$\text { HR } 7307$	－	180555	104668	12248	$19164+1423$	5.6	B9．5v	0.051	
86	Aa	$\text { HR } 7386$	$+\infty$	182807	87190		$19254+2455$	6.2	F7v	0.181	－
87		$\text { HR } 7436$		184603	68499		$19336+3846$	6.6	A3vn	0.137	＊
88	Aa	$\text { HR } 7480$	45 Aq1	185762	143678	12775	19407－0037	5.7	A3IV	0.984	
39		HR 7554	V1339 Aq1	187567	125116	－$-4 \rightarrow \square$	$19503+0754$	6.5	B2．5IVe	0.057.	－Var
90		HR 7571	v505 Sç	187949	163080		19531－1436	6.5	AOV＋F8IV	0.292	－SB，Var
91		HR 7684	$\rightarrow-\operatorname{man}-\infty$	190781	49152	-	20045＋4814	6.0	A2I'V	0.340	
92		HR 7677		190590	88163	--	$20050+2313$	6.5	$\mathrm{A} 5 \mathrm{Vn}$	0.050	$*$
93		$\begin{array}{ll} H R & 7755 \\ H R & 7744 \end{array}$		192983 192806	32400	－$-\cos$	$20157+5014$	6.3	$\mathrm{A} 2 \mathrm{Vn}$	0.176	＊
94	Aa	$\begin{array}{ll} H R & 7744 \\ H R & 7752 \end{array}$	23 Oul	192806 192934	88428	－－－－	20158＋2749	4.5	K3IIICN－1	0.067	
95		$\begin{array}{ll} H R & 7752 \\ \text { HR } & 7767 \end{array}$		192934 19332	69720 49438	13-mbly	$20161+3854$	6.3	ALV	0.176	＊
96	Aa	HR HR 7867		193322 194215	49438 189264	13672	$20181+4044$ $20254-2840$	5.8	$09 \mathrm{~V}$	0.047	－
98		HR -2416056		194215 194810	189264 189321	－	20254－2840	5.8	K3V	0.121	SB
99	Aa	HR 7840		195482		13946	20312＋1116	7.1	80V	0.234 0.325	Occn
100	Aa	HR 7949	ε cyg	197989	70474	14274	20462＋3358	2.5	KOIII	0.067	SB
101		HR 7994	－	198802	163953	．	20531－1134	6.4	G1V	0.169	＊SB
102		HR 8246	－	205314	51019	－ーーーー	$21329+4959$	5.8	AOV	0.043	SB
103		$\text { HR } 8257$		205539	89815	－－m－－	$21353+2812$	6.3	FOIV	0.184	SB
104		$\text { HR } 8274$		206027	89870	－ーーツ＊＊	$21387+2530$	6.2	G9III	0.099	S
105		$+08 \quad 4714$	EE Peg	206155	126971	$\rightarrow \infty=\square$	$21400+0911$	6.8	A $4 V+F 5 V$	0.252	5B，Var
106		$\text { HR } 8455$		210460	107706	--	$22103+1937$	6.2	GOV	0.465	SB，
107 108		$\text { HR } 8507$		211575	146004	－	22181－0014	6.4	F3v	0.104	＊
108 109		$\begin{array}{ll} \text { HR } 8538 \\ \text { HR } & 553 \end{array}$	B Lac	212496	34395	-ーーーー	$22236+5214$	4.4	c8．5IIIbcal	0.219	
109 110		$\begin{array}{ll}\text { HR } & 8553 \\ \text { HR } & 8574\end{array}$		212978 213323	72358	－$-\boldsymbol{m}$	22274＋3949	6.1	B2V	0.185	＊
110 111		$\begin{array}{ll}\text { HR } & 8574 \\ H R & 8581\end{array}$	38 Peg	213323	72406 146135	？- －	$22300+3234$	5.6	89.5 V	0.155	＊
111 112		$\begin{array}{ll}\text { HR } & 8581 \\ H R & 8603\end{array}$		213429 214168	146135 72509	－20－5	22323－0633	6.1	F7V	0.094	＊
113	A：	HR 8603 $+68 \quad 1319$	8 Lac	214168 214606	72509	16095	$22359+3938$ $22373+6913$	5.7 7.5	82 V	0.042	＊SB，Var
114		HR 8617		214558	52212		22383＋4511	6.4	A3＋GOV G2III A	0.487 0.114	Spm
± 15		HR 8690	14 Lac	216200	52412		22504＋4157	5.9	B3IV：＊	0.965	－Var
116		HR 8734	－－－－－－＊	217107	146412		22583－0224	6.2	G8IV		

CHARA stars．References to the discovery papers for the McA stars can be found in the catalog of McAlister and Hartkopf（1984）．The CHARA stars include 52 objects re－ solved in our bright－star survey（Yaper I）and 64 systems appearing in this paper．An asterisk by the discovery separa－ tion in Table III indicates the stars from Paper I．The last column in Tables II and III shows whether the object is a spectroscopic（SB），composite spectrum（Spm），occulta－ tion（Ocen），or astrometric（Astrom）system，or whether it is a member of the Hyades cluster（Hyad），a variable star，an overluminous star，or a halo－population star．The halo stars were selected from the sample of extreme metai－poor stars of Bond（1980）．The average V magnitude of the CHARA stars is 6.8 when the bright star sample of Paper I is ex－ cluded．This value is 1.1 mag fainter than the average value
of V for the McA stars．Even though we can now detect faint binaries，as demonstrated by the discovery of the new com－ panion to Ross 29，the ICCD speckle camera continues to be productively used on brighter stars．
The new speckie measurements of binary stars are pre－ sented in Table IV，where we continue the format used in previous papers and the catalog of McAlister and Hartkopf （1984）except that we give HD numbers on the identifica－ tion line，omitting SAO numbers．The coordinates are for equinox of 2000.0 ，but the position angles have not been cor－ rected for precession and hence are based upon the equinox for the epoch of observation shown as the fractional Besse－ lian year．The reader should also keep in mind that autocor－ relation analysis of speckle data leads to a 180° quadrant ambiguity in position angle．We have selected the appropri－

Table IV. Binary star speckle measurements.

Table IV. (continued)

Table IV. (continued)

ADS	1246	A $\quad 1266$	10031	$01392+5436$	ADS	1630	STE 38 BC	12534	$02035+4223$	
		1983.0663	$235: 0$	0.221			1982.7605	108:8	0.578	
		1983.7130	236.0	0.224			1983.7159	108.8	0.575	
		1984.7045	235.7	0.219			1985.8485	107.6	0.579	
		1985.8430	236.6	0.220	$+69$	0129	MLR 375	12300	0203 +7013	
ADS	1309	A 1267	10146	$01405+5457$			1983.0663	207.9	0.264	
		1983.0663	0.0	0.258			1983.7107	210.8	0.255	
		1983.7107	2.1	0.261			1985.8430	209.0	0.240	
		1984.7045	2.3	0.261	+34	0379	cou 1067	13102	02090+3541	
		1985.8430	1.8	0.265			1985.8486	14.0	0.101	
ADS	1318	Kr 12	10296	$01415+6240$	ADS	1682	STF 216	13196	02124+6222	
		1983.0663	294.3	0.431			1983.7107	13.4	0.212	
		1983.7107	294.6	0.433	HR	649	Mch 5	13611	$02130+0451$	
		1985.8430	293.8	0.427			1985.8375	42.2	0.047	
ADS	1345	A 1	10508	01424-0646	$\mathbf{H R}$	643	CHARA 5	13520	$02132+4414$	
		1983.7106	242.3	0.762			1983.7130	180.4	0.187	
ADS	1359	Bu 870	10543	$01443+5732$	ADS	1709	5TF 228	13594	$02141+4729$	
		1985.8430	0.9	0.845			1983.0663	265.7	1.048	
ADS	1438	CHARA 4 Aa	12031	$01492+4754$			1984.7070	271.3	1.054	
		1984.7070	14.0	0.141			1985.8538	271.7	1.062	
425	0311	Cou 452	11245	$01510+2551$	HR	640	Hes 6	13474	02145+6631	
		1983.7106	181.6	0.271			1982.7657	20.3	0.073	
		1984.7046	181.6	0.267			1983.7107	33.6	0.078	
		1985.8375	179.6	0.291			1985.8430	61.5	0.057	
ADS	1461	A 951	11126	$01512+6021$	HR	657	Cou 79	13872	$02157+2503$	
		1983.0663	217.4	0.426			1982.7577	253.0	0.154	
		1983.7107	218.8	0.431			1982.7659	252.3	0.159	
		1984.7045	218.9	0.431			1983.0663	253.4	0.166	
		1985.8431	218.5	0.438			1983.7107	247.5	0.159	
ADS	1473	Ho 311	11284	$01512+2439$			1984.0630	245.4	0.151	
		1985.8538	290.3	0.065	ADS	1729	A 2013	13959	$02158+0638$	
ADS	1490	I 450	12435	01519-2309			1982.7577	127.1	0.294	
		1984.7070	219.4	0.506			1983.7131	123.4	0.323	
ADS	1509	A 953	11472	$01547+5955$			1985.8538	117.7	0.390	
		1983.0663	67.6	0.777	+40	0476	Cou 1670	14137	$02183+4120$	
		1983.7107	68.7	0.787			1983.7131	49.6	0.149	
		1985.8432	67.7	0.793			1984.7045	48.6	0.144	
ADS	1522	STF 1炛3 AB	11671	$01551+2847$			1985.8486	51.7	0.148	
		1983.0662	175.4	0.264	ADS	1763	Egg 2 Aa	14189	$02186+4017$	
		1983.7131	175.0	0.275			1985.84.6	105.0	0.112	
		1984.7046	173.3	0.279	469	0144	MLR 377	14382	02231+7021	
		1985.8375	171.2	0.289			1983.0663	152.5	0.565	
ADS	1538	STF 186	11803	$01558+0151$			1983.7107	153.4	0.563	
		1982.7629	56.8	1.259			1984.9967	153.2	0.586	
		1982.7657	56.8	1.255			1985.8541	152.6	0.586	
		1983.7131	58.0	1.242	ADS	1913	A 660	152.6--ー-	$02314+4234$	
		1984.7070	57.8	1.230			1983.0663	309.6	0.470	
		1984.9967	58.0	1.219			1983.7131	310.5	0.458	
ADS	1548	A 119 AD	11849	$01570+3101$	ADS	1865	A 2329	15285	$02277+0426$	
		1983.0662	194.3	0.352			1982.7577	270.0	0.372	
		1983.7131	198.6	0.352			1983.0663	273.5	0.402	
		1984.7045	200.3	0.346			1983.7132	276.3	0.427	
		1985.8375	202.1	0.331			1985.8375	288.0	0.475	
ADS	1554	A 1526	11869	$01576+4433$	HR	719	Kui 8	15328	$02280+0158$	
		1983.0662	254.9	0.138			1982.7577	33.9	0.494	
		1983.7130	260.4	0.138			1982.7659	33.6	0.496	
		1984.7045	259.9	0.134			1983.0663	33.7	0.483	
ADS	1598	Bu 513 AB	12112	$02019+7054$			1983.7131	35.4	0.490	
		1983.7130	213.9	0.729			1984.0575	35.0	0.489	
		1984.9966	217.9	0.747			1984.9967	35.0	0.490	
		1985.8430	220.3	0.765			1985.8375	34.8	0.499	
ADS	1615	STY 202	12446-	02020+0246	ADS	1860	chara 6 Ap	15089	$02290+6724$	
		1982.7549	283.1	1.910			1982.7576	173.5	0.496	
		1983.7131	282.7	1.903			1985.8540	160.4	0.414	
		1984.7070	282.1	1.886	ADS	1938	STT 42 AB	15703	$02333+5218$	
		1984.9966	281.8	1.382			1982.7604	282.2	0.149	
ADS	1613	A 1813 AB	12376	$02022+3643$			1982.7657	282.2	0.159	
		1985.8486	4.9	0.159			1983.0663	281.3	0.160	
+08	0316	McA 4	12483	$02026+0905$			1983.7107	282.6	0.153	
		1982.7603	139.6	0.215			1984.7046	284.0	0.147	
		1985.0662	138.2	0.204			1985.8540	284.5	0.142	
		1983.7131	139.5	0.216						
		1985.8538	140.5	0.223						

Table IV. (continued)

+79	0075	MLR 449	25416	$02361+7944$	ADS	2200	- Eu 524	A8	17904	$02537+3820$
		1983.0663	$192: 9$	0:255			1982.7605		29590	$0: 183$
		1983.7107	195.0	0.267			1982.7659		294.2	0.195
		1985.8541	195.5	0.266			1983.0636		293.1	0.198
HR	763	Mch 7	16234	$02366+1226$			1983.7131		289.8	0.191
		1983.7107	143.6	0.084			1984.0521		288.1	0.189
		1983.7159	142.9	0.093			1985.8278		279.0	0.190
		1984.0575	131.3	0.058	$\boldsymbol{H R}$	854	T Pet		17878	- $02543+5245$
		1985.8376	130.6	0.063			1982.7657		92.7	0.053
ADS	1992	A 1278	16283	023:3+4604			1985.8378		99.8	0.067
		1983.7133	160.5	0.112	+59	0567	MLR 520		17911	$02552+5950$
		1984.7046	158.1	0.117			1983.7133		354.2	0.121
		1985.8540	154.8	0.119	ADS	2246	Bu 1173	AB	18442	$02506+2408$
ADS	2005	A 450	16453	02384-0225			1983.0635		85.0	0.210
		1983.7131	198.7	0.354			1983.7131		86.3	0.219
		1985.8539	196.6	0.357			1984.0521		85.3	0.220
ADS	1985	STF 278	16096	$02389+6918$			1985.8403		86.7	0.226
		1983.0663	34.5	0.495	ADS	2253	8u 525		13484	$02589+2137$
		2983.7107	37.5	0.504			1982.7549		258.7	0.193
		1984.7070	37.0	0.502			1982.7577		258.9	0.493
		1985.8541	37.3	0.500			1983.0635		259.3	0.480
HR	781	$\text { Fin } 312$	16620	02396-1153			1984.0521		259.7	0.492
		1982.7578	235.3	0.097			1984.7070		260.3	$0.49 \mathrm{n}$
		1982.7659	239.1	0.086			1984.9967		260.3	0.497
		1983.0471	273.1	0.104			1985.8403		260.3	0.506
		1983.7131	59.4	0.100	ADS	2257	STF 333	A	18519	$02352+2120$
		1984.0575	92.7	0.120			1982.7550		208.1	1.432
		1985.8539	140.0	0.071			1982.7577		208.1	1.433
ADS	2028	$\text { A } 1928$	16619	02398-0009			1983.0635		207.5	1.430
		1982.7577	238.6	0.199			1984.7070		209.1	1.415
		1983.0663	238.8	0.199			1984.9967		208.9	1.404
		1983.7131	245.1	0.205		*	1985.8350		208.6	1.416
		1985.8539	255.1	0.174	ADS	2271	A 1529		18549	$03006+4753$
ADS	2044	See 19	16753	02405-2408			1983.7133		165.9	0.177
		1984.7070	291.9	0.299			1984.0520		166.4	0.179
+38	0536	Cou 1371	1	02409+3905			1985.8378		170.3	0.280
		1985.8540	305.2	0.067	ADS	2276	A 827		18424	$03024+7236$
$+40$	0568	Cou 1511	16656	$02415+4053$			1983.0636		252.f	0.221
		1982.7605	66.6	0.152			1983.7133		251.2	0.225
		1982.7659	67.0	0.141	8R	915	TPer		18925	$03048+5330$
		1983.7131	58.9	0.133			1982.7578		64.3	0.237
		1984.7046	50.4	0.115			1982.7660		64.7	0.240
		1985.8540	31.2	0.103			1983.0471		65.5	0.243
HR	788	HeA	16739	$02422+4012$			1983.7107		65.3	0.247
		1982.7659	166.7	0.049			1983.7133		65.3	0.246
		1983.7131	151.4	0.056			1984.0602		65.3	0.245
		1984.0576	94.6	0.038			1985.0049		65.3	0.247
		1984.0602	95.9	0.047			1985.8378		65.2	0.239
		1984.7046	143.8	0.051	ADS	2336	STF 346	AB	19134-	$503055+2515$
		1985.8376	106.1	0.048			1982.7609		62.7	0.214
HR	793	$\mu \mathrm{Ari}$	16812	02424+2000			1983.0635		64.5	0.221
		1982.7659	105.3	0.052			1983.7131		64.5	0.228
$+43$	0576	chara 7	17245	$02475+4416$			1984.0521		$64 .:$	0.230
		1984.0576	104.1	0.159			1985.8403		$65 .=$	0.248
ADS	2159	McA 10	17573	$02500+2716$	+61	0520	MLR 35		18990	$03062+6141$
		1984.7046	1.8	0.122			1983.7133		$339 . E$	0.215
+01	0502	Vou 36	17780	02513+0141			1985.8431		338.?	0.220
		1983.7131	9.1	0.386	ADS	2334	$\text { Bu } 1175$		$19091 \text { - }$	203062+4342
ADS	2185	1985.8375 A 2906 A	A8 $\quad 9.37743$	0.386 $02529+5300$			1983.7131 1985.8378		274.:	0.606 0.613
		1983.0636	146.0	0.158	HR	952	CHARA		279789	$03114+1303$
		1983.7133	136.6	0.150			1982.7632		24.:	0.533
		1985.8540	136.0	0.164	$+17$	0515	Cou 359		$\rightarrow-\operatorname{men}$	$03143+1821$
ADS	2185	STP 314	$\mathrm{AB}, \mathrm{C} \quad 17743$	$02529+5300$			1983.7134		171.:	0.162
		1982.7576	309.8	1.563			1985.8403		171.:	0.164
		1983.0636	310.0	1.577	ADS	2440	84 84		20319	03162-0555
		1983.7133	310.0	1.543			1982.7634		10.5	0.940
		1984.0520	310.0	1.531			1985.8351		11.1	0.950
		1985.8540	309.9	1.552						

Table IV. (continued)

Table IV. (continued)

H2 1	1331	Mch 14 Ae	27176	$04185+2135$	HR 1	1391	Pin 342 Aa	27991	$04256+1557$
は2	1331	1982.7550	191:8	0.134			1982.7661	20998	$0 \% 052$
		1982.7579	192.6	0.136			1983.0474	191.5	0.092
		1982.7605	190.4	0.132			1983.7108	169.7	0.093
		1982.7633	192.9	0.138			1983.7135	170.8	0.074
		1982.7661	193.4	0.131			1984.0522	159.1	0.086
		1983.0472	186.2	0.133			1984.0577	159.6	0.088
		1983.0637	187.2	0.150			1984.0604	157.4	0.081
		1983.7108	182.1	0.146			1985.8379	111.4	0.093
		1983.7135	179.6	0.148			1985.8406	112.2	0.096
		1984.0522	175.0	0.145	ADS	3230	24 311	28312	04269-2405
		1984.0576	174.8	0.145			1983.0500	119.2	0.467
		1984.0603	172.7	0.135			1983.716 ?	118.7	0.457
		1984.9998	160.5	0.138			1984.0577	120.6	0.467
		1985.8378	145.7	0.114			1924.7072	120.2	0.465
		1985.8406	144.5	0.120			1985.8351	121.3	0.468
		1985.8541	145.7	0.120	ADS	3228	8u 1186	28217	$04275+1113$
ADs	3105	$\text { STF } 75$	26882	$04186+6029$			1983.0500	131.7	0.221
		1983.0472	178.2	0.413			1983.7162	131.4	0.207
		1984.0521	179.7	0.403			1984.0522	130.5	0.205
		1985.8405	178.7	0.405			1984.7072	129.5	0.201
ADS	3135	STT 79	27383	$04187+1632$			1984.9968	128.9	0.199
		1982.7551	109.2	0.229			1985.8488	126.6	0.194
		1982.7606	109.0	0.221	ADS	3247	24 184	28396	$04279-2130$
		1982.7661	110.1	0.227			1983.0500	251.8	1.720
		1983.0472	111.2	0.222	1a	$1411 \begin{aligned} & 19 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & 19 \\ & 19\end{aligned}$	MeA 25	28307	04286+1557
		1983.7162 *	123.3	0.186			1983.7135	356.6	0.148
		1984.0522	130.4	0.173			1984.0522	355.4	0.164
		1984.0576	132.2	0.173			1984.0577	354.6	0.165
		1985.8378	178.6	0.147			1985.8379	353.7	0.216
		1985.8406	177.5	0.149			1985.8406	353.1	0.217
		1985.8488	177.9	0.148	ADS	3248	Hu 1080	28363	$04290+1610$
ADS	3159	Bu 744 AB	27710	04215-2544			1982.7551	260.7	0.902
		1983.0500	140.6	0.589			1982.7606	260.8	0.400
		1983.7162	142.2	0.570			1982.7661	260.7	0.404
		1984.7072	143.9	0.567		-	1983.0500	260.8	0.406
		1984.9968	143.5	0.539			1984.0522	260.7	0.424
ADS	3169	3TF 12 AB	27691	$04228+1504$			1984.0577	261.0	0.421
		1984.7072	355.2	1.303			1985.8406	259.8	0.451
		1984.9968	355.0	1.296	$+17$	0735	Cou 567	28436	$04298+1741$
\%12	1375	ctara 16	27742	$04235+2059$			1983.7162	23.3	0.152
		1985.8514	9.4	0.182			1984.0522	22.5	0.149
ADS	3172	STT 80	27650	-04236+4226	-24	2402	RST 2347	28845	04318-2406
		1982.7579	158.6	0.356			1983.0500	327.6	0.194
		1983.0472	158.2	0.361	ADS	3283	A 1839		$04324+3850$
		1984.0522	157.9	0.349			1983.7163	271.6	0.604
		1985.8406	156.6	0.348	+14	0721	CAARA 17	285931	$04340+1510$
ADS	3182	\#u 304	27820	04239+0928			1985.8514	38.6	0.147
		1982.7551	67.3	0.207	ADS	3317	CEARA 18 da	29140	$04357+1010$
		1982.7633	67.7	0.207			1985.8488	16.4	0.104
		1983.0500	67.9	0.203	ADS	3326	A 1840 A8		$04361+0813$
		1983.7162	70.9	0.193			1983.0500	112.2	0.170
		1984.0522	71.7	0.187			1985.8459	103.0	0.166
		1984.0604	72.3	0.187	ADS	3329	32t 66	29193	$04366+1945$
		1985.8488	78.1	0.162			1983.0503	16.8	0.460
ADS	3191		27832	$04245+2245$			1983.7162	17.0	0.451
		1983.0474	59.8	0.330			1984.0548	16.2	0.451
		1983.7162	60.5	0.334			1984.7072	16.0	0.451
		1984.0522	60.8	0.333			1985.8434	14.8	0.452
		1985.8379	62.3	0.313	HR 2	2481	Kui 18	29503	04312-1418
		1985.8514	60.3	0.327			1982.7634	138.0	0.349
ADS	3210		27989	$04256+1852$			1983.0500	141.1	0.359
		1982.7579	7.5	0.109	ADS	3371	Du 1044	29562	$04398+1632$
		1982.7606	8.3	0.113			1983.0503	211.1	0.667
		1982.7661	6.4	0.104			1985.8434	212.4	0.649
		1983.0499	5.5	0.114	ADS	3358	Bu 1295 AB	29316	04399+5329
		1985.8406	229.8	0.068			1983.7163	134.2	0.182
							1094.0522	122.2	0.175
							1984.7072	129.4	0.162
							1984.9968	127.3	0.155
							1985.8434	120.6	0.136
					ADS	3358	STT 566 AC	29316	$04399+5329$
							1984.9968	221.3	0.728
							1985.8434	220.7	0.727

Table IV. (continued)

	3387	A 2353	29727	044: 6+1643	ADS	3659	A 1023	32416	05054+4655	
		1983.0503	154:9	0.169			1983.0637	60:0	0:353	
		1983.7162	160.0	0.164			1984.0524	62.5	0.331	
		1985.8434	162.4	0.165			1985.8516	61.9	0.331	
	1497	Hea 16	29763	04422+2257	ADS	3672	STT 95	32642	05055+1948	
		1982.7551	4.8	0.185			1982.7634	303.3	0.923	
		1982.7633	4.1	0.186			1983.0503	303.4	0.918	
		1982.7661	5.4	0.186			1984.0549	302.7	0.913	
		1983.0474	2.1	0.187			1984.7073	303.0	0.915	
		1983.7163	357.7	0.184			1984.9969	302.8	0.910	
		1984.0524	354.6	0.187			1985.8351	301.6	0.900	
		1985.8380	340.1	0.193	+22	0818	Srr 97	32641	03056+2304	
	0953	Don 75	29961-	204425-:059			1982.7634	152.0	0.354	
		1983.0500	77.1	0.168			1983.0503	152.5	0.348	
ADS	3391	A 1013	29606	04432+5932			1984.0524	152.1	0.347	
		2985.8434	58.9	0.107			1985.8516	151.1	0.353	
+39	1054	Cou 1524	29911	04445+3953	+22	0829	Cou 155	32864	05072+2224	
		1982.7579	196.1	0.178			1985.8516	325.0	0.244	
		1982.7660	196.1	0.176	ADS	3711	STT 98	33054	05074+0830	
		1983.0664	195.1	0.190			1982.7607	12.8	0.639	
		1985.8434	197.8	0.184			1983.0638	11.2	0.631	
+42	1045	Cou 2031	30090	04465+4220			1984.7073	6.2	0.636	*
		1985.8434	311.0	0.054			1984.9969	5.7	0.624	
ADS	3445	- 2		04466-0437			1985.8516	2.5	0.632	
		1985.8435	178.7	1.524	+37	1053	Cou 1531	32949	05085+3755	
AR	1528	chara 19	30453	04493+3235			1982.7607	89.9	0.329	
		1984.0576	147.8	0.041			1983.0503	87.5	0.331	
ADS	3465	A 2621	30636	04496+0213			1985.8516	84.8	0.320	
		1983.0502	75.4	0.150	ADS	3728	A 2636	33236	05089+0313	
		1985.8459	80.4	0.150			1982.7634	154.5	0.260	
+14	0770	caara 20	30712	04506+1505			1985.8516	156.2	0.266	
		1985.0459	109.6	0.072	AdS	3748	$\lambda 484$	33507	05103-0735	
ads	3475	84 883 A8	30810	04512+1104			1985.8514	150.5	0.096	
		1982.7551	69.6	0.243	ADS	3734	Str 644	33203	05104+3718	
		1982.7633	70.0	0.242			1982.7606	222.5	1.602	
		1983.0502	73.4	0.235			1983.0503	222.4	1.599	
		1984.0549	85.5	0.219			1985.8516	222.6	1.597	
ADS	3483	14 552 AB	30869	04518+1339	ads	3755	Bu 885	33546	05109-0146	
		1982.7606	118.6	0.261			1983.0638	195.4	0.584	
		1983.0503	119.9	0.264			1984.7073	197.1	0.594	
		1984.0549	133.3	0.298			1984.9969	197.1	0.587	
		1985.8434	146.6	0.346			1985.8516	197.0	0.598	
	$6 \cdot 98$	$\text { nst } 5501$	+1567	04545-0313	ADS	3767	Hu 33	293647	$05117+0031$	
		1982.7634	45.9	0.285			1982.7634	10.4	0.100	
		982.7661	45.7	0.289			1985.8516	7.2	0.108	
		-983.0502	45.5	0.287	ADS	3764	STP 652	33646	05118+0102	
		1984.0549	45.0	0.280			1985.8542	181.0	1.607	
		1985.8489	42.0	0.272	ADS	3799	Str 517 AB	33813-	+05134+0158	
ADS	3358	A 2624	31622	04573+0100			1982.7634	235.1	0.512	
		1985.8435	304.6	0.319			1983.0638	235.9	0.501	
ADS	3588	Du 314 As	31925	04592-1622			1984.7073	236.4	0.522	
		1982.7634	160.5	0.249			1984.9969	236.3	0.523	
		1983.0500	160.3	0.277			1985.8516	236.0	0.537	
		1984.0604	156.3	0.321	HR	1708	c Aur Aa	34029	05167+4601	
ADS	3573	A 1303	31578	04599+5328			1983.0474	192.2	0.047	
		1984.0524	314.3	0.206			1584.0524	11.3	0.047	
		1985.8434	311.6	0.204			1984.0604	0.6	0.043	
		1985.8489	311.4	0.199			1985.8542	57.3	0.053	
+69	0288	MLR 399 AB	31264	05001+6958	+39	1272	Cou 2037	34807	05219+3934	
		1985.8433	168.6	0.259			1982.7607	140.3	0.348	
ADS	3608	$\boldsymbol{\lambda} 1844$	32092	05017+2640			1983.0503	140.6	0.346	
		1985.8434	9.7	0.323			1985.8516	140.1	0.352	
ADS	3662	$\lambda 481$	32622	05043-0602	ADS	3991	mac 2 A, BC	35317	05239-6053	
		1983.0500	302.5	0.447			1983.0692	159.3	2.150	
		1985.8514	300.9	0.454	+32	0966	Cou 1090	35132	05240+3238	
$+21$	0754	Cou 154 A8	32481	05044+2139			1983.0504	230.8	0.235	
		1983.0503	308.2	0.253			1985.8516	229.8	0.234	
		1905.8515	306.5	0.254	nos	9002	De 5 An, 日	35111	05244-6224	
HR	1589	STT 89	31590	05046+7404			1984.9969	78.4	1.638	
		1982.7633	297.9	0.467			1985.8542	77.6	1.660	
		1982.7660	297.9	0.465	ADS	3997	A 2703	35365	05246+0910	
		1984.0524	298.1	0.451			1985.8516	104.6	0.223	
		1984.9969	298.5	0.454						
		1985.8407	298.0	0.458					.	

Table IV. (continued)

Notes to Table IV.

The brief notes given below are presented primarily in connection with the newly resolved stars. The "binary types" indicated in Tables II and III are from a vanty of sources, including the Bright Star Catalog (Hoffeit 1982), the catalog of spectroscopic binary star orbits of Batten et al. (1978), the catalog of composite spectrum stars compiled by Hynck (1938), and the catalog of lunar-occultation binanes of Evans (1983). Additional occultation binary candidates were added to the observing program from lists published by the International Occultation Timing Association (IOTA) and from the list of stars exhibiting anomalous occultations published by Appleby (1980).
HD 761 = CHARA 1: This pair is confirmed by Tokovinin (1985) and is steadily closing in separation.
HD 8272=ADS 1105: STF 115 AB, first measured by F. W Struve in 1836 at an angular separation 0:68, had opened to $1: 2$ by 1910 , then steadily closed to $0^{\circ} 35$ at the time of the first speckle measurement in 1978 (McAlister and Hartkopf 1984). Based on a preliminary visual/speckle orbit, the pair reached an apparent minimum separation of 0:01 in the spring of 1984.
HD $11031=$ CHARA 4: Although this new component is indicated as Aa, we have not yet firmly established whether it is associated with the A or B component of the $1: 9$ system comprising ADS 1438.
HD $13520=$ CHARA 5: The five negative results obtained during 1976-1980 (McAlister and Hiartkopf 1984) are apparently due to a large magnitude difference.
HD $15089=$ CHARA 6: Heintz (1962) found a submotion to the sisual orbit of $A D S: 860 \mathrm{AB}(P=840 \mathrm{yr}, a=2.27$) with a pertod of 52 yr and an amplitude of $0: 11$. The component reported here may coincide with Heinti's astrometric component.
HD 21242=CHARA 9: This is UX Ari, an RS CVn type binary that is not eclipsing. The spectrum shows three components (Fekel, private communication), two of which are identified with the 6.44 day system described by Carlos and Popper (1971) while the third is possibly the new component reported here.
Ross 29 = CHARA 15: Van Maanen (1941) suspected this star to be a binary, but these are the first measurements of a companion.
HD $58728=\mathrm{MCA} 30$: Fekel (private communication) has detected this system as a third component in the spectrum and makes a preliminary estumate of the period of 760 days.
HD $106760=$ CHARA 37: A spectroscopic orbit with a period of 1300 days was determined by Christie (1936). This star has been observed by speckle interferometry on ten occasions durin' 1976-1981 at which no companion was seen. A large or variable magnitude difference may be present.
HD 114378.9 = ADS 8804: Nearly 40 speckle measurements have now keen published for STF 1728 AB. A preliminary orbut for this nearly edge-on pair, based solely on speckle data, indicates that one of the FS V stars may partially eclipse the other in early 1990 . Observations over the next few years will permit a more accurate statement conceming this possibility.
HD 157482=McA 47: Fekel (private communication) has an unpublished spectroscopic orbi- for this system with a period of 5.5 yr.
HD $173495=$ ADS 11640: This is a quadruple system consisting of two close ($0^{\circ} 14$) pairs of similar position angle discovered by Finsen with his eyepiece interferometer Our 1982 speckle observations were made at a lower magnification and included all four sters :n :he fich: The resulting overiappang autoxorcelation peaks precluded us from measuring the Aab and Bab pars directly but did permit the measurement of the AB ; $\mathrm{Aa}-\mathrm{Bb}$ and $\mathrm{Ab}-\mathrm{Ba}$ configurations. In later observations made at a higher magnification, we observed the A and B components separately enabling the measurement of Aab and Bab but not AB.
HD 176155 = CHARA 82: Abt (1959) reported a spectroscopic orbit with a period of 1435 days for the primary component of the visual binary ADS 11884 . The primary is a Cepheid variable with a period of 4.47 days. Continued observation of this system interferometncally and spectroscopically could permit the determination of the mass and distance for a Cepheid variable star.
HD $192806=\mathrm{McA} 60$ Aa,B + CHARA 94 Aa: Speckle interferometry has now found two compenents to HR $7744=23 \mathrm{Vul}$.
HD 194215 = CHARA 97: The correspondence of this newly resolved component with the 377.6 day spectroscopic system reported by Bopp et al. (1970) can only be established by further observations.
HD 206155=CHARA 105: Lacy and Popper (1984) discovered a previously unknown companion to the eclisping binary EE Peg through its effects on radial velocity and times of primary eclipse. They find the third component to have a period of 1464 days and a mass fatto,$M_{A}-10 / 1 M_{c} \simeq 5-12$. Their component would be expected ic exhibit a separation from the primary of approximately $0^{* 0} 03$, a value just resolvable by speckie interferometry. It thus seems likely that the object seen in our speckle observations is yet unother long-period member of this system.
HD 221264 = ADS 16800: Fekel (private communication) reports that he has now detected four components in the spectrum of this star.

FIG. 5. The distribution of measured angular separations is shown for all modem interferometric observations of bina. ry stars that are known to and catalogued by the authors. For the 6910 measurements represented here, 2908 are from our ICCD camera (light shading), 2780 are from our original photographic speckle program (dark shading), and 1222 measurements have been accumulated by other programs of binary star interferometry (unshaded). The overall mean angular separation in the collected data is $0: 35$, while 17% of the measurements are for binary stars with separations less than or equal to 0:10.
ate quadrants for known visual binaries, but we arbitrarily adopt $\theta<180^{\circ}$ for newly resolved pairs.

The 2780 measurements of 1012 systems in Table IV combine with the same number of measurements published from our photographic speckle program and the 128 measurements from Paper I to give a total of 5688 speckle measurements of binary stars zesulting from the GSU program. At the time of submission of this paper, we are aware of another 1222 measurements from other modern interferometric programs giving a total of 6910 interferometric observations of binary stars.
The mean angular separation of the observations in Table IV is 0.409 . This compares with a mean value of 0.333 for our earlier photographic results. The larger mean is at least partly due to the exclusive use of the microscope objective giving a scale of 0.0161 arcsec per pixel during our first few observing runs with the new camera at the 4 m telescope. Such a scale gives only slightly more than 2 pixels per Airy disk, a sampling interval too small to reach the diffraction limit. This approach was corrected for later observations, and we now use the $10 \times$ microscope objective only when seeing conditions are very poor or when binaries with angular separations of the order of 1 arcsec or wider are being observed. In Fig. 5 we show the distribution of observed angular separations for the data from this paper and Paper I, from the GSU photographic speckle series, and from all other contributors known to us. The mean angular separation in these collected measurements is 0.349 , and 17% of the results are for angular separations no larger than 0"10.

Many people have made invaluable contributions to this program, and we wish to acknowledge their efforts here. The detailed design and construction of the new speckle camera was carried out by William G. Robinson, and the camera's
reliability and efficiency are testimony to a superb job. The vector autocorrelator, designed and constructed by Peter Vokac, has made it possible to reduce efficiently nearly one terabyte of data. The cooperation and enthusiasm of the KPNO LTOs have been particularly important to the effcient use of telescope time, and we thank Hal Halbedel, Barbara Schaefer, Dean Ketelson, George Will, Bret Goodrich, Annie Shaw-Hansen, Randy Bergeron, and Dean Hudek for keeping their good spirits during many nights of 3 min repointing cycles. We have also benefitted greatly from the granting of long-term observer status at the KPNO 4 m telescope during the course of these observations and express our appreciation to several understanding TACs who continued to grant time while we were developing the reduction and analysis procedures. Assistance in gathering data at the telescope or in handling the data in the laboratory has been given by Barbara Gaston, Dick Miller, Phillip Lu, Ed Dombrowski, Mike Carini, and Alex Rosen. Assistance in computer matters at GSU has been given by Paul Schmidtke, Mike Lucas, Duke Windsor, and Steve Lasseter. We are grateful to Wayne H. Warren, Jr., of the Astronomical Data Center at the NASA Goddard Space Flight Center for providing information incorporated in object identification. We thank Frank Fekel for his many suggested candidate stars and for his comments on this paper. Occultation binary candidates have been kindly recommended by Nat White and David Dunham. We thank Art Hoag for making time available on the Lowell 24 in. refractor, and Ralph Nye for quickly preparing a mounting bracket so that our camera could be used experimentally on that telescope. Finally, we are especially indebted to Charles Worley, who, in addition to providing valuable advice over the years, proofread our entire list of measures and pointed out a number of identification errors. Our new measurements are already incorporated in the Washington Double Stars Catalog maintained by Mr.

Worley at the U.S. Naval Observatory. The ICCD speckle camera system was funded by the National Science Foundation through grant AST-79-24576, while the continuing research effort has been supported by NSF grants AST $80-$ 15781 and AST 83-14148. The image-processing and computer system was purchased through a DOD-University

Research Instrumentation Program grant administered by the Air Force Office of Scientific Research as grant AFOSR 83-0257. O.G.F.'s participation in this effort has been made possible through a subcontract with GSU funded by the Air Force Office of Scientific Research through grant AFOSR 81-0161.

REFERENCES

Abt, H. A. (1959). Astrophys. J. 130, 769.
Appleby, G. M. (1980). J. Brit. Astron. Assoc. 90, 572.
Batten, A. H., Fletcher, J. M., and Mann, P. J. (1978). Publ. Dominion Astrophys. Obs., Victoria, B.C. 15, No. 5.
Bond, H. E. (1980). Astrophys. J. Suppl. 44, 517.
Bopp, B. W., Evans, D. S., Laing, J. D., and Deeming, T. J. (1970). Mon. Not. R. Astron. Soc. 147, 355.
Breckinridge, J. B., McAlister, H. A., and Robinson, W. G. (1979). Appl. Opt. 18, 1034.
Carlos, R. C., and Popper, D. M. (1971). Publ. Astron. Soc. Pac. 83, 504. Christie, W. H. (1936). Astrophys. J. 83, 433.
Evans, D. S. (1983). In Current Techniques in Double and Multiple Star Research, IAU Colloquium No. 62, edited by R. S. Harrington and O. G. Franz, Lowell Obs. Bull. 9 (Lowell Observatory, Flagstafi), p. 73.
Gezari, D. Y., Labeyrie, A., and Stachnik, R. V. (1972). Astrophys. J. 173, L1.
Hartkopf, W. I. (1984). In Astrometric Techniques, IAU Symposium No. 109, edited by H. K. Eichhom and R. J. Leacock (Reidel, Dordrecht), p. 301.

Hartkopf, W. I., McAlister, H. A., and Hutter, D. J. (1985). Bull. Am.

Astion. Soc. 17, 551.
Heintz, W. D. (1962). Veroff. Sternw. Munchen 5, 136.
Hoffeit, D. (1982). The Bright Star Catalogue, fourth edition (Yale University Observatory, New Haven).
Hynek, J. A. (1938). Contrib. Perkins Obs. 1, 185.
Lacy, C. H., and Popper, D. M. (1984). Astrophys. J. 281, 268.
McAlister, H. A. (1977). Astrophys. J. 215, 159.
McAlister, H. A., and Hartkopf, W. I. (1983). Publ. Astron. Soc. Pac. 95, 778.

McAlister, H. A., and Hartkopf, W. I. (1984). Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy Contrib. No. 1 (CHARA, Georgia State University, Atlanta).
McAlister, H. A., Hartkopf, W. I., Gaston, B. J., Hendry, E. M., and Fekel, F. C. (1984). Astrophys. J. Suppl. 54, 251.

McAlister, H. A., Hartkopf, W. I., Hutter, D. J., Shara, M. M., and Franz, O. G. (1987). Astron. J. 93, 183 (Paper I).

McAlister, H. A., Robinson, W. G., and Marcus, S. L. (1982). Proc. SPIE 331. 113.

Tokovinin, A. A. (1985). Astron. Asrophys. Suppl. 61, 483.
Van Maanen, A. (1941). Astrophys. J. 94, 396.

FIG. 2. A single speckle frame of the visual binary stars ADS 7158 (κ UMa) obtained at the 4 m KPNO telescope with the GSU ICCD speckle camera on 1985.835 is shown. The field of view is approximately 2.0 arcsec square.

McAlister et al. (see page 690)

FIG. 3. (a) The composite vector autocorrelogram of approximately 1800 speckle frames of ADS 7158 shows the charactenstic peaks indicative of duplicity supenmposed upon a seeing-dominated background. (b) A background-sublracted version of the same autocorrelogram shows the resulting high-contrast double star peaks on either side of the strong zeroth spatial component.

McAlister et al. (see page 691)

Fig. 4. A vector autocorrelogram of calibration data obtained on 1984.387 for the single star κ CrB observed through a double-slit aperture mask shows the high-signal-to-noise row of peaks used to determine the image piane scale and pole orientation.

[^2]
ICCD SPECKLE OBSERVATIONS OF BINARY STARS. III. A SURVEY FOR DUPLICITY AMONG HIGH-VELOCITY STARS

Phillip K. LU ${ }^{\text {a }}$
Western Connecticut State University, Danbury, Connecticut 06810
and
Van Vleck Observatory, Wesleyan University, Middletown, Connecticut 06457
Pierre Demarque and William van Altena
Yale University Observatory, New Haven, Connecticut 06511
Harold Mcalistera) and William Hartkopf ${ }^{\text {a }}$
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303
Received 2 June 1987; revised 7 July 1987

Abstract

A survey program to identify binary candidates among high-velocity dwarf stars using the GSU speckle camera has been carried out. The purposes of this study are: (1) to determine the binary frequency of the halo population to provide information on the star-formation processes in the galactic halo; and (2) to eventually derive the orbital elements of the newly discovered binaries. Our angular-resolution limit of $0.03^{\prime \prime}$ corresponds to a linear separation of 3 AU at a distance of 100 pc . If a sufficient number of halo binaries are found, then the halo mass-luminosity relation can be derived. Finally, with the help of stellar-interior models, it may be possible to determine the helium abundance of the component stars. Such determinations would set an upper limit to the primordial helium abundance. In this paper, we report speckle interferometry data that have been obtained and analyzed for a sample of 182 stars. Based on these data, ten stars are found to be binary. Of these ten, four are newly resolved systems and six are rediscoveries of previously known binaries. These data imply a duplicity frequency of 6% for the stellar sample in our list. However, this frequency must be corrected for observational selection effects which limit binary detection to stars with $V<10.5$, with angular separation between $0.03^{\prime \prime}$ and $1^{\prime \prime}$, and $\Delta m<3.0$ mag. After applying these corrections, we find that our data are compatible with a total frequency for high-velocity long-period doubles as large as for low-velocity stars. Distances have been estimated for the ten binary stars using their spectroscopic parallaxes and visual magnitudes. Of these ten stars, all are within 100 pc of the Sun and eight have linear separations $<20 \mathrm{AU}$. Using the mass-luminosity relation and assuming circular orbits, four stars are found to have periods less than 20 yr . These ten candidates will be monitored to determine their orbital elements.

I. INTRODUCTION

The nature of the binary population among halo stars has been the subject of interest for numerous investigations. Through the study of these systems, one can determine their orbits and the masses of the components. Currently, there is no available direct mass measurement for a single star among high velocity (and, presumably, halo population) stars. A knowledge of the mass-luminosity relation for main-sequence stars in the galactic halo would first enable us, with the help of appropriate stellar models (Mengel et al. 1979), to evaluate the helium abundances and provide a reliable upper limit to the primordial helium abundance Y_{p} (Demarque 1966; Demarque and McClure 1977; Carney 1983b; Cole, Demarque, and Green 1983).

Secondly, a determination of the dependence of the massluminosity relation for halo dwarfs upon metallicity would, in principle, yield the enrichment ratio $\Delta Y / \Delta Z$ due to Population III stars within the galactic halo prior to the formation of the currently observed Population II stars. This quantity is of fundamental importance for the study of galactic chemical evolution and enrichment (Larson and Tinsley 1978;

[^3]Matteucci and Chiosi 1983; Peimbert 1983; Searle 1984).
Finally, the observations would also provide a test of the frequency of binary systems among halo-population stars. This frequency remains uncertain in comparison to that oi the main-sequence stars of low velocity.

In a study of the frequency of spectroscopic binaries ' among Population II stars, Abt and Levy $(1969,1976)$ concluded that short-period binaries are rare among all highvelocity dwarfs and metal-poor stars. Crampton and Hartwick (1972) have confirmed the low frequency of short-period spectroscopic binaries in the halo population. On the other hand, Partridge (1967) investigated nearby high-velocity stars and concluded that if visual and spectroscopic binaries are considered, the duplicity rate is independent of stellar velocity. Based on uvbyUBVRIJITÑ photometry, Carney (1983a, 1984) has suggested that the halo dwarf binary frequency may be as high as $20 \%-25 \%$ using metalli-city-insensitive blue versus infrared color indices.

For giant stars, Gunn and Griffin (1979) first studied the globular cluster M3 using a high-precision radial-velocity spectrometer and found no spectroscopic binaries. Subsequently, Harris and McClure (1983) reported their finding of a fairly high frequency of binaries ($15 \%-20 \%$) in a DAO survey of field giants. Spectroscopic binaries are now being found in the field halo population by numerous investigators: Mayor and Turon (1982), McClure et al. (1985), Ar-
deberg and Lindgren (1985). In the globular cluster M3, the giant von Zeipel 164 has also been identified as a binary by Latham, Hazen, and Pryor (1985). Finally, a speckle-interferometry survey of 672 stars (426 dwarfs and 246 evolved stars) from the Yale Bright Star Catalogue (Hoffeit 1982) by McAlister et al. (1987a, Paper I) has shown a frequency of 11% in the separation range $0.04^{\prime \prime}-0.25^{\prime \prime}$.
The multiplicity fraction of other stellar populations is typically between 10% and 40% for the field F3-G2 dwarf and giant stars (Abt 1979, 1983). This includes the Hyades main-sequence stars (Mathieu, Stefanik, and Latham 1985), the giants in open clusters (Mathieu 1985; Harris and McClure 1985), and the supergiants (Burki and Mayor 1984). From a survey of $900 \mathrm{~F}, \mathrm{G}$, and K stars selected from the Lowell Proper Motion Catalog, Carney and Latham (1987) recently reported a frequency of 25% for these stars.

A new survey program to identify binary candidates among high-velocity dwarf stars using the Georgia State University (GSU) speckle camera has been carried out. A list of approximately 700 dwarf stars whose radial velocities are larger than $\pm 65 \mathrm{~km} / \mathrm{s}$ was selected from Roman (1955), Eggen (1964), and Abt and Biggs (1972). Various other lists of radial velocitres published since 1972 were also searched. Since the lists are numerous, the references quoted hereafter are for the major and latest publication only. These lists include Andersen and Nordstrom (1983a, b), Andersen et al. (1985), Beavers et al. (1977,1979), Fehrenbach and Burnage (1982,1984), Lu (1983), Lu and Lee (1983), McClure et al. (1985), and Carney and Latham (1987). Although the list initially included all stars of luminosity class V, only 452 stars north of declination - 20° and magnitude brighter than 10.5 were included in an observing list used at the 4 m Mayall telescope at Kitt Peak.
Binary survey programs for halo-population stars currently in progress, other than this study, are those by Carney (1983b, 1984), using photometric metallicity indicators, and Carney and Latham (1987), based primarily on high-proper-motion objects with the digital stellar speedometer of the CfA (Latham 1985).

II. SPECKLE OBSERVATIONS

Speckle-interferometry data have been obtained for 182 high-velocity stars in this program, of which 39 stars were observed twice, using the GSU speckle camera at the 4 m telescope at KPNO. Reviews of speckle interferometry have been published by Labeyrie (1970, 1978) and Worden (1977). The camera system and observational procedures employed in this survey are identical to those described by McAlister et al. (1987b, Paper II). All data reduction and analysis was carried out at the Center for High Angular Resolution Astronomy (CHARA) at GSU. Preliminary re-
sults of this survey have been reported earlier (Lu et al. 1986). This study has shown that ten stars (six with two speckle observations) are definitely halo binaries.
Tables I and II contain measurements of four newly resolved and six previously known binary stars, respectively. Newly resolved stars have been given a "CHARA" designation consistent with the naming procedure initiated in Paper II. The measured angular separations range from $0.035^{\prime \prime}$ to $0.302^{\prime \prime}$ for the newly resolved stars and $0.147^{\prime \prime}$ to $1.088^{\prime \prime}$ for the known binaries. The position angles in Tables I and II are subject to a 180° ambiguity, since autocorrelated speckle observations cannot provide the true quadrant in which the secondary star lies.

Table III contains 172 stars that were observed in the survey, many with two speckle observations, for which no convincing evidence of duplicity was detected in the autocorrelograms. The effective field of view of the autocorrelator address window was limited to a rectangle of $1.22^{\prime \prime} \times 2.44^{\prime \prime}$ centered on the primary stars. Thus the upper limit to an angular separation in the survey was about $1^{\prime \prime}$; the lower limit of the angular separation was about $0.035^{\prime \prime}$, the diffraction limit of the 4 m Mayall reflector. Those stars with negative results may belong to one or more of the following three cases, namely: (a) their separations are either less than the diffraction limit of $0.035^{\prime \prime}$ or greater than the address window of the autocorrelator, thus being undetectable using current speckle data; (b) the magnitude difference is more than 2.5 mag; or (c) they are single stars.

III. DISCUSSION

a) Binary Frequency

The ten stars listed in Tables I and II lead to a binary frequency of about 6%. This binary frequency of 6% is not, however, representative of the total binary frequency among high-velocity stars. The GSIj speckle interferometer only detects binary candidates with $V<10.5$ and angular separation between $0.035^{\prime \prime}$ and $1^{\prime \prime}$. The magnitude difference Δm between primary and secondary must also be less than about 2.5 mag. We must therefore correct for each of these selection effects.
(1) The first selection effect ($V<10.5$) changes the maximum distance reached by our survey for stars of different absolute magnitudes. If we consider only dwarf stars, this distance is a function of spectral type only, and can easily be evaluated.
(2) The second selection effect concerns the restriction that the angular separation must be between $0.035^{\prime \prime}$ and $1.0^{\prime \prime}$ for stars to be detected. Given an angular separation, the corresponding detectable orbit size depends lineariy on distance. Therefore, given the distance of a star, one can calcu-

Table l. Newly resolved systems.

CHARA Number	Name	$\begin{gathered} \text { HD } \\ \text { Number } \end{gathered}$	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	$\begin{gathered} V \\ \text { Mag. } \end{gathered}$	spectral Classit.	Epoch	Theta	Rho
117	+570730	21794	03337+5752	6.36	FTV	1985.8433	154.5	0.099
118	+09 4369	189711	20011+0931	8.43	NOV	1985.4928	199.5	0.221
						1985.8372	174.4	0.302
119	+174708	G 126-62	22115+1806	9.48	F6VI	1985.8372	126.7	0.205
120 Aa	+572787	222794	23434+5804	7.1	GO	1985.8536	154.3	0.057

Table II. Measures of previously known systems.

ADS Nuaber	Dise. Hane	$\begin{gathered} \text { HD } \\ \text { nuaber } \end{gathered}$	$\begin{gathered} 0,8 \\ (2000) \end{gathered}$	Magnitudes		```Spectral Classifications```		Epoch	Theta	Rho
5469	A 2731	49409	06486+0738	6.4	9.0	Gov		1985.8408	53.1	1.088
9397	A 2983	130669	14493+1014	9.2	9.2	K2V		$\begin{aligned} & 1985.4895 \\ & 1985.4978 \end{aligned}$	$\begin{aligned} & 152.1 \\ & 152.1 \end{aligned}$	$\begin{aligned} & 0.150 \\ & 0.147 \end{aligned}$
9716	STT 298 AB	139341	15361+3948	7.5	7.6	K2V		$\begin{aligned} & 1985.4841 \\ & 1985.4895 \end{aligned}$	$\begin{aligned} & 247.0 \\ & 247.0 \end{aligned}$	$\begin{aligned} & 0.370 \\ & 0.370 \end{aligned}$
10598	STF 2173	158614	17303-0103	6.0	6.1	G978-V	G9 IV-V	$\begin{aligned} & 1985.4869 \\ & 1985.4871 \end{aligned}$	$\begin{aligned} & 157.1 \\ & 157.3 \end{aligned}$	$\begin{aligned} & 0.923 \\ & 0,920 \end{aligned}$
12961	A 1658	287283	19487+1503	8.2	4.5	F5V	76V	$\begin{aligned} & 1985.4938 \\ & 1985.8341 \end{aligned}$	$\begin{aligned} & 212.3 \\ & 209.5 \end{aligned}$	$\begin{aligned} & 0.204 \\ & 0.196 \end{aligned}$
15215	STI 418	206373	21410+2921	8.4	9.1	60		$\begin{aligned} & 1985.4983 \\ & 2985.8480 \end{aligned}$	$\begin{aligned} & 199.5 \\ & 198.5 \end{aligned}$	$\begin{aligned} & 0.429 \\ & 0.473 \end{aligned}$

late the range of orbit sizes that are detectable by the speckle technique. According to Kcpler's law, this translates into a range of detectable orbital periods. This range covers only a portion of the total period distribution for binary stars. Our task here is to evaluate the fraction of stars in the total distribution that are expected to be in the detectable portion of the period distribution.

These two selection effects are best analyzed together. Because the range of binary periods that can be detected by the speckle technique is a function of distance, consider concentric shells in space, each with a thickness corresponding to a distance modulus difference of $\Delta\left(V-M_{v}\right)=1.0$. Shell A includes all observed stars with distance moduli between 5 and 6 , shell B between 4 and 5, and so on, as shown in Table IV. Next, since main-sequence stars of different spectral types have different absolute magnitudes, let us divide the sample into three groups according to spectral class, i.e., F, G , and K . To each group, we assign an average M_{v}, i.e., $M_{v}(\mathrm{~F})=4.0, M_{v}(\mathrm{G})=5.0$, and $M_{v}(\mathrm{~K})=6.0$. Let us consider next the distribution of each spectral-class group as a function of distance. Table IV lists the number of stars observed and of identified binaries in each space shell for each spectral class. Also listed are the ranges in physical separations and orbital periods in the observable window, set by the range of angular resolution detected by the speckle photometer.

We see that there is complete overlap of all three spectralclass groups for shells C, D, and E and will therefore consider here these chree shells only. We note that in C, D, and E, which together cover a range of detectable periods from 0.9 to 258 yr , the frequency of observed binaries is, within the uncertainties, nearly uniform and averages to about 8%. This is consistent with the nearly flat distribution derived by Abt (1979, Fig. 6) for disk binaries in the same period range: Using Abt's period distribution function, we find that the period range detectable in our survey includes somewhere between 30% and 50% of the total number of physical pairs in the volume of space surveyed. If we could detect all binaries in this period range, our observed frequency of 8% would then translate into a total binary frequency in the range of $16 \%-28 \%$. The total binary frequency may in fact be much larger than that, however, because a third selection effect must also be taken into account.
(3) The third restriction on our search is that $\Delta m<2.5$ mag. If $L \propto \mathscr{U}^{5}$, and the primary and secondary masses are
$\mathscr{M} 1$ and $\mathscr{H} 2$, respectively, we must then have $\mathscr{H} 2>0.5 \mathscr{M} 1$. In order to evaluate the importance of this effect, we need to know the likely distribution of mass ratios among the binaries in our sample. Abt (1979) has reviewed this topic and has pointed out that binary systems can be divided into two groups according to their orbital period: bifurcation doubles, whose frequency is proportional to $\cdot / / 2^{04}$, and the in-dependent-condensation doubles, which follow a van Rhijn distribution peaked toward low masses for $\mathfrak{H 2}$. Since the binaries in our sample have periods much longer than the transition period from one group to another (which is 100 days or less), we expect that the van Rhijn distribution (shown in Fig. 1 in Abt 1979) may apply, particularly in view of Partridge's (1979) conclusion that the frequency of long-period binaries is the same for high- and low-velocity stars. In this case, and using $\mathscr{M} 2>0.5 \mathbb{K} 1$, Abt's Fig. 1 suggests that, for each pair that we have observed, there could be between two and five times (depending on the spectral types of the primary) as many secondaries that are too faint to be detected because their masses are below $0.5 \mathscr{M}$. This correction factor should then be applied to the frequencies derived in the previous paragraph, and could lead to a very high total frequency of binaries for halo stars.

In summary, taking into account the large uncertainties due to the small size of our sample, and correcting for the selection effects introduced by our survey technique, we conclude that our data are compatible with the conclusion that the total frequency of long-period pairs among high-velocity stars is very high, and may not differ frem that observed for low-velocity stars.

b) Speckle Binaries

The angular resolution of speckle interferometry when carried out at the 4 m telescope allows the detection of halopopulation binary stars that would generally not be seen by visual double star or variable radial-velocity surveys. Visual double star surveys detect generally large separations and longer periods; they therefore do not supply the needed orbital elements and the mass-luminosity function in a reasonable length of time. The resolution of spectroscopic binaries using radial-velocity observations, on the other hand, leads to the detection of short periods and small semimajor axes. Thus speckle interferometry can provide important data in

Table III. Negalive results.

Namo	$\begin{aligned} & \text { HD/BD } \\ & \text { Number } \end{aligned}$	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	spectral Classit.	V Mag.	Epoch
-03 5751	224959	00021-0250	RO	9.9	85.4985
$+850412$	245	00085 +8647	G2 V	9.2	85.4985
					85.8402
+260043	1795	00224+2700	var	8.2	85.8401
+490073		00251+5006	dK3	8.6	85.4985
+740014	2520	$00300+7515$	dxo	8.2	85.4985
					85.8402
G 242-65	+710031	00437+7211	sdA9	10.23	85.8402
+390167	4174	00446+4041	M2.	7.4	85.4985
					85.8401
+290142	4744	00499+3027	G5 IV	7.6	85.4985
					85.8403
+62 0161	4842	00514+6255	M6	9.1 V	85.4985
					85.8402
RV cas	5016	00526+4725	M6*	7,6-15	85.4985
+230123	5223	00542+2404	R3	8.8	85.8403
HR 321	6582	01079+5457	G5vp	5.17	85.4985
					85.8456
+010212	6734	$01080+0200$	KO IV	6.7	85.8403
G 243-63	6755	01096+6133	GO V	7.73	85.8402
+570227	236672	01146+5755	86	9.0	85.8430
+470485	10465	$01432+1831$	MA	7.0	85.8430
G 245-32	+720094	0147247328	sdg 3	9.92	85.8430
+50 2360	232534	01485.45107	B3	9.5	85.8430
-19 0369	12655	02036-1837	B9 V	8.3	85.8375
+510527	13738	02155+5231	K4	7.2	85.8431
+570525	13716	02157+5746	B1 IV	8.5	85.8431
+240330	13913	02161+2503	MD	7.3 V	85.8375
+570570	15024	02274+5751	G5 V	9.7	85.8376
+610416	15069	02283+6213	G1 V	7.9	85.8377
+59 0515	15862	02355+5948	G5 V	8.93	85.8377
G 73-67	+040415	02346+0527	K3 V	9.78	85.8376
+570608	236982	02408+5829	K0	9.8	85.8376
+600585	-------	02533+6051	K5 V	9.5	85.8377
+59 0562	237019	02535+6028	07 V	9.0	85.8377
+010509	18012	02536+0158	G8 V	6.6	85.8404
+00 0495	18682	$03003+0058$	KO	8.4	85.8403
+050435	18702	$03006+0559$	KO V	8.2	85.8404
+270478	19165	03058+2741	GO V	8.6	85.8378
G 37-26	19445	03084+2621	G5 VI	8.06	85.8378
-140646	20622	03187-1415	KO IV	7.9	85.8432
+590639	20688	$03228+6002$	G5 V	8.6	85.8431
X 4974	-	03257-0815	K3 V	8.5	85.8403
G 246-38	+660268	$03312+6644$	8 dF 5	9.91	85.8377
+350701	21567	03301+3540	VAR	7.98	85.8377
-03 0592	22879	03403-0313	F8 V	6.7	85.8487
+510798	24341	03548+5225	G1 V	7.9	85.8433
-231619	24616	03540-2308	dGO	6.8	85.8432
+220626	25532	04042+2325	I6 V	8.2	85.8406
-16 0793	26298	04091-1624	F2 V	8.1	85.8405
+470977	-	04214+4820	K8	9.1	85.8514
+310769	281989	04232+3212	78	8.8	85.8378
+060676	27821	04238+0623	A7 V	8.6	85.8488
+240659	283668	04279+2427	K3v(ro)	9.42	85.8378
+431029	--.----	$04392+4417$	KO V	9.2	85.8380
+410931	29587	04416+4207	62 V	7.2	85.8380
+340911	30443	$04493+3500$	88	9.0	85.8380
+00 0916	32023	$05003+0100$	F\% V	9.1	85.8435
+310846	282707	05018+3138	GO	8.9	85.8380
+150726	-------	$05027+1520$	N6	9.4	85.8488
+550960	237354	05085+5526	G2 V	9.3	85.8542
+391248	34411	05191+4007	60 V	4.7	85.8516
+280965	40440	$06000+2845$	15 V	8.8	85.8381
+270962	250684	06031+2726	B8 V	9.7	85.8380
+191185	250792	$06032+1922$	GO V	9.0	85.8380
+261067	251383	06059+2634	K2 V	9.44	85.8380
-121470	44996	06243-1258	B5 ve	6.1	85.8381
+10 1301	50060	06519+1048	F9V	7.8	85.8382

Table III. (consinued)

Name	HD/BD Number	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	Spectral Classif.	Mag.	Epoch
-10 1774	51480	06572-1049	B5p	6.9	85.8382
-08 1641	51478	06572-0904	VAR	8.4 V	85.8382
-041806	53452	07050-0433	B3	9.0	85.8408
+471419	55575	07158+4715	G0 V	¢. . 5	85.8409
-01:677	57678	07222-0152	KO	8.8	85.8545
+11 1592	59180	07292+1135	KO	7.0	85.8436
+19 1749	59374	$07305+1858$	$F 8 \mathrm{~V}$	6.5	85.8491
+25 1709	60298	07348+2458	G $2 v$	8.0	85.8491
+311684	64090	$07535+3038$	GO VI	8.28	85.8409
+331694		$08252+3237$	dK6	9.2	85.8409
+75 0512	119227	$13387+7419$	M4	7.7 V	85.4977
+770521		$13445+7714$		9.4	85.4977
+25 2782	126991	$14283+2431$	62 V	8.2	85.4895
+72 0674	135694	$15115+7150$	dKo	8.9	85.4894
+40 2903	139323	$15360+3950$	K3 v	7.8	85.4895
-10 4149	140283	15431-1056	F3 VI	7.24	85.4924
+40 2929	141826	$15495+3934$	NB	6.9 V	85.4894
+28 2503	143291	$15586+2744$	KO V	8.0	85.4895
+472291	144205	$16027+4714$	M6e	5.8 V	85.4894
+670950	149880	$16327+6645$	VAR	6.4	85.4870
+25 3115	150580	$16410+2452$	K2	6.0	85.4870
-19 4431	151504	16485-1917	G5	8.4	85.4870
+62 1520	153344	$16548+6206$	G5 IV	7.08	85.4870
+25 3182	154049	$17020+2502$	K2	7.9	85.4870
+591783	154712	$17033+5935$	K4 V	8.6	85.4870
-074427	156802	17200-0801	G2 V	8.0	85.4870
+013421	157089	17211+0126	GO V	7.0	$\begin{aligned} & 85.4871 \\ & 85.4922 \end{aligned}$
+32 2896	157214	$17206+3229$	G2 V	5.3	85.4870
+063412	157809	$17253+0606$	SF9	7.0	85.4871
+313025	-----	$17267+3104$	G7v	9.1	85.4870
+313027	158226	$17267+3105$	GO V	8.1	85.4870
ADS 10598	158614	17304-0104	G9IV-V	5.31	85.4870
+06 3455	159482	$17347+0601$	GO.V	8.5	85.4924
G 170-56	+183423	$17383+1834$	$F 6 \mathrm{~V}$	9.78	85.4925
G 20-8	+023375	$17398+0225$	sdrs	9.98	85.4924
+25 3344	161817	$17467+2545$	A2 V	6.9	85.4925
-09 4604	161770	17478-0936	sdg	9.6	85.4924
$+043509$	161848	17477+0457	$k 1 v$	8.5	85.4924
-074517	162756	17530-0755	GO V	7.6	85.4924
A 10937 B		17565+5813		10.0	85.4925
-13 4807	163810	17587-1305	sdF8	9.63	85.4924
+043589	165401	18056+0440	G2 V	6.8	25.4980
+30 3137	166382	$18091+3101$	MD	6.9	85.4925
+303142	166601	$18100+3050$	$F 5 \mathrm{~V}$	8.1	85.4980
+363066	167740	18149+3640	MD	8.8	$\begin{aligned} & 85.4925 \\ & 85.8423 \end{aligned}$
+45 2684	168009	18155+4513	G2 V	6.3	885.4925
					85.8423
+03 3656	167766	$18166+0342$	MD	0.7	85.4927
$\begin{aligned} & \text { TX Lyr } \\ & +452716 \end{aligned}$	170357	18180+0407	M2*.	10.4-13	85.4927
$\begin{aligned} & +452716 \\ & +433030 \end{aligned}$	170357	$18267+4605$ $18370+4357$	G1 V	8.3 9.5	85.4925 85.4925
+43 4859	173093	$18370+4357$ $18439-0649$		9.5 6.3	85.4925 85.4927
-00 3555	173883	18477-0014	GO V	8.4	85.4981
					85.8424
+23 -05477 +1811	174623	$18504+2406$	K5	7.1	85.4927
-054811	175518	18559-0544	G5 V-IV	8.2	85.4927
+173842 -084836	177459	19042+1733	F5	6.6	35.4927
-08 4836	177399	19048-0839	KO	7.5	85.4927
+25 3719	177830	19053+2555	K2	7.6	$\begin{aligned} & 85.4927 \\ & 85.8424 \end{aligned}$
+25 3780	181047	19179+2522	K5	8.8	88.4927
					85.8533
$\begin{aligned} & G 125-4 \\ & +10 \quad 3873 \end{aligned}$	413306 181882	$19190+4139$ $19219+1055$	KO K 2	8.86	85.8424
HR 7373	181882 182572	$19219+1055$ $19249+1156$	K2 G8 IV	7.3	85.4927 85.4928
+423338	182989	19255+4247	FS(V)	6.9	85.4927
+194026	231475	$192 \% 5+1953$	K0	9.1	85.4927
+26 3578	338529	$19325+2624$	sdr4	9.36	85.4927
+56 2257	239124	$19325+5623$	A2-IV	9.1	85.4928
+32 3474	184499	$19335+3312$	GO V	6.63	$\begin{aligned} & 85.8533 \\ & 85.4927 \end{aligned}$

Table III. (continued)

Name	$\begin{array}{r} \text { HD/BD } \\ \text { Number } \end{array}$	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	Spectral Classif.	$\stackrel{V}{\text { Mag. }}$	Epoch
AGK+212007	+21 3829	19344+2143	88 V	9.3	$\begin{aligned} & 85.8424 \\ & 85.4928 \end{aligned}$
ADS 12664	184860	19368-1026	K2V, K5	8.23	85.4928
+85 0332	187216	$19243+8522$	R3	9.2	85.4982
+48 2922	185657	19379+4917	G6 V	6.3	$\begin{aligned} & 85.4928 \\ & 85.8370 \end{aligned}$
+48 2942	286686	$15436+4847$	M3	6.4	$\begin{aligned} & 85.4928 \\ & 85.8370 \end{aligned}$
+383801	188326	$19530+3846$	G8 IV	8.0	$\begin{aligned} & 85.4928 \\ & 35.8370 \end{aligned}$
+30 3806	188669	19551+3041	KO V	7.1	85.4928
+343846	227196	$20021+3428$	K5	8.9	85.4982
+28 3639	191445	$20090+2841$	K5 v	9.2	85.8371
AGK+302052	+30 3915	$20091+3033$	A1 v	9.5	85.4929
+254124	191615	$20100+2532$	KO IV	8.0	85.4928
+641427	193030	20142+6446	G5 IV	7.2	85.4929
+054481		20219+0611	G V-VI	10.1	85.4930
G 186-26	------	20248+2503	sdF8	10.82	85.8534
+09 4529	194598	20262+0927	F5 V	8.36	$\begin{aligned} & 85.4930 \\ & 85.8479 \end{aligned}$
+18 4505	195019	20283+1846	G5 V	6.9	85.4930
+014304	195275	20303+0153	MS*	9.2	$\begin{aligned} & 85.4930 \\ & 85.8479 \end{aligned}$
+364095	195407	20298+3659	B5 V	7.7	$\begin{aligned} & 85.4929 \\ & 85.8479 \end{aligned}$
-09 5491	195636	20328-0922	G8?	9.54	85.4930
+394260	196790	20382+3933	G0*	7.9	85.4929
-00 4084	197623	20449+0018	dG 5	7.4	85.4930
C 2711	+740891	20524+7435	dG5	7.81	85.8534
+064741	200779	21053+0705	K5 V	8.9	$\begin{aligned} & 85.4930 \\ & 85.8396 \end{aligned}$
-065683	201099	21077-0534	GO	7.6	85.4982
+28 3996	201346	$21082+2837$	KO IV	8.4	85.8398
+264091	201626	$21100+2637$	K2	8.0	85.8398
+23 4264	201889	$21120+2410$	F 8 V	7.9	85.8398
+14 4556	202017	$21129+1535$	df 8	8.4	85.4982
$X \mathrm{P} \bullet \mathrm{g}$	-030-	$21208+1427$	M20	9.0-14	85.4983
+154404	203631	21231+1630	K5	7.5	$\begin{aligned} & 85.4983 \\ & 85.8480 \end{aligned}$
-13 5945	204587	21300-1230	MO v	9.3	$\begin{aligned} & 85.4983 \\ & 85.8535 \end{aligned}$
+18 4947	210483	22104+1848	GO V	7.9	$\begin{aligned} & 85.4983 \\ & 85.8371 \end{aligned}$
+25 4691	210925	$22132+2557$	G5 V	6.8	$\begin{aligned} & 85.4982 \\ & 85.8372 \end{aligned}$
+54 2745	235807	22212+5533	B1 IV	9.4	85.8399
+394851	213191	22290+4019	VAR	7.6	$\begin{aligned} & 85.4983 \\ & 85.8425 \end{aligned}$
+56 2818	214419	$22369+5654$	OB/WN	8.9	$\begin{array}{r} 85.4983 \\ 85.8398 \end{array}$
BH Peg	---0--	$22529+1547$		10-10.7	85.4984
+49 3965	216534	$22530+4952$	B4 V	8.0	85.4983
+294940	221170	. $23295+3026$	K2 V/IV	7.68	$\begin{aligned} & 85.4984 \\ & 85.8426 \end{aligned}$
+30 4982	221830	$23354+3101$	GOV	6.7	$\begin{aligned} & 85.4984 \\ & 85.8426 \end{aligned}$
+572787	222794	$23434+5804$	G2 V	7.0	85.8537
-08 6177	222766	23461-0739	dG4	9.7	$\begin{aligned} & 85.4985 \\ & 85.8427 \end{aligned}$
+014774	------	$23492+0225$	M2	8.9	$\begin{aligned} & 85.4984 \\ & 85.8427 \end{aligned}$
M 74	-------	23525+6252	G0 V	9.5	$\begin{aligned} & 85.4984 \\ & 85.8428 \end{aligned}$
+58 2676	224424	$23578+5943$	B0	7.8	$\begin{array}{r} 85.4984 \\ 85.8428 \\ \hline \end{array}$

Table IV. Calculated binary frequency.

Shell	Number of stars						$\begin{gathered} d \\ (p \mathrm{c}) \end{gathered}$	$a(\min)$ (AU)	$P(\min)$ (yr)	d(max) (AU)	$\begin{gathered} P(\max) \\ (\mathrm{yr}) \end{gathered}$
	Observed			Binaries found							
	F	G	K	F	G	K					
A	6	-	-	1	-	-	129	4.6	6.9	129	1029
B	8	10	-	1	0	-	82	2.9	3.5	82	527
C	4	16	9	0	2	1	51	1.8	1.8	51	258
D	4	15	18	1	1	0	32	1.2	0.9	32	128
E	0	8	12	0	1	,	20	0.8	0.5	20	63
Binaries in shell										3/29	
										2/37	
										2/20	
								Total		7/86	

the regime where visual and spectroscopic detection of binary stars is less effective.

All of the newly resolved and a majority of the previously known binaries in this survey fall into an orbital-period regime not generally detectable by spectroscopic and visual methods. They would, therefore, not be discovered without the application of speckle interferometry. This selection effect has also been pointed out in Paper I in connection with bright stars. An extension of our survey to magnitudes fainter than 10.5 would increase the number of newly detected halo binaries. However, since those fainter stars would be, on the average, more distant than the brighter ones, we would be finding binaries with increasingly longer periods. Since we are interested in determining masses in a reasonable length of time, the extension to fainter magnitudes is not very productive.

The distributions in spectral type and visual magnitude are shown in Figs. 1 and 2, respectively, for all stars observed, and also for the binary candidates found in this survey (dark area). Using this limited data, the peaks of the

Fig. I. Distribution in spectral type for all stars observed (light area) and binary candidates found (dark area).
distributions in both figures suggest a similar distribution between the observing list and the binary system found in the sample.

Distances were estimated for the stars listed in Tables I and II using their spectral types and visual magnitudes. Absolute magnitudes were obtained from the MK spectral types according to Keenan's calibration (Keenan 1963). Among these ten binaries, only four stars have trigonometric parallaxes listed in the new edition of the Yale General Parallax Catalog (YPC, van Altena 1987). A comparison of the trigonometric and spectroscopic parallaxes for these four stars shows excellent agreement. Of the ten stars, all are within 100 pc of the Sun and eight systems have linear separations $<20 \mathrm{AU}$. Using the mass-luminosity relation given by McAlister and Hartkopf (1984), and assuming circular orbits, four stars are found to have periods less than 20 yr (Table V).
These halo binary candidates will be monitored in the future for additional confirmation and to determine their orbital elements using the GSU/CHARA speckle camera.

Table V. Estimated mass, distance, linear separation, and period for the halo binaries.

HD	ρ	$\underset{(\mathrm{km} / \mathrm{s})}{\substack{\mathrm{R} \\ \hline}}$	V	Spt.	M	Mass	\%	\bar{d}	$\stackrel{a}{(A U)}$	$\begin{gathered} \vec{F} \\ (\mathrm{yr}) \end{gathered}$
21794	0.099	-71	6.36	F7V	3.9	1.2		30	3.4	4.0
49409	1.088	-83	8.4	G0V	4.4	1.0	0:017	59	64.2	363.7
130669	0.150	-91	9.2	K2 V	6.3	0.7		38	5.7	11.5
139341	0.370	-71	7.5	K 2 V	6.3	0.7	0:048	21	7.8	18.4
158614	0.923	-80	6.0	G9 V-IV	5.7	0.8	0,052	19	17.5	57.9
187283	0.204	-65	8.2	FS V,F6 V	3.4	1.3		91	18.6	49.7
189711	0.221	- 168	8.43	Nov	9, $2^{\text {b }}$	0.4		32	7.1	21.2
+ 174708°	0.205	-295	9.48	F6 VI	$4.7{ }^{\text {c }}$	1.2	0:016	63	12.8	29.6
206373	0.429	-91	8.4	Gov	4.4	1.0		63	27.0	99.2
222794	0.057	-71	7.1	Gov	4.7	1.0		35	2.0	2.0

$+174708=$ G126.62.
${ }^{\mathrm{b}}$ Set M0 V for NO V (Jaschek 1985).
${ }^{〔}$ Absolute magnitude for F6 VI set $=\mathrm{F} 6 \mathrm{~V}(3.7)+1.0$ (Sandage 1970).

We wish to thank Dr. David Latham and his colleagues at the Harvard-Smithsonian Center for Astrophysics for providing us radial-velocity data before publication. Thanks are also due to Wean Shan Tzay (GSU) and Otto Franz (Lowell Observatory), who have participated in the speckle observations. Joel Gomes of Western Connecticut State University (WCSU) helped to compile the observing list of
high-velocity stars. This research has been supported in part by grants from the Connecticut State University system to WCSU, and from the National Science Foundation to Yale University. Research in speckle interferometry at Georgia State University is supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

REFERENCES

Abt, H. A. (1979). Astron. J. 84. 1591.
Abt, H. A. (1983). Annu. Rev. Astron. Astrophys. 21. 343.
Abt, H. A., and Biggs, E. S. (1973). BibliographyofStellar Radial Velocities (Kitt Peak National Observatory, Tucson).
Abt, H. A., and Levy, S. G. (1969). Astron. J. 74, 908.
Abt, H. A., and Levy, S. G. (1976). Astrophys. J. Suppi. 30, 273.
Andersen, J., and Nordstrom, B. (1983a). Astron. Astrophys. Suppl. 52, 471.

Andersen, J., and Nordstrom, B. (1983b). Astron. Astrophys. Suppl. 53, 287.

Andersen, J., Nordstrom, B., Ardeberg, A., Benz, W., Imbert, M., Martin, N., Maunce, E., Mayor, M., and Prevot, L. (1985). Astron. Astrophys. Suppl. 62, 355.
Ardeberg, A., and Lindgren, H. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 371.
Beavers, W. I., and Eitter, J. J (1977). Publ. Astron. Soc. Pac. 89.733.
Beavers, W I, Eitter. J J., Kecelsen, D. A., and Cesper, D. A. (1979). Publ. Astron. Soc. Pac. 91, 698.
Burki, G., and Mayor. M. (1984). Astron. Astrophys. 124, 256.
Carney, B. W. (1983a). Astron. J. 88, 623.
Carney, B. W. (1983b). In ESO Workshop on Primordial Helium, edited by P Shaver, D Kunth, and K. Kjar (ESO, Garching). p. 179.
Carney, E W (!994) Publ. Astron. Sor. Pac. $96,841$.
Carney. B. W., and Latham. D. W. (1987). Astron. J. 93. 116.
Cole. P W. Demarque, P.. and Green, E. M (1983). In ESO Workshop on Primordial Helium. cdited by P. Shaver. D. Kunth, and K. Kjar (ESO, Garching), p. 235.
Crampton. D., and Hartwick. F. D A. (1972). Astron. J. 77, 590.
Demarque. P. (1966). In Stellar Evolution, edited by R. F. Stein and A. G. W. Cameron (Plenum. New York), p. 231.

Demarque, P., and McClure, R D (1977) Astrophys. J. 213, 716.
Eggen. O. J. (1964). R. Obs. Bull. No. 84.
Fehrenbach. Ch., and Barunge. R (1982) Astron. Astrophys. Suppl. 49. 483.

Fehrenbach. Ch., and Barunge, R. (1984). Astron. Astrophys. Suppl. 58 , 435.

Gunn, J. E., and Griffin.R. F. (1979). Astron. J. 84, 752.
Harris, H. C., and McClure, R. D. (1983). Astrophys J. Lett. 265, L77.
Harris. H.C., and McClure. R.D. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady;, p. 257.
Hoffeit, D. (1982). The Bright Star Catalogue (Yale University Observatory, New Haven).
Jaschek, C. (1985). In Cool Stars with Excess Heavy Elements, INAC Colloquium, edited by C. Jaschek and P. C. Keenan (Reidel, Dordrecht).
Keenan, P. C. (1963). In Basic Astronomical Data, edited by K. Strand (University of Chicago, Chicago), p. 78.
Labeyrie, A. (1970). Astron. Astrophys. 6, 85.
Labeyrie, A. (1978). Annu. Rev. Astron. Astrophys. 16, 77.
Larson, R. B., and Tinsley, B. M. (1978). Astrophys. J. 219, 46.
Latham, D. W. (1985). In Stellar Radial Velocitres, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 21.

Latham. D. W., Hazen-Liller. M. L., and Pryor, C. P. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 269.

Lu, P. K. (1983). In The Nearby Stars and the Stellar Lummosty Function, inu Culloquium No. ió. edited by A. G. D. Phylp and A. R. Upgren (Davis, Schenectady), p. 35.
Lu. P. K., Demarque. P., van Altena, W., McAlister, H. A., and Hartkopf. W. 1. (1986). Bull. Am. Astron. Soc. 17, 904.

Lu, P. K.. and Lee. J. T. (1983). In The Nearby Stars and the Stellar Luminosity Function, IAU Colloquium No. 76, edited by A. G. D. Phulip and A. R. Upgren (Davis. Schenectady), p. 447.

Mathieu. R. D. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88. edited by A. G. D. Phulip and D. W. Latham (Davis, Schenecrady). p. 249.

Mathieu. R. D., Stefanik. R. P., and Latham. D. W. (1985). In Stellar Radial Vclocities, IAU Colloquium No. 88, edited by A. G. D. Philip and
D. W. Latham (Davis, Schenectady), p. 263.

Matteucci, F., and Chrosi, C. (1983). Astron. Astrophys. 123, 121.
Mayor, M., and Turon, C. (1982). Astron. Astrophys. 110, 241.
McAlister, H. A., and Hartkopf, W. I. (1984). CHARA Contrib. No. I.
McAlister, H. A., Hartkopf, W. 1., Hutter, D. J., and Franz, O. G. (1987b). Astron. J. 93, 688.
McAlister, H. A., Hartkopf. W. 1., Hutter, D. J., Shara, M. M., and Franz, O. G. (1987a). Astron. J. 93, 183.

McClure. R. D., Fietcher, M. J.. Grundman, W. A., and Richardson, E. H. (1985). In Stellar Radial Velocittes, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 49.

Mengel. J. G., Sweigart, A. V., Demarque, P., and Gross, P. G. (1979).

Astrophys. J. Suppl. 40, 733.
Partridge. R. B. (1967). Astron. J. 72. 713.
Peimbert. M. (1983). In ESO Workshopon Primordial Helium, edited by P. Shaver. D. Kunth. and K. Kjar (ESO, Garching), p. 287.
Roman. N. (1955). Astrophys. J. Suppl. 2. 195.
Sandage. A. R. (1970). Astrophys. J. 162, 841.
Searle. L. (1984). In Structure and Evolution of the Magellanic Clouds, IAU Symposium No. 108, edited by S. van den Bergh and K. S. de Boer (Reidel, Dordrecht), p. 13.
van Altena. W. (1987). Yale General Parallax Catalogue (Yale University Obsèrvatory, Nivew Haven).
Worden, S. P. (1977). Vistas Astron. 20, 301.

GAMMA PERSEI-NOT OVERMASSIVE BUT OVERLUMINOUS

Daniel M. Popper
Department of Astronomy, University of Califomia, Los Angeles, California 90024

Harold A. McAlister ${ }^{\text {a }}$
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30503
Received 15 April 1987; revised 22 May 1987

Abstract

Measurement and analysis of the set of Michigan spectrograms of the $14 \div 6$ binary γ Per shows that the masses of the A3 and G8 III stars are $2.0 \mathscr{K}_{\odot}$ and $3.0 \mathscr{K}_{\odot}$ rather than the abnormally large values for the types found by McLaughlin, 2.8 and 4.9. The decreases are primarily due to an upward revision of the large orbital eccentricity. Speckle interferometric observations of high quality covering nine years with the components resolved are analyzed. Agreement of the elements in common between interferometric and spectrographic orbits is excellent. The orbit is seen nearly edge-on. The well-determined parallax, 0.014 , obtained by combining linear and angular sizes of the relative orbit, along with Bahng's evaluation of the magnitude difference between the components, leads to absolute magnitudes M_{ν} of +0.3 and -1.1 for the A star and G giant, respectively, values more than a magnitude more luminous than "standard" values for the spectral types. Thus, each star appears to be in a state of rapid evolution, a situation not permitted by evolutionary theory for stars of such different mass if they have a common origin.

1. INTRODUCTION

Gamma Persei has long been known to have a variable radial velocity and composite spectrum. The only available analysis of radial velocities is that published in abstract form by McLaughlin (1948) on the basis of prismatic spectrograms obtained at Michigan. The period is 14.6 yr. Each of McLaughlin's minimum masses, $4.9 \mathscr{M}_{\odot}$ for the $G 8$ giant and $2.8 \mathscr{l}_{\odot}$ for the early A star, is considerably larger than any other well-determined mass for a star of the spectral type (e.g., Popper 1980). McAlister (1982) has analyzed the astrometric observations of γ Per, primarily his own speckle results, available in 1981. He concluded that not only are the masses larger than expected for the types, but so are the luminosities.
In the present contribution, we discuss the Michigan spectrograms anew as well as the astrometric observations now available in order to derive nearly definitive properties of the system.

II. SPECTROGRAPHIC ORBITS

The velocities of the 34 spectrograms employed by McLaughlin (1948) in his analysis of the orbits of γ Per have not been published. Through the good offices of A. P. Cowley and W. A. Hiltner, one of us was able to obtain the Michigan collection of one hundred measurable prismatic spectrograms obtained between 1937 and 1951 plus one critical observation in 1932. The plates from 1932 to March 1941 and from August 1943 to March 1949 form a homogeneous one-prism set (78 plates) having a scale of $26.4 \AA \mathrm{Am}^{-1}$ at the Ca II K line and $31.9 \AA \mathrm{~mm}^{-1}$ at $\mathrm{H} \delta$. The two other groups of plates have slightly higher dispersions from a twoprism configuration. All the plates have been measured with a Grant Instrument Co. oscilloscopic scanning device in

[^4]both directions. There are numerous sharp lines from the cool component, but, as noted by McLaughlin, only the Ca in K line of the hotter star is measurable. This line is 50 much sharper than the K line of the cooler star that there is no confusion between the two. On all well-exposed plates, the K line of the A star appears sharp and symmetrical. It appears unlikely that the $0.6 \AA$ displacement between the centers of the K lines of the components near periastron can cause a systematic effect in the position of this sole line of the A star that is employed for its velocities. The Ca II H line of the A star is not resolved from the broad $\mathrm{H} \epsilon$ line. All the hydrogen lines of the A star are so chopped up by sharp lines of the cooler star as to be unmeasurable. The appearance of the spectrum near the K line is shown in Fig. 1.
Velocities of the cool star (V_{c}) are based on lines in the wavelength range $\lambda \lambda 3888-4167 \AA$. Most of the spectrograms are weak at shorter wavelengths, and the dispersion decreases maikedly at longer wavelengths. Furthermore, this range includes the Ca II K line, so that possible systematic effects in the-velocities of the components are minimized. Twenty lines of the cool star were found to give consistent velocity variation. Their wavelengths were taken from the solar list (Moore et al. 1966) and were adjusted for systematic differences in velocity. The average internal standard deviation of a velocity of the cool star is $1.0 \mathrm{~km} \mathrm{~s}^{-1}$. Some of the lines are indicated in Fig. 1.

The velocities are listed in Table I. The quantities V_{h} are the K line measures for the A star, V_{c} the G star velocities. A somewhat uncertain curvature correction of $-1.0 \mathrm{~km} \mathrm{~s}^{-1}$ has been applied.
In Table I, dates with only one decimal given are for observations with the time of e;posure not readily available. Because of the long period, the uncertainty of 0.1 day is unimportant. The phases are fractions of the period after periastron in the adopted orbital solution, to which the residuals in the table also relate. In carrying out the solutions (Table II), it is found that the velocities from the 22 two-prism plates are systematically more positive than those from the 78 oneprism plates. The differences for the two components and for the two epochs (1941-1943 and 1949-1951) average 2.5

Fig. 1. Microdensitometer tracings of spectrograms of γ Per in the vicinity of the Ca II K line. Above: a Michigan prismatic spectrogram, employed in this investigation; original scale 26.4 $\AA \mathrm{mm}^{-1}$ at K . Lines marked are used for radial velocities except for $H+H \epsilon$. Below: a Lick grating spectrogram, original scale. $10.9 \AA \mathrm{~mm}^{-1}$. The core of the relatively sharp K line of the A star appears uninfiuenced by the broad K line of the G giant.

Table I. Radial velocities of γ Per.

JD-2400000	Phase	$\mathrm{V}_{\underline{C}}$	O-C	$\underline{\mathrm{V}}_{\underline{\mathrm{H}}}$	O-C
26996.76	0.00837	-19.7	- 1.4	-35.8	- 2.3
28823. 23	0.35002	-6.1	- 2.4	1.0	- 3.1
28868.73	0.35854	- 4.4	- 0.6	4.0	- 0.2
29109.89	0.40365	- 5.6	- 1.6	4.8	$+0.3$
29119.90	0.40552	- 5.8	- 1.8	2.5	- 2.0
29140.80	0.40943	- 7.8	- 3.8	2.1	- 2.5
29170.82	0.41504	- 5.0	-1.0	5.6	$+1.0$
29198.80	0.42028	- 4.1	0.0	6.6	$+2.0$
29223.54	0.42490	- 4.6	- 0.5	8.4	$+3.7$
29313.65	0.44176	-0.1	$+4.0$	8.2	$+3.4$
29455.89	0.46837	-3.0	$+1.2$	8.4	$+3.5$
29479.89	0.47286	- 3.9	$+0.3$	7.5	$+2.6$
29514.74	0.47938	- 5.2	-0.9	5.6	$+0.7$
29548.71	0.48573	- 3.8	$+0.5$	4.0	- 1.0
29578.71	0.49134	- 5.6	-1.3	2.0	-3.0
29609.70	0.49714	- 3.4	$+0.9$	5.2	+ 0.2
29637.69	0.50237	- 4.2	$+0.1$	7.0	$+2.0$
29675.54	0.50945	- 2.8	$+1.5$	5.6	$+0.6$
29936.66	0.55830	- 5.7	-1.3	5.8	+0.6
29954.59	0.56165	- 6.2	- 1.8	3.0	- 2.2

JD-2400000	Phase	$\mathrm{V}_{\underline{\mathrm{c}}}$	O-C	$\underline{\underline{+}}$	O-C
29978.67	0.56616	- 5.3	-0.9	4.7	- 0.5
30023.70	0.57458	- 3.7	+ 0.7	8.2	+ 3.0
30058.54	0.58110	- 4.4	0.0	6.0	$+0.8$
a30286.67	0.62379	-4.3	$+0.2$	7.0	$+1.8$
a30317.6	0.62956	-4.2	+ 0.3	8.4	+ 3.2
a30373.60	0.64003	1.8	+6.3	9.2	- 4.0
a30379.53	0.64114	-0.9	+ 3.6	8.4	+ 3.2
a30404.64	0.64584	0.4	+ 4.9	9.9	+ 4.7
a30438.54	0.65218	0.3	+ 4.8	--	
a30592.91	0.68105	- 1.1	+ 3.3	9.2	$+4.0$
a30602.85	0.68291	- 4.8	-0.4	7.3	+ 2.1
a30652.74	0.69224	- 3.8	+ 0.6	4.4	- 0.8
a30730.65	0.70682	0.0	+ 4.4	9.1	+ 4.0
230753.56	0.71110	0.4	+ 4.8	12.5	+ 7.4
a30778.57	0.71578	- 2.7	+1.7	3.4	- 1.7
a30807.57	0.72121	- 3.3	$+1.0$	5.3	+ 0.2
30964.80	0.75062	- 2.1	+2.1	3.4	- 1.5
30985.79	0.75454	- 5.5	- 1.3	3.3	- 1.6
31006.72	0.75846	- 3.4	+ 0.8	1.5	- 3.4
31057.67	0.76799	- 5.4	- 1.2	3.2	-1.6
31107.56	0.77732	- 5.2	-1.1	3.4	- 1.3
31342.89	0.82134	- 2.0	$+1.8$	---	
31770.68	0.90136	- 1.8	$+0.3$	2.6	+ 0.9
31834.56	0.91331	- 2.0	- 0.4	- 1.0	- 1.9
31887.54	0.92322	- 3.7	- 2.6	- 2.1	- 2.2
31907.60	0.92697	- 1.9	- 1.1	- 1.6	- 1.3
32013.88	0.94685	2.8	+1.8	- 2.5	+ 0.6
32027.87	0.94947	-0.2	-1.6	- 1.6	+ 2.0
32039.87	0.95172	3.5	+1.8	- 3.6	+ 0.5
32046.79	0.95301	4.2	+ 2.3	- 2.4	+ 2.0
32119.68	0.96664	7.8	+ 3.1	- 3.6	+ 5.1
32168.68	0.97581	9.8	$+1.9$		
32236.65	0.98852	17.8	+2.0	- 24.4	$+1.0$
32243.54	0.98981	17.4	+ 0.6	- 27.5	- 0.6
32243.56	0.98982	18.4	+1.6	- 28.3	- 1.4
32245.56	0.99019	19.6	+2.5	- 25.3	+ 2.1
32249.57	0.99094	20.2	+2.5	- 25.0	+ 3.4
32256.55	0.99225	16.3	- 2.5	- 25.8	+ 4.2
32271.55	0.99505	21.7	$+0.7$	- 33.6	-0.3
32272.58	0.99525	20.3	-0.8	- 29.8	+ 3.7
32279.56	0.99655	22.8	$+0.8$	- 38.6	- 3.8
32250.56	0.99861	23.8	+0.8	- 39.0	- 2.7
32370.88	001363	18.1	- 0.4	- 25.7	+ 2.7
32371.89	0.01382	18.7	$+1.1$	- 31.0	- 2.8
32378.89	0.01513	18.2	$+1.4$	- 24.4	+ 2.6
32386.86	0.01662	15.2	-0.7	- 26.6	- 1.0
32391.84	0.01755	14.1	- 1.3	- 23.8	$+1.0$
32392.91	0.01775	14.5	-0.8	- 25.0	- 0.4
32398.86	0.01887	15.5	$+0.8$	- 23.8	-0.1
32400.90	0.01925	11.4	- 3.0	- 22.2	- 0.8

Table I. (continued)

JD-2400000	Phase	$\stackrel{V}{\mathrm{~V}}_{\underline{c}}$	O-C	$\stackrel{\mathrm{V}}{\underline{\text { H }}}$	O-' ${ }^{-1}$
32406.89	0.02037	14.4	$+0.5$	- 26.4	- 3.9
32407.82	0.02054	15.7	$+1.9$	- 17.8	+ 4.6
32410.85	0.02111	11.8	- 1.7	- 24.6	- 2.7
32445.75	0.02764	9.5	- 1,2	- 16.2	- 1.5
32446.71	0.02782	10.8	$+0.2$	- 17.4	$+0.2$
32452.71	0.02894	11.7	$+1.5$	- 18.6	- 1.6
32458.73	0.03007	9.0	-0.8	- 18.2	- 1.8
32465.8	0.03138	9.5	$+0.1$	- 14.6	$+1.1$
32473.8	0.03288	8.6	-0.3	- 13.8	$+1.2$
32483.73	0.03474	9.3	+ 0.9	- 15.0	- 0.8
32501.7	0.03809	8.0	$+0.5$	- 13.8	- 0.9
32529.7	0.04334	5.2	- 1.1	- 14.5	- 3.4
32541.7	0.04559	5.7	- 0.2	- 11.5	- 1.0
32573.7	0.05156	3.7	- 1.2	- 10.0	- 1.1 .
32601.6	0.05679	3.9	- 0.2	- 7.2	$+0.6$
32839.8	0.10134	1.6	$+1.1$	- 1.0	$+1.3$
32846.8	0.10265	0.6	$+0.1$	- 4.4	- 2.2
32867.8	0.10657	2.6	+ 2.3	- 1.3	$+0.6$
32908.8	0.11424	0.5	+ 0.6	1.0	$+2.4$
32956.6	0.12319	2.2	+ 2.6	- 2.2	- 1.3
a33229.7	0.17427	1.0	$+2.8$	4.2	$+3.0$
233255.7	0.17914	0.0	+1.9	3.0	$+1.7$
a33370.5	0.20062	1.6	+ 3.9	7.2	$+5.3$
a33554.7	0.23507	-0.6	+ 2.2	8.4	$+5: 8$
a33603.71	0.24424	- 1.9	$+1.0$	4.6	$+1.8$
a33631.70	0.24948	- 2.3	$+0.6$	2.4	- 0.5
a33700.58	0.26236	- 2.2	$+0.8$	5.6	$+0.5$
a33730.55	0.26797	- 1.7	$+1.4$	4.8	$+1.6$
a33948.74	0.30878	- 4.4	- 1.0	3.0	-0.7

${ }^{\text {aTwo-prism spectrograph; otherwise one prism. Similar dispersions. Two-prism }}$
velocities omitted in most solutions. See text and Table 2.
$\mathrm{km} \mathrm{s}^{-1}$. The two-prism velocities have been omitted except for solution (2), in which the differences $V_{c}-V_{\mathrm{h}}$ are employed.

With the exception of the first spectrogram, obtained in 1932, the Michigan observations cover less than one orbital cycle of 14.6 yr . The 1932 observation, obtained near the time of maximum velocity separation of the components, is a crucial one. Determination of the orbital period depends heavily upon this single plate, obtained one cycle earlier than the numerous plates from 1947, when the stars passed rapidly through periastron, close to the nodal epoch (ω being near zero). It has not been possible to determine clearly whether the 1932 observation was obtained before or after periastron passage. Thus, there is an ambiguity in the period. This uncertainty is less than 100 days, or 2%, since the 1932 plate was, fortunately, obtained close to maximum orbital veloc-
ity. The early velocities of the cool giant (Lord 1905; Küstner 1908; Campbell and Moore 1928) do not cover sufficient ranges of velocity to be helpful in resolving the ambiguity in period.

In each of the solutions for the orbital elements in Table II, the two values of the period are listed. The differences in the values of the other elements, as dependent on the choice of period, are in all cases much less than the mean errors of the elements, and average values are listed. Since the period is so strongly dependent on the one observation, the statistical uncertainty of the period is not properly evaluated in the least-squares analysis. Additional solutions have been carried out in which the velocities of the 1932 plate are changed by one standard deviation ($1.5 \mathrm{~km} \mathrm{~s}^{-1}$ for $V_{\mathrm{c}}, 2.2 \mathrm{~km} \mathrm{~s}^{-1}$ for V_{h}). The effect on the period is 14 days, and this value is listed in Table II for the uncertainty in the period. The effects
Table II. Solutions to the spectroscopic orbit.

	(1)		(2)	(3)		(4)	(5)	(6)		(7)	
Solution	${ }_{-1}$	$\mathrm{V}_{\mathbf{h}}$	$\underline{V}_{c}-\underline{V}_{h}$	\underline{V}_{C}	$\underline{V}_{\mathbf{h}}$	$V_{\mathbf{h}}$	$\mathrm{V}_{\mathbf{h}}$	$\underline{V}_{\mathbf{c}}$	V_{h}	\underline{V}_{C}	V_{h}
${ }^{\text {a }}$ 1 (days)	$\begin{aligned} & 5352.5 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & 5341.4 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & 5345.1 \\ & \pm 14 \end{aligned}$	5345.1	5345.1	5352.5	5352.5	$\begin{aligned} & 5346 \\ & \pm 16 \end{aligned}$	$\begin{aligned} & 5346 \\ & \pm 16 \end{aligned}$	5350	---
${ }^{\mathbf{a}} \mathrm{P}_{2}$ (days)	$\begin{aligned} & 5258.8 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & 5286.4 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & 5277.8 \\ & \pm 14 \end{aligned}$	5277.8	S277.8	5258.8	5258.8	$\begin{aligned} & 5277 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & 5277 \\ & \pm 25 \end{aligned}$		
b $\begin{aligned} & \frac{T}{2}(J D- \\ & 2430000) \end{aligned}$	2291.0 $\pm \quad 5.8$	2301.3 $\pm \quad 4.3$	2298.5 $\pm \quad 2.7$	2298. 5	2298.5	2291.0	2291.0	2298 $\pm \quad 8$	2298 $\pm \quad 8$	2263	\cdots
e	$\begin{array}{r} 0.789 \\ \pm \quad 0.010 \end{array}$	$\begin{array}{r} 0.817 \\ \pm \quad 0.010 \end{array}$	0.805 $\pm \quad 0.006$	0.805	0.805	0.789	0.789	$\begin{array}{ll} & 0.804 \\ \pm & 0.02 \end{array}$	$\begin{array}{ll} & 0.804 \\ \pm \quad 0.02 \end{array}$	0.72	---
$\omega(0)$	$\begin{array}{r} 351.8 \\ \pm \quad 2.0 \end{array}$	$\begin{array}{r} 170.7 \\ \pm \quad 1.9 \end{array}$	$\begin{array}{r} 351.5 \\ \pm \quad 1.1 \end{array}$	351.5	171.5	171.8	171.8	$\begin{array}{r} 351.5 \\ \pm \quad 1.5 \end{array}$	$\begin{array}{r} 171.5 \\ \pm \quad 1.5 \end{array}$	344	---
$\underline{K}\left(\mathrm{kma} \mathrm{s}^{-1}\right)$	$\begin{array}{r} 13.8 \\ \pm \quad 0.4 \end{array}$	22.0 $\pm \quad 0.7$	35.6 $\pm \quad 0.7$	$\begin{array}{r} 14.3 \\ \pm \quad 0.3 \end{array}$	$\begin{array}{r} 21.3 \\ \pm \quad 0.4 \end{array}$	$\begin{array}{r} 20.4 \\ \pm \quad 0.4 \end{array}$	$\begin{array}{r} 20.1 \\ \pm \quad 0.8 \end{array}$	$\begin{array}{r} 14.0 \\ \pm \quad 0.4 \end{array}$	$\begin{array}{r} 21.2 \\ \pm \quad 1.0 \end{array}$	12.7	21.9
$\underline{V}_{0}\left(k m s^{-1}\right)$	$\begin{aligned} & \pm \quad 1.65 \\ & \pm \quad 0.2 \end{aligned}$	0.9 $\pm \quad 0.8$	---	$\begin{array}{r} -1.6 \\ \pm \quad 0.2 \end{array}$	0.9 $\pm \quad 0.3$	$\begin{array}{r} 1.0 \\ \pm \quad 0.4 \end{array}$	$\begin{array}{r} 1.0 \\ \pm \quad 0.3 \end{array}$	$\begin{array}{r} -1.6 \\ \pm \quad 0.2 \end{array}$	$\begin{array}{r} 0.9 \\ \pm \quad 0.8 \end{array}$	$+2.5$	---
$\sigma\left(k m s^{-1}\right)$	1.5	2.2	2.2	1.6	2.2	2.5	2.1	1.6	2.2	---	-
$\underline{a} \sin 1(\mathrm{aru}$.	$\begin{array}{r} 4.17 \\ \pm \quad 0.15 \end{array}$	$\begin{array}{r} 6.23 \\ \pm \quad 0.26 \end{array}$	$\begin{array}{r} 10.37 \\ \pm \quad 0.25 \end{array}$	$\begin{array}{r} 4.17 \\ \pm \quad 0.11 \end{array}$	$\begin{array}{r} 6.20 \\ \pm \quad 0.15 \end{array}$	$\begin{array}{r} 6.16 \\ \pm \quad 0.19 \end{array}$	$\begin{array}{r} 6.07 \\ \pm \quad 0.27 \end{array}$	4.09 $\pm \quad 0.15$	$\begin{array}{r} 6.20 \\ \pm \quad 0.30 \end{array}$	- -3	7.5

[^5](5) Same as solution (4), but with the 13 observations between JD 30286 and $\mathbf{3 0 8 0 7}$, having the largest orbital velocities, omitted. See the text.
(7) McLaughlin's (1948) elements. From his notes, it appears that McLaughlin may not have applied the curvature correction of $-1.0 \mathrm{~km} \mathrm{~s}{ }^{-1}$.
Solutions: (The two-prism velocities are included only in solution (2). In evaluating $a \sin i, P_{1}$ is employed.)
(1) General solutions.
(1) General solutions.
(3) P, T, E, and ω adopted from solution (2).
(4) P, T, E, and ω adopted from the V solution (1).
of these 1σ variations on the other elements are negligible. The uncertainties in the orbital dimensions and in the masses resulting from the dichotomy in the period are constderably less than those resulting from uncertainties in the orbital eccentricity and in the values of K, the amplitudes of velocity variation.

The basis for each of the solutions in Table II is given in the notes following the table. Values of P, T, e, and ω are usually best determined from the differences in the velocities of the components (solution 2 in Table II) when the two sets of velocities are of comparable weight, as they are in this case. It is, nevertheless, possible that the values of V_{h} are, despite the apparent symmetry of the core of its K line, subject to systematic effects as a consequence of distortion by the broad K line of the cool star (Fig. 1). The difference in the eccentricities for the two components in solution (1) of Table II could be caused in part by such an effect. Solutions (4) and (5) employ different assumptions about possible systematic effects, which may be expected to be greatest when the velocity difference is a maximum, near periastron. The effects on the masses (\mathscr{M}) and orbital dimensions (a) are less than their statistical uncertainties. In the adopted solution (6), the estimated uncertainties, particularly in the eccentricity, have been increased over their formal values to allow for these effects.

The difference of $2.5 \pm 0.8 \mathrm{~km} \mathrm{~s}^{-1}$ between the systemic velocities of the two components may be a consequence, at least in part, of the scheme used for adjusting the wavelengths of the lines employed for the velocities of the cooler star.

The residuals listed in Table I are relative to the preferred solution (6) in Table II for the longer period. The difference between the velocities predicted for the two periods never exceeds $0.2 \mathrm{~km} \mathrm{~s}^{-1}$ and is much less in the mean. The observed velocities (one-prism results only) and curves based on the preferred elements are shown in Figs. 2 and 3. In the latter, the variation through periastron is shown with an ex-
panded timescale. Since the solutions represented by the curves in the figures (solutions 6 of Table II), are compromises, differing from the individual best-fit solutions (solutions 1), systematic runs in the residuals may be seen. The two phases for the encircled 1932 velocittes correspond to the two periods, 5346 days (larger phase) and 5277 days. In the best-fit solutions, the 1932 velocities fall almost precisely on the predicted curves, since nearly all the weight of the derived period lies upon them. It is unfortunate that no velocities are available from either of the periastron passages in 1963 or 1976. The next occurs in 1991. Not only are improved periods desirable, but so are more nearly definitive spectroscopic elements.

That the minimum masses derived by McLaughlin (4.9 and $2.9 \mathscr{M}_{\odot}$) are considerably greater than those obtained by us (3.0 and $2.0 \mathscr{H}_{\odot}$) is not owing to any systematic effect in McLaughlin's measures. His value of $K_{\mathrm{c}}+K_{\mathrm{h}}, 34.6$ $\mathrm{km} \mathrm{s}^{-1}$, is close to our value, 35.2. The reason is, rather, the difference between the orbital eccentricities in the two investigations, to which the masses are very sensitive for such large eccentricities. In his analysis, McLaughlin employed only 34 of the 78 plates used in this investigation. Furthermore, only 12 of the 33 plates obtained during the period of most rapid velocity variation in 1947 were included, and of these, none covers the later phases of the rapid variation.

III. ASTROMETRIC ORBITS

The history of the resolution of Gamma Persei has been presented by McAlister (1982). The measurements made in 1939 by Wilson (1941) with a visual Michelson interferometer are the result of Wilson's attempt to resolve stars of composite spectra and predated McLaughlin's orbit analysis by a decade. Although Wilson's results cannot contribute to the analysis of the visual orbit when combined with the considerably more accurate speckle observations now available, it is almost certain that Wilson did indeed detect duplicity in

Fig. 2. Velocities of the components of γ Per from Michigan pi'tes. Dots: the G giant; pluses: the K line of the A star. The encircled points are for the 1932 plate for two periods. See the text. The curves are from the adopted solutions (6) in Table II. Plases are fractions of the period after periastron passage.

Fig. 3. Velocities of the components of γ Per during their passage through periastron. Explanation as for Fig. 2.
his visibility estimates as evidenced by the residual to his position-angle measure. This is an impressive feat considering the magnitude difference in the system and the small aperture (18 in .) of the telescope he employed in his observing program.

The number of speckle observations has nearly tripled since the last astrometric analysis (McAlister 1982), so that 35 such measures are now available. The collected measurements of position angles and angular separations along with the original sources are shown in Table III. They give the position of the A star relative to the G star. The majority of these observations were obtained at the 4 m telescope on Kitt Peak as a part of the ongoing Georgia State University speckle program. The GSU speckle data prior to 1982.0 were obtained with a photographic speckle camera, while those after 1982.0 were produced by an ICCD-based speckle camera. In the case of these observations, the two sets of data are of comparable accuracy. The single measurement by Tokovinin (1985), a fine observation with small residuals, was made with a "phase grating" interferometer on a telescope with an aperture of 1 m . By contrast, an aperture as large as 6 m was employed by Dudinov et al. (1982) and Balega and Balega (1985). It is our experience that for separations exceeding two or three times the diffraction limit, the accuracy of the measurement is more dependent upon the quality of the calibration than on an increase in aperture. In general, we find that the early observations from any particular speckle group have large errors in both position angle and angular separation, and that these errors are significantly diminished in subsequent observations as calibration techniques are improved.
The elements of the "visual" orbit for γ Per were calculated with a computer program developed by Hartkopf (Hartkopf et ai. 1987). This method permits the assignment of formal errors to the geometric quantities $a^{\prime \prime}, i, \omega$, and Ω, but
does not provide error estimates fo: P, T, and e. We have decided to base our conclusions for γ Per solely on the observations by McAlister and his colleagues (the GSU/ CHARA data). They form a homogeneous set and have much smaller scatter than the other observations, as seen in Table III and Figs. 4 and 5. Systematic differences between the two sets are aiso apparent. These differences are probably due to the lack of absolute calibration for scale and position angle. The GSU/CHARA observations are, on the other hand, well calibrated by meeans of the double-slit mask scheme described by McAlister et al. (1978b).
In the analysis of the GSU/CHARA data, the values of P and T are adopted from the spectroscopic results (solutions 6 of Table II) because of the considerably greater time interval covered by the spectroscopic than by the interferometric observations. The results of the analysis are given as solutions 1 and 2 of Table IV. Also given is a solution (solution 3) in which the most deviant GSU/CHARA observation is omitted. Finally, we list a solution (solution 4) in which all elements, including P and T, are derived from all the speckle observations. In this solution, each GSU/CHARA is given twice the weight of each of the others. Although only 63% of an orbital period is covered and periastron is outside the time interval, the good coverage around the apastron passage of 1983.67, along with the highly eccentric orbit, gives the observations leverage in determining the elements P, T, and ω. The period derived is only 0.3% shorter than the longer of the two spectroscopic periods. It is on this basis that we prefer the 1.3% longer of the spectroscopic periods. In fact, all the elements in common between the completely independent astrometric and spectroscopic solutions agree within their uncertainties, a result indicating a very high level of consistency between the two complementary approaches to orbit determination.
The observations recorded in Table III are shown in Figs.

Table III. Interferometric observations of γ Per.

t	$\theta\left({ }^{\circ}\right)$	$\rho\left({ }^{\prime \prime}\right)$	$\Delta \theta\left({ }^{\circ}\right)$	$\Delta \rho\left({ }^{\prime \prime}\right)$	W	Source
1939.77	49.4	0.07	-15.4	-0.178	0.0	W.1son (1941)
1973.450	59.0	0.193	- 5.8	+0.014	0.0	Labeyrie et al. (1974)
1975.629	83.0	0.052	+18.7	-0.002	0.0	Blazit et al. (1977).
1975.782	51.0	0.041	-13.1	+0.001	0.0	Blazit et $\overline{\text { al }}$. (1977)
1975.956	---	<0.033	(63.8)	(0.024)	--	McAlister (1978)
1976.857	----	<0.035	(244.1)	(0.017)	--	McAlister (1978)
1976.860	---	<0.035	(244.0)	(0.017)	---	Hartkopf and McAlister (1980)
1976.923	----	<0.035	(243.2)	(0.012)	----	McAlister (1978)
1977.087	----	<0.035	(75.4)	(0.003)	---	McAlister (1978)
1977.734	67.0	0.054	+ 1.2	-0.003	1.0	McAlister and Fekel (1980)
1977.742	65.4	0.058	- 0.4	+0.001	1.0	McAlister and Fekel (i980)
1977.919	65.8	0.066	$+0.2$	-0.004	1.0	McAlister and Henry (1982a)
1978.149	66.5	0.091	+1.0	+0.005	1.0	McAlister and Fekel (1980)
1978.616	64.8	0.114	- 0.6	+0.000	1.0	McAlister and Fekel (1980)
1978.618	64.7	0.115	- 0.7	+0.001	1.0	McAlister and Fekel (1980)
1979.036	64.2	0.133	- 1.2	-0.003	1.0	McAlister and Hendry (1982b)
1979.533	65.2	0.157	- 0.1	-0.002	1.0	McAlister and Hendry (1982b)
1979.771	64.2	0.168	- 1.1	-0.001	1.0	McAlister and Hendry (1982b)
1980.153	64.9	0.181	- 0.4	-0.002	1.0	McAlister et al. (1983)
1980.724	64.7	0.200	-0.5	-0.001	1.0	McAlister et $\overline{\mathrm{et}}$ al. (1983)
1980.726	65.1	0.207	-0.1	+0.005	1.0	McAlister $\overline{\mathrm{et}}$ al. (1983)
1980.729	61.8	0.202	- 3.4	+0.000	1.0	McAlister et al. (1983)
1980.775	63.3	0.200	- 1.9	-0.003	0.0	Dudinov et al. (1982)
1980.893	64.6	0.209	- 0.6	+0.003	1.0	McAlister and Hartkopf (1984)
1980.896	64.3	0.216	-0.9	+0.010	1.0	McAlister and Hartkopf (1984)
1981.671	53.0	0.284	-12.2	+0.059	0.0	Balega et al. (1984)
1982.758	64.8	0.237	- 0.4	-0.004	1.0	McAlister et al. (1987b)
1982.766	64.7	0.240	-0.5	-0.002	1.0	McAlister et al. (1987b)
1983.047	65.6	0.24 .3	$+0.5$	-0.002	1.0	McAlister et al. (1987b)
1983.711	65.9	0.247	$+0.8$	-0.001	1.0	McAlister et al. (1987b)
1983.713	65.8	0.246	+ 0.7	-0.003	1.0	McAlister et al. (1987b)
1983.824	61.3	0.262	- 3.8	+0.013	0.0	Balega and Balega (1985)
1983.931	64.0	0.270	- 1.1	+0.021	0.0	Bonneau et al. (1984)
1983.937	65.0	0.260	-0.1	+0.011	0.0	Bonneau et al. (1984)
1983.958	63.4	0.253	- 1.7	+0.004	0.0	Balega and Balega (1985)
1984.060	65.3	0.245	$+0.2$	-0.004	1.0	McAlister et al. (1987b)
1984.786	64.5	0.254	- -0.6	+0.007	0.0	Tokovinin (1985)
1984.934	62.5	0.258	- 2.6	+0.012	0.0	Bonneau tet al. (1985)
1985.005	65.3	0.247	$+0.2$	+0.001	1.0	McAlister et al. (1987b)
1985.838	65.0	0.239	-0.1	+0.002	1.0	McAlister et al. (1987b)
1986.886	64.7	0.219	-0.3	+0.003	1.0	McAlister $\underline{\text { et }}$ al. (1987a)

FIG. 4. Astrometric observations of γ Per. Dots: GSU/CHARA observations; light circles: other speckle observations; plus: Wilson's (1941) visual observation. The curve is from solution (1) of Table IV. The upper branch is for the interval preceding apastron passages. The large cross represents the primary (cooler) component.

4 and 5 , along with the corresponding curves from the preferred solution. The inclination of the orbital plane even permits the possibility of an eclipse at minimum angular separation. There is a high probability of observing some level of eclipse phenomena at the next times of predicted minimum separation around 1990.89 and 1991.70.

IV. PROPERTIES OF THE STARS

The agreement between the independently determined values of P, T, e, and ω from spectroscopic (solution 6 of Table II) and interferometric (solution 3 of Table IV) observations is very good. The adopted orbital parameters are listed in Table V. The period and first value of T are from the spectroscopic results, upon which the second value of T is based. It is not determined precisely enough from the speckle observations alone for an improved determination of the period. The adopted values of e and ω are compromises. The values of $a^{\prime \prime}, K, V_{0}$ and a are derived with P, T, e, and ω held fixed. The adopted values of K, V_{0} and a differ slightly from those of solution (6) in Table II since slightly different val:
ues of e and ω are used in analyzing the velocities. The uncertainties listed are intended to be realistic values. While the values of K_{c} and K_{h} are sensitive to the adopted value of e, the values of the critical quantity, $a \sin i$, are very insensitive to e over the range of values of e in the tables.

The value of the parallax, 0.0135 ± 0.0007, obtained by combining astrometric and spectrographic results, is in reasonable, though not particularly significant, agreement with the directly determined value, 0.011 ± 0.006. The corresponding distance modulus is 4.35 ± 0.1 mag. The combined apparent magnitude is $V=2.93$ (Johnson et al. 1966).

In his multifilter photometrir study of stars with composite spectra, Bahng (1958) discussed the case of γ Per in considerable detail. He concluded that the best fit was to stars of spectral types G8 III and A3 V, with a magnitude difference $\Delta M_{V}=1.4$, the G star being more luminous. As a partial test of this value, one may employ the $B-V$ and $U-B$ indices of γ Per, +0.70 and +0.45 (Johnson et al. 1966), and of the standard stars used by Bahng in fitting the radiation of $\gamma \operatorname{Per}$ (λ Gem, A3 V; κ Gem and η Psc, G8 III). Differences of 1.3 and 1.5 mag between the components of γ Per reproduce the values of both $B-V$ and $U-B$ for the star within 0.02 mag, while values outside this range do not, in agreement with Bahng's result. We adopt ΔM_{V} $=1.4 \pm 0.2 \mathrm{mag}$ and obtain $M_{\nu}=-1.1 \pm 0.25$ and $+0.3 \pm 0.3$ for the G and A stars, respectively.

Published estimates of the spectral types in γ Per are G8 III: + A3 (W. W. Morgan in Stebbins and Kron 1956) and K0 III + A. 2 (Cowley 1976). On the basis of examination of two Lick $16 \AA \mathrm{~mm}^{-1}$ spectrograms of γ Per, the cool star cannot be as early as G5 nor as late as K0, and its luminosity is less than class II and greater than class IV. From the appearance of the K line of the hotter star (Fig. 1), its type is in the range $\mathrm{A} 2-\mathrm{A} 3$. These estimates are in excellent agreement with those from Bahng's analysis and lend further credence to them.

In order to obtain the luminosities, radii, and surface gravities of the components, we require effective temperatures T_{e} and bolometric corrections B.C. As the basis for these quantities, we adopt the color indices of the stars employed by Bahng (1958) as the counterparts of the components of γ Per. His A3V standard was λ Gem, having $B-V$ $=+0.12$, leading to $\log T_{e}=3.919$, B.C. $=-0.1 \mathrm{mag}$ (Popper 1980, Table I). The G8 III standards were κ Gem and η Psc. For cool giants, Ridgway et al. (1980) have

Fig. S. Separations ρ of the components of γ Per. Symbols as in Fig. 4. The curve is from solution (I) of Table IV.

Table IV. Solutions to the visual orbit.

Element	Si ${ }^{\text {l..+1on }}$			
	1	2	3	4
$\underline{P}(y)$	14.637	14.448	14.637	14.593
T (y)	1976.579	1976.579	1976.579	1976.548
e	0.784	0.792	0.784	0.782
a"	0.140 ± 0.002	0.140 ± 0.003	0.140 ± 0.002	0.142 ± 0.003
$\underline{i}\left({ }^{\circ}\right)$	90.49 ± 1.14	90.49 ± 1.14	90.22 ± 0.92	90.23 ± 1.22
$\omega\left({ }^{\circ}\right)$	355.3 ± 1.1	353.0 ± 1.1	355.2 ± 1.0	353.2 ± 1.2
$8\left({ }^{\circ}\right)$	245.2 ± 1.1	245.2 ± 1.1	245.2 ± 1.0	244.7 ± 1.2
$\sigma_{x}\left({ }^{\prime \prime}\right)$	± 0.0034	± 0.0034	± 0.0026	± 0.0041
$\sigma_{y}\left({ }^{\prime \prime}\right)$	± 0.0033	± 0.0033	± 0.0032	± 0.0033

Solutions:

1. \underline{P} (longer) and I adopted from spectroscopic solution no. 6. CHARA observations only. Preferred solution.
2. \underline{P} (shorter) and T adopted from spectroscopic solution no. 6. CHARA observations only.
3. As solution 2 , with observation in 1980.729 omitted.
4. Based upon speckle observations since 1977.0.
shown the Johnson $V-K$ index to correlate well with T_{e}. The values of this index are 2.11 and 2.19 for κ Gem and η Psc, respectively (Johnson et al. 1966). The adopted value of $\log T_{e}$ is 3.715 , based on the re-examination by Wing et al. (1985) of the Ridgway et al. (1980) scale,* The corresponding bolometric correction is -0.3 mag.

The properties of the components are compiled in Table VI. The uncertainties in the temperatures, and consequently in the radii R and surface gravities g, include effects from uncertainties in the color indices, but not from uncertainties

[^6]in the temperature scales themselves, which we are unable to estimate.

V. DISCUSSION

The cool giant in γ Per takes its place along with those in α Aur ($\mathcal{H}=3.3{ }^{\prime}{ }_{\odot}$, Shen et al. 1985) and ϕ Cyg ($\mathscr{H}=2.5 \mathscr{U}_{\circ}$, McAlister 1982) as having directly determined masses. Both components of γ Per have masses well within the ranges found for other stars of their spectral types and are not overmassive, as had appeared to be the case with McLaughlin's minimum masses. On the other hand, as noted by Bahng (1958) on the basis of the trigonometric parallax and by McAlister (1982), the stars appear to be considerably more luminous than expected from the spectral types. According to a recent discussion by Keenan (1985), the average absolute magnitudes M_{V} for A 3 V and for G8 III

Table V. Adopted orbital parameters.

$\underline{p}(\mathrm{y})$	14.64	± 0.05
T (y)	1947.30	± 0.02
	1976.6	± 0.1
e	0.79	± 0.02
$\omega\left({ }^{\circ}\right)$	353	± 1.5
$\left.\pm{ }^{(0}\right)$	90.5	± 1.3
$8\left({ }^{\circ}\right.$	245.2	± 1.2
$\underline{a}^{\prime \prime}$	0.140	± 0.004
$\underset{\underline{\underline{c}}}{\mathrm{~K}}\left(\mathrm{~km} s^{-1}\right)$	13.7	± 0.5
$\underline{K}_{\underline{n}}\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$	20.5	± 1.0
$\stackrel{V o}{c} \underbrace{(k m ~ s-l})$	- 0.7	± 1.0
$\underline{V o}_{\underline{h}}\left(k m s^{-1}\right)$	$+2.0$	± 1.0
${\underset{\sim}{c}}_{\text {c }}\left(\mathrm{a} \cdot u_{0}\right.$)	4.17	± 0.15
	6.18	± 0.30

are +1.2 and +0.3 , respectively. Thus, the stars (Table VI) are more luminous than these standard values by 1.0 and 1.4 mag. The uncertainties in Table VI are realistic ones, and the observations do not permit the luminosities to de as \because, as the standard values for the estimated types. While the ' - ε^{κ}. ture classes of the components of γ Per are well esmull. : $: 1$, some uncertainty exists in the luminosity classes. The standard a^{2} solute magnitudes for A3 III and G8 IIIa, for example, are +0.3 and -0.8 , respectively (Keenan 1985). If we take into consideration cosmic scatter as well as
the observational uncertainties, the observed luminosities are not completely unreasonable.

One might expect to obtain an estimate of the luminosity class of the A star from the confluence of the higher members of the Balmer series. However, in that region of the spectrum, the flux from an early A star falls with decreasing wavelength more rapidly than the flux of a G8 giant. For example, the Strömgren index $v-b$ is about +0.8 for G8 III and +1.2 for A3 V, and the hydrogen lines of the A star are lost in the welter of strong metallic lines of the G star. Satellite ultraviolet observations should be free of this difficulty. The components of the visual binary ϕ Cyg have approximately the same temperature class as the cool star in γ Per, and its mass and luminosity are also well determined (McAlister 1982). Its surface gravity is approximately 0.8 dex greater than that of the more luminous cool giant in γ Per. a ans difference should be testable through differential analysis of high-resolution spectra of the stars as a further check on the luminosity of the γ Per giant.
The closest counterpart to the A star in γ Per among binaries with well-established properties is the hotter component of the evolved A type binary SZ Cen (Popper 1980), $\mathscr{H}=2.3 \mathscr{K}_{\odot}, R=3.6 R_{\odot}$. The G giant is over one magnitude more luminous than its counterpart of comparable mass in α Aur.
While it is possible to fit the properties of each component of γ Per reasonably well to published post-main-sequence evolutionary tracks, the ages of the two stars evaluated in this way differ by a factor of 2 or more. This discrepancy was pointed out by McAlister (1982). The fundamentel diffculty is that each star would appear to be in a short-lived stage of post-main-sequence evolution, but the more massive star should have completed its passage through all phases of the giant configuration before the less massive star became appreciably evolved. The rate of evolution is so highly mass dependent that, even with the uncertainties in the masses and other properties taken into consideration, as well as in evolutionary calculations, the serious discrepancy remains. For example, accorcing to 'ben's (1967) tracks, the A star is starting to move rapidly across the Hertzsprung gap at an age of $8 \times 10^{5} \mathrm{yr}$, while the G giant has completed its rise to the first giant tup, has left the giant branch, and is approaching it for the second time, with an age of 3×10^{8} yr. No rational treatment of the observations can alleviate the dis-

Table VI. The components of γ Per.

	A star	G giant	
\underline{M}_{-}	$+0.3 \pm 0.3$	-1.1	± 0.25
$\log \mathrm{L}(\underline{\mathrm{L}} \theta)$	$+1.80 \pm 0.20$	+2.44	± 0.15
$\log \underline{T}_{\underline{e}}(\mathrm{~K})$	3.92 ± 0.02	3.715	± 0.015
\underline{R} (R ${ }^{\text {® }}$)	3.9 ± 0.3	21	± 4
\underline{m} (mg)	2.03 ± 0.15	3.06	± 0.30
$10 \mathrm{~g} \mathrm{~g}^{(} \mathrm{cm} \mathrm{s}{ }^{-2}$)	3.6 ± 0.2	2.3	± 0.2

crepancy significantly. In order for the A star to remain well within the main-sequence band, at $M_{V}=+1.2$, for example, the parallax would have to be increased from 0.014 to 0 "022. Conformity to available evolutionary tracks would require an even greater parallax. However, the observed parallax, 0.011 ± 0.006, is in good agreement with the value derived from the binary star analysis. Much more significantly, the ratio of the angular semimajor axis of the relative orbit $a^{\prime \prime}$ to the linear value a would have to be increased by nearly 60%. With $\cos \omega$ close to unity, the value of $a^{\prime \prime}$ is given simply by $\rho_{\text {max }} /(1+e)$. As seen in Fig. $5, \rho_{\text {max }}$ cannot exceed 0.26 , and even with e as small as the unacceptable value $0.7, a^{\prime \prime}$ is increased by less than 10% over the adopted value. With respect to the linear value a, as noted earlier, it is insensitive to the adopted value of e. It is not possible for the velocity variation of either star to be decreased significantly from the adopted results. Any systematic effect resulting from distortion of the profile of the K line in the A star spectrum by the profile in the G star could only require an increase in the size of the orbit over that derived, a change in the opposite sense from that required.

Of the various possible escapes that might be imagined from this dilemma in the timescales (e.g., the A star is in a state of pre-main-sequence contraction; the components are not the same age and became gravitationally bound some time after their formation; the A star has suffered mass loss recently; rapid rotation in the interior of the G giant has slowed its evolution, etc.), the most plausible might be that the G star has an undetected close companion of mass, say, $0.7 \mathscr{M}_{\odot}$. Then the timescales for evolution of the 2.0 and 2.3
\mathscr{U}_{\odot} stars would be more nearly equal, with the G giant in a more advanced stage. Owing to the speculative nature of these hypotheses, we refrain from further attempts to specify the evolutionary history. An observational test of the triplestar hypothesis would be to look for shorter period variation in the velocity of the G giant. Another possible test would be the surface gravity of the G giant, evaluated by spectroscopic analysis. The gravity would be less than the value in Table VI.

We point out, finally, that all our understanding of the rate of stellar evolution through the giant region, as dependent on mass, comes exclusively from model calculations, with almost no direct tests of the kind that appear to fail us in the case of γ Per. A dilemma of the same kind, although not so severe because the masses are more nearly equal, exists for α Aur (e.g., Shen et al. 1985). We have previously noted (Popper 1980; McAlister 1982) another potential disagreement between observations and generally accepted theory, namely that, on tr 2 basis of the small number of masses of cool stars of luminosity class III, the expected concentration of masses below $2 \mu_{\odot}$ is not found.

The work of both authors is supported by grants from the National Science Foundation, while that of H. A. M. has received additional support from the Air Force Office of Scientific Research. D. M. P. is indebted to W. A. Hiltner and A. P. Cowley for assistance in obtaining the Michigan prismatic spectrograms of γ Per. H. A. M. thanks his colleague W. I. Hartkopf for assistance in calculating the visual orbit.

REFERENCES

Bahng, J. D. R. (1958). Astrophys. J. 128, 586.
Balega, Yu. Yu., and Balega, I. I. (1985). Sov. Astron. Lett. 11, 47.
Balega, Yu. Yu., Bonneau, D., and Foy, R. (1984). Astron. Astrophys. Suppl. 58, 729.
Blazit, A., Bonneau, D, Knechlin, L., and Labeyrie, A. (1977). Astrophys. J. Lett. 194, Ll47.

Bonneau, D., Balega, Yu., Blazit, A., Foy, R., Vakili, F., and Vidal, J. L (1985). Astron. Astrophys. Suppl. 65. 27.

Bonneau, D., Carquillat. J M., and Vidal, J L. (1984) Astron. Astrophys. Suppl. 58, 729.
Campbell, W. W., and Mcore, J. H (1928) Publ. Lick Obs. 16.
Cowley, A. P. (1976). Publ. Astron. Soc. Pac. 88, 95.
Dudinov, V. N., Konichek, V V., Kuz'menkov, S. G., Tsvetkova, V. S., Rylov, V.S., Gyavgyanen. L. V., and Erokhin, V. (1982). In Instrumentation for Astronomy with Large Telescopes, edited by C. M. Humphries (Reidel, Dordrecht), p. 191.
Hartkopf, W. I., and McAlister, H. A. (1984). Publ. Astron. Soc. Pac. 96. 105.

Hartkopf, W. 1., McAlister, Y. A., and Franz, O. G. (1987). Astron. J. (submitted).
Iben, 1. (1967). Annu. Rev. Astron. Astrophys. 5, 571.
Johnson, H. L., Mitchell, R. L., Iriarte, B., and Wiśniewskı, W. Z. (1966). Commun. Lunar Planec. Lab. 4. 99.
Keenan. P. C. (1985). In Calibration of Fundamental Stellar Quantues, IAU Symposium No. 111. edited by D. S. Hayes and A. G. D. Philip (Reidel, Dordrecht), p. 121.
Küstner. F. (1908). Astrophys. J. 27, 301.
Labeyrie. A., Bonneau. D., Stachnik, R. V, and Gezan, D. Y. (1974). Astrophys. J. Lett. 194, L147.

Lord. H. C. (1905). Astrophys. J. 21, 297.
McAlister, H. A. (1978). Publ. Astron. Soc. Pac. 90, 288.
McAlister, H. A. (1982). Astron. J. 87, 563.
McAlister, H. A., and Fekel, F. C. (1980). Astrophys. J. Suppl. 43, 327.
McAlister, H. A., and Hartkopf, W. I. (1984). Ca:alogue of Interferometric Measurements of Binary Stars, CHARA Contrib. No. 1.
McAlister, H. A., Hartkopf, W. I., and Franz, O. G. (1987a). Astron. J. (in preparation).
McAlister, $\ddagger .$. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987b). Astron. J. 93, 688.
McAlister, H. A., and Hendry, E. M. (1982a). Astrophys. J. Suppl.48, 273. McAlister. H. A., and Hendry, E. M. (1982b). Astrophys. J. Suppl. 49, 267.
McAlister, H. A., Hendry, E. M., Hartkopf, W. I., Campbell, B. G., and Fekel, F. C. (1983). Astrophys. J. Suppl. 51, 309.
McLaughlin, D. B. (1948). Astron. J. 53, 200.
Moore, C. E., Minnaert, M. G. J., and Houtgast, J. (1966). Natl. Bur. Stand. Monogr. No. 61.
Popper, D. M. (1976). Astrophys. J. 208, 142.
Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
Ridgway, S. T., Joyce, R. R., White, N. M., and Wing, R. F. (1980). Astrophys. J. 235.126.
Shen. L.-Z., Beavers, W. I., Eitter, J. J., and Saizer, J. J. (1985). Astron. J. 90. 1503.

Stebbins, J., and Kron, G. E. (1956). Astrophys. J. 123, 440.
Tokovinin, A. A. (1985). Astron. Astrophys. Suppl. 61, 483.
Wilson, R. H. (1941). Publ. Univ. Penn. Astron. Ser. 6, Pt. 4, p. 22.
Wing, R. F., Gustafsson, B., and Eriksson. K. (1985). In Calibration of Fundamental Stellar Quantues, IA U Symposium No. 111, edited by D. S. Hayes and A. G. D. Philip (Reidel, Dordrecht), p. 571.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. IV. MEASUREMENTS DURING 1986-1988 FROM THE KITT PEAK 4 m TELESCOPE

Harold A. McAlister, ${ }^{\text {a }}$ ' William I. Hartkopf, ${ }^{\text {a }}$ James R. Sowell, ${ }^{\text {a }}$) and Edmund G. Dombrowskia
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303

Otto G. Franza)
Lowell Observatory, Flagstaff, Arizona 86001
Received 29 August 1988: revised 12 October 1988

Abstract

One thousand five hundred and fifty measurements of 1006 binary star systems observed mostly during 1986 through mid-1988 by means of speckle interferometry with the KPNO 4 m telescope are presented. Twenty-one systems are directly resolved for the first time, including new components to the cool supergiant α Her A and the Pleiades shell star Pleione. A continuing survey of The Bright Star Catalogue yielded eight new binaries from 293 bright stars observed. Corrections to speckle measures from the GSU/CHARA ICCD speckle camera previously published are presented and discussed.

I. INTRODUCTION

This paper presents further results from a continuing program of binary star speckle interferometry carried out at the 4 m Mayall telescope at Kitt Peak National Observatory. A detailed description of the observational technique and instrumentation, and of the methods of data reduction, analysis, and calibration, can be found in Paper II (McAlister et al. 1987b) of this series. We have employed those same methods to derive the results presented here.

II. CALIBRATION REVISIONS

In the course of the reduction of the observations obtained for this paper and in a series of analyses of binary star orbits based upon all of our previously published speckle data, we have found it necessary to revise the calibration basis for the measurements published in the three earlier papers of this series (McAlister et al. 1987a,b; Lu et al. 1987). The calibration of our speckle observations continues to be based upon the insertion of a double-slit mask at a pupil to produce a fringe pattern within speckle images and is carried out exactly in the manner described in McAlister (1977), the initial paper from the speckle program begun by the first author in 1975. The mask is aligned E-W and the speckle camera is mounted at the Cassegrain focus so that north is in the Y direction; thus the fringe pattern produced by the double-slit mask provides a spatial calibration in the X coordinate. This method of determining the scale and orientation calibration has served very well as a truly external means of converting the linear measures from speckle power spectra or autocorrelograms into angular measures on the sky. The revision we describe here has three distinct causes.
The greatly expanded collection of calibration data now available to us shows that the scale value at the speckle focal plane of the ICCD camera has been remarkably constant since the digital camera was first used in 1982 at the 4 m telescope. This has enabled us to determine a mean scale that has the primary effect of increasing the angular separations for our data obtained during 1983-1984 by 1.5\%, changes to other epochs being insignificantly small. The larger change

[^7]for the 1983-1984 data is due to the somewhat lower quality of the calibration data available for that particular time period. We now adopt a calibration based upon the mean of all the scale and orientation measurements that we have determined since the initiation of our ICCD speckle-camera system.

Using a laboratory spectrometer, we have carefully determined the effective wavelength of the Strömgren y filter used for the calibration observations. A correction for the temperatures of the individual calibration stars was also determined by convolving the filter response against blackbody curves appropriate to the stars we observed. Although the shift in the y effective wavelength is small, amounting to an overall difference in scale of 0.1%, we did finc the scatter to be measurably reduced among the collected scale values once this temperature effect was included. We point out that there is no corresponding temperacure effect for the program stars; thus it is not necessary to apply a temperature correction for stars other than calibration stars.

Residuals to newly determined double star orbits for some two dozen binaries showed a consistent discontinuity at the transition between the old photographic speckle data and the new ICCD data. A thorough investigation of this effect showed that the cause of this step distribution of the residuals is due to the effective pixel geometry as determined by the autocorrelator. Although the CCD has pixels that are square, the final pixel shape is determined not by the chip but by the redigitization done by the autocorrelator. The CCD camera electronics reads out the chip and converts the digital information into an analog video signal, specifically into standard RS-170 video. The autocorrelator then digitizes the video into approximately the same format as exists on the CCD, but, we discovered, with a slight timing mismatch so that one unit in Y is not exactly equal to one unit in X The precise mismatch was measured simply by rotating the camera 90° and taking calibration and binary star data in the orthogonal direction. Analysis of these data gave a correction factor for the nonsquare pixelation such that

$$
Y / X=1.0351 \pm 0.0030 .
$$

This effect is therefore position-angle dependent.
In Fig. I we show residuals for two binary star systems before and after the combined calibration effects discussed

Fig. 1. The effect of the correction for nonsquare pixelization resulting from the digitization by the vector autocorrelator is shown for two binary star systems. In both cases, the plus signs ate for angular-separation measures determined from speckle data obtained pror to 1982 using a photographic speckle-camera system, light squares are measures from the ICCD camera and autocorrelator before scale correction, and dark squares are the corrected measures. The scale correcthon clearly eliminates the discontunuty apparent in uncorrected data. During the observation interval, McA 55 decreased in position angle from 190° to 160°, while ADS 11111 changed from 340° to 315°.
above are applied to the data. The agreement between the older photographic material and the more recent ICCD data is greatly improved by correcting the data for the effects described above. The average change in angular separation is approximately an increase by 2.5%, while the average change in position angle is about $0: 5$. The corrected values of our earlier ICCD data can be obtained upon request from the authors in the form of a Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) or from the Washington Double Star Catalog (WDS) maintained by Charles Worley at the U. S. Naval observatory. We chose to disseminate the revised measures in this manner rather than by publishing somewhat complicated correction formulas or by republishing complete tables of the earlier results because most users of double star measures request a complete listing of all measures of a given system, regaidless of their technique of origin, from the WDS.

III. NEW MEASUREMENTS

The GSU ICCD speckle camera was scheduled for 25 nights dunng five observing sessions between May 1986 and May 1988. On these nights, 3636 series of observations were accumulated during 221 hr suitable for speckle interferometry. The average observation rate was thus 16.4 stars per hr. A typical obseryational sequence consists of 90 s of data acquisition at standard video rates, the individual exposures controlled by gating the high voltage on the microchannel plate tube to 15 ms . The Strömgren y filter is usually used, except for fainter objects, when a wider-bandwidth filter centered on y is employed. Magnification optics yielding ap-
proximate scales of 0.0052 or 0.0088 arcsec per pixel were normally used, except during the rare periods of very poor seeing (average stellar profile FWHM in excess of 3 arcsec) when a lowest magnification of 0.016 arcsec per pixel is used and then only for more widely separated and brighter binaries. Vector autocorrelograms were produced in real time at the telescope and subsequently reduced and analyzed in the CHARA image-processing laboratory at GSU in Atlanta.

Table I contains observational and catalog information for the 21 newly resolved stars presented in this paper. As was initiated in Paper II, we assign each newly resolved star a CHARA number that continues from the last number assigned in Paper III. Two hundred fifteen systems have been newly resolved to date in this continuing program. The last column in Table I shows whether the system is a spectroscopic (SB), composite spectrum (Spm), or occultation (Occ) binary, a third component discovered in the course of observing a previousiy known visual binary (Tri), a newly discovered binary resulting from a survey of The Bright Star Catalogue (Hoffleit 1982), or a Ba II star discovered as a result of our attempts to find binaries among this class of stars. Two stars in the Pleiades cluster have been newly resolved, the first (HD 23568) being indicated as double from occultation observations and the second being the famous shell star Pleione, which The Bright Star Catalogue notes as being a suspected long-period spectroscopic binary. We have observed Pleione on several occasions during the last few years without having detected this companion. These negative results do not contradict the present observation in which the weak autocorrelation peak indicates a large magnitude difference, a situation in which seeing and instrumental parameters make detection problematic.

We also report a new companion to the M5 Ib-II star α Her A, the brightest member of the system ADS 10418. The B component of the previously known system is itself a com-posite-spectrum star. Reasonable assumptions regarding the mass of the cool supergiant and the distance to the star lead to a rough estimate of $100-150 \mathrm{yr}$ for the period of the newly discovered companion. We have learned from Dr. Myron A. Smith (private communication) that his radial-velocity measures for α Her A during the last 4 yr have shown an increase in velocity by about $11 \mathrm{~km} / \mathrm{s}$ during a 3 yr interval, with an apparent turnover in velocity during the fourth year. This suggests yet another component with a period of the orde: of a decade. Thus this system may, in fact, have five physic. ${ }^{1}$ co. p ponents.

The ne:y speckle measurements of binary stars are presented in Table II, where we continue the format used in Paper II. This collection contains several measurements from 1985 that were omitted in Paper II, including the two newly resolved Ba II stars (CHARA 129 and 140)-that were observed as a supplement to the survey of high-velocity stars for which details have been published in Paper III. Two measurements are also given for HR 6168 (σ Her) from 1977 that were obtained with the photographic speckle camera. the instrument used to collect data for the series of speckle observations that ended with the paper by McAlister et al. (1984). The HR 6168 result for 1977.1781 is a previously unpublished measure, while that for 1977.3284 is a correction of the position-angle value that was originally published. While the coordinates in Table II are for equinox 2000.0, the position angles have not been corrected for precession and are thus based upon the equinox for the epoch of observation shown as the fraction of the Eesselian year.

Table I. Newly resolved binary stars.

CHARA Number	HR/DM	Name	HD	SAO	ADS	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	V	Spect. Class.	Disc. Sep.	Binary Type
121	9097	-	225094	10942	-	00034+6339	6.24	B3lae	0.196	BSC
122 Aa	9105	-	225218	36037	30	00046+4206	6.01	B9III	0.110	BSC
123	63	θ And	1280	53777	-	00171+3841	4.61	A2V	0.057	BSC
124	$+24^{\circ} 562$	-	23568	76183	-	03470+2431	6.81	B9.5V	0.208	Occ.,Pleiad
125	1180	28 Tau	23862	76229	-	03492+2408	5.09	B8Vpe	0.217	Pleiad
126	1176	-	23838	39134	-	03501+4458	5.66	G2III+F2:V	0.031	SB
127 Aa	-	-	31033	76811	3501	04530+2522	7.2	AO	0.075	Tri.
128 Aa	2257	4 Lyn	43812	25678	4950	06221+5922	5.94	A3V	0.187	Tri.
129	2392	-	46407	151625	-	06328-1110	6.24	K0III:Ba3	0.161	BaII
130	$+19^{\circ} 2069$	-	73712	98019	-	08402+1021	6.78	A9V	0.088	Occ.
131	3635	-	78661	98400	-	09098+1134	6.48	F 2 Vp	0.089	Occ.
132 Aa	$-23^{\circ} 9339$	-	91172	178922	7809	10311-2411	7.5	$\mathrm{F} 3+\mathrm{A} 5$	0.110	Spm.
133	4380	55 UMa	98353	62491	-	$11191+3811$	4.78	A2V	0.068	BSC:
134	4528	4 Vir	102510	119058	-	$11479+0815$	5.32	AI	0.259	BSC
135	4632	3 Com	105778	99973	-	$12105+1649$	6.39	A4V	0.262	BSC
136	4642	-	106022	82181	-	$12120+2832$	6.49	F5V	0.209	BSC
137	5372	-	125632	29098	-	$14189+5452$	6.53	A5Vn	0.103	BSC
138 Aa	6130	-	148374	17073	10052	$16238+6142$	5.67	G8III	0.211	Tri.
139 Aa	6400	α Her	156014	102681	10418	$17146+1423$	3.48	M5Ib-II	0.192	BSC.
140	$+10^{\circ} 3801$	-	178717.	104535	-	$19094+1014$	7.10	K4III:Ba4	0.250	BaIl
141	$+00^{\circ} 4982$	-	219420	128069	-	$23157+0119$	6.8	F5	0.061	Occ.

We emphasize that speckle interferometry does not, through autocorrelation or power-spectrum analysis, reveal the true quadrant of the secondary. Therefore all quadrants are potentially ambiguous by 180° in position angle. Speckle images preserve the true quadrant information as well as the intensity differences of the component stars, but other processing algorithms more sophisticated than simple autocorrelation methods are required to extract this information. Such methods certainly exist, and a major emphasis of the CHARA program is to develop an image-reconstruction algorithm that efficiently and reliably permits the determination of the photometric properties of the components at separations down to the diffraction-limited cutoff. Examples of first results for speckle photometry, as we call such methods to distinguish them from the primarily astrometric applications of speckle interferometry, can be found in new studies of Capella (Bagnuolo and Sowell 1988) and the Hyades binary 70 Tauri $=$ Finsen 342 (McAlister et al. 1988). In Table II, we adopt quadrants consistent with micrometer measures for known visual binaries, but we-arbitrarily adopt $\theta \leqslant 180^{\circ}$ for objects for which true quadrant determinations are not available. The exception to this rule is for those objects that have been first resolved by speckle interferometry and have
shown motion since their first measurement requiring a value of $\theta>180^{\circ}$.

The 1550 measurements of 1006 systems in Table II combine with all previous measurements from this program to give a total of 7252 speckle measurements of binary stars resulting from the GSU speckle program as carried out at Kitt Peak National Observatory. In the Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) there are 8976 measurements from all interferometry groups known to the authors as of July 1988.

Many stars first resolved earlier in our program, the "McA" and "CHARA" stars, have been confirmed as binaries in the present series of measurements. Six McA stars (nos. 13, 17, 31, 39, 50, and 59) that had not been previously confirmed by us and 50 CHARA stars are measured here following their initial resolutions. While some of these systems have shown little orbital motion during the years following their first resolution, others are exhibiting very rapid motion. Such objects include CHARA $18=\mathrm{HR} 1458$ (88 Tau), with 100° of position-angle change in 2.4 yr , and CHARA $26=$ HR $2837(61 \mathrm{Gem})$, with 108° of motion in 4.2 yr .

The mean angular separation of the observations in Table

Table II. Binary star speckle measurements.

	CHARA 121		225094	00034+6339	$+61^{\circ} 0159$	M1r 26		4116	00444+6210	
198	1986.8967			" 196		987.7695	48.2		0.210	
ADS 30	CHARA 122 A		225218	$00046+4203$	ADS 684				$0.848^{00504+803}$	
ADS $32{ }^{10}$	${ }^{1986.8967}$ STF 3056 AB	94.9	225220	$0.110{ }_{00046}+3416$		986.8887 1987.7570	$\begin{aligned} & 240.9 \\ & 241.5 \end{aligned}$		0.848 0.850	
$\text { ADS } 61$	1987.7595	143.6		0.718	ADS 701	A 1808		4934	00516+2238	
	STF 3062 AB		123	$00062+5826$		1086.8860	173.8		0.107	
	1087.7595	303.6		1.448		1987.7623	177.3		0.113	
ADS 102	STF 2		431	00091+7943	ADS 732	A 2307		5143	$00532+0406$	
	1987.7596	22.7		0.672		1987.7596	45.3		0.325	
$+18^{\circ} 0003$	Cou 241987.7542	356.0	489	$0.419{ }^{00095+1007}$	$+42^{\circ} 0196$1	${ }^{1086}$ Cou 1654		5178	$0^{0.160} 00542+4318$	
							103.1			
ADS 124	$\begin{gathered} \text { Bu } 253 \\ 1987.7595 \end{gathered}$		570	00104+5831		1987.7843	104.6		0.160	
		35.0		0.511	ADS 746	STT 20 AB		5267	$00546+1912$	
ADS 143	STF 7 7121.5		709	$1.331{ }^{001}$		1986.8940	208.8		0.443	
			744		ADS 749	1987.7596Hu 802	209.0	5259	$0.400540+4924$	
ADS $147 \begin{array}{r}1 \\ \\ \\ 1\end{array}$	Bu 255			00119+2825						
	1086.8940	75.1		0.506		1986.8887	215.7		0.358	
	1987.7595	75.2		0.519					0.360	
ADS 148	CHARA 1 Aa		761	${ }_{0}^{0.519} 00122+5337$	ADS 755			5288	$0.00560+2338$	
	1987.7543	50.8		0.071		1986.8887	277.2		0.685	
		61.6	895	0.066			280.1		${ }^{0.692} 00554+3040$	
ADS 161		184.5		00134+2659	ADS 768	196.844But 50010868887		5315		
				0.286			299.0		0.510	
ADS 197	A 1256 AB	68.8	11281	$0.105{ }^{00162+4406}$		1987.7544 Hu 1207	299.7		${ }_{0}^{0.600}{ }_{00561+3352}$	
					ADS 777			5398		
ADS 207	STF 13	56.5		$0^{00163+7657}$		1987.7543	184.7	232319	0.329	
	1987.7596			0.913	ADS 773	A 1259				
HR 63	CHARA 123			${ }^{0.057}{ }_{00173+0852}$		1987,7596	91.0	5408	$0.12300508+6022$	
ADS 238	A 1803 AB	141.6			ADS 784	Bı1099 AB				
						1986.8860	323.0		0.244	
ADS 243	1986.8859	142.6	1360	${ }_{0}^{0.088}{ }_{0}^{00182+7256}$		1987.7570	325.8	5502	0.249	
	A 803				ADS 795	H1d 4			00576+5424	
	1986.8859	280.6		0.204		1987.7506	227.5	5641	0.125	
	$\begin{gathered} 1987.7596 \\ \text { Bı1 } 1016 \end{gathered}$		1634		ADS 805	Bu 302			00583+2124	
ADS 281			$00208+1219$		1986.8887	$\begin{aligned} & 165.7 \\ & 167.2 \end{aligned}$		0.427		
	1987.754 ${ }^{\text {STT }}$ A AB	78.5			0.340		ADS 819	1987.7596	5781	${ }^{0.420}{ }_{00593}$
ADS 293										
ADS 295	${ }_{1}^{1987.7596}$ Cou 347 An	154.8		${ }^{0.561}{ }_{002}$	$+40^{\circ} 0109$	1987.7596	182.8	8720	$0.31900504+4057$	
				0.00						
	$\begin{gathered} 1987.7505 \\ \mathrm{Hu} 506 \end{gathered}$	7.8	1976	00243+5201	ADS 832	1986.8860	136.6	5851	$0.206{ }_{01011}+6021$	
ADS 328	Hu 506 1986.8859	48.6		0.168			325.	5088	${ }_{0}^{0.379} 01014+1155$	
ADS 332	- ${ }^{\text {A } 908}$		236401	$00245+563$	ADS 828	$\begin{aligned} & 7.7570 \\ & \text { Bu } 867 \end{aligned}$				
ADS 382	1987.7595	239.7			ADS 82		6.7	6955	0.390	
	A 1504 AB	37.6		0.544	$+34^{\circ} 016$	1987.7596 Coll 854				
ADS 397	$\begin{array}{r} 1987.7895 \\ \text { A } 649 \end{array}$			$0.428$$00308+4732$		1986.8860	0.7		0.132	
	7 $\begin{array}{r}\text { A } 649 \\ 1987.7596\end{array}$	319.1	2675		ADS 836	$\begin{array}{r} 1987.7590 \\ \\ \hline \end{array}$	354.0	583	$0.131{ }_{01015}+6921$	
	6 Bu 394									
	1986.8859	$\begin{aligned} & 303.2 \\ & 309.4 \end{aligned}$				1986.8887	53.4		0.411	
ADS 434	$\begin{aligned} & 1987.7595 \\ & \text { STT }_{12} \end{aligned}$		2772	0.111	ADS 854		53.9	6094	${ }^{0.414} 01023+0552$	
				${ }^{0.168318+5432}$			308.4	6094	$0.178{ }^{01023+0562}$	
	1986.8940	187.5		0.468	ADS 859	1987.7596	308.4	6084	${ }^{0.176} 01029+5148$	
	1987.7595	188.2		0.464	ADS 86	1986.8887	6.0		0.366	
$+26^{\circ} 0072$	72 Cou 547		2854	$00^{00320+2740}$		1987.7543	6.3		0.368	
	1986.8859	204.8		${ }^{0.070}{ }_{00321-0511}$	ADS 862	$2{ }^{198751} 21$		6114	4 01030+4723	
ADS 450	$0{ }_{\text {A } 111}$ AB		82880	$0.171^{00321-0511}$		1987.7596	174.5		1.035	
DS 463	$\begin{gathered} 1987.7542 \\ \mathrm{Ho} 3 \end{gathered}$	138.8	2993	${ }^{0.171} 00335+4006$	ADS 871	Hu 517			${ }_{0}{ }^{061037+5026}$	
ADS 463	1987.7643	119.8		0.262		1986.8887	26.0		0.564	
+29 ${ }^{\circ} 0009$	99 Cou 654			$00345+3015$	ADS 873	1987.7543	26.7	26	${ }^{0.668} 01039+352$	
	1986.8859	213.9		$6{ }^{0.235} 0035$		1087.75	09.5		0.2	
ADS 490	0 Ho 212 AB		3196	${ }^{0.250} 0$	ADS 884	${ }^{1582310}$		6387	7 01048+0135	
	1985.8401	292.0		0.250		1987.7596	325.1		0.200	
	1986.8859	331.5		0.118	ADS 883	3 A 1515			01049+3640	
	1987.7542		. 9	0.149		1986.8860	288.6		0.242	
ADS 403	3 STT 15		3210	$0.00358+4001$		1987,7543	288.9		0.246	
	1986.8859	318.4		0.220	ADS 916	- A 931		6553	$3{ }^{0.074}{ }^{01070+4744}$	
	1087.7505	319.5		0.217		1986.8887	90.3		0.074	
ADS 504	4 A 914		4	$00366 \div 5608$		1987.7623	05.0		0.073	
	1987.7595	31.3	. 3	0.447	ADS 918	8 A 1516 AB		6586	$6 \quad 01071+3839$	
ADS 559	59 Bu 257		3700	$0 \quad 00402+4715$		1086.8014	68.6		0.144	
	1987.7595	247.3		0.644		1987.7596	75.7		0.140	
+35 ${ }^{\circ} 011$	17 Goul 1051		3742	$2 \quad 00405+3627$		1987.7623	75.3		0.141	
	1087.7595		1.0	0.442						
A.DS	A 2205									

HR 657	Cout 79		13872	02157+2503	HR 936	β Per Aa		19356	$03082+4057$
	1986.8888	64.9		0.086		1986.8861	133.7		0.104
	1987.7626	54.6		0.147		1986.8917	133.7		0.099
$+40^{\circ} 0469$	Colt 1669		13844	02160+4046	$+17^{\circ} 0515$	Coul 359			$03143+1821$
	1986.8889	173.0		0.223		1986.8889	170.6		0.165
	1987.7626	171.6		0.235	ADS 2429	Hu 1055			03161+1618
$+40^{\circ} 0476$	Cou 1670		14137	$02183+4120$		1986.8889	84.9		0.206
	1986.8916	46.3		0.150	ADS 2436	STT 52 AB		20104	03175+6539
	1987.7626	48.9		0.146		1986.8945	69.2		0.465
ADS 1763	3 Egg 2 Aa		14189	02186+4017		1987.7653	69.4		0.465
	1986.8888	112.8		0.136	$+28^{\circ} 0532$	CHARA 9		21242	$08266+2843$
	1987.7626	120.3		0.148		1986.8889	62.4		0.438
$+24^{\circ} 0344$	Cou 357		14918	02250+2529		1987.7651	62.3		0.438
	1986.8888	135.9		0.281	HR 1036	CHARA 10		21335	$03271+1845$
ADS 1833	STF 257		14817	$02257+6133$		1986.8862	127.4		0.075
	1986.8943	49.7		0.346	ADS 2546	Cou 260		21437	03280+2028
	1987.7653	51.8		0.349		1986.8889	22.3		0.232
$+44^{\circ} 0500$	Cou 2011		15174	$02279+4523$		1987.7572	22.5		0.233
	1986.8942	68.9		0.344	ADS 2638	A 980		21203	03283+6015
HR 719	Kui 8		16328	02280+0158		1986.8944	11.8		0.271
	1986.8916	33.6		0.614		1987.7545	10.2		0.280
ADS 1860	CHARA 6 Ap		16089	02290+6724	$+34^{\circ} 0678$	Cou 1079 AB		278801	$03333+3522$
	1987.7651	150.1		0.347		1987.7572	36.8		0.313
ADS 1938	STT 42 AB		16703	$02333+5218$	$+57^{\circ} 0730$	CHARA 117		21704	$03337+5752$
	1986.8916	285.8		0.135		1986.8862	180.5		0.096
	1987.7627	286.8		0.130		1987.7654	201.0		0.097
$+79^{\circ} 0075$	Mlr 449		15416	02361+7944	ADS 2616	STF 412 AB		22091	03345+2428
	1987.7653	196.0		0.278		1986.8889	1.8		0.625
$+39^{\circ} 0577$	Baz		18097	02363+4012		1987.7645	1.9		0.630
	1986.8888	71.5		0.310	ADS 2627	Cou 688 Aa		22181	03353+2651
HR 763	McA 7		16234	02366+1226		1986.8889	194.0		0.462
	1986.8888	169.6		0.051		1987.7545	197.1		0.479
	1987.7626	131.1		0.065	ADS 2628	Bu 533		22195	$03356+3141$
ADS 1992	A 1278		16283	02383+4604		1086.8943	41.6		2.095
	1986.8916	152.5		0.127		1987.7545	42.6		1.095
	1987.7626	149.1		0.129	ADS 2630	- 1536		22193	03361+4221
ADS 1985	STF 278		16098	$02389+6918$		1987.7545	321.0		0.645
	1986.8943	96.7		0.495	$+44^{\circ} 0747$	Colt 1862		22209	$03564+4518$
ADS 2010	A 2023		16486	02393+2552		1987.7545	16.1		0.308
	1986.8888	226.6		0.593	$+31^{\circ} 0637$	Cou 691		-	03423+3141
HR 781	Fin 312		16620	02396-1153		1987.7054	111.9		0.087
	1986.8888	289.6		0.126	ADS 2745	A. 1828		23403	05460+0504
	1987.7626	12.7		0.103		1987.7672	13.4		0.184
ADS 2028	A 1928		16619	$0^{02398+0009}$	$+23^{\circ} 0512$	Colt 560		23387	03456+2420
	$\begin{gathered} 1986.8915 \\ \text { McA } 8 \end{gathered}$	269.2		${ }_{0.158}^{02422+4012}$		1986.8889	0.2		0.243
HA 788	$\begin{gathered} \text { McA } 8 \\ 1986.8862 \end{gathered}$	69.4	16739	$0.042^{02422-74012}$		1987.7572	0.4		0.238
	1986.8888	69.1		0.041		1987.7628	0.9		0.339
	1987.7626	79.8		0.047	+24 ${ }^{\circ} 0562$	CHARA 124		23588	$03470+2431$
HR 793	μ Ari		16811	02424+2000	ADS 2776	$\begin{gathered} 1987.7628 \\ 3^{8 u 1184} \end{gathered}$	4.1	23748	${ }_{0.208}^{05483+2223}$
	1986.8888	253.4		0.042	ADS 2776	1086.8889	270.2	23748	$0.503^{0348+2223}$
	1987.7626	266.8		0.052		1987.7544	270.5		$0.50{ }^{\circ}$
$+47^{\circ} 0717$	Cou 2013		17670	$02520+4831$	ADS 2765	STT 62	270.6	23406	$0.60{ }_{0} 03488+6445$
	1986.8917	96.6		0.208		1987.7546	319.5		0.363
	1987.7653 (${ }^{\text {c }}$	92.4		0.206	HR 1180	CHARA 125		23862	03492+2408
ADS 2185	A 2906 AB		17743	$02529+5300$		1987.7628	54.9		0.217
	1986.8916	134.2		0.169	HR 1176	CHARA 126		23838	03601+4458
	1987.7653	134.4		0.180		1988.8862	62.0		0.031
ADS 2200	Bu 524 AB		17904	02537+3820	ADS 2799	STT 65		23986	03504+2536
	1986.8917	273.7		0.189		1986.8945	209.3		0.434
ADS 2246	Bu1173 AB		28442	02586+2408		1987.7545	210.1		0.407
	$\begin{gathered} 1987.7653 \\ { }^{195} \mathrm{Bu} 525 \end{gathered}$	87.8		${ }_{0}^{0.228}{ }_{02589}+2137$	ADS 2811	A 1830	210.1	24104	$0.03513+2621$
ADS 2253	Bu 525		18484	${ }_{0.512^{02589+2137}}$		1986.8862	194.1		0.118
	$\begin{aligned} & 1986.8943 \\ & { }^{19} \text { STF } 333 \text { AB } \end{aligned}$	259.0		$0.512{ }_{02592+2120}$		1987.7654	194.9		0.145
ADS 2257	$\begin{aligned} & \text { STF } 333 \text { AB } \\ & 10868043 \end{aligned}$		18519	${ }_{1460} 02592+2120$	HR 1199	Kıi 15		24263	03519+7633
ADS 2271	1986.8943 A 1529	207.5	18	$1.460_{03006+4753}$		1986.8 ®ิร0	207.7		0.681
	1987.7653	163.4		0.209		1986.8945	207.6		0.679
ADS 2276	A 827		18424	U3024+7236		1987.7546	207.8		0.683
	1987.7653	247.1		0.230	$+27^{\circ} 0582$	Cou 696		$: 82993$	$03520+2801$
HR 915	${ }^{7}$ Per		18925	03048+5330		1986.8862	53.4		0.221
	1986.8861	63.9		0.221		1087.7572	52.0		0.219
	1987.7653	64.3		0.194	ADS 2815	STT 66		21117	$03521+4048$
ADS 2336.	STF 346 AB		19134	0.104055+2515		1987.7545	143.0		0.957
	1986.8943	63.9	19134	0.260	ADS 2911	Hu 27		25034	$03591+0018$
						1987.7546	302.3		0.305

Table Il. (continued)

Table II. (continued)

$+42^{\circ} 1045$	Cout 2031		30090	04465+4220
1	1986.8892	321.0		0.094
ADS 3447	$\begin{aligned} & \text { A } 1545 \\ & 1087.7573 \end{aligned}$		30245	04477+4014
		95.7		0.421
$+43^{\circ} 1060$	Cou 2033		30256	$04480+4339$
	1086.8892	136.3		0.211
	1987.7573	136.3		0.206
ADS 3465	A 2621		30636	C4496+0213
	1986.8918	81.6		0.151
	1987.7601	81.9		0.149
$+14^{\circ} 0770$	CHARA 20		30712	$04506+1505$
	1988.2601	120.5		0.085
ADS 3475	Bu 883 AB		30810	$04512+1104$
	1986.8918	142.7		0.137
	1987.7574	182.9		0.107
ADS 3483	Bu 562 AE		30869	04518+1339
	1986.8837	15C. 2		0.373
	1987.7601	162.0		0.401
	1988.2600	166.7		0.403
ADS 3488	Hu 819		30884	04529+3548
	1987.7573	278.8		0,441
ADS 3801	A 1843 AB		31033	$04536+2522$
	1987.7573	299.8		0.519
ADS 3501	CHAPA 12	As	32033	$04536+2522$
	1987.7573	109.9		0.078
ADS 3490°	Hu 818		30807	04839 +5603
	1987.7573	72.6		0.448
HR 1569	McA 17		31283	$04548+1125$
	:985.7574	309.5		0.207
ADS 3522	A 1019 AB		31358	04551-0033
	1987.7601	122.9		0.161
ADS 3842	STT 91		31466	04562+C311
	1987,7601	227.5		0.408
ADS 3536	D 5		31278	04573+6045
	1987.7673	227.9		0.483
ADS 3858	A 2624		31622	$04573+0100$
	1987.7601	305.0		0.330
$+26^{\circ} 0767$	Cou 768		284006	$04681+2618$
	1987.7873	143.7		0.376
$+40^{\circ} 1114$	4 Cou 1717		31519	04585+4047
	1987.7573	118.2		0.282
ADS 3673	3 A 1303		31578	04809+6328
	1987.7573	309.8		0.108
$+69^{\circ} 0288$	3 Mlr 390 AB		31264	05001+6958
	1087.7573	169.2		0.286
+4191027	7 Cou 1886		31759	05004+4158
	1987.i873	70.4		0.308
$+21^{\circ} 0784$	4 Cou 164 AB		32481	05044+21-9
	1986.8837	307.2		0.262
ADS 3859	9 A 1023		32416	05054+4655
	1986.8837	60.7		0.332
ADS 3728	8 A 2636		33235	$05089+0313$
	1987.7601	158.3		0.282
ADS 3734	4 STF 644		33203	06104+3718
	1986,8837	221.4		1.630
ADS 3765	5 Bu 885		33645	05109-0146
	1986,8838	195.8		0.612
ADS 3767	7 Hu-33		33647	06117+0031
	1988.8892	4.6		0.111
ADS 3709	9 STT 817 AE		33883	05134+0158
	1986.8836	235.3		0.552
	1986.6802	235.4		0.640
	1987.7601	236.8		0.552
$+36^{\circ} 1049$	9 Pop 140		33749	- $5140+3655$
	1986.8837	158.8		0.260
HR 1708	a-Aur Aa		34039	05107+4601
	1988.8892	22.2		0.051
	1067.2717	19.4		0.037
	1987.765	355.0		0.044
	1988.2545	259.8		0.048
$+30^{\circ} 1272$	2 Cou 2037		34807	$05219+3934$
		141.4		0.300
ADS 400t	2 McA 18 Asb	,	35411	05244-0224
	1086,8692	126.9		0.660
	1988.2546	1160		0.652
ADS 4020	- ${ }^{1848}$		35548	05255-0033
	1086.8892	131:0		0.222

ADS 4032	Ho 226 AB		35586	C5270 +2737
	1986.8838	261.3		0.763
ADS 4038	MeA 19 Ax		35671	$05271+1758$
	1986.8893	281.6		0.060
	1987.2417	274.3		0.089
	1088.2400	276.7		0.083
ADS 4078	Da 6		36058	052.90-0318
	1988.2546	211.1		0.137
-01 ${ }^{\circ} 0918$	Rat 4781		36218	05301-0145
	1986.8838	199.0		0.403
	1986.8892	199.1		0.405
ADS 4115	STF 728		36267	05307+0556
	1986.8838	47.8		1.031
ADS 4134	Hei 42 An.		38488	05320-0018
	1986.8892	139.7		0.253
	1988.2545	130.7		0.261
HR 1891	Fin 345		37016	08353-0425
	1986.8838	92.8		0.362
$+20^{\circ} 1009$	Cou 270		38880	05357+2054
	1986.8918	45.9		0.628
ADS 4208	STF 749 AB		37098	050.72+2666
	1986.8918	325.6		1.122
+430 1815	CHARA 21		36048	$05373+4404$
	1986.8893	60.4		0.127
	1988.2601	59.2		0.324
HR 1853	Mlr 314		36498	$05373+6642$
	1986.88s7	141.8		0.107
ADS 4203	- A 1562		36928	$05373+4335$
	1986.8893	950.0		0.403
ADS 422\%	Bu 1240 AB		37208	05385+3030
	1986.8893	24.4		0.112
	$13_{9} 88.2400$	18.2		0.122
	1988.2545	18.3		0.122
ADS 4241	1 Bu 1032 Ab		37468	05387-0236
	1086.8918	1425		0.253
	1988.2545	140.6		0.253
ADS 4247	7 A 2709		37477	0639 + +1380
	1986. ${ }^{\text {Sol }} 18$	56.8		2,270
ADS 4288	B A i 564		37268	06394+4343
	1986.8893	138.1		0.154
ADS 42.3	3 STT 112		37384	$06398+3758$
	1986.8858	81.9		0.887
ADS 4249°	$9^{\circ} \mathrm{Hu} 825$		37406	$05400+3601$
	1986.8838	345.9		0.394
ADS 4266	$6 \quad \mathrm{~B} \backslash 1007$		37711	$05411+1632$
	1086.8838	239.8		0.334
	1988.2545	240.5		0.327
ADS 4279	9 Bu 1052		37904	06417-0354
	1986.8838	17.2		0.395
ADS 4277	7 A 2110 A		37801	$56421+2135$
	1986.8918	122.3		0.457
ADS 4301	1 A 2436		38037	$08438+1642$
	1986.8918	134.8		0.385
$+29^{\circ} 0972$	2 Cou 895		24674.	$05430+2937$
	1986.8893	84.2		0.188
ADS 4323	3 STT 118-AB		38182	05445:+1503
	1986.8838	119.2		0.470
ADS 4324	4. A 406.		38161	$05449+2620$.
	1986.8893	6.2		0.281
+28 ${ }^{\circ} 0371$	$1 . \quad$ Cou 762		38183	$05450+2812$
	1986.8803	60.5		0.181
ADS 1373	3 Hu 30		38493	$05472+2153$
	1986.8918	48.1		0.197
ADS 4390	0 STE 705		38710	$05480+0627$
	1986.8918	315.2		1.187
ADS 4392	2 STT 118.AB		38670	-05484+2053
	1083.2918	316.8		0.205
ADS 4976	G ETE 3115		28284	
	1080,8838	340.4		0.871
ADS 4464	4 Coll 807 CD		39274	06538+2046
	1980,8503	230.7		0.225
$\underline{+} \mathbf{2 9}{ }^{\circ} 1028$	8. Coll 898		30303	05520-4.2007
	1986.8893	157.8		0.188
$+28^{\circ} 0038$	3 Cou 000		38451	$06530+2857$
	1988;8803	83.2		${ }^{0.188}{ }_{05588}+2956$
ADS 4508	STT 122 1086.8893	258.7	30697	$05568+5056$ $0,285$

Table II. (continued)

$+24^{\circ} 1043$	Cou 905		40152	05580+2437	ADS 4950	CHARA 128	As	48812.	$06221+5022$	
	1986.8920	18.4		0.122		986.8833	109.5		0.287	
ADS 45A3	$\text { A } 1728$	2.4	\cdots	$0.105889+4610$	HR 3312	Fin 343		. 18050	$06252+0130$	
	1986.8970	212.2		0.346		987.2744	0.1		0.173	
ADS 4602	STT 124		40369	05508 + 1240	$+23^{\circ} 1346$	CHAKA 23		44926	-06255-2327	
	1988.8820	297.7		0.513		086.8865	15\%.5		0.112	
	1987:2744	299.i		0.608		98\%.20゙2	154.3		0.114	
ADS 4675	- 2441		40127	05694+134		988.2491	153.9		0.115	
	1886.8920	272.7		0.766	HR 2804	McA 26		449:7	$26256+2320$	
ADS 4803	A 110		40628	$06013+2027$		986.8865	142.0		0.072	
$\text { ADS } 4617^{1}$	1983.8920	$202 . E$		0.670		987.2662	144.4		0.074	
	A-2718 AB		40832	96024 +0939		988.2401	145.1	.	0.079	
	1986.8865	208.4		0.218	$+24^{0} 1275$	Cou 914		45428	06283 +2441	
	1987.1744	205.6		0.248		1986.8865	119.6	4512	0.219	
	1988.2545	204.7		0.316	HR 2392	CHARA 129		46407	$06328-1110$	
ADS 4623	180		40582	${ }_{0.861} 06027+0801$		885.8381	84.3		0.161	
	198E.8821 McA 24	253.5		$0.561{ }_{08031+1942}$	ADS 5218	A 506		46610	$06357+2816$	
HR 3190	McA 24		41040	$08031+1942$		986.8865	33.5		0.250	
	1086.8865	84.7		0.083		987. 2662	34.4		0.250	
	1288.1491	77.4		0.056	HR 2425	McA 27		47152	$06383+2859$	
HR 3134	Kui 23 AB		41118	06041+2216		986.8865	323.0		0.151	
	1986.8865	108.1		0.252		087.2862	322.1		0.153	
	1987.3717	171.8		0.260		988.2691	518.3		0.171	
	1988.2491	179.0		0.270	ADS 8280	STT 150		47193	$06393+4200$	
ADS 4660	A 1961		41379	${ }^{0.155^{06052+0708}}$		1986.8865	211.8		0.088	
	1086.8921	43.8		0.456	ADS 5280	-TT 152		47395	$06305+2816$	
	1987.2744	43.7		0.145		986.3548	34.9		0.887	
ADS 4803	STT121		40228	06053-r7400	ADS 5296	STF 945		47412	06404+4068	
	1986.8918	288.9		0.260		983.8838	312.2		0.493	
ADS 4681	A 2444		41024	08086+1832		087. 9710	312.4		0.489	
	1986.8920	180.3		0.284	ADS 6332	A 218		47312	$0 C 418+3041$	
ADS 1687	STF 840 EC		41880	${ }^{08068+1046}$		986.8865	67.8		0.194	
	1986.8921	154.3		0.425	$+70^{\circ} 0410$	Mir 465		48079	$00825+7035$	
$+18^{\circ} 1095$	Cou 471		41658	$06073+1848$		1988.2573	245.6		0.582	
	1986.8920	i67.1		0.311	ADS 5408	A 122		48591	06456+2922	
$+20^{\circ} 1082$11	MeA 26		41600	$06044+2640$		986.8896	49.6		0.246	
	1986.8865	218.1		0.068	ADS 5447	STT 156		49059	06474+1812	
	1987.2717	224.3		0.068		1986.8839	233.5		0.397	
	1988.2491	228.7		0.070		067.2745	233.2		0.397	
ADS 4696	STT 130		41542	$06078+4240$		988.2548	231.3		0.386	
	1986.6920	300.1		0.418	ADS 5458	ST'f 167		49291	$06478+0020$	
ADS 4782	A 2514		253682	$06097+1630$		1986.8889	202.2		0.343	
	1986.8050	00.7		0.300	HR 252).	Fio 322		18043	06402-0217	
ADS 4750	A 54 AB		27033	$06098+2014$		1987.2744	52.9		c. 158	
	1986.8920	336.1		0.669		988.2546	60.4		0.153	
ADS 476\%	Bu 1058		42216	926105+2300	ADS 5466	A 2360	60.4	--	06494+4037	
	1988.8820	238.4		0.228		986.8866	273.6		0.150	
ADS 4786	A 86 AB		42398	06117+2C46	$+35^{\circ} 1611$	Con:1738		49472.	08502--3625	
	1986.8y20	268.0		0.424		986.8866.	110.3		0.107	
ADS 4788	$\begin{aligned} & \text { Ku 701 } \\ & 1988.8920 \end{aligned}$		\$2308	$0_{0.183^{06120+3531}}$	+ $24^{\circ} 14^{12} 7$	Cou 768		49822	08503+2410	
HR 2214	$\begin{aligned} & 1988.8920 \\ & \text { Kul } 24 \end{aligned}$	241.6	42954	0.183 $06144+1754$.		1986.8866	243.C		0.117	
	1988.8920	139.6		$0.404{ }^{0.144}$	+ $\$ 33^{\circ} 1424$	Cou'1362		265119	$06525+3248$	
	1987.2744	140.6		0.488		1986.8856	313.8		0.248	
ADS 4843	A 2044 AB		253926	$06150+1640$	ALS 5614	STF 963 As		49618	$06532+592 ¢$	
	1986.8920	31.4		0.400		983.88e6	267.1.		0.258	
HR 2236	Rat 5225		43368	$06159+0210$		1087,3719	268.4		0.252	
	1986.8421	244.7		0.103		.988.2548	270,6-		0.246	
	1087.2744	248.7		0.186	HR 2541	Cout 1377		50037	$0.06532+3827$	
ADS 4890	- Fin 331 Aa		43625	$0.106171+0987$		198を.8839	154.4		0.408 .	
	1986.886 .5	3.9		0.058		982.2719	1565		0.479	
	1087.2744	27.6		0.062	1,47	Cou1412		51023	${ }^{06571+3217}$	
	1988.2491	69.9		0.067	ADS $558{ }^{19}$	986.8J66 STT 159 AB	86.1	2352	$0.342{ }_{n} 6573+5825$	
HR 2273	CHARA 22		44112	06197-0749		1988.8839		-3528		
	1988.2401	56.8		0.063		988.8719	50.2 51.6.		0.340	
ADS 4928	Bu 896 AB 1986.6565	130.5	19886	${ }_{0.254}^{08200+2826}$		987.2719	51.6		0.273	
ADS 4051	188719		3i109	65203+0744		988. 2672	54.8		0.272 .	
	1986.8838	62.0		0.470	ADS 6621	A-2459		266945	06577+1935	
ADS 4971	A 2667		44333	$06214+0216$		1988.2574	279.8		0.359	
	1987.2745	184.2		0.286	$+02^{\circ} 1483$	CHARA 25		$6156 \underline{6}$	$06680+0218$	
< $25^{\circ} 1232$	Cou 718		4421i	$06216+2500$		1987,2717	30.8		0.947	
	1886.8895.	139.6		0.220	$+24^{\circ} 1481$	Cou 9 \%		237067	$06584+2443$	
ADS 4950	STF 881 AB		43812	$06221+5922$		986.2866	56.0-		0.104	
	198(.8830	198.L		0.700						
	1987.2710	134.2		0.697						

Table II. (continued)

HR 2605	McA 28		51688	$06595+2555$
	1986.8866	52.4		0.060
	1987.2719	86.2		0.069
	1088.2491	87.1		0.055
$+31^{\circ} 1463$	Cou 1241		267337	06598+3141
	1986.8866	308.9		0.154
ADS 6660	A 2461 AB		51911	06598+1557
	1986.8839	327.6		0.319
	1988.2548	338.4		0.312
	1988.2574	327.7		0.316
ADS 5689	STT 163 AB		52309	07011+1146
	1986.8866	64.9		0.120
ADS 8724	4 A 1324 AB			07041+5627
	1988.2573	178.4		0.333
$+37^{\text {c }} 1645$	McA 29		52823	$07043+3734$
	1986.8867	179.1		0.181
	1988.2491	180.8		0.183
ADS 5752	A 519		53299	07044-0303
	1988.2574	274.9		0.418
$+36^{\circ} 1567$	Cou 2063		53816	07080 +3552
	1066.8867	4.5		0.192
	1986.8884	2.8		0.192
$+16^{\circ} 1395$	Hei 128		84128	07083+1638
	1986.E863	220.0		0.217
$+20^{\circ} 1729$	Cout 925		B4985	07118+1953
	1986.8921	79.0		0.490
	1988.2574	77.3		0.499
ADS 5867	${ }^{1} 2847$		56163	07121+0622
	1988.2574	150.1		0.418
ADS 8918	8 Bu 1022		58726	07161+2653
	1986.8893	302.9		0.449
	1888.2573	301.6		0.432
ADS 5940	A 2853		56153	07164+1227
	1988.2574	320.8		0.480
ADS 5949	A 2855		56361	$07168+0059$
	1988.2574	272.4		0.390
$+37^{0} 1696$	Cou 1883		-	07173+3744
	1986.8894	59.4		0.648
ADS 8952	2 A 2856		56444	$07175+1324$
	1988.2574	302.6		0.609
$+24^{\circ} 1600$	Cou 585		56462	$07181+2405$
	1986.8893	185.0		0.396
ADS 8975	5 Hu 619 AB		56627	$07202+4820$
	1988.8894	0.6		0.379
ADS 8906	3 STF 1074 AB		57275	07205+0024
	1986.8021	168.6		0.666
	1988.2574	169.5		0.671
$+14^{0} 1649$	Hei 128		87675	07237+1417
	1086.8866	49.3		0.179
HR 2837	CHARA 26		58579	$07269+2015$
	1986.8867	302.6		0.000
	1988.2520	395.5		0.050
ADS 6089	9 McA 30 Aa		58728	07277+2127
	1986.0867	166.8		0.103
	1986.6893	167.1		0.104
	1987.2699	168.3		0.094
	1988.2820	109.2		0.089
ADS 6114	4 A 2868		69151	07292+1253
	1986.8921	10.0		0.688
ADS 6119	9 Mch 31 Aa		60148	07298+2755
	1983.8887	108.5		0.041
	1986.8894	127.6		0.033
ADS 6138	8 A 2869		89473	$07305+0743$
	1986.8921	11.6		0.126
ADS 6137	${ }^{1}$ A 673 AB		E9372	07309+3034
	1986.8804	350.6		0.388
HR 2:86	McA 36		60107	07336+1550
	1986.8893	91.1		0.169
	1987:3746	91.1		0.166
	1088.2491	93.2		0.151
ADS 6186	5 STT 175 AB		60:18	0735z+3058
	1986.8894	328.2		0.212
	1987.2680	328.7		0.314
ADS 3200	0 A 2874		60634	c7062+1815
	1.866 .8922	58.1		0.270

$+20^{\circ} 1855$	$\begin{gathered} 55 \quad \text { Coll } 381 \\ 1986.8895 \end{gathered}$	107.8	0.322	
$+28^{\circ} 1427$	7 Gou 1247		61034	07385+3810
	1986.8894	124.4		0.133 -07387-0454
ADS 6245	45 A 535		61344	07387-046
	1087.2745	170.7		0.349
ADS 6276	16 STT 177		61600	07417+3726
	1986.8921	162.7		0.411
ADS 6347	47 Ho 247		62720	07462+2108
	1986.8921	233.7		0.408
	1987.2745	234.3		0.408
$+19^{\circ} 1832$	32 Cou 772		62947	07471+1847
	1086.8805	72.7		0.846
. $03^{\circ} 2065$	Rat 4375		63283	07478-0332
	1986.8895	336.8		0.112
	1987.2746	330.8		0.108
ADS 6354	54 Hu 1247		62522	07479+6019
	1986.8894	261.4		0.236
$-19^{\circ} 2068$	3 B 1077 AB		63395	07480-1924
	1987.2745	303.8		0.592
ADS 6378	78 WRH 15 AB		63208	07486+2300
	1986.8895	47.3		0.277
$+20^{\circ} 1920$	0 Cou 926			$07506+1044$
	1986.8895	256.3		0.293
ADS 6405	1 28880		63709	07508+0317
	1086.8895	303.1		0.085
	1987.2745	307.8		0.079
ADS 6412	12 Bu 1195		63076	07513-0925
	1987.2745	90.9		0.179
ADS 6420	20 Bu 101		64096	07518-1352
	1987.2748	103.1		0.365
HR 3072	Fin 325		64235	07528-0526
	1987.2746	101.6		0.175
$+14^{\circ} 1778$	8 Hei 55			07540+1346
	1986.8895	351.2		0.163
ADS 6444	14 Cou 1111 Aa		64350	07545+2610
	1988.2574	165.9		0.512
ADS 6443	43 A 675		64326	07546+3100
	1986.8894	157.4		0.193
ADS 6445	45 A 1072		61123	07556+6831
	1986.8894	348.3		0.206
$+24^{\circ} 1806$	06 Colu 229		64704	07561+2342
	1986.8895	150.7		0.147
	1088.2520	159.0		0.163
ADS 6483	33 STT 185		05123	07573+0108
	1086.8895	86.5		0.146
	1987.2745	88.1		0.143
$+27^{\circ} 1521$	12 Coul 1112			$08001+2659$
	1986.8894	97.2		0.265
ADS 6511	11 A 2954 AB		63738	08005+0055
	1988.257¢	344.0		0.707
ADS 6526	26 A 1680		66094	08017-0836
	1986.8895	261.1		0.247
	1987.2745	265.4		0.238
ADS 6538	38 STT 185		66176	$08033+2616$
	1986.8839	'3.2		0.946
	1088.2574	7i.1		0.967
ADS 6549	49 STT 187		66299	08043+2302
	1986.8867	352.7		0.363
	1987.2664	353.3		0.362
	1988.2574	352.9		0.354
ADS 6554	54 Bu 581 AB		66500	08043+1218
	1087.2664	279,5		0.551
ADS 6578	78 - 1333		66610	$08070+5407$
1	1986.8339	206.8		0.377
	1986.8858	207, 1		0.375
	1987.2665	20 C .0		0.366
ADS 6650	50 STI 1106 AB		68255	$08122+1740$
	1986.8839	213.3		0.602
	1987.2664	200.2		0.594
	1988.2576	197.9		0.588-
$+29^{\circ} 1712$	12 Cou 111d		50254	08126+284
	1986.8867	225.7		0.209
	19872664	223.6		0.196

Table II. (continued)

Table II. (continued)

ADS 7662	A 2145		88021	$10093+2080$
	987.2638	161.3		0.082
	Hu 874		88355	$10117+1321$
	1987.2638	276.8		0.052
	988.2822	277.0		0.092
ADS 7675	Ho 44		88478	10121-0613
	1986.8840	204.8		0.565
	1987.2719	205.8		0.540
	1988.2577	205.0		0.548
ADS 7769	A 3570		90361	$10260+0256$
	1986.8840	306.1		0.333
	1087.2638	307.4		0.336
$+20^{\circ} 2486$	Cout 292		90460	$10269+1931$
	1987.2638	242.0		0.192
ADS 7775	STT 217		90444	$10270+1713$
	1086.8840	144.0		0.540
	1987.2665	144.3		0.513
	1988.2577	144.9		0.551
ADS 7780	Hu 879		90537	$10279+3643$
	1986.4038	233.3		0.384
	1986.8840	233.2		0.370
	1987.2665	233.8		0.356
	1988.2496	235.1		0.322
	1988.2549	235.3		0.331
ADS 7788	A 2152		90698	$10290+3452$
	1988.2577	42.1		0.417
ADS 780919	CHARA 132	Aa	91172	10311-2411
	1987.2719	176.1		0.110
ADS 7844	A 2055 AB		91751	$10366+4430$
	1986.8840	163.9		0.348
	1987.2667	163.2		0.343
	1988.2577	164.4		0.341
+35 ${ }^{\circ} 2166$	Cou 1417		91949	$10376+3446$
	1987.2693	206.4		0.299
	1988.2577	206.3		0.300
ADS 7896	- A 2768		92749	$10427+0335$
	1987.2638	304.9		0.289
	1988.2522	301.7		0.312
ADS 7000	- A 2760		92812	$10432+0440$
	1988.2577	217.3		0.501
$+26^{\circ} 2131$	1 Cou 591			$10472+2605$
	1988.2577	7.2		0.423
ADS 7926	STT 228		93302	$10473+2235$
	1986.8840	172.9		0.644
	1987.2866	172.4		0.634
	1988.2577	173.5		0.632
ADS 7020	- STT 229		93457	$10481+4107$
	1986.8840	277.3		0.769
	1987.2667	277.5		0.763
	1988.2549	277.1		0.760
	1988.2577	276.0		0.754
ADS 7952	2 A 2373		94120	$10520+1606$
	1987.2638	89.3		0.096
$+20^{\circ} 2110$	10 Cou 960		95342	$11008+2913$
	1986.4093	101.6		0.198
ADS 8047	7 Ho 378		96016	$11050+3825$
	1987.2693	65.6		0.970
	1988.2578	55.3		0.967
ADS 8051	1 A 2378		96130	$11063+1635$
	1088.2578-	136.7		0.507
HR 1314	Fin 47		96202	11053-2718
	1987.2720	227.5		0.170
	1988.2550	222.1		0.178
ADS 8086	6 Bu 220		97411	11124-1830
	1987.2720	326.4		0.297
	1988.2549	324.1		0.291
ADS 8092	2 A 1353		97455	11136+5525
	1986.4039	224.5		0.459
	1988.2578	223.0		0.472
A.DS 8094	4 STF 1517		97561	$11^{11137+2008}$
	1986.8840	325.5		0.467
	1087.2638	325.2		0.462
	1988.2578	325.7		$0.46511150+3735$
ADS 8102	$22^{\text {STT } 232}$		97731	$1{ }^{11150+3735}$
	1987.2666	69.0		0.622
	1988.2578	88.4		0.620

ADS 8104	Hu 639		97773	$11154+4728$
	1986.4066	86.7		0.100
	1988.2523	89.6		0.115
	1988.2549	89.6		0.112
$+43^{0} 2096$	Cou 1904		97857	$11188+4227$
	1986.4038	199.6		0.338
	1987.2639	200.4		0.348
ADS 8117	A 2158		98087	$11174+4146$
	1987.2693	359.1		0.463
	1988.2578	359.6		0.456
HR 4380	CHARA 133		98353	$11191+3811$
	1987.2721	145.4		0.068
ADS 8146	A 2776 AB		98914	$11231+0408$
	1987.2638	106.2		0.120
. $00^{\circ} 2442$	Rst 4944		00651	11270-0142
	1987.2638	288.5		0.235
	1988,2523	287.8		0.229
ADS 8189	${ }^{\text {STT }} 234$		100018	$11308+4117$
	1986.4039	137.2		0.352
	1987.2640	138.8		0.365
	1988.2533	141.3		0.583
ADS 8198	Hu 1134		100235	$11322+3615$
	1986.4066	124.9		0.093
	1997.2640	124.1		0.103
ADS 8197	${ }^{\text {STT }} 235$		100203	$11324+6105$
	1086.4030	204.7		0.536
	1086.8842	267.7		0.643
	1987.2667	269.3		0.656
	1988.2549	272.9		0.664
ADS 8210	${ }^{1} \mathrm{Hu} 727$		233841	$11332+4928$
	1987.2693	22.4		1.243
	1988.2578	21.7		1.264
$+48^{\circ} 1954$	Cou 1573			$11336+4729$
	1988.2578	89.3		0.884
ADS 8231	1 STF 1555 AB		100808	$11363+2747$
	1986.4039	144.7		0.621
	1986.8842	144.0		0.622
	1987.2667	144.7		0.627
	1988.2523	145.0		0.633
	1988.2578	146.0		0.630
ADS 8249	9 STE 1.559		101150	$11388+6421$
	1987.2693	323.1		2.002
HR 4501	62 UMa		101606	$11415+3145$
	1987.2640	55.5		0.047
	1988.2523	50.8		0.040
. $03{ }^{\circ} 3167$	Kst 5524		101969	11441-0448
	1988.2578	51.8		0.080
HR 4528	CHARA 134		102510	$11470+0815$
	1087.2694	78.7		0.259
$+38^{0} 2283$	3 Cou 1129		-	$11498+3784$
	1988.2605	145.4		0.660
ADS 8347	7 A 1777 AB		103483	$11551+4629$
	1986.4066	179.6	*	0.103
	1987.2695	186.3		0.102
	1088.2523	196.1		0.095
ADS 8387	7 A 1088		104288	$12005+6912$
	1986.4039	292.0		0.132
ADS 8419	19 STF 3123 AE		105122	$12061+6842$
	1986.4039	293.1		0.164
	1986.4086	295.2		0.170
	1987.2640	288.7		0.173
	1988.2550	284.6		0.180
ADS 8433	3 A 1098		105369	$12080+4242$
	1988.2605	357.0		0.373
HR 4632	CHARA 135		105778	$12105+1649$
	1987.2694	176.9		0.262
ADS 8446	46 STF 1606		105824	-12108+3954
	1986.4039	243.1		0.300
	1986.8842	238.7		0.285
	$1087.2 \mathrm{G40}$	238.0		0.289
	1088.2406	232.5		0.289
	1988.2550	231.6		0.280
HR 4642	CHARA 136		106022	- 12120+2832
	1987.2695	176.3		0.309

Table II. (continued)

ADS 8485	6 Hu 736		106689	$12160+4807$	ADS 8863	A 2166		115955	$13202+1747$
	1987.2693	219.9		0.261		1986.4067	327.7		0.058
	1988.2605	217.8		0.263		1987.2642	340.2		0.083
HR 4689	McA 37		107259	12190-0040	ADS 8864	STF 1734		116095	$13207+0257$
	1086.4067	57.1		0.093		1986.4005	178.6		1.144
	1987.2640	92.2		0.088		1987.2723	178.1		1.129
	1987.2667	91.3		0.088		1988.2579	178.4		1.139
	1988.2496	129.4		0.103	$+43^{\circ} 2324$	Cou 1581		116377	$13225+4242$
	1988.2550	132.5		0.099		1987.2642	159.6		0.266
ADS 8635	STT 249 AB		107922	$12238+5410$		1988.2606	169.1		0.263
	1986.4039	266.0		0.411	ADS 8887	Ho 260		116405	$13236+2914$
	1987.2604	265.7		0.405		1988.2579	76.9		1.266
ADS 8540	STT 250		108008	$12244+4306$	ADS 8801	A 1600 AB		116878	13258+4430
	1987.2668	345.3		0.384		1987.2642	303.8		0.258
ADS 8551	1 A 78		108320	12267-0535	$+33^{\circ} 2337$	Cou 787			$13266+3235$
HR 4789	$\begin{array}{r} 1987.2722 \\ \text { WRH } \end{array}$	158.8	109	0.148		1988.2606	150.3		0.334
	1986.4041	7.5	10948	0.303	$+31^{\circ} 2500$	Wor 24		--	$13320+3109$
	1987.2642	6.6		0.291	VW Com ${ }^{198}$	1988.2606 Gliese	72.6		$0.22413328+1649$
	1988.2496	5.9		0.273		1988.2579	42.7		$2.909{ }^{108}$
	1988.2550	6.1		0.272	$+31^{\circ} 2508$	Cou 600			$13343+3044$
+27 ${ }^{\circ} 2158$	Cou 596		110297	$12409+2708$		1988.2579	56.0		0.558
	1986.4067	194.0		0.076	ADS 8954	Du932 AB		118054	13348-1313
ADS 8635	A 1851		110465	$12422+2622$		1986.4095	52.4		0.358
	1988.2579	266.2		0.502		1087.2722	53.1		0.357
$+43^{\circ} 2270$	Cou 1879			$12533+4246$		1988.2524	60.6		0.360
	1988.2606	33.0		0.244	ADS 8964	AG 190		-	13357+4939
ADS 8695	STF 1687 AB		112033	$12533+2115$		1088.2581	12.2		2.387
	1986.4041	170.2		1.017	ADS 8980	ES 608			13380 +4808
	1986.8842	170.6		1.018		1988.2581	309.8		2.258
ADS 8708	STT 256		112398	12564-0057	ADS 8987	Bu 612 AB		118889	13396+1044
	1988.2579	96.1		0.980		1986.4069	216.9		0.308
$+09^{\circ} 2696$	Fin 380		112803	$12572+0818$		1987.2642	220.0		0.305
	1986.4067	155.6		0.148		1988.2498	224.3		0.297
	1987.2642	154.8		C. 166	ADS 8988	Hu 897		-	$13400+3759$
	1988.2496	156.8		0.161		1988.2581	31.7		0.390
	1988.2524	156.8		0.171	ADS 9019	STF 1781		119931	$13461+0507$
$+25^{\circ} 2578$	Cou 397		112572	$12575+2457$		1986.4095	147.5		0.434
	1987.2668	64.5		0.621	19	1987.2642	150.1		0.456
	1988.2550	64.7		0.626		1988.2550	153.9		0.484
	1988.2879	63.9		0.622		1988.2581	164.1		0.480
ADS 8751	STF 1711		113322	$13029+1328$	HR 6178	Kui 65		120033	13472-0943
	1988.2579	340.0		0.619		1087.2642	239.5		0.311
ADS 8787	Bu 341		113415	13038-2035		1988.2550	237.8		0.500
	1987.2722	312.4		0.825	-13 ${ }^{\circ} 3786$	Rst 3852		121136	13530-1439
	1988.2624	311.9		0.819		1987.2722	133.8		0.188
ADS 8769	Bu 929		113459	13039-0340	ADS 9066	STF 1792		-	$13571+1227$
	1987.2722	200.4		0.700		1988.2581	291.2		2.184
Gliese 407	Wor 23			$13048+5555$	ADS 9071	A 1614		121995	$13576+5200$
	1988.2578	163.4		1.592		088.2581	129.9		1.289
ADS 8885	A 1605		234012	$13069+5200$	Gliese 9466	6 Ald 112		-	$14019+1530$
	1088.2579	167.6		0.978		988.2581	179.4		1.667
ADS 8801	McA 38 Aa		114330	13100-0532	ADS 9089	A 1097 AB		122740	$14020+5713$
	1986.4067	331.3		0.490		988.2581	229.8		0.414
	1987.2642	329.9		0.475	+14 ${ }^{\circ} 2691$	Hei 65		122654	$14029+1417$
	1087.2723	330.8		0.477		988.2581	:19.9		0.472
	1988.2498	330.9		0.467	ADS 9094	Bu 1270		122769	14037+0829
ADS 8804	STF 1728 AB		114378	$13100+1731$		986.4069	81.4		0.140
	1986.4041	192.8		0.534		987.2670	98.6		0.126
	1987.2668	192.4		0.418		988.2606	111.9		0.117
	1988.2406	192.3		0.215	ADS 9121	STT 276 AB		123670	$14082+3645$
HR 4978	Fin 305		114576	13117-2633		988.2581	205.7		0.492
	1987.2722	98.3		0.169	ADS 9159	STT 278		124399	$14120+4411$
ADS 8825	A 1607		116002	13134+5252	19	987,2670	309.0		0.322
	1988.2578	21.2		0.477	ADS 9158	STT 277 AB		124346	$14124+2843$
ADS 8831	Fin 297 AB		114993	13145-2417		986.4042	42.1		0.306
	1987.2722	145.9		0.224		987.2670	42.6		0.297
ADS 8843	STT 263		-	$13167+5034$		988.2606	41.4		0.294
	1988.2579	135.6		1.854	ADS 9160	A 1100		124492	$14138+0859$
HR 5014	Fin 350		115488	13175-0041		087.2670	173.8		0.298
	1986.4067	20.3		0.127		988.2606	172.9		0.304
	1987.2642	26.2		0.117	$+31^{\circ} 2596$	Coti 606		-	$14138+3100$
	1988.2524	36.8		0.080		986.4069	187.4		0.119
ADS 8862	Hu 644		115053°	$13197+4747$	ADS 9174	STF 1816	187.4	124587	14139+2906
	988.2579	265.0		1.169		987.2670	89.5		0.721
						988.2581	89.8		0.700

Table II. (continued)

ADS 9182	2 STF 1819		124757	$14153+0308$	ADS 9425	5 STT 288		131473	$14534+1543$
ADS 9220	1988.2579	224.3		0.881		1986.4043	170.9		1.357
	0 A 1102		125725	$14180+6914$	Gliese 568	8 Ross 52		-	$14639+2333$
1986.4041		102.0		0.392		1988.2582	75.3		0.611
$+64^{\circ} 0993$	3 Mlr 168		-	$14187+6409$	ADS 9443	$3 \quad \text { A } 2172$		131954	$14565+0255$
	1988.2581	115.1		0.228		1988.2607	175.5		0.085
ADS 9215	5 STF 1832 AB		125377	14189+0354	ADS 9453	3 Bu 239		132219	14587-2739
	1988.2581	151.7		0.431		1987.2725	351.9		0.565
HR 5372	CHARA 137		125632	$14189+5452$	ADS 9459	A 2173		-	$14590+0059$
	1987.2698	13.5		0.103		1988.2607	131.2		0.271
$+31^{\circ} 2612$	2 Cou 482			$14213+3050$	$+47^{\circ} 2190$	Cou 1760		-	$14593+4649$
	1988.2581	120.4		0.608		1986.4070	208.8		0.212
ADS 9238	8 A 148		126126	$14220+5107$		1988.2609	209.2		0.203
	1988.2581	5.5		0.630	$+18^{\circ} 2966$	6 Cou 188		-	15005+1753
ADS 9247	7 Bu 1111 BC		126128	14234+0827		1988.2607	227.1		0.285
	1987.2668	58.7		0.257	ADS 9480	0 Bu 348 AB		132933	$15018+0008$
	1988.2499	68.2		0.255		1986.4042	109.6		0.808
	1988.2526	62.1		0.244	HR 5612	CHARA 43		133484	15031+4439
$+16^{\circ} 2642$1	2 McA 39		126269	$14241+1617$		1986.4070	91.0		0.168
	1987.2670	158.4		0.048		1988.2527	105.0		0.115
	1988.2526	153.8		0.065	ADS 9494	4 STF 1909		133640	$15039+4739$
ADS 9364	4 A 2069		126695	$14268+1625$		1986.4095	44.9		1.397
	1986.4070	. 354.0		0.211		1988.2500	46.3		1.614
$+21^{\circ} 2859$	Cou 97			$14304+2255$	$+40^{\circ} 2856$	Cou 1271		134303	$15078+3986$
	1988.2607	244.5		0.350		1988.2582	166.2		0.388
ADS 9301	1 A 570		127726	$14323+2841$		1988.2609	165.7		0.382
	1986.4070	283.2		0.155	$+40^{\circ} 2859$	Cou 1272			$15088+4013$
	1987.2670	268.0		0.161		1988.2609	51.4		0.284
	1988.2498	252.5		0.169	ADS 9515	5 Rat 4534 AB		134213	15089-0610
	1088.2524	252.5		0.160		1987.2725	12.4		0.367
ADS 9313	3 AGC 6°		128042	$14330+2049$		1988.2582	12.0		0.369
	1988.2582	134.0		0.772	ADS 9530	A 1116		134827	$15116+1008$
ADS 9318	8 Bu 941 AB		128233	$14358+0015$		1986.4098	47.1		0.759
	1988.2607	150.6		0.250		1987.2671	47.1		0.749
ADS 9324	A 347		128718	${ }^{14369+4813}$		1988.2582	46.9		0.767
	1987.2671	266.8		0.565	HR 5654	Cou 189		134943	15121+1858
	1988.2581	266.4		0.567		1986.4098	144.7		0.460
ADS 9323	CHARA 42 A	-	128563	${ }^{14373+0217}$		1087.2671	143.6		0.459
	1986.4042	165.6		0.201		1988.2499	145.5		0.473
	1987.2643	169.5		0.107	ADS 9532	${ }^{10} 8361$ Aa	14.5	134759	18123-1947
	1988.2528	173.1		0.172		1987.2728	350.0		0.138
ADS 9329	STF 1863		128941	${ }^{14381+5135}$	ADS 9547	7 Ho 60		135368	$15136+3463$
	1986.4043	67.4		0.651		1988.2607	170.8		0.087
	1987.2671	67.0		0.651	$-12^{\circ} 4227$	CHARA 44		135681	15168-1302
	1988.2581	66.6		0.648		1986.4098	173.9		0.156
ADS 9334	A 1107		129006	${ }^{14401+0504}$	ADS 9578	8 STF 1932 AB		136176	$18183+2649$
	${ }_{1988.2582}^{\text {McA }}$	86.0		${ }^{0.463} 14403+2158$	ADS 9580	1988.2499	254.1		1.801
HR 5472	${ }_{\text {1986.4070 }}$	91.6	129132	$0.048^{14403+2158}$	ADS 9589	A A 1630	248.5	\square	${ }_{0.775}^{16192+4329}$
	1987.2643	82.2		0.066	+24 ${ }^{\circ} 2847$	Cou 103			18200+2338
	1988.2526	68.5		0.064		1988.2582	281.7		0.536
ADS 9843	3 STF 1865 AB		129246	$14411+1344$	HR 5715	CHARA 46	281.7	136729	18201+8158
	1986.4095	303.9		0.962		1987.2644	92.2		0.166
	1087.2671	303.4		0.958	ADS 9600	H Hu 146		136596	$16210+2104$
	1987.2761	303.5		0.955		1988.2582	128.6		0.633
	1988.2499	303.5		0.930	ADS 9617	7 STF 1937 AB		137107	$15232+3018$
ADS 9352	2 Hu 575 AB		-	$14426+1930$		1986.4044	14.4		0.914
	1986.4043	316.7		0.392		1988.2499	20.2		0.992
	1988.2582	204.0		0.325		1988.2526	20.5		0.990
ADS 9378	STT 285		130188	$14455+4222$	$+40^{\circ} 2878$	Cou 1441		-	$15233+4022$
	1986.4043	318.4		0.325		1986.4043	17.1		0.250
	1987.2642	316.1		0.336		1988.2609	16.6		0.256
$+24^{\circ} 2770$1	Coll 100		-	$14450+2343$	$+61^{\circ} 1505$	5 Mlr 346		-	$15259+6032$
	1987.2643	295.7		0.148		1988.2582	31.6		0.273
	1988.2607 ${ }^{\text {Fin } 309}$	289.0		0.137	HR 5747	$\beta \mathrm{CrB}$		137909	$16278+2906$
HR 5804	${ }_{1986.4070}$		129980	${ }_{0.258}^{14462-2110}$		1986.4044	145.6		0.306
	1986.4070	298.5		0.258		1087.2644	140.7		0.282
	1987.2725	306.6		$0.280{ }_{14480}+0557$		1988.2499	134.1		0.320
ADS 9392	STF 1883		130604	${ }^{14489+0557}$		1988.2526	134.1		0.221
	1986.4042	289.4		0.535	ADS 9682	${ }^{1 / 11163}$	134.1	138439	15307+3810
	1987.2671	288.7		0.558		1987.2644	50.7		0.109
	1988.2551	288.2		0.588	ADS 9688	A 1634 AB		138629	15318+4053
ADS 9400	(1986.4042 ${ }^{\text {A } 1110}$ AB	247.2	130726	$0_{0.639}^{14497+0800}$	HR $6778{ }^{1}$	1988.2609 Cou 610	33.0	138749	${ }^{0.050} 16329+3121$
	1987.2671	247.1		0.635		1986.4044	202.3		0.719
						1988.2499	201.2		0.737

Table II. (continued)

ADS 9684	4 STF 1956		138884	$15333+4149$	ADS 9932	Bı1949		144892		16085-1006
	1988.2582	34.0		0.347		1087.2726	194.6		0.457	
$+27^{\circ} \mathbf{2 5 1 3}$	3 Cou 788			$15347+2655$		1088.2556	194.5		0.465	
	1986.4097	65.9		0.133	ADS 9952	A 1799		145648		$16115+1607$
	1988.2807	69.4		0.123		1988.2556	123.1		0.677	
ADS 9716	3 ST'T 298 AB		139341	$15361+3948$	HR 6032	Fin 354		145889		$16115+0943$
	1986.4043	257.3		0.329		1986.4098	84.0		0.127	
	1988.2500	287.8		0.283		1987.2726	84.9		0.125	
ADS 9730	0 Hu 1168		139905	$15370+6426$		1988.2501	83.3		0.122	
	1988.2309	180.5		0.121		1988.2527	83.2		0.118	
ADS 9731	1 STF 1964 CD		139681	$15382+3614$	ADS 9971	Rat 3936 AB		145996		16143-1024
	1986.4043	18.6		1.584		1987.2726	269.6		0.290	
$+26^{\circ} 2712$	Cou 612		139749	$16390+2545$		1988.2556	267.2		0.285	
	1986.4044	255.0		0.188	ADS 10006	6 STT 309		147275		$16192+4140$
	1987.2643	250.6		0.193		1986.4044	286.6		0.317	
ADS 9735	${ }^{\text {Bu }} 122$		139628	15399-1947		1987.2644	288.3		0.314	
	1988.2582	222.8		1.840		1988.2500	288.5		0.306	
ADS 9742	2 A 2076		139989	$15405+1841$	HR 6084	σ Sco Aa		147168		16212-2536
	1986.4098	180.9		0.674 .	19	1987.2726	84.5		0.407	
	1988.2582	181.4		0.680	HR 6103	CHARA 53 A		147677		$16221+3053$
ADS 9756	- STF 1969		140590	$16413+5959$		1986.4098	93.0		0.163	
	1088.2582	23.4		0.642	$-16^{\circ} 4280$	CHARA 54		147473		16220-1701
ADS 9744	4 Hu 580 AB		140159	$1^{15416+1941}$		1987.2726	81.2		0.127	
	1986.4097	48.1		0.047	ADS 10052	2 STF 2054 AB	81.2	148374	. 12	$16238+6142$
	1987.2643	58.8		0.099		1986.4044	352.9		1.053	
	1988.2527	68.9		0.149		1088.2529	352.5		1.044	
$+42^{\circ} 2629$	Gou 1445		140432	$15420+4204$	ADS 10052	2 CHARA 138		148374	1.044	$16238+6142$
	1986.4071	227.8		0.107		1986.4044	174.0		0.211	
	1987.2644	229.2		0.104	HR 6123	CHARA 55		148283		$16254+3724$
	1988.2527	222.8		0.087		1986.4099	175.7		0.168	
ADS 9757	STE 1967		140436	$15428+2618$		1987.2645	172.4		0.128	
	1986.4097	120.0		0.607	ADS 10068	8 Bu 814		148552		$16272+3952$
	1988.2500	119.1		0.647		1986.4044	354.6		0.327	
ADS 9768	Bu 619		140438	15431+1340	- $15^{\circ} 4324$	Rat 3950		148304		16286-1613
	1986.4098	4.7		0.703		1987.2726	69.4		0.285	
$+22^{\circ} 2878$	Cou 106		${ }^{\prime} 140629$	$15440+2220$	ADS 10075	5 STF 2052 AB		148653		$16289+1825$
	1986.4097	272.7		0.394		1986.4044	130.8		1.661	
	1988.2556	272.1		0.392		1987.2728	130.0		1.689	
$+30^{\circ} 2708$	Cou 614		140889	$15451+2936$	ADS 10078	8 A 2084		-		$16296+1635$
	1988.2656	38.8	14088	0.336		1988.2556	144.3		0.494	
ADS 9783	A 2077			${ }^{16469+1904}$	ADS 10085	5 Hu 1173		148909		$16300+3354$
	1988.2583	229.4		$0.557{ }^{18474+5929}$		1986.4098 1987.2672	43.6 42.5		0.190 0.193	
LDS 9794	A 1127 i986.4043		141730	$0.328^{18474+5929}$	ADS 10087	1987.2672 ${ }^{\text {STF } 2055 ~ A B ~}$	42.5	148857	0.193	$16310+0159$
	1986.4043 1988.4082	290.4 289.0		0.326 0.314	ADS 19	986.4098	17.7	14885	1.306	
	- ${ }^{\text {a }} 1918$		234262	$15486+4949$		987.2727	18.2		1.314	
	583	7.5		0.338		988.2501	19.2		1.329	
	. 609	8.7		0.347	ADS 10092	2 STF 3106		148931		16318-0702
AuS ..	Hu 912		142089	$18492+6082$		987.2727	198.8		0.376	
	1986.4071	311.1		0.136		988.2556	197.9		0.385	
	1987.2644	316.4		0.075	HR 6168	O Her		140630		$16341+4227$
HR 5895	CHARA 51		141851	15513-0505		977.1781	24.9		0.079	
	1987.2726	194.8		0.112		977.3284	22.5		0.680	
	1988.2527	186.2		0.101		086.4099	104.1		0.115	
ADS 9812	Hu 163		141898	16519-1232		987.2672	188.8		0.102	
	1987.2726	70.2		0.428	19	988.2529	182.9		0.080	
	1988.2586	70.4		0.416	ADS 10140	Bu 953 AB		150631		$16367+3948$
ADS 0834	Hu 1274		142378	15550-1923		988. 2556	101.6		0.310	
	1987.2726	121.0		0.563	ADS 10149	CHARA 56 Ba		150379		$18406+0412$
ADS 9836	1077		142456	16567-2645	ADS 10.68	988.2501	88.9		0.212	
	1087.2736	175.3		0.237	ADS 10169	STF 2091		150203		$16422+4112$
	1988.2856	178.3		0.229		088.2556	318.1		0.574	
Hic 6953	6 Sco		143275	16003-2237	ADS 10189	Hu 664		161267		$16437+6132$
	1987.2726	183.6		0.157		986.1044	303.0		0.480	
ADS 9909	STF 1908 AB		144069	16044-1122		988.2556 ${ }^{\text {S }}$	303.0		0.475	
	1957.672 ${ }^{\text {2 }}$	34.0		0.672	ADS 10184	STF 2094 AB		151070		$16442+2331$
	1988.2528	37.0		0.322		986.4099	74.4		1.233	
ADS 9918	Fin 384 Aa		144362	16057-0617		988.2556	74.2		1.228	
	1988.2627	177.8		0.050	$+29^{\circ} 2876$	Cou 400		151236		$16450+2928$
ADS 9931	A 1798		144935	16070+1425	ADS 10220	986,4099	18.1		0.211	
	1986.4098	26.1		0.191	ADS 10229	STF 2106		152113		$16511+0025$
ADS 9936	Bu 366 AB		145240	$16081+4524$		986.4045	179.9		0.593	
	1986.4044	281.2		0.269		987.2672	178.7		0.603	
	1986.4099	281.6		0.262		988.2501 1	179.1		0.611	
	1987.2644	281.0		0.267						
	1988.2527 2	282.6		0.259						

Table II. (continued)

ADS 10230 STT 315 1987.2672 1988.2501 1988.2528 $+20^{\circ} 2915$ Coll 492 1988.2596

ADS 10253 h 350 1988.2536

ADS 1026\% B 323
1988.2556

ADS 10257 Bu 241 1987.2727
1988.2556

ADS 10279 STF 2118
1986.4044 1988.2529

ADS 10268 Hu 160 1988.2556

ADS 20276 A 1143 AB
1988.2556

ADS 10265 Bu 1117
1987.2727

ADS 10287 Hu 162
1988.2566

ADS 10204 STT 321 1988.2557

ADS 10295 Bu 1298 AB
1988.2557
STF 2114 1986.4045 1087.2727

ADS 10340 A 1146 1988.2556

ADS $10345{ }^{1988.2566}{ }^{\text {STF } 2130 ~ A B ~}{ }^{123.3} 154905{ }^{0.379}{ }_{17054+5427}$ $+38^{\circ} 2885 \stackrel{1986.4044}{\text { Cou } 1291}$
ADS $10360{ }^{1987.2673}$ HII 1176 AB 1986.4099
1987.2673

HR $6306{ }^{1}$
1988.2531
$-10^{\circ} 4547 \begin{gathered}1987.2673 \\ \mathrm{McA} 46 \\ 1987.2699\end{gathered}$
$+49^{\circ} 2600$ Goll 1775
$+45^{\circ} 2505{ }^{1988.2557}$ Kui 79 AB
1986.4045
1988.2557

ADS 10478 CHARA 150 A
ADS 10464 Hu 669
1988.2557

ADS $10469 \mathrm{~S}_{\text {wi }}$
ADS 10459 B 1988
1986.4045
1988.2557

ADS 10405 A 232
HR $6469 \stackrel{1988.2557}{\text { McA }^{17}}$ 1987.2673
1988.2529
$+23^{\circ} 3092 \xrightarrow{\text { Cou } 415}$
1986.4100

ADS 10504 Ho 414 AB 1988.2557
$+21^{\circ} 3107$ Cou 201 AB
ADS $10523 \stackrel{1988.2557}{\text { STF } 2163}$ 1088.2557

ADS 10531 Hu 1179 1986.4102 1987.2673 1988.2529 1988.2610

$2.12217075+3810$
${ }^{0.116} 17081+3555$
234.9
110.30 .13
$82.2155763{ }^{8.104} 17088+6543$
$\begin{array}{lrr}22.9 & 0.095 \\ 165095 & 17103-192 G\end{array}$
$111.8 \quad 0.132$
$81.5 \int_{168876} \quad 0.4599^{17115+4914}$
$\begin{array}{ll}6.3 & 1.109 \\ 9.6 & 0.920 \\ & 186014\end{array}$
$85.8{ }_{234420} \quad 0.192{ }_{17182+4952}$
$0.83417183+5338$
$\begin{array}{ll}166.6 \underbrace{157103} & { }^{0.513}{ }^{17183+5338} \\ 283.1 & \underbrace{17184+3239}\end{array}$
283.1
281.1

$140.9 \quad 0.080$
$157.5167392{ }^{15.107} 17221+2310$
${ }^{25.6}{ }_{157420}^{0.124}{ }_{17222+2605}^{1021}$
${ }^{100.8}{ }_{157430}{ }^{0.798}{ }_{17224+2056}$

$80.1{ }_{385.9} 157853^{1.470} 17241+3834$
$\begin{array}{ll}285.9 & 0.092 \\ 385.9 & 0.103 \\ 284.5 & 0.117 \\ 284.1 & 0.118\end{array}$

022 Coll				$17276+2624$
	988.2583	47.5		0.416
ADS 10589	Ho 417		158755	$17203+3758$
	088.2583	136.2		0.363
DS 10585	A 351			$17294+2924$
	988.2583	246.9		0.686
DS 10598	STF 2173		158614	17303-0103
	986.4100	336.7		0.993
	988.2583	335.8		1.066
+19 ${ }^{\circ} 3336$	Cou 499		158956	$17313+1901$
	086.4100	59.5		0.150
HR 6560	Mir 5		159870	$17335+5734$
	986.4102	345.1		0.144
$+45^{\circ} 2586$	Colt 1695		160214	$17365+4543$
$\text { S } 10659$	$\begin{aligned} & 988.2583 \\ & 9 \end{aligned}$	254.6	159857	$0.441_{17368+0722}$
	986.4100	355.9		0.091
$+27^{\circ} \mathbf{2 8 5 3}$	Kui 85 AB			$17370+2753$
	1988.2583	244.8		0.248
	1988.2010	244.9		0.248
ADS 10669	Bu 1121		160058	$17374+1233$
	1988.2583	207.4		0.502
HR 6571	CHARA		160181	$17375+2419$
	1986.4100	65.0		0.101
	1987.2700	58.9		0.097
	1988.2611	51.0		0.087
ADS 10696	6 Bu 631		160438	17399-0039
	1986.4100	129.4		0.114
	1988.2810	118.9		0.133
+21 ${ }^{\circ} 3188$	Cou 114		160935	$17418+2130$
	1986.4045	32.7		0.280
	1987.2700	32.7		0.284
ADS 10743	3 Hu 1285		161258	$17436+2237$
	1986.4045	222.1		0.862
	1088.2583	221.4		0.563
ADS 10794	4 Hu 924			$17449+6628$
	1988.2583	206.1		0.301
ADS 10773	3 Ho 70		161675	$17466+3032$
	1988.2583	93.3		$0.431{ }_{17471+4215}$
ADS 10800	- A 697		162051	$0.535^{17471+1215}$
HR 6641	1988.2583 CHARA 64	116.7	162132	${ }^{0.535} 17471+4737$
	1987.2700	116.0		0.170
	1088.2611	117.5		0.179
ADS 10796	G H11288		161819	$17472+1502$
	1988.2583	152.4		${ }^{0.425}{ }_{17472+1742}$
ADS 10795	5 STF 2215		161833	17472+1742
	1986.4045	265.2		0.661
	1987.2699	265.3		0.559
	1988.2583	265.0		0.549
ADS 10814	4 H11182		-	17480+369
	1988.2583	324.6		$0.603{ }_{17490}+2450$
	1988.2583	9.3		1
ADS 10822	2 A 2187		162262	$17501+0214$
	1988.2557	322.1		0.482
ADS 10828	8 STT 337		162405	$17505+0715$
	1686.4045	177.1		0.413
	1988.2583	176.5		0.420
ADS 10848	${ }^{\text {8 }} \mathrm{Hu} 1183$		-	$17512+3821$
	1988.2583	188.4		0.449
ADS 10846	46 A 1164		162670	$17519+0724$
	1986.4045	42.8		0.373
	1988.2557	42.5		0.376
ADS 10850	50 STT 338 AE		162734	$17520+1520$
	1086.4045	351.2		0.835
DS 10866	10864102	273.9	163032	$0.202^{17528+2941}$
$+42^{\circ} 2942$	Cou 1599			$17530+4212$
	1988.2583	127.4		0.603
ADS 11006	STT 340		167101	$17530+8354$
	1986.4047	46.1		0.401
	1987.2700	44.5		0.395
	1988.2584	44.8		0.39
ADS 10871	1 A 235		163077	$17533+2500$
	1986.4045	81.4		0.403
	1988.2583	83.9		0.401

Table il. (continued)

Table II. (continued)

ADS 12079 Ho 98 AB $+12^{\circ} 381987.7563$
$+12^{\circ} 3818$ McA 54 1987.7565 1987.7592
$+10^{\circ} 3801$ CHARA 140 1985.4927

HR $7362 \underset{\text { Fin } 327}{ }$
ADS $12540 \stackrel{\mathrm{McA}}{ } 5 \mathrm{Aa}$ 1986.8883 1987.7618 $+58^{\circ} 1929$ McA 56 1986.8883 1987.7618

ADS 12567 A 713 HR $7436 \underset{\text { cis }}{\substack{1086.4048 \\ \text { CHARA } 87}}$ 1986.8883 HR $7441 \begin{array}{r}1987.7618 \\ 9 \text { Cyg }\end{array}$
ADS 12973 AGC 11 AB 1987.7620 $+29^{\circ} 3867$ Cout 1473 1986.8855

ADS 13312 McA 59 Aa 1986.8865

HR 7084 CHARA 91 1986.8855

HR 7677 CHARA 92
ADS $\begin{gathered}13384 \\ 1986.8884 \\ \mathrm{Bu} 428\end{gathered}$ 1985.4928

ADS 13564 A 1204
1086.8855

ADS 13572 STT 403 AB 1986.8855

ADS 13811 A 2095 AB 1087.753

HR $7755 \begin{gathered}\text { 1087.7537 } \\ \text { CHARA } 93\end{gathered}$
HR $7744 \stackrel{1987.7537}{\mathrm{McA} 60 ~ A a, B}$ 1986.8884 1987.7538 ADS 13600 BAR 11 AB 1986.8855

ADS 13672 CHARA 96 1986.8884 ADS ${ }_{13686}{ }_{1987.7637} 1425$
ADS 13728 A 1427 AB 1986.8855
$+19^{\circ} 4380 \quad$ Cou 327 AB 1087.7538

ADS 13779 A 288
1987.7538

ADS 13820 A 1428 1986.8855

ADS 13834 A 290
${ }^{1987.7538}$
$+35^{\circ} 4115$ Cou 2130 Aa 1087.7537
Cou 1056 1587.7538

ADS 13044 A 1675 1987.7539

ADS 13946 CHARA 99 A
ADS $13939 \begin{gathered}1987.7620 \\ \mathrm{Bu} 671\end{gathered}$ 1986.8855
$+40^{\circ} 3310 \stackrel{\text { McA } 61}{ }$
HR $7860 \stackrel{1987.7620}{\text { WRH AB }}$ 1986.8966

ADS 14073 Bu 151 AB 1087.7620

	178617	1908
86.2		0.263
	178452	190
179.8		0.165
183.6		0.170
	178717	190
29.2		50
	182369	192
90.5	183012	0.087
. 2		10
161.2		0.407
	184467	193
128.5		0.065
172.7		0.06
	18424	1931
272.6	184603	0.354
7.8		0.141
183.2		
	184	193
12.1		0.043
171.7		0.221
	333412	20
4	190429	200
65.4		0.206
	1907	200
205.7	190590	${ }^{0.352}{ }_{2001}$
70.6		
	190887	200
353.7	192550	$0.789{ }_{201}$
139.7		59
	192659	201
170.4		0.931
	192911	2016
158.1	192983	0.201
186.5		65
	192806	201
$\begin{aligned} & 142.4 \\ & 141.9 \end{aligned}$		0.274
		0.279
	193238	2018
197.3		0.382
	193322	2018
198.7		0.049
	193443	2018
268.1	193702	${ }^{0.139} 2020$
109.3		0.333
	19379	202
67.1		0.065
	194113	$20232+2052$
223.6		0.117
	194523	0.323^{202}
209.6	194540	0.323 $20249+3404$
131.8		0.448
	104760	2026
56.4		0.153
	195102	$20281+335$
236.6	195481	${ }^{0.334} 203$
189.6		0.070
	195182	20312+111
126.6		0.350
	196069	$20317+622$
318.6		0.485
	196089	$20331+4050$
149.6		0.033
	196093	$20339+3515$
. 2	196524	$0.282{ }_{20375}$

Table Il. (continued)

ADS 14773	STT 535 AB		202275	$21145+1001$
	986.8910	211.1		0.112
	987.7592	111.5		0.032
	987.7621	104.2		0.034
ADS 14798	A 1692		202642	$21152+5531$
	987.7665	167.6		0.326
ADS 14824	A 401		202810	$21171+4312$
	987.7666	142.2		0.424
$+30^{\circ} 4393$	Cou 1183		202882	$21180+3049$
	987.7540	25.6		0.229
ADS 14839	Bu 163 AB		202908	$21187+1134$
	986.8910	76.4		0.061
	1987.7593	58.0		0.056
ADS 14864	STF 2790 Aa		203338	$21192+5837$
	986.8911	118.6		0.103
	987.7693	120.0		0.100
ADS 14876	A 1605		203579	$21199+5319$
	986.8856	198.4		0.475
ADS 1.1879	A 295		203302	$21206+2743$
	986.8856	243.7		0.360
ADS 14893	A 617		203345	$21214+1021$
	986.8910	108.2		0.121
	1987.7539	100.8		0.162
	1987.7593	98.7		0.163
ADS 14044	A 765 AB		203938	$21238+4710$
	1086.8856	28.1		0.443
ADS 14954	Bu 164 AB		209943	$21281+0923$
	1987.7539	207.6		0.163
	987.7593	207.4		0.161
$+28^{\circ}$ 4085	Cou 940		204051	$21253+2928$
	980.8866	274.7		0.331
	887.7539	274.8		0.337
ADS 14060	A 2288 AB		203993	$21255+0203$
	987.7539	22.4		0.088
HR 8238	β Cep Aa		205021	$21288+7034$
	986.8910	52.5		0.100
	987.7593	55.1		0.090
ADS 16058	A 771		205085	$213 i 5+4817$
	886.8911	54.8		0.058
HR 8253	CHARA 102		205314	$21329+4059$
	186.8911	84.8		0.048
	887.7693	100.9		0.047
ADS 15115	Hu 371		205541	$21354+2427$
	887.7539	300.0		0.301
ADS 15131	Ho 463		205731	$21362+4253$
	86.8856 ${ }_{\text {Bu }}$	174.9		0.455
ADS 15176	Bu 1212 AB		206058	21395-0003
	987.7539	254.5		0.445
$+08^{\circ} 4714$	CHARA 105		208155	$21400+0911$
	87.7639	07.2		0.257
ADS 15236	Hu 280		206512	21423+0554
	887.7639	141.5		0.204
HR 8300	Kul 108		208644	$21425+4108$
	936.8911	21.0		0.199
	877.7640	16.2		0.202
ADS 18251	Bu 888 AB		206656	$21426+4103$
	888.8856	203.9		0.348
	887.7640	203.5		0.364
ADS 15281	Bu 989 AB		208901	$21446+2539$
	888.8938	115.3		0.289
	87.7693	109.7		0.281
ADS 15315	Hu 970		207369	$21485+6745$
	86.8857	273.9		0.359
ADS 16330	Hu 971 AB		207577	$21478+6203$
	1988.8857	200:2		0.308
$+34^{\circ} 4540$	Cou 1484		207663	$21498+3456$
	88.8856	354.0		0.360
HR 8344	Cou 14		207652	$21502+1718$
	86.8938	83.3		0.311
	87.7621	60.7		0.372
ADS 16376	Ho 170		207782	$21505+3925$
	88.8856	239.6		0.317
ADS 15435	A 620		208341	$21540+4403$
	886.8886	278.4		0.342
ADS 15499	Bu 275		208905	$21673+6117$
	86.8857	171.1		0.422

ADS 1553
ADS 1557
Hu 77
1986.8857

599 Bu 696 AB
1987.7594

ADS 16u15 Hu 977 1986.8857

ADS 16613 A 1453
ADS 1986.8856
ADS 15633 A 183
$+25^{\circ} 4677^{1986.8857}$ Cou 537
ADS 16670 STF 2872 BC
ADS ${ }_{15726}^{1986.8857}$ A 625 AB
ADS ${ }^{15748} 1986.8857$
ADS 16748 A 626
ADS 15746 Hu 695
1986.8857
$+43^{\circ} 4153 \quad$ Cou 1829 1986.8857

ADS $15756 \quad$ Bı1 991
1086.8857
ADS $15794 \quad$ Ho 180
1986.8857
$+16^{\circ} 4707$ Hei 102
ADS $15846 \quad 1987.7594$
1986.8867

ADS 15867 A 411
$+42^{\circ} 4396$ Cou 1986 1986.8857
$+39^{\circ} 4837 \quad$ Cou 1642 1987.7594

ADS 16011 Hu 981
1986.8857
$+17^{\circ} 4759 \quad$ Cou 234
1987.7594
$+53^{0} 2911$ Kui 112 Aa
ADS 16057 STF 2024 AB $\quad 213973 \quad 32329+6954$
$\begin{array}{llllll} & 1986.8857 \\ \text { ADS } 16072 & \text { Hu } 983 & 93.4 & & 0.392 \\ 214051 & & 223\end{array}$
ADS 16073 A 19868
1986.8911
ADS $16098 \quad$ A 1470

1087.7504
ADS $16111 \quad \mathrm{Bu} 1092 \mathrm{AB}$

$\begin{array}{lll}1986.8911 & 126.6 & 0.110 \\ 1987.7622 & 1387 & 0.104\end{array}$
ADS 16138 Ho 295
$+80^{\circ} 0731$ 1986.8911
ADS 1986.8911
ADS 16164 Ho 188
HR $8629 \begin{gathered}\text { 1986.8885 } \\ \text { Kui } 114\end{gathered}$ 1986.8884 1987.7622

ADS 16173 Ho 296 AB 1086.8884 ${ }_{1087,7622}^{\text {STT }} 476 \mathrm{AB}$ ADS 16214 STT 476 AB
ADS 16214 Hu 91 BC 1986.8911

	209103	$21508+4908$
145.1		0.178
	209515	$22030+4439$
4.4		0.968
	209622	$22045+1562$
5.5		0.150
		$22048+6539$
312.3		0.278
		$22054+3858$
325.3		0.527
		$22059+4522$
244.8		0.735
		$22077+2622$
41.3		0.166
C	-10432	$22086+5918$
301.4		0.830
	210875	$32117+8743$
73.9		0.601
	239892	$32127+6013$
101.9		0.748
		$32129+5058$
15.1		0.837
		$22131+4437$
114.4		0.178
	211113	$22136+5234$
137.9		0.682
	211405	$22158+4354$
237.0		0.755
	211542	$22175+1649$
145.2		0.140
		$22201+4625$
313.0		0.779
	212153	$22214+4148$
223.2		9.284
		$22263+4308$
10.8		0.448
	212000	$22268+4034$
75.9		0.155
	213530	$22306+6138$
221.4		0.319
	213392	$22307+1758$
317.5		0.153
		$22327+5347$
231.6		0.609
	213973	$22329+6954$
93.4		0.392
	214051	$22339+6650$
220.8		0.068
	213990	$22342+5405$
254.1		0.274
	214222	$22357+5312$
$\begin{aligned} & 300.8 \\ & \text { Aa } \end{aligned}$		0.103
	214168	$22359+3938$
128.7		0.044
134.0		0.045
	214511	$22361+7252$
235.9		0.221
	214558	$22383+4511$
126.6		0.110
133.7		0.104
	214608	22387+4418
334.5		0.321
	215319	$22394+8123$
98.7		0.152
	214807	$22402+3731$
203.3		0.341
	214810	22408-0333
125.5		0.236
126.4		0.264
	214850	$22408+1432$
82.0		0.320
77.3		0.360
	216242	$22431+4709$
304.8		0.497
	215242	$22431+4700$
51.4		0.046

Table II. (continued)

ADS 16249	Hu 783		215590	$22453+5128$	ADS 16760 A 1485		220869	$23268+5434$
	986.8911	182.8		0.204	1986.8912	212.2		0.575
ADS 16314	Ho 482 AB		216288	22514+2624	1987.7567	212.8		0.558
	986.8884	32.6		0.378	ADS 16800 Bu 1266 AB		221264	23305+3050
HR 8704	McA 73		216494	22535-1137	1986.8885	77.1		0.261
	986.8884	289.2		0.079	1987.7567	75.1		0.259
ADS 16380	$\begin{aligned} & 0 \text { A } 116 \\ & 1986.8911 \end{aligned}$			$0.383^{22563+4247}$	$+18^{\circ} 5163 \quad$ Cou 340	78.1		${ }^{0.259} 2322+1942$
HR 8762	986.8911 0 And AB	342.7	217675	0.383 $23019+4219$	1987.7567	61.2		0.262
	986.8911	353.4		0.258	1986.8885	166.8		
	987.7622	352.7		0.249	$+22^{\circ} 4860 \quad$ Cou 144			$28339+2342$
ADS 16467	$\begin{aligned} & 7 \quad \text { A } 194 \\ & 1986.8912 \end{aligned}$		217712	$0.140^{23020+4800}$	1987.7567	55.2	-	$0.338^{23339+2342}$
$+63^{\circ} 1917$	986.8912 ${ }_{\text {Mlr }} 69$		217848	0.140 $23024+6413$	ADS 16836 Bu 720		221673	$23340+3120$
	986.8914	116.6		0.287	1986.8939 1987.7567	264.0 264.9		0.523 0.524
ADS 16467	Bu 1147 AB		217782	$23026+4245$	ADS 16858 Bu 721 AB	264.9	281925	$\begin{array}{r} 0.524 \\ 23363-0707 \end{array}$
$\text { ADS } 16497^{191}$	$\begin{aligned} & 986.8912 \\ & 7 \quad \mathrm{~A} 417 \mathrm{AB} \end{aligned}$	340.2	218060	${ }_{29052-0742}$	ADS 1986.8912	134.4	321925	0.251
	986.8912	31.8	218060	$0.193^{23052-0742}$	ADS 16873 Fox 102 AB		222068	$23374+0737$
	987.7622	41.4		0.193 0.202	1987.7566	311.7		0.232
ADS 16505	A 106		218106	$23055+4843$	1986.8914	358	222109	$23375+4426$
	986.8912	314.7		0.473	1987.7567	359.6		0.495
ADS 16518	Bu 180 AB		218439	$23072+6049$	ADS 16904 A 643		322326	23392+4543
	987.7568	143.3		0.577	1986.8914	156.4		$0.225^{2392+4843}$
ADS 16530	Hu 994		218537	$23078+6338$	1987.7540	155.2		0.229
	986.8914	309.7		0.215	+45 ${ }^{\circ}$ 4301 Mir 4		222516	23412+4613
HR $8817{ }^{19}$	987.7568 Rat 3320	310.4		0.220	1986.8885	316.1	222516	$0.105^{23412+4613}$
	988.8912	308.9		0.246	ADS 16928 Bu 868 AB		222529	$23413+3234$
ADS 16561	Bu 385 AB		218767	23103+3228	HR $0003{ }^{1987.7568}$	229.4		0.828
	986.8912	91.5		0.644	HR 9003 MeA 75 Aab		223047	$23460+4625$
ADS 16576	Ho 197 AB		218917	$23115+3813$	1987.7540	101.9		0.296
	986.8912	313.2		0.311	ADS 16995 1987.7622 ${ }^{\text {Bar }} 19$	102.9	223139	$0.29923470+0515$
	087.7567	313.4		0.316	ADS 16995 3ar 19	0.4	323139	$1.077^{23470+0515}$
ADS 16591	A 2298 1986.8912		219018	$0.129^{28126+0242}$	$+35^{\circ} 5106 \quad \text { Cou } 944$	0.4		1.077 23486+3608
ADS 16610	$\begin{aligned} & 986.8912 \\ & 0 \quad \text { A } 1481 \end{aligned}$	96.6		$0_{2513 \%} .1293931$	1987.7540	95.8		0.194
	987.7567	170.8		$0.198{ }^{\text {a }}$	ADS 17019 B 2547 AB		223331	$23485+3617$
ADS 16621	A 200		219334	23147+4116	1986.8885	360.0		0.236
	987.7567	79.9		0.546	1987.75 ± 0	1.5		0.234
$+00^{\circ} 4982$	CHARA 142		219420	23157+0119	ADS 17020 STT 507 AB		223358	$23486+6453$
	986.8912	38.5		0.081	1986.8914	307.6		0.732
ADS 16638	Bu 992		219633	$23164+6408$	ADS 1703087.7568	307.9		0.724
	986.8914	41.1		0.272	ADS 17030 A 424		223486	$23498+2740$
	987.7668	37.6		0.275	1986.8885	113.1		0.169
ADS 16650	Hu 400		219675	23176+1819	1987.7542	113.8		0.168
	986.8912	122.9		0.344	ADS 17036 A 792		-	$23605+4703$
	987.7567	122.0		0.344	AD' 1708987.7540	266.4		0.702
$+27^{\circ} 4630$	Cou 439		219963	25199+2845	ADS 17059 A 793			${ }_{0.128}{ }^{23506+4705}$
	986.8912	214.2		0.216	ADS 17050 STT 510 AB	129.3	223672	0.126 $23516+4208$
	987.7567	218.9		0.219	1986.8914	306.3	223872	$0.548^{3351644205}$
$+33^{\circ} 4690$	Cou 742		219982	$23199+3444$	1987.7540	305.5		0.551
	986.8912	26.8		0.268	HR 9041 Fin 359		223825	23539-0313
	987.7667	28.0		0.270	1986.8885	351.1		0.040
$+15^{\circ} 4809$	Hel 88		220077	$23209+1643$	1987.7622	322.8		0.042
ADS 16708	$\begin{gathered} 987.7567 \\ \text { Hu } 295 \end{gathered}$	213.8	220278	${ }^{0.250}{ }_{2326}-1503$	$+42^{\circ} 4792$ Cou 1408	36.8	224167	${ }^{0.174}{ }^{23557+4318}$
	986.8912	113.6		0.253	1986.8885	36.8		0.174
$+34^{\circ} 4915$	Cou 1346		-	23239+3456	1987.7540 ADS 17104 Hı 500	37.0	224219	${ }^{0.179} 23561+2327$
	987.7867	84.8		0.232	1987.7542	88.4		0.171
ADS 16731	STT 495		220562	$23241+5732$	ADS 17111 A 2100		224315	$23568+0443$
	986.8912	119.8		0.307	1986.8885	165.6		0.132
	987.7567	120.6		0.310	. $14{ }^{5} 6588$ Rst 4136 AB		224612	23586-1408
ADS 16748	Ho 489 AB		220723	$0^{23259+2742}$	1986.8012	22.3		0.178
	986.89!2	226.6		0.541	ADS 17161 A 1498		224646	$23594+5441$
	087.7567	226.2		0.541	1986.8914	83.9		0.388
$\begin{array}{r}+22^{\circ} 4835 \\ \hline 19\end{array}$	Cou 338	41.1	220794	$0.105^{23266+2342}$	1987.7540	84.3		0.389

Fic. 2. The distribution of measured angular separations from Table II is shown. Separations range from 0.031 to 2.91 arcsec, with mean and median values of 0.372 and 0.285 arcsec, respectively, for the 1550 measures of 1006 systems.

II is 0.372 arcsec, while the median value is 0.285 arcsec. A histogram of the measured angular separations is shown in Fig. 2. The limiting magnitude of our system is currently determined by the detector properties and by the thresholding properties of the hardwired vector autocorrelator (VAC). The microchannel plate intensifier is showing a very strong loss of sensitivity over the region typically illuminated by speckle patterns, a degradation amounting to nearly a factor of 3 decrease in sensitivity relative to the edge of the tube. The CCD itself shows a rather strong fixed pattern that correlates randomly with each event tagged by the VAC so that the noise contribution to autocorrelograms is increased and, in the faint limit, prohibits application of this detector in a sparse, single photon domain. We expect to replace the detector during 1989 and to immediately retire the VAC in favor of a commercially available framé-grabber board operating in conjunction with efficient software on a PC/AT type computer.

As opportunities arose from well-observed portions of the primary program, we obtained data for the 293 stars from The Bright Star Catalogue (Hoffleit 1982) that are listed in

Table III. Bright stars inspected for duplicity.

HR	HR	ER	HR	HR	HR	HR	HR
1	135	4052	4184	4351	4629	5388	5581
4	144	4054	4187	4357	4632*	5392	5588
7	146	4057	4191	4358	4633	5394	5589
8	153	4062	4195	4359	4641	5402	5596
15	603	4064	4202	4362	* 4642*	5405	5608
17	620	4067	4203	4366	4643	5411	5609
19	1593	4070	4215	4371	4650	5414	6039
21	1594	4072	4232	4378	4654	5415	6047
26	1603	4075	4235	4380°	4659	5416	6057
27	1622	4077	4236	4381	4663	5420	0065
28	1623	4078	4241	4386	4666	5422	5068
36	1624	4079	4243	4528*	4687	5423	6087
38	1644	4081	4246	4533	4672	5424	0093
39	1647	4084	4248	4535	467.	5430	6095
$40 \dagger$	1668	4085	4256	4536	4676	5434	6107
41	1675 .	4088	4258	4543	5317	5436	6108
44	1378	4009	4259	4545	5330	5437	6111
45	4004	4096	4260	4555	5331	5441	6152
49	4003	4097	4265	4559	5333	5442	6154
50	4008	4103	4267	$4560 \dagger$	5335	5445	6159
52	1012	4106	4269	4561	5343	5448	6176
53	4014	4108	4270	4562	5345	5451	9078
56	4016	4113	4277	4564	5340	5452	9079
60	4021	4121	4278	4566	5347	5464	9080
62	4024	4124	4281	4569	5350	5467	9083
63^{*}	4026	4126	4285	4572	5351	5468	9085
65	4027	4127	4288	4574	5352	8479	9086
70	4030	4131	4294	4575	5360	5492	9092
75	4032	4137	4300	4580	5363	5493	9093
76	4035	4141	4309	4581	5365	5510	9097*
82	4039	4150	4310	4584	5369	5529	9100
93	4041	4165	4310	4585	5370	5533	9105*
96	4044	4166	4322	4593	5372*	- 5537	9109
104	4046	4168	4332	4594	5373	5541	9110
113	4047	4176	4333	4602	5374	5552	
124	4048	4178	4341	4610	5384	5563	
128	405:	4181	4345	4626	5387	5569	

Stars with HR numbers less than 2000 or greater than 9000 were observed during November 1986, the remaining Bright Stars were observed during April 1987. Asterisks indicate those stars for which new companions have been diacovered, as reported in Trble l. Daggers indicate known binaries, liste:t in Table II under their ADS designations (HR $40=$ ADS 161 , HR $4500=$ ADS 8347).

Table III. We are continuing the survey of bright stars begun in Paper I as observing time permits at the Mayall telescope and by follow-up runs at the 3.6 m Canada-France-Hawaii telescope on Mauna Kea. The second CFHT run occurred in February-March 1988; the results will be published as a continuation to Paper I. Our approach in this long-term effort is to use only tin.es of good seeing that are available, after the primary programs have been observed at Kitt Peak, and to employ the intermediate magnification of 0.0088 arcsec per pixel along with the Strömgren y bandpass. At the Mayall telescope, the survey is defined by a rectangular box centered upon the bright star with a north-south dimension of 2.25 arcsec and an east-west dimension of 1.13 arcsec . As in Pa per I, we consider our approach capable of detecting angular separations down to the diffraction limit of 0.035 arcsec, with the further condition that the magnitude difference does not exceed about 2 mag. Eight new binary stars, for which identifications are listed in Table I, were discovered in the sample of stars listed in Table III. The lower discovery frequency here compared with the results from the CFHT in Paper I is consistent with the prevalence of evolved stars
over dwarfs in this newest sample, in which no preference was made for dwarfs, in constrast to the selection of candidates in Paper I:

We wish to thank KPNO telescope operators John Booth, Dave Chamberlain, Hal Halbedel, Dean Hudek, Don Martin, and George Will for their wonderful efficiency in keeping the observing pace a rapid one. We are grateful to Charles Worley for his continued interes and encouragement in this work. Research in speckle interferometry at Georgia State University is supported by grants from the National Science Foundation (AST 83-14148 and AST 8613095) and from the Air Force Office of Scientific Research (AFOSR 81-0161 and AFOSR 86-0134). O.G.F. also acknowledges the partial support of the Space Telescope Science Institute through STScI grant no. CW-0005-85, which also provided funding for his participation in the earlier papers in this series. We are grateful to Lars Furenlid for providing us with transmission curves for our interference filters.

REFERENCES

Bagnuolo, W. G., and Sowell. J. R. (1988). Astron. J. 96, 1056.
Hoffeit, D. (1982). The Bright Star Catalogue (Yale University Observatory, New Haven).
Lu, P. K., Demarque, P., van Altena, W., McAlister, H., and Hartkopf, W. (1987). Astron. J. 94, 1318 (Paper III).

McAlister. H. A. (1977). Astrophys. J. 215, 159.
McAlister, H. A., and Hartikopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy Contrib. No. 2 (CHARA, Georgia State University, Atlanta).

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. I. THE HYADES BINARY FINSEN (70 TAURI)

Harold A. McAlister, ${ }^{\text {a) }}$ William I. Hartkopf, ${ }^{\text {a }}$ (William G. Bagnuolo, Jr., and James R. Sowell Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303
Otto G. Franza)
Lowell Observatory, Flagstaff, Arizona 86001
David S. Evans
Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, Texas 78712
Received 28 April 1988: revised 9 June 1988

Abstract

We test the conclusion of Peterson and Solensky (1987) that the motion of the Hyades binary Finsen 342 is best represented by a 6 yr eccentric orbit rather than by a 13 yr circular orbit assumed in most previous analyses. Through the digital processing of four sets of speckle observations obtained between 1975 and 1986 to unambiguously determine the quadrant of the secondary star at those epochs, we show conclusively that the orbit is indeed the short-period one, with a period of 6.264 yr . A new orbital solution, based solely upon speckle coverage of two revolutions, is shown to give an overall better fit to all the available visual, occultation, and interferometric data than any previously determined orbit for Fin 342, even though we exclude visual and occultation observations from the orbital solution. An initial estimate of the magnitude difference is determined from the speckle observations.

I. INTRODULILUN

The orbit of the Hyades binary star Fin 342 (70 Tauri $=H R \quad 1391=$ HD 27991: R.A. $=4^{\mathrm{h}} 26^{\mathrm{m}}$, Dec. $=+15^{\circ} 57^{\prime}$, for equinox 2000) has presented the possible ambiguity of long period, low eccentricity versus short period, high eccentricity since shortly after the duplicity of the star was discovered by William S. Finsen in 1959. The subsequent history of the system's measurement by visual interferometry and micrometry, by lunar occultation observations, and by speckle interferometry has been extensiveiy reviewed by Peterson and Solensky (1987, hereafter referred to as PS), who argue the short-period case for the system, a possibility first suggested by Eggen (1963) on the basis of the inordinately small masses resulting from the 13 yr period. PS present the results of a period search showing that a 6 yr period is as acceptable to the data as the 13 yr period found by Finsen (1978) in his final analysis of the observational material, most of which at that time had been accumulated by him. PS support their conclusion by presenting spectroscopic data obtained photographically at the Kitt Peak coudé-feed telescope and spectrograph. Their spectrograms never resolved the lines from the individual components, but the blended line profiles were judged by inspection to be broader at the epoch of maximum velocity separation predicted by the 6 yr orbit. On the basis of this highly suggestive evidence, PS adopt the 6 yr period, calculate the elements of the visual orbit, and reanalyze McClure's (1982) deduction of the Hyades' distance modulus.
Another suggestive piece of evidence against the longer period can be seen from simple inspection of the speckle observations plotted against the elliptical orbit. In Fig. 1, we show the speckle measures along with the 12.51 yr orbit recently published by Couteau (1987). Arrows in Fig. 1 indicate three speckle measures with epochs of 1975.716,

[^8]1982.766, and 1982.847 that have very large negative residuals in angular separation, residuals that are nearly an order of magnitude greater than would be expected from speckle data. The observed motion, when the longer period is assumed, has a very pinched appearance about an axis passing through these three measures. This suggests that the axis of the pinch in the motion might define a line about which approximately half of the data should be given 180° positionangle projections. It is also interesting to note in Fig. 1 that the position angles of the visual measures, including the visual interferometer observations of Finsen, tend to generally avoid the axis of the apparent "pinch" in the speckle observations.
The goal of this study is to finally lay to rest the controversy surrounding the orbital period of Fin 342 by definitively establishing the true quadrant of the secondary at critical orbital epochs. Through the analysis of four sets of speckle observations obtained at the Kitt Peak 4 m telescope during 1975-1976 and 1985-1986, we conclusively sette: the issue of the true orbital period of this important Hyades binary.

II. THE SPECKLE OBSERVATIONS

Fin 342 was observed by the first author during his first speckle observing run at the Kitt Peak 4 m telescope in September 1975 and continues to be a high-priority object on the GSU/CHARA program of binary star speckle interferometry. The system has now been observed at some 23 epochs by us with an additional six observations from other speckle observers. The collected speckle measurements are presented in Table I, where the position angles have been precessed to the equinox for 2000.0. The small corrections to the GSU/ CHARA observations between 1982 and 1985 discussed by McAlister et al. (1988, in preparation) have been included in the measures in Table I. The coverage fails to complete one long-period orbital cycle by just under one month and is just five days short of encompassing two of the short-period cycles.
PS calculated the orbital elements given in Table II for the

FIG. 1. The collection of existing measurements of Finsen 342 is shown here, where plus signs represent the visual interferometer measures of W. S. Finsen and the visu. al micrometer measures of van den Bos, Couteau, and Morel. Dark squares are those speckle observations from the GSU/ CHARA program, while light squares are from other modern interferometric programs. Each speckle data point is identified by the observation number from Table I. Also shown here is the line of nodes for which the identification of the true ascending node remains ambiguous. Quadrants are adopted here in order to be consistent with a presumed long-period orbit. The orbit of Couteau (1987) for a 12.51 yr period is shown against these measurements. The speckle observations for which true quadrant determinations have been made are circled. Of these, only the measure for 1976.860 does not require a quadrant reversal. The "pinched" appearance of the data when plotted against the longperiod orbit is apparent in the observations shown with arrows and indicates rather clearly where the possible 180° posi-tion-angle reversels could yield a plausible 6 yr orbital motion.

6,9 and 13 yr periods frund in their period search. The quadrants adopted for the position angles in column 3 of Table I are based upon the 13 yrorbit and are consistent with the quadrants determined from occultation observations. Superscripts next to the position angles in Table I indicate quadrant reversals as called for by the three possible periods found by PS. We also include in Table II the elements determined by Finsen (1978), Evans (1984), and Couteau (1987). The residuals to these elements are listed in Table III.

The 9 yr orbit is obviously inappropriate to the observations, showing position-angle residual:; of 90° for the most recent speckle observations not available to PS. The 13 yr orbit (solution I of PS) shows average residuals and their rms dispersions of $\langle\Delta \theta\rangle=+5.0^{\circ} \pm 7.0^{\circ}$ and $\langle\Delta \rho\rangle=-0.001 \pm 0.011$ arcsec, while the 6 yr orbit (solution III of PS) leads to $\langle\Delta \theta\rangle=+5.5^{\circ} \pm 7.2^{\circ}$ and $\langle\Delta \rho\rangle=+0.004 \pm 0.009 \mathrm{arcsec}$. The dispersions in the residuals do not favor either of these two solutions over the other, and both solutions show systematic effects in the posi-
tion-angle residuals. The 13 yr orbit of Couteau (1987) does a better job of fitting the position angles with comparable dispersion in the separation residuals to the orbits of PS.
As has been pointed out by Evans (1984), the speckle angular separations are all systematically smaller than the separations obtained by Finsen with his eyepiece interferometer, and we would thus expect that the orbit of Finsen would not represent these modern measures at all well. Indeed, the average residuals of the GSU/CHARA speckle measures to the elements determined by Finsen (1978) are $\langle\Delta \theta\rangle=-14.1 \pm 12.7$ and $\langle\Delta \rho\rangle=-0.026 \pm 0.009$. In his important revision of the Hyades distance modulus, McClure (1982) recognized the discrepancy between Finsen's observations and the modern results, but he considered Fin 342 as providing one of the best mass determinations of the Hyades visual binaries. In the correspondence between Finsen and one of us (HM) during the years preceding Finsen's death in 1979, it is clear that Finsen considered this last orbit as being short of definitive, and he was keenly interested in seeing continued speckle coverage of this system. It is

Table I. Speckle observations.

Speckle Obs. No.	$\begin{aligned} & \text { Epoch } \\ & 1900.0+ \end{aligned}$	θ	ρ	Source
1	75.716	228.3°	0.060	GSU
2	76.860	190.8	0.071	GSU
3	76.923	188.1	0.076	GSU
4	77.087	182.9	0.085	GSU
5	77.742	161.6	0.093	GSU
6	78.149	148.6	0.094	GSIJ
7	78.618	138.3	0.108	GSU
8	78.876	129.7	0.123	(1)
9	79.857	118.1	0.104	(2)
10	79.926	112.6	0.095	(2)
11	80.153	99.2	0.106	GSU
12	80.729	87.1	0.095	GSU
13	80.882	83.4	0.100	GSU
14	80.939	79.6	0.093	(3)
15	82.766	29.0 "	0.053	GSU
16	82.847	28.5	0.058	(4)
17	83.047	$11.2^{\text {b }}$	0.095	GSU
18	83.711	350.1°	0.097	GSU
19	83.714	$351.1{ }^{\circ}$	0.078	GSU
20	83.934	$323.6{ }^{\circ}$	0.094	(5)
21	84.052	$339.8{ }^{6}$	0.090	GSU
22	84.058	$340.3{ }^{\circ}$	0.092	GSU
23	84.060	$338.1{ }^{6}$	0.085	GSU
24	85.838	$292 .{ }^{6}$	0.094	GSU
25	85.841	$293.0{ }^{\circ}$	0.097	GSU
26	86.886	269.80 .9	0.094	GSU
27	86.890	$268.4^{6.9}$	0.096	GSU
28	87.766	$245.5^{5.9}$	0.087	GSU
29	88.165	$230.9{ }^{6.9}$	0.066	GSU

Notes to Table I
Superscnpts indicate quadrants to be reversed in considening alternative periods of 6 and 9 yr . All position angles have been precessed to equinox 2000.0.

Sources: GSU—from catalog of McAlister and Hartkopf (1988)
(1)-Morgan et al. (1982)
(4)-Tokovinin (1983)
(2)-Hege et al. (1981)
(5)-Bonneau et al. (1984)
(3)—Ebersberger et al. (1986)
therefore particularly pleasing to present such coverage at the present time.

III. THE QUADRANT AND MAGNITUDE-DIFFERENCE ANALYSIS

PS point out that the confusion with regard to the true orbital period of Fin 342 would be easily set aside were it not for the 180° position-angle ambiguity inherent in speckle interferometry. They urge speckle observers to take the next step by modifying reduction algorithms in such a way as to eliminate this ambiguity, a sentiment with which we are in complete accord. It should be emphasized, however, that the step from simple autocorrelation analysis of speckle data to analyses that effectively reconstruct a diffraction-limited im-
age of the binary star in question is far from trivial. The astrometry that has been published from the GSU/CHARA speckle program has been performed using a hardwired vec-tor-autocorrelator (VAC) that gives a 1 bit (on/off) digitization of two-dimensional speckle frames. The VAC then calculates a histogram of all separations among the sample of "on" pixels, an operation that can be quickly carried out in hardware, and provides autocorrelograms from which the relative positions of the two components can be accurately extracted, albeit with the quadrant ambiguity inherent in this process.
In order to eliminate this ambiguity, and even more importantly, to determine the magnitude difference in the system, it is necessary to digitize each speckle frame to at least 6 bits and preferably to 8 bits in intensity. High-speed digitizer boards are now available at modest cost for microcomputers that give 8 bit digitization with 512×512 pixel frames at video frame rates. The real bottleneck in the processing-of these data, coming in from the speckle camera at a potentially prodigious rate of 62 megabytes per second, is the implementation of the several possible algorithms to reconstruct the binary star image at a rate sufficiently efficient so as not to waste telescope time. The augmentation of these methods for routinely processing high volumes of speckle data for bright objects is far from being a simple extension of current methods. Fortunately, of the nearly 1500 binary stars on our program, no more than 20 suffer from the ill effects of quadrant ambiguity, as the great majority of our program stars are visual binaries with quadrants unambiguously determined by the visual observers or are spectroscopic binaries with existing orbits.
The most pressing justification for introducing new techniques for processing binary star speckle data lies with the essentially complete absence of accurate photometry for the individual components of close visual binary stars. Nevertheless, the occasional problem presented by such systems as Fin 342 is a fascinating challenge to speckle observers. It might also be pointed out that the quadrant ambiguity in this. system would not exist if its angular separation were somewhat larger than the maximum it presents of just over 0.10 arcsec. The classic quadrant-ambiguity case holds for visual binaries with zero magnitude differences (see Heintz 1978), but Fin 342 has been shown from occultation observations to have a magnitude difference of about 0.4 mag. If the star could be explicitly resolved by visual observers, then the quadrant problem would have been eliminated. Indeed, if the magnitude difference were really zero, then speckle methods could not be used to settle the issue. It is also interesting to reiterate the opinion of the eminent double star observer W. H. van den Bos (as privately communicated to

Table II. Published orbits for Fin 342.

	$\begin{aligned} & \text { Finsen } \\ & \text { (1978) } \end{aligned}$	Evans(1984)	Couteau (1987)	Peterson and Solensky (1987)		
				I	11	III
$P(y r)$	13.15	11.4	12.51	12.54	9.48	6.045
T(BY)	1962.84	1976.3	1986.52	1981.956	1974.750	1976.250
a (arcsec)	0.133	0.108	0.100	0.1001	0.0827	0.0941
e	0.073	0.073	0.01	0.066	0.280	0.701
i	132.6	132.6	146.9	138.5	152.0	127.0
ω	97.1	90.1	14.6	243.3	281.9	91.6
node	321.4	310.1	289.1	284.5	219.7	33.8
$a^{3} / p^{\text {P/ }}$	0.60	0.43	0.28	0.29	0.28	1.00

[^9]Table III. Speckle residuals to published orbits.

Averare Residuals with respect to data of nod-zero meight:
(Delta Theta) (Delta Bho)

Piasea (1978)	-14.1 ± 12.7	-0.026 ± 0.009
Brans (1984)	$\$ 6.0 \pm 11.3$	-0.003 ± 0.013
Coutesu (1987)	-0.0 ± 2.2	-0.005 ± 0.011

Petersod 1 Solensky(1989)

Orbit !	$+5.0 \pm 7.0$	-0.001 ± 0.011
Orhit II	-	$+0.001 \pm 0.018$
Orbit III	$+5.5 \pm 7.2$	$+0.001 \pm 0.009$
New Specile 0rbit	$+0.1 \pm 1.5$	-0.000 ± 0.005

us by C. E. Worley) that when one is confronted with the cheice between a long-period, small-eccentricity orbit and a short-period, large-eccentricity r sit, the short period is more likely to be the valid one because truly circular orbits are rare among visual binaries.

Methods for performing binary star "speckle photometry" have been under extensive scrutiny and development at GSU/CHARA since 1985 Our goal has been to develop the
capability for extracting differential magnitudes and colors from speckle frames of binary stars obtained with the ICCD speckle camera. A description of experiments carried out with simulated speckle data aımed at discriminating among the various methods appropriate to the problem is presented by Bagnuolo (1988). These methods include variations of the "shift-and-add" (SAA) method first proposed by Bates and Cady (1980) and modified by Bagnuolo (1982), the
"triple correlation" method of Weigelt and Wirnitzer (1983), and the "fork" algorithm of Bagnuolo (1988). Bagnuolo finds that his "fork" method is the most linear of the techniques across a large range of magnitude differences. Bagnuolo and Sowell (1988) have also applied the new algorithm to a high-prccision determination of the Strömgren y and $(b-y)$ values for the individual components of the $\mathrm{Ca}-$ pella system.

We selected the speckle-data samples for the four epochs 1975.716, 1976.860, 1985.841, and 1986.890 as being capable of discriminating between the long- and short-period orbits. The short-period orbit calls for a periastron passage and resulting quadrant reversal between 1975 and 1977, while the long-period orbit keeps the components in the same quadrant during this interval. Both orbits call for no quadrant change between the 1985 and 1986 observations, but the common quadrant is reversed for the two periods. The four sets of data permit 16 possible quadrant combinations, only four of which correspond to the two possible orbital periods. A further check on the validity of the deduced set of quadrants is provided by the comparison with the quadrants determined by the lunar occultation results, a comparison to be made later.

The datasets for 1975 and 1976 consisted of approximately 50 exposures in each set that were originally recorded on Tri-X film and subsequently contact printed on high-contrast copy film for analog reduction in the coherent imageprocessing system described by McAlister (1977). The original negative for the 1975 data could not be located, and the positive copy was used in its place. The two sets of exposures were scanned with the PDS microdensitometer of the Lowell Observatory with a format sufficient to provide five resolution elements across an Airy disk. The absolute northsouth orientation was established for both film sets by locating wide visual binaries that had been observed on the same nights as Fin 342. The objects used have nonzero magnitude differences, and their true quadrants have long been established by visual observers.

The two more recent sets of speckle observations of Fin 342 consisted of 1800 images, recorded on VHS format video cassette tapes, taken with the GSU/CHARA ICCD speckle camera using the methodology described by McAlister et al. (!987). These data were digitized using a high-speed videodigitizing system based upon a Data Translation DT-2851 frame grabber board installed in a Wyse pc-286 personal computer with 8 MBytes of expanded memory. When an image is grabbed by the DT-2851 board, the central 256×256 pixel area is averaged in software to a 128×128 pixel array. This gives a resolution equal to the limiting resolution of the speckle-camera detector and, as in the case of the photographic data, amounts to approximately five resolution elements per Airy disk. Sets of 256 speckle images were digitized in this manner for the 1985 and 1986 observations. The absolute north-south orientation was determined in the same manner as with the earlier datasets.

The four sets of digitized speckle observations of Fin 342 were reduced using SAA and "fork" algorithms, with the input astrometry being provided by vector autocorrelation. Trple correlation analyses were also.performed on the first two datasets. The two earlier observation sets yielded lower signal-to-norse because only 50 exposures were available for processing. Furthermore, the photometric nonlinearity of the photographic data served to compress the dynamic range in intensity so that the contrast in the SAA spots has decreased. In spite of these effects, it was obvious by inspection
of the SAA results that the secondary star was in the first quadrant (i.e., northeast of the primary) in 1975 and the third quadrant (southwest of the primary) in 1976. The triple correlation and "fork" results confirmed this conclusion. A preliminary report of the results from the photographic data (Bagnuolo and Sowell 1986) mistakenly placed the secondary in the third quadrant for both epochs due to an error made by the first author of this paper in establishing the north-south orientation for the 1975 data. The nature of this error is well understood, and we now have no doubt that a quadrant reversal occurred between 1975 and 1976, a conclusion consistent only with the 6 yr orbital period.
The ICCD results clearly showed that the secondary was to the east of the primary during 1985-1986, a result consistent with the quadrant determinations from the earlier datasets only in the case of the 6 yr orbit. A summary of the SAA results for the four selected epochs is given in Table IV, in which the intensities of the SAA peaks are shown for the two possible position angles at each epoch. The peaks have been normalized to unity for the brighter peak.
The "fork" analysis of the ICCD data yielded a ratio of the intensity of the secondary star to that of the primary star equal to 0.73 ± 0.04, corresponding to a magnitude difference at Strömgren y of 0.34 ± 0.06 mag. The uncertainty in the magnitude-difference determination is limited by the absence of appropriate bias and flatield data for the two epochs, and we suspect that saturation effects among the brightest speckles in the ICCD frames are tending to decrease the magnitude difference in the SAA and "fork" analyses. We therefore choose not to adopt the magnitude difference determined here, preferring to add its accurate determination to an ongoing speckle-photometry project involving all Hyades binaries within the reach of speckle interferometry. We note that our determination of the magnitude difference in the Fin 342 system is in good agreement with that of Hege et al. (1981), who found a value of 0.31 ± 0.02 mag at $5000 \AA$. The systematic effects that we suspect exist in the present determination of the magnitude difference by no means alter our conclusions with regard to the true quadrant occupied by the secondary star at the four epochs we have analyzed.
We thus find that the speckle interferometric observations of Fin 342 conclusively show that a quadrant reversal occurred between 1975 and 1976 and that a subsequent reversal must have occurred sometime between the second and third datasets in order to place the secondary east of the primary star as it was in the fall of 1975 . The most likely time for the second reversal can be seen from simple inspection of the entire set of speckle measurements to be between the 1980.939 and 1982.776 observations, a period during which the system was not observed due to lost coverage resulting from the transition from photographic to digital speckle cameras. A second reversal during that time also turns out to be consistent with the 6 yr orbit solution we have determined.

Table IV, Shift-and-add peak intensities.

Epoch	Position-angle possibilities/SAA peak intensities ${ }^{2}$	
1975.716	$48.3 / 1.00$	$228.3 / 0.78$
1976.860	$10.8 / 0.82$	$190.8 / 1.00$
1985.841	$112.3 / 1.00$	$292.3 / 0.87$
1986.890	$88.4 / 1.00$	$268.4 / 0.73$

[^10]
IV. THE ORBIT OF FINSEN 342

PS calculated orbits fo: the three periods that they found to be represented by the data, using the position angles from the visual interferometer and micrometer results along with the complete sets of occuitation and speckle data. They calculated weights based upon published error estimates and assigned errors of $\pm 20^{\circ}$ to the visually determined position angles. The visually measured separations were not included by PS in their orbit solutions, as they were considered to be significantly systematically large in comparison with occu!tation and speckle separations. This bias is no doubt due to the fact that Fin 342 is never completely resolved at the telescopes used by Finsen and the two micrometer observers (P. Couteau and P. Morel) who have measured the system. The very existence of these measures is testimony to the skill of the few visual observers who have ever detected the duplicity of Fin 342.

We chose to determine the orbit of Fin 342 based only upon the speckle observations. The speckle data now cover another half revolution compared to that available to PS, and are of uniformly high quality compared to the visual observations. We also believe that it cannot be established without doubt that the position angles determined by visual interferometry are not without systematic effects as are the separations. Rather than risk biasing the orbit by including data that are not well understood, we incorporated only the homogeneous and well-understood collection of speckle observations. An initial solution, in which all observations are given unit weight, is calculated using a grid-search routine around input values for P, T, and e in which the remaining four elements are determined by least-squares evaluation of the Thiele-Innes elements at each grid point. A second solution is then performed in which observations exhibiting residuals in excess of three standard deviations in either ρ or $\rho \times \Delta \theta$ are given zero weight. The grid search minimizes the variance in the residuals and continues until the stepsizes converge to some arbitrarily small value. The orbital elements for Fin 342 were calculated in this manner and are presented along with their error estimates in Table V, where the short-period orbital elements of PS are repeated for comparison. The residuals to the speckle observations from the newly determined orbital elements are given in Table III along with the weights assigned to the individual measurements in the final solution. The newly determined orbit is shown with the speckle observations in their correct quadrants in Fig. 2. An ephemeris of the expected motion during the next revolution is given in Table VI, in which we indicate the epochs of periastron and nodal passage, events that occur during the fall and early winter of 1988. It is expected that radial-velocity measurements and further speckle observations during those months will confirm the conclusions by us

Table V. Elemenis of the short-period orbit.

	Peterson and Solensky (1987)-orbit III	Newly determined elements from speckle observations
$P(y r)$	6.045 ± 0.027	6.264 ± 0.025
$7(B Y)$	1976.250 ± 0.057	1976.164 ± 0.017
$a($ arcsec $)$	0.0941 ± 0.0030	0.0975 ± 0.0008
i	0.701 ± 0.013	0.691 ± 0.009
i	127.0 ± 1.9	126.8 ± 0.4
ω	91.6 ± 1.5	93.4 ± 0.9
node	33.8 ± 3.7	36.5 ± 0.9
$a^{1} / P:$	1.00 ± 0.10	1.036 ± 0.03

${ }^{4}$ Normalized to unity for PS orbit III.
and by Peterson and Solensky (1987). A determination of the mass ratio at nodal passage would be an extremely valuable addition to the problems of the distance to the Hyades and the masses of its member stars.

The orbital period we find is some 0.22 yr , or 3.6% longer, and the semimajor axis is 3.4 mas, or 3.6% larger, than the corresponding values determined by PS. This results in a value for the total mass of the system at a given distance, given by a^{3} / P^{2}, approximately 3.6% greater than that indicated by the orbit of PS.

V. COMPARISON WITH OCCULTATION AND VISUAL OBSERVATIONS

Evans (1984) has summarized the occultation observations, and PS concur with Evans in his altering of the events reported by the first two occultation observers. (See Table 1C of PS for the coilected occultation results.) The six published occultation measurements place the secondary to the east of the primary at four epochs between 1978.72 and 1980.60. This a'one does not contribute to the discrimination between the short- and long-period orbits, but it is entirely consistent with the quadrant behavior determined from the speckle cbservations.

Evans (1984) concluded from the collection of magnitude differences derived from occultation traces that the magnitude difference at $4472 \AA$ is 0.39 mag . There is considerable scatter among the individual determinations of the magnitude differences in the blue, but there is no indication of any inconsistency between the photometric results from the speckle and occultation data.

The residuals of the occultation observations gathered in Table 1C of PS to the 6 yr orbit of PS and to our new orbit have average values of $+0.0002 \pm 0.0042$ arcsec for the PS orbit III and -0.0018 ± 0.0049 arcsec for our orbit. The residuals to the two earliest occultation observations are comparable between our orbit and PS orbit III, but the four later events, three of which were collected by Peterson and his collaturators, are better represented by the PS orbit. We consider the occultation measurements to be well represented by our new orbital solution, and particularly so in light of the fact that they were not included in the data sample from which the solution was calculated.

We have also calculated the residuals for the two 6 yr orbits that are derived from the visual interferometer and micrometer measures tabulated in Table 1A of PS. The average residuals here are $\langle\Delta \theta\rangle=-11.8^{\circ} \pm 19.2^{\circ}$ and $\langle\Delta \rho\rangle=+0.034 \pm 0.019$ arcsec to PS orbit III and $\langle\Delta \theta\rangle=-5.0^{\circ} \pm 15.4^{\circ}$ and $\langle\Delta \rho\rangle=+0.027 \pm 0.015$ arcsec to our new orbit. Thus, the average residuals and their dispersions are smaller for our new orbit than for PS orbit III, even though the visual observations were completely ignored in our solution, with PS incorporating the visual position angles in theirs.

We thus conclude that the newly determined orbit for Fin 342 fits all the observational material, except for four of the six occultation observations, better than any previously determined orbit for the system. Complete coverage of periastron passage using speckle interferometry at a 4 m telescope will be impossible because the predicted angular separation is below the diffraction limit for some 150° of position angle. The speckle observations have elininated any questions as to the true period of Fin 342 and have produced an orbit that can be considered definitive, within the limits of accessible periastron coverage, under the criteria defined by Worley and Heintz (1983).

Fic. 2. The newly determined 6.264 yr orbit is shown against the interferomerric measurements following the required quadrant reversals. The data symbolism is the same as in Fig. 1.

Table VI. Orbital ephemeris for Fin 342.

epoch	θ	ρ	epoch	θ	ρ
1988.50	23.6	0.040	1992.25	110.9	0.100
88.60	2.3	0.027	92.50	105.1	0.100
88.692°	315.4	0.018	92.75	99.1	0.100
88.70	310.6	0.018	93.00	93.1	0.099
88.80	245.8	0.028	93.25	87.1	0.098
88.90	225.7	0.041	93.50	80.8	0.095
$88.979^{\text {b }}$	216.5	0.649	93.75	74.0	0.092
89.00	214.5	0.051	\$4.00	66.6	0.086
89.25	197.6	0.067	94.25	57.8	0.078
89.50	186.4	0.077	94.40	51.5	0.070
89.75	177.2	0.083	94.50	46.4	0.065
90.00	169.2	0.087	94.60	39.9	0.057
90.25	161.7	0.090	94.646°	36.5	0.053
90.50	154.7	0.093	94.70	31.5	0.048
90.75	147.9	0.094	94.80	17.9	0.036
91.00	141.5	0.096	94.90	348.3	0.023
91.25	135.2	0.097	94.956^{2}	315.4	0.018
91.50	128.9	0.098	95.00	272.1	0.021
91.75	122.8	0.099	95.10	236.9	0.033
92.00	116.9	0.099	95.25	215.6	0.050

[^11]
VI. DISCUSSISON

The 3.6% increase in the total mass of Fin 342 that we find in comparison with the recent mass determination by PS results in an increase in log (mass) by 0.014 . This will have some effect on the cluster distance determination carried out by McClure (1982) and modified by PS. We believe it premature to perform another revision of this calculation until we complete work in progress on the refinement of the orbits of several other Hyades binaries, including the resolved sin-gle-lined spectroscopic binary 51 Tauri.

It is possible to cseck for consistency between the new orbit and what might be expected for the masses of the components of Fin 342 according to the best present estimate of the cluster distance. Following McClure (1982), we use the proper-motion results that indicate that Fin 342 is unly 2% beyond the mcan cluster distance, although it might be noted that proper-motion determinations may suffer a bias when an unresolved photocentric motion is superimposed upon the space motion of a star. Small magnitude differences, such
as that of Fin 342, tend to make such a bias rather small, however. If we assume the cluster distance modulus given by PS of 3.36 mag, then Fin 342 has a distance of approximately 47.9 pc . Furthermore, using our newly determined magnitude difference of 0.34 mag at $5500 \AA$ and the composite apparent magnitude of $V=+6.46$, we find for the individual components of Fin 342 the following photometric parameters:

$$
\begin{aligned}
& m_{\mathrm{a}}=+7.06, M_{\mathrm{z}}=+3.66 \\
& m_{\mathrm{b}}=+7.40, M_{\mathrm{b}}=+4.00
\end{aligned}
$$

These correspond to spectral types for the two components of $\mathrm{F} 6-7$ and F 8 , for which one expects approximate masses of 1.24 and $1.17 \mathscr{M}_{\odot}$, respectively, for a total mass of 2.4 \mathscr{K}_{\odot} (Allen 1973). The star 70 Tauri is most uften classified as having spectral type F7. At a distance of 47.9 pc , the new orbital elements imply a semimajor axis of 4.7 AU and a total mass of $2.6 \mathscr{H}_{\mathcal{O}}$, a value in reasonable agreement with the photometrically expected masses. This system can now be considered a well-behaved member of the central region of the Hyades cluster.

Preliminary results from orbit revisions to other Hyades binaries that are now being carried out by us are indicating the possibility of substantial changes in mass determinations for several systems. For example, our new analysis of the
motion of ADS 3248 (vB 75) leads to a total mass that is 27% smaller than implied by the catalog orbit (see Worley and Heintz 1983), causing vB 75 to shift significantly closer to the mean cluster mass-luminosity relation. We are also endeavoring to determine accurate magnitude differences through "speckle photometry" of the set of Hyades binaries accessible to speckle interferometry. These results should shed further light on the seemingly endlessly unfolding questions of the distance to the Hyades cluster.

We are grateful to Jay Gallagher, Tobias Kreidl, and Larry Wasserman of the Lowell Observatory for making the Lowell PDS microdensitometer available to us. The GSU/ CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF grant no. AST 86-13095 and the Air Force Office of Scientific Research through AFOSR grant no. 86.0134. We gratefully acknowledge this support. The video-digitizing hardware was purchased through grant no. N14-87-6-0160 from the Office of Naval Research, and we thank Gart Westerhout and Charles Worley of the U. S. Naval Observatory for their interest in our speckle efforts. One of us (O.G.F.) acknowledges the support of the Space Telescope Science Institute.

Allen, C. W. (1973). Astrophysical Quantities (Athlone, London).
Bagnuolo, W. G. (1982). Mon. Not. R. Astron. Soc. 200, 1113.
Bagnuolo, W. G. (1988). Opt. Commun. 96, 1056.
Bagnuolo, W. G., and Sowell, J. R. (1986). Bull. Am. Astron. Soc. 18, 986.
Bagnuolo, W. G., and Sowell, J. R. (1988). Astren. J. 96, 1056.
Bates, R. H. T., and Cady, F. M. (1980). Opt. Commun. 32, 365.
Bonneau, D., Carquillat, J. M., and Vidal, J. L. (1984). Astron. Astrophys. Suppl. 58, 729.
Couteau, P. (1987). Astron. Astrophys. Suppl. 71, 569.
Ebersberger, J., Weigelt, G., and Orellana, R. B. (1986). Astron. Astropiys. Suppl. 64, 131.
Eggen, O. J. (1963). Astrophys. J. Suppl. 8, 125.
Evans, D. S. (1984). Astron. J. 89, 689.
Finsen, W. S. (1978). IAU Commission 26 Circ. Inf. No. 74.
Hege, E. K., Hubbard, E. N., Cooke, W. J., Strittmatter, P. A., Warden, S. P., and Radick, R. R. (1981). In Current Techniques in Double and Multiple Star Research, IAU Colloquium No. 26, edited by R. S. Harrington and O. G. Franz, Lowell Obs. Bull. No. 167, Vol. 9, No. 1, p. 185.

REFERENCES

Heintz, W. D. (1978). Double Stars (Reidel, Dordrecht).
McAlister, H. A. (1977). Astrophys. J. 215, 159.
McAlister, H. A., and Hartkopi, W. 1. (1988). Second Catalog of Interferometric Measurements of Binary Starts, Center for High Angular Resolution Astronomy Contrib. No. 2 (CHARA, Georgia State University, Atlanta).
McAlister, H. A., Hartkopf, W I., Hutter. D. J., and Franz, O. G. (1987) Astron. J. 93. 688.
McAlister, H. A., Hartkopf, W. I., Sowell, J. R., Dombrowski, E. G., and Franz, O. G. (1988). In preparation.
McClure, R. D. (1982). Astrophys. J. 254, 606.
Morgan, B. L., Beckmann, G. K., Scadden, R. J., and Vine, H. (1982). Mon. Not. R. Astron. Soc. 198, 817.
Peterson, D. M., and Solensky, R. (1987). Astrophys. J. 315, 286.
Tokovinin, A. A. (1983). Sov. Astron. Lett. 9, 293.
Weigelt, G. P., and Wirnitzer, B. (1983). Opt. Lett. 8, 389.
Worley, C. E., and Heintz, W.D. (1983). Publ. U.S. Naval Obs. 24, Part 7.

BINARY STAR SPECKLE PHOTOMETRY. I. THE COLORS AND SPECTRAL TYPES OF THE CAPELLA STARS

William G. Bagnuolo, Jr. and James P. Sowell
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303
Received 29 February 1988; revised 20 May 1988

Abstract

Sets of speckle-interferometry frames of Capella taken in the Strömgren y, b, and v filters have been analyzed by means of the "Fork" algorithm to produce the intensity ratios of the components. The results show that the magnitude differences in y, b, and v are $m_{\text {A }}-m_{\text {Ab }}=0.09,0.23$, and 0.55 , respectively. Thus, contrary to accepted beliefs, the more luminous star in these wavebands is the hotter Capella Ab , which is the spectroscopic secondary and the less massive component. The photometric indices are consistent with spectral types of G0 III for the secondary and G8/K0 III for the primary.

- 1. INTRODUCTION

A major goal of the GSU/CHARA program of binary star speckle interferometry has been to develop methods for accurately determining the magnitudes and colors of the individual components of binary stars with angular separations down to the diffraction limit. This paper is the first of a series of such "speckle photometric" analyses. In the present application, speckle observations provide a new, direct means for measuring the temperatures and luminosities of the components of the well-known spectroscopic star Ca pella.

Capella (α Aur, HR 1708) was independently recognized to be a spectroscopic double by Campbell (1899) and by Newall (1899). Because both stars are close in spectral type, the identification of the spectra of the two components and the estimation of the magnitude differences have been difficult. A spectrophotometric analysis by Wright (1954) appeared to settle the issue: The spectroscopic primary (Capella Aa; smaller radial-velocity amplitude; larger mass) was approximately type G5 III, and the secondary G0 III, with a magnitude difference at $5500 \AA$ of about 0.25 . For the past 34 yr, most work on Capella has taken these values as the starting point, although possibly assigning types G6-G8 to the primary. Recently, however, Griffin and Griffin (1986) have questioned Wright's assignment of relative magnitudes based on their integrated radial-velocity profiles, in which the spectrum was correlated with a mask. The most recent spectroscopic orbit has been determined by Shen et al. (1985). Further astrophysically important quantities can be found in the RS CVn catalog by Strassmeier et al. (1988).

Capella naturally is an attractive target for speckle interferometry with apertures greater than 2.5 m ; McAlister (1981) has published a high-precision orbit. Various published and unpublished luminosity estimates have put the intensity ratio in V at between 0.6 and 0.9 . Even the nodal quadrant recently was in dispute (see Griffin and Griffin 1986; Bagnuolo and McAlister 1983). The latter paper and Bagnuolo (1982,1983) estimated that the intensity ratio was $0.82-0.89$ in V.

Clearly, it would be desirable to obtain intensity ratios in several standard filter bandpasses. In this way, the question of the spectral types of the primary and secondary could be settled and the physical parameters of the system obtained via photometric indices.

Difficulties in nomenclature may arise since speckle photometry incorporates various techniques and descriptions
from the fields of speckle, visual, and spectroscopic binary research along with that of photometric photometry. A case in point is the designation of the "primary" component. The primary star in visual binaries is the brighter star (usually in the V bandpass). For spectroscopic binaries, the primary is usually the star with the more prominent spectral lines, although there are a few single-lined binary cases where the primary is the brighter star, even though its lines are not measurable. Other parameters can be used to define the primary, such as the more massive or the hotter. Obviously, these definitions are all correlated.
We have chosen to adopt the convention of the visual binary research, because speckle interferometry is its logical extension. Therefore, in the future, "primary" will generally refer to the brighter star in V. An exception will be made for Capella (and similar binaries), where the spectroscopic usage has been established by custom. Therefore, throughout this paper the Capella components will be referred to as the A and Ab stars. (They have also been referred to as the " G " and " F " stars, respectively, in the older literature, but because our photometric indices give spectral types closer to " K " and " G " we will not use this designation.)

II. OBSERVATIONS AND DATA REDUCTION

Speckle-frame data were collected in the Strömgren y, b, and v filter bandpasscs in 1984 and in subsequent y filter runs in 1985, 1986, and 1987 with the GSU/CHARA speckle camera at the 4 m KPNO telescope (see Table I). The scale for the 1985 data was $0.008794^{\prime \prime} /$ pixel, whereas the other frames were at $0.005181^{\prime \prime} /$ pixel. The observing procedure

Table I. Capeila magnitude differences.

Date	Filter	Δm
1984.0604	y	0.08 ± 0.02
	b	0.22 ± 0.02
	v	0.54 ± 0.03
1985.8542	y	0.15 ± 0.02
1986.8892	y	0.09 ± 0.02
1987.7655	y	0.10 ± 0.02

has been described by McAlister et al. (1987). These frames were recorded on videotape for later analysis.
The frames were digitized at GSU by a PC-Vision Plus frame grabber (Imaging Technology, Inc.) on an IBM-XT compatible host. By means of FORTRAN and 8088 Assemblex programs, a central 128×128 pixel region of the 256×240 frame was stored in the "real" memory. Every other pixel was sampled from the original 512×480 frame. Thus, sets of up to 24 frames over intervals of 2 s were obtained. An 8 megabyte board in an IBM-AT compatible now allows up to 512 frames to be stored.
The flatfield data for the 1987 data showed a Gaussianshaped "bowl" sensitivity decrease at the center of the frame due to gain losses in the microchannel-plate intensifier from the tube's extensive use. This loss has amounted to as much as 50% of the sensitivity at the edge of the original field where relatively few photons have been detected. The Ca pella data were flatfielded, and the estimated uncertainty in the result was improved by 30% via the Fork hisiogram analysis (see tite discussion belcw). However, the omission of the flatfielding process did not lead to a significant bias in the result. Although the 1984 data were not flatfielded, the bias and increase in uncertainty were probably small since the microchannel plate was new at that time. With the assumption of linear wear, the data for 1985 and 1986 were flatfielded by 50% and 75% of the value for 1987.

Four sets of frames, comprising 80 frames total, were obtained for each data entry in Table I, except the b and v data from 1984, for which one hundred frames were obtained. The frames were analyzed via the Fork algorithm, which is described in more detail elsewhere, e.g., Bagnuolo (1988,1983) and Bagnuolo and McAlister (1983), in which it was referred to as "SSAA."

In brief, the Fork algorithm arises from the intuitive procedure of an observer viewing a double star frame-one looks for isolated speckle pairs, true replicas of the double star. Suppose that I_{1}, I_{2}, I_{3}, and I_{4} are observed intensities at Fork points (like tines of a table fork) separated by the double star separation. Because the atmosphere is nearly isoplanatic over Capella-like separations, the observed double star intensities are produced by a single star pattern (psf) with intensities of i_{0}, \ldots, i_{4} shifted by the double star separation, multiplied by the intensity ratio r, and added to itself. Thus

$$
\begin{align*}
& I_{1}=i_{1}+r i_{0}, \\
& I_{2}=i_{2}+r i_{1}, \tag{1}\\
& I_{3}=i_{3}+r i_{2}, \\
& I_{4}=i_{4}+r i_{3} .
\end{align*}
$$

Obviously, there are too many unknowns to solve for r, out suppose that by chance i_{2} is an isolated "glint" (i.e., $i_{2}>i_{1}$ and i_{3}. Then, J_{2} and I_{3} form a nearly isolated pair and $r \simeq I_{3} / I_{2}$. Figure 1 is the central 64×64 pixel region of a frame from the 1986 data. Note the indicated four intensities and the isolated speckle pair where $r \simeq I_{3} / I_{2}$. Other speckle pairs are also visible. Thus, the Fork algorithm selects nearly isolated pairs by requiring that $\operatorname{Max}\left(I_{2}, I_{3}\right)>C_{1}$ Max (I_{1}, I_{4}), and $>C_{2} \bar{I}$, where "Max" means "the greater," C_{1} and C_{2} are chosen constants, and \bar{I} is the average intensity of the speckle frame where the Fork algorithm was performed. The last condition applies when photon or detector noise is present. An estimate of the intensity ratio from each such "favorable occurrence" is $r \simeq\left(I_{3}-B\right) /\left(I_{2}-B\right)$,

Fig. 1. A 64×64 pixel area of a speckle frame (1986, y fiter) with a 22 level grey scale. A "favorable occurrence" for the Fork algorithm is indicated. The separation is 0.050 , the intensity ratio is 0.91 , and the position angle is 203°, as is indicated by this example.
where the background level is given by $B=\left(I_{1}+I_{4}\right) / 2$. These are referred to as "uncorrected estimates" below.

A better way is to estimate the two "contamination" terms in Eqs. (1.) for I_{2} and I_{3}, i.e., $r i_{1}$ and i_{3}. A straightforward calculation shows that

$$
\begin{align*}
\overline{i_{1}} & =I_{1} R_{1}-(1 / Q), \\
\overline{i_{4}} & =I_{4} R_{4}-(1 / Q), \tag{2}\\
\overline{i_{3}} & =\left(I_{4}-\overline{i_{4}}\right) / r,
\end{align*}
$$

where

$$
Q=(1 / r)-1,
$$

and

$$
R_{n}=e^{i_{n} Q} /\left(e^{i_{n} Q}-1\right)
$$

The above estimates were obtained by assuming that the probability of intensity i is given approximately by an exponential distribution, and by integrating appropriate probability distributions. Therefore, the "corrected estimate" of the intensity ratio for this occurrence is

$$
\because \frac{f_{3}-\overline{i_{3}}}{I_{2}-r \overline{i_{1}}} \equiv \frac{b}{a}
$$

The corrected estimates can also be appropriately weighted by their estimated uncertainties. The uncertainties in i_{1} and i_{3} lead to an uncertainty in the estumate for r and of a related quantity $f=r /(1+r)$, the fraction of intensity in the lesser component. It turns out that

$$
\Delta f^{2}=\left(b^{2} \Delta a^{2}+a^{2} \Delta b^{2}\right) /(a+b)^{4}
$$

where

$$
\begin{equation*}
\Delta a^{2}=r\left[I_{1}^{2}\left(1-R_{1}\right) R_{1}+\left(1 / Q^{2}\right)\right]=\Delta i_{1}^{2} r^{2} \tag{3}
\end{equation*}
$$

and

$$
\Delta b^{2}=\left(1 / r^{2}\right)\left[I_{4}^{2}\left(1-R_{4}\right) R_{4}+\left(1 / Q^{2}\right)\right]=\Delta i_{4}^{2} / r^{2}
$$

Fic. 2. Histogram for the $1987 y$ filter (corrected) data for 80 frames. The number of $o c-$ currences is plotted as a function of the intensity fraction.

One can compute an estimate of f for each occurrence, weight it by $1 / \Delta f^{2}$, and store it in a histogram. Uncertainty estimates can also be modified for estimated modest photon or detector noise by incorporating an additional term in Eq. (3).

Figure 2 shows as an example a histogram of the corrected, unweighted estimates of y filter results from the 1987 data. According to the autocorrelation data and the orbit, the separation in pixels (x, y) was ($-1,9$), which puts the fainter star almost due south of the brighter one. Parameters C_{1} and C_{2} were set at 2.25 and 1.3 , respectively, for the Fork algorithm, and the average digitized intensity over the area in which the Fork code operated was about 45 in the y filter (in a $0-255$ digitization range).
Table I lists the results for the Capella Δm values that have not yet been transformed to the standard Strömgren system. Somewhat surprisingly, the magnitude difference rises as one goes from y to v (5470 to $4100 \AA$). Therefore, the brighter component is the hotter Ab star (the spectroscopic secondary), and not the Aa star, contrary to the result of Wright (1954).
Note the basic agreement of the y measurements in Table I. The most discrepant point had data with the lower scale, which may account for the-difference. The errors are obtained from the internal differences in the data and do not reflect possible systematic errors (e.g., detector nonlinearities).
On two other points of interest: First, the sense of the true position angle is determined by whether or not $I_{2}>I_{3}$. On all four dates, the position-angle quadrants were determined to be in the same sense, that given previously by Bagnuolo and MicAlister (1983). Second, we do not see any sign of photometric variability in this systern.

The individual star colors now can be obtained from the integrated Capella colors, which were determined by Hauck and Mermilliod (1975) to be $b-y=0.513$ and $m_{1}=0.278$ mag. Taking the 1984 magnude differences to minimize
possible systematic biass, we thus find for the Ab star $b-y=0.451, v-b=0.655, m_{1}=0.204$; and for the Aa star $b-y=0.586, v-b=0.980$, and $m_{1}=0.394$. Figure 3 is a plot of the Capella components against standard G and K giants from Crawford and Barnes (1970). The best agreement is for G 0 III and $\mathrm{G} 8 / \mathrm{K} 0$ III components. Also plotted in the figure are sets of models from Kurucz (1988) and Bell and Gustafsson (1978).

III. DISCUSSION

It is evident that Capella Ab is almost 40% brighter compared to Capella Aa than was previously thought. Besides the work by Griffin and Grifin (1986), is there any other support for this in the literature?
At first sight, the integrated broadband colors might be different. Suppose we compare two models: Model I (standard model) with G6 III and GO III stars having $\Delta m_{\text {, }}=0.25$, and Model II (this paper) with G8/KO III and G0 III stars having $\Delta m_{v}=-10: 0$ (i.e., G0 star brighter). Synthetic broadband colors carn be computed from the Johnson (1966).standards, incorpoiating some results from Bell and Gustafsson (1978). Tabie II (top) shows that the differences between these models are very small. The largest difference, in $U-B$, is only 0.04 mag.
Another approach is to look at the difference in the far UV and in the narrow IR bands. In the former, the earlier-type star (which dominates) will be 0.18 mag brighter in Model II than in Model I. In an analysis of IUE Capella data at critical orbital phases, Ayres, Schiffer, and Linsky (1983) stated that the "rapidly rotating F9 III secondary star in the system i. , onsiderably brighter than the more slowly rotating G6 III-primary in the ultraviolet emission lines charäcteristic of the chromosphere ($T \sim 6000 \mathrm{~K}$) and higher temperature ($T<2 \times 10^{5} \mathrm{~K}$) plasmas." They remarked about "the extraordinary brightness of the Capella secondary in the far ultraviolet." This ultraviolet excess is perhaps less

Fig. 3. 3.itegrated Capella colors and individual colors of the Aa and Ab components are compared to stars (light squares) and to two sets of theoretical models (pound sign-Bell and Gustafsson; dark squares-Kurucz). The temperatures of the models are indicated.
remarkable if Capella Ab is 0.2 mag brighter in the visual than previously thought.

Some data in five IR photometric bands between 1.25 and $3.25 \mu \mathrm{~m}$ from NASA's Lear Jet Infrared Observatory were presented by Nordh, Olofsson, and Augason (1978). In this filter system, the bands " Fl " to " F 5 " were centered at 1.2 , $1.5,1.75,2.4$, and $3.3 \mu \mathrm{~m}$, respectively. The authors noted that by assuming the spectral classification and the light ratios given by Wright "after normalizing at filter F1 the model predicted too much flux at the positions of the filters F2, F3, and F5 ($18 \%, 8 \%$, and 14%, respectively), whereas the fluxes at the position of filter F4 were in agreement." They acknowledged that the data, especially in filters F2 and F3, were inconsistent with the spectral classification and magnitude differences given by Wright (1954). This discrepancy might be resolved by having the hotter, spectroscopic secondary be the brighter of the two components.

Finally, Koechlin et al. (1979) assigned a tme nodal
quadrant to Capella that appears to be 180° in error (see Bagnuolo and MicAlister 1983). The CERGA group's method involved observing spectrally dispersed fringes between 5000 and $6500 \AA$; they assumed a magnitude difference of 0.25 in these wavebands. However, our observed intensity ratios and colors imply that the cooler Capella Aa is the brighter longward of about $6400 \AA$, which could explain their error (Vakili 1988).

To conclude, there does seem to be support in the literature that the hotter Capella $A b$ is the brighter star.

IV. SUMMARY

Assuming that the new spectral types are correct (G8/ KOIII and G0 III), the intrinsic parameters for Capella (listed in Table III) have been obtained. Orbital parameters were taken from McAlister (1981). The stellar tempera-

Table III. Derived quantities fur the Capella components.

Spectral Type	Mv	log Te	B.C.	$\log (\mathrm{L} / \mathrm{LO})$	$\log (\mathrm{R} / \mathrm{RQ})$
G0 III	0.12	3.744	-0.04	1.844	0.958
		(3.763)	(-0.13)	(1.880)	(0.938)
G8/K0 III	0.23	3.681	-0.25	1.884	1.104
		(3.649)	(-0.40)	(1.944)	(1.198)

tures were based upor the models of Kurucz (1988) and Bell and Gustafsson (1978) for temperatures of 4800 and 5500 K , respectively. Values using the temperatures and bolometric corrections from Popper (1980) are given in parentheses in Table III.

Finally, it is interesting to note that our new spectral type for the brighter star is identical to that assumed by Edding. ton (1926). Sometimes the more things change, the more they stay the same.

We wish to acknowledge W. Hartkopf, H. McAlister, O. Franz, P. Lu, and E. Dombrowski for their time spent in the
acquisition of the Capella data. We thank W. Hartkopf and H. McAlister for critiquing the manuscript. We also thank D. Barry for sharing his computer expertise, and T. Meylan for supplying stellar model data and useful criticism. The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF grant no. AST 8613095 and the Air Force Office of Scientific Research through AFOSR grant no. 860134. We gratefully acknowledge this support. The video digitizing hardware was purchased through grant no. N14-87-6-0160 from the Office of Naval Research, and we thank Gart Westerhout and Charles Worley of the U. S. Naval Observatory for their interest in our speckle efforts.

REFERENCES

Ayres, T. R., Shiffer III, F. H., and Linsky, J. L. (1983). Astrophys. J. 272, 223.

Bagnuolo, W. G., Jr. (1982). Mon. Not. R. Astron. Soc. 200, 1113.
Bagnuolo, W. G., Jr. (1983). Lowell Obs. Bull. 167, 180.
Bagnuolo, W. G., Jr. (1988). Opt. Commun. (submitted).
Bagnuolo, W. G., Jr, and McAlister, H. A. (1983). Publ. Astron. Soc. Pac. 95, 992.
Bell, R. A., and Gustafsson, B. (1978). Astron. Astrophys. Suppl. 34, 229.
Campbell, W. W. (1899). Astrophys. J. 10, 177.
Crawford, D. L., and Barnes, J. V. (1970). Astron. J. 75, 978.
E.jdington, Sir A. S. (1926). The Internal Constitution of the Stars (Dover Edition, New York, 1959), p. 11.
Grifin, R., and Griffin, R. (1986). J. Astrophys. Astron. 7, 45.
Hauck, B., and Mermilliod, M. (1975). Astron. Astrophys. Suppl. 22, 235.
Johnson, H. L. (1966). Annu. Rev. Astron. Astrophys. 4, 193.
Koechlin, L., Bonneau, D., and Vakili, F. (1979). Astron. Astrophys. 80,

L13.
Kurucz, R. L. (1988). Private communication to T. Meylan.
McAlister, H. A. (1981). Astron. J. 86, 795.
McAlister, H. A., Hartkopf, W. L., Hutter, D. J., and Franz, O. G. (1987). Astron. J. 93, 688.
Newall, H. F. (1899). Mon. Not. R. Astron. Soc. 60, 2.
Nordh, H. L., Olofsson, S. G., and Augason, G. C. (1978). Astron. J. 83, 188.

Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
Shen, L. Z., Beavers, W. I., Eitter, J. J., and Salzer, J. J. (1985). Astron. J. 90, 1503.
Strassmeier, K. G., Hall, D. S., Zeilik, M., Nelson, E., Eker, Z., and Fekel, F. C. (1988). Astron. Astrophys. Suppl. 72, 291.

Vakili, F. (1988). Private communication.
Wright, K. O. (1954). Astrophys. J. 119, 471.

Seeing Stars with Speckle Interferometry

Harold A. McAlister

Astronomers view the universe through an atmospheric veil surrounding the earth that obscures a large part of the electromagnetic spectrum and distorts much of the remainder, including most visible and infrared wavelengths. Irregularities within atmospheric layers create small convection cells of air with slightly different temperatures and densities from the air in neighboring cells, and the differential refraction induced by this condition changes rapidly as winds blow the cells across lines of sight to celestial objects. This results in an image from a point source such as a star that is greatly blurred, changing in appe.. ance on time scales of a few hi :dredths of a second.

For nearly a century, great ci. servatories have been located or mountaintops selected after exhaus tive searches for sites with the most transparent and stable air above them to minimize atmospheric effects on seeing. The latest effort at surveying sites was completed in April 1987 with the announcement by the $\mathrm{Na}-$ tional Optical Astronomy Observatories that the $16-\mathrm{m}$ National New Technology Telescope would be located on the Hawaiian volcano Mauna Kea. Mauna Kea is well known for its excellent seeing conditions, with astronomers often reporting the blurring of stellar images-called "seeing disks"-to less than half a second of arc, compared to two to four times that amount at good sites in the continental United States.

To resolve detail finer than the seeing limit imposed by the atmosphere, astronomers have long dreamed of putting large telescopes in space or on the moon, where no gaseous medium can blur or filter out light from astronomical objects. The finest resolution of such telescopes would be the ultimate limit imposed by the diffraction of light, a limit inversely proportional to the diameter of a telescope's objective mirror. Thus a telescope such as the $5-\mathrm{m}$ aperture $(200-\mathrm{inch})$ Hale telescope

[^12]> New techniques enable astronomers to overcome aimospheric , Iistortions of telescopic images, revealing, among other things, an unexpectedly large number of binary stars
on Mt. Palomar would be capable in space of resolving angular detail as small as 0.025 sec , equivalent to the angular size of a dime seen from a distance of some 80 km . The actual limiting resolution on Mt. Palomar is degraded by a factor of nearly 100 , to somewhere around 2 sec. Thus this great telescope, capable of gathering one million times the light of a single human eve, can outperform the eye by a factor of only about 30 in angular resolution, doing no better than a department store telescope in this regard. The Hubble Space Telescope, with its $2.5-\mathrm{m}$ diameter objective mirror, will yield images with unprecedented sharpness of detail when it is orbited by the space shuttle, surpassing even the best viewing from Mauna k.ea by at least an order of magnitude.

As the scientific momentum behind the Space Telescope was building in the middle and late 1960 , a young French astronomer named Antoine Labeyrie was developing novel but not particularly difficult methods of observation and analysis to surpass the atmospheric seeing limit and, fôr certain types of objects, to reach the full diffraction-limited resolution expected from theory. Labeyrie gave this new approach the name "speckle interferometry" (Labeyrie 1970).

Speckle interferometry works by recording images using exposure times between $1 / 30$ and $1 / 100 \mathrm{sec}$. During these brief instants, the distribution of turbulence can change by only a fraction of a typical convection cell's diameter, so that the pattern of blurring is effectively frozen. The aperture of a large telescope like the $4-\mathrm{m}$ Mayall reflector on Kitt Peak will at any given instant contain hundreds of refractive cells, which create a random distribution of interference fringes in the image produced by the telescope; following Labeyrie's pioneering work, an individual fringe in the image is called a "speckle." Because each speckle contains contributions from locations distributed throughout the telescope's aperture, they all have characteristic sizes, which are directly proportional to the wavelength of light being observed and inversely proportional to the aperture of the telescope. For a $4-\mathrm{m}$ telescope, speckle diameters turn out to be approximately 0.030 sec in visible light. Each speckle is actually a version of what the telescope would see if there were no atmosphere. Thus a speckle
image is a kind of multuple exposure containing hundreds of complete representations of the astronomical object.

Cameras used to record speckle images at high magnsfication typically have fields of view of only two or three seconds compared to the many minutes of arc in normal astronomical photographs. Because of the very short exposure tume required to freeze the pattern of atmospheric distortion, any single exposure will have to take advantage of as many of the incoming photons as it can. The light is amplified by an image intensifier tube and recorded by a highly sensitive electronic detector with very low noise.

The speckle camera we have developed at Georgia State University incorporates high magnification optics, a spectral filter assembly, and prisms that correct for atmospheric dispersion as objects are observed at varying distances from the zenith. The entire system is operated by computer. The camera produces 1,800 speckle images in one minute and can easily detect objects as faint as tenth magnitude, some 40 times fainter than can be detected by the unaided human eye. Longer integration times have been used to reach objects such as Pluto that are several hundred times fainter still. Figure 1 shows a speckle image of a single star alongside a $4-\mathrm{sec}$ exposure from the same data set. It is apparent from these two examples that exposure times exceeding the rate of atmospheric change blur the information carned in the speckle exposures.

The analysis of speckle images involves measuring the average spatial information at the limiting scale-sizes of the speckles. In an early and conceptually simple analysis of an image of the cool supergiant star Betelgeuse, Lynds and his co-workers (1976) treated each speckle as a distorted and noisy approximation to a

diffraction-limited image of the barely resolved star. By centering and stacking hundreds of individual speckles in a computer to improve the signal-to-noise ratio, they produced a "picture" of the surface of Betelgeuse, the first of the surface of any star other than the sun. Much of the structure in this intriguing irrage is smaller than the limiting resolution of the Kitt Peak $4-\mathrm{m}$ telescope at which the data were obtained and must be attributed to residual noise following processing. Indeed, although Betelgeuse is resolved at the telescope's diffraction limit, its disk is only about three times the diameter of the smallest disk resolvable by the telescope. No more than a dozen supergiant stars in our galaxy are large enough and near enough to the sun to have angular diameters resolvable by speckle interferometry at the largest existing telescopes, and thus the applicability of the method to the measurement of stellar diameters is limited at present.

The ubiquitous binary stars

Binary stars are the special objects of speckle interferometry. A binary star is actually a pair of stars bound by their mutual gravity into elliptical orbits about their center of mass. The determination of the orbital elements of a binary star-dynamical and geometric parameters describing the relative motion of the two stars-provides the only means available for determining stellar masses (see Heintz 1978). These quantities are of fundamental importance to astrophysics and to our understanding of the complete evolutionary history of stars, and yet they are in short supply (Popper 1980). This is the last area in which the human eye still makes direct measurements at a telescope.

Evidence painstakingly accumulated during the last

Figure 1. Speckle interferometry, a technology developed during the past 20 years, allows astronomers to overcome the distorting effects of the earth's atmosphere by photographing celestal objects at very short exposure times. A speckle image is a kind of multiple exposure, with each individual speckle containing a complete representation of the object. The spechle image of a star on the left was obtained at the 4 m telescope on Kitt Peak using an electronic camera with an exposure time of $\mathfrak{i} 30$ second. The field of viev is just under 3 sec of arc. In a foursecond exposure of the same star (nght), the fine speckle detail has been biurred by the rapidly changing atmosphere. (All photographs are by the author.)

Figure 2. Speckle interferometry has proved particularly useful for observing binary stars, apparently the great majority of stars in our galaxy. It can resolve companion stars in binary systems at separations much too fine for the visual method to distinguish. As long as the stars are separated by no more than a few seconds of arc, their light undergoes the same atmospheric distortion and thus can be resolved in a single speckle image. This innage of the binary star ADS 11483 with an angular separation of 1.6 sec was taken at the $3.6-\mathrm{m}$ Canada-France-Hawaii telescope under the excellent seeing conditions that prevail on the volcano Mauna Kea.
half century indicates that most stars in our galaxy exist not as single objects but as companions bound in binary systems. This mutual association of stars carries on to triple and higher order systems, pointing to our need to understand why stars form in such groups rather than as single objects. The only star that is conclusively known not to be in a binary or multiple system is our own sun, and yet it is accompanied by the giant gaseous planet Jupiter, a kind of near miss at being a star in its own right. Labeyrie's method of speckle interferometry offered a revolutionary way of detecting new binaries and measuring thousands of known systems because of its greatly increased resolution and accuracy in comparison with the classical methods.

Speckle interferometry provides a means for resolving binary stars with angular separations down tr the diffraction limit and for measuring their orbital motions with greatly improved accuracy in comparison with the visual method Much of this increased accuracy depends on a property known as isoplanatism, which results from the equal distortion of the individual stars in a binary system as long as they are separated by no more than a few seconds. Figure 2 shows a speckle image of a binary star system with an angular separation of approximately 1.6 sec . The speckle patterns of the two component stars correlate highly, and the geometry of the system is repeatedly preserved in the individually correlated speckle pairs The image was taken on Mauna Kea under superb seeing conditions, so the speckle patterns arising from each star are well separated.

An efficient method for measuring the average geometry of a binary system from a series of speckle images begins with what is known as a vector-autocorre. lation, which measures all possible separations and orientations between all of the pairs of speckles in a single image. Imagine making a two-dimensional representation in which you place each speckle in turn at the origin and then plot the positions of all the speckles around it. If an image contains a total of N individual speckles, the vector-autocorrelation of the image is produced by N plottings. You continue adding to the representation over many hundreds or thousands of such images, and the geometry of correlated pairs shows up as two peaks on either side of a bright central peak at the origin, with the other random pairs contributing a smooth background extending over an area equivalent to that of the seeing disk. The geometry is then measured by eliminating the smooth background and determining the separation between the two outer peaks. The central peak arises from the superimposition of every speckle. This processing method can easily be carried out with specialized computer hardware as the data are taken at the telescope.

Figure 3 demonstrates the method for a binary star with an angular separation of a few tenths of a second. The seeing conditions undei which the data were obtained are typical of Kitt Peak, vith the result that the individual speckle patterns of the two stars cover each other. The vector-autocorrelogram on the right provides very strong peaks that can easily be measured with a precision better than 0.002 sec . A feature of this method of analysis is that the location of the fainter star with respect to the brighter star of the pair is ambiguous by 180° of position angle. This ambiguity is usually settled by visual observations of the system, as experienced observers can make micrometer measurements of binaries with such small angular separations. Visual measures, however, are less accurate than speckle results by at least an order of magnitude.

More sophisticated reduction techniques than vec-tor-autocorrelation not only settle the ambiguity for the systems uniquely resolvable by speckle interferometry but also provide a determination of the brightmess ratio between the two stars. This additional information is important for the complete astrophysical description of a binary star system. Labeyrie (1978) and I (1985) have both published reviews of methods and results from speckle interferometry as well as from other high-resolution techniques.

A terabyte of data

The speckle program of the Center for High Angular Resolution Astronomy has produced more than 85% of all high-resolution measurements of binary stars. Since 1975, our efforts have yielded some 6,300 measures of nearly 1,200 binary star systems dunng about 120 nights of observing at the Kitt Peak $4-\mathrm{m}$ telescope, representing a terabyte of data. These results include the first resolution of 192 stars as binary systems. The average angular separation is about 0.38 sec , with nearly 20% of the sample falling between 0.10 sec and the limiting resolution of 0.030 sec .

Many of the newly resolved pairs have orbital
periods of a decade or less rather than the many decades that are typical for visual binaries. One particularly informative example is 51 Tauri (Fig. 4). This binary system is a member of the Hyades cluster, a collection of stars of fundamental importance in calibrating the cosmic distance scale. Hyades binaries provide one way of determining the distance to the cluster and also furnish unique information about the way that evolutionary effects in stars created at the same time with the same chemical abundances are dependent on the stars' masses. Just observed through one complete revolution, 51 Tauri promises to be one of the most important of the Hyades binaries in settling a number of issues that have been debated over the years.

Many other systems with relatively long periods have been observed during so-called periastron passages, when the two stars approach closest to each other and, as Kepler's second law dictates, their angular velocities are greatest (Fig. 5). Many such systems are unresolvable by classical methods around periastron. The new speckle measures provide critical information about their orbital elements and hence their masses.

The most important kind of binary system resolvable by speckle observations is that whose component stars have never been directly resolved but are revealed through their separate contributions to the system's spectrum. If their orbital motions are sufficiently rapid, the two sets of features will move oppositely through the spectrum in accordance with the Doppler effect, and the velocities of each of the stars along the line of sight can be measured. The direct resolution of these "double-lined spectroscopic binaries" permits the combination of angular measures of separation with linear measures of velocities to determine not only the masses of the component stars but also the systems' distances from the sun.

We have resolved a handful of such spectroscopic binaries, but the great majority of these systems have angular separations too small to be measured by current speckle methods. Successfully resolved examples include 12 Persei and Phi Cygni, the former consisting of two stars only

Figure 3. The binary star ADS 7158 has an angular separation of 0.24 sec , so close that the speckie pattents of tive fwo component stars cover each other in an image taken with the Kitt Peak $4-\mathrm{m}$ telescope (top). A vector-autocorrelog'am (bottom) gives an accurate measure of the angular separation and relative orientation of the two stars. The two outer paaks in this computer-generated image represent the paired speckles in nearly 2,000 individual speckle frames like the one at the top. The bright central peak results from the superimposition of every speckle.

slightly hotter and more luminous than the sun, the latter comprising two stars that are similar in temperature to the sun but have evolved to giant stars. Although our results for 12 Persei agree well with stellar evolutionary theory, the luminosities for the stars in Phi Cygni are sıgnificantly greater than expected. We have also found this departure from theory in two other spectroscopic binaries containing giant stars.

There are many specific stars for which speckle interferometry has already provided new orbital elements, and there are many more visual binaries with farly long periods of revolution for which it will soon improve calculations of orbits based until now entirely on visual measures. These refinements can have very large effects on measurements of masses, as total mass is proportional to the cube of the major axis of the ellipse. Thus a 15% change in the determination of the major axis causes a nearly 50% alteration in the calculated mass. A typically large reassessment of stellar mass is shown in Figure 6.

Searching for extrasolar planets

Truple star systems have been discovered during measuring of previously known visual binaries. Others have resulted from attempts to resolve spectroscopic binaries predicted to have angular separations at the diffraction limut of the $4-\mathrm{m}$ telescope but having a companion with slower orbital motion than the previously known component. The star Eta Virginis is a binary with a spectroscopically determined orbital period of 70 days and, being relatively close to the sun, is a good candidate for resolution by speckle interferometry. Continued speckle coverage has indicated a period of just over 13 years due to a previously unknown third stellar companion. It is possible that the 70 -day period may yet reveal itself as the gravity of the unseen star causes the resolved system to depart from simple elliptical motion.

This phenomenon is in fact the basis for one method of detecting planetary companions to stars. Since late 1982, we have been using the 72 -in. Perkins telescupe near Flagstaff, Arizona, to take monthly observations of a collection of 65 binary stars that are known to be within 85 light-years of the sun. By taking repeated measurements over a decade or so, we hope to decrease the observational errors so that departures from elliptical motions as small as 0.0002 sec can be detected. As is shown schematically in Figure 7, such small submotions could reveal the presence of planets with masses equivalent to Jupiter in orbit about one component star of a binary. Because planets are small and shine only by reflected light from their parent sun, they are hopelessly lost in their sun's glare and can be found only by indirect means.

Several search programs are in progress around the world, but ours is the only one involving binary stars. Other methods of detecting planets are in fact not applicable to binary systems. Calculations have shown that stable and even life-supporting orbits can exist in binary systems, and it is important that this dominant class of stars not be overlooked in the search for extrasolar planets. At present, there is no confirmed evidence for the existence of any planet outside our own solar system. It will be several more years before we can determine if our approach will achieve the required level of accuracy, but the scientifically and philosophically profound nature of this quest makes our efforts rewarding.

How many binaries are there?

We have already noted the seemingly limitless number of binary star systems. There are various ways to detect such systems, but a particular binary is rarely detectable as a binary by more than one. Speckle interferometry has pushed direct resolution into the realm of the spectroscopic binaries-that is, speckle observations can search for new systems that would have gone undetected in previous surveys.

Unfortunately, surveys of stars require large amounts of telescope time, a need that cannot be met in view of the stiff competition for very large telescopes. The urgency of the situation was stressed in late 1984 by Michael Shara of the Space Telescope Science Institute, who pointed out that the frequency with which the fine guidance sensors of the Hubble Space Telescope would encounter binary stars was probably underestimated because of the incomplete models of the galactic population distribution then available. The sensors cannot lock onto a binary star to provide a guiding and tracking

[^13]-

Figure 5. The star ADS 1105 was discovered to be a binary system in 1831; in that year its angular separation was 0.7 sec . When speckle data were first gathered in 1978, orbital motion was increasing rapidly because of the impending passage of the stars through their point of closest approach, or periastron, an event now known to have occurred in the fall of 1984. The two stars were separated by no more than 0.01 sec , too close to be resolved by visual methods. The orbital motion, which has now been determined for the first time, shows not only the rapid and critical periastron passage of the nearly 210 -year orbit, but demonstrates as well the increased accuracy and resolution of the speckle measures (colored dots) compared to the visual measures (gray dots).
$120-\mathrm{in}$. Shane telescope of the Lick Observatory, and the 3.8-m Canada-France-Hawaii telescope on Mauna Kea. After observing faint guide stars at the two continental telescopes, we decided to switch to-observing bright stars. By selecting a sample containing the proper evolutionary blend, we hoped to arrive at an accurate figure that could be used by planners of the Space Telescope. In four nights on Mauna Kea under wonderful seeing conditions, we observed a sample of 672 bright stars, discovering 52 previously unknown binaries. This result more than tripled the estimated frequency of binary stars in the separation interval from 0.04 to 0.25 sec ; Shara subsequently has predicted that nearly 20% of all guide stars will be unsuited to their task (Shara et al. 1987). The software for guiding the Space Telescope is now being modified to minimize the impact of this situation.

Whereas the Space Telescope's planners regard the increased estimate of duplicity as a pestilence, we find it scientifically intriguing. The survey of the more than 9,000 stars officially classified as "bright" is being continued, a few hundred stars at a time, during breaks in our regular program of measuring binary systems at Kitt Peak and follow-up runs on Mauna Kea.

We have also carried out a more limited survey among stars in the Milky Way showing very high velocities. Our results support an upward revision in the frequency of duplicity among older stars, which move differently from the population of younger stars like the sun. What was once thought to be a rare occurrence for the older generation of stars may actually be as common as it is among the more recently formed stellar population.

As a final group of objects in which new binary systems might be sought, we have surveyed not another collection of stars, but instead a sample of minor planets in our own solar system. Reports of such binary asteroids have appeared during the last decade, but in no case has incontrovertible evidence been put forth. We have completed the most extensive search to date by inspecting some 60 minor planets on two or more occasions each. We have found no evidence for the existence of double asteroids and must conclude that they do not exist within the limits of detectability by
Figure 6. Speckle interferometry has provided revised estimates of the orbital elements of many binary systems. The speckle measures (cclored dots) and visual measures (gray dots) of the system aDS 11520, whose period of orbit is 12.14 years, are shown along with the orbit previously considered definitive (gray ellipse) and the new orbit incorporating the speckle observations (colored ellipse). The total mass of the system is now known to be less than one-half that given by the previously accepted orbil, which was based solely on visual data.
speckle interferometry. Why our galaxy prefers binary stars but the solar system prefers single asteroids remains a mystery.

Future efforts

Speckle interferometry is far from exhausting its potential. Other groups active in the field, such as those at i larvard University and the University of Arizona, have emphasized the development of techniques for reconstructing high-resolution images from speckle pictures. This is a difficult task, but once perfected, speckle techniques will be widely used in astronomy, joining such standbys as photometry and spectroscopy. Imaging methods will be particularly important at infrared wavelengths, because many cooler objects associated with star formation radiate in the infrared and could easily be resolved at the diffraction limits of large telescopes.
Although speckle imaging will not be limited to objects such as binary stars that exhibit simple structures, the study of binary stars will benefit tremendously from certain types of maging algorithms that not only reveal positional information but permit the determination of the individual brightrasses and colors of both component stars of a system. This means that in addition to determining the masses of the stars we can complete their astrophysical descnptons by extracting their luminosities and temperatures. No other method now exists for accurately determining this intensity-related information for binaries that are closer to each other than the seeing limut. We hope to be routnely performing "speck-

Figure 7. Unseen third companions ot pianetary mass in binary star systems can be detected if the orbital motion is measured with sufficient accuracy to reveal departures from simple elliptical motion. The complete elliptical orbit of a hypothetical binary system is shown at the upper left; the enlargement of a portion of the orbit shows the submotions of one of the stars, around which an unseen planet is presumed to orbit. The gravity of the unseen planet causes the submotions; at the same time, the center of mass of the system formed by the planet and the star follows the elliptical path. Evidence presented by speckle interferometry could help determine whether extrasolar planets exist.
le photometry" along with our well-established speckle interferometry within a year or so.

But what about the push for ever higher resolution? The $10-\mathrm{m}$ Keck telescope on Mauna Kea, which will be operated by Caltech and the University of California, is now well under way. Even 'arger national facilities are being planned, including the National New Technology Telescope in the United States and the Very Large Telescope, a European project to be located in the Southern Hemisphere. These behemoths will become the major observatories for the turn of the new century, designed to serve at the frontier of astronomical science. Although not specifically intended for high angular resolution astronomy, they will have some important applications to it.

The real breakthrough in the quest for higher resolution is taking place in the development of arrays of telescopes dedicated to interferometry, a technology perfected years ago at longer wavelengths by radio astronomers. Arrays can be made to achieve the resolution of a single enormous telescope if their focal planes are brought together to relay a commonly intercepted wave front of light to a beam-combining location Achieving the necessary interference within the combined beams requires that the light paths in the arms be controlled to micron accuracies.

The application of this long-baseline interferometry at visible wavelengths began early in the century at the Mt. Wilson Observatory, but the valiant attempts made there during the 1920s and 193Cs were generally frustrated by the lack of appropriate technology. The effort was abandoned for over thirty years until several groups began to develop multi-telescope interferomerers in the early 1970s. Labeyrie built a two-telescope interferometer in France and began work on a separate system employing an array of $1-\mathrm{m}$ telescopes of a novel spherical design (Labeyrie et al. 1986). Other projects around the world include an interferometer on Mt. Wilson (Shao et al., in press) and a linear array of 11 small telescopes on a $640-$ m north-south baseline now under construction in Australia (Davis and Tango 1985). The Australians have already measured the diameter of the nearby star Sirius using a prototype interfernmeter (Davis and Tango 1986). Several other projects aimed at infrared wavelengths are in various stages of development (Anderson 1987).

At the Center for High Angular Resolution Astronomy, we are planning a facility that will increase the available angular resolution by more than two orders of magnitude. Seven 1-m telescopes will be dispersed along three baselines radiating at 120° intervals from a central station. The circle circumscribing this array will have a diameter of up to 400 m , depending on the site at which it is eventually located. The beams from the individual teiescopes will be carned through light pipes to the central station, where they will be directed into combining optics and detectors.

Our configuration is modeled after the enormously successful Very Large Array of radio telescopes located in New Mexico, but because of the resolution leverage of the short visible wavelengths, our interferometer will have more than a hundred times greater resolution. This wavelength advantage, however, quickly turns against us by imposing formidable mechanical and optical toler-
ances. It will be a challenge to produce the kind of images of extended objects for which the Very Large Array has become justly renowned. At the outset, our project will be aimed primarily at measuring stellar properties through the resolution of very close binaries and the surfaces of individual stars, but it has the potential for imaging complex objects.

The new interferometer will have a limiting resolution of 0.0002 sec , compared to the 0.030 sec we are now achieving by speckle interferometry on Kitt Peak. The dime that is now resolvable as a disk from 80 km will be measurable from a distance of $12,000 \mathrm{~km}$! We can now expect to resolve a typical binary star at a distance of 80 light-years from the sun if its period of revolution exceeds about 0.7 year; the instrument we hope to build will be able to resolve binaries at this distance with orbital periods as short as 3 hours. It is now a rare and celebrated occurrence when we successfully resolve a spectroscopic binary, but the new interferometer will resolve virtually all the more than 700 such objects now known; it will increase the present handful of resolvable stellar diameters by tens of thousands. A long-baseline optical interferometer will be a revolutionary leap forward in fundamental observational astrophysics, furnishing a new perspective on the universe. It will cost about the same as a single $4-\mathrm{m}$ telescope--around $\$ 8$ million-but will provide 150 times the resolution.

Where it was once considered necessary to go into space to overcome the limitations of atmospheric seeing, we can now make progress without leaving the ground. But space still beckons with enticing prospects, particularly the imaging of faint objects over very long baselines and at extremely high resolution. Both NASA and the European Space Agency are studying the technology for large space-based interferometers, and some feel that such an instrument would be the logical fol-low-up to the Hubble Space Telescope. In space, an interferometer could have a baseline of many hundreds of kilometers, providing an almost microscopic view of the macroscopic universe. Thus the current activity in ground-based interfezometry can be seen as a step in the development of a space interferometer.

For nearly four centuries, telescopes of ever increasing light-collecting area have pushed back the frontiers of our knowledge by detecting increasingly fainter objects in the universe. The complementary ability of large telescopes to resolve fine detail has been exploited for less than two decades. This is truly the beginning of a new manner in which we view and understand cosmic phenomena.

References

Anderson, P H. 1987 Astronomers seek high resolution. Phys. Today 40(6):19-23.
Davis, J., and W Tango. 1985. A new high angular resolution stellar interferometer. Proc. Astron. Soc. Australia 6:38-42.
1986. New determunation of the angular diameter of Sirius. Nature 323:234-35.
Heintz, W. D. 1978. Double Stars. Reidel.
Labeyne, A. 1970. Attainment of diffraction limited resolution in large telescopes by Founer analysing speckle patterns in star images. Astron. Astrophys. 6:85-87.
__ 1978. Stellar interferometry methods. Ann. Rev. Astron. Astrophys. 16:77-102.
Labeyrie, A., et al. 1986. Fringes obtained with the large "boules" interferometer at CERGA. Astron. Astrophys. 162:359-64.
Lynds, C. R., S. P. Worden, and J. W. Harvey. 1976. Digital image reconstruction applied to Alpha Orionis. Astrophys. J. 207:174-80.
McAlister, H. A. 1985. High angular resolution measurements of stellar properties. Ann. Rev. Astron. Astrophys. 23:59-87.
Popper, D. M. 1980. Stellar masses. Ann. Rev. Astron. Astrophys. 18:115-64.
Shao, M., et al. In press. The Mark ill stellar interferometer. Astron. Astrophys.
Shara, M. M., R. Doxsey, E. N. Wells, and H. A. McAlister. 1987. The fraction of close binaries among Hubble Space Telescope guide stars - operational consequences, workarounds, and suggestions for designers of future space observatones. Publ. Astron. Soc. Pacific 99:223-33.

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. II. COMBINED VISUAL/SPECKLE ORBITS OF 28 CLOSE SYSTEMS

William I. Hartkopf and Harold A. Mcalister
Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303
Otto G. Franz
Lowell Observatory, Flagstaff, Arizona 86001
Received 28 February 1989; revised 19 May 1989

Abstract

New orbital elements are presented for 28 close visual systems that have been observed and in some cases discovered by speckle interferometry. Periods for these systems range from 2.7 to 213 yr , semimajor axes from 0.06 to 0"81. Three of these systems (ADS $1105=$ STF 115 AB, ADS $1473=$ Ho 311, and ADS 14121 = Wck Aa) had no previously published orbital analyses, while elements for a number of other systems have undergone major revisions.

I. INTRODUCTION

The technique of speckle interferometry, as first suggested by Labeyrie (1970), has been in routine use by binary star observers for over 15 years now; in that time it has shown itself to be a reliable method for observing heretofore unresolvable systems (separations down to 0 "025 at the Kitt Peak 4 m) with unprecedented accuracy (down to ± 0.001 for brighter stars with small magnitude differences). Over 7600 measurements of 1371 systems have been published to date by observers from institutions throughout the world. McAlister and Hartkopf (1988) have compiled a catalog of all binary star measurements made by modern interferometric methods and published to date; the median separation in the catalog is 0 "23, and 16% of the measurements are for systems closer than 0 :1.
Some 75% of these measurements fall within the separation range 0.05-0."5. At the typical distances of these stars, these translate to periods ranging from, perhaps, 1 to 100 yr , with the most common periods roughly 10 to 20 yr . Thus, speckle interferometry has now reached the point where many of its target systems have completed one or more revolutions and are ripe for orbital analysis. As will be seen, speckle observations may occasionally cover a crucial portion of a very long-period orbit, as well; two of the systems discussed in this paper have periods in excess of 200 yr .
Speckle-based orbit analyses accompanied by extensive discussion have been published for a number of interesting systems, including χ Draconis (McAlister 1980; Tomkin et al. 1987), γ Persei (McAlister 1982; Popper and McAlister 1987), Capella (McAlister 1981; Bagnuolo and Hartkopf 1989), the Hyades binary Finsen 342 (McAlister et al. 1988), $\beta \operatorname{Per}$ (Bonneau 1979), and several others. With this second paper in our series we begin more large-scale harvests of those orbits for which speckle interferometry has provided a significant contribution. The procedure used for deriving these orbits is described below, followed by a discussion of our weighting scheme, then new orbital elements and notes for 28 binary star systems.
Most of the systems in this paper were discovered to be binaries long before speckle interferometry was developed (for example, ADS $9757=$ STF 1967 was first resolved by F.G.W. Struve in 1826). These visual measurements, although of lower accuracy than the speckle data, often provide a baseline of several orbital revolutions that may be used
to tie down the period with considerable accuracy. In several of the calculations discussed below we have used all available data to determine the orbital period, then used only the speckle data and this period to derive the remaining elements. These "nonstandard" treatments of the visual data will be detailed in the individual star notes.

II. METHOD OF ORBIT CALCULATION

Programs for calculating orbital elements abound (see, for example, Eichhorn 1985; Heintz 1978a; McAlister 1981; Monet 1979, etc.), each with its own sensitivities. The program developed at CHARA is flexible and relatively straightforward in its mathematical formulation.

It can easily be shown that if the three elements P, T, and e are known, the four Thiele-Innes elements (A, F, B, and G see Heintz 1978a for a definition of terms) and therefore the geometric elements $a^{\prime \prime}, i, \Omega$, and ω can be determined by the method of least squares, as follows:

Given (P, T, e) and a set of observations (t_{i}, x_{i}, y_{i}), the eccentric anomalies E_{l} are found via the equation

$$
\begin{equation*}
u\left(t_{i}-T\right)=E_{l}-e \sin \left(E_{l}\right), \tag{i}
\end{equation*}
$$

where

$$
\begin{equation*}
u=360 / P \tag{2}
\end{equation*}
$$

Normalized rectangular coordinates X_{i} and Y_{i} are determined by the equations

$$
\begin{align*}
X_{i} & =\cos \left(E_{i}\right)-e, \tag{3}\\
Y_{i} & =\sqrt{1-e^{2}} \sin \left(E_{i}\right) . \tag{4}
\end{align*}
$$

The four Thiele-Innes elements are then found by a leastsquares solution of the equations

$$
\begin{align*}
& x_{i}=A X_{i}+F Y_{i} \tag{5}\\
& y_{i}=B X_{i}+G Y_{i} \tag{6}
\end{align*}
$$

We perform a "three dimensional" grid search in the vicinity of a set of input values of P, T, and e, in each grid step calculating the remaining elements and determining an overall residual. Initial step sizes for the grid are adjustable; step sizes of zero may be used for any of the three elements (when, for example, the period is determined by other methods). After interpolating to arrive at a (P, T, e) set yielding minimum residuals, the grid spacing is reduced and the pro-
cess repeated. The search ends when grid step sizes decrease below 0.01 yr in P and $T, 0.001$ in e.

In the next step, rms residuals are determined separately for visual and CHARA speckle data. Visual observations whose residuals exceed 3 times the visual rms are given zero weight, as are any speckle observations exceeding 3 times the CHARA speckle rms. The grid search is now repeated, this time running until step sizes fall below 0.0001 yr in P and T, 0.00001 in e.

Formal errors for all the elements are determined from the covariance matrix of the final iteration.

III. THE WEIGHTING GAME

An essential aspect in the determination of binary star orbits is the decision on proper weights to be assigned each observation entering into those calculations. These observations may span 100 yr or more and may have originated from dozens of observers of varied experience and competence, using many different telescopes of different aperture and quality, and subject to a host of other uncertainties. These factors make the entire weighting procedure subject to the inevitable personal prejudices of the orbit computer. Our effort is no exception. We have endeavored, however, to keep our procedure as objective as possible by grouping observations into a minimum number of categories.

Four oasic categories were defined as follows:
(1) First, as Fig. I will attest, observations made by modern interferometric techniques display a considerably greater internal accuracy than do the body of visual data. An obvious division of the data, then, is "visual" versus "speckle."
(2) The GSU/CHARA speckle observations, made with few exceptions on a single telescope by the same observers and using the same calibration method (see McAlister et al. 1987) are more internally consistent than other interferometric data. We therefore further subdivide these data into "CHARA speckle" and "other speckle."
(3) One would expect that visual observations made with larger telescopes should be more accurate than those made using srnaller instruments. Charles Worley (1987) has noted roughly a factor of 2 difference in variance between visual observations made with telescopes of greater than versus less than 18 in . aperture. This observation is borne out by our calculations, as will be shown. We therefore divide visual observations into "small visual" and "large visual" bins.
In order to determine the relative weights to be assigned each of these four categories of observations, we calculated orbits for several well-observed systems and determined rms residuals for data in each group. There is of course a bit of circular reasoning inevitable in this approach, since weights must be assigned to the observaticns before calculating the orbits from which residuals, and eventually weights, are to be determined. We have tried to minimize this circularity by calculating orbits for various subsets of the data, as explained.below.

The eight ADS binaries chosen for this exercise range in mean separation from 0.15 to 0.74 , or approximately the middle range for all interferometric observations (McAlister and Hartkopf 1988). They are all extremely well observed, with a total of 2181 visual and 269 interferometric observations for the group and visual observations going back 162 years.

As a first step, separate orbits were calculated using the visual and the speckle data for each of the eight binaries. The "large" and "small" visual data were given initial weights of 1 and 0.5 , respectively, for the visual orbit. For the speckle orbit, CHARA observations were given unit weight, except for the few Kitt Peak 2.1 m observations, which were given half weight. Other speckle data were given zero weight ir:tially.

The results are given in Table I. The derived weights shown are calculated for each category from the formula

$$
\begin{equation*}
W_{i}=\left(\frac{\mathrm{rms}_{\text {large visual }}}{\mathrm{ms}_{i}}\right)^{2}, \tag{7}
\end{equation*}
$$

i.e., $1 /$ variance, scaled to a value of 1 for the "large visual" weight.

A new set of orbits was then determined from the combined visual and speckle data. Wishing to be a bit conservative in our speckle weights, we chose values of $0.5,1,20$, and 5 for the four categories "small visual," "large visual," "CHARA speckle," and "other speckle," respectively. Half weight, or 10, was again used for the CHARA 2.1 m data.

The final results are similar to those earlier determined from the separate orbits. Again opting for a conservative weighting of the speckle data, we decided to adopt the earlier chosen values of $0.5,1,20$, and 5 for initial weights in the four categories.

IV. RESULTS

New combined speckle/visual orbital elements are given in Table II for 28 binary systems. P, T, and their errors are given in years, $a^{\prime \prime}$ in seconds of arc, and i, Ω, and ω and their errors in degrees. All orbits are equinox 2000. Ephemeris tables (Table III) based on these orbits give predicted separations and position angles for the next 5-40 yr, depending on the derived period.

The figures below show the new orbits (solid lines) together with previously published orbits (dotted lines) and all published data (including data eventually given zero weight in the orbit calculations). Visual data from "small" telescopes are indicated by plus signs, those from "large" telescopes by hash marks. CHARA speckle data are shown as filled squares and other speckle data by open squares.

Notes to individual binary systems follow, sorted in order of WDS designation (the 2000-epoch right ascension- and declination-based designation used in the Washington Visual Double Star Catalog of Worley and Douglass 1984). A few of these systems have published orbits that are very similar to the ones listed here. Although it may be argued that these new orbits are therefore unnecessary, they are included as evidence that the method used by us for deriving orbital elements behaves properly and that the weighting scheme adopted is not unreasonable.
WDS 00352-0336=ADS 490=Ho 212 AB. Speckle coverage of this system now covers nearly two full periods. The period was determined based on all visual and speckle data, covering nearly 15 revolutions; speckle data alone were used to determine the remaining elements. The plotted published orbit is that of Gatewood et al. (1975).
WDS $01233+5808=$ ADS $1105=$ STF 115. This system, first resolved by John Herschel in 1831 at 0.7, opened to 1".1 in 1904, then closed steadily for 80 yr . By fortuitous timing it was first resolved by speckle in 1978 at 0 "35, just as visual measurement was becoming difficult. The separation de-

FiG. 1. Newly derived orbits for 28 binary star systems. In all plots which follow, "small" visual observations are indicatd by plus signs, "large" visual observations by hasli marks, CHARA speckle observations by filled squares, and other speckle observations by open squares. Newly determined orbits are shown as solid curves, while previously published orbits (identified in the text) are shown as dotted curves. A few observations (dates given to the nearest 0.1 yr) and/or calculated positions (integer dates) are labeled on each orbit to indicate direction and rate of motion. Stars are plotted in order of WDS designation (or right ascension); note that the figures are not all plotted to the same scale.

Fig. 1. (continued)

Fic. 1. (continued)

Fig. I. (continued)

Fic. 1. (continued)

Fig. 1. (continued)

Fic. 1. (continued)

Fig. I. (continued)

SEPARATE VISUAL AND SPECKLE ORBITS:

Star	Small Visual				Large Visual				CHARA Speckle				Other Speckle			
	σ	σ,	σ_{x}	σ_{ν}	\%	σ°	σ_{s}	σ_{v}	\%	σ_{ρ}	σ_{x}	σv	σ	σ°	σ_{x}	σ_{y}
ADS 490	4.95	0.0394	0.0410	0.0202	7.73	0.0373	0.0344	0.0282	1.56	0.0045	0.0038	0.0062	0.60	0.0050	0.0041	0.0041
ADS 6993	9.92	0.0533	0.0415	0.0508	7.61	0.0365	0.0292	0.0337	0.63	0.0031	0.0029	0.0020	097	0.0061	0.0035	0.0066
ADS 8804	4.32	0.0823	0.0364	0.0787	5.69	0.0697	0.0254	0.0691	0.82	0.0051	0.0029	0.0051	2.71	0.0311	0.0294	0.0271
ADS 9757	6.20	0.1096	0.1020	0.0592	3.46	0.0898	0.0822	0.0453	0.52	0.0026	0.0022	0.0032	1.05	0.0099	0.0093	0.0059
ADS 11520	-	-	-	-	11.65	0.0228	0.0207	0.0264	1.17	0.0054	0.0042	0.0042	2.52	0.0074	0.0075	0.0062
ADS 14073	4.27	0.0682	0.0365	0.0648	4.26	0.0588	0.0301	0.0553	0.75	0.0028	0.0069	0.0028	1.46	0.0224	0.0149	0.0215
ADS 15281	16.63	0.0434	0.0470	0.0336	11.64	0.0434	0.0422	0.0275	1.47	0.0027	0.0032	0.0028	4.63	0.0076	0.0105	0.0088
ADS 16173	3.50	0.0382	0.0365	0.0246	4.39	0.0517	0.0436	0.0329	2.11	0.0032	0.0060	0.0036	4.19	0.0114	0.0079	0.0110
Mean	7.11	0.0621	0.0487	0.0474	7.05	0.0513	0.0385	0.0398	1.13	0.0037	0.0040	0.0037	2.27	0.0126	0.0109	0.0114
Weight	0.98	0.68	0.62	0.71	1.0	1.0	1.0	1.0	38.9	192.2	92.6	115.7	9.6	16.6	12.5	12.2
Median	4.95	0.0533	0.0410	0.0508	6.65	0.0476	0.0323	0.0333	1.00	0.0032	0.0035	0.0034	1.99	0.0088	0.0086	0.0077
Weight	1.80	0.80	0.62	0.43	1.0	1.0	1.0	1.0	44.2	221.3	85.2	95.9	11.2	29.3	14.1	18.7

COMBINED VISUAL/SPECKLE ORBITS:
Star

Star	Small Visual				Large Visual				CHARA Speckle				Other Speckle			
	σ	$\sigma_{\text {e }}$	σ_{x}	σ_{v}	σ	σ_{p}	σ_{x}	σ_{y}	σ_{0}	σ	σ_{x}	σ_{v}	$\sigma_{\text {P }}$	σ_{ρ}	σ_{x}	σ_{ν}
ADS 490	4.86	0.0416	0.0433	0.0211	8.39	0.0376	0.0346	0.0293	1.28	0.0037	0.0026	0.0062	0.55	0.0050	0.0040	0.0038
ADS 6993	0.66	0.0601	0.0417	0.0585	9.35	0.0379	0.0303	0.0356	0.61	0.0030	0.0027	0.0021	0.76	0.0031	0.0034	0.0031
ADS 8804	4.42	0.0829	0.0326	0.0803	5.51	0.0716	0.0235	0.0708	0.84	0.0042	0.0030	0.0042	0.44	0.0109	0.0047	0.0107
ADS 9757	5.80	0.1100	0.1014	0.0610	3.10	0.0898	0.0823	0.0443	0.69	0.0031	0.0024	0.0043	1.46	0.0079	0.0093	0.0051
ADS 11520	-	-	-	-	12.11	0.0295	0.0223	0.0308	1.30	0.0054	0.0043	0.0043	2.47	0.0071	0.0073	0.0058
ADS 14073	6.18	0.0752	0.0390	0.0726	7.35	0.0651	0.0353	0.0639	0.65	0.0026	0.0058	0.0025	1.31	0.0061	0.0107	0.0054
ADS 15281	14.10	0.0477	0.0471	0,0332	11.69	0.0433	0.0406	0.0287	1.57	0.0027	0.0033	0.0035	2.64	0.0060	0.0072	0.0043
ADS 16173	3.45	0.0360	0.0351	0.0233	4.40	0.0538	0.0457	0.0338	1.14	0.0034	0.0028	0.0034	3.09	0.0034	0.0047	0.0031
Mean	6.92	0.0648	0.0486	0.0500	7.74	0.0536	0.0393	0.0422	1.01	0.0035	0.0034	0.0038	1.59	0.0062	00064	0.0052
Weight	1.25	0.68	0.65	0.71	1.0	1.0	1.0	1.0	58.7	234.5	133.6	123.3	23.7	74.7	37.7	65.9
Median	5.80	0.0601	0.0417	0.0585	7.87	0.0486	0.0376	0.0347	0.99	0.0033	0.0029	0.0039	1.39	0.0061	0.0060	0.0047
Weight	1.84	0.65	0.81	0.35	1.0	1.0	1.0	1.0	63.2	216.9	168.1	79.2	32.1	63.5	39.3	

Table II. Orbital clements.

WDS	ADS	Name	P	$\mathbf{1 "}^{\prime \prime}$	i	Ω	T	e	ω
00352-0336	490	Ho 212 AB	$\begin{array}{r} 6489 \\ \pm 0.18 \end{array}$	$\begin{array}{r} 0^{\prime}!240 \\ \pm 0.010 \end{array}$	$\begin{gathered} 49: 0 \\ \pm 6.1 \end{gathered}$	$\begin{array}{r} 149: 2 \\ \pm 14.2 \end{array}$	$\begin{array}{r} 1973.389 \\ \pm 0.066 \end{array}$	$\begin{array}{r} 0.767 \\ \pm 0.090 \end{array}$	$\begin{array}{r} 283: 5 \\ \pm 14.2 \end{array}$
01233+5808	1105	STF 115 AB	$\begin{array}{r} 209.5 \\ \pm 7.8 \end{array}$	$\begin{array}{r} 0.805 \\ \pm 0.018 \end{array}$	$\begin{array}{r} 99.6 \\ \pm 5.7 \end{array}$	$\begin{array}{r} 138.7 \\ \pm 1.5 \end{array}$	$\begin{array}{r} 1984.88 \\ \pm 0.18 \end{array}$	$\begin{array}{r} 0.920 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 133.1 \\ \pm 1.5 \end{array}$
$01512+2439$	1473	Ho 311	$\begin{array}{r} 119.3 \\ \pm 6.2 \end{array}$	$\begin{array}{r} 0.2980 \\ \pm 00062 \end{array}$	$\begin{array}{r} 52.8 \\ \pm 1.7 \end{array}$	$\begin{array}{r} 212.8 \\ \pm 3.9 \end{array}$	$\begin{array}{r} 1982.72 \\ \pm 0.40 \end{array}$	$\begin{array}{r} 0.888 \\ \pm 0.016 \end{array}$	$\begin{array}{r} 142.0 \\ \pm 3.9 \end{array}$
02157+2503	-	Cou 79	$\begin{array}{r} 24.54 \\ \pm 0.75 \end{array}$	$\begin{array}{r} 0.2470 \\ \pm 0.0014 \end{array}$	$\begin{array}{r} 104.15 \\ \pm 0.97 \end{array}$	$\begin{array}{r} 235.89 \\ \pm 0.61 \end{array}$	$\begin{array}{r} 1986.182 \\ \pm 0.057 \end{array}$	$\begin{array}{r} 0.684 \\ \pm 0.006 \end{array}$	$\begin{array}{r} 82.57 \\ \pm 0.61 \end{array}$
02396-1153	-	Fin 312	$\begin{array}{r} 2.654 \\ \pm 0.002 \end{array}$	$\begin{array}{r} 0.1055 \\ \pm 0.0012 \end{array}$	$\begin{gathered} 21.3 \\ \pm 1.4 \end{gathered}$	$\begin{gathered} 279.3 \\ \pm 18.4 \end{gathered}$	$\begin{array}{r} 1956.603 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 0.228 \\ \pm 0.020 \end{array}$	$\begin{array}{r} 31.1 \\ \pm 18.4 \end{array}$
$06383+2859$	-	McA 27	$\begin{array}{r} 22.32 \\ \pm 0.15 \end{array}$	$\begin{array}{r} 0.1463 \\ \pm 0.0016 \end{array}$	$\begin{array}{r} 112.1 \\ \pm 1.0 \end{array}$	$\begin{array}{r} 115.86 \\ \pm 0.29 \end{array}$	$\begin{array}{r} 1976.260 \\ \pm 0.043 \end{array}$	$\begin{array}{r} 0.595 \\ \pm 0.002 \end{array}$	$\begin{array}{r} 307.87 \\ \pm 0.29 \end{array}$
07352+3058	6185	STT 175 AB	$\begin{array}{r} 213.1 \\ \pm 5.8 \end{array}$	$\begin{array}{r} 0.5493 \\ \pm 0.0029 \end{array}$	$\begin{gathered} 92.48 \\ \pm 0.48 \end{gathered}$	$\begin{array}{r} 149.49 \\ \pm 0.84 \end{array}$	$\begin{gathered} 1979.11 \\ \pm 0.21 \end{gathered}$	$\begin{array}{r} 0.693 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 313.22 \\ \pm 0.84 \end{array}$
07518-1352	6420	Bu 101	$\begin{aligned} & 23.34 \\ & \pm 0.17 \end{aligned}$	$\begin{array}{r} 0.573 \\ \pm 0.010 \end{array}$	$\begin{gathered} 79.68 \\ \pm 0.06 \end{gathered}$	$\begin{array}{r} 102.5 \\ \pm \quad 1.6 \end{array}$	$\begin{array}{r} 1962.381 \\ \pm 0.039 \end{array}$	$\begin{array}{r} 0.735 \\ \pm 0.016 \end{array}$	$\begin{array}{r} 71.4 \\ \pm 1.6 \end{array}$
$08468+0625$	6993	SP AB	$\begin{array}{r} 15.05 \\ \pm 0.20 \end{array}$	$\begin{array}{r} 0.2543 \\ \pm 0.0038 \end{array}$	$\begin{array}{r} 49.92 \\ \pm 0.38 \end{array}$	$\begin{array}{r} 108.1 \\ \pm \quad 1.8 \end{array}$	$\begin{array}{r} 1976.179 \\ \pm 0.042 \end{array}$	$\begin{array}{r} 0.653 \\ \pm 0.003 \end{array}$	$\begin{array}{r} 285.8 \\ \pm 1.8 \end{array}$
$09008+1148$	-	Kui 37 AB	$\begin{array}{r} 21.783 \\ \pm 0.090 \end{array}$	$\begin{array}{r} 0.6604 \\ \pm 0.0018 \end{array}$	$\begin{array}{r} 129.84 \\ \pm 0.01 \end{array}$	$\begin{array}{r} 205.93 \\ \pm 0.54 \end{array}$	$\begin{array}{r} 1972.318 \\ \pm 0.010 \end{array}$	$\begin{array}{r} 0.153 \\ \pm 0.004 \end{array}$	$\begin{array}{r} 39.25 \\ \pm 0.54 \end{array}$
09123+1459	-	Fin 347 da	$\begin{array}{r} 2.703 \\ =0.022 \end{array}$	$\begin{array}{r} 0.1161 \\ \pm 0.0018 \end{array}$	$\begin{array}{r} 124.1 \\ \pm 2.7 \end{array}$	$\begin{array}{r} 317.0 \\ \pm 5.2 \end{array}$	$\begin{array}{r} 1979.975 \\ \pm 0.065 \end{array}$	$\begin{array}{r} 0.418 \\ \pm 0.071 \end{array}$	$\begin{array}{r} 348.5 \\ \pm 5.2 \end{array}$
09474+1134	-	Med 34	$\begin{array}{r} 15.167 \\ \pm 0.090 \end{array}$	$\begin{aligned} & \cdot 0.1120 \\ & \pm 0.0002 \end{aligned}$	$\begin{array}{r} 76.57 \\ \pm 0.66 \end{array}$	$\begin{array}{r} 203.80 \\ \pm 0.48 \end{array}$	$\begin{array}{r} 1973.68 \\ \pm 0.25 \end{array}$	$\begin{array}{r} 0.321 \\ \pm 0.010 \end{array}$	$\begin{array}{r} 24.44 \\ \pm 0.48 \end{array}$
$10427+0335$	7896	A 2768	$\begin{array}{r} 80.56 \\ \pm 0.30 \end{array}$	$\begin{array}{r} 0.3778 \\ \pm 0.0014 \end{array}$	$\begin{array}{r} 145.92 \\ \pm 0.78 \end{array}$	$\begin{array}{r} 56.8 \\ \pm \quad 1.9 \end{array}$	$\begin{gathered} 1976.674 \\ \pm 0.030 \end{gathered}$	$\begin{array}{r} 0.546 \\ \pm 0.001 \end{array}$	$\begin{array}{r} 355.3 \\ \pm \quad 1.9 \end{array}$
$13100+1731$	8804	STF 1728 AB	$\begin{aligned} & 25.804 \\ & \pm 0.055 \end{aligned}$	$\begin{array}{r} 0.6684 \\ \pm 0.0013 \end{array}$	$\begin{array}{r} 90.06 \\ \pm 0.05 \end{array}$	$\begin{array}{r} 192.34 \\ \times 0.24 \end{array}$	$\begin{array}{r} 1963.468 \\ \pm 0.021 \end{array}$	$\begin{array}{r} 0.497 \\ \pm 0.012 \end{array}$	$\begin{aligned} & 101.08 \\ & \pm 0.24 \end{aligned}$
$15318+4053$	9688	A 1634 AB	$\begin{array}{r} 8.484 \\ \pm 0.052 \end{array}$	$\begin{array}{r} 0.0602 \\ \pm 0.0002 \end{array}$	$\begin{array}{r} 114.6 \\ \pm 3.8 \end{array}$	$\begin{array}{r} 199.1 \\ \pm 3.7 \end{array}$	$\begin{aligned} & 1965.94 \\ & \pm 0.21 \end{aligned}$	$\begin{array}{r} 0.021 \\ \pm 0.046 \end{array}$	$\begin{array}{r} 362.6 \\ \pm 3.7 \end{array}$
$15428+2618$	9757	STF 1967	$\begin{gathered} 92.94 \\ \pm 0.58 \end{gathered}$	$\begin{array}{r} 0.7353 \\ \pm 0.0041 \end{array}$	$\begin{array}{r} 94.70 \\ \pm 0.84 \end{array}$	$\begin{array}{r} 111.25 \\ \pm 0.61 \end{array}$	$\begin{array}{r} 1931.66 \\ \pm 0.23 \end{array}$	$\begin{array}{r} 0.484 \\ \pm 0.020 \end{array}$	$\begin{array}{r} 105.24 \\ \pm 0.61 \end{array}$
$17081+3555$	10360	Hu 1176 AB	$\begin{array}{r} 8.129 \\ \pm 0.014 \end{array}$	$\begin{array}{r} 0.1118 \\ \pm 0.0001 \end{array}$	$\begin{array}{r} 120.49 \\ \pm 0.09 \end{array}$	$\begin{array}{r} 129.44 \\ \pm 0.25 \end{array}$	$\begin{array}{r} 1975.483 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 0.539 \\ \pm 0.003 \end{array}$	$\begin{array}{r} 235.69 \\ \pm 0.25 \end{array}$
18117+3327	11149	B 2545	$\begin{array}{r} 23.9 \\ \pm 1.0 \end{array}$	$\begin{array}{r} 0.0620 \\ \pm 0.0005 \end{array}$	$\begin{array}{r} 37.9 \\ \pm 5.8 \end{array}$	$\begin{array}{r} 244.1 \\ \pm 19.0 \end{array}$	$\begin{array}{r} 1971.81 \\ \pm 0.81 \end{array}$	$\begin{array}{r} 0.708 \\ \pm 0.055 \end{array}$	$\begin{array}{r} 172.1 \\ \pm 19.0 \end{array}$
			$\begin{array}{r} 58.39 \\ \pm 0.52 \end{array}$	$\begin{array}{r} 0.1155 \\ \pm 0.0006 \end{array}$	$\begin{array}{r} 66.6 \\ \pm 2.9 \end{array}$	$\begin{array}{r} 234.4 \\ \pm 1.2 \end{array}$	$\begin{array}{r} 1975.54 \\ \pm 0.16 \end{array}$	$\begin{array}{r} 0.153 \\ \pm 0.027 \end{array}$	$\begin{array}{r} 302.4 \\ \pm 1.2 \end{array}$
18384-0312	11520	A 88 AB	$\begin{aligned} & 12.133 \\ & \pm 0.019 \end{aligned}$	$\begin{array}{r} 0.1479 \\ +0.0001 \end{array}$	$\begin{array}{r} 122.85 \\ \pm 0.01 \end{array}$	$\begin{array}{r} 173.84 \\ \pm 0.12 \end{array}$	$\begin{array}{r} 1970.801 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 0.249 \\ \pm 0.002 \end{array}$	$\begin{array}{r} 81.22 \\ \pm 0.12 \end{array}$
$19489+1908$	12973	AGC I1 AB	$\begin{array}{r} 23.22 \\ \pm 0.96 \end{array}$	$\begin{array}{r} 0.1359 \\ \pm 0.0016 \end{array}$	$\begin{array}{r} 133.19 \\ \pm 0.85 \end{array}$	$\begin{array}{r} 340.7 \\ \pm 1.4 \end{array}$	$\begin{array}{r} 1979.869 \\ \pm 0.035 \end{array}$	$\begin{array}{r} 0.792 \\ \pm 0.005 \end{array}$	$\begin{array}{r} 355.1 \\ \pm 1.4 \end{array}$
$20375+1436$	14073	Bu 151 AB	$\begin{gathered} 26.598 \\ \pm 0.004 \end{gathered}$	$\begin{array}{r} 0.4473 \\ \pm 0.0001 \end{array}$	$\begin{array}{r} 63.13 \\ \pm 0.01 \end{array}$	$\begin{array}{r} 177.09 \\ \pm 0.05 \end{array}$	$\begin{array}{r} 1963.225 \\ \pm 0.009 \end{array}$	$\begin{array}{r} 0.328 \\ \pm 0.002 \end{array}$	$\begin{array}{r} 351.32 \\ \pm 0.05 \end{array}$
$20397+1556$	14121	Wek As	$\begin{array}{r} 17.09 \\ \pm 0.16 \end{array}$	$\begin{array}{r} 0.1595 \\ \pm 0.0003 \end{array}$	$\begin{array}{r} 161.6 \\ \pm 1.8 \end{array}$	$\begin{array}{r} 279.4 \\ \pm 4.0 \end{array}$	$\begin{array}{r} 1983.885 \\ \pm 0.030 \end{array}$	$\begin{array}{r} 0.466 \\ \pm 0.005 \end{array}$	$\begin{array}{r} 71.4 \\ \pm 4.0 \end{array}$
$20538+5919$	14412	A 751	$\begin{array}{r} 57.9 \\ \pm 1.5 \end{array}$	$\begin{array}{r} 0.1782 \\ \pm 0.0027 \end{array}$	$\begin{array}{r} 128.7 \\ \pm 2.6 \end{array}$	$\begin{array}{r} 179.2 \\ \pm 3.4 \end{array}$	$\begin{array}{r} 1976.12 \\ \pm 0.27 \end{array}$	$\begin{array}{r} 0.621 \\ \pm 0.013 \end{array}$	$\begin{array}{r} 277.2 \\ \pm 3.4 \end{array}$
21135-1559	14761	Hu 767	$\begin{array}{r} 33.75 \\ =0.23 \end{array}$	$\begin{array}{r} 0.2067 \\ =0.0017 \end{array}$	$\begin{gathered} 67.95 \\ \pm 0.52 \end{gathered}$	$\begin{array}{r} 167.79 \\ \pm 0.87 \end{array}$	$\begin{aligned} & 1944.55 \\ & =0.11 \end{aligned}$	$\begin{array}{r} 0.618 \\ \pm 0.007 \end{array}$	$\begin{array}{r} 120.19 \\ \pm 0.67 \end{array}$
$21425+4106$	-	Kui 108	$\begin{aligned} & 26.51 \\ & \pm 0.48 \end{aligned}$	$\begin{array}{r} 0.149 \\ \pm 0.014 \end{array}$	$\begin{array}{r} 149.4 \\ \pm 5.2 \end{array}$	$\begin{array}{r} 191.4 \\ \pm 9.7 \end{array}$	$\begin{array}{r} 1975.23 \\ \pm 0.12 \end{array}$	$\begin{array}{r} 0.381 \\ \pm 0.009 \end{array}$	$\begin{array}{r} 359.7 \\ \pm 9.7 \end{array}$
21446+2539	15281	Bu 989 AB	$\begin{array}{r} 11.60 \\ \pm 0.12 \end{array}$	$\begin{array}{r} 0.2362 \\ \pm 0.0004 \end{array}$	$\begin{aligned} & 108.04 \\ & \pm 0.50 \end{aligned}$	$\begin{aligned} & 288.85 \\ & \pm 0.60 \end{aligned}$	$\begin{array}{r} 1979.207 \\ \pm 0.027 \end{array}$	$\begin{array}{r} 0.313 \\ \pm 0.009 \end{array}$	$\begin{aligned} & 304.17 \\ & \pm 0.60 \end{aligned}$
21502+1718	-	Cou 14	$\begin{aligned} & 26.132 \\ & \pm 0.056 \end{aligned}$	$\begin{array}{r} 0.1664 \\ \pm 0.0043 \end{array}$	$\begin{array}{r} 70.30 \\ \pm 1.00 \end{array}$	$\begin{aligned} & 231.80 \\ & \pm 0.11 \end{aligned}$	$\begin{array}{r} 1963.887 \\ \pm 0.025 \end{array}$	$\begin{array}{r} 0.239 \\ \pm 0.003 \end{array}$	$\begin{aligned} & 252.08 \\ & \pm 0.11 \end{aligned}$
22408+1432	16173	Ho 296 AB	$\begin{array}{r} 20.83 \\ \pm 0.15 \\ \hline \end{array}$	$\begin{array}{r} 0.2907 \\ \pm 0.0002 \\ \hline \end{array}$	$\begin{array}{r} 140.12 \\ \pm 0.02 \\ \hline \end{array}$	$\begin{array}{r} 252.37 \\ \pm 0.23 \\ \hline \end{array}$	$\begin{array}{r} 1983.557 \\ \pm 0.004 \\ \hline \end{array}$	$\begin{array}{r} 0.738 \\ \pm 0.001 \\ \hline \end{array}$	$\begin{array}{r} 23.28 \\ \pm 0.23 \\ \hline \end{array}$

Table III. Ephem:rides.

Date	ADS 490		Fin 312		Fin 347		ADS 9688		ADS 10360	
1989.00	23090	0!236	$53^{\circ} .3$	$0^{\prime \prime} 101$	161.7	0'130	11.0	0'058	62.7	00086
1989.25	235.4	0.247	82.2	0.117	150.4	0.154	5.9	0.054	54.0	0.079
1989.50	240.4	0.258	105.2	0.126	141.4	0.163	359.8	0.049	44.0	0.074
1989.75	245.0	0.267	126.3	0.128	132.6	0.157	352.1	0.043	32.7	0.071
1990.00	249.3	0.274	148.1	0.122	122.0	0.134	341.6	0.036	20.4	0.068
1990.25	253.4	0.281	173.0	0.112	104.4	0.094	326.4	0.030	7.5	0.068
1990.50	257.4	0.286	203.4	0.101	54.8	0.051	304.8	0.025	354.8	0.069
1990.75	261.2	0.290	241.1	c.es:	331.8	0.064	278.9	0.025	342.4	0.070
1991.00	264.9	0.292	287.0	0.088	278.9	0.060	255.8	0.028	330.2	0.070
1991.25	268.6	0.293	340.4	0.079	211.5	0.065	239.1	0.034	317.5	0.066
1991.50	272.3	0.292	29.9	0.090	$175 . ?$	0.101	227.6	0.041	301.4	0.055
1991.75	276.1	0.289	65.4	0.107	159.2	0.135	219.3	0.047	271.3	0.036
1992.00	279.9	0.284	91.5	0.121	148.6	0.157	212.8	0.052	203.7	0.030
1992.25	284.0	0.276	113.4	0.128	139.8	0.163	207.4	0.056	162.0	0.051
1992.50	288.3	0.266	134.5	0.126	130.9	0.154	202.6	0.059	146.2	0.074
1992.75	293.0	0.251	157.2	0.119	119.5	0.128	198.1	0.060	137.6	0.093
1993.00	298.4	0.233	183.9	0.108	99.1	0.086	193.5	0.058	131.8	0.108
1993.25	304.9	0.208	217.0	0.096	37.4	0.048	188.6	0.056	127.2	0.119
1993.50	313.6	0.174	257.8	0.087	321.9	0.067	183.0	0.052	123.3	0.128
1993.75	327.9	0.124	307.0	0.080	266.6	0.058	176.3	0.046	119.9	0.134
1994.00	20.4	0.047	0.9	0.082	202.1	0.070	167.7	0.040	116.7	0.137
1994.25	151.3	0.087	45.1	0.096	171.8	0.108	155.9	0.034	113.6	0.139
1994.50	177.9	0.131	76.2	0.113	157.0	0.140	139.3	0.029	110.5	0.139
1994.75	192.9	0.159	100.2	0.125	146.9	0.159	117.2	0.026	107.5	0.138
1995.00	203.9	0.181	121.5	0.128	138.2	0.163	93.0	0.026	104.3	0.136

Date	ADS 6993		McA 34		ADS 11520		ADS 14121		ADS 15281	
1989.0	2549	$00^{\prime \prime} 215$	212.0	0!065	279:7	00.103	61.8	$0^{4} 202$	97:7	$0!185$
1989.5	263.8	0.197	222.5	0.047	263.0	0.100	56.4	0.208	87.1	0.128
1990.0	274.9	0.171	248.9	0.027	246.1	0.102	51.4	0.214	57.0	0.067
1990.5	291.2	0.132	316.2	0.023	230.6	0.109	46.6	0.218	338.0	0.065
1991.0	328.9	0.074	352.9	0.042	217.2	0.118	41.9	0.221	305.5	0.122
1991.5	65.1	0.075	5.2	0.064	205.9	0.128	37.3	0.222	293.4	0.168
1992.0	101.6	0.136	11.3	0.084	196.1	0.136	32.8	0.223	285.5	0.186
1992.5	116.9	0.179	15.0	0.102	187.2	0.140	28.3	0.223	278.1	0.182
1993.0	126.9	0.208	17.8	0.117	178.3	0.137	23.7	0.222	269.6	0.162
1993.5	134.8	0.229	20.0	0.128	168.7	0.128	19.1	0.220	257.9	0.134
1994.0	141.5	0.244	21.8	0.136	156.6	0.109	14.4	0.217	239.9	0.106
1994.5	147.6	0.254	23.5	0.141	138.2	0.085	9.5	0.212	212.4	0.090
1995.0	153.2	0.262	25.1	0.144	105.5	0.063	4.4	0.207	181.2	0.095
1995.5	158.6	0.267	26.7	0.143	60.7	0.065	359.0	0.201	158.2	0.119
1996.0	1638	0.271	28.3	0.140	29.8	0.087	353.2	0.194	1.4. 1	-0.151
1996.5	168.9	0.273	30.1	0.135	12.6	0.113	347.0	0.186	135.0	0.184
1997.0	174.0	0.274	32.0	0.127	1.4	0.133	340.1	0.176	128.6	0.215
1997.5	179.0	0.274	34.2	0.116	352.7	0.146	332.5	0.166	123.7	0.240
1998.0	184.0	0.274	36.9	0.104	345.0	0.151	323.7	0.155	119.6	0.259
1998.5	189.1	0.272	40.4	0.090	337.5	0.150	313.5	0.142	115.9	0.269
1999.0	19.4	0.271	45.2	0.075	329.6	0.144	301.1	0.128	112.5	0.270
1999.5	199.4	0.269	52.8	0.058	320.8	0.135	285.7	0.114	108.8	0.258
2000.0	204.6	0.266	66.3	0.042	310.6	0.124	265.8	0.099	104.7	0.234

Table III. (continued)

Date	Cou 79		McA 27		ADS 6420		Kui 37		ADS 8804	
1989	$48: 5$	$0!194$	31598	0×176	28895	$00^{\prime \prime} 514$	25699	$0!487$	$190 \% 4$	$0!011$
1990	44.6	0.207	312.6	0.183	290.7	0.545	239.2	0.532	12.4	0.250
1991	40.9	0.209	309.5	0.186	292.7	0.554	224.2	0.569	12.3	0.423
1992	37.2	0.204	306.5	0.186	294.7	0.548	210.6	0.581	12.3	0.503
1993	33.1	0.194	303.4	0.180	296.9	0.529	196.6	0.556	12.3	0.519
1994	28.6	0.182	300.0	0.168	299.2	0.502	180.2	0.497	12.3	0.494
1995	23.4	0.167	295.9	0.149	301.8	0.466	158.4	0.423	12.2	0.442
1996	17.0	0.151	290.1	0.119	304.9	0.425	129.2	0.377	12.2	0.373
1997	9.1	0.135	278.9	0.076	308.7	0.379	97.8	0.398	12.2	0.292
1998	359.3	0.120	218.3	0.025	313.6	0.330	73.2	0.473	12.1	0.203
1999	346.9	0.108	123.7	0.060	320.3	0.279	56.1	0.565	11.8	0.110
2000	332.2	0.101	103.0	0.078	329.9	0.231	43.7	0.646	8.0	0.014
2001	316.3	0.100	85.2	0.074	344.2	0.188	33.7	0.704	193.1	0.082
2002	300.9	0.105	63.7	0.066	5.2	0.159	25.0	0.733	192.7	0.176
2003	287.5	0.115	38.8	0.064	30.7	0.156	16.5	0.735	192.6	0.267
2004	276.6	0.128	15.5	0.071	53.4	0.177	7.8	0.711	192.5	0.354
2005	267.7	0.141	357.9	0.084	69.7	0.214	358.2	0.665	192.5	0.434
2006	260.4	0.154	345.6	0.100	81.0	0.253	346.9	0.605	192.4	0.505
2007	254.0	0.162	336.7	0.117	89.6	0.280	333.0	0.541	192.4	0.566
2008	348.1	0.163	330.1	0.134	97.7	0.262	315.5	0.486	192.4	0.612
2009	241.6	0.148	324.9	0.149	120.5	0.078	294.7	0.457	192.4	0.641
2010	231.3	0.097	320.6	0.162	279.2	0.253	272.8	0.462	192.4	0.646

Date	ADS 11149 (Short Period)		ADS 11149 (Long Period)		ADS 12973		ADS 14073		ADS 14412	
1989	254:6	$00^{\prime \prime} 090$	25496	0×091	169:2	0'.233	161:5	0×271	131.3	$0!157$
1990	258.9	0.083	258.8	0.085	167.0	0.239	175.4	0.300	127.6	0.158
1991	264.2	0.074	263.6	0.079	165.0	0.242	188.3	0.292	124.0	0.160
1992	271.1	0.063	269.1	0.073	162.9	0.243	203.8	0.253	120.3	0.161
1993	281.4	0.050	275.6	0.068	160.9	0.241	225.9	0.208	116.8	0.162
1994	300.1	0.034	283.3	0.062	158.8	0.236	256.8	0.187	113.3	0.163
1995	348.8	0.020	292.4	0.057	156.6	0.227	287.1	0.211	109.8	0.164
1996	84.6	0.019	303.0	0.054	154.1	0.216	308.0	0.266	106.4	0.165
1997	153.4	0.027	314.7	0.052	151.4	0.201	321.1	0.332	103.0	0.166
1998	183.0	0.041	326.9	0.051	148.1	0.183	329.9	0.396	99.7	0.167
1999	197.7	0.054	338.7	0.053	12.1	0.160	336.3	0.454	96.3	0.168
2000	206.8	0.066	349.5	0.057	138.4	0.132	341.4	0.504	93.1	0.169
2001	213.3	0.075	358.8	0.061	129.1	0.097	345.6	0.543	89.9	0.170
2002	218.4	0.084	6.7	0.067	106.7	0.054	349.3	0.571	86.7	0.171
2003	222.7	0.091	13.3	0.073	357.7	0.028	352.7	0.587	83.5	0.172
2004	226.4	0.096	18.9	0.079	236.5	0.044	356.0	0.592	80.5	0.174
2005	229.7	0.100	23.6	0.086	204.3	0.084	359.4	0.584	77.4	0.175
2006	232.9	0.103	27.7	0.092	192.5	0.119	2.9	0.564	74.4	0.176
2007	235.8	0.105	31.2	0.098	185.8	0.148	6.7	0.531	71.4	0.177
2008	338.8	0.105	34.4	0.104	181.1	0.173	11.2	0.486	68.5	0.178
2009	2.41 .7	0.105	37.3	0.109	177.5	0.193	16.7	0.429	65.6	0.180
2010	214.7	0.103	39.9	0.113	174.6	0.209	24.2	0.361	62.8	0.181

Table III. (continued)

Date	ADS 14761		Kui 108		Cou 14		ADS 16173			
1989	100\% 7	$0 \div 121$	8.7	$0 \div 203$	72.9	$0^{\prime \prime} 200$	71.1	$0 \div 421$		
1990	109.0	0.133	2.7	0.200	97.2	0.125	67.2	0.451		
1991	115.9	0.146	356.5	0.196	154.9	0.098	63.6	0.472		
1992	121.7	0.160	350.0	0.189	197.2	0.157	60.3	0.485		
1993	126.5	0.173	342.8	0.179	213.5	0.235	57.2	0.490		
1994	130.7	0.186	334.8	0.168	222.0	0.301	54.0	0.489		
1995	134.4	0.198	325.5	0.155	227.7	0.348	50.8	0.480		
1996	137.6	0.210	314.4	0.141	232.3	0.375	47.4	0.464		
1997	140.5	0.220	300.7	0.126	236.5	0.385	43.7	0.441		
1998	143.2	0.229	283.6	0.113	240.6	0.379	39.5	0.411		
1999	145.7	0.236	262.5	0.103	245.1	0.359	34.6	0.373		
2000	148.0	0.242	237.9	0.097	250.1	0.329	28.5	0.328		
2001	150.3	0.245	211.6	0.095	256.4	0.291	20.1	0.274		
2002	152.5	0.247	184.9	0.095	264.8	0.248	7.1	0.211		
2003	154.8	0.245	158.3	0.096	276.7	0.205	342.1	0.143		
2004	157.0	0.241	132.7	0.099	294.4	0.169	279.1	0.088		
2005	159.4	0.233	109.8	0.107	318.6	0.151	148.5	0.089		
2006	162.0	0.221	90.8	0.119	344.5	0.159	103.2	0.189		
2007	165.0	0.204	75.5	0.134	5.0	0.189	88.8	0.273		
2008	168.6	0.180	63.2	0.148	19.0	0.229	80.7	0.338	*	
2009	173.7	0.147	53.1	0.162	28.8	. 0.269	75.0	0.389		
2010	182.4	0.103	44.4	0.174	36.2	0.303	70.4	0.427		
Date	ADS 1105		ADS 1473		ADS 6185		ADS 7896		ADS 9757	
1990	261.9	0"061	144.4	0! 130	14790	0'206	293.0	0'332	118.1	$0{ }^{0} .587$
1992	222.8	0.065	151.6	0.158	146.2	0.194	285.7	0.366	117.3	0.625
1994	197.3	0.090	156.7	0.185	145.3	0.180	279.6	0.399	116.6	0.659
1996	184.0	0.122	160.5	0.209	144.2	0.163	274.5	0.429	115.9	0.689
1998	176.4	0.157	163.6	0.233	142.8	0.144	269.9	0.456	115.3	0.713
2000	171.5	0.192	166.1	0.255	141.1	0.125	265.9	0.481	114.7	0.731
2002	168.2	0.227	168.2	0.275	138.6	0.104	262.2	0.503	114.2	0.741
2004	165.7	0.261	170.1	0.295	135.0	0.084	258.9	0.522	113.7	0.744
2006	163.8	0.294	171.7	0.313	129.0	0.063	255.7	0.539	113.1	0.738
2008	162.3	0.326	173.1	0.330	117.5	0.044	252.8	0.553	112.5	0.721
2010	161.0	0.357	174.4	0.346	91.4	0.029	249.9	0.564	111.9	0.692
2012	160.0	0.388	175.6	0.361	43.7	0.026	247.2	0.573	111.3	0.647
2014	159.1	0.418	176.7	0.376	11.1	0.039	244.5	0.579	110.5	0.586
2016	158.3	0.447	177.7	0.389	357.1	0.058	241.9	0.583	109.5	0.504
2018	157.6	0.475	178.7	0.401	350.1	0.078	239.3	0.583	108.0	0.399
2020	157.0	0.502	179.6	0.413	346.0	0.099	236.7	0.581	105.2	0.270
2022	156.5	0.529	180.5	0.424	343.4	0.121	234.1	0.577	96.0	0.120
2024	156.0	0.554	181.3	0.434	341.5	0.142	231.4	0.570	322.9	0.059
2026	155.5	0.580	182.0	0.443	340.1	0.162	228.6	0.560	298.5	0.211
2028	155.1	0.604	182.8	0.452	339.0	0.183	225.7	0.547	294.4	0.343
2030	154.7	0.628	183.5	0.459	338.2	0.204	222.7	0.531	292.4	0.441

creased to a predicted closest apparent approach of 0:012 in 1985.15, and will remain under 0.1 until mid-1994.

WDS $01512+2439=$ ADS $1473=$ Ho 311. This 119 yr period system has completed nearly one full revolution since its discovery in 1890. It was first measured by speckle in 1978 at 0.13 and reached periastron in 1982.7. The parr was unresolved by Bonneau et al. (1984) in 1983.9 (separation <0.07), at which time the orbit predicted a separation of 0.05. Although speckle data were able to bracket the time of periastron passage, additional data are needed before a more definitive orbit can be derived.

WDS $02157+2503=$ Cou 79. Speckle data cover only half of this 25 yr period, but serve to define the orbit fairly well. The differences in this orbit compared to that of Couteau (1987-also plotted) are due to different weighting methods and to additional speckle data in the first quadrant not available to Couteau.

WDS 02396-1153 = Fin 312. This orbit was based solely on speckle data, which cover more than four revolutions. The visual data for this close pair, nearly all obtained by Finsen, differ quite noticeably from the speckle data; Finsen (1970) may have applied some systematic correction to his data in calculating this published orbit, as evidenced by the disparity between his data and his published orbit.

WDS $06383+2859=$ McA 27. Tokovinin's (1986) orbjtal elements were derived before the last several data points were obtained. While our orbit clearly fits these data better, it must be considered preliminary until further observations are obtained.

WDS $07352+3058=$ ADS $6185=$ STT 175. This longperiod, highly inclined system was discovered by Otto Struve in 1842 at $\rho \approx 0.5$. The separation was smaller by a factor of 10 by 1976.9, when first observed by speckle shortly after closest apparent separation. Periastron occurred in 1979.1, then the system opened to 0.20 by early 1986. It is now starting to close in again; the orbital elements predict that the pair will close to 0.025 by the year 2010. The published orbit by Baize (1986) predicts a period of only 180 yr , while that of Tokovinin (1986-shown here) gives a period of 219.1 yr , close to our 213.1 yr period. Rms residuals for both these published orbits are compared to our orbit in Table IV.

WDS 07518-1352 =ADS $6420=\mathrm{Bu} 101$. This system was observed by speckle over the period 1975 through early 1983, but unfortunately was largely skipped over until 1987. The orbital elements given here were determined using the speckle data alone, after deriving a period based on all visual and speckle data. Periastron occurred in mid-1985, while a closest apparent separation of 0.03 was predicted for 1985.9. By 1991, ρ should increase to its maximum value of 0 ". 55. The published orbit of Wooley and Symms (1937) is shown also.
WDS $08468+0625=$ ADS $6993=$ SP AB. All visual and speckle data, coverng a baseline of nearly 100 yr , were used to determine a period of 15.05 yr for this pair, identical to that found by Heintz (1963), whose orbit is also plotted. The remaining elements vere determined using this period and the speckle data alone. The resulting semimajor axis yields a mass sum 22% larger that that predicted by Heintz.

WDS $09008+4148=$ Kui 37. The period was determined from all visual and speckle data, the remaining elements from the speckle data alone. The result is a period and eccentricity essentially the same as those found by Heintz (1967), but a semimajor axis about 7% larger and a slightly smaller inclination.

WDS $09123+1459=$ Fin 347 Aa. A period of 2.703 yr was derived using all data. Speckle data alone [two measurements from 1983.9 by Bonneau et al. (1984) were given zero weight] were used to derive the other six elements. The resulting value of $a^{\prime \prime}$ is somewhat smaller than that found by either Finsen (1966) or Heintz (1984). The latter published orbit is shown here.

WDS $09474+1134=$ MicA 34. This solution was based on data obtained over nearly one full orbital revolution (all speckle). Although the fit appears very reasonable, we mיint await several more years' worth of data before the orbi. in be declared definitive. Tokovinin (1987a) found a per d of 9.70 yr and a much higher eccentricity for this object.

WDS $10427+0335=$ ADS 7896 =A2768. Elements for this object have been gradually refined over the last decade (see Heintz 1978b; Baize 1984; Heintz 1988). Heintz' most recent orbit is shown in the figure. Unfortunately, the first speckle observation of this system occurred in 1978, about 2 yr after periastron.

WDS $13100+1731=$ ADS $8804=$ STF 1728. In deriving the orbital elements for this lovely edge-on system, visual and speckle data were used to determine the period, then speckle data alone for the remaining elements. The derived inclination is sufficiently close to 90° that the orbit predicted a partial eclipse ($\Delta m \approx 0.1$ mag, eclipse duration 1.3 days) of one of the F5 V stars by the other in February 1989. Haffner's (1948) orbit is not distinguishable in this figure.

WDS $15318+4053=$ ADS $9688=$ A1634 AB. This orbit is based on interferometric measurements only. One data point was obtained by Merrill (1922) in 1921; the other observations were made from 1975 to 1988 and cover about 1.5 revolutions. One unresolved speckle observation was made in 1986.4, at which time the predicted separation was 0.026. Our determination of $a^{\prime \prime}$ is about 10% smaller than that of Baize (1985), whose orbit is also plotted here.

WDS $15428+2618=$ ADS $9757=$ STF 1967. This is the "oldest" of the binaries in this paper, first observed by F. G. W. Struve in 1826. The first speckle observation was made 150 yr later, in 1976. Thus far speckle data have had little effect on the derived elements; ours are quite similar to those found by Baize (1953).

WDS $17081+3555=$ ADS $10360=\mathrm{Hu} 1176$. The orbital period was derived from all visual and speckle data, then the remaining elements were calculated from the speckle data alone, using this period. Coverage by speckle data has been sufficient to resolve the 8 vs 16 yr period ambiguity of some earlier published orbits. The published orbit shown here is by Tokovinin (1984).

WDS 18117+3327=ADS $11149=$ B 2545. This pair was observed visually five times, from 1958 to 1962, then not again until McAlister observed it with speckle in 1975. Recent quadrant determinations using our speckle data indicate that our observations fall in the same quadrant as the first visual data, the resulting orbit, of period 24 ya, is showin in the upper part of the figure. If the earlier data actually fall in the opposite quadrant (i.e., flipped by 180°), a much long-er-period orbit would result. The 58 yr period orbit we derive based on this assumption is also shown in the figure, together with the 47 yr period orbit of Baize (1988). Both our orbits are listed in Table II; the situation will probably remain ambiguous for some time, until the baseline of speckle measurements has increased.

WDS 18384-0312 = ADS $11520=$ A88 AB. The cornbined visual/speckle orbit was used for the period, then speckle alone was used to derive the remaining elements.
Table IV. Orbit residuals.

Star	Oslit Source	Small Visual					Large Visual					CHARA Speckle					Otier Spleckle				
		N	$\bar{\Delta} \bar{\theta}$	0.	$\overline{\Delta \rho}$	0 ,	N	$\overline{\Delta \theta}$	$0{ }_{0}$	$\overline{\Delta p}$	0	N	$\bar{\Delta} \bar{\theta}$	${ }_{\text {a }}$ 。	侣	${ }_{\text {a }}$,	N	$\dot{\Delta}^{\bar{\theta}}$	${ }_{0}$,	$\overline{\Delta \rho}$	a_{r}
ADS 490	CHARA Gatewood et al (1975)	3	$\begin{aligned} & 0.7 \\ & 08 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 48 \end{aligned}$	$\begin{array}{r} -10 \\ -4 \end{array}$	$\begin{aligned} & 42 \\ & 40 \end{aligned}$	128	$\begin{gathered} 1.2 \\ 2.2 \end{gathered}$	$\begin{gathered} 8.4 .4 \\ 11.3 \end{gathered}$	$\begin{aligned} & -5 \\ & -1 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	28	$\begin{aligned} & 00 \\ & 5.3 \end{aligned}$	$\begin{gathered} 1.3 \\ 20.8 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	45	2	$\stackrel{-0.5}{2.1}$	$\begin{aligned} & 06 \\ & 21 \end{aligned}$	-12	5 13
ADS 1105	CHARA	36	0.5	2.1	4	67	20	-0.4	2.4	7	75	14	-0. 7	13	-1	6					
ADS 2473	Chara	11	-0.4	1.6	45	64	52	0.4	4.1	B	53	6	1.3	18	-2	4	2	-2.7	2.7	-8	9
Cou 79	chara Coutcau (1987) Tokovinin (1987b) Thokovinin Baize (1983) Couteau et al (1981)	3	$\begin{aligned} & 8.4 \\ & 48 \\ & 7.4 \\ & 7.3 \\ & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.1 \\ & 7.5 \\ & 7.3 \\ & 3.9 \\ & 53 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & 27 \\ & 9 \\ & 12 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \\ & 19 \\ & 30 \\ & 11 \\ & 14 \\ & 27 \end{aligned}$	34	$\begin{aligned} & -23 \\ & -2.5 \\ & -2.6 \\ & -4.5 \\ & -1.5 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 7.2 \\ 7.1 \\ 7.2 \\ 72.1 \\ 7.8 \\ 7.8 \\ 7.2 \end{array}$	$\begin{gathered} 12 \\ 6 \\ 14 \\ 15 \\ -10 \\ -18 \end{gathered}$	$\begin{aligned} & 18 \\ & 20 \\ & 20 \\ & 20 \\ & 31 \\ & 31 \\ & 31 \end{aligned}$	20	$\begin{gathered} 0.1 \\ 1.0 \\ .0 .1 \\ .36 \\ .4 .1 \\ 46 \end{gathered}$	$\begin{array}{r} 0.8 \\ 3.1 \\ 1.9 \\ 136 \\ 13.6 \\ 5.0 \\ 8.4 \end{array}$	$\begin{array}{r} -2 \\ -12 \\ -1 \\ 5 \\ -30 \\ -35 \end{array}$	$\begin{aligned} & 5 \\ & 14 \\ & 6 \\ & 17 \\ & 44 \\ & 46 \end{aligned}$	5	$\begin{array}{r} -96 \\ 4.6 \\ -1.4 \\ -1.1 \\ 3.7 \\ 8.1 \end{array}$	$\begin{aligned} & 1.7 \\ & 103 \\ & 13 \\ & 325 \\ & 32.5 \\ & 11.8 \end{aligned}$	$\begin{array}{r} -3 \\ 2 \\ 2 \\ 2 \\ 9 \\ .95 \\ .92 \end{array}$	6 18 7 11 110 1101
Fin 312	CHARA Finstn (1970)						189	$\begin{gathered} 3.7 \\ -1.4 \end{gathered}$	$\begin{gathered} 11.8 \\ 10.5 \end{gathered}$	${ }_{11}^{8}$	$\begin{aligned} & 15 \\ & 19 \end{aligned}$	22	$\begin{aligned} & 0.0 \\ & 9.9 \end{aligned}$	$\begin{array}{r} 1.3 \\ 11.3 \end{array}$	$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\stackrel{1}{8}$	3	-2	$\begin{aligned} & 26 \\ & 14.4 \end{aligned}$	-2	${ }^{8}$
McA 27	CHARA Tokovinin (1986)											18	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 26 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0 \\ & 11 \end{aligned}$	21	4	$\begin{array}{r} -09 \\ .04 \end{array}$	$\begin{aligned} & 13 \\ & 1.2 \end{aligned}$	- 4	6 6
ADS 6185	Chara Baiz: (1986) Tokovinin (1986)	59	$\begin{gathered} -0.7 \\ -0.7 \\ -0.1 \end{gathered}$	$\begin{aligned} & 4.3 \\ & 4.3 \\ & 42 \end{aligned}$	$\begin{aligned} & 27 \\ & 12 \\ & -23 \end{aligned}$	$\begin{aligned} & 88 \\ & 90 \\ & 95 \end{aligned}$	62	$\begin{aligned} & -03 \\ & 0.5 \\ & -0.5 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & -13 \\ & -26 \\ & -56 \end{aligned}$	$\begin{gathered} 97 \\ \begin{array}{c} 115 \\ 129 \end{array} \end{gathered}$	15	$\begin{aligned} & -0.3 \\ & -0.2 \\ & -3.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 40 \end{aligned}$	$\begin{array}{r} 0 \\ 5 \\ -7 \end{array}$	4 12 29	4	07 0.1 0 -1.7	$\begin{aligned} & 1.4 \\ & 1.3 \\ & 2.1 \end{aligned}$	- $\begin{array}{r}\text { - } \\ -8 \\ -8\end{array}$	11 24
ADS 6420	CHARA Wooiley et al (1937)	33	$\begin{aligned} -0.8 \\ -0.7 \end{aligned}$	$\begin{array}{r} 9.7 \\ 10.1 \end{array}$	$\begin{gathered} 56 \\ 96 \end{gathered}$	$\begin{aligned} & 91 \\ & 72 \end{aligned}$	130	$\begin{gathered} -1.2 \\ -0.8 \end{gathered}$	$\begin{aligned} & 11.3 \\ & 13.4 \end{aligned}$	$\stackrel{29}{-5}$	$\begin{aligned} & 64 \\ & 63 \end{aligned}$	9	$\begin{aligned} & -0.1 \\ & -1.6 \end{aligned}$	$\begin{aligned} & 09 \\ & 40 \end{aligned}$	$\begin{array}{r} 0 \\ -29 \end{array}$	${ }_{32}^{2}$	3	$\begin{array}{r} 0.1 \\ -4.4 \end{array}$	$\begin{aligned} & 08 \\ & 45 \end{aligned}$. 33	${ }_{34}^{10}$
ADS 6993	$\begin{aligned} & \text { CHARA } \\ & \text { Heintz (1963) } \end{aligned}$	21	$\begin{aligned} -25 \\ -2.1 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 9.5 \end{aligned}$	$\begin{aligned} & -3 \\ & 11 \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	149	$\begin{array}{r} 0.9 \\ -0.4 \end{array}$	$\begin{aligned} & 9.4 \\ & \hline .4 \end{aligned}$	-8	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	- 45	$\begin{gathered} -0.1 \\ -26 \end{gathered}$	$\begin{aligned} & 06 \\ & 4.5 \end{aligned}$	11	3 12	8	-0.2	$\begin{aligned} & 08 \\ & 2.3 \end{aligned}$	$\stackrel{-1}{9}$	$1{ }^{3}$
Kui 37	chara Heintz (1967)	60	$\begin{gathered} -1 . \\ -1 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	-7	$\begin{aligned} & 49 \\ & 53 \end{aligned}$	66	$\begin{aligned} & 06 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 33 \\ & 3.3 \end{aligned}$	$\begin{aligned} & -15 \\ & -1 \end{aligned}$	$\begin{aligned} & 67 \\ & 61 \end{aligned}$	10	$\begin{gathered} 00 \\ -1.6 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 2.1 \end{aligned}$	$\begin{aligned} & -1 \\ & 16 \end{aligned}$	${ }_{27}^{17}$					
Fin 347	Chara Finsen (1966) $\underset{\text { Finsen }}{\text { Heintz }}(1984)$						49	$\begin{array}{r} -1.4 \\ -1.5 \\ 2.4 \end{array}$	$\begin{aligned} & 126 \\ & 11.6 \\ & 16.4 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \\ & 26 \end{aligned}$	12	$\begin{array}{r} 08 \\ 1.8 \\ 343 \end{array}$	$\begin{array}{r} 1.9 \\ 2.8 \\ 57.5 \end{array}$	$\begin{array}{r} 1 \\ -2 \\ 15 \end{array}$	2 5 37	6	$\begin{array}{r} -2.1 \\ 1.0 \\ -184 \end{array}$	$\begin{array}{r} 14 \\ 29 \\ 56 . \end{array}$	1 0 -1	6 6 16
McA 34	CHARA Tokovinin (1987a)											18	$\stackrel{-0.1}{-0.1}$	$\begin{aligned} & 08 \\ & 1.7 \end{aligned}$	- ${ }_{-1}$	5 16	3	- 2.3	$\begin{aligned} & 3.2 .2 \\ & 12.1 \end{aligned}$	$\stackrel{-10}{-1}$	12
ADS 7896	chara Heintz (1988) Baize (1984) Heintz (1978b)	13	$\begin{array}{r} 0.5 \\ -0.3 \\ -0.7 \\ 0.0 \end{array}$	$\begin{aligned} & 2.7 \\ & 30 \\ & 3.2 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 22 \\ & 12 \\ & 33 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 43 \\ & 53 \\ & 45 \end{aligned}$	26	$\begin{aligned} & -0.1 \\ & -1.2 \\ & -0.2 \\ & -0.9 \end{aligned}$	$\begin{gathered} 3.9 \\ 3.7 \\ 3.7 \\ 60 \end{gathered}$	$\begin{aligned} & -13 \\ & -17 \\ & -2 \\ & -10 \end{aligned}$	$\begin{aligned} & 51 \\ & 55 \\ & 51 \\ & 53 \end{aligned}$	12	$\begin{aligned} & 0.0 \\ & 0.3 \\ & 3.8 \\ & .8 .3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 4.1 \\ & 88 \end{aligned}$	$\begin{gathered} 1 \\ 9 \\ 23 \\ 11 \end{gathered}$	$\begin{gathered} 8 \\ 12 \\ 24 \\ 16 \end{gathered}$	2	$\begin{array}{r} -1.9 \\ -1.5 \\ 2.5 \\ -109 \end{array}$	$\begin{array}{r} 1.9 \\ 1.6 \\ 2.5 \\ 11.0 \end{array}$	15 20 33 24	15 30 33 35 25
ADS 8804	CHARA Haffier (1948)	205	$\begin{gathered} -10 \\ -0 \end{gathered}$	4.4	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 83 \\ & 85 \end{aligned}$	205	$\begin{array}{r} -0.06 \\ 0.2 \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 3 \\ 10 \end{array}$	$\begin{aligned} & 72 \\ & 71 \end{aligned}$	30	$\underset{\substack{-0.1 \\ 0.9}}{ }$	$\begin{gathered} 08 \\ 1.3 \end{gathered}$	0 20	28	3	$\stackrel{-0.2}{0 .}$	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$	${ }_{28}^{98}$	11 29
ADS 9688	chara Baize (1985)											9	$\begin{gathered} 0.1 \\ .0 .1 \end{gathered}$	$\begin{aligned} & 10 \\ & 3.4 \end{aligned}$	- ${ }_{-2}$	3	9	$\begin{array}{r} 04 \\ .60 \end{array}$	$\begin{array}{r} 4.7 \\ .120 \end{array}$.2	8 10
ADS 9757	chara Baize (1953)	171	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 5.8 \end{aligned}$	$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{aligned} & 110 \\ & 112 \end{aligned}$	152	$\begin{aligned} & 0.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.4 \end{aligned}$	-4	$\begin{aligned} & 90 \\ & 95 \end{aligned}$	31	-0.4	$\begin{aligned} & 0.7 \\ & 1.3 \end{aligned}$	-46	$\begin{array}{r} 3 \\ 46 \end{array}$	3	$\begin{array}{r} -12 \\ -20 \end{array}$	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{array}{r} 7 \\ -35 \end{array}$	$\begin{array}{r}8 \\ 36 \\ \hline\end{array}$

Table IV. (continued)

The resulting orbit is signficantly smailer than the published orbits of van den Bos (1953) and Heintz (1988-plotted here).

WDS 19489 $+1908=$ ADS 12973 $=$ AGC 11. Visual and speckle data were used to derive the period, then the speckle data were used alone to derive the other six elements. Visual data covering an additional two full revolutions, plus a good collection of speckle data, have allowed refinement of Finsen's (1937) grade 1 orbit. Our elements are similar to those recently published by Tokovinin (1984), whose orbit is also shown here. We each derive a value for $a^{\prime \prime}$-and thus a sum of masses-considerably smaller than that found by either Finsen or Heintz (1984).

WDS 20375 + $1436=$ ADS $14073=$ Bu 151. This system was discovered in 1874 and first observed by speckle in 1973. This is yet another speckle orbit using a period defined by all the data. Couteau's (1962) orbit is shown in the lower righthand corner of the figure, together with our new orbit and all published speckle data.

WDS $20397+1556=$ ADS $14121=$ WCK Aa. The two visual observations of this pair were given zero weight in the orbit program, as were two measurements made in 1983 and 1984 by Tokovinin (1985).

WDS $20538+5919=$ ADS $14412=$ A751. Three published orbits have appeared for this pair in the last few years (see Starikova 1983; Ling 1985; and Heintz 19860-shown in the figure); here now is a fourth.

WDS $21135+1559=$ ADS $14761=\mathrm{Hu} 767$. The speckle data refine Baize's (1961) elements, although unfortunately speckle observations did not begin until shortly after periastron and the first speckle data point appears discrepant.

WDS $21425+4106=$ Kui 108. The orbits of Heintz (1986a) and Baize (1985), as well as this one, indicate that $a^{\prime \prime}$ is about 6% smaller than was found by Morel (1970). Our orbit is slightly more eccentric than those of Heintz and Baize, and we find a somewhat earlier time of periastron passage. Heintz' orbit is plotted here.

WDS $21446+2539=$ ADS $\mathbf{1 5 2 8 1}=$ Bu 989. The period
was determined by a combined visual/speckle orbit, then the other elements were derived using speckle data alone. The top portion of the figure shows all visual and speckle observations for this binary, the bottom portion only the speckle data. The dotted orbit in both cases is derived from the elements of Tokovinin (1984).

WDS $21502+1718=$ Cou 14. The visual/speckle orbit of this system has a shorter period and a considerably smaller semimajor axis than any published in the last several years (see Heintz :982, Docobo and Costa 1985; Baize 1986). Baize's orbit is shown here.

WDS $22408+1432=$ ADS $16173=$ Ho 296. The combined visual/speckle orbit yielded the period, used with the speckle data alone to generate the other elements. The resulting orbit is quite similar to that of Baize (1957) and essentially the same as that of Heintz (1986a), which is plotted here.

We are grateful for the assistance of Charles Worley in obtaining visual data for these binaries from the Washington Visual Double Star Catalog, maintained by Worley at the U.S. Naval Observatory. This service is invaluable to all computers of visual orbital elements. We alsc thank Wayne Warren and the staff of the Astronomical Data Center at the NASA Goddard Space Flight Center for providing us with magnetic tape versions of the WDS and other useful catalogs. Finally, we thank the many observers at CHARA and elsewhere who have assisted in collecting the large body of speckle data now available for orbit determination.

The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF Grant No. AST 86-13095 and the Air Force Office of Scientific Research through AFOSR Grant. No. 86-0i34. We gratefully acknowledge the continuing support of these agencies. O. G. F. also acknowledges the partial support of the Space Telescope Science Institute through Grant No. CW-0005-85.

REFERENCES

Bagnuolo, W. G., and Hartkopf, W. I. (1989). Astron. J. (submitted). Baize, P. (1953). J. Obs. 36, 6.
Baize, P. (1957). J. Obs. 40, 20.
Baize, P. (1961). J. Obs. 44, 261.
Baize, P. (i983). Astron. Astrophys. Suppl. 51, 479.
Baize, P. (1984). Astron. Astrophys. Suppl. 56, 103.
Baize, P. (1985). Astron. Astrophys. Suppl. 60, 333.
Baize, P. (1986). Astron. Astrophys. Suppl. 65, 551.
Baize. P. (1988). Circ. Inf. No. 105.
Bonneau. D. (1979). Astron. Astrophys. 80, L11.
Bonneau, D., Carquillat, J. M., and Vidal, J. L. (1984). Astron. Astrophys. Suppl. 58. 729.
Cester, B. (1964). Mem. Soc. Astron. Ital. 35, 345.
Couteau, P. (1962). J. Obs. 45, 39.
Couteau, P. (1987). Astron. Astrophys. Suppl. 71, 569.
Couteau, P., and Morel. P. J. (1981). Circ. Inf. No. 83.
Docobo, J. A., and Costa, J. A. (1985). Circ. Inf. No. 95.
Eggen, O. J. (1965). Astron. J. 70, 19.
Eichhorn, H. (1985). Astrophys. Space Sci. 110, 119.
Finsen, W. S. (1937). Union Obs. Circ. 4, 359.
Finsen. W. S. (1938). Union Obs. Circ. 4, 461.
Finsen, W. S. (1966). Republ. Obs. Circ. 7, 116.

Finsen, W. S. (1970), Circ. Inf. No. 52.
Gatewood, G., and Behall, A. L. (1975). Astron. J. 80, 1065.
Haffner, H. (1948). Astron. Nachr. 276, 145.
Heintz, W. D. (1956). Mon. Not. R. Astron. Soc. 116, 243.
Heintz, W. D. (1963). Z. Astrophys. 57, 159.
Heintz, W. D. (196i). Veröff. Stemw. München 7, 31.
Heintz, W. D. (1978a). Double Stars (Reidel, Dordrecht),
Heintz, W. D. (1978b). Astrophys. J. Suppl. 37, 71.
Heintz, W. D. (1982). Astron. Astrophys. Suppl. 47, 569.
Heintz, W D. (1984). Astren. Astrophys. Suppl. E6, 5.
Heintz, W. D. (1986a). Astron. Astrophys. Suppl. 64, 1.
Heintz, W. D. (1986b). Astron. Astrophys. Suppl. 65, 411.
Heintz, W. D. (1988). Astron, Astrophys. Suppl. 72, 543.
Labeyric. A. (1970). Astron. Astrophys. 6, 85.
Ling, J. F. (1985). Circ. Inf. No. 95.
McAlister, H. A. (1980). Astron. J. 85, 1265.
McAlister. H. A. (1981). Astron. J. 86, 795.
McAlister, H. A. (1982). Astron. J. 87, 563.
McAlister, H. A., and Hartkopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy Contrib. No. 2 (CHARA, Georgia State University, Atlanta).

Franz, O. G., and Evans, D. S. (1988). Astron. J. 96, 1431.
McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). Astron. J. 93, 688.
Merrill, P. W. (1922). Astrophys. J. 56, 43.
Monet, D. G. (1979). Astrophys. J. 234, 275.
Morel, P. J. (1970). Astron. Astrophys. Suppl. 1, 429.
Morel, P. J., and Couteau, P. (1972). Astron. Astrophys. Suppl. 5, 175.
Popper, D. M., and McAlister, H. A. (1987). Astron. J. 94, 700.
Starikova, G. A. (1983). Sov. Astron. Lett. 9, 189.
Tokovinin, A. A. (1984). Sov. Astron. Lett. 10, 121.
Tokovinin, A. A. (1985). Astron. Astrophys. Suppl. 61, 483.

Tokovinin, A. A. (1986). Sov. Astron. Lett. 12, 480. Tokovinin, A. A. (1987a). Circ. Inf. No. 102.
Tokovinin, A. A. (1987b). Lett. Astron. Zhur. 13, 1065.
Tomkin. J., McAlister, H. A., Hartkopf, W. I., and Fekel, F. C. (1987). Astron. J. 93, 1236.
van den Bos, W. H. (1953). Union Obs. Circ. 6, 216.
Wilson, R. H. (1936). Publ. Astron. Soc. Pac. 48, 309.
Wooley, R., and Symms, L. (1937). Mon. Not. R. Astron. Soc. 97, 438.
Worley, C. E. (1987). Private communication.
Worley, C. E., and Douglass, G. G. (1984). The Washington Visual Double Star Catalog (U.S. Naval Observatory, Washington, DC).

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. III. THE EVOLUTION OF THE CAPELLA STARS

William G. Bagnuolo, Jr. and William I. Hartkopf
Center for High Angular Resolution Astronomy, Georgia State University, Allanta, Georgia 30303

Received 18 May 1989: revised 21 July 1989

Abstract

A new orbit for Capella has been computed, incorporating the latest available speckle-interferometry data. This, combined with van Altena's (1988) parallax data, gives a total mass of $4.58 /{ }_{\odot} \pm 9 \%$ for the two components. The comparatively low mass found is more consistent with the "convective overshoot" models of Bertelli et al. (1986). The Strömgren y, b, and v magnitude differences of the Capella binary were estimated by Bagnuolo and Sowell (1988), and these data were converted into the spectral types and temperatures of the two stars. These results, when compared to various stellar evolutionary tracks, tend to support the belief that the " G star" (Capella $A a$) is at the beginning of the red giant branch (RGB), not at the core-helium-burning (CHB) phase in its evolution. Other available data for or against the RGB hypothesis are discussed.

I. INTRODUCTION

In addition to determining accurate orbits, a goal of the GSU/CHARA program of binary star speckle interferometry has been to develop methods of determining the magnitudes and colors of the individual components of binary stars with angular separations down to the diffraction limit. The "Fork" algorithm (Bagnuolo 1988a) has provided a new, direct means of measuring the luminosities and temperatures of the well-known spectroscopic binary, Capella.

Capella (α Aur, HR 1708) was independently recognized to be a spectroscopic double by Campbell (1899) and Newall (1899). Classification of stars with composite spectra is notoriously difficult, however (Bidelman 1984), especially if, as in the case of Capella, Δm is small. Estimation of these stars' magnitude difference and mass ratio, as well as $v \sin i$ of the $A b$ component, has also been difficult, due to the combination of broad lines in $A b$ and numerous lines in the late spectral type primary Aa (Fekel et al. 1986). A spectrophotometric analysis by Wright (1954) appeared to settle the issue: the spectroscopic primary (Capella Aa, larger mass) was approximately of type G5 III and brighter than the GO III secondary by about 0.25 mag at 550 nm . Recently, however, Griffin and Griffin (1986) reversed Wright's assignment of relative magnitudes based on their integrated radial-velocity profiles. Our data confirm the Griffins' result and indicate that the secondary is brighter by $0.09,0.23$, and 0.55 mag in Strömgren y, b, and v, respectively. From this, the spectral types have been estimated to be GOIII and G9 III. Similar results have been found in a recent spectrophotometric analysis by Strassmeier and Fekel (1990).
In this paper we first consider a revised orbit for Capella, based upon the latest available speckle data, and estimate the masses of the stars. We then discuss these data together with the individual star photometry and their implications for the evolutionary state of the Capella stars.

II. MASSES AND ABSOLUTE MAGNITUDES

McAlister (1981) derived an apparent orbit for Capella based on 56 interferometric observations, including both modern speckle data and visual Michelson interferometric measurements obtained at Mount Wilson by Anderson (1920) and Merrill (1922). This system has remamed a popular target for interferometric observation since the time of

McAlister's analysis; the number of measurements listed in the Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) now totals over 100.

We have calculated a new apparent orbit for Capella, including data through 1988, using the "grid search" method described by McAlister et al. (1988) and Hartkopf et al. (1989). The resulting orbital elements are shown in Table I, together with the earlier results of McAlister. Differences between the two orbits are minor. The semimajor axis increased by 0.5 mas, or less than 1%, while the period decreased by about 25 s , or 1 part in 360000 . (This excellent agreement in period is due in large measure to the excellent data of Anderson and Merrill, which give us a time span of some 240 full revolutions.) The overall effect of these new elements is an increase in the derived mass sum of approximately 2.9% at a given paraiiar.

We have in addition obtained parallax data generously provided by Van Altena (1988), based on trigonometric parallax measurements produced by seven observatories. Measurements of $0: 0780 \pm 0.0042$ for Capella A and 0.0763 ± 0.0028 for the fainter and better determined Capella H combine to give a weighted parallax of $0: 0768 \pm 000023$ for this system. The total mass of Capella is consequently $\quad \mathscr{M}_{\text {sum }}=4.58 \pm 0.41 \quad \boldsymbol{\mu}_{\odot}$ or about $2.29 \pm 0.20 \mathscr{H}_{\odot}$, each using a mass ratio of 1 . For a mass

Table I. Orbital elements for Capella.

	TABLE I. Orbital elements for Capela.	
	McAlistet (1981)	This paper
P	$10440237+0: 0002$	10440234 ± 040017
a	$0.0547 \pm 0: 0001$	$0: 05523 \pm 0: 00008$
i	$136: 64 \pm 0: 10$	$136: 63 \pm 0: 48$
Ω	$220: 22 \pm 0: 15$	$221: 21 \pm 1: 52$
T	1936.4581 ± 0.0001	1936.5045 ± 0.0008
e	0.0 (adopted)	0.005 ± 0.008
ω	$0: 0$ (adopted)	$59: 44 \pm 1: 52$

Notes to Table I. In the earlier set of orbital elements, the value of ω was increased by 180° to reflect the quadrant determinations of Bagnuolo and McAlister (1983). Also. our method of error determination is apparently rather more conservative than that used by McAlister. A derivation of elements using our program with McAlister's data yielded errors very similar to those quoted for the new set of elements.
ratio of 1.05 (Wright 1954) the stars have masses of 2.35 and $2.24 \boldsymbol{U}_{\odot}$, respectively. For comparison, Batten et al. (1978) give masses of 2.67 and $2.55 \mathscr{M}_{\odot}$ for the components, based on values of $K_{1}=26.1 \mathrm{~km} / \mathrm{s}$ and $K_{2}=27.5$ km / s (Batten and Erceg 1975; Wright 1954) and $i=137: 05$ (Finsen 1975). With our value for the inclination of 136.63 their masses reduce to 2.61 and $2.49{ }^{\prime \prime}{ }_{\odot}$.

In view of the uncertainties in radial-velocity determinations, especially for the secondary (see Sec. IV), this 10% difference in estimated mass between the two inethods is probably not significant. We also believe that the trigonometric parallax method is more reliable at preseni.

III. THE EVOLUTIONARY STATE OF THE CAPELLA STARS

The Capella stars are a rare example of two evolved giants, and their properties have been an important test for theoretical models of stellar evolution. The Wright data led to the interpretation by Iben (1965) that the G star had passed the red giant branch (RGB) phase and was in the core-heliumburning (CHB) phase. Iben further noted that these data were compatible with Wallerstein's (1964) estimate that the lithium abundance ratio of the F and G stars was $\mathrm{Li}(\mathrm{F}) /$ $\mathrm{Li}(G) \approx 100$.

However, Boesgaard (1971) detected lithium in the G star and revised this ratio to about 15 , which would be more compatible with the G star on the RGB. She states that the Li ratio would be $48: 1$ if the G star had reached even as far as point 11 on Iben's evolutionary track (i.e., about halfway up the RGB); therefore, the actual position of the star should be considerably earlier than this. There was therefore a conflict between the estimated lithium abundance, supporting the RGB interpretation, and the estimated temperatures and colors of the stars, which support the CHB model.

Our temperatures and absolute bolometric magnitudes, based on the temperature scale and B.C.'s of Kurucz (1988)
and Bell and Gustafsson (1978), are as follows: for the G star (spectral type G9 III), $T_{e}=4800 \mathrm{~K}$ and $\mathscr{K}_{\text {bol }}=, ~ \geqslant$, while for the F star (spectral type GO III), $T_{\mathrm{e}}=5500 \mathrm{~K}$ - 1 $\mathscr{K}_{\text {bol }}=0.14$. We have used Van Altena's trigonometric pa ${ }_{1}$ allax to convert to absolute magnitudes, and have assumed the $\mathscr{U}_{\text {bol }}$ of the Sun to be 4.76.

These data can be compared with various theoretical evoIutionary tracks. Five evolutionary tracks were chosen, each for stars having "solar" abundances (although the values chosen for solar abundance differ slightly-see Table II). Andersen et al. (1988) have shown the effects of varying Y and Z in fitting the stars of the eclipsing binary AI Phoenicis, whose masses were determined to be 1.24 and $1.20 \mathscr{H}_{\odot}$. Fits of $(Y, Z)=(0.312,0.0169)$ and $(0.250,0.0100)$ were essentially equivalent, which suggests that VandenBerg's (1985) model should be comparable to the other three recent models we considered. See also Popper et al. (1986) for a similar discussion.

Two particular points of interest in these evolutionary tracks are their overall luminosities (e.g., models with convective overshooting tend to be brighter for a given mass) and the difference in luminosity between a GO star at $\log T_{e}=3.75$ and the bottom of the CHB phase. This difference in $\log L$ is referred to henceiorth as $\Delta L_{\text {chB }}$. Models with a large $\Delta L_{\text {CHB }}$ can only explain the small observed luminosity difference between the G and F stars via the RGB hypothesis.

Figure 1 is a plot of the Capella data with Iben's (1965) evolutionary tracks for a $3.0 \mu_{\odot}$ star of solar abundance. Due to improvements in opacity estimates, model atmosphere codes, and computers, this result is largely of historic interest, as it was perhaps the first set of calculations to show the basic "topology" of stellar evolution in this mass range. Using Wright's data, Iben concluded that the CHB interpretation was correct. Our data have also been replotted with old calibrations of temperature and B.C. for comparison

Fic. 1. Comparison of Capella star H-R diagram positions with Iben's $3 . a \mu_{\odot}$ evolutionary track. The solid line and numbers represent evolutionary tracks, the large open squares positions of the G and F stars according to Iben's interpretation of Wright's (1954) data. The small filled squares indicate the positions of the stars according to Bagnuolo and Sowell (1988), while the small open squares indicate the same data with the old temperature and B.C. calibration.
(Allen 1973). The difference in $\log L$ between the two stars is about 0.05 , while $\Delta L_{\text {CHB }}$ for this model is about 0.10 . Therefore, the relative location of the stars in $\left(\log T_{c}, \log L\right)$ favors the RGB hypothesis.

Figures 2 and 3 compare the Capella data to the more recent evolutionary tracks of VandenBerg (1985) and Bertelli et al. (1986), respectively. The values of $\Delta \mathcal{L}_{\text {chi }}$ in Fig. 3 (and from the tabulated results) are 0.151 and 0.129 for 2 and $3 \|_{\odot}$ stars, respectively. Thus, the CHB hypothesis is an even poorer fit to the data for these theoretical models.

Table II compares the three stellar evolutionary tracks previously discussed with two others by Maeder and Meynet (1988) and Dearborn (1989). Both the latter models assume some convective overshooting, but differ in assumed opacities. The fourth column of Table II lists the luminosity at $\log T_{e}=3.75$. Note that ΔL_{chB} is less than zero for the Maeder and Meynet models; thus, both RGB and CHB are compatible with the data for this model.

The color-magnitude data on the whole are more compatible with the RGB than CHB interpretation, but clearly the result is model dependent.

If the RGB interpretation is true, then the mass difference of the stars must be small, as was noted by Ayres et al. (1983). For example, the F and G stars are approximately at points " 9.5 " and " 10.3 " on Iben's track (Fig. 1), which correspond to a time difference of about $\Delta t \approx 7.1 \times 10^{6} \mathrm{yr}$, or Δt / $t_{\mathrm{ms}} \approx 3.2 \times 10^{-3}$, where t_{ms} is the main-sequence lifetime.
According to Iben (1988), $t_{\mathrm{ms}} \propto m^{-2.2}$ or $\Delta t / t_{\mathrm{ms}}$ $=-2.2 \Delta m / m$. In other words, $\Delta m / m=-0.455 \Delta t / t_{\mathrm{ms}}$ $=0.00145$. Thus, this time difference corresponds to a mass difference of only $0.004 \mathscr{K}_{\odot}$. Of course, this analysis assumes coevality and no differential mass loss. However, the analysis suggests the possibility that the stars may be even "more equal" in mass than previously measured. Recent es-
timates of the mass ratio have ranged from 1.18 (Shen et al. 1985) to Wright's value of 1.05 , and will be discussed later.

The change in luminosity of the two stellar evolutionary tracks can also be estimated. Because $L \propto m^{3.2}$, $\Delta \log L=-3.2 \Delta \log m=0.0046$. This is only about $1 / 9$ of the observed difference in luminosity, so that the two stars are racing along almost the same track, assuming the RGB interpretation.

The stellar evolutionary models can also be compared with the estimated luminosities of the stars. The tracks by Iben (1965), VandenBerg (1965), Bertelli et al. (1986), Maeder and Meynet (1988), and Dearborn (1989) are consistent with average masses for the Capella stars of about $2.67,2.83,2.37,2.65$, and $2.80 \mathscr{U}_{\odot}$, respectively. The Bertelli et al. model therefore appears to be most consistent with the $2.3 . \mu_{\odot}$ masses found in Sec. II. Thus, although Andersen et al. found than VandenBerg's models without convective overshooting fit the $\sim 1.2 \|_{\odot}$ stars of Al Phe, perhaps convective overshooting does occur for more massive stars like Capella.

IV. OTHER DATA

Other relevant data are the ultraviolet luminosity and the observed mass ratios. According to Ayres et al. (1983), the enhanced UV emission of the Capella giants compared to other yellow giants in IUE low-dispersion surveys supports the RGB hypothesis. If the G star had evolved to the CHB stage, most of the observed strong chromospheric and coronal emission would have been lost.

The observed mass ratios are contradictory. Shen et al. (1985) have determined a mass ratio of the components of $\mathscr{M}_{G} / \mathscr{M}_{F}=1.18$ via spectroscopy. However, the previous result by Wright was a ratio of 1.05 . As we have seen, stars

Fig. 2. Comparison of Capella data to the evolutionary tracks of VandenBerg (1985).

Fig. 3. Comparison of Capella data to the cvolutionary tracks of Bertelli e: al. (1986).
with a high mass ratio cannot both be on or near the RGB; the more massive must have evolved to the CHB stage. Thus, the Shen et al. data support the CHB interpretation (although with this large a mass difference the more massive star would probably have evolved beyond the CHB phase).

Because the Shen et al. data provide the only major inconsistency (i.e., clearly support the CHB hypothesis), their results must be especially scrutinized. (Admittedly, this is ex post logic.) Their mass ratio depends upon their observations of the broadened lines of the F star, Capella $A b$, to which they have added at almost equal weight some 1939 measurements by W. Struve. We feel their data may be biased toward too high a value of the radial-velocity amplitude for this star K_{2} by the following effects:
(1) Shen et al.'s Fig. 1 shows a profile for the 0.749 phase which is dominated by the primary and is therefore almost an instrumental profile. Note that the continuum is fairly smooth to the left, but has large features to the right. This suggests that their results near 0.5 phase will be more accurate than those near 0.0 phase. Furthermore, the shape of these features suggests that there will be a bias toward higher radial velocities measured at close to 0.0 phase. In their Fig. 3 , there is good agreement between their radial velocities for

Table II. Comparison of stellar evolution models.

Author	$\mathscr{H} / \mathbb{K}_{\odot}$	(Y, Z)	$L_{3.13}$	$\Delta L_{\text {chi }}$
Iben (1965)	3.0	0.272, 0.02	2.04	0.10
Vanden Berg (1985)	3.0	0.25, 0.0169	1.97	-
	2.8		1.85	
Bertelli et al. (1980)	3.0	0.28, 0.02	2.32	0.151
	2.0		1.58	0.129
Maeder and Meynet (1988)	3.0	0.28, 0.02	2.10	-0.007
	2.5		1.79	-0.019
Dearbom (1989)	2.5	0.28, 0.02	1.69	0.070

Capella $A b$ and those of Struve near the 0.0 phase; at 0.5 phase the latter are systematically higher. One may tentatively conclude that Shen et al.'s R.V.'s are good near 0.5 phase, but too high near 0.0 phase, while the Struve data are uniformly too high. Thus, K_{2} and the mass ratio have quite possibly been overestimated.
(2) Shen et al.'s Figs. 1 and 2 show fitted Gaussians of different widths to the primary and secondary "dips" produced from the cross correlation of the spectrum with a mask spectrum of a similar star. However, the continuum is not well fitted by their models. Griffin (1988) noted this effect and has suggested that the radial-velocity difference between the two components is considerably less than the $27.5 \mathrm{~km} / \mathrm{s}$ found by Shen et al. for the 0.672 phase observation shown in the top portion of their Fig. 2. (See also their Table III, which gives radial velocities of 15.6 and $43.1 \mathrm{~km} / \mathrm{s}$ for $A a$ and $A b$, respectively.) Again, K_{2} may have been overextimated.
(3) The shape of the secondary dip shows superimposed features that change with phase. Griffin's (1982) data, taken with a larger aperture, show a smooth dip with no such features. The latter result suggests that the features in the secondary dip in Shen et al.'s data are mainly instrumental, and their variation with phase represents systematic instrumen- \dagger tal errors.

To conclude, we feel that the radial-velocity question is still open and that a credible mass ratio by this method is yet to be determined. We do not wish to denigrate the great efforts of Shen et al. or earlier observers to resolve this difficult problem. One of us has recently proposed (Bagnuolo 1988b) using a method of pupil plane interferometry to obtain the spectra of stars like Capella separately, but it is likely that existing techniques can determine a more accurate mass ratio. Recently, preliminary radial-velocity measurements by Stassmeier and Fekel (1990) indicate that the mass difference may be quite small between the components.

V. CONCLUSIONS

The avalable evidence tends to favor the red giant branch (RGB) over the core-helium-burning (CHB) hypothesis for the Capella stars. Additional observations are needed to accurately determme both the mass ratios of the components and the lithum abundance of the secondary to settle any remaming inconsistencies. The latter has not been redetermined in 18 yr and could clearly benefit from modern observational techniques.

Combining the best available orbital and parallax data
leads to absolute luminosities and masses that are most consistent with the models of Bertelli et al. (1986).

The authors would like to thank Icko Iben, Ingemar Furenlid, and Hal McAlister for several interesting discussions relating to this topic. Doug Gies, Jim Sowell, and Tom Meylan also provided useful criticism. The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF Grant No. AST 8613095 and the Air Force Office of Scientific Research through AFOSR Grant No. 860134. We gratefully acknowledge this support.

REFERENCES

Allen, C. W. (1973) . Astrophysical Quantutes (University of London, London).
Anderson, J. P. (1920). Astrophys. J. 51, 263.
Anderson, J., Clausen, J. V., Gustafsson, B., Nordstrom, B., and VandenBerg, D. A. (1988). Astron. Astrophys. 196, 128.
Ayres. T. R., Schiffer, F. H., III, Linsly; J. L. (1983). Astrophys. J. 272, 223.

Bagnuolo, W. G., Jr. (1988a). Opt. Lett. 13, 907.
Bagnuolo. W. G., Jr. (1988 b). Internal ChaRA memo.
Bagnuolo, W. G.. Jr., and McAlister, H. A. (1983). Publ. Astron. Soc. Pac. 95. 992.

Bagnuolo, W. G., Jr., and Sowell, J. R. (1988). Astron. J. 96, 1056.
Batten, A. H., and Erceg, V. (1975). Mon. Not. R. Astron. Soc. 171, 47p.
Batten, A. H., Fletcher, J. M., and Mann, P. J. (1978). Publ. Dom. Astrophys. Obs. 15, No. 5.
Bell, R. A., and Gustafson, B. (1978). Astron. Astrophys. Suppl. 34, 229.
Bertelli, G., Bressan, A., Chiosi, C., and Angerer, K. (1986). Astron. Astrophys. Suppl. 66, 191.
Bidelman, W. P. (1984). In The MK Process and Stellar Classification, edited by R. F. Garnson (David Dunlap Observatory, Toronto), p. 45.
Boesgaard, A. M. (1971). Astrophys. J. 167, 511.
Campbeil, W. W. (1899). Astrophys. J. 10, 177.
Dearborn, D. (1989). Private communication.
Fekel. F. C., Moffett, T. J., and Henry, G. W. (1986). Astrophys. J. Suppl. 60, 551.
Finsen, W. S. (1975). Circ. Inf. No. 66.

Gnifin, R. F. (1982). Mon. Not. R. Astron. Soc. 201, 487.
Grifin. R. F. (1988). Private communication.
Griffin, R., and Griffin, R. (1986). J. Astrophys. Astron. 7, 45.
Hartkopf, W. I., McAlister, H. A., and Franz, O. G. (1989). Astron. J 98, 1014.

Iben, I., Jr. (1965). Astrophys. J. 142, 1447.
Iben, I., Jr. (1988). Private communication.
Kurucz, R. L. (1988). Private communication to T. Meylan.
Maeder, A., and Meynet, G. (1988). Astron. Astrophys. Suppl. 76, 411.
McAlister, H. A. (1981). Astron. J. 86, 795.
McAlister, H. A., and Hartkopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, CHARA Contribution No. 2.
McAlister, H. A., Hartkopf, W. I., Bagnuolo, W. G., Jr., Sowell. J. R., Franz. O. G., and Evans, D. S. (1988). Astron. J. 96, 1431.
Merrill. P. W. (1922). Astrophys. J. 56, 43.
Newall, H. F. (1899). Mon. Not. R. Astron. Soc. 60, 2.
Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
Popper, D. M., Lacy, C. H., Frueh, M. L., and Tumer, A. E. (1986). Astron. J. 91, 383.
Shen, L.-Z., Beavers, W. I, Eitter, J. J., and Salzer, J. J (1985) Astron J 90, 1503.
Strassmeier, K. G., and Fekel, F. C. (1990). Astron. Astrophys. (in press). van Altena, W. (1988). Private communication.
VandenBerg, D. A. (1985). Astrophys. J. Suppl. 58, 711.
Wallerstein, G. (1964). Nature 204, 367.
Wright, K. O. (1954). Astrophys. J. 119, 471.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. V. MEASUREMENTS DURING 1988-1989 FROM THE KITT PEAK AND THE CERRO TOLOLO 4-m TELESCOPES

Harold A. McAlister ${ }^{\text {a }}$
and
William I. Hartkopf ${ }^{\text {a }}$
Center for High Angular Resolution Astronomy
Georgia State University
Atlanta, GA. 30303
and
Otto G. Franz ${ }^{\text {a }}$)
Lowell Observatory
Flagstaff, AZ 86001

a) Visiting Astronomer, National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Abstract

One thousand one hundred and fifty eight measurements of 1,056 binary star systems observed mainly during 1988 and 1989 by means of speckle interferometry with the $4-\mathrm{m}$ telescopes on Kitt Peak and Cerro Tololo are presented. Eight systems are resolved for the first time. This program, begun at Kitt Peak in 1975, has now been expanded to include the southern hemisphere.

I. INTRODUCTION

This paper is a report of the continuing effort to provide high accuracy, high angular resolution measurements of binary star systems by speckle methods. After nearly 14 years of continuous activity in the northern hemisphere, this program has now been expanded to the southern sky. We here present measurements from the $4-\mathrm{m}$ telescopes on Kitt Peak, obtained during August, 1988 and March, 1989, and Cerro Tololo, obtained in April, 1989. The CTIO results are the largest sample of speckle observations of binary stars yet to come from the southern hemisphere, and we hope to be able to continue routine observations over the entire sky. As demonstrated by the first results of extensive orbit calculations from observational material accumulated in this program (Hartkopf et al. 1989), it is through a continuing, long-term observing program that speckle interferometry will substantially contribute to binary star studies.

II. NEW MEASUREMENTS

The instrumentation and data acquisition and analysis procedures are identical to those described in Paper IV (McAlister et al. 1989) of this series. Calibration measurements using a double-slit pupil mask were obtained for the Kitt Peak observations. The Cerro Tololo results were tied into the Kitt Peak "system" by observing binaries near the celestial equator from both locations that would show no measurable orbital motions during the month separating the spring 1989 observing runs.

The GSU speckle camera was scheduled for 10 nights during the two KPNO runs and for four nights at CTIO. Altogether 1139 series of observations were obtained on Kitt Peak while perfect weather in Chile permitted us to collect an additional 775 data series from the southern hemisphere. These data were reduced in Atlanta to yield a total of 1,158 measurements of 1,056 binary star systems.

Table I contains observational and catalog information for the eight new systems
presented in this paper. Six of the newly resolved pairs were discovered as close companions to wider visual binaries, thus representing six new triple systems. These are designated as such in the last column of Table I. We have tentatively designated new components in previously known binary systems as Aa even though the autocorrelation analysis does not establish whether the additional star is associated with component A or B . We are now working toward eliminating these ambiguities, as well as the 180° quadrant ambiguity inherent in autocorrelation methods, using other techniques. Those results will be published separately, but examples of these speckle photometry techniques, as applied in studies of the binaries Finsen 342 and Capella, can be found in McAlister et at (1988) and Bagnuolo and Sowell (1988), respectively.

One of the new stars in Table I, CHARA $146=$ HR $6027=\nu$ Sco, is a member of the Sco-Cen association. The remaining two newly resolved stars were observed due to their known or suspected radial velocity variations, indicated by " SB " in Table I , but are also third components in known systems. CHARA $145=\mathrm{HD} 86590=\mathrm{DH}$ Leo is a third companion in a short-period spectroscopic binary whose observational history is summarized by Barden (1984). From his spectroscopic observations, Barden was able to detect three stars of K spectral type of which the RS CVn nature of the system arises from the secondary component in the 1.07 -day system. The third component was detected in the spectrum by Barden and has subsequently been observed by Fekel (private communication, 1989) who finds no velocity change in excess of $\pm 2 \mathrm{~km} / \mathrm{sec}$ from 12 spectra obtained since 1984.0. It seems very likely that we have detected this third component in HD 86590. CHARA $148=$ HD 167954 is a single-lined spectroscopic binary with a period of 120 days (Bopp et al. 1970). With the observed angular separation of 0.31 arcsec, the component we report here is probably not the known spectroscopic system.

We continue our practice of assigning "CHARA numbers" to these systems, and the total number of "McA" and "CHARA" stars is now 224. Many of these systems show very rapid orbital motion, and, if they were not already known as spectroscopic binaries, are prime candidates for radial velocity observations. As examples of rapid motion, we show in Figure 1 the collected speckle observations of four CHARA stars, all of which were discovered after 1984.0. Tweive previously discovered CHARA stars have been confirmed here: \#12 (HD 23489); \#41 (HR 5323); \#58 (HR 6286); \#60 (HD 155328); \#77 (HR 7053); \#88 (HR 7480); \#111 (HR 8581); \#121 (HR 9097); \#122 (HD 225218); \#132 (HD 91172); and, \#133 (HR 4380). Several of these systems have also shown significant orbital motions since their discoveries. For example, CHARA 60 and 88 haved moved through 73° and 61°, respectively, in the 3.8 yr since their first resolution. CHARA 77, a
newly discovered companion to ϵ Lyrae C, moved through 36° and closed from 0.18 to 0.04 arcsec since its first resolution on 1985.518. Finally, reexamination of an autocorrelogram obtained in November 1986 at the KPNO 4-meter has provided us with a "prediscovery" confirmation of CHARA 149 (this observation is included in Table II).

The new measurements of binary stars are presented in Table II, where we condense the format used in Paper IV. The coordinates in Table II, which also serve as the Washington Double Star Catalog (WDS) number, are for equinox 2000.0, but the position angles have not been corrected for precession and are thus based upon the equinox for the epoch of observation shown as the fraction of the Besselian year. The measured angular separations in this sample range from a minimum value of 0.021 arcsec for the newly discovered third component in the visual binary HDO $207=$ HD 79699 to 2.857 arcsec for the visual companion to α Sco. The median separation here is 0.238 arcsec compared with the mean separation of 0.35 arcsec for the nearly 9,000 interferometric measurements compiled in the catalog of McAlister and Hartkopf (1988). The lower limit in the observed separation range is significantly below the Rayleigh limit for the $4-\mathrm{m}$ telescope, but, as is seen in Figure 2, the vector-autocorrelogram for HD 79699 clearly shows doubling of the characteristic peak. The detection of triple systems such as this one is an application (indeed about the only practical application) of "speckle holography" (cf Weigelt 1983), in which the wide component acts as a reference point source for the deconvolution of the close pair.

Southern declinations have been virtually ignored in any systematic application of binary star speckle interferometry. The 334 measures of systems with $\delta \leq-30^{\circ}$ in. Table II represent a tenfold increase for this declination zone from the number of measurements listed in the catalog of McAlister and Hartkopf (1988). Many of the objects we observed have not been inspected by either visual or interferometric methods for several decades. It is our goal to continue uniform speckle coverage in both hemispheres.

As in all previous papers, we are indebted to the efforts of the telescope operators in maintaining the highest observing efficiency. We thank Dean Hudek, Hal Halbedel, and Don Martin for their cheerful and dedicated cooperation on Kitt Peak. Our first experience on Cerro Tololo was all the more pleasing due to the gracious treatment we received by every CTIO stafí member. Wie particulariy relied on Oscar Saa for his kind iogistical support and on Hernan Tirado for his expert job in operating the 4 -m telescope. Clark Enterline, of the CTIO liason office in Tucson, provided valuable assistance in shipping
our equipment overseas. Graduate student Don Barry assisted with the August observing run. We thank Charles Worley for again commenting on our results in advance of publication. Frank Fekel kindly provided us information about HD 86590 after alerting us to its suitability for speckle observation. Research in speckle interferometry at Georgia State University is supported by the GSU College of Arts and Sciences and the Office of the Vice President for Research. The National Science Foundation (AST 86-13095) and the Air Force Office of Scientific Research (AFOSR 86-0134) provided support for this effort through grants to GSU. O.G.F. acknowledges the partial support of the Space Telescope Science Institute (STScI Grant CW-0005-85).

REFERENCES

Bagnuolo, W.G., Jr. and Sowell, J.R. (1988). Astron. J. 96, 1056.
Barden, S.C. (1984). Astron. J. 89, 683.
Bopp, B.W., Evans, D.S., Laing, J.D., and Deeming, T.J. (1970). Mon. Not. Royal Astron. Soc. 147, 355:

Hartkopf, W.I., McAlister, H.A., and Franz, O.G. (1989). Astron. J. 92, 1014.
McAlister, H.A., and Hartkopf, W.I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy, Contribution No. 2.

McAlister, H.A., Hartkopf, W.I., Bagnuolo, W.G., Jr., Sowell, J.R., Franz, O.G., and Evans, D.S. (1988). Astron. J. 96, 1431.

McAlister, H.A., Hartkopf, W.I., Sowell, J.R., Dombrowski, E.G., and Franz, O.G. (1989). Astron. J. 97, 510.

Weigelt, G.P. (1983): in Current Techniques in Double and Multiple Star Research, IAC ${ }^{*}$ Coll. No. 62, eds. R.S. Harrington and O.G. Franz, Lowell Obs. Bull. No. 167, p. 271.

Figure Captions

Fig. 1. The motions of four rapidly moving CHARA systems are shown. (CHARA $18=$ FRR $1458,26=\operatorname{HR} 2837,39=\operatorname{HR} 4921,102=\operatorname{HR} 8246)$. HR 1458 is a member of the Hyades group.

Fig. 2. The vector-autocorrelogram of the newly discovered companion to the visual binary HD 79699 clearly shows the double peak characteristic of the close companion designated as CHARA 144 Aa.

TABLE I. Newly Resolved Binary Stars

CHARA Number	HR/DM Number	Name	HD	SAO	ADS	$\begin{gathered} \alpha, \delta \\ (2000) \end{gathered}$	V	Spectral Classif.	Disc. Sep.	Binary Type
142 Aa	$+29^{\circ} 176$	-	-	74496	887	01070+3014	8.9	G0	0 0"089	Triple
143 Aa	-45 ${ }^{\circ} 3892$	-	68895	219602	-	08125-4616	6.7	B9V	0.045	Triple
144 Aa	$-60^{\circ} 1353$	-	79699	250485	-	09128-6055	6.1	B9V	0.021	Triple
145	+25 ${ }^{\circ} 2191$	-	86590	81134	-	$10000+2433$	7.9	G5	0.216	SB
146 Aa	HR 6027	ν Sco	145502	159763	9951	16120-1928	4.12	B2IV	0.063	Triple
147 Aa	$-53^{\circ} 8153$	-	150446	244095	-	16438-5330	9.2	B8/9IV+F/G	0.043	Triple
148	-45 ${ }^{\circ} 12390$	-	167954	228906	-	18197-4542	7.5	F7V	0.306	SB
149 Aa	+44*4464	-	222326	53242	16904	$23392+4543$	7.4	A2	0.048	Triple

				$\begin{aligned} & \mathscr{8} \\ & \hline 0 \\ & \underset{\sim}{2} \end{aligned}$				$\begin{aligned} & \underset{0}{9} \\ & \underset{\sim}{c} \\ & \underset{\sim}{n} \end{aligned}$	 				$\begin{array}{r}8 \\ \hline 8 \\ \hline 18 \\ 48 \\ \hline 18\end{array}$
	$\begin{aligned} & \infty \\ & \infty \\ & m \\ & m \\ & m \\ & \infty \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & < \end{aligned}$			$\begin{aligned} & \text { N } \\ & \text { S } \\ & \text { स } \\ & \text { H } \end{aligned}$						$\begin{aligned} & \text { 世 } \\ & \underset{\infty}{\mathbf{N}} \end{aligned}$
	$\begin{aligned} & \infty \\ & \text { N } \\ & \text { n } \\ & \infty \\ & \infty \\ & \infty \end{aligned}$						$\begin{aligned} & 19 \\ & 2 \\ & 2 \\ & + \\ & + \end{aligned}$		7699MNNT ※ MNCNN NMN 以 nenenencos 				8 0 0 0 4
				$04432+5932$				$05386+3030$					

今心

02107＋4426	＋430436	Cou 1667
02122＋6132	＋60 0448	Mlr 30
02128＋3722	ADS 1701	Ho 497
02145＋6631	HR 640	McA 6
02157＋2503	HR 657	Cou 79
02160＋4046	$+400469$	Cou 1669
$02183+4120$	$+400476$	Cou 1670
02186＋4017	ADS 1763	Egs 2 As
02198＋0640	＋06 0347	Vou 40
02250＋2529	＋240344	Cou 357
02257＋6133	ADS 1833	STF 257
02270＋1952	ADS 1853	A 2328
02277＋0426	ADS 1885	A 2329
02279＋4523	＋440500	Cou 2011
02280＋0158	HR 719	Kui 8
02290＋6724	ADS 1860	CHARA 6 Ap
02317＋0244	ADS 1925	A 2333
02333＋5218	ADS 1938	STT 42 AB
02361＋7944	＋790075	Mlr 449
02363＋4012	＋39 0577	Baz
02366＋1226	HR 763	McA 7
02377＋6520	ADS 1976	Hu 1041
02383＋4604	ADS 1992	A 1278
02384－0125	ADS 2005	A 450
02393＋2552	ADS 2010	A 2023
02396－1153	HR 781	Fin 312
02398＋0009	ADS 2028	A 1928
02409＋3905	＋38 0536	Cou 1371
02417＋5529	ADS 2040	A 1280
02422＋4012	IR 788	McA 8
02423＋4925	ADS 2051	Hu 539
02424＋2000	HR 793	$\boldsymbol{\mu}$ Ari
02454＋5738	ADS 2093	$\text { A } 971$
02472＋6551	＋850290	$\text { MIr } 120$
$02500+2716$	ADS 2159	McA 10 Ae
$02529+5300$	ADS 2185	A 2906 AB
02529＋5300	ADS 2185	STF 314 AB，${ }^{\text {c }}$
02552＋5950	$+590567$	Mir 520
$03024+7236$	ADS 2278	A 827
$03048+5330$	HR 915	$\boldsymbol{\gamma}$ Per
$03082+4057$	HR 936	β Per Aa
$03143+1821$	$+170515$	Cou 359
$03266+2843$	$+280532$	CHARA 9
03337＋5752	$+570730$	CHARA 117
$03423+3141$	＋310637	Cou 691
03465＋2415	＋23 0523	CHARA 12
04008＋0505	ADS 2928	A． 1937
04044＋2408	ADS 2965	McA 13 Aa
04063＋1952	＋190662	CHARA 13
$04119+2338$	$+230635$	CHARA 14
04136＋0743	ADS 3064	A 1938
$04185+2135$	HR 1331	McA 14 Aa

Abstract

 ©

 （50
$\begin{array}{ll}07334-2843 & -2804515 \\ 07336+1550 & \text { HR 2896 }\end{array}$

00
0
0
+
1
10
2
5

年 9
0
$\%$
1
1
0
0
0

∞
0
0
N

 07513－0925
$07518-1352$
$07528-3746$
$07528-0526$
07530－3318

 00

 풍 두우우웅웅 「 os

구웅

09267-2847	ADS 7379	JC 5
09273-0913	ADS 7382	A 1588 AB
09278-0604	HR 3750	B 2530
09285-2428	ADS 7394.	B 181
$09285+0904$	ADS 7390	STF 1356
09289-3750	-37 05811	B 1125
09326+0151	HR 3794	Fin 348
09330-2705	-28 07184	RST 1436
09368-2442	-2408263	Fin 383
69372-3721	-36 05822	RST 2644
09372-5340	-53 02646	See 115
$09379+4554$	ADS 745\%	A 1765
09398-5008	-49 04578	RST 4917
09442-2748	HR 3871	Fin 326
09455-2824	ADS 7510	B 188
09474+1134	HR 3880	McA 34
$09477+2036$	+212108	Cou 284
09482-4632	-4505435	B 1561
$09498+2111$	HR 3889	Kui 44
09506-3252	-32 06799	RST 2656
09512+3625	ADS 7541	Ho 369 AB
$09521+5404$	ADS 7545	STr 208
09525-0806	ADS 7555	AC 5 AB
09568+4359	+44	Pop 151
09579-6045	-60 015.18	Fin 152
$10000+2433$	+25 2191	CHARA 145
10004-0731	-063055	RST 3673
10008-5308	-5203033	RST 1474
10030-3016	-29 08037	Daw 99
10043-2823	ADS 7639	1292
10052-2812	ADS 76:35	1293
10066-3511	-34 06425	RST 2670
10074-1943	ADS 76.17	Bu 218
$10083+3137$	ADS 7851	Kui 48 AB
10092-4743	-47 05578	RST 472
10093+2020	ADS 7662	A 2145
10095-5841	-68 01034	113 AB
10105-4235	-4105656	B 1151
10115-3924	-3806260	11523
10117+1321	ADS 7674	Hu 874
10120-2836	ADS 7681	B 194
10121-0613	ADS 7675	Ho 14
10122-2716	ADS 7683	B 195
10135-5145	-51 04578	RST 5517
10161-5954	-59 02108	Hu 1597
10163-2859	ADS 7706	1851
10163-4624	-45 05913	B 1153
10163+1744	ADS 7704	STT 215
10182-5049	-50 05024	Hu 1598
10222-4520	-4406427	RST 4926
10223-3225	-3108206	11525
10238-4415	-4306224	1208 AB
10259-5637	-5503419	RST 2692
10260+0256	ADS 7869	A 2570

かん

$\stackrel{\infty}{4}$			4	$\stackrel{\text { ¢ }}{\substack{4 \\ \text { ¢ }}}$		
				$\stackrel{\sim}{ \pm}$		500 \％ma
ゅの				点	馬信気	
	 			\＃		
			会呚号会	$\stackrel{\sim}{8}$	꾸ํㅜㅗ 윰	
ज	 	స్ల్ల్ర్ర్రిల్ర	Cote	7	矛第管	
¢ ${ }^{\text {a }}$		우우우융		\％	－\％	
	（－x\％	－	－	$\stackrel{\sim}{2}$	ベm	

Mo

 000

	荌 			$$			N	
	Now No ఝ్షి 			－			¢ \％ 0 0 8	
				奀			$$	

ЭM

$\stackrel{\stackrel{0}{0}}{\stackrel{0}{0}}$

욱్ㅓ어억
祘鳥
 N్ల్స

운욱훅

 $0000000-00000000-000$

				B B 何		
		 $111111++1++1+$ 			内ु円 $11+++1111111+$ 	

¢ 0 о

 무웅

若产 N N N్N＂
 స్ఫ
管号

 $23412+4613$
$23425+5436$喁
\qquad

\qquad | M |
| :---: |

THE CHARA ARRAYII.

ANDERSON MESA, ARIZONA, ASASITEFORAN OPTICALARRAE

WEAN-SHUN TSAY, WILLIAM G. BAGNUOLO, Jr., and HAROLD A. McALISTER

Center for High Angular Resolution Astronomy
Georgia State University, Atlanta, Georgia 30303

NATHANIEL M. WHITE

Lowell Observatory, Flagstaff, Arizona 86001
and

FRED F. FORBES

National Optical Astronomy Observatories, Tucson, Arizona 85726

Abstract

From measurements of cloudcover, seeing profiles, and microthermal properties, Anderson Mesa, near Flaystaff, Arizona, has been evaluated as a potential site for an optical interferomet -: $\operatorname{sray.}$ From satellite cloud measurements, northern Arizona was found to have experiencrt $\therefore \therefore$: skies than those of southern Arizona and New Mexico during 1984-87, with an expected lower frequency and extent of monsoon related activity. Using a simple and inexpensive systern for measuring instantaneous FWHM of stellar images, the seeing at Anderson Mesa iv s determined to be well represented by the statistics at the nearby USNO Flagstaff Station from which a median seeing of 1.2 arcsec FWHM has been reported. Limited microthermal measurements indicate that Anderson Mesa is rather similar to Mit. Graham where tree cover plays a significant role. Anderson Mesa is concluded to be a highly suitable site for an optical array.

Key uords: optical interferometry-site selection

1. Introduction

The feasibility of a long-baseline, multiple-telescope interferometric array operating at optical wavelengths has been under investigation at GSU/CHARA since early 1986. The CHARA Array in its final design concept form has been described by McAlister (1989a,b) as well as in the first paper in this series (McAlister et al. 1990). An important aspect of this study has been the selection of a site at which the proposed array would be constructed. Criteria for site selection were terrain, meteorology, darkness, geology, logistics, and seeing. Several sites in the southwestern U.S. have been studied in the context of the CHARA Array. The necessity that a site provide extensive two-dimensional placement of array elements eliminates many developed sites from consideration. Logistical considerations weighed against several other sites as well.

We assigned a relatively low weight to the criterion of darkness. At a dark site, the background visual magnitude per square arcsec is typically $m_{v} \sim 22$, which is 8 magnitudes dimmer than the estimated ultimate limiting magnitude of $m_{0} \sim 14$ for the interferometer. There is, therefore, some margin of safety for this criterion. Moreover, a recent estimate (Garstang 1989) has shown that the light pollution in V at Anderson Mesa will be only 0.24 and 0.30 mag. above background at the zenith in 1990 and 2000 respectively, and this model does not include any light pollution ordinance action in Flagstaff.

Seeing conditions affect interferometry in several ways. Firstly, in pupil plane interferometry poor seeing requires a greater number of detector elements (or optical fibers, etc.) to adequately sample the fringe pattern and avoid loss of measured visibility. Because the number of detector elements is proportional to r_{0}^{-2} where r_{0} is the atmospheric transverse coherence length, or Fried parameter (see the paper by Coulman in Millis et al. 1987) and because more elements means more computing capability and data storage, it is desireable to have as good seeing as possible.

Secondly, the signal to noise ratio (SNR) and the limiting magnitude are dependent on seeing (Roddier and Lena 1984, Humphreys et al. 1984), where the limiting irradiance $L \sim r_{0} \tau \Delta \lambda$ where τ is the atmospheric redistribution time and $\Delta \lambda$ is the bandwidth. If the frame time and bandwidth could be changed to take advantage of good seeing then $\mathrm{L} \sim \tau_{0}^{17 / 8}$, if these are fixed for design reasons, then $L \sim r_{0}$. Thus an improvement in seeing from $r_{0}=10 \mathrm{~cm}$ to 15 cm could improve the limiting magnitude by 0.45 to 1.25 mag . Note that if the seeing deteriorates so that τ is less than the detector frame time, the facility must shut down, as is the case if r_{0} is too small to be well resolved by the detector.

Finally, good seeing allows a better correction of wavefront if a compensated imaging system with a small number of actuators (≤ 15) is used (McAlister 1989b). Therefore, for these general reasons and for the CHARA Array design in particular, it is desireable to have a high
percentage of seeing with ro $\geq 7 \mathrm{~cm}$ or better than ~ 1.4 arcsec.
A low cloudcover is a requirement perhaps so obvious that recent ennsideration of it have been relatively neglected. In a conference dealing with astronomical site selction held in Flagstaff (Millis et al. 1987), consideration of cloudcover occupied less than 5% of the papers given. Nevertheless, because the astronomical productivity of a site is at least proportional to its cloudcover, this should be given a significant weight in site selection.

In this paper, we report a comparative analysis of relative cloudcover at these siles and new measurements of seeing conditions from Anderson Mesa, near Flagstaff, Arizona, the site proposed for the CHARA Array.

2. Comparative Cloudcover Analysis

The five sites listed in Table 1 were examined as potential locations sites for the CHARA Array. Although it does not possess suitable terrain, Kitt Peak was included for comparison purposes. Satellite weather data were obtained from the National Climatic Data Center in Asheville, North Carolina. These data include the interval January 1984 through September 1987, and describe the region within longivude 98° to $114^{\circ} \mathrm{W}$ and latitude 26° to $40^{\circ} \mathrm{N}$. Weather maps were encoded in gray-level scales according to relative cloudcover averaged with respect to year, month, and hour. These weather data include 45 months of four measurements per night (at $\mathrm{UT}=0,3,6$ and 9 hour). A satellite map distortion correction routine and a data smoothing routine have been applied in this study. The locations of the five sites in Table 1 are shown as plus signs in the resulting maps and state boundaries are also drawn. On each of the weather maps shown in Figures 1 through 5, the cloudiness levels are shown on the top-left-hand side by 10% steps decreasing from top to bottom (top white means 0% cloudy and bottom black means 100% cloudy, respectively).

The last general mapping of cloudcover in the southwest for astronomical use was done by Smith and McCrosky (SM) (1954), based on data from twenty weather stations. In comparing our results with SM, we note the following:
1.) The most prominent region in terms of low cloudcover in these maps is the region just to the east of Flagstaff including the Painted Desert area. There is only a slight indication of this feature on SM's map (their Fig. 12).
2.) The clearest region of SM's map is the desert area near Yuma. In our data, the western portion of this region (Yuma itself is truncated) shows good, but not outstanding cloudcover conditions.
3.) The new data do not show the "peninsula" of clear weather up the Rio Grande valley noted by SM.
4.) Both the older and newer data sets qualitatively agree on the characteristics of the summer monsoon seasons.
5.) Both sets also agree on the general cloudiness associated with the mountains along the Continental Divide. Our maps also extend this feature into Mexico.
The differences between our maps and the SM map no doubt largely result from natural, short-term changes in climate. There must also be relative differences in airport versus satellite measurements of cloudcover. Satellite data has the advantage of being uniform in its sensitivity to relative cloudcover and is immune to the observer-to-observer variations inherent in airport reports.

An annual average of the cloudcover statistics is shown in Figure 6 and indicates that Ailderson Mesa was the clearest of the five sites during the data interval. The clearest months at Anderson Mesa are January, May, September, and October with average cloudcover lower than 20%. In Figure 1, the year-average weather maps for 1984, 1985, and 1986 near midnight ($\mathrm{UT}=7: 30$) are shown with the entire 45 -month period included in the map on the lower righthand side. Although the three year-average maps show variations from year to year, Anderson Mesa still has the lowest year-average percentage cloudcover within the specific confines of the 1984-1987 data set. Figure 2 is an example of average change at progressive night-time hours ($\mathrm{UT}=0,3,6$, and 9 hours) for the 1986 data set. The Anderson Mesa area shows a distinct improvement into the night-time hours. On the month-average maps, which are not shown here, the improvement of cloudcover from early evening to midnight is similar to that indicated in Figure 2. Figures 3, 4, and 5 present month-average maps (at UT $=7: 30$) from January through December. On these figures, Kitt Peak and the two New Mexico sites show particularly strong monsoon (July and August) related cloudiness.

3.1 Equipment

The CHARA/Lowell seeing monitor system used on Anderson Mesa is a portable and inexpensive device designed by authors White and Bagnuolo. The detector is a standard high-resolution miniature TV camera manufactured by Pulnix Corporation (their model TM$540 / R$) and is based upon a Sony O18-L 510×492 interline transfer CCD chip with a format of $17 \times 13 \mu \mathrm{~m}$ pixels. This camera is mounted on a housing incorporating a Strömgren y filter and attached to an $\mathrm{f} / 11,14$-in aperture Celestron telescope. The composite video signal is digitized and processed by an Imaging Technology PC Vision Plus frame grabber installed in an IBM/AT-type computer.

A Hartman mask and a focus mechanism designed by White, as shown in Figures 7 and 8, were used to determine precise focus. The Hartman mask has two 4 -in diameter holes with 8 inchs of separation between their centers. The focus mechanism incorporates a micrometer device attached to the telescope eyepiece tube. This device is initraily set to within $\pm 3 \mathrm{~mm}$ of the focal plane. Then, with the Hartman mask attached to the entrance aperture of the telescope, 60 frames of double-spot images (aligned in the Y-direction) at micrometer positions inside and outside of focus are recorded and analyzed to determine the precise focus.

3.2 Data Acquisiton and Processing

Each seeing measurement consisted of a series of 60 digitized 32×32-pixel images of a bright star within 20° of the zenith obtained at the standard video frame rate of $30 \mathrm{sec}^{-1}$. The X, Y image profiles, their full width at half-maxima (FWHM), and the image centroids were determined on-line.

The FWHM were calculated by a simple raw-data summation algorithm method in order to obtain high speed during the data acquisition period. Absolute image motion was also calculated by using a simple first-moment centroid rnutine on-line. Precise FIVIIM of X and Y profiles and image centroid motions were later calculated from disk files by using a 1 dimensional Gaussian profile fitting routine after the detector linearity calibration was applied to each frame. There were 60 X and Y profiles in each two-second measurement with 15 pixels of the raw data across the image center selected for the Gaussian fitting. The mean FWinin of the 60 single profiles in each measurement was calculated as representative of the seeing at that particular moment. The mean FWHM of the 60 X and Y profiles with centroid motion correction was also calculated for comparison with the mean FWHM. This provided a check
on abnormal vibrational effects as well as monitoring low-frequency image motion.
The above procedures revealed that the X profiles were aboul 0.6 arcsec broader than the Y profiles. This was recognized as being due to the chip geometry in which the interline vertical register separates the pixels in the X direction. This can be corrected statistically to some degree, however, the X direction was oriented parallel to the celestial equator so that the X proilles are also more affected by any telescope drive-induced errors. For these reasons, we chose to base the final seeing measurements only on the Y profile data.

3.3 Calibration

The plate scale calibration was determined from double star observations to be 0.80 and $0.64 \operatorname{arcsec}$ per pixel in the X and Y directions, respectively. The intensity calibration for detector non-linearity used a camera lens with an adjustable iris (from $f / 2.7$ to $f / 16$) to image a small target at a distance of 6.7 m . The intensities of an effective point source and extended source were recorded as a function of the $\mathrm{f} /$ number. The results of these measurements are shown in Figure 9 and are characterized by a small toe in response, followed by a roughly linear region extending to about 80 counts. At brigher intensities, the response roughly followed the square-root of the intensity. In Figure 10, examples of data obtained under good and poor seeing conditions are shown before and after applying the linearity correction.

Because the Pulnix CCD camera automatic gain control (AGC) and standard gamma ($=0.45$) circuit were enabled during the observations, calibration tests using a LED light source were carried out in the CHARA Lab in order to duplicate the high contrast situation presented by a bright source on a dark background. A gamma <1 has the advantage of expanding the dynamic range at a loss of contrast and thus enhances the ability to measure the peaks of a Gaussian profile. For testing, the electronics of the Pulnix camera were modified to provide a six-step manual gain control circuit. The tests were done at a laboratory temperature of $70^{\circ} \mathrm{F}$ as well as at a temperature of $32^{\circ} \mathrm{F}$ similar to that encountered during the obervations on Anderson Mesa. The results were essentially the same as those from the first linearity check, and the reponse curve at freezing temperature showed no significant differences from that obtained at room temperature.

3.4 Results of Seeing Measurements

In order to ascertain the long-term seeing characteristics at Anderson Mesa, short-term quantitative measurements were related to the existing results of the long-term quantitative seeing measurements at the U.S. Naval Observatory's Flagstaff Station site some 13 miles from

Anderson Mesa. The process was to compare measurements with the CHABA/Lowell system at Anderson Mesa on nights when seeing was also being measured at the USNO with their standard CCD procedures and to compare simultaneous measurements at the same site.

A comparison of seeing data from the two sites for the nighi n " M[ay, 1988 is shown in Figure 11. This compurison shows that the seeing on Anderson Mesa was approximately 0.3 arcsec poorer than at the USNO at this particular time. The observing log notes that the wind was higher than normal on that night at Anderson Mesa, and it is possible that tree-induced turbulence as well as wind generated instrument shake, may account for some difference in average seeing in Figure 11. The seeing monitor system, with an entrance aperture only 2 m above the ground, was set up for practical reasons inside the fenced area surrounding the 72 -in and 42 -in telescope domes at Anderson Mesa near a small stand of trees. It thus seems likely that the difference in measured seeing at the two sites may be partly attributable to the less than ideal location of the CHARA/Lowell system on Anderson Mesa. There are no trees in the immediate vicinity of the USNO 61-in telescope dome. We thus conclude that very localized conditions may possibly account for some modest systematic difference in the seeing statistics for the two Flagstaff locations, but the general seeing characteristics at Anderson Mesa are very similar to the USNO site. It is important to note that the part of Anderson Mesa where the CHARA Array would be located has a much lower density of trees than the area immediately surrounding the ¿erkins telescope.

During 10-13 June, 1988, the CHARA/Lowell seeing monitor was placed about 30 m west of the USNO 61 -inch telescope dome in order to measure seeing simultaneously with the 61 -inch telescope where seeing data are routinely acquired as a part of the USNO astrometry programs. On the night of 10 June, only knife-edge measurements rather than direct CCD imagery were being performed on the USNO telescope. In Figure 12 is shown the correlation of seeing measurements of the two systems. An empirical/theoretical factor of 3.5 , provided by D. Monet and C. Dahn, was adopted to correct the USNO knife-edge measurements to FWHM values. The average inferred seeing disk profile measured from the USNO knife-edge data is about 0.35 arcsec larger than the average seeing from the CHARA/Lowell system on this particular night.

On the nights of 11 and 13 June, the $12^{\text {th }}$ having been cloudy, additional simultaneous measurements were obtained, but in these instances, the USNO measures were obtained with a CCD camera. The FWHM seeing measurements from the two systems throughout these two nights are pioited in Figure 13. The apparent large discrepancy around 8.0 hours on 13 June coincided with an increased wind speed sutside the 61 -inch dome and was clearly due to wind shake. The discrepancy around $\mathrm{UT}=5: 30$ is attributed to a focus drift caused from the steep temperature gradient during the early night hours. The CHARA/Lowell measures before 7.5 hours UT on both nights were obtained using a Strömgren y filter, those after that
time incorporated a Johnson B filter. There is no evidence for any systematic difference in the $t w n$ systems in excess of 0.1 arcsec.

Figure 14 presents the histogram of 161 measurements using the CHARA/Lowell system during three nights at the USNO site from which the mean seeing was 1.20 arcsec with a median value of 1.04 arcsec. The histogram shown in Figure 15 summarizes the 236 measurements from the USNO 61 -inch telescope CCD camera on 6 nights with mean and median seeing of 1.04 and 1.00 arcsec. Those data were obtained during the time when the CHARA/Lowell seeing monitor was active on Anderson Mesa. Results from 364 image profile measurements obtained at Anderson Mesa on 21. nights during May and June 1988 are shown in Figure 16. The mean value of the seeing profile FWHM is 1.24 arcsec , and the median is 1.18 arcsec . Finally, the long-term seeing statistics from the USNO program are shown in Figure 17. The 70 nights over which these 1,003 measurements were obtained from the USNO CCD camera extend from April 1986 through July 1987. The mean FWHM of image profiles in this sample is 1.34 arcsec and the median is 1.20 arcsec.

The long-term USNO statistics are biased in the poor seeing tail due to the practice instituted many years ago at the USNO of not taking astrometric data or seeing measurments when the seeing is worse than 2 arcsec. But no such bias against poor seeing is presented in the CHARA/Lowell systern measurements except for the general bias resulting from the limited time sample of data, i.e. 21 nights during May and June 1988. From the above discussion we conclude that the seeing described by the USNO CCD measurements must be generally representative of Anderson Mesa as well.

This result contradicts the conclusion by Walker (1971) that Flagstaff is a poor site in the category of seeing. Walker's conclusion was based upon Polaris trail measurements using a 6 -inch refracting telescope mounted upon an existing pier outside the dome of the USNO 40 inch telescope during 1966-68. Those data indicated that the seeing was typically poorer than 2.0 arcsec. A period of poor seeing was experienced during 1971-74 (private communication from F. Vrba) and may have resulted from the placement of the jetstream. Walker's results may also have been systematically affected due to the fact that Walker's seeing telescope looked very nearly directly over the heated and uninsulated office building for the 40 -inch Telescope.

4. Microthermal Activity Measurement

An $18-\mathrm{m}$ high tower is situated between the 72 -in and 42 -in telescope domes at Anderson Mesa. Three microthermal probe pairs were mounicd at $18.3,12.4$, and 7.1 m above the ground to measure the vertical structure of microthermal activity. The microthermal probes were developed at NOAO (Forbes et al., 1988) and consisted of $25 \mu \mathrm{~m}$ nickel ballast wire wound on
a nylon screw frame, protected by an easily removed screen cage. At each level, there were iwo probes separated by about 1 m and connected to a bridge amplifier electronic circuit.

Data from the three levels were collected and stored in a Campbell Scientific CR 21 data logger at the first minute of every hour. The data system is equipped with a rechargeable battery and could thus automaticlly record data in RAM for about two weeks. The collected data were reduced to C_{T}^{2} (rms) for each observation. Calibration was obtained from the energy spectra and the resultant power spectra were integrated. During June and July 1988, a two 9day series of microthermal measurements and ground temperature measurements were collected and later analyzed at NOAO. The microthermal data has been combined in Tables 2 and 3 using nightly averages from 8 p.m. to 4 a.m. for each level as being representative of the site.

The results of the microthermal measurements on Anderson Mesa, indicated by \because symbol, are shown in Figure 18 as a plot of the temperature structure parameter C_{T}^{2} versus elevation. For comparison, the NOAO results for Mauna Kea and Mt. Graham are also shown. Although the Anderson Mesa microthermal data are, at present, very limited, one can tentatively conclude that the Flagstaff location is not very different from Mit. Graham, probably due to the similarity of tree cover. We plan to see if conditions are improved at the sparsely wooded center of the array, particularly after a number of trees have been cleared during site preparation.

5. CONCLUSION

From the analysis of the satellite cloudcover data during the time interval from January 1984 to September 1987, the Flagstaff area is seen to compare very favorably with other possible locations in the southwest. Such a clear distinction does not appear in the earlier study by Smith and McCrosky (1954) for the period 1939-46 except for the relatively small impact of the summer monsoons on north Arizona compared to more southerly sites. The lack of precise similarity between our study and the SM study can easily be explained in terms of natural weather pattern variations. Furthermore, we zecognize that by the time an array might be constructed in northern Arizona, the charges could completely eliminate the cloudcover advantage we have found.

The results obtained with the CHARA/Lowell seeing monitor show a good correlation to the long-term seeing measurements made at the USNO 61 -inch telescope, and we conclude that the USNO seeing history is representative of Anderson Mesa as well. An interferometric array on Anderson Mesa could thus be expected to encounter 1.1 to 1.2 arcsec seeing during 50% of the clear hours and seeing poorer than 2.0 arcsec during another 30% of clear heurs. Such seeing eunditions qualify Anderson Mesa as a potential site for an interferometric array.

Better seeing may be found only at much higher elevations for continental sites or for coastal or island sites where terrain and logistics may have negative imparts unnn site selection.

Further testing is planned for Anderson Mesa in which very localized effects of tree cover, elevation, and proximity to the steep western slope of the Mesa will be investigated.

We thank Dr. Bob Millis of the Lowell Observatory for permitting us to borrow a Celestron telescope and Ralph Nye for construction of the Hartman focus mechanism. This research has been supported in part by the National Science Foundation through NSF Grant AST 84-21304 to Georgia State University.

REFERENCES

Forbes, F.F., Morse, D.A., and Poczulp, G.Á. 1988, Opt. Eng. 27, 845.
Garstang, R.H. 1989, Ann. Rev. Astr. Ap. 2T, 19.
Humphries, C.M., Reddish, V.C., Walshaw, D.J. and Greenaray, A.H. 1984, Optical/IR Telescope Arrays, Occasional Reports of the Ruyal Observatory, Edinburgh, No. 15.

McAlister, H.A. 1989a, A Feasibility Study for Long-Baseline Optical Interferometry, Final Report to NSF Grant AST 84-21304.

McAlister, H.A. 1989b, Proc. of NASA Workshop on Lunar Optical/IR Synthesis Array, ed. J.O. Burns, (in press).

McAlister, H.A., Bagnuolo, W.G., Hartkopf, W.I., and Garison, A.K. 1990, Publ. A.S.P., (in press).

Millis, R.L., Franz, O.G., Ables, H.D., Dahn, C.C. 1987, Identification, Optimization, and Protection of Optical Telescope Sites, Conference held May 22-23, 1986. (Flagstaff, AZ: Lowell Obs.).

Rocldier, F., and Lena, P. 1984, J. Optics (Paris), 15, 171.
Smith, H.J., and McCrosky, R.E. 1954, A.J., 59, 156.
Walker, M.F. 1971, Publ. A.S.P., 83, 401.

TABLE 1
Sites Considered for the CHARA Arsay

	Potential Site	Longitude	Latitude	Altitude
Anderson Mesa, Arizona	111.54 W	35.10 N	$7,211 \mathrm{ft}$	
Kitt Peak, Arizona	111.60 W	31.96 N	$6,667 \mathrm{ft}$	
Blue Mesa, New Mexico	107.17 W	32.49 N	$6,644 \mathrm{ft}$	
Sunspot, New Mexico	105.82 W	32.79 N	$9,200 \mathrm{ft}$	
Flat Top, Texas	104.02 W	30.67 N	$6,660 \mathrm{ft}$	

TABLE 2
Microthermal Data (ΔT in ${ }^{\circ} \mathrm{C}$) for June 1088

June date	top (avg)	mid (avg)	bot (avg)	top (min)	ndid (min)	bot (min)	top (max)	mid (max)	bot (max)
7	2.12	1.16	1.03	0.64	0.33	0.34	5.97	3.77	3.63
8	2.07	1.10	1.01	0.40	0.21	0.21	7.73	4.48	4.69
9	1.88	1.01	0.93	0.45	0.23	0.21	6.29	4.49	3.83
10	1.86	0.89	1.16	0.43	0.25	0.33	6.25	3.55	4.21
11	1.98	0.94	1.02	0.51	0.23	0.29	6.86	4.11	3.86
12	1.38	0.76	0.66	0.34	0.17	0.16	5.23	3.44	3.03
13	1.02	0.64	0.68	0.26	0.16	0.16	4.32	2.19	2.51
14	1.69	0.92	0.84	0.37	0.18	0.18	6.57	2.93	3.65
15	1.49	0.80	0.78	0.36	0.20	0.20	5.55	2.68	3.66

TABLE 3
Microthermal Data (ΔT in ${ }^{\circ} \mathrm{C}$) for July 1088

July date	$\begin{aligned} & \text { top } \\ & (幺 \vee g) \end{aligned}$	mid (avg)	$\begin{aligned} & \text { bot } \\ & (\mathrm{avg}) \end{aligned}$	$\begin{aligned} & \operatorname{top} \\ & (\min) \end{aligned}$	mid (min)	$\begin{aligned} & \text { bot } \\ & (\mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { top } \\ & \text { (max) } \end{aligned}$	mid $\text { (} \operatorname{nax} \text {) }$	$\begin{aligned} & \text { bot } \\ & (\max) \end{aligned}$
5	1.09	0.42	0.79	0.28	0.34	0.16	3.74	0.5 ¢	3.10
6	1.88	0.36	0.15	0.18	0.04	0.08	5.95	1.85	2.04
7	1.02	0.61	0.70	0.25	0.16	0.14	3.72	2.28	2.59
8	1.21	0.74	0.89	0.27	0.21	0.21	3.94	2.51	3.28
9	1.46	0.90	0.91	0.42	0.24	0.28	5.09	3.06	2.98
15	1.27	0.76	0.96	0.23	0.18	0.23	4.37	3.11	3.74
11	1.33	0.87	0.96	0.33	0.24	0.23	4.29	2.89	3.42
12	0.98	0.56	0.58	0.18	0.11	0.13	4.44	2.30	2.35
13	1.17	0.52	0.64	0.23	0.10	0.12	4.37	2.25	2.85

FIGURE CAPTIONS

FIG 1-The year-average weather maps for 1984, 1985, and 1986 near midnight (UT $=7: 30$) with the entire 45 -mo period included in the map on the lower right-hand side.

FIG 2-An example of average change at progressive night-time hours (UT $=0,3,6$, and 9 hours) for the 1986 data set.

FIG 3-The month-average maps at $\mathrm{UT}=7: 30$ from January through April.
FIG 4-The month-average maps at UT $=7: 30$ from May through August.
FIG 5-The month-average maps at UT $=7: 30$ from September through December.
FIG 6-Comparative cloudcover percentages are shown for five sites in the southwestern U.S. The curves are based upon satellite measurements obtained from the National Climatic Data Center and indicate that the Flagstaff site was the most favorable location during the period 1984-87 covered by the data sample.

FIG 7-The schematic diagrams of the focusing mechanism and the data collection path of the seeing monitor are shown.

FIG 8-Photographs of the Hartman mask and the focusing mechanism on the sceing monitor are shown.

FIG 9-The laboratory measured linearity correction relation for the seeing monitor system is shown as determined by a uniformly illuminated source and by a point source are shown.

FIG 10-Examples of measured profiles in the Y-direction before and after the non-linearity correction are shown under good and poor seeing conditions.

FIG 11-Image profiles as measured at the USNO site from within the 61 -in telescope dome the standard USNO CCD procedures (shown as open squares) and at the Anderson Mesa site between the 72 -in and 42 -in domes using the CIFARA/Lowell system (shown as filletl squares) are presented for the night of 15 May 1988. A higher than normal wind on this night is a possible reason for the 0.3 -arcsec poorer seeing on Anderson Mesa.

FIG 12-Image profiles as measured at the USNO site from within the 61-in telescope using the USNO knife-edge procedures (shown as open squares) and from outside the dome using the CHARA/Lowell system (flled squares) are presented for the night of 10 June 1988. A factor of 3.5 is adopted to convert the USNO knife-edge measurements to FWHM values.

FIG 13-Image profiles as measured at the USNO Flagstaff site
FIG 14-The histogram of the seeing measurements obtained at the USNO Flagstaff Slation with the CHARA/Lowell seeing monitoring system during the nights of $9,10,11$, and 13 June 1988 is shown.

FIG 15-The histogram of the seeing measurements obtained at the USNO Flagstaff Station with the 61-in telescope CCD system during the nights of 12-15 May and 11 and 13 June 1988 is shown.

FIG 16-The histogram of the seeing measurements obtained on Anderson Mesa with the CHARA/Lowell seeing monitoring system during April-June 1988 is shown.

FIG 17-The histogram of the seeing measurements obtained at the USNO Flagstaff Station with the 61-in telescope CCD system on 70 nights during April 1986 through July 1987 is shown.

FIG 18-Three average microthermal measurements reduced to the temperature structure constant are shown (as circled dots) f(r . inderson Mesa as a function of height above ground level. For comparison, the NOAO results for MIt. Graham and Mauna Kea are shown and indicate a similarity between Anderson Mesa and Mt. Graham.

$$
\Rightarrow
$$

=
$+$

RELATIVE INPUT INTENSITY

PIẊEL INTENSITY

PIXEL NUMBER

PIXEL INTENSITY

IMAGE PROFILE FWHM (arcsec)

RELATIVE FREQUENCY OF OCCURANCE

pielative frequency of occurance

i
i
i
relative frequency of occurandee

Results in speckle photometry

W. G. Bagnuolo, Jr., D. J. Barry, B. Mason, E. G. Dombrowaki
Center for High Angular Resolution Astronomy
Georgia State University, Atlanta, Georgia 30303

Abstract

Algorithms for reconstruction of isoplanically blurred point source pairs are consicisfably simpler and faster than full-blown image reconstruction techniques. Traditional autocorrelation approaches suffer from a 180 degree ambiguity, however, and only yield order of magnitude estimates for brightness ratios. A new asymmetric algorithm is here presented: the "Directed Vector Autocorrelation" (DVA), which is a rapid alter,ative to vector autocorrelation. Together with the "Fork Algorithm," a directional filter for estimating brightness ratios, the DVA algorithm has been used to resolve ambiguous orbits and produce differential color photometsy for several binary starn.

1. THE DVA ALGORITHM

Binary star speckle interferometry is traditionally analyzed with autocorrelation-based algorithms, which suffer from an inherent 180 degree position-angle ambiguity. Our own extensive program of binary measurement has principally been conducted with a vector-autocorrelation (VA) algorithm of this type implemented in hardware. This device gives a 1 bit (on/off) digitization of two-dimensional speckle frames. The hard-wired VAC then calculates a 2.d histogram of all separations among the sample of "on" pixels, an operation that can be quickly carried out in hardware, and provides autocorrelograms from which the relative positions of the components can be accurately extracted, albeit with the quadrant ambiguity inherent in this process.

All astrophysically significant quantities are independent of absolute orientation of orbit, so long as consiatency is maintained. Nevertheless, absolute quadrant determination is useful in referencing long-separated measurements, or for comparing visual apastron to speckle periastron measures. For orbits with known periods or with close time-coverage, each measurement can be incrementally referenced to the previous, or to a known orbit, which reveals the true quadrant at epoch. But in a poorly measured orbit, a highly eccentric pair can masquerade as a slow-moving nearly circular aystem of twice the period, since the rapid quadrant changes at periastron often cannot be followed, by observing time constraints, even if the periastron separation permits messurement. This is the case for a small but significant number of atars on our program (roughly 50 out of some 2000), which have been reanalyzed to establish absolute orbital quadrant and to ensure consistency of quadrants at different epochs. For example, we have shown (McAlister et al. 1988) that the motion of the Hyades binary Finsen 342 is consintent only with a 6 yr eccentric orbit rather than with the 13 yr circular orbit assumed in most previous analyses.

In order to eliminate the 180 degree ambiguity the full complexity of imaging algorithms is neither necessary nor desired. However, algorithms must use relative pixel brightnesses rathei than pure thresholding. Each speckle frame therefore should be digitized to a resolution of at least eight. hits. Modest cost viden hardware is now a arailable that can return 512×512 pixel frames at nearly video rates with eight bits per pixel. Analysis can then be performed either with the primary CPU or with a dedicated coprocessor.

For quadrant determination, we have developed the Directed-Vector-Autocorrelation Algorithm (DVA), a simple modification of the VA. In this algorithm the digital intensities as well as the (x, y) locations of all the pixels in a frame above a threshold (or the brightest n pixely) are saved, so that we now require 3 bytes instead of 2 per pixel. Suppose two pixels have intensities I_{1} and I_{2} and locations (x_{1}, y_{1}) and (x_{2}, y_{2}), respectively. The 2-d histogram of the separation is incremented in lucation $\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$ if $I_{1} \geq I_{2}$ and in location ($x_{1}-x_{2}, y_{1}-y_{2}$) if $I_{1} \leq I_{2}$. That is, a direction is given to the separation, in tine sense of from brighter to dimmer pixel, hence the name of the algorithm. Because the DVA is only a bit more complex than the VA, the software is easily implemented in C and Assembler.

Table 1. Partial List of Quadrant Determinations.

Star	WDS Desig	Epoch	θ	ρ	Quad	S/N
McA 1	00323+0657	1984.9991	87.23	0.11314	$s \dagger$	2.5
McA 7	$02366+1226$	1985.8376	311.67	0.0644	$\mathcal{S} \dagger$	2.0
McA 7	$02368+1226$	1887.7625	131.10	0.00651	$\boldsymbol{N} \dagger$	2.0
McA 7	$02368+1226$	1988.8888	169.57	0.0505	$\mathcal{N} \dagger$	2.8
McA 24	06034+1942	1988.6637	72.76	0.00544	\mathcal{N}	2.3
McA 40	$14403+2158$	1987.2643	82.15	0.0655	\mathcal{N}	3.1
McA 46	17103-1926	1889.3040	116.01	0.11370	$\mathcal{N} \dagger$	2.3
McA 63	20474+3629	1884.7013	102.9	0."052	$N \dagger$	16.9
CHARA 7	02475+4416	1984.0576	104.45	0.11612	$\mathrm{N} \dagger$	2.9
CHARA 10	$03271+1845$	1985.8403	110.01	0.10767	\mathcal{S}	2.2
CHARA 15	$04120+5016$	1983.0637	154.77	1."2609	\mathcal{S}	2.9
CHARA 19	04493+3235	1884.0576	148.61	0.00423	N \dagger	25.6
CHARA 25	06580+0218	1989.3112	39.4	0.1918	$\mathcal{S} \dagger$	2.2
CHARA 45	$15183+2649$	1984.3837	65.48	0.13390	S \dagger	18.5
CHARA 55	$16254+3724$	1986.4099	175.74	0.11677	$\mathcal{N} \dagger$	2.7
CHARA 69	18218-1619	1985.4889	10.68	0.00913	$s \dagger$	2.1
CHARA 92	$20050+2313$	1983.8425	47.67	0.00508	$\mathcal{S} \dagger$	2.8
CHARA 92	$20050+2313$	1985.5177	54.95	0.0518	N	3.6
CHARA 98	20285-2410	1983.4258	81.41	0.12367	$\mathcal{S} \dagger$	19.8
CHARA 142	01070+3014	1988.6681	110.99	0.0881	s	3.7
CHARA 143	08125-4616	1989.3057	159.04	0.00453	$\mathrm{N}^{\dagger} \dagger$	2.2
ADS 755	00550+2338	1989.7118	285.56	0.43930	N§	8.8
ADS 1630	02035+4223	1989.7119	107.33	0.45715	S§	7.5
ADS 2200	02537+3820	1989.7122	258.11	0.11808	Sj	5.2
ADS 3064	04136+0743	1989.7123	316.99	0.00572	\mathcal{N} §	2.7
ADS 3135	$04187+1632$	1989.7123	62.27	0.12652	N§	2.7
ADS 3172	04236+4226	1989.7123.	155.82	0.13468	S§	4.8
ADS 3210	$04256+1852$	1989.7123	26.15	0.12349	NS	7.4
ADS 6993	08468+0625	1984.0553	195.4	0.4266	\mathcal{S}	4.1
ADS 6993	08468+0625	1984.0608	195.1	0."271	\mathcal{S}	3.4
ADS 8883	$13202+1747$	1986.4067	327.7	0.0058	\mathcal{N}	2.1
HR 657	02157+2503	1989.7122	45.14	0.11907	N§	2.7
HR 719	$02280+0158$	1989.7122	34.75	0.55146	$\mathcal{N} \xi$.

\dagger Published quadrant is 180° in error.
§No published quadrant.

The resulting DVA "autocorrelogram" for a binary star appears similar to that produced by "Shift-andAdd" (Bates and Cady, 1980) with "center," "principal," and "ghost" apots. The true position angle is given by the position of the principal spot relative to the center apot. Analysis snftware has been developed for extraction of these spotz from a radial noise profile by boxcar subtraction, paraboloid boxcar subtraction, and smoothed radial subtraction. In rectangular boxcar subtraction, an image is convolved with a amall ($n \times n, 5<n<21, n$ odd) kernel with a center value of unity and an outlying rectangular area of uniform negative value summing to minus unity. The effect is to measure the variation of the image from a smoothed version, thus subtracting the relatively even and symmetric noise profile. Such a kernel is decomposable into x and y one-dimensional components for rapid calculation. Parabolic boxcar subtraction uses a similar principle, with a weight of $1-r^{2} / r_{\text {max }}^{2}$, again yielding a decomposable kernel. Smoothed radial subtraction breaks the entire image up into radial zones over which an average noise value is ascertained, and the resulting $N(r)$ curve is used to subtract the background to reveal peaks. Peaks are measured from an image filtered by the previous techniques by least squares fit of a biquadratic to a ($n \times n, n=3,5,7$) window around a maximum value selected by a cursor. This is an elaboration of software used to reduce most of the 8,000 autocorrelograms previously measured and published by CHARA. Table 1 lists some quadrant determination

Figure 1-a,b,c. Top, Left, Right: γ Persei, Finsen.342, ADS 2200.
results, based on runs of 250 frames each. We plan to publish a more complete table of quadrants shortly.

2. THE FORK ALGORITHM

The Fork Algorithm (Bagnuolo, 1988) selects from speckle frames pixel quadruples ($I_{1}, I_{2}, I_{3}, I_{4}$) passing a brightness threshold test $I_{2}+I_{3}>K>k\left(I_{1}+I_{4}\right)$ and with separation and position angle like "tines of a fork," matching that of the target system. Each such quadruple can be viewed as a miniature recurrence of the resolved pair (I_{2}, I_{3}), with background level (I_{1}, I_{4}) and is used to form an estimate of the brightness ratio. (The crude ratio I_{2} / I_{3} may be corrected by I_{1} and I_{4} as described in the above reference.) A histogram of these ratios, summed over many frames, yields an estimate of the brightness ratio, with greatly improved signal to noise for a given number of frames over standard techniques (Shift and Add, Triple Correlation, etc.), as verified by competitive analysis of simulated frames. (Bagnuolo, 1988). (Other algorithms can of course be applied to more general objects.) Although designed for differential photometry, the Fork Algorithm also provides quadrant information and can be used to verify the DVA results for a system.

Figure 2. Orbit of McA 34. Dotted line- Tokovinin (1987), Solid line-CHARA (1989). Filled squares- CHARA observations, Light squares, other observations.

3. HARDWARE

The two major bottlenecks in real-time processing are the $1 / O$ bus speed, necessary to transer data from video digitizing hardware to the CPU or coprocessor, and the frame-analysis time. A full video data feed may represent $30 \mathrm{Mbyte} / \mathrm{s}$. In our implementation, an Imaging Technologies PC-Vinion digitizing board records video frames at 256×256 resolution, and of these, 128×128 windows are extracted for analysis. This represents only a 0.5 Mbyte/s load on the bus of the Intel 386 -based PC. Processing of several hundred of the brightest pixels is performed by the DVA algorithm, which can usually be done within four frame times, dependent on the pre-threshoid level selecter. This is approximately a quarter the speed of the hardware autocorrelator. We have found it usually more convenient to post-process data which has been recorded on a Sony 8 mm "Video 8 " unit, removing the constraint. of real-time analysis. In this technique, up to 250 frames are digitized and stored in extended memory at ca. 10 frame/s, and then analyzed after acquisition by both DVA and FORK. It is also possible to digitize selected frames, such as those with momentarily superior seeing and better defined speckles, due to the atability of the Sony's freze frame capability.

The vector-difference procedure will soon be performed by a slave Motorola DSP56001 processor mounted on the PC bus. This algorithm, which is quadratic with pixel count, will operate on the pixel list provided by the primary CPU. This should permit real-time processing of frames with up to 800 thresholded pixels. The Fork algorithm, too, is amenable to implementation in real time, although it requires prior knowledge of position angle and separation. A planned system will utilize two coprocessors, in which the central proce. or will generate thresholded

Figure 3. Finsen 342 orbit of 6.264 yr. Data aymbols as in Figure 2.
pixel lists, one of which will drive a DVA coprocessor. After a peak is detected and measured, the coordinates will be fed to the FORK coprocessor, which will begin operating on the same thresholded pixel list used by the DVA processor. This coprocessor will need to read auxiliary pixels from frame memory to comolete the fork quadruples, but the primary limitation will be from bus throughput considerations rather than processing apeed.

Most of the data has been gathered with the CHARA intensified CCD camera (McAlister et al 1984). Flatfielding is necessary because of a gradual loss of sensitivity due to exposure of the micro-channel plate near the center of the Field of view. A potentially more serious problem is detector non-linearity. In order to measure non-linearity effects, as well as check the performance of intensity-ratio algorithms in generel, we heve genciated calibiation speckle frames by inserting a calcite crystal of either 25 or 4 mm thickness into the optical path of the speckie camera. The birefringence of the calcite crystal produces two speckle patterns with a fixed offset and with orthogonal polarizations. The intensity ratio of the artificial binary can be varied by rotating a polarizing filter: relative to the calcite crystal. If there is the position angle for which the two "binary" components have equal intensity, then the intensity ratio varies as $\tan ^{2}\left(\theta-\theta_{0}\right)$. The thicker calcite cryatal generates a clearly separated paired image typical of a 1.5 arcsecond binary under normal seeing, whereas the thinner crystal produced a "binary" of 0.2 arcoecond effective separation.

Figure 4. Fork Algorithm intensity fraction histogram for γ Persei.

These simulated binary stars with known intensity ratios permit calibration of a curve to compensate for camera non-linearity effects.

Through a cooperative agreement with SAO, we anticipate receiving a PAPA camera by February. Thia device, which is inherently linear and capable of a much fainter magnitude limit than our existing camera, will be tested and integrated into observing programs during the next several months.

4. QUADRANT RESULTS

Figures $1 a, 1 b$, and 1c ait DVA "autocorrelograms" for γ Persei, Finsen 342 , and ADS 2200 respectively and illustrate how the position ambiguity can be removed. In each case the brightest 300 pixels of 200 frames, of data were used. The true position angles are in the direction of center to primary spots. Center spot removal and parabolic boxcarring subroutines were used for each analysis.

Figure 2 shows the orbit for the star McA 34 (HR 3880, WDS 09474+1134). The published orbit by Tokovinin (1987), shown by the dotted line, has a period of 9.70 years and semi-major axis a $=0.1075$. However, by resolving the quadrant ambiguity at two key points in the orbit with DVA, we obtain an orbit shown in solid line with a period
of 15.167 years and a semi-major axis of $a=0.11120$. Note that changes in period and semi-major axis can greatly affect the computed masses of the atars.

Another example of a quadrant determination, taken from McAlister et al., 1988, shown in Figure 3, is of the Hyades binary Finsen 342. We showed that the orbit was an eccentric one of 6.264 years, as proposed originally by Peterson and Solensky (1987), and not the 13 year circular orbit assumed in most previous analyses.

Finally, Table 1 presents a list of the quadrant data determined to date.

5. FORK RESULTS

Gamma Persei is a well-know example of a star with a composite spectrum and a binary resolvable with speckle-interferometry. According to previous entimates by Popper and McAlister (1987), it consists of A3 and G8 III stars, for which the masses are 2.0 and 3.0 Solar Masses. As a bright, "poor-man's Capelle," γ Persei provides a cesestudy of the application of the Fork Algorithm in estimating intensity ratios. Several sets of data consisting of 200 frames each were digitized from the Sept. 1989 KPNO 4-m run. These data were flat-fielded, slightly amoothed, and a non-linearity correction was applied (based on the Calcite results mentioned above). Applying the Fork algorithm produced the histogram shown in Figure 4. The histogram is of the fraction of total intensity in the secondary, where bin 63.5 is 0.0 , and bin 127.5 is 0.5 . The peak at bin 105 corresponds to Δm of 0.80 . Because several repeated runs gave results to within 0.02 mag., it is likely that most of the uncertainty in this result comes from systematic rather than random errors. Such errors could be from residual uncorrected nonlinearity, a deviation of the actual photometric passband from Strömgren y, etc. A similar. preliminary result is $\Delta m=0.50 \pm 0.05$ in Strömgren 6 . The astronomical implications of recent Capella data in terms of the H-R diagram have been discussed by Bagnuolo and Hartkopf (1989). Similarly, for γ Persei, the apectral typea implied by the Δm 's in y and b above are significantly different from those assumed in Popper and McAlister (1987). (The V magnitude difference of the components is roughly 0.8 instead of the 1.4 mag. heretofore thought.) These preliminary results auggest that even bright stars are not completely understood.

6. ACKNOWLEDGEMENTS

We wish to acknowledge H. McAlister and W. Hartkopf for useful criticism and aupport. Some assistance in calibration and linearity checking of the ICCD camera was provided by J. Sowell. One of us (W. Bagnuolo) has been partially supported by NSF grants AST. 86-13095 and AST 88-06893.

7. REFERENCES

Bagnuolo, W. G. Jr., (1988). Optics Letiers, 13, 997.
Bagnuolo, W. G. and Hartkopf, W. I., (1989). Astron. J., 98, 2275.
Bagnuolo, W. G. Jr. and Sowell, J. R., (1088). Astron. J., 86, 1056.
Bates, R. H. T., and Cady, F., (1980). Opt. Commum., 32, 365.
McAlister, H. A., Hartkopf, W. I., Bagnuolo, W. G., Sowell, J. R., Franz, O. G., and Evans, D. S., (1988).
Astron. J., 96, 1431.
Popper, D. M., and McAlister, H. A., (1987). Astron. J., 94, 700.
Tokovinin, A. A., (1987). Circ. Inf., 102.

[^0]: "Guest Observer. Canada-France-Hawaii Telescope.

[^1]: *'Visting Astronomer. National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in As. tronomy, Inc., under contract with the National Seience Foundation.

[^2]: McAlister et al. (see page 691)

[^3]: a'Visitung Astronomer, Kitt Peak National Observatory, Natuonal Opucal Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^4]: - Visitung Astronomer. Kitt Peak National Observatory, National Opucal Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^5]: -The 1932 observation is assumed to be after periastron passage $\left(P_{1}\right)$ or before it $\left(P_{\mathbf{2}}\right)$.
 ${ }^{6}$ Epoch of periastron passage.
 ${ }^{6}$ Epoch of periastron passage.

[^6]: -The temperature scale for cool giants in Popper (1980) was prepared before the work of Ridgway et al. (1980) became avalable. Popper's values of $T_{\text {e }}$ are lower than the values of Wing et al. (1985) by several hundred K . Discussions of binanes (e.g., Popper 1976), as well as of other topics in which the lower scale was employed, require re-evaluation.

[^7]: "Visiting Astronomer, National Optical Astronomy Observatories. NOAO is operated by the Association of Universties for Research in Astronomy, Inc., under contract with the Natıonal Science Foundation.

[^8]: ${ }^{\text {a }}$ Visting Astronomer, National Opucal Astronomy Observatories. NOAO is operated by the Association of Universitt-s for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^9]: - Normalized to unity for PS orbit III.

[^10]: 'Normalized to unity for the higher of the two peak intensities.

[^11]: - Epoch of periastron passage.
 - Epoch of nodal passage (maximum velocity separation).

[^12]: Harold A. McAlsiser is a professor of phystes and astronomy and director of the Center for High Angular Resolution Astronomy at Georgin State Unverstity. After recetwng a Ph.D. in astronony from the Uninersity of Virgina in 1975, he spent two years at Kitt Pead National Obsennfory in Tucson. Arzona, developing a proyram of hugh-resolition studes of bmany stars that contumes today Address Deparment of Physics and Astronomy, Georgia Slate University, Allanta, GA 30303.

[^13]: Figure 4. Many of the binary star systems that have been resolved by speckle interfeomentry have ortital periods much shenter than those previously observed by visual methods. Measurements of the motion of the fainter member of the binary system 51 Tauri around the brighter star the latter represented as fixed in its location at the large + sign near the center of the ellipse) have refined estimates of the orbital period to 11.31 years. Colored dots represent speckle measurements; gray dots represent visual measurements. The new estimates will play an important role in calibrating the cosmic distance scale, because 51 Tauri is a member of the Hyades cluster, a collection of stars that provides a basic outward step in the hierarchical determination of distances in the universe.

