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1.0 INTRODUCTION

1.1 Background

Extended, randomly time varying radar targets, clutter, and

communication channels have been considered in the past [1-4]. An

important additional variable for such problems is considered here, namely,

random polarization modulation (5]. Sea echo, for example, exhibits

random, Doppler- dependent polarization effects (6].

The design of radar or communications systems for randomly time

varying targets or channels has typically been accomplished by using one

of two approaches: (i) a likelihood ratio test [4] or (ii) implementation

of a receiver with maximum signal-to-interference ratio (SIR) (7-111. Both

of these approaches often use a scattering function description of the

target, clutter, and channel.

SIR maximization is typically more straightforward, does not depend

on a Guassianity assumption, and gives usable results. Maximization of

SIR, however, does not necessarily result in an optimum receiver, i.e.,

an implementation of a likelihood ratio test. For the special case of a

known signal in colored noise, both SIR maximization and a likelihood

ratio test yield the same result (a whiten and match filter), but this

correspondence does not always hold.

For Gaussian data, a likelihood ratio test for random, extended

targets can be implemented if the scattering functions of target and clutter

are known, since the covariance functions of the echoes are then also

known (12,13]. There are. however, no straightforward signal design

techniques associated with the likelihood ratio test, and it is difficult

to define such a test in the polariMetric case (51.



The SIR maximization technique would be especially attractive if:

(i) it could be modified in such a way as to implement a Bayes optimum

(likelihood ratio) receiver, (ii) the performance of such a receiver could

be predicted, and (iii) SIR maximization could be applied to the design

of polarization-sensitive radar and communication systems. This report

shows that all three goals are attainable, and gives specific examples.

The basic problem is illustrated in Figure 1-1, along with some

of the notation used in the sequel. The problem is to obtain a suitable

representation of doubly spread target and clutter (a polarimetric

scattering function), and to use this representation to obtain optimum

vertically and horizontally polarized signal and filter functions u1 (t),

u 2 (t), fM(t) and f2 (t). It is also desirable to generalize the receiver

in Figure 1-1 to implement a likelihood ratio test and to predict the

performance of such a test.

1.2 Overview

Section 2 analyzes the relation between maximization of signal-to-

interference ratio and a likelihood ratio test for discrimination of zero mean

random signals in two channels. Section 3 establishes the dependence of

SIR on polarimetric scattering functions. The connection between

scattering functions and a tapped delay line scattering model with

randomly time varying tap weights is also given in Section 3. The tap
weights describe energy coupling from one polarization channel to another.

Section 4 introduces physical insight and specific mathematical models into

the polarimetric scattering function formulation by considering planar

point targets and randomly tilted dipoles with a restricted maximum tilt

relative to vertical. Section 5 gives some mathematical details necessary

for implementation of a computer program for polarimetric SIR optimization.

"Sections 5.3 and 5.4 can be skipped if the reader is not interested in

such details. Sections 6 and 7 describe the application of the computer

2



program to some specific examples. Analysis of the SIR expression for

detecting a distribution of planar reflectors in a background of randomly

oriented dipoles (distributed planar target in chaff) yields a new

polarimetric chaff cancellation method. This method is obtained in

Section 7.6. A disparity between the SIR maximization criterion and the

power of a likelihood ratio test appears in the context of a receiver with

multiple orthogonal filters, which converts the maximum SIR processor to

a Bayes optimum processor. This disparity between SIR and power

measures Is analyzed in Section 7.7. A review of the results is given

in Section 8.0.

3



LAJ

0 F.

ww~ >

20 0

00

x x

cm4



2.0 SIR MAXIMIZATION AND OPTIMUM HYPOTHESIS TESTS

The following analysis demonstrates that orthogonal filters which

maximize SIR can also be used for simultaneous diagonalization of both

signal and interference covariance matrices. The filter responses are

independent random variables under either hypothesis, and the log

likelihood statistic is easily obtained. Receiver performance is also easily

obtained in closed form. These results are important because SIR

maximization yields a "best" signal as well as an appropriate set of

orthogonal filters. A direct likelihood ratio approach is based on echo

covariance matrices which can only be evaluated after the signal has

been specified.

2,1 Signal-to-Interference Ratio (SIR) Maximization and
an Eigenfunction E'Ua.on

The signal to interference ratio is

E f r ' " dxl2 Is inal

SIR

E t f (x) f(x) dxl2 interference

where r_(x) is the conjugate-transpose of the 2 x 1 data column vector.
This data vector is composed of a vertically polarized component, r1 (x).

and a horizontally polarized component, r 2 (x). Thus

l5



r*(x) = [r*(x) r*(x)l
1 2

where r*(x) is the conjugate of the complex scalar time function rW(x).

Similarly, f(x) represents a 2 x 1 column vector representing the time

function f 1 (x) that is to be correlated with the vertically polarized data.

and another function f 2 (x) that is to be correlated with horizontally

polarized data. These functions are illustrated in Figure 1-1.

Using the identity

z [ r,(x) _f(x) a]

". f f ;.(x) E (r..x) .*"(y') f(y) d.x yS-0
0 0

- f f'(x) E (x) '(y) ) dxdy (22)

we have

W 0

ff Ix) SSt (x,y) 1(y) dydx

SIR 12-

J f V(X) S, x,y) f~y) dydx

where Cs(x.v) is the signal covariance matrix. The interference

covarlance matrix is

lx~y) = C lx.y) + (N /2) 6(X - y) (24)
MC 0

I6



where CC is the 2 x 2 clutter covariance matrix and N0 /2 is the noise

power spectral density.

To maximize SIR, one can maximize the numerator of (2-3) with a

constraint on the denominator. If the denominator is constrained to equal

one, an equivalent problem to maximizing (2-3) is to maximize the functional

Q(f) f*(x) C (x,y) f(y) dydx

-D[ff.(x) C (x,y) f(y) dydx]

= ff*(x) [S(xY) - XD CI (xY) f(y) dydx

(2-5)

where unlabelled integration limits are (-o, a) and X D is any positive

constant. Another constraint is to make the filter energy equal to

unity, i.e.,

£gy(f) /.f*(x) f(x) dx a 1 (2-6)

The energy constraint is not included explicitly in (2-3) because SIR is

invariant when f(x) is multiplied by a nonzero scalar constant. Such

a constraint, however, can easily be incorporated in a computer optimization

algorithm. If Egy(f) is specified as in (2-6), then the problem is to

maximize

ff*(x) g(x) dx (2-7)

7



when (2-6) holds and when

j(x) =f[•(xY)- ID CI(xiY) f(y) dy (2-8)

By the Schwarz inequality, (2-7) is maximized when f(x) is

square-integrable as In (2-6) and when

£9(x) = k f(x) , (2-9)

i.e., when &(x) is proportional to f(x). Substituting (2-8) into (2-9),
we have

f XrxY) D C (xiY)J f(y) dy - k f(x) '(2-10)

Equation (2-10) will be satisfied if f(y) is an eigenfunction of both

ýs(X,y) and CI(x,y), i.e., if

fCS(x,y) f(y) dy - XS f(x) (2-11)

and

f (x,y) f(y) dy - X (x) . (2-12)

A more general solution of (2-10) can be obtained if

f CS(xy) f_(y) dy (x)+ bx) (2-13)

and

f C (x, y) f (y) dy - _f~x) W dWx) (2-14)

"I



where b(x) and d(x) are such that b(x) - •D d(x) is zero for any positive

constant, XD' But b(x) equals XD T(x) for *U X D only if b(x) = d(x) = 0,

and we are back to (2-11) and (2-12).

Combining (2-11) and (2-12) yields

/S C(X,y) _f(y) dy = (XS/XI)J) ,(xY) f(y) dy (2-15)

To obtain further insight into (2-15). we can define an Inverse kernel as

follows. If C I(xy) is the inverse kernel of C (xy) then

f ,Z) z'y) dZ 6(A y) (2-16)

Applying this definition to (2-15), we have

ff c1(XZ) C (z,y) f(y) dydz (sX ) f W (2-17)

The solution f(x) to the SIR maximization problem is then an eigenfunction of

C(XY) fc 'xZ, C (z'y) dZ (2-18)

with eigenvalue AS/ The significance of this eigenvalue emerges when

(2-11) and (2-12) are substituted into (2-3):

'Sfi *{X)J " f(x) dx

SIR - . .. - (2-19)
x 1 Jf'(x) f(x) dx

The energy-constrained filter that maximizes SIR is thus the eigen-

function of E(x,y) in (2-18) with largest possible eigenvalue, This

relation does not imply that one can easily obtain the best f(x) from an

eigenfunction equation, however, since C(x.y) is undefined until the

best signal, u(x). is specified. The SIR maximization approach allows one

9



to obtain both ux) and f(x). To obtain the best signal with an eigen-

function formulation, different signals must be tried, the corresponding

covariance matrices C(x,y) must be calculated, and the covarlance matrix

with largest principal eigenvalue must be identified.

If the unit energy filter function f 1 (x) that maximizes SIR is the
p.incipaa eigenfunction of C(x,y) in (2-18), then can the other eigenfunctions

o0 C (x,y) also be obtained by SIR maximization? Consider another filter

function, f 2 (x), with the following properties:

(i) f 2(x) is orthogonal to f 1(x), i.e.,

2fX) f ( dx 0 (2-20)

(ii) f 2x) has ur't energy as in (2-6), and

(Iii) f 2(x) maximizes SIR.

From the analysis ir (2-5)-(2-1t), f 2 (x) iL, an eigenfunction of C(x,y) in
(2-18), if such an eigenfunction jatisfies (2-20). In fact, all the eigenvectors

of a covariance matrix with distinct eigenvalues are orthogonal (14], and

(2-20) is satisfied.

All the elgenvectors of C(x.y) can thus be obtained by SIR

maximization, provided that each new filter function is constrained to be

orthogonal to those found prmviwoaly. If the maximum possible SIR is

obtained for each filter function, then (2-17) implies that the n th computed

eigenfunction will have the nth largest eigenvalue, as in principal component
analysis [15).

Maximization of SIR under ortho onality constraints as in (2- 20) is

particularly straightforward if the simplex method (16) is used. If the

initial simplex is constrained to a subspace of R, then the solution Oill

10



be constrained to the same subspace. The starting points for SIR

maximization will correspond to functions that are orthogonal to previously

determined filters if Gram-Schmidt orthogonalization is used. After

constraining the starting points (i.e., the vertices of the initial simplex)

to be orthogonal to previously determined filters, the simplex algorithm

can be run without further modification.

2.2 Significance of the Relation between SIR Maximization and
Eigenfunction Analysis

By maximizing signal-to-interference ratio, one can obtain the
eigenfunctions and eigenvalues of _(xy) in (2-18). The eigenfunctions

are found in two contexts in the literature. First, they are the best set

of linear discriminants for discriminating between two zero-mean Gaussian

processes [17,18,19]. Second, they can be used for simultaneous

diagonalization of both signal and interference covariance matrices E 20].

If the data are projected along the N eigenvectors of C(xy) in (2-18).

the resulting projections will be uncorrelated, with variances (X)n N
Sn n=l

for the signal process and X In)n=1 for the interference process.
This observation follows from the fact that each eigenfunction must

satisfy both (2-11) and (2-12). Another proof is given in (203.

Simultaneous diagonaltzation yields a likelihood ratio formulation

involving simple operations on the outputs of the filters that maximize SIR.

Under hypothesis H1 the output of the nth filter is

n) - X Xn 0S (2-21)

the sum of the variances of the uncorrelated echo and interference processes.

Under H0, only the interference Is present and

E(l n121o) H 0 (2-22)

11



Because of simultaneous diagonalization and Gaussianity, the filter outputs

are independent under both H (signal + interference) and H, (interference

alone).

The likelihood ratio is then

N
A(r) = A (r ) (2-23)

n-1
A Awhere r is the vector of N filter responsesri, r2# rN Since rn

is complex, we have [21,22,23]

+I( X )) 1 IAp-j 12/ X
nSn + In exp[-Srn (sn + XIn)IA

A(r ) X (2-24)n -1

In n In

The log-likelihood ratio for the nth filter output is

L(r) -tn(1 + X[ /+ Sn/ 'zn jX in r1 2  (2-25)•(rn) ~S I•-a1+ Xa n) X +S X k n i

The log-likelihood ratio can be written strictly in terms of SIR

if the filter outputs are whitened before being passed through a likelihood

ratio test. To whiten the interference, the nth filter output is multiplied

by)In
- 1/2;-

r r-/. (2-26)
n Inh n

12



For the whitened filter outputs, we have

E Ir nI' I oý = I n 1, 2, N.. (2-27)

and

E i rn12 1 H = (n//XIn + I

1= 1 + SIR , 1, ... , N (2-28)

As a consequence of whitening, (2-25) can be written

Z Z(r ) -Win( + SIR ) + S Ir (2-29)
n n 1 1 SIRn

From (2-23), the log-likelihood ratio of the whitened filter responses,

r, is

N NN SIRN

r R Irn1 12  E n(1 + SIR) (2-30)
n-1 + I n n)

Equation (2-30) is the usual form for a quadratic discriminant.

Given this form, where the expected values of Irn 12 depend upon n, an

exact, closed form expression for system performance can be found, and

this expression can be written in terms of (SIR N the signal-to-

interference ratios at the outputs of the N orthogonal filters obtained

from an SIR maximization algorithm.

By finding a set of orthogonal filters for SIR maximization, we

have obtained the major part of an optimum detector configuration. The

complete optimum detector is constructed by computing a weighted sum

13



of magnitude-squared (square-envelope detected) filter outputs,

as in (2-30). The resulting detector configuration is illustrated in Figure 2-1.

2.3 Detection Perfoimance

In order to conform to the notation in Van Trees [14], let

SIR ` X (2-31)
n n

and

-1/2 A
r (232n n

as in (2-26). In this case

E { IrnI 2  I H , n + 1 (2-33)

and

E ( tr n 2 I Ho) 0 , n 1, 2, ... , N • (2-34)

Each square-envelope detected filter output Irn 12 is the sum of the

squares of two uncorrelated Gaussian random variables, xn = Re(r n and

Yn = Im{rn I. The power is assumed to be split equally between these

two variables, so that they have equal probability distributions

x 2In2)-12 exp[ x 20 n2) (2-35)

*n ( = 2T0) en n/(20 n (2-36)

14
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where

2 + 1)/2 when H1 is true (2-37)

C 2
n

1/2 when H0 is true (2-38)

It follows that [21]

p(Irn12) px 2 + Y 2

n n

= (2a% n expl- Irn1 2 / (2C n2 ) (2-39)

The corresponding characteristic function is

[i - J(Xn + I)wJ when H1 is true (2-40)

C.F. of Ir 2 r -1

1(1 - jWj-1 when H0 I. true (2-41)

The data dependent part of the log-likelihood ratio is

I r n (2-42)

In order to evaluate detection performance, we want to find the probability

distribution of 1(r),

16



N n 12 1
[C.F. of + ,r 1r, (2-43)

n=i n

where the double arrow indicates a Fourier transform relation.

If the characteristic function of lrn 2 is n (w), then the C.F.
of air n1 2 is n (aw). It follows that

S(I - j X n W] when H1 is true (2-44)

and

N
an (1 2 j ) given H1  (2-46)

naln

and

N

RI 11 j X, wi- given H0  (2-47)n-1 n 0

where

X , X /(X + 1) . (2-48)n n n

The products in (2-46) and (2-47) can be represented as sums

by using a Heaviside expansion, which is extensively exploited in network

theory (251 . For N distinct values of )XnP
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N Na
R ( -) - j n i j (2-49)

n=l i.

where

I N

n (1 W -jlXX

Nn (I - x n/ A
n-1 (2-50)

n$i

Substituting (2-49) into (2-46) yields

N

p(LH 1 ai. .- I Xi W

N

1: (a /X,) exp(4L/X,) (2-51)

Jul

Similarly.

p(LIH 0 £(2



where

N

a' = (I - XInl'.) . (2-53)
n=1

Probabilities of detection and false alarm can now be computed for

any threshold setting, y. The detection probability is

P D f p( ZIH) dt

Y

N
" E ai f exp(-(./X,)] d(./Xi)

Yi=1 y

N

a i exp(-Y/X.) (2-54)

and the false alarm probability is

P f p(ZLHo) 0 R

Y

N
= a' expj-y0 +1)/, A 1( 2-55)
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where

N - /X.- (2-56)

n~i

al n (X + 1)]- (2-57)

n~i

and

X a SIR. ,(2-58)
1.

the signal-to-interference ratio at the output of the ith filter f(x).

Similar results are found in (241.

Equations (2-54)-(2-58) constitute a closed form exprestlon for the

performance of a detector for Gaussian signals in Gaussian noise, for the

case In which the signal covarlance matrix bas unequal diagonal elements.

If some of the diagonal elements are equal, a generalized version of the

technique in (2-50) can be used 1251. The expression depends upon the

elgenvalues of the matrix Q(x.y) in (2-18). The eigenvalues are the same

as the signal-to-interference ratios at the outputs of a set of orthogonal

filters, if the filters are designed to maximize these ratios.

2.4 Summary, of Section 2

Maximization of signal-to-interference -atto for signal-filter design

is generally used as a way to obtain usable. albeit suboptimum, results.

A straightforward extension of the SIR algorithm, however, yields not

only a "best" signal-filter pair, but a set of additional orthogonal filters.

The result;,i filter set is apparently the same as one would obtain with
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linear discriminant analysis or -.,ith a Karhunen-Lo~ve transformation of

whitened data. The similarity to linear (Kullbatk) discriminants is not

surprising when one considers that the functional Q(f) in (2-5) is very

similar to the Kullback divergernce [18,191

_~) E [Z~(r Tf) IHill - E[Z(r T f) H] (2-59)

where Z(rTf) is the log-likelihood ratio when the quantity rTf is taken

as data.

The maximum SIR filter set, which also implements a simultaneous
diagonalization of signal and interference covariance matrices, can be used

for optimum (quadratic discriminant) detection. It Is only necessary to

form a weighted sum of the squared envelopes of the filter outputs. The
performance of the resulting detector can be written as an exact, closed

form expression that dEpends upon the signal-to-interference ratios at

the filter outputs.

3.0 A POLARWMETRIC SCATTERING FUNCTION

3.1 DQCendence of SIR on Target and Clutter Scattering Functions

From (2-1), SIR depends upon the expected magnitude-squared

filter output

E f f*(z) r(x) dx 12

T f 0: dx(31
1=1 -"(

where fI(x) is the filter that processes the output of the vertically

polarized antenna r 1 (x), and f 2 (x) is the filter for the horizontally

polarized antenna output, r 2 (x).
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The received vertically and horizontally polarized echoes, r (x) and r2W,

are related to the transmitted signal components u 1 (x) and u 2 (x) by (51

ri(x) b b= (x - T/2, -) uj(x -r) dT (3-2)

j=l -®

where b ij (t, ) is the impulse response of a time varying random filter at

time T when the impulse is applied at time zero. In terms of distributed

radar reflectors, bij (t - T/2, T) is the reflectivity of a scattering element

with delay T, measured at the time of reflection t - r/2. The subscripts

of bij (t, -); i = 1, 2; j = 1, 2, imply that there are actually four time

varying weights in a tapped delay line model of the filter at delay t, i.e.,
a 2 x 2 scattering matrix that depends upon time t and delay T. These

weights describe ,he backscatter with polarization i for an incident signal

component with polarizatioR• j.

Substituting (3-2) into (3-1) yields

E f r(x) (x) dx 12

=E J fi (x) f b(x- T/2, 0) uj(x -c d¶ dxl2
J= -0 J=l -

'% fil (x) f Y u (x -C¶ u *(y -r

i=1 j=1 m n=l -n

E (x -/2. "T) b* (y - v/2, V) dx dy d'r dT' (3-3)
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The Fourier transform in time of the time-varying tap weight at delay r

can be used to assess the Doppler spread induced by the time variation.

In order to express the receiver output in terms of Doppler spread, one

can use the definitions

bij(, bi - T12, T) exp(-j21rwt) dt (3-4)
-0

or

iib ij (x -r /2, -r b ij (, T) exp(j2irx) dOb .(35

The integral in (3-4) is performed on a sample function of the time-varying

tap weight bi (t - 0/2, 1). The expected product of two such sample

functions is

E b (x - "r/2, 'r) ( - T1/2, V)

ijm

exp[j2u(Ox - 0'y)] dýdW' (3-6)

This equation can be simplified by assuming that tap weights at different

delays are statistically uncorrelated and that the temporal variation of the

weights is wide-sense stationary, so that the expression in (3-6) is a
function only of the difference (x - -r/2) - (y - -r /2). This wide-sense

stationary, uncorrelated scatterer (WSSUS) assumption implies that
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E 'bi (ý,T) b * 0 , T 1

=nE bij )') 6(ý T)) b( - •) (3-7)

and

E~~~ b'(xr 2 (y 2, ¶t

= E bij(•,) bn , exp[J27, (x - y)]

de 6(T - Vr) .(3-8)

In (3-8) the expectation is a function of specific $ and -r values:

E bl0,,T) b * (0. )0 E bijbmn I4,) (3-9)

where pb(, ) is the probability that the specified range and Doppler
values will actually occur.
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Substituting (3-9) into (3-8) and (3-8) into (3-3) yields

f2 2 2 2 W

S- i=1 j=l m=1 n=1

Sf fj* (X) u i(x - t) exp(12rrqx) dx]

J m(Y) u*(y r) exp(- 2 #y) dy

E bij b*n(0,- 0 did

2 2 2 2

i=1 j=1 m=1 n=l - 0

XfMUn(ri ) drdl (3-10)

where

cc

X f fk(t) u*(t - -c) exp(-J2ntt) dt (3-11)

is the narrowband cross-ambiguity function of the reference function fk(t)

and the signal ut(t) and

S~ .tjm(,) S: E btj brn (, pb,) (3-12)

is a polarimetric version of the target scattering function.
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3.2 Comparison with Less General Problem Formulations

Fundamental results are embodied in (3-10)-(3-12). Eq. (3-10) shows

the dependence of SIR on the scattering function of target or clutter and

upon signal-filter design as manifested by various cross-ambiguity functions.

Eq. (3-12) defines the scattering function in terms of expected values of

products of Fourier transformed tap weight variations, as defined in (3-4).

If I j = m = n = 1, then S111 10(, ) is the power spectrum of

the time variation of the tap weight at delay T. for the vertically

polarized channel. If only the term I = j = m = n = 1 is considered in
(3-10), then we obtain the usual expression for SIR for the non-polarimetric

case (11]. Polarimetric processing introduces fifteen additional terms into

the SIR expression, and significant improvements in SIR should occur

if there are any polarization-sensitive differences between target and

clutter.

Another very general aspect of the problem formulation Is the

inclusion of Doppler spread in cross polarization terms, e.g., I # j and/or

m * n in (3-10). These cases account for twelve of the sixteen terms in

(3-10), i.e., all the terms except for i, J, m, n equal to (1111), (2222),

(1122), and (2211). Even if the nu,.,ier of cross polarization terms is

effectively halved by the realistic assumption that bi= bj there are still

six Doppler sensitive cross polarization terms which may be different for

target and clutter. If any of these terms is different for target and

clutter, the SIR maximization technique will exploit it. The most obvious

cross polarization term is E (I b 1 2 (•, ) 121 , the power spectrum of the

time variation of b 12(t,t). Cross-spectral terms such as E ( b 1 2(M,.)

b22(,0r) ) may also be important.

It is difficult to visualize specific advantages of the general

formulation, to conceptualize problems, and to obtain physical insight
o_, into the solutions. In order to facilitate this process, it is helpful to

use a dipole model of the tap weights bi(t ,t). This model is discussed

in the next section.
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4.0 DIPOLE MODELS FOR ELEMENTARY SCATTERERS

4.1 Single Dipoles

Instead of the usual collection of point scatterers, vve assume that

we have a collection of dipoles or thin wires. Let u 1 and u2 bi the vertical

and horizontal components of the transmitted signal, and let iL and iC be the
along-length and cross-length currents induced on the dipole by the signal.

For an ideal dipole, we assume that the cross-length current is negligible.

For a dipole that is tilted e radians from vertical, it follows that

iL] Cos 6 sin 6 u

cc (4-1)
i C 0 u0 U

When the dipole re-radiates energy, the vertical and horizontal

components of the echo, r 1 and ?2' are given by

rI cos e -sin ] 1L

r2oL sin e Cos 6 ic

Cs* cos e sin I u
= o (4-2)

wecos i sin 8 sin 2 0 u]

where a is the radar reflectivity of the dipole. The radar cross section
2is t•2
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4.2 Collections of Dipoles

Point scatterers can also be replaced by collections of dipoles.

Suppose, for example, that each uncorrelated scatterer is a pair of dipoles

that are separated slightly in range. The scattering matrix for each

uncorrelated scatterer is then

S cos 2 e1  cos 61 sin e

S = a11

cos e sin e sin2 81

cos2 e2 Cos 62 sin 2 R

+2 ee C (4-3)

Cos 82 sin 82 sin 2 e 2

where the-first dipole is oriented 01 degrees from vertical, the second

dipole is oriented e2 degrees from vertical, and the two dipoles are

separated by AR meters. In Eq. (4-3), f is the signal frequency and

c is speed of light.

In the case of a vertical dipole in front of a horizontal dipole with

AR equal to a quarter wavelength and a 1 = a2 we have[ 1 0' 0 0'.] 0
S :oI+ 1eJ• :r = a (4-4)

0 0 1 0 -
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The scattering matrix in (4-4) induces a polarization reversal of a circularly

polarized wave with vertical component u1 = A cos (27rft) and horizontal

component u 2 = A sin (2rfft).

If a distributed reflector is modeled as a collection of single dipoles

as in (4-2), then no frequency dependent phase shift is introduced into

the echo, since the WSSUS assumption eliminates interaction between

different scatterers. To obtain frequency dependent phase shifts, a

distributed reflector must be constructed from elementary reflectors that

are themselves collections of dipoles, as in (4-3). This observation could

lead to a useful discriminant if the target size is known, i.e., if AR is

specified In (4-3), and if clutter scatterers can be modelled as in (4-2).

More specific target models can be obtained by considering specific

structures known to exist on particular targets, and modeling these

structures in terms of measured scattering matrices or as combinations of

dipoles and planar point targets. Planar point targets are discussed in

the next subsection.

4.3 Planar Point Target Models

Another type of elementary scatterer is the usual planar point

target or perfect mirror. Since the currents induced on such a reflector

are parallel to the applied field, there are no polarization shifts. The

scattering matrix is al, where I is the identity matrix; bil = b 22 =

and b1 2  b2= 0. Thus,

(E( 2) if I and m =n
E bijbmn, b - (4-5)

(0 otherwise
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As in Eq. (4-3), one can combine a dipole and a planar point

target to model various physical effects. If a planar point target with

reflectivity a is placed a quarter wavelength behind a vertical dipole

with reflectivity 2a, then

S = 2a [1 ] +0 eiWr

= [ 1 (4-6)

which is the same as the scattering matrix for circular polarization reversal

in (4-4).

A horizontal dipole and a ground plane with variable distance AR(t)

between dipole and ground yield

S=1 :] +02[: ei[j2• (4-7)

The scattering matrix model in (4-7) could be a useful representation of a
low-flying cruise missile against a background of ground clutter, if both

missile and clutter are within the same resolution cell (268.

4.4 Polarimetric Scattering Functions for Dipole Scatterers

Equation (4-2) indicates that a dipole scatterer can be represented

by its reflectivity a and its tilt 6 relative to vertical. If both of these

quantities are dependent upon Doppler and range, then the polarimetric

scattering function in (3-12) is
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bmna (0(,T), 6 (0, )] 0,T pb(O, T)

(.112 b (a,C) b* (oje) p(o0.10,T) dade'

=-/ 2  = i mn u

pb(0, T) •(4-8)

From (4-2),

b 1 (ae) = a Cos 2  (4-9)

b12(ale) = b 2 1(ae) = a cos 0 sin 8 (4-10)

b 2 2 (a,6) = a sin 2 8 . (4-11)

Assuming that a and 6 are statistically independent random variables,

we have

p(o,6 I T.t) -p(a 0 ,1 ) p(B O.¶) (4-12)

and Sijmn( ) is proportional to

E(a 2 I*,) = a 2 p(a j•,) do (4-13)

0

A second simplifying assumption is that p(e I , ) is uniformly and

symmetrically distributed between -a(•, ). In this case,
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O(O, T)

Sijmn(, =T) E 0 po, J) bij(6) brn (6) de
n 2a(ý, "T) i- ) )

12ca(4,'0a

+ sin(2a) + 8in(4a)

ifi =j- m =n = n

- sin(2c) + .

lfi~ji=n=n=2

E E(a2  PO"0 (4-14)
1 - ,4 if i jand m n

or if I = j m = n

0, if i = j and m 0 n or if

i i jand m = n

where a = T(•,r). The expressions on the right hand side of (4-14) are

obtained by integrating bij from (4-9)-(4-11) over e from e = -a to 0 = a.

Each tap weight in a tapped dev.y line model of an extended target

is envisioned as a moving dipole. In many physical situations, one would

expect the Doppler spread induced by dipole rotation to be correlated with

the amount of rotation, in which case 0(4, T) will increase monotonically

with 0. In any case, the dipole model allows one to conceptualize the

difference between polarimetric extended target models and non-polarimetric
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models. We have also obtained a specific expression for the polarimetric

scattering function Sijmn(¢, ). Such a specific expression is very useful

for synthesis and analysis of SIR optimization programs.

5.0 IMPLEMENTATION OF A COMPUTER PROGRAM FOR
POLARIMETRIC SIR OPTIMIZATION

In order to set up a computer program for SIR maximization, it is

useful to express the signal-to-interference ratio in a form that can be

easily evaluated by a computer with user-supplied target and clutter data.

To find the best signal and filter functions with a computer, it is necessary

to parameterize these functions in terms of (say) time samples or frequency

domain samples (Fourier coefficients). The optimization problem is formulated

by expressing SIR in terms of these parameters.

5.1 Signal and Filter Parameters

The vertical component of the transmitted signal is u 1 (t) and the

horizontal component is u 2 (t). Each component is represented as a

weighted sum of complex orthunormal basis functions (V,(t); k 0, 1, ... , K).

The vertical and horizontal signal components are thus

K
u1(0) k uik ek(t) ( 112

(5-1)

K

k;= luikl e"P(juik) ek(t) ' k 1.2

where jUk I is the magnitude of the kth expansion coefficient utk and

U1k is the corresponding phase parameter.
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Similarly, the filter components are written

K K
fi(t) M fik ek(t) M If ik exp(jvik) kt) (5-2)

i 1,2

The basis functions of particular interest are either sinusoids

8k(t) = T" 1 2 exp(j2rkt/T), (5-3)

or sin(t)/t functions from sampling theory

6k(t) B1/2 sinc(irB[t - k/B)) (5-4)

In (5-3). T is the signal or filter duration. In (5-4), B is the system

bandwidth. Fourier series representations using the components in (5-3)

are desirable if the receiver already incorporates DFT operations, as in

coherent pulse Doppler or synthetic aperture radars. Sine functions are

desirable if the radar uses a coded waveform and the receiver can

implement a matched filter for such a waveform in the time domain.

5.2 General Expressions for Expected Filter Output Power in
Responseto Target. Clutter, or Noise

The expected filter output power in response to the target echo is

given by (3-10) In terms of cross ambiguity functions and a polarimetric

scattering function. The ambiguity functions are defined in (3-11). and

the scattering function is given in (3-12) and (4-8). Similar expressions

'9 ~ apply to the filter output power in response to the clutter echo, except

that (3-12) becomes
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SWS (C) * 'r P 0 . 5 5
ijmn (1] mn ' c'

where cij and cmn are elements of the clutter polarization scattering

imatrix.

The expected filter output power in response to noise n(t) is

Efl ft*(n(t) dtl 2 = (N0 /2) ff *(W ftW dt

2
= (N 0 /2) xf f (0,0) (5-6)S~i=1 ifi

5.3 Expressions in Terms of Expansion Coefficients and
Basis Functions

This section contains mathematical details that can be ignored

without the loss of much understanding. If the reader is not interested

in such details, he can turn to Section 5.4.

5.3.1 Ambiguity Functions

For orthonormal basis !unctions as In Eqs. (5-1) and (5-2), we have

--- • T
K K 

2r

1 ,) K k f ok(t - -)C (t) eIZrr dtX~uj(' = •00 (5-7)

For sinusoidal (Fourier) basis functions as in (5-3), we have

T
S/ *et t 0)e( (t

J ) e-)"jT# dt = Xe4(t
-'Ce 0

jeTrkt/T [e- 2 'T I1

=2vj(kk - CT)

Sj[(27rk¶/T) - iTCT] sinc(rtOT) (5-8)
I+ k-) 7CT]
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and for sinc(t) basis functions we have (using Parsevaps Theorem)

Xee = ek(t - T)e(t) e'j 2Pt dt

B/2 "kf)eJ•*"

= 1  2 0 e 2  £j 'I(f + 0) df

-B/2

-B /2

S f(f + 0 M) Q f) -C df F e(5-9)
/ 2 k

where ek(f) is the Fourier transform of ek(t), i.e.

""60(B)e:B (5-10)

0 otherwise

It follows that, for sinc basis functions,

X80 'k(.0) = e&jZrk(•IB) sinc[iT(k-L. + Bfl (5-11)

Expressions for the ambiguity functions in (3-11) are thus as

*, follows. For sinusoids on a time interval 10,T].

"Xf ,C ) "e-j'• sinc(ffoT) U4 (5"-12)

k I + I (k- U 7M
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and for sinc basis functions with frequency domain support on (-B/2, B/2],

XfFul u * f ei j2 T B sinc([r(k-Z + B,)] (5-13)

k Zjk9

5.3.2 Expected Filter Output Power in Response to Time-Varying,
Distributed Target or Clutter

Substitution of Xfu (T4) from (5-12) or (5-13) into (3-10) yields

expressions for the expected filter output power. These expressions contain

the integral

~T u (T.€ C) E[bi b* Il)dT de

- X f 1 mn
S)Luj m nn P('

(5-14)

Further analysis of this integral is possible if it is assumed that p(t ,O)
can be represented by a two dimensional histogram, i.e., p(%,4) is
constant over histogram intervals of size Ar, A0. The integral in (5-14)
is then a sum (over the indices r and a) of simpler integrals of the form

+A• 2 +A¶/2a r
Pb(¶r ijbmn/2 rr / (

(5-15)

The double integral in (5-15) can be evaluated by using (5-12)
for sinusoidal basis functions or (5-13) for sinc functions. For sinusoids,
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+A$s/2 Tr+AT /2

s r

, f * Uk * Unfm I (k.Z'P'q,-ý'¢s)I2(k'£'Pp'q*r'#ýs) (5-16)

k, •,p~q

where

11 = (OT) 2sinc (7rTT) dý

1 Tj + (k-•)(ýT + (p-q)] (5-17)
7• %- a02I

and

T r +r/2
r

2 " -j2T(k-p) T/T dT12 j =e •(5-18)

The integrals in (5-17) and (5-18) are evaluated in Appendix A.

For sinc functions, we have the same form as in (5-18) except that

I f sinc[(Tk-L + Bt)] sinc[Tr(p-q + BT)]dT (5-19)
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and

S +sAO/2

SI2 e-J 2-.( -q) 0 /B dO) (,5-20)

O- s- A/2

The integrals in (5-19) and (5-20) are also evaluated in Appendix A.

From (3-10), the expected filter output power in response to the

target echo _T(t) is

E(Iff*(t)rT(t)dt 2}

P (YO T0 nt r * Unpfmq

r,s itj m, n k, Zp,q

1 1 (k,,,p~q, •r, )1k 2 . (5-21)

A similar expression yields the clutter response, provided that

E cij c*nTr, s1 is used instead of E(bljbmn[trOs]* and pb(TrOs) is

replaced by p(y rs'

From (5-6) and (5-7), the expected filter output power in response

to noise is

2 2 K

E( if ftMn(t) dt j (N 0I2) F,1 1f k 12 (5-22)
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5.4 Signal-to- Interference Ratio Optimization

Using Eqs. (5-21) and (5-22), the signal-to-interference ratio can

be written

SIR- E itarget response 1 22-2-- (5-23)
E {clutter response I + E( Inoise response I

where

E(Itarget response 1 2 P(T E(bi-bn j.r',s)
brs L..I. 1 nr s

"r,s i,j,m,n

k qujkfi£, U~npfmq ll(k, ',p,q,rr, s)1 2 (kLPq,¶,s4) (5-24)=•k k,,p,q

E( Iclutter response 1 } = p(Tr,$s) E(cij~ c Ts

r,s i,j,m,n

U. U *kfi* Unp fmq r (kP''sq'• s)12(k,'P'q, s) (5-25)

Z K
E(Inoise response 2I = (N 0 /2) F, I0f ik12= (5-26)

The optimization problem is to find the signal and filter parameters

{lulk I -'ik' Iflk 1 vIk; I = 1, 2; k = 0. ... , K} such that SIR is maximized.

From the above equations, it is straightforward to obtain the

4 iderivatives of SIR with respect to each unknown coefficient, and a gradient-

search type of optimization program can be used to maximize SIR. In

Section 2, however, it was shown that a likelihood ratio test is not
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generally implemented with a single linear filter; a sequence of orthogonal

filters must be used. Each filter in this sequence should maximize SIR

for the signal specified by the first signal-filter pair, and each filter

function should be orthogonal to the previously determined filter functions.

Such a sequence of orthogonal filters can generally be obtained by

adding constraints to the SIR expression via Lagrange muJ÷*pliers [19,27].

An easier technique, however, is to exploit a property of the simplex

method for maximizing a function (161. The starting or trial solutions

in the simplex algorithm define a subspace containing tha "optimum"

solution found by the algorithm. To constrain the search to functions

that are orthogonal to a set of previous solutions, th?, initial points

(simplex vertices) can deliberately be made orthogonal to the previous

solutions, and no further modifications of the algorithm are necessary.

A disadvantage of the simplex technique as it presently exists in the

literature is that it functions without gradient information. Such informa-

tion is available for SIR and would presumably speed up the search for a

maximum if it were used. A summary of the discussion in (16] about the

simplex method is given below.

A simplex is the convex hull of n+1 points in Rn: A triangle in

R2 , a tetrahedron in R3 , etc. If we want to maximize a function of n

variables, we evaluate the function at each of n+1 vertices which specify
han initial simplex. For one of these potnts, x , the function f(x) is

largest, and for another poLnt, x Z, it is smallest. The object at each

step is to replace x t, the vertex of the current simplex with the lowest

function value, by a new and better point.

A tentative direcdion for the new point is obtained by drawing a

line from x• through the mean of all the other points, computed by

excluding x '. The resulting point is computed from the "reflection"

operation

41



X = X + - (x (5-27)

where a is a positive constant (a value of 1 is recommended) and

Sxi x. Xz (5-28)
ij n i=O

If f(xh) < f(xr), i.e., the reflection step has generated a new maximum,

then we take an "expansion" step in the same direction by computing

S= r - ) , (5-29)

X xy(x -X) (

where y > 1 is a given constant (a value of 2 is recommended). If

f(xe) > f(xr), then xe replaces xr. If, however, f(xe) < f(xr), then

the expansion step failed and x£ is replaced by xr to form a new simplex.

If the reflection step results in a new point that no longer has the

smallest function value but is also not the largest value, then xz is

replaced by xr without implementing an expansion step.

Another possibility is that the original reflection step fails in the

sense that the point xr still has the lowest function value, i.e.,

S(Xr) < min X X (5-30)
i

In this case, x r would just be a new version of the least desirable point.

If (5-30) is true, then a "contraction" step is used:

XC = -X Xx : x+ (x mx5-2
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where 0 < 8 < 1 is the contraction coefficient (a value of 8 = 1/2 is
-f -r

recommended) and x is identical with either x or x , depending upon
which point yields the largest function value, i.e.,

f(x =max Mf(x ), (xr)} • (5-32)

"If x - x , then x establishes a new vertex in the direction opposite

to xr, as we see by comparing (5-27) and (5-31). If x = xr, then
rwe proceed in the direction of x - x from the point x , but our step

size is 0 < 8 < 1 rather than y > 1 as in (5-29).

-- tIf f(xC) < f(x then we still need to find a new vertex that is

not the least desirable point, i.e., we still have not reversed the inequality

* (5-30). In this case, all the original simplex vertices are moved toward

"the point with the largest function value, L.e, the whole simplex is

concentrated near the best point. The new simplex vertices are:

x. =x ( + h - x.) , i = ,..., n . (5-33)^ + 2

A suggested termination criterion is based on the observation that

as a result of (5- 33), all the vertices of the simplex near a maximum will

move close together and close to i. Thus, if

rl x(5-34)

J=0

is sufficiently small, then the algorithm should terminate.

Ad• An important property of the simplex method is its dependence
upon the initial vertices chosen for the first simplex. For example, if

these vertices do not completely span Rn, then the solution will be found
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In a subspace of Rn. Although this property may be viewed as an

annoyance, it is, in fact, very useful for finding solutions that are

orthogonal to a given function, e.g., a previously determined filter

function. The importance of this observation has been pointed out with

respect to filters for maximizing SIR and the optimum (likelihood ratio

test) receiver structure.

5.5 Iterative Optimization of Signal and Filter Vectors

In order to find the best signal-filter pair for SIR optimization,

it is nearly always necessary to iteratively improve one set of parameters

with the others held fixed. We have four functions to optimize: The

vertically polarized signal u 1 (t), the horizontally polarized signal u 2(t),

the vertically polarized filter function fM(t), and the horizontally polarized

filter function f2 (t). Each of these functions has been represented in

terms of two parameter sets: the magnitudes of the expansion coefficients

O{Ulk I' IU2k I' If1k ' If2k1 ; k = 0, 1, ... , K} and the corresponding

phase parameters (ulk' V2k' vlkf V2k; k = 0, 1, ... , K}. There are

thus eight vectors, each with K + 1 terms, that specify the signal and

filter:

The vertical and horizontal signal component magnitudes, I j I and u2 I-

are linked by an energy constraint:

2 K 2
Signal Energy = E lUikI 2i (5-35)

i=1 k=0

The coefficients 1111 and 12I are scaled in order to satisfy (5-35) before

they are used to evaluate SIR at each stage of the simplex algorithm. The

search for an optimum signal is thus constra.ned to the space of unit

energy functions.
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The link between I I I and 1221 in (5-35) implies that a

straightforward optimization technique should find all the signal magnitude

coefficients (vertical and horizontal) with other coefficients (filter
magnitude, signal phase, and filter phase) held fixed. The same is true
of the filter magnitude coefficients if one uses the constraint

Filter Energy= 2 I Ifi 2 =1 (5-36)
i=1 k=0

It can be argued that a constraint on filter energy is unnecessary because

SIR is insensitive to multiplication of f(t) by a nonzero scalar constant.
For ease in interpreting the results as well as for faster convergence,

however, (5-36) has been implemented as well as (5-35). The resulting
* simplex algorithm automatically energT normalizes all signal or filter magnitude

coefficients before evaluating SIR, and the method iteratively optimizes
signal magnitude, filter magnitude, signal phase, and filter phase with

all other components held fixed.

6.0 TESTING THE SIR MAXIMIZATION ALGORITHM: A SIMPLE EXAMPLE

This section describes a simple test of a computer optimization
program for maximization of signal-to-interference ratio (SIR). The test

demonstrates the basic input/output parameters of the program. The
results are reasonable from an analytical viewpoint, indicating that the

algorithm is working properly.

The test is incomplete in two important respects which will be
addressed further on in the report. First, there is no polarization-

dependent random Doppler or frequency spread difference between target
O and clutter (or, alternatively, no Doppler-dependent polarization effects).

Second, only the first SIR filter is found, whereas we have shown that
additional filters can be used to implement a Bayes optimum detector

(likelihood ratio test) for discriminating signal from interference.
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6.1 Description of the Simple Test Problem

The polarimetric scattering function for dipoles that are uniformly

distributed in vertical tilt between ±a(c, T) is given by (4-14).

As a simple test case, let the target dipoles be nearly vertical
-O(- < a < 10) and let the clutter dipoles be oriented randomly

(-900 < a < 900). In this case, if E(a21I,¶) = 1, the target scattering

function is

-- p b ( • ,'T ) if i = m = n =

Sbmn(0,T) in(6-1)
0 otherwise

and the polarimetric scattering function of the clutter is

(3/8) p c(T) if i j =m =n 1 or 2

S(1/8) p 0 (•,t) if i= j and m • n
Simn(,)=

or if ij• m=n

0 otherwise , (6-2)

where pb(, T) is the distribution of the target in Doppler and range. and

PC (0,-r) is the corresponding clutter distribution. In order to accentuate

discrimination on the basis of polarization, it will be assumed that pb(,)

equals p (0,T). This assumption eliminates features that are generally used

for non-polarimetric SIR maximization.
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6.2 Analytical Investigation of the Simple Test Case

The signal-to-interference ratio is

SIR= E[ [filter response 12 Itarget echo alone] (6- 3)
E[ Intr. resp. 12lclutter] + E( Ifltr. resp. 12 1noise]

Substituting (6-1) into (3- 10)

E •Mfltr. resp. 12 [target} • ff pb(•,z)Ifu(,,)12dT dý (6-4)

Sub3tituting (6-2) into (3-10)

E(jfltr. resp. 12jclutter) = p po(O.T) t(t,O) dr do (6-5)

where

+ lxf ( )12 + Ix Xf18 ~1 2 2u1
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+ ( (2 Re[(4 X f(",ul l,

1 2 f 12] u

[ I LXfI 2f4 1 12U + x 1211

+ 1 x + Xf2u2  + fu 2 + f 2u 1 2, (6-6)

Finally, the noise response is

E[ I tr. resp. 12 Inoise z ( xff(0,0) + Xf ~f(010)]

2 1 f1 2 f2

14 N1/2 .(6-7)

0

In the computer algorithm. No is set equal to 0.02 in order to allow the

SIR to be dominated by clutter. The filter energy in (6-7) is constrained

to be unity, as is the signal energy (the sum of the squares of the

vertical and horizontal signal components).

Even with all our simplifications. it is still difficult to analytically

obtain a signal-filter pair to maximize SIR. It is possible, however, to

suggest two different solutions on the basis of physical and mathematical

insight.

From a physical viewpoint, we observe that the target dipoles are

nearly vertical, while the clutter dipoles are uniformly distributed in

orientation. From this viewpoint, we would expect all signal and filter

energy to be concentrated in the vertical direction, while the horizontal

components should have zero energy. Our physical-insight solution is

"then
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A

u 2(t) = f 2(t)- 0 (6-8)

which implies that

A - f _ _ _ _ _ _ _ _ _ _ _ _ _ _ __12_ _r

SIR =

3/8 p dtd4 + .01

S= 2.67 (6-9)

if

Pb( = P('PT) (6-10)

From a mathematical viewpoint, a possible solution is obtained by

noting that the clutter response in (6-5) is minimized if fi(t), f 2 (t),

ul(t) and u 2(t) are chosen so as to minimize the right hand side of (6-6).

To make the oxpected clutter response small, let

Xf = Xf 2u (6-11)

and

X: -tu ×,f2U (6-12)

such that the two last terms in (6-6) are both minimized. In order for

(6-11) and (6-12) to hold simultaneously, we can let

ft(t) f t) , (6-14)
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A simple sign reversal or 1800 phase shift is thus a tentative solution. In

this case,

ff pb(,T)[X u (T,O) 12 dT do

SIR = 1 (6-15)

- PC( ,) x. 2 + Ix I do dT.+ .01

f 1 u1 22

where (6-13) and (6-14) imply that

= 1x (,E0(12= )I2  
. (6-16)

Substituting (6-16) into (6-15), we have

SIR . 2 , (6-17)

where Pb(,'T) = pC(,'T) as in (6-10).

Physical insight and the form of the clutter response in (6-5)

and (6-6) have suggested two possible solutions to the SIR maximization

problem. The first solution yields the larger SIR, but this solution Is

only expected to be optimum when the target dipoles are vertical and all the

clutter dipoles are horizontal. In the given problem, clutter dipole

- - orientations are not all horizontal, but are uniformly distributed with

respect to tilt angle.
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Y 6.3 Computer Solution for the Test Case

A computer solution for the test case has been generated with the

algorithm described in Section 5. From Eq. (3-12) the target scattering

function is

b*. iimn(ý,)= E{bij b mnj,} PO( ,T) (6-18)

where

mne=-2 =0 mn

0,.-.19• pb(c,61,T) do d8 (6O19)

IExpression (6-19) is the description of the target that is employed in the

SIR maximization algorithm. In addition to (6-19), one must also specify

the distribution pb (0 ') as in (6-18). Similar expressions are used for

e1 the clutter.

The input to the computer program was thus E{b11 bmn -r,)} as

given by (4-14) for the target, with a = T/180 0 radians. For the clutter,
tit E(c1  n c €, r} was also given by (4-14), but with a = n/2. The

distributions p and pc(or) were both uniform on the T. plane,

extending from -T to T in range and from -4ir/T to 47iT in Doppler,

* where T is the duration of the signal.

The iterations that were performed by the co'mputer are described

and documented in Appendix B. Two runs were made. In the first run,

the magnitudes of signal and filter Fourier coefficients were adjusted
first, with the phases held fixed. The phases were then adjusted with

magnitudes hold fixed. etc. In the second run, the phases were adjusted
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first. The results are in terms of the Fourier coefficients of the signal

and filter functions, i.e., the parameters {lUikl IfikI , 1 ik' vik; i = 1,2;

k = 0, .... 4} in the expansions (5-1) and (5-2). For the first run,

the vertically polarized signal and filter components of the solution are

u 1 0 = 0.317 ej' f1 0 = 0. 307 e 0

u U = 0.411 ejTr f1 1 = 0.516 e'0

u12 = 0.599 e jT f 1 2 = 0.555 ejO (6-20)

S= 0. 359 e" f1 3 = 0.353 ejO

U 14 = 0.281 e jT f 1 4 = 0.141 eJO

and the horizontally polarized components are

U2 0 = 0.143 e Of20 = 0.119 e 1O

10 20f2-0 33

u21 = 0.139 ejO f21 = 0.333 ejo

-• (6-21)

U 22 = 0.293 e 
f22 = 0.191 e

u2 3 = 0.138 e O f 23 = 0.128 ejo

S.... •10

Su24 = 0.141 e O f24 = 0.097 e

.5
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A
The resulting SIR is 2.697, which is better than either SIR in (6-9) or

SIR in (6-17). The solution, however, seems to be a compromise between

Eq. (6-8) and Eqs. (6-13) and (6-14). The horizontally polarized signal

and filter functions in (6-21) have less energy than the vertically polarized

functions in (6-20), but the horizontal energy has not been driven to

zero as in (6-8). The vertical signal has been multiplied by exp(j'r) = -1

as in (6-13), but (6-11) is obviously violated.

The second run, which starts by optimzing coefficient phases rather

than magnitudes, yields somewhat different coefficient values (see Appendix B).

Nevertheless, the same multiplication of ul(t) by -1 and a similar imbalance

of energy in favor of the vertical components is again observed, and the

SIR is 2.680.

7.0 DETECTION OF AN EXTENDED TARGET IN SEA CLUTTER

In this section, the SIR maximization algorithm is applied to a more

challenging problem with some practical significance. The goal is to apply

the method to a problem that involves Doppler dependent polarization

modulation. Such a problem arises naturally in the context of radar sea

echo. The dipole modelling concept in Section 4 is especially useful in

this context.

Sea clutter can be said to possess Doppler dependent radar

reflectivity and polarization properties. Doppler spread, however, is not

* really the independent variable; radar reflectivity and polarization both

depend upon wind speed, and so does Doppler spread.

According to M. Skolnik's Radar Handbook, p. 26-14: "In calm

seas with little wind, the echo obtained with horizontal polarization is

considerably less than that with vertical polarization. The echo with

horizontal polarization Increases with increasing wind speed faster than

the increase with vertical polarization, so that with rough-sea conditions
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there is less difference in the magnitude of the echo from horizontal or

vertical polarization." [6]

According to p. 26-30 of [61, some measurements indicate that the

spectral width of sea echo is approximately proportional to wind speed.

Quantities that vary with wind speed might then be said to vary with

Doppler-induced frequency spread. If the sea is modelled by a collection

of dipoles, then the orientations and cross sections of these dipoles are

correlated with wind speed, but we can say that "polarization and cross

section is Doppler dependent" if Doppler spread (0), rather than wind

speed, is viewed as the independent variable.

A calm sea can be represented with dipoles that are randomly

distributed over a small interval in vertical angle (8);

S< < a(•) (7-1)

where 6 is the dipole tilt measured from vertical and a(ý) is the maximum

excursion from vertical. As wind speed increases, 0 increases to as much

as

-1T/2 < 6 < r2 *(7-2)

yielding random polarization for high wind speed. The dipole cross section

(or the density of dipole reflectors) also increases with wind speed and thus

with Doppler spread (0).

A boat or ship can be modelled as a collection of randomly oriented

dipoles or as planar reflectors (specular point targets). These dipoles or

specular glints can be assumed to be uniformly distributed over a range

interval that is small relative to the clutter extent.

Translational motion of the target causes its mean Doppler frequency

to be displaced from the clutter mean, while pitching and rolling cause the
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target echo to exhibit some Doppler spread about the mean. The radar
cross sections of the dipoles or specular glints comprising the target are

independent of wind speed and thus of •.

It will be of interest to determine the effect of the dipole model vs.

the planar reflector target model upon receiver design and performance.

If a significant difference exists, then it should be possible to discriminate

a target composed of planar reflectors from a chaff cloud composed of

randomly oriented dipoles. For planar point scatterers, the scattering

matrix is cI where I is the identity matrix; b1 1 = b2 2 = a while b1 2  b2 1  0.

It follows that, for planar point targets,

2E(2) if i j and m n

E mi rn I',}=(7-3)
0 otherwise

7.1 Target and Clutter Descriptions

The models used here portray the qualitative description of sea

clutter in (61 with the simplest possible functions: Uniform probability

"I distributions and linear dependence on Doppler spread.

7.1.1 Random Dipole Target

For the random dipole target, we use (4-14) with

(i,•b /2 1 .7-4)

which means that target dipoles are uniformly distributed at all possible

angles, and

E{o~ I€'$} = 10/3 , (7-5)

bj
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which corresponds to a uniform distribution of dipole reflectivity a
between zero and 10 dB.

The distribution of the target on the range-Doppler plane completes

the target scattering function description in (4-14). Let

where

S11 , -1<_x<1

rect(x) (7-7)

V 0 , otherwise

- -- •iThe target scatterer distribution has a Dopploe. spread of 2w/T on either

side of a mean Doppler frequency. The mean Doppler shift is equal to
2y/T, corresponding to translational motion. The signal duration is T,
so that 2w/T denotes a Doppler resolution cell or bin width.* The delay

spread of the target is 2T/5 seconds, or two range resolution cells. A
range resolution cell for a single frequency component T seconds long is

S'•,T seconds. Ftvc frequency components yield five times the bandwidth, and

the range resolution cell is thus approximately T/5 seconds. A top view of

pb(0,T), looking down on the range-Doppler plane, is shown in Figure 7-1.

56

--



(DOPPLER SPREAD)

4Tr/T

A/.;>. " */,". ;.,.';//$/,,A, x""

-T/5 0 / (RANGE SPREAD)

Figure 7-1. Range-Doppler distribution of target scatterers

7.1.2 Specular Glint Target

A collection of specular (planar target) glints is specified by
2*~b~ mn It,} in (7-3) and by p ,). It can be assumed that E(ab)E~bi bria73nadb ."-(b

0. equals 1013 as in (7-5) and that pb(z,.) is the same as in (7-6) and

Figure 1.

7.1.3 Sea Clutter at Low Wind Speed (Calm Sea)

Let the maximum tilt of the clutter dipoles be given by a linear

function of Doppler magnitude:

c lOr + 80W 161 (7-8)
-T( -8-0 -••11 IT)

"The average clutter dipole cross section is defined as

2(7-9)

which is another linear function of Doppler magnitude. The sea's polarization

spread and reflectivity are thus assumed to be linearly dependent upon

Doppler , which is itself monotone increasing with wind speed. If

the true variation of maximum dipole tilt ac with wind speed W is ac = g(W),

_- nd if Doppler spread is related to wind speed by jI -h(W), then our
Ssimple model assumes that gth i10 1)) is linear.
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Plots of ae () and E{ac 2 1 are shown in Figures 7-2 and 7-3. For a
calm sea, these plots are only relevant for I1 < Z'T/T, since it is assumed that

P 0~,T) Terect ( rect(4 (7-10)

i.e., a calm sea has no Doppler spread beyond 0 1 = 2w/T. The area of

the t,o plane covered by pc(0,0 is shown in Figure 7-4.

The assumption that pc(, T) is uniformly distributed on (-T ,T)

in the delay (t) direction is equivalent to an assumption of uniformly dis-

tributed clutter for all ranges. This equivalence follows from the fact that

the ambiguity function is nonzero only over a delay interval between -T and

T when the target is hypothesized to be at delay zero.

E '
I 0.3

0.33 (DOPPLER SPREAD)

-8w -21 2w 81
TT TT

~CALM SEA~

k" "•- ROUGH SEA -

Figure 7-2. Assumed variation of clutter dipole cross section with

maximum clutter Doppler spread
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PL. SPREOAD)EA,•

,.I• ' "

I IJ

•-• Figure 7- 3. Assumed maximum effective dipole tilt relative to vertical
-(for a distributed dipole model of sea clutter) as a

_• function of maximum clutter Doppler spread.

if ILI

I € (DOPPLER SPREAD)

-- nl 228/T

T (DELAY
SSPREADS)

-2v/
.( Figure 7-4. Assumed delay-Doppler distribution of sea clutter for

low wind speed (calm sea)
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7.1.4 Sea Clutter at High Wind Speed (Rough Sea)

For a distributed dipole model of sea clutter, it has been assumed

that the maximum tilt of any dipole is %(,), and that the tilt is uniformly

distributed between -a c(c) and ac (). To be consistent with the

observations in [61, the maximum tilt should increase monotonically with •

until, at maximum wind speed and Doppler spread, aci(imax) equals ,T/2.

At maximum wind speed, vertically and horizontally polarized dipoles are

equally likely, and there is no preferred polarization for minimizing

sea echo.

A simple linear dependence of ac( o) on I • can accomplish the

above objectives. This dependence is the same as in (7-8), provided

that

býmaxl- 8T/T . (7-11)

The resulting maximum tilt as a function of ý is shown in Figure 7-3.

The experimentally observed increase in sea clutter cross section

with increasing wind speed or Doppler is modelled as in (7-9). For

Doppler shifts limited as in (7-11), the expected clutter cross section

'varies between 0.33 and 3.33, as shown in Figure 7-2.

The assumed distribution of sea clutter in delay and Doppler for

a rough sea is:

p (0,T) T rect ( ret , (7-12)

so that the maximum Doppler spread is given by (7-11). The area covered

by this distribution is shown in Figure 7-5.
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* (DOPPLER SPREAD)
,8iT/T
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-TT SPREAD)
• J 7/ " 7o .

/-- / 7' IK . . .iiIiI I

!•_•Figure 7-5. Assumed delay-Doppler distribution of sea clutter for

high wind speed (rough sea)
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7.2 Computer Experiments

The SIR maximization program has been applied to signal-filter

design for the situations given in Table 1. In most cases, only one

filter has been associated with the optimum signal. It was shown in Section 2,

however, that multiple orthogonal filters should be obtained in order to

implement a Bayes optimum detector as well as one with maximum signal to

interference ratio. The additional filters are easy to find by always using

the signal that yields largest SIR with the first filter, i.e., the signal

associated with the "best" signal-filter pair. Additional filter functions,

orthogonal to the ones found previously, are then determined such that

SIR is maximized with the given signal. Since a simplex algorithm is used,

orthogonalization is accomplished by using initial "guesses" or simplex
vertices that are all orthogonal to previous solutions. The solution from

such an initial simplex is in the subspace defined by the "guesses," and is

thus orthogonal to previously derived filter functions for SIR maximization.

Multiple orthogonal filters were found for two cases: the specular glint
(planar) distributed target in rough sea clutter and the same target type

in uniformly distributed dipoles (chaff). The latter problem is described

in Section 7.5. The last line of Table 1 refers to a polarimetric inter-

ference canceller to be discussed in Section 7.6. This device computes

the weighted difference between the outputs of a signal de•.ctor with

maximum SIR and a clutter detector with minimum SIR.
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TABLE 1

COMPUTER EXPERIMENTS

Target Model Clutter Model Receiver Configuration

Random dipole Calm sea One filter (H and V components)

Random dipole Rough sea One filter (H and V components)

Specular glint Calm sea One filter (H and V components)

Specular glint Rough sea One filter (H and V components)

Specular glint Rough sea Many orthogonal filters

Specular glint Random dipole One Filter (H and V components)
(chaff)

Specular glint Random dipole Many orthogonal filters
(chaff)

Specular glint Random dipole Polarimetric interference
(chaff) canceller
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7.3 Results for the ,:ndom Dipole Target MIodel in Calm and
Rough Seas

If the target is a collection of randomly oriented dipoles and the

clutter is composed of nearly vertical dipoles, the problem is very similar

to the simple one that was analyzed in Section 6. The solution for sea

clutter would then be a system with energy concentrated in the horizontal

signal and filter channels, with one signal component phase shifted by 1.800.

In the sea clutter problem, a difference in range-Doppler clutter

distributions has been introduced. The target has a measurable average

Doppler displacement relative to the clutter, and the range extent of the

target is restricted. These two changes should ideally result in signals

with large time-bandwidth product. If the best strategy is to exploit only

Doppler resolution, however, then the signal energy will become concentrated

at a single Doppler component, and the filter energy will do the same.

In summary, a reasonable solution would involve horizontally

polarized signal and filter functions, with signal or filter phase shifteC by

1800 and with energy concentrated at one frequency to exploit Doppler

displacement between target and clutter.

A similar solution has been obtained by the SIR maximization

algorithm. For a calm sea, the vertically polarized signal Fourier components

(U 10, u11 .*. u 14 ) and vertically polarized filter components (f 10 , fl .""f14}

are relatively small:

U10 -0.003 expýjr) f, 0 = 0.009 exp(j0)

U 0 =0037 expelr) f 1 1 = 0.002 exp(jO)

u12= 0.007 exp(i-) f 12 = 0.003 exp(jO) (7-14)

u 1 3 = 0.015 exp(j-,) f13 = 0.005 exp(jO)

u14 = 0.005 exp(j7) f14 =0.003 exp(jO)
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The horizontally polarized signal and filter components for a calm sea are

u 2 0 = 0.222 exp(jO) f 20  0.454 exp(jO)

u 2 1 = 0.602 exp(jO) f 2 1 " 0.755 exp(jO)

u 2 2 = 0.630 exp(jO) f 2 2 " 0.469 exp(jO) (7-15)

u 2 3 = 0.407 exp(jO) f23= 0.056 exp(jO)

U A = 0.152 exp(jO) f = 0.0C3 exp(jO)

and the resulting signal-to-interference ratio for a celm sea is

SIR = 51.54 . (7-16)

In Eq. (7-15), there appears to be a mismatch between signal and

filter, such that the filter pass band is approximately a frequency shifted

version of the transmitted signal spectrum. The shift is approximately one

frequency component downward. From Fig. 7-1, the average target Doppler

shift is exactly one frequency resolution cell, 2Tr/T. A positive *-value

in Fig. 7-1 corresponds to a target with range increasing with time, which

means that the echo is shifted downward in frequency by an average

Doppler displacement corresponding to one frequency component. A filter

matched to the expected echo will then have a transfer function that is a

downward-shifted version of the signal spectrum, as observed in (7-15).

The simplex SIR maximization algorithm used three iterations for adjustment

of each set of coefficients (signal phase, filter phase. signal magnitude,

filter magnitude). The total run time for computer design of the

polarimetric radar was about six hours, but the program used disk

storage for many computed variables. Subsequent examples were computed

using large RAM arrays, and run time was reduced to approximately

two hours.

For a rough sea. slightly more energy is relegated to the vertically

polarized signal and filter components, as one would expect from Figure 7-3.

For the calm sea case, part of the target Doppler spread is outside the
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Doppler band of the clutter, as shown by Figures 7-1 and 7-4. For the

rough sea, the target Doppler spread is wholly immersed in the clutter,

as shown by Figures 7-1 and 7-5. This difference, along with larger

average clutter reflectivity, leads to a smaller maximum SIR for rough seas.

The vertically polarized signal and filter components for the

rough sea model, as obtained by the SIR optimization algorithm, are:

U10 = 0.019 exp(j•r) f10 = 0.011 exp(j0)

Ull = 0.122 exp(jir) f 1 1 = 0.010 exp(j0)

u 12 = 0.061 exp(jiT) f 1 2 = 0.044 exp(J0) (7-17)

u13 = 0.017 exp(j~r) f 1 3 = 0.002 exp(J0)

u14 = 0.021 exp(jTr) f 14 = 0.005 exp(jO)

The horizontally polarized signal and filter components for a rough sea are:

u20 = 0.203 exp(JO) f 2 0 = 0.422 exp(jO)

u 1. = 0.758 exp(J0) f 2 1 = 0.809 exp(j0)

u22 = 0.598 exp(JO) f 22 " 0.406 exp(jO) (7-18)

u = 0.076 exp(JO) f3 0.002 exp(JO)

u24 =0.030 exp(jO) f24 0.003 exp(JO)

The above signal and filter functions yield a signal-to-interference

ratio for the rough sea clutter model of

SIR = 26.83 . (7-19)

As one wojld expect, this SIR is considerably less than for a calm sea.

The signal and filter functions for SIR maximization for a random

dipole target in sea clutter combine Doppler resolution with accentuation

of horizontally polarized energy. As in the simple test case in Section 6,

the vertical signal components are all multiplied by minus one or exp(J¶).
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"This result is not generally exploited by sea surface search radars, and

the design may yield improved performance in rough seas.

7.4 Results for the Range-Distributed Planar Target (Specu'ar Glint)
Model in Calm and Rough Seas

The specular glint target model is similar to the classical

non-polarimetric concept of a distributed target composed of randomly

spaced "highlights" or points of high reflectivity that behave as perfect

mirrors (planar reflectors). These highlights are assumed to have the

same cross section as the corresponding dipoles in the distributed dipole

target model, i.e., Ea 2] is the same in (7-3) a-id (4-14).

The same values of E[o 2 ] in (7-3) and (4-14), however, seem to

make the planar target more detectable. For example, if the target dipoles
S1are randomly tilted such that a equals ff/2 in (4-14), we have

3/8 ifiJ=m n= 1or 2

4l, -E(a 2 )p(o,T) 1/8 ifi 1 J and m 0 nSjmn ) rondomly

vI tilted orifij m=n
dipoles 0 otherwise

(7-20)

"i lit I'l as in (6-2), while from (7-3),

(1 ifI =j m =n 1 or 2

-ijmn4,T) = E(a 2) p(41T) I if i = j 0 m = n

planar 0 otherwise
points (7-21)

If most signal and filter energy is horizontally polarized, then the

dominant term in the polarimetric scattering function Is S2222(0,-T), which

is 813 times larger for the planar target model than for uniformly
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distributed dipoles.

Despite the difference between planar targets and randomly tilted

dipoles in (7-20), a non-random dipole orientation is consistent with (7-21).

For a vertically oriented dipole with a<<l, (4-14) yields

=:7_,E( ) 1 if i= J =rme= n= I

-:tSijmn(•Ct E• 2)= P('•' ) 1(7-22)
Svert 0 otherwise

dipole

which is commensurate with the planar point target in (7-21). A randomly

oriented dipole has smaller effective cross section than the same dipole

with known orientation. The planar point target cross section has been

"chosen to be equal to that of a dipole with known orientation, while SIR

depends upon the effective cross section of a randomly oriented dipole.

The above observations imply that the effective radar cross section

of a target can be reduced by more than 3 dB if different reflecting

surfaces have different polarizations or effective dipole tilts. If all

reflecting surfaces have the same, known polarization, then the equivalent

specular glint model must use a higher glint cross section in order to

represent the target.

For a calm sea, the SIR maximization algorithm with a distributed

planar target model yields vertical signal and filter coefficients

U100= 0.010 exp (J0) f1 0= 0.007 exp (00)

u 11 = 0.019 exp (JO) f11 = 0.001 exp (JO)

u 12- 0.002 exp (00) f 12= 0.005 exp (Jo)

" u13 0.001 exp (j0) f 13= 0.004 exp (00)

S14 0.014 exp (0O) f14= 0.003 exp (JO)
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and horizontal coefficients

U20= 0.229 exp (jO) f20= 0.400 exp (j0)

u21- 0.590 exp (jo) f21= 0.779 exp (j0)

u22= 0.606 exp (jO) f22= 0.481 exp (jO) (7-24)

u23= 0.426 exp (jO) f 23= 0.041 exp (jo)

u24= 0.223 exp (jO) f2 4= 0.001 exp (jo)

The best SIR for the planar glint distributed target model in calm seas

is found to be

SIR = 137.87 (7-25)

When the planar glint target model is used with our model for a

rough sea, w,,e obtain vertical coefficients

u10 = 0.028 exp(Jir) f10 = 0.006 exp(j0)

U11 = 3.004 exp(jyr) (11 = 0.008 exp(J0)

u12 = 0.002 exp(01) f12 = 0.004 exp(jO) (7-26)

u1 = 0.004 exp(J T) f13 = 0.003 exp(j0)

u14 = 0.009 exp(jQr) f14 = 0.025 exp(J0)

and horizontal coefficients

u20 z 0.212 exp(jO) fzo = 0.340 exp(JO)
u21 = 0.780 exp(jO) x 0.856 exp(JO)

u22 = 0.578 exp(jO) f22 = 0.388 exp(jO) (7-27)

U23 = 0.105 exp(J0) f23 = 0.001 exp(j0)

U2 4 = 0.017 exp(JO) f2 4 = 0.000 exp(j0)

The corresponding SIR for a target with distributed planar (point target)

reflectors in a rough sea is

SIR = 75.43 . (7-28)
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From our interpretation of (7-20) - (7-22), we expect that the SIR

for the planar glint target model will be 8/3 or 2.67 larger than the

corresponding SIR for the distributed, randomly oriented dipole target

model. Indeed, for calm seas, the signal-to-interference ratio in (7-25)

is 2.68 times larger than the one in (7-16), and SIR in (7-28) is 2.81 times

larger than SIR in (7-19).

7.5 Results for Distributed Planar Reflectors in a Background of
Randomly Oriented Dipoles

An interesting problem is to discriminate between the two target

types: planar reflectors and randomly oriented dipoles. In this case,

E(c 2 ) for the planar targets is set equal to 3/8 in order to compensate

for the disparity between (7-20) and (7-21). The range-Doppler

distribution of both targets is the same, and is shown in Figure 7-1. The

only difference between the two models is that

118 if i and m n)
Silmn(•' •)=P(•'t •) (7-29)

randomly = or if i J m n n

tilted
dipoles

while

Sijmn(' T) I = P(O ) 3/8 ifIj m n (7-30)

planar 0 if i J and m * n
points

The SIR maximization algorithm must thus rely upon differences

in S1122, S 2 21 1 , S 12 12 ' S1221' 52112' and S2121. The first two terms

are larger for the planar point tax-get model, and the last four terms

are larger for the randomly tilted dipoles.
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The SIR maximization algorithm for the target discrimination

problem yields vertical signal and filter coefficients

U1 0 = 0.316 exp(jO) f = 0.316 exp(jO)

U1 1 = 0.316 exp(j0) f = 0.316 exp(jO)11 0.16 ex(JO)11
U1 2 = 0.316 exp(jO) f 12 = 0.316 exp(jO) (7-31)

U13 = 0.316 exp(j0) f1 3 = 0.316 exp(jO)

u 14  0.316 exp(JO) f 14 = 0.316 exp(jO)

and horizontal coefficients

u20 0.316 exp(JO) f 20 = 0.316 exp(jO)

U2 1 = 0.316 exp(jO) f21 = 0.316 exp(jO)

u = 0.316 exp(JO) f2 2 = 0.316 exp(JO) (7-32)0.316 exp(j0) 2 = 0.316 exp(0)

U2 3 0.316 exp(jO) f2 = 0.316 exp(JO)
u24 = 0. 316 exp(J0) f24 = 0. 316 exp(J0)

The corresponding signal-to-interference ratio is

SIR = 0.973 . (7-33)

The above results can be explained by substituting the polarimetric

scattering functions S jmn(i,'r) for target or clutter into (3-10). For

distributed planar reflectors, substitution of (7-21) into (3-10) yields

E(Itarget responsel 2} =3 ff2 PXf2 #2l 2 u d¶

(7-34)
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and for distributed randomly oriented dipoles

E{EtIclutter response 12 1} = ff'(2 Xf if Iu + 1Xf2u2 ]
+X u XfI2 2]

-_ + f 1u1+ Xf2u2 1 2 2 .+ ×fu2

-- •ip(T,ý ) dT dý (7-35)

as in (6-5).

From (7-31) and (7-32), the SIR maximization algorithm has found

a solution of the form

ul (t) = u 2 M f1 Mt) Z f2(t) u(t) . (7-36)

Substitution of (7-36) intoboth (7-34) and (7-35) yields

3/2 ff IX uu..$1 p(TM & d$ I
SIR........ (7-37)

3/2 fX (p dr dt + N 0o/2

as in (7-33).

It can be shown from (7-34) and (7-35) that the same SIR value

is obtained if all signal and filter energy is concentrated in one

polarization channel (either horizontal or vertical). This result seems to

imply that polarimetric radar is not superior to non-polarimetric radar with

respect to detection of planar target distributions in chaff composed of

randomly oriented dipoles, despite the differences between (7-29) and

(7-30). It will be demonstrated, however. that polarimetric radar is
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superior if a clutter cancellation method is used. The use of many ortho-
gonal filters, as in Section 2, has also been investigated.

The interference cancellation concept is discussed in xhe next
section, and the use of multiple orthogonal filters is discussed in

Section 7.7.

7.6 A Polarimetric Interference Canceller

The poor detection performance implied by (7-33) and (7-37) can
be greatly improved by augmenting the receiver with a second one, in
parallel with the first, which estimates the interference response of the
first receiver. The estimated interference is then subtracted out or

cancelled.

In order to estimate interference in the possible presence of a
target echo, the interference estimator should have relatively small response

to the target. Such a processor will have small SIR. Alternatively, it
should have large SIR for the inverse problem where target and clutter
are interchanged and the target echo is viewed as interference.

For planar reflector vs. random dipole discrimination, the inverse
problem. i.e., detecting an array of randomly tilted dipoles while minimizing
receiver response to specular glints, yields much larger SIR than the

original problem. This large SIR difference for the original and inverse
problems is the key to successful clutter cancellation.

N The interference cancellation concept is illustrated in Figure 7-81
Filter #2 for interference estimation should ideally be able to observe the

interference in the absence of signal. In other words, the Interference-to-
signal ratio should be maximized by filter #2, or the output signal-to-
interference ratio,
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SIR 2 = S2 / 2  (7-38)

should be minimized. Alternatively, the SIR for the inverse problem,

with clutter and target interchanged, should be maximized by filter #2.

FITE # FR IRSIGNAL POWER *S 1  + SIGNAL POWER
TTERFERENCE S1 F (S/I )S

r(t) MAXIM17ATION jTPOWER . 122

A P INTERFERENCE

.FILTER 2 FOR SIR S2 II POWER 0 a

MINIMIZATION 12

Figure 7-6. An interference canceller using filters for SIR
maximization and minimization.
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Figure 7-7 shows the polarimetric version of Figure 7-6. In the figures,
A A

11 and 12 are estlimted or predicted interference levels at the outputs of

filter #1 and filter #2, respectively.

f 1 ( f)Ct

VERTICAL CHANNEL, r 1 (t)

VERTICAL CHANNEL, Yo(tA

Figure 7-7. Polarimetrir version of tlze interference canceller
in Figure 7•6.
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In order to accentuate the response of the interference canceller

to the desired signal, the system should maximize

S1 - (II12)2 = S1 1 - ý/2 (7-39)

which implies that filter #1 should be dcslgned to maximize SIR, while

filter #2 should be designed to minimize it, as already stated.

The expected magnitude-squared target response in (7-34) is zero

for the second filter in Figure 7-7 if

Xf(2)"(•u ) -X f•I2 (,r)(7-40)

1 1 12

where

ul(t) ".•2(t) =u(t) (7-41)

from (7-36). Eq. (7-40) is satisfied if

(7- 42)

in this case, the SIR for the inverse problem (target and clutter

interchanged) is

(SiR)inverse = , U N/ .12 (7-43%

o s2For the receiver defined by (7-42),

S 0 (7-44)
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and from (7-43) and (7-37)

12 3 1 (7-45)

The output of filter #2 should be multiplied by approximately three in order

to cancel the interference in Figures 7-6 and 7-7.

The resulting inteference canceller theoretically allows the polari-

metric radar to "look" through chaff. From (7-39) and (7-44), the response

to the target echo or signal is unaffected, while the response to interference

is greatly reduced.

Although the example given above does not exploit Doppler dependent

cross-polarization effects, the general concept can be applied to a variety

of problems.

7.7 Computer Results for Multiple Orthogonal Filters

The analysis In Section 2 has demonstrated that an SIR maxiMi-

zation result can be extended to yield a Bayes optimum detector or likeli-

hood ratio test implementation by adding orthogonal filters, as in Figure

2-1. It would appear that the n-h orthogonal filter should increase SIR

as well as yielding a better approximation to a likelihood ratio test. It

will be shown, however, that an SIR increase does not occur, even though
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the n-h filter causes PD to increase more than PF for sufficiently high

detection threshold, Y. Although SIR is a useful measure of performance

for system design, it can be misicading as a detectability measure.

7.7.1 SIR Computation when Multiple Filters are Used

Equations (2-54) and (2-55) yield the improvement in performance

(PD vs PF) that is expected to occur from the use of multiple orthogonal

filters. Another measure of performance is the signal-to-interference ratio

itself, as measured at the output of the system in Figure 2-1. To compute

this SIR value, one can exploit the observation that the output of each

orthogonal filter Is statistically independent of the output of any other filter.

If the filter outputs are denoted r 1 , r 2 , ... , r n, and If the nh filter

output is transformed with a function fn(rn) then statistical independence

implies that

N
E f f(rn)} = E { f(r) . (7-46)

n=1 n--

For the receiver in Figure 2-1,

fn(r =rn 12 SIRn (7-47)

N" •In 7 + SIRnl7



where

SIRn = XSn / xIn " (7-48)

The SIR of the whole filter bank in Figure 2-1 is the output when only

signal is present, divided by the output when only interference is present.

When only signal is present,

E { n I signal } Sn (7-49)

and for interference,

E {Ijr,1 2 1 interforence = In (7-50)

It follows that

N
E output Isignal ~.= E 1 fn(rn) signal

n=l

N SIRn 2

n=1 1 + SIRn

and

E output interference N SIR n (7-52)
n=1 1 + SIRn
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Finally, the signal-to-interference ratio at the output of the system in

Figure 2-1 is

-1

SIN SIR 2 INi SIR J
SIRI E n__En

n=1 1 + SIR n=1 1 SIRn

(7-53)

The computer optimization program yields the optimum signal, a

set of optimum orthogonal filters, and the SIR value at the output of

each filter, ISIRn N The SIR values can be used to compute ROCn1 n="

curves from (2-54) - (2-55), and to compute the overall SIR from (7-53).

Although additional filters as in Figure 2-1 are needed to implement

a likelihood ratio test, (7-53) implies that additional filters do not increase

SIR. It has been shown that

SIR 1 > SIR 2 > .... > SIRN (7-54)

since the SIR n values correspond to solutions of a maximization problem

with n-1 orthogonality constraints, and because SIRn is the nt largest

eigenvalue of q(x,y) in (2-18). If SIRn < SIR1 for all n > 1, then (7-53)

becomes

SIR1 2  N SIRn 2 + SIR1

SIR =1+ SIR1  n=2 SIR1  + SIRn

SIR 1  + N (SIRn (+ SIR 1I. l++SIR1  E SIR1  I

< SIR1  (7-55)
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since each term in the numerator sum is equal to each term in the

denominator sum, multiplied by (SIRn/SIR i), which is less than unity.

Eq. (7-55) states that SIR for more than one filter is always less than SIR

for a single "best" filter. The use of multiple orthogonal filters as in

Figure 2-1 cannot be justified in terms of SIR improvement. In fact, SIR

decreases, indicating a decrease in the ratio of the mean receiver output

given signal to the mean receiver output given interference.

SIR, however, may not be a good measure of performance. The

usual detectability index, for example, is

2 [E (r) I H1 1 - E Mr) HO} ]I

Var M•(r) I H0}

S SIRn(5)
n=1 1 +•SIR (SIRn -(1)

N SIR2 / tn
n=1 I + SIIn

For N=l, i.e., for a single filter pair f( 1)(t), d 2 equals j(SIRI - 1)2,

which is monotone increasing with SIRI if SIR 1 > 1. The d 2 measure

decreases, however, when additional filters have SIRn < 1. Theoretically,

such additional filters may still improve detectability. The problem is that

ROC performance depends strongly on the tails of the distributions p( 9.H1)

and p(LIH 0 ) in (2-54) and (2-55), while SIR and d 2 are not very sensitive

to tall behavior.

The above results imply that although SIR is a useful measure for

system design, it should be used with caution for system evaluation. For

system evaluation, the expressions for P and PF in (2-54) and (2-55)
th

should be used. When the tn-h filter is added in Fig. 2-1, PD increases by

ID
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APD = an exp (-Y/SIR ) (7-57)

and PF increases by

APF = an' exp [-Y(SIRn + 1)/SIR ] (7-58)

= a exp (-Y/SIR ) exp (-Y)

where Y is the threshold level of the detector. It follows that APD >APF if

an > a exp (-Y) (7-59)

rif r1 - SIR /(SIRt + 1)

i1 SIRn/ SIRn + 1)

exp (Y) >ant /an = n-l- .

Hi 1 (SIRi/SIRn)

n-1

= SIR H' (SIR, + .1)/SIR 1  (7-60)n i=,

The addition of the nh filter will improve receiver performance if the

threshold Y is such that (7-60) is satisfied. From Fig. 2-1, Z(r) is

always -> 0, and a negative threshold value makes no sense. Therefore,

it always pays to add an extra filter if the filter output has a signal-to-
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interference ratio such that the right hand side of (7-60) is greater than

unity. This result follows from expressions for PD and PF' and is not in

agreement with SIR results.

7.7.2 Further Results for a Target Consisting of Distributed Planar
Reflectors in Randomly Oriented Dipole Clutter

After finding the signal and filter functions u 1 (t), u 2 (t) and f((t),

f ) (t) in Figure 2-1, the initial simplex is modified to include only filters

that are orthogonal to f (1)(t). The resulting filter function for maximum

SIR is f(2)(t), where the same signal components u 1 (t), u 2 (t) are assumed.

After finding u (t), u 2 (t), f1(1)( (t), f2 ( 1 Mt) f1 (2) (t), and f2(2)(t),

another filter f 3(t) s found, such that f(3)(t) is orthogonal to both

f(1)(t) and f( 2 )(t), The nth filter f(n)(t), has signal-to-noise ratio

SIR n, and SIR n should decrease monotonically with n because of the extra

orthogonality constraints that are included as n increases. Computer results

for a target consisting of a random distribution of planar reflectors and for

clutter consisting of randomly oriented dipoles or chaff (as in Section 7.5)

are given in Table 2.

Substituting the values of (SIRn})6  into (7-53) yields an output

SIR of 0.820, which is less than the SIR for one filter alone (SIR = 0.973).

As predicted by (7-55), SIR is not improved by using additional orthogonal

filters.

83



TABLE 2

COMPUTER RESULTS FOR DISTRIBUTED PLANAR REFLECTOR TARGET MODEL IN
RANDOMLY ORIENTED DIPOLE CLUTTER.USING SIX ORTHOGONAL FILTERS

-I
SIRn and
signalifilter n-I n.2 n-3 n=4 n,-5 n=6
coefficients I
SIR 0.973 I 0.952 0.951 0.807 0.605 0.428

Vert. Magnitude, Magnitude, Magnitude, Magnitude, Magnitude, Magnitude,
Signal Phase Phase Phase Phase Phase Phase

""o .316,0 same same j same same same

U.l 316,0 as as a u as

Utz .316,0 n-I not nU- naI n-I

u13 .316,0

u14 .316. 0

Horiz. Magnitude, Magnitude, Magnitude, IMagnitude, Magnitude, Magnitude,
Signal Phase Phase Phaus Phase Phase Phase

u20 .316,0 same same same same same

Uzi .316, 0 as as as 1s as

u22 .316.0 n-l n-I naw not nI

u2 3  .316.0

U2 4  .316.0 I

Vert. Magnitude, Magnitude, Magnitude, Magnitude. I Magnitude, !Magnitude,
Filter Phase Phase Phase Phase Phase Phase

rio .316.0 .553,0.205 1 .058,907 .186,-2.960 .075,4.066 .302.-0.182

fll .316. 0 .071,-2.331 .376.-3.131 .058.2.496 .356,-0.055 .418,-!.016

r12  .316,0 .293,-2.940 .119,-3,073 .251,-2.973 .243,. 702 .652.0.005

f13 .316, 0 .217,-2.787 .492,-,00 .264,-3084 .205,2.768 .397,3.082

f 14 .316,0 .020,.i.026 .167,.020 .841-0.029 .248,0.410 .180,-0.145

Horit. Magnitude. Magnitude, Magnitude, Magnitude, Magnitude, Magnitude,
Filter Phase Phase Phase Phase Phase Phase
f20 .316,0 .. 061,0.133 .233.2.854 .392.-0.2541 .131,1.696

f2l .316, 0 .050,-0.S59 .546,-3.925 .086,-0.222 .355,2.9951 .138.2.819

f22 .316,0 .491,2.861 .165,4.074 .166,2.361 .454,-0.783 .l17,-0.691

23 316. 0 .192.11834 .486,0,020 .041,l,354 .116,-2.01 1 .040,-1.751

(24 .316s 0 .076,422 .066,3.016 .175,-0.625 454,2.635 .259,2.980
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7.7.3 Further Results for a Target Consisting of Distributed Planar
Reflectors in Sea Clutter

The use of multiple orthogonal filters has also been investigated for

detection of a distributed target consisting of planar reflectors in rough

sea clutter. The results are given in Table 3. The signal and the first

filter in Table 3 are the same as those given by (7-26) and (7-27), and

SIR 1 is the same as in (7-28).

Substituting the values of SIRn N into (7-53) yields the

following overall SIR values as a function of N, the number of filters

used. For a single filter, N=l,

N=1; SIR = SIR = 75.43 . (7-61)

For two filters,

N=2; SIR = 72.95 (7-62)

For three filters,

N=3; SIR = 60.08 (7-63)

For four filters,

N=4; SIR = 48.46 (7-64)

For five filters,

N=5; SIR = 44.11 (7-65)

Again, SIR decreases even though better detectability is

theoretically obtained from (7-57) - (7-60) as more filters are added.
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TABLE 3

COMPUTER RESULT. FOR DISTRIBUTED PLANAR REFLECTOR TARGET MODEL IN

ROUGH SEA CLUTTER, USING FIVE ORTHOGONAL FILTERS

SIRn and
-ignal/filter n-I n,2 n-3 n-4 n-5
coefficients

SIR 75.43 70.48 13.38 1.85 0.48

Vert. Magnitude, Magnitude. Magnitude, Magnitude, Magnitude,

Signal Phase Phase Phase Phase Phase

.0:8.3.142 same same same same

Ull .004.3.142 as 1s as

U12  .002,3.142 nt a.l not noj

u13 .004,3.142

u 14 .009,3.142

Horit. Magnitude. Magnitude, Magnitude. Magnitude, Magnitude,
Signal Phue Phase Phuae PtUae phase

U2 0  .212.0 same san ame tsmv

U'i .780,0 as u u U

U2 2  .571, 0 n-t S-I n-I n-o

U2 3  .M05.0

u24.017,0

Vert. Magnitude. Magnitude, Magnitude, Magnitude, Magnitude,
Filter Phe Phase Phase Phas Phs

rio .006. 0 .026.2,139 .011.3.076 .234,1.461 .07,-2.452

fit .0(, 0 .035,0.097 .010.3.114 .150,0.491 .049,2,63

f12 .004, 0 .026,3.014 .009,5.112 .31340.762 .949.0.000

13003. 0 .028.0.126 .002.3.076 .147,2.934 .049.-0.906

f 14 .025, 0 .007,1.226 .041,3.119 .401.2.907 .132.4-999

Hons. Magnitude. Magnitude. Magnitude, Magnituda, Magnitude.
Filter Phase Phase PUs Phase Phase

f20 .340. 0 .791,0.010 .501,43.135 .044,025 .012,1.123

.21 856. 0 .040.-3.074 .515.0.000 .000,0.000 .000,0.000

1`22 .388, 0 .604,4.3.9 .693,3.137 .025,-2.551 .017,-2.989

.23 1001.0 .063,2.907 .007,2.990 .714.-0.096 .237,2.291

r2 4  .000, 0 .09,1.341 .0010.00') .361.-0.372 .120.2.006
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8.0 CONCLUSION

Signal-to-interference ratio (SIR) maximization has been used to

obtain an optimum signal-filter pair for a polarimetric radar when targets

and/or clutter exhibit random polarization modulation. The results can

easily be extended to include the design of a likelihood ratio receiver for the

same problem. Considerable insight into the theoretical solutions has been

obtained by implementation and test of a computer program to yield the

maximum SIR and Bayesian systems, i.e., the "best" signal and receiver

configurations in each case.

Relatively simple expressions for the polarimetric scattering function

of randomly oriented dipoles have yielded expressions for SIR in some

simple but important cases, and these expressions have been analyzed in

order to interpret the computational results. Some important insights

have been obtained from the SIR expression for distributed planar targets

and randomly oriented dipole clutter, i.e., for the typical "target in

chaff" problem. These insights have resulted in the design of a new

polarimetric clutter canceller (Figure 7-7 and Eqs. (7-36) and (7-42))

which theoretically allows a polarimetric radar to "see" through chaff.

The likelihood ratio receiver is obtained by adding a set of

mutually orthogonal filters to the maximum SIR receiver. The filter output

powers are weighted and summed to implement a Bayes optimum detector

for a Gaussian signal in Gaussian interference. A surprising result is

that each additional filter reduces overall SIR, even though detection

probability PD is increased more than false alarm probability PF for a

high threshold setting. This result follows from the fact that P and P.
for a high detection threshold are dependent upon the tails of the
distributions describing the receiver output for signal plus interference

and for interference alone. SIR, on the other hand, is the mean value of

the output distribution for signal alone divided by the mean value of the

output distribution for interference alone. SIR is thus not very dependent
upon tail behavior.
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Despite the shortcomings of SIR as a measure of receiver performance,

SIR has proven extremely useful as a criterion for receiver design. In fact,

it is difficult if not impossible to specify an optimum receiver and an associated

optimum radar signal for the polarimetric case by direct soluticn of a likelihood

ratio formulation. A solution of the problem using SIR maximization techniques,

however, has been demonstrated. A computer program specifies the signal

and receiver for maximum SIR and the Bayes optimum signal and receiver,

when the polarimetric scattering functions of target and interference have

been specified. The relation of the polarimetric scattering function to tapped

delay line filter and dipole scattering models has been discussed in Sections

3.1 and 4.4.
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APPENDIX A

EVALUATION OF INTEGRALS FOR COMPUTING SIR WITH
SIGNAL AND FILTER DESCRIBED BY COMPLEX FOURIER SERIES

AND SINC FUNCTIONS

A. 1 Fourier Series Description

We would like to obtain easily computed expressions for the

integrals I1 in Eq. (5-17) and 12 in Eq. (5-18).

The first integral is

fsin2(TT)d (A1)
1 ýE[T + k-Z[](T + p-q!

Cos x

X• 2i T +t /Zl_ 1Cos X x
f 12TT+ 2¶T(k:Zf1~T 4 2irj(p-q)+;I

WA)

xI 1TF2xI ir~p-t+ x/2d

(A3)

Ccnsider two cases. For Case 1, k-9 = p-q. For Case 2, k-P. o p-q. For

Case 1. we have

x2

I1 ; co" (k. +xdx (A1

X.

A-i



where H k = 21T(k-0) = 211(p-q). Letting y = x + H and using the
fact that HkZ is an integer multiple of 27r, we have

S-cos dy (A5)

X1+Hk£ Y

Integration by parts then yields

(1-Cos x) (1-Cos x)-
=." ÷I~ L + Si(x + HkL) Si(xl + Hk2xT x2 + H k2 'I + HkZ 2.z1 k

(A6)

where

x

Si(x) fo sinc(yldy "(-)(AT7)

For Case 2 (k-Z a p-q). we can use a Heaviside expansion to

,Mhow that

(H - H )t.) (HkU - H )-L

(x+Hk+ )e xi )(x ) ' HkL x + Hpq

-1 1 ] .___ "_ (A8)H-pq H kki x •pq
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Substituting Eq. (AS) into Eq. (A3), we have

1. • - Cos x dx - I-Cos x dx

11= TrT(Hpq HkL) t f x + HkZ f x + H pq

2 k Z pq

( TT(Hpq- H k))lI I - C°S y I CoS y

L I+H kZ X1+H pq

'rr (Hpq - Hk)I- (Cin(x 2 + HkL) - Cin(xI + H k) -. Cin(x + Hpq)

+ Cin(x 1 ÷ H pq)

(A 9)

where

Cin(x) - COS x dxJ0

s- -Ci(x) + ln(x) + y (A10)

and y Is Euler's constant. The fun-lions CI(x) and Si(x) can be computed

from properties given on pp. 231-233 of Abramowitz and Stegun's Handbook

of Mathematical Functions. In Eqs. (A6) and (AM),

H kZ Zv(k - 4) ,(A 11)

H Zit(p - q) (A12)
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X= 2T[•s - A /21 , (A 13)

x= 2,'rT[b + Aý/21 (A 1.4)

The integral in Eq. (5-18) is

T +A T/2
2 e-j2T(k-p) xT'Td

12= ed

T -6T/2r

T +67/2
r

e-j2ir(k-.p) r/T

-)t -M12
= j•(-p) /T

AT e kpr sinc[Hkp6T/(2T)I (A15)

where Hkp 2n(k-p).
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A. 2 Sinc Function Description

We would like to obtain easily computed expressions for the

integrals 11 in Eq. (5-19) and 12 in Eq. (5-20)

The first integral is

Tc +, T/2

I= I / sinc[Tr(k-t + BT)) sinc[ir(p-q + BT)JdT

Tr - TZ

I

f4 sin( Hkt + 10BT) sini Hpq + ITTd

T-A4/2 + 2 B HPq + 2pTB q

(A16)

where HkI and H are defined as in Eqs. (All) and (A12).S~pq

Using the identity

sin(- Hk+ BT) ssn(! Hpq + nBvB1 1

-c~ Hip' H cos(Ziffit + 1 (H H )S(Hk Pz - k pq

P' (A17)
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and letting x 21TB-c, we have

1 12 (A 18)

w here

X7

Cos( 1 (H H (1/TrB) dx
2 kp pq (H- + x) (H + X)-kZ p q

(A19)

and

x
2 1

I (1/nB) COSIX + 7 (H kZ + H

12 - (H -- + x)(14---- *-X)-- dx (A20)
f kk pq

X,

In Eqa. (A19) and (AZO),

x 2nB(,r + AT/2) (A21)r

x 2-,tE)(T r - A -0 2) (A22)

Consider two cases. For Case 1. H H i.e. k- Z p-q.ki pq,
For Case 2. H kt o H pq * For Case 1, Eq. (A16) becomes

x
2 sin 211 (H +

L z kt dx
(H kZ + X)
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f 1 - cos (HkZ + x)

xl (H k z + x) 2

X7+H k•

2kZ
ir f - Cos Y dy . (A23)

Xl*Hk

From Eqs. (A5) and (A6),

Cos____ (1 Cos x )2 .. .kZi+ Si(x + - Si(x 9,+

(A24)

For Case 2. we can use the identity in Eq. (A8) to obtain

cos( (H -H )J f 2  dxos- x - __ I .x X ]

cosi (Hkt H"H + I rfZ +t2...... .... . ..... ..... Iln - p q - ' + -[,, • x 2
SnB(H - LHk + " 1J p "'.x

pq k L 1 pq

(A25)

To evaluate I12, we can use the additional identity

cosix + 1 (Hk + Hp)I
2 kI pq

cos(x)cos([ (Hk + Hp)I - Wsi(X)n1 (HkE + Hpq)I
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Substituting Eqs, (A8) and (A26) into Eq. (A20), we have

cos[- (HkZ + H pq Cos x Cos x dxI1i 2 ,B(Hpq - Hk) L H +x dX - Hpq + x
Pq x, xI q

sin[ (Hk+ H• 2 .2
2 kZ pnsin x dx- sin x dx

TOB(Hpq HI[) HkZ + x f xx Hpq

(A27)

Letting y H kZ + x and using the fact that HkZ equals an integer muiLple

of 2,1, the integrals in Eq. (A27) can be written
•X 2 x 2 +H

f Cos dx J f dy Cin(x 2 ÷ H) - Cin(x 1 + H)i•H +÷x y

x! 1 x +H
(A28)

x +H

Jdsin sin v x H"" + x y
xl x +H

(A 29)
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It follows that

cos[½ (HkZ + H pq)
2 ~ g (Cin(x 2 + Hk~ -i~112= TOB(Hpq - Hk) 2Cin(x 1 + HkL)

- Cin(x 2 + Hpq) + Cin(x 1 + Hpq)I

sin( (H + H Ht
rTB( - q (SkQ + Hk~ Si(x + H1 )
Tr Hpq HkZ) z kZI k

- 2 + Hpq) + Si(x 1 + H pq) • (A30)

Equation (A24) for Case 1. together with Eqs. (A25) and (A30) for

Case 2, yield the desired expressions for the integral I1 in Eq. (5-19).

The integral 12 in Eq. (5-20) is

A012

**2 Eq O(B 
d¢€s-AOtZ

=�~~q4~BA 0 sincHgqaOR/(B 8) (A31)
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APPENDIX B

DESCRIPTION OF COMPUTER INPUT/OUTPUT
FOR THE SIMPLEX SIR MAXIMIZATION PROGRAM

The input to the computer program is given by E[bij bran T

E~cij ITi )]i Pb(,T), and pc(4,T). These quantities determine the

target and clutter polarimetric scattering functions as in Eq. (3-12), where

the indices I, j, m, n are each equal to one (vertical) or two (horizontal).

The output of the program is divided into a separate section for

each type of parameter to be optimized. In TableBl, the variable parameters

are the magnitudes of the signal frequency components. The table shows

the eleven vertices of the initial simplex. At each vertex, a different set

of signal magnitudes is used. In the exampl'e, all or nearly all the frequency

components (#0. #1, #2, #3, and #4) have tke same magnitudes, but this

need not be true in general. It is only nevessary that the initial simplex

vertices span the space of all desired solutioms. Since only signal magnitude

is varied, all other parameters in the table are fixed.

The best magnitudes for the five signal frequency components are

found with all other parameters held fixed. These magnitude values are

entered at the bottom of Table B1. under the heading "Final Component

Coefficients for Iteration #1."

The next output section (Table 82) has the heading: "Maximizing

*- SIR by Varying Filter Magnitude." The variable parameters are now the

magnitudes of the filter components. Since only filter magnitude is varied.

all other parameters in -able B2 are fixed. The best solution from TableBI

is carried down into Table 82 as the initial vertex (Point #I). This carry-

down procedure is used throughout the program, allowing the algorithm to

"build" on optimized parameters and ensuring that SIR is nondecreasing.
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The best filter magnitude parameters are given under the heading, "Final
Component Coefficients for Iteration #I.

The iteration number has not changed because an "iteration" is

defined as one cycle through all the different parameter types: signal

magnitude, filter magnitude, signal phase, and filter phase. The last

parameter variation for Iteration #1, "Maximizing SIR by Varying Filter

Phase," is shown in Table B3.

The final coefficients at the bottom of Table B3 comprise the

starting set for Iteration #2, which again adjusts all parameter types in

turn. Table B4 shows the final parameter variation (filter phase) for

Iteration #2. TableB5 shows the same part of Iteration #3. When the SIR

improvement between succeeding iterations is less than a small number (0.1

in this case), the optimization program is terminated. The coefficients and

associated SIR at the bottom of Table B5 then represent the final result.

The algorithm may be sensitive to initial conditions. One way to

test for such sensitivity Is to optimize coefficients in a different order, e.g.,

by starting with signal phase rather than signal magnitude. The first and

last parameter variations obtained by optimizing the phase first are shown

in Tables B6 and B?. The results in this case are slightly different, but

the SIP. values are nearly identical (compaN Tables BS and 81).
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TABLE B1
MAXIMIZING SIR BY VARYING SIGNAL MAGNITUDE

startial Ceaequort Coefficients, for Iteration * 1

Point C ::f. ~~~--S40neI-- ---------.----------- pit Io- ---------
a F tqo vor . ;;I. mop&$i Pat. Vert. Pat. worst. Pat.

1 0 0 316E1pi 0 000 0 316cipi 0 030 0 31I4lpj 0 000 a 314tFj 0 000
1 C 31 "NPJ 0 COO 0 316EIP) 0 030 0 3166wpl 0 000 0 316EXPJ 0 000
2 0 31661P) 0 000 0 3ttCiPj 0 COO 0 316CWPj 0 000 0 314911sj 0 000

1 3 0.314(lipi 0.000 0 316cilpj 0 030 0 3I~161pt 0 000 0 316IiPj 0.000
1 4 0 31"10~j 0- 0O0 0 316CAP, 0 030 0 31&g(pj 0.000 0. 314F.Epj 0.000 0. "It

a 0 0 O0CCII'j 0 000 0 333two8 0 000 0 314f1P1 0 000 0 31691pj 0 000
2 1 3J33CiP 0 000 0 333Expk 0 030 0 31690~j 0 000 0 3t46cip 0 000
2 2 o 333EAPi 0 000 0 3,331l~ 0 000 0. 314(Pj 0 000 0 31611PJ 0 000
2 3 0 133OZPJ 0 000 0 33341p) 003 031t4vpj 0000O 0 316CIPJ 0.000
2 4 0. 33 3EXPi 0 000 0 3OXI[Pj 0 000 0. 3161101 0 000 0. 3td**Fj 0.0O0 0.603

3 0 0 3 3 3(1 5
j 0.000 0 333ENP1 0030 0.31691p) 0 000 0 3164(pi 0 000

3 1 0 000E104 0 000 0 3331901 0 030 0.316CIVI 0 000 0 316SRpj 00COO
3 2 0 333t1Pj 0 000 0 33

3
1

0
Pj 0 000 0.;k3tlt*D 0 COO 0 21691p) 0 000

3 3 0 3 3 3 (iPj 0 000 0 333901j 0 000 0. SI4ZXPj 0 000 0 3t411Pj 0,000
3 4 a- 33X1P') 0 000 0 33Wepj 0. a0 0. 31621p) 0 000 a 316601 0.0O0 0. M9

4 0 0 333 9t4j 0 000 0 233CIPi 0 130 0 I314
3

UJ 0 009 M 31648110 0 000
4 1 0 ~33 (1pj 0 000 0 32331111 0 0OO 0. 31401P 0 000 0 36411104 0.000

a 0 00O(8'OCI C004 0 33341P1 00020 0 31&I4~P0 000 0 3114E 0O00
A 3 0 3 33 91 5 j 0 000 0 33391P 1 0 C000 O314Ugpl 0.090 a 31698Pi 0.000
4 4 0 1333(Z j 0 000 0 333Itp 0.000 0 316900j 0.000 Q, 3kI4II 0.000 0. It"

-a 0 033 if, 0 000 0 33XIPj0OýCo- 0 311PI 0 000 0 3144(Iý 0000
s2 0 333CIPI 0 0010 0 333C11P) 0.030 0 3 1491I' 0.000 0 31641

0
j 0 000

3 a 0 3331t1Pj 0 000 0 3329PI0 0030 03341#11,0 000 0 34tUIpjOOOO
3 3 a0004101' 0 000 0 333t1Pj 0 030 0. 3144411j 0.4000 0. 314890J 0 O00
2 4 0 3 3X*0 j 0 000 0 33MIlP , WO 0 314UPI 0 000 O 3I4"39940000 0.890

4 0 0 233CIPj 0 000 0 13X9t'J 0 030 0 2146941 0 000 10 31641,04 0000
& 0 33361pj 0 000 0 3I3WP 1 0.4020 a 314it~ak1 0 000 a 2164110  0 000
a a 0. 23311 s'j 0 000 v 73mvt'1 0 000 a 1tsvt. t' Owo 0 a3till 000c
4 3 0 33 341Pj 0000 0 2=3110 0 0O0 0 314401~ 0000 0 3II41oj 0.900
4 .6 0 OQOIIPj 0 000 0. 32nt~ 0.000 0 314AS9j 0 OW0 0 2l4II1PA 0.000 4402

1 0 0 W3 Il #0, 000 00000401 a000a3141 P)@000003146t~0010000
7 0 332XIPj 0 000 0 32MIlP 00230 10 "1 beep 0000 0 314(904 0.000
I a 0 1

3 6
tj u 000 0 MOPf$9 0, 460 'u 312140$ 00go 0 3164 104 ova00

1 1 0 33$44* * 00 0 33mopi@0 OX 0 Ita4U10 1 00 0 3ID) a 0000
I * a 33340 OCOG 0.223*JD.40,000 a 31"1000 .000 0 1440

9
i0a0

0
0 o. Tat

I 0 223)2(Ij 0.000 0. 3N 1P010 0" O20 ~ OO 031440100 31 42*j 0 00
,: I 0-3I~ON0 00 1001 0 000 0 3142i8 0000 a 3~16j00)000

* a 0 33X ,0 0000 0 3321 90 C30 a "katt',0a0M 0It 42110 1a000
1 3 0 32.Xi~00 000 22NI1P1 000@a 02I44 0000 0 31"401 0008
* 0 2221tPg 0 000 0 0331aP 0.034 "0 1ab 0 000 0 31oc40e 0 000 0 1"i

9 a0 0) 2 ml~oOOOm 3WPI @21 0 06 34610U, 0004 324clsaOO*2
0 0 32mip, 0000 0 332110I,000O O. 310411P~0 0 a6 i&ctoj 0 06
10 a 023m::aO0 0 00W00ow Ia"02 3.1642,pi 00 0)t416a, 0 006
40 33 2 OOII OO *3S3xtD,#*S O 03164110,0 000 0 32IPA 

0  
No0

4 0 3221&Pj 00 No : 2map 0.00 ON .Stae* 060 61100 * s 00 o0o 0 V"4

to 0 0 3I344j@006 0 221R'1 0 00 a 21411, a000 a 024otio0 000
to a *223xtp ,0000 a0)))top 1 )o 0 316424*01 w 0 364tp 0 000

10 a 023cf1pjO0 000a22utp 10 O30 0 3 1 6400, 0 021100 az,6 f 0

to 0 023mso) 0 "a0 00,321,0,04. 02I4*IPot 10 N 0 Ili 4 V #I at
40 .i 0332Uo1 0, 0000 0 3242*la am00 0 MatterP 0 0* 0 21atti' 0 000 4 o

11 a 0 )33xto, 0 %00 0 )a3x#0F 0 C43 0 3141:', 0 000 0 3AI,0 030
Ii 1 0 33xI# : 1 2t 0 010 0 :34030CO 0 26 :o 6 C43 a 11491'e 01 a am

00 I 3x 0 000b 6 4111,if 0 03 30 tv 0 cz;ff *0' 0 I = V j 0 000O
I 1 3 a it~ 3 I0) a2~ no 0 3XI# 0 090 0 316900,5 0000 0 311&tSpo 0 COO

It' a 1231ti 0 000 0 0400001 0 We0 0 zi1bap 0 'Cod0 C31,I4piP 0 000 73

0 0 "X(", a 0(C10 1) )MV 1' 0 990 0 U##* 0, 0 004 0 1149VO 1 0 Ca
N t 1 .1' '1.t 0 1.1$ a 000 !)K'r, 0 w 00 ~ t,0 oa2000 0)1* 1 00 2I2 0OOO Oi
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TABLE B2

MAXIMIZING SIR BY VARYING FILTER MAGNITUDE

stattihs comonont Cebt9Icl€tntt foe Itetation 4 1!

Point Ccp. - - L, ---- ---------- ------------ lite .----------- SIR
F Fq4 Valt. Pei. Horts. Pal. Vert. Pal. worts. PII.

1 0 0. 333EXP1 0.000 0. 333ExP1 0.000 0. 316EXP 1 0.000 0. 3Oi6xPsl 0.000
1 1 0 

3 3
3EXPJ 0.000 0.333EXPJ 0.000 0.3t4EXPj 0.000 0.3l16XPj 0.000

1 2 0.333EXPj 0.000 0 000EXPj 0 COO 0 3IOExPj 0000 0.3i61XPj 0 000
1 2 0.3336XPj 0.400 0,332ktPi 9.C3O O.21t66Pj 0 000 0.O3I6EPj 0.000
1 4 0, 333ClEXPj 0.090 0. 233RAPJ 0,000 0. 316ENPJ 0.000 0, 314XPj 0. 000 0. 766

2 a 0. 333EXPj 0.000 0. 333xPJ 0. 030 O. OOOEXPj 0.000 0. 33
3CxPj 0.000

2 1 0. 33SEXPj 0.000 0. 332CxP1 0.000 0. 3
3

3
1ExPj 0.000 0. 333XPj 0.000

2 2 U. 33JEA.J U. (O 0. U0(AtP j. 00V U. :jjOK•Pj O. CO•v U. 333EPJ U. UU0
2 3 0. 333MXPj 0.000 0. 333ECAPj 0. 030 0 333EVPj 0.000 0. U3331Pj 0.000
2 4 0. 333EXPj 0.000 0. 3339*Pj 0.000 0. 333ZXPj 0.000 0, 333IXPj 0. OO0 0.746

a 0 0. 232EIPJ 0,0"0 0. 223S<P J 0, 000 9 O3O29PJ 0. 900 0. 232IEXPJ 0. 090
3 1 0. 3339XPj 0.000 0. 333EXPj 0. CoO O. OOOEXPJ 0.000 0. 333[XPJ 0.000
3 2 0. 333EXPJ 0.000 0. OOOE:(P j 0.000 O. 

3
U32XPj 0. 000 0. 333EXPJ o, o00

3 3 0. 333EXPJ 0.000 0. 333EXPJ 0. 030 0. 3331[Xj 0.000 0.333EXPJ 0.000
3 4 0. 333EXPJ 0.000 0. 333E,(Pj 0.000 0. 3331XPj 0.000 0. 333EXPj 0,000, 0.734

4 0 0.333gXPJ 0.000 0.333EXPJ 0.000 0.333EXPj 0.000 0.333EXPj 0,000
4 1 0. 333EXPj 0.000 0.333EXPJ 0.000 0. 333EXPj 0.000 0. 333EXPj 0.000
4 2 0.333EXPj 0.000 O.OOOEXPJ 0.000 O.OOOEXPj 0.000 0.33•EXPJ 0.000,
4 3 0.3231pj 0.000 0.O333XPJ,0. 000 0. 3331XP 10.000 0. 333[XPJ 0,000
4 4 0.333EXPj 0.000 0.333EXPj 0.000 0.3330XPj 0.000 0,333EXPj 0.000 0.719

5 0 0. 33OEXP.i 0.000 0 333EXPI 0. 000 0. 331JEWPJ 0.000 0. 333EXPj 0.000
5 1 0.333EXPJ 0.000 0. 33390Pj 0.000 0.

33
31[XPj 0.000 0. 3

3
3XXPj 0.000

0 2 ID,0. 333E6(Pj 0,000 0 OOOXP 0 90 0, -232EPJ 0,0 099, 023E6Pj 0.000
0 3 0,333EXP1 0.000 0. 333EXP 1 0.000 O. OOCEXPJ 0.000 0.33OIXPj 0.000

5 4 0. 333EXPj 0.000 0. 333EXPJ 0.000 0.333EXPj 0.000 0. 33
3
9[Pj 0.000 0. 734

& 0 0. 333EXPJ 0.000 0. 333EXPJ 0. 000 0. 333E1XPj 0.000 0. 333[XPj 0.000
4 1 0. 332EXPj 0,000 0. 333CXPP1 0,000 0. 333EXPi 0.000 0 ,333

2
Pj 0.000.

A 2 0. 333EXPj 0.000 0. OOVEXPj 0.000 0. 33390Pj 0.000 0. 333EXPj 0.000.
4 3 0, 332EXPj 0. 000 0. a33XP 0 0,000 0. 323IlPj 0.000 0. 332EXPj 0. 000,
& 4 0. U3,/X J U. OW Q. .0J31MIP I 0.UOU U0 O. IZXPj U. UUO 0. J3kIX'J U. 000' U. 146

7 0 0. 3330X!j 0.000 0. 333EXPj 0.000 0. 3311XPJ 0.000 0 OQ00XPj 0.000,
7 1 0. 33 Ix5Pj 0.000 0. 33391P 1 0. 000 0.303

1
[XPj 0.000 0 331[XPj 0. 000

7 2 0.
3 3

3EXPj 0.000 O. 0001XPj 0.000 0.,33301Pj 0.000 0.3331XPj 0.000
7 3 0. 3331 XPj 0.000 0.3339WPj 0.000 0. 33:21Pj 0.000 0. 33311PJ 0,000
7 4 0. 33U1XPj 0.000 0 233911P. 0,000 0. 30I[XPj 0.000 0. 332OXPj 0.000 0.•l0

a 0 0. 3331XPj 0.000 0.3331XPj 0.000 0. 33310P, 0.000 0. 33311PXJ 0.000
6 1 0, O3OIXPj 0.000 0,3335XPj 0.000 0.3•305XPj 0.000 , OOOIxPJ 0,000
0 2 0,3233xPj 0.000 0.0001XPJ 0.000 0.3331xPj 0.000 0.U33IIPj 0.000
a 3 0. 3331XPj 0,000 0, 339[PJ 0,0000 0. 

3
311j , 0.000 0. 3339XPJ 0.000.

a 4 0. 331=XPj 0.000 0.33PXPJ 0.000 0.I333EPj 0.000 0,3O9ZPj 0.000 0.664

9 U U. 3339APj O.0O0 U..33J9XPJ V. W0O 0.JJ3PJ 0.01 U.JUU J3dlPJ 0. 0(1
9 1 0. 333CXPj 0,000 0, 3332xPJ 0,000 0.333e1xP 0.000 0, 3331XPj 0.000
9 2 0. 3331XPj 0.000 0, .00•EXPj 0.000 0,3331XPi 0,000 0, OOgxP j 0,000
9 3 0.3331Xpj 0.000 043311XP0 0.000 0.23319Pj 0.000 0.O330XP4 0.000:
9 4 0.•331Pj 0,000 0. l,3UPJ 0.000 O.1331xP* 0.000 0,3322tPJ 0,000' 09 I?'

so 0 0.3331XPj 0.000 0 3331Pj 0.020 003326iXPI 0 000 0.033•EPj 0.000
to 1 0, 3331XPj 0000 0 33390Pj 0. 000 0 3331%Pi 0 O0O 0. 333cgPj 0. 000
to 2 0.3331XPj 0,000 0 0001XPj 0 000 0 33200j 0.000 0 332SxPj 0 000
10 3 0.333[XPj 0.000 0 3331xPj 0.000 0,-.33211P 1 0 000 0 OOIXPJ 0.000
10 4 0. 33 6XPJ 0.000 0. 3331UPJ 0.000 0. 33311 PJ 0,000 0. 333CXPJ 0,000 0. U4

i 0 0. 3331[XPJ 0.000 0. 333[XPJ 0.000 0,333EP 1 0 000 0.3334'PJ 00o00
it 1 0. 333EXPj 0 000 0 3)3[xPJ 0.0.0 0 333 1xpj 0 000 0 333t40Pj 0 000
It 2 0. 3331XPj 0 000 0 CIO0XPj 0 000 0.2333ex!; 0 000 0 33*1PJ 0.000
It 3 0. 333EXPj 0 000 0 333PP) 0. 0.0 0. 33391PJ 0 000 0 333OOPj 01000
it 4 0, 333EXPJ 0,000 0. 333EXPi 0.000 0. 333EAPJ 0 000 O 3OO31PJ 0.000 0, I35

Final c epnlflot C*ilfictitI Pop Iteration # I

Point Come, -- . . .. --------- --- ---.------ %llI. --------------- el
0 lrCq# Vept. Pal. Hortt Pot. VePt, PoI. Hmler, Plo

Opt. 0 0.333EXPj 0 000 0 333ewPj 0 000 0 3331XP1 0 000 0 3331XPj 0.000
Opl. 1 0. 33ElXVj U OO 0 :I33)tP1 0 0DU 0. 333EXPI 0 (.jO 0 323tcPj 0 000
Opt, 2 0 333EXPJ 0 000 0 OOOEP; 0 000 0 33JXPJ 0 000 0 OOCEXPJ 0 000
00%. 3 0.33391Pj 0.000 0 O3323EK 0 000 0 333110) 0 050 0, 333U1Pj 0. 000
Opt 4 0. 3331XPi 0 000 0. 32391P 1 0.0120 0.3339P0 0,000 0 33221PJ 0.000 0.697
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TABLE B3

MAXIMIZING SIR BY VARYING ONLY FILTER PHASE

ctaritkng Ceaomepent Co..lcionts #or Iteration 0 t :

Point Comp. ---- - - --- - S- tgI.. . . . . . . .1 - - -ter ..........-------------- - -SIR
0I Ft"q Vert. Po1. MOPnt. Po1. Vert. Pa1 . -orts. P. 1.

1 0 0 333EI1j 3. 142 0. 333ErP 0. 000 0. 30=EXP 0.OCO 0 333ExPj 0 000
I I 0.333EXPj 3.142 0 333£XPj 0 COO 0 33OU11 1 0 000 0 333EXPj 0.000
1 2 0.333EXPj 3-142 0 0oo0rPj 0 030 0 333EXPI 0 000 0 OOCEXPJ 0.000
1 3 0.333EXPj 3 142 0 333EXPj 0 000 0 3330IPj 0 COO 0 333EXPJ 0.000
1 4 0.333EXPj 3.142 0 333ESPJ 0 000 0.333CIPj 0 CO0 0.333rXPj 0.000 1.3172

2 0 0. 333[YPj 3. 142. 0 333E1£Pj 0 000 0. 331EtP 1 047 0 333EXPj 0.000
2 1 0.333EYPrj 3 142 0 333EXPj 0.000 0.

3
32E3[j 1 047 0 333EVPj 0.000

2 a 0.333EXPj 3.142 0 OOOPj 0.000 O.3311XPj 1.047 0 OOOEXPj 0 000
2 3 0.333EXPj 3. 142 0.333EOPj 0.000 0.333EXPj 1.047 0 333EXPj 0 000
2 4 0.33

3
EXPj 3. 142 0. 3330XPj 0.000 0. 333EXPj 1.047 0.333EXPj 0.000 1.323

3 0 0. 333EXPj 3. 14; 0 333EXPJ 0.000 0 O
3 3
3CIPj 2 094 0 333EXPj 0 000

3 1 0. 333EXPj 3. 142 0 3331PPj 0 000 0. 3]3391P 1 2. 094 0. 333EXPj 0.000
3 2 0 333EXPJ 3.142 O. OOOEXPJ 0 000 0.333XPj 12.094 0 OOOxPJ 0.000
3 3 0.333EXPj 3. 142 0. 333EXPj 0.000 0.333OVPj ;2 094 0.3"

3
EXPj 0.000

3 4 0. 333EIPj 3. 142 0. 331[XPj 0.030 0. 3331[XPj 2.094 0 33
3
1XPj 0.000 1.004

4 0 0.333EXPj 3 142 0 333EIPj 0 000 0 333ECPi 3 142 0 333EXPj 0 000
4 1 0. 333CXPj 2. 142 0 333EXPI 0.030 0.333O[KPj 3.142 0 33311Pj 0 000
4 2 0. 3331XPj 2 142 0 GOOEXPj 0.000 0. 33C1IPi 3. 142 0. OOCE1Pj 0 000
4 3 0 333E1XPj 3. 142 0 333EXPj 0 030 0. 333[XPj 3. 142 0. 333(XPj 0. 000
4 4 0. 3334EXPj 3. 142 0.3331[XF 0.000 0.3339XPj 3. 142 0.33391Pj 0.000 0.•97

3 0 0 333IXPj 3. 143 0. 
3

3311J0 0.000 0. 333EXPj 4 1t9 0. 3332XPJ 0.000
5 1 0 333ExPj 3. 142 0 313ExPI 0.000 0.333EXPj 4 119 0 33

3
1Pj 0 000

35 2 0 O333XPj 3 142 0 OOOIIP 0 000 0.333•FP) 4 169 0 OOO[IPJI 0.000
5 3 0 333EXPj 3 143 0 3)33fpl" 0 030 0 333CZPj 4 1@9 0 333

1
XPj 0 000

0 4 0. 333EXPJ 3. 142 0.333610j 0.000 0.
3 3 3

(XPj 4 169 0 333=1Pj 0.000 1,004

4 0 0. 333[XPj 3 I4Q 0 3336Pj 00C0 0.333CIPI 5 236 0 33310PJ 0.000
& I 0.333ttPj 3 142 0 333EXPj 0.030 0. 3331VPj * 234 0 33311Pj 0000
& 2 0 333i1Pj 3 142 0 O00IPj 0.000 0.33311Pj 5.233 0 000(lPj 0 000
4 3 0. 333tXPj 3. 143 0 33311XP 0.000 0. 3331IPj S 334 0 33311PXj 0 000
4 4 0. 3331IPj 3. 142 0. 333XP 1 0.000 0. 3339XPj 1.234 0 333I4PJ 0.000 1. 33

7 0 0 333[wPj 3. 142 0.333tKp) 0.0o20 0.333UPj 0 000 0 333t*Pj 1.079
7 1 0. 333EIPj 3. 143 0 33391P) 0. 000 0. 334i1P 1 0.000 0 33311Pj 1.079
7 2 0. 33031Pj 3. 14• 0 0OOOXPj 0.000 0. 333CIPj 0.000 0 0301[XPI 1.079.
7 3 0,333C1Pj 3.14a 0,333(1IPI 0.000 0.33391(1 0.000 0 33311PJ 1.079-
7 4 0.33311PJ 3, 142 0.333CAPj 0.000 0.3334£Pj 0000 0. 3331tPJ 1,079. 1.311

I 0 0 3330gPj 3. 143 0. 333111PJ 0,000 0. 333IPI 0.000 0 3331Pj 2, 137
* 1 0 33311P) 3, 142 0. 3331PJ 0,000 0. 33311Pj 0.000 0 33311

9
j 2, 157

* 2 0. 3331lPj 3.142 0. 0004t11 0.000 0.333•1P1 0 000 0 000(tPj 9. 157
* 3 0. 3331iPJ 3. 142 0. 3331XPj 0,000 0. 3331P j 0.000 0. 33311PJ 21 15?
* 4 0 3331•Pj 3. 142 0-33360j 0.000 0.3ll11WP 1 0'000 0 3331AP1 2.1.7 0. "S

9 0 0 33315PJ 3. 142 0.3331V99 0.000 0-3339t1j 0.000 0 
3 3 3 1

12 j 3.236
9 1 0. 333(IPj 3. 142 0.333gW.XPJ 0.000 0. 3331P 1 0 000 0 333410

9 
3.236

9 2 0. 333CtPIj 3. £4 0 OO410Pt 0,000 0 3339APj 0 000 0 O09OtPj 3 236
9 3 0. 3331tPJ 3. 142 0.33311PI 0.000 0 33231641 0 o00 0 3

3
(3*Pj 3 234

9 4 0. 33391P j 2. 142 0. 333111P1 0,000 0. 331410 0 000 0 33391X-1 2 226 0. ev?

10 0 0 3331Pj 3. 14a 0 
3

3391[1p 0 030 0 3321tP) 0 000 0 3233IPJ 4 314
to 1 0 l3NtPj 3. 142 0 33141PI 0 000 0 3339%Pi 0 000 0 3331CPi 4 314
to 2 0 333CIPj 3, 142 0 OO0EPj 0030 0.3331£'PI 0 000 0 00291Pj 4 214
£0 3 0 33tij 3 £4M 0 3339)[01P 0 000 0 213JiP 0 COO 0 337ltPj 4 314
10 4 0 33362•j 3. 142 0 333901£ 0 000 0 333V1F 1 0 0C0 0 33=10i 314 1 033

It 0 0, 3XIOPJ 3 142 0 33310P1 0 M00 0 334R[I( 0 000 0 333(IPJ 5 39•
I1 1 0. 333619j 3 142 0 0331tPi 0 to0 0 323(VPj 0 000 0 373930'• 393
ItI 0 C 33[IPJ 3 142 0 OoOSPj 0 000 0 233 01*,P 0 000 0 Olt tPj s 393
Is 3 0 333(IPj 3 k42 0 33311Pj 0 000 0 31311W1P 0 000 0 33301PI 6 393

Fiat ~.arl0.9.£00*PIoat1 4 0 33 UIP j 3 142 0 33U SO 1 0000 0 333£P~ 0000 0C 33MILPA 3 392 1 311V
finalJ Co4t900te0 #etlilntor ISrtkof'dtt 4 1|

Potit Coop-- -.......- ......-signal-------... .. .... ........ ............. GIs
a Ife41 Veort Pei, "*iMt 00 Vert P0I Mothl Pot

Oas. 0 0 33A•I• 3 142 0 333911P 0 010 0 333W4Pi 0 000 0 333291P 0 00o
001. 1 0 333(IPj 3 142 0 333CAP) 0 030 0 332toPI 0 0J0 0 323H(Pj 0 000
cot 2 0 32'(4P0 3 142 0 00OtU10 0 COO C 33X4APg 0 0.2 0 C3clSpj 0 000

Of% 3 0 
3

3S(iP 3 £142 0 3330IP1 0 COO 0 33XIPI 0 €00 0 333tt~j 0 000
0ee 4 0 2336Pj 3 143 0 3311P 0 030 0 33319Ps 0 000 9 233MIP4 000 1 £7;

B-5

PA



TABLE B4

MAXIMIZING SIR BY VARYING ONLY FILTER PHASE

St4ftlf•4 Coamonent Coaf#tctents ior Ier4tion a 2

pot Cams . .------------- 514L ---.--------- ------.---- ---- Flt..-------------- - SIR
a Froqs Veit 110 1 H"4rPtI Pra Ver. Pot Ml~v Pet

1 0 0 3t ?CXOj 3 142 1 14?3X. CI ' 0 10O7-P 1 0 003• 0 1 )'s:exj 0 000
I 1 0 4I•I[Pj 3 142 ) 1 3irE 0 CO 0 31[EJPj 0 Col 0 333:XPj 0000
1 2 0 1599CI1lj 3 142 3 1

4 
-!2El 0 .3 0 "iCEPr 0 Coo 0 IlIEIPj 0 000

1 3 0 349EPj 3 142 0 13S•E'1 0g C0'O 0 353C101 0 041 0 la3gApj 0 00O
1 4 0 Z'hIfXPj 3 142 0 145FrgP1 0 C30 0 14I.CAPj 0 00 0 0971[10j 0 000 2 497

2 0 0 31•lEPj 3 142 0 t432!Pj 0 A00 0 107u.0 1 t C47 0 IV
9
EIPj 0 000

2 10 41191Pj 3 142 0 1e3(,Pj 0 COO 0 5140.Pj 1 047 0 333(9Fj 0 000
• 2! 1 0 43q*EXPJ 3 142 1 l,10 ) 0 C•0 0 5M-01 1 0%7 0 191+API 0 000
2 3 0 

3
S

9
•XPj 3 142 0 IM11pj 0 C^O 0 MV•3Pj 1 047 0 122t1Pj 0 000

2 4 0O MIEXPj 3 142 0 I41P Pj 0 030 0 14.ICj• I I047 0 09(lKPj 0.000 2 4%3

3 0 0 3179%Pj 3 1422 0143EXPI 0 C00 0 30
7
c'PI 2 094 0 ltl

9
lPj 0 000

1 1 0 4leXIPj 3 142 g 132IP 1 0 030 0 514C(P, 2 094 0 33s31P j 0 000
3 2 0 59q•.Pj 3 142 0 23.X2Pj 0 COO 0 OSEiPj 2 044 0 lVlCkPJ 0 000
2 3 0 35O•CPj 3 142 0 L32EVPj 0 C30 0 352EA)j 2 094 0 1

t
P.K]j 0 o00

2 4 0 21OEXPj 3 142 0 141E)(P 0 020 0 14t1yPj 2 C44 0 0l?7TXP, 0.000 1.993

4 0 0 317EXPj 3 142 0 143CXPj 0 COO 0 307UP13j 3 #.;1 0 I9EXIPj 0 000
4 1 0 

4
1 tIPj 3 142 0 134EWIPt 0 CIO 0 51+ZtPi 3 142 O 33231rpj Q 000

4 *2 0 5• SPIIj 3 142 0 29ml7lP 0 CIO 0 55c1(P. 3 M14 0 I911Pj 0.000
4 3 0 3391EXP 3 142 0 138EXPJ 0 C0O 0 75329P) :1 |142 0 IZKXPj 0 000
4 4 .0 3IXlj 3 1IR 0 ME141", 0 020 0 141iPj1 3 142 0 Oflt'•P 0000 1 134

4 0 0 
3
1?tI•Pj 3 142 0 143E1PI 0 020 0 20ll4P 4 1 169 0 11CIPj 0 000

5 1 0 
4
11I"j 3 142 0 139EAIj 0020O 0 S1690 4 149 0 

3
2
32
ItPj 0 000

5 ; '2 S99 EI~j 3 142 0 293CXPI 0020O 0 j5$5A~ 4 1:9 0 elctpj.o 000
5 3 0 39[SlPj 3 142 0 1338P5 0 00O 0 353i1fj 4 1•9 0 12KYPJ 0 000
4 4 0 2SIIXPj 3 142 0 141EXPj 0 020 0 14It4P3 4 1;9 0 0

9
7i9Pj. 0.000 1 "93

4 0 0 317E4Pj 3 142 0 1421t#P 1 0 (20 0 30YEIPj S 214 0 IO ttl)j 0 000
? 1 0 41tlPj 3 142 0 13ocIP, 0 CI0 o 51*9P 1 5 2lb 0 33.IIPj 0.000
- - 0 59 94f i0, 3 142 0 293f-.P1 0 0o20 C 311UP] 0 224 0 191|woj 0 000

- O 350lCIPj 3 142 0 I389YPj 0 010 0 IS)CaPj $ 246 0 l29tI•j 0 000
6 4 0 20 1IWj 3 142 0 1411i9P 0 000 0 t4154P 1  734 .0 O979IPj 0.000 24132

7 0 0 WW761I 3 [142 0 143j)(0 0 0200 30711P0 0 C11 0 j119$Pj 1 079
7 I 0 4llRIPj 3 14.2 0 1299901 0 1"0 0 lIlkvPj 0 000 0 23311

0
j 1.04

7 2 0(. t0ljP 3 142 0 .*2931MP, 0 000 0 $¶•gIj 0 000 0 191IJ, t 079W
S 3 0 33161PI 3 142 0 13156PI 0 C30 0 3U1'•0I 0 000 0 I.KPIPJ i 0 74

I 4 0 PqjjjI 3 142 0 14t[PIk 0 020 0 t411 1Pj 0 000 0 09?tIPj I 079 I 299

1 0 0 3lETPj 3. 141 0 143txPj 0 30 0 30111 1 O M0 0 tIllraPj 3 1lS

0 I 0 4111• I 2 142 0 IM1P) 0 00 0 249IIPI 0 coo0o 33310 a 13?
a 2 0 590tiPI 3 142 0 29H1VIg 0 03 0 'IKI•IP 0 000 a 1I

9
11
7
J 2 III

* 3 0 3
9
:

91
Pj 3 141 0 12tK'P1 0 l30 0 353901 0 030 0 12M'#Pj 2 WI?

a 4 8 N6II 9j 3 142 0 t4110j 0 0C0 0 1141P0j 0 0"0 09711pj 2 IS? I "s

9 0 0 3171VWj 3 142 0 3140P 0 %110 0 30lfPi 0 GAO0 0 1 oP j 3 234
9 0 4 A) l1'Pj 3 14k 0 139 IP 0 010 0 116901i 0 000 0 334140j3 226
1 2 0 tf92I*j 3 142 0 2931'Pi 0 CI0 0 5111P0 0 001 0 9 1Ppi 1 236
* 3 0 3$96tPj 3 143 0 434SOPI 0 030 0 3S314Pj 0 030 0 .Momhj 3 ,34
0 4 0 9041P0 3 142 0 1419810 0 OW0 0 1 41•Wj O3 030 0 09710Itj 32 4 2 I 1)M

to 0 0 30I1pj 3 142 0 142lIPj 0 020 0 30191P) 0 006 0 1tlWPA 4 314
t0 1 0 4111pij 3 142 0 it41RPi 0 000 0 114P1 0 000 0 33394IP 4 314
to 2 0 991W1t 3 140 0 .3210 0 030 a 191l9P0 0 000 0 I9IgCl J 4 314
10 3 0 339t1P) 3 142 0 126SlF 0 020 0 32311P 1 0 c00 0 1.211P 4 314
10 4 0 1ll9190 3 142 0 14sFJtI 0 030 0 1

4
1CAP, 0 070 a O9tltPj 4 314 t 303

It 0 0 31?ttF$ 3 243 0 1431pI 0 0203 0 30YCIP' 0000 0 I(ifPj 9 *3O
Oi 1 0 410 * lPj 3 14. 0 1391l01 0 030 0 SIiBItip 0000 0 3:I3I.Pj 5 393
Ii 2 0 S99910 3 k 2 0 C63SPIi 0 030 0 751 111 P 000 0 il91IC1 9 293
It 2 0 35 9SPi 3 516, 0 13R+,Pl 0 030 0 313'CWI 0 00) 0 1 I•IoIPj 9 303
It 4 0. 28 191P 3 142 0 k'SlIP 1 0 020 0 t4118#1 0 000 9 09344j 1. 3#3 2 454

04*61 ct"09---------------51for %eI----------------Vtn------------2

0os 0 0 It' EP 1 3 t42 0) 1431:P1 0 020 0 30'1910 0 000 0 1141101 00'0
s0t1 1 0 41Il10 3I 144 0 41|l111 0000o0 s1&6(Pj 0 000 0 33

3
•(lj 0 000

094 2 0 &.4tgP1 2 tog 0 2921NO, 0 C30 0 5S1P. 0 000 0 k~litj 0 000
We 3 0 .15S9UP) 3 142 0 l0R4API 0 1000 0 3339401 0 000 0 I2mlPg a 000

Cos 4 0 micatI 3 142 0 itlil01 0 0300 0 1IUOJ~ 0 ooo0 0 O9?tIPj @000 2 49?
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TABLE B5

MAXIMIZING SIR BY VARYING ONLY FILTER PHASE

S terting Ceapeflhnt Coefficient* for tteAtisin 0 3

Point Como. ------ Sp.--------- ----- ------- filter-----------------11
0 pv.klo Vert. Pot. warts. Pet. Vert. Pot. Nor%$ Pat.

1 0 0.3I7EXPI 3. 142 0 143EXPi 0 030 O.307ykXPJ 0 000 0 tt9CXPJ 0.000
I 1 0 

4
11EXPj 3. 142 0 I39EPj 0.000 0 514EXPi 0.000 0.3233tPj 0.000

1 2 0.54SEXPj 3. 142 O.293EXPJ 0.030 0 555EXPj 0 000 0 l9IEXPj 0 000
1 3 0 3

3
9
EXPj 3. 142 0. 1313EVP1 0.000 0.353EXPj 0 COO 0 129EXPj 0.000

1 4 0.281EXPj 3. 142 0.14111PI 0.000 0.14119PI 0.000 0 097EXPj 0.000 2.49?

2 0 0 317 CPj 3. 142 0 1431SF3 0 000 0 3071fX3 1 047 0. lt9CIP, 0 00-3
2 1 0 4I1EXPj 3. 142 0. 1391[0) 0.0:0 0.5141J1PI 1.047 0 33IUCPj 0.000
2 2 0. 39 9 11 Pj 3. 142 0. 21V93EP j 0.000 0.535SEXPJ 1.047 0 1

9
1ElPj 0 000

2 3 0.35
9
EXPj 3.142 0 1302XPj 0.000 0.323EXF2 1.047 0 I

2
IES1Pj 0.000

2 4 0.26IKXpj 3. 142 0. 14%EgPj 0.000 0. 141EXP1 1.04? O0- 071[Pj 0.000 2.413

3 0 0.317EX~j 3. t42 0.143UP1P0 0030 0.307C2Pj 2 094 0 11
9
CXPj 0.000

3 1 0.41 1110j 3. 142 0. 3IMXPs 0.000 41. 1h1tEPI 2,094 0. 3 lOECXPj 0.000
3 2 0. 5SY

4ExPj 3. 142 0. 213EXPj 0.000 0 5SSSXPj 2.094 0. I91EXPj 0.000
3 3 0. 05

9
EXPj 3. 142 0 t3UCIPj 0.030 0, 3331E)P3 2.OT,4 0 12SIIPj 0.000

3 4 0.2UIIXPj 3. 142 0. 14 KP j 0.000 0. 14 152 Pj 2.094 0. 097CIPj 0,000 1.993

4 0 0. 317CIPj 3. 142 0 1439%Pj 0.000 0. 301(KIP j 3.1t42 0. 1191EXPj 0.000
4 1 oý 4t I[VP j 3. 142 0 t399jPj 0.030 0. 5141[Pj 3. 142 O.332tgfj 0.000
4 2 0.599CIPi 3, 14; 0.2430XP) 0 000 0.53256Pj 3.142 0.%911XPj 0.000
4 3 0. 359(XPj 3. 142 0. 131UlP 1 0.030 0. 352USPj 3. 142 0 12EVXPj 0.000
4 4 0.201[XPj 3.142 0. 1411r'*Pj 0.000 0,1419119 3. 142 00O97%1Pj 0.000 1.134

13 0 0. 31719Xj 3. 142 0. 1439XPJ 0.000 0. 3070P j 4. £19 0 I1
9 15 9 J 0.000

I 1 0. .1 c1XPJ 3. 142 0 19911P1 0.000 0. 3 I4(Ej 4. 189 0. 33390,; 0.000
5 2 0 599CXPj 3. 142 0. 293CIP 1 0.000 0. 53390 4. 141 0 1919%Pj 0 000
3 3 0. 351EXPj 3. 142 0 130EXPi 0.0O0 0. 353g1PI 4. 119 0. I2KIPj 0.000

9 4 0.I2llRwj 3.142 0 14191PJ 0.000 0.14191101 4.1SIM 0,O'?Is'PJ 0.000 1.99M

A 0 0. 317FPj 3. 142 0.14319XP 0.900 0, 030?tiPj 1.233 0.1149d9 0,000
A4 111 IIIPj 3 142 0 13919X5 0.000 0.St*KXPj 3.236 0 3339,P 0.00

4 4 0. 5'99104j 3. 142 0 2931KPj 0.000 0.35511[40 5 234 0 10100,; 0.000
4 3 0. 359191p 31. 142 0 13491p) 0.000 0. 3341)P j 5.234 0 1251pj 0 000
4 4 0. 29 UP ; 3.142 0. 141,9101 0. 0" 0. 1411

1 PJ 5234 0.O007IIP 1 0.000 2.413

7 0 O.317t9Vj 3,1442 0. 10193PI 0.000 0.307111P 0.000 0 119 15pj 1,079
' I .. 4l1 XPj 3. 142 0. &3490)5 0,000 0. 31 iXV 0.000 0 333t 9j 1.079

2 0.3999109j 2. 144 . o 2 9 3 90 j 0 0410 0. 555119$ 0.000 0 19 1IsPj 1, 019
7 3 0 35915Pj 3.14Z 0 138ClPi 0.040 0. 31M XP 1 0.000 0 I2IIS 1 5.09
7 4 0-21:140j 3. M4 0. 141(915 0.000 0,141911f) 0.000 0 097911%9 1:079- . 3,29

a 0 0,317t5P, 3.10- 0.14219I5j0,030 0,307919* 0 000 0 tI96XPj 2,137'

* 1 ItI, 0. U10tU43 0. 13991P Ij§ 0.00 9.164111P 0 000 0 3339101 3.557
a 3 0 5991twj M. M4 0. 2939po 0.000 0. MCI!# 1 0.000 0 194901j a. 1.57;
A 4 0.35991tP 3.142 0,. 3"IF 1 0 400 0. 353x11P 0.000 0. sUP .5
f 4 0, 20 Sawj 3. 101 0. t4tlIf 0.000 0.14119SI0 000 Q. q7tX j t.57 970

9 .0 0 )It Mtoj 3. 1'3 0). I43159 0.0OX 0. 30M1`$9 0 000 0 119aPj 3.334
I 1 0 45 ILAPj 3, 143 0. 134HUPI 000 0. f I 69P5 0.000 0 533XIP j 3.236
9 4 . 0.59991t0j 3, I4Q 0.29.* IP 0,0450 0. I55((P) 0.000 0 19ItSPJ 3.8334
4 320. 359#5

4
j 3. 542 0. 5369159 000 0. 135315950 jO000 0. 12443PJ 3. 234"

9 * 9. astaw 3P. 42 @. &*W Ia. 0.0 0. @14111101 0.0ON00 Ot9MtPj &452 U, 1,31

~0 0 0 3t7ISpj 1 .44,1 0. I4Xlt , 0 000 ? aoltiP 1 0 0110 0 119ttol 4 214
10 0 O4l !2*j 3 £42 0 13"009j 0 Nwt 0 516&419 0 000 0 2332ip) 6 314

* . 0 2 0. 59919Xj 3. 142 U. 292X1P i 0 030 0. S~SS(5 0 CC* 0 !Vl1(ZPj A 314
tO 0 25915P: 2.149 0 1l001*PI 0 0:0 0 3S31110 0 000 0 12MIF j 4 354
C 4 0. 2.314101 3. la2 4J 14j1im 0 030 0 9419VI 1 .0341 0 OVC1Pj k.310 2.0OW

II 0 0 21~1CIP) 3 142 £42ggpi 0 COO a 3t1jtX9s 40 (,00 A I IV((P j 9 Y32
1I 0 4I1ti2 5 i42 0 12Yt'- 0 OA4 a $51690 0 030 0 33.-"P~ 292

It 3 0 UIQCp) 3 542 0 *2939SI 0 020 0 1111191p .0 eco 0 1415990 S 993
it -3 0.32"901. 3 I*.0 0 136195p 00C30 0 31190p,' 0 0'.0 '5 lOnttfj 3 239

1 41 0. 28 %. P) 3.5142 0. I&14-AP 1 0000 C,. 14t1910 0.030 0 0911[1 S .393 2 441

Plnatt Geastm*nt cesopititot4 #A?. two..t.. * 3

".9.5. co"----------- ... .--------------------. 5------------------ixI

.8 pro** Vert Pet. Ilepig o 0,1r V Pot NorteP5 Pei.
00 q 0 a Ullcgpj 2 142 0 l4311Pj 00CO0 0. vs1J041 0 000 0 1 IMUCP j 0 000

Cos. 1 0 41111P4 .1 142 0 1391195 0 000 0 3l16fpi 0 0.*o 0 OJ.11tP5 0 000
co 320 59911Ps 3 143 0 2#39X90 0 030 0 mcxv1: 0 030 0 1!%r~pj 0 04.ij

cot 3 0 35919ca5 3 542 0 136(t' 0 Coo 0 35391P 0 0:0 0 "P ilS J 000
"Ne 4 0. 2811190j 3 142 0 14;911 j01 000 0,14CIPID 0 000 0 09'(SPJ 0 000 3 491
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TABLE B6

MAXIMIZING SIR BY VARYING ONLY SIGNAL PHASE

Starting Comefent CoeSfp¢cenv% for Iteratien 0 1 :

Paint Como. ...---.---------.------------. Iltr .---------- - SIR
a FPv@q VOet. Pal. Horst. Pal. VePt. Pal. HOPt1. Pot.

1 0 0.3i6EXPj 0.000 0 36EXPJI 0 030 0. 316FPj 0 000 0 36EXPFJ 0.000
1 I O.316EXPj 0. 000 0.31,EXPj 0 000 0.316E[7P 0 000 0 31tc1Pj 0 000
1 2 0.316htPj 0 000 0 3O6EIPj 0 030 0 3161EPj 0 000 0 316EXPj 0 000
1 3 0.31&EXPj 0.000 0 316EIPJ 0 020 0 3O1&EXPj 0 000 0.314CXPj 0.000
1 4 0. 31•EXPj 0.000 0 316EXPj 0.030 0.3146XPj 0.000 0.316ExPj 0.000 0.A48

2 0 0 31l6[]Pj 1.047 0 3161tPj 0 030 0 316EXPj 0 000 0 316[XPj 0.000
2 1 0 31&EXPj 1.047 0 314I1Pj 0.000 0. 3164t!Pj 0.000 O. 31MArXPj 0.000
2 2 0 314ZXPj 1.047 0.31A6XPj 0.030 0 

3
21iKPj 0.000 0 3169XPj 0.000

2 3 0.3141EXPj 1.047 0 3164XPj 0 C-O0 0.3149)(Pj 0 000 0.31•EXPJ 0.000
2 4 O. 31t1XPj 1.047 0. 316CXPj 0€000 0. 3I61EXP 0.000 0.314[ZPj 0.000 0.7T4

3 0 0.316EXPj 2.094 0. 31411PJ 0.0C0 0.31•1XPiJ 0 000 0. 3IrEXPj 0.000
3 1 0. 314EXPj 2.094 0. 314EXPj 11 030 0. 

3
1*X1Pj 0 000 0.316.•IPJ 0 000

3 2 0.3I4IXPj 2.094 0 3161)Pj 0 CO0 0 31iEXPj 0.000 0.3t49XPj 0.000
3 3 0. 3161XPj 2.094 0 31&ExPj 0.000 0. 316[XPj 0.000 0. OI4EXPj 0.008
3 4 0. 31681

Pj 2.094 0. 314EVPj 0.000 0. 314[XPJ 0.000 0.3146rPj 0.000 1. 132

4 0 0. 31•aXPj 2. 142 0. 3141[9x1 0. M30 0. 2314vPj 0.000 0 316i[Pj 0.000
4 1 0.314•XPJ 3.142 0. 31*IPj 0 000 0.

3 14E!Pj 0.000 0.31bCSPj 0.000
4 2 0. 3ItEXPj 3.142 0.31OICPj 0.030 0.3169IPj 0. 000 0. 

3
1•

11
Pj 0.000

4 3 0. 314[XPj 3.342 0.31
4
9XPj 0.000 0.3164EPj 0.000 0.3141IPj 0.000

4 4 0. 314WXPj 3. 142 0. 314•XPj 0.000 0. 316XPj 0. 000 0. 3141
1

Pj 0.000 1.107

5 0 0. 31•EXPj 4.169 0. 3 11XPj 0.000 0.31*1XPj 0.000 0. 314EIPj 0.000
S 1 0. 3at 1Pj 4.169 0.316911Pj 0.030 0.

3 169XPj 0 000 0 31491Pj 0.000
5 2 0. 31 1

•lPj 4.159 0 3$&CXPj 0.0C0 0.3ltI4Pj 0.000 0. 31 1Pj A 0.000
5 3 0. 31691Pj 4.169 0. 3161XPj 0.000 0. 

0
161XIj 0 000 0. 3141XPj 0.000

5 4 0.316EXPj 4.119 0.316111Pj C.000 0. 13% Pj 0.000 0O. 31IPj 0.000 1.131

6 0 o. 3Idt6Pj S.4 34 0 3149vPj 0.000 0.3169)(P) 0.000 0. 314(IPJ 0.000
6 1 0. 31hIXPj *. 236 0. 31#AXPj 0.000 0. 316XPj 0.000 0. 31641tPj 0 000
& 1 0. 3t4 IP j 3,236 0 31641P 1 0.030 0. 3162XP) 0.000 0 31691Pj 0.000
• 3 0.31691Pj .1,236 0. 314IVPj 0.030 0. 3161tPj 0.000 0 3tilPj 0.000
6 4 0.3149iPj 11.2U4 0 3l4IiPj 0.000 0.314811P$ 0.000 0 31161Pj 0.000 0.716

7 0 0. 31 dIPj 0.000 0. 3I6f81Pj 1.079 0.31|•||Pj 0.000 0 3?411Pj 0.000
7 I 0. 316IlPj 0.000 0.31411iPt 1,079 0. 

3
tVPj 0. 000 0 3141NPj 0 000

7 1 0. 3146XPJ 0,000 0 31I6XPI 1.079 0. 31E61P) 0.000 0 319131A 0.000
7 3 0. 31 d61Pj 0,000 0. 314••1p• 1.079 0.26l1pX)j 0.000 0.ý 3161pj 0,000,
7 4 0,?111,,1P j 0.000 0.31449PA 1.0" O,.31611tP 0.000 0.31,1pj 0.000. 0.7*3

a 0 O. 311lPj 0.000 0, 1414Pa I.A 2.17 0.3tutSPj 0.000 0.316911PJ 0-000.
a 1 0 O,31691

5 j 0.000 0. 3kiIPj I. ,|7 0.31411Pj 0.00 0 2164•61F 0,000
I 1 0.31 "IPA 0.000 0. 3i41410Pj A. •417 0.36JA 0.000 O. 3 1660 Pj 0,000'
* 2 0. 301"sAPj 0.000 0.31691PJ 1.1170. tlIZIPi 0.000 0. 3140lPJ 0,00
a 40, 316211DJ 0.000 0. IclPj 1.IS? O,26811Pj 0 000 ,314&1IPJ 0,000 1.141

9 0 0.31641VP, 4.,-00 0. 31,al4P 3. •u O,46t9211 0.000 C.-3t1IPj 0.000,
9 1 0, 3199I'j 0 k?00 0.3164ktp3 .134 0.314419 , 0.000 0 3141*Pj 0,000
9 2 0.3161IP1 0,000 0,31•4t2j 3.323 0.31911PJ 0 000 0 31468Pj 0.000:
9 3 0, 316IPj 0,000 0.314•90j 3.234k 0.314dIPj 0.000 0.31691ij 00coo:
9 4 0,1I4WVj 0.000 0.3IKAld 3.8 ,3 O,314VPI 0.00 0. 31641Pj 0,000. 1.W3

tO 0 0 3l&IIs4j 0 000 0 314,110P 4 314 O.3
2
6l0PI 0 000 0 3li4tp0 0000

10 1 0 31619I10 0 000 0 3t4t11Pj 4 314 0 311p184 0 000 0 31 VWj 0 0W0
10 a 0 31I48Pj 0 000 0 31tip1i 4 314 0 3i461P! 0 000 0 3118110 000
t0 3 0, ll4gtPj 0 000 0 314cIP1 4 314 0 314P9p, 0.000 0 

3 1 4i8 Pj 0 000
10 4 O,3W414I 0 000 0 31141j 4 314 0.3169SPI 0000 0 31642Pj 0 000 1,. t

II 0 0.31IP, 0 000 0 3169110P 313 0 3t16911 0 000 0 2141tPj 0 000
II 1 0 3141%P1 0 000 0 31.l4iPi 3 393 0 316I911 0 000 0 31&t1Pj 0 000
Is a 0 3141iP 0 000 0 314I ig 392 0 3169111 0 000 0 314

1
11j 0000

II 2 0 lal"woo 0 000 0 3d'11P11 $ 393 0 UI"ttl 0 000 0 3114(IPJ 0 000
It 4 031411 "P0. OWO 21"1P0 1.1-3 0.3164911A 0.000 3tl1pj 0000 0.7129

la1it C¢aolsoonva CIf0 |e $op Ittratiom *1 I .

..- ...- .........-- SIR

00t 0 0 21"101j 3 t42 0 316111PI 0 ON0 0 3111riPI 0 000 0 2It&9Pj 0 ON0
cot 1 0 3llttlP) 3 142 0 3)I&tgIP! 0 C30 0 31621lPI 0 W00 0 )1•4[iPj 0 000
Oilt 0 31AP "10 3 142 0 211|+IO1 0 000 0 2169llri 0 000 0 31&C1Pj 0 000
069 3 0 2Ill9ill 2 942 0 31610jfP 0 730 0 3ti11PI 0 000 0 3166001 0 000
at t. 4 a 3141gw~j 3 162 0 316gsPJ 0 000 O 3I•4•IPI 0 000 4 alddlpi 0, ON0 I. say
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TABLE B7

MAXIMIZING SIR BY VARYING'FILTER MAGNITUDE

StPoint Cam.. 9 ------------- -- F le ------------ silt

0F?.q3 Vert. Pot. H4orst. PSI. Ver %. Pol. Nor s . Po.1

1 0 0. 3O4CXPj 3. 142 0. I7OCXPj 0 030 0. 30SEXPi 0 000 0 OUCEXPj 0 000
I 1 0 

4
1
0
EXPj 3.142 0 094EXP, 0 COO 0 4t6~EPj 0 000 0 OSO1EZPj 0.000

I 2 0.623EXPj 3. 142 0 2960161 0 030 0 621EIPj 0 000 0 236EXPI 0 000
1 3 0.3526)(10, 3. 142 0 092~E3Pj 0 000 0 442EXPI 0 000 0. 03CEjPj 0.000
1 4 0.264

4
1Pj 3.142 0.137EXP1 0.030 0.a&?IxPj 0000o 0ooacCPj 0.000 2.460

2 0 0 3O4EIPj 3.142 0 170CPj 0 000 0 OOOEVPj 0 000 0 333EXPj 0 000
2 1 0.410EXPj 3.142 0 094EAPI 0 000 0 333EXPi Q.OCO 0 3OflWPj 0 000
a 2 0.623EXPj 3. 142 0 296EXPj 0 030 0.3331901 0 000 0 O 3

33!Pj 0.000
2 3 0.3.S2EXPi 3 142 0 02EWPI 0 000 O.223EX'i 0.000 0 333EXPj 0.000
2 4 0 264EXPj 3. 142 0. 157CXP1 0.000 0. 333CP 1 0.000 0. 333E1P.- 0.000 2.003

3 0 0. 304EXPi 3 142 0 170EIPI 0 030 0. 333E1P1 0 000 0 333EXPj 0 000
3 1 0.410EIPj 3 142 0 094EXPI 0000O 0.003ESPJ 0 000 0 333flPj 0.000
3 2 0.622tEXP1 3. 142 0 2969101 0 030 0.330EJPJ 0 000 0 333EXPj 0.000
3 3 0.33I2 EXP , 3. 142 0 OVZEXPj 0 030 0. 333EX(Pj 0.000 0. 333EXP1 0.000
3 4 0. 2&44CPj 3. 142 0.157CXPj 0 010 0. 3330E 1 0 000 0.3339IPj 0.000 1,439

4 0 0.304EXPj 3 142 0 t7OEXPI 0 COO 0 333CAPI 0 000 0 333EXPj 0 000
4 1 041OEXPJ 3. 142 0 094EXPI 0 000 0 333ZZ~j 0.000 0 333CXFj 0 000
4 20. 423EXPJ 3. 142 0 296CIPj 0 000 0 0Q0fWPj 0 000 0 333S1Pj 0 000

4 3 0 35
2
CPi 1.142 O.O92Vlpj 0.000 0 333EXIj 0 000 0 333a1pj 0.000

4 4 0. 2449101 3. 142 0. 137C*Pj 0.000 0 333[tPj 0 0013 0 333CIPi 0.000 1.400

1 0 0 304[lpj 3.142 0 I-'UP) 0.030 0 3233EPJ 0 0I0 0 333CIPj 0 000
I 1 0. 410EXPj 3 142 0 094C(Pj 0.000 0 332EIP j 0 000 0 

33 3OCIPj 0.000
3 2 0 *239XPJ 3 142 0 29CI~Pj 0 0.00 0 33394P) 0 0O0 0 33361P) 0 000
It 3 0, :5 2

EXP 1 3. 142 0 09421A 1 0.0- COO CCOElPi 0.000 0 3 3319l[j 0 000
6 4 0.264

9104 3. 142 0. 1579101 0. 030..0, 33
19110j 0.000 0. 3 33 1 4 Pj 0.000 4.960

4 0 0 30
4
E1'j 3. 142 0 17Og4P1 0 000 0 233tvpj 0 000 0 333E1pj 0 000

4 1 0. 410CIPJ 3 142 0 0944EPj ý00A0 0. 33399P j 0.000 0 O
33
3KX~j 0 000

6 g 0 623tPj 3. 142 0 296CIPI 0.030 0 333EWPI 0 000 0 
333

11101 0.000
4 3 0 33)29XPj 3.142 0 092I9£Pj 0.000 0.333CIPI 0 000 0 3

33
[%Pj 0.000

& 4, 0. 244t1Pj 3. 442 0. 1sycxpj 0.000 o.o00(tPj 0.040 0 3 23=1£P) 000 2.027

7 0 0 3049IPj 3. 142 0 I70(tPj 0 0"0 0 337gVP, 0 000 0 O3CEPj 0 000
? 1 0 4 10EXPi 3.142 0.0944Et0 0 000 0,3339VPI 0 000 0 33391111 0 000
7 a 0.6223txPj 3.A42 0 29691PI 0 000 0 333CIPj 0 0O0 0 3 33

904P 0.000
7 3 0, 3251CIPj 3. £42 0 092tXP4 0.000 0 3334tPj 0 000 0 3339I~j 0 000
7 4 0. 2441£Pj 3. 142 0.t372401 0. 000 0. 3231*Pj 0. 000 0. 333(IPj 0 000 2. 165

a 0 0, 304gtPj 3. 142 0,170V :11 f4 000 0. 333CILP 0.000 0. 33394P) 0 000
f t 0 dict.RDj 3 M4 0 094g£P1 ).co 0.233tIpj 0 000 0 000Ktpý 0 000
* 2 0,623(KPj 3 %42 0.2*69X04 0.000 0,333t$Pj 0 000 0 33391Pj 0.000
* 3 0. 3,3240) 3. 143 0.0092105 0.000 0. 333(Oj1 0 000 0 3339#Pj 0.000
8 £ 0. 26 SUP 3.143 0.13790- 0.000 0, 33X£P1 0.000 0,3339AP4 0.000 2.146

9 0 0. 304110j 3. :a,, 0. 170440# 0000 0. 333*Pj 0 000 0 337110) 0 000

I 1 0. AlOtoj 3 £4 0 094910) 0. 040 0. 3369#£ 0 000 0 3$tgIp) 0 4000
9 2 0 46334£Pj 3 £42 0.2969101 0.000 0. 2339P~ 0 000 0 O009CIP4 0 4000
4 3 0 3321104 3 £43 0. 092tAP) 0.000 0. SSKPI 0.000 0 1.£IKJPj 0 000
9 4 0, 3641tPi &. £41 0M 41MIP1 0,000 0. 33M 11,P 0.000 0. 333(I*j 0 000 2. 14*

t0 0 0 204tt9i 3 142 0 I70KV') 0 COO 0 2333Api 0 000 0 233CItPj 0 000
£0 1 0 410901 3 £42 0 094;pP 1 0 000 0 3313(*'1 0 010 0 3

33tlPj 0 000
to1 2 0 6:33E1j 3 £42 0 206UP 1 0 000 0 3339401 0 000 0 333tt0i 0 000
t0 3 0 3ltvpj 3 144 0 0sxTh1P 0 000 0 331ItEpl 0 000 0 COC!kvj 0 000
t0 4 0 ý64CJKPI 3 142 0 15791PI 0 000 0 333XteI 0 000 0 332C10i 0 000 2 1"b

it 0 0 3O0491ij 3 £42 0 Iv0(*Pl 0 CI0 0 773~t)(0 0 000 0 323ttpj 0 000
It a 0 41041p) 2 142 0 0941 itp 0 0 C0 0 3330t40 0 COO0 0 "32910) 0 000
It 2 0 &63hi~j 3 142 0 2149, P, 0 030 0 333901i 0 020 0 2330hIP 0 000Kt 3 0 3521201 3442 0 00411, 0 000 0 3233t50 0000O 03S3u120 0 000
it 4 0.264IPJj 3 142 0 121#01 0 030 0333=9010000 0000(lPJ 0 000 2. t64

Finael C404*0nuii Co##itlen'ts otf It4erti~t 0 3

Co. 00 
3 SZ4ttj 3 142 0 MC l0 n3 0 ju 0 0020 0 02C(I) 0 000

eot. 40 264h1Ij 3 £42 0 0799RP) 0 030 0 2191P)~ 0 000 0 08&9kPJ 0 000 2 480
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ON MULTI-CHANNEL DETECTION OF RANDOM

SIGNALS IN GAUSSIAN NOISE

1. INTRODUCTION.

In the classical books Van Trees [1], [2] has presented the single channel

detection theory when signals are deterministic or have random parameters.

Extension of these works to multi-channels case has received little attention.

An earlier reference is [3] in which Lindsey derived the optimum receiver and

its performance for independent Rician fading multi-channels.

Vannicola (41 introduced a natural extension of the above single channel

model for the two-channel radar detection problems. In his model, Vanni-

cola used the scatter matrix B to describe the characteristics of each channel

and the correlations between two channels. These models are important for

both radar detection and communication problems. Ou. revisit to Vanni-

cola's model reveals that, for some of the important detection problems, the

extension of single channel results to multi-channel situations is not straight-

forward and requires additional techniques to yield desired expression for the

optimum receiver.

* In this paper, we consider one of the important cases of such multi-

* channels problems, i.e., the slowly fluctuating point target model when the

noise is white or colored. Using the maximum likelihood criterion, orthonor-

malizing procedure, and eigen value-eigen vector approach, we have derived

the optimum receiver for the two-channels case. Extension of these results

to more than two channels is straightforward.
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4 2. OPTIMUM RECEIVER FOR SINGLE CHANNEL CASE.

This section contains a brief summary of single-channel detection results.

These results are well known and most conveniently available in Van Trees.

The reason to reproduce some of these results here in that it allows an easy

reference as well as a comparison with multi-channel results derived in the

remaining sections.

For the detection of slowly fluctuating point targets in the presence of

additive white Gaussian noise, Van Trees derived the statistical model as

F(t) = v"t 11(t) + Z(t) 0 5t <_ T : H, (2.1)

9(t) - uD(t) 0 _< t :_ T :HO (2.2)

where F(t) is the complex envelope of the received wave form, b is a zero-mean

complex Gaussian random variable which satisfies

ZE(Ij 2) = E(bb') a2o, (2.3)

1(Ct) is the complex envelope of the transmitted signal with unit energy, i.e.,

Jf f(t) 'dt = f(t)f'(t)dt = 1, (2.4)

Z(t) is a zero-mean complex Gaussian white noise process which is indepen-

dent of b and satisfies

S= No6(t - u). (2.6)

The optimum receiver is constructed by using the complete orthonormal

(C. 0. N. ) set expansion, and by finding the sufficient statistic. It turns out

that this sufficient statistic has the form

= 1, = ](t)F'(c)d. (2.6)
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The optimum receiver computes 1R1 I2 and decides acceptance or rejection of

H, depending upon
Ht

I > r 7" (2.7)
Ho

where r* is called the threshold. This structure of the optimum receiver is

graphically presented in Figure 1 below:

IHi

f(t) --+ no

Figure 1. Optimum receiver of Single-Channel Case.

3. OPTIMUM RECEIVER FOR MULTI-CHANNEL MODEL.

WHITE NOISE CASE.

For the multi-channel model derivation of the optimum receiver is

relatively complicated. For simplicity in presentation we consider the two-

channel case first.

The statistical model for two-channel case can be formulated as follows:

t-.) =-L(t) + (t) 0: <t:5 : El (3.1)

w=(t) o t < T : H• (3.2)

where the vectors r, f and !g and matrix . can be expressed in terms of their

components as follows:

Lr,(t 'h/(t)'
r~t 2Lt) fi(t)j (3.3)

-WI - = [ 11  b12
LW2(tl b22
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The vector W(t) is the convex envelope of the received wave forms, 6 is the

scatter matrix of the target, f(t) is the convex envelope of the transmitted

signals and its energy equals:

E = j L t)OTI t)pldt =1j If,(t1•dt + j If2(t)12 dt

" El -- E2 (3.4)

where El and E 2 are the integrals of If,(t)12 and If2(t)I 2 and represent

energies in channel 1 and 2, respectively. (For amplitude-modulated signals

actual transmitted energy equals E/2). The zero-mean vector white noise

process 4(t) is independent of the scatter matrix L and the two components

- of the vector j(t) are independent of each other. Moreover, it is assumed

that the two components have equal spectral densities in the two channels,

i.e.,

F6(t -U) 0
Ej-(t)Ot(t)1 = NVo 0

0 6Ct - Ut

= N06(t - (3..)

Following the procedure of deriving the optimum receiver for the single-

channel model, we define a vector C. 0. N. set ({(t))}. Since this is a

C. 0. N. set, the elements O(t) satisfy

and

j tT -e 0(t)rb(t)dt =6, (3.6)
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where t denotes complex conjugate and matrix transpose. In terms of _.(t)'s

the received vector r_(t) can be written as

k

F(t) = limr -"_(t) (3.7)
t=1

where

ii FTW 0 () d () F(t d (3.8)

From the assumptions, made earlier, on the process F(t) it is easily observed

that the coefficients Fi's are zero-mean complex Gaussian random variables,

If we can choose the C. 0. N. set such that only k of the coefficients are

dependent on which hypothesis is true and if these k coefficients are statis-

tically independent of the other coefficients, collectively they will give us a

k-dimensional sufficient statistic. The coefficients Fj's will satisfy the inde-

pendence condition if

EtFF;IHI =-0 for t =0,1 and for all i; (3.9)

On Ho the desired condition is satisfied due to the fact that F's depend

only on the white noise process. On H1, the correlation between 9,'s can be

written as:

E r 4 fJf:W & (t, u)0, (u)dt du + N06,, (3.10)

where

&(t, u) = E[.fAOLtf) t l (3.11)

is the kernel of received signal components. This kernel is known provided

all statistics of the scatter matrix & are known and the transmitted signal
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wave form f(t) are given. From (3.10), F,'s are uncorrelated if and only if

the functions in the C. 0. N. set satisfy the integral equation

Jf 4ý()K.t ;.rk(u)dt du = A~j

or equivalently

f.K&(t~u)&.(u)du = Ai~) (3.12)

This last expression shows that if the eigen functions ;(i)'s and eigen val-

ues Ai's can be solved, then the construction of the likelihood ratio test is

straightforward. In other words, the likelihood ratio is given by

,O:) == m n, (3.13)
A(R) R: P[Ho] kc Urn I P[R4 HO] <0

The probablility density functions of the complex Gaussian variables as

appears in (3.13) are given by

PeRSIHLI = (,.Vo + A,))}-eZP(-Il4jI/(No + A,)) (3.14)
p.4,, loI = ({ o}',.{-IRZ,1lR2 /No).

Substitution of (3.14) in (3.13) and then taking its logarithm and further

simplification results in the following log likelihood ratio test

* k'liaZNIO(Nl' > -t (3.15)
Swher -f = In q = li <n(N d/o

k 00o . j +

where -Y = In qi +. E In ((Jo + Ai)/No} is the decision threshold. If the

number of nonzero A,'s is infinite, then construction of the optimum receiver

according to (3.15) is impractical, and instead we must find its closed form

representation. For the single-thannel model it was straightforward to solve
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(3.12) because the function f_(u) can be separated from the kernel, i.e., in

the single-channel case

Ko(t,u) = E=bf(t)f(u)51 = E(jb12)f(t)1(u). (3.16)

Due to this simplification the integral equation (3.12) can be written as

E(1512)f(t) ] f'( u)4i(u)du = AoCt). (3.17)

It follows that a solution of (3.17) is -given by 0 1(t) = f(t)/V/K and the

associated eigen value At = ecE(jb12) = 2a~et = e,. Any other function

i (t),i -= 2,3,.... which is orthogonal to I(t) is a solution of (3.17) with

zero eigen value. Thus, in brief, the single-channel case is straightforward

due to aforementioned simplification and the corresponding log likelihood

ratio statistic is
let . -neJR 1 I

~o (NO + e

which can also be written as (2.7).

For the multi-channel case, in general, the kernel K(t, u) cannot be writ-

ten in the form of (3.16). Hence we cannot derive the sufficient statistics in

the same way as in the single-channel case. In this paper, we first consider

some special cases which lend themselves to easier solutions. Our next goal

iU to show that it is possible to extend the results so obtained to a gen-

eral setting and thus obtain the optimum detector of Gaussian signal in the

presence of white or colored noise.
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CASE I. Identical Signal Envelopes.

Suppose that the twe. transmitted signals, in two different channels, have

identical envelopes and may di,.cr only in their energies and phases, i.e.,

?t fI (t) L All E~(t)= [ý'E; je2" j .(t) = Ag(t) (3.18)
h AI.(t) A= E '

where E1 and E2 are the energies and 01 and 02 are the phases of fA(t) and

f2 (t), respectively, and as(t) is a real valved function with unit energy. Thus,

E, = I j,(tl Idt I =0,1

and (3.19)

f S 2 (t)dt = 1.

The signal components in received wave forms can be written as

-- bil b12  N S(t) X10 x (t) + Z202(t) (3.20)
L b

where _ I (t) = 02 ())

= 6biVT-eje + bM=v28i$ ATA = ATb_

X2 -b21N/=' + b2 2 V/eJ2 bT A - Arb2

[b1- i and _b2 b22-h= b, b22

We observe that 01 (t) and 02 (W) are orthonormal functions, the signal process

ý'(t) is a two-dimensional vector in -1, and 02 plane, and its components
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z1 and z2 are random variables. These two functions, 61(t), L2 (t), can be

augmented into a C. 0. N. set. In summary, it is possible to expand F(t) as

oU 2 00

FI = _ + E _ Hi (3.21)
i1l i=3

L ii(t W =(t HO (3.22)

where it is important to note that for i > 3, all ri's are independent of the

hypotheses H, and Ho. Because of the independence between b and j_(t) the

first two coefficients rT and r2 are independent of the remaining coefficients

n = wi, i > 2. But r, and r2 are not necessarily independent of each other.

In any case, this does not prevent us from obtaining the likelihood function

A(R) =P o] = PIR,,,R2 1 11 (3.21)

PERiHo1 P([,,,R21HOl'

The joint covariance matrix of rr2 an be derived as follows:

Ef(r 1r;HoI = E( ttCt)z(t)!t(u)_(,)dt du]

= 110 • o(t)N06(t - u) I_(u) dt du

= Nv0 (_ (t)dt = No0 ,j i = 1, 2. (3.22)

In a similar manner and due to independence of xi and wi, i,j = 1,2 it is

observed that

Efrr;IJHi = E + E~jw"-

+ N0$,,. (3.23)
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Thus, R = (Ri, R2)T is a zero-mean Gaussian random vector whose covari-

ance matrices are given by

S= E (R R tIH o] = N or (3.24)

and
KI = E[RRtIH11 = E[b•AYt] + Nor

(3.25)
=' Ks + Nor$

where •, = E[bA.tbt] is the covariance matrix of the received signal com-

ponents.

The matrix K, may be diagonalized by a unitary transformation T, i.e.,

Tt 0. (3.28)

where T = [C__C21 is a 2 x 2 unitary transformation, 14 and IA2 are eigen

values of K,, and C, and G2 are the corresponding eigen vectors. Using th6

fundamental theorem of linear algebra we then expand K , and K,, in

termi of eigen values and vectors as shown below.

K +
S= Noa__c + NoC2C_ = NoTITt

K, = K. + Ko = (Al + No)!_.,t. + (A2 + NO)G_2. (3.27)

= Tz [JAL + No 0 TtZ'
0 A2+NOI

The above results also allow us to write the inverses

I0
=T I 0 K = T Tt. (3.28)

Substitution of the joint Gaussian probability density functions

,P(aIa2 lml = (21r) -2JIml-*,ezp(-AtKý'_L), I = 0, 1
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in (3.21) and simplification of its logarithm gives the two-channel log likeli-

hood ratio

IR Rt(Ko K'1)R (RtT) (AI+NO)0NO
M2 + No) No

2

71iy,12 (3.29)
(Ai + No)No

wherer

Y =TtR=[C " C2_tR= I R1 (.0
S2t R(3.30)

The R vector is derived by correlating the received waveform with the trans-

mitted signal s(t), i.e.,

R. = (•,•) =[fT(t),(t)dt f ,2t)Ct)dtlr

f TS(t)r(t)dt. (3.31)

Hence, the optimum receiver for the identical envelope case has the form

given in figure 2 below.

Figure 2. Optimum Receiver for Identical Envelope Case

Using the new orthonormal functions

_-(t) =I (t), t = 0,1
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gives
Yj= foVl(t)j.(t)dt 1=0,1

and cor,.--quently the optimum receiver has the form

Irar

Figure 3. Another Form of Optimum Receiver for Identical Envelope Case

CASE IL The Orthogonal Envelopes Case.

This is another extreme situation in which we assume that the trans-

mitted signals in the two channels are orthogonal. This implies that

fT f1(t)f;(t)dt =0

Eence the signal comonents of the received waveform can be written as

[b1 , b12,F f,(tI1
_fL(t) b, b221 [Lh (t)[

wher NO + b~a~72  (tf ) + + 26f2 (t +(b)-VEo(+2t), +.. "oL( +r , (
where

S 0

%/r2 f2(•t)
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It is easy to verify that 1 (t), _2 (t),3(t), and _-4(t) form a set of orthonor-

real functions. They can be augmented to a C.O.N. set. Using this C.O.N.

set, it is possible to expand F(t) and then verify that the coefficients ri's

are statistically independent random variables for i > 5, and that they are

independent of the hypotheses H1 or Ho. As for the coefficients r1 ,r 2 ,r3 ,

and r4 it can be seen that they are statistically independent of ri's i > 5, \

and constitute a four-dimensional sufficient statistic.

Let R = (rI, r 2 , r3, r4)T. Then the logarithmic likelihood ratio can be

written as

IR =Rt%ý' -KTi)R< >-y
h~o

where, in this case, both K and _K are 4 x 4 matrices and

K = NoL, K, = K. + Ko = E[2[ X' + NoL

X=(b 11 VXL b21 K', b12VE/2, b22VE2).

As in case I, the statistic 1,• can be written as

IR=Ytdiagonal( ;A 12A3 A4.

-R= 'ydagn (AL + No)No' (A2 + No)No' (W,,3 +No)No (A4• + No)NoO
4

(,=i + No),No

where

Y = TtB = [C_ .2 g! 4CZ.4jtR = (Y1,YLY 3 , Y4 )7,

Here, as in the previous case, Ai's denote the eigen values and C,'s denote the

corresponding eigen vectors of the K matrix. The optimum receiver for this

case has the form given in figure 4, where a, =Ui/((si +JVo)No}, i = 1,... ,4.
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Y.-

Figure 4. Optimum Rec'eiver for the Orthonormal Envelopes

It is useful to note that unlike the identical envelope case, here we have

a four dimensional suffcient statistic. Both cases give correlation receivers.

As long as all statistics of the scatter matrix _k and the energies of" the trans-

mitting signals are known, it is easy to derive the structure of the optimum

receiver which requires solution of" some matrix eigen values problem.

Knowledge gained in this case can now be employed to obtain the opti-

mum receiver in the general situation. This case is considered below.

S~CASE III. The General Model.

In general the signal components in returned waveforms can be expressed

C-14
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Whenever the additive noise is colored, a possible solution is obtained

by first applying a whitening filter and then using the results known for

the white noise case. We follow the above approach to solve the ,problem

in the multi-channel model also. More specifically, let the model for slowly

fluctuating point target in the presence of colored noise be given as follows:

f_(tt) + ) + g(t) = bf(t) + a(t) : Hi

ano(t) + WC(t) = n-(t) : Ho

Then, we can design a whitening filter h.(t, u) such that after passing

through this filter, the noise _(t) will become a white noise process with

a height of spectral density 1. Thus, if

a* ft) &,(tu)(u)du

then

E(n. (t) ,, (u)) = 6Ct- U) L

After passing through the whitening filter h, (t, u), the received waveform

r(t) becomes r.(t) where

S-(t) + n.(t) : H1

n.(t) : Ho

and

f.(t) = J h•(t,u)L(u)du-.

Results of Case III, when applied to r.(t), given above, give us the desired

optimum receiver. The optimum receiver has exactly the same form as given

in figure 4 except that all expressions are replaced by their starred versions

which identifies that we are dealing with the filtered process. The whiten-

ing filter h.(t, u) is obtained by solving a matrix eigen value problem that
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depends on the statistics of the n,(t) process. Hence, the colored noise case

can be handled only if statistics of the colored noise are known. The nature

of the equation to obtain h, (t, u) remains the same as for the single- channel

case.

4. CONCLUSIONS.

In this paper we have developed the construction of optimum receiver

for the slowly fluctuating point target in the presence of white or colored

noise. It is concluded that, in general, in the case of the n-channels model,

n 2 matched filters (or correlations) are required to obtain the receiver. The

matching is done with the orthogonalized signals instead of the transmitted

signals. The optimum receiver computes the weighted sum of the outputs of

matched filter. These weights are such that the risk in detection is minimized.

We do not evaluate the performance measures of these optimum detectors.

However, it follows from the distributional properties of the summands that

these measures can be derived in terms of weighted sum of chi-squares. When

the number of channels, n, is large these performance measures can be ap-

proximated by normal. In general, approaches discussed in (i] and (21 are

applicable.
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