NAVAL POSTGRADUATE SCHOOL Monterey, California one fare cops

 TESTS

DISCRETE RELIABILITY GROWTH
by

Pamela A. Markiewicz
September 1988

```
Thesis Advisor:
W. M. Woods
```

Approved for public release; distribution is unlimited

Discrete Reliability Growth
by

Pamela A. Markiewicz Lieutenant, U.S. Navy B.A., Duke University, 1981

Submitted in marital fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL September 1988

Author:

Approved by:

ABSTRACT

Three methods for weighting an exponential regression model to estimate discrete reliability growth were derived and tested. The first method systematically applies greater weight to test phases whose estimates have less variability. The second method similarly applies heavier weight to the most recent test phase estimate. The third method allows the user to choose the weighting scheme.

These methods were evaluated against eight patterns of actual reliability by altering a previously developed MonteCarlo simulation. Their performance was then compared to the unweighted exponential regression and Maximum Likelihood Estimate With Discounting (MLEWD) models. The second weighting method appears to perform the best under rather general constraints. Also, comparison is made of the least squares estimates for reliability growth using two different unbiased estimates for the negative of the natural logarithm of the failure rate.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. PREVIOUS WORK 5
A. BACKGROUND 5
B. RESULTS OF PREVIOUS WORK 7
III. MOTIVATION FOR IMPLEMENTING YK 9
IV. THE WEIGHTED EXPONENTIAL REGRESSION MODEL 16
A. THE EXPONENTIAL REGRESSION MODEL 16
B. THE WEIGHTED EXPONENTIAL REGRESSION MODEL 18
C. EXAMPLE OF THE WEIGHTED EXPONENTIAL REGRESSION MODEL 19
D. METHODS OF WEIGHTING 21

1. METHOD 1 21
2. METHOD 2. 23
3. METHOD 3 25
V. THE MAXIMUM LIKELIHOOD ESTIMATE WITH FAILURE DISCOUNTING IN THE TEST-FIND-TEST SCENARIO 28
A. DESCRIPTION 28
B. EXAMPLE 29
VI. MODEL COMPARISONS 35
A. INTRODUCTION 35
B. CONSTANT RELIABILITY PATTERNS 35
C. RAPID RELIABILITY GROWTH 36
D. CONVEX RELIABIITY GROWTH 38
E. DECREASING RELIABILITY 40
F. INTERMITTENT RELIABILITY GROWTH 42
G. THE WEIGHTED MODEL IN CONJUNCTION WITH METHOD 3 WEIGHTING 43
VII. SUMMARY, CONCLUSIONS, RECOMMENDATIONS 48
A. SUMMARY 48
B. CONCLUSIONS 49
C. RECOMMENDATIONS FOR FURTHER STUDY 51
APPENDIX A: USER'S GUIDE TO DISCRETE RELIABILITY GROWTH (DRG) 52
4. INTRODUCTION 53
5. THE DRG EXEC FILE 54
6. THE INPUT DATA FILE 58
APPENDIX B: FILES AND PROGRAMS 63
7. SAMPLE EXEC FILE 64
8. SAMPLE INPUT DATA FILE 66
9. DRG FORTRAN PROGRAM 68
10. JIMC FORTRAN PROGRAM 88
11. SAMPLE OUTPUT FROM DRG FORTRAN A1 110
LIST OF REFERENCES 119
INITIAL DISTRIBUTION LIST. 120

LIST OF TABLES

1. COMPARISON OF $\mathbf{Y}_{\mathbf{k}}^{*}$ VERSUS $\overline{\mathbf{X}}_{\mathbf{k}}$ AS THE ESTIMATOR OF A_{k}. 11
1A. EXAMPLE OF WEIGHT DATA 19
2. EXAMPLE PARAMETER CALCULATIONS BY PHASE 20
2A. EXAMPLE RELIABILITY ESTIMATES 20
3. SAMPLE METHOD THREE WEIGHTS 26
4. COMPARISON OF METHOD ONE, TWO AND THREE WEIGHTS OVER A TEN PHASE SIMULATION 27
5. MLEWD EXAMPLE DATA 29
6. TEST-FIX-TEST DATA WITH DISCOUNTING. 31
7. TEST-FIND-TEST DATA WITH DISCOUNTING 31
8. RESULTS OF THE MLEWD MODEL APPLIED TO THE TEST-FIX-TEST DATA 32
9. RESULTS OF THE MLEWD MODEL APPLIED TO THE TEST-FIND-TEST DATA 33

LIST OF FIGURES

1A. \mathbf{Y}^{*} Vs. $\overline{\mathbf{Y}}$, Pattern 1 12
1B. Y^{*} Vs. \bar{Y}, Pattern 2 12
1C. Y^{*} Vs. \bar{Y}, Pattern 3 13
1D. \mathbf{Y}^{*} Vs. $\overline{\mathbf{Y}}$, Pattern 4 13
1E. Y^{*} Vs. \bar{Y}, Pattern 5 14
1F. Y^{*} Vs. \bar{Y}, Pattern 6 14
1G. $\quad \mathbf{Y}^{*}$ Vs. \bar{Y}, Pattern 7 15
1H. $\quad Y^{*}$ Vs. \bar{Y}, Pattern 8 15
2. The Weighted Exponential Regression Model in conjunction with Method One Weights 22
3. The Weighted Exponential Regression Model in conjunction with Method Two Weights 24
4. The Weighted Exponential Regression Model in conjunction with Method Three Weights. 26
5. Weighting Methods One and Two and the Constant Reliability Pattern 37
6. Weighting Methods One and Two and the Rapid Reliability Growth Pattern 37
7. Weighting Methods One and Two and the Convex Reliability Growth Pattern 39
8. Weighting Methods One and Two and the Decreasing Reliability Growth Pattern 41
9. Weighting Methods One and Two and the Intermittent Reliability Growth Pattern. 43
10. Method Three Weights and the Constant Reliability Growth Pattern 45
11. Method Three Weights and the Rapid ReliabilityGrowth Pattern.45
12. Method Three Weights and the Convex Reliability Growth Pattern. 46
13. Method Three Weights and the Decreasing Reliability Growth Pattern 46
14. Method Three Weights and the Intermittent Reliability Growth Pattern. 47

I. INTRODUCTION

Systems and equipment often go through several phases of development during which the reliability is assessed and the components or design are appropriately modified. From these early assessments, project managers need to make predictions regarding the ability of the system or equipment to meet reliability specifications by the contracted acceptance or delivery date. Some conventional estimators of reliability disregard data related to immature systems and use only that data obtained from the final product in verifying reliability. This practice is extremely inefficient, costly and occasionally, infeasible. Using all available test data would not only permit a manager to monitor the development process more successfully but at a substantial savings to all parties involved.

Reliability growth models are useful in estimating the reliability of both immature and mature systems. Continuous and discrete versions of models exist. Models which employ attribute test data are discrete while those based on time to failure data are continuous. Only discrete models will be addressed in this thesis. Both of these versions make use of all available test data and are often used in conjunction with a technique known as failure discounting. This is a process whereby an increasing fraction of a
failure is repeatedly diminished as greater amounts of subsequent data is accumulated without repeat of the same failure.

Models evaluating data which have been adjusted using a failure discounting scheme have performed well in estimating actual reliability [Ref. 1:pp. 52-55]. Relying on discounting techniques has its drawbacks however. In order to employ the straight percent discounting method, for example, the user must select two parameters, N and F. F is the fraction each fallure will be discounted and N is the number of successive successes which must be achieved prior to applying the discounting method. No rules have been developed as to how these parameters should be selected and no guidance other than to "use good engineering judgment" [Ref. 1:p. 50] has been offered on the subject.

The objective of this paper is to provide the user of a reliability growth model with an alternative to failure discounting which will produce comparable results. To this end, the Monte-Carlo simulation developed by Captain James Drake and modified by Captain James Chandler was altered to include a weighted exponential regression model. This model can use one of three methods of weighting.

Method one is based on the idea that the variances of the observables are not all equal and hence some are more reliable than others. To accommodate this fact, weights in
this method are "heavier" for observables with lower variances. Method two systematically gives more weight to the most recent test phase motivated by the idea that the most recent version of the system is likely to be the most reliable. Method three is an extension of this idea. In this method, the user is permitted to subjectively select how much weight he desires to give each phase. This might produce successful results if the user has an intimate knowledge of the development process. He could then possibly choose to give little weight, say, to a phase he knew was conducted poorly or contained problems that he was certain were since corrected. Each of these methods was evaluated and compared to previously developed models using eight different actual reliability growth patterns. These comparisons are contained in Chapter VI.

As a further modification to previous work which primarily explored the "test-fix-test" methodology, i.e. only one failure per phase of testing permitted, this thesis investigates the effect of using an alternative unbiased estimator of the exponential regression parameter of a "test-find-test" scenario.

The following chapter will address previous work in the area of reliability growth models. The motivation for altering the exponential regression parameter is discussed in Chapter III and the weighted Regression Model and the derivation of the three methods of weighting are developed

In Chapter IV. A brief description of the models with which the weighted model will be compared is presented in Chapter V. The comparisons under varying patterns of actual growth is treated in Chapter VI. A summary, conclusions and recommendations for further study are discussed in Chapter VII.
II. PREVIOUS WORK

A. BACKGROUND

This thesis is the third in a recent sequence on the subject of reliability growth. The initial work was completed by Captain James Drake [Ref. 1]. In his study, Captain Drake developed a Fortran program to evaluate the performance of three reliability growth models; namely, the maximum likelihood estimate model, the exponential regression model, and the weighted average model. These models were evaluated in conjunction with two failure discounting methods, the confidence limit (C.L.) method and the straight percent discounting method. The C.L. method is referred to as the Lloyd discounting method in Drake's thesis. In addition, Captain Drake varied the parameters of each of the discounting methods to evaluate their effect on the performance of these models. The "actual" or known reliability growth pattern against which these models were compared was generated by Monte-Carlo simulation. In this simulation, the user inputs the reliability during the first phase of testing of each component which ray possibly fail (i.e., of each potential fallure cause). The program then generates an "actual" growth pattern from these values for the remaining phases of testing. The user of this program relinquishes strict control of the actual reliability growth pattern beyond the first phase and, although manipulation of
another parameter (specifically, "FRIMP") can produce the pattern in a general desired form, the simulation is incapable of producing a decreasing pattern.

Captain James Chandler modified Captain Drake's program to permit the user complete control of the actual reliability growth pattern at each phase of development. In his version of the program, the user is required to input the reliability of each potential failure cause at each phase. Additionally, if more than one failure is permitted per phase of testing, the value must be replicated for each failure in that phase [Ref. 2]. To reduce the amount of required user input, this process was modified in this thesis so that the amount of information required per phase is the same regardless of the number of failures per phase permitted. The required information is contained in the User's Guide, Appendix A to this thesis.

Captain Chandler also altered the C.L. failure discounting method to allow the user control of the discount interval. This was motivated by the results of the original thesis which indicated that employment of the C.L. method resulted in overly optimistic estimates regardless of the model used or the actual reliability pattern generated. This was attributed to the fact that the original c.L. method diminishes the weight of a failure after each following success.
B. RESULTS OF PREVIOUS WORK

The weighted average reliability growth model was eliminated as a potential model in the early stages of the original analysis. This was due to its consistent overestimation of actual reliability which was only amplified by employment of either of the failure discounting methods. This model was discarded in subsequent work as well.

The remaining two models accurately tracked a wide range of reliability growth patterns. The Maximum Likelihood Estimate with Discounting model, (MLEWD), generally "tended to underestimate actual reliability in early phases and slowly converge to the actual value with increased test data" [Ref. 1:p. 48]. This model also exhibited smallest variance of all models evaluated. The negative aspect of the MLEWD model is that the choice of discounting parameters is critical to successful implementation and guidance in their selection is non-existent. The potentially drastic effects of different parameter choices is discussed in Chapter V.

The exponential regression model also performed well against various actual reliability growth patterns and was far less sensitive to the choice of discounting parameters than the MLEWD model. The difficulty with this model is that it is highly variable in the early phases of testing although it generally stabilized after four phases. This
was considered acceptable since most development processes allow for more extensive testing.

The C.L. discounting method was not recommended for employment with either model as its use only occasionally produced results comparable to the straight percent discounting method without possessing its corresponding flexibility.

Captain Chandler evaluated these two models along with the standard single phase maximum likelihood estimate against eight reliability patterns. His results indicated that both the MLEWD and the exponential regression model were superior in all respects to the standard estimate. Additionally he found that the modification made to the C.L. discounting method resulted in instances of superior performance to the original C.L. method (although not to the straight percent discounting method). The remainder of his work substantiated the conclusions drawn by Captain Drake and included additional observations regarding the case of declining reliability.

Both authors conducted all simulations for the test-fixtest scenario.

III. YOTIVATION FOR IMPLEMENTING \mathbf{Y}_{k}^{*}

The exponential regression reliability growth model was developed by H. Chernoff and W. M. Woods. Its derivation is fully detailed in Ref. 3 and Chapter IV. In this model the reliability after the $\mathrm{k}^{\text {th }}$ change is modeled by $R_{k}=1-e^{-(\alpha+B k)}$. For the purposes of this chapter it is sufficient to understand that the model estimates the reliability in Phase k as:

$$
\begin{equation*}
\hat{R}_{k}=1-e^{-\left(\hat{\alpha}_{k}+\hat{B}_{k} k\right)} * \tag{3.1}
\end{equation*}
$$

where \hat{R}_{k} is the reliability estimate, and the estimates $\hat{0}_{k}$ and \hat{B}_{k} for α and B at the conclusion of testing in the $k^{\text {th }}$ phase are obtained using linear regression methods and an unbiased estimator for ($\alpha_{k}+B_{k} k$).

The unbiased estimator is:
$Y_{j k}=\left\{\begin{array}{l}1+1 / 2+1 / 3+\ldots 1 /\left(X_{j k}-1\right) \quad \text { for } X_{j k} \geq 2 \\ 0\end{array}\right.$
where $X_{j k}$ is the number of trials between the (j-1)st failure and the $j^{\text {th }}$ failure (including the $j^{\text {th }}$ failure) in the $k^{\text {th }}$ phase.

[^0]Let $F_{k}=$ the number of failures in the $k^{\text {th }}$ phase. Since $X_{1, k}, X_{2, k}, \ldots X_{F_{k}, k}$, are independent random variables then

$$
\begin{equation*}
\bar{Y}_{k}=\left(Y_{1 k}+Y_{2 k}+\ldots Y_{F_{k} k}\right) / F_{k} \tag{3.3}
\end{equation*}
$$

is also unbiased.
Previous work incorporates this estimator of $\left(\alpha+B_{k} k\right)$ however an unbiased estimator which has minimum variance of all estimators has since been developed by W. M. Woods; this estimator is as follows:
$Y_{k}{ }^{*}=1 / F_{k}+1 /\left(F_{k}+1\right)+\ldots 1 /\left(X_{F_{k}}-1\right)$
Replacing \bar{X}_{k} with $\mathbf{Y}_{\mathbf{k}}^{*}$ in the exponential regression model provides a more accurate estimate of reliability.

Table 1 is the result of performing ten thousand replications of one phase negative binomial (Pascal) test data with actual reliability R and comparing the model to this value of R employing \bar{Y}_{k} and again using Y_{k}^{*}. This table demonstrates that while reliability predictions using Y_{k}^{*} and \bar{Y}_{k} are both conservative, those using Y_{k}^{*} more closely estimate actual reliability, have smaller variances and a smaller mean square error.

The parameters used in this simulation are as follows:

$$
\begin{aligned}
& F_{k}=\begin{array}{l}
\text { The number of failures in phase } k \text { was fixed at } 3 \text { for } \\
\text { all cases }
\end{array} \\
& X_{F_{k}}=\text { The number of trials to the } F_{k} \text { failure. }
\end{aligned}
$$

$N=$ The number of replications $=10,000$
$k=$ The number of phases $=1$
\bar{Y}_{1} and Y_{1}^{*} are as in equations 3.3 and 3.4 respectively.

TABLE 1. COMPARISON OF Y_{k}^{*} VERSUS \bar{Y}_{k} AS THE ESTIMATOR OF A_{k}

Actual Reliability	$\overline{\hat{R}_{1}}$	$\overline{\hat{R}_{1}}$	s ${ }^{3}$	st.	$\frac{1}{N} \sum_{i=1}^{N}\left(\hat{R}_{i}-R\right)^{2}$	$\frac{1}{N} \sum_{i=1}^{N}\left(\hat{R}_{i}^{*}-R\right)^{2}$
. 5	. 4.500058	. 452505	. 053019	. 051689	. 053714	.053798
. 6	. 5481445	.5513(N)	.049514	. 04.4326	. 051683	.049269
. 8	.7574117	.762.589	. 1236653	.1024193	. 029267	. 02.4816$)$
. 9	. 872237	. 876.519	. $011+29$.1012034	.0494. 56
. 95	.933213	.936334	. $00-4889$	(004163	(414280	(x)3227
.99	. 985111	is (x)71	.011414	. $011.3+8$.612513	(x) $17+7$

Though these results prove that Y_{k}^{*} is superior to \bar{Y}_{k} as an estimator of the coefficient of the exponential term, the impact of this improvement is disappointingly trivial. Figures la - 1 h depict the results of employing Y^{*} and \bar{Y} to the exponential regression model for actual reliability patterns 1-8. As one can see from both the Table and the figures, the effect of this change takes place in the third decimal value. In practice, changes of this magnitude are hardly useful. Still, since Y_{k}^{*} is an improvement over \bar{Y}_{k} it is retained as the method of estimating (a and $B k$) throughout the remainder of this thesis.

Note: In all figures, $A=$ actual; $*=Y^{*}$ and $-=\bar{Y}$

Figure 1A. Y^{*} vs. \mathbf{Y}, Pattern 1

Figure 1B. Y^{*} vs. $\overline{\mathrm{Y}}$, Pattern 2

Figure 1C. Y^{*} vs. \bar{Y}, Pattern 3

Figure 1D. Y^{*} vs. $\mathrm{Y}, \mathrm{Pattern} 4$

Figure 1E. Y^{*} vs. Y , Pattern 5

Figure $1 F .{\underset{14}{*}}_{\mathbf{Y}^{*}}$ vs. \bar{Y}, Pattern 6

Fiqure 1G. \mathbf{Y}^{*} vs. \bar{Y}, Pattern 7

Figure 1H. Y^{*} vs. $\overline{\mathrm{Y}}$, Pattern 8
IV. THE WEIGHTED EXPONENTIAL REGRESSION MODEL
A. THE EXPONENTIAL REGRESSION MODEL

The exponential regression model obtains sequentially updated estimates $\hat{\mathbf{R}}_{\mathbf{k}}$ of the reliability $\mathbf{R}_{\mathbf{k}}$ which denotes true reliability after the $k^{\text {th }}$ phase. The basic model for R_{k} is:
$R_{k}=1-e^{-\left(A_{k}\right)}$

In the exponential regression model, linear regression is used to estimate $A_{k}=(\alpha+B k)$ by \hat{A}_{k} where

$$
\begin{equation*}
\hat{A}_{k}=\hat{\alpha}_{k}+\hat{B}_{k} k \tag{4.2}
\end{equation*}
$$

The exponential regression estimate of reliability is then:

$$
\begin{equation*}
\hat{R}_{k}=1-e^{-\left(\hat{X}_{k}+\hat{B}_{k} k\right)} \quad k=1,2, \ldots \tag{4.3}
\end{equation*}
$$

and $\mathbf{\alpha}_{\mathbf{k}}+\hat{\mathbf{B}}_{\mathbf{k}} \mathbf{k}$ is estimated sequentially at each phase. This results in a model which is capable of tracking changing reliability. In order to estimate the parameters α_{k} and B_{k} one must first calculate the unbiased estimator, Y_{k}^{*}. As discussed in Chapter III, Y_{k}^{*} is the unbiased estimator with minimum variance and has been implemented in this version of the model.

Let:
$F_{k}=$ The number of failures in the $k^{\text {th }}$ phase
$X_{F_{k}}=$ The total number of trials to and including the F_{k}

Then:

$$
Y_{k}^{*}=\left\{\begin{array}{lc}
1 / F_{k}+1 /\left(F_{k}+1\right)+1 /\left(F_{k}+2\right)+\ldots 1 /\left(X_{F_{k}}-1\right) & \text { for } X_{F_{k}} \geq F_{k}+1 \tag{4.4}\\
0 & \text { for } X_{F_{k}}=F_{k}
\end{array}\right.
$$

As an example, if the testing in the fifth phase continues until three failures occur and the third failure occurs on the eighth trial then:

$$
Y_{5}^{*}=1 / 3+1 / 4+1 / 5+1 / 6+1 / 7=1.092857
$$

The least squares estimates for β_{k} and α_{k} are :

$$
\begin{align*}
& \hat{\mathrm{B}}_{k}=\frac{\sum_{i=1}^{k}\left[(i-\bar{k}) \times Y_{k}{ }_{k}\right]}{\sum_{i=1}^{k}(i-\bar{k})^{2}} \tag{4.5}\\
& \hat{\alpha}_{k}=\overline{\bar{Y}}_{k}-\hat{\mathrm{B}}_{k} \bar{k} \tag{4.6}
\end{align*}
$$

where $\bar{k}=(1+2+3+\ldots k) / k$

$$
\overline{\overline{Y_{k}}}=\left(Y_{1}^{*}+Y_{2}^{*}+Y_{3}^{*}+\ldots Y_{k}^{*}\right) / k
$$

Replacing the unknown parameters, α_{k} and B_{k} with their estimates $\hat{\alpha}_{k}$ and \hat{B}_{k} in equation (4.3) yields:

$$
\hat{R}_{k}= \begin{cases}1-e^{-\left(\hat{x}_{k}+\hat{B}_{k} k\right)} & \text { for } k>1 \tag{4.7}\\ 1-e^{-r \tilde{r}_{1}} & \text { for } k=1\end{cases}
$$

B. THE WEIGHTED EXPONENTIAL REGRESSION MODEL

The weighted exponential regression model is identical to the unweighted exponential regression model above with the following exceptions:

Let:

$$
w_{i}=\text { the weight applied to the estimate in phase } i .
$$ Replace all occurrences of k in the calculation of the unweighted model with:

$$
\begin{equation*}
\bar{k}_{w}=\frac{\sum_{i=1}^{k}\left(w_{l}-i\right)}{\sum_{i=1}^{k} w_{i}} \tag{4.8}
\end{equation*}
$$

and replace $\overline{\bar{Y}}_{k}$ everywhere with:

$$
\begin{equation*}
\overline{\bar{Y}}_{k w}=\frac{\sum_{l=1}^{k} w_{i} Y_{i}^{*}}{\sum_{i=1}^{k} w_{l}} \tag{4.9}
\end{equation*}
$$

Making these substitutions, the estimates of α and B are now:

$$
\begin{align*}
\hat{\mathbf{B}}_{k w} & =\frac{\sum_{i=1}^{k}\left[\left(i-\bar{k}_{w}\right) \times Y_{i}^{*} \times w_{i}\right]}{\sum_{i=1}^{k}\left(i-\bar{k}_{w}\right)^{2} \times w_{i}} \tag{4.10}\\
\hat{\alpha}_{k w} & =\overline{\bar{Y}}_{k w}-\hat{B}_{k w} \bar{k}_{w} \tag{4.11}
\end{align*}
$$

and the estimate of reliability is:

$$
\hat{R}_{k w}= \begin{cases}1-e^{-\left(\hat{\mathbf{z}}_{k}+\hat{B}_{k w} k\right)} & \text { for } k>1 \tag{4.12}\\ 1-e^{-\bar{Y}_{1 w}}=1-e^{-r_{1}} & \text { for } k=1 \text { as before }\end{cases}
$$

C. EXAMPLE OF THE WEIGHTED EXPONENTIAL REGRESSION MODEL

The following example is offered as a means of clarifying the application of this model.

Suppose that a system undergoes ten phases of testing and a phase is terminated upon occurrence of the third failure in each phase (i.e., $F_{1}=3, F_{2}=3 \ldots F_{10}=3$). Suppose further that the weights given to each phase are as follows (See Table 1A):

> TABLE 1A. EXAMPLE OF WEIGHT DATA

Phase	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	8	9	10
Weight	.03	.03	.03	.03	.03	.15	.15	.15	.20	.20

These weights have been arbitrarily selected for the purposes of this example. Actual calculation and/or selection of weights will be discussed in section D of this chapter.

Tables 2 and $2 A$ represent the test data collected on this fictitious system and the resulting calculations based on this data:

TABLE 2. EXAMPLE PARAMETER CALCULATIONS BY PHASE

Phase(k)	\# Trials to $F_{A}\left(x_{r}\right)$	1**	\bar{k}	$\overline{\overline{1}}{ }_{\text {d }}$	B_{4}	$\hat{\alpha}_{1}$
1	1	. 333333	1	.3333.3	*	*
2	4	. 3.33333	1.5	. 333133	.124×111:	.333331
3	7	. 949995	2	.538sss	. 3118.333	-. 1177777
4	10	1.3289\% ${ }^{\text {a }}$	2.5	.730408	. 30×13.56	-.16+48 4
5	4	. 33.3333	3	. 6.5 .579 .3	.19456.3	. 357104
6	9	1.217856	11.5	2.24S+11	-. $111333+1.0$	3.228533
7	4	.33.33.3	9.333	1.6100511	-.108354	2.6213 .57
8	35	2.6182113	9.0	1.S620s0	-.125.571	2.942230
9	112	3.7912111	11.25	2.5010887	-.12308s	4.211384
10	176	4.244785	11.1	3.090360	-.1359.18	4.592 .318

and reliablility estimates, $\hat{R}_{k}=1-e^{\left.-\hat{\theta}_{k w}-\hat{B}_{k s} k\right)}$

TABLE 2A. EXAMPLE RELIABILITY ESTIMATES

Plast (k)	1	2	3	t	5	6	7	8	9	10
$\hat{R}_{\mathbf{4}}$. 368.100	. 37925	. 13753 :	. 500474	. $50-331$.92104:	.89404:	.89184,	. 955032	. 963681
\boldsymbol{R}_{1}	.398+14	+28100	. 480179	53924	(610994]	702688	.79812-	. 89996	. 950994	.990)(14

* = not computed in the first phase. See equation (4.7).

D. METHODS OF WEIGHTING

1. Method One.

In the unweighted exponential regression model the estimate of B is the Gauss-Markov estimate when the variance in each phase is equal. When the variance is not equal from phase to phase "the variance of B is unnecessarily large." [Ref. 5]. This variance in parameter B accounts for the demonstrated higher reliability estimate variance evidenced in previous work [Ref. 1]. In order to diminish this variability each phase is systematically accorded a weight determined by the estimate of the variance of the phase:
$w_{k}=$ the weight allocated in phase $k=\frac{1 / \hat{\sigma}_{k}^{2}}{\sum_{i=1}^{k} 1 / \hat{\sigma}_{l}^{2}}$
using weights derived in this manner, $B_{k w}$ in equation (4.9) becomes:

$$
\begin{equation*}
\hat{\mathrm{B}}_{k w}=\frac{\sum_{i=1}^{k}\left[1 / \hat{\sigma}_{l}^{2}\left(i-\bar{k}_{w}\right) \times Y_{l}^{*}\right]}{\sum_{l=1}^{k}\left[\left(i-\bar{k}_{w}\right)^{2} \times 1 / \hat{\sigma}_{i}^{2}\right]} \tag{4.14}
\end{equation*}
$$

which is unbiased and has minimum variance among all unbiased estimators of B [Ref. 5].

Figure 2 demonstrates the effect of weighting the exponential regression model by this method.

As one can see, the weighted model more closely estimates actual reliability, particularly after the third phase of testing. Chapter VI contains more detailed comparisons of models.

Figure 2. The Weighted Exponential Regression Model in Conjunction with Method One Weights.
2. Method Two

The second method of weighting applied to the exponential regression model was less theoretically derived. This method systematically allots more weight to the most recent phase. The rationale for the implementation of such a method is that since the aim of the development process is to improve the system, the reliability in the latter phases will be greater than in earlier phases. While this is not necessarily the case, the method none the less has intuitive appeal.

The weights used in this second method are calculated for each phase as follows:

$$
\begin{equation*}
w_{k}=\frac{\hat{\sigma}_{k}^{2}}{\sum_{i=1}^{k} \hat{\sigma}_{i}^{2}} \tag{4.15}
\end{equation*}
$$

To see why this expression creates weights which increase with phase, recall that an estimate of the variance of the negative binomial distributed data is:
$\hat{\sigma}_{k}^{2}=$ an estimate of variance in phase $k=\frac{\left(F_{k}\right) \times\left(\hat{p}_{k}\right)}{\left(1-\hat{p}_{k}\right)^{2}}$
where:
$\mathbf{F}_{\mathbf{k}}=$ \# of failures in phase k, as before, and
$\hat{p}_{k}=$ The maximum likelihood estimate of the reliability in phase k.

Assume, as in our example in section C, that the number of failures in each phase is constant, then the term F_{k} may be ignored. One can readily see that as \hat{p}_{k} increases, $\hat{\sigma}_{k}^{2}$ increases and therefore, w_{k} increases.

Figure 3 demonstrates the effect of weighting the exponential regression model by this method. The model weighted in this manner more accurately tracks actual reliability than both the unweighted and method one weighted model. More extensive comparisons are drawn in chapter VI.

Figure 3. The Weighted Exponential Regression Model in Conjunction with Method Two Weights
3. Method Three

The third and final method of weighting the exponential regression model has no roots in theoretical mathematics. This "method" is simply to let the user select the amount of weight he desires to assign to each phase. His only constraint is that the sum of these weights over all phases equals unity. Selecting the weights for this method is currently analogous to specifying the parameters for use in failure discounting. Unless one possesses extensive knowledge and intimate familiarity with the system being evaluated as well as its developmental history, use of this method is not advisable.

To demonstrate the radical behavior of the model when this method of weighting is employed, five different cases of weights were evaluated. The weights for each case are listed in Table 3.

Figure 4 is an example of the behavior of the model when the weights listed as case 3 are employed. As one can see, this selection of weights resulted in an extremely poor performance of the model against the pattern of actual reliability. As with the previous two methods, further comparisons are contained in Chapter VI.
table 3. SAMPLE METHOD THREE WEIGHTS

Phase(k)	case 1	case 2	case 3	case 4	case 5.
1	.014285714	.014285714	.03	.333333333	.0025
2	.014285714	.014285714	.03	.333333333	.0025
3	.014285714	.014285714	.03	.333333333	.005
4	.014285714	.014285714	.03	.333333333	.0025
5	.014285714	.014285714	.03	.333333333	.01
6	.014285714	.014285714	.15	.333333333	.025
7	.014285714	.014285714	.15	.2	.05
8	.2	.3	.15	.2	.1
9	.3	.3	.2	.2	.3
10	.4	.3	.2	.2	.5

A=ACTUAL, R=REGRESSION, $1=\mathrm{METH} .1,2=\mathrm{METH} .2,3=\mathrm{METH} .3$

Figure 4. The Weighted Exponential Regression Model in Conjunction with Method Three Weights.

As a comparison, the weights for each of the methods depicted in Figure 4 are listed in Table 4.

TABLE 4. COMPARISON OF METHODS ONE, TWO AND THREE WEIGHTS OVER A TEN PHASE SIMULATION.

Phase	1	2	3	4	5	6	7	8	9	10
Merhod I Weights	1.0	. $5(0)$. 166	. 177583	.1180613	.196247	. 068227	. 01891	. 61318	. 019982
Nethod 2 Weights	1.0	. $5(0)$. 555	. 530174	.297(1).	.279113	. 192177	. 10.51043	.7115975	.695464
Method 3 Weights	. 11.3	. 03	. 13	. 13	. 03	. 15	15	. 15	2	. 2

The values listed are the amount of weight given to that particular phase when it is the current phase. Thus, for example, in Phase 9, method 1 allots .0031794 to the 9th phase and 1-.0031794 = .9968206 to the previous eight phases. Method 2 allots a much greater weight to phase 9, i.e., 705975 , and only $1-.705975=.294025$ to the previous eight phases.

V. THE MAXIMUM LIKELIHOOD ESTIMATE WITH FAILURE DISCOUNTING IN THE TEST-FIND-TEST SCENARIO

A. DESCRIPTION

The conventional maximum likelihood estimate of reliability is:
$\hat{R}=$ \# of successes/\# of trials
In order to use the estimator however, "...constant reliability, R, is required for each trial. Because the reliability at each phase R_{k} may not be constant with k ; only the test data from the phase of interest may be used to estimate reliability" [Ref. 1:p. 22]. An excellent detailed description of failure discounting as applied to the test-fix-test scenario is contained in Ref.1:pp.13-21. This section primarily addresses the process when employed in conjunction with the test-find-test scenario.

The straight percent discounting method attempts to reflect improved system reliability by removing a fraction, F, of a failure's weight at an interval of every N trials. This sequence of N successful trials must occur in a followon phase of testing, after the components which were "found" to be causes of failure are modified or repaired. The idea here is that accumulation of subsequent testing without repeat of a failure for the same cause increases the confidence that the failure cause has been removed; therefore its weight in further estimations should be
diminished. When using this method, the data is first adjusted and the model is applied to the modified data. The success of the model is wholly dependent on the correct adjustment of the data and hence the parameters chosen in calculating these adjustments. The equation used to compute the current value of an adjusted failure is:

Adjusted failure
$(j)=(1-F)^{\text {int }(M / N)}$
where M is the number of successful sequential trials in follow-on phases for failure cause j and F and N are as above.
B. EXAMPLE

As an illustration of the method, consider the results of the following example. Suppose, as in our previous example, testing in each phase continues until the occurrence of the third failure. Further suppose the results of two phases of testing are as in Table 5.

TABLE 5. MLEWD EXAMPLE DATA

Phase	\# Failures	\# Trials to 3rd Failure	\# Successes
1	3	5	$5 \cdot 3=2$
2	3	6	$6-3=3$

Then applying equation (5.1), the maximum likelihood estimates without failure discounting are:

$$
\begin{equation*}
\hat{R}_{1}=2 / 5=.4 ; \quad \hat{R}_{2}=3 / 6=.5 \tag{5.3}
\end{equation*}
$$

As one can see, the information obtained from the first five trials is disregarded in the calculation of the estimate of the reliability in the second phase. Continuing in this manner, the data in the first eleven trials will be ignored in computation of the third phase reliability. This practice is extremely inefficient by any standards.

In the test-fix-test scenario, [Ref.1:pp. 15-16] it is assumed that a design "fix" is implemented after each failure; in a test-find-test scenario, no modifications are assumed until a given number of failures is observed. The causes of the failures are merely noted for subsequent action. Since there is no justification for applying the discounting method until follow-on phases prove a cause corrected, different values of weights are assigned to the same sequence of successes and failures in these two scenarios. Tables 6 and 7 illustrate the application of the discounting method to both situations. In the calculations, the parameters $N=3$ and $F=.25$ are arbitrarily chosen. Unfortunately, in practice, they are often likewise selected.

TABLE 6
TEST-FIX-TEST DATA WITH DISCOUNTING

FAILURE CAUSE

Phase	Trial	A		B		C		D	
1	1	S	0	S	0	S	0	F	1
2	2	S	0	F	1	S	0	S	1
3	3	S	0	S	1	S	0	S	1
3	4	S	0	S	1	S	0	S	. 75
3	5	F	1	S	. 75	S	0	S	. 75
4	6	S	1	S	. 75	S	0	S	. 75
4	7	S	1	S	. 75	F	1	S	. 5625
5	8	S	. 75	S	. 5625	S	1	F	1
6	9	S	. 75	S	. 5625	S	1	S	1
6	10	S	. 75	F	1	S	. 75	S	1
7	11	S	. 5625	S	1	S	. 75	S	. 75

Notation: For each failure cause the attribute $\mathbf{S}=$ Success $\quad \mathbf{F}=$ Failure is listed along with the corresponding weight of that attribute.

TABLE 7
TEST-FIND-TES'r DATA WITH DISCOUNTING
failure cause

Phase	Trial	A		B		C		D	
1	1	S	0	S	0	S	0	F	1
1	2	S	0	F	1	S	0	S	1
1	3	S	0	S	1	S	0	S	1
1	4	S	0	S	1	S	0	S	1
1	5	F	1	S	1	S	0	S	1
2	6	\bar{s}	1	S	1	S	0	S	1
2	7	S	1	S	1	F	1	S	1
2	8	S	. 75	S	. 75	S	1	F	1
2	9	S	. 75	S	. 75	S	1	S	1
2	10	S	. 75	F	1	S	1	S	1
2	11	S	. 5625	S	1	S	1	S	1

Testing in the Test-Find-Test scenario terminates after the 3rd failure. The straight percent discounting parameters are:
$\mathbf{N}=$ Discount Interval $=3$
$F=$ Fraction the failure is reduced $=.25$

Using the test-fix-test discounted data and MLEWD model produces the results shown in Table 8 upon completion of the eleventh trial.

TABLE 8. RESULTS OF THE MLEWD MODEL APPLIED TO THE TEST-FIX-TEST DATA

$\begin{aligned} & \text { PHASE = } \\ & \text { FAILL'RE \# } \end{aligned}$	CAUSE	ADJ. FAILURE	ADJ. TRIALS
1	D	. 75	$1.75=1.3333$
2	B	1	$11.0=1.00000$
3	A	. 56.25	$3.5625=5.333:$
4	C	. 75	$2.75=2.6667$
5	D	. 75	$1.75=1.3533$
6	B	1	$31.0=3.06 \pi \%$

$\sum A D J . T R I .4 L S=14.6665$.
Adj. trials $=(\text { the observed } \equiv \text { of trials since the previous failure })^{i}$ (adjusted failure value).
and

$$
\begin{equation*}
\hat{R}_{6}=\frac{\left(\sum A D J U S T E D T R I A L S\right)-(T O T A L \# O F F A I L L R E S)}{\left(\sum A D J C S T E D T R I A L S\right)}=.5909 \tag{5.4}
\end{equation*}
$$

As one can see, this estimate is higher than that predicted after the eleventh trial (second phase; eq. 5.3) using the MLE without discounting. Since it takes into account 5 additional data points it is considered to be a superior estimate...provided the parameters were correctly chosen.

The results of the test-find-test-scenario after the eleventh trial are as shown in Table 9.

TABLE 9. RESULTS OF THE MLEWD MODEL APPLIED TO THE TEST-FIND-TEST DATA

PHASE	CAUSE	ADJ. FAILURE	ADJ. TRIALS
$\mathbf{1}$	D	1.0	$1: 1.0=1.0000$
1	B	1	$111.0=1.0000$
1	A	.5625	$3.5625=5.3333$
2	C	1.0	$21.0=2.0000$
2	D	1.0	$11.0=1.0000$
2	B	1	$31.0=3.0000$

$\sum A D J$. TRIALS $=13.3333$.
$\hat{R}_{2}=.5+99$

As a comparison, the reliability after the second phase of testing in the test-fix-test scenario would be zero since there were two failures in two trials.

The results seem to indicate that the estimate of reliability of a system or equipment will grow more quickly
appeal as it seems likely that if failure causes are corrected immediately they are else like to be responsible for further failure. These results additionally demonstrate that the use of discounting has the desirable characteristic of producing higher estimates of reliability than the conservatively biased MLE without discounting [Ref. 3:p. $34]$ •
VI. MODEL COMPARISONS
A. INTRODUCTION

In sections B through F of this chapter, the performance of the unweighted exponential regression model will be compared to that of the weighted model used in conjunction with weighting methods one and two. The employment of method three will be discussed in Section G. The performance of the MLEWD will additionally be discussed where appropriate. For the purposes of this evaluation patterns VI, VII and VIII will be discussed as a group in the category, Constant Reliability. Patterns IV and V will be similarly grouped under the title Rapid Reliability Growth, while pattern I, Convex Reliability, pattern II, Decreasing Reliability and pattern III, Intermittent Reliability will be evaluated individually. All discussion is in regard to test-fix-test scenarios to facilitate reference to previous work.

B. CONSTANT RELIABILITY PATTERNS

Figure 10 [Ref. 2:p. 32] illustrates the performance of the MLEWD model against representative constant reliability pattern VI. No failure discounting was implemented in this case. The MLEWD model performed better than either the weighted or unweighted regression models in all three constant reliability patterns, although its superiority
diminished with lower levels of constant reliability. This was expected since, as indicated in Chapter V, the underlying assumption of the MLE is one of constant reliability.

Figure 5 is an illustration of the unweighted and weighted exponential regression models also against constant rellability pattern VI. Regardiess of the level of constancy, the unweighted model consistently underestimated rellability while the weighted model overestimated it. In all patterns, the model weighted using method 2 (i.e., more weight to the most recent phase) produced better results than when method 1 (i.e., more weight to less variable phases) was employed.

C. RAPID RELIABILITY GROWTH

Figure 6 depicts the performance of the models when applied to Pattern V. This pattern is one in which "actual" reliability achieves its greatest value (approximately .9) early in the testing process (phase 3) and remains there throughout the remainder of the testing. Pattern IV is, in all ways, similar to pattern V with the difference being that it achieves the value of approximately . 99 in phase 3. Both versions of the weighted model and the unweighted model underestimated reliability during its growth phases although

Figure 5. Weighting Methods One and Two and the Constant Reliability Pattern

RAPID RELIABILITY GROWTH PATTERN

Figure 6. Weighting Methods One and Two and the Rapid Reliability Growth Pattern
the weighted models more accurately tracked the process. As with constant reliability, the model weighted by Method 2 outperformed the model when weighting Method 1 was employed. Also similar to constant reliability performance results, both versions of the weighted model produced higher estimates than the unweighted model over all phases. Given this underlying pattern, if one is concerned with tracking the initial phases of testing, the weighted model in conjunction with Method 2 is recommended as it best captures the growth portion of the development process. The unweighted model in this case seems to best capture the constant reliability portion of the development although its superiority is minimal. Figures 13 and 14 [Ref. 2:pp. 3637] illustrate the performance of the MLE both with and without discounting. In both cases, the exponential regression model outperforms the MLE over all phases.

D. CONVEX RELIABILITY GROWTH

This pattern illustrated the most dramatic support for application of weighting to the exponential regression model. Figure 7 depicts the substantial improvement in reliability estimation when weighted Method 2 is employed. Use of Method 1 also produced superior results to the unweighted model although these were not as dramatic, particularly in the latter phases of testing. Euth versions of the weighted model seemed to capture the pattern of

Figure 7. Weighting Methods One and Two and the Convex Reliability Growth Pattern
growth as early as phase 2. No earlier improvements can be anticipated as all three versions of the regression model require at least two phase of testing to perform a linear regression.

Figure 23 [Ref. 2:p. 46] demonstrates the poor performance of the MLE when no discounting is applied.

These results are not surprising as the underlying assumption of constant reliability in the case of the MLE is violated here. A dramatic improvement as seen in Figure 24 [Ref. 2:p. 47] when discount parameters, $F=.75$ and $N=6$ are applied to the data. The parameters were selected after a good deal of trial and error simulation, however, and no explanation as to why this choice of parameters was effective can currently be offered. Since the luxury of simulation is not often available in practice, and the weighted model in conjunction with Method 2 outperforms the other models, it is recommended for use while the underlying reliability pattern is suspected to be convexly increasing. E. DECREASING RELIABILITY

Figure 8 indicates that the same general previous observations can be made with regard to the performance of the models in the case of decreasing reliability. The unweighted regression model produced estimates which are everywhere below those of the weighted model regardless of the weighting method employed. Additionally, the weighted models seem to more accurately capture the changing growth pattern. The unweighted model is most accurate when actual reliability decreases to a low value however this is primarily due to the fact that the unweighted model consistently tends to underestimate actual reliability and

Figure 8. Weighting Methods One and Two and the Decreasing Reliability Growth Pattern
is less responsive to changes in the actual growth pattern. Therefore when actual reliability dipped and the already low unweighted model did not respond, the result was a fairly accurate estimate. As in previous patterns, the model weighted by giving most weight to the most recent phase
estimate produces the most responsive results. For this reason, this model would be recomended in this case.

Figures 17 and 18 [Ref. 2:pp. 40-41] demonstrate the inability of the MLE model to capture a decreasing reliability pattern whether failure discounting is employed or not.
F. INTERMITTENT RELIABILITY GROWTH

The Intermittent Reliability Growth pattern (Figure 9) can be described as one in which reliability grows fairly rapidly, remains constant for several phases and then resumes growth. Such a pattern would occur if intended improvements to a developing system were ineffective for a period of time before discovery of beneficial change was implemented. As in all previous patterns, the unweighted model produced more conservative estimates than both versions of the weighted model. Also as before, the model weighted by Method 2 was most responsive to changes in the reliability pattern. This is particularly evident in phases 5 and 6 where it dips below the Method 1 estimate in an attempt to recognize the period of constant reliability. All three versions of the exponential regression model outperformed the MLE model regardless of whether failure discounting was employed. Figures 20 and 21 [Ref. 2 :pp. 4344] reflect this.

Figure 9. Weighting Methods One and Two and the Intermittent Reliability Growth Pattern
G. THE WEIGHTED MODEL IN CONJUNCTION WITH METHOD 3 WEIGHTING

Weighting Method 3 is the application of user selected weights to the exponential regression model. Figures 10 14 corresponding to representative examples of constant, rapidly increasing, convex, decreasing, and intermittent reliability respectively, demonstrate the sensitivity of the
model to the choice of weights. In every case the weighted regression model identically tracks the unweighted model until the user influences the process by applying a weight to a phase. For example, when the case 1 weights are employed, the user has given equal weight to the first seven phases of testing. This is equivalent to not weighting the model at all. Therefore, one would expect the unweighted model to produce identical results to this version of the weighted model. That this is in fact occurring, is most clearly seen in Figure 10. Tracking the curve labeled "1", (corresponding to case 1 , Weights Table 3), one can see it is identical to the unweighted growth curve until Phase 7 after which it abruptly increases. Similar departures from the unweighted curve are seen for the other four cases of user selected weights. These results are welcome in that they substantiate the programming of the weighting process. They are disappointing however, in that, as with the MLEWD model, the response of the exponential regression model seems to be very sensitive to the choice of weights. Unlike the MLEWD model though, there are two systematic means of selecting weights which consistently produce accurate results (i.e., methods 1 and 2). It is recommended that these two weighting methods be employed unless the user is intimately familiar with the development process and has the unique ability to reflect his knowledge in the choice of weights.

Figure 10. Method Three Weights and the Constant Reliability Growth Pattern

Figure 11. Method Three Weights and the Rapid Reliability Growth Pattern

Figure 12. Method Three Weights and the Convex Reliability Growth Pattern

Figure 13. Method Three Weights and the Decreasing Reliability Growth Pattern

Figure 14. Method Three Weights and the
Figure 14. Intermittent Reliability Growth Pattern
VII. SUMMARY, CONCLUSIONS, RECOMMENDATIONS
A. SUMMARY

Captain Drake created a FORTRAN program which simulated actual reliability patterns and evaluated the performance of three reliability growth models against these patterns. His work indicated that the MLEWD model was effective against all patterns when used in conjunction with the correct discounting parameters. He also found that the exponential regression model likewise tracked all actual patterns and was relatively insensitive to the discounting parameters. This model, was however, more variable than the MLEWD model.

Captain Chandler modified Captain Drake's program to produce several additional actual reliability patterns and subsequently evaluated both models against these patterns. His results demonstrated that the MLEWD model was incapable of tracking declining reliability and was only superior to the exponential regression model when actual reliability was constant; a phenomenon which, by design, rarely occurs in the development process.

The objective of this thesis was to improve the exponential regression model by applying weights to the model at each phase. The intent was to produce an accurate means of estimating changing reliability without burdening the user with selecting discounting parameters.

Three methods of weighting were derived. The first method gives low weight to the most variable estimates of reliability, while the second weights most recent results more heavily. With both these methods, the FORTRAN program systematically computes these weights at each phase. In method 3 , the user is required to input values of weights for each phase of testing. Use of this method produced results which were very sensitive to the weights chosen and presented the user with the dilemma of selecting critical input parameters without any guidance. Since this is the very situation which the employment of weights was derived to avoid, this method is not recommended.

B. CONCLUSIONS

Regardless of the underlying actual reliability pattern or the method of weighting, the weighted exponential regression model produced higher estimates of reliability than the unweighted model. Since the unweighted model generally underestimates actual reliability this is considered to be a desirable characteristic. Both the weighted and unweighted model produced results comparable or superior to the MLEWD model against all variations of the actual reliability pattern with the exception of the case of constant reliability. In this case, the MLEWD would be recommended.

In all other cases, the regression model weighted by Method 2 seems to be most responsive to changes in actual reliability. Additionally, it produced more accurate estimates than the model weighted by either Methods 1 or 3. In the case of convex reliability Method 2 weights are a clear choice over the unweighted model as well. When a period of decreasing reliability is suspected in the development process, the Method 2 weights are also recommended unless one is concerned with the magnitude of the decrease as opposed to the trend of the pattern. In this case the more conservative unweighted model is recommended. When estimating the reliability of the intermittent and rapidly increasing patterns, the Method 2 weighted model most accurately captured the growth phases of reliability but were less accurate than the unweighted model in the final phase of testing although the differences in estimates here were minimal. Based on these conclusions, it is recommended that if a user has little or no knowledge of the actual reliability growth of a developing system or equipment, he would be wise to select the exponential regression model in conjunction with Method 2 weights to estimate the reliability growth curve.

As a final conclusion to this study, implementing the unbiased estimator with minimum variance, Y_{k}^{*} in all versions of the exponential regression model resulted in an improved reliability estimate over the models in conjunction with $\overline{\mathbf{Y}}_{\mathrm{k}}$.
C. RECOMMENDATIONS FOR FURTHER STUDY

The following are recommendations for further study.

1. Since a large segment of the commercial world collects its reliability data in terms of mean time between failures (MTBF's) it is highly recommended that a simulation to analyze continuous data be derived.
2. Presently, straight percent failure discounting has shown some promising results when the discounting parameters are correctly chosen. Development of guidelines for selecting these parameters would certainly be of value in the employment of the MLEWD model. A difficulty in studying these parameters is that they cannot be altered from phase to phase or varied with failure cause in the current version of the program.
3. As with failure discounting, the employment of user selected weights might prove beneficial if guidelines could be developed to aid in their selection. A more extensive analysis of this weighting method is recommended.

APPENDIX A

USER'S GUIDE TO DISCRETE RELIABILITY GROWTH (DRG)

1. Introduction
2. The DRG Exec File
3. The Input Data File

APPENDIX A: USER'S GUIDE TO DISCRETE RELIABILITY GROWTH (DRG)

1. Introduction

In order to use the Fortran program, DRG, the user must possess three files:

1. Input_ data Al
2. DRG Fortran A1
3. DRG Exec A1

A sample of each of these files is contained in Appendix B along with sample output. The input file and the exec file may be tailored to the user's needs. In its current form, the exec file produces a large degree of intermediate calculations for both the DRG Fortran program and Captain Chandler's program, JIMC Fortran A1. A copy of this program is also contained in Appendix B. These calculations may not be of interest to the user and may be eliminated with no detrimental effect to the program. A detailed explanation of each file definition is contained in section 2 of this appendix.

The difference between the two versions of the Program is that JIMC Fortrans retains the ability to employ the weighted average estimate model and uses $\overline{\mathrm{Y}}$ vice Y^{*} in the calculations of all versions of the exponential regression model. (see chapter III for a discussion of the motivation for altering this parameter which is discussed in

Section 3 para 12. In all other ways, the input files for these two programs are identical.
2. The DRG Exec File

This file contains all the requisite file definitions and commands to run either DRG Fortran A1 or JIMC Fortran A1. To indicate which of these programs is desired, the user must alter the third line of the file so that it reads, \&FN=DRG or $\& F N=J I M$ respectively. Once this has been done, the user simply types DRG or JIMC while in CMS to execute the program.

Of the remaining lines, only those beginning with the word FILEDEF should be altered or eliminated. All other lines contain commands pertaining to the execution of the program. The first FILEDEF line currently reads FILEDEF 10 DISK INPUT1 DATA A1. The "1" in the filename indicates that this data file produces actual reliability growth pattern 1 described in this thesis. Eight patterns and input files have been established for each program. These input files may be duplicated as described in Section 3 using the corresponding pattern parameters in Ref. 2 if the user does not have them readily available. This FILEDEF may not be eliminated from the exec file, however the "1" may be changed to any integer up to and including "8" for use with DRG Fortran A1. The integers 9 through 16 correspond to the same patterns when executing JIMC Fortran Al. This numbering convention is adhered to with the remaining

FILEDEFs. Since a filename is only permitted to be six characters in length, whenever necessary, it is truncated to include the integers discussed. For example, input $1 \varnothing$ is an unacceptable filename therefore the " T " is dropped from the word "input" to allow "inpu10."

The next two FILEDEFs have the filenames $A 1$ and $A 9$ respectively. The first corresponds to the "actual" reliability pattern (pattern 1) produced by the DRG program while the second corresponds to the same pattern when JIMC Fortran A1 is run. These files should contain identical output. Both are kept for convenience so that if for instance, the user runs DRG with pattern 1 input and then JIMC with pattern 2 input he will still retain the initial "actual" reliability file, i.e., it will not be overwritten. These two files were both devised solely for plotting purposes and may be eliminated with no disruption to the program. The information contained in these files is duplicated in PRELIAB and JRELIAB Listing respectively.

PRELIAB LISTING A1 contains the primary comprehensive output for the DRG Fortran program while JRELIAB contains similar information for JIMC Fortran Al. These files consist of a model parameter summary, a comparison of the mean predicted reliability for each model to the actual, the estimate standard deviation and a 95\% confidence interval for each model. Also contained in these files is a
recapitulation of results so that each model may be compared to all others. These FILEDEFs should not be eliminated from the exec file.

JThesis and PThesis are the filenames corresponding to the intermediate summary output produced by JIMC and DRG Fortran respectively. These files contain a phase by phase listing of failures and failure causes for up to 5 simulations. This output may be "turned on (or off)" by placing a 1 (or $\emptyset)^{n}$ in the appropriate line of the input file. See section 3 para 12 for details. These FILEDEFs should not be eliminated from the exec file.

PMATRIXA and JMATRIXA contain the working "A" matrix for each of the programs. The working A matrix contains such information as the probability of success for each failure cause, the number of trials to failure for each cause, the system cause of failure, the phase number, and, in the case of JMATRIXA, the adjusted number of trials and adjusted number of failures. These FILEDEFs may be eliminated if desired.

PREGMAT and JREGMAT contain the parameters computed in the REG, WREG1, WREG2, and WREG3 arrays as described on page 2 of the program heading, (Appendix B, section 3). These matices pertain to the exponential regression and Weighted exponential regression models. These files are not required.

Ystar LISTING is produced only by DRG Fortran Al. It currently lists (arbitarily) the first 219 values for the tenth phase of testing. It is included merely as a verification of the implementation of this parameter. This FILEDEF may be eliminated.

TRIALS DATA A1 is also only produced by DRG Fortran A1. It lists the adjusted trials to failure for each phase. In addition, the weights computed for use by methods 1 and 2 are contained here. This FILEDEF is not required.

EST OUT A1 is produced only by JIMC Fortran A1 and contains each phase estimate generated by the Woods Weighted Average Estimate Model for up to the first 5 simulations run. The remaining FiLEDEFs with File Type "OUT" contain similar information generated by the filename models. A file name beginning with the letter "J" corresponds to output produced by JIMC Fortran A1, while a file name starting with the letter "P" originated from DRG Fortran A1. These FILEDEFs should be retained.

All of the remaining FILEDEFs correspond to files generated solely for plotting purposes. Each contains the mean reliability estimates of each phase in the Filetype "NUM" file and the corresponding standard deviation of these estimates in the Filetype "SDV" file. The information in these files is duplicated in PRELIAB and JRELIAB LISTING. If the user is not interested in graphing results, these 24 FILEDEFs may be eliminated. As explained earlier, the
integers in the filenames of these files correspond to the underlying actual reliability growth pattern.

3. The Input Data File

These instructions should be used in conjunction with a sample input file (See Appendix B, section 2) to aid in understanding. The easiest method for preparing an input file is to edit an existing input file. Due to the formatting of the "READ" statements in the simulation, it is imperative that all inputs be entered in the correct sequence. The simulation is built to read input from device number 10.

The following steps should be allowed in order to produce an acceptable input file. All entries must be on a separate line in the input file although they may be anywhere in the line as long as the data entry is the first item encountered.

1. Determine how many failure causes will be allowed in this simulation. This number must be an integer greater than or equal to one. There is no set limit on how large a number is possible. The capacity of the machine on which the program is being run will have some effect. Enter this number on the top line.
2. Determine how many test phases are desired. Again, this number must be an integer greater than one. Enter this number on line 2.
3. If the fixed phase reliability mode is desired than enter a 1 on line 3. If the constrained random growth mode is required than enter a 0 on line 3.
4. Enter the number of failures that will be allowed in Phase 1 on line 4. This number must also be an integer. A test-fix-test scenario would have one failure per phase, for example. Repeat this process on successive lines until you have entered the number of failures allowed for each phase that will be tested. Remember, if you defined the test as being 10 phases, then you should have 10 separate entries, each on its own line, for this step.
5. If the constrained random growth option is selected (you should have entered a 0 at line 3) then you must now enter the probability of success due to each failure cause for the first phase. This step should contain as many lines as the number of failure causes you identified in Step 1. The probability of success due to a failure cause is simply the probability of the failure cause occurring subtracted from one.
6. If the fixed phase reliability option is selected (you should have entered a 1 at line 3) then the process of entering the probabilities of success is a little more involved. Fixed phase reliability means that one is controlling the actual system reliability at each phase of the test. Since this system reliability is merely the product of the probabilities of success of all the failure causes at each phase then the user must enter these probabilities. These probabilities are entered by failure cause for each phase. If there are two failure causes and 3 phases in a test then the first entry will be the probability of success due to failure cause 1 in phase 1; the next entry will be the probability of success due to failure cause 1 in phase 2 and then failure cause 1 in phase 3. After failure cause one has been entered for all three phase then failure cause 2 's probabilities of success should be entered by by phase. Remember that each data entry must be on its own separate line. If X is the number of failure causes and Y is the number of test phase then this step should result in $X Y$ total data input lines. This number does not alter if more than one failure is permitted in a phase.
7. The next item that must be entered concerns use of the standard failure discount method. Even if you desire to use the C.L. discount method or if you do not desire to discount previous failures at all you must still place a value in this line. This line requires you to enter the discount interval or the number of successful trials that must occur between applications of the standard discount method. This number should be an integer.
8. The next item required is the discount fraction. This value also applies to the standard discount method. If you do not want to discount previous failures then your should enter 0.0 on this line. If you desire to discount previous failures by 50 percent each time the discount method is applied then you should enter 0.50 on this line. If you are using the C.L. discount method, you must still enter a value here, although it will not be used by the models in estimating reliability.
9. The next required entry is the random number seed for random number geperator. Any number greater than zero and less than 2^{31} will suffice.
10. The FRIMP must be entered next. This value is only used if the constrained random growth mode is selected at line 3. This number must be between 0 and 1 and represents the fraction by which reliability will improve from phase to phase. It is applied to the probabilities of success of the failure causes each time they cause system failure in a phase. This method is intended to represent repairs or improvements in the system during the test. An entry of 0 will result in constant reliability while entries close to one will result in rapid reliability growth. Even if you are using the fixed phase reliability option you must still enter a value here although it will not play any role in the simulation.
11. The next item that must be entered is the number of replications desired. For the purposes of the thesis associated with this paper 500 replications were done for each reliability growth pattern.
12. The next 7 (8, for use with JIMC Fortran Al) lines of required input deal with intermediate and specified output. They are all binary (0 or 1) option statements. The first addresses intermediate output. If intermediate phase by phase data is desired then the user should enter a 1 here. If intermediate output is not desired then enter a 0 . This output will get voluminous rather quickly, particularly if a large number of relications is requested. The remaining options deal with the estimates generated by each model at each phase. The final output (which will be given regardless of the options chosen here) represents the average of all these estimates. If phase estimates are desired then a 1 should be entered; if not then enter a 0 . The order of entry is weighted average model (for JIMC Fortran program only), MLE with failure discounting model, MLE single phase model, exponential regression model, and weighted exponential regression methods 1 through 3. Again, each data entry must be on a separate line.
13. The next required entry is the failure discounting option. If you desire to use the standard discount method then enter a 1 . If you desire not to discount at all enter a 1 and make sure you have entered 0.0 as instructed at Step 8 above. If you desire to use the C.L. method of failure discounting then enter a 2 in this space.
14. Next enter the value of the C.L. method parameter (the confidence interval). This number should be between 0 and 1 and will typically be in the range of 0.8 to 0.99 .
15. The next item that must be provided is the C.L. discount interval. Normally, the C.L. method does not use a discount interval (defined similar to the definition of a discount interval for the standard discount method) but in the majority of cases applying this method with some type of specified interval will lead to better results. These last two items must be entered even if one is using a alternate method of discounting. The other method will be applied but values are required due to the particular formatting of the simulation.
16. The final entries that must be made are the weights to be accorded each phase of development. Enter any fraction between zero and one for each phase on a separate line. Remember the sum of these fractions must equal one. These entries are required regardless
of whether the user desires to apply weighting Method 3 or not. Note: Giving equal weight to all phase is equivalent to not weighting and will produce results identical to the exponential regression model.

If the input file is established consistent with the format outlined above and with the sample input file provided in Section 2 of Appendix B then there should be no problem in obtaining results.

\qquad

$$
5
$$

$$
1
$$

$$
1
$$

$$
0
$$

\square

1. SAMPLE EXEC FILE

```
&TRACE OFF
```



```
&FN = DRG
&FN1 = RELIAB
&TYPE Do you need to compile your program ? (Y)
&READ VAR &R_COMPILE
&IF &R_COMPILE NE Y &GOTO -RUN
-H FORTVS &FN
&IF &RC EQ O &GOTO -RUN
&TYPE Your program did not compile; check for errors.
&TYPE Do you wish to view the program LISTING file? (Y)
&READ VAR &RSP1
&IF &RSP1 EQ Y BROWSE &FN LISTING A
&TYPE Do you wish to XEDIT the program file? (Y)
&READ VAR &RESP1
&IF &RESP1 NE Y &EXIT 1
&COMMAND XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP2
&IF &RESP2 EQ Y &GOTO -H
&EXIT 1
-RUN
FILEDEF 10 DISK INPUT1 DATA A1
FILEDEF 82 DISK AI NUM AI
FILEDEF }84\mathrm{ DISK A9 NUM A1
FILEDEF 30 DISK JRELIAB LISTING A1 (LRECL 133
FILEDEF 35 DISK PRELIAB LISTING A1 (LRECL }13
FILEDEF 20 DISK JTHESIS OUT A1
FILEDEF 25 DISK PTHESIS OUT AI
FILEDEF 81 DISK PMATRIXA LISTING (LRECL }13
FILEDEF 83 DISK JMATRIXA LISTING (LRECL }13
FILEDEF }87\mathrm{ DISK PREGMAT DATA A1
FILEDEF 88 DISK JREGMAT DATA A1
FILEDEF }90\mathrm{ DISK YSTAR LISTING (LRECL }13
FILEDEF }89\mathrm{ DISK TRIALS DATA A1
FILEDEF 40 DISK EST OUT A1
FILEDEF 50 DISK JMLEWD OUT A1
FILEDEF 55 DISK PMLEWD OUT A1
FILEDEF 60 DISK JMLESP OUT A1
FILEDEF 65 DISK PMLESP OUT A1
FILEDEF 70 DISK JREGEST OUT A1
FILEDEF 75 DISK PREGEST OUT A1
FILEDEF 15 DISK PWRES1 OUT A1
FILEDEF 39 DISK PWRES2 OUT A1
FILEDEF 49 DISK PWRES3 OUT A1
FILEDEF 16 DISK JWRES1 OUT A1
FILEDEF 38 DISK JWRES2 OUT A1
FILEDEF 48 DISK JWRES3 OUT A1
FILEDEF 52 DISK MLEWD1 NUM A1
FILEDEF 51 DISK MLEWD1 SDV A1
FILEDEF 54 DISK MLEWD9 NUM A1
```

FILEDEF 53 DISK MLEWD9 SDV A1
FILEDEF 72 DISK REG8 NUM A1
FILEDEF 71 DISK REG8 SDV A1
FILEDEF 74 DISK REG16 NUM A1
FILEDEF 73 DISK REG16 SDV A1
FILEDEF 77 DISK MIP1 NUM A1
FILEDEF 76 DISK M1P1 SDV A1 FILEDEF 79 DISK M2P1 NUM A1 FILEDEF 78 DISK M2P1 SDV A1 FILEDEF 92 DISK M3P1 NUM A1 FILEDEF 91 DISK M3P1 SDV A1 FILEDEF 18 DISK M1P9 NUM A1 FILEDEF 17 DISK M1P9 SDV A1 FILEDEF 94 DISK M2P9 NUM A1 FILEDEF 93 DISK M2P9 SDV A1 FILEDEF 96 DISK M3P9 NUM A1 FILEDEF 95 DISK M3P9 SDV A1 FILEDEF 62 DISK MLESP1 NUM A1 FILEDEF 61 DISK MLESP1 SDV A1 FILEDEF 64 DISK MLESP9 NUM A1 FILEDEF 63 DISK MLESP9 SDV A1 FILEDEF 06 TERMINAL
LOAD \&FN (START
\&IF \&RC EQ 0 \&SKIP 9
\&TYPE Your program did not run correctly; check for errors.
\&TYPE Do you wish to XEDIT the program file? (Y)
\&READ VAR \&RESP3
\&IF \&RESP3 NE Y \&EXIT 2
\&COMMAND XEDIT \&FN FORTRAN A
\&TYPE Do you wish to run the program again? (Y)
\&READ VAR \&RESP4
\&IF \&RESP4 EQ Y \&GOTO -H
\&EXIT 2
\&TYPE YOUR OUTPUT IS IN THE FILE \&FN1 LISTING A
\&TYPE Do you wish to BROWSE your output? (Y)
\&READ VAR \&RESP
\&IF \&RESP EQ Y \&COMMAND BROWSE \&FN1 LISTING A
\&TYPE Print your output file? (Y)
\&READ VAR \&RESP7
\&IF \&RESP7 EQ Y \&COMMAND PRINT \&FN LISTING A
-REDO
\&TYPE Do you wish to XEDIT the program file? (Y/N)
\&READ VAR \&RESP5
\&IF \&RESP5 EQ Y XEDIT \&FN FORTRAN A
\&TYPE Do you wish to run the program again? (Y)
\&READ VAR \&RESP6
\&RESP56 $=\&$ CONCAT OF \&RESP5 $\&$ RESP6
\&IF \&RESP56 EQ YY \&GOTO -H
\&IF \&RESP6 EQ Y \&GOTO -RUN
\&EXIT

2. SAMPLE INPUT DATA FILE

NUMBER OF FAILURE CAUSES
NUMBER OF PHASES (NPHASE)
FIXED RELIABILITY OPTION (1 : YES ; 0: NO)
NUMBER OF FAILURES IN PHASE 1
NUMBER OF FAILURES IN PHASE 2
NUMBER OF FAILURES IN PHASE 3
NUMBER OF FAILURES IN PHASE 4
NUMBER OF FAILURES IN PHASE 5
NUMBER OF FAILURES IN PHASE 6
NUMBER OF FAILURES IN PHASE 7
NUMBER OF FAILURES IN PHASE 8
NUMBER OF FAILURES IN PHASE 9
NUMBER OF FAILURES IN PHASE 10
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 1
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 2
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 3
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 4
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 5
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 6
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 7
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 8
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 9
PROB. OF SUCCESS FROM CAUSE 1 IN PHASE 10
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 1
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 2
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 3
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 4
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 5
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 6
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 7
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 8
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 9
PROB. OF SUCCESS FROM CAUSE 2 IN PHASE 10
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 1
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 2
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 3
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 4
prob. Of SUCCESS FROM CAUSE 3 IN Phase 5
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 6
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 7
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 8
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 9
PROB. OF SUCCESS FROM CAUSE 3 IN PHASE 10
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 1
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 2
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 3
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 4
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 5
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 6
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 7 pROB. OF SUCCESS FROM CAUSE 4 IN PHASE 8
0.99
0.998
0.81
0.83
0.84
0.86
0.89
0.91
0.94
0.961
0.99
0.998

1
0.0
624712.0
0.75

500
0
0
0
0
0
0
0
1
0.9

1
0.03
0.03
0.03
0.03
0.03
0.15
0.15
0.15
0.2
0.2

PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 9
PROB. OF SUCCESS FROM CAUSE 4 IN PHASE 10
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 1
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 2
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 3
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 4
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 5
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 6
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 7
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 8
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 9
PROB. OF SUCCESS FROM CAUSE 5 IN PHASE 10
NUMBER OF TRIALS AFTER FAILURE BEFORE A DISCOUNT IS APPLIED
FRACTION EACH FAILURE IS DISCOUNTED
RANDOM NUMBER SEED FOR GGUBFS UNIFORM $(0,1)$ GENERATOR
fraction reliability improves after failing in a phase
NUMBER OF DESIRED REPETITIONS FOR THE SIMULATION
INTERMEDIATE INPUT OPTION(1 : INT. OUT; 0 : NO INT. OUTPUT)
SAVE ALL MLE W/ DISCOUNTING ESTIMATES ($1:$ YES; $0:$ NO)
SAVE ALL MLE SINGLE PHASE ESTIMATES ($1:$ YES; $0:$ NO)
SAVE ALL UNWT'D REGRESSION ESTIMATES (1: YES; 0: NO)
SAVE ALL METHOD 1 WT'D REG. ESTIMATES ($1:$ YES; $0: N 0$)
SAVE ALL METHOD 2 WT'D REG. ESTIMATES ($1:$ YES; $0:$ NO)
SAVE ALL METHOD 3 WT'D REG. ESTIMATES (1: YES; 0: NO)
DISCOUNTING OPTION (1: STRAIGHT \%; 2: LLOYD METHOD)
PERCENT C. I. FOR C.L. DISCOUNTING METHOD(MUST HAVE A VALUE C. L. DISCOUNT INTERVAL

WEIGHT FOR PHASE 1
WEIGHT FOR PHASE 2
WEIGHT FOR PHASE 1
WEIGHT FOR PHASE 2
WEIGHT FOR PHASE 1
WEIGHT FOR PHASE 2
WEIGHT FOR PHASE 1
WEIGHT FOR PHASE 8
WEIGHT FOR PHASE 9
WEIGHT FOR PHASE 10

3．DRG FORTRAN PROGRAM

＊＊＊
DISCRETE RELIABILITY GROWTH SIMULATION
DISCRETE RELIABILITY GROWTH SIMULATION ＊
PROGRAMMED BY ：JAMES E．DRAKE， ＊ ＊
JAMES D．CHANDLER， ＊
AND PAM A．MARKIEWICZ ＊
LAST MODIFIED 11 JUN 1988 ＊
＊
THE FOLLOWING EXTERNAL FILES ARE USED BY THE PROGRAM ＊
INPUT ：DATA AND PARAMETER INPUT FILE（DEVICE \＃10） π
THESIS ：OUTPUT FILE CONTAINING INTERMEDIATE COMPUTATIONS ＊
（DEVICE \＃25） ＊
RELIAB：OUTPUT FILE CONTAINING FINAL RESULTS OF THE SIMULATION ＊（DEVICE 非 35）
$*$
MLEWD ：OUTPUT FILE CONTAINING MLE ESTIMATES USING DISCOUNTING ＊
FOR EACH PHASE AND EACH REPLICATION ＊
（DEVICE 非 55） $*$
MLESP ：OUTPUT FILE CONTAINING MLE ESTIMATE FOR EACH SINGLE PHASE ＊
AND ALL REPLICATIONS USING NO DISCOUNTING 安
（DEVICE \＃65） ＊
REGEST ：OUTPUT FILE CONTAINING EACH PHASE ESTIMATE FOR EACH F
REPLICATION OF THE EXPONENTIAL REGRESSION ESTIMATE $*$
（DEVICE \＃75） x
WREST1 ：OUTPUT FILE CONTAINING EACH PHASE ESTIMATE FOR EACH ＊
REPLICATION OF THE WEIGHTED EXPONENTIAL REGRESSION ＊ESTIMATE USING WEIGHTING METHOD 1 （DEVICE \＃15）＊
WREST2 ：SAME AS ABOVE USING WEIGHTING METHOD 2 （DEVICE \＃39） ＊
WREST3 ：SAME AS ABOVE USING WEIGHTING METHOD 3 （DEVICE 敌9） $\%$
THE FOLLOWING IS A LIST OF KEY ARRAYS USED IN THE SIMULATIONA ：MAIN WORKING ARRAY CONTAINS PROBABILITY OF SUCCESS FOReach failure cause and the system，cause of failure，NUMBER OF FAILURESDIMENSION（（ $2 *$ 非CAUSES）+6 ），非FAILURES ）＊
＊
EACH FAILURE CAUSE，NUMBER OF TRIALS UNTIL FAILURE FOR ＊＊
PHASE NUMBER，ADJUSTED NUMBER OF TRIALS AND ADJUSTED
NFAPH ：CONTAINS THE NUMBER OF FAILURES IN EACH PHASE
NFCAUS ：BINARY ARRAY USED TO DETERMINE IF A FAILURE OCCURRED IN
DIMENSION（ 1 ，\＃FFAILURE CAUSES）
NTRIAL ：CONTAINS THE NUMBER OF TRIALS SINCE LAST FAILURE OR ＊DIMENSION（ 1 ，\＃FAILURE CAUSES ）trials ：CONTAINS THE TOTAL NUMBER OF ADJUSTED TRIALS IN A PHASESINGLE REPLICATION＊
DIMENSION（1，\＃PHASES） ＊
A PHASE ＊$+$
DISCOUNTING FOR EACH FAILURE CAUSE ＊

```
    DIMENSION (6,#PHASES) *
    ROW 1 : MLE WITH DISCOUNTING *
    ROW 2 : SINGLE PHASE MLE *
    ROW 3 : WOODS REGRESSION ESTIMATE (UNWEIGHTED) *
    ROW 4 : WEIGHTED REGRESSION ESTIMATE (METHOD 1) *
    ROW 5 : WEIGHTED REGRESSION ESTIMATE (METHOD 2)
    ROW 6 : WEIGHTED REGRESSION ESTIMATE (METHOD 3)
AREL : CONTAINS ACTUAL SYSTEM RELIABILITY IN EACH PHASE *
    DIMENSION (1,非PHASES)
YJK : CONTAINS YJK VALUES UP TO }100
    DIMENSION (1,1000)
YSTAR : CONTAINS THE YK VALUES UP TO }100
    DIMENSION (非PHASES, 1000)
VAR : CONTAINS THE VARIANCE OF THE ESTIMATE AT EACH PHASE
    DIMENSION (1,非PHASES)
SVAR1 : CONTAINS THE RUNNING SUM OF 1/VAR(K) UP TO THE KTH PHASE
    DIMENSION (1,非PHASES)
SVAR2 : CONTAINS THE RUNNING SUM OF VAR(K) UP TO THE KTH PHASE
    DIMENSION (1,非PHASES)
SUMW : CONTATNS THE RUNNTNG SUM OF WEIGHTS UP TO THE KTH PHASE
    CONTAINS THE RUNNING SUM OF WEIGHTS UP TO THE KTH PHASE *
    DIMENS ION (1,非PHASES)
W : CONTAINS THE WEIGHT GIVEN TO EACH RELIABILITY ESTIMATE AT
    EACH PHASE. DIMENSION (3,非PHASES)
    ROW 1: WEIGHT = (1/VAR(K))/(SUM OF 1/VAR(K) UP TO *
                            THE KTH PHASE)
    ROW 2: WEIGHT = VAR(K)/(SUM OF VAR(K) UP TO KTH PHASE)
    ROW 3: WEIGHT = USER INPUTTED VALUES.
REG : ARRAY USED TO COMPUTE THE EXPONENTIAL REGRESSION ESTIMATE
        DIMENSION (5,非PHASES)
        ROW 1 : K BAR
        ROW 2 : Y BAR
        ROW 3 : Y BAR FOR THE PHASE
        ROW 4 : B HAT
        ROW 5 : A HAT
WREG1 : ARRAY USED TO COMPUTE THE WEIGHTED EXPONENTIAL REGRESSION
        ESTIMATE USING METHOD 1 WEIGHTS. DIMENSION (4,非PHASES)
        ROW 1 : X BAR(W) ...(A.K. A. K-BAR(W))
        ROW 2 : B HAT(W)
        ROW 3 : A HAT(W)
        ROW 4 : Y BAR(W)
WREG2 : SAME AS ABOVE USING METHOD 2 WEIGHTS
WREG3 : SAME AS ABOVE USING METHOD 3 WEIGHTS
THE REMAINING ARRAYS ARE USED TO COMPUTE THE MEAN AND VARIANCE *
OF EACH ESTIMATE AT EACH PHASE. THEY ALL HAVE THE SAME DIMENSIONS *
AND STRUCTURE
    DIMENSION (4,非PHASES)
    ROW 1 : RUNNING SUM OF ESTIMATES *
    ROW 2 : RUNNING SUM OF SQUARED ESTIMATES *
    ROW 3 : MEAN OF THE ESTIMATES *
    ROW 4 : STANDARD DEVIATION OF THE ESTIMATES **
MLEWD : VALUES FOR THE MLE WITH DISCOUNTING *
MLESP : VALUES FOR THE SINGLE PHASE MLE ir
REGEST : VALUES FOR THE EXPONENTIAL REGRESSION ESTIMATE is
WREST1 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
```

* USING METHOD 1 WEIGHTS.

WREST2 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
WREST3 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
WREST3 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE * USING METHOD 3 WEIGHTS.

C DEFINE AND DIMENSION VARIABLES
PARAMETER ($\mathrm{NR}=50, \mathrm{NC}=200$)
INTEGER REP,DISOPT,FRELOP,LDI,ALD
REAL*4 MIN
REAL* 8 DSEED, MLESP,MLEWD, EUL, SUM1, SUMS 1, SUM2, SUMS2, SUM3
C, SUMS3, SUM1A
DIMENSION NFAPH(NR) , A(NR,NC) ,NFCAUS(NR) ,NTRIAL(NR) , PHREST($6, N R)$,
 $\operatorname{CREG}(5, \operatorname{NR}), \operatorname{YSTAR}(50,1000), \operatorname{TADJTP}(1000), \operatorname{VAR}(\operatorname{NR}), \operatorname{SVAR1}(N R), W(3, N R)$,
 CSVAR2(NR) , WRE 2 2(4 , NR) , WREG3(4, NR) , SUMW(NR)

C READ IN THE NUMBER OF CAUSES TO BE USED (NCAUSE) AND THE NUMBER
C OF PHASES (NPHASE) IN THE TEST
READ ($10, *$) NCAUSE $\operatorname{READ}(10, *)$ NPHASE

C CHECK IF FIXED RELIABILITY OPTION IS DESIRED. FIX EULER'S NUMBER.
READ ($10, *$) FRELOP
$\mathrm{EUL}=0.5772156648$
C CREATE VARIABLES FOR THE ROW INDICES OF THE WORKING MATRIX (A)
C IPHASE: PHASE
C ISYSPR: ACTUAL COMPONENT RELIABILITY
C INTR: NUMBER OF TRIALS UP TO AND INCLUDING FAILURE
C IFAILC: CAUSE OF THE FAILURE
C IADJF: ADJUSTED NUMBER OF FAILURES ED
C AFTER DISCOUNTING HAS BEEN APPLIED
C IADJT: ADJUSTED NUMBER OF TRIALS AFTER DISCOUNTING HAS BEEN APPLIED

```
IPHASE = (2*NCAUSE)+1
ISYSPR = IPHASE +1
INTR = ISYSPR + 1
IFAILC = INTR + 1
IADJF = IFAILC + 1
IADJT = IADJF + 1
```

C READ IN THE NUMBER OF FAILURES IN EACH PHASE (NFAPH(I)) AND
C COMPUTE THE TOTAL NUMBER OF FAILURES IN THE TEST (NFAIL)
NFAIL $=0$
DO $10 \mathrm{I}=1$, NPHASE

```
            READ(10,*) NFAPH(I)
            NFAIL = NFAIL + NFAPH(I)
                CONTINUE
C INPUT THE PROBABILITY OF SUCCESS IN A SINGLE TRIAL FOR EACH CAUSE
C IN EACH PHASE IF FRELOP EQUALS ONE.
    IF (FRELOP . EQ. 1) THEN
            DO 15 I=1,NCAUSE
                    L = 1
                DO 16 J=1,NPHASE
                READ(10,*) QQ
                DO 17 K= L,L+NFAPH(J)-1
                        A(I,K) = QQ
    CONTINUE
            L = L + NFAPH(J)
        CONTINUE
        CONTINUE
        ELSE
C INPUT THE PROBABILITY OF SUCCESS IN A SINGLE TRIAL FOR EACH CAUSE
C IN THE FIRST PHASE If FRELOP EQUALS ZERO.
        DO 20 I=1,NCAUSE
            READ (10,*) A(I,1)
        CONTINUE
        ENDIF
    C INPUT THE REMAINING VARIABLES , THE NUMBER OF SUCCESSFUL TRIALS
C BEFORE A DISCOUNE IS APPLIED (N); THE DISCOUNT FACTOR (R); THE SEED
C FOR THE RANDOM NUMBER GENERATOR, GGUBFS, (DSEED); RELIABILITY
C GROWTH FRACTION (FRIMP); TRIGGER FOR PRINTING INTERMEDIATE OUTPUT
C (IOPT)
C TRIGGERS FOR SAVING EACH ESTIMATE AT EACH PHASE FOR EACH ESTIMATOR
C IOPT1 : MLE WITH DISCOUNTING
C IOPT2 : SINGLE PHASE MLE
C IOPT3 : EXPONENTIAL REGRESSION MODEL
C IOPT4 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 1)
C IOPT5 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 2)
C IOPT6 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 3)
C DISCOUNTING OPTION TRIGGER (DISOPT); LLOYD FAILURE DISCOUNTING
C PARAMETER (GAMMA); LLOYD DISCOUNT INTERVAL
```

```
READ(10,*) N
```

READ(10,*) N
READ (10,*) R
READ (10,*) R
READ (10;*) DSEED
READ (10;*) DSEED
READ (10,*) FRIMP
READ (10,*) FRIMP
READ (10,*) NREP
READ (10,*) NREP
READ (10,*) IOPT
READ (10,*) IOPT
READ (10,*) IOPT1
READ (10,*) IOPT1
READ (10,*) IOPT2
READ (10,*) IOPT2
READ(10,*) IOPT3
READ(10,*) IOPT3
READ(10,*) IOPT4

```
READ(10,*) IOPT4
```

```
    READ(10,*) IOPT5
    READ(10,*) IOPT6
    READ(10,*) DISOPT
    READ(10,*) GAMA
    READ(10,*) LDI
C-----READ IN THE USER INPUITED WEIGHTS FOR COMPUTATION OF METHOD 3.
    DO 25 I=1,NPHASE
                            READ(10,*) W(3,I)
2 5
CONTINUE
XNREP = NREP
DSEED1 = DSEED
C INITIALIZE THE ARRAYS USED TO COMPUTE THE MEAN AND STANDARD DEVIATION
C OF EACH ESTIMATOR
    DO 30 J=1,NPHASE
        DO 30 I=1,4
                        MLEWD(I,J) =0.0
                MLESP(I,J) =0.0
            REGEST(I,J) = 0.0
            WREST1(I,J) = 0.0
                        WREST2(I,J) = 0.0
                        WREST3(I,J) = 0.0
30 CONTINUE
    DO 31 J=1,NPHASE
        DO 31 I=1,6
                        PHREST(I,J) = 0.0
31 CONTINUE
    YJK(1) = 0.0
    DO 35 I=1,999
        YJK(I+1)=YJK(I) + 1.0/I
35 CONTINUE
C COMPUTE AND STORE THE YSTAR VALUES UP TO 1000
DO \(39 \mathrm{~J}=1\), NPHASE
\(\operatorname{YSTAR}(J, 1)=1 . / \operatorname{NFAPH}(J)\)
DO 41 I = 1,999
\(\operatorname{YSTAR}(J, I+1)=\operatorname{YSTAR}(J, I)+1.0 /(\operatorname{NFAPH}(J)+I)\)
41 CONTINUE
39 CONTINUE
```

C PRINT OUT THE YSTAR MATRIX FOR THE FIRST 219 ENTRIES OF THE 10TH PHASE $\operatorname{WRITE}(90, *)(\operatorname{YSTAR}(10, J), J=1,219)$

C COMPUTE AND STORE K BAR FOR THE EXPONENTIAL REGRESSION MODEL
SUM $=0.0$
DO $50 \mathrm{I}=1$, NPHASE

```
        SUM = SUM + I
        REG(1,I) = SUM/I
    CONTINUE
C MAJOR REPETITION OF THE SIMULATION LOOP
        DO 55 REP=1,NREP
55 CONTINUE
        DO 500 REP=1,NREP
C INITIALIZE FAILURE CAUSE VECTOR (NFCAUS)
C COMPUTE THE INITIAL SYSTEM RELIABILITY
REL = 1.
DO 60 I=1,NCAUSE
            NFCAUS(I) = 0
            REL = REL * A(I,1)
    60 CONTINUE
C INITIALIZE COLUMN (FAILURE # ) COUNTER FOR THE WORKING ARRAY (A)
J = 1
C LOOP TO COMPUTE THE NUMBER OF TRIALS UP TO AND INCLUDING FAILURE
C AND THE CAUSE OF FAILURE FOR EACH FAILURE IN EACH PHASE
DO 130 K=1,NPHASE
C SKIP ACTUAL COMPONENT RELIABILITY COMPUTATION AFTER FIRST REP
C AND FOR FIRST FAILURE
    IF(J. EQ. 1) GOTO 75
    IF(REP.GT. 1) GOTO 75
    REL = 1.
C IF FIXED RELIABILITY OPTION IS SELECTED THEN PHASE RELIABILITIES
C ARE COMPUTED AS FOLLOWS
6 5
    IF (FRELOP . EQ. 1) THEN
        DO 65 I=1,NCAUSE
            REL = REL*A(I,J)
            NFCAUS(I) = 0
        CONTINUE
ELSE
C COMPUTE NEW ACTUAL RELIABILITY FOR THE COMPONENT IN PHASE K
DO 70 I=1,NCAUSE
C INCREASE CAUSE PR(SUCCESS) IF IT CAUSED FAILURE IN THE PREVIOUS PHASE
C COMPUTE NEXT PHAiE RELIABILITY AND REINITIALIZE NFCAUS (NOT USED IF
C FIXED PHASE RELIABILITY OPTION IS SELECTED).
```

```
    IF(NFCAUS(I).EQ. 1) THEN
    A(I,J)=A(I,(J-1)) +((1. - A(I,(J-1)))*FRIMP)
    ELSEIF(NFCAUS(I).NE. 1) THEN
    A(I,J) = A(I,(J-1))
    ELSE
    ENDIF
    REL = REL*A(I,J)
    NFCAUS(I) = 0
CONTINUE
ENDIF
75 J1 = 1
TRTOT = 0.0
```

C COMPUTE THE NUMBER OF TRIALS UP TO AND INCLUDING FAILURE AND THE
C Cause of failure for each failure in the phase
DO $120 \mathrm{I}=1$, NFAPH (K)
IF (REP.GT. 1) GOTO 90
IF (J. EQ. 1) GOTO 85
IF (FRELOP .EQ. 1) GOTO 85
DO $80 \mathrm{I}=1$, NCAUSE
$A(I, J)=A(I,(J-1))$
80 CONTINUE
85 A(ISYSPR,J) = REL
A(IPHASE, J) $=K$
$\mathrm{MIN}=7.2 \mathrm{E} 75$
DO $110 \mathrm{I}=1$, NCAUSE
C ASSIGN \# TRIALS FOR CAUSES WITH PR(SUCCESS) $=0$ OR 1
IF (A(I, J). GE. 1.) THEN
$\mathrm{A}(\mathrm{I}+\mathrm{NCAUSE}), \mathrm{J})=7.2 \mathrm{E} 75$
GOTO 100
ELSEIF(A(I,J).EQ.O.) THEN
A((I+NCAUSE), J$)=1$.
GOTO 100
ELSE
ENDIF
C CONVERT UNIFORM (0,1) RANDOM VARIABLE TO GEOMETRIC (\# TRIALS UNTIL
C FAILURE) FOR EACH FAILURE CAUSE. RECORD THE MIN \# TRIALS FOR THE
C CAUSES AS THE SYSTEM \# TRIALS UP TO AND INCLUDING FAILURE AND
C RECORD THE FAILURE CAUSE
$A((I+N C A U S E), J)=\operatorname{INT}(1 .+(\operatorname{LOG}(\operatorname{GGUBFS}(\operatorname{DSEED})) / \operatorname{LOG}(A(I, J))))$
100
IF (A ((I+NCAUSE), J). LE.MIN) THEN
MIN $=A((I+N C A U S E), J)$
IMIN = I
ELSE
ENDIF
110
CONTINUE
A $($ IFAILC, J$)=$ IMIN
$\operatorname{NFCAUS}(\operatorname{IMIN})=1$

```
C COMPUTE THE TOTAL # OF TRIALS FOR THE MLE SINGLE PHASE ESTIMATE AND
C INCREMENT FAILURE # COUNTERS
```

```
A(INTR,J) = MIN
```

A(INTR,J) = MIN
TRTOT = TRTOT + A(INTR,J)
TRTOT = TRTOT + A(INTR,J)
J = J + 1
J = J + 1
J1 = J1 + 1
J1 = J1 + 1
120 CONTINUE
C COMPUTE THE MLE ESTIMATE OF COMPONENT RELIABILITY FOR THIS PHASE and
C COMPUTE THE RUNNING SUM OF ESTIMATES AND THE SUM OF ESTIMATES SQUARED
C FOR COMPUTATION OF THE MEAN AND STANDARD DEVIATION OF THE ESTIMATE
$\operatorname{PHREST}(2, \mathrm{~K})=(\operatorname{TRTOT}-\mathrm{NFAPH}(\mathrm{K})) / \operatorname{TRTOT}$
$\operatorname{MLESP}(1, K)=\operatorname{MLESP}(1, K)+\operatorname{PHREST}(2, K)$
$\operatorname{MLESP}(2, K)=\operatorname{MLESP}(2, K)+(\operatorname{PHREST}(2, K) * * 2)$

```

\section*{130 CONTINUE}
```

C INITIALIZE THE ADJUSTED NUMBER OF FAILURES TO 1 and THE COUNT OF THE
C NUMBER OF TRIALS SINCE FAILURE OR DISCOUNTING (NTRIALS(I)) TO 0
C IN PREPARATION FOR THE DISCOUNTING ROUTINE
DO $140 \mathrm{~J}=1$, NFAIL
$A($ IADJF, J$)=1$.
140 CONTINUE
DO $150 \mathrm{I}=1, \mathrm{NCAUSE}$
$\operatorname{NTRIAL}(\mathrm{I})=0$
150 CONTINUE
C DISCOUNTING ROUTINE REVIEWS ALL PAST FAILURES AND CAUSES TO DATE
C and determines if the discounting conditions have been met. computes
C THE ADJUSTED FAILURES, THE ADJUSTED \# OF TRIALS AND YJK
C INITIALIZE THE TOTAL ADJUSTED TRIALS IN A PHASE VECTOR, TADJTP;
C INITIALIZE THE SUM OF THE VARIANCES, SVAR, THE VARIANCES, VAR
C AND THE WEIGHTS, W FOR THE WEIGHTED EXPONENTIAL REGRESSION MODEL.
DO 155 I $=1$, NPHASE

$\operatorname{TADJTP}(I)$	$=0$
$\operatorname{SVAR}(I)$	$=0$
$\operatorname{SVAR2(I)}$	$=0$
$\operatorname{SUMW}(I)$	$=0$
$\operatorname{VAR}(I)$	$=0$
$W(1, I)$	$=0$
$W(2, I)$	$=0$

155 CONTINUE

```
```

SUM1A = 0

```
SUM1A = 0
J = 0
J = 0
LL = 1
LL = 1
DO 300 K=1,NPHASE
DO 300 K=1,NPHASE
        DO 200 L=1,NFAPH(K)
        DO 200 L=1,NFAPH(K)
        J = J + 1
```

 J = J + 1
    ```
```

C UPDATES THE NUMBER OF TRIALS SINCE FAILURE OR DISCOUNTING FOR EACH
C FAILURE CAUSE
ICAUSE = INT(A(IFAILC,J)+.5)
DO 160 I=1,NCAUSE
IF(ICAUSE. EQ. I) THEN
NTRIAL(I) = 0
ELSEIF(ICAUSE. NE. I) THEN
NTRIAL(I) = NTRIAL(I) + INT(A(INTR,J)+.5)
ELSE
ENDIF
160 CONTINUE
200 CONTINUE
C CHOOSE DISCOUNTING METHOD TO BE USED
IF(DISOPT.NE.2) GOTO 180
C PERFORM LLOYD'S FAILURE DISCOUNTING METHOD
DO 170 I=1,J
I1 = INT(A(IFAILC,I)+.5)
IF(NTRIAL(I1).EQ.0) THEN
A(IADJF,I) = 1.0
GOTO 170
ELSE
ENDIF
C THIS IS THE MODIFIED LLOYD METHOD USING A DISCOUNT INTERVAL. THE
C ORIGINAL DISCOUNT METHOD MAY BE EMPLOYED BY SETTING LDI TO ONE.
ALD = INT(NTRIAL(II)/LDI)
IF(ALD .EQ. 0) THEN
A(IADJF,I) = 1.0
GO TO 170
ELSE
A(IADJF,I) = 1.0 - ((1. -GAMA)**(1.0/ALD))
ENDIF
170 CONTINUE
GOTO 210
C PERFORMS STRAIGHT PERCENT FAILURE DISCOUNTING AND
C COMPUTES THE ADJUSTED \# OF FAILURES

```
DO 190 I=1,J
```

DO 190 I=1,J
I1 = INT(A(IFAILC,I)+.5)
I1 = INT(A(IFAILC,I)+.5)
IF(NTRIAL(I1).EQ.0) THEN
IF(NTRIAL(I1).EQ.0) THEN
A(IADJF,I) = 1.
A(IADJF,I) = 1.
ELSEIF(NTRIAL(I1).GE.N) THEN
ELSEIF(NTRIAL(I1).GE.N) THEN
A(IADJF,I) = A(IADJF,I)*((1. -R)**(NTRIAL(I1)/N))
A(IADJF,I) = A(IADJF,I)*((1. -R)**(NTRIAL(I1)/N))
ELSE
ELSE
ENDIF
ENDIF
CONTINUE

```
    CONTINUE
```

C ADJUSTS THE \# TRIALS SINCE FAILURE OR DISCOUNTING FOR THOSE CAUSES
C THAT HAVE MET OR SURPASSED THE DISCOUNTING THRESHOLD
C FOR THE STRAIGHT PERCENT DISCOUNTING METHOD
DO $205 \mathrm{I}=1$, NCAUSE
$\operatorname{IF}(\operatorname{NTRIAL}(I) . \operatorname{GE} . N) \operatorname{NTRIAL}(I)=\operatorname{MOD}(N T R I A L(I), N)$ CONTINUE

205 210 TADJT $=0.0$

C COMPUTES THE ADJUSTED \# OF TRIALS FROM THE ADJUSTED \# OF FAILURES C AND COMPUTES THE SUM OF THE ADJUSTED 非 OF TRIALS FOR ESTIMATE COMP.

C IF ADJUSTED FAILIRES ARE APPROACHING 0 THEN ADJUSTED TRIALS MUST C BE PRE-SET.

```
DO \(240 \mathrm{I}=1, \mathrm{~J}\)
IF (A (IADJF, I) . LE. . 0000001) THEN
                \(A(\) IADJF,\(I)=.0000001\)
                    ENDIF
                \(A(I A D J T, I)=A(I N T R, I) / A(I A D J F, I)\)
                TADJT \(=\) TADJT \(+A(I A D J T, I)\)
                                CONTINUE
```

240

C COMPUTE THE ADJUSTED NUMBER OF TRIALS IN A PHASE
DO $245 \mathrm{M}=\mathrm{LL},(L L+N F A P H(K)-1)$
$\operatorname{TADJTP}(K)=\operatorname{TADJTP}(K)+\operatorname{A}(\operatorname{IADJT}, M)$
245
CONTINUE $L L=L L+N F A P H(K)$

C COMPUTE THE MLE ESTIMATE OF PHASE RELIABILITY USING DISCOUNTING $\operatorname{PHREST}(1, K)=(T A D J T-J) / T A D J T$

C COMPUTE Y-BAR AND Y-BAR FOR THE PHASE USING THE YSTAR MATRIX IF
C THE ADJUSTED NUMBER OF TRIALS IS LESS THAN OR EQUAL TO 1000
C AND USING EULER'S APPROXIMATION IF THE VALUE IS GREATER THAN 1000.

```
IF ( NINT(TADJTP(K)) . EQ. NFAPH(K) )THEN
        REG(3,K) = 0.0
    ELSE IF (NINT(TADJTP(K) - NFAPH(K) ) . LE. 1000 ) THEN
        REG(3,K) = YSTAR(K, NINT(TADJTP(K) -NFAPH(K) ) )
    ELSE
    IX = NINT(TADJTP(K)-1)
    X = IX
    Q = 12%X
    T=X+1
    S = X+2
    U = (EUL + (LOG(X)) + (1/(2*X)) - (1/(Q**T)) -(1/(Q*T*S)) )
    REG(3,K) = U - YJK(NFAPH(K)-1)
    END IF
```

```
SUM1A = SUM1A + REG(3,K)
REG(2,K) = SUM1A/K
```

C COMPUTE THE EXPONENTIAL REGRESSION ESTIMATE BEGINNING WITH B HAT
$S U M=0.0$
SUMS $=0.0$
IF (K. EQ. 1) GOTO 252
DO $250 \mathrm{I}=1, \mathrm{~K}$
$\operatorname{SUM}=\operatorname{SUM}+((I-\operatorname{REG}(1, K)) * \operatorname{REG}(3, I))$
SUMS $=$ SUMS $+((I-\operatorname{REG}(1, K)) * * 2)$
CONTINUE
$\operatorname{REG}(4, K)=$ SUM/SUMS
C COMPUTE A HAT

$$
\operatorname{REG}(5, K)=\operatorname{REG}(2, K)-(\operatorname{REG}(4, K) * \operatorname{REG}(1, K))
$$

C COMPUTE AND STORE THE EXPONENTIAL REGRESSION ESTIMATE
$\operatorname{PHREST}(3, K)=1.0-\operatorname{EXP}(-(\operatorname{REG}(5, K)+(\operatorname{REG}(4, K) * K)))$ IF (PHREST($3, K$). LT. 0.0) PHREST ($3, K$) $=0.0$ GOTO 255
252 $\operatorname{PHREST}(3, K)=1.0-\operatorname{EXP}(-\operatorname{REG}(3,1))$ IF (PHREST(3,K). LT. 0.0) PHREST($3, \mathrm{~K}$) $=0.0$

C STORE THE RUNNING SUM OF THE ESTIMATES FOR THE CURRENT PHASE AND THE
C RUNNING SUM OF THE ESTIMATES SQUARED FOR COMPUTATION OF THE MEAN AND
C STANDARD DEVIATION OF EACH ESTIMATE FOR EACH RELIABILITY GROWTH
C MODEL
255

$$
\begin{aligned}
& \operatorname{MLEWD}(1, K)=\operatorname{MLEWD}(1, K)+\operatorname{PHREST}(2, K) \\
& \operatorname{MLEWD}(2, K)=\operatorname{MLEWD}(2, K)+(\operatorname{PHREST}(2, K) * * 2) \\
& \operatorname{REGEST}(1, K)=\operatorname{REGEST}(1, K)+\operatorname{PHREST}(3, K) \\
& \operatorname{REGEST}(2, K)=\operatorname{REGEST}(2, K)+(\operatorname{PHREST}(3, K) * * 2)
\end{aligned}
$$

C COMPUTE THE VARIANCES OF THE UNWEIGHTED EXPONENTIAL REGRESSION
C ESTIMATES AND STORE THE RUNNING SUM OF THE VARIANCES FOR USE IN THE
C WEIGHTED REGRESSION MODEL.
$\operatorname{VAR}(K)=(\operatorname{NFAPH}(K) * \operatorname{PHREST}(1, K)) /((1 .-\operatorname{PHREST}(1, K)) * * 2)$
IF ($\operatorname{VAR}(K)$.LT. . 0000001)THEN
$\operatorname{VAR}(K)=.0000001$
END IF
IF (K.EQ. 1) GO TO 258
$\operatorname{SVAR} 1(K)=\operatorname{SVAR} 1(K-1)+(1 . / \operatorname{VAR}(K))$
$\operatorname{SVAR} 2(K)=\operatorname{SVAR} 2(K-1)+\operatorname{VAR}(K)$
$\operatorname{SUMW}(K)=\operatorname{SUMW}(K-1)+W(3, K)$
GO TO 259
$258 \operatorname{SVAR1}(K)=(1 . / \operatorname{VAR}(1))$
SVAR2 $(K)=\operatorname{VAR}(1)$
$\operatorname{SUMW}(K)=W(3,1)$

C COMPUTE THE WEIGHTS FOR EACH PHASE
$259 \mathrm{~W}(1, \mathrm{~K})=(1 . / \operatorname{VAR}(\mathrm{K})) / \operatorname{SVAR1}(\mathrm{K})$
$W(2, K)=\operatorname{VAR}(K) / \operatorname{SVAR} 2(K)$
C COMPUTE AND STORE X-bar(W) and y-bar(W)

$$
\text { SUMX1 }=0
$$

SUMY1 $=0$
SUMX2 $=0$
SUMY2 $=0$
SUMX3 $=0$
SUMY3 $=0$
DO 261 I = 1, K
SUMX1 $=\operatorname{SUMX1}+(1 . / \operatorname{VAR}(K)) * I$
SUMY1 $=\operatorname{SUMY1}+(1 . / \operatorname{VAR}(K)) * \operatorname{REG}(3, \mathrm{I})$
SUMX2 $=\operatorname{SUMX2}+\operatorname{VAR}(K) * I$
SUMY2 $=\operatorname{SUMY2}+\operatorname{VAR}(K) * \operatorname{REG}(3, I)$
SUMX3 $=$ SUMX $3+W(3, K) * I$
SUMY3 $=\operatorname{SUMY} 3+W(3, K) * \operatorname{REG}(3, I)$

261 CONTINUE
$\operatorname{WREG1}(1, K)=\operatorname{SUMX1/SVAR1(K)}$
$\operatorname{WREG1}(4, K)=\operatorname{SUMY1/SVAR1(K)}$
$\operatorname{WREG} 2(1, K)=\operatorname{SUMX2} / \operatorname{SVAR2}(K)$
$\operatorname{WREG} 2(4, \mathrm{~K})=\operatorname{SUMY} 2 / \operatorname{SVAR} 2(\mathrm{~K})$
$\operatorname{WREG3}(1, \mathrm{~K})=\operatorname{SUMX} 3 / \operatorname{SUMW}(\mathrm{K})$
$\operatorname{WREG3}(4, K)=\operatorname{SUMY} 3 / \operatorname{SUMW}(K)$
C COMPUTE AND STORE B-HAT(W)
SUM1 $=0.0$
SUMS1 $=0.0$
SUM2 $=0.0$
SUMS2 $=0.0$
SUM3 $=0.0$
SUMS3 $=0.0$
IF (K .EQ. 1) GO TO 272
DO 271 I = 1, K
SUM1 $=$ SUli $1+(W(1, K) *(I-\operatorname{WREG} 1(1, K)) * R E G(3, I))$
SUMS1 $=$ SUMS $1+(W(1, K) *((I-W R E G 1(1, K)) * * 2))$
SUM2 $=\operatorname{SUM} 2+(W(2, K) *(I-W R E G 2(1, K)) * \operatorname{REG}(3, I))$
SUMS2 $=$ SUMS $2+(W(2, K) *((I-$ WREG2 $(1, K)) * * 2))$
SUM3 $=$ SUM $3+(W(3, K) *(I-W R E G 3(1, K)) * R E G(3, I))$
SUMS3 $=$ SUMS $3+(W(3, K) *((I-\operatorname{RREG} 3(1, K)) * * 2))$
CONTINUE

WREG1(2,K) $=$ SUM1/SUMS1
$\operatorname{WREG} 2(2, K)=$ SUM2/SUMS2
WREG3 $(2, K)=$ SUM3/SUMS3
C COMPUTE AND STORE A-HAT(W)
$\operatorname{WREG1}(3, K)=\operatorname{WREG1}(4, K)-(\operatorname{WREG1}(2, K) * \operatorname{WREG1}(1, K))$
$\operatorname{WREG} 2(3, K)=\operatorname{WREG} 2(4, K)-(\operatorname{WREG} 2(2, K) * \operatorname{REG} 2(1, K))$

```
    WREG3(3,K) = WREG3(4,K) - (WREG3(2,K)*WREG3(1,K))
C COMPUTE AND STORE THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
PHREST(4,K) = 1.0-EXP(-(WREG1(3,K)+(WREG1(2,K)*K)))
PHREST(5,K) = 1.0 - EXP(-(WREG2(3,K)+(WREG2(2,K)*K)))
PHREST(6,K) = 1.0 - EXP(-(WREG3(3,K)+(WREG3(2,K)*K)))
IF (PHREST(4,K) .LT. 0.0) PHREST(4,K) = 0.0
IF (PHREST(5,K).LT. 0.0) PHREST(5,K) = 0.0
IF (PHREST(6,K) .LT. 0.0) PHREST(6,K) = 0.0
GO TO 275
272 PHREST(4,K) = 1.0 - EXP(-WREG1(4,1))
    IF (PHREST(4,K).LTT. 0.0) PHREST(4,K) = 0.0
    PHREST(5,K) = 1.0 - EXP(-WREG2(4,1))
    IF (PHREST(5,K) .LT. 0.0) PHREST(5,K) = 0.0
    PHREST(6,K) = 1.0 - EXP(-WREG3(4,1))
    IF (PHREST(6,K) .LT. 0.0) PHREST(6,K) = 0.0
C STORE THE RUNNING SUM OF THE WEIGHTED ESTIMATES FOR THE CURRENT
C PHASE AND THE RUNNING SUM OF THE ESTIMATES SQUARED FOR COMPUTATION OF
C THE MEAN AND STANDARD DEVIATION OF EACH WEIGHTED ESTIMATE FOR THE
C WEIGHTED EXPONENTIAL REGRESSION MODEL.
275 WREST1(1,K) = WREST1(1,K) + PHREST(4,K)
    WREST1(2,K)=WREST1(2,K) + (PHREST(4,K)**2)
    WREST2(1,K) = WREST2(1,K) + PHREST(5,K)
    WREST2(2,K)=WREST2(2,K) + (PHREST(5,K)**2)
    WREST3(1,K) = WREST3(1,K) + PHREST(6,K)
    WREST3(2,K)= WREST3(2,K) + (PHREST(6,K)**2)
C STORE THE ACTUAL PHASE RELIABILITY
\[
\operatorname{AREL}(K)=A(I S Y S P R, J)
\]
C PRINT INTERMEDIATE OUTPUT IF REQUESTED AND THE NUMBER OF REPETITIONS
C IS NOT GREATER THAN 5
IF(IOPT. NE. 1) GOTO 300
IF(REP. GT. 5) GOTO 300
WRITE (25, 1000) REP,K
1000 FORMAT(T16, 'REPETITION NUMBER: ',I4,' PHASE NUMBER: ', I4)
\(\operatorname{WRITE}(25,1010)\) A(ISYSPR, J)
1010 FORMAT(22X, 'ACTUAL COMPONENT RELIABILITY: ',F7.5)
WRITE \((25,1022)\) PHREST( \(1, \mathrm{~K}\) )
1022 FORMAT(20X, 'MLE ESTIMATE USING DISCOUNTING: ',F7.5)
\(\operatorname{VRITE}(25,1025)\) PHREST \((2, K)\)
1025 FORMAT(18X, MLE ESTIMATE OF PHASE RELIABILITY: ',F7.5)
\(\operatorname{WRITE}(25,1027) \operatorname{PHREST}(4, \mathrm{~K})\)
1027 FORMAT(14X, WEIGHTED REG. ESTIMATE ( METHOD 1 ) : ',F7.5)
```

WRITE（ 25,1026 ）PHREST（ $5, \mathrm{~K})$
1026 FORMAT（14X，＇WE IGHTED REG．ESTIMATE（ METHOD 2 ）：，F7．5） WRITE $(25,1029)$ PHREST（ $6, \mathrm{~K})$
1029 FORMAT（14X，＇WEIGHTED REG．ESTIMATE（METHOD 3 ）：＇，F7．5） WRITE $(25,1028) \operatorname{PHREST}(3, K)$
1028 FORMAT（14X，＇REGRESSION ESTIMATE OF PHASE RELIABILITY：＇，F7．5）
WRITE 25,1030 ）
1030 FORMAT（＇，＇＇）
DO 260 I＝1，NCAUSE
WRITE $(25,1035) I, A(I, J), A((I+N C A U S E), J)$
1035 FORMAT（12X，＇CAUSE：，I3，${ }^{\text {I }}$ PR（SUCCESS）：＇，F7．6，＇\＃TRIALS：＇， CF10．0）
260 CONTINUE WRITE（ 25,1036 ）
1036 FORMAT（ ${ }^{\prime}, 1$＇） WRITE $(25,1040)$
1040 FORMAT（ $4 \mathrm{X},{ }^{\prime}$ FAIL 非＇， 3 X, ＇FAIL CAUSE＇， $3 \mathrm{X},{ }^{\prime}$ 非 TRIALS＇， $3 \mathrm{X},{ }^{\prime}$ ADJ 非 FAIL＇， 3 CX，＇ADJ 非 TRIALS＇）
DO $270 \mathrm{I}=1, \mathrm{~J}$
WRITE $(25,1050) \mathrm{I}, \mathrm{A}(\mathrm{IFAILC}, \mathrm{I}), \mathrm{A}(\mathrm{INTR}, \mathrm{I}), \mathrm{A}($ IADJF，I），A（IADJT，I）
1050 FORMAT（4X，I3，8X，F3．0，7X，F8．0，4X，F8．6，4X，F12．0，3X，F11．4）
270 CONTINUE WRITE $(25,1060)$
1060 FORMAT（＇$/ / /$ ）
300 CONTINUE

C PRINT EACH OF THE ESTIMATES TO THEIR APPROPRIATE OUTPUT FIIE
C IF REQUESTED
401 IF（IOPT1．NE．1）GOTO 402 $\operatorname{WRITE}(55,2000)(\operatorname{PHREST}(1, I), I=1$, NPHASE）
402 IF（IOPT2．NE．1）GOTO 403 WRITE $(65,2000)$（ $\operatorname{PHREST}(2, I), I=1$, NPHASE）
403 IF（IOPT3．NE．1）GOTO 404 $\operatorname{WRITE}(75,2000)$（PHREST$(3, I), I=1$, NPHASE）
404 IF（IOPT4．NE．1）GOTO 405 WRITE（ 15,2000 ）（ $\operatorname{PHREST}(4, I), I=1$, NPHASE）
405 IF（IOPT5．NE．1）GOTO 406 WRITE 39,2000 ）（ $\operatorname{PHREST}(5, I), I=1$, NPHASE）
406 IF（IOPT4．NE．1）GOTO 500
$\operatorname{WRITE}(49,2000)(\operatorname{PHREST}(6, I), I=1, \operatorname{NPHASE})$
2000 FORMAT（＇，30（F7．6：1X））
500 CONTINUE
C PRINT OUT THE WORKING＂A＂MATRIX IN MATRIX LISTING A1
DO $4050 \mathrm{~J}=1$ ，$(2 *$ NCAUSE $)+6$ WRITE $(81, *)(A(J, I), I=1$, NFAIL $)$
4050 CONTINUE
C PRINT OUT THE THE TOTAL NUMBER OF TRIALS TO SYSTEM FAILURE IN EACH
C PHASE
DO $4051 \mathrm{~J}=1$ ，NPHASE WRITE $89, \%$ ）＇T＇，TADJTP（J）

4051 CONTINUE

C PRINT OUT THE WEIGHTS COMPUTED BY METHOD 1 TO THE TRIALS FILE DO $4052 \mathrm{~J}=1$, NPHASE WRITE (89,*) 'M1 ',W(1,J)
4052 CONTINUE
C PRINT OUT THE WEIGHTS COMPUTED BY METHOD 2 TO THE TRIALS FILE DO $4053 \mathrm{~J}=1$, NPHASE WRITE ($89,{ }^{*}$) 'M2', $\mathrm{W}(2, \mathrm{~J})$
4053 CONTINUE
C PRINT OUT THE REGRESSION PARAMETERS IN MATRIX FORM TO THE REGMAT FILE
DO $4054 \mathrm{~J}=1,5$
WRITE ($87, \%$) ($\operatorname{REG}(\mathrm{J}, \mathrm{I}), \mathrm{I}=1, \mathrm{NPHASE})$
4054 CONTINUE
C PRINT OUT THE WEIGHTED REGRESSION PARAMETERS IN MATRIX FORM TO THE
C REGMAT FILE
DO $4055 \mathrm{~J}=1,4$
$\operatorname{WRITE}(87, *)(\operatorname{WREG} 1(J, I), I=1, \operatorname{NPHASE})$
4055 CONTINUE
DO $4056 \mathrm{~J}=1,4$ WRITE($87, *$) (WREG2(J,I), I = 1, NPHASE)
4056 CONTINUE
DO $4057 \mathrm{~J}=1,4$ WRITE($87, *)$ (WREG3(J,I), I = 1,NPHASE)
4057 CONTINUE
C UPON COMPLETION OF ALL REPETITIONS, COMPUTE THE MEAN AND STANDARD
C DEVIATION OF EACH ESTIMATE FOR EACH PHASE SKIPPING COMPUTATIONS IF
C ONLY ONE REPETITION IS REQUIRED
IF (NREP.LE.1) GOTO 601
DO 600 I=1,NPHASE
$\operatorname{MLEWD}(3, I)=\operatorname{MLEWD}(1, I) / \operatorname{XNREP}$
$\operatorname{MLESP}(3, I)=\operatorname{MLESP}(1, I) / \operatorname{XNREP}$
$\operatorname{REGEST}(3, \mathrm{I})=\operatorname{REGEST}(1, \mathrm{I}) / \operatorname{XNREP}$
$\operatorname{WREST1}(3, I)=\operatorname{WREST}(1, I) / \operatorname{XNREP}$
$\operatorname{WREST} 2(3, I)=\operatorname{WREST} 2(1, I) / \operatorname{XNREP}$
$\operatorname{WREST} 3(3, I)=\operatorname{WREST} 3(1, \mathrm{I}) / \operatorname{XNREP}$
$\operatorname{MLEWD}(4, \mathrm{I})=\operatorname{SQRT}((\operatorname{MLEWD}(2, I)-(\operatorname{XNREP*}(\operatorname{MLEWD}(3, I) * * 2))) /(\operatorname{XNREP}-1))$
$\operatorname{MLESP}(4, \mathrm{I})=\operatorname{SQRT}((\operatorname{MLESP}(2, I)-(\operatorname{XNREP} *(\operatorname{MLESP}(3, I) * * 2))) /(\operatorname{XNREP}-1))$
$\operatorname{REGEST}(4, I)=\operatorname{SQRT}((\operatorname{REGEST}(2, I)-(\operatorname{XNREP*}(\operatorname{REGEST}(3, I) * * 2))) /(\operatorname{XNREP}-1))$
$\operatorname{WREST1}(4, \mathrm{I})=\operatorname{SQRT}((\operatorname{WREST1}(2, I)-(\operatorname{XNREP} *(\operatorname{WREST1}(3, \mathrm{I}) * * 2))) /(\operatorname{XNREP}-1))$ $\operatorname{WREST2}(4, \mathrm{I})=\operatorname{SQRT}((\operatorname{WREST} 2(2, \mathrm{I})-(\operatorname{XNREP} *(\operatorname{WREST} 2(3, \mathrm{I}) * * 2))) /(\operatorname{XNREP}-1))$ $\operatorname{WREST3}(4, \mathrm{I})=\operatorname{SQRT}((\operatorname{WREST3}(2, \mathrm{I})-(\operatorname{XNREP*}(\operatorname{WREST} 3(3, \mathrm{I}) * * 2))) /(\operatorname{XNREP}-1))$ CONTINUE

C PRINT THE FINAL OUTPUT TABLE TO A FILE

$601 \operatorname{WRITE}(35,3000)$

```
3000 FORMAT('0',T47,'DISCRETE RELIABILITY GROWTH SIMULATION')
    WRITE( 35,3010)
3010 FORMAT(''-',T54,'MODEL PARAMETER SUMMARY')
    WRITE(35,3020) NCAUSE
3020 FORMAT('0',T47,'NUMBER OF POSSIBLE FAILURE CAUSES ',I4)
    IF (FRELOP . EQ. 1) GOTO 4000
    WRITE(35,3030)
3030 FORMAT('O',T38,'CAUSE NUMBER',T64,'SINGLE TRIAL PR( SUCCESS ) FOR
    CPHASE 1')
    DO 3050 M=1,NCAUSE
    WRITE (35,3040) M,A(M,1)
3040 FORMAT('',T43,I2,T79,F8.6)
3050 CONTINUE
    WRITE(35,3060) FRIMP
3060 FORMAT('O',T37, 'FRACTION CAUSE RELIABILITY IMPROVES AFTER FAILURE
    C',F8.6)
5000 WRITE( 35,3080) NPHASE
3080 FORMAT('-',T48,'NUMBER OF PHASES IN THE SIMULATION ',I2)
        WRITE(35,3090)
3090 FORMAT('0',T42,'PHASE NUMBER',T59,'NUMBER OF FAILURES IN THE FIRST
    C PHASE')
        DO 3110 M=1,NPHASE
        WRITE (35,3100) M,NFAPH(M)
3100 FORMAT('',T43,I2,T73,I2)
3110 CONTINUE
    WRITE( 35, 3120) NFAIL
3120 FORMAT('0',T51,'TOTAL NUMBER OF FAILURES ',I4)
    IF(DISOPT.EQ. 2) GO TO 3160
    WRITE(35,3130)
3130 FORMAT('-',T38,'DISCOUNTING PERFORMED USING THE CONSTANT FRACTION
    CMETHOD')
        WRITE ( 35,3140) R
3140 FORMAT('O',T44,'FRACTION EACH FAILURE IS DISCOUNTED ',F8.6)
    WRITE( 35,3150) N
3150 FORMAT('',T33,'NUMBER OF TRIALS AFTER A FAILURE BEFORE A DISCOUNT
    C IS APPLIED ',I4)
        GO TO 3190
3160 WRITE ( 35,3170)
3170 FORMAT(''',T44,'DISCOUNTING PERFORMED USING THE LLOYD METHOD')
        WRITE( 35,3180) GAMA
3180 FORMAT('0',T39,'PERCENT C.I. ( USED AS DISCOUNT FRACTION ) ',F8. }
    C)
        WRITE(35,3i85) LDI
3185 FORMAT('O',T50,'LLOYD DISCOUNT INTERVAL: ',I3)
3190 WRITE(35,3200) DSEED1
3200 FORMAT(''',T46,'RANDOM NUMBER SEED USED ',F15. 2)
        WRITE( 35,3210) NREP
3210 FORMAT('O',T37,'NUMBER OF REPETITIONS OF THE SIMULATION PERFORMED
    C',I7)
        WRITE(35, 3220)
3220 FORMAT('1',T61,'ESTIMATOR: ')
    WRITE(35,3230)
3230 FORMAT('0',T48,'SINGLE PHASE MLE WITHOUT DISCOUNTING')
    WRITE( 35,3240)
3240 FORMAT('-',T60,'MEAN',T83,'ESTIMATE',T109,'95 %')
    WRITE (35,3250)
```

```
3250 FORMAT(' ',T12,'PHASE NUMBER',T29,'ACTUAL RELIABILITY',T52,'PREDIC
        CTED RELIABILITY',T78,'STANDARD DEVIATION',T101,'CONFIDENCE INTERVA
        CL')
C COMPUTE C.I. FOR SINGLE PHASE MLE
    DO 3270 M=1,NPHASE
    CI = (1.96*MLESP(4,M))/SQRT(XNREP)
    CIU = MLESP(3,M)+CI
    CIL = MLESP( 3,M) - CI
    WRITE( 35, 3260) M, AREL(M),MLESP( 3,M),MLESP(4,M),CIL,CIU
3260 FORMAT('O',T17,I2,T34,F8.6,T58,F8.6,T82,F9.6,T99,'(',F8.6,' , ',F
    C8.6,' )')
3270 CONTINUE
            WRITE (35,3220)
            WRITE (35,3280)
3280 FORMAT('0',T42,'MAX LIKELIHOOD ESTIMATE USING DISCOUNTED FAILURES'
C)
WRITE (35,3240)
WRITE (35,3250)
C COMPUTE C.I. FOR MLE WITH DISCOUNTING
DO \(3290 \mathrm{M}=1\), NPHASE
\(\mathrm{CI}=(1.96 \div \operatorname{MLEWD}(4, \mathrm{M})) / \mathrm{SQRT}(\mathrm{XNREP})\)
CIU \(=\operatorname{MLEWD}(3, M)+C I\)
CIL \(=\operatorname{MLEWD}(3, M)-C I\)
WRITE \((35,3260) \mathrm{M}, \operatorname{AREL}(\mathrm{M}), \operatorname{MLEWD}(3, \mathrm{M}), \operatorname{MLEWD}(4, \mathrm{M}), \operatorname{CIL}, \mathrm{CIU}\)
3290 CONTINUE
WRITE \((35,3220)\)
\(\operatorname{WRITE}(35,3320)\)
3320 FORMAT ('O', T43,'REGRESSION ESTIMATE USING DISCOUNTED FAILURES')
\(\operatorname{WRITE}(35,3240)\)
\(\operatorname{WRITE}(35,3250)\)
C COMPUTE C.I. FOR EXPONENTIAL REGRESSION ESTIMATES
DO 3330 M=1,NPHASE
CI \(=(1.96 * \operatorname{REGEST}(4, M)) / \mathrm{SQRT}(X N R E P)\)
\(\operatorname{CIU}=\operatorname{REGEST}(3, \mathrm{M})+\mathrm{CI}\)
\(\operatorname{CIL}=\operatorname{REGEST}(3, M)-\operatorname{CI}\)
\(\operatorname{WRITE}(35,3260) \mathrm{M}, \operatorname{AREL}(M), \operatorname{REGEST}(3, M), \operatorname{REGEST}(4, M), \operatorname{CIL}, \operatorname{CIU}\)
3330 CONTINUE
C----WEIGHTED REGRESSION (METHOD 1)
WRITE \((35,3220)\)
WRITE \((35,3321)\)
3321 FORMAT('0',T43,'WEIGHTED REGRESSSION ESTIMATE (METHOD 1 )')
\(\operatorname{WRITE}(35,3240)\)
\(\operatorname{WRITE}(35,3250)\)
C COMPUTE C.I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO 3331 M=1,NPHASE
```

```
    CI = (1.96*WREST1(4,M))/SQRT(XNREP)
    CIU = WREST1(3,M) + CI
    CIL = WREST1(3,M) - CI
    WRITE(35,3260) M,AREI(M),WREST1(3,M),WREST1(4,M),CIL,CIU
    3331 CONTINUE
C----WEIGHTED REGRESSION (METHOD 2)
    WRITE (35,3220)
    WRITE (35,3322)
    3322 FORMAT('0',T43,'WEIGHTED REGRESSION ESTIMATE (METHOD 2) ')
    WRITE (35,3240)
    WRITE (35,3250)
C COMPUTE C.I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO \(3332 \mathrm{M}=1\),NPHASE
CI \(=\) (1.96*WRL:ST2(4,M))/SQRT(XNREP)
CIU \(=\operatorname{WREST} 2(3, M)+C I\)
CIL \(=\) WREST2 \((3, M)-C I\)
WRITE ( 35,3260 ) \(\mathrm{M}, \operatorname{AREL}(\mathrm{M}), \operatorname{WREST} 2(3, \mathrm{M}), W R E S T 2(4, M), C I L, C I U\)
3332 CONTINUE
C----WEIGHTED REGRESSION (METHOD 3)
WRITE \((35,3220)\)
\(\operatorname{WRITE}(35,3323)\)
3323 FORMAT( '0', T43, 'WEIGHTED REGRESSION ESTIMATE (METHOD 3) ')
WRITE \((35,3240)\)
WRITE \((35,3250)\)
C COMPUTE C.I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO \(3333 \mathrm{M}=1\), NPHASE
CI \(=(1.96 * \operatorname{WREST} 3(4, \mathrm{M})) / \operatorname{SQRT}(X N R E P)\)
\(\mathrm{CIU}=\operatorname{WREST3}(3, \mathrm{M})+\mathrm{CI}\)
CIL \(=\) WREST3(3,M) - CI
WRITE \((35,3260) \mathrm{M}, \operatorname{AREL}(\mathrm{M}), \operatorname{WREST} 3(3, M), \operatorname{WREST} 3(4, M), C I L, C I U\)
3333 CONTINUE
WRITE \((35,3340)\)
3340 FORMAT('1',T59,'RECAPITULATION'//)
WRITE \((35,3350)\)
3350 FORMAT (' \(-1, T 3, '\) PHASE', T11, 'ACTUAL', T28, 'MEAN', T38, 'EST', T53
C'MEAN', T63, 'EST', T78, 'MEAN', T88, 'EST', T103, 'MEAN', T113, 'EST')
WRITE \((35,3360)\)
3360 FORMAT(' ', T11, 'RELIAB', T28, 'WT', T38, 'STD', T53, 'MLE' ,T63, 'STD', T7
C7, 'PHASE', T88, 'STD', T103, 'REG', T113, \({ }^{\prime}\) STD')
WRITE \((35,3370)\)
3370 FORMAT(' \({ }^{\prime}\), T28, 'REG', T35, 'DEVIATION', T53, 'W/D', T60, 'DEVIATION'
C,T78, 'MLE',T85,'DEVIATION',T103, 'EST', T110, 'DEVIATION')
WRITE \((35,3375)\)
3375 FORMAT(', \({ }^{\prime}, \mathrm{T} 28\), 'EST'/)
DO \(650 \mathrm{I}=1\), NPHASE
\(\operatorname{WRITE}(35,3380) \mathrm{I}, \operatorname{AREL}(\mathrm{I}), \operatorname{WREST} 1(3, \mathrm{I}), \operatorname{WREST} 1(4, \mathrm{I}), \operatorname{MLEWD}(3, \mathrm{I})\)
\(\operatorname{C}, \operatorname{MLEWD}(4, I), \operatorname{MLESP}(3, I), \operatorname{MLESP}(4, I), \operatorname{REGEST}(3, I), \operatorname{REGEST}(4, I)\)
```

```
3380 FORMAT('O',T4,I3,T11,F7.6,T26,F7.6,T36,F7.6,T51,F7.6,T61,F7.6
    C,T76,F7.6,T86,F7.6,T101,F7.6,T111,F7.6)
650 CONTINUE
C-----PAGE 2 OF RECAPITULATION:
        WRITE (35,3381)
3381 FORMAT('1',T59,'RECAPITULATION CONT.'//)
        WRITE (35,3382)
3382 FORMAT(' -',T3,'PHASE',T11,'ACTUAL',T28,'MEAN',T38,'EST', T53,
    C'MEAN',T63,'EST',T78, 'MEAN',T88, 'EST',T103, 'MEAN',T113,'EST')
        WRITE(35,3383)
3383 FORMAT(' ',T11, 'RELIAB',T28, 'REG',T38,'STD',T53,'METHOD',T63,
    C'STD',T77, 'METHOD',T88, 'STD',T103,'METHOD',T113,'STD')
        WRITE ( 35,3384)
3384 FORMAT('',T28,'EST',T35,'DEVIATION',T53,'ONE',T60,'DEVIATION'
        C,T78,'TWO',T85,'DEVIATION',T103,'THREE',T110,'DEVIATION')
        DO 651 I=1,NPHASE
        WRITE(35,3385) I,AREL(I), REGEST( 3,I), REGEST(4,I),WREST1(3,I)
        C,WREST1(4,I),WREST2(3,I),WREST2(4,I),WREST3(3,I),WREST3(4,I)
3385 FORMAT( ''0',T4,I3,T11,F7.6,T26,F7.6,T36,F7.6,T51,F7.6,T61,F7.6
    C,T76,F7.6,T86,F7.6,T101,F7.6,T111,F7.6)
```

C PRINT RELIABILITY ESTIMATES TO FILES FOR PLOTTING PURPOSES
$\operatorname{WRITE}(51,3400) \operatorname{MLEWD}(4, I)$ WRITE $(52,3400) \operatorname{MLEWD}(3, I ;$ WRITE $(61,3400) \operatorname{MLESP}(4, I)$ $\operatorname{WRITE}(62,3400) \operatorname{MLESP}(3, I)$ WRITE $(71,3400) \operatorname{REGEST}(4, I)$ WRITE (72,3400) REGEST(3,I) WRITE 76,3400$) \operatorname{WREST1}(4, I)$ $\operatorname{WRITE}(77,3400) \operatorname{WRESTI}(3, \mathrm{I})$ WRITE 78,3400$)$ WREST2 $(4, I)$ $\operatorname{WRITE}(79,3400)$ WREST2 $(3, I$; $\operatorname{WRITE}(91,3400)$ WREST3(4,I) $\operatorname{WRITE}(92,3400) \operatorname{WREST} 3(3, I)$ WRITE $(82,3400)$ AREL(I)
3400 FORMAT(${ }^{1, F 7.6)}$
651 CONTINUE

GO TO 6000
$4000 \operatorname{WRITE}(35,4010)$
4010 FORMAT($1 \mathrm{X}, / /, \mathrm{T} 50$, 'FIXED PHASE RELIABILITY OPTION')

WRITE $(35,4020)$
4020 FORMAT(${ }^{\prime}-1, T 38, '$ PHASE NUMBER', T78, 'ACTUAL RELIABILITY')
DO $4030 \mathrm{M}=1$, NPHASE
WRITE $(35,4040) \mathrm{M}, \operatorname{AREL}(M)$
4040 FORMAT (' 0 ', T41, I2,T83,F8.6)
4030 CONTINUE
GO TO 5000
6000 CONTINUE
STOP
END

4．JIMC FORTRAN PROGRAM

DISCRETE RELIABILITY GROWTH SIMULATION

PROGRAMMED BY JAMES E DRAKE， JAMES D CHANDLER，
AND PAM A MARKIEWICZ
LAST MODIFIED 11 JUN 1988
THE FOLLOWING EXTERNAL FILES ARE USED BY THE PROGRAM
INPUT ：DATA AND PARAMETER INPUT FILE（DEVICE \＃10）＊
THESIS ：OUTPUT FILE CONTAINING INTERMEDIATE COMPUTATIONS＊

RELIAB：OUTPUT FILE CONTAINING FINAL RESULTS OF THE SIMULATION （DEVICE 非 30）
EST ：OUTPUT FILE CONTAINING EACH PHASE ESTIMATE FOR EACH REPLICATION OF THE WOODS WEIGHTED AVERAGE ESTIMATE （DEVICE 非40）
MLEWD ：OUTPUT FILE CONTAINING MLE ESTIMATES USING DISCOUNTING FOR EACH PHASE AND EACH REPLICATION （DEVICE \＃50）
MLESP ：OUTPUT FILE CONTAINING MLE ESTIMATE FOR EACH SINGLE PHASE AND ALL REPLICATIONS USING NO DISCOUNTING （DEVICE \＃60）
REGEST ：OUTPUT FILE CONTAINING EACH PHASE ESTIMATE FOR EACH is REPLICATION OF THE EXPONENTIAL REGRESSION ESTIMATE （DEVICE \＃70）

THE FOLLOWING IS A LIST OF KEY ARRAYS USED IN THE SIMULATION
A ：MAIN WORKING ARRAY CONTAINS PROBABILITY OF SUCCESS FOR EACH FAILURE CAUSE，NUMBER OF TRIALS UNTIL FAILURE FOR EACH FAILURE CAUSE AND THE SYSTEM，CAUSE OF FAILURE， PHASE NUMBER，ADJUSTED NUMBER OF TRIALS AND ADJUSTED NUMBER OF FAILURES DIMENSION（（ 2 官非CAUSES）＋6），HFAILURES ）
NFAPH ：CONTAINS THE NUMBER OF FAILURES IN EACH PHASE DIMENSION（1，非PHASES）
NFCAUS ：BINARY ARRAY USED TO DETERMINE IF A FAILURE OCCURRED IN＊ A PHASE
DIMENSION（ 1, ，\＃FAILURE CAUSES）
NTRIAL ：CONTAINS THE NUMBER OF TRIALS SINCE LAST FAILURE OR＊ DISCOUNTING FOR EACH FAILURE CAUSE＊
DIMENSION（ 1，\＃FFAILURE CAUSES ）
TADJTP ：CONTAIN \mathfrak{E} THE TOTAL NUMBER OF ADJUSTED TRIALS IN A PHASE＊ DIMENSION（ $1, \#$ OF PHASES）
PHREST ：RECORDS THE PHASE ESTIMATE FOR EACH ESTIMATOR WITHIN A SINGLE RFPLICATION
DIMENSION（ 7 ，非PHASES）
ROW 1 ：WOODS WEIGHTED AVERAGE EST
ROW 2 ：MLE WITH DISCOUNTING

```
    ROW 3 : SINGLE PHASE MLE
                    *
    ROW 4 : WOODS REGRESSION ESTIMATE (UNWEIGHTED) *
    ROW 5 : WEIGHTED REGRESSION ESTIMATE (METHOD 1)
        ROW 6 : WEIGHTED REGRESSION ESTIMATE (METHOD 2) *
        ROW 7 : WEIGHTED REGRESSION ESTIMATE (METHOD 3) *
        *
AREL : CONTAINS ACTUAL SYSTEM RELIABILITY IN EACH PHASE
        *
        DIMENSION (1,非PHASES)
CUMSF : CONTAINS THE NUMBER OF SUCCESS AND FAILURES FOR EACH
        FAIIURE CAUSE (USED WITH WOODS WEIGHTED AVERAGE EST.)
        DIMENSION (3,#FAILUE CAUSES)
        ROW 1 : NUMBER OF FAILURES
        ROW 2 : NUMBER OF SUCCESSES
        ROW 3 : ADJUSTED NUMBER OF SUCCESSES
YJK : CONTAINS YJK VALUES UP TO 1000
        DIMENSION ( 1,1000)
VAR : CONTAINS THE VARIANCE OF THE ESTIMATE AT EACH PHASE
        DIMENSION (1,非PHASES)
SVAR1 : CONTAINS THE RUNNINC SUM OF 1/VAR(K) UP TO THE KTH PHASE
        DIMENSION (1,非PHASES)
SVAR2 : CONTAINS THE RUNNING SUM OF VAR(K) UP TO THE KTH PHASE
        DIMENSION (1,非PHASES)
SUMW : CONTAINS THE RUNNING SUM OF WEIGHTS UP TO THE KTH PHASE
        DIMENSION (1,非PHASES)
W : CONTAINS THE WEIGHT GIVEN TO EACH RELIABILITY ESTIMATE AT
    EACH PHASE. DIMENSION (3,非PHASES)
        ROW 1: WEIGHT = (1/VAR(K))/(SUM OF 1/VAR(K) UP TO
                THE KTH PHASE)
        ROW 2: WEIGHT = VAR(K)/(SUM OF VAR(K) UP TO KTH PHASE)
        ROW 3: WEIGHT = USER INPUTTED VALUES.
REG : ARRAY USED TO COMPUTE THE EXPONENTIAL REGRESSION ESTIMATE
        DIMENSION (5,#PHASES)
        ROW 1 : K BAR
        ROW 2 : Y BAR
        ROW 3 : Y BAR FOR THE PHASE
        ROW 4 : B HAT
        ROW 5 : A HAT
WREG1 : ARRAY USED TO COMPUTE THE WEIGHTFD EXPONENTIAL REGRESSION
        ESTIMATE USING METHOD 1 WEIGHTS. DIMENSION (4,值PHASES)
        ROW 1 : X BAR(W)
        ROW 2 : B HAT(W)
        ROW 3 : A HAT(W)
        ROW 4 : Y BAR(Wi)
WREG2 : SAME AS ABOVE USING METHOD 2 WEIGHTS
WREG3 : SAME AS ABOVE USING METHOD 3 WEIGHTS
THE REMAINING ARRAYS ARE USED TO COMPUTE THE MEAN AND VARIANCE
OF EACH ESTIMATE AT EACH PHASE. THEY ALL HAVE THE SAME DIMENSIONS
AND STRUCTURE
    DIMENSION (4,非HASES)
    ROW 1 : RUNNING SUM OF ESTIMATES
    ROW 2 : RUNNING SUM OF SQUARED ESTIMATES *
    ROW 3 : MEAN OF THE ESTIMATES *
    ROW 4 : STANDARD DEVIATION OF THE ESTIMATES *
MLEWD : VALUES FOR THE MLE WITH DISCOUNTING *
MLESP : VALUES FOR THE SINGLE PHASE MLE
```

```
* REGEST : VALUES FOR THE EXPONENTIAL REGRESSION ESTIMATE
    WREST1 : VALUES FOR THE WEIGHTEN EXPONENTIAL REGRESSION ESTIMATE *
                USING METHOD 1 WEIGHTS.
    WREST2 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
                USING METHOD 2 WEIGHTS.
                    *
WREST3 : VALUES FOR THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE
                            *
                USING METHOD 3 WEIGHTS.
```


C DEFINE AND DIMENSION VARIABLES
PARAMETER ($\mathrm{NR}=50, \mathrm{NC}=200$)
INTEGER REP,DISOPT, FRELOP,LDI, ALD
REAL*4 MIN
REALゃ8 LSEED, MLESP, MLEWD, EUL, SUM1, SUMS 1, SUM2, SUMS2, SUM3
C, SUMS 3
DIMENSION NFAPH(NR), A(NR,NC), NFCAUS(NR) ,NTRIAL(NR) , PHREST(7,NR),
CMLEWD ($4, \mathrm{NR}$), $\operatorname{MLESP}(4, \mathrm{NR})$, REGEST ($4, \mathrm{NR}$) , AREL(NR) , YJK (1000),
CREG(5,NR),TADJTP (1000), VAR(NR), SVAR1 (NR) ,W(3,NR),
$\operatorname{CWREG1}(4, N R), \operatorname{WREST1}(4, N R), \operatorname{WREST} 2(4, N R), \operatorname{WREST} 3(4, N R)$,
$\operatorname{CSVAR2}(N R), \operatorname{WREG} 2(4, N R), \operatorname{WREG} 3(4, N R), \operatorname{SUMW}(N R), \operatorname{EST}(4, N R), \operatorname{CUMSF}(3, N R)$
C READ IN THE NUMBER OF CAUSES TO BE USED (NCAUSE) AND THE NUMBER
C OF PHASES (NPHASE) IN THE TEST
$\operatorname{READ}(10, *)$ NCAUSE
$\operatorname{READ}(10, *)$ NPHASE
C CHECK IF FIXED RELIABILITY OPTION IS DESIRED. FIX EULER'S NUMBER.

```
\(\operatorname{READ}(10, *)\) FRELOP
EUL \(=0.5772156648\)
```

C CREATE VARIABLES FOR THE ROW INDICES OF THE WORKING MATRIX (A)
C IPHASE: PHASE
C ISYSPR: ACTUAL COMPONENT RELIABILITY
C INTR: NUMBER OF TRIALS UP TO AND INCLUDING FAILURE
C IFAILC: CAUSE OF THE FAILURE
C IADJF: ADJUSTED NUMBER OF FAILURES
AFTER DISCOUNTING HAS BEEN APPLIED
IADJT: ADJUSTED NUMBER OF TRIALS AFTER DISCOUNTING HAS BEEN APPLIED IYJK: YJK COMPUTED ON THE ADJUSTED NUMBER OF TRIALS

```
IPHASE = (2*NCAUSE ) +1
ISYSPR = IPHASE +1
INTR = ISYSPR + 1
IFAILC = INTR + 1
IADJF = IFAILC + 1
IADJT = IADJF + 1
IYJK = IADJT + 1
```

C READ IN THE NUMBER OF FAILURES IN EACH PHASE (NFAPH(I)) AND
C COMPUTE THE TOTAL NUMBER OF FAILURES IN THE TEST (NFAIL)
NFAIL $=0$
DO $10 \mathrm{I}=1$, NPHASE READ (10,*) NFAPH(I) NFAIL $=$ NFAIL + NFAPH(I)
10
CONTINUE
C INPUT THE PROBABILITY OF SUCCESS IN A SINGLE TRIAL FOR EACH CAUSE
C IN EACH PHASE If FRELOP EQUALS ONE.

```
    IF (FRELOP . EQ. 1) THEN
        DO 15 I=1,NCAUSE
            L =1
        DO 16 J=1,NPHASE
            READ (10,*) QQ
            DO 17 K = L, L+NFAPH(J)-1
                A(I,K) = QQ
    CONTINUE
                L = L+NFAPH(J)
    CONTINUE
        CONTINUE
ELSE
```

C INPUT THE PROBABILITY OF SUCCESS IN A SINGLE TRIAL FOR EACH CAUSE C IN THE FIRST PHASE If FRELOP EQUALS ZERO.

DO $20 \mathrm{I}=1$, NCAUSE
$\operatorname{READ}(10, \dot{*}) A(I, 1)$
CONTINUE
ENDIF
C INPUT THE REMAINING VARIABLES, THE NUMBER OF SUCCESSFUL TRIALS
C BEFORE A DISCOUNT IS APPLIED (N); THE DISCOUNT FACTOR (R); THE SEED
C FOR THE RANDOM NUMBER GENERATOR, GGUBFS, (DSEED); RELIABILITY
C GROWTH FRACTION (FRIMP); TRIGGER FOR PRINTING INTERMEDIATE OUTPUT
C (IOPT)
C TRIGGERS FOR SAVING EACH ESTIMATE AT EACH PHASE FOR EACH ESTIMATOR
IOPT1 : WOODS WEIGHTED AVERAGE MODEL
IOPT2 : MLE WITH DISCOUNTING
IOPT3 : SINGLE PHASE MLE
IOPT4 : EXPONENTIAL REGRESSION MODEL
IOPT5 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 1)
IOPT6 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 2)
IOPT7 : WEIGHTED EXPONENTIAL REGRESSION MODEL (METHOD 3)
DISCOUNTING OPTION TRIGGER (DISOPT); LLOYD FAILURE DISCOUNTING
C PARAMETER (GAMMA); LLOYD DISCOUNT INTERVAL

```
READ (10,*) N
READ(10,*) R
READ (10,*) DSEED
READ(10,*) FRIMP
READ(10,*) NRE!
READ (10,*) IOPT
```

```
        READ(10,*) IOPT1
        READ(10,*) IOPT2
        READ( 10,*) IOPT3
        READ(10,*) IOPT4
        READ (10,*) IOPT5
        READ(10,*) IOPT6
        READ(10,*) IOPT7
        READ (10,*) DISOPT
        READ(10,*) GAMA
        READ(10,*) LDI
C-----READ IN THE USER INPUTTED WEIGHTS FOR COMPUTATION OF METHOD 3.
        DO 25 I=1,NPHASE
            READ(10,*) W(3,I)
    25 CONTINUE
    XNREP = NREP
    DSEED1 = DSEED
C INITIALIZE THE ARRAYS USED TO COMPUTE THE MEAN AND STANDARD DEVIATION C OF EACH ESTIMATOR
DO \(30 \mathrm{~J}=1\),NPHASE DO \(30 \quad \mathrm{I}=1,4\)
\(\operatorname{EST}(I, J)=0.0\)
\(\operatorname{MLEWD}(I, J)=0.0\)
\(\operatorname{MLESP}(I, J)=0.0\)
\(\operatorname{REGEST}(I, J)=0.0\)
\(\operatorname{WREST1}(I, J)=0.0\)
\(\operatorname{WREST} 2(I, J)=0.0\)
WREST3 \((I, J)=0.0\)
30 CONTINUE
DO \(31 \mathrm{~J}=1\), NPHASE
DO \(31 \mathrm{I}=1,6\)
\(\operatorname{PHREST}(I, J)=0.0\)
31 CONTINUE
C COMPUTE AND STORE THE YJK VALUES UP TO 1000
```

```
    \(Y J K(1)=0.0\)
```

 \(Y J K(1)=0.0\)
 D0 \(40 \quad I=1,999\)
 D0 \(40 \quad I=1,999\)
 \(Y J K(I+1)=Y J K(I)+1.0 / I\)
 \(Y J K(I+1)=Y J K(I)+1.0 / I\)
 40 CONTINUE
 40 CONTINUE
 C COMPUTE AND STORE K BAR FOR THE EXPONENTIAL REGESSION MODEL
SUM $=0.0$
DO $50 \mathrm{I}=1$, NPHASE
SUM $=$ SUM $+I$
$\operatorname{REG}(1, I)=\operatorname{SUM} / I$
50 CONTINUE
C MAJOR REPETITION OF THE SIMULATION LOOP
DO 500 REP=1,NREP

```

\section*{C INITIALIZE FAILURE CAUSE VECTOR (NFCAUS) AND (CUMSF)}

C COMPUTE THE INITIAL SYSTEM RELIABILITY
```

REL = 1.
DO 60 I=1,NCAUSE
NFCAUS(I) = 0
REL = REL * A(I,1)
DO 60 J=1,3
CUMSF(J,I) = 0
CONTINUE

```
60

C INITIALIZE COLUMN (FAILURE \#) COUNTER FOR THE WORKING ARRAY (A)
\[
J=1
\]

C LOOP TO COMPUTE THE NUMBER OF TRIALS UP TO AND INCLUDING FAILURE
C AND THE CAUSE OF FAILURE FOR EACH FAILURE IN EACH PHASE
DO \(130 \mathrm{~K}=1\), NPHASE
C SKIP ACTUAL COMPL NENT RELIABILITY COMPUTATION AFTER FIRST REP
C AND FOR FIRST FAILURE
```

IF(J.EQ. 1) GOTO 75
IF(REP.GT. 1) GOTO }7
REL = 1.

```

C IF FIXED RELIABILITY OPTION IS SELEGTED THEN PHASE RELIABILITIES
C ARE COMPUTED AS FOLLOWS
```

IF (FRELOP . EQ. 1) THEN
DO }65I=1,NCAUS
REL = REL*A(I,J)
NFCAUS(I) = 0
CONTINUE
ELSE

```

C COMPUTE NEW ACTUAL RELIABILITY FOR THE COMPONENT IN PHASE K
DO 70 I=1,NCAUSE
C INCREASE CAUSE PR(SUCCESS) IF IT CAUSED FAILURE IN THE PREVIOUS PHASE
C COMPUTE NEXT PHASE RELIABILITY AND REINITIALIZE NFCAUS (NOT USED IF
C FIXED PHASE RELIABILITY OPTION IS SELECTED).
```

 IF(NFCAUS(I).EQ. 1) THEN
 A(I,J) = A(I,(J-1)) +((1. - A(I,(J-1)))*FRIMP)
 ELSEIF(NFCAUS(I).NE.1) THEN
 A(I,J) = A(I,(J-1))
 ELSE
 ENDIF
 REL = REL**A(I,J)
 NFCAUS(I) =0
 CONTINUE
ENDIF

```
\[
\begin{aligned}
& \mathrm{J} 1=1 \\
& \mathrm{TRTOT}=0.0
\end{aligned}
\]

C COMPUTE THE NUMBER OF TRIALS UP TO AND INCLUDING FAILURE AND THE
C CAUSE OF FAILURE FOR EACH FAILURE IN THE PHASE
DO \(120 \quad L=1\), NFAPH(K) IF (REP. GT. 1) GOTO 90
IF(J1.EQ. 1) GOTO 85
IF (FRELOP .EQ. 1) GOTO 85
DO \(80 \mathrm{I}=1\),NCAUSE \(A(I, J)=A(I,(J-1))\)
80 CONTINUE
85 A(ISYSPR,J) = REL \(\mathrm{A}(\) IPHASE, J\()=\mathrm{K}\)
\(90 \quad \mathrm{MIN}=7.2 \mathrm{E} 75\) DO \(110 \mathrm{I}=1\), NCAUSE

C ASSIGN \# TRIALS FOR CAUSES WITH PR(SUCCESS) \(=0\) OR 1
```

IF(A(I,J).GE. 1.) THEN
A((I+NCAUSE),J) = 7.2E75
GOTO 100
ELSEIF(A(I,J).EQ. O.) THEN
A((I+NCAUSE),J) = 1.
GOTO 100
ELSE
ENDIF

```

C CONVERT UNIFORM ( 0,1 ) RANDOM VARIABLE TO GEOMETRIC (非 TRIALS UNTIL
C FAILURE ) FOR EACH FAILURE CAUSE. RECORD THE MIN \# TRIALS FOR THE
C CAUSES AS THE SYSTEM 非 TRIALS UP TO AND INCLUDING FAILURE AND
C RECORD THE FAILURE CAUSE
```

A((I+NCAUSE),J) = INT(1.+(LOG(GGUBFS(DSEED))/LOG(A(I,J))))

```
                        MIN \(=A((I+N C A U S E), J)\)
                        IMIN = I
                    ELSE
                    ENDIF
110
CONTINUE
A(IFAILC, J) \(=\) IMIN
NFCAUS(IMIN) \(=1\)

C COMPUTE THE TOTAL \# OF TRIALS FOR THE MLE SINGLE PHASE ESTIMATE AND
C INCREMENT FAILURE \# COUNTERS
A (INTR , J \()=\) MIN
TRTOT \(=\) TRTOT \(+A(\) INTR, \(J)\)
\(\mathrm{J}=\mathrm{J}+1\)
\(\mathrm{J} 1=\mathrm{J} 1+1\)
120 CONTINUE

C COMPUTE THE MLE ESTIMATE OF COMPONENT RELIABILITY FOR THIS PHASE AND C COMPUTE THE RUNNING SUM OF ESTIMATES AND THE SUM OF ESTIMATES SQUARED C FOR COMPUTATION OF THE MEAN AND STANDARD DEVIATION OF THE ESTIMATE
\(\operatorname{PHREST}(3, K)=(\operatorname{TRTOT}-\operatorname{NFAPH}(K)) / \operatorname{TRTOT}\)
\(\operatorname{MLESP}(1, \mathrm{~K})=\operatorname{MLESP}(1, \mathrm{~K})+\operatorname{PHREST}(3, K)\)
\(\operatorname{MLESP}(2, K)=\operatorname{MLESP}(2, K)+(\operatorname{PHREST}(3, K) * * 2)\)
130 CONTINUE
C INITIALIZE THE ADJUSTED NUMBER OF FAILURES TO 1 AND THE COUNT OF THE
C NUMBER OF TRIALS SINCE FAILURE OR DISCOUNTING (NTRIALS(I) ) TO 0
C IN PREPARATION FOR THE DISCOUNTING ROUTINE
DO \(140 \mathrm{~J}=1\), NFAIL \(A(I A D J F, J)=1\).
140 CONTINUE
DO \(150 \mathrm{I}=1\), NCAUSE NTRIAL( I ) \(=0\)
150 CONTINUE
C INITIALIZE THE VARIANCE, VAR, THE SUM OF 1/VAR, SVAR, AND THE WEIGHTS,W.
DO \(155 \mathrm{I}=1\), NPHASE
\[
\begin{aligned}
\operatorname{SVARI}(I) & =0 \\
\operatorname{SVAR2}(I) & =0 \\
\operatorname{SUMW}(I) & =0 \\
\operatorname{VAR}(I) & =0 \\
W(1, I) & =0 \\
W(2, I) & =0
\end{aligned}
\]

CONTINUE
C DISCOUNTING ROUTINE REVIEWS ALL PAST FAILURES AND CAUSES TO DATE
C AND DETERMINES IF THE DISCOUNTING CONDITIONS HAVE BEEN MET. COMPUTES
C THE ADJUSTED FAILURES, THE ADJUSTED \# OF TRIALS AND YJK
```

J = 0
DO 300 K=1,NPHASE
DO 200 L=1,NFAPH(K)
J = J + 1

```

C UPDATES THE NUMBER OF TRIALS SINCE FAILURE OR DISCOUNTING FOR EACH
C FAILURE CAUSE
```

 ICAUSE = INT(A(IFAILC,J)+.5)
 DO 160 I=1,NCAUSE
 IF(ICAUSE.EQ. I) THEN
 NTRIAL(I) = 0
 ELSEIF(ICAUSE.NE. I) THEN
 NTRIAL(I) = NTRIAL(I) + INT(A(INTR,J)+.5)
 ELSE
 ENDIF
 CONTINUE

```
160

200 CONTINUE

C CHOOSE DISCOUNTING METHOD TO BE USED
IF(DISOPT.NE. 2) GOTO 180
C PERFORM LLOYD'S FAILURE DISCOUNTING METHOD
```

DO 170 I=1,J
I1 = INT(A(IFAILC,I)+.5)
IF(NTRIAL(I1).EQ.0) THEN
A(IADJF,I) = 1.0
GOTO 170
ELSE
ENDIF

```

C THIS IS THE MODIFIED LLOYD METHOD USING A DISCOUNT INTERVAL. THE C ORIGINAL DISCOUNT METHOD MAY BE EMPLOYED BY SETTING LDI TO ONE.
```

$A L D=I N T(N T R I A L(I 1) / L D I)$
IF (ALD.EQ. 0) THEN
$A(I A D J F, I)=1.0$
GO TO 170
ELSE
$A(I A D J F, I)=1.0-((1 .-G A M A) * *(1.0 / A L D))$
ENDIF

```
    170 CONTINUE
GOTO 210

C PERFORMS STRAIGHT PERCENT FAILURE DISCOUNTING AND
C COMPUTES THE ADJUSTED \# OF FAILURES
        IF (NTRIAL(I1).EQ.0) THEN
            A(IADJF, I) \(=1\).
        ELSEIF(NTRIAL(I1). GE. N) THEN
            \(A(\operatorname{IADJF}, \mathrm{I})=\mathrm{A}(\operatorname{IADJF}, \mathrm{I}) *((1,-\mathrm{R}) * *(\operatorname{NTRIAL}(\mathrm{I} 1) / \mathrm{N}))\)
        ELSE
        ENDIF
    190
CONTINUE

C ADJUSTS THE \# TRIALS SINCE FAILURE OR DISCOUNTING FOR THOSE CAUSES
C THAT HAVE MET OR SURPASSED THE DISCOUNTING THRESHOLD
C FOR THE STRAIGHT PERCENT DISCOUNTING METHOD
DO \(205 \mathrm{I}=1\), NCAUSE \(\operatorname{IF}(\operatorname{NTRIAL}(I) . \operatorname{GE} . N) \operatorname{NTRIAL}(I)=\operatorname{MOD}(\operatorname{NTRIAL}(I), N)\)
CONTINUE
205
210
TADJT \(=0.0\)
TYJK \(=0.0\)
TPYJK \(=0.0\)
\(\mathrm{K} 1=0\)
DO 215 I2 \(=1,3\)
DO 215 I=1,NCAUSE \(\operatorname{CUMSF}(12, I)=0\)

C COMPUTES THE ADJUSTED \# OF TRIALS FROM THE ADJUSTED \# OF FAILURES C AND COMPUTES THE SUM OF THE ADJUSTED 非 OF TRIALS FOR ESTIMATE COMP.

PREL \(=0.0\)
LTRIAL \(=0\)
C IF ADJUSTED FAILURES ARE APPROACHING 0 THEN ADJUSTED TRIALS MUST C BE PRE-SET.
```

DO 240 I=1,J
IF(A(IADJF,I) . LE. . 0000001) THEN
A(IADJF,I) =.0000001
ENDIF
A(IADJT,I) = A(INTR,I)/A(IADJF,I)
TADJT = TADJT + A(IADJT,I)

```

C COMPUTE YJK FROM THE ADJUSTED \# OF TRIALS AND STORE THE SUM FOR
C ESTIMATE COMPUTATION, USE ARRAY FOR \# TRIALS < 1000 AND APPROX. FOR
C VALUES > 1000
N1 = NINT(A(IADJT,I))
IF(N1. LE. 1000) THEN
\(\mathrm{A}(\mathrm{IYJK}, \mathrm{I})=\mathrm{YJK}(\mathrm{N} 1)\)
ELSEIF(N1.GT. 1000) THEN
\(\mathrm{X}=\mathrm{N} 1\)
\(\mathrm{Q}=12 \pi \mathrm{X}\)
\(\mathrm{T}=\mathrm{X}+1\)
\(\mathrm{S}=\mathrm{X}+2\)
\(A(I Y J K, I)=(E U L+(\operatorname{LOG}(X))+(1 /(2 * X))-(1 /(Q * T))-(1 /(Q * T * S)))\)
ELSE
ENDIF
C DETERMINE IF A PHASE BOUNDARY HAS BEEN REACHED TO BEGIN ESTIMATE C COMPUTATION

IF(I.EQ. 1) GOTO 225
IF (A(IPHASE,I). NE. A(IPHASE, (I-1))) THEN
C COMPUTE THE WOODS WEIGHTED AVERAGE ESTIMATE
\(\operatorname{MAX}=0\)
\(K 1=K 1+1\)
C DETERMINE THE FAILURE CAUSE WITH THE LARGEST \# OF FAILURES
DO 220 Il=1,NCAUSE
IF (CUMSF (1, I 1). GT. MAX) THEN
\(\operatorname{MAX}=\operatorname{CUMSF}(1, I 1)\)
ICOL = II
ELSE

ENDIF

C COMpUTE yJK value for the current phase estimate
```

IF(CUMSF(1, ICOL). LE. 1000) THEN
AHATL = YJK(CUMSF(1, ICOL))
ELSEIF(CUMSF(1,ICOL).GT. 1000) THEN
X = CUMSF(1,ICOL)
Q=12*X
T=X+1
S=X+2
AHATL=(EUL+(LOG(X))+(1/(2*X))-(1/(Q*T))-(1/(Q*T*S)))

```

\section*{ELSE}

ENDIF
IX \(=\operatorname{CUMSF}(1, \operatorname{ICOL})+\operatorname{CUMSF}(3, I C O L)\)
IF (IX. LE. 1000) THEN
AHATU \(=Y\) YK (IX)
ELSEIF(IX. GT. 1000) THEN
\(X=I X\)
\(\mathrm{Q}=12 * \mathrm{X}\)
\(\mathrm{T}=\mathrm{X}+1\)
\(\mathrm{S}=\mathrm{X}+2\)
\(\operatorname{AHATU}=(\operatorname{EUL}+(\operatorname{LOG}(\mathrm{X}))+(1 /(2 * \mathrm{X}))-(1 /(\mathrm{Q} * \mathrm{~T}))-(1 /(\mathrm{Q} * \mathrm{~T} * \mathrm{~S})))\)
ELSE
ENDIF
C COMPUTE CURRENT PHASE RELIABILITY ESTIMATE
```

AHAT = AHATU - AHATL
CREL = 1.0 - EXP(-AHAT)
X = CUMSF(1,ICOL) + CUMSF(3,ICOL)

```

C COMPUTE AND STORE THE WOODS WEIGHTED AVERAGE ESTIMATE
PREL \(=((\) LTRIAL*PREL \() / \mathrm{X})+(((X-L T R I A L) * C R E L) / X)\)
\(\operatorname{LTRIAL}=\operatorname{CUMSF}(1, I C O L)+\operatorname{CUMSF}(3, I C O L)\)
C COMpUTE THE phase and global average for yJk used in the exponential
C REGRESSION ESTIMATES ARE
\(\operatorname{REG}(2, \mathrm{~K} 1)=\mathrm{TYJK} /(\mathrm{I}-1)\)
\(\operatorname{REG}(3, \mathrm{~K} 1)=\mathrm{TPYJK} / \mathrm{NFAPH}(\mathrm{K} 1)\)
TPYJK \(=0.0\)
ENDIF
C COMPUTE THE NUMBER OF FAILURES AND SUCCESSES FOR EACH FAILURE CAUSE
C USED IN THE WOODS WEIGHTED AVERAGE ESTIMATE
```

225 ICAUSE = INT(A(IFAILC,I)+.5)
DO 230 II=1,NCAUSE

```
```

 CUMSF(2,I1) = CUMSF(2,I1) + INT(A(INTR,I) + . 5)
 CUMSF(3,I1) = CUMSF(3,I1) +N1
 230 CONTINUE
CUMSF(1,ICAUSE) = CUMSF(1,ICAUSE) + 1
CUMSF(2,ICAUSE) = CUMSF(2,ICAUSE) - 1
CUMSF(3,ICAUSE) = CUMSF(3,ICAUSE) - 1
TPYJK = TPYJK + A(IYJK,I)
TYJK = TYJK + A(IYJK,I)
CONTINUE

```

C REPEAT COMPUTATIONS FOR THE WOODS WEIGHTED AVERAGE ESTIMATE FOR THE C FINAL PHASE
```

MAX = 0
K1 = K1 + 1
DO 245 I1=1,NCAUSE
IF(CUMSF(1,I1).GT. MAX) THEN
MAX = CUMSF(1,I1)
ICOL = I1
ELSE
ENDIF
245 CONTINUE
IF(CUMSF(1,ICOL).LE. 1000) THEN
AHATL = YJK(CUMSF(1,ICOL))
ELSEIF(CUMSF(1,ICOL).GT. 1000) THEN
X = CUMSF(1,ICOL)
Q=12*X
T=X+1
S=X+2
AHATL=(EUL+(LOG(X))+(1/(2*X))-(1/(Q*T))-(1/(Q*T*S)))
ELSE
ENDIF
IX = CUMSF(1,ICOL) + CUMSF(3,ICOL)
IF(IX. LE. 1000) THEN
AHATL = YJK(IX)
ELSEIF(IX.GT. 1000) THEN
X = IX
Q=12*X
T=X+1
S=X+2
AHATU=(EUL+(LOG(X))+(1/(2*X))-(1/(Q*T))-(1/(Q*T*S)))

```

\section*{ELSE}
```

ENDIF

```
```

AHAT = AHATU - AHATL

```
AHAT = AHATU - AHATL
CREL = 1.0 - EXP(-AHAT)
CREL = 1.0 - EXP(-AHAT)
X = CUMSF(1,ICOL) + CUMSF(3,ICOL)
```

X = CUMSF(1,ICOL) + CUMSF(3,ICOL)

```
PREL \(=((\) LTRIAL*PREL \() / X)+(((X-\) LTRIAL \() * C R E L) / X)\)
\(\operatorname{LTRIAL}=\operatorname{CUMSF}(1, I C O L)+\operatorname{CCMSF}(3, I C O L)\)
```

REG(2,K1) = TYJK/(J)
REG(3,K1) = TPYJK/NFAPH(K1)

```
```

PHREST(1,K) = PREL

```

C COMPUTE THE MLE ESTIMATE OF PHASE RELIABILITY USING DISCOUNTING
```

$\operatorname{PHREST}(2, K)=(T A D J T-J) / T A D J T$

```

C COMPUTE THE EXPONENTIAL REGRESSION ESTIMATE BEGINNING WITH B HAT
```

SUM $=0.0$

```
SUMS \(=0.0\)
IF (K.EQ. 1) GOTO 252
DO \(250 \mathrm{I}=1, \mathrm{~K}\)
            SUM \(=\operatorname{SUM}+((I-\operatorname{REG}(1, K)) * \operatorname{REG}(3, I))\)
            SUMS \(=\) SUMS \(+\left((\operatorname{I}-\operatorname{REG}(1, K))^{* * 2}\right)\)
CONTINUE
\(\operatorname{REG}(4, K)=\) SUM/SUMS

C COMPUTE A HAT
```

$\operatorname{REG}(5, \mathrm{~K})=\operatorname{REG}(2, \mathrm{~K})-(\operatorname{REG}(4, K) * \operatorname{REG}(1, \mathrm{~K}))$

```

C COMPUTE AND STORE THE EXPONENTIAL REGRESSION ESTIMATE
```

PHREST(4,K) = 1.0 - EXP(-(REG(5,K) + (REG(4,K)%K)))
IF(PHREST(4,K).LT. 0.0) PHREST(4,K)=0.0
GOTO 255
PHREST(4,K)=1.0 - EXP(-REG(3,1))
IF(PHREST(4,K).LT.0.0) PHREST(4,K)=0.0

```

C STORE THE RUNNING SUM OF THE ESTIMATES FOR THE CURRENT PHASE AND THE
C RLNNING SUM OF THE ESTIMATES SQUARED FOR COMPUTATION OF THE MEAN AND
C STANDARD DEVIATION OF EACH ESTIMATE FOR EACH RELIABILITY GROWTH
C MODEL
255
```

EST(1,K) = EST(1,K) + PHREST(1,K)
EST}(2,K)=\operatorname{EST}(2,K)+(PHREST(1,K)**2
MLEKD(1,K) = MLEWD(1,K) + PHREST(2,K)
MLEWD(2,K) = MLEWD(2,K) + (PHREST(2,K)**2)
REGEST(1,K) = REGEST(1,K) + PHREST(4,K)
REGEST}(2,K)=\operatorname{REGEST}(2,K)+(\operatorname{PhREST}(4,K)**2

```

C COMPLTE THE VARIANCES OF THE UNWEIGHTED EXPONENTIAL REGRESSION
C ESTIMATES AND STORE THE RUNNING SUM OF THE VARIANCES FOR USE IN THE
C WEIGHTED REGRESSION MODEL.
```

VAR(K)=(NFAPH}(K)*PHREST(1,K))/((1. - - PHREST(1,K))**2
IF (VAR(K) . LT. . 00000R.1)THEN
VAR(K) = . 0000001
END IF
IF (K . EQ. 1) GO TO 258
SVAR1(K) = SVARI(K-1) + (1./VAR(K))

```
```

 SVAR2(K) = SVAR2(K-1) + VAR(K)
 SUMW(K) = SUMW(K-1) + W(3,K)
 GO TO 259
 258 SVAR1(K) = (1./VAR(1))
SVAR2(K) = VAR(1)
SUMW(K) = W(3,1)

```

C COMPUTE THE WEIGHTS FOR EACH PHASE
\(259 \mathrm{~W}(1, \mathrm{~K})=(1 . / \operatorname{VAR}(\mathrm{K})) / \operatorname{SVAR1}(\mathrm{K})\)
\(W(2, K)=\operatorname{VAR}(K) / \operatorname{SVAR} 2(K)\)
C COMPUTE AND STORE X-BAR(W) AND Y-BAR(W)
SUMX1 \(=0\)
SUMY1 \(=0\)
SUMX2 \(=0\)
SUMY2 \(=0\)
SUMX3 \(=0\)
SUMY3 \(=0\)
DO \(261 \mathrm{I}=1, \mathrm{~K}\)
\(\operatorname{SUMX1}=\operatorname{SUMX1}+(1 . / \operatorname{VAR}(K)) r I\)
SUMY1 \(=\) SUMY \(1+(1 . / \operatorname{VAR}(K)) * \operatorname{REG}(3, I)\)
SUMX2 \(=\operatorname{SUMX} 2+\operatorname{VAR}(K) * I\)
SUMY2 \(=\operatorname{SUMY2}+\operatorname{VAR}(\mathrm{K}) * \operatorname{REG}(3, \mathrm{I})\)
SUMX3 \(=\) SUMX3 \(+W(3, K)\) *I
SUMY3 \(=\operatorname{SUHY} 3+W(3, K) \operatorname{rREG}(3, I)\)

261 CONTINUE
\(\operatorname{WREG} 1(1, K)=\operatorname{SUMX1/SVAR1(K)}\)
\(\operatorname{WREG} 1(4, K)=\operatorname{SUMY1/SVAR1(K)}\)
WREG2 \((1, K)=\operatorname{SUMX} 2 / \operatorname{SVAR} 2(K)\)
\(\operatorname{WREG} 2(4, K)=\operatorname{SUMY} 2 / \operatorname{SVAR} 2(K)\)
\(\operatorname{WREG3}(1, K)=\operatorname{SUMX3/SUMW}(K)\)
WREG3 \((4, K)=\) SUMY \(3 / \operatorname{SUMH}(K)\)
C COMPUTE AND STORE B-HAT(W)
```

SUM1 $=0.0$
SUMS1 $=0.0$
SUM2 $=0.0$
SUMS2 $=0.0$
SuM3 $=0.0$
SLMS3 $=0.0$
IF (K . EQ. 1) GO TO 272
DO $271 \mathrm{I}=1, \mathrm{~K}$
SUM1 $=\operatorname{SUM1}+(W(1, K) *(I-W R E G 1(1, K)) * R E G(3, I))$
SUMS $1=$ SUMS $1+\left(W(1, K)^{*}\left((I-\operatorname{WREG1}(1, K))^{\text {N+ }} 2\right)\right)$
SUM $2=$ SUM $2+(W(2, K) \div(I-\operatorname{WREG} 2(1, K)) \div \operatorname{REG}(3, I))$
SUMS2 $=$ SUMS2 $+(W(2, K) *((I-\operatorname{RREG2}(1, K)) * * 2))$
SUM3 $=$ SUM $3+(W(3, K) *(I-W R E G 3(1, K)) * R E G(3, I))$
SUMS $3=$ SUMS $3+(W(3, K) *((I-W R E G 3(1, K)) * 2))$
271 CONTINUE

```
```

WREG1(2,K) = SUM1/SUMS1
hREG2(2,K) = SUM2/SUMS2

```
```

WREG3(2,K) = SUM3/SUMS3

```

C COMPUTE AND STORE A-HAT(W)
```

WREG1(3,K) = WREG1(4,K) - (WREG1(2,K)*WREG1(1,K))
WREG2(3,K) = WREG2(4,K) - (WREG2(2,K)*WREG2(1,K))
WREG3(3,K) = WREG3(4,K) - (WREG3(2,K)*WREG3(1,K))

```

C COMPUTE AND STORE THE WEIGHTED EXPONENTIAL REGRESSION ESTIMATE

```

IF (PHREST(5,K) .LT. 0.0) PHREST(5,K) = 0.0
IF (PHREST(6,K) .LT. 0.0) PHREST(6,K) =0.0
IF (PHREST(7,K) .LT. 0.0) PHREST(7,K) =0.0
GO TO 275

```
\(272 \operatorname{PHREST}(5, K)=1.0-\operatorname{EXP}(-\operatorname{WREG1}(4,1))\)
IF ( \(\operatorname{PHREST}(5, \mathrm{~K})\).LT. 0.0\() \operatorname{PHREST}(5, K)=0.0\)
\(\operatorname{PHREST}(6, K)=1.0-\operatorname{EXP}(-\operatorname{WREG} 2(4,1))\)
IF (PHREST( \(6, \mathrm{~K}\) ) . LT. 0.0) \(\operatorname{PHREST}(6, K)=0.0\)
\(\operatorname{PHREST}(7, K)=1.0-\operatorname{EXP}(-\operatorname{WREG} 3(4,1))\)
\(\operatorname{IF}(\operatorname{PHREST}(7, K) . \operatorname{LT} .0 .0) \operatorname{PHREST}(7, K)=0.0\)
C STORE THE RUNNING SUM OF THE WEIGHTED ESTIMATES FOR THE CURRENT C PHASE AND THF RUNNING SUM OF THE ESTIMATES SQUARED FOR COMPUTATION OF C THE MEAN ANL STANDARD DEVIATION OF EACH WEIGHTED ESTIMATE FOR THE C WEIGHTED EXPONENTIAL REGRESSION MODEL.
```

275 WREST1(1,K) = WREST1(1,K) + PHREST(5,K)
WREST1(2,K) = WREST1(2,K) + (PHREST(5,K)**2)
WREST2(1,K) = WREST2(1,K) + PhREST(6,K)
WREST2(2,K) = W'REST2(2,K) + (PHREST(6,K)*** 2)
WREST3(1,K) = WREST3(1,K) + PhREST(7,K)
WREST3(2,K) = WREST3(2,K) + (PHREST(7,K)**2)

```

C STORE THE ACTUAL PHASE RELIABILITY
\(\operatorname{AREL}(K)=A(\) ISYSPR,\(J)\)
C PRINT INTERMEDIATE OUTPUT IF REQUESTED AND THE NUMBER OF REPETITIONS
C IS NOT GREATER THAN 5
IF(IOPT. NE. 1) GOTO 300
IF(REP.GT.5) GOTO 300
\(\operatorname{WRITE}(20,1000) \operatorname{REP}, \mathrm{K}\)
```

 1000 FORMAT(T16,'REPETITION NUMBER: ',I4,' PHASE NUMBER: ',I4)
 WRITE(20,1010) A(ISYSPR,J)
 1010 FORMAT(22X,'ACTUAL COMPONENT RELIABILITY: ',F7.5)
WRITE(20,1020) PHREST(1,K)
1020 FORMAT(20X,'PREDICTED COMPONENT RELIABILITY: ',F7.5)
WRITE(20,1022) PHREST(2,K)
1022 FORMAT(20X,'MLE ESTIMATE USING DISCOUNTING: ',F7.5)
WRITE(20,1025) PHREST(3,K)
1025 FORMAT(18X,'MLE ESTIMATE OF PHASE RELIABILITY: ',F7.5)
WRITE(20,1027) PHREST(4,K)
1027 FORMAT(14X,'REGRESSION ESTIMATE OF PHASE RELIABILITY: ',F7.5)
WRITE(20, 1028) PHREST(4,K)
1028 FORMAT (14X,'WEIGHTED REG. ESTIMATE (METHOD 1) : ',F7.5)
WRITE(20,1026) PHREST(5,K)
1026 FORMAT(14X,'WEIGHTED REG. ESTIMATE (METHOD 2) : ',F7.5)
WRITE(20,1029) PHREST(6,K)
1029 FORMAT(14X,'WEIGHTED REG. ESTIMATE (METHOD 3) : ',F7.5)
WRITE (20,1030)
1030 FORMAT(
DO 260 I=1,NCAUSE
WRITE(20,1035)I,A(I,J),A((I+NCAUSE),J)
1035 FORMAT(12X,'CAUSE: ,I3,' PR(SUCCESS): ',F7.6,' \# TRIALS: ',
CF10.0)
260 CONTINUE
WRITE(20,1036)
1036 FORMAT('',' ')
WRITE(20,1040)
1040 FORMAT(4X,'FAIL \#',3X,'FAIL CAUSE',3X,'\# TRIALS',3X,'ADJ 非FAIL',3
CX,'ADJ \# TRIALS',7X,'YJK')
DO 270 I=1,J
WRITE(20,1050)I,A(IFAILC,I),A(INTR,I),A(IADJF,I),A(IADJT,I),A(IYJK
C,I)
1050 FORMAT(4X,I3,8X,F3.0,7X,F8.0,4X,F8.6,4X,F12.0,3X,F11.4)
270 CONTINUE
WRITE(20,1060)
1060 FORMAT('',///)
300 CONTINUE
C PRINT EACH OF THE 3 ESTIMATES TO THEIR APPROPRIATE OUTPUT FILE
C IF REQUESTED

```

IF (IOPT1.NE.1) GOTO 401
\(400 \operatorname{VRITE}(40,2000)(\operatorname{PHREST}(1, I), I=1\), NPHASE \()\)
401 IF (IOPT2. NE. 1) GOTO 402
WRITE 50,2000 ) ( \(\operatorname{PHREST}(2, I), I=1, \operatorname{NPHASE})\)
402 IF (IOPT3.NE. 1; GOTO 403
\(\operatorname{WRITE}(60,2000)(\operatorname{PHREST}(3, I), I=1, \operatorname{NPHASE})\)
403 IF (IOPT4.NE. 1) GOTO 404
\(\operatorname{WRITE}(70,2000)\) (PHREST(4,I), \(I=1, \operatorname{NPHASE)}\)
404 IF (IOPT5. NE. 1) GOTO 405
\(\operatorname{HRITE}(16,2000)(\operatorname{PHREST}(5, \mathrm{I}), \mathrm{I}=1, \mathrm{NPHASE})\)
405 IF (IOPT5. NE. 1) GOTO 406 \(\operatorname{WRITE}(39,2000)(\operatorname{PHREST}(6, I), I=1, \operatorname{NPHASE})\)
406 IF (IOPT5.NE.1) GOTO 500 \(\operatorname{WRITE}(49,2000)(\operatorname{PHREST}(7,1), I=1\), NPHASE)
2000 FORMAT( \({ }^{\prime}\) ',30(F7.6:1X))

C WORKING A MATRIX
DO \(4050 \mathrm{~J}=1,(2 *\) NCAUSE \()+7\) WRITE \(83, *)(A(J, I), I=1, N F A I L)\)
4050 CONTINUE
```

 DO 4052 J = 1,NCAUSE
 WRITE(88,*) (REG(J,I), I = 1,NPHASE)
 4052 CONTINUE

```

C UPON COMPLETION OF ALL REPETITIONS, COMPUTE THE MEAN AND STANDARD
C DEVIATION OF EACH ESTIMATE FOR EACH PHASE SKIPPING COMPUTATIONS IF
C ONLY ONE REPETITION IS REQUIRED
IF (NREP. LE. 1) GOTO 601
DO \(600 \mathrm{I}=1\), NPHASE
\(\operatorname{EST}(3, I)=\operatorname{EST}(1, I) / \operatorname{XNREP}\)
\(\operatorname{MLEWD}(3, I)=\operatorname{MLEWD}(1, I) / \operatorname{XNREP}\)
\(\operatorname{MLESP}(3, I)=\operatorname{MLESP}(1, I) / \operatorname{XNREP}\)
\(\operatorname{REGEST}(3, I)=\operatorname{REGEST}(1, I) / \operatorname{XNREP}\)
\(\operatorname{WREST1}(3, I)=\operatorname{WREST} 1(1, I) / \operatorname{XNREP}\)
\(\operatorname{WREST} 2(3, I)=\operatorname{WREST} 2(1, I) / \operatorname{XNREP}\)
\(\operatorname{WREST} 3(3, I)=\operatorname{WREST} 3(1, I) / X N R E P\)
\(\operatorname{EST}(4, I)=\operatorname{SQRT}((\operatorname{EST}(2, I)-(\operatorname{XNREP} *(\operatorname{EST}(3, I) * * 2))) /(\operatorname{XNREP}-1))\)
\(\operatorname{MLEWD}(4, I)=\operatorname{SQRT}((\operatorname{MLEWD}(2, I)-(\operatorname{XNREP} \div(\operatorname{MLEWD}(3, I) * 2))) /(\operatorname{XNREP}-1))\)
\(\operatorname{MLESP}(4, I)=\operatorname{SQRT}((\operatorname{MLESP}(2, I)-(\operatorname{XNREP} *(\operatorname{MLESP}(3, I) * * 2))) /(\operatorname{XNREP}-1))\)
\(\operatorname{REGEST}(4, I)=\operatorname{SQRT}((\operatorname{REGEST}(2, I)-(\operatorname{XNREP} \div(\operatorname{REGEST}(3, I) * * 2))) /(\operatorname{XNREP}-1))\)
\(\operatorname{WREST} 1(4, I)=\operatorname{SQRT}((\operatorname{WREST} 1(2, I)-(\operatorname{XNREP} *(\operatorname{WREST} 1(3, I) * * 2)) /(\operatorname{XNREP}-1))\)
\(\operatorname{WREST} 2(4, I)=\operatorname{SQRT}((\operatorname{WREST} 2(2, I)-(\operatorname{XNREP} *(\operatorname{WREST} 2(3, I) * * 2))) /(\operatorname{XNREP}-1))\) \(\operatorname{VREST3}(4, I)=\operatorname{SQRT}((\operatorname{WREST} 3(2, I)-(\operatorname{XNREP} *(\operatorname{WREST} 3(3, I) * * 2))) /(\operatorname{XNREP}-1))\)
600 CONTINUE

C PRINT THE FINAL OUTPUT TABLE TO A FILE
\(601 \operatorname{WRITE}(30,3000)\)
3000 FORMAT('0',T47, 'DISCRETE RELIABILITY GROWTH SIMULATION')
WRITE \((30,3010)\)
3010 FORMAT('-',T54,'MODEL PARAMETER SUMMARY')
WRITE \((30,3020)\) NCAUSE
3020 FORMAT ('0', T47, 'NUMBER OF POSSIBLE FAILURE CAUSES ', I4) IF (ERELOP . EQ. 1) GOTO 4000 WRITE (30, 3030)
3030 FORMAT ('O', T38, 'CAUSE NUMBER', T64,'SINGLE TRIAL PR( SUCCESS ) FOR CPHASE 1')
DO \(3050 \mathrm{M}=1\), NCAUSE
\(\operatorname{WRITE}(30,3040) \mathrm{M}, \mathrm{A}(\mathrm{M}, 1)\)
3040 FORMAT(' ' ,T43, I2,T79,F8.6)
3050 CONTINUE
WRITE ( 30,3060 ) FRIMP
3060 FORMAT ( ' 0 ', T37, 'FRACTION CAUSE RELIABILITY IMPROVES AFTER FAILURE \(\left.C^{\prime}, F 8.6\right)\)
5000 WRITE \((30,3080)\) NPHASE

3080 FORMAT ('-',T48,'NUMBER OF PHASES IN THE SIMULATION ', I2) WRITE \((30,3090)\)
3090 FORMAT ' \({ }^{\prime}\) ', T42,'PHASE NUMBER', T59,' NUMBER OF FAILURES IN THE FIRST C PHASE')
DO \(3110 \mathrm{M}=1\), NPHASE
\(\operatorname{WRITE}(30,3100) \mathrm{M}, \mathrm{NFAPH}(\mathrm{M})\)
3100 FORMAT( \({ }^{\prime}\) ', T43,12,T73,I2)
3110 CONTINUE
WRITE \((30,3120)\) NFAIL
3120 FORMAT( ' 0 ', T51,'TOTAL NUMBER OF FAILURES ',I4) IF(DISOPT.EQ. 2) GO TO 3160 \(\operatorname{WRITE}(30,3130)\)
3130 FORMAT(' - ', T38,'DISCOUNTING PERFORMED USING THE CONSTANT FRACTION CMETHOD ') \(\operatorname{WRITE}(30,3140) R\)
3140 FORMAT( ' \({ }^{\prime}\) ', T44, 'FRACTION EACH FAILURE IS DISCOUNTED ',F8.6) WRITE \((30,3150) \mathrm{N}\)
3150 FORMAT( ' ', T33,'NUMBER OF TRIALS AFTER A FAILURE BEFORE A DISCOUNT C IS APPLIED ', I4) GO TO 3190
\(3160 \operatorname{WRITE}(30,3170)\)
3170 FORMAT('-', T44, 'DISCOUNTING PERFORMED USING THE LLOYD METHOD') WRITE \((30,3180)\) GAMA
3180 FORMAT('O',T39,'PERCENT C.I. ( USED AS DISCOUNT FRACTION ) ',F8. 6 C)
\(\operatorname{WRITE}(30,3185)\) LDI
3185 FORMAT( \({ }^{\prime} 0^{\prime}, \mathrm{T} 50\),' LLLOYD DISCOUNT INTERVAL: ', T3)
\(3190 \operatorname{WRITE}(30,3200)\) DSEED 1
3200 FORMAT( \('\)-', T46,' RANDOM NUMBER SEED USED ', F15.2) WRITE \((30,3210)\) NREP
3210 FORMAT( ' 0 ', T37, 'NUMBER OF REPETITIONS OF THE SIMULATION PERFORMED \(C^{\prime}\), I7)
\(\operatorname{WRITE}(30,3220)\)
3220 FORMAT( ' 1 ', T61, 'ESTIMATOR: ') \(\operatorname{WRITE}(30,3230)\)
3230 FORMAT('0',T48,'SINGLE PHASE MLE WITHOUT DISCOUNTING') WRITE \((30,3240)\)
3240 FORMAT( \((\) '- ', T60, 'MEAN', T83, 'ESTIMATE', T109,' \(95 \%\) ') WRITE \((30,3250)\)
3250 FORMAT(' ', ,T12, 'PHASE NUMBER', T29, 'ACTUAL RELIABILITY', T52, 'PREDIC CTED RELIABILITY',T78,'STANDARD DEVIATION', T101,' CONFIDENCE INTERVA CL')

C COMPUTE C.I. FOR SINGLE PHASE MLE
DO 3270 M=1,NPHASE
\(\mathrm{CI}=\left(1.96^{\text {rimLESP}}(4, \mathrm{M})\right) / \operatorname{SQRT}(\operatorname{XNREP})\)
\(\operatorname{CIU}=\operatorname{MLESP}(3, \mathrm{M})+C I\)
\(\operatorname{CIL}=\operatorname{MLESP}(3, M)-C I\)
WRITE ( 30,3260 ) \(\operatorname{M}, \operatorname{AREL}(M), \operatorname{MLESP}(3, M), \operatorname{MLESP}(4, M), \operatorname{CIL}, C I U\)
3260 FORMAT ' ' ' ', T17, I2,T34,F8.6,T58,F8.6,T82,F9.6,T99,' (', F8.6,' , ', F C8.6,' ')
3270 CONTINUE
\(\operatorname{WRITE}(30,3220)\)
WRITE \((30,3280)\)
3280 FORMAT('O',T42,'MAX LIKELIHOOD ESTIMATE USING DISCOUNTED FAILURES'
C)

WRITE \((30,3240)\)
WRITE \((30,3250)\)
C COMPUTE C.I. FOR MLE WITH DISCOUNTING
DO \(3290 \mathrm{M}=1\), NPHASE
\(\mathrm{CI}=(1.96 * \operatorname{MLEWD}(4, \mathrm{M})) / \mathrm{SQRT}(\mathrm{XNREP})\)
\(\operatorname{CIU}=\operatorname{MLEWD}(3, M)+C I\)
\(\operatorname{CIL}=\operatorname{MLEWD}(3, M)-C I\)
WRITE ( 30,3260 ) M, \(\operatorname{AREL}(M), \operatorname{MLEWD}(3, M), \operatorname{MLEWD}(4, M), C I L, C I U\)
3290 CONTINUE
\(\operatorname{WRITE}(30,3220)\)
WRITE 30,3300 )
3300 FORMAT( ' 0 ', T38, 'WEIGHTED AVERAGE ESTIMATE USING FAILURE DISCOUNTIN
WRITE \((30,3240)\)
\(\operatorname{WRITE}(30,3250)\)
C COMPUTE C.I. FOR WOODS WEIGHTED AVERAGE ESTIMATES
DO \(3310 \mathrm{M}=1\), NPHASE
\(\mathrm{CI}=(1.96 * \operatorname{EST}(4, \mathrm{M})) / \mathrm{SQRT}(\mathrm{XNREP})\)
\(\operatorname{CIU}=\operatorname{EST}(3, M)+C I\)
\(\operatorname{CIL}=\operatorname{EST}(3, M)-C I\)
\(\operatorname{WRITE}(30,3260) \mathrm{M}, \operatorname{AREL}(\mathrm{M}), \operatorname{EST}(3, \mathrm{M}), \operatorname{EST}(4, \mathrm{M}), \mathrm{CIL}, \operatorname{CIU}\)
3310 CONTINUE
\(\operatorname{WRITE}(30,3220)\)
WRITE( 30,3320 )
3320 FORMAT(' \(0^{\prime}\),T43,'REGRESSION ESTIMATE USING DISCOUNTED FAILURES') \(\operatorname{WRITE}(30,3240)\)
\(\operatorname{WRITE}(30,3250)\)
C COMPUTE C.I. FOR EXPONENTIAL REGRESSION ESTIMATES
DO \(3330 \mathrm{M}=1\), NPHASE
\(\mathrm{CI}=(1.96 * \operatorname{REGEST}(4, \mathrm{M})) / \operatorname{SQRT}(\) XNREP \()\)
\(\operatorname{CIU}=\operatorname{REGEST}(3, M)+\operatorname{CI}\)
CIL \(=\operatorname{REGEST}(3, M)-C I\)
\(\operatorname{WRITE}(30,3260) \mathrm{M}, \operatorname{AREL}(\mathrm{M}), \operatorname{REGEST}(3, \mathrm{M}), \operatorname{REGEST}(4, \mathrm{M}), \mathrm{CIL}, \mathrm{CIU}\)
3330 CONTINUE

C----WEIGHTED REGRESSION (METHOD 1)
\(\operatorname{VRITE}(30,3220)\)
WRITE 30,3321 )
3321 FORMAT('O',T43,'WEIGHTED REGRESSSION ESTIMATE (METHOD 1)')
\(\operatorname{WRITE}(30,3240)\)
\(\operatorname{WRITE}(30,3250)\)
C COMPUTE C. I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO 3331 M=1, NPHASE
\(\mathrm{CI}=(1.96 * \operatorname{WREST}(4, M)) / \operatorname{SQRT}(\operatorname{XNREP})\)
```

 CIU = WREST1(3,M) + CI
 CIL = WREST1(3,M) - CI
 WRITE(30,3260) M,AREL(M),WREST1(3,M),WREST1(4,M),CIL,CIU
 3331 CONTINUE
 C-----WEIGHTED REGRESSION (METHOD 2)
WRITE(30, 3220)
WRITE (30,3322)
3322 FORMAT('0',T43,'WEIGHTED REGRESSION ESTIMATE (METHOD 2) ')
WRITE(30,3240)
WRITE(30,3250)
C COMPUTE C.I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO 3332 M=1,NPHASE
CI = (1.96*WREST2(4,M))/SQRT(XNREP)
CIU = WREST2(3,M) + CI
CIL = WREST2(3,M) - CI
WRITE(30,3260) M,AREL(M),WREST2(3,M),WREST2(4,M),CIL,CIU
3332 CONTINUE
C-----WEIGHTED REGRESSION (METHOD 3)
WRITE(30,3220)
WRITE(30,3323)
3323 FORMAT('O',T43,'WEIGHTED REGRESSION ESTIMATE (METHOD 3)')
WRITE(30,3240)
WRITE (30,3250)
C COMPUTE C.I. FOR WEIGHTED EXPONENTIAL REGRESSION ESTIMATES
DO $3333 \mathrm{M}=1$,NPHASE
CI $=(1.96 * \operatorname{WREST} 3(4, \mathrm{M})) / \mathrm{SQRT}(\operatorname{XNREP})$
$\operatorname{CIU}=\operatorname{WREST} 3(3, M)+C I$
CIL $=\operatorname{WREST} 3(3, M)-C I$
WRITE (30,3260) $M, \operatorname{AREL}(M), W R E S T 3(3, M), W R E S T 3(4, M), C I L, C I U$
3333 CONTINUE
WRITE $(30,3340)$
3340 FORMAT ('i',T59, 'RECAPITULATION' / /)
WRITE $(30,3350)$
3350 FORMAT(' - ', T3, 'PHASE', T11, 'ACTUAL', T28, 'MEAN', T38, 'EST', T50, 'MEAN'
C,T62, 'EST',T72, 'MEAN', T82, 'EST',T92, 'MEAN' ,T102, 'EST', T112
C, 'MEAN', T122, 'EST')
WRITE $(30,3360)$
3360 FORMAT(' ', T11, 'RELIAB', T28, 'WGT', T38, 'STD', T50, 'MLE', T62, 'STD', T7
C2, 'PHASE', T82, 'STD',T92,'REG',T102, 'STD',T112, 'WT', T122, 'STD')
WRITE $(30,3370)$
3370 FORMAT(', T28, 'AVG',T38, 'DEV',T50, 'W/D',T62, 'DEV',T72
C, 'MLE', T82,'DEV',T92,'EST',T102, 'DEV',T112, 'REG',T122, 'DEV')
WRITE(30,3375)
3375 FORMAT(', T28,'EST',T112,'(1)'/)
DO $650 \mathrm{I}=1$, NPHASE
$\operatorname{WRITE}(30,3380) \mathrm{I}, \operatorname{AREL}(\mathrm{I}), \operatorname{EST}(3, I), \operatorname{EST}(4, I), \operatorname{MLEWD}(3, I), \operatorname{MLEWD}(4, I)$,
$\operatorname{CMLESP}(3, I), \operatorname{MLESP}(4, I), \operatorname{REGEST}(3, I), \operatorname{REGEST}(4, I), \operatorname{WREST}(3, I)$,

```

CWREST1(4,I)
3380 FORMAT ' \({ }^{\prime}\) ' \(, \mathrm{T} 4, \mathrm{I} 3, \mathrm{~T} 11, \mathrm{~F} 7.6, \mathrm{~T} 26, \mathrm{~F} 7.6, \mathrm{~T} 36, \mathrm{~F} 7.6, \mathrm{~T} 50, \mathrm{~F} 7.6, \mathrm{~T} 62, \mathrm{~F} 7.6, \mathrm{~T} 72\), CF7.6,T82,F7.6,T9と,F7.6,T102,F7.6,T112,F7.6,T122,F7.6)

\section*{650 CONTINUE}

C-----PAGE 2 OF RECAPITULATION:
WRITE \((30,3381)\)
3381 FORMAT('1', T59,'RECAPITULATION CONT. '//)
WRITE \((30,3382)\)
3382 FORMAT( ' -1, T3, 'PHASE', T11,'ACTUAL' ,T28, 'MEAN', T38, 'EST', T53
 \(\operatorname{WRITE}(30,3383)\)
3383 FORMAT(' ', T1: 'RELIAB', T28, 'REG', T38, 'STD' ,T53,'METHOD', T63, C'STD',T77, 'METHOD', T88, STD', T103,'METHOD' ,T113,'STD')
WRITE \((30,3384)\)
3384 FORMAT (',, T28,'EST', T35, 'DEVIATION',T53,'ONE',T60, 'DEVIATION' C,T78, 'TWO',T85,'DEVIATION',T103, 'THREE',T110,'DEVIATION') DO 651 I=1,NPHASE
\(\operatorname{WRITE}(30,3385) \operatorname{I}, \operatorname{AREL}(I), \operatorname{REGEST}(3, I), \operatorname{REGEST}(4, I), \operatorname{WRESTI}(3, I)\) \(r, \operatorname{WREST1}(4, I), \operatorname{WREST} 2(3, I), \operatorname{WREST} 2(4, I), \operatorname{WREST} 3(3, I), \operatorname{WREST} 3(4, I)\)
3385 FORMAT('0', T4, I3,T11,F7.6,T26,F7.6,T36,F7.6,T51,F7.6,T61,F7. 6 C,T76,F7.6,T86,F7.6,T101,F7.6,T111,F7.6)

WRITE (53,3400) MLEWD (4,I)
WRITE \((54,3400) \operatorname{MLEWD}(3, I)\)
WRITE \((63,3400) \operatorname{MLESP}(4, I)\)
WRITE \((64,3400)\) MLESP \((3, I)\)
WRITE (73,3400) REGEST(4,I)
\(\operatorname{RRITE}(74,3400)\) REGEST( 3,1 )
\(\operatorname{WRITE}(17,3400) \operatorname{WREST1}(4, I)\)
\(\operatorname{WRITE}(18,3400) \operatorname{WRESTI}(3, I)\)
\(\operatorname{WRITE}(93,3400) \operatorname{WREST} 2(4, I)\)
\(\operatorname{WRITE}(94,3400) \operatorname{WREST} 2(3, I)\)
\(\operatorname{WRITE}(95,3400) \operatorname{WREST} 3(4, I)\)
\(\operatorname{WRITE}(96,3400) \operatorname{WREST} 3(3, I)\)
WRITE ( 84,3400 ) AREL(I)
3400 FORMAT(' ',F7.6)
651 CONTINUE

GO TO 6000
\(4000 \operatorname{WRITE}(30,4010)\)
4010 FORMAT(1X,//,T50,'FIXED PHASE RELIABILITY OPTION')
\(\operatorname{WRITE}(30,4020)\)
4020 FORMAT( '- ', T38,'PHASE NUMBER', T78,'ACTUAL RELIABILITY')
DO \(4030 \mathrm{M}=1\), NPHASE
\[
\begin{aligned}
& \text { WRITE }(30,4040) \text { M, AREL(M) } \\
& \left.4040 \text { FORMAT( } 0^{\prime}, \mathrm{T} 41, \mathrm{I} 2, \mathrm{~T} 83, \mathrm{~F} 8.6\right) \\
& 4030 \text { CONTINUE } \\
& \text { GO TO } 5000 \\
& 6000 \text { CONTINUE } \\
& \\
& \\
& \text { STOP } \\
& \text { END }
\end{aligned}
\]
5. SAMPLE OUTPUT FROM DRG FORTRAN A1 DISCRETE RELIABILITY GROWTH SIMULATION

MODEL PARAMETER SUMMARY
NUMBER OF POSSIBLE FAILURE CAUSES 5

FIXED PHASE RELIABILITY OPTION

PHASE NUMBER

2
3
4
5
6
7
8
9
10

ACTUAL RELIABILITY
0.398418
0.428109
0.480793
0.539243
0.609949
0.702683
0.798124
0.899963
0.950990
0.990040

NUMBER OF PHASES IN THE SIMULATION 10

\section*{\(\begin{array}{ccc}\text { PHASE NUMBER } & \text { NUMBER OF FAILURES IN THE FIRST PHASE } \\ 1 & 1 & \\ 2 & 1 \\ 3 & 1 & \\ 4 & 1 & \\ 5 & 1 & \\ 6 & 1 & \\ 7 & & 1 \\ 8 & 1 & \\ 9 & & 1\end{array}\) \\ TOTAL NUMBER OF FAILURES 10}

DISCOUNTING PERFORMED USING THE CONSTANT FRACTION METHOD
FRACTION EACH FAILURE IS DISCOUNTED 0.000000
NUMBER OF TRIALS AFTER A FAILURE BEFORE A DISCOUNT IS APPLIED 1

RANDOM NUMBER SEED USED 624712.00
NUMBER OF REPETITIONS OF THE SIMULATION PERFORMED 500
ESTIMATOR,
single phase mle hithout discounting

 0.334579 0.338815 0.325138 0.323988 0.269689 0.232200 in
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\) CTED RELIAB
0.218340
0.273148
0.274906
0.335171
0.377466
0.502564
0.600890
0.746857
0.843546 0.952863 actual reliability
 Phase number

\[
\left.\left.\begin{array}{l}
\text { CONF10ENCE } \\
\left(\begin{array}{l}
\text { INTERVAL }
\end{array}\right. \\
(0.192410,0.244270) \\
(0.245340,
\end{array}\right), 0.300755\right),
\]
ESTIMATOR,
REGRESSION ESTIMATE USING DISCOUNTED FAILURES ESTIMATOR:
REGRESSION ESTIMATE USING DISCOUNTED FAILURES

\begin{tabular}{cccc} 
PHASE NUMBER & ACTUAL RELIABILITY & PREDICTED RELIABILITY & STANDARTIMATE \\
1 & 0.398418 & 0.261067 & 0.348656 \\
2 & 0.428109 & 0.323922 & 0.367297 \\
3 & 0.480793 & 0.387379 & 0.306992 \\
4 & 0.539243 & 0.449910 & 0.295458 \\
3 & 0.609949 & 0.504971 & 0.284013 \\
6 & 0.702683 & 0.600917 & 0.250502 \\
7 & 0.798124 & 0.702346 & 0.198444 \\
8 & 0.899963 & 0.813700 & 0.129989 \\
9 & 0.950990 & 0.891043 & 0.091377 \\
10 & 0.957506 & 0.038794
\end{tabular}

ESTIMATOR:
WEIGHTED REGRESSSION ESTIMATE (METHOD 1)

PHASE NUMBER
ACTUAL RELIABILITY
\[
\begin{array}{cc}
\text { HEAU } & \text { ESTIHATE } \\
\text { FREDICTED RELIABILITY } & \text { STAMOARD DEVIATION } \\
0.261067 & 0.348656 \\
0.427212 & 0.367692 \\
0.482696 & 0.310341 \\
0.347323 & 0.283738 \\
0.596459 & 0.265281 \\
0.680009 & 0.236573 \\
0.779319 & 0.196985 \\
0.889988 & 0.143688 \\
0.957167 & 0.095822 \\
0.997026 & 0.024431
\end{array}
\]
\[
\begin{aligned}
& \text { CONFIDENCE }{ }^{95} \text { INTERVAL } \\
& (0.230506,0.291628) \\
& (0.394993,0.459442) \\
& (0.453493,0.509898) \\
& (0.522453,0.572194) \\
& (0.573206,0.619712) \\
& (0.659273,0.700746) \\
& (0.762052,0.796585) \\
& (0.877393,0.902583) \\
& (0.948768,0.965566) \\
& (0.994885,0.999168)
\end{aligned}
\]
\[
-N m \backsim \omega \in \infty \quad 0
\]
\[
\begin{aligned}
& \text { CONFIDENCE }{ }^{95} \text { iNTERVAL } \\
& (0.230506,0.291628) \\
& (0.291727,0.356117) \\
& (0.360470,0.414288) \\
& (0.424012,0.475808) \\
& (0.480076,0.529865) \\
& (0.857990,0.887901) \\
& (0.856198,0.877045) \\
& (0.864354,0.879794) \\
& (0.939085,0.948258) \\
& (0.954423,0.960420)
\end{aligned}
\]

\[
\begin{aligned}
& \underset{\sim}{u} \\
& \underset{\sim}{\mathbf{x}} \\
& \stackrel{\rightharpoonup}{a}
\end{aligned}
\]

\section*{LIST OF REFERENCES}
1. Drake, J. E., Discrete Reliability Growth Models Using Failure Discounting, Master's Thesis, Naval Postgraduate School, Monterey, California, September 1987.
2. Chandler, J. D., Estimating Reliability with Discrete Growth Models, Master's Thesis, Naval Postgraduate School, Monterey, California, March 1988.
3. Woods, M.W., Reliability Growth Models, Paper prepared for classroom presentation at the Naval Postgraduate School, Monterey, California, 1962.
4. Woods, M. and Chernoff H., Reliability Growth Models-Analysis and Applications, Memo to Files for \(\overline{C-E-I-R,}\) Inc., Palo Alto, California, 26 February 1962.
5. Moses, L.E. and Block, D. A., "Nonoptimally Weighted Least Squares", The American Statistician, Vol. 42, No 1, pp. 50-53, February 1988.
6. Draper, N. R., and Smith, H. Applied Regression Analysis, 2nd ed., pp. 108-121, John Wiley \& Sons, Inc. 1981.
7. Seber, G. A. F., Linear Regression Analysis, pp. 194197, John Wiley \& Sons, Inc. 1977.
1. Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145
2. Library, Code 0142 ..... 2
Naval Postgraduate School Monterey, CA 93943-5002
3. W. M. Woods, Code 55Wo ..... 6
Naval Postgraduate School Monterey, CA 93943-5000
4. Mark L. Mitchell, Code 55Mi ..... 1 Naval Postgraduate School Monterey, CA 93943-5000
5. Pam A. Markiewicz
115 Whiting Lane
W. Hartford, CT 06119
6. Curricular Office, Code 30 ..... 1 Naval Postgraduate School Monterey, CA 93943-5000```


[^0]:    * The symbol $B$ and $B$ denote the same constant throughout this thesis. $B$ is used for $B$ within equations.

