

MICROCOPY RESOLUTION TEST CHART

A USERS'/PROGRAMMERS' MANUAL FOR TWAKE

Thomas F. SWEAN, JR

Center for Hydrodynamic Developments
Laboratory for Computational Physics and Fluid Dynamics

May 6, 1988

Approved for public release: distribution urifind.

1. INTRODUCTION . 1
2. OVERVIEW OF THE COMPUTATIONAL MODEL
3. DESCRIPTION OF COMMAND DATA INPUT +
4. OVERVIEW OF THE EXECUTION MODULE 11
5. CLOSING REMARKS
6. ACKNOMENGEMENTS
7. REFERENCES 1.4 TABLES

A USERS'/PROGRAMMERS' MANUAL FOR TWAKE

1. INTRODUCTION

The computer program TWAKE is a modified version of the CMC-3DPNS program lescribed in Refs. [1-4]. The parent code is available in the NASA/COSMIC software library (Ref. [8]) and. under separate contracts, variations of the original code have been acquired by the Naval Research Laboratory and the David Taylor Research Center. At NRL the program has been used to simulate a variety of turbulent, two and three-dimensional, self-propelled and drag wakes (Refs. [$5-7]$). In addition. several unpublished calculations of surface ship wakes and two-dimensional turbulent jets have been completed. Comparisons of the calculations with experimental data have consistently shown good quantitative agreement with respect to axial evolutions of characteristic (single-point) fow parameters such as maximum velocity deficit (excess) and maximum turbulence kinetic energy. In addition, the simulations of the experiments of Ref. [9] reproduced the qualitative behavior of major flow structures in the cross-plane.

In order to complete these numerical simulations, it has on occasion been necessary to alter and merge portions of the Navy-procured variants mentioned above. From these eftrts has evolved a version of CMC-3DPNS which may be described as being "ship wake specific" while retaining the flexibility of the original program through the use of parameters defined during input.

NRL has been tasked to deliver the modified software to the OCNR (Code 12) Ship Wake Detection Program. This report is intended to serve as a programmers'/users' manual in support of thar task. It should be considered as supplemental to Refs. [2-3] and this report will assume advance familiarity with that literature. The subsequent sections will describe the fundamentals of using TWAKE to simulate a class of self-propelled wake flows near a free surface. The physical approximations employed to derive the conservation equations as well as the mathematical concepts involved in their discretization are described in Refs. [1,4] and will not be repeated herein.

2. OVERVIEW OF THE COMPUTATIONAL MODEL

The conservation equations to be considered are the steady, three-dimensional. time-averaged (in the turbulence sense) parabolic Navier-Stokes equations. The effects of turbulence are described using modelled transport equations for the turbulence kinetic energy and the isotropic dissipation function along with an anisotropic closure for the turbulent stresses. Since the continuity equation is not parabolic, additional formulational steps are necessary to render the equation set amenable to a streamwise-marching numerical solution technique. As is usual the divergence of the transverse momentum equations provides an equation for the static pressure. The pressure field that satisfies this Poisson equation consists of complementary and particular parts with the complementary solution satisfying the homogeneous part of the original equation. An additional equation is provided by the definition of a harmonic function which is forced to zero (within a defined tolerance) as the continuity equation is satisfied. These equations and the ordering analysis leading to their derivation may be found in Ref. [4].

The computer program has been designed to consider the simultaneous convection and difusion of up to 30 arbitrary scaiar field variables, q_{i}. The general form of the equation system is

$$
\begin{equation*}
L\left(q_{i}\right)=u_{1} \frac{\partial q_{i}}{\partial x_{1}}+c_{i} u_{i} \frac{\partial q_{i}}{\partial x_{l}}-d_{i} \frac{\partial}{\partial x_{i}}\left(\kappa_{i} \frac{\partial q_{i}}{\partial x_{l}}\right)+s_{i}=0 . \tag{it}
\end{equation*}
$$

with boundary condiuuns

$$
\begin{equation*}
l\left(q_{i}\right)=a_{i i l} q_{i}+a_{2 i l} \frac{\partial q_{i}}{\partial x_{i}} \vec{n}_{l}+a_{3 i l}=0 \tag{2}
\end{equation*}
$$

and initial conditions

Manuscript approved January 28. 1988.

$$
q_{i}\left(0 . x_{l}\right) \equiv q_{i}^{0}\left(x_{1}\right) .
$$

In these equations x_{1} is the primary flow (marching) direction, the subscript $l, 2 \leq l \leq 3$. denotes the coordinate directions defining the transverse solution plane, and \vec{n}_{l} is the outward unit normal vector. In Eq. (1) s_{i} is a source or sink term for q_{i} and κ_{i} is the difision coefficient. The constants $a_{n s i}$ in Eq. (2) allow the specification of the appropriate boundary conditions on each boundary of the soiution domain. The coefficients c_{i} and d_{i} as well as parametric or functional representations of the difusion coefficients and source terms are supplied by the user as part of the input process and by providing additional coding as necessary.

The turbulent PNS equations and modelled equations described in the first paragraph are a subset of the general equation system and appropriate specifications of the coefficients, functionals. and source terms have been programmed. Nevertheless, there remains considerable latitude for the user, through the use of parameters specified on input, to further tailor the equation set for specific applications. especially with regard to the treatment of source and difusion terms. Several of the original parameters are not described in Refs. [2-3] and some additional choices have been added by this author. The full equation set in a hybrid, as coded, form is included as Appendix A of this report and should serve to clarify and complete the descriptions in the above references.

The numerical solution of the governing equation set is accomplished by means of a finite-element algorithm. The particular algorithm employed by TWAKE is derived in Chapter 4 of Ref. [4] using the Galerkin-Weighted Residuals formulation. A brief outline of the algorithm is useful to introduce necessary terminology and for reference in subsequent sections of this report.

To a degree the finite-element algorithm is an integral transformation, transforming an initial \because aiue partial diferential equation into a larger order system of ordinary diferential equations. The algorithm is established by first sub-dividing the flow domain into a number of sub-domains or finite elements. Each element is associated with a number of discrete nodes located on (or within) the element boundary. The spatial variation within the element of any flow variable, q_{e}, is assumed in terms of interpolation polynomials, N, and the values (unknown) of the variable at the node points, Q , for example,

$$
\begin{equation*}
q_{e}\left(x_{1}, x_{l}\right)=\left\{N_{k}\left(x_{l}\right)\right\}^{T}\left\{Q\left(x_{1}\right)\right\}_{e} \tag{4}
\end{equation*}
$$

The curley braces denote column matrices whose order is equal to the number of nodes comprising the element and the elements of $\left\{N_{k}\right\}$ are polynomial functions complete to degree k. The numerically determined finite element approximation q^{h}, to the true solution q, is the summation of the independent solutions q_{e},

$$
\begin{equation*}
q\left(x_{1}, x_{1}\right) \approx q^{h}\left(x_{1}, x_{l}\right) \equiv \sum_{e=1}^{M} q_{e}\left(x_{1}, x_{l}\right), \tag{5}
\end{equation*}
$$

where M equals the number of finite elements in the discretization. Within the Galerkin formulation. for example, the algorithm statement for a two-dimensional high Reynolds number boundary layer form of Eq. (A-1) with homogeneous boundary conditions is

$$
\begin{gather*}
S_{e}\left[\int_{R_{e}}\left\{N_{k}\right\} L\left(u_{1}^{h}\right) d \tau\right]=S_{e}\left[\left\{U_{1}\right\}^{T} \int_{R_{e}}\left\{N_{k}\right\}\left\{N_{k}\right\}\left\{N_{k}\right\}^{T} d x_{2}\left\{U_{1}\right\}^{\prime}\right. \\
+\{N u\}_{e}^{T} \int_{R_{e}}\left\{N_{k}\right\} \frac{d}{d x_{2}}\left\{N_{k}\right\} \frac{d}{d x_{2}}\left\{N_{k}\right\}^{T} d x_{2}\left\{U_{1}\right\}_{e}+\left\{U_{2}\right\}_{e}^{T} \int_{R_{e}}\left\{N_{k}\right\}\left\{N_{k}\right\} \frac{d}{d x_{2}}\left\{N_{k}\right\}^{T} d x_{2}\left\{U_{1}\right\}_{e} \\
\left.+P_{\infty}^{\prime} \int_{R_{\mathbf{e}}}\left\{N_{k}\right\} d x_{3}\right] \equiv\{0\} \tag{6}
\end{gather*}
$$

In Eq. (6) S_{0} is the standard finite-element assembly operator. the "prime" denotes ordinary iiferentiation with respect to Σ_{1}, and the Green-Gauss theorem has been used to transform the difusion term. Each of the integrals are analytically evaluable upon specification of the interpolation polynomials in Eq. (4). The elements of the rasuitant hyper-matrices are themselves column or square matrices. Following the notation developed in Ref. [4], Eq. (6) is written

$$
\begin{equation*}
S_{e}\left[\left\{U_{1}\right\}_{e}^{T}[A 3000]\left\{U_{1}\right\}_{e}^{\prime}+\left(\{N u\}_{e}^{T}[A 3011]+\left\{U_{2}\right\}_{e}^{T}[A 3001]\right)\left\{U_{1}\right\}_{e}+P_{\infty}^{\prime}\{A 10\}\right] \equiv\{0\} \tag{7}
\end{equation*}
$$

The meaning of the matrix notation is easily deduced with reference to Eq. (6). For instance $[-43001]$ in the convective term denotes that it is the matrix formed by integrating over a one-dimensional element (A), the product of 3 interpolation polynomial matrices (3), the first two of which are not differentiated with the third being diferentiated (001). Matrices appropriate for the PNS equations have been coded into TWAKE for linear interpolation polynomials only ($k=1$ in Eq. (4)), for both one-dimensional [$A .$.] elements and two-dimensional triangular [B...] elements.

Application of the finite-element algorithm to each of the equations in Appendix A results in a system of ordinary diferential equations (and algebraic) which are compactly written as.

$$
\begin{equation*}
\left[C_{i}\right]_{e}\left\{Q_{i}\right\}_{e}^{\prime}+\left\{D_{i}\right]_{e}\left\{Q_{i}\right\}_{e}+\left\{S_{i}\right\}_{e}=\{0\} \tag{8}
\end{equation*}
$$

where $\left\{S_{i}\right\}_{e}$ contains all of the non-homogeneous terms and $\left\{D_{i}\right\}$ contains the combined effects of convection and difusion. To solve these equations the family of one-step implicit finite-diference integration algorithms is used,

$$
\begin{equation*}
\{F\}_{j+1}=\left\{Q_{i}\right\}_{j+1}-\left\{Q_{i}\right\}_{j}-\Delta x_{1}\left(\theta\left\{Q_{i}\right\}_{j+1}^{\prime}+(1-\theta)\left\{Q_{i}\right\}_{j}^{\prime}\right)=\{0\} \tag{9}
\end{equation*}
$$

where j is the Σ_{1} step index, Δx_{1} is the step-size and θ is the implicitness factor, with $\theta=\frac{1}{2}$ yielding the trapezoidal rule. Combining Eqs. (9) and (8) to eliminate the derivative yields the non-linear algebraic equation set,

$$
\begin{equation*}
\left\{F\left(\left\{Q_{i}\right\}_{j+1}\right)\right\}=\{0\} \tag{10}
\end{equation*}
$$

The Newton iteration algorithm is applied to Eq. (10)

$$
\begin{equation*}
\left\{\delta Q_{i}\right\}_{j+1}^{p+1}=\left\{Q_{i}\right\}_{j+1}^{p+1}-\left\{Q_{i}\right\}_{j+1}^{p}=-\frac{\left\{F\left(\left\{Q_{i}\right\}_{p+1}^{p}\right)\right\}_{1}}{\left[J\left(\left\{Q_{i}\right\}_{j+1}^{p}\right)\right]} \tag{11}
\end{equation*}
$$

where p is the iteration index and $[J]$ is the Jacobian

$$
\begin{equation*}
\left[J\left(\left\{Q_{i}\right\}\right)\right] \equiv \frac{\partial\{F\}}{\partial\left\{Q_{i}\right\}} \tag{12}
\end{equation*}
$$

The equations to be solved at each iteration are Eq. (11) written in the form,

$$
\begin{equation*}
\left[J\left(\left\{Q_{i}\right\}_{j+1}^{p}\right)\right]\left\{\delta Q_{i}\right\}_{j+1}^{p+1}=-\left\{F\left(\left\{Q_{i}\right\}_{j+1}^{p}\right)\right\} \tag{13}
\end{equation*}
$$

where $\left\{\delta Q_{i}\right\}$, the iteration vector, is the dependent variable. The right side of the above equation is Eq. (10) evaluated at the $p^{t h}$ iteration.

$$
\begin{equation*}
\{F\}_{j+1}^{p}=\left[C_{i}\right\}\left(\left\{Q_{i}\right\}_{j+1}^{p}-\left\{Q_{i}\right\}_{j}\right)+\Delta x_{1}\left(\theta\left\{G_{i}\right\}_{j+1}^{p}+(1-\theta\}\left\{G_{i}\right\}_{j}\right) \tag{14}
\end{equation*}
$$

where

$$
\left\{G_{i}\right\}^{p}=\left[D_{i}\right]\left\{Q_{i}\right\}^{p}+\left\{S_{i}\right\}^{p}
$$

Iterating the solution until $\{F\}$ vanishes to within a defined tolerance implies the approximate vanishing of the iteration variable $\left\{\delta Q_{i}\right\}$ in Eq. (13) and hence convergence. The matrix solution technique tor Eq. (13) is by $\mathrm{t}-\mathrm{U}$ decomposition and back substitution.

The code has no "hard-cuded" and linked control sequence untal full initialization has occurred. and alternate paths exist in execution as well. The user is thus required to construct a problem-specific command sequence which will

1) generate the computational space,
2) specify the dependent variable set,
3) insure that fluid is initialized properly,
4) specify appropriate boundary conditions for each dependent variable,
5) specify certain parameters which control the flow path through the execution module and
6) chonse among several output options or otherwise provide output routines.

This has been done in Refs. [2-3] for a class of semi-bounded : 2 rbulent flows with an irregular computational domain. The next section and major portion of the remainder of this report will explain an input sequence appropriate for the simulation of surface ship wake flows. Comparing the two should efficiently educate the user in the machinations of operating the code and yield a versatility to create additional data sets. Once a command structure is developed for a class of flow geometries, the majority of the previous discussion in this section as well as other characteristics of the program can remain entirely transparent to the user. Since it is likely, however, that improved modelled equations or constitutive relations or more efficient solvers and iterative techniques will become available, an outline of the relevant sections of code which might be modified will be given in Section 4.

3. DESCRIPTION OF COMMAND DATA INPUT

The primary requirement of the user of the program is to construct an input sequence of commands which will describe the flow to be numerically simulated. Such a data sequence is included as Appendix A of Ref. [2] for the PNS computation of wing-body juncture flow. Another and quite diferent input sequence is included as Appendix B of this report for the turbulent wake behind a self-propeiled surface ship. Following a few general remarks describing the command data structure, the next sub-section oi this report will explain the functions of the fundamental commands included in Appendix B and indicate, where appropriate, how the data should be altered to compute additional flow fields of the same type. This will be followed by a short sub-section containing example modifications which either allow efects not included in the Appendix B commands or significantly alter the geometry. It will be assumed at this point that the reader is familiar with the texts of Appendices A and B.

The procedures for describing the flow-field geometry, initial fluid state and other characteristics pertinent to specific flows via the input sequence are quite flexible. At the core of the input module is subroutine BDINPT. This subroutine sequentially reads data card images from logical anit 5 (LD5). The individual card images must have the format (A8,72A1), the first eight characters (left-justified) of which contain a pre-programmed command name, while the remaining characters contain any additional parameters required by the specific command. The subroutines which read these card images translate the literal data into integer or real data as indicated. The commands can be categorized into two general groups, those which operate on and/or store numerical data, and those which cause control to transfer to other ensembles of subroutines which may themselves require additional literal or numerical data from LU5 or other logical units. The command card images are terminated by " T " if the data are numerical and by "DOME" if the data are literal. Upon completion of an operation specified by a command. control returns to BDIMPT which reads the next card image. A list of available commmands and their functions can be found in Appendix C of Ref. [2].

Immediately upon execution of TWAKE, control resides in program MAIN. The principal functions of this coutine are to specify the size, IZSIZE, of the primary array in the code, IZ (IZSIZE). and to call subroutine BDIMPT. Currently IZSIZE $=700000$ which is sufficient to compute a cross-plane containing 51×51 nodes. Additional code has been added to read file names (from LU5) and open files associated with logical units required for customized input and output subroutines. On some computer systems. these logical units may be designated by way of the job control language and in that event those particular statements in program MAIN should be deactivated. The first several card images in the data deck of Appendix B contain names for these additional LU's. It is not necessary to delece these card images if MAIf has been altered to attach these files via job control statements. This introduces an important
point regarding the command data structure. If a card image contains a character string which is not recognized as a legitimate command, then control continuously passes to subsequent images until a viable command is detected. Thus the entirety of the annotated data set in Appendix B (or even this entire report) can be read into the code verbatim.

Discussion of Appendix B

The first sensible statement to BDINPT in Appendix B is the command FENAME and this command must be the first. The command calls subroutine FENAME which initializes default entries in the integer and scalar arrays, Iarray (500) and rarray (500), respectively. The specifications given these entries in the current version of FEMAME are appropriate for the surface ship wake calculations of Refs. [6-i] and. in principle, the several subsequent commands in Appendix B of the Iaraay and rarray type need not be present. They have been included to remind the user of those entries which would most likely be altered to specify a diferent scaling to a geometrically similar flow. As is apparent from Appendix B a command of the type
IARRAY $27 \begin{aligned} & 7\end{aligned}$
puts the value of 7 into the second location of the array IARRAY. The comments in Appendix B suffice to explain the meaning and use of the several parameters which are explicitly referenced. Descriptions of most of the other defaulted entries in these arrays can be found in Refs. [2-3]. They need to be changed only if the user needs to significantly alter the flow type and geometry. Note the specification of the coefficients of the governing equations in the form presented in Appendix A. Note also that the last several of these array specification commands, along with the ICOND and EXIT commands, are preceded by the letter " C " and consequently they have no meaning to BDINPT. Removing the extraneous letter and left-justifying, however, will cause those particular elements of IARRAY to be assigned non-zero values and thus activate debug output statements (LU6) contained in the majority of the subroutines in the code. Some entries are assigned values greater than 1 because those particular integers are decremented by 1 each time output is requested. The ICOND command causes a print to LU6 of the current status of all non-zero entries in IARRAY and RaRRay and the EXIT will terminate execution when encountered. Obviously these parameters can be activated ($I>0$) and deactivated ($I \leq 0$) at strategic locations in the input data sequence. There does exist a NAMELIST option in FENAME whereby the several parameter specifications in Appendix B can be can be accomplished by direct reference to their Fortran variable names. The option has not been used in Appendix B since, for illustrative purposes, it is convenient to isolate the parameter specifications in groups according to function. Most of the more widely used entries in rarray and Iarray are equivalenced to local Fortran variable names in fename. The local variable names have been assembled into two NAMELIST data strings, one for each of the arrays. The parameter specification in Appendix B can as well be accomplished by:

```
IARRAY 500 1 T HAMELIST on
FENAME T
    ENAMEO1
    HTYPE=7, M2WAKE=1, MM=3, KROW=19, LCOL=19, NODE=400
    EEND
    AHAMEO2
    UIMF=6.7556, RHOINF=1.935, XMUINF=21.1E-6, REFL=1, , TO=10.,
    TD=20., ESIRIT#.01, HMAX=10., DELP=101.
    &END
```

The FEDIMI command must occur after the grid-size parameters (NM, LCOL, KROW, NODE in Appendix B and others defaulted in FENAME) are prescribed. This subroutine activates the linear finiteelement versions of the $[A \ldots]$ and $[B \ldots]$ matrices (depending on NM) discussed in Section 1 and loads default entries into several arrays. The critical function of FEDIMN, however, is to partition the IZ (IZSIZE) array. The macro-structure of this array is discussed in Ref. [3] and, due to it's critical importance to creating new or altering existing code, Tables 1 and 2 are included to describe relevant further partitioning. It is sufficient at present to point out that the array aiways appears as equivalent to it's real counterpart. RZ (IZSIZE), and every major column matrix in the code, whether integer or real is a subset of this array. Subroutine FEDIMN calculates addresses (entry points in IZ/RZ) for these matrices and groups of
these matrices and stores these addresses in the first 200 locations of the IZ array. As an example, the following series of Fortran statements places the value of the x_{2} space coordinate at computional node I into the local variable Z :
COMMON / ARRAYS / IZ(700000)
DIMENSIOM RZ(700000), L(200)
EQUIVALENCE (IZ(1), RZ(1), L(1))
EqUIVALENCE (L(90), IX2COR)
$Z=R 2(I X 2 C O R+I-1)$
If the debug parameter, IARRAY (61), is active upon encountering FEDIMN, these addresses will be printed. The remainder of the input sequence is devoted to initializing (and sometimes further partitioning) the IZ array.

The next group of command data which deserve comments in addition to those given in the Appendix B annotation is the LINK4 sub-group. These commands, terminating with DONE, construct the finiteelement domain. Commands VX2SCL and VXISCL determine node spacing in the vertical and lateral directions, respectively, by using geometric progression. The card image immediately following VX2SCL. for example, contains 2 strings of numbers, separated by a comma for clarity (not necessary), which specify parameters for generating the vertical spacing,
VX2SCL T
0 . $9-1.5$ 1. , $9-3.1$. T
In this case the sets of numbers specify 2 super-elements in the vertical direction such that the first super-element begins at $x_{2}=0.0$, contains 9 finite elements (10 nodes over the span), and spans that axis until $x_{2}=-1.5$, with node spacing determined by a progression ratio (P_{r}) of 1.0. The second superelement also contains 9 elements and continues the construction until $\boldsymbol{z}_{2}=-3.0$ with $P_{r}=1.0$. Note that the command assumes subsequent super-elements begin where the prior super-element ended ($-1 . \bar{j}$ in this case) and the starting position is omitted. Since Pr$=1.0$ (equi-spaced nodes) this construction could have identically been specified by
0 . 18. -3. 1. T
and the first format has been used to remind the user of the capability. If $P_{T}<1.0$ the spacing becomes increasingly denser as the interval is spanned, for example, each of the constructions
0 . 8-1.5 1.25, 12-3. 1. T
-3. 11 -1. $1.25,70$. 8 T
spans the same domain (originating at different points) and will cause a relatively denser spacing near $x_{2}=0.0$. Similar comments apply to the VXISCL command. The call to ELEM constructs the finiteelement network and node-connectivity table using the beginning and ending nodes specified by the IDECRD command, nodes 1 and 19 in each direction, respectively. A schematic of the grid formed for this geometry specification is given in Fig. 1. Note that since the reference length, Iarray (43), has been assigned the value of 1.0 , the space coordinates correspond directly to ft .

Fig. 1 - Schematic of finite-element domain

Each of the dependent variables has associated with it an integer number in accord with the table given in Appendix B. The KBNO sub-group of commands specifies boundary conditions to these variables according to their respective integer designations. The default boundary condition is vanishing gradient normal to the boundary in question. In Appendix B, for instance. there is no KBNO command for dependent variable $\overline{5}$ (turbulence kinetic energy) and thus either $\partial k / \partial x_{1}=0.0$ (left and right) or $\partial k / \partial x_{2}=1$. 0 (bottom and top) as required. The domain created by the ELEM command above corresponds to the free surface wake experiments described in Ref. [7]. The top boundary is assumed to be the mean free surface in the "rigid-lid" approximation, the left boundary is the symmetry plane separating the port and starboard propellers, and the bottom and right bouncaries are assumed to be iree of viscous influence. If the initial (or boundary) conditions are asymmetric from starboard to port then a full planar solution is necessary. In this case, for instance, the KBNO 3 command and it's associated data card image would be deleted to permit the lateral velocity, u_{3}, to float on all boundaries. The data for and p_{0}) would be replaced by,
KBNO 9 T PHI BC: only iree surface is impermeable
LEFT BOTTOM 2 RIGET 2
DONE
permitting entrainment at all boundary planes except the free surface. The " 2 's" in the above data cause the boundary node lists for the bottom and right boundaries to begin at the second node iproceeding courter-clockwise) thus preventing the bounding of the same node twice.

The next set of commands in Appendix B beginning with DESCRIPT 204 and continuing through VX3ST are concerned with specifying type of and format for printed output on LU6. The discussions in Refs. [2-3] are adequate to explain the general functions of these statements. Until the command IOSAVE is encountered the data are merely prescribing headers for scalar output and designating which scalars to write. The DESCRIPT 203 command provides header information for vector output. There is a one-to-one correspondence between the listed headers and the column vectors denoted by the code numbers listed under the IOSAVE command. The IOMULT command provides scalar multipliers for these 14 vectors and in this case the first 11 are multiplied by the scalar in RaRRAY (2) (which happens to be 1.0), the next by Rarray (171); and the last 2 again by Rarray (2). These particular multipliers cause the output variables to be printed in their non-dimensional form as described in Appendix.A. The particular pressure is multiplied by Rarray (171) because the code operates with the variable divided by that constant. As an example to illustrate a couple of points, if the user wants to view the dimensional axial velocity and further wishes to record the effective turbulence difusion coefficient in a form which compares it to the laminar viscosity (see Eqs. (A-1), (A-16) and (A-17)), then the last header card under DESCRIPT 203 might be altered to;
U3'U3' PP P PHI NUTRB/NU
the last statement under IOSAVE should be alt red to;
824892481247 T
and the IOMULT data card should be altered to;
27 11*2 171 2*2 47, 15*1 T
These alterations, in addition to designating the header, cause the non-dimensional velocity variable defined in Appendix A to be multiplied by RARRAY(27) (u_{∞} specified in a prior command in Appendix B) before printing. The multiplication of ν_{t} (variable number 1247) by Rarray (47) (reference Revnolds number calculated during the input sequence) produces the ratio of the turbulent and laminar difusion in Eq. (A-1). As to the construction of the composite numbers. the material in Ref. [2] on pages 21 and 35 is contradictory with that on page 21 correct. All arrays can be accessed using the correct procedures of Ref. [2] and appropriate addresses from the table on pages $55-58$ of Ref. [3] and Tables 1 and 2 of this report. As is explained in Appendix B the axial locations where LU6 output will occur are specified by the VPVSX and VX3ST commands. Further comments regarding output options inciuding :ustomized output routines will be reserved for Section 4.

The LINK commands form the final sub-group which will complete intialization of the tud tommands of this type invoke a call to the named subroutine which in turn accesses other modules to pertorm operations according to the argument. The command.

LINK3 4 T

for instance, as part of the operations in subroutine LINK3 when the argument is 4 . places alls io subroutines DIMEA and IMDEX. Subroutine DIMEN calculates several non-dimensional parameters ior later use during execution as well as initializes the turbulence model constants used in the aruations ot Appendix A. The call to INDEX finishes the partitioning of the IZ array begun in FEDIMN. It is here that several of the more commonly used addresses (entry points in the IZ array) are given spectal storag locations so that they do not have to be repeatedly calculated. For example the space between IZ (48) and $I Z(49)$, allocated in FEDIMM, is further partitioned into segments of length NYY*NODE (NYY=IARRAY (90) ; The starting address of each segment is stored in the common block JADRES which in most usages in the code has the form:
COMMON / JADRES / JU1 , JU2 , JU3 , JH , JK , JEPS , JPP , JP , jPHI , JEX(21)
In the execution module the current values of the dependent variables can be accessed by reference to the appropriate element of JADRES. For instance, the value of the non-dimensional u_{1} velocity at node I is at $R Z(J U 1+I-1)$. Other addresses, which have a one-to-one correspondence with terms or groups of terms in Eqs. (9) through (15), "e calculated and stored in the common block DERIV. It sinould be noted here that those users who wish to modify code in the execution module will find a knowledge of the code in subroutines FEDIMN and INDEX essential to that task. Descriptions of the primary plements of DERIV can be found in Table 2.

The next commands, calls to subroutines GEOMFL and NODELM, complete the development of element matrices and vectors that are determinable solely from geometric data. It is in GEOMFL. for example. that the derivative matrix $[A 3011]$ of Eq. (7) or it's 2D-element counterparts [B30112] and [B30113] are calculated.

The remaining task to be completed before entering the execution module is to initialize the fluid state at the initial plane $x_{1}=T_{0}$. Inspection of the equation set in Appendix A shows that, at the minimum, non-zero and positive starting values of u_{1}, k, and ϵ must be supplied on all nodes of the discretization. For swirling wake flows initial values of u_{2} and u_{3} should also be supplied. The user will likely find it convenient to develop his own input routines to initialize the dependent var able set. Examples of such specialized routines are the subroutines BLSIUS, BRDSHW, CRNINP, JNCINP, EDGINP WAKPRO, VPIDATA, and DTHSRDC. These routines establish a variety of two and three-dimensional bounded and free-boundary flow fields from either empirical formulae or by accessing pre-processed data sets. The principal requirements in routines of this type are that the ARRAYS and JADRES common blocks be included and that the dependent variables ultimately be specified according to the node ordering determined during grid generation, the ELEM sub-group of commands discussed previously. While this latter point is obvious, consider that an alternate coordinate specification to that used in Appendix B. but one that yields precisely the identical geometry, is
VX2SCL T
$\begin{array}{ccccc}\text { V.3. } & 18 . & 0 . & 1 . & T \\ \text { VXISCL } & T & & \\ 3 . & 18 . & 0 . & 1 . & T\end{array}$
This specification will reverse the node sequencing depicted in Fig. 1. If the user is uncertan as to how the elements and nodes are numbered, activation of the debug parameters prior to the ELEM command will generate a listing. In this application (MTYPE $=7$) the LINK2 10 command accesses subroutune OTMSRDC which will read free-format data from LU19. The local file designation for LU19 is given as INPUT19 at the beginning of Appendix B and this data should be prepared in advance. In this case the first record in INPUTIS is the characteristic dissipation length scale. l_{1}. Each succeeding record consists. of 4 entries corresponding to the starting values of the dependent variables $\left(u_{1}, k, u_{2}, u_{3}\right)$ at each note of Fig. 1 in sequence. The subroutine then initializes the dissipation function, ϵ, acoording to the discussion of Ref. [7]. The nodal data is an interpolation to the computational plane of the experimental lata of Ref. [9]. The final two commands, LINK5 6 and LINK5 4. cause the immalization of the lammar
and turbulent difusion coefficients and the Reynolds stresses according to the formulation in Appendix A. Note the presence in Appendix B of several commands preceding the transfer to execution (QKNINT) which are negated by the letter " C ". Removing the extraneous letter will invoke a complete planar outpur of the geometry and fluid nitialization for inspection prior to execution.

At this point initialization is complete and the annotated data set of Appendix B should be viewed as the general structure necessary for computation of surface wake flows. The following is a list of the items in that data set which should be changed to simulate a diferent flow of the same general class:

1) change the RaRRAY entries corresponding to the fluid properties (UINF, RHOINF, XMUINF).
2) change the Rarray entries corresponding to the longitudinal boundaries of the computationai domain (TO, TD),
3) if there are to be more than 19 rows or 19 columns in solution, change the IARRAY entries tor KROW and LCOL to be at least as large as the number of rows and columns, and change NODE to be at least KROW*LCDL +1 .
4) shange the card images following the VX2SCL, VX1SCL, and NDECRD commands to reflect the new geometry,
5) change the KBNO sub-group of commands to bound the variables consistent with the new geometry specification.
6) change the card image following the VX3ST command to designate the longitudinal stations for complete planar output, and
7) change the data on LU19 to reflect the initial fluid state consistent with the new grometry or otherwise supply a subroutine similar to DTNSRDC.
Before leaving the discussion of command data set construction it is useful to illustrate by way of examples more general modifications necessary to calculate flow fields that deviate from the type heretofore considered. The following sub-section will briefly summarize modifications appropriate for a two-dimensional flow and for a flow with non-zero $\partial p_{c} / \partial x_{1}$. Studying the contrasts between the data sets (including that in Refs. [2-3]) will result in an increased versatility in using the code to calculate dissimilar flow fields.

Additional Data Sets
The hypothetical situation to be considered is a two-dimensional version of the Appendix B data. In this case it is supposed that the flow is invariant in the lateral (x_{3}) direction and that the initial fluid state is described by the data on the left column of nodes in Fig. 1. If the extent of the compuiational domain is the same, the only necessary change to the IARRAY and RaRRaY specifications (or NAMELIST) is to set $\mathbb{I M}=2$. It is more efficient to alter LCOL and NODE to better fit the problem since FEDIMN will then allocate smaller blocks when partitioning az .

The IPINT vector should be altered to delete the integration of u_{3}, e.g., IPINT T
$1562798000,1-2-2-56 * 0$, 10*I111
For the same span in x_{2}, the only necessary changes to the ELEM sub-group of commands are to delete the VXISCL command (and it's associated data) and alter the NDECRD command and data to the single statement,
BDECRD -1 I -1 indicates 2 D grid
The IBCRD command and data should be replaced by,
LIMK1 2 T call FINDBE: examine geometry for boundary elements
The boundary conditions (KBNO) should be altered to delete the condition on u_{3} and to remove the references to the RIGGT boundary for p_{p} and ρ.

The remaining required change concerns reading the initial fluid state. Ohviously subroutine DTMSRDC could be altered to store the first column of the current INPUT19 data $\left(u_{1}, k\right.$ e on on into the R 2 array, or a modified data file could be pre-processed to be accessed by the existing subroutine. An alternative which illustrates further capabilities of the code is to delete altogether the link to TBLINP. and DTMSRDC and add:

```
DEPVAR 1 2 T load U1
    1.01225 1.01193 1.00424 1.01459 1.03879 1.02784 1.01261
    1.01261 1.00843 1.00211 1.00053 9*1.0 T
RARRAY 2 .01 T set RARRAY(2)=.01
DEPVAR 5 2 T load TKE
    . 24124 . 24795 . 30290 . 28394 . 25587 . 14605 . 0430
    .01045 11*1.0 T
RARRAY 2.001 T set RARRAY(2)=.001
DEPVAR 6 2 T load EPS
    . 20312 . 21183 . 28578 . 25937 . 22188 . 09568 . 01529
    .00183 11*1.0 T
Rarray 2 1. T sot Rarray(2) back to 1.0
```

The DEPVAR $\mathbf{~} 1 \mathbf{N} 2$ command loads the R2 array beginning at entry points corresponding to the dependent variable specified by $\mathbf{\$ 1}$ (see the table in Appendix B). In this example each indicated variable wiil take on the 19 values specified by their respective data statements, with each datum multiplied by the value in rarray (N2). Note that the free format allows a short-hand notation for repeated data and the successive redesignation of rarray (2) disposes of the necessity to input the leading zeros.

The data set in Appendix B of Ref. [3] serves as an example of procedures required to include non-zero $\partial p_{c} / \partial x_{1}$ into a simulation. The explanation given in that reference, however, is extremely abstruse concerning the complementary (inviscid) pressure determination and only detailed deciphering of pressure-related subroutines along with subroutine DERVBL (conservation equation assembly) reveals how to and in what form to communicate the gradient information into the execution module. The fundamental requirement is to load the pressure daca into the RZ array at locations IZ ($105+1-1$) where I ranges over the number of nodes in solution. Subroutine DERVBL expects the pressure gradient data in the form:

$$
\begin{equation*}
\frac{\partial P}{\partial x_{1}}=\left(\frac{\rho_{\infty} u_{\infty}^{2}}{p_{\infty}+\frac{1}{2} \rho_{\infty} u_{\infty}^{2}}\right) \frac{\partial}{\partial x_{1}} \cdot\left(\frac{p_{c}}{\rho_{\infty} u_{\infty}^{2}}\right) \tag{16}
\end{equation*}
$$

and the user should note that the coefficient is accessible as the inverse of rarray (171). Examples of routines which accomplish this formulation for specific flow geometries are subroutines PRSGRDD GETPPR and JMCPPR. The first of these calculates the pressure term for an internal (rectangular duct) flow by global mass conservation and the latter two compute the term by interpolation of prescribed axial variations of $p_{c}\left(x_{1}\right)$. With the above as background the following word description will help clarify the operations performed by the several commands on pp. 91-92 of Ref. [3]. The LINK2 23 command reads and stores into temporary storage the data which immediately follows that command. These data represent 14 groups of $\left[x_{p}, C_{p}\left(x_{3}\right)_{x_{1}=x_{p}}\right]$ for the geometry of Ref. [1] under the assumption of flow symmetry about the corner-bisector. During the link to subroutine NODPCP these data are used to specify pressure boundary conditions at each node under the KBNO 8 command (p. 90). A solution to Eq. (A-5) is then obtained for each of the 14 stations, the axial coordinates of which are now stored sequentially beginning at R2(I2(139)). The solutions are re-assembled into sub-groups of 14 values (solutions) per node and stored according to the normal node sequence beginning at $R Z$ (IZ(140)) During execution subroutine HODPPR is called at the initiation of each marching step and the x_{p} interval bracketing the current x_{1} determines entry points to the pressure table allowing evaluation of Eq. (16) by linear interpolation. These results are loaded sequentially, beginning at RZ(IZ(105)), for transfer to DERVBL.

As a final example which simply illustrates details of the above description, consider that the zero pressure gradient calculation of Appendix B has been established and one wishes to account for the resultant axial gradients of p_{p} in a subsequent pass through the flow field. In this subsequent iteration. the prior distribution of p_{p} will be identified with the current p_{ε}. It is assumed that on the first pass the p_{p} distributions were saved (unformatted) on $\mathcal{L U l l}$ in the form specified in subroutine PLTOUT. For purposes of illustration it is further assumed that these distributions were stored only at the axial positions specified under VX3ST in Appendix B, however, it is in the near wake that the procedure has
more relevauce. For these conditions the following additional parameter specifications should be made before the call to FEDIMN:

The VPVSX command in Appendix B is removed and the following series of statements should follow the VX3ST specification:

```
RARraY 450 2. T temporarily set rarray (450)=2.
READ 11 16174 T
SETVAL 1444 74 74 450 T
LINK2 23 T call CPSTUP to create tables
LIMK1 11 T call NODPPR to initialize p grad.
RARRAY 450 0. 500 T reset RARRAY(450)=0.
```

The READ command reads from LU11 a vector of length IARRAY (161) and stores it temporarily beginning at $\mathrm{RZ}(I Z(74)$). Since subroutine CPSTUP expects data in pressure coefficient form, the SETVAL statement multiplies the vector by RARRAY (450) and places the result in the same temporary storage location. The call to CPSTUP creates the tables and finally MODPPR initializes p_{e} and $\partial p_{c} / \partial x_{1}$.

The following section will give a brief overview of the macro-structure of the execution module as it applies to wake flows.

4. OVERVIEW OF THE EXECUTION MODULE

The QKMIMT command near the end of the Appendix B data transfers control into the main drive loop. A flow chart for the routines performing the principal operations during execution is shown in Fig. 2. The flow paths branching to the sides of QKMINT pertain to output options and will be discussed at the end of this section. The following several paragraphs will summarize the major functions of the remaining subroutines. Tables 1 and 2 contain additional information regarding the RZ array entry points for those users having a need for detailed code translation.

The call to IMPLCT marks the initiation of a step in the axial direction, corresponding to the j index of Eq. (9). At this point any necessary parametric evaluations should be performed, such as those necessary for variable geometry or non-zero pressure gradient. These types of subroutines are user supplied. Examples of routines which fill the column matrix for $\partial p_{c} / \partial x_{l}$ are subroutines JNCPPR. GETPPR, and PRSGRD. The first two of these compute gradients by interpolations of either prescribed data or solutions of Eq. (A-5). Subroutine PRSGRD calculates the pressure gradient in internal flows from global mass conservation considerations.

The sequence from DERVBL through STRF in Fig. 2 is the iteration loop signified by index p in Eq. (11). Subroutine DERVBL performs the finite-element assembly indicated in Eqs. (6) and (7). The user will recognize in DERVBL the application of the various RARRAY coefficients discussed in Appendix A and the ultimate assembly of Eqs. (10) and (14) for each parabolic equation. The master loop in subroutine IMPSLV is over the dependent variable index, NP, equivalent to the index i of the equations in Section 2 . As \mathbb{P} increments from 1 to the total number of marching equations (5 in this case), Eqs. (13) are solved in the order specified by the IPIMT command. Solution is by L-U decomposition and back substitution (BAIDSL). The output from BANDSL is the iteration variable, δQ_{i}, forming the left side of Eq. (11). If for any variable at any solution node, n

$$
\frac{\left(\delta Q_{i}\right)_{n}}{\left(Q_{\max }\right)_{i}}>R_{14}
$$

convergence is not considered achieved (any NPCONV (NP) greater than zerol and Q_{i}^{p+i} is determined by Eq. (11). Currently R_{14} (rarray (14)) is set to 10^{-4} in FENAME. Following IMPSLV. subroutines SETDIF and RMLDST update the diftusion coefficients and Reynolds stresses. If the convergence test was failed on any variable, two successive passes through subroutines PPRES and STRF accompiish the solutions of

Fig. 2 - Flow chart of execution module
the Poisson equations for p_{p} and Φ and control returns to DERVBL. If convergence was achieved for ail variables (all NPCONV (NP) equal zero), control returns to QKNINT after the stress update. Flow sharts of DERVBL and IMPSLV are given in Ref. [3].

The references to subroutine FILTER in Fig. 2 deserve special mention. Chapters 5 and 6 of Ref. [4] discuss the possibility of waves occuring in the cross-plane velocity component solutions for the linear basis algorithm ($k=1$ in Eq. (4)). The mechanism for initiating these waves is the action of the continuity penalty function which for the linear cardinal basis enforces essentially a central difference approximation. If a calculation is exhibiting this behavior, simple grid refinement can exacerbate the problem. The original code contains options to either filter the secondary flow velocity variables directly, filter the iteration variable for the those variables, or apply no filter, with the former of these options implemented by default. This user has computed drag-wake solutions (Ref. [6]) using both "on" possibilities for the original filter, and observed only insignificant perturbations in the entrainment induced u_{2}, u_{3} solutions. Operation with the filter of idid indeed reveal the presence of small spurious waves in the ϕ solution and a resulting infection of the cross-plane velocities. It is emphasized that this observed behavior was small and sensibly not unstable at least for the initial conditions and longitudinal extent of the computations in that study. Nevertheless these observations along with the comments in Ref. [4] give reason to monitor and condition the solution if necessary. If there is a non-zero swirl component in the initial condition, however, application of the filter to the secondary flow velocities is inappropriate since the result is an immediate artificial smearing of those components. Grid refinement will alleviate the smearing efect at the expense of a corresponding increase in computer time. Consequently the current code has a filter option at subroutine STRF which will operate only on the penalty function. The default condition is an active ϕ filter set in FENAME by IARRAY (403) $=1$. The u_{2}, u_{3} filters, controiled by the Iarray entries (397), (401), (402) and (404) are currently off The use of these filter options can easily be deduced by examining the code in subroutines IMPSLV and QKFINT.

Subroutine QKMIAT transfers control to the output driver whenever the parameter IARRAY (86) (KPMT) is non-zero. This parameter is set on each pass through IMPLCT and will be non-zero

1) at values of the step index RELPAS which are integer multiples of KNTPAS (IARRAY(167)),
2) at the transverse planes closest to the positions defined by

$$
\frac{x_{1}}{R_{35}}=\frac{n R_{13}}{100}
$$

where n is an integer and the Rarray entries are described in Appendix B, and
3) at planes closest to the positions listed via the VX3ST command in Appendix B.

If KPET is non-zero full planar output (LU6) of all arrays specified with the IOSAVE command will resuit The format for this output is flexible and will automatically be determined to resemble the problem geometry constructed during the ELEM sequence. At axial stations where REOUTP is accessed. subroutine PLTOUT writes the entire dependent variable set (and Reynolds stresses) to LU15 in a column matrix form corresponding to the node sequencing from grid construction. The nodal data is preceded by a sequential listing of the x_{2}, x_{3} coordinates of each node, which for invariant geometry are written on the first pass only. If the additional parameters ILU18 (IARRAY (408)) and/or ILU8 (IARRAY (407)) are specified non-zero during initialization, then subroutines PLTSUR and/or STNPRNT will be called at pach axial step. Subroutine PLTSUR writes to LU18 the full set of computed variables at each node in the horizontal plane $x_{2}=0$ (top row of Fig. 1), corresponding to the mean free surface. Currently a call to STMPRIT will initiate prints to each of the logical units $8,9,16$ and 17 . These are characteristic data of the calculation and are for the most part comprised of extrema of the several dependent variables in the local transverse plane. All potentially relevant IZ array entry points are included in these routines and they can quite easily be tailored to special needs. Sample data from all output units are included in Appendix C.

5. CLOSING REMARKS

The subroutines comprising TWAKE are grouped according to their primary functions and listed in Table 3. These modules, the input data files, and all output files resulting from the execution of the Appendix B data have been written to magnetic tape for delivery to OCNR (Code (12)). The data set has been executed on several NRL computers with identical results to 4 significant digits. The following is a tabulation of the execution times:

SYSTEM	
CRAY	2.24
VAX $11 / 785$	35.17
VAX $11 / 780$	41.83
HP 9000	215.95

6. ACKNOWLEDGEMENTS

The author wishes to thank Dr. E. W Miner and Dr. G. A Keramidas for providing valuable assistance in installing TWAKE on various computer systems.

7. REFERENCES

[1] A. J. Baker, "The CMC:3DPNS Computer Program for Prediction of Three-Dimensional Subsonic, Turbulent Aerodynamic Juncture Region Flow: Volume I - Theoretical," NASA Contractor Report 3645, 1982.
[2] P. D. Manhardt,"The CMC:3DPNS Computer Program for Prediction of Three-Dimensional Subsonic, Turbulent Aerodynamic Juncture Region Flow: Volume II - Users' Manual," NASA Contractor Report 165997, 1982.
[3] J. A. Orzechowski, "The CMC:3DPNS Computer Program for Prediction of Three-Dimensional Subsonic, Turbulent Aerodynamic Juncture Region Flow: Volume III - Programmers' Manual," NASA Contractor Report 165998, 1982.
[4] A. J. Baker, Finite Element Computational Fluid Mechanics. McGraw-Hill, Hemisphere, New York, 1983.
[5] T. F. Swean, Jr. and G. A. Keramidas "The Turbulent Wake of a Flat Plate Near a Free Surface," Proc. of the Second International Conference on Computational Methods and Experimental Measurements, 1984.
[6] T. F. Swean, Jr.,"Calculations of the Türbulent Wake Behind a Slender Self-Propelled Double-Body and Comparisons with Experiment," NRL Memorandum Report 6075, 1987.
[7] T. F. Swean, Jr.,"Numerical Simulations of the Wake Downstream of a Twin-Screw Destroyer Model," NRL Memorandum Report 6131. 1987.
[8] COSMIC Software Catalog: 1987 Edition, CSMIC, Univ. of Georgia, Athens, Georgia. NASA Coniractor Report 179669, 1987.
[9] W. T. Lindenmuth, private communication: data from the model experiments at DTRC - inboard propeller rotation, Jan. 1987.

IZ	
entry	commonly used name

43	IC200	reference by element
48	IYY	RZ (IYY + NYY* (IPLOC-1)*NODE + I-1)
71	ITEMP1	RZ (ITEMP $1+(\mathrm{NS}+1) * N O D E+I-1)$
74	ITEMP4	RZ (ITEMP4+I-1)
89	IXICOR	RZ (IX1COR+I-1)
90	IX2COR	RZ (IX2COR $+\mathrm{I}-1$)
91	IPRESS	RZ (IPRESS + I-1)
92	IAMU	RZ (IAMU + I-1)
103	IVEL	RZ (IVEL+I-1)
104	IH	RZ (IW+I-1)
105	IPRGRD	RZ(IPRGRD+I-1)
109	IGEOM1	reference by element ${ }^{3}$
110	IGEOM2	reference by element ${ }^{3}$
136	IADIF	RZ (IADIF $+\mathrm{I}-1$)

standard matrices: see FEDIMN IYY RZ (IYY + NYY* (IPLOC-1)*NODE+I-1) dependent variables ${ }^{1}$

ITEMP1
ITEMP4
IXICOR
IX2CQR
IPRESS
IAMU
IVEL
IW
IPRGRD
IGEOM1
IGEOM2
IADIF
reference for node I Reynolds stresses ${ }^{2}$ $\mathrm{RZ}(\mathrm{N} 2 \mathrm{~F}+\mathrm{I}-1)$ in IMPSLV 4 nodal x_{3} coordinates nodal x_{2} coordinates nodal values of p. nodal laminar viscosity temporary storage. u_{2} temporary storage, u_{3} nodal $\partial p_{c} / \partial x_{1}$ term natural coordinate derivative (x_{3}) natural coordinate derivative (\boldsymbol{x}_{2}) nodal values of ν_{t}

Votes
1 IPLOC is the location in the IPINT vector. In Appendix B, for example. IPLOC $=2$ for the turbulence kinetic energy. BYY and NODE are entries 90 and 55 in IARRAY.
2 WS $=\{1,2,3,4,5,6\}$ for $\left\{u_{1}^{\prime} u_{1}^{\prime}, u_{1}^{\prime} u_{2}^{\prime}, u_{1}^{\prime} u_{3}^{\prime}, u_{2}^{\prime} u_{2}^{\prime}, u_{2}^{\prime} u_{3}^{\prime}, u_{3}^{\prime} u_{3}^{\prime}\right\}$
3 See subroutine RALDST for examples of usage.
4 For each variable IP in turn, NZF points to the left-hand-side of Eq. (14) (including penalty term for u_{2}, u_{3}) upon entering BANDSL. At exit from BANDSL, NZF points to left-hand-side of Eq. (11).

TABLE 2 - Some important addresses in COMMON / DERIV /

DERIV	commonly	reference
entry	used name	for node I

entry used name for node I

25	IIYY		IIYY $\equiv 工 \mathrm{I}(48)$
36	HIYB	RZ ($\mathrm{NIYB}+\mathbb{P}+\mathrm{I}-1$)	dep. var. ${ }^{1}$: $\left\{Q_{i}\right\}^{p}{ }_{j+1}$ in Eq.
37	MI2B	$R 2(N I Z B+\mathbb{P}+\mathrm{I}-1)$	$\left\{G_{i}\right\}_{j+1}^{p}$ in Eq. (14)
61	MIYY	RZ ${ }^{(N I Y Y}+\mathbb{N P}+I-1$)	same as DERIV (36)
62	HIZ2	RZ ($\mathrm{IIZZ}+\mathrm{NP}+\mathrm{I}-1$)	same as DERIV (37) ${ }^{\text {2 }}$
63	MIRU	RZ (NIRU + I)	Jadres(1)-1 ${ }^{3}$
64	IIRV	RZ (MIRV+I)	Jadres (2)-1
65	IIRU	RZ (NIRH+I)	JADRES (3)-1
71	Mre	RZ (MIRE+I)	JADRES (4)-1
72	MIRF	RZ (MIRF+I $^{\text {) }}$	JADRES(5)-1
74	MIYYO	RZ (IYYYO + NP + I-1) $^{\text {a }}$	$\left\{Q_{i}\right\}_{j}$ in Eq. (14)
75	NIZZO	RZ (NIZ2O+NP+I-1)	$\left\{G_{i}\right\}_{j}$ in Eq. (14)

Notes
$1 \mathbb{N P} \equiv i$ in Eq. (1) for all usages in table. NP for a particular dependent variable is determined according to the variable's location in the IPINT vector.
2 RZ ($\operatorname{IIZZ}+\mathrm{NP}+2 * \mathrm{NODE}+\mathrm{I}-1$) cnntains the first term on right side of Eq. (14).
3 JADRES (n) refers to $n^{\text {ih }}$ element of COMMON / JADRES /

TABLE 3 - TWAKE subroutines sorted according to primary function

Input	Qutput	Utility	Ean. Solve
ADDDEL	CALORD	getdat	assmat
bdata	COMOC	LINK1	ASMSQ
BDIMPT	DRVBug	Link2	bancho
blsius	FEPLOT	LInk3	bandset
bmdset	DPSISQ	LINK4	bandst
BRDSEW	ICOND	LINK5	BCONDT
cols	OUTNOD	locate	contes
CPINIT	OUTPG	LOOK	DERVBL
CPSTUP	outvec	Looki	DERVDX
CRMIPP	OUTVEH	LOOKAV	DFCFbl
CSFIPP	pblank	MATSUM	dFcrus
DELadd	PLILNK	minmax	DRHOBL
DELELM	PLTOUT	mmax	DUDY
DELETE	plitur	NODPPR	EDGPPR
DELISOD	printa	RECIP	FILTER
DESCRP	REDUTP	RESET	getrsi
DIMEI	RITE	RESETI	GETPPR
DSCRTZ	Scalev	ExIT	IMPLCT
DTMSRDC	SETSCL	setrzs	IMPSLV
EDGIIP	STMPRyT	SETVAL	JnCPPR
EDGSYM	stout 1	tblinp	YBNDRY
ELEM		TCBECK	ppres
FEDIMI		TIMETK	PRSGRD
feiame		trapin	Qknint
FIMDBE		varmax	RNLDST
GEOMDR		vecmul	SETDIF
gedmfl		XYSCAL	SETIMP
getalc		zzzzzz	STCODE
GETBCD			STRF
GETBCM			sumkey
getbid			Tauw
IMDEX			trbthk
IDECRD			WKPres
TODELM			WLFLXS
10DFIX			
100. ${ }^{\text {cp }}$			
ORDER			
pratio			
READER			
READV1			
REDREL			
REORDR			
Rows			
SETCNT			
TWPROT			
vpidata			
XYCRDM			

APPENDIX A - PROGRAMMED FORMS OF CONSERVATION EQUATIONS

The programmed conservation equations are non-dimensional, with all variables having been nondimensionalized using reference values of length, viscosity, density and velocity as appropriate, for example,

$$
x_{1}^{*} \equiv \frac{x_{1}}{L}, u_{1}^{*} \equiv \frac{\bar{u}_{1}}{u_{\infty}}, u_{1}^{\prime} u_{2}^{\prime} \equiv \frac{\overline{u_{1}^{\prime} u_{2}^{\prime}}}{u_{\infty}^{2}}, p^{*} \equiv \frac{\bar{p}}{o_{\infty} u_{\infty}^{2}}, k^{*} \equiv \frac{k}{u_{\infty}^{2}}
$$

The overbars indicate conventional time-averaging and the primes denote fluctuating (turbulence) components. Omitting the asterisks for convenience and assuming x_{1}, x_{2}, x_{3} correspond to the streamwise. vertical, and lateral directions, zespectively, the equations for an isothermal. constant property, incompressible flow are programmed in the following paiameterized form:
streamwise momentum

$$
\begin{gather*}
u_{1} \frac{\partial u_{1}}{\partial x_{1}}+R_{385}\left(u_{2} \frac{\partial u_{1}}{\partial x_{2}}+u_{3} \frac{\partial u_{1}}{\partial x_{3}}\right)-\frac{\partial}{\partial x_{2}}\left[\left(R e_{L}^{-1}+\left(1-R_{281}\right) \nu_{t}\right) \frac{\partial u_{1}}{\partial x_{2}}\right] \\
-\frac{\partial}{\partial x_{3}}\left[\left(R e_{L}^{-1}+\left(1-R_{281}\right) \nu_{t}\right) \frac{\partial u_{1}}{\partial x_{3}}\right]+R_{281}\left(\frac{\partial}{\partial x_{2}}\left(u_{1}^{\prime} u_{2}^{\prime}\right)+\frac{\partial}{\partial x_{3}}\left(u_{1}^{\prime} u_{3}^{\prime}\right)\right)+\frac{\partial p_{c}}{\partial x_{1}}=0 \tag{A-1}
\end{gather*}
$$

vertical momentum

$$
\begin{gather*}
u_{1} \frac{\partial}{\partial x_{1}}\left(u_{2}-R_{353} \mathcal{F}\left(\partial \phi / \partial x_{2}\right)\right)+R_{348}\left(u_{2} \frac{\partial u_{2}}{\partial x_{2}}+u_{3} \frac{\partial u_{2}}{\partial x_{3}}\right) \\
-\frac{\partial}{\partial x_{2}}\left[\left(\frac{R_{346}}{R e_{L}}+\left(1-R_{282}\right) \nu_{t}\right) \frac{\partial u_{2}}{\partial x_{2}}\right]-\frac{\partial}{\partial x_{3}}\left[\left(\frac{R_{346}}{R e_{L}}+\left(1-R_{282}\right) \nu_{2}\right) \frac{\partial u_{2}}{\partial x_{3}}\right]-\frac{\partial}{\partial x_{3}}\left(\frac{R_{346}}{R e_{L}} \frac{\partial u_{3}}{\partial x_{2}}\right) \\
+R_{282}\left(\frac{\partial}{\partial x_{2}}\left(u_{2}^{\prime} u_{2}^{\prime}\right)+\frac{\partial}{\partial x_{3}}\left(u_{2}^{\prime} u_{3}^{\prime}\right)+R_{399} \frac{\partial}{\partial x_{1331}\left(u_{1}^{\prime} u_{981}^{\prime}\right)}\right)+R_{339} \frac{\partial p_{c}}{\partial x_{2}}+R_{340} \frac{\partial p_{p}}{\partial x_{2}}=0, \tag{A-2}
\end{gather*}
$$

lateral momentum

$$
\begin{gather*}
u_{1} \frac{\partial}{\partial x_{1}}\left(u_{3}-R_{353} \mathcal{F}\left(\partial \Phi / \partial x_{3}\right)\right)+R_{348}\left(u_{2} \frac{\partial u_{3}}{\partial x_{2}}+u_{3} \frac{\partial u_{3}}{\partial x_{3}}\right) \\
-\frac{\partial}{\partial x_{2}}\left[\left(\frac{R_{346}}{R e_{L}}+\left(1-R_{282}\right) \nu_{t}\right) \frac{\partial u_{3}}{\partial x_{2}}\right]-\frac{\partial}{\partial x_{3}}\left[\left(\frac{R_{346}}{R e_{L}}+\left(1-R_{282}\right) \nu_{t}\right) \frac{\partial u_{3}}{\partial x_{3}}\right]-\frac{\partial}{\partial x_{2}}\left(\frac{R_{346}}{R e_{L}} \frac{\partial u_{2}}{\partial x_{3}}\right) \\
+R_{282}\left(\frac{\partial}{\partial x_{2}}\left(u_{2}^{\prime} u_{3}^{\prime}\right)+\frac{\partial}{\partial x_{3}}\left(u_{3}^{\prime} u_{3}^{\prime}\right)+R_{399} \frac{\partial}{\partial x_{1}}\left(u_{1}^{\prime} u_{3}^{\prime}\right)\right)+R_{339} \frac{\partial p_{c}}{\partial x_{3}}+R_{340} \frac{\partial p_{p}}{\partial x_{3}}=0, \tag{A-3}
\end{gather*}
$$

continuity-penalty function

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x_{2}^{2}}+\frac{\partial^{2} \phi}{\partial x_{3}^{2}}-\frac{\partial u_{1}}{\partial x_{1}}-\frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{3}}{\partial x_{3}}=0 \tag{A-t}
\end{equation*}
$$

complementary pressure

$$
\begin{equation*}
\frac{\partial^{2} p_{t}}{\partial x_{2}^{2}}+\frac{\partial^{2} p_{\epsilon}}{\partial x_{3}^{2}}=0 \tag{A-5}
\end{equation*}
$$

particular pressure

$$
\begin{align*}
& \frac{\partial^{2} p_{p}}{\partial x_{2}^{2}}+\frac{\partial^{2} p_{p}}{\partial x_{3}^{2}}+R_{396}\left[\frac{\partial}{\partial x_{2}}\left(\frac{\partial}{\partial x_{2}}\left(u_{2}^{\prime} u_{2}^{\prime}\right)+\frac{\partial}{\partial x_{3}}\left(u_{2}^{\prime} u_{3}^{\prime}\right)\right)+\frac{\partial}{\partial x_{3}}\left(\frac{\partial}{\partial x_{2}}\left(u_{2}^{\prime} u_{3}^{\prime}\right)+\frac{\partial}{\partial x_{3}}\left(u_{3}^{\prime} u_{3}^{\prime}\right)\right)\right] \\
+ & R_{394}\left[\frac{\partial}{\partial x_{2}}\left(u_{2} \frac{\partial u_{2}}{\partial x_{2}}+u_{3} \frac{\partial u_{2}}{\partial x_{3}}+R_{398} u_{1} \frac{\partial u_{2}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{3}}\left(u_{2} \frac{\partial u_{3}}{\partial x_{2}}+u_{3} \frac{\partial u_{3}}{\partial x_{3}}+R_{398} u_{1} \frac{\partial u_{3}}{\partial x_{1}}\right)\right]=0, \tag{A-6}
\end{align*}
$$

where, $p=p_{p}+p_{c}$,
turbulence kinetic energy

$$
\begin{gather*}
u_{1} \frac{\partial k}{\partial x_{1}}+R_{384}\left(u_{2} \frac{\partial k}{\partial x_{2}}+u_{3} \frac{\partial k}{\partial x_{3}}\right)-\frac{\partial}{\partial x_{2}}\left[\left(R e_{L}^{-1}+\left(1-R_{283}\right) \frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{2}}\right] \\
-\frac{\partial}{\partial x_{3}}\left[\left(R e_{L}^{-1}+\left(1-R_{283}\right) \frac{\nu_{t}}{\sigma_{k}}\right) \frac{\partial k}{\partial x_{3}}\right]-\mathcal{P}+\epsilon \\
+R_{283} C_{k}\left[\frac{\partial}{\partial x_{2}}\left(\frac{k}{\epsilon}\left(u_{2}^{\prime} u_{2}^{\prime} \frac{\partial k}{\partial x_{2}}+u_{2}^{\prime} u_{3}^{\prime} \frac{\partial k}{\partial x_{3}}\right)\right)+\frac{\partial}{\partial x_{3}}\left(\frac{k}{\epsilon}\left(u_{2}^{\prime} u_{3}^{\prime} \frac{\partial k}{\partial x_{2}}+u_{3}^{\prime} u_{3}^{\prime} \frac{\partial k}{\partial x_{3}}\right)\right)\right]=0, \tag{A-7}
\end{gather*}
$$

isotropic dissipation function

$$
\begin{gather*}
u_{1} \frac{\partial \epsilon}{\partial x_{1}}+R_{384}\left(u_{2} \frac{\partial \epsilon}{\partial x_{2}}+u_{3} \frac{\partial \epsilon}{\partial x_{3}}\right)-\left(1-R_{283}\right)\left[\frac{\partial \epsilon}{\partial x_{2}}\left(\frac{\nu_{t}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial x_{2}}\right)+\frac{\partial \epsilon}{\partial x_{3}}\left(\frac{\nu_{t}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial x_{3}}\right)\right] \\
+R_{283} C_{\epsilon}\left[\frac{\partial}{\partial x_{2}}\left(\frac{k}{\epsilon}\left(u_{2}^{\prime} u_{2}^{\prime} \frac{\partial \epsilon}{\partial x_{2}}+u_{2}^{\prime} u_{3}^{\prime} \frac{\partial \epsilon}{\partial x_{3}}\right)\right)+\frac{\partial}{\partial x_{3}}\left(\frac{k}{\epsilon}\left(\because_{2}^{\prime} u_{3}^{\prime} \frac{\partial \epsilon}{\partial x_{2}}+u_{3}^{\prime} u_{3}^{\prime} \frac{\partial \epsilon}{\partial x_{3}}\right)\right)\right] \\
-C_{\epsilon_{1}} \mathcal{p} \frac{\epsilon}{k}+C_{\epsilon_{2}} \frac{\epsilon^{2}}{k}=0 \tag{A-8}
\end{gather*}
$$

turbulence production .

$$
\begin{equation*}
\mathcal{P}=-u_{1}^{\prime} u_{2}^{\prime} \frac{\partial u_{1}}{\partial x_{2}}-u_{1}^{\prime} u_{3}^{\prime} \frac{\partial u_{1}}{\partial x_{3}}-u_{2}^{\prime} u_{3}^{\prime}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)-\left(u_{2}^{\prime} u_{2}^{\prime}-u_{1}^{\prime} u_{1}^{\prime}\right) \frac{\partial u_{2}}{\partial x_{2}}-\left(u_{3}^{\prime} u_{3}^{\prime}-u_{1}^{\prime} u_{1}^{\prime}\right) \frac{\partial u_{3}}{\partial x_{3}}, \tag{A-9}
\end{equation*}
$$

kinematic turbulent stresses:

$$
\begin{gather*}
u_{1}^{\prime} u_{1}^{\prime}=C_{1} k-R_{400} C_{2} \nu_{t} \frac{k}{\epsilon}\left(\left(\frac{\partial u_{1}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial u_{1}}{\partial x_{3}}\right)^{2}\right)-2 R_{401} \nu_{t}\left(\frac{\partial u_{1}}{\partial x_{1}}\right), \tag{A-10}\\
u_{2}^{\prime} u_{2}^{\prime}=C_{3} k-R_{402} C_{2} \nu_{t} \frac{k}{\epsilon}\left(\frac{\partial u_{1}}{\partial x_{2}}\right)^{2}-2 R_{403} \nu_{t}\left(\frac{\partial u_{2}}{\partial x_{2}}\right), \tag{A-11}\\
u_{3}^{\prime} u_{3}^{\prime}=C_{3} k-R_{404} C_{2} \nu_{t} \frac{k}{\epsilon}\left(\frac{\partial u_{1}}{\partial x_{3}}\right)^{2}-2 R_{405} \nu_{t}\left(\frac{\partial u_{3}}{\partial x_{3}}\right), \tag{A-12}\\
u_{1}^{\prime} u_{2}^{\prime}=-\nu_{t}\left(\frac{\partial u_{1}}{\partial x_{2}}\right)-C_{2} \nu_{t}^{k}\left(R_{406} \frac{\partial u_{1}}{\partial x_{3}}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)-2 R_{407} \frac{\partial u_{1}}{\partial x_{2}} \frac{\partial u_{3}}{\partial x_{3}}\right), \tag{A-13}\\
u_{1}^{\prime} u_{3}^{\prime}=-\nu_{t}\left(\frac{\partial u_{1}}{\partial x_{3}}\right)-C_{2} \nu_{t} \frac{k}{\epsilon}\left(R_{408} \frac{\partial u_{1}}{\partial x_{2}}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)-2 R_{409} \frac{\partial u_{1}}{\partial x_{3}} \frac{\partial u_{2}}{\partial x_{2}}\right) . \tag{A-14}\\
u_{2}^{\prime} u_{3}^{\prime}=-\nu_{t}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)-R_{411} C_{2} \nu_{t} \frac{k}{\epsilon}\left(\frac{\partial u_{1}}{\partial x_{2}} \frac{\partial u_{1}}{\partial x_{3}}\right) . \tag{A-1.5}
\end{gather*}
$$

The turbulent kinematic viscosity and the reference Reynolds number are given by,

$$
\nu_{t}=C_{4} \frac{k^{2}}{\epsilon}
$$

and,

$$
\begin{equation*}
R e_{L}=\frac{u_{\infty} L}{\nu_{\infty}} \tag{A-17}
\end{equation*}
$$

respectively. The function \mathcal{F} in the cross-plane momentum equations is included to illustrate the action of the penalty (continuity) constraint term in the numerical aigorithm (see Ret. [4], chapter 7). Aside from the " $R_{n n n}$ " coefficients, the model contains the 10 constants $\left\{C_{1}, C_{2}, C_{3}, C_{4}, \sigma_{k}, \sigma_{t}, C_{s_{1}}, C_{\epsilon_{2}}\right.$. $\left.C_{k}, C_{\epsilon}\right\}$ which take on the commonly accepted values $\{0.94,0.067,0.56,0.068,1.0,1.3 .1 .44,1.92,0.12$. $0.09\}$. Most of these model constants are specified in subroutine FENAME, however a few are computed in subroutines DIMEV and DERVBL.

The subscripts on the $R_{n n n}$ coefficients in the above equations refer to locations in the scalar array aARAAY (500). This array is initialized to default values in FENAME and modified to be problem speciñc during the input sequence. The coefficients have obvious utility in specifying a problem class from the general convp576ection-difusipmation (Eq. (1)). Restricting attention to the PNS equations. several of the coefficients, particularly those modifying the convection and source (pressure gradient) terms. are extraneous, and have utility only for debugging or sensitivity studies. Those coefficients modifying the eddy viscosity diftision and Reynolds stress-gradient terms have more utility since they potentiallyy provide an additional control over the degree of non-linearity and explicitness in the descretized equations by specifying more or less of the difusion in the source terms. It should be noted, however, that in this version of the code, the Reynolds stresses are updated at every iteration, and as such any representation $0 \leq R_{n n n} \leq 1$ will give essentially identical results if only the lead order terms are retained in the Reynolds stress constitutive equations. For instance, specifying $R_{281}=1$ or 0 in Eq. ($A-1$) yields che same result if only the first terms in Eqs. (A-13) and (A-14) are used and if the stresses are computed at the current iteration. In the original version of the code the following default values of coefficients in Eqs. (A-1) through (A-8) were set:

$$
\begin{array}{r}
R_{385}=R_{348}=R_{282}=R_{339}=R_{340}=R_{396}=R_{394}=R_{384}=1 \\
R_{281}=R_{346}=R_{399}=R_{398}=R_{283}=0 . \\
R_{353}=-1 .
\end{array}
$$

In the current version of the code the above specifications are retained with the exceptions that $R_{282}=0$ and $R_{346}=1$, thus all difusion terms are determined to the same degree of approximation. Calculations were performed for a variety of permutations of the these coefficients during the studies reported in Refs. [6,7] and diferences in the results due to laminar diflusion or the alternate forms of Eqs. (A-2) and (A-3) were insignificant.

The stress specification in Eqs. (A-10) through (A-15) is diferent from the original specification by the presence of the second terms in the equations for $u_{1}^{\prime} u_{2}^{\prime}$ and $u_{1}^{\prime} u_{3}^{\prime}$. These were added so as to include the full model specified in Ref. [4]. All of the stress coefficients have default values of unity.

APPENDIX B - COMMAND INPUT DATA FOR WAKE SIMULATIONS

OUTPUT8
OUTPUTS
OUTPUT15
OUTPUT16
OUTPUT17
QUTPUT18
IIPUT19
TWAKE DATA : DTNSRDC DESTROYER : INITIALIZE AT 10 FT.
INBOARD PROPELLER ROTATION
Call SUBROUTINE FENAME to initialize default IARRAY and RARRAY entries.
FEIAME T SUBROUTINE BDINPT calls SUBROUTINE FENAME on this command.
Define the type of flow for simulation.
IARRAY 27 T sets IARRAY (2) $=$ NTYPE $=7$
ETYPE controls subsequent calls within SUBROUTINE TBLINP and SUBROUTINE HODPPR. This value will cause the fluid state to be initialized according to DTHSRDC experimental data that has been pre-processed and saved in file IPPUT19 above. This parameter also controls the flow path for computing the axial pressure gradients (zero for this case). See SUBROUTINE NODPPR.
Iarray 411 I sets Iarray (41) $=$ N2WakE $=1$
H2wake alters the flow path in the execution module such that routines appropriate only to flows near solid boundaries are not called.
Define the fluid parameters.
RARRAY 276.7556 T sets the free-stream velocity (UINF) $=6.7556 \mathrm{ft} / \mathrm{sec}$
Rarray 101.935 T fluid density (RHOINF) $=1.935 \mathrm{lbi}-\mathrm{sec}-\mathrm{sec} /(1 \mathrm{t} 4)$
rarray 38 21.1E-6 T fluid viscosity (XMUINF) in lbf-sec/it-ft
Define the streameise extent of computation.
Rarray 431.0 T set reference length (refi) $=1.0 \mathrm{ft}$
RaRray 2410.0 T set initial X-plane (TO) $=10.0$
rarray 35 20. T set solution distance (TD) $=20$.

rarray 3040.5 T set implicitness factor (CIMPTH)
RARRAY 1960.5 T set implicitness factor (THETA)
Rarray 7.01 T set initial axial stepsize (ESINIT)
rarray 16 10. T sot maximum allomable stepsize (hmaX)
gMaX is expected as a percentage to be applied to TD. In this case HMAX vill be computed HMAX=.10*TD=2.
RaRray 13 101. T set the intervals for printing or storing data (DELP)
This is also input as a percentage of TD and in this case will be computed to be greator than the sol'n distance. It will print at the final station TF=30. Further print controls will be implemented via the VPVSX and VX3ST command sequence used further along in the data set. Note that if a value less that $100 ., 0.8 ., 25$, had been used, output would result at .25*TD, . 50*TD etc.

Define coefficients for conservation equations: see Appendix A. Note difference in RARRAY command parameters to set entry $=0$. See BDINT

385 1. T UCMULT
348 1. T VCMULT
339 1. T PCFACT
346 1. T VLDMLT
340 1. T PPFACT
396 1. T OSG
394 1. T T2FIX
384 1. T ECMULT
353-1. T GUMULT
282 0. 500 T U2STRS
281 0. 500 T U1STRS
399 0. 500 T TU1U2P
398 0. 500 T T2PFIX
283 0. 500 T EKSTRS
Define shear stress coefficients.
rarray 400 1. T C112
rarray 401 1. T C113
RARRAY 402 1. T C222
RARRAY 403 1. T C223
RARRAY 404 1. T C332
RARRAY 405 1. T C333
rarray 406 1. T C122
RARRAY 407 1. T C123
Rarray 408 1. T C132
rarray 409 1. T C133
RARRAY 410 1. T C231
rarray 411 1. T C232
Set up finite element geometry.
MM=3 denotes that a 3D parabolic sol'n is to be obtained. 2D triangular finite elements aill be constructed.
IARRAY 5219 T set no. of rows of computational nodes (KROW) $=19$
Iarray 5019 T set no. of columns of nodes (KCOL) $=19$ IARRAY 55400 T set YODE
yODE should be set slightly greater than KROW*KCOL to allow for sufficient storage allocation in dynamic dimensioning routine FEDIMN.
Removing the "C" from 1st col. in next 3 statements turns on debug prints.
CIARRAY 611,861 T
CIARRAY $76300,7200,63$ T
GIARRAY 1221 T

Removing the "C" in next 2 statements will print status of all non-zero IARRAY and RARRAY ontries to this point and terminate execution.
CICOMD T

CEXIT T
Call SUBROUTINE FEDIMN to allocate storage for variable length vectors.
FEDIMA T

Specify sequencing for solution of equation system. The following tabie identifies the depencent variables by integer numbers.

variable 1	1 streambise velocity	(U1) (U2)
	3 lateral velocity	(U3)
	4 stagnation enthalpy	(E)
	5 turbulence K. 5 .	(TKE)
	6 dissipation fct.	(EPS)
	7 perturbation pres.	(PP)
	3 complementary pres.	(PC)
	penalty fet.	(PGI)

IPINT T fill the IPINT vector, read the next card image $1562378900,1-3-3-5-55 * 0$, 10*I1 1 T

The first group of 10 integers above specifies the order in which the eqns. are solved at each iteration, i, o., U1,TKE,EPS,U2,U3 etc. Note that the stag. enthalpy is not computed. Also the complementary pres. is not computed in this case but is constant. The third group of 10 integers, 10 :II $:$ (this string denotes the 10 integers beginning at 1 aith each successive integer incremented by $1 ; 1,2,3$ etc) re-labels the governing equations according to the sequencing specified in the first group, i.e., eqn(1) is identified with U1, eqn(2) with TKE etc. The second group of 10 integers specifies a staggered start for the computation. Eqn(1) (U1) is solved beginning at the first axial step. The 2nd and 3rd eqns. (TKE and EPS) are turned on at step 3. The 4th and 5th eqns. are turned on at step 5. There is no delay for the remaining eqnas.
Construct the finite element network
LIMK2 14 T call SUBROUTINE DSCRTZ to set up coordinates.
VX2SCL T compute node spacing for normal (X 2) direction
0.09 -1.5 1. 9 -3. 1. T

VXISCL T compute node spacing for lateral (X3) direction $0.0,9+1.51 .9$ 3. 1. T
NDECRD

```
1 19, 1 19 T
ELEM T set up element connections for above geometry.
DOEE T leave DSCRTZ.
```

See Ref. 2 pp. 8-9 and Ref. 3 pp. 22-23 for explanation of the above command sequence.
This particular string vill result in the construction of a 3×3 square domain ■ith the origin of coordinates at the top left corner. The $\times 3$ (lateral) axis is spanned by 19 equi-spaced nodes (18 elements) from 0.0 to 3.0. The $X 2$ axis is also spanned by 19 equi-spaced nodes from 0.0 to -3.0. There results 381 nodes and 648 elements.

Establish boundary conditions for dependent variables. These command data have a prescribed format. See Ref. 2 pp. 21-22, 26 and Ref. 3 pp. 18-19 for a general description of the boundary condition procedures. For any variable the default bc is zero gradient normal to boundary in question. It is only necessary to list the boundaries (:or each fariable in turn) aherg this should not be the case. For the flow situation considered, the left boundary is a plane of symmetry, the top boundary is a "rigid lid" iree suriace (equivalent to symmetry), and the bottom and right boundaries are in the free stream.

The next comand is a list of boundary nodes. The positive direction is counter-clock-aise, e.g., -TOP creates a list of the node numbers for the top row beginning at the left most node (no. 1) and continuing to the last node in that row (no. 19).

2 BOTTOM
2 RIGHT
2 Top
2

2 T call NODELM to establish element-node connectivity table.
List variables and boundaries nhere value should be ma_ntained at initial level.
2 T Fix var. 2 (U2) at $U 2=0$ on top bncry.
KBNO 2 T Fix var. 2 (U2)
-TOP
KBNO 3 T Fix var. 3 (U3) at U3=0 on left bndry.
-LEFT DONE
KBNO 9 TEix var. 9 (PHI) at PEI=0 at freestream ondrys BOTTOM RIGET 2 DONE
KBNO 7 T Fix var. 7 ($P P$) at $P P=0$ at fresstream bndrys.
BOTTOM RIGET 2 DONE
All variables on all boundaries not specifically referenced above will be subject to homogeneous Neumann bc's. These bc's allow entrainment from the freestream. Note that $P H I=0$ allows non-vanishing normal gradient and mass oflux or influx. U1, TKE, and EPS could as well be prescribed as fixed at the freestream boundaries (in this instance) with no significant difference in the computed resuits.
Set up formats for LU6 printed output.
The next two commands store data for the first and last pages of the LU6 printed output. Anything placed after the command and before "DONE" aill appear on the appropriate page.
COMTITLE I Read title for last page.
3D WAKE FLOW - - - DTNSRDC: DESTROYER IB ROT
DONE
DESCRIPT 204 T Descriptive title for first page.
3D WaKE FLOW - - - DTNSRDC: DESTROYER
DONE
The next set of commands designates which scalar data is to be printed at the output stations and specifies titles and scale factors to be applied to the data. See Ref. $2 \mathrm{pp} .12-15$.
Fill the header title vector until "DONE".

DESCRIPT 332 T IOPAR vector				
REFEREDCE	EXGLISE-FT	ENGLISH-IN	M-K-S	C-G-S
LEDGTE.	. FT	IN	. M.	CM.
VELOCITY.	.FT/SEC.	. A A.	. M/S	. CM/SEC
DEISITY.	.LEM/FT3.	. N A.	KG/M3.	. G/CC
TEMPERATURE.	. RANKINE.	.N. A.	KELVIN	.N. A
EmtBalpy	. 3 TU/LBM.	. $\mathrm{N} . \mathrm{A}$.	. KJ/KG.	. N. A
FROZ.SPEC. HEAT	. 3 TU/LBM-R	. $\mathrm{N} . \mathrm{A}$.	KJ/KG-K	. S . A
VISCOSITY.	LBM/FT-S	.N.A	. MT -S/M2.	. POISE.
LOCAL PRESSURE	PSF.	PSI	. UEDGE.	CPU TIME.
. DPDX1.	. ENERGY.	INT. VAR.	NWGEOM H'S	H21
. G23.	x1/LREF.	DX1/LREF.	EPSILON.	2X1M/LREF

REFL REY. NO.
DONE
Define location in RARRAY of scalars in accord with above titles.
IONUMB T
$999,5 * 200,999,2004 * 43,200272002727,200$
$102001010,2005820058200,2009720097$
200, 2003020030200 ,
$200382002 * 38,999,362 * 3663300,100135120200186188$,
$\begin{array}{ll}11 & 12148547 \text { ? }\end{array}$
Define location in RARRAY of scale factors applied to above scalar data.
Positive valnes are multipliers and negative values are divisors.
MPARA T

```
    5*2, 2 2 162 164 163, 2 2 2 164 163, 2 2 2 170 174,
    2 2 2 185 2, 2-175 2 2 2, 2 2 2 176 2, 2 2 2 177 178,
    -351 2 189 2 2, 3*2 108 2, 5*2, 5*2 T
        Designate titles for profiles of output dependent variables until
```

 "DONE". See Ref. 2, page 15.
 DESCRIPT 203 T
U1 / UREF
U2 / UREF
U3 / UREF
U1'U3'
P
TKE/TKEREF
EPS/DISSREF
U1'U1'
U1'U2'
PP
U2'U2'
U2'U3'
U3'U3'
PHI

DORE
Define variables to be output under above titles. Each entry is a composite number ahich is decoded by the program. See Ref. 2, pp. 17-21 and 35.
IOSAVE T output vectors
124822483248524862483271
427152716271727182717248
82489248 T
Define scalar multipliers to be applied to each vector in turn. In this case all vectors are multiplied by RARRAY(2) (which $=1.0$) except the 12th ontry (PP) which is multiplied by RARRAY(171).
IOMULT T scalar multipliers for IOSAVE vectors.
11*2 171 2*2 14*1 T
Specify axial locations for printed and stored output. The program in ... SUBROUTINE DPSISQ designates a print at axial locations where the exterral pressure is specified. Even though the freestream pressure is constant in this 110 w , the print mechanism will be activated by creating a pressure table.
The mext command specifies a pressure table with 4 entries, pressure equals ambiont levol at each location.
VPVSX
4*2116.8 T
The next comand specifies the axial locations where the pressure is at the above levels. A print on LU6 will always occur at the initial and final stations.
VX3ST
10. 16. 22. 30. T

Call SUBROUTINE DIMEN to compute non-dimensional parameters.
LINK3 4 T DIMEN and INDEX

Call SUBROUTINE GEOMFL to generate the element matrices and vectors for the natural coordinate system. See Ref. 4, Chapt. 3.
LINKI 3 TGEOMFL
Call SUBROUTINE NODELM again to compute element thickness and area from data calculated in GEOMFL.
LINK1 2 T HODELM
Call SUBROUTINE TBLINP (NTYPE=7) to link with SUBROUTINE DTNSRDC and initialize U1, U2, U3,TKE,EPS on each node in finite-element domain. Data will be required from LU19 (1ile INPUT19) specified above and prepared in advance by the user.
LINK2 10 T Distribute 3 D make vel. vector and TKE, EPS Call subroutines SETDIF and DFCFBL to initialize diffusion coefficients.
LINKS 6 T SETDIF-DFCFBL
Call SUBROUTINE RNLDST to initialize Reynolds stresses.
LINK5 4 T RNLDST
Initialization is complete. Transfer control to main drive loop.
Removing "C" from 1st col. in next 4 commands mill cause a print of all non-zero IARRAY and RARRAY parameters, a node table print, and a listing of the initial fluid state. The program will terminate at "EXIT" before entering execution sequence.

```
CICOMD
```

CLINK2 5 T MODES
CLINK2 6 T OUTPUT
CEXIT

Turn off any debug switches which may have been turned on. Note: they may be left on during execution at the expense of a great amount of output on LU6.

```
IARRAY 61 0. 86 0 T
IARRAY 760,70,60 T
IARRAY 1220 T
QKMINT T Begin integration procedures.
EXIT T Torminate run at end of QKNINT call.
CASE END
```

APPENDIX C SAMPLE DATA FROH OUTPUT UNITS
$20+3 \operatorname{coOt}$
$20+3200 t$
$20+3100 t$
$20+3000 t$
$1 \times$
$8 \cap 1$

 O. OOOOE + OO $0.0000 \mathrm{E} \cdot 00$ IdPmx
dPdx
OOOOE:OO
dPdX
O OOUOE:OO 8
0
0
0
0 O. OOOOE. OO
 dPydx
0 OOOUE
$08265 E$
$01008 E$
$0.1118 E$ 00
00
00 Pdxmx
OOOEE.OO
OOOOE.00
OOOOE.00
OOOOE. 00 0
0
0
0
 20.66264 E 0.63 20.66066 E に, 2. 0.66066 E

[^0]dimensionalizing scalars
$190.10000 E+010.21100 E-040.19350 E+010.07556 E+010.10000 E+01$
a \quad xu nodal coordinate for top row of nodes $(X z=0)$ written
on ist pass only

$80^{20} 0$

山辿岂出 $\begin{array}{llll}5 & \infty & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}$ 0000000000000000000

$$
0000000000000000000
$$

0000 からす。

 1
0
0
0

$\begin{array}{cccc}N \\ 0 & 0 \\ 0\end{array}$

\[

\]

$$
\begin{array}{r}
0 \\
0 \\
0
\end{array}
$$

$$
0000
$$

$$
5505
$$

$$
\begin{aligned}
& 34423 E \\
& 31210 E \\
& 35570 E \\
& 38991 E
\end{aligned}
$$

$$
5000
$$

$$
9+\infty
$$

$$
\begin{aligned}
& 4 \text { 以 } 4 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\omega & 山 \\
\infty & 0 \\
0 & \infty \\
\infty & + \\
0 & 0 \\
-1 & 0
\end{array}
$$

$$
5000
$$

\[

\]

$$
\begin{array}{lll}
\mu & \mu & \mu \\
\infty & 1 & 1 \\
\infty & 0 & \alpha \\
\hline & 0 & 0 \\
\infty & \infty & \alpha
\end{array}
$$

$$
0000
$$

쏭ㄲㅇ

 n
A
0
0
0
0
\qquad 00000000000000000

\qquad
 \circ_{1}°

 ro 30Gzet

\qquad

	-

31

 ヘぃ 0 ○ー $\begin{array}{ll}0 & 0 \\ 5 & 0 \\ 0 & 3\end{array}$『つ 心 0
0 00 \rightarrow－

[^1]

panuluon 9nt

$E N D$
Date FILMED
DTIC
Jucy 88

[^0]: LU1 8

[^1]:

