27	SSIFIED .		FILE CUPY	1				
N			REPORT DOCUM	IENTATION	PAGE			
Ĩ	SECURITY CLASSIFICATIO	N		1b. RESTRICTIVE	MARKINGS			
A221	Y CLASSIFICATION AUTH	DRILY LE	ECTE		AVAILABILITY OF			$\overline{2}$
21	SIFICATION / DOWNGRAD	NG SCHEDU	0 1990		oution Unlim:		,	
	ING ORGANIZATION REP	OBY NUMBE		5. MONITORING	DRGANIZATION RE	PORT	NUMBER(S)	
	F PERFORMING ORGANI		6b. OFFICE SYMBOL		NITORING ORGAN		049	2
ļ	ia State Universi		(If applicable)		Difice of Sc:			earch
	ESS (City, State, and ZIP Co		Į	75 ADDRESS (Cit	v, State, and ZIP C	ode)	RICIT	10
Cente	r for High Angula ta, Georgia 30303	r Resolu	tion Astronomy	Bolling Air	Force Base	, DG	20332-	448
1								
ORGA	OF FUNDING / SPONSORIN	G	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT AFOSR-86-0	INSTRUMENT IDE	NTIFIC	ATION NUM	ABER .
	EUSR ESS (City, State, and ZIP Coc	(a) Did	μρ. 41 ^ο		UNDING NUMBERS			
Bo /	ling AFB DC 20	332-644		PROGRAM ELEMENT NO.	PROJECT	TASK NO.		WORK UNIT ACCESSION NO.
ĺ	5			Glio2F	2311	100. A	1	ACCESSION NO.
11. TITLE Super	(Include Security Classifica -Diffraction Limi	<i>tion)</i> ted Meas	urements Through	the Turbule	ent Atmosphe	re		
	by Speckle Inte				•			
12. PERSO Harol	NAL AUTHOR(S) d A. McAlister							_
	OF REPORT Technical	13b. TIME C FROM <u>15M</u>	OVERED [av86_ TO <u>14Nov8</u> 9	14. DATE OF REPO 1990 Februa		Day)	15. PAGE (219	OUNT
	EMENTARY NOTATION				····		A	
17 FIELD	COSATI CODES	-GROUP	18 SUBJECT TERMS (C Speckle Inter		-			
		93.01	Brown Dwarfs					
19. ABSTR	ACT (Continue on reverse	if necessary	Turbulence	umber)		-		
	ckle interferometric				ng diffraction	limit	ed image	s from atmo-
sph	erically blurred ima	.ge data o	btained in snapsho	ots with expos	sure times sho	rter	than the	atmospheric
	istribution time, typ							
	system system oper)) in Flagstaff, Ariz	•	-	• \	-			
	cson, Arizona. The		-	· · · · · · · · · · · · · · · · · · ·			• •	•
	l two 5-night runs p							
	e emphasized: (1)	-	•				-	
	components of clos							
	s to stellar astroph ual data which wou							
	RIBUTION / AVAILABILITY O			21. ABSTRACT SE Unclass	CURITY CLASSIFIC	ATION		6
	ME OF RESPONSIBLE INDIVI IEnry Radoski		· ·		linclude Area Code 906) 22c.	. OFFICE SY	MBOL Pro
				. I		. t		

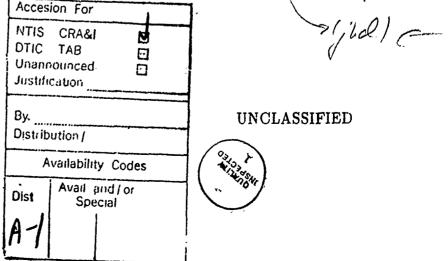
ويوجيد المحاد الأخيا المتعاد التقالين والمتعادين والمحادة الشاكف		
DD FORM 1473, 84 MAR	83 APR edition may be used until exhausted.	
	•	SECURITY CLASSIFICATION OF THIS PAGE
	All other editions are obsolete.	
	,	1111.00

UNCLASSIFIED

-

••

.


.

UNCLASSIFIED

19. ABSTRACT (Continued)

developed algorithms include a directed vector-autocorrelation (DVA) technique for eliminating the 180° deg quadrant ambiguity inherent in speckle interferometric measurements of the astrometry of binary stars. DVA is a simple extension of normal vector-autocorrelation and requires orders of magnitude less computing time that standard image reconstruction methods when applied to binary stars. The second new algorithm is known as the *fork* method and provides a means for a statistically based determination of the intensity ratio of a binary at any selected wavelength, thereby providing color information through the comparison of any two wavelengths. (2) Super Diffraction-Limited Detection - The very high accuracy of speckle astrometry provides a leveraging method for detecting close companions whose spatial separations are far less than the diffraction limit. In principle, this accuracy is sufficient to detect brown dwarf stars and high-mass planets in orbit around one component of a wide binary system. Very large amounts of data pertaining to this problem were collected at LO and analyzed for their limiting astrometric accuracy. The limiting accuracy with the presently available instrumentation would permit the detection of brown dwarfs but is not likely to detect Jovian planets within the sample of some 65 nearby binary systems. Work will continue in this area and will include the development of new/filtering and centroiding algorithms to push to higher accuracy. For the first time, a submotion due to the presence of an otherwise unseen companion has been detected by speckle observations in the case of a new star in the system ADS 784. This detection has also been independently confirmed by a submotion in the residuals to spectroscopically obtained radial velocities of the system.

(3) Atmospheric Turbulence Studies – The very extensive data accumulated under this project at the two observing sites now extends over a period of seven years. These data have been analyzed for spatial information and lend themselves to the followup determination of the atmospheric turbulence related parameters r_0 , τ_0 , and the isoplanatic patch size. A principle difficulty of this analysis has been the removal of local seeing effects produced by dome and other structures, and particularly affected by local thermal sources such as electronic instrumentation, from the intrinsic "seeing" conditions afforded by the atmosphere. A series of measurements obtained outside the dome of the 1.8-in telescope provided an estimate of the mean seeing conditions at the Flagstaff site of 1.2 arcseconds, a quantity equivalent to $r_0 \sim 10$ cm.

and fast methods were developed and applied to actual data which would enable the measurement of these parameters for large numbers of stars. Newly developed algorithms include a *directed vector-autocorrelation* (DVA) technique for eliminating the 180° quadrant ambiguity inherent in speckle interferometric measurements of the astrometry of binary stars.

DVA is a simple extension of normal vector-autocorrelation and requires orders of magnitude less computing time that standard image reconstruction methods when applied to binary stars. The second new algorithm is know as the *fork* method and provides a means for a statistically based determination of the intensity ratio of a binary at any selected wavelength, thereby providing color information through the comparison of any two wavelengths. (2) Super Diffraction-Limited Detection – The very high accuracy of speckle astrometry provides a leveraging method for detecting close companions whose spatial separations are far less than the diffraction limit. In principle, this accuracy is sufficient to detect brown dwarf stars and high-mass planets in orbit around one component of a wide binary system. Very large amounts of data pertaining to this problem were collected at LO and analyzed for their limiting astrometric accuracy. The limiting accuracy with the presently available instrumentation would permit the detection of brown dwarfs but is not likely to detect Jovian planets within the sample of some 65 nearby binary systems.

Work will continue in this area and will include the development of new filtering and centroiding algorithms to push to higher accuracy. For the first time, a submotion due to the resence of an otherwise unseen companion has been detected by speckle observations in a case of a new star in the system ADS 784. This detection has also been independently the submotion in the residuals to spectroscopically obtained radial velocities

1. (3) Atmospheric Turbulence Studies – The very extensive data accumulated under this project at the two observing sites now extends over a period of seven years. These data have been analyzed for spatial information and lend themselves to the followup determination of the atmospheric turbulence related parameters r_0 , η_{erre} , and the isoplanatic patch size. A principle difficulty of this analysis has been the removal of local seeing effects produced by dome and other structures, and particularly affected by local thermal sources such as electronic instrumentation, from the intrinsic "seeing" conditions afforded by the atmosphere. A series of measurements obtained outside the dome of the 1.8-m telescope provided an estimate of the mean seeing conditions at the Flagstaff site of 1.2 arcseconds, a quantity equivalent to $r_0 \sim 10$ cm.

FINAL TECHNICAL REPORT

to the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

for the interval

15 May 86 - 14 November 89

GRANT AFOSR-86-0134

SUPER-DIFFRACTION LIMITED MEASUREMENTS THROUGH THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRY

Harold A. McAlister Principal Investigator Approved for public voludistribution unlimited

Center for High Angular Resolution Astronomy and Department of Physics and Astronomy Georgia State University

> Atlanta, Georgia 30303 (404) 651-2932

90 04 27 068

FINAL TECHNICAL REPORT

to the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

for the interval

15 May 86 - 14 November 89

GRANT AFOSR-86-0134

SUPER-DIFFRACTION LIMITED MEASUREMENTS THROUGH THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRY

Harold A. McAlister Principal Investigator

)

-

Center for High Angular Resolution Astronomy and Department of Physics and Astronomy Georgia State University Atlanta, Georgia 30303 (404) 651-2932

22 February 1990

SUPER-DIFFRACTION LIMITED MEASUREMENTS THROUGH THE TURBULENT ATMOSPHERE BY SPECKLE INTERFEROMETRY

A. RESEARCH OBJECTIVES

During the interval 15 May 1986 through 14 November 1989, speckle observations with the GSU speckle camera system were obtained at the 1.8-meter Perkins telescope of the Lowell Observatory near Flagstaff, Arizona and at the 4-meter telescope of the Kitt Peak National Observatory near Tucson, Arizona. This Final Technical Report describes the results of an AFOSR sponsored program of research involving the collaborative efforts of astronomers within GSU's Center for High Angular resolution Astronomy (CHARA) and Lowell Observatory Astronomer Dr. Otto G. Franz. This collaboration was directed towards the following scientific problems:

- 1. Speckle interferometry has been widely applied to the measurement of astrometric parameters of binary stars, i.e., in determining the relative separation and orientation of the components of these objects. Observations accumulated at Kitt Peak and Lowell Observatories were used to determine not only the astrometry of binaries, but were analyzed with a variety of algorithms in order to measure the relative intensity ratios of two stars in a binary system as well. The primary objective here has been to refine the algorithms in order to set up, for the first time, a program in which the differential photometric properties of a large number of binary stars are measurable using speckle interferometric methods. No other means currently exists for routinely determining such properties. Pilot applications of these techniques have been applied to several binary star systems of astrophysical interest.
- 2. The high accuracy of spatial separation measurements of the components of wide binary star systems by means of speckle interferometry has been used to continue a long-term program with the goal of detecting possible submotions in such systems that might arise from the presence of low-mass planetary or brown-dwarf companions. Sixty-one binary stars with distances less than 25 parsecs from the sun-constitute the observing program carried out at nearly monthly intervals at the Perkins telescope. A submotion has been detected from speckle data for the first time in the case of the visual binary star ADS 784.
- 3. The large amount of data collected in the course of activities described in objec-

tives 1 and 2 provides a unique opportunity to measure the atmospheric properties over northern and southern Arizona. The analysis of these data in order to systematically characterize atmospheric turbulence by measuring the so-called Fried parameter (a measure of the scale size of turbulence cells), the isoplanatic patch size (a measure of the angular extent over which high spatial correlation exists), and the atmospheric redistribution time (a quantity dependent upon the altitude and velocity of the primary layer of turbulence) will continue beyond the term of AFOSR support. Of particular concern has been the difficulty of separating the locally induced turbulence associated with the telescope and dome from that inherent in the atmosphere. The local " seeing" effects may ultimately limit the usefulness of these data for atmospheric turbulence studies.

B. RESEARCH ACCOMPLISHMENTS

1. Observing Opportunities

)

Observing time on the 1.8-meter telescope was provided by the Lowell Observatory on a guaranteed basis in response to the scientific programs outlined above. Opportunities at the 4-meter telescope on Kitt Peak were provided also on a contiation of basis as a result of KPNO's designation of long-term status awarded to a complementary program of binary star astrometry carried out under the sponsorship of the National Science Foundation. We are thus currently guaranteed 4-meter time through the end of 1991. During the interval of this period of AFOSR support, some 35 observing runs totalling more than 150 nights were scheduled on the 1.8-m telescope in Flagstaff. Weather and/or inferior seeing conditions caused a loss of approximately 20% of these nights. Seven runs for a total of 33 nights were scheduled at the 4-m telescope, and only five nights during this time were not useful for observing. 'These observing opportunities permitted the acquisition of an extraordinary amount of data.

2. The CHARA Image Processing Laboratory

The primary facilities in the CHARA "speckle lab" have been described in the final report to AFOSR Gant 83-0257 and resulted from a grant through the DOD-University Research Instrumentation Program. The hardware consists of a VAX 11/750 computer, with 6 megabytes of core memory and an International Imaging Systems Model 70F image processor connected to the VAX Unibus. This configuration has provided the workhorse capability needed to extract the astrometry from speckle observations of binary stars in

3

efforts supported by the AFOSR and by the NSF. It has been critically important to the success of all aspects of the GSU/CHARA programs of speckle interferometry. The speckle lab equipment was moved into new quarters adjacent to the astronomy offices in the fall of 1986. The new lab provides an environmentally controlled room for computer hardware and data archival and a spacious area for users. The remodeling of this new laboratory was carried out completely with state funding. For speckle photometry experiments and algorithm development a video digitizing capability was provided with a small grant from the U.S. Naval Observatory through the Office of Naval Research. A commercially available frame grabber board and auxilliary image processing board were purchased along with a Wyse pc-286 computer with 10 megabytes of expanded memory. This new system is allowing us to fully digitize large numbers of speckle frames that can be used for the development of algorithms for reconstructing images of binary stars, and the relatively inexpensive equipment is playing an important role in objective 1 and 3 of this AFOSR sponsored research. The system is being used not only for photometric applications of speckle interferometry, but it is also serving as a potential replacement to the now aging hardwired vector-autorrelator, a one-of-a-kind device that is becoming less competitive with software based processing. A grant from NSF provided for the replacement of the ICCD detector used since 1981 in the speckle camera as well as for an upgrade of CHARA computing facilities. The ICCD is losing gain dramatically through the decay of the microchannel plate intensifier stage, and the strong fixed pattern of the CCD has prevented us from undertaking observations of faint objects. At the time of this writing, the ICCD is being replaced with a PAPA camera built in a collaborative effect with Peter Nisenson of Harvard University. The new detector hardware was delivered to CHARA in February 1990, and is expected to be fully operational by the fall of 1990. In early 1989, several DECstation 3100 workstation type computers were delivered to CHARA and configured via ethernet to provide a significant enhancement of computer power. The new computers are some 20 times faster that the VAX 11/750, and the VAX will be retired (through donation to the Department of Physics, Astronomy and Geology at Valdosta State College) in the spring of 1990.

3. Binary Star Intensity Ratios

New algorithms were developed at CHARA for recovering intensity information from speckle data for binary stars. GSU/CHARA astronomers W.G. Bagnuolo, Jr., J.R. Sowell and graduate students Donald Barry and Brian Mason have optimized various image reconstruction methods for near real-time application with the video digitizing systems. A first application has been the elimination of the 180° quadrant ambiguity for many speckle binaries, an ambiguity inherent in standard speckle interferometry algorithms. Bagnuolo's new algorithm, known colloquially as the "fork" method, possesses excellent linearity over a wide range of intensity ratios.

The first scientific results forthcoming from the binary star photometry program, an effort for which we have coined the term "speckle photometry", is the determination of the magnitude differences of the stars comprising the system 70 Tauri and Capella. The results as well as analyses of the individual components of the Capella system were published in THE ASTRONOMICAL JOURNAL. Those papers are attached as an appendix to this report.

4. Search for low-Mass Companions to Stars

I

The very large volume of data that we have accumulated since 1981 at the Perkins telescope continues to be processed by our graduate student Ali Al-Shukri. Al-Shukri the analysis of these data, measuring the autocorrelation functions of the speckle series and has eliminated data obtained during poor seeing conditions from further consideration. The calibration of the Lowell data in a manner which allows their tie-in to the Kitt Peak data was performed. Al-Shukri is expected to publish these results in the form of his Ph.D dissertation prior to June 1990.

The procedure followed has been to determine which data sets have the highest signal-to-noise in their astrometric potential and then to calculate new, accurate visual orbit solutions in order to subtract out those motions. The residuals have then been analyzed for systematic effects indicative of submotions. In general, the results have been negative, i.e. except in the case of ADS 784 we set upper limits to the presence of unseen companions. This result has important consequences on the formation of stellar systems and on the frequency of low mass objects, including brown dwarfs and planets.

The system ADS 784 is a quadruple star system in consisting of a visual binary with a separation of approximately 0.2 arcsec and a period of 83 years. The secondary of this system was known to be a spectroscopic binary having a period just over 4 days. Our data has for some time indicated a sinusoidal set of residuals to the visual orbit, with a period of some 2000 days. Dr. Frank Fekel of Vanderbilt University independently noticed a long-period residual motion in his radial velocity measures of the 4-day system. Through a combined analysis of Dr. Fekel's spectroscopic data and our speckle data, we conclusively detect a fourth component with period of 1700 days. This is the first time that such an object has been found due to submotions in both astrometric (in this case, speckle) and

spectroscopic data.

5. Measurement of Atmospheric Seeing Properties

The newly acquired video digitizing system provided the means for carrying out the proposed methods for measuring three properties of atmospheric seeing: Fried's parameter, isoplanatism, and correlation times. Graduate student Wean Tsay is pursuing the measurement of these properties at Kitt Peak and Anderson Mesa, the site of the Perkins telescope and the proposed site for the CHARA long-baseline telescope array. Tsay spent eight weeks on Anderson Mesa during the spring of 1988 measuring image profiles and motions using a CCD camera on a 14-inch Celestron telescope. These results were analyzed along with micro-thermal data taken simultaneously by Dr. Fred Forbes of the National Optical Astronomy Observatories. A joint paper discussing Anderson Mesa as an interferometer site has resulted from this collaboration and is included in this report.

C. PUBLICATIONS

- 1. ICCD Speckle Observations of Binary Stars. I. A Survey for Duplicity Among the Bright Stars. H.A. McAlister, W.I. Hartkopf, D.J. Hutter, O.G. Franz, and M.M. Shara, THE ASTRONOMICAL JOURNAL, 93, p. 183, (1987).
- ICCD Speckle Observations of Binary Stars. II. Measurements Duirng 1982-1985 from the Kitt Peak 4-m Telescope. H.A. McAlister, W.I. Hartkopf, D.J. Hutter and O.G. Franz, THE ASTRONOMICAL JOURNAL, 93, p. 688, (1987).
- ICCD Speckle Observations of Binary Stars. III. A Survey for Duplicity Among High Velocity Stars. P.K. Lu, P. Demarque, W. van Altena, H.A. McAlister, and W.I. Hartkopf, THE ASTRONOMICAL JOURNAL, 94, p. 1318, (1987).
- 4. Gamma Persei–Not Overmassive but Overluminous. D.M. Popper and H.A. McAlister, THE ASTRONOMICAL JOURNAL, 94, p. 700, (1987).
- ICCD Speckle Observations of Binary Stars. IV. Measurements During 1986 from the Kitt Peak 4-m Telescope. H.A. McAlister, W.I. Hartkopf, J.R. Sowell, and O.G. Franz, THE ASTRONOMICAL JOURNAL, 97, p. 510, (1989).

- Binary Star Orbits from Speckle Interferometry. I. The Hyades Binary Finsen 342 (70 Tauri) H.A. McAlister, W.I. Hartkopf, W.G. Bagnuolo, J.R. Sowell, O.G. Franz, and D.S. Evans, THE ASTRONOMICAL JOURNAL, 96, p. 1431 (1988).
- Binary Star Speckle Photometry. I. The Magnitudes and Spectral Types of the Capella Stars W.G. Bagnuolo and J.R. Sowell, THE ASTRONOMICAL JOURNAL, 96, p. 1056, (1988).
- 8. Seeing Stars with Speckle Interferometry. H.A. McAlister, AMERICAN SCI-ENTIST, 76, p. 167, March-April (1988).
- Binary Star Orbits from Speckle Interferometry. II. Combined Visual/ Speckle Orbits of 28 Close Systems. W.I. Harttkopf, H.A. McAlister, and O.G. Franz, THE ASTRONOMICAL JOURNAL, 98, p. 1014, (1989).
- Binary Star Orbits from Speckle Interferometry. III. The Evolution of the Capella stars. W.G. Bagnuolo and W.I. Hartkopf, THE ASTRONOMICAL JOURNAL, 98, p. 2275, (1989).
- ICCD Speckle Observations of Binary Stars. V. Measurements During 1988-1989 from the Kitt Peak and Cerro Tololo 4-m Telescopes. H.A. McAlister, W.I. Hartkopf, and O.G. Franz, THE ASTRONOMICAL JOURNAL, (to appear in March 1990).
- 12. Results in Speckle Photometry. W.G. Bagnuolo, D.J. Barry, and E.G. Dombrowski, PROCEEDINGS OF THE SPIE, (to appear in 1990).
- The CHARA Array. III. Anderson Mesa, Arizona as a Site for an Optical Interferometric Array. W.S. Tsay, W.G. Bagnuolo, H.A. McAlister, N.M. White, and F.F. Forbes, PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, (to appear in 1990).

D. NEW INVENTIONS OR PATENTS

No new inventions or patents have resulted from this research effort to date.

E. PROFESSIONAL PERSONNEL

The following personnel were directly associated with research effort during the period of this grant. Asterisks indicate those persons who have contributed to this research but whose salaries have not been supported by ÅFOSR funds.

*Dr. Harold A. McAlister - Principal Investigator, GSU

Dr. Otto G. Franz - Senior Investigator, Lowell Observatory

*Dr. William I. Hartkopf – Senior Research Associate, GSU

*Dr. William G. Bagnuolo, Jr. - Senior Research Associate, GSU

*Dr. James R. Sowell - Research Associate, GSU

*Mr. Ali Al-Shukri - Graduate Research Assistant, GSU

Mr. Wean Shun Tsay - Graduate Research Assistant, GSU

Mr. Edmund G. Dombrowski - Graduate Research Assistant, GSU

*Mr. Donald J. Barry - Graduate Research Assistant, GSU

F. SCIENTIFIC PUBLICATION

2

The scientific publications listed under section C. above are included on the following to complete this final report.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. I. A SURVEY FOR DUPLICITY AMONG THE BRIGHT STARS

HAROLD A. MCALISTER,^{a)} WILLIAM I. HARTKOPF, AND DONALD J. HUTTER^{a)} Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303

MICHAEL M. SHARA^{a)}

Space Telescope Science Institute, The Johns Hopkins University, Homewood Campus, Baltimore, Maryland 21218

OTTO G. FRANZ^{a)} Lowell Observatory, Flagstaff, Arizona 86001 Received 11 April 1986: revised 21 May 1986

ABSTRACT

A survey of a sample of 672 stars from the Yale *Bright Star Catalogue* has been carried out using speckle interferometry on the 3.6 m Canada-France-Hawaii Telescope in order to establish the binary star frequency within the sample. This effort was motivated by the need for a more observationally determined basis for predicting the frequency of failure of the *Hubble Space Telescope* (HST) fine-guidance sensors to achieve guide-star lock due to duplicity. This survey of 426 dwarfs and 246 evolved stars yielded measurements of 52 newly discovered binaries and 60 previously known binary systems. While the implications for HST operations are described elsewhere, we show that the frequency of close visual binaries in the separation range 0.04-0.25 is 11%, or nearly three-and-one-half times that previously known.

I. INTRODUCTION

The frequency of binary and multiple stars has wide-ranging implications within astrophysics, and even relates to the question of the frequency of life in the universe. The observational limitations of the various techniques for discovering binary stars give rise to selection effects which, if well understood, permit reasonable estimates of the number of overlooked binary stars within a specific sample. For visual binaries, these selection effects are tied to the apparent magnitude of the binary star, the angular separation of the system, and the magnitude difference within the system. In their analysis of the Index Catalogue of Visual Double Stars (IDS) (Jeffers, van den Bos, and Greeby 1963), Poveda, Allen, and Parrao (1982) find that after eliminating more than one-fourth of the IDS entries as either optical or spurious pairs, it can be concluded that practically every field star is a potential visual binary. Most of these pairs remain to be discovered.

Speckle interferometry undertaken at the largest telescopes provides an extension of the methods of visual binary star astrometry routinely down to below 0.04 in angular resolution and to magnitude difference as large as 1.5-2.0 mag. Concerted efforts can increase the Δm sensitivity significantly. The accomplishments of binary star speckle interferometry prior to 1984 have been cataloged by McAlister and Hartkopf (1984). These accomplishments include the first direct resolution of some 120 bright binary stars and the accurate measurement of many previously known systems at separations difficult or impossible for other techniques. Although speckle observations have tremendous potential for discovering new pairs, no extensive survey programs exploiting this potential have been undertaken. This has been due to the limited amount of time available on large telescopes to speckle observers and to the obvious priority given to the resolution of known spectroscopic and close visual binaries for stellar mass and luminosity determinations. We report here the first systematic attempt to carry out a speckle interferometric survey for duplicity among a large sample of stars. This survey was motivated by the need for a more directly established estimate of the binary star frequency in the range of separations (0.018-0.20) for which the *Hubble Space Telescope* (HST) fine-guidance sensors would fail to achieve lock. This frequency distribution could potentially lead to significant dead time for HST when all guide-star pairs for a given field contain resolved binaries. The implications of this survey for the HST are discussed elsewhere (Shara *et al.* 1987) and we will restrict our consideration here to the purely astronomical results derived from the observations.

II. SURVEY SAMPLE AND OBSERVATIONAL RESULTS

All of the speckle measurements published prior to this paper as a result of the Georgia State University program have been based upon a photographic speckle camera employing analog techniques for data processing (McAlister 1977). The data for our new survey were obtained using the GSU ICCD speckle camera (McAlister et al. 1982, 1987; Hartkopf and McAlister 1986) in which speckle pictures are initially processed digitally with a hardwired vectorautocorrelator and then finally reduced and measured with a VAX 11/750-based image-processing system. The speckle camera has been used regularly at the 4 m KPNO telescope and 1.8 m Perkins telescope at the Lowell Observatory since late 1981. Approximately 2700 measurements of one thousand binary stars, including some 60 newly resolved systems, have been reduced from the data gathered to date, and a detailed discussion of these collected results is to be presented in Paper II of this series. The ICCD data gathered at KPNO between July 1982 and January 1985 were recorded on videocassette tapes and post-processed through the hardwired vector-autocorrelator. The desirability of producing vector-autocorrelograms in real time, and thereby eliminating the effects of tape noise, compressed dynamic range, etc., was realized early on in our experience with the new camera, and provision was made for this in time for the HST-related observations discussed here.

⁴¹ Guest Observer. Canada-France-Hawaii Telescope.

184 MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

Following experiments with potential HST guide stars (most with V = 12-14) at the 2.5 m Hooker telescope of Mount Wilson and Las Campanas Observatories and the 3.0 m Shane telescope of the Lick Observatory in early 1985, we decided to restrict further speckle observations to bright stars from which we could statistically extrapolate the binary frequency to HST guide stars. Experience to date has shown that speckle observations can resolve systems with combined magnitudes as faint as V = +15, but these have invariably been for objects which have a priori evidence for duplicity. The speckle measurements of the Pluto-Charon system as recently summarized by Tholen (1985) are a case of particular interest and clearly demonstrate the method's ability to measure faint double objects. Autocorrelograms or power spectra produced from speckle data for faint objects are unavoidably of lower signal-to-noise than those for bright objects and are far more subject to the interpretation of noise fluctuations as features indictive of duplicity. In principle, long integration times and subsequent confirming observations can increase the confidence of a discovery, but both require a significant increase in the investment of telescope time. The reliability of speckle interferometry in discovering faint binary stars thus remains to be established. although we believe that great potential exists in this area. On the other hand, speckle interferometry has now provided the first direct resolution of nearly 200 binary stars (McAlister and Hartkopf 1984; McAlister et al. 1987), most of which have been confirmed by subsequent observation. Only a few spurious cases of resolution are indicated by lack of confirmation, and most of these might be the result of closure below resolution limits at the epochs of subsequent observations rather than outright errors in interpreting speckle autocorrelograms.

The sample of stars used in defining the survey was obtained by selecting all stars from the Yale Bright Star Catalogue (BSC) (Hoffleit 1982) with equatorial coordinates ranging from 15^{h} to 23^{h} in right ascension and -20° to + 60° in declination along with a visual-magnitude constraint such that 5.0 < V < 6.5 (BSC limit). The positional constraints ensured that all objects observed would be within 40° of the zenith of Mauna Kea during the scheduled observing. Complete compensation for atmospheric dispersion using the Risley prisms in the GSU speckle camera requires zenith angles no larger than approximately 60°. The surveysample results are thus free of dispersion effects that might otherwise mimic duplicity. These criteria resulted in 1191 stars, or 13% of the BSC, as candidate objects for the survey. No selection criteria involving prior knowledge of duplicity were imposed, and all data were reduced blindly with respect to existing visual micrometer or speckle results for any of the visual binary stars that happened to be observed. As will be discussed in Sec. III, we emphasized the observations of dwarf over giant stars in this candidate sample in order to have a distribution of luminosity classes more closely related to that expected for faint HST guide stars.

Speckle observations were obtained on the four nights of 7-10 July 1985 UT using the GSU ICCD speckle camera at the Cassegrain focus of the 3.6 m Canada-France-Hawaii telescope on Mauna K.ea. Seeing conditions were generally excellent with FWHM seeing disks estimated to be typically less than 0.7, occasionally less than 0.5, and only 2.0 under the worst seeing conditions encountered during part of the night of 8 July 1985 UT when occasional cirrus clouds appeared. Of particular interest is the atmospheric redistribution or correlation time, found to be comparable to that we have experienced on many nights over the years on Kitt Peak. There was certainly no indication of the very "fast seeing" that is occasionally mentioned for Mauna Kea. Although four nights are certainly insufficient for site comparison, we can unequivocably state that the seeing conditions encountered at the CFH telescope on these four nights were the best we have ever seen anywhere in nearly ten years of speckle observing.

A total of 763 separate objects were observed at the CFH telescope. Seventy-two of these objects were previously known visual or occultation binaries included in the final sample for calibration purposes, as well as a variety of objects in miscellaneous categories. In 13 cases, the primary and secondary components of wide binaries that could not be observed together in our field of 2".4 square were observed separately to search for close companions. Data for six objects were not included in the final analysis because of instrumental effects or other peculiarities in the autocorrelograms which could not be removed. We thus obtained observations of 672 of the 1191 survey candidates. This represents an inspection of 7.4% of all BSC members for duplicity at a resolution limit of 0".038, corresponding to the Rayleigh limit of a 3.6 m aperture telescope. All observations consisted of 60 s of video data (equivalent to 1300 individual speckle pictures) taken through a Strömgren y filter and with 10 ms exposure times. Integrated vector-autocorrelograms were stored on floppy disks for subsequent reduction and analysis at GSU in Atlanta. Calibration for scale and position-angle origin was obtained from the measurements of nine visual binaries that have been routinely observed in our program at the KPNO 4 m telescope and were in fact observed on Kitt Peak with the same equipment during a run that ended just five days before the Mauna Kea observing run began. The effect of orbital motion on this calibration is therefore totally insignificant. The spatial calibration procedure employed at KPNO continues to utilize a double-slit mask in the pupil plane as described by McAlister (1977). This method provides a truly external calibration procedure independent of any standard or reference binaries. The scale on the detector for the CFHT data was thus indirectly determined to be 0.00951 per pixel with an uncertainty indicated by the scatter for the nine calibration stars of approximately $\pm 0.5\%$. The observational results of this survey are presented in Tables I-III.

Table I contains measurements of 52 newly resolved binary stars. The measured angular separation ranged from 0.040, just above the CFHT diffraction limit, to 0.965. The mean separation for this sample is 0"162, reducing to 0"140 when the two systems with separations exceeding 0"50 are excluded. Since autocorrelated speckle data cannot discern the true quadrant in which the secondary star lies, position angles inherently have a 180° ambiguity. In Table I we adopt θ < 180°. Some of these new binaries have already been confirmed by speckle observations obtained at the KPNO 4 m telescope during November 1985. These confirmed objects are indicated by an asterisk preceding the HR number in Table I. Lack of confirmation at the present time is by no means an indication of decreased confidence in Table I, as only a minority of the new binaries were reobserved in November 1985. The conservative approach we have continued to apply in the inspection of autocorrelograms for duplicity gives us a very high confidence in the reliability of the results in Table I.

MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES 185

	Ţ	ABLE I.	Newly resolv	ed syste	ms.				<u> </u>
HR	МК	۷	Epoch	θ	ρ	d [†] (pc)	a [†] (au)	p [†] (yr)	
5612	FGIV	6.65	1985.5171	85:4	0.166	100	17	94	
5715	A4V	5.66	1985.5172	155.4	0.217	85	19	78	
5818	A2V	5.74R	1985.5172	14.9	0.514	120	61	420	
5858	AOV	6.14	1985.5198	98.9	0.130	180	24	91	
5895	A3Vn	5.11	1985.5199	25.3	0.126	75	9	26	
6123	ASV	5.52R	1985.5200	174.3	0.195	75	15	56	
6194	AJIV	6.93	1985.5146	96.3	0.145	250	36	198	
6213	F2III	5.92	1985.5173	95.7	0.126	125	16	72	
6286	K2III	6.00	1985.5173	121.1	0.292	215	63	360	
6317	A7V	6.59	1985.5201		0.128	100	14	48	
6383	AIV	6.46	1985.5173	72.3	0.168	185	32	150	
6412	A2V	6.17	1985.5201	70.1	0.136	135	18	72	
6571	A2Vn	5.62R	1985.5220	74.0	0.080	105	9	24	
6641	A2Vs	6.43	1985.5228	109.0	0.142	160	23	95	
6656	A2V	5.02	1985.5228	112.8	0.120	80	9	26	
6781	A3V	5.86	1985.3228	173.8	0.106	100	11	32	
*6851	85V	6.30	1985.5231	46.2	0.054	430	24	65	
6906	B9V	6.37	1985.5148	100.0	0.118	225	27	110	
*6928	B8III-IV	5.73	1985.5148	131.2	0.078	200	16	30	
*6941	B2V	6.69	1985.5148	172.8	0.149				
6956	A4V	6.37	1985.5149	41.4	0.040	125	5	11	
*6977	AOVn	5.78P.	1985.5146	31.5	0.151	145	23	85	
*6984	B5Vne	6.10	1985.5229	75.8	0.241	395	95	540	
6987	F3V	5.45	1985.5148	97.0	0.141	45	7	19	
7053	ASVn	5.14H	1985.5176	66.6	0.184	50	9	30	
7091	A1V	6.59R	1985.5175	124.2	0.219	185	41	215	
*7109	B8Vnn	6.14	1985.5231	99.3	0.104	250	26	95	
7110	A7Vn	6.34	1985.5231	89.6	0.178	90	16	68	
7263	F3V	6.23	1985.5233	63.8	0.177	60	11	45	
*7272	GIV	6.74	1985.5232	173.0	0.089	40	3	10	
7307	B9.5V	5.63	1985.5204	56.2	0.051	145	8	16	
7386	F7V	6.19	1985.5233	71.5	0.181	45	.8	31	
*7436	A37n	6.61	1985.5233	173.8	0.137	160	21	95	
7480	A3IV	5.67	1985.5149	41.4	0.084	120	16	30	
*7554	B2.5IVe	6.51	1985.5149	82.9	0.057	1300	75	300	
*7571	AOV+F8IV	6.48	1985.5150	8.9	0.291	200	59	370	
*7677	A5Vn	6.45R	1985.5177	55.6	0.050	110	6	12	
7684	A2IV	6.01R	1985.5178 1985.5177	23.4	0.340 0.176	180 165	61	420 130	
7752	A1V A2Vn	6.27 6.31R	1985.5177	57.1	0.176	165	29 25	110	
*7755 7767			1985.5178	13.3	0.176 0.047	1720	80	240	
	09V G1V	5.84 6.38	1985.5177	1.1	0.047	1720 35	80 6	240	
7994	AOV		1985.5205	2.3 64.2	0.169	145	7	13	
8246 8257	FOIV	5.75 6.31	1985.5179	110.4	0.184	145	19	90	
8257	G9III	6.16	1985.5178	20.2	0.184	200	19	145	
8274 8507	F3V	6.39	1985.5178	108.5	0.104	200	7	24	
8553	B2V	6.14	1985.5208	60.3	0.104	940	175	1060	
8555	82V 89.5V	5.63	1985.5208	64.1	0.185	140	21	85	
8581	F7V	6.14	1985.5151	84.8	0.094	40	3	10	
8603	B2Ve	5.73	1985.5151	127.0	0.042	780	33	85	
*8617	G2III+A4V	6.40R	1985.5181	115.5	0.113	180	20	85	
8690	B3IV:e	5.92	1985.5154	124.0	0.965			7800	
0070	~JIIIE	2.76		10410		0.00	0.00	,000	

*Confirmed Nov 85 at KPNO 4-m telescope.

*Modeled, not observed, parameter.

Table II contains 76 measurements of 74 previously known binary stars. Fourteen of these measurements, indicated by an asterisk preceding the system identification, are for binaries observed for calibration purposes and are not systems that were part of the survey sample. All stars in the survey sample were checked against the Washington Double Star Catalog (WDS) maintained by C. E. Worley at the U.S. Naval Observatory. Three of the survey stars turned out to be binaries previously first resolved by speckle interferometry (HR 6469, 8059, 8704), and three were discovered either by W. S. Finsen or R. H. Wilson using visual interferometry (HR 6676, 7441, 8355). The remaining 65 systems in Table II were all resolved with visual micrometer methods by a variety of observers. The mean separation for the known binaries among the survey sample is 0".504, increasing to 0"562 when the six interferometric pairs are excluded. When compared with the mean separation for the measurements in Table I, the anticipated gain from the increased sensitivity of speckle interferometry to small angular resolutions is clearly

11

seen. As might be expected from our conservative approach to interpreting autocorrelograms, it is mainly the increased resolution rather than a gain in magnitude-difference sensitivity that is responsible for the new binaries in Table I.

Table III contains the HR numbers of 560 stars that were observed in the survey and for which no convincing evidence of duplicity was detected in the autocorrelograms. The effective field of view was determined by the size of the autocorrelator address window and was limited to a rectangle with dimensions 1.22×2.44 centered on the primary star and with the long dimension parallel to a position angle of approximately 30° on the sky. Thus the upper limit to any angular separation that would be detected in the survey was between 0.61 and 1.36 depending upon position angle. A search of the WDS for known binaries in Table III having separations falling within this window was made, and a list of such systems is presented in Table IV. From the comments accompanying Table IV, we can conclude that there is every indication that this survey has completely detected

					Δ	
ER/HD/BD	ADS/Disc.	MK	V	Epoch	<u>θ</u> 149 * 6	ρ 0
*BD 2880 *HR 142	ADS 450 AB ADS 490 AB	kov Fbv	8.89 5.20	1985.5236 1985.5236	286.9	
*HR 5472	NcA 40	COV	6.05R	1985.5226	79.9	0.061
*ER 5477-8	ADS 9343 AB	A2III	3.86	1985.5145	304.0	0.965
*HR 5504 *HD 130669	Fin 309 ADS 9397	F7V X2V	6.40 8.6	1985.5145 1985.5226	292.0 152.2	0.238 0.148
HR 5654	Cou 189	N4IIIab	8.6 5.89 6.08H 5.02	1985.5171	143.2	0.454
HR 5728	ADS 9617	G3V	6.08H	1985.5171	9.7	0.827
HR 5774 HR 5915	ADS 9688 AB ADS 9834	ASV BSV	5.02 5.94	1985.5172 1985.5199	169.2 122.0	0.040 0.556
HR 6255	ADS 10230	A2Vs	5.51	1985.5146	341.6	0.235
HR 6329	ADS 10312 A	A4V	6.33	1985.5201 1985.5201 1985.5228 1985.5228 1985.5228 1985.5228 1985.5203 1985.5228 1985.5228	186.8	1.246
ER 6367	ADS 10355	A1V+F3V	6.06	1985.5201	12.8	0.444
*HR 6377 HR 6469	ADS 10360 AB NcA 47	A5m F9Vn:	5.39 5.51	1985.5228	122.6 228.8	0.127 0.045
HR 6488	ADS 10531 AB	PBIV	6.49	1985.5228	289.8	
HR 6516	ADS 10598	G9IV-V	5.31	1985.5203	156.9	0.932
HR 6560	Mlr 571	A5V+G5117	6.17	1985.5228	349.0	0.140
*+27 2853 HR 6627	Kui 83 AB ADS 10795	dMOp A1V	9.2 5.72R		305.0 266.4	0.225 0.552
ER 6676	Fin 381	F5Vn	6 38	1685 5203	279.3	0.102
*HD 163640	HcA 49	AOIII	7.4	1985.5229 1985.5203 1985.5204 1985.5204	67.9	0.083
HR 6689	ADS 10912	A3V	5.97	1985.5203	92.7	0.313
HR 6733-4 HR 6795	ADS 11005 AB ADS 11111 AB	F5V F2V	4.78 5.73	1985.5204	278.2 320.2	1.831 0.369
HR 6798	ADS 11127	A4V	0.30	1985.5204	193.9	
HR 6803	ADS 11123 AB	B9V+F7III	6.09R	1985.5231	221.8	1.166
ER 6814	ADS 11149 AB	A3V	5.88R	1985.5229	64.1	0.098
HR 6898 HR 6904	ADS 11324 ADS 11334 AB	A9III+F6III A0V+A4V	6 9/0	1985.5148 1985.5229	355.2 128.5	0.836 0.639
ER 6981	ADS 11483 AB	G2V+G2V	6.21	1985.5148	160.5	1.697
ER 6999	ADS 11520 AB	F9IV	6.49	1985.5149	349.0	0.141
HR 7002	ADS 11524	K1III+M6IIIe	6.4 H	1985.5148	135.9	0.453
HR 7017 HR 7033	Cou 1607 ADS 11593 Aa	B9V B5t/	6.25	1985.5229	115.1 303.3	0.175 0.145
ER 7048 A		A1V+A1V	5.83	1985.5231	129.9	0.143
HR 7048 B	ADS 11640 Bb	A0V+A4V G2V+G2V P9IV K1III+H6III∉ B9V B5V A1V+A1V A1V+A1V A1V	5.83	1985.5231	139.6	0.137
ER 7090	Hei 72	AIV	6.40R	1985.5176	215.8	0.489
HR 7305 *HR 7362	ADS 12239 AB Fin 327	88V Am	6.54 5.03	1985.5233 1985.5231	158.1 84.5	0.863 0.081
HR 7441	Wrh	AOV+F8III	5.38	1985.5233	266.2	0.053
HR 7486	Kui 93	B5V	6.01	1985.5149	309.1	0.178
HR 7546	ADS 12973 AB	A3V -	2.00	1207.2142	177.6	0.180
HR 7599 HR 7637	ADS 13104 AB Ho 276	F2V F8V	6.51 5.88	1985.5149 1985.5150	296.0 295.6	0.173 0.233
HR 7657	ADS 13277	F2111	5.22	1985,5177	120.5	0.851
HR 7737	ADS 13572 AB	B9IV-V	6.71	1985.5177	169.7	0.908
HR 7784	ADS 13728 AB	A1V	6.23 6.85	1985.5234	108.9	0.329
*HD 195481 FR 7840 A	ADS 13944 AB ADS 13946 Am	A3V B8V	7.11	1985.5232 1985.5205	213.4 126.8	0.058 0.341
HR 7840 B	ADS 13946 BC	BSV	7.11	1985.5205	295.2	0.108
*HR 7889	ADS 14099 AB	B6III	5.22	1985.5232	111.7	0.345
HR 7958 *HR 7963	Kui 101 ADS 14296 AB	A3V B5Ve	6.30 4.53	1985.5234 1985.5232	109.6 15.7	0.374 0.793
ER 7982	ADS 14290 AB	F5V+F7V	5.99	1985.5205	12.9	
HR 8038	Kui 102	FlVp	5.99	1985.5151	52.1	0.296
HR 8056	ADS 14573 AB	PSV	6.25	1985.5151	125.3	1.344
HR 8059 HR 8116	McA 66 Aa ADS 14761	G4III A7Vn	5.89H 6.27	1985.5208 1985.5150	232.6 58.8	0.045 0.090
*HR 8123	ADS 14773 AB	P5V+GOV	4.49	1985.5234	13.8	0.202
HR 8258	ADS 15115	A4V	6.11	1985.5178	298.4	0.295
HR 8355	Fin 358	B9V	6.59	1985.5208	91.2	0.093
HR 8355 ER 8407	Fin 358 ADS 15578 AB	B9V AOIV	6.59 5.60	1985.5234 1985.5179	92.7 3.4	0.090 0.939
HR 8532	ADS 15896 AB	F7V	5.00 6.04R	1985.5208	4.1	0.296
HR 8533	ADS 15902 AB	VON	5.78	1985.5151	217.7	0.121
HR 8545	ADS 15934 AB	G1V	6.35H	1985.5153	340.8	2.495
HR 8612 HR 8629	ADS 16130 Kui 114	GOIII+FOV F6V	6.23 6.31	1985.5151 1985.5153	136.9 124.9	0.136 0.184
ER 8631	ADS 16173 AB	G3V+G8V	5.71	1985.5153	97.7	0.216
HR 8652	ADS 16214 AB	A1V+G:	6.39	1985.5154	306.2	0.492
HR 8704	McA 73	39111	5.80	1985.5153	284.3	0.073
HR 8704 HR 8708	McA 73 ADS 16345 AB	B9III A3m+F6V	5.80 5.81	1985.5234 1985.5154	283.3 210.8	0.074 0.910
HR 8737	ADS 16417 AB	G2V+G4V	6.43	1985.5153	345.7	0.290
ER 8739	ADS 16428	A8V+F6V	5.75	1985.5153	306.2	0.563
	indiantes there					

TABLE II. Measures of previously known systems.

* indicates those binaries observed but not on survey list

0

×.77.7

ĦR

ł

Ì

.

T	TABLE III. Negative results for bright stars.						
NK	v	ER	MK				
FOV G8III-IV A1V	6.50 6.59 5.57	6140 6158 6162	G2-6111 B9.5111 A4Vn				
FRV	6 35	6160	1011				

.

					/
5610	FOV	6.50 6.59 5.57 6.35 5.81 6.39 6.08 6.68 6.68 6.30 5.26	(1)(0	G2-6111 B9.5111 A4Vn A2V K2V F5IV B9.5Vn B9.5Vn B9V	
5613	COTTT TV	6.50	0140	G2-6111	5.68 5.63
	00111-14	0.39	6158	B9.5III	5.63
5627	AIV	5.57	6162	A4Vn	5.65
5630	FBV	6.35	6169	A2V	6.41
5635	G7.5IIICN-0.5	Fe-1 5.25	6171	820	6.41 5.75
5640	G7.5IIICN-0. KIIII KOIII A3Vn G5V A2V A2V M2IIIa A4V G8IIIaBa0.3 KOV	5.81	6101	A17	5.75
5648	KOTT	5.01	0181	FOIN	6.26R
	KUIII	6.39	6184	B 9.5Vn	5.53
5656	A3Vn	6.08	6185	B9V	5.56H
5659	G5V	6.68	6186	AlVnn	6.588
5665	A2V	6.30	6189	ALVIUI	
5676	A2U	5 26	0109	P3V	6.35
5677	N2777-	J.20	6195	A1V	5.77
	nziiia	0.13	6201	A7III	6.24
5679	A4V	5.63	6202	AlVnn P3V A1V A7III P4IV-III	5.57
5692	G8IIIaBaO.3	5.70	6203 6205	A7V A7III P4IV-III A3Vn P2-4III-IV	6.08
5706	KOV	6.35	6205	A3Vn F2-4III-IV F2-3III-IV	0.08
5709	FOTTT	6 61		F2-4111-1V	5.74
5716		3.31	6222	F2-3III-IV	5.99
	F3-41VS	6.19	6224		6.03 .
5717	AUV	6,28	6227	M3IIIab	5.56
5718	B9Vn	5.37	6228	H3IIIab KSIII K4III	6.03 - 5.56 5.15 6.05
5721	FOV	6.12	1000	WATTY -	5.15
5732	#2TTT	6 01	0230	K4111	6.05
5734	C111	0.01	6232	A3V	6.10
	GIV	0.50	6235	A3V A0Vn G5111 A5V	6.03
5740	GOIA-A	6.27	6239	GSIII	6 35
5741	K4III	5.46	6240	451	6 00
5748	A2IV	6.45	6316	A1W	0.08
5748 5752 5758	AmA3_FOV.	6 15	0440	M17	5.91
\$750	FAU.	0.10	0248	VI-IV	6.32
5130	G8IIIaBaO.3 KOV KOIII P3-41VS AOV B9Vn POV K2III G1V G0V-V K4III A2IV AmA3-FOV: F4Vu A4IV	0.5/	6230 6232 6235 6239 6240 6246 6248 6256	ASV AOVn GSIXI ASV AIV FIIII-IV KOIV	6.13
5760	VATA	6.46	6258	MITTTe	5.72
5763	K5111	5.02	£350	PIIII-IV KOIV MIIIIa KOIXI KO.5IIIaCaO.5 FOV A2IV FO-2V K2III KOIV G8III G5III K4III B6V+B7V G8-KOIII-IV KOV	3.12
5764	B2Vn	5.50	0239	KUIII	6.13
5769	26111	6 38	6270	KU.SIIIaCaO.S	5.04
5770	ROV	6.30	6277	POV	6.25
5779	571	0.22	6278	AZIV	6.57
5800	I/V	0.51	6279	F0-2V	5 32
2800	HILLAD	5.11	6280	*2777	5 75
5804	F3V	5.93	6284	WOTH .	3.23
5813	PSV:	6.51R	6207	KUIV	6.3/
5815	F6IV_V	6.50	0287	GRIII	5.41
5816	FAV	4 40	6292	G5111	6.08
5817	PATTY	6.40	6293	K4III	5.35
5823	19111P	0.74	6294	B6V+B7V	6.27
3623	G8111-1V	5.24	6296 *	CR_KOTIT_TV	6 10
5830	#2V	5.75	6301	POU	0.19
5833	B9V	6.00H	6302		0.3/
5834	B7V	5.078	0302	¥314	6.59
5835	CRITT	5 54	6306	MZIIIAb	6.62R
5841	N1TTT	2.04	6307	KOIII	6.32
5853	651111 6511	0.43	6313	KJIII	6.34
2022	GSV	2.88	6332	ATT	5 25
5859	AUV	5.58	6341	A117	5.25
5870	A3V	5.71	63/6	MATTEL	3.93
5919	A7Vn	6.29	6340	N4IIIED	6.69R
5924	MOIII	5.44	6349	18.5IV-V	6.01
5927	¥7V.	6 37	6351	A5V	6.04R
5932	MATTTRAD 2	5 37	6361	A9V	6.38
3732	HJIIIDEU.J	3.37	6362	AJIV	6 43
5936	PUIV	5.45	6363	X1717	6.00
5949	AOV	6.31	6372	C5 0717 17	0.09
5954	A2IV AmA3-FOV: F4Vv A4IV K5III B2Vn F6III B9V F7V M2IIIab F3V F5V: F6IV-V F6V F4IIIP G8III-IV F2V B9V B7V G8III-IV F2V G8III K1III C5V A0V A3V A3V A3V A3V A3V A3V A3V A3V A3V A3	5.47	6274	G8III G5III K4III B6V+B7V G8-K0III-IV K0V P3IV M2IIIab K0III K3III A3IV A1V M4IIIab F8.5IV-V A5V A9V A3IV K1III C5-EIV-V A2IV A8V B9V A5III M5Ib-II	0.35
5959	A0Vs	5,55	63/0	R21V	6.28R
5964	POTV	6 05	0391	ABY	6.19
5968	C2V	0.05	6395	39V	6.29
J700	92.4	5.41	6399	A5111	6.04R
6002	89.5Vnn	5.78	6406	M516-11	2 400
0004	A/ 1	5.63	6407	CSTTT. FOU	3.488
6012	F4V	6.47		G5III+F2V	5.39B
6013	AOVnn		5414	B5Vnn+B5V	5.88
6026	B8V+B9VpSi	6.14	6415	K2III	5.96
		6.30	6432	A1V	6.00
6033	A4V	5.43	6434	FO-2IV-Vn	6.51
6035	AOV	6.08	6435	A2Vnn	6.02
6036	AIV	6.33R	6443	KOIII	
6041	A1V	6.25	6457		5.65
6050	K4II+F6-8V	5.87		A2V	5.12
6052	P3V	6.50	6458	GOV	5.39
6060	G2Ya		6467	F4V	6.43
6061		5.50	6473	-89Vn	6.21
	AOV	6.09	6481	A3V	5.71
6063	GOVCalle	5.64	6482	B9V	6.35
6064	GIV	5.668	6484	AOVn	
6067	A9Vn	6.18	6489	P3V	5.478
6074	A3V	5.78			6.44
6091	F3IV-V		6496	7 7V	6.21
		5.49R	6497	B9.5V+ GOV	6.06
6096	B9V	6.23	6502	BSV	5.54
6110	A4Vn	6.40	6506	AOV	5.94
6121	CSIII	6.11	6507	ABV	
6124	G8III	6.07	6509	A4V	5.44
6128	H2.5III	5.23			5.80R
6136	K4IIIp	5.39	6514	A4V	6.51
6137	F2V		6533	AIV	5.62R
	5 4 V	6,48	6534	ASV	5.62

187

V

 \mathcal{F}_{i}

-

<u> </u>	HK	V	BR	MK	V
6538	GSV	6.56	7057	FOIVV	5.73
6541 6544	F6V B8Vn	5.64 5.55	7059 7060	A2Vm A2IV	5.90 6.11R
6548	A2V	5.81	7071	G5111	6.23
6551	A8Vn	6.40R	7073	B6V	6.04
6570	ASV	5.76R	7079	P8V	6.15
6589 6592	A1V K1III+F4V	6.34 6.36	7080 7081	A2IV B3IVp	6.52 6.06
6594	F4Vv	5.52	7081	82.5Ve	5.88
6600	FOV	6.39	7085	AIV	6.25
6601	B1.5V	6.30	7086	A1V	5.88
6609 6610	Aliv-V Aov	6.17 6.56	7096 7098	A7III A0Vs	6.13 6.64
6618	A2V	5.75	7100	B3IV	5.91
6626	K3III+F7V	6.68	7102	A3V	5.25
6633	B9.5V	6.22	7115	BGIV	6.09
6642 6655	A1V A9V	6.12 5.98R	7123 7126	G9IVa F4V	5.51 5.79
6670	F3-5IV-V	5.77	7131	B2.5V	5.58
6679	A4V	6.52	7132	K4111	5.62
6681	AIV	5.89	7140	G8III+A2	6.02
6684	B2IV-V	5.82	7154	P3III	5.77
6696 6697	A1V G2V	6.36 6.30	7162 7171	P9V B7III-IV	5.22 6.50
6720	B8Vne	6.50	7172	F8V	5.23
6732	B9V	6.76	7173	B2Vp	6.75
6741	B3Vn	6.21	7174	B7IV	5.89
6744	AOV	6.50R	7179	B3V	6.22
6753 6754	A2V FOIV-V	6.21 6.34	7181 7183	K2III M3.5IIIab	5.27 6.29
6764	#7V	6.52	7185	BSIV	6.41
6775	¥7V	5.04	7196	G8III	6.30
6776	A2Vn	6.63	7200	B2IV-V	6.69
6782 6792	A3V A2V	5.90 6.32R	7202	BSV	5.69
6797	P5V	5.69	7207 7209	A4V A1V	6.40R 5.42
6806	K2V	6.40	7214	A4V	5.83
6830	A4V	6.36	7215	A7V	5.01
6831 6843	F8V ABV	6.56 6.31	7231	PIV	6.53
6844	72V	6.63	7251 7258	AOVn B3V	5.38
6847	G2V	6.29	7260	G5V	6.07
6849	¥1V	6.37	7261	POV	5.23
6852 6873	B9V B3Ve	5.99R 6.13	7267	FSIV-V	6.48
6877	A7V	5.12	7269 7279	BSVn B3V	6.34 5.34
6878	39.5V	6.33	7284	ASV	6.18
6881	BSIV-Ve	5.73	7286	A2Vn	5.93R
6883 6885	A2V KJIII	6.00R 5.25	7288	A3V	6.49
6890	FOIL-IV	6.38	7293 7294	G4V G4V	6.75 6.57
6900	B 9V	6.74	7301	A4V	5.64
6902	C8III-IV+AOV	5.65	7313	A1Vn	6.19
6918	GOIII+A6V	5.21	7324	A3V	6.68
6919	88V 83V	6.20 6.53	7332 7345	A2V G8V	6.02
6924 6925	KJIII	6.07	7345	BOV	6.31 6.31
6935	KOIII	5.39	7351	ÂÍV	6.26
6944	AOVn	5.14	7364	39.5V	6.40
6946 6955	B2V A2V	5.72 5.77	7368	G8V	6.37
6955 6957	A2V A4III	5.94	7384 7390	VOA VOA	6.31 5.63
6962	A2V	5.76	7403	B3Ve	6.34
6967	B8IIIpSiSr:	6.42	7457	B8Vne	6.05
6970	GBIII	5.14	7466	B5V	6.43
6971 6974	84Ve 89.5V	6.59 6.56	7476 7516	K2III+P8V B3III	6.2 6.48
6975	ASV	6.46R	7519	AJIV	5.91
6976	AIV	6.40R	7541	KSIII	6.04
6985	F 5111	5.39	7553	FOV	5.39
6992	B9V CRTV	6.42R 6.29	7559 7569	KSIII GOV	6.13
6995 7000	G8IV F1IV-V	6.66	7572	B7V	6.13 6.54
7003	POV	6.26R	7580	B9.5Vn	6.53
7010	G8III	6.28	7593	B7Vn	5.71
7030	88V	6.41	7594	BSV	6.49
7034 7040	1777 1997	6.31 5.02	7596 7598	AOIII A2V	5.61 6.15
7040	BYV FIIII-IV	5.70	7610	AIIV	5.28
7047	F6V	6.31	7622	B9III	5.33
7051	A4V	5.06H	7636	C8III	6.17
7052 7054	F1V F0Vn	6.02H 5.37H	7649 7655	A3V Koiii	5.71 6.20

TABLE III. (continued)

,

189 McALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

•

ſ

j

١

· ···· ·

		TABLE II	I. (continued)		ss
HR	HK	v	ER	MK	V,
7656	B4V	5.88	8166	GBIV	5.68
7670	G6IV+H6V	5.71	8169	A1V	6.04
7672	G1V	5.80	8170	'28V	6.40
7675	AlVn	6.55 6.17	8178 8182	83V 87711	5.16 6.05
7683 7687	G5IV H1IIIa	6.14	8186	A1\'	6.63
7688	B3V	5.07	8187	NIV	5.49
7689	KOIV '	5.36	8190	FIIV	5.71
7693	F3V	6.43	8194	AZV	6.15
7697	P5V	5.85 6.31	8197 8198	KOIII Agiii	6.32 5.68
7700 7705	B3V F5IV	6.48	8205	FSV	6.13
7709	BIV	6.49	8212	F3V	6.61
7711	AJIII	5.52	8215	B3V	5.31
7715	P 7V	5.85	8217	AIV	5.41
7719 7721	B7Ve	5.92 6.92	8220 8222	POV FOV	5.80 6.57
7731	B7V A7IVn	5.18	8231	B9.5V	6.08
7733	K4III	6.14	8250	P 7V	6.47
7734	AOV	6.45	8261	G8III-IV	6.36R
7743	KOIII	5.66	8263	A2V	6.25
7746	KIIII	6.13	8265	A2V A5V	6.18 5.01
7753 7756	GBIII F5V:	5.32 5.91	8266 8267	ADV F1IV	5.45
7757	BGIII	6.48	8270	A9IV-Vn	5.67
7760	G9III	6.22	8272	A7111	6.20
7769	A2V	5.58	8276	F2V	5.85
7777	B2V	6.45	8283	G1V+GOV	5.18
7782	IIIOA	6.57	8302	FOV	5.99
7793 7803	F8V B9V	6.17 6.15	8307 8310	AOV G2V	5.65R 6.08H
7803	B2Ven	5.90	3314	GOV	5.94
7821	B9V	6.13	8319	AIV	5.58
7829	A7V	6.74	8328	A1V	5.64
7830	A3Vn	5.94	8330	P3V	6.21
7855 7857	F6V A2Vnn	6.13 6.56	8332 8358	A7V B8V	6.17 6.12
7865	AZVNN A7V	6.19	8341	B2V	6.29
7880	B9V	5.59	8343	AIVs	5.04
7863	A2V	5.43	8354	F6IV-Vvv	5.53
7887	FOV	6.49	8356	B3Ve	5.08
7899	B3V	5.96R	8358	AOVs	5.68
7914 7917	G5V A2V	6.45 6.08R	8372 8373	K5V A2Vnn	6.38 5.54
7927	B2IV-Ve	6.66	8382	K2V	6.22
7947	F7V	5.14	8391	F5III	6.40R
7953	VOA	5.58	8396	A2V+KOIII	6.37
7954	AOVn FSV	6.40 5.98	8403	BSIII	5.78
7973 7974	AlVs	6.33	8404 8406	89.5V 09V	5.80 5.56
7981	AlVs	6.52R	8415	K2111	5.78
7983	B4Ve	6.33	8419	B9Vn	5.63R
8004	AIV	6.66	8421	M4IIIab	6.13
8006	A9Vn	6.55	8422	AOV	6.44
8009 8012	B8Vnne A4V	6.70 5.58R	8424 8427	85111 B2V	5.14 6.27
8014	B8Vn	6.57	8429	A3V	6.19
8023	06Ve	5.96	8434	AOIII	6.39
8041	G1V	6.21	8438	B7Vne	5.78
8044	M3IIIab	5.65	8441	FIIV	6.11
8054 8057	86V M1III	6.50 6.31	8442 8445	G6III K5III	6.32 6.42R
8058	A3V	7.31H	8448	G2IV+KOIII	6.11
8066	KSIII	5.61	8451	AlVnn	6.27
8077	F8V	5.94	8455	GOV	6.18
8083	AOV	6.17	8459 8460	A3111	6.46
8085	K5V K7V	5.21 6.03	8462	ABIV F2V	6.32 6.03
8086 8088	K2IV	6.42R	8463	ASV	5.40
8090	KSIII	6.15	8467	F7V	6.39
8094	897	5.59	8472	FBV	5.24
8095	FSIV	6.45	8476 8482	KOIII K2III	6.30
8098	A2Vs	6.07 6.68	8487	AOIII	5.89 5.53
8101 8105	AIV BIVD	6.54	8489	A2Vnn	5.68R
8105	HIII	6.38	8491	A1Vn	6.21
8134	A2V	6.40	8495	A5Vn	6.15
8139	F2V	7.05	8503	G9III	6.37
8141	BSV	5.82	8506 8510	G8III	5.88
8144 8149	B7Vn K5III	6.19 5.96	8512	A9IIIp B8IIIpMn:Hg:	6.17 5.37
8158	BGIV	6.29	8513	BSIV	5.37
8165	KIIII	5.57	8514	F6V	6.17

TABLE III. (continued)

HR	nk	v	HR	ИК	v
8520	B2IV-Ve	5.01	8654	K5111+K2111	5.95
8528	BSV	6.41	8656	KOIII	5.08
8530	G6IIIBaII	5.93	8666	FOIII-IV	5.76
8534	G6.5111	5.76	8670	G7III	5.26
8535	B8III-IV	6.16	8673	VOV	5.66
8548	F7V	5.75	8676	A9III-IV	6.19
8549	B2V	6.46	8677	B9.5IV	6.36
8554	BSIII	6.57	8681	POIV-V	6.54
8562	K5IIIa	5.58	8682	BSVne	6.12
8565	F3IV	6.40	8688	KIIII	5.43
8567	B8Vs	6.37	8697	F71V	5.16
8569	A2V	6.56	8705	BSV	6.46
8575	K2111	6.40	8706	B7III-IV	6.34
8583	ASIII	6.38	8710	KJIII	6.19
8586	P1V	6.24R	<u>8711</u>	K2.5IIIb	5.56
8588	A6V	5.79R	8712	20111	5.81
8589	C8III	6.35R	8715	A7III	6.11
8594	G8III-IV	5.71	8716	KOIII-IV	5.72
8605	AIIII	ó.40	8723	B7III	5.74
8606	B3V	6.29	8724	A3Vs	6.51
8607	A3V	6.38	8725	B2IV	5.59
8610	K2III	5.03	8727	G9III	6.31
8621	H4III	5.21R	8729	G2.5IVa	5.49
8624	A2V	6.21R	8730	KIIII	6.28
8633	KOIII	5.93	8731	B4IIIep	5.43
8640	B2III	5.25	8733	B21V-V	6.18
8643	G9III	5.94R	8734	G8IV	6.16
8645	ASV	6.45	8735	F0-2V	5.37
8647	AOVn	6.41	8738	A1V	6.33
8651	BIV	6.43	8741	KSIII	6.07
8653	GBIV	6.51	8745	B9III	6.43

TABLE III. (continued)

those previously known visual binaries having geometries and magnitude differences falling within the survey window of resolution. Previously known systems that were missed by the survey can be invariably excused on the basis of their currently exhibiting unresolvable separations and/or possessing very large magnitude differences.

III. DISCUSSION

The limiting resolution of speckle interferometry when carried out at 4 m class telescopes permits the detection of

-

binary star systems that would otherwise by overlooked by traditional visual micrometry surveys using large refractors or even by attempts to detect variable radial velocity. Although the direct resolution of spectroscopic binaries continues to be a major justification for binary star speckle interferometry, the great majority of radial-velocity amplitudes that have and can be measured lead to semimajor axes too small to encourage direct resolution. This situation could be improved substantially if precision radial-velocity methods, such as those summarized by Campbell and Walker (1985),

_	TABI	LE IV. K·	visual binaries not resolved in survey.				
	ER	ADS	Disc.	Epoch	Comment*		
	6388	-	McA	1985.5174	1		
	6484	10526	McA Ap	1985.5227	2		
	6697	-	McA	1985.5228	3		
	6918	11353	Stf 2316 Ap	1985.5148	4		
	7059	11667	HCA Ap	1985.5231	5		
	7209		A 3195	1985.5204	6		
	7466	12696	WRH 23 Ap	1985.5234	ż		
	7953	14293	Bu 65-	1985.5206	8		

Unreferenced dates of speckle observations refer to *Comments the catalog of McAlister and Hartkopf (1984):

1. Unresolved at 10 epochs between 1977.49 and 1981.47 with separation of 0.039 on 1980.48.

2. A companion with a separation of 0729 seen only on 1981.47;

- a comparison with a separation of 0.29 seen only on 1901.47, unresolved on 1985.25 by Bonneau et al (1985)
 Rapidly moving pair closing from 0.114 to 0.065 between 1981.5 and 1984.3.
 A companion with a separation of 0.25 seen only on 1976.61;
- unresolved at four other epochs between 1976.3 and 1979.5. A companion with a separation of 0.13 seen only on 1980.48; unresolved on 1976.30.
- 6. Consistently unresolved at five epochs between 1977.48 and 1981.47.
- 7. Consistently unresolved at eight epochs between 1976.45 and 1981.70.
- 8. This system with an estimated am of 3.6 magnitudes is probably also showing a separation just outside the survey window.

191 MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

were routinely applied to long-period binary systems. Thus speckle interferometry using large reflectors can realistically be considered as a technique that begins to bridge the gap between classical visual and spectroscopic detection of binary stars and provides important overlaps into the regimes of these two complementary methods. Among the 52 newly resolved binaries in Table I, there are 13 which are designated as spectroscopic binaries by the BSC. The longest spectroscopic orbital period in this subgroup is just over 13 days, and it can be concluded that none of the newly resolved systems can be associated with previously known spectroscopic orbits. There are ten stars in Table I for which the BSC designates the radial velocity as being variable and nine additional stars with suspected variable velocities. Whether or not these velocity variations can be attributed to the speckle companions remains to be established. Two of the stars in Table I show composite spectra: HR 7571, A0 V + F8 IV, and HR 8617, G2 III + A4 V, and it is likely that these spectral types correspond to the individual components now resolved by speckle interferometry. It is also interesting to note that we have discovered a new close companion to component C of the famous visual multiple system ϵ Lyrae (HR 7053).

A few of the stars we have observed have been included in other surveys for the purpose of estimating duplicity frequencies. In their study of solar-type dwarfs, Abt and Levy (1976) found a constant radial velocity for HR 6987, a star which we find to be double with a separation of 0.141. We estimate that HR 6987 would have a period of the order of 15 vr, with a maximum possible radial-velocity variation of approximately 10 km/s, a value that would be decreased according to the actual orbital inclination. The long period and likely small velocity amplitude are not inconsistent with the conclusion of Abt and Levy (1976). Three stars for which we failed to detect companions but for which Abt and Levy (1976) determined spectroscopic orbits are HR 5954 (P = 3100 days), HR 7261 (P = 49.1 days) and HR 8283 (P = 13.2 days). In the case of HR 5954, the 8.4 yr period system could conceivably be resolvable by speckle interferometry at maximum angular separation, provided that the magnitude difference is not too large for this single-lined system. The shorter periods for HR 7261 and HR 8283 give no hope for direct resolution by single-aperture interferometric techniques. In nine other cases (HR 5968, 6091, 6458, 6594, 6775, 7172, 7947, 8472, 8697), Abt and Levy (1976) found constant velocities for stars which we also see as single while they suspect variable velocity for HR 6985, a star that is unresolved to us. The only star we have in common with the study of B type dwarfs by Abt and Levy (1978) is HR 8520, an object for which neither spectroscopic nor speckle analysis find evidence of duplicity. The observational selection effects of spectroscopic methods and speckle methods do overlap some in their sensitivity to binary star discoveries, but in the case of bright-star duplicity surveys the two approaches serve primarily as complementary rather than redundant means for discovery.

The complementary nature of speckle interferometry with spectroscopic and visual surveys for duplicity is exemplified in the case of the B stars. Abt (1983) discusses the duplicity frequency for a sample of 114 B2–B5 dwarfs, pointing out an absence of such binaries with periods between approximately 1/3 yr and 270 yr. Our Table I includes two stars in this spectral range that have estimated periods of less than 100 yr and three more stars with periods less than 1000 yr. Even these few binaries in this period range would significantly alter the depression in the frequency distribution for B stars shown in Fig. 2 of Abt (1983).

Heintz (1978) defines an index $C = 0.22\Delta m - \log \rho$ as a "measure of difficulty" for visual detections based upon magnitude difference and angular separation. He states that for stars brighter than magnitude 9.5 binaries for which C < 0.5 have been completely detected by surveys, while those for which C > 1.0 are "virtually unknown." In the separation range of 0.038 to 0.25, in which 47 of the 52 newly resolved binaries fall, the value of C ranges from 1.4 to 0.6 if we assume that the average Δm within this sample is approximately 0.5 mag. The majority of these new binaries thus have very small likelihood of ever contributing to duplicity surveys employing visual methods.

We can conclude that the great majority of the binaries newly resolved in this survey fall into an orbital-period regime not generally detectable by other methods and have thus not contributed to previous studies of the stellar duplicity frequency. Furthermore, these systems would not be discovered if this same sample were to be surveyed by classical spectroscopic and visual methods. If we estimate that the 47 new systems in Table I with separation less than 0.25 are uniquely discoverable by speckle interferometry at large telescopes, then we can conclude that duplicity surveys in the past have typically overlooked at least approximately 7% of the actual binaries because they fall into the selection regime between spectroscopic and visual methods. This addition to the overall frequency of binary stars must be considered a minimum value to the true increase because speckle interferometry does not completely bridge the gap between spectroscopy and micrometry. Although this survey is not intended to provide the means for independently modifying across all spectral types the binary frequencies that have been summarized by Abt (1983), the breakdown in frequency as shown in Table V offers comparisons supportive of the high frequency of duplicity and its variation with spectral type.

Our sample of 672 bright stars is not generally representative of the luminosity-class makeup of the BSC because this observed sample includes 424 dwarfs and 246 stars of luminosity class IV or brighter as indicated in Table V. Two stars,

TABLE V Summary of duplicity results by primary spectral type (no. of stars observed/no. of stars resolved/% resolved).

		Luminosi	ty Class	
Spectral Type	v	IV	111	II
0	3/ 1/33	-	-	-
в	104/17/16	18/ 3/17	15/ 2/13	-
٨	193/45/23	18/ 4/22	21/ 1/ 5	-
F	87/16/18	28/ 4/14	13/ 2/15	-
Ġ	31/ 7/23	12/ 1/ 8	38/ 4/11	-
к	8/0/0	4/ 0/ 0	59/ 2/ 3	1/ 0/ 0
н	-	-	17/ 1/ 6	1/ 0/ 0
A11	426/86/20	30/12/15	163/12/ 7	2/ 0/ 0

192 MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

HR 7048 and HR 7840, contribute two systems each to Table II, but the primary spectral types are included only once each in Table V. Thus there were 670 different primary spectral types available for the 672 stars observed. Dwarf primaries accounted for 63.5% of the survey sample, whereas dwarfs comprise approximately one-third of the complete BSC. Our selection of dwarfs over giants was based upon the need to extrapolate to the apparent-magnitude range (V = 9.0-14.5) characteristic of HST guide stars in which dwarfs dominate over giants. For the 424 luminosity class V stars in our sample, 86 were found to be double with an overall frequency of occurrence of 20%. Forty of these dwarf binaries are newly discovered. There were 164 luminosity class III stars observed, of which 12, or 7%, were found to be double. Five of the giant binaries are newly resolved. It is interesting to note that the fraction of observed binaries previously unknown is similar across all luminosity types and confirms the anticipated decrease in detected duplicity rate for evolved stars, owing to significant increases in magnitude difference when one star leaves its companion behind on the main sequence. The 9.4% increase in the overall frequency of dwarf binaries found for the survey sample leads to the prediction that another 250 binary stars would be discovered in a complete speckle interferometric survey of BSC dwarfs. Our results would also imply the existence of an equal number of newly resolvable giants and subgiants. This is a substantial increase in the incidence of close visual binaries among the bright stars. Discovery and continued speckle measurement of these objects would eventually result in a significant increase in the number of binary stars for which fundamental determinations of masses and luminosities can be made. The routine observation of these stars by modern programs of high-accuracy radial-velocity measurement is extremely important to this potentially rich harvest.

Estimates of the orbital periods for the newly resolved binary systems in Table I were calculated by assuming that Δm is typically 0.5 mag, that the total mass of each system is 1.8 times the mass of the primary for which the mass and absolute magnitude can be estimated from Allen (1973), that the unknown inclinations are randomly distributed and result in a mean projection factor of 0.64, and that the orbits have a mean eccentricity of 0.5. The estimated values for the distances, orbital semimajor axes, and periods are given in the last three columns of Table I. Seventeen of the new binaries have periods in excess of a century, while 17 systems have periods of less than 40 yr. Five systems (HR 6956, 7272, 7677, 8246, 8581) have periods of 15 yr or less. Although the period estimates are based upon a model and thus are highly uncertain, they can serve as a guide for those objects that should be routinely measured by speckle observers and/or offer a possibility for the determination of spectroscopic orbits.

Figure 1 is a histogram of angular separations smaller than 0"64 measured for the survey sample. The sample is subdivided in Fig. 1 according to whether or not the system is newly resolved, and furthermore, whether previously known binaries were discovered visually or with speckle interferometry. The figure omits 22 systems with angular separations exceeding 0"65, including the newly discovered wide pair comprising HR 8690. Inspection of Fig. 1 leads to the conclusion that for separations exceeding 0"25 visual surveys have reached a completeness which cannot be substantially improved by speckle interferometry. For this "wide" separation regime, five new binaries were found compared to

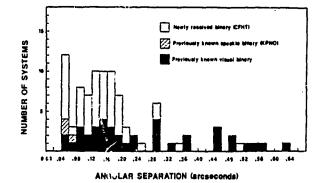


FIG. 1. The histogram of angular separations from 93 measurements of binary systems clearly shows the increase in newly resolved systems at separations less than 0.25 arcsec. An additional 22 measures of systems with separations exceeding 0.65 arcsec are not shown here. Those "wide" binaries include only one newly resolved system.

53 previously known systems. For "close" binaries with separations less than 0.25, our results nearly triple the incidence of duplicity by finding 47 new binaries compared with 26 previously known systems.

The sensitivity of speckle interferometry as a tool for the discovery of close binaries is made even more apparent when it is realized that three of the 26 previously known binaries were originally first resolved by speckle rather than by visual micrometer methods and that another three were discovered by visual interferometry. Table VI lists for comparison the separations at both the survey epochs and the epochs of discovery for the ten visual binaries with current separations less than 0.150. In nearly every case, the discovery separation was substantially larger than what we measured at 1985.5, when the average separation was 0.109 compared with 0.230 at discovery. It is likely that systems with separations less than 0"12 would be overlooked by even the best micrometer observers so that another four visual binaries that we have measured would probably not have been previously resolved had their orbits not presented wider separations at earlier epochs. This discussion would lead to the conclusion that only approximately 14 of the 72 bright close visual binaries we have observed would be detectable by visual observers were the argument not biased by the lack of separation histories of the new binaries and by the fact that bright stars have not been systematically surveyed for many decades. We can only state in summary that, within our survey sample, 52 new binaries have been found by speckle interferometry in the separation regime of 0.04-0.25, compared with 22 previously known visual binaries. This implies a 240% increase in the known incidence of close visual binaries among the bright stars.

We can estimate the number of binary stars that have been overlooked in any separation interval owing to the finite lower limit of resolution imposed upon speckle interferometry by diffraction principles. For the CFHT, we take the diffraction limit as defined by the Rayleigh criterion and adopt a limiting resolution of 0.038. A simple model from which we can then estimate discovery incompleteness is provided by considering a sphere whose radius equals the upper limit Rto an observable separation interval. The sphere then contains all possible vector separations which we assume to be randomly distributed and which would project onto the

192

HR	ADS	Disc.	1985.5 Separation	Discovery Separation	Discovery Year
5774	9688	A 1634 AB	0:040	0:09	1907
6488	10531	Bu 1179 AB	0.069	0.23	1905
6560		Mlr 571	0.140	0.18	1979
6814	11149	B 2545 AB	0.102	0.11	1958
6999	11520	A 88 AB	0.141	0.14	1900
7033	11593	B 2546 AB	0.145	0.2	1958
7840 B	13946	Da 1 BC	0.108	0.5	1841
8116	14761	Hu 767	0.090	0.17	1904
8533	15902	Bu 172 AB	0.121	0.46	1875
8612	16130	A 2695	0.136	0.22	1913

TABLE VI. Visual binaries with observed separations less than 0.150 arcsec.

plane of the sky bisecting the sphere to present the distribution of angular separations we attempt to observe. The fraction of the vector separations that would be unresolvable is then given by the intersection of a cylinder of radius r, the diffraction limit, with the sphere such that the cylinder's long axis is perpendicular to the plane of the sky and passes through the center of the sphere. The fraction of the binaries that would then be unresolved can be shown to be given by

 $f = (2r^2H + 3Rh^2 - h^3)/2R^3,$

where

 $H \equiv R \cos(\arcsin r/R)$

and

;

 $h \equiv R - H$.

With the limitations of this simple model in mind, we show in Table VII the resulting incompleteness for observed separation intervals beginning at the CFHT diffraction limit, where everything is unresolved, to a separation of 1 arcsec, where an insignificantly small percentage will be overlooked. In the range of separations out to 0.12, 10% of the binaries will be unresolved due to their orbital inclinations. This implies that approximately three close systems were overlooked in the survey sample due to this effect. The effect of nonzero orbital eccentricities will be to increase the probability of a given system being resolved because of the resulting bias, arising from Kepler's second law, toward larger separations. This effect is complicated and somewhat nullified by the distribution of the longitudes of perihelion. In the present estimate, we expect that a more realistic incompleteness model would not alter the conclusion that three close systems have been overlooked due to the distribution of the orbital elements *i*, *e*, and ω .

IV. CONCLUSIONS

From a survey of 672 stars selected from the Yale Bright Star Catalogue and observed with speckle interferometry at

TABLE VII. Estimated incompleteness fractions.

R	£	R	f	R	f
0:'038	1.000	0:065	0.327	0	0.073
0.040	0.829	0.070	0.284	0.160	0.056
0.042	0.748	0.075	0.249	0.180	0.044
0.045	0.655	0.080	0.219	0.200	0.036
0.048	0.581	0.085	0.195	0.300	0.016
0.050	0.538	0.090	0.174	0.400	0.009
0.055	0.450	0.095	0.157	0.500	0.006
0.058	0.407	0.100	0.142	0.600	0.004
0.060	0.381	0.120	0.099	1.000	0.001

the 3.6 m Canada-France-Hawaii telescope, we detected and measured the duplicity of 52 stars not previously directly resolved. The separations and position angles of 60 additional, previously known visual binaries have been measured with high accuracy. For 560 stars, our observations showed no indications of companions within a resolution window whose lower limit is approximately 0.038 and magnitude difference $\Delta m < 2$. From these observations we conclude that:

(1) About 500 previously unresolved binary stars can be expected to be discovered from a complete speckle interferometric inspection of all the stars in the BSC.

(2) These new binaries primarily fall into orbital-period regimes likely to be overlooked in traditional radial-velocity and visual-micrometry surveys for duplicity and consequently serve to increase the known overall duplicity rates for stars. Without regard to spectral type, this overall increase of duplicity frequency is approximately 7%.

(3) The number of visual binaries in the separation range 0.038-0.25 is found to be 11% of our sample. This more than triples the value based upon previously existing statistics for classically resolved binaries.

(4) Continued discovery and measurement by interferometric means of binaries among the bright stars can result in a substantial increase in the collection of fundamental data for stellar masses and luminosities, as well as in a significant refinement in our knowledge of the frequency of binary and multiple star systems.

This project was made possible with the generous support of the Space Telescope Science Institute, and we thank R. Giacconi, P. Stockmann, and R. Milkey for their encouragement and for providing contingency funds for the project. We thank STScI staff members P. Garnevich and M. Potter for providing observing lists and finder charts, and J. Russell for her comments on the manuscript. We are especially grateful to G. Lelievre for providing Director's discretionary time on the CFHT, to B. McLaren for his advice and assistance at the telescope, to K. Barton for his su . b job in operating the telescope, and to the entire CFHI . If for their kind assistance in adapting our instrumentation to the telescope and in helping with a tight shipping schedule. The task of handling the shipping with only five days between observing runs was skillfully managed by W. G. Robinson. Research activities in speckle interferometry at Georgia State University are supported by grants from the National Science Foundation and the U.S. Air Force Office of Scientific Research.

REFERENCES

Abt, H. A., and Levy, S. G. (1976). Astrophys. J. Suppl. 30, 273.

Abt, H. A., and Levy, S. G. (1978). Astrophys. J. Suppl. 36, 241.

- Allen, C. W. (1973). Astrophysical Quantities, third ed. (Athlone, London), p. 200.
- Campbell, B., and Walker, G. A. H. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 5.
- Hartkopf, W. I., and McAlister, H. A. (1986). In *Astrometric Techniques*, IAU Symposium No. 109, edited by H. Eichhorn and R. Leacock (Reidel, Dordrecht) (in press).
- Heintz, W. D. (1978). Double Stars (Reidel, Dordrecht), p. 13.
- Hoffleit, D. (1982). *The Bright Star Catalogue*, fourth ed. (Yale University Observatory, New Haven).

- Jeffers, H. M., van den Bos, W. H., and Greeby, F. M. (1963). Publ. Lick Obs. No. 21.
- McAlister, H. A. (1977). Astrophys. J. 215, 159.
- McAlister, H. A., and Hartkopf, W. I. (1984). CHARA Contrib. No. 1, Georgia State University.
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). Astron. J. (in press).
- McAlister, H. A., Robinson, W. G., and Marcus, S. L. (1982). Proc. SPIE 331, 113.
- Poveda, A., Allen, C., and Parrao, L. (1982). Astrophys. J. 258, 589.
- Shara, M. M., Doxsey, R., Wells, E., and McAlister, H. A. (1987). Publ. Astron. Soc. Pac. (in press).
- Tholen, D. J. (1985). Astron. J. 90, 2353.

VOLUME 93, NUMBER 3

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. II. MEASUREMENTS DURING 1982–1985 FROM THE KITT PEAK 4 m TELESCOPE

HAROLD A. MCALISTER,^{a)} WILLIAM I. HARTKOPF,^{a)} AND DONALD J. HUTTER^{a)} Center for High Angular Resolution Astronomy, Georgia State University, University Plaza, Atlanta, Georgia 30303-3083

OTTO G. FRANZ^{a)}

Lowell Observatory, Flagstaff. Arizona 86001 Received 20 October 1986; revised 19 November 1986

ABSTRACT

This paper represents the continuation of a systematic program of binary star speckle interferometry initiated at the 4 m telescope on Kitt Peak in late 1975. Between 1975 and 1981, the observations were obtained with a photographic speckle camera, the data from which were reduced by optical analog methods. In mid-1982, a new speckle camera employing an intensified charge-coupled device as the detector continued the program and necessitated the development of new digital procedures for reducing and analyzing speckle data. The camera and the data-processing techniques are described herein. We present 2780 new measurements of 1012 binary and multiple star systems, including the first direct resolution of 64 systems, for the interval 1982 through 1985.

I. INTRODUCTION

This paper is a summary of observational results from a program of binary star speckle interferometry carried out at the Mayall 4 m telescope on Kitt Peak during the interval June 1982 through November 1985. These observations were obtained with a speckle camera that incorporates an intensified charge-coupled device (ICCD) as the detector. All data were reduced digitally using a combination of hardware and software specifically developed for the efficient processing of large volumes of speckle data. Paper I in this series (McAlister et al. 1987) presented the results from this camera and analysis system for a survey of bright stars with the 3.6 m Canada-France-Hawaii telescope on Mauna Kea. Our binary star speckle-interferometry program is a secondgeneration continuation of an effort carried out between 1975 and 1981 on Kitt Peak, in which a photographic speckle camera was used to produce nearly 2800 measures of more than one thousand binary star systems. Those results appeared in a series of 11 papers, the last of which is that of McAlister et al. (1984).

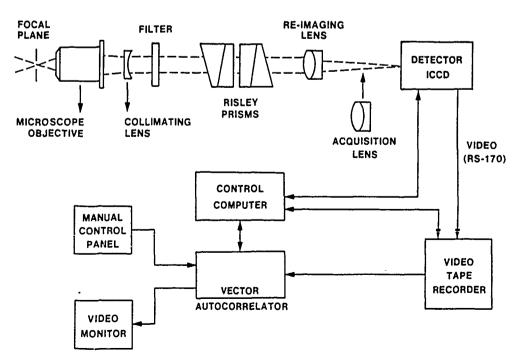
A catalog of all modern interferometric observations of binary stars has been compiled by McAlister and Hartkopf (1984) with a completeness date of January 1984. Speckle observations dominate the catalog; more than 3200 measurements had been accumulated by several groups since Gezari *et al.* (1972) first observationally demonstrated the applicability of Labeyrie's method to binary stars. The mean separation of the catalog entries is 0."32, while the median separation is 0."21. Approximately 700 of these measures, or 21% of the data, are for systems with angular separations between 0."021 and 0."100. The catalog contains 118 systems first resolved interferometrically, and there can be no doubt that speckle interferometry has become a major contributor to modern binary star astrometry.

We present here 2780 measures of 1012 binary stars, including the first direct resolution of 64 systems. These new observations double the overall contribution of our program and provide a baseline of almost ten years in the measurement of orbital motion for many systems. We continue to place on our observing program objects which can benefit most from the high angular resolution and high accuracy obtainable from speckle observations at large telescopes. Such objects include potentially resolvable spectroscopic binaries; known visual binaries with small angular separations and rapid motions; occultation and astrometric binary stars; stars that indicate possibly resolvable duplicity through composite spectra, suspected variable radial velocity, and abnormal colors and luminosities; and survey samples of such groups as the bright stars, the nearby stars, Hyades cluster members, and high-velocity stars. Our observing program currently is comprised of some 3000 stars. Although the ICCD speckle camera has been found to be capable of observing stars as faint as V = +16, most of the program objects are brighter than V = +10. This routine limiting magnitude still represents a gain of 3 mag over the limit of the previously used photographic speckle camera.

II. THE SPECKLE CAMERA SYSTEM

The camera system employed in the speckle program of the Center for High Angular Resolution Astronomy (CHARA) at Georgia State University has been described in its developmental stage by McAlister *et al.* (1982). For the sake of completeness and to provide an updated description of the equipment in its actual operational configuration, we present here a comprehensive discussion of the instrumentation for collecting and reducing speckle data.

The heart of the camera is an RCA SID 53601-X0 allburied channel "thick" CCD for which RCA had modified its TC 1160 camera in order to provide a standard RS 170 video output from the chip. The RCA camera operates the chip in a frame-transfer mode, shifting an "A" register image into a covered "B" register for readout while another "A" image is being accumulated. The effective photosensitive area of the CCD is thus reduced by 50% to an array of 244×248 pixels. The readout-noise problem is completely eliminated by intensifying the CCD; this was accomplished by fiberoptically coupling an ITT F-4144 dual microchannel-plate intensifier to the CCD. The MCP tube was pro-


^{*&#}x27;Visiting Astronomer. National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

689 MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

vided by ITT with an 18 mm diameter photocathode. A D-14 fiberoptic plug was bonded by RCA directly to the "A" register of the CCD in order to provide for coupling to the MCP intensifier. Our early experience with this method was disheartening in that the first CCD failed irretrievably during its testing phase and the second device failed in a similar manner in January, 1983, after working flawlessly for one year. With the assistance of RCA, who provided us with the last research-quality CCD of its type in stock, we traced both failures to differential expansion between the CCD substrate and the bonding material for the input fiberoptic that resulted in the failure of the chip preamplifier circuit. Successful bonding using a specially prepared ceramic collar was carried out for us by Lyle Broadfoot and his colleagues at the Earth and Space Sciences Institute in Tueson, Arizona, and the third device has operated continuously since late 1983.

The overall characteristics of the ICCD include a maximum gain of one million, with peak sensitivity at λ 500 nm and 50% of peak sensitivity still available at λ 400 and λ 670 nm. The pixels are 30 μ square and are contiguous. The detector is electronically shuttered by gating the photocathode voltage in synchronism with the video camera. This provides exposure times between 1 and 15 ms, a useful feature when confronted with rapidly varying seeing. The detector has high mechanical stability, is free from image distortions associated with other types of image tubes, and is capable of detecting single photon events. It is ideally suited to binary star astrometry requiring an accuracy of better than 1%, and its sensitivity and near linearity make it an effective detector for photometric purposes. Unfortunately, the CCD has a prominent fixed pattern involving some 15 pixels that contributes to autocorrelation algorithms not employing flat fielding, such as the vector autocorrelation we use, and diminishes the detector's effectiveness on faint objects. We hope to secure a cleaner chip at a future date.

A schematic of the CHARA speckle camera system is shown in Fig. 1. The camera-head assembly contains optics for increasing the effective focal length in order to produce a highly magnified field of view and for collimating the beam in order to eliminate focusing variations due to variable thickness of filters and dispersion-compensation prisms. At the Mayall telescope, a choice from among three microscope objectives provides scales on the detector of 0.0161, 0.0087, 0.0051 arcsec per pixel corresponding to fields of view of 3.96, 2.14, and 1.25 arcsec square. We normally use a $20 \times$ microscope objective corresponding to the middle level of magnification. For object acquisition at telescopes not possessing an independent acquisition capability, the camera head was designed so that the microscope objective and collimating lens can be removed from the beam while an additional acquisition lens is inserted to provide a field of view with a diameter of nearly 1 arcmin. At the 4 m telescope, this capability is only used at the beginning of an observing run when it is necessary to provide a fiducial mark on the telescope television acquisition monitor for the small speckle field of view. A filter wheel assembly provides Strömgren u, v, b, y filters, an intermediate-bandwidth filter centered on y, and a clear position. Lota are routinely obtained through the Strömgren y filter. Design considerations for the atmospheric-dispersion-compensating Risley prisms are discussed in the description of the original photographic speckle camera used at Kitt Peak (Breckinridge et al. 1979). The prisms were designed to permit complete dispersion compensation for zenith angles of up to 65° over bandwidths of 1.5 nm.

GSU SPECKLE CAMERA SYSTEM

FIG. 1. The GSU ICCD speckle camera system is shown here in schematic form.

All camera-head functions including filter selections, Risley-prism setting, speckle or acquisition field selection, exposure times, integration times, detector gain, and the starting/ stopping of the videotape recorder are completely controlled by a Motorola 6809 microprocessor under the direction of an Osborne 1 host computer. This arrangement permits the rapid and accurate setup of the camera from the control room for each object to be observed. As a backup to the Osborne 1, the microprocessor can read/write a Burr-Brown hand-held control/display panel that is otherwise used for local control of the camera head when necessary. This is especially useful during camera installation and testing in the telescope observing cage.

The videotape recorder selected for recording speckle frames is a version of a VHS recorder marketed by RCA and extensively modified by Gyyr Corporation. The modifications included replacing the capstan drive motors with microprocessor-driven stepper motors and tape servo, changes to the recording heads, and the provision of a variable tape canting system. The recorders we purchased were then further modified to include an RS 232 interface port for remote operation by means of the camera-head microprocessor. These modifications of the recorder allow data taking at normal video rates, playback at various rates inlcuding still field, and complete computer control for automated data recording as well as possibly for automated data processing.

A typical observing sequence involves the acquisition of an object by the telescope operator, who then centers it in the speckle camera field of view. Speckle data are then accumulated typically for 60 s; during this time 1800 speckle frames will be recorded on video tape. An example of one such speckle frame is shown in Fig. 2 [Plate 43]. This entire cycle lasts approximately two to three minutes, permitting an observing rate of at least 20 objects per hour. The storage of our 3000-star observing list on the telescope-control computer gives some relief to the otherwise harried telescope operator.

Processing of the vast volume of data generated by the speckle camera is critically dependent upon a hardwired vector autocorrelator (VAC) built to our specifications by Digital Television Imagery, Inc., of Tucson, Arizona. The VAC operates by digitizing an incoming video frame and storing the (x, y) coordinates of only those pixels whose intensities are above an adjustable threshold level. A two-dimensional histogram of all coordinate-pair differences is then calculated and stored in a $128 \times 128 \times 16$ -bit autocorrelogram memory. Autocorrelograms from individual frames are continuously coadded, and the result is displayed to the operator. This windowed autocorrelogram can be offset from the origin in order to measure known binaries. As described in Paper I, the autocorrelator was incorporated into the observing activities in the spring of 1985, following construction of an interface that enables the autocorrelogram memory to be read by a DEC Pro 350 computer that stores the autocorrelograms on floppy diskettes for further processing. Prior to that time, the VAC could only be operated in conjunction with a Perkin-Elmer 3220 minicomputer at Georgia State University, and all data processing required the playback of data recorded by the video cassette recorder, a device that now only serves for data archival purposes.

The CHARA speckle camera, whose detailed design and construction was carried out by Technical Development Corp., of Tucson, Arizona, has proved to be an extremely reliable instrument that has fulfilled our specifications in all respects. The camera has been transported to and used at six different telescopes during some 200 nights without suffering any mechanical or electronic failures that could not be repaired prior to the start of the next night's observing.

III. AUTOCORRELOGRAM REDUCTION TECHNIQUES

Techniques developed for reduction of autocorrelograms (ACGs) have been outlined by Hartkopf (1984) and, more recently, by Hartkopf et al. (1985). The methods described here have been developed with two major objectives in mind. Foremost, of course, is accuracy; our goal is to derive astrometric information accurate to \pm 0.0003 or better for binary stars ranging in separation from a few seconds of arc down to the Rayleigh limit (0.025 for a 4 m telescope). We have succeeded in reaching accuracies of this order for brighter binaries and accuracies of approximately 0.001 for all but the faintest pairs. Our second major objective is, of necessity, speed. As mentioned above and shown in Table I, observing has been streamlined to the point where 200 or more objects can be observed in a single night; as many as 1200 observations may be obtained in one Kitt Peak observing run. The speckle camera is also used in separate projects at other facilities, including observing runs averaging five nights per month on the Perkins 72 in. reflector at Lowell Observatory. It is essential, therefore, that data reduction be streamlined as well, in order to keep up with the continual influx of new observations. Most of the reduction steps described below are, in fact, carried out in a batch process, with human interaction usually-needed only for selecting the binary peaks to be fitted. Alternatively, the entire reduction process may be carried out interactively for "problem" ACGs resulting from poorer observing conditions and/or fainter stars. All data reduction is carried out with the CHARA VAX 11/750 computer and image-processing system at GSU.

The memory of our VAC is limited to 16 bits (65K, and

TABLE I. Observing run statistics.

Run	Dates included	Number of nights	Number of observations	Number of resolved measures	Notes
Jun 82	1982.5027	3	244	83	
Oct 82	1982.7542 1982.7661	5	518 (+56)	219	
Jan 83	1983.0471— 1983.0511	2	254 (+53)	112	
	1983.0610	4	512 (+29)	167	ISIT
Jun 83	1983.4141- 1983.4342	8	750 (+ 57)	334	
Sep 83	1983.7097 1983.7163	3	460 (+28)	302	
Jan 84	1984.0520 1984.0636	5	692 (+48)	251	
`1 ay 84	1984.3724 1984.3870	6	866 (+165)	339	
Sep 84	1984.7007— 1984.7129	5	454 (+65)	229	
84/85	1984.9965 1985.0114	6	460 (+356)	100	
Jun 85	1985.4729 1985.4730	1	3	3	Lowell 24"
Jun/Jul 85	1985.4812 1985.4985	6	369 (+383)	206	
Nov 85	1985.8350 1985.8545	8	856 (+359)	435	
Total		62	6438 (+1599)	2780	

65 535 counts); any pixel exceeding this limit will "burst" and reset to zero. The central spike of an ACG will often burst one or more times; for a very bright star, less than a minute's worth of data may cause the entire central portion of the ACG to burst many times. The first step in reduction, therefore, must be to "deburst" the data—i.e., to add 65K counts to each pixel as many times as is necessary to restore it to its correct value. Each row of pixels is scanned from both ends toward the center to look for the sudden drop of > 65K that indicates bursting. This pixel is increased by $n \times 65K$, then the next inner pixel is compared to it, etc. The entire process is repeated for each column in a similar manner. Safeguards added to the reduction program recognize and correct most noise spikes and dropouts as well.

This debursting technique seems to work quite well at restoring nearly all pixels to their correct value. It can, however, break down for those pixels encompassing the central spike of the ACG; here the pixels have often burst so many times that it is impossible to correct them. This is not usually of major concern, however, since these pixels typically correspond to separations within the Rayleigh limit. Part (a) of Fig. 3 [Plate 44] illustrates an autocorrelogram of ADS 7158 after debursting. The central spike has been somewhat clipped in order to show the secondary peaks more clearly.

The second reduction step consists of removing the broad seeing-induced background slope from the ACG. Its purpose is twofold. First, this Gaussian-like background can noticeably alter the measured centroid of a secondary peak, even for a wide binary. The background slope varies greatly with distance from the center of the ACG, often in a nonradial manner owing to incomplete correction for atmospheric dispersion or to turbulence-induced asymmetry in the atmospheric point-spread function. Second, removal of this bright background is often necessary to permit detection of secondary peaks as faint as 1% of the background level.

Several background-fitting methods have been tested, including FFT's, radial least-squares polynomials, and a rotate-and-subtract algorithm. The technique now in use is a simple "boxcar" smoothing algorithm, which, in addition to being the most straightforward to calculate, seems to give the most consistently reliable results. A "smoothed" version of the ACG is created by replacing each pixel's value with the average value of an array centered on the pixel. The size of this array is adjustable; typical boxcar sizes are 9×9 or 11×11 pixels. This smoothed ACG is then subtracted from the original—the result is shown in Fig. 3(b).

The next step is to identify features thought to be secondary peaks arising from duplicity and to determine their centroid positions. A cursor is moved to each peak; the program then (1) scans about that position for a local maximum, (2) picks an array of points centered on that maximum, typically 3×3 or 5×5 pixels in size, (3) calculates a least-squares paraboloidal fit to these points, and (4) plots cross-sectional slices through that paraboloid, indicating the centroid position. The operator can then (1) accept the fit, (2) try fitting a different size array of points about the peak, (3) record an "eyeball-fit" cursor position (usually necessary only for very weak peaks or noisy data), or (4) reject the peak altogether. Measured (X, Y) centroid positions are finally converted to (ρ, θ) using scaling factors determined by the calibration techniques described in Sec. IV.

This rather simple reduction and analysis procedure may not provide the maximum sensitivity to large magnitude differences (we are currently experimenting with ways to detect very faint peaks against high background levels), but it has proved a very efficient and dependable means for processing some 15 million speckle frames containing nearly one terabyte of information.

IV. CALIBRATION

Calibration of our speckle data is accomplished by two different methods. The primary calibration continues to be made by placing a double-slit mask over the entrance aperture of the telescope and observing a bright single star-in effect turning the telescope into a Michelson interferometer (see McAlister 1977). The ACG of one such calibration observation is shown in Fig. 4 [Plate 45]; the background has been removed by the boxcar technique described in Sec. III. The separations of these well-defined peaks depend only on the geometry of the telescope/camera system; that is, on the focal lengths of the optical components, the physical separations of the slits in the mask, and the location of the mask in the beam. Thus a scaling factor can be determined that is limited only by the accuracy to which these quantities are known. Calibration accuracies of $\pm 0.6\%$ in separation and \pm 0.2 in position angle have been obtained (McAlister 1977). Variations in calibration occur from one observing run to the next owing to changes in the precise placement of the speckle camera at the Ritchey-Chretien focus of the KPNO4 m telescope. The range of these variations amounts to approximately 2% in angular separation and 0°5 in position angle. It is therefore necessary to secure calibration data at least once during every observing run.

A secondary calibration of our speckle data is made by observing bright binary systems whose orbits are either very well determined or of extremely long period (see McAlister and Hartkopf 1983 for a list of suggested binary "standards"). These observations give us a useful check on the double-slit calculations. More importantly, they also provide scaling factors when the speckle camera is used on telescopes not equipped with calibration masks, or for which focal lengths, etc., are not known to sufficient accuracy. Because of orbital motion, use of binary stars as a primary calibration can be risky, and we strongly recommend that an external primary calibration procedure be used in order to fully exploit the high precision inherent in speckle interferometry.

V. THE MEASUREMENTS

The observational material incorporated in this paper was accumulated on 61 nights at the 4 m Mayall telescope between June 1982 and November 1985. In Table I we summarize the observing statistics. All data were obtained with the ICCD camera as described in Sec. II, except those between 1983.06 and 1983.07, for which an ISIT acquisition camera borrowed from KPNO was used in place of the failed CCD. We suspect that the ISIT measures may be of somewhat degraded accuracy in comparison with the ICCD values due to the spatial distortions inherent in ISITs. We include in this paper three measurements obtained at the 24 in. refractor of the Lowell Observatory during an experimental exercise aimed at demonstrating the practicability of speckle interferometry at refracting telescopes. While the measurement of HR 7417 (β ¹ Cyg = McA 55 Aa) for 1985.4729 does show a systematic departure from the 4 m measurements that bracket it, we find that speckle interferometry works quite well at refracting telescopes. The fourth column

in Table I lists the number of stars for which speckle data were obtained in the observing interval. Numbers shown in this column in parentheses indicate additional observations that were secured in separate efforts, such as for minor plant duplicity, and, primarily, a sample of potential *HIPPAR*-*COS* targets, that have been reduced and analyzed but have not been incorporated in the present paper. The number of actual binary star measurements extracted from the data and given in colum five of Table I shows that only 43% of the data actually resulted in detection and measurement of double stars. This yield fraction is due to the exploratory nature of much of the program, in which we attempt to resolve systems never previously measured as "visual" binaries. Although this approach inevitably leads to a large collection of negative results, it also produced the first resolution of 116 binary stars with the new camera.

Binary stars are traditionally given a designation based upon the name of the discoverer. This practice works well in visual micrometry programs where a single person is responsible for the entire effort. Speckle-interferometry programs tend to be dependent on a group of people, and our program has evolved into a team effort since the retirement of the original photographic speckle camera. We have therefore chosen to give the designation "McA" to the 76 binaries first resolved by the photographic system, and "CHARA" to the 116 new systems detected with the ICCD speckle camera. Table II is a collection of basic information for the McA stars, while such parameters are given in Table III for the

TABLE II. Binary stars first resolved by the KPNO photographic speckle camera.

McA Number	HR/DM	Name	HD	SAO	ADS	α,δ	V	Spectral	Disc.	Binary
Number	Number		Number	Number	Number	(2000)	Mag	Classif.	Sep.	Type
1 Aa	HR 132	51 Psc	2913	109262	449	00323+0657	5.7	89.5V	0:271	Occn
2	HR 233	**	4775	11424		00507+6415	5.4	B9.5V+G0III-	0.045	Spm,SB
3	HR 439		9352	22389		01334+5820	5.7	KOID+89V	0.133	Spm
4	+08 0316		12483	110295	*	02026+0905	7.8	GSIV	0.224	Occn
5	HR 649	ξ ¹ Cet	13611	110408		02130+0851	4.4	G6II-IIICN	0.056	SB,Occn
6	HR 640	55 Cas	13474	12180		02145+6631	6.1	B9V+G0II-III	0.077	Spm
7	HR 763	31 Ari	16234	93022		02366+1226	5.7	F7V	0.078	SB,Occn
8	HR 788	12 Per	16739	55793		02422+4012	4.9	F9V	0.055	SB
9	HR 825		17378	23637		02495+5705	6.3	λ5Ιa	0.186	Spm,Var
10 Aa	HR 838	41 Ari	17573	75596	2159	02500+2716	3.6	BSVn	0.298	SB
11 Aa	HR 1043		21427	24062	2563	03301+5922	6.1	A2V	0.325	
12	HR 1129		23089	12891		03461+6321	4.8	GOIII+A3V	0.045	Spm
13 Aa	HR 1252	36 Tau	25555	76425	2965	04044+2406	5.5	GOIII+A4V	0.041	Occn,Spm
14 Aa	HR 1331	51 Tau	2.7176	76541		04185+2135	5.7	FOV	0.080	SB, Hyad
15	HR 1411	01 Tau	28307	93955		04286+1557	3.8	KOIIIbFe-0.5	0.116	SB,Occn,Hyad
16	HR 1497	τ Tau	29763	76721		04422+2257	4.3	B3V	0.173	occn,SB
17	HR 1569	6 Ori	31283	94197		04548+1125	5.2	AJV	0.334	Var
18 Aab,c	HR 1788	n Ori	35411	132071	4002	05244-0224	3.4	B1V+B2•	0.044	SB,Var
19 Aa	HR 1808	115 Tau	35671	94554	4038	05271+1758	5.4	BSV	0.095	Occn
20	HR 1876	∳¹ Orl	36822	112914		05348+0929	4.4	BOITI	0.053	SB
21	+38 1250		37614	58334	~~	05415+3811	8.3	λ+G	0.141	Spm
22	HR 2001		38735	150814		05474-1032	6.0	A4V	0.159	SB,Var
23	HR 2002	132 Tau	38751	77592		05490+2445	4.9	GSIIIV	0.043	Occn
24	HR 2130	64 Ori	41040	95166		06034+1942	5.1	BSIII	0.066	Occn,SB
25	+26 1082		41600	77980		06074+2640	7.0	B9.5V	0.097	Occn
26	HR 2304		44927	78349		06256+2320	6.1	A2Vn	0.054	Occn
27	HR 2425	53 Aur	47152	78571		06383+2859	5.8	B9npEu	0.054	Occn
28	HR 2605	40 Gem	51688	78947		06595+2555	6.4	BSIII	0.080	Occn
29	+37 1645		52823	59741		07043+3734	6.6	YON	0.158	Spm
30 Aa	HR 2846	63 Gem	58728	79403	6089	07277+2127	5.2	FSV+FSV	0.044	Occn,SB
31 Aa	HR 2861	65 Gem	59148	79434	6119	07298+2755	5.0	K2III	0.038	SB
32	HR 2886	68 Gem	60107	97016		07336+1550	5.3	AlVn	0.184	Occn
33	HR 3109	53 Cam	65339	14402		08017+6019	6.0	A2pSrCrEu	0.044	SB,Var
34	HR 3880	19 Leo	84722	98767		09474+1134	6.4	A7Vn	0.046	Occn
35	HR 4365	73 Leo	97907	99525		11158+1318	5.3	KJIII	0.068	SB
36	HR 4544		102928	138445		11510-0520	5.6	KOIIICN-0.5	0.173	Occn,SB
37	HR 4689	h Vir	107259	138721		12199-0040	3.9	A2IV	0.118	SB,Occn,Var
38 Aa	BR 4963	0 Vir	114330	139189	\$801	13100-0532	4.4	AlIVs+Am	0.485	SB,Occn
39	+16 2642		126269	101011		14241+1617	6.8	F5V+X2	0.053	Span
40	HR 5472		129132	83458		14403+2158	5.1	GOV	0.057	SB
41	-14 4182		136406	159188		15210-1522	7.5	KOIII	0.365	Occn
42 CE	HR 5985	β' Sco	144218	159683	9913	16054-1948	4.9	B2V	0.127	Occn
43	-21 4279		144641	184141		16077-2124	7.9	G 5	0.115	Spm
44	HR 6237	******	151613	30076		16453+5647	. 8	F2V	0.041	SB
45	HR 6388		155410	46524		17095+4047	5.1	KJIII	0.039	SB
46	-19 4547		155095	160326		17103-1926	7.0	B8.5V	0.127	Occn
47	HR 6469		157482	46664		17217+3958	5.5	F9Vn:	0.036	SB
48 Aa	HR 6485	p Her	157779	66000	10526	17237+3709	4.1	B9.5III	0.286	
49 Aa	+18 3500		163640	103226	10905	17564+1820	6.6	YOIII	0.088	
50	HR 6697		163840	85575		17572+2400	6.3	G2V	0.110	58
51	-20 5068	17 Sgr	167570	186575		18167-2032	7.1	G51V+A5	0.260	Occn,Spm
52	-17 5245		171347	161631		18351-1653	7.0	77X	0.156	Spm
53 Aa	HR 7059	5 Agl	173654	142606	11667	18464-0058	5.9	A2Vm	0.127	Spm,SB
54	+12 3818		178452	104515		19083+1215	7.5	GSIV+A2	0.118	Spm
55 Aa	HR 7417	B' Cyg	183912	87301	12540	19307+2758	3.1	K3II+B0.5V	0.444	SB, Spm
56	+58 1929		184467	31745		19311+5835	6.6	K1V	0.117	SB
\$7	HR 7478	♦ Cyg	185734	68637		19394+3009	4.7	G8III-IV	0.030	S 8
58	+18 4252		187321	105288		19487+1852	7.1	GOI+A	0.408	Spm
59 A.	+35 3930		190429	69324	13312	20035+3602	6.6	05.8	0.118	
60 Aa,B	HR 7744	23 Vul	192806	88428		20158+2749	4.5	KJIIICN-1	0.241	
61	+49 3310		196089	49782		20331+4950	6.7	70+00A	0.055	Spm

*

1

! .

ï

, ,

,

Ì

Ï

McA Number	HR/DM Number	Name	HD Number	SAO Number	ADS Number	≪,å (2000)	V Mag	Spectral Classif.	Disc. Sep.	Binary Type
62	HR 7922		197226	70367		20410+3905	6.5	BGIII	0.121	58
63 Aa	HR 7963	λCyg	198183	70505	14296	20474÷3629	4.5	85Ve	0.048	SB
64	HR 7990	µ Aqr	198743	144895		20527-0859	4.7	λ3m	0.049	S 8
65 Aa	HR 8047	59 Cyg	200120	50335	14526	20598+4732	4.7	Bine	0.215	SB,Var
66 Aa	HR 8059	12 Agr	200497	145064	14592	21041-0549	7.3	23V	0.071	
67 Aa	HR \$119	I Cep	202214	33210	14749	21118+6000	5.6	BOII	0.052	
68	HR \$264	ξAgr	205767	145537		21377-0751	4.7	እ7V	0.033	SB,Occr
69 A.	HR 8417	ξCep	209790	19826	15600	22037+6437	4.4	АЗж	0.055	SB
70 Ab	HR 8485		211073	72155	15758	22139+3944	4.5	KJIII	0.524	SB
71	HR 8572	5 Lac	213310	52055		22295+4743	4.4	MOII+B8V	0.122	SB, Spm
72	+80 0731		215319	3769		22394+8123	6.9	F8+A5V	0.170	Spa
73	HR 8704	74 Agr	216494	165359		22535-1137	5.8	B9111	0.071	Occn,SE
74 Aa	HR 8866	94 Agr	219834	165624	16672	23191-1327	5.1	GSIV	0.212	SB
75 Aab	HR 9003	¥ And	223047	53355		23460+4625	4.9	G515+A0V	0.265	Spm
75 Aac	HR 9003		223047	53355		23460+4625	4.9	G5ID+AOV	0.145	Spa
76	HR 9064	¥ Peg	224427	91611		23578+2508	4.7	MJIII	01191	-

TABLE II. (continued)

TABLE III. Binary stars first resolved by the GSU ICCD speckle camera.

CHARA Number	HR/DM Number	Name	HD Number	SAO Number	ADS Number	ه, ک (2000)	V Mag	Spectral Classif.	Disc. Sep.	Binary Type
1 Aa	+52 0019		761	21202	148	00122+5337	7.0	F 0	0:403	
2	+83 0020		5621	171		01037+8436	6.7	FSV	0.139	Spm
3	+67 0131		9015	11787		01308+6722	9.2	KO	0.247	c n
4 Aa	HR 526		11031	37536	1438	01492+4754	5.8	A3V	0.141	SB
5	HR 643	60 And	13520	37867		02132+4414	4.8	K3.5IIIBa0.5	0.187 0.496	SB SB,Var
6 Ap	HR 707	1 Cas	15089	12298	1860	02290+6724 02475+4416	4.5 6.7	ASpSr FSV+A	0.159	Spm
7	+43 0576		17245 19789	38335· 93327	<i>-</i> -	03114+1303	6.1	KOIIIp	0.533	Occn
8 9	HR 952 +28 0532	UX Ari	21242	75927		03266+2843	6.5	G5IV/V+KOIV	0.432	SB,Var
10	HR 1036		21335	93436		03271+1845	6.6	A3V	C.076	Occn, Hyad
11	+23 0496		23157	76103		03437+2339	7.9	X9V	0.232	Occn
12	+23 0523		23489	76173		03465+2415	7.4	A2V	0.230	Occn
13	+19 0662		25811	93759		04063+1952	8.6	FO	0.074	Occn
14	+23 0635		284163			04119+2338	9.4	ко	0.138	SB, Hyad
15	Ross 29	Gl 165	*			04120+5016	15.5	M5	0.989	Nearby Star
16	HR 1375		27742	76585		04235+2059	6.0	B8IV-V	0.182	Occn
17	+14 0721	VB 96	285931	94009		04340+1510	8.7	K1	0.147	SB, Hyad
18 Aa	HR 1458	88 Tau	29140	94026	3317	04357+1010	4.4	λ3	0.104	SB
19	HR 1528		30453	57444		04493+3235	5.9	A8m	0.041	Spm,SB
20	+14 0770	VB 120	30712	94159		04506+1505	7.7	G5	0.072	SB,Hyad
21	+43 1315		36948	40487		05373+4404	7.5	28+A0V	0.055	Spm SB
22	HR 2273	7 Mon	44112	133114		06197-0749	5.3 6.8	B2.5V GSIV	0.104	Occn
23	+23 1346		44926	78348 96097		06255+2327 06468+1646	6.7	F5+A5V	0.489	Occn,Spm
24	+16 1273		48954 51566	114692		06580+0218	7.7	λ2+G0V	0.910	Spa
25	+02 1483	61 Gem	58579	79391		07269+2015	5.9	F2Vn	0.030	SB,Occn
26 27	HR 2837 +08 1791		59604	115545		07309+0833	7.2	A2+G0V	0.261	Spm
28	+20 2159	40 Cnc	73666	80336		08402+2001	6.6	AIV	0.425	Overlum
29	+54 1323		233666	27352		09423+5328	9.3	GO	0.354	Halo
30	HR 3973	14 Sex	87682	118111		10068+0537	6.2	KIIII	0.132	Occn
31	+13 2274		91498	99185		10341+1222	7.7	A3V	0.192	
32	+12 2266		93993	99321		10511+1135	6.8	KOIII	0.429	Occn
33	HR 4291	58 Leo	95345	118610		11006+0337	4.8	KIIIICN-0.5	0.235	Occn
34 Aa	+30 2097		95515	62361		11018+2952	7.2	KOIII	0.242	
35	+22 2411					11516+2207	9.3		0.176	Halo
36	-04 3155	TY Vir	103036	138451		11518-0546	8.2	K2	6.234	Halo
37	HR 4668		106760	62928		12165+3304	5.0	KO.SIIIb	0.248	SB,Var
38	HR 4891	38 Vir	111998	139022		12532-0333	6.1	FSV	0.442	Occn
39 A.	HR 4921	44 Vĭr	112846	139086	8727	12597-0348	5.8	A3V	0.107	Occn
40	HR 5298	96 V1r	123630	158385		14090-1020	6.5	GEIII	0.287	Occn
41 AC	HR 5323	14 200	124570	100925		14141+1258	5.5	FGIV	0.190	SB
42 Aa	+02 2844		128563	120569	9323	14373+0217	6.6	F8V	0.210	
43	HR 5612		133484	45348		15031+4439	6.7	FGIV	0.166 *	Occn,SB,Va
44	-12 4227	~~~~~~	135681	159146	~~~~	15168-1302	7.1	A2V	0.193 0.333	Astrom, Var
45 Aa	+27 2477		136176	83756	9578	15183+2649	6.6 5.7	F8V 74V	0.217 *	
46	HR 5715 HR 5818		136729 139493	29487 29588		15201+5158 15360+5438	5.7	A2V	0.514 •	
47 48	-19 4165		139364	159402		15384-1955	6.8	F2V	0.271	Occn
48	HR 5858	26 T Ser	140729	101712		15447+1716	6.1	XOV	0.130 .	
50 A.	HR 5856		140722	183772	9775	15462-2804	6.5	F2IV	0,216	
51	HR 5895	36 Ser	141851	140801		15513-0305	5.1	A3Vn	0.126 *	
52 Aa	+13 3091	49 Ser	145958	102018	9969	16133+1333	6.7	G8V+K0	0.209	
53 Aa	HR 6103	ξ CrB	147677	65254		16221+3053	4.9	KOIII	0.153	Hyad
54	-16 4280		147473	159388		16229-1701	6.7	FOV	0.081	Occn
55	HR 6123	25 Her	148283	65290		16254+3724	5.5	A5V	0.195 .	

-

				1786	.E 111. (COI					
CHARA Number	HR/DM Number	Name	HD Number	SAO Number	ADS Number	α,δ (2000)	V Mag	Spectral Classif.	Disc. Sep.	Binary Type
56 B.	HR 6194	36 Her	150379	121774	10149	16406+0412	6.9	AJIV	0.145 *	
57	HR 6213	39 Her	150682	84543		16416+2655	5.9	FZIII	0.126 *	SB
58	HR 6286		152812	46349		16533+4725	6.0	K2III	0.292 *	
59 60 Aa	HR 6317		153653	121995		17005+0635	6.6	A7V	0.128 •	SB
61	HR 6383 HR 6412	********	155328	30262	10369	17083+5051	6.5	X1V	0.168 *	
62 A.	+58 0946		156208	122224 17568		17162+0211	6.2	A2V	0.136 •	
63	HR 6571	79 Her	160181	85264		17365+6823 17375+2419	9.2 5.6	NB A2Vn	0.292	Astrom
64	HR 6641		162132	46954		17471+4737	6.4	A2V5	0.080 *	C 12
65	HR 6656	30 Dra	162579	30591		17491+5047	5.0	A2V5	0.142 *	SB
66	-19 4777		163680	160947		17582-1916	8.7	K2	0.392	Occn
67 Aa	HR 6781	100 Her	166045	85753	11089	15078+2606	5.9	A3V	0.106 .	Var
68	HR 6851		168199	103578		18180+1347	6.3	BSV	0.054 *	
69	-16 4836		168701	161385		18218-1619	7.9	KOIII+A	0.089	Spri
70	HR 6906	********	169820	163709		18259+1458	6.4	B9V	0.118 *	•
71	HR 6928		170200	123516		18280+0612	5.7	BSIII-IV	0.078 *	SB
72 Aa	HR 6941	********	170580	123571	11399	18301+0404	6.7	82V	0.149 •	
73 74	HR 6956		170902	161580		18323-1439	6.4	A4V	0.040 *	
75	HR 6977		171623	103879		18352+1812	5.8	AOVn	0.151 •	SB
76 Aa	HR 6984 HR 6987		171780 171834	67134		18352+3427	6.1	85Vne	0.241 *	SB,Var
77 Ca	HR 7053	c' Lyr	173607	123693 67315	11496 11635	18367+0640	5.5	F3V	0.141 *	SB
78	HR 7035		173117	187216		18444+3937 18448-2501	5.1	A8Vn	0.184 *	Var
79	HR 7091		174369	86462		18492+2503		85:V	0.084	Occn
80	HR 7109		174853	104196		18520+1358	6.6 6.1	A1V BôVnn	0.219 *	SB
81	HR 7110		174866	142741		18530-0935	6.3	λ7Vn	0.104 *	
82 Aa	HR 7165	FF Aql	176155	104296	11884	18582+1722	5.4	FSID	0.178 * 0.154	SB,Var
83	HR 7263		178476	86843		19081+2142	6.2	F3V	0.177 *	30,Vai
84 Aa	HR 7272		178911	67879	12101	19091+3436	6.7	GIV	0.090 *	
85 Aa	HR 7307		180555	104668	12248	19164+1423	5.6	89.5V	0.051 *	
86 Aa	HR 7386		182807	87190		19254+2455	6.2	F7V	0.181 *	
87	HR 7436	*********	184603	68499		19336+3846	6.6	A3Vn	0.137 *	
88 Aa	HR 7480	45 Aq1	185762	143678	12775	19407-0037	5.7	AJIV	0.984 *	
89	HR 7554	V1339 Aq1	187567	125116		19503+0754	6.5	B2.5IVe	0.057. •	Var
90 91	HR 7571 HR 7684	V505 Sgr	187949	163080		19531-1436	6.5	AOV+F8IV	0.291 •	SB,Var
92	HR 7677		190781 190590	49152		20045+4814	6.0	AZIV	0.340 *	
93	HR 7755		192983	88163 32400		20050+2313	6.5	A5Vn	0.050 *	
94 A.	HR 7744	23 Vul	192806	88428		20157+5014 20158+2749	6.3 4.5	A2Vn	0.176 •	
95	HR 7752		192934	69720		20161+3854	6.3	K3IIICN-1 Alv	0.067	
96 Aa	HR 7767	********	193322	49438	13672	20181+4044	5.8	097	0.176 * 0.047 *	
97	HR 7801		194215	189264		20254-2840	5.8	K3V	0.121	SB
98	-2416056		194810	189321		20285-2410	6.9	GOV	0.234	Occn
99 Aa	HR 7840		195482	106195	13946	20312+1116	7.1	B8V	0.325	
100 Aa	HR 7949	e Cyg	197989	70474	14274	20462+3358	2.5	KOIII	0.067	SB
101	HR 7994		198802	163953		20531-1134	6.4	GIV	0.169 *	
102 103	HR 8246		205314	51019		21329+4959	5.8	AOV	0.043 *	SB
103	HR 8257		205539	89815		21353+2812	6.3	FOIV	0.184 •	SB
104	HR 8274 +08 4714	EE Peg	206027	89870		21387+2530	6.2	G9III	0.099 *	
106	HR 8455	EE Pøg	206155 210460	126971 107706		21400+0911	6.8	A4V+F5V	0.252	SB,Var
107	HR 8507		211575	146004		22103+1937 22181-0014	6.2	GOV F3V	0.465	
108	HR 8538	β Lac	212496	34395		22236+5214	4.4	F3V G8.5IIIbcal	0.104 * 0.219	
109	HR 8553		212978	72358		22274+3949	6.1	B2V	0.185 *	
110	HR 8574	38 Peg	213323	72406		22300+3234	5.6	89.5V	0.155 *	
111	HR 8581		213429	146135		22313-0633	6.1	F7V	0.094 +	
112 Aa	HR 8603	8 Lac	214168	72509	16095	22359+3938	5.7	B2Ve	0.042 *	SB,Var
113	+68 1319		214606	20179		22373+6913	7.5	A3+GOV	0.487	Spm
114	HR 8617		214558	52211		22383+4511	6.4	G2III+A4V	0.114 *	
115	HR 8690	14 Lac	216200	52412		22504+4157	5.9	B3IV:•	0.965 *	Var
116	HR 8734		217107	146412		22583-0224	6.2	GSIV	0.457	Occn

TABLE III. (continued)

CHARA stars. References to the discovery papers for the McA stars can be found in the catalog of McAlister and Hartkopf (1984). The CHARA stars include 52 objects resolved in our bright-star survey (Paper I) and 64 systems appearing in this paper. An asterisk by the discovery separation in Table III indicates the stars from Paper I. The last column in Tables II and III shows whether the object is a spectroscopic (SB), composite spectrum (Spm), occultation (Occn), or astrometric (Astrom) system, or whether it is a member of the Hyades cluster (Hyad), a variable star, an overluminous star, or a halo-population star. The halo stars were selected from the sample of extreme metai-poor stars of Bond (1920). The average V magnitude of the CHARA stars is 6.8 when the bright star sample of Paper I is excluded. This value is 1.1 mag fainter than the average value

of V for the McA stars. Even though we can now detect faint binaries, as demonstrated by the discovery of the new companion to Ross 29, the ICCD speckle camera continues to be productively used on brighter stars.

The new speckle measurements of binary stars are presented in Table IV, where we continue the format used in previous papers and the catalog of McAlister and Hartkopf (1984) except that we give HD numbers on the identification line, omitting SAO numbers. The coordinates are for equinox of 2000.0, but the position angles have not been corrected for precession and hence are based upon the equinox for the epoch of observation shown as the fractional Besselian year. The reader should also keep in mind that autocorrelation analysis of speckle data leads to a 180° quadrant ambiguity in position angle. We have selected the appropri150

.

3

)

 \equiv

TABLE IV. Binary star speckle measurements.

ADS	32	STF 3056 A	B 225220	00046+3416	ADS	434	STT 12	2772	00318+5432
		1983.7104	143?2	0:695	i		1982.7545	185?8	0:474
		1984.7069	143.0	0.695	Í		1982,7576	185.8	0.473
		1985.8429	142.5	0.704	i		1983.7104	187.1	0.461
ADS	61	STF 3062 A	B 123	00062+5826	i		1984.0547	187.1	0.456
		1982.7601	292.5	1.399	1		1984.0602	186.8	0.461
		1983.7104	294.6	1.420	i		1984.7015	187.3	0.457
		1984.7069	296.6	1.415	i		1984.9991	187.4	0.455
		1985.8483	298.7	1.426	i		1985.8402	187.3	0.457
λDS	102	STF 2	431	00091+7943	i +26	007:		2854	00320+2740
		1982.5087	24.8	0.606	1		1984.0627		0.131
		1982.7576	25.0	0.616	1		1985.8455	198.3	0.054
		1983.0688	24.2	0.603	ADS	449		2913	00323+0657
		1984.0547	24.8	0.616	1	••••	1983.7104	92.6	0.168
		1984.7015	25.2	0.621	1		1984.7014	88.4	0.138
		1985.8429	24.0	0.636			1984.9991	87.4	0.130
ADS	143	STF 7	709	00116+5558			1985.8429	82.9	0.104
		1985.8483	212.6	1.290	ADS	467	Ho 3	2993	00335+4206
ADS	147	Bu 255	744	00119+2825	1 105	105	1985.8401		0.264
AUJ		1983.7104	77.4	0.524	ADS	400		124.8 3196	00352-0336
		1985.8429	76.0	0.525	1 103	130			
λDS	144	Bu 1026	761	00122+5337	1		1982.7603	243.9	0.255
AD3	7 4 0		34.7		1		1982.7657	244.6	0.257
		1982.5060		0.127	1		1983.7104	260.7	0.287
		1982.7576	33.6 43.3	0.135	1		1984.7014	273.7	0.287
		1983.7104		0.117	1		1984.9991	277.3	0.280
		1984.0547	53.2	0.129	1	400	1985.4985	285.7	0.269
		1984.7015	55.6	0.084	ADS	493			1 00358+4901
100		1985.8455	86.2	0.053	ł		1983.7104	317.7	0.209
ADS	140	CHARA 1 Am		00122+5337	!		1984.0547	316.5	0.210
		1982.7576	0.0	0.403	!		1984.7015	317.8	0.211
		1983.7104	3.9	0.322	1		1984.9991	318.5	0.210
		1984.0547	27.5	0.210			1985.8401	317.5	0.212
ADS	19.1	A 1256 AB	1082	00152+4406	ADS	504		3304	00366+5608
		1982.5088	62.7	0.137	!		1983.7104	34.7	0.433
		1983.7104	67.1	0.126	1	,	1984.7015	34.6	0.430
		1984.7015	65.7	0.114	1		1985.8402	33.4	0.433
		1985.8401	67.8	0.110	HR	178		3883	00416+2438
_		1985.8455	67.9	0.110	1		1982.7601	16.1	0.172
ADS	207	STF 13	1141	00163+7657			1984.9991	29.4	0.142
		1982.5088	59.8	0.892	ADS	684		4777	00504+5038
		1982.7600	58.6	0.893	1		1985.8403	241.4	0.836
		1983.0688	58.5	0.886	HR	233		4775	00507+6415
		1984.0547	58.4	0.885	1		1984.7015	342.8	0.028
		1985.8429	57.8	0.902			1984.9993	329.8	0.049
ADS	238	A 1803 AB	1317	00173+0852	ADS	701		4934	00516+2238
		1985.8429	142.4	0.051	1		1983.7106	169.8	0.079
ADS	243	A 803	1360	00182+7256	1		1984.9993	168.3	0.093
		1983.0688	272.0	0.180	ļ.		1985.8457	171.5	0.101
		1983.7104	276.7	0.189	1		1985.8538	173.5	0.102
		1984.0547	275.8	0.176	ADS	732		5143	00532+0406
		1984.7015	278.1	0.192	ļ		1983.0690	40.1	0.311
		1985.8402	279.1	0.196	1		1983.7106	43.8	0.325
	-	1985.8456	278.5	0.198	I		1985.8313	44.0	0.326
ADS	328	Hu 506	1976	00243+5201	+42	0196		5178	00542+4318
		1983.7104	46.1	0.172	1		1983.0690	108.6	0.159
		1984.0547	45.6	0.173	1		1983.7106	109.6	0.159
		1984.7015	47.0	0.169	1		1985.8403	105.6	0.165
		1984.9991	47.2	0.168	ADS	746	STT 20 AB	5267	00546+1912
		1985.8402	47.8	0.168	1		1982.7601	216.9	0.448
		1985.8455	47.6	0.168	1		1983.0690	215.6	0.444
BR	108	B 1909	2475	00283-2020	I .		1983.7106	216.3	0.448
		1982.7657	175.7	0.071	1		1984.9966	214.2	0.447
ADS	382	A 1504 AB	2471	00287+3718	1		1985.8484	212.4	0.455
		1983.7104	38.5	0.525	ADS	749	Hu 802	5259	00549+4924
		1984.7014	38.3	0.521	1		1983.0690	217.4	0.336
		1985.8401	38.0	0.529	i		1983.7106	219.0	0.350
					i		1984.7017	219.2	0.343
					i		1984.9965	218.1	0.345
					i				
					1		1304 33337	41/12	0.349
					i		1984.9993 1985.8456	217.5 218.7	0.349 0.345

695

ł

Sec. 1

					TV. (commued	,			
ADS	755	STF 73 AB	5286	00550+2338	ADS	955	Bu 303	6886	01096+2348
		1982.7601	26395	0:633	i		1983.0690	29193	07643
		1983.0690	265.9	0.630	i		1983.7159	290.8	0.651
		1983.7159			i		1984.7043	290.7	0.649
		1985.8484	274.5	0.671	i			290.3	0.652
ADS	784	Bu 1099 AB	5408	00568+6022	i		1985.8484	290.3	0.652
		1982.5088	314.1 312.0 312.7 315.6	0.205	Í ADS	950			
		1982.7601	312.0	0.201	i				0.058
		1983.0690	312.7	0.217	i		1984.7045 1985.8403	152.0	0.058
		1984.0547	315.6	0.210	Í ADS	103	9 Ru 520	7695	01178+4946
		1984.7015	317.4	0.213	i		1983.0690	164.3	
		1984.9965	318.2	0.219	i				0.294
		1984.9993	317.8	0.214	i		1983.7106 1984.7043 1985.8430	165.6	0.296
		1985.8402	319.8	0.228	i		1985.8430	164.4	0.302
ADS	819	A 1902	5781	00593-0040	ADS	104	D STF 102 AB	7710	
		1983.7106	176.5	0.285	i				
		1985.8403	179.3	0.302	i		1983.0690 1983.7106 1984.7043	280.0	0.489
ADS	832	A 926	5851	01011+6021	i		1984.7043	279.8	0.487
		1983.7104	321.2	0.376	i		1984.9966	280.1	0.492
		1985.8402	322.5	0.375	i		1985.8430	279.2	0.492
+34	016	4 Cou 854	5955	01014+3535	+32	0225) Cou 663	7854	
		1984.9993 1985.8402 A 1902 1983.7106 1985.8403 A 926 1983.7104 1985.8402 4 Cou 854 1983.7106	14.6	0.131	i		1983.0690	173.9	
		1985.8457	7.4	0.132	i i		1983.7106	175.5	0.302
ADS	836		5839	01015+6921	l l		1984.7043	175.2	0.306
		1982.7600		0.395	1		1985.8430	174.7	0.311
		1983.7104	54.2	0.398 0.394	ADS	1081	L STF 113 A,	BC 8036	
		1984.0547 -	54.2	0.394	l l				1.588
		1984./015	53.7	0.398	1		1982.7657	14.4	1.580
		1984.9965	56.2 54.0	0.397	1		1983.7106	15.9	1.548
			54.0	0.404			1985.8430	16.2	1.560
ADS	859		6084	01029+5148	ADS	1081	l Fin 337 BC	8036	01198-0029
		1983.0690	2.3		i i		1982.7629	127.8	0.132
		1983.7106	5.3	0.355			1982.7657 1983.7106 1985.8430	127.6	0.121
		1984.7015	5.2	0.352	1		1983.7106	132.6	0.102
		1985.8403	5.2	0.352	1		1985.8430	246.6	0.115
ADS	\$62			01030+4723) ADS	1087	7 HJ 2036	8071	01199-1548
		1985.8483	174.1	0.980	1		1982.7629		2.077
+6 Z	019]	L MLR 87	6129	01036+6341	ADS	110	5 STF 115 AB	8272	01233+5808
		1983.0690	100.8	0.305			1983.0690 1983.7107	125.1	0.113
		1983.7104	101.0	0.306			1983.7107	120.5	0.067
		1984.0547	99.8	0.306	1		1984.7045 1985.8430	326.2	0.032
		1984.7015	100.4	0.306					0.081
		1985.8402	95.1	0.308	ADS	1123		8556	
VD2	• / 1	Hu 517	~~~~~	01037+5026	ļ		1982.7629	213.0	0.353
		1983.0690	25.5	0.542	1		1982.7657	212.9	0.354
		1983.7106	27.4	0.541	1		1983.7106	213.3	0.334
		1985.8403	27.0	0.547	1		1304.3300	211.2	0.295
		CHARA 2	5621		!		1984.9994 1985.8429	211.2	0.297
ADS		1984.0547	90.3				1985.8429	208.9	0.269
AD3	•/3		6264 94.5	01039+3528	I ADS		A 1910 AB		01296+2250
				0.286			1983.7106		0.029
			95.6	0.291	+67	0131	CHARA 3 1983.0691	9015	
			96.3	0.290		420	M - A A	344.2	0.247
		1984.9966	96.5	0.290	HR	433	McA 3		3 01334+5820
200	914	1985.8457 A 931 1985.8456 A 1516 AB	JU.J 2863	01070-4744			HCA 3 1984.7045 1985.8430	117.8	0.125
RU3	340	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200 A	0.070			1985.8430	113.6	0.119
Ane	91#	1 1616 1m	7V.4 2892	01071-3430	ADS			9454	
AU3		1985.8456	62.7	0.145			1983.0663	307.4 308.1	0.791
ADS	936	AC 13 AB	6757	01088+4510			1983.7107		
		1983.0690	263.0		1		1985.8430	307.6	0.798
		1983.7106	264.0	0.584 0.591	I AUS		A \$17	5841	01371+4843
		1985.8484	263.1	0.595	1		1983.0662	30.6	0.456
ADS	940		6811	01093+4715			1983.7106	31.7	0.457
		1983.0690	134.7	0.470	1		1985.8430 1985.8485	30.5	0.464
		1983.7159	135.7	0.465	I HR		1985.8405 Kui 7	30.2	0.462
		1984.0602	135.8	0.463			Kui 7 1952.7657	10009	01376-0924
		1984.9966	134.6	0.463			1952.7657	49.7	0.070
		1985,8484	133.4	0.475	UV C		1985.8429 GL 65	2.2	0.096
				****	1 04 0		GL 65 1982.7548		01348-1756
					A De		1982.7548 Hu 1030	52.4	1.971 01389+7644
					1 405		1983.0663	9721 319.2	
							1983.7107	320.2	0.736 0.728
					ł		1985.8430	319,7	0.739
									<u> </u>

TABLE IV. (continued)

....

.

•

Ì

ADS 1286 A 1266	10031	01392+5436	ADS	1630 STT 38 BC	12534	02035+4223
1983.0663	23510	07221	i	1982.7605	10898	0:578
1983.7130	236.0	0.224	i	1983.7159	108.8	0.575
1984.7045	235.7	0.219	i	1985.8485	107.6	0.579
1985.8430	236.6	0.220	i +69	0129 MLR 375	12300	02038+7013
ADS 1309 A 1267	10146	01405+5457		1983.0663	207.9	0.264
1983.0663	0.0	0.258	1	1983.7107	210.8	0.255
1983.7107	2.1	0.261		1985.8430	209.0	0.240
1984.7045	2.3	0.261	1	0379 Cou 1067	13102	02090+3541
1985.8430	1.8	0.265	1 737	1985.8486		
ADS 1318 Kr 12	10196	01415+6240			14.0	0.101
1983.0663	294.3		i vns	1682 STF 216	13196	
		0.431		1983.7107	13.4 .	
1983.7107	294.6	0.433	1 48	649 McA 5	13611	
1985.8430	293.8	0.427		1985.8375	42.2	0.047
ADS 1345 A 1	10508	01424-0646	HR HR	643 CHARA 5	13520	02132+4414
1983.7106	242.3	0.762	1	1983.7130	180.4	0.187
ADS 1359 Bu 870	10543	01443+5732	ADS	1709 STF 228	13594	02141+4729
1985.8430	0.9	0.845	!	1983.0663	265.7	1.048
ADS 1438 CHARA 4 Am		01492+4754	1	1984.7070	271.3	1.054
1984.7070	14.0	0.141	E E	1985.8538	271.7	1.062
+25 0311 Cou 452	11245	01510+2551	HR	640 MCA 6	13474	02145+6631
1983.7106	181.6	0.271	1	1982.7657	28.3	0.073
1984.7046	181.6	0.267	- F	1983.7107	33.6	0.078
1985.8375	179.6	0.291	i	1985.8430	61.5	0.057
ADS 1461 A 951	11126	01512+6021	HR HR	657 Cou 79	13872	
1983.0663	217.4	0.426	1	1982.7577	253.0	0.154
1983.7107	218.8	0.431	i	1982.7659	252.3	0.159
1984.7045	218.9	0.431	i	1983.0663	253.4	0.166
1985.8431	218.5	0.438	1	1983.7107	247.5	0.159
ADS 1473 Ho 311	11284	01512+2439		1984.0630	245.4	0.151
1985.8538	290.3	0.065	300	1729 A 2013	13959	02158+0638
ADS 1490 I 450	11435	01519-2309	1 405			
1984.7070	219.4	0.506	1	1982.7577	127.1	0.294
ADS 1509 A 953	11472	01547+5955	1	1983.7131	123.4	0.323
	67.6		1	1985.8538	117.7	0.390
1983.0663	68.7	0.777	+40	0476 Cou 1670	14137	02183+4120
1983.7107		0.787	. !	- 1983.7131	49.6	0.149
1985.8431	67.7	0.793		1984.7045	48.6	0.144
ADS 1522 STF 183 AB				1985.8486	51.7	0.148
1983.0662	175.4	0.264	ADS	1763 Egg 2 Am	14189	02186+4017
1983.7131	175.0	0.275		1985.8436	105.0	0.112
1984.7046	173.3	0.279	+69	0144 MLR 377	14382	02231+7021
1985.8375	171.2	0.289	1	1983.0663	152.5	0.565
ADS 1538 STP 186	11803	01558+0151		1983.7107	153.4	0.563
1982.7629	56.8	1.259		1984.9967	153.2	0.586
1982.7657	56.8	1.255	1	1985.8541	152.6	0.586
1983.7131	58.0	1.242	ADS	1913 A 660	سر سر خد هن خد هن	02314+4234
1984.7070	57.8	1.230		1983.0663	309.6	0.470
1984.9967	58.0	1.219	I	1983.7131	310.5	0.458
ADS 1548 A 819 AB	11849	01570+3101	ADS	1865 A 2329	15285	02277+0426
1983.0662	194.3	0.352	1	1982.7577	270.0	0.372
1983.7131	198.6	0.352	1 I	1983.0663	273.5	0.402
1984.7045	200.3	0.346	1	1983.7131	276.3	0.427
1985.8375	202.1	0.331	i	1985.8375	288.0	0.475
ADS 1554 A 1526	11869	01576+4433	j HR	719 Kui 8	15328	02280+0158
1983.0662	254.9	0.138	i	1982.7577	33.9	0.494
1983.7130	260.4	0.138	i	1982.7659	33.6	0.496
1984.7045	259.9	0.134	i	1983.0663	33.7	0.483
ADS 1598 BU 513 AB	12111	02019+7054	1	1983.7131		
1983.7130	213.9	0.729	1	1984.0575	35.4	0.490
		0.747	1	1984.9967	35.0	0.489
1985.8430	220.3	0.765	1		35.0	0.490
			1 100	1985.8375	34.8	0.499
		7 02020+0246	I AUS	1860 CHARA 6 Ap		02290+6724
1982.7549	283.1	1.910	1	1982.7576	173.5	0.496
1983.7131	282.7	1.903		1985.8540	160.4	0.414
1984.7070	282.1	1.886	ADS	1938 STT 42 AB	15703	02333+5218
1984.9966	281.8	1.382	!	1982.7604	282.2	0.149
ADS 1613 A 1813 AB	12376	02022+3643	I	1982.7657	282.2	0.159
1985.8486	4.9	0.159	1	1983.0663	281.3	0.160
+08 0316 NCA 4	12483	02026+0905	1	1983.7107	282.6	0.153
1982.7603	139.6	0.215	1	1984.7046	284.0	0.147
1983.0662	138.2	0.204	1	1985.8540	284.5	0.142
1983.7131	139.5	0.216	- F			
1985.8538	140.5	0.223	1			

TABLE IV. (continued)

ļ

TABLE IV. (continued)

	······			· · · · · · · · · · · · · · · · · · ·					
+79	0075 MLR 449	15416 192?9	02361+7944	ADS		524 AB		17904	02537+3820
	1983.0663 1983.7107	192.9	01255 0.267		1982.7		2959		01183 0.195
	1985.8541	195.5	0.266		1982.7 1983.0		293.		0.195
HR	763 McA 7	16234	02366+1226		1983.7		289.		0.191
	1983.7107	143.6	0.084		1984.0		288.		0.189
	1983.7159	142.9	0.093	i	1985.8		279.		0.190
	1984.0575	131.3	0.058	HR	854 τ	Per		17878	*02543+5245
	1985.8376	130.6	0.063	1	1982.7		92.		0.053
AD5	1992 A 1278	16283	02383+4604	!	1985.8		99.		0.067
	1983.7133 1984.7046	160.5 158.1	0.112	+59		R 520		17911	02552+5950
	1985.8540	154.8	0.117 0.119		1983.7 2246 Bu	133 1173 AB	354.	2 18442	0.121 02586+2408
ADS	2005 A 450	16453	02384-0125	1 703	1983.0		85.		0.210
	1983.7131	198.7	0.354	ł	1983.7		86.		0.219
	1985.8539	196.6	0.357	i	1984.0		85.		0.220
ADS	1985 STF 278	16096	02389+6918	i	1985.8	403	86.	7	0.226
	1983.0663	34.5	0.495	ADS	2253 Bu	525		18494	02589+2137
	1983.7107	37.5	0.504	ļ	1982.7		258.		0.493
•	1984.7070	37.0	0.502	!	1982.7		258.		0.493
ĦR	1985.8541 7 81 Fin 312	37.3 16620	0.500 02396-1153	!	1983.0		259.		0.488
un	1982.7578	235.3	0.097	1	1984.0 1984.7		259. 260.		0.492 0.498
	1982.7659	239.1	0.086		1984.9		260.		0.497
	1983.0471	273.1	0.104	i i	1985.8		260.		0.506
	1983.7131	59.4	0.100	ADS		T 333 AB			82592+2120
	1984.0575	92.7	0.120	Ì	1982.7	550	208.		1.432
	1985.8539	140.0	0.071	ļ	1982.7		208.		1.433
ADS	2028 A 1928 1982.7577	16619	02398~0009	1	1983.0		207.		1.430
	1983.0663	238.6 238.8	0.199 0.199	1	1984.7		209.		1.415
	1983.7131	245.1	0.205	ł	1984.9		208.		1.404 1.416
	1985.8539	255.1	0.174	ADS		1529		18549	03006+4753
ADS	2044 See 19	16753	02405-2408		1983.7		165.		0.177
	1984.7070	291.9	0.299	Í	1984.0	520	166.	4	0.179
+38	0536 Cou 1371		02409+3905	l.	1985.8		170.		0.180
	1985.8540	305.2	0.067	I ADS		827		18424	03024+7236
+40	0568 Cou 1511 1982.7605	16656 66.6	02415+4053 0.152		1983.0		252.		0.221
	1982.7659	67.0	0.141	I HR	1983.7 915 v	Per	251.	18925	0.225 03048+5330
	1983.7131	58.9	0.133	1	1982.7		64.		0.237
	1984.7046	50.4	0.115	i	1982.7		64		0.240
	1985.8540	31.2	0.103	Ì	1983.0		65.		0.243
HR	788 HcA 8	16739	02422+4012		1983.7		65.		0.247
	1982.7659	166.7	0.049		1983.7		65.		0.246
	1983.7131 1984.0576	151.4 94.6	0.056 0.038		1984.0		65.		0.245
	1984.0602	95.9	0.047		1985.0 1985.8		65.		0.247 0.239
	1984.7046	143.8	0.051	ADS		7 346 AB			03055+2515
	1985.8376	106.1	0.048		1982.7		62.		0.214
HR	793 <i>y</i> Ari	16811	02424+2000	i i	1983.0		64.3		0.221
	1982.7659	105.3	0.052	1	1983.7		64.		0.228
+43	0576 CHARA 7	17245	02475+4416	1	1984.0		64.3		0.230
Ane	1984.0576 2159 McA 10 Am	104.1 17573	0.159 02500+2716		1985.8		65.		0.248
105	1984.7046	1.8	0.122	+01	0520 ML 1983.7	R 35	339.	18990	03062+6146 0.215
+01	0502 Vou 36	17780	02513+0141		1985.8		338.3		0.220
	1983.7131	9.1	0.386	ADS		1175			03062+4342
	1985.8375	9.3	0.386	1	1983.7		274.		0.606
ADS	2185 A 2906 AB	17743		1	1985.8	378	274.3	2	0.613
	1983.0636	146.0	0.158	l HR	952 CH				03114+1303
		136.6	0.150		1982.7		24.3		0.533
AD.C	1985.8540 2185 STF 314 AB	136.0	0.164 02529+5300	+17		u 359			03143+1921
	1982.7576	309.8	1.563	1	1983.7 1985.8		171.2		0.162 0.164
	1983.0636	310.0	1.577	i Ang	2440 Bu				0.164
	1983.7133	310.0	1.543	103	1982.7		10.5		0.940
	1984.0520	310.0	1.531	i	1985.8		11.1		0.950
	1985.8540	309.9	1.552	i					
	······································								

698

699 MCALISTER ET AL. : SPECKLE OBSERVATIONS OF BINARIES

.

.

•

					والمحري برجوب المحرورية	يستعمي المتعرفين المتعرفين
ADS	2436 STT 52 AB 1982.7578	20104 7294	03175+6539	ADS 2799 STT 65	239\$5	03504+2536
	1983.0636	72 ? 4 73 . 6 72 . 9 72 . 2 71 . 5	0,430	1984.0521	23985 20996 210.2 210.4	0:492
	1983.7133	72.4	0.435	1984.9998	210.2 210.4	0.474
	1084 7070	72.2	0.455	1985.8351	210.4	0.448
	1984.9967	71.9	0.455	HR 1199 Kui 15	24263	03519+0633
	1985.8378	71.9 71.5	0.461	1 1982.7632	208.8	0.647
ADS	2463 See 23	20610	03184-2231		208.6	0.645
		20610 62.1	0.233		208.9	0.647
	1982.7632 1983.0664 1005 Cou 259	66.9	0.209	1 1084 7077	209.3	0.640
HR	1005 Cou 259	20756	03212+2109	1985.8351 HR 1199 Kui 15 1982.7632 1982.7660 1983.0472 1984.0521 1984.7072 1984.9967 1985.8351 ADS 2911 Eu 27 1984.9966 1985.8433 ADS 2928 A 1937 1985.8433 +19 0662 CHARA 13	209.3	0.040
	1983.7134	234.4	0.732	1985 8351	209.2	0.040
GL	140 Wor 4			ADS 2911 85 27	36034	
	1983.7134	349.2		1 1984.0521	20034	0333740348
	1985.8431	349.2 347.9	2.046	1984.9996	307 5	0.295
+28	0532 CHARP. 9 1985.8431	21242	03266+2843	1985,8433	300 0	0.303
	1985.8431	63.0	0.432	ADS 2928 A 1937	25248	0400840606
ĦR	1036 CHARA 10 1985.8403	21335	03271+1845	1985.8433	200.5	0 134
	1985.8403	109.4	0.076	+19 0662 CHARA 13	25#11	0406341052
+19	0537 Cou 260	21437	03280+2028	1985.8406	66.1	
	1982.7632	22.5	0.217	1 ADS 3000 No 1363	26082	04060 3300
	1983.0636	23.3	0.220	1983.0636	115.2	0.412
	0537 Cou 260 1982.7632 1983.0636 1983.7134	23.7	0.219	1983.0636 1984.7072	117.0	0.426
	x 3 0 4 + V 3 X X	22.9 23.1	0.221	+33 0795 Cou 1082	25976	04081+3407
	1985.8431	23.1	0.223	1984.0522	61.8	0.290
ADS	2538 A 980	21203	03283+6015	1984.0522 1985.8405	60.5	0.285
	1983.0471	21.4	0.249 0.249	ADS 3007 A 998	25987	04089+4614
	1983.7133	19.8		1 1983.0472	266.4	0.177
100	1985.8451	14.1	0.261	1 1985.8405 ADS 3007 A 998 1983.0472 1983.0472 1983.0637 1984.0521 1935.8405 1935.8405 ADS 3032 A 469 1985.8406 1985.8406 +42 0904 Cou 1702	268.3	0.170
AD2	2563 STF 389 AB	21427	03301+5922	1984.0521	265.3	0.169
100	1982.7578			1935.8405	261.0	0.165
AU3	2616 STF 412 AE	22091	03345+2428	ADS 3032 A 469	26294	04094-0756
	1983.0636	4.1	0.586	1983.0636	105.2	0.146
	1983.7134	2.4	0.581	1985.8406	109.8	0.166
	1984.0521	3.5	0.580	+42 0904 Cou 1702	26139	04100+4235
	1984.7077	3.7	0.581	1985-8405	123.5	0,167
	1984.9967	3.7	0.586	1985.8488	124.6	0.175
	1982.7609 1983.7609 1983.0636 1983.7134 1984.0521 1984.7072 1984.9967 1985.8351 2628 Bu 533	2.7	0.300	1985.8406 +42 0904 Cou 1702 1985.8405 1985.8405 ADS 2963 STF 460 1982.7632 1984.0521 1984.7072 1985.8351 +31 0718 Cou 880	25007-	8 04101+8042
ADS				1 1982.7632	114.1	0.785
	1982.7609	43.5	1.082	1 1983.0472	114.4	0.777
	1983.7134	44.4	1.070	1984.0521	114.9	0.762
	1984.7072	44.4	1.068	1984.70/2	116.5	0.770
	1984.9967	44.4 44.4 44.1 43.6	1.061		116.7	0.775
	1985.8433	43.6	1.078	+31 0718 Cou 880 1984.7072 1984.9968 1985.8406	26385	04117+3133
ADS			03361+4221 0.583		45.5	0.694
	1983.7134	315.0	0.583		40,1	0.687
	1983.7134 1984.0521 1984.7072 1984.9967 1985.8433	315.1	0.586	+23 0635 CHARA 14	384163	0.700 04119+2338
	1984.7072	316.3	0.586 0.594	1 1985.8406	86.3	04119+2338
	1984.9967	316.3	0.594	Ross 29 CHARA 15	*****	04120+5016
	1985.8433	316.3 317.0	0.609	1982.7579	77 4	
ADS	2008 STF 425	22692	03400+3408			
	1982.7605	73.5	1.942	1983.0637 ADS 3053 STT 74 1984.0522 1984.0603 1984.7072 1984.9968 1985.8488 ADS 3064 1982.751	26547	6412340838
-	1985.8541		1.962	1984.0522	276.2	0.274
+31	0637 Cou 691	~~~~~	03423+3141	1984.0603	277.0	0.274
	1983.7134	91.3	0.138	1984.7072	275.4	0.262
	1983.7134 1984.0521 1985.8405 0496 CHARA 11	91.0	0.120	1984.9968	275.8	0.256
	1985.8405	91.7	0.110	1985.8488	275.8	0.246
+23	VIJO CHARA 11	23157	03437+2339	ADS 3064 A 1938	26690	04136+0743
	x30317134	113.1	0.232	1982.7551	356.8	0.073
745	0512 Cou 560	23387	03456+2420	1982.7661	356.5	0.066
	1982.7609	0.8	0.242	1984.0522		0.097
	1983.7134	1.3	0.238	1984.0603		0.094
	1984.0521	0.5	0.241	1		
	1984.9996	1.6	0.243	ļ		
	1985.8405	0.4	0.238	1		
+43	0523 CHARA 12	23489	03465+2415	ļ		
100	1983.7134	51.6	0.230	1		
AUS	2765 STT 62	23406	03488+6445	ļ		
	1983.7133	310.7	0.311	ļ		
				•		
	1984.0521 1985.8405	310.9 314.0	0.329 0.328			

TABLE IV. (continued)

699

•

•

---- -

HR 1331 McA 14 As	27176	04185+2135	HR 1391 Pin	342 Aa 27991	04256+1557
1982.7550	191?8	07134	1982.76		07052
1982.7579	192.6	0.136	1983.04		0.092
1982.7605	190.4	0.132	1983.71	· · · · · -	0.093
1982.7633	192.9	0.138	1983.71		0.074
1982.7661	193.4	0.131	1984.05		0.086
1983.0472	186.2	0.133	1984.05		0.088
1983.0637	187.2	0.150	1984.06		0.081
1983.7108	182.1	0.146	1985.83		0.093
1983.7135	179.6	0.148	1985.84		0.096
1984.0522	175.0	0.145		311 28312	04269-2405
	174.8	0.145	1983.05		0.467
1984.0576					0.457
1984.0603	172.7	0.135	1983.71		0.467
1984.9998	160.5	0.138	1984.05		
1985.8378	145.7	0.114	1984.70		0.465
1985.8406	144.5	0.120	1985.83		0.468
1985.8541	145.7	0.120		1186 28217	
ADS 3105 STT 75	26882	04186+6029	1983.05		0.221
1983.0472	178.2	0.413	1983.71		0.207
1984.0521	179.7	0.403	1984.05		0.205
1985.8405	178.7	0.405	1984.70		0.201
ADS 3135 STT 79	27383	04187+1632	1984.99		0.199
1982.7551	109.2	0.229	1985.84		0.194
1982.7606	109.0	0.221	ADS 3247 Bu	184 28396	04279-2130
1982.7661	110.1	0.227	1983.05		1.720
1983.0472	111.2	0.222	HR 1411 McJ	15 28307	04286+1557
1983.7162	123.3	0.186	1983.71		0.148
1984.0522	130.4	0.173	1984.05		0.164
1984.0576	132.2	0.173	1984.05		0.165
1985.8378	178.6	0.147	1985.8		0.216
1985.8406	177.5	0.149	1985.84		0.217
1985.8488	177.9	0.148		1080 28363	
			1982.75		0.402
		04215-2544 0.589	1982.76		0.400
1983.0500	140.6				0.404
1983.7162	142.2	0.570	1982.70		
1984.7072	143.9	0.567	1983.0		0.406
1984.9968	143.5	0.539	1984.0		0.424
ADS 3169 STT 82 A		04228+1504	1984.05		0.421
1984.7072	355.2	1.303	1985.84		0.451
1984.9968	355.0	1.296		1 567 28436	04298+1741
HR 1375 CHARA 16	27742	04235+2059	1983.71		0.152
1985.8514	9.4	0.182	1984.0		0.149
ADS 3172 STT 80	27650	-04236+4226	-24 2401 RS1	2347 28845	04318-2406
1982.7579	158.6	0.356	1983.0	500 327.6	0.194
1983.0472	158.2	0.361	j ADS 3283 A	.839	04324+3850
1984.0522	157.9	0.349	1983.71	.63 271.6	0.604
1985.8406	156.6	0.348	і +14 0721 сни	RA 17 285931	04340+1510
ADS 3182 Hu 304	27820	04239+0928	i 1985.85	14 38.6	0.147
1982.7551	67.3	0.207	ADS 3317 CH	RA 18 Aa 29140	04357+1010
1982.7633	67.7	0.207	1985.84		0.104
1983.0500	67.9	0.203		840 AB	04361+0813
1983.7162	70.9	0.193	1983.0		0.178
1984.0522	71.7	0.187	1985.84		0.166
1984.0604	72.3	0.187	ADS 3329 ST		
1985.8488	78.1	0.162	1983.0		0-460
	27832	04245+2245	1983.7		0.451
		0.330	1983.7		0.451
1983.0474	59.8				
1983.7162	60.5	0.334			0.451
1984.0522	60.8	0.333	1985.84		0.452
1985.8379	62.3	0.313	HR 1481 Ku		04382-1418
1985.8514	60.3	0.327	1982.70		0.349
ADS 3210 Bu 1185	27989	04256+1852	1983.0		0.359
1982.7579	7.5	0.109		1044 29562	
1982.7606	8.3	0.113	1983.0		0.667
1982.7661	6.4	0.104	1985.84		0.649
1983.0499	5.5	0.114		1295 AB 29316	04399+5329
1985.8406	229.8	0.068	1983.71		0.182
		-	1984.05		0.175
			1984.70		0.162
			1984.99		0.155
			1985.84		0.136
				566 AC 29316	04399+5329
			1984.99		0.728
					~
			1985.84		0.727

TABLE IV. (continued)

,

ł

1

٠ ł 1

t đ 1

Ŧ

,

		TABLE	IV. (continued))		
ADS 3387 A 2353	29727	044:6+1643	I ADS	3659 A 1023	32416	05054+4655
1983.0503	15499	.169	1	1983.0637	60?0	0:353
1983.7162	160.0	0.164	i	1984.0524	62.5	0.331
1985.8434	162.4	0.165		1985.8516	61.9	0.331
HR 1497 HCA 16	29763	04422+2257	ADS	3672 STT 95	32642	05055+1948
1982.7551 1982.7633	4.8	0.185 0.186	ļ	1982.7634 1983.0503	303.3 303.4	0.923 0.918
1982.7661	5.4	0.186		1984.0549	302.7	0.913
1983.0474	2.1	0.187	i	1984.7073	303.0	0.915
1983.7163	357.7	0.184	i	1984.9969	302.8	0.910
1984.0524	354.6	0.187		1985.8351	301.6	0.900
1985.8380 21 0953 Don 75	340.1	0.193 2 04425-1059	+22	0818 STT 97	32641	05056+2304 0.354
1983.0500	77.1	0.168		1982.7634 1983.0503	152.0 152.5	0.348
ADS 3391 A 1013	29606	04432+5932	I	1984.0524	152.1	0.347 -
1985.8434	58.9	0.107	i	1985.8516	151.1	0.353
+39 1054 Cou 1524	29911	04445+3953	+22	0829 Cou 155	32864	05072+2224
1982.7579	196.1	0.178		1985.8516	325.0	0.244
1982.7660 1983.0664	196.1 195.1	0.176 0.190	I ADS	3711 STT 98 1982.7607	33054 12.8	05074+0830 0.639
1985.8434	197.8	0.184	ł	1983.0638	11.2	0.631
+42 1045 Cou 2031	30090	04465+4220		1984.7073	6.2	0.636 .
1985.8434	311.0	0.054	i	1984.9969	5.7	0.624
ADS 3445 A 2		04466-0437		1985.8516	2.5	0.632
1985.8435 NR 1528 CHARA 19	178.7 30453	1.524 04493+3235	+37	1053 Cou 1531	32949	05085+3755
1984.0576	147.8	0.041		1982.7607 1983.0503	89.9 87.5	0.329 0.331
ADS 3465 A 2621	30636	04496+0213		1985.8516	84.8	0.320
1983.0502	75.4	0.150	ADS	3728 A 2636	33236	05089+0313
1985.8459	80.4	0.150	i	1982.7634	154.5	0.260
+14 0770 CHARA 20	30712	04506+1505		1985.8516	156.2	0.266
1985.8459 ADS 3475 - Вц 883 AB	109.6 30810	0.072 04512+1104	ADS	3748 A 484	33507 150.5	05103-0735 0.096
1982.7551	69.6	0.243	ADS	1985.8514 3734 STF 644	33203	05104+3718
1982.7633	70.0	0.242	1	1982.7606	222.5	1.602
1983.0502	73.4	0.235	i	1983.0503	222.4	1.599
1984.0549	85.5	0.219	ļ	1985.8516	222.6	1.597
ADS 3483 Bu 552 AB	30869	04518+1339	ADS	3755 Bu 885	33546	05109-0146
1982.7606 1983.0503	118.6 119.9	0.261 0.264	1	1983.0638 1984.7073	195.4 197.1	0.584 0.594
1984.0549	133.3	0.298		1984.9969	197.1	0.587
1985.8434	146.6	0.346	i	1985.8516	197.0	0.598
- C'28 RST 5501	31297		j Ads	3767 Hu 33	33647	05117+0031
1982.7634	45.9	0.285	ļ	1982.7634	10.4	0.100
982.7661 _983.0502	45.7 45.5	0.289 0.287	1 100	1985.8516 3764 STP 652	7.2 33646	0.108 05118+0102
1984.0549	45.0	0.280	1 103	1985.8542	181.0	1.607
1985.8489	42.0	0.272	ADS	3799 STT 517 AB		4 05134+0158
AD5 3558 A 2624	31622	04573+0100	i	1982.7634	235.1	0.512
1985.8435	304.6	0.319	ļ	1983.0638	235.9	0.501
ADS 3588 Bu 314 AB 1982.7634	31925 160.5	04592-1622 0.249		1984.7073	236.4	0.522
1983.0500	160.3	0.277	1	1984.9969 1985.8516	236.3 236.0	0.523 0.537
1984.0604	156.3	0.321	HR 1	1708 w Aur Aa	34029	05167+4601
ADS 3573 A 1303	31578	04599+5328	1	1983.0474	192.2	0.047
1984.0524	314.3	0.206	į.	1984.0524	11.3	0.047
1985.8434	311.6	0.204	!	1984.0604	0.6	0.043
1985.8489 +69 0288 MLR 399 AB	311.4 31264	0.199 05001+6958		1985.8542 1272 Cou 2037	57.3	0.053 05219+3934
1985.8433	168.6	0.259	+39	1982.7607	140.3	0.348
ADS 3608 A 1844	32092	05017+2640	i	1983.0503	140.6	0.346
1985.8434	9.7	0.323	i	1985.8516	140.1	0.352
ADS 3662 A 481	32622	05043-0602	ADS	3991 WNC 2 A, BC	35317	05239-0053
1983.0500	302.5	0.447		1983.0692	159.3	2. >50
1985.8514 +21 0754 Cou 154 AB	300.9 32481	0.454 05044+2139	+32	0966 Cou 1090	35132	05240+3238
1983.0503	308.2	0.253		1983.0504 1985.8516	230.8 229.8	0.235 0.234
1985.8516	306.5	0.254	ADS	4002 Da 5 As,B	35411	05244-0224
HR 1589 STT 89	31590	05046+7404	1	1984.9969	78.4	1.638
1982.7633	297.9	0.467	I	1985.8542	77.6	1.660
1982.7660	297.9	0.465	ADS	3997 A 2703	35365	05246+0910
1984.0524 1984.9969	298.1 298.5	0.451 0.454	ļ	1985.8516	104.6	0.223
1984.9969	298.0	0.458				

TABLE IV. (continued)

۰.

•

2

ويستشعب ويجاربها المترجب فتتبيتها أنسهما الأكمي كالت	_					
ADS 4020 A \$48	35548	05255-0033	ADS 4323	STT 115	AB 38187	05445+1503
1982.7634	158?2 161.1	0:207	1	984.7073	11001	0:470
1985.8516	161.1	0.214				
ADS 4078 Da 6	36058	05290-0318	1 1	985.8542 A 496 983.0475	119.1	0.466
1985.8516	200.9	0 136	1	905.8542	118.1	0.466
ADS 4072 Hu 217		05297+3523	ADS 4324	A 496	38161	05449+2620
	762 22341		1 1:	983.0475	7.4	0.275
1985.8516	253.1	0.608	1 1	983.0665	4.7	0.276
-01 0010 200 100	253.6	0.602	1 1:	985.8407	7 6	0.271
-01 0918 RST 4781	36219	05301-0145	+28 0571	Cou 762	38153	05450+2812
1983.0638 1985.8516	197.9	0.376	1 1	Cou 762 983.0665 985.8407	66 4	0.166
1985.8516	199.6	0.396	1 1	985.8407	67 7	A 176
ADS 4115 STF 726 1984.7073 1985.8516	36267	05307+0556	HR 2001	Nel 22	38735 102.3	
1984.7073	49.4	0.985	1		38/35	05474-1032
1985.8516	49 4	1 005		903.0005	102.3	0.162
ADS 4123 STF 729 AB	36361	05313.0357				0.161
1984 7073		03312+0317	1 19	985.8544		V.1/2
1984.7073 1984.9969 1985.8542	20.4	1.802	ADS 4390	ST7 795 983.0665 984.9959	38710	05480+0627
	25.6	1.809	1 19	983.0665	215.2	1.170
1963.8542	28.0	1.835	1 19	984.9959	216.7	
ADS 4134 Hei 42 Am 1982.7552	36486	05320-0018	1 19	985.8352	216.4	1.151 1.161 05482+0137 0.179
1982.7552	141.3	0.224	ADS 4396	A 2657	38768	AE483.0137
1982.7634 1983.0638 1984.0605	141.5	0.224 0.226	1	111 0666	167 0	0348240137
1983.0638	141.6	0.226		985.8542	157.9	0.179
1984.0605	140.2	A 33A	1 100 4307	703.0342	167.9	0.177
1985.8542	139.3	0.242	ND5 4392	5TT 118 A	B 38670	05484+2052
ADS 4076 A 1034	75584	05325+7049	1 19	82.7607	316.7	0.250
	33376	05325+/049	1 19	983.0665	313.9	0.237
1983.0503 1985.8517	144.4	0.711	19	985.8542	313.9 316.4	0.214
1703.031/	143.0	0.735	ADS 4376	STF 3115	38284	05491+6248
HR 1891 Fin 345 1983.0665	37016	05353-0425	1 19	82.7634	352.0	0.859
1983.0665	89.9	0.343		83.0665	352.0 351.6	0.872
ADS 4208 STF 749 AB	37098	05372+2656		84.0552	351.6	0.836
1982.7607	326.5	1.089		84.7074	351.4	
1983.0692	326.2	1.100	1 10			0.836
	326.3	1.076	1 19	34.9971 85.8517	351.2	0.836
	326.0	1.075	1 19	85.8517		0.844
1985.8352	325.3		+29 1028	Cou 898	39303	05529+2907
-43 1315 CM332 31	323.3	1.091	19	85.8407	156.6	0.152
+43 1315 CHARA 21	36948		+28 0933	Cou 900	39451	05539+2857
1985.8407	60.8	0.125	19	85.8407	83.1	0.169
ADS 4203 A 1562	36928	05373+4339	ADS 4532	Hu 1235	39451 83.1 39924 102.0	05573+3601
1983.0665 1985.8407	348.6	0.403	1 19	83.0665	102.0	0 186
1985.8407	350.2	0.389	1 +24 1043	Cou 905	40132	05580+2437
+43 1315	36947-	8 05373+4404	1 10	85.8517	15.8	0330072337
1982.7607	62.9	0.145	ADS 4562			
ADS 4229 Bu 1240 AB	37269	05386+3030		511 124	40369	05589+1249
1982.7607	60.1	0 082	1 19	82.7607	297.5	0.482
		0.094	1 19	83.0665 85.8542	298.0 297.4	0,496
		0.102	1 19	85.8542	297.4	0.499
ADS 4241 Bu 1032 AB	31.3	0.102	ADS 4617	λ 2715 AB	40932	06024+0939
			19	84.0632	283.0	0.167
	152.3	0.245 0.246	1 19	85.8544	212.6	0.086
		0.246	HR 2134	Kui 23 AB	41116	06041+7316
1983.0692	150.6	0.235	Í 19	82.7635	20 0	0.101
1984.0605	149.2	0.242	10	82.7635 83.0475	20.3	
1985.8544	144.6	0.246	1 10	84.0605		0.093
ADS 4236 A 1564	37265	05394+4343				0.093
1985.8407	135.9	0.143		84.0632	108.0	0.098
ADS 4243 899 112	37744	05398+3758		85.8380		0.204
1082 0665	57304		ADS 4660		41379	06052+0708
ADS 4243 STT 112 1983.0665 1985.8407 ADS 4249 Hu 825	32.2	0.831	198	83.0667		0.433
1985.8407	53.2	0.845	1 197	85.8435	44 5	0.441
ADS 4249 Hu 825 1983.0665	37405	05400+3601	ADS 4603	STT 121 84.0552	40225	06053+7400
1983.0665	343.9	0.389	198	84.0552	243.5	0.252
ADS 4265 Bu 1007	37711	05411+1632	+18 1095	Cou 471		
1982.7607	239.0	0.333	104		41658	06073+1848
	239.3	0,345		3.0693		0.282
	240.1	0.331		35.8435		0.300
ADS 4279 Bu 1052	37904		+26 1082	McA 25	41600	06074+2640
1983.0692		05417-0254	198	35.8380	220.3	0.063
		0.331	ADS 4696	STT 130	41541	06078+4240
1985.8544	18.7	0.383	198	3.0667		0.386
ADS 4299 A 494 AB	38089	05428-0649 j		4.0551		0.392
	104.8	0.181 j		5.8380		0.401
		0.133		5.8435		
ADS 4304 A 117	38068	05436+1259	ADS 4750			0,399
		0.786		A 54 AB	42033	06098+2914
		0.782		3.0667		0.527
				5.8353		0.541
		0.791		5.8380		0.532
		[198	5.8435	335.2 ().538 -

TABLE IV. (continued)

702

-

-

÷

ł

į

!

•

.

į

ER 2186	RST 3442	42443	06098-2246	HR 2425 McA 27	47152	06383+2859
	1983.0475	29999	01175	1982.7552	35610	01085
	1983.0667		. 0.168	1982,7635	356.8	0.086
ADS 476		42216	06105+2300	1983.0475	352.5	0.092
	1982.7635	238.1	0.237	1984.0552	342.0	0.107
	1983.0667	242.9	0.220	1984.0605	340.2	0.099
	1985.8407	237.1	0.229	1984.0634	344.8	0.101
HR 2214	Kui 24	42954	06144+1754	1985.8381	327.7	0.132
	1983.0693	138.5	0.492	ADS 5289 STT 152	47395	06395+2816
	1984.0579	139.2	0.479	1984.0552	36.8	0.863
	1984.9971	139.4	0.483	1984.9971	36.8	0.857
ADS 486	6 A 668	43362	06154-0902	1985.8408	36.0 '	0.861
	1985.8544	42.1	0.079	ADS 5332 A 218	47812	06418+3041
HR 2236	RST 5225	43358	06159+0110	1985.8381	69.9	0.181
	1983.0667	220.4	0.203	+70 0410 MLR 405	46979	06425+7035
	1984.0579	224.4	0.215	1984.0552	245.5	0.540
	1985.8544	238.1	0.200	1985.8407	245.2	0.549
ADS 489			06171+0957	ADS 5407 A 2825	48688	06456+1045
	1982.7552	326.5	0.071	1984.9998	3.8	0.190
	1983.0475	347.5	0.066			
				1985.8381	5.7	0.197
	1984.0605 1985.8544	254.8	0.044	ADS 5429 Ho 238	48884	06463+1812
HR 2273		322.9	0.069	1985.8353	172.4	0.361
nk 42/3	CHARA 22	44112	06197-0749	ADS 5400 STP 948 A		06463+5927
	1985.8544	55.5	0.055	1983.0668	80.3	1.794
ADS 492		43885	06200+2826	1985.8435	79.3	1.803
	1982.7635	124.8	0.223	+16 1273 CHARA 24	48954	06468+1646
	1984.0552	126.6	0.232	1983.0695	37.1	0.489
	1985.8407	128.5	0.242	ADS 5447 STT 156	49059	06474+1812
ADS 4953		44109	96203+0744	1983.0667	239.8	0.406
	1983.0667	61.1	0.445	1984.0605	238.9	0.400
	1984.0579	62.4	0.450	1985.8353	236.3	0.401
	1985.8352	63.2	0.462	HR 2521 Fin 322	49643	06492-0217
ADS 4973	1 A 2667	44333	06214+0216	1983.0475	61.5	0.157
	1984.0579	172.5	0.288	1983.0667	57.0	0.155
	1985.8544	178.4	0.278	1984.0579	59.5	0.154
ADS 495			06221+5923	1984.9998	58.3	0.155
	1983.0665	130.3	0.682	1985,8381	55.3	0.159
	1984.0552	132.0	0.680	+36 1511 Cou 1738	49472	06502+3625
	1984.7074	132.9	0.682	1984.0525	101.0	0.110
	1984.9971	132.3	0.673	1984.9999		
	1985.8407	132.5	0.691		104.8	0.105
ADS 502		44953		1985.8409	106.2	0.111
AD3 302.	1983.0693		06238-1947	+24 1417 Cou 768	49622	06503+2410
HR 2312		154.3	0.808	1984.9999	259.7	0.078
AR 2312	Fin 343	45050	06252+0130	1985,8409	256.9	0.096
	1983.0475	8.8	0.170	ADS 5514 STF 963 A		9 06532+5928
	1984.0579	5.7	0.159	1982.7634	259.3	0.270
	1985.8381	0.6	0.169	1983.0476	259.0	0.273
+23 1340		44926	06255+2327	1983.0668	259.7	0.265
	1965.8408	150.9	0.104	1984.0525	261.5	0.267
ER 2304	McA 26	44927	06256+2320	1984.9999	263.6	0.263
	1985.8381	141.1	0.054	1985.8545	264.9	0.262
+24 1276	6 Cou 914	45428	06283+2441	HR 2541 Cou 1\$77	50037	06532+3827
	1983.0667	115.2	0.212	1983.0475	149.0	0.502
ADS 5103	3 - 3TZ Aa	45542	06289+2014	1984.0525	151.0	0.486
	1982.7552	135.9	0.080	1984.9972	152.3	0.480
	1984.0579	140.3	0.049	1985.8409	153.0	0.484
	1984.0634	144.8	0.055	ADS 5557 STF 987	50700	06541-0552
Ross 614			06294~0249	1984,9972	174.7	1.293
	1982.7581	215.6	0.486	1985.8435	174.3	1.314
+52 1088				ADS 5571 A 2833		06549+1158
	1983.0668				367 0	
NDS 5214		276.6	0.447	1985.8408	262.9	0.058
NJJ J210		46610	06357+2816	ADS 5586 STT 159 A		
	1983.0667	32.3	0.250	1983.0668	46.6	0.494
	1984.0552	34.1	0.249	1984.0525	47.3	0.466
	1985.8381	34.2	0.241	1984,9972	48.5	0.427
ADS 5224	λ 1051	45655	06367+4415	1985.8545	49.3	0.394
	1984.0552	224.9	0.691	ADS 5625 A 2681	51449	06575+0253
	1984.7074	225.4	0.689	1985.8381	140.9	0.298
	1985.8408	224.5	0.687	+02 1483 CHARA 25	51566	06580+0218
	1985.8435	224.4	0.692	1985.8408	40.7	0.910
				+65 0550 MLR 133	50452	06582+6516
				1985.8545	20.5	0.112

TABLE IV. (continued)

703

.

F

HR 2605 McA 28	51688	06595+2555	ADS	6185 STT 175 A		07352+3058
1982.7635	33?5	07082	1	1983.0476	32899	01182
1984.0525	43.1	0.073	i	1984.0526	329.3	0.190
1984.0605	40.8	0.072	i	1985.8491	328.2	0.206
1984.9999	44.5	0.059	-25	4775 B 729	61071	07365-2520
				1983.0504	171.8	0.116
1985.8544	48.5	0.064	1	6244 Ho 245 AB	61343	07387-0127
ADS 5660 A 2461 AB		06598+1557	AD3		184.8	0.602
1983.0476	328.0	0.311		1983.0504	-	
1985.8408	326.3	0.316	1	1984.9972	185.6	0.602
ADS 5671 Bu 1022 A	B 267648	07007+2716	1	1985.8436	185.1	0.001
1985.3409	68.3	0.321	ADS	6245 A 535	61344	07387-0459
ADS 5689 STT 163 A	8 52309	07011+1146	i	1983.0504	172.1	-0.357
1984.0580	57.6	0.113	Í ADS	6263 STF 1126	NB 61563	07401+0515
	56.0	0.113		1983.0504	165.0	0.941
1984.9998	63.1	0.120	1	1985.8353	165.6	0.926
1985.8408			1 100	6313 A 2534 AB		07431+0012
ADS 5707 A 3042 AB		07015-0942	1 103		231.1	0.817
1985.8381	204.4	0.324		1985.8353		-07462+2108
ADS 5712 Bu 573	52694	07018-1053	ADS	6347 Но 247	62720	
1985.8544	294.5	0.854	1	1984.0525	231.8	0.386
+37 1645 McA 29	52823	07043+3734	1	1985.8409	233.3	0.397
1983.0476	176.2	0.169	-03	2065 RST 4375	63263	07478-0332
1984.0581	179.4	0.165	i	1983.0504	344.3	0.121
1985.8409	178.9	0.171	ADS	6354 Hu 1247	62522	07479+6019
ADS 5#14 A 3043	54336	07079-1542	i	1983.0476	291.8	0.226
	292.6	0.200	1	1984.0526	283.1	0.235
1983.0476			_10	2068 B 1077 AB		07480-1924
ADS 5857 A 2122	55118	07113-1033	-13	1983,0504	298.7	0.535
1985.8544	83.3	0.137				07486+2309
+20 1729 Cou 925	54985	07118+1953	i vns		50.8	0.268
1985.8408	80.2	0.496		1984.0525		
ADS 5866 AG		07123+1839	1	1984.0607	50.3	0.268
1985.8436	194.4	0.636	1	1985.8409	49.3	0.272
ADS 5871 STF 1037	AB 55130	07128+2714	ADS	6405 A 2880	63799	07508+0317
1983.0668	318.4	1.262	i	1983.0504	280.2	0.122
1983.0695	318.7	1.243	i	1985.0000	292.7	0.102
1984.0581	319.3	1.207	ADS	6412 Bu 1195	63976	07513-0925
	318.5	1.213		- 1983.0504	90.6	0.198
1984.9972		1.225	1 300	6420 Bu 101	64096	07518-1352
1985.8436	317.5			1983.0504	84.8	0.265
ADS 5918 Bu 1023	55726	07151+2553			64235	07528-0526
1984.0525	302.7	0.438	િ મર	3072 Fin 325		
1985.8409	302.1	0.443		1983.0504	180.6	0.354
ADS 5956 A 2123 AM	8 56593	07171-1201	1	1985.0000	184.4	0.296
1985.8545	149.9	0.291	1	1985.8353	186.8	0.264
+24 1600 Cou 585	56462	07181+2405	+24	1805 Cou 929	64704	07561+2342
1985.8436	154.3	0.378	1	1983.0476	113.7	0.126
ADS 5975 Hu 619 A	B 56627	07202+4820	i	1985.8409	142.8	0.135
1985 8491	1.8	0.366	Í ADS	6483 STT 185	65123	07573+0108
ADS 5996 STF 1074		07205+0024		1983.0504	65.1	0.179
1984.0525	168.1	0.634	1	1985.0000	74.7	0.162
	168.3	0.636	1 110	3109 McA 33	65339	08017+6019
1984.9972				1983.0476	282.8	0.114
1985.8436	168.1	0.642	-		298.8	0.091
-20 1935 DON 181	58763	07262-2024		1984.0526	66176	08033+2616
1983.0504	132.2	0.501	I ND:	5 6538 STT 186		
+69 0422 MLR 409	57308	07264+6929		1984.9972	74.9	0.951
1985.8545	345.2	0.379	ļ	1985.8436	74.4	0.965
+20 1805 CHARA 26	58579	07269+2015	AD:	5 6554 Bu 581 Al		08043+1218
1984.0607	127.1	0.030	1	1983.0476	266.6	0.544
1985.0000	163.4	0.049	1	1985.8436	274.3	0.556
ADS 6089 MCA 30 A		07277+2127	j λD:	5 6578 A 1333	66610	08070+5407
1983.0476	166.1	0.110	i	1983.0476	208.4	0.360
	166.8	0.099	i		208.8	0.350
1985.0000			i	1985.8436	208.1	0.361
ADS 6126 STF 1104	14.6		1 30	S 6623 STF 1187	67501	
1983.0504		1.945	1 10	1985.8436	26.2	2.762
ADS 6138 A 2869	59473					-7 08122+1740
1983.0504	26.6	0.153	I AD:	5 6650 STF 1196		
1984.0525	25.0	0.135	l	1983.0476	254.1	0.673
1985.8545	16.9	0.129	1	1984.0526	245.4	0.642
+08 1791 CHARA 27	59604	07309+0833	1	1984.2973	236.0	0.618
1983.0504	59.7	0.261	1	1985.0028	236.3	0.619
HR 2886 MCA 32	60107		i	1985.8353	226.3	0.601
1983.0505	89.8	0.195	i +2	9 1712 Cou 1114	68254	08126+2849
	90.3	0.189	i (***	1983.0476	227.0	0.219
1984.0525		0.186		1984.0526	229.1	0.221
1984.0607	90.9			1985,8409	226.9	0.207
1985.0001	91.1	0.183	1	1393,0403		
1985,8491	89.5	0.183	• 1			
				and the second		and the second se

TABLE IV. (continued)

704

8. R.

•

ÿ

•

	TABLE IV	(continued)		
HR 3269 Fin 346	70013 08199+0357	ADS 7158 A 1585	77327	09036+4709
1983.0476 72		1983.0642	28011	0:259
1984.0526 72	0.266	1984.0554	280.4	0.257
	.8 0.269	1 1984.0609	280.8	0.257
ADS 6762 STF 1216	70340 08214-0136	1985.0001	279.5 278.0	0.248
1985.8436 280	0.525 70803 08253+3723	1985.8353 HR 3650 Fin 347 Am		09123+1459
ADS 6796 Hu 856 1984.0526 257	1.9 0.252	1984.0527	141.1	0.157
	71153 08267+2433	1984.0582	144.3	0.161
1984.0526 154		ADS 7284 STF 3121	79969	09180+2835
-20 2538 B 2179	71581 08276-2051	1983.0643	203.5	0.473
1983.0477 212		1984.0527		0.495
• • • • •	71663 08285-0230	+19 2194 Cou 384 1984.0527	80082 53.4	09183+1847 0.116
1984.0553 74 ADS 6862 I 489	1.4 0.182 72310 08315-1934	+77 0361 Kui 39	JJ.1 	09184+7716
	5.5 0.205	1983.0642	186.5	0.764
	2.4 0.200	ADS 7286 STF 1333	80024	09185+3522
ADS 6914 Bu 208 AB	73752 08391-2240	1983.0642	48.5	1.824
	1.8 0.360	1984.0582	49.9	1.811
	0.548	ADS 7307 STF 1338 A	B 80441 259,0	09210+3812 1.024
+20 2148 Cou 47 1983.0476 141	73574 08397+2005 1.6 0.515	1984.0527	260.8	1.016
1983.0478 141		1984.9974	262.4	1.016
1985.8436 141		ADS 7341 A 2477	\$1163	09245+1808
+20 2159 CHARA 28	73666 08402+2001	1984.0527	332.7	0.376
1983.0477 126		ER 3750 B 2530	\$1809	09278-0604
	08412+4352	1984.3859	314.1 81858	0.120 09285+0904
1985.8436 106 ADS 6930 Bu 585	5.6 0.625 73871 08412+2028	ADS 7390 STP 1356	33.2	0.428
	8.2 0.492	1984.0609	33.0	0.429
	7.5 0.487	1984.3777	34.4	0.429
	7.1 0.488	+58 1192 MLR 549	81772	0\$299+5808
ADS 6993 SP AB	74874 08468+0625	1984.0526	120.3	0.223
	6.0 0.255	HR 3794 Fin 349	\$2543	09326+0151
1984,0608 195	5.7 0.259 75098 08473-1703	1984.0527	161.6 161.9	0.162 0.158
ADS 6999 Bu 586 1984.0553 105	5.6 0.177	1984.3859	162.3	0.160
+00 2392 RST 5306	75012 08476+0005	ADS 7456 STP 1372	\$3190	09371+1614
	6.6 0.167	1984.0527	76.8	0.151
ADS 7012 A 2552	75207 08486+0057	1984.9974	80.0	0.131
	4.6 0.149	ADS 7457 A 1765	\$3158	09379+4554
ADS 7039 A 2473	75470 08507+1800 6.3 0,297	1984.0527 +54 1323 CHARA 29	185.9 233666	0.124 09423+5328
	7.3 0.305	1983.0642	54.7	0.354
+20 2232 Cou 773	75974 08539+1958	ADS 7487 MLR 323 A		09432+6708
	1.8 0.206	1983.4196	43.9	0.277
1984.0553 42	2.8 0.216	1984.0603	29.0	0.500
	3.3 0.218	HR 3\$71 Fin 326	\$4367	09442-2746 0.070
ADS 7074 A 2554	76050 08539+0149	ј 1984.3777 HR 3880 Мсλ 34	192.4 84722	09474+1334
	0.5 0.181 75959 08542+3034	1984.0527	229.5	0.070
	3.0 1.451	1984.3778	233.0	0.061
	3.0 1.448	+21 2108 Cou 284	84739	09477+2036
	2.2 1.471	1984.0527	64.0	0.153
ADS 7082 A 2131 AB	76095 08549+2613	1984.0555	63.9	0.154
	3.6 0.360 8.1 0.361	[1984.3750 1984.3832	63.7 63.4	0.152 0.150
1984.0553 188 1985.0001 192		HR 3889 Kui 44	\$5040	09498+2111
ADS 7067 STF 1280 AB		1983.0698	209.6	0.243
	6.6 1.189	1984.0527	210.9	0.231
	8.8 1.089	1984.3750	210,8	0.231
ADS 7084 A 2132	76117 08557+4141	1 1984.3832	210.8	0.230
	8.7 0.171		206.4 \$5177	0.234 09512+3629
+36 1889 Cou 1897 1984.0554 165	76595 08585+3548 5,4- 0.170	ADS 7541 Ho 369 AB	100.5	0.390
	9.0 0.165	1984.0529	101.0	0.392
NR 3579 Kui 37 AB	76943 09008+4148	ADS 7545 STT 208	\$5235	09521+5404
	8.2 0.587	1983.0699	124.7	0.200
1984,9974 33	5.7 0.533	1983.4196	127.2	0.193
		1984.0529	132.6 135.1	0.191- 0.189
		1984.3833	135.4	0.188
		1985.0084	141.0	0.182

TABLE IV. (continued)

.

		TABLE I	V. (continued)			
ADS 7555 AC 5 AB	85558	09525-0806	I ADS	7929 STT 229	93457	10481+4107
1984.0554		07510		1983.0671	27997	0:776
1984.3777		0.516	i	1983.4277	279.3	0.766
ADS 7635 I 293	\$7556	10052-2812		1984.3860	278.9 93742	0.769 10493-0401
1984.0554		0.168	ADS	7936 STF 1476 1983.4277	13.3	2.265
+34 2079 Cou 1569	87473 80.7	10059+3412 0.146	+12	2266 CHARA 32	93993	10511+1135
1984.0527 xr 3973 chara 30	87682	10068+0537	1	1983.4277	9.9	0.429
1984.3832		0.132	HR 4	291 CHARA 33	95345	11006+0337
ADS 7651 Kui 48 AB	87822	10083+3137	i i	1983.4196	33.8	0.235
1983.0698		0.157		1984.3860 2110 Cou 960	36.2 95342	0.177 11008+2913
1984.0527		0.122 0.109	+29	2110 Cou 960 1984.3833	88.6	0.088
1984.3778 ADS 7662 A 2145		10093+2020	+30	2097 CHARA 34		11018+2952
1983.0698		0.124	i	1983.4277	102.5	0.242
1984.0527		0.112	ADS	8035 Bu 1077	95689 297.0	11037+6145 0.775
1984.0555		0.120		1985.0029 1314 Fin 47	96202	11053-2718
1984.3750	-	0.108 0.110	HR 4	1983.4277	223.7	0.090
1984.3778 1984.3832		0.108	1	1984.3805	197.3	0.058
+75 0403 Kui 47		10111+7508	i	1984.3835	200.7	0.064
1984.3860		1.223	ADS	8064 Hu 886	160 6	11088+7626 1.097
ADS 7674 Hu \$74	88355	10117+1321		1984.3860 771-2 GL 9351	169.5	11114+4327
1984.0527	288.4 288.6	0.138 0.127	1 1.61	1983.0671	78.3	3.851
1984.3750 1984.3778	289.6	0.125	ADS	8086 Bu 220	97411	11124-1830
1984.3832	289.2	0.124	i	1983.4169	332.4	0.310
ADS 7675 No 44	88478	10121-0613	l.	1984.0529	328.8 328.6	0.267 0.280
1984.0554	206.9	0.515		1984.3805 1984.3833	328.5	0.282
ADS 7704 STT 215	88987 181.5	10163+1744 1.347	I AUS	8092 A 1353	\$7455	11136+5525
1983.0698 1984.0555	182.9	1.315		1983.0671	227.4	0.400
1984.3860	182.8	1.312	i	1983.4167	226.4	0.387
1984.9974	182.8	1.313	1	1984.0529	227.8 227.4	0.417 0.421
ADS 7769 A 2570	90361	10260+0256	1 806	1984.3833 8094 STF 1517	97561	11137+2008
1984.0554 1984.3832	307.2 307.1	0.335 0.337	1 103	1983.4167	326.8	0.407
+20 2486 Cou 292	90460	10269+1931	i	1984.0583	327.0	0.415
1984.0527	271.3	0.098	1	1984.3724	325.9	0.430 0.424
1984.3750	264.6	0.117		1984.3833 8104 Bu 639	326.2 97773	11154+4728
1984.3832	264.7 90444	0.115 10270+1713		1983.0699	87.0	0.083
ADS 7775 STT 217 1983.0645	142.0	0.458		1984.0529	88.2	0.083
1984.0527	143.1	0.474	i	1984.0610	86.7	0.079
1984.0610	143.1	0.470		1984.3833	85.6 97857	0.088 1115844227
1984.3750	143.6	0.470	+13	2096 Cou 1904 1983.0671	195.1	0.282
1984.3778	141.3 90537	0.473 10279+3643		1984.3833	198.9	0.293
ADS 7780 Hu 879 · 1983.0645	231.1	0.463	ADS	8119 STF 1523		1 11182+3133
1983.0698	230.5	0.462	Ì	1983.0673	96.7	2.655
1983.4196	231.4	0.450	ļ	1983.4277	95.7 91.9	2.557 2.347
1984.0529	232.0	0.437	1 200	1984.3724 : 145 a 2776 a		11231+0408
1984.0557 1984.3750	232.0 232.3	0.435 0.430		1983.0507	99.8	0.152
1984.3860	232.2	0.433	i	1984.3778	103.8	0.128
1984.9974	232.9	0.413	1	1984.3801	102.0	0.132 11279-0142
+13 2274 CHARA 31	91498	10341+1222	i -00	2442 RST 4944	99651 293.6	0.242
1983.4277	180.8	0.192 10366+4430	ł	1983.0508 1983.0699	293.8	0.247
ADS 7844 A 2055 AB 1983.0671	91751 162.0	0.329	1	1984.0529	293.5	0.246
1984.0583	160.5	0.322	i	1984.3805	292.0	0.237
1984.3833	162.1	0.327	1	1984.3833	291.7 100018	0.241 11308+4117
ADS 7852 I 857	91955	10366-2846	I ADS	5 8189 STT 234 1983.4167	124.9	0.291
1984.3805	272.0 92749	0.262 10427+0335		1984.0529	129.7	0.300
ADS 7896 A 2768 1983.0507	335.4	0.204		1984.3751	129.9	0.305
1983.0507	329.5	0.214	i	1984.3833	130.3	0.307
1984.3778	322.9	0.223	AD	8198 Hu 1134	100235	11322+3615 0.057
1984.3805	323.3	0.220		1984.3833 5 8197 5TT 235	125.9 100203	
1984,3859	324.9	0.225 10453+3831		1983.4169	241.6	0.451
ADS 7915 No 532 1983.4277	131.9	0.371	i	1984.0529	247.4	0.469
2303.3211			i	1984.0557	247.6	0.468
				1984.3750	250.2	0.477

TABLE IV. (continued)

706

| | Í

]

I l

-

		INDLE	IV. (continued)	
ADS \$210 Hu 727	233841	11332+4928	ADS 8535 STT 249 AB 10792	2 12238+5410
1984.0530	2392	17161	1983.0508 267:4	07406
ADS #231 STF 1555 A	8 100808	11363+2747	1983.4141 266.9	0.411
1983.0482	143.1	0.578	1984.0530 266.5	0.407
1983.4279	142.9	0.573	1984.3726 266.6	0.393
1984.3726	143.3	0.579	1984.3778 266.0	0.401
1984.9977	143.5	0.587	1985.4812 266.0	0.415
1985.4894 ADS 8249 STF 1559	143.4 101150	0.599	ADS 8540 STT 250 10800	
1983.0508	322.6	11388+6421 1.957	1983.0482 343.6	0.376
1984.9977	322.5	1.929	1983.4141 342.5 1985.4812 345.0	0.372 0.374
-03 3167 RST 5524	101969	11441-0448	ADS 8539 STF 1639 AB 10800	
1983.4141	354.9	0.340	1983.0482 326.0	1.539
+22 2411 CHARA 35		11516+2207	1983.4279 325.3	1.521 -
1983.4279	142.1	0.176	ADS 8551 A 78 10832	0 12267-0535
-04 3155 CHARA 36	103036	11518-0546	1983.4141 141.5	0.179
1983.4277	55.2	0.234	1984.3862 142.5	0.160
ADS 8347 A 1777 AB 1983.4141	103443	11551+4629	ADS \$555 B 228 10841	
1984.0530	157.2 162.2	0.107 0.105	1984.3779 138.5 HR 4789 WRM 10948	0.222
1984.3751	164.2	0.107	HR 4789 WRH 10948 1983.0699 9.4	
1984.3834	163.9	0.103	1983.4169 11.4	0.327 0.320
1985.4894	167.9	0.109	1984.0531 10.3	0.319
ADS \$3\$7 A 10\$8	104288	12005+6912	1984.0613 10.1	0.314
1983.0508	280.0	0.140	1984.3727 9.8	0.305
1983.4141	281.2	0.140	1985.4894 8.2	0.303
1984.0530	282.4	0.130	+27 2158 Cou 596 11029	7 12409+2708
1984.3834	284.8	0.131	1983.0699 194.5	0.125
1985.4812	288.9	0.127	1984.3834 193.5	0.099
+48 1992 Cou 1752 1984.0530		12018+4728 0.172	1985.4813 193.3	0.090
1984.3834	71.7 69.1	0.162		9-0 12417-0127
ADS 8419 STF 3123 A		12061+6842	1983.4279 292.6 HR 4891 CHARA 38 11199	3.461
1983.0508	319.7	0.140	HR 4891 CHARA 38 11199 1984.3752 164.0	<pre>\$ 12532-0333 0.442</pre>
1983.0699	317.3	0.143	ADS \$708 STT 256 11239	
1983.4141	314.0	0.142	1983.4279 95.8	0.955
1984.0530	310.4	0.143	1984.3727 95.0	0.971
1984.0557	310.8	0.146	1 1984.3661 95.5	0.968
1984.3726	305.3	0.159	1984.9978 95.6	0.960
1984.3778	306.7	0.149	+09 2696 Pin 380 11250	
1984.3834 1985.4894	307.1 296.3	0.147 0.150	1983.0699 150.4	0.112
G1 9392 Wor 22		12101+0526		0.117
1984.3861	318.1	1.439	1984.0531 152.9 1984.3727 154.1	0.118 0.136
G1 9392 Wor 22 AC?		12101+0526	1984.3779 153.2	0.124
1984.3861	69.9	0.363	1984.3834 154.8	0.125
ADS \$463 B 221	106271	12137-2719	1985.4813 155.5	0.138
1983.4141	108.0	0.350	1985.4894 153.0	0.138
ADS \$4\$1 Bu 920	106612	12158-2321	GL 491 B 2541 11275	12591-0951
1984.9976 ADS 8486 STF 1621	300.2	1.604	1983.4280 109.9	0.768
ADS 8486 STF 1621 1983.4141	0.4	12160+0539 0.607	ADS 8727 CHARA 39 Am 11284	
HR 4668 CHARA 37	106760	12165+3304		0.107
1983.0482	171.6	0.248	1984.3779 32.5 1984.3862 28.9	0.103 0.092
HR 4689 MCA 37	107259	12199-0040	AD5 8757 Bu 341 11341	
1983.0482	346.3	0.149	1983.4304 311.9	0.796
1983.0699	348.2	0.140	1984.0531 311.8	0.790
1983.4141	352.5	0.146	ADS 8759 Bu 929 11345	
1983.4169	351.7	0.140	1983.4280 202.1	0.686
1984.0529	2.3	0.136	1984.0558 201.7	0.685
1984.0557	2.4 2.9	0.137	1984.3779 201.7	0.687
1984.0583 1984.0612	2.2	0.138 0.132	1984.3861 201.9	0.687
1984.3726	7.2	0.135		0.680
1984.3751	7.0	0.132	1985.4894 201.4 GL 497 Wor 23	0.681
1985.0004	18.1	0.120	GL 497 Wor 23	
1985.4812	30.6	0.112		1.448 0.687
ADS 8525 B 727	107539	12216-2716	+61 1335 MLR 154 11381	
1983.4141	156.5	0.150	1984,0530 86.8	0.069
			ADS 8785 A 1605 23401	
			1984.3862 165.9	0.938
		,		

•

TABLE IV. (continued)

۰.

.

11

ĩ

.

114330

ADS 8801

MCA 38 As

XS 608

306.1

1984.3864

1983.0699 32694 0:481 1983.0510 20293 0:276 1984.0532 328.7 0.454 1983.0701 201.1 0.280 1984.3752 327.9 0.466 1984.0532 208.0 0.285 1984.3807 327.4 0.459 1984.3727 207.9 0.284 1985.4840 327.9 0.472 1984.3752 208.7 0.290 ADS 8804 STF 1728 AB 114378-9 13100+1731 1984.3835 209.1 0.289 191.8 1983.0699 0.627 1985.4813 0.299 213.8 1983.4199 193.0 0.610 ADS 8988 Nu 897 13400+3759 1984.0558 193.1 1984.0559 30.7 0.613 0.378 1984.0586 193.0 0.609 ADS 8994 Fin 352 AB 119086 13415-2327 1984.3727 1983.4307 0.184 193.0 0.612 323.0 1984.3807 193.2 0.611 1984.3779 320.1 0.177 1985.0031 192.8 0.600 1904.3862 321.6 0.184 1985.4813 192.9 0.588 HR 5178 Kui 65 120033 13472-0943 **XX 4978** Fin 305 114576 13117-2633 1983.0701 243.0 0.333 1984.3779 116.3 0.100 1983.4332 242.4 0.335 STT 261 114723 ADS 8814 13120+3205 1984.0531 243.5 0.333 1983.0508 339.5 2.325 1984.3779 243.2 0.323 ADS \$831 Fin 297 AB 114993 13145-2417 1984.3807 241.4 0.330 1983.4332 134.9 0.183 ADS 9031 STF 1785 120476 13492+2659 1984.3779 1983.0510 136.8 0.187 164.8 3.288 ADS 8843 STT 263 13167+5034 -13 3786 RST 3852 121136 13539-1439 1984.3864 134.4 1.820 1983.4307 137.1 0.154 NX 5014 Fin 350 1984.3862 115488 13175-0041 132.8 0.137 1983.0701 349.1 0.078 GL 9465 Ald 112 ---14019+1530 1983.4332 355.3 182.3 0.089 1983.0510 1.579 1984.0532 Bu 1270 1.2 0.119 ADS 9094 122769 14037+0829 1984.3752 5.9 0.109 1984.3754 58.5 0.153 1984.3807 5.6 0.110 1984.3781 0.158 58.0 6.2 0.111 1984.3835 59.2 0.153 1985.4840 14.2 HR 5298 0.122 CHARA 40 123630 14090-1020 ADS 8863 A 2166 115955 13202+1747 1983,4307 31.6 0.287 1983.0510 190.3 0.113 ADS 9158 STT 277 AB 124346 14124+2843 1983.0701 191.9 0.102 1983.0510 40.0 0.309 ADS 8864 STF 1734 115995 13207+0257 1984.0559 41.2 0.301 1983.0510 178.6 1.100 1984.3728 41.4 0.302 1983.4332 178.4 1.087 1984.3754 41.4 0.302 1984.3779 178.7 1.080 1985.4813 42.4 0.302 1984.3807 178.6 1.076 ADS 9174 124587 STP 1816 14139+2906 ADS 8887 **HO 260** 116495 13236+2914 1983.0510 88.6 0.751 1984.0558 74.3 1.180 1984.3728 88.8 0.741 1985.4840 STT 267 74.9 1.230 1984.3781 0.737 88.9 8903 117173 ADS 13253+7559 HR 5323 CHARA 41 AC 124570 14141+1258 1984.3754 15.3 0.100 1984.3754 2 STF 1819 120.3 0.190 13258+4430 8901 λ 1609 AB 116878 ADS AD5 9182 124757 14153+0308 1985.4866 284.0 0.219 1984.3754 234.0 0.857 117009 AG 187 14205+2634 ADS 8904 13272+2028 +27 2367 125709 DAN 1984.0558 123.7 1.588 1984.3754 170.6 0.054 1985.4840 123.5 1.620 ADS 9747 7 Bu 1111 BC 1984.3754 126128 14234+0827 +31 2500 Wor 24 13320+3109 45.9 0.273 1984.3781 302.7 0.180 ADS 9264 126695 A 2069 14268+1625 1984.3807 1984.3754 262.4 302.3 0.174 0.179 VYS 144 AB VW Com 13328+1649 1984.3781 265.5 0.174 -----1983.0510 37.9 3.065 1985.4841 258.5 0.200 1984.3865 39.6 3.060 **BR 5435** Y 800 127762 14321+3819 1984.3835 ADS 8939 STT 269 AB 117902 177.5 13328+3454 0.177 1983.0511 127726 243.3 0.140 A 570 ADS 9301 14323+2641 1983.0701 1983.0701 242.1 0.130 340.0 0.161 1984.0532 255.8 0.127 1983.4307 334.2 0.155 1984.3728 259.0 0.114 1984.0559 324.8 0.151 1984.3754 248.0 0.104 1984.3728 320.5 0.155 1984.3835 247.7 0.107 1984.3754 318.6 0.151 1985.4840 254.0 0.080 1984.3835 318.6 0.151 ADS 8954 Bu 932 AB 118054 13348-1313 1985.4813 298.7 0.152 1983.4304 50.9 0.342 ADS 9323 CHARA 42 Am 128563 14373+0217 1984.0558 51.0 0.344 1984.3865 161.0 0.210 0.343 1984.3727 51.0 ADS 9329 STF 1863 128941 14381+5135 67.5 1984.3807 51.1 0.345 1983.0701 0.643 ADS 8964 AG 190 13357÷4939 1984.3754 68.4 0.636 1984.3864 12.8 2.540 1984.3809 68.4 0.638 ADS \$980

13380+4808

2.273

1985.4813

68.1

0.651

TABLE IV. (continued)

ADS 8987

BU 612 AB

118889

13396+1044

13100-0532

1

ţ

i

t

.

Ì

)

ŧ

i

1

•

NR 5472 McA 129132 1983.0701 267?1 1984.3835 244.4 -21 3946 RST 2917 129065	14407+2158	-12 4227 CHARA 44		12120 1303
1983 0701 26701	07070	-12 4227 CHARA 44	132041	15188-1302
	0.070	1933.4199	1/596	07192
	0.048	ADS 9578 STF 1932 A	B 136176	15183+2649
-21 3346 RST 2917 129065	14411-2237	1983.4281	253.0 253.4	1.431
1984.3755 187.4 1984.3781 187.5	0.364	1984.3865	253.4	1.457
		ADS 9578 CHARA 45 A		
ADS 9343 STF 1865 AB 129246-7	/ 14411+1344	1984.3837	66.3	0.333
1984.0532 303.8	0.961	+24 2847 Cou 103		15200+2338
1984.3781 303.5	0.961	1983.4200	282.4	0.538
1984.0532 303.8 1984.3781 303.5 1984.3837 303.0 1985.4895 302.8	0.965	ADS 9617 STF 1937 A	B 137107-	8 15232+3018
1985.4895 302.8	0.969	1983.0702	355.4 359.1 5.3 5.0	0.663
ADS 9352 Hu 575 AB	14426+1930	1983.4281	359.1	0.669
1983.0702 338.5	0.501 j	1983.4281 1984.3729	5.3	0.744
1985,4895 323.3	0.427	1984.3782	5 0	0 743
ADS 9378 STT 285 130188	14455+4222	1984.3782 1985.4896	10.6	0 820
1983.0701 331.3	0.276	+40 2878 Cou 1441	10.0	0.829 15233+4022 -
1984.3729 325.1	0.287	1984.3782	14.9	0.226
1984.3782 326 3	0 285	1985.4841	16.7	0.228
1085 4814 221 4	0.203	1905.4841	_ 16.7	0.248
1985 4896 220 8	0.301	ADS 9626 STF 1938 B	C 137392	15245+3721
HD 5504 94- 300 130040	14462 2110	1983.4200	15.2	2.096
104/ 3765 37/ A	14462-2110	ADS 9628 Hu 149	137588	15246+5413
	0.186	1953.4281	273.6	0.593
1985.4895 302.8 ADS 9352 Hu 575 AB 1983.0702 338.5 1985.4895 323.3 ADS 9378 STT 285 130188 1983.0701 331.3 1984.3729 325.1 1984.3782 326.3 1985.4814 321.4 1985.4896 320.8 HR 5504 Fin 309 129980 1984.3755 274.8 1984.3781 274.4 ADS 9389 STT 1884 130603	0.187	ADS 9628 Hu 149 1983.4281 1984.3729	273.6	0.599
ADS 9389 STF 1884 130603	14485+2422	+42 2601 Cou 1443	137896	15272+4133
ADS 9389 STF 1884 130603 1984.3782 56.3	2.036	1983.4200	178.6	0.474
ADS 9392 STP 1883 130604	14489+0557	1983.4281 1983.4200 1984.3729 +42 2601 Cou 1443 1983.4200 1984.3782 1985.4841 HR 5747 β CrB 1983.0511 1983.0702 1983.4200 1983.7150 1984.0587 1984.0587 1984.3756 1984.3756 1984.3756 1984.3756 1985.4841 $ADS 9682$ Hu 1163	178.1	0.487
1983.0702 291.8	0.445	1985.4841	178.3	0.498
1984.3729 289.7	0.475	HR 5747 β CrB	137909	15278+2906
1983.0702 291.8 1984.3729 289.7 1985.4814 289.3	0.511 j	1983.0511	163.7	0.200
ADS 9395 Hu 141 130558 1983.0702 109.9 1983.4199 109.9	14492-1050 j	1983.0702	162.3	0.205
1983.0702 109.9	0.289	1983.4200	160.6	0.221
1983.4199 109.9	0.285	1983.7150	158.0	0.243
ADS 9396 Bu 106 AB 130559	14493-1409 i	1984.0587	156.2	0.263
1984.3755 1.0	1,820	1984.3756	153.8	0.276
ADS 9400 A 1110 AB 130726	14497+0800	1984.2007	153 1	0 285
1983.0702 246.8	0.615	1985.4814	148 2	0 106
1984.3729 248.7	0.618	1985 4841	148.4	0.306
1983.0702 246.8 1984.3729 248.7 1985.4814 248.4	0.637	ADC 0687 No 1167	130/9	16307.3010
ADS 9425 STT 248.4 ADS 9425 STT 248.4 1984.3837 131473 1984.3855 170.9 ADS 9453 Bu 1984.3855 350.3 1984.3755 350.3 1984.3761 350.5	1453411543	ADS 9682 Hu 1163	130139	1330/#3810
1984.3837 171.1	1.316	1984.3782 1985.4814	28.4 39.4	0.113
1984.3865 170.9	1 315		39.4	
ADS 9453 Bu 239 132210	14587_2720	ADS 9688 A 1634 AB		
1984 3755 350 3	A 557	1984.3756 HR 5778 Cou 610 1983.4281 1984.3756 1985.4814 1985.4896 +27 2513 Cou 798 1983.4200 1985.4841 ADS 9716 ST 728 AB	198.6	0.055
1044 3761 350 5	0.557	HR 5778 COU 610	138749	15329+3121
+47 2190 Cou 1760	14503.4640	1983.4281	203.4	0.671
+47 2190 Cou 1760 1984.3755 202.2 1985.4841 204.4	14393+4049	1984.3756	203.0	0.678
	0.187	1985.4814	202.8	0.696
	0.195	1985.4896	202.7	0.694
	15018+0008	+27 2513 Cou 798		15347+2655
1983.4200 109.2 1984.3729 109.5 1985.4814 109.0	0.502	1983.4200	57.2	0.154
1984.3729 109.5	0.505	1985.4841	64.1	0.139
1985.4814 109.0	0.511		*****	15361+3948
ADS 9494 STF 1909 133640	15039+4739	1983.4281	230.5	0.470
1983.4200 41.7	1,151	1984.3756 1984.3782	237.0	0.420
1984.0532 42.7	1.193	1984.3782	237.1	0.419
1984.3729 43.3	1.210	ADS 9731 STF 1964 C	D 139691	153#2+3614
1984.3782 43.2	1.216	1983.4281	1.8 0	1 637
1983.4200 41.7 1984.0552 42.7 1984.3729 43.3 1984.3782 43.2 1985.4841 44.7	1.314	-19 4165 CHARA 48	139364	15384-1955
MD2 2010 K21 4034 MB 134213	15089-0610 j	1983.4308	165.9	0.271
1983.4199 11.6	0.356	-19 4165 CHARA 48 1983.4308 +26 2712 Cou 612	139749	15390+2545
ADS 9530 A 1116 134827	15116+1008	1983.4200	275.3	0.170
1983.0702 46.0	0.742	1984.3756	267.7	0.179
1983.4200 47.3	0.738 j	1985.4843	261.6	0.186
	0.729	ADS 9735 Bu 122	139628	15399-1947
	0.740	1983.4308	223.5	1.785
HR 5654 Cou 189 134943	15121+1858	ADS 9742 A 2076	139939	15405+1841
	0.442	1983.4200	180.1	0.632
	0.446	1984.3757		
	0.443	1985.4843	180.4	0.635
	0.441		180.5	0.647
	0.453	ADS 9744 Hu 580 AB	140159	15416+1941
ADS 9532 B 2351 Am 134759	15123-1947	1983.0702	74.7	0.156
	0.154	1983.4281	77.8	0.138
		1984.3757	84.1	0.087
	0.167			
1984.3755 358.1	0.150			

TABLE IV. (continued)

÷ *

1

77 ° 7

		TABLE IV. (contin	lued)			
+42 2629 Cou 1445	140432 1	15420+4204	HR 6032	Fin 354	145589	16115+0943
1983.4200				.4200		0:124
1985.4841		.113		.7151		0.126
ADS 9757 STF 1967		15428+2618		1.3730		0.130
1983.4200 1984.3756		.425		.3757		0.124 0.127
1984.3756				5.4843 Bu 120		16120~1927
ADS 9758 Bu 619		15431+1340		.4282		1.219
1983.4282			ADS 9969	CHARA 52 Am		16133+1333
1983.4308		.658				0.209
1984.3757				RST 3936 AB		16143-1024
1985.4843 +22 2878 Cou 106		.675 1 5440+2220 				0.302 0.302
1983.4200			-3012986	I 1586	146177	16161-3037
1985.4843		.400				0.321
ADS 9775 Bu 620 AB	140722 1	15462-2804 j 2	ADS 10006	STT 309	147275-6	16192+4140
1983.4282		.534				0.318
1984.3783		.528				0.310
1985.4978 אסט 9775 כאאא 50 א		.543 15462-2804 /	198: Ads 10005		287.0 1 47104	0.322 16205-2008
1983.4282		.216			-	0.117
1964.3783			NR 6084	V SCO AR	147165	16212-2536
Gl 9529AB Cou 66]	15465+1956		4254	92.9	0.377
1985.4896		.876		.3783		0.384
ADS 9783 A 2077				CHARA 53 Aa		16221+3053
1985.4843 - ADS 9794 A 1127		.544 15474+5929	-16 4280	1.3783 CHARA 54	74.7 147473	0.153 16229-1701
1983.4200		.316		.3783		0.081
1984.3729	287.9 0.	.312		5.4978	89.9	0.105
1985.4841			ADS 10052	STF 2054	148374	16238+6141
ADS 9806 Hu 912		15492+6032				1.009
1983.4200 1984.3729		.169				1.008 1.019
1984.3756			ADS 10068			16272+3952
1985.4841		.134				0.312
ADS 9812 Hu 153		15519-1232				0.310
1983.4200				RST 3950		16286-1613
1985.4923 ADS 9834 Hu 1274		.408 15550-1923		3.4254 1.3783		0.261 0.267
1983.4254			ADS 10075	STF 2052 AB		16289+1825
ADS 9836 I 977	142456	15557~2645	1983		31.6	1.535
1983.4254		. 248				1.561
1984.3783 NR 5953 & Sco		.178 16003-2237 .		5.4844 2055 AB		1.617 16310+0159
1983.4254		.173		3.4308		1.216
1984.3783		.171		. 3730		1.227
AD3 9909 STF 1998 A		16044-1122 j z	ADS 10092	STF 3105	148931	16318-0702
1983.4282		.981				0.331
1984.3783		.954				0.342
ADS 9913 Bu 947 AB 1983.4282		160541948 .379 1	HR 6168	5.4869 2 σ Her	201.1 149630	0.347 16341+4227
1984.3783		.376				0.083
1985.4868		.368	1985	5.4844 3		0.102
ADS 9913 HCA 42 CE		· · · · ·	ADS 10129	STF 2078 AB		16363+5255
1983.4226		.108				3.213 16420+7353
1984.3783 ADS 9931 א 1798		.087 · 16079+1425		MLR 198 3.4309 1	151746 86.7	18420+7353
1983.4200		.156				0.204
1983.7151		.157	1984	.3730		0.194
1984.3730		.155				0.183
1985.4844 ADS 5935 Bu 355 AB		,159 / 16081+4524	ADS 10189			16437+5132
ADS 9935 Bu 355 AB 1983.4200		.281				0.464 0.463
1984.3730		.275				0.467
1985.4844	281.0 0.	. 270 j				0.479
ADS 9932 Bu 949			ADS 10184	STF 2094 AB		16442+2331
1983.4282		. 405		.4309		1.230
1984.3729 1985.4869		.417		1.3784 MLR 182		1,229 1 6446+7145
-3012880 I 557		16094-3103		.7151		16446+/145
1983.4254		.199		. 3784		0.153
		i		. 4841		0.151
		L				

TABLE IV. (continued)

.

į

.

t

i

•

:

1

.

+29 2876 Cou 490	151236	16450+2928	j ADS 10459 Bu 628		17184+3239
1983.4200	2696	07191	1984.3732	28498	0:462
1984.3784	25.0	0.197	ADS 10465 Bu 126 AB	156717	17198-1745
1985.4845 ADS 10229 STF 2106	21.2 152113	0.197 16511+0925	1983.4310 HR 6469 MCA 47	262.9	2.296 17217+3958
	180.3	0.545	HR 6469 MCA 47 1982.5027 1983.0702	154.5	0.106
1984.3784	180.5	0.550	1 1983.0702	161.6	0.108
-2412876 B 2397		16514-2450	1983.4202	165.4	0.101
1984.3812	336.3	0.097	1983.7151	171.0	0.102
ADS 10230 STT 315	152127	16515+0113	1984.3732	180.2	0.095 -
1983.4200	352.9	0.186	1984.3760	181.5	0.083
1984.3784	347.8	0.207	1984.3840	181.6 -	0.082
1984.3840	346.8 345.6	0.201	1 1984.7009	188.6	0.072
1984.7009 1985.4845	342.4	0.213 0.235	1985.4816	225.4 157392	0.051
ADS 10252 B 323		16550-2431	+23 3092 Cou 415 1983.4202	67.1	17221+2310 _ 0.157
1983.4254	92.5	0.475	1984.3759	54.5	0.146
ADS 10257 Bu 241		16555-2134	1984.3813	55.4	0.148
1983.4282	8.8	0.368	-09 4546 RST 3972	157498	
1984.3785	9.0	0.362	1983.4202	83.4	0.227
1984.3812	9.6	0.369	1984.3757	93.0	0.219
ADS 10279 STF 2118		16563+6502	1984.3812	93.3	0.219
1983.4309	70.2	1.111	ADS 10531 Hu 1179	157853	
1984.3730	70.3	1.099	1984.3840	294.3	0.051
1984.3784	70.5	1.111	1984.7009	294.8	0.056
ADS 10265 Bu 1117 1983.4282	152849 297.7	16568-2309 0.953	ADS 10573 Bu 1201		17263+6746
1984.3785	297.6	0.955	1983.4202 1984.3732	343.4 341.8	0.195 0.178
ADS 10787 Nu 162		16593-1655	1984.3760	342.4	0.181
1984.3785	215.9	0.624	ADS 10561 A 2244	158122	
ADS 10312 STF 2114		17019+0827	1984.3785	88.2	0.232
1983.4308	186.9	1.229	1985.4843	85.7	0.245
1984.3785	187.5		ADS 10585 A 351		17294+2924
		6 17054+5427	1982.5027	242.5	0.535
1982.5027		2.034	1983.4202	243.9	0.584
1983.4309 +38 2885 Cou 1291	42.2 155039	2.044 17075+3810	ADS 10598 STF 2173	158614	17303-0103
+38 2885 Cou 1291 1984.3784	217.8	0.108	1983.4309	160.6	0.770 0.837
1985.4844	228.5	0.109	1984.3757 1984.3812	159.0 159.0	0.837
ADS 10360 Hu 1176 AM			+19 3336 Cou 499	158956	17313+1901
1982.5027		0.069	1984.3813	60.6	0.150
1983.0702	315.6	0.067	ADS 10624 Hu 1181	159304	17326+3445
1984.3784	144.5	0.074	1983.4202	8.6	0.116
1984.7008	134.7	0.095	1983.7152	9.6	0.113
1985.4816	120.6	0.129	1984.3759	18.5	0.083
ADS 10355 A 1145	154895 17.8		1984.3840	18.9	0.080
1983.4200 1984.3785	16.4	0.412 0.424	HR 6560 M1r 571	359.3	17335+5734 0.149
1984.3840	15.6	0.423	1982.5027 1983.0702	352.6	0.149
1985.4845	14.1	0.440	1983.4202	356.1	0.142
-19 4547 MCA 46	155095	17103-1926	1983.7151	355.6	0.144
1984.3785	115.0	0 123	1984.3732	355.3	0.143
1984.3812	115.0	0.122	1984.3760	353.1	0.140
	155125	17103-1544	1984.3840	353.3	0.141
1984.3785	260.2	0.383	+68 0946 CHARA 62 A		17365+6823
1984.3812 1985.4869	260.1 258.1	0.385	1984.3760	1.3	0.292
ADS 10385 Hu 169	155317	0.403 17115-1629	+45 2566 Cou 1595 1982,5027	160214 250.4	17365+4543 0.414
1983.4254	43.5	0.165	1982.5027	252.9	0.408
1984.3785	35.4	0.153	ADS 10659 A 1156	159857	17366+0722
1984.3812	34.7	0.147	1984.3759	3.8	0.084
+45 2505 Kui 79 AB	155876	17121+4544	1984.3813	3.8	0.079
1982.5027	254.9	1.008	1985.4869	2.1	0.084
1984.3784	241.9	1.120	ADS 10657 Hu 751	159663	17368-2058
1985.4644	234.0	1.127	1985.4843	240.7	0.090
ADS 10423 A 2592	156034	17157~0949	+27 2853 Kui 83 AB		17370+2753
1983.4202	227.7 224.9	0.357 0.360	1982.5028	10.3	0,241
1984.3785 1984.3811	224.9	0.360	1983.4202	349.7	0.229
1985.4869	223.1	0.340	1983.4309	349.7 329.9	0.224 0.220
-3013996 Pu 1119	156184	17173-3010	1 104.3013		V.44V
1983.4255	83.2	0.341	i		
1984.3812	86.0	0.321	1		

TABLE IV. (continued)

.

R

.

TABLE IV. (continued)

Ab5 10656 Bu 611 166418 17395-0039 Ab5 10895 A 249 1644717 1756-0255 1383.7132 14013 0.091 1984.3842 312.2 0.121 1383.7132 140.3 0.091 1984.3842 312.2 0.121 1383.7135 135.4 0.093 1984.3842 312.2 0.131 1383.7135 135.4 0.093 1984.3842 312.2 0.131 1383.7135 135.4 0.093 1984.3842 312.4 0.154 1383.7177 135.4 0.024 1981.3777 1991.3077 21.6 2.605 1384.3759 32.4 0.236 1981.3777 1981.3777 0.24 1284.372 1384.3759 221.7 0.556 14471.2 1284.372 0.295 1384.3759 221.7 0.556 144777 1284.372 0.272 1384.3759 221.7 0.556 144777 1284.372 0.272 1384.3757 0.224 228			TABLE IN	continued)		
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	ADS 10696 Bu 631	160438	17389-0039	ADS 10899 A 2	169 163471	17563+0350
1984.3813 32.4 0.283 1974.382 22.0 0.285 ADS 10743 Bu 1285 161256 174464227 1983.4312 110.0 0.392 1983.4013 224.2 0.566 -494 320.7 0.560 -70.441 1983.4013 223.1 0.550 -424 329.5 0.10.7 0.134 1983.4012 223.1 0.550 +24 329.5 0.270 0.271 1983.4012 49.6 1.475 1983.7098 111.6 0.271 1983.4012 52.6 1.610 ADS 11005 377 222.4 1.64764-5 1983.4277 57.7 0.136 1.610 1.84764-5 1.86764 1983.4277 37.7 1.160 1.84764-5 1.86764 1.86764 1983.4237 37.7 1.16 0.558 -1.983.4227 57.7 1.163 1983.4203 7.75.1 1.983.4217 57.7 1.14 1.983.4217 57.7 1.143 1983.4203 <td< td=""><td></td><td>14003</td><td></td><td>AD3 10099 A 2</td><td></td><td>1/363+0233</td></td<>		14003		AD3 10099 A 2		1/363+0233
1984.3813 32.4 0.283 1974.382 22.0 0.285 ADS 10743 Bu 1285 161256 174464227 1983.4312 110.0 0.392 1983.4013 224.2 0.566 -494 320.7 0.560 -70.441 1983.4013 223.1 0.550 -424 329.5 0.10.7 0.134 1983.4012 223.1 0.550 +24 329.5 0.270 0.271 1983.4012 49.6 1.475 1983.7098 111.6 0.271 1983.4012 52.6 1.610 ADS 11005 377 222.4 1.64764-5 1983.4277 57.7 0.136 1.610 1.84764-5 1.86764 1983.4277 37.7 1.160 1.84764-5 1.86764 1.86764 1983.4237 37.7 1.16 0.558 -1.983.4227 57.7 1.163 1983.4203 7.75.1 1.983.4217 57.7 1.14 1.983.4217 57.7 1.143 1983.4203 <td< td=""><td>1963.4202</td><td>14013</td><td>07085</td><td>1984.37</td><td>8/ 33910</td><td>0:112</td></td<>	1963.4202	14013	07085	1984.37	8/ 33910	0:112
1984.3813 32.4 0.283 1974.382 22.0 0.285 ADS 10743 Bu 1285 161256 174464227 1983.4312 110.0 0.392 1983.4013 224.2 0.566 -494 320.7 0.560 -70.441 1983.4013 223.1 0.550 -424 329.5 0.10.7 0.134 1983.4012 223.1 0.550 +24 329.5 0.270 0.271 1983.4012 49.6 1.475 1983.7098 111.6 0.271 1983.4012 52.6 1.610 ADS 11005 377 222.4 1.64764-5 1983.4277 57.7 0.136 1.610 1.84764-5 1.86764 1983.4277 37.7 1.160 1.84764-5 1.86764 1.86764 1983.4237 37.7 1.16 0.558 -1.983.4227 57.7 1.163 1983.4203 7.75.1 1.983.4217 57.7 1.14 1.983.4217 57.7 1.143 1983.4203 <td< td=""><td>1983.7152</td><td>140.3</td><td>0.091</td><td>1984.38</td><td>42 342.2</td><td>0.121</td></td<>	1983.7152	140.3	0.091	1984.38	42 342.2	0.121
1984.3813 32.4 0.283 1974.382 22.0 0.285 ADS 10743 Bu 1285 161256 174464227 1983.4312 110.0 0.392 1983.4013 224.2 0.566 -494 320.7 0.560 -70.441 1983.4013 223.1 0.550 -424 329.5 0.10.7 0.134 1983.4012 223.1 0.550 +24 329.5 0.270 0.271 1983.4012 49.6 1.475 1983.7098 111.6 0.271 1983.4012 52.6 1.610 ADS 11005 377 222.4 1.64764-5 1983.4277 57.7 0.136 1.610 1.84764-5 1.86764 1983.4277 37.7 1.160 1.84764-5 1.86764 1.86764 1983.4237 37.7 1.16 0.558 -1.983.4227 57.7 1.163 1983.4203 7.75.1 1.983.4217 57.7 1.14 1.983.4217 57.7 1.143 1983.4203 <td< td=""><td>1984.3757</td><td>135.4</td><td>0.093</td><td>ADS 10905 McA</td><td>49 AR 163640</td><td>17564+1820</td></td<>	1984.3757	135.4	0.093	ADS 10905 McA	49 AR 163640	17564+1820
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	1984.3812	135.2	0.092	1983.70	97 69.1	0.069
1984.3813 32.4 0.283 1974.382 22.0 0.285 ADS 10743 Bu 1285 161256 174464227 1983.4312 110.0 0.392 1983.4013 224.2 0.566 -494 320.7 0.560 -70.441 1983.4013 223.1 0.550 -424 329.5 0.10.7 0.134 1983.4012 223.1 0.550 +24 329.5 0.270 0.271 1983.4012 49.6 1.475 1983.7098 111.6 0.271 1983.4012 52.6 1.610 ADS 11005 377 222.4 1.64764-5 1983.4277 57.7 0.136 1.610 1.84764-5 1.86764 1983.4277 37.7 1.160 1.84764-5 1.86764 1.86764 1983.4237 37.7 1.16 0.558 -1.983.4227 57.7 1.163 1983.4203 7.75.1 1.983.4217 57.7 1.14 1.983.4217 57.7 1.143 1983.4203 <td< td=""><td>1984.7007</td><td>131.8</td><td>0.093</td><td>ADS 10905 STF</td><td>2745 An 8 163640</td><td>17564-1820</td></td<>	1984.7007	131.8	0.093	ADS 10905 STF	2745 An 8 163640	17564-1820
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	1985 4816	130 1	0 106	10+2 50		7 834
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	131 3100 Con 114	160036		1962.30	28 292.9	2.334
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	+21 3160 COU 114	100332	1/418+2130	1983.70	9/ 291.6	2.609
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	1982.5028	30.8	0.288	ADS 10912 STF	2244 163624	17571+0004
1984.3813 32.4 0.283 1984.3812 22.0 0.285 ADS 10743 HU 1285 161256 17546+2237 1983.4312 110.0 0.392 1983.4013 224.2 0.566 1983.4012 110.0 0.392 1983.4013 223.1 0.550 +24 329.10 cm 100.7 0.434 1983.412 49.6 1.475 1983.4203 111.0 0.271 1983.4212 49.6 1.475 1983.4203 111.6 0.267 1983.4276 5.6 1.61797 17465242745 1983.4277 12.2 0.271 1983.4277 5.7 0.136 1.7444737 40.277 122.6 0.266 1983.4227 10.41.0 0.7444747 1983.4227 57.7 0.136 1983.4237 16.108 174424742 1983.4227 57.7 0.136 1983.4237 16.238 174424742 1983.4227 57.7 0.136 1983.4237 16.238 10.411 10.5599 10.60	1983.4312	32.2	0.286	1983.43	12 88.3	0.278
ADS 10743 TM 151258 7733 5+2237 1080.4201 10.000 10.000 1032 7233 5 1981.4203 1281.4203 1285.4872 1385.4872 100.7 1.42 100.7 1.42 1985.4409 223.7 0.550 +24 3298 100.7 0.142 1285.4472 1385.4472 1385.4472 1385.4472 1385.4472 1385.4203 111.0 0.271 1985.4203 1397 93.5 1.400 1285.4203 111.0 0.271 1383.4203 111.0 0.271 1383.4203 111.0 0.271 1383.4203 1277 1563 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4227 1.14 0.271 1383.4403 128.5 1663 1482.5 148.4 128.5 148.4 128.5 148.4 148.5 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4	1984.3759	32.5	0.284	1984.37	87 90.8	0.294
ADS 10743 TM 151258 7733 5+2237 1080.4201 10.000 10.000 1032 7233 5 1981.4203 1281.4203 1285.4872 1385.4872 100.7 1.42 100.7 1.42 1985.4409 223.7 0.550 +24 3298 100.7 0.142 1285.4472 1385.4472 1385.4472 1385.4472 1385.4472 1385.4203 111.0 0.271 1985.4203 1397 93.5 1.400 1285.4203 111.0 0.271 1383.4203 111.0 0.271 1383.4203 111.0 0.271 1383.4203 1277 1563 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4203 1271 1383.4227 1.14 0.271 1383.4403 128.5 1663 1482.5 148.4 128.5 148.4 128.5 148.4 148.5 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4 148.4	1984.3813	32.4	0.283	1984.38	42 92 0	0 295
1944.3759 223.7 0.551 1985.4872 100.7 0.142 1985.4869 223.1 0.553 424 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 144 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 147 1983.4203 111.0 0.271 1985.4872 108.3 108.5 147 1983.4203 114.6 0.271 1985.4872 108.3 147.7 1383.5708 114.6 0.271 1985.4872 108.3 147.7 1383.5708 144.3 0.277 0.156 1985.4872 108.3 1747.4 1384.3708 127.7 0.156 1803.54632 1983.4203 127.5 1633.3 147.4 1384.380 128.5 142.33 142.33 142.33 142.33 142.33 142.33 143.34 142.33 142.34 142.34 1142.55 142.34 142.34 142.34 142.34 142.34	1985 4816	32 7	0.290	-19 4777 CHA	BA 66 16360A	17597 .1016
1944.3759 223.7 0.551 1985.4872 100.7 0.142 1985.4869 223.1 0.553 424 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 144 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 147 1983.4203 111.0 0.271 1985.4872 108.3 108.5 147 1983.4203 114.6 0.271 1985.4872 108.3 147.7 1383.5708 114.6 0.271 1985.4872 108.3 147.7 1383.5708 144.3 0.277 0.156 1985.4872 108.3 1747.4 1384.3708 127.7 0.156 1803.54632 1983.4203 127.5 1633.3 147.4 1384.380 128.5 142.33 142.33 142.33 142.33 142.33 142.33 143.34 142.33 142.34 142.34 1142.55 142.34 142.34 142.34 142.34 142.34		32.7	0.250	-13 1/// CAA	W 00 103000	1/202-1910
1944.3759 223.7 0.551 1985.4872 100.7 0.142 1985.4869 223.1 0.553 424 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 144 3298 Cou 115 18000e22449 1985.4869 223.1 0.553 147 1983.4203 111.0 0.271 1985.4872 108.3 108.5 147 1983.4203 114.6 0.271 1985.4872 108.3 147.7 1383.5708 114.6 0.271 1985.4872 108.3 147.7 1383.5708 144.3 0.277 0.156 1985.4872 108.3 1747.4 1384.3708 127.7 0.156 1803.54632 1983.4203 127.5 1633.3 147.4 1384.380 128.5 142.33 142.33 142.33 142.33 142.33 142.33 143.34 142.33 142.34 142.34 1142.55 142.34 142.34 142.34 142.34 142.34	ADS 10/43 HU 1285	101739	1/436+2237	1983.43	12 110.0	0.392
1988.1813 223.7 0.530 +24 328 Cou 113 18000+2449 ADS 10766 AC 7 0.531 12000+2449 11.0 0.221 ADS 10767 AS. 61 145.4775 1.616 0.267 1985.4978 55.6 1.610 ADS 11005 STP 2252 1.61630-0611 BE 6641 CRARA 64 152122 174714737 1983.4237 57.7 0.156 1983.4257 266.4 0.556 1994.4203 1246 150511 18030-0611 1983.4257 266.4 0.556 1994.4205 1994.3766 54.7 0.142 1983.4257 36.7 0.134 1983.4257 57.7 0.156 1994.4205 1994.3759 1995.4224 1995.4224 1995.4224 1995.4224 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4235 1995.4205 1995.4205 <td>1983.4203</td> <td>224.2</td> <td>0.546</td> <td>+04 3562 Kui</td> <td>. 84</td> <td>17584+0427</td>	1983.4203	224.2	0.546	+04 3562 Kui	. 84	17584+0427
1988.1813 223.7 0.530 +24 328 Cou 113 18000+2449 ADS 10766 AC 7 0.531 12000+2449 11.0 0.221 ADS 10767 AS. 61 145.4775 1.616 0.267 1985.4978 55.6 1.610 ADS 11005 STP 2252 1.61630-0611 BE 6641 CRARA 64 152122 174714737 1983.4237 57.7 0.156 1983.4257 266.4 0.556 1994.4203 1246 150511 18030-0611 1983.4257 266.4 0.556 1994.4205 1994.3766 54.7 0.142 1983.4257 36.7 0.134 1983.4257 57.7 0.156 1994.4205 1994.3759 1995.4224 1995.4224 1995.4224 1995.4224 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4225 1995.4235 1995.4205 1995.4205 <td>1984.3759</td> <td>223.7</td> <td>0.551</td> <td>1985.48</td> <td>72 100.7</td> <td>0.142</td>	1984.3759	223.7	0.551	1985.48	72 100.7	0.142
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td>1984.3813</td><td>223.7</td><td>0.550</td><td>+24 3298 Cou</td><td>115</td><td>18000+2449</td></th<>	1984.3813	223.7	0.550	+24 3298 Cou	115	18000+2449
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td>1985,4869</td><td>223.1</td><td>0.553</td><td>1983.42</td><td>03 111.0</td><td>0.271</td></th<>	1985,4869	223.1	0.553	1983.42	03 111.0	0.271
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td>ADS 10786 AC 7 BC</td><td>161797</td><td>17465+2745</td><td>1983 70</td><td>98 114 6</td><td>0 367</td></th<>	ADS 10786 AC 7 BC	161797	17465+2745	1983 70	98 114 6	0 367
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td>1042 4212</td><td>40 6</td><td>1 476</td><td>1004 37</td><td>A7 112 0</td><td>0.207</td></th<>	1042 4212	40 6	1 476	1004 37	A7 112 0	0.207
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td></td><td>13.0</td><td>1.1/2</td><td>1504.37</td><td></td><td>0.272</td></th<>		13.0	1.1/2	1504.37		0.272
Abs. 10.4 1.14 4.15 1.14 <th< td=""><td>1905.4978</td><td>33.8</td><td>1.010</td><td></td><td></td><td></td></th<>	1905.4978	33.8	1.010			
1985.4924 110.4 -144 +40 3270 Cou 1785 155311 14035+4032 1981.4257 1585.4639 265.6 0.563 1981.4227 57.7 0.156 +37 2848 Cou 1145 162338 17490+3704 1981.4227 57.7 0.142 1981.4257 7.4 0.055 1983.4227 57.7 0.144 160354 1981.4207 357.4 0.105 1981.4217 1981.4217 10043+4205 1981.4217 357.7 0.117 1981.4203 80.7 0.164 1984.3400 346.6 0.117 1981.703 80.7 0.461 1984.3400 346.6 0.117 1981.703 80.7 0.461 1984.3759 186.4 0.385 1981.707 90.7 0.443 1984.3759 178.4 0.385 1983.4227 101.1 0.461 1984.3759 178.4 0.385 1983.4227 101.3 0.441 1984.3759 178.4 0.385 1983.4227 101.3 0.451 1984.3759 178.4 0.385 1983.4227 </td <td></td> <td>AAAA</td> <td>A/4/AT4/3/</td> <td>1983.43</td> <td>12 276.6</td> <td>1.860</td>		AAAA	A/4/AT4/3/	1983.43	12 276.6	1.860
 +37 2949 +37 2949 +37 2949 +37 2949 +37 2949 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +38 - 427 +35 - 4616 +36 - 472 +36 - 472 +37 - 40 +37 - 40 +38 - 472 +38 - 482	1985 4074	110 4	0.144	+40 3270 Cou	1785 165311	18035+4032
 +37 2949 +37 2949 +37 2949 +37 2949 +37 2949 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +38 - 427 +35 - 4616 +36 - 472 +36 - 472 +37 - 40 +37 - 40 +38 - 472 +38 - 482	ADS,10795 STF 2215	161833	17472+1742	1983.42	27 57.7	0.156
 +37 2949 +37 2949 +37 2949 +37 2949 +37 2949 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +37 2943 +38 - 427 +35 - 4616 +36 - 472 +36 - 472 +37 - 40 +37 - 40 +38 - 472 +38 - 482	1983.4255	266.4	0.558	1984 . 17	60 54.7	0.142
+37 2949 Cou 1145 162338 17490+3704 1941,025 1942,5027 7.4 0.105 1993,0703 0.2 0.108 ADS 11060 STT 311 AB 165590 14055+2126 1993,4227 357.4 0.117 1982,7550 90.1 0.384 1994,1759 345.5 0.117 1982,7550 90.1 0.384 1994,1759 345.5 0.117 1982,7550 90.6 0.406 1994,1759 345.5 0.117 1982,7058 90.6 0.427 1993,4203 176.6 0.300 ADS 11071 11984,3707 0.7 0.443 1994,3413 177.9 0.302 1983,4203 10.5 0.441 1994,3413 177.9 0.302 1983,4203 0.27.1 0.241 1994,3413 177.9 0.249 1983,4203 0.257 0.288 1994,3427 101.3 0.245 1983,4203 0.27.6 0.288 1994,3427 10.401 ADS 11080 STT	1985.4869	265.6	0.563	+42 2895 Cou	1786 165803	1804344205
1983.422/ 357.4 0.114 1982.7650 89.7 0.364 1983.7152 352.7 0.117 1982.7650 90.1 0.384 1984.3759 345.5 0.117 1983.7039 90.6 0.406 1935.4816 335.7 0.128 1983.7039 90.7 0.443 1935.4816 335.7 0.128 1983.4203 90.5 0.443 1984.3759 174.4 0.380 ADS 1093.4227 102.1 0.441 1984.3757 0.382 1993.4203 227.1 0.441 1985.4659 177.44 0.385 1993.7096 101.3 0.451 1983.7152 152.4 0.245 1993.7097 227.6 0.228 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351	+37 2949 Con 1145	16733#	17400+3704	1004 34		A A&A
198. 198. <th< td=""><td></td><td>104330</td><td>1/19073/01</td><td>1964.38</td><td>40 129.6</td><td>0.084</td></th<>		104330	1/19073/01	1964.38	40 129.6	0.084
1983.422/ 357.4 0.114 1982.7650 89.7 0.364 1983.7152 352.7 0.117 1982.7650 90.1 0.384 1984.3759 345.5 0.117 1983.7039 90.6 0.406 1935.4816 335.7 0.128 1983.7039 90.7 0.443 1935.4816 335.7 0.128 1983.4203 90.5 0.443 1984.3759 174.4 0.380 ADS 1093.4227 102.1 0.441 1984.3757 0.382 1993.4203 227.1 0.441 1985.4659 177.44 0.385 1993.7096 101.3 0.451 1983.7152 152.4 0.245 1993.7097 227.6 0.228 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351 1994.3787 96.9 0.288 1984.3757 43.1 0.351	1982.5027	7.4	0.105	1985.49	78 144.5	0.085
198. 198. <th< td=""><td>1983.0703</td><td>0.2</td><td>0.108 </td><td>ADS 11060 STT</td><td>341 AB 165590</td><td>18059+2126</td></th<>	1983.0703	0.2	0.108	ADS 11060 STT	341 AB 165590	18059+2126
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1464 162670 17519+0724 1983.4203 96.5 0.287 1984.3757 43.1 0.311 ADS 1198.1427 96.9 0.288 1994.3757 43.1 0.311 ADS 11982.5033 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.778 1983.7097 324.2 0.346 1984.3757 351.4 0.778 1983.7097 324.2 0.346 1984.3759 351.4 0.778 1983.7097 324.2 0.346 1984.3757 351.4 0.778 1983.7097 324.2 0.346 1984.3759 351.4 0.778 ADS 110864 6.699 1983.7027 0.699 1984.3757 271.6 0.202 1984.3732 229.6 0.699 <td>1983.4227</td> <td>357.4</td> <td>0.114</td> <td>1982.50</td> <td>83 89.7</td> <td>0.364</td>	1983.4227	357.4	0.114	1982.50	83 89.7	0.364
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1983.7152	352.7	0.117	1982.76	50 90.1	0.384
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1984.3759	345.5	0.117	1983.42	03 89.1	0.406
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1984.3840	346 6	0 117	1003 70	0.	0 427
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1464 162670 17519+0724 1983.4203 96.5 0.287 1984.3757 43.1 0.311 ADS 1198.1427 96.9 0.288 1994.3757 43.1 0.311 ADS 11982.5033 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.778 1983.7097 324.2 0.346 1984.3757 351.4 0.778 1983.7097 324.2 0.346 1984.3759 351.4 0.778 1983.7097 324.2 0.346 1984.3757 351.4 0.778 1983.7097 324.2 0.346 1984.3759 351.4 0.778 ADS 110864 6.699 1983.7027 0.699 1984.3757 271.6 0.202 1984.3732 229.6 0.699 <td>1015 4816</td> <td>336 7</td> <td></td> <td>1303.70</td> <td>50 50.0</td> <td>0.427</td>	1015 4816	336 7		1303.70	50 50.0	0.427
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1733.4010	335.7	0.128	1984.3/	8/ 90./	0.443
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	ADS 10828 STT 337	162405	17505+0715	1985.84	23 90.5	0.478
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1983.4203	178.6	0.380	ADS 11071 Mu	1186	18063+3824
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1984.3759	178.4	0.385	1983.42	27 102.1	0.441
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1984.3813	177.9	0.382	1983.70	98 101.3	0.451
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	1985.4869	177.4	0.401	ADS 11080 STT	574 165886	18075+1939
1983.4227 151.9 0.239 1983.7097 227.6 0.288 1983.7152 152.4 0.245 1984.3767 225.9 0.291 1984.3759 152.2 0.245 1984.3767 225.9 0.291 ADS 10846 A 1264 162670 17519+0724 1983.4203 96.5 0.286 1984.3757 43.1 0.311 ADS 1198.4203 96.9 0.286 1984.3757 43.1 0.311 ADS 1192.5083 330.7 0.345 1995.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3759 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 351.4 0.738 1983.7097 324.2 0.346 1984.3757 271.6 0.202 1983.7097 324.2 0.346	+36 2956 Con 1146	162667	17505+3651	1042 43	A3 227 1	0 383
ADS 11098 BU 314 166157 1808641839 ADS 11098 126270 17519+0724 1983.4203 96.5 0.285 1983.4203 42.8 0.361 1983.4203 96.5 0.286 1984.3757 43.1 0.371 ADS 1111 STF 2281 AB 166233 18095+0401 1984.3757 43.1 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.795 1983.7097 324.2 0.346 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 273.3 0.202 1984.3732 229.6 0.699 1984.3785 273.3 0.202 1983.4227 165.0 0.712 1983.4227 274.6 0.202 1983.4227 165.0				1703.92	03 227.1	0.282
ADS 11098 BU 314 166157 1808641839 ADS 11098 126270 17519+0724 1983.4203 96.5 0.285 1983.4203 42.8 0.361 1983.4203 96.5 0.286 1984.3757 43.1 0.371 ADS 1111 STF 2281 AB 166233 18095+0401 1984.3757 43.1 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.795 1983.7097 324.2 0.346 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 273.3 0.202 1984.3732 229.6 0.699 1984.3785 273.3 0.202 1983.4227 165.0 0.712 1983.4227 274.6 0.202 1983.4227 165.0	1963.4227	151.9	0.239	1983.70	9/ 227.6	0.288
ADS 11098 BU 314 166157 1808641839 ADS 11098 126270 17519+0724 1983.4203 96.5 0.285 1983.4203 42.8 0.361 1983.4203 96.5 0.286 1984.3757 43.1 0.371 ADS 1111 STF 2281 AB 166233 18095+0401 1984.3757 43.1 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 326.6 0.342 1983.4255 351.4 0.795 1983.7097 324.2 0.346 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 351.4 0.795 1983.4203 228.7 0.699 1984.3759 273.3 0.202 1984.3732 229.6 0.699 1984.3785 273.3 0.202 1983.4227 165.0 0.712 1983.4227 274.6 0.202 1983.4227 165.0	1983.7152	152.4	0.245	1984.37	87 225.9	0.291
ADS 1083 4203 96.5 0.287 1983.4203 42.8 0.361 1984.3787 96.9 0.288 1984.3757 43.1 0.371 ADS 1111 STF 2281 AB 166233 18095+0401 1984.3757 43.1 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 325.6 0.342 1985.4250 STT 338 AB 162734 17520+1520 1983.4312 325.0 0.343 1982.5028 352.6 0.612 1983.4203 228.7 0.692 1984.3759 351.4 0.798 ADS 1128 Mu 674 166820 18097+5024 1984.3755 273.3 0.202 1984.4732 229.8 0.699 1983.4227 274.6 0.202 1983.4227 166107 18101-2346 1983.4227 45.2 0.355 1983.4227 165.0 0.712 1983.4227 45.2	1984.3759	152.2	0.247	ADS 11098 Hu	314 166157	18086+1839
1984.3757 43.1 0.371 ADS 11111 STF 2281 AB 166233 18095+0401 1984.3812 43.5 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 326.6 0.342 1985.4255 551.4 0.798 1983.4312 325.0 0.349 1984.3759 351.4 0.798 1983.4207 732.2 0.349 1984.3759 351.4 0.795 1983.4207 732.2 0.349 1984.3785 273.3 0.202 1983.7152 229.8 0.699 1983.4227 274.6 0.202 1983.4227 166107 18101-2346 1983.4227 45.2 0.355 1983.4227 165.0 0.218 1983.4227 45.2 0.355 1983.4227 165088 181174.7327 1983.4217 70.0 0.373 1983.4227 165084 181174.7327 1983.4227 45.2 0.355 1983.4227 165.0 0.218	ADS 10846 A 1164	162670	17519+0724	1983.42	03 96.5	0.287
1984.3757 43.1 0.371 ADS 11111 STF 2281 AB 166233 18095+0401 1984.3812 43.5 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.5083 330.7 0.345 1985.4869 43.2 0.363 1982.7650 326.6 0.342 1985.4255 551.4 0.798 1983.4312 325.0 0.349 1984.3759 351.4 0.798 1983.4207 732.2 0.349 1984.3759 351.4 0.795 1983.4207 732.2 0.349 1984.3785 273.3 0.202 1983.7152 229.8 0.699 1983.4227 274.6 0.202 1983.4227 166107 18101-2346 1983.4227 45.2 0.355 1983.4227 165.0 0.218 1983.4227 45.2 0.355 1983.4227 165088 181174.7327 1983.4217 70.0 0.373 1983.4227 165084 181174.7327 1983.4227 45.2 0.355 1983.4227 165.0 0.218	1983.4203	42.8	0.361	1984.37	87 96.9	0.288
1984.3812 43.5 0.363 1982.5083 330.7 0.345 1985.4669 43.2 0.363 1982.7650 326.6 0.342 1985.5028 352.6 0.812 1983.4312 325.0 0.343 1984.3759 351.4 0.795 1983.47097 324.2 0.346 1984.3759 351.4 0.795 1983.47037 322.2 0.349 1984.3813 351.3 0.795 1983.4203 228.7 0.692 1983.4227 274.6 0.202 1983.7152 229.8 0.699 1984.3785 773.0 0.202 1985.4869 228.0 0.712 ADS 11006 STT 349 167101 17530+8354 -2314005 156107 1801-2346 1983.4227 45.2 0.355 1983.4227 165.0 0.218 1984.3732 47.0 0.358 1983.4227 165.0 0.218 1984.3737 78.6 0.369 1983.4225 16998 18117+3327 1984.3737 78.6 0.369 1983.4227 165.0 0.218	1984.3757	43 1	A 371			
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1984.3812	43.5	0 363	1003 1003 50		0 345
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1085 4860	42 2	0.363	1962.30		0.345
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347		13.4	0.363	1982.76	50 326.6	0.342
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	AUS 10050 STT 330 AB	102/34	1/520+1520	1983.43	12 325.0	0.343
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1982.5028	352.6	0.812	1983.70	97 324.2	0.346
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1983.4255	351.4	0.798	1984.37	\$7 322.2	0.349
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 58.4 0.094 1983.4312 77.0 0.373 1983.4203 58.4 0.094 1983.4312 77.0 0.384 1983.4203 58.4 0.094 1983.4255 326.6 0.117 1984.3785 60.4 0.102 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 MCA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Am 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227	1984.3759	351.4	0.798 1	ADS 11128 Hu	674 166820	18097+5024
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1984.3813	351.3	0.795	1983.42	03 228.7	0.692
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	ADS 10866 AC 8	163032	17528+2941	1983.71	52 229.8	0.699
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1983.4227	274.6	0.202	1984 37	32 220 0	0.699
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1084 3785	273.3	0.202	1045 44		0.077 0 71 7
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347		167101	17520.0254	2214005	· · · · · · · · · · · · · · · · · · ·	0.712
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	AD3 11000 3TT 349	10/101	×/JJV76334	~2314005 XST	5104 166107	18101-2346
1984.3732 47.0 0.358 1982.7651 57.3 0.099 ADS 10871 A 235 163077 17533+2500 1983.0703 54.1 0.102 1983.4312 77.0 0.373 1983.4203 56.4 0.094 1983.4312 77.0 0.384 1983.4203 56.4 0.094 1983.43767 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.787 30.3.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.76550 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1983.4312 66.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4227 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347	1983.4227	42.2	V.355	1983.42	2/ 165.0	0.218
1983.4312 77.0 0.373 1983.4203 51.4 0.104 1984.3787 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3785 60.4 0.102 1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 RcA 51 167570 18167-2032 1984.3787 303.7 0.106 1982.7650 135.2 0.256 1984.3787 303.7 0.106 1982.7650 135.2 0.249 1984.3787 305.1 0.106 1983.4227 133.2 0.249 1983.4312 66.6 0.535 1983.4227 133.2 0.249 1983.4217 66.6 0.535 1983.4227 112.3 0.475 +25 3381 cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18160+1347 1983.4203 88.3 0.365 1985.8423	1983.7153	46.2	0.369	ADS 11149 B 2	545 AB 166988	18117+3327
1983.4312 77.0 0.373 1983.4203 51.4 0.104 1984.3787 78.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.384 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3785 60.4 0.102 1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 RcA 51 167570 18167-2032 1984.3787 303.7 0.106 1982.7650 135.2 0.256 1984.3787 303.7 0.106 1982.7650 135.2 0.249 1984.3787 305.1 0.106 1983.4227 133.2 0.249 1983.4312 66.6 0.535 1983.4227 133.2 0.249 1983.4217 66.6 0.535 1983.4227 112.3 0.475 +25 3381 cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18160+1347 1983.4203 88.3 0.365 1985.8423	1984.3732	47.0	0.358	1982.76	51 57.3	0.099
1983.4312 77.0 0.373 1983.4203 58.4 0.094 1984.3787 78.6 0.384 1983.7097 60.3 0.107 MR 6676 Fin 381 163151 17543+1108 1984.3785 60.4 0.102 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 1984.3842 305.1 0.106 1982.7650 135.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4212 66.6 0.535 1983.4227 112.3 0.475 +25 3381 cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.365 1985.8423 41.1 0.055	ADS 10871 A 235	163077	17533+2500			
1984.3787 78.6 0.384 1983.7097 60.3 0.107 HR 6676 Pin 381 163151 17543+1108 1983.7097 60.3 0.107 1983.4255 326.6 0.117 1984.3785 60.4 0.102 1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 HCA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 As 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4212 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.365 1985.8423 41.1 0.055 <td></td> <td>77.0</td> <td></td> <td></td> <td></td> <td></td>		77.0				
HR 6676 Fin 381 163151 17543+1108 1984.3785 60.4 0.102 1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1984.3840 62.2 0.104 1984.3787 303.7 0.106 -20 5068 MCA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 Am 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu<246						
1983.4255 326.6 0.117 1984.3840 60.4 0.102 1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 RCA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 Am 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4212 66.6 0.535 1983.4227 112.3 0.475 +25 3381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.365 1985.8423 41.1 0.055						
1983.7152 325.7 0.117 1985.4816 62.2 0.104 1984.3787 303.7 0.106 -20 5068 HcA 51 167570 18167-2032 1984.3787 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 As 17556+4108 1983.4227 133.2 0.249 1983.4312 65.6 0.535 ADS 11228 Bu 246 167815 18177-1940 1983.4217 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.365 1985.8423 41.1 0.055						
1984.3787 303.7 0.106 -20 5068 HCA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4312 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 1810+1347 1983.4203 88.3 0.368 1985.8423 41.1 0.055						
1984.3787 303.7 0.106 -20 5068 McA 51 167570 18167-2032 1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 As 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4312 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 50542508 HR 6851 CHARA 68 168199 181614347 1983.4203 88.3 0.366 1985.8423 41.1 0.055				1985.48	16 62.2	0.104
1984.3842 305.1 0.106 1982.7650 135.2 0.256 +41 2928 Cou 1601 Aa 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4312 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 1810+1347 1983.4203 88.3 0.368 1985.8423 41.1 0.055	1984.3787	303.7	0.106			
+41 2928 Cou 1601 Am 17556+4108 1983.4227 133.2 0.249 1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4217 1983.4227 112.3 0.475 1983.4223 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.368 1985.8423 41.1 0.055						
1982.5027 65.1 0.515 ADS 11228 Bu 246 167815 18177-1940 1983.4312 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.368 1985.8423 41.1 0.055						
1983.4312 66.6 0.535 1983.4227 112.3 0.475 +25 J381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4203 88.3 0.368 1985.8423 41.1 0.055						
+25 3381 Cou 503 163529 17556+2508 HR 6851 CHARA 68 168199 18180+1347 1983.4293 88.3 0.368 1985.8423 41.1 0.055						
1983.4293 88.3 0.368 1985.8423 41.1 0.055						
1984.3787 89.1 0.361				1985.84	23 41.1	0.055
	1984.3787	89.1	0.361			

712

1

*
*
*

\$

•

2

Ì

-

1

-

1

ļ

. . .

2

٤ •

		TABLE	IV. (continued)
+20 3741 Cou 202	168743	18205+2055	ADS 11520 A 88 AB 172088 18384-0312
1983.4203	26795	01245	1984.3842 1296 07108
1985.4845	272.3	0.249	1985.4899 350.1 0.139
HR 6927 X Dra		18208+7245	ADS 11530 Ho 87 AB 172246 18386+1632
1983.0703	224.8	0.149	1983.4203 33.3 0.215
1983.7152	211.9	0.119	1984.3760 36.4 0.226
1984.7009	233.5	0.118	1985.4845 41.0 0.242
1985.4846	238.4	0.115	
+23 3312 Cou 418	169030		
1983.4203	70.0	0.193	
1985.4845	69.8	0.191	
-16 4836 CHARA 69		18218-1619	
1985.4899	11.0	0.089	
ADS 11324 AC 11	169493		1983.4312 114.2 0.177
1983.4312	356.3	0.814	1984.3760 114.2 0.175
ADS 11334 STF 2315			1984.3842 114.2 0.176
1982.7650		0.631	1984.7035 114.6 0.176 1985.4846 114.0 0.178
1983.4312	128.3	0.627	
1984.3787	128.3	0.626	ADS 11566 Ho 437 AB 172729 18406+3138
1984.7117	128.5	0.626	1983.4203 130.1 0.413
1985.4871			1984.3787 130.4 0.411
	127.6	0.639	1984.7117 130.8 0.411 1985.4846 130.7 0.415
ADS 11344 Mu 66 AB		18253+4845	1985.4846 130.7 0.415
1983.4203	253.0	0.318	ADS 11574 A 2988 172743 18410+2450
1983.7153	253.0	0.324	1984.7009 172.5 0.134
1984.3787 1984.7035 1985.4846	252.5	0.319	ADS 11579 STF 2367 AB 172865 18413+3018
1984.7035	251.7 251.4	0.324	1983.0703 113.9 0.059
1985.4846	251.4	0.322	1983.7153 101.0 0.097
ADS 11344 ST 351 AC			1984.3787 99.1 0.091
1983.4203	18.0		1984.3787 99.1 0.091 1984.3842 _100.1 0.093
1983.7153	18.8	0.673	
1984.3787	18.4	0.671	1985.4845 95.7 0.119
1984.7035	19.0	0.671	ADS 11593 B 2546 Am 173087 18421+3445
1985.4846	18.5	0.683	1982.7650 295.5 0.153
ADS 11339 Bu 1203		18261+0046	1983.4204 296.8 0.147
1983.4312	142.9	0.393	1984.3787 299.2 0.144
HR 6928 CHARA 71	170200	18280+0612	- 1984.7117 300.2 0.144
1985.8424	130.8	0.077	1985.4846 301.3 0.146
ADS 11399 CHARA 72 J		18301+0404	+18 3786 Cou 816 229303 18433+1847
	176.0	0.142	1983.4204 302.1 0.262
ADS 11454 Hu 322 AB	171365	18338+1744	1983.7153 301.3 0.257
1983.4203	87.4	0.216	1985 4845 200 7 0 260
1983.7153	88.5	0.219	ADS 11614 A 859 173160 18439-0013
1984.3760	90.1	0.230	1983.4203 13.6 0.255
1984.3842	91.8	0.225	1985.4899 14.7 0.255
1985.4845	88.0	0.229	ADS 11635 STF 2382 AB 173582-3 18443+3940
ADS 11468 A 1377 AB	171779	18340+5221	1985.4729 354.6 2.501
1982.7650	96.0	0.260	1985.4872 354.2 2.496
1983.4312	98.0	0.260	ADS 11635 STF 2383 CD 173607-8 18444+3937
1984.3760	99.1	0.261	1985.4729 89.0 2.353
1984.7035	99.4	0.261	1985.4872 89.3 2.358
1985.4846	99.7	0.264	HR 7035 CHARA 78 173117 18448-2501
BR 6977 CHARA 74		18352+1812	
1985.8424	31.1	0.156	
HR 6984 CHARA 75		18352+3427	1983.4203 131.4 0.153
1985.8424	76.0	0.253	
ADS 11479 STT 359		18355+2336	
1984.3787	9.9	0 619	
1985.4845	9.6	0.633	ADS 11640 Fin 332 Bab 173495 18455+0530 1985.4816 140.3 0.138
ADS 11483 STT 358 AB	171746	18350+1650	
1983.4312	161 4	1.666	1985.8424 139.4 0.138 ADS 11640 STF 2375 AB 173495 18455+0530
1984.3787	161.1	1.659	
+21 3492 Cou 206	342628		1982.5029 119.4 2.440
1983.4203	123.9	18363+2143 0.143	1982.7650 118.1 2.512
1985.4845			ADS 11640 Fin 332 Az, Bb 173495 18455+0530
ADS 11584 STT 363	123.7	0.120	1982.5029 120.3 2.580
ADS 11564 STT 363 1982.5029	173831	18374+7741	1982.7650 119.2 2.651
	156.1	0.131	ADS 11640 Fin 332 Ab, Ba 173495 18455+0530
1933,4204	153.3	0.124	1982.5029 118.3 2.319
1983.7153	157.7	0.118	1962.7650 117.0 2.382
1984.3787	159.3	0.102	-08 4701 RST 4597 173611 18466-0807
1984.7009	162.0	0.083	1983.4203 321.1 0.436
1985.4846	171.6	0.065	1984.3813 321.4 0.438
ADS 11524 Hu 198	172171	18383+0850	1984.7036 321,6 0.440
1983.4312	136.1	0.438	1985.4872 320.5 0.442
1985.4871	134.9	0.450	

TABLE IV. (continued)

name . A

đ

!

aliter Anno distan

ADS 11459 No 971 AS 17434-614754526 1981.7650 371 07246 1285.4872 13719 0704 1985.4872 13719 0704 1285 1472 13719 0704 1985.4872 13719 12805-6172 13719 0704 1985.4872 13719 12805-6172 1385.4872 13719 0704 1985.4872 13719 12805-6172 1385.4872 13719 0704 1985.4872 13719 12805-6172 1385.4872 13719 0704 1984.3813 185.5 0.180 1984.3813 185.4 0.181 1985.4872 156.5 0.182 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1985.4872 156.5 0.281 1981.4203 1851-1352 1851-1352 1981.4203 0.285 1981.4203 1851-1352 1851-1352 1981.4203 1851-1352 1851-1352 1981.4203 1851.1352 1851-1352 1981.4203 1851.1352 1851-1352 1981.4203 1851.1352 1851-1352 1981.4203 1851.1352 1851.1352 1981.4203 185.0 0.281 1981.4203 185.0 0.281 1981.4203 185.0 0.281 1981.4203 185.0 0.281 1981.4203 185.0 0.285 1981.4205 186.0 0.285 1981.4205 186.0 0.285 1981.4205 186.0 0.285 1981.4205 186.0 0.285 1981.4205 185.0 0.255 1981.4205	ADS 11694 Bu 971 AB 174343-	4 18475+4926	-05 488	4 RST 4618	178286	19082-0520
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.5151 ADS 12261 A1392 1810.4 19155-5458 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 19354-2727 1985.4879 201.5 0.468 1983.4313 156.1 0.845 1983.4313 86.8 0.319 1985.4873 1985.4873 1985.4873 1984.3815 77.1 0.384 1985.5533 40.0 0.655 1983.4313 204.6 1.155 1983.433 0.90 0.550 1983.4313 204.6 0.173 1985.12873		01286		1985.4872	13719	0:081
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.5151 ADS 12261 A1392 1810.4 19155-5458 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 19354-2727 1985.4879 201.5 0.468 1983.4313 156.1 0.845 1983.4313 86.8 0.319 1985.4873 1985.4873 1985.4873 1984.3815 77.1 0.384 1985.5533 40.0 0.655 1983.4313 204.6 1.155 1983.433 0.90 0.550 1983.4313 204.6 0.173 1985.12873	1984.7009 37.6	0.292	+12 381	0 ACA 34 1982.5056	188.2	0.177
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.5151 ADS 12261 A1392 1810.4 19155-5458 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 19354-2727 1985.4879 201.5 0.468 1983.4313 156.1 0.845 1983.4313 86.8 0.319 1985.4873 1985.4873 1985.4873 1984.3815 77.1 0.384 1985.5533 40.0 0.655 1983.4313 204.6 1.155 1983.433 0.90 0.550 1983.4313 204.6 0.173 1985.12873	1985.4846 37.9	0.304		1983.4176	181.2	0.182
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	-18 5070 RST 3198 173805-	6 18480-1814		1983.7125	185.7	0.170
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1954.3815 153.6 NR 7072 Kui 88 173020	0.396		1984.3813	185.8	0.168
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1983.4229 165.3	0.370		1984.7035	186.4	0.165
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.3815 165.5	0.403		1985.4872	185.1	0.171
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.7036 165.9	0.409		1985.8424	184.7	0.168
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	HR 7109 CHARA 80 174853	18520+1358	ADS 121	01 CHARA 84 AI 1985 8424	155 0	19091+3436
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1985.8424 97.5	0.101	ADS 121	26 A 95	179002	19110-0725
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1983.7036 107.1 0.199 1393.4204 203.4 0.477 NDS 12261 ADS 1227 74.0 0.203 1984.7785 201.1 0.477 1985.4873 1983.7125 74.0 0.203 1984.7187 201.4 0.477 ADS 1228 STT 371 AB 180553 18134-2727 1985.4899 201.5 0.488 1983.4131 156.1 0.486 1983.4131 86.6 0.319 1984.7037 1355.1 0.485 1983.4313 204.6 1.157 1984.3815 1983.433 204.6 1.157 1983.4313 204.6 1.157 1983.4230 109.5 1984.393 199.5 1984.3815 204.5	+24 3555 Cou 510 174932	18521+2431		1982.7651	70.9	0.290
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166		0.189		1983.4230	69.9	0.289
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1985.4872 156.8	0.190		1984.3/33	69.3	0.204
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	ADS 11803 A 1891 175060	18541-1352		1985.4872	67.4	0,295
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1983.4203 258.4	0.353	ADS 121	47 Bu 1204 AB	179343	19120+0237
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.3813 258.4 ADS 11842 A 2192 175542			1983.4230	185.3	0.247
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1983.4229 93.5	0.261		1984.3815	186.3	0.245
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.3813 89.9	0.262		1984.7037	185.9	0.242
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1934.7035 89.7	0.262		1985.4873	185.6	0.245
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1985.4872 87.9 NDS 11897 EFF 2478 176560	0.265	+20 407	6 Cou 320	179528	19123+2113
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1983.7036 107.1 0.199 1393.4204 203.4 0.477 NDS 12261 ADS 1227 74.0 0.203 1984.7785 201.1 0.477 1985.4873 1983.7125 74.0 0.203 1984.7187 201.4 0.477 ADS 1228 STT 371 AB 180553 18134-2727 1985.4899 201.5 0.488 1983.4131 156.1 0.486 1983.4131 86.6 0.319 1984.7037 1355.1 0.485 1983.4313 204.6 1.157 1984.3815 1983.433 204.6 1.157 1983.4313 204.6 1.157 1983.4230 109.5 1984.393 199.5 1984.3815 204.5	1983.4204 3.4	0.795		1983.7125	115.2	0.198
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.3787 3.3	0.798	•	1984.7037	113.8	0.194
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1983.7036 107.1 0.199 1393.4204 203.4 0.477 NDS 12261 ADS 1227 74.0 0.203 1984.7785 201.1 0.477 1985.4873 1983.7125 74.0 0.203 1984.7187 201.4 0.477 ADS 1228 STT 371 AB 180553 18134-2727 1985.4899 201.5 0.488 1983.4131 156.1 0.486 1983.4131 86.6 0.319 1984.7037 1355.1 0.485 1983.4313 204.6 1.157 1984.3815 1983.433 204.6 1.157 1983.4313 204.6 1.157 1983.4230 109.5 1984.393 199.5 1984.3815 204.5	1984.7117 3.4	0.801		1985.4873	112.2	0.203
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1983.7036 107.1 0.199 1393.4204 203.4 0.477 NDS 12261 ADS 1227 74.0 0.203 1984.7785 201.1 0.477 1985.4873 1983.7125 74.0 0.203 1984.7187 201.4 0.477 ADS 1228 STT 371 AB 180553 18134-2727 1985.4899 201.5 0.488 1983.4131 156.1 0.486 1983.4131 86.6 0.319 1984.7037 1355.1 0.485 1983.4313 204.6 1.157 1984.3815 1983.433 204.6 1.157 1983.4313 204.6 1.157 1983.4230 109.5 1984.393 199.5 1984.3815 204.5	ADS 11884 CHARA 87 No. 176155		ADS 121	60 BU 139 AB	179588	19126+1651
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	1984.3843 174.7	0.154		1984.7037	136.0	0.655
1392.7650 264.5 0.174 ADS 1214 B 430 179950 19155-2515 1393.4229 265.9 0.159 1982.5056 103.2 0.176 1394.3813 271.0 0.154 1983.4230 104.2 0.191 1395.4872 273.4 0.144 1984.7036 107.1 0.199 +393.605 Cou 1933 17669 19064.511 ADS 12261 A1392 1810.4 1955.4872 1983.4204 203.4 0.477 1983.7125 74.0 0.203 1984.7187 201.1 0.477 ADS 12238 STT 371 AB 180553 1955.4872 1985.4879 201.5 0.488 1983.4313 156.1 0.845 1983.4313 86.6 0.349 1985.4873 156.1 0.845 1983.4313 204.6 1.155 1984.3815 204.5 1.155 1983.433 09.0 0.550 1983.4313 204.6 1.157 1983.433 0.507 1983.4175 1.3 0.166	MR 7166 Rui 89 176162	18594-1250		1985.4873	135.7	0.660
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<		0.174	ADS 122	14 B 430	179950	19155-2515
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<		0.159		1982.5056	103.2	0.176
ADS 11950 NDO 150 AB 176687 19026-2953 1904.7091 158.5 0.045 1984.3015 77.1 0.384 ADS 12248 CHARA 85.A873 158.1 0.663 ADS 11985 H 126 177166 19043-2132 1905.6533 40.0 0.055 1984.3015 204.6 1.157 ADS 12329 HWK 47 181527 19206+0256 1984.3015 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 95 177936 19056+2717 1984.3733 309.0 0.516 1983.4204 179.0 0.173 1984.3733 309.0 0.516 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.7009 178.6 0.172 1983.4175 1.3 0.140 1984.3787 78.9 0.171 1983.4175 1.3 0.140 1984.3788 52.9 0.07	1984.7036 273.4	0.151		1984.3732	104.0	0.199
ADS 11950 NDO 150 AB 176687 19026-2953 1904.7091 158.5 0.045 1984.3015 77.1 0.384 ADS 12248 CHARA 85.A873 158.1 0.663 ADS 11985 H 126 177166 19043-2132 1905.6533 40.0 0.055 1984.3015 204.6 1.157 ADS 12329 HWK 47 181527 19206+0256 1984.3015 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 95 177936 19056+2717 1984.3733 309.0 0.516 1983.4204 179.0 0.173 1984.3733 309.0 0.516 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.7009 178.6 0.172 1983.4175 1.3 0.140 1984.3787 78.9 0.171 1983.4175 1.3 0.140 1984.3788 52.9 0.07	1985.4872 279.4	0.144		1984.7036	107.1	0.199
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<	+39 3606 Cou 1933 176869	19006+3951	ADS 122	61 A 1392	181044	19158+5458
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<	1983.7125 202.1	0.473		1984.7037	73.7	0.185
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<	1984.3788 201.1	0.477		1985.4900	74.5	0.166
ADS 11950 NDO 150 AB 176687 19026-2953 1984.7091 158.5 0.845 1984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 191641433 ADS 11985 H 126 177166 19043-2132 1985.4873 1683.400 0.055 1984.3815 204.6 1.157 ADS 1232 HWK 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 ADS 12032 HO 0.173 1984.3733 309.0 0.516 1983.7125 180.4 0.177 ADS 12366 Hu 1129 122353 19216+5223 1984.3786 178.5 0.173 1982.5083 0.5 0.150 1984.47009 178.6 0.172 1983.4175 1.3 0.140 1984.3785 78.9 0.171 1983.7125 0.9 0.142 1984.3785 78.9 0.171 1984.7007 0.2 0.142 1984.3785 52.9<	1984.7117 201.4	0.477	ADS 122	39 STT 371 AB	180553	19159+2727
1983.4313 86.8 0.349 1985.4873 158.1 0.863 ADS 11984.3815 77.1 0.384 ADS 12248 CHARA 85 Aa 180555 19164+1433 ADS 11983.4313 204.6 1.157 1985.8533 40.0 0.055 1983.4313 204.6 1.157 ADS 12328 HWE 47 181527 19206+0256 1984.3815 204.5 1.155 1983.4230 309.3 0.507 1983.4204 179.0 0.173 1985.4873 309.0 0.516 1983.4204 179.0 0.173 1982.5083 0.5 0.150 1984.3788 176.5 0.172 1982.5083 0.5 0.150 1984.3842 180.0 0.172 1983.7125 0.9 0.142 1985.4871 177.0 0.172 1983.7125 0.9 0.142 1985.8424 176.9 0.172 1984.7037 0.2 0.142 1985.4871 177.0 0.172 1984.7037 0.2 0.142 1984.3788 52.9 0.176	ADS 11950 WDO 150 AB 176687	190262953		1983.4313	158.5	0.840
Jost 1.381, 31.5 //.1 0.384 ADS Ligss M Ligss M <thligss m<="" th=""> <th< td=""><td>1983.4313 86.8</td><td>0.349</td><td></td><td>1985.4873</td><td>158.1</td><td>0.863</td></th<></thligss>	1983.4313 86.8	0.349		1985.4873	158.1	0.863
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1984.3815 77.1	0.384	ADS 122	48 CHARA 85 A	180555	19164+1433
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	ADS 11989 H 126 177166	19043-2132	ADC 137	1985.8533	40.0	0.055
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1984.3815 204.5	1.155	ND2 123	1983.4230	309.3	0.507
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	ADS 12032 No 95 177936	19056+2717		1984.3733	309.1	0,501
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1983.4204 179.0	0.173		1985.4873	309.0	0.516
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1984.3788 178.5	0.173	AUS 123	00 BU 1129 1982.5083	182353	19216+5223
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1984.3842 180.0	0.173		1983.4175	1.3	0.140
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	1984.7009 178.6	0.172		1983.7125	0.9	0.142
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151		0.172		1984.7037	0.2	0.145
1984.3787 78.9 0.171 1984.7009 72.9 0.301 HR 7262 1 Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1983.7125 87.4 0.266 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1984.3788 88.4 0.262 1984.7009 151	ADS 12055 MLR 217 Am 178634	19058+591# 1	ADS 125	1985.4847 01 x 160	330.3 183458	19288+2304
HR 7262 i Lyr 178475 19073+3606 1985.4873 73.1 0.304 1984.3788 52.9 0.074 ADS 12552 A 712 184195 19303+5639 1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 178449 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1985.4900 95.9 0.151 ADS 12079 Ho 98 AB 178617 19081+2705 1983.4175 87.4 0.266 1983.7125 89.2 0.266 1984.3788 88.4 0.261 1984.7009 88.4 0.262	1984.3787 78.9					
1984.3842 53.5 0.078 1982.7568 95.3 0.128 1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.4175 94.2 0.139 ADS 12061 Kui 90 Ca 17849 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1985.4900 95.9 0.151 ADS 12067 Ho 98 AB 178617 19081+2705 1985.4900 95.9 0.151 ADS 1983.4175 87.4 0.266 1 1983.7125 89.2 0.266 1984.3786 88.4 0.262 1 1984.7009 88.4 0.262				1985.4873	73.1	
1984.7009 53.4 0.079 1983.4175 95.9 0.135 1985.4899 50.5 0.081 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 178449 19074+3230 1983.7126 94.2 0.139 ADS 12061 Kui 90 Ca 178449 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1985.4900 95.9 0.151 ADS 12079 Ho 98 AB 178617 19081+2705 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1 1983.7125 89.2 0.266 1984.3788 88.4 0.262 1 1 1 1 1			ADS 125			
1985.4899 50.5 0.081 1983.7126 94.2 0.139 AD5 12061 Kui 90 Ca 178449 19074+3230 1984.7037 97.1 0.147 1985.4899 176.5 0.315 1985.4900 95.9 0.151 ÁD5 12079 Ho 98 AB 178617 19081+2705 1985.4900 95.9 0.151 1983.4175 87.4 0.266 1983.7125 89.2 0.266 1984.3786 88.4 0.261 1984.7009 88.4 0.262						
1985.4899 176.5 0.315 1985.4900 95.9 0.151 ADS 12079 Ho 98 AB 178617 19081+2705 1983.4175 87.4 0.266 1983.7125 89.2 0.266 1984.3786 88.4 0.261 1984.7009 88.4 0.262	1985.4899 50.5	0.081		1983.7126		0.139
ADS 12079 Ho 98 AB 178617 19081+2705 1983.4175 87.4 0.266 1 1983.7125 89.2 0.266 1 1984.3788 88.4 0.261 1 1984.7009 88.4 0.262 1						
1983.4175 87.4 0.266 1983.7125 89.2 0.266 1984.3788 88.4 0.261 1984.7009 88.4 0.262				1985.4900	95.9	0.151
1983,7125 89.2 0.266 1984,3788 88.4 0.261 1984,7009 88.4 0.262						
1984.7009 88.4 0.262	1983,7125 89.2	0.266				

TABLE IV. (continued)

l

Ż

,

.

TABLE IV. (continued)

ADS 12540 McA 55 Am	183912	19307+2758	ADS 12808 STT 380 AB	186203	19426+1149
1982.7542	172?8 173.3 171.9 171.4 169.7	0:407	1982.7651 1983.4230 1985.4901	7791	01443
1982.7651	173.3	0.407	1983.4230	77.4	0.438
1983.4175	171.9	0.395	1985.4901	77.4	0.444
1983.7098	171.4	0.398	ADS 12850 Bu 658	186518	19441+2708
1983./098 1984.3733 1985.4729 1985.4816 ADS 12567 A 713 1983.4175 1983.7126 1985.4847 +58 1929 KcA 56	169.7	0.394	1983.4258 1984.7010	283.6 284.4 283.8	0.353
	169.5	0.359	1984./010	284.4	0.354
1903.4010	100./	10313+4330	1985.4847 ADS 12864 AGC 10 AB	203.0	1045011046
AUS 12307 A 713	270 3	19313+9/29	VNO TTODA VAC TA VD	Ye03e (TZ42A47040
1983 7176	270.3	0.357	1983.4230 1983.7126	130.0	0.230
1985 4847	271 8	0.360	ADS 12889 STF 2576 A		
+58 1929 NCA 56	184467	19311+5835 0.112			
1983.4175	46.9	0.112	1983.4313 1983.7126	354.7	2.123
1984.7039	236.7	0.109	1 ADE 12006 A 1404 AM	186896	1046843053
1985.4900	141.4	0.065	1983.4231	296.9	0.165
1983.4175 1984.7039 1985.4900 ADS 12600 Ho 108 1983.4175	184470	0.065 19332+3329 0.240	1983.4231 1983.7126 1984.7039 1985.4900 1985.8370	299.5	0.168.
1983.4175	30.4	0.240	1984.7039	298.1	0.166
1983.7098	29.9	0.230 0.226 0.230 0.230	1985.4900	297.8	0.170
1984.7010	30.2	0.226	1985.8370	295.5	0.148
1984.7010 1985.4846 1985.8424 MR 7436 CMARA 87	28.2	0.230	-01 3824 RST 5143	186778	19466-0123
1985.8424	28.0	0.230	1983.4230	130.9	0.228
HR 7436 CHARA 87		19336+3846	1983.7126	131.9	0.228
1985.8424	175.7	0.138	1985.8534	133.9	0.233
ADS 12623 STT 375	184591	19347+1808	ADS 12911 A 108	186847	19471-0810
1983.4176	176.0	0.594	1983.4230	82.6	0.251
1983.7100	176.3	0.586	1983.7126	87.3	0.271
1984.7037	177.1	0.593	1985.4900 1985.4900 1985.8370 -01 3824 RST 5143 1983.7126 1985.8534 ADS 12911 A 108 1983.7126 1983.7126 1983.7126 1983.7126 1983.7126 1983.7126	88.5	0.269
1985.4873	177.1	0.600	1983.7126 1985.8425 HR 7536 & Sge 1983.4340 1985.4846	187076	19474+1832
1965.8369	1//.0	0.595	1983.4340	123.3	0.060
AR /111 9 Cyg	184/29	19348+2928	1985.4846	81.3	0.058
ADS 12631 A 162	104770	10351+3220	ADS 12962 STP 2583 A 1983.4313		
1983 A176	254 8	1333172320		107.4	1.422
1983.7100	254.2	0.245	1703.4901 18 4252 Mob 58	187221-	1.992
1984.7010	256.5	0.241	1983.4313	07 7	0.405
1985.4873	256.2	0.245	1984.7010	98.7	0.405
1985.8424 ADS 12623 STT 375 1983.7100 1983.7100 1985.8369 1985.8369 HR 7441 9 Cyg 1985.8369 1985.8369 HR 7441 9 Cyg 1985.8369 1985.8369 HR 7441 9 Cyg 1985.8369 1985.8369 +R 7441 9 Cyg 1985.8369 1985.8369 +23 3711 Cou 1033 1985.4873 1985.4231 1983.4231 1983.4231 1983.4231 1983.4231 1985.4873 1985.8369 +63 1544 HLR 56 AD	256.6	0.233	1983.4313 1985.4901 +18 4252 NcA 58 1983.4313 1984.7010 1985.4900 1985.8369 ADS 12973 AGC 11 AB	97.8	0.414
+23 3711 Cou 1033	185058	19365+2400	1985.8369	98.1	0.408
1983.4231	189.7	0.226	ADS 12973 AGC 11 AB	187362	19489+1908
1983.7100	187.7	0.220	AUS 12973 AUC 11 AB 1982.5056 1982.7651 1983.4231 1983.4258 1983.4340 1983.7155 1984.7010 1985.8369 AUS 12973 AUC 11 AB	193.9	0.109
1984.7010	189.7	0.220	1982.7651	191.4	0.119
1985.4873	189.3	0.230	1983.4231	187.7	0.131
1985,8369	186.1	0.224	1983.4258	187.9	0.132
+63 1544 HLR 56 AD	185977	19376+6344	1983.4340	187.8	0.132
1983.4231	91.9	0.122	1983.7155	186.8	0.139
1985.4900	100.1	0.102	1984.7010	181.6	0.162
1985.4900 ADS 12743 I 656 1983.4258	11 0	19400-2203	1985.8369	176.9	0.186
1703.9230 176 3631 Cou 832	11.9	10400+3713	ADS 12986 A 718 BC 1985.4900	T0/0T3	1343044423
1983.4258	143 6	0 236	1907.4900 NB 7554 (N1N1 10	37.3	0.214
1984.7010	144.7	0.231	1085 8524	70 8	4990940794
1985.4900	145.1	0.236	+23 3798 Cou 1034	187689	19504+2409
NR 7486 Kui 93	185936	19412+1349	1983.4231	207.7	0.248
1983.4231	307.4	0.168	1983.7155	208.6	0.248
1983.7126	307.9	0.172	1984.7039	209.1	0.252
1984.7010	308.2	0.175	1985.4900	209.4	0.253
1985.4900	308.1	0.179	ADS 13048 B 454	187858	19531-2528
1983.4258 +26 3631 Cou 822 1983.4258 1984.7010 1985.4900 MR 7486 Kui 93 1983.4231 1983.7126 1984.7010 1985.4900 +85 0337 MLR 229 1985.4900	191079	19418+8552	HR 7554 CHARA 89 1985.8534 +23 3798 Cou 1034 1983.7155 1984.7039 1985.4900 ADS 13048 B 454 1983.4258 HR 7571 CHARA 90	340.4	0.279
ADS 12798 STT 382	186179	19419+2723	1985.8425	190.0	0.301
1982.5084	328.5	0.308	ADS 13135 Bu 687	188871	19549+5049
	329.5	0.313	1983.4231	341.7	0.127
1983.4231	328.9	0.304	1983.7155	344.0	0.123
1983.7126 1984.7010	329.1 328.7	0.307 1	1984.7039	347.2	0.121
	327.8	0.310	1985.4900	349.0	0.126
IF 7499 Kui 94	186307	19419+4015	1985.8372 Ads 13104 - STF 2597	355.7 188405	0.129
	143.4	0.162	1982.7651	188405	19553-0644
	142.2	0.162	1983.4230	303.4	0.135 0.137
19A3.7126					V·13/
	135.9	0.137 i	1984.7010	298.5	0.156
1984.7039		0.137	1984.7010 ADS 13191 Hy 689	298.5	0.156 19577+5119
1984.7039	135.9			298.5 189451 330.4	0.156 19577+5119 0.085

715

.

ADS 13176 AC 16 AB 189214	19579+2715	HR 7744 CHARA 94 As 192806	20158+2749
ADS 13176 AC 16 AB 189214 1983.7155 23599	0.418	1 1985.4901 9016	0:067
1984.7039 235.9	0.415	ADS 13660 BAR 11 AB 193238	20180+3311
ADS 13186 STT 392 AB 189377	19579+4215	1983.4176 198.6	0.383
1983.4176 222.7	0.107	1983.7156 199.4	0.37
1983.7155 220.3	0.095	1984.7012 198.4	0.36
		ADS 13686 A 1425 AB 193443	20189+3817
	0.096 0.097		0.135
1985.8425 213.9			
ADS 13198 STF 2609 189432	19586+3807	1983.7155 270.2	0.139
1983.4286 24.0	1.909	1 1984.7012 268.6	0.140
HR 7637 Ho 276 189340	19599-0957	1985.4901 267.1	0.140
1983.4258 228.7	0.141	ADS 13777 A 288 194113	20232+2052
ADS 13277 STT 395 190004		1983.7156 198.8	0.110
1982.7542 119.2	0.855	+23 4004 Cou 125 194359	20244+2417
1983.4258 119.0	0.845	1982.7596 115.2	0.364
1984.7039 119.7	0.842	1983.4231 114.8	0.359
1984.7117 119.9	0.843	1983.7156 114.7	0.363
ADS 13312 STF 2624 AB 190429		+54 2344 MLR 588 194719	20246+5527
1982.7596 173.8	1.901	1983.4259 234.5	0.194
1983.4286 173.7	1.875	1983.7128 236.0	0.195
BR 7677 CHARA 92 190590	20050+2313	1984.7012 234.9	0.200
1985.8425 48.6	0.050	-09 5457 RST 4062 194233	20247-0846
ADS 13449 STF 2652 191940		1983.4231 357.6	0.263
1982.5056 222.6	0.289	+60 2125 MLR 503 194932	20250+6118
1982.7651 222.4	0.296	1983.4259 33.2	0.169
1983.4231 222.1	0.290	1983.7126 32.8	0.171
1983.7155 223.0	0.294	ADS 13850 A 730 194882	20251+5935
1984.7012 222.9	0.295	1982.7651 324.5	0.221
1985.8370 221.5	0.300	1983.4287 323.2	0.216
ADS 13461 STT 400 191854	20102+4357	1984.7012 322.5	0.218
1982.5056 56.1	0.176	+59 2231 MLR 433 194933	20253+6001
1982.7653 53.7	0.179	1983.4259 147.3	0.233
1983.4258 47.7	0.179 ·	1 1983.7126 147.3	0.228
1983.7155 45.7	0.181	1984.7012 147.9	0.232
1984.7012 36.2	0.191	HR 7801 CHARA 97 194215	
1985.8425 27.3	0.212	1983.4258 9.9	0.121
ADS 13508 A 282 AB 192124	20121+3429	+33 3914 Cou 1956 195102	20281+3353
1983.7155 23.8	0.096	1983.4259 235.6	0.305
1984.7012 24.9	0.086	1983.7128 236.8	0.310
1985.8425 25.8	0.078	1984.7013 236.5	0.310
ADS 13493 Bu 1205 191841	20123-0805	-2416056 CHARA 98 194810	20285-2410
1983.4177 233.7	0.290	1983.4258 81.8	0.234
+22 3963 Cou 123 346003	20123+2248	ADS 13887 SHJ 323 AB 194943	20289-1750
1983.7155 240.6	0.251	1983.4258 26.5	0.754
1985.4901 239.8	0.245	+26 3915 Wor 9 AB	20302+2651
ADS 13506 STF 2644 191984	20126+0052	1982.7596 316.1	1.007
1982.7598 207.3	2.708	BR 7837 Fin 336 195330	20309-1503
1983.4286 208.0	2.664	1982.5057 214.4	0.109
ER 7735 31 Cyg 192577	20137+4644	1983.4231 212.1	0.108
1985,8425 110.8	0.026	ADS 13944 A 1675 195481	20311+1548
ADS 13564 A 1204 192559	20143+3129	1985.8479 206.0	0.065
1983.7155 138.1	0.348	ADS 13946 CHARA 99 Aa 195482	20312+1116
1984.7039 138.9	0.352	1983.7128 124.9	0.324
1985.4901 138.4	0.352	ADS 13946 DA 1 BC 195482	20312+1116
1985.8425 137.4	0.351	1983.4231 289.0	0.117
ADS 13572 STT 403 AB 192659	20143+4206	ADS 13989 Bu 671 196065	20317+6227
1983.4258 170.7	0.887	1983.4259 319.1	0.469
1984.7012 171.1	0.885	1983.7126 318.8	0.471
+63 1608 MLR 60 193215	20153+6412	ADS 13961 See 195536	20325-1636
1983.4176 341.4	0.206	1983.4231 123.9	0.242
1983.7126 343.8	0.205	+49 3310 McA 61 196089	20331+4950
1984.7012 344.3	0.184	1984.7012 102.9	0.041
1985.8370 337.4	0.172	HR 7866 WRH AB 196093	20339+3515
ADS 13611 A 2095 AB 192911	20156+4339	1982.5057 96.1	0.264
1983.7155 159.7	0.170	1983.7128 97.2	0.280
HR 7755 CHARA 93 192983	20157+5014	1984.7013 98.1	0.281
1965.8370 196.3	0.170	1985.4847 97.2	0.283
HR 7744 McA 60 As, B 192806	20158+2749	ADS 14073 Bu 151 AB 196524	20375+1436
1982.5057 141.6	0.240	1982.5057 18.1	0.401
1983.4176 140.0	0.247	1982.7596 20.1	0.387
1983.7156 140.1	0.250	1983.4259 25.7	0.345
1984.7039 140.4	0.258	1985.4929 57.7	0.211
1985.4901 140.3	0.266	1985.8479 67.7	0.191
		1	

TABLE IV. (continued)

•

.

5

1

DS 14099 Hu 200 AB 1982.5057	196662 11190	20393-1457 0:328	ADS 14493 A 756 AB 1983.4177	199937 216?1	20577+5850 01532
1982.7598	110.8	0.343	1985.4849	215.3	0.548
1983.4258	110.2	0.339	1 1985.8396	214.9	0.550
74 4510 Kui 99	196795	20396+0458	ADS 14504 STF 2741 A		20586+5028
1982.7598	122.9	0.356	1982.7543	26.8	1.891
1983.4258	114.6	0.417	1983.4287	27.1	1.866
1985.4929	124.6	0.632		B 199766	20591+041
NDS 14126 STT 410 A		20396+4036	1983.4287	285.3	0.964
1983.4259	6.9	0.800	ADS 14526 MCA 65 Am	200120	20598+4732
1984.7012	7.4	0.799	1982.7651	56.9	0.211
IR 7906 🕿 Del Az	196867		1983.4340	55.6 .	0.204
1985.4929	301.6	0.120	1964.7040	54.5	0.201
1985.8534	292.3	0.132	HR 8038 Kui 102	199942	21002+0731
NDS 14141 A 747 AB	197117	20397+4735	1982.5057	65.0	0.255
1983.4259	108.7	0.295	1982.7598	62.7	0.273
1983.7156	109.7	0.297	1 1983.4287	60.6	0.283
1984.7012	109.4	0.309	1985.4902	53.1	0.307
1985.8396	108.7	0.301	ADS 14543 A 1438	200222	21010+4000
DS 14148 A 2795	197075		1983.4177	248.3	0.294
1983.4231	254.5	0.214	1984.7013	248.9	0.299
1983.7128	254.8	0.219	+23 4216 Con 128	200290	21019+2340
1985.4902 IR 7922 אכא 62	253.6 197226	0.229	1 1982.7596	135.4	0.188
IR 7922 MCA 62 1982.5056	97.2	20410+3905 0.102	1983.4232	135.5	0.184
1982.5056	100.4	0.102	ADS 14575 STF 2751	200614	21022+5640
1984.7013	98.4	0.081	1983.4287 ADS 14565 See 435	353.5 200245	1.561 21032-2744
1985.4847		20419+1931		200245	0.256
1983,4231	21.1	0.298	ADS 14592 MCA 66 As	297.0	21041-0549
1983.7128	22.1	0.298	1 1983.4340	173.2	0.057
-06 5567 RST 4679	197436	20440-0557	HR 8060 Fin 328	200499	21044-1951
1983.4231	358.6	0.300	1982.7627	149.0	0.306
1983.7128	359.1	0.309	1983.4259	144.0	0.316
1985.4902	358.6	0.315	1985.4902	133.8	0.364
ADS 14238 Bu 64 AB	197683		ADS 14617 Hu 590	200927	
1983.4231	162.9	0.605	1983.7100	88.3	0.252
1983.7128	163.5	0.608	1984.7014	86.9	0.248
DS 14274 CHARA 100	Az 197989	20462+3358	ADS 14648 Bu 368 AB	201038	21075-0814
1983,4340	180.0	0.067	1982.7627	272.5	0.240
IR 7958 Kui 101		29466+4632	1983.4259	~16.8	0.237
1985.8396	108.5	0.377	ADS 14666 STT 527	201221	21080+0509
DS 14296 STT 413 A		20474+3629	1983.4232	139.9	0.203
1982.5056	15.9	0.795	1983.7101	138.8	0.210
1982.7571	16.1	0.797	1984.7040	137.1	0.214
1983.4232	16.4	0.790	+57 2295 MLR 590	202107	21114+5737
1983.4340	16.5	0.787	1983.7100	19.2	0.175
1983,7128	17.1	0.790		a,B 202214	21118+6000
1984,7013	17.2	0.801	1982.5057	216.4	1.016
ADS 14306 Bu 268	198253	20476+4204	1982.7599	216.3	1.023
1983.4177	202.9	0.422	1983.4341	216.8	1.016
1984.7013 ADS 14333 J 194 AB	204.1	0.413	1983.7100	217.7	1.010
	199.7	20494+1124 0.750	1984.7118	217.2	1.019
1982.7596 NDS 14360 STF 2729 J	199.7 B 198571	20514-0537	ADS 14749 MCA 67 Am	202214	21118+6000
1983.4314	12.9	20514-0537		60.4	0.040 0.048
1983.4314	14.0	0.986	1983.4341 1983.7100	37.1 50.0	0.043
1985.4929	13.7	0.987	1983.7100	40.0	0.048
ADS 14379 Ho 144		1 20523+2008	ADS 14761 Hu 767	202128	21135+1559
1983.4232	348.1	0.317	1982.5057	21.7	0.113
1983.7128	348.6	0.319	1982.5085	21.2	0.107
IR 7990 MCA 64	198743	20527-0859	1982.7626	24.7	0.105
1983.7128	123.7	0.196	1983.4259	30.2	0.107
DS 14404 Bo 146	199071	20536+3514	1983.4314	32.9	0.101
1983.4232	50.8	0.350	1983.4341	33.4	0.096
1984.7013	51.1	0.338	1983.7101	37.2	0.103
DS 14412 A 751	199306	20538+5919	1984.7040	49.1	0.091
1982.5056	160.3	0.134	1965.4649	58.2	0.094
1982.7651	156.8	0.132	ADS 14783 H 48	202582	21137+6425
1983.4177	152.8	0.134	1982.7599	255.1	0.470
1983.7156	152.2	0.135	1983.4341	256.1	0.445
1984.7013	147.4	0.137	1983.7156	256.8	0.441
1985.4849	143.7	0.142	1984.7040	257.6	0.413
1985.8396	142.0	0.144	,		

TABLE IV. (continued)

		TABLE			
ADS 14784 STF 2783	202510	21141+5818	HR 8238 β Cep λe 1982.5031	205021	21288+7034
1982.7599	701	0.734	1 1982,5031	4996	0:156
1983.4341	7?1 7.0 6.9	0.735	1982.5057	50.8	0.151
1983.4341 1984.7013	6.9	0.727		51.5	0.159
			1983.4259	51.4	0.151
1982.5059	38.2	0.132	1983.4341	50.9	0.144
1982.7600	32.5	0.184	1983.7100	52.1	0.146
1983.4232	27.6	0.281		51.5	0.129
1983.4341	27.4	0.283	1985.4849	51.8	0.121
1983.7101	26.8	0.304	ADS 15007 STF 2799 A		21289+1105
ADS 147/3 STT 535 AB 1982.5059 1982.7600 1983.4232 1983.4341 1983.7101 1984.7040 1985.4849 1985.4929	21.8	0.299			
1985.4849	15.6	0.210	1983.4314 ADS 15058 A 771 1983.7129 ADS 15070 A 2290 1983.7129 ADS 15103 STT 442 1983.4341 1983.7130 ADS 15115 Hu 371 1982.5057 1982.7572 1982.7626 1983.4314	205085	21315+4817
1985.4929	15.5	0.210	1983.7129	69.2	0.079
ADS 14775 A \$83 AB 1983.4314	202260	21146-0050	ADS 15070 A 2290	205064	21328+0200
1983.4314	59.3	0.128	1983.7129	262.4	0.482
1985.8535	46.9	0.120	ADS 15103 STT 442	205599	21340+6148
ADS 14787 AGC 13 AB			1983.4341	328.1	0.269
1982.7599	120.0	0.653	1983.7130	327.6	0.263
1983.4314 1983.7101 ADS 14798 A 1692 1983.4315 1983.7100	113.0	0.610	ADS 15115 Hu 371	205541	21354+2427
1983.7101	110.2	0.600	1982.5057	297.0	0.277
AD5 14798 A 1692	202642	21152+5531	1982.7572	295.5	0.289
1983.4315	154.1	0.326	1982.7626	295.3	0.286
1983.7100	155.8	0.314	1983.4314	295.8	*****
+30 4393 Cou 1183	202882		1983.7129	296.3	0.289
1983.4259	22.7 20.5	0.194 0.200	1983.4314 1983.7129 1984.7014 1985.8480	296.9	0.291 0.298
	20.5			297.3	21362+4253
	20.8	0.204 0.201	ADS 15131 Ho 463 1983.7129	17/ 8	0.433
1984.7014 1985.4902	20.8	0.206	ADS 15176 Bu 1212 AB		
ADS 14839 Bu 163 AB	20.0	21187+1134		242 3	0.351
1982.5031		0.261	1982.7627 1983.7129 1985.8480	246.9	0.371
1982.7600	245.0	0.261	1 1985.8480	252.2	0.403
1983.4314	245.3	0.213	+08 4714 CHARA 105	206155	
1983.7156	246.5	0.197			
1982.7600 1983.4314 1983.7156 1984.7040	242.5	0.125	1983.7129 ADS 15236 Hu 280	206512	21423+0554
1985.4929	230.0	0.124	.1983.7129	133.6	0.197
1985.4929 HR 8164	203338	21193+5838	1984.7040	135.4	0.196
1984.7013	117.1		.1983.7129 1984.7040 1985.8480 HR 8300 Kui 108	136.7	0.199
ADS 14889 STT 437 AB	203358		j HR 8300 Kui 108	206644	21425+4106
1982.5057 1982.7626 ADS 14894 STT 435	25.0	2.202	1 1982.5057	53.5 53.5 50.6 46.2	0.156
1982.7626	25.0	2.213	1982.5084	53.5	0.163
	203323	21214+0254	1982.7599	50.6	0.163
1983.4314	233.2	0.642	1983.4341	46.2	0.166
	234.1	0.643	1983.7129	44.6	0.169
1984.7040 1985.8480	234.3 235.2	0.655 0.624	1985.4904 1985.8479	31.2 28.0	0.187 0.188
ADS 14893 A 617		21214+1021	λDS 15251 Bu 688 λB		21426+4103
1982.5032	273.4	0.162	1983.7129		0.315
1982.5059	272.7	0.167	1985.4904	205 1	0.330
1983.4259	265.5	0.165	1985.4904 1985.8479	204.9	0.334
1983.4314			ADS 15281 BU 989 AB	206901	21446-2539
1983.4314 1983.7101	264.6	0.161 0.157 0.107 21238+4710	1982.5057	241.1	0.105
1984.7040	255.8	0.107	1 1082 5085	234.1	0.101
ADS 14944 A 765 AB	203938	21238+4710	1982.7544	221.2	0.090
1983.4314 1983.7100 1984.7040	30.5	0.420	1982.7544 1982.7544 1983.4341	241.1 234.1 221.2 225.0 177.4 163.7	0.098
1983.7100	31.0	0.421	1983.4341	177.4	0.091
1984.7040	30.4	0.425	1903.7119		
ADS 14954 BU 164 AB	203943	21251+0923	1984.7014	137.2	0.167
1983.4314			1985.4929	125.8	0.219
1983.7101	213.9	0.179	1 1985,8480	122,7	0.237
1984.7040	212.8	0.173	+34 4540 Cou 1484	207663	21498+3455
1985,8480	208.7	0.168	1983.7129	354.2	0.331
+17 4577 Cou 430 1982.7626	203991	21252+1828	1984,7014	353.4	0.336
1982.7626 1983.4314	234.8 234.8	0.610 0.598	HR 8344 Cou 14 1982,5057	207652 26.8	21502+1718 0.248
1983.4314	234.8	0.603	1982,5085	26.8	0.248
+28 4085 Cou 940	230.4 204051	21253+2928	1982.7600	27.9	0.252
1983.4259	204031 777.4	0.330	1963.7129	36.8	0.252
1983.4314	276.9	0.324	1 1984.7041	<3.0	0.310
1983.7101	276.0	0.328	1985.4902	46.8	0.322
1984.7040	277.1	0.334	1985.8372	48.0	0.319
1985.8480	275.3	0.327	ADS 15375 Ho 170	207782	21505+3925
			1983,7129	239.2	0.307
		•	1 1984.7014	239.5	0.306

TABLE IV. (continued)

.

×

•

,

•

)

ADS 15407 STF 2843 J	B 208132-	3 21516+6545	ADS	15988 STF 2912	213235	22299+0425
1983.4341	144?8	1:494	1	1984.7068	116?5	0712
1983.7130	144.8	1.496		1985.8483	116.6	0.682
1984.7118 HR 8355 Fin 358	145.3 208008	1.480 21535-1019	I ADS	16011 Hu 981 1982.5059	213530 222,9	22306+6138 0.315
1985.8535	94.2	0.091	1	1982.7654	222.6	0.313
ADS 15435 A 620	208341	21540+4403	i	1983.7157	223.4	0.309
1983.7129	278.2	0.336	j +17	4759 Cou 234	213392	22307+1758
ADS 15478 A 622	208610	21572+1047	1	1984.7041	327.2	0.147
1983.7129	301.8	0.162	ļ	1985.4904	324.6	0.151
1984.7041 ADS 15499 Bu 275	299.5 208905	0.153 21573+6117		1985.8425 2911 Kui 112 A	322.7 .	0.152 22327+5347
1982.7599	172.1	0.404	1 +33	1984.7069	225.0	0.557
1983.4341	172.3	0.398	ADS	16057 STF 2924		22329+6954
1983.7130	172.5	0.397	1	1982.7654	90.3	0.444
1983.7157	172.3	0.398	1	1983.7157	91.3	0.433
1985.8481	171.1	0.402	!	1984.0573	91.2	0.424
ADS 15530 Hu 774 1983.7129	209103 136.5	21598+4908		1985.8535	92.4	0.407
1984.7041	139.2	0.167 0.167		16072 Nu 983 1985.8535	214051 214.2	22339+6550 0.083
ADS 15549 A 1451	209260	22012+3915	ADS	16073 A 1468	213990	22342+5405
1985.4849	7.0	0.307	1	1983.7157	256.1	0.275
ADS 15578 Bu 694 AB	209515	22030+4439	i	1984.7042	256.7	0.273
1985.8481	4.9	0.933		1985.8481	254.6	0.276
ADS 15600 McA 69 Am	209790	22037+6437	ADS	16098 A 1470	214222	22357+5312
1983.4341 ADS 15599 Bu 696 AB	213.9 209622	0.041 22045+1552		1985.8481	290.9	0.117
1984.7041	4.1	0.171	1 105	16111 Bu 1092 A 1983.7157	B 214511 234.6	22361+7252 0.274
1985.8372	4.0	0.183	1	1984.7042	238.0	0.257
+81 0767 MLR 257	210979	22062+8240	i	1985.8536	239.3	0.239
1983.7157	244.1	0.206	j +68	1319 CHARA 113	214606	22373+6913
+25 4577 Cou 537		22077+2622		1983.7158	3.1	0.487
1984.7041 +22 4563 Cou 136	29.3 210444	0.168	HR	8617 CHARA 114		22383+4511
1982.7654	44.5	22100+2308 0.398	1 305	1985.8535 16130 A 2695	119.9 214448	0.114 22384-0754
1984.7041	44.3	0.409	1 105	1984.7068	134.6	0.139
1985.4904	42.1	0.421	ADS	16138 No 295	214608	22387+4418
1985.8372	42.4	0.420	i i	1982.5059	334.0	0.189
NR \$455 CHARA 106	210460	22103+1937	!	1982.7654	332.0	0.221
1985.8373 ADS 15746 Hu 695	9.0	0.465 22129+5058	-	1983.7102	332.8	0.244 0.271
1983.7157	15.4	0.788	ł	1984.0573 1984.7042	333.0 333.8	0.293
ADS 15756 Bu 991	211113	22136+5234	1	1985.4904	333.1	0.312
1983.7157	138.5	0.643	i	1985.8425	333.4	0.330
1984.7041	138.4	0.638	+80	0731 McA 72	215319	22394+8123
1985.8481	137.9	0.648	!	1983.7102	98.2	0.149
ADS 15758 McA 70 Ab 1982.5059	211073 7.8	22139+3944 0.463		1985.8373	94.9	0.151
1985.4849	8.7	0.471	1 105	16164 HO 188 1984.7042	214807 202.9	22402+3731 0.317
AD5 15758 Bnu Aa	211073	22139+3944	i	1985.8425	203.4	0.326
1982.5059	54.0	0.188	HR.	8629 Kui 114	214810	22408-0333
+20 5138 Cou 139		22236+2051	i	1982.7653	102.2	0.057
1985.4904 HR \$538 CHARA 108	70.1	0.390	1	1983.7101	120.2	0.121
HR \$538 CHARA 108 1984.7041	212496 167.4	22236+5214 0.219		1984.7041	122.9	0.153
ADS 15896 STP 2900 J		22237+2051	1 305	1985.8425 16173 Ho 296 AB	124.3 214850	0.197 22408+1432
1985.8481	5.0	0.303	1	1982.5059	329.4	0.121
ADS 15902 Bu 172 AB	212404	22241-0451	i	1982.7654	308.7	0.106
1982.5060	258.4	0.162	Í	1983.7157	213.0	0.075
1982.7653	253.7	0.169	1	1984.7041	115.3	0.142
1985.8425 +39 4837 Cou 1642	212.2 212900	0.122 22268+4034		1985.8481	92.8	0.248-
1985.8425	76.1	0.159	I ADS	16214 STT 476 A 1982.7654	B 215242 307.0	22431+4709 0.489
ADS 15971 STF 2909 #		2 22288-0002	i	1983.7157	306.8	0.482
1982.5059	218.6	1.600	i	1984.0573	306.3	0.489
1982.5085	218.7	1.632	j	1984.7042	305.9	0.487
1982.7544	216.4	1.664	1	1985.8425	304.8	0,493
1982.7654	218.5	1.657	ADS	16214 Hu 91 BC	215242	22431+4709
1985.8483 NR 8572 Мсл 71	212.3 213310	1.728 22295+4743	1 100	1985.8425 16249 Hu 783	56.4	0.034 22453+5128
1982.5059	43.3	0.132	1 105	1983.7102	215590 181.8	0,193
1985.4849	46.3	0.119		1984.7042	182.3	0.195
			•	1985.8481	182.2	0.195
			1			

TABLE IV. (continued)

•

Ì.

TABLE IV. (continued)

ADS 16314 Ho 482 AB	216785	22514+2624	1 100	16576 Ho	107 10	210017	23115+3813
	1745		1 105				
1982.7654	37:5 37.5 36.3 35.3	0:347		1983.7	103	31795	
1983.7157	37.5	0.348	1	1984.7	043	317.1 313.6	0.287
1984.7042	76 3	0 252		1985.8		313 6	
	30.3	0.332	1				
1985.4904	35.3	0.363	ADS	16591 A	2298	219018	23126+0242
1985.8427	34.7	0.361	i i	1985.8	536	99.8	
HR 8704 HcA 73		22535-1137					
			I ADS	16638 Bu			23164+6408
1985.4849	280.6	0.076		1983.7	102	43.2	0.258
1985.8536	279.4	0.079	i	1984.0	573	44.0	0.263
		00000					
+22 4742 Cou 240		22564+2257		1984.7	042	41.1	0.261
1982.7544	289.8	0.712	ADS	16650 Hu	400	219675	.23176+1819
+23 4640 Cou 542 Am				1983 7	103	128.0	
1985.4904		0.119	ADS 1	16672 MC.	λ 74 λa	219834	23191-1327
1985.8536	150.3	0.117	E E	1982.5	060	131.7	0.180
HR 8734 CHARA 116		22583-0224		1982.7		148.9	0.193
1982.5060		0.457	+41	4751 Co			23198+4243
ADS 16417 STT 536 AB	217166	22585+0922		1983.7	158	46.2	0.171
1982.5059	346.5	0 284	1 .77	4530 Co			23199+2845
			1 147				
1982.7654	346.3	0.320		1983.7			0.216
1983.7101	346.5 346.3 347.0 346.9 346.6	0.313	1	1985.8	427	214.4	0.218
1984.0573	346 0	0 211		4690 Co			23199+3444
	340.9	0.311	1 733				
1984.7041	346.9 346.6	0.300		1983.7	103	29.8	0.268
1985.8427	345.9	0.279	1	1984.7	069	30.0	0.265
ADS 16430 A 192		22589+4617				30.0 29.6	0.367
				1985.8			
1983.7157	236.4	0.529	I ADS	16708 Hu	295	220278	23226-1503
1984.7069	236.8	0.524	i	1982.5			0.370
ADS 16428 STT 483		22592+1144	1	1985.8			0.303
1982.5085	303.3	0.552	λDS	16731 ST	T 495	220562	23241+5732
ADS 16469 STT 487	217992	23013+8046	1	1982.5 1982.7	060	120.1	0.275
				1082 7			0.289
1983.7102							
		0.221		1983.7		119.6	0.292
1984.7042	197.1	0.242	i	1984.7	043 373	119.4	0.795
MR \$762 o And Aa		23019+4219		1085 8		119.4 119.1	A 3A4
				1202.0	3/3	113.1	0.301
1984.7042	44.8	0.058	ADS .	16748 Ho	489 AB	220723	23259+2742
ER \$762 o And AB	217675	23019+4219	1	+ 1983.7	103	229.3	0.533
1982.5059							
	358.6	0.280	,	1984.7	069 427 u 338	228.9 227.5	0.530
1982.7654	358.1	0.291 0.275		1985.8	427	227.5	0.533
1983.7102	357.1	0.275	i +27	4835 Co			23266+2342
	256 4	0.368					
1984./042	356.4 355.0	0.268			427	38.9	
1985.4904	355.0	0.266	+41	4791 Co	u 1847	221102	23288+4225
ADS 16457 A 194		23020+4800	· · · · · · · · · · · · · · · · · · ·		103	40.1	
			1				
1983.7102		0.123		1984./	043	38.5	0.097
1984.7043	292.5	0.124		1985.8	043 374	38.5 33.0	0.099
ADS 16467 Bu 1147 AB	217782	23026+4245	i ADS				23305+3050
		0.396				~~~~~	23303+3030
				1982.5		AT * 0	0.251
1982.7655	337.0	0.385		1982.7	655	89.6	0.251
1983.7102	337.7	0.387	i	1983.7	158	87.2	0.259
1984.0601	335.9	0.385 0.387 0.385 0.385				91.6 89.6 87.2 84.1	0.000
	333.3	0.303	!	1984.7		• • • •	
1984.7069	330.4	0.303	1	1984.7	043	83.8	0.262
+63 1925 MLR 70		23048+6405	i	1985.8		80.3	0.263
1983.7102	252.4		1 10-				
			1 105	16806 Bu			23307+6420
ADS 16497 A 417 AB		23052-0742		1983.7	102	338.6	0.600
1985.8536	19.6	0.165	T I	1984.7	069	338.8	0.593
ADS 16505 A 196		23055+4643	í	1985.8		338.1	
							0.593
1984.7069	315.7	0.462	į λDS	16819 Hu		221445	23322+0705
GL SSS Wor 13		23060+4220	1	1983.7	103	115.1	0.147
1983.7157	156.7	0.835	i	1045 4	417	146.9	0.127
				4860 Con			
ADS 16518 Bu 180 AB			1 +22	5860 Co	u 144		23339+2342
1983.7102 1984.7043	144.0	0.559	1	1985.8	427	57.0	0.329 23340+3120
1984.7043	143.6	0.553	ADS	16836 PH	720	221672	23340+2120
			1 005	10050 50	120	2210/3	2334043120
ADS 16530 Hu 994	218537	23078+6338		1982.5		261.5	0.490
1982.5060	310.4	0.200		1982.5	087	261.2	0.491
1982.7655	308.3	0.202	i	1983.7		262.7	0.511
1983.7157	308.0	0.207		1984.7		263.2	0.509
1984.0573	308.3	0.212	1	1985.84	427	263.6	0.518
1984,7042	308.6	0.210	1 100	16858 Bu		221925	23363-0707
			1 705				
NR \$\$17 RST 3320	218640	23099-2227	1	1983.7		133.4	0.226
1982.7655	318.1	0.270	1	1985.8	428	135.0	0.240
ADS 16561 Bu 385 AB	218767	23103+3228	i				
1983.7102	92.9	0.631	1				
1984.7069	92.0	0.632	I I				
			i				
				•			

.

ADS		STT		222109	23375+4426	ADS		STT 51			
		82.508		35893	01487	1	-	983.7103		305.8	0.533
	- 19	82.765	5	357.6	0.484	1		984.0574		305.9	0.523
		83.715		358.4	0.474	j λDS	17052			223688	
	19	84.057	4	358.7	0.476	1		985.8427		114.6	0.134
	19	84.060	1	359.5	0.479) HR	9041		9	223825	
	19	84.706	9	358.8	0.472	Ì	1	982.5060		42.7	0.106
	19	85.837	4	358.5	0.479	İ	1	982.7655		44.3	0.089
ADS	16904	λ 64	3	222326	23392+4543	i	1	983.7103		37.0	0.084
	19	83.710	3	165.2	0.226	i	1	985.4930		14.7	0.069
	19	85.837	3	156.5	0.220	i	1	985.8428		10.8	0.059
+45	4301			222516	23412+4613	j +42	4792	Cou 14	98	224167	23557+431
	19	83.710	3	277.8	0.159	i	1	983.7103		39.9	0.164
	19	84.057	4	278.2	0.156	i	1	985.8428		39.0	0.164
		85.837		298.4	0.132	j Ads	: 17104	Hu 500		224219	23561+232
BR	9003	NcA	75 Aab	223047	23460+4625	i	1	985.8428		87.7	0.165
	19	82.506	0	107.3	0.279	i ADS	: 17111	A 2100		224315	23568+044
	19	82.765	5	104.1	0.291	i	1	983.7103		179.1	0.181
	19	83.710	3	104.5	0.284	i	1	985.8428		163.7	0.146
	19	85.837	3	103.1	0.295	i ADS	17118	A 900		224395	23574+725
+35	5106	Cou	944	/	23485+3608	i	1	983.7104		127.1	0.329
	19	85.853	6	98.1	0.187		1	985.8429		127.2	0.337
ADS	17019	B 25	47 AB	223331	23485+3617	i -14	6588	RST 41	36 AB	224512	23586-140
	19	83.710	3	358.0	0.247	i	1	983.7158		29.6	0.149
	19	85.853	6	358.8	0.237	i	1	985.8428		24.5	0.172
ADS	17020	STT	507 AB	223358	23486+6453	j ADS	: 17151	A 1498		224646-	-7 23594+544
	19	82.508	5	308.3	0.702	i	1	983.7104		84.5	0.386
		84.057		307.2	0.700	i	1	984.0574		85.1	0.389
	19	84.706	9	306.6	0.709	i	1	985.8428		84.3	0.389
+18	5223	Cou	343	223402	23492+1915	İ					
	19	83.710	3	115.3	0.211	İ					
	19	85.842	7	117.0	0.206	İ					
ADS		A 42		223486	23498+2740	Í					
	19	82.765	5	103.7	0.170	İ					
	19	83.710	3	106.6	0.173	i					
	19	84.057	4	108.9	0.166	i					
	19	85.842	7	110.3	0.171	i					

TABLE IV. (continued)

Notes to TABLE IV.

The brief notes given below are presented primarily in connection with the newly resolved stars. The "binary types" indicated in Tables II and III are from a variety of sources, including the Bright Star Catalog (Hoffleit 1982), the catalog of spectroscopic binary star orbits of Batten et al. (1978), the catalog of composite spectrum stars compiled by Hynek (1938), and the catalog of lunar-occultation binaries of Evans (1983). Additional occultation binary candidates were added to the observing program from lists published by the International Occultation of marks of Evans (1985). Additional occultation of the list of stars exhibiting anomalous occultations published by Appleby (1980). HD 761 = CHARA 1: This pair is confirmed by Tokovinin (1985) and is steadily closing in separation. HD 8272 = ADS 1105: STF 115 AB, first measured by F. W Struve in 1836 at an angular separation 0.68, had opened to 1.2 by 1910, then steadily closed to 0°35 at the time of the first speckle measurement in 1978 (McAlister and Hartkopf 1984). Based on a preliminary visual/speckle orbit, the pair reached an ap-

HD 11031=CHARA 4: Although this new component is indicated as Aa, we have not yet firmly established whether it is associated with the A or B component of the 1'9 system comprising ADS 1438.

HD 13520=CHARA 5: The five negative results obtained during 1976-1980 (McAlister and Hartkopf 1984) are apparently due to a large magnitude difference.

HD 15089=CHARA 6: Heintz (1962) found a submotion to the visual orbit of ADS 1860 AB (P = 840 yr, a = 2.27) with a period of 52 yr and an amplitude

HD 21242=CHARA 9: This is UX Ari, an RS CVn type binary that is not eclipsing. The spectrum shows three components (Fekel, private communica-tion), two of which are identified with the 6.44 day system described by Carlos and Popper (1971) while the third is possibly the new component reported here.

Ross 29=CHARA 15: Van Maanen (1941) suspected this star to be a binary, but these are the first measurements of a companion.

HD 58728 = McA 30: Fekel (private communication) has detected this system as a third component in the spectrum and makes a preliminary estimate of the period of 760 days

HD 106760=CHARA 37: A spectroscopic orbit with a period of 1300 days was determined by Christie (1936). This star has been observed by speckle interferometry on ten occasions during 1976–1981 at which no companion was seen. A large or variable magnitude difference may be present. HD 114378-9=ADS 8804: Nearly 40 speckle measurements have now been published for STF 1728 AB. A preliminary orbit for this nearly edge-on pair, based solely on speckle data, indicates that one of the F5 V stars may partially eclipse the other in early 1990. Observations over the next few years will permit

a more accurate statement concerning this possibility.

HD 157482=McA 47: Fekel (private communication) has an unpublished spectroscopic orbiv for this system with a period of 5.5 yr. HD 173495=ADS 11640: This is a quadruple system consisting of two close (0°14) pairs of similar position angle discovered by Finsen with his eyepiece interferometer Our 1982 speckle observations were made at a lower magnification and included all four stars in the field. The resulting overlapping autocorrelation peaks precluded us from measuring the Aab and Bab pairs directly but did permit the measurement of the AB; Aa-Bb and Ab-Ba configurations. In later observations made at a higher magnification, we observed the A and B components separately enabling the measurement of Aab and Bab but not AB.

HD 176155 = CHARA 82: Abt (1959) reported a spectroscopic orbit with a period of 1435 days for the primary component of the visual binary ADS 11884. The primary is a Cepheid variable with a period of 4.47 days. Continued observation of this system interferometrically and spectroscopically could permit the determination of the mass and distance for a Cepheid variable star.

HD 192806=McA 60 As.B+CHARA 94 As: Speckle interferometry has now found two components to HR 7744 = 23 Vul. HD 194215=CHARA 97: The correspondence of this newly resolved component with the 377.6 day spectroscopic system reported by Bopp et al. (1970) can

The Delta Section of the section of likely that the object seen in our speckle observations is yet another long-period member of this system. HD 221264=ADS 16800: Fekel (private communication) reports that he has now detected four components in the spectrum of this star.

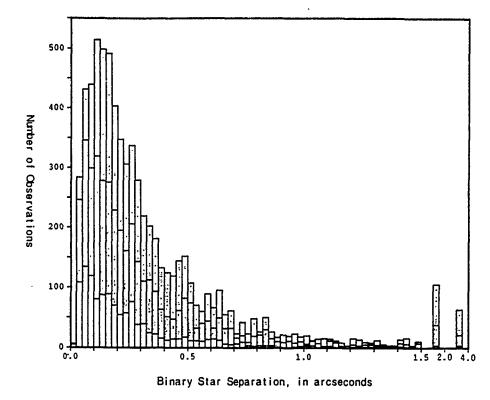


FIG. 5. The distribution of measured angular separations is shown for all modern interferometric observations of binary stars that are known to and catalogued by the authors. For the 6910 measurements represented here, 2908 are from our ICCD camera (light shading), 2780 are from our original photographic speckle program (dark shading), and 1222 measurements have been accumulated by other programs of binary star interferometry (unshaded). The overall mean angular separation in the collected data is 0.35, while 17% of the measurements are for binary stars with separations less than or equal to 0.10.

ate quadrants for known visual binaries, but we arbitrarily adopt $\theta < 180^{\circ}$ for newly resolved pairs.

The 2780 measurements of 1012 systems in Table IV combine with the same number of measurements published from our photographic speckle program and the 128 measurements from Paper I to give a total of 5688 speckle measurements of binary stars resulting from the GSU program. At the time of submission of this paper, we are aware of another 1222 measurements from other modern interferometric programs giving a total of 6910 interferometric observations of binary stars.

The mean angular separation of the observations in Table IV is 0.409. This compares with a mean value of 0.333 for our earlier photographic results. The larger mean is at least partly due to the exclusive use of the microscope objective giving a scale of 0.0161 arcsec per pixel during our first few observing runs with the new camera at the 4 m telescope. Such a scale gives only slightly more than 2 pixels per Airy disk, a sampling interval too small to reach the diffraction limit. This approach was corrected for later observations, and we now use the $10 \times$ microscope objective only when seeing conditions are very poor or when binaries with angular separations of the order of 1 arcsec or wider are being observed. In Fig. 5 we show the distribution of observed angular separations for the data from this paper and Paper I, from the GSU photographic speckle series, and from all other contributors known to us. The mean angular separation in these collected measurements is 0.349, and 17% of the results are for angular separations no larger than 0."10.

Many people have made invaluable contributions to this program, and we wish to acknowledge their efforts here. The detailed design and construction of the new speckle camera was carried out by William G. Robinson, and the camera's

reliability and efficiency are testimony to a superb job. The vector autocorrelator, designed and constructed by Peter Vokac, has made it possible to reduce efficiently nearly one terabyte of data. The cooperation and enthusiasm of the KPNO LTOs have been particularly important to the efficient use of telescope time, and we thank Hal Halbedel, Barbara Schaefer, Dean Ketelson, George Will, Bret Goodrich, Annie Shaw-Hansen, Randy Bergeron, and Dean Hudek for keeping their good spirits during many nights of 3 min repointing cycles. We have also benefitted greatly from the granting of long-term observer status at the KPNO 4 m telescope during the course of these observations and express our appreciation to several understanding TACs who continued to grant time while we were developing the reduction and analysis procedures. Assistance in gathering data at the telescope or in handling the data in the laboratory has been given by Barbara Gaston, Dick Miller, Phillip Lu, Ed Dombrowski, Mike Carini, and Alex Rosen. Assistance in computer matters at GSU has been given by Paul Schmidtke, Mike Lucas, Duke Windsor, and Steve Lasseter. We are grateful to Wayne H. Warren, Jr., of the Astronomical Data Center at the NASA Goddard Space Flight Center for providing information incorporated in object identification. We thank Frank Fekel for his many suggested candidate stars and for his comments on this paper. Occultation binary candidates have been kindly recommended by Nat White and David Dunham. We thank Art Hoag for making time available on the Lowell 24 in. refractor, and Ralph Nye for quickly preparing a mounting bracket so that our camera could be used experimentally on that telescope. Finally, we are especially indebted to Charles Worley, who, in addition to providing valuable advice over the years, proofread our entire list of measures and pointed out a number of identification errors. Our new measurements are already incorporated in the Washington Double Stars Catalog maintained by Mr.

Worley at the U.S. Naval Observatory. The ICCD speckle camera system was funded by the National Science Foundation through grant AST-79-24576, while the continuing research effort has been supported by NSF grants AST 80-15781 and AST 83-14148. The image-processing and computer system was purchased through a DOD-University Research Instrumentation Program grant administered by the Air Force Office of Scientific Research as grant AFOSR 83-0257. O.G.F.'s participation in this effort has been made possible through a subcontract with GSU funded by the Air Force Office of Scientific Research through grant AFOSR 81-0161.

REFERENCES

Abt, H. A. (1959). Astrophys. J. 130, 769.

Appleby, G. M. (1980). J. Brit. Astron. Assoc. 90, 572.

Batten, A. H., Fletcher, J. M., and Mann, P. J. (1978). Publ. Dominion Astrophys. Obs., Victoria, B.C. 15, No. 5.

Bond, H. E. (1980). Astrophys. J. Suppl. 44, 517.

- Bopp, B. W., Evans, D. S., Laing, J. D., and Deeming, T. J. (1970). Mon. Not. R. Astron. Soc. 147, 355.
- Breckinridge, J. B., McAlister, H. A., and Robinson, W. G. (1979). Appl. Opt. 18, 1034.

Carlos, R. C., and Popper, D. M. (1971). Publ. Astron. Soc. Pac. 83, 504. Christie, W. H. (1936). Astrophys. J. 83, 433.

- Evans, D. S. (1983). In Current Techniques in Double and Multiple Star Research, IAU Colloquium No. 62, edited by R. S. Harrington and O. G. Franz, Lowell Obs. Bull. 9 (Lowell Observatory, Flagstaff), p. 73.
- Gezari, D. Y., Labeyrie, A., and Stachnik, R. V. (1972). Astrophys. J. 173, L1.
- Hartkopf, W. I. (1984). In Astrometric Techniques, IAU Symposium No. 109, edited by H. K. Eichhorn and R. J. Leacock (Reidel, Dordrecht), p. 301.

Hartkopf, W. I., McAlister, H. A., and Hutter, D. J. (1985). Bull. Am.

Astron. Soc. 17, 551.

Heintz, W. D. (1962). Veroff. Sternw. Munchen 5, 136.

- Hoffieit, D. (1982). The Bright Star Catalogue, fourth edition (Yale University Observatory, New Haven).
- Hynek, J. A. (1938). Contrib. Perkins Obs. 1, 185.
- Lacy, C. H., and Popper, D. M. (1984). Astrophys. J. 281, 268.
- McAlister, H. A. (1977). Astrophys. J. 215, 159.
- McAlister, H. A., and Hartkopf, W. I. (1983). Publ. Astron. Soc. Pac. 95, 778.
- McAlister, H. A., and Hartkopf, W. I. (1984). Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy Contrib. No. 1 (CHARA, Georgia State University, Atlanta).
- McAlister, H. A., Hartkopf, W. I., Gaston, B. J., Hendry, E. M., and Fekel, F. C. (1984). Astrophys. J. Suppl. 54, 251.
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., Shara, M. M., and Franz, O. G. (1987). Astron. J. 93, 183 (Paper I).
- McAlister, H. A., Robinson, W. G., and Marcus, S. L. (1982). Proc. SPIE 331, 113.
- Tokovinin, A. A. (1985). Astron. Asrophys. Suppl. 61, 483.

Van Maanen, A. (1941). Astrophys. J. 94, 396.

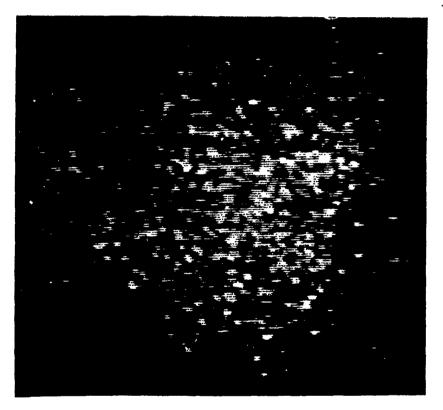


FIG. 2. A single speckle frame of the visual binary stars ADS 7158 (x UMa) obtained at the 4 m KPNO telescope with the GSU ICCD speckle camera on 1985.835 is shown. The field of view is approximately 2.0 arcsec square.

McAlister et al. (see page 690)

PLATE 44

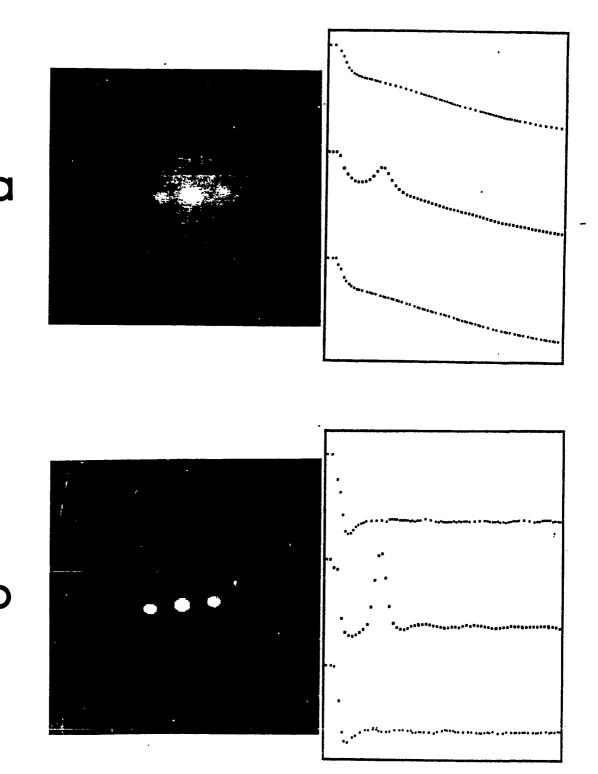


FIG. 3. (a) The composite vector autocorrelogram of approximately 1800 speckle frames of ADS 7158 shows the characteristic peaks indicative of duplicity superimposed upon a seeing-dominated background. (b) A background-subtracted version of the same autocorrelogram shows the resulting high-contrast double star peaks on either side of the strong zeroth spatial component.

McAlister et al. (see page 691)

Ż

PLATE 45

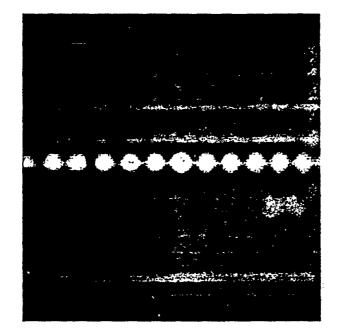


FIG. 4. A vector autocorrelogram of calibration data obtained on 1984.387 for the single star κ CrB observed through a double-slit aperture mask shows the high-signal-to-noise row of peaks used to determine the image plane scale and pole orientation.

McAlister et al. (see page 691)

777

í

VOLUME 94, NUMBER 5

NOVEMBER 1987

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. III. A SURVEY FOR DUPLICITY AMONG HIGH-VELOCITY STARS

PHILLIP K. LU^{a)}

Western Connecticut State University, Danbury, Connecticut 06810 and

Van Vleck Observatory, Wesleyan University, Middletown, Connecticut 06457

PIERRE DEMARQUE AND WILLIAM VAN ALTENA Yale University Observatory, New Haven, Connecticut 06511

HAROLD MCALISTER^{a)} AND WILLIAM HARTKOPF^{a)} Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303 Received 2 June 1987; revised 7 July 1987

ABSTRACT

A survey program to identify binary candidates among high-velocity dwarf stars using the GSU speckle camera has been carried out. The purposes of this study are: (1) to determine the binary frequency of the halo population to provide information on the star-formation processes in the galactic halo; and (2) to eventually derive the orbital elements of the newly discovered binaries. Our angular-resolution limit of 0.03" corresponds to a linear separation of 3 AU at a distance of 100 pc. If a sufficient number of halo binaries are found, then the halo mass-luminosity relation can be derived. Finally, with the help of stellar-interior models, it may be possible to determine the helium abundance of the component stars. Such determinations would set an upper limit to the primordial helium abundance. In this paper, we report speckle interferometry data that have been obtained and analyzed for a sample of 182 stars. Based on these data, ten stars are found to be binary. Of these ten, four are newly resolved systems and six are rediscoveries of previously known binaries. These data imply a duplicity frequency of 6% for the stellar sample in our list. However, this frequency must be corrected for observational selection effects which limit binary detection to stars with V < 10.5, with angular separation between 0.03" and 1", and $\Delta m < 3.0$ mag. After applying these corrections, we find that our data are compatible with a total frequency for high-velocity long-period doubles as large as for low-velocity stars. Distances have been estimated for the ten binary stars using their spectroscopic parallaxes and visual magnitudes. Of these ten stars, all are within 100 pc of the Sun and eight have linear separations < 20 AU. Using the mass-luminosity relation and assuming circular orbits, four stars are found to have periods less than 20 yr. These ten candidates will be monitored to determine their orbital elements.

I. INTRODUCTION

The nature of the binary population among halo stars has been the subject of interest for numerous investigations. Through the study of these systems, one can determine their orbits and the masses of the components. Currently, there is no available direct mass measurement for a single star among high velocity (and, presumably, halo population) stars. A knowledge of the mass-luminosity relation for main-sequence stars in the galactic halo would first enable us, with the help of appropriate stellar models (Mengel *et al.* 1979), to evaluate the helium abundances and provide a reliable upper limit to the primordial helium abundance Y_p (Demarque 1966; Demarque and McClure 1977; Carney 1983b; Cole, Demarque, and Green 1983).

Secondly, a determination of the dependence of the massluminosity relation for halo dwarfs upon metallicity would, in principle, yield the enrichment ratio $\Delta Y/\Delta Z$ due to Population III stars within the galactic halo prior to the formation of the currently observed Population II stars. This quantity is of fundamental importance for the study of galactic chemical evolution and enrichment (Larson and Tinsley 1978; Matteucci and Chiosi 1983; Peimbert 1983; Searle 1984).

Finally, the observations would also provide a test of the frequency of binary systems among halo-population stars. This frequency remains uncertain in comparison to that of the main-sequence stars of low velocity.

In a study of the frequency of spectroscopic binaries ' among Population II stars, Abt and Levy (1969, 1976) concluded that short-period binaries are rare among all highvelocity dwarfs and metal-poor stars. Crampton and Hartwick (1972) have confirmed the low frequency of short-period spectroscopic binaries in the halo population. On the other hand, Partridge (1967) investigated nearby high-velocity stars and concluded that if visual and spectroscopic binaries are considered, the duplicity rate is independent of stellar velocity. Based on *uvby UBVRIJHK* photometry, Carney (1983a, 1984) has suggested that the halo dwarf binary frequency may be as high as 20%-25% using metallicity-insensitive blue versus infrared color indices.

For giant stars, Gunn and Griffin (1979) first studied the globular cluster M3 using a high-precision radial-velocity spectrometer and found no spectroscopic binaries. Subsequently, Harris and McClure (1983) reported their finding of a fairly high frequency of binaries (15%-20%) in a DAO survey of field giants. Spectroscopic binaries are now being found in the field halo population by numerous investigators: Mayor and Turon (1982), McClure *et al.* (1985), Ar-

1318 Astron, J. 94 (5), November 1987

0004-6256/87/051318-09500.90

^{*&#}x27; Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

deberg and Lindgren (1985). In the globular cluster M3, the giant von Zeipel 164 has also been identified as a binary by Latham, Hazen, and Pryor (1985). Finally, a speckle-interferometry survey of 672 stars (426 dwarfs and 246 evolved stars) from the Yale *Bright Star Catalogue* (Hoffleit 1982) by McAlister *et al.* (1987a, Paper I) has shown a frequency of 11% in the separation range 0.04"-0.25".

The multiplicity fraction of other stellar populations is typically between 10% and 40% for the field F3-G2 dwarf and giant stars (Abt 1979, 1983). This includes the Hyades main-sequence stars (Mathieu, Stefanik, and Latham 1985), the giants in open clusters (Mathieu 1985; Harris and McClure 1985), and the supergiants (Burki and Mayor 1984). From a survey of 900 F, G, and K stars selected from the Lowell Proper Motion Catalog, Carney and Latham (1987) recently reported a frequency of 25% for these stars.

A new survey program to identify binary candidates among high-velocity dwarf stars using the Georgia State University (GSU) speckle camera has been carried out. A list of approximately 700 dwarf stars whose radial velocities are larger than ± 65 km/s was selected from Roman (1955), Eggen (1964), and Abt and Biggs (1972). Various other lists of radial velocities published since 1972 were also searched. Since the lists are numerous, the references quoted hereafter are for the major and latest publication only. These lists include Andersen and Nordstrom (1983a,b), Andersen et al. (1985), Beavers et al. (1977,1979), Fehrenbach and Burnage (1982,1984), Lu (1983), Lu and Lee (1983), McClure et al. (1985), and Carney and Latham (1987). Although the list initially included all stars of luminosity class V, only 452 stars north of declination - 20° and magnitude brighter than 10.5 were included in an observing list used at the 4 m Mayall telescope at Kitt Peak.

Binary survey programs for halo-population stars currently in progress, other than this study, are those by Carney (1983b, 1984), using photometric metallicity indicators, and Carney and Latham (1987), based primarily on highproper-motion objects with the digital stellar speedometer of the CfA (Latham 1985).

II. SPECKLE OBSERVATIONS

Speckle-interferometry data have been obtained for 182 high-velocity stars in this program, of which 39 stars were observed twice, using the GSU speckle camera at the 4 m telescope at KPNO. Reviews of speckle interferometry have been published by Labeyrie (1970, 1978) and Worden (1977). The camera system and observational procedures employed in this survey are identical to those described by McAlister *et al.* (1987b, Paper II). All data reduction and analysis was carried out at the Center for High Angular Resolution Astronomy (CHARA) at GSU. Preliminary results of this survey have been reported earlier (Lu et al. 1986). This study has shown that ten stars (six with two speckle observations) are definitely halo binaries.

Tables I and II contain measurements of four newly resolved and six previously known binary stars, respectively. Newly resolved stars have been given a "CHARA" designation consistent with the naming procedure initiated in Paper II. The measured angular separations range from 0.035" to 0.302" for the newly resolved stars and 0.147" to 1.088" for the known binaries. The position angles in Tables I and II are subject to a 180° ambiguity, since autocorrelated speckle observations cannot provide the true quadrant in which the secondary star lies.

Table III contains 172 stars that were observed in the survey, many with two speckle observations, for which no convincing evidence of duplicity was detected in the autocorrelograms. The effective field of view of the autocorrelator address window was limited to a rectangle of $1.22" \times 2.44"$ centered on the primary stars. Thus the upper limit to an angular separation in the survey was about 1"; the lower limit of the angular separation was about 0.035", the diffraction limit of the 4 m Mayall reflector. Those stars with negative results may belong to one or more of the following three cases, namely: (a) their separations are either less than the diffraction limit of 0.035" or greater than the address window of the autocorrelator, thus being undetectable using current speckle data; (b) the magnitude difference is more than 2.5 mag; or (c) they are single stars.

III. DISCUSSION

a) Binary Frequency

The ten stars listed in Tables I and II lead to a binary frequency of about 6%. This binary frequency of 6% is not, however, representative of the total binary frequency among high-velocity stars. The GSU speckle interferometer only detects binary candidates with V < 10.5 and angular separation between 0.035" and 1". The magnitude difference Δm between primary and secondary must also be less than about 2.5 mag. We must therefore correct for each of these selection effects.

(1) The first selection effect (V < 10.5) changes the maximum distance reached by our survey for stars of different absolute magnitudes. If we consider only dwarf stars, this distance is a function of spectral type only, and can easily be evaluated.

(2) The second selection effect concerns the restriction that the angular separation must be between 0.035" and 1.0" for stars to be detected. Given an angular separation, the corresponding detectable orbit size depends linearly on distance. Therefore, given the distance of a star, one can calcu-

TABLE I. Newly resolved systems.

CHARA Number	Name	HD Number	α,δ (2000)	V Mag.	Spectral Classif.	Epoch	Theta	Rho
117	+57 0730	21794	03337+5752	6.36	F7V	1985.8433	154.5	0.099
118	+09 4369	189711	20011+0931	8.43	NOV	1985.4928	199.5	0.221 0.302
119	+17 4708	G 126-62	22115+1806	9.48	FGVI	1985.8372	126.7	0.205
120 Aa	+57 2787	222794	23434+5804	7.1	GÖ	1985.8536	154.3	0.057

ADS Number	Disc. Name	HD Number	≪,δ (2000)		V itudes		tral ications	Epoch	Theta	Rho
5469	x 2731	49409	06486+0738	8.4	9.0	GOV		1985.8408	58.1	1.088
9397	A 2983	130669	14493+1014	9.2	9.2	K2V	-	1985.4895 1985.4978	152.4 152.1	0.150 0.147
9716	STT 298 AB	139341	15361+3948	7.5	7.6	K2V		1985.4841 1985.4895	247.0 247.0	0.370 0.370
10598	STF 2173	158614	17303-0103	6.0	6.1	G91V-V	G9IV-V	1985.4869 1985.4871	157.4 157.3	0.923 0,920
12961	A 1658	187283	19487+1503	8.2	8.5	25V	F 6V	1985.4928 1985.8341	212.3 209.5	0.204 0.196
15215	STT 448	206373	21410+2921	8.4	9.4	GO		1985.4983 1985.8480	199.5 198.5	0.429 0.473

TABLE II. Measures of previously known systems.

late the range of orbit sizes that are detectable by the speckle technique. According to Kepler's law, this translates into a range of detectable orbital periods. This range covers only a portion of the total period distribution for binary stars. Our task here is to evaluate the fraction of stars in the total distribution that are expected to be in the detectable portion of the period distribution.

i

These two selection effects are best analyzed together. Because the range of binary periods that can be detected by the speckle technique is a function of distance, consider concentric shells in space, each with a thickness corresponding to a distance modulus difference of $\Delta(V - M_v) = 1.0$. Shell A includes all observed stars with distance moduli between 5 and 6, shell B between 4 and 5, and so on, as shown in Table IV. Next, since main-sequence stars of different spectral types have different absolute magnitudes, let us divide the sample into three groups according to spectral class, i.e., F, G, and K. To each group, we assign an average M_{ν} , i.e., $M_{\mu}(F) = 4.0, M_{\mu}(G) = 5.0, \text{ and } M_{\mu}(K) = 6.0.$ Let us consider next the distribution of each spectral-class group as a function of distance. Table IV lists the number of stars observed and of identified binaries in each space shell for each spectral class. Also listed are the ranges in physical separations and orbital periods in the observable window, set by the range of angular resolution detected by the speckle photometer.

We see that there is complete overlap of all three spectralclass groups for shells C, D, and E and will therefore consider here these .hree shells only. We note that in C, D, and E, which together cover a range of detectable periods from 0.9 to 258 yr, the frequency of observed binaries is, within the uncertainties, nearly uniform and averages to about 8%. This is consistent with the nearly flat distribution derived by Abt (1979, Fig. 6) for disk binaries in the same period range: Using Abt's period distribution function, we find that the period range detectable in our survey includes somewhere between 30% and 50% of the total number of physical pairs in the volume of space surveyed. If we could detect all binaries in this period range, our observed frequency of 8% would then translate into a total binary frequency in the range of 16%-28%. The total binary frequency may in fact be much larger than that, however, because a third selection effect must also be taken into account.

(3) The third restriction on our search is that $\Delta m < 2.5$ mag. If $L \propto \mathcal{M}^{5}$, and the primary and secondary masses are

 \mathcal{M} 1 and \mathcal{M} 2, respectively, we must then have \mathcal{M} 2 > 0.5 \mathcal{M} 1. In order to evaluate the importance of this effect, we need to know the likely distribution of mass ratios among the binaries in our sample. Abt (1979) has reviewed this topic and has pointed out that binary systems can be divided into two groups according to their orbital period: bifurcation doubles, whose frequency is proportional to $\mathcal{M}2^{04}$, and the independent-condensation doubles, which follow a van Rhijn distribution peaked toward low masses for $\mathcal{M}2$. Since the binaries in our sample have periods much longer than the transition period from one group to another (which is 100 days or less), we expect that the van Rhijn distribution (shown in Fig. 1 in Abt 1979) may apply, particularly in view of Partridge's (1979) conclusion that the frequency of long-period binaries is the same for high- and low-velocity stars. In this case, and using M2 > 0.5M1, Abt's Fig. 1 suggests that, for each pair that we have observed, there could be between two and five times (depending on the spectral types of the primary) as many secondaries that are too faint to be detected because their masses are below 0.5 *M* 1. This correction factor should then be applied to the frequencies derived in the previous paragraph, and could lead to a very high total frequency of binaries for halo stars.

In summary, taking into account the large uncertainties due to the small size of our sample, and correcting for the selection effects introduced by our survey technique, we conclude that our data are compatible with the conclusion that the total frequency of long-period pairs among high-velocity stars is very high, and may not differ from that observed for low-velocity stars.

b) Speckle Binaries

The angular resolution of speckle interferometry when carried out at the 4 m telescope allows the detection of halopopulation binary stars that would generally not be seen by visual double star or variable radial-velocity surveys. Visual double star surveys detect generally large separations and longer periods; they therefore do not supply the needed orbital elements and the mass-luminosity function in a reasonable length of time. The resolution of spectroscopic binaries using radial-velocity observations, on the other hand, leads to the detection of short periods and small semimajor axes. Thus speckle interferometry can provide important data in 1321 LU ET AL.: SPECKLE OBSERVATIONS OF BINARIES

TABLE III. Negative results.

Name	HD/BD Number	α,δ (2000)	Spectral Classif.	V Mag.	Epoch
-03 5751	224959	00021-0250	RO	9.9	85.498
+85 0412	245	00085+8647	G2 V	9.2	85.498
					85.8403
+26 0043	1795	00224+2700	VAR	8.2	85.8401
+49 0073		00251+5006	dK3	8.6	85.498
▶74 0014	2520	00300+7515	dK0	8.2	85.498
				10 33	85.8402
3 242-65 ⊦39 0167	+71 0031 4174	00437+7211 00446+4041	sdA9 M2e	10.23 7.4	85.840
+39 016/	41/4	0044074041	m2.	7.4	85.840
+29 0141	4744	00499+3027	G5 IV	7.6	85.498
	• • • •				85.840
+62 0161	4842	00514+6255	M6	9.1V	85.498
					85.840
RV Cas	5016	00526+4725	M6•	7.6-15	85.498
23 0123	5223	00542+2404	R3	8.8	85.840
HR 321	6582	01079+5457	G5Vp	5.17	85.498
					85.845
01 0212	6734	01080+0200	KO IV	6.7	85.840
3 243-63 +57 0227	6755 236672	01096+6133 01146+5755	GO V 186	7.73 9.0	85.840
+57 0227	10465	01432+4831	во Ma	7.0	85.843
3 245-32	+72 0094	01472+7328	sdG3	9.92	85.843
50 2360	232534	01485+5107	B3	9.5	85.843
-19 0369	12655	02036-1837	89 V	8.3	85.837
51 0527	13738	02155+5231	K4	7.2	85.843
⊧57 0525	13716	02157÷5746	B1 IV	8.5	85.843
⊨24 0330	13913	02161+2503	MD	7.3V	85.837
+57 0570	15024	02274+5751	G5 V	9.7	85.837
61 0416	15069	02283+6213	G1 V	7.9	85.837
59 0515	15862	02355+5948	G5 V	8.93	85.837
3 73-67 +57 0608	+04 0415 236982	02346+0527 02408+5829	K3 V K0	9.78 9.8	85.837
+60 0585	230992	02533+6051	K5 V	9.5	85.837
+59 0562	237019	02535+6028	07 V	9.0	85.837
+01 0509	18012	02536+0158	G8 V	6.6	85.840
00 0495	18682	03003+0058	KO	8.4	85.840
+05 0435	18702	03006+0559	K0 V	8.2	85.840
+27 0478	19165	03058+2741	G0 V	8.6	85.837
3 37-26	19445	03084+2621	G5 VI	8.06	85.837
-14 0646	20622	03187-1415	KO IV	7.9	85.843
+59 0639	20688	03228+6002	G5 V	8.6	85.843
K 4974	+66 0268	03257~0815 03312+6644	K3 V sdF5	8.5	85.840
3 246-38 +35 0701	21567	03301+3540	VAR	9.91 7.9V	85.837
-03 0592	22879	03403-0313	F8 V	6.7	85.848
+51 0798	24341	03548+5225	G1 V	7.9	85.843
-23 1619	24616	03540-2308	dGO	6.8	85.843
+22 0626	25532	04042+2325	F6 V	8.2	85.840
-16 0793	26298	04091-1624	F2 V	8.1	85.840
+47 0977		04214+4820	K8	9.1	85.851
+31 0769	281989	04232+3212	FB	8.8	85.837
+06 0676	27821	04238+0623	A7 V	8.6	85.848
+24 0659	283668	04279+2427	K3V(F0)	9.42	85.837
+43 1029	29587	04392+4417 04416+4207	K0 V	9.2	85.838
+41 0931 +34 0911	30443	04493+3500	G2 V R8	7.2 9.0	85.838
+00 0916	32023	05003+0100	F8 V	9.0	85.843
+31 0846	282707	05018+3138	G0	8.9	85,838
+15 0726		05027+1520	N 6	9.4	85.848
55 0960	237354	05085+5526	G2 V	9.3	85.854
+39 1248	34411	05191+4007	G0 V	4.7	85.851
+28 0965	40440	06000+2845	F5 V	8.8	85.838
+27 0962	250684	06031+2726	B8 V	9.7	85.838
+19 1185	250792	06032+1922	G0 V	9.0	85.838
+26 1067	251383	06059+2634	K2 V	9.44	85.838
-12 1470 +10 1301	44996 50060	06243-1258 06519+1048	B5 V● F9 V	6.1 7.8	85.8382

1322 LU ET AL.: SPECKLE OBSERVATIONS OF BINARIES

)

5

ĩ

ţ

į

i

i

; 1

Ť

;

,

•

Name	HD/BD Number	α,δ (2000)	Spectral Classif.	V Mag.	Epoch
-10 1774	51480	06572-1049	B5p	6.9	85.8382
-08 1641	51478	06572-0904	VAR	8.4V	85.8382
-04 1806	53452	07050-0433	B 3	9.0	85.8408
+47 1419	55575	07158+4715	G0 V	5.5	85.8409
-01 1677 +11 1592	57678 59180	07222-0152 07292+1135	K0 K0	8.8	85.8545
+19 1749	59374	07305+1858	F8 V	7.0 8.5	85.8436 85.8491
+25 1709	60298	07348+2458	G2 V	8.0	85.8491
+31 1684	64090	07535+3038	GO VI	8.28	85.8409
+33 1694		08252+3237	dK6	9.2	85.8409
+75 0512	119227	13387+7419	M4	7.70	85.4977
+77 0521 +25 2782	126991	13445+7714 14283+2431	G2 V	9.4	85.4977
+72 0674	135694	15115+7150	dK0	8.2 8.9	85.4895 85.4894
+40 2903	139323	15360+3950	K3 V	7.8	85.4895
-10 4149	140283	15431-1056	F3 VI	7.24	85.4924
+40 2929	141826	15495+3934	NB	6.97	85.4894
+28 2503	143291	15586+2744	KO V	8.0	85.4895
+47 2291 +67 0950	144205 149880	16027+4714 16327+6645	M6e	5.8V	85.4894
+25 3115	150580	16410+2452	VAR K2	6.4 6.0	85.4870 85.4870
-19 4431	151504	16485-1917	G5	8.4	85.4870
+62 1520	153344	16548+6206	G5 IV	7.08	85.4870
+25 3182	154049	17020+2502	K2	7.9	85.4870
+59 1783	154712	17033+5935	K4 V	8.6	85.4870
-07 4427 +01 3421	156802 157089	17200-0801	G2 V G0 V	8.0	85.4870
TV1 3421	197089	17211+0126	GUV	7.0	85.4871 85.4922
+32 2896	157214	17206+3229	G2 V	5.3	85.4922
+06 3412	157809	17253+0606	sF9	7.0	85.4871
+31 3025		17267+3104	G7 V	9.1	85.4870
+31 3027	158226	17267+3105	G0 V	8.1	85.4870
ADS 10598 +06 3455	158614 159482	17304-0104 17347+0601	G9IV-V	5.31	85.4870
G 170-56	+18 3423	17383+1834	GO'V F6 V	8.5 9.78	85.4924 85.4925
G 20-8	+02 3375	17398+0225	sdF5	9.98	85.4923
+25 3344	161817	17467+2545	A2 V	6.9	85.4925
-09 4604	161770	17478-0936	sdG	9.6	85.4924
+04 3509	161848	17477+0457	K1 V	8.5	85.4924
-07 4517 A 10937 B	162756	17530-0755 17565+5813	G0 V	7.6	85.4924
-13 4807	163810	17587-1305	sdF8	10.0 9.63	85.4925 85.4924
+04 3589	165401	18056+0440	G2 V	6.8	85.4924
+30 3137	166382	18091+3101	MD	6.9	85.4925
+30 3142	166601	18100+3050	F5 V	8.1	85.4980
+36 3066	167740	18149+3640	MD	8.8	85.4925
+45 2684	168009	18155+4513	G2 V		85.8423
115 2001	100009	1013374313	G2 V	6.3	85.4925 85.8423
+03 3656	167766	18166+0342	MD	8.7	85.4927
TX Lyr		18180+0407	M2•		85.4927
+45 2716	170357	18267+4605	G1 V	8.3	85.4925
+43 3030 -06 4859	173093	18370+4357		9.5	85.4925
-00 3555	173883	18439-0649 18477-0014	F7 V G0 V	6.3	85.4927
	2,3003	104//-0014	30 V	8.4	85.4981 85.8424
+23 3477	174623	18504+2406	К5	7.1	85.4927
-05 4811	175518	18559-0544	G5 V-IV	8.2	85.4927
+17 3842	177459	19042+1733	F 5	6.6	85.4927
-08 4836 +25 3719	177399 177830	19048-0839	ко	7.5	85.4927
743 3/19	1//830	19053+2555	к 2	7.6	85.4927
+25 3780	181047	19179+2522	K 5	8.8	85.8424 85.4927
			-1.	0.0	85.8533
G 125-4	+41 3306	19190+4139	K0 V	8.86	85.8424
+10 3873	181882	19219+1055	К2	7.3	85.4927
HR 7373 +42 3338	182572	19249+1156	G8IV	5.16	85.4928
+42 3338 +19 4026	182989 231475	19255+4247 19274+1953	F5(V)	6.9	85.4927
+26 3578	338529	19274+1953	KO sdF4	9.1 9.36	85.4927 85.4927
+56 2257	239124	19325+5623	A2-IV	9.30	85.4927
				•	85.8533
+32 3474	184499	19335+3312	G0 V	6.63	85.4927

TABLE III. (continued)

1323 LU ET AL : SPECKLE OBSERVATIONS OF BINARIES

9

TABT	r 111 -	(contin	nued)

+25 4124 +64 1427 +05 4481 G 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 c 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 X Peg	184860 187216 185657 186686 188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19344+2143 19368-1026 19243+8522 19379+4917 19436+4847 19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153 20298+3659	B8 V K2V,K5 R3 G6 V M3 G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	9.3 8.23 9.2 6.3 6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.8424 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4930 85.8379
ADS 12664 +85 0332 +48 2942 +48 2942 +38 3801 +30 3806 +34 3846 +28 3639 AGK+302052 + +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 C 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	184860 187216 185657 186686 188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19368-1026 19243+8522 19379+4917 19436+4847 19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K2V,K5 R3 G6 V M3 G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5•	8.23 9.2 6.3 6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 85.4938 <td< th=""></td<>
NDS 12664 +85 0332 +48 2922 +48 2942 +38 3801 +30 3806 +34 3846 +28 3639 NGK+302052 + +25 4124 +64 1427 +05 4481 G 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 C 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 X Peg	184860 187216 185657 186686 188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19243+8522 19379+4917 19436+4847 19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	R3 G6 V M3 G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G5 V M5•	8.23 9.2 6.3 6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930
+48 2922 +48 2942 +38 3801 +30 3806 +34 3846 +24 3846 +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 C 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	187216 185657 186686 188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19379+4917 19436+4847 19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 201092532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	R3 G6 V M3 G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G5 V M5•	6.3 6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.498 85.4928 85.8370 85.8370 85.8370 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930
+48 2942 +38 3801 +30 3806 +34 3846 +28 3639 AGK+302052 + +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 +06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	185657 186686 188326 188669 227196 191445 191615 193030 194598 195019 195275 195407 195636 196790	19379+4917 19436+4847 19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 201092532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	M3 G8 IV K0 V K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5•	6.3 6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.8370 85.4928 85.8370 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4930 85.4930 85.4930 85.4930 85.4930
+38 3801 +30 3806 +34 3846 +28 3639 AGK+302052 + +25 4124 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	186686 188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	6.4 8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.8370 85.4928 85.4928 85.4928 85.4928 85.4928 85.4929 85.4929 85.4929 85.4929 85.4930 85.4930 85.4930 85.4930
+38 3801 +30 3806 +34 3846 +28 3639 AGK+302052 + +25 4124 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	188326 188669 227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	19530+3846 19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	G8 IV K0 V K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	8.0 7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.8370 85.4928 85.4928 85.4928 85.4928 85.4928 85.4929 85.4929 85.4929 85.4929 85.4930 85.4930 85.4930 85.4930 85.4930
+30 3806 +34 3846 +28 3639 +28 3639 +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	188669 227196 191445 30 3915 193030 194598 195019 195275 195407 195636 196790	19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K0 V K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5•	7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.492(85.837) 85.492 85.492 85.492 85.492 85.492 85.492 85.493 85.493 85.493 85.493 85.493
+30 3806 +34 3846 +28 3639 +28 3639 +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	188669 227196 191445 30 3915 193030 194598 195019 195275 195407 195636 196790	19551+3041 20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K0 V K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5•	7.1 8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.837(85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4928 85.4930 85.4930 85.4930 85.4930
+34 3846 +28 3639 AGK+302052 + +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.498 85.837 85.4928 85.4928 85.4928 85.4928 85.4930 85.4930 85.8479 85.8479 85.4930 85.4930
+34 3846 +28 3639 AGK+302052 + +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	227196 191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	20021+3428 20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K5 K5 V A1 V K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	8.9 9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4982 85.8373 85.4929 85.4929 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930 85.4930
+28 3639 AGK+302052 + +25 4124 +64 1427 +05 4481 3 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +23 4264 +14 4556 K Peg	191445 30 3915 191615 193030 194598 195019 195275 195407 195636 196790	20090+2841 20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K5 V A1 V K0 IV G5 IV G V-VI SdF8 F5 V G5 V M5•	9.2 9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.8371 85.4922 85.4922 85.4922 85.4930 85.8534 85.8534 85.4930 85.8479 85.4930 85.4930
AGK+302052 + +25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	30 3915 191615 193030 194598 195019 195275 195407 195636 196790	20091+3033 20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	A1 V K0 IV G5 IV G V-VI SdF8 F5 V G5 V M5•	9.5 8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4929 85.4928 85.4929 85.4930 85.8534 85.4930 85.8473 85.4930 85.4930
+25 4124 +64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	191615 193030 194598 195019 195275 195407 195636 196790	20100+2532 20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	K0 IV G5 IV G V-VI sdF8 F5 V G5 V M5●	8.0 7.2 10.1 10.82 8.36 6.9 9.2	85.4928 85.4929 85.4930 85.8534 85.4930 85.8479 85.4930 85.4930
+64 1427 +05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 +06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	193030 194598 195019 195275 195407 195636 196790	20142+6446 20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	G5 IV G V-VI sdf8 f5 V G5 V M5●	7.2 10.1 10.82 8.36 6.9 9.2	85.4929 85.4930 85.8534 85.4930 85.8479 85.4930 85.4930
+05 4481 5 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +28 3996 +23 4264 +14 4556 K Peg	194598 195019 195275 195407 195636 196790	20219+0611 20248+2503 20262+0927 20283+1846 20303+0153	G V-VI sdf8 f5 v G5 v M5•	10.1 10.82 8.36 6.9 9.2	85.4930 85.8534 85.4930 85.8473 85.4930 85.4930
3 186-26 +09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 C 2711 + +06 4741 -06 5683 +28 3996 +28 3996 +23 4264 +14 4556 X Peg	194598 195019 195275 195407 195636 196790	20248+2503 20262+0927 20283+1846 20303+0153	sdf8 f5 v g5 v M50	10.82 8.36 6.9 9.2	85.8534 85.4930 85.8479 85.4930 85.4930
+09 4529 +18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 c 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 X Peg	194598 195019 195275 195407 195636 196790	20262+0927 20283+1846 20303+0153	F5 V G5 V M5•	8.36 6.9 9.2	85.4930 85.8479 85.4930 85.4930
+18 4505 +01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195019 195275 195407 195636 196790	20283+1846 20303+0153	G5 V M5•	6.9 9.2	85.8479 85.4930 85.4930
+01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195275 195407 195636 196790	20303+0153	M5•	9.2	85.4930
+01 4304 +36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195275 195407 195636 196790	20303+0153	M5•	9.2	85.4930
+36 4095 -09 5491 +39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195407 195636 196790	· · · · · · · · · · · · · · · · · · ·			
-09 5491 +39 4260 -00 4084 c 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195636 196790	20298+3659			
-09 5491 +39 4260 -00 4084 c 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	195636 196790	20298+3659			02.04/
+39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	196790		B5 V	7.7	85.4929
+39 4260 -00 4084 2 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg	196790				85.8479
-00 4084 c 2711 + +06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 K Peg		20328-0922	G87	9.54	85.4930
C 2711 + +06 4741 -06 5683 +28 3996 +28 4091 +23 4264 +14 4556 X Peg	107/77	20382+3933	G0•	7.9	85.4929
+06 4741 -06 5683 +28 3996 +26 4091 +23 4264 +14 4556 X Peg	197623	20449+0018	dG5	7.4	85.4930
-06 5683 +28 3996 +26 4091 +23 4264 +14 4556 X Peg	74 0891	20524+7435	dG5	7.81	85.8534
+28 3996 +26 4091 +23 4264 +14 4556 K P@g	200779	21053+0705	K5 V	8.9	85.4930
+28 3996 +26 4091 +23 4264 +14 4556 K P@g					85.8396
+26 4091 +23 4264 +14 4556 X P•g	201099	21077-0534	GŨ	7.6	85.4982
+23 4264 +14 4556 X Pøg	201346	21082+2837	K0 IV	8.4	85.8398
+14 4556 X P⊕g	201626	21100+2637	K2	8.0	85.8391
X Peg	201889	21120+2410	F8 V	7.9	85.8398
	202017	21129+1535	df8	8.4	85.4982
		21208+1427	M2•	9.0-14	85.4983
+15 4404	203631	21231+1630	K5	7.5	85.4983
					85.8480
-13 5945	204587	21300-1230	MO V	9.3	85.4983
					85.853
+18 4947	210483	22104+1848	G0 V	7.9	85.4983
					85.8371
+25 4691	210925	22132+2557	G5 V	6.8	85.498
				_	85.837
+54 2745	235807	22212+5533	B1 IV	9.4	85.8399
+39 4851	213191	22290+4019	VAR	7.6	85.498
					85.842
+56 2818	214419	22369+5654	OB/WN	8.9	85.498
					85.8398
BH Peg		22529+1547		10-10.7	
+49 3965	216534	22530+4952	84 V	8.0	85.4983
+29 4940	221170	.23295+3026	K2 V/IV	7.68	85.4984
				<i>.</i> -	85.8420
+30 4982	221830	23354+3101	G0 V	6.7	85.4984
				. .	85.8426
+57 2787	222794	23434+5804	G2 V	7.0	85.853
-08 6177	222766	23461-0739	dG4	9.7	85.498
					85.842
+01 4774		23492+0225	M2	8.9	85.4984
				• -	85.8427
M 74	~	23525+6252	G0 V	9.5	85.4984
				. .	85.8421
+58 2676	224424	23578+5943	B0	7.8	85.8984

		Number of stars								·····	
Shell		Observed		Binaries found			d	a(min)	P(min)	⊿(max)	P(max)
	F	G	К	F	G	к	(pc)	(AU)	(yr)	(AU)	(yr)
A	6			1		_	129	4.6	6.9	129	1029
B	8	10	-	I	0	-	82	2.9	3.5	82	527
c	4	16	9	0	2	1	51	1.8	1.8	51	258
D	4	15	18	1	1	0	32	1.2	0.9	32	128
Е	0	8	12	0	1	1	20	0.8	0.5	20	63
Binaries in shell			(C	3/29						
								1	D	2/37	
								1	D E	2/20	
								To	otal	7/86	 = 8%

TABLE IV. Calculated binary frequency.

the regime where visual and spectroscopic detection of binary stars is less effective.

All of the newly resolved and a majority of the previously known binaries in this survey fall into an orbital-period regime not generally detectable by spectroscopic and visual methods. They would, therefore, not be discovered without the application of speckle interferometry. This selection effect has also been pointed out in Paper I in connection with bright stars. An extension of our survey to magnitudes fainter than 10.5 would increase the number of newly detected halo binaries. However, since those fainter stars would be, on the average, more distant than the brighter ones, we would be finding binaries with increasingly longer periods. Since we are interested in determining masses in a reasonable length of time, the extension to fainter magnitudes is not very productive.

The distributions in spectral type and visual magnitude are shown in Figs. 1 and 2, respectively, for all stars observed, and also for the binary candidates found in this survey (dark area). Using this limited data, the peaks of the distributions in both figures suggest a similar distribution between the observing list and the binary system found in the sample.

Distances were estimated for the stars listed in Tables I and II using their spectral types and visual magnitudes. Absolute magnitudes were obtained from the MK spectral types according to Keenan's calibration (Keenan 1963). Among these ten binaries, only four stars have trigonometric parallaxes listed in the new edition of the Yale General Parallax Catalog (YPC, van Altena 1987). A comparison of the trigonometric and spectroscopic parallaxes for these four stars shows excellent agreement. Of the ten stars, all are within 100 pc of the Sun and eight systems have linear separations < 20 AU. Using the mass-luminosity relation given by McAlister and Hartkopf (1984), and assuming circular orbits, four stars are found to have periods less than 20 yr (Table V).

These halo binary candidates will be monitored in the future for additional confirmation and to determine their orbital elements using the GSU/CHARA speckle camera.

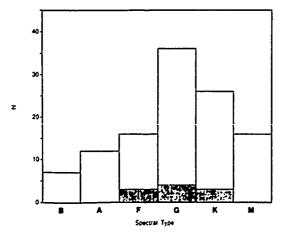


FIG. 1. Distribution in spectral type for all stars observed (light area) and binary candidates found (dark area).

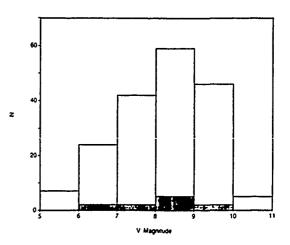


FIG. 2. Magnitude distribution for all stars observed (light area) and binary candidates found (dark area).

TABLE V. Estimated mass, distance, linear separation, and period for the halo binaries.

HD	ρ	R.v. (km/s)	v	Spt.	М,	Mass	#	d (pc)	a (AU)	P (yr)
21794	0.099	- 71	6.36	F7 V	3.9	1.2		30	3.4	4.0
49409	1.088	- 83	8.4	G0 V	4.4	1.0	0.017	59	64.2	363.7
130669	0.150	- 91	9.2	K2 V	6.3	0.7		38	5.7	11.5
139341	0.370	- 71	7.5	K2 V	6.3	0.7	0:048	21	7.8	18.4
158614	0.923	- 80	6.0	G9 V-IV	5.7	0.8	0.052	19	17.5	57.9
187283	0.204	- 65	8.2	F5 V.F6 V	3.4	1.3	0,012	91	18.6	49.7
189711	0.221	- 168	8.43	NO V	9.25	0.4		32	7.1	21.2
+ 174708*	0.205	- 295	9.48	F6 VI	4.7°	1.2 .	0:016	63	12.8	29.6
206373	0.429	- 91	8.4	G0 V	4.4	1.0	0.010	63	27.0	99.2
222794	0.057	- 71	7.1	GOV	4.7	1.0		35	27.0	2.0

 $+ 17^{4}708 = G126-62.$

Set M0 V for N0 V (Jaschek 1985).
Set M0 V for N0 V (Jaschek 1985).
Absolute magnitude for F6 VI set = F6 V(3.7) + 1.0 (Sandage 1970).

We wish to thank Dr. David Latham and his colleagues at the Harvard-Smithsonian Center for Astrophysics for providing us radial-velocity data before publication. Thanks are also due to Wean Shan Tzay (GSU) and Otto Franz (Lowell Observatory), who have participated in the speckle observations. Joel Gomes of Western Connecticut State University (WCSU) helped to compile the observing list of

high-velocity stars. This research has been supported in part by grants from the Connecticut State University system to WCSU, and from the National Science Foundation to Yale University. Research in speckle interferometry at Georgia State University is supported by grants from the National Science Foundation and the Air Force Office of Scientific Research.

REFERENCES

- Abt, H. A. (1979). Astron. J. 84, 1591.
- Abt, H. A. (1983). Annu. Rev. Astron. Astrophys. 21, 343.
- Abt, H. A., and Biggs, E. S. (1973). *Bibliography of Stellar Radial Velocities* (Kitt Peak National Observatory, Tucson).
- Abt, H. A., and Levy, S. G. (1969). Astron. J. 74, 908.
- Abt, H. A., and Levy, S. G. (1976). Astrophys. J. Suppl. 30, 273.
- Andersen, J., and Nordstrom, B. (1983a). Astron. Astrophys. Suppl. 52, 471.
- Andersen, J., and Nordstrom, B. (1983b). Astron. Astrophys. Suppl. 53, 287.
- Andersen, J., Nordstrom, B., Ardeberg, A., Benz, W., Imbert, M., Martin, N., Maurice, E., Mayor, M., and Prevot, L. (1985). Astron. Astrophys. Suppl. 62, 355.
- Ardeberg, A., and Lindgren, H. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 371.
- Beavers, W. I., and Eitter, J. J (1977). Publ. Astron. Soc. Pac. 89, 733.
- Beavers, W I, Eitter, J J., Ketelsen, D. A., and Cesper, D. A. (1979). Publ. Astron. Soc. Pac. 91, 698.
- Burki, G., and Mayor, M. (1984). Astron. Astrophys. 124, 256.
- Carney, B. W. (1983a). Astron. J. 88, 623.
- Carney, B. W. (1983b). In ESO Workshop on Primordial Helium, edited by P Shaver, D Kunth, and K. Kjar (ESO, Garching), p. 179.
- Carney, B W (1984) Publ. Astron. Soc. Pac. 96, 841.
- Carney, B. W., and Latham, D. W. (1987). Astron. J. 93, 116.
- Cole, P W. Demarque, P., and Green, E. M (1983). In ESO Workshop on Primordial Helium, edited by P. Shaver, D. Kunth, and K. Kjar (ESO, Garching), p. 235.
- Crampton, D., and Hartwick, F. D A. (1972). Astron. J. 77, 590.
- Demarque, P. (1966). In Stellar Evolution, edited by R. F. Stein and A. G. W. Cameron (Plenum, New York), p. 231.
- Demarque, P., and McClure, R D (1977) Astrophys. J. 213, 716.
- Eggen, O. J. (1964), R. Obs. Bull. No. 84.
- Fehrenbach, Ch., and Barunge, R (1982) Astron. Astrophys. Suppl. 49, 483.

- Fehrenbach, Ch., and Barunge, R. (1984). Astron. Astrophys. Suppl. 58, 435.
- Gunn, J. E., and Griffin, R. F. (1979). Astron. J. 84, 752.
- Harris, H. C., and McClure, R. D. (1983). Astrophys J. Lett. 265, L77.
- Harris, H.C., and McCiure, R. D. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 257.
- Hoffleit, D. (1982). The Bright Star Catalogue (Yale University Observatory, New Haven).
- Jaschek, C. (1985). In Cool Stars with Excess Heavy Elements, INAC Colloquium, edited by C. Jaschek and P. C. Keenan (Reidel, Dordrecht).
- Keenan, P. C. (1963). In *Basic Astronomical Data*, edited by K. Strand (University of Chicago, Chicago), p. 78.
- Labeyrie, A. (1970). Astron. Astrophys. 6, 85.
- Labeyrie, A. (1978). Annu. Rev. Astron. Astrophys. 16, 77.
- Larson, R. B., and Tinsley, B. M. (1978). Astrophys. J. 219, 46.
- Latham, D. W. (1985). In *Stellar Radial Velocities*, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 21.
- Latham, D. W., Hazen-Liller, M. L., and Pryor, C. P. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 269.
- Lu, P. K. (1983). In The Nearby Stars and the Stellar Luminosity Function, IAU Colloquium No. 76, edited by A. G. D. Philip and A. R. Upgren (Davis, Schenectady), p. 35.
- Lu, P. K., Demarque, P., van Altena, W., McAlister, H. A., and Hartkopf, W. I. (1986). Bull. Am. Astron. Soc. 17, 904.
- Lu, P. K., and Lee, J. T. (1983). In *The Nearby Stars and the Stellar Luminosity Function*. IAU Colloquium No. 76, edited by A. G. D. Philip and A. R. Upgren (Davis, Schenectady), p. 447.
- Mathieu, R. D. (1985). In *Stellar Radial Velocities*, IAU Colloquium No. 88. edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 249.
- Mathieu, R. D., Stefanik, R. P., and Latham, D. W. (1985). In Stellar Radial Velocities, IAU Colloquium No. 88, edited by A. G. D. Philip and

1326 LU ET AL.: SPECKLE OBSERVATIONS OF BINARIES

D. W. Latham (Davis, Schenectady), p. 263.

j

Matteucci, F., and Chiosi, C. (1983). Astron. Astrophys. 123, 121. Mayor, M., and Turon, C. (1982). Astron. Astrophys. 110, 241. McAlister, H. A., and Hartkopf, W. I. (1984). CHARA Contrib. No. 1. McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987b).

Astron. J. 93, 688.

- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., Shara, M. M., and Franz, O. G. (1987a). Astron. J. 93, 183.
- McClure, R. D., Fletcher, M. J., Grundman, W. A., and Richardson, E. H. (1985). In *Stellar Radial Velocities*, IAU Colloquium No. 88, edited by A. G. D. Philip and D. W. Latham (Davis, Schenectady), p. 49.

Mengel, J. G., Sweigart, A. V., Demarque, P., and Gross, P. G. (1979).

Astrophys. J. Suppl. 40, 733.

- Partridge, R. B. (1967). Astron. J. 72, 713.
- Peimbert, M. (1983). In ESO Workshop on Primordial Helium, edited by P. Shaver, D. Kunth, and K. Kjar (ESO, Garching), p. 267.
- Roman, N. (1955). Astrophys. J. Suppl. 2, 195.
- Sandage, A. R. (1970). Astrophys. J. 162, 841.
- Searle, L. (1984). In Structure and Evolution of the Magellanic Clouds, IAU Symposium No. 108, edited by S. van den Bergh and K. S. de Boer (Reidel, Dordrecht), p. 13.
- van Altena, W. (1987). Yale General Parallax Catalogue (Yale University Observatory, New Haven).
- Worden, S. P. (1977). Vistas Astron. 20, 301.

VOLUME 94, NUMBER 3

GAMMA PERSEI-NOT OVERMASSIVE BUT OVERLUMINOUS

DANIEL M. POPPER

Department of Astronomy, University of California, Los Angeles, California 90024

HAROLD A. MCALISTER^{a)} Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30503 Received 15 April 1987; revised 22 May 1987

ABSTRACT

Measurement and analysis of the set of Michigan spectrograms of the 14% binary γ Per shows that the masses of the A3 and G8 III stars are 2.0 M_{\odot} and 3.0 M_{\odot} rather than the abnormally large values for the types found by McLaughlin, 2.8 and 4.9. The decreases are primarily due to an upward revision of the large orbital eccentricity. Speckle interferometric observations of high quality covering nine years with the components resolved are analyzed. Agreement of the elements in common between interferometric and spectrographic orbits is excellent. The orbit is seen nearly edge-on. The well-determined parallax, 0.014, obtained by combining linear and angular sizes of the relative orbit, along with Bahng's evaluation of the magnitude difference between the components, leads to absolute magnitudes M_V of + 0.3 and - 1.1 for the A star and G giant, respectively, values more than a magnitude more luminous than "standard" values for the spectral types. Thus, each star appears to be in a state of rapid evolution, a situation not permitted by evolutionary theory for stars of such different mass if they have a common origin.

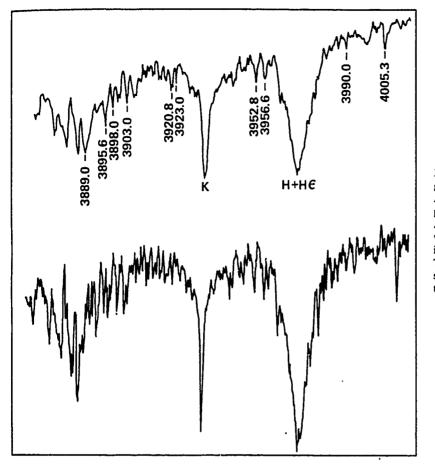
I. INTRODUCTION

Gamma Persei has long been known to have a variable radial velocity and composite spectrum. The only available analysis of radial velocities is that published in abstract form by McLaughlin (1948) on the basis of prismatic spectrograms obtained at Michigan. The period is 14.6 yr. Each of McLaughlin's minimum masses, $4.9\mathcal{M}_{\odot}$ for the G8 giant and $2.8\mathcal{M}_{\odot}$ for the early A star, is considerably larger than any other well-determined mass for a star of the spectral type (e.g., Popper 1980). McAlister (1982) has analyzed the astrometric observations of γ Per, primarily his own speckle results, available in 1981. He concluded that not only are the masses larger than expected for the types, but so are the luminosities.

In the present contribution, we discuss the Michigan spectrograms anew as well as the astrometric observations now available in order to derive nearly definitive properties of the system.

II. SPECTROGRAPHIC ORBITS

The velocities of the 34 spectrograms employed by McLaughlin (1948) in his analysis of the orbits of γ Per have not been published. Through the good offices of A. P. Cowley and W. A. Hiltner, one of us was able to obtain the Michigan collection of one hundred measurable prismatic spectrograms obtained between 1937 and 1951 plus one critical observation in 1932. The plates from 1932 to March 1941 and from August 1943 to March 1949 form a homogeneous one-prism set (78 plates) having a scale of 26.4 Å mm⁻¹ at the Ca II K line and 31.9 Å mm⁻¹ at H δ . The two other groups of plates have slightly higher dispersions from a twoprism configuration. All the plates have been measured with a Grant Instrument Co. oscilloscopic scanning device in both directions. There are numerous sharp lines from the cool component, but, as noted by McLaughlin, only the Ca II K line of the hotter star is measurable. This line is so much sharper than the K line of the cooler star that there is no confusion between the two. On all well-exposed plates, the K line of the A star appears sharp and symmetrical. It appears unlikely that the 0.6 Å displacement between the centers of the K lines of the components near periastron can cause a systematic effect in the position of this sole line of the A star that is employed for its velocities. The Ca II H line of the A star that is of the A star are so chopped up by sharp lines of the cooler star as to be unmeasurable. The appearance of the spectrum near the K line is shown in Fig. 1.


Velocities of the cool star (V_c) are based on lines in the wavelength range $\lambda\lambda$ 3888–4167 Å. Most of the spectrograms are weak at shorter wavelengths, and the dispersion decreases markedly at longer wavelengths. Furthermore, this range includes the Ca II K line, so that possible systematic effects in the velocities of the components are minimized. Twenty lines of the cool star were found to give consistent velocity variation. Their wavelengths were taken from the solar list (Moore *et al.* 1966) and were adjusted for systematic differences in velocity. The average internal standard deviation of a velocity of the cool star is 1.0 km s⁻¹. Some of the lines are indicated in Fig. 1.

The velocities are listed in Table I. The quantities V_h are the K line measures for the A star, V_c the G star velocities. A somewhat uncertain curvature correction of -1.0 km s⁻¹ has been applied.

In Table I, dates with only one decimal given are for observations with the time of exposure not readily available. Because of the long period, the uncertainty of 0.1 day is unimportant. The phases are fractions of the period after periastron in the adopted orbital solution, to which the residuals in the table also relate. In carrying out the solutions (Table II), it is found that the velocities from the 22 two-prism plates are systematically more positive than those from the 78 oneprism plates. The differences for the two components and for the two epochs (1941–1943 and 1949–1951) average 2.5

^{**} Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

.

į

FIG. 1. Microdensitometer tracings of spectrograms of γ Per in the vicinity of the Ca 11 K line. Above: a Michigan prismatic spectrogram, employed in this investigation; original scale 26.4 Å mm⁻¹ at K. Lines marked are used for radial velocities except for H + H ϵ . Below: a Lick grating spectrogram, original scale. 10.9 Å mm⁻¹. The core of the relatively sharp K line of the A star appears uninfluenced by the broad K line of the G giant.

TABLE I. Radial velocities of γ Per.

JD-2400000	Phase	<u>v</u> _ <u>c</u>	<u>0-C</u>	<u>v</u> <u>h</u>	<u>0-C</u>
26996.76	0.00837	-19.7	- 1.4	-35.8	- 2.3
28823,23	0.35002	- 6.1	- 2.4	1.0	- 3.1
28868.73	0.35854	- 4.4	- 0.6	4.0	- 0.2
29109.89	0.40365	- 5.6	- 1.6	4.8	+ 0.3
29119.90	0.40552	- 5.8	- 1.8	2.5	- 2.0
29140.80	0.40943	- 7.8	- 3.8	2.1	- 2.5
29170.82	0.41504	- 5.0	- 1.0	5.6	+ 1.0
29198.80	0.42028	- 4.1	0.0	6.6	+ 2.0
29223.54	0.42490	- 4.6	- 0.5	8.4	+ 3.7
29313.65	0.44176	- 0.1	+ 4.0	8.2	+ 3.4
29455.89	0.46837	- 3.0	+ 1.2	8.4	+ 3.5
29479.89	0.47286	- 3.9	+ 0.3	7.5	+ 2.6
29514.74	0.47938	- 5.2	- 0.9	5.6	+ 0.7
29548.71	0.48573	- 3.8	+ 0.5	4.0	- 1.0
29578.71	0.49134	- 5.6	- 1.3	2.0	- 3.0
29609.70	0.49714	- 3.4	+ 0.9	5.2	+ 0.2
29637.69	0.50237	- 4.2	+ 0.1	7.0	+ 2.0
29675.54	0.50945	- 2.8	+ 1.5	5.6	+ 0.6
29936.66	0.55830	- 5.7	- 1.3	5.8	+ 0.6
29954.59	0.56165	- 6.2	- 1.8	3.0	- 2.2

•

702 D. M. POPPER AND H. A. McALISTER: GAMMA PERSEI

ľ

į

j

j

ļ

,

•

i

i

•

JD-2400000	Phase	<u>v</u> _ <u>c</u>	<u>0-C</u>	<u>v</u> <u>h</u>	<u>0-c</u>
29978.67	0.56616	- 5.3	- 0.9	4.7	- 0.5
30023.70	0.57458	- 3.7	+ 0.7	8.2	+ 3.0
30058.54	0.58110	- 4.4	0.0	6.0	+ 0.8
a30286.67	0.62379	- 4.3	+ 0.2	7.0	+ 1.8
^a 30317.6	0.62956	- 4.2	+ 0.3	8.4	+ 3.2
a30373.60	0.64003	1.8	+ 6.3	9.2	- 4.0
a30379.53	0.64114	- 0.9	+ 3.6	8.4	+ 3.2
^a 30404.64	0.64584	0.4	+ 4.9	9.9	+ 4.7
² 30438.54	0.65218	0.3	+ 4.8		
a30592.91	0.68105	- 1.1	+ 3.3	9.2	+ 4.0
^a 30602.85	0.68291	- 4.8	- 0.4	7.3	+ 2.1
^a 30652.74	0.69224	- 3.8	+ 0.6	4.4	- 0.8
a30730.65	0.70682	0.0	+ 4.4	9.1	+ 4.0
a30753.56	0.71110	0.4	+ 4.8	12.5	+ 7.4
30778.57	0.71578	- 2.7	+ 1.7	3.4	- 1.7
a30807.57	0.72121	- 3.3	+ 1.0	5.3	+ 0.2
30964.80	0.75062	- 2.1	+ 2.1	3.4	- 1.5
30985.79	0.75454	- 5.5	- 1.3	3.3	- 1.6
31006.72	0.75846	- 3.4	+ 0.8	1.5	- 3.4
31057.67	0.76799	- 5.4	- 1.2	3.2	- 1.6
31107.56	0.77732	- 5.2	- 1.1	3.4	- 1.3
31342.89	0.82134	- 2.0	+ 1.8		
31770.68	0.90136	- 1.8	+ 0.3	2.6	+ 0.9
31834.56	0.91331	- 2.0	- 0.4	- 1.0	- 1.9
31887.54	0.92322	- 3.7	- 2.6	- 2.1	- 2.2
31907.60	0.92697	- 1.9	- 1.1	- 1.6	- 1.3
32013.88	0.94685	2.8	+ 1.8	- 2.5	+ 0.6
32027.87	0.94947	- 0.2	- 1.6	- 1.6	+ 2.0
32039.87	0.95172	3.5	+ 1.8	- 3.6	+ 0.5
32046.79	0.95301	4.2	+ 2.3	- 2.4	+ 2.0
• • • • • • • •					
32119.68	0.96664	7.8	+ 3.1	- 3.6	+ 5.1
32168.68	0.97581	9.8	+ 1.9		
32236.65	0.98852	17.8	+ 2.0	- 24.4	+ 1.0
32243.54	0.98981	17•4	+ 0.6	- 27.5	- 0.6
32243.56	0.98982	18.4	+ 1.6	- 28.3	- 1.4
32245.56	0.99019	19.6	+ 2.5	- 25.3	+ 2.1
32249.57	0.99094	20.2	+ 2.5	- 25.0	+ 3.4
32256.55	0.99225	16.3	- 2.5	- 25.8	+ 4.2
32271.55	0.99505	21.7	+ 0.7	- 33.6	- 0.3
32272.58	0.99525	20.3	- 0.8	- 29.8	+ 3.7
32279.56	0.99655	22.8	+ 0.8	- 38.6	- 3.8
32290.56	0.99861	23.8	+ 0.8	- 39.0	- 2.7
32370.88	0 01363	18.1	- 0.4	- 25.7	+ 2.7
32371.89	0.01382	18.7	+ 1.1	- 31.0	- 2.8
32378.89	0.01513	18.2	+ 1.4	- 24.4	+ 2.6
32386.86	0.01662	· 15•2	- 0.7	- 26.6	- 1.0
32391.84	0.01755				+ 1.0
32392.91	0.01755	14.1	- 1.3	- 23.8	
32392.91		14.5	- 0.8	- 25.0	- 0.4
	0.01887	15.5	+ 0.8	- 23.8	- 0.1
32400.90	0.01925	11.4	- 3.0	- 22.2	- 0.8

JD-2400000	Phase	<u>v</u>	<u>0-C</u>	<u>v.</u> <u>h</u>	<u>0-c</u>
32406.89	0.02037	14.4	+ 0.5	- 26.4	- 3.9
32407.82	0.02054	15.7	+ 1.9	- 17.8	+ 4.6
32410.85	0.02111	11.8	- 1.7	- 24.6	- 2.7
32445.75	0.02764	9.5	- 1,2	- 16.2	- 1.5
32446.71	0.02782	10.8	+ 0.2	- 17.4	+ 0.2
32452.71	0.02894	10.0	+ 1.5	- 17.4	- 1.6
32458.73	0.03007	9.0	- 0.8	- 18.2	- 1.8
32465.8	0.03138	9.5	+ 0.1	- 14.6	+ 1.1
32473.8	0.03288	8.6	- 0.3	- 14.6	+ 1.1 + 1.2
32483.73	0.03474	9.3	+ 0.9	- 15.8	- 0.8
		,		10.0	- 0.0
32501.7	0.03809	8.0	+ 0.5	- 13.8	- 0.9
32529.7	0.04334	5.2	- 1.1	- 14.5	- 3.4
32541.7	0.04559	5.7	- 0.2	- 11.5	- 1.0
32573.7	0.05156	3.7	- 1.2	- 10.0	- 1.1
32601.6	0.05679	3.9	- 0.2	- 7.2	+ 0.6
32839.8	0.10134	1.6	+ 1.1	- 1.0	+ 1.3
32846.8	0.10265	0.6	+ 0.1	- 4.4	- 2.2
32867.8	0.10657	2.6	+ 2.3	- 1.3	+ 0.6
32908.8	0.11424	0.5	+ 0.6	1.0	+ 2.4
32956.6	0.12319	2.2	+ 2.6	- 2.2	- 1.3
33229.7	0.17427	. 1.0	+ 2.8	4.2	+ 3.0
33255.7	0.17914	0.0	+ 1.9	3.0	+ 1.7
33370.5	0.20062	1.6	+ 3.9	7.2	+ 5.3
33554.7	0.23507	- 0.6	+ 2.2	8.4	+ 5:8
33603.71	0.24424	- 1.9	+ 1.0	4.6	+ 1.8
33631.70	0.24948	- 2.3	+ 0.6	2.4	- 0.5
33700.58	0.26236	- 2.2	+ 0.8	5.6	+ 0.5
33730.55	0.26797	- 1.7	+ 1.4	4.8	+ 1.6
33948.74	0.30878	- 4.4	- 1.0	3.0	- 0.7

TABLE I. (continued)

^aTwo-prism spectrograph; otherwise one prism. Similar dispersions. Two-prism

velocities omitted in most solutions. See text and Table 2.

km s⁻¹. The two-prism velocities have been omitted except for solution (2), in which the differences $V_c - V_h$ are employed.

With the exception of the first spectrogram, obtained in 1932, the Michigan observations cover less than one orbital cycle of 14.6 yr. The 1932 observation, obtained near the time of maximum velocity separation of the components, is a crucial one. Determination of the orbital period depends heavily upon this single plate, obtained one cycle earlier than the numerous plates from 1947, when the stars passed rapidly through periastron, close to the nodal epoch (ω being near zero). It has not been possible to determine clearly whether the 1932 observation was obtained before or after periastron passage. Thus, there is an ambiguity in the period. This uncertainty is less than 100 days, or 2%, since the 1932 plate was, fortunately, obtained close to maximum orbital velocity. The early velocities of the cool giant (Lord 1905; Küstner 1908; Campbell and Moore 1928) do not cover sufficient ranges of velocity to be helpful in resolving the ambiguity in period.

In each of the solutions for the orbital elements in Table II, the two values of the period are listed. The differences in the values of the other elements, as dependent on the choice of period, are in all cases much less than the mean errors of the elements, and average values are listed. Since the period is so strongly dependent on the one observation, the statistical uncertainty of the period is not properly evaluated in the least-squares analysis. Additional solutions have been carried out in which the velocities of the 1932 plate are changed by one standard deviation (1.5 km s⁻¹ for V_c , 2.2 km s⁻¹ for V_h). The effect on the period is 14 days, and this value is listed in Table II for the uncertainty in the period. The effects

, 703

704

; . .

ł

. i

•

ŧ a

;

i ļ i ł

j

TABLE II. Solutions to the spectroscopic orbit.

D. M. POPPER AND H. A. MCALISTER: GAMMA PERSEI

704

	Ū	~	(2)	(3)	0	(4)	(2)	(9)		(1)	-
Solution	<u>V</u> c	٩	<u>V</u> c ⁻ Vh	<u>V</u> c	Ŋ	۲	'n	<u>V</u> c	۲	Vc	Ϋ́
^a P _l (days)	5352.5 ± 14	5341.4 ± 14	5345.1 ± 14	5345•1 	5345.1 	5352.5 	5352.5 	5346 ± 16	5346 ± 16	5350 	
^a P_2(days)	5258.8 ± 14	5286.4 ± 14	5277.8 ± 14	5277 . 8 	5277 . 8 	5258 . 8 	5258 . 8 	5277 ± 25	5277 ± 25		
ь <u>т</u> (JD- 2430000)	2291.0 ± 5.8	2301.3 ± 4.3	2298.5 ± 2.7	2298.5	2298 . 5 	2291.0 	2291.0 	2298 ± 8	2298 ± 8	2263 	
ت ا	0.789 ± 0.010	0.817 ± 0.010	0.805 ± 0.006	0.805	0.805	0.789 	0.789 	0.804 ± 0.02	0.804 ± 0.02	0.72	
(c)m	351.8 ± 2.0	170.7 ± 1.9	351.5 ± 1.1	351 . 5 	171.5	171.8 	171.8	351•5 ± 1•5	171.5 ± 1.5	344 	
<u>K</u> (km s ⁻¹)	13.8 ± 0.4	22.0 ± 0.7	35.6 ± 0.7	14.3 ± 0.3	21.3 ± 0.4	20.4 ± 0.4	20.1 ± 0.8	14.0 ± 0.4	21.2 ± 1.0	12.7	21.9
<u>Vo</u> (km s ⁻¹)	- 1.65 ± 0.2	± 0.9		+ 1.6 + 0.2	. 6°0 ∓ 0°3	1.0 ± 0.4	1.0 ± 0.3	- 1.6 ± 0.2	· 0•9 • 0.8	+ 2.5	
o(km s ^{-l})	1.5	2.2	2.2	1.6	2.2	2.5	2.1	1.6	2.2	1	ļ
<u>a</u> sin <u>1</u> (a.u.)	4.17 ± 0.15	€.23 ± 0.26	10.37 ± 0.25	4.17 ± 0.11	ۥ20 ± 0•15	6.16 ± 0.19	6.07 ± 0.27	4•09 ± 0•15	€.20 ± 0.30	4.3	7.5

periastron passage (P_1) or before it (P_2) . b <u>o</u> *The 1932 observation is assur Epoch of periastron passage. Notes to TABLE II

Solutions: (The two-prism velocities are included only in solution (2). In evaluating *a* sin *i*, *P*₁ is employed.) (1) General solutions. (2) Solution employing velocity differences. (3) P, T, E_{i} and ω adopted from (10). (4) P, T, E_{i} and ω adopted from the V_{c} solution (1). (5) State as solution (4), but with the 13 observations between JD 30286 and 30807, having the largest orbital velocities, omitted. See the text. (5) Preferred elements, with uncertainties estimated from the results for the other solutions. (7) McLaughlin's (1948) elements. From his notes, it appears that McLaughlin may not have applied the curvature correction of -1.0 km s^{-1} .

of these 1σ variations on the other elements are negligible. The uncertainties in the orbital dimensions and in the masses resulting from the dichotomy in the period are considerably less than those resulting from uncertainties in the orbital eccentricity and in the values of K, the amplitudes of velocity variation.

The basis for each of the solutions in Table II is given in the notes following the table. Values of P, T, e, and ω are usually best determined from the differences in the velocities of the components (solution 2 in Table II) when the two sets of velocities are of comparable weight, as they are in this case. It is, nevertheless, possible that the values of $V_{\rm h}$ are, despite the apparent symmetry of the core of its K line, subject to systematic effects as a consequence of distortion by the broad K line of the cool star (Fig. 1). The difference in the eccentricities for the two components in solution (1) of Table II could be caused in part by such an effect. Solutions (4) and (5) employ different assumptions about possible systematic effects, which may be expected to be greatest when the velocity difference is a maximum, near periastron. The effects on the masses (\mathcal{M}) and orbital dimensions (a)are less than their statistical uncertainties. In the adopted solution (6), the estimated uncertainties, particularly in the eccentricity, have been increased over their formal values to allow for these effects.

The difference of 2.5 ± 0.8 km s⁻¹ between the systemic velocities of the two components may be a consequence, at least in part, of the scheme used for adjusting the wavelengths of the lines employed for the velocities of the cooler star.

The residuals listed in Table I are relative to the preferred solution (6) in Table II for the longer period. The difference between the velocities predicted for the two periods never exceeds 0.2 km s⁻¹ and is much less in the mean. The observed velocities (one-prism results only) and curves based on the preferred elements are shown in Figs. 2 and 3. In the latter, the variation through periastron is shown with an ex-

panded timescale. Since the solutions represented by the curves in the figures (solutions 6 of Table II), are compromises, differing from the individual best-fit solutions (solutions 1), systematic runs in the residuals may be seen. The two phases for the encircled 1932 velocities correspond to the two periods, 5346 days (larger phase) and 5277 days. In the best-fit solutions, the 1932 velocities fall almost precisely on the predicted curves, since nearly all the weight of the derived period lies upon them. It is unfortunate that no velocities are available from either of the periastron passages in 1963 or 1976. The next occurs in 1991. Not only are improved periods desirable, but so are more nearly definitive spectroscopic elements.

That the minimum masses derived by McLaughlin (4.9 and 2.9 \mathscr{M}_{\odot}) are considerably greater than those obtained by us (3.0 and 2.0 \mathscr{M}_{\odot}) is not owing to any systematic effect in McLaughlin's measures. His value of $K_c + K_h$, 34.6 km s⁻¹, is close to our value, 35.2. The reason is, rather, the difference between the orbital eccentricities in the two investigations, to which the masses are very sensitive for such large eccentricities. In his analysis, McLaughlin employed only 34 of the 78 plates used in this investigation. Furthermore, only 12 of the 33 plates obtained during the period of most rapid velocity variation in 1947 were included, and of these, none covers the later phases of the rapid variation.

III. ASTROMETRIC ORBITS

The history of the resolution of Gamma Persei has been presented by McAlister (1982). The measurements made in 1939 by Wilson (1941) with a visual Michelson interferometer are the result of Wilson's attempt to resolve stars of composite spectra and predated McLaughlin's orbit analysis by a decade. Although Wilson's results cannot contribute to the analysis of the visual orbit when combined with the considerably more accurate speckle observations now available, it 'is almost certain that Wilson did indeed detect duplicity in

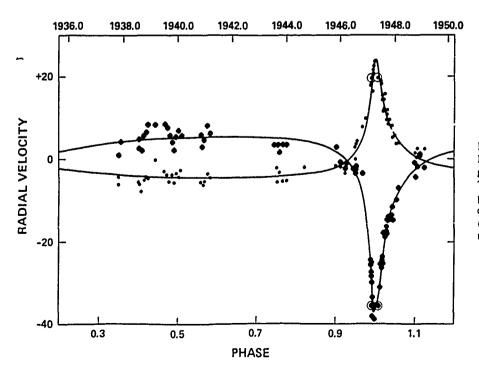


FIG. 2. Velocities of the components of γ Per from Michigan pl¹.tes. Dots: the G giant; pluses: the K line of the A star. The encircled points are for the 1932 plate for two periods. See the text. The curves are from the adopted solutions (6) in Table II. Phases are fractions of the period after periastron passage.

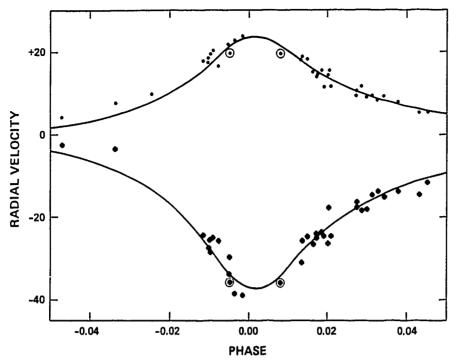


FIG. 3. Velocities of the components of γ Per during their passage through periastron. Explanation as for Fig. 2.

his visibility estimates as evidenced by the residual to his position-angle measure. This is an impressive feat considering the magnitude difference in the system and the small aperture (18 in.) of the telescope he employed in his observing program.

The number of speckle observations has nearly tripled since the last astrometric analysis (McAlister 1982), so that 35 such measures are now available. The collected measurements of position angles and angular separations along with the original sources are shown in Table III. They give the position of the A star relative to the G star. The majority of these observations were obtained at the 4 m telescope on Kitt Peak as a part of the ongoing Georgia State University speckle program. The GSU speckle data prior to 1982.0 were obtained with a photographic speckle camera, while those after 1982.0 were produced by an ICCD-based speckle camera. In the case of these observations, the two sets of data are of comparable accuracy. The single measurement by Tokovinin (1985), a fine observation with small residuals, was made with a "phase grating" interferometer on a telescope with an aperture of 1 m. By contrast, an aperture as large as 6 m was employed by Dudinov et al. (1982) and Balega and Balega (1985). It is our experience that for separations exceeding two or three times the diffraction limit, the accuracy of the measurement is more dependent upon the quality of the calibration than on an increase in aperture. In general, we find that the early observations from any particular speckle group have large errors in both position angle and angular separation, and that these errors are significantly diminished in subsequent observations as calibration techniques are improved.

The elements of the "visual" orbit for γ Per were calculated with a computer program developed by Hartkopf (Hartkopf *et ai.* 1987). This method permits the assignment of formal errors to the geometric quantities a'', *i*, ω , and Ω , but

does not provide error estimates for P, T, and e. We have decided to base our conclusions for γ Per solely on the observations by McAlister and his colleagues (the GSU/ CHARA data). They form a homogeneous set and have much smaller scatter than the other observations, as seen in Table III and Figs. 4 and 5. Systematic differences between the two sets are also apparent. These differences are probably due to the lack of absolute calibration for scale and position angle. The GSU/CHARA observations are, on the other hand, well calibrated by means of the double-slit mask scheme described by McAlister et al. (1978b).

In the analysis of the GSU/CHARA data, the values of Pand T are adopted from the spectroscopic results (solutions 6 of Table II) because of the considerably greater time interval covered by the spectroscopic than by the interferometric observations. The results of the analysis are given as solutions 1 and 2 of Table IV. Also given is a solution (solution 3) in which the most deviant GSU/CHARA observation is omitted. Finally, we list a solution (solution 4) in which all elements, including P and T, are derived from all the speckle observations. In this solution, each GSU/CHARA is given twice the weight of each of the others. Although only 63% of an orbital period is covered and periastron is outside the time interval, the good coverage around the apastron passage of 1983.67, along with the highly eccentric orbit, gives the observations leverage in determining the elements P, T, and ω . The period derived is only 0.3% shorter than the longer of the two spectroscopic periods. It is on this basis that we prefer the 1.3% longer of the spectroscopic periods. In fact, all the elements in common between the completely independent astrometric and spectroscopic solutions agree within their uncertainties, a result indicating a very high level of consistency between the two complementary approaches to orbit determination.

The observations recorded in Table III are shown in Figs.

707 D. M. POPPER AND H. A. MCALISTER: GAMMA PERSEI

?

.

TABLE III. Interferometric observations of γ Per.

t	θ(°)	ρ(")	Δθ(°)	Δρ(")	W	Source
1939.77	49.4	0.07	-15.4	-0.178	0.0	Wilson (1941)
1973.450	59.0	0.193	- 5.8	+0.014	0.0	Labeyrie et al. (1974)
1975.629	83.0	0.052	+18.7	-0.002	0.0	Blazit et al. (1977).
1975.782	51.0	0.041	-13.1	+0.001	0.0	Blazit et al. (1977)
1975.956		<0.033	(63.8)	(0.024)		McAlister (1978)
1976.857		<0.035	(244.1)	(0.017)		McAlister (1978)
1976.860		<0.035	(244.0)	(0.017)		Hartkopf and McAlister (1980)
1976.923		<0.035	(243.2)	(0.012)		McAlister (1978)
1977.087		<0.035	(75.4)	(0.003)		McAlister (1978)
1977.734	67.0	0.054	+ 1.2	-0.003	1.0	McAlister and Fekel (1980)
1977.742	65.4	0.058	- 0.4	+0.001	1.0	McAlister and Fekel (1980)
1977.919	65.8	- 0.066	+ 0.2	-0.004	1.0	McAlister and Henry (1982a)
1978.149	66.5	0.091	+ 1.0	+0.005	1.0	McAlister and Fekel (1980)
1978.616	64.8	0.114	- 0.6	+0.000	1.0	McAlister and Fekel (1980)
1978.618	64.7	0.115	- 0.7	+0.001	1.0	McAlister and Fekel (1980)
1979.036	64.2	0.133	- 1.2	-0.003	1.0	McAlister and Hendry (1982b)
1979.533	65.2	0.157	- 0.1	-0.002	1.0	McAlister and Hendry (1982b)
1979.771	64.2	0.168	- 1.1	-0.001	1.0	McAlister and Hendry (1982b)
1980.153	64.9	0.181	- 0.4	-0.002	1.0	McAlister et al. (1983)
1980.724	64.7	0.200	- 0.5	-0.001	1.0	McAlister et al. (1983)
1980.726	65.1	0.207	- 0.1	+0.005	1.0	McAlister et al. (1983)
1980.729	61.8	0.202	- 3.4	+0.000	1.0	McAlister et al. (1983)
1980.775	63.3	0.200	- 1.9	-0.003	0.0	Dudinov et al. (1982)
1980.893	64.6	0.209	- 0.6	+0.003	1.0	McAlister and Hartkopf (1984)
1980.896	64.3	0.216	- 0.9	+0.010	1.0	McAlister and Hartkopf (1984)
1981.671	53.0	0.284	-12.2	+0.059	0.0	Balega et al. (1984)
1982.758	64.8	0.237	- 0.4	-0.004	1.0	McAlister et al. (1987b)
1982.766	64.7	0.240	- 0.5	-0.002	1.0	McAlister et al. (1987b)
1983.047	65.6	0.243	+ 0.5	-0.002	1.0	McAlister et al. (1987b)
1983.711	65.9	0.247	+ 0.8	-0.001	1.0	McAlister et al. (1987b)
1983.713	65.8	0.246	+ 0.7	-0.003	1.0	McAlister et al. (1987b)
1983.824	61.3	0.262	- 3.8	+0.013	0.0	Balega and Balega (1985)
1983.931	64.0	0.270	- 1.1	+0.021	0.0	Bonneau et al. (1984)
1983.937	65.0	0.260	- 0.1	+0.011	0.0	Bonneau et al. (1984)
1983.958	63.4	0.253	- 1.7	+0.004	0.0	Balega and Balega (1985)
1984.060	65.3	0.245	+ 0.2	-0.004	1.0	McAlister <u>et al</u> . (1987b)
1984.786	64.5	0.254	·- 0.6	+0.007	0.0	Tokovinin (1985)
1984.934	62.5	0.258	- 2.6	+0.012	0.0	Bonneau <u>et al</u> . (1985)
1985.005	65.3	0.247	+ 0.2	+0.001	1.0	McAlister <u>et al</u> . (1987b)
1985.838	65.0	0.239	- 0.1	+0.002	1.0	McAlister et al. (1987b)
1986.886	64.7	0.219	- 0.3	+0.003	1.0	McAlister et al. (1987a)

708 D. M. POPPER AND H. A. MCALISTER: GAMMA PERSEI

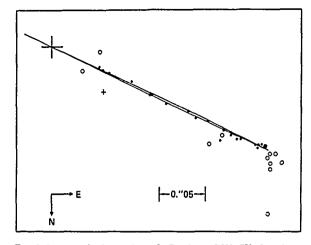


FIG. 4. Astrometric observations of γ Per. Dots: GSU/CHARA observations; light circles: other speckle observations; plus: Wilson's (1941) visual observation. The curve is from solution (1) of Table IV. The upper branch is for the interval preceding apastron passages. The large cross represents the primary (cooler) component.

4 and 5, along with the corresponding curves from the preferred solution. The inclination of the orbital plane even permits the possibility of an eclipse at minimum angular separation. There is a high probability of observing some level of eclipse phenomena at the next times of predicted minimum separation around 1990.89 and 1991.70.

IV. PROPERTIES OF THE STARS

The agreement between the independently determined values of P, T, e, and ω from spectroscopic (solution 6 of Table II) and interferometric (solution 3 of Table IV) observations is very good. The adopted orbital parameters are listed in Table V. The period and first value of T are from the spectroscopic results, upon which the second value of T is based. It is not determined precisely enough from the speckle observations alone for an improved determination of the period. The adopted values of e and ω are compromises. The values of a'', K, V_o and a are derived with P, T, e, and ω held fixed. The adopted values of K, V_o and a differ slightly from those of solution (6) in Table II since slightly different val-

ues of e and ω are used in analyzing the velocities. The uncertainties listed are intended to be realistic values. While the values of K_c and K_h are sensitive to the adopted value of e, the values of the critical quantity, $a \sin i$, are very insensitive to e over the range of values of e in the tables.

The value of the parallax, 0.0135 ± 0.0007 , obtained by combining astrometric and spectrographic results, is in reasonable, though not particularly significant, agreement with the directly determined value, 0.011 ± 0.006 . The corresponding distance modulus is 4.35 ± 0.1 mag. The combined apparent magnitude is V = 2.93 (Johnson *et al.* 1966).

In his multifilter photometric study of stars with composite spectra, Bahng (1958) discussed the case of γ Per in considerable detail. He concluded that the best fit was to stars of spectral types G8 III and A3 V, with a magnitude difference $\Delta M_{\nu} = 1.4$, the G star being more luminous. As a partial test of this value, one may employ the B - V and U - Bindices of γ Per, + 0.70 and + 0.45 (Johnson *et al.* 1966), and of the standard stars used by Bahng in fitting the radiation of γ Per (λ Gem, A3 V; κ Gem and η Psc, G8 III). Differences of 1.3 and 1.5 mag between the components of γ Per reproduce the values of both B - V and U - B for the star within 0.02 mag, while values outside this range do not, in agreement with Bahng's result. We adopt ΔM_{ν} = 1.4 ± 0.2 mag and obtain $M_{\nu} = -1.1 \pm 0.25$ and $+ 0.3 \pm 0.3$ for the G and A stars, respectively.

Published estimates of the spectral types in γ Per are G8 III: + A3 (W. W. Morgan in Stebbins and Kron 1956) and K0 III + A2 (Cowley 1976). On the basis of examination of two Lick 16 Å mm⁻¹ spectrograms of γ Per, the cool star cannot be as early as G5 nor as late as K0, and its luminosity is less than class II and greater than class IV. From the appearance of the K line of the hotter star (Fig. 1), its type is in the range A2-A3. These estimates are in excellent agreement with those from Bahng's analysis and lend further credence to them.

In order to obtain the luminosities, radii, and surface gravities of the components, we require effective temperatures T_e and bolometric corrections B.C. As the basis for these quantities, we adopt the color indices of the stars employed by Bahng (1958) as the counterparts of the components of γ Per. His A3 V standard was λ Gem, having B - V = +0.12, leading to log $T_e = 3.919$, B.C. = -0.1 mag (Popper 1980, Table I). The G8 III standards were κ Gem and η Psc. For cool giants, Ridgway et al. (1980) have

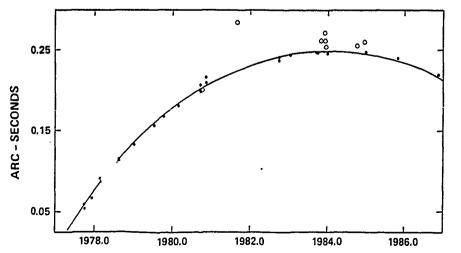


FIG. 5. Separations ρ of the components of γ Per. Symbols as in Fig. 4. The curve is from solution (1) of Table IV.

709 D. M. POPPER AND H. A. MCALISTER: GAMMA PERSEI

				Scim	-ion			
Element	1		2		3		4	
<u>P(y)</u>	14.	637	14	.448	14	•637	14	.593
<u>T</u> (y)	1976.	579	1976	• 579	1976	• 579	1976	• 548
<u>e</u>	0.	784	0	•792	0	•784	0	.782
<u>a</u> "	0.140	± 0.002	0.140	± 0.003	0.140	± 0.002	0.142	± 0.003
<u>i</u> (°)	90.49	± 1.14	90.49	± 1.14	90.22	± 0.92	90.23	± 1.22
ω(°)	355.3	± 1.1	353.0	± 1.1	355.2	± 1.0	353.2	± 1.2
<u>ა(</u> 。)	245.2	± 1.1	245.2	± 1.1	245.2	± 1.0	244.7	± 1.2
σ _x (")	± 0.	0034	± 0	•0034	± 0	•0026	± 0.	.0041
σ _y (")	± 0.	0033	± 0	.0033	± 0	•0032	± 0.	.0033

TABLE IV. Solutions to the visual orbit.

Solutions:

- P(longer) and T adopted from spectroscopic solution no. 6. CHARA observations only. Preferred solution.
- P(shorter) and T adopted from spectroscopic solution no. 6. CHARA observations only.
- 3. As solution 2, with observation in 1980.729 omitted.
- 4. Based upon speckle observations since 1977.0.

shown the Johnson V - K index to correlate well with T_e . The values of this index are 2.11 and 2.19 for κ Gem and η Psc, respectively (Johnson *et al.* 1966). The adopted value of log T_e is 3.715, based on the re-examination by Wing *et al.* (1985) of the Ridgway *et al.* (1980) scale.* The corresponding bolometric correction is -0.3 mag.

The properties of the components are compiled in Table VI. The uncertainties in the temperatures, and consequently in the radii R and surface gravities g, include effects from uncertainties in the color indices, but not from uncertainties

in the temperature scales themselves, which we are unable to estimate.

V. DISCUSSION

The cool giant in γ Per takes its place along with those in α Aur ($\mathcal{M} = 3.3\mathcal{M}_{\odot}$, Shen *et al.* 1985) and ϕ Cyg ($\mathcal{M} = 2.5\mathcal{M}_{\odot}$, McAlister 1982) as having directly determined masses. Both components of γ Per have masses well within the ranges found for other stars of their spectral types and are not overmassive, as had appeared to be the case with McLaughlin's minimum masses. On the other hand, as noted by Bahng (1958) on the basis of the trigonometric parallax and by McAlister (1982), the stars appear to be considerably more luminous than expected from the spectral types. According to a recent discussion by Keenan (1985), the average absolute magnitudes M_{ν} for A3 V and for G8 III

[•]The temperature scale for cool giants in Popper (1980) was prepared before the work of Ridgway *et al.* (1980) became available. Popper's values of T_e are lower than the values of Wing *et al.* (1985) by several hundred K. Discussions of binaries (e.g., Popper 1976), as well as of other topics in which the lower scale was employed, require re-evaluation.

	. <u> </u>	
<u>P(y)</u>	14.64	± 0.05
<u>T</u> (y)	1947.30	± 0.02
	1976.6	± 0.1
<u>e</u>	0.79	± 0.02
ω(°)	353	± 1.5
<u>i</u> (°)	90.5	± 1.3
ດ(~ ·	245.2	± 1.2
<u>a</u> "	0.140	± 0.004
$\frac{K}{\underline{c}}$ (km s ⁻¹)	13.7	± 0.5
$\frac{K}{n} (km \ s^{-1})$	20.5	± 1.0
$\frac{V_{o}}{c}$ (km s ⁻¹)	- 0.7	± 1.0
$\frac{Vo}{h}$ (km s ⁻¹)	+ 2.0	± 1.0
 (a.u.)	4.17	± 0.15
<u>a</u> (a.u.)	6.18	± 0.30

TABLE V. Adopted orbital parameters.

are + 1.2 and + 0.3, respectively. Thus, the stars (Table VI) are more luminous than these standard values by 1.0 and 1.4 mag. The uncertainties in Table VI are realistic ones, and the observations do not permit the luminosities to be as 12 + 48 the standard values for the estimated types. While the 12 + 48, ture classes of the components of γ Per are well estimated 1.2 + 1, some uncertainty exists in the luminosity classes. The standard 42 solute magnitudes for A3 III and G8 IIIa, for example, are ± 0.3 and -0.8, respectively (Keenan 1985). If we take into consideration cosmic scatter as well as

the observational uncertainties, the observed luminosities are not completely unreasonable.

One might expect to obtain an estimate of the luminosity class of the A star from the confluence of the higher members of the Balmer series. However, in that region of the spectrum, the flux from an early A star falls with decreasing wavelength more rapidly than the flux of a G8 giant. For example, the Strömgren index v - b is about + 0.8 for G8 III and + 1.2 for A3 V, and the hydrogen lines of the A star are lost in the welter of strong metallic lines of the G star. Satellite ultraviolet observations should be free of this difficulty. The components of the visual binary ϕ Cyg have approximately the same temperature class as the cool star in γ Per, and its mass and luminosity are also well determined (McAlister 1982). Its surface gravity is approximately 0.8 dex greater than that of the more luminous cool giant in γ Per. Anis difference should be testable through differential analysis of high-resolution spectra of the stars as a further check on the luminosity of the γ Per giant.

The closest counterpart to the A star in γ Per among binaries with well-established properties is the hotter component of the evolved A type binary SZ Cen (Popper 1980), $\mathcal{M} = 2.3 \mathcal{M}_{\odot}$, $R = 3.6 R_{\odot}$. The G giant is over one magnitude more luminous than its counterpart of comparable mass in α Aur.

While it is possible to fit the properties of each component of γ Per reasonably well to published post-main-sequence evolutionary tracks, the ages of the two stars evaluated in this way differ by a factor of 2 or more. This discrepancy was pointed out by McAlister (1982). The fundamental difficulty is that each star would appear to be in a short-lived stage of post-main-sequence evolution, but the more massive star should have completed its passage through all phases of the giant configuration before the less massive star became appreciably evolved. The rate of evolution is so highly mass dependent that, even with the uncertainties in the masses and other properties taken into consideration, as well as in evolutionary calculations, the serious discrepancy remains. For example, according to Iben's (1967) tracks, the A star is starting to move rapidly across the Hertzsprung gap at an age of 8×10^{8} yr, while the G giant has completed its rise to the first giant tip, has left the giant branch, and is approaching it for the second time, with an age of 3×10^8 yr. No rational treatment of the observations can alleviate the dis-

TABLE VI. The components of γ Per.

	<u> </u>	G giant
MV	+0.3 ± 0.3	-1.1 ± 0.25
$\log \underline{L}(\underline{L}_{\Theta})$	+1.80 ± 0.20	+2.44 ± 0.15
log <u>T</u> (K)	3.92 ± 0.02	3.715 ± 0.015
<u>R(R</u> @)	3.9 ± 0.3	21 ± 4
<u>m(m</u> @)	2.03 ± 0.15	3.96 ± 0.30
log <u>g</u> 'cm s ⁻²)	3.6 ± 0.2	2.3 ± 0.2

crepancy significantly. In order for the A star to remain well within the main-sequence band, at $M_V = +1.2$, for example, the parallax would have to be increased from 0.014 to 0"022. Conformity to available evolutionary tracks would require an even greater parallax. However, the observed parallax, 0.011 ± 0.006 , is in good agreement with the value derived from the binary star analysis. Much more significantly, the ratio of the angular semimajor axis of the relative orbit a" to the linear value a would have to be increased by nearly 60%. With $\cos \omega$ close to unity, the value of a'' is given simply by $\rho_{max}/(1+e)$. As seen in Fig. 5, ρ_{max} cannot exceed 0.26, and even with e as small as the unacceptable value 0.7, a" is increased by less than 10% over the adopted value. With respect to the linear value a, as noted earlier, it is insensitive to the adopted value of e. It is not possible for the velocity variation of either star to be decreased significantly from the adopted results. Any systematic effect resulting from distortion of the profile of the K line in the A star spectrum by the profile in the G star could only require an increase in the size of the orbit over that derived, a change in the opposite sense from that required.

Of the various possible escapes that might be imagined from this dilemma in the timescales (e.g., the A star is in a state of pre-main-sequence contraction; the components are not the same age and became gravitationally bound some time after their formation; the A star has suffered mass loss recently; rapid rotation in the interior of the G giant has slowed its evolution, etc.), the most plausible might be that the G star has an undetected close companion of mass, say, $0.7\mathcal{M}_{\odot}$. Then the timescales for evolution of the 2.0 and 2.3 We point out, finally, that all our understanding of the rate of stellar evolution through the giant region, as dependent on mass, comes exclusively from model calculations, with almost no direct tests of the kind that appear to fail us in the case of γ Per. A dilemma of the same kind, although not so severe because the masses are more nearly equal, exists for α Aur (e.g., Shen *et al.* 1985). We have previously noted (Popper 1980; McAlister 1982) another potential disagreement between observations and generally accepted theory, – namely that, on the basis of the small number of masses of cool stars of luminosity class III, the expected concentration of masses below $2\mathcal{M}_{\Omega}$ is not found.

The work of both authors is supported by grants from the National Science Foundation, while that of H. A. M. has received additional support from the Air Force Office of Scientific Research. D. M. P. is indebted to W. A. Hiltner and A. P. Cowley for assistance in obtaining the Michigan prismatic spectrograms of γ Per. H. A. M. thanks his colleague W. I. Hartkopf for assistance in calculating the visual orbit.

REFERENCES

- Bahng, J. D. R. (1958). Astrophys. J. 128, 586.
- Balega, Yu. Yu., and Balega, I. I. (1985). Sov. Astron. Lett. 11, 47.
- Balega, Yu. Yu., Bonneau, D., and Foy, R. (1984). Astron. Astrophys. Suppl. 58, 729.
- Blazit, A., Bonneau, D., Koechlin, L., and Labeyrie, A. (1977). Astrophys. J. Lett. 194, L147.
- Bonneau, D., Balega, Yu., Blazit, A., Foy, R., Vakili, F., and Vidal, J. L (1985). Astron. Astrophys. Suppl. 65, 27.
- Bonneau, D., Carquillat, J. M., and Vidal, J. L. (1984) Astron. Astrophys. Suppl. 58, 729.
- Campbell, W. W., and Moore, J. H (1928) Publ. Lick Obs. 16.
- Cowley, A. P. (1976). Publ. Astron. Soc. Pac. 88, 95.
- Dudinov, V. N., Konichek, V V., Kuz'menkov, S. G., Tsvetkova, V. S., Rylov, V. S., Gyavgyanen, L. V., and Erokhin, V. (1982). In Instrumentation for Astronomy with Large Telescopes, edited by C. M. Humphries (Reidel, Dordrecht), p. 191.
- Hartkopf, W. I., and McAlister, H. A. (1984), Publ. Astron. Soc. Pac. 96, 105.
- Hartkopf, W. I., McAlister, H. A., and Franz, O. G. (1987). Astron. J. (submitted).
- Iben, I. (1967). Annu. Rev. Astron. Astrophys. 5, 571.
- Johnson, H. L., Mitchell, R. I., Iriarte, B., and Wiśniewski, W. Z. (1966). Commun. Lunar Planet. Lab. 4, 99.
- Keenan, P. C. (1985). In Calibration of Fundamental Stellar Quantities, IAU Symposium No. 111, edited by D. S. Hayes and A. G. D. Philip (Reidel, Dordrecht), p. 121.
- Küstner, F. (1908), Astrophys. J. 27, 301.
- Labeyrie, A., Bonneau, D., Stachnik, R. V., and Gezari, D. Y. (1974). Astrophys. J. Lett. 194, L147.

Lord. H. C. (1905). Astrophys. J. 21, 297.

- McAlister, H. A. (1978). Publ. Astron. Soc. Pac. 90, 288.
- McAlister, H. A. (1982). Astron. J. 87, 563.
- McAlister, H. A., and Fekel, F. C. (1980). Astrophys. J. Suppl. 43, 327.
- McAlister, H. A., and Hartkopf, W. I. (1984). Catalogue of Interferometric Measurements of Binary Stars, CHARA Contrib. No. 1.
- McAlister, H. A., Hartkopf, W. I., and Franz, O. G. (1987a). Astron. J. (in preparation).
- McAlister, F., A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987b). Astron. J. 93, 688.
- McAlister, H. A., and Hendry, E. M. (1982a). Astrophys. J. Suppl. 48, 273.
- McAlister, H. A., and Hendry, E. M. (1982b). Astrophys. J. Suppl. 49, 267.
- McAlister, H. A., Hendry, E. M., Hartkopf, W. I., Campbell, B. G., and Fekel, F. C. (1983). Astrophys. J. Suppl. 51, 309.
- McLaughlin, D. B. (1948). Astron. J. 53, 200.
- Moore, C. E., Minnaert, M. G. J., and Houtgast, J. (1966). Natl. Bur. Stand. Monogr. No. 61.
- Popper, D. M. (1976). Astrophys. J. 208, 142.
- Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
- Ridgway, S. T., Joyce, R. R., White, N. M., and Wing, R. F. (1980). Astrophys. J. 235, 126.
- Shen, L.-Z., Beavers, W. I., Eitter, J. J., and Salzer, J. J. (1985). Astron. J. 90, 1503.
- Stebbins, J., and Kron, G. E. (1956). Astrophys. J. 123, 440.
- Tokovinin, A. A. (1985). Astron. Astrophys. Suppl. 61, 483.
- Wilson, R. H. (1941). Publ. Univ. Penn. Astron. Ser. 6, Pt. 4, p. 22.
- Wing, R. F., Gustafsson, B., and Eriksson, K. (1985). In Calibration of Fundamental Stellar Quantities, IAU Symposium No. 111, edited by D. S. Hayes and A. G. D. Philip (Reidel, Dordrecht), p. 571.

VOLUME 97, NUMBER 2

FEBRUARY 1989

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. IV. MEASUREMENTS DURING 1986–1988 FROM THE KITT PEAK 4 m TELESCOPE

HAROLD A. MCALISTER,^{a)} WILLIAM I. HARTKOPF,^{a)} JAMES R. SOWELL,^{a)} AND EDMUND G. DOMBROWSKI^{a)}

Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303

OTTO G. FRANZ^a) Lowell Observatory, Flagstaff, Arizona 86001 Received 29 August 1988; revised 12 October 1988

ABSTRACT

One thousand five hundred and fifty measurements of 1006 binary star systems observed mostly during 1986 through mid-1988 by means of speckle interferometry with the KPNO 4 m telescope are presented. Twenty-one systems are directly resolved for the first time, including new components to the cool supergiant α Her A and the Pleiades shell star Pleione. A continuing survey of *The Bright Star Catalogue* yielded eight new binaries from 293 bright stars observed. Corrections to speckle measures from the GSU/CHARA ICCD speckle camera previously published are presented and discussed.

I. INTRODUCTION

This paper presents further results from a continuing program of binary star speckle interferometry carried out at the 4 m Mayall telescope at Kitt Peak National Observatory. A detailed description of the observational technique and instrumentation, and of the methods of data reduction, analysis, and calibration, can be found in Paper II (McAlister *et al.* 1987b) of this series. We have employed those same methods to derive the results presented here.

II. CALIBRATION REVISIONS

In the course of the reduction of the observations obtained for this paper and in a series of analyses of binary star orbits based upon all of our previously published speckle data, we have found it necessary to revise the calibration basis for the measurements published in the three earlier papers of this series (McAlister et al. 1987a,b; Lu et al. 1987). The calibration of our speckle observations continues to be based upon the insertion of a double-slit mask at a pupil to produce a fringe pattern within speckle images and is carried out exactly in the manner described in McAlister (1977), the initial paper from the speckle program begun by the first author in 1975. The mask is aligned E-W and the speckle camera is mounted at the Cassegrain focus so that north is in the Ydirection; thus the fringe pattern produced by the double-slit mask provides a spatial calibration in the X coordinate. This method of determining the scale and orientation calibration has served very well as a truly external means of converting the linear measures from speckle power spectra or autocorrelograms into angular measures on the sky. The revision we describe here has three distinct causes.

The greatly expanded collection of calibration data now available to us shows that the scale value at the speckle focal plane of the ICCD camera has been remarkably constant since the digital camera was first used in 1982 at the 4 m telescope. This has enabled us to determine a mean scale that has the primary effect of increasing the angular separations for our data obtained during 1983–1984 by 1.5%, changes to other epochs being insignificantly small. The larger change for the 1983–1984 data is due to the somewhat lower quality of the calibration data available for that particular time period. We now adopt a calibration based upon the mean of all the scale and orientation measurements that we have determined since the initiation of our ICCD speckle-camera system.

Using a laboratory spectrometer, we have carefully determined the effective wavelength of the Strömgren y filter used for the calibration observations. A correction for the temperatures of the individual calibration stars was also determined by convolving the filter response against blackbody curves appropriate to the stars we observed. Although the shift in the y effective wavelength is small, amounting to an overall difference in scale of 0.1%, we did find the scatter to be measurably reduced among the collected scale values once this temperature effect was included. We point out that there is no corresponding temperature effect for the program stars; thus it is not necessary to apply a temperature correction for stars other than calibration stars.

Residuals to newly determined double star orbits for some two dozen binaries showed a consistent discontinuity at the transition between the old photographic speckle data and the new ICCD data. A thorough investigation of this effect showed that the cause of this step distribution of the residuals is due to the effective pixel geometry as determined by the autocorrelator. Although the CCD has pixels that are square, the final pixel shape is determined not by the chip but by the redigitization done by the autocorrelator. The CCD camera electronics reads out the chip and converts the digital information into an analog video signal, specifically into standard RS-170 video. The autocorrelator then digitizes the video into approximately the same format as exists on the CCD, but, we discovered, with a slight timing mismatch so that one unit in Y is not exactly equal to one unit in X. The precise mismatch was measured simply by rotating the camera 90° and taking calibration and binary star data in the orthogonal direction. Analysis of these data gave a correction factor for the nonsquare pixelation such that

$Y/X = 1.0351 \pm 0.0030.$

This effect is therefore position-angle dependent.

In Fig. 1 we show residuals for two binary star systems before and after the combined calibration effects discussed

⁴⁷ Visiting Astronomer, National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

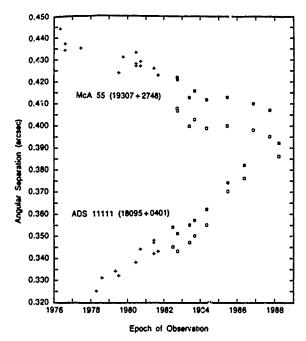


FIG. 1. The effect of the correction for nonsquare pixelization resulting from the digitization by the vector autocorrelator is shown for two binary star systems. In both cases, the plus signs are for angular-separation measures determined from speckle data obtained prior to 1982 using a photographic speckle-camera system, light squares are measures from the ICCD camera and autocorrelator before scale correction, and dark squares are the corrected measures. The scale correction clearly eliminates the discontinuity apparent in uncorrected data. During the observation interval, McA 55 decreased in position angle from 190° to 160°, while ADS 11111 changed from 340° to 315°.

above are applied to the data. The agreement between the older photographic material and the more recent ICCD data is greatly improved by correcting the data for the effects described above. The average change in angular separation is approximately an increase by 2.5%, while the average change in position angle is about 0.5. The corrected values of our earlier ICCD data can be obtained upon request from the authors in the form of a Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) or from the Washington Double Star Catalog (WDS) maintained by Charles Worley at the U.S. Naval observatory. We chose to disseminate the revised measures in this manner rather than by publishing somewhat complicated correction formulas or by republishing complete tables of the earlier results because most users of double star measures request a complete listing of all measures of a given system, regardless of their technique of origin, from the WDS.

III. NEW MEASUREMENTS

The GSU ICCD speckle camera was scheduled for 25 nights during five observing sessions between May 1986 and May 1988. On these nights, 3636 series of observations were accumulated during 221 hr suitable for speckle interferometry. The average observation rate was thus 16.4 stars per hr. A typical observational sequence consists of 90 s of data acquisition at standard video rates, the individual exposures controlled by gating the high voltage on the microchannel plate tube to 15 ms. The Strömgren y filter is usually used, except for fainter objects, when a wider-bandwidth filter centered on y is employed. Magnification optics yielding ap-

proximate scales of 0.0052 or 0.0088 arcsec per pixel were normally used, except during the rare periods of very poor seeing (average stellar profile FWHM in excess of 3 arcsec) when a lowest magnification of 0.016 arcsec per pixel is used and then only for more widely separated and brighter binaries. Vector autocorrelograms were produced in real time at the telescope and subsequently reduced and analyzed in the CHARA image-processing laboratory at GSU in Atlanta.

Table I contains observational and catalog information for the 21 newly resolved stars presented in this paper. As was initiated in Paper II, we assign each newly resolved star a CHARA number that continues from the last number assigned in Paper III. Two hundred fifteen systems have been newly resolved to date in this continuing program. The last column in Table I shows whether the system is a spectroscopic (SB), composite spectrum (Spm), or occultation (Occ) binary, a third component discovered in the course of observing a previously known visual binary (Tri), a newly _ discovered binary resulting from a survey of The Bright Star Catalogue (Hoffleit 1982), or a Ba II star discovered as a result of our attempts to find binaries among this class of stars. Two stars in the Pleiades cluster have been newly resolved, the first (HD 23568) being indicated as double from occultation observations and the second being the famous shell star Pleione, which The Bright Star Catalogue notes as being a suspected long-period spectroscopic binary. We have observed Pleione on several occasions during the last few years without having detected this companion. These negative results do not contradict the present observation in which the weak autocorrelation peak indicates a large magnitude difference, a situation in which seeing and instrumental parameters make detection problematic.

We also report a new companion to the M5 Ib-II star α Her A, the brightest member of the system ADS 10418. The B component of the previously known system is itself a composite-spectrum star. Reasonable assumptions regarding the mass of the cool supergiant and the distance to the star lead to a rough estimate of 100–150 yr for the period of the newly discovered companion. We have learned from Dr. Myron A. Smith (private communication) that his radial-velocity measures for α Her A during the last 4 yr have shown an increase in velocity by about 11 km/s during a 3 yr interval, with an apparent turnover in velocity during the fourth year. This suggests yet another component with a period of the order of a decade. Thus this system may, in fact, have five physic 1 cor.iponents.

The new speckle measurements of binary stars are presented in Table II, where we continue the format used in Paper II. This collection contains several measurements from 1985 that were omitted in Paper II, including the two newly resolved Ba II stars (CHARA 129 and 140) that were observed as a supplement to the survey of high-velocity stars for which details have been published in Paper III. Two measurements are also given for HR 6168 (σ Her) from 1977 that were obtained with the photographic speckle camera, the instrument used to collect data for the series of speckle observations that ended with the paper by McAlister et al. (1984). The HR 6168 result for 1977.1781 is a previously unpublished measure, while that for 1977.3284 is a correction of the position-angle value that was originally published. While the coordinates in Table II are for equinox 2000.0, the position angles have not been corrected for precession and are thus based upon the equinox for the epoch of observation shown as the fraction of the Besselian year.

512 McALISTER ET AL: BINARY STARS

CHARA						α,δ		•	Disc.	Binary
Number	HR/DM	Name	HD	SAO	ADS	(2000)	V	Class.	Sep.	Type
121	9097	-	225094	10942	-	00034+6339	6.24	B3Iae	0.196	BSC
122 Aa	9105	_	225218	36037	30	00046+4206	6.01	B9III	0.110	BSC
123	63	θ And	1280	53777	-	00171+3841	4.61	A2V	0.057	BSC
124	+24°562		23568	76183	—	03470+2431	6.81	B9.5V	0.208	Occ.,Pleiad
125	1180	28 Tau	23862	76229		03492+2408	5.09	B8Vpe	0.217	Pleiad
126	1176	_	23838	39134	-	03501+4458	5.66	G2III+F2:V	0.031	SB
127 Aa	_	_	31033	76811	3501	04536+2522	7.2	AO	0.075	Tri.
128 Aa	2257	4 Lyn	43812	25678	4950	06221+5922	5.94	A3V	0.187	Tri.
129	2392		46407	151625		06328-1110	6.24	K0III:Ba3	0.161	Ball
130	+19°2069	—	73712	98019	-	08402+1921	6.78	A9V	0.088	Occ.
131	3635		78661	98400		09098+1134	6.48	F2Vp	0.089	Occ.
132 Aa	-23°9339		91172	178922	7809	10311-2411	7.5	F3+A5	0.110	Spm.
133	4380	55 UMa	98353	62491	-	11191+3811	4.78	A2V	0.068	BSC
134	4528	4 Vir	102510	119058	-	11479+0815	5.32	AI	0.259	BSC
135	4632	3 Com	105778	9 9973	-	12105+1649	6.39	A4V	0.262	BSC
136	4642		106022	82181	-	12120+2832	6.49	F5V	0.209	BSC
137	5372	_	125632	29098	-	14189+5452	6.53	A5Vn	0.103	BSC
138 Aa	6130	—	148374	17073	10052	16238+6142	5.67	G8III	0.211	Tri.
139 Aa	6406	α Her	156014	102681	10418	17146+1423	3.48	M5Ib-II	0.192	BSC
140	+10°3801		178717	104535	-	19094+1014	7.10	K4III:Ba4	0.250	Ball
141	+00°4982	-	219420	128069		23157+0119	6.8	F5	0.061	Occ.

TABLE I. Newly resolved binary stars.

We emphasize that speckle interferometry does not, through autocorrelation or power-spectrum analysis, reveal the true quadrant of the secondary. Therefore all quadrants are potentially ambiguous by 180° in position angle. Speckle images preserve the true quadrant information as well as the intensity differences of the component stars, but other processing algorithms more sophisticated than simple autocorrelation methods are required to extract this information. Such methods certainly exist, and a major emphasis of the CHARA program is to develop an image-reconstruction algorithm that efficiently and reliably permits the determination of the photometric properties of the components at separations down to the diffraction-limited cutoff. Examples of first results for speckle photometry, as we call such methods to distinguish them from the primarily astrometric applications of speckle interferometry, can be found in new studies of Capella (Bagnuolo and Sowell 1988) and the Hyades binary 70 Tauri = Finsen 342 (McAlister et al. 1988). In Table II, we adopt quadrants consistent with micrometer measures for known visual binaries, but we arbitrarily adopt $\theta < 180^{\circ}$ for objects for which true quadrant determinations are not available. The exception to this rule is for those objects that have been first resolved by speckle interferometry and have

shown motion since their first measurement requiring a value of $\theta > 180^\circ$.

The 1550 measurements of 1006 systems in Table II combine with all previous measurements from this program to give a total of 7252 speckle measurements of binary stars resulting from the GSU speckle program as carried out at Kitt Peak National Observatory. In the Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) there are 8976 measurements from all interferometry groups known to the authors as of July 1988.

Many stars first resolved earlier in our program, the "McA" and "CHARA" stars, have been confirmed as binaries in the present series of measurements. Six McA stars (nos. 13, 17, 31, 39, 50, and 59) that had not been previously confirmed by us and 50 CHARA stars are measured here following their initial resolutions. While some of these systems have shown little orbital motion during the years following their first resolution, others are exhibiting very rapid motion. Such objects include CHARA 18 = HR 1458 (88 Tau), with 100° of position-angle change in 2.4 yr, and CHARA 26 = HR 2837 (61 Gem), with 108° of motion in 4.2 yr.

The mean angular separation of the observations in Table

513 MCALISTER ETAL: BINARY STARS

.

TABLE II. Binary star speckle measurements.

HR 9097 CHARA 121	225094 00034+6339	+61°0159 Mir 26	41	16 00444+6210
1986.8967	34°.4 0".196	1987.7595	48.2	0.210 77 00504+5038
ADS 30 CHARA 122 A		ADS 684 Bu 232 AB 1986.8887	47 240.9	0.848
1986.8967 ADS 32 STF 3056 AB	94.9 0.110 225220 00046+3416		241.5	0.850
1987.7595	143.6 0.718	ADS 701 A 1808	-	34 00516+2238
ADS 61 STF 3062 AB	123 00062+5826 303.6 1.448	1986.8860 1987.7623	173.8 177.3	0.107 0.113
1987.7595 3 ADS 102 STF 2	303.6 1.448 431 00091+7943	ADS 732 A 2307		43 00532+0406
1987.7596	22.7 0.672	1987.7596	45.3	0.325
+18°0003 Cou 247	489 00095+1907	+42°0196 Cou 1654		78 00542+4318 0.159
1987.7542 ADS 124 Bu 253	356.0 0.419 570 00104+5831	1986.8860 1987.7543	103.1 104.6	0.160
1987.7595	35.0 0.511	ADS 746 STT 20 AB	52	67 00546+1912
ADS 143 STF 7	709 00116+5558	1986.8940	208.8	0.443
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1987.7596	209.0	0.472 259 00549+4924
ADS 147 Bu 255 1986.8940	75.1 0.506	ADS 749 Hu 802 1986.8887	215.7	0.358
1987.7595	75.2 0.519	1987.7543	216.4	0.360
ADS 148 CHARA 1 Aa		ADS 755 STF 73 AB		286 00550+2338 0.685
1987.7543 1987.7622	59.8 0.071 61.5 0.066	1986.8887 1987.7544	277.2 280.1	0.692
ADS 161 STT 2 AB	895 00134+2659	ADS 768 Bu 500		315 00554+3040
	184.5 0.286 1082 00152+4406	1986.8887	299.0	0.510
ADS 197 A 1256 AB	1082 00152+4406 68.8 0.105	1987.7544	299.7 F	0.500 398 00561+3352
1986.8859 ADS 207 STF 13	1141 00163+7657	ADS 777 Hu 1207 1987.7543	184.7	0.329
- 1987.7596	56.5 0.913	ADS 773 A 1259	232	319 00561+5406
HR 63 CHARA 123	1280 00171+3841 141.6 0.057	1987.7596	91.0	0.123 408 00568+6022
1986.8969 ADS 238 A 1803 AB	1317 00173+0852	ADS 784 Bu 1099 AB 1986.8860	323.0	0.244
1986.8859	142.6 0.088	1987.7570	325.8	0.249
ADS 243 A 803	1360 00182+7256 280.6 0.201	ADS 795 Hid 4	-	502 00576+5424
1986.8859 1987.7596	280.6 0.201 283.0 0.204	1987.7596 ADS 805 Bu 302	227.5	0.125 641 00583+2124
ADS 281 Bu 1015	1634 00206+1219	1986.8887	165.7	0.427
1987.7542	78.5 0.340 1658 00214+6700	1987.7596	167.2	0.420
ADS 293 STT 6 AB 1987.7596	154.8 0.561	ADS 819 A 1902	5 182.8	781 005930040 0.319
ADS 295 Cou 347 Aa	1688 00214+2744	1987.7596 +40°0199 Cou 1505		00594+4057
1987.7595	57.8 0.434 1976 00243+5201	1986.8860	136.6	0.206
ADS 328 Hu 506 1986.8859	48.5 0.168	ADS 832 A 926	-	0.379 01011+6021
ADS 332 A 908	236401 00245+5632	1987.7570 ADS 828 Bu 867	325.2	988 01014+1155
1987.7595	239.7 0.421 2471 00287+3718	1987.7596	6.7	0.390
ADS 382 A 1504 AB 1987,7595	37.6 0.544	+34°0164 Cou 854	-	955 01014+3535
ADS 397 A 649	2549 00298+6905	1986.8860 1987.7596	0.7 354.0	0.132 0.131
1987.7596	319.1 0.428 2675 00308+4732	ADS 836 A 2901		6921 01015+6921
ADS 416 Bu 394 1986.8859	303.2 0.152	1986.8887	53.4	0.411
1987.7595	309.4 0.111	1987.7570 ADS 854 A 2003	53.9	0.414 5094 01023+0552
ADS 434 STT 12	2772 00318+5432 187.5 0.468	1987.7596	308.4	0.178
1986.8940	187.5 0.468 188.2 0.464	ADS 859 Bu 1161		5084 01029+5148
1987.7595 +26°0072 Cou 547	2854 00320+2740	1986.8887 1987.7543	5.0 5.3	0.366 × 0.368
1986.8859	204.8 0.070	ADS 862 STT 21		6114 01030+4723
ADS 450 A 111 AB	2880 003210511 138.8 0.171	1987.7596	174.5	1.035
1987.7542 ADS 463 Ho 3	2993 00335+4006	ADS 871 Hu 517	26.0	01037+5026 0.564
1987.7543	119.8 0.262	1986.8887 1987.7543	26.7	0.568
+29°0099 Cou 654	00345+3015 213.9 0.235	ADS 873 Ho 213		6264 01039+3528
1986.8859 ADS 490 Ho 212 AB	213.9 0.235 3196 00352-0336	1987.7543	99.5	0.291 6387 01048+0135
1985.8401	292.0 0.250	ADS 884 A 2310 1987.7596	325.1	0.290
1986.8859	331.5 0.118	ADS 883 A 1515	••••	01049+3649
1987.7542	7.9 0.149 3210 00358+4901	1986.8860	288.6	0.242 0.246
ADS 493 STT 15 1986.8859	318.4 0.220	1987,7543 ADS 916 A 931	288.6	6553 01070+4744
1987.7595	319.5 0.217	1986,8887	90.3	0.074
ADS 504 A 914	3304 00366÷5608 31.3 0.447	1987.7623	95.0	0.073 6586 01071+3839
1987.7595 ADS 559 Bu 257	31.3 0.447 3760 00402+4715	ADS 918 A 1516 AB	68.6	0.144
1987.7595	247.3 0.644	1980.8914	75.7	0.140
+35°0117 Cou 1051	3742 00405+3627	1987.7623	75.3	0.141
1987.7595 ADS 597 A 2205	81.0 0.442 00429+2047			
ADS 597 A 2205 1987.7622	207.8 0.247			
1301.100-				

.

0.00

~//

a march

513

-

Î

)

۲

ě

.

514

TABLE II. (continued)

ADS 936 AC 13 AB		6757		+28°0295 .:c			01465+2936
1986.8914 1987.7543	262.9		0.601	19	69.9		0.272
ADS 940 STT 515	263.1	6811	0.590 01093+4715	ADS 1410 / 1523	• • •		01472+4212
1986.8915	133.5	-	0.486	1986.8887 1987.7571	64.1		0.399
1987.7543	133.4		0.487	ADS 1438 STF 162	64.9 AB	11031	0.402
ADS 955 Bu 303		6886		1986.8942	202.5		1.993
1986.8914	290.8		0.657	ADS 1438 CHARA 4		11031	
1987.7544 ADS 963 Bu 235 As	291.0	6918	0.654	1986.8887	24.9		0.151
1987.7570	126.9	0910	01106+5101 0.982	1987.7571 ADS 1437 A 950 AB	29.9		0.150
ADS 993 A 1260	120.5	7255		ADS 1437 A 950 AB 1987,7625	226.9	236885	01495+5645
1987.7568	45.5		0.225	+25°0311 Cou 452	£70'A	11245	
ADS 1005 Hu 803			01151+3416	1986.8888	179.8	11040	0.294
1987.7570 ADS 1039 Hu 520	206.3	-	0.849	1987.7572	180.1		0.292
1986.8915	164.6	7695	01178+4946 0.314	ADS 1461 A 951		11126	
1987.7570	165.4		0.315	1987.7571	218.2		0.445
ADS 1040 STF 102 AE		7710		ADS 1473 Ho 311 1987.7625	312.0	11284	
1986.8915	278.5		0.489	ADS 1509 A 953	312.0	11472	0.097 01547+5955
1987.7570	278.9		0.490	1987.7571	66.8		0.800
ADS 1045 A 937 1987.7570	218.4	7759		ADS 1522 STF 183 A	B	11671	
+32°0229 Cou 663	210.4	7854	0.292 01187+3245	1986.8888	170.3		0.303
1986.8914	174.9	1004	0.323	1987.7572 ADS 1538 STF 186	169.0		0.306
1987.7570	174.4		0.323	ADS 1538 STF 186 1987.7572	57.6	11803	
ADS 1081 STF 113 A,I		8036		1987.7651	57.2		1.217 1.212
1987.7568	16.4		1.604	ADS 1637 A 1524 AE		11748	
ADS 1081 Fin 337 BC		8036	01198-0029	1986.8887	235.5		0.344
1987.7568 ADS 1105 STF 115 AB	267.0	8272	0.114 01233+5808	1987.7571	238.0		0.350
1986.8861	303.4	0414	0.090	ADS 1548 A 819 AB		11849	
1987.7544	296.9		0.073	1986.8888	203.5		0.331
1987.7625	295.4		0.081	ADS 1549 A 818	205.7	11826	0.319 01573+4812
ADS 1123 Bu 1163		8556	01243-0655	1987.7571	206.1		0.308
1986.8887	205.4		0.219	ADS 1554 A 1526		11869	01576+4433
1987.7623 +26°0235 Cou 666	201.8		0.151	1987.7625	252.8		0.120
1986.8914	154.5		01258+2733 0.314	+40°0426 Cou 1510			02016+4107
1987.7568	154.3		0.331	1986.8888 1987.7571	130.2		0.377
ADS 1183 A 1910 AB	10110	9071	01296+2250	ADS 1598 Bu 513 AB	131.4	12111	0.360 02019+7054
1986.8887	298.6		0.057	1986.8942	222.6		0.787
1987.7625	287.3		0.069	ADS 1615 STF 202		12446	02020+0246
+45°0359 Cou 1659	• • •	9031	01298+4547	1986.8942	280.2		1.900
1987.7570 +67°0131 CHARA 3	24.1	0015	0.296	ADS 1613 A 1813 AB		12376	02022+3643
1986.8861	320.5	9015	01308+6722 0.205	1986.8888 1987.7625	13.2 28.0		0.142
HR 439 McA 3	010.0	9352	01334+5820	+08°0316 McA 4	20.0	12483	02026+0905
1986.8861	115.5		0.124	1986.8888	141.2	18100	0.225
1987.7544	115.6		0.119	1987.7572	142.0		0.229
1987.7625	112.9		0.109	ADS 1630 STT 38 BC		12534	02035+4223
ADS 1224 A 1912 AB 1987.7570	1.5	9532	01342+3611	1986.8887	107.7		0.531
1987.7625	1.5 1.1		0.199	1987.7571 +69°0129 Mir 375	108.1		0.574
ADS 1263 A 817	1.1	9841	0.199 01371+4843	+69°0129 Mir 375 1987.7571	90 <i>0 0</i>	12300	
1986.8915	28.5		0.476	+38°0401 Cou 1365	206.6	12592	0.232 02043+3924
1987.7570	29.5		0.477	1986.8888	129.7		0.196
+39°0367 Cou 1214			01373+4015	1987.7625	129.7		0.104
1987.7570 HR 466 Kui 7	175.9		0.310	+29°0357 Cou 455			02055+3018
HR 466 Kui 7 1986.8887	354.6	10009	01376-0924	1986.8888	97.2		0.456
1980.8887	349.1		0.120 0.126	1987,7571	98.0		0.449
ADS 1286 A 1266	043.1	10031	01392+5436	+34°0379 Cou 1067		13102	02090+3541
1986.8915	235.2		0.221	1986.8888	13.1		0.118
1987.7570	235.9		0.214	1987.7625 ADS 1680 A 2325	16.0		0.131
ADS 1309 A 1267		10146	01405+5457	1987.7572	119.3		02097+0048 0.255
1986.8861	2.9		0.273	+43°0436 Cou 1667			02107+4426
1987.7570 ADS 1327 A 1268	2.6	10273	0.274	1987.7625	77.6		0.154
1987.7625	265.0		01417+5323 0.126	ADS 1701 Ho 497		13496	02128+3722
ADS 1341 B 2550 AB	200.0		01425+5000	1986.8888	83.6		0.541
1987.7570	274.1		0.227	1987.7571 HR 643 CHARA 5	82.9		0.529
ADS 1359 Bu 870		10543	01443+5732	1087 7571	186.6	13520	02132+4414
1987.7571 ADS 1375 A 2322	359.5		0.861	HR 640 McA 6		13474	0.221 02145+6631
	121.8		01449+1951 0.087	1986.8889	75,7		0.054

HR 657 Cou 79		3872	02157+2503	HR 936	meta Per Aa		19356	03082+4057
1986.8888 1987.7626	64.9		0.086		1986.8861	133.7		0.104
+40°0469 Con 1669	54.6	3844	0.147 02160+4046	+17°051	1986.8917	133.7		0.099
1986.8889	173.0	0011	0.223	+17 001	5 Cou 359 1986.8889	170.6		03143+1821 0.165
1987.7626	171.6		0.235	ADS 242				03151+1618
+40°0476 Cou 1670		4137	02183+4120		1986.8889	84.9		0.206
1986.8916 1987.7626	46.3 48.9		0.150	ADS 243	6 STT 52 AB 1986.8945	69.2	20104	03175+6539 0.465
ADS 1763 Egg 2 Aa		4189	0.146 02186+4017		1987.7653	69.4		0.465
1986.8888	112.8		0.136	+28°053			21242	
1987.7626	120.3		0.148		1986.8889	62.4		0.438
+24°0344 Cou 357 1986.8888	1 135.9	4918	02250+2529	HR 1036	1987.7651 CHARA 10	62.3	21335	0.438 03271+1845
ADS 1833 STF 257		4817	0.281 02257+6133	mit 1050	1986.8862	127.4		0.075
1986.8943	49.7		0.346	ADS 254	6 Cou 260		21437	03280+2028
1987.7653	51.8		0.349		1986.8889	22.3		0.232
+44°0500 Cou 2011 1986.8942	68.3	5174	02279+4523 0.344	ADS 253	1987.7572 8 A 980	22.5	21203	0.233 . 03283+6015
HR 719 Kui 8		5328	02280+0158	1100 200	1986.8944	11.8		0.271
1986.8915	33.6	_	0.614		1987.7545	10.2		0.280
ADS 1860 CHARA 6 A		5089	02290+6724	+34°067			278801	03333+3522
1987.7651 ADS 1938 STT 42 AB	150.1	5703	0.347 02333+5218	+57°073	1987.7572 0 CHARA 117	36.8	21794	0.313 03337+5752
1986.8916	285.8		0.135	701 013	1986.8862	180.5		0.096
1987.7627	286.8	_	0.130		1987.7654	201.0		0.097
+79 ⁰ 0075 Mir 449 1987.7653	1 196.0	5416	02361+7944 0.278	ADS 261		• •	22091	
+39°0577 Baz		6097	02363+4012		1986.8889 1987.7545	1.8 1.9		0.625 0.630
1986.8888	71.5		0.310	ADS 262		1.0	22181	03353+2651
HR 763 McA 7		6234	02366+1226		1986.8889	194.0		0.462
1986.8888 1987.7626	169.6 131.1		0.051	ADS 262	1987,7545 8 Bu 522	197.1	22195	0.479 03356+3141
ADS 1992 A 1278		6283	0.065 02383+4604	AD3 202	8 Bu 533 1986.8943	41.6		1.095
1986.8916	152.5		0.127		1987.7545	42.6		1.095
1987.7626 ADS 1985 STF 278	149.1	6096	0.129	ADS 263			22193	03361+4221
1986.8943	36.7		02389+6918 0.495	+44°074	1987.7545 7 Cou 1862	321.0	22209	0.645 03364+4518
ADS 2010 A 2023	1	6486	02393+2552	1.11.0.1	1987.7545	16.1		0.308
1986.8888 HR 781 Fin 312	226.6		0.593	+31°063				03423+3141
1956.8888	289.6	6620	02396-1153 0.126	ADS 274	1987.7654	111.9		0.087
1987.7626	12.7		0.103	AD3 214	5 A 1828 1987.7572	13.4	23403	0.154
ADS 2028 A 1928		6619	02398+0009	+23°051	2 Cou 560		23387	03456+2420
1986.8915 HR 788 McA 8	269.2 1	6739	0.158 024224012		1986.8889	0.2		0.243
1986.8862	69.4		0.042		1987.7572 1987.7628	0.4 0.9		0.238
1986.8888	69.1		0.041	+24°056	2 CHARA 124	0.9	23568	0.239 03470+2431
1987.7626 HR 793 μ Ari	79.8	6811	0.047 02424+2000		1987.7628	4.1	20000	0.208
1986.8888	253.4		0.042	ADS 277			23743	03483+2223
1987.7626	266.8		0.052		1986.8889 1987.7544	270.2 270.5		0.503 0.500
+47°0717 Cou 2013		7670	02520+4831	ADS 276		210.0	23406	03488+6445
1986.8917 1987.7653	96.6 92.4		0.208 0.206		1987.7545	319.5		0.363
ADS 2185 A 2906 AB	1	7743	02529+5300	HR 1180	CHARA 125 1987.7628	54.9	23862	03492+2408 0.217
1986.8916	134.2		0.169	HR 1176			23838	03501+4458
1987.7653 ADS 2200 Bu 524 AB	134.4	7904	0.180 02537+3820		1986.8862	52.0		0.031
1986.8917	273.7		0.189	ADS 2799	9 STT 65 1986.8945	209.3	23985	03504+2536 0.434
ADS 2246 Bu 1173 AB	1	8442	02586+2408		1987.7545	210.1		0.407
1987.7653 ADS 2253 Bu 525	87.8	8484	0.228	ADS 281			24104	03513+2621
1986.8943	259.0		02589+2137 0.512		1986.8862	194.1		0.118
ADS 2257 STF 333 AE	3 1	8519	02592+2120	HR 1199	1987.7654 Kui 15	194.9	24263	0.145 03519+9633
1986.8943	207.5		1.459		1986.8890	207.7		0.682
ADS 2271 A 1529 1987.7653	163.4	8549	03006+4753 0.209		1986.8945	207.6		0.679
ADS 2276 A 827		8424	U3024+7236		1987.7546	207.8		0.683
1987.7653	247.1		0.230	+27°0582	2 Cou 696 1986.8862	53.4	:'82993	03520+2801 0.221
HR 915 γ Per	1: 63.9	8925	03048+5330		1980.8802	52.0		0.221
1986.8861 1987.7653	64.3		0.221 0.194	ADS 2815	5 STT 66		24117	03521+4048
ADS 2336. STF 346 AE	3 19	9134	03055+2515	ADS 2911	1987.7545	143.0		0.957 03591+0948
1986.8943	63.9		0.260		l Hu 27 1987.7546	302.3	25034	0.305
			1					

TABLE II. (continued)

-

MCALISTER ET AL. BINARY STARS 516

ŧ

í

		TABLE II.	(continued)			
						0105011050
ADS 2928 A 1937	25248	04008+0505	ADS 3210 Bu 1185		27989	04256+1852
1987 7599 +35°0785 Cou 1081	202.5	0.155	1986.8864 1987.7600	216.9 212.6		0.128
+35°0785 Cou 1081 1986,8862	279230 21.2	04009+3618 0.187	1988.2600	209.1		0.175
1987.7599	23.2	0.185	HR 1391 Fin 342 Aa	200.1	27991	04256+1557
+15°0571 Hei 34	285332	04022+1532	1986.8864	89.7		0.094
1987.7599	23.7	0.360	1985.8890	88,3		0.096
ADS 2965 McA 13 Aa	25555	04044+2406	1987.7655	65.4		0.087
1986.8862	6.0	0.036	ADS 3211 Hu 609		27961	04262+3443
1987.7655	339.2	0.036	1987.7600 ADS 3228 Bu 1186	2.5	28217	0.188 04275+1113
+19°0662 CHARA 13 1986.8862	25811 59.9	04063+1952 0.074	1986.8890	124.3		0.188
1986.8890	60.6	0.074	1987.7600	122.5		0.181
1987,7655	56.9	0.074	HR 1411 McA 15		28307	04286+1557
+39°0930 Cou 1394	276063	04070+3934	1986.8864	354.7		0.221
1987.7545	119.4	0.247	1986.8890	354.7		0.221
+45°0876 Cou 2025	25891	04081+4535	1987.2689 1987.7600	353.3 352.2		0.204 0.203
1986.8862	331.8	0.287	ADS 3227 Bu 745	304.4	28062	04287+5355
1987.7545	332.7	0.278	1986.8890	110.4		0.403
+33°0795 Cou 1082	25976	04081+3407	1987.7000	111.1		0.404
1986.8862 1987.7546	59.5 59.4	0.288 0.288	ADS 3248 Hu 1080		28363	04290+1610
ADS 3007 A 998	25987	04089+4614	1986.8890	258.8		0.458
1986.8862	258.1	0.162	1987.7546	258.9		0.455
1987.7599	255.2	0.159	1988.2600 ADS 3246 A 1713	258.3		0.454 04294+4407
ADS 3032 A 469	26294	04094-0756	1986.8890	205.3		0.430
1986.8889	112.5	0.166	1987.7600	205.9		0.435
+42°0904 Cou 1702 1986.8862	26139 126.6	04100+4235 0.167	+17°0735 Cou 567	•	28436	04298+1741
1987,7599	128.1	0.169	1986.8917	19.4		0.151
ADS 2963 STF 460	25007	04101+8042	1987.7600	19.9		0.143
1986.8945	118.4	0.777	ADS 3264 STF 554 1987.7600	18.9	28485	04301+1638 1.664
1987.7545	119.7	0.772	+14°0721 CHARA 17	18.8	285931	04340+1510
+31°0718 Cou 880	26385	04117+3133	1987.7600	60.4		0.169
1987.7546 +23°0635 CHARA 14	43.9	0.718	ADS 3300 A 1714		28803	04344+4241
+23°0635 CHARA 14 1987.7546	284163 96.0	04119+2338 0.113	1987.7600	252.8		0.393
ADS 3053 STT 74	26547	04123+0939	ADS 3317 CHARA 18	An 66.2	29140	04357+1010 0.089
1986.8864	273.7	0.225	1986.8865 1987.7655	102.5		0.113
1987.7546	274.4	0.210	1988.2601	116.8		0.136
ADS 3064 A 1938	26690		ADS 3326 A 1840 AB			04361+0813
1985.8406	235.7 290.8	0.062 0.110	1986.8918	101.2	•	0.166
1986.8864 1986.8890	290.3	0.108	1987.7601	98.6		0.163
1987.7655	308.4	0.146	ADS 3329 STT 86 1986.8917	13.5	29193	04366+1945 0.471
1988.2600	315.8	0.153	1987.7574	13.3		0.469
ADS 3098 STF 511	26839	04179+5847	+30°0697 Cou 883	10.0	282310	
1986.8890	101.5	0.488	1987.7573	50.0		0.264
1987.7545 HR 1331 McA 14 Aa	100.5 27175	0.488 04185+2135	ADS 3332 A 1010		29180	
1986.8865	111.3	0.089	1986.8892	341.3		0.507
1986.8890	112.5	0.086	1987.7573 ADS 3360 A 2035	341.5	286952	0.511 04387+1011
1987.7655	57.4	0.078	1987.7574	111.4		0.228
ADS 3105 STT 75	26882		ADS 3371 Bu 1044		29562	
1986.8890	178.9	0.414	1987.7574	210.8		0.651
1987.7545 ADS 3135 STT 79	181.3 27383	0.415 04/87+1632	ADS 3358 Bu 1295 AB		29316	
1986.8864	204.0	0.186	1987.7601 ADS 3358 STF 566 AC	91.1	29316	0,073 0 4399+532 9
1987.7546	219.3	0:206	i 1987.7601	219.5		0.719
1988.2600	225.6	0.217	ADS 3370 Hu 442	••••	29538	
ADS 3169 STT 82 AB	27691		1987.7574	56.8		0.145
1987.7600 HR 1375 CHARA 16	352.6 27742	1.358 04235+2059	ADS 3387 A 2353	169.6	29727	
1986.8865	1.0	0.233	1986.8917 1987.7574	162.6 162.5		0,159 0,155
ADS 31/2 STT 80	27650		HR 1497 McA 16	102.5	29763	
1986.8890	156.6	0.356	1986.8865	332.6		0.197
1987.7548	156.5	0.355	1987.2717	245.8		0.215
ADS 3182 Hu 304	27820		1987.7573	325.9		0.196
1986.8890 ADS 3191 Bu 1235	83.5 27832	0.142 04245+2245	1988.2601	323.4		0.194
1967.7600	60.5	0.316	ADS 3389 A 1014 1987.7573	.324.9	29599	04430+5712 0.280
ADS 3184 A 834 AB	27696	04254+5623	ADS 3391 A 1013	··***.U	29606	
1986,8890	219.4	0.638	1986.8892	245.6		0.128
1987.7601	220.9	0.642	1987.7601	251.7		0.144
			+39°1054 Cou 1524	100 -	29911	
			1987.7601	199.5		0.195

TABLE II. (continued)

516

.

* ~

517 MCALISTER ET AL: BINARY STARS

ADS 4032 35586 C5270+2737 Ho 226 AB +42°1045 30090 04465+4220 Cont 2031 1986.8838 261.3 0.763 321.0 0.094 1986.8892 ADS 4038 35671 05271+1758 04477+4014 McA 19 As 30245 ADS 3447 A 1545 AB 0.060 1986.8893 281.6 95.7 0.421 1987.7573 1987.2717 274.3 0.069 04480+4339 +**43°**1060 Cou 2033 30255 0.083 1988.2490 275.7 1986.8892 136.3 0.211 36058 05290-0318 ADS 4078 Da 6 1987.7573 136.3 0.206 1988.2546 211.1 0.137 64496+0213 ADS 3465 30636 A 2621 05301-0145 -01°0918 Rat 4781 36219 81.6 0.151 1986.8918 0.403 1986.8838 199.0 1987.7601 81.9 0.149 1986.8892 199.1 0.405 +14°0770 30712 04506+1505 CHARA 20 36267 05307+0556 ADS 4115 **STF 728** 1988.2601 120.5 0.085 1986.8838 47.8 1.031 ADS 3475 30810 04512+1104 Bu 883 AB 36486 05320-0018 ADS 4134 Hei 42 An 0.137 1986.8918 142.7 1986.8892 139.7 0.253 1987.7574 182.9 0.107 1988.2545 139.7 0.261 ADS 3483 Bu 552 AE 30869 04518+1339 37016 05353-0425 HR 1891 Fin 345 1986.8837 150.2 0.373 0.362 1986.8838 92.8 1987.7601 162.0 0.401 05357+2054 $+20^{\circ}1009$ 36880 Cou 270 166.7 1988.2600 0.403 1986.8918 45.0 0.628 30884 04529+3548 ADS 3488 Hu 819 05:72+2666 ADS 4208 37098 STF 749 AB 1987.7573 278.8 0.441 325.6 1986.8918 1.122 ADS 3501 31033 04536+2522 A 1843 AB 36948 05373 ± 4404 +43°1815 CHARA 21 1987.7573 299.8 0.519 1986.8893 0.127 ADS 3501 CHARA 127 Aa 32033 04536+2522 59.4 109.9 1988.2601 59.2 0.124 1987.7573 0.075 30807 04539+5603 HR 1853 Mlr 314 36496 05373+6642 ADS 3490 Hu 818 1986.8837 141.8 0.107 72.6 1987.7573 0.448 36928 05373+4339 McA 17 04548+1125 ADS 4203 A 1562 HR 1569 31283 1986.8893 350.0 0.403 1987.7574 309.5 9.207 ADS 4229 37269 05386+5030 31356 04551-0033 Bu 1240 AB ADS 3522 A 1019 AB 1986.8893 0.112 24.4 1987.7601 122.9 0.161 04562+C311 31466 ADS 3542 STT 91 11 98.2490 18.2 0.122 1987.7601 227.5 0.408 1988.2545 18.3 0.122 31278 04573+6045 ADS 4241 37468 05387-0235 ADS 3536 D 5 Bu 1032 AB 0.253 142 9 1987.7573 227.9 0.483 1086.8915 31622 04573+0100 ADS 3558 A 2624 1988.2545 140.6 0.253 37477 05394+1150 1987.7601 305.9 0.330 ADS 4247 A 2709 +26°0767 284006 04581+2618 1986.6018 56.8 9,270 Cou 758 05394+4343 37265 1987.7573 143.7 0.375 ADS 4236 A 1364 +40°1114 31519 04585+4047 1986.8893 138.1 0.154 Cou 1717 05398+3758 ADS 4243 STT 112 37384 1987.7573 0.252 118.2 0.857 ADS 3573 31578 04599+6328 1986.8858 51.9 A 1303 rtu 82 1986,8838 ADS 4266 P 37405 05400+3601 309.6 Hu 825 0,198 1987.7573 345.9 0.394 31264 +69°0288 MIr 399 AB 05001+6958 05411+1632 Bu 1007 37711 1987.7573 169.2 0.266 1986.8838 239.8 0.334 05004+4158 31759 +4101027 Cou 1866 1988.2545 240.5 0.327 1987.7873 70.4 0.308 37904 05417-0254 ADS 4279 Bu 1052 +21°0754 Cou 154 AB 32481 05044+21:9 1986.8838 17.2 0.399 307.2 1986.8837 0.262 ADS 4277 A 2110 AB 37801 05421+2135 32416 05054+4655 ADS 3659 A 1023 122.3 1986.8918 0.457 1986.8837 60.7 0.332 38037 05435+1642 ADS 4301 A 2436 05089+0313 33235 ADS 9728 A 2636 1956.8918 0.235 134.6 1987.7601 158.3 0.282 +29°0972 246742 05439+2937 Cou 895 33203 05104+3718 ADS 3734 STF 644 1986.8893 54.2 0.155 1986,8837 221.4 1.630 38182 054454+1503 ADS 4323 STT 118 AB 33545 05109-0146 ADS 3765 Bu 885 0.470 1986.8838 119.2 195.8 0.612 1986,8838 ADS 4324-A 496 38161 05449+2620 33647 ADS 3767 Hu 33 05117+0031 6.2 0.281 1986,8893 1986.8892 4.6 0.111 38153 05450+2812 33883 05134+0158 +28°0371 Cou 762 ADS 3799 STT 517 AB 1986.8893 60.5 0.181 6.552 235.3 1986.8838 ADS 4373 05472+2153 Hu 39 38493 235.4 0.549 1986.6892 1986.8918 48,1 0:197 235.8 0.552 1987.7601 ADS 4390 38710 05480+0627 STF 795 +36°1049 33749 J5140+3655 Pop 140 1986.8918 315.2 1:187 158.8 0,266 1986.8837 38670 05484+2052 ADS 4392 STT 118 AB 34029 05167+4601 HR 1708 a Aur An 1058.2918 316.8 0.205 22.2 0.051 1986.8892 05401+6248 ADS 4376 STF 3115 28284 79.4 0.037 1967.2717 0.871 1986,8838 340.4 355.0 0.044 1987.7656 ADS-4464 Cou 897 CD 39274 05528+2946 259.8 0.048 1988.2545 1986.8093 0.225 230.7 +3001272 Cou 2037 34807 05219+3934 05529-1-2907 39303 ÷29°1028 Coll 898 1988.8537 1 2 McA 18 Aabje 141.4 0.360 1986.8893 157.8 0.158 05244-0224 ADS 4002 35411 +28°0933 Cou 900 39451 06539+2857 0.060 1056.8092 126.9 83,2 1986:8893 0.168 0.652 39697 1988.2546 116 0 ADS 4505 STT 122 05558+4036 35548 05255-0033 ADS-4020 A 848 256.7 0.285 1986.8693 1086.8892 161.6 0.222

TABLE II. (continued)

518 MCALISTER ET AL : BINARY STARS

l

ļ

+24°1043 Cou 905	40132	05580+2437	ADS 4950 CHARA 128	Áa 48812 [.]	06221+5922
1986.8920	18.4	0.192	1986.8830	109.5	0.187 06252-+0130
ADS 4543 A 1728 1986.8920	212.2	05589+4510 0.346	HR 2312 Fin 343 1987,2744	0.1	0.173
ADS 4562 STT 124	40369	05505 +1249	+23°1346 CHARA 23	44926	062552327
1986,8920° 1987,2744	297.7	0.513 0.508	1986.8865 1987.2002	151.5 154.3	0.112
ADS 4575 A 2441	295.4 40427	05594+1344	1988,2499	154.5	0.114 0.115
1986.8920	272.7	0.756	HR 2004 McA 26	44927	26256+2320
ADS 4893 A 119 1986,8920	40628 202.E	06013+2027 0.570	1986.8865 1987.2662	142.0	0.072 0.074
ADS 4617 A-2718 AB	40932	D6024+0939	1985.2491	144.4	0.079
1986.8865	208.4	0.218	+24°1275 Cou 914	45428	06283+2441
1987.2744 1988.2545	205.6 204.7	0.248 0.316	1986.8865 HR 2392 CHARA 129	119.6 46407	0.219 06328-1110
ADS 4623 J 50	40582	06027+0801	1985.8381	δ 4 .3	0.161
1986.8921 HR 2130 McA 24	253.5 410-10	0.561 06034+1942	ADS 5218 A 506	46610	
1986.8865	84.7	0.053	1986.8865 1987.2662	33.5 34.4-	0.250
1988.2491 HR 2134 Kui 23 AB	77.4 -41118	0.056 06041+2316	HR 2425 McA 27	47152	06383+2859
HR 2134 Kui 23 AB 1986.8865	168.1	0.252	1926.8865 1987.2662	323.0 322.1-	0.151 0.153
1987.2717	171.8	0.260	. <u>1958.2</u> €91	518.3	0.171
1988.2491 ADS 4660 A 1951	179.0 41379	0.270 06052+0708	ADS 5280 STT 150	47193	
1986.8921	43.6	0.456	1986.8865 ADS 5289 _TT 152	211.8 47395	0.085 06395+2816
1987.2744	43.7	0,445	1986.8538	34.9	Ú.887
ADS 4603 STT 121 1986.8918	40225	060537400 0.260	ADS 5296 STF 945 1986.8838	47412 312.2	06404+4058 0.493
ADS 4681 A 2444	41627	06085+1832	1987,9719	312.4	0.489
1986.8920 ADS 4687 STF 840 BC	180,3 41880	0.284 08065+1046	ADS 5332 A 218	47312	
1986.8921	134.3	0.425	1986.8865 +70°0410 Mir 463	67.8- 46979	0.194 06425+7035
+18° 1095 Oou 471	41658	06073+1848	1988.2573	245.6	0.552
1986.8920 +26°1082 McA 26	167.1 41600	0.311 06074+2640	ADS 5405 A 122 1986.8866	48591 49.8	
1986.8865	218.4	0.068	ADS 5447 STT 156	49059	0.246 06474+1812
1987.2717	224.3	0.068	1986.8839	233.5	0.397
1988.2491 ADS 4696 STT 130	228.T 41541	0.070 06078+4240	1967,2745 1988,2548	233.2 231.3	0.397 0.386
1986.6920	200.1	0.418	ADS 5455 ST'T 157	49294	06478+0020
ADS 4752 A 2514 1956.8920	252561 90.7	06097+1630 0.300	1986.8839 HR 2521. Fig 322	202.2 49643	0.343 064020217
ADS 4750 A 54 AB	42033	06098-1-2014	1987.2744	52.9	0.158
1986.8920 ADS 4765 Bu 1058	336.1 42716	0.569 96105+2300	1988.2546 ADS 5466 _A-2360	50.4	0.153 06494+4037
1985.8920	235.4	0.228	ADS 5466 A-2360 1986.8866	273.6	0.130
AD5 4786 A 55 AB	42395	06117+2046	+35°1511 Cou:1738	49472	065023625
1986.8920 ADS 4788 Ku 701	268.0 42306	0.424 06120+3531	1986.8866. - 1 14°1477 Cou 768	110.3	0.107 06503+2419
1986.8920	241.5	0.183	4 24° 1477 Cou 768 1986,8866	49622 243.C	0.117
HR 2214 Kui-24 1986.8920	42954 139.6	06144+1754- -0:494	+93°1424 Cou 1562	265119	06525+3248
1987.2744	140.6	0.488	1986.8856 ADS 5514 STF 963 AB	313.8 49618	0.248 06532+5928
ADS 4843 A 2044 AB 1986,8920	253926 51.4	06150+1649 - 0.400	1986.8866	267.1	Q.258
HR 1236 Rot 5225	43358	06159+0210	1987.2719	268.4	0.252
1986.8921	244.7	0.193	1988.2548 HR 2541 Cou 1377	270.6- 50037	0.246 06532+3827
1987.2744 ADS 4890 Fin 331 Aa	248.7 43525	0.186 06171+0957	1988.8839	154.4	0.498
1986.8865	3.9	0.058	1957,2719 +32°1447 Gou 1412	156 5 51023	0.479 06571+3217
1987.2744	27.5 69.9	0.062	+32°1447 Gou 1412 1986.8366	\$6.5	0.242
1988.2491 HR 2273 CHARA 22	44112	0.067 06197-0749	ADS 5586 STT 159 AB	50522	06573+5825
1988.2491	55.8	0.063	1986.8839 1987.2719	50,2 51.6	0.349 0.328
ADS 4929 Bu 895 AB 1986.5565	43885 130.5	06200+2826 9.254	1988,2548	51.0	0.273
ADS 4951 A 2719	44109	65203+0744	1988.2672	54.8	0.272
1986.8838 ADS 4971 A 2667	, C2.0 44333	0.470 06214-+0216	ADS 5621 A-2459 1988.2574	266945 279.8	06577+1935 0.359
1987.2745	184.2	0.286	+02°1483 CHARA 25	615GG	
⊀_25°1232 Cou 718	44211		1987.2717	39.8	0.947
1986.8855 ADS 4950 STF 881 AB	139.6 43812	0.220 06221+5922	+24°1481 Cou 921 1986.2866	207067 56.0-	06584+2443 0.194
1986.8839	196.1	0.700	*000.0000	30.0	V.403
1987.2719	134.2	C.697			

TABLE II. (continued)

:

.

1

. •

.

.....

este

TABLE II. (continued)

.

не	2605 McA 28		51688	06595+2555	+20°1855 Cou 381			. 07370+2025
***	1986.8866	52.4	01000	0.060	1986.8895	107.8		0.322
	1987.2719	56.2		0.069	+28°1427 Cou 1247		61034	
	1988.2491	57.1		0.055	1986.8894	124.4		0.133
+3	1°1463 Cou 1241		267337	06598+3141	ADS 6245 A 535		61344	
A T	1986.8866 S 5660 A 2461 AB	308.9	51911	0.154 06598+1557	1987.2745 ADS 6276 STT 177	170.7	61600	0.349 07417+3726
- AL	1986.8839	327.6	91911	0.319	1986.8921	162.7	01000	0.411
	1988.2548	328.4		0.312	ADS 6347 Ho 247	102.1	62720	
	1988.2574	327.7		0.316	1986.8921	233.7		0.408
A	S 5689 STT 163 AB		523 09	07011+1146	1987.2745	234.3		0.408
	1986.8866	64.9		0.120	+19°1832 Cou 772		62947	07471+1847
AL	OS 5724 A 1324 AB 1988.2573	178.4		07041+5627 0.333	1986.8895 -03°2065 Ret 4375	72.7		0.246
	7 ^c 1645 McA 29	1/0.4	52823	0.333	-03°2065 Ret 4375 1986.8895	336.8	63263	07478-0332 0.112
Тч	1986.8867	179.1	02020	0.181	1987.2745	330.8		0.108
	1988.2491	180.8		0.183	ADS 6354 Hu 1247	000.0	62522	07479+6019
AD	OS 5752 A 519		53299	07044-0303	1986.8894	261.4		0.236
	1988.2574	274.9		0.418	-19°2068 B 1077 AB		63395	07480-1924
+3	6°1567 Cou 2063		53816	07080+3552	1987.2745	303.8		0.592
	1906.8867	4.5		0.192	ADS 6378 WRH 15 AB		63208	
	1986.8894 .6°1395 Hei 125	2.8	54128	0.192 07083+1638	1986.8895 +20°1920 Cou 926	47.3		0.277 07506+1944
T.	1986.3866	220.0	04140	0.217	1986.8895	256.3		0.293
+2	0°1729 Cou 925		54985	07118+1953	ADS 6405 A 2880	200.0	63799	
••	1986.8921	79.0		0.490	1986.8895	303.1		0.085
	1988.2574	77.3		0.499	1987.2745	307.8		0.079
AI	DS 5867 A 2847		55163	07121+0622	ADS 6412 Bu 1195	~~ ~	63976	07513-0925
	1988.2574	130.1	55790	0.418	1987.2745 ADS 6420 Bu 101	90.9	64096	0.179 07518-1352
AL	OS 5918 Bu 1022 1986.8893	302.9	55726	07151+2553 0.449	1987.2745	103.1	04080	0.365
	1980.8893	301.6		0.432	HR 3072 Fin 325	10012	64235	07528-0526
AL	S 5940 A 2853	001.0	56153	07164+1227	1987.2745	191.6		0.175
	1988.2574	320.8		0.480	+14°1778 Hei 55			07540+1346
AI	DS 5949 A 2855		56361	07168+0059	1986.8895	351.2	A 4950	0.163
	1988.2574	272.4		0.390	ADS 6444 Cou 1111 Aa 1988.2574	165.9	64350	07545+2610 0.512
+3	7 ⁰ 1696 Cou 1883 1986.8894	59.4		07173+3744 0.648	ADS 6443 * A 675	100.9	64326	
AI	DS 5952 A 2856	09.4	56444	07175+1324	1986.8894	157.4		0.193
	1988.2574	302.6		0.509	ADS 6445 A 1072	_	64123	
+2	4°1600 Cou 585		56462	07181+2405	1986.8894	348.3	- · - - ·	0.206
	1986.8893	155.0		0.396	+24°1805 Cou 929 1986.8895	150.7	64704	07561+2342 0.147
AL	OS 5975 Hu 619 AB 1986,8894	0.6	56627	07202+4820 0.319	1988.2520	159.0		0.163
AI	DS 5996 STF 1074 AI		57275	07205+0024	ADS 6483 STT 185	105.0	65123	
	1986.8921	168.6		0.666	1986.8895	86.5		0.145
	1985.2574	169.5		0.671	1987.2745	88.1		0.143
+1	4°1649 Hei 128		57675	07227+1417	+27°1521 Cou 1112			08001+2659
121	1086.8866 2837 CHARA 26	49,3	58579	0.179 07269+2015	1986.8894 ADS 6511 A 2954 AB	97.2	65738	0.265 08005+0955
n <i>i</i>	1986.8867	202.6	00019	0.050	1988.2570	\$44.0		0.707
	1988.2520	235.5		0.050	ADS 6526 A 1580		66094	08017-0836
A	OS 6089 McA 30 Aa		58728	07277+2127	1986.8895	261.1		0.247
	1986.8867	166.8		0.103	1987.2745 ADS 6538 STT 186	265.4	66176	0.239 08033+2616
	1986.6893	167.1		0.104	1986.8839	13.2		0.946
	1987.2659	165.3 199.2		0.094 0.089	1988.2574	74.1		0.967
A 1	1988.2520 DS 6114 A 2868	100,2	59151		ADS 6549 STT 187		66299	
	1986.8921	10.0		0.668	1986.8867	352.7		0.363
AI	OS 6119 McA 31 An		59148	07298+2755	1987.2664	353.3		0.362
	1926.8867	198,5		0.041	1988.2574 ADS 6554 Bu 581 AB	352.9	66509	0.364
	1986.8894	197.6		0.039	ADS 6554 Bu 581 AB 1987.2664	279,5	00909	08043+1218 0.551
A1	DS 6138 A 2869 1986.8921	11.6	59473	07305+0743 0.126	ADS 6578 A 1333	219,0	66610	
A F)S 6137 A 673 AB	11.0	59372	07309+3034	1986.8839	206.8		9.377
	1986.8894	350.6		0.388	1986.8858	207,1		0.375
H	R 2086 McA 32		60107	07336+1550	1987.2665	206.0		0.366
	1986.8895	91.1		0.169	ADS 6650 STF 1196 AE		68255	
	1987:3745	91.1		0.166	1986.8839	213.3		0.662
1	1088.2491 DS 6185 STT 175 AB	93.2	60518	0.151 07352+3058	1987.2664 1988.2576	209.2 197.9		0.594 0.588-
	DS 6185 STT 175 AB 1986.8894	328.2	100440	0.212	+29°1712 Cou 1114	19119	68254	
	1987.2690	328.7		0.214	1986.88G7	225.7		0.209
Al	DS 3200 A 2874		60634	C7262+1815	1987 2664	223.6		0,196
	1966.8922	55.1		0.270	1			
					1			

.

interies and interior

and the second stranger and the second stranger and the second stranger

.

٢	20
J	20

.

.

TABLE II. (continued)

ADS 6681 Hu 1123	68660	08148+3630	+19°2194 Cou 384		80082	09183+1847
	56.7	0.430	1986.8895	42.6	80082	0.073
	.57.8	0.416	1987.2637	44.2		0.062
ADS 6733 A 2362	69580		ADS 7286 STF 1333		80024	
1988.2574 1 HR 3269 Fin 346	72.1 70013	0.588 08199+0357	1988.2576 ADS 7307 STF 1338 A	48.4	80441	1.905 09210+3812
	68.2	0.275	1986.8923	264.6	00441	1.033
	69.7	0.271	1988.2548	267.2		1.024
ADS 6762 STF 1216	70340		ADS 7334 A 1342 AB		81009	
	82.2 83.5	0.524 0.518	1987.2692	30.5		0.162
ADS 6776 Ho 525 AB	70492	0.518	ADS 7352 STF 1348 1988.2577	316.2	81212	09245+0621 1.996
	35.1	0.316	ADS 7341 A 2477	010.4	81163	
ADS 6796 Hu 856	70803		1986.8840	335.8		0.404
	61.5	0.262	1987.2720	336.1		0.405
1987.2665 2 ADS 6811 A 1746 BC	62.9 71153	0.259 08267+2433	1988.2548	338.2		0.403
	13.9	0.154	1988.2577 ADS 7382 A 1588 AB	338.5	81728	0.400 09273-0913
ADS 6825 A 550	71499	08278-0425	1987.2692	194.4	01120	0.376
	85.7	0.137	1988.2522	194.7		0.363
ADS 6828 A 551 AB 1986.8895	71663 79.0	08285-0230 0.112	HR 3750 B 2530		81809	09278-0604
	80.4	0.104	1987.2692	324.6		0.306
ADS 6862 1 489	72310	08315-1934	1988.2522 ADS 7390 STF 1356	325.8	81858	0.360 09285+0904
	46.9	0.230	1986.8840	42.5	01000	0.450
+28°1625 Cou 1115		08352+2811	1987.2692	44.7		0.450
1986.8867 +20°2148 Cou 47	19.7 73574	0.299	1988.2522	47.7		0.457
	43.4	08397+2005 0.540	+58°1192 Mir 549		81772	09299+5808
	43.9	0.520	1987.2637 HR 3794 Fin 349	123.1	82543	0.246 09326+0151
1988.2576 1	43.3	0.533	1986.8895	172.9	02040	0.162
+19°2069 CHARA 130	73712	08402+1921	1987.2692	174.7		0.158
	63.9	0.088	1988.2522	179.5		0.157
ADS 6930 Bu 585 1986.8840	73871 86.4	08412+2028 0.488	ADS 7456 STF 1372		83190	09371+1614
ADS 6993 SP AB	74874	08468+0625	1986.8895 ADS 7457 A 1765	85.1	83158	0.091 09379+4554
	25.7	0.251	1987.2637	164.2	00100	0.131
	30.7	0.247	ADS 7490 Hu 629		83887	09429+5035
ADS 7012 A 2552 1987.2720 1	75207 10.4	08486+0057 0.163	1987.2692	19.8		0.370
ADS 7039 A 2473	75470	08507+1800	1988.2576 HR 3850 McA 34	19.2	84722	0.360 09474+1134
	48.8	0.311	1987.2638	11.9	04144	0.069
ADS 7054 A 1584	75553	08531+5458	1988.2521	22.2		0.078
1986.8868 3 +20°2232 Cou 773	46.0 75974	0.121	+21°2108 Cou 284		84739	09477+2036
	43.7	08539+1958 0.221	1987.2638	59.0		0.145
	43.9	0.226	1988.2521 +00°2564 Rst 5339	56.9	85096	0.141 09496+0017
ADS 7074 A 2554	76050	08539+0149	1988.2577	194.8	89090	0.724
1987.2692 3 ADS 7071 STF 1291 AB	57.2 75959	0.242	HR 3889 Kui 44	191.0	85040	09498+2111
	12.8	08542+3034 1.501	1987.2637	208.9		0.215
ADS 7082 A 2131 AB	76095	08549+2613	1988.2521 ADS 7541 Ho 369 AB	208.5		0.204
	00.3	0.394	ADS 7541 Ho 369 AB 1986.8840	101.4	85177	0.403
ADS 7084 A 2132 1986.8922 20	76117 01.6	08557+4141	1987.2665	101.5		0.399
	01.5	0.186 0.189	1988.2576	101.1		0.395
+ 36° 1889 Cou 1897	76595	08585+3548	ADS 7545 STT 208		85235	09521+5404
1986.8922 1	70.6	0.176	1987.2637 1988.2495	161.9		0.184
1988.2521 1	75.3	0.168	1988.2521	171.2 171.3		0.183 0.182
HR 3579 Kui 37 AB 1986.8839 30	76943 01.8	09008+4148	ADS 7555 AC 5 AB		85558	09525-0806
	93.7	0.463 0.455	1986.8840	75.2		0.537
ADS 7158 A 1585	77327	09036+4709	1987.2719	75.2		0.543
	76.1	0.223	1988.2522	74.0		0.549
	73.7	0.196	1988.2577 +31°2066 Cou 1258	74.6	85708	0.545 09544+3041
	78661 71.0	09098+1134 0.089	1987.2637	54.8		0.174
HR 3650 Fin 347 Aa	79096	09123+1459	+44°1931 Pop 151		85973	09566+4359
1986.8895 31	17.4	0.164	1987.2665	78.9		0.497
	03.7	0.140	+39°2295 Cott 2086		86237	09581+3856
	03,5	0.139	1987.2637 +34°2079 Cou 1569	65.7		0.185
1988.2521 24 ADS 7284 STF 3121	89.9 79969	0.059 09180+2835	+34°2079 Cou 1569 1987.2637	85.2	87473	10059+3412 0.113
		0.423	ADS 7651 Kui 48 AB		87822	10085+3137
		0.402	1987.2637	334.2		0.043
1988.2577 23	32.2	0.328	1988.2522	345.9		0.083

ſ

2

١ ð

- -

. .

521 MCALISTER ETAL: BINARY STARS

11154+4728 ADS 8104 Hu 639 97773 10093+2020 88021 ADS 7662 A 2145 86 7 0.100 1986.4066 0.082 1987.2638 161.3 88355 10117+1321 1988.2523 89.6 0.115 ADS 7674 Hu 874 0.052 1988.2549 89.5 0.112 276.8 1987.2638 +43°2096 Cou 1904 97857 11158+4227 0.092 1988.2522 277.0 10121-0613 0.338 88478 1986.4038 199.6 ADS 7675 Ho 44 0.348 0.555 204.8 1987.2639 200.4 1986.8840 98087 11174+4146 ADS 8117 0.540 A 2158 1987.2719 205.8 359.1 0.463 1987,2693 205.0 0.548 1988.2577 10260+0256 90361 1988.2578 ADS 7769 A 2570 359.6 0.456 11191+3811 98353 306.1 0.333 HR 4380 CHARA 133 1986.8840 0.068 1987.2721 145.4 0.336 1987.2638 307.4 90460 ADS 8145 A 2776 AB 98914 11231+0408 10269+1931 +20°2486 Cou 292 0.120 1987.2638 106.2 1987.2638 242.0 0.192 -00°2442 99651 11279-0142 90444 10270+1713 Rst 4944 ADS 7775 STT 217 0.235 288.5 144.0 0.540 1987.2638 1986.8840 0.229 0.543 1988.2523 287.8 144.3 1987.2665 11308+4117 ADS 8189 STT 234 100018 0.551 144.9 1988.2577 137.2 0.352 10279+3643 90537 1986.4039 ADS 7780 Hu 879 138.8 0.365 233.3 0.384 1987.2640 1986.4038 1988.2523 ADS 8198 Hu 1134 0.370 141.3 0,383 233.2 1986.8840 11322+3615 100235 233.8 0.356 1987.2665 1986.4066 124.9 0.093 235.1 0.322 1988.2496 0.103 1987.2640 124.1 0.321 1988.2549 235.3 ADS 8197 STT 235 100203 11324+6105 90698 10290+3452 ADS 7788 A 2152 264.7 0.536 0.417 91172 10311-2411 1986,4039 42.1 1988.2577 0.543 ADS 7809 CHARA 132 As 1986.8842 267.7 1987.2667 269.3 0.556 0.110 1987.2719 176.1 91751 10366+4430 1988.2549 272.9 0.564 ADS 7844 A 2055 AB 233841 11332+4928 0.348 ADS 8210 Hu 727 163.9 1986.8840 22.4 1.243 1987.2693 163.2 0.343 1987.2667 164.4 0.341 1988.2578 21.7 1.264 1988.2577 +48° 1954 11336+4729 10376+3446 91949 Cou 1573 +35°2166 Cou 1417 5 100808 144.7 0.584 11363+2747 0.299 1988.2578 205.4 1987.2693 ADS 8231 STF 1555 AB 0.300 1988.2577 206.3 0 621 92749 10427+0335 1986.4039 ADS 7896 A 2768 0.622 304.9 0.289 1986.8842 144.0 1987.2638 1987.2667 144.7 0.627 0.312 301.7 1988.2522 92812 10432+0440 0.633 145.0 ADS 7900 A 2769 1988.2523 0.501 0.630 217.3 1988.2578 146.0 1988.2577 101150 11388+6421 10472+2605 ADS 8249 STF 1559 +26°2131 Cou 591 2.002 323.1 101606 0.423 1987.2693 1988.2577 7.2 11415+3145 10473+2235 ADS 7926 STT 228 93392 HR 4501 62 UMa 0.047 0.644 1987.2640 55.5 172.9 1986.8840 0.040 0.634 1988.2523 50.8 1987.2666 172.4 11441-0448 101969 -03°3167 Rat 5524 1988.2577 173.5 0.632 93457 10481+4107 51.8 0.080 ADS 7929 STT 229 1988.2578 11479+0815 102510 0.769 HR 4528 CHARA 134 1986.8840 277.3 78.7 0.259 0.763 1987.2694 277.5 1987.2667 +38°2283 Cou 1129 11499+3754 0.760 277.1 1988.2549 145.4 103483 0.560 1988.2605 0.754 1988.2577 276.0 11551+4629 10520+1606 ADS 8347 A 1777 AB 94120 ADS 7952 A 2373 179.6 . 0.103 0.096 1986.4066 89.3 1987.2638 95342 11008+2913 1987.2695 186.3 0.102 +29°2110 Cou 960 196.1 104288 0.095 0.198 101.6 1988.2523 1986.4093 12005+6912 96016 11050+3825 ADS 8387 A 1088 ADS 8047 Ho 378 0.970 0.132 292.0 55.6 1986.4039 1987.2693 105122 12061+6842 ADS 8419 STF 3123 AB 55.3 0.967 1988.2578 0.164 11053+1635 293.1 96130 1986.4039 ADS 8051 A 2378 0.507 0.170 1988.2578 1986.4066 295.2 136.7 11053-2718 HR 4314 96202 288.7 0.173 1987.2640 Fin 47 0.170 1988.2550 ADS 8433 A 1998 227.5 284.6 (105369 0.180 12080+4242 1987.2720 0.178 A 199 1988.2605 HR 4632 1988.2550 222.1 11124-1830 97411 357.0 105778 0.373 ADS 8086 Bu 220 12105+1649 0.297 CHARA 135 326.4 1987.2720 176.9 105824 0.262 0.291 1987.2694 324,1 1988.2549 12108+3954 11136+5525 ADS 8446 97455 STF 1606 ADS 8092 A 1353 0.459 1986.4039 243.1 0.300 224.5 1986.4039 0.285 0.472 1986.8842 238.7 1988.2578 223.0 97561 11137+2008 1987.2640 238.0 0.289 ADS 8094 STF 1517 0.467 325.5 1988.2496 232.5 0.289 1986.8840 0.462 1988.2550 0,280 231.6 (325.2 1987.2638 CHARA 136 12120+2832 HR 4642 0.465 325.7 1988.2578 11150+3735 97731 1987.2695 176.3 0.209 ADS 8102 STT 232 0.622 1987.2666 59.0

0.620

58,4

1988.2578

TABLE II. (continued)

Î

ţ

·

- -

.

Í

į

ADS 8485 Hu 736	10668	9 12160+4807	ADS 8863 A 2166	11595	5 13202+1747
1987.2693	219.9	0.261	1986.4067	327.7	0.058
1988.2605	217.8	0.263	1987.2642	340.2	0.083
HR 4689 McA 37	10725		ADS 8864 STF 1734	115998	5 13207+0257
1986.4067	57.1	0.093	1986.4095	178.6	1.144
1987.2640	92.2	0.088	1987.2723	178.1	1.129
1987.2667	91.3	0.088	1988.2579	178.4	1.139
1988.2496	129.4	0.103	+43°2324 Cou 1581	116377	
1988.2550 ADS 8535 STT 249 AH	132.5	0.099	1987.2642	159.6	0.266
ADS 8535 STT 249 AB 1986.4039	3 10792: 266.0		1988.2606	159.1	0.263
1987,2694	265.7	0.411 0.405	ADS 8887 Ho 260	116495	
ADS 8540 STT 250	10800		1988.2579 ADS 8901 A 1609 AB	75.9 116878	1.266 13258+4430
1987.2668	345.3	0.384	1987.2642	303.8	0.255
ADS 8551 A 78	108320		+33°2337 Cou 787	303.0	13266+3235
1987.2722	158.8	0.148	1988.2606	150.3	0.334
HR 4789 WRH	10948	5 12348+2238	+31°2500 Wor 24	100.0	13320+3109
1986.4041	7.5	0.303	1988.2606	272.6	0.224
1987.2642	6.6	0.291	VW Com Gliese 516 A		13328+1649
1988.2496	5.9	0.273	1988.2579	42.7	2.909
1988.2550	6.1	0.272	+31°2508 Cou 600		13343+3044
+27°2158 Cou 596	110293		1988.2579	56.0	0.558
1986.4067	194.0	0.076	ADS 8954 Du 932 AB	118054	13348-1313
ADS 8635 A 1851	110468		1986.4095	52.4	0.358
1988.2579 +43°2270 Cou 1579	266.2	0.502	1987.2722	53.1	0.357
		12533+4246	1988.2524	50.5	0.366
1988.2606 ADS 8695 STF 1687 A	33.0 B 112033	0.244	ADS 8964 AG 190		13357+4939
1986.4041	170.2	1.017	1988.2581 ADS 8980 ES 608	12.2	2.387 13380+4808
1986.8842	170.5	1.018	1988.2581	309.8	2.258
ADS 8708 STT 256	112398		ADS 8987 Bu 612 AB	118889	
1986.2579	96.1	0.980	1986.4069	216.9	0.308
+09°2696 Fin 380	112503		1987.2642	220.0	0.305
1986.4067	155.6	0.148	1988.2498	224.3	0.297
1987.2642	154.8	C.156	ADS 8988 Hu 897		13400+3759
1988.2496	156.8	0.161	1988.2581	31.7	0.390
1988.2524	156.8	0.171	ADS 9019 STF 1781	119931	
+25°2578 Cou 397	112572	12575+2457	1986.4095	147.5	0.434
1987.2668	64.5	0.621	1987.2642	150.1	0.456
1988.2550	64.7	0.626	1988.2550	153.9	0.484
1988.2579	63.9	0.622	1988.2581	154.1	0.480
ADS 8751 STF 1711	113322		HR 5178 Kui 65 1987.2642	120033 239.5	13472-0943 0.311
1988.2579 ADS 8757 Bu 341	340.0 113415	0.519	1928.2550	239.5	0.300
1987.2722	\$12.4	0.823	-13°3786 Rst 3852	121136	
1985.2524	311.9	0.819	1987.2722	133.8	0.158
ADS 8759 Bu 929	113459		ADS 9066 STF 1792		13571+1227
1987.2722	200.4	0.700	1988.2581	291.2	2.184
Gliese 497 Wor 23	 	13048+5555	ADS 9071 A 1614	121995	
1988.2578	153.4	1.592	1988.2581	129.9	1.289
ADS 8785 A 1605	234012		Gliese 9465 Ald 112		14019+1530
1988.2579 ADS 8801 McA 38 Aa	167.6	0.978	1988.2581 ADS 9089 A 1097 AB	179.4	1.667
ADS 8801 McA 38 Aa 1986.4067	114330 331.3	13100-0532 0.490	ADS 9089 A 1097 AB 1988.2581	122740 229.8	
1987.2642	329.9	0.490	+14°2691 Hei 65	##0.0 199654	0.414 14029+1417
1987.2723	330.8	0.477	1988.2581	122004	0.472
1988.2498	330.9	0.467	ADS 9094 Bu 1270	122769	14037+0829
ADS 8804 STF 1728 A	B 114378	13100+1731	1986.4069	81.4	0.140
1986.4041	192.8	0.534	1987.2670	98.6	0.126
1987.2668	192.4	0.418	1988.2606	111.9	0.117
1988.2496	192.3	0.215	ADS 9121 STT 276 AB	123670	14082+3645
HR 4978 Fin 305	114576	13117-2633	1988.2581	205.7	0.492
1987.2722	98.3	0.169	ADS 9159 STT 278	124399	
ADS 8825 A 1607	115002		1987.2670 ADS 9158 STT 277 AB	309.0	0.322
1988.2578 ADS 8831 Fin 297 AB	21.2 114993	0.477		42.1	14124+2843
1987.2722	14993	13145-2417 0.224	1986.4042 1987.2670	42.6	0.306
ADS 8843 STT 263	140.9	13167+5034			0.297
1988.2579	135.6	1.854	1988.2606 ADS 9169 A 1100	41.4	0.294 14138+0859
HR 5014 Fin 350		13175-0041	1987.2670	173.8	0.298
1986.4067	20.3	0.127	1988.2606	172.9	0.304
1987.2642	26.2	0.117	+31°2596 Cou 606		14138+3100
1988.2524	36.8	0.080	1986.4069	187.4	0.119
ADS 8862 Hu 644	115953	13197+4747	ADS 9174 STF 1816	124587	14139+2906
1988.2579	265.0	1.169			0.721
			1988.2581		0.700
and the second second second second second second second second second second second second second second second	the second second second second second second second second second second second second second second second s	and the second second second second second second second second second second second second second second second			

...

TABLE II. (continued)

,

.

523

----;

TABLE I	I. (cor	itinued)

		TABLE II.	(continued)
ADS 9182 STF 1819	124757	14153+0308	ADS 9425 STT 288 131473 14534+1543
1988.2579 ADS 9220 A 1102	224.3 125725	0.881	1986.4043 170.9 1.357
1986.4041	102.0		Gliese 568 Ross 52 14539+2333 1988.2582 75.3 0.611
+64 ⁰ 0993 Mir 168		14187-+6409	ADS 9443 A 2172 131954 14565+0255
1988.2581 ADS 9215 STF 1832 AI	115.1 B 125377	0.228	1988.2607 175.5 0.085 ADS 9453 Bu 239 132219 14587-2739
	151.7		1987.2725 351.9 0.565 ADS 9459 A 2173 14590+0059
1987.2698	125632 13.5		1988,2607 131.2 0.271
+31°2612 Cou 482		14213+3050	+47°2190 Cou 1760 14593+4649
1988.2581 ADS 9238 A 148	120.4 126126	0.608 14220+5107	1986.4070 206.8 0.212 1988.2609 209.2 0.203
1988.2581 ADS 9247 Bu 1111 BC	5.5	0.630 14234+0827	+18°2966 Cou 188 15005+1753
1987.2668	58.7	0.257	1988.2607 227.1 0.285 ADS 9480 Bu 348 AB 132933 15018+0008
1988.2499	68.2	0.255	1986.4042 109.6 0.508
1988.2526 +16°2642 McA 39	62.1 126269	0.244 14241+1617	HR 5612 CHARA 43 133484 15031+4439 1986.4070 91.0 0.168
1987.2670	158.4	0.048	1988.2527 105.0 0.115
1988.2526 ADS 9264 A 2069	153.8	0.065 14268+1625	ADS 9494 STF 1909 133640 15039+4739 1986.4095 44.9 1.397
1986.4070	354.0	0.211	1988.2500 46.3 1.514
+21°2659 Cou 97 1988.2607		14304+2255 0.350	+40°2856 Cou 1271 134303 15078+3956
ADS 9301 A 570	244.5 127726	14323+2641	1988.2582 166.2 0.388 1988.2609 165.7 0.382
1986.4070	283.2	0.155	+40 2859 Cou 12/2 15088+4013
1987.2670 1988.2498	268.0 252.5	0.161 0.169	1988.2609 51.4 0.284 ADS 9515 Rst 4534 AB 134213 15089-0610
1988.2524	252.5	0.169	1987.2725 12.4 0.367
ADS 9313 AGC 6 1988.2582	128042 134.9	14339+2949 0.772	1988.2582 12.0 0.369 ADS 9530 A 1116 134827 15116+1008
ADS 9318 Bu 941 AB	128233	14358+0015	1986.4098 47.1 0.759
1988.2607 ADS 9324 A 347	150.6 128718	0.250 14369+4813	1987.2671 47.1 0.749 1988.2582 46.9 0.767
1987.2671	266.8	0.565	HR 5654 Cou 189 134943 15121+1858
1988.2581 ADS 9323 CHARA 42 /	266.4 As 128563	0.567	1986.4098 144.7 0.460 1987.2671 143.6 0.459
1986.4042	165.6	0.201	1988.2499 145.5 0.473
1987.2643 1988.2526	169.5 173.1	0.197 0.172	ADS 9532 B 2351 Aa 134759 15123-1947 1987.2725 330.0 0.138
ADS 9329 STF 1863	128941	14381+5135	1987.2725 330.0 0.138 ADS 9547 Ho 60 135365 15136+3453
1986.4043 1987.2671	67.4 67.0	0.651 0.651	1988.2607 170.8 0.087 -12 ⁰ 4227 CHARA 44 135681 15168—1302
1988.2581	66.6	0.648	1986.4098 173.9 0.156
ADS 9334 A 1107 1988.2582	129006 86.0	14401+0504 0.455	ADS 9578 STF 1932 AB 136176 15183+2649 1988.2499 254.1 1.501
HR 5472 McA 40	129132	14403+2158	1988.2499 254.1 1.501 ADS 9589 A 1630 15192+4329
1986.4070 1987.2643	91.5 82.2	0.048 0.066	1988.2582 248.5 0.775 +24°2847 Cou 103 15200+2338
1988.2526	68.5	0.064	1988.2582 281.7 0.536
ADS 9343 STF 1865 AE 1986.4095	3 129246 303.9		HR 5715 CHARA 46 136729 15201+5158
1987.2671	303.4	0.962 0.958	1987.2644 92.2 0.166 . ADS 9600 Hu 146 136596 15210+2104
1987.2751	303.5	0.955	1988.2582 128.6 0.633
1988.2499 ADS 9352 Hu 575 AB	303.5	0.930 14426+1930	ADS 9617 STF 1937 AB 137107 15232+3018 1986.4044 14.4 0.914
1986.4043	316.7	0.392	1988.2499 20.2 0.992
1988.2582 ADS 9378 STT 285	294.0 130188	0.325 14455+4222	1988.2526 20.5 0.990 +40°2878 Cou 1441 15233+4022
1986.4043	318.4	0.325	1986.4043 17.1 0.259
1987.2642 +24° 2770 Cou 100	316.1	0.336 14459+2343	1988.2609 16.6 0.256 +61°1505 Mir 346 15259+6032
1987.2643	295.7	0.148	1988.2582 31,6 0.273
1988.2607 HR 5504 Fin 309	289.0 129980	0.137 14462-2110	HR 5747 β CrB 137909 15278+2906
1986.4070	298.5	0.258	1986.4044 145.6 0.306 1987.2644 140.7 0.282
1987.2725 ADS 9392 STF 1883	306.6 130604	0.280 14489+0557	1988.2499 134.1 0.220
1986.4042	289.4	0.535	1988.2526 134.1 0.221 ADS 9682 Hu 1163 138439 15307+3810
1987.2671	288.7	0.558	1987.2644 50.7 0.109
1988.2551 ADS 9400 A 1110 AB	288.2 130726	0.588 14497+0800	ADS 9688 A 1634 AB 138629 15318+4053 1988.2609 33.0 0.050
1986.4042	247.2	0.639	HR 5778 Cou 610 138749 15329+3121
1987.2671	247.1	0.635	1986.4044 202.3 0.719 1988.2499 201.2 9.737

75.0

.

524

TABLE II. (continued)

ADS 9694 STF 1956	138884	15333+4149	ADS 9932 Bu 949	144892	16085-1006
1988.2582	34.0	0.347	1987.2726	194.6	0.457
+27°2513 Cou 798		15347+2655		194.5	0.465
			ADS 9952 A 1799	145648	
1986.4097	65.9	0.133			
1988.2607	69.4	0.123		123.1	0.677
ADS 9716 STT 298 AB	3 139341	15361+3948	HR 6032 Fin 354	145589	16115+0943
1986.4043	257.3	0.329	1986.4098	84.0	0.127
1988.2500	287.8	0.283	1987.2726	84.9	0.125
ADS 9730 Hu 1168	139905				
			1988.2501	83.3	0.122
1988.2609	180.5	0.121	1988.2527	83.2	0.118
ADS 9731 STF 1964 C	D 139691	15382+3614	ADS 9971 Rat 3936 AB	145996	16143-1024
1986.4043	18.6	1.584	1987.2726	269.6	0.290
+26°2712 Cou 612	139749			267.2	0.285
			ADS 10006 STT 309		
1986.4044	255.0	0.188		147275	
1987.2643	250.6	0.193	1986.4044	286.6	0.317
ADS 9735 Bu 122	139628	15399-1947	1987.2644	288.3	0.314
1988.2582	222.8	1.840		288.5	0.306
ADS 9742 A 2076	139939		HR 6084 σ Sco Aa	147165	16212-2536
1986.4098	180.9	0.674	1987.2726	84.5	0.407
1988.2582	181.4	0.680	HR 6103 CHARA 53 A	n 147677	16221+3053
ADS 9756 STF 1969	140590	15413+5959	1986.4098	93.0	0.163
1988.2582	23.4	0.642	-16°4280 CHARA 54	147473	16229-1701
ADS 9744 Hu 580 AB	140159				
1986.4097			1987.2726	81.2	0.127
	48.1	0.047	ADS 10052 STF 2054 AB		16238+6142
1987.2643	58.8	0.099	1986.4044	352.9	1.053
1988.2527	63.9	0.149	1988.2529	352.5	1.044
+42°2629 Cou 1445	140432		ADS 10052 CHARA 138 A		
			1		
1986.4071	227.8	0.107		174.0	0.211
1987.2644	223.2	0.104	HR 6123 CHARA 55	148283	16254+3724
1988.2527	222.8	0.087	1986.4099	175.7	0.168
ADS 9757 STF 1967	140436		1987.2645	172.4	0.128
1986.4097	120.0	0.507	ADS 10068 Bu 814	148552	16272+3952
1988.2500	119.1	0.547		354.6	0.327
ADS 9768 Bu 619	140438	15431+1340	-15°4324 Rst 3950	148394	16286-1613
1986.4098	4.7	0.703	1987.2726	59.4	0.285
+22°2878 Cou 106	140629	15440+2220	ADS 10075 STF 2052 AB	148653	16289 ± 1825
1986.4097	272.7	0.394		130.8	1.661
			1		
1988.2556	272.1	0.392		130.0	1.689
+30°2703 Cou 614	140889	15451+2936	ADS 10078 A 2084		16296+1635
1988.2556	38.8	0.336		144.3	0.494
ADS 9783 A 2077		15469+1904	ADS 10085 Hu 1173	148909	16300+3354
			1986.4098	43.6	0.190
1988.2583	229.4	0.557	1987.2672		
ADS 9794 A 1127	141730			42.5	0.193
1986.4043	290.4	0.326	ADS 10087 STF 2055 AB	148857	16310+0159
1988,2582	289.0	0.314	1986.4098	17.7	1.306
Cou 1918	234262	15486+4949	1987.2727	18.2	1.314
			1988.2501	19.2	1.329
583	7.5	0.335	ADS 10092 STF 3105	148931	16318-0702
.,609	8.7	0.347			
ALS., Hu 912	142089	15492+6032		98.8	0.375
1986.4071	311.1	0.136	1988.2556 1	97.9	0.385
1987.2644	316.4	0.075	HR 6168 σ Her	149630	16341+4227
HR 5895 CHARA 51	141851		1977.1781	24.9	0.079
			1977.3284		
1987.2726	194.8	0.112		22.5	0.680
1988.2527	185.2	0.101		94.1	0.115
ADS 9812 Hu 153	141898	15519-1232	1987.2672 1	.88.8	0.102
1987.2726	70.2	0.428	1988.2529 1	82.9	0.080
1988.2556	70.4	0.416	ADS 10140 Bu 953 AB	150631	16367+6948
				01.6	
	142378		ADS 10149 CHARA 56 Ba	150379	0.310
1987.2726	121.0	0.563			18406+0412
ADS 9836 I 977	142456	15557-2645		88.9	0.212
1987.2726	175.3	0.237	ADS 10169 STF 2091	150903	16422+4112
1988,2556	178.3	0.229	1988.2556 3	18.1	0.574
ΗΙC 5953 δ Sco	143275		ADS 10189 Hu 664	151267	16437+5132
		16003-2237			
1987.2726	183.5	0.157			0.480
ADS 9909 STF 1998 Al	B 144069	16044-1122	1988.2556 3		0.475
1987.2726	34.9	0.872	ADS 10184 STF 2094 AB	151070	16442+2331
1988.2528	37.0		1986.4099	74.4	1.233
		0.322			1.228
ADS 9918 Fin 384 Aa	144362	16057-0617			
1988.2527	177.8	0.050		151236	16450+2928
ADS 9931 A 1798	144935	16079+1425	1986.4099		0.211
1986,4098	26.1	0.191	ADS 10229 STF 2106	152113	16511+0925
ADS 9935 Bu 355 AB	145246	16081+4524			0.593
		1 960			
1986.4044	281.2	0.269			0.603
1986.4099	281.6	0.262	1988.2501 1	79.1	0.611
1987.1644	281.0	0.267			
1988.2527	282.6	0.259			

æ

.

•

)

-

·

1

•

ADS 10230 STT 315	152127	16515+0113	+26°3022 Cou 498		17276+2624
1987.2672		0.277	1988.2583	47.5	0.416
1988.2501		0.304	ADS 10589 Ho 417	158755	17293+3758
1988.2528 +26°2915 Cou 492	335.5	0.301 16539+2547	1988.2583 ADS 10585 A 351	136.2	0.363 17294+2924
1988.2536	92.3	0.552	1988.2583	246.9	0.686
ADS 10253 A 350	152747	16540+2906	ADS 10598 STF 2173 1986.4100	158614 336.7	17303-0103 0.993
1988.2556 ADS 10257 B 323	146.7 152535	0.564 16550-2431	1988.2583	335.8	1.066
1988.2556	89.2	0.464	+19°3336 Cou 499	158956	17313+1901
ADS 10257 Bu 241	152655	16555-2134	1986.4100	59.5 159870	0.159 17335+5734
1987.2727 1988.2556		0.363 0.372	HR 6560 Mir 571 1986.4102	345.1	0.144
ADS 10279 STF 2118	153697	16563+6502	+45°2586 Cou 1595	160214	17365+4543
1986.4044		1.133	1988.2583	254.6 159857	0.441 **
1988.2529 ADS 10268 Hu 160	69.5 152995	1.127 16566+1014	ADS 10659 A 1156 1986.4100	355.9	17366+0722 0.091
1988.2556	205.4	0.457	+27°2853 Kui 83 AB		17370+2753
ADS 10276 A 1143 AB	153495	16566+5711	1988.2583	244.8	0.245
1988.2556 ADS 10265 Bu 1117	303.0 152849	0.475 165682309	1988.2610 ADS 10669 Bu 1121	244.9 160058	0.248 17374+1233
1987.2727	299.0	0.982	1988.2583	207.4	0.502
ADS 10287 Hu 162	153305	16593-1655 0.667	HR 6571 CHARA 63	160181	17375+2419
1988.2556 ADS 10294 STT 321	213.6 153499	16594+1419	1986.4100 1987.2700	65.0 58.9	0.101 0.097
1988.2557		0.582	1988.2611	51.0	0.087
ADS 10295 Bu 1298 AB 1988.2557	153475 124.2	16595+0942 0.427	ADS 10696 Bu 631	160438	17399-0039
ADS 10312 STF 2114	153914	17019+0827	1986.4100 1988.2610	129.4 118.9	0.114 0.133
1986.4045		1.294	+21°3188 Cou 114	160935	17418+2130
1987.2727 ADS 10340 A 1146	188.1 155090	1.294 170526947	1986.4045	32.7	0.289
1988.2556		0.379	1987.2700	32.7 161258	0.284
ADS 10345 STF 2130 A	B 154905	17054+5427	ADS 10743 Hu 1285 1986.4045	222.1	17436+2237 0.562
1986.4044 +38°2885 Cou 1291	37.4 155039	2.122 17075+3810	1988.2583	221.4	0.563
+38°2885 Cou 1291 1987.2673	234.9	0.116	ADS 10794 Hu 924		17449+6628
ADS 10360 Hu 1176 AB	155103	17081+3555	1988.2583 ADS 10773 Ho 70	206.1 161675	0.301 17456+3032
1986.4099		0.137	1988.2583	93.3	0.431
1987.2673 1989.2531	99.0 82.2	0.127 0.104	ADS 10800 A 697	162051	17471+4215
HR 6396 5 Dra	155763	17088+6543	1988.2583 HR 6641 CHARA 64	116.7 162132	0.535 17471+4737
1987.2673	22.9	0.095	1987.2700	116.0	0.170
-19 [°] 4547 McA 46 1987.2699	155095 111.8	17103-1926 0.132	1988.2611 ADS 10796 Hu 1288	117.5 161819	0.179 17472+1502
+49°2600 Cou 1775		17115+4914	1988.2583	161819	0.425
1988.2557	81.5	0.459	ADS 10795 STF 2215	161833	17472+1742
+45°2505 Kui 79 AB 1986,4045	155876 226.3	17121+4544 1.109	1986.4045	265.2	0.561
1988.2557	209.5	0.920	1987.2699 1988.2583	265.3 265.0	0.569 0.549
ADS 10418 CHARA 130	Aa 156014	17146+1423	ADS 10814 Hu 1182		17486+3536
1986.4100 ADS 10464 Hu 669	85.8 234420	0.192 17182+4952	1988.2583 ADS 10815 J 754 AB	324.6	0.603 17490+2450
1988.2557	81.2	0.834	1988.2583	49.3	1.801
ADS 10469 Swi	157103		ADS 10822 A 2187	162262	17501+6214
1988.2557 ADS 10459 Bu 628	166.6	0.513 17184+3239	1988.2557 ADS 10828 STT 337	322.1 162405	0.482 17505+0715
1986.4045	283.1	0.476	1986.4045	177.1	0.413
1988.2557	281.1	0.470	1988.2583	176.5	0.420
ADS 10495 A 232 1988.2557	157256 117.3	17212+2542 0.461	ADS 10848 Hu 1183 1988.2583	188.4	17512+3821 0.449
HR 6469 McA 47	157482	17217+3958	ADS 10846 A 1164	162670	
1987.2673	140.9	0.080	1986.4045	42.8	0.373
1988.2529 +23°3092 Cou 415	157.5 157392	0.107 17221+2310	1988.2557 ADS 10850 STT 338 AB	42.5 162734	0.376 17520+1520
+23 3092 000 415	25.6	0.124	1986.4045	351.3	0.833
ADS 10504 Ho 414 AB	157429	17222+2605	ADS 10866 AC 8	163032	17528+2941
1988.2557 +21°3107 Cou 201 AB	100.8	0.798	1986.4102 +42°2942 Cou 1599	273.9	0.202 17530+4212
+21°3107 Cou 201 AB 1988.2557	157430 255.0	17224+2056 0.545	1988.2583	127.4	0.603
ADS 10523 STF 2163		17233+4209	ADS 11006 STT 349	167101	17530+8354
1988.2557	80.1	1.470	1986.4047	46.1	0.401
ADS 10531 Hu 1179 1986.4102	157853 285.9	17241+3834 0.092	1987.2700 1988.2584	44.5 44.8	0.395 0.398
1987.2673	285.9	0.103	ADS 10871 A 235	163077	
1988.2529	284.5	0.117	1986.4045	81.4	0.403
1988.2610	284.1	0.118	1988.2583	83.9	0.401

525

ţ

•

Ì

-

 :

TABLE II. (continued)

HR 3676 Fin 381 163151 17543+1108	ADS 11454 STF 2339 AB,C- 171365 18338+1744
1986.4100 257.9 0.099 1987.4700 281.8 0.099	1987.7562 276.1 1.667
1987.2700 231.8 0.082 1988.2611 190.5 0.063	ADS 11454 Hu 322 AB 171365 18338+1744 1987.7562 89.0 0.225
+41°2928 Cou 1601 As 17556+4108	ADS 11468 A 1377 AB 171779 18340+5221
1986.4045 66.3 0.533 1988.2584 64.6 0.535	1987.7563 102.2 0.262 HR 6977 CHARA 74 171623 18352+1812
+25°3381 Cou 503 163529 17556+2508	1987.2728 26.9 0.149
1986.4045 90.4 0.368	1987.7537 24.7 0.154 HR 6984 CHARA 75 171780 18352+3427
1988.2584 92.2 0.362 ADS 10905 McA 49 Aa 163640 17564+1820	1987.7537 79.3 0.239
1988.2610 67.3 0.085	ADS 11479 STT 359 171745 18355+2335 1986.4048 9.4 0.659
ADS 10905 STF 2245 Aa,B 163640 17564+1820 1987.2755 291.9 2.627	1987.7562 8.8 0.666
ADS 10912 STF 2244 163624 17571+0004	+21°3492 Cou 206 342628 18363+2143
1986.4100 92.7 0.343 HR 6697 McA 50 163840 17572+2400	1987.7590 127.1 0.105 ADS 11496 CHARA 76 Aa 171834 18367+0640
1988.2612 336.6 0.085	1987.2728 91.4 0.159
ADS 11005 STF 2262 AB 164764 18030-0811 1988.2584 279.4 1.861	ADS 11502 Hu 247 171929 18370+1016 1987.7562 13.2 0.473
ADS 11060 STT 341 AB 165590 18059+2126	ADS 11520 A 88 AB 172088 18384-0312
1986.4047 91.3 0.494 1987.2700 91.3 0.497	1987.2728 322.1 0.135 1987.7589 313.4 0.128
1987.2700 91.3 0.497 ADS 11071 Hu 1186 18063+3824	ADS 11530 Ho 87 AB 172246 18386+1632
1986.4047 104.0 0.436	1987.7535 45.8 0.279 ADS 11558 STF 2368 AB 172712 18389+5221
1988.2584 104.4 0.423 ADS 11080 STT 524 165886 18075+1939	1986.4048 322.2 1.921
1986.4047 223.5 0.314	HR 7017 Cou 1607 172671 18395+4056 1987.7537 115.2 0.174
1987.2700 221.8 0.321 1988.2584 222.0 0.322	1987.7537 115.2 0.174 ADS 11566 Ho 437 AB 172729 18406+3138
ADS 11089 CHARA 67 Aa 166045 18078+2606	1986.4048 131.8 0.418
1987.7617 112.4 0.127 ADS 11111 STF 2281 AB 166233 18095+0401	1987.7562 131.8 0.411 ADS 11574 A 2988 172743 18410+2450
1986.4047 318.4 0.382	1987.7537 166.1 0.121
1938.2584 316.2 0.392 ADS 11128 Hu 674 166820 18097+5024	ADS 11579 STF 2357 AB 172865 18413+3018 1987.7537 89.0 0.160
ADS 11128 Hu 674 166820 18097+5024 1986.4047 226.8 0.722	1987.7590 89.4 0.164
1988.2584 225.9 0.727	ADS 11593 B 2546 Aa 173087 18421+3445 1987.7537 306.5 0.144
ADS 11123 STF 2289 166479 18102+1628 1986.4047 221.9 1.219	+18°3786 Cou 816 229303 18433+1847
1988.2584 122.0 1.207	1987.7562 300.7 0.251 ADS 11640 Fin 332 Aab 173495 18455+0530
ADS 11144 A 233 166822 18113+2519 1988.2584 77.1 0.615	1987.7618 129.2 0.117
ADS 11149 B 2545 AB 166988 18117+3327	ADS 11640 Fin 332 Bab 173495 18455+0530 1987.7618 137.8 0.146
1986.4047 66.0 0.102 1987.7617 69.6 0.096	1987.7618 137.8 0.146 ADS 11683 Hu 584 229505 18475+1537
ADS 11170 Bu 1091 18126+3836	1987.7562 13.6 0.401 ADS 11698 Bu 971 AB 174343 18475+4926
1988.2584 326.8 0.602 -20°5068 McA 51 167570 18167-2032	ADS 11698 Bu 971 AB 174343 18475+4926 1986.4048 37.2 0.325
-20°5068 McA 51 167570 18167-2032 1987.2700 134.1 0.258	ADS 11637 Hu 252 173923 18477+0916
HR 6851 CHARA 68 168199 18180+1347	1987.7562 135.4 0.461 HR 7090 Hei 72 174366 18477+4905
1987.2728 39.7 0.058 1987.7617 41.9 0.058	1986.4048 217.5 0.51 5
1988.2612 42.8 C.057	1987.7562 218.3 0.523 -18°5070 Rst 3198 173805 18480-1814
ADS 11311 STT 353 170000 18207+7120 1986.4047 277.4 0.357	1988.2584 155.4 0.404
HR 6927 χ Dra 170153 18208+7245	ADS 11709 Hu 326 343145 18486+2330 1987,7590 176.7 0.096
1987.7617 226.4 0.129 ADS 11324 AC 11 169493 18249-0135	1987.7590 176.7 0.096 HR 7109 CHARA 80 174853 1852%
1986.4047 356.3 0.868	1987.7592 87.0 0.063 ADS 11897 STF 2438 176560 18575+5814
ADS 11344 Hu 66 AB 170109 18253+4845 1986.4047 249.6 0.318	ADS 11897 STF 2438 176560 18575+5814 1986.4048 3.0 0.841
1987.7562 248.2 0.311	1987.7563 2.4 0.844
ADS 11344 STT 351 AC 170109 18253+4845	ADS 11884 CHARA 82 Aa 176155 18582+1722 1987.7592 182.2 0.233
1986.4047 18.4 0.705 1987.7562 18.2 0.708	HR 7166 Kui 89 176162 18594—1250
ADS 11339 Bu 1203 169725 18261+0046	1987.7592 294.9 0.129 +39 ⁰ 3605 Cou 1933 176869 19006+3951
1986.4047 145.5 0.415 HR 6928 CHARA 71 170200 18280+0612	1987,7563 200.1 0.498
1987.2728 114.9 0.080	ADS 12033 Hu 940 19055+3352
1987.7535 113.2 0.075 1987.7589 112.9 0.082	1987.7563 202.7 0.562 +35°3478 Cou 1614 19060+3549
ADS 11399 CHARA 72 Aa 170580 18301+0404	1987.7563 126.3 0.505
1987.2728 178.1 0.152	HR 7262 <i>L</i> Lyr 178475 12073+3606 1987.7590 39.4 0.079
ADS 11458 ilo 86	HR 7263 CHARA 83 178476 19081+2142
	1987.7590 3.2 0.213

and the second second second second second second second second second second second second second second second

 526

L

ADS 12079 Ho 98 AB 178617 19081+2705	ADS 14126 STT 410 AB 197018 20396+4036
1987.7563 86.2 0.263	1986.8856 6.1 0.841
+12 [°] 3818 McA 54 178452 19083+1215 1987.7565 179.8 0.165	1986.8966 6.3 0.841 ADS 14121 WCK Aa 196867 20397+1556
1987.7592 183.6 0.170	1986.8965 269.7 0.160
+10°3801 CHARA 140 178717 19094+1014	1987.7620 257.1 0.178
1985.4927 29.2 0.250 HR 7362 Fin 327 182369 19253-2431	ADS 14148 A 2795 197075 20406+2156 1986.8965 252.1 0.245
1988.2612 90.5 0.087	HP. 7922 McA 62 197226 20410+3905
ADS 12540 McA 55 Aa 183912 19307+2758	1987.7620 100.8 0.055 +34°4117 Cou 1963 AB 20411+3516
1986.8883 163.2 0.410 1987.7618 161.2 0.407	+34°4117 Cou 1963 AB 20411+3516 1986.8856 3.7 0.257
+58°1929 McA 56 184467 19311+5835	ADS 14238 Bu 64 AB 197683 20451+1244
1986.8883 128.5 0.065	1987.7620 165.5 0.653 ADS 14296 STT 413 Aa,B 198183 20474+3629
1987.7618 172.7 0.067 ADS 12567 A 713 184242 19313+4729	1986.8856 14.7 0.852
1986.4048 272.6 0.354	ADS 14306 Bu 268 198253 20476+4204
HR 7436 CHARA 87 184603 19336+3846	1986.8856 202.3 0.427 - ADS 14379 Ho 144 198810 20523+2008
1986.8883 177.8 0.141 1987.7618 183.2 0.139	1986.8965 345.3 0.335
HR 7441 9 Cyg 184759 19348+2928	ADS 14404 Ho 146 199071 20536+3514 1987.7566 50.5 0.361
1987.7620 12.1 0.043 ADS 12973 AGC 11 AB 187362 19489+1908	ADS 14412 A 751 199306 20538+5919
1987.7620 171.7 0.221	1986.8966 139.3 0.147
+29°3867 Cou 1473 333412 20027+2939	1987.7565 135.7 0.154 ADS 14493 A 756 AB 199937 20577+5850
1986.8855 355.4 0.501 ADS 13312 McA 59 Aa 190429 20035+3602	1986.8856 213.6 0.566
1986.8855 55.4 0.206	1987.7565 213.9 0.565
HR 7684 CHARA 91 190781 20045+4814	ADS 14504 STF 2741 AB 199955 20586+5028 1987.7565 26.1 1.944
1986.8855 205.7 0.352 HR 7677 CHARA 92 190590 20050+2313	ADS 14499 STF 2737 AB 199766 20591+0418
1986.8884 70.6 0.039	1986.8910 285.3 0.977
ADS 13384 Bu 428 190887 20067+1256 1985.4928 353.7 0.789	1987.7566 285.7 0.971 ADS 14505 STT 424 AB 199839 20593+1534
ADS 13564 A 1204 192559 20143+3129	1986.8910 306.3 0.527
1986.8855 139.7 0.359	1987.7566 308.0 0.527 ADS 14526 McA 65 Aa 200120 20598+4732
ADS 13572 STT 403 AB 192659 20143+4206 1986.8855 170.4 0.931	1986.8910 48 .3 0.207
ADS 13611 A 2095 AB 192911 20156+4339	1987.7565 47.4 0.207
1987.7537 158.1 0.201 HR 7755 CHARA 93 192983 20157+5014	HR 8038 Kui 102 199942 21002+0731 1986.8910 46.9 0.324
1987.7537 186.5 0.165	1987.7566 44.1 0.329
HR 7744 McA 60 Aa,B 192806 20158+2749	ADS 14543 A 1438 200222 21010+4000
1986.3884 142.4 0.274 1987.7538 141.9 0.279	1987.7566 248.4 0.209 ADS 14575 STF 2751 200614 21022+5640
ADS 13660 BAR 11 AB 193238 20180+3311	1987.7565 354.0 1.633
1986.8855 197.3 0.383 ADS 13672 CHARA 96 As 193322 20181+4044	ADS 14617 Hu 590 200927 21048+4902 1987.7565 86.2 0.246
ADS 13672 CHARA 96 Az 193322 20181+{044 1986.8884 198.7 0.049	+39°4427 Cou 2135 200890 21050+4021
ADS 13686 A 1425 AB 193443 20189+3817	1987.7566 355.9 0.216
1987.7537 266.1 0.139 ADS 13728 A 1427 AB 193702 20202+3924	ADS 14634 Hu 765 BC 201267 21055+6210 1987.7565 30.5 0.754
1986.8855 109.3 0.332	ADS 14644 Hu 691 201155 21067+3455
+19°4380 Cou 327 AB 193797 20216+1930	1987.7565 312.8 0.346 ADS 14666 STT 527 201221 21080⋅⊦0509
1987.7538 67.1 0.065 ADS 13777 A 288 194113 20232+2052	1986.8910 134.4 0.232
1987.7538 223.6 0.117	1987.7566 133.4 0.237
ADS 13820 A 1428 194523 20239+5232 1986.8855 209.6 0.323	+28°4003 Cott 1332 21091+2922 1987.7566 18.7 0.211
ADS 13834 A 290 194540 20249+3404	+39°4463 Cou 1968 21098+4013
1987.7538 131.8 0.448	1987.7566 97.9 0.179
+35°4115 Cou 2130 Aa 194760 20262+3547 1987.7537 56.4 0.153	ADS 14749 STF 2780 Aa,B 202214 21118+6000 1986.8856 215.3 1.052
+33°3914 Cou 1956 195102 20281+3353	1987.7620 215.5 1.054
1987.7538 236.6 0.334	ADS 14749 McA 67 Aa 202214 21118+6000
ADS 13944 A 1675 195481 20311+1548 1987.7539 189.6 0.070	1986.8856 29.7 0.050 1987.7620 25.4 0.057
ADS 13946 CHARA 99 Az 195482 20312+1116	ADS 14761 Hu 767 202128 21135+1559
1987.7620 126.6 0.350 ADS 13939 Bu 671 196069 20317+6227	1986.8910 75.1 0.096
1986.8855 318.6 0.485	1987.7621 85.4 0.103 ADS 14783 H 48 202582 21137+6425
+49°3310 McA 61 196089 20331+4950	1986.8856 257.7 0.346
1987.7620 149.6 0.033	ADS 14784 STF 2783 202519 21141+5818 1986.8856 4.8 0.757
1986.8966 96.2 0.282	1986.8856 . 4.8 0.767 1987.7565 4.9 0.765
ADS 14073 Bu 151 AB 196524 20375+1436	
1987.7620 136.0 0.200	

TABLE II. (continued)

•

F

j

j

¢

.

استرجا والمتعادية المتعادية المتعادية المتعادية والمربية التقادية				-
ADS 14773 STT 535 AB	202275	21145+1001	ADS 15530 Hu 774 209103 21598+4908	
1986.8910	211.1	0.112	1987.7593 145.1 0.178	
1987.7592	111.5	0.032	ADS 15578 Bu 694 AB 209515 22030+4439	
1987.7621 ADS 14798 A 1692	104.2 202642	0.034 21152+5531	1986.8857 4.4 0.960 ADS 15599 Bu 696 AB 209622 22045+1552	
1987.7565	157.6	0.326	1987.7594 5.5 0.150	
ADS 14624 A 401	202810		ADS 15u15 Hu 977 22048+6539	
1987.7566	142.2	0.424	1986.8857 312.3 0.278	
+30°4393 Cou 1183 1987.7540	202882		ADS 15613 A 1453 22054+3858 1986.8856 325.3 0.527	
ADS 14839 Bu 163 AB	25.6 202908	0.229 21187+1134	ADS 15633 A 183 22059+4522	
1986.8910	76.4	0.061	1986.8857 244.8 0.735	
1987.7593	58.0	0.056	+25°4677 Cou 537 22077+2622	
ADS 14864 STF 2790 A			1986.8856 41.3 0.166 ADS 15670 STF 2872 BC 210432 22086+5918	
1986.8911 1987.7593	118.6 120.0	0.103 0.100	1986.8857 301.4 0.830	
ADS 14876 A 1695	203379		ADS 15726 A 625 AB 210875 22117+5743	
1986.8856	198.4	0.475	1986.8857 73.9 0.501	
ADS 14879 A 295	203302		ADS 15748 A 626 239892 22127+6013 1986.8857 101.9 0.748	
1986.8856 ADS 14893 A 617	243.7 203345	0.360 21214+1021	ADS 15746 Hu 695 22129+5058	
1986.8910	108.2	0.121	1986.8857 15.1 0.837	
1987.7539	100.8	0.162	+43°4153 Cou 1829 22131+4437	
1987.7593	98.7	0.163	ADS 15756 Bu 991 211113 22136+5234	
ADS 14044 A 765 AB 1986.8856	203938 28.1	21238+4710 0.443	1986.8857 137.9 0.682	
ADS 14954 Bu 164 AB	203943		ADS 15794 Ho 180 211405 22158+4354	
1987.7539	207.6	0.163	1986.8857 237.0 0.755	
1987.7593 +28°4085 Cou 940	207.4	0.161	+16°4707 Hei 192 211542 22175+1649 1987.7594 145.2 0.140	
+28°4085 Cou 940 1986.8856	204051 274.7	21253+2928 0.331	ADS 15846 A 185 22201+4625	
1987.7539	274.8	0.337	1986.8857 313.0 0.779	
ADS 14960 A 2289 AB	203993	21255+0203	ADS 15867 A 411 212153 22214+4148	
1987.7539	22.4	0.088	1986.8857 223.2 9.284 +42°4396 Cou 1986 22263+4308	
HR 8238 β Cep Aa 1986.8910	205021 52.5		1986.8857 10.8 0.448	
1987.7593	55.1	0.100 0.090	+39°4837 Cou 1642 212900 22268+4034	
ADS 15058 A 771	205085	21315+4817	1987.7594 75.9 0.155	
1986.8911 UP 1986.8911	54.8	0.058	ADS 16011 Hu 981 213530 22306+6138 1986.8857 221.4 0.319	
HR 8245 CHARA 102 1986.8911	205314 84.8	21329+4959 0.048	+17°4759 Cou 234 213392 22307+1758	
1987.7593	100.9	0.047	1987.7594 317.5 0.153	
ADS 15115 Hu 371	205541	21354+2427	+53°2911 Kui 112 Aa 22327+5347	
1987.7539 ADS 15131 Ho 463	300.0 205731	0.301	1986.8857 231.5 0.609 ADS 16057 STF 2924 AB 213973 22329+6954	
1986.8856	174.9	21362+4253 0.455	1986.8857 93.4 0.392	
ADS 15176 Bu 1212 AB	206058	21395-0003	ADS 16072 Hu 983 214051 22339+6550	
1987.7539	254.5	0.445	1986.8911 220.8 0.068 ADS 16073 A 1468 213990 22342+5405	
+08°4714 CHARA 105 1987.7539	206155 97.2	21400+0911	ADS 16073 A 1468 213990 22342+5405 1986.8911 254.1 0.274	
ADS 15236 Hu 280	206512	0.257 21423+0554	ADS 16098 A 1470 214222 22357+5312	
1987.7539	141.5	0.204	1936.8911 300.8 0.103	
HR 83C0 Kui 108	206644	21425+4106	ADS 16095 CHARA 112 Aa 214168 22359+3938 1986.8885 128.7 0.044	
1986.8911	21.0	0.199	1986.8885 128.7 0.044 1987.7594 134.0 0.045	
1987.7540 ADS 15251 Bu 688 AB	16.2 206656	0.202 21426+4103	ADS 16111 Bu 1092 AB 214511 22361+7252	
1986.8856	203.9	0.348	1986.8911 235.9 0.221	
1987.7540	203.5	0.354	HR 8617 CHARA 114 214558 22383+4511 1986.8911 126.6 0.110	
ADS 15281 Bu 989 AB 1986.8938	206901 115.3	21446+2539 0.269	1986.8911 126.6 0.110 1987.7622 133.7 0.104	
1987.7593	109.7	0.261	ADS 16138 Ho 295 214608 22387+4418	
ADS 15315 Hu 970	207369	21455+6745	1986.8911 334.5 0.321	
1986.8857	273.9	0.359	+ 80°0731 McA 72 215319 22394+8123	
ADS 15339 Hu 971 AB 1986.8857	207577 200:2	21478+6203 0.305	1986.8911 98.7 0.152 ADS 16164 Ho 188 214807 22402+3731	
+34°4540 Cou 1484	207663		1986.8885 203.3 0.341	
1986.8856	354.0	0.360	HR 8629 Kui 114 214810 22408-0333	
HR 8344 Cou 14	207652	21502+1718	1986.8884 125.5 0.236	
1986.8938	53.3 50.7	0.311	1987.7622 126.4 0.264 ADS 16173 Ho 296 AB 214850 22408+1432	
1987.7621 ADS 15375 Ho 170	59.7 207782	0.272 21505+3925	1986.8884 82.0 0.320	
1986.8856	239.6	0.317	1987.7622 77.3 0.369	
ADS 15435 A 620	208341	21540+4403	ADS 16214 STT 476 AB 215242 22431+4709	
1986.8856 ADS 15400 Bu 275	278.4 208905	0.342	1986.8911 304.8 0.497 ADS 16214 Hu 91 BC 215242 22431+4709	
ADS 15499 Bu 275 1986.8857	171.1	21573+6117 0.422	1986.8911 51.4 0.046	
10000000				
		······		

528

Į.

×

•

.

57

77.0 . 17 Mart

A start and a start and a start a start a start a start a start a start a start a start a start a start a start

TABLE II.	(continued)
-----------	-------------

وينهيد بمغناك ويروب كالمنصب فسنت المتباد والتقار المتعارك المتعا		ويعامينا فأستنا فتشتر وجالات التشارين ومسالا فتقفص				
ADS 16249 Hu 783		590 22453+5128	ADS 16760 A 1485		220869	
1986.8911	182.6	0.204	1986.8912	212.2		0.575
ADS 16314 Ho 482 AB		285 22514+2624	1987.7567	212.8		0.558
1986.8884 HR 8704 McA 73	32.6	0.378	ADS 16800 Bu 1266 AB		221264	23305+3050
		494 22535-1137	1986.8885	77.1		0.261
1986.8884 ADS 16380 A 416	289.2	0.079	1987.7567	75.1		0.259
1986.8911	~ ~ ~ ~	22563+4247	+18°5163 Cou 340			23322+1942
	342.7	0.383	1987.7567	61.2		0.262
		675 23019+4219	ADS 16819 Hu 298		221445	23322+0705
1986.8911	353.4	0.258	1986.8885	166.8		0.119
1987.7622	352.7	0.249	+22°4860 Cou 144			23339+2342
ADS 16457 A 194		712 23020+4800	1987.7567	55.2		0.338
1986.8912	291.3	0.140	ADS 16836 Bu 720		221673	
+63°1917 Mir 69	217	848 23024+6413	1986.8939	264.0		0.523
1986.8914	116.6	0.287	1987,7567	264.9		0.524
ADS 16467 Bu 1147 AB	217	782 23026+4245	ADS 16858 Bu 721 AB	\$04.5	221925	23363-0707
1986.8912	340.2	0.398	1986.8912	134.4		0.251
ADS 16497 A 417 AB	218	060 23052-0742	ADS 16873 Fox 102 AB	194.4	222068	
1986.8912	31.8	0.193				23374+0737
1987.7622	41.4	0.202	1987.7566 ADS 16877 STT 500 AB	311.7		0.232
ADS 16505 A 196		196 23055+4643			222109	23375+4426
1986.8912	314.7	0.473	1986.8914	358.9		0.494
ADS 16518 Bu 180 AB		439 23072+6049	1987.7567	359.6		0.495
1987.7568	143.3	0.577	ADS 16904 A 643		222326	23392+4543
ADS 16530 Hu 994		537 23078+6338	1986.8914	156.4		0.225
1986.8914	309.7		1987.7540	155.2		0.229
1987.7568		0.215	+45°4301 Mir 4		222516	23412+4613
HR 8817 Ret 3320	310.4	0.220	1986.8885	316.1		0.105
1986.8912		640 23099-2227	ADS 16928 Bu 858 AB		222529	23413+3234
	305.9	0.246	1987.7568	229.4		0.828
ADS 16561 Bu 385 AB		767 23103+3228	HR 9003 McA 75 Aab		223047	23460+4625
1986.8912	91.5	0.644	1987.7540	101.9		0.296
ADS 16576 Ho 197 AB		917 23115+3813	1987.7622	102.9		0.299
	313.2	0.311	ADS 16995 Bar 19	102.3	223139	23470+0515
1987.7567	313.4	0.316	1987.7568		440109	
ADS 16591 A 2298	219	018 23126+0242		0.4		1.077
1986.8912	96.5	0.129				23485+3608
ADS 16610 A 1481	-	23137+3931	1987.7540	95.8		0.194
1987.7567	170.8	0.198	ADS 17019 B 2547 AB		223331	23485+3617
ADS 16621 A 200		334 23147+4116	1986.8885	360.0		0.236
1987.7567	79.9	0.546	1987.7510	1.5		0.234
+00°4982 CHARA 141	219		ADS 17020 STT 507 AB		223358	23486+6453
1986.8912	38.5	0.061	1986.8914	307.6		0.732
ADS 16638 Bu 992	219		1987.7568	307.9		0.724
1986.8914	41.1		ADS 17030 A 424		223486	23498+2740
		0.272	1986.8885	113.1		0.169
1987.7568	37.6	0.275	1987.7542	113.8		0.168
ADS 16650 Hu 400	219		ADS 17036 A 792	110.0		23505+4703
	122.9	0.344	1987.7540	265.4		0.702
1987.7567	122.0	0.344	ADS 17039 A 793	200.4		23506+4705
+27°4530 Cou 439	219	963 23199+2845	1986.8914	129.3		0.126
1986.8912	214.2	0.216	ADS 17050 STT 510 AB	145.3	223672	23516+4205
	218.9	0.219		905 9		
+33°4690 Cou 742	219		1986.8914	305.3		0.548
1986.8912	26.8	0.268	1987.7540	305.5	*****	0.551
1987.7567	28.0	0.270	HR 9041 Fin 359		223825	23529-0313
+15°4809 Hei 88	220		1986.8885	351.1		0.040
	213.8		1987.7622	322.8		0.042
1987.7567 ADS 16708 Hu 295	213.8 220	0.250	+42°4792 Cou 1498		224167	23557+4318
			1986.8825	36.8		0.174
	113.6	0.253	1987.7540	37.0		0.179
-34°4915 Cou 1346		23239+3456	ADS 17104 Hu 500		224219	23561+2327
1987.7567	84.8	0.232	1987.7542	89.4		0.171
ADS 16731 STT 495	220	562 23241+5732	ADS 17111 A 2100		224315	23568+0443
1986.8912	119.8	0.307	1986.8885	155.6		0.132
	120.6	0.310	-14°6588 Rst 4136 AB			
ADS 16748 Ho 489 AB	220				224512	
	226.6	0.541	1986.8912	22.3		0.178
	226.2	0.541	ADS 17151 A 1498		224646	23594+5441
+22°4835 Cou 338	220.2 220		1986.8914	83.9		0.388
1986.8912	41.1	0.105	1987.7540	84.3		0,389

. . . .

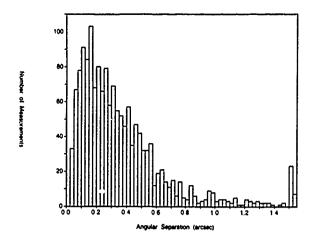


FIG. 2. The distribution of measured angular separations from Table II is shown. Separations range from 0.031 to 2.91 arcsec, with mean and median values of 0.372 and 0.285 arcsec, respectively, for the 1550 measures of 1006 systems.

Ì

II is 0.372 arcsec, while the median value is 0.285 arcsec. A histogram of the measured angular separations is shown in Fig. 2. The limiting magnitude of our system is currently determined by the detector properties and by the thresholding properties of the hardwired vector autocorrelator (VAC). The microchannel plate intensifier is showing a very strong loss of sensitivity over the region typically illuminated by speckle patterns, a degradation amounting to nearly a factor of 3 decrease in sensitivity relative to the edge of the tube. The CCD itself shows a rather strong fixed pattern that correlates randomly with each event tagged by the VAC so that the noise contribution to autocorrelograms is increased and, in the faint limit, prohibits application of this detector in a sparse, single photon domain. We expect to replace the detector during 1989 and to immediately retire the VAC in favor of a commercially available frame-grabber board operating in conjunction with efficient software on a PC/AT type computer.

As opportunities arose from well-observed portions of the primary program, we obtained data for the 293 stars from *The Bright Star Catalogue* (Hoffleit 1982) that are listed in

								-
HR	HR	HR	HR	HR	HR	HR	HR	
1	135	4052	4184	4351	4629	5388	5581	
4	144	4054	4187	4357	4632*	5392	5588	
7	146	4057	4191	4358	4633	5394	5589	
8	153	4062	4195	4359	4641	5402	5596	
15	603	4064	4202	4362 -	4642*	5405	5608	
17	620	4067	4203	4366	4643	5411	5609	
19	1593	4070	4215	4371	4650	5414	6039	
21	1594	4072	4232	4378	4654	5415	6047	
26	1603	4075	4235	4380*	4659	5416	6057	
27	1622	4077	4236	4381	4663	5420	6065	
28	1623	4078	4241	4386	4666	5422	6068	
36	1624	4079	4243	4528*	4667	5423	6087	
38	1644	4081	4246	4533	4672	5424	6093	
39	1647	4084	4248	4535	4673	5430	6095	
40†	1668	4085	4256	4536	4676	5434	6107	
41	1675 .	4088	4258	4543	5317	5436	6108	
44	1678	4090	4259	4545	5330	5437	6111	
45	4004	4096	4260	4555	5331	5441	6152	
49	4006	4097	4265	4559	5333	5442	6154	
50	4008	4103	4267	4560†	5335	5445	6159	
52	4012	4106	4269	4561	5343	5448	6176	
53	4014	4108	4270	4562	5345	5451	9078	
56	4016	4113	4277	4564	5346	5452	9079	
60	4021	4121	4278	4566	5347	5464	9080	
62	4024	4124	4281	4569	5350	5467	9083	
63*	4026	4126	4285	4572	5351	5468	9085	
65	4027	4127	4288	4574	5352	5479	9086	
70	4030	4131	4294	4575	5360	5492	9092	
75	4032	4137	4300	4580	5363	5493	9093	
76	4035	4141	4309	4581	5365	5510	9097*	
82	4039	4150	4310	4584	5369	5529	9100	
93	4041	4165	4319	4585	5370	5533	9105°	
96	4044	4166	4322	4593	5372 *	5537	9109	
104	4046	4168	4332	4594	5373	5541	9110	
113	4047	4176	4333	4602	5374	5552		
124	4048	4178	4341	4610	5384 -	5563		
128	4051	4181	4345	4626	5387	5569		

TABLE III. Bright stars inspected for duplicity.

Stars with HR numbers less than 2000 or greater than 9000 were observed during November 1986, the remaining Bright Stars were observed during April 1987. Asterisks indicate those stars for which new companions have been discovered, as reported in Table I. Daggers indicate known binaries, listed in Table II under their ADS designations (HR 40 = ADS 161, HR 4560 = ADS 8347).

531 MCALISTER ET AL.: BINARY STARS

Table III. We are continuing the survey of bright stars begun in Paper I as observing time permits at the Mayall telescope and by follow-up runs at the 3.6 m Canada-France-Hawaii telescope on Mauna Kea. The second CFHT run occurred in February-March 1988; the results will be published as a continuation to Paper I. Our approach in this long-term effort is to use only times of good seeing that are available, after the primary programs have been observed at Kitt Peak, and to employ the intermediate magnification of 0.0088 arcsec per pixel along with the Strömgren y bandpass. At the Mayall telescope, the survey is defined by a rectangular box centered upon the bright star with a north-south dimension of 2.25 arcsec and an east-west dimension of 1.13 arcsec. As in Paper I, we consider our approach capable of detecting angular separations down to the diffraction limit of 0.035 arcsec. with the further condition that the magnitude difference does not exceed about 2 mag. Eight new binary stars, for which identifications are listed in Table I, were discovered in the sample of stars listed in Table III. The lower discovery frequency here compared with the results from the CFHT in Paper I is consistent with the prevalence of evolved stars over dwarfs in this newest sample, in which no preference was made for dwarfs, in constrast to the selection of candidates in Paper I.

We wish to thank KPNO telescope operators John Booth, Dave Chamberlain, Hal Halbedel, Dean Hudek, Don Martin, and George Will for their wonderful efficiency in keeping the observing pace a rapid one. We are grateful to Charles Worley for his continued interest and encouragement in this work. Research in speckle interferometry at Georgia State University is supported by grants from the National Science Foundation (AST 83-14148 and AST 86-13095) and from the Air Force Office of Scientific Research (AFOSR 81-0161 and AFOSR 86-0134). O.G.F. also acknowledges the partial support of the Space Telescope Science Institute through STScI grant no. CW-0005-85, which also provided funding for his participation in the earlier papers in this series. We are grateful to Lars Furenlid for providing us with transmission curves for our interference filters.

REFERENCES

Bagnuolo, W. G., and Sowell, J. R. (1988). Astron. J. 96, 1056.
Hoffleit, D. (1982). The Bright Star Catalogue (Yale University Observatory, New Hayen).

Lu, P. K., Demarque, P., van Altena, W., McAlister, H., and Hartkopf, W. (1987). Astron. J. 94, 1318 (Paper III).

McAlister, H. A. (1977). Astrophys. J. 215, 159.

McAlister, H. A., and Hartkopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy Contrib. No. 2 (CHARA, Georgia State University, Atlanta).

- McAlister, H. A., Hartkopf, W. I., Bagnuolo, W. G., Sowell, J. R., Franz, O. G., and Evans, D. S. (1988). Astron. J. 96, 1431.
- McAlister, H. A., Hartkopf, W. I., Gaston, B. J., Hendry, E. M., and Fekel, F. C. (1984). Astrophys. J. Suppl. 54, 251.
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., Shara, M. M., and Franz, O. G. (1987a). Astron. J. 93, 183 (Paper I).
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J, and Franz, O. G. (1987b) Astron. J. 93, 688 (Paper II).

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. I. THE HYADES BINARY FINSEN 342 (70 TAURI)

HAROLD A. MCALISTER,^{a)} WILLIAM I. HARTKOPF,^{a)} WILLIAM G. BAGNUOLO, JR., AND JAMES R. SOWELL Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303

OTTO G. FRANZ^{a)}

Lowell Observatory, Flagstaff, Arizona 86001

DAVID S. EVANS

Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, Texas 78712 Received 28 April 1988; revised 9 June 1988

ABSTRACT

We test the conclusion of Peterson and Solensky (1987) that the motion of the Hyades binary Finsen 342 is best represented by a 6 yr eccentric orbit rather than by a 13 yr circular orbit assumed in most previous analyses. Through the digital processing of four sets of speckle observations obtained between 1975 and 1986 to unambiguously determine the quadrant of the secondary star at those epochs, we show conclusively that the orbit is indeed the short-period one, with a period of 6.264 yr. A new orbital solution, based solely upon speckle coverage of two revolutions, is shown to give an overall better fit to all the available visual, occultation, and interferometric data than any previously determined orbit for Fin 342, even though we exclude visual and occultation observations from the orbital solution. An initial estimate of the magnitude difference is determined from the speckle observations.

I. INTRODUCTION

The orbit of the Hyades binary star Fin 342 (70 Tauri 27991: R.A. = $4^{h}26^{m}$, Dec. = HR 1391 = HD $= +15^{\circ}57'$, for equinox 2000) has presented the possible ambiguity of long period, low eccentricity versus short period, high eccentricity since shortly after the duplicity of the star was discovered by William S. Finsen in 1959. The subsequent history of the system's measurement by visual interferometry and micrometry, by lunar occultation observations, and by speckle interferometry has been extensively reviewed by Peterson and Solensky (1987, hereafter referred to as PS), who argue the short-period case for the system, a possibility first suggested by Eggen (1963) on the basis of the inordinately small masses resulting from the 13 yr period. PS present the results of a period search showing that a 6 yr period is as acceptable to the data as the 13 yr period found by Finsen (1978) in his final analysis of the observational material, most of which at that time had been accumulated by him. PS support their conclusion by presenting spectroscopic data obtained photographically at the Kitt Peak coudé-feed telescope and spectrograph. Their spectrograms never resolved the lines from the individual components, but the blended line profiles were judged by inspection to be broader at the epoch of maximum velocity separation predicted by the 6 yr orbit. On the basis of this highly suggestive evidence, PS adopt the 6 yr period, calculate the elements of the visual orbit, and reanalyze McClure's (1982) deduction of the Hyades' distance modulus.

Another suggestive piece of evidence against the longer period can be seen from simple inspection of the speckle observations plotted against the elliptical orbit. In Fig. 1, we show the speckle measures along with the 12.51 yr orbit recently published by Couteau (1987). Arrows in Fig. 1 indicate three speckle measures with epochs of 1975.716, 1982.766, and 1982.847 that have very large negative residuals in angular separation, residuals that are nearly an order of magnitude greater than would be expected from speckle data. The observed motion, when the longer period is assumed, has a very pinched appearance about an axis passing through these three measures. This suggests that the axis of the pinch in the motion might define a line about which approximately half of the data should be given 180° positionangle projections. It is also interesting to note in Fig. 1 that the position angles of the visual measures, including the visual interferometer observations of Finsen, tend to generally avoid the axis of the apparent "pinch" in the speckle observations.

The goal of this study is to finally lay to rest the controversy surrounding the orbital period of Fin 342 by definitively establishing the true quadrant of the secondary at critical orbital epochs. Through the analysis of four sets of speckle observations obtained at the Kitt Peak 4 m telescope during 1975-1976 and 1985-1986, we conclusively settle the issue of the true orbital period of this important Hyades binary.

II. THE SPECKLE OBSERVATIONS

Fin 342 was observed by the first author during his first speckle observing run at the Kitt Peak 4 m telescope in September 1975 and continues to be a high-priority object on the GSU/CHARA program of binary star speckle interferometry. The system has now been observed at some 23 epochs by us with an additional six observations from other speckle observers. The collected speckle measurements are presented in Table I, where the position angles have been precessed to the equinox for 2000.0. The small corrections to the GSU/ CHARA observations between 1982 and 1985 discussed by McAlister *et al.* (1988, in preparation) have been included in the measures in Table I. The coverage fails to complete one long-period orbital cycle by just under one month and is just five days short of encompassing two of the short-period cycles.

PS calculated the orbital elements given in Table II for the

⁴¹ Visiting Astronomer, National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

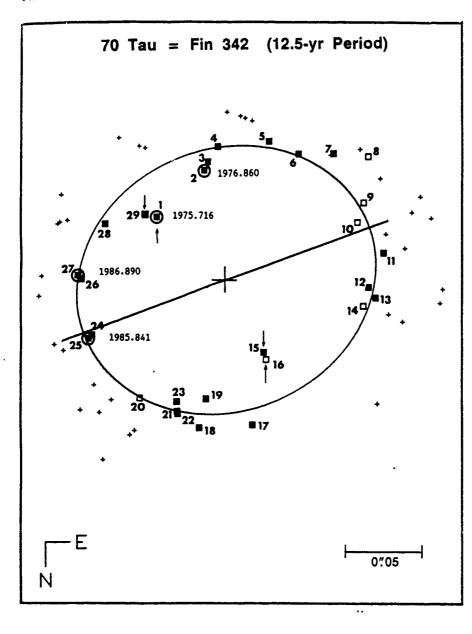


FIG. 1. The collection of existing measurements of Finsen 342 is shown here, where plus signs represent the visual interferometer measures of W.S. Finsen and the visual micrometer measures of van den Bos. Couteau, and Morel. Dark squares are those speckle observations from the GSU/ CHARA program, while light squares are from other modern interferometric programs. Each speckle data point is identified by the observation number from Table I. Also shown here is the line of nodes for which the identification of the true ascending node remains ambiguous. Quadrants are adopted here in order to be consistent with a presumed long-period orbit. The orbit of Couteau (1987) for a 12.51 yr period is shown against these measurements. The speckle observations for which true quadrant determinations have been made are circled. Of these, only the measure for 1976.860 does not require a quadrant reversal. The "pinched" appearance of the data when plotted against the longperiod orbit is apparent in the observations shown with arrows and indicates rather clearly where the possible 180° position-angle reversals could yield a plausible 6 yr orbital motion.

6, 9, and 13 yr periods found in their period search. The quadrants adopted for the position angles in column 3 of Table I are based upon the 13 yr orbit and are consistent with the quadrants determined from occultation observations. Superscripts next to the position angles in Table I indicate quadrant reversals as called for by the three possible periods found by PS. We also include in Table II the elements determined by Finsen (1978), Evans (1984), and Couteau (1987). The residuals to these elements are listed in Table III.

The 9 yr orbit is obviously inappropriate to the observations, showing position-angle residuals of 90° for the most recent speckle observations not available to PS. The 13 yr orbit (solution I of PS) shows average residuals and their rms dispersions of $\langle \Delta \theta \rangle = +5.0^{\circ} \pm 7.0^{\circ}$ and $\langle \Delta \rho \rangle = -0.001 \pm 0.011$ arcsec, while the 6 yr orbit (solution III of PS) leads to $\langle \Delta \theta \rangle = +5.5^{\circ} \pm 7.2^{\circ}$ and $\langle \Delta \rho \rangle = +0.004 \pm 0.009$ arcsec. The dispersions in the residuals do not favor either of these two solutions over the other, and both solutions show systematic effects in the position-angle residuals. The 13 yr orbit of Couteau (1987) does a better job of fitting the position angles with comparable dispersion in the separation residuals to the orbits of PS.

As has been pointed out by Evans (1984), the speckle angular separations are all systematically smaller than the separations obtained by Finsen with his eyepiece interferometer, and we would thus expect that the orbit of Finsen would not represent these modern measures at all well. Indeed, the average residuals of the GSU/CHARA speckle measures to the elements determined by Finsen (1978) are $\langle \Delta \theta \rangle = -14.1 \pm 12.7$ and $\langle \Delta \rho \rangle = -0.026 \pm 0.009$. In his important revision of the Hyades distance modulus, McClure (1982) recognized the discrepancy between Finsen's observations and the modern results, but he considered Fin 342 as providing one of the best mass determinations of the Hyades visual binaries. In the correspondence between Finsen and one of us (HM) during the years preceding Finsen's death in 1979, it is clear that Finsen considered this last orbit as being short of definitive, and he was keenly interested in seeing continued speckle coverage of this system. It is

:

TABLE I. Speckle observations.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Epoch	Speckle
2 76.860 190.8 0.071 GSI 3 76.923 188.1 0.076 GSI 4 77.087 182.9 0.085 GSI 5 77.742 161.6 0.093 GSI 6 78.149 148.6 0.094 GSI 7 78.618 138.3 0.108 GSI 8 78.876 129.7 0.123 (1) 9 79.857 118.1 0.104 (2) 10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095	ce	Source	ρ	θ	1900.0 +	
2 76.860 190.8 0.071 GSI 3 76.923 188.1 0.076 GSI 4 77.087 182.9 0.085 GSI 5 77.742 161.6 0.093 GSI 6 78.149 148.6 0.094 GSI 7 78.618 138.3 0.108 GSI 8 78.876 129.7 0.123 (1) 9 79.857 118.1 0.104 (2) 10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095						
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		GSU				
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		GSU				2
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		GSU				3
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		GSU				4
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	J	GSU				5
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	J	GSU	0.094	148.6		6
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	J	GSU	0.108	138.3	78.618	7
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		(1)	0.123	129.7	78.876	8
10 79.926 112.6 0.095 (2) 11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI			0.104	118.1	79.857	9
11 80.153 99.2 0.106 GSI 12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.090 GSI 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		(2)	0.095		79.926	10
12 80.729 87.1 0.095 GSI 13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.097 GSI 18 83.711 350.1° 0.097 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	J	ĠŜŰ	0.106		80,153	11
13 80.882 83.4 0.100 GSI 14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		GŠŪ				12
14 80.939 79.6 0.093 (3) 15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		ĞŠŬ			80.882	13
15 82.766 29.0° 0.053 GSI 16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI						
16 82.847 28.5° 0.058 (4) 17 83.047 11.2° 0.095 GSI 18 83.711 350.1° 0.097 GSI 19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	1	ĠŠŰ			82.766	
17 83.047 11.2 ^b 0.095 GSI 18 83.711 350.1 ^b 0.097 GSI 19 83.714 351.1 ^b 0.078 GSI 20 83.934 323.6 ^b 0.094 (5) 21 84.052 339.8 ^b 0.090 GSI 22 84.058 340.3 ^b 0.092 GSI				28.5		
19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI	1	dia		11.25		
19 83.714 351.1° 0.078 GSI 20 83.934 323.6° 0.094 (5) 21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI		ĞŠŬ		350.1*		18
20 83.934 323.6 ⁶ 0.094 (5) 21 84.052 339.8 ⁶ 0.090 GSI 22 84.058 340.3 ⁶ 0.092 GSI				351.10		
21 84.052 339.8° 0.090 GSI 22 84.058 340.3° 0.092 GSI						
22 84.058 340.3° 0.092 GSU	T	CS11				
		GSU	0.085	338.1	84.060	23
		GSU		292.26		
		GSU		203.00		
		GSU		260 80.9		
		GSU		265.46.9		
		GSU GSU		200.4		
				220 06.9		
27 00.103 230.9 0.000 GSI	,	GSU	0.000	230.7	00.105	27

Notes to TABLE I

Superscripts indicate quadrants to be reversed in considering alternative periods of 6 and 9 yr. All position angles have been precessed to equinox 2000.0.

Sources: GSU-from catalog of McAlister and Hartkopf (1988)

(1)—Morgan et al. (1982) (4)—Tokovinin (1983)

(2)—Hege et al. (1981) (5)—Bonneau et al. (1984)

(3)-Ebersberger et al. (1986)

therefore particularly pleasing to present such coverage at the present time.

III. THE QUADRANT AND MAGNITUDE-DIFFERENCE ANALYSIS

PS point out that the confusion with regard to the true orbital period of Fin 342 would be easily set aside were it not for the 180° position-angle ambiguity inherent in speckle interferometry. They urge speckle observers to take the next step by modifying reduction algorithms in such a way as to eliminate this ambiguity, a sentiment with which we are in complete accord. It should be emphasized, however, that the step from simple autocorrelation analysis of speckle data to analyses that effectively reconstruct a diffraction-limited im1433

age of the binary star in question is far from trivial. The astrometry that has been published from the GSU/CHARA speckle program has been performed using a hardwired vector-autocorrelator (VAC) that gives a 1 bit (on/off) digitization of two-dimensional speckle frames. The VAC then calculates a histogram of all separations among the sample of "on" pixels, an operation that can be quickly carried out in hardware, and provides autocorrelograms from which the relative positions of the two components can be accurately extracted, albeit with the quadrant ambiguity inherent in this process.

In order to eliminate this ambiguity, and even more importantly, to determine the magnitude difference in the system, it is necessary to digitize each speckle frame to at least 6 bits and preferably to 8 bits in intensity. High-speed digitizer boards are now available at modest cost for microcomputers that give 8 bit digitization with 512×512 pixel frames at video frame rates. The real bottleneck in the processing-of these data, coming in from the speckle camera at a potentially prodigious rate of 62 megabytes per second, is the implementation of the several possible algorithms to reconstruct the binary star image at a rate sufficiently efficient so as not to waste telescope time. The augmentation of these methods for routinely processing high volumes of speckle data for bright objects is far from being a simple extension of current methods. Fortunately, of the nearly 1500 binary stars on our program, no more than 20 suffer from the ill effects of quadrant ambiguity, as the great majority of our program stars are visual binaries with quadrants unambiguously determined by the visual observers or are spectroscopic binaries with existing orbits.

The most pressing justification for introducing new techniques for processing binary star speckle data lies with the essentially complete absence of accurate photometry for the individual components of close visual binary stars. Nevertheless, the occasional problem presented by such systems as Fin 342 is a fascinating challenge to speckle observers. It might also be pointed out that the quadrant ambiguity in this. system would not exist if its angular separation were somewhat larger than the maximum it presents of just over 0.10 arcsec. The classic quadrant-ambiguity case holds for visual binaries with zero magnitude differences (see Heintz 1978), but Fin 342 has been shown from occultation observations to have a magnitude difference of about 0.4 mag. If the star could be explicitly resolved by visual observers, then the quadrant problem would have been eliminated. Indeed, if the magnitude difference were really zero, then speckle methods could not be used to settle the issue. It is also interesting to reiterate the opinion of the eminent double star observer W. H. van den Bos (as privately communicated to

TABLE II. Published orbits for Fin 342.

	Finsen	Finsen Evans Couteau	Contenu	Peterson and Solensky (1987)		
	(1978)	(1984)	Couteau (1987)	I	11	III
$\frac{\overline{P(yr)}}{T(BY)}$	13.15 1962.84	11.4 1976.3	12.51 1986.52	12.54 1981.956	9.48 1974.750	6.045 1976.250
a (arcsec)	0.133 0.073	0.108 0.073	0.100	0.1001	0.0827	0.0941
i	132.6	132.6	0.01 146.9	0.066 138.5	0.280 152.0	0.701 127.0
ω node	97.1 321.4	90.1 310.1	14.6 289.0	243.3 284.5	281.9 219.7	91.6 33.8
node a ³ /P ² *	0.60	0.43	0.28	0.29	0.28	1.00

Normalized to unity for PS orbit III.

Speckle

Obs. Nc.

1

4

3

4

5

6 ?

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1

-17.2 -0.026

-19.4 -0.033

-30.3 -0.040

-29.5 -0.037

-32.0 -0.027

-33.4 -0.025

-33.0 -0.014 +29.1 +0.018

-33.5 -0.026 +35.2 -0.005

+7.1 -0.012

+5.0 -0.019

-1.3 -0.006

-0.4 -0.003

+9.7 +0.017

+8.4 +0.019

-2.0 -0.005

-1.1 -0.002

+1.8 -0.002

+0.5 +0.000

+2.0 -0.003

-0.3 -0.021

le Pinsen Nc. (1978)	Bvans (1984)	Couteau (1987)	Peterso I	on and Solensky II	(1987) III	New Speckle Orbit	Final Veight
-5.4 -0.024		-0.9 -0.026	+0.8 -0.026	-5.4 -0.007	-1.8 -0.006	+3.5 -0.003	1
+5.0 -9.028		+0.5 -0.013	+0.4 -0.008	+1.8 -0.011	-0.6 +0.002	-0.2 -0.002	1
+4.3 -0.024		-9.1 -0.008	-0.1 -0.003	+1.2 -0.007	-0.4 +0.005	-0.2 +0.001	1
+4.3 -0.019		+0.2 +0.000	+0.3 +0.005	+1.1 +0.001	+1.2 +0.008	+1.0 +0.005	1
+0.2 -0.026		-0.1 +0.904	+0.3 +0.010	-0.7 +0.005	+1.0 +0.004	+0.6 +0.003	1
-4.0 -0.032		-1.2 +0.001	-0.6 +0.007	-2.4 +0.004	-0.8 +0.002	-1.1 +0.000	1
-5.0 -0.023		+1.1 +0.012	+1.7 +0.016	-0.2 +0.016	+1.0 +0.013	+0.8 +0.012	1
-8.7 -0.009	-	-0.9 +0.025	-0.5 +0.029	-2.1 +0.031	-1.2 +0.027	-1.3 +0.025	0
-1.3 -0.022		+11.1 +0.003	+10.8 +0.007	+10.9 +0.009	+11.2 +0.008	+10.7 +0.004	0
-5.4 -0.030		+7.2 -0.006	+6.8 -0.002	+7.1 +0.000	+7.4 -0.001	+6.8 -0.005	0
-14.0 -0.916		-0.8 +0.006	-1.3 +0.010	-0.7 +0.011	-0.5 +0.010	-1.2 +0.006	1
-12.5 -0.018		+1.2 -0.003	+0.6 +0.003	+1.3 +0.001	+2.1 +0.003	+0.6 -0.002	Ì
-12.2 -0.010		+1.4 +0.003	+0.9 +0.010	+1.4 +0.006	+2.5 +0.009	+0.8 +0.004	1
-14.4 -0.017	-	-0.9 -0.003	-1.4 +0.004	-1.0 -0.001	+0.3 +0.003	-1.6 -0.002	1
-5.2 -0.046		+4.0 -0.031	+14.2 -0.017	+2.7 -0.021	+10.3 -0.009	-2.8 -0.000	1
-3.0 -0.042		+6.3 -0.026	+17.2 -0.013	+5.4 -0.015	+14.2 -0.008	+2.7 -0.001	1
-13.8 -0.007		-4.2 +0.011	+8.4 +0.024	-3.1 +0.026	+6.1 +0.021	-3.3 +0.025	Ō
-16.0 -0.015		-3.1 +0.011	+13.0 +0.018	+14.1 +0.041	+7.3 +0.009	+0.3 +0.010	i
-14.9 -0.034		-2.0 -0.008	+14.1 -0.001	+15.3 +0.022	+8.4 -0.010	+1.4 -0.009	ī
-35.9 -0.022	-12.6 -0.007	-22.5 +0.008	-6.1 +0.012	+4.0 +0.041	-12.9 +0.004	-19.5 +0.004	0
-17.9 -0.028	+6.5 -0.013	-2.6 +0.002	+13.8 +0.006	+29.5 +0.037	+6.6 -0.001	+0.1 -0.001	1
18 6 6 666							

TABLE III. Speckle residuals to published orbits.

Average Besiduals	with respect to (Delta Theta)	data of non-zero weight: (Delta Bho)
Finsen (1978)	-14.1 <u>+</u> 12.7	-0.026 <u>+</u> 0.009
Evans (1984)	+6.0 <u>+</u> 11.3	-0.003 <u>+</u> 0.013
Couteau (1987)	-0.0 <u>+</u> 2.2	-0.005 <u>+</u> 0.011
Peterson & Solens	ky(1987)	
Orbit 1	+5.0 + 7.0	-0.001 ± 0.011
Orbit II	-	$+0.007 \pm 0.018$
Orbit III	+5.5 <u>+</u> 7.2	+0.004 + 0.009
New Speckle Orbit	+0.1 <u>+</u> 1.5	-0.000 <u>+</u> 0.005

-1.0 +0.003 +14.5 +0.008 +30.4 +0.039

-4.0 -0.004 +12.4 +0.001 +28.4 +0.032

-9.7 -0.006

+8.0 -0.006

+6.7 - 0.004

+8.8 -0.009 +85.7 +0.017

+4.4 -0.004 -81.9 -0.003

+0.7 -0.021 -85.9 -0.026

+86.5 +0.020

-82.3 +0.008

-83.6 +0.010

us by C. E. Worley) that when one is confronted with the choice between a long-period, small-eccentricity orbit and a short-period, large-eccentricity c bit, the short period is more likely to be the valid one because truly circular orbits are rare among visual binaries.

Methods for performing binary star "speckle photometry" have been under extensive scrutiny and development at GSU/CHARA since 1985 Our goal has been to develop the

capability for extracting differential magnitudes and colors from speckle frames of binary stars obtained with the ICCD speckle camera. A description of experiments carried out with simulated speckle data aimed at discriminating among the various methods appropriate to the problem is presented by Bagnuolo (1988). These methods include variations of the "shift-and-add" (SAA) method first proposed by Bates and Cady (1980) and modified by Bagnuolo (1982), the

+7.2 +0.001

+5.1 -0.006

+3.7 -0.002

+4.5 +0.001

+7.8 +0.003

+6.5 +0.005

+13.3 +0.018

+32.1 +0.030

+0.8 +0.001

-1.3 -0.006

-2.0 -0.006

-1.1 -0.003

+0.6 -0.004

-0.7 -0.002

+0.4 +0.002

+1.7 -0.002

1

1

I

1

1

1

1

"triple correlation" method of Weigelt and Wirnitzer (1983), and the "fork" algorithm of Bagnuolo (1988). Bagnuolo finds that his "fork" method is the most linear of the techniques across a large range of magnitude differences. Bagnuolo and Soweil (1988) have also applied the new algorithm to a high-precision determination of the Strömgren y and (b - y) values for the individual components of the Capella system.

We selected the speckle-data samples for the four epochs 1975.716, 1976.860, 1985.841, and 1986.890 as being capable of discriminating between the long- and short-period orbits. The short-period orbit calls for a periastron passage and resulting quadrant reversal between 1975 and 1977, while the long-period orbit keeps the components in the same quadrant during this interval. Both orbits call for no quadrant change between the 1985 and 1986 observations, but the common quadrant is reversed for the two periods. The four sets of data permit 16 possible quadrant combinations, only four of which correspond to the two possible orbital periods. A further check on the validity of the deduced set of quadrants is provided by the comparison with the quadrants determined by the lunar occultation results, a comparison to be made later.

The datasets for 1975 and 1976 consisted of approximately 50 exposures in each set that were originally recorded on Tri-X film and subsequently contact printed on high-contrast copy film for analog reduction in the coherent imageprocessing system described by McAlister (1977). The original negative for the 1975 data could not be located, and the positive copy was used in its place. The two sets of exposures were scanned with the PDS microdensitometer of the Lowell Observatory with a format sufficient to provide five resolution elements across an Airy disk. The absolute northsouth orientation was established for both film sets by locating wide visual binaries that had been observed on the same nights as Fin 342. The objects used have nonzero magnitude differences, and their true quadrants have long been established by visual observers.

The two more recent sets of speckle observations of Fin 342 consisted of 1800 images, recorded on VHS format video cassette tapes, taken with the GSU/CHARA ICCD speckle camera using the methodology described by McAlister et al. (1987). These data were digitized using a high-speed videodigitizing system based upon a Data Translation DT-2851 frame grabber board installed in a Wyse pc-286 personal computer with 8 MBytes of expanded memory. When an image is grabbed by the DT-2851 board, the central 256×256 pixel area is averaged in software to a 128×128 pixel array. This gives a resolution equal to the limiting resolution of the speckle-camera detector and, as in the case of the photographic data, amounts to approximately five resolution elements per Airy disk. Sets of 256 speckle images were digitized in this manner for the 1985 and 1986 observations. The absolute north-south orientation was determined in the same manner as with the earlier datasets.

The four sets of digitized speckle observations of Fin 342 were reduced using SAA and "fork" algorithms, with the input astrometry being provided by vector autocorrelation. Triple correlation analyses were also performed on the first two datasets. The two earlier observation sets yielded lower signal-to-noise because only 50 exposures were available for processing. Furthermore, the photometric nonlinearity of the photographic data served to compress the dynamic range in intensity so that the contrast in the SAA spots has decreased. In spite of these effects, it was obvious by inspection of the SAA results that the secondary star was in the first quadrant (i.e., northeast of the primary) in 1975 and the third quadrant (southwest of the primary) in 1976. The triple correlation and "fork" results confirmed this conclusion. A preliminary report of the results from the photographic data (Bagnuolo and Sowell 1986) mistakenly placed the secondary in the third quadrant for both epochs due to an error made by the first author of this paper in establishing the north-south orientation for the 1975 data. The nature of this error is well understood, and we now have no doubt that a quadrant reversal occurred between 1975 and 1976, a conclusion consistent only with the 6 yr orbital period.

The ICCD results clearly showed that the secondary was to the east of the primary during 1985–1986, a result consistent with the quadrant determinations from the earlier datasets only in the case of the 6 yr orbit. A summary of the SAA results for the four selected epochs is given in Table IV, in which the intensities of the SAA peaks are shown for the two possible position angles at each epoch. The peaks have been normalized to unity for the brighter peak.

The "fork" analysis of the ICCD data yielded a ratio of the intensity of the secondary star to that of the primary star equal to 0.73 ± 0.04 , corresponding to a magnitude difference at Strömgren y of 0.34 ± 0.06 mag. The uncertainty in the magnitude-difference determination is limited by the absence of appropriate bias and flatfield data for the two epochs, and we suspect that saturation effects among the brightest speckles in the ICCD frames are tending to decrease the magnitude difference in the SAA and "fork" analyses. We therefore choose not to adopt the magnitude difference determined here, preferring to add its accurate determination to an ongoing speckle-photometry project involving all Hyades binaries within the reach of speckle interferometry. We note that our determination of the magnitude difference in the Fin 342 system is in good agreement with that of Hege et al. (1981), who found a value of 0.31 ± 0.02 mag at 5000 Å. The systematic effects that we suspect exist in the present determination of the magnitude difference by no means alter our conclusions with regard to the true quadrant occupied by the secondary star at the four epochs we have analyzed.

We thus find that the speckle interferometric observations of Fin 342 conclusively show that a quadrant reversal occurred between 1975 and 1976 and that a subsequent reversal must have occurred sometime between the second and third datasets in order to place the secondary east of the primary star as it was in the fall of 1975. The most likely time for the second reversal can be seen from simple inspection of the entire set of speckle measurements to be between the 1980.939 and 1982.776 observations, a period during which the system was not observed due to lost coverage resulting from the transition from photographic to digital speckle cameras. A second reversal during that time also turns out to be consistent with the 6 yr orbit solution we have determined.

TABLE IV. S	Shift-and-add (peak intensities.
-------------	-----------------	-------------------

Epoch	Position-angle possibilities/SAA peak intensities*			
1975.716	48.3/1.00	228.3/0.78		
1976.860	10.8/0.82	190.8/1.00		
1985.841	112.3/1.00	292.3/0.87		
1986.890	88.4/1.00	268.4/0.73		

*Normalized to unity for the higher of the two peak intensities.

IV. THE ORBIT OF FINSEN 342

PS calculated orbits for the three periods that they found to be represented by the data, using the position angles from the visual interferometer and micrometer results along with the complete sets of occultation and speckle data. They calculated weights based upon published error estimates and assigned errors of $\pm 20^{\circ}$ to the visually determined position angles. The visually measured separations were not included by PS in their orbit solutions, as they were considered to be significantly systematically large in comparison with occultation and speckle separations. This bias is no doubt due to the fact that Fin 342 is never completely resolved at the telescopes used by Finsen and the two micrometer observers (P. Couteau and P. Morel) who have measured the system. The very existence of these measures is testimony to the skill of the few visual observers who have ever detected the duplicity of Fin 342.

We chose to determine the orbit of Fin 342 based only upon the speckle observations. The speckle data now cover another half revolution compared to that available to PS, and are of uniformly high quality compared to the visual observations. We also believe that it cannot be established without doubt that the position angles determined by visual interferometry are not without systematic effects as are the separations. Rather than risk biasing the orbit by including data that are not well understood, we incorporated only the homogeneous and well-understood collection of speckle observations. An initial solution, in which all observations are given unit weight, is calculated using a grid-search routine around input values for P, T, and e in which the remaining four elements are determined by least-squares evaluation of the Thiele-Innes elements at each grid point. A second solution is then performed in which observations exhibiting residuals in excess of three standard deviations in either ρ or $\rho \times \Delta \theta$ are given zero weight. The grid search minimizes the variance in the residuals and continues until the stepsizes converge to some arbitrarily small value. The orbital elements for Fin 342 were calculated in this manner and are presented along with their error estimates in Table V, where the short-period orbital elements of PS are repeated for comparison. The residuals to the speckle observations from the newly determined orbital elements are given in Table III along with the weights assigned to the individual measurements in the final solution. The newly determined orbit is shown with the speckle observations in their correct quadrants in Fig. 2. An ephemeris of the expected motion during the next revolution is given in Table VI, in which we indicate the epochs of periastron and nodal passage, events that occur during the fall and early winter of 1988. It is expected that radial-velocity measurements and further speckle observations during those months will confirm the conclusions by us

TABLE V. Elements of the short-period orbit.

	Peterson and Solensky (1987)—orbit III	Newly determined elements from speckle observations
P(yr) 7'(BY)	6.045 ± 0.027 1976.250 + 0.057	6.264 ± 0.025 1976.164 + 0.017
a (arcsec)	$\begin{array}{c} 0.0941 \pm 0.0030 \\ 0.701 \pm 0.013 \end{array}$	0.0975 王 0.0008
i	127.0 ± 1.9	$\begin{array}{c} 0.691 \pm 0.009 \\ 126.8 \pm 0.4 \end{array}$
ω node	91.6 ± 1.5 33.8 ± 3.7	93.4 <u>+</u> 0.9 36.5 <u>+</u> 0.9
a`/P:•	1.00 ± 0.10	1.036 主 0.03

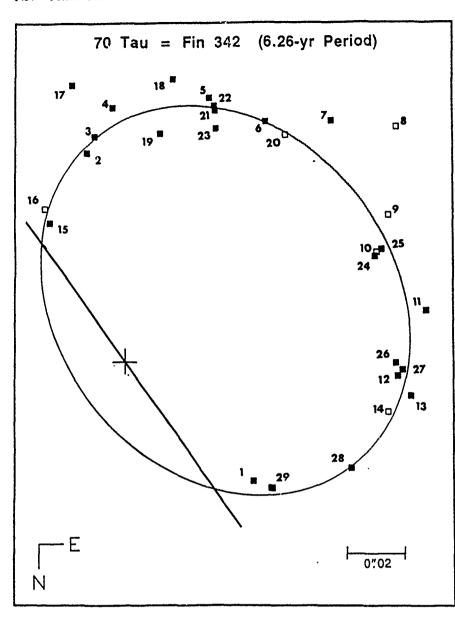
*Normalized to unity for PS orbit III.

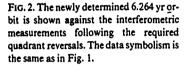
2

and by Peterson and Solensky (1987). A determination of the mass ratio at nodal passage would be an extremely valuable addition to the problems of the distance to the Hyades and the masses of its member stars.

The orbital period we find is some 0.22 yr, or 3.6% longer, and the semimajor axis is 3.4 mas, or 3.6% larger, than the corresponding values determined by PS. This results in a value for the total mass of the system at a given distance, given by a^3/P^2 , approximately 3.6% greater than that indicated by the orbit of PS.

V. COMPARISON WITH OCCULTATION AND VISUAL OBSERVATIONS


Evans (1984) has summarized the occultation observations, and PS concur with Evans in his altering of the events reported by the first two occultation observers. (See Table 1C of PS for the collected occultation results.) The six published occultation measurements place the secondary to the east of the primary at four epochs between 1978.72 and 1980.60. This alone does not contribute to the discrimination between the short- and long-period orbits, but it is entirely consistent with the quadrant behavior determined from the speckle observations.


Evans (1984) concluded from the collection of magnitude differences derived from occultation traces that the magnitude difference at 4472 Å is 0.39 mag. There is considerable scatter among the individual determinations of the magnitude differences in the blue, but there is no indication of any inconsistency between the photometric results from the speckle and occultation data.

The residuals of the occultation observations gathered in Table 1C of PS to the 6 yr orbit of PS and to our new orbit have average values of $\pm 0.0002 \pm 0.0042$ arcsec for the PS orbit III and -0.0018 ± 0.0049 arcsec for our orbit. The residuals to the two earliest occultation observations are comparable between our orbit and PS orbit III, but the four later events, three of which were collected by Peterson and his collaborators, are better represented by the PS orbit. We consider the occultation measurements to be well represented by our new orbital solution, and particularly so in light of the fact that they were not included in the data sample from which the solution was calculated.

We have also calculated the residuals for the two 6 yr orbits that are derived from the visual interferometer and micrometer measures tabulated in Table 1A of PS. The average residuals here are $\langle \Delta \theta \rangle = -11.8^{\circ} \pm 19.2^{\circ}$ and $\langle \Delta \rho \rangle = +0.034 \pm 0.019$ arcsec to PS orbit III and $\langle \Delta \theta \rangle = -5.0^{\circ} \pm 15.4^{\circ}$ and $\langle \Delta \rho \rangle = +0.027 \pm 0.015$ arcsec to our new orbit. Thus, the average residuals and their dispersions are smaller for our new orbit than for PS orbit III, even though the visual observations were completely ignored in our solution, with PS incorporating the visual position angles in theirs.

We thus conclude that the newly determined orbit for Fin 342 fits all the observational material, except for four of the six occultation observations, better than any previously determined orbit for the system. Complete coverage of periastron passage using speckle interferometry at a 4 m telescope will be impossible because the predicted angular separation is below the diffraction limit for some 150° of position angle. The speckle observations have eliminated any questions as to the true period of Fin 342 and have produced an orbit that can be considered definitive, within the limits of accessible periastron coverage, under the criteria defined by Worley and Heintz (1983). 1437 MCALISTER ET AL: FINSEN 342

TABLE V	/I .	Orbital	ephe	meris	for	Fin	342.
---------	-------------	---------	------	-------	-----	-----	------

epoch	θ	ρ	epoch	θ	ρ
1988.50	23.6	0.040	1992.25	110.9	0.100
88.60	2.3	0.027	92.50	105.1	0.100
88.692°	315.4	0.018	92.75	99.1	0.100
88.70	310.6	0.018	93.00	93.1	0.099
88.80	245.8	0.028	93.25	87.1	0.098
88.90	225.7	0.041	93.50	80.8	0.095
88.979°	216.5	0.649	93.75	74.0	0.092
89.00	214.5	0.051	\$4.00	66.6	0.086
89.25	197.6	0.067	94.25	57.8	0.078
89.50	186.4	0.077	94.40	51.5	0.070
89.75	177.2	0.083	94.50	46.4	0.065
90.00	169.2	0.087	94.60	39.9	0.057
90.25 90.50	161.7	0.090	94.646 ⁶	36.5	0.053
90.50	154.7	0.093	94.70	31.5	0.048
91.00	147.9	0.094	94.80	17.9	0.036
91.25	141.5	0.096	94.90	348.3	0.023
91.50	135.2	0.097	94.956*	315.4	0.018
91.75	128.9	0.098	95.00	272.1	0.021
92.00	122.8	0.099	95.10	236.9	0.033
,2.00	116.9	0.099	95.25	215.6	0.050

· Epoch of periastron passage.

* Epoch of nodal passage (maximum velocity separation).

VI. DISCUSSISON

The 3.6% increase in the total mass of Fin 342 that we find in comparison with the recent mass determination by PS results in an increase in log (mass) by 0.014. This will have some effect on the cluster distance determination carried out by McClure (1982) and modified by PS. We believe it premature to perform another revision of this calculation until we complete work in progress on the refinement of the orbits of several other Hyades binaries, including the resolved single-lined spectroscopic binary 51 Tauri.

It is possible to (1 eck for consistency between the new orbit and what might be expected for the masses of the components of Fin 342 according to the best present estimate of the cluster distance. Following McClure (1982), we use the proper-motion results that indicate that Fin 342 is only 2% beyond the mcan cluster distance, although it might be noted that proper-motion determinations may suffer a bias when an unresolved photocentric motion is superimposed upon the space motion of a star. Small magnitude differences, such

as that of Fin 342, tend to make such a bias rather small, however. If we assume the cluster distance modulus given by PS of 3.36 mag, then Fin 342 has a distance of approximately 47.9 pc. Furthermore, using our newly determined magnitude difference of 0.34 mag at 5500 Å and the composite apparent magnitude of V = +6.46, we find for the individual components of Fin 342 the following photometric parameters:

 $m_{a} = +7.06, M_{a} = +3.66;$ $m_{b} = +7.40, M_{b} = +4.00.$

These correspond to spectral types for the two components of F6-7 and F8, for which one expects approximate masses of 1.24 and 1.17 \mathcal{M}_{\odot} , respectively, for a total mass of 2.4 \mathcal{M}_{\odot} (Allen 1973). The star 70 Tauri is most often classified as having spectral type F7. At a distance of 47.9 pc, the new orbital elements imply a semimajor axis of 4.7 AU and a total mass of 2.6 \mathcal{M}_{\odot} , a value in reasonable agreement with the photometrically expected masses. This system can now be considered a well-behaved member of the central region of the Hyades cluster.

Preliminary results from orbit revisions to other Hyades binaries that are now being carried out by us are indicating the possibility of substantial changes in mass determinations for several systems. For example, our new analysis of the motion of ADS 3248 (vB 75) leads to a total mass that is 27% smaller than implied by the catalog orbit (see Worley and Heintz 1983), causing vB 75 to shift significantly closer to the mean cluster mass-luminosity relation. We are also endeavoring to determine accurate magnitude differences through "speckle photometry" of the set of Hyades binaries accessible to speckle interferometry. These results should shed further light on the seemingly endlessly unfolding questions of the distance to the Hyades cluster.

We are grateful to Jay Gallagher, Tobias Kreidl, and Larry Wasserman of the Lowell Observatory for making the Lowell PDS microdensitometer available to us. The GSU/ CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF grant no. AST 86-13095 and the Air Force Office of Scientific Research through AFOSR grant no. 86-0134. We gratefully acknowledge this support. The video-digitizing hardware was purchased through grant no. N14-87-6-0160 from the Office of Naval Research, and we thank Gart Westerhout and Charles Worley of the U. S. Naval Observatory for their interest in our speckle efforts. One of us (O.G.F.) acknowledges the support of the Space Telescope Science Institute.

REFERENCES

- Allen, C. W. (1973). Astrophysical Quantities (Athlone, London).
- Bagnuolo, W. G. (1982). Mon. Not. R. Astron. Soc. 200, 1113.
- Bagnuolo, W. G. (1988). Opt. Commun. 96, 1056.
- Bagnuolo, W. G., and Sowell, J. R. (1986). Bull. Am. Astron. Soc. 18, 986.
- Bagnuolo, W. G., and Sowell, J. R. (1988). Astron. J. 96, 1056.
- Bates, R. H. T., and Cady, F. M. (1980). Opt. Commun. 32, 365.
- Bonneau, D., Carquillat, J. M., and Vidal, J. L. (1984). Astron. Astrophys. Suppl. 58, 729.
- Couteau, P. (1987). Astron. Astrophys. Suppl. 71, 569.
- Ebersberger, J., Weigelt, G., and Orellana, R. B. (1986). Astron. Astrophys. Suppl. 64, 131.
- Eggen, O. J. (1963). Astrophys. J. Suppl. 8, 125.
- Evans, D. S. (1984). Astron. J. 89, 689.
- Finsen, W. S. (1978). IAU Commission 26 Circ. Inf. No. 74.
- Hege, E. K., Hubbard, E. N., Cooke, W. J., Strittmatter, P. A., Worden, S.
- P., and Radick, R. R. (1981). In Current Techniques in Double and Multiple Star Research, IAU Colloquium No. 26, edited by R. S. Harrington and O. G. Franz, Lowell Obs. Bull. No. 167, Vol. 9, No. 1, p. 185.

- Heintz, W. D. (1978). Double Stars (Reidel, Dordrecht).
- McAlister, H. A. (1977). Astrophys. J. 215, 159.
- McAlister, H. A., and Hartkopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Starts, Center for High Angular Resolution Astronomy Contrib. No. 2 (CHARA, Georgia State University, Atlanta).
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987) Astron. J. 93, 688.
- McAlister, H. A., Hartkopf, W. I., Sowell, J. R., Dombrowski, E. G., and Franz, O. G. (1988). In preparation.
- McClure, R. D. (1982). Astrophys. J. 254, 606.
- Morgan, B. L., Beckmann, G. K., Scadden, R. J., and Vine, H. (1982). Mon. Not. R. Astron. Soc. 198, 817.
- Peterson, D. M., and Solensky, R. (1987). Astrophys. J. 315, 286.
- Tokovinin, A. A. (1983). Sov. Astron. Lett. 9, 293.
- Weigelt, G. P., and Wirnitzer, B. (1983). Opt. Lett. 8, 389.
- Worley, C. E., and Heintz, W. D. (1983). Publ. U. S. Naval Obs. 24, Part 7.

BINARY STAR SPECKLE PHOTOMETRY. I. THE COLORS AND SPECTRAL TYPES OF THE CAPELLA STARS

WILLIAM G. BAGNUOLO, JR. AND JAMES P. SOWELL Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303 Received 29 February 1988; revised 20 May 1988

ABSTRACT

Sets of speckle-interferometry frames of Capella taken in the Strömgren y, b, and v filters have been analyzed by means of the "Fork" algorithm to produce the intensity ratios of the components. The results show that the magnitude differences in y, b, and v are $m_{Aa} - m_{Ab} = 0.09$, 0.23, and 0.55, respectively. Thus, contrary to accepted beliefs, the more luminous star in these wavebands is the hotter Capella Ab, which is the spectroscopic secondary and the less massive component. The photometric indices are consistent with spectral types of G0 III for the secondary and G8/K0 III for the primary.

· I. INTRODUCTION

A major goal of the GSU/CHARA program of binary star speckle interferometry has been to develop methods for accurately determining the magnitudes and colors of the individual components of binary stars with angular separations down to the diffraction limit. This paper is the first of a series of such "speckle photometric" analyses. In the present application, speckle observations provide a new, direct means for measuring the temperatures and luminosities of the components of the well-known spectroscopic star Capella.

Capella (α Aur, HR 1708) was independently recognized to be a spectroscopic double by Campbell (1899) and by Newall (1899). Because both stars are close in spectral type, the identification of the spectra of the two components and the estimation of the magnitude differences have been difficult. A spectrophotometric analysis by Wright (1954) appeared to settle the issue: The spectroscopic primary (Capella Aa; smaller radial-velocity amplitude; larger mass) was approximately type G5 III, and the secondary G0 III, with a magnitude difference at 5500 Å of about 0.25. For the past 34 yr, most work on Capella has taken these values as the starting point, although possibly assigning types G6–G8 to the primary. Recently, however, Griffin and Griffin (1986) have questioned Wright's assignment of relative magnitudes based on their integrated radial-velocity profiles, in which the spectrum was correlated with a mask. The most recent spectroscopic orbit has been determined by Shen et al. (1985). Further astrophysically important quantities can be found in the RS CVn catalog by Strassmeier et al. (1988).

Capella naturally is an attractive target for speckle interferometry with apertures greater than 2.5 m; McAlister (1981) has published a high-precision orbit. Various published and unpublished luminosity estimates have put the intensity ratio in V at between 0.6 and 0.9. Even the nodal quadrant recently was in dispute (see Griffin and Griffin 1986; Bagnuolo and McAlister 1983). The latter paper and Bagnuolo (1982,1983) estimated that the intensity ratio was 0.82-0.89 in V.

Clearly, it would be desirable to obtain intensity ratios in several standard filter bandpasses. In this way, the question of the spectral types of the primary and secondary could be settled and the physical parameters of the system obtained via photometric indices.

Difficulties in nomenclature may arise since speckle photometry incorporates various techniques and descriptions

0004-6256/88/031056-05500.90

from the fields of speckle, visual, and spectroscopic binary research along with that of photometric photometry. A case in point is the designation of the "primary" component. The primary star in visual binaries is the brighter star (usually in the V bandpass). For spectroscopic binaries, the primary is usually the star with the more prominent spectral lines, although there are a few single-lined binary cases where the primary is the brighter star, even though its lines are not measurable. Other parameters can be used to define the primary, such as the more massive or the hotter. Obviously, these definitions are all correlated.

We have chosen to adopt the convention of the visual binary research, because speckle interferometry is its logical extension. Therefore, in the future, "primary" will generally refer to the brighter star in V. An exception will be made for Capella (and similar binaries), where the spectroscopic usage has been established by custom. Therefore, throughout this paper the Capella components will be referred to as the Aa and Ab stars. (They have also been referred to as the "G" and "F" stars, respectively, in the older literature, but because our photometric indices give spectral types closer to "K" and "G" we will not use this designation.)

II. OBSERVATIONS AND DATA REDUCTION

Speckle-frame data were collected in the Strömgren y, b, and v filter bandpasses in 1984 and in subsequent y filter runs in 1985, 1986, and 1987 with the GSU/CHARA speckle camera at the 4 m KPNO telescope (see Table I). The scale for the 1985 data was 0.008794''/pixel, whereas the other frames were at 0.005181''/pixel. The observing procedure

 TABLE I. Capella magnitude differences.					
 Date	Filter	Δm			
1984.0604	y	$0.08 {\pm} 0.02$			
	Ь	$0.22 {\pm} 0.02$			
	v	$0.54{\pm}0.03$			
1985.8542	y	$0.15 {\pm} 0.02$			
1986.8892	y	$0.09 {\pm} 0.02$			
 1987.7655	y	0.10 ± 0.02			

has been described by McAlister et al. (1987). These frames were recorded on videotape for later analysis.

The frames were digitized at GSU by a PC-Vision Plus frame grabber (Imaging Technology, Inc.) on an IBM-XT compatible host. By means of FORTRAN and 8088 Assembler programs, a central 128×128 pixel region of the 256×240 frame was stored in the "real" memory. Every other pixel was sampled from the original 512×480 frame. Thus, sets of up to 24 frames over intervals of 2 s were obtained. An 8 megabyte board in an IBM-AT compatible now allows up to 512 frames to be stored.

The flatfield data for the 1987 data showed a Gaussianshaped "bowl" sensitivity decrease at the center of the frame due to gain losses in the microchannel-plate intensifier from the tube's extensive use. This loss has amounted to as much as 50% of the sensitivity at the edge of the original field where relatively few photons have been detected. The Capella data were flatfielded, and the estimated uncertainty in the result was improved by 30% via the Fork histogram analysis (see the discussion below). However, the omission of the flatfielding process did not lead to a significant bias in the result. Although the 1984 data were not flatfielded, the bias and increase in uncertainty were probably small since the microchannel plate was new at that time. With the assumption of linear wear, the data for 1985 and 1986 were flatfielded by 50% and 75% of the value for 1987.

Four sets of frames, comprising 80 frames total, were obtained for each data entry in Table I, except the b and v data from 1984, for which one hundred frames were obtained. The frames were analyzed via the Fork algorithm, which is described in more detail elsewhere, e.g., Bagnuolo (1988,1983) and Bagnuolo and McAlister (1983), in which it was referred to as "SSAA."

2

In brief, the Fork algorithm arises from the intuitive procedure of an observer viewing a double star frame—one looks for isolated speckle pairs, true replicas of the double star. Suppose that I_1 , I_2 , I_3 , and I_4 are observed intensities at Fork points (like tines of a table fork) separated by the double star separation. Because the atmosphere is nearly isoplanatic over Capella-like separations, the observed double star intensities are produced by a single star pattern (psf) with intensities of $i_0,...,i_4$ shifted by the double star separation, multiplied by the intensity ratio r, and added to itself. Thus

$I_1 = i_1 + ri_0,$	
$I_2 = i_2 + ri_1,$	(1)
$I_3 = i_3 + ri_2,$	
$I_4 = i_4 + ri_3.$	

Obviously, there are too many unknowns to solve for r, but suppose that by chance i_2 is an isolated "glint" (i.e., $i_2 \ge i_1$ and i_3). Then, I_2 and I_3 form a nearly isolated pair and $r \simeq I_3/I_2$. Figure 1 is the central 64×64 pixel region of a frame from the 1986 data. Note the indicated four intensities and the isolated speckle pair where $r \simeq I_3/I_2$. Other speckle pairs are also visible. Thus, the Fork algorithm selects nearly isolated pairs by requiring that Max $(I_2, I_3) > C_1$ Max (I_1, I_4) , and $> C_2 \overline{I}$, where "Max" means "the greater," C_1 and C_2 are chosen constants, and \overline{I} is the average intensity of the speckle frame where the Fork algorithm was performed. The last condition applies when photon or detector noise is present. An estimate of the intensity ratio from each such "favorable occurrence" is $r \simeq (I_3 - B)/(I_2 - B)$,

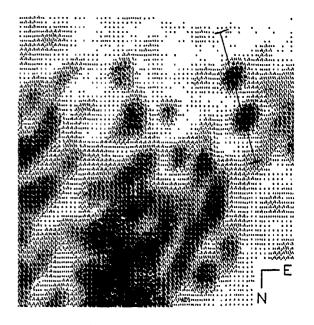


FIG. 1. A 64×64 pixel area of a speckle frame (1986, y filter) with a 22 level grey scale. A "favorable occurrence" for the Fork algorithm is indicated. The separation is 0.050, the intensity ratio is 0.91, and the position angle is 203°, as is indicated by this example.

where the background level is given by $B = (I_1 + I_4)/2$. These are referred to as "uncorrected estimates" below.

A better way is to estimate the two "contamination" terms in Eqs. (1.) for I_2 and I_3 , i.e., ri_1 and i_3 . A straightforward calculation shows that

$$i_{1} = I_{1}R_{1} - (1/Q),$$

$$i_{\overline{4}} = I_{4}R_{4} - (1/Q),$$

$$\overline{i_{3}} = (I_{4} - \overline{i_{4}})/r,$$
(2)

where

$$Q = (1/r) - 1$$

and

$$R_n = e^{i_n Q} / (e^{i_n Q} - 1).$$

The above estimates were obtained by assuming that the probability of intensity i is given approximately by an exponential distribution, and by integrating appropriate probability distributions. Therefore, the "corrected estimate" of the intensity ratio for this occurrence is

$$I \cong \frac{f_3 - \overline{i_3}}{I_2 - r \,\overline{i_1}} \equiv \frac{b}{a}.$$

The corrected estimates can also be appropriately weighted by their estimated uncertainties. The uncertainties in i_1 and i_3 lead to an uncertainty in the estimate for r and of a related quantity f = r/(1 + r), the fraction of intensity in the lesser component. It turns out that

$$\Delta f^2 = (b^2 \Delta a^2 + a^2 \Delta b^2)/(a+b)^4,$$

where

$$\Delta a^2 = r^2 \left[I_1^2 (1 - R_1) R_1 + (1/Q^2) \right] = \Delta i_1^2 r^2 \tag{3}$$

and

$$\Delta b^2 = (1/r^2) \left[I_4^2 (1 - R_4) R_4 + (1/Q^2) \right] = \Delta i_4^2 / r^2.$$

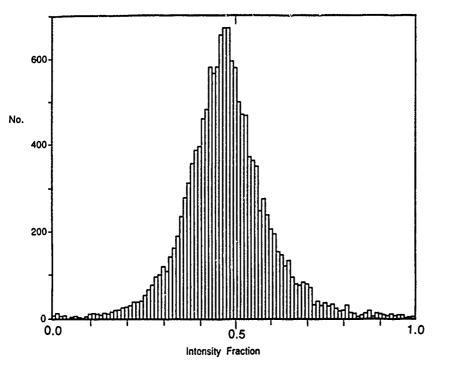


FIG. 2. Histogram for the 1987 y filter (corrected) data for 80 frames. The number of occurrences is plotted as a function of the intensity fraction.

One can compute an estimate of f for each occurrence, weight it by $1/\Delta f^2$, and store it in a histogram. Uncertainty estimates can also be modified for estimated modest photon or detector noise by incorporating an additional term in Eq. (3).

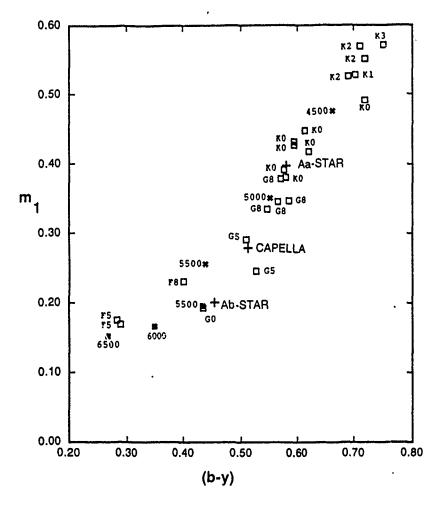
Figure 2 shows as an example a histogram of the corrected, unweighted estimates of y filter results from the 1987 data. According to the autocorrelation data and the orbit, the separation in pixels (x,y) was (-1,9), which puts the fainter star almost due south of the brighter one. Parameters C_1 and C_2 were set at 2.25 and 1.3, respectively, for the Fork algorithm, and the average digitized intensity over the area in which the Fork code operated was about 45 in the y filter (in a 0-255 digitization range).

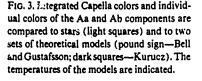
Table I lists the results for the Capella Δm values that have not yet been transformed to the standard Strömgren system. Somewhat surprisingly, the magnitude difference rises as one goes from y to v (5470 to 4100 Å). Therefore, the brighter component is the hotter Ab star (the spectroscopic secondary), and not the Aa star, contrary to the result of Wright (1954).

Note the basic agreement of the y measurements in Table I. The most discrepant point had data with the lower scale, which may account for the difference. The errors are obtained from the internal differences in the data and do not reflect possible systematic errors (e.g., detector nonlinearities).

On two other points of interest: First, the sense of the true position angle is determined by whether or not $I_2 > I_3$. On all four dates, the position-angle quadrants were determined to be in the same sense, that given previously by Bagnuolo and McAlister (1983). Second, we do not see any sign of photometric variability in this system.

The individual star colors now can be obtained from the integrated Capella colors, which were determined by Hauck and Mermilliod (1975) to be b - y = 0.513 and $m_1 = 0.278$ mag. Taking the 1984 magnitude differences to minimize


possible systematic biases, we thus find for the Ab star b - y = 0.451, v - b = 0.655, $m_1 = 0.204$; and for the Aa star b - y = 0.586, v - b = 0.980, and $m_1 = 0.394$. Figure 3 is a plot of the Capella components against standard G and K giants from Crawford and Barnes (1970). The best agreement is for G0 III and G8/K0 III components. Also plotted in the figure are sets of models from Kurucz (1988) and Bell and Gustafsson (1978).


III. DISCUSSION

It is evident that Capella Ab is almost 40% brighter compared to Capella Aa than was previously thought. Besides the work by Griffin and Griffin (1986), is there any other support for this in the literature?

At first sight, the integrated broadband colors might be different. Suppose we compare two models: Model I (standard model) with G6 III and G0 III stars having $\Delta m_{\nu} = 0.25$, and Model II (this paper) with G8/K0 III and G0 III stars having $\Delta m_{\nu} = -0.10$ (i.e., G0 star brighter). Synthetic broadband colors can be computed from the Johnson (1966) standards, incorporating some results from Bell and Gustafsson (1978). Table II (top) shows that the differences between these models are very small. The largest difference, in U - B, is only 0.04 mag.

Another approach is to look at the difference in the far UV and in the narrow IR bands. In the former, the earlier-type star (which dominates) will be 0.18 mag brighter in Model II than in Model I. In an analysis of *IUE* Capella data at critical orbital phases, Ayres, Schiffer, and Linsky (1983) stated that the "rapidly rotating F9 III secondary star in the system i. considerably brighter than the more slowly rotating G6 III primary in the ultraviolet emission lines characteristic of the chromosphere ($T \sim 6000$ K) and higher temperature ($T < 2 \times 10^5$ K) plasmas." They remarked about "the extraordinary brightness of the Capella secondary in the far ultraviolet." This ultraviolet excess is perhaps less

remarkable if Capella Ab is 0.2 mag brighter in the visual than previously thought.

Some data in five IR photometric bands between 1.25 and 3.25 µm from NASA's Lear Jet Infrared Observatory were presented by Nordh, Olofsson, and Augason (1978). In this filter system, the bands "F1" to "F5" were centered at 1.2, 1.5, 1.75, 2.4, and 3.3 μ m, respectively. The authors noted that by assuming the spectral classification and the light ratios given by Wright "after normalizing at filter F1 the model predicted too much flux at the positions of the filters F2, F3, and F5 (18%, 8%, and 14%, respectively), whereas the fluxes at the position of filter F4 were in agreement." They acknowledged that the data, especially in filters F2 and F3, were inconsistent with the spectral classification and magnitude differences given by Wright (1954). This discrepancy might be resolved by having the hotter, spectroscopic secondary be the brighter of the two components.

Finally, Koechlin et al. (1979) assigned a true nodal

quadrant to Capella that appears to be 180° in error (see Bagnuolo and McAlister 1983). The CERGA group's method involved observing spectrally dispersed fringes between 5000 and 6500 Å; they assumed a magnitude difference of 0.25 in these wavebands. However, our observed intensity ratios and colors imply that the cooler Capella Aa is the brighter longward of about 6400 Å, which could explain their error (Vakili 1988).

To conclude, there does seem to be support in the literature that the hotter Capella Ab is the brighter star.

IV. SUMMARY

Assuming that the new spectral types are correct (G8/ K0 III and G0 III), the intrinsic parameters for Capella (listed in Table III) have been obtained. Orbital parameters were taken from McAlister (1981). The stellar tempera-

TABLE III. Derived quantities fur the Capella components.

Spectral Type	Mv	log Te	B.C.	log(L/L⊙)	log(R/R⊙)
G0 III	0.12	3.744·	-0.04	1.844	0.958
		(3.763)	(-0.13)	(1.880)	(0.938)
G8/K0 III	0.23	3.681	-0.25	1.884	1.104
		(3.649)	(-0.40)	(1.944)	(1.198)

1059

U-B B-V V-R

.

Model

1

11

0.54

0.58

T	ABLE I	I. Synti	hetic co	olors fo	r two m	odels.			G0 III	0.12	
B	B-V	V-R	V-1	V-J	V-K	V-L	V-M	V-N			(
4	0.82	0.64	1.06	1.35	1.88	1.97	1.85	1.88	G8/K0 III	0.23	
8	0.83	0.64	1.07	1.38	1.91	2.00	1.88	1.90			(

tures were based upor the models of Kurucz (1988) and Bell and Gustafsson (1978) for temperatures of 4800 and 5500 K, respectively. Values using the temperatures and bolometric corrections from Popper (1980) are given in parentheses in Table III.

Finally, it is interesting to note that our new spectral type for the brighter star is identical to that assumed by Eddington (1926). Sometimes the more things change, the more they stay the same.

We wish to acknowledge W. Hartkopf, H. McAlister, O. Franz, P. Lu, and E. Dombrowski for their time spent in the

acquisition of the Capella data. We thank W. Hartkopf and H. McAlister for critiquing the manuscript. We also thank D. Barry for sharing his computer expertise, and T. Meylan for supplying stellar model data and useful criticism. The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF grant no. AST 8613095 and the Air Force Office of Scientific Research through AFOSR grant no. 860134. We gratefully acknowledge this support. The video digitizing hardware was purchased through grant no. N14-87-6-0160 from the Office of Naval Research, and we thank Gart Westerhout and Charles Worley of the U. S. Naval Observatory for their interest in our speckle efforts.

REFERENCES

- Ayres, T. R., Shiffer III, F. H., and Linsky, J. L. (1983). Astrophys. J. 272, 223.
- Bagnuolo, W. G., Jr. (1982). Mon. Not. R. Astron. Soc. 200, 1113.
- Bagnuolo, W. G., Jr. (1983). Lowell Obs. Bull. 167, 180.
- Bagnuolo, W. G., Jr. (1988). Opt. Commun. (submitted).
- Bagnuolo, W. G., Jr., and McAlister, H. A. (1983). Publ. Astron. Soc. Pac. 95, 992.
- Bell, R. A., and Gustafsson, B. (1978). Astron. Astrophys. Suppl. 34, 229.
- Campbell, W. W. (1899). Astrophys. J. 10, 177.
- Crawford, D. L., and Barnes, J. V. (1970). Astron. J. 75, 978.
- E.Jdington, Sir A. S. (1926). The Internal Constitution of the Stars (Dover Edition, New York, 1959), p. 11.
- Griffin, R., and Griffin, R. (1986). J. Astrophys. Astron. 7, 45.
- Hauck, B., and Mermilliod, M. (1975). Astron. Astrophys. Suppl. 22, 235.
- Johnson, H. L. (1966). Annu. Rev. Astron. Astrophys. 4, 193.
- Koechlin, L., Bonneau, D., and Vakili, F. (1979). Astron. Astrophys. 80,

L13.

- Kurucz, R. L. (1988). Private communication to T. Meylan.
- McAlister, H. A. (1981). Astron. J. 86, 795.
- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). Astron. J. 93, 688.
- Newall, H. F. (1899). Mon. Not. R. Astron. Soc. 60, 2.
- Nordh, H. L., Olofsson, S. G., and Augason, G. C. (1978). Astron. J. 83, 188.
- Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
- Shen, L. Z., Beavers, W. I., Eitter, J. J., and Salzer, J. J. (1985). Astron. J. 90, 1503.
- Strassmeier, K. G., Hall, D. S., Zeilik, M., Nelson, E., Eker, Z., and Fekel, F. C. (1988). Astron. Astrophys. Suppl. 72, 291.
- Vakili, F. (1988). Private communication.
- Wright, K. O. (1954). Astrophys. J. 119, 471.

Seeing Stars with Speckle Interferometry

Harold A. McAlister

Astronomers view the universe through an atmospheric veil surrounding the earth that obscures a large part of the electromagnetic spectrum and distorts much of the remainder, including most visible and infrared wavelengths. Irregularities within atmospheric layers create small convection cells of air with slightly different temperatures and densities from the air in neighboring cells, and the differential refraction induced by this condition changes rapidly as winds blow the cells across lines of sight to celestial objects. This results in an image from a

point source such as a star that is greatly blurred, changing in appenance on time scales of a few hundredths of a second.

For nearly a century, great of servatories have been located of mountaintops selected after exhaus tive searches for sites with the most transparent and stable air above them to minimize atmospheric effects on seeing. The latest effort at surveying sites was completed in April 1987 with the announcement by the National Optical Astronomy Observatories that the 16-m National New Technology Telescope would be located on the Hawaiian volcano Mauna Kea. Mauna Kea is well known for

its excellent seeing conditions, with astronomers often reporting the blurring of stellar images—called "seeing disks"—to less than half a second of arc, compared to two to four times that amount at good sites in the continental United States.

To resolve detail finer than the seeing limit imposed by the atmosphere, astronomers have long dreamed of putting large telescopes in space or on the moon, where no gaseous medium can blur or filter out light from astronomical objects. The finest resolution of such telescopes would be the ultimate limit imposed by the diffraction of light, a limit inversely proportional to the diameter of a telescope's objective mirror. Thus a telescope such as the 5-m aperture (200-inch) Hale telescope

Harold A. McAlister 15 a professor of physics and astronomy and director of the Center for High Angular Resolution Astronomy at Georgia State University. After receiving a Ph.D. in astronomy from the University of Virginia in 1975, he spent two years at Kitt Peak National Observatory in Tucson, Arizona, developing a program of high-resolution studies of binary stars that continues today Address Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303. on Mt. Palomar would be capable in space of resolving angular detail as small as 0.025 sec, equivalent to the angular size of a dime seen from a distance of some 80 km. The actual limiting resolution on Mt. Palomar is degraded by a factor of nearly 100, to somewhere around 2 sec. Thus this great telescope, capable of gathering one million times the light of a single human eve, can outperform the eye by a factor of only about 30 in angular resolution, doing no better than a department store telescope in this regard. The Hubble Space Tele-

New techniques enable astronomers to overcome aimospheric distortions of telescopic images, revealing, among other things, an unexpectedly large number of binary stars scope, with its 2.5-m diameter objective mirror, will yield images with unprecedented sharpness of detail when it is orbited by the space shuttle, surpassing even the best viewing from Mauna Kea by at least an order of magnitude.

As the scientific momentum behind the Space Telescope was building in the middle and late 1960s, a young French astronomer named Antoine Labeyrie was developing novel but not particularly difficult methods of observation and analysis to surpass the atmospheric seeing limit and, for certain types of objects, to reach the full diffraction-limited resolution expected from theory. La-

beyrie gave this new approach the name "speckle interferometry" (Labeyrie 1970).

Speckle interferometry works by recording images using exposure times between 1/30 and 1/100 sec. During these brief instants, the distribution of turbulence can change by only a fraction of a typical convection cell's diameter, so that the pattern of blurring is effectively frozen. The aperture of a large telescope like the 4-m Mayall reflector on Kitt Peak will at any given instant contain hundreds of refractive cells, which create a random distribution of interference fringes in the image produced by the telescope; following Labeyrie's pioneering work, an individual fringe in the image is called a "speckle." Because each speckle contains contributions from locations distributed throughout the telescope's aperture, they all have characteristic sizes, which are directly proportional to the wavelength of light being observed and inversely proportional to the aperture of the telescope. For a 4-m telescope, speckle diameters turn out to be approximately 0.030 sec in visible light. Each speckle is actually a version of what the telescope would see if there were no atmosphere. Thus a speckle image is a kind of multiple exposure containing hundreds of complete representations of the astronomical object.

Cameras used to record speckle images at high magn.fication typically have fields of view of only two or three seconds compared to the many minutes of arc in normal astronomical photographs. Because of the very short exposure time required to freeze the pattern of atmospheric distortion, any single exposure will have to take advantage of as many of the incoming photons as it can. The light is amplified by an image intensifier tube and recorded by a highly sensitive electronic detector with very low noise.

lving

ound

ment

letail

's, a ned

ident iysis eing 2001 itel La-

ring

e very 4-m

e

eer-

੭ਦੋ 5 are ਗ

ters

zht.

The speckle camera we have developed at Georgia State University incorporates high magnification optics, a spectral filter assembly, and prisms that correct for atmospheric dispersion as objects are observed at varying distances from the zenith. The entire system is operated by computer. The camera produces 1,800 speckle images in one minute and can easily detect objects as faint as tenth magnitude, some 40 times fainter than can be detected by the unaided human eye. Longer integration times have been used to reach objects such as Pluto that are several hundred times fainter still. Figure 1 shows a speckle image of a single star alongside a 4-sec exposure from the same data set. It is apparent from these two examples that exposure times exceeding the rate of atmospheric change blur the information carried in the speckle exposures.

The analysis of speckle images involves measuring the average spatial information at the limiting scale-sizes of the speckles. In an early and conceptually simple analysis of an image of the cool supergiant star Betelgeuse, Lynds and his co-workers (1976) treated each speckle as a distorted and noisy approximation to a

diffraction-limited image of the barely resolved star. By centering and stacking hundreds of individual speckles in a computer to improve the signal-to-noise ratio, they produced a "picture" of the surface of Betelgeuse, the first of the surface of any star other than the sun. Much of the structure in this intriguing image is smaller than the limiting resolution of the Kitt Peak 4-m telescope at which the data were obtained and must be attributed to residual noise following processing. Indeed, although Betelgeuse is resolved at the telescope's diffraction limit, its disk is only about three times the diameter of the smallest disk resolvable by the telescope. No more than a dozen supergiant stars in our galaxy are large enough and near enough to the sun to have angular diameters resolvable by speckle interferometry at the largest existing telescopes, and thus the applicability of the method to the measurement of stellar diameters is limited at present.

The ubiquitous binary stars

Binary stars are the special objects of speckle interferometry. A binary star is actually a pair of stars bound by their mutual gravity into elliptical orbits about their center of mass. The determination of the orbital elements of a binary star—dynamical and geometric parameters describing the relative motion of the two stars—provides the only means available for determining stellar masses (see Heintz 1978). These quantities are of fundamental importance to astrophysics and to our understanding of the complete evolutionary history of stars, and yet they are in short supply (Popper 1980). This is the last area in which the human eye still makes direct measurements at a telescope.

Evidence painstakingly accumulated during the last

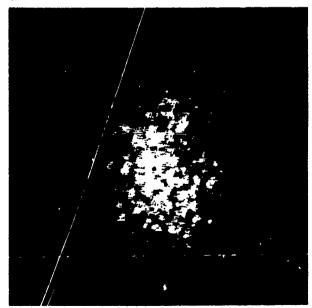


Figure 1. Speckle interferometry, a technology developed during the past 20 years, allows astronomers to overcome the distorting effects of the earth's atmosphere by photographing celestial objects at very short exposure times. A speckle image is a kind of multiple exposure, with each individual speckle containing a complete representation of the object. The speckle image of a star on the left was obtained at the 4-m telescope on Kitt Peak using an electronic camera with an exposure time of 1.30 second. The field of view is just under 3 sec of arc. In a four-second exposure of the same star (*right*), the fine speckle detail has been biurted by the rapidly changing atmosphere. (All photographs are by the author.)

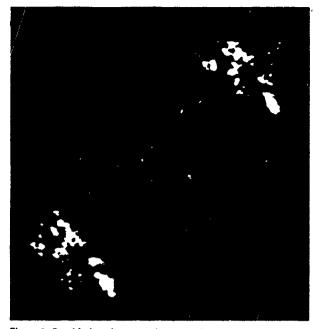


Figure 2. Speckle interferometry has proved particularly useful for observing binary stars, apparently the great majority of stars in our galaxy. It can resolve companion stars in binary systems at separations much too fine for the visual method to distinguish. As long as the stars are separated by no more than a few seconds of arc, their light undergoes the same atmospheric distortion and thus can be resolved in a single speckle image. This image of the binary star ADS 11483 with an angular separation of 1.6 sec was taken at the 3.6-m Canada-France-Hawaii telescope under the excellent seeing conditions that prevail on the volcano Mauna Kea.

half century indicates that most stars in our galaxy exist not as single objects but as companions bound in binary systems. This mutual association of stars carries on to triple and higher order systems, pointing to our need to understand why stars form in such groups rather than as single objects. The only star that is conclusively known not to be in a binary or multiple system is our own sun, and yet it is accompanied by the giant gaseous planet Jupiter, a kind of near miss at being a star in its own right. Labeyrie's method of speckle interferometry offered a revolutionary way of detecting new binaries and measuring thousands of known systems because of its greatly increased resolution and accuracy in comparison with the classical methods.

Speckle interferometry provides a means for resolving binary stars with angular separations down to the diffraction limit and for measuring their orbital motions with greatly improved accuracy in comparison with the visual method Much of this increased accuracy depends on a property known as isoplanatism, which results from the equal distortion of the individual stars in a binary system as long as they are separated by no more than a few seconds. Figure 2 shows a speckle image of a binary star system with an angular separation of approximately 1.6 sec. The speckle patterns of the two component stars correlate highly, and the geometry of the system is repeatedly preserved in the individually correlated speckle pairs. The image was taken on Mauna Kea under superb seeing conditions, so the speckle patterns arising from each star are well separated.

An efficient method for measuring the average geometry of a binary system from a series of speckie images begins with what is known as a vector-autocorrelation, which measures all possible separations and orientations between all of the pairs of speckles in a single image. Imagine making a two-dimensional representation in which you place each speckle in turn at the origin and then plot the positions of all the speckles around it. If an image contains a total of N individual speckles, the vector-autocorrelation of the image is produced by N plottings. You continue adding to the representation over many hundreds or thousands of such images, and the geometry of correlated pairs shows up as two peaks on either side of a bright central peak at the origin, with the other random pairs contributing a smooth background extending over an area equivalent to that of the seeing disk. The geometry is then measured by eliminating the smooth background and determining the separation between the two outer peaks. The central peak arises from the superimposition of every speckle. This processing method can easily be carried out with specialized computer hardware as the data are taken at the telescope.

Figure 3 demonstrates the method for a binary star with an angular separation of a few tenths of a second. The seeing conditions under which the data were obtained are typical of Kitt Peak, with the result that the individual speckle patterns of the two stars cover each other. The vector-autocorrelogram on the right provides very strong peaks that can easily be measured with a precision better than 0.002 sec. A feature of this method of analysis is that the location of the fainter star with respect to the brighter star of the pair is ambiguous by 180° of position angle. This ambiguity is usually settled by visual observations of the system, as experienced observers can make micrometer measurements of binaries with such small angular separations. Visual measures, however, are less accurate than speckle results by at least an order of magnitude.

More sophisticated reduction techniques than vector-autocorrelation not only settle the ambiguity for the systems uniquely resolvable by speckle interferometry but also provide a determination of the brightness ratio between the two stars. This additional information is important for the complete astrophysical description of a binary star system. Labeyrie (1978) and I (1985) have both published reviews of methods and results from speckle interferometry as well as from other high-resolution techniques.

A terabyte of data

The speckle program of the Center for High Angular Resolution Astronomy has produced more than 85% of all high-resolution measurements of binary stars. Since 1975, our efforts have yielded some 6,300 measures of nearly 1,200 binary star systems during about 120 nights of observing at the Kitt Peak 4-m telescope, representing a terabyte of data. These results include the first resolution of 192 stars as binary systems. The average angular separation is about 0.38 sec, with nearly 20% of the sample falling between 0.10 sec and the limiting resolution of 0.030 sec.

Many of the newly resolved pairs have orbital

erage of speckle pcorreand b in a ial repreat the eckles vidual ze is proo the lds of s shows l peak at ling a ent to neasured ermining entral eckle. out with taken at ∕ star second. vere oblt the each vrovides vith a thod

suits by an vecfor the conetry stratio ition is on of a i) have strom resolu-

with

ttled

hceđ

bina-

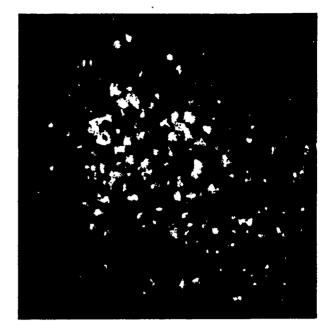
al mea-

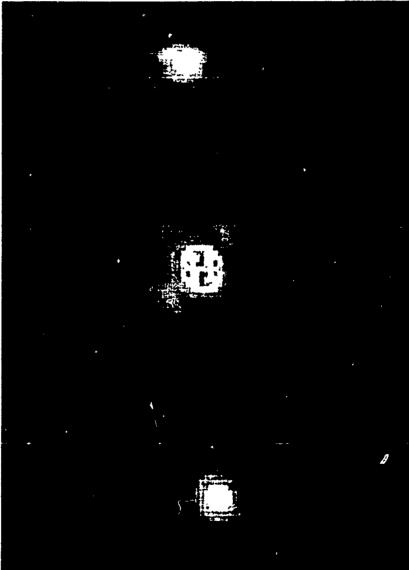
jous by

ngular 3:0 of ince ires of nights etting regular

orbital

of_the

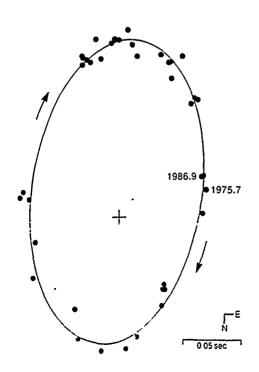

periods of a decade or less rather than the many decades that are typical for visual binaries. One particularly informative example is 51 Tauri (Fig. 4). This binary system is a member of the Hyades cluster, a collection of stars of fundamental importance in calibrating the cosmic distance scale. Hyades binaries provide one way of determining the distance to the cluster and also furnish unique information about the way that evolutionary effects in stars created at the same time with the same chemical abundances are dependent on the stars' masses. Just observed through one complete revolution, 51 Tauri promises to be one of the most important of the Hyades binaries in settling a number of issues that have been debated over the years.


Many other systems with relatively long periods have been observed during so-called periastron passages, when the two stars approach closest to each other and, as Kepler's second law dictates, their angular velocities are greatest (Fig. 5). Many such systems are unresolvable by classical methods around periastron. The new speckle measures provide critical information about their orbital elements and hence their masses.

The most important kind of binary system resolvable by speckle observations is that whose component stars have never been directly resolved but are revealed through their separate contributions to the system's spectrum. If their orbital motions are sufficiently rapid, the two sets of features will move oppositely through the spectrum in accordance with the Doppler effect, and the velocities of each of the stars along the line of sight can be measured. The direct resolution of these "double-lined spectroscopic binaries" permits the combination of angular measures of separation with linear measures of velocities to determine not only the masses of the component stars but also the systems' distances from the sun.

We have resolved a handful of such spectroscopic binaries, but the great majority of these systems have angular separations too small to be measured by current speckle methods. Successfully resolved examples include 12 Persei and Phi Cygni, the former consisting of two stars only

Figure 3. The binary star ADS 7158 has an angular separation of 0.24 sec, so close that the speckle patterns of the two component stars cover each other in an image taken with the Kitt Peak 4-m telescope (top). A vector-autocorrelog an (bottom) gives an accurate measure of the angular separation and relative orientation of the two stars. The two outer peaks in this computer-generated image represent the paired speckles in nearly 2,000 individual speckle frames like the one at the top. The bright central peak results from the superimposition of every speckle.



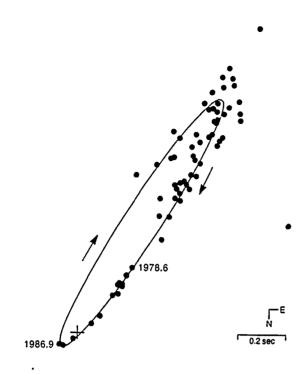
slightly hotter and more luminous than the sun, the latter comprising two stars that are similar in temperature to the sun but have evolved to giant stars. Although our results for 12 Persei agree well with stellar evolutionary theory, the luminosities for the stars in Phi Cygni are significantly greater than expected. We have also found this departure from theory in two other spectroscopic binaries containing giant stars.

There are many specific stars for which speckle interferometry has already provided new orbital elements, and there are many more visual binaries with fairly long periods of revolution for which it will soon improve calculations of orbits based until now entirely on visual measures. These refinements can have very large effects on measurements of masses, as total mass is proportional to the cube of the major axis of the ellipse. Thus a 15% change in the determination of the major axis causes a nearly 50% alteration in the calculated mass. A typically large reassessment of stellar mass is shown in Figure 6.

Searching for extrasolar planets

Triple star systems have been discovered during measuring of previously known visual binaries. Others have resulted from attempts to resolve spectroscopic binaries predicted to have angular separations at the diffraction limit of the 4-m telescope but having a companion with slower orbital motion than the previously known component. The star Eta Virginis is a binary with a spectroscopically determined orbital period of 70 days and, being relatively close to the sun, is a good candidate for resolution by speckle interferometry. Continued speckle coverage has indicated a period of just over 13 years due to a previously unknown third stellar companion. It is possible that the 70-day period may yet reveal itself as the gravity of the unseen star causes the resolved system to depart from simple elliptical motion.

This phenomenon is in fact the basis for one method of detecting planetary companions to stars. Since late 1982, we have been using the 72-in. Perkins telescope near Flagstaff, Arizona, to take monthly observations of a collection of 65 binary stars that are known to be within 85 light-years of the sun. By taking repeated measurements over a decade or so, we hope to decrease the observational errors so that departures from elliptical motions as small as 0.0002 sec can be detected. As is shown schematically in Figure 7, such small submotions could reveal the presence of planets with masses equivalent to Jupiter in orbit about one component star of a binary. Because planets are small and shine only by reflected light from their parent sun, they are hopelessly lost in their sun's glare and can be found only by indirect means.


Several search programs are in progress around the world, but ours is the only one involving binary stars. Other methods of detecting planets are in fact not applicable to binary systems. Calculations have shown that stable and even life-supporting orbits can exist in binary systems, and it is important that this dominant class of stars not be overlooked in the search for extrasolar planets. At present, there is no confirmed evidence for the existence of any planet outside our own solar system. It will be several more years before we can determine if our approach will achieve the required level of accuracy, but the scientifically and philosophically profound nature of this quest makes our efforts rewarding.

How many binaries are there?

We have already noted the seemingly limitless number of binary star systems. There are various ways to detect such systems, but a particular binary is rarely detectable as a binary by more than one. Speckle interferometry has pushed direct resolution into the realm of the spectroscopic binaries—that is, speckle observations can search for new systems that would have gone undetected in previous surveys.

Unfortunately, surveys of stars require large amounts of telescope time, a need that cannot be met in view of the stiff competition for very large telescopes. The urgency of the situation was stressed in late 1984 by Michael Shara of the Space Telescope Science Institute, who pointed out that the frequency with which the fine guidance sensors of the Hubble Space Telescope would encounter binary stars was probably underestimated because of the incomplete models of the galactic population distribution then available. The sensors cannot lock onto a binary star to provide a guiding and tracking

Figure 4. Many of the binary star systems that have been resolved by speckle interferometry have orbital periods much shorter than those previously observed by visual methods. Measurements of the motion of the fainter member of the binary system 51 Tauri around the brighter star (the latter represented as fixed in its location at the large + sign near the center of the ellipse) have refined estimates of the orbital period to 11.31 years. Colored dots represent speckle measurements; gray dots represent visual measurements. The new estimates will play an important role in calibrating the cosmic distance scale, because 51 Tauri is a member of the Hyades cluster, a collection of stars that provides a basic outward step in the hierarchical determination of distances in the universe.

ate

hìn

re.

is

ong

nt a

esc ipe

one of

se the

liptical

quiva-

ndirect

the

wn

in

lant

nce

blar

can

hliv

i level

umber

detect

rosco-

ch for

ble

has

lvi-

large

n<u>et</u> in

titute,

opula-

ilved

at the

by

fine

uld

ed

хk

ng

xtraso-

ct not

framework for observing another targeted object such as an extended galaxy. How often this might happen cannot be known in advance, so not only would this \$1.4 billion instrument fail to observe a preprogrammed object, but it might spend the entire integration time collecting no useful data at all.

Shara urged a reassessment of the frequency of binary guide stars, then regarded as a kind of celestial vermin. Scientists from the Center for High Angular Resolution Astronomy were enlisted on relatively short notice to observe at several large telescopes, including the historic 100-in. Hooker telescope on Mt. Wilson, the

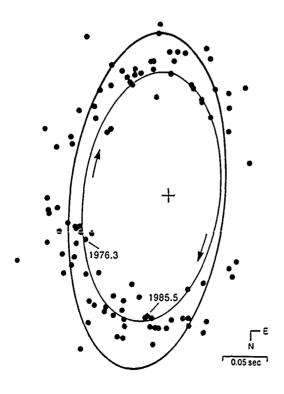


Figure 5. The star ADS 1105 was discovered to be a binary system in 1831; in that year its angular separation was 0.7 sec. When speckle data were first gathered in 1978, orbital motion was increasing rapidly because of the impending passage of the stars through their point of closest approach, or periastron, an event now known to have occurred in the fall of 1984. The two stars were separated by no more than 0.01 sec, too close to be resolved by visual methods. The orbital motion, which has now been determined for the first time, shows not only the rapid and critical periastron passage of the nearly 210-year orbit, but demonstrates as well the increased accuracy and resolution of the speckle measures (*colored dots*) compared to the visual measures (*gray dots*).

120-in. Shane telescope of the Lick Observatory, and the 3.8-m Canada-France-Hawaii telescope on Mauna Kea. After observing faint guide stars at the two continental telescopes, we decided to switch to observing bright stars. By selecting a sample containing the proper evolutionary blend, we hoped to arrive at an accurate figure that could be used by planners of the Space Telescope. In four nights on Mauna Kea under wonderful seeing conditions, we observed a sample of 672 bright stars, discovering 52 previously unknown binaries. This result more than tripled the estimated frequency of binary stars in the separation interval from 0.04 to 0.25 sec; Shara subsequently has predicted that nearly 20% of all guide stars will be unsuited to their task (Shara et al. 1987). The software for guiding the Space Telescope is now being modified to minimize the impact of this situation.

Whereas the Space Telescope's planners regard the increased estimate of duplicity as a pestilence, we find it scientifically intriguing. The survey of the more than 9,000 stars officially classified as "bright" is being continued, a few hundred stars at a time, during breaks in our regular program of measuring binary systems at Kitt Peak and follow-up runs on Mauna Kea.

We have also carried out a more limited survey among stars in the Milky Way showing very high velocities. Our results support an upward revision in the frequency of duplicity among older stars, which move differently from the population of younger stars like the sun. What was once thought to be a rare occurrence for the older generation of stars may actually be as common as it is among the more recently formed stellar population.

As a final group of objects in which new binary systems might be sought, we have surveyed not another collection of stars, but instead a sample of minor planets in our own solar system. Reports of such binary asteroids have appeared during the last decade, but in no case has incontrovertible evidence been put forth. We have completed the most extensive search to date by inspecting some 60 minor planets on two or more occasions each. We have found no evidence for the existence of double asteroids and must conclude that they do not exist within the limits of detectability by

Figure 6. Speckle interferometry has provided revised estimates of the orbital elements of many binary systems. The speckle measures (cclored dots) and visual measures (gray dots) of the system ADS 11520, whose period of orbit is 12.14 years, are shown along with the orbit previously considered definitive (gray ellipse) and the new orbit incorporating the speckle observations (colored ellipse). The total mass of the system is now known to be less than one-half that given by the previously accepted orbit, which was based solely on visual data. speckle interferometry. Why our galaxy prefers binary stars but the solar system prefers single asteroids remains a mystery.

Future efforts

Speckle interferometry is far from exhausting its potential. Other groups active in the field, such as those at i Harvard University and the University of Arizona, have emphasized the development of techniques for reconstructing high-resolution images from speckle pictures. This is a difficult task, but once perfected, speckle techniques will be widely used in astronomy, joining such standbys as photometry and spectroscopy. Imaging methods will be particularly important at infrared wavelengths, because many cooler objects associated with star formation radiate in the infrared and could easily be resolved at the diffraction limits of large telescopes.

Although speckle imaging will not be limited to objects such as binary stars that exhibit simple structures, the study of binary stars will benefit tremendously from certain types of imaging algorithms that not only reveal positional information but permit the determination of the individual brightnesses and colors of both component stars of a system. This means that in addition to determining the masses of the stars we can complete their astrophysical descriptions by extracting their luminosities and temperatures. No other method now exists for accurately determining this intensity-related information for binaries that are closer to each other than the seeing limit. We hope to be routinely performing "speck-

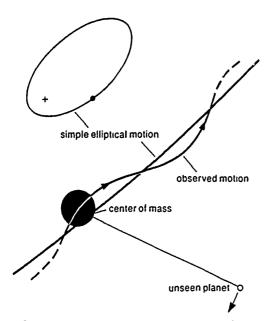


Figure 7. Unseen third companions of planetary mass in binary star systems can be detected if the orbital motion is measured with sufficient accuracy to reveal departures from simple elliptical motion. The complete elliptical orbit of a hypothetical binary system is shown at the upper left; the enlargement of a portion of the orbit shows the submotions of one of the stars, around which an unseen planet is presumed to orbit. The gravity of the unseen planet causes the submotions; at the same time, the center of mass of the system formed by the planet and the star follows the elliptical path. Evidence presented by speckle interferometry could help determine whether extrasolar planets exist. le photometry" along with our well-established speckle interferometry within a year or so.

But what about the push for ever higher resolution? The 10-m Keck telescope on Mauna Kea, which will be operated by Caltech and the University of California, is now well under way. Even 'arger national facilities are being planned, including the National New Technology Telescope in the United States and the Very Large Telescope, a European project to be located in the Southern Hemisphere. These behemoths will become the major observatories for the turn of the new century, designed to serve at the frontier of astronomical science. Although not specifically intended for high angular resolution astronomy, they will have some important applications to it.

The real breakthrough in the quest for higher resolution is taking place in the development of arrays of telescopes dedicated to interferometry, a technology perfected years ago at longer wavelengths by radio astronomers. Arrays can be made to achieve the resolution of a single enormous telescope if their focal planes are brought together to relay a commonly intercepted wave front of light to a beam-combining location Achieving the necessary interference within the combined beams requires that the light paths in the arms be controlled to micron accuracies.

The application of this long-baseline interferometry at visible wavelengths began early in the century at the Mt. Wilson Observatory, but the valiant attempts made there during the 1920s and 193Cs were generally frustrated by the lack of appropriate technology. The effort was abandoned for over thirty years until several groups began to develop multi-telescope interferometers in the early 1970s. Labevrie built a two-telescope interferometer in France and began work on a separate system employing an array of 1-m telescopes of a novel spherical design (Labeyrie et al. 1986). Other projects around the world include an interferometer on Mt. Wilson (Shao et al., in press) and a linear array of 11 small telescopes on a 640m north-south baseline now under construction in Australia (Davis and Tango 1985). The Australians have already measured the diameter of the nearby star Sirius using a prototype interferometer (Davis and Tango 1986). Several other projects aimed at infrared wavelengths are in various stages of development (Anderson 1987).

At the Center for High Angular Resolution Astronomy, we are planning a facility that will increase the available angular resolution by more than two orders of magnitude. Seven 1-m telescopes will be dispersed along three baselines radiating at 120° intervals from a central station. The circle circumscribing this array will have a diameter of up to 400 m, depending on the site at which it is eventually located. The beams from the individual telescopes will be carned through light pipes to the central station, where they will be directed into combining optics and detectors.

Our configuration is modeled after the enormously successful Very Large Array of radio telescopes located in New Mexico, but because of the resolution leverage of the short visible wavelengths, our interferometer will have more than a hundred times greater resolution. This wavelength advantage, however, quickly turns against us by imposing formidable mechanical and optical tolerances. It will be a challenge to produce the kind of images of extended objects for which the Very Large Array has become justly renowned. At the outset, our project will be aimed primarily at measuring stellar properties through the resolution of very close binaries and the surfaces of individual stars, but it has the potential for imaging complex objects.

The new interferometer will have a limiting resolution of 0.0002 sec, compared to the 0.030 sec we are now achieving by speckle interferometry on Kitt Peak. The dime that is now resolvable as a disk from 80 km will be measurable from a distance of 12,000 km! We can now expect to resolve a typical binary star at a distance of 80 light-years from the sun if its period of revolution exceeds about 0.7 year; the instrument we hope to build will be able to resolve binaries at this distance with orbital periods as short as 3 hours. It is now a rare and celebrated occurrence when we successfully resolve a spectroscopic binary, but the new interferometer will resolve virtually all the more than 700 such objects now known; it will increase the present handful of resolvable stellar diameters by tens of thousands. A long-baseline optical interferometer will be a revolutionary leap forward in fundamental observational astrophysics, furnishing a new perspective on the universe. It will cost about the same as a single 4-m telescope-around \$8 million-but will provide 150 times

the resolution.

. 4

ution?

logy

be

is

are

Ωe

the

hce.

ular

50-

lology

adio

blu-

nes

cepted

ation.

bm-

be

the

'as

ips

w-

gn vorld

<u>۱</u>۵-

15-

go

re-

he

ral

h a

ers of

a<u>lo</u>ng

vhich

i<u>du</u>al

he

alof

will

nave

Sirius

erson

the

meter

ıl., in

istrat-

of

ortant

come

nturv,

Where it was once considered necessary to go into space to overcome the limitations of atmospheric seeing, we can now make progress without leaving the ground. But space still beckons with enticing prospects, particularly the imaging of faint objects over very long baselines and at extremely high resolution. Both NASA and the European Space Agency are studying the technology for large space-based interferometers, and some feel that such an instrument would be the logical follow-up to the Hubble Space Telescope. In space, an interferometer could have a baseline of many hundreds of kilometers, providing an almost microscopic view of the macroscopic universe. Thus the current activity in ground-based interferometry can be seen as a step in the development of a space interferometer.

For nearly four centuries, telescopes of ever increasing light-collecting area have pushed back the frontiers of our knowledge by detecting increasingly fainter objects in the universe. The complementary ability of large telescopes to resolve fine detail has been exploited for less than two decades. This is truly the beginning of a new manner in which we view and understand cosmic phenomena.

References

- Anderson, P H. 1987 Astronomers seek high resolution. *Phys. Today* 40(6):19-23.
- Davis, J., and W Tango. 1985. A new high angular resolution stellar interferometer. Proc. Astron. Soc. Australia 6:38–42.

Heintz, W. D. 1978. Double Stars. Reidel.

- Labeyne, A. 1970. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. *Astron. Astrophys.* 6:85–87.
- 1978. Stellar interferometry methods. Ann. Rev. Astron. Astrophys. 16:77–102.
- Labeyrie, A., et al. 1986. Fringes obtained with the large "boules" interferometer at CERGA. Astron. Astrophys. 162:359-64.
- Lynds, C. R., S. P. Worden, and J. W. Harvey. 1976. Digital image reconstruction applied to Alpha Orionis. Astrophys. J. 207:174–80.
- McAlister, H. A. 1985. High angular resolution measurements of stellar properties. Ann. Rev. Astron. Astrophys. 23:59–87.
- Popper, D. M. 1980. Stellar masses. Ann. Rev. Astron. Astrophys. 18:115-64.
- Shao, M., et al. In press. The Mark III stellar interferometer. Astron. Astrophys.
- Shara, M. M., R. Doxsey, E. N. Wells, and H. A. McAlister. 1987. The fraction of close binaries among Hubble Space Telescope guide stars —operational consequences, workarounds, and suggestions for designers of future space observatores. *Publ. Astron. Soc. Pacific* 99:223-33.

VOLUME 98, NUMBER 3

SEPTEMBER 1989

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. II. COMBINED VISUAL/SPECKLE ORBITS OF 28 CLOSE SYSTEMS

WILLIAM I. HARTKOPF AND HAROLD A. MCALISTER

Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303

OTTO G. FRANZ

Lowell Observatory, Flagstaff, Arizona 86001 Received 28 February 1989; revised 19 May 1989

ABSTRACT

New orbital elements are presented for 28 close visual systems that have been observed and in some cases discovered by speckle interferometry. Periods for these systems range from 2.7 to 213 yr, semimajor axes from 0.06 to 0.81. Three of these systems (ADS 1105 = STF 115 AB, ADS 1473 = Ho 311, and ADS 14121 = Wck Aa) had no previously published orbital analyses, while elements for a number of other systems have undergone major revisions.

I. INTRODUCTION

The technique of speckle interferometry, as first suggested by Labeyrie (1970), has been in routine use by binary star observers for over 15 years now; in that time it has shown itself to be a reliable method for observing heretofore unresolvable systems (separations down to 0.025 at the Kitt Peak 4 m) with unprecedented accuracy (down to \pm 0.001 for brighter stars with small magnitude differences). Over 7600 measurements of 1371 systems have been published to date by observers from institutions throughout the world. McAlister and Hartkopf (1988) have compiled a catalog of all binary star measurements made by modern interferometric methods and published to date; the median separation in the catalog is 0.23, and 16% of the measurements are for systems closer than 0.1.

Some 75% of these measurements fall within the separation range 0.05-0.5. At the typical distances of these stars, these translate to periods ranging from, perhaps, 1 to 100 yr, with the most common periods roughly 10 to 20 yr. Thus, speckle interferometry has now reached the point where many of its target systems have completed one or more revolutions and are ripe for orbital analysis. As will be seen, speckle observations may occasionally cover a crucial portion of a very long-period orbit, as well; two of the systems discussed in this paper have periods in excess of 200 yr.

Speckle-based orbit analyses accompanied by extensive discussion have been published for a number of interesting systems, including χ Draconis (McAlister 1980; Tomkin *et al.* 1987), γ Persei (McAlister 1982; Popper and McAlister 1987), Capella (McAlister 1981; Bagnuolo and Hartkopf 1989), the Hyades binary Finsen 342 (McAlister *et al.* 1988), β Per (Bonneau 1979), and several others. With this second paper in our series we begin more large-scale harvests of those orbits for which speckle interferometry has provided a significant contribution. The procedure used for deriving these orbits is described below, followed by a discussion of our weighting scheme, then new orbital elements and notes for 28 binary star systems.

Most of the systems in this paper were discovered to be binaries long before speckle interferometry was developed (for example, ADS 9757 = STF 1967 was first resolved by F.G.W. Struve in 1826). These visual measurements, although of lower accuracy than the speckle data, often provide a baseline of several orbital revolutions that may be used to tie down the period with considerable accuracy. In several of the calculations discussed below we have used all available data to determine the orbital period, then used only the speckle data and this period to derive the remaining elements. These "nonstandard" treatments of the visual data will be detailed in the individual star notes.

II. METHOD OF ORBIT CALCULATION

Programs for calculating orbital elements abound (see, for example, Eichhorn 1985; Heintz 1978a; McAlister 1981; Monet 1979, etc.), each with its own sensitivities. The program developed at CHARA is flexible and relatively straightforward in its mathematical formulation.

It can easily be shown that if the three elements P, T, and e are known, the four Thiele-Innes elements (A, F, B, and G—see Heintz 1978a for a definition of terms) and therefore the geometric elements a'', i, Ω , and ω can be determined by the method of least squares, as follows:

Given (P,T,e) and a set of observations (t_i, x_i, y_i) , the eccentric anomalies E_i are found via the equation

$$u(t_i - T) = E_i - e \sin(E_i)$$
, (1)

$$u = 360/P.$$
 (2)

Normalized rectangular coordinates X_i and Y_i are determined by the equations

$$X_i = \cos(E_i) - e, \tag{3}$$

$$Y_{i} = \sqrt{1 - e^{2}} \sin(E_{i}) .$$
 (4)

The four Thiele-Innes elements are then found by a leastsquares solution of the equations

$$x_i = AX_i + FY_i , \qquad (5)$$

$$y_i = BX_i + GY_i \,. \tag{6}$$

We perform a "three dimensional" grid search in the vicinity of a set of input values of P, T, and e, in each grid step calculating the remaining elements and determining an overall residual. Initial step sizes for the grid are adjustable; step sizes of zero may be used for any of the three elements (when, for example, the period is determined by other methods). After interpolating to arrive at a (P, T, e) set yielding minimum residuals, the grid spacing is reduced and the pro-

where

cess repeated. The search ends when grid step sizes decrease below 0.01 yr in P and T, 0.001 in e.

In the next step, rms residuals are determined separately for visual and CHARA speckle data. Visual observations whose residuals exceed 3 times the visual rms are given zero weight, as are any speckle observations exceeding 3 times the CHARA speckle rms. The grid search is now repeated, this time running until step sizes fall below 0.0001 yr in P and T, 0.000 01 in e.

Formal errors for all the elements are determined from the covariance matrix of the final iteration.

III. THE WEIGHTING GAME

An essential aspect in the determination of binary star orbits is the decision on proper weights to be assigned each observation entering into those calculations. These observations may span 100 yr or more and may have originated from dozens of observers of varied experience and competence, using many different telescopes of different aperture and quality, and subject to a host of other uncertainties. These factors make the entire weighting procedure subject to the inevitable personal prejudices of the orbit computer. Our effort is no exception. We have endeavored, however, to keep our procedure as objective as possible by grouping observations into a minimum number of categories.

Four basic categories were defined as follows:

- (1) First, as Fig. 1 will attest, observations made by modern interferometric techniques display a considerably greater internal accuracy than do the body of visual data. An obvious division of the data, then, is "visual" versus "speckle."
- (2) The GSU/CHARA speckle observations, made with few exceptions on a single telescope by the same observers and using the same calibration method (see McAlister *et al.* 1987) are more internally consistent than other interferometric data. We therefore further subdivide these data into "CHARA speckle" and "other speckle."
- (3) One would expect that visual observations made with larger telescopes should be more accurate than those made using smaller instruments. Charles Worley (1987) has noted roughly a factor of 2 difference in variance between visual observations made with telescopes of greater than versus less than 18 in. aperture. This observation is borne out by our calculations, as will be shown. We therefore divide visual observations into "small visual" and "large visual" bins.

In order to determine the relative weights to be assigned each of these four categories of observations, we calculated orbits for several well-observed systems and determined rms residuals for data in each group. There is of course a bit of circular reasoning inevitable in this approach, since weights must be assigned to the observations before calculating the orbits from which residuals, and eventually weights, are to be determined. We have tried to minimize this circularity by calculating orbits for various subsets of the data, as explained.below.

The eight ADS binaries chosen for this exercise range in mean separation from 0."15 to 0."74, or approximately the middle range for all interferometric observations (McAlister and Hartkopf 1988). They are all extremely well observed, with a total of 2181 visual and 269 interferometric observations for the group and visual observations going back 162 years. The results are given in Table I. The derived weights shown are calculated for each category from the formula

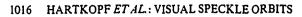
$$W_i = \left(\frac{\mathrm{rms}_{\mathrm{large visual}}}{\mathrm{rms}_i}\right)^2,\tag{7}$$

i.e., 1/variance, scaled to a value of 1 for the "large visual" weight.

A new set of orbits was then determined from the combined visual and speckle data. Wishing to be a bit conservative in our speckle weights, we chose values of 0.5, 1, 20, and 5 for the four categories "small visual," "large visual," "CHARA speckle," and "other speckle," respectively. Half weight, or 10, was again used for the CHARA 2.1 m data.

The final results are similar to those earlier determined from the separate orbits. Again opting for a conservative weighting of the speckle data, we decided to adopt the earlier chosen values of 0.5, 1, 20, and 5 for initial weights in the four categories.

IV. RESULTS

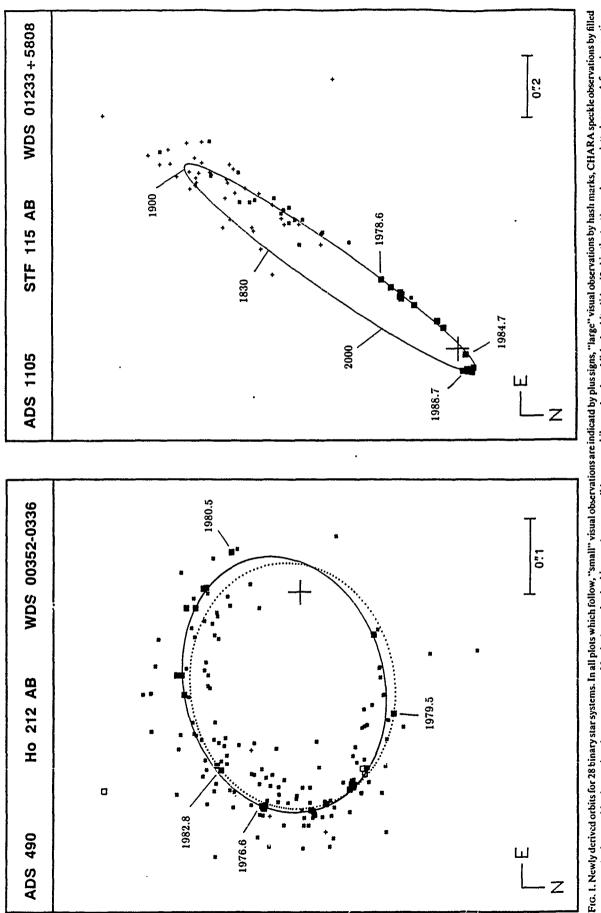

New combined speckle/visual orbital elements are given in Table II for 28 binary systems. *P*, *T*, and their errors are given in years, a'' in seconds of arc, and *i*, Ω , and ω and their errors in degrees. All orbits are equinox 2000. Ephemeris tables (Table III) based on these orbits give predicted separations and position angles for the next 5-40 yr, depending on the derived period.

The figures below show the new orbits (solid lines) together with previously published orbits (dotted lines) and all published data (including data eventually given zero weight in the orbit calculations). Visual data from "small" telescopes are indicated by plus signs, those from "large" telescopes by hash marks. CHARA speckle data are shown as filled squares and other speckle data by open squares.

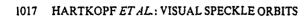
Notes to individual binary systems follow, sorted in order of WDS designation (the 2000-epoch right ascension- and declination-based designation used in the *Washington Visual Double Star Catalog* of Worley and Douglass 1984). A few of these systems have published orbits that are very similar to the ones listed here. Although it may be argued that these new orbits are therefore unnecessary, they are included as evidence that the method used by us for deriving orbital elements behaves properly and that the weighting scheme adopted is not unreasonable.

WDS 00352-0336 = ADS 490 = Ho 212 AB. Speckle coverage of this system now covers nearly two full periods. The period was determined based on all visual and speckle data, covering nearly 15 revolutions; speckle data alone were used to determine the remaining elements. The plotted published orbit is that of Gatewood *et al.* (1975).

WDS 01233 + 5808 = ADS 1105 = STF 115. This system, first resolved by John Herschel in 1831 at 0.7, opened to 1.1 in 1904, then closed steadily for 80 yr. By fortuitous timing it was first resolved by speckle in 1978 at 0.35, just as visual measurement was becoming difficult. The separation de-



1 .


. .

j

squares, and other speckle observations by open squares. Newly determined orbits are shown as solid curves, while previously published orbits (identified in the text) are shown as dotted curves. A few observations (dates given to the nearest 0.1 yr) and/or calculated positions (integer dates) are labeled on each orbit to indicate direction and rate of motion. Stars are plotted in order of WDS designation (or right ascension); note the figures are not all plotted in order of WDS designation (or right ascension); note that the figures are not all plotted in order of WDS designation (or right ascension); note that the figures are not all plotted in order of WDS designation (or right ascension); note that the figures are not all plotted in order of WDS designation (or right ascension); note that the figures are not all plotted in the same scale.

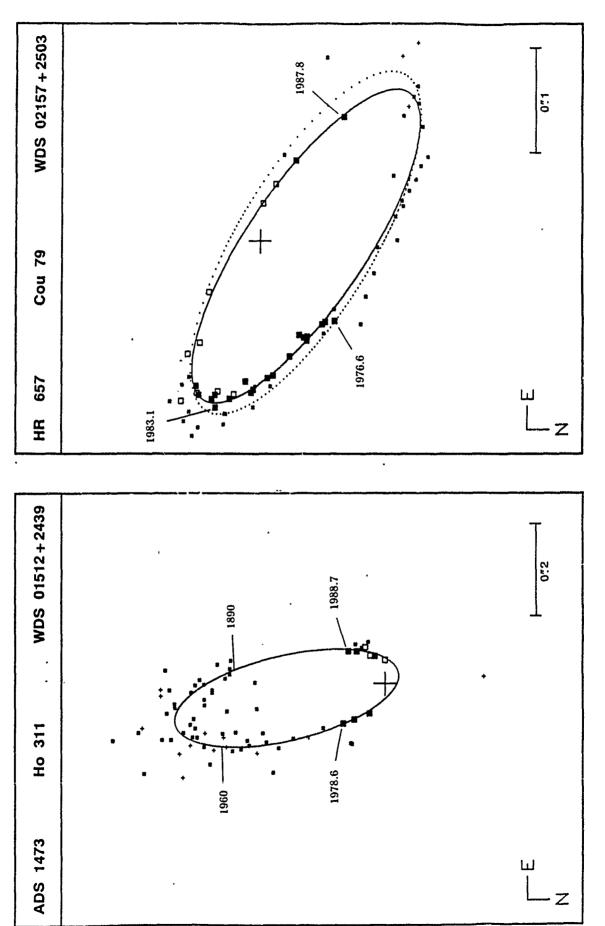


Fig. 1. (continued)

1018 HARTKOPF ET.AL.: VISUAL SPECKLE ORBITS

Ŀ,

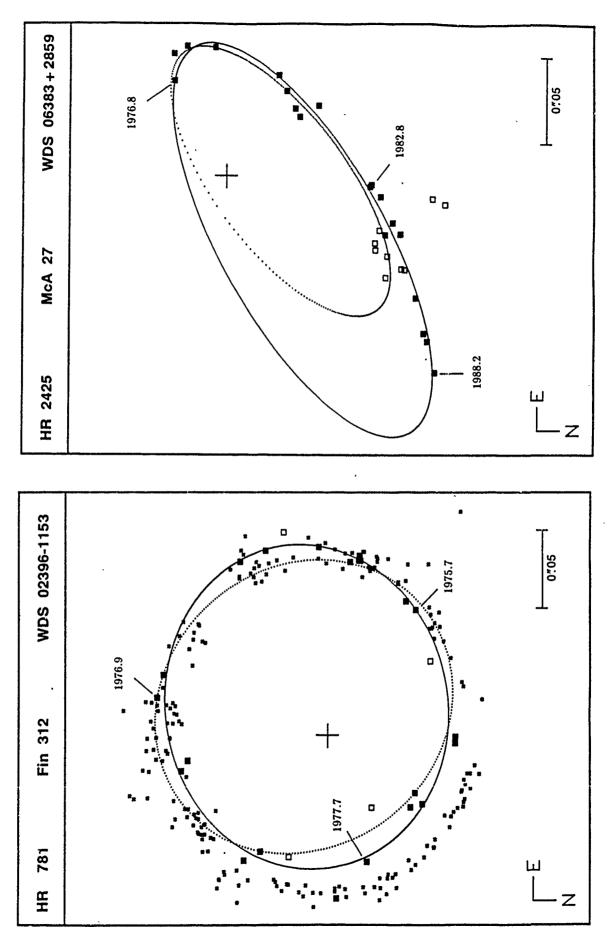


Fig. 1. (continued)

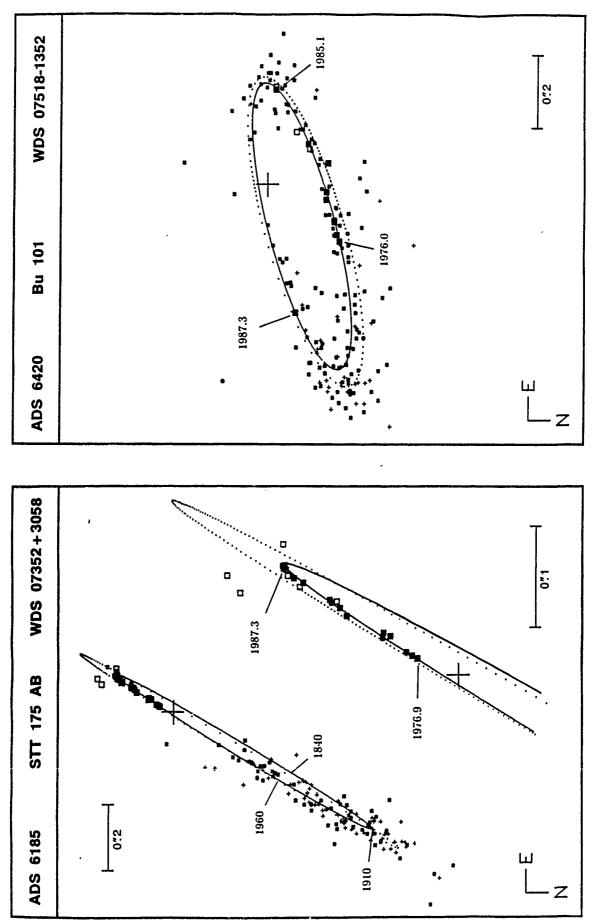


Fig. 1. (continued)

;

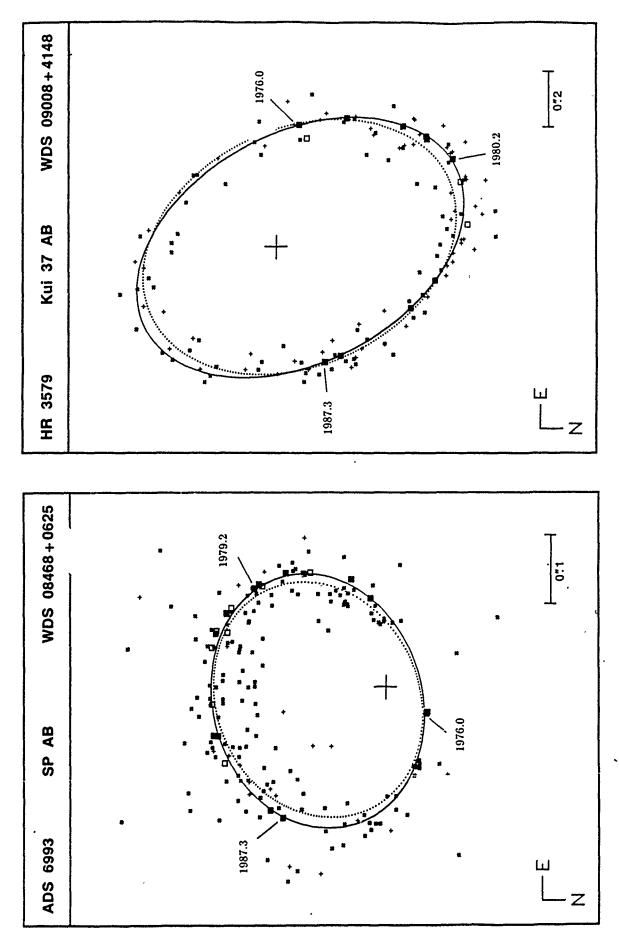


Fig. 1. (continued)

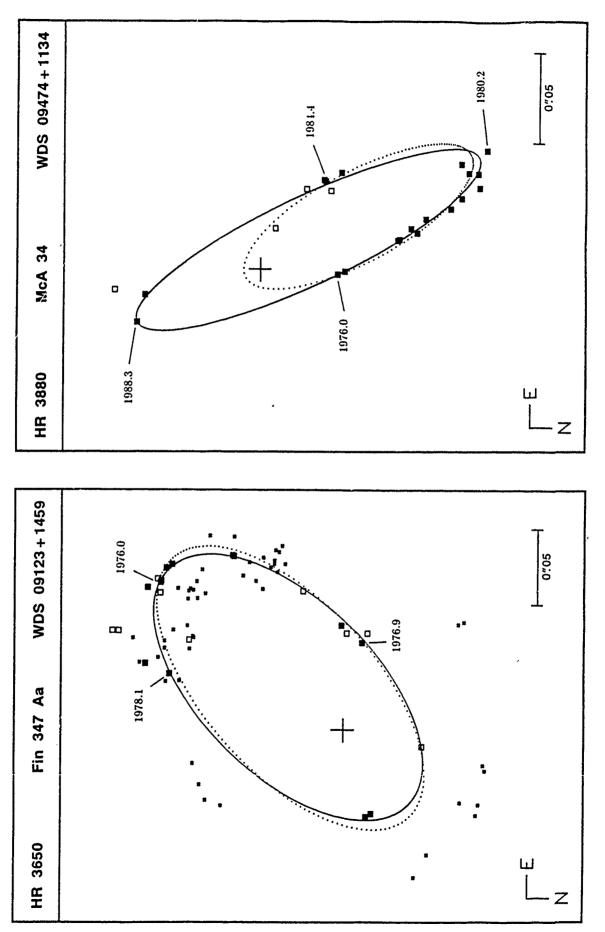
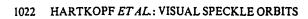



Fig. 1. (continued)

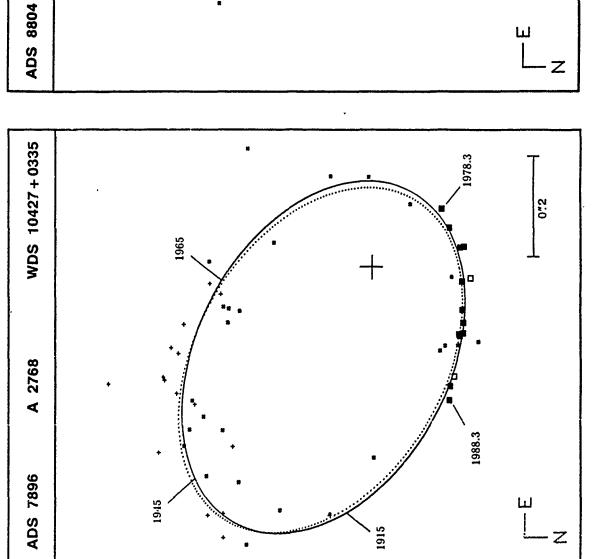
1983.1

۵ 멉

WDS 13100+1731

STF 1728 AB

2


~

;

1 Í

ł

1988.7

- 0.9761

FIG. 1. (continued)

1022

0"2

0.5

щ

1023 HARTKOPF ET AL.: VISUAL SPECKLE ORBITS

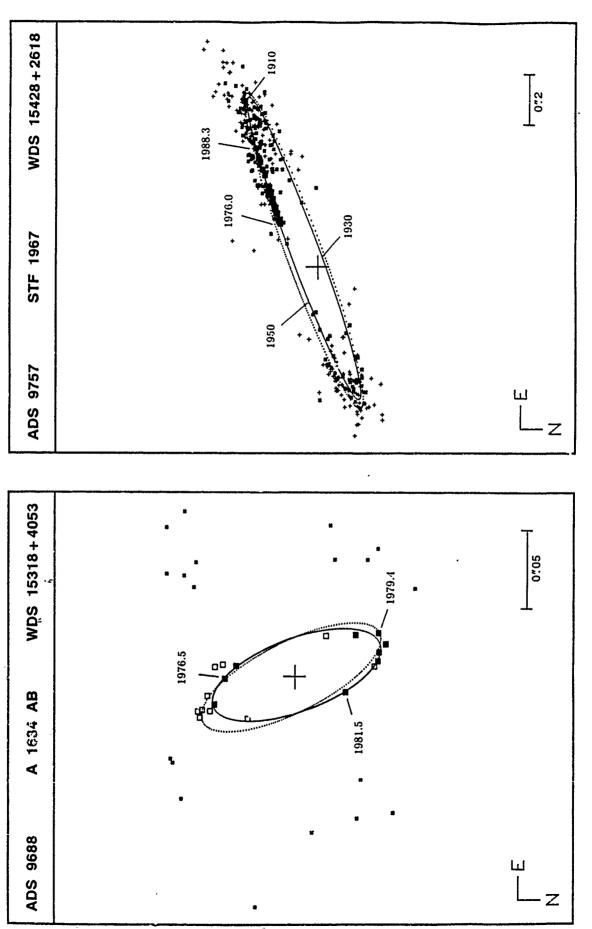


FIG. 1. (continued)

1024 HARTKOPF ET AL.: VISUAL SPECKLE ORBITS

j

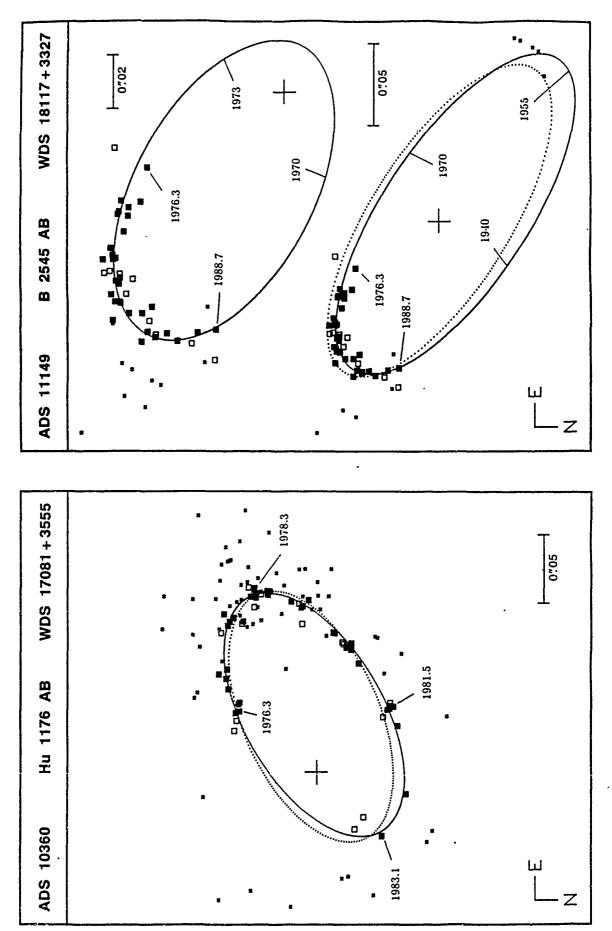


FIG. 1. (continued)

1025 HARTKOPF ET AL: VISUAL SPECKLE ORBITS

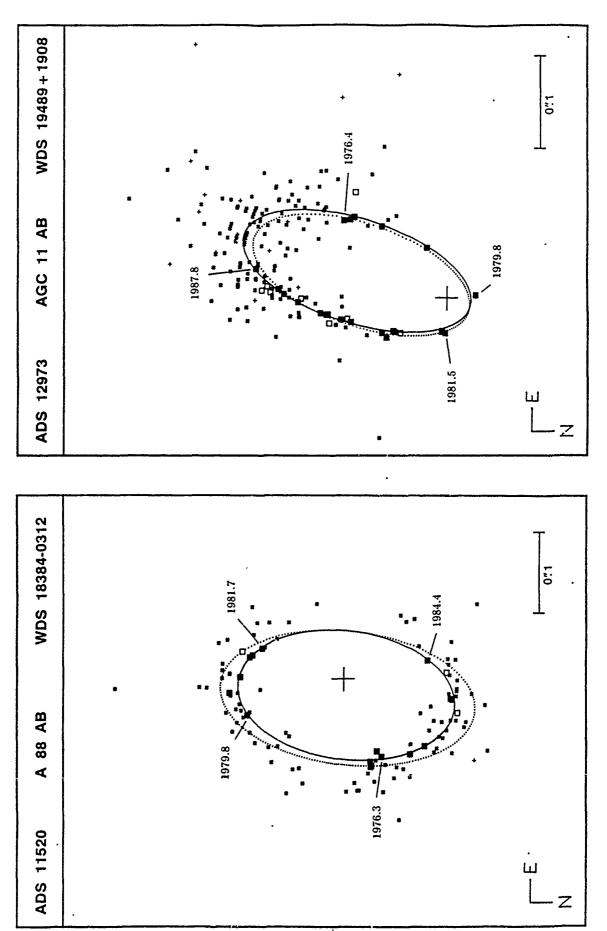


FIG. 1. (continued)

1026 HARTKOPF ET AL : VISUAL SPECKLE ORBITS

Ż

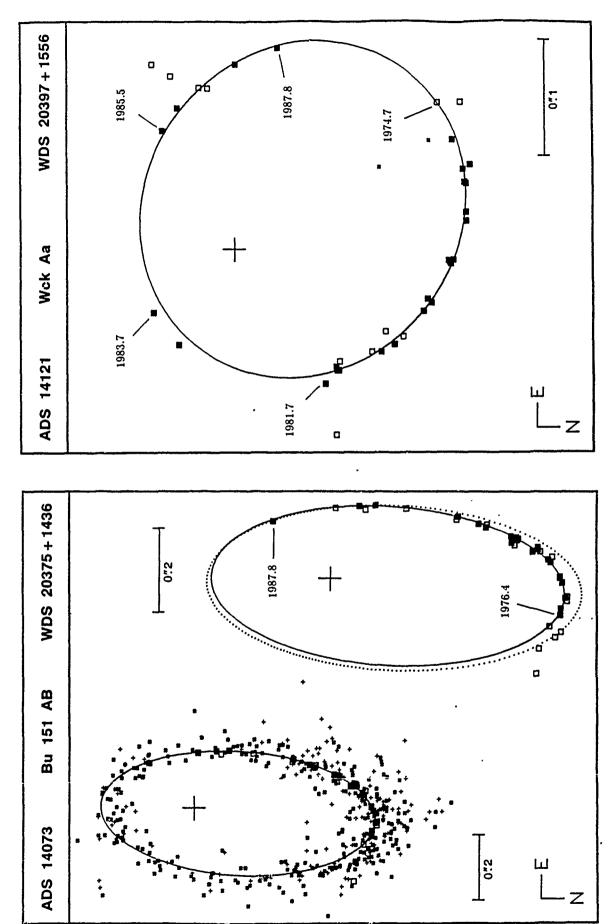


Fig. 1. (continued)

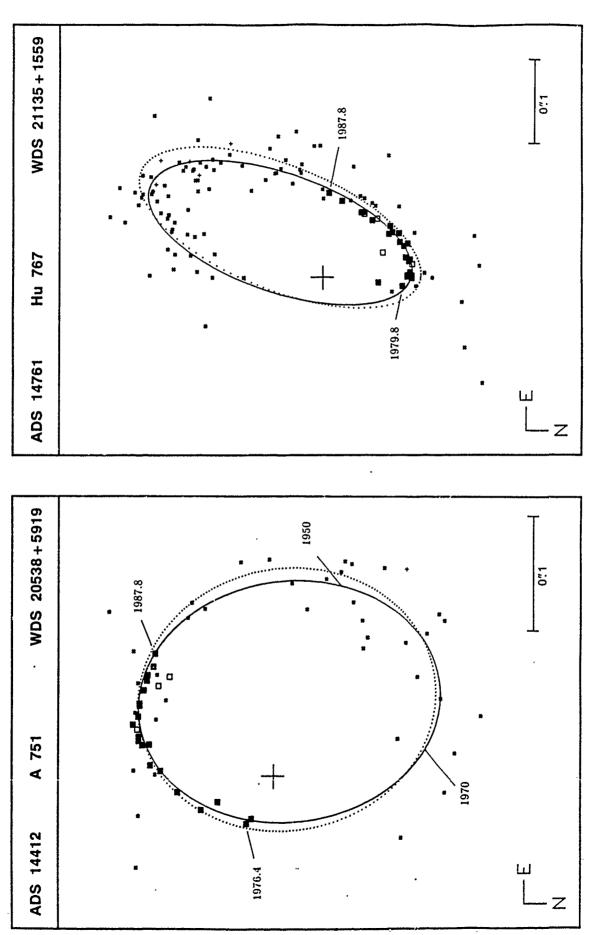


FIG. 1. (continued)

1028 HARTKOPF ET AL : VISUAL SPECKLE ORBITS

Ì

-

l

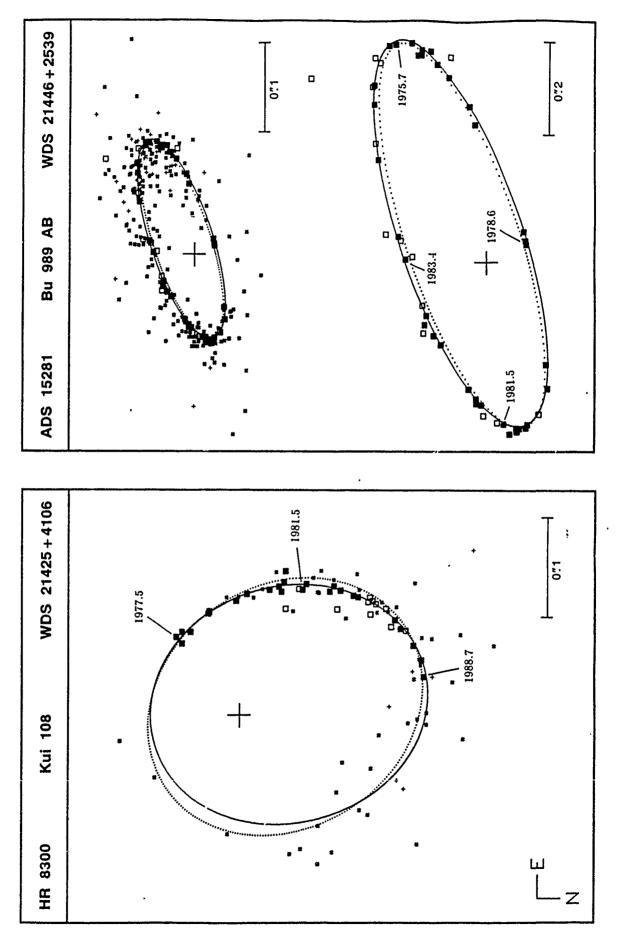


FIG. 1. (continued)

1029 HARTKOPF ET AL.: VISUAL SPECKLE ORBITS



FIG. 1. (continued)

TABLE I. rms residuals to test orbits.

į

ļ ţ

•

SEPARATE VISUAL AND SPECKLE ORBITS:	ISUAL A	ND SPE	CKLE 0	RBITS:												
Star		Small	Small Visual			Large	Large Visual			CHAR	CHARA Speckle	le		Other	Other Speckle	
	Q,	90	σ≖	an .	¢ø	0 p	σz	σv	90	a p	σz	٥v	٥,	d p	đ	٥٢
ADS 490	4.95	0.0394	0.0410	0.0202	7.73	0.0373	0.0344	0.0282	1.56	0.0045	0.0038	0.0062	0.60	0.0050	11000	1000
ADS 6993	9.92	0.0533	0.0415	0.0508	1.61	0.0365	0.0292	0.0337	0.63	0.0031	0.0029	0.0020	0.07	0.0000	1600.0	11-00-0
ADS 8804	4.32	0.0823	0.0364	0.0787	5.69	0.0697	0.0254	0.0691	0.82	0.0051	0.0029	0.0051	12.0	0.0211	10000	00000
ADS 9757	6.20	0.1096	0.1020	0.0592	3.46	0.0808	0.0822	0.0453	0.52	0.0026	0.002	0.0032	1 05		167000	0.0010
ADS 11520	I	I	1	I	11.65	0.0298	0.0207	0.0764	1.17	0.0054	0.0049	2000.0	00.1	1200 C	0.007	vevv.v
ADS 14073	4.27	0.0682	0.0365	0.0648	4.26	0.0588	020.0	0.0552	0.75	0.0028	0.0060	21-00-0 0 00 0	20.7	0.0074	0.0075	0.0062
ADS 15281	16.63	0.0434	0.0470	0.0336	11 64	00000		0.0005	1 47	0.0007		070000	06.1	9220.0	0.0149	61ZU.U
ADS 16173	3.50	0.0382	0.0365	0.0246	4.39	0.0517	0.0436	0.0329	2.11	0.0032	0.0060	0.0036 0.0036	4.03 4.19	0.00114	0.0079	0.0088 0.0110
Mean	7.11	0.0621	0.0487	0.0474	7.05	0.0513	0.0385	0.0398	1.13	0.0037	0.0040	0.0037	2.27	0.0126	0.0109	11100
Weight	0.98	0.68	0.62	0.71	1.0	1.0	1.0	1.0	38.9	192.2	92.6	115.7	9.6	16.6	12.5	12.2
Median	4.95	0.0533	0.0410	0.0508	6.65	0.0476	0.0323	0.0333	00.1	0.0032	0.0035	1000	00	00000	20000	
Weight	00.	000			•		040010	00000		-	00000	10000	CC.1	00000	0,000	1100.0
, veignt	1.80	0.80	0.62	0.43	1.0	1.0	1.0	1.0	44.2	221.3	85.2	95.9	11.2	29.3	14.1	18.7
COMBINED VISUAL/SPECKLE ORBITS:	/IVNSI/	PECKL	E ORBIJ	ŝ												
Star		Small	Small Visual			Large Visual	Visual			CHAR	CHARA Speckle	_e		Other !	Other Speckle	
	0	d p	đæ	đ	0	d b	αı	σν	۵	d p	a±	đ	0 e	d b	σ≖	å
ADS 490	4.86	0.0416	0.0433	0.0211	8.39	0.0376	0.0346	0.0293	1.28	0.0037	0.0026	0.0062	0.55	0.0050	0.0040	0.0038
ADS 6993	0.66	0.0601	0.0417	0.0585	9.35	0.0379	0.0303	0.0356	0.61	0.0030	0.0027	0.0021	0.76	0.0031	0.0034	0.0031
ADS 8804	4.42	0.0829	0.0326	0.0803	5.51	0.0716	0.0235	0.0708	0.84	0.0042	0.0030	0.0042	0.44	0.0109	0.0047	0.0107
ADS 9757	5.80	0.1100	0.1014	0.0610	3.10	0.0898	0.0823	0.0443	0.69	0.0031	0.0024	0.0043	1.46	0.0079	0.0093	0.0051
ADS 11520	I	I	ļ	1	12.11	0.0295	0.0223	0.0308	1.30	0.0054	0.0043	0.0043	2.47	0.0071	0.0073	0.0058
ADS 14073	6.18	0.0752	0.0390	0.0726	7.35	0.0651	0.0353	0.0639	0.65	0.0026	0.0058	0.0025	1.31	0.0061	0.0107	0.0054
ADS 15281	14.10	0.0477	0.0471	0.0332	11.69	0.0433	0.0406	0.0287	1.57	0.0027	0.0033	0.0035	2.64	0.0060	0.0072	0.0043
ADS 16173	3.45	0.0360	0.0351	0.0233	4.40	0.0538	0.0457	0.0338	1.14	0.0034	0.0028	0.0034	3.09	0.0034	0.0047	0.0031

1030 HARTKOPF ET AL : VISUAL SPECKLE ORBITS

1030

0.0047

0.0060

0.0061

1.39 32.1

0.0039

0.0029

0.0033

0.99 63.2

0.0347

0.0376

0.0486

7.87 1.0

0.0585

0.0417

0.0601

5.80

Median Weight

0.35

0.81

0.65

1.84

11

1.0

1.0

1.0

79.2

168.1

216.9

54.5

39.3

63.5

0.0052

0 0064

0.0062 74.7

1.59 23.7

0.0038

0.0034 133.6

0.0035 234.5

1.01 58.7

0.0422

0.0393 1.0

0.0536 . 1.0

7.74 1.0

0.0500 0.71

0.0486

0.0648

6.92

0.65

0.68

1.25

Weight Mean

1.0

123.3

65.9

37.7

*

115

١.

171.5

and the second

				TABLE II. Or	bital elements	s.			
WDS	ADS	Name	P	a"	i	n	T	e	w
00352-0336	490	Ho 212 AB	6%89 ±0.18	0'!240 ±0.010	49 ! 0 ±6.1	149*2 ±14.2	1973.389 ± 0.066	0.767 ±0.090	283*5 ±14.2
01233+5808	1105	STF 115 AB	209.5 ±7.8	0.805 ±0.018	99.6 ±5.7	138.7 ± 1.5	1984.88 ± 0.18	0.920 ±0.007	133.1 ± 1.5
01512+2439	1473	Ho 311	119.3 ±6.2	0.2980 ±0 0062	52.8 ±1.7	212.8 ± 3.9	1982.72 ± 0.40	0.888 ±0.016	142.0 ± 3.9
02157+2503	-	Cou 79	24.54 ±0.75	0.2470 ±0.0014	104.15 ±0.97	235.89 ± 0.61	1986.182 ± 0.057	0.684 ±0.006	82.57 ± 0.61
02396-1153	-	Fin 312	2.654 ±0.002	0.1055 ±0.0012	21.3 ±1.4	279.3 ±18.4	1956.603 ± 0.007	0.228 ±0.020	31.1 ±18.4
06383+2859		McA 27	22.32 ±0.15	0.1463 ±0.0016	112.1 ±1.0	115.86 ± 0.29	1976.260 ± 0.043	0.595 ±0.002	307.87 ± 0.29
07352+3058	6185	STT 175 AB	213.1 ±5.8	0.5493 ±0.0029	92.48 ±0.48	149.49 ± 0.84	1979.11 ± 0.21	0.693 ±0.007	313.22 ± 0.84
07518-1352	6420	Bu 101	23.34 ±0.17	0.573 ±0.010	79.68 ±0.06	102.5 ± 1.6	1962.381 ± 0.039	0.735 ±0.016	71.4 ± 1.6
08468+0625	6993	SP AB	15.05 ±0.20	0.2543 ±0.0038	49.92 ±0.38	108.1 ± 1.8	1976.179 ± 0.042	0.653 ±0.003	265.8 ± 1.8
09008+4148	-	Kui 37 AB	21.783 ±0.090	0.6604 ±0.0018	129.84 ±0.01	205.93 ± 0.54	1972.318 ± 0.010	0.153 ±0.004	39.25 ± 0.54
09123+1459		Fin 347 Aa	2.703 ±0.022	0.1161 ±0.0018	124.1 ±2.7	317.0 ± 5.2	1979.975 ± 0.065	0.418 ±0.071	348.5 ± 5.2
09474+1134	-	McA 34	15.167 ±0.090	* 0.1120 ±0.0002	76.57 ±0.66	203.80 ± 0.48	1973.68 ± 0.25	0.321 ±0.010	24.44 ± 0.48
10427+0335	7896	A 2768	80.56 ±0.30	0.3778 ±0.0014	145.92 ±0.78	56.8 ± 1.9	1976.674 ± 0.030	0.546 ±0.001	355.3 ± 1.9
13100+1731	8804	STF 1728 AB	25.804 ±0.055	0.6684 ±0.0013	90.06 ±0.05	, 192.34 ± 0.24	1963.468 ± 0.021	0.497 ±0.012	101.08 ± 0.24
15318+4053	9688	A 1634 AB	8.48 4 ±0.052	0.0602 ±0.0002	114.6 ±3.9	199.1 ± 3.7	1965.94 ± 0.21	0.021 ±0.046	362.6 ± 3.7
15428+2618	9757	STF 1967	92.94 ±0.58	0.7353 ±0.0041	94.70 ±0.84	111.25 ± 0.61	1931.66 ± 0.23	0.484 ±0.020	105.24 ± 0.61
17081+3555	10360	Hu 1176 AB	8.129 ±0.014	0.1118 ±0.0001	120.49 ±0.09	129.44 ± 0.25	1975.483 ± 0.007	0.539 ±0.003	235.69 ± 0.25
18117+3327	11149	B 2545	23.9 ±1.0	0.0620 ±0.0005	37.9 ±5.8	244.1 ±19.0	1971.81 ± 0.81	0.706 ±0.055	172.1 ±19.0
			58.39 ±0.52	0.1155 ±0.0006	66.6 ±2.9	234.4 ± 1.2	1975.54 ± 0.16	0.153 ±0.027	302.4 ± 1.2
18384-0312	11520	A 88 AB	12.133 ±0.019	0.1479 ±0.0001	122.85 ±0.01	173.84 ± 0.12	1970.801 ± 0.007	0.249 ±0.002	81.22 ± 0.12
19489+1908	12973	AGC 11 AB	23.22 ±0.96	0.1359 ±0.0016	133.19 ±0.85	340.7 ± 1.4	1979.869 ± 0.035	0.792 ±0.005	355.1 ± 1.4
20375+1438	14073	Bu 151 AB	26.598 ±0.004	0.4473 ±0.0001	63.13 ±0.01	177.09 ± 0.05	1963.225 ± 0.009	0.328 ±0.002	351.32 ± 0.05
20397+1556	14121	Wck As	17.09 ±0.16	0.1595 ±0.0003	161.6 ±1.8	279.4 ± 4.0	1983.885 ± 0.030	0.466 ±0.005	71.4 ± 4.0
20538+5919	14412	A 751	57.9 ±1.5	0.1782 ±0.0027	126.7 ±2.6	179.2 ± 3.4	1976.12 ± 0.27	0.621 ±0.013	277.2 ± 3.4
21135+1559	14761	Hu 767	33.75 ±0.23	0.2067 ±0.0017	67.95 ±0.52	167.79 ± 0.87	1944.55 ± 0.11	0.618 ±0.007	120.19 ± 0.87
21425+4106	-	Kui 108	26.51 ±0.48	0.149 ±0.014	149.4 ±5.2	191.4 ± 9.7	1975.23 ± 0.12	0.361 ±0.009	359.7 ± 9.7
21446+2539	15281	Bu 989 AB	11.60 ±0.12	0.2362 ±0.0004	108.04 ±0.50	288.85 ± 0.60	1979.207 ± 0.027	0.313 ±0.009	304.17 ± 0.60
21502+1718		Cou 14	26.132 ±0.056	0.3664 ±0.0043	70.30 ±1.00	231.80 ± 0.11	1963.887 ± 0.025	0.239 ±0.003	252.08 ± 0.11
22408+1432	16173	Ho 296 AB	20.83 ±0.15	0.2907 ±0.0002	140.12 ±0.02	252.37 ± 0.23	1983.557 ± 0.004	0.738 ±0.001	23.28 ± 0.23

TABLE II. Orbital elements.

2000

Ì

.

)

ŧ

\$

١

Date	AD	5 490	Fin	312	Fin	347	ADS	9688	ADS	10360
1989.00	230%0	0':236	53°.3	0":101	161?7	0":130	11.0	0':058	62.7	0":086
1989.25	235.4	0.247	82.2	0.117	150.4	0.154	5.9	0.054	54.0	0.079
1989.50	240.4	0.258	105.2	0.126	141.4	0.163	359.8	0.049	44.0	0.074
1989.75	245.0	0.267	126.3	0.128	132.6	0.157	352.1	0.043	32.7	0.071
1990.00	249.3	0.274	148.1	0.122	122.0	0.134	341.6	0.036	20.4	0.068
1990.25	253.4	0.281	173.0	0.112	104.4	0.094	326.4	0.030	7.5	0.068
1990.50	257.4	0.286	203.4	0.101	54.8	0.051	304.8	0.025	354.8	0.069
1990.75	261.2	0.290	241.1	0.00%	331.8	0.064	278.9	0.025	342.4	0.070
1991.00	264.9	0.292	287.0	0.083	278.9	0.060	255.8	0.028	330.2 ·	0.070
1991.25	268.6	0.293	340.4	0.079	211.5	0.065	239.1	0.034	317.5	0.066
1991.50	272.3	0.292	29.9	0.090	175.7	0.101	227.6	0.041	301.4	0.055
1991.75	276.1	0.289	65.4	0.107	159.2	0.135	219.3	0.047	271.3	0.036
1992.00	279.9	0.284	91.5	0.121	148.6	0.157	212.8	0.052	203.7	0.030
1992.25	284.0	0.276	113.4	0.128	139.8	0.163	207.4	0.056	162.0	0.051
1992.50	288.3	0.266	134.5	0.126	130.9	0.154	202.6	0.059	146.2	0.074
1992.75	293.0	0.251	157.2	0.119	119.5	0.128	198.1	0.060	137.6	0.093
1993.00	298.4	0.233	183.9	0.108	99.1	0.086	193.5	0.058	131.8	0.108
1993.25	304.9	0.208	217.0	0.096	37.4	0.048	188.6	0.056	127.2	0.119
1993.50	313.6	0.174	257.8	0.087	321.9	0.067	183.0	0.052	123.3	0.128
1993.75	327.9	0.124	307.0	0.080	266.6	0.058	176.3	0.046	119.9	0.134
1994.00	20.4	0.047	0.9	0.082	202.1	0.070	167.7	0.040	116.7	0.137
1994.25	151.3	0.087	45.1	0.096	171.8	0.108	155.9	0.034	113.6	0.139
1994.50	177.9	0.131	76.2	0.113	157.0	0.140	139.3	0.029	110.5	0.139
1994.75	192.9	0.159	100.2	0.125	146.9	0.159	117.2	0.026	107.5	0.138
1995.00	203.9	0.181	121.5	0.128	138.2	0.163	93.0	0.026	104.3	0.136

Date	ADS	6993	McA	. 34	ADS	11520	· · ADS 1	4121	ADS	15281
1989.0	254.9	0':215	212.0	0':065	279.7	0''103	61:8	0'!202	97:7	0':185
1989.5	263.8	0.197	222.5	0.047	263.0	0.100	56.4	0.208	87.1	0.128
1990.0	274.9	0.171	248.9	0.027	246.1	0.102	51.4	0.214	57.0	0.067
1990.5	291.2	0.132	316.2	0.023	230.6	0.109	46.6	0.218	338.0	0.065
1991.0	328.9	0.074	352.9	0.042	217.2	0.118	41.9	0.221	305.5	0.122
1991.5	65.1	0.075	5.2	0.064	205.9	0.128	37.3	0.222	293.4	0.168
1992.0	101.6	0.136	11.3	0.084	196.1	0.136	32.8	0.223	285.5	0.186
1992.5	116.9	0.179	15.0	0.102	187.2	0.140	28.3	0.223	278.1	0.182
1993.0	126.9	0.208	17.8	0.117	178.3	0.137	23.7	0.222	269.6	0.162
1993.5	134.8	0.229	20.0	0.128	168.7	0.128	19.1	0.220	257.9	0.134
1994.0	141.5	0.244	21.8	0.136	156.6	0.109	14.4	0.217	239.9	0.106
1994.5	147.6	0.254	23.5	0.141	138.2	0.085	9.5	0.212	212.4	0.090
1995.0	153.2	0.262	25.1	0.144	105.5	0.063	4.4	0.207	181.2	0.095
1995.5	158.6	0.267	26.7	0.143	60.7	0.065	359.0	0.201	158.2	0.119
1996.0	163 8	0.271	28.3	0.140	29.8	0.087	353.2	0.194	144.1	-0.151
1996.5	168.9	0.273	30.1	0.135	12.6	0.113	347.0	0.186	135.0	0.184
1997.0	174.0	0.274	32.0	0.127	, 1.4	0.133	340.1	0.176	128.6	0.215
1997.5	179.0	0.274	34.2	0.116	352.7	0.146	332.5	0.166	123.7	0.240
1998.0	184.0	0.274	36.9	0.104	345.0	0.151	323.7	0.155	119.6	0.259
1998.5	189.1	0.272	40.4	0.090	337.5	0.150	313.5	0.142	115.9	0.269
1999.0	194.2	0.271	45.2	0.075	329.6	0.144	301.1	0.128	112.5	0.270
1999.5	199.4	0.269	52.8	0.058	320.8	0.135	285.7	0.114	108.8	0.258
2000.0	204.6	0.266	66.3	0.042	310.6	0.124	265.8	0.099	104.7	0.234

.

ويتاويه الم

Ĵ

Date	Cal	1 79	McA		1DC	6420	¥:	417	1.00	
Date		1 /9	IVICA		202	0420	Kui		ADS	8804
1989	48°.5	0":194	315%8	0":176	288.5	0':514	256?9	0':487	190°.4	O':011
1990	44.6	0.207	312.6	0.183	290.7	0.545	239.2	0.532	12.4	0.250
1991	40.9	0.209	309.5	0.186	292.7	0.554	224.2	0.569	12.3	0.423
1992	37.2	0.204	306.5	0.186	294.7	0.548	210.6	0.581	12.3	0.503
1993	33.1	0.194	303.4	0.180	296.9	0.529	196.6	0.556	12.3	0.519
1994	28.6	0.182	300.0	0.168	299.2	0.502	180.2	0.497	12.3	0.494
1995	23.4	0.167	295.9	0.149	301.8	0.466	158.4	0.423	12.2	0.442
1996	17.0	0.151	290.1	0.119	304.9	0.425	129.2	0.377	· 12.2	0.373
1997	9.1	0.135	278.9	0.076	308.7	0.379	97.8	0.398	12.2	0.292
1998	359.3	0.120	218.3	0.025	313.6	0.330	73.2	0.473	12.1	0.203
1999	346.9	0.108	123.7	0.060	320.3	0.279	56.1	0.565	11.8	0.110
2000	332.2	0.101	103.0	0.078	329.9	0.231	43.7	0.646	8.0	0.014
2001	316.3	0.100	85.2	0.074	344.2	0.188	33.7	0.704	193.1	0.082
2002	300.9	0.105	63.7	0.066	5.2	0.159	25.0	0.733	192.7	0.176
2003	287.5	0.115	38.8	0.064	30.7	0.156	16.5	0.735	192.6	0.267
2004	276.6	0.128	15.5	0.071	53.4	0.177	7.8	0.711	192.5	0.354
2005	267.7	0.141	357.9	0.084	69.7	0.214	358.2	0.665	192.5	0.434
2006	260.4	0.154	345.6	0.100	81.0	0.253	346.9	0.605	192.4	0.505
2007	254.0	0.162	336.7	0.117	89.6	0.280	333.0	0.541	192.4	0.566
2008	248.1	0.163	330.1	0.134	97.7	0.262	315.5	0.486	192.4	0.612
2009	241.6	0.148	324.9	0.149	120.5	0.078	294.7	0.457	192.4	0.641
2010	231.3	0.097	320.6	0.162	279.2	0.253	272.8	0.462	192.4	0.646

Date		11149 Period)		11149 Period)	ADS	12973	ADS	14073	ADS	14412
1989	254°.6	0''090	254°.6	0':091	169?2	0':233	161?5	. 0':271	13193	0'!157
1990	258.9	0.083	258.8	0.085	167.0	0.239	175.4	0.300	127.6	0.158
1991	264.2	0.074	263.6	0.079	165.0	0.242	188.3	0.292	124.0	0.160
1992	271.1	0.063	269.1	0.073	162.9	0.243	203.8	0.253	120.3	0.161
1993	281.4	0.050	275.6	0.068	160.9	0.241	225.9	0.208	116.8	0.162
1994	300.1	0.034	283.3	0.062	158.8	0.236	256.8	0.187	113.3	0.163
1995	348.8	0.020	292.4	0.057	156.6	0.227	287.1	0.211	109.8	0.164
1996	84.6	0.019	303.0	0.054	154.1	0.216	308.0	0.266	106.4	0.165
1997	153.4	0.027	314.7	0.052	151.4	0.201	321.1	0.332	103.0	0.166
1998	183.0	0.041	326.9	0.051	148.1	0.183	329.9	0.396	99.7	0.167
1999	197.7	0.054	338.7	0.053	145.1	0.160	336.3	0.454	96.3	0.168
2000	206.8	0.066	349.5	0.057	138.4	0.132	341.4	0.504	93.1	0.169
2001	213.3	0.075	358.8	0.061	129.1	0.097	345.6	0.543	89.9	0.170
2002	218.4	0.084	6.7	0.067	106.7	0.054	349.3	0.571	86.7	0.171
2003	222.7	0.091	13.3	0.073	357.7	0.028	352.7	0.587	83.5	0.172
2004	226.4	0.096	18.9	0.079	236.5	0.044	356.0	0.592	80.5	0.174
2005	229.7	0.100	23.6	0.086	204.3	0.084	359.4	0.584	77.4	0.175
2006	232.9	0.103	27.7	0.092	192.5	0.119	2.9	0.564	74.4	0.176
2007	235.8	0.105	31.2	0.098	185.8	0.148	6.7	0.531	71.4	0.177
2008	238.8	0.105	34.4	0.104	181.1	0.173	11.2	0.486	68.5	0.178
2009	241.7	0.105	37.3	0.109	177.5	0.193	16.7	0.429	65.6	0.180
2010	244.7	0.103	39.9	0.113	174.6	0.209	24.2	0.361	62.8	0.181

;

L

2030

.

154.7

0.628

183.5

0.459

338.2

0.204

222.7

0.531

292.4

0.441

	ADS	14761	Kui	108	Cou	14	ADS	16173		
1989	100.7	O':121	8.7	0':203	72°.9	0":200	71%1	0':421		
1990	109.0	0.133	2.7	0.200	97.2	0.125	67.2	0.451		
1991	115.9	0.146	356.5	0.196	154.9	0.098	63.6	0.472		
1992	121.7	0.160	350.0	0.189	197.2	0.157	60.3	0.485		
1993	126.5	0.173	342.8	0.179	213.5	0.235	57.2	0.490		
1994	130.7	0.186	334.8	0.168	222.0	0.301	54.0	0.489		
1995	134.4	0.198	325.5	0.155	227.7	0.348	50.8	0.480		
1996	137.6	0.210	314.4	0.141	232.3	0.375	47.4	0.464		
1997	140.5	0.220	300.7	0.126	236.5	0.385	43.7	0.441		
1998	143.2	0.229	283.6	0.113	240.6	0.379	39.5	0.411		
1999	145.7	0.236	262.5	0.103	245.1	0.359	34.6	0.373		
2000	148.0	0.242	237.9	0.097	250.1	0.329	28.5	0.328		
2001	150.3	0.245	211.6	0.095	256.4	0.291	20.1	0.274		
2002	152.5	0.247	184.9	0.095	264.8	0.248	7.1	0.211		
2003	154.8	0.245	158.3	0.096	276.7	0.205	342.1	0.143		
2004	157.0	0.241	132.7	0.099	294.4	0.169	279:1	0.088		
2005	159.4	0.233	109.8	0.107	318.6	0.151	148.5	0.089		
2006	162.0	0.221	90.8	0.119	344.5	0.159	103.2	0.189		
2007	165.0	0.204	75.5	0.134	5.0	0.189	88.8	0.273		
2008	168.6	0.180	63.2	0.148	19.0	0.229	80.7	0.338		
2009	173.7	0.147	53.1	0.162	28.8	·0.269	75.0	0.389		
2010	182.4	0.103	44.4	0.174	36.2	0.303	70.4	0.427		
Date [.]	ADS		ADS		ADS		ADS		ADS	
1990	261.9	0":061	1449.4	0':130	147:0	0'!206	293:0	0':332	118.1	0":587
1990 1992	261°.9 222.8	0':061 0.065	144°.4 151.6	0″:130 0.158	147°.0 146.2	0′′206 0.194	293°.0 285.7	0'!332 0.366	118°.1 117.3	0":587 0.625
1990 1992 1994	261°9 222.8 197.3	0':061 0.065 0.090	144°.4 151.6 156.7	0''.130 0.158 0.185	147°.0 146.2 145.3	0'!206	293°.0 285.7 279.6	0':332	118°.1 117.3 116.6	0 ⁴ :587 0.625 0.659
1990 1992 1994 1996	261°.9 222.8 197.3 184.0	0':061 0.065	144°.4 151.6 156.7 160.5	0':130 0.158 0.185 0.209	147°.0 146.2 145.3 144.2	0′′206 0.194	293:0 285.7 279.6 274.5	0'!332 0.366	118°.1 117.3	0":587 0.625
1990 1992 1994 1996 1998	261°.9 222.8 197.3 184.0 176.4	0 ⁴ :061 0.065 0.090 0.122 0.157	144°.4 151.6 156.7 160.5 163.6	0':130 0.158 0.185 0.209 0.233	147°.0 146.2 145.3 144.2 142.8	0''206 0.194 0.180	293:0 285.7 279.6 274.5 269.9	0':332 0.366 0.399	118°.1 117.3 116.6	0 ⁴ :587 0.625 0.659
1990 1992 1994 1996 1998 2000	261°9 222.8 197.3 184.0 176.4 171.5	0 ⁴ :061 0.065 0.090 0.122 0.157 0.192	144°.4 151.6 156.7 160.5 163.6 166.1	0':130 0.158 0.185 0.209 0.233 0.255	147°.0 146.2 145.3 144.2 142.8 141.1	0''206 0.194 0.180 0.163	293:0 285.7 279.6 274.5 269.9 265.9	0':332 0.366 0.399 0.429 0.456 0.481	118°1 117.3 116.6 115.9 115.3 114.7	0":587 0.625 0.659 0.689 0.713 0.731
1990 1992 1994 1996 1998 2000 2002	261°9 222.8 197.3 184.0 176.4 171.5 168.2	0'(061 0.065 0.090 0.122 0.157 0.192 0.227	144°.4 151.6 156.7 160.5 163.6 166.1 168.2	0':130 0.158 0.185 0.209 0.233 0.255 0.275	147°.0 146.2 145.3 144.2 142.8 141.1 138.6	0'206 0.194 0.180 0.163 0.144	293:0 285.7 279.6 274.5 269.9 265.9 265.9 262.2	0''332 0.366 0.399 0.429 0.456 0.481 0.503	118°1 117.3 116.6 115.9 115.3 114.7 114.2	0":587 0.625 0.659 0.689 0.713
1990 1992 1994 1996 1998 2000 2002 2002 2004	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1	0':130 0.158 0.185 0.209 0.233 0.255 0.275 0.295	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9	0':332 0.366 0.399 0.429 0.456 0.481 0.503 0.522	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7	0"587 0.625 0.659 0.689 0.713 0.731 0.741 0.744
1990 1992 1994 1996 1998 2000 2002 2004 2004 2006	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7	0''130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.295 0.313	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063	293:0 285.7 279.6 274.5 269.9 265.9 265.9 262.2	0 ⁴ /332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539	118°1 117.3 116.6 115.9 115.3 114.7 114.2	0":587 0.625 0.659 0.689 0.713 0.731 0.741
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330	147°.0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8	0':332 0.366 0.399 0.429 0.456 0.481 0.503 0.522	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7	0":587 0.625 0.659 0.689 0.713 0.731 0.741 0.744 0.738 0.721
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2008 2010	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357	144?4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4	0''130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.295 0.313	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7	0 ⁴ /332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1	0"587 0.625 0.659 0.689 0.713 0.731 0.741 0.744 0.738
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388	144?4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361	147°.0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044	293:0 285.7 279.6 274.5 269.9 265.9 265.9 265.2 258.9 255.7 252.8 249.9 247.2	0':332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3	0 ⁴ /587 0.625 0.659 0.689 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418	144?4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376	147°.0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1	0 ['] 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039	293:0 285.7 279.6 274.5 269.9 265.9 265.9 265.9 255.7 252.8 249.9 247.2 244.5	0':332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.579	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5	0 ⁴ /587 0.625 0.659 0.689 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647 0.586
1990 1992 1994 1996 1998 2000 2002 2004 2004 2006 2008 2010 2012 2014 2016	261°9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9	0''332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.579 0.583	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5	0":587 0.625 0.659 0.713 0.713 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504
1990 1992 1994 1996 1998 2000 2002 2004 2004 2006 2008 2010 2012 2014 2016 2018	261°.9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3 157.6	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447 0.475	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7 178.7	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389 0.401	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1 350.1	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058 0.078	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9 239.3	0 ⁴ 332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.579 0.583 0.583	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5 108.0	0':587 0.625 0.659 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504 0.399
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020	261:9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3 157.6 157.0	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447 0.475 0.502	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7 178.7 179.6	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389 0.401 0.413	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1 350.1 346.0	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058 0.078 0.099	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9 239.3 236.7	0 ⁴ 332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.573 0.573 0.583 0.583 0.583	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5 108.0 105.2	0':587 0.625 0.659 0.713 0.713 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504 0.399 0.270
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022	261?9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3 157.6 157.0 156.5	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447 0.475 0.502 0.529	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7 178.7 179.6 180.5	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389 0.401 0.413 0.424	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1 350.1 346.0 343.4	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058 0.078 0.099 0.121	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9 239.3 236.7 234.1	0 ⁴ 332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.579 0.583 0.583 0.583 0.581 0.577	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5 108.0 105.2 96.0	0':587 0.625 0.659 0.713 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504 0.504 0.504 0.270 0.120
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024	261:9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3 157.6 157.0 156.5 156.0	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447 0.475 0.502 0.529 0.554	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7 178.7 179.6 180.5 181.3	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389 0.401 0.413 0.424 0.434	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1 350.1 346.0 343.4 341.5	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058 0.078 0.078 0.099 0.121 0.142	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9 239.3 236.7 234.1 231.4	0 ⁴ /332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.573 0.573 0.583 0.583 0.583	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5 108.0 105.2	0''587 0.625 0.659 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504 0.504 0.504 0.270 0.120 0.059
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022	261?9 222.8 197.3 184.0 176.4 171.5 168.2 165.7 163.8 162.3 161.0 160.0 159.1 158.3 157.6 157.0 156.5	0':061 0.065 0.090 0.122 0.157 0.192 0.227 0.261 0.294 0.326 0.357 0.388 0.418 0.447 0.475 0.502 0.529	144°.4 151.6 156.7 160.5 163.6 166.1 168.2 170.1 171.7 173.1 174.4 175.6 176.7 177.7 178.7 179.6 180.5	0'130 0.158 0.185 0.209 0.233 0.255 0.275 0.295 0.313 0.330 0.346 0.361 0.376 0.389 0.401 0.413 0.424	147:0 146.2 145.3 144.2 142.8 141.1 138.6 135.0 129.0 117.5 91.4 43.7 11.1 357.1 350.1 346.0 343.4	0 ^{''} 206 0.194 0.180 0.163 0.144 0.125 0.104 0.084 0.063 0.044 0.029 0.026 0.039 0.058 0.078 0.099 0.121	293:0 285.7 279.6 274.5 269.9 265.9 262.2 258.9 255.7 252.8 249.9 247.2 244.5 241.9 239.3 236.7 234.1	0 ⁴ 332 0.366 0.399 0.429 0.456 0.481 0.503 0.522 0.539 0.553 0.564 0.573 0.579 0.583 0.583 0.583 0.581 0.577	118°1 117.3 116.6 115.9 115.3 114.7 114.2 113.7 113.1 112.5 111.9 111.3 110.5 109.5 108.0 105.2 96.0	0':587 0.625 0.659 0.713 0.713 0.731 0.741 0.744 0.738 0.721 0.692 0.647 0.586 0.504 0.504 0.504 0.270 0.120

TABLE III. (continued)

creased to a predicted closest apparent approach of 0.012 in 1985.15, and will remain under 0.1 until mid-1994.

WDS 01512+2439 = ADS 1473 = Ho 311. This 119 yr period system has completed nearly one full revolution since its discovery in 1890. It was first measured by speckle in 1978 at 0."13 and reached periastron in 1982.7. The pair was unresolved by Bonneau *et al.* (1984) in 1983.9 (separation < 0."07), at which time the orbit predicted a separation of 0."05. Although speckle data were able to bracket the time of periastron passage, additional data are needed before a more definitive orbit can be derived.

WDS 02157+2503=Cou 79. Speckle data cover only half of this 25 yr period, but serve to define the orbit fairly well. The differences in this orbit compared to that of Couteau (1987—also plotted) are due to different weighting methods and to additional speckle data in the first quadrant not available to Couteau.

WDS 02396 - 1153 = Fin 312. This orbit was based solely on speckle data, which cover more than four revolutions. The visual data for this close pair, nearly all obtained by Finsen, differ quite noticeably from the speckle data; Finsen (1970) may have applied some systematic correction to his data in calculating this published orbit, as evidenced by the disparity between his data and his published orbit.

WDS 06383 + 2859 = McA 27. Tokovinin's (1986) orbital elements were derived before the last several data points were obtained. While our orbit clearly fits these data better, it must be considered preliminary until further observations are obtained.

WDS 07352+3058=ADS 6185=STT 175. This longperiod, highly inclined system was discovered by Otto Struve in 1842 at $\rho \approx 0.5$. The separation was smaller by a factor of 10 by 1976.9, when first observed by speckle shortly after closest apparent separation. Periastron occurred in 1979.1, then the system opened to 0.20 by early 1986. It is now starting to close in again; the orbital elements predict that the pair will close to 0.025 by the year 2010. The published orbit by Baize (1986) predicts a period of only 180 yr, while that of Tokovinin (1986—shown here) gives a period of 219.1 yr, close to our 213.1 yr period. Rms residuals for both these published orbits are compared to our orbit in Table IV.

WDS 07518-1352=ADS 6420=Bu 101. This system was observed by speckle over the period 1975 through early 1983, but unfortunately was largely skipped over until 1987. The orbital elements given here were determined using the speckle data alone, after deriving a period based on all visual and speckle data. Periastron occurred in mid-1985, while a closest apparent separation of 0.03 was predicted for 1985.9. By 1991, ρ should increase to its maximum value of 0.055. The published orbit of Wooley and Symms (1937) is shown also.

WDS 08468 + 0625 = ADS 6993 = SP AB. All visual and speckle data, covering a baseline of nearly 100 yr, were used to determine a period of 15.05 yr for this pair, identical to that found by Heintz (1963), whose orbit is also plotted. The remaining elements were determined using this period and the speckle data alone. The resulting semimajor axis yields a mass sum 22% larger that that predicted by Heintz.

WDS 09008 + 4148 = Kui 37. The period was determined from all visual and speckle data, the remaining elements from the speckle data alone. The result is a period and eccentricity essentially the same as those found by Heintz (1967), but a semimajor axis about 7% larger and a slightly smaller inclination. WDS 09123 + 1459 = Fin 347 Aa. A period of 2.703 yr was derived using all data. Speckle data alone [two measurements from 1983.9 by Bonneau *et al.* (1984) were given zero weight] were used to derive the other six elements. The resulting value of $a^{"}$ is somewhat smaller than that found by either Finsen (1966) or Heintz (1984). The latter published orbit is shown here.

WDS 09474+1134=McA 34. This solution was based on data obtained over nearly one full orbital revolution (all speckle). Although the fit appears very reasonable, we must await several more years' worth of data before the orbitant be declared definitive. Tokovinin (1987a) found a per ad of 9.70 yr and a much higher eccentricity for this object.

WDS 10427+0335=ADS 7896=A2768. Elements for this object have been gradually refined over the last decade (see Heintz 1978b; Baize 1984; Heintz 1988). Heintz' most recent orbit is shown in the figure. Unfortunately, the first speckle observation of this system occurred in 1978, about 2 yr after periastron.

WDS 13100 + 1731 = ADS 8804 = STF 1728. In deriving the orbital elements for this lovely edge-on system, visual and speckle data were used to determine the period, then speckle data alone for the remaining elements. The derived inclination is sufficiently close to 90° that the orbit predicted a partial eclipse ($\Delta m \approx 0.1$ mag, eclipse duration 1.3 days) of one of the F5 V stars by the other in February 1989. Haffner's (1948) orbit is not distinguishable in this figure.

WDS 15318 + 4053 = ADS 9688 = A1634 AB. This orbit is based on interferometric measurements only. One data point was obtained by Merrill (1922) in 1921; the other observations were made from 1975 to 1988 and cover about 1.5 revolutions. One unresolved speckle observation was made in 1986.4, at which time the predicted separation was 0.026. Our determination of $a^{"}$ is about 10% smaller than that of Baize (1985), whose orbit is also plotted here.

WDS 15428 + 2618 = ADS 9757 = STF 1967. This is the "oldest" of the binaries in this paper, first observed by F. G. W. Struve in 1826. The first speckle observation was made 150 yr later, in 1976. Thus far speckle data have had little effect on the derived elements; ours are quite similar to those found by Baize (1953).

WDS 17081 + 3555 = ADS 10360 = Hu 1176. The orbital period was derived from all visual and speckle data, then the remaining elements were calculated from the speckle data alone, using this period. Coverage by speckle data has been sufficient to resolve the 8 vs 16 yr period ambiguity of some earlier published orbits. The published orbit shown here is by Tokovinin (1984).

WDS 18117+3327=ADS 11149=B 2545. This pair was observed visually five times, from 1958 to 1962, then not again until McAlister observed it with speckle in 1975. Recent quadrant determinations using our speckle data indicate that our observations fall in the same quadrant as the first visual data, the resulting orbit, of period 24 yr, is shown in the upper part of the figure. If the earlier data actually fall in the opposite quadrant (i.e., flipped by 180°), a much longer-period orbit would result. The 58 yr period orbit we derive based on this assumption is also shown in the figure, together with the 47 yr period orbit of Baize (1988). Both our orbits are listed in Table II; the situation will probably remain ambiguous for some time, until the baseline of speckle measurements has increased.

WDS 18384-0312 = ADS 11520 = A88 AB. The combined visual/speckle orbit was used for the period, then speckle alone was used to derive the remaining elements.

Star	Orbit Source		Smal	Small Visual	-			Large	Visual	 _			CHARA		Speckle			10	Other Sneckle	<u>-</u>	
		z	0	6	13	40	z	10		18	.0	z	Şē		Δp	.,	z	Δē	5	13	6
ADS 490	CHARA Gatewood et al (1975)	~	0.7 0.8	0.8 8	9T	7 9	128	1.2 2.2	8.4	Ϋ́ 7	38 38	28	0 0 5.3	1.3	- 81	4 Ş	2	-0.5	0 6 2 1	5 i	5 13 5
ADS 1105	CHARA	36	0.5	2.1	*	67	20	F.O.	2.4	1	75	Ξ	-0.7	с т	~	9					
ADS 1473	CHARA	11	-0.4	1.6	45	64	52	0.4	Ţ	9	53	9	1.3	18	ų	4	6	-2.7	2.7	s,	6
Cou 79	CHARA Couteau (1987) Tokovinin (1987) Tokovinin (1985) Baize (1983) Couteau et al (1981)	m	847788 484679 97	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220228	54 I 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34 1	29.55 29.57 29.52 20.52	1.	89229 892379	3355028 3355028	20	0.10.544	0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	4 <u>5</u> 4.08%	079549	vo .	004-0-	1.7 10.3 4.3 11.8 11.8	မံမမစ္မမံ	987 - 18 101 101
Fin 312	CHARA Finsen (1970)						189	3.7	11.8	8 I	15 19	22	0 0 0 0	1.3	0	40	n		26 14.4	?÷	8 2
McA 27	CHARA Tokovinin (1986)										•	81	0.4	3.6 3.6	°=	21 4	-	ç ;	5 7 1 3	ν; τ	و ي
ADS 6185	CHARA Baire (1986) Tokovinin (1986)	20	0.3 0.3	5 5 5 7 7 7	523	8888 8888 8888 8888 8888 8888 8888 8888 8888	63	000 100	4.5.8. 4.2.8.	-13 -26	97 115 129	15	004 804	1220	0.01-	12 12 4	4	101	2.1		.=¥
ADS 6420	CHARA Wooiley et al (1937)	33	-0.8	9.7 10.1	9 <u>5</u>	91 72	130	-1.2	11.3	-5 29	5 5	6	-0.1 -3.6	60 9	-29	32 2	ñ	2÷	4 S		01 34
ADS 6993 `	CHARA Heintz (1963)	21	-25 -2.1	9.7 9.5	: 1	60 61	149	0 0 1 0	9.4 8.0		38 38	,12 ,12	-0.1	0.6 4.5	73	13 13	9 0	-0.2	0.8 2.3	~ 6	5 10
Kui 37	CHARA Heintz (1967)	8	-1.6 -1.1	3.5	17 12	40 53	66	06 1.1	3.3 2	-15	67 61	9	00 1.6	02 2.1	-1 16	27 27					
Fin 347	CHARA Heintz (1984) Finsun (1966)						67	-1.4 -1.5	12 6 11.6 16.4	იაი	26 26	12	08 1.8 313	1.9 2.8 57.5	2 5 -	2 5 37	ق	-2.1	4 4 56.5	-0-	9 9 9
McA 34	CHARA Tokovinin (1987a)											18	0.1	0.8 1.7		5 16	ę		3.2	₽	12
ADS 7896	CHARA Heintz (1988) Baizr: (1984) Heintz (1978b)	13	0000 0000	3.1 3.2 3.1	23 12 Z	48 53 48 53 48	26		3.9 3.7 6.0	51-5-0-	55 55	13	0.000.00	1.5 4.1 8.8	⁷ 3 ⁸ 4	8 24 16	~ .	-109 -109	1.9 2.5 11.0	24 33 20 24	25 33 25
ADS 8804	CHARA Haffner (1948)	205		11 12	15	83 85	205	0.2 0.2	5.5	" 9	72 71	30	0.1	08 1.3	32 O	4 28	m	0.2 0.6	0.4	58 G	28
ADS 9688	CHARA Baizu (1985)											6	0.1 9.1	0 F 7 F	0 ņ	~r	6	-09-	4.7 12 0	~- ~	8 O
ADS 9757	CHARA Bairt (1953)	171	0.4	5.8 5.8	7 30	110	151	0.5	3.1	1 6	88 8	31	1 .1-	0.7 1.3	- 9	46 3	۳	0'0 7 7	2.2	~ ¥	36 36

Тлы.E IV. Orbit residuals.

•

) .

!

٤

Star	Orbit Source		Small	Small Visual	1			Large	e Visua	1			CHARA	RA Speckl	ckle			Other	Speckle	2	
		z	Ø	9.0	20	°,	z	00	•0	م الم	40	z	0	5	12	°,	z	DB	5	10	5
ADS 10360	CHARA Tokovinin (1984) Cester (1984) Wilson (1936)						65	0.0 9.0 9.0 9.0 9.0	204 18.7 21.0 28.8	1221	33.33	35	0000	0 9 2 9 26 5	31-12 0	6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12	10-1- 10-10-1- 10-	1,9 25 9 25 9	2	6 6 37
4DS 11149	CHARA orbit #1 CHARA orbit #2 Baize (1938)						10	2.5 2.5 2.5	₹. 	90 T	20 20	33	0.1	1.5	000	4 40	-		3003	0 <u>-</u> 9	v) 74 00
ADS 11520	CHARA Heintz (1988) van den Bos (1953)	-	8 8 8 8 8 8	111	65 46 27	111	87	1.8 1.3 0.5	12.1 11.2 11.1	₽7 3	30 31 31	16		122	0 -18 -37	21 38 38	ñ		2 5 6 2 5	-18 -35	7 18 36
ADS 12973	CHARA Heintz (1984) Tokovinin (1984) Finsen (1937)	10		88 6.1 6.2 8 7.3 7	259 26 26	77 67 84	. 142	0.2 1.5 1.0	8.8 8.8 4.1	8787	40 36 37	22	0.1 2.0 17.6		- 1- 88.	48033 48013 480	6	09 -30 12,7	1.1 2.2 3.4	6.1-0 S	54 54
ADS 14073	CHARA Coutean (1962) Fineen (1938)	139	2.7 -0.1	8.4 4.1 4.1	×.	75 68 69	263	40.4.1	4.3	21 -16	60 65 62 65	23		3.56	ဝင္ပဝ္ဂ	۶ ۲ ۲ ۲ ۲ ۲	-	0 0.2.9	1.3 69	~ 8 8 °	6 25 25
ADS 14121	CHARA						6	16 0	16.6	0	45	26		01	1	•	80	-15	13.5	10	30
ADS 14412	CHARA Heintz (1986b) Ling (194 %) Starikova (1983) Eggen (1965) Heintz (1956)	-	8.9 7.1 7.0 10.2 10.2		-1223338		38	12225 12225 1225 1225 1225 1225 1225 12	8.4 8.6 9.8 9.8 9.8 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.3 8.1 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	@n4655	34 32 32 32 32 32 32 32 32 32 32 32 32 32	50	00 111 21.9 21.9	2233 2233 2233 2233 2233 2233 2233 223	0-14841-	48859 100 100	-	44400% 440040		៵៰৮៰៹៴	
ADS 14761	CIIARA Baire (1961)	Q	-03 1.6	7.0	-17	5 18	18	00 00	11.8 15.6	. •	4 3	22	0.1 2.8	3.2	9 <u>9</u>	12 4	2	-1.7	23	- «;	- «
Kui 108	CHARA Heintz (1986a) Baize (1985) Morel (1970)	ŝ		0.880 2.0.4.4	<u>.</u>	19 14 21 21	9	5808 5808	0.40.0 40.8	بەھمن	28 29 27	25	0.2 9.7 9.7	0 0 0 9 3 0 9 3		ოაოთ	g	-0.8 -3.1 -7.1	1.2	07 - 0	იიიი
ADS 15281	CHARA Tokovinin (1984) Norel et al (1972)	30		14.1 12 5 14 6	29? ?	48 50 50	204	-2.4	11.7 13.5 12.1	စင္ကဆု	5 8 8	36	0.1 3.2 3.2	1.6 8.2 8.2	0 6 5	3 55 35	1	-1.3	1.86 1.86	1 2 61-	6 23 8 6
Cou 14	CHARA Baire (1986) Docobo et al (1985) Heintz (1982)	1	20.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 2 2 7 3 2 0 7	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	22 23 29	81	0.0 0.5 1.4	4464	3	35 52 31 35 52 31	3	0.1 0.5 2.2		54 57 57 99	69 33 46	ŝ	90	80.10 9010		4 63 18
ADS 16173	CHARA Heintz (1986a) Baize (1957)	4	-0.1 0.3	35 3.4 3.5	0 10 4	36 36 38	133	0.2 0.6 0.6	4.4 5.4 5.4	-13 6- 8-	54 53 55	15		1.1 2 1 10 2	12 21	3 6 17	۲ 5	-25 -8.4 -32.5 3	3.1 96 37,8	0 6 1-	3 7 24

TABLE IV. (continued)

The resulting orbit is significantly smailer than the published orbits of van den Bos (1953) and Heintz (1988—plotted here).

WDS 19489 + 1908 = ADS 12973 = AGC 11. Visual and speckle data were used to derive the period, then the speckle data were used alone to derive the other six elements. Visual data covering an additional two full revolutions, plus a good collection of speckle data, have allowed refinement of Finsen's (1937) grade 1 orbit. Our elements are similar to those recently published by Tokovinin (1984), whose orbit is also shown here. We each derive a value for a''—and thus a sum of masses—considerably smaller than that found by either Finsen or Heintz (1984).

WDS 20375+1436=ADS 14073=Bu 151. This system was discovered in 1874 and first observed by speckle in 1973. This is yet another speckle orbit using a period defined by all the data. Couteau's (1962) orbit is shown in the lower righthand corner of the figure, together with our new orbit and all published speckle data.

WDS 20397 + 1556 = ADS 14121 = WCK Aa. The two visual observations of this pair were given zero weight in the orbit program, as were two measurements made in 1983 and 1984 by Tokovinin (1985).

WDS 20538+5919=ADS 14412=A751. Three published orbits have appeared for this pair in the last few years (see Starikova 1983; Ling 1985; and Heintz 1986b—shown in the figure); here now is a fourth.

WDS 21135 + 1559 = ADS 14761 = Hu 767. The speckle data refine Baize's (1961) elements, although unfortunately speckle observations did not begin until shortly after periastron and the first speckle data point appears discrepant.

WDS 21425 + 4106 =Kui 108. The orbits of Heintz (1986a) and Baize (1985), as well as this one, indicate that a'' is about 6% smaller than was found by Morel (1970). Our orbit is slightly more eccentric than those of Heintz and Baize, and we find a somewhat earlier time of periastron passage. Heintz' orbit is plotted here.

WDS 21446+2539=ADS 15281=Bu 989. The period

was determined by a combined visual/speckle orbit, then the other elements were derived using speckle data alone. The top portion of the figure shows all visual and speckle observations for this binary, the bottom portion only the speckle data. The dotted orbit in both cases is derived from the elements of Tokovinin (1984).

WDS 21502 + 1718 =Cou 14. The visual/speckle orbit of this system has a shorter period and a considerably smaller semimajor axis than any published in the last several years (see Heintz 1982, Docobo and Costa 1985; Baize 1986). Baize's orbit is shown here.

WDS 22408 + 1432 = ADS 16173 = Ho 296. The combined visual/speckle orbit yielded the period, used with the speckle data alone to generate the other elements. The resulting orbit is quite similar to that of Baize (1957) and essentially the same as that of Heintz (1986a), which is plotted here.

We are grateful for the assistance of Charles Worley in obtaining visual data for these binaries from the *Washington Visual Double Star Catalog*, maintained by Worley at the U.S. Naval Observatory. This service is invaluable to all computers of visual orbital elements. We also thank Wayne Warren and the staff of the Astronomical Data Center at the NASA Goddard Space Flight Center for providing us with magnetic tape versions of the WDS and other useful catalogs. Finally, we thank the many observers at CHARA and elsewhere who have assisted in collecting the large body of speckle data now available for orbit determination.

The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF Grant No. AST 86-13095 and the Air Force Office of Scientific Research through AFOSR Grant. No. 86-0134. We gratefully acknowledge the continuing support of these agencies. O. G. F. also acknowledges the partial support of the Space Telescope Science Institute through Grant No. CW-0005-85.

REFERENCES

Bagnuolo, W. G., and Hartkopf, W. I. (1989). Astron. J. (submitted).	Finsen, W. S. (1970). Cir
Baize, P. (1953). J. Obs. 36, 6.	Gatewood, G., and Behal
Baize, P. (1957). J. Obs. 40, 20.	Haffner, H. (1948). Astro
Baize, P. (1961). J. Obs. 44, 261.	Heintz, W. D. (1956). M
Baíze, P. (1983). Astron. Astrophys. Suppl. 51, 479.	Heintz, W. D. (1963). Z.
Baize, P. (1984). Astron. Astrophys. Suppl. 56, 103.	Heintz, W. D. (1967). Ve
Baize, P. (1985). Astron. Astrophys. Suppl. 60, 333.	Heintz, W. D. (1978a). 1
Baize, P. (1986). Astron. Astrophys. Suppl. 65, 551.	Heintz, W. D. (1978b). A
Baize, P. (1988). Circ. Inf. No. 105.	Heintz, W. D. (1982). As
Bonneau, D. (1979). Astron. Astrophys. 80, L11.	Heintz, W. D. (1984). As
Bonneau, D., Carquillat, J. M., and Vidal, J. L. (1984). Astron. Astrophys.	Heintz, W. D. (1986a). A
Suppl. 58, 729.	Heintz, W. D. (1986b). A
Cester, B. (1964). Mem. Soc. Astron. Ital. 35, 345.	Heintz, W. D. (1988). A:
Couteau, P. (1962). J. Obs. 45, 39.	Labeyrie, A. (1970). Ast
Couteau, P. (1987). Astron. Astrophys. Suppl. 71, 569.	Ling, J. F. (1985). Circ.
Couteau, P., and Morel, P. J. (1981). Circ. Inf. No. 83.	McAlister, H. A. (1980).
Docobo, J. A., and Costa, J. A. (1985). Circ. Inf. No. 95.	McAlister, H. A. (1981).
Eggen, O. J. (1965). Astron. J. 70, 19.	McAlister, H. A. (1982).
Eichhorn, H. (1985). Astrophys. Space Sci. 110, 119.	McAlister, H. A., and Ha
Finsen, W. S. (1937). Union Obs. Circ. 4, 359.	metric Measurements of
Finsen, W. S. (1938). Union Obs. Circ. 4, 461.	tion Astronomy Contr
Finsen, W. S. (1966). Republ. Obs. Circ. 7, 116.	Atlanta).

irc. Inf. No. 52. all, A. L. (1975). Astron. J. 80, 1065. ron. Nachr. 276, 145. Mon. Not. R. Astron. Soc. 116, 243. . Astrophys. 57, 159. eroff. Sternw. München 7, 31. Double Stars (Reidel, Dordrecht). Astrophys. J. Suppl. 37, 71. Astron. Astrophys. Suppl. 47, 569. Astron. Astrophys. Suppl. 56, 5. Astron. Astrophys. Suppl. 64, 1. Astron. Astrophys. Suppl. 65, 411. Astron. Astrophys. Suppl. 72, 543. stron. Astrophys. 6, 85. Inf. No. 95.). Astron. J. 85, 1265.). Astron. J. 86, 795.). Astron. J. 87, 563. artkopf, W. I. (1988). Second Catalog of Interferoof Binary Stars, Center for High Angular Resolutrib. No. 2 (CHARA, Georgía State University,

Franz, O. G., and Evans, D. S. (1988). Astron. J. 96, 1431.

- McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). Astron. J. 93, 688.
- Merrill, P. W. (1922). Astrophys. J. 56, 43.
- Monet, D. G. (1979). Astrophys. J. 234, 275.
- Morel, P. J. (1970). Astron. Astrophys. Suppl. 1, 429.
- Morel, P. J., and Couteau, P. (1972). Astron. Astrophys. Suppl. 5, 175.
- Popper, D. M., and McAlister, H. A. (1987). Astron. J. 94, 700.
- Starikova, G. A. (1983). Sov. Astron. Lett. 9, 189.
- Tokovinin, A. A. (1984). Sov. Astron. Lett. 10, 121.
- Tokovinin, A. A. (1985). Astron. Astrophys. Suppl. 61, 483.

- Tokovinin, A. A. (1986). Sov. Astron. Lett. 12, 480.
- Tokovinin, A. A. (1987a). Circ. Inf. No. 102.
- Tokovinin, A. A. (1987b). Lett. Astron. Zhur. 13, 1065.
- Tomkin, J., McAlister, H. A., Hartkopf, W. I., and Fekel, F. C. (1987). Astron. J. 93, 1236.
- van den Bos, W. H. (1953). Union Obs. Circ. 6, 216.
- Wilson, R. H. (1936). Publ. Astron. Soc. Pac. 48, 309.
- Wooley, R., and Symms, L. (1937). Mon. Not. R. Astron. Soc. 97, 438.
- Worley, C. E. (1987). Private communication.
- Worley, C. E., and Douglass, G. G. (1984). *The Washington Visual Double* Star Catalog (U.S. Naval Observatory, Washington, DC).

VOLUME 98, NUMBER 6

DECEMBER 1989

BINARY STAR ORBITS FROM SPECKLE INTERFEROMETRY. III. THE EVOLUTION OF THE CAPELLA STARS

WILLIAM G. BAGNUOLO, JR. AND WILLIAM I. HARTKOPF Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303 Received 18 May 1989; revised 21 July 1989

ABSTRACT

A new orbit for Capella has been computed, incorporating the latest available speckle-interferometry data. This, combined with van Altena's (1988) parallax data, gives a total mass of $4.5 \& M_{\odot} \pm 9\%$ for the two components. The comparatively low mass found is more consistent with the "convective overshoot" models of Bertelli *et al.* (1986). The Strömgren *y*, *b*, and *v* magnitude differences of the Capella binary were estimated by Bagnuolo and Sowell (1988), and these data were converted into the spectral types and temperatures of the two stars. These results, when compared to various stellar evolutionary tracks, tend to support the belief that the "G star" (Capella *Aa*) is at the beginning of the red giant branch (RGB), not at the core-helium-burning (CHB) phase in its evolution. Other available data for or against the RGB hypothesis are discussed.

I. INTRODUCTION

In addition to determining accurate orbits, a goal of the GSU/CHARA program of binary star speckle interferometry has been to develop methods of determining the magnitudes and colors of the individual components of binary stars with angular separations down to the diffraction limit. The "Fork" algorithm (Bagnuolo 1988a) has provided a new, direct means of measuring the luminosities and temperatures of the well-known spectroscopic binary, Capella.

Capella (α Aur, HR 1708) was independently recognized to be a spectroscopic double by Campbell (1899) and Newall (1899). Classification of stars with composite spectra is notoriously difficult, however (Bidelman 1984), especially if, as in the case of Capella, Δm is small. Estimation of these stars' magnitude difference and mass ratio, as well as v sin i of the Ab component, has also been difficult, due to the combination of broad lines in Ab and numerous lines in the late spectral type primary Aa (Fekel et al. 1986). A spectrophotometric analysis by Wright (1954) appeared to settle the issue: the spectroscopic primary (Capella Aa, larger mass) was approximately of type G5 III and brighter than the G0 III secondary by about 0.25 mag at 550 nm. Recently, however, Griffin and Griffin (1986) reversed Wright's assignment of relative magnitudes based on their integrated radial-velocity profiles. Our data confirm the Griffins' result and indicate that the secondary is brighter by 0.09, 0.23, and 0.55 mag in Strömgren y, b, and v, respectively. From this, the spectral types have been estimated to be G0 III and G9 III. Similar results have been found in a recent spectrophotometric analysis by Strassmeier and Fekel (1990).

In this paper we first consider a revised orbit for Capella, based upon the latest available speckle data, and estimate the masses of the stars. We then discuss these data together with the individual star photometry and their implications for the evolutionary state of the Capella stars.

II. MASSES AND ABSOLUTE MAGNITUDES

McAlister (1981) derived an apparent orbit for Capella based on 56 interferometric observations, including both modern speckle data and visual Michelson interferometric measurements obtained at Mount Wilson by Anderson (1920) and Merrill (1922). This system has remained a popular target for interferometric observation since the time of McAlister's analysis; the number of measurements listed in the Second Catalog of Interferometric Measurements of Binary Stars (McAlister and Hartkopf 1988) now totals over 100.

We have calculated a new apparent orbit for Capella, including data through 1988, using the "grid search" method described by McAlister *et al.* (1988) and Hartkopf *et al.* (1989). The resulting orbital elements are shown in Table I, together with the earlier results of McAlister. Differences between the two orbits are minor. The semimajor axis increased by 0.5 mas, or less than 1%, while the period decreased by about 25 s, or 1 part in 360 000. (This excellent agreement in period is due in large measure to the excellent data of Anderson and Merrill, which give us a time span of some 240 full revolutions.) The overall effect of these new elements is an increase in the derived mass sum of approximately 2.9% at a given parailax.

We have in addition obtained parallax data generously provided by Van Altena (1988), based on trigonometric parallax measurements produced by seven observatories. Measurements of 0.0780 \pm 0.0042 for Capella A and 0.0763 \pm 0.0028 for the fainter and better determined Capella H combine to give a weighted parallax of 0.0768 \pm 0.0023 for this system. The total mass of Capella is consequently $\mathcal{M}_{sum} = 4.58 \pm 0.41$ \mathcal{M}_{\odot} or about 2.29 \pm 0.20 \mathcal{M}_{\odot} , each using a mass ratio of 1. For a mass

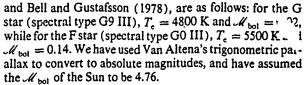
TABLE I. Orbital elements for Capella.

	McAlister (1981)	This paper
P	10440237 + 040002	10490234 + 090017
a	0.0547 + 0.0001	0:05523 ± 0:00008
ī	136:64 ± 0:10	$136:63 \pm 0:48$
Ω	220:22 ± 0:15	$221:21 \pm 1:52$
Ť	1936.4581 ± 0.0001	1936.5045 ± 0.0008
-	0.0 (adopted)	0.005 ± 0.008
ω	0:0 (adopted)	59:44 + 1:52

Notes to TABLE 1. In the earlier set of orbital elements, the value of ω was increased by 180° to reflect the quadrant determinations of Bagnuolo and McAlister (1983). Also, our method of error determination is apparently rather more conservative than that used by McAlister. A derivation of elements using our program with McAlister's data yielded errors very similar to those quoted for the new set of elements.

÷

ratio of 1.05 (Wright 1954) the stars have masses of 2.35 and 2.24 \mathcal{M}_{\odot} , respectively. For comparison, Batten *et al.* (1978) give masses of 2.67 and 2.55 \mathcal{M}_{\odot} for the components, based on values of $K_1 = 26.1$ km/s and $K_2 = 27.5$ km/s (Batten and Erceg 1975; Wright 1954) and $i = 137^{\circ}05$ (Finsen 1975). With our value for the inclination of 136°63 their masses reduce to 2.61 and 2.49 \mathcal{M}_{\odot} .


In view of the uncertainties in radial-velocity determinations, especially for the secondary (see Sec. IV), this 10% difference in estimated mass between the two methods is probably not significant. We also believe that the trigonometric parallax method is more reliable at present.

III. THE EVOLUTIONARY STATE OF THE CAPELLA STARS

The Capella stars are a rare example of two evolved giants, and their properties have been an important test for theoretical models of stellar evolution. The Wright data led to the interpretation by Iben (1965) that the G star had passed the red giant branch (RGB) phase and was in the core-heliumburning (CHB) phase. Iben further noted that these data were compatible with Wallerstein's (1964) estimate that the lithium abundance ratio of the F and G stars was Li(F)/ Li(G) ≈ 100 .

However, Boesgaard (1971) detected lithium in the G star and revised this ratio to about 15, which would be more compatible with the G star on the RGB. She states that the Li ratio would be 48:1 if the G star had reached even as far as point 11 on Iben's evolutionary track (i.e., about halfway up the RGB); therefore, the actual position of the star should be considerably earlier than this. There was therefore a conflict between the estimated lithium abundance, supporting the RGB interpretation, and the estimated temperatures and colors of the stars, which support the CHB model.

Our temperatures and absolute bolometric magnitudes, based on the temperature scale and B.C.'s of Kurucz (1988)

These data can be compared with various theoretical evolutionary tracks. Five evolutionary tracks were chosen, each for stars having "solar" abundances (although the values chosen for solar abundance differ slightly—see Table II). Andersen *et al.* (1988) have shown the effects of varying Y and Z in fitting the stars of the eclipsing binary AI Phoenicis, whose masses were determined to be 1.24 and 1.20 \mathscr{M}_{\odot} . Fits of (Y,Z) = (0.312, 0.0169) and (0.250, 0.0100) were essentially equivalent, which suggests that VandenBerg's (1985) model should be comparable to the other three recent models we considered. See also Popper *et al.* (1986) for a similar discussion.

Two particular points of interest in these evolutionary tracks are their overall luminosities (e.g., models with convective overshooting tend to be brighter for a given mass) and the difference in luminosity between a GO star at log $T_e = 3.75$ and the bottom of the CHB phase. This difference in log L is referred to henceforth as ΔL_{CHB} . Models with a large ΔL_{CHB} can only explain the small observed luminosity difference between the G and F stars via the RGB hypothesis.

Figure 1 is a plot of the Capella data with Iben's (1965) evolutionary tracks for a $3.0 \mathscr{M}_{\odot}$ star of solar abundance. Due to improvements in opacity estimates, model atmosphere codes, and computers, this result is largely of historic interest, as it was perhaps the first set of calculations to show the basic "topology" of stellar evolution in this mass range. Using Wright's data, Iben concluded that the CHB interpretation was correct. Our data have also been replotted with old calibrations of temperature and B.C. for comparison

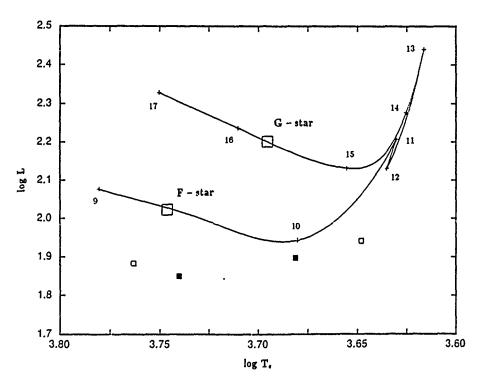


FIG. 1. Comparison of Capella star H-R diagram positions with Iben's $3.0 \mathcal{M}_{\odot}$ evolutionary track. The solid line and numbers represent evolutionary tracks, the large open squares positions of the G and F stars according to Iben's interpretation of Wright's (1954) data. The small filled squares indicate the positions of the stars according to Bagnuolo and Sowell (1988), while the small open squares indicate the same data with the old temperature and B.C. calibration. (Allen 1973). The difference in log L between the two stars is about 0.05, while ΔL_{CHB} for this model is about 0.10. Therefore, the relative location of the stars in (log T_e , log L) favors the RGB hypothesis.

Figures 2 and 3 compare the Capella data to the more recent evolutionary tracks of VandenBerg (1985) and Bertelli *et al.* (1986), respectively. The values of ΔL_{CHB} in Fig. 3 (and from the tabulated results) are 0.151 and 0.129 for 2 and 3 \mathcal{M}_{\odot} stars, respectively. Thus, the CHB hypothesis is an even poorer fit to the data for these theoretical models.

Table II compares the three stellar evolutionary tracks previously discussed with two others by Maeder and Meynet (1988) and Dearborn (1989). Both the latter models assume some convective overshooting, but differ in assumed opacities. The fourth column of Table II lists the luminosity at log $T_e = 3.75$. Note that ΔL_{CHB} is less than zero for the Maeder and Meynet models; thus, both RGB and CHB are compatible with the data for this model.

The color-magnitude data on the whole are more compatible with the RGB than CHB interpretation, but clearly the result is model dependent.

If the RGB interpretation is true, then the mass difference of the stars must be small, as was noted by Ayres *et al.* (1983). For example, the F and G stars are approximately at points "9.5" and "10.3" on Iben's track (Fig. 1), which correspond to a time difference of about $\Delta t \approx 7.1 \times 10^6$ yr, or $\Delta t / t_{ms} \approx 3.2 \times 10^{-3}$, where t_{ms} is the main-sequence lifetime.

According to Iben (1988), $t_{ms} \propto m^{-2.2}$ or $\Delta t/t_{ms} = -2.2 \Delta m/m$. In other words, $\Delta m/m = -0.455 \Delta t/t_{ms} = 0.00145$. Thus, this time difference corresponds to a mass difference of only $0.004 \mathscr{M}_{\odot}$. Of course, this analysis assumes coevality and no differential mass loss. However, the analysis suggests the possibility that the stars may be even "more equal" in mass than previously measured. Recent es-

timates of the mass ratio have ranged from 1.18 (Shen *et al.* 1985) to Wright's value of 1.05, and will be discussed later.

The change in luminosity of the two stellar evolutionary tracks can also be estimated. Because $L \propto m^{3.2}$, $\Delta \log L = -3.2 \Delta \log m = 0.0046$. This is only about 1/9 of the observed difference in luminosity, so that the two stars are racing along almost the same track, assuming the RGB interpretation.

The stellar evolutionary models can also be compared with the estimated luminosities of the stars. The tracks by Iben (1965), VandenBerg (1965), Bertelli *et al.* (1986), Maeder and Meynet (1988), and Dearborn (1989) are consistent with average masses for the Capella stars of about 2.67, 2.83, 2.37, 2.65, and 2.80 \mathcal{M}_{\odot} , respectively. The Bertelli *et al.* model therefore appears to be most consistent with the 2.3 \mathcal{M}_{\odot} masses found in Sec. II. Thus, although Andersen *et al.* found than VandenBerg's models without convective overshooting fit the ~1.2 \mathcal{M}_{\odot} stars of Al Phe, perhaps convective overshooting does occur for more massive stars like Capella.

IV. OTHER DATA

Other relevant data are the ultraviolet luminosity and the observed mass ratios. According to Ayres *et al.* (1983), the enhanced UV emission of the Capella giants compared to other yellow giants in IUE low-dispersion surveys supports the RGB hypothesis. If the G star had evolved to the CHB stage, most of the observed strong chromospheric and coronal emission would have been lost.

The observed mass ratios are contradictory. Shen *et al.* (1985) have determined a mass ratio of the components of $\mathcal{M}_G/\mathcal{M}_F = 1.18$ via spectroscopy. However, the previous result by Wright was a ratio of 1.05. As we have seen, stars

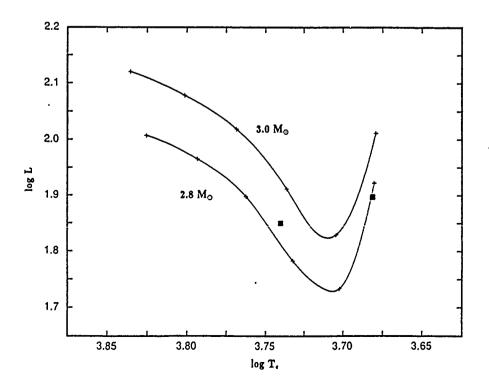


FIG. 2. Comparison of Capella data to the evolutionary tracks of Vanden-Berg (1985).

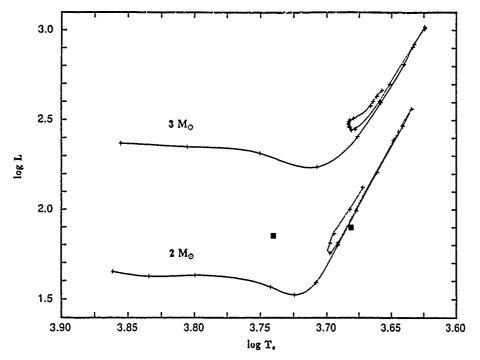


FIG. 3. Comparison of Capella data to the evolutionary tracks of Bertelli *et al.* (1986).

with a high mass ratio cannot both be on or near the RGB; the more massive must have evolved to the CHB stage. Thus, the Shen *et al.* data support the CHB interpretation (although with *this* large a mass difference the more massive star would probably have evolved beyond the CHB phase).

Because the Shen *et al.* data provide the only major inconsistency (i.e., clearly support the CHB hypothesis), their results must be especially scrutinized. (Admittedly, this is *ex post* logic.) Their mass ratio depends upon their observations of the broadened lines of the F star, Capella *Ab*, to which they have added at almost equal weight some 1939 measurements by W. Struve. We feel their data may be biased toward too high a value of the radial-velocity amplitude for this star K_2 by the following effects:

(1) Shen *et al.*'s Fig. 1 shows a profile for the 0.749 phase which is dominated by the primary and is therefore almost an instrumental profile. Note that the continuum is fairly smooth to the left, but has large features to the right. This suggests that their results near 0.5 phase will be more accurate than those near 0.0 phase. Furthermore, the shape of these features suggests that there will be a bias toward higher radial velocities measured at close to 0.0 phase. In their Fig. 3, there is good agreement between their radial velocities for

TABLE II. Comparison of stellar evolution models.

Author	MIM₀	(Y,Z)	L 3.75	ΔL_{CHB}
Iben (1965)	3.0	0.272, 0.02	2.04	0.10
VandenBerg (1985)	3.0	0.25, 0.0169	1.97	_
Bertelli et al. (1980)	2.8 3.0 2.0	0.28, 0.02	1.85 2.32 1.58	0.151
Maeder and Meynet (1988)	3.0	0.28, 0.02	2.10	0.007
Dearborn (1989)	2.5 2.5	0.28, 0.02	1.79 1.69	0.019 0.070

Capella Ab and those of Struve near the 0.0 phase; at 0.5 phase the latter are systematically higher. One may tentatively conclude that Shen *et al.*'s R.V.'s are good near 0.5 phase, but too high near 0.0 phase, while the Struve data are uniformly too high. Thus, K_2 and the mass ratio have quite possibly been overestimated.

(2) Shen *et al.*'s Figs. 1 and 2 show fitted Gaussians of different widths to the primary and secondary "dips" produced from the cross correlation of the spectrum with a mask spectrum of a similar star. However, the continuum is not well fitted by their models. Griffin (1988) noted this effect and has suggested that the radial-velocity difference between the two components is considerably less than the 27.5 km/s found by Shen *et al.* for the 0.672 phase observation shown in the top portion of their Fig. 2. (See also their Table III, which gives radial velocities of 15.6 and 43.1 km/s for *Aa* and *Ab*, respectively.) Again, K_2 may have been overestimated.

(3) The shape of the secondary dip shows superimposed features that change with phase. Griffin's (1982) data, taken with a larger aperture, show a smooth dip with no such features. The latter result suggests that the features in the secondary dip in Shen *et al.*'s data are mainly instrumental, and their variation with phase represents systematic instrument tal errors.

To conclude, we feel that the radial-velocity question is still open and that a credible mass ratio by this method is yet to be determined. We do not wish to denigrate the great efforts of Shen *et al.* or earlier observers to resolve this difficult problem. One of us has recently proposed (Bagnuolo 1988b) using a method of pupil plane interferometry to obtain the spectra of stars like Capella separately, but it is likely that existing techniques can determine a more accurate mass ratio. Recently, preliminary radial-velocity measurements by Stassmeier and Fekel (1990) indicate that the mass difference may be quite small between the components.

V. CONCLUSIONS

The available evidence tends to favor the red giant branch (RGB) over the core-helium-burning (CHB) hypothesis for the Capella stars. Additional observations are needed to accurately determine both the mass ratios of the components and the lithium abundance of the secondary to settle any remaining inconsistencies. The latter has not been redetermined in 18 yr and could clearly benefit from modern observational techniques.

Combining the best available orbital and parallax data

Allen, C. W. (1973). Astrophysical Quantities (University of London, Lon-

Anderson, J., Clausen, J. V., Gustafsson, B., Nordstrom, B., and Vanden-

Ayres, T. R., Schiffer, F. H., III, Linsky, J. L. (1983). Astrophys. J. 272,

Bagnuolo, W. G., Jr., and McAlister, H. A. (1983). Publ. Astron. Soc. Pac.

Batten, A. H., and Erceg, V. (1975). Mon. Not. R. Astron. Soc. 171, 47p.

Batten, A. H., Fletcher, J. M., and Mann, P. J. (1978). Publ. Dom. As-

Bell, R. A., and Gustafsson, B. (1978). Astron. Astrophys. Suppl. 34, 229. Bertelli, G., Bressan, A., Chiosi, C., and Angerer, K. (1986). Astron. As-

Bidelman, W. P. (1984). In The MK Process and Stellar Classification,

Fekel, F. C., Moffett, T. J., and Henry, G. W. (1986). Astrophys. J. Suppl.

edited by R. F. Garrison (David Dunlap Observatory, Toronto), p. 45.

Bagnuolo, W. G., Jr., and Sowell, J. R. (1988). Astron. J. 96, 1056.

Anderson, J. P. (1920). Astrophys. J. 51, 263.

Berg, D. A. (1988). Astron. Astrophys. 196, 128.

Bagnuolo, W. G., Jr. (1988a). Opt. Lett. 13, 907. Bagnuolo, W. G., Jr. (1988b). Internal CHARA memo.

Boesgaard, A. M. (1971). Astrophys. J. 167, 511.

Campbell, W. W. (1899). Astrophys. J. 10, 177. Dearborn, D. (1989). Private communication.

Finsen, W. S. (1975). Circ. Inf. No. 66.

don).

223.

95, 992.

60. 551.

trophys. Obs. 15, No. 5.

trophys. Suppl. 66, 191.

leads to absolute luminosities and masses that are most consistent with the models of Bertelli *et al.* (1986).

The authors would like to thank Icko Iben, Ingemar Furenlıd, and Hal McAlister for several interesting discussions relating to this topic. Doug Gies, Jim Sowell, and Tom Meylan also provided useful criticism. The GSU/CHARA program of binary star speckle interferometry is supported by the National Science Foundation through NSF Grant No. AST 8613095 and the Air Force Office of Scientific Research through AFOSR Grant No. 860134. We gratefully acknowledge this support.

REFERENCES

- Griffin, R. F. (1982). Mon. Not. R. Astron. Soc. 201, 487.
- Griffin, R. F. (1988). Private communication.
- Griffin, R., and Griffin, R. (1986). J. Astrophys. Astron. 7, 45.
- Hartkopf, W. I., McAlister, H. A., and Franz, O. G. (1989). Astron. J 98,
- 1014.
- Iben, I., Jr. (1965). Astrophys. J. 142, 1447.
- Iben, I., Jr. (1988). Private communication.
- Kurucz, R. L. (1988). Private communication to T. Meylan.
- Maeder, A., and Meynet, G. (1988). Astron. Astrophys. Suppl. 76, 411.
- McAlister, H. A. (1981). Astron. J. 86, 795.
- McAlister, H. A., and Hartkopf, W. I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, CHARA Contribution No. 2.
- McAlister, H. A., Hartkopf, W. I., Bagnuolo, W. G., Jr., Sowell, J. R., Franz, O. G., and Evans, D. S. (1988). Astron. J. 96, 1431.
- Merrill, P. W. (1922). Astrophys. J. 56, 43.
- Newall, H. F. (1899). Mon. Not. R. Astron. Soc. 60. 2.
- Popper, D. M. (1980). Annu. Rev. Astron. Astrophys. 18, 115.
- Popper, D. M., Lacy, C. H., Frueh, M. L., and Turner, A. E. (1986). Astron. J. 91, 383.
- Shen, L.-Z., Beavers, W. I, Eitter, J. J., and Salzer, J. J (1985) Astron J 90, 1503.
- Strassmeier, K. G., and Fekel, F. C. (1990). Astron. Astrophys. (in press).
- van Altena, W. (1988). Private communication.
- VandenBerg, D. A. (1985). Astrophys. J. Suppl. 58, 711.
- Wallerstein, G. (1964). Nature 204, 367.
- Wright, K. O. (1954). Astrophys. J. 119, 471.

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. V. MEASUREMENTS DURING 1988–1989 FROM THE KITT PEAK AND THE CEERO TOLOLO 4-m TELESCOPES

Harold A. McAlister^{a)}

and

William I. Hartkopf^{a)}

Center for High Angular Resolution Astronomy Georgia State University Atlanta, GA 30303

and

Otto G. Franz^{a)}

Lowell Observatory Flagstaff, AZ 86001

Ì

^{a)} Visiting Astronomer, National Optical Astronomy Observatories. NOAO is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

ABSTRACT

One thousand one hundred and fifty eight measurements of 1,056 binary star systems observed mainly during 1988 and 1989 by means of speckle interferometry with the 4-m telescopes on Kitt Peak and Cerro Tololo are presented. Eight systems are resolved for the first time. This program, begun at Kitt Peak in 1975, has now been expanded to include the southern hemisphere.

I. INTRODUCTION

This paper is a report of the continuing effort to provide high accuracy, high angular resolution measurements of binary star systems by speckle methods. After nearly 14 years of continuous activity in the northern hemisphere, this program has now been expanded to the southern sky. We here present measurements from the 4-m telescopes on Kitt Peak, obtained during August, 1988 and March, 1989, and Cerro Tololo, obtained in April, 1989. The CTIO results are the largest sample of speckle observations of binary stars yet to come from the southern hemisphere, and we hope to be able to continue routine observations over the entire sky. As demonstrated by the first results of extensive orbit calculations from observational material accumulated in this program (Hartkopf *et al.* 1989), it is through a continuing, long-term observing program that speckle interferometry will substantially contribute to binary star studies.

Ì

II. NEW MEASUREMENTS

The instrumentation and data acquisition and analysis procedures are identical to those described in Paper IV (McAlister *et al.* 1989) of this series. Calibration measurements using a double-slit pupil mask were obtained for the Kitt Peak observations. The Cerro Tololo results were tied into the Kitt Peak "system" by observing binaries near the celestial equator from both locations that would show no measurable orbital motions during the month separating the spring 1989 observing runs.

The GSU speckle camera was scheduled for 10 nights during the two KPNO runs and for four nights at CTIO. Altogether 1139 series of observations were obtained on Kitt Peak while perfect weather in Chile permitted us to collect an additional 775 data series from the southern hemisphere. These data were reduced in Atlanta to yield a total of 1,158 measurements of 1,056 binary star systems.

Table I contains observational and catalog information for the eight new systems

presented in this paper. Six of the newly resolved pairs were discovered as close companions to wider visual binaries, thus representing six new triple systems. These are designated as such in the last column of Table I. We have tentatively designated new components in previously known binary systems as Aa even though the autocorrelation analysis does not establish whether the additional star is associated with component A or B. We are now working toward eliminating these ambiguities, as well as the 180° quadrant ambiguity inherent in autocorrelation methods, using other techniques. Those results will be published separately, but examples of these *speckle photometry* techniques, as applied in studies of the binaries Finsen 342 and Capella, can be found in McAlister *et al* (1988) and Bagnuolo and Sowell (1988), respectively.

One of the new stars in Table I, CHARA 146 = HR 6027 = ν Sco, is a member of the Sco-Cen association. The remaining two newly resolved stars were observed due to their known or suspected radial velocity variations, indicated by "SB" in Table I, but are also third components in known systems. CHARA 145 = HD 86590 = DH Leo is a third companion in a short-period spectroscopic binary whose observational history is summarized by Barden (1984). From his spectroscopic observations, Barden was able to detect three stars of K spectral type of which the RS CVn nature of the system arises from the secondary component in the 1.07-day system. The third component was detected in the spectrum by Barden and has subsequently been observed by Fekel (private communication, 1989) who finds no velocity change in excess of ± 2 km/sec from 12 spectra obtained since 1984.0. It seems very likely that we have detected this third component in HD 86590. CHARA 148 = HD 167954 is a single-lined spectroscopic binary with a period of 120 days (Bopp *et al.* 1970). With the observed angular separation of 0.31 arcsec, the component we report here is probably not the known spectroscopic system.

We continue our practice of assigning "CHARA numbers" to these systems, and the total number of "McA" and "CHARA" stars is now 224. Many of these systems show very rapid orbital motion, and, if they were not already known as spectroscopic binaries, are prime candidates for radial velocity observations. As examples of rapid motion, we show in Figure 1 the collected speckle observations of four CHARA stars, all of which were discovered after 1984.0. Twelve previously discovered CHARA stars have been confirmed here: #12 (HD 23489); #41 (HR 5323); #58 (HR 6286); #60 (HD 155328); #77 (HR 7053); #88 (HR 7480); #111 (HR 8581); #121 (HR 9097); #122 (HD 225218); #132 (HD 91172); and, #133 (HR 4380). Several of these systems have also shown significant orbital motions since their discoveries. For example, CHARA 60 and 88 haved moved through 73° and 61°, respectively, in the 3.8 yr since their first resolution. CHARA 77, a newly discovered companion to ϵ Lyrae C, moved through 36° and closed from 0.18 to 0.04 arcsec since its first resolution on 1985.518. Finally, reexamination of an autocorrelogram obtained in November 1986 at the KPNO 4-meter has provided us with a "prediscovery" confirmation of CHARA 149 (this observation is included in Table II).

The new measurements of binary stars are presented in Table II, where we condense the format used in Paper IV. The coordinates in Table II, which also serve as the Washington Double Star Catalog (WDS) number, are for equinox 2000.0, but the position angles have not been corrected for precession and are thus based upon the equinox for the epoch of observation shown as the fraction of the Besselian year. The measured angular separations in this sample range from a minimum value of 0.021 arcsec for the newly discovered third component in the visual binary HDO 207 = HD 79699 to 2.857 arcsec for the visual companion to α Sco. The median separation here is 0.238 arcsec compared with the mean separation of 0.35 arcsec for the nearly 9,000 interferometric measurements compiled in the catalog of McAlister and Hartkopf (1988). The lower limit in the observed separation range is significantly below the Rayleigh limit for the 4-m telescope, but, as is seen in Figure 2, the vector-autocorrelogram for HD 79699 clearly shows doubling of the characteristic peak. The detection of triple systems such as this one is an application (indeed about the only practical application) of "speckle holography" (cf Weigelt 1983), in which the wide component acts as a reference point source for the deconvolution of the close pair.

Southern declinations have been virtually ignored in any systematic application of binary star speckle interferometry. The 334 measures of systems with $\delta \leq -30^{\circ}$ in Table II represent a tenfold increase for this declination zone from the number of measurements listed in the catalog of McAlister and Hartkopf (1988). Many of the objects we observed have not been inspected by either visual or interferometric methods for several decades. It is our goal to continue uniform speckle coverage in both hemispheres.

)

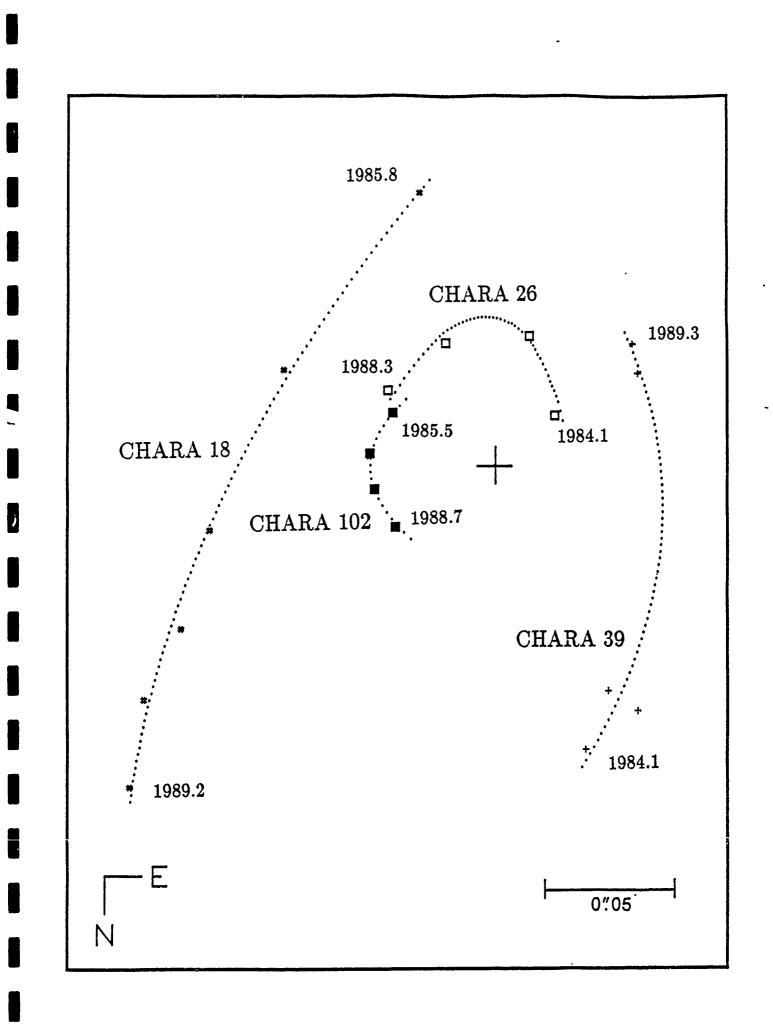
As in all previous papers, we are indebted to the efforts of the telescope operators in maintaining the highest observing efficiency. We thank Dean Hudek, Hal Halbedel, and Don Martin for their cheerful and dedicated cooperation on Kitt Peak. Our first experience on Cerro Tololo was all the more pleasing due to the gracious treatment we received by every CTIO staff member. We particularly relied on Oscar Saa for his kind logistical support and on Hernan Tirado for his expert job in operating the 4-m telescope. Clark Enterline, of the CTIO liason office in Tucson, provided valuable assistance in shipping

our equipment overseas. Graduate student Don Barry assisted with the August observing run. We thank Charles Worley for again commenting on our results in advance of publication. Frank Fekel kindly provided us information about HD 86590 after alerting us to its suitability for speckle observation. Research in speckle interferometry at Georgia State University is supported by the GSU College of Arts and Sciences and the Office of the Vice President for Research. The National Science Foundation (AST 86-13095) and the Air Force Office of Scientific Research (AFOSR 86-0134) provided support for this effort through grants to GSU. O.G.F. acknowledges the partial support of the Space Telescope Science Institute (STScI Grant CW-0005-85).

Ĵ

REFERENCES

- Bagnuolo, W.G., Jr. and Sowell, J.R. (1988). Astron. J. 96, 1056.
- Barden, S.C. (1984). Astron. J. 89, 683.


)

- Bopp, B.W., Evans, D.S., Laing, J.D., and Deeming, T.J. (1970). Mon. Not. Royal Astron. Soc. 147, 355.
- Hartkopf, W.I., McAlister, H.A., and Franz, O.G. (1989). Astron. J. 92, 1014.
- McAlister, H.A., and Hartkopf, W.I. (1988). Second Catalog of Interferometric Measurements of Binary Stars, Center for High Angular Resolution Astronomy, Contribution No. 2.
- McAlister, H.A., Hartkopf, W.I., Bagnuolo, W.G., Jr., Sowell, J.R., Franz, O.G., and Evans, D.S. (1988). Astron. J. 96, 1431.
- McAlister, H.A., Hartkopf, W.I., Sowell, J.R., Dombrowski, E.G., and Franz, O.G. (1989). Astron. J. 97, 510.
- Weigelt, G.P. (1983). in Current Techniques in Double and Multiple Star Research, IAU Coll. No. 62, eds. R.S. Harrington and O.G. Franz, Lowell Obs. Bull. No. 167, p. 271.

Figure Captions

Fig. 1. The motions of four rapidly moving CHARA systems are shown. (CHARA 18 = HR 1458, 26 = HR 2837, 39 = HR 4921, 102 = HR 8246). HR 1458 is a member of the Hyades group.

Fig. 2. The vector-autocorrelogram of the newly discovered companion to the visual binary HD 79699 clearly shows the double peak characteristic of the close companion designated as CHARA 144 Aa.

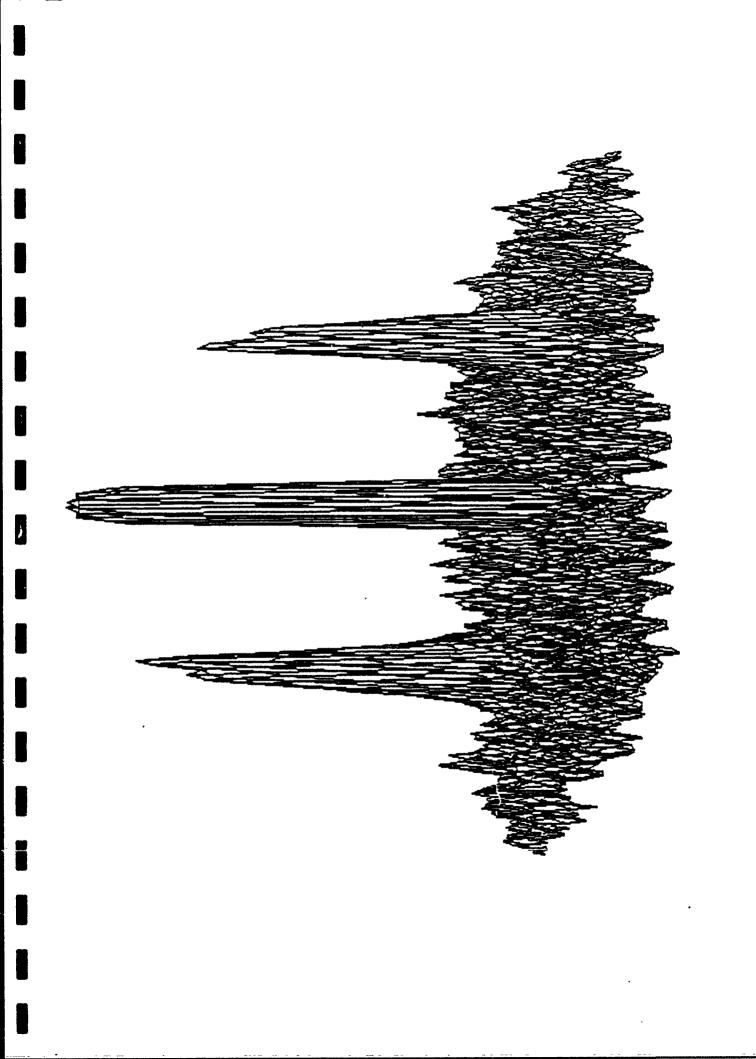


TABLE I. Newly Resolved Binary Stars

ļ

CHARA	HR/DM					$lpha, \delta$		Spectral	Disc.	Binary
Number	Number	Name	HD	- 74496 887		(2000)	v	Classif.	Sep.	Type
142 Aa	+29° 176			74496	887	01070+3014	8.9	G0	0″.089	Triple
143 Aa	-45°3892		68895	219602		08125-4616	6.7	B9V	0.045	Triple
144 Aa	-60°1353		79699	250485	_	09128-6055	6.1	B9V	0.021	Triple
145	+25°2191	_	86590	81134		10000+2433	7.9	G5	0.216	SB
146 Aa	HR 6027	νSco	145502	159763	9951	16120-1928	4.12	B2IV	0.063	Triple
147 Aa	-53°8153		150446	244095		16438-5330	9.2	B8/9IV+F/G	0.043	Triple
148	-45°12390	—	167954	228906		18197-4542	7.5	F7V	0.306	SB
149 Aa	+44°4464		222326	53242	16904	23392+4543	7.4	A2	0.048	Triple

$\begin{array}{c} 0.256\\ 0.$
27° 27° 27° 27° 27° 27° 27° 27° 27° 27°
1988 6608 1988 6608 1988 6608 1988 6608 1988 6608 1988 6608 1988 6608 1988 6608 1988 6653 1988 6653 1988 6655 1988 6555 1988 6
6194 6264 6553 6553 6553 6553 6553 6553 6553 65
Hu 517 Hu 517 Ho 513 A 929 AB CHARA 142 Au A 931 A 931 A 931 A 1515 Bu 3156 AB STT 515 Bu 313 Hu 520 A 1260 A 1910 AB A 1910 AB A 1910 AB A 1910 AB A 1910 AB A 1910 AB A 1912 AB A 1910 AB A 1912 AB A 1912 AB A 1912 AB A 1912 AB A 1910 AB A 1912 AB A 1912 AB A 1912 AB A 1910 AB A 1926 AB A 1926 AB A 1920 AB A 1521 A 1520 AB A 1526 A u 1565 Cou 1565
ADS 871 ADS 871 ADS 873 ADS 887 ADS 887 ADS 887 ADS 887 ADS 887 ADS 916 ADS 916 ADS 916 ADS 916 ADS 918 ADS 916 ADS 1045 ADS 1123 ADS 1165 ADS 1165 ADS 1165 ADS 1165 ADS 1554 ADS 1562 ADS 1562 ADS 1563 ADS 1563
01037+5026 01037+5026 01070+3014 01070+3014 01070+3014 01070+3014 01070+3014 01070+3014 01070+3014 01095+2348 01198+4547 01198+4547 01187+3246 01198+4547 01187+3246 01198+6821 01131+2942 01131+2942 011328+6821 01258+2733 01258+2733 01258+2733 01258+2601 01332+6826 01332+6826 01332+6826 01332+6826 01337+4015 01332+6826 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01377+4015 01576+4433 01565+2016 01576+4433 01576+44433 01576+44433 01576+44433 01576+44433 01576+44443 01576+444444444444444444444444444444444444
0.252 0.240 0.252 0.252 0.255
23510 23510 23510 23510 23510 23510 23510 23510 25500 25510 255000 255000 255000 255000 255000 255000 255000 255000 255000 25500000000
1988.6552 1988.6552 1988.6552 1988.6553 1988.6560 1988.6553 1988.6560 1988.6553 1988.6560 1988.6553 1988.6560 1988.6553 1988.6560 1988.650 1988.650 1988.650 1988.650 1988.650 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.550 1988.
224030 2224030 2224030 2224030 2224030 2225094 2225094 222520 222520 222520 222520 222520 222520 222604 22475 22555 22475 22555 25555 55555 55555 55555 55555 55555 55555
Bu 733 AB A 124 121 CHARA 122 CHARA 122 STF 3056 AB Hu 1201 AB STF 3056 AB Hu 1201 AB STF 2056 AB Bu 485 Bu 485 Bu 255 Bu 1026 Cu 247 A 2001 A 2001 A 2001 A 2001 Bu 394 A 1015 STT 13 A 1015 STT 13 A 1015 A 2001 A 490 A 1016 A 212 AB Bu 394 A 919 AB Bu 257 Cou 1654 A 919 AB Bu 257 A 111 AB A 2001 A 491 A 2005 A 2001 Bu 867 Cou 1654 Bu 867 Cou 1654 Bu 867 Cou 1654 A 2307 Cou 1654 Bu 802 Bu 867 Cou 1655 Bu 867 Cou 1655 A 2307 Bu 1099 AB Bu 867 Cou 1655 A 2001 Bu 1161 STT 21 Cou 1505 A 2001 Bu 1161 STT 21 Cou 1505 A 2001 Bu 1161 STT 21 Bu 1161 STT 21 Cou 1505 A 2001 Bu 2001
ADS 17175 ADS 17175 ADS 17175 ADS 17175 ADS 17180 ADS 17180 ADS 17180 ADS 17180 ADS 17180 ADS 1702 ADS 1705 ADS 148 ADS 158 ADS
000201+2706 0003146339 0003146339 0003146339 000346+3206 00035+3406 00035+3406 00035+3406 0012545337 0012245337 0023544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0033544901 0035645333 005564533 005564

-

)

l

0.752 0.752 0.719 0.170 0.170 0.177 1989 2266 1989 2265 1989 2292 1988 6537 1988 6537 1988 6537 1988 6537 1988 6537 1988 6503 1988 6503 1988 6503 1988 6503 1988 6503 1988 6503 1988 2205 1988 2505 1988 2 27383 27989 27991 30090 30712 30810 30869 31033 34029 34807 35671 29316 29316 29763 36948 37269 37468 37711 37904 38089 38182 38182 38161 38670 39924 40932 11040 11116 11600 12216 12954 13358 13358 28217 28307 28363 28436 28436 285931 29140 29606 5542 3885 14333 13812 13812 15050 14926 14926 Aa Aa Cou 2031 CHARA 20 Bu 883 AB Bu 552 AB CHARA 127 A Bu 1032 AB Bu 1007 Bu 1052 A 494 AB STT 115 AB A 496 Bu 1295 AB STF 566 AC McA 16 STT 118 AB Hu 1235 A 2715 AB Bu 895 AB A 2667 STF 881 AB Hu 1080 Cou 567 CHARA 17 CHARA 18 / a Aur A**s** Cou 2037 McA 19 A**s** STT 79 Bu 1185 Fin 342 An Bu 1240 AB McA 24 Kui 23 AB McA 25 Bu 1058 Kui 24 RST 5225 Fin 331 Aa 33 CHARA 21 Fin 343 CHARA 2 McA 26 Bu 1186 McA 15 Aa A 1013 ADS 3135 ADS 3210 HR 1391 HR 2130 HR 2134 +26 1082 ADS 4768 HR 2214 HR 2236 ADS 4850 ADS 3228 HR 1411 ADS 3358 ADS 3358 HR 1497 +42 1045 +14 0770 ADS 2475 ADS 3483 ADS 3483 HR 1708 +39 1272 ADS 4038 ADS 4241 ADS 4265 ADS 4266 ADS 4276 ADS 4279 ADS 4323 ADS 4323 ADS 4322 ADS 4532 ADS 4617 ADS 4929 ADS 4971 ADS 4950 ADS 3248 +17 0735 +14 0721 ADS 3317 HR 2312 +23 1346 HR 2304 ADS 4229 **ADS 5103** ADS 3391 +43 1315 04187+1632 04256+1852 04256+1557 04399+5329 04399+5329 04422+2257 05387-0235 05411+1632 05417-0254 05417-0254 05446+1503 05446+1503 05448+2620 05484+2252 05573+3601 06024+0939 06041+2316 06074+2840 06105+2300 06105+2300 06144+1754 06159+0110 06200+2828 06214+0216 06221+5922 06255+0130 06255+2327 06256+2320 04290+1610 04298+1741 04340+1510 04357+1010 04465+4220 04606+1505 04512+1104 04518+1539 04518+1539 04538+252 05167+4601 05219+3934 05271+1758 04276+1113 04286+1557 06034+1942 04432+5932 05373+4404 05386+3030 06171+0957 6289+2014 0.152 0.0538 0.0538 0.0558 0.0558 0.0558 0.0558 0.0558 0.0554 0.0569 0.0560 0.0560 0.0560 0.0560 0.0571 0.0554 0.0555 0.0556 0.0556 0.0557 0.0556 0.0557 0.0556 0.0557 0.0556 0.0 $\begin{array}{c} 73\%\\ 61.6\\$ 1998.6663 1998.6663 1998.6563 1998.6563 1998.6563 1998.6563 1998.6563 1998.6581 1998.6581 1998.6581 1998.6563 1998.6554 1998.6554 1998.6553 1998.5553 1998.5554 1998.5554 1998.5554 1998.5554 1998.5554 1998.5554 1998.5 16692 16952 17573 17743 17743 17743 17743 17743 17911 18424 18925 3496 19356 21242 21794 23489 23489 25248 25555 25811 25811 24163 26690 27176 A 971 Mir 120 McA 10 A A 2906 AB A 2906 AB A 250 Mir 520 A 827 7 Per Kui 8 CHARA 6 Ap A 2333 A 2333 Alr 449 Mir 449 Mir 449 McA 7 A 1278 A 450 A 1041 A 450 A 1021 Cou 1371 A 1280 A 1280 McA 8 McA 8 β Per Aa Cou 359 CHARA 9 CHARA 117 Cou 691 CHARA 12 A 1937 42 Z McA 14 Aa Cou 79 Cou 1669 Cou 1670 E88 2 Aa Vou 40 Cou 357 STF 257 A 2328 A 2328 A 2328 Cou 2011 MeA 13 A CHARA CHARA Cou 1667 Mlr 30 Ho 497 McA 6 Ни 539 µ Ari A 1938 HR 657 +40 0469 +40 0469 +40 0476 0347 +24 0344 ADS 1833 ADS 1833 ADS 1853 ADS 1853 ADS 1860 HR 719 ADS 1860 HR 719 ADS 1925 ADS 1976 ADS 1860 ADS 1877 ADS 1876 ADS +17 0515 +28 0532 +57 0730 +31 0637 +23 0523 ADS 2928 ADS 2093 +65 0290 ADS 2169 ADS 2185 ADS 2185 ADS 2185 +69 0567 ADS 2276 HR 915 ADS 2965 +19 0662 +23 0635 ADS 3064 +43 0436 +60 0448 ADS 1701 HR 640 ADS 2051 HR 793 1331 HR 936 HB 02157+2503 02160+4046 02186+4017 022186+4017 02296+9640 02255+2529 02255+2529 02255+2529 02270+1623 02270+1623 02270+1623 022317+0428 022317+0428 02270+1623 02270+16724 022317+0224 022317+0224 022317+0224 022317+6529 02338+0009 02338+0009 02338+0009 02338+00123 02338+0009 02338+00123 023417+5529 023417+5529 023417+5529 02454+5738 02472+6551 02500+2716 02529+5300 02529+5300 02552+5950 03024+7236 030148+5330 03082+4057 03143+1821 03266+2843 03337+5752 03337+5752 03405+2415 03405+2415 04008+0505 04044+2406 04063+1952 04119+2338 02107+4426 02122+6132 02128+3722 02125+6631 02423+4925 02424+2000 04136+0743 04185+2135

 $\begin{array}{c} 0.245\\ 0.263\\ 0.582\\ 0.582\\ 0.263\\ 0.282\\ 0.$ 1989.3110 1989.3157 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.2295 1989.2095 1989.2095 1989.2295 1989.2095 1989.2295 1989.2095 1989.2095 1989.2095 1989.2095 1989.2095 1989.2005 1980.2005 1989.2005 1980.2 36094 35339 56299 58255-1 68895 69302 69302 69302 70013 70504 70340 70725 70761 71302 71302 71302 71302 71302 71302 71581 71581 71581 71581 72090 72108 72067 72310 72626 73871 74455 74455 74455 74455 74874 75098 (6095 (6117 (6117 (6595 (17073 (17073 (17327 (17327 (17327 (17327 (19036) (19036) 15207 15470 16072 15553 15974 16050 79699 79699 30032 79969 30752 80752 81411 81163 81782 A 1580 McA 33 STT 187 STF 1196 AB See 96 AB CHARA 143 Aa RST 310 Fin 113 AB Fin 13 AB HDO 207 AB CHARA 144 Aa I 493 STF 3121 I 198 A 1342 AB RST 4885 STF 1216 B 1600 B 767 AB RST 4888 RST 4888 RST 3593 A 1746 BC A 1746 BC Fin 116 Fin 116 Fin 114 Aa A 551 AB RST 329 Fin 315 Aa B 1101 I 489 Bu 205 AB Bu 588 RST 5304 SP AB Bu 586 A 2131 AB A 2132 Cou 1897 RST 2597 Kui 37 AB A 1585 B 177 AB I 224 B 177 AB A 2552 A 2473 Fin 296 A 1584 Cou 773 A 2654 in 348 2477 1122 -36 04506 ADS 6762 -29 06041 ADS 6782 -42 04219 -42 04219 -55 01543 ADS 6811 HR 3335 -34 04842 ADS 6828 ADS 6528 HR 3109 ADS 6549 ADS 6549 ADS 6549 -45 03892 -45 03892 -45 03914 HR 3269 ADS 7012 ADS 7039 -36 05125 ADS 7054 +20 2232 ADS 7074 ADS 7082 ADS 7084 +36 1889 -23 07962 HR 3579 ADS 7158 ADS 7205 ADS 7205 ADS 7205 HR 3650 -60 01353 -60 01353 -21 2745 ADS 7284 ADS 7384 ADS 7334 04000 04004 04004 64337 6871 5 6862 5 6930 04251 5 6993 5 6993 05541 7341 05091 ADS. 08017-0836 08017+6019 08013+3302 08122+1740 08122-4616 08125-4616 08123-4550 081134-4550 081134-4550 081194-0357 08210-3836 08214-0136 08225-2942 08225-2942 08225-2942 08225-2943 08255-1243 08255-1243 08255-1243 08255-1243 08255-1230 08265-0230 08285-0230 08289-4811 08291-4756 08291-4410 08315-1934 08331-2436 08412+2028 08423-4806 08468+0625 08463-1703 08486+0057 08507+1800 08526-3633 08531+5458 08539+1958 08539+0149 08549+2613 08557+4141 08585+3548 08594-2412 0908+4148 09036+4709 09036+4709 09036+2709 09036+4709 09036+4709 09036+4709 09110-1922 09110-1922 09123+1459 09128-6055 09128-6055 09168-2157 09180+2835 09207-2913 09229-0951 09243-3926 09245+1808 09264-4215 251217.5 2525058 2525058 2525058 2525058 252517.5 25257.5 252577.5 1988.6637 1998.6637 1988.2377 1989.2377 1989.2375 1989.2375 1989.2375 1989.2375 1989.2305 1989.2083 1989.2083 1989.2083 1989.2083 1989.2083 1989.2083 1989.2083 1989.2083 1989.2057 17193 19059 19294 19643 19618-0 50522 50522 60463 60107 60107 60117 61335 61435 613318 61331 613314 61334 61334 61334 61334 61334 61334 61334 62589 62589 62589 62589 62720 63243 63268 63268 63268 63268 63268 63270 6320 53976 64096 64547 64235 34520 54704 55598 55123 66079 B 707 A 2461 AB Fin 334 Aa STT 163 AB Hu 112 A 1959 McA 29 Bu 328 AB A 3043 HJ 3941 HDO 199 Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 A 2123 AB Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 Aa Fin 323 AB B 1066 McA 32 STT 175 AB B 72 Fin 324 AB,C Fin 324 AB,C Fin 324 AB,C Hu 710 B 737 Hu 844 RST 2500 Ho 247 Hu 1428 Hu 1428 Hu 1428 WRH 15 AB RST 4866 A 2880 A 2880 C STT 150 STT 156 STT 157 Fin 322 STP 963 AB STT 159 AB CHARA 25 Bu 101 RST 4867 Fin 325 RST 2508 Cou 929 I 26 STT 185 1070 AB Bu 1195 5 McA 6420 04006 3072 -26 03646 ADS 5560 ADS 5660 ADS 5687 ADS 5687 ADS 5718 ADS 5718 +37 1645 +37 1645 ADS 5728 ADS 5718 ADS 5718 ADS 5718 ADS 5718 ADS 5696 HR 2745 ADS 6966 ADS 6069 -35 03659 -35 03659 -28 04515 HR 2836 ADS 6185 -53 01378 -53 01378 -25 01378 HR 2937 HR 2937 HR 2937 ADS 6245 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6316 ADS 6317 ADS 6316 ADS 6317 ADS 6316 ADS 6316 ADS 6317 ADS 6316 ADS 7416 ADS 7416 ADS 7416 ADS 7416 ADS 7416 ADS 04516 1805 03457 6483 03655 ADS 5280 ADS 5447 ADS 5455 HR 2521 ADS 5514 ADS 5586 +02 1483 **VDS 6412** 2425 ADS --37 HR +24 1 47 0 ADS -32 -46 H 07518-1352 07528-3746 07528-0526 07561 ± 2342 07573 - 4753 07573 ± 0108 06581-2710 06598+1557 07012+1146 07018+1146 07018+1146 07018+1148 07036+3941 07036+3941 07035+3941 07036+33734 07036+33734 070379-1542 070379-1542 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07137-2621 07205-00234 07205-00234 07224-3558 07334-2843 07336+1550 07336+1550 07364-5411 07365-2520 07374-3458 07374-3458 07374-3458 07374-3458 07417+3728 07417+3728 07417+3728 07436-1704 07436-2010 07468-4648 07458-2008 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07468-2003 07508+00317 07508+00317 06303+4200 06474+1812 06478+0020 064292-0217 06532+5928 06573+5825 06580+0218 07530-3318 07599-4718 77513-0925 36383 + 2859

;)

0"265 0.212 0.569 0.492 0.115 0.115	0.168 0.073 0.271 0.271 0.277 0.267 0.267 0.267	0.280 0.400 0.326 0.326 0.320 0.240 0.240 0.041:	0.100 0.101 0.101 0.143 0.143 0.375 0.359 0.359 0.359	0 123 0 218 0 2980 0 114 0 111 0 192 0 416 0 416 0 282 0 282	0.301 0.318 0.484 0.484 0.477 0.477 0.242 0.135 0.135 0.135 0.135 0.135 0.135 0.0367 0.097 0.097
234 1 234 1 145 1 127 6 237 1 237 1	1464 1928 58.6 38.4 38.4 38.4 38.4 139.5	241.8 211.8 204.6 54.6 54.1 54.1 85.3 86.3 30.1	275.6 781: 781: 275.6 42.8: 42.8: 246.4 201.1 176.1	98.0 55.9 55.9 55.9 55.9 55.9 223.2 223.2 223.2 220.0 79.2 19.2	326.5 326.5 326.5 222.6 70.1 70.1 87.3 200.9 336.2 131.2 131.2 131.2 131.2
1989 3113 1989 2796 1989 2296 1989 3058 1989 3058 1989 3058	1989.3113 1989.3113 1989.3113 1989.3113 1989.3058 1989.3058 1989.3058 1989.3059	1989 3086 1989 3059 1989 3059 1989 3059 1989 3059 1989 3059 1989 3059 1989 3059	1989.2271 1989.2379 1989.2379 1989.3059 1989.3056 1989.3086 1989.3086 1989.3086 1989.3086 1989.2086	1989 3035 1989 3036 1989 3086 1989 3036 1989 3087 1989 3087 1989 3087 1989 3087 1989 3087 1989 3087	1989.2378 1989.2033 1989.2053 1989.2059 1989.2257 1989.2267 1989.2267 1989.2267 1989.2267 1989.2277 1989.2277 1989.2277 1989.2277 1989.2277 1989.2277
90616 90460 90444 90572 90537 90537	91153 91172 91460 91673 91814 91955 92328	92615 92690 92791 92749 92749 92749 93122 93122 93513	93457 94120 94120 94693 94931 94921 95139 95031 95031 95031 95342	95506 95582 96016 96202 96202 96705 96845 96845 96845 97473	97411 97592 97561 97661 97773 97773 98079 98079 98192 98353 98353
RST 3697 Cou 292 STT 217 STT 218 Hu 879 Fin 308 AB	RST 3701 CHARA 132 Aa Fin 26 RST 3706 J 84 I 857 Fin 338 A 66	Fin 40 RST 2702 JSP 418 A 2768 Fin 41 B 794 Fin 364 Fin 364 RST 508	STT 229 Hu 460 I 1206 AB Fin 173 Hu 1601 A 2375 B 1655 Cou 960	Fin 365 RST 1553 AB Ho 378 Fin 47 B 2006 RST 528 Hei 60 I 874 RST 5352 RST 5352	Bu 220 RST 4940 A 1353 STF 1517 Bu 916 RST 5353 Hu 639 Cou 1904 A 5 Cou 1904 A 5 Fin 181 Fin 181 Fin 181 Fin 133 RST 537
-57 03213 +20 2486 ADS 7775 ADS 7779 ADS 7779 ADS 7780 ADS 7787	-35 06481 ADS 7809 -39 06476 -36 06489 ADS 7845 ADS 7845 -42 06390 ADS 7866	-53 04053 -37 06718 -35 06668 ADS 7896 -53 04080 -37 06769 -48 05918	ADS 7929 ADS 7922 ADS 7952 -34 01078 -54 04182 -53 04182 -53 04262 -35 06865 -35 06865 -49 05748 +29 205748	-39 06845 -51 05233 ADS 8047 HR 4314 -70 01304 -49 05862 +15 2297 -34 07272	ADS 8086 -49 05943 ADS 8092 ADS 8094 ADS 8096 -27 07953 ADS 8104 +43 2096 -54 04436 -54 04436 -30 09107 HR 4380 -63 01885
$\begin{array}{c c} 10263-5820\\ 10263-5820\\ 10269+1931\\ 10270+1713\\ 10275+0334\\ 10279+3643\\ 10229-43548\\ 10282-2548\end{array}$	10309-3616 10311-2411 10329-3956 10325-3956 10362+0041 10366-2846 10388-4245 10388-4245	10406-5342 10408-3750 10423-3612 10423-3612 10427+0335 10447-3809 10447-3809 10465-6416 10465-6416	$\begin{array}{c} 10481+4107\\ 10520+1608\\ 10525-1838\\ 10555-3530\\ 10555-3530\\ 10555-3530\\ 10555-3540\\ 10581-5420\\ 10582-3540\\ 10582-1711\\ 10085-5022\\ 11008-5022\\ 11008-5922\end{array}$	$\begin{array}{c} 11009-4030\\ 11011-5212\\ 11050+3825\\ 11050+3825\\ 11053-2718\\ 11068-7050\\ 11068-7050\\ 111085-5030\\ 11113-7428\\ 11113-7428\\ 11113-7428\end{array}$	11124-1830 11136-5525 11136-5525 11136+5525 11148-2528 11148-2528 11148-2529 11158+4227 11158+4227 11158+4227 11158+4227 11168-0509 111170-5537 11191+3811 11191+3811 11209-6408
0,549 0.367 0.374 0.409 0.412 0.475 0.459	0.098 0.152 0.152 0.152 0.152 0.152 0.152 0.155	0.570: 0.087 0.075 0.056 0.138 0.194 0.194 0.287 0.287 0.287	0.553 0.554 0.502 0.216 0.236 0.236 0.238 0.238 0.288 0.154	0.311 0.550 0.550 0.091 0.316 0.316 0.057 0.057 0.124 0.124	0.080 0.557 1.097 0.490 0.341 0.490 0.317 0.317 0.333 0.333 0.333 0.333
275°0 1956 195.5 326.6 327 2 278 0 52 1	122 6 183.2 184.0 151.6 151.6 151.6 151.6 151.4	41.2: 242.1 35.2 56.4 51.8 51.8 208.1 102.0 102.0	72.9 73.2 37.7 37.7 37.7 93.6 93.6 331.1 323.4	94.0 137.5 350.9 350.7 120.1 142.0 115.4 115.4 136.5 131.0 280.6	153.8 2001.6 2001.6 2001.6 220.5 226.2 235.4 255.4 255.4 255.4 255.4 255.4 255.4 255.4 255.4 265.9 260.9 200.9 200.5 200.5 200.5 200.5 25.4 200.5 25.4 25.0 200.5 25.4 200.5 25.4 200.5 20
1989 3031 1989 2269 1989 3031 1989 3031 1989 3036 1989 3036 1989 3085 1989 3085					1989,3058 1989,3058 1989,3058 1989,3058 1989,3058 1989,3058 1989,3113 1989,3113 1989,3113 1989,3113 1989,3113 1989,3113 1989,3113 1989,3113 1989,3113
81753 81753 81728 81809 81809 81858	82120 82543 82543 82725 83725 83261 83416 83520 83158	83879 84367 84565 84565 84722 84722 84739 84739 85040 85040 85384 85384 85384	85558 85973 86674 86590 86733 86733 87232 87232 87558 87558 87558	87782 87840 87840 88222 88222 88222 88473 888379 88379 88379 88379 88379 883505 883505 883505	88522 88522 88642 88842 89263 89263 89263 89263 89263 89263 89264 89264 89264 90251 90251
JC 5 A 1588 AB B 2530 B 181 STF 1356	B 1125 Fin 349 RST 1436 Fin 383 RST 2644 See 115 A 1765	RST 4917 Fin 326 B 188 McA 34 Cou 284 B 1661 Kui 44 Ho 369 AB STT 208	AC 5 AB Pop 151 Fin 152 CHARA 145 RST 3673 RST 1474 Daw 99 1 292 1 293	RST 2670 Bu 218 Kui 48 AB RST 472 A 2145 I 13 AB B 1151 I 1523 Hu 874	B 194 Ho 44 B 195 RST 5517 Hu 1597 I 861 B 1153 STT 215 Hu 1598 Hu 1598 RST 4926 I 1525 I 208 AB RST 2692 A 2570
ADS 7379 ADS 7382 HR 3750 ADS 7394 ADS 7396	-37 05811 HR 3794 -26 07184 -24 08263 -38 05822 -53 02646 ADS 7457	-49 04578 HR 3871 HR 3871 HR 3800 +21 2108 +21 2108 -45 05435 HR 3899 -12 0679 -12 0679 ADS 7541 ADS 7541	ADS 7555 +44 1931 -60 01548 +25 2191 -06 3055 -52 03033 -52 03033 ADS 7659 ADS 7659	-34 06425 ADS 7647 ADS 7647 ADS 76578 -47 05578 ADS 7662 -68 01034 -41 05656 -38 06260 ADS 7674	ADS 7681 ADS 7681 ADS 7683 -51 04578 -55 02008 ADS 7706 -45 05913 ADS 7704 -41 06427 -31 08206 -43 06427 -55 03419 ADS 7769 ADS 7769
09267 - 2847 09273 - 0913 09278 - 0604 09285 - 2428 09285 + 0904	09289-3750 093264-0151 09330-2705 09366-2442 09372-5340 09372-5340	09398-5008 09442-2746 09455-2824 09474+1134 09477+2036 09482-4632 09488+2111 09566-3252 09512+3625 09512+5404	09525-0806 09566+4359 09579-6045 10000+2433 10004-0731 10004-6731 10008-5308 10008-5308 10003-3016 10043-2823 10052-2812	10066-3511 10074-1943 10083+3137 10092-4743 10093+2020 10093-6841 10115-3924 10115-3924 10115-3924	10120 - 2835 10121 - 2835 10122 - 2715 10135 - 5145 10163 - 2854 10163 - 4624 10163 - 1744 10163 - 1744 10163 - 4520 10222 - 4520 10222 - 4520 10223 - 4520 10223 - 4520 10223 - 4520 10226 - 5637

0.2250 0.250 0.251 0.252 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 178°8 345.44 1 345.44 1 345.44 1 345.44 1 345.44 1 355.9 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 155.05 1 1989 3062 1989 3052 1989 3014 1989 3114 1989 3114 1989 3114 1989 3060 1989 3060 1989 3067 1989 3087 1989 3087 1989 3087 1989 3088 1989 3088 1989 3088 1989 3033 115 1989 3033 115 1989 3033 115 1989 3033 115 1989 3033 115 1989 3033 115 1989 3033 116 1989 3033 11989 3033 11989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3035 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1989 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3052 1980 3 14-78-9 114336 114576 07539 07719 077193 07922 07922 07922 07922 07922 08005 08012 08240 082320 (08361) (08410) (08410) (09089) (099089) (099089) (09557) (09557) (09557) (09567) (09567) (09569) (109567) (109698) (1100352) (1100372) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (11004698) (110046 12833 13322 13237 13237 13459 113460 234012 113823 114330 14772 15002 14907 114907 14993 115078 15477 15286 15595 15595 A 79 AB B 228 RST 4960 RST 599 ISP 539 B 802 B 802 RST 3798 Fin 368 Aa RST 4503 RST 4503 RST 4503 RST 4503 RST 4503 RST 4503 B 1215 Daw 63 Fin 200 Fin 200 Fin 200 Fin 65 B 1722 B 1722 B 1722 B 1722 B 1722 B 1722 COU 397 Cou 397 CHARA 39 Aa Aa B 227 RST 588 RST 2793 STT 249 AB STT 250 B 1716 Bu 922 A 78 STF 1728 AB A 1607 RST 628 B 2016 Fin 297 AB RST 3830 STT 263 HDO 224 I 516 Aa I 1224 STF 1711 Fin 64 Bu 929 Bu 798 A 1605 R 213 McA 38 / B 2015 Fin 305 I 1227 -40 07615 ADS 8751 -65 05348 ADS 8759 ADS 8764 ADS 8785 -59 04740 ADS 8801 ADS 8552 ADS 8555 -49 07142 -40 07163 -69 04298 -60 04128 04298 -60 04128 ADS 8603 -61 03303 -61 03303 -61 03303 -61 03303 -61 03303 -61 03303 -61 03303 -61 03303 -54 05306 ADS 8635 -56 05410 -60 04277 -13 0972 -14 00407 ADS 8635 -66 04177 ADS 8635 -66 04177 ADS 8635 -66 04177 ADS 8635 -66 04177 -17 02306 -14 00407 ADS 8635 -66 04177 -17 02306 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 ADS 8635 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00407 -14 00007 -14 00007 -14 00007 -14 00007 -14 00007 -14 000007 -14 00007 -14 00007 -14 00007 -14 00007 -14 00007 -14 000007 -34 08695 HR 4978 -50 07589 ADS 8825 -48 08035 -32 09215 ADS 8831 -09 3648 ADS 8843 -67 02237 -51 07425 ADS 8525 -51 06636 -36 07814 ADS 8535 ADS 8540 -19 3483 ADS 8548 ADS 8548 ADS 8548 ADS 8548 ADS 8548 **ADS 8804** 13103-3447 13117-2633 13134-5042 $13134+5252\\13140-4849\\13141-3323$ 12270-0332 12274-2843 12299-5015 12224-4742 12235-6957 12235-6957 12235-6957 12234-4708 122355-6957 122342-4022 12369-3711 12369-3711 12369-3711 12369-3711 12369-3711 12466-6717 12466-6717 12466-6717 12466-6717 12569-8607 12550-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-8607 12555-860 13000-4123 13029+1328 13032-5607 13039-0340 13040 - 173713069 + 520013074 - 595213100 - 0532 $\begin{array}{c} 13145-2417\\ 13149-1026\\ 13167+5034\\ 13179-6830\\ 13179-5830\\ 13191-5239\end{array}$ 12216-2716 12229-5223 12232-3729 12238+5410 12244+4306 12244+4306 12247-2004 12261-0429 12267-0535 3100+1731 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 1989.3060 1999.3079 1999.3079 1989.3037 1989.3037 1989.3037 1989.3037 1989.3037 1989.3059 1989.3059 1989.3059 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1980.2057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1989.3057 1980.3057 1980.3057 1980.3057 1980.3057 1980.3057 1980.3057 1980.3057 1980.3 99872 99817 99917 99917 (00122 (00018 (00252 (00235 (00203 (001004 (001004 (011005 (011005 (0110166 (011205 (011379 (01379 (01379 (01379 (012051 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (012703 (98794 98914 99307 99574 99651 STT 235 B 1701 STF 1566 AB STF 1566 AB STF 1566 AB B 1705 AB B 1705 AB B 1705 AB B 1705 AB RST 5558 RST 5558 RST 5558 A 2380 Fin 366 McA 36 Hu 731 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 B 1708 A 1777 AB RST 2772 I 1215 C 1725 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 2772 C 27 RST 538 Vou 25 A 2776 AB A 137 1 883 RST 4944 A 7 Fin 187 STT 234 Fin 44 Hu 1134 1699 215 7 ADS 8197 -19 3302 -19 3302 -19 3302 -65 02168 -62 02168 -63 07340 -63 07340 -63 07340 -64 01685 -35 07303 -33 07286 -33 07286 -45 07312 HR 4541 ADS 8309 -13 08038 ADS 8332 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 -13 08335 ADS 8419 -17 00772 -51 06290 ADS 8418 ADS 8418 ADS 8418 -13 07562 -13 07562 -13 07562 -13 07562 -13 07562 -13 0772 -13 0772 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 07756 -13 0772 -13 0772 -13 0772 -13 0772 -13 0772 -13 0772 -13 0772 -13 0772 -13 0772 -14 06772 -15 06797 ADS 8155 -52 04567 HR 4419 HR 4425 ADS 8176 ADS 8182 -58 03677 ADS 8189 -54 04591 ADS 8198 06039 07668 : 8145 -49 0 -33 0 ADS 2 11557 - 1438 11568 - 3820 11579 - 2430 11579 - 2430 11596 - 7813 11596 - 7813 12002 - 2706 12010 + 4737 12018 + 4728 12018 + 4728 12018 + 5543 12018 + 5543 12018 + 5543 12018 + 5543 12018 + 5543 12018 + 5643 12108 - 5649 12108 - 5606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 - 3606 12178 11441-0448 11446-4925 11476-431 11479-1528 11495-4604 11510-0520 11520-4806 11520-4806 11522-1958 11522-1540 11546-3208 11546-3208 11548-4224 11551+4829 11551+4829 1216 - 49491219 - 34151231 + 040811255-0751 11268-5310 11279-0142 11283-7228 11790-2446 11297-0619 11308-5849 11308-44117 11317-5445 11322+3615 $\begin{array}{c} 11324+6105\\ 11352-2033\\ 11363+2747\\ 11371-4942\\ \end{array}$ 11379-3634 11383-6322 11395-6524 11430-3933 11431-3601

)

0''.498 0.400 0.244	0.293 0.429	0.083	0.613	0.230	0.591	0.164 0.240 0.386	0.258	0.339	0.181	0.782	0.244	0.242 0.571	0.160	0.159	0.357	0.659	0.527	0.348 0.455	0.048	0.038	0 387 0.924	0.381	0.243	0.198: 0.326	0 043	0 141	0.279 0 283	0.413 0.602	0317 0.315		0.076 0.076 0.641	140 0
9°0 100.4 115.8	61.6 152.7	6.0	120.5	1.07	267.9	186.0 244.1 156.6	302.9	27.8 10.9	239.0	134.8 34.8	147 9	147 8 265.3	339.4	175.6	85.2	66.7	309.7	318.3 86.0	52.7	54.4	181.4 302.6	120.4	79.3	315.9	1.4	287 3	321 4 322.4	116.2 286.4	115.4	212.0	212.8 212.8 216.6	0.011
1989.3063 1989.2300 1989.2383	1989.3090 1989.2383	1988.6653	1989.2383	1989.22/4	1989 3116	1989.3062 1989 2383 1989.3063	1989.3063	1989.2383 1989.2383	1989.2273	1989 2383 1989 2383	1989.2383	1989.3090 1989.2273	1989.3037	1960 0003 1989.2274	1989.3035	1989.2273	1989.3090	1989.3090 1989.2274	1989.2273	1989.2300	1989.3090 1989.2300	1989.2383	1989.3037	1989.3118 1989.3118	1989 3036	1989 22/3	1989 2300 1989 3036	1989 3037 1989.2300	1989 2274 1989 3090	1989.2247	1989 2301 1989 3063 1989 3063	1007 6061
124851 125725	125015 125377	125632	126126	126269-0	126279	126695 126695 126557	126622	127352	127726	128042	128233	128718	128266	C00071	127283	128941	128832	128636 129006	129132	129065	129246-7	129411	129092	129714	129732	9910c1	129980	129750 130604	130558	130669	130796	071001
Hu 138 A 1102 Mlr 168	I 523 STF 1832 AB	CHARA 137		McA 39	STN 31	1 402 A 2069 B 1246	I 1243 AB Fin 306 AB	Cou 1917 RST 4529	A 570	AGC 6 Cott 1437	Bu 941 AB	A 347	Fin 318 An	CUANA 12 A4	1 524	STF 1863 E:- 271	RST 2915	B 1252 A 1107	McA 40	RST 2917	STF 1865 AB	Cou 407 H., 1510	B 1759 AB	B 1761 I 1253	I 528 644 205	Cou 100	Fin 309	I 235 STF 1883	Hu 141	A 2983	A 1110 AR	A 1110 AD
ADS 9186 ADS 9220 +64 0993	-58 05464 ADS 9215	HR 5372	+31 2612 ADS 9238	+16 2642	ADS 9256	ADS 9264 -36 09366	-40 08692	+47 2153 -05 3896	ADS 9301	ADS 9313 +41 2512	ADS 9318	ADS 9324	-45 09302 A DC 0337	CTCA COV	-79 00770	ADS 9329	-21 3942	-52 07393 ADS 9334	HR 5472	-21 3946	ADS 9343	+28 2360	-62 04257	-19 3950 -32 10342	-35 09765	+24 2770	HK 5504	-67 02652 ADS 9392	ADS 9395	ADS 9397		
14160-0704 14180+6914 14187+6409	14188-5841 14189+0354	14189+5452	14213+3050 14220+5107	14241+1617	14252-2808	14268+1625 14268+1625 14272-3647	14277-4113	14303 + 4709 14310 - 0548	14323+2641	14339+2049 14340+4113	14358+0015	14369+4813	14373-4608	1701ciott	14380-8000	14381+5135	14399-2140	14400-5300 14401+0504	14403+2158	14411-2237	14411+1344	14416+2747 14417-4415	14435-6258	14441-2029 14449-3259	14453-3609	14459+22243	14462-2110	14479-6831 14489+0557	14492-1050	14493+1014	14407-10800	144917000
0"117 0.693 0.274	0.178 0.697	0.198 0.295	0.293	0.099	0.263	0.557	0.365	0.283 0.388	0.197	0.206 0.117	0.302	0.507	0.295	0.603	0.069	0.118	0.348	0.495 0.093	0.539	0.169	0.292	0.429	0.244	0.099	0.520:	0.353	0.490	0.392 0.310	0.329 0.289	0.298	0.156 0.184 0.425	2410
353°.6 95.3 160.0	133.7 241.1	300.8 16.2	319.4	164.5	260.8	55.8 52.9	52.9 20.5	228.4 33.1	318.7	320.3 48.0	206.3	35.2: 156.9	238.3 738.3	199.3	303.5	105 6 236 6	280.3	218.7 328.3	210.9	130.0	85.3	230.0 37 2	48.8	116.4 301.5	328.7:	170.8	312.2	211.3 172.2	306.7 44.3	173.0	126.2 131 9 57 7	
1989.2300 1989.3116 1989.2300	1989.3036 1989.3035	1989.3036 1989.3116	1989.2300 1989.2382	1989.3036	1989.2382	1989.2382 1989.2382	1989.3035	1989.2273	1989.2299	1989.3035 1989.3035	1989.3088	1989.3116 1989.2273	1989.2273 1980.3035	1989.3116 1989.3716	1989.3063	1989.3036 1989.3056	1989.3063	1989.3063 1989.3063	1989.3090	1989.3116	1989.3090	1989.2300	1989.3116	1989.3090	1989.3116	1989.3063	1989.2382	1989.3090 1989.2382	1989.2300 1989.2300	1989.2383	1989.2382 1989.2273 1989.3063	ń c
115955 115990 116377	116087 116197	115967	116878	117432	117069	118054	118520	118889	119086	119361	119632	119931	120033	120000	120960	121136	121207	121330 121526	121502	121657	12150	122740	122356	122311	122496	122776	123670	123372	124399 124346	124492	124570	
A 2166 1924 Cou 1581	Fin 208 AB SLR 18	B 1736 I 220	A 1609 AB Cou 787 E:2 351	Fin 369	Wor 24 BCT 1844	Cou 600 Bu 932 AB	Fin 339	Bu 612 AB Hu 897	Fin 352 AB	Fin 353 AB	RST 653	1 1235 STF 1781	Kui 65	I 933 Bu 343	B 1233	RST 3852 H1, 898	I 401 AB	I 936 B 2019	1 937 E:_ 370	RST 670	RST 676	A 1097 AB RST 2884	RST 5531	JSP 612	RST 679 Bu 1970		5TT' 276 AB	B 1236 Cou 605	STT 278 STT 277 AB	A 1100	Cou 606 CHARA 41 Bi 9.9 AR	
ADS 8863 -54 05559 +43 2324	-47 08260	HR 503() -33 09020	ADS 8901 +33 2337	-64 02441	+31 2500	+31 2508 ADS 8954	-56 05856	ADS 8937 ADS 8938	ADS 8994	-41 08089	-48 08459	ADS 9019	HR 5178	-48 08487 -31 10706	-41 08231	-13 3786 ADS 9043	-41 08263	AUS 9055 -34 09254	-48 08613		-47 08803	ADS 9039 -51 07911	-50 08206	-59 05359	-51 07922	-35 09242	ADS 9120 ADS 9121	-50 08285 +30 2488	ADS 9159 ADS 9158	ADS 9169	+31 2596 HR 5323 ADS 9170	
	13226-6059 13229-4757	13229-7209 13248-3438	13258+4430 13266+3235 13271_4000		e :	13343+3044	37	13396+1044 13400+3759	327	204	010	13461+0507	-0943	13479 - 4910 13520 - 3137	138	-1440	235	13553-2524 13566-3519	-4907	13579-4905	835	14020+5713	90	2030	-5140 ±0820	14046-3539	3645	14087-5133	411	14138+0859	14138+3100 14141+1258 14142-0831	10000

.

)

Í

0.1367 0.188 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.257 0.257 0.257 0.257 0.256 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 17777 17777 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 195955 19595 19595 19595 19595 19595 19595 19595 19595 19595 19595 1989 2247 1989 2247 1989 2265 1989 2265 1989 2364 1989 2364 1989 2364 1989 2364 1989 2364 1989 2364 1989 2365 1989 2388 1989 2388 1989 2388 1989 2388 1989 2384 1989 2384 1989 2384 1989 2384 1989 2384 1989 2384 1989 2384 1989 2384 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1989 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2385 1980 2 140122 140122 140311 140311 140436 140438 140438 140517 140517 140517 140517 140517 140517 140517 141851 141851 141851 141858 141898 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141755 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 141858 1418588 1418588 1418588 1418588 1418588 1418588 1418588 1418588 1 39341 39341 39341 39177 39177 39177 39177 39177 39177 39939 39939 39939 39939 40065 40590 37728 38439 38138 38138 38138 38749 37896 37909 37844 1 977 1 333 6 Sco JSP 680 STF 1998 AB I 239 Hu 1163 HWE 78 AB,C Cou 610 Cou 610 Cou 798 HJ 4786 STT 298 AB B 1299 RST 4545 Cou 612 Bu 122 Bu 122 Cou 612 Bu 122 Cou 612 Hu 580 AB I 1284 Bu 947 AB McA 42 CE Fin 384 Aa Cou 1443 *β* CrB Hu 153 [1278 B 1308 Hu 1274 A 2175 -31 11981 ADS 9682 ADS 9682 ADS 9686 ADS 9686 ADS 9666 ADS 9716 -38 10497 -04 3930 -04 3930 -04 3930 -04 3930 ADS 9735 ADS 9735 ADS 9735 ADS 9735 ADS 9735 ADS 9735 ADS 9735 ADS 9747 +42 2629 +61 1531 -34 10497 -34 10497 -37 10497 -48 10247 -48 10247 -48 10247 -48 10247 -48 10247 -53 0667 -53 0667 -53 0657 -51 07206 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9805 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 9775 ADS 97755 ADS 9775 ADS 9775 ADS 97755 ADS 97755 ADS 97755 ADS 9775 ADS 9812 -49 10089 -33 10796 ADS 9834 -42 10904 ADS 9836 -77 01181 HR 5953 -59 06554 ADS 9909 ADS 9913 ADS 9913 ADS 9913 ADS 9913 +42 2601 HR 5747 ADS 9654 15288-3129 15307+3810 15307+3810 15313-3349 15318-4053 15329+3121 15329+3121 15329+3121 15329+3121 15338-0438 15338-0438 15338-0438 15338-0438 15413+5959 15418+1941 $\begin{array}{c} 16428+2018\\ 15420-3442\\ 15430-3442\\ 15430+2320\\ 15442-4913\\ 15442-4913\\ 15442-4913\\ 15451-2936\\ 15455-2936\\ 15455-2936\\ 15457-2245\\ 15468-1904\\ 15468-6807\\ 15468-6807\\ 15468-6807\\ 154929-68029\\ 154928-6032\\ 154928-6032\\ 154928-6032\\ 154928-6032\\ 154928-6032\\ 15482-6032\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15513-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 15515-0305\\ 1551$ 15272+4133 15278+2906 15420+002815420+420415424+611315529-4937 15543-3404 15550-1923 15557-2645 15599-7802 16003-2237 16028-6002 16044-1122 16048-4044 16054-1948 16054-1948 5519-1232 5554-4320 5282+0251 0.6530.6530.2470.2510.02550.12540.02550.02550.12550.1540.02750.25160.25160.25240.2560.2560.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27140.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27160.27161989.3091 1989.3091 1989.3090 1989.3090 1989.3097 1989.3037 1989.3037 1989.3037 1989.3037 1989.3038 1989.3038 1989.3084 1989.3091 1989.3091 1989.3091 1989.3091 1989.3091 1989.3091 1989.3091 1989.3091 1989.3093 1989.3091 1989.3064 1989.3091 1989.3093 1989.3091 1989.3064 1989.3091 1989.3064 1989.3091 1989.3064 1989.3064 1989.3091 1989.3064 1989.3064 1989.3064 1989.3064 1989.3064 1989.3064 1989.3064 1989.3064 1989.3064 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1989.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.3066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2066 1980.2 36415 36807 36807 37880 37153 37153 37153 377153 37739 37740 32352 32515 32515 32533 (3130940) (31388) (31954) (31491) (31492) (31492) (32219) (32219) (32219) 32583 CHARA 43 1 [1262 B 828 STF 1909 FST 2907 HJ 4728 FST 2907 HJ 4728 FST 2907 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1271 Cou 1159 H 2351 Aa H 2159 H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 4753 AB H 47 Aa Cou 1136 A 2173 Cou 1160 Cou 188 RST 2932 B 1256 I 1263 Bu 348 AB HJ 4707 I 1578 Cou 409 A 2172 B 2026 Fin 372 I 1579 Bu 239 +36 2560 ADS 9459 +47 2150 +18 2966 -61 08653 -42 09898 -41 09390 ADS 9490 -65 02914 -38 09753 +24 2795 ADS 9443 -61 04768 -62 04337 -44 09742 ADS 9453 15031+4439 15035-4035 15039-4739 15039-4739 15039-4739 15039-4739 15035-1936 15051-4703 15054-1936 15057-9703 15089-4613 15089-4613 15180+2751 15089-4613 15181-1858 15180+2763 15180+2763 15180+2763 15182-4328 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15182-4323 15284-5413 15284-5413 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152264-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152274-3416 152 14542-6625 14545-3921 14548+2411 14565+0255 14565-6222 14566-6222 14564-4507 14584-4507 14587-2739 14588+3551 14590+0059 14593+4649 14595+1753 15006-5230 15010-4300 15018-4223 15018+0008

j

0.1632 0.084 0.084 0.251 0.251 0.251 0.251 0.251 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.2588 0.2588 0.2580 0.2580 0.2580 0.2588 0.2588 0.2588 0.2580 0.2580 0 81°2 340 6 340 6 55 5 565 5 125 8 181 0 181 0 181 0 2290.5 125 8 120 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 150 6 1 1989 3068 1989 3068 1989 3057 1988 6575 1988 6575 1988 6575 1988 6575 1988 6570 1988 6570 1988 6530 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6630 1988 6631 1988 6631 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6576 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 1988 6577 [85386 [85782] [85762] [85762] [85762] [85762] [897949] [897949] [90414] [90414] [90414] [90414] [904149] [904149] [904149] [91298] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [944110] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94410] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [94400] [944000] [94400] [94400] [94400] [94400] [944000] [94400] Fin 13 CHARA 88 Aa CHARA 90 CHARA 90 STF 2597 Ho 276 CHARA 91 RST 1059 CHARA 91 RST 1059 CHARA 91 A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB A 1425 AB MIr 433 Cou 2130 Aa Fin 336 Cou 2130 Aa Fin 336 WCK Aa WCK Aa WCK Aa WCK Aa WCK Aa WCK Aa WCK Aa See 435 Cou 1962 A 2795 MIC 465 A 3795 WCK Aa WCK Aa See 435 Cou 1332 STF 2780 Aa,B Ho 144 MCA 65 Aa MCA 65 Aa MCA 65 Aa MCA 65 Aa Cou 1332 STF 2780 Aa,B Ho 144 MCA 102 MCA 112 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 188 MCA 72 Ho 188 MCA 72 Ho 188 MCA 72 Ho 188 MCA 72 Ho 188 MCA 72 Ho 188 MCA 72 Hu 108 Bu 989 AB Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou 1484 Cou -J1 16935 ADS 12775 HR 7571 ADS 13104 HR 7571 ADS 13104 HR 7637 HR 7637 HR 7637 HR 7637 HR 7637 ADS 13104 ADS 13728 ADS 13728 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 13776 ADS 14139 ADS 147990 ADS 147990 ADS 14749 ADS 14769 ADS 14749 ADS 14769 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 14749 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15758 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15556 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8355 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 8555 ADS 15558 HR 85558 401 - 3137 19407 - 0037 19407 - 0037 19407 - 0037 19533 - 0644 19553 - 0654 19553 - 0654 19553 - 0654 19553 - 0657 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20073 - 5127 20039 - 11568 20339 - 1556 20339 - 1556 20339 - 3577 20339 - 3529 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1557 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20339 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 20349 - 1556 2034 0.138 0.138 0.134 0.134 0.134 0.134 0.134 0.134 0.135 0.135 0.135 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 0.136 01989.3040 1989.3096 1989.3096 1989.3094 1989.6555 1989.3094 1989.3094 1989.3094 1989.3094 1989.3065 1989.3066 1989.3066 1988.6555 1989.3066 1988.6555 1989.3066 1988.6555 1989.3068 1988.6555 1989.3068 1988.6555 1989.3068 1988.6555 1989.3068 1988.6555 1989.3068 1988.6555 1989.3068 1988.6555 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1989.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.575 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.3068 1980.30 166993 166970 1667297 167297 167702 168199 167954 170153 168800 168991 170200 170580 B 394 I 1025 CHARA 74 I 637 R 637 A 88 AB STF 2367 AB A 88 AB STF 2367 AB A 1379 CHARA 77 Ca CHARA 77 Ca Fin 332 Aab Kui 88 Kui 88 Kui 88 Kui 88 Kui 88 Kui 88 Fin 332 Bab Kui 88 Kui 88 Kui 88 Kui 88 Kui 31 AB B 427 B 427 B 1385 Hu 75 McA 57 McA 57 See 389 See 389 Aa STF 224 McA 50 AcA 50 Kui 84 RST 956 Kui 84 RST 5445 RST 3147 RST 3147 RST 3147 RST 3147 I 1350 CHARA 67 Aa RST 3155 B 381 B 381 ST 2281 AB B 381 ST 2281 AB B 385 S 545 AB CHARA 148 X Dra I 1364 Ho 568 CHARA 71 CHARA 72 A RST 4583 1 1355 B 935 I 1020 McA 51 B 386 CHARA 68 -45 123!)0 HR 6927 -38 12745 ADS 11296 HR 6928 ADS 11399 ADS 11395 -32 14255 HR 6977 -33 13329 -35 13329 -36 13329 ADS 11579 ADS 11579 -39 12836 ADS 11614 ADS 116140 ADS 116140 ADS 116360 ADS 11950 -37 13536 -11 13536 ADS 125096 ADS 125096 ADS 125096 ADS 125096 ADS 125096 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 12505 ADS 10912 HIR 6697 - 65 00388 - 65 03388 - 66 03388 - 64 13745 - 35 12129 - 35 12129 - 35 12129 - 24 13745 - 24 13745 - 24 13745 - 24 13745 - 24 13745 - 25 11050 - 36 12259 ADS 111039 ADS 111039 ADS 111039 ADS 111038 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 11104 ADS 1104 AD -03 4254 -44 12422 -36 12361 -36 12361 -36 12361 -36 12327 -20 5068 ADS 11224 HR 6851 18197-4542 18211+7244 18234-3844 18236-2610 18236-2610 18280+0612 18301+0404 18413+3018 18429-3917 18429-3013 18444-3037 18455+0530 18455+0530 18455+0530 18455+0530 18455+0530 18455+0530 18542-1250 18928-2958 19928-2948 19926-1239 199290-1435 199290-1435 199290-1435 $19307 + 2758 \\ 19360 - 3648 \\ 19377 - 4127 \\ 19394 + 3009 \\ 19398 - 2326 \\ 19398 - 2326 \\ 19398 - 2326 \\ 19398 - 2326 \\ 19398 - 2326 \\ 19398 - 2326 \\ 19398 - 2326 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 100$ 17571+0004 17572+2400 17584-5510 17584-5510 17584-0421 17593-3600 18009-2413 18009-2413 18069-2413 18061-2207 18071-4940 18078+2604 18078-2612 18075-2621 18075-2621 18076-3617 18096-3617 18096-3617 18096-3617 18096-3617 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18096-3517 18095-35555 18095-35555 18095-35555 1805555555555555555 18136-4430 18146-3654 18164-4028 18167-2032 18176-2752 18180+1347 18303-2533 18338-3248 18352+1812 18362-3311 18368-2617 18368-2617 8133-0324

0.1301 0.192 0.231 0.231 0.231 0.168 0.168 0.155 0.125 0.125 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.173 0.175 0.01750 0.01750 0.01750 0 1988,6550 1988,6578 1988,6578 1988,6578 1988,6506 1988,6506 1988,6506 1988,6506 1988,6505 1988,6505 1988,6506 1988,6606 1988,6606 1988,6606 1988,6606 1988,6606 1988,6606 1988,6606 1988,6606 223047 223358 223358 2233402 2233402 2233402 2235672 2235672 2235672 2235672 2235672 2234167 224167 224115 224115 224115 224115 224115 224115 22446-McA 75 Aab Cou 944 B 2547 AB STT 507 AB Cou 343 A 424 Cou 349 A 2700 Fin 359 Cou 1498 A 2700 Fin 359 Cou 1498 A 2700 Hu 500 A 2100 A 2100 A 2100 A 1436 Hu 500 A 210 A 210 A 2 AB HR 9003 +35 5106 ADS 17019 ADS 17019 +18 5223 ADS 17030 +18 5226 ADS 17039 ADS 17039 ADS 17039 ADS 17052 HR 9041 +43 4571 +43 4571 +43 4571 +43 4571 +43 4571 +43 4571 +43 4571 +43 4571 +43 4571 +192 ADS 17105 ADS 17705 ADS 177 1988.6577 1988.6577 1988.6577 1988.6559 1988.6559 1988.6559 1988.6557 1988.6578 1988.6577 1988.6578 1988.6577 1988.6577 1988.6578 1988.6578 1988.6578 1988.65777 1988.5577 1988.5577 1988.55777 1988.55777 1988.55777 19 215242 215242 215590 215590 216285 216494 Cou 542 Aa STT 536 AB Cou 543 A 192 STT 483 McA 77 AB STT 476 AB Hu 91 BC Hu 783 A 2398 Ho 482 AB McA 73 A 194 Hu 338 Bu 1147 AB A 117 AB A 117 AB A 196 Bu 180 AB Hu 1322 Ho 197 AB A 197 A 197 A 197 A 2298 A 2298 A 2298 A 2298 A 2298 A 2298 A 2200 Bu 992 Bu 853 AB Hu 400 Hu 400 Hu 400 Hu 400 Cou 1646 Cou 1646 Cou 1646 Cou 1646 Cou 1646 Cou 338 A 1485 Mir 72 Cou 1847 Bu 770 Bu 771 Bu 771 A 1485 A 14 ADS 16214 ADS 16214 ADS 16214 ADS 16249 ADS 16249 ADS 16314 HR 8704 +23 4640 ADS 16417 +25 4852 ADS 16430 ADS 16430 ADS 16428 HR 8762 22431+4709 22453+5128 22453+5128 22499+4834 22514+2624 22514+2624

ADS 18457 ADS 18457 ADS 18467 ADS 18467 ADS 186505 ADS 185505 ADS 185505 ADS 185505 ADS 185506 ADS 185506 ADS 185506 ADS 185506 ADS 185506 ADS 186506 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18672 ADS 18676 ADS 1873 ADS 1873 ADS 18806 ADS 1880 +45 4301 ADS 16941 23020+4800 23024+1837 23024+6413 23026+4246 23025-0742 23052-4643 23072+6049 23072+6049 23078+6338 23101+5158 23115+3813 23125+4449 23126+0242 23164-0242 23164-0242 23164-1849 23164-1849 23164-1819 23199+1844 23199+1844 23199+1643 23199+1643 23199+1643 23299+1643 23299+1643 23299+1643 23299+1643 23299+1643 23239+2342 23326+1942 23326+1942 23326+1942 23339+2342 23339+2342 23339+2342 23339+2342 23337440737 23337440737 233375440737 233375440737 233375440737 233375440737 23412+4613 23425+5438 22570 + 244122585 + 092222587+2811 22589+4617 22592+1144 23019+4219 23392+45**43** 23392+4543

22516

Mir 4 A 1495

ł

A 643 AB CHARA 149 /

THE CHARA ARRAY III.

ANDERSON MESA, ARIZONA, AS A SITE FOR AN OPTICAL ARRAY

WEAN-SHUN TSAY, WILLIAM G. BAGNUOLO, Jr., and HAROLD A. McALISTER

Center for High Angular Resolution Astronomy Georgia State University, Atlanta, Georgia 30303

NATHANIEL M. WHITE

Lowell Observatory, Flagstaff, Arizona 86001

and

FRED F. FORBES

National Optical Astronomy Observatories, Tucson, Arizona 85726

ABSTRACT

From measurements of cloudcover, seeing profiles, and microthermal properties, Anderson Mesa, near Flagstaff, Arizona, has been evaluated as a potential site for an optical interferomet-: array. From satellite cloud measurements, northern Arizona was found to have experience the lower frequency and extent of monsoon related activity. Using a simple and inexpensive system for measuring instantaneous FWHM of stellar images, the seeing at Anderson Mesa with a median seeing of 1.2 arcsec FWHM has been reported. Limited microthermal measurements indicate that Anderson Mesa is rather similar to Mt. Graham where tree cover plays a significant role. Anderson Mesa is concluded to be a highly suitable site for an optical array.

1

Key words: optical interferometry-site selection

1. Introduction

The feasibility of a long-baseline, multiple-telescope interferometric array operating at optical wavelengths has been under investigation at GSU/CHARA since early 1986. The CHARA Array in its final design concept form has been described by McAlister (1989a,b) as well as in the first paper in this series (McAlister *et al.* 1990). An important aspect of this study has been the selection of a site at which the proposed array would be constructed. Criteria for site selection were terrain, meteorology, darkness, geology, logistics, and seeing. Several sites in the southwestern U.S. have been studied in the context of the CHARA Array. The necessity that a site provide extensive two-dimensional placement of array elements eliminates many developed sites from consideration. Logistical considerations weighed against several other sites as well.

We assigned a relatively low weight to the criterion of darkness. At a dark site, the background visual magnitude per square arcsec is typically $m_{\nu} \sim 22$, which is 8 magnitudes dimmer than the estimated ultimate limiting magnitude of $m_{\nu} \sim 14$ for the interferometer. There is, therefore, some margin of safety for this criterion. Moreover, a recent estimate (Garstang 1989) has shown that the light pollution in V at Anderson Mesa will be only 0.24 and 0.30 mag. above background at the zenith in 1990 and 2000 respectively, and this model does not include any light pollution ordinance action in Flagstaff.

Seeing conditions affect interferometry in several ways. Firstly, in pupil plane interferometry poor seeing requires a greater number of detector elements (or optical fibers, etc.) to adequately sample the fringe pattern and avoid loss of measured visibility. Because the number of detector elements is proportional to r_0^{-2} where r_0 is the atmospheric transverse coherence length, or Fried parameter (see the paper by Coulman in Millis *et al.* 1987) and because more elements means more computing capability and data storage, it is desireable to have as good seeing as possible.

Secondly, the signal to noise ratio (SNR) and the limiting magnitude are dependent on seeing (Roddier and Lena 1984, Humphreys *et al.* 1984), where the limiting irradiance $L \sim r_o \tau \Delta \lambda$ where τ is the atmospheric redistribution time and $\Delta \lambda$ is the bandwidth. If the frame time and bandwidth could be changed to take advantage of good seeing then $L \sim r_o^{17/6}$, if these are fixed for design reasons, then $L \sim r_o$. Thus an improvement in seeing from $r_o = 10$ cm to 15 cm could improve the limiting magnitude by 0.45 to 1.25 mag. Note that if the seeing deteriorates so that τ is less than the detector frame time, the facility must shut down, as is the case if r_o is too small to be well resolved by the detector.

Finally, good seeing allows a better correction of wavefront if a compensated imaging system with a small number of actuators (≤ 15) is used (McAlister 1989b). Therefore, for these general reasons and for the CHARA Array design in particular, it is desireable to have a high

percentage of seeing with ro ≥ 7 cm or better than ~1.4 arcsec.

A low cloudcover is a requirement perhaps so obvious that recent consideration of it have been relatively neglected. In a conference dealing with astronomical site selection held in Flagstaff (Millis *et al.* 1987), consideration of cloudcover occupied less than 5% of the papers given. Nevertheless, because the astronomical productivity of a site is at least proportional to its cloudcover, this should be given a significant weight in site selection.

In this paper, we report a comparative analysis of relative cloudcover at these sites and new measurements of seeing conditions from Anderson Mesa, near Flagstaff, Arizona, the site proposed for the CHARA Array.

2. Comparative Cloudcover Analysis

The five sites listed in Table 1 were examined as potential locations sites for the CHARA Array. Although it does not possess suitable terrain, Kitt Peak was included for comparison purposes. Satellite weather data were obtained from the National Climatic Data Center in Asheville, North Carolina. These data include the interval January 1984 through September 1987, and describe the region within longitude 98° to 114°W and latitude 26° to 40°N. Weather maps were encoded in gray-level scales according to relative cloudcover averaged with respect to year, month, and hour. These weather data include 45 months of four measurements per night (at UT = 0, 3, 6 and 9 hour). A satellite map distortion correction routine and a data smoothing routine have been applied in this study. The locations of the five sites in Table 1 are shown as plus signs in the resulting maps and state boundaries are also drawn. On each of the weather maps shown in Figures 1 through 5, the cloudiness levels are shown on the top-left-hand side by 10% steps decreasing from top to bottom (top white means 0% cloudy and bottom black means 100% cloudy, respectively).

The last general mapping of cloudcover in the southwest for astronomical use was done by Smith and McCrosky (SM) (1954), based on data from twenty weather stations. In comparing our results with SM, we note the following:

- 1.) The most prominent region in terms of low cloudcover in these maps is the region just to the east of Flagstaff including the Painted Desert area. There is only a slight indication of this feature on SM's map (their Fig. 12).
- 2.) The clearest region of SM's map is the desert area near Yuma. In our data, the western portion of this region (Yuma itself is truncated) shows good, but not outstanding cloudcover conditions.
- 3.) The new data do not show the "peninsula" of clear weather up the Rio Grande valley noted by SM.

- 4.) Both the older and newer data sets qualitatively agree on the characteristics of the summer monsoon seasons.
- 5.) Both sets also agree on the general cloudiness associated with the mountains along the Continental Divide. Our maps also extend this feature into Mexico.

The differences between our maps and the SM map no doubt largely result from natural, short-term changes in climate. There must also be relative differences in airport *versus* satellite measurements of cloudcover. Satellite data has the advantage of being uniform in its sensitivity to relative cloudcover and is immune to the observer-to-observer variations inherent in airport reports.

An annual average of the cloudcover statistics is shown in Figure 6 and indicates that Anderson Mesa was the clearest of the five sites during the data interval. The clearest months at Anderson Mesa are January, May, September, and October with average cloudcover lower than 20%. In Figure 1, the year-average weather maps for 1984, 1985, and 1986 near midnight (UT = 7:30) are shown with the entire 45-month period included in the map on the lower righthand side. Although the three year-average maps show variations from year to year, Anderson Mesa still has the lowest year-average percentage cloudcover within the specific confines of the 1984-1987 data set. Figure 2 is an example of average change at progressive night-time hours (UT = 0, 3, 6, and 9 hours) for the 1986 data set. The Anderson Mesa area shows a distinct improvement into the night-time hours. On the month-average maps, which are not shown here, the improvement of cloudcover from early evening to midnight is similar to that indicated in Figure 2. Figures 3, 4, and 5 present month-average maps (at UT = 7:30) from January through December. On these figures, Kitt Peak and the two New Mexico sites show particularly strong monsoon (July and August) related cloudiness.

3. Seeing Measurements

3.1 Equipment

The CHARA/Lowell seeing monitor system used on Anderson Mesa is a portable and inexpensive device designed by authors White and Bagnuolo. The detector is a standard high-resolution miniature TV camera manufactured by Pulnix Corporation (their model TM-540/R) and is based upon a Sony O18-L 510x492 interline transfer CCD chip with a format of 17 x 13 μ m pixels. This camera is mounted on a housing incorporating a Strömgren y filter and attached to an f/11, 14-in aperture Celestron telescope. The composite video signal is digitized and processed by an Imaging Technology PC Vision Plus frame grabber installed in an IBM/AT-type computer.

A Hartman mask and a focus mechanism designed by White, as shown in Figures 7 and 8, were used to determine precise focus. The Hartman mask has two 4-in diameter holes with 8 inchs of separation between their centers. The focus mechanism incorporates a micrometer device attached to the telescope eyepiece tube. This device is initially set to within ± 3 mm of the focal plane. Then, with the Hartman mask attached to the entrance aperture of the telescope, 60 frames of double-spot images (aligned in the Y-direction) at micrometer positions inside and outside of focus are recorded and analyzed to determine the precise focus.

3.2 Data Acquisiton and Processing

Each seeing measurement consisted of a series of 60 digitized 32x32-pixel images of a bright star within 20° of the zenith obtained at the standard video frame rate of 30 sec⁻¹. The X,Y image profiles, their full width at half-maxima (FWHM), and the image centroids were determined on-line.

The FWHM were calculated by a simple raw-data summation algorithm method in order to obtain high speed during the data acquisition period. Absolute image motion was also calculated by using a simple first-moment centroid routine on-line. Precise FWHM of X and Y profiles and image centroid motions were later calculated from disk files by using a 1dimensional Gaussian profile fitting routine after the detector linearity calibration was applied to each frame. There were 60 X and Y profiles in each two-second measurement with 15 pixels of the raw data across the image center selected for the Gaussian fitting. The mean FWHM of the 60 single profiles in each measurement was calculated as representative of the seeing at that particular moment. The mean FWHM of the 60 X and Y profiles with centroid motion correction was also calculated for comparison with the mean FWHM. This provided a check

on abnormal vibrational effects as well as monitoring low-frequency image motion.

The above procedures revealed that the X profiles were about 0.6 arcsec broader than the Y profiles. This was recognized as being due to the chip geometry in which the interline vertical register separates the pixels in the X direction. This can be corrected statistically to some degree, however, the X direction was oriented parallel to the celestial equator so that the X profiles are also more affected by any telescope drive-induced errors. For these reasons, we chose to base the final seeing measurements only on the Y profile data.

3.3 Calibration

Ì

ŀ

-3

The plate scale calibration was determined from double star observations to be 0.80 and 0.64 arcsec per pixel in the X and Y directions, respectively. The intensity calibration for detector non-linearity used a camera lens with an adjustable iris (from f/2.7 to f/16) to image a small target at a distance of 6.7 m. The intensities of an effective point source and extended source were recorded as a function of the f/number. The results of these measurements are shown in Figure 9 and are characterized by a small toe in response, followed by a roughly linear region extending to about 80 counts. At brigher intensities, the response roughly followed the square-root of the intensity. In Figure 10, examples of data obtained under good and poor seeing conditions are shown before and after applying the linearity correction.

Because the Pulnix CCD camera automatic gain control (AGC) and standard gamma (= 0.45) circuit were enabled during the observations, calibration tests using a LED light source were carried out in the CHARA Lab in order to duplicate the high contrast situation presented by a bright source on a dark background. A gamma <1 has the advantage of expanding the dynamic range at a loss of contrast and thus enhances the ability to measure the peaks of a Gaussian profile. For testing, the electronics of the Pulnix camera were modified to provide a six-step manual gain control circuit. The tests were done at a laboratory temperature of 70°F as well as at a temperature of 32°F similar to that encountered during the observations on Anderson Mesa. The results were essentially the same as those from the first linearity check, and the reponse curve at freezing temperature showed no significant differences from that obtained at room temperature.

3.4 Results of Seeing Measurements

In order to ascertain the long-term seeing characteristics at Anderson Mesa, short-term quantitative measurements were related to the existing results of the long-term quantitative seeing measurements at the U.S. Naval Observatory's Flagstaff Station site some 13 miles from

Anderson Mesa. The process was to compare measurements with the CHARA/Lowell system at Anderson Mesa on nights when seeing was also being measured at the USNO with their standard CCD procedures and to compare simultaneous measurements at the same site.

Ì

A comparison of seeing data from the two sites for the night of the May, 1988 is shown in Figure 11. This comparison shows that the seeing on Anderson Mesa was approximately 0.3 arcsec poorer than at the USNO at this particular time. The observing log notes that the wind was higher than normal on that night at Anderson Mesa, and it is possible that tree-induced turbulence as well as wind generated instrument shake, may account for some difference in average seeing in Figure 11. The seeing monitor system, with an entrance aperture only 2 m above the ground, was set up for practical reasons inside the fenced area surrounding the 72-in and 42-in telescope domes at Anderson Mesa near a small stand of trees. It thus seems likely that the difference in measured seeing at the two sites may be partly attributable to the less than ideal location of the CHARA/Lowell system on Anderson Mesa. There are no trees in the immediate vicinity of the USNO 61-in telescope dome. We thus conclude that very localized conditions may possibly account for some modest systematic difference in the seeing statistics for the two Flagstaff locations, but the general seeing characteristics at Anderson Mesa are very similar to the USNO site. It is important to note that the part of Anderson Mesa where the CHARA Array would be located has a much lower density of trees than the area immediately surrounding the Perkins telescope.

During 10 - 13 June, 1988, the CHARA/Lowell seeing monitor was placed about 30 m west of the USNO 61-inch telescope dome in order to measure seeing simultaneously with the 61-inch telescope where seeing data are routinely acquired as a part of the USNO astrometry programs. On the night of 10 June, only knife-edge measurements rather than direct CCD imagery were being performed on the USNO telescope. In Figure 12 is shown the correlation of seeing measurements of the two systems. An empirical/theoretical factor of 3.5, provided by D. Monet and C. Dahn, was adopted to correct the USNO knife-edge measurements to FWHM values. The average inferred seeing disk profile measured from the USNO knife-edge data is about 0.35 arcsec larger than the average seeing from the CHARA/Lowell system on this particular night.

On the nights of 11 and 13 June, the 12^{th} having been cloudy, additional simultaneous measurements were obtained, but in these instances, the USNO measures were obtained with a CCD camera. The FWHM seeing measurements from the two systems throughout these two nights are plotted in Figure 13. The apparent large discrepancy around 8.0 hours on 13 June coincided with an increased wind speed cutside the 61-inch dome and was clearly due to wind shake. The discrepancy around UT=5:30 is attributed to a focus drift caused from the steep temperature gradient during the early night hours. The CHARA/Lowell measures before 7.5 hours UT on both nights were obtained using a Strömgren y filter, those after that

time incorporated a Johnson B filter. There is no evidence for any systematic difference in the two systems in excess of 0.1 arcsec.

Figure 14 presents the histogram of 161 measurements using the CHARA/Lowell system during three nights at the USNO site from which the mean seeing was 1.20 arcsec with a median value of 1.04 arcsec. The histogram shown in Figure 15 summarizes the 236 measurements from the USNO 61-inch telescope CCD camera on 6 nights with mean and median seeing of 1.04 and 1.00 arcsec. Those data were obtained during the time when the CHARA/Lowell seeing monitor was active on Anderson Mesa. Results from 364 image profile measurements obtained at Anderson Mesa on 21 nights during May and June 1988 are shown in Figure 16. The mean value of the seeing profile FWHM is 1.24 arcsec, and the median is 1.18 arcsec. Finally, the long-term seeing statistics from the USNO program are shown in Figure 17. The 70 nights over which these 1,003 measurements were obtained from the USNO CCD camera extend from April 1986 through July 1987. The mean FWHM of image profiles in this sample is 1.34 arcsec and the median is 1.20 arcsec.

The long-term USNO statistics are biased in the poor seeing tail due to the practice instituted many years ago at the USNO of not taking astrometric data or seeing measurments when the seeing is worse than 2 arcsec. But no such bias against poor seeing is presented in the CHARA/Lowell system measurements except for the general bias resulting from the limited time sample of data, i.e. 21 nights during May and June 1988. From the above discussion we conclude that the seeing described by the USNO CCD measurements must be generally representative of Anderson Mesa as well.

This result contradicts the conclusion by Walker (1971) that Flagstaff is a poor site in the category of seeing. Walker's conclusion was based upon Polaris trail measurements using a 6-inch refracting telescope mounted upon an existing pier outside the dome of the USNO 40inch telescope during 1966-68. Those data indicated that the seeing was typically poorer than 2.0 arcsec. A period of poor seeing was experienced during 1971-74 (private communication from F. Vrba) and may have resulted from the placement of the jetstream. Walker's results may also have been systematically affected due to the fact that Walker's seeing telescope looked very nearly directly over the heated and uninsulated office building for the 40-inch Telescope.

4. Microthermal Activity Measurement

An 18-m high tower is situated between the 72-in and 42-in telescope domes at Anderson Mesa. Three microthermal probe pairs were mounted at 18.3, 12.4, and 7.1 m above the ground to measure the vertical structure of microthermal activity. The microthermal probes were developed at NOAO (Forbes *et al.*, 1988) and consisted of 25 μ m nickel ballast wire wound on a nylon screw frame, protected by an easily removed screen cage. At each level, there were two probes separated by about 1 m and connected to a bridge amplifier electronic circuit.

•

)

Data from the three levels were collected and stored in a Campbell Scientific CR 21 data logger at the first minute of every hour. The data system is equipped with a rechargeable battery and could thus automaticlly record data in RAM for about two weeks. The collected data were reduced to C_T^2 (rms) for each observation. Calibration was obtained from the energy spectra and the resultant power spectra were integrated. During June and July 1988, a two 9day series of microthermal measurements and ground temperature measurements were collected and later analyzed at NOAO. The microthermal data has been combined in Tables 2 and 3 using nightly averages from 8 p.m. to 4 a.m. for each level as being representative of the site.

The results of the microthermal measurements on Anderson Mesa, indicated by z symbol, are shown in Figure 18 as a plot of the temperature structure parameter C_T^2 versus elevation. For comparison, the NOAO results for Mauna Kea and Mt. Graham are also shown. Although the Anderson Mesa microthermal data are, at present, very limited, one can tentatively conclude that the Flagstaff location is not very different from Mt. Graham, probably due to the similarity of tree cover. We plan to see if conditions are improved at the sparsely wooded center of the array, particularly after a number of trees have been cleared during site preparation.

5. CONCLUSION

From the analysis of the satellite cloudcover data during the time interval from January 1984 to September 1987, the Flagstaff area is seen to compare very favorably with other possible locations in the southwest. Such a clear distinction does not appear in the earlier study by Smith and McCrosky (1954) for the period 1939-46 except for the relatively small impact of the summer monsoons on north Arizona compared to more southerly sites. The lack of precise similarity between our study and the SM study can easily be explained in terms of natural weather pattern variations. Furthermore, we recognize that by the time an array might be constructed in northern Arizona, the changes could completely eliminate the cloudcover advantage we have found.

The results obtained with the CHARA/Lowell seeing monitor show a good correlation to the long-term seeing measurements made at the USNO 61-inch telescope, and we conclude that the USNO seeing history is representative of Anderson Mesa as well. An interferometric array on Anderson Mesa could thus be expected to encounter 1.1 to 1.2 arcsec seeing during 50% of the clear hours and seeing poorer than 2.0 arcsec during another 30% of clear hours. Such seeing conditions qualify Anderson Mesa as a potential site for an interferometric array.

Better seeing may be found only at much higher elevations for continental sites or for coastal or island sites where terrain and logistics may have negative impacts upon site selection.

Further testing is planned for Anderson Mesa in which very localized effects of tree cover, elevation, and proximity to the steep western slope of the Mesa will be investigated.

We thank Dr. Bob Millis of the Lowell Observatory for permitting us to borrow a Celestron telescope and Ralph Nye for construction of the Hartman focus mechanism. This research has been supported in part by the National Science Foundation through NSF Grant AST 84-21304 to Georgia State University.

REFERENCES

Forbes, F.F., Morse, D.A., and Poczulp, G.A. 1988, Opt. Eng. 27, 845.

Garstang, R.H. 1989, Ann. Rev. Astr. Ap. 27, 19.

Ĵ

- Humphries, C.M., Reddish, V.C., Walshaw, D.J. and Greenaway, A.H. 1984, Optical/IR Telescope Arrays, Occasional Reports of the Royal Observatory, Edinburgh, No. 15.
- McAlister, H.A. 1989a, A Feasibility Study for Long-Baseline Optical Interferometry, Final Report to NSF Grant AST 84-21304.
- McAlister, H.A. 1989b, Proc. of NASA Workshop on Lunar Optical/IR Synthesis Array, ed. J.O. Burns, (in press).
- McAlister, H.A., Bagnuolo, W.G., Hartkopf, W.I., and Garrison, A.K. 1990, Publ. A.S.P., (in press).
- Millis, R.L., Franz, O.G., Ables, H.D., Dahn, C.C. 1987, Identification, Optimization, and Protection of Optical Telescope Sites, Conference held May 22-23, 1986. (Flagstaff, AZ: Lowell Obs.).

Roddier, F., and Lena, P. 1984, J. Optics (Paris), 15, 171.

Smith, H.J., and McCrosky, R.E. 1954, A.J., 59, 156.

Walker, M.F. 1971, Publ. A.S.P., 83, 401.

Potential Site	Longitude	Latitude	Altitude
Anderson Mesa, Arizona	111.54 W	35.10 N	7,211 ft
Kitt Peak, Arizona	111.60 W	31.96 N	6.667 ft
Blue Mesa, New Mexico	107.17 W	32.49 N	6.644 ft
Sunspot, New Mexico	105.82 W	32.79 N	9.200 ft
Flat Top, Texas	104.02 W	30.67 N	6,660 ft

Sites Considered for the CHARA Array

TABLE 2

Microthermal Data (ΔT in °C) for June 1988

)

. .

.

June date	top (avg)	mid (avg)	bot (avg)	top (min)	ræid (min)	bot (min)	top (n:ax)	mid (max)	bot (max)
7	2.12	1.16	1.03	0.64	0.33	0.34	5.97	3.77	3.63
8	2.07	i.10	1.01	0.40	0.21	0.21	7.73	4.48	4.29
9	1.88	1.01	0.93	0.45	0.23	0.21	6.29	4.49	3.83
10	1.66	0.89	1.16	0.43	0.25	0.33	6.25	3.55	4.21
11	1.98	0.94	1.02	0.51	0.23	0.29	6.86	4.11	3.86
12	1.38	0.76	0.66	0.34	0.17	0.16	5.23	3.44	3.03
13	1.02	0.64	0,68	0.26	0.16	0.16	4.32	2.19	2.51
14	1.69	0.92	0,84	0.37	0.18	0.18	6.57	2.93	3.65
15	1.49	0.80	9.78	0.36	0.20	0.20	5.55	2.68	3.66

TABLE 3

Microthermal Data (ΔT in °C) for July 1988

July date	top (avg)	mid (avg)	bot (avg)	top (min)	mid (min)	bot (mín)	top (max)	mid (:nax)	bot (max)
5	1.09	0.42	0,79	0.28	0.34	0.16	3.74	0.5%	3.10
6	1.88	0.36	0, 16	0.18	0.04	0.08	5.95	1.85	2.04
7	1.02	0.65	0.70	0.25	0.16	0.14	3.72	2.28	2.59
8	1.21	0.74	0.89	0.27	0.21	0.21	3.94	2.51	3.28
9	1.46	0.90	0.91	0.42	0.24	0.28	5.09	3.08	2.98
15	1.27	0.76	0.96	0.23	0.18	0.23	4.37	3.11	3.74
11	1.33	0.87	0.96 [,]	0.33	0.24	0.23	4.29	2.89	3.42
12	0.98	0.56	0.58	0.18	0.11	0.13	4.44	2.30	2.35
13	1.17	0.52	0.64	0.23	0.10	0.12	4.37	2.25	2.85

FIGURE CAPTIONS

FIG 1—The year-average weather maps for 1984, 1985, and 1986 near midnight (UT = 7:30) with the entire 45-mo period included in the map on the lower right-hand side.

FIG 2—An example of average change at progressive night-time hours (UT = 0, 3, 6, and 9 hours) for the 1986 data set.

FIG 3—The month-average maps at UT = 7:30 from January through April.

FIG 4—The month-average maps at UT = 7:30 from May through August.

FIG 5—The month-average maps at UT = 7:30 from September through December.

FIG 6—Comparative cloudcover percentages are shown for five sites in the southwestern U.S. The curves are based upon satellite measurements obtained from the National Climatic Data Center and indicate that the Flagstaff site was the most favorable location during the period 1984-87 covered by the data sample.

FIG 7—The schematic diagrams of the focusing mechanism and the data collection path of the seeing monitor are shown.

FIG 8—Photographs of the Hartman mask and the focusing mechanism on the sceing monitor are shown.

FIG 9—The laboratory measured linearity correction relation for the seeing monitor system is shown as determined by a uniformly illuminated source and by a point source are shown.

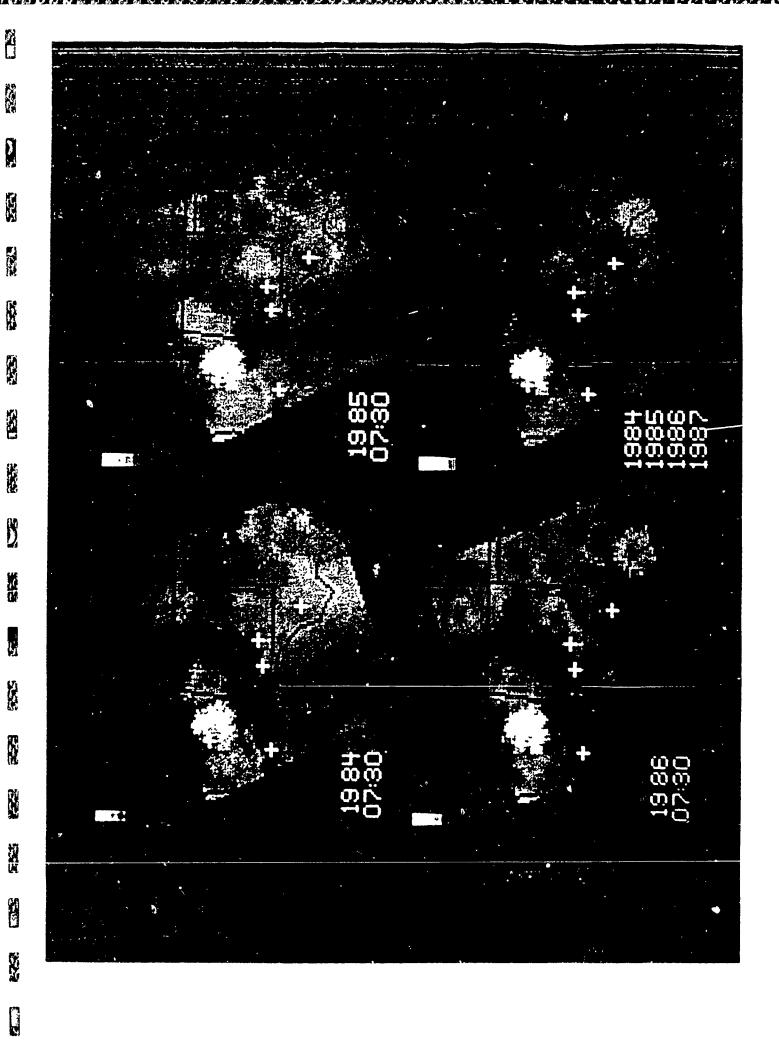
FIG 10—Examples of measured profiles in the Y-direction before and after the non-linearity correction are shown under good and poor seeing conditions.

FIG 11—Image profiles as measured at the USNO site from within the 61-in telescope dome the standard USNO CCD procedures (shown as open squares) and at the Anderson Mesa site between the 72-in and 42-in domes using the CHARA/Lowell system (shown as filled squares) are presented for the night of 15 May 1988. A higher than normal wind on this night is a possible reason for the 0.3-arcsec poorer seeing on Anderson Mesa.

FIG 12—Image profiles as measured at the USNO site from within the 61-in telescope using the USNO kuife-edge procedures (shown as open squares) and from outside the dome using the CHARA/Lowell system (filled squares) are presented for the night of 10 June 1988. A factor of 3.5 is adopted to convert the USNO knife-edge measurements to FWHM values.

FIG 13—Image profiles as measured at the USNO Flagstaff site

Ì


FIG 14—The histogram of the seeing measurements obtained at the USNO Flagstaff Station with the CHARA/Lowell seeing monitoring system during the nights of 9, 10, 11, and 13 June 1988 is shown.

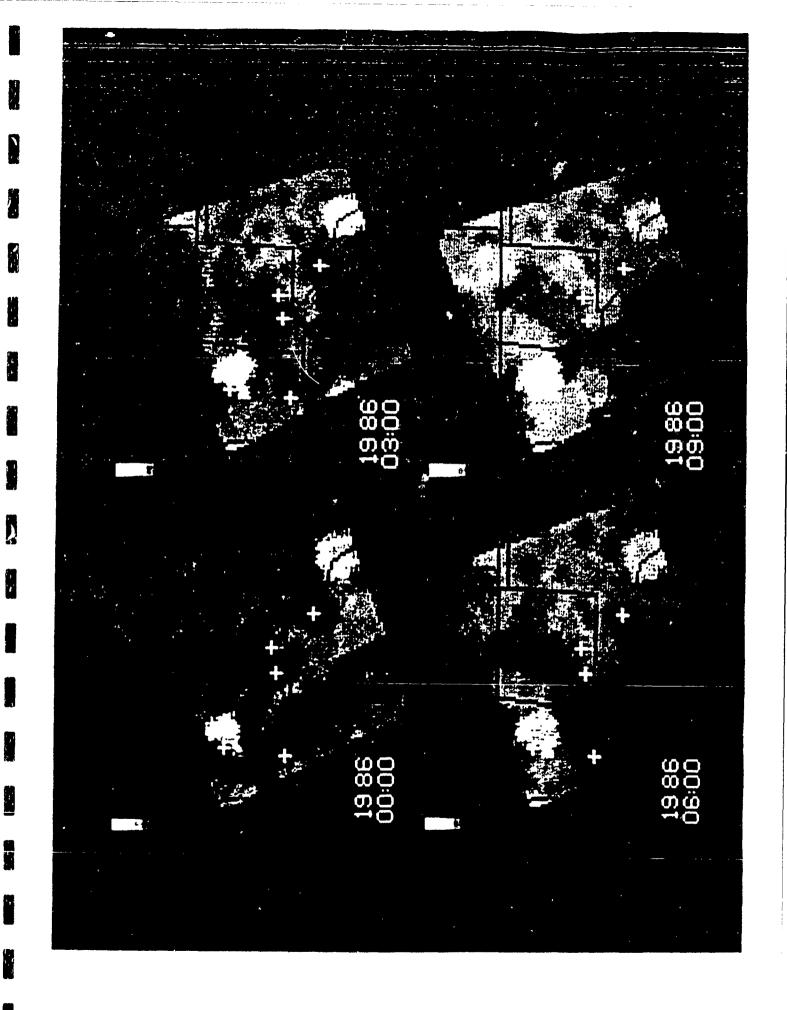

FIG 15—The histogram of the seeing measurements obtained at the USNO Flagstaff Station with the 61-in telescope CCD system during the nights of 12–15 May and 11 and 13 June 1988 is shown.

FIG 16—The histogram of the seeing measurements obtained on Anderson Mesa with the CHARA/Lowell seeing monitoring system during April-June 1988 is shown.

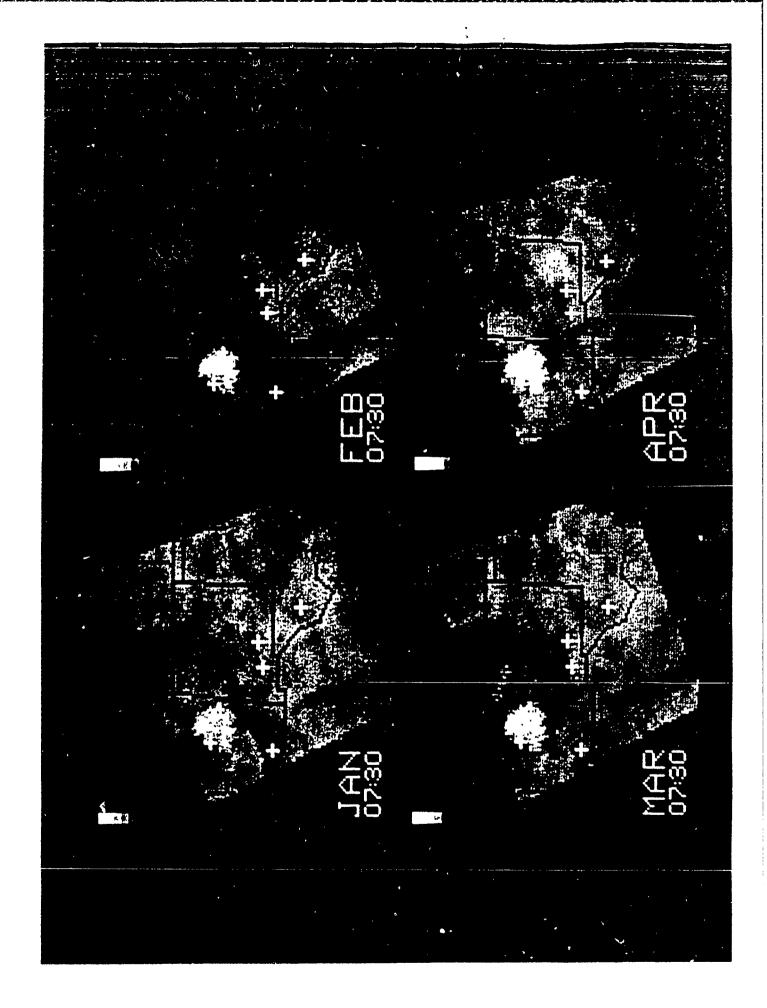
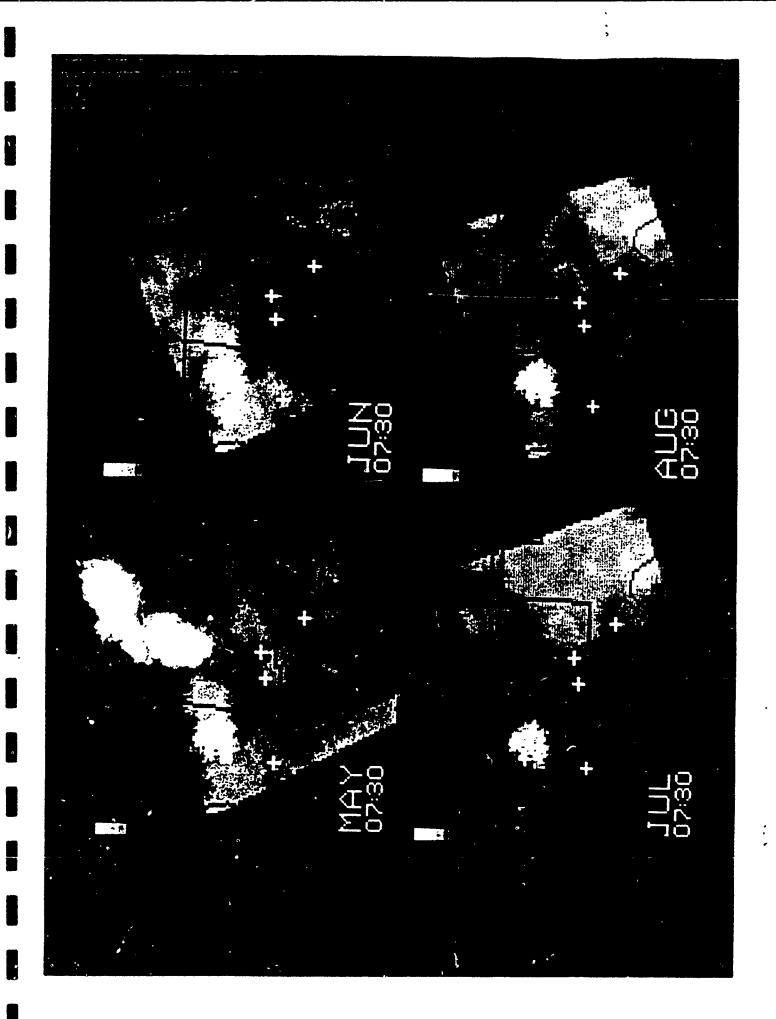
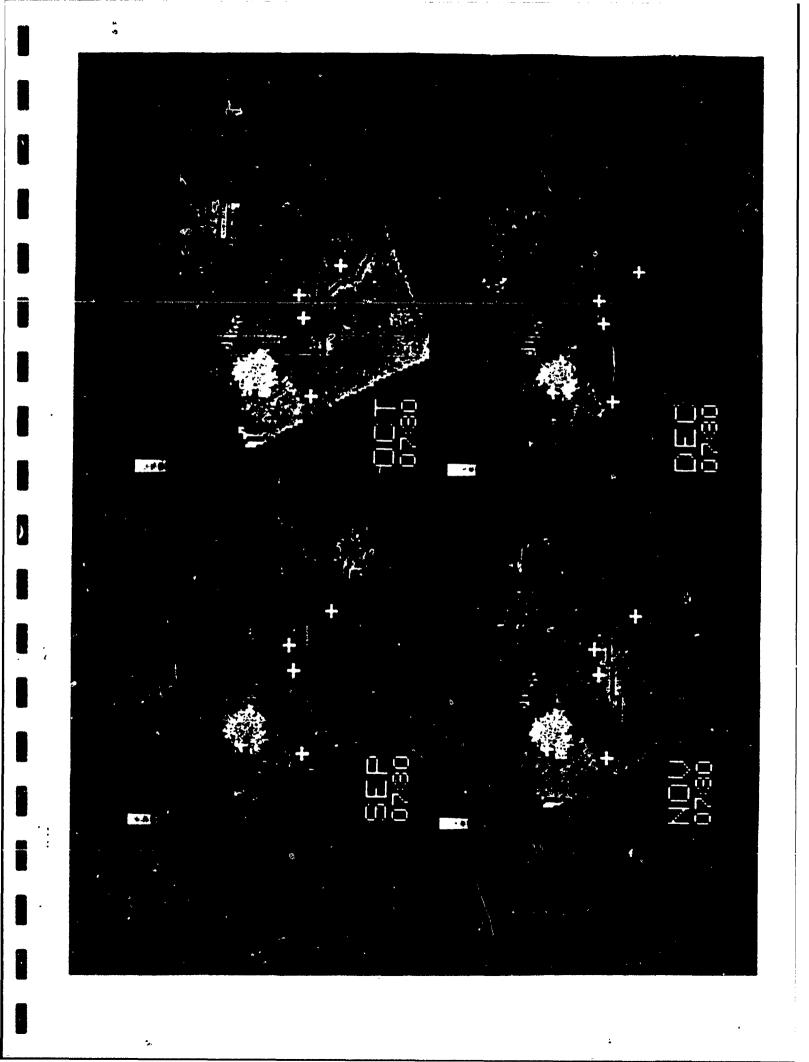
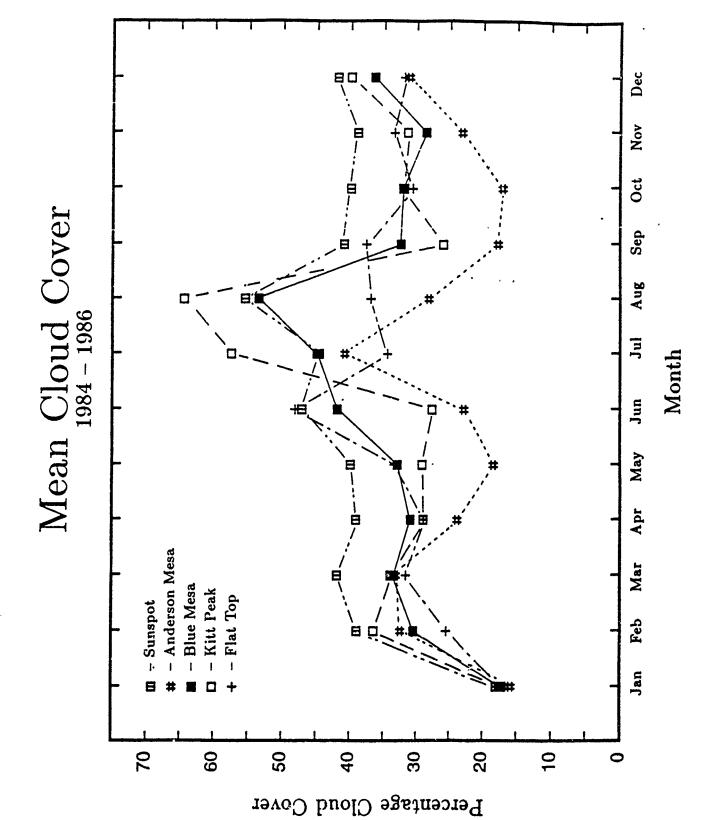

FIG 17—The histogram of the seeing measurements obtained at the USNO Flagstaff Station with the 61-in telescope CCD system on 70 nights during April 1986 through July 1987 is shown.

FIG 18—Three average microthermal measurements reduced to the temperature structure constant are shown (as circled dots) for Anderson Mesa as a function of height above ground level. For comparison, the NOAO results for Mt. Graham and Mauna Kea are shown and indicate a similarity between Anderson Mesa and Mt. Graham.

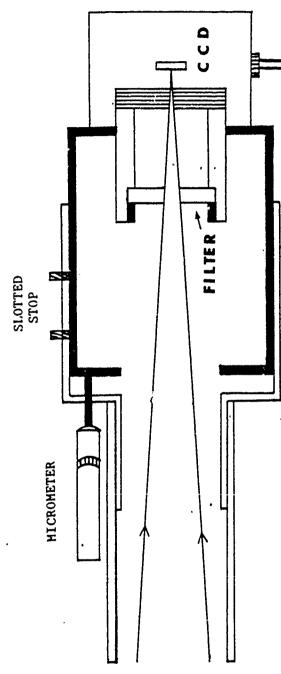
ļ



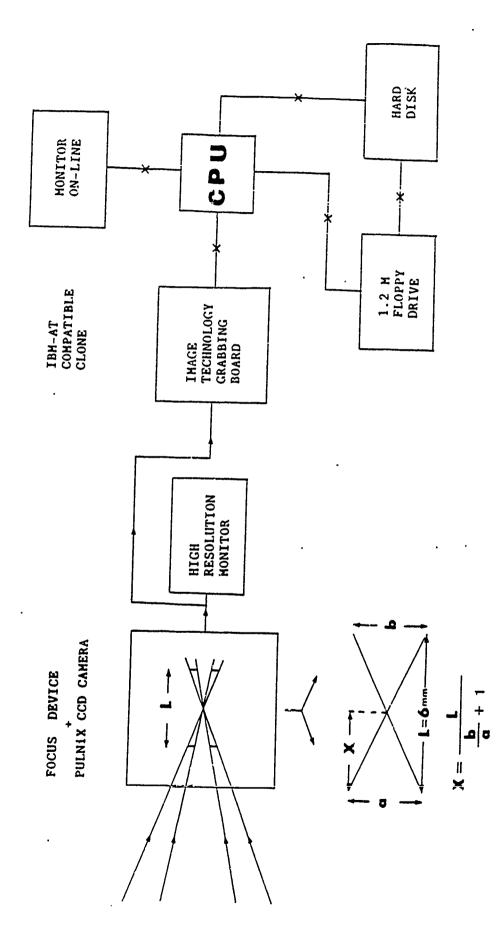

Х. У


Ň.

D


54 54 54

н (3

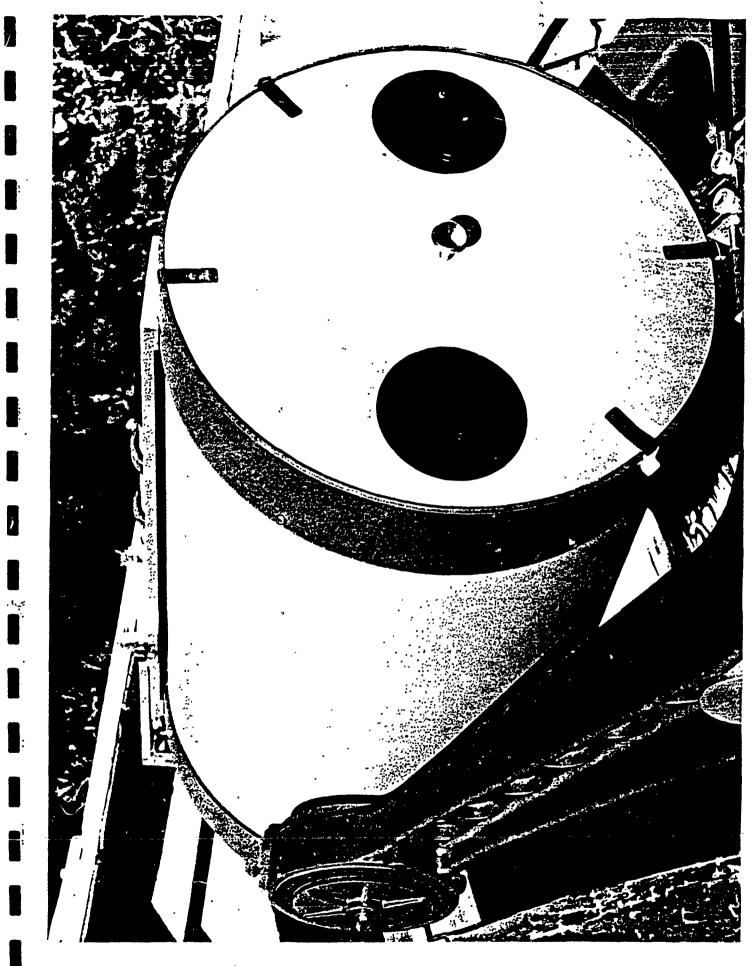


•

* *

ľ

)

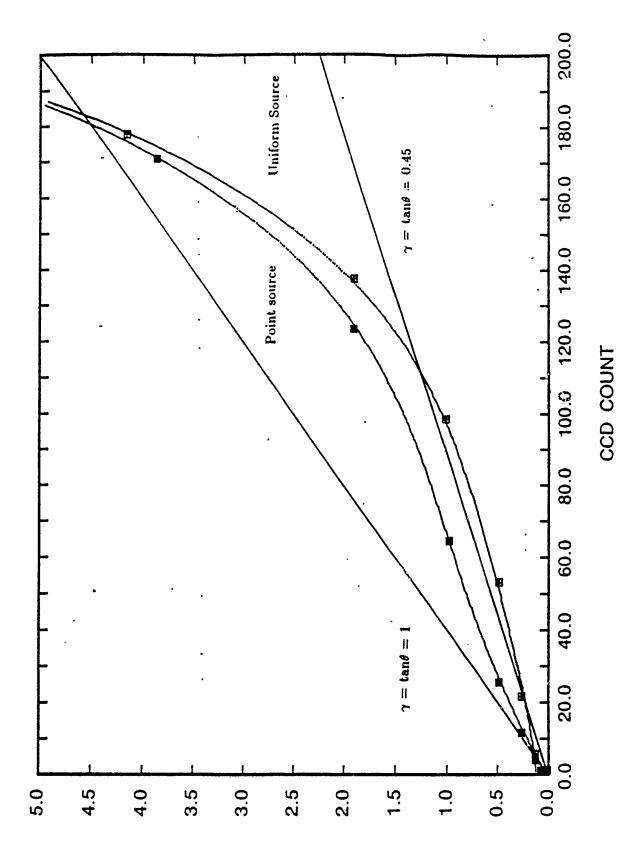


. . .

1

Ż

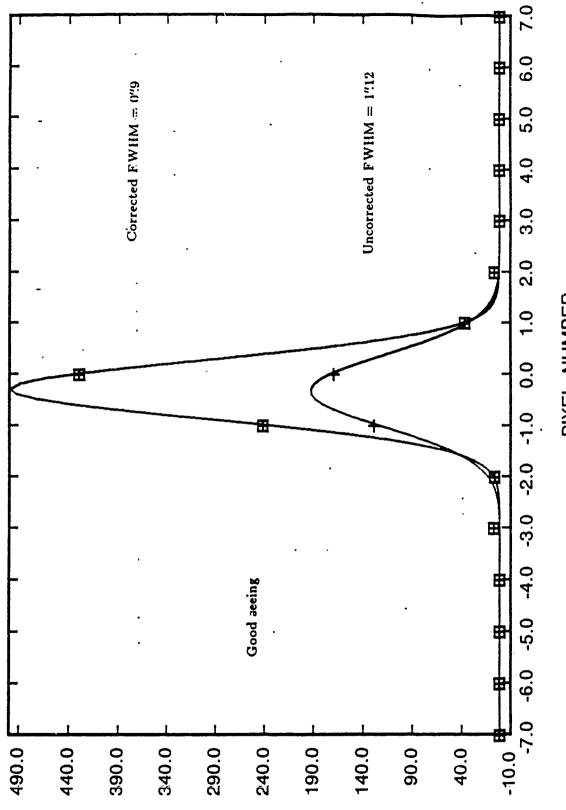
.


and also a strategy and a strategy and a strategy and a strategy and the s

ł

÷

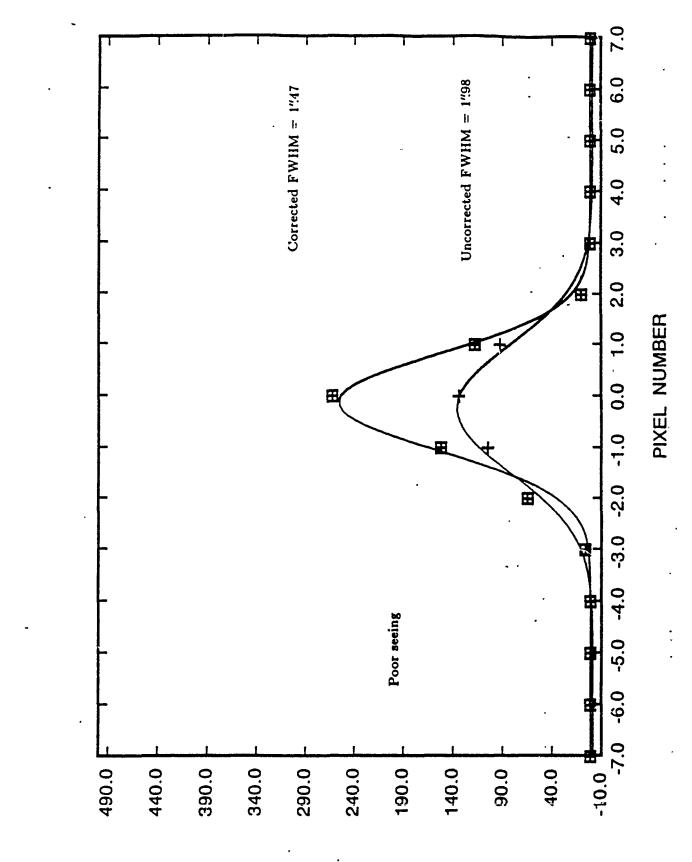
۴



Ì

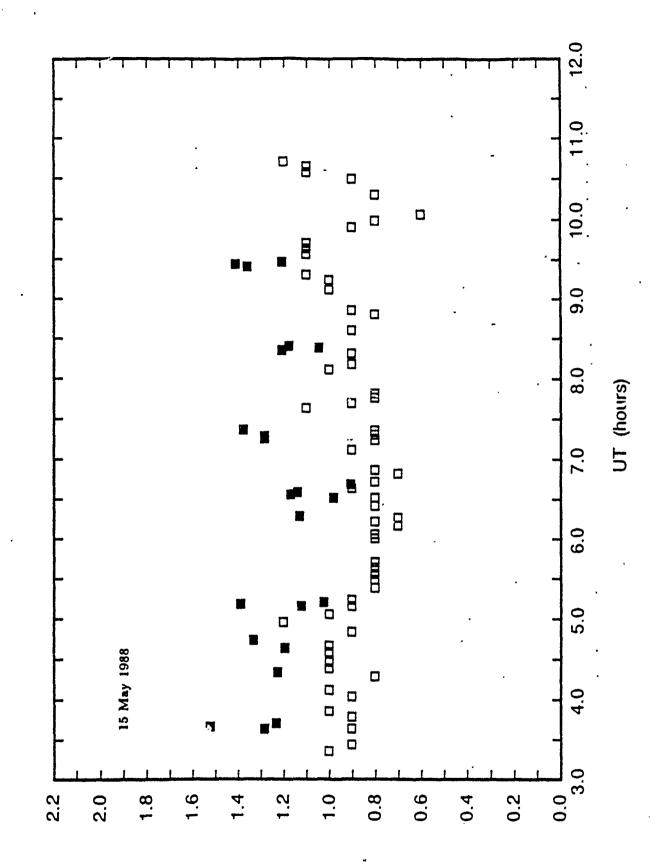
2

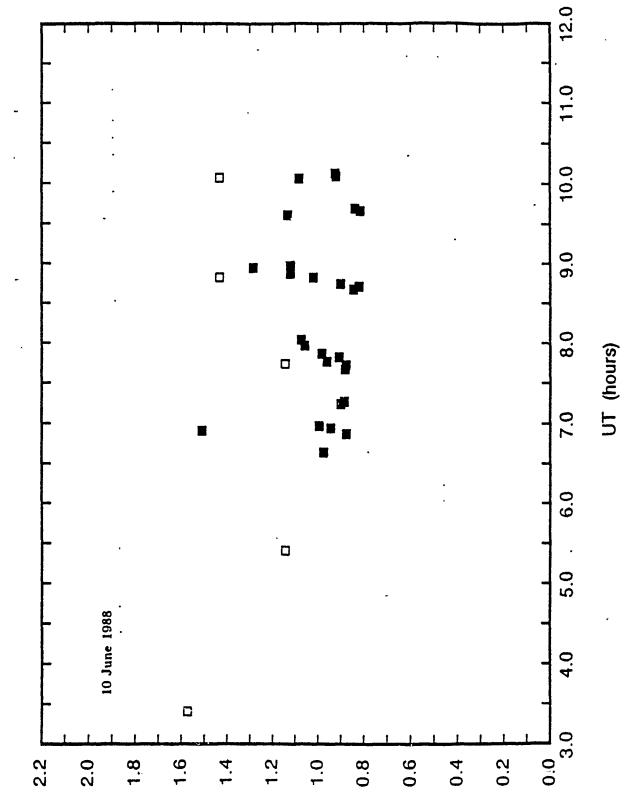
RELATIVE INPUT INTENSITY

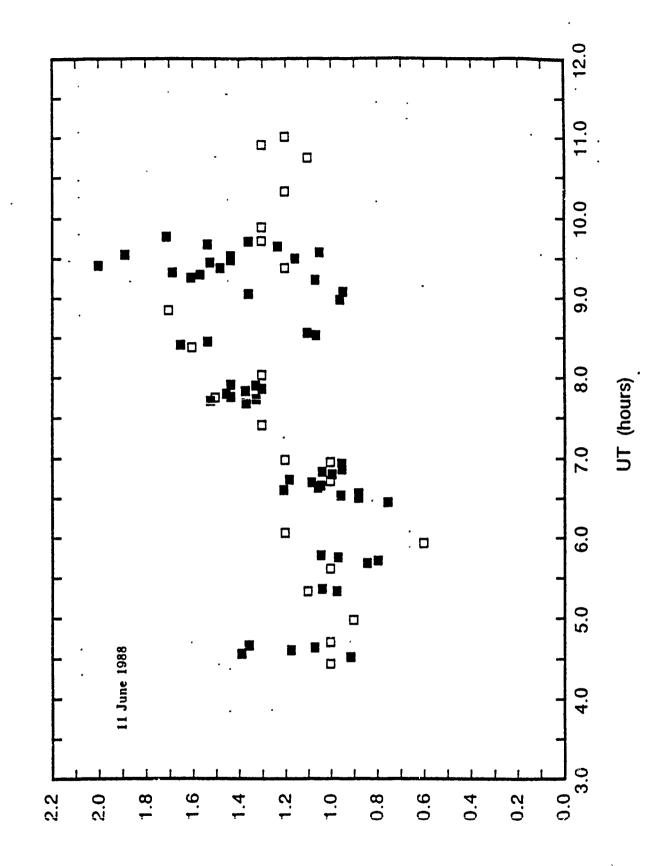


)

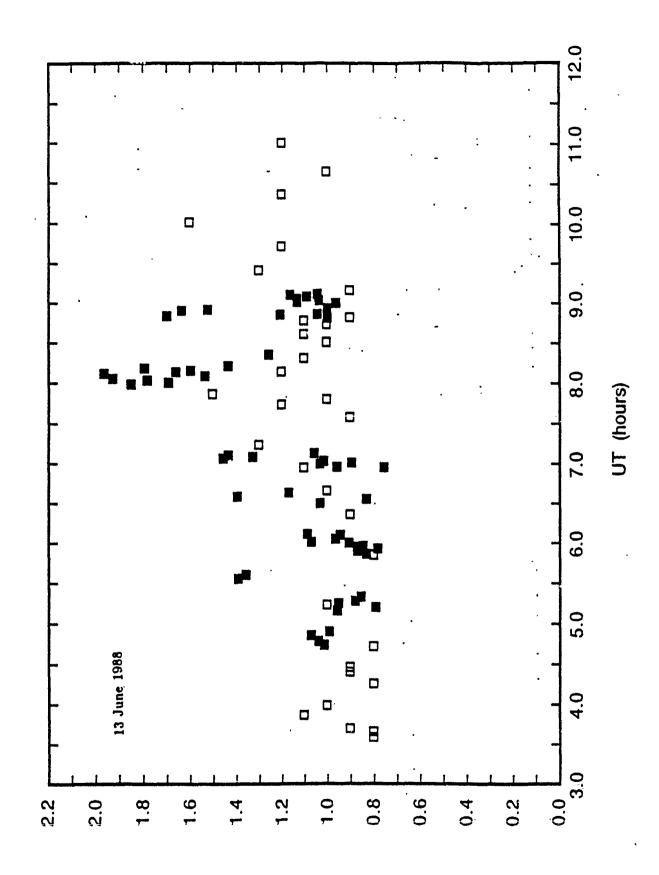
9

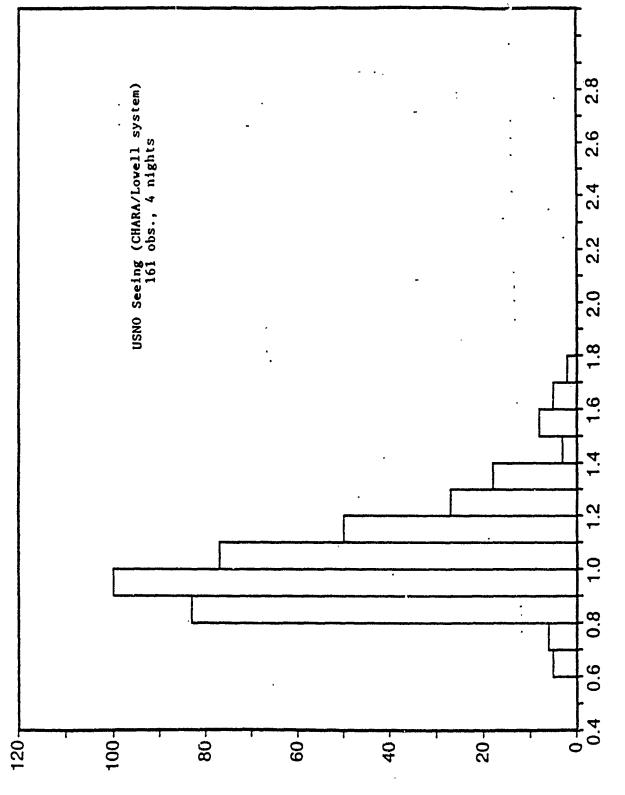

PIXEL INTENSITY


PIXEL NUMBER

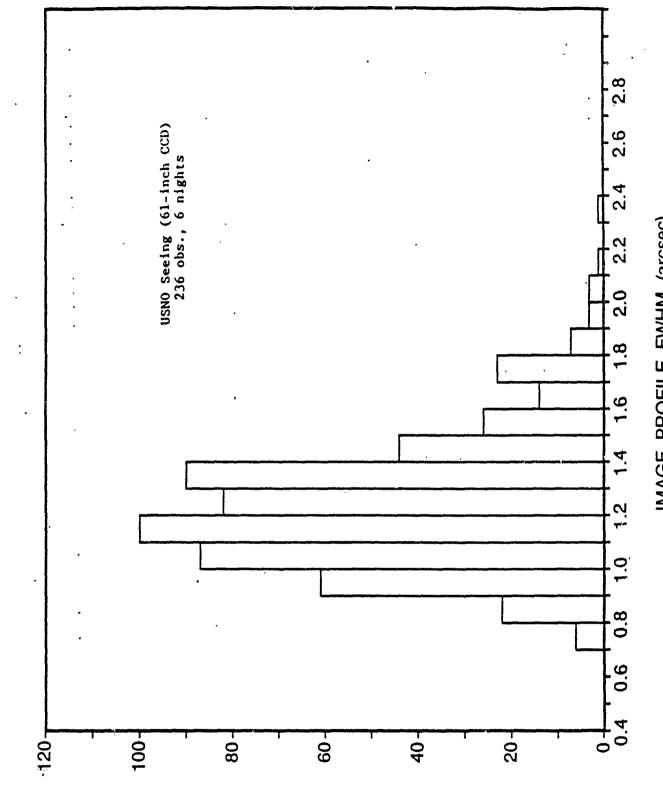

Ì

PIXEL INTENSITY




,

ì

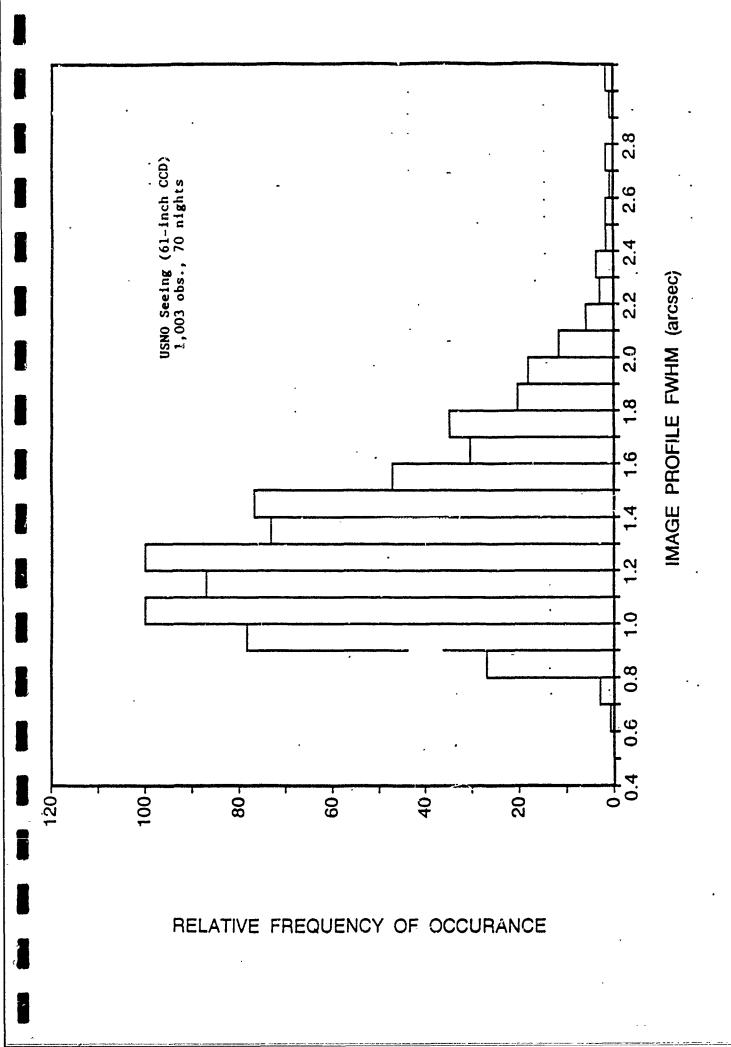


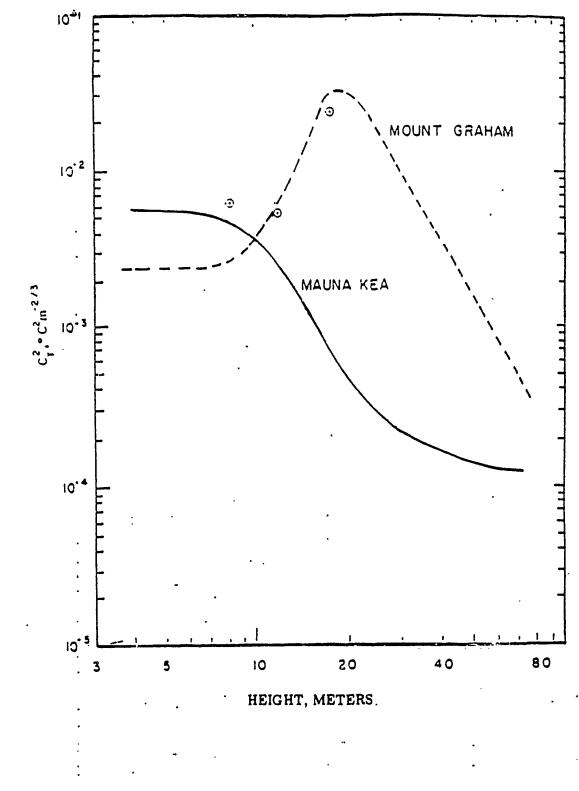
Ż

)

RELATIVE FREQUENCY OF OCCURANCE

RELATIVE FREQUENCY OF OCCURANCE


IMAGE PROFILE FWHM (arcsec).


.

)

Anderson Mesa Seeing (CHARA/Lovell system) 364 obs., 21 nights 2.8 2.6 2.4 IMAGE PROFILE FWHM (arcsec) 2.2 2.0 1.8 1.6 1.4 į <u>1</u>.2 0.1 0.8 0.6 20-80-60-40-120-100-

RELATIVE FREQUENCY OF OCCURANCE

. . .

1

I

I

ļ^

Results in speckle photometry

W. G. Bagnuolo, Jr., D. J. Barry, B. Mason, E. G. Dombrowski

Center for High Angular Resolution Astronomy Georgia State University, Atlanta, Georgia 30303

ABSTRACT

Algorithms for reconstruction of isoplanically blurred point source pairs are considerably simpler and faster than full-blown image reconstruction techniques. Traditional autocorrelation approaches suffer from a 180 degree ambiguity, however, and only yield order of magnitude estimates for brightness ratios. A new asymmetric algorithm is here presented: the "Directed Vector Autocorrelation" (DVA), which is a rapid alternative to vector autocorrelation. Together with the "Fork Algorithm," a directional filter for estimating brightness ratios, the DVA algorithm has been used to resolve ambiguous orbits and produce differential color photometry for several binary stars.

1. THE DVA ALGORITHM

Binary star speckle interferometry is traditionally analyzed with autocorrelation-based algorithms, which suffer from an inherent 180 degree position-angle ambiguity. Our own extensive program of binary measurement has principally been conducted with a vector-autocorrelation (VA) algorithm of this type implemented in hardware. This device gives a 1 bit (on/off) digitization of two-dimensional speckle frames. The hard-wired VAC then calculates a 2-d histogram of all separations among the sample of "on" pixels, an operation that can be quickly carried out in hardware, and provides autocorrelograms from which the relative positions of the components can be accurately extracted, albeit with the quadrant ambiguity inherent in this process.

All astrophysically significant quantities are independent of absolute orientation of orbit, so long as consistency is maintained. Nevertheless, absolute quadrant determination is useful in referencing long-separated measurements, or for comparing visual apastron to speckle periastron measures. For orbits with known periods or with close time-coverage, each measurement can be incrementally referenced to the previous, or to a known orbit, which reveals the true quadrant at epoch. But in a poorly measured orbit, a highly eccentric pair can masquerade as a slow-moving nearly circular system of twice the period, since the rapid quadrant changes at periastron often cannot be followed, by observing time constraints, even if the periastron separation permits measurement. This is the case for a small but significant number of stars on our program (roughly 50 out of some 2000), which have been reanalyzed to establish absolute orbital quadrant and to ensure consistency of quadrants at different epochs. For example, we have shown (McAlister et al. 1988) that the motion of the Hyades binary Finsen 342 is consistent only with a 6 yr eccentric orbit rather than with the 13 yr circular orbit assumed in most previous analyses.

In order to eliminate the 180 degree ambiguity the full complexity of imaging algorithms is neither necessary nor desired. However, algorithms must use relative pixel brightnesses rather than pure thresholding. Each speckle frame therefore should be digitized to a resolution of at least eight bits. Modest cost video hardware is now available that can return 512x512 pixel frames at nearly video rates with eight bits per pixel. Analysis can then be performed either with the primary CPU or with a dedicated coprocessor.

For quadrant determination, we have developed the Directed-Vector-Autocorrelation Algorithm (DVA), a simple modification of the VA. In this algorithm the digital intensities as well as the (x, y) locations of all the pixels in a frame above a threshold (or the brightest *n* pixels) are saved, so that we now require 3 bytes instead of 2 per pixel. Suppose two pixels have intensities I_1 and I_2 and locations (x_1, y_1) and (x_2, y_2) , respectively. The 2-d histogram of the separation is incremented in location $(x_2 - x_1, y_2 - y_1)$ if $I_1 \ge I_2$ and in location $(x_1 - x_2, y_1 - y_2)$ if $I_1 \le I_2$. That is, a direction is given to the separation, in the sense of from brighter to dimmer pixel, hence the name of the algorithm. Because the DVA is only a bit more complex than the VA, the software is easily implemented in C and Assembler.

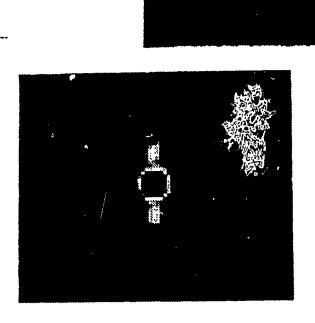

		Epoch	Θ	ρ	Quad	<u>S/N</u>
McA 1	00323+0657	1984.9991	87.23	0."1314	<i>S</i> †	2.5
McA 7	02366+1226	1985.8376	311.67	0."0644	<i>S</i> †	2.0
McA 7	02366+1226	1987.7625	131.10	0."0651	N†	2.0
McA 7	02366+1226	1988.8888	169.57	0."0505	Nt	2.6
McA 24	06034+1942	1988.6637	72.76	0."0544	N	2.3
McA 40	14403+2158	1987.2643	82.15	0."0655	N	3.1
McA 46	17103-1926	1989.3040	116.01	0."1370	Nţ	2.3
McA 63	20474+3629	1984.7013	102.9	0."052	Nt	16.9
CHARA 7	02475+4416	1984.0576	104.45	0."1612	Nt	2.9
CHARA 10	03271+1845	1985.8403	110.01	0."0767	S	2.2
CHARA 15	04120+5016	1983.0637	154.77	1."2609	S	2.9
CHARA 19	04493+3235	1984.0576	148.61	0."0423	Nt	25.6
CHARA 25	06580+0218	1989.3112	39.4	0."918	St	2.2
CHARA 45	15183+2649	1984.3837	65.46	0."3390	St	18.5
CHARA 55	16254+3724	1986.4099	175.74	0."1677	Nt	2.7
CHARA 69	18218-1619	1985.4899	10.68	0."0913	St	2.1
CHARA 92	20050+2313	1983.8425	47.67	0."0506	St	2.8
CHARA 92	20050+2313	1985.5177	54.95	0."0516	Ň	3.6
CHARA 98	20285-2410	1983.4258	81.41	0."2367	<i>S</i> †	19.6
CHARA 142	01070+3014	1988.6661	110.99	0."0891	S	3.7
CHARA 143	08125-4616	1989.3057	159.04	0."0453	Nt	2.2
ADS 755	00550+2338	1989.7118	285.56	0."3930	N§	8.6
ADS 1630	02035+4223	1989.7119	107.33	0."5715	S§	7.5
ADS 2200	02537+3820	1989.7122	258.11	0."1808	S§	5.2
ADS 3064	04136+0743	1989.7123	316.99	0."0572	N§	2.7
ADS 3135	04187+1632	1989.7123	62.27	0."2652	NŠ	2.7
ADS 3172	04236+4226	1989.7123.	155.82	0."3468	SS	4.8
ADS 3210	04256+1852	1989.7123	26.15	0."2349	N§	7.4
ADS 6993	08468+0625	1984.0553	195.4	0."266	ร้	4.1
ADS 6993	08468+0625	1984.0608	195.1	0."271	5	3.4
ADS 8863	13202+1747	1986.4067	327.7	0."058	N	2.1
HR 657	02157+2503	1989.7122	45.14	0."1907	N§	2.7
HR 719	02280+0158	1989.7122	34.75	0."5146	NŠ	5.4

Table 1. Partial List of Quadrant Determinations.

†Published quadrant is 180° in error.

§No published quadrant.

The resulting DVA "autocorrelogram" for a binary star appears similar to that produced by "Shift-and-Add" (Bates and Cady, 1980) with "center," "principal," and "ghost" spots. The true position angle is given by the position of the principal spot relative to the center spot. Analysis software has been developed for extraction of these spots from a radial noise profile by boxcar subtraction, paraboloid boxcar subtraction, and smoothed radial subtraction. In rectangular boxcar subtraction, an image is convolved with a small $(n \times n, 5 < n < 21, n \text{ odd})$ kernel with a center value of unity and an outlying rectangular area of uniform negative value summing to minus unity. The effect is to measure the variation of the image from a smoothed version, thus subtracting the relatively even and symmetric noise profile. Such a kernel is decomposable into x and y one-dimensional components for rapid calculation. Parabolic boxcar subtraction breaks the entire image up into radial zones over which an average noise value is ascertained, and the resulting N(r) curve is used to subtract the background to reveal peaks. Peaks are measured from an image filtered by the previous techniques by least squares fit of a biquadratic to a $(n \times n, n = 3, 5, 7)$ window around a maximum value selected by a cursor. This is an elaboration of software used to reduce most of the 8,000 autocorrelograms previously measured and published by CHARA. Table 1 lists some quadrant determination

)

Ī

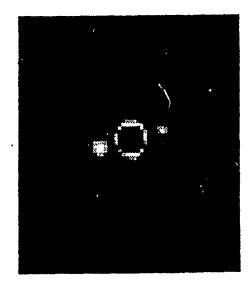


Figure 1-a,b,c. Top, Left, Right: γ Persei, Finsen 342, ADS 2200.

results, based on runs of 250 frames each. We plan to publish a more complete table of quadrants shortly.

2. THE FORK ALGORITHM

The Fork Algorithm (Bagnuolo, 1988) selects from speckle frames pixel quadruples (I_1, I_2, I_3, I_4) passing a brightness threshold test $I_2 + I_3 > K > k(I_1 + I_4)$ and with separation and position angle like "tines of a fork," matching that of the target system. Each such quadruple can be viewed as a miniature recurrence of the resolved pair (I_2, I_3) , with background level (I_1, I_4) and is used to form an estimate of the brightness ratio. (The crude ratio I_2/I_3 may be corrected by I_1 and I_4 as described in the above reference.) A histogram of these ratios, summed over many frames, yields an estimate of the brightness ratio, with greatly improved signal to noise for a given number of frames over standard techniques (Shift and Add, Triple Correlation, etc.), as verified by competitive analysis of simulated frames. (Bagnuolo, 1988). (Other algorithms can of course be applied to more general objects.) Although designed for differential photometry, the Fork Algorithm also provides quadrant information and can be used to verify the DVA results for a system.

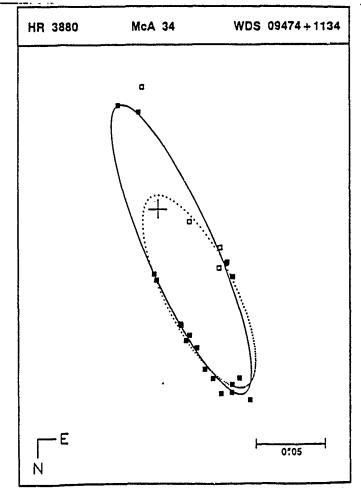


Figure 2. Orbit of McA 34. Dotted line- Tokovinin (1987), Solid line-CHARA (1989). Filled squares- CHARA observations, Light squares, other observations.

3. HARDWARE

The two major bottlenecks in real-time processing are the I/O bus speed, necessary to transfer data from video digitizing hardware to the CPU or coprocessor, and the frame-analysis time. A full video data feed may represent 30 Mbyte/s. In our implementation, an Imaging Technologies PC-Vision digitizing board records video frames at 256×256 resolution, and of these, 128×128 windows are extracted for analysis. This represents only a 0.5 Mbyte/s load on the bus of the Intel 386-based PC. Processing of several hundred of the brightest pixels is performed by the DVA algorithm, which can usually be done within four frame times, dependent on the pre-threshold level selected. This is approximately a quarter the speed of the hardware autocorrelator. We have found it usually more convenient to post-process data which has been recorded on a Sony 8mm "Video 8" unit, removing the constraint of real-time analysis. In this technique, up to 250 frames are digitized and stored in extended memory at *ca*. 10 frame/s, and then analyzed after acquisition by both DVA and FORK. It is also possible to digitize selected frames, such as those with momentarily superior seeing and better defined speckles, due to the stability of the Sony's freeze frame capability.

The vector-difference procedure will soon be performed by a slave Motorola DSP56001 processor mounted on the PC bus. This algorithm, which is quadratic with pixel count, will operate on the pixel list provided by the primary CPU. This should permit real-time processing of frames with up to 800 thresholded pixels. The Fork algorithm, too, is amenable to implementation in real time, although it requires prior knowledge of position angle and separation. A planned system will utilize two coprocessors, in which the central proce. or will generate thresholded

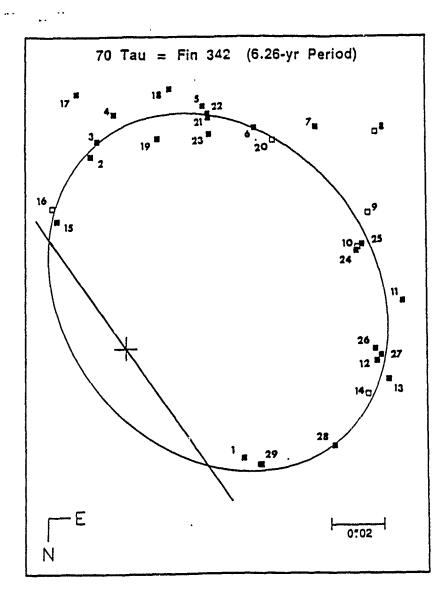
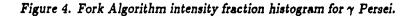



Figure 3. Finsen 342 orbit of 6.264 yr. Data symbols as in Figure 2.

pixel lists, one of which will drive a DVA coprocessor. After a peak is detected and measured, the coordinates will be fed to the FORK coprocessor, which will begin operating on the same thresholded pixel list used by the DVA processor. This coprocessor will need to read auxiliary pixels from frame memory to complete the fork quadruples, but the primary limitation will be from bus throughput considerations rather than processing speed.

Most of the data has been gathered with the CHARA intensified CCD camera (McAlister *et al* 1984). Flatfielding is necessary because of a gradual loss of sensitivity due to exposure of the micro-channel plate near the center of the Field of view. A potentially more serious problem is detector non-linearity. In order to measure non-linearity effects, as well as check the performance of intensity-ratio algorithms in general, we have generated calibration speckle frames by inserting a calcite crystal of either 25 or 4 mm thickness into the optical path of the speckle camera. The birefringence of the calcite crystal produces two speckle patterns with a fixed offset and with orthogonal polarizations. The intensity ratio of the artificial binary can be varied by rotating a polarizing filter relative to the calcite crystal. If there is the position angle for which the two "binary" components have equal intensity, then the intensity ratio varies as $tan^2(\theta - \theta_0)$. The thicker calcite crystal generates a clearly separated paired image typical of a 1.5 arcsecond binary under normal seeing, whereas the thinner crystal produced a "binary" of 0.2 arcsecond effective separation.

These simulated binary stars with known intensity ratios permit calibration of a curve to compensate for camera non-linearity effects.

Through a cooperative agreement with SAO, we anticipate receiving a PAPA camera by February. This device, which is inherently linear and capable of a much fainter magnitude limit than our existing camera, will be tested and integrated into observing programs during the next several months.

4. QUADRANT RESULTS

Figures 1a, 1b, and 1c are DVA "autocorrelograms" for γ Persei, Finsen 342, and ADS 2200 respectively and illustrate how the position ambiguity can be removed. In each case the brightest 300 pixels of 200 frames of data were used. The true position angles are in the direction of center to primary spots. Center spot removal and parabolic boxcarring subroutines were used for each analysis.

Figure 2 shows the orbit for the star McA 34 (HR 3880, WDS 09474+1134). The published orbit by Tokovinin (1987), shown by the dotted line, has a period of 9.70 years and semi-major axis a = 0.075. However, by resolving the quadrant ambiguity at two key points in the orbit with DVA, we obtain an orbit shown in solid line with a period

of 15.167 years and a semi-major axis of a = 0."1120. Note that changes in period and semi-major axis can greatly affect the computed masses of the stars.

Another example of a quadrant determination, taken from McAlister *et al.*, 1988, shown in Figure 3, is of the Hyades binary Finsen 342. We showed that the orbit was an eccentric one of 6.264 years, as proposed originally by Peterson and Solensky (1987), and not the 13 year circular orbit assumed in most previous analyses.

Finally, Table 1 presents a list of the quadrant data determined to date.

5. FORK RESULTS

Gamma Persei is a well-know example of a star with a composite spectrum and a binary resolvable with speckle-interferometry. According to previous estimates by Popper and McAlister (1987), it consists of A3 and G8 III stars, for which the masses are 2.0 and 3.0 Solar Masses. As a bright, "poor-man's Capella," γ Persei provides a casestudy of the application of the Fork Algorithm in estimating intensity ratios. Several sets of data consisting of 200 frames each were digitized from the Sept. 1989 KPNO 4-m run. These data were flat-fielded, slightly smoothed, and a non-linearity correction was applied (based on the Calcite results mentioned above). Applying the Fork algorithm produced the histogram shown in Figure 4. The histogram is of the fraction of total intensity in the secondary, where bin 63.5 is 0.0, and bin 127.5 is 0.5. The peak at bin 105 corresponds to Δm of 0.80. Because several repeated runs gave results to within 0.02 mag., it is likely that most of the uncertainty in this result comes from systematic rather than random errors. Such errors could be from residual uncorrected nonlinearity, a deviation of the actual photometric passband from Strömgren y, etc. A similar preliminary result is $\Delta m = 0.50 \pm 0.05$ in Strömgren b. The astronomical implications of recent Capella data in terms of the H-R diagram have been discussed by Bagnuolo and Hartkopf (1989). Similarly, for γ Persei, the spectral types implied by the Δm 's in y and b above are significantly different from those assumed in Popper and McAlister (1987). (The V magnitude difference of the components is roughly 0.8 instead of the 1.4 mag. heretofore thought.) These preliminary results suggest that even bright stars are not completely understood.

6. ACKNOWLEDGEMENTS

We wish to acknowledge H. McAlister and W. Hartkopf for useful criticism and support. Some assistance in calibration and linearity checking of the ICCD camera was provided by J. Sowell. One of us (W. Bagnuolo) has been partially supported by NSF grants AST 86-13095 and AST 88-06993.

7. REFERENCES

Bagnuolo, W. G. Jr., (1988). Optics Letters, 13, 997.

Bagnuolo, W. G. and Hartkopf, W. I., (1989). Astron. J., 98, 2275.

Bagnuolo, W. G. Jr. and Sowell, J. R., (1988). Astron. J., 96, 1056.

Bates, R. H. T., and Cady, F., (1980). Opt. Commum., 32, 365.

McAlister, H. A., Hartkopf, W. I., Bagnuolo, W. G., Sowell, J. R., Frans, O. G., and Evans, D. S., (1988). Astron. J., 96, 1431.

Popper, D. M., and McAlister, H. A., (1987). Astron. J., 94, 700.

Tokovinin, A. A., (1987). Circ. Inf., 102.