

MICROCOPY RESOLUTION TEST CHART
IREAO,
TANTAROS 1969 a
wind tundel tests of elliptical missile egay
CONFIGURATIONS AT MACH NUMBERS 0.4 TO 5.0

CGAALD E. SHEKELA
LI PALL F. AMIDON
VALENTINE DAHLEM 111
Hior Speed Aero Performance Eranch
Aeromecharics Division

Uecenter 1987

FINAL REPCRT FOK FERIOD FEFRLAARY 1983 to UUNE 1986
approfeg für pliblic. rel.ease; uistributign unlimitec.

FIIGHT LYNAMICS Latioratory
AIF FORCE WRIGHT AERGNAUTICAi LAEURATORILS
A:F FLKCE SYSIEM: COMMANT
WFIGHT-PATTEKSON AIR FURCE BASE CHIC 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

VALENTINE DAHLEM, Chief
High Speed Aero Performance Branch Aeromechanics Division

FOR THE COMMANDER

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIMG, Wright-Patterson AFB, OH 45433-6553 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

1a. REPORT SECURITY CLASSIFICATION UNCLASSIEIED	1b. RESTRICTIVE MARKINGS			
2a. SECUAITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release Distribution Unlimited			
26. DECLASSIFICATION/DOWNGRADING SCHEDULE				
4. PERFORMING ORGANIZATION REPORT NUMBER(S) AFWAL-TR-87-3088	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL (If appllcable) Aeromechanics Division Flight Dynamics Laboratory AFWAL/FIMG	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (City, State, and IIP Code) Wright-Patterson AFB, OH 45433-6553	7b. ADDRESS (City, State, and 2IP Code)			
Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL ORGANIZATION (If applicable)	9. PROCUREM	INSTRUMEN	ENTIFICATIO	MBER
8c. ADDRESS (City, Stote, and ZIP Code)	10. SOURCE OF FUNDING NUMBERS			
	$\begin{aligned} & \text { PROGRAM } \\ & \text { ELEMENT NO. } \end{aligned}$	PROJECT NO.	$\begin{aligned} & \text { TASK } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { WORK UNIT } \\ & \text { ACCESSION NO. } \end{aligned}$
	$62201 F$		07	75

11. TITLE (Include Security Classification)

Wind Tunnel Tests of Elliptical Missile Body Configurations at Mach Number 0.4 to 5.0. 12. PERSONAL AUTHOR(S)

Shereda, Donald E., Amidon, Lt Paul F., Dahlem, III, Valentine

13a. TYPE OF REPORT Final	$\begin{aligned} & \text { 136. TIME COVERED } \\ & \text { FROM Feb } 83 \text { TO JUn } 86 \end{aligned}$	14. DATE OF REPORT (Year, Month, Day) December 1987	$\begin{array}{\|r\|} \hline \text { 15. PAGE COUN } \\ 161 \end{array}$

16. SUPPLEMENTARY NOTATION

COSATI CODES		
FIELD	GROUP	SUB-GROUP
16	04	
01	01	

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Missile Aerodynamics; Wind Tunnel Data; Elliptical Bodies.
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A large body of wind tunnel data was generated by tests of missile bodies of varying ellipticity ratios. The tests were conducted at subsonic through high supersonic speeds at angles of attack from -4 to 20 degrees. Measurements of both surface pressure and total forces and moments were made at a variety of Mach numbers and Reynolds number combinations. This data was supplemented with flow visualization data such as vapor screens, oil flows and shadowgraphs at selected supersonic Mach numbers. The missile bodies were power-law bodies with an exponent of 0.5 and ellipticity ratios of $2.0,2.5$, and 3.0 to 1. Comparisons of selected data with various prediction codes (Supersonic/ Hypersonic Arbitrary Body Program, NSWC Euler Code, Missile Datcom, and FLO-57 Euler Code) were made. The test data provided insight into the effects of several variables and will provide a good data base for correlations with numerical techniques.

This technical report summarizes research performed in-house at the High Speed Aero Performance Branch, Aeomechanics Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. The work was performed under Project 2404, "Aeromechanics," Task 240407, "Aeroperformance and Aeroheating Technology," Work Units 24040754, "Aerodynamic Flow Field Approximations," and 24040775, "Lifting Entry Configurations." The study period was February 1983 to June 1986.

The experimental program described in this report produced a very large amount of data. The results are summarized here, but in many cases the results of a particular test condition are omitted. Data lists are available to qualified research engineers upon request from the High Speed Aero Performance Branch.

SECTION PAGE
1.0 INTRODUCTION 1
2.0 APPARATUS 3
2.1 Test Facilities 3
2.1.1 VKF Tunnel A 3
2.1.2 PWT Tunnel 4T 3
2.2 Test Articles 3
2.3 Test Instrumentation 5
2.3.1 Pressure Testing 5
2.3.2 Force and Moment Testing 5
2.3.3 Flow Visualization Equipment 5
3.0 TEST DESCRIPTION 7
3.1 Test Conditions 7
3.2 Test Procedures 7
3.2.1 General 7
3.2.1.1 VKF Tunnel A 7
3.2.1.2 PWT 4T 7
3.2.2 Data Acquisition and Reduction 8
3.2.2.1 Tunnel A 8
3.2.2.2 PWT 4T 9
3.3 Uncertainty of Measurements 10
4.0 METHODOLOGY DESCRIPTION 12
4.1 Supersonic/Hypersonic Arbitrary Body Program 12
4.2 Pressure Integration Scheme 13
4.3 NSWC Euler Application 15

TABLE OF CONTENTS (Continued)

SECTION PAGE
4.4 FL057 Euler Code 17
4.5 Missile Datcom 17
5.0 TEST RESULTS 19
5.1 VKF Tunnel A 19
5.1.1 Force and Moment Results 19
5.1.2 Pressure Results 20
5.1.3 Flow Visualization 20
5.1.3.1 Vapor Screens 20
5.1.3.2 Shadowgraph/Schlieren 21
5.1.3.3 0il Flows 21
5.2 PWT 4T 22
5.2.1 Force and Moment Data 22
5.2.2 Pressure Results 22
6.0 DATA/PREDICTION COMPARISONS 24
6.1 Force and Moment 24
6.1.1 Supersonic/Hypersonic Arbitrary Body Program 24
6.1.2 Missile Datcom 24
6.1.3 FL057 Euler Code 25
6.2 Integrated Pressures 26
6.3 Cp vs. Body Radial Angle 26
6.3.1 Supersonic/Hypersonic Arbitrary Body Program 26
6.3.2 NSWC Euler Code 27
6.3.3 FL057 Euler Code 28
6.4 Cp vs. Local Deflection Angle i8
7.0 RESULTS AND CONCLUSIONS 30
8.0 REFERENCES

LIST OF ILLUSTRATIONS

FIGURE

I'ACl
1 Tunnel A 33
2 Model Details
a. B20 Configuration 34
b. B25 Configuration 35
c. B30 Configuration 36
3 Pressure Orifice Locationsa. Axial Location51
b. Radial Location 52
c. Base Pressure Orfice Location 53
Static Pressure Pipe
a. Details 55
b. Relationship of Model to Wall Pipe 56
5 Tunnel Model Installation
a. Tunnel A 67
b. Tunnel $4 T$ 58
6
Estimated Uncertainties in 4T Tunnel Parameters 59
7 S/HABP Geometry
a. Inviscid Geometry 62
b. Skin Friction Geometry 63
c. Pressure Integration Direction Cosines 64
Ellipticity Ratio Effects, $M=2.0$ 65
8Ellipticity Ratio Effects, $M=5.0$67
Mach Number Effects 69
11
Mach Number Effects 71
12
Reynolds Number Effects, $M=2.0$ 7313
Reynolds Number Effects, $M=5.0$ 75
Cp vs. Length 77
Pressure Coefficient About Body
a. Mach 2.0 78
b. Mach 5.0 79
Vapor Screen Photo \&0

LIST OF ILLUSTRATIONS
FIGURE PAGE
17 Vapor Screen Photograph Composities 82
18 Shadowgraph 83
19
Schlieren Photograph 84
20
Shock Shape vs. NSWC Code
a. Alpha $=0$ deg. 85
b. Alpha $=4$ deg. 86
c. Alpha $=8 \mathrm{deg}$. 87
d. Alpha $=12 \mathrm{deg}$. 88
21
Oil Flows
a. Side View 89
b. Top View 90
c. Bottom View 91
Separation Angle vs. Axial Location 92
Ellipticity Ratio Effects, $M=0.4$ 93
Ellipticity Ratio Effects, $M=0.8$ 95
Ellipticity Ratio Effects, $M=1.3$ 97
Stability Derivatives, $M=0.4$ 99
Cp vs. Body Radial Angle 100
Force And Moment Comparisons, $M=2.0$ 101
Force And Moment Comparisons, $M=5.0$ 103
Force And Moment Comparisons, $M=0.4$ 105
Force And Moment Comparisons, $M=0.8$ 107
Force And Moment Comparisons, $M=1.3$ 109
Lateral Directional Coefficients, $M=0.4$ 111
Lateral Directional Coefficients, $M=0.8$ 112
Lateral Directional Coefficients, $M=1.3$ 113
FL057 Force and Moment Comparisons
a. Mach 0.55 114
b. Mach 2.0 115

LIST OF ILLUSTRATIONS

FIGURE PAGE
37
Integrated Pressure Comparisons, $M=2.0$ 11638Cp vs. Phi Angle Comparisons, $M=5.0$129
42
Local Deflection Angle vs. Phi Angle 135
43
Area Ratio vs. Radial Angle 136
44
FL057 Comparisons - Cp vs. Span 13745
46
Cp vs. Local Deflection Angle, $M=2.0$ 138
Cp vs. Local Deflection Angle, $M=5.0$ 144

LIST OF TABLES

NUMBER PAGE
1 Model Configuration Designation 37
2 Test Run Summary 38
3 Pressure Orifice Location/Designation 54
4 4T Estimated Uncertainties 60

SECTION 1.0

INTRODUCTION

The prediction of the aerodynamic characteristics of the latest missile configurations being studied has involved elliptical cross-section missile bodies. Past efforts in this area have shown deficiencies in predicting the aerodynamic characteristics of these type of configurations. The first task of an AFWAL/FIMG contracted effort entitled, "Aerodynamic Analysis for Missiles" was the evaluation of 10 aerodynamic prediction methods for four classes of missile configurations. The lifting missile class consisted of elliptical body configurations with wings and tails. The limited comparisons made of the Supersonic-Hypersonic Arbitrary Body Program (S/HABP) with the elliptical bodies for Mach numbers from 2.0 to 4.0 showed poor results, particularly at the lower Mach numbers.

An in-house work element was then initiated to more completely determine which methods or combiration of methods available in the S/HABP code could give acceptable results for this type of missile body. Test data for several missile bodies ranging from circular to a 3 -to-1 ellipticity ratio for Mach numbers 1.5 to 4.63 were compared with the results from the S/HABP code using a variety of pressure methods. The results of the effort showed that no typical application of any of the pressure methods in S/HABP would provide good results across the Mach number range and that parametric wind tunnel data, particularly pressure data, would be required to determine the cause of the mismatch of theory versus test.

To provide these data, a series of wind tunnel tests were conducted in the AEDC VKF Tunnel A facility on basic elliptical missile bodies. Three elliptical body models with ellipticity ratios of $3.0: 1,2.5: 1$, and 2.0:1 were built and tested at Mach numbers from 1.5 to 5.0. Both force and moment and pressure data were obtained as well as flow visualization data such as vapor screens, oil flow, and shadowgraphs.
 test reports (References 6 and 7).

SECTION 2.0

APPARATUS

2.0 Test Facilities

AEDC VKF Tunnel A (Figure 1) is a continuous, closed-circuit, variable density wind tunnel with an automatically driven flexible-plate-type nozzle and a 40 - by 40 -inch test section. The tunnel can be operated at Mach numbers from 1.5 to 5.5 at maximum stagnation pressure from 29 to 195 psia, respectively, and stagnation temperatures up to $750^{\circ} \mathrm{R}$ at Mach number 5.5. Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. The tunnel is equipped with a model injection systenn which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel and airflow calibration information may be found in Reference 8.

The AEDC Aerodynamic Wind Tunnel (4T) is a closed-loop continuous flow, variable-density tunnel in which the Mach number can be varied from 0.1 to 1.3 and can be set at discrete Mach numbers of 1.6 and 2.0 by placing nozzle inserts over the permanent sonic nozzle. At all Mach numbers, the stagnation pressure can be varied from 300 to $3,400 \mathrm{psfa}$. The test section is 4 -feet square and 12.5 feet long with perforated, variable porosity ($0.5-$ to $10-$ percent open) walls. It is completely enclosed in a plenum chamber from which air can be evacuated, allowing part of the tunnel airflow to be removed through the perforated walls of the test section. The model support sycitem consists of a sector and sting attachment which has a pitch angle capability of -8 to 27 degrees with respect to the tunnel centerline and a roll capability of +180 degrees about the sting centerline. A more complete description of the tunnel may be found in Reference 8.

2.2 Test Articles

The test articles were elliptic missile body configurations with ellipticity ratios of $2.0,2.5$, and 3.0 to 1.0 . The three models were designed and fabricated from aluminum at AEDC, based upor criteria provided by

AFWAL/FIMG. The models were power-law bodies with an exponent of 0.5 and had the same longitudinal distribution of cross-sectional area. These modils were based on one of a series of related bodies with cross-sectional ellipticity tested by NASA at Langley Research Center (Reference 9). The semimajor and semiminor axis ordinates were derived from the following equations:

For horizontal projection (semimajor axis)

$$
a=\frac{a_{\max }}{L M^{0.5}} \cdot x^{0.5}
$$

and for vertical projection (semiminor axis)

$$
b=\frac{b_{\max }}{L M^{0.5}} \cdot x^{0.5}
$$

Details of the models are given in Figure 2. Model configuration designation is presented in Table 1 and a listing of the configurations tested is given in Table 2.

For the pressure phase, each model was instrumented with 191, 0.045 inch diameter surface pressure orifices and one base pressure orifice. The location and designation of the pressure orifices are presented in Figure 3à and were identical for all three models. Table 3 provides nominal axial locations from the nosetip and nominal radial locations from the top ray (positive clockwise looking upstream) of the pressure orifices. Base pressure was measured with an orifice located halfway between the sting and model outer surface as shown in Figure 3c. For the transonic pressure test, static pressure pipes were mounted on the centerline of the top and bottom walls. Details of the pressure pipes are shown in Figure 4. Each pipe had 30 pressure orifices on each of the model and wall sides of the pipes. A more detailed discussion is given in Reference 5. Two thermocouples were attached to the inner wall of each model and the general location is given in Table 3.

For the Tunnel A force phase, the pressure tubes were cut, sealed and secured as required to prevent interference on the balance measurements. Base pressure was measured with a fast-response pressure transducer module located in a sting component approximately 18 inches downstream of the model base. An 8-degree prebend installation arrangement was used to provide the angle-of-attack range from -4 to 20 degrees. One set of sting components was used for the pressure and oil-flow phases and a different, but similar set of components was used for the force and vapor-screen phases. Sketches of the installation arrangements for both Tunnel A and $4 T$ are shown in Figure 5.

2.3 Test Instrumentation

During the pressure phases of testing, model surface and base pressures were measured with Pressure Systems Incorporated electronically-scanned pressure modules referenced to a near vacuum. Six Model ESP-32 modules were used for the VKF supersonic testing; four 2.5-psid range and two 5-psid range. Each ESP-32 module has 32 pressure ports with a silicon pressure transducer for each port that can be digitally addressed and calibrated on-line. The relatively small size of each pressure module ($1.0 \times 2.0 \times 2.5$ inch) permitted on-board mounting, which resulted in a significant reduction in pressure stabilization time and a significant increase in the data acquisition rate. Nine Model ESP-48 modules, each with a $15-\mathrm{psid}$ range, were used in the 4 T transonic testing; five 48 -port modules located in the model and two 48 -port and two 16 -port modules located outside the test section and connected to the static pressure pipes. Model wall temperatures were measured with two Chromel-Alumel thermocouples attached to the inner wall of the model.

During the Tunnel A force phase, model base pressures were measured with a miniature pressure transducer module manufactured by the Scanivalve Corporation. The module contains eight fast-response pressure transducers with a range of 1 psid referenced to a near vacuum. The transducers are diffused silicon-diaphragm-type strain gage sensors fabricated by Druck Incorporated. The small size of the pressure module ($0.5 \times 1.2 \times 1.3$ inch) permitted mounting in a sting component downstream of the model base.

In Tunnel A model shadowgraph or schlieren photographs were obtained with a double-pass optical flow-visualization system with a 35 -in-diameter field of view. Vapor-screen photographs were obtained with two Hasselbald $70-\mathrm{mm}$ still cameras mounted on the operating side of the test section and a D.B. Milliken-$55,16-\mathrm{mm}$ movie camera at 12 frames per second mounted on the non-operating side of the test section. Model flow field illumination was provided with a
 direction with a $8-\mathrm{mm}$ cylindrical lens. The cylindrical lens was rotated so that the light plane was perpendicular to the model centerline for each model angle of attack.

Oil-flow photographs were obtained with three Varitron $70-\mathrm{mm}$ still cameras mounted on the operating side of the test section to facilitate simultaneous photo acquisition along the full length of the model. An automatic camera control system was used to provide automatic shutter sequencing at 4 -second intervals. For the second phase of oil flow testing, Hasselbald $70-\mathrm{mm}$ still cameras were used to photograph the models in the access tank.

SECTION 3.0

TEST DESCRIPTION

3.1 Test Conditions

A complete listing of test conditions, configurations, and run numbers is presented in Table 2.

3.2 Test Procedures

3.2.1 General

In the VKF wind tunnels, (A, B, C), the model is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

The tunnel 4 T test section (4 feet square by 12 feet long) is accessed through a removable side wall. Model changes require shutting down the tunnel and opening the side wall. For this reason, model changes are done after all of the required Mach numbers are completed. For each Mach number the tunnel conditions are held constant while varying model attitude. The data are recorded at selected angles using the pitch/roll-pause technique. This sequence is repeated for each configuration.

3.2.2 Data Acquisition and Reduction

3.2.2.1 Tunnel A

Model attitude positioning and data recording were accomplished with the point-pause and sweep modes of operation, using the Model Attitude Control System (MACS). Model pitch and roll requirements were entered into the controlling computer prior to the test. Model positioning and data recording operations were performed automatically during the test by selecting the list of desired model attitudes and initiating the system.

Point-pause force data were obtained for finite values of ALPHA and BETA with a delay before each point to allow the base pressure to stabilize. Each data point for this mode of operation is the result of a Kaiser-Bessel digital filter utilizing 16 samples over a time span of 0.33 seconds.

The continuous sweep force data were obtained for a fixed value of PHI with a sweep (ALPHA) rate of $0.5 \mathrm{deg} / \mathrm{sec}$. A data sample was recorded every 0.0208 seconds and a Kaiser-Bessel digital filter was applied to every 16 samples to produce a sample data point every 0.01 degrees in pitch. The data were then interpolated to obtain the data at the requested model attitudes. The data mode for each force run is identified in the Test Run Summary (Table 2).

Model shadowgraph or schlieren photographs were obtained on selected configurations at selected model attitudes and test conditions during the pressure phase and on all configurations at all test conditions and selected model attitudes during the force phase.

The force and moment measurements were reduced to coefficient form using the digitally filtered data points and correcting for first and second order balance interaction effects. Vehicle coefficients were also corrected for model tare weight and balance-sting deflections. Model attitude and tunnel stilling chamber pressure were also calculated from digitally filtered values.

Vehicle aerodynamic force and moment coefficients are presented in the body- and stability-axis systems. Pitching and yawing moment coefficients are referenced to a point on the model centerline 24.0 inches from the nose. The stability-axis system coefficients (CLS and CDS) were calculdted using the forebody axial force coefficient (CA). Model diameter and base area were used as the reference length and area for the aerodynamic coefficients. Model reference dimensions are given in the Nomenclature.

3.2.2.2 PWT 4T

All steady-state measurements were sequentially recorded by the facility on-line computer system and reduced to the desired rinal form. The data were then tabulated in the Tunnel 4 T control room, recorded on magnetic tape, and transmitted to the AEDC central computer file. The data stored in the central computer file were generaliy available for plotting and analysis on the PWT Interactive Graphics System within 30 seconds after data acquisition. The immediate availability of the tabulated data permitted continual on-line monitoring of the test results.

Surface and base pressure data were normalized by the free stream static pressure and the surface and pipe pressure data were reduced to pressure coefficient form. Selected surface pressure data were also presented graphically by constructing three-dimensional color contour plots over the model shape.

The model force and moment data were reduced to cuefficient form in the body-and stability-axes systems. The model reference area is given in the Nomenclature and the reference lengths are given in Table 1. The moment reference point is shown in Figure 2. The stability-axis system coefficients (CLS and CDS) were calculated using the forebody axial force coefficient (CA) and the normal force coefficient (CN). The base pressure and its area (given in Nomenclature) were used to calculate the base axial force.

3.3 Uncertainty of Measurements

3.3.1 VKF

In general, instrumentation calibration and data uncertainty estimates were made using methods recognized by the National Bureau of Standards (NBS) presented in Reference 10. Measurement uncertainty is a combination of bias and precision errors defined as:

$$
U= \pm\left(B+t_{95} S\right)
$$

where B is the bias limit, S is the sample standard deviation, and t_{95} is the 95th percentile point for the two tailed student's "t" distribution (95 percent confidence interval), which for sample sizes greater than 30 is taken equal to 2.

With the exception of the force and moment balance, data uncertainties are determined from in-place calibrations through the data recording system and data reduction program. Static load hangings on the balance simulate the range of loads and center-of-pressure locations anticipated during the test, and measurement errors are based on differences between applied loads and corresponding values calculated from the balance equations used in the data reduction. Lead hangings to verify the balance calibration are made in place on the assembled model.

Propagation of the bias and precision errors of measured data through the calculated data were made in accordance with Reference 10. Uncertainties for the calculated data are calculated for the largest measured value at the primary test condition on each parameter at each Mach number.

$3.3 .24 T$

The aircraft angles-of-attack and sideslip were corrected for sting deflections caused by aerodynamic loads. The flow angularity (AFA) in the tunnel pitch plane was determined by testing the aircraft model upright and inverted and the flow angularity corrections were then applied to the
data. Corrections for the components of model weight, normally termed static tares, were also accounted for before the measured loads were reduced to coefficient form.

Uncertainties (combinations of system and random errors) of the basic tunnel parameters, shown in Figure 6, were estimated from repeat calibrations of the instrumentation and from the repeatability and uniformity of the test section flow during tunnel calibration. Uncertainties in the instrumentation systems were estimated from repeat calibration of the systems against secondary standards whose uncertainties are traceable to the National Bureau of Standards calibration equipment. The tunnel parameter and instrument uncertainties, for a 95 percent confidence level, were combined using the Taylor series method of error propagation described in Reference 10 to determine the uncertainties of the parameters in Table 4.

SECTION 4.0

METHODOLOGY DESCRIPTION

4.0 Supersonic/Hypersonic Arbitrary Body Program (S/HABP)

This digital computer program was written by the Douglas Aircraft Company and is documented in AFFDL-TR-73-159 (Reference 11). The program is a combination of techniques and capabilities necessary in performiny a connpletc. aerodynamic analysis of supersonic and hypersonic shapes. The program was originally designed primarily for computing the aerodynamic characteristics of high-speed arbitrary reentry vehicles. Because the program will provide aerodynamic coefficients for any complex arbitrary shape at any angle of attack for Mach numbers equal to one or greater, the code is finding renewed interest. Many of the new state-of-the-art missile designs are now non-circular/non-conventional shaped configurations operating at higher angles of attack and supersonic Mach numbers.

The program calculates the inviscid aerodynamic coefficients by using simple pressure coefficient methods, such as Newtonian Impact, on the external geometry of a configuration which is described to the program as panels of flat quadrilateral elements as shown in Figure 7a. The majority of the pressure methods are simply a function of the local angle of attack or slope of the element and the freestream Mach number. The viscous or skin friction effects are computed on a simplified flat plate geometry, Figure 7b, using methods such as Reference Temperature. The program has 15 different compression (impact angle greater than 0) and 9 expansion (impact angle less than 0) metheds for computing inviscid pressure coefficients plus 9 choices of combinations of skin friction methods. The individual forces and moments of each element are summed up by the program to give component, such as wing, or tail, aerodynamic characteristics. These results may in turn be summed up to give parametric buildup or complete configuration aerodynamic characteristics.

4.2 Pressure Integration

An integration of the pressure measurements over the surface of the model was performed to determine the inviscid aerodynamic forces and moments. The integrated forces and moments can be used to compare directly with the inviscid theoretical calculations and by subtracting them from the test total force and moment results provide the increments due to viscous effects. The instrumented stations did not extend forward of station 3.2 so a theoretical value of the nose aerodynamics was generated using Tangent Cone and PrandtlMeyer methods. The nose analysis used the S/HABP code with the methods described above. Between station 3.2 and 36.0 the pressure data was integrated using a scheme which used the pressures around each cross section to determine a value at each station, then the integration proceeded from the first station to the base to produce a value of the surface integral (Reference 12).

The pressure at each tap has a component in each of the three cartesian directions. The component is determined from the direction cosines of the surface at the tap location. The direction cosines were calculated from the model geometry. The direction cosines are the coefficients of the unit vector normal to the surface. The unit normal vector was determined by the vector product of two orthogonal vectors defined by the surface geometry functions.

The maximum span at any station is defined as:

$$
a=\frac{a_{\max }}{6}(x)^{1 / 2}
$$

and the maximum height at any station is:

$$
b=\frac{b_{\max }}{6}(x)^{1 / 2}
$$

The cross section at any station is an ellipse, with a and b the semimajor and semiminor dimension. The remainder of the dimensions and angles may now be determined. Referring to Figure 7 c , the direction cosines of the surface at a
point P are evaluated as follows, using the values of a and b from the relations shown above and a specified value of the meridian angle U.

$$
\begin{aligned}
& y=\left(\left(a^{2} * b^{2}\right) /\left(b^{2}+a^{2} \tan ^{2} U\right)\right)^{1 / 2} \\
& z=y * \tan U \\
& W=\operatorname{atan}\left(\left(b^{2} / z\right) *\left(y / a^{2}\right)\right) \\
& V=a \tan \left(0.5 *\left(y^{2}+z^{2}\right)^{1 / 2} / x\right)
\end{aligned}
$$

the two orthogonal vectors are therefore

$$
\begin{aligned}
& \vec{A}=A_{1} \vec{i}=A_{2} \vec{j}+A_{3} \vec{k} \\
& \vec{B}=B_{1} \vec{i}+B_{2} \vec{j}+B_{3} \vec{k} \\
& A_{1}=0 \\
& A_{2}=\cos W \\
& A_{3}=-\sin W \\
& B_{1}=\cos V \\
& B_{2}=\sin V * \cos (90-U) \\
& B_{3}=\sin V * \sin (90-U)
\end{aligned}
$$

The unit normal at the surface is written as

$$
\vec{c}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}
$$

and the direction cosines are

$$
C_{1}=B_{2} * A_{3}-B_{3} * A_{2}
$$

$$
\begin{aligned}
& C_{2}=B_{3} * A_{1}-B_{1} * A_{3} \\
& C_{3}=B_{1} * A_{2}-B_{2} * A_{1}
\end{aligned}
$$

The force and moment coefficients may be determined by integrating the pressure coefficients over the surface. The formulation for the longitudinal coefficients is:

$$
\begin{aligned}
& C_{A}=1 / A_{R} \iint C_{P} * C_{1} d s d h \\
& C_{N}=1 / A_{R} \iint C_{P} * C_{3} d s d h \\
& C_{m}=1 /\left(A_{R} * 1_{R}\right) \iint\left(\left(C_{P} * C_{1} * z\right)-\left(C_{P} * C_{3} * x\right)\right) d s d h
\end{aligned}
$$

The computerized integration routine used the trapezoidal rule, first around the cross section on the distance s, then down the body along the length h.

Approximations were used for s and h. The chorc length between pressure taps was computed as the arc length. They were summed at each station from the top center to the bottom center. The distance h was computed as the slant height of a right conic solid, with $s\left(x_{1}\right)$ and $s\left(x_{2}\right)$ being the periphery of the ends of the solid.

$$
h_{1-2}=\left(\left(x_{2}-x_{1}\right)^{2}+\left(s\left(x_{2}\right) / 2 \pi-s\left(x_{1}\right) / 2 \pi\right)^{2}\right.
$$

4.3 NSWC Euler Code

In addition to comparing pressure, force, and moment predictions determined with the Supersonic/Hypersonic Arbitrary Body Program to the experimental data, we made similar comparisons with predictions from a numerical computation technique. Only inviscid computer codes were considered since, at the time, it seemed unwarranted for the conditions of interest (i.e., Mach number; Reynolds number; and body configuration) to introduce the additional complications of a viscous method such as, for example, a Parabolized Navier Stokes Code for what would be small effects.

Experience had been gained on one particular inviscid code during previous in-house studies. This code, herein called the NSWC code, is a forward marching solution to the steady, inviscid, supersonic flow equations. It was originally written at the Naval Surface Weapons Center (hence, the NSWC identification) and which they called the D3CSS computer code (References 13 and 14).

We need an initial flow field data plane where the flow field is everywhere supersonic in order to run the NSWC code for a body in supersonic flow. For the original use, this was supplied through three pre-programs called BNT, DDD, and BETA which, essentially, provided a blunt body solution for a spherical nose at angle-of-attack (Reference 15). The complete package of codes was run successfully for data comparison with experimental biconic data and the results reported by Scaggs (Reference 16). Use of the blunt body pre-programs placed a lower limit on free stream Mach number of about 4 and, since the Mach number range of the data on the elliptical power law bodies was between 1.76 and 5.03 an alternative solution was needed.

The code chosen to provide the starting solution was the CM3DT computer program, written by Science Applications International Corporation (SAIC) for the Ballistic Missile Office (BMO) (Reference 17). The code is a timedependent, steady-state solution for supersonic/hypersonic flow over nosetips of arbitrary shape and yields the asymptotic limit of the unsteady flow problem. The NSWC code was modified to accept input from the CM3DT code by SAIC as part of an earlier contract effort (Reference 18).

For all cases produced for this report, a perfect gas condition was used and calculations were stopped at an angle of attack of 10 degrees since the NSWC code, like other supersonic inviscid codes, fails if either the axial velocity component becomes subsonic or if axial flow separation occurs. This seemed to be at just above 10 -degrees angle of attack, especially for the higher ellipticity body, since the 12-degree angle-of-attack case always failed. Finally, although the bodies of interest were symmetrical ellipses in cross section, this particular option did not exist in the code. Therefore, the bi-ellipse option was used with the $\square=0^{\circ}$ and 180° values of y the same
at each X location. Ten planes of body geometry were required to properly describe the nose shape up to an axial location 1 inch from the nosetip.

4.4 FL057 Euler Code

FL057 is a finite volume Euler method which was modified to permit arbitrary geometries through the use of multiple grid blocks. The volume or cells are defined by eight neighboring grid points. Conservation of mass, momentum, and energy are satisfied in an integral form on each volume by a pseudo-time-stepping four-stage Runge-Kutta scheme. Flow variables are assumed to be located at cell centers, permitting centered differences to be used to provide second-order-accurate spatial derivatives. Artificial dissipation is added to suppress the odd-even point decoupling that is typical of center-differenced Euler methods and also to reduce non-physical pressure oscillation around shocks and stagnation points. The dissipative terms are calculated by blending fourth and second differences and are scaled by second derivatives of pressure. To increase convergence rates, both enthalpy damping and implicit residual smoothing is used. Surface boundary condition is normal-flow imposed using only the cell adjacent to the surface. Far field boundary conditions are of a nonreflecting type (Reference 19). The FL057 is a time-dependent solution that allows solutions to be obtained at subsonic as well as supersonic speeds.

We did not attempt to generate the missile grid to align the 3-D grid with the bow shock shape since the grid was used for a range of Mach numbers and angles of attack. The bow shock is dependent on the configuration angle of attack and freestream Mach number. Shock smearing will occur when the bow shock is unaligned with the grid, introducing an unknown amount of errur into the solution. At the nose of the configuration the shock would approximate the shape of the blunt nose and therefore align with the grid at moderate supersonic Mach numbers (Reference 20).

4.5 Missile Datcom

Missile Datcom provides an aerodynamic desiyn tool with the predictive accuracy suitable for preliminary design, yet has the utility to be extended
by rapid substitution of methods to fit specific applications. The code uses a component build-up approach to calculate the static stability and control characteristics of missiles with both unconventional fin arrangements and arbitrary cross sections. The primary advantage of component build-up methods over panel methods is speed of operation.

SECTION 5.0

TEST RESULTS

5.1 VKF Tunnel A

5.1.1 Force and Moment Testing

The effect of ellipticity ratio on the basic aerodynamic characteristics is shown in Figures 8 and 9 for the elliptical bodies at Mach 2.0 and 5.0. The trends in the normal force and pitching moment coefficients are consistent. Increasing the ellipticity of the body increases the normal force coefficient, lift-to-drag ratio and the pitching moment coefficient. At angles of attack less than 5 degrees the axial force coefficient increases with increasing ellipticity ratio. Interestingly, at higher angles of attack, the 2.5:1 body shows a higher axial force coefficient than either the 2.0:1 or the 3.0:1. In fact, in most cases, the 3.0:1 ratio body axial force coefficient approaches the value of the $2.0: 1$ body at higher angles of attack.

Figures 10 and 11 show the effects of Mach number on the 3.0:1 body at a length Reynolds number of two million per foot. For clarity, five Mach numbers are plotted in each set of figures; Mach $2.0,2.5,3.0,4.0$, and 5.0 in one set and Mach $1.76,2.0,2.5,3.0$, and 3.5 in the other. The plots show that the normal force and pitching moment coefficients decrease with increasing Mach number. At small angles of attack (less than 6 degrees) axial force coefficient decreases for increasing Mach number. The axial force coefficient increases, however, for increasing Mach number at higher angles of attack. This corresponds to a decrease in lift-to-drag ratio. This trend reversal occurs at higher angles of attack for the $2.0: 1$ and 2.5:1 bodies, and is attributed to the formation of large leeside vortices.

The effects of Reynolds number are shown in Figures 12 and 13. As expected, this range of change in Reynolds number had virtually no effect on either normal force or pitching moment coefficients at either Mach 2.0 or 5.0. The effects of Reynolds number on axial force coefficient varied with Mach number. At Mach 2.0 (Figure 12), the axial force at zero angle of attack was
only slightly higher at the lower Reynolds number, but the difference increases with increasing angle of attack. This is surprising since the only difference in axial force should be due to skin friction which should be relatively constant. At Mach 5.0 (Figure 13), axial force coefficient decreases as expected for increasing Reynolds number at low angles of attack. Above 10 -degrees angle of attack, axial force coefficient for the 3.0:1 body is essentially independent of Reynolds number.

5.1.2 Pressure Results

During the theoretical/experimental comparison effort, plots were made of pressure ratio vs x-station for the top and bottom centerlines at zero angles of attack for all the test Mach numbers. These plots showed some unexpected trends in the pressure data. At zero angle of attack, one would expect symmetrical pressure distribution for the top and bottom centerlines. The data, however, showed jumps in the pressure coefficient midway down the body on both the top and bottom (Figure 14). Consultation with the test engineers at AEDC confirmed suspicions that the fluctuations were tunnel induced, and could be expected for any pressure test at very low angles of attack. Further investigation showed that the variations in small values of pressure have a negligible effect when measuring and integrating pressures at larger angles of attack.

Figure 15 shows representative plots of pressure coefficient versus body radial angle for all 11 x-stations. Data shown is for 3.0:1 body at 12 degrees angle of attack at Mach 2.0 and 5.0.

5.1.3 Flow Visualization

5.1.3.1 Vapor Screens

Results of the vapor screen test are shown in Figure 16 for the 3:1 ellipticity model at Mach 3 and 16 -degrees angle of attack. Both upstream and downstream views are included. Figure 17 includes upstream views for 12- and 20 -degrees angle of attack as well (Reference 6). These composite photos show the location and growth of the shocks and leeside vortices. The darker areas in the photographs indicate less water vapor
than the lighter regions. Several explanations for this phenomenon have been proposed. One explanation is that the high rotational velocities of the vortex ejects the water droplets. Another is that the water vapor does not penetrate through the shear layer into the boundary layer, which feeds the vortex. Another possibility is that the water undergoes a phase change and vaporizes due to the temperature increase produced by the shock (Reference 21). A good description of the basic techniques used for vapor screen testing is contained in Reference 22.

For the large angles of attack shown in the figures, the shocks are clearly visible with the leeside vortices. Secondary vortices are also visible, especially in the upstream views. They are located just inboard of the leading edge, under the sheet feeding the primary vortex.

5.1.3.2 Shadowgraph/Schlieren

Samples of the shadowgraph and schlieren data are shown in Figures 18 and 19. Both are for the $3: 1$ ellipticity model at 12-degrees angle of attack. The shadowgraph data is Mach 3.0 and the schlieren photo is for a Mach 2.5 run. Figure 20 shows the comparisons of the experimentally obtained shock shape with the NSWC Euler code. The code predicts the compression shock very well; on the expansion side, however, the code underpredicts the shock angle especially at higher angles of attack.

5.1.3.3 0il Flows

Samples of the oil flow photographs are shown in Figure 21 for the $3: 1$ configuration at Mach 3.0 and 12 -degrees angle of attack. Figure 22 shows the primary and secondary separation angles, measured graphically from the photographs. The primary separation angle is defined as the line of separation just past the leading edge as the flow moves from the windward to the leeside of the body. The secondary separation angle is the separation line further inboard on the leeside where the flow reattaches.

Figure 22 shows that for all angles of attack, the primary separation point gets closer to the leading edge as the flow moves down the body. In general, the radial separation angle increases with increasing angle of attack. The trends are reversed for secondary separdtion angles. The angle gradually decreases as the flow moves down the model, and separation angle decreases for increasing angle of attack. The data drops sharply in the nose region, probably due to the initial formation of the vortices. The complex flow in the nose region is evident in the oil flow photographs.

5.2 PWT 4T

5.2.1 Force and Moment Test

The effects of ellipticity ratio on the longitudinal derodynamic characteristics are shown in Figures 23 through 25 for Mach numbers 0.4, 0.8, and 1.3.

The trends in the test data are consistent for varying ellipticity ratio and Mach number. Increasing the ellipticity of the body increases normal force coefficient, lift-to-drag, and the pitching moment coefficient. The axial force coefficient generally increases slightly with increasing ellipticity ratio, the exception being at higher angles of attack and at the lowest Mach numbers, where it shows either a very small decrease or no change at all. The lateral directional derivatives are also consistent for changing ellipticity ratio (Figure 26). The rolling moment derivative becomes increasingly negative with increasing ellipticity ratio and the yawing moment derivative becomes less negative at all Mach numbers. The side force coefficient is more positive with increasing ellipticity ratio at all angles of attack for Mach 0.4 and 0.55 . This trend is reversed above 10 -degrees angle of attack at the higher Mach numbers, where the side force coefficient decreases with increasing ellipticity ratio.

5.2.2 Pressure Test

The transonic tunnel force and moment data showed dramatic changes in side force and yawing moment with varying angle of attack below Mach 0.6
and 4-degrees yaw angle. The side force coefficient goes from -0.02 to +0.06 between 8 - and 14 -degrees angle of attack, while the yawing moment coefficient changes slope and even goes positive for the $3.0: 1$ model (Figure 26). Analysis of the pressure coefficient data showed large changes in pressure distribution with changing angle of attack, particularly in the negative pressure coefficients about the leading edge. To illustrate this, figure 27 shows a polar plot of $C p$ versus body radial angle for the $3.0: 1$ body at 6 - and 12 degrees angle of attack and Mach 0.4 at the 16 -inch x-station. The plot shows that at 6 degrees the negative pressure coefficients balance out and a negative side force results from the unbalanced positive pressure coefficients on the bottom surface. At 12 degrees the positive pressure coefficients are slightly unbalanced, but the negative $C p$ on the one side is much higher than the other, resulting in a positive side force. These same types of changes caused by the vortices on the upper surface result in a change in the lengthwise pressure distribution which affects the yawing moment as well.

DATA/PREDICTION COMPARISONS

6.0 Force and Moment Comparisons

6.1.1 Supersonic/Hypersonic Arbitrary Body Program (S/HABP)

Some typical elliptical body S/HABP theoretical results compared with the test data are shown in Figures 28 and 29, (3.0:1 body at Mach numbers 2.0 and 5.0). These theoretical results use the S/HABP Tangent Cone pressure method for compression surfaces and Van Dyke Unified method for expansion. Turbulent skin friction was selected for the viscous computations. At lower Mach numbers the only coefficient predicted with reasonable accuracy is lift-to-drag ratio. The overprediction of both normal force and axial force compensated each other to give a reasonable value for L/D. Above Mach 3.0 the agreement between normal force, pitching moment, and L/D was fairly good. Axial force coefficient was still slightly overpredicted, however.

6.1.2 Transonic Force and Moment Data

Typical Missile Datcom theoretical results compared with the static longitudinal force and moment test data are shown in Figures 30 through 32 for the 3.0:1 ellipticity ratio configuration at Mach numbers 0.4, 0.8, and 1.3. These theoretical results used the second-order shock-expansion method for axisymmetric bodies at supersonic speeds and turbulent skin friction at all Mach numbers. The Missile Datcom did a good job of predicting normal force coefficient below 10 -degrees angle of attack, where C_{N} is fairly linear. At higher angles of attack, it underpredicted the values. At subsonic Mach numbers the predicted pitching moment coefficient is about twice the test data value at corresponding values of normal force coefficient. At Mach 1.3 the predicted pitching moment values agree very well with test data even to the highest angles of attack. Because the base axial force coefficient is such a large portion of the body total axial force coefficient, both of these coefficients have been plotted and compared with predicted values. The predicted axial force coefficients due to the base pressure are
low at all three Mach numbers, particularly at Mach 1.3. The total axial force coefficient is fairly well predicted at Mach 0.4 , but is low at Mach 0.8 and very low at Mach 1.3 where it drops off drastically with increasing angle of attack. The lift-to-drag ratio predictions are not too bad at Mach numbers of 0.4 and 0.8 , but are high at Mach 1.3.

Comparisons of the Missile Datcom with the lateral directional coefficients for the 3.0:1 ellipticity ratio configurations at Mach numbers 0.4, 0.8 , and 1.3 are shown in Figures 33-35. The present version of Missile Datcom gave no values for rolling moment coefficient. The side force coefficient was predicted very well at low angles of attack for all three Mach numbers. The yawing noment was predicted as being more negative in value than the test data at Mach 0.4 and 0.8 and slightly less negative at Mach 1.3. The test data shows a reversal in sign for the side force coefficient near 8 degrees angle of attack, going from negative values of - 0.01 to positive values as high as 0.06 .

6.1.3 FL057 Euler Code

Figure 36a presents a comparison between measured and predicted values of normal force and pitching moment coefficient versus angle of attack for the 2.5:1 configuration at Mach 0.55 . Below 6 -degrees angle of attack FL057 does an excellent job of predicting C_{N} and C_{M}. Above 6-degrees, where the data is no longer linear, the code underpredicts the test data. The differences between test and prediction in both plots is evidence that the influence of vortices is not present in the Euler results.

Figure 36b shows comparisons for the same configuration at Mach 2.0. The predicted and test values are in excellent agreement below 6-degrees angle of attack. Above 6 -degrees, the slopes are the same but are shifted by approximately 0.5 -degrees angle of attack. One possible explanation for this is the smearing of the bow shock and grid (Reference 20). The C_{N} versus C_{m} curve throws excellent agreement throughout the angle-of-attack range.

6.2 Integrated Pressures

Figures 37 and 38 show the comparison of the integrated pressure forces and moments with the force and moment test data. Also plotted are the theoretical results from the NSWC Euler code. The agreement between the integrated normal force and pitching moment coefficients and the force and moment test data was excellent. The forces and moments on the nose to the $X=3.2$ station were calculated with the S/HABP code using the Tangent Cone/Prandti-Meyer methods, and were then added to the test pressure forces and moments. The excellent agreement indicates that the theoretical methods used for the nose section are quite good. The increment in the axial force coefficient between the integrated pressure data and the force test data is due to the viscous forces; i.e., the skin friction. The plots show almost a constant increment in axial force coefficient due to skin friction until about 10 -degrees angle of attack where the increment starts to increase. The increase in the axial force coefficient increment is very large at the highest angles of attack for the lower Mach numbers. As an example, the increment of axial force coefficient goes from about 0.05 at 8 -degrees angle of attack to 0.11 at 20degrees angle of attack for the 3-to-1 ellipticity ratio configuration at Mach 2.0. Figure 39 shows the axial force coefficient increment for the $3.0: 1$ ellipticity ratio configuration for Mach numbers $2.0,3.0,4.0$, and 5.0. Also shown on the figures are the skin friction predictions from the S/HABP code. The S/HABP skin friction methods calculate about the right value for the skin friction increment at low angles of attack, but the increment is essentially constant with increasing angle of attack. At the highest angles of attack for all three configurations the predicted axial force coefficients due to skin friction were less than half what the test data indicated.

6.3 Cp versus Body Radial Angle

6.3.1 Supersonic/Hypersonic Arbitrary Body Program (S/HABP)

Typical S/HABP theoretical pressure results compared with test data at x-stations of $3.2,16.0$, and 35.2 inches are shown in figures 40 and 41 at Mach 2.0 and 5.0 for the $3: 1$ body. The S/HABP theoretical results shown
are for the Tangent Cone method for compression surfaces and Van Dyke Unified method for expansion.

The plots show that the bottom surface pressures are generally predicted very well by the Tangent Cone method until the leading edge of the body is approached; there the test pressure coefficients drop off and become negative around 10 degrees before the leading edge at $\varnothing=90$ degrees. The $S /$ HABP code calculates positive local deflection angles for all points on the lower surface of the body up to and including the leading edge when the body is at positive angle of attack (Figure 42). None of the compression methods in the S/HABP code which are functions of local deflection angle and Mach number will give negative pressure coefficients for positive deflection angles. The plots show that the test pressure coefficients at angle of attack have fairly high negative values on the top in the vicinity of the leading edge which are more negative than predicted. The predicted values further up on the top reach the maximum negative values of the test and remain constant across the rest of the upper surface to the center of the body, while the test data becomes much less negative, even slightly positive in some cases, on the leeside away from the leading edge.

The large negative pressure coefficients about the leading edges of the elliptical bodies strongly influences their aerodynamic characteristics. The importance of the leading edge pressures is directly related to the amount of surface area over which they act. The ratio of wetted area (A_{w}) to total band area $\left(A_{T}\right)$ for a 0.2 -inch-length band of body about $X=16$ inches is plotted versus the body angle in Figure 43 for the $2-$ to-1 and $3-$ to-1 ellipticity ratio bodies. The plot shows that for a 10 -degree increment in body angle the amount of wetted area near the leading is proportionally larger so that the large negative pressures near the leading edge ($0=80$ to 100 degrees) are dcting over a very large surface area.

6.3.2 NSWC Euler Code

Comparisons of the pressure coefficients predicted by the NSWC Euler code for x-stations of $3.2,16.0$, and 35.2 are also shown in Figures 40 and 41 for which the program provided values. The plots show that the NSWC
program does a very good job of predicting the pressure coefficients about the body. The program predicts both the negative pressure coefficients on the compression side just before the leading edge and the drop off in negative pressure coefficients on the leeside away from the leading edge wall. The good agreement with test data indicates the potential for these types of codes in predicting elliptical body aerodynamics. Techniques for extending their range of applicability and methods for calculating viscous forces for inclusion with the invicid results should be investigated further.

6.3.3 FL057 Euler Code

Figure 44 shows comparisons of pressure coefficient versus span for three x stations; 3.2, 16.0, and 35.2. Data shown are for the 2.5:1 model at Mach 2.0 and 12-degrees angle of attack. At the $x=3.2$ station the shapes of the curves are the same but the $\mathrm{FLO57}$ prediction is shifted in the negative Cp direction. At the $x=16.0$ station, the code still predicts an attached flow condition, while the flow visualization test data shows the formation of vortices on the upper surface. This effect is also present at the $x=35.2$ station. The shift in Cp may be due to a smeared bow shock, which creates angularity in the flow and results in an apparent angle-of-attack change (Reference 20).

6.4 Cp versus Local Deflection Angle

Since the prediction methods in the S/HABP code are functions of the freestream Mach number and the local deflection angle, a set of charts was prepared to show the relation between the measured pressure coefficient and the calculated local deflection angle. The charts show the extent of correlation with local deflection angle and reveal the difficulty of devising a new pressure function which would predict the aerodynamics more accurately.

The pressure coefficients are shown with the local deflection angle in Figures 45 and 46. Each graph shows all the measured values on the model at a single angle of attack. Representative data was selected at angles-of-attack increments of approximately 4 degrees. The data symbol indicates the general region of the pressure tap as being on the top, the leading edge, or the
bottom of the model. Tangent Cone theory is also marked on the graphs. The highest values of the pressure coefficient, which occur on the bottom center, are very near the theory. At locations other than the bottom center the pressure coefficient is less than theory. For these tests, the Tangent Cone theory represents an upper bound.

The effect of Mach number is most evident at negative surface deflection angles. The measurements on the top of the model indicate a flow field which is influenced by parameters other than the local angle. The range of pressures on the top indicate the effects of boundary layer separations and the development of vortices in the flow field. At Mach 2.0 the pressures are very sensitive to boundary layer separation. The pressure coefficients have values from $C p=0$ to a lower bound near $C p=-1 / M^{2}$. The lower bound is based on past work using base pressure measurements from wind tunnel and flight tests which has shown that the maximum attainable suction pressure is about 7 -tenths vacuum. The equation for pressure coefficient as pressure goes to zero is $-2 / \alpha M^{2}$ which, for $\alpha=1.4$, when multiplied by 0.7 equals $-1 / M^{2}$.

The correlation with local deflection angle also shows that the leading edge pressures are much lower than Tangent Cone theory would predict. The difference is larger at low Mach numbers, but still significant at Mach 5.

SECTION 7.0

RESULTS AND CONCLUSIONS

An extensive data base for elliptical cross section bodies has been generated for use in missile design activities as well as establishing a benchmark for the evaluation of aerodynamic performance prediction programs. The comprehensive combination of force, pressure and flow visualization data will allow identification of the source of deficiencies in current analysis techniques and indicate improvements to be made. This data base has been documented in a series of in-house Technical Memorandums.

During this study a number of different types of analysis codes have been used to generate theoretical results for data/theory comparisons. Both of the Elser codes used in this study, FLO57 and NSWC, did a very good job of predicting the pressure distribution, normal force and pitching moment at angles of attack of 6 degrees or less. Since the Euler codes are inviscid the axial forces predicted do not include the viscous effects and the correct prediction of the axial force coefficient requires that the viscous effects be accounted for. The large differences between the integrated test pressure axial force coefficients and total force axial force coefficients show the importance of the viscous forces, particularly at higher angles of attack. Analysis methods for predicting viscous effects other than just simple strip theory skin friction calculations, as in S/HABP, will be required. Evaluations of the importance of the effects of flow field vortices, boundary layer separation, and boundary layer transition should be done. Computational fluid Dynamics (CFD) codes such as a Parabolized Navier-Stokes code need to be evaluated for this class of configuration.

SECTION 8.0

REFERENCES

1. Amidon, P. F., Shereda, D. E., "Static Force Test of Three Elliptical Missile Body Configurations at Mach Numbers 1.5 to 5.0," AFWAL-TM-84-199-FIMG, June 1984.
2. Amidon, P. F., Brown-Edwards, E., Dahlem, V., Shereda, D. E., "Pressure Test of Three Elliptical Missile Body Configurations at Mach Numbers 1.5 to 5.0," AFWAL-TM-84-236-FIMG, December 1984.
3. Shereda, D. E., "Static Force Test of Three Elliptical Missile Body Configurations at Mach Numbers 0.4 to 1.3," AFWAL-TM-85-255-FIMG, September 1985.
4. Amidon, P. F., Dahlem, V., "Flow Visualization Test of Three Elliptical Missile Body Configurations at Mach Numbers 1.5 to 5.0," AFWAL-TM-86-188-FIMG, May 1986.
5. Shereda, D. E., "Pressure Test of Three Elliptical Missile Body Configurations at Mach Numbers 0.4 to 1.3," AFWAL-TM-86-208-FIMG, June 1986.
6. Sellers, M. E., Siler, L. G., "Pressure and Static Force Test of Three Elliptic Missile Body Configurations at Mach Numbers 1.5 to 5.0," AEDC-TSR-84-V44, November 1983.
7. Sellers, Marvin E., "Static Stability Test of Three Elliptic Missile Body Configurations," AEDC-TSR-85-P8, May 1985.
8. Test Facilities Handbook (Twelfth Edition), Arnold Engineering Development Center, March 1984.
9. Fournier, R. H., Spencer Jr., B., and Corlett, W. A., "Supersonic Aerodynamic Characteristics of a Series of Related Bodies with Cross-Sectional Ellipticity," NASA TN-D-3539, August 1966.
10. Abernethy, R. B., and Thompson, J. W., et al, "Handbook Uncertainty in Gas Turbine Measurements," AEDC-TR-73-5, February 1973.
11. Gentry, A. E., Smith, D. N., and Oliver, W. R., "The Mark IV Superson-ic-Hypersonic Arbitrary Body Program - Volume I, II, III," AFFDL-TR-73-159, November 1973.
12. Dahlem, V., "A Digital Computation Method for Determining the Hypersonic Aerodynamic Characteristics of Arbitrary Bodies," ASRMDF-TM-62-61, September 1962.
13. Solomon, J. M., Ciment, M., Ferguson, R. E., Bell, J. B., Wardlaw, A. II., "A Program for Computing Steady Inviscid Three Dimensional Supersonic Flow on Re-Entry Vehicles, Volume 1-Analysis," NSWC-WOL-TR-77-28, February 1977.
14. Solomon, J. M., et al, "A Program for Computing Steady Inviscid Three Dimensional Supersonic Flow on Re-Entry Vehicles, Volume II - Users Manual," NSWC/WOL-TR-77-82, May 1977.
15. Solomon, J. M., Ciment, M., et al, "Users Manual for the BNT-DDD-BETA Package," NSWC/WOL, February 1976.
16. Scaggs, N. E., "Pressure Distributions on Biconic Geometries at Mach 14," AFWAL-TM-84-207-FIMG, July 1984.
17. Hall, D. W., Dougherty, C. M., "Performance Technology Program (PTP-SII). Volume III, Inviscid Aerodynamic Predictions for Ballistic Re-Entry Vehicles with Ablated Nosetips," Appendix - Users Manual, BMO-TR (to be published), September 1979.
18. Hall, D. W., Dougherty, C. M., "Coupling of the CM3DT Inviscid Nosetip Flow Field Code to the NSWC Inviscid Afterbody Code - Final Report," SAI-067-81R-018, November 1980.
19. Jameson, A., and Baker, T. J., "Multigrid Solution of the Euler Equations for Aircraft Configurations," AIAA-84-0093.
20. Sirbaugh, J. R., "Euler Analysis of an Elliptic Missile Body," AIAA-86-2079-CP, August 1986.
21. Miller, D. S., Wood, R. M., "Leeside Flow Over Delta Wings at Supersonic Speeds," NASA TP 2430, June 1985.
22. Jones, J. H., and O'Hare, J. E., "Flow Visualization Photographs of a Yawed Tangent Ogive Cylinder at Mach Number 2," AEDC-TR-73-45, AFATL-TR-73-39, March 1973.

b. B25 Configuration
Figure 2. Model Details (Continued)

TABLE 1. Model Configuration Designation

B20 2.0:1 ELLIPTICAL BODY, $a_{\max }=4.162 \mathrm{in}$.

$$
\begin{aligned}
\mathrm{b}_{\max } & =2.081 \mathrm{in} \\
\mathrm{~L} & =8.324 \mathrm{in}
\end{aligned}
$$

B25 2.5:1 ELLIPTICAL BODY, $a_{\max }=4.654 \mathrm{in}$.

$$
\begin{aligned}
\mathrm{b}_{\max } & =1.862 \mathrm{in} \\
\mathrm{~L} & =9.308 \mathrm{in}
\end{aligned}
$$

B30 3.0:1 ELLIPTICAL BODY, $a_{\max }=5.098 \mathrm{in}$.

$$
\begin{aligned}
\mathrm{b}_{\max } & =1.699 \mathrm{in} \\
\mathrm{~L} & =10.196 \mathrm{in} .
\end{aligned}
$$

TABLE 2. TEST RUN SUMMARY
VKF Tunnel A Run Log
Force and Moment Test

CODE	M	ALPEA	$\frac{28}{210^{-6}}$	PITCH RIN AT CONSTANT BEtA		
				0	2	4
20	1.76	43	2.0	37		
	2.00	41	2.0	33		
		12			34	35
		11	1.0	36		
	2.50	41	2.0	31		
		12				32
	3.01	41	2.0	27		
		42			28	29
		11	1.0	26		
		41	3.0	30		
	3.51	41	2.0	72		
		12				73
	4.02	11	2.0	38		
		12			39	40
	4.51	Al	2.0	51		
		42				52
	5.03	as	2.0	53		
		12			54	55
	5.04	41	3.0	56		
		41	4.0	37		
25	1.76	43	2.0	14		
	2.00	11	2.0	16		
		42			17	18
		4	1.0	15		
	2.50	41	2.0	19		
		12				20
	3.01	N	2.0	22		
		12			23	24
		11	1.0	25		
		11	3.0	21		
	3.51	11	2.0	70		
		42				71
	4.02	11	2.0	41		
		A^{2}			42	43
	4.51	11	2.0	49		
		12				50
	5.03	11	2.0	60		
		12			61	62
	5.04	11	3.0	59		
		11	4.0	58		
30	1.76	43	2.0	13		
	2.00	11	2.0	9		
		42			10	11
		11	1.0	12		
	2.50	A1	2.0	7		
		12				8
	3.01	41	2.0	3		
		42			4	5
		11	1.0	6		
		41	3.0	${ }^{1 *}$		

TABLE 2. TEST RUN SUMMARY (Continued)
VKF Tunnel A Run Log
Force and Moment Test

CODE	M	ALPEA	$\begin{aligned} & \text { RE } \\ & \times 10^{-6} \end{aligned}$	PITCE RLN AT CCNSTANT BETA		
				0	2	4
30	3.51	$\frac{11}{12}$	2.0	68	45	69
	4.02	12	2.0	44		46
	4.51	42	2.0	47		
		12				48
	5.03	41	2.0	63	64	65
	5.04	A1	3.0 4.0	66		

MOTES:

1. Runs for BETA - 0 were run in continuous sweep mode except as noted, and for BETA - 2 and 4 vere run in point-pause mode.
2. *indicates point-pause mode.

$$
\text { 3. } \begin{aligned}
\text { ALPRA schedule: } A 1= & -4,-3,5,-3,-2,5,-2,-1,5,-1,-0,5,0,0,5,1,1,5,2,2,5, \\
& 3,3,5,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 \\
A 2= & -4,-2,-1,0,1,2,4,6,8,10,12,16,20 \\
A 3= & -2,-1,5,-1,-0.5,0,0,5,1,1,5,2,2,5,3,3,5,4,5,6,7,8, \\
& 9,10,11,12,13,14,15,16,17,18,19
\end{aligned}
$$

TABLE 2. TEST RUN SUMMARY (Coninnued)
VKF Tunnel A Run Log
Shadougraph/Schlieren Flowileld Photographic Log FDL Elispise Bodies Test

CODE	IUN	M	$\begin{aligned} & \text { RE/FT } \\ & \times 10^{6} \end{aligned}$	$\begin{aligned} & \text { ROLl } \\ & 10 . \end{aligned}$			ALPHA				P.S.
30	2	3.01	3.0	496	-0.18	4.32	8.66	13.01	17.53	21.88	1-6
	3		2.0		-0.23	4.19	8.39	12.61	16.95	21.15	
	6		1.0		-0.20	4.08	8.17	12.26	16.46	20.54	
	7	2.50	2.0	505	-0.21	4.23	8.50	12.80	17.21	21.47	
	12	2.00	1.0	496	-0.22	4.12	8.26	12.44	16.76	20.91	
	13	1.76	2.0	465	-0.13	4.28	8.60	13.01	17.61		1-5
25	14	1.76	2.0		-0.14	4.22	8.48	12.81	17.34		1-5
	15	2.00	1.0		-0.18	4.10	8.20	12.35	16.62	20.74	1-6
	16		2.0		-0.23	4.20	8.47	12.79	17.28	21.61	
	19	2.50	2.0		-0.20	4.18	8.42	12.68	17.07	21.31	
	21	3.01	3.0	718	-0.25	4.26	8.55	12.87	17.36	21.66	
	22		2.0		-0.24	4.15	8.36	12.52	1656	21.02	
	25		1.0		-0.24	6.05	8.13	12.20	16.41	20.46	
20	26	3.01	2.0		-0.22	4.05	8.11	12.18	16.36	20.40	
	27		2.0		-0.21	4.10	8.25	12.40	16.69	20.81	
	30		3.0		-0.19	4.19	8.62	12.66	17.06	21.29	
	31	2.50	2.0	453	-0.23	4.16	8.34	12.53	16.88	21.07	
	36	2.00	2.0	718	-0.19	4.07	8.16	12.25	16.50	20.60	
	37	1.76	2.0		-0.13	4.17	8.38	12.62	17.09		1-5
	38	4.02	2.0		-0.27	4.04	8.13	12.21	16.44	20.52	1-6
25	41	4.02	2.0		-0.18	4:09	8.19	12.31	16.35	20.65	
30	44	4.02	2.0		-0.13	4.12	8.22	12.35	16.62	20.73	
	47	4.51	2.0		-0.18	4.08	8.18	12.28	16.52	20.61	
25	49	4.51	2.0		-0.18	4.07	8.15	12.23	16.45	20.53	
29	51	4.51	2.0		-0.19	4.06	8.14	12.20	16.41	20.45	
	53	5.03	2.0		-0.18	4.03	8.09	12.16	16.34	20.38	
	56	5.04	3.0		-0.16	4.07	8.17	12.27	16.51	20.61	
	57		4.0		-0.18	4.12	8.25	12.41	16.71	20.86	
25	59	5.04	3.0		-0.17	4.10	8.22	12.35	16.64	20.76	
	こ0	5.53	2.0		8.15	16.40	20.47				1-4
30	63	5.03	2.0		-0.18	4.07	8.15	12.24	16.47	20.54	1-6
	60	3.09	3.0		-0.16	4.12	8.25	12.39	16.68	20.83	
	67		4.0		-0.14	4.19	8.39	12.58	16.95	21.17	
	68	3.51	2.0		-0.23	4.16	8.33	12.51	16.85	21.02	
25	70	3.51	2.0		-0.21	4.13	8.27	12.43	16.74	20.88	
20	72	3.51	2.0		-0.20	4.09	8.22	12.35	16.62	20.74	

MOTES: 1. RUN Mo. and Photo Sequence Mo. (P.S.) are firse and second numher. respectively, on phntographs.

	O			腎品沗		$\begin{aligned} & \text { N } \\ & \text { ज̃ } \\ & \text { No } \end{aligned}$
	践		べ		$\cdots{ }_{n} \quad \text { a }$	\rightleftharpoons
			$\overrightarrow{\boldsymbol{n}} \quad \stackrel{\infty}{\boldsymbol{N}}$	$\underset{\sim}{\mathrm{F}}$	M ~	$\stackrel{9}{5}$
						䍓が心
				Oic No		NN0
				©NㅓN	으NㅇNㅇNNN	気気尔
				兆		ņon
				드욱		W90
				이극	NNMOMOめ	
				$\stackrel{\ominus}{0} \underset{\sim}{\boldsymbol{A}} \underset{\sim}{\mathrm{~F}}$	－	N
						¢－90
				묵쿡		응
			Hơo Nw wion	－${ }_{-1}^{\sim}$		－すべす
				品		Nّ
	5	O－TOM－NYOO	ONTO	－${ }^{+1}$	OOONJTYO	0 ± 1
	$\underset{\sim}{i}$	$\begin{array}{llll} 0 & 0 & 00 \\ \text { i } & \text { i } & \text { in } \end{array}$	$\begin{array}{ll} 0 & 0 \\ \dot{N} & \dot{i} \end{array}$	$\stackrel{\circ}{\text {－}}$	$\begin{array}{lll} 0 & 0 & 0 \\ \dot{m} & \dot{N} & \dot{j} \end{array}$	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$
	Σ		8	윤	$\begin{aligned} & \mathbf{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \dot{n} \\ & \dot{m} \end{aligned}$
	$\begin{aligned} & \text { A } \\ & \hline 0 \end{aligned}$	\cdots	요			

NOTES:
2. Reflected model nose shock impinged on model for Runs 709-716, 1198, 1204-1211.

* Color graphics output

Note:

1. * indicates movies also obtained at this angle of attack.

The model was driven contiounusly through the plane of light at the specified angle of attack.

Moce:

1. Medium oil vas $80 \% 10 \mathrm{cs}$ and $20 \% 100 \mathrm{cs} 011$ and healy oil was 50210 es and $50 \% 100$ cs oil.

TABLE 2. TEST RUN SUMMARY (Continued) VKF Tunnel A - Run log Phase 2 Oil Flow Test

RUN	$\begin{aligned} & \text { MACH } \\ & \text { NO. } \end{aligned}$	MODEL	ALF:iA deg	$\begin{aligned} & \text { OIL VISCOSSTY } \\ & \text { TOR/BOTTOM } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \end{array}$	3.0 $i^{2.0}$	820 B30	$\begin{array}{r} 10 \\ 10 \\ 8 \\ 6 \\ 12 \\ 14 \\ 4 \\ \\ 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ \\ 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ \\ 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ \\ 14 \\ 12 \end{array}$	L:gh: Medium Heavy'Heavy

Nots:

1. Light oil was 80\% 10 Centi Stokes (CS) and 20\% 100CS Medium oil was 50\% 10CS and 50\% 100CS Heary ofl was 100\% 1000Cs
TABLE 2. TEST RUN SUMMARY (Continued)
PWT 4T Fbrce and Moment Test Run Log
Test Run Number Summary

COMF IG	ALPHA	BETA	M							
			0.4	0.55	0.8	0.95	1.05	1.1	1.2	1.3
820	Al	0	47	50	54	57	60	63	66	70
			72							
		4	48	51	55	58	61	64	67	71
825	Al	0	82	84	86	88	90	92	94	96
		4	83	85	87	89	91	93	95	97
830	A1	0	106	108	111	113	115	118	120	122
										123
		4	107	109	112	114	116	119	121	- 124

Nutes: ALPHA Schedule: AI = -4, -3, $-2,-1,0,1,2,3,4,6,8,10,12,16,20 \mathrm{deg}$

			8	일	0	$\stackrel{\square}{\square}$		F	\％	20	\％	\％	\％	\％	\％	\cdots	7	管	\％		\bigcirc
				O	※	I	a	\cdots	曾	\％	\％	$\stackrel{\square}{8}$	\％	\％	¢	三	\％	\％	\％		\％
			\cong	\％	－	을	\％	E	${ }_{\square}^{\text {m }}$	\％	产	8	$\stackrel{\square}{\text { en }}$	左	浱	\cdots	－	等	名		$\stackrel{\square}{8}$
				気	응	号	耧	E	包	\％	\％	\％	\％	\％	絁	尔	\％	\％	\％		\checkmark
				$\stackrel{\circ}{\square}$	$\underline{\underline{Z}}$	\square	曾	$\stackrel{1}{\square}$	－	\％	\％	\％	号	会	¢	眝	罧	\％	尔		\cdots
				兑	플	$\underline{\square}$	兑	蕃	$\stackrel{\text { a }}{\square}$	兑	产	®	\％	\％	\％	宁	－	¢	$\stackrel{\circ}{8}$		₹
			－	可	$\stackrel{2}{2}$	0	\％	曾	总	总	品	\％	－	\％	汤	\％	\％	\％	$\stackrel{\square}{8}$		\％
			m	曾	$\underset{B}{2}$	\dot{a}	\square	－	鲁	管	\％	号	\％	స	\approx 䍖	盛	\％	\％	岁		욷
			\sim	$\stackrel{\sim}{2}$	－	－	弟	$\stackrel{\circ}{\square}$	※	\％	0	合	号	\％	产	宁	示	－	m		\％${ }_{\square}^{\circ}$
			－	可	$\hat{\Xi}$	m	g	\％	䔍	\％	A	\％	号	$\stackrel{1}{2}$	品	管	\％	\％	\％		\％
			－	8	$\stackrel{\square}{\square}$	\％	䍖	－	苞	总	\％	\％	管	\％	总	管	－	\％	5		¢ ${ }_{-}^{\text {m }}$
			7	兑	䦔	m	）	\％	$\stackrel{2}{3}$	尔	\％	－	N	\％	嶌	砣	$\stackrel{\square}{\square}$	\％	\％		\％
			\cdots	䍖	足	0	$\stackrel{\circ}{3}$	$\stackrel{\sim}{\square}$	$\stackrel{2}{2}$	莒	E	\％	云	¢	滑	家	$\stackrel{\square}{\square}$	\cdots	\％		尔要
			7	包	¢	$\underset{\sim}{2}$	河	$\stackrel{\square}{\underline{O}}$	E	蜽	E	\％	号	\％	\％	通	咸	ก	\％		\bigcirc
			7	¢	$\underline{\square}$	$\underset{\sim}{2}$	苍	易	$\stackrel{2}{2}$	\％	ก	急	号	¢	－	溤	\％	－	き		\％${ }_{5}^{\circ}$
		穑		\％	0	－	$:$	0	\div	：	${ }^{\circ}$	－	\％	：	－	；	\div	－			：$:$
				\because			$\stackrel{\sim}{-}$			$\stackrel{\rightharpoonup}{\circ}$			－			$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\square}{\circ}$		－		
		営		冗ัex						～											

TABLE 2. TEST RUN SUMMARY (Concluded)
PWT 4T Pressure Test Run Log

CONF 16	\boldsymbol{M}	BETA	ALPMA														
	0.4	-4	1634	1635	1636	1637	1638	1639	160	1641	1642	1643	1644	1645	1696	1647	1698
		0	1650	1651	1652	1653	1654	1655	1655	1657	1658	1659	1660	1651	1692	1663	1664
		4	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680
	0.55	-4	1506	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600
		0	1602	1603	1604	1605	1606	1607	161:	1609	1610	1611	1612	1613	1614	1615	1616
		4	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1623	1629	1630	1631	1632
	0.8	-4	1300	1301	1302	1303	1304	1305	1335	1307	1308	1309	1310	1311	1312	1313	1314
		0	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331
		4	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347
	0.95	-4	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363
		0	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379
		4	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395
	1.03	-4	1391	1398	1399	1400	1401	1402	1003	1404	1405	1406	1407	1408	1409	1410	
		0	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427
		4	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	
	1.1	-4	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	
		0	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	
		4	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	

a. Axial Location
Figure 3. Pressure Orifice Locations

[^0]

Pressure Phase

Looking Opstream (PHI = 0)

Force Phase
c. Base Pressure Orifice Location

Figure 3. Pressure Orifice Locations (Concluded)

Table 3. Pressure Orifice Location and Designation

THETA	3.2	6.4	9.6	12.8	16.0	19.2	22.4	25.6	28.8	32.0	35.2
0	1	14	27	40	59	78	97	116	135	154	173
20	2	15	28	41	60	79	98	117	136	155	174
30				42	61	80	99	118	137	156	175
40	3	16	29	43	62	81	100	119	138	157	176
50				44	63	82	101	120	139	158	177
55	4	17	30	45	64	83	102	121	140	159	178
60				46	65	84	103	122	141	160	179
65	5	18	31	47	66	85	104	123	142	161	180
70				48	67	86	105	124	143	162	181
75	6	19	32	49	68	87	106	125	144	163	182
80				50	69	88	107	126	145	164	183
85	7	20	33	51	70	89	108	127	146	165	184
90				52	71	90	109	128	147	166	185
95	8	21	34	53	72	91	110	129	148	167	186
105	9	22	35	54	73	92	111	130	149	168	187
115	10	23	36	55	74	93	112	131	150	169	188
125	11	24	37	56	75	94	113	132	151	170	189
140	12	25	38	57	76	95	114	133	152	171	190
180	13	<6	39	58	77	96	115	134	153	172	191

NOTE: Ther mocouples located at approximately $x=22.4$ and THETA $=0$ and 180.
8
8
8
0

SECTION B-B
DIMENSIONS IN INCHES
Figure 4. Static Pressure Pipe

TUNNEL STATIONS ANO DIMENSIONS ARE IN INCHES

Figure 5. Tunnel Model Installation (Conclucied)

Figure 6. Estimated Uncertainties in 4 T Tunnel Parameters

lable 4. Concluded

PARAMETER	M							
	0.4	0.55	0.8	0.95	1.05	1.1	1.2	1.3
CN	0.077	0.065	0.041	0.036	0.034	0.033	0.031	0.030
CLM	0.027	0.023	0.014	0.012	0.012	0.011	0.011	0.010
CY	0.039	0.034	0.022	0.020	0.019	0.018	0.018	0.017
CLM	0.032	0.028	0.018	0.016	0.015	0.015	0.014	0.014
CLL	0.020	0.017	0.011	0.0099	0.0096	0.0093	0.0088	0.0086
CAI	0.014	0.012	0.0076	0.0068	0.0065	0.0063	0.0060	0.0059
CA	0.016	0.014	0.0086	0.0076	0.0073	0.0070	0.0067	0.0066
CAB	0.0088	0.0080	0.0041	0.0035	0.0032	0.0032	0.0030	0.0030

ELLIPTICITY RATIO 2:1

Figure B. Ellipticity Ratio Effects, $M=2.0$ (Concluded)
$\underbrace{〔}$
ANGLE OF ATTACK

Figure 9. Ellipticity Ratio Effects, $M=5.0$

2．0：1 ELLIPTICITY RATIO
$2.5: 1$ ELLIPTICITY RATIO
$3.0: 1$ ELLIPTICITY RATIO
กis\％
予水录
$\begin{array}{ll}111 \\ 0 & 1\end{array}$
9

Figure 9．Ellipticity Ratio Effects， $\mathrm{M}=5.0$（Concluded）

ANGLE OF ATTACK

Figure 10. Mach Number Effects
ELLIPTICAL BODY MISSILE 3.0:1 ELLIPTICITY RATIO

5
ANGLE OF ATTACK

Figure 10. Mach Number Effects (Concluded)

Figure 12. Reynolds Number Effects, $M=2.0$

Figure 12. Reynolds ${ }_{74}$ Number Effects, $M=2.0$ (Concluded)

Figure 13. Reynolds Number Effects, $M=5.0$

Figure 13. Reynolds Number Effects, $M=5.0$ (Concluded)
PRESSURE COEFFICIENT VS LENGTH
CONFIGURATION 30
MACH $3.01 \quad \alpha=0^{\circ}$
$O-$ TOP $\&$
$\square-$ BOTTOM $\&$

Figure 14. C_{P} vs. Length
ELLIPTICAL BODY MISSILE

Figure 15. Pressure Coefficient About Body
ELLIPTICAL BODY MISSILE

nswc Swint code ——

$$
\text { efed yder8moprys } \quad \text { O }
$$

Figure 22. Separation Angle vs. Axial Location

20:1 ELIIPTICITY RATIO

$0-$
+
+
+

ANGLE OF ATTACK

Figure 23. Ellipticity Ratio Effects, $\mathrm{M}=0.4$

1
04
0

Figure 23. Ellipticity Ratio Effects, $M=0.4$ (Concluded)

s 95

Figure 24. Ellipticity Ratio Effects, $M=0.8$

Figure 25. Ellipticity Ratio Effects, $\mathrm{M}=1.3$

Figure 28. Force A $\stackrel{\text { And }}{\mathbf{Z}}$ Moment Comparisons, $M=2.0$

S
Figure 28. Force And Moment Comparisons, $\mathrm{M}=2.0$ (Concluded)

$0-\operatorname{RUN} 63$
TEST DATA
S/HABP THEORY $-5,5$

C_{m}
ANGLE OF RTTACK
Figure 29. Force And Moment $\underset{103}{2}$ Comparisons, $M=5.0$

ELLIPTICAL BODY MISSILE

- - RUN 63 TEST DATA
S/HABP THEORY- 5,5

Figure 29. Force And Moment Comparisons, M $=5.0$ (Concluded)
Figure 29. Force And Moment Comparisons, $M=5.0$ (Concluded)
RUN NUMBER 111

ANGLE OF ATTACK
Figure 31. Force And $\stackrel{\text { Ind }}{Z}$ Moment Comparisons, $M=0.8$

9
Figure 31. Force And Moment Comparisons, $\mathrm{M}=0.8$ (Concluded)
ANGLE OF ATTACK

Figure 32. Force And Moment Comparisons, $M=1.3$

Figure 32. Force And Moment Comparisons, $\mathrm{M}=1.3$ (Concluded)

Figure 33. Lateral Directional Comparisons, $M=0.4$

ω^{∞}

Figure 34．Lateral Directional Comparisons， $\mathrm{M}=08$

$a / b=2.5$

a. Mach 0.55

Figure 36. FL057 Force And Moment Comparisons
$a / b=2.5$

b. Mach 2.0

Figure 36. FL057 Force And Moment Comparisons (Concluded)

Figure 37. Integrated Pressure Comparisons, $\mathrm{M}=2.0$

Figure 37. Integrated Pressure Comparisons, $M=2.0$ (Continued)

Figure 37. Integrated Pressure Comparisons, $M=2.0$ (Concluded)

Figure 38. Integrated Pressure Comparisons, $M=5.0$

Figure 38. Integrated Pressure Comparisons, $M=5.0$ (Continued)

Figure 38. Integrated Pressure Comparisons, $M=5.0$ (Concluded)

Figure 39. Skin Friction Coefficient vs. Angle Of Attack

ELLIPTICAL BODY MISSILE $30: 1$ ELLIPTICITY RATIO MACH NO. - 2.00 RLPHA - 0.0


```
    ELL!PTICAL SODY M!SSILE
30.1 ELLIPIICITY RAT!O MACH NO-2 00 ALPHA - 2.1
M-3.2,
```


ELLIPTICAL BODY MISSILE
3.0:1 ELLIPTICITY RAT! 0 MACH NO. - 2.00 ALPAG - 4.2

N゚ Figure 40
Cp vs. Phi Angle Comparisons, $\mathrm{M}=2.0$ (Continued)

```
ELLIPTICAL BODY MISSILE 3.0:1 ELL!PTICITY RAT! MACH NO.- 2.00 ALPHA - 6.3
```



```
ELLIPTICAL BODY MISSILE 3.0:1 ELLIPTICITY RATIO MACH NO.- 2.00 RLP4R - 10.6
```



```
\(x=16.0\)
PRESSURE COFF.
```



```
\(x-35.2\) PRESGUPE rant  (INGRES :

ELLIPTICAL BODY MISSILE
3.0:1 ELLIPTICITY RATIO


\section*{ELLIPTICAL BODY MISSILE}
3.0:1 ELLIPTICITY PATIO MACH NO.- 5.03 ALP:HA - 2.3



ELLIPTICRL BODY MISSILE 3.0:1 ELLIPTICITY RRTIO MACH NO.- 5.03 ALPMR - 4.1



\section*{ELLIPTICAL BODY MISSILE}


DEFLECTION AIJGLE


Figure 42. Local Deflection Angle vs. Phi Angle


Figure 44. PRESSURE COEFFICIENT vS. SPAN
\begin{tabular}{rlr}
\(a / b\) & \(=2.5\) \\
\(M\) & \(=2.0\) & \\
\(\alpha\) & \(=12\) deg & \\
& &
\end{tabular}





Figure 45. Cp vs. Local Deflection Angle, \(M=2.0\)


\section*{CP VS. LOCAL DEFLECTION RNGLE}


Figure 45. Cp vs. Local Deflection Angle, \(\mathrm{M}=2.0\) (Continued)


Figure 45. Cp vs. Local Deflection Angle, \(\mathrm{M}=2.0\) (Continued)

CP VS. LOCAL DEFLECTION ANGLE
\[
\begin{aligned}
& \text { 3.D:1 ELLIPTICITY RATIO } \\
& \text { MFICH NO. - } 2.03 \\
& \square=\text { BOITOM } \\
& O=\text { LEADING EDGE } \\
& \triangle=\text { TOP }
\end{aligned}
\]

RUN NO. - 152
MODEL AlPHA - 17.2

PRESSURE COEFFICIENT

CP VS. LOCAL DEFLECTION ANGLE


CP VS. LOCAL DEFLECTION RNGLE


Figure 46. Cp vs. Local Deflection Angle, \(M=5.0\)

CP VS. LOCAL DEFLECTION RNGLE
3.0:1 ELLIPIICITY RATIO

RUN NO. - 258 MRCH NO. - 5.03

MODEL FLFHF - 4.1
\(\infty\)
\(\stackrel{\omega}{0}-\)
-- LERDING EDGE
\(\Delta\) - TOP

LOCAL ANGLE OF GTTACK

Figure 46. Cp vs. Local Deflection Angle, \(\mathrm{M}=5.0\) (Continued)

\section*{CP Vs. LOCAL DEFLECTION RNGLE} \(\begin{array}{ll}\text { 3.0:1 ELLIPTIC!TY RAT!O } & \text { RUN NO. }-260 \\ \text { MACH NO. }-5.03 & \text { MODEL ALPHR }-8.2\end{array}\)


Figure 46. Cp vs. Local Deflection Angle, \(M=5.0\) (Continued)


Figure 46. Cp vs. Local Deflection Angle, \(M=5.0\) (Continued)

CP VS. LOCAL DEFLECTION RNGGE 3.0:1 ELIPTICITY FATIJ FUN NO. - \(25 E\) MFCH NO. - 5.03 MODEL RLFHA -20.5

ロ - BOTTOM
O - LEADING EDGE
\(\triangle\) - TOP

PRESSURE COFFFICIENT


Figure 46. Cp vs. Local Deflection Angle, \(M=5.0\) (Concluded)

NOMENCLATURE
\(A, A_{F}\)
\(A E\)

ALPHA
a
\(a_{\text {max }}\)
BETA
b
\(b_{\text {max }}\)
\(C A, C_{A}\)
CAB
CAT
\(C D S, C_{D}\)
CLL, \(C_{1}\)
CLM, \(C_{m}\) CLN, \(C_{r}\) CLS, \(C_{L}\) \(C N, C_{i}\)

CODE
CONFIG
\(C p\)
CY, Cy
\(L, I_{R}\)
\(L / D_{S}\)
LM
M
MU

Reference area, 27.210 inch \(^{2}\)
Base area, 27.210 inch \(^{2}\)
Angle of attack, degree
Semimajor (horizontal) span at \(X\), inch
Semimajor span at model base, in. (see Table 1)
Sideslip angle, degree
Semiminor (vertical) height at \(X\), inch
Semiminor height at model base, inch (see Table 1)
Forebody axial force coefficient, body axes, CAT-CAB
Base axial force coefficient, body axes, -(PBA-P)AB/Q*A
Total axial force coefficient, body axes, total axial force/ \(\mathrm{Q}^{\star} A\)
Drag coefficient (based on CA), stability axes
Rolling moment coefficient, body axes, rolling moment/Q*A*L
Pitching moment coefficient, body axes, pitching moment, \(Q^{*} A * L\)
Yawing moment coefficient, body axes, yawing moment/Q*A*L
Lift Coefficient (based on CA), stability axes
Normal force coefficient, body axes, normal force/Q*A
Model configuration number
Model configuration designation
Pressure coefficient, ( \(\mathrm{P}_{\mathrm{P}} \mathrm{P}_{\infty} / \mathrm{Q}\) )
Side force coefficient, body axes, side force/Q*A
Reference length, Diameter (inch)
Lift-to-drag ratio (based on (A), stability axes
Model length, 36.000 inch
Free-stream Mach number
Dynamic viscosity based on free-stream temperature, \(1 \mathrm{bf}-\mathrm{sec} / \mathrm{ft}^{2}\)

NOMENCLATURE (Continued)
NCP Normal force center-of-pressure location, body axes, inches from nose; XMRP-(CLM-L/CN) or XMRP-(CLM-AO*L/CN-AO) for ALPHA \(=0\) and BETA \(=0\)

P . Free-strean static pressure, psia
PBA Average base pressure (PBT + PBB + PBL + PRR)/4, psia
PBi Base pressure, \(i=T, B, L\), and \(R\), where \(T, B, L\), and \(R\) are top, psfa Pound per square foot area
psia Pound per square inch area
psid Pound per square inch differential
PHI Roll angle, degree
PREF Reference pressure for 20C pressure module, psia
PT Tunnel stilling chamber pressure, psia
PT2 Total pressure downstream of a normal shock, psia
Q Free-stream dynamic pressure, psia
RE Free-strean unit Reynolds number, \(\mathrm{ft}^{-1}\)
RHO Free-stream density, \(1 \mathrm{bm} / \mathrm{ft}^{3}\)
RUN Data set identification number
\(T \quad\) Free-stream static temperature, \({ }^{\circ} \mathrm{R}\)
TT Tunnel stilling chamber temperature, \({ }^{\circ} R\), or \({ }^{\circ} \mathrm{F}\)
\(V \quad\) Free-streall velocity, \(\mathrm{ft} / \mathrm{sec}\)
\(x \quad\) Axial location from nose of model, inch
XMRP Axial distance from model nose to model moment-reference location, 24.000 inch

YCP Side force center-of-pressure location, body axes, inches from nose, XMRP - (CLN*L/CY)
\[
\begin{aligned}
& \text { END } \\
& \text { DATE } \\
& \text { FILMED } \\
& 7-888 \\
& D T I C
\end{aligned}
\]```


[^0]:    (pənu!̣uo)
    b. Radial Location

    Figure 3. Pressure Orifice Locations

