Pacific Enevetak Atoll Crater Exploration (PEACE) Program Enewetak Atoll, Republic of the Marshall Islands
 Part 4: Analysis of borehole gravity surveys and other geologic and bathymetric studies in vicinity of OAR and KOA craters

edited by

Thomas W. Henry ${ }^{1}$ and Bruce R. Wardlaw ${ }^{2}$
U.S. Geological Survey

Open File Report 87-665
Prepared in cooperation with the Defense Nuclear Agency
and funded

This dozumenthas been approved for public release and salo; its distribution is unlimited.

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature
${ }^{1}$ Branch of Paleontology and Stratigraphy, Denver, CO 80225-0046
2Branch of Paleontology and Stratigraphy, Reston, VA 22092

TABLE OF CONTENTS

Page No.

CEAPTER 1: INTRODUCTION TO PART 4 OPEN-FILE REPORT 1-1
GENERAL REMARKS 1-1
PEACE PROGRAM REPORTS 1-3
DATA ACQUISITION AND BASES 1-3
SYNOPSIS OF CHAPTERS 1-7
Borehole Gravity 1-7
Palentologic Exidence for Mixing 1-8
Electron Paramagnetic Résonance Studies 1-8
Bathymetric studies of OAK Crater 1-9
Constraints on Dusification and piping for OAK 1-10
Additional Studies of Geologic Crater Model 1-11
ACKNOWLEDGEMENTS 1-11
REFERENCES CITED 1-12
ar?
CBAPTER 2: BOREHOLE GRAVIMETRY, OAR CRATER 2-1
INTRODUCTION 2-1
BOREHOLE GRAVITY ANALYSIS 2-4
LATERAL DENSITY CHANGES 2-6
CORRECTION FOR LATERAL DENSITY CHANGES 2- 6
CORRECTED BOREHOLE DENSITY AND POROSITY 2-14
NATURAL DENSITY AND POROSITY VARIATIONS 2-22
CHANGES RELATED TO CRATERING 2-28
SUMMARY 2-33
ACKNOWLEDGEMENTS 2-36
REFERENCES CITED 2-36
APPENDIX 2-1; Gravity Survey, Borehole E-1, Medren Island 2-54
APPENDIX 2-2; Determination of Interval Grain Density 2-56

Fage No.
CHAPTER 3: PALEONTOLOGIC EVIDENCE POR SEDIMENTARY MIXING 3-1
INTRODUCTION 3- 1
MATERIALS AND METHODS 3- 1
STANDARD MICROFAUNAL SEQUENCE 3-2
RESULTS 3-7
Central Crater Boreholes 3-8
Homogenized Zone j- 8
Upwardly Mixed Zone 3-8
Maximum Piping Zone 3-8
Basal Mixed Zone 3-11
Statistical Analysis 3-11
Injection Dikes 3-11
Transition Boreholes 3-11
OCT-5 3-11
OFT-8 3-13
OKT-18 3-13
SUMMARY AND CONCLUSIONS 3-14
REFERENCES CITED 3-15
APPENDIX 3-1; Occurrence of Species, OAR-2/2A 3-21
APPENDIX 3-2; Occurrence of Species, OOR-17 3-23
APPENDIX 3-3; Occurrence of Species, OBZ-4 3-25
APPENDIX 3-4; Occurrence of Species, OPZ-18 3-27
APPENDIX 3-5; Occurrence of Species, OCT-5 3-28
APPENDIX 3-6; Occurrence of Species, OFT-8 3-29
APPENDIX 3-7; Occurrence of Species, OKT-13 3-30
CHAPTER 4: ELECTRON PARAMAGNETIC RESONANCE STUDIES, OAR CRATER 4-1
INTRODUCTION 4-1
ELECTRON PARAMAGNETIC RESONANCE ANALYSIS 4-1
Sample Preparation and Spectrometer Settings 4-1
SHOCK-PRESSURE CALIBRATION OF EPR SPECTRA 4- 3
Shock-Wave Calibration Experiments 4-3
Description of Shocked Spectra 4-4
Pressure Calibration by Differencing Spectra 4-7
OAK DATA 4-11
Borehole Sample Selection 4-11
Results of Borehole-Sample Analysis 4-12
Results from Debris Samples 4-14
DISCUSSION 4-19
ACKNOWLEDGEMENTS 4-20
references cited 4-20

TABLE OF CONTENTS (continued)

CHAPTER 5: BATHYMETRIC STUDIES OF OAK CRATER 5-1
INTRODUCTION 5-1
Objectives and General Procedures 5-1
Terminology 5-1
DATA BASE 5- 3
Holmes \& Narver Preshot Bathymetric Map 5-3
Holmes \& Narver Pustshot Bathymetric Map 5-4
USGS 1984 Bathymetric Map 5-4
DATA PROCESSING 5-6
Digitized Base Contour Maps 5- 6
Derived Isopach Maps 5-6
Map Products 5-7
ANALYSIS 5-10
Map Derived Quantities 5-10
Water Depths 5-10
Cross Sections 5-12
Areas and Volumes 5-12
MAP CHARACTERISTICS 5-14
Holmes \& Narver Preshot Contour Map 5-14
Holmes \& Narver Postshot Contour Map 5-15
USGS 1984 Contour Map 5-15
H\&N Postshot - H\&N Preshot Isopach Map (Δ-Relief) 5-16
USGS 1984 - H\&N Preshot Isopach Map (Δ-Relief) 5-17
USGS 1984 - H\&N Postshot Isopach Map ($\Delta-\operatorname{Relief}$) 5-18
CONCLUSIONS 5-18
ACKNOWLEDGEMENTS 5-19
REFERENCES CITED 5-20
CHAPTER 6: CONSTRAINTS ON DENSIFICATION AND PIPING, OAR CRATER 5-1
BACKGROUND AND SUMMARY 6-1
BASIC FACTS AND PARAMETERS 6- 2
SHORTENING OF "CORAL" COLUMNS BY DENSIFICATION 6-7
DENSITY PROFILES, TREATMENT, AND DOWNWARD DISPLACEMENTS 6-8
CONTRIBUTION OF SIMPLE SUBSIDENCE TO THE OAK CRATER 6-10
CONFIDENCE ASSESSMENT 6-18
LONG-TERM SETTLING 6-23
PIPING 6-26
OTHER CONSTRAINTS; HORIZONTAL PIPING 6-29
DENSIFICATION: SUMMARY AND CRITLQUE 5-32
CONCLUSIONS 6-34
ACKNOWLEDGEMENTS 5-36
REFERENCES CITED 6-37
APPENDIX 6-1 -- PEACE Program Density Profiles 6-39
APPENDIX 6-2 -- Densities as Continuous Depth Function 6-74
Mass as Continuous Depth Function 5-75
Thickness Change as Continuous Depth Function 6-76
References Cited 6-78
(continued on next page)

TABLE OF CONTENTS (continued)
Page No.
CHAPTER 7: INTEGRATION OF MATERIAL-PROPERTY UNITS, GRAVIMETRY, 7-1 AND ADDITIONAL STUDIES OF OAK AND KOA CRATERS
INTRODUCTION 7- 1
PRE-EVENT GEOLOGY OF OAK AND KOA CRATERS 7-1
POST-EVENT GEOLOGY OF OAK AND KOA CRATERS 7-7
Crater Zones 7-7
Geologic Crater Zones 7- ;
Paleontologic Crater Zones 7-10
Seismic Crater Zones 7-15
CRATER FEATURES 7-16
Crater Material in the Lagoon 7-16
Breach Deposit in the Lagoon 7-16
Piping 7-24
Paleontologic Mixing 7-24
OAK Crater 7-29
KOA Crater 7-29
Estimates of Volume of Piped Material 7-30
Paleontologic Model of Crater Fill 7-31
Injection 7-31
Gamma Activity 7-31
Distribution of Radionuclides 7-34
Distribution of Shocked Calcite 7-37
Depression and Uplift of Structural Surfaces 7-37
COMPARISON OF OAK AND KOA CRATERS 7-37
GEOLOGIC CRATER MODEL FOR OAK AND KOA 7-42
Thinning Analysis 7-43
Stratigraphic Density Profile 7-43
General Densification and Flow Patterns 7-58
OAK Crater 7-58
KOA Crater 7-59
Relative Timing of Depositional Events 7-59
VOLUME PROBLEMS 7-61
Evidence for Piping and Lateral Flow 7-62
Surface 7-62
Crater-Fill 7-62
Subsurface 7-62
Loss of Material from Crater 7-63
SUMMARY 7-63
REFERENCES CITED 7-64

FIGURE INDEX

Figure No. Description Page No.
CHAPTER 1: INTRODUCTION
1-1 Location Map of Enewetak 1-2
1- 2 Location map of KOA crater 1-5
1-3 Location map of OAK crater 1- 6
CHAPTER 2: BOREHOLE GRAVIMETRY, OAR CRATER
2- 1 Map of Enewetak showing OAK and KOA craters and 2- 2Medren Island borehole $\mathrm{F}-\mathrm{H}_{1}$ site.
2- 2 Map of OAK crater area and gravity survey boreholes 2- 3
2- 3 Distribution of repeated gravity measurements 2-5
2- 4 Density model of natural atoll facies changes 2-7
2- 5 Cross section, southwest transect 2- 9
2- 6 Cross section, southeast transect 2-11
2- 7 Density model, southwest transect 2-13
2- 8 Well logs, densities, and porosity, OOR-17 2-15
2- 9 Well logs, densities, and porosity, OPZ-18 2-16
2-10 Well logs, densities, and porosity, OQT-19 2-17
2-11 Well logs, densities, and porosity, ORT-20 2-18
2-12 Well logs, densities, and porosity, OSR-21 2-19
2-13 Densities and porosity, OTG-23 2-20
2-14 Variability of BHG and gamma-gamma density 2-21
2-15 Porosity cross plots 2-23
2-16 Interval densities and porosities, southwest transect 2-25
2-17 Cross plot of interval grain density vs BHG porosity 2-27
2-18 Density and porosity model, southwest transect 2-29
2-19 Interval densities and porosities, southwest transect 2-31
2-20 Density profile, borehole E-1 (Medren Island) 2-55
CHAPTER 3: PALEONTOLOGIC EVIDENCE FOR SEDIMENTARY MIXING
3- 1 Plot of ostracode species versus depth, OAR-2/2A 3- 5
3- 2 Plot of ostracode species versus depth, OOR-17 3- 6
3- 3 Plot of ostracode species versus depth, $O B Z-4$ 3-9
3- 4 Plot of ostracode species versus depth, DPZ-18 3-10
3- 5 Plot of piped specimens versus depth 3-12

FICURE INDEX (cont inued)

CBAPTER 4: ELECTRON PARAMAGNETIC RESONANCE STUDIES

1	EPR spectrum of powdered single crystal calcite	4-2
4-2	Comparison of laboratory-shocked limestone spectr	
4-3	Comparison of "coral" spectra shocked in laboratur	4-6
4-4	Differencing technique, overlay of standard vs unshocked limestone spectra.	+-8
4-5	Plot of sumed differences, low- and high-field components vs shock pressure.	-
4-6	Map of OAK crater showing boreholes sampled	3
4-7	Sample analysis showing calculated shock pressure vs sample depth for OAK boreholes.	4-15
4-8	Depth and thickness of regions of highly shocked carbonates from boreholes.	4-15
4-9	Map of OAK crater showing debris-sample sites	4-17
4-10	Shock pressure versus range from $G Z$ and versus estimated pre-event depth below sea level.	4-18

CHAPTER 5: BATHYMETRIC STUDIES OF OAK CRATER

```
5- 1 Map of area included in Holncs & Narver and .............. 5- 2
USGS curveys.
5- 2 Fathometer itnes in 1984 VSGS study ................................ 5- 5
```



```
5- 4 Cross sections thruugh OAK ground zero ......................... 5-13
```


CHAPTER 6: CONSTRAINTS ON DENSIFICATION AND PIPING


```
6-2 Density profiles from gravimetry .....................................6-11
6-3 Density profiles from gamma-gamma logging .....................6-12
6- 4 Change in rock thickness from BHG densities, simple ..... 6-13
    subsidence, OPZ-18 vs OSR-21, OPZ-18 vs OOR-17.
6- 5 Change in rock thickness from BHg densities, simple ..... 5-14
    subsidence, OTG-23 vs OSR-21, OTG-23 vs OOR-17.
6-6 Change in rock thickness frum BHG densities, simple ..... 5-15
    subsidence, OQT-19 vs OSR-21, OQT-19 vs OOR-17.
6- 7 Change in rock thickness Erum BHG densities, simpie ..... 5-16
    subsidence, ORT-20 vs OSR-2l, ORT-20 धs OOR-17.
6-8 Change in rock thickness form BHG densities, simple ..... 5-19
    subsidence, OSR-2l vs OOR-17.
6-9 Change in rock thickness frum BHG densities, simple ..... 6-20
        subsidence, OOR-17 vs OSR-21.
6-10 High, low, and best estimates of fraction contributed ... 6-35
    hy densification +N spafloor drop, OQT-19 and ORT-70.
(continued on next page)
```


FIGURE INDEX (continued)

Figure No. Description Page No.

> (continued on next page)
Figure No. Description Paje :o.

CHAPTER 7: INTEGRATION OF MATERIAL-PROPERTY UNITS, GRAVIMETRY, AND ADDITIONAL STUDIES OF GEOLOGIC MODELS, OAK AND KOA CRATERS

```
7- 1 Distribution of shallow cemented zones on Enjebi ........ 7- ?
        Island, EXPOE cores.
7- 2 Relationship of discontinuities, major discon- .......... 7- 3
        formities, biostratigraphic zones, material-
        property units, and sedimentary packages in
        reference boreholes.
7- 3 Cementation and sediment types, relationships to ....... 7- ;
        material-property units, reference boreholes.
7- 4 Probable pre-shot surfaces for tops of Pleistocene ...... 7- 万
        and Pliocene in OAK and KOA areas.
7- 5 Comparison of pre-shot ground surface and subsurface .... 7- 8
        geology, OAK and KOA areas.
```



```
7-7 Fence diagram of KOA crater showing relationship ........ 7-17
        of crater zones and geologic horizons.
7- 8 Fence diagram of OAR boreholes OOR-17 to OPZ-18, ........ 7-19
        relationship of crater and geologic horizons.
7- 9 Fence diagram of OAK borehoies OBZ-4 to OAR-2/2A, ....... 7-19
        relationship of crater and geologic horizons.
7-10 Fence diagram, OAK boreholes, reef tract to OLT-14 ..... 7-29
        relationship of crater and geologic horizons.
7-1l Geologic interpretation of multichannel seismic ......... 7-21
        lines }101\mathrm{ and 103, OAK crater area.
7-12 Geologic interpretation of multichannel seismic ......... 7-2?
        lines 303 and 306, KOA crater area.
```



```
        sediments, Enewetok lagoon.
7-14 Distribution of sand volcanoes on enhanced sea-floor .... 7-25
        image of OAK crater.
7-15 Comparison of number of specimelis from dr-4 and .j to ... i is
        percent ostracodes from crater zones in OBZ-4
        and OPZ-18.
7-16 Paleontologic mixing in mixed zone o[ OAK rrater ........ 7-27
7-17 Paleontologic mixing in mixed zone of KOA crater ........ 7-23
7-18 Paleontologic model of crater-fill and paleontologic .... 7-32
        mixed zones.
7-19 Sorehole lithology, geologic and paleontologic crater ... 7-33
        zones, and gamma-ray logs, OAK crater.
7-20 Borehole lithology, geologic and paleontologic crater ... 7-35
                zones, and gamma-ray logs, KOA crater.
7-21 Distribution of shocked calcite and Cesfum-137 and ...... 7-36
    relationship to crater zones, OAK crater.
7-22 Maximun depression/uplift of Pleistocene and Pliocene ... 7-38
    surfaces, OAK crater.
7-23 i{aximum depression of Pieistocene and Pliocene ........... 7-39
        surfaces, KOA crater.
```

 (continued on next page)

CHAPTER 7: (Continued from preceeding page).

7-24	Present-day (post-shot) location of Pleistocene and Pliocene surfaces, $K O A$ and $O A K$ craters.	7-40
7-25	Idealized model of geologic crater for symmetric. ciater and asymetric crater on significant slop	7-44
7-26	Horizor locations. fence diagram, OOR-17 to OPZ-18	7-47
7-27	Horizon locations. fence diagram, ObZ-4 to OAR-2/2A	7-48
7-28	Horizon locations, fence diagram. OUT-24 to OLT-14	7-49
7-29	Horizen locations. fence diagram, XBK-1 to KET-7	7-50
7-30	Graphic thinning analysis. OAK crater	7-53
7-31	Graphic thinning analysis, kOA crater	7-54
7-32	Stratigraphic density profile, borehole gravimetry	7-56
7-33	Idealized succession of major depositional events to form geologic crater.	7-57

PLATE INDEX

(All plates in map pocket)

```
Plate No. Description
```


CRAPTER 5: BATHYMETRIC STUDIES OF OAR CRATER

5-1 Digitized Holmes and Narver (1958a) Preshot Topographic and
Hydrographic Map.
5-2 Digitized Holmes and Narver (1958b) Postshot Topographic and
Hydrographic Map.

5-3 Digitized U.S. Geological Survey (1984) Postshot Bathymetric Map.
5- 4 Negative $\Delta-R e l i e f ~ M a p, ~ H \& N$ Preshot and H\&N Postshot Map Pair.
5-5 Positive \triangle-Relief Map, $\quad 4 \mathrm{~N}$ Preshot and H\&N Postshot Map Pair.
5-6 Negative $A-\hat{n}+1$ ief Map, H\&N Preshot and USGS Postshot Map Pair.
5-7 Positivn A-Rriinf Map, H\&N Preshot and USGS Postshot Map Pair.
5-8 Negative A-Roliof Map, H\&N Postshot and USGS Postshot Map Pair.
5-9 Positive A-Rolief Map, H\&N Postshot and USGS Postshot Map Pair.

TABLE INDEX

1-1 Matrix of data bases and analyses 1-4
CBAPTER 2: BOREHOLE GRAVIMETRY, OAR CRATER
2- 1 Corrections for lateral density changes 2-39
2- 2 Density and porosity values, OOR-17 2-41
2- 3 Density and porosity values. OPZ-18 2-43
2- 4 Density and porosity values, OQi-19 2-45
2- 5 Density and porosity values, ORT-20 2-47
2- 6 Density and porosity values, OSR-21 2-49
2- 7 Density and porosity values, OTG-23 2-51
2- 8 Density of atoll material surrounding OAK 2-52
CHAPTER 3: PALEONTOLOGIC EVIDENCE FOR SEDIMENTARY MIXING
3- 1 Borehole depth of examined samples 3- 3
3-2 Foraminifer occurrences, OBZ-4 3-16
3- 3 Foraminifer occurrences, OCT-5 3-17
3-4 Foraminifer occurrences, OFT-8 3-18
3- 5 Foraminifer occurrences, OKT-13 3-19
3- 6 Foraminifer occurrences, OPZ-18 3-20
CHAPTER 4: ELECTRON PARAMAGNETIC RESONANCE STUDIES
4-1 Pressure and integrated difference data for high- 4-10
resolution spectra, laboratory samples.
4- 2 Results for OAR-2A samples 4-22
4- 3 Results for $0 B Z-4$ samples 4-23
4-4 Results for OCT-5 samples 4-24
4- 5 Results for OET-7 samples 4-25
4- 6 Results for OFT-8 samples 4-26
4-7 Results for OPZ-18 samples 4-27
4- 8 Results for OAK debris samples 4-28
CHAPTER 5: BATHYMETRIC STUDIES OF OAR CRATER
5- 1 Summary of digitized bathymetric map products 5-9
5- 2 Water depths and vertical differences 5-11
5- 3 Summary of areas and volumes from derivative map 5-21from $H \& N$ preshot vs $H \& N$ postshot maps.
5- 4 Summary of areas and volumes from derivative map 5-22from $H \& N$ preshot and USGS postshot maps.
5- 5 Summary of areas and volumes from derivative map 5-23from $H \& N$ postshot and USGS postshot maps.
5- 6 Grand summary of areas and volumes of negative, 5-24zero, and positive Δ-relief. OAK crater.
(continued on next page)

TABLE INDEX (continued)

Table No.
Description
Page No.
CHAPTER 6: CONSTRAINTS ON DENSIFICATION AND PIPING, OAR CRATER
6- 1 Column-height changes down OAK boreholes 6- 5
6- 2 Uniformity of horizons in OAK area 5-6
6- 3 Column-height changes due to densification 6-17
6-4 Probability estimates 6-22
6-5 Column-height changes due to densification 48 to 67 6-25days after burst and probability estimates.
6- 6 Piping hypothesis analysis 6-30
6-7 Endpoints of segments of piecewise linear fits to 5-56density profiles from BHG.
6-8 Endpoints of segments of piecewise linear fits to 6-57-73density profiles from $\gamma-\gamma$ logging.
6-9 Mass of solid in vertical columns of unit cross- 6-79-81
section, from BHG survey data.
6-10 Mass of solid invertical columns of unit cross- 6-82-101
section, from $\gamma-\gamma$ survey data.
CHAPTER 7: INTEGRATION OF MATERIAL-PROPERTY UNITS, GRAVIMETRY, ANDADDITIONAL STUDIES OF OAK AND KOA CRATERS
7- 1 Relationship of geologic and paleontologic zones 7-12in crater and debris blanket.
7- 2 Depth to tops of crater zones, OAK and KOA 7-13
7-3 Paleontologic crater zones, transition sand, KOA and 7-14OAK craters.
7-4 Correlation of geologic crater zones and multi- 7-15channel seismic zones.
7-5 Depths to material-property unit boundaries, pre- 7-45-46
and post-shot, OAK crater.
7- 6 Thinning analysis of material-property units, OAK 7-51
7-7 Depths to material-property units, pre- and post- 7-52
shot, KOA crater.
7-8 Thinning analysis of material-property units, KOA 7-52
7-9 Stratigraphic bulk-density analysis, OAK crater 7-55

PACIFIC ENEWETAR ATOLL CRATER EXPLORATION (PEACE) PROGRAM ENEWETAR ATOLL, REPUBLIC OF THE MARSHALL ISLANDS
 Part 4: Analysis of borehole gravity survey and other geologic and bathymetric studies in vicinity of OAK and KOA craters

CHAPTER 1:

INTRODUCTION TO PART 4 OPEN-FILE REPORT

By
Thomas W. Henry ${ }^{1 / 2}$ and Bruce R. Wardlaw $1 / 3$

GENERAL REMARKS

v
The Pacific Enewetak Atoll Crater Exploration (PEACE) Program was established and funded by the Defense Nuclear Agency (DNA) to resolve a number of questions for the Department of Defense (DOD) about the geologic and material-properties parameters of two craters (KOA and OAK), formed by nearsurface bursts of high-yield thermonuclear devices on the northern margin of Enewtak Atoll, (fig. l-1), Marshall Islands, in 1958. The multidisciplinary studies conducted by the USGS in collaboration with the DNA, the Department of Energy (DOE), and other organizations during 1984 through 1987 were part of a much larger research initiative by the DNA to better understand the dynamic properties of strategic-scale nuclear bursts and the relevance of the Pacific Proving Grounds (PPG) craters to issues of strategic basing and targeting of nuclear weapons. $l^{\prime \prime}$

The reader is referred to the reports cited in the succeeding section for a detailed explanation of the events leading up to the PEACE Program and the collaborative roles of the USGS, other Federal agencies, and scientists and engineers from universities and private research lahoratories.

1 Branch of Paleontology and Stratigraphy, U.S. Geological Survey.
2 Denver, CO 80225-0046. 3 Reston, VA 22092.

FIGURE l-1. -- Map of Enewetak Atoll, Republic of the Marshall Is lands (RMI). showing native names of principal islands and other features (military site name in parenthesis), and location of OAK, KOA, and MIKE craters. Inset map shows location of Enewetak within Pacific Ocean. Map from Henry, Wardlaw, and others (1986, p. 12, fig. 3).

PEACE PROGRAM REPORTS

This volume is the fifth and final volume of a series of four U.S. Geological Survey (USGS) Open-File Reports (Henry, Wardlaw, and others, 1986; Cronin, Brouwers, and others, 1986; and Henry and Wardiaw, i986a) and one USGS Bulletin (Folger, 1986a) documenting geologic and geophysical data, analyses, and interpretations for the PEACE Program. Syntheses for the geologic and material-properties models for the craters are found in Wardlaw and Henry (1986 , Ch. 14) and Wardlaw (1987, Ch. 7, this Report). The materialproperties studies themselves, which provide quantitative parameters for computational modeling, for the most part were not conducted by USGS personnel and are published elsewhere for the DNA (e.g., Blouin and Timian, 1986a, 1986b; Borschel, Klauber, and Earley, 1986; Mc Clelland Engineers, 1986: Mueller, 1987; Patti and Schatz, 1987 [1988], in preparation, Schatz, Patti, and Melzer, 1987 [1988], in preparation, and Simons and others, 1984).

dATA ACQUISITION AND BASES

The PEACE Program was truly a multidisciplinary endeavor. Field work for the program on Enewetak Atoll was done in two parts, the Marine Phase (mid- to late summer, 1984) and the Drilling Phase (late winter through mid-summer, 1985). The primary and derivative PEACE Program data bases and framework groups consist of the elements shown in Table l-l. For general discussion of the fieldwork and data-acquisition procedures for the Marine Phase, the reader is referred to Folger (1986b), and, for the Drilling Phase, to Henry, Wardlaw, and others (1986, p. 29-97). For more detailed information about the field and laboratory procedures employed for a specific data set, refer to the individual Chapters or volumes (see tbl. l-l). Many of the derivative data sets and framework groups from the Drilling Phase utilized samples from the 32 deep and intermediate boreholes drilled from the M / V Knut Constructor in the Enewtak lagoon. These boreholes (figs. 1-2 and 1-3) provide a data base upon which the subsurface geologic framework is grounded and upon which interpretations made from the geophysical and material-properties studies must be validated.

A wide array of pre-PEACE Program data from the PPG was re-examined, including (but not limited to) the following:
(1). Published accounts in USGS Professional Paper 260 series (see Emery, Tracey, and Ladd, 1954) from the initial geologic, geophysical, and oceanographic investigations in the Marshall Islands associated with the early phases of nuclear testing.
(2). Published reports and raw data from the geologic and geophysical studies of the PACE, EXPOE, and EASI Projects, sponsored by the DNA and conducted on Enewetak by the Air Force Weapons Laboratory (AFWL) (Couch, Fetzer, and others, 1975; Henny, Mercer, and Zbur, 1974; Ristvet, Tremba and others, 1978; Tremba, Jones, and Henny, 1981; Tremba, Couch, and Ristvet, 1982; and Tremba, 1987). For example, some of the multichannel-seismic lines lines from EASI were reprocessed by Grow, Lee, and others (1986), and selected PACE/EXPOE boreholes were redescribed and analyzed stratigraphically and isotopically before the Drilling Phase actually got underway (Henry, Wardlaw, and others, 1986;

TABLE 1-1. -- Matrix of data bases and analys? from PEACE Progran. In heading, $\mathrm{CH}=$ Chapter; under heading PHASE, Marine or Drilling connotes which phase the samples were obtained originally. The pilot gravity survey in the old borehole on Medren (ELMER) Island was conducted in April 1984, hence the asterisk (*) in the appropriate column. The geologic and material-properties models for the craters are presented in Wardlaw and Henry (1986, Ch. 14) and in Wardlaw (1987, Ch. 8, this Report). U.S. Geological Survey Open-File Report $87-665$ is the current volume.

Bathymelric Maph	Marite	$\begin{aligned} & \text { Hult. 16is } \\ & 05-87-665 \end{aligned}$	$\begin{aligned} & A \\ & S \end{aligned}$	Pecerson and leminy (lyH/*).
Side-Sran Sunar luagery	Marise	Ru11. 16/8	\%	Folger, Rutib, and others (1986).
Stnule-Chanuel Seiselc keflectlon	Marine	Bill. 16,78	C	Hobb, Fostier, and others (1986).
Muletchannel- Solemic Reflection	Hurine	8111. 1678	0	
Selanic-Refraction	Marino	Buit. 16,78	E	A kermanio, litow, and hilliame (19H6).
Suhnersible thaservittorns	Marlie butin	$\begin{aligned} & 4+11 . \quad 1678 \\ & 0 F-86-5 \% 8 \end{aligned}$	$\begin{gathered} i \\ 11 \end{gathered}$	Slater. Koddy, and othery (ltou).
Webris/Ejecta	Marine Marline bellidma	Hall. 1078 (1) OF-H7-605*	$\begin{aligned} & G \\ & 3 \\ & 4 \end{aligned}$	Luduig, lialley, thil athera (iytu); Polanskey and Ahtenm (198/*).
S.uba obuervat lons	Marine	H.11. 1678	II	Slitnit, Kindiuper, and otiers (14bin).
Rutrum Samplea	Marline Masily	Ot-86-55\%	10	Warilidw, lleury, and liarila (iymbi.
Burelmites	Dr 11110x		-	
L. 1 thostratigraplife Vrameurark	Drillink	0F-86-555	2	Warjlam and llatiog (1986a).
Biontratigraphic Framework \& Mixing Studies	Drllling	$\begin{aligned} & U F-86-159 \\ & U F-86-555 \\ & \text { UF-87-665*} \end{aligned}$	$\begin{array}{r} 7 \\ 3 \end{array}$	Heomers, Ceonin, and ithenan (1986): Cronlll and if than (198)*).
Ceophystual Luga	Orillita	UF-86- 355	7	Melzer (1986).
		(\%F-87-60)*	6	Tralo (198)*)
Selnmic Reference Survey	brilling	0F-80-555	9	Tremba and Ristvet (198ub).
Burehole gravimetry	urilling	$\begin{aligned} & 6 F-86-555 \\ & 05-87-665 \\ & 0 F-87-665 \end{aligned}$	$\begin{aligned} & 8 \\ & C \\ & 6 \\ & 6 \end{aligned}$	 (1.yer (194)*). Trulto (1987*).
Si-linot ope it amewirt	$\begin{aligned} & \text { Marine } \\ & \text { Drilling } \end{aligned}$	$\begin{aligned} & 8_{1+11}, 1678 \\ & 65-86-535 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	llalley, fadulR, and ulhere (lukf.).
X-Ray Miseralissy	Drilding	OF-86-5;5	4	Trimbia nad kintuel (198u).
Ur rante Guochealatiy	Drisling	6F-86-535	5	Misivet and Tremba (1986).
Ineoluble Restumes	Drilling	OF- 86-5is	b	RIStevet illil Trimba (1986).
Hadlation Chemistry	Urillinx	OF-86-55i	12	Klstvet nul Tremhit (19Rt).
Electron-ipla Kesombnace	brilling Malnly	OF-87-6us	4	Polanakey and Alirent; (1987*).
Crater-Area Botion Sampien	Orilling	$\begin{aligned} & 0 f-86-535 \\ & 0 F-86-355 \end{aligned}$ -..--	111	Frambin nold kintvore (1986). Wardiam, leury, and Martin (198fi). Hatti and Schatz (198J) [198H?).
Crater Synthesis	Marime Borh Both	Hull. 16/3 08-8h-555 uF-87-665*	$\begin{array}{r} 1 \\ 14 \\ 7 \end{array}$	rotger (1986b): Wardiaw and tlenry (19hob); Wardlaw (1987*).

* of-87-665 if the current report.

FIGURE 1-2. -- Map of KOA crater area showing borehole sites (depicted by letters) and general bathymetric contours (contour interval in feet). Map modified from Henry and Wardlaw (1986b, fig. 1-2).

FIGURE 1-3. -- Map of OAK crater area showing borehole sites (depicted by letters) and general bathymetric contours (contour intervai in feet). Map modified from Henry and Wardlaw (1986b, fig. 1-3).

Cronin, Brouwers, and others, 1986; Halley, Major, Ludwig, and others, 1986).
(3). A broad spectrum of unpublished archival material from the PPG made freely available to us by the DNA and the DOE. These data include preand post-shot survey maps of the OAK and KOA crater areas, both black-andwhite and color, stereographic aerial photographs, other kinds of aerial photographs, and pictures made (both pre- and post-testing) from groundlevel of various crater features and man-made structures. The pre- and post-shot Holmes and Narver maps of OAK crater were digitized and form an essential part of the volumetric studies for the PEACE Program (Peterson and Henny, 1987, Chapter 5 of the current Report).
(4). Other published reports, too numerous to cite here.

SYHOPSIS OF CHAPTERS OF CURKENT VOLUME

This Open-File Report consists of seven Chapters. The interrelationship of each Chapter to the overall data base is depicted in Table l-1. Salient points of each Chapter are summarized below.

Borehole Gravity (Ch. 2; Beyer)
The borehole gravity measurements from the southwest transect of OAK crater and in the Medren (ELMER) Island borehole provide a critical set of data for bulk density and porosity of both the undisturbed stratigraphic sequence and the sediments and rock that were affected by the OAK event.

Significant densification, porosity dimunition, and mass removal are indicated for discrete intervals within the boreholes in the central-crater region of OAK. Zones in which these phenomena are indicated correspond closely to the geologic crater zones and provide strong corroborative evidence for their integrity.

One of the primary goals of the gravimetry was to determine whether densification of the shallow substrate in the crater-flank region (or "wings") could account for the measured lowering of the seafloor. This is particularly critical because the bulk of the volume of the apparent crater lies within its flank region. Gravity analysis conducted in the upper parts of transition-zone boreholes (OQT-19 and ORT-20, see fig. 1-3) demonstrates conclusively that the materials (sediment, rock, and rock debris) are only slightly denser than comparable intervals of materials in reference boreholes OOR-17 and OSR-21. In fact, only perhaps about 15 percent of the documented lowering of the sea floor in the crater wings region can be explained by densification alone. Thus, for the wings region, processes other than densification clearly are also involved.

Paleontologic analysis of the upper $1,200 \mathrm{ft}$ of strata on Enewetak established the division of the upper part of the carbonate cap into twelve discrete biostratigraphic zones (named zones AA, the youngest, through LL, the oldest -- see also Cronin, Brouwers, and others, 1986, and Brouwers, Cronin, and Gibson, 1986). For the current study, additional samples from stratigraphically undisturbed boreholes from the OAK crater area (i.e.. from the reference boreholes) were examined to refine the local zonation and to more closely resolve key biostratigraphic boundaries. Several of these boundaries, combined with physical stratigraphic datums, form surfaces or marker horizons that are Lagrangian (see Chapter 6), permitting employment of a powerful tool in the analysis of crater evolution.

The microfossil studies of OAK reference-borehole plus crater samples provides significant new information about the timing and methods of emplacement of materials from various biostratigraphic zones within the materials that par+i-1ly infill the cracer itself. This includes for the first time identification of sediments that were either at or within a few centimeters of the pre-event lagoon floor. These new data have furnished quantatative estimates of material from each zone (or groud of zones) adinixed in the crater fill. These estimates include volumes and percentages of materials originating from the deeper stratigraphic zones not involved in the excavation of the initial crater itself and from shallower geologic units as well. The editors emphasize that materials from stratigraphically shallower zones pose a real problem of differentiation. For example, how does one separate material that may have been emplaced from, say, zone CC from material within CC that has not moved? Therefone, material that mau have heen pined or othempise movet from these shat? none. muy he underestimated, Derhans grosslu.

Electron Paramagnetic Resonanace Studies (Ch. 4; Polanskey, Ahrens)
EPR spectrometry was applied to measure the peak-shock stress to which calcitic materials were subjected during the OAK event. Most of the samples analyzed can be characterized as either unshocked or very heavily shocked, with few samples showing intermediate states. Samples of the "transition sand" from OPZ-18 show the greatest concentration of very highly shocked material, interpreted as originating in the proximity of ground zero and plastered onto the walls of the excavational crater. Because of subsequent collapse of the excavational crater walls and dilution by mixing with lessshocked or unshocked materials, this lining, as a discrete stratigraphic unit. is identifiable only in the OPZ-18 borehole. Suprisingly, none of the 26 samples from the ground-zero borehole OBZ-4 showed significant shock damage. However, a zone containing less concentrated, very highly shocked material can be recognized in the three transition-zone boreholes studied (OCT-5, OET-7, and OFT-8), and its base occurs at progressively sha'luwer depths away from ground zero.

[^0]$$
\text { Bathymetric Studies of OAK Crater (Ch. } 5 \text {; Peterson, Henny) }
$$

Three pertinent base maps were digitized and processed with a computer to facilitate analysis of the changes in the sea-floor bottom topography (bathymetry) and corresponding volumes in the area affected by the detunation of the OAK device (June 29,1958) and by subsequent, longer term geologic processes. These maps are: (1) the pre-shot Holmes and Narver (H\&N) survey, completed three days prior to the burst; (2) the post-shot $H \& N$ map, surveyed 47 to 67 days after the hurst; and (3) the USGS map, made during the Marine Phase of the PEACE Program, 26 years after the burst.

The USGS map, in the format presented by Folger, Hampson, and others (1986), was not amenable for comparison with the two H\&N maps (ejen undigitized) primarily because the USGS depth contours are given in meters rather than feet. The irregular area common to all three base maps is shown in Figure 5-1.

OAK is a strongly asymmetric crater; part of the asymmetry is a geologic function of the reef being on one side of surface ground zero and the atoll lagoon on the other. Many independent lines of evidence demonstrate that the excavational crater was appreciably smaller and more nearly circular than the current (or apparent) crater. Using the standardized digitized ata for the common area of the base maps, three pairs ${ }^{2}$ of vertical-difference contour maps were prepared. These maps show that: (1) the pre-shot topographic (geologic) features significantly influenced not only the evolution and final size/shape of the crater but also the initial distribution and subsequent reworking of debris from the OAK event; (2) the area of greatest downward displacement of the sea floor between the two post-shot base maps is that of the inner crater; and (3) the entire map area was lowered (and not unifurmly) an average of 23 ft by 67 days after the burst and by another 12 ft during the next 26 years. As the surface of the lagoon and crater floor in this area was lowered, areas of positive-difference in relief (i.e., those areas that were higher post-shot than pre-shot) also decreased from about 27 percent by 67 days to about 14 percent 26 years later.

Two notes of caution must be clearly understood in using these maps for quantitative estimates for cratering calculations. The first is that there is no Lagrangian marker for the pre-event lagoon floor. The second is that the debris volumes estimated from these maps are understated simply because the apparent crater of OAK extends beyond the areas mapped, including the USGS map, which ecompasses the largest area.

[^1]$$
\text { Constraints on Densification and Piping for } O A K \text { (Ch. 5; Trulio) }
$$

As mentioned previously, it is established from a wide array of data that the excavational crater of OAK had an appreciably smaller radius than that of the apparent crater. Because crater volume is a radius-squared function, it is evident that most of the volume of OAK is contained within its flank or "wing" area. What is (are) the significant mechanism(s) reponsible for forming the wings of the large apparent craters in the PPG? Trulio presents a number of different models dealing with the PEACE Program data bases and nakes a number of inferences about these mechanisms based on these models.

Using the data base from the gravimetry (Chapter 2), Trulio applies mathematical analyses to the data, from a purely physical viewpoint, and verifies Beyer's conclusion that densification (or, in Trulio's terminology, "simple subsidence") accounts for just a small part of the formation of the wings of OAK crater. As a best estimate, only about 8 percent of the seafloor drop on the wings can be attributed to density increases caused by the burst.

Another explanation for part of the observed sea-floor lowering phenomenon is piping, or movement (driven by gravity and density differences) of a sediment/water slurry through conduits (cracks, fissures, etc.) tu generally shallower depths or to the surface through vents to form "sand volcanoes". That piping occurred associated with the OAK and YOA bursts, particularly in the central crater region, is supported by independent lines of evidence (see Chapter 7 for discussion). However, at issue are: (1) the role of piping relative to other mechanisms to account for the drup in the ser floor; and (2) the amount of material transported by this mechanism. Mean values for the density of material piped up to the sea floor frombeneath oA! can be derived from the combination of sea-floor base maps and gravimetry profiles. If correct, this model poses limitations on the amount of materia: transported out of the crater by piping. The best estimate based on this model is that the piped and residual materials differed by only about 0.2 g / cc, a density difference that can drive piping, in Trulio's words, "but weakly". Trulio cautions that the sequence of events leading to the transpurt of piped material out of the crater is subject to interference at many points.

It is suggested that plastic flow also should be considered as a plausible mechanism to account for most of the phenomenon of sea-floor lowering. Trulio points out, however, that little is known about the displacement field around a flow crater.

1 See caveat in italics on page l-8. The editors also emphasize that the observed "subsidence" or sea-floor lowering on the wings of the Enewetak craters studied is not reasonghly attributable to one mechanism operating alone. The lowering was caused in part by densification, in part by piping (certainly upwardly and probably laterally as well), probably in part to plastic flow, and possibly to other mechanisms that may not have even been thought of yet.

Additional Studies of Geologic Crater Models (Ch. 7, Wardlaw)

The final Chapter provides an integration of the new information from the various studies presented in the current Open-File Report with the previously developed analyses of PEACE Program data. Of particular interest to the material-properties community is the formulation of a set of materialproperties units for the normal stratigraphic (geologic) sequence and a discussion of the relationship of these units to the sedimentary packages presented in Wardiaw and Henry (1986a, 1986b).

Using available evidence, the pre-event geology beneath the OAK and KOA crater areas is reconstructed, including paleotopographic contour maps of several of the more significant subsurface datums. Wardlaw points out that topographic differences of the pre-event Holocene ground surfaces (i.e., the pre-1958 lagoon, reef, and is'and surface) between the KOA and OAK area produced differences in the surface configurations of the two craters. Differences in cementation and structural competency of key stratigraphic intervals beneath the surface ground zeros of KOA and OAK and the effects of these differences on the development of the two craters are summarized.

A study of the thinning of the stratigraphic units influenced by $O A K$ and KOA is presented. A more comprehensive interpretation of the models for these two craters given in Wardlaw and Henry (1986b) is developed based primarily on the inferred pre-shot elevation of certain datums and thicknesses of stratigraphic intervals in contrast to their post-shot attributes. The case is ade that movement of matertal laterally ("lateral flow") may ascount for much of the "subsidence" and formation of the wings.

An idealized succession of cratering and depositional events is presented.

ACKNOWLEDGEMENTS

We, the editors, extend a special note f appreciation to the following penple, without whom this program would have not been possible. Lt. Col. Robert F. Couch, Jr. (U.S. Air Force and DNA Program Manager for the PEACE Program) and Byron L. Ristvet and Edward L. Tremba (both of S-Cubed Division of Maxwell Laboratories), and Robert W. Henny (Air Force Weapons Laboratory) were full scientific collaborators with us during the PEACE Program. All four of these geologists logged extencive on-site ovf=-ionce in the PPG prior to the current program and were principal investigators in all of various phases of the earlier AFWL investigations on Enewetak. And, in a real sense, they represent a vital component of the record of cratering studies on Enewetak. Their expertise and geotechnical knowledge were invaluable to the current program, and we owe them a profound debt of gratitude. Couch, Ristvet, and Tremba served (alternatively) as Chief Scientists aboard the Knut Constructor during the Drilling Phase of the program, and all three were on-site during parts of the earlier Marine Phase.

We would like to thank also the authors of the Chapters of the current Open-File Report for their timely response to our needs in editing, compiling,
and finalizing this volume and for their infut for synthesizing the diverse data bases.

We are indebted also to John F. Schatz and L. Stephen Melzer of SAIC for constructive exchange of scientific and technical information for this volume. Melzer was on-site with us as Chief Scientist during part of the Drilling Phase field work, and it was his observations along with that of the geologists and paleontologists studying the OAK ground-zeru borehole aboard the drill ship that demonstrated the reality of piping of materials from zones from far below the excavational crater into the sediment forming part of the crater fill.

The plates for Chapter 2 were laid out by James MacCornack, S-Cubed, Albuquerque, and printed by the Defense Nuclear Agency Printing plant, Kirtland AFB, New Mexico. We thank Leonard MacDonald, head printer, for his assistance.

REFERENCES CITED

Ackermann, H.D., Grow, J.A., and Williams, J.M., 1986, Chapter E: Seismicrefraction survey of OAK crater; 18 p., 19 figs., 1 tbl.; in Foljer, D. W., editor, Sea-flour observations and subbottom seismic charac-teristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.s. Geological Survey Bulletin 1678 .

Beyer, L.A., Ristvet, B.L., and Oberste-Lehn, D., 1986, Chapter 8: preliminary density and porosity data and field techniques of borthole gravity surveys, OAK crater; 28 p., 4 figs., 10 tbls., 2 appendices; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Is lands: Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Blouin, S.E., and Timian, D.A., 1986a, Core description and ultrasunic logs from Enewetak Atoll: Defense Nuclear Agency, Washington, dC., Techaical Report TR-86-198, 98 p., [released 3 February 1986, unclassified documentl.

Blouin, S.E., and Timian, D.A., 1986b, Material properties testing in support of PEACE Program, Enewetak Atoll: Defense Nuclear Agency, Washington, DC., Technical Report TR-86-197, 458 p., [released 4 June 1986 , unclassified document].

Borshel, T.F., Klauber, W.P., and Earley, K.H., 1986, Lithological, physical, and mechanical characterization of geologic samples from Enewetak Atoll: TerraTek Research, Inc., Report TR-87-25, prepared for the Defense Nuclear Agency.

Brouwers, E.M., Cronin, T.M., and Gibson, T.G., 1986, Chapter ll: Additional paleontologic studies, OAK and KOA craters; 18 p., 5 figs., 5 tbls., 1 pl.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Couch, R.F., Jr., Fetzer, J.A., Goter, E.R., Ristvet, B.L., Tremba, E.L., Walter, D.R., and Wendland, V.P., 1975, Drilling operations of Eniwetok Atoll during Project EXPOE: Air Force Weapons Laboratory Technical Report AFWL-TR-75-216, Kirtland Air Force Base, New Mexico, 270 p., 17 figs., 4 tbls. [unclassified document].

Cronin, T.M., Brouwers, E.M., Bybell, L.M., Edwards, E.E., Gibson, T.G., Margerum, R., and Poore, R.Z., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 2: Paleontology and biostratigraphy, application to OAK and KOA Craters: U.S. Geological Survey Open-File Report 86-159, 39 p., 20 figs., 12 tbls., 3 appendices.

Emery, K.0., Tracey, J.I., Jr., and Ladd, H.S., 1954, Geology of Bikini and nearby atolls: U.S. Geological Survey Professional Paper 260-A, 265 p., 73 pls., 84 figs., 11 charts, 27 tbls.

Folger, D.W., editor, 1986a, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678, 301 p., 112 figs., glossary, 2 appendices. [Chapters A - H, plus Introduction.]

Folger, D.W., 1986b, Introduction to the volume; 7 p., 2 figs., 2 tbls.; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Folger, D.W., Hampson, J.C., Robb, J.M., Woellner, R.A., Foster, D.S., and Tavares, L.A., 1986, Chapter A: Bathymetry of OAK and KOA craters; 35 p., 12 figs., 2 appendices; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Folger, D.W., Robb, J.M., Hampson, J.C., Davis, P.A., Bridges, P.M., and Roddy, D.J., 1986, Chapter B: Sidescan-sonar survey of OAK and KOA craters; 18 p., 6 figs.; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Ato11, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Grow, J.A., Lee, M.W., Miller, J.J. Agena, W.F., Hampson, J.C., Foster, D.S., and Woellner, R.A., 1986, Chapter D: Multichannel seismic-reflection survey of KOA and OAK craters; 46 p., 39 figs.; in Folger, D.N., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Halley, R.B., Major, R.P., Ludwig, K.R., Peterman, Z.L., and Matthews, R.K., 1986, Chapter G: Preliminary analyses of OAK debris samples; 11 p., 6 figs., 4 tbls.; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Halley, R.B., Slater, R.A., Shinn, E.A., Folger, D.W., Hudson, J.H., Kindinger, J.L., and Roddy, D.J., 1986, Chapter F: Observations of OAK and KOA craters from the submersible; 32 p., 13 figs., l appendix; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Henny, R.W., Mercer, J.W., and Zbur, R.T., 1974, Near-surface geologic Investigations at Eniwetok Atoll: Air Force Weapons Laboratory Technical Report AFWL-TR-74-257, Kirtland Air Force Base, New Mexico, 367 p. [unclassified document].

Henry, T.W., and Wardlaw, B.R., editors, l986a, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshali Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555, 486 p., 92 figs., 90 tbls, 34 pls. [14 Chapters.]

Henry, T.W., and Wardlaw, B.R., 1986b, Chapter 1: Introduction: 13 p., 3 figs., l tbl., in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Henry, T.W., Wardlaw, B.R., Skipp, B.A., Major, R.P., and Tracey, J.I., Jr., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part l: Drilling operations and descriptions of boreholes in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report $86-419,497$ p., 32 figs., 29 pls., 13 tbls., 3 appendices.

Letwig, K.R., Halley, R.B., Simmons, K.R., and Peterman, Z.E., 1986, Chapter 3: Sr-isotope stratigraphy of disturbed and undisturbed carbonates; 23 p., 8 figs., 6 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

McClelland Engineers, Inc., 1986, Relative liquefaction for potential study for carbonate versus noncarbonate materials: Report No. 0186-1069, to Holmes and Narver, Inc., Honolulu, Hawaii; dated December 19, 1986; 37 p., 13 pls. [Signed by Ronald J. Ebehar, Project Supervisor, and Alan G. Young, Vice President, Marine Geosciences.]

Melzer, L.S., 1986, Chapter 7: Downhole geophysical logs; 32 p., 16 figs., 7 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Mueller, C.M., 1987, Mechanical response of undisturbed cores and remolded coral sand from Enewetak Atoll: Department of the Army, Corps of Engineers, Waterways Experiment Station, Technical Report SL-87-14, Vicksburg, Mississippi, 361 p., 274 pls., 56 figs., 5 tbls. [unclassified document].

Patti, N., and Schatz, J.F., 1987 [1988? , in preparation, Material properties tests, material compaction on shot-similar stress/strain paths, and grain size distribution on Enewetak Atoll coral specimens: Science Applications International Corporation, Report SAIC-87/1158, prepared for the Defense Nuclear Agency.

Ristvet, B.L., and Tremba, E.L., 1986a, Chapter 5: Total organic content of lagoon benthic sediments and of subsurface samples from the PEACE drilling program; 9 p., 2 figs., 2 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $K O A$ and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Ristvet, B.L., and Tremba, E.L., 1986b, Chapter 6: Insoluble residue analysis of carbonate sediments from the subsurface of Enewetak Atoll; 5 p., 1 tbl., ; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Ristvet, B.L., and Tremba, E.L., 1986c, Chapter 12: Radiation chemistry of the subsurface of $O A K$ and KOA craters; 15 p., 5 figs., 5 tbls; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Ristvet, B.L., Tremba, E.L., Couch, R.F., Jr., Fetzer, J.A., Goter, E.R., Walter, D.R., and Wendland, V.P., 1978, Geologic and geophysical investigations of the Enewetak nuclear craters; Final reports: Air Force Weapons Laboratory Technical Report AFWL-TR-77-242, Kirtland Air Force Base, New Mexico, 298 p. [unclassified document].

Robb, J.M., Foster, D.S., Folger, D.W., Hampson, J.C., and Woellner, R.A., 1986, Chapter C: Single-channel seismic survey of OAK and KOA craters: 5l P., 24 figs.; in Folger, D.W., editor, Sea-floor observations and subbottom seismic charac-teristics of $O A K$ and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Schatz, J.F., Patti, N., and Melzer, L.S., 1987 [1988?], in preparation, Material properties at OAK/KOA -- Summary Report: Science Applications International Corporation, Report SAIC-87/1159, prepared for the Defense Nuclear Agency.

Simons, D., and others, 1984, Recommendations for laboratory material properties testing of core materials from the Pacific Proving Grounds: Research and Development Associates, Los Angeles, California; unnumbered report submitted to Defense Nuclear Agency.

Shinn, E.A., Kindinger, J.L., Halley, R.B., and Hudson, J.H., 1986, Chapter H: Scuba observations of OAK and KOA craters, 39 p., 38 figs., l tbl.; in Folger, D.W., editor, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Slater, R.A., Roddy, D.J., Folger, D.W., Halley, R.B., and Shinn, E.A., 1986, Chapter 13: Additional submersible studies; detailed observations of the seafloor of OAK, KOA, and MIKE craters; 153 p., 2 tbls., 4 pls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $K O A$ and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Tremba, E.L., 1987 [1984], Enewetak Atoll Seismic Investigation (EASI): Phase III; Final Report: Air Force Weapons Laboratory Technical Report 84-105, Air Force Systems Command, Kirtland Air Force Base, New Mexico, 871176008, 122 P., 36 figs., 11 tbls. [unclassified document].

Tremba, E.L., Couch, R.F., Jr., and Ristvet, B.L., 1982, Enewetak Atoll Seismic Investigation (EASI) Project; Phases I and II: Air Force Weapons Laboratory Technical Report AFWL-TR-82-20, Kirtland Air Force Base, New Mexico, 124 p., 38 figs., 3 tbls., 3 appendices [unclassified document].

Tremba, E.L., Jones, G.L., and Henny, R.W., 1981, Pacific atoll cratering experiments (Project PACE 2); Results and analysis of cratering and related effects: Air Force Weapons Laboratory Technical Report AFWL-TR-81-167, Air Force Systems Command, Kirtland Air Force Base, New Mexico, 334 p., 32 figs., 8 tbls., 8 appendices [unclassified document].

Tremba, E.L., and Ristvet, B.L., 1986a, Chapter 4: X-ray diffraction mineralogy; 49 p., 11 figs., 35 tbls., in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $K O A$ and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Tremba, E.L., and Ristvet, B.L., 1986b, Chanter 9: Seismic reference surveys; 16 p., 1 fig., 12 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $K O A$ and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Wardlaw, B.R., and Henry, T.W., 1986a, Chapter 2: Physical stratigraphic framework; 36 p., 10 figs., 2 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $K O A$ and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Wardlaw, B.R., and Henry, T.W., 1986b, Chapter 14: Geologic interpretation of OAK and KOA craters; 39 p., 21 figs., 2 tbls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Wardlaw, B.R., Henry, T.W., and Martin, W.E., 1986, Chapter 10: Benthic samples from Enewetak Atoll; 50 p., 6 figs., 12 tbls., 29 pls.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

ANALYSIS OF BOREHOLE GRAVITY SURVEYS AT OAK CRATER

by
L. A. Beyerl

INTRODUCTION

Borehole gravity (BHG) surveys were made in selected PEACE Program boreholes at OAK crater on Enewetak Atoll because they provide the only means to directly and accurately measure in situ bulk density of large volumes of rock and sediment that surround the boreholes and to provide data to calculate the total porosity of these materials2. The differences between the density and porosity of undisturbed atoll materials and the sediment and rock involved in the excavational and apparent craters are crucial to understanding various cratering phenomena. In addition, accurate and representative density and porosity measurements of undisturbed atoll materials are important for nuclear-event calculations. The nature of BHG measurements, rationale for siting BHG boreholes, field techniques, and preliminary (apparent) BHG density data and calculated porosity values are given in Beyer, Ristvet, and obersteLehn (1986).

This report presents the models used to correct the apparent (BHG) density and porosity data for large-scale lateral density changes across the reef margin (due to natural facies changes) and for smaller-scale lateral density changes due to cratering phenomena. Corrected BHG density data and calculated porosity values are described in terms of their modification due to cratering processes.

Ancillary topics include: (1) general results of the BHG survey in the E-1 borehole on Medren (ELMER) Island (Appendix 2-1), (2) brief comparison of estimates of density and porosity from BHG, gamma-gamma, and neutron logs, and (3) relationship between grain density and BHG porosity in undisturbed atoll materials. A short description of how average interval grain density was determined from the x-ray mineralogy and organic analyses studies of core samples is found in Appendix 2-2.

The locations of $O A K$ crater and $E-1$ and $F-1$ deep boreholes referred to later in this chapter are shown in Figure 2-1. Locations of boreholes drilled at OAK crater during the PEACE Program are given in Figure 2-2, along with a table that sumarizes pertinent information about the boreholes in which BHG surveys were made. Locations of two cross sections presented later in the chapter also are shown in Figure 2-2.

1Branch of Sedimentary Processes, U.S. Geological Survey, Menlo Park, CA.
2Bulk density and total porosity are abbreviated as density and porosity in this Chapter. Porosity is calculated from a combination of in situ density and grain-density data derived from x-ray mineralogic analyses.

FIGURE 2-1. - Map of Enewetak Atoll showing locations of OAK, KOA, and MIKE craters and Medren (ELMER) Island. Deep boreholes E-1 and F-1 drilled in 1951 and 1952 by the USGS and AEC (Ladd and others, 1953; Ladd and Schlanger, 1960) and referred to in this paper are shown by " X "'s on the inset maps.

FIGURE 2-2. - Map of OAK crater and vicinity showing locations of PEACE Program boreholes and cross sections $A B$ and $C D$. Irset shows designation, water depth and total subsea-floor depth of boreholes in which gravity surveys were made.

The efficacy of BHG surveys to determine subtle density differences at OAK crater depends in great part on the precision of the field measurements. This is determined by making repeated $\mathrm{Wg} / \mathrm{Wz}$ measurements nver the same depth interval. Of 98 intervals surveyed in six boreholes, 8 percent were repeated four or more times, 81 percent were repeated three times, 10 percent were repeated two times, and 1 percent were not repeated due to operational constraints. These repeated $\mathrm{Wg} / \mathrm{Wz}$ measurements indicate that the precision of the surveys is quite high and fully adequate for the purposes of the OAK study (fig. 2-3). Standard deviations of repeated measurements are given in column 3 of Tables 2-2 through 2-7 (located at the end of the current Chapter), are illustrated graphically on BHG density and porosity piofiles in subsequent figures, and are explained in Appendix 8-2 of Beyer, Ristvet, and Oberste-tehn (1986).

BOREHOLE GRAVITY ANALYSIS

The analysis of BHG measurements at OAK crater foilows the only logical path available in the absence of independent data such as a detailed surface gravity anomaly map and reliable desity data from gamina-gamma andor core measurements. BHG measurements are corrected for recognizable lateral density variations so that the corrected BHG densities are reasonably accurate measures of the atoll materials within a few tens to a few hundreds of feet of each surveyed borehole. Then, comparisons of density (and porosity) can be made between different boreholes in and near OAK crater.

Corrections can be made rationally for submarine topography (Beyer, Ristvet, and Oberste-Lehn, 1986), for large-scale lateral density charges across the reef margin that are caused by natural facies changes, and for smaller-scale lateral density changes related to cratering processes. A summary of the range of corrections calculated and applied to the BHG surveys is given in Table 2-1. Individual corrections are presented in Tables 2-2 through 2-7, located at the end of the Chapterl.

Corrections cannot be made for even smaller-scale lateral density changes on the order of tens to about a hundred feet distant from each borehole, because data needed to model these very small density changes were beyond the scope of the PEACE Program. We will note where these very small-scale effects may be present. Neglect of them does not impair the objectives of the BHG phase of the PEACE Program.

Please note that these corrections are computed as vertical gravaty gradients which, when multiplied by 0.25 k , where k is the Ne.: tonian gravitational constant, become density corrections in g/cm3. Lateral density variations chat cause a downward positive vertical gravity gradient result in a positive density correction, whereas a downward negative gradient causes a negative density correction (see Appendix 8-2 of Beyer, Ristvet, and ObersteLehn, 1986).

1 A11 tables are located at the end of the Chapter.

FIGURE 2-3. - Distribution of 93 sets of repeated $\Delta g / \Delta z$ measurements during borehole gravity surveys in OAK boreholes, expressed in $\mathrm{g} / \mathrm{cm}^{3}$. Mean is $.009 \mathrm{~g} / \mathrm{cm}^{3}$ and 1 s a measure of the high quality of the borehole gravity surveys (Beyer, 1968; Black and Herring, 1983).

LARGE-SCALE LATERAL DENSITY CHANGES ACROSS REEF MARGIN

A substantial body of work by many investigators at modern Pacific atolls has shown that forereef and reef core facies generally are more highly cemented (and therefore denser) than lagoon facies, and that atoll reefs generally prograde seaward (e.g., Buigues, 1985). These relationships are believed to be present along the northwest margin of Enewetak Atoll according to B. L. Ristvet, who provided the author with a sketch of the probable distribution of facies and densities across the reef nargin at OAK crater. Other PEACE Program studies (Folger, 1986a) and earlier work at Enewetak, especially deep boreholes $E-1$ and $F-1$ and the XEN series of boreholes on Engebi Island (Ladd and others, 1953; Ladd and Schlanger, 1960; Couch and others, 1975), led to this assessment of atoll margin structure. Densities provided hy Ristvet were modified slightly using the BHG densities from the E-1 borehole on Medren Island (see Appendix 2-1).

Deeper density contrasts (e.g., between the volcanic core and overlying carbonate rocks of the atoll) and possible incomplete isostatic compensation of the atoll also can affect the vertical gravity gradients (and BiLG densities). Corrections for these possible effects are almost certainly negligibly small and, if determined, would cause only a very small, constant dc-type shift of all density data. The absence of even a rudimentary surface gravity anomaly map and more detailed deep borehole data prevent any attempt to examine these effects.

The two-dimensional density model prepared for the atoll margin at OAK crater is shown in Figure 2-4. Vertical gravity gradient corrections were calculated for the two-dimensional model with a well-established algorithm (Talwani and others, 1959) that has been modified for borehole gravity applications. These corrections are given in column 5 of Tables 2-2 to 2-7 and probably are unnecessary but their magnitudes needed to be evaluatud.

CORRECTION FOR LATERAL DENSITY CHANGES DUE TO CRATERING PROCESSES

Lateral density variations due to cratering processes also can affect the BHG densities and, therefore, were evaluated. The model used to correct for these crater-related lateral density changes was developed along the southwest transect from OPZ-18 to $00 \mathrm{R}-17$ by using BHG densities (corrected for submarine topography and large-scale density changes across the atoll margin) and a correlation cross section prepared by D. Oberste-Lehn and modified by B. R. Wardlaw (fig. 2-5; correlation cross section CD, fig. 2-6, alsc was prepared by Oberste-Lehn and Wardlaw). The density model is shown in Figure $2-7$ diud was assumed to have circular symmetry about OPZ-18. Trial gravity calculations taking into account the departure of OAK crater from circular symuetry about OPZ-18 (based only on correlation cross sections) showed that the assumption of circular symmetry is valid. The size of the corrections due to crater-related lateral density changes is so small that the question of true three-dimensionality versus circular symmetry about OPZ-18 is academic. The question of the actual crater density structure along cross section CD remains. A very careful sea floor gravity survey or more BHG drillholes and surveys would shed light on this question.

BLANK PAGE

FIGURE 2-5. - Cross section AB extends fram south-southwest to north-northeast through markers in OBZ-4 extending to the right and markers in OPZ-18 extending to the lef zone boundaries H / I and J / K, and crater geologic zones α, through γ (see Wardlaw a by D. Oberste-Lehn and modified by B. R. Wardlaw. BHG density profiles are superi scale labels "1.90" correspond to the positions of the surveyed boreholes in the c

ast through OAK crater (fig. 2-2). Section is broken at center with geologic to the left. Correlation lines tie disconformities 1 through 6, biostratgraphic Wardlaw and Henry, 1986a,b). This section and that of Figure 2-6 were prepared are superimposed on the section for the six surveyed boreholes. The density ss in the cross section. Vertical exaggeration from ORT-20 to ODT-6 is 2 X .

FIGURE 2-6. - Cross section $C D$ extends fram west-northwest to east-south Pigure 2-5. Only the BHG density profile of OPR - 18 lies in this sec in Figure 2-2. Vertical exaggeration is $2 X$.

D

. Ast-southeast through OAK crater (fig. 2-2). Data are identical to those described for this section. Boreholes $O J T-12$, $O N T-16$, and $0 M P-15$ are projected into section as shown

In order to perform density calculations using the model shown in Figure 2-7, the assigned densities must be recast as density contrasts relative to the surrounding medium. The density of the surrounding atoll material was determined from the BHG density profiles of reference boreholes OOR-17 and OSR-21 which were assumed to be unaltered by crater-related processes. The density model for the surrounding medium is summarized in Table 2-8, and values are shown along the left side of Figure $2-7$. These reference density values were subtracted from laterally juxtaposed crater density model elements to arrive at a density contrast model.

Corrections to the BHG densities in OPZ-18, OTG-23, OQT-19, and ORT-20 were calculated from the density contrast model using a well-established algorithm for three-dimensional density elements (Plouff, 1976) modified for borehole gravity application. These corrections proved to be very small (column 6, tables 2-2 through 2-7), which could be predicted from the gentle dips of the density element boundaries as shown in Figure 2-7.

CORRECTED BOREHOLE GRAVITY DENSITY AND POROSITY AND COMPARISON WITH GAMMA-GAMMA AND NEUTRON DATA

Tabular and graphical summaries of BHG density and porosity with error estimates, grain densities with error estimates and interval-averaged density and porosity from gamma-gamma and neutron logs are presented in Tables 2-2 through 2-7 and Figures 2-8 through 2-13. Open-hole well \log curves also are shown in Figures 2-8 through 2-12. Interval-averaged neutron porosity is not graphically displayed in Figures 2-8 through 2-12 because of a systematic error that has made all values too large. Interval grain density profiles are derived from individual grain density values, examination of open-hole well logs, and descriptions of cores and samples, sedimentary packages, and boreholes (Henry and Wardlaw, 1986; Wardlaw and Henry, 1986a; Holloway and Young, 1986). Errors in interval grain density are only estimates that may be increased or decreased with further information about the mineralogy of individual intervals, particularly intervals with both aragonite and calcite.

A number of questions about the reliability of the gamma-gamma density and neutron porosity logs run in OAK boreholes were raised during the analysis of the borehole data. Corrected BHG density and porosity provide a reliable standard against which gamma-gamma and neutron logs can be evaluated. In OAK boreholes, the differences between BHG density and interval-averaged gammagamma density decrease with increasing depth below the sea floor (fig. 2-14). This result agrees with the well-documented body of literature from the petroleum industry, which indicates that shallow-penetration radiation well logs, such as the gamma-gamma and neutron logs run in OAK boreholes, perform poorly in loosely consolidated, highly permeable sediments where formation damage caused by rotary drilling is almost always substantial.

Relatively good correspondence between BHG and gamma-gamma data is obtained for intervals deeper than 600 ft below sea level in 00R-17 and OQT-19, and deeper than 500 ft below sea level in ORT-20 where drill-induced borehole and formation damage is less because sediments are somewhat more consolidated than at shallower depths (figs. 2-8, 2-10, and 2-11). More specifically, Figure 2-14 suggests that gamma-gamma density departs

(133才) 8OO7t $\forall 3 S$ MO739 HId30
FIGURE 2-11. - Open-hole well logs, BHG and gamma-gamma density, core and interval grain density, FIGRE borehole ORT-20 (left to right). Well logs from left to right are gama ray, caliper, gamma-gama density, and gamma-gamma density correction (partial). Asterisks indicate intervals where gammagamma log not available due to casing. Interval averages of ganma-gamma density and porosity are plotted where values are outside error regions of BHG density and porosity.

（1ヨヨコ）7ヨヘヨา $\forall \exists$ S MOาヨa HIdヨロ
 boundaries，sedimentary packages，and BuG porosity for borehole OTG－23（left to right！．
open－hole well logs were run．

FIGURE 2-14. - Differences between BHG density and interval averages of gammagamma density versus depth below sea floor (bsf). Seventy differences are from boreholes OOR-17, OPZ-18, OQT-19, ORT-20 and OSR-21.
unsystematically from BHG density by as much as ± 10 percent at depths shallower than about 400 ft below the sea floor. At depths greater than about 500 ft below sea level, gamma-gamma density appears to vary from BHG density oy about 2 percent or less.

Cross plots between BHG porosity and neutron porssity, gamma-gamma porosity and neutron porosity, and gamma-gamma porosity versus BHG porosity confirm that the neutron data are not adequate (fig. 2-15). These cross plots, along with Figure 2-14, emphasize the need for caution in the use of the gamma-gama logs for quantitative density or porosity evaluatinn. Furthermore, bulk density and total porosity data derived from core measurements should be viewed skeptically if they differ significantly and systematically from corresponding BHG density and porosity.

NATURAL DENSITY AND POROSITY VARIATIONS OF ATOLL MATERIALS

Natural variations of density and porosity of atoll materials represent the background "noise" through which density and porosity changes caused by cratering phenomena must be determined. At the volume scale of core samples of several cubic feet, a broad range of values of densities and porosities from virtual sea-water-filled voids to dense crystalline carbonate is expected. At the volume scale of BUG studies (hundreds of thousands of cubic feet--an appropriate scale for studies of large craters), one expects the range of values of natural densities and porosities to narrow considerably because of the averaging effect. This is confirmed by the BHG surveys at OAK crater where the range of densities in reference boreholes OOR-17 and OSR-21 is not great.

At shallow depths in OOR-17, OSR-21, ORT-20 and OQT-19, density fluctuations are substantial but can be averaged to give nearly identical values (fig. 2-16). Based on the similarity of averaged $B H G$ densities for OOR-17, OSR-21, ORT-20, and parts of OQT-19, the "noise" problem connected with natural density and porosity variations is believed to be snall. However, close correspondence between individual BHG intervals from borehole to borehole can not be expected because of natural variations of density in porosity.

A general systematic relationship exists between BHG porosity and interval grain density based on data from reference boreholes OOR-17 and OSR-21 (fig. 2-17). Back reef sediments dominated by aragonite have higher porosities than sediments dominated by calcite. Effects on porosity caused by mechanical compaction and grain-size distribution and uncertainty about values of interval grain sensity may account for some or all of the scatter of points in Figure 2-17. Nevertheless, the rate of change of porosity with respect to aragonite content, as estimated by the dashed line, is almost identical to that found by Schmoker and Hester (1986) in a study of the late Pleistocene Miami Limestone. However, porosity values of the Miami Limestone are lower than Enewetak back-reef sediments by about 15 percent for equivalent aragonite content, emphasizing the different geologic settings of these two locations.

If bulk density is held constant, the mineral volume increase accompanying simple transformation of aragonite to calcite causes porosity to decrease by about 5 percent (line A in fig. 2-17). It is clear from figure

(x) यISOHOU THE

[^2]BLANK PAGE

FIGURE 2-16. - Averages of BHG density and porosity

1fosity for selected large interval. Porosities are in parentheses.

FIGURE 2-17. - Interval grain density versus BHG pornsity. Data from reference boreholes OOR-17 and OSR-21. Line A shows decrease in porosity (due only to mineral volume increase) during transformation of an aragonitebearing sediment to calcite-bearing sediment, assuming 1008 aragonite sediment has porosity of 58.5%, and bulk-density is held constant.

2-17 that calcite solution and recrystallization, deposition of externally derived carbonate cement, some compaction, and other processes during welldocumented cycles of atoll emergence and submergence (Ristvet and others, 1974; Tracey and Ladd, 1974) also have contributed to porosity loss in the back-reef sediments around OAK crater.

density, POROSITY, AND MASS CHANGES RELATED TO CRATERING PHENOMENA

A corrected BHG density and porosity model of the south-southwest transect of OAK crater is shown in Figure 2-18. This generalized model closely, but not exactly, follows the disconformity, facies changes, and geologic crater zone correlations defined by Nardlaw and Henry (1986a,b). The density elements of this model are based on the interval divisions of the BHG surveys that were selected during field work prior to knowledge of the exact downhole locations of the geologic boundaries. Intervals of BHG density and porosity have not been divided to correspond to the geologic boundaries because such divisions would be arbitrary in the absence of gravity station readings at the downhole locations of the genlogic boundaries. Furthermorn, BHG density and porosity are based on mass/volume characteristics that may or may not coincide with divisions based on the geologic characteristics of the sediments. This is clearly seen in Figure $2-5$ where a significant number of major BHG density changes occur between, rather than at, the geologic boundaries defined by Wardlaw and Henry (1986a,b). Lack of exact depth correspondence of geologic and density/porosity models does not interfere with comparisons of geologically equivalent intervals between boreholes (figs. 2-16 and 2-19). (Application of the borehole gravity data to the geologic interpretation of OAK crater is expanded in Chapter 7 of the current Open-File report.)

A primary goal of the BHG phase of the PEACE Program was to determine if densification in crater-flank regions could account for observed sea-floor subsidence. BHG surveys were made in transition-zone boreholes OQT-19 and ORT-20 to investigate possible densification. There is considerable variation of BHG density and porosity in the upper parts of these boreholes but averages over larger intervals show that the sediments are not now appreciably denser than in the reference boreholes OOR-17 and OSR-21 (fig. 2-16).

Because documented subsidence of the sea floor at OQT-19 and ORT-20 cannot be explained by densification of the upper few hundred feet of. underlying sediments alone, mass displacement from this region and densification of deeper materials probably occurred. Selective removal of :iner fractions in this way could be investigated by comparing grain-size distributions of core samples from $0 Q T-19$ and the reference boreholes. Slight but definite densification and porosity decreases are present at greater depths in OQT-19 (figs. 2-16 and 2-19).

Unmistakable densification and porosity diminution are inferred in boreholes OTG-23 and beneath 292 ft below sea level in OPZ-18 (figs. 2-16 and 2-19). Independently documented mass transport (Wardlaw and Henry, 1986b) also can be quantified with the BHG density and porosity data. For example, the mass columns at OQT-19 and OPZ-18 are mass deficient by 3 to 5 percent and 6 to 8 percent, respectively, when compared to the mass column at reference

PIGURE 2-18 - BRG density and porosity model for south-southwe

south-southwest transect at OAR crater. Porosities are in parentheses.

FIGURE 2-19 - Averages of BHG density and porosity for sell

ity for selected large intervals. Porosities are in parentheses.
boreholes OOR-17 and OSR-21. Density and porosity changes over the large intervals shown in Figures 2-16 and 2-19 are summarized in Table 2-9.

Many more types of comparisons are possible but are beyond the intent of this paper, which is to provide accurate representative density data and calculated porosity values for atoll materials at the six surveyed boreholes and to present a general density model of the crater.

SUMAARY

Borehole gravity surveys were conducted at OAK crater to obtain accurate large-volume estimates of in situ bulk-density and total porosity of atoll materials beneath and beyond the crater. Reliable density and porosity measurements of undisturbed atoll materials provide important geologic information about these young, loosely consolidated back-reef sediments, and predictions of pre-event material-property conditions for nuclear event calculations. Accurate measurements of differences between the density and porosity of undisturbed atoll materials and the sediment and rock involved in the excavational and apparent $O A K$ craters are crucial to understanding the cratering phenomena at $O A K$ and the mechanics of large crater formation.

Six boreholes were drilled and successfully logged with a borehole gravity meter along a 6,000-foot southwest transect from the bathymetric center of $0 \hat{A} \mathrm{~K}$ crater (fig. 2-2). Gravity measurements were made in these cased boreholes, generally at spacings of 20 to 35 ft . To obtain reference values for the density and porosity of undisturbed reef-forming material for comparison with material disturbed by cratering processes, gravity surveys were conducted in boreholes $0 S R-21$ and $00 R-17$, separated by 562 ft , and lecated approximately 5,500 and $6,050 \mathrm{ft}$ south-southwest of the bathymetric center of OAK crater. Possible densification caused by suspected subsidence on the crater flank just outside the excavational crater was investigated by gravity surveys made in boreholes OQT-19 and ORT-20. These boreholes were separated laterally by 404 ft , and located approximately 1,400 and $1,800 \mathrm{ft}$ south-southwest of the bathymetric center of OAK crater. Gravity surveys were made in borehole OPZ-18 at the bathymetric center of OAK crater, and in OTG-23 located 759 ft south-southwest of $0 P Z-18$ to measure densification beneath the excavational crater and the density of fill within the excavational crater.

The ability of BHG surveys to determine subtle density differences between reef materials located at different locations inside and outside OAK crater depends crucially on the precision of field measurements. Consequently, great effort was devoted to insure that requisite precisions were achieved (Beyer, Ristvet, and Oberste-Lehn, 1986). Repeated measurements show that the precision of BHG densities averages about $.01 \mathrm{~g} / \mathrm{cm} 3$, which is fully adequate for the purposes of the OAK study (fig. 2-3).

BHG measurements permit examination of large volumes of material surrounding the borehole, which means that larger-scale, more distant, lateral density changes are sensed, along with smaller-scale, local density changes that occur within tens to a few hundred feet of the borehole. To obtain BHG density and porosity of atoll materials immediately surrounding each borehole, corrections were calculated and applied for: (1) submarine topography out to a distance of 103 statute miles using bathymetric charts of various scales
(Beyer, Ristvet, and Oberste-Lehn, 1986); (2) generalized two-dimensional density variations associated with large-scale facies changes and diagencsis across the reef margin (fig. 2-4); and (3) generalized three-dimensional density changes due to cratering processes (fig. 2-7). Corrections range from .067 to $.156 \mathrm{~g} / \mathrm{cm} 3$ for submarine topography, .018 to $.025 \mathrm{~g} / \mathrm{cm} 3$ for twodimensional density variations across the atoll margin, and +.025 to -. 021 $\mathrm{g} / \mathrm{cm} 3$ for generalized three-dimensional density changes due to cratering (tables 2-1 through 2-7).

The following conclusions can be drawn from the corrected BHG densities (fig. 2-5), the derived crater density model (fig. 2-18), and comparisons of corrected BHG density and porosity of geologically equivalent intervals along the south-southwest transect from OOR-17 to OPZ-18 (figs. 2-16 and 2-19):

1. Large natural variations of density and porosity of atoll materials are well-known from numerous geological observations at scales of cubic inches to hundreds of cubic feet. Serious concern was expressed prior to this study that these natural variations of density and porosity would obscure those due to cratering phenomena. The shallow portions of the BHG density profiles from OOR-17, OSR-21, ORT-20, and OQT-19 suggest that this concern may be well-founded when attempting to compare shallow vertical intervals in different boreholes that are on the order of tens of feet thick (fig. Z-j). However, averages of BHG densities over larger vertical intervals show that natural variations of density and porosity tend to averige out so that valid lateral comparisons of geologically equivalent intervals can be made (figs. 2-16 and 2-19). Also, over the depths surveyed in OAK boreholes, the range of natural variation of density and porosity appears to decrease slightly with depth, allowing valid comparisuns of smaller vertical intervals with increasing depth (fig. 2-5). These results are based solely on BHG surveys made on a trend nearly parallel to the reer along which facies and density changes are believed to be mininal.
2. The shallow section beneath the crater-flank region penetrated by UQT-19 and ORT-20 is not appreciably denser than the equivalent section penetrated by the more distant reference boreholes OOR-17 and OSR-21 (fis. 2-16). Crater-flank subsidence in this area cannot be explained by densification of this shallow section, but probably involved mass removal and densification of a larger vertical interval. Slight densification is evident at greater depth in OQT-19 but cannot be confirmed at greater depth in ORT-20 (figs. 2-16 and 2-19).
3. Atoll material penetrated by $0 T G-23$ within the excavational crater i significantly denser over the surveyed intervals than the geologically equivalent sections penetrated by reference boreholes OPR-17 and USR-21 and crater flank boreholes ORT-20 and OQT-19 (figs. 2-16, 2-18, and 2-19). Porosity reduction also has occurred as a result of cratering processes.
4. At the bathymetric center of OAK crater, the section penetrated by OPZ-18 is dominated by cratering effects. Major discontinuities of BHG density and porosity occur midway through crater zones $b_{\text {a }}$ and β_{3}. Beneath the second discontinuity midway through zone D_{3}, and extending at least to the J/K biostratigraphic boundary, a large amount of densification and porosity reduction has resulted from cratering processes (Eigs. 2-16 and

2-19). In the lower part of this densified interval, the low BHG densities compared to the indicated thinning of geologic units means that major amounts of mass have been removed (fig. 2-19). Densification and/or mass removal appears to extend beneath the depth of the BHG survey in $0 \mathrm{PZ}-18$, and may be evaluated by careful study of the lower portions of the gamma-gamma density logs from OAM-1/OAR-2, OBZ-4, OCT-5, and OOR-17.
5. Mass deficiencies of about 3 to 5 percent at $0 Q T-19$, and 6 to 8 percent at OPZ-18 are indicated from mass column calculations that utilize BHG deusities at 0OR-1?, OQT-19, and OPZ-18.

Other conclusions of this study are as follows:

1. In reference boreholes $O O R-17$ and $O S R-21$, back-reef sediments dominated by aragonite have higher porosities than materials dominated by calcite (fig. 2-17). The mineral volume increase that accompanies the transformation of aragonite to calcite is not sufficient to explain the observed decrease in porosity. Not surprisingly, other diagenetic processes, such as calcite solution and recrystallization and deposition of externally derived carbonate cement, must have contributed to (or dominated) the observed natural decrease of porosity that accompanies the transformation of aragonite to calcite in these back-reef materials.
2. The BHG survey in the E-1 borehole on Medrin (ELMER) Island provided BHG densities of the shallow section that differed only slightly from those measured across Enewetak Atoll at OAK crater (figs. 2-1 and 2-20). BHG densities of the deeper section in the $E-1$ borehole were important to the construction of the two-dimensional density model of the reef argin (fig. 2-4). The BHG survey in the $E-1$ borehole also revealed a cyclical pattern of density and porosity that may be due to diagenesis caused by repeated periods of atoll emergence and submergence since middle Miocene (fig. 2-20).
3. BHG measurements permit examination of volumes of materials measured in hundreds of thousands of cubic feet. Unlike conventional, shallow penetration gamma-gamma and neutron logging methods, the large volume of material examined by the BHG method makes it immune to formation damage or borehole rugosity that commonly occurs when drilling through loosely consolidated, highly permeable strata or alternating soft and hard beds. Not unexpectedly, BHG density and porosity in the OAK study are about an order of magnitude more reliable than the next most reliable density or porosity logging method, the gamma-gamma density log, at depths less than about 400 ft below the sea floor in the five OAK boreholes where comparisons were possible (figs. 2-8 through 2-12, 2-14, and 2-15).

This first BHG study of the carbonate deposits of an atoll island and of the materials beneath a large nuclear crater affirms the unique ability of borehole gravimetry to evaluate the density and porosity of heterogeneous and/or loosely consolidated geologic formations.

ACKNOWLEDGEMENTS

I am especially indebted to several key people. D. Oberste-Lehn, of $R \& 1$ Associates, one of several people who initially recognized the potential value of borehole gravity surveys to the PEACE Program, solicited my involvement and worked closely with me during the past several years. Her persistent questions, stimulating ideas, and material support have been invaluable. Crucial leadership and considerable effort during the difficult field surveys were very ably provided by B. L. Ristvet of S-Cubed, Inc. Early recognition of the value of BHG surveys and strong backing from within the cratering communty came from J. G. Trulio of Applied Theory, Inc. I also benefited greatly from information provided at various stages by J. J. Daniels, J. A. Grow, R. B. Halley, J. C. Hampson, T. W. Henry, L. S. Melzer, B. L. Ristvet, E. L. Tremba, J. G. Trulio, and B. R. Wardlaw.

REFERENCES

Beyer, L. A., 1968, Recent tests of the United States Geological Survey -La Coste and Romberg borehole gravimeter system (abs.): Geophysics, v. 33, no. 6, p. 1030.

Beyer, L. A., and Corbato, C. E., 1972, A FORTRAN IV computer prograin for calculating borehole gravity terrain corrections: U.S. Geological Survey Open-File Report, 30 p.; available as report $\mathrm{PB}-208-679$ from National Techinical Information Service, Springfield, Virginia.

Beyer, L. A., Ristvet, B. L., and Oberste-Lehn, D., 1986, Chapter 8: Preliminary density and porosity data and field techniques of borehole gravity surveys, DAK crater: 28 p., 4 figs., 10 tbls.; in Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program. Fnewetak atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open Fille Report 8ó-555.

Black, A. J., and Herring, A. T., 1983, Borehole gravity: Expanded operating limits and performance: Expanded Abstracts with Bibliographies, 1983 Technical Program, 53rd Annual International Society of Economic Geologists Meeting, September 11-15, 1983, Las Vegas, Nevada, p. 2l-33.

Buigues, D., 1985, Principal facies and their distribution at Mururoa Atoll: Proceedings of the Fifth International Coral Reef Congress, v. 3, p. 249255.

Couch, R. F., Jr., Fetzer, J. A., Goter, E. K., Ristvet, B. L., Tremba, E. L., Walter, D. R., and Wendland, V. P., 1975, Drilling operations on Eniwetok Atoll during Project EXPOE: Air Force Weapons Laboratory Technical Report AFWL-TR-75-216, Kirtland Air Force Base, New Mexico, 270 p., 17 figs., 4 tbls. [Unclassified].

$$
2-36
$$

Folger, D. W., ed., 1986a, Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin $1678,301 \mathrm{p} ., 112 \mathrm{figs.}$, glossary, 2 appendices.

Henry, T. W., Wardlaw, B. R., Skipp, Betty, Major, R. P., and Tracey, J. I., Jr., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program; Part 1: Drilling operations and descriptions of boreholes in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-419, 497 p., 32 figs., 29 pls., 13 tbls., 3 appendices.

Holloway, G. L., and Young, A. G., 1986, Appendix II: Geotechnical Investigations, Phase IL of PEACE Program: 29 p., 16 figs., 36 pls.; in Henry, T. W., Wardlaw, B. R., Skipp, Betty, Major, R. P., and Tracey, J. I., Jr., 1986, Pacific Enewetak Atoll Crater Expluration (PEACE) Program; Part 1: Drilling operations and descriptions of boreholes in vicinjty of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-419.

Ladd, H. S., Ingerson, E., Townsend, R. D., Russc:l \because., and Stepheason, n. K., 1953, Drilling on Eniwetok Atoll, Marshall Islands: Bulletin of the American Assnciation of Petroleum Geologists, v. 37, no. 10, p. 2257-2280.

Ladd, H. S., and Schlanger, S. O., 1960, Drilling operations on Eniwetok Atoll: U,S. Geolngical Survey Professional Paper 260-Y, p. 363-903, pls. 255-256, figs. $260-287,3$ tbls.

Plouff, D., 1976, Gravity and magnetic fields for polygonal arisms and application to magnetic terrain corrections: Geophysics: v. 4l, no. 4, p. 727-741.

Ristvet, B. L., Couch, R. F., Jr., Fetzer, J. D., Goter, E. R., Tremba, F. L., Walter, D. R., and Wendland, V. P., 1974, A Quaternary diagenetic history of Eniwetok Atoll: Geological Society of America Abstracts with Prograns, v. 6, p. 928-929.

Ristvet, B. L. and Tremba, E. L., 1986, Chapter 5: Total organic content of lagoon benthic sediments and of submarine samples from the PEACE drilling program: 9 p., 2 figs., 2 thls.; in Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of oak and KOA craters: U.S. Geological Survey Open-File Report 86-555.
rekmoker, J. W., and Hester, T. C., 1986, Porosity of the Miami limestone (Late Pleistocene), Lower Florida Keys: Journal of Sedimentary Petrology, v. 56, no. 5, p. 629-634.

Talwani, M., Worzel, J. L., and landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone: Journal of Geophysical Research, v. 64, no. 1 , p. 49-59.

Tracey, J. I., Jr., and Ladd, H. S., 1974, Quaternary History of Eniwetok and Bikini Atolls, Marshall Islands: Proceedings of the Second International Symposium on Coral Reefs, Great Barrier Reef Committee, Brisbane, Australia, p. 537-550, 15 figs., 3 tbls.

Tremba, E. L. and Ristvet, B. L., 1986, Chapter 4: X-ray diffraction mineralogy: 49 p., 11 figs., 35 tbls.; in Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555.

Wardlaw, B. R. and Henry, T. W., 1986a, Chapter 2: Physical stratigraphic framework: 36 p., 10 figs., 2 thls.; in Henry, T. W. and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555.

Wardlaw, B. R. and Henry, T. W., 1986b, Chapter 14: Geologic interpretation of OAK and KOA craters: 39 p., 21 figs., 2 tbls.; in Henry, T. W. and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACF.) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555.

TABLE 2-1. -- Range of corrections for lateral density changes calculated from submarine topography and density models for six BHG surveys at OAK Crater.

Borehole	Range of Corrections Expressed in $\mathrm{g} / \mathrm{cm}^{3}$ Due to		
	Submarine Topography	Large-Scale Lateral Density Changes Across Reef Margin	Smaller-Scale Lateral Density Changes Related to Cratering Processes
OOR-17	. 156 to . 144	. 021 to . 019	negligible
OPZ-18	.118 to .067	. 025 to . 021	. 025 to -.021
OQT-19	.145 to . 135	. 024 to . 020	. 008 to -.004
ORT-20	.140 to . 130	. 023 to . 020	. 005 to -.005
OSR-2 1	.137 to . 126	. 020 to . 018	negligible
OTG-23	. 122 to . 108	. 022 to . 024	. 019 to .014

TABLE 2-2.-(on adjacent page) Bulk density, porosity, and grain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole OOR-17 and from analysis of cores taken from OOR-17. Gammagamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix 2-1 using data frow Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-2.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
212.-237.	1.772	. 003	. 156	. 019	0.	1.947	2.87	. 02	50.2	0.2	1.99	47.8	60.2
237.-271.	1.769	. 008	. 155	. 019	0.	1.943	2.83	. 02	49.3	0.4	1.98	47.2	57.6
271.-289.	1.709	. 015	. 154	. 019	0.	1.882	2.79	. 02	51.6	0.9	1.91	50.0	58.8
289.-317.	1.864	. 006	. 153	. 019	0	2.036	2.75	. 02	41.5	0.3	2.00	43.6	53.3
317.-345.	1.730	. 003	. 152	. 019	0.	1.901	2.86	. 02	52.4	0.2	1.98	48.1	58.9
345.-363.	1.700	. 013	. 152	. 020	0.	1.872	2.86	. 02	54.0	0.7	1.91	51.9	61.5
363.-388.	1.780	. 015	. 151	. 020	0	1.951	2.76	. 04	46.8	0.9	1.91	49.1	58.1
388.-417.	1.774	. 009	. 150	. 020	0.	1.944	2.76	. 04	47.2	0.5	1.95	46.8	52.3
417.-446.	1.798	. 022	. 149	. 020	0	1.967	2.76	. 04	45.8	1.3	1.91	49.1	54.6
446.-477.	1.807	. 003	. 149	. 020	0	1.976	2.71	. 02	43.7	0.2	0	0	0.
477.-505.	1.819	. 001	. 148	. 020	0.	1.987	2.71	. 02	43.0	0.1	0.	0	0.
505.-528.	1.860	. 010	. 147	. 020	0	2.027	2.72	. 02	41.0	0.6	0	0	0 .
528.-560.	1.807	. 008	. 147	. 020	0.	1.974	2.73	. 02	44.5	0.5	0.	0.	0.
560.-603.	1.809	. 016	. 146	. 021	0	1.976	2.78	. 02	45.9	0.9	0	0	0.
603.-645.	1.826	. 004	. 146	. 021	0.	1.993	2.84	. 02	46.8	0.2	2.03	44.8	58.0
645.-683.	1.870	. 009	. 145	. 021	0	2.036	2.85	. 02	44.7	0.5	2.06	43.4	59.6
683.-713.	1.852	. 004	. 145	. 021	0	2.018	2.86	. 02	46.0	0.2	2.03	45.4	60.6
713.-747.	1.848	. 007	. 144	. 021	0.	2.013	2.86	. 02	46.3	0.4	2.05	44.3	59.4
colum 5 ver													
column 6 va													
um 7	aymotrical about opz-18 (see pigure 2.7). bsg denaity in $\mathbf{g / c a}$ after correction for subaarine tapography and lateral denaity variations due to geologic facies changea and cratering processes.												
colum ${ }^{\text {a }}$ (${ }^{\text {a }}$	mean grain danaity for depth interval in g/cm 3 (calculated from mineral and organic content percentages eatimated from x-ray diffraction and loss-on-ignition ansiyaes (sme Appendix 2.2).												
column 9 Colum 10	Estimated uncertainty in mean grain density in $\mathrm{g} / \mathrm{cm}^{3}$. byg porosity in percent calculated from big density (column 7), grain density (column 8) and sea-water density uf $1.03 \mathrm{~g} / \mathrm{cm}^{3}$.												
colume 11	Uncertainty in abg porosity in poroaity percent (calculated from standard doviation of bug density (column 4) and uncertainty in mean grain density (colum ${ }^{\text {s) }}$.												
Column 12 Column 13 Column 14	Gama-gama porosity in percent calculated from gamma-ga avaraga neutron porosity for depth interval in percent.												

TABLE 2-3.--(on adjacent page) Bulk density, porosity, and jrain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole OPZ-18 and from analysis of cores taken from OPZ-18. Gammagamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix $2-1$ using data from Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-3.

columa 1	De
colum 2	Apparent agG denaity in $\mathrm{g} / \mathrm{cm}^{3}$ (corrected for instrument calibration and drift and earth tidea).
column	Standard deviation of repeated $\lambda \mathrm{g} / \Delta \mathrm{z}$ measurements exprejsed in g / cm
alum 4	Vertical gravity gradient correction lexprensed in $9 / \mathrm{cm}^{\prime}$) for submarine topography out to a radial distance of 103.5 etatute milen (166.7 kilometars). Correction calculated by replacing sea water with density of $1,90 \mathrm{~g} / \mathrm{cm}^{3}$ (see Beyer and corbato, 1972).
colum s	verticai gravity gradient correction expressed in g / cm^{3} for laterai density changes (assumed to be two-dimenaional) caused by geologic faci changea acroas the reef (see Pigure 2.4).
mun	Vertical gravity gradient correction (expressed in $\mathbf{g} / \mathrm{cm}^{3}$) for lateral density changes caused by crater-related processes and assumed to be symatrical about opz-18 (see piqure 2.7).
colum 7	BHG density in $\mathrm{g} / \mathrm{cm}^{3}$ after correction for submarine topography and lateral denaity yariationa due to geologic faciea changaz and cratering procesas.
colum ${ }^{\text {a }}$	Moen grain denaity for depth interval in $\mathrm{g} / \mathrm{cm}^{3}$ (calculated from mineral and organic content percentagea eatimatod fromentray diffraction and loss-on-ignition analyees (aee Appendix 2.2).
Colum	Estimated uncertainty in mean grain denaity in $\mathrm{g} / \mathrm{cm}^{3}$.
colum ${ }^{10}$	
columan 11	Uncertainty in shg porosity in porosity percent (calculated from standard deviation of bug density (column 4) and uncertainty in mean grain density (colum 8).
column 12	Average gama-gama density for depth interval in $\mathrm{g} / \mathrm{cm}^{3}$.

TABLE 2-4.-(on adjacent page) Bulk density, porosity, and grain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole OQT-19 and from analysis of cores taken from OQT-19. Gammagamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix 2-1 using data from Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-4.

NNNNNNNNNNNNNNNNNNNONOONONOOOOOOOOOOOOOOSO

$\dot{H} \dot{-1} \dot{-1} \dot{-1} \dot{\operatorname{Hin}} \dot{\mathrm{~N}} \dot{\mathrm{~N}} \dot{\mathrm{H}} \dot{\mathrm{H}} \dot{\mathrm{N}} \dot{\mathrm{N}} \dot{\mathrm{N}} \dot{\mathrm{N}} \dot{\mathrm{N}}$

6

$1 n$
옹NㅓㅇNㅇNNNNNNNNNNNNNNNNNNNNNNNNNNNN N

m

N

 kilomerera). Correction calculaced by replacing sea water with density of $\mathbf{~ v e r t i c a l ~ g r a v i t y ~ g r a d i e n t ~ c o r r e c t i o n ~ e x p r e s s e d ~ i n ~ g / c m ~ f o r ~ l a t e r a l ~ d e n s i t y ~ c h a n g e a ~ (a m a u m e d ~ t o ~ b e ~ t w o - d i g e n s i o n a l) ~ c a u s e d ~ b y ~ g e o l o g i c ~ f a c i e s ~}$ changem acroma the reaf (see Fiqure 2.4). symatrical about opz-18 (see pigure 2.7). processis. grain density for depth interval in g / cm^{3} (calculated from mineral and urganic content percentages estimated froa x-ray diffraction and lose-on-ignition analyses (aee Appendix 2.2).

Big porosity in percent calculated from bHG densicy (column 7), grain denaity (column a) and sea-water density of 1.03 g/cm. ${ }^{3}$. Uncertainty in BHG porosity in porosity percent (caiculated from scandard daviation of bug density form
density (column 8). density (column θ).
Average gamarama density for depth interval in g / cm^{3}. Gaman-gama porosity in percent calculated from gamatiga
Average neutron porosity for depth interval in percent.
 colum 5 column 6 n
e
5
$\overrightarrow{5}$
0
0 Column 8 Column 9
Column 10

TABLE 2-5 (On opposite page). -- Bulk density, porosity, and grain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole ORT-20 and from analysis of cores taken from ORT-20. Gamma-gamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix 2-1 using data from Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-5.

TABLE 2-6 (On opposite page). -- Bulk density, porosity, and grain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole OSR-21 and from analysis of cores taken from OSR-21. Gamma-gamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix 2-1 using data from Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-6.

TABLE 2-7 (On opposite page). -- Bulk density, porosity, and grain density obtained from borehole gravity, gamma-gamma, and neutron measurements in borehole OTG-23 and from analysis of cores taken from OTG-23. Gamma-gamma and neutron data averages over depth intervals of BHG survey. Grain densities were calculated by the procedure described in Appendix 2-1 using data from Tremba and Ristvet (1986) and Ristvet and Tremba (1986).

TABLE 2-7.

$$
\begin{aligned}
& \mp 00000000000 \\
& { }^{m} \quad 00000000000 \\
& \simeq \\
& \text {-0000000000 } \\
& \text { = wanruramuom } \\
& \text {-00000000-10 }
\end{aligned}
$$

$$
\begin{aligned}
& \infty
\end{aligned}
$$

мNNNNNNNN
\sim

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

-0000000000

$$
\begin{aligned}
& \pm
\end{aligned}
$$

$$
\begin{aligned}
& \text { m }
\end{aligned}
$$

$\begin{aligned} & \text { aug density in } 9 / \text { cm after correction for subnarine topography and lateral density variaticns due to geologic facies changes and crateriny } \\ & \text { processes. }\end{aligned}$
$\begin{aligned} & \text { yean grain denstry for depth } 1 \text { ntervai in } 9 / \mathrm{cm}^{3} \text { (calculated from mineral and organic content percentages estimated from x-ray diffraction and } \\ & \text { tosa-on-ignition analyses (see Appendix } 2.21 \text {. }\end{aligned}$
$\begin{aligned} & \text { Uncertainty } \\ & \text { density (colum } 8 \text {). } \\ & \text { Avers }\end{aligned}$
Average neutron porosity for depth incerval in percent.
E
colum 5
$\begin{aligned} & \text { Column } 6 \\ & \text { Columen } 7\end{aligned}$
column 9
Columan 10

Table 2-8. -- Density model for atoll material surrounding OAK crater. Density layers are averages of BHG densities from OOR-17 and OSR-21 and are contrasted with the crater density model of Figure 2-7. Averaged grain densities and BHG porosities are also shown.

Approximate Depth Interval (feet below sea level)	Averaged BHG Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Averaged Grain Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$134-410$	Averaged BHG Porosity (8)	
$410-587$	1.92	2.81
$587-747$	2.98	2.73

Table 2-9. -- BHG density and porosity values and their contrasts with respect to reference borehole values (Table 2-8) for the averaged large intervals shown in Figures 2-16 and 2-19.
 OOR-17/OSR-21 OTG-20 OQT-19 OTG-23 OPZ-18
OOR-17/OSR-21

$$
\text { Interval approximately from discontinuity } 1 \text { to } 4
$$

$\begin{array}{lcccccc}\text { Density (contrast) in } \mathrm{g} / \mathrm{cm}^{3} & 1.97 & 1.98(+.01) & 2.00(+.03) & 2.05(+.08) & 2.13(+.16) \\ \text { Porosity (contrast) in } \% & 45 & 44(-1) & 44(-1) & 41(-4) & 36(-9)\end{array}$
Porosity(contrast) in $\%$
Interval approximately from disconformity 5 to facies change H / I
Density (contrast) in $\mathrm{g} / \mathrm{cm}^{3} \quad 1.98 \quad 1.97(-.01) \quad 2.00(+.02) \quad 2.03(+.05) \quad 2.11(+.13)$
Density(contrast) in $\mathrm{g} / \mathrm{cm}^{3}$
Porcsity(contrast) in 8
Interval approximately from facies change H / I to J / K
-- $2.05(+.04)$ 44(-2) 95-97 92-94

$$
100
$$

Interval approximately from discontinuity 4 to 6
$\begin{array}{lc}\text { Density(contrast) in } \mathrm{g} / \mathrm{cm}^{3} & 1.92 \\ \text { Porosity(contrast) in } \% & 50\end{array}$
Density(contrast) in $\mathrm{g} / \mathrm{cm}^{3} \quad 2.01$
Density(contrast) in $\mathrm{g} / \mathrm{cm}^{3}$
Porosity(contrast) in $\%$
Mass columns (y)

APPENDIX 2-1
 BOREHOLE GRAVITY SURVEY, BOREHOLE E-1, MEDREN ISLAND

The BHG survey in borehole E-1 on Medren (ELMER) Island (see fig. 2-20) was conducted in April, 1984, by the U.S. Geological Survey to determine if reliable $B H G$ data could be gathered in the microseismic environment of an atoll and to evaluate the range of natural density variations of reef-forming materials. Near-surface vibrations caused by wave action were minimal and the repeatability of $B H G$ measurements generally was excellent. The tabulated data for this survey are given in Beyer, Ristvet, and Oberste-Lehn (1986).

The borehole gravity survey in the E-1 borehole shows that the bulk density of atoll materials to a depth of $1,800 \mathrm{ft}$ ranges from about 1.9 to about $2.3 \mathrm{~g} / \mathrm{cm}^{3}$ and averages slightly more than $2.0 \mathrm{~g} / \mathrm{cm}^{3}$ at the scale examined by the BHG survey. Several density patterns are evident.

1. Higher densities between 1,140 and about $1,290 \mathrm{ft}$ correspond to harder rocks as indicated by slower drill rates (fig. 2-20).
2. The gravity station at $1,410 \mathrm{ft}$ (point labeled " A " in fig. 2-20) probably is in close proximity to a sizable cavern that has caused measured gravity to be unexpectedly low. This one anomalous gravity reading incorporated into the overlying and underlying density calculations explains the generally high and low densities of the two adjacent intervals.
3. A repeated pattern of density variations (labeled "l" through "5" in fig. $2-20$) may be due to facies changes and/or diagenesis associated with relative sea-level changes. These repeated patterns of downward decrease in density (increase in porosity) followed by more abrupt increase in density (decrease in porosity) should be examined for possible correlation witt available geologic data.

Densities in the upper 600 ft are slightly higher than the densities over the same depth interval in PEACE Program reference boreholes OOR-17 and OSR-21 dt OAK crater. Part of this may be due to the E-l borehole being much closer to the ocean edge of the reef than are OOR-17 and OSR-21. Boreholes OOR-17 and OSR-21 are more likely to be in a less dense, more lagoonward facies. Corrections for submarine topography are more critical at the $E-1$ borebole because of its closer proximity to the outer reef slope than the PEACE Program boreholes. Unfortunately, bathymetry is less well known adjacent to the E-l borehole, and some of the density differences between $\mathrm{F}-1$ and $00 \mathrm{R}-17$ and OSR-2l may be due to errors in corrections for submarine topography at E-I.

ritgure 2-20 - BHG density profile for borehole E-1, Medren (ELMER) Island. Drilling time profile and geologic ages are from Ladd and Schlanger (1960). Large interval averages of density along righthand depth scale correspond to vertical dashed lines. Diagonal dotted lines labeled "1" through "5" designate suggested repeated density (porosity?) cycles.

APPENDIX 2-2

DETERMINATION OF INTERVAL GRAIN DENSITY

An estimate of interval grain density is needed before BHG porosity can be calculated from $B H G$ density. Grain densities of individual core sanples were estimated from x-ray mineralogy and organic analyses by Tremba and Ristvet (1986) and Ristvet and Tremba (1986) and are shown in Figures 2-8 through 2-13.

An example of how grain density was calculated from x-ray mineralogy and organic analyses follows. Calcite (and magnesium calcite), aragonite, and organic matter were assigned grain densities of $2.72,2.93$, and $1.00 \mathrm{~g} / \mathrm{cm}^{3}$ respectively. If organic matter was present and measured in weight percent of dry solids (generally 3 percent or less), the remainder of the dry sample was assumed to consist of inorganic material (generally 97 percent or more). Thus, for a sample with the analysis

Calcite $(w t \%)$ 29	Aragonite $(w t \%)$ 71	Organic Matter $(w t ~ \%)$ 2.5

The grain density is

$$
[(.29)(2.72)+(.71)(2.93)](1-.025)+.025=2.82 \mathrm{~g} / \mathrm{cm}^{3}
$$

If the sample had no measurable organic matter, the grain dersity is

$$
(.29)(2.72)+(.71)(2.93)=2.87 \mathrm{~g} / \mathrm{cm}^{3}
$$

The plots of grain densities of core samples were generalized to average grain densities for BHG intervals as shown in Figures 2-8 through 2-13. Grain densities averaged by sedimentary packages by Tremba and Ristvet (1986) were too generalized for the BHG data. Uncertainties of $\pm .02$ or $\pm .04 \mathrm{~g} / \mathrm{cm}^{3}$ were assigned in order to estimate errurs in porosity calculations (columns 8, 9, 11 of Tables 2-2 through 2-7; also see Appendix 8-2, Beyer, Ristvet, and Oberste-Lehn, 1986).

CHAPTER 3:

PAYEONTOLOGIC EVIDENCE FOR SEDIMENTARY MIXING

IN OAR CRATER

by
Thomas M. Cronin and Thomas G. Gibson ${ }^{1}$

INTRODUCTION

In 1985, during the course of paleontologic studies of $O A K$ and KOA craters, Enewetak Atoll, it was discovered that the analysis of the distribution of microfossils aided the understanding of the dynamic processes involved in the formation and evolution of the nuclear craters (Cronin, Brouwers, and others, 1986; Brouwers, Cronin, and Gibson, 1986; Henry, Wardlaw, and others, 1986; Henry and Wardlaw, 1986; and Wardlaw and Henry, 1986). These paleontologic studies were particularly useful in determining the depth of origin (or provenance) and sedimentologic history of the disturbed and mobilized materials that partially infilled KOA crater after the initial excavation by the detonation of the nuclear device.

The primary purpose of the present study is to determine the composition and provenance of crater-fill materials and the nature of sediment mixing in OAK crater using micropaleontologic data. This study is an extension of the paleontologic component by the U.S. Geological Survey for the PEACE Program (Cronin, Brouwers, and others, 1986; Brouwers, Cronin, and Gibson, 1986). In this study of $O A K$, we intend to establish the depth limits of mixing of : (1) surficial material, (2) sediment from the uppermost 50 ft of the stratigraphic section, and (3) material from intermediate depths (50 to 300 ft). F:rthermore, we intend to determine the pattern of "piping" of deep material emplaced in the crater-fill from horizons 500 to 900 ft below the lagoon bottom or sea floor. Our results are integrated with geologic and geophysical data to form a general model of crater formation in Chapter 7 of this OpenFile Report.

MATERLAL AND METHODS

To accomplish our objectives, detailed restudy of samples from reference boreholes $0 A R-2 A$ and $00 R-17$ was necessary to refine our zonation of the microfaunal sequence in the upper 400 ft of the stratigraphic section (for discussion of the succession of microfaunal zones used on Enewetak, see Cronin, Brouwers, and others, 1986, and Brouwers, Cronin, and Gibson, 1986). The laboratory and biostratigraphic procedures used herein are the same as those described in the reports cited above. Microfossils were extracted from sediment between 63 and $850 \mu \mathrm{~m}$ in grain size. Samples from two central-crater (ground-zero) boreholes ($O B Z-4$ and $O P Z-18$) and three transition boreholes
${ }^{1}$ Branch of Paleontology and Stratigraphy, U.S. Geological Survey, Reston, VA 22092.
(OCT-5, OFT-8, and OKT-13) were examined in detail for the mixing study of OAK crater. Table 3-1 lists the depths of all 159 samples studied.

Throughout this report, depths of zonal boundaries are occasionally rounded off to whole numbers for convenience. Of course, the accuracy of any particular faunal zone is limited by the resolution of the sampling interval.

STANDARD MICROFAUNAL SEQUENCE

Quantitative data on the occurrence of diagnostic ostracode species (Appendices $3-1$ and $3-2$) and semiquantitative data on benthic foraminifers (Gibson and Hill, in preparation) from boreholes $0 A R-2 / 2 A$ and $00 R-17$ were used to improve the standard zonation of Cronin, Brouwers, and others (1986) and Brouwers, Cronin, and Gibson (1986), in which 12 faunal zones, designated AA through $M M$, in descending order, were defined. In addition, the percent of specimens of the ostracode Neonesidea schulzi with preserved setae ${ }^{l}$ was used as a new measure to quantify the amount of material mixed downward from the surface. Only living or recently dead specimens of this species found in surficial lagoon sediments have setae preserved (generally 70 to 80%). Ostracode setae normally are degraded and destroyed by natural processes soon after death of the organism and burial of the shell. Therefore, the occurrence of setae in specimens below the sediment surface in the crater-fill materials is taken to indicate mixing of specimens from the surface sediments.

The following zones were used in the quantitative analyses of ostracodes:
Surface: \quad The percent of Neonesidea schulzi with setae preserved.
Zone AA: The combined percentages of Hermanites mooneyi and Loxoconchella sp. A.

Zone BB-CC: The combined percentages of Cletocythereis sp. A and Loxoconcha heronislandensis.

Zone EE-FF: \quad The combined percentages of Caudites sp. A, Caudites sp. B, Cletocythereis rastromarginata, Loxonconcha labrynthica, and Loxoconche11a sp. C.

Zone FF-GG:
The combined parcentages of Australimoosella sp. A, Bythoceratina sp. A, Cletocythereis canaliculata, Procythereis sp. A, and Semicytherura sp. A.

Zone II-MM:
The combined percentages of all species restricted to zones II, JJ, KK, LL, and $M M$ as determined by Cronin, Brouwers, and Gibson (1986). In Appendices 3-1 and 3-2 at the end of this Chapter, the totals for these species are given in row 41. Procythereis sp. B generally occurs in zones

[^3]TABLE 3-1. - Depth (ft bsf) in boreholes of samples examined during the study of the mixing of crater-fill materials from OAK.

OAR-2A	OBZ-4	OCT-5	OFT-8	OKT-13	00R-17	OPZ-18
0.25	2.8	0.2	8.75	10.4	0.25	7.0
2.3	11.8	8.8	18.6	18.5	14.15	35.0
6.0	21.1	17.5	27.9	25.4	25.75	44.6
9.3	33.0	39.5	35.1	28.75	38.4	57.85
11.85	40.5	57.55	43.1	36.0	49.7	74.3
14.5	58.5	66.8	48.85	55.65	60.2	89.45
17.1	66.35	76.65	64.0	59.9	66.75	102.0
20.8	75.15	86.15	74.0	68.2	72.8	115.05
22.75	84.15	95.35	-	80.0	83.7	131.0
23.75	93.1	104.25	-	-	89.8	139.7
26.05	104.55	113.15	-	-	100.45	154.2
31.9	112.9	124.0	-	-	101.4	169.35
34.75	121.8	132.8	-	-	110.5	174.95
40.2	130.0	140.9	-	-	119.1	182.3
43.55	144.5	149.65	-	-	125.25	198.0
62.5	151.55	157.6	-	-	131.95	207.3
74.8	166.85	166.4	-	-	137.15	210.4
90.4	178.6	176.25	-	-	146.1	229.95
95.8	186.8	186.0	-	-	154.25	232.1
115.1	193.6	-	-	-	165.6	239.15
127.8	196.5	-	-	-	173.05	-
134.0	205.1	-	-	-	184. $? 5$	-
157.45	213.9	-	-	-	193.5	-
171.2	225.65	-	-	-	200.8	-
188.25	-	-	-	-	209.3	-
195.3	-	-	-	-	215.5	-
204.9	-	-	-	-	226.05	-
212.45	-	-	-	-	233.35	-
223.9	-	-	-	-	239.0	-
234.6	-	-	-	-	250.3	-
244.55	-	-	-	-	261.5	-
246.8	-	-	-	-	270.1	-
268.45	-	-	-	-	285.55	-
282.55	-	-	-	-	292.1	-
289.7	-	-	-	-	299.15	-
337.05	-	-	-	-	310.7	-
379.5	-	-	-	-	320.2	-
-	-	-	-	-	331.2	-
-	-	-	-	-	339.0	-
-	-	-	-	-	367.9	-

II-MM; however, it does occur higher in the section in single samples from OOR-17 (331.2 ft bsf) and in OAR-2A (223.9 ft). Specimens of Procythereis sp. B in crater boreholes are considered piped, so that the percent of II-MM species includes species groups 36 and 41 from the appendices.

For the companion analysis of the foraminifers, the zones used are characterized as follows:

Surface: \quad The presence of chitinous inner linings and original (natura1) coloration in several species.

Zone AA: The presence of Calcarina spengleri and C. hispida. Upper $A A$ is characterized by coloration in specimens of C. spengleri that is not present in specimens in the lower part of this zone, as determined from the reference boreholes.

Zone BB: The presence of Epistominella tubulosa and Anomolina sp. A. Zone CC: The presence of advanced forms of Calcarina rustica.

Zone EE: \quad The presence of Calcarina delicata and primitive forms of Calcarina rustica.

Zone FF-GG: \quad The presence of Calcarina calcar and Cibicides sp. A.
The percentages of ostracodes for each category (excluding the Surface ${ }^{\text {l }}$ and II-MM categories) are plotted for boreholes OAR-2A and OOR-17 in Figures $3-1$ and $3-2$. These were used for comparison with the mixed faunal sequences in the central crater and transition boreholes. It is noteworthy that the two faunal sequences in $00 \mathrm{R}-17$ and $0 \mathrm{AR}-2 \mathrm{~A}$ are very similar to each other, enhancing the accuracy of estimates of the original depths of mixed specimens.

A large proportion (generally about 40 to 60% of each sample) consists of long-ranging species not restricted to a particular zone. Some of these nondiagnostic species probably also were mixed during crater filling. Consequently, the percentage values for samples from crater boreholes are, in some cases, minimum values (i.e., if mixed specimens of non-diagnostic species could be identified, the true percentage of an assemblage from any particular zone would be slightly higher).

In many ways, the use in the mixing study of selected species that have acme zones (intervals of greatest abundance) is an exercise in probability. Those species chosen as diagnostic of zones $A A, B B-C C, E E-F F$, and $F F-G G$ in the upper 400 ft of normal stratigraphic section have a high probability (generally about 80 to 90%) that they originated from within that interval.

[^4]
OAR-2 / 2 A

[^5]OOR-17

[^6]Confirmation of a zone assignment from both fossil groups increases significantly the probability that the zone assignment is correct.

The use of percentages of specimens from zones II-MM probably underestimates the real percentages by no more than 5 to 10%, because far fewer species from the upper 300 ft of section range downward into these zones. This index of piped specimens is considered an accurate indicator of the proportion of piped material represented in a sample. The percentage piped from a depth interval may be considered representative of the entire sedimentary assemblage at that level if two assumptions are correct. First, we must assume all particles of all sizes behave the same as those between 63 and $850 \mu \mathrm{~m}$ (the size range from which ostracodes were extracted). Second, we must assume sediment particles of different shapes and densities behave the same as the ostracode valves and carapaces. With these assumptions in mind, and given the error margins associated with the limits to microfossils zonations discussed above, these data are useful in making volumetric estimates of the proportion of crater-fill sediments piped from depth.

The percentage of Neonesidea schulzi having setae is a distinct type of index that gives an approximate estimate of the actual percentage of surface material, at least to the extent that it can be determined from using this one common species of ostracodes.

A large proportion of the foraminifer assemblage in most samples is composed of Amphistigina madagascarensis. This species is abundant in the modern reef environments on Enewetak and continues downward into the Miocene strata in the Enewetak boreholes. Therefore, its occurrence alone camuc be used for biostratigraphic determination; however, its preservation state is indicative of its zone of origin or provenance. Translucent specimens of this species occur only in zone AA. Below this zone (i.e., in the Pleistocene section and in older strata), they are opaque. Thus, the occurrence of trans!ucent specimens of A. madagascarensis indicates that their provenance is the Holocene section (zone $\overline{A A}$). Many other foraminifer species also have long ranges and cannot be placed definitely. However, the evolutionary changes in the Calcarina lineage are most helpful for determination of the horizons, particularly because they are among the most numerous species in the assemolage.

In some other cases, the preservation of ostracodes and foraminifers also is important in identifying provenance. Fur example, conspicuous brown specimens of long-ranging species clearly could be identified as originating from deeper zones II-MM. Also, in the injection dikes between 189 and 208 ft bsf and at 233 ft bsf in $0 \mathrm{P} Z-18$, the preservation state is almost identical to that of specimens in the upper part of zone AA; therefore, the origin of even non-diagnostic species with the appropriate shell preservation can be shown confidently to be from zone AA.

RESULTS
The following results can be shown from our current studies of samples from OAK crater.

Central Crater (Ground Zero) Boreholes

Boreholes $0 B Z-4$ and $0 P Z-18$ were cored near ground zero in OAK crater; we examined 39 and 21 samples, respectively, from each. The following is an informal zonation of the crater-fill materials based on the characteristics of the mixing of microfossils. The zones of material in the crater-fill from top to bottom are: (1) the Homogenized Zone, (2) the Upwardly Mixed Zone, (3) the Maximum Piping Zone, and (4) the Basal Mixed Zone. The boundaries between these zones are gradational and their depths approximate. In addition, we examined material from several injection dikes. The results are based on the ostracode-occurrence data given in Appendices $3-3$ and $3-4$, many of which are presented graphically in Figures $3-3$ and $3-4$, and the benthic foraminifer data is sumarized in Tables 3-2 through 3-6, located at the end of this Chapter imnediately preceeding the Appendices. To appreciate the nature of the mixing described in the next few pages and to see the actual percentage values, it is useful to compare directly the "normal" pattern of ostracodes (figs. 3-1 and 3-2) with that of the mixed sequence (figs. 3-3 and 3-4).

Homogenized Zone (0 to 40 ft). -- In this interval, high percentages (50 to 60%) of Neonesidea schulzi with preserved setae and specimens of Discorbis and Cymbaloporetta with chitinous inner linings originated from the Surface. High percentages of $A A$ species, low to moderate numbers of specimens from CC, low to moderate occurrences of EE-GG species, low percentages of presumably piped specimens of II-M species, and 3 to $6 \% ~ B B-C C$ mixed material also characterize the Homogenized Zone. In general, this inteval is easily identified by its anomolously high species diversity, resulting from the homogenization of material from virtually all zones with apparently equal contributions from most sub-AA zones. Specimens from the Homogenized Zone are characterized by widely varying preservation states.

Upwardly Mixed Zone (40 to 100 ft). -- This interval coutains consistently low percentages of EE-GG ostracodes and greater percentages of piped material from zones LI-MM than occur in the upper 40 ft of OAK craterfill. The absence of surface material is conspicuous (with the exception of a single sample from 84 ft bsf from $0 B Z-4$). Some samples from the Upwardly Mixed Zone contain less AA material than the overlying Homogenized Zone; in others, zone AA foraminifers still predominate. This interval characteristically contains moderate amounts of $B B-C C$ material. The boundary between the Homogenized Zone ana the underlying Maximum Piping Zone is not sharp, although this may be due to sample spacing. However, the relative contributions to the Upwardly Mixed Zone of foraminifers and ostracodes from various zones are quite distinct from the rest of the crater- fill. The piped specimens from this zone are from KK-LL and possibly from M.

Maximum Piping Zone (100 to 160 ft). -- The highest percentages of piped specimens (9 to 12% in both $0 B Z-4$ and $O P Z-18$) occur in this zone. LL-MM zone foraminifers and ostracodes are common at 121.8 ft bsf in $0 B Z-4$, where at least eight separate ostracode species were emplaced from depth. Low percentages of AA foraminifers are characteristic of the upper part of the Maximum Piping Zone; however, no definite AA ostracodes or foraminifers are recorded from below about 125 ft in OBZ-4. This interval contains low to moderate numbers of specimens from zones $C C$ and EE-GG. Here, piped Eormiaffers are not as obvious in OPZ-18 as in OBZ-4. Anomolously large mmbers of single ostracode valves and still-articulated carapaces are broken

OBZ-4
(a)
(b)
(c)
d)
(e)
(t)

Figure 3-3. -- Borehole $0 B Z-4$: Plot of percentages of diagnostic ostracode species. (3a) lagoon bot tom species; (3b) zone AA; (3c) zones BB-CC; (3d) zones EE-FF; (3e) zones FF-GG; (3f) zones II-MM. (4b) zone AA; (4C) zones BB-CC; (4d) zones EE-FF; (4e)
(e)
(d)
(b)
(c)
(a)
d
(
(f)

Figure 3-4. -- Borehole OPZ-18: Plot of percentages of jiagnostic ostracode species (4f) zones II-MM.
in samples from the Maximum Piping Zone, suggesting a kind of shock fracturing. The base of the Maximum Pipiag Zone is marked by an abrupt drop in the percentage of pioed specimens in the samples.

Basal Mixed Zone (160 to 190 ft). -- The Basal Mixed Zone contains low percentages of piped material, low percentages of zone AA foraminifers, and high percentages of zone EE-FF material. Most of the sediment in the Basal Mixed Zone probably originated from zones EE and FF.

Statistical Analysis of Crater-Fill Materials. -- A simple linearregression analysis of depth versus percentage of piped specimens was performed for samples from the upper 160 ft of $0 B Z-4$ and the upper 145 ft of OPZ-18 (i.e., for all of the samples taken from above the Basal Mixed Zone in both boreholes). This statistical analysis was conducted to further analyze piping in the crater-fill from boreholes $O B Z-4$ and OPZ-18. Figures 3-5a and $3-5 b$ show this relationship for 20 upper samples from $O B Z-4$ and 14 samples from opr-19. A posiive corretation exists witil correlation coetticiencs oi $r=0.46$ and $r=0.52$, respectively. If samples from these depth intervals containing no piped specimens are excluded (9 samples in OBZ-4, lin OPZ-18; see Appendices $3-3$ and 3-4), the correlation coeffecients are much higher, $r=$ 0.64 and $r=0.93$, respectively (figs. $3-5 c$ and $3-5 d$). The absence of piped specimens in some samples may be a result of the smal! number of specimens that could be extracted. Nonetheless, in both boreholes there is a positive correlation, suggesting a diminishing contribution of piped material toward the upper intervals of crater-fill.

Injection Dikes. -- Injection dikes were sampled only in borehole opz-18 from 189 to 208 ft and 233 ft bsí. well-nroserved AA foraminifers and ostracodes and many articulated, translucent ostracode carapaces occur in these samples. Bright-red Homotrema is also commn. The samples from 189.25, 198.0, and 207.3 ft bst are composed of almost identical assemblages of species, and the preservation is almost identical also. In these dikes, material from $B B-C C$ is conspicuously missing. All evidence suggests an origin for almost all material between 189 and 208 ft from the upper part of zone $A A$; however, the lack of Neonesidea schulzi with setae argues against any material originating from the Surface. The sample at 210.4 ft contains recrystallized microfossils, and the samples at 229.95 and 232.1 ft bsf contain zone AA species. These are mixed with zone EE-GG species. No piped II-MM zone material occurs in this dikp.

Transition Boreholes

Transition boreholes OCT-5, OFT-8, and OKT-13 were sampled for microfossils for the current mixing study.

OCT-5. -- Samples from borehole OCT-5 were analyzed semiquantitatively for ostracodes (Appendix 3-5) and foraminifers. Both microfossil groups, particularly ostracodes, are much less abundant than in samples from OBZ-4 and OPZ-18, and the following zonation is based more heavily on the foraminifers.

0-9 ft. -- Samples from this interval in OCT-5 have anomolously high diversity, with approximately equal contributions from all mid-upper zones (AA-GG), as was the case in the Homogenized Zone of OBZ-4 and OPZ-18. A few piped toraminiters are found at 8.8 ft bsf.

PIPED SPECIMENS VS DEPTH

(b)
(c)
(d)

[^7]39-77 ft. -- Abundant zone AA foraminifers, sparse $B B-C C$ ostracodes, and low percentages of $E E-G G$ material are found in samples from these depths.

86-105 ft. -- Samples from here differ from the overlying ones in lacking zone AA species; this interval has mostly CC-GG foraminifers; however both ostracodes and foraminifers are extremely sparse.

113-140 ft. -- Zone AA species predominate in these samples; preservation of the specimens is similar to specimens from zone AA and brignt-red Homotrema (indicative of zone $A A$) also occurs; samples from here contain low percentages of CC-GG foraminifers.

149-187 ft. -- In this borehole, samples from this interval are almost barren and contain no diagnostic species of either ostracodes or foraminifers. Part of the explanation for the paucity of ostracodes may be that zone EE (normally at roughly comparable depths in the reference boreholes) typically contains few ostracodes in the normal stratigraphic section. However, samples from 149 to 187 ft in OCT-5 also lack even benthic foraminifers, which do occur in zone EE.

OFT-8. -- This borehole has diagnostic microfaunas in all samples examined, allowing a threefold subdivision of the upper 75 ft (Appendix 3-6).

0-19 ft. -- This is a mixed interval containing material from zones AA to probably no deeper than FF. Samploc from this interval resemble the Homogenized Zone of the upper parts of other central crater and transitional boreholes. In the uppermost sample at 0.0 to 0.25 ft bsf, a single foraminifer and a single ostracode specimen occur, suggesting piping from zones JJ-MM.

27-50 ft. -- This interval consists almost entirely of material fron zone AA, as indicated by the foraminffers. The ostracode species also occur typically in AA and are preserved like those from that zone. There is a noticable absence of zone $B B-C C$ material, also indicating a lack of mixing.

64-75 ft. -- At 64 ft bsf, a mixture of $A A$ and sparse $F F-G G$ foraninifers occurs with typical BB-CC ostracodes. The $74.0-\mathrm{ft}$ sample appears to be from sediment that is essentially in place and consists exclusively of $B B-C C$ material. A detailed sampling across the interval from 50 to 75 ft would be necessary to better document the transition into undisturbed sediments at this borehole site.

OKT-18. -- This borehole contained highly diagnostic ostracodes and foraminifers that allowed a fourfold subdivision of the upper 80 ft (Appendix 3-:1). The results from the two fossil groups match each other more consistently, and, thus, these zones are more definitive than in any borehole yet analyzed.

0-19 ft. -- Samples from this interval are noted for their anomolously high species diversity and homogenization of zone AA-GG material. These
 and OCT-5. No piped specimens are found.

25-37 ft. -- These samples contained almost exclusively material from zone AA; small percentages from EE-GG are noted from the sample at 25.4 ft
bsf. The microfaunas from this interval resemble those from the injection dike in OPZ-18 in both species composition and preservatinn.

55-66 ft. -- The samples studied contain only material from zones CCDD. Esforially noteworthy is the occurrence of Paracytheridea remanei (which has its acme in $D D$ in all reference boreholes) in OKT-13 at 55.65 (abundant), 59.9 , and 68.3 ft . Also, the abundance of Orionina sp. at 59.9 ft is noteworthy. This latter very distinctive species is abundant in OAR-2A at 62 to 75 ft , and a biostratigraphic correlation is probable for strata between 59.9 ft in OKT-13 and $62-75 \mathrm{ft}$ in borehole OAR-7A.

68-81 ft. -- A typical EE-FF assemblage occurs in this interva? there is no obvious mixing from $A A$ or $B B$.

SUMMARY AND CONCLUSIONS

Our primary conclusions from the mixing study for the OAK crater area follow:

1. Piped material: an inverse relationship exists between sample deptn and the percentage of piped material (from zones II-MM) in OBZ-4 between the surface and 160 ft bsf and in OPZ-18 between the surface and 145 ft bsf. Sparse piped specimens occur in the upper 10 ft of $0 C T-5$ and the upper 1 ft or OFT-8; no piped specimens were found in OKT-13.
2. Mixing of abundant Surface material occurs in OBZ-4 and OPZ-18 downward to a depth of 35 ft , although sparse specimens from the Surface occur as deep as 84 ft in $0 B Z-4$.
3. Mixing of abundant material from zonc AA is evident in OBZ-4 and OPZ-18 to about 50 to 60 ft bsf; AA material is less common to a depth of about 120 ft bsf in both boreholes.
4. Mixing of moderate amounts of material from zones EE-GG (occurring from 100 to 390 ft bsf in the normal stratigraphic sequence) is encountered in the upper 100 ft of the two central-crater boreholes (OBZ-4 and $0 P Z-18$) and in the upper 20 ft of the transition boreholes. Mixing of $B B-C C$ material is less significant than that of EE-GG material in all boreholes.
5. An apparent injeztion dike between 189 and 208 ft bsf in OFZ-18 contains almost exclusively $\overline{A A}$ microfossils. In addition, sediment from these dikes is greenish-gray, like that from the notnal A sectinn. Distinctive microfaunas at 25 to 37 ft in $\mathrm{OKT}-13$ and 27 to 50 ft in OFT-8 are extremely similar to those in this injected OPZ-18 material, although it is not clear if they are genetically related.
6. A Hrowngeuized Mixed Zone containing approximately equal proportions of AA-GG materjal is a general characteriatic nf all central-cadie, (giound-ztre) bereholes (dowa to 40 iL) and in transition boreholes (down to 20 ft).
7. The overall consistency between the ostracodes and foraminifers and our ability to quantitatively revise the standard and mixing zonations to a high degree of resolution gives us confidence that the only limits to our ability to further refine zonations of mixed mateiial, to more accurately identify provenance, and to improve volumetric computations of mixed materials are manpower constraints and sample/core recovery.

REPERENCES

Brouwers, E.M., Cronin, T.M., and Gibson, T.G., 1986, Chapter 11: Additional paleontologic studies, OAK and KOA Craters: 18 p., 5 figs., 5 tbls., 1 pl.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-file Report 86-555.

Cronin, T.M., Brouwers, E.M., Bybell, L.M., Edwards, L.E., Gibson, T.G., Margerum, R., and Poore, R.Z., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands: Part 2; Paleontology and biostratigraphy, application to OAK and KOA craters. U.S. Geological Survey Open-file Report 86-159, 39 p., 20 figs., 12 tbls., 3 appendices.

Gibson, T.G. and Hill, E.E., in preparation, Late Pliocene to Holocene benthonic Foraminifera from Enewetak Atoll.

Henry, T.W., and Wardlaw, B.R., 1986, Chapter 1: Introduction: 13 p., 3 figs., 1 tbl.; in Henry, T.W., and Wardlaw, B.R., editors, Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Henry, T.W., Wardlaw, B.R., Skipp, B., Major, R.P., and Tracy, J.I., Jr., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands: Part l; Drilling operations and descriptions of the boreholes in the vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-419, 497 p., 32 figs., 29 pls., 13 tbls., 3 appendices.

Wardlaw, B.R., and Henry, T.W., 1986, Chapter 14: Geologic interpretation of OAK and KOA craters; 39 p., 21 figs., 2 tbls.; in Henry, T.W., and Wardlaw., B.R., editors, Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Table 3-2.--Sumary of foraminifer occurrences in OAK crater borehole OBZ-4.

```
        DEPTH
    (ft bsf)
FORAMINIFER DATA
```

2.8-3.05
11.8-12.05
21.1-21.35
33.0-33.25
40.05-40.3
58.50-58.75
66.35-66.60
75.15-75.4
84.15-84.4
93.1-93.35
104.55-104.8
112.9-113.15
121.8-122.05
130.0-130.25
144.5-144.75
151.55-151.8
166.85-167.1
178.6-178.85
186.8-187.05
193.6-193.85
196.5-196.75
205.1-205.35
213.9-214.15
225.65-225.9

Mostly AA, some mixing from CC-GG (muot likely CC), piping from KK-MM.
Mostly AA, moderate amount of CC-GG (most likely CC), piping from JJ-KK.
Moderate amount of $A A$, some $C C$ and EE-GG, piping from II-KK.
Mostly AA, mixed with minor CC.
Moderate amounts of $A A, C C$, and $E E-G G$, moderate amount of piping from II-LL.
Mixed $A A, C C$, and EE-GG, moderate amount of piping from KKLL.
Mixed $A A, C C$, and EE-GG, more of ?CC or EE-GG than in above sample, some brown specimens presumably from KK-LL.
Mixed AA, CC, and EE-GG, more of EE-GG, some brown specimens presumably from KK-LL.
Mixed AA, CC, and EE-GG, some piping from KK-LL, possibly \mathbb{M}.
Mostly CC and EE-GG, sparse AA, some brown specimens presumably from KK-LL.
Mostly CC and EE-GG, sparse AA, piping from KK-LL. No definite $A A$; some from ?CC, definite $E E-G C$, piping from KK-LL and possibly from MM.
Definite $A A$ and $C C$ and ?EE-GG, some piping from KK-LL. Mostly CC with some EE-GG, sparse brown specimens possibly from deeper zones.
?CC and EE-GG.
?CC and EE-GG, some brown specimens nresumably from deeper zones.
?CC and EE-GG. ?CC and EE-GG, some brown specimens presumably from deeper zones.
?CC and EE-GG.
?CC and EE-GG.
EE-GG (probably FF) with ?CC.
EE-GG (probably FF) with ?CC.
EE-GG.
EE-GG.

Table 3-3.--Summary of foraminifer occurrences in OAK crater borehole OCT-5.
\qquad
0.2-0.45
8.80-9.05
17.5-17.75
39.50-39.75
57.55-57.8
66.8-67.05
76.65-76.9
86.15-86.4
95.35-95.6
104.25-104.5
113.15-113.4
124.0-124.25
132.8-133.05
140.9-141.15
149.65-149.9
159.6-157.85
166.4-166.65
176.25-176.5
186.0-186.25

Specimens from EE-GG, abundant AA, CC; some specimens from II-MM.
Mostly specimens from EE-GG, some from AA, some from KK-MM. Some EE-GG, probably $\mathrm{BB}-\mathrm{CC}$, no AA.
$A A$ and EE-GG with possibly $C C$ and possibly deep zones.
Abundant $A A$ and EE-GG.
Abundant $A A$, probable $C C$ and definite EE-GG.
Mostly AA, some EE-GG.
All from CC-GG, no AA.
Same as above sample.
Very few specimens, but similar to above sample.
rew specimens, definite AA dominant, some from CC. Abundant AA, sparse specimens probably from CC, possibly CCGG.
A1most entirely $A A$, few specimens from $C C$ or $C C-G G$. Same as above sample.
Barren.
Only 1 specimen probably from $C C$, possibly from $B B-G G$. Only 1 specimen, provinence uncertain. Only 1 specimen, provinence uncertain, probably CC-GG. Few specimens of CC-GG, probably CC.

```
Table 3-4.--Summary of foraminifer occurrences In OAK crater borehole OFT-S.
        DEPTH
    (ft bsf)
    0.0-0.25 Few specimens, definitely AA (but not uppermost AA), few
    specimens from EE-GG, scattered light-brown material with
        l immature specimen possibly from JJ-MM, not certain there
        is deep material.
    8.75-9.00 More abundant AA (with more from uppermost AA), sparse
        specimens from CC, moderate amount from EE-GG, no brown
        material.
    18.60-18.85 Abundant specimens from upper AA, few specimens probably from
        EE-GG.
27.90-28.15 All specimens from upper part of AA.
35.1-35.35
43.1-43.35
48.85-49.1
64.0-64.25
74.0-74.25
All specimens from upper part of AA.
All specimens from AA, probably slightly lower AA than two
    samples above.
All specimens from AA.
Mixture of older part of AA with few from EE-GG.
Appears to be unmixed BB-CC.
```

Table 3-5.--Summary of foraminifer occurrences in OAK crater borehole OKT-13.
\qquad

$10.4-10.65$	Mostly EE-GG, some from lower AA.
$18.5-18.75$	Mostly CC, some from EE-GG mixed with specimens from AA.
$25.4-25.65$	Specimens from ?CC mixed with few from EE-GG, more abundant
AA than in above two samples	
$28.75-29.00$	All from AA.
$36.00-36.25$	All from AA.
$55.65-55.90$	All apparently from CC-DD.
$59.5-59.75$	All probably from CC-DD.
$68.2-68.45$	All probably from EE-FF, possibly some CC-DD.
$80.00-80.25$	All from CC-GG.

Table 3-6. --Summary of foraminifer occurrences in OAK crater borehole OPZ-18.

$\begin{gathered} \text { DEPTH } \\ (\mathrm{ft} \text { bsf) } \end{gathered}$	FORAMINIFER DATA
7.0-7.25	Mostly AA, with some CC and EE-GG mixed, has light-brown material but no diagnostic specimens.
35.0-35.25	Mostly AA, with some CC and EE-GG mixed, has more light-brown material than above sample but only one probable specimen from KK-MM.
44.6-44.85	$A A$, with some $C C$ and more $E E-G G$ than above, moderate amount of light-brown material but no diagnostic specimens.
57.85-58.1	More AA than above sample, with EE-GG common, moderate amount of light-brown material but no diagnostic specimens.
74.3-74.55	Mostly AA with scme specimens from EE-GG, moderate amount of light-brown but no diagnostic specimens.
89.45-89.7	Mostly AA with some EE-GG, moderate amount of light-brown material with 1 specimen possibly from KK-l.L.
102.0-102.25	Few specimens, some $A A$, some $E E-G G$, and moderate amount of light-brown material with one specimen questionably from LL-MM.
115.05-115.3	Few specimens, some AA, some EE-GG, moderate amount of lightbrown material.
131.0-131.25	Few specimens, some $A A$, some EEGG, l specimen possibly from KK-MM.
139.7-139.95	Some AA, some EE-GG, some light-brown material.
154.2-154.45	Some AA, some EE-GG, some light-brown material.
169.35-169.6	Some AA and some EF-GG, sparse light-brown material.
174.95-175.1	Some EE-GG, some probably AA, mostly uncertair.
182.3-182.55	Some AA, some EE-GG, very little light brown nateriai.
180. 25-189.5	All AA, apparently upper AA.
1ヶ8.0-198.25	All AA, apparently upper AA.
207.3-207.55	All AA, apparently upper AA.
210.4-210.65	All recrystallized, but no markers??
229.95-230.2	No diagnostic species, most look like ?CC-GG, possibly few AA.
232.1-232.35	Mostly AA, probably upper A, except for 1 specimen from EEGG.
239.15-239.4	Appearently all EF-GG, probably FE-GG.

APPENDIX 3-1
sorrhole onr-2/2a

borehole oar-2/2A (continued)

APPENDIX 3-2
BOREHOLE OOR-17

$\stackrel{\rightharpoonup}{-}$
클
$\ddot{\beth}$
∞
$\stackrel{\infty}{\infty}$
n
is
\approx
$\stackrel{y}{2}$
$\begin{array}{lllllllllll}\text { TOTAL } & 175 & 94 & 176 & 122 & 75 & 125 & 127 & 78 & 99 & 49\end{array}$
(continued on nert page)
BOREHOLR OOR-17 (continued)

diagnostic spectes		SAMPLE OEPTH (ft bsf)																			
		$\begin{aligned} & \stackrel{R}{R} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & - \\ & \stackrel{0}{6} \\ & \dot{\sigma} \end{aligned}$	\%	N	N	N	${\underset{\sim}{N}}_{\sim}^{\sim}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & i \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \mathrm{N} \\ & \underset{i}{2} \end{aligned}$	$$	N \sim \sim	\sim $\stackrel{\circ}{\circ}$ \sim		N	$\underset{i s}{\underset{i}{w}}$	 	$\stackrel{\sim}{\stackrel{\omega}{\bullet}}$	3 3 3
1.	Austral imooselita sp.	-	-	-	-	-	-	1	-	-	-	-	4	-	-	-	-	3	2	0	14
2.	Bythaceratina sp.	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	1
3.	Callistoc!there sp. A	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	47
	C. sp. в	-	-	-	-	-	1	2	-	1	-	-	-	-	1	-	-	-	-	-	25
	Camiobaimia sp.	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	5
	Caudites sp. A	1	-	-	-	-	-	4	1	-	-	1	1	-	-	-	-	-	-	-	11
1.	C. sp. B	-	-	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-	5
	Ctetocythereia sp. A	-	-	1	6	1	3	6	-	3	-	13	-	-	-	-	-	-	-	-	113
	c. canaliculata	-	-	-	-	-		3	-	$-$	-		-	-	1	-	-	1	2	-	7
10.	C. rastromarginata	2	-	1	1	-	-	1	-	-	-	-	1	-	-	-	-	-	-	-	7
11.	Cytherelloidea sp.	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	2
12.	Hemicytherura sp.	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	5
13.	Hemicytiere sp.	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
14.	Hemmonites mooneyi	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9
15.	A. parviloba	1	-	11	5	-	-	-	-	-	-	-	9	-	:	-	-	-	-	-	87
16.	H. transoceanica	8	1	9	2	4	-	2	-	1	-	7	4	1	4	-	-	-	-	1	177
17.	Jugosocythereis sp.	11	-	6	4	2	-	-	-	-	-	1	1	2	2	1	1	7	2	-	$1!7$
18.	Keijia demissa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4
19.	Loxoconcha heronislandensis	3	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	$6{ }^{4}$
20.	L. huahinensis	-	3	35	25	14	7	62	-	1	1	16	31	12	26	1	-	3	3	1	475
	L. insulamiaensis	-	-	-	-	3	3	5	-	-	-	5	3	2	2	-	-	-	2	-	79
	L. labrynthica	3	-	11	3	-	-	7	-	1	-	-	-		-	-	-	-	-	-	46
23.	L. n. sp. A	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4
24.	Loxoconchella sp. A	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	7
25.	L. sp. ${ }^{\text {B }}$	-	-	-	-	-	-	4	-	-	-	3	-	-	-	.	-	-	-	-	s
	L. sp. C	-	-	-	-	-	-	-	-	-	-	-	5	-	-	.	-	-	-	-	5
	Miocyprideis sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.	Morkhovenia inconspicua	-	1	-	-	2	-	2	-	-	-	-	-	3	-	-	-	-	-	-	13
29.	Neonssidea schulai	1	-	5	2	2	2	9	1	-	-	3	-	3	-	-	-	-	-	-	336
30.	Occul tocythersis sp.		-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
31.	Orionina sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13
	Ornatoleberis sp.	-	-	6	-	-	-	1	-	-	-	1	:	-	-	-	-	-	-	-	39
33.	Paracyther itea nemani	-	-	-	-	-	1	2	-	-	-	8	2	-	-	-	-	-	-	2	39
34.	Ponticocythereis sp.	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	1
35.	Procythereis sp. A	-	-	-	-	-	-	-	-	-	-	-	-	3	2	1	-	1	-	-	7
36.	P. sp. B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1
37.	Pterohaimic madiockene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
	Semicytherura sp.	-	-	-	-	-	-	3	-	-	-	-	-	-		-	-	-	-		in
39.	Triebelina sertata	-	-	-	-	-	-	-	-	-	-	-	-	-	3		-			-	5
40.	Other	5	-	2	12	12	-	17	1	\therefore	-	24	$\therefore 7$	12	38	-	-	-	1	,	913
	total	40	6	88	50	41	17	131	3	9	1	89	112	39	83	3	1	17	:2	9	27.3

APPENDIX 3-3

BOREHOLE OBZ-4 (continued)

APPENDIX 3-4
EOREHOLE OPZ-18

APPENDIX 3-5
borehole oct-5

APPENDIX 3-6 BOREHOLE OPT-8

SAMPLE DEPTH (ft bsf)

DIAGNOSTIC SPECIES	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{0}{\infty}$	\cdots	\cdots	$\stackrel{\rightharpoonup}{\sim}$	$$	0 0 0	$\xrightarrow{0}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
1. Australimoosella sp.	-	-	-	-	-	-	-	-	-	-
2. Bythoceratina sp.	-	-	-	-	-	-	-	-	-	-
3. Callistocythere sp. A	-	-	-	-	-	1	-	1	-	2
4. C. sp. B	-	-	-	-	-	-	-	-	-	-
5. Cardohairdia sp.	-	\sim	-	1	-	-	-	-	-	1
6. Caudites sp. A	-	1	-	-	-	-	-	-	-	1
7. C. sp. 3	-	-	-	-	-	-	-	-	-	-
8. Cletocythereis sp. A	-	-	1	-	-	-	-	1	-	2
9. C canaliculata	-	-	-	-	-	-	-	-	-	-
10. C. rastromarginata	-	-	-	-	-	-	-	-	-	-
11. Cuthereltoidea sp.	-	-	-	-	-	-	-	-	-	-
12. Hemicytherura sp.	-	-	-	-	-	-	-	-	-	-
13. Hemicythere sp.	-	1	-	-	-	-	-	-	-	1
14. Hermanites mooneyi	-	-	-	1	1	-	-	-	-	2
15. H. parviloba	1	-	-	-	-	-	-	-	-	1
16. H. transoceanica	-	-	-	3	4	-	-	-	-	7
17. Jugosocythereis sp.	-	1	-	-	-	8	-	4	-	13
18. Keijia demissa	-	-	-	-	-	-	-	-	-	-
19. Loxoconcha heronistantensis	-	2	-	-	-	-	-	2	-	4
20. I,. huahinensis	1	4	1	5	3	3	1	9	1	28
21. I.. insulardaensis	-	1	-	-	\sim	-	-	1	-	2
22. L. labrynthica	-	-	-	-	-	-	-	-	-	-
23. $I \cdot$ n. sp. A	-	-	-	-	-	-	-	-	\rightarrow	-
24. Hoxoconchellia sp. A	-	-	-	-	-	-	-	-	-	-
25. \quad. sp. B	\sim	-	-	-	-	-	-	-	-	-
25. J. sp. C	-	-	-	-	-	-	-	-	-	-
27. Miocuprideis sp.	-	-	-	-	-	-	-	-	-	-
28. Morkhovenia inconepicua	-	-	-	-	-	-	-	-	-	-
29. Neonesidea schulzi	-	2	-	-	-	1	-	1	-	4
30. Occultocythereis sp.	-	-	-	\cdots	-	-	-	-	-	-
31. Orionina sp.	-	-	-	-	-	-	-	-	-	-
32. Ornatoleberis sp.	-	1	-	3	-	-	-	-	-	4
33. Paracytheridea remani	-	1	-	2	1	1	-	-	-	5
34. ponticocythereis sp.	-	-	-	\rightarrow	-	-	-	-	-	-
35. Procythereis sp. A	-	-	-	-	-	-	-	-	-	-
36. P. sp. B	-	-	-	-	-	-	-	-	-	-
37. Pterobairdia mailosisae	-	-	-	-	-	\rightarrow	-	-	-	-
38. Semicutherura sp.	-	-	-	-	-	-	-	-	-	-
39. Triehelina sertata	-	-	-	-	-	-	-	-	-	-
40. Other	7	7	2	6	4	4	-	10	-	40
41. "Piped" specimens	1	-	-	-	-	-	-	-	-	1
TOTAL	10	21	4	21	13	18	1	29	1	118

APPENDIX 3-7 BOREHOLE OKT-13

SAMPLE DEPTH (ft bsf)
diagnostic species

Mragnsic species	$\stackrel{ \pm}{0}$	$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{n}{\underset{\sim}{\infty}} \underset{\sim}{\infty}$	$\begin{gathered} c \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\begin{aligned} & n \\ & 0 \\ & \dot{n} \end{aligned}$	$\begin{aligned} & \sigma \\ & \dot{\theta} \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{C} \\ & \dot{x} \end{aligned}$	
1. Australimoosella sp.	-	1	-	-	-	-	-	-	-	1
2. Bythoceratina sp.	-	1	-	-	-	-	-	-	-	1
3. Callistocuthere sp. A	-	-	-	-	-	-	13	-	3	16
4. C. sp. B	3	2	-	-	-	-	-	-	-	5
5. Cartohairdia sp.	-	-	-	-	-	-	-	-	-	-
6. Caudites sp. A	1	-	-	-	-	-	-	-	-	1
7. C.sp. B	-	-	-	-	-	2	-	-	-	2
8. Cletocythereis sp. A	2	2	2	-	-	2	-	3	3	14
9. S. canaliculata	-	-	-	-	-	-	-	-	-	-
10. S. rastromarginata	-	-	-	-	-	-	-	-	-	-
11. Oytherelloidea sp.	-	1	-	-	-	-	-	-	-	i
12. Hemicytherura sp.	-	-	-	-	-		-	-	-	-
13. Hemicythere sp.	-	-	-	-	-	-	-	1	-	,
14. Hermanites mooneli	-	-	4	5	2	-	-	-	-	11
15. H. paruiloha	2	1	3	8	3	1	-	1	-	19
i5. H. transoceanica	3	3	5	6	3	1	j	3	4	33
17. Tugosocuthereis sp.	5	7	1	-	3	-	12	3	11	42
18. Kei,ita domissa	-	1	-	-	-	1	-	-	-	2
19. Loroconcha heronistantensis	2	2	-	-	-	-	-	-	-	4
20. L. huxhinensis	11	19	17	19	11	12	3	8	12	112
21. L. insulamaensis	-	1	-	-	-	-	2	2	4	9
22. L. 'abryntiica	-	-	4	-	-	-	2	2	3	11
23. L. n. sp. A	-	-	-	-	-	-	-	-	-	-
24. Loroconche11.a sp. A	-	-	1	3	-	-	-	-	-	4
25. L. sp. B	-	-	-	-	-	-	-	-	-	-
26. r., sp. C	1	-	-	-	-	-	-	-	-	1
27. Miocupritois sp.	-	-	-	-	-	-	-	-	-	-
28. Morkhovenia inconspisua	-	-	-	-	-	-	-	1	-	1
29. Veonestiler schulzi.	1	3	$1{ }^{\prime}$	15	8	1	1	2	-	42
30. Decut tocythereis sp.	-	-	-	-	-	-	-	-	-	-
31. गrionina sp.	-	-	1	-	-	-	12	-	1	14
32. Onnatoloheris sp.	-	1	1	1	j	-	-	-	-	8
33. Pxrastheridea romani	4	6	5	-	2	8	1	3	-	29
34. Ponticocythereis sp.	-	-	-	-	-	-	-	-	-	-
35. Procuthereis sp. A	-	-	-	-	-	-	-	-	-	-
36. P. sp. B	-	-	-	-	-	-	-	-	-	-
37. Dterohatiritia madko: $\mathrm{max}^{\text {a }}$	-	-	1	-	-	-	-	-	-	1
38. Semicytherura sp.	1	4	-	2	-	2	-	7	-	16
39. Triehei ina sontita	-	-	-	-	-	-	-	-	-	-
40. Other	11	21	29	22	13	7	11	7	26	147
41. "Piped" specimens	-	-	-	-	-	-	-	-	-	-
'rotal	47	76	84	81	50	37	62	43	67	547

CHAPTER 4:

ELECTRON PARANAGNETIC RESOMANCE STUDIES OF SELECTED

 BOREHOLE SAMPLES AND DEBRIS MATERIAL FROM OAK CRATER
by

Carol A. Polanskey ${ }^{1}$ and Thomas J. Ahrens ${ }^{1}$

INTRODUCTION

Electron paramagnetic resonance (EPR) spectrometry was used to measure the peak shock stress experienced by a variety of carbonate samples as a result of the detonation of the OAK nuclear device. The following results are based on EPR spectra from 136 samples taken from six boreholes and 17 debris samples recovered from the crater floor. Shock pressures were determined by comparing the sample spectra with spectra of Enewetak carbonate samples and Solenhofen Limestone that had been shocked to known pressures in the laboratory. Preliminary work on this procedure was developed by Vizgirda and Ahrens (1980) using Enewetak material from CACTUS crater obtained during Project EXPOE. Their work demonstrated a linear relationship between shock pressure and the hyperfine splitting of Mn^{2+} in the calcite component of CACTUS carbonate samples. The current report contains the analysis of the OAK samples and expands upon the previous calibration technique.

EPR ANALYSIS

The EPR spectrum of calcium carbonate, CaCO_{3}, is a result of Mn^{2+} substituting for Ca^{2+} in a single site in the crystal lattice. The theory of Mn^{2+} resonance absorption in single crystal of calcite is described by Hurd and others (1954). The calcite spectrum is dominated by six hyperfine peaks due to the central transitions $M=+1 / 2$, where M is the electronic magnetic quantum number. The hyperfine splitting results from the coupling between electronic and nuclear magnetic moments (Hurd and others, 1954). The spectrum of a powdered sample of single crystal calcite, Iceland spar, is shown in Figure 4-1. The central transitions are labeled along with the forbidden transitions. Of particular interest to this study are the two outer most peak doublets at the lowest and highest field positions.

Sample Preparation and Spectrometer Settings
The carbonate samples were ground into a coarse pówder and placed into Wilmad ${ }^{\ominus} 707$ SQ fused EPR tubes. The spectra were taken at room temperature with a Varian E-Line Century Series spectrometer. The calcite spectrum is centered near 3,400 Gauss (G), and ranges from approximately 3,150 to $3,650 \mathrm{G}$.

[^8]
CALCITE POWDER SPECTRUM

FIGURE 4-1. -- EPR spectrum of powdered single crystal calcite. The central transitions are due to $M=+1 / 2, \Delta m=0$, where M and m are the electronic ald nuclear magnetic quantum numbers, respectively. The forbidden transitions occur when $\Delta m=1$. $G=$ Gallss.

The spectrometer was set at microwave frequency of 9.56 GigaHertz (GHz), modulation amplitude of 3.2 G , time constant of 0.25 seconds (sec), and microwave power of 20 milliwatts (mhatt). A scan time of 8 minutes (min) was used to obtain the full spectrum over a 1000-G scan range; however, highresolution spectra were also recorded for both the extreme lower and higher field components of the spectrum. For these spectra, the magetic field was swept over 100 G in 4 min. The high resolution spectra provided greater details of the modification of the hyperfine doublets from the shocked samples. As a result, the high-resolution spectra were used in all of the subsequent analyses.

In addition, all spectra were recorded digitally by the spectrometer. Therefore, it was possible to average several scans to improve the signal-tonoise ratio in samples with low signal strength. Signal averaging proved to be extremely useful for the highly shocked samples because there is a definite correlation between decreasing signal strength and increasing shock pressure. Finally, to remove the slope from the spectrum and reduce the line width of the signal, the spectrometer was operated in the second derivative mode. This was accomplished by setting the modulation frequency of the cavity 90 degrees out of phase with the receiver frequency.

SHOCK PRESSURE CALIERATIOA OF EPE SPECTRA

Shock-Wave Calibration Experiments

The calibration experiments were a combination of two different data sets. The first set consisted of Enewetak carbonate samples shocked in the laboratory over 10 years ago. The samples were taken from two different depths, 10 ft and 146 ft , from the borehole XRU-3 located outside of CACTUS crater on the eastern side of Enewetak Atoll. These samples and experiments are described in detail by Vizgirda and Ahrens (1980). One reason for reprocessing these samples was to determine if the shock effects observed by Vizgirda and Ahrens (1980) had changed with time. New spectra were taken of each sample and the results confirmed that the effect of shock on the hyperfine splitting had not altered over the time scale of a decade. Secondly, high-resolution spectra were taken from these samples in order to test the pressure-calibration technique; however, these samples were not used for the pressure calibration which is described subsequently in this Chapter.

A series of Solenhofen Limestone samples also were shocked in the laboratory, and these samples became the basis for the pressure calibration. This material was chosen because its EPR spectrum, also due to Mn^{2+} substitution, is orders of agnitude more intense than the Enewetak samples. The Solenhofen is also more chemically homogeneous, although it is still a polycrystalline material. Limestone cores (diameter 0.25 in.) were cut into $0.4-i n .-10 n g$ cylinders and pressed into stainless-steel sample chambers. The sample chambers were sealed in the rear by a stainless-steel plug which was notched to vent any impact generated gases. The sample chamber was then inserted into a large stainless-steel momentum trap and mounted in a 40-mm propellant gun. Projectiles were made of polycarbonate-resin plastic (Lexan) that contained flyer plates of aluminium or Lexan. These fmpacted the target assembly at velocities between 0.8 and $1.6 \mathrm{~km} / \mathrm{sec}$ to yield initial shock
pressures of 1.3 to 9.8 Giga Pascals (GPa). Initial shock pressure (rather than final reverberated shock pressure) is reported, because most of the entropy generated by the shock (and hence the shock damage) is associated with the initial shock wave.

Shock pressures were calculated using the projectile velocities and the impedance match technique (Stoffler, 1972). The average bulk density of the limestone samples was $2.61 \mathrm{~g} / \mathrm{cm}^{3}$, and the Hugoniot for Solenhofen Limestone samples was taken from Tyburczy and Ahrens (1986). The remaining Hugoniots for Lexan ${ }^{\text {© }}$ aluminium 2024, and stainless steel 304 are found in Marsh (1980).

Description of Shocked Spectra

Figure 4-2 shows a series of shocked-limestone spectra. The spectra have all been normalized such that the highest peaks (low-resolution spectra) or the highest subpeaks (high-resolution spectra) are of equal height. The shocked-limestone spectra not only reflect in much greater detail the decrease in the hyperfine splitting as a function of increasing pressure, observed previously in the carbonate, but also reveal that the relative signal strength and width of the two subpeaks also varies in a consistent manner with increasing pressure. It is clear from the last two columns in Figure 4-? that the extreme low-field subpeak in the low-field doublet and the extrome highfield subpeak in the high-field doublet both decrease in relative amplitudn and broaden with increasing shock pressure. Because the spectrum of each doublet is the sum of two individual subpeaks, a change in the magnitude or shape of one subpeak can be enough to create the observed decrease in peak separation of the doublet as a whole. In this case, a shift in the actual line position of either subpeak is not required.

The same general trend in peak variation also can be seen in the shockedcarbonate spectra shown in Figure 4-3. Because of the low signal in several samples, these spectra were not uniformly normalized. The specific behavior of the subpeaks in the high-field doublet is less obvious in this series, and the subpeaks are difficult to distinguish at higher shock pressures. The high-field doublet is ultimately lost in the noise (as seen in the sample shocked to 10 GPa). Another factor which complicates the carbonate analysis is that there is also variation between spectra of some of the "unshocked" carbonate samples. Material from two different depths in borehole XRU-3 was used in the calibration experiments of Vizgirda and Ahrens (1980). It appears that the material taken from a depth of 10 ft is not typical of the bulk of the unshocked samples analyzed from Enewetak Atoll. As a result, a systematic difference exists between the spectra taken from these calibration shots and that of the shocked material from 146 ft depth. Both sets of spectra show consistent variation in hyperfine splitting with increasing shock pressure; however, they do differ in the degree to which they are affected by shock deformation.

A second observation, mentioned earlier, is that the amplitude of the entire spectrum tends to decrease with increasing shock pressure. This effect is much more obvious in the Enewetak samples than in the Solenhofen Limestone samples. A loss of signal could be due to a reduction of the Mn^{2+} concentration in the Ca^{2+} lattice sites. The specific mechanism responsible for this reduction has not yet been identified.

FIGURE 4-2. -- Comparison of limestone spectra shocked in the laboratory. The full spectrum is shown in the first column and centered at 3,400 Gauss
(G). High-resolution spectra of the lowest and highest field components are shown in the latter two columns and centered at $3,16^{n} \mathrm{G}$ and $3,630 \mathrm{G}$, respectively.
SHOT

 \rightarrow anminamu

cictac CARBONATE
FIGURE 4-3. -- Comparison of coral spectra shocked in the dahoratory. The

 porpertively.

Pressure Calibration by Differencing Spectra

The previous calibration technique of Vizgirda and Ahrens (1980) relied on measuring the separation, in Gauss (G), of the two subpeaks of the highest field component of each spectrum. The hyperfine peak splitting, $H P S$, was related to shock pressure, P, by the relationship:

$$
\operatorname{HPS}(G)=-0.60 P(G P a)+13.85 \quad \text { (high field) }
$$

Although the decrease in hyperfine splitting is most evident in the high field component, the signal strength of this peak is also the lowest. Therefore, as the signal intensity decreases, the error in measuring hyperfine peak splitting increases. The following technique was developed to incorporate the variations in hyperfine splitting as well as relative peak amplitudes and widths. In addition, the analysis will work equally well for the lowest field component of the spectrum which always has a higher amplitude.

Digital spectra were used to compare each carbonate sample to a pure, single-crystal calcite standard. Both high-resolution spectraf om each end of the spectrum were used in the comparison. The digital spectra consisted of 1000 amplitude values evenly spaced over a $100-G$ field range. Both sample and standard spectra were first normalized by the amplitude of their respective highest subpeaks. The sample spectrum was then translated along the magneticfield axis until the position of its highest subpeak coincided with that of the standard spectrum. Next the absolute value of the difference in amplitude between the two spectra was calculated for each point over the extent of the doublet. Finally, these individual differences were summed to determine a measure of the "likeness" or "unlikeness" of the sample spectrum to the standard. This number shall be referred to as the integrated difference, or ID, of the sample, which is given analytically by the equation:

$$
\mathrm{n}=400
$$

$I D=\quad \int \mid Y[$ standard $]-Y[$ sample $] \mid / 40 G$
$n=10$
where n_{0} is the index of the amplitude array corresponding to a magnetic field value 20 G below that of the highest peak of the standard spectrum; Y[standard](i) and Y[standard](i) are the normalized amplitudes of the standard and sample spectra, respectively, and N is the number of data points that are integrated. In this case, N is 400. The error in iD is determined by performing a similar calculation, where $Y[s a m p l e](i)$ are points in the flat taseline signal on either side of the Mn^{2+} peak.

Figure 4-4 illustrates this procedure with examples of two spectra from the limestone calibration experiments. The first frame shows an unshocked Solenhcfen Limestone spectrum normalized, translated, and plotted over the standard calcite spectrum. The second frame is a plot of the absolute value of the difference between the amplitudes at each point over a $40-6$ range in magnetic field. The final two frames demonstrate the same technique using a sample which has been shocked to 9.8 GPa . The error is determired by using the same scheme to calculate the integrated difference along a flat portion of the spectrum. This value gives an estimate of the contribution of noise to the ID over the region containing the signal.

FICURE 4-4. -- Illustratiun of the differencing technique showing (A) an overlay of the standard spectra and an unshocked Solenhofen Limestone ample; and (B) a plot of the individual absolute differences at each point along the field. Frames (C) and (D) correspond to (A) and (B) for a IImestone armple shocked to 9.8 CigaPascals (GPa).

SOLENHOFEN LIMESTONE

FIGURF 4-5. -- Plot of the summed differences for the low and high field components of the Solenhofen Limestone samples as a function of shock pressure. The $I n$ value is normalized by 40 Gauss (G), the magnetic field range over which the differences were integrated.

TABLE 4-1. Pressure (Giga Pascal) and Integrated Difference (ID) Data for High Resolution Spectra from Samples Shocked in Laboratory Recovery Experiments.

SOLENHOFEN LIMESTONE			
SHOT	P	ID	ID
NUMBER	(GPa)	Low Field	High Field
-	0.0	20.79	47.61
717	5.3	38.12	85.13
718	6.9	43.53	93.17
719	9.8	52.99	106.43
720	2.6	34.03	77.16
726	1.3	23.44	55.14
727	1.8	28.42	68.23
ENEWETAK CARBONATES			
SHOT	$\stackrel{\mathrm{P}}{\stackrel{\text { P }}{ }}$	ID	ID
NUMBER	(GPa)	Low Field	High Field
394	1.4	37.43	\% 4.68
395	1.6	37.83	84.80
396	0.2	33.67	66.51
397	0.3	33.00	74.79
405	4.4	73.85	146.09
442	1.9	78.25	146.22
443	1.5	68.33	166.97
445	4.8	73.61	165.60
446	10.6	75.70	181.03
448	7.9	70.71	161.79

The results of these calculations for the limestone calibration experiments are plotted in Figure 4-5. The ID values are plotted against pressure for both the low- and high-field components of the spectrum. To determine the pressure to integrated difference calibration, a line was fit to each data set using linear least squares. The resulting equations are listed below:

$$
\begin{array}{ll}
P(G P a)=0.290(I D)-5.97 & \text { (low field) } \\
P(G P a)=0.152(I D)-7.59 & \text { (high field) }
\end{array}
$$

The correlation coefficients for the fit were 0.966 and 0.943 , respectively. Table 4-1 contains a list of the ID results for both limestone and Enewetak sample experiments. The average ID values are given for shots where several samples were analyzed.

Using the calibration curves above, shock pressures were then assigned to the OAK carbonate samples. In general, the Enewetak carbonate samples have a much weaker EPR signal than those from the Solenhofen Limestone. Therefore, it was necessary to adjust the intercept of the calibration curves to compensate for the average ID value of the unshocked Enewetak samples. It follows that this method will then assign negative pressures to some samples, because the previous adjustment was made to accomodate the "average" background noise. To avoid this obviously unphysical result, and because this technique is not extremely sensitive for low-shock damage, all sampies with shock pressures calculated to be below 2.0 GPa were classified as unshocked. Similarly, the high-pressure cut-off was chosen to be is GPa. This is necessary because: (1) no data exist for very high shock pressures, and (2) the intensity of the Enewetak sample spectrum is low even at 10 GPa . Samples with shock pressures calculated to be above 10 GPa were classified as highly shocked.

In most cases, shock pressures were calculated for each sample ising both the low- and high-field components of the spectrum. These values were then averaged to determine the final calculated pressure.

OAR DATA

Borehole Sample Selection
The borehole samples consisted of uncemented sediments and carbonate rock clasts from boreholes OAR-2A, OBZ-4, OCT-5, OET-7, OFT-8, and OPZ-18, the locations of which are shown on Figure $4-6$. Samples are referred by the appropriate borehole name succeeded by depth in feet below sea level (bsl).

The carbonate material from Enewetak is extremely inhomogeneous and consists of a mixture of both calcite and aragonite. Because aragonite does not have a detectable EPR spectrum (Low and Zeira, 1972), samples were selected, where possible, for their high-calcite content. For example, those samples containing carbonate grains replaced by solution-deposited calcite crystals were preferred because they would yield stronger EPR signals. Choosing good sample material is important because it provides a consistent base for analysis, and because it guards against mistaking a sample with ar: inherently poor EPR spectrum as being highly shocked. The difference between the two cases generally can be recognized by visual inspection, although it is
more difficult to assess with numerical techniques. As a result, the samples chosen were much less porous than the CACTUS samples used in the earlier shock-wave experiments; consequently, the OAK spectra tended to resemble the Solenhofen limestone spectra more closely. For each borehole, the majority of samples were taken from depths above the gamma (Y) geologic crater zone, defined by Wardlaw and Henry (1986, p. 3) as that interval of rock and sediment that is fractured and displaced beneath the crater. A more specific description of each sample analyzed is given in Tables 4-2 through 4-7 (located at the end of this Chapter). Detailed descriptions of each borehole are given in Henry, Wardlaw, and others (1986).

Results of Borehole Sample Analysis

The two boreholes drilled almost directly below the position of the explosive device (ground-zero, $G Z$, and bathymetric-center boreholes OBZ-4 and OPZ-18, respectively) were the most heavily sampled for the EPR study. A very highly shocked layer of uncemented material was found in samples from borehole OPZ-18 between 399.9 ft and 415.9 ft bsl. This layer was distinguished visually by the characteristic greenish color of the muddy carbonate sand. The shocked zone was interrupted at 412.4 ft bsl by a thin zone of lightercolored material. The location and nature of this shocked material coincides with a zone of Holocene sediments described by Wardlaw and Henry (1986) as a possible example of material that has been injected. The present results are consistent with such an hypothesis since this material most likely originated near the pre-shot sea-floor surface. Three other sand samples above this layer, $386.9 \mathrm{ft}, 368.5 \mathrm{ft}$, and 357.2 ft bsl, were moderately shocked to at most 3.? GPa. The highly shocked samples were located primarily in the geologic crater zone beta-2 (B_{2}) --the transition sands-- whereas the moderately shocked material came from zone beta-lb ($\beta_{1 b}$) (Wardlaw and Henry, 1986; and Chapter 6 of current Report). The remaining 24 of the 31 samples from OPZ-18 appear to be unshocked.

Remarkably, not one of the 26 samples from OBZ-4 showed significant shock damage. Three samples from the $\beta_{1 b}$ zone registered only marginally detectable degrees of shock damage. Sufficient samples were analyzed from the transition sands and vicinity to characterize the core: therefore, it appears that $0 B Z-4$ did not share the same history as OPZ-18.

Thick zones of highly shocked material were found in each of the three northeastern-radial transition boreholes OCT-5, OET-7, and OFT-8. The transition sands have not been identified in any of these boreholes; however, the spectra of the shocked material are similar to those from the shoched material in OPZ-18.

Spectra were taken of 25 samples from borehole OCT-5, drilled 658 ft from GZ. The results of six of these samples define a heavily shocked zone at least 25 ft thick, extending from 285.3 ft to 309.9 ft bsl. This region occurs within zone $\beta_{l b}$ (early stage collapse rubble), and these samples are also primarily uncemented sands. Aside from the highly shocked material in this region, four widely dispersed samples appear to be moderately shocked. However, two of these samples (368.4 and 464.0 ft bsi in OCT-5) are examples of the aforementioned situation where poor signal quality biases a pressure deterinination. Simple visual analysis of these spectra suggest that both samples are actually unshocked. The elevated pressures calculated for

OAK CRATER BOREHOLES

FIGURE 4-K. -- Map of OAK crater showing the location of the boreholes sampled for this study. Bathymetric contours given in 5-meter intervals.
these depths are an artifact of the noisiness of the spectra due to the small fraction of calcite in these samples.

Borehole OFT-8 is located $1,129 \mathrm{ft}$ from $G Z$, just within the excavational crater (Henry, Wardlaw, and others, 1986). This borehole was sampled at 24 depths. In OFT-8, the region of heavily shocked material begins near the top of the $B_{1 b}$ cone and rextends downard for approxirately 27 ft . Included within this zone were seven heavily shocked samples located between 153.6 ft and 180.9 ft bsl. Bordering this roçion above and below are zones containing moderately shocked material. Two moderately shocked samples, 149.2 ft and 151.3 ft bsl , were taken at the base of the $\beta_{1 a}$ (late-stage collapse rubble) geologic zone, and three samples deeper in the $\beta_{1 b}$ extending to a depth of 195.3 ft bsl.

The next farthest borehole (OET-7) is $1,374 \mathrm{ft}$ from GZ. Based on seismic-reflection, paleontologic, and lithostatigraphic data, this borehole is thought to be located outside of the excavational crater (Henry, Wardlaw, and others, 1986). The majority of the nine samples were from the GAMMA zone; however, all but the uppermost sample were heavily to moderately shocked. Of the highly shocked samples, six out of seven were uncemented sediment samples. The highly shocked zone extended from 118.9 to 147.5 ft bsl, and a moderately shocked, cemented sample was detected a- $173.6 \mathrm{f}, \mathrm{bsl}$.

Borehole OAR-2A, located $4,458 \mathrm{ft}$ from OAK GZ, initially was sampled only as a reference core; however, six of 21 samples from this borehole have been heavily shocked. Two other samples were morerately shocked to pressures of 3.5 and 4.4 GPa . All of the shocked samples were located within the top 39 ft of the core and the most heavily shocked material within the first 24 ft . The proximity of this borehole to the reef may suggest that some highly shocked, fine-grain ejecta was transported from the slope and deposited at the site of OAR-2A.

The combined results from the OAK borehole sample analysis are presented in Figure 4-7. The solid horizontal line in each panel indicates the present sea-floor depth. The depth and thickness uf each zone containing highly shocked material ($P>10 \mathrm{GPa}$) as a function of the distance of the borehole from $G Z$ is shown in a simplified manner in Figure 4-8.

Results from Debris Samples

The debris analyzed consists of 14 samples collected throughout the crater by submersible and three samples collected by scuba divers from roughly a single site. The former samples are a subset of a series of debris samples analyzed by Halley, Ludwig, and others (1986). Figure 4-9 shows the locations where each debris sample was recovered. The range values that will be discussed in a subsequent section were measured from this map. Unfortunately, the debris samples included in this study were all taken from roughly the same distance from GZ. Only one sample (OAK 201) was recovered at a significantly different range.

The results of the debris analysis are plotted in Figure $4-10 \mathrm{~A}$ and 1 isted in Table 4-8 (located at end of Chapter). The majority of the debris samples were relatively unshocked; however, all of the highly shocked debris was found

DEPTH BELOW SEALEVEL (ft)

DEPTH BELOW SEALEVEL (ft)

$4-16$

OAK CRATER DEBRIS SAMPLES

FIGURE 4-9. -- Map of OAK crater showing the debris-sample recovery sites. Bathymetric contours given in 5-meter intervals.

OAK DEBRIS
A)

FIGURE 4-10. -- Results of the debris-sample analysis showing (A) shock pressure as a function of range from ground zero, and (B) shock pressure versus estimated pre-event depth below sea level.
at the base of the reef slope. The reef may have blocked some of the highly shocked material from leaving the crater as ejecta, or this material (ejected from the crater) could have been transported craterward back down the reef slope some time after the crater was formed.

In addition to the range measurements, the estimated pre-event initial depth of a limited number of the debris samples was available from strontiumisotope analysis (Halley, Major, and others, 1986; and Ludwig, Halley, and others, 1986) and gross paleontologic and petrographic analysis by B.L. Ristvet in 1981 (see Ristvet, 1986) and corroborated by subsequent analysis by USGS personnel. The pre-event depth below sea level is plotted against shock pressure for these samples in Figure 4-10. Although the pre-event depth estimates are crude in some cases, a strong correlation is evident between shock pressure and depth for this limited data set. This correlation is consistent with the assertion that the pre-event surface materiai near $G Z$ was the most severely shoc!ed.

DISCUSSION

With a few exceptions, the bulk of the samples analyzed can be split into two catagories, unshocked and very highly shocked. There were relatively few samples which can be assigned to intemediate pressure categories. This suggests that the majority of the shocked material shares a common origin. Fresumably, the material right at or near the surface near GZ received the highest shock pressure from the blast. During the cratering event, some of this material was incorporated in the lining of the transient crater cavity and was then buried almost immediately by the collapse of the crater walls. Subsequent backwash of ejecta and slumping and deformation of the crater would tend to mix this highly shocked material with other rubble and breccia and consequently obscure any stratigrapuically discernable one of highly shocked material.

This hypothesis can be applied to explain the presence of the shocked regions in OPZ-18 and in the transition boreholes. Because slumping and collapse become increasing y more important toward the rim uf the crater, it is not unreasonable that $O P Z-18$ is the only borehole to have the shocked material preserved in a stratigraphically discernable unit such as the transition sands. The thickness of the region of highly shocked material does remain fairly constant throughout the three transition boreholes (Figure 4-8), although the region is located at consistently shallower depths as the distance between the borehole and $G Z$ increases. This is a further indication that these regions were it one time related.

Late-stage debris slumping and the influence of sedimentation also have contrit uted to borehole stratigraphy. Post-event slumps from the reef have deposited at least 8 ft of unshocked debris at $0 E T-7$, and possibly as much as 17 ft at OFT-8. The location of the shocked debris samples collected from the floor of the crater suggest that highly shocked ejecta may also be deposited from the reef slope, and the shocked upper layer of OAR-2A coul' be the result of accumulated deposition over many years.

ACKNOWLEDGEMENTS

The authors would like to thank the following people: Lt. Col. Robert Couch, Jr., for his support of this project; Thomas W. Henry for assist.ing with sample acquisitions fron the boreholes; Robert B. Halley fer froyilin; debris samples; Papo Gelle, Mike Long, and Leon Young for prepar the recovery samples for the shock-wave experiments; and Sunney Chan fur ust of the EPR facilities.

Contribution 4473, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.

REFERENCES CITED

Blanchard, S.C., and Chasteen, N.D., 1976, Electron paramagetic resonance spectrum of a sea shell, Mytilus edulis: Journal of Physical Chemistry, v. 80, p. 1362-1367.

Halley, R.R., Major, R.P., Luciwig, K.R., Peterman, Z.L., and Mathews, R.R.. 1986, preliminary analyses of OAK debris samples; 11 p., 7 figs., it tis.: in Folger, D.W., ed., Sea-floor observations and subbuttom seismic characteristies of OAk and KoA craters, Enewetak Atoll, Marshall Islands: l'. S. Geological Survey Bulletin 1578.

Henry, T. W., Wardlaw, B. R., Skipp, B., Major, R.p., and Tracey, J. I., Ir., 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Program Enewetai Atoll, Republic of the Marshall Islands; Part $1:$ Drilling operations and descriptions of boreholes in vicinity of koA and oak craters: U. S. Geological Survey Open-File Report 86-419, $502 \mathrm{p} . .2$ ofigs., 13 tbls.. 3 appendicies.

 p. 373-380.

Low, w. and Zeira, S., 1972, ESR spectra of Kn^{++}in heat-treated araconite: American Mineralogist, v. 57. p. 1115-1124.

Ludwig, K.R., Halley, R.B., Simmons, K.R., and Peterman, Z.E., 1986 , Sr-isotope stratigraphy of disturbed and undisturbed carbonates: $23 \mathrm{~F} . . \mathrm{A}$ figs., 5 tbls.; in Henry. T.W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program Enewetak Atoll, Republic af the Marshall Islands; Part 3: Stratigraphic analysis and other geoloyic and geophysical studies in vicinity of oAt and kod eraters: U.S. Golopical Survey Open-File Report 86-555.

Marsh, S.P. (Ed.), 1980, LASL Shock Hugoniot Data: University of California Press, Berkoley.

Ristver, B.L, 1986, Personal oral communication.

Stoffler, D., 1972, Deformation and transformation of rock-forming minerals by natural and experimental shock processes: Fortsciarift Mineralogie, v. 49 , p. 50-113.

Tyburczy, J.A., and Ahrens, T.J., 1986, Dynamic compression and volatile release of carbonates: Journal of Geophysical Review, v. 91, p. 47304744.

Vizgirda, J. and Ahrens, T. J., 1980, Shock-induced effects in calcite from Cactus Crater: Geochimica Cosmochimica Acta, v. 44, p. 1059-1069.

Wardlaw, B. R., and Henry, T. W., 1986, Geologic interpretation of OAK and KOA craters; 39 p., 21 figs., 3 tbls., 1 appendix; in Pacific Enewetak Atoll Crater Exploration (PEACE) Program Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Ceological Survey Open-File Report 86-555.

TABLE 4-2. Results for Borehole OAR-2A Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Denthe are provided in $b=t h$ fect below scafloor (ft bsf) and feet below sealevel (ft bsl). For explanation of carbonate petrographic names used under DESCRIPTION column in this and succeeding tables, see Henry, Wardlaw, and others (1986, p. 83-97).

DEPTH (ft bsf)	(ft bsl) (GPa)	ERROR (GPa)		
			DESCRIPTION	
0.6	111.1	12.5	2.6	uncemented sand
6.6	117.1	14.5	2.7	uncemented wackestone
12.2	122.7	13.2	4.5	uncemented wackestone
15.8	126.3	14.5	1.0	uncemented wackestone
21.4	131.9	15.0	2.4	uncemented packstone
23.8	134.3	10.9	1.0	uncemented wackestone/packstone
25.8	136.3	3.5	0.6	uncemented packstone below AA BB bndry
32.2	142.7	0.0	1.0	cemented packstone
38.4	148.9	4.4	3.0	poorly-cemented packstone
57.3	167.8	0.0	0.7	cemented packstone
67.1	177.6	0.0	1.2	poorly-cemented wackestone
74.2	184.7	0.0	1.3	uncemented wackestone
81.6	192.1	0.0	1.9	uncemented wackestone
100.3	210.8	0.0	1.6	coral fragment, Astreopora
19.3	239.8	0.0	0.6	cemented wackestone
155.3	265.8	0.0	1.4	spar-replaced coral
177.4	287.9	0.0	0.7	well-cemented mudstone
196.3	306.8	0.0	0.8	cemented wackestone
241.6	352.1	0.0	1.2	uncemented grainstone
280.0	390.5	0.0	0.9	cemented wackestone burrow
315.6	426.1	0.0	1.1	cemented wackestone

TABLE 4-3. Results for Borehole OBZ-4 samples. The pressures and accompanying errors are given in Giga Discal (CPa). Dept!'s are provided in both feet below seafloor (ft bsf) and feet below sealevel (ft bs!).

$\begin{aligned} & \text { CRATER } \\ & \text { ZONE } \end{aligned}$	$\underset{(\mathrm{ft} \mathrm{bsf})}{\text { DEPTH }} \underset{(\mathrm{ft} \mathrm{bsl})}{ }$		$\begin{gathered} \mathrm{P} \\ (\mathrm{GPa}) \end{gathered}$	$\begin{gathered} \text { ERROR } \\ (\mathrm{GPa}) \end{gathered}$	DESCRIPTION
α_{1}	6.7	205.4	0.0	0.9	mud
α_{2}	44.0	242.7	0.0	1.0	wackestone
	75.9	274.6	0.0	2.3	coarse-grain packstone
$\beta_{1 a}$	107.5	306.2	0.0	1.0	cemented
	119.1	317.8	2.3	1.0	cemented packstone
	136.0	334.7	0.0	0.6	cemented packstone
	141.8	340.5	0.0	0.5	cemented
	152.1	350.8	0.0	2.0	cemented
	163.3	362.0	0.0	0.8	cemented
β_{16}	174.8	373.5	0.0	1.2	spar
	190.8	389.5	0.0	0.7	cemented wackestone burrow
	191.0	389.7	2.3	2.6	lithoclast and spar
	193.2	391.9	0.0	0.6	cemented packstone
	196.1	394.8	2.4	4.2	spar-replaced Favia
	199.6	398.3	0.0	1.6	fine grain muddy sand
	199.9	398.6	0.0	0.7	uncemented wackestone
β_{2}	207.7	406.4	0.0	1.8	cemented wackestone burrow
	210.9	409.6	0.0	0.7	cemented packstone burrow
	216.6	415.3	0.0	0.7	recrystallized Tridacna
	217.1	415.8	0.0	1.2	well-cemented tea-brown micrite
	219.4	418.1	0.0	1.1	spar-replaced coral
β_{3}	222.7	421.4	0.0	0.7	cemented packstone
	233.0	431.7	0.0	0.7	uncemented
	265.1	463.8	0.0	1.5	poorly-cemented
	324.0	522.7	0.0	1.1	cemented burrow
γ	397.7	596.4	0.0	3.2	spar-replaced coral

TABLE 4-4. Results for Borehole OCT-5 Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Depths are provided in both feet below seafloor (ft bsf) and feet below sealevel (ft bsl).

$\begin{aligned} & \text { CRATER } \\ & \text { ZONE } \end{aligned}$	$\begin{array}{cc} \text { DEPTH } & \mathrm{P} \\ (\mathrm{ft} \mathrm{bsf})(\mathrm{ft} \mathrm{bsl}) & (\mathrm{GPa}) \end{array}$			ERROR DESCRIPTION (GPa)	
α_{1}	0.9	164.6	0.0	1.0	uncemented grainstone
α_{2}	9.4	173.1	0.0	1.1	coarse-grain packstone
$\beta_{1 a}$	13.0	176.7	0.0	1.0	uncemented packstone
	25.0	188.7	0.0	0.9	fall-in (?)
	36.7	200.4	0.0	1.5	cemented wackestone burrow
	45.0	208.7	4.8	0.6	echinoid spine
	56.7	220.4	0.0	0.8	cemented packstone lithoclast
	63.4	227.1	0.0	2.0	rounded cemented burrow
$\beta_{1 b}$	85.8	249.5	0.0	1.0	cemented packstone
	95.1	258.8	2.6	1.6	Cardium with internal filling
	104.7	268.4	0.0	3.5	spar-replaced Cardium
	115.7	279.4	0.0	0.8	cemented wackestone
	121.6	285.3	13.6	4.2	uncemented med-grained grainstone
	124.3	288.0	13.3	4.7	uncemented coarse-grained grainstc ${ }^{\text {e }}$
	131.9	295.6	14.8	3.6	uncemented grainstone
	135.1	298.8	15.0	8.0	cemented grainstone
	140.6	304.3	12.0	6.3	uncemented Halimeda packstone
	146.2	309.9	15.0	7.8	uncemented Halimeda packstone
	153.4	317.1	0.0	0.6	cemented burrow
	163.6	327.3	0.0	0.6	cemented packstone
	174.1	337.8	0.0	0.8	cemented packstone
γ	192.6	356.3	0.0	1.6	cemented packstone
	204.7	368.4	2.5	0.4	tea-brown cemented rhizolith
	237.0	400.7	0.0	0.8	tea-brown cemented packstone
	300.3	464.0	3.6	3.5	spar-replaced coral

TABLE 4-5. Results for Borehole OET-7 Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Depths are provided in both feet below seafloor (ft bsf) and feet below sealevel (ft bsl).

CRATER ZONE	DEPTH (ft bsf) (ft bsl)	P (GPa)	ERROR (GPa)		
				DESCRIPTION	
α_{2}	8.3	115.2	0.0	0.7	pebble-sized lithoclast
	12.0	118.9	13.0	4.5	uncemented grainstone
	17.8	124.7	15.0	5.5	coral pebble
	21.2	128.1	11.2	5.2	uncemented Halimeda grainstone
	25.9	132.8	15.0	4.8	uncemented packstone-grainstone
	30.7	137.6	12.6	2.7	uncemented packstone-grainstone
	35.3	142.2	13.7	4.3	uncemented packstone-grainstone
	40.6	147.5	13.0	5.0	uncemented fine-grain packstone
	66.7	173.6	6.4	2.1	cemented pebble-sized

TABLE 4-6. Results for Borehole OFT-8 Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Depths are provided in both feet below seafloor (ft bsf) and feet below sealevel (ft bsl).

CRATER ZONE	DEPTH (ft bsf) (ft bsl)		$\begin{gathered} \stackrel{\mathrm{P}}{(\mathrm{GPa})} \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & (\mathrm{GPa}) \end{aligned}$	DESCRIPTION
α_{2}	2.7	133.5	0.0	0.6	tea-brown cemented rhizolith
	6.4	137.2	0.0	0.6	tea-brown cemented lithoclast
$\beta_{1 a}$	13.1	143.9	0.0	0.6	tea-brown cemented packstone
	17.0	147.8	0.0	0.9	cemented packstone
	18.4	149.2	4.2	1.6	cemented matrix within pelecypod
	20.5	151.3	2.0	1.4	partly spar-replaced coral
$\beta_{1 b}$	22.8	153.6	15.0	4.0	uncemented packstone
	26.0	156.8	14.5	3.7	uncemented grainstone
	30.4	161.2	15.0	4.5	uncemented Halimeda
	35.0	165.8	15.0	5.2	uncemented packstone
	39.8	170.6	15.0	5.3	uncemented packstone
	45.5	176.3	14.8	2.5	partly spar-replaced coral
	50.1	180.9	14.7	1.0	uncemented packstone
	52.3	183.1	0.0	1.2	Cardium with cemented matrix
	52.6	183.4	0.0	0.9	partly spar-replaced coral
	54.4	185.2	0.0	0.6	moderately cemented packstone
	57.0	187.8	2.6	0.7	moderately cemented Halimeda
	61.1	191.9	2.5	0.9	poorly-cemented packstone
	64.5	195.3	8.1	0.8	cemented shell rubble
	64.9	195.7	0.0	1.1	spar-replaced Astreopora
	67.0	197.8	0.0	1.0	mudstone filled cemented burrow
γ	73.8	204.6	0.0	0.4	moderately cemented packstone
	81.2	212.0	0.0	0.5	cemented packstone
	93.5	224.3	0.0	1.4	spar-replaced Porites

TABLE 4-7. Results for Borehole OPZ-18 Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Depths are provided in both feet below seafloor (ft bsf) and feet below sealevel (ft bsl).

$\begin{aligned} & \text { CRATER } \\ & \text { ZONE } \end{aligned}$	$\begin{gathered} \text { DEPTH } \\ (\mathrm{ft} \mathrm{bsf)} \text { (} \mathrm{ft} \mathrm{bsl}) \end{gathered}$		$\begin{gathered} \mathrm{P} \\ (\mathrm{GPa}) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & \text { (GPa) } \end{aligned}$	DESCRIPTION
α_{1}	3.6	205.5	0.0	1.4	uncemented mudstone
	7.0	208.9	2.5	2.1	uncemented mudstone
	10.0	210.9	0.0	1.0	uncemented mudstone
	23.3	225.2	0.0	1.4	uncemented mudstone
$\beta_{1 a}$	57.8	259.7	0.0	2.1	uncemented wackestone
	78.2	280.1	0.0	1.4	uncemented grainstone
	95.9	297.8	0.0	1.0	uncemented grainstone
	117.8	319.7	0.0	1.1	uncemented grainstone
	135.3	337.2	0.0	0.9	uncemented grainstone
	155.3	357.2	2.2	0.9	uncemented packstone
β_{16}	166.6	368.5	3.3	1.4	uncemented packstone
β_{2}	182.6	384.5	0.0	0.8	spar-cemented grainstone
	185.0	386.9	2.2	1.3	uncemoried
	198.0	399.9	14.7	2.5	uncemented
	198.6	400.5	15.0	6.3	green Holocene wackestone mud
	207.0	408.9	13.6	5.4	uncemented
β_{3}	210.5	412.4	0.0	1.1	cemented packstone burrow
	214.0	415.9	14.1	2.5	uncemented
	217.0	418.9	0.0	0.9	tea-brown cemented packstone
	217.1	419.0	0.0	0.7	cemented wackestone
	217.5	419.4	0.0	1.4	cemented wackestone burrow
	220.4	422.3	0.0	1.3	coarse-grain spar
	220.5	422.4	0.0	0.8	cemented packstone
	223.5	425.4	0.0	1.2	cemented packstone burrow
	232.9	434.8	0.0	0.9	poorly-cemented packstone
	236.3	438.2	0.0	3.5	partially spar-replaced coral
	245.4	447.3	0.0	0.6	cemented wackestone
	256.9	458.8	0.0	2.0	spar-replaced coral
	273.8	475.7	0.0	0.7	spar-ceinented packstone burrow
	320.5	522.4	0.0	0.7	spar-filled grstropod
γ	400.5	602.4	0.0	0.6	cemented wackestone

TABLE 4-8. Results for OAK Debris Samples. The pressures and accompanying errors are given in Giga Pascal (GPa). Source-depths are converted to feet below sea level from Ludwig and others (1987) and Ristvet (1981).

SAMPLE	RADIUS (ft)	ERROR (ft)	P (GPa)	ERROR (GPa)	SOURCE- DEPTH $(\mathrm{ft} \mathrm{bsi})$
78	1053	13	0.0	0.9	-
125 a	1273	13	0.0	1.8	$200-500$
126	1211	13	13.6	4.2	$105-140$
127	1095	13	3.0	2.0	-0.0
128	1421	13	10.5	8.0	$105-140$
144	1302	13	12.5	2.3	$105-140$
147	1170	30	2.7	0.9	-
155	1299	13	0.0	1.4	-
156	1109	13	0.0	1.1	-
156 b	1109	13	0.0	0.9	-
158	906	13	0.0	1.0	$200-500$
166 B	1109	13	0.0	1.0	$500-700$
167 B	1276	13	0.0	0.6	-
168 A	1155	13	0.0	0.8	-
168 C	1122	13	0.0	1.4	$300-500$
201	2310	16	0.0	1.4	420
$1-1$	1358	157	13.1	1.6	$105-140$
$1-2$	1358	157	15.0	3.4	>140
$1-3$	1358	157	14.6	1.6	$105-140$

CHAPTER 5:

BATHYMETRIC STUDIES OF OAK CRATER

By

John L. Peterson ${ }^{1}$ and Robert W. Henny ${ }^{2}$

INTRODUCTION

This chapter summarizes recent work done by the Air Force Weapons Laboratory (AFWL) and the New Mexico Engineering Research Institute (NMERI) in a first-order assessment of OAK crater bathymetry (Peterson and Henny, 1987). The starting points for this study were the 1958 pre- and postshot bathymetric maps and a new 1984 bathymetric map of the OAK crater (ALICE reef) area of Enewetak Atoll (fig. 5-1).

Objectives and General Procedures

The primary objectives were to characterize and to quantify changes in bathymetry resulting both from the detonation of the OAK device and from subsequent geologic processes. A secondary objective was to provide a set of working maps at a common scale of $1: 2400$ for use both by the PEACE Program and future investigations.

The approach was to prepare contour maps by digitizing and reprocessing each of the three bathymetric basemaps and to construct three isopach maps from the contour-map pairs with the aid of a computer. Areas and volumes were computed by contour interval for each of the isopach maps, and planar and cross-sectional features were examined critically on all six maps.

Terminology

The following terms are used in this Chapter. No attempt is made here to correlate the cratering terms with those used in other portions of this OpenFile Report; this can only be accomplished after synthesis of the various data sets (see statement 8 of the Conclusions).

Circular crater -- crater region consisting of an inner circular component, as defined by the minus $145-\mathrm{ft}$ closed contour in the postshot contour maps, which is enclosed by an outer-circular component as defined by approximately the minus 50 -ft partially closed contour on the same maps.

1 New Mexico Engineering Research Institute, Albuquerque, NM.
2 Air Force Weapons Laboratory, Kirtland Air Force Base, NM.

FIGURE 5-1. .- Map showing OAK crater region and areas included in Holmes and Narver pre- and postshot surveys (HON, 1958a and 1958b) and the U.S. Geological Survey map (USGS, 1984). Area in common to all three basemaps shown in stippled pattern. OAK surface ground zero (SGZ) depicted by " X ", and apparent crater shown by dotted line.

Crater wings -- areas primarily within the reef slope and just beyond the boundary of the circular crater.

Elliptical crater -- crater region consisting of the circular crater and portions of the crater wings as defined by the closed minus 20-ft contour of the isopach maps.

Apparent crater - the final observed crater, composed of the elliptical crater and the encompassing areas of subsidence. Note that the apparent crater boundary extends beyond the mapped areas of this study.

Differential relief (subsequently abbreviated Δ-relief) -- term used in describing the net positive and negative changes in relief of an area with time. This is depicted by isopach maps showing the areas of change of relief derived from comparison of the digitized bathymetric base maps.

Subsidence -- term used to denote an increase in negative Δ-relief without subscribing to any particular mechanism.

Units used in this Chapter are those of the original works; metric for the 1984 bathymetry, engineering for the remainder.

DATA BASE

H\&N Preshot Bathymetric Map

Prior to the OAK nuclear event (29 June 1958), a bathymetric survey of the site (ALICE-reef area) was conducted between 3 and 26 June by Holmes and Narver Engineering Company (H\&N) for the U.S. Atomic Energy Commission (AEC) using standard rod, fathometer, and lead-line surveying techoiques (fig. 5-1). Datum was 0.5 ft below Approximate Mean Low Water Spring (AMLWS). The aurvey, tied into the Eniwetok IVy Grid Coordinate System (H\&N, 1952; U.S. Army, 1970), originally was planned to cover a $6,000-\times 6,000-\mathrm{ft}$ square centered on the OAK surface ground zero (SGZ) and aligned with the oceanward edge of ALICE reef. A baseline approximately 6,000-ft long was established along the highest topographic area of the reef flat (specifically, along a line of sand bars midway on the reef flat) with benchwarks (BMs) placed on 300-ft centers.

A standard rod survey was conducted perpendicular to the baseline at each $B M$ oceanward to near the reef edge and lagoonward to approxi ately the minus 5-ft elevation. Each survey line was continued lagoonward to $3,000 \mathrm{ft}$ beyond SGZ using an LCY vessel equipped with a Raytheon Recoirding Fathometer. Vessel course was controlled by theodolite from each BM and at $300-\mathrm{ft}$ intervals by triangulation from the two terminal baseline BMs. Vertical control was provided at these 300 -ft intervals by a lead-1ine sounding. No cross-tie survey lines were run, and a data gap of a few hundred feet at the lagoonward reef edge resulted because of the inability of the LCH-vessel to obtain fathometer readings in water shallower than 10 to 15 ft ($\mathrm{H} \delta \mathrm{N}, 1958 \mathrm{a}$).

The resultant bathymetric map was hand-contoured with $5-\mathrm{ft}$ intervals (1ft intervals above the minus 5-ft contour) (pl. 5-1). The map did not include the surveyed ocean side of the reef for reasons discussed below.

H\&N Postshot Bathymetric Map

A postshot survey of the OAK crater area, using the same techniques described above, was run between 16 August and 4 September 1958 (D +47 to 67 days). Numerous major problems were encountered in relocating the baseline along the reef flat opposite the crater because it was significantly disturbed (lowered and covered with debris) by the event. Eventually, the terminal BMs were located and the baseline reconstructed. As in the preshot survey, there was a data gap between rod and fathometer surveys that probably was increased by the difficult postshot conditions. These conditions also resulted in little of the reef oceanward of the baseline being resurveyed. Finally, toward the end of the survey, operationally imposed time constraints may have resulted in only every other line being surveyed in the far eastern quadrant of the grid. The resultant map ($H \& N, 1958 \mathrm{~b}$), contoured at a 5 -ft interval. covered the same area as the preshot survey except oceanward of the reef baseline (fig. 5-1), thus giving a common pre-/postshot map area of approximately $6,000 \times 5,000 \mathrm{ft}$ or 30 million sqft ($\mathrm{pl} .5-2$).

Detailed documentation of the $H \& N$ surveys does not exist. Most of the information presented here is from B.L. Ristvet (oral communication, 1986) who has reviewed the original field survey books and maps referenced and has conducted extended discussions with several of the original workers.

USGS 1984 Bathymetric Map

The third basemap used in this study was the bathymetric map of the onk crater and surrounding area prepared from a detailed echo-sounder survey conducted in 1984 ($D+26$ years) by the U.S. Geologic Survey (USGS) during th. Marine Phase of the PEACE Program (USGS, 1984; see Folger, Hampson, and others, 1986, for details of the survey). This survey also was tied into the Eniwetok Ivy Grid; however, datum was Mean Lower Low Water (MLLW), which is $0.18 \mathrm{~m}(0.6 \mathrm{ft})$ below the MLWS established for the earlier $\mathrm{H} \& \mathrm{~N}$ surveys. Most of the echo-sounder data were collected along $25-\mathrm{m}$ - ($82-\mathrm{ft}$-) spaced lines oriented parallel to the reef. Perpendicular tie lines were run on the average at $180-\mathrm{m}$ (590-ft) intervals (fig. 5-2). Thus, the USGS survey had a sampling density greater than four times that of the $H \& N$ surveys. Although smaller boats provided some data at shallower water depths, nearly all data contoured were obtained from the $41-\mathrm{m}$ R/V Egabrag II, which, because of her draft, effectively excluded data above minus 4 m (minus 13 ft). Therefore. although the greatly increased sample density allowed a $1-m$ contorr interval and the survey extended a $1,000 \mathrm{ft}$ both farther out into the lagoon and alone the reef slope (figs. 5-1 and 5-2), no bathymetric data were obtained from

[^9]$$
5-4
$$

FIGURE 5-2. .- Fathometer lines used in the 1984 USGS study (from Folger, Hampson, and others, 1986, fig 2, P. A-3).
near the reef or on the reef flat itself. This reduced the contures ares common to all three maps to approximately 25.5 milliva sqit ar s. fercent the digitized H\&N maps (see fig. 5-1).

data Processing

Digitized Base Contour Maps

All data input and processing were perfurmed using an ircinfo fengrapifo Information System software package (ESRI, 1986). Processing was date o: a Vax $11 / 750$ computer at the Technology Application Center (TAC), Uaiversity os New Mexico.

The data-input process for the two H\&ir maps (pls. 5-1 and 5-2, located i. the map pocket at the end of the Report) was complica! ed because the raps were not on base-stable media. Both were digitized manually from $1: 2400-50 a l$. bluelines using a $36-x 48$-in. Summagraphics Digitizer Tablet operatimi in :tre continuous-stríng sampling mode. All data entered into the system were initialized and recorded in the Eniwetok Ivy Grid Coordinate System.

Digitization of the 1984 USCS basemaf (pl. 5-3) required that a photographic enlargement be made from the uriginal mylar mar (i:600. . Th., enlargement was redrafted to separate contour lines along stet slope wita the study area. This redrafted map was photographically enlarged agair io increase digitizing accuracy of the contours.

Three minor corrections were required to standardize and upditt tice -6 map. The first was a simple conversion of metric contours to fcet. imwir. since no interpolation was applied to the converted metric units, nom-inis:r enginecring-unit contours were generated. The second was a defth correction. This resulted from the comparison of tie water-denth val:ur interpolated from the USGS bathymetric map to those measured at each burabl. site during the Drilling Phase of the PEACE Program. Linear fits io thest data pairs showed that fathometer depths exceeded borehole-site depths by : percent down to minus 120 ft , and that borchole-site depths exceeded fathometer depths by 2 percent below mimus 120 ft (E.L. Tremba, oral communication, 1986). Third, only those portions of the USUS map that overlayed the H\&N map boundaries were digitized.

All digitized basemaps were quality-cuatrol checked by interactive a editing with a 13-i:A. Techtronix 4107A Coln Craphics Terminal. The mans were scale-corrected by the computer to be comp: ihle for overlayine data st:-

Derived Isopact Maps

Three pairs of isopach maps were computer-gencrated by digitally subtrar:ing combinations of the three contour maps. The contour-map combina:ions and descriptions of the resulting three pairs of isopach map: aro listed blow. The first isopach map of each pair presents negative :-relief; the serond map shows the positive t-reliet. All (as plates) are located in the puctet in the back of this Report.

H\&N Postshot - H\&N Preshot Map Pair: Plates 5-4 and 5-5 display distribution of short-term elevation changes (event to $D+67$ days) primarily due to cratering effects.

USGS 1984 - H\&N Preshot Map Pair: Plates 5-6 and 5-7 display distribution of long-term elevation changes (event to $D+26$ years) primarily due to cratering effects and redistribution of crater-produced and natural debris.
USGS 1984 - H\&N Postshot Map Pair: Plates 5-8 and 5-9 display distribution of post-crater long-term elevation changes (from $D+67$ days to $D+26$ years) primarily due to continued subsidence and redistribution of crater-produced and natural debris.

Figure 5-3 illustrates how vertical differences in elevation were calculated within the Arc/Info computer framework. As indicated, a polygon is formed where the two sets of elevation contours, one from each map, intersect. To account for as much of the elevation variance inside the polygon as possible, the mean between the two contours was alwavs used. The vertical difference for each polygon, therefore, is the difference between the means of the two contour sets. In the production of the isopach maps, vertical differences were computed for all polygons formed by the intersection of one map overlaid on another. Typically, five thousand polygons were formed per isopach map. Areas for each polygon were computed in square feet and stored as associated attributes. The vertical-difference files and individual polygons were then sorted into $5-\mathrm{ft}$ increments by a decision rule that grouped polygons with similar vertical differences (i.e.; 0 to $5 \mathrm{ft}, 5$ to 10 ft , etc.) into the same file

To reduce required conputer memory for the graphic displays, a dissolve module was run on the computer map files that combined adjacent polygons having the sane $5-\mathrm{ft}$ increment. Tabular data used to compute areas and volumes for each polygon were saved separately. The final groupings of polygons, representing an increment of 5 ft of positive or negative elevation difference (Δ-relief) between two maps, was then assigned a color and/or symbol for the slides or a shade and/or symbol for the hardcopy maps presented in this Report (pls. 5-4 through 5-9). The jagged appearance of many boundaries on the isopach maps results from the oblique angles formed by intersecting contour sets.

Map Products

Table 5-1 summarizes all maps produced during this study. Each map was produced as a color $35-\mathrm{mm}$ slide, and selected maps were output as hardcopy at a scale of $1: 2400$ using a 36 -in. Versatec Electrostatic Plotter. Because of the large number of contour increments required to fully delineate the crater and disturbed region, the color slides provided the best means to make firstorder asscssments of the maps. Hardcopy maps were necessary for more detailed analysis and publication. The three digitized contour maps are presented as Plates 5-1 through 5-3, and a positive and a negative display for each of the three derived isopach-map pairs are presented as Plates 5-4 thru 5-9, located in the map pocket of this Report.

EXAMPLE OF VERTICAL DIFFERENCE CALCULATION

VOLUME OF POLYGON = AREA OF POLYGON X VERT DIFF

FIGURE 5-3. .- Diagram showing isopach computational grid.

TABLE 5-1. -- Summary of digitized bathymetric map products for oAK crater for PEACE Program. Note that the $10-\mathrm{ft}$ contour increment is depicted on the negative Δ-relief isopach maps (i.e., pls. 5-4, 5-6, and 5-8) for depth increments greater than minus 20 ft .

MAP PRODUCTS

Plus (+) sybol indicates presence of product, minus (-) absence.

On comparing the three bathymetric basemaps discussed above (sct fir 5-1) and knowledge of the extent of the apparent crater of OAK, it is obve: that neither the 1958 H\&N maps nor the 1984 USGS map continue outward fir enough in any direction to fully cover the total area affected by the ont event. This forms a significant limitation to any bathymetric analys

Map Derived Ouantitics

Several problems are associated with obtaining numerical valuts fo: : contour and isopach maps. These are complexly related to the previocs: discussed survey-sampling differences and deficiencies. They indute tho following: (1) the differences in areas mapped between surveys; (2) prol, with positioning of the survey and drilling ships; and (3) the cont ind: redist:ibution of debris with time. The interpretation of the results am: further hampered by the fact that both the pileup of debris from the crat: (positive Δ-relief) and subsidence after the event (negative Δ-relici; wat over nearly the entire map area yet are inseparable solely from baturnour data alone. However, even cursory examination of the maps shows forrl: recognizable Δ-relief patterns that are easily followed from map to :! , : whtn time). Therefore, in general, the larger the area over which measurements are averaged, the higher the confidence of those viducs, bolu: are presented selected point (depths), line (cross sections), ala ar, ar, and volumes) estimates.

Water Depths. - Table 5-2 compares water depths at each borvion during the PEACE Program that are located within the map artas. depths are those measured in the field at time of drilling are rew. USGS (Henry, Wardlaw, and others, 1986a), whereas bathmetric mator d. . the arithmetic mean of the bounding contours (3.3-ft contour intomai although the precision of the former are probably to within 0.1 f . : : . . could be in error by up to 1.7 ft . Additional errors probably occur dive sorehols location uncertainties ($\pm 10 \mathrm{ft}$), which could easily talsia: : : several vertical feet in areas of rough postshot terrain.

Because the USGS bathymetry and drilling programs were complried abi..: year of each other, the differences in water depths provide a measure at inaccuracies inherent on the USGS contour map. Fourteen of the boreholes exhibit differences ranging from plus 2.9 to minus 1.7 ft , with a mean of 0.4 ft and an absolute average of 1.6 ft . The other four boreholes $0 \mathrm{OT}-\mathrm{y}$ ODT-6, OLT-14, and OUT-24) exhibit differences exceeding 4 ft irance t:ow 4.8 to minus 5.8 ft), have a mean difference of 1.9 ft and an absolite $:$: : of 4.9 ft . For OLT-14, there was a problem in locating the position ot the borehole (see Henry, Wardlaw, and others, 1986b, p. 390-391). For the othry three, no trends are obvious nor is the reason for the larger differences known. These differences do illustrate the problem in relying soleiy an in bathymetric data to obtain point estimates.

Another impor:ant observation is that postshot water depths for boriole located at roughly rimal distances, but on opposite sides of SGZ, are sinila:

TABLE 5-2. .- Summary of water depths and vertical differences at PEACE Program borehole locations. Water depths are compared between measured values at borehole sites in 1985 (Henry, Wardlaw, and others, 1986, p. 60, tbl. 10) and interpolated values from Holmes and Narver preshot and postshot maps (H\&N, 1958a, 1958b) and U.S. Geological Survey postshot map (USGS, 1984), compiled from echo-sounding data from Marine Phase of PEACE Program. All depths given in ft below sea level (bsl); vertical differences are given in ft. Note that the location of borehole OLT-14 is questionable (see Henry, Wardlaw, and others, 1986, p. 390-391).

WATER DEPTHS AND VERTICAL DIFFERENCES

BOREHOLE NUMBER		USGS	USGS			H\&N
	H\&N	DRILL	MAP	USGS	H\&N	POSTSHOT VS
	PRESHOT	LOG	DEPTH*	1984-85	POSTSHOT	USGS 1984
	DEPTH*	$\begin{aligned} & \text { DEPTH } k t \\ & (1985) \end{aligned}$	(1984)	DIFF.	DEPTH*	DIfF

PARALLEL TO REEF

1	ORT-20	67.5	101.4	102	-0.9	87.5	-14.8
2	OQT-19	47.5	117.5	115	2.2	107.5	-7.8
3	OTG-23	47.5	164.0	166	-1.6	152.5	-13.1
4	OPZ-18	47.5	201.9	199	2.8	197.5	-1.6
5	OBZ-4	12.5	198.7	199	-0.4	197.5	-1.6
6	OCT-5	17.5	163.7	159	4.8	142.5	-16.4
7	OGT-9	17.5	134.8	136	-0.7	122.5	-13.0
8	OFT-8	17.5	130.8	129	2.0	117.5	-11.3
9	OET-7	17.5	106.9	106	1.4	92.5	-13.0
10	ODT-6	17.5	90.1	86	4.0	72.5	-13.6

PERPENDICULAR TO REEF

1	OUT-24	1.5	147.0	142	4.8	127.5	-14.7
2	OBZ-4	12.5	198.7	199	0.4	197.5	-1.6
3	OPZ-18	47.5	201.9	199	2.8	197.5	-1.6
4	OKT-13	102.5	164.7	166	-0.9	152.5	-13.1
5	OIT-11	122.5	155.0	152	-2.8	147.5	-4.7
6	OHT-10	122.5	137.3	139	-1.5	122.5	-16.3
7	OJT-12	112.5	143.8	146	-1.7	132.5	-13.0
8	ONT-16	132.5	135.1	132	2.9	122.5	-9.7
9	OMT-15	142.5	110.9	112	-1.1	127.5	15.5
10	OLT -14	127.5	139.7	146	-5.8	132.5	-13.0

regardless of differences in the preshot water depths. For example. at roughly 900 ft from SGZ , preshot differences in water depths between OUT-24 ... the reefward side and OKT-13 on the lagoonward side are 101 ft ; postshot differences are only 18 ft . At $1,800 \mathrm{ft}$ from SGZ, ODT-6 and ORT-20 differ 1. 50 ft preshot compared to only 11 ft postshot. Another pair (OQT-19 and OLT. at $1,400 \mathrm{ft}$) exhibit preshot and postshot differences of 30 and 10 ft , respectively. These data suggest that the net cratering effects in both d:"coral" media and water were about the same. .

Except for OMT-15, which lies along the lagoon radial (southwest transect) of a large debris tongue, all 1984 USGS water depths at borehole locations exceed the $1958 \mathrm{H} \& \mathrm{~N}$ postshot depths by 2 to 16 ft (see tbl. 5-2) Although no other trends are obvious, these values represent the minimunt int: downward displacement (i.e., downward movement of the surface plus any addition of debris that may have occurred between surveys). At OMT-15, the: is a 15 -ft decrease in water depth which, if valid, can only be explained b late-time addition of debris possibly from a neighboring high.

Cross Sections. .- Figure $5-4$ presents two composite cross sections through the OAK SGZ parallel to (southwest to northeasl) and perpendicula: (northwest to southeast) the trend of the reef. Each profile of the compusi: was prepared by manually digitizing the respective contour maps. Note fla: vertical exaggeration of $10: 1$ results in slopes accordingly out of proportion. The $H \& N$ preshot profiles illustrate that the OAK device was placed above a sharp break in slope of the lagoonward edge of the reef. Comparisons of the $H \& N$ pre- and postshot profiles show that a large part at the lagoon side of the crater was originally water, and, therefore, most n : the ejecta from that side of the crater was water. Within the circular crater, the flat floor is offset lagoonward from $S G Z$ by 300 ft , and sets in terraces on the reefward side of the crater are evident.

The $H \& N$ postshot profile, perpendicular to the reef, crosses the mos: complex portion of the map near the apex of a large debris mass rising ove $f t$ above the preshot level near the $1,900-\mathrm{ft}$ mark. A slightly smaller debri: mass, 500 ft further out, is some 30 ft above the preshot level and appear : have built up against and engulfed a preshot coral knoll. The cross seci:n parallel to the reef shows the break at the boundary of the circular crat: and the crater wings. Several distinct terraces within the crater are visible.

Comparisons of the 1984 USGS and 1958 H\&N profiles show that the enire region subsided. Maximum downward displacement is concentrated in the mid. :. lower depths of the circular crater and out into the lagoon. Significanily less downward displacement has occurred on the wings of the crater, whereas on the reefward side, material has moved up and in toward SGZ. In assessirs these profiles it is important to consider that redistribution of sedimonts probably resulted in material moving out of and into the plane of the cross sections.

Areas and Volumes. - Tabulated areas and volumes for each of the thref computed a opach maps are given in Tables 5-3 thru 5-5, located at the end of

FIGURE 5-4. - Cross sections through surface ground zero (SGZ) of DAK crater.
the Chapter ${ }^{1}$, and summarized in Table 5-6. Volumes were computed in 5-ft increments by multiplying the vertical differences for each polygon by their respective areas and then totaling all of the volumes. Dimensions given are for each map area which, as discussed previously, differ somewhat between maps. The data demonstrate clearly that the entire area subsided an average of 23 ft by $\mathrm{D}+67$ days and another 12 ft during the next 26 years. As the surface of the crater and surrounding areas dropped, so did the coverage of positive relief, from 27 percent of the area at $D+67$ days to only 14 percent of the area after 26 years.

MAP GHARACTERISTICS

The following is a first-order assessment of each contour and isopach map in terms of topographic patterns and characteristics. Because it is difficul: to accurately quantify many of the features discussed, dimensions stated are only approximate.

K\&N Preshot Contour Map

The northwest one-third (reefward side) of the $1958 \mathrm{H} \& \mathrm{~N}$ preshot map (pl 5-1) shows the lagoonward side of the reef flat with sand bars along the upper margin. At the wave-break line, there is a well-defined, nearly linear scarp that is distinctly sharper north of SGZ. Approximately 400 ft refward from SGZ, the scarp is cut by a $400 \times 400-\mathrm{ft}$ embayment. Beyond the scarp, a genti: sloping shelf, dipping 1.5 degrees into the lagoon, ranges in width from 1.000 ft south of SGZ to less than 500 ft north of SGZ .

The southeast two-thirds of the $H \& N$ map (lagoonward side) comprises tio reef slope and the lagoon floor, which contains numerous patch reefs. The reef slope, steepest (up to 15 degrees) north and shallowest (up to 5 degrtes) south of SGZ, extends $1,000 \mathrm{ft}$ beyond SGZ . Lagoonward from the foot of the reef slope, the lagoon floor slopes very gently (1 degree) toward the lagoon interior. Just south of SGZ is a $75-\mathrm{ft}$ deep, $200-\mathrm{ft}$ wide ravine with a steep. 25 -degree headwall. This ravine flattens and widens lagoonward over a distance of about $1,500 \mathrm{ft}$ but retains its identity to at least $2,500 \mathrm{it}$ as a clear path extending through the patch reefs. On the lagoon floor, numerous patch reefs, roughly aligned in two lineaments parallel to the reef at 1,700 and $2,600 \mathrm{ft}$ lagoonward of SGZ , rise as high as 40 ft above the bottom and range up to several hundred feet in diameter. Their elliptical to triangalar shapes on the map are due to the $300-\mathrm{ft} H \& N$-survey spacing. Actually, they are in fact smaller and nearly circular as shown in the 1984 USGS map with is nearly fourfold increase in sampling density.

1 Tables 5-3 through 5-5, summarizing the data calculated from the computer analysis of the pairs of derivative maps, and Table 5-6, presenting the grand summary of Tables 5-3 through 5-5, are all located at the end of the current Chapter.

Inspection of the $H \& N$ Preshot Contour Map (pl. 5-1) shows that the device was placed at a position along the Alice Reef marked by a large embayment. In addition, SGZ was located near the beginning of the lagoonward edge of the reef slope and close to the head of the large ravine that cuts into that slope. Although water depth, interpolated from the preshot map for the OAK SGZ, was almost 13 ft at shot time, according to B.L. Ristvet (oral communication, 1986), it was closer to 14 ft due to a $1.4-\mathrm{ft}$ tide.

H\&N Postshot Contour Map

The most striking feature of the OAK crater is its symmetry with respect to the geometric center (GC), which is offset nearly 300 ft lagoonward of SGZ. This is shown clearly in the $1958 \mathrm{H} \& \mathrm{~N}$ postshot map (pl . 5-2). All contours from the bottom of the crater up to the minus $145-\mathrm{ft}$ contour, averaging 850 ft from the GC, are closed. The minus $125-\mathrm{ft}$ contour, averaging $1,200 \mathrm{ft}$ from the GC, closes except for a 45 -degree sector on the lagoonward side. Furthermore, on the same side at roughly $1,500 \mathrm{ft}$ from GC, the minus 100 -ft contour closes to within 120 degrees. Slopes within the crater are much steeper on the reef side with distinct terraces and slump features evident throughout. Contours in the preshot embayment area are noticeably more distorted than at other locations along the reef.

A second major feature shown by the $H \& N$ postshot map is the extension of the debris blanket into the lagoon. This blanket is dominated by a $3,000-\mathrm{ft}-$ long tongue of material, $1,500 \mathrm{ft}$ wide at the crater edge and 55 ft thick at the highest point. Actually, the maximum thickness must be at least 75 ft due to an estimated subsidence in that region of at least 20 ft . The debris tongue is cut radially near the middle by a $400-\mathrm{ft}$ wide channel closely aligned with the preshot ravine. This channel, breaching the crater rim at $1,200 \mathrm{ft}$ from SGZ, passes between two topographic highs at $1,500 \mathrm{ft}$ and bifurcates against another topographic high at $2,700 \mathrm{ft}$ from SGZ.

A third major characteristic is the difference in the preshot to postshot topography in the area of the crater wings along the reef slope. North of SGZ the postshot contours virtually overlay the preshot contours, whereas south of SGZ, the contours have changed considerably and most of the reef slope clearly has been modified by the event.

Many of the patch reefs surveyed preshot do not appear on the $H \& N$ postshot map. Some were obviously destroyed, others buried by debris; however, many were probably not mapped in the $H \& N$ surveys. Resolution of this issue will require a better understanding of the exact survey lines used by H\&N. The 1984 USGS Map (pl. 5-3), with its greater sampling density, adds important information regarding these features and probably could be used as a base to rectify the $H \& N$ maps.

USGS 1984 Contour Map

The 1984 USGS map (pl. 5-3) depicts many of the same features shown in the $1958 \mathrm{H} \& \mathrm{~N}$ postshot map (pl. 5-2), except that, with its fourfold increase in sampling density, features such as the coral patch reefs, crater terraces, and slump regions are much more sharply defined. After 26 years, the crater
is larger but retains its basic circular appearance; the crater wings have broadened, especially to the southwest. The inner component of the circular crater, still defined by the minus $145-\mathrm{ft}$ contour, has expanded in radius about the GC from 850 to $1,050 \mathrm{ft}$. Contours are noticeably smoother, and slopes within the crater are steeper, particularly along the reef where at least two distinct scarps are now present. The debris tongue continues to dominate the lagoonward side, and the preshot ravine is still clearly visible as a remnant feature. Folger, Hampson, and others (1986) discuss the features of the 1984 USGS bathymetric map in terms of "physiographic provinces" and compare them to observations from the submersible, scuba-diving, and sidescansonar operations.

H\&N Postshot - H\&N Preshot Isopach Map

This pair of isopach maps (pls. 5-4 and 5-5) documents the areal distribution of Δ-relief (the net changes in negative and positive elevations), referenced to the preshot datum, resulting from $O A K$ and extending to 67 days after the event.

The most striking feature of the map pair is the nature and distribution of the Δ-relief. Areas of positive Δ-relief, ranging up to 55 ft , cover only 27 percent of the total map of which Δ-relief greater than 5 ft (16 percent of the total map) is restricted to areas lagoonward of the crater. Negitive \therefore relief dominates all other areas and covers 63 percent of the nap, approximately one-half of that is outside the elliptical ciatsr. The remaining 10 percent of the area shows no change in Δ-relief.

Although it is likely that at least some debris from the crater extend; over nearly all of the area covered by the $H \& N$ postshot map, most of the reff and large regions on the crater wings and beyond are at a lower elevation thar preshot. Therefore, this isopach map grossly understates the amouni of debris present because of the unknown amount of event-related subsidence which is very difficult to isolate and measure. In fact, the total amount of debris is further understated because a substantial amount of the dobris mass, particularly on the lagoon side, was water. Also, a small amount of ejecti impacted beyond the map area. And finally, an unknown amount of the debris mass may have been transported beyond the confines of the map.

A first-cut estimate of the downward displacement can be obtained by viewing the upper corners of the map (north and west of SGZ) that contain the reef flat. Most distant from SGZ, at $3,000 \mathrm{ft}$ from SGZ , there are areas with a maximum of 5 ft of positive Δ-relief. In contrast at $2,000 \mathrm{ft}$ along the same radials, but still beyond the elliptical crater, there are regions of 5 to 10 ft of negative Δ-relief. Because the positive Δ-relief is probably due to debris, and because debris thickness should increase toward the crater, it is concluded that at least 10 to 15 ft of negative Δ-relief is present at the $2,000 \mathrm{ft}$ range. High-explosive craters in wet media typically display such downwardly displaced profiles, although large azimuthal variations often exist.

A second striking feature of this isopach pair is the elliptically shaped crater, defined by the minus $20-\mathrm{ft}$ contour, which is in sharp contrast to the circular crater of the postshot contour maps (see pls. 5-2 and 5-3). This
elliptical crater, composed of the inner and outer components of the circular crater and the crater wings, has a long axis ($4,000 \mathrm{ft}$) parallel to the reef and a short axis ($2,800 \mathrm{ft}$) perpendicular to the reef.

Difference contours from the deepest point on the crater floor up to the minus $140-\mathrm{ft}$ contour ($400-\mathrm{ft}$ radius) are roughly circular and symmetric about the GC of the crater. Above and up to the minus $110-\mathrm{ft}$ contour ($1,000-\mathrm{ft}$ radius), the contour lines are roughly circular, but about the SGZ. Above, the largest rates of increasing difference (narrowest contour bands) occur between the minus 60 - and minus $20-\mathrm{ft}$ contours and probably represent a series of scarps surrounding the elliptical crater.

The elliptical shape of the crater is primarily due to the crater wings and to the sloping lagoon floor. This suggests that the crater wings, although controlled by the reef structure, are related to the circular crater. The elliptical crater is notably broken along the southeast by a remnant feature of the ravine and its headwall, previously described for the $1958 \mathrm{H} \& \mathrm{~N}$ preshot map. Finally, beyond the crater wings and predominately to the southwest, the en echelon pattern of difference contours suggests successive slumping parallel to the reef and well out into the lagoon.

USGS 1984 - H\&N Preshot Isopach Map

This isopach map set (pls. 5-6 and 5-7) documents the distribution of net positive and negative Δ-relief from the preshot datum to 26 years after the detonation of the OAK device. Generally, the same basic difference patterns and features are displayed as at 67 days (previously discussed isopach map), but with some notable changes.

First, the entire area has subsided further so that now 86 percent of the map area exhibits a negative Δ-relief and only 14 percent exhibits a positive Δ-relief. The reef flat in the upper right corner of the map (north of SGZ) indicates an additional 5 to 10 ft of subsidence since the detonation of $O A K$. At the bottom of the map, $3,300 \mathrm{ft}$ southeast of SGZ , an additional drop of 5 to 10 ft has occurred since the event. The previous maximum high of 55 ft on the ejecta tongue is now only 40 ft , indicating subsidence and possibly some redistribution of debris. Note that the new small circular highs in the bottom right of the map (east of SGZ) are probably artifacts of the higher density sampling by the USGS and were not detected by the earlier $H \& N$ surveys.

Second, the elliptical crater, as defined by the minus $20-\mathrm{ft}$ contour, has expanded parallel to the reef in the crater wings and into the lagoon, but has contracted reefward. The net result is an increase of 500 ft in the long axis to $4,500 \mathrm{ft}$, but only an increase in the short axis of 100 ft to $2,900 \mathrm{ft}$.

Third, the difference contours near the crater floor have changed from circular to elliptical. However, the contours above that level (i.e., the minus 160- to minus $100-\mathrm{ft}$ contours) have remained circular, expanded considerably, and shifted toward the reef.

This pair of isopach maps (pls. 5-8 and 5-9) shows the negative and positive changes in Δ-relief relative to the $H \& N$ postshot datum (47 to 67 days after the event) caused by redistribution of debris and long-term subsidence. In general, the entire map area is displaced downward increasing from 5 ft at the map boundaries ($3,500 \mathrm{ft}$ from SGZ) to 20 ft over much of the lagoon to 30 ft within the crater. Areas of negative Δ-relief now constitute 89 percent of the map area.

Areas of maximum negative Δ-relief are associated with deeper portions of the crater, the debris tongue, and isolated topographic highs in the lagoon. The concentric patterns of increasing negative Δ-relief vary from 5 to 10 ft at the edge of the circular crater ($1,700 \mathrm{ft}$ from SGZ) up to 25 to 30 ft just above the crater floor. This indicates that the circular crater has continued to subside with time. The multiple, repeating circumferential patterns in the elliptical-crater walls and along portions of the reef probably represent en echelon slumping of debris.

Beyond the elliptical crater, the debris tongue exhibits 5 to 15 ft greater negative Δ-relief compared with surrounding areas, even at its maximum extent of $3,300 \mathrm{ft}$, where a negative change of 20 to 25 ft is measured. Localized areas of 30 to 45 ft of negative Δ-relief occur in the lagoon associated with topographic highs. These areas are complex with converging zones of negative and positive Λ-relief probably representing slumping and redistribution of debris.

Areas of positive Δ-relief are associated with the flanks of several topographic highs, suggesting (as mentioned above) movement of debris downslope. The small positive Δ-relief on the floor of the crater is due to infillin and probably masks a 20-ft plus Δ-relief. The positive lineaments along the reef scarp probably reflect movement of reef blocks and washback of debris into the crater. The narrow positive lineaments bordering the extended crater probably represent movement of debris downslope along the crater rim scarps. The positive circular highs on the middle and lower right side of the map are probably artifacts of the previously mentioned bathymetry sampling density. The positive highs in the lower left portion of the map (south of SGZ) are unexplained.

CONCLUSIONS

Based primarily on analysis of the OAK bathymetric data presented herein, the following conclusions are reached:

1. The OAK event produced a circular explosion-type crater with debris distributed outward in all directions, probably continuously, to at least $3,000 \mathrm{ft}$ from SGZ.
2. The circular crater, consisting of an inner circular component on the order of 850 ft in radius, probably formed initially by ejection and outward flow of material. This expanded outward by crater-wall collapse, slumping, and inflow of material to form an outer circular component. By $D+67$ days, and probably much sooner, the circular crater had grown to a radius of $1,700 \mathrm{ft}$ and a deprh of 200 ft .

$$
5-18
$$

3. A very large tongue of debris, $1,500 \mathrm{ft}$ wide at the crater edge and tapering to 500 ft at $3,000 \mathrm{ft}$ from SGZ , was deposited outward onto the lagoon floor. This is cut by a 400 -ft-wide channel that closely tracks the preshot ravine.
4. Also by $D+67$ days, the entire area out to at least $3,000 \mathrm{ft}$ from SGZ had subsided 5 to 10 ft with crater wings forming and expanding along the reef slope on either side of the circular crater. This resulted in an elliptical crater $4,000 \mathrm{ft}$ parallel to and $2,800 \mathrm{ft}$ perpendicular to the reef.
5. Over the next 26 years, the entire area continued to subside. This subsidence ranged from a minimum of 5 to 10 ft at $3,000 \mathrm{ft}$ from SGZ up to 10 to 20 ft just outside the elliptical crater. Even greater subsidence occurred within the circular crater, particularly the lower portions, and out on the debris tongue. The length of the elliptical crater increased 500 ft (from 4,000 to $4,500 \mathrm{ft}$), but the width increased only 100 ft (from 2,800 to $2,900 \mathrm{ft}$).
6. Also, over this 26-year period, debris within the crater, on the debris tongue, and along the crater walls continued to slump. Elsewhere debris was selectively redistributed.
7. In retrospect, preshot topographic features (reef, embayment, ravine, and reef/lagoon slope) had a significant influence on the final size and shape of the crater and on the initial distribution and subsequent reworking of debris.
8. Finally, it is believed that a synthesis of the bathymetric data with the drilling, seismic, side-scan sonar, and gravity data will lead to a significant improvement in the quantification of the postshot topography which, in turn, should provide substantial improvement in the understanding of the cratering mechanics of the OAK event.

ACKNOWLEDGEMENTS

We are indebted to Gar Clark and his staff at the Technology Application Center (TAC), University of New Mexico, for their excellent and painstaking work in digitizing the basemaps and producing the contour and isopach maps. We also greatly appreciate the extended discussions with B.L. Ristvet of SCubed on the many details of the $1958 \mathrm{H} \& \mathrm{~N}$ surveying and for providing us the last "originals" of those maps.

This effort was jointly funded by the Defense Nuclear Agency (DNA). Project Officer for DNA was Lt. Col. Robert Couch; the Air Force Systems Command Project Officer was Maj. William Clark.

Environmental Systems Research Institute (ESRI), 1986. ARC/LAFO Usis And v. 3.2, April 1986.

Folger, D.W., Hampson, J.C., Robb, J.M., Woellner, R.A., Fostar D.S.. it: Tavares, L.A., 1986, Bathymetry of OAK and KOA craters; 3.1 . . 2 appendices; in Folger, D.W., editor, Sea-floor observations dat subbottom seismic characteristics of OAK and KOA craters. Entrie.... Marshall Islands: U.S. Geological Survey Bulletiri 16,75

Henry, T.W., and Wardlaw, B.R., editors, 1986, Pacific Enewetrik Ato: : $:$: Exploration (PEACE) Progran, Enewetak Atoll, Republic of the Marshai. Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: li.s. eo.erir \therefore Survey Open-File Report $86-555,486$ p., 92 figs.. 00 tbls.. 3 , f

Henry, T.W., Wardlaw, B.R., Skipp, B.A., Major, R P., and Tracey J.I. ': 1986, Pacific Enewetak Atoll Crater Exploration (PEACE) Progran. Atoll. Republic of the Marshall islands: Part 1: Derill: descriptions of boreholes in vicinity of koA and mik iraio..: $\quad . \quad \mathrm{s}$
 tbls., 3 appendices

Holmes and Narver Engineering Co. (H\&N), 1952, Comploilon Rupori Etem : Proving Ground Facilities, Operation IVY; v. 1 , bocir 1. p. ari : 2-25, Los Angeles, CA, 31 December 1952 Unclassified. Surve conducted for U.S. Atomic Energy Comission AFC).

Holmes and Narver Engineering Co. (H\&N), 1958 : UAK prosho: apocripa anis hydrography map: Alice Reef Station \#25: Field Book: : \quad. \quad f June 9 through 26. 1958)], Map Sheets jis 03-00i-6ij ionmilas. s. 13, 1958;. Survey conducted for L.S. Atomic Energy lom:s in
 hydrography map; Alice Reef Station $\# 25$: Field Bock $=2, \ldots$. August 14 thru September 4, 1958], Map Sheets J/S 03-061-1: : October 1, 1958!. Survey conducted for U.S A:onic Ener, : (AEC).

Peterson, J.L., and Hemy, R.W. . 1987, Bathymetric stadits at ib, nuclear cratering event, Pacific Proving Crounds: Now Moxin : Research Institute Task Repori WA6-16, Septomber 198?, Abag. : : . . .
U.S. Army, 1970, Eniwetok Trig List: U.S. Army Topographiv Cow, in Belvoir, VA.
U.S. Geological Survey (USGS), 1984 [1985], Bathymetric Map of the wit: \because : Area, Enewetak Atoll [surveyed June 17 thru September 20, 19b. wini.: September 1985j. [This is a working-scale map at 1 ; 6000 of the mat published as fig. 7. p. A8, of Folger, Hampson, and othe:s. lag. Survey conducted for Defense Nuclear Agency (DNA)

TABLE 5-3. -- Sumary of areas and volumes calculated from derivative map pair formed by combination of llolmes and Narver (H\&N) preshot bathyetric/topographic map (pl. 5-1) and H\& postahot isopach map (pl. 5-2). Corresponding maps are plates $5-4$ for the negative $\Delta-r e l i e f$ and plate 5-5 for the positive Δ-relief, respectively.
E. N PRESHOT VS HEN POSTSHOT -- VOLUAES AND AREAS

$\Delta \text {-RELIEF }$ categury	CONTOUR interval (ft)	$\begin{aligned} & \text { AKEA } \\ & (\mathrm{sqft}) \end{aligned}$	TOTAL map area (Z)	VOLIME (cu (t)
	50-55	1,348	0.004	14, 160
	45-50	4,176	0.01	208,796
	40-45	6,201	0.02	279,145
Positive	15-40	21.735	0.07	869,341
	111-35	122,071	0.4	4, ? 12.440
atrelief	25-30	299,352	1.0	6, 480,961
	20-25	317,622	1.1	7,940,5:1
	15-20	127,211	2.4	14,545,419
	10-15	1,265,755	4.2	18,986,328
	5-10	2,118,996	7.0	21,181,252
	$>0-5$	3,134, 338	10.4	13,788,992
Total Pos	ve Δ-relief	8,018,865	26.6	91,132,994
Total zero (0) a-relief		3,223,946	10.6	0
>0-5		4,597,830	15.2	19,166,933
5-10		3,090,431	10.2	29,015,023
10-15		1,856,139	6.1	21,031,099
15-20		1,133,271	3.8	22,231,414
20-29		100,073	2.3	17,178,463
25-30		454,545	1.5	13,423,574
30-35		375,716	1.2	12,903,993
35-40		330,047	1.1	13,017,456
40-45		216.989	0.9	12,300,535
45-50		301,840	1.0	15,220,08?
su-ss		256,148	(.0)	15,4.5,540
5,9-60		244,104	1.0	11,531,655
60-65		254,941	0.8	16,485,412
ns-7u		258,4,11	0.9	18,033,470
70-75		2:4, 372	$1) .9$	19,743,284
75-80		244, 116	1.8	19,493,811
80-85		274.512	0.9	23,247.576
85-90		269,127	0.9	24,166,194
90-45		244,963	1.0	27.171,543
45-100		310.88)	1.1	33,472,717
Negative	100-105	241,024	1.0	30,298,728
	105-110	340,810	1.1	11,791.053
brepief	110-115	355,519	1.2	$40,539,127$
	115-120	3211.563	1.1	38,067.452
	120-125	191.098	1.3	48,674,121
	125-130	401,628	1.3	$51,943,142$
	130-13	3.4,904	1.1	43,586,613
	135-140	230,240	${ }^{1} .8$	31,933, 9178
	140-145	76,917	1.3	11,138,911
	145-150	01.249	6.2	9,487, 313
	150-153	63,632	0.2	9,862,944
	155-160	3).269	0.2	8,843,1002
	160-65	41,603	0.1	6,864, 133
	169-170	12,152	0.1	5,46:,470
	170-175	- 8,008	0.1	4,901,4613
	175-180	22,978	0.1	4.135.905
	180-185	-1,807	0.1	4,404,134
	185-190	7.449	0.03	1,415,289
Tolal Negative n-relief		18,451,568	62.8	784,912,178

TABLE 5-4. -- Sumary of areas and volumes calculated from derivative map pair formed by combination of U.S. Geological Survey (USCS, 1984) postohot isopach map (pl. 5-3) and lohmes and Narver (14N N preshot map (pl. 5-1). Curresponding figures are plates $5-6$ for the negative orrelitf and flata 5-7 for the positive Δ-relief, respectively

IE N PRESHOT VG USGS POSTSHOT -- AREAS AND VOLUMES

\triangle-RELIEF catecury	contour INTERVAL (ft)	AREA $(\operatorname{sqf} f)$	tutal map area (i)	volume (cuf f)
	35-40	3,874	0.01	142.448
	30-35	45,563	0.20	1,431.653
Positive	25-30	83.634	0.30	2,269,071
	20-25	222,615	0.9	5,202,429
Δ-relief	15-20	203,841	0.8	3,683,457
	10-15	399,046	1.6	4,865,145
	S-10	897,017	3.3	6,635,921
	0-5	1,678,303	6.5	3,792,121
Total positive s-relifef		3,533,893	13.7	28,022,645
	0-5	2,933,886	11.4	9,388,814
	5-10	3,826,724	15.0	30,180,15?
	10-15	3,220,256	12.5	40.631 .938
	15-20	2,359,641	9.2	40,522,228
	20-25	1.191.911	4.5	26,488, 150
	25-30	676.404	2.6	18, 51, 10
	30-35	450,400	1.6	
	35-40	371,889	1.5	14, 18....at
	40-4.5	324,188	1.1	13,924,604
	45-50	312,580	1.2	14,478, \% 3
	50-55	302,003	1.2	15,845, CH2
	55-60	289.656	1.1	10,678,409
	60-65	275,562	1.1	17,264,549
	65-70	253.538	1.0	17,101,740
	70-75	245,220	1.0	1:, 7, 019
	75-80	223,971	0.9	17,306, 74.
	8u-85	252,353	1.0	20,796, 354
	85-90	288,105	1.1	25,364,423
	90-95	286,225	1.1	20.602,615
Negative	95-100	270,795	1.1	20.505, 355
	100-105	317,440	1.2	J., 9H1, M, \%
Δ-relief	105-110	338,915	1.3	3 $5,342,654$
	110-115	292,983	1.1	3).96?, 4n*
	1: $5-120$	256.188	1.0	30, 01 i, ${ }^{\text {a }}$
	120-123	339,398	1.3	$41,854.29$
	12s-130	304.752	1.2	14,182, 244
	1010-135	329,502	1.3	4, 1, 734.143
	135-140	274,305	1.9	17.411.: 194
	140-145	285,822	1.1	4. .586,449
	145-150	381.055	1.5	$5 \%, 1154.6$
	150-155	244,093	1.0	17,28?.4.'
	155-160	127.398	0.5	20, 112, ${ }^{\text {a }}$
	160-165	70,272	0.3	11,493,10,
	165-170	67,390	0.3	11,340,488
	170-175	54,923	0.2	9,519,263
	175-180	48,496	10.2	8,659,313
	180-185	5R,401	0.2	10,717,498
	185-190	41,979	0.2	1,865,418
Total Negative Δ-relief		22,197,319	86.3	935.058,0112

TABLE 5-5. -. Sumary of areas and volumes calculated from derivative map pali formed by combination of U.S. Geological Survey postahot map (USGS, 1984) and Holmes and Narver ($H \& N$) postshot isopach map. Corresponding figures are Plates 5-8 for the negative Δ-relief and Plate 5-9 for the positive Δ-relief, respectively.
h\&N PRESHOT VS USGS POSTSHOT -- AREAS AND VOLUKES

	CONTOUR		TOTAL	
\triangle-RELIEF CATEGORY	INTERVAL (ft)	AREA $(s q f t)$	MAP AREA (8)	VOLUME (cuft)

	$0-5$	$4,053,640$	15.8	$11,485,025$
	$5-10$	$6,555,275$	25.5	$51,868,217$
	$10-15$	$7,707,037$	30.0	$97,957,905$
Negative	$15-20$	$3,372,562$	13.1	$59,101,780$
Δ relief	$20-25$	857,090	3.3	$19,181,484$
	$25-30$	178,053	0.7	$4,838,022$
	$30-35$	28,472	0.1	921,606
	$35-40$	6,822	0.03	257,019
	$40-45$	2,177	0.01	136,916
	$45-50$	579	0.01	99,545
	$50-55$	0.002	30,640	
Total Negative Δ-relief	$22,764,759$	88.5	$245,878,159$	

TABLE 5-6. -- Grand summary of areas and volumes of negative, zero, and positive Δ-relief for oak crater area. Summary derived from Tablin 5-2 through 5-5. Area given in sqft, volume in cuft, f . t Δ-relief in ft.

CONSTRAINTS ON DENSIFICATION AND PIPING FOR THE OAK EVENT

By

John G. Truliol

BACKGROUND AND SUMMARY

PPG (Pacific Proving Grounds) sites differ widely from typical CONUS (Continental U.S.) sites in structure and composition. Hence, plausibly, high-yield near-surface nuclear explosions might dig much different craters in one setting than the other. But do they? The question cannot be answered by direct comparison of craters from such bursts. It therefore raises the kindred one of mechanism: The crater from a given burst could vary greatly from a CONUS site to the PPG, becausf dorinant ctatering mechanisms might -but do they?

A "subsidence hypothesis" proposed in the early 1980's got to the physical nub of this issue: ${ }^{2}$

> Explosive loading causes widespread fracturiñ of PPG coral, whose parts then settle slowly under yravity to form the outer one-half to three-fourths (in radius) of the apparent crater -- its "wing." By contrast, the inner one-half to one-fourth grows in several ways, including ejection of solid; indeed, virtually all ejecta come from that inner region -- or (hence) "excavation crater."

In sum, the subsidence hypothesis posits cave-in of a "coral" skeleton ${ }^{3}$ to fill the space left by water flowing out of it. Here, we call that process "simple subsidence." Its hallmark is an increase in coral density, since coral solids are denser than the water they replace [but for that, gravity (its cause) could not drive it). Hence, alternatively, we speak of simple subsidence as "densification."

1 Applied Theory, Inc., Los Angeles, CA 90036.
2 The basic idea appears to have been subgested independently by S. Blouin, H. L. Brode, and B.L. Ristvet, years before the PEACE Program began. In the form stated here, the simple subsidence hypothesis is credited mainly to K.D. pyatt and K. Kreyenhayen.

3 The OAK medium is referred to herein simply as coral. Said medium is a mixture of carbonate sediment, carbonate rock, and sea water with small amounts of other substances (see Chapter 7 of this Report for details of composition of the OAK medium). Used as an adjective herein, the meaning of coral is controlled by the noun it modifies; for example, "coral solid" denotes the solid components of the medium just described.

PEACE Program data do tell of excavation craters about one-fourth to onethird as large in radius as present apparent craters. widened by lnter slumping of their walls to about 0.4 of the latter radii (B. R. Wardlaw. oral communication, November 9, 1987). Thus, if the wings of apparent ppg iraters did form by simple subsidence, then, for a given burst, most CoNUS craters would have half the radii (or less) seen at the PPG. By the same token, cural under the wings would be denser now than pre-shot. PEACE Program measirements [borehole gravimetry and gama-gama ($\gamma-\gamma$) logging]. however, disclose only minor changes in density there: Layers of coral (roughly horizontal) from the sea floor to clearly identified interfaces below have thinned much more than the measured densities alone imply. Hence, on the available data, most of the sea-floor lowering had other causes than simple subsidence. Sacceedine sections summarize the evidence for and against this last statement: thoush not airtight, the case for it is strong.

When the mean density of solids in a column grows by a smaller factor than the column's vertical compression. lateral transport must take plact. Such transport can occur during plastic flow, as in a tube of toothpastr. Another kind, termed "piping", calls for the flow of slurry (here. water plus coral particles) to the seafloor, where currents may sweep it out of the crater. Signs of fiping abound in the OAK crater (Wardlaw and Henry. lagbb. p. 10; Halley and others, 1986, p. 4), but not in its wing. roducing the importance of PEACE measurements as constraints on piping (nonetheirso discussed below). plastic flow. perhaps with some "internal piping" (transport), seems the most likely means whereby the wings of aik's crater formed. If so, similar wings could form at most Conts siles - ant early. relative to such gravity-driven processes as slumping and densification. For structures. the wing would still be more benign than the excavation crater. but operating there would be no cinch.

BASIC FACTS AND PARAMETERS

Both the OAK and KOA craters were explored during the PEACE Program, but emphasis fell on OAK hecauso many nearby shots preceded kod; aratrringmechanism puzzles are made knottier by the effects of prior shots (wxaple: How did MIKE affect KOA coral?). Indeed, even with the focus on ink, ame OAK's relative simplicity, the data base for assessing density chaners remains slim. Priority rightly went to OAK.

In the OAK crater area, vital maps of the sea floor were draw bofare the event, shortly after, and during the PEACE Program (spe Chapter b of this Report). The bathymetric maps tell us how far the sea floor has sunk as a result of the shot. That does more than quantify what it is that wo hay explain (essential enough). For, PEACE exploration has shown that, in the wing and beyond, the coral is split into layers by charly identifiable Lagrangian surfaces (termed "horizons" by the geologists) that are critical here; several appear in Figure 6-1.

The horizons' great value lies in knowledge of their undisturted (hence pre-shot) depths. By geologic means. those depths are reproducible down boreholes to within a few tens of feet, and most often to $\pm 10 \mathrm{ft}$, in this part of the atoll. More important still, they can be located generally to within a foot in any one borehole. Thus, the depth of each has been deterained in boreholes inside the crater and out. So. therefore, has the shortening of

OAK ALONG REEP

OAR CROSS-REEF

FIGURE 6-1. -- Vertical sections at the OAK site. Contours C and D, respectively, mark the bases of regions of (a) measurable decrease in sonic wavespeed and (b) measurable downward displacement. The SCALE (in ft) applies to all distances.
vertical columns between the sea floor and these horizons. Mapped out too is the base of the region of sensible downard displacement of coral below the crater (contour D; fig. 6-1) ; its border lies close to the contour (C; fig. f1) that marks the limit of the region in which seismic wave-speed has decreased measurably (see Chapter 7 of this Report, particularly tbls. 7-2 and 7-4). Evidently, the shortening of any vertical coral column, flagged by lowering of the sea floor, takes place above the contour D -- and the columa's mean vertical shrinkage is given by the ratio of sea-flour lowering at the top of the column, to the column's pre-shot height (current height plus sea-floor drop).

The OAK boreholes lay along two lines through the center of the crater (see Chapter 1, fig. 1-3), one parallel to the reef ("reef-wise") and the other at right angles to it ("cross-reef"). By design, most density logs (amd results on densification) came from the reef-wise line (see Chapter 2 , fio. 2-2). The reason: We need pre-shot density profiles to compute density changes and their effects. Now -- long after OAK -- those profiles have to come from logging in near-pristine coral outside the crater. For geologic reasons, however, systematic changes in material properties occur along crossreef lines; on well-chosen reef-wise lines, the medium is subject mainly to smaller, random, local variations. Most actual borehole locations were chusen for OAK by PEACE geologists on that basis. The line those holes furm runs close to the crater's center, so that density profiles along it can stand as rough cylindrical crater-averages at their respective reef-wise starions. What "rough" means rests with actual PPG measurements; so does the gut issue of reef-wise fluctuations in natural density profiles (below).

Table 6-1 presents basic PEACE data from the OAK crater, including the mean compressions of coral columns at borehole locations. All OAK boreholes are listed in the table; fur reference, so is the estimated peak airblast pressure that acted above each. Of special weight are the table's mean vertical shrinkages $\Delta D / L$. Their average of 13 percent (16-1/2 percent for the reef-wise holes), if achieved via simple subsidence, would entail a mean density increase of $\sim 13 \mathrm{~g} / \mathrm{cc}(.18 \mathrm{~g} / \mathrm{cc}$ reef-wise). That is larger by almust a factor of ten than the limit of BHG (and $\gamma-\gamma$) resolution achieved in the PEACE Program (. 01 to $.02 \mathrm{~g} / \mathrm{cc}$). Hence, direct on-site evaluation of the subsidence hypothesis was indeed feasible (not known when the program began). Concern therefore lies instead with systematic error and the natural reef-wise scatter of density/depth profiles. Further, as readily conirined,

[^10]| Hole | $\begin{gathered} \text { Range (ft) } \\ \text { from Gz } \end{gathered}$ | i I N E | Preshot $\begin{aligned} & (f t): \\ & \text { to } C \end{aligned}$ | $\begin{aligned} & \text { pth L, } \\ & \text { Floor } \\ & \text { to D } \end{aligned}$ | Water D Preshot D_{1} | $\begin{gathered} \text { pth }(f t) \\ \text { PEACE } \\ D_{2} \end{gathered}$ | $\begin{aligned} & \Delta \mathrm{D}, \mathrm{ft} \\ & \mathrm{D}_{2}-\mathrm{D}_{1} \end{aligned}$ | Shrinkage $\Delta \mathrm{D} / \mathrm{L}$, \% Column to D | Peak
 Overpressure MPa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -OOR-17 | 6057.8 | | NA | NA | - | 55.2 | 0 | NA | 1.0 |
| OSM-22 | 5538.6 | | NA | NA | - | 76.0 | 0 | NA | 1.3 |
| OSR-21 | 5495.3 | A | NA | NA | - | 84.0 | 0 | NA | 1.3 |
| OPT-20 | 1845.8 | L | 144.5 | 375 | 70.0 | 101.4 | 31.4 | 8 | 34 |
| OQT-19 | 1444.3 | 0 | 363.0 | 380 | 46.0 | 117.5 | 71.5 | 19 | 72 |
| OTG-23 | 804.6 | N | 795.4 | 787 | 45.6 | 164.0 | 118.4 | 15 | 620 |
| OB2-4 | 7.1 | G | 1125.6 | 1068 | 13.1 | 198.7 | 185.6 | 17 | -697 |
| OCT-5 | 658.3 | | 841.5 | 891 | 16.2 | 163.7 | 147.5 | 17 | い5? |
| OGT-9 | 1043.5 | R | - | - | 16.0 | 134.8 | 118.8 | - | 228 |
| OTT-8 | 1129.1 | E | 593.8 | 779 | 15.4 | 130.8 | 115.4 | 15 | 17) |
| OET-7 | 1374.8 | E | 47:.7 | 775 | 18.4 | 106.9 | 88.5 | 11 | 85 |
| ODT-6 | 1714.9 | F | 291.6 | 211 | 20.0 | 87.4 | 67.4 | 32 | 41 |
| OAM-3 | 4510.2 | | INA | NA | - | 108.0 | 0 | NA | 2.3 |
| OAR-2A | 4500.2 | | NA | NA | - | 110.5 | 0 | NA | 2.3 |
| $\begin{aligned} & O A M-1 \\ & O A R-2 \end{aligned}$ | 4458.4 | | NA | NA | - | 114.2 | 0 | NA | 2.4 |
| OLT-14 | 2511.2. | C | - | - | 132.5 | 139.7 | 7.2 | - | 13 |
| OMT-15 | 2203.6 | R | - | - | 141.8 | 110.9 | 30.9 | - | 19 |
| ONT-16 | 1827.3 | 0 | 93.0 | 207 | 130.9 | 135.1 | 4.2 | 2 | 34 |
| OJT-12 | 1695.5 | S | 257.3 | 617 | 115.0 | 143.8 | 28.8 | 5 | 43 |
| OHT-10 | 1462.2 | S | 446.5 | 625 | 124.6 | 137.3 | 12.7 | 2 | 70 |
| OIT-11 | 1205.5 | | 568.5 | 636 | 121.6 | 155.0 | 33.4 | 5 | 136 |
| OKT-13 | 988.7 | R | 730.0 | 664 | 101.7 | 164.7 | 63.0 | 9 | 269 |
| OPZ-18 | 334.8 | E | 1032.6 | 1043 | 46.3 | 201.9 | 155.6 | 15 | >590 |
| OBZ-4 | 7.1 | E | 1125.6 | 1068 | 13.1 | 198.7 | 185.6 | 17 | >690 |
| OUT-24 | 858.0 | F | 828.4 | 782 | 1.6 | 147.0 | 145.4 | 19 | 510 |

$\begin{aligned} & \text { Head- } \\ & \text { ing } \end{aligned}$	Hole	RANGE,ft to OB2-4	$\begin{aligned} & \text { Hole } \\ & \text { Base } \end{aligned}$	$\begin{gathered} \text { Surface } \\ D \end{gathered}$	$\frac{\text { PEACE Depth, in } \mathrm{ft} \mathrm{bsl}}{\text { Horizon }}$								
					2b	2 c	2 d	3 a	3b	4b	5 a	5b	5c
Sw	OOR-17	6060.6	1146.3	NA			363.1	405.7	552.4	765.2	961.2		
R	OSR-21	5498.2	438.3	NA		290.1	344.2	391.7					
	ORT-20	1847.8	593.2	445	216.2	262.7	346	411.7	552.0	(767.0)	(1013.5)		
	OQT-19	1446.1	819.0	426	233.9	274	365	413.3	548.3	766.5	(1020.1)		
8	OTG-23	805.5	751.3	(834)				0	-	1787.01	(1000.4)		
${ }^{\mathbf{W}}$	OB2-4	0	1803.9	1081				. 0	01	847.7	1013.8	1065.1	1114.6
s	OCT-5	654.3		9074				432.7	572.2		9446		
	-0ct-5		1015.2	907			417.9	432.7	572.2	99			
	OGT-9	1039.6	209.8										
	OFT-8	1125.0	414.3	(794)	223.3	272.0	-344.6	(419.8)	(565.0)	(794.0)	(925.0)		
1	OET-7	1370.5	338.6	(793)	220.6	294	320.4	(410.0)	(555.0)	(793.0)	(925.0)		
	ODT-6	1710.5	251.6	231	219	231	(1315.0	(397.0)	(546.0)	(792.0)	(925.0)		
NE	OAR-2A	4495.5	521.0	NA		310.0	355.6	410.6	1556.8)	(812.2)	(918.2)		
SE	OLT-14	2517.3	188.9	(700)	(227.0	\bigcirc	(341.1)	(38).8)	(534.6)	(700.0)	(1010.2)		
CRR	OMT-15	2209.7	187.5	(702)	< 225.0	,	(3)34.6	(373:9)	(529.7)	1701.9	(1013.5)		
	ONT-16	1833.4	287.4	(175)	238.6		(337.8	(395.2$)$	(537.9)	(715.0)	(993.8)		
	OJT-12	1701.6	241.1	(172)	238.0		(350.0)	(390.3)	(531.0)	(732.0)	(991.0)		
	OHT-10	1456.3	299.8	(751)	213.3		(360.8)	(403.4)	(531:4)	(751.0)	(987.3)		
s	OIt-11	1199.4	441.5	(758)	274.4		375.0	434.8	(562:0)	(758.0)	(980.0)		
s	OKT-13	982.7	920.0	766	232.9	326	411.6	431.3	5'64.0	765.8	(974.5)	(1036.5)	
	OP2-18	329.1	950.5	(1089)			568	593.0	723.5	809.9	(1000.0)	(1063.0)	(1114.0)
γe	082-4	0	1803.9	1081				3.0	701.2	847.7	10i3.8	1065.1	1114.6
NW ${ }^{\text {P }}$	OUT-24.	864.2	498.1	(7E4)		373.0	407.0	457.1	(592.0)	784.0	(925.0)	(1025.0)	

TABLE 6-2. -- Uniformity of horizons in OAK area. Parentheses () signifies seismic data because boreholrends above depth shown eross-hatching covers downard-displacement region; blank spaces signify missing
values. Below sea lovel (given in ft) is abbreviated bsl.
the few tens of feet or less by which horizon depths vary (tbl. 6-2) have scant effect on the values of $\Delta D / \Delta z$ in Table 6-1.

SHORTENING OF CORAL COLUNS BY DENSIFICATION: BOOKKEEPING

Let subscripts L and S refer, respectively, to the liquid and solid components of saturated coral. In a volume V of the mixture, let V_{L} and V_{S} be the volumes of the two components and ρ_{L} and ρ_{S} their densities. The mass, m, of the mixture is then equal to the mass of its liquid component ($=p_{L} V_{L}$) plus the mass of its solid component ($=\rho_{S} V_{S}$). Hence, if p denotes the density of the mixture, we can write:

$$
\rho_{L} v_{L}+\rho_{S} V_{S}=m=\rho V
$$

or

$$
\begin{equation*}
\rho_{L} \alpha_{L}+\rho_{S} \alpha_{S}=\rho \tag{1}
\end{equation*}
$$

where α_{L} and α_{S} denote the volume-fractions of liquid and solid in the mixture:

$$
\alpha_{L} \equiv V_{L} / V ; \alpha_{S} \equiv V_{S} / V ; \alpha_{L}+\alpha_{S}=1
$$

Eq. (2)

Using the last of Eqs. (2) to eliminate α_{L} from Eq. (1), and rearranging, we get:

Volume Fraction of Solid in Mixture $=\alpha_{S}=\left(\rho-\rho_{L}\right) /\left(\rho_{S}-\rho_{L}\right)$
Eq. (3)

Hence, in volume V of the mixture, we find that:

$$
\begin{equation*}
\text { Mass of Solid }=\rho_{S} V_{S}=\rho_{S} \alpha_{S} V=V \rho_{S}\left(\rho-\rho_{L}\right) /\left(\rho_{S}-\rho_{L}\right) \tag{4}
\end{equation*}
$$

Now consider a vertical column of coral of unit cross-section. Let the column be divided into short vertical sections. A section of the column of height dh then subtends a volume V, and Eq. (4) -- with dh replacing $V--$ gives the mass of solid in that section. Summing over all sections of the column from a neight z_{0} to a greater height z, the total solid mass w_{S} between those heights is given by:

$$
\begin{equation*}
M_{S}=\rho_{S} \frac{\rho-\rho_{L}}{\rho_{S}-\rho_{L}} d h \tag{5}
\end{equation*}
$$

In Eq. (5), ρ_{L}, ρ_{S}, and ρ can all vary with height h in the column. Here however ρ_{L} (the density of sea water) is constant, while ρ_{S} can run only from about calcite's density to aragonite's (ρ_{S} can be set uniformly to the mean of the calcite/aragonite densities, with negligible error in m_{S}; below). Thus,
the measured density of the mixture, ρ, holds the key to simple subsidence in the oAK event.

With the key, goes a key assumption: The pre-shot density profile down any crater hole is the same as that found now in holes outside the crater ("control holes"), where the medium is almost unmarred. Then, taking z_{0} [Eq. (5)] at a level in the column where coral has not been vertically displaced, the vertical thickness subtended by solid mass m_{S} [from Eq. (5)] in a control hole, is equal to the pre-shot thickness of mass m_{S} of solid in the crater hole. On that basis, the hypothesis of simple subsidence can be tested via its mandate to conserve the column's solid mass. For, the present thickness of that mass [also from Eq. (5)], subtracted from its pre-shot thickness, will give the actual change in height of its topmost particle -- if that change is due tr simple subsidence.

In particular, if z [Eq. (5)] refers to the crater flocr, the change in question should equal the observed sea-floor lowering. Moreover, knowledge of the pre- and post-shot depths of horizons below the crater allows us a stronger result: By letting z_{o} and z refer to any two horizons. Eq. (5) should give the same solid mass m_{S} pre-shot as now -- if the distance between horizons changed by means of simple subsidence. We therefore integrate upward from one and the same horizon R, both pre-shot ($z_{o}=z_{r}^{p}$) and now ($z_{o}=z_{r}^{n}$). When that is done (with a control-hole profile taken as "pre-shot"), a given solid mass m_{S}, reached at $z=z^{P}$ pre-shot, will be reached at $z=z^{n}$ now. For that solid (between z_{r}^{p} and z^{p} pre-shot), the difference $\left(z^{n}-z_{r}^{n}\right)-\left(z^{P}-z_{r}^{p}\right) \equiv \delta z$ specifies the change in thickness implied by the observed density-profile changes, if the solid moved only up or down. Thus, the meaning of measured density profiles for simple subsidence is shown by plotting δz (but with z increasing downward, not upward; i.e., with depth in place of altitude). Such plots tell how coral solid at any depth below the present oAk crater had its depth changed by the shot -- if simple subsidence caused the change.

DENSITY PROFILES, THEIR TREATMENT, AND DOWNWARD DISPLACEMENTS

Logs of back-scattered neutron and γ-ray intensity (see Melzer, 1986), and of gravity-field variations (Beyer, Ristvet, and Oberste-Lehn, 1986) furnished density profiles down boreholes in the OAK crater region ("neutron", " $\gamma-\gamma$ ", and "BHG" profiles, respectively). On the reef-wise line (see second section), control-holes $O O R-17$ and $O S R-21$ were logged in all three ways, whereas neutron and $\gamma-\gamma$ logs were taken in control-hole OAR-2A. There were no cross-reef control holes. On the crater's wing, however, the only reef-wise holes logged close to contour C or D were $O Q T-19$ and ORT-20; ${ }^{1}$ that was done by all three methods, save for neutron logging of ORT-20.

1 That can be seen by comparing (1) the depths listed for contours C and D in Table 6-2 and (2) the density profiles presented in full in Appendix 6-1.

It was known before PEACE operations began at the PPG that we would have to look mainly to BHG for density profiles. Why? Because $\gamma-Y$ logs tell about the medium only within a few centimeters of our 4-inch-diameter boreholes, where the drilling disturbance is greatest; neutron logs "see" about 4 inches farther out (L.S. Melzer, conversations, summer 1987). By contrast, BHG logs give average densities out to about 10 times the vertical interval between readings (generally an interval of 25 ft for the boreholes in question); BHG densities are thus virtually free of man-made or natural local variations in the medium. It was not known, however, whether BHG logging could be done with useful precision under PPG conditions; doing so was a first, and a major PEACE Program success (see Beyer, Ristvet, and Oberste-Lehn, 1986, and Ctiapter 2 of this Report).

BHG aside, steel borehole casing that ran downward from the sea floor for 100 to 150 ft , interfered with $\gamma-\gamma \operatorname{logs}$; the tool was not calibrated for measurement in coral through such a pipe (L.S. Melzer, conversations, summer 1987). In view of that problem, and of changes to the medium from drilling, $\gamma-\gamma$ density profiles are probably reiiable only at depths greater than a few hundred feet (where they match BHG profiles fairly well). Further, if neutron logs are to add density profiles to the $B H G / \gamma-\gamma$ set, a way will be needed to calibrate the neutron tool for PPG coral (L.S. Melzer, conversations, early summer 1987). Thus, at present, density changes from the OAK event must be evaluated from BHG density profiles, augmented somewhat by $\gamma-\gamma$ profiles.

Copies of all BHG density profiles from OAK's reef-wise line are shown in Figure 6-2, and the $\gamma-\gamma$ profiles in Figure $6-3$; all profiles appear at full scale in Appendix 6-1. For use in Eq. (5), each profile was fit by a piecewise linear function, an especially simple matter for the BHG stepprofiles; the linear coefficients are listed in Appendix 6-1, where the fits are also plotted. At full scale, the fits overlap the measured profiles everywhere, reproducing them about as closely as their finite line width allows. Those fits embody almost all the depth-dependence of the integrand of Eq. (5); the rest stems from the solid component's density ρ_{S}, whose extremes lie within 4 percent of their mean (see preceding section). As measured, the variation of ρ_{S} over that small range is also no nore than piecewise-linear with depth. Thus, at its worst, Eq. (5) calls only for integrating a ratio of t wo 1 inear functions [since $\rho_{S} /\left(\rho_{S}-\rho_{L}\right)=1+\rho_{L} /\left(\rho_{S}-\rho_{L}\right)$]- whence, down a given borehole, the solid mass m_{S} is easily found in closed form vs. depth. When m_{S} for a crater hole is equated to m_{S} for a borehole, however, the resulting equation for z^{P} in terms of z^{n} is transcendental. By taking ρ_{S} as constant over each of the many linear intervals of measured density ρ, we avoid that complication; m_{s} becomes (at worst) piecewise-quadratic in depth, and $z^{n}-z^{p}$ becomes an explicit function of z^{n}. The results, plotted in Figures 6-4 through 6-7, are identical (when plotted) with those obtained by solving the transcendental equation; indeed, simply replacing ρ_{S} by its mean ($2.821 \mathrm{~g} / \mathrm{cc}$), and ignoring its depth-dependence, makes no significant change in the figures. Full equations and details of calculation, including the fits to ρ_{S}, are presented in Appendix 6-2.
 through 6-7) and in Appendix 6-1 speah on a subtior paint in till truatwan . density profiles: They make direct use of all horizon-depths metsur. tor a given control-holeferator-hole pair. Specifically. Eq. (5) wis intarat from any one horizon th the next higher one in the eiven contro mole. Starting from the same lower horizon in the crator hole. the zoralur di.tat. by equal solid mass as in the two holes, was computed irun Eq. Si i: ti, usual way; above) for each $z^{\text {P-value. (on reachine the next horiza: ia ía }}$ control hole. z^{n} fell above or below -- but not on -- that horiza.. ia i... crater hole; the reasons: natural density-protile variations alome the rewise line, and soures of thickness-chane other than simple susibina. Integration procepded nonetheless from that hurizon in both holes. until the. horizon above it was reached in the control hole - ans so an wite sens: data gave out in ont hoke or the other. A full thickness-ehane ourd wis thus developed in sections, with the assurancer that integration stata: :
 layer -- and hence in as nearly equivalent material as fobible ia bot holes. Dots track that curve in urr plots of thickness, hando. Wh prover was then repeated with the roles of crater bole and control hold \because everore (i.e.. going from one horizon to the next higher one in the ortior lan :
 doted and dashed curves -- a solid curve -- also appars in the plote dit three curves are chearly distinguishable on the risht halt of fiedr b-a abt pamplo); notr the borizontal stop on the dotens wren wime
 corresponding surface in the orator holpopa-le).

 logs cover. With osR-2l as the control hole the saps sumed by
 and 5 percent of the present distaner betwen tiee sea thor ant satace of downward displacement imit; see preceding section . Using vant -in; 17. these figures arow to 23 and 21 percent - large Dontit to hove tione people separately set rusonable upper and lower litits of extrapodata;
 estimates and their anan.

CONTRIBUTION OF SIMPLE SUBSIDENCE TO THE OAK CRATEK


```
2 in ral!., b-!.
```


FIGURE 6-2. --Density profiles determined by borehole gravimetry (BHG) in the OAK crater area (Courtesy of 1. Beyer, see Chapter 2). Depth below sea level (bsl) given in ft; bulk density in g / cm^{3}. Inferred densities derived from gamma-gamma $(\gamma-\gamma) \log s$ shown as doted lines. Astorisks (*) denote intervals where $\gamma-\gamma$ logs are not availahle due to drillpipe.

FICURF. 6-3. -- Density protiles from gamma-gamma ($\gamma-\gamma$) logging in oAk crat,r area (data from Melzer, 1986). Depth below soa flour givan in te.

FIGURE 6-6. -- Change in rock thickness from borehole-gravity (BHG) densities, assuming simple subsidence. Boreholes OQT-19 vs OSR-21 and OQT-19 vs OOR-17.

FIGURE 6-7. -- Change in rock thickness from borehole-gravity (BHG) densities, assuming simple subsidence. Boreholes ORT-20 vs. OSR-2l and ORT-20 vs OOR-17.

TABLE 6-3. -- Column-height rhanges (in $f t$) due to densification. Borehole
pairs shown in lef:-hand column; f denotes the fraction $\delta z / \Delta z$.

6-17

If a column of material between D and the sea floor changed thickness via simple subsidence, then the thickness change δ_{z} computed from density profiles measured pre-shot (under our key assumption, see p. 6-8 above) and post-shot should equal the observed sea-floor lowering at the top of the column. The latter lowering is the column's actual thickness-change Δz (tbl. 6-3), whereas δ_{z} is the virtual change which densification provides, as computed from measured density profiles. For each control-hole/crater-hole pair, the ratio $\delta z / \Delta z$ appears in Table $6-3$ as the fraction " f " of the sea-floor drop due to simple subsidence. On the wing of the OAK crater, the BHG profiles at hand (crater-holes OQT-19, ORT-20; control-holes OOR-17, OSR-21) tell a clear story: Only a small part of the sea-floor drop can be laid to simple subsidence. The highlights, subsumed in the f-values of Table 6-3, follow:
(1). For the sea-floor drop, best estimates of the fraction (f) due to densification run from -.15 to .32 , with a mean of .06 .
(2). With each variable (some not yet discussed) pushed to a reasonable extreme so as to increase f, the minimum, maximum, and mean of f are $.02, .38$, and . 15 .
(3). With each variable pushed to a reasonable extreme to decrease f, the least. greatest, and mean f-values are $-.32, .26$. and .01.
(4). With further possible but unlikely increases in all δz-values (right side of tbl. 6-3), the best-estimate values of f [(1), above] increase by $.10, .10$, and .09 , respectively; the E -values in (2) and (3), above, also increase by about those amounts.

Items (1) through (4) above cover systematic errors in determining the fractions by which densification changed column-heights. A major question remains, however, especially with so small a data-set: What confidence can be placed in these results?

CONFIDENCE ASSESSMENT

To fix levels of confidence, we look first at "thickness-changes" caused not by the $O A K$ shot but by natural density-profile variations from one reefwise borehole to another. To that end, the profile from OSR-2l has been used as a crater profile with the one from control-hole 00R-17 (fig. 6-8) -- and vice versa (fig. 6-9). With OSR-2l as crater hole, extrapolation to the sea floor gives "thickness-change" extremes of -16.3 and -22.5 ft ; with OOR-17 as the crater hole, the extremes become 19.8 and 30.4 ft . These are thicknesschanges that the two profiles would imply if simple suisidence, in a single coral column down to about 400 ft below sea level (bsl), turned one profile into the other. Thus, not only is density steadily higher in OOR-17 than OSR-2l to about 442 ft bsl, but, as forseen, l the "changes" in question are a good deal larger than those due to the burst (the measured [$\delta z[$'s in thl, 6-3

1 Letters of July 12, 1984, and April 21, 1985, from author to Dean ObersteLehn, Research and Development Associates (RDA), and to Maj. Robert E. Couch. Defense Nuclear Agrncy (DNA), respectively.
(2):

are $\leqq 12.4 \mathrm{ft}$ and average $3.0,6.1$, and .1 ft , respectively, for our best, high, and low extrapolations). With nature causing so much variation (presumably at random) in our calculated thickness-change δz, natural density variations dominate the $\delta z-v a l u e s$. Indeed, for equal depths (442 ft) and the same control hole, absolute differences in δz between OQT-19 and ORT-20 come to < 4 ft and average only 1.8 ft . Hence, treating all four of the resulting f-values as randomly distributed about a mean appears, at the least, a fair approximation (actually, three sets of four must be dealt with, owing to uncertainty in extrapolating δz to the sea $f l o o r$). On that basis, the question of confidence turns to one of confidence in the estimated mean of a distributed random variable, and can be answered for a data-set of any size by standard statistical methods.

By reason of central tendency, and lacking data that would establish a precise distribution, we assume (as usual) that f-values are normally distributed. In each case (best, highest, and lowest extrapolation), the data of Table 6-3 then supply both a sample mean of f and a sample standard deviation. In computing the latter, however, it must be recognized that only three of the four f-values are independent. For example, given z in both OQT-19 and ORT-20, vs. z in OOR-17, we know z in OQT-19 vs. z in ORT-20; z in OQT-19 vs. z in OSR-2l, then yields z in ORT-20 vs z in OSR-2l. Since any three of the four f-values can be taken as independent, four estimates emerge of the standard deviation σ_{3}; two degrees of freedom enter the calculation of each (par for the standard deviation of three independent measurements). For each mode of extrapolation (high, best, low), every one of the four σ_{3}-estimates is listed in Table 6-3 alongside the f-value omitted in its calculation; also listed are the drop Δz of the sea floor, and the part (oz) of the sea-floor drop due to densification.

Fur each estimate in Table 6-3 (high, best, and low) the mean <f〉 and a standard deviation imply a distribution of the true mean of the densificationfraction f. In its cumulative form, that "t-distribution" states the probability $\operatorname{Prob}(f>v)$ that the true mean of f (denoted f) lies above any stated value v. Since $\operatorname{Prob}(f\rangle v)$ increases monotonically with σ_{3} for a given sample mean $\langle f\rangle$, the largest of the four pertinent $\sigma_{3}-v a l u e s$ was chosen to get a high estimate of $\operatorname{Prob}(f>v)$, and the smallest σ_{3}-value for a low cstimate; for the best estimate, the four σ_{3}-values were averaged. With those respective values of the standard deviation σ_{3}, we computed $\operatorname{Prob}(\mathrm{f}>.5$) and $\operatorname{Prob}(f\rangle 1)$ for each estimate_of $\langle f\rangle$ [high, low, and best; a value of about $1 / 2$ would be expected for $\operatorname{Prob}(\bar{f}>1)$ if densification accounted for all of the seafloor drop]. The net result -- fundamental co the whole study_-- is that every case $\operatorname{Prob}(f>.5) \leqq .05$, with much smaller values for $\operatorname{Prob}(f>1)$. That is, the odds against densification having caused as much as half the observed seafloor drop are at least $20-\mathrm{to-1}$. The left side of Table $6-4$ presents a detailed, though brief, summary of all key quantities. As for the right sides of Tables 6-3 and 6-4, the following applies.

The thickness-change curve for $0 Q T-19$ vs $00 R-17$ rises at its greatest rate at a depth of about 426 ft , from a minimum at 498 ft (fig. 6-6). The rise between 498 and 426 ft , and the curve's wiggles below 498 ft , may well stem from the medium's random reef-wise variations, rather than any error in estimating the depth of D at OQT-19. In addition, at ORT-20 (and elsewhere), non-zero downward displacement of a few feet might have been missed at D. Both hypothetical errors would act to decrease f; errors of opposite sign -about as likely -- would make our f-values too large. Nonetheless, to bias f

TABLE 6-4. -- Likelihood that true mean $\overline{\mathrm{f}}$ exceeds. .5 or l , given a sample mean $\langle f\rangle$. Symbol f denotes the fraction of column-height change due to densification. For each estimate (high, best, low), the three standard of Table 6-3.
as far toward higher values as common sense allows, we have assumed on the right of Tables $6 \mathbf{- 3}$ and $6-4$ that: (a) the depth of D at OQT-19 is 498 ft , causing δz to increase by 5.4 ft (vs. OOR-17); (b) δz is also greater by 5.4 ft at D for $\cap Q T-19$ vs OSR-21; (c) for ORT-20, the downward displacement is 3 ft (not zero) at 442 ft bsl, where the geologist's horizons place D; and (d) the $3-f t$ drop at D for ORT-20 is due entirely to densification at greater depths (contrary to all evidence above D). These assumptions lead to the values of f on the right of Figures $6-2$ and $6-3$, under the heading "BIASED TO INCREASE $\mathrm{f}^{\prime \prime}$. The main result (besides raising $\langle\mathrm{f}\rangle$-values by \sim. 10): $\operatorname{Prob}(f>.5) \leq .08$. Strengthened, therefore, is our central conclusion: Densification accounts for just a small part of the wing of OAK's crater.

LONG-TERM SETTLING

Within 67 days of the OAK shot (viz., B+67 days), the sea floor had been re-surveyed to $\sim 3,000 \mathrm{ft}$ from ground zero (GZ). Coupling that survey with PEACE bathymetry has brought to light notable changes in sea-floor depth between August 1958 and December 1984 (see Chapter 5 of this Report). Specifically, in that period, the sea floor sank by $\sim 12 \mathrm{ft}$ at $\mathrm{ORT}-20$, 11 ft at OQT-19, and 4-1/2 ft outside the crater ($3,000 \mathrm{ft}$ southwest of GZ on the reefwise line). That cuts the respective sea-floor drops at ORT-20 and OQT-19 to ~ 20 and 60 ft seven to ten weeks after the event; i.e., "early". What those results mean for densification -- still our working hypothesis -- is perhaps plainest in terms of ORT-20.

Suppose first that the 1958 to 1984 sea-floor drop was caused by vertical settling of coral from the floor down to surface D; such densification is both simple and credible (any tet setting below D, for example, would entail an error in present estimates of D^{\prime} s depth). The early sea-floor drop of 20 ft at ORT-20 would take less densification to produce than the drop from pre-shot time to now (31.4 ft) -- but the column between D and the sea floor would have been 12 ft taller in 1958 than now, lowering its mean density. More precisely, the sea-floor drop δz due to densification would be less by 12 ft than in 1984 (see tbl. 6-3) ; the high, best, and low estimates of its value would all fall by that amount, making negative every fon Table 6-3 but one (for ORT-20). The opposite, less likely scenario has contour D move downard by the same amount as the sea floor above it. Above D, density profiles (and hence δz) are then unaffected; mean densification there stays in the small positive range shown $i:$ itales $6-3$ and $6-4\left[f=\delta z /\left(\Delta z-\Delta z_{D}\right)\right.$; δz unaffected; equal changes in Δz and in the drop Δz_{D} at $\left.D\right]$-- even i_{i} the drop Δz_{D} has other causes than densification.

Both extremes (D-depth unchanged vs. equal change at D and at sea $f l o o r$) lead to the same fraction f of the sea-floor drop due to densification. For, if h_{D} is the increase in D-depth due to slow densification below D, then $\delta_{z_{D}}$ (the part of Δz_{D} due to densification) evolved to zero in 1984 from $\operatorname{th}_{\mathrm{D}}$ at $B+67$ days (48 to 67 days after the OAK burst); similarly, if h denotes the increase in sea-floor depth due to slow densification above D, then (for coral above D) δz in 1984 becomes $\delta z-h$ at $B+67$ days. On the densification hypothesis, we have $h+h_{D}=11.8 \mathrm{ft}$ (the total sea-floor drop at ORT-20 from $B+67$ to 1984) for any value of h_{D}; at $0 Q T-19, h+h_{D}=11.2 \mathrm{ft}$. Hence δz (densification's part of the total sea-floor drop by 1984) becomes $\delta z-l_{1}-h_{D}$ at day $B+67$ - i.e., $\delta z-11.8 \mathrm{ft}$ for $O R T-20$ and $\delta z-11.2 \mathrm{ft}$ for OQT-19. Likewise,
the sea-floor drop Δz (in 1984) becomes $4 z-11.8 \mathrm{ft}$ for ORT-20 at day $B+67$, and $\dot{z}-11.2 \mathrm{ft}$ for $\mathrm{OQT-19}$. The f 's, reckoned as $\delta z / \Delta z$ for 1984 , change to $\left(\delta z-h-h_{D}\right) /\left(\Delta z-h-h_{D}\right)$ for day $B+67$. Thus, with the 1958 to 1984 sea-floor drop $h+h_{D}$ fixed (no matter how it is split into parts h and h_{D} due to densification above and below D), the change in f during that period is also fixed. Accordingly, at $B+67$, the $f-$ and σ_{3}-values of Table 6-3, and the probabilities of Table 6-4, becomes those of Table 6-5 below.

Table 6-5, like Tables 6-3 and 6-4, tells a clear and simple tale: As in 1984, the odds against densification having caused half or more of the seafloor drop measured at $B+67$, are $Z 18-t o-1$ in all cases; biased to favor densification, the odds remain $\geq 16-t o-1$. At $B+67$, however, all values of $\langle f\rangle$ are negative, with a best estimate of -.30 (vs. . 06 in 1984). Hence, had $f-$ values been as precise for $B+67$ as for 1984 , $\operatorname{Prob}(f>.5)$ would have been a good deal smaller than. 05 ; higher σ_{3}^{\prime} s at $B+67$ blocked that (the largest were almost twice as big at $B+67$). Still, simple subsidence points to negative densification at $B+67$ (f-values <0), and it may actually have been negative then (dilatancy). More likely, though, the simple subsidence hypothesis is at fault; it is hard to believe that a medium with 40 to 60 percent porosity, even though fully saturated, would show sizable volume increases on loading and unloading either in uniaxial strain [peak overpressures: ~ 30 to 78 MegaPascals (MPa) (Table 6-1)] or thereafter.

Larger $\sigma_{3}^{\prime} s$, and the increased scatter of f-values they reflect, take some explaining. They stem primarily from the reduced value, for ORT-20, of the column-height change that forms the denominator of f (a factor of 1.6 smaller at $B+67$ than 1984). Physically, small column-height changes can flag a breakdown of the f-criterion for measuring the part densification played in forming the crater. That measure makes sense only if the column-height change ($\Delta z-h-h_{D}$ in this case) is large compared to random ups and downs (standard deviation) in the part densification contributes to the change. Otherwise values of for columns with small changes in height (changes adding little to the sea-floor drop and crater volume) will dominate the mean value <f> used to characterize the whole set of f's (including f's for holes with much larger changes in height). The problem can perhaps be finessed (below, last setion), but the true cure lies in computing f as a fraction of crater volume due to densification -- given axial symmetry, a sum (over all crater holes) of products $R \delta z$, divided by a sum of products $R \Delta z$ ($R=$ horizontal range at a given crater hole). That fraction, after all, is the ultimate object sought. On present knowledge, its uncertainty would come mostly from its dependence on the choice of control hole for computing each dz. Here, however, we have density profiles from just two crater holes and two control holes. They yield too small a sample (2 ratios) to make such a criterion practical; the one adopted here, despite the drawback under discussion, pernits more efficient use of those data (3 independent f's). Given profiles fron a half-dozen or more holes of each kind, the volume criterion appears the better choice.

As for slow settling beyond the presently defined crater, pre-shot and 1984 contour maps show ~ 4 to 6 ft of it. So do the maps for $B+67$. The drop appears widespread as to direction, occurring (for example) at both 2-to-4 o^{\prime} clock relative to GZ (north $=12 \mathrm{o}^{\prime} \mathrm{clock}$), and 6-to-8 o'clock. Here, however, it matters only if it means that the shot appreciably disturbed control-hole material. That is not at all likely for the following reasons:

TABLE 6-5. -- Column-height changes due to densification in OAK crater 48 to 67 days after burst. Borehole pairs given in left-hand column.
(1). Whereas 4-to-6 ft of subsidence appears to have occurred around most of the crater, the pre-shot map runs only about 1.2 crater radii; there, peak overpressure was greater by a factor of 5-to-10 than at controlholes OSR-21 and OOR-17.
(2). As horizontal range increases, a steady decrease occurs in the sea-floor drop observed between 1958 (pre-shot) and 1984. On the reef-wise line of BHG logging, those drops run from $\sim 120 \mathrm{ft}$ one-fourth of the way to the crater's edge, to $\sim 64 \mathrm{ft}$ halfway there, to $\sim 5 \mathrm{ft}$ at the edge itself. They and their rapid decrease with range were doubtless both caused by the explosive loads the medium bore -- loads which also decreased rapidly with range. Like those loads, the sea-floor drop should be a good deal smaller at two crater radii than one -and the drop of 5 ft at the crater's edge is already small, whether it came about by densification or not.
(3). Uncemented layers were breached in the crater's central region, opening new routes for leakage of water to the surface from great ranges; at a speed of only $1 \mathrm{~cm} / \mathrm{hr}$, water would have flowed $\sim 7,500 \mathrm{ft}$ by 1984. Driving such llow, however, would be gravity, just as it has tended over geologic ages to force water upward through the local fissures and passages present in coral. Balancing gravity over that time has been the ability of the solid skeleton to support vertical loads without transferring them to interstitial water; owing to those very loads, the strength of uncemented sand is >0. Gravity and strength act no differently now than in the past -- and the absence of detectable change in the separation of horizons in control holes argues that the balance between them remains where it was struck ages ago.

PIPING

During simple subsidence, skeletal coral replaces water that flows from it; since coral solids are denser than water, the medium then densifies, in accord with Eqs. (1)-(5). Yet, as discussed above, applying Eqs. (1)-(5) to the observed density profiles accounts for only some of the observed sea-floor drop; in material below the crater floor, density has increased by only a small fraction of the requisite amount. However, the finding that material hundreds of feet below the excavation crater had risen to the crater floor (see Wardlaw and Henry, 1986b; and Chapters 3 and 7 of this Report), suggests a way out -- namely, transport of solid particles by upwelling water. Any observed changes in density and column-height can be brought about by such "piping", given the right ratio of solid to liquid in piped slurry; for example, no density changes will be seen if the density of the slurry equals that of the pre-shot medium. In addition, of course, the right amount of material must be piped. On that point, the idea founders; evidence of
substantial piping is limited to the central crater region. ${ }^{1}$ There is also an implicit demand that piped solid be transported not just to the sea floor, but out of the apparent crater; that puts direct measurement of the amount of piped material beyond reach now. Nevertheless, piping was noted at OAK; some of its properties follow.

Eqs. (1)-(5) remain valid, but it is no longer useful to ask what preand post-shot heights are subtended in a column by a given solid mass m_{s}. Rather, with solid leaving the column, the mass of solid hetween two coral particles that remain in it will be different before the shot than after; moreover, the distance between them changes as both solids and liquid are lost. To compute the effects of both losses, let V denote a pre-shoi cuatroi volume of the medium in which the following definitions apply:

$$
\begin{aligned}
& \alpha=\text { pre-shot volume-fraction of liquid in } V \\
& B=\text { pre-shot volume fraction of solid in } V=1-\alpha \\
& \rho_{L}=\text { density of liquid component } \\
& \rho_{S}=\text { density of solid component } \\
& \rho=\text { mean pre-shot density of mixture in } V .
\end{aligned}
$$

As on page 6-7 of this Chapter, it then follows that:

$$
\begin{equation*}
\alpha \rho_{\mathrm{L}}+\beta \rho_{\mathrm{S}}=\rho \tag{6}
\end{equation*}
$$

To describe the post-shot state of the same material, let
$Y=$ piped-out fraction (volume or mass) of the liquid within V
$k \gamma=$ piped-out fraction (volume or mass) of the solid within V
$\bar{\rho}=$ present mean density of mixture not piped from V.

[^11]Since αV and βV are the respective pre-shot volumes of liquid and solid, the volumes of liquid and solid piped out of V equal $Y \alpha V$ and $k Y \beta V$. Hence, of the volume V, the piped-out fraction ϕ is given by:

$$
\phi=\frac{\text { Volume of Mixture Piped }}{\text { Pre-shot Volume, } V}=(\gamma \alpha V+k \gamma \beta V) / V=\gamma(\alpha+k \beta)
$$

Eq. (7)

Likewise, the mean density of the remaining mixture becomes:

$$
\begin{align*}
& \left.\bar{\rho}=\left[(1-\gamma) \alpha V \rho_{L}+(1-k \gamma) \beta V \rho_{S}\right)\right] /[(1-\phi) V] \\
= & {\left[\left(\alpha \rho_{L}+\beta \rho_{S}\right)-\gamma\left(\alpha \rho_{L}+k B \rho_{S}\right)\right] /(1-\phi)-\left[\rho-\gamma\left(\alpha \rho_{I}+k B \rho_{S}\right)\right] /(1-\phi) \quad \text { Eq }- } \tag{8}
\end{align*}
$$

Usirg Eq. (7) to eliminate γ from Eq. (8), the direct result is:

$$
\bar{\rho}=\left[\rho-\left(\alpha \rho_{L}+k \beta \rho_{S}\right) \phi /(\alpha+k \beta)\right] /(1-\phi)
$$

Slight rearrangement of this last equation makes it linear in $k \beta / \alpha$, whence

$$
\begin{align*}
k \beta / \alpha & =\left[\left(\bar{\rho}-\rho_{L}\right) \phi-(\bar{\rho}-\rho) \phi+(\bar{\rho}-\rho)\right] \\
& =\frac{k \gamma \beta V}{\gamma \alpha V}=\frac{\text { Volume of Solid Piped }}{\text { Volume of Liquid Piped }} \equiv \frac{V_{S P}}{V_{L P}} \tag{9}
\end{align*}
$$

The sludge density, $\bar{\rho}_{S L}$, follows from the ratio $V_{S P} / V_{L P}$:

$$
\bar{\rho}_{S L}=\left(\rho_{L} v_{L P}+\rho_{S} V_{S P}\right) /\left(V_{L P}+V_{S P}\right)=\left[\rho_{L}+\rho_{S}\left(V_{S P} / V_{L P}\right)\right] /\left[1+\left(v_{S P} / V_{L P}\right)\right] \quad \text { Eq. (10) }
$$

Values for the mean densities ρ and $\bar{\rho}$ come from density profiles measured, respectively, in control holes and crater holes. Also, for a vertical column of OAK coral, the fraction ϕ is just the change in columnheight, divided by the column's pre-shot height. Hence, from PEACE observations, Eq. (9) allows us to compute the ratio of solid and liquid volumes in piped material, and Eq. (10) its density, if piping caused the changes observed. Perforce, then, those quantities constrain the piping process, whereas γ and $k \gamma$ simply fix the unmeasurable total amount piped. For example, if no density changes occur ($\bar{\rho}=\rho$), then the volume and mass ratios implied by Eq. (9) will be those of pre-shot material, and piped sludge will have the same density as the rest of the medium -- in which case, gravity cannot cause it to be piped. However, if a shot raises the medium's density a bit (as the PEACE logs indicate for OAK), the resulting small pressure head can push sludge upward. To help quantify that push, estimates of the density of piped material have been made from PEACE measurements using Eqs. (7), (9), and (10).

In Table 6-6 below are recorded: (a) the mean densities (ρ and $\overline{0}$) measured for OOR-17, OSR-21, OQT-19, and ORT-20 from their shallowest common horizon, down to each of three others (the deepest at base D of the downwarddisplacement region); (b) the depths z and z_{0}, respectively, of the top and bottom of the column to which each mean density refers; (c) the measured
column shrinkage, ϕ, between z and z_{o} for $O Q T-19$ and ORT-20 ${ }^{1}$ (together with the changes in depth Δz and Δz_{o} at z and $\left.z_{o}\right)^{2}$; (d) volume ratios implied by those data and Eq. (9), for the four control-hole/crater-hole pairs; (e) a mean density of piped material (also listed) follows from each volume ratio by Eq. (10), and with it (f) a "density decrement" $\rho_{S L}-\bar{\rho}$ (the difference between the densities of piped and remaining material). Evidently, subsidence by piping would require extruded material to have a bit lower density than that not piped. Note, however, that the residue's density $\bar{\rho}$ runs from slightly greater than that of the supposed sludge, to $\sim .45 \mathrm{~g} / \mathrm{cc}$ less. That wide spread reflects sensitivity of the volume ratio [Eq. (9)] to random differences among borehole density profiles, when column shrinkages (ϕ) are $\ll 1$. Thus, the most consistent sludge densities and density decrements are obtained for the longest columns (third quartet of tbl. 6-6, running down to D at $\sim 443 \mathrm{ft}$ bsl for OQT-19 and ORT-20).

From the decrements in Table 6-6, it appears that slurry would be driver upward by pressures of about a tenth of the lithostatic head (mean decrement $\sim .2 \mathrm{~g} / \mathrm{cc}$), though the standard deviation of decrements is also that large (. 21 and .26 gicc; second and third quartets). At an upward acceleration of .1 g (decrement $\sim .2 \mathrm{~g} / \mathrm{cc}$), sludge would take $\sim 11 \mathrm{sec}$ to rise 200 ft in a wide, unobstructed pipe -- but there's more to piping than that.

OTHER CONSTRAINTS; HORIZONTAL PIPING

The densities in Table 6-6 apply to vertical columns 200 to 300 ft in height. Within such a column, single layers could have been driven by a density decrement as large as $1 / 3 \mathrm{~g} / \mathrm{cc}$. However, the path of sludge piped from the crater's wing leads first to the central crater, where lie nearly all the vents known to have guided solids from depth to the sea floor. That first path-leg has its pitfalls. For one, all horizons grow in depth along it; the horizons crossed by contour D at boreholes $0 Q T-19$ and ORT-20 (roughly 3 a in fig. 6-1) run $\sim 70 \mathrm{ft}$ deeper at $0 T G-23$, 800 ft from GZ ($\mathrm{tb} 1.6-2$), and the sea floor lies $\sim 55 \mathrm{ft}$ deeper. Adding 55 ft of sea water and 15 ft (70 minus 55 $\mathrm{ft})$ of coral makes the overburden ~ 11 percent greater than at the intersection of D with OQT-19 (or ORT-20). Along the horizon in question (H, say), the resulting overburden gradient opposes inward flow to the vents -- and while 11

1 The "Volume of Mixture Piped", needed to calculate ϕ by Eq. (7), is equal to the change in depth Δz_{o} of the column's bottom end, minus the change in depth Δz of its top end. The column's "Pre-shot Volume, V " is equal to the pre-shot depth $z_{o}-\Delta z_{o}$ of its bottom end minus the pre-shot depth $z-\Delta z$ of its top end, where z_{0} and z are the current (1984) depths of its bottom and top ends, respectively.

2 Values of $z, z_{0}, \Delta z$ and Δz_{0} were obtained for Tab:e 6-6 from Table 7-4 of the present Report. For several horizons, the latter table lists both 1984 depths measured in crater holes, and estimates of pre-shot depth based on the full set of 1984 measurements (including horizon depths in control holes). Given a 1984 depth, the pre-shot depth of the same horizon was obtained for Table 6-6 by 1 inear interpolation in Table 7-4 -- with the change in its depth equal to the difference between the 1984 and pre-shot values.

Pair	${ }^{2} 0$	2	Δz_{0}	Δz	\dagger	$\bar{\rho}$	ρ	$\mathrm{V}_{S P}{ }^{\prime}{ }_{\text {LP }}$	$\bar{\rho}_{\mathbf{S L}}$	$\bar{\rho}_{\mathbf{S L}-\bar{\rho}}$
19/17	309	220	35.0	38.9	. 042	1.91	1.96	<0	>0	>0
19/21	309	220	35.0	38.9	. 042	1.91	1.89	.36	1. 50	-. 40
20/17	300	192	19.7	29.7	. 085	1.91	1.96	4.66	>0	>0
20/21	300	192	19.7	29.7	. 085	1.91	1.89	. 62	1.71	-. 19
19/17	410	220	9.2	38.9	. 135	1.94	1.94	1.04	1.94	.00
19/21	410	220	9.2	38.9	. 135	1.94	1.89	. 44	1. 57	-. 37
20/17	408	192	6.0	29.7	. 099	1.94	1.94	1.14	1.98	.04
20/21	408	192	6.0	29.7	. 099	1.94	1.89	. 34	1.48	-. 46
19/17	444	220	0	38.9	.148	1.95	1.94	. 92	1.89	-. 06
19/21	444	220	0	38.9	.148	1.95	1.90	. 47	1. 60	-. 35
20/17	442	192	0	29.7	.106	1.95	1.94	. 97	1.91	-. 04
20/21	442	192	0	29.7	.106	1.95	1.90	. 37	1.51	$-.44$

percent of overburden may be a small pressure, it is two-thirds or more of the total head available to pipe sludge from H. That head acts at the vents; slurry near them can, of course, be piped upward. At bigger ranges, however, their influence weakens relative to that of overburden. Hence, if we are dealing with a liquefied layer (all sludge), the denser layers above probably settle soonest near the vents, replacing piped material but pinching off the flow. Note also that slurry converges cylindrically as it moves inward, slowing its passage to the vents. The "aperture" available to it (proportional to horizontal radius) decreases by a factor of $2-1 / 2$, for example, as slurry goes from $2,000 \mathrm{ft}$ of radius to 800 .

An unliquefied layer presents added bars to piping. For, in a layer with strength, unpiped material bears at least part of the overburden; the pressure that drives piping is smaller than the head that the density decrement would otherwise supply. Indeed, the slurry pressure may simply equal its own head, as in any drained unit; then no piping occurs. More generally, creep of the layer's strong component, like weakening induced by the blast, provides some impetus for piping -- but reduced from that which the full density decrement could furnish, and on a wholly aifferent time-scale. Indeed, creep can be so slow that almost no solid particles are entrained by piped water (simple subsidence), which may well have been the mechanism for setting between $B+67$ and 1984 (see preceding section). In addition, members with strength physically block piping; sludge has to flow between and around those solid parts. Such flow -- through a porous solid -- is described in simplest quantitative terms as diffusion, in accord with D'Arcy's Law, with flow rates set mainly by the medium's permeability. The lower the rates, however, the more solid settles out (under gravity) on its way to the crater's floor; further, at any g̈iven rate, entrained particles will not accelerate upward unless the drag on them exceeds their submerged weight.

These remarks suggest detailed calculations of upward/inward diffusion that have not been made, partly because the medium's post-shot permeability is poorly known, but more because PEACE disclosed no piping of note on the crater's wing.

Once at the surface, slurry particles would have to ride out of the crater on reef-wise currents of perhaps 1 knot ($\sim \mathrm{l} .5 \mathrm{ft} / \mathrm{sec}$) (Halley and others, 1986, p. 5). During that half-hour trip, gravity would cause particles to settle; those with diameters $>1 / 8 \mathrm{~mm}$ would drop an estimated 100 ft or more along the way (Stokes flow), and hence would leave the crater, if at all, only by other, slower means. The same forces of drag, weight and buoyancy also act on the particles during their rise to the crater's floor; treating them again as isolated spheres, the buoyancy and drag of water rising 200 ft in one hour ($1 / 18 \mathrm{ft} / \mathrm{sec}$) can move them only if their diameters are $<1 / 8 \mathrm{~mm}$, while for 10 and 100 hours of rise, respectively, the critical diameters are $3 / 80$ and $1 / 80 \mathrm{~mm}$. These estimates are rough, since the particles are not spheres (nor do spheres bound drag \div mass), they and their wakes overlap [increasing drag \div mass if they do not clump (Soo, 1967, Ch. 5)], and they rise in ragged, twisty channels (not straight, free streams) that may be <lo diameters wide in places.

Fissures, and cones of debris containing coral fragments raised hundreds of feet, were seen in the central region, where coral was most damaged (Halley and others, 1986; Slater, and others, 1986). Piping accounts neatly for that, and much of it could have occurred in a few seconds or less. For, with
overpressure at the . 1 -MPa level, burst-induced sub-crater pressures up to $\sim 100 \mathrm{MPa}$ would furnish the required vertical stress gradienrs. Relief of those pressures would be rapid, requiring a volume increase uf $61 / 2$ percent for decay to . 1 MPa (from 100 MPa). Though slight in relation to crater volume, enough material would be extruded in such an expansion to make impressive deposits on the sea floor, and cloud the reef currents that cruss the crater.

DENSIFICATION: SUMMARY AND CRITIQUE

Borehole cores have let geologists fix the depths of many layer interfaces ("horizons") below and outside the OAK crater. Further, in two holes on the crater's wing, gravimetry has furnished density profiles down to horizons not moved by the OAK burst; to the same horizons, but well outside the crater, borehole gravimetry (BHG) also has given two density profiles. All four holes lie on a curve roughly parallel to the reef. There, in pristine coral, geology argues for random density-protile variations about some mean. The present coral medium formed in about the same way at different points on any one of a set of curves roughly parallel to the reef. Moreover, PEACE cores and density profiles support the idea of such variations about a mean. Treating the far-field pair as pristine profiles then yields density changes due to the burst, from depth to $20-100 \mathrm{ft}$ below the crater fluor. From those changes come the downard displacements that densification implies for sub-crater coral, vs. depth, and for the crater floor itself. Comparing the latter displacements to actual sea-floor drops yields the result thai densification played but a small role in forming the crater's wing.

Except for converting tonsitv profiles to downard displacements, significant uncertainty attends each step noted:

1. The general increase of coral density from lagoon to ocean is a source of systematic error in the measured profiles. Specifically, prior to $O A K$, departures from the mean density profile would have been random along the curve on wnicil borehules were supposed to lie. That curve is not known precisely. Actual boreholes therefore depart from it, but are about as likely to fall on one side of it as the other. Hence, given the oceanward density gradient, the general effect of such misplacemert is to increase the differences among measured profiles. The unlikely opposite result, however, is more apt to have occurred in our four-profile set than in a large set. The scatter of profiles would then have been underestimated.
2. A horizon's drop (or rise) by a few feet could have escaped notice. That holds for the "ummoved" horizons above which we reckoned density-chanye effects in the two crater-wing holes.
3. From the shallowest point of BHG logging in a given borehole to the sea floor, horizon-depth changcs due to densification were estimated by extrapolation from below.
4. Limits of precision render BHG-measured densities uncertain, but by < $\pm .02$ g / cc. Further, BHG densities are averages over such large reginns that the efiects of them of local site inhomogeneitues (vugs, etc.) are believed neyligible (for PEACE, a great advantage of BHG over other methods).
5. The sea-floor drop oz implied by density changes down a borehote, divided by the actual sea-floor drop at the hole (Δz), measures the contribution of densification to the crater. That ratio (f), however, gives too much weight to holes where the actual drop is small. Further, though f is a random variable, its distribution may not be near-normal (as assumed).
6. The largest values of δ_{z} (vs. depth) come from pairing the two wells outside the crater, just 560 ft apart ("control-holes," $\sim 5,500$ and 6,000 ft from GZ). Moreover, paired with the same control hole, the two holes 400 ft apart in the crater's wing ($\sim 4,000 \mathrm{ft}$ from the control holes) have much the same curve of $\delta z-v s .-d e p t h$. Nature, not the OAK burst, thus appears the chief source of variation among the four density profiles; our signals (density changes due to $O A K$) were buried in noise (random natural differences in density). As a result, the likelihood that the crater wing formed by simple subsidence could be assessed using three independent values of δz (the maximum from four profiles) -- despite our having just two profiles from the wing. Strictly, that can be correct only as f, divided by its standard deviation, approaches zero. The crater-wing profiles show some densification ($f>0$), however, and may differ systematically therein owing to their different ranges.

Caveats 1 through 6 forced us to assess confidence in the overall finding of low densification (oz<.1 Δz). To that end, our data base and calculations were altered (within reason) to maximize f :
i) Since oceanward density gradients could have acted to reduce differences among our f-values [caveat labove], the standard deviation of f was assigned the largest value found from the data (of the four deviations at hand when three of four f's are independent).
;i) For each borehole, oz was set at the sea floor to the highest ozvalue found by extrapolating δz-vs.-depth to the floor [point 2 above].
iii) Unseen displacement of the shallowest "unmoved horizon" D in a given borehole would probably have been downward. Each $\delta z-v a l u e$ from item (ii) above was increased by 3 ft or more to oftset such an error [cavcai 3 above].
iv) Adding offsets (iii) directly to δz-values credits the unseen drop of D entirely to densification below D -- even though densification accounted for just a small part of the horizon-drops observed above D (in the crater's wing).
v) On the PEACE data, the tendency of f to place undue weight on holes with small sea-floor drops [point 5 above] led to high -- but accepted -values of both f and its standard deviation (ORT-20 has smaller $\Delta z-v a l u e s$ than OQT-19 and higher f-values).

The overstatement of f flagged by item (v) looks correctible (next section). That corroction would probably be cancelled, and then some, if no appeal were made to the limit where f, divided by its standard deviation, tends to zero (item 6 above). How to avoid that limit without giving f another strong ad hoc lift is not clear. As it is, each upward bias lent to f appears within reason. Having them all act at once to make high f-values likely does not. But even so, only minor densification results.

CONCLUSIONS

If the wing of the OAK crater resulted from densification, then the seafloor drop at a wing-station, W, can be computed exactly from density profiles before and after the shot in a vertical colunn below W. No such profiles were measured pre-shot. That heightens the problem of reading density increases due to OAK through the noise of random natural variations in density. Below the crater's wing, those variations were found to dominate shot-driven changes in density. More important, however, the noise level proved low enough to admit a clear answer to the main question posed -- on the wing of OAR's crater, most of the sea-floor drop had causes other than densification.

As a best estimate, 6 percent of the sea-floor drop on the crater's wing can be laid to density increases caused by the burst. That figure follows fron profiles down two crater holes and down two control holes outside the crater -- profiles that yield four estimates (3 independent) of the fraction, f, contributed by densification to the sea-floor drop. Each of the four has a high, best, and low value, depending on how a gap in data just below the sed floor is bridged (fig. 6-10). To be sure, the sample is small, but its size has been taken into account in assessing confidence in the mean of f. The results: The probability that densification caused half or more of the seafloor drop is <.l. That result holds even if the main parameters of the calculation are all varied at once (each within reasdonable limits) so as to increase f. The PEACE density profiles could be of course atypical, but, at most, that observation only supports measuring more profiles; with the data at hand, the results are as stated.

Extant maps show that, in the crater wing, the sea floor sank appreciably between August 1958 (a few months after OAK) and December 1984 (PEACE). The crater was therefore significantly shallower in 1958 than now. By the same token, given simple subsidence, the medium was notably less dense (on average), from the base of the region of downward displacement to the crater floor. Combining that slow sea-flour drop with the PEACE density proliles leads to a best estimate of $\sim-.2$ for f at August 1958 -- and again (by chance) the probability that densification caused half or more of the seafloor drup at that date is <.l.

The same data base of sea-floor maps and PEACE density profiles also yields mean values for the density of materials piped up to the sea floor, if the piping hypothesis is correct. From those values, the densities of piped and residual material differ by an average of $\sim .2 \mathrm{~g} / \mathrm{cc}$, but with a standard deviation at least that large. A density difterence of $.2 \mathrm{~g} / \mathrm{cc}$ can drive piping, but weakly -- and the chain of events leading to transport of piped material out of the crater has many weak links (e.g., it appears that particles $>.1 \mathrm{~mm}$ in diameter will settle before they can exit).

The statistical grounds for assessing densification probably can be strengthened, using only extant data. Given the cost of the data, that should be done. Specifically, both the sea-floor drop (Δz) and the part of it due to density changes (δ_{z}) can be expressed as fractions of the pre-shot depth to D. The probability that the latter fraction exceeds half (say) of the former can then be computed, using standard deviations supplied by PEACE data. A BHG profile from the central region could also be added to the present set, but not without giving a further strong upward bias to the estimated extent of

FIGURE 6-10. -- lligh, low, and best estimates of the fraction contributed to sea-floor drop by densification at boreholes OQT-19 and ORT-20.
densification. In addition, the plausibility of the piping hypothesis should be examined further. With densification as an unlikely mechanism for forming OAK's crater-wing, however, plastic flow appears to offer the simplest and most plausible explanation for it. Whether that explanation will withstand close scrutiny is unclear; flow is well understood in principle, but not much is known about the displacement field around a flow crater.

ACKNOWLEDGEMENTS

For the PEACE Program data herein, and much kind assistance besides, my sincere thanks go to Larry Beyer, Scott Blouin, Bob Henny, Woody Henry, Steve Melzer, Dean Oberste-Lehn, John Peterson, Byron Ristvet, Ed Tremba, and Bruce Wardlaw. Larry, John, Woody, and Byron, and (above all) Steve and Bruce are due special thanks for extended discussions of both the data and its implications; so are my co-workers Neil Perl, Jim Workman, and Ken Burrell, for reducing PEACE data to forms from which conclusions more readily follow.

REFERENCES CITED

Beyer, L.A., Ristvet, B.L., and Oberste-Lehn, D., Chapter 8, Preliminary density and porosity data and field techniques of borehole gravity surveys, OAK crater; 28 p., 4 figs. 10 tbls; in Henry, T.W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Halley, R.B., Slater, R.A., Shinn, E.A., Folger, D.W., Hudson, J.H., Kindinger, J.L., and Roddy, D.J., 1986, Observations of OAK and KOA craters from the submersible; 32 p., 13 figs., 1 appendix; in Folger, D.W., ed., Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678.

Melzer, L.S., 1986, Chapter 7, Downhole geophysical logs; 32 p., 16 figs., 7 tbls., in Henry, T.W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Pierce, B. 0., 1929, A Short Table of Integrals; Third Revised Edition, Ginn and Company, Boston, New York (etc.).

Slater, R.A., Roddy, D.J., Folger, D.W., Halley, R.B., and Shinn, E.A., 1986 , Chapter 13; Additional submersible studies; detailed observations of the sea floor of OAK, KOA, and MIKE craters; l53 p., 2 tbls., 4 pls.; in Henry, T.W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

Soo, S.L., 1967, Chapter 5; in Fluid Dynamics of Multiphase Systems; Blaidsell Publishing Company, Division of Ginn and Company, Waltham, Massachusetts, Toronto, London.

Tremba, E.l., and Ristvet, B.L., 1986, Chapter 4; X-ray diffraction mineralogy; 49 p., 11 figs., 35 tbls., in Henry, T.W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part $3:$ Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555.

```
Wardlaw, B.R., and Henry, T.W., 1986b, Chapter 14; Geologic interpretation of
    OAK and KOA craters; 39 p., 2l figs., 2 tbls.; in Henry, T.W., and
    Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE)
    Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3:
    Stratigraphic analysis and other geologic and geophysical studies in
    vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report
    86-555.
Werth, G., and Randolph, P., 1966, The Salmon seismic experiment: Journal of
    Geophysical Research, v. 71, no. 14, p. 3405-3413.
```


APPENDIX 6-1

This appendix contains (1) all PEACE density profiles measured in the OAK area, with (2) plots of the fits made to those profiles as part of the work reported here. Also presented are (3) tables of coefficients for the piecewise linear function used to fit all profiles. That function is defined as follows:

$$
\begin{equation*}
\rho=\left[\left(z-z_{j}\right) \rho_{j+1}+\left(z_{j+1}-z\right) \rho_{j}^{+}\right] /\left(z_{j+1}-z_{j}\right) ; j=1,2, \ldots, J \tag{11}
\end{equation*}
$$

where ρ and z denote density and depth, respectively. For the BHG profiles [received as step-functions from L.A. Beyer, written communication, May 15, 1987); see Chapter 2, this Reportl, ρ_{j}^{+}and ρ_{j+1} have the same value $\rho_{j}+1 / 2^{-}$ Otherwise, $\rho_{j}^{-}=\rho_{j}^{+}=\rho_{j}$, and $\left(\rho_{j}, z_{j}\right)$ gives the coordinates of an endpoint of either two or one straight-line segments of the complete function. Specifically, for $j \neq 1$ or J, a segment runs from (ρ_{j-1}, z_{j-1}) to (ρ_{j}, z_{j}), and another from (ρ_{j}, z_{j}) to (ρ_{j+1}, z_{j+1}); the single segment for $j=1$ runs from $\left(\rho_{1}, z_{l}\right)$ to $\left(\rho_{2}, z_{2}\right)$, and the single segment for $j=J$ connects (ρ_{j}, z_{j}) to $\left(\rho_{\mathrm{J}+1}, z_{\mathrm{J}+1}\right)$.

The measured BHG profiles, in graphic form, comprise the first exhibit below (figs. 6-11 to 6-16). In each case, for ready comparison, a graph of the density-function fit to a given profile [Eq. (11)] is shown next to it, with the pair on identical scales. Then, in exactly the same format, a set of figures (6-17 to 6-26) follows in which appear all the profiles derived from $\gamma-\gamma$ logging, together with the density function fit to each. Next, on a single page (tbl. 6-7), come all the (ρ_{j}, z_{j})-points that specify the functions fit to BHG profiles (points supplied by the tables of Chapter 2 of this report). A corresponding table for fits to all the $\gamma-\gamma$ profiles comes last (tbl. 6-8). The latter table was compiled by measuring coordinates from the profiles themselves, having overlain them with thin graph paper; thus, at the outset, our measures of density and depth, denoted "DIV" in the tables, were a pair of coordinates read off graph paper. Conversion was made from DIV to g / cc, and from DIV to ft, by means of the following formulas:

$$
\begin{equation*}
\text { density }(g / c c)=Q+\left(D I V-Y_{0}\right) / S ; \quad \text { depth }(f t)=A+B\left(D I V-X_{0}\right) / C \tag{12}
\end{equation*}
$$

Values of Q, Y_{0}, S, A, B, X_{0}, and C are given for each profile in Table 6-8.

ROP:AMLE CRAVITY SURVEY: HOLE OOR-17

FIGURE 6-11. -- Left: profile of density vs. depth from bHG logging in control hole $00 R-17$, as received. Right: plot of broken-straightline fit [Eq. (II)] to profile at left. The left-and right-hand plot scales are identical.

BOREBOLE GRAVITY SURVEY: HOLE OSR-21

FIGURE 6-12. -- Left: profile of density vs. depth from bHG logging in control hole OSR-21, as received. Right: plot of broken-straightline fit $\{E q$. (11)] to profile at left. The left- and right-hand plot acales are identical.

BOREHOLE GRAVITY SURVEY: HRLE OPT-20

FIGURE 6-13. -- Left: profile of density vs. depth from BHG logging in crater hole ORT-20, as received. Right: plot of broken-straight-line fit [Eq. (ll)] to profile at left. The left- and right-hand plot scalss am identical.

FIGURE 6-14. -- Left: profile of density vs. depth from BHG logging in crater hole 0QT-19, as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left-and right-hand plot scales are identical.
borehole gravity survey: hole otg-23

FIGURE 6-:5. - Left: profile of density vs. depth from BHG logging in crater hole OTG-23, as received. Right: plot of broken-straight-line fit [Eq. (1I)] to profile at left. The left-and right-hand plot acales are identical.

FIGURE 6-16. -- Left: profile of density vs. depth from BHG logging in crater hole $0 \mathrm{PZ}-18$, as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left-and right-hand plot scales are identical.

FIGURF, $6-17$. -- Left: profile of density vs. depth from $y-\gamma$ logging in control hole $00 R-17$, at .70 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to prafile at left. The left- and right-hand plot scales are identiral.

FIGURE 6-18. -- Left: profile of density vs. depth from $\gamma-\gamma \log$ ing in control hole $0 S R-21$, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left-and right-hand plot scales are identical.

FIGURE 6-19. -- Left: profile of density ve. depth from $\gamma-\gamma \log \mathrm{f}$ ing in crater hole ORT-20 at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left- and right-hand plot scales are identical.

FIGURF 6-20. -- Left: profile of density vs. depth from $\gamma-\gamma \log$ ing in crater hole $0 Q T-19$, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left-and right-hand plot scales are identical.

FIGURE 6-22. -- Left: profile of density vs. depth from $\gamma-\gamma \log$ ing in crater hole ocT-5, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left- and right-hand plot scales are identical.

FIGURE 6-23. -- Left: profile of density vs. depth from $\gamma-\gamma$ logging in control hole $\operatorname{OAR-2A}$, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left- and right-hand plot acales are identical.

BOREHOLE OIT-11: GAMMA-GAMMA LOGGING

FIGURE 6-24. -- Left: profile of density vs. depth from $\gamma-\gamma$ logging in crater hole OIT-11, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (1])] to profile at left. The left-and right-hand plot scales are identical.

BOFEHOLE OKT-1?: GAMHA-GAMMA I,IGGING

FIGURE 6-25. -- Left profile of density vs. depth from $\gamma-\gamma$ logging in crater hole $\cap \mathrm{KT}-13$, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (ll)] to profile at feft. The left- and right-hand plot scales are identical.

BOREHOLE OPZ-18: GAMMA-GAMMA LOGGING

FIGURE 6-26. -- Left: profile of density vs. depth from $\gamma-\gamma$ logging in crater hole $0 P Z-18$, at 1.0 times the scale of the plot as received. Right: plot of broken-straight-line fit [Eq. (11)] to profile at left. The left-and risht-hand plot scales are identical.


```
Hemman
```



```
#
```


I $\underset{\sim}{w}$

```
%
```


TABLE 6-8. -- Endpoints of segments of piecewise linear fits [Eq. (11)] to density profiles from gamma-gamma logging. Table continues on succeeding pages. Data given for boreholes OOR-17, OSR-21, ORT-20, OQT-19, ORZ-4, OCT-5, OAR-2A, OIT-11, OKT-13, and OPZ-18 in OAK crater and KAR-1 in KOA crater.

TABLE 6-8 (Continued)

	－tatetax mobl				－tact moxtmot jsama				
」	$\begin{gathered} \text { nerriern } \\ \text { rysines } \\ \text { ivio } \end{gathered}$			（be／cc）	J	P1Flfice DEFM， （1）		$\begin{aligned} & \text { ouputen } \\ & \text { :irn } \end{aligned}$	coboutc： 76れでリ 160／PC
1	19.00	80.98	130.64	4.033	101	${ }^{6.90}$	19.00	333．98	1．9\％
？	10．34	31808	1：1．0．	8，0097	202	62．24	19.38	334，74	1：800
；	11.6	3：70	19．9．9	1.672	${ }_{30} 108$	42．60	20．8080	354．：19	
？	12．90	19.80	139．69	${ }^{1.194}$	243	65．90	${ }^{27} .09$	300．14	1，069
；	11.00	\％．0n	10．63	1：939		60．30		302.15 3036 18	1，8i8
\％	10.34	4.	10.90	1．964	3 l	0.6	16.00	303：90	li， 1
10	13：\％	31：08	198：\％	1．99\％	340	cs．040	19.00 13.080	S06．06	
12	198\％	\cdots	197．4\％	2，047	a	61.18	31.96	${ }^{3919}$	li．92
is	10，	30．84	196.98	3：${ }^{2}$	118	4.10	16．00	${ }^{312.12}$	，1，7921
＊	11.20	30.08	136.07	1．970	！	6	1：90	996．64	1， 10×1
18	18.60	19．000	16， 16.96	－	119	co．0u	23．80	：37，${ }^{\text {a }}$	I．A）${ }^{\text {a }}$
\％	1930	21.98	119．10	， $0 \cdot$	319	Wi，4	4，20	${ }_{361,73}$	l． 1.11
：	37.00	318	\％ 19.04	，	118	19．24	84.00	148：31	1，0\％＊
＜	2．．．d	－ H ． 3 c	113，${ }^{\text {a }}$	1．10	181	70.24	84.0	360．：\％	1.08
\％		－	17．73］	［1：012	\pm	74.3	18.60	3168.38	1.808
i	：2．10	12.25	110．0．	1.611	218	¢1．84	13.40 14.00	319．36	1， 1,73
3	31306	8， 2	181．99	i．843	18	12.0	15.00	311．13	：．70n
\therefore	29.60	20.20	196.89	1．01）	114	？：104	13．00	376．428	1.1064
\％	\％00	18．26		1：0］？	18	3.00	$\cdots \times 0$	3．1．34	1．676
\％	\cdots	－1．90	191．30	1： 1.85	120	72．00	13．90	31．96	1．b6s
3	20．16	8 c	193．7．	1－n＇\％	130	10.80	10.26	343，27	3：660
31		caiot	i96：3	（1．03，	191	\％900	1．16	919．23	1.649
：	21.64	A\％：	10．60	1．594	183	13．30	21.60	sat：	， 1.614
3	34．00	－8．808	202．＂	10，	${ }^{188}$	＇16：30	12.60 12.20	3199．93	1．69，
3	＂．1＂	18.8	－0， 0	1．0．7	130	17．30	19.90	398.18	： $1:$
\cdots	， 3.	S0．3．	？		18	\cdots	16.30	300．4	1．${ }^{\text {P }}$
；	31.00	30.00	212.02	：，910	1,0	150	19．20	394．90	－${ }^{1.1}{ }^{29}$
2	31．84	63．30	\％10，00	3．880	1i\％	？10	11.18	399．${ }^{\text {P }}$	1．，0］
：	33．70		eifor	A，	1		${ }_{13} 1.6$	－61．89	： $1,7 \%$
？	39.30	819，30	\％ition	l：803	\％	80.80	19，88	00\％：	？：；10
9	90\％	$0 \cdot 0$	28\％19	$1 \cdot 126$	18	01.00	29：30	－08：	${ }_{1}^{1,084}$
\％	33.04	42，${ }_{4}$	273．75	l． 1.89	191	81.180	27：9010	：12．0\％	2.929
：	${ }^{318 \%}$	23．30	${ }^{132} 18$	1．89＇					
\％	30，${ }^{30}$	－6．88	\％ 36.08	li＞te					
1	30．20	4.78	831.11	1．193	ru＊		．00 1．30	6．an	
3		23．800	203．03	${ }^{\text {2．03\％}}$	8.	e．e：	$30.00 \quad 209.00$		2993846
＂4	H．0u	1.80	380.16	1：79？			，	1.80	．2323966
8	－1，04	72.08	${ }_{251.96}$	：．019					
1	－2． 98	1.30	294，06	1．98：					
9	－2．04	7．170 18.00	293.19	${ }^{1.819}$					
\because	－3．10	23.00	260：30	1．641		．			
0	－4．30	23.80 31.70	261．08	1．173					
3	$0 \cdot .80$	1．ec	264.61	1.642					
\because	$\because 9.30$	88.08	769.1	1．461					
6	96.08	40.70	271.64	${ }^{1,484}$					
：	－6．10	19.10	274.0	1.076					
$:$	－1．00	30，00	279．10，	${ }^{1} \mathrm{~B}, \mathrm{OH}$					
：	＂．3．	30.2 ＂	27\％${ }^{\text {a }}$	1：973					
；	＊．ra	\cdots	279.9	1．999					
＇，${ }^{2}$	－7．0u	20．0n	281.06	1.90					
\bigcirc	93.20	19.08	206．10	1．198					
＇3	90.08	4.30	297.38	1．11\％					
\％	96.80	818080	880．6\％	1：7\％3					
：	90．90	46.80	296.09	1．928					
0	31.64	26，90	293．39	1.98					
1	3n，	¢0，		1．684					
－	33.20	4.10	299，49	1．191					
－	31.70 94.20	10.20	302，${ }^{\text {301；}}$	（1．91\％					
9	30．60	19.40	303．34	1.600					
$:$	39．00	\％100	306.90	1．413					
－	96.60	10.00	313．17	1．6：3					
\％	57．44	\％00	$310 \cdot 0$	1.630					
1	97.30	19.90 23.30	${ }_{319}{ }^{19} 9$	： 1.960					
3	30．10	26.00	319．0．	1.908					
9	99．14	35.20 4.30	321．9\％	${ }^{1.064}$					
3	31．40	19，50	3120	1．064					
0	88．00	319．980	326：84	${ }_{1}^{1.1040}$					
？	ciosio	10.00	3，9，0\％	1.191					
¢0	6．8．ev	13：00\％	33n：01	1，93 1,793					

TABLE 6-8 (Continued)

TABLE 6-8 (Continued)

TABTIF $6-8$ (Cont inued)

\footnotetext{

TABIE 6-8 (Continued)

 AOPO

TABLF: 6-8 (Continued)

TABLE 6-8 (Continued)
保

TABLE 6－8（Continued）

Heact brummut an			391.84		peate buntmag 0iteit				
」	$\begin{aligned} & \text { nowitec. } \\ & \text { cicimes } \\ & \text { intw } \end{aligned}$	$\begin{aligned} & \text { 0sti:18LO } \\ & \text { Sysiry, } \\ & \text { loiv) } \end{aligned}$	$\begin{aligned} & \text { computer } \\ & \text { OCPir } \\ & 1 \text { Bil } \end{aligned}$	compuitc otusitr $16 \mathrm{~A} / \mathrm{Ce}$ ）	\lrcorner	DISitict． HRBf，： lulat	016Tifith OEn5117． ＇olvi	compuico ofern （Fi）	cumpulec oumsit！ （64）CE）
31	3s．6u	34．00	543.04	2.102	1	4.94	02.00	169．37	4.002
142	9y．${ }^{\text {a }}$	34．30	349.17	2．034	；	9.84	46.60	179.70	4.074
1us	34.91	93．00	［90．11	2.066	，	3.64	\＄3．20	316．06	＜．ns：
－u＊	6.04	es，an	332.06	2.066	＊	4.80	26，73	179．21	2.015
ivs	4．2u	37.38	352.03	2.093	，	4.90	39.10	150.19	2．119
lv＊	A．0．4	36.00	353.14	2.270	－	3.40	－4．30	181．39	4．138
（w）	61.04	34．00	395.90	2.098	；	3.40	40.00	113.15	A12）
いい	02.30	39.00	357.11	2.022	－	3.0	96.90	113.40	2.103
い＊	0\％．0y	1． 1.00	390.05	1．08s	＊	9，60	26.20	180.18	4．06？
100	4．4．4	33.00	161．3n	2.635	10	－90	49．40	1a＞，08	2．03s
414	\＄ 3.04	31.60	363.71	2.042	12	\％ou	36.00	184，66	2.060
112	63.64	39．n0	366.04	2.117	12	3.00	94．60	189，09	2．20s
4，${ }^{\text {a }}$	＊5．34	37． 20	560.96	2.08%	13	1． 30	96.30	190.45	2.099
414	H2．46	4.20	${ }^{371.40}$	d．156	＊＊	1.60	35.00	192.60	2.049
119	0．3．40	$94.0{ }^{\text {a }}$	373.04	2.180	49	0.30	96.00	194．39	［．07\％
114	－心	2． ra_{1}	573．37	1．401	14	9.90	37.00	199．39	1.000
141	6．．儿	3 sc	376．54	2.028	＊＇	9.01	19.00	107．35	2.111
146	＊＊＊	33.35	378．0n	2.030	14	9.00	43．00	106．90	2.100
H0	b．\cdot ？	－． 6 ：	9njes	2.506	4	10.00	－5．30	201.26	2.205
40	＂．＇＊＇	9.9	9ni．4，	2.043	－	16．tu	－3．92	7n3．62	2．10n
A．	4．1．21	\cdots	3n3．5s	$2.93+$	1	11.30	36.16	206.38	2．74．
？	\cdots	＂．．＂	107．r：	2．94\％	？	14.20	35.80	104．0，	2．01．
1．＇	\cdots	\because＇，	3 mm .29	1．093	＊	18．70	\＄1．60	711．${ }^{\text {a }}$	1．992
\cdots	\cdots	24．0＂	500.32	3．114	\cdots	13．30	94.00	210.29	2.093
\cdots	70．：${ }^{\text {c }}$	ve， 0	392.07	2.112	／3	13.66	34.20	215.43	2．796
bet	？．．0u	24.00	901．89	2.101	＂	13．0u	33.000	116．22	7．0．0
\pm	12．\％	4．000	303.89	1．412	＊	19．30	－6．or	311．00	2.064
14	3a，su	\＄4．90	317．98	1．830	（3）	16.00	＊＊．30	281.16	8.036
． 18	13.90	47.07	－81．${ }^{3}$	1．04s	20	14．00	36.30	282．13	2.061 8.009
111	Ps．94	35.40	－66．06	2.051	${ }_{3}$	17.00	30．0n	220．e\％	1．970
13．	14．34	97．70	－07，23	2．07）	32	17.00	24．10	238.34	1.450
139	90．04	3\％，8	409．96	2.094	39	10.00	32.60	132．76	2.011
154	73．04	54.0 ¢	411.8	2.094	3	18.64	33.30	233.12	2.029
199	93．64	36．0c	012.67	2.070	35	19．30	24．30	297．67	1．904
10%	30．34	97.00	015.58	8．03s	4	30.00	27.00	200.63	1．529
	＇t．＇u	39.00	416.4	2.127	\％	20．30	\＄1．00	261．01	1．906
19\％	11.30	36.30	［80．03	2.106	38	26．90	32.60	242．40	2.002
104	70．04	34.00	－21．9\％	2.127	3	22.04	90.40	24．57	1.976
19	7\％${ }^{10}$	3t． 3 F	489.71	2.106	9	22.36	29，00	206，94	1．935
$1{ }^{1+1}$	＂1\％	36.40	486， 26	2.073	－1	22.10	25.80	286.90	1．904
$3 *$	Pred	－9．20	981.98	8．219	：	22.30	31.40	250．47	1．961
103	nu．su	34.40	430.93	2.03 n	4	23．00	30．90	232.44	1.979
1＊：	－1．じ	4.80	433.65	2.10 r	4	32.10	35.08	295.20	8.041
149	－1．64	34.90	－39．30	2.064	4	29，30	39.20	237.17	2.032
10\％	82.04	31.08	497．39	2.022	＊＊	25.00	17．50	200．31	2.009
101	12.38 8.00	45．09	－34．70	2.054	－1	25.80	37.20	263.48	2.093
108	\＄3．00	4.90	－41．42	2.203	9	26．04	55.68	240．25	2.098
	8\＃．84	96.80	－13， 90	2．117	9	26．40	59.70	369.85	3.052
130	\％．Su	41.09	4 HP 24	＜14＊	20			24．40	2.061
131 132	53．36	33.00	49.37	\％．022	31	21.30 26.00	35.70	268.98	2.09.
i3s	as．in	14.00		1.438 1.080	32	26.00	36.15	372.15	2.069
1	Pt．av	－ar	－sata	1.190	30	20．90	93.10	273.11	2.048
\cdots	s6．00	9 mos	－94．in	2.103	35	24.94	63．：n	279．67	2.019 3.023
					36	29.30	35．30	2r9．84	3.023 2.025
					31	zv．lu	34.36	270．42	7．0se
					38	S0．00	33.49	280．00	\％．039
「．．．st		.00 1．30	63.71		31	30.30		201.97	2.039
		1，not	．2513n4M	0	30．80	35.00 34.20	243.13	2.015	
su．				80．60 336.30	\％	Cz．34	49.80	？ 219.8	2．636
					63	94． 10	28， 30	290．63	1．90．
					－	31．＊4	42.30	293.10	2.009
					4	38.10	82.10	204．96	1.028 2.048
					0	34.10	41．80	200：50	7.017
					－4	34，00	33.20	299.29	2.020
					\pm	33.30	33.20	sno．n ${ }^{\text {a }}$	2.020
					， 1	35.64	34.60	372．0s	8.042
					＇1	14.10	84.518	104．0\％	2.641
					13	\＄3．60	34．00	309.98 307.56	2.047
					10	s1．60	34.08	309，92	2.033
					\％	34.00	31.90	$311.5 n$	1． 5781
					\％	34.30 34.00	32．20	313.46	2.009
					18	39.94	32.00	319．018	$1.00{ }^{\text {2 }}$
					19	3\％． 0	24．98	110.98	1．73，
					0	48.10	40.30	319.16	1．978
					－1	40．04	33,90 31.30	320.94	2.031
					3	－2．00	\＄5．00	322.91 32724	1．991
					0	42.60 .350	40． 80	329.61	2．127
					5	－3．30	94，00	312.36	2.072
					01	－9．04	32.00	335.12	2，002
					0	43.00	22.60	999.08	2.011
					9	43.60	34．40	341.42	2.035
					1	46	30.70 30.38	364.39 306.54	2.033 1.970
					7	15.70	93．3n	309．32	1．791
					93	43.00	31． 3 r	390.07	1．991
					9	46	31.50	392.95	2.023
					76	56．20	34．28	396.38 593	1.036 1.702
					\＃	su， 0	29.60	361.80	1．90＊
					78	31.94	29.9	563.46	1.966
					\％	S1．76	32.42	369．4	1．009
					100	32.36	36．90	36 A .58	2.103

TABLE 6-8 (Continued)

TABLE 6-8 (Continued)

TABLE 6-8 (Continued)

- fact womemoll opz-16

[^12]clact gonehole opi.10

TABLE 6-8 (Continued)

TABLE 6-8 (Continued)

TABLE 6-8 (Continued)

APPENDIX 6-2

DENSITIES OF "CORAL" AND ITS SOLID COMPONENT

 AS CONTINUOUS FUNCTIONS OF DEPTHData on the composition of coral solids ${ }^{1}$ place its density ρ_{S} in a narrow range of values (2.71 to $2.93 \mathrm{~g} / \mathrm{cc}$; see Tremba and Ristvet, 1986). Within that range, however, ρ_{S} varies erratically over the discrete set of borehole depths for which solid composition has been measured. Hence, in a given borehole, straight-line connections between measured (ρ_{S}, z)-points embody virtually all the extant information on the continuous change of ρ_{S} with depth (or altitude) z. At that level of description, we have:

$$
\begin{equation*}
\rho_{S}=\left[\left(z-z_{m}\right) \rho_{S}^{m+1}+\left(z_{m+1}-z\right) \rho_{S}^{m}\right] /\left(z_{m+1}-z_{m}\right) \quad ; m=1,2, \ldots, M \tag{13}
\end{equation*}
$$

with (ρ_{S}^{m}, z_{m}) denoting point m of the set measured for a given $L \cap r \rho h n l e$, and with the points so ordered that depth decreases as mincreases.

For the same borthele, let the z_{j}-points of Eq. (11) also be ordered so that depth decreases as j increases. Now, merge the two sets of z-values, and number different z 's of the combined set in the order of decreasing depth (again), obtaining thereby the values $z_{k}(k=1,2, \ldots, k+1)$. The z-interval between z_{k} and $z_{k+1}(k=1,2, \ldots, k)$ must then lie entirely within one of the z-intervals on which ρ (the density of coral) has the linear depth-depe.. once specified by Eq. (ll); it must also lie entirely within one of the z-intervals of linear variation of ρ_{S} (the density of the coral solid) specified by Eq. (13). However, a given z_{k}-value need not appear among the $z_{j}{ }^{\prime} s$ of Eq. (11); if not, then, at $z=z_{k}$, the value of $\rho\left(=\rho_{k}\right)$ is obtained from Eq. (11) for the z_{j}-interval in which $z=z_{k}$ falls. Likewise, for a z_{k}-value not among the z_{m} 's of Eq. (13), we find the z_{m}-interval in which z_{k} falls, and use Eq. (13) to compute ρ_{S} at $z_{k}\left(\rho_{S}=\rho_{S}^{k}\right)$. Eqs. (11) and (13) can then be replaced by the following equivalent relations:

$$
\begin{aligned}
\rho & =\left[\left(z-z_{k}\right) \rho_{k+1}^{-}+\left(z_{k+1}-z\right) \rho_{k}^{+}\right] /\left(z_{k+1}-z_{k}\right) \\
\rho_{S} & =\left[\left(z-z_{k}\right) \rho_{S}^{k+1}+\left(z_{k+1}-z\right) \rho_{S}\right] /\left(z_{k+1}-z_{k}\right)
\end{aligned}
$$

$$
; k=1,2, \ldots, k
$$

Eq. (14)

In accord with Appendix $6-1, \rho_{k}^{-}=\rho_{k}^{+}=\rho_{k}$ for the $\gamma-\gamma$ profiles; for the BHG profiles, $\rho_{k}^{+}=\rho_{k+1}^{-}=\rho_{k+1 / 2}$ where $\rho_{k+1 / 2}=\rho_{j+1 / 2}--$ the value of j being set by the requirement that the interval from z_{k} to z_{k+1} lie on the interval of Table 6-7 from z_{j} to z_{j+1}.

For each borehole included in the BHG survey, Table 6-9 (located in this Appendix) presents the depths $z_{k}(k=1,2, \ldots, K+1)$ that mark the endpoints of

[^13]the depth-intervals on which both ρ and ρ_{S} are simple linear functions of z [Eq. (14)]. For each depth z_{k}, the density of either coral or its solid component is also shown (third and fourth columns of table). Where blank spaces appear between two listed values of coral density ρ (called "BHG DENSITY" in tbl. 6-9), those two ρ 's are identical; that same value applies everywhere between them. Also, where values of ρ appear, the density ρ_{S} of coral's solid component does not; the value of ρ_{S} at that blank spot is given by Eq. (13) with z equal to the depth listed (or to its negative, if z denotes height).

MASS OF SOLID AS A CONTINUOUS FUNCTION OF DEPTH IN A BOREHOLE

Table 6-9 (in this Appendix 6-2) and Eqs. (13) allow ρ and ρ_{S} to be computed for any depth and borehole covered by the BHG survey. Hence, the mass m_{s} of coral solid can also be computed from Eq. (5). In fact, given piecewise linear dependence of ρ and ρ_{S} on z [Eq. (14)], m_{s} can be expressed in terms of z using only elementary functions. In particular, if z lies between z_{k} and z_{k+1}, then:

$$
\begin{equation*}
m_{S}=m_{S}^{k}+\int_{z_{k}}^{2} \rho_{S}\left(\frac{\rho-\rho_{L}}{\rho_{S^{-}} \rho_{L}}\right) d h \quad ; \quad k=1,2, \ldots, k \tag{15}
\end{equation*}
$$

where $\mathrm{m}_{\mathrm{s}}^{1}-0$ and

$$
\begin{equation*}
m_{S}^{k}=m_{S}^{k-1}+\int_{z_{k-1}}^{z_{k}} \rho_{S}\left(\frac{D-D_{L}}{D_{S}-D_{L}}\right) d h ; k=2,3, \ldots, k+1 \tag{16}
\end{equation*}
$$

Next, observing that $\rho_{S} /\left(\rho_{S}-\rho_{L}\right)=\left(\rho_{S}-\rho_{L}+\rho_{L}\right) /\left(\rho_{S}-\rho_{L}\right)$, we can write Eq. (15) as follows:

$$
\begin{equation*}
m_{S}=m \mathbf{k}+\int_{z_{k}}^{2}\left[\left(\rho-\rho_{L}\right)+\rho_{L}\left(\frac{\rho-\rho_{L}}{\rho_{S}-\rho_{L}}\right)\right] d n \tag{17}
\end{equation*}
$$

Replacing ρ and ρ_{S} in Eq. (17) by their linear equivalents in terms of z [Eq. (14)], we obtain

$$
\begin{equation*}
m_{S}=m k+\int_{z_{k}}^{2}\left\{a_{k}+b_{k}\left(h-z_{k}\right)+\rho_{L}\left[\frac{a_{k}+b_{k}\left(h-z_{k}\right)}{a_{k}^{\prime}+b_{k}^{\prime}\left(h-z_{k}\right)}\right]\right\} d h \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\rho_{k}-\rho_{I}, \quad b_{k}=\left(\rho_{k+1}-\rho_{k}\right) /\left(z_{k+1}-z_{k}\right) ; a_{k}^{\prime}=\rho_{S}-\rho_{L}, \quad b_{k}^{\prime}=\left(\rho^{k+1}-\rho_{S}^{k}\right) /\left(z_{k+1}-z_{k}\right) E q \tag{19}
\end{equation*}
$$

The integral of Eq. (17) is readily found as an explicit function of z (Pierce, 1929)

$$
\begin{equation*}
m_{S}=m_{S}^{k}+a_{k} x+b_{k} x^{2}+\rho_{L}\left[\frac{b_{k} x}{b_{k}^{\prime}}+\frac{\left(a_{k} b_{k}^{\prime}-a_{k}^{\prime} b_{k}\right)}{\left(b_{k}^{\prime}\right)^{2}} \cdot \ln \left(\frac{a_{k}^{\prime}+b_{k}^{\prime} x}{a_{k}^{\prime}}\right)\right] \tag{20}
\end{equation*}
$$

where $x=z-z_{k}$.
From Eq. (16), it follows that $m_{S}=m_{S}^{k+1}$, when z is set equal to z_{k+1} in Eq. (20) ; with m_{S}^{k+1} known, a similar computation then gives $\mathrm{m}_{\mathrm{S}}^{\mathrm{k}+2}$. etc. Thus, using the depths and densities of Table 6-9, the m_{S}^{k}-values ($k=2, \ldots, K+1$) can be computed in sequence from Eq. (20). For each borehole of the BHG survey, the resulting values of $\mathrm{m}_{\mathrm{S}}^{2}, \mathrm{~m}_{\mathrm{S}}^{3}, \mathrm{~m}_{\mathrm{S}}^{\mathrm{K}+1}$ appear in the seventr column of Table 6-9, starting at the greatest depth logged in that hole. Listed in the sixth column is an approximation to $\mathrm{m}^{\mathrm{k}}-\mathrm{m}_{S}$, say -- obtained by setting p_{S} equal to its mid-value $\rho_{S}^{k} \equiv 1 / 2\left(\rho_{S}^{k+1}+\rho_{S}^{k}\right)$, the mean of ρ_{S} on the z-interval from z_{k} to z_{k+1}. Using that value for ρ_{S} in the integral of Eq. (15), but with ρ still related to z by Eq. (14), we can write

$$
\begin{equation*}
m_{S} \neq m_{S}=\frac{m}{s}+\frac{\rho_{S}^{k}}{\rho_{S}^{k}-\rho_{L}} \int_{2 k}^{2}\left(\rho-\rho_{L}\right) d h=m_{s}^{k}+\left(a_{k} x+b_{k} x^{2}\right) \underline{\underline{s}} /\left(\rho_{S}^{k}-\rho_{L}\right) \tag{21}
\end{equation*}
$$

where ${\underset{\mathrm{m}}{\mathrm{S}}}_{1}=0$, and ${\underset{S}{\mathrm{~m}}}_{\mathrm{k}}^{\mathrm{l}}$ is the value obtained for ${\underset{S}{S}}^{b}$ b setting z equal to z_{k+1} in Eq. (21) (or $x=z_{k+1}-z_{k}$). Replacing the $\rho_{S}^{k}(k=1,2, \ldots, k)$ of Eq. (21), for all k, by the single value $2.821 \mathrm{~g} / \mathrm{cc}$ (half the sum of aragonite and calcite densities) yields yet a coarser estimate of m_{S}, and the approximate values of $\mathrm{m}_{\mathrm{S}}^{\mathrm{k}}$ listed in the fifth column of Table 6-9.

Table 6-10 (also located in Appendix 6-2), identical in format and derivation to Table 6-9, differs from Table 6-9 only in that the density profiles on which it rests came from $\gamma-\gamma$ logging (not from BHG surveys).

DENSIFICATION: THICKNESS CHANGES AS CONTINUOUS FUNCTIONS OF DEPTH IN CRATER HOLES

Eq. (20) allows us to compute the solid mass per unit cross-section, ma, from the greatest depth logged to the depth at $z=z_{a}$ in a given borehole. The horizon at z_{a} in the given borehole -- horizon "a" -- will generally have somewhat different depth in a second borehole ${ }^{l}$. Let $z=z_{a}^{*}$ at that horizon in the latter hole, with $m_{S}^{a^{*}}$ denoting solid mass (per unit cross-section) in the second hole, from the greatest depth logged therein to horizon "a". For any

[^14]depth above "a" in the first borehole, the solid mass between "a" and that depth is equal to $m_{S}-m_{S}^{a}\left(\equiv \Delta m_{S}\right)$, where m_{S} is computad to the depth in question from Eq. (20), using the a_{k} - and b_{k}-values for that first borehole. Likewise, in the second borehole, the solid mass from "a" to a given depth above " $a^{\prime \prime}$ is equal to $m_{S} \mathrm{~m}_{\mathrm{S}}^{\mathrm{a}^{*}}\left(\equiv \Delta \mathrm{~m}_{\mathrm{S}}^{*}\right.$), with m_{S} computed from Eq. (20) using a_{k} and b_{k}-values appropriate to that borehole. For each choice of z in the second hole -- $z^{2}=\mathbf{z}^{*}$, say -- $\Delta \overline{\mathrm{m}_{\mathrm{S}}}$ can be computed simply by evaluating the right-nand member of Eq. (20) and subtracting $\mathrm{m}_{\mathrm{S}}^{\mathrm{a}^{*}}$ from the result. However, in the first hole, finding the value of z at which the solid mass Δm_{S} above "a" is equal to Δm_{S}^{*}, plainly requires equating Δm_{S} to Δm_{S}^{k}. The relation determining z is therefore the following:
$\Delta m_{S}^{\star}+m_{S}^{a}=m_{S}^{k}+a_{k} x+b_{k} x^{2}+p_{L}\left[\frac{b_{k} x}{b_{k}^{\prime}}+\frac{\left(a_{k} b_{k}^{\prime}-a_{k}^{\prime} b_{k}^{\prime}\right)}{\left(b_{k}^{\prime}\right)^{2}} . \ln \left(\frac{a_{k}^{\prime}+b_{k}^{\prime} x}{a_{k}^{\prime}}\right)\right]$
Eq. (22)
where $x=z-z_{k}$.
Eq. (22), which is transcendental, can be solved for x (hence z) by numerical means. Exactly one value of x satisfies it because m_{S} [Eq. (20)] increases monotonically as depth decreases, and the mass $\Delta \mathrm{m}_{\mathrm{S}}$ above horizon "a" in the second borehole is ≥ 0. Solution of Eq . (22) for x is greatly expedited by foreknowledge of $m_{k}(k=1,2, \ldots, k)$: As k is increased from $k=1$, it reaches a level at which positive values of $\Delta m_{S}^{*}+m_{S}^{a}-m_{S}^{k}$ turn negative; the root of Eq. (21) must lie on the z_{k}-interval over which that change of sign occurs. With the root of Eq. (22) so bounded, it can be found easily by search or iteration. Repeating the process for a series of ever-shallower z's gives a set of (z^{*}, z) pairs for which the solid mass between horizon "a" ($z=z_{a}^{\frac{2}{A}}$) and level z^{*} in the second hole is equal to that between " a " ($z=z_{a}$) and level z in the first. The height of the column between z_{a} and z is $z-z_{a}$ (or its negative if z denotes depth); $z^{*}-z_{a}^{*}$ gives the corresponding height in the second hole (for equal mass above "a"). If the two holes are actually the same, but with. pre- and post-shot density profiles representing the "second" and "first" holes, respectively, then $z-z_{a}$ and $z^{*}-z_{a}^{*}$ (or their negatives) give the postand pre-shot thicknesses of a column above "a" that contains the same mass of solid at both times. The change in that column's thickness due to shotinduced changes in density is just ($\left.z^{*}-z_{a}^{*}\right)-\left(z-z_{a}\right.$) (or its negative).

Under the key assumption given previously on pages $6-7$ and $6-8$, the preshot profiles are found today in control holes -- whence, we do in fact compute (z^{*}, z) pairs from profiles in different holes. A detail of the calculation (noted previously on pages $6-8$ through 6-10) lies in redefining horizon "a" at each successive geologic horizon met along the stepwise march in z^{*} (from depth toward the sea floor). With z^{*} referring to the control hole, z is then allowed to shift suddenly to its value, in the crater hole, at a newly encountered geologic horizon. Geologic horizons are thereby strictly retained as Lagrangian surfaces, regardless of departures from the ideal of simple subsidence, or of actual differences between pre-shot density profiles
and control-hole profiles. In addition (see p.6-8 through 6-10), differences in column height are thereby computed from densities in materials that are (as nearly as possible) the same. ${ }^{1}$

Curves of thickness-change vs. depth are plotted as a series of dots when z^{*} refers to a control hole (jumps in z can then occur, marking shifts to geologic crater-hole horizons). When z^{\star} refers to a crater hole, curves of thickness-change vs. depth are drawn with dashes (jumps in z then mark shifts to geologic horizons in control holes). The mean of a dotted and dashed curve is also drawn, as continuous line.

As functions of present crater-hole depth, the thickness changes computed from profiles of the BHG survey were presented in preceeding sections (p. 6-7 and 6-8 and 6-8 through 6-10) (see figs. 6-4 through 6-9). Corresponding curves, deduced from $\gamma-\gamma$ density profiles, appear on succeeding pages as Figures 6-27 through 6-53.

REFERENCES CITED

See pages 6-35 and 6-36 for references cited in this Appendix.

[^15]TARLE. 6-9. -- Mass of solid in vertical columns of unit cross-saction, from BHG-survey data (continued on next 3 pages).

2.6220				
	2.9230			
	2.90\%			
	2.9191			
	2.0082			
1.756		c.	c.	0.
	2,014	467.	-35.	633.
	2.12\%	1311.	178\%.	18n7.
1.936		1338.	1'3.	1313.
2.041		1330.	1933.	119.
	2.018	171.	1798.	119n.
	2.1143	3 191.	2316.	arn.
2.0018		2198.	9T4.	:10\%.
		2194.	Fi4.	'1*'.
	2.917*	3191.	314.	1wi.
7.0112.010		4210.	4138.	-19.
		214.	1319.	139.
	2.8**	1390.	4×5.	496.
3.016		364.	S54.	354.
		5641.	9594.	9364.
	a.060b	4090.	-924.	3916.
2.013	2.6938	$6{ }^{516 .}$	ceos.	twas.
		${ }^{16}{ }^{1} 1$.	t945.	49.9.
2.036		7062.	6945.	6763.
	2,1242	7496.	7649.	16.9.
2.050		6905.	8407.	8009.
2.000		5905.	P401.	cars,
3.040	2,0001	94.8.	-398.	9398.
		9763.		-13.
1.931		9768.	933.	P83.
	2.0303	80304.	102t4.	1029*.
$\begin{aligned} & 1.991 \\ & 1.940 \end{aligned}$		11294.	11208.	112 sP .
		11290.	11206.	1129.
	2.12<1	12671.	11613.	11615.
1.006	2.190	12154.	17060.	120a,
		28010.	1296\%.	1236?
1.97\%		12690.	1954.	12962.
	*.71<0	${ }_{1} 180 \mathrm{O}$.	13198.	13194.
$\begin{aligned} & 1.096 \\ & 2.056 \end{aligned}$		f0018.	15993.	13903.
		10014.	4949,	13903.
	$2.18{ }^{181}$	1*18.	20729.	14.33.
$\begin{aligned} & 2.096 \\ & 1.006 \end{aligned}$		13×97.	190*s.	15043.
	2.408	15093.	1043.	194.3.
	2.1201	1697.	16174.	16976.
2.046		17811.	11213.	17221.
		1712.	1783.	17221.
	$2.79 \% 8$	143s.	10386,	10396.
$\begin{aligned} & 2,011 \\ & 2.000 \end{aligned}$		1002\%.	19691.	1etsat.
		206\%.	10604.	184.4.
2.000	2,074s	10192.	10311.	16415.
	2.9080	18681.	20643.	15093.
2.008		19170.	19716.	19116.
1.928		19710.	19716.	19716.
1.912		2656.	2rats.	20646.
		20696.	20606.	2064t.
	2,0020	80769.	9n939,	zolan.
	2.6365	21331.	29513.	21912.
1.912		22816.	21997.	2199.
1.940		22415.	21997.	21907.
	2.7813	22763.	22746.	2374.6.
1.90 n		23833.	23327.	2332'.
1.800		23305.	23539.	2332].
	2.8233	23093.	23969.	
$\begin{aligned} & 1.000 \\ & 1.006 \end{aligned}$		20590.	3451.	94371.
		2089 C .	9431.	7*31.
	2.1768	23En.	29234.	39254.
1.906		[504],	25034.	23434.
1.800		13667.	25034.	1504n.
	2.8700	2617.	26890.	26290.
	2.6341	26766.	76785.	26195.
1.290		2710.	27668.	P704*.
1.092		2114.	29Eht.	270xp.
	1.1099	31598.	27396.	27956.
	2,6970	21910.	27066.	21045.
1.942		19476.	2037.	73380.
1.988		$3{ }^{\text {chets. }}$	20876.	313te.
	2.8307	8186.	206's.	30694.
	8.9197	10466.	2n/13.	sats.
	1.9133	29037.	29710.	39010.
	2.9213	19111.	74688.	2564.
1.039		9141.	29672.	29692.
1.807		2974.	29612.	23672.
2.607		30216.	30039.	30039.
	8.983)			
	2.9185			
	1.731			
	2.8210			
	7.e2s0			

TABLE 6-9 (page 2 of 3 pages). -- Mass of solid in vertical columns of unit cross-section, from BHG-survey data.

TABLE. 6-9 (page 3 of 3 pages). -- Mass of solid in vertical columns of unit cross-section, from BHG-survey data.

TABLE 6-10. - Mass of solid in vertical colums of unit cross-section, from Y-y survey data. Tabie continued on succeeding 19 pages.

TAPLF: 6-10 (Continued)

TABLE 6-10 (Continued)

Moncilye

;

TABLE 6-10 (Continued)

			Sonimole							- Datmole	0nt-80		
,		$\begin{gathered} \text { sein } \\ \text { ofmsinit } \\ \text { tbascis } \end{gathered}$		cumule ${ }^{\circ} \mathrm{vt}$ nno.z.en!	S0L 90 mass		*			26wstr $0^{\prime} \operatorname{sul} 10$ cconoment ise/be.	cumber ive nhoen.021		160 ccme? llutae *PLimf coe who
101	136.90		2.1904	4870.	9080.	7026.	304	168.66	1.909		10622.	10657.	1069\%.
108	1919\%	2.808		16*.	1312.	7812.	208	103.74	1.908		1810.	1a>0s.	11709.
19\%	-07.6)	2.027		1334.	7483.	9403.	218	141,40		2.9198	16854.	1atit.	$22^{406 .}$
108	cos.is	2.087		7009.	T994.	1354.	209	100.3'	2.019		16840.	1F932.	10932.
109	-00.6\%	3.00\%		746.	9636.	7616.	203	135,20	2.113		I090.	10193.	19090.
100	-02.'s	2.09)		1363.	712.	1712.	200	196.63	2.019		13061.	19124.	19129.
109	40.9		2.8106	160.	1754.	1190.	201	193.04	1.75:		19171.	1925.	11231.
100	397, 81	2.049		75.	1930.	7890	285	495.78	1.948		1927.	10362.	1930.
179	31.03	2.091		\%4t.	1790.	7986.		109.9	2.908		10364.	iss3s.	15434.
110	394, ${ }^{\text {a }}$	2.070		1901.	1030.	\%950.	218	100.98	1,997		17439.	19493.	19095.
112	391, ${ }^{10}$	2.009		8130.	6277.	8274.	114	106.60		2.9291	lisic.	18977.	1737\%.
112	301. 88	2.E*'	< 1970	6397.	P4**9.	Antig.	218	208, 19	1.789		${ }_{19511}$	19635.	1463.3.
${ }_{11}^{118}$	309.00	2.0*)	<, 80	-39\%:	as36.	9336.	21.	100.70	1.926		19712.	19826:	19826.
ifs	541.96	2,02"		-952.	1123.	123.	815	1se.as	1.917		17049.	1994.	1904.
116	371.61	2.090		ctic.	1836.	138.	11	1) 1 .vo	1,814		19830.	19739.	11489.
111	311.46	2.042		813.	1940.	$0 \cdot 58$.	8i	135.80	1.859		15197.	20ns7.	20839.
110	313.6	2.026		854.	-076.	1096.	310	1se.15	1.098		20116.	20164.	2016.4
129	318.vs	2.041		9080.	-157.	197.	218	121,90	1.930		30150.	2 Cl 107.	2010.
124	311.30	:cs:		0093.	933.	S233.	28*	131.76		$2.90 \% 4$	2015.	37200.	20200.
172	349.4*	2,03\%		9198.	432.	33.	221	131.87		2.8248	20193.	3n200.	20200.
120	361.00		2.83<1	981.	422.	9724.	282	220.45	1.954		20425.	2n972.	20972.
124	361.67	2.120		9303.	9 "n0.	490.	28\%	166.7\%	1.94\%		20973.	2544 a.	20412.
129	969.34	- D6\%		1359.	9313.	T15.	278	133.76	1.931,		20916.	anch3.	20963.
123	302.14	\%.044		9513.	0649.	Stup:	200	157.04	1.7'		368.	207*.	20184.
18%	300.00	\%-7by		9610.	9789.	7193.	**	-u*		*.07!			
12\%	398.0\%	3.048		908.	-434.	9930.							
129	935.92	1.939		9812.	1000\%.	1000\%.							
130	393,13	1.023		4742.	10373.	10073.							
131	351.40		1,9040	10048.	10174.	10176.							
138	309.94	2,084		10140.	10261.	10868.							
130	303.94	2.031		${ }_{1}^{10910.0}$	20835.	ligis.							
138	303,93	2.048		10983.	1058.	10317.							
139	392.40		2,0002	10946.	21062.	21062.							
	313, 30		2.7824	11042.	11938.	11793.							
15:	303.30		2.8295	12304.	12424.	11394.							
130	901.00		2.82'1	13817.	1393.	13311.							
197	203.14	1.995		iss.is.	innti.	13478.							
171	8010.65	li.9		1s-5:	13533.	13933.							
14.	27.30	1.976		1 ssas.	1)nis.	13638.							
10\%		1.990		1361%.	13790.	13730.							
194	213.43	1.9**		15108.	15870.	18150.							
105	218.04		2,8563	13137.	19 H	1380							
10%	209.30	1.0ws		tatil.	$4{ }^{193 \%}$	1390.							
101	165.50	1.881		1408.	10159.	1019\%.							
100	268.05	1.110		10164.	16274.	10874.							
15	262.04	1.921		10108:	103097.	lusay.							
1928	297, 14	1.803		jutl.	ingat.	luses,							
is.	234.00		7,134;	3404.	14641.	10651.							
154	131.01	1.784		10.45.	16970.	14770.							
193	391.0)	1.008		1071\%.	14026.	14824.							
190	247.98	2.014		$16.0 n 6$.	14833.	10933.							
15%	241,94	1.818		1493.	15046.	1505.							
130	193.64	1.086		isves.	19.83.	19283:							
139	248.14 asfid	1.972 1.985		1sidet.	19430.	19403.							
16.	239,43	2.020		13829.	1-834.	19324.							
164	23s,0\%		2.8613	19314.	15410.	1961\%							
149	731.43	2,001		13917.	19691.	15621.							
164	-sr.se	1.971		'sbay.	15766.	1976.							
169	219.34	2.016		19119.	19810.	15820.							
164	325.01	2.031	2.099	19868.	1978.	${ }^{\text {cher }}$							
14.	822.80 820.38	1.094	2.095	10129.	16107.	16275:							
16\%	218,34	2.048		16220.	14315.	16319.							
174	216.1)	1.000		14230.	16133.	16333.							
17	814.49	1.949		14W16.	1696.	163nt.							
${ }^{17}$	223.04	1.902		1678.	16356.	16936.							
115	211.9	1.992		16182.	16618.	${ }^{16413 .}$							
170	211.48		2.013	16585.	16636.	16734.							
130	209.10	2.093		16690.	16738.	16068:							
111	-03.0)	1.113		16901.	18907.	16987.							
170	208,34	2.008		16956.	1704.	${ }^{17041 .}$							
113			2,A0.36	37831.	17139.	2113.							
181	200,59	2.011		11009.	17133.	17133.							
184	190.7\%	2.014		17123.	17706.	112 c .							
308	117.02	1.933		17312,	17999.	11895.							
10\%	194.06	1.093		178.	17996.	11396							
104	199.87	1.901		17830.	17412.	1712.							
188	184.98		2,18*	17893.	17579.	11977.							
10\%	109.17	1.980		17306.	17429.	11329,							
101	187.84	1.816		1760.	17713.	21113.							
106	168.09	1.956		176\%.	17930.	1789.							
18\%	188.06	2,0ti		17803.	19766.	1780.9.							
19	101.93	7.086		1790.	17679.	$1798{ }^{\circ}$							
${ }^{298}$	179,86	1.029 1.959		17909.	10876.	10070,							
190	170.4V		2.909 n	18087.	taste.	11124.							
199	17\%.01	1.873		${ }_{18060 .}$	19100.	10100.							
190	178.09	1, ${ }^{\text {P42 }}$		18190.	1saty.	1418.							
196	173.30	1,913		10293.	1a393.	1839:.							
$1 \% 1$	17.18	1.992		10104.	1nst,	10, 1.							
190	110.3'	1.90?		18483,	1067\%.	10479.							
3 CO	169.3	7.n14	- 0 2**	:8b1).	ingat.	1F4日6.							

TABI,E 6-10 (Continued)

TABLE 6－10（Coritinued）

			SJHLMOLE	009－19						donemole	U－1．1＊		
\checkmark	$\begin{aligned} & \text { PLact } \\ & \text { wepm } \\ & \text { DUT } \end{aligned}$	$\begin{aligned} & \text { Bes } \\ & \text { oEnsty } \\ & \text { Berce } \end{aligned}$	DC4519\％ of sucio ComaOnt Ni 168／CE，	cumulative	\＄0110 mass	140）CHens t4NTA会 FOM RHO	」	－EACE DEDTM 017）		otwstiv OF 50L10 combonter （80／CC）	 		15＊CW＊ 5PINT fon mi
203	430．46	2.972		86096.	2F399．	10409．	343	280．74		2.9708			
204	－11．91	2，030		1493.	17029.	17024，	508	216.30		2.9341			
20＊	－09．94	2．009		17016.	17122．	17122．	909	136.00		2.0096			
$30 *$	449.20		2．1998	17092.	17139.	17130°	304	197．04		2，9914			
20\％	－07．30	2，003		17369.	17219.	17215.	305	172．84		2.6347			
200	－06．＇14	1.962		17204.	17291．	17291.	304	26e． 0		2．1139			
301	－94．40	2.003		17293.	17308.	17360.	301	263.04		2.1133			
780	403．09	2.003		27949．	17399.	17395. 17630.	300	124．80		2.1223 2.9291			
3190	－02．01	\％．085		17609．	17990．	17930．		122．84		2.929 2.935			
21is	3190．78	3．140		1783．	17988．	1798．	311	118.04		2.1117			
214	399.90		2.8009	17939.	17979.	17549.	912	217．04		－1210			
21）	393．04	2.070		17at，	17474．	17828.	313	． 0		2.8220			
$4{ }^{\circ}$	303．04	2．136		17880.	17929．	${ }^{17929 .}$							
419	3＊9．0\％	2.100		14036.	14094.	${ }^{10099} 9$							
4＊	301．${ }^{\text {S }}$	2．14\％		161710^{\prime} 10226.	18157 10460	10196：							
314	309.10	1．111		10309 ：	10962：	133 c ．							
21＊	312．04	2．129		10．3s．	10464.	10464．							
＊2\％	381．64	2.191		10496.	18576.	10324.							
131	500．34		$2.90<0$	18356.	18966.	10396.							
88：	300．0＇	2.146		26579.	18608.	11860\％．							
al	S19．6	2.181		18394.	18676.	${ }^{1068 \%}$							
223	371．${ }^{\text {a }}$	1．939		10609.	1017．	letit．							
423	315.10	1．8sc		18176.	18796.	1076．							
22\％	372．98	1．：09		${ }_{109792 .}$	19806．	190 C 10．							
320	3＊0．2）	1.692		15060.	：4082．	1908．							
224	366， 11	1．609		19823.	19104.	$1910{ }^{10}$							
234	362.17	1，970		17259.	18978.	$1427{ }^{19}{ }^{\text {a }}$							
231	361．38	1．762		19312．	193319 10435	19330．							
4s－	3s＊．＊	2．039		19599.	14963.	18563.							
234	333．34		2．00\％0	19596.	$1 * 609$.	1960.							
233	353.7	2.640		19030.	29604. 1903.	19643.							
	gas．ies	2.017 1.976		19Pas．	19936.	19936.							
asm	319.01	1．901		20090.	2003 ．	880.7 ．							
237	343.91	3．90\％		96153.	20159.	80199．							
200	380	1．761		20273：	70359：	z0819：							
${ }_{108}$	331． 310	1.61	7．0969	30366.	10972．	20s72．							
208	131．04	2.014		2091．	20923．	7047．							
38	139．80	1．044		30935.	70930.	30318.							
008	333．08	1．974		21996	20601.	8lat．							
30，	354	2．10＊		20160 ：	30713.	P0773，							
2010	383.11	2.880		20068.	20873.	20813.							
51	180．46	2.660		2096．	2×172.	2081 ．							
8548	323 320	2：019		P109，	21039：	3117\％：							
234	119，00	3，043		21212，	31276.	1127．							
238	911， 9	2.0%		21312，	21390.	81379.							
290	316，29	2.036		21031.	21036.	\＄1496．							
295	315.21	2．01）		21909.	2，3i3．	21313.							
29＊	313.25	2.011		31600.	$216 n 7$.	21007.							
190	311．10	2.059	2.1913	21＇94．	21711．	21711．							
398	320.96	2.001		11733.	2174.	2174．							
364	309，84	2.031		21791.	21799.	11799，							
301	304．9＊	8.030		21907.	21713.	21913.							
$10 \cdot$	303，04	1.018		21903.	2197.	21961．							
160	394．21	7．019		2103\％．	28047.	7184．							
200	101．0\％	2.046		72172，	2918.	31180.							
265	101% $294,1 \%$	2.102		\％2810，	27219．0．	1819 3829							
ati	239\％10	1.088 1.048		17904.	2311，	2843．							
34＊	396.90		2.8733	22016．	22424．	214＊．							
240	293．11	2.988		22400.	23080.	2246．							
210	392.11	2.039		22945.	27603．	2260，							
217	290．06	2.026		22729.	2293\％	\％7737．							
218	2019．9	2.039 1.596		229034．	， 279812.	81992，							
274	209．30	1．972		290－2．	23504.	3108.							
279	248．48	1.708		23038.	23065.	23069.							
17	200．0．	$2.04{ }^{\prime}$		23267．	23093．	isir3．							
2＂	219．9	2.020		23223.	23229．	t3229．							
210	2＇0．4	2.033		25293.	2，303．	23303.							
$8{ }^{\circ}$	219.91	2.036		23345.	23001.	23401.							
280	273.94	2.090		23641.	23096．	23496.							
201	23．16	2.011		25923.	23333.	23335.							
	？＇1．3\％	2.000		23602.	23609.	？ 317 n ．							
245	108.4	1，825		2310．	23781.	2316.							
${ }^{20}{ }^{\circ}$	264．00	1．721		23043.	23041.	33041.							
209	164．14	1，981		a3733．	73913.	\％3739．							
790	362.19	2.098		20074.	2＊087．	26024.							
20\％	10\％ 19	2，nts		2423.	36174.	？${ }^{\text {and }}$							
＊＊	251，04	2．093		20879．	20276．	20376．							
390	135，00	P．00：		2＊970．	20168.	203 k.							
191	233．04	1.970		30.34.	2012．	24．2？．							
$2 \% 6$	231，＊3	1.969		24313．	24310.	24910．							
293	231．70		2．930	：4913．	P．911．	3411．							
290	250， 26	1．94：		24906．	24：99．	24179.							
29	208．00	1．1＇2		24arb．	24564．	${ }^{24646}$							
20＊	204.03	1．848		こ410．	24739.	7453．							
$4{ }^{\circ}$	2＂＊＊＊	1.941		2unat．	2184.	\％ 68.10							
47	42.30	1.043		24938.	20950.	81930.							
iou	201， 38	\％osc		？ 29890.	24＊es．	\％3920．							

TABLE 6-10 (Continuea)

TABLE 6-10 (Continued)

TMBLF: 6-10 (Continued)

TAULE 6-10 (Continued)

- domatal octeas

P.017

OAM-3A

$$
\begin{aligned}
& \text { 3ñ } \\
& \text { =in } \\
& \text { in }
\end{aligned}
$$

TABLF 6-10 (Continued)

TABLE 6-10 (Continued)

TABI, 6 -10 (Continued)

TABLE 6-10 (Continued)

TABLE 6-10 (Continued)

TABJ, E 6-10 (Continued)

TABLE: 6-10 (Continued)

FIGURE 6-27. -- Change in rock thickness from $\gamma-\gamma$ densities, assuming simple
subsidence. Borehole ORT-20 vs. OOR-17.

OQT-19 vg. OOR-17
00

$6-105$

6-111
OCT-05 vs. OSR-21
教

$6-112$

FIGURE 6-41. -- Change in rock thickness from y-y donsities, assuming simple
subsidence. Borel. ole OIT-ll vs. (AR-2A.

6-116

Figller b-44. -- Cliange in rock thickness from r-y de:sities, assuming simple suhsidence. Borehole OKT-13 vf. Os:R-2A.

FIGURE 6-45. -- Change in rock thickness from $\gamma-\gamma$ densities, assuming simple subsidence. Borehole OPZ-18 vs. OOR-17.

6-122

FIGURE 6-50. -- Change in rock thickness from $\gamma-\gamma$ densities. assuming simple
subsidence. Borehole illR-17 vs. (OAR-2A.

FIGURE 6-51. -- Change in rock thickness from $\gamma-\gamma$ densities, assuming simple subsidence. Borehole QAR-2A vs. OOR-17.

OAR-2A vs. OSR-21
FIGURE 6-53. -- Change in rock thickness from $\gamma-\gamma$ densities, assuming simple subsidence. Borehole OAR-2A vs. OSR-21.

6-128

CHAPTER 7: IITEGRATION OF MATERIAL-PROPERTY UNITS, GRAVIMETRY AND ADDITIONAL STUDIES OF OAR AND KOA CRATERS

By

Bruce R. Wardlawl

INTRODUCTION

Preliminary interpretations of the geology of the OAK and KOA crater areas and of the craters themselves are presented in Wardlaw and Henry (1986a, 1986b). Since those reports, additional information was developed from analyses of borehole gravimetry, paleontologic mixing, thinning, and distribution of shocked calcite, most of which are presented in previous Chapters of the current Open-File Report. These new data require modification of the geologic interpretation of OAK and KOA craters. This Chapter incorporates these new salient data and presents a more comprehensive interpretation than that given by Wardlaw and Henry (1986b). Depths to a few horizons or zones have been reinterpreted, and all pertinent data are presented herein in corrected form as tables. These data supercede all previous information.

The most convenfent way to relate the geology to crater phenomenology is to develop geologic material-property units that match the general materialproperty models for OAK and KOA craters. The geologic framework is reviewed briefly before presentation of the new geologic material-property units (MPs). These units will be used throughout this text in deference to previously used geologic schemes such as the sedimentary packages (SPs) of Wardlaw and Henry (1986a).

PRE-EVENT GEOLOGY OF OAR AND KOA CRATERS

The general stratigraphic sequence of Enewetak Atoll is punctuated by a series of discontinuities within the carbonate sedimentary rock column, of which uine are identified as major disconformities in the upper $1,200 \mathrm{ft}$ (Wardlaw and Henry, 1986a). These major disconformities represent significant exposure and cementation surfaces over most of the atoll. Generally, pervasive cementation is confined to the reef margin (fig. 7-la), but extends for a considerable distance beneath the lagoon beneath disconformities 5, 8, and 9 (fig. 7-2). Data from the EXPOE Project (Couch and others, 1975), which presents data from shallow boreholes drilled on islands on the reef tract, indicate that the geology is generally similar throughout the reef tract (fig. 7-1c), although the width of the cemented reef margin narrows on the leeward side of the atoll. Cementation also appears to generally decrease in areal distribution in the sequenre from disconformity 5 (Pliocene) to disconformity 1

FIGURE 7-1. -- (la) Distribution of cemented zones in shallow subsurface in transect on Enjebi Island from reef to lagoon from EXPOE cores (modified from Ristvet and others, 1978). (1b) Location of boreholes for labe on northern and western portion of Enewetak Atoll.
(Pleistocene) as represented in the cross section of figuri, ,_,... From disconformity 1 to the present surface, the area of cementation has increased (fig. 7-la).

The major disconformities (Wardlaw and Henry, 1986a) and the biostratigraphic zones, based on the distribution of microfossils presented by Cronin. Brouwers, and others (1986), generally correlate readily from borehole to borehole and extend throughout the area of investigation (fig. 7-2). The sedimentary packages (SP) delimited by these disconformities (Wardlaw and Henry, 1986a) and the geologically defined material-property units (MP) proposed herein also are shown on Figure 7-2. The consistency and trends of the disconformities, the SP and MP units, and biostratigraphic zones allow reasonable prediction of pre-shot ground-zero geology for both OAK and KOA. The relationship of discontinuities, cementation zones, and general sediment type for the PEACE Program reference boreholes and the models of ground-zero geology for both OAK and KOA are shown in Figure 7-3. Excellent seismicreflection profiles (Grow and others, 1986) allow mapping of key surfaces in the undisturbed areas away from the craters, and, combined with the pre-shot geologic models, allow mapping of the probable distribution of these surfaces in a pre-shot configuration below the crater (Wardlaw and Henry, l986b). Figure $7-4$ shows the probable pre-shot surfaces at the top of the pleistocene (disconformity 1) and at the top of the Pliocene (disconformity 5) in the KOA and OAK arpas.

The most convenipnt way to summarize the geology for crater considerations is in material-property (MP) units. These are units delimited by major geologic horizons that best fit the material model (viz, the geologically defined units that best conform to the mechanical properties important to cratering). Differences between the sedimentary packages (SP) and materialproperty units are minor (spe below) but include, for example. the pervasively cemented zone that includes SP 3 and the upper part of SP 4 is represented as a single unit ($M P-3$), although it is divided by a major disconformity (6) that represents a significant exposure surface and geologic gap.

The upper 1,200 feet of sedimentary section at Enewetak is divided into five material-property units (fig. 7-3), as follows:

MP-1 (Holocene, Sedimentary Package 1). -- Aragonitic sediments, from the surface to disconformity l.
MP-2 (Pleistocene, SP 2). -- Aragonitic sediments with thin calcitic limestones, from disconformity 1 to 5 . This unit is subdivided by disconformities 2, 3, and 4.

MP-3 (Upper Pliocene, SP 3 and part of SP 4). -- Cemented interval of vuggy, calcitic limestone and aragonitic or calcitic sands, from disconfornity 5 to the base of the alteration zone (see Wardlaw and Henry, 1986b, p. 25 for discussion of alteration zone). This unit is subdivided by disconformity 6.

MP-4 (Upper Miocene-Pliocene, part of SP 4, all of SP 5). -- Aragonitic sands, from base of the alteration zone to disconformity 7 . High organic content and high activity on the natural gamma logs identifies a lower subunit.
MP-5 (Miocene, SP 6, SP 7, and SP 8). -- Calcitic sands and limestones, limestone variably developed, from disconformity 7 to bottom of boreholes. This unit is subdivided by disconformities 8 and 9.

FIGURE 7-3. -- Characterization of cementation and general sediment type and relationship to material property units for reference boreholes and models for ground-zero geology. Discontinuities as lines in columns, major disconformities numbered in columns.

FIGURE 7-4. -- Probable pre-shot surfaces for the Pleistocene (Disconformity 1) and Pliocene (Disconformity 5) in the KOA and OAK areas. Contours in feet.

The pre-event subsurface geology in the KOA and OAK areas differs in three significant ways (fig. 7-5):
(1). MP-2d is more consistently well-cemented in the KOA area.
(2). MP-3 (the upper, well-cemented unit) is thicker (246 ft vs 197 ft) and shallower (top at 282 ft vs 395 ft bs ${ }^{l}$) in the KOA area.
(3). MP-3 is homogeneous throughout the crater area at KOA. At OAK, this unit changes from a cemented limestone with calcitic sands beneath the reef tract to cemented limestone with aragonitic sands beneath the lagoon, and the cemented intervals appear to decrease in thickness lagoonward (contrast OAR-2/2A to OOR-17; see fig. 7-3).

In addition, the pre-event ground surfaces in OAK and KOA areas differ significantly, KOA is represented by a nearly flat shallow surface on a broad reef tract, whereas $O A K$ is represented by a narrow, shallow reef tract, relatively steep slope, and a flat, deep lagoon bottom.

POST-EVENT GEOLOGY OF OAR AND KOA CRATERS

The excavational craters were modified profoundly by a set of processes that included shock-induced liquefaction and consolidation, subsequent flow and piping of liquefied materials from depth (both laterally and toward andor to the surface), consequent subsidence of the region adjacent to and beneath the excavational craters, and major and repeated failures of the sidewalls of the initial and subsequent craters.

Crater Zones

OAK and KOA craters can be characterized in the subsurface by geologic, paleontologic, and seisnic-reflection crater zones that, in turn, can be related to crater-event history.

Traditional crater terminology does not always adequately apply to the Enewetak craters studied; many subsurface features within the carbonate rock and sediment virtually were undescribed. Thus, limited new terminology was introduced by Wardlaw and Henry (1986b), and a few additional terms are introduced in the current Chapter (designated by an asterisk, *).

Geologic Crater Zones

1. Zone of sonic degradation (ZSD): the stratigraphic interval in which sonic velocities are depressed below expected velocities. Normal or (more correctly) pre-event sonic velocities are determined from the sonic signature of reference boreholes. On the multichannel-seismic profiles, the $Z S D$ appears as a "fuzzy" area in which seismic reflectors are not coherent and are surrounded by an area where

[^16]

FIGURE 7-5. -- Comparison of pre-shot ground surface and subsurface geology for the OAK and KOA areas.
coherent reflectors are present but downturned. The ZSD represents units of rock and sediment that are fractured or shattered, mixed, and/or otherwise disturbed significantly enough to retard the sonic velocities relative to what they were before the nuclear events occurred. All geologic crater zones lie within the ZSD (fig. 7-6).
2. Geologic crater: the subsurface expression of the crater defined by the ZSD. The geologic crater zones encountered in the central crater are as follows:
3. Alpha 1 ($\alpha 1$): Mud. Late-stage, fine-grained sediments with abundant brown, piped material in OAK.
4. Alpha 2 ($\alpha 2$): Graded sand (distal) and slumps (proximal). Late-stage slope-failure and sand-turbidite flow deposits containing abundant brown, piped material. (Proximal means near material source; distal means far from the material source).
5. Beta la ($B l_{a}$): Graded Rubble. ($*$) This zone contains proximal rubble and distal sand (as in OPZ-18) with granules of rubblized material. The zone is transitional from the rubble below and slumps above and contains abundant brown, piped material near the top in the central crater area. Both Alpha 2 and Beta la show high gamma-ray activity (see fig. 7-17).
6. Beta $1 s^{*}\left(B l_{s}\right)$: Hiatus sand. (*) Highly shocked, uppermost unit (MP-1, Holocene) sed iments.
7. Beta 1 b ($B l_{b}$): Collapse rubble. (*) Thick rubble bed with sparse brown piped material within the zone in the central crater area. Both zones Beta la and Beta lbare less distinct in the central-most part of the crater, and Beta 1 s is missing in the same area because of mixing primarily due to late-stage piping.
8. Beta 2 ($B 2$): Transition sand. Pulverized sand within the transition paleontologic zone (see below). It has a limited lateral extent. The sand grains show fractured surfaces but no internal microfracturing.
9. Beta 3 (β_{3}): Rubble floatstone. Rubble in which no paleontologic mixing can be shown.
10. Gamma (γ): Fractured and displaced rock and sediment.
11. Delta: (δ) Fractured but undisplaced rock and sediment.

The base of the zone of sonic degradation:

12. Epsilon (ε): In-place, relatively unfractured stratigraphic section; outside and beneath the geologic crater.

The geologic crater zones in the debris blanket are as follows:
13. Beta la* $\left(\beta_{1} a^{*}\right)$: Graded sand and rubble*. This zone is found only in boreholes $0 H T-10$ and $0 J T-12$ and may be related to a large collapse and debris flow that breached the debris blanket and flowed into the

$$
7-9
$$

lagoon (as seen on the OAK enhanced sea-floor image, Folger and others, 1986).
14. Beta 1b* ($B l_{b} b^{*}$), or Beta (β) undifferentiated: Rubble. Debris with no brown piped material.
15. Disturbed zone: This zone represents slightly altered stratigraphy with no apparent discontinuities.
16. Delta (δ) ani Epsilon (ε): Relatively unaffected stratigraphy.

The depths co various crater zones for the transition and ground-zero boreholes for both OAK and KOA craters are given in Table 7-2, and graphically displayed in fence diagrams in Figures 7-7 to 7-10. Interpretations of geologic crater zones on seismic reflection profiles through ground-zero for both OAK and KOA crater (from Wardlaw and Henry, 1986b) are shown in Figures 7-11 and 7-12.

Paleontologic Crater Zones

The paleontologic crater zones for the central crater follow. The depths to various paleontologic crater zones for both $O A K$ and KOA craters are given in Table 7-3.

1. Mixed: Fossils from various biostratigraphic zones are mixed together.

This zone can be crudely divided into three subzones:
a. Very mixed with material from mostly upper biostratigraphic zones and piped material from deeper zones.
b. Mixed material from most of $M P-1$ and $M P-2$ plus piped material that decreases in degree of mixing downward.
c. Mixed material from mostly lower biostratigraphic zones of crater and sparse piped material.

These zones were developed for KOA crater (Wardlaw and Henry, 1986b) and are applicable to OAK with minor modification. In OAK, an additional zone, represented by the "hiatus sand" (Beta 1s), occurs between paleontologic subzones b and c in the lateral part of the crater. This unit consists predominantly of Holocene (near-surface) material and shows little mixing.
2. Transition: Transitional paleontology from mixed to unmixed.
3. Unmixed: Paleontology in normal succession showing no mixing of materials from different biostratigraphic zones.

The paleontologic crater zones for debris blanket are:
4. Mixed, undifferentiated: generally like unit lb within the crater, but without piped material.
5. Transition: as above.
6. Disturbed Zone: unmixed, but sparse faunas.
7. Unmixed: as above.
GEOLOGIC CRATER ZONES

FIGURE 7-6. -- Geologic crater model.

TABLE 7-1. -- Relationship of geologic and paleontologic zones in the crater and debris blanket modified from Wardlaw and Henry (1986b). The hiatus sand $\}$ is present only in the outer crater of OAK.

[PALEONTOLOGIC ZONES]	[GEOLOGIC ZONES]
CENTRAL CRATER	
MIXED a--Very mixed with mostly upper biostratigraphic zones and piped material	ALPHA $1(\alpha 1)$ Mud
	ALPHA 2 Graded sand (distal) ($\alpha 2$) and slumps (proximal)
b--Mixed material from most units 1 and 2 and piped material, generally decreasing in mixing downward	BETA la Graded $\left(B 1_{a}\right)$ rubble
\{Unmixed upper biostratigraphic zone\} c--Mixed material frum mostly lower biostratigraphic zones and sparse piped material	$\{B E T A$ ls $\left(B 1_{s}\right)$ Hiatus Sand $\}$ BETA $1 b$ Coilapse $\left(B I_{b}\right)$ rubble
TRANSITION	BETA 2 (32) Transition sand
UNMIXED	BETA 3 (B 3$)$ Rubble floatstone
	GAMMA (γ) Fractured, displaced
	DELTA (δ) Fractured, relatively undisplaced
	EPSILON (ε) Relatively unfractured, in place
DEBRIS BLANTET	
MIXED (undifferentiated)	BETA la $\left(B l_{a}\right)$ Graded DEBRIS sand and rubble (BETA) $-\ldots--\infty$
TRANSITION	BETA 1b (Bl_{b}) Rubble
DISTURBED	DISTURBED
UNMIXED	$\begin{aligned} & \text { DELTA }(\delta) \quad \text { Fractured, } \\ & \text { relatively undisplaced } \end{aligned}$
	$\begin{aligned} & \text { EPSILON }(\varepsilon) \text { Relatively } \\ & \text { unfractured, in place } \end{aligned}$

TABLE 7-2. -- Depth (ft bsi) to tops of the crater zones in OAK and KOA boreholes. $2 S D=$ Zone of Sonic Degradation. Boreholes listed in order of increasing distance from ground-zero.

OAR AND ROA GEOLOGIC CRATER ZONES

ZONE	OBZ-4	OPZ-18	OCT-5	OTG-23	OUT-24	OKT-13	OFT-8	OIT-11
Alpha 1	198.7	201.9	163.7	-	-	164.7	130.8	155.0
Alpha 2	229.2	-	164.6	164.0	147.0	165.3	131.1	
Beta la	271.7	246.5	174.1	174.0	249.2	177.0	139.4	155.1
Beta 15	-	-	244.1	219.0	278.6	190.8	152.9	-
Beta 1b	309.1	337.2	310.7	235 ?	288.0	207.0	175.4	
Beta 2	394.9	377.0	-	-	-	-	-	-
Beta 3	415.1	412.3						
Gamma	564.2	522.4	346.3	314.0	332.0	227.3	204.1	171.7
2SD	1138.7	1082.4	863.7	842.0	830.0	831.7	639.6	697.0
ZONE	OET-7	OQT-19	OHT-10	OJT-12	ODT-6	ONT-16	ORT-20	OMT-15
Alpha 1	-	-	-	-	-	-	-	-
Alpha 2	106.9	-	-	-	-	-	-	-
Beta la	132.3	-	137.3	143.8	87.4	-	-	-
Beta 1 s	-	-	-	-	-	-	-	-
Beta 1b		-	145.2	155.0	-	135.1	-	110.9
Beta 2	-	-	-	-	-	-	-	-
Beta 3			[191.1]	[164.7]	-	[148.0]	-	[119.8]
Gamma	156.3	117.5	286.8	238.0	91.9	176.7	101.4	139.4
ZSD	505.1	413.3	587.1	387.0	311.6	242.7	239.0	223.0

[] denotes disturbed zone

ZONE	0LT-14	¢	KBZ-4	KCT-5	KFT-8	KDT-6	KET-7
Alpha 1	-	¢	109.1	-	-	-	-
Alpha 2	-	¢	137.3	98.9	77.8	56.2	-
Beta 1a	139.7	¢	167.7	120.0	96.5	79.9	-
Beta 1 s	-	¢	-	154.5	-	-	-
Beta 1b	-	c	238.5	156.1	106.0		-
Beta 2	-	\&	247.2	242.5	-	-	-
Beta 3	-	C	266.2	259.9	-	-	-
Gamma	147.2	¢	316.2	274.3	153.8	110.1	51.1
ZSD	154.2	c	1101.1	869.2	590.4	410.0	318.2
		c					

TABLE 7-3. -- Paleontologic crater zones and relation to the transition sand in OAK and KOA boreholes. Depths in ft below sea floor (ft bsf) are compatible with the footages presented in the paleontologic studies (Cronin, Brouwers, and others, 1986; Brouwers, Cronin, and Gibson, 1986; and Cronin and Gibson, 1987), which are consistently in feet below sea floor (bsf).

ROA CRATER

	KBZ-4	KCT-5	KFT-8	KDT-6
Mixed Zone	0-137.5	0-140.1	0-28.5	0-43.6
Transition Zone	137.5-142	140.1-155.2	28.5-99.3	43.6-58.5
Transition Sands	138.1-157.1	143.6-161.0	---	---

OAR CRATER

	OBZ-4	OPZ-18	OCT-5	OKT-13
Mixed Zone	0-180	0-174	0-149	0-55
Transition Zone	180-220	174-211	149-187	55-68
Transition Sands	196.2-216.4	175.1-210.4	---	---

	OFT-8 ODT-6	
Mixed Zone	0-64	1.8-4.4
Transition Zone	64-74	---
Transition Sands	---	---

OAR CRATER DEBRIS BLANKET

	OHT-10	$11 \mathrm{JT}-12$	ONT-16	OMT-15	OLT-14
Mixed Zone	0-54	0-20.9	0-12.9	0-8.9	0-7.5
Transition Zone	54-76	20.9-67	12.9-14.7	8.9-15.5	---
Disturbed Zone	76-149.5	67-94.2	14.7-41.6	15.5-28.5	---

)

Seismic Crater Zones

Grow, Lee, and others (1986) interpreted four subcrater seismic zones from the multichannel seismic-reflection records. They are, from top to bottom: (1) transparent zone, (2) zone of intense fracturing/depression, (3) zone of moderate fracturing/depression; and, 4, zone of minor fracturing/ depression. The zone of minor fracturing/depression has not been defined in terms of depth. The seismic zones are compared to geologic craters zones in Table 7-4.

The transparent zone corresponds to the crater fill and the transition sand (where present). In OAK, reefward of SGZ, the base of the transparent zone is difficult to interpret because some large-scale slumps (crater fill) from the reef tract are not completely transparent seismically. The bottom of the zone of intense fracturing/depression falls within gamma, the zone of fracturing and displacement in KOA, and very near the bottom of the rubble zone in OAK. The bottom of the zone of moderate fracturing/depression appears to fall close to the gamma/delta transition or that change from fractured/ displaced to fractured/in place material. The delta zone appears to be equivalent to the zone of minor fraturing/depression.

TABLE 7-4. -- Comparison of subcrater seismic zones to selected geologic crater zone boundaries for $O A K$ and $K O A$ craters.

SEISMIC ZONE	GEOLOGIC CRATER ZONE
KOA	
Bottom of Transparent Zone 262 ft bsl	Bottom of Transition Sand 266.2 ft bsl

Bottom of Zone of Intense
Fracturing/Depression
460 ft bsl
Bottom of Zone of Moderate
Fracturing/Depression
755 ft bsl

CRATER PEATURES

Crater Material in the Lagoon

Muddy sediments in the northwestern portion of the lagoon (see fig. 7-13) are derived partly from crater material. Observations leading to this conclusion (Wardlaw and Henry, 1986b) include:
(1). An anomalously high amount of low-Mg calcite in the sediments probably indicates mixing from diagenetically altered subsurface units.
(2). The sediments have an anomalously high content of rlay-size material, probably indicating crater-derived material. Normal lagoon sediments do not contain appreciable quantities of naturally produced clay-sized carbonate.
(3). The sediments have measurable radioactivity, probably from the devicederived Cesium-137 (Ristvet and Tremba, 1986).

Thus, a substantial part of the mud in the northwestern portion of the lagoon (fig. 7-13) was derived from pulverization of sediment and rock particles by the nuclear detonations during the excavation of the craters. A considerable volume of fine-grained material was moved from the crater areas to the lagoon, although the volume of this lost material or proportion derived from each of the forty-one nuclear events other than OAK or KOA cannot be estimated.

Breach Deposit in the Lagoon

The enhanced sea-floor image of oAK crater displays a large flow deposit out into the lagoon (fig. 7-14). This feature extends out beyond the limits of the apparent crater, thus it, too, represents loss of material to the lagoon. This feature was not observed until after the field operations, so it was not sampled. The thickness or volume of the deposit is unknown. The deposit appears to represent a breach in the debris blanket through the "channel" (Peterson and Henny, Ch. 5 of this report, p. 5-15) and flow of material out onto the lagoon floor.

FIGURE 7-8. -- Fence diagram of OAK boreholes OOR-17 to OPZ-18 showing
tepresent breaks and change in vertical exagg
side to $4: 1$ on left side.

FIGURE 7-10. -- Fence diagram of OAK boreholes from reef tract to OLT-14
showing relationship of crater and geologic horizons. Scale is vertically exaggerated 2:1.

1

KOA CRATER

FIGURE 7-13. -- Weight percent mud in bottom sediments of lagoon. Sediments in excess of 10 percent mud are probably indicative of blast-derived mud contribution.

Piping

Brown-stained, organic-rich sediments from MP-4 were piped to the surface in substantial quantities. Several sand mounds (Halley and others, 1986) or "sand volcanoes", covered with moderate-brown, coarse-grained detritus are common on the terraces of OAK crater. This material commonly contains granule- and small-pebble-sized particles (2-64 mm) and may sparsely contain small cobble-sized materials ($64-256 \mathrm{~mm}$). The sand volcances observed are generally less than $10 \mathrm{ft} h \mathrm{~h}$, are round to elongate, and are $16-33 \mathrm{ft}$ across and up to 100 ft long. The eight volcanoes documented by Halley and others (1986a) are plotted on the enhanced sea-floor image (fig. 7-14). Similar features that are probably sand volcanoes are also shown. The volcanoes appear to exist in several clusters or swarms on the terraces of oAk crater. No sand volcanoes were observed in the KOA area; however, most surficial features have been obscured by extensive slumping and recent sedimentation (Folger and others, 1986).

Several thin sand dikes filled with brown-stained sediments, confirmed by paleontologic analysis to be from MP-4, were penetrated by the boreholes. These were inclined at a high angle to the borehole under the central crater region and terraces of OAK. Dikes were observed in boreholes OPZ-18 at 667.8 - 668.5 ft , OKT-13 at 615.0 to 615.2 ft , OTG-23 at 472.3 to 473.2 ft , and OFT-8 at 291.1 to 291.9 ft (all depths bsl; see Henry, Wardlaw, and others, 1986). No dikes were observed in the KOA boreholes.

Paleontologic Mixing

The distribution of mixed materials from different biostratigraphic zones within the geologic crater is complicated, but each fossil is a clue to unraveling the history of formation of crater-fill deposits. In addition to the general three to four mixed zones presented in the previous section, both KOA and OAK have an overprint of hydraulic sorting in the central region due to post-deposition upward flow of piped material from strata below the excavational crater. In KBZ-4, the piped material shows hydraulic sorting of various fossil groups (see Brouwers, Cronin, and Gibson, 1986). In OBZ-4 and $0 P Z-18$, the faunas are depleted and represented by sparse piped material in the lower part of the crater fill (fig. 7-15; and Cronin and Gibson, 1987), thought to indicate preferential removal of contained faunas by hydraulic flow and scant deposition of MP-4 faunas.

The mixing within the crater is displayed in Figure 7-16 for $O A K$ and Figure 7-17 for KOA The biostratigraphic zones represented are defined in the reference boreholes in sequence of superposition and with increasing depth are: surficial (S), AA, BB, CC, DD, EE, FF, and GG. Piped material from depth designated as "piped" in the figures is represented by biostratigraphic zones II, JJ, KK, LL, and MM. Because the KOA event excavated down to the $D D / E E$ zone boundary, most $E E$ and all $F F$ material in the crater-fill indicates shallow piping. Because the OAK event excavated down to a point within EE, possibly some $E E$ and all $F F$ and G material in the crater-fill represents shallow piping. Each crater will be briefly discussed from bottom up (or as they filled).

FIGURE 7-14. -- Distribution of observed (solid circlea) and probable (dashed cixcles) sand volcanoes shown in clusters on enhanced sea-floor image of OAK crater and location of breach and flow deposit in lagoon.

DEEP-PIPED MATERIAL

FIGURE 7-15. -- Number of specimens (*) from MP-4 and MP-5 (minor) and percent (\%) of total ostracodes picked in crater zones in boreholes OBZ-4 and OPZ-18.

FIGURE 7-17. -- Paleontologic mixing in the mixed zone of KOA crater. Lithic symbols the same as figure $7-19$. Bold letters indicate abundant material from that particular biostratigraphic zone.

OAR Crater.

The lower mixed subzone (C, figs. 7-15 and 7-16) and the transition zone coincide for much of OAK crater (this is because of the limits of resolution, similarity of taxa in the zones, and gradational nature of these zones). This zone contains undifferentiated EE-FF material with sparse AA and deep-piped material in the central crater and of slightly mixed material from progressively stratigraphically higher zones outward to OFT-8 where it contains mostly $B B-C C$ material.

The middle mixed subzone (B) represents a maximum of mixing of material in the central-crater area with components from zones AA-GG mixed with abundant deep-piped material in the upper part of Beta $l b$ and the lower part of beta la. Laterally, this interval is represented by the "hiatus" sand (Beta ls) which consists largely of AA material on top of Beta lb. This situation is complicated at OCT-5 by an apparent local slump that covers and possibly involves the "hiatus" sand (fig. 7-16).

The upper mixed subzone (A) can be divided into two parts in the centralcrater area and the inner terraces (OCT-5). In the central-crater area, the lower part consists of common AA-CC material and deep-piped and sparse DD-GG material, and the upper part consists of abundant surficial and AA components with common BB-GG and deep-piped material. Under the inner terraces (OCT-5), the upper mixed subzone consists of a lower part with abundant $A A$ and common BB-GG material (no deep-piped material) and a upper part that is highly mixed with $A A-G G$ and deep-piped material. Laterally, the upper mixed subzone commonly consists of very mixed $A A-G G$ material decreasing outward to $A A-F F$ material with sparse deep-piped material at its top. At OKT-13, the base of the upper mixed subzone (which coincides with the base of Beta la) is mixed with material from the underlying unit, the "hiatus" sand (Beta 1s).

Deep-piped material from MP-4 is mixed throughout the crater-fill in both OBZ-4 and OPZ-18, suggesting that the central crater bowl served as the common avenue for venting of MP-4 material. Although sand volcanoes are common on the terraces, mixing of deep-piped material from MP-4 is restricted to surface or near-surface deposits, suggesting that the volcanoes are a late-stage feature and did not represent the more common avenue of venting. Venting under the terraces probably did not take place until significant concentric fracture zones opened sufficiently in the subsiding crater to serve as conduits.

Shallow-piped material is that material in the crater-fill from shallow biostratigraphic zones that remained completely below the excavational crater. In OAK, this material is represented by components of biostratigraphic zones FF-GG. Shallow-piped material is common in the upper mixed subzone throughout the crater-fill, common in the middle mixed subzone, and sparse in the lower mixed subzone in the central crater.

ROA Crater.

The lower mixed subzone ($C, f i g .7-17$) and the transition zone coincide in most of $K O A$ crater (for the same reasons as in OAK) and consist of CC-DD material with sparse $B B$ and EE-GG material at $K B Z-4$, of DD-EE material at KCT5, and of BB-CC material at KFT-8 and KDT-6.

The middle mixed subzone (B) consists of AA-EE material throughout the crater-fill. In addition, at $K B Z-4$, this zone contains deep-piped material that indicates hydraulic sorting in Beta la with FF-II ostracodes and KK-LL foraminifers, and a normal distribution of deep-piped FF-MM ostracodes and foraminifers in Alpha 2. A very thin, muddy "hiatus" sand may be piese:ved in KCT-5 within the middle of this unit.

The upper mixed subzone (A) is confined to Alpha zones. At KBZ-4, it is dominated by surficial (S) and AA-CC material with sparse DD-GG and deep-piped (KK-LL) material. At KCT-5, it consists of microfossils from AA-EE with very sparse deep-piped material. At KFT-8, the upper mixed subzone cannot be differentiated from the middle mixed subzone, and the whole interval consists of AA-EE material. At $K D T-6$, it is dominated by $A A-B B$ with CC-EE and deeppiped ($\mathrm{H} H-L L$) material.

Deep-piped material from MP-4 is mixed with other material throughout most of the crater-fill in KBZ-4. It is only found in surficial deposits in the transition boreholes. This suggests that the central bowl in KOA, which is now obscured by pervasive slumping, served as the common avenue for venting deep material from MP-4 just like in OAK.

In KOA, shallow-piped material is represented by components of biostratigraphic zones EE-GG; predominantly EE. The KOA crater-fill material shows much more pervasive shallow piping than in OAK. This shallow piping obscures some of the mixing subzones and yields fairly common mixed faunas of AA-EE. The pervasiveness of the mixing also implies that shallow piping occurred over a broad area. In addition, the paucity of samples and boreholes and a less rigorous study of the KOA material gises less definition of the mixing in KOA.

Estimates of Volune of Piped Material.

The volume of deep-piped material can be estimated with the techniques developed for the detailed paleontologic analysis of the oAk crater by cronin and Gibson (Ch. 3 of this Report). Deep-piped material occurs only near the surface outside the central bowl and is essentially negligible in quantity. If all grain sizes behaved as those between 63 through 850μ (the size range from which ostracodes are extracted) and if sedimentary particles of different shapes and densities (minor, all CaCO3) behave the same as ostracode valves and carapaces, then the detailed percentages of piped ostracodes reflect the entire sedimentary assemblage (Cronin and Gibson, Ch. 3 of this report). A conservative volume estimate based on these data is 4.83 million cubic feet (5.1% of the total volume of central bowl to a depth of 149 ft with a radius of 450 ft from GZ).

A semiquantitative approach also can be attempted for estimating the shallow-piped material in OAK. Shallow-piped material is identified as those ostracodes that characterize the $F F / G G$ zones, those zones that remained completely below the excavational crater. Shallow-piped material is similar in distribution to deep-piped material within the central bowl, it occurs throughout the crater fill. Because of the general low abundance of FF/GG zone indicators, any patterns in the distribution within the crater-fill is difficult to discern. The crater bowl probably was an avenue for shallow
piping, and the piping probably obscures any patterns of distribution in a manner similar to that for deep-piped material. Ostracodes that characterize the $\mathrm{FF} / \mathrm{GG}$ zones are typically sparse, averaging 0.4 percent in the faunas above the $F F / G G$ zones in the reference boreholes. They average a sparing 7.5 percent in the faunas of the zones that they characterize in the reference boreholes. These ostracodes average 3.3 percent in the central crater-fill faunas. This implies a whopping 41 percent of the central crater-fill material may have been derived from the FF/GG zones. A volume estimate based on these data is 45.62 million cubic feet of shallow-piped material within the central bowl. However, unlike deep-piped material, shallow-piped material is distributed in significant quantities in Beta la ard Alpha zones outside the central bowl, suggesting a much larger volume than that estimated for the central bowl was piped.

Paleontologic Model of Crater-Fill.

The paleontologic zonation of the crater-fill can be sumarized into a simple model that is applicable to both craters studied. It is extremely relevant for constraints on timing of processes of crater-filling. It is presented in Figure 7-18. The zone of shallow-piped material coincides with that of the deep-piped material through mixed subzones B and C in the central crater but encompasses all of mixed subzone A throughout the crater. The zones of piped material indicate the relative timing of arrival of material to the surface. Shallow-piped material first arrived to the surface after the deposition of the hiatus sand (Beta ls), which probably resulted from washback. Deep-piped material first arrived to the surface after the deposition of the graded rubble (Beta la), during deposition of Alpha.

The zone of piped material from depth has a strong overprint of mixing and hydraulic sorting in the central bowl, especially in mixad subzone B, where abundant deep-piped material was deposited. The central bowl served as the probable avenue for venting of the deep-piped material. Shallow-piped material also appears to have vented, in part, through the central region. However, shallow piping appears to have occurred throughout the craser wings which implies venting throughout the crater region.

Injection

Holocene sediment (from MP-1) appears at an anomalous depth in borehole OPZ-18 within the transition sand (390.6 to 410.0 ft bsi$)$ and in thin dikes below the transition sand (434.5 to 435.2 ft bsl, and questionably at 415 ft). This appears to be injection of near-surface material at the base of the excavational crater.

Gamma Activity

In Enewetak boreholes, elevated gamma activity appears to reflect the following: (1) the presence of device-produced radionuclidrs; (2) the presence of brown-stained, organic-rich sediments from MP-4; and (3) various other factors. For example, a gamma peak of the third type occurs within muddy sediments overlving a discontinuity in OIT-11 (fig. 7-19). It appears that other peaks of the third type also can be related to thick zones of "teabrown" (organically stained) micrite cement.
PALEONTOLOGIC
MIXED ZONES

FIGURE 7-18. -- Paleontologic model of the crater-fill and the paleontologic mixed zones.

Cesium-137 levels coincide directly to the gamma activity in the Alpha, Beta-1, and Beta-2 crater zones (Ristvet and Tremba, 1986). Furthermore, the gamma activity of the brown-stained, organic-rich sediments is caused largely by naturally occurrink isotopes of thorium and uranium. These radionuclides were not observed within the Alpha, Beta-1, and Beta-2 crater zones.

Naturally occurring thorium and uranium isotopes were detected in borehole OIT-ll and probably account for the "other" peak (third type) in gamma activity noted above. Similarly, in borehole OHT-10, a small peak in the gamma activity probably reflects naturally occurring thorium and uranium (fig. 7-19).

Figures 7-19 and 7-20 compare the gamma \log, paleontologic and geoloyic crater zones, and general lithologies for $K O A$ and $O A K$ crater areas. Only boreholes on transects with full geologic sampling and open-hole gamma logs were utilized for this comparison. Essentially, the gamma logs confirm the general trends in radionuclide abundance (Ristvet and Tremba, 1986; and fig. 7-21). The Beta-2 / Beta-3 boundary (where present) and the Beta-1 / Gamma boundary (where present) appear to represent the demarcation between occurrence and absence of device-produced radionuclides. Naturally occurring radionuclides appear to reflect the presence of deep-piped material in the Beta-3 crater zone. Device-produced radionuclides are most abundant within the bottom of Alpha-2 (graded sands) and top of Beta-la (graded rubble) in $O B Z-4$ and OPZ-18, respectively. In KBZ-4, they are most abundant at the base of Alpha-1 and at the top of Alpha-2. In KCT-5, there is only a trace of radionuclides (device-produced and natural). In borehole OCT-5, deviceproduced radionuclides are most abundant within the lower part of the Beta-la crater zone. In OKT-13, device-produced radionuclides show two peaks, one within Beta-la and the other (larger) near the base of Beta lb.

Distribution of Radionuclides

The distribution of radionuclides within OAK crater is show in figure 7-21 (Ristvet and Tremba, 1986). In OBZ-4, the device- produced radionuclide (Cesium-137) is common in Alpha 1, Alpha 2, and Beta la, with peak abundance in Alpha 2. Most of the crater-fill in OPZ-18 consists of muddier sediments than $0 B 2-4$ and consequently contains higher concentrations of Cesium-137. In OPZ-18, radionuclides are common to Alpha 1, Beta la, Beta lb, and Beta 2 ; the Beta 2 occurrences represent the injected material. Peak abundance is in the upper part of Beta la. A moderate amount of cesium is found in OKT-13 below and above the "hiatus" sand (Beta ls), in Beta 1 b , and in Beta la and Alpha, respectively.

Radionuclides are sparse in $K O A$ crater and only common within $K B Z-4$. Here, they mimic the gamma-ray profile (fig. 7-20), with peak abundance in Alpha 1 and a trace at the base of Beta $1 b$ and top of Beta 2.

FIGURE 7-20. -- Borehole lithology (L), geologic (G) and paleontologic (P)
crater zones, and gamanay logs for selected boreholes, KOA crater, and
index maps for the KOA and OAK craters. Symbols the same as figure 7-19.

FIGURE 7-21. - Distribution of shocked calcite and Cesium-137 and relationship to crater zones in boreholes analyzed in oAK crater.

Distribution of Shocked Calcite

The distribution of shocked calcite is shown in Figure 7-21 (Polansky and Ahrens, Ch. 4 of this report). Only sparse, possibly moderately shocked calcite is present in the central crater area within Beta lb. Highly shocked calcite is found within the injected material in OPZ-18. Under the terraces, possibly moderately shocked calcite is found in Beta la, Beta lb, and Gamma with highly shocked calcite in the "hiatus" sand, Beta ls. Outside the limits of crater-derived rubble (Beta zone), highly shocked calcite occurs in Alpha 2 and Beta in OET-7 and in Alpha 2 in OAR-2A. The material in OAR-2A represents post-event deposition of shocked calcite away from the crater, probably by the sweeping away of fine-grained ejecta from the reef tract by currents and redeposition of it in the area of OAR-2A. The material in OET-7 in graded sands (Alpha 2) seems to represent post-event deposition like that in OAR-2A. The material in OET-7 in the undifferentiated rubble apparently represents buried ejecta.

Depression and Uplift of Structural Surfaces

The surface at the top of the Pleistocene in both the OAK and KOA areas shows a pattern of central removal and lateral depression on the net-change (delta) figures (figs. 7-22A and 7-23A, respectively) derived from the preand post-shot surface contour maps (figs. 7-4 and 7-24). In addition, in the OAK area, two lateral depression troughs are developed along the pre-shot slope from reef to lagoon. Also, the Pleistocene surface appears to be irregularly disrupted or preserved beneath the debris blanket (dashed lines, fig. 7-22A) and irregularly uplifted near the margins of the debris blanket. The maximum current depression observed in $O A K$ is 63 ft and in KOA is 53 ft . The maximum uplift in OAK is 14 ft . No strata in KOA are currently uplifted.

The surface at the top of the Pliocene in the OAK area (fig. 7-22B) shows central concentric depression slightly skewed toward the reef and a broad region of shallow uplift beneath both the debris blanket and the lagoon. The maximum depression is 193 ft beneath GZ . The maximum uplift appears to be about 21 ft . The Pliocene surface in the KOA area certainly was influenced by detonation of the MIKE device (fig. 7-23B). KOA shows a complicated pattern of depression with maximum depression on the lateral wings away from GZ. The pattern of depression from MIKE crater area would suggest that the area in the proximity of KOA GZ experienced 0 to 10 ft depression and the entire region from KOA GZ to MIKE experienced progressively greater depression toward MIKE. This possibly influenced the apparent lateral extension in depression roughly perpendicular to the line from KOA ground-zero to MIKE ground-zero.

COMPARISON OF OAR AND ROA CRATERS

The following comparisons and contrasts can be made between KOA and OAK craters:
(1). The base of the zone of sonic degradation (ZSD) is similar in both craters -- $1,139 \mathrm{ft}$ bs 1 for 0 AK ground-zero (GZ) and $1,101 \mathrm{ft}$ bsl for KOA GZ. The ZSD appears to form a narrower cone at KOA

FIGURE 7-22. -- Maximum depression/uplift of Pleistocene and Pliocene surfaces, OAK crater. Pleistocene surface is projected beneath debris blanket, where it is disrupted but probably remains as several isolated outliers such as encountered in OIT-11. Surface is lightly stippled where removed, heavily stippled where uplifted.

FIGURE 7-23. -- Maximum depression of Pleistocene and Pliocene surfaces, KOA crater. Surface is lightly stippled where removed.

FIGURE 7-24, -- Present-day (post-shot) location of Pleistocene and Pliocene surfaces, KOA and OAK craters. Contours in ft below H\&N datum (bsl).
(2). MP-3, the significantly cemented and altered zone, was probably 246 ft thick with the top at 280 ft bsl at KOA GZ and 183 ft thick with the top at 400 ft bs 1 at OAK GZ .
(3). MP-3 is depressed approximately 193 ft at $\mathrm{OAK} G Z$ and approximately 89 ft at KOA GZ. MP-3 shows depression and fracture at OAK and, in addition, at KOA, shows apparent rebound in the central part of the crater.
(4). At ground-zero, the Alpha zone (mud and graded sand) is comparable between KOA and OAK; however, the Beta zone (rubble) is twice as thick at OAK. In particular, Beta 3 (rubble floatstone) is much thinner at KOA. The total lateral extent of the Beta zone is nearly the same at both craters.
(5). The transition sand (Beta 2) is more extensive in KOA than OAK, with an average diameter of approximately 918 ft at KOA and 816 ft at $O A K$. The transition sand is more elongate oval at KOA than at OAK.
(6). The collapse rubble (Beta 16) is similar in both craters, although thicker in OAK. The Beta 1 b zone thins toward the lagoon at $O A K$ and thins toward MIKE crater at KOA.
(7). The hiatus sand (Beta 1 s) is much less extensive at KOA, presumably due to thinner and shorter-term deposition and to more extensive destruction by late-stage collapse.
(8). The graded rubble (Beta la) is similar in both craters. The rubble becomes thicker and muddier in the direction of the lagoon at OAK (i.e., toward its distal margin) and in the direction of MIKE crater in KOA For all intent and purpose, for the KOA event, MIKE served as a "lagoon" similar to the natural lagoon off OAK, but much smaller in extent.
(9). The graded sands (Alpha 2) are similar in both craters. This zone is common throughout the KOA crater but absent near the bathymetric center ($O P Z-18$) of $O A K$ crater.
(10). Mud (Alpha 1) occupies the central region of both craters.
(11). A debris blanket is extensive on the lagoon side of OAK; only two possible debris mounds of limited distribution exist on the MIKE-side of KOA.
(12). Deep-piped material is common only in Alpha 2 in KOA and probably vented in a limited area at the central crater. Deep-piped material is common to Alpha 1, Alpha 2, and Beta la in OAK and probably vented in an extensive area of the central crater and terraces.
(13). Shallow-piped material is common to Alpha and Beta la zones throughout the crater wings and found in all zones in the central crater in both craters. In KOA, it is represented by EEGG material in the central
crater and EE material in the crater wings. In OAK, it is represented by $F F / G G$ material throughout the crater.
(14). KOA crater is characterized by late-time sedimentation exceeding subsidence. OAK crater, in contrast, is characterized by late-time subsidence exceeding sedimentation.
(15). Device-produced radionuclides appear to be mostly limited to the Beta 2 and overlying zones in the craters. Radionuclides were detectable only in KBZ-4 for the KOA crater. In OAK crater, peak abundance of device-produced radionuclides progressively moves down in the crater zones away from GZ. For example, the peak abundance is in Alpha 2 in OBZ-4, at the top of Beta la in OPZ-18, at the bottom of Beta la at OCT-5, and at the bottom of Bota lb at OKT-13.

GEOLOGIC CRATER MODEL FOR OAR AND KOA

The transition sand (Beta 2) represents the remnants of the base of the excavational crater. It is characterized by sand-sized material that is formed by fracture and pulverization, by its transitional nature from mixed paleontology to unmixed paleontology within it, and by its containing injection dikes and debris. That shocked calcite is not common within the transition sand is due to two factors: (1) the sampling technique used in which granule- and larger-sized clasts were predominantly sampled (Polansky and Ahrens, 1987, Ch. 4 of this report), and (2) the relatively low shock pressures that probably existed in this region at formation (< 15 kilobars).

The rubble floatstone (Beta 3), beneath the base of the excavational crater (Beta 2), may represent fracture and disruption of sediment and rock caused by the maximum growth of the transient crater.

The collapse rubble (Beta $1 b$) represents crater-sidewall and partial flap collapse. This zone reflects paleontologic mixing of zones near the base of the excavational crater. The asymetric crater at oAK demonstrates partial sidewall and flap collapse and movement down the resulting slope away from the transient crater to form the majority of the debris blanket. The part of the flap involved in craterward collapse is that closest to the sidewall which would represent paleontologic zones contained in the sidewall itself. That the paleontologic mixing seems to reflect mixing of material from zones near the base of the crater suggests that most of this unit was deposited rapidly as a single, major, crater-wide collapse feature. This major collapse appears to have destroyed the lateral part of the exavational crater base and its sidewalls. The highly mixed material in the central crater bowl represents a variety of depositional modes that may include wash-back and piping of sufficient magnitude to keep the central bowl "boiling" (continuously mixing). This part of the unit was deposited contemporaneously with the "hiatus" sand (Beta 1s) which represents wash-back and a brief period of quasi-stabilization of the crater and deposition of post-event sediments. The "hiatus" sand is well sorted and contains the highest concentration of shocked calcite indicating deposition from wash-back and fall-back, but, curiously, contains no radionuclides. At OAK and KOA craters, the occurrences of radionuclides are spotty. The decades that have transpired since the event have allowed many radionuclides to dissipate (Ristvet and Tremba, 1986). The
remaining commonly detectable radionuclide is Cesium-137. It is associated with muddy sediments (McMurtry and others, 1985; Wardlaw and Henry, 1986b) and may have been preferentially deposited with muds, and, therefore, would not be common in well-sorted sands. Cesium-137 is involved in progressively younger and muddier deposits in the crater-fill toward ground-zero. Its absence in the "hiatus" sand probably indicates the winnowing out of silt and finer grains during the wash-back / fall-back process.

The graded rubble (Beta la) represents deposition probably caused by several major slumps. This indicates that subsidence significantly destabilized the existing crater margins and resulted in collapse. One such collapse in OAK appears to have originated on the reef side. Material from this collapse flowed through the crater and breached the debris blanket, leaving deposits on top of the debris blanket (OHT-10, OJT-12), and flowed out into the lagoon, as seen in the enhanced sea-floor image of OAK (fig. 7-14).

The graded sands and slumps (Alpha 2) represent late-stage, local collapse and deposition of the expanding and subsiding crater margins.

Late-stage mud (Alpha 1) represents post-event, low-energy deposition within the central crater. The differences in Alpha 1 and distal Alpha 2 sands are slight, as shown by the sediment analysis by Melzer and Patti (written communication, 1987).

The idealized distribution of these crater units is shown for a symmetric crater (KOA, fig. 7-25A) and for a asymetric crater (OAK, fig. 7-25B). The gradational units beneath the transition sand that represent gradually lessstressed sediment and rock within the significantly fractured zone of sonic degradation are also shown.

Thinning Analysis

This analysis simply compares the pre-shot model of inferred horizon location to the measured post-shot position. The comparison of positions is shown in Figures 7-26 to 7-29 and Tables 7-5 and 7-7. The analysis is displayed graphically in Figures 7-30 and 7-31 and tabulated in Tables 7-6 and 7-8. The upper correlation 1 ine in Figures 7-30 and 7-31 correlates the preshot model to the probable original stratigraphic depth now preserved beneath crater-fill (where present).

Stratigraphic Density Profile

The analysis of the borehole gravity surveys (Beyer, Ristvet, and Oberste-Lehn, 1986; and Beyer, Ch. 2 of this report) provide valuable information about bulk density of the strata in the vicinity of OAK crater. By averaging the borehole-gravimetry results within stratigraphic units, the density change can be compared directly with inferred stratigraphic thinning or thickening for areas where borehole gravity surveys were taken. Figure 7-32 and Table 7-9 relate the gravimetry results to the stratigraphic units. MP-2a appears anomalously dense in the reference sections. The average of MP units $2 \mathrm{a}-\mathrm{c}$ in the reference sections is utilized to compensate for this anomalous density, especially to compare to crater-fill material in the analysis.

FIGURE 7-25. -- Idealized model of geologic crater for a symmetric crater (A) and an asymetric crater developed on a significant slope (B).

TABLE 7-5. -- Depth (ft bsl) to MP unit boundaries, pre- and post-shot, OAK crater. Boreholes listed in order of increasing distance from ground zero.

UNIT	OBZ-4		OPZ-18		OCT-5		OTG-23		OUT-24	
1	14	-	47	-	16.5	-	45	-	2	-
2a	123	-	128	-	115	-	128	-	106	-
2b	165	-	166	-	155	-	168	-	145	-
2c	265	-	275	-	255	368.4	253	?	225	373.0
2d	315	-	363	568.9	305	417.9	327	434.0	276	407.0
3a	395	593.0	410	593.0	387	432.7	409	484.0	355	457.1
3b	544	701.2	555	723.5	534	572.2	544	610.0	490	592.0
4 a	592	747.3	600	761.9	585	623.7	594	669.0	528	630.0
4b	775	847.7	765	809.9	785	799.7	766	787.0	784	784.0
5 a	950	1013.8	956	1000.0	945	944.6	1000	1000.4	925	925.0
5b	1050	1065.1	1050	1063.0	-	-	-	-	1025	1025.0
5 c	1115	1114.6	1114	1114.0	-	-	-	-	-	-

UNIT	OKT-13		OFT-8		OIT-11		OET-7		OQT-1 9	
1	102	-	16	-	122	-	18	-	46	-
2a	141	-	115	204.1	147	185.4	118	173.4	129	168.0
2b	170	232.9	155	223.3	209	247.4	167	220.6	195	233.9
2c	275	326.6	230	272.0	-	-	279	294.7	240	274.7
2d	362	411.6	305	344.6	345	375.0	305	320.4	330	365.3
3a	410	431.3	390	419.8	405	434.8	395	410.0	406	413.3
3b	547	564.0	535	565.0	545	562.0	540	555.0	548	548.3
4 a	598	614.7	589	618.0	591	608.0	595	610.0	588	587.5
4 b	766	765.8	794	794.0	758	758.0	793	793.0	767	766.5
5 a	975	974.5	925	925.0	980	980.0	925	925.0	1020	1020.1
5b	1037	1036.5	-	-	-	-	-	-	-	-
5c	-	-	-	-	-	-	-	-	-	-

UNIT	OHT-10		0JT-12		ODT-6		ONT-16		ORT-20	
1	124	-	115	-	20	-	132	-	70	-
2a	152	-	149	-	116	161.5	149	-	130.5	160.6
2b	212	213.3	216	238.0	160	201.3	219	238.6	187	216.2
2 c	-	-	-	-	231	231.3	-	-	243	262.7
2d	361	360.8	350	350.0	315	315.0	338	337.8	327	346.7
3a	419	403.4	405	390.3	397	397.0	407	395.2	405	411.7
3b	547	531.4	547	531.0	546	546.0	550	537.9	552	552.0
4a	600	584.0	600	584.0	594	594.0	600	588.0	586	586.4
4b	751	751.1	732	732.0	792	792.0	715	715.0	767	767.0
5a	987	987.3	991	991.0	925	925.0	994	993.8	1014	1013.5
5b	-	-	-	-	-	-	-	-	-	-
5c	-	-	-	-	-	-	-	-	-	-

(TABLE 7-5 continued on next page.)

TABLE 7-5. (continued from preceeding page.)

UNIT	OMT-15		OLT-14	
1	142	-	132	-
2a	153	140.8	158	159.4
2b	225	225.0	227	227.0
2c	-	-	-	-
2d	335	334.6	341	341.1
3a	395	373.9	399	383.8
3b	551	529.7	550	534.6
4a	600	579.0	600	585.0
4b	702	701.9	700	700.0
5 a	1014	1013.5	1010	1010.2

Distance of boreholes from surface ground-zero, in feet:
OBZ-4 7
OPZ-18 335
OCT-5 658
OTG-23 804

OUT-24 858
OKT-13 989

OFT-8 1129
OIT-11 1206
OET-7 1375

OQT-19 1444
OHT-10 1462

OJT-12 1696
ODT-6 1715
ONT-16 1827
ORT-20 1846
OMT-15 2204
OLT-14 2754

FIGURE 7-26. -- Horizon location in fence diagram from boreholes 00R-17 to OPZ-18. Pre-shot location as a solid line except for unit MP-4a/4b boundary which is short dashes. Dashed line represents post-shot location where different from pre-shot location. Squiggles, breaks, and scale as in Figure 7-8.

FIGURE 7-29. -- Horizon location in fence diagram from boreholes XBK-la to
KET-7 as in Figure 7-25. Squiggles, breaks, and scale as in figure 7-7.

TABLE 7-6. -- Thinning/thickening analysis (in percent) of MP units beneath OAK crater. $*=$ percent removed, where removal has occurred lower number indicates thinning in remaining sediments; + = percent thickened; averages indicated by brackets are weighted.

UNIT	OBZ-4	OPZ-18	OCT-5	OTG-23	OUT-24	OKT-13
1*	100	100	100	100	100	100
1	-	-	-	-	-	-
2*	28	17	40	26	28	11
2a	- T	-T	- T	- T	-T	- T
2b	- 02	- 08	- 47	- 19	- 30	1115
2c		-	01	-	33	02
2d	-	49	691	391	37	59
3 a	$27-22$	10 11	0504	00 00	00 00	0302
3b	04	15	00	00	00	01
4 a	45726	71 33	12 ll	31718	40726	10705
4b	05	00	091	091	001	001
5 a	$49-39$	$33-28$	00	00	00	00
5b	23	201	00	00	00	00
UNIT	OFT-8	OIT-11	OET-7	OQT-19	ODT-6	ORT-20
1*	100	40	14	23	10	00
1	-	09	37	21	14	02
2*	00	00	00	00	00	00
2a	52	00 T	04	00 T	10	02T
2b	35022	T06\| 03	$34-15$	0911	6816	1709
2 c	03	1	01	00	00	00
2d	12	00	001	37	001	17
3a	00900	09707	00700	$05 T 04$	00700	05704
3b	00	00	001	001	001	00
4 a	$14 \bigcirc 09$	10] 04	09705	00	00	00
4 b	001	001	001	00	00	00
5 a	00	00	00	00	00	00
5 b	00	00	00	00	00	00
UNIT	OHT-10	OJT-12	ONT-16	OMT-15	OLT-14	
1*	100	100	100	89	53	
1	-	-	-	-	-	
2*	09	14	02	00	00	
2a	-	- T	-T	$+17 \top$	$02 T$	
2b	T- 13	T16 18	T17 13	00 10	T00 07	
2 c	1	1	1	1	1	
2d	27	271	171	351	181	
3a	00	00	00	00	00	
3b	00	00	00	00	00	
4 a	$\underline{+11}$	$+12 \mathrm{~T}+04$	$+10]+03$	$+21]+05$	$+15$	
4b	001	001	001	001	001	
5 a	00	00	00	00	00	
5b	00	00	00	00	00	

TABLE 7-7. -- Depths (ft bsl) to MP unit boundaries, pre- and post-shot, KOA crater. Boreholes listed in order of increasing distance from groundzero.

UNIT	KBZ-4		KCT-5		KFT-8		KDT-6		KET-7	
1	+7	-	7	-	6	-	5	-	5	-
2 a	37	-	35	-	33	-	33	-	32	-
2b	145	(247.2)	146	(242.5)	146	233.1	147	166.8	148	148.0
2 c	193	287.0	195	274.3	195	257.4	195	215.0	195	195.0
2d	250	344.0	246	365.4	244	372.0	243	282.0	242	242.0
3 a	282	368.6	285	392.9	285	395.6	286	382.0	288	368.0
3b	470	480.7	470	-	470	-	470	-	470	-
4 a	528	539.0	526	593.0	525	590.0	525	581.0	525	575.0
4b	820	848.1	820	820.0	820	820.0	820	820.0	820	820.0
5a	979	979.0	996	996.0	999	999.0	1005	1005.0	1008	1008.0
$5 b$	1090	1089.6	-	-	-	-	-	-	-	-
5 c	1147	1147.3	-	-	-	-	-	-	-	-

Distance of boreholes from ground-zero, in feet:

KBZ-4	12
KCT-5	645
KFT-8	870
KDT-6	1182
KET-7	1326

TABLE 7-8. -- Thinning/thickening analysis (in percent) of MP units beneath KOA crater, symbols as in Table 7-6.

UNIT	KBZ-4		KCT-5	KFT-8	KDT-6	KET-7
1*	100		100	100	100	00
1	-		-	-	-	+110
2*	44		55	17	00	00
2a	-		-	-	497	50
2 b	18	12	+64 +08	$49+16$	$00+07$	$00+08$
2c	00		$+78$	$+133$	+39	00
2d	24		30	57	$+132$	+173
3 a	41	31	17	19	17	13
3b	00					
4 a	$+05$	03	23 15	$23 T 14$	19712	$17 \int 11$
4 b	18]		001	001	001	001
5 a	00		00	00	00	00
56	00		00	00	00	00

$$
\frac{\infty}{1}
$$

0
\vdots
1
1
0

$\begin{array}{llllllllll}0 & 0 & 0 & \circ & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \circ & 0 & 0 & 0 & 0 & \circ & 0 & 0 \\ 0 & 0 & \ddots & i & 0 & 1 & \infty & 0 & 0\end{array}$ | \circ | |
| :--- | :--- |
| - | |
| - | |

$75813 \exists 1$

FIGURE 7-31. -- Graphic thinning analysis for KOA crater boreholes as in Figure 7-30.

$$
7-54
$$

TABLE 7-9. -- Stratigraphic bulk density analysis. Values in gm/cc. Change from bulk density model (the composite reference sections) is indicated in parenthesis.

AVERAGE DENSITIES FOR STRATIGRAPHIC MATERIAL PROPERTY UNITS AND CRATER ZONES

	MODEL	ORT-20	OQT-19	OTG-23	OPZ-18	
					1.812(-.06*)	α
					1.876(-.02*)	βl_{a}
1	--	1.855	1.895	--	1.982 (+ . 0 3*)	$B{ }^{\text {b }}$
2a	1.965	1.923(-. 02)	1.921(-.02)	--	1.967 (+.03*)	32
2b	1.908	1.918(+.01)	$1.904(-)$	-- \|	2.027(+.06*)	B3
2 c	1.919	$1.923(-)$	1.942(+.01)	$2.017(+.05)$	2.124(+.11)	2c
2d	1.920	1.985(+.03)	1.982(+.03)	$2.030(+.06)$	2.167(+.13)	2d
3a	1.978	1.985 (-)	2.018(+.02)	2.052(+.04)	2.116(+.07)	3a
3b	1.976	--	1.950(-.01)	$2.063(+.04)$	2.080(+.05)	3b
4 a	2.011	--	2.025(+.01)	$2.150(+.07)$	2.045(+.02)	4a
4b	--	--	1.959	--	1.993(+.02)	4b

The model is the average value for units in the reference boreholes OOR-17 and OSR-21, asterisk (*) indicates the difference in bulk density from average value value of normal sediments (2a-c) which is 1.919 , OQT-19 is used for model density value of unit 4 b.

$$
\begin{gathered}
\alpha=\text { Alpha } \quad \beta 1_{a}=\text { Beta } 1 a \quad \beta 1_{b}=\text { Beta } 1 \mathrm{~b} \\
\beta 2=\text { Beta } 2 \quad B 3_{a}=\text { Beta } 3 \mathrm{a}
\end{gathered}
$$

FIGURE 7-32. -- Stratigraphic density profile based on borehole gravimetry.

FIGURE 7-33. -- Idealized succession of major depositional events to form geologic crater. No horizontal scale is implied.

General Densification and Flow Patterns

OAR Crater.

The density values measured for the crater zones Alpha and Beta in OAK (OPZ-18) are compared to the average value of normal (undisturbed) sediments in MP-2 (a-c). The author feels that the average value for MP-2a through MP-2C also adequately characterizes the upper sediments that were not measured by gamma-gamma density or borehole gravimetry (MP-1 and part of MP-2a). Material in the upper crater zones (Alpha and Beta la) in OAK appear to be less dense than normal sediments. Beta $1 b$ and Beta 2 appear to be slightly more dense than normal sediments. Beta 3 has significant densification. Beneath the rubble zone (Beta), the rock and sediment occur in normal stratigraphic order, and density and thinning can be compared directly to the reference sections.

MP-2c (OPZ-18 and OTG-23) immediately subjacent to the Beta zone is moderately densified. Thinning of this unit cannot be calculated because the top of the unit is not preserved in either borehole. However, the significant densification in OPZ-18 suggests this unit behaved similar to the underlying unit, MP-2d in the area of that borehole.

MP-2d under the central crater area shows the most significant densification. However, densification cannot account entirely for the roughly 50 percent thinning of the unit over a wide area.

Densification within MP-3 accounts for most of the thinning observed within that unit except beneath the central crater. Beneath the certral crater, collapse of vugs could compensate for considerable volunie loss (thinning) with little observed density increase.
$M P-4 a$ shows essentially no densification under the central crater area and at least 40 percent thinning over a wide area. MP-4a and MP-4b are differentiated by organic concentration. It is probable that both units flowed and mixed obscuring their relationship in a manner so that the organics identifying MP-4b occur higher than predicted, and thinning in MP-4a is exaggerated (pspecially in $O P Z-18$). Nevertheless, the whole unit. $M P-4$, experienced 20 percent thinning over a wide area that is not accounted for by densification.

If the geologic pre-shot models are correct, than the stratigraphic units that show thinning is excess of that explained by densification must have been partially removed by flow. Two units under the central crater area that indicate significant flow are MP-2d and MP-4a. Material from these units previously has been shown to have been piped (vertical flow) to the surface. Material from MP-4 is involved in the majority of deep piping, but the estimated volume of that material preserved in the crater fill only accounts for a small amount of material that flowed.

It appears most of the volume lost is accounted by lateral flow. Two lines of evidence support this: (1) The density increase detected in MP-4 at the base of $0 \mathrm{TG}-23$ suggests lateral densification presumably from lateral
flow, and (2) The uplifted MP-3 over much of the lagoon (refer to fig. 7-21) appears to be caused by thickening of MP-4. This bulging or bulking of MP-4 clearly is visible in all the seismic-reflection survey profiles that run through the lagoon opposite the crater.

Piping (vertical flow) is clearly a post-dynamic phenomenon. The units that appear to have experienced lateral flow, also were involved with latestage piping. These units in OAK appear to be MP-2c over a limited extent (because it was excavated in the central portion of the crater) and MP-2d, MP4a, and MP-4b (over a wider extent). Deep piping appears to have been vented initially through the central part of the crater and subsequently through concentric fracture zones developed farther laterally (due to subsidence) represented by the piped mounds or volcanoes preserved on the terraces today. Shallow piping appears to be a more widespread phenomena over the crater area, though it too was, at least partially, vented through the central part of the crater as evidenced by the presence of shallow-piped material in all central crater zones.

KOA Crater.

By comparison with OAK crater, KOA experienced much more shallow lateral and vertical flow within its units. Thinning and bulking (thickening) is observed in $M P-2 b, M P-2 c$, and $M P-2 d$. The thinning appears in increasing area in each lower unit and, therefore, the thickening occurs farther from groundzero with depth. MP-3 appears more thinned than in OAK and may have experienced flow. MP-4 appears to have thinned and flowed. However, the thinning in MP-4 is complicated in its area of distribution; represented by central rebound and perhaps channeled vertical flow through the central uplift. Shallow piping appears to have been pervasive and is indicated by the common EE material in much of the mixed zone. Venting of some of the shallowpiped material in the areas of $\mathrm{KBZ}-4$ and $\mathrm{KCT}-5$ is suggested by the deeper mixing of this shallow-piped material in the crater fill of these boreholes.

Relative Timing of Depositional Events

The idealized succession of depositional events is shown in figure 7-33.

For purpose of discussion, the following stages of crater development, referred to as craters, are defined:
(1). Maximum transient crater. That crater formed when the outgoing velocity vector is zero, prior to rebound. The formation of the Beta 3 rubble beneath the excavational crater is thought to represent the maximum transient-crater growth.
(2). Terminal transient crater. That crater formed at the end of the transient-crater phase, following rebound.
(3). Collapse crater. That crater formed at the end of the formation of the rubble from the collapse of the sidewall/flap (early stage collapse, Beta 1b).
(4). Initial slump crater. That crater formed at the end of the formation of late-stage collapse rubble (Beta la).
(5). Apparent crater. That crater observed today, determined by extrapolation of post-shot measurements to the land or water surface at shot time (B. L. Ristvet, personal communication). This crater also has been referred to as the subsidence crater.

For OAK crater, in chronologic order from oldest to youngest. the sequence of depositional events is:
(1). Formation of transition sand (Beta 2) at base of transient crater. dynamic lateral flow of subsurface units, air-blast deformation.
(2). Collapse of excavational-crater wall/rim destroying lateral extent of transition sand and forming collapse rubble (Beta lb); formation of collapse crater; initiation of liquefied (post-dynamic) flow, especially in MP-2c, MP-2d, MP-4a, and MP-4b; and initiation of subsidence.
(3). Penecontemporanfous formation of undifferentiated rubble zone external of collapse crater by partial flap collapse in addition to prior airblast deformation.
(4). Penecontemporaneous formation of debris blanket by probable partial failure and movement of the excavational-crater wall/rim lagoonward.
(5). Infilling of at least part of remaining crater bowl (collapse crater) by wash- andfor fall-back initiating deposition of "hiatus" sand (Beta ls) ; and initiation of winnowing (removal in water suspension) of fine-grained sediments.
(6). Continuation of deposition of "hiatus" sand over outer crater and contemporaneous initiation of shallow piping in the central crater; continued liquefied lateral flow and subsidence; continued winnowing.
(7). A sequence of crater-margin collapses to form graded rubble (Beta la). One collapse (slump) resulted in a flow large enough to cross the crater, breach the debris blanket, and flow into tife latoon. Subsidence, piping, liquefied lateral flow, and winnowing continued. Shallow-piped material reached the surface throughout the crater before or during initiation of Beta la deposition.
(8). Margin slumpiag and graded-sand (turbidite) deposition (Alpha 2); subsidence, piping, liquefied lateral flow, and winnowing continued. Deep-piped material reached the surface at the beginning of Alpha 2 deposition.
(9). Late-time partial infilling of central part of the crater with mud (Alpha l); subsidence, piping, and lateral flow continuing but progressively less. Mud deposition has continued to present. Local slumping, sand deposition, and winnowing has continued along the reff maryin mainly as a consequence of natural geologic processes.

Because the OAK crater developed on a slope, the bathymetric center of the crater moved downslope at the end of early-stage collapse (generally shown as an apparent, progressively lagoonward migration of the low point of successive crater-fill units in fig. 7-25B).

For KOA crater, the events (from oldest to youngest) are:
(1). Same as in OAK.
(2). Same as in OAK; liquefied lateral flow especially in MP-2b, MP-2c, MP-2d, MP-4a, and MP-4b.
(3). Penecontemporaneous formation of debris mounds by partial MIKE-ward collapse and movement of crater wall/rim.
(4). Same as in OAK, resulting in the much-thickened section at KET-7.
(5). Same as in OAK.
(6). Possible deposition of a thin "hiatus" sand over outer crater (this was mostly destroyed by subsequent collapse); initiation of shallow piping; and continued liquefied lateral flow and subsidence.
(7). A sequence of crater-margin collapse to form graded rubble; subsidence, shallow piping, and liquefied lateral flow continued.
(8). Margin slumping and graded-sand (turbidite-flow) deposition (Alpha 2) and piping in the central part of the crater; continued but reduced subsidence and lateral flow. Deep-piped material reached the surface at the initiation of Alpha 2 deposition.
(9). Late-time infilling of central part of the crater with mud (Alpha 1); localized slumping and sand deposition around most of crater (except near MIKE). Subsidence has lessened markedly. Deep piping has discontinued before deposition of mud (Alpha 1).

VOLUME PROBLEMS

Beyer (Ch. 2 of this report) and Trulio (Ch. 6) demonstrate that densification can only account for 8 to 15 percent of the subsidence measured in the crater wings of OAK. Yet OAK appears to be substantially a subsidence crater. Peterson and Henny (Ch. 5) show substantial late-time subsidence (post two months post-shot) by comparing the 1958 H\&N post-shot map with the 1984 USGS bathymetric map. Peterson and Henny estimate an apparent (conservative) volume increase of the crater of 231 million cubic ft or 25 percent of the apparent crater volume. Piping clearly demonstrates the existence of a long-term unstable liquefied mass at depth beneath the crater.

Piping is one avenue by which this liquefied mass could achieve stability. It is the expression of liquefied flow vertically. Dikes, lagoon uplift, and densification of MP-4 laterally all demonstrate lateral flow.

Evidence for Piping and Lateral Flow

Piping is not an hypothesis but a process the results of which are observed in both OAK and KOA craters.

Surface. -- Sand volcanoes are present on the terraces of OAK crater (fig. 7-14). Their presence on the terraces indicates that deep piping persisted after the majority of Alpha deposition (slumps and sand turbidity flows) and that flow (at least vertical) is a very long-term process.

[^17]Loss of Material from the Crater. -- In OAK, large ejecta or debris is found entirely within the apparent crater. Halley and others (1986b) demonstrated several clasts (unspecified size, but generally cobble-sized or larger material collected by submersible) to be debris. Debris rays were observed along the reef tract, generally all within the apparent crater. The debris blanket is within the apparent crater. Where did all the material go to form the apparent crater?

Debris is indicated outside the apparent crater in three places:
(1). In the breach and turbidite flow deposit (fig. 7-14) deposition of an unknown volume of debris is inferred from the enhanced sea-floor image.
(2). At OAR-2A, the upper 25 ft of sediment (mostly sand) contains highly shocked material, probably ejecta swept from the reef tract and deposited at this site. This thickness could represent a substantial amount of material deposited along the toe of the slope from reef to lagoon on both the northeast and southwest sides of the crater.
(3). In mud in the lagoon, clay-sized material is common in samples from throughout the northeastern part of the lagoon (Wardlaw and Henry, 1986b). It is probably mostly blast-derived and represents a substantial volume of fine-grained ejecta and material from the craters. Post-shot photographs show mud-ladened plumes into the ocean and lagoon far beyond the apparent crater, suggesting this loss was not trivial.

The uplifted area in the lagoon near OAK (fig. 7-22) suggests that a considerable volume of material from MP-4 moved outside the apparent crater in the subsurface. If a 5-7 percent density increase accompanied this thickening it would account for an appreciable amount of the apparent crater.

SURINARY

OAK and KOA craters are s:ailar. They exhibit the same geologic crater zonation. The zone of sonic degradation that defines the geologic crater is very similar for both craters. OAK and KOA differ in type of device, in coupling, and in depth and radius of the various stages of crater development that are not within the scope of this paper. The KOA area was preconditioned by MIKE and possibly other devices. It contains a better, thicker cemented interval (MP-3) at shallower depths than OAK. These two factors contributed strongly to the major differences between KOA and OAK. KOA is a crater that developed early and had far less late-stage modificatinn, as indicated by its lack of late-stage piping and diminished late-stage subsidence. OAK, on the other hand, is a crater most of which developed later and had significant late-stage subsidence and piping. It appears that as much as 66 percent of the apparent crater volume of OAK may be due to subsidence. In contrast, only about 20 percent of $K O A$ may be due to subsidence.

Piping requires a liquefied material mass at depth. Piping lasted for months at both craters. Subsidence lasted for months at both craters. The prolonged existence of a liquefied material mass at depth is related causally to prolonged subsidence.

REPERENCES CITED

Beyer, L. A., Ristvet, B. L., and Oberste-Lehn, D., 1986, Chapter 8: Preliminary density ond porosity data and field techniques of borehole gravity surveys, OAK crater, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555, 28 p.

Beyer, L. A., 1987, Chapter 2: Analysis of borehole gravity surveys at OAK crater, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 4: Additional studies of OAK and KOA craters, U.S. Geological Survey Open-File Report 87-xxx.

Brouwers, E. M., Cronin, T. M., and Gibson, T. G., 1986, Chapter 11: Additional paleontologic studies, $O A K$ and KOA craters, in, Henry, $T . W .$, and Wardlaw, eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of KOA and OAK craters: U.S. Geological Survey Open-File Report 86-555, 18 p .

Couch, R. F., Jr., Fetzer, J. A., Goter, E. R., Ristvet, B. L., Tremba, E. L., Walter, D. R., and Wenland, V. P., 1975, Drilling operations on Eniwetok Atoll during Project EXPOE: Air Force Weapons Laboratory Technical Report AFWL-TR-75-216, Kirtland Air Force Base, New Mexico, 270 p.

Cronin, T. M., Brouwers, E. M., Bybell, L. M., Edwards, L. E., Gibson, T. G., Margerum, R., and Poore, R. Zoro, 1986, Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 2: Paleontology and biostratigraphy application to $O A K$ and KOA craters, U.S. Geological Survey Open-File Report 86-159, 39 p.

Cronin, T. M., and Gibson, T. G., 1987, Chapter 3: Paleontologic evidence for sedimentary mixing at OAK crater, Enewetak Atoll, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 4: Additional studies of OAK and KOA craters, U.S. Geological Survey Open-File Report 87-665.

Folger, D. W., Robb, J. M., Hampson, J. C., Davis, P. A., Bridges, P. M., and Roddy, D. J., 1986, Sidescan-sonar survey of OAK and KOA craters, in, Folger, D. W., ed., Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678, 18 p .

Grow, J. A., Lee, M. W., Miller, J. J., Agena, W. F., Hampson, J. C., Foster, D. S., and Woellner, R. A., 1986, Multichannel seismic-reflection survey of KOA and OAK craters, in, Folger, D. W., ed., Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678, 46 p .

Halley, R. B., Slater, R. A., Shinn, E. A., Folger, D. W., Hudson, J. H., Kindinger, J. L., and Roddy, D. J., 1986a, Observations of OAK and KOA craters from the submersible, in, Folger, D. W., ed., Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin 1678, 32 p.

Halley, R. B., Major, R. P., Ludwig, K. R., Peterman, Z. L., and Mathews, R. K., 1986b, Preliminary analyses of OAK debris samples, in, Folger, D. W., ed., Sea-floor observations and subbottom seismic characteristics of OAK and KOA craters, Enewetak Atoll, Marshall Islands: U.S. Geological Survey Bulletin l678, 11 p .

McMurtry, G. M., Schneider, R. C., Colin, P. K., Buddemeier, R. W., and Suchanek, R. H., 1985, Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by calianassid bioturbation: Nature, v. 3l3, no. 6004, p. 674-677.

Peterson, J. L., and Henny, R. W., 1987, Chapter 5: Bathymetric studies of UAK cracer, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 4: Additional studies of OAK and KOA craters: U.S. Geological Survey Open-File Report 87-665.

Polanskey, Carol, and Ahrens, T. J., 1987, Chapter 4: Shock history of PEACE samples, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Is lands; Part 4: Additional studies of $O A K$ and KOA craters: U.S. Geological Survey Open-File Report 87-665.

Ristvet, B. L., Tremba, E. L., Couch, R. F., Jr., Fetzer, J. A., Goter, E. R., Walter, D. R., and Wendland, V. P., 1978, Geologic and geophysical investigations of the Eniwetok nuclear craters: Air Force Weapons Laboratory Technical Report AFWL-TR-77-242, 300 p .

Ristvet, B. L., and Tremba, E. L., 1986, Chapter 12: Radiation chemistry of the subsurface of $O A K$ and KOA craters, in, Henry, T. W., and Wardlaw, B.R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of $O A K$ and KOA craters: U.S. Geological Survey Open-File Report 86-555, 15 p.

Trulio, J. G., 1987, Chapter 6: Constraints on densification and piping in the OAK event, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 4: Additional studies of OAK and KOA craters: U.S. Geological Survey Open-File Report 87-665.

Wardlaw, B. R., and Henry, T. W., 1986a, Chapter 2: Physical stratigraphic framework, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555, 36 p.

Wardlaw, B. R., and Henry, T. W., 1986b, Chapter 14: Geological interpretation of $O A X$ and KOA craters, in, Henry, T. W., and Wardlaw, B. R., eds., Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands; Part 3: Stratigraphic analysis and other geologic and geophysical studies in vicinity of OAK and KOA craters: U.S. Geological Survey Open-File Report 86-555, 39 p.

CRATER
SHOT CONTOUR MAP

PLATE 5-1
oak crater, allce reef (STA.25)
HAN (IJ5B) PRESHOT TOPOGRAPHIC AND HYDROGRAPHK MAP

[^18]

PLATE 5-2
OAK CRATER. ALICE REEF (STA.25)
HAN (1958) PRESHOT TOPOGRAPHIC AND HYDROGRAPHIC MAP

Map ureda

 bast mato:

Molmes and Marver inc; Riveine cory ap - ooogranky

 vores:

Contour interval asove the minus 5 fidetum is 1 it.
 Dotted lines reoresent contours above the 0 is astum inick solid line represents 0 t elevation.
Deshed-dotied line rapresents ine minus 5 't contour.
Dashed lines represent 25 it contout increments beinur
natum is 0.5 it belom aporocimate mest com water spring
a an ivr oria coromat

- BOREHOLE LOCATION WITHIN MAPPED AREA (BOREHOLES ORILLED 1985)

	positive \triangle-relief	
	no change	
- \% :	O-5Ft = negative	\therefore-RELIEF
[uman	5-10 ft	
¢	10-15ft	
	15-20 Ft	
	20-30 Ft	
	30-40FT	
	40-50 ft	
\square	50-60 Ft	
-	60-70ft	
四	70-80 FT	
$8 \times \times 8$	80-90FT	
Nuns	90-100 FT	
$[8$	100-110 FT	
\ldots	110-120 FT	
	120-130 FT	
	130-140 FT	
	140-150 FT	
为	150-160 FT	
530	160-170FT	
\cdots	170-180 FT	
	180-190ft	

oAK CRATER
SHOT ISOPACH MAP, POSITIVE \triangle-RELIEF

LEGEND

- - BOREMOLE LOCATION WITHIN MAPPED AREA (BORENOLES DRILLED 1985)

50	55 FT	Positive \therefore relief
45	50×7	
40	45 F	
35	40 Ft	
30	35 Ft	
25	30 Ft	
20	25 Ft	
15	20 Ft	
10.	15 FT	
5	10 Ft	'
0	5 FT	\downarrow
NO	change	
	190 5 T $=$	negative \triangle - relief

PLATE 5-9
oak crater, alice reef (Sta.25)
COMPARATIVE POSTSHOT ISOPACH MAP (POSITIVE -REI IEF)

[^0]: 1 The term emplacement is used as a generic term to describe the deposition of material transported from one point to another without reference to the nechanism involved.

[^1]: 1 Following the glossary presented in Henry and Wardlaw (1986a), the apparent crater is defined as the locus of the zero-difference contour line surrounding a crater -- viz, the locus of points where the effects of an explosion can no longer be detected when the pre-event contours are compared with the post-event contours (fide, B.L. Ristvet.)

 2 A negative- and a positive-relief-difference (called Δ-relief) isopachous map was constructed for each combination of two base maps.

[^2]: FIGURE 2-15. - Cross plot of BHG porosity and neutron porosity averaged over equivalent depth intervals (A). Cross plot of gamma-gamma porosity and neutron porosity, each averaged over BHG depth intervals (B). Cross plot of BHG porosity and gamma-gamma porosity averaged over equivalent depth intervals (C). Data are fran columns 10, 13 and 14, Tables 2-2 through 2-7.

[^3]: 1 Setae are small hairs that occur on the exterior of the valves of some taxa of ostracodes.

[^4]: 1 Sediments from the lagoon floor or the upper several inches of sediment belcw the lagoon floor itself are referred hereafter as Surface maierials.

[^5]: Figure 3-1. -- Borehole OAR-2/2A. Plot of percentages of diagnostic ostracode species. (la) zone $A A ;$ (lb) zones $B B-C C$; (lc) zones $E E-F F ;$ (ld) zones FF-GG.

[^6]: Figure 3-2. -- Borehole OOR-17: Plot of percentages of diagnostic ostracode species. (2a) zone AA; (2b) zones $\mathrm{BB}-\mathrm{CC}$; (2c) zones EE-FF; (2d) zones FF-GG.

[^7]: Figure 3-5. -- Plot of percentages of piped specimens versus depth. (5a) borehole 0BZ-4, upper 160
 piped specimens omitted; (5d) borehoie OPZ-18, upper 145 ft , samples omitted.

[^8]: ${ }^{1}$ California Institute of Technology, Division of Geological and Planetary Sciences; Pasadena, California 91125.

[^9]: 1 Plates 5-1, 5-2, and 5-3 are digitized, reprocessed versions of the referenced original bathymetric maps; these are located at the end of the Open-Fil. Report in the map pocket.

[^10]: 1 The pre-shot depth of the sea floor is known at borehole lucations, as are the depths of some horizons (depth uncertainties and confidence questions are taken up later). For a given borehole and horizon, the differtace between horizon depth and sea-floor depth is the pre-shot height of the vertical column between horizon and sea floor. Likewise, for that same borehole and horizon, the post-shot height of the column from horizon to seaflour is also known. Between those two levels (horizon and sea floor), the particles of solid in the column may or may not be the same pre-shot as post-shot. The simple subsidence hypothesis says they are the same. The hypothesis is tested herein by adopting it, and comparing the column shortening it implies (when coupled with measured densities) to the observed shortening.

[^11]: 1 For a cratering mechanism, a useful measure of significance lies in the fraction of the apparent crater's volume that can be laid to it. The piping observed at OAK crater occurred only within $\sim .4$ apparent radii from GZ -- the central crater -- whereas the main PEACE problem is to account for the wing beyond the central crater. Piping will merit great attention if it can be shown, by tight quantitative arguments, to have produced something like half the wing's volume. By that standard, the fact that piping occurred can only suggest it as a possibly significant mechanism. The same holds for other observations as well, applying (for example) to any sand boils outside the apparent KOA crater; what their quantitative relation might be to the volume of KOA crater (let alone OAK's) is not at all obvious [mud boils also appeared above the Tatum salt dome after the SALMON event (Werth and Randolph, 1966, p. 3409) -- clear proof of piping, but piping played no role in forming SALMON's cavity].

[^12]: \lrcorner
 $0161+145$
 icti,

[^13]: 1 See footnote 3 on page 6-1 for explanation of use of "coral" in this text.

[^14]: 1 As needed, the depths to a given horizon in different boreholes have been found herein by linear interpolation among the horizon-depths fixed by PEACE Program geologists (see Chapter 7 of the current Report, particularly tbls. 7-2 and 7-4).

[^15]: 1 Thickness-change curves were first computed with horizon "a" fixed near Contour D. Except for larger gaps between end-of-data and the sea floor, there are no appreciable differences between those curves and the ones presented in this report -- and no change at all in conclusions drawn from them (conclusions first reached, in fact, with horizon "a" fixed).

[^16]: ${ }^{1}$ Below sea level is abbreviated bsl throughout this Volume.

[^17]: Crater-Fill. -- The volume of piped material is estimated for the craterfill of the central bowl of OAK. Deep-piped material (biostratigraphic zones II-MM) is 4.83 million cubic ft. Shallow-piped material (biostratigraphic zones $F F-G G$) is 45.62 million cubic ft. Deep-piped material is only surficial outside the central bowl (i.e., on the terraces). Shallow-piped material is throughout the crater-fill above the hiatus sand (Beta ls), so an appreciable additional volume exists but has not been calculated (further paleontologic study is needed for these estimates). Shallow piping reached the crater surface after deposition of the hiatus sand. Deep piping reached the crater surface after deposition of the graded rubble (Beta lb). This is true for both OAK and KOA craters and suggests that shallow piping reached the surface on the order of minutes, deep piping on the order of hours, and both persisted for days. In OAK, deep- and shallow-piped material is present in the latestage mud (Alpha 1) deposits suggesting very long-term depositicn (many months). In KOA, only shallow-piped material is prescat in the late-stage mud (Alpha 1) deposits. Deep-piped material is present in the graded sands (Alpha 2) suggesting an ending of deep-piping at the initiation of Alpha leposition in KOA (approximatelv l-2 months). If the liquefied materiai mass exhibits vertical flow for days, why is lateral flow constrained to the dynamic phase of crater development? Material from MP-4 (deep-piped) would have an effective seal by MP-3 in most places except in the proximity of large fractures and vents. The material was depressed under the central crater and the sealed avenue of flow would be up along the lower surface of MP-3.

 Subsurface. -- Unit MP-4 shows densification away from the central crater. Borehole gravimetry shows a substantial increase in density in MP-4 in OQT-23 for that part that was measured (refer to tbl. 7-9). Gamma-gamma density shows a similar substantial increase in density throughout MP-4 in OKT-13. The H\&N post-shot bathymetry (Petersun and Henny, Ch. 5 of this report) shows a rise in the lagoon sea-floor depth that exceeds the thickness of the deiris measured in several boreholes. This indicates uplift of the surface. As previously mentioned, MP-3 shows uplift throughout the lagoon (refer to fig. 7-22). Both these lines of evidence suggest significant lateral flow of MP-4, densifying the material laterally and uplifting the overlying sediment and rock over much of the lagoon. It appears that calculations down to the line of zero net displacement (contour $D, \operatorname{Tr} u l i o, C h$. 6 of this report) do not adequately encompass all significant subsurface crater phenomena because much appears to happen below this line.

[^18]: Wap prepared for the drack paogron ore the Air force weadons
 base mad:
 1958: Sheet Na. J/5 03-001-cin, odite septomber: mates

 Contove interval anove the minus s it datim is : \because
 dick solid lime rearesents n it olevation. A . 1 atom oashed-aoties line reoresents the minus et. - one au

