| ſ | AD-A14 | 5 784 | AN<br>AND  | INVEST<br>CYLIN | IGAŤIO<br>DRICAL | ON OF | PARTIC<br>ETS(U) | ULATE | IMPAC  | TION O | N SPH | RICAL | 1/ | 1    |   |
|---|--------|-------|------------|-----------------|------------------|-------|------------------|-------|--------|--------|-------|-------|----|------|---|
|   | UNCLAS | SIFIE | ) JL       | HALL            | ET AL.           | AUG   | 84 DRE           | S-MEM | )-1102 |        | F/G : | 15/2  | NL |      | _ |
|   |        |       | Delta      |                 |                  |       |                  |       |        |        |       |       |    |      |   |
| l |        |       | <u>с</u> , |                 |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       | E          |                 |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
| L |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
| L |        |       | -          | 1               |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            | _               |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    | END  |   |
| Í |        |       |            |                 |                  |       |                  |       |        |        |       |       |    | атис |   |
|   |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      | ĺ |
| Ļ |        |       |            |                 |                  |       |                  |       |        |        |       |       |    |      |   |
| ł |        | _     |            |                 |                  |       |                  |       |        |        |       |       |    | 6    |   |



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

· · · ·



DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1102

# AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffery L. Hall and Stanley B. Mellsen

PCN 13E10

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1102

# AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffrey L. Hall and Stanley B. Mellsen

ABSTRACT

This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack  $\underline{x}$ 

# TABLE OF CONTENTS

Page No.

# Abstract

| List of Symbols     |
|---------------------|
| INTRODUCTION 1      |
| BACKGROUND THEORY 2 |
| COMPUTER PROGRAMS14 |
| RESULTS             |
| DISCUSSION          |
| CONCLUSIONS         |
| REFERENCES          |
| TABLES              |

# FIGURES

APPENDIX A: LISTING OF PROGRAM AEROSOL-8 APPENDIX B: LISTING OF PROGRAM AEROSOL-6

| Access                                 | ion For            |           |   |                  |
|----------------------------------------|--------------------|-----------|---|------------------|
| NTIC<br>PTIC T<br>U · · ·<br>Jui · · · | CRA&I<br>-3<br>    |           |   |                  |
| By<br>Distr<br>Avai                    | tation/            | Codes     |   |                  |
| Dist                                   | Avail an<br>Specia | d/or<br>1 |   |                  |
| A-1                                    |                    |           |   |                  |
|                                        |                    |           | ( | COPY<br>INSPECTE |

# LIST OF SYMBOLS

| Ъ                     | - | constant                                              |
|-----------------------|---|-------------------------------------------------------|
| с <sub>р</sub>        | - | drag coefficient                                      |
| F                     | - | Froude number                                         |
| Fd                    | - | drag force                                            |
| Fa                    | - | gravity force                                         |
| g                     | - | acceleration of gravity                               |
| g'                    | - | non-dimensional gravity                               |
| G                     | - | ground fraction                                       |
| к                     | - | inertia parameter                                     |
| L                     | - | target radius                                         |
| m                     | - | particle mass                                         |
| r                     | - | distance from the origin                              |
| r <sub>p</sub>        | - | particle radius                                       |
| Re                    | - | local Reynold's number                                |
| Reo                   | - | free stream Reynold's number (based on particle size) |
| t                     | - | time                                                  |
| u                     | - | local fluid velocity                                  |
| u'                    | - | non-dimensionalized local fluid velocity              |
| U                     | - | free stream velocity (synonymous with windspeed)      |
| v                     | - | particle velocity                                     |
| <b>v'</b>             | - | non-dimensionalized particle velocity                 |
| <b>v</b> <sub>7</sub> | - | terminal velocity                                     |
| β                     | - | rotation angle of frame 1 re frame O                  |
| Y                     | - | rotation angle of frame 2 re frame 1                  |
| θ                     | - | position angle in frame O                             |
| ρ <sub>a</sub>        | - | air density                                           |
| ρ <sub>p</sub>        | - | particle density                                      |
| μ                     | - | air viscosity                                         |

# DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

# SUFFIELD MEMORANDUM NO. 1102

# AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffrey L. Hall and Stanley B. Mellsen

## INTRODUCTION

1. In assessing the hazard to troops from attacks with chemical agents in aerosol form, it is important to be able to predict the motion of the chemical agents as they disperse through the atmosphere and impact on various target objects (Figure 1). This project was conducted to investigate the impaction aspect of the overall motion problem specifically to provide an answer to the question, "How much chemical will hit a target.

2. Some theoretical studies have been performed in this area of aerosol impaction<sup>1</sup>. This project sought to upgrade the theoretical models used through the inclusion of the gravity force into the problem; in fact, the secondary purpose of the project was to quantify the error incurred when gravitational effects are ignored. The primary purpose of the project was to develop a model which would calculate the amount of chemical that a man received in relation to how much the ground received.

3. The complex nature of this fluid mechanical problem required a number of simplifying approximations in order to be tractable. Consequently, the results obtained are first approximations only, calculated on the basis of a theoretical model which required computer programs for implementation. The project results are seen as a foundation upon which to conduct experimental and/or improved theoretical research.

4. The project evolved significantly durings its lifetime. The initial phases were very much a learning phase during which the model was continuously tested and changed. Spherical targets were used for these initial tests, tests which also provided much data on the effect of gravity on the problem. This initial phase ended with the study of cylindrical targets during which the last gravity effect calculations were performed. The final phase of the project dealt with the man-target simulation.

#### BACKGROUND THEORY

#### Fundamentals of Particulate Motion

5. The derivation of the aerosol particle motion equation follows directly from Newton's Second Law<sup>2</sup>. There are two forces present, namely gravity and aerodynamic drag:

#### UNCLASSIFIED

$$\frac{F_d}{d} = C_D \left(\pi r_p^2\right) \left(\frac{1}{2}\rho_a \left| \underline{U} - \underline{V} \right|^2\right)$$
[1]

$$F_{\underline{g}} = m_{\underline{g}}$$
 [2]

The particles are assumed to be spherical because of their small size (<2000  $\mu$ m radius). The resulting equation of motion is therefore:

$$\underline{mv} = C_{D}(\pi r_{p}^{2})(\frac{1}{2}\rho_{a} | \underline{U} - \underline{V} |^{2}) + \underline{mg} \qquad [3]$$

Noting that;

$$m = \frac{4}{3} \pi r_p^{3} \rho_p \qquad [4]$$

$$Re = \frac{2r_{p}\rho_{a}}{\mu} \left| \underline{U} - \underline{V} \right|$$
[5]

we can re-arrange equation [3] to produce:

$$\frac{3 \mu C_{D} \operatorname{Re}(\underline{U} - \underline{V})}{16 r_{p}^{2} \rho_{p}} + \underline{g} \qquad [6]$$

6. Equation [6] can be non-dimensionalized by using the free stream velocity U and the characteristic target length L:

$$\mathbf{v}^{\prime} = \mathbf{U}^{-1}\mathbf{v}$$
 [7]

$$\dot{\mathbf{v}}' = \mathbf{L}\mathbf{U}^{-2}\dot{\mathbf{v}}$$
 [8]

$$\underline{u}' = \underline{U}^{-1}\underline{u}$$
 [9]

$$t' = tUL^{-1}$$
 [10]

$$\mathbf{g}' = \mathbf{L}\mathbf{U}^{-2}\mathbf{g} \qquad [11]$$

# UNCLASSIFIED

If we define:

$$K = \frac{2\rho_{\rm p}r_{\rm p}^{2}U}{9\,\mu L}$$
 [12]

$$F = \frac{U^2}{Lg}$$
[13]

then equation [6] can be written in the following non-dimensional form:

$$\underbrace{\overset{\bullet}{\mathbf{v}}}_{\mathbf{v}}' = \frac{C_{\mathbf{D}} \operatorname{Re}(\underline{\mathbf{U}}' - \underline{\mathbf{v}}')}{24 \quad \mathrm{K}} + \frac{1}{\mathrm{F}}$$
[14]

7. Clearly, the problem can be solved by either equation [6] or equation [14]. Traditionally, these problems have been solved in nondimensional form resulting in graphs of collection efficiency vs. inertia parameter for various Reynold's numbers (Collection efficiency is explained in the next section). In this problem, however, the inclusion of gravity adds another parameter, namely the Froude number. The graphical presentation of non-dimensional results now becomes quite complicated, and the physical interpretation of such results becomes obscure. It was felt that superior physical insight and applicability would result from analysis of the restricted case of motion in air under representative experimental situations. Equation [6] was therefore used in the model.

8. In reference frame 1 (Figure 2), equation [6] can be resolved into the following scalar equations:

$$\dot{\mathbf{v}}_{\mathbf{X}} = \mathbf{b}\mathbf{C}_{\mathbf{D}}\mathbf{R}\mathbf{e} (\mathbf{U}_{\mathbf{X}} - \mathbf{v}_{\mathbf{X}})$$
 [15]

$$\dot{\mathbf{v}}_{\mathbf{y}} = \mathbf{b}\mathbf{C}_{\mathbf{D}}\mathbf{R}\mathbf{e} \ (\mathbf{U}_{\mathbf{y}} - \mathbf{v}_{\mathbf{y}})$$
[16]

$$\dot{v}_{z} = bC_{D}Re(U_{z} - v_{z}) - g$$
 [17]

# UNCLASSIFIED

where 
$$b = \frac{3\mu}{16r_p^2 \rho_p}$$
 [18]

9. The drag coefficient for spheres is defined in terms of the Reynold's number by the following equations<sup>3</sup>:

For Re<4, 
$$C_{D}Re^{2}$$
  
Re =  $\frac{-2.3363 \times 10^{-4} (C_{D}Re^{2}) + 2.0154 \times 10^{-6} (C_{D}Re^{2})^{3}}{-6.9105 \times 10^{-9} (C_{D}Re^{2})^{4}}$  [19]

For 
$$3 < \text{Re} < 10^4$$
,  $\log_{10} \text{Re} = 1.29536 + 9.86 \times 10^{-1} (\log_{10} \text{C}_{\text{D}} \text{Re}^2) - 4.6677 \times 10^{-2} (\log_{10} \text{C}_{\text{D}} \text{Re}^2) + 1.1235 \times 10^{-3} (\log_{10} \text{C}_{\text{D}} \text{Re}^2)^3$  [20]

10. Two assumptions were made regarding the initial condition of the aerosol particle. First, it was assumed that the particle was moving horizontally at the free stream velocity and that a starting position upstream would experience negligible flow perturbations caused by the target. Second, the particle was defined to be falling at its terminal velocity, because small aerosol particles quickly attain that speed. Consequently, the particle initially possessed a velocity given by its terminal velocity ( $v_{Z_0}$ ) and the free stream velocity, with a direction defined by the angle  $\gamma$  to the x-axis:

$$\gamma = \tan^{-1} \left( \frac{v_{Z_0}}{U} \right)$$
 [21]

The terminal velocity was calculated by setting  $\dot{v} \approx 0$  and  $U_z = 0$  in equation [17], and solving for  $v_{Z_0}$ . The result was:

## UNCLASSIFIED

$$Z_{0} = \left(\frac{8r_{p}\rho_{p}g}{3\rho_{a}C_{0}}\right)^{1/2}$$
 [22]

11. Therefore, simultaneous solution of [5], [22] and one of [19] or [20] yielded the terminal velocity.

12. The flow equations will be derived in paragraphs 15-24 for the various target geometries. All such equations were inviscid fluid equations. These were deemed applicable to the problem because real fluid flow is virtually ideal on the leading face of an object, which was the only face of interest in this particle impaction problem. It was also assumed that the chemical particles themselves did not perturb the fluid flow.

# Collection Efficiency

13. The concept of a collection efficiency is the primary means of quantifying the amount of chemical which impacts on a target (Figure 3). The collection efficiency is a number ranging from zero to one, and is defined by equation [23]:

Collection = <u>Cross-sectional area of the envelope</u> [23] Efficiency Cross-sectional area of the target

The envelope is that region on the starting plane in which initial particle placement results in a trajectory which hits the target. Clearly, the absence of the fluid medium would result in a collection efficiency of one, because the particles would travel in straight lines, and massless particles would have a collection efficiency of zero, because the particles would follow fluid streamlines around the target without impaction.

14. The task at hand is to calculate the collection efficiency for any given test situation. This is done using a half-interval method to

#### UNCLASSIFIED

find the boundaries of the envelope. A series of particles are considered. each of which begins on the starting plane with the same initial velocity (Figure 4). Two initial particle positions are required to start the procedure: an 'inside' one that results in target impaction (P2) and an 'outside' one that results in target miss (P1). A third position (P3) is calculated such that it lies halfway between the first two points: this particle is then tracked to the target. If it misses, the (P3) becomes the new 'outside' position and a new starting position is chosen at (P4). If it hits, then (P3) becomes the new 'inside' position, and a new starting position is chosen at (P5). The distance between the inside and outside positions is successively reduced by half, and it asymptotes to the In this manner, the envelope boundary is defined, envelope boundary. allowing its area to be calculated for use in equation [23]. Note that the boundary is generally a two-dimensional curve on the starting plane which requires a large number of boundary points before an accurate estimation of its shape and size can be made.

# Target Geometry For Spheres

15. The fluid velocity field around a sphere is given in terms of polar coordinates<sup>4</sup>:

$$U_r = U \cos \Theta \left[ 1 - \left(\frac{L}{r}\right)^3 \right]$$
 [24]

$$U_{\theta} = -U \sin \theta \left[ 1 + 1/2 \left( \frac{L}{r} \right)^3 \right]$$
 [25]

These equations are valid for any plane passing through the origin of the sphere and parallel to the x-axis of Frame 1. Let us designate such a plane as Frame 0 with x, n,  $\psi$  axes; Frame 1 is related to Frame 0 by the

#### UNCLASSIFIED

rotation angle  $\beta$  about the x-axis (Figure 5). In terms of Frame 0 cartesian coordinates, equations [24] and [25] become:

$$U_{x} = U\cos^{2} \Theta \left[1 - \left(\frac{L}{r}\right)^{3}\right] + U\sin^{2} \Theta \left[1 + \frac{1}{2}\left(\frac{L}{r}\right)^{3}\right]$$
 [26]

$$U_{n} = \frac{-3U}{2} \left(\frac{L}{r}\right)^{3} \cos \Theta \sin \Theta \qquad [27]$$

$$U_{\psi} = 0$$
 [28]

Equation [28] is obtained by inspection. These three equations can be used to specify the velocity field at any point in space in Frame 1 via a suitable rotation of Frame 0 to align it with the position of interest. In matrix notation, the required velocity components are generated as follows:

$$\begin{array}{c} U_{X} \\ U_{X} \\ U_{Y} \\ U_{Z} \end{array} = \left( \begin{array}{c} 1 & 0 & 0 \\ 0 & \cos\beta & - & \sin\beta \\ 0 & \sin\beta & \cos\beta \end{array} \right) \left( \begin{array}{c} U_{X} \\ U_{X} \\ U_{\psi} \end{array} \right)$$
 [29]

Upon evaluation we get:

$$U_{x} = U \cos^{2}\Theta \left[1 - \left(\frac{L}{r}\right)^{3}\right] + U \sin^{2}\Theta \left[1 + \frac{L}{r}\right]^{3}$$
[30]

$$U_{y} = \frac{-3U}{2} \left( \frac{L}{r} \right)^{3} \cos \Theta \sin \Theta \cos \beta \qquad [31]$$

# UNCLASSIFIED

$$U_{z} = \frac{-3U(L)^{3}}{2} \cos \Theta \sin \Theta \sin \beta$$
 [32]

By definition, we obtain these auxiliary equations:

$$r = (x^2 + y^2 + z^2)^{1/2}$$
 [33]

$$\beta = \tan^{-1} \left( \frac{z}{y} \right)$$
 [34]

$$\Theta = \tan^{-1} \left( \frac{y \cos \beta + z \sin \beta}{x} \right)$$
 [35]

16. Due to the wide range of initial particle velocities angles  $\gamma$ , it was decided that calculations would be simplified if done in a reference frame aligned at  $\gamma$  to Frame 1. Consequently, Frame 2 was defined for each particle test such that the starting plane was perpendicular to the initial particle direction (Figure 6). All transformed into this frame by means of the following rotation matrix:

$$C_{21} = \begin{vmatrix} \cos \gamma & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \gamma & 0 & \cos \gamma \end{vmatrix}$$
[36]

17. The collection envelope for this sphere geometry was necessarily two-dimensional. Essentially, the half-interval method was used to calculate z' boundary values for a series of y coordinates; the y' boundaries themselves were also calculated by means of the half-interval method. The set of boundary points (y', z') were then connected by cubic splines and then the enclosed envelope area calculated.

#### UNCLASSIFIED

# Target Geometry For Horizontal Cylinders

18. In reference Frame 1 (previously defined for spherical geometry) the fluid velocity field is given by the following equations<sup>5</sup>:

$$U_{x} = U \left[ \frac{1 - \frac{L^{2}(x^{2} - z^{2})}{r^{4}} \right]$$
 [37]

$$U_{\mathbf{y}} = 0 \qquad [38]$$

$$U_z = \frac{-2UxzL^2}{r^4}$$
 [39]

where 
$$r = (x^2 + z^2)^{1/2}$$
 [40]

It is readily deduced from these equations that the particle motion will be confined to the x-z plane provided that the initial particle velocity in the y direction is zero. That velocity was set to zero in accordance with the previously stated initial conditions; therefore, this problem was twodimensional.

19. As with the spherical geometry, Frame 2 was defined and used as the main frame in which all motion and envelope calculations were made. Due to the planar motion, the envelope was only one-dimensional, requiring only an 'upper' and a 'lower' boundary to be calculated (Figure 7). This case is consequently very much simpler than that of the spheres.

# Target Geometry For Vertical Cylinders

20. The theory here is essentially the same as in the horizontal

#### UNCLASSIFIED

cylinder case. The only change involves the flow field which was changed to the x-y plane from the x-z plane in Frame 1 (Figure 8). The flow equations are:

$$U_{X} = U \left[ 1 - \frac{L^{2} (x^{2} - y^{2})}{r^{4}} \right]$$
 [40]

$$U_{y} = \frac{-2UxyL^2}{r^4}$$
 [41]

$$U_{z} = 0 \qquad [42]$$

where 
$$r = (x^2 + y^2)^{1/2}$$
 [43]

21. The combination of an infinite vertical cylinder with the required five target radii starting position from the cylinder, removed the usefulness of Reference Frame 2. Therefore, Frame 1 was chosen as the frame for motion and envelope calculations. Due to the motion symmetry about the x-axis and the z-axis, only a y-boundary needed to be calculated for the envelope; clearly, any z-coordinate starting position will result in a similar trajectory that differs only by a fixed z-direction displacement.

#### Target Geometry For Man Simulation

22. This simulation was rather crude, and it comprised many simplifying approximations (Figure 9). First, a vertical cylinder of approximate man dimensions was used since the determination of the flow field around a man was much too complicated a proposition for this project. Second, the flow field of an infinitely long cylinder was used because a calculation of end flow conditions around a finite cylinder was deemed too complicated for a first approximation model like this one. Third, the particles which impacted on the top of the cylinder were ignored.

# UNCLASSIFIED

23. A major component of this model was the inclusion of a wind gradient to mimic the Earth's own boundary layer. Essentially, the horizontal windspeed is a function of height above the ground. The equation used was:

$$U(Z) = U_1 \left(\frac{Z}{Z_1}\right)^{1/7}$$
 [44]

The base point  $(Z_1, U_1)$  scales the curve; for this application, the basis used was:

$$U_1 = 1.0, 1.5, 2.5, 5.0 \text{ and } 7.5 \text{ m/s}$$
 [46]

Therefore, five tests were conducted at five different reference windspeeds.

24. The flow equations for vertical cylinders, equations [40] to [42] were modified for this simulation by replacing the factor U with  $U_{(Z)}$  as defined in equation [44]. The resulting flow equations were:

$$U_{x} = U_{1} \left(\frac{z}{5}\right)^{1/7} \left[1 - \frac{L^{2}(x^{2} - y^{2})}{r^{4}}\right]$$
 [47]

$$U_{y} = U_{1} \left(\frac{Z}{5}\right)^{1/7} \left[-\frac{2xyL^{2}}{r^{4}}\right]$$
 [48]

$$U_z = 0$$
 [49]

# UNCLASSIFIED

g

÷

25. As for the vertical cylinders, Reference Frame 1 is used for all motion and envelope calculations. The presence of the wind gradient destroys the problem symmetry in the z-direction; therefore, the envelope on the starting plane was necessarily two-dimensional. Its calculation was quite similar to that of the spherical targets. Specifically, the bounds in the z-direction were found by the half interval method, then the ybounds were calculated for eleven equally spaced z-coordinates over this interval. The resulting boundary points (z,y) were then integrated to yield the enclosed envelope area.

26. In order to relate the chemical concentration on a man to that which falls on the ground, an extra number was introduced, termed the ground fraction (G). It was defined by equation [50]:

(This man concentration is based on frontal cross-sectional area, not surface area.)

Calculation of G combined the factors of collection efficiency with the relative areas of impact regarding the target and the corresponding ground; the equation was:

$$G = \frac{\text{Collection Efficiency}}{\tan \alpha}$$
[51]

In this equation,  $\alpha$  is a representative trajectory angle of all particles in the envelope; note that the trajectories are not straight lines because of the wind gradient. The angle  $\alpha$  is that between the horizontal and the line connecting the top of the 'man' to the top of the envelope.

#### UNCLASSIFIED

#### Computer Programs

27. During the course of the project, several computer programs were written. Four collection efficiency programs were written; one for each geometrical case. Two programs were written to tabulate and plot chemical particle trajectories for the sphere and horizontal cylinder cases; these programs were used primarily for verification of the motion model. Finally, a number of utility programs were written to tabulate and graph results. All programs were written in the Honeywell FORTRAN-77 language and executed on the Honeywell CP-6 computer at DRES.

28. The collection efficiency and trajectory plotting programs shared features, most importantly, the initial condition and motion many calculations. This redundancy, coupled with space limitations, has limited the program listing in this report to just two representative programs: AEROSOL-8 which performed the man simulation (Appendix A), and AEROSOL-6, which performed the trajectory plotting for horizontal cylinders (Appendix The only real difference between these programs and their sister B). programs was in geometry; different target geometries required different envelope calculations and sometimes different reference frames, as has been illustrated in the previous section. Implementation of the background theory on the computer was quite similar for the different geometries, and will now be explained in detail for programs AEROSOL-8 and AEROSOL-6.

29. AEROSOL-8 was designed to accommodate five sets of test conditions (the '700 loop', commencing line 50). The test conditions, namely windspeed, target radius and chemical particle density, were obtained from the data file AEROINFO. The program then proceeded to calculate collection efficiencies for a range of particle sizes which were stored in the array SIZE(10). This loop (the '650 loop', commencing line 63) comprised four main sections: calculation of initial conditions (lines

# UNCLASSIFIED

68-83), calculation of the z-direction envelope boundaries (lines 86-138), calculation of the y-direction envelope boundaries (lines 141-161) and calculation of resulting collection efficiency (lines 164-172). The implementation of the background theory in these sections was relatively straightforward except for the following points. First, in order to implement the half-interval method, a starting position which results in particle impact must be found; in the z-direction, it was searched for (the '200 loop', commencing line 95), but in the y-direction it was assumed that y=0 resulted in impact since it lay on the target centerline and would experience no sideways drag force. Secondly, preliminary calculations showed that the y-bounds increased monotonically with increasing zcoordinate, therefore the previous y-boundary value (variable YMEM, line 143) was used as the 'inside' position for the ensuing half-interval calculation. Finally, note that the problem was symmetrical about the yaxis, requiring that only positive y-boundaries be calculated for the envelope.

The TRAJECTORY subroutine comprised all of the motion calcula-30. tions from initial conditions to a determination of particle impact or Upon receipt of the initial conditions, the subroutine sets up an miss. iterative loop (the '10 loop', commencing on line 244) to 'move' the particle towards the target. The iteration involved five main steps: calculation of local flow velocity (lines 248-252), calculation of Reynold's number and Drag Coefficient (lines 254-279), solution of the differential equations of motion over a predetermined time interval (lines 284-291), testing for impact or miss (lines 291-297) and adjustment of the differential equation step-size if the iteration is to continue (lines 303-305). Note that the step-size is governed by the choice of the variable DT, not the IMSL routine DVERK, because the positional dependence of the flow velocity requires frequent updating. DVERK could not accommodate nonconstant coefficients, and in practice performed only one step per call due

## UNCLASSIFIED

to the choice of DT which determined the end condition TEND. This also meant that the DVERK accuracy parameter TOL was of no practical importance; its assigned value of 0.01 was arbitrary.

31. The remaining two program subroutines require no detailed explanation above the internal documentation notes. Note that a partial output is included with the program listing in Appendix A.

32. AEROSOL-6 was designed to plot particle 'streamlines' near a horizontal cylindrical target. It was restricted to one size of particle, which can be arbitrarily set, and one set of test conditions. The calculation of initial conditions (lines 64-84) was identical to that of AEROSOL-8, with the exception of the ability to perform in a no gravity environment; hence, this program could recognize and plot streamlines for a hypothetical no gravity situation. The motion analysis section (the '60 loop', commencing on line 105) was the same as that of AEROSOL-8.

33. The one aspect of AEROSOL-6 that differs from AEROSOL-8 was the trajectory plotting. To fully understand the details of this plotting, one must study the CALCOMP Electromechanical Plotters User's Manual (From California Computer Products, Inc.). As far as this project was concerned, CALCOMP provided a list of subroutines which could be called upon to draw graphs; separate subroutines could draw axes, plot lines, print titles and draw other graph elements. In AEROSOL-6, the arrays XVAL(500) and ZVAL(500) were used to store the x and z coordinates of each successive particle location. This data was then sent to the CALCOMP System and plotted (lines 211-241). Examples of these trajectory plots as given in Figures 10 and 11, and a sample output is included in Appendix B with the program listing.

## UNCLASSIFIED

# RESULTS

34. The computer generated collection efficiency results for all four geometrical cases are listed in Tables I-VIII. Figures 10 and 11 show trajectory pictures generated by AEROSOL-6. Figures 12-15 show representative and comparative graphs based on the data contained in Tables I-VIII. Although a detailed analysis of these results will be conducted in the next section, the acquisition and content of these results require some explanations. Note that all results are in MKS units unless otherwise stated.

35. Sphere runs S1 to S10, and horizontal cylinder results C1 to C10 were all performed under gravity and no gravity conditions to calculate the effect of gravity on the problem. These results are listed side by side in Tables I, II, IV and V. At the bottom of each double column are two sets of numbers labelled 'maximum positive change', and 'maximum negative change'. These are simply the greatest divergence values between the two sets of data, recorded as either a positive or a negative divergence relative to the gravity values. The numbers in brackets are the particle sizes corresponding to those divergences.

36. Because spheres were the first geometrical case to be studied, a few extra runs were conducted in order to evaluate the validity and the accuracy of the motion model. The accuracy test, run S11, used half the step-size as run S2 in order to check the numerical accuracy of the method. In actuality, several accuracy checks were conducted, resulting in many step-size modifications until the final accuracy level was achieved. The similarity test, runs S12 and S13, was conducted in an attempt to validate the motion model. According to the principles of fluid mechanics, tests with the same set of non-dimensional numbers must yield identical results. Here, there are three non-dimensional numbers which describe the problem:

# UNCLASSIFIED

 $C_D$ ,  $Re_o$ , F. These were kept constant for runs S2, S12, and S13, but the constitutive parameters (U, L, F, P, g) were varied to learn whether or not the results would change. A change in the results would indicate that the motion model was flawed.

37. The computer time required for solution of test runs varied considerably with the problem geometry. The one-dimensional nature of the horizontal and vertical cylinder envelopes resulted in very little computer execution time, typically ten minutes or less per test. (By way of clarification, a 'test' refers to the calculation of collection efficiencies for all ten particle sizes under a given set of windspeed, target size and particle density values. Each column in Tables I-VIII represents one test.) The two-dimensional envelopes for the sphere cases typically required one and a half hours per test. The man simulation was somewhat peculiar. Because the particles travelled almost horizontally in test M1, it required only twenty minutes; but the more vertical trajectories of test M4 and M5 resulted in much longer trajectories (note that the horizontal distance travelled remained constant so as to minimize the cylinder flow perturbation at start) and execution times of up to six Actually, the collection efficiencies for the 2000 µm hours per test. particle were not calculated for tests M4 and M5, and the 1000 µm particle collection efficiency was not calculated for M5. The reason was that hours of execution time would have been required for each particle, a cost which was not thought to be worthwhile. The absence of these three values is indicated in Tables VII and VIII by a negative value.

38. Finally, note that the graphs plotted in Figures 12-15 were done using small plotting programs written during the project. These programs are not listed in this report.

# UNCLASSIFIED

#### DISCUSSION

39. The computed similarity and accuracy test results (Table III) verified the motion model and provided an indication of its accuracy. The accuracy test clearly showed that numerical accuracy improved with increasing particle size. This was because larger particles were less affected by drag forces, and it was the drag force which exhibited nonlinear behaviour with position, making it the most difficult aspect to numerically approximate. This also accounted for the observation that all errors were positive, because the total influence of the drag force (and hence the greatest particle deflection) will only be attained in the limit as the number of steps approaches infinity. Hence, the drag force was underestimated by this model. Since the overall collection efficiency was the chief result sought, the relative error was of less importance here; that is to say, the large relative error of the smallest particles was made insignificant by the very small collection efficiencies involved. Based on the absolute errors tabulated, the maximum error present in the calculations was on the order of + 0.003 for the collection efficiency (+ 0.3% for the values in Tables I-VII). It should be noted that the computer model worked to four significant digits in distance values (0.1 mm or 100  $\mu$ m). Since the targets were generally 0.1 m in radius, 0.1 mm represents an accuracy to 0.1%.

40. The results of the similarity test were within numerical error for all three runs, provided that one qualification to the collection efficiency error value of + 0.003 be accepted; specifically, that the absolute collection error was a function of the target size in addition to step-size. It seems plausible that the relative magnitude of the step size to the target size would influence numerical accuracy, since an increase in the target size would attenuate the rate of change of the drag force over distance, allowing a greater accuracy for the same step size. As proof,

#### UNCLASSIFIED

note that the S12 and S13 results are within .003 of each other, with the S13 values uniformly lower; this suggests that its larger target radius (L=0.15) improved numerical accuracy, since the step sizes were equal. Conversely, the small target size of test S12 seemed to have degraded numerical accuracy; the S12 values were up to .008 higher than the S2 values. In summary, the results of tests S2, S12 and S13 were deemed sufficiently close as to be judged the same to within numerical error.

41. Figures 10 and 11 qualitatively demonstrate many of the aspects of this motion problem. The smaller particle (Figure 10) showed a mostly horizontal trajectory which indicated low terminal velocity. Close to the cylinder, all trajectories were substantially deflected to the extent that only one particle impacted on the cylinder. This was an indication that the collection efficiency would be low for this small (50  $\mu$ m) particle. Figure 11 demonstrated the aspects of large particle motion. The trajectory was much steeper due to a higher terminal velocity. There was almost no particle deflection; consequently, one would expect a high collection efficiency for this large (250  $\mu$ m) particle. Reference to run C4 which had the same test conditions as in Figures 10 and 11, yielded the expected magnitude of collection efficiencies: a low 14.11% for 50  $\mu$ m, and a high 93.70% for 250  $\mu$ m. The qualitative model verification by these and many other trajectory pictures supported the similarity tests and led us to conclude that the motion model was valid.

42. The collection efficiency test results for spheres and cylinders yielded many noteworthy features, most of which will be discussed in the next few pages. We will start with the effect of gravity on the motion results.

43. All of the sphere and horizontal cylinder tests (S1 - S10 and C1 -C10) produced results similar to that shown in Figure 12. The sigmoidal

## UNCLASSIFIED

shape of the curve agreed with the previous theoretical work.<sup>7</sup> The most notable feature of the double curve plot in Figure 12 was the crossing of the two curves between 100  $\mu$ m and 250  $\mu$ m particle sizes; this was thought to be due to the following reasons. For larger particles, gravity caused the particles to fall with a terminal velocity close to or greater than the horizontal free stream velocity. Hence, the particle's inertia was significantly greater, rendering the particle much less susceptible to deflection by the diverging fluid streamlines around the target. This resulted in a collection efficiency with gravity, as evidenced by the larger particles in Figure 12.

44. The gravity-decrease effect on the smaller particles was much more difficult to explain. First, the terminal velocity was low, virtually insignificant compared to the free stream velocity; therefore, the particle's inertia was not noticeably higher. This allowed a second factor to make a discernible impact on the motion; this factor was a motion asymmetry around the target due to gravitational effects. The envelope results for test C3 (Table 9) illustrate this asymmetry. It can be seen that gravitational effects decrease the upper bound more than they increase the lower bound for particles of 50 - 100  $\mu$ m, which was the range of the gravity decrease effect in Figure 12. The explanation of this asymmetry was as follows. Near the upper boundary, the fluid streamlines are deflected upwards by the target, in effect flowing crossways to the particle motion vector, thereby increasing the local Reynold's numbers and hence the drag force, resulting in a smaller boundary. At the lower boundary, however, the fluid streamlines are deflected in the direction of the particle motion vector (that is, diagonally downwards) thereby reducing the local Reynold's number and the drag force, resulting in a larger boundary. The non-linear nature of the problem was such that the former effect was greater than the latter effect, resulting in lower collection efficiencies for particles in this motion regime when gravity was included.

#### UNCLASSIFIED

45. Generally, gravitational effects altered collection efficiencies in these tests by less than  $\pm 3\%$  (Tables I, II, IV, V). The exceptions were tests involving low windspeeds, speeds of 1.5 m/s or less. The greatest difference was found in test S5; there, gravity added 21.2% to the collection efficiency of 100  $\mu$ m particles. Note that the crossover point between the gravity and no gravity curves in this test was not present; all differences were positive. Generally, the crossover point decreased in particle size with decreased windspeed.

46. In summary, the gravity effect on collection efficiencies was negligible except in cases of low windspeed. Other facets of the sphere and cylinder studies will now be explored.

47. Figure 13 compared the collection efficiencies of the vertical cylinder, the horizontal cylinder and cylinder no gravity cases, under the same test conditions. (Note that in the absence of gravity, the vertical and horizontal cylinders were geometrically equivalent.) The crossover of the no gravity and horizontal cylinder curves occurred at 500 µm; the gravity effect was minimal here as would be expected from the high windspeed. The vertical cylinder curve was lower than either of the other curves, except for a brief particle range around 100 µm. The reduced collection efficiency was easily explained: as particles approached the cylinder, they initially deccelerated, thereby increasing the trajectory angle relative to the horizontal (the terminal velocity remains almost constant) and provided more time for the diverging fluid streamlines to deflect the particle. The exception at 100  $\mu$ m was probably a result of the asymmetrical particle flow around the horizontal cylinder, postulated before as the explanation for the gravity-decrease effect. The vertical cylinder possessed symmetrical flow conditions and was therefore not affected. However, the steepening trajectory effect with vertical cylinders still lowered the collection efficiency relative to the no gravity case; the reduction was just marginally less than that of the horizontal cylinders.

## UNCLASSIFIED

48. Figure 14 compared the two cylinder geometries to spheres, under slightly different test conditions than in Figure 13. Spheres clearly possessed higher collection efficiencies than cylinders for all particle sizes. This can be understood in light of the fact that cylinders perturb the flow more than spheres, in the sense that cylinders represented a greater obstacle to the flow and thus cause faster fluid motion around the peripherv. This larger fluid velocity represented a greater drag force which tended to deflect the particles away from the target; hence, the collection efficiencies were lower. The relationship between the vertical and horizontal cylinder curves was the same as in Figure 13 except that the difference here was smaller because of the smaller target size. It should be noted that Figures 13 and 14 were representative of all of the test results listed in Tables I to VI, and were not just the product of those specific test conditions.

49. Some general observations on the sphere and cylinder studies will In all three cases, a decrease in windspeed resulted in now be made. reduced collection efficiency for any given particle size. Evidently, the reduced drag force was more than compensated for by the decrease in particle inertia. Increased particle density appeared to merely shift collection efficiency values from larger to smaller particles; equivalently, plots of collection efficiency vs log (particle radius) were translated left. The reason for this was that particle terminal velocity and inertia were increased, rendering the particles more difficult to deflect. A reduction in target size had the same effect as increased particle density. The explanation in this case, however, was that larger targets create more far-reaching flow perturbations, the net effect of which was subject to incoming particles to greater deflecting drag forces; conversely, smaller targets resulted in less deflecting drag forces.

50. The remaining discussion will focus on the man simulation results. Although the ground fraction values are of most importance here,

# UNCLASSIFIED

a brief comparison of the collection efficiency results in Tables VI and VII needs to be done. The only difference between the two tests was that the 'M' tests (Table VII) incorporated a velocity gradient from the ground up. This velocity gradient significantly lowered the collection efficiency for all particle sizes. The reason was that as the particles fell, the windspeed decreased which in turn decreased the particle's horizontal speed. As in all previous cases of reduced windspeed, this must result in reduced collection efficiency.

51. The ground fraction results demonstrated several noteworthy features. Most striking were the greater than unity ground fractions for some of the particles in high windspeed tests. This was due to almost horizontal particle trajectories for these cases; near horizontal trajectories will result in low ground concentration since the particles will be distributed over a large area. Clearly, objects standing vertically in such a situation could receive greater concentrations than the ground.

52. Figure 15 showed three curves corresponding to tests M1, M2 and M3. The central peak in each curve resulted from the interaction of two effects. For small particles, the collection efficiency was so small that the ground fraction was zero; for large particles, their near vertical trajectories meant that relatively few could impact on the vertical sides of the cylinder, so that the ground fraction was again near zero. Both ground fraction reducing effects decreased toward the opposite end of the particle size spectrum; therefore, the largest ground fractions occurred in the middle region, in which neither effect dominated. This peak migrated from 50  $\mu$ m in the upper curve to 100  $\mu$ m in the lower curve.

53. The tremendous effect of windspeed was well illustrated by Figure 15. The lower windspeeds possessed very low ground fractions; note that a maximum ground fraction of 0.17 was calculated for the 1.0 m/s windspeed

#### UNCLASSIFIED

case. The reason for this was that particle trajectories were near vertical for such low windspeeds; hence, little particle impaction could occur on the vertical cylinder sides.

54. The man simulation model in this project was undoubtedly crude. Nevertheless, the essential aspects of this kind of man simulation problem were believed to have been demonstrated, even though the flow geometry was drastically simplified. Some speculative conclusions will now be drawn from the ground fraction data.

55. The curves of Figure 15 indicate that the largest aerosol particles are not suitable for impacting on a standing man; in fact, the best particle size is around 100  $\mu$ m. This must be viewed in light of two important qualifiers: first, the smaller particles will travel further from the dissemination point, resulting in lower ground concentrations to begin with; and second, aerosols from materials with some volatility will tend to evaporate as they move downwind, so that the smaller particles might disappear altogether. Note that the evaporative characteristics will also influence ground persistence of the chemical, which is another vital consideration. Nonetheless, these ground fraction results suggest that an upper limit for ideal particle size for impaction on a man may exist.

56. The subject of man motion under this kind of chemical particle bombardment was not considered in the project. Although authoritative comments will have to wait until detailed work is done, there is one speculation that needs to be recorded here. Specifically, if the man were walking in the direction of the wind, the particle trajectories would assume a more vertical shape in the man's frame of reference. This would be equivalent to a man-stationary, reduced windspeed problem such as was studied in this project; and according to those results, the ground fraction, and hence the man contamination, would be reduced. Incorporation

## UNCLASSIFIED

of a moving target into this simulation model is a logical next step for research, one that would help to resolve the speculation suggested above.

### CONCLUSIONS

57. The numerical tests conducted with spherical cylindrical targets indicated that gravitational effects altered the collection efficiencies insignificantly, on the order of  $\pm$  3% (absolute), provided that the free stream velocity was 2.5 m/s or higher. Lower free stream velocities resulted in much greater gravitational effects, up to 21.2% (absolute) for 100 µm particles impacting on a spherical target. Changes in the particle density and target size were found to have a negligible effect on the importance of gravity in the problem.

58. The man simulation tests indicated that a man would receive the most chemical relative to the ground concentration for particles on the order of 100  $\mu$ m radius. In fact, he could receive up to 6.9 times the ground concentration. Although there were mitigating factors, the analysis suggested that an upper limit may exist for the ideal particle size in considering impaction on a standing man.

# /26

# REFERENCES

- 1. Mellsen, S.B., "The Impaction Force of Airborne Particles on Spheres and Cylinders", Suffield Technical Paper No. 486, 1978, UNCLASSIFIED.
- 2. Saucier, Richard, "A Mathematical Model For Liquid Impaction On A Moving Vehicle", Technical Report ARCSL-TR-82046, Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland, 1983 UNCLASSIFIED
- 4. Prandtl, L. and Tietjens, O.G., <u>Fundamentals Of Hydro- and</u> <u>Aeromechanics</u>, Dover Publications, Inc., New York, N.Y. (1957) pp 149-151
- 6. Wark, Kenneth and Warner, Cecil F., <u>Air Pollution: Its Origin and</u> Control, Harper and Row Publishers, New York, N.Y. (1981) p 84
- 7. Friedlander, S.K., <u>Smoke, Dust and Haze: Fundamentals of Aerosol</u> Behaviour, John Wiley & Sons, Inc., Toronto (1977) pp 104-109

#### UNCLASSIFIED

į.

S SPHERE u.  $\boldsymbol{o}$ S ш EFFICIENCI NLYBER ~ TAFLE EST CCLLECTICN

S 5

73

M

S

ŝ

5

. • •

•

UNCLASSIFIED NCCRAV 45.25 54.52 92.57 93.34 +21.2C ( 10C.) • • 00 • • 1000 N GRAV. NDSRAV +3.23 ( 25C.) ••• ••• ••• C3 05 19.66 41.25 59.45 05.52 09.75 99.99 SRAV J **NDGRAV** C2 2.40 29.33 51.75 62°50 50°50 52°50 52°50 52°50 52°50 +2.02 ( 500.) -2.24 2000 GRAV NCCRAV -04 -04 -64 -11-25 -65-23 76.14 97.95 97.95 99.37 99.37 +.25 (1000.) -2.0% **SRAU** ACCRAV +.C6 (2000.) -1.45 ( 25C.) 7.5 010. GRAV. iIJ PARTICLE RADILS K INCOF R A D T A R D E N F A R MAX PCS. Change MAX NEG. Change 10. 255. 250. 100 250 500 500 N **UNCLASSIFIED** 

SM 1102

PERCENTAGES

IN MICPCAS. Are given in

E GIVEN

A P E

PARTICLE RADII Collection EFF

1-4

|                                    |              | 1<br>1                                |                           | Í                                                        | UNCLASSIFIED                                                                                                                                               | SM 1102                                            |
|------------------------------------|--------------|---------------------------------------|---------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                    | S1C          | 5.0<br>1000                           | GRAV HOGRAV               | 54.50 54.50<br>76.37 77.00<br>92.72 92.35<br>96.56 97.22 | 99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>99.99<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 |                                                    |
| E F F S                            | 5 S          | 5.0<br>.05<br>1000                    | GRAV NOGRAV               | 7.35 7.33<br>29.94 29.97<br>55.16 65.70<br>75.11 80.26   | 55.75 E7.18<br>95.21 97.16<br>99.12 99.20<br>99.99 99.95<br>99.99 59.95<br>1000.1<br>1000.1                                                                |                                                    |
| SLE 2<br>SLE 2<br>Ictencies of SPH | NLWJER<br>SS | 5.3<br>.15<br>1000                    | GRAV NOCRAV               | 4.52 4.51<br>32.29 32.69<br>52.69 51                     | 64.75 67.67<br>85.63 96.85<br>96.53 96.85<br>99.34 93.95<br>99.67<br>+ 41<br>(100.)<br>(100.)                                                              | PERCENTAGES.                                       |
| TAE<br>CCLLECTION EFF1             | TEST<br>S7   | 5.5<br>.10<br>5602.                   | 6ÅÅV NCGRAV<br>9.09 9.05  | 28.74 28.79<br>56.52 57.09<br>81.80 83.41<br>50 95 01.22 | c3.60 04.51<br>c9.33 95.95<br>c9.99 95.99<br>55.99 95.99<br>c9.99 95.99<br>c1.61<br>c 250.)                                                                | L IN KICRORS.<br>ARE GILLER<br>ARE CILLER<br>ARE S |
|                                    | ф<br>US      | 5.C<br>.10<br>20CC.                   | 62AV ACSRAV<br>1.3C 1.2C  | 11.32 11.33<br>37.15 37.35<br>70.05 71.46<br>80 68 84 60 | E7.92 59.71<br>97.66 97.67<br>99.71 99.51<br>99.99 99<br>99.99 99<br>+ 40<br>- 1.92<br>- 1.92<br>- 1.92                                                    | RADII ARE GIVET                                    |
|                                    |              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | PARTICLË<br>Radius<br>10. | 15.<br>25.                                               | UNCLASSIFIED                                                                                                                                               | PARTICLE<br>CCLLECTI(                              |

| |-|
## TABLE III MISCELLANEOUS SPHERE RUNS

|                    | A                          | CCURACY TI                 | EST           |               |   |                    | SIMILAR                    | ITY TEST                   |                             |   |
|--------------------|----------------------------|----------------------------|---------------|---------------|---|--------------------|----------------------------|----------------------------|-----------------------------|---|
|                    | S2                         | S11                        | ABS.<br>Error | REL.<br>ERROR |   |                    | S2                         | S12                        | S13                         |   |
| U<br>L<br>F<br>P   | 5.0<br>0.1<br>25.5<br>1000 | 5.0<br>0.1<br>25.5<br>1000 |               |               |   | U<br>L<br>F<br>P   | 5.0<br>0.1<br>25.5<br>1000 | 5.0<br>0.05<br>25.5<br>500 | 5.0<br>0.15<br>25.5<br>1500 |   |
| g<br>              | 9.81                       | 9.81                       |               |               |   | g                  | 9.81                       | 19.62                      | 6.54                        |   |
| PARTICLE<br>RADIUS |                            |                            |               |               |   | PARTICLE<br>RADIUS |                            |                            |                             |   |
| 10                 | .00044                     | .00032                     | .00012        | 37.5%         |   | 10                 | .00044                     | .00156                     | .00020                      |   |
| 15                 | .00640                     | .00515                     | .00125        | 24.3%         |   | 15                 | .00640                     | .01010                     | .00493                      |   |
| 25                 | .11263                     | .11008                     | .00255        | 2.3%          |   | 25                 | .11263                     | .12058                     | .10988                      |   |
| 50                 | .44986                     | .44751                     | .00235        | 0.5%          |   | 50                 | .44986                     | .45592                     | .44775                      |   |
| 75                 | .63808                     | .63635                     | .00173        | 0.3%          |   | 75                 | .63808                     | .64261                     | .63666                      |   |
| 100                | .74054                     | .73904                     | .00150        | 0.2%          | i | 100                | .74054                     | .74426                     | .73934                      | ľ |
| 250                | .92237                     | .92182                     | .00060        | 0.06%         |   | 250                | .92237                     | .92443                     | .92158                      |   |
| 500                | .97778                     | .97771                     | .00007        | 0.007%        |   | 500                | .97778                     | .97978                     | .97725                      | ŀ |
| 1000               | .99656                     | .99656                     | _             |               |   | 1000               | .99656                     | .99792                     | .99603                      |   |
| 2000               | 1.00032                    | 1.00032                    | -             | -             |   | <b>20</b> 00       | 1.00032                    | 1.00217                    | 1.00001                     |   |

UNCLASSIFIED

. مو<sup>1</sup>اس

|         | CYLINDERS    |
|---------|--------------|
|         | ч<br>С       |
| TAPLE 4 | EFFICIENCIES |
|         | CCLLECTION   |

E

•

- . . . .

.

í

and a state that the state

.

TEST NUNGER

| C 'S | 1.0                        | • 10      | NDGRAV             |                  |      | ) (<br>- (<br>- ( | ר:<br> <br> | 27.75  |       | 7 2 4 2        | 92.25  | c7.36   | 9.12           |
|------|----------------------------|-----------|--------------------|------------------|------|-------------------|-------------|--------|-------|----------------|--------|---------|----------------|
|      |                            | Ę         | GRAV               |                  |      |                   | 11.11       | 101-25 | 54.44 | 9e.05          | 17.06  | 59.55   | 05 * 6 5       |
| C 4  | 1.5                        |           | NDGRAV             | 0<br>0           |      | 52                | 13.53       | 12.52  | 47.36 | 82 <b>.</b> 91 | 76° N5 | 55 25   | 55.35          |
|      |                            | £         | GRAV               | 5<br>5<br>1<br>1 | .10  | • 5 5             | 14.11       | 23.42  | 50.05 | 93.70          | 99.02  | C3°05   | 05°56          |
| 5    | 2.5                        | -0        | NJERAV             | ن<br>۲           | .10  | 1.56              | 23.57       | 43.55  | 57.81 | 87.11          | 95.41  | 92.44   | 17°65          |
| 1    |                            | <b>f</b>  | GRAV               | 01.              | 10   | 1.65              | 23.05       | 41-50  | 55.08 | 29.50          | 95-24  | 95.56   | 06 * 55        |
| c 2  | () •<br>() •               |           | NCGPAV             | .10              | - 49 | 07 ° d            | 97.99       | 52.62  | 27-59 | 91.11          | 96.78  | 95.33   | ¢€.61          |
|      |                            | ſ         | GRAV               | .10              | • 49 | 2.35              | 37.60       | 56-05  | 60.73 | 56.93          | 96.78  | 99.27   | 55-80          |
| c 1  | 2. S                       | -00-      | NCGRAV             | • 20             | 1.66 | 14.45             | 45.19       | 64.35  | 74.71 | 52.58          | 57.27  | 20.65   | 55 <b>.</b> 51 |
|      |                            | <b>4-</b> | GRAV               | .15              | 1.71 | 14.4C             | 45.95       | 03.43  | 73.24 | 90.77          | 96.29  | 26 - 25 | 55.65          |
|      | R I N C C R<br>R A D T A R | DENPAR    | PÅRTICLE<br>Rådius | 10.              | -22. | 25.               | •<br>ວິດ    |        | 100.  | 25C.           | 500.   | 1000.   | 2000.          |
|      |                            |           |                    |                  |      |                   |             |        |       | 1              | Ū      | ٩C      | LA             |

MAX NEG. Change MAX POS. Change UNCLASSIFIED

UNCLASSIFIED

t

ł

+17.53 ( 25C.)

+13.79 ( 25C.)

+2.23 ( 500.)

+.44 (1000.)

+.05

+.00

+.00

-2.73 ( 100.)

-2.34 ( 100.)

-1.95 ( 25C.)

 $\sim$ 

÷

1

PERCENTAGES IN MICRONS. ARE GIVEN IN PARTICLE RADII ARE GIVEN CCLLECTION EFFIECIENCIES

<u>\_</u>

l

.

SM 1102

Ś TAPIC

· - ).

. R.

• -

**P.** 

• • • •

PARTICLE RADII AFE GIVEN IN MICRONS. Collection Efficiencies are given in pepcentages. . 1 ì

-.39 ( 10C.)

-1.56 ( 100.)

-2.56 ( 250.)

-2.10 ( 50.)

-2.39

MAX NEG. Change

į

....

SM 1102

| 4           | C 7  | 1.0<br>.15          |                   |                      | .00  | • 29<br>5 4 2  | 13.23  | ۲4.14<br>14 | 00 00 00 00 00 00 00 00 00 00 00 00 00 |       | SSIFIED                            | SM |  |
|-------------|------|---------------------|-------------------|----------------------|------|----------------|--------|-------------|----------------------------------------|-------|------------------------------------|----|--|
|             | t <  | 1.5<br>.18<br>1000. | IES.              |                      | . 05 | 2.44           | 23.44  | 55.36       | 72.51                                  | 86.18 |                                    |    |  |
| TEST NUMBER | () > | 2.5<br>.18<br>100.  | TION EFFICIENC    | 000                  | -10  | 9.30           | 36.67  | 68.51       | 1 ( ) ( )<br>1 - 1 - 1<br>1 - 1 - 1    | 52.63 | PERCENTAGES.                       |    |  |
|             | Vć   | 5.0<br>.13<br>1000. | 237703            | 00                   | 1.46 | 21.34<br>70 75 | 52.54  | 50°55       | 5 C - 7 C                              | 56.15 | VEN IN MICHONS.<br>Es are given in |    |  |
|             |      |                     |                   | v, v,<br>() =<br>+ ( | 4.54 | 20.00<br>20.00 | 60. RC | 25.55       | 92.53<br>95.65                         | 17.20 | RADII ARE SI<br>N EFFICIENCI       |    |  |
|             |      |                     | ARTICLE<br>Radius | • •<br>ري بر:<br>ج ج | 2.5  | 50.            | 100.   | 250.        | 50C.                                   | 2005  | ARTICLE<br>.CLLECTIC               |    |  |

. .

• • •

|                   |                                     |                 |                                       |                | <br>  UI                | NCLAS          | SIFIED                             | SM 1102 |  |
|-------------------|-------------------------------------|-----------------|---------------------------------------|----------------|-------------------------|----------------|------------------------------------|---------|--|
| <b>č</b>          | 1.0<br>1.1<br>1000.                 |                 |                                       | •05<br>2•02    | 7.14<br>53.41<br>60.05  |                |                                    |         |  |
| 7.                | 1.5<br>.18<br>1000.                 | SEI             | 0000                                  | - 65<br>7 - 77 | 15.41<br>44.77<br>59.05 | 66.59<br>01    |                                    |         |  |
| test Vuyger<br>M3 | 2.5<br>.15<br>1000.                 | LICN EFFICIENC: |                                       | 5.00           | 27.75<br>57.76<br>76.19 | 75.25          | PSPCENTAGES.                       |         |  |
| ru<br>5           | 5.3<br>.13<br>1003.                 | CCLLEC          | • • • • • • • • • • • • • • • • • • • | 15.81<br>32.26 | 44.33<br>71.52<br>90.05 | 82.75<br>92.6C | VEN IN MICRCNS.<br>Es ape given in |         |  |
| 4                 | 7.5<br>.15<br>1000.                 |                 | • • • • • • • • • • • • • • • • • • • | 22.83<br>40.64 | 52.62<br>77.10<br>83.25 | 26.74<br>35.72 | RADII APE GIV<br>1. Efficienci:    |         |  |
| ı                 | 1 N D S P<br>A D T A 1<br>E N F A F | RTICLE<br>Adius | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5C.<br>75.     | 10C.<br>25C.<br>50C.    | 000            | RTICLE<br>LLECTIC                  |         |  |

1. 1. **-** 1. **-** 1.

· · · · · ·

GROUND FRACTICNS FOR MAN SIMULATION

TEST NUMBER G3

6 2

5

GS

94

| 3        | INDSP         | 7.5           | 5.0              | 2.5             | 1.5   | 1.0   |
|----------|---------------|---------------|------------------|-----------------|-------|-------|
| 4        | <b>NDTAR</b>  | <b>.</b><br>0 | .13              | .13             | .18   | .18   |
| D E      | RPAR          | 1000.         | 1000.            | 1000.           | 1000. | 1000. |
| ΡΑĘ      | <b>XTICLE</b> |               |                  |                 |       |       |
| 8        | VDIUS         |               |                  | GRCUND FRACTION | S     |       |
|          | 10.           | • 008         | - 000            | • 000           | 000 • | 000 • |
|          | 15.           | .132          | - 049            | - 000           | .000  | 000.  |
|          | 25.           | 1.826         | .266             | .012            | -000  |       |
|          | 50.           | 6.856         | 2.968            | .425            | .031  | .002  |
|          | 75.           | 6.760         | 3.413            | - 346           | .020  | .035  |
|          | . 00          | 6.002         | 3.253            | .957            | .304  | 060.  |
| , J<br>( | 250.          | 3.052         | 1.893            | .755            | -346  | .170  |
| JN       | 500.          | 1.774         | 1.135            | . 503           | .259  | .145  |
| 1C       | 000.          | 1.078         | .702             | .326            | .178  | 001   |
| ∾<br>LA  | -000          | .710          | .465             | .221            | 001   | 001   |
| SSIF     |               |               |                  |                 |       |       |
| ξ<br>ΊΕΙ | 417CFE        | KADII AKE     | GIVEN IN ALCKONS | ÷               |       |       |
| )        |               |               |                  |                 |       |       |

1

UNCLASSIFIED

SM 1102

ī

. . . . . \_

#### TABLE IX

| PARTICLE<br>RADIUS<br>(microns) | UPPER<br>BOUND<br>(m) | LOWER<br>BOUND<br>(m) | NO GRAVITY<br>BOUND<br>(m) |
|---------------------------------|-----------------------|-----------------------|----------------------------|
|                                 |                       |                       |                            |
| 10                              | 0003                  | 0005                  | ±.0001                     |
| 15                              | 0008                  | 0010                  | .0001                      |
| 25                              | 0006                  | 0039                  | .0016                      |
| 50                              | +.0162                | 0299                  | .0236                      |
| 75                              | +.0314                | 0523                  | .0439                      |
| 100                             | +.0435                | 0668                  | .0579                      |
| 250                             | +.0827                | 0967                  | .0873                      |
| 500                             | +.0971                | 1004                  | .0959                      |
| 1000                            | +.1004                | 1009                  | .0994                      |
| 2000                            | +.1019                | 1019                  | .1014                      |
|                                 |                       |                       |                            |

#### ENVELOPE RESULTS FOR TEST C3

The boundary values listed here are z' co-ordinates (Frame 2). The target was 0.1 m in radius.



and the state of the second second













SM 1102







يمد م

-----



).

7

si.





## APPENDIX A

LISTING OF PROGRAM AEROSOL-8 (MAN SIMULATION) SAMPLE OUTPUT FOR FIRST SET OF TEST CONDITIONS (RUN 1)

|           | > PPCGPAM AEPCSCL_E<br>> THIS PDCGDAM SIMULATES THE CHEMICAL DASTICULATE DOVEDAM SIMULATE                            |
|-----------|----------------------------------------------------------------------------------------------------------------------|
|           | V PARTY PROVING ON THE GREEKE AND ACCENTED ON THE AVOUNT OF CHEVICAL                                                 |
|           | > WHICH IMPACTS ON THE MAN IS CALCULATED FOR A RANGE OF<br>A DIALHOUT DUALD AND THE MAN IS CALCULATED FOR A RANGE OF |
|           | V VARILELY ULED. IN THIS FEDELY THE FAN LO FEFRIOENTER<br>V 24 a vertieal cylinder.                                  |
|           | > VAPIAPLE LIST>                                                                                                     |
|           | <pre>&gt; SIZE(10) - LIST OF AEPOSCL FARTICLE FADIT (M)</pre>                                                        |
|           | V CODEVO) – RARRY FOR CUMPE SPERAR CORFECTENTS<br>V 4964444 VEVAAA – PORRYS FOU REPARDY VALITS                       |
|           | V MINOSP - MINOSPEEDV IN THE POSITIVE X-DIRECTICN                                                                    |
|           | > DENEAD - PAPTICLE DENSITY (KG/M**3)                                                                                |
|           | > DENAIP - AIP CEASITY (20 C)                                                                                        |
|           | > VISAIP - AIR VISCOSITY (2C C)                                                                                      |
|           |                                                                                                                      |
|           | > RADFAR — CLERENT PARTICLE RADIUS BEING USED (%)                                                                    |
|           |                                                                                                                      |
|           |                                                                                                                      |
|           |                                                                                                                      |
|           | <pre>&gt; CDC/PEO - INITIAL VALUES CF CD/FE</pre>                                                                    |
|           |                                                                                                                      |
|           | > VZO - TERVINAL VELOCITY                                                                                            |
|           | > GAMMA - INITIAL VELOCITY DIPECTICN ANGLE                                                                           |
|           | > YI/YR/YO - MAPKEPS LSED IN Y-ENVELOPE CALCULATION                                                                  |
|           | > YMEM - Y COCPDINATE OF LAST SOUND                                                                                  |
|           | > ZI/ZP/ZC/ZS - VARKERS USED IN Z-ENVELOPE CALCULATION                                                               |
|           | > TEMP - TEMPCPARY STORAGE LOCATION<br>2 20 20 20 20 20 20 20 20 20 20 20 20 20                                      |
|           |                                                                                                                      |
|           |                                                                                                                      |
|           | V POTEKT – ANDOUGETA FILL OFAKTERG FOOTETON<br>V TRUPOH – ANDOUGETA BILL FLARKINT FOOTETON DOTETED                   |
|           | S TESECTI – TASI POUTINE FOR CALCULATING A CURIC SPLINE                                                              |
|           | > DCSCDU - IMSL ROUTINE FOR DOING NUMERICAL INTEGRATION                                                              |
|           |                                                                                                                      |
| 10        | MENSION SIZE(10), ZE(11), YE(11), C(5C,3)                                                                            |
| Х -<br>U  | TERNAL DESCLVE, SEEDEE<br>Ceal P.Co.be.G.Paditas.saadp4a.denata.visaia.iiv.ii7                                       |
|           | .TA STZE/10°-6/15E-6/25E-6/50E-6/50E-6/75E-6/100E-6/250E-6/                                                          |
| 0<br>*    | ne-6/10005-6/2000E-6/                                                                                                |
|           | a 6/9.81/.054818/1.275/.VISAIP/1.7895-5/.ISTAPT/0/                                                                   |
|           |                                                                                                                      |
|           | > 'AFRCINFC' TO DETAIN TEST CONDITIONS                                                                               |
|           | > 'AEQODATA' TO STORE COLLECTION EFFICIENCIY RESULTS                                                                 |
| ö         | PEN (12,NAME='AERODATA',ACCESS='DIRECT',RECL=30)                                                                     |
| с<br>С    | EN (14,NAME='AERCINFO',ACCESS='DIRECT',RECL=3C)                                                                      |
| u£<br>1-4 | ZECOT=ISTART                                                                                                         |
|           |                                                                                                                      |

. . . .

• •

. \*

· · · ·

•

. . . . . . . . . . .

| <pre>C2 C1 C1</pre> |
|------------------------------------------------------|
|                                                      |
|                                                      |
|                                                      |

.

•

|   |         | > Y-ECUNDARY FOR THE GIVEN ABSCISSA VALUE.<br>Ymex=c.c<br>do 45c ilim=1.11<br>Yi=Ymem<br>Yc=AADTA?+AADDAR     | 1440:<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441-<br>1441- |
|---|---------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 102     | CONTINLE<br>> SECOND EQUNDAPY LOOP. EACH ITERATICN CALCULATES A<br>> Y-#CUNDARY FOR THE GIVEN AESCISSA VALUE. | 138: 35 <u>0</u><br>139: C<br>140: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | SM 1    | 20 350 K=2/10<br>29(K)=Z?(K-1)+ZINC                                                                           | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · | S       | ZINC-VIIVI-VIIVI-VIIVI-VIIVI<br>ZB(11)=ZP(1)<br>ZP(1)=ZP(2)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |         | > CREATING AN ARPAY OF ASSCISSA VALUES UPON WHICH TO BASE<br>> THE REST OF THE AREA CALCULATION.<br>          | 101: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |         | ZB(IK)=ZI<br>CONTINUE                                                                                         | 125: 300<br>13C: 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · |         |                                                                                                               | 127: 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |         | 15 21<br>20=23                                                                                                | 1.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | D       |                                                                                                               | 124:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | IFIE    | CALL TFAJECTORY (Y.ZR.VZO/WINDSP,IFLAG)<br>If (Iflag.eg.1) Then                                               | 122:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | <br>ASS | ZP=0.5*(ZI+ZO)<br>X=C.O                                                                                       | 120:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | ICL     |                                                                                                               | 115:<br>119:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | UN      | FEDERT 2007 WHILE APS(2C-21).61.16-4                                                                          | 117: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |         | > A 'HIT' OR A 'MISS' FOR THE GIVEN STARTING LOCATION.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |         | NU IF<br>V T-SCING SEABER ( COD SACH TISSALICK CALCILATES SITUES)                                             | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |         | ELSE<br>70=4*4×(0,0,0,7S-2,0)                                                                                 | 111:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |         | IF (I<.55.1) THEY<br>ZC=ZS+2.0                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |         | DC 3OC IK=1,2<br>ZI=ZS                                                                                        | 107:<br>105:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |         | > UPPER (K=1) OR A LOWER (K=2) ZHROUNDARY ON THE STARTING<br>> pirke:                                         | 105: C<br>106: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |         | CONTINUE<br>> FIRST SOUNDARY LOOP. EACH ITEPATION PRODUCES EITHER AN                                          | 183: 290<br>104: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 1       | STCP<br>Evd If                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |         | WAITE(*,+) "SRRCR ZMAX EXCEEDED"                                                                              | 100:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |         | IF (IFLAG.EG.U) ZS=ZS+(FADTAP/1C.U)<br>IF(ZS.GT.ZMAX) THEN                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |         | CALL TRAJECTORY (Y/ZS/VZC/WINDSP/IFLAG)                                                                       | • ~ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

• •

-

|                                            |         | • • • • • • • • • • • • • • • • • • • • |                   | 9 F F F F F F F F F F F F F F F F F F F                                         |         |                                 |              |           |          |           |         |          |                |          | DATA                                       | ATION.                                   | ι         | JN       | CI                  | _ <b>A</b> !        | CULATE ISS                                 | FI                   | E                        | )                        | ۲)                                        |         | - NONORUTE                                                                         |                                                     |                |                             |                                         |               | ETEPENCH.                                  | :                                          | SN                     | 4 1      | 10       | 2        |          |             |
|--------------------------------------------|---------|-----------------------------------------|-------------------|---------------------------------------------------------------------------------|---------|---------------------------------|--------------|-----------|----------|-----------|---------|----------|----------------|----------|--------------------------------------------|------------------------------------------|-----------|----------|---------------------|---------------------|--------------------------------------------|----------------------|--------------------------|--------------------------|-------------------------------------------|---------|------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|-----------------------------|-----------------------------------------|---------------|--------------------------------------------|--------------------------------------------|------------------------|----------|----------|----------|----------|-------------|
| I CP & IMICCI FRO THE CIVEN CIAPTING LOCAT |         |                                         |                   |                                                                                 |         | JECTOFY (YR/Z/VZO/WINDSP/IFLAG) | G.EG.1) THEN | · ·       |          |           |         |          | M E M = Y I    |          | UCT A CURIC SPLINE FUNCTION FOR THE SET OF | (Z3,YE). THIS IS A PRELUDE TO THE INTEGR |           |          | (Zë/Yë/NX/C/IC/IER) |                     | CALLY INTESPATE THE ENVELCHE AREA, AND CAL | LLECTICN EFFICIENCY. | 23/YB/NX/C/IC/A/B/G/IEP) | + E A D P A A ) + 1 . C) | AF+UINOOD+DADFAP+2P0P2)/(4.0+VISPUR+RACTA |         | U('T')//''/'FCF PAPIICLE FADIUS= ''F5.C/'<br>Trestra statmetes tel ''f10'''''''''' | LTOR TEACTION 10 - 11 - 10 - 11 - 10 - 11 - 10 - 10 |                |                             | THE RESULTING COLLECTION EFFICIENCY IS- | (, ,//(,-,)0  | G THE RESULTS CNTC 'AERODATA' FOR FUTURE F | <pre>&gt;PEC=IFECOT) ALOG1C(XK)&gt;Q</pre> | <pre>. F 7 . 5 )</pre> |          |          |          | -        | RS FOUND: C |
| 1211 7 <                                   |         | 007 173622                              | T = 1 3 ( I F I : | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 00=00   | CALL TRA                        | IF (IFLA     | 4 Y = 7 Y | ELSE     | a Y = O Y | FI CVE  | CONTINUE | よ= ( ~ エコこ) ミメ | CONTINUE | > CONSTRI                                  | SIVI04 <                                 | V X = 1 1 | 10=50    | CALL TCSCCU         | A=28(1)<br>9=78(11) | Ieakov <                                   | > 1HE CO             | CELL DCSQDU(             | 0=0/((FADTAR             | X<=(2.C+DENP                              |         |                                                                                    |                                                     | * 11(3X,F7.4,5 | ( ) ( ) * ) = 1 = 1 = 1 = 1 | FORMATCI 1,1                            | + 1E7.511 116 | NILIEM <                                   | WRITE(13/6CO                               | FORMAT (F1C.S.         | CONTINUE | CONTINUE | STOP     | r ND     | TCTAL E9RO  |
| 144. 5                                     | 167. 5  |                                         | 150:              | 151:                                                                            | 1 5 1   | 153:                            | 154:         |           | 156:     | 157:      | • UN    | 159: 400 | 160:           | 1c1: 450 | 162: C                                     | 153: C                                   | 156:      |          | 156:                |                     | C                                          | 17C: C               | 171:                     | 172:                     | 173:                                      | 1/4:    | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                            |                                                     |                | : 521                       | 15C: 55C                                | 131:          | 132: C                                     |                                            | 154: 600               | 135: 650 | 156: 700 | 187:     | 138:     | ں<br>       |
| < 200 - 271                                | 147-000 |                                         | 150.000           | 151.000>                                                                        | 152.000 | 153.000>                        | 154.000>     | 155.000>  | 156.000> | 157.000   | 150.000 | 159.000> | 160.000>       | 161.000> | 1 + 2 • 000 > 1                            | 163.000>                                 | 164.000>  | 165.000> | 166.000             |                     | 169.000>                                   | 176.666>             | 171.000>                 | 172.000>                 | 173.CCC>                                  | 1/4.000 |                                                                                    | · · · · · · · · · · · · · · · · · · ·               | 172.000        | 179.000>                    | 150.000>                                | 181.000>      | 182.000>                                   | 183.000>                                   | 154.000>               | 155.000> | 150.000  | 167.000> | 188.000> | RCRS FOUNC  |

•

· ·

---. ·

| 1950.000       7:0       7:11:       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0       7:0                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 191.0000       7:       C       > INPUT:       Y:       STRTING POS         192.0000       5:       C       > INPUT:       Y:       STRTING POS         197.0000       5:       C       Y:       STRTING POS         197.0000       10:       Y:       STRTING POS         197.0000       10:       Y:       Y:       STRTING POS         197.0000       11:       Y:       Y:       STRTING POS         197.0000       11:       Y:       Y:       STRTING POS         201.0000       11:       Y:       Y:       Y:       STRTING POS         201.0000 </td                                                                                                                                                                                                 |
| 192.0000       4:       C       V/Z       STATING POS         195.0000       5:       C       V/Z       STATING POS         195.0000       11:       C       V/Z       STATING POS         195.0000       11:       C       V/Z       STATING POS         201.0000       12:       C       POS       STATING POS         201.0000       12:       C       POS       STATING POS         201.0000       12:       V/Z       V/Z       POS       POS         201.0000 </td                                                                                                                                                                                                                  |
| 193.0000       5:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                  |
| 154.0000       6:       >       LCCAL VARIALE LIST - N         195.0000       7:       0       152.000       15         195.0000       11       0       152.000       15         195.0000       11:       0       152.000       15         195.0000       11:       0       152.000       15         195.0000       11:       0       17       15         195.0000       11:       0       17       15         195.0000       11:       0       17       15         195.0000       11:       0       17       17         195.0000       11:       0       17       17         197.0000       11:       0       17       17         205.0000       14:       0       17       17       17         205.0000       17:       17       17       17       17       17         205.0000       17:       17       17       17       17       17       17         205.0000       17:       17       17       17       17       17       17       17       17       17       17       17       17       17 <td< td=""></td<>                                                                                                                                                                                                                                                        |
| 195.000       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:       7:                                                                                                                                                                                                                             |
| 156.000       5:       >       1=x, 2=x, 3=r         159.0000       5:       >       >       >         199.0000       1:       >       >       >       >         199.0000       1:       >       >       >       >       >       >       >         199.0000       1:       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >       >                                                                                                                                                                                                                                                                                       |
| 157.000       12.0       >       L=VX. 5=VY. 701         196.000>       11:0       >       >       TPL       TPL       TPL       TPL         196.000>       11:0       >       >       TPL       TPL       TPL       TPL         201.000>       11:0       >       >       TPL       TPL       TPL       TPL         202.000>       11:0       >       >       TPL       TPL       TPL       TPL         202.000>       17:0       >       >       TPL       TPL       TPL       TPL       TPL       TPL         205.000>       17:0       >       >       Y       COOPDINATE       TPL                                                                                                                                                              |
| 196.000>       10.00       11.0       > 10.0       - ELAPSED TIME         201.000>       11.0       > 10.0       - ELAPSED TIME         202.000>       11.0       > 10.0       - ELAPSED TIME         202.000>       14.0       > 10.0       - ELAPSED TIME         202.000>       14.0       > 10.0       - ELAPSED TIME         202.000>       14.0       > 10.0       - ELAPSED TIME         203.000>       17.0       > 10.0       - ELAPSED TIME         204.000>       17.0       > 10.0       - ELAPSED TIME         205.000>       17.0       - ELAPSED TIME       - ELAPSED TIME         205.000>       17.0       - ELAPSED TIME       - ELAPSED TIME         205.000>       17.0       - ELAPSED TIME       - ELAPSED TIME         204.000>       200       - ELAPSED TIME       - ELAPSED TIME         205.000>       210.000>       210.000>       - ELAPSED TIME         215.000>       215.000>       210.000>       - ELAPSED TIME         215.000>       215.000>       215.000>       - ELAPSED TIME         215.000>       215.000>       - ELAPSED TIME       - ELAPSED TIME         215.000>       215.000>       - ELAPSED TIME       - ELAPSED TIME<                                                                                                |
| 199.000       11:       C       > 17.4       - 17.6       - 17.6       - 6.00.467       70.6         200.000       14:       C       > 6.1       - 17.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 6.6       - 7.6       - 6.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       - 7.6       -                                                                                    |
| 266.000       13:       2       5       14:       2       5       14:       2         201.000       14:       2       5       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       2       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:       14:                                                                                                                                                                                                                  |
| 201.000       13:0       > IFLAG       =2 f00       CALCU         202.000       14:0       > IFLAG       =1 f00       FAPTI         202.000       17:0       > IFLAG       =1 f00       FAPTI         202.000       17:0       > IFLAG       =1 f00       FAPTI         202.000       17:0       > IFLAG       =1 f00       FAPTI         201.000       17:0       > Y       > Y       - Y       C00001AATE         201.000       201.000       201.000       201.000       FAPTI       F00         201.000       201.000       201.000       201.000       FAPTI       F00         201.000       201.000       201.000       201.000       FAPTI       F00       FAPTI         201.000       201.000       201.000       FAPTI       F00       FAPTI       F00         201.000       201.000       201.000       FAPTI       F00       F00       F00         211.0000       201.000       201.000       FAPTI       F00       F00       F00         211.0000       201.000       FAPTI       F00       F00       F00       F00         211.0000       201.000       FAPTI       F00       F00 </td                                                                                                                                                                        |
| 262.000       14:       0       =1 = 0.3       = 0.5 = 0.00         265.000       17:       0       > 7 = 0.5       = 0.5 = 0.00         265.000       17:       0       > 7 = 0.5       = 0.5 = 0.00         265.000       17:       0       > 7 = 0.5       = 0.5 = 0.00         265.000       17:       0       > 7 = 0.5       = 0.5 = 0.5         265.000       17:       0       > 7 = 0.5       = 0.5 = 0.5         265.000       26:       0       > 7 = 0.5       = 0.5 = 0.5         265.000       26:       0       > 7 = 0.5       = 0.5 = 0.5         211.000       201.000       26:       0       > 0.5 = 0.5       = 0.5 = 0.5         211.000       215:       0       > 0       - 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5         215:       0       > 0       - 0.5 = 0.5       - 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5       = 0.5 = 0.5 = 0.5                                                             |
| 263.0000       15:0       > RLAST       - CISTANCE FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 264.000       17:0       > TEND       - EISTANCE FROM         205.000       17:0       > X       - X       > COSPINATE         205.000       17:0       > X       - X       > COSPINATE         205.000       17:0       - X       - X       > COSPINATE         205.000       17:0       - X       - X       - X       > COSPINATE         205.000       17:0       - X       - X       - X       - X       > COSPINATE         205.000       201       - X       - X       - X       - X       - X       > X         205.000       201       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X       - X                                                                                                                                                                                 |
| ZC5.00C0 $17:$ C       TE40       -       SN0 octvt f00         ZC7.000 $16:$ C       X       X       C00FDINATE         ZC7.000 $20:$ X       X       X       C00FDINATE         ZC7.000 $20:$ X       X       X       C00FDINATE         ZC7.000 $20:$ X       X       X       C00FDINATE         Z11.000       Z2:       X       X       X       X       C00FDINATE         Z11.000       Z2:       Z       X       X       X       X       X       X         Z11.000       Z2:       Z       X       X       X       X       X       X       X       X         Z11.000       Z3:       Z       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X<                                                                                                                                                                                                                                                                                                                              |
| 266.600       15:0       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                         |
| ZG7.000       ZC3.000       ZC4.000       ZC4.0000       ZC4.000       ZC4.000 |
| 268.000>       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20                                                                                                                                                                                                                            |
| Z15       CC       Z1       C       VU       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                     |
| 216.000       221       C       VU       -       NE       NE       NE       -       NE                                                                                                                                                                                                                                  |
| 711.00C>       23: C       > C(24), W(5,9) - W09KSPA         212.CCC>       24: C       > VZQ       - PLATICLE'S IN         214.000>       24: C       > KC       - DISTANCE FROME         215.CCC>       24: C       > KINESPA       - DISTANCE FROME         216.CC>       25: C       > KINESPA       - DISTANCE FROME         216.CC>       27: C       > KINESPA       - DISTANCE FROME         216.CC>       27: C       > KINESPA       - LCCAL WINDSPE         216.CC>       37: C       > KINESPA       - LCCAL WINDSPE         216.CC>       37: C       > KINESPA       - LCCAL WINDSPE         216.CC>       37: C       > VER       - TYSL ROUTINE         222.CCO>       37: C       > VER       - TYSL ROUTINE         222.000>       36: C       >                                                                                                                           |
| 212.0000       24:0       > V20       - PPPTICLE'S IN         215.000       25:0       > RC       - DISTANCE FROM         216.000       25:0       > RC       - DISTANCE FROM         217.000       27:0       - PPPTICLE'S IN         217.000       27:0       - DISTANCE FROM         217.000       27:0       - NINESPA       - LCCAL WINDSPA         217.000       27:0       - V20       - DISTANCE FROM         217.000       27:0       - V20       - DISTANCE FROM         216.000       27:0       - DISTANCE FROM       - DISTANCE FROM         217.000       27:0       - DISTANCE FROM       - DISTANCE FROM         216.000       37:0       - DISTANCE FROM       - DISTANCE FROM         215.000       37:0       - DIVER       - DIVER         220.000       35:0       - DIVER       - DIVER         221.0000       35:0       - DIVER       - DIVER         222.0000       35:0       - DIVER       - DIVER         222.0000<                                                                                                                                                    |
| 213.000       25:0       > RC       - DISTANCE FPONE         214.000       25:0       > RE       - ASYNCLD'S NUC         215.000       27:0       > RE       - ASYNCLD'S NUC         215.000       26:0       > RNDSPA       - RAG COEFFICI         216.000       29:0       > RNDSPA       - LCCAL WINDSPA         217.000       20:0       > RAMCE FPONE       - RAG COEFFICI         217.000       20:0       20:0       > RAMCE FPONE         217.000       20:0       20:0       > RAMCE FRAL         217.000       30:0       20:0       > RAMCE FRAL         217.000       30:0       20:0       > RAMCE FRALE         216.000       30:0       > RAMERAL       - RAMCE FRALE         216.000       30:0       > RAMERAL       - RAMERAL         220.000       31:0       0 RAMERAL       - RAMERAL         221.000       34:0       - RAMERAL       - RAMERAL         221.000       - RAMERAL       - RAMERAL       - RAMERAL         222.000       - S5:0       - RAMERAL       - RAMERAL         224.000       - S5:0       - RAMERAL       - RAMERAL         224.000       - S5:0       - RAMERAL       - RAMERAL                                                                                                                                               |
| IJJ       214.000>       26: 0       > RE       - REYNCLD'S NUM         Z15.000>       27: 0       > CD       > DRAG COEFFICI         Z16.000>       26: 0       > KINDSPA       - LCCAL WINDSPE         Z17.000>       29: 0       > FALER       - LCCAL WINDSPE         Z17.000>       20: 0       > FALER       - LCCAL WINDSPE         Z17.000>       20: 0       > FALER       - LCCAL WINDSPE         Z17.000>       30: 0       > FALER       - PSLACETING INDSPE         Z17.000>       30: 0       > FALER       - PSLACETING INDSPE         Z16.000>       30: 0       > SERCUTINE       - PSLACETING INDSPE         Z20.000>       31: 0       > SERCUTINE       - PSLACETING INDSPARAUTINE         Z21.000>       32: 0       SERCUTINE       - PSLACETING INDSPARAUTINE         Z22.000>       34: EXTERNAL DESCLVE/SECE       - IVSLAVIDA         Z22.000>       35: 0       - SIMITALIZATION CF VALUES         Z24.000>       36: 0       - SIMITALIZATION CF VALUES         Z25.000>       36: 0       - SIMITALIZATION CF VALUES         Z25.000>       36: 0       - SIMITALIZATION CF VALUES         Z25.000>       36: 0       - SIMITALIZATION CF VALUES         Z26.000>                                                                             |
| G3       215.000>       27:0       > CD       - DRAG COEFFICI         217.000>       200       200       > KINDSPA       - LCCAL WINDSPE         217.000>       29:0       > FA,FB       - 29ACKETING IN         216.000>       30:0       > KINDSPA       - MINDSPE         216.000>       30:0       > KA,FB       - 29ACKETING IN         216.000>       30:0       > KA,FB       - 29ACKETING IN         216.000>       30:0       > KA,FB       - 10% KA         216.000>       30:0       > KA,FB       - 10% KA         221.000>       31:0       SUPPCUTINE TRAJECTORY (YF,ZF,VZO         221.000>       32:0       SUPPCUTINE TRAJECTORY (YF,ZF,VZO         222.000>       34:0       EXTERNAL DESCLVE,SEEDEE         223.000>       35:0       GLOBAL RADTARZADENTECN (YF,ZF,VISA         224.000>       35:0       GLOBAL RADTARZADENTECN (YF,ZF,VISA         225.000>       35:0       C       > INITIALIZATION (YF,ZF,VISA         225.000>                                                                                              |
| Z16.000>       Z5:       > kINCSPA - LCCAL WINDSPE         Z17.0000>       Z9:       > FA,FB       - 29ACKETING IN         Z16.000>       Z0:       > IFA,FB       - 29ACKETING IN         Z16.000>       Z0:       > IFA,FB       - 29ACKETING IN         Z16.000>       Z0:       > IFA,FB       - 10011NE         Z19.000>       Z0:       > IVFFK       - 10011NE         Z19.000>       Z0:       > IVFFK       - 10011NE         Z20.000>       Z0:       S1000       S2:       C         Z21.000>       Z0:       S1000       S2:       C         Z22.000>       Z0:       S1000       S5:       C         Z22.000>       Z0:       S1000       S5:       C         Z23.000>       S5:       C       S1000       S6:         Z24.000>       S5:       C       S1000       S6:         Z25.000>       S5:       C       S1000       S6:         Z24.000>       S6:       C       S1000       S6:         Z24.000>       S6:       C       S1000       S6:         Z24.000>       S6:       C       S1000       S6:         Z25.000>       S6:       <                                                                                                                                                                                                                |
| 217.000       29: 0       > FAFF       - 29AKETING IN         216.000       50: 0       > 2FALSE       - 1*SL ROUTINE         219.000       51: 0       > 2FALSE       - 1*SL ROUTINE         219.000       52: 0       > 2FALSE       - 1*SL ROUTINE         221.000       52: 0       > 2FALSE       - 1*SL ROUTINE         221.000       52: 0       > 2FALSE       - 1*SL ROUTINE         222.000       52: 0       SEC       SEC         223.000       55: 0       0       SEC         224.000       56: 0       0       SEC         224.000       56: 0       0       SEC         224.000       56: 0       0       SEC         225.000       56: 0       0       SEC         224.000       56: 0       0       SEC         225.000       56:                                                                                                                                                                                                                                    |
| 216.000>       50:0       > ZFALSE       - I*SL ROUTINE         219.000>       52:0       > DVEFK       - I*SL ROUTINE         220.000>       52:0       SUBPCUTINE       TRAJECTORY       (YFZEVZO         221.000>       52:0       SUBPCUTINE       TRAJECTORY       (YFZEVZO         221.000>       54:0       DIMENSION       F(6), FFPIYE(6), C(24), W         223.000>       54:0       DIMENSION       F(6), FFPIYE(6), C(24), W         223.000>       55:0       GLOBAL       RADTAS, RADPAR, DEVAIP, VISA         224.000>       56:0       GLOBAL       RADTAS, RADPAR, DEVAIP, VISA         224.000>       56:0       GLOBAL       RADTAS, RADPAR, DEVAIP, VISA         225.000>       56:0       GLOBAL       RADTAS, RADPAR, DEVAIP, VISA         225.000>       56:0       F(1)=-5,0       RADTA         225.000>       56:0       F(1)=-5,0       RADTA         225.000>       59:0       F(2)=Y       F(2)=Y         226.000>       59:0       F(2)=Y       F(2)=Y         227.000>       59:0       F(2)=Y       F(2)=Y                                                                                                                                                                                                                                 |
| 219.6CC>       51: C       > DVEFK       - IMSL RCUTINE         226.600>       52: C       SUPPCUTINE       TRAJECTORY       (YF,ZF,VZO)         221.000>       52: C       SUPPCUTINE       TRAJECTORY       (YF,ZF,VZO)         222.000>       54: DIMENSION F(6),FFPIYE(6),C(24),W         223.000>       55: C       GLOBAL RADTAS,RADPAR,DEVAIP,VISA         224.000>       56: GLOBAL RADTAS,RADPAR,DEVAIP,VISA         225.000>       56: C       > NUITIALIZATICN CF VALUES         225.000>       56: C       > S         226.000>       59: C       > S         227.000>       59: C       > S         228.000>       59: C       > S         229.000>       59: C       > S         220>       55: C       > S         229.000>       59: C       > S         229.000>       59: C       > S                                                                                                                                                        |
| ZZC.6000>       ZZ       SUPPCUTINE       TRAJECTORY (YF,ZF,VZO         ZZ1.030>       ZZ       SUPPCUTINE       TRAJECTORY (YF,ZF,VZO         ZZ2.000>       ZZ       SS       STMEASICA F(6),FFPTYE(5),C(24),W         ZZ3.000>       ZZ       SS       EXTERNAL DESCLVE.SEEDEE         ZZ3.000>       SS       GLOBAL RADTAF,RADPAR,DENALDISA         ZZ4.000>       S6       GLOBAL RADTAF,RADPAR,DENALDISA         ZZ5.000>       S6       GLOBAL RADTAF,RADPAR,DENALD,VISA         ZZ5.000>       S6       C       >INITIALIZATION CF VALUES         ZZ6.000>       S7       C       > S7         ZZ6.000>       S7       C       > INITIALIZATION CF VALUES         Z26.000>       S7       C       > S7         Z26.000>       S7       F(1)=-5       C+RADTAF                                                                                                                                                                          |
| 221.030>       33:       SUPPCUTINE TRAJECTORY (YFZFYVZO         222.000>       34:       DIMENSION F(6),FFPIYE(5),C(24),WW         223.000>       35:       EXTERNAL DESCLVE,SEEDEE         224.000>       35:       EXTERNAL DESCLVE,SEEDEE         225.000>       35:       GLOBAL RADTAPZRADPARJDENALDESVISA         224.000>       35:       C       > INITIALIZATION GF VALUES         225.000>       35:       C       > STARGET RADII.         226.000>       50:       F(1)=-5.04RADTAP       > STARGET RADII.         226.000>       50:       F(2)=YF       > STARGET RADII.                                                                                                                                                                                                                                                              |
| 222.000       34:       DIMENSION F(6),FFPIVE(5),C(24),W         223.000       35:       EXTERNAL DESCLVE,SEEDEE         224.000       36:       EXTERNAL DESCLVE,SEEDEE         224.000       36:       GLOBAL RADTAP,RADPAR,DENALP,VISA         225.000       36:       GLOBAL RADTAP,RADPAR,DENALP,VISA         226.000       37:       C       > INITIALIZATION CF VALUES         226.000       35:       C       > STARGET RADII.         226.000       50:       F(1)=-5.00+RADTAP       > STARGET RADII.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 223.600> 55: EXTERNAL DESCLVE/SEEDEE<br>224.000> 56: GLOBAL RADTAP,RADPAR,DEVAIP,VISA<br>225.000> 56: GLOBAL RADTAP,RADPAR,DEVALUES<br>226.000> 36: C > 5 TARGET RADII.<br>226.000> 59: F(1)=-5.0*RADTAP<br>226.000> 59: F(2)=YF<br>226.000> 41: F(2)=YF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 224.000> 36: GLOBAL RADTAP, RADPAP, DEVAIP, VISA<br>225.000> 37: C > INITIALIZATION CF VALUES<br>226.000> 35: C > 5 TARGET RADII.<br>227.000> 34: F(1)=-5.0*RADTAP<br>226.000> 41: F(2)=YF<br>229.000> 41: F(3)=ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 225.CCC> 37:C > INITIALIZATION CF VALUES<br>226.G3O> 38:C > 5 TARGET RADII.<br>227.GOO> 39: F(1)=-5.G*RADTAP<br>228.CCC> 4C: F(2)=YF<br>228.CCC> 41: F(2)=ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 226.030> 35: C > 5 TARGET RADIT.<br>227.000> 33: F(1)=-5.0*RADTAP<br>228.000> 41: F(2)=YF<br>229.000> 41: F(3)=ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ZZA.GUOV S4: F(1)=-5.G*RADIAP<br>2Z2.GCCV 4C: F(2)=YF<br>2Z9.CCCV 41: F(3)=ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2224_CCC> 4C: F(2)=YF<br>229_CCC> 41: F(3)=ZF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 229.0005 41: F(3)=2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 256.000> 42: C > CALCULATING THE LOCAL WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 231.0CC> 43: C > GROUND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 222.CCCV 44: wirdSPAEKINDSPF((F(S)/5.C)**C.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 233.000> 45: F(4)=WINDSPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 234.666> 46: F(5)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 235.CCC> 47: F(6)=VZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

dia.

.....

| CREMENT IS CHCSEN TO CORRESPOND TC A DISTANCE<br>(1+3ADTAP) METERS UNTIL R<(2.5*RADTAR)<br>T(WINDSPA+WINDSPA+VZC+VZC) | RESULT IS EITHER A PARTICLE 'HIT' OP 'VISS'.<br>AG.EG.2<br>Calculates the fluid velocity at the particle | )/(RC+PC+RC+RC))<br>5.0)++0.14236)+((-2.0+F(1)+F(2)+245TA3+RA5T42))<br>5.0)++0.14236)+((-2.0+F(1)+F(2)+245TA3+RA5T42))<br>E REYNCLD'S NUMBER AND DAAG COEEFFICIENT.<br>*(UX-F(4))+(UY-F(5))+(UY-F(5))+<br>(c)))<br>NAT3+UV)/VISAIR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EDEE/1E-4/4/FE/FA/TCD/ITYAY/IEF)<br>EDEE/1E-4/4/FE/FA/TCD/ITYAY/IEF)<br>A.IER.E2.130) THEN<br>AILURE TO SOLVE FOR CD. IER= '/IER<br>CD IS SET TO A DUMMY VALLE OF 10CG.                                                         | SCLVES THE SET CF DIFFERENTIAL EQUATIONS<br>E) WHICH DESCRIBE THE WOTION USING THE<br>ERK. UPON OUTPUT, WE GET NEW POSITION<br>Y VALUES. |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| T=0.C<br>TCL=C.01C<br>> THE TIME I<br>> MCVED OF (<br>DT=(C.1*RADTAR)/SQ<br>TE!AG=2                                   | PEPEATIC, WHILE IF<br>PEPEATIC, WHILE IF<br>PLAST=FC<br>> THIS ELCCK<br>> POSITION.                      | <pre>* F(1)-F(2)*F(2) * UY=%INDSP+((F(3) * )/(9C*9C*PC*R UZ=0.C * UZ=0.C * UV=SG9T((UY-F(4) * (UZ-F(6))*(UZ- RE=(2.0*RADPAR*D IF (20.87ADPAR*D IF (20.87ADPAR*D </pre>                                                             | FALCUT4.0       FALCU-4.0       IF (FB.LT.0.0)       ELSE IF (RE.6T.1       FAL24.0/FE       FAL24.0/FE | <pre>&gt; (FS/A SEED<br/>TCD=CD<br/>TCD=CO<br/>ITMAX=10C<br/>CALL ZFALSE (S<br/>CALL ZFALSE (S<br/>CALL ZFALSE (S<br/>STCP<br/>END IF<br/>ELSE<br/>END IF<br/>ELSE<br/>END IF<br/>END IF<br/>END IF<br/>END IF<br/>END IF</pre> | CD=TCD<br>> THIS PLCCK<br>> (S/P DESCL<br>> IMSL S/P D<br>AND VELCCI<br>IND=1                                                            |
| 4 VI                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し                                                                                                                                                              | 9 4 4 1 C C C C C C C C C C C C C C C C C                                                                                                |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                 | <pre></pre>                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                          |

- **.** •

•

| 569.000>       1: C       > SUBRCUTINE FESOUTE AD CALCULATES THE DIFFERENTIAL         511.000>       2: C       > THIS ROUTINE DESCUE       > FULTIONS FAULTES THE DIFFERENTIAL         511.000>       2: C       > FULTIONS FAULTES THE FRANK E STANDES FOUND FAULTES         511.000>       2: C       > SEEN FEAR FAULTES TOPER FOUND FOR FAULTES         511.000>       7: C       > NOTE THAT FEAR THE IS THE FRANK E SUBJECTIONS HAVE         511.000>       7: C       > NOTE THAT FEAR THE IS THE FRANK E SUBJEC FOUND CODE         511.000>       7: C       > NOTE THAT FEAR THE IS THE FRANK E SUBJEC FOUND CODE         511.000>       7: C       > NOTE THAT FEAR THE IS THE FRANK E SUBJEC FOUND CODE         511.000>       7: C       > NOTE THAT FEAR THE IS THE FRANK E SUBJEC FOUND CODE         511.000>       12: FEAR TOTOTIONE FEAR THE IS THE FRANK E SUBJEC FOUND CODE       SUBJECUTIONE FEAR THE IS THE FRANK E SUBJEC FOUND CODE         511.000>       12: FEAR TOTOTIONE FEAR THE IS THE FRANK E SUBJEC FOR THE FRANK E SUBJEC FOR THE FRANK E SUBJEC FOR THE IS THE FRANK E SUBJEC FOR THE IS THE FRANK E SUBJEC FOR THE FRANK E SUB | °<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SM 1102 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 569.000       311.0000       311.0000         511.0000       315.0000       315.0000         513.0000       510       41000         514.0000       510       510         515.0000       510       510         515.0000       510       510         515.0000       510       510         517.0000       510       510         517.0000       110       510         517.0000       120       510         517.0000       120       510         521.0000       120       510         522.0000       120       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         522.0000       130       500         500       500       500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUBACUTINE DESOLVE<br>THIS AOUTINE DESOLVE<br>THIS AOUTINE DEFINES AND CALCULATES THE DIFFEPENTIAL<br>EQUATIONS OF WOTION. FRAME 1 IS THE COCADINATE SYSTEM<br>NOTE THAT THE OPIGINAL 3 SECOND CADER EQUATIONS HAVE<br>EEEN PEFLACED RY 6 FIRST OPDER EQUATIONS.<br>NOTE THAT FRAME IS THE FIRST DEPIVATIVE OF F.<br>NOTE THAT FRAME IS THE FIRST DEPIVATIVE OF F.<br>NOTE THAT FRAME IS THE FIRST DEPIVATIVE OF F.<br>CUTPUT: F(6),T,N (N IS NOT USED)<br>CUTPUT: FPRIME(6)<br>CUTPUT: FPRIME(6)<br>CUTPUT: FPRIME(6)<br>CUTPUT: FPRIME(5)<br>NO F(6),FPRIME(5)<br>ON F(6),FPRIME(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,CD,RE,G,UX,LY,UZ<br>1)=F(4)<br>2)=F(5)<br>3)=F(6)<br>4)=2+CD+RE+(UY-F(4))<br>5)=3+CD+RE+(UY-F(5))<br>6)=2+CD+RE+(UZ-F(6))-6<br>AL ERPORS FOUND: 0<br>AL ERPORS FOUND: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 569.000         3110.0000         3110.0000         3110.0000         315.0000         315.0000         315.0000         315.0000         3210.0000         3210.0000         3210.0000         3211.0000         3220.0000         3220.0000         3220.0000         3220.0000         3220.0000         3220.0000         3220.0000         3221.0000         3222.0000         3222.0000         3222.0000         3222.000         3222.000         3222.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000         322.000 <t< td=""><td></td><td>2:<br/>6-00-р-<br/>6-<br/>6-<br/>6-<br/>6-<br/>6-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-<br/>7-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2:<br>6-00-р-<br>6-<br>6-<br>6-<br>6-<br>6-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-<br>7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 509.000<br>311.000<br>311.000<br>314.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.0000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.0000<br>315.00000<br>315.000000<br>315.0000<br>315.0000000<br>315.0000000<br>315.000 | 326.0000<br>521.0000<br>323.0000<br>323.0000<br>325.0000<br>325.0000<br>326.0000<br>526.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>328.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.0000<br>528.00000<br>528.00000<br>528.00000<br>528.000000000000000000000000000000000000 |         |

|                                                                                                                                          |                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                   | UNCLASSIFIED | SM 110 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
| FUNCTION SUERCUTINE SEEDEE<br>THIS ROUTINE DEFINES AND CALCULATES THE DRAG CCEFFICIENT<br>SASED ON THE EMPIRICAL FORMULAE.<br>INPUT : RE | CUTEUT: CD<br>USAGE : THIS ACUTINE IS CALLED BY ZFALSE.<br>FUNCTION SEEDEE(CD)<br>GLCPAL RE<br>IF (PE.GT.3.C) THEN<br>TEMPEALOGIC(CD+RE+PE)<br>SEEDEE=-1.23536+9.26E-1+TEMP-4.6677E-2+TEMP+1.1235E-3<br>+ +TEMPEATEMPEALOGIC(CD+RE+PEALOGIC(CD)<br>+ +TEMPEATEMPEALOGIC(CD+RE+PEALOGIC(CD) | ELSE<br>TEWP=CD+PE+RE<br>SEEDEE=TEWP/24.9-2.3363E-4+TEWP+2.0154E-6+TEWP+*3-<br>seedee=tewp/24.9-2.3363E-4+TEWP+2.0154E-6+TEWP+*3-<br>* 6.91C5E-9+TEMP**4-RE<br>FND IF<br>PETURN<br>FND IF<br>PETURN<br>FND<br>TOTAL ERRORS FOUND: 0 |              |        |
| ບບບບ<br>                                                                                                                                 | v v v r. w v v r. v<br>v v v r. w v v r. v                                                                                                                                                                                                                                                 | 0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                     |              |        |
| 529.000<br>336.000<br>331.0000<br>201.0000<br>2000                                                                                       | 3334.0000<br>3334.0000<br>335.0000<br>337.0000<br>337.0000<br>538.0000<br>538.0000<br>339.0000                                                                                                                                                                                             | 341.0005<br>342.0005<br>543.0005<br>344.0005<br>344.0005<br>545.0005<br>546.0005<br>546.0005<br>546.0005                                                                                                                            |              |        |

•••

.

•

|                                        |                                                                                                 |                                                                                                  | UNCLAS                                                                                                     | SIFIED                                                                          |                                                                                                          | SM 1102                                                                                                                             |                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| ************************************** | FOR FAPTICLE RADIUS= 1C. MICRONS.<br>THE INERTIA FARAWETEP IS05176<br>THE ENVELOPE TRACK<br>CON | - CC62<br>- 1558<br>- 3654<br>- 5600<br>- 5451<br>- 0000<br>- 7247<br>- 0000<br>- 7247<br>- 0000 | 1. 6639<br>1. 6639<br>1. 6435<br>1. 6435<br>1. 6650<br>1. 6287<br>. 00050<br>. 00050<br>. 00050<br>. 00050 | THE "ESULTING CCLLECTION EFFICIENCY IS000C2<br>for faticle fadius= 15. vicrons/ | THE INCATIA PAAMETER IS11645<br>THE ENVELOPE TRACK<br>Z3 YF<br>.0126 .0000<br>.1919 .0001<br>.3711 .0001 | - 7256 - 6002<br>- 7256 - 6002<br>- 039 - 6062<br>1.6674 - 0062<br>1.4466 - 0002<br>1.6259 - 0002<br>1.6259 - 0002<br>1.6259 - 0002 | THE RESULTING COLLECTION EFFICIENCY ISCOC79 |

|   |               |            |        |        |        |        |        |              |                                                                                                    |   |                                      |           |           |            |       | U     | N      | CL         | AS    | SSI    | FI     | EI     | )      |        |         |                                                                                                  |                                                                                                       |            |          | SN  | И      | 110    | )2<br>    |        |        |        |      |        |
|---|---------------|------------|--------|--------|--------|--------|--------|--------------|----------------------------------------------------------------------------------------------------|---|--------------------------------------|-----------|-----------|------------|-------|-------|--------|------------|-------|--------|--------|--------|--------|--------|---------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------|----------|-----|--------|--------|-----------|--------|--------|--------|------|--------|
|   |               |            |        |        |        |        |        |              |                                                                                                    |   |                                      |           |           |            |       |       |        |            |       |        |        |        |        |        |         |                                                                                                  |                                                                                                       |            |          |     |        |        |           |        |        |        |      |        |
|   |               |            |        |        |        |        |        |              |                                                                                                    |   |                                      |           |           |            |       |       |        |            |       |        |        |        |        |        |         |                                                                                                  |                                                                                                       |            |          |     |        |        |           |        |        |        |      |        |
|   |               |            |        |        |        |        |        |              | 5<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1                                                |   | 5<br>0<br>7<br>0<br>7<br>1<br>1<br>1 |           |           |            |       |       |        |            |       |        |        |        |        |        |         | )<br>)<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>] | J<br>0<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 |            |          |     |        |        |           |        |        |        |      |        |
|   |               |            |        |        |        |        |        | IS40633      |                                                                                                    |   |                                      |           |           |            |       |       |        |            |       |        |        |        |        |        |         | IS52626                                                                                          |                                                                                                       |            |          |     |        |        |           |        |        |        |      |        |
|   |               |            |        |        |        |        |        | EFFICIENCY 1 | , 9<br>6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |   | MICRONS                              | c.17566   |           |            |       |       |        |            |       |        |        |        |        |        |         | EFFICIENCY 1                                                                                     |                                                                                                       | - MLCKONS/ | A0140.30 |     | •      |        |           |        |        |        |      |        |
|   | 9120.<br>9120 | .0779      | .0789  | 5020   |        |        | .0513  | COLLECTION   | 8<br>9<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8   |   | EACTUS≈ 100                          |           |           | <u>کے</u>  | 8500° | 5750* | . 0972 | 8°00.<br>• | .1000 | .1010  | .1017  | .1024  | -1030  |        | 247     | COLLECTION                                                                                       |                                                                                                       |            |          |     | .007 S | 2371.  | .1429     | .1463  | - 1407 | 0001 · | 1507 | .1509  |
|   | .4452         | <br>. 5755 | 1.1496 | 1.3257 | 1.5218 | 1.6785 | 1.6541 | 1E RESULTING |                                                                                                    |   | DP PASTICLE .                        | L LLELL C | THE ENVEL | (1)<br>1-1 | .1256 | .3009 | . 4762 | .6516      | .5269 | 1.0022 | 1.177¢ | 1.3529 | 1.5232 | 1.7C35 | 1.01.07 | HE RESULTING                                                                                     |                                                                                                       |            |          | 7 ÷ | .3013  | . 4741 | . 6 4 5 4 | . 6130 | . 5911 | 1.1034 |      | 1.6503 |
| l |               |            | ,      |        |        |        |        | H<br>H       |                                                                                                    | 1 |                                      |           | •         |            |       | UI    | NC     | CL.        | AS    | SI     | FĽ     | EĽ     | )      |        |         | Ē                                                                                                |                                                                                                       |            | -        |     | •      |        |           |        |        |        |      |        |

| GR FARTICLE RADIUGE 25. MICRONS/<br>Me inertia parametef is32348<br>The envelope track<br>20 YF | <br>1.6959 .0046<br>1.2753 .0049<br>1.4527 .0051<br>1.4527 .0054<br>1.6105 .0056 | HE RESULTING COLLECTION EFTCIENCY ISC2191<br>Constructions<br>Comparing a standard and a standard a | <br> | 1.3299 .0473<br>The resulting collection efficiency is2275 | FOR PARTICLE RADIUS= 75. MICRONS/<br>The inertia parameter IS- 2.91131<br>The envelope track | Zē Ya<br>.0530 .0069<br>.2691 .C7C6 |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|

Ţ.

----

|                  | EFFICIENCY IS771CC | 129-39154     |            |    |                     |                     |        |        |        |        |        | l      | JN     | CI                        | EFFICIENCY IS83897 |  | - MICRONS/<br>517.55613 |            |     |                                                                                   |        |        |                                                 | SP | м         | 11( | 02     | 5FFICIENCY IS85066 |
|------------------|--------------------|---------------|------------|----|---------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|---------------------------|--------------------|--|-------------------------|------------|-----|-----------------------------------------------------------------------------------|--------|--------|-------------------------------------------------|----|-----------|-----|--------|--------------------|
| . 1511<br>. 1513 | CCLLECTION         |               | LCPE TRACK | Υ  |                     | • . 0.10<br>4 A n A | • • •  | .1556  |        | -1657  | . 1670 | -1663  | .1061  | .1562                     | COLLECTION         |  | APANELES TOUL           | LCPE TPACK | (   | .0102                                                                             | • • •  | .1730  |                                                 |    | 1221      |     | .1731  | CCLLECTION         |
| 1.8526<br>2.0249 | HE RESULTING       | HE INERTIA P. | THE ENVE   | 13 | • 5 23 6<br>• 0 0 1 | • 0 4 1 t           | 1-0376 | 1.2076 | 1.3774 | 1.5471 | 1.7169 | 1.5866 | 2.0564 | <b><i>ī</i></b> • 2 2 6 2 | HE RESULTING       |  | HE INERTIA D            | THE ENVE   | 2 ĉ | - 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 1.3456 | 1.5130 | 1 • C ( C + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + |    | C + 4 2 7 |     | 2.5176 | HE RESULTING       |

. . . . . . .

**.** 

a series a A series a s

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNCLASSIFIED                                 | SM 1102 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>7                                       |         |
| N<br>N Q<br>N J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |         |
| 0C - MICRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |         |
| Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Сорания<br>Со               | 1772<br>1772<br>1772<br>1772<br>1772<br>1772 |         |
| РАКТИ<br>ГЛЕКТИА<br>ТНЕ ЕК<br>ТНЕ ЕК<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2523<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.2553<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.25532<br>1.255532<br>1.25552<br>1.25552<br>1.25552<br>1.25552<br>1.25552<br>1.25552<br>1 | 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -      |         |
| Тна                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |         |

## **APPENDIX B**

LISTING OF PROGRAM AEROSOL-6 (TRAJECTORY PLOTS AROUND HORIZONTAL CYLINDERS) SAMPLE OUTPUT OF MINIMUM TABULATION RUN SAMPLE OUTPUT OF FULL TABULATION RUN (FIRST PAGE ONLY)

| •    |                                                                                                      | DISCUSICS F(C) FI               |                | 1)<br>5                 | 40.000         |     |
|------|------------------------------------------------------------------------------------------------------|---------------------------------|----------------|-------------------------|----------------|-----|
|      |                                                                                                      |                                 | U              |                         |                |     |
|      | SUPROUTINES IN THE CALCOMP PLOTTER                                                                   | ^                               | U              | : 77                    | <000-97        |     |
|      | DT. FACTOP.AXIS.LINE.SYMBOL.NUMPER -                                                                 | > PLOTS, PL                     | ب              | 45:                     | 45.000>        | ļ   |
| 102  | I MSL PCUTINE FCR SCLVING NON-LINEAP EQUATIONS I MSL SCHTINE FCR SCLVING DIFFERENTIAL FQUATIONS      | > 7FALSE > ruppk                | ں ر            | 1<br>1<br>1<br>1        | 43.000>        |     |
| 1 IN | - PRACKETING INTERVAL FOR CD EQUATION SCLUTION                                                       | > FA,FB                         | U              | :27                     | 42.000>        |     |
| SI   | - COUNTRY CONTRY LARK<br>- END MARKER FOR TIVE STEP IN DUEPK                                         |                                 | ט נ            |                         | 40.000×41.000× |     |
|      | - ERROR TCLERANCE FOR DVERK                                                                          | > TOL                           | <b>ن</b> ا     | 0 U<br>M                | 59.00C>        | •   |
|      | - TIME INCREMENT                                                                                     | > DT                            | U              | 36                      | 32.000>        |     |
|      | - CUPRENT RADIUS OF FARTICLE POSITION                                                                | 2                               | Ju             | 37:                     | 37.000>        |     |
|      | - AXIS SCALING FACTOR                                                                                | > DELTAV                        | ຸບ             | ייי<br>(אר<br>ריור      | No. 0002       |     |
|      | – JTARTING LCCATION OF LAST TRAJECTORY<br>BSTV7 – TNITTAL AVIO VALUES END GDADU                      | > 2E<br>> 520744.51             | ں ر            | 3 U<br>7 1 17           | 24°CCC>        |     |
|      | - STARTING LOCATION OF FIRST TRAJECTCRY                                                              | 02'0X <                         | U              | 141 -<br>141 -<br>141 - | <000           |     |
|      | C - SPACING OF STAPTING LOCATIONS                                                                    | > XINC, ZIN                     | ບ              | - rsi<br>- rsi<br>1 #3  | 32.000>        |     |
|      | - TEPMINAL VELOCITY<br>- TATTAL VELOCITY DIDECTION ANGLE                                             | > VZC                           | د د            |                         | 500 CCC>       |     |
|      | - INITIAL VALUES OF CD, RE                                                                           | > COC,REO                       | ပ              | 29:                     | 29.000>        |     |
| D    |                                                                                                      | > CDRESO                        | <b>،</b> د     |                         | 28.000>        | D   |
| ΠĒ   | EU "INTRUM PAULA" CUITUI<br>E1 Fuit Tarui ar Outrut                                                  |                                 | <b>ی</b> ر     | 2                       | <0000-22       | FIE |
| SIE  | - TARGET RADIUS                                                                                      | V RADTAR                        | U (            | 5 N<br>N                | 25.000         | SSI |
| AS   | - PARTICLE RADIUS                                                                                    | > RADEAR                        | <b>ں</b> ر     | 24:                     | 24.000>        | LAS |
| CL   | - AIP VISCOSIIY<br>- DADTIFIE DENSTY                                                                 | VISAIR                          | د، ر           | シマ                      |                | ICI |
| JN   | - AIP DENSITY                                                                                        | V DENALR                        | U I            | 5                       | 21.000>        | UN  |
| ι    | - WINDSPEED, IN POSITIVE X-DIRECTION                                                                 | <pre>&gt; MINDSP</pre>          | U              | 20:                     | 20.000>        |     |
|      | - VET SPEED OF PATICLE RE FLUID                                                                      | > UV                            |                | U.<br>                  | 19.000>        |     |
|      | - ALCELEVALION OF GRAVIIT<br>- FLUID VELOCITY COMPONENTS IN FRAME 1                                  | > 5<br>> UX,UY,UZ               | ں ر            |                         | 16.000>        |     |
|      | + PEYNOLD'S NUMBER                                                                                   | 111 A. A.                       | 0              | ю г<br>                 | 16.000>        |     |
|      | - DRAG CCEFFICIENT                                                                                   | <ul><li>CD</li><li>CD</li></ul> | J              |                         | 15.CCC>        |     |
|      | - CONSTANT                                                                                           | a.                              |                | 14:                     | 14.000>        |     |
|      | ),ZVAL(5C0) - ARRAYS FOR STORING TRAJECTORY POSITIONS                                                | > XVAL(50C)                     | .)<br>.)<br>.) |                         | 13.020>        |     |
|      | ) – FIRST SERIVATIVE OF F-VALUES<br>1941 – Undersbare end tes twei skie averk                        |                                 | υc             |                         |                |     |
|      |                                                                                                      | A=7 <                           | U I            |                         | 10.000         |     |
|      | 2=Y 3=Z                                                                                              | > 1=X                           | U              | 0                       | 9.000>         |     |
|      | - PARTICLE POSITION AND VELOCITY VALUES IN FRAME 1                                                   | > F(6)                          | <del>ں</del> , |                         | 8 . COC>       |     |
|      |                                                                                                      |                                 |                |                         |                |     |
|      | LY. IT CAN ALSO PROVIDE A TABULAR LISTING OF THE<br>States (postaton ut) state ( to ) at sach tage ( | JANDILGD <                      |                |                         |                |     |
|      | CAL TARGET CN INITIALLY PARALLEL PATHS.                                                              | LECNIJAI <                      | U O            |                         | 4.000>         |     |
|      | IDENTICALLY SIZED PARTICLES APPROACHING A                                                            | > SEVEFAL                       | <b>ر</b> ،     | <br>                    | 3.000          | ,   |
|      | GRAM CALCULATES AND PLOTS THE TPAJECTCRIES OF                                                        | Dec SIHL A                      | , LJ           | 10                      | 2.000          |     |
|      | A EROSOL 6                                                                                           | MAGOSA <                        |                | -                       | 1.320>         | *   |

| 50.0000       50.       61.05.4L       5.0000       52.       61.05.4L       5.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.00000       52.00000       52.00000       52.00000       52.00000       52.00000       52.00000       52.000000       52.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APETERS AND ECHOING THEM ON CRT.<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOLO,<br>PARFICOCOCOLO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,<br>PARFICOCO,                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51.0000       51.0000       51.0000       51.0000       51.0000       51.0000       51.0000       52.0000       51.0000       52.0000       52.0000       52.0000       54.017       55.0000       54.017       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       55.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.0000       56.00000       56.0000       56.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APETERS AND SCHOING THEM ON CRT.<br>PARF/50.000.01/<br>PARF/50.000.01/<br>PARF/50.00000/<br>PARF/50.00000/<br>PARF/50.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.0000       52.00000       52.0000       52.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NPAP/1000.0/,<br>CPAR/50.CE-6/,<br>NAIR/1.205/,<br>ADPAP+166/RADTAR<br>1/2X, (M/5)',''',<br>''F4.2/2X,'(M/CRONS)','''')<br>''F4.2/2X,'(M/CRONS)','''')<br>TAL CCNDITIONS: TEPMINAL VELCCITY,<br>ND DPAG CCEFFICIENT.<br>PADPARRADPARADPARADFARAS)<br>R#RADPARRADPARADFARSS<br>ADPAG CCEFFICIENT.<br>PADPARRADPARADFARADFARAS)<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS<br>FRANDPARSS                                                                                                                                                                              |
| 53.0000       53:       *       \$\$A\$1787.1.100 /*       BEARRY15.050/         53.0000       55:       *       VISAIR16./       BEARRV1.205//         53.0000       55:       *       VISAIR10./       BEARRV1.205//         53.0000       55:       *       VISAIR10./       BEARRV1.205//         53.0000       55:       *       VISAIR10./       BEARRV1.205//         53.0000       57:       *       VISAIR10./       BEARRV1.205//         54.0000       57:       *       VISAIR10./       BARTUCLE BADIUS       *         54.0000       57:       *       VISAIR10./       BARTUCLE BADIUS       *       *         55.0000       57:       *       >       CUTURSEEA       ADDPAR       F       F         54.0000       57:       *       CUTURSEEA       ADDPAR       F       F       F         54.0000       57:       15       CUTURSEEA       ADDPAR       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F       F <td>CPAR/SC.CE-6/,<br/>AJR/1.205/,<br/>ADPAP+1E6/RADTAR<br/>1/2X, (P/S)', ('')<br/>Y= ',F6.C.2X,'(KG(P++3)', '')<br/>Y= ',F6.C.2X,'(KG(P+3)', '')<br/>Y= ',F6.C.2X,'(KG(P+3)', '')<br/>Y= ',F6.C.2X,'(KG(P+3)', '')<br/>DPAG CCEFFICIENT.<br/>PADPAR+RADPAR+DENAIR+DENPAR)<br/>F*PADPAR+RADPAR+DENAIR+DENPAR)<br/>F*PADPAR+RADPAR+DENAIR+DENPAR)<br/>F*PADPAR+RADPAR+DENAIR+DENPAR)<br/>CORESO)<br/>ENT FORMULA IS REGUISED.<br/>CORESO)<br/>ENT FORMULA IS REGUISED.<br/>CORESO)<br/>ENT FORMULA IS REGUISED.<br/>CORESO)<br/>ENT FORMULA IS REGUISED.<br/>CORESO)<br/>ESS-4.6677E-2*(CDRESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDRESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDRESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDRESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESO)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESON<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESON<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>CORESON<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+CDFES3)<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-6*<br/>ESS-4.677E-2*(CDFESG+2.0154E-7<br/>ESS-4.677E-2*(CDFESG+2.0154E-7<br/>ESS-4.677E-2*(CD</td> | CPAR/SC.CE-6/,<br>AJR/1.205/,<br>ADPAP+1E6/RADTAR<br>1/2X, (P/S)', ('')<br>Y= ',F6.C.2X,'(KG(P++3)', '')<br>Y= ',F6.C.2X,'(KG(P+3)', '')<br>Y= ',F6.C.2X,'(KG(P+3)', '')<br>Y= ',F6.C.2X,'(KG(P+3)', '')<br>DPAG CCEFFICIENT.<br>PADPAR+RADPAR+DENAIR+DENPAR)<br>F*PADPAR+RADPAR+DENAIR+DENPAR)<br>F*PADPAR+RADPAR+DENAIR+DENPAR)<br>F*PADPAR+RADPAR+DENAIR+DENPAR)<br>CORESO)<br>ENT FORMULA IS REGUISED.<br>CORESO)<br>ENT FORMULA IS REGUISED.<br>CORESO)<br>ENT FORMULA IS REGUISED.<br>CORESO)<br>ENT FORMULA IS REGUISED.<br>CORESO)<br>ESS-4.6677E-2*(CDRESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDRESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDRESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDRESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESO)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESON<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESON<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>CORESON<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+CDFES3)<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.6677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-6*<br>ESS-4.677E-2*(CDFESG+2.0154E-7<br>ESS-4.677E-2*(CDFESG+2.0154E-7<br>ESS-4.677E-2*(CD                                                                                                                                                                                                                                                                                                                                           |
| 54.000       54:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57:       57: <t< td=""><td>AIR/1.205//<br/>ADPAP+156/RADTAR<br/>1/2X' (M/S)''/'''''''''''''''''''''''''''''''''</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AIR/1.205//<br>ADPAP+156/RADTAR<br>1/2X' (M/S)''/'''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 55: 0:000       55: *       VIRATA(1, 395=5)         54: 0:00       57: 0:00       57: 0:00         57: 0:00       51: 0       *       *         57: 0:00       51: 0       *       *         57: 0:00       51: 0       *       *       *         57: 0:00       51: 0       *       *       *       *         57: 0:00       51: 0       *       *       *       *       *       *         57: 0:00       51: 0       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADPAP+156, RADTAR<br>1, 2X, (M/S), (M/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.1000       57       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADPAPATE6, RADTAR<br>21, 2X, 1(M/S), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21.0000       55:       10       WATTECK-TOD WINDSPDENSFARDRAPFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPAFTEDPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADPAPFIES, RADIAR<br>1.2X, (M/S) . / ' '<br>7 - ' F5.0/2X, (KCGNS) . / ' ')<br>. F5.0/2X, (KCGNS) . / ' ')<br>D D PAG CCEFICIENT.<br>PAD PAR DENAR)<br>R PAD PAR PENARD<br>AD PAG CCEFICIENT.<br>PAD PAR SENPAR)<br>R PAD PAD PAD SENPAR)<br>R PAD PAD PAD SENDAR                                                                                                                                                                                                                                                                                                                |
| 53.000       55:       +       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre> Type://www.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianalaysecons.indianajity value. </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 59.6CC       59.       * FATICLE PENSITY= 'F6.C2X'         61.000       51.       *       * TARGET PADIUS= 'F4.2X'         61.000       51.       *       * TARGET PADIUS= 'F4.2X'         61.000       51.       *       * TARGET PADIUS= 'F6.02X'         61.000       51.       *       * TARGET PADIUS= 'F4.2X'         61.000       51.       *       * TARGET PADIUS= 'F4.2X'         61.000       51.       *       * TARGET PADIUS= 'F4.2X'         62.0000       55.       55.       55.000       55.000         62.0000       55.       * TARDE PADAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*DENDAR*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y= 'F6.C,2X''(KC(M**3)',/' '<br>'F4.2)2X''(M)',' ')<br>IAL CCNDITIONS: TEFMINAL VELCCITY,<br>D DRAG CCEFFICIENT.<br>*PADPAR*BENPAR)<br>F*PADPAR*DENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BADPAR*BENAIR*DENPAR*G)/<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*BENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PADPAR*FENPAR)<br>F*PAD                                                                                                                                          |
| $C_{0,CCC}$ $C_{0,CCC}$ $C_{1,CCC}$ $C_{2,CCC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>*,F5.0,2X,'(MICRONS)',/' ' 'F4.2,2X,'(M)','') IAL CCNDITIONS: TEF*INAL VELCCITY. ND DPAG CCEFFICIENT. *PADPAP*RADPAR*DENAIR*DENPAR.5)/ #*PADPAP*RADPAR*DENAIR*DENPAR.5)/ #*PADPAP*RADPAR*DENAIR*DENAIR*DENPAR.5)/ #*PADPAP*RADPAR*DENAIR*DENAIR*DENAR.5)/ ##PADPAR*RADPAR*DENAIR*DENAR.50) ##PADPAR*RADPAR*DENAR.50) ##PADPAR*ENAR.500) ##PADPAR*ENAR.500 ##PADPAR*ENAR</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>C1.000</li> <li>C1.000</li> <li>C1.000</li> <li>C2.000</li> <li>C2.00</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre> . F4.2.2.2X.*(P)*./**) IAL CCNDITIONS: TEPYINAL VELCCITY. D DPAG CCEFFICIENT. * PADPAR*DENPAR) R*PADPAR*RADPAR*DENAIR*DENPAR*3)/ ESS-4.6677E-2*(CDRESG*CDRES3) ESS-4.6777E-2*(CDRESG*CDRES3) ESS-4.6777E-2*(CDRESG*CDRES5E-6* ESS-4.6777E-6* ESS</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 62.000       62.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000       50.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAL CCNDITIONS: TEPMINAL VELCCITY,<br>ND DPAG CCEFFICIENT.<br>FRADPARRADPARRDENAIRADENAIRADFARS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.677E-2*(CDRESG*CDRESS)/<br>FSD-4.6677E-2*(CDRESG*CDRESS)/<br>FSD-4.677E-2*(CDRESG*CDRESS)/<br>FSD-4.677E-2*(CDRESG*CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.677E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(CDRESS)/<br>FSD-4.77E-2*(C                                                                                                                                                                                                                                                                                                                                                     |
| C3.CCC>       57.CCC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB DPAG CCEFFICIENT.<br>FRADPARRADPARFDENAIR*DENPARS<br>FRADPARRADPARFDENAIR*DENPARS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)<br>FSO-4.66677E-2*(CDRESG*CDFESS)<br>FSO-4.66677E-2*(CDRESG*CDFESS)<br>FORMULA IS REGUIRED.<br>FORMULA IS REGUIRED.<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.66677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.6677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.677E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDRESG*CDFESS)/<br>FSO-4.777E-2*(CDR                                                                                                                                                                                                                                                                                                                                                                       |
| 64.000       55       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 </td <td><pre>*PADPAP*DENPAR) *PADPAP*DENAIR*DENAIR*DENPAR5)/ #S000000000000000000000000000000000000</pre></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>*PADPAP*DENPAR) *PADPAP*DENAIR*DENAIR*DENPAR5)/ #S000000000000000000000000000000000000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 65.000       55       15.000       55       15.000       56         65.000       57       50       10.1255-34(0510(032.0+RadPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADPAR*RADP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R*PADPAR*RADPAR*DENAIR*DENPAR*3)/<br>FS3-4.6677E-2*(CDRESG*CDRES3)<br>*CDRES0)<br>ENT FORMULA IS REGUIRED.<br>ENT FORMULA IS REGUIRED.<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**6)/(3.0*DENAIR*CD0))<br>FAR+G)/(3.0*DENAIR*CD0))<br>ES NOT FALL. C00=1300 IS A DUMMY VALUE.<br>ES NOT FALL. C00=1300 IS A DUMMY VALUE.<br>ES NOT FALL. C00=1300 IS A DUMMY VALUE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R*PADPAR*RADPAR*DENAIR*DENPAR*3)/<br>FS3-4.6677E-2*(CDRESG*CDRES3)<br>*CDRES0))<br>ENT FORMULA IS REGUIRED.<br>EXT FORMULA IS REGUIRED.<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**4<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3**6<br>ES3** |
| 67.000       57       * (3.0°VISAIP*VISAIP)         62.000       57       * (5.0°VISAIP*VISAIP)         71.000       70       86       * 1.1255-340.9564000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ESS-4.6677E-2*(CDRESG*CDRESS)<br>*CDRESSO))<br>ENT FORMULA IS REGUIRED.<br>-4*CDPESG*CDRESG+2.0154E-6*<br>ESG*44<br>ESG*44<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG+2.0154E-6*<br>ESG*60*CDRESG*70*CDRESG+2.0154E-6*<br>ESG*60*CDRESG*70*CDRESG*7000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CCCC       68       PEC=1C**(-1.255+0.956+CDRESO+C6650)         71.000       75       0 a DIFFERENT FORMULA I         71.000       75       0 a DIFFERENT FORMULA I         73.000       72       55540.956+CDRESO+C6650)         75.000       72       56000         75.000       72       56000         75.000       72       56000         75.000       74       56000         75.000       74       56000         75.000       74       56000         76.000       74       56000         76.000       74       56000         76.000       76       56000         76.000       76       57.000         76.000       76       57.000         76.000       76       57.000         77.000       76       50.000         76.000       76       50.000         77.000       76       50.000         76.000       76       50.000         77.000       76       50.000         77.000       77       50.000         77.000       76       50.000         77.000       76       50.000         77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACDRESSILED<br>CDRESSILED<br>ENT FORMULA IS REGUIRED.<br>ESG+CORESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0154E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+2.0156E-6*<br>ESG+                                                                                                                                                                                                                                           |
| 76.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       71.000       72.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       74.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACDRESSOL<br>ACDRESSOL<br>ACDRESSACDRESSACTORESSACTON<br>ACDRESSACTORESSACTON<br>ESSACTORESSACTORESSACTON<br>FARGO/(3.0+DENAI9+CDO))<br>ES NOT FALL. COG=1300 IS A DUMMY VALUE.<br>ACDRESSACTORESSACTORESCOND<br>FOSTILCNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESG**4<br>ESG**4<br>ESG**4<br>ESG**6<br>ESG**6<br>ESG**4<br>ESG**6<br>ESG**6<br>ESG**6<br>ESG**6<br>ESG**6<br>ESG**6<br>ESC<br>ESG**6<br>ESG**6<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC<br>ESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 71.0000       71.       1F       7.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4*CDPESQ*CDRESQ+2.0154=-6*<br>-4*CDPESQ*CDRESQ+2.0154=-6*<br>ESQ**4<br>ESQ**4<br>ESQ**6<br>FAR+6)/(3.0*DENAIR*CD0))<br>ESNOT FALL. CDG=1300 IS A DUYMY VALUE.<br>RA+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>FAR+6)/(3.0*DENAIR*CD0))<br>F                                                                                                                                                                                                                                                                                                                                         |
| 71.0000       72       CDRESSCATC+0DRESC         73.0000       73       EDRESSCATC+0DRESC         74.0000       73       EDRESSCATC+0DRESC         75.0000       73       EDRESSCATC+0DRESC         75.0000       75       CDD=0DRESSCATC+0DRESC         75.0000       75       CDD=0DRESSCATC+0DRESSCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRESCATC+0DRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.CDPESQ*CDRESQ+2.0154E-6*<br>ESG**4<br>ESG**4<br>ES NOT FALL. CDENAIR*CDO))<br>ES NOT FALL. CDG=1000 IS A DUYMY VALUE.<br>KE POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4*CDPESQ*CDRESQ+2.0154=-6*<br>ES3**4<br>ES3**4<br>ES3**6)/(3.0*DENAIR*CD0))<br>ES NOT FALL. CDG=1300 IS A DUYMY VALUE.<br>NG POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 73.03G>       73.03G>       74.03G>       74.03G>       74.03G>       74.03G>       74.03G>       75.05G       75.05G       75.05G       77.03G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4*CDPESG*CDRESG+2.0154E-6*<br>ES3**4<br>FAR+G)/(3.0*DENAIR*CD0))<br>ES NOT FALL. CDG=1300 IS A DUMMY VALUE.<br>NG POSITIONS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 74.000       74.000       74.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000       75.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ES3+*4<br>FAR+G)/(3.0*DENAIR*CDO))<br>ES NOT FALL. CDG=1300 IS A DUYMY VALUE.<br>NG POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 75.00075.000 $CD = CDRESO/(FEO+REO)$ 76.00077 $ELSE$ $CD = (10 + CDRESO)/(REO+FEO)$ 77.00077 $CD = (10 + CDRESO)/(REO+FEO)/(3.0 + D)$ 75.00075 $ENE$ $IF$ 75.00075 $VZO = -SCPT((E.C+RADPA+FENFAR+G)/(3.0 + D)$ 75.00075 $VZO = -SCPT((E.C+RADPA+FENFAR+G)/(3.0 + D)$ 75.00075 $VZO = -SCPT((E.C+RADPA+FENFAR+G)/(3.0 + D)$ 75.00081 $CD = -SCPT(E-D)$ 75.00081 $CD = -SCPT(E-D)$ 76.00082 $VZC = REC = 0.0$ 77.00082 $CD = -SCPT(O)$ 78 $CCC > S2$ $CD = -SCPT(O)$ 79.00087 $SPRTICLES$ 700087 $STNG = RADTAF/3.C)$ 700087 $STNG = RADTAF/3.C)$ 700092 $CP = SD = C+2.C700092CP = SD = C+2.C700093CP = SD = C+2.C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EC)<br>ES NOT FALL. COG=1300 IS A DUYMY VALUE.<br>KE POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76.000       72       ELSE       CD0=(10**CDRES0)/(RE0*REC)         77.000       75       CD0=(10**CDRES0)/(RE0*REC)         75.000       75       EVD       IF         75.000       75       VZ0=-SGPT((B.C*RADPA?*DENFAR4G)/(3.0*D         75.000       80       VZ0=-SGPT((B.C*RADPA?*DENFAR4G)/(3.0*D         75.000       80       VZ0=-SGPT((B.C*RADPA?*DENFAR4G)/(3.0*D         81.000       80       VZ0=-SGPT((B.C*RADPA?*DENFAR4G)/(3.0*D         82.000       81       CDC=10.0         83.000       82       VZC=REC=0.C         84.000       83       CDC=100.0         83.000       84       VZC=REC=0.C         84.000       83       CDC=100.0         84.000       87       CDC=100.0         85.000       87       CDC=100.0         85.000       87       CDC=100.0         85.000       87       CD         85.000       87       ZINC= (RADTAF/3.C)*CCS (GAM*A)         86       CDC       87         87.000       87       ZINC= (RADTAF/3.C)*SIN(GAM*A)         87.000       90.000       90         87.000       91.000       91.000         91.000       92       91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EC)<br>FAR+G)/(3.0+DENAIR+CDO))<br>ES NOT FALL. CDG=1300 IS A DUMMY VALUE.<br>NG POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 77.0007 77: (D0=(10**CDRES0)/(RE0*PEC) 75. (C007) 75.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC)<br>Far4G)/(3.0+DENAIR+CDO))<br>ES NOT FALL. CDG=1300 IS A DUMMY VALUE.<br>NG POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 76.000 $79.000$ $80.000$ $80.000$ $80.000$ $80.0000$ $80.0000$ $80.00000$ $80.000000$ $80.00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FAR+G)/(3.0+DENAIR+CDO))<br>Es not Fall. CDG=1300 is a Jummy Value.<br>Ng Positions and Spacings of the 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 75.000       75       V20=-S69T((8.C*RADPA?*DEMFAR+6)/(3.0*D         81.000       80       >1       6=0.       PARTICLE DOES NOT FALL.         81.000       81       >1       6=0.       PARTICLE DOES NOT FALL.         81.000       81       >1       >1       6=0.       PARTICLE DOES NOT FALL.         81.000       81       >1       >1       >1       1         83.000       81       >1       >1       >1       >1         83.000       82       000       0       >1       >1       >1         83.000       81       1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >1       >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FAR+G)/(3.0*DENAIR+CDO))<br>Es not fall. Cog=1300 is a Jummy Value.<br>Ng Positions and Spacings of the 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5C.000>       5C.       5C.       5C.         61.000>       51.       ELSE       VZC=REC=0.C         62.000>       52.       VZC=REC=0.C       SA         63.000>       52.       VZC=REC=0.C       SA         63.000>       54.       VZC=REC=0.C       SA         64.000>       54.       VZC=REC=0.C       SA         64.000>       54.       SA       FADTICLES       TAPTING POSITICNS         65.000>       54.       SA       SA       SA       SA         7.000>       55.00       SA       SATICLES       TACKED.         67.000>       55.00       SA       SATICLES       TACKED.         67.000>       57.000       SAMA=ATAN(MINDSP/(-1.0+V20))       SAMA         7.000>       57.000       SAMA=ATAN(MINDSP/(-1.0+V20))       SAMA         7.000>       57.000       SAMA=ATAN(MINDSP/(-1.0+V20))       SAMA         7.000>       50.000       SAMA=ATAN(MINDSP/(-1.0+V20))       SAMA         7.000>       50.000>       SA       SAMA       SAMA         7.0000>       SA       ZINC=(RADTAF/3.0) SIN(GAMMA)       SAMA         50.000>       SA       ZINC=(SADTAF/3.0) SIN(GAMMA)       SAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ES NOT FALL. COG=1300 IS A SUMMY VALUE.<br>Ng Positions and spacings of the 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 61.000       51.000       51.000       52.000       0.000         63.000       54.0000       54.0000       0.000       54.0000       0.000         64.000       54.0000       54.0000       0.000       54.0000       0.000         54.000       54.0000       54.0000       0.000       54.0000       54.0000         55.000       56.00       56.00       57.0000       57.0000       57.0000         62.000       56.00       57.000       50.0000       50.0000       50.0000         62.000       56.00       50.0000       50.0000       50.0000       50.0000         63.000       57.00       50.000       50.0000       50.0000       50.0000         69.0000       57.00       50.000       50.0000       50.0000       50.0000         69.0000       50.0000       50.0000       50.0000       50.0000       50.0000         50.0000       50.0000       50.0000       50.0000       50.0000       50.0000         60.0000       50.0000       50.0000       50.0000       50.0000       50.0000         60.0000       50.0000       50.0000       50.0000       50.0000       50.0000         60.0000       50.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NG POSITICNS AND SPACINGS CF THE 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EZ.CCC>       BZ       VZC=REC=0.C         B3.CCC>       B3       CDC=1CO0.C         B4.000>       B4       FND         E5.CCC>       B4       FND         E6.CCC>       B4       FND         E7.0CC>       B7       FND         F7.0CC>       B7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NG POSITICNS AND SPACINGS CF THE 5<br>Cked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 83.000       54:       7ND       F         84.000       54:       7ND       F         84.000       54:       7ND       F         85.000       54:       7ND       F         85.000       54:       7ND       F         85.000       55:       7ND       F         85.000       87:       7ND       7ND         87.000       87:       7ND       7ND         87.000       87:       7ND       7ND         87.000       87:       7ND       7ND         87.000       87:       7ND       7ND         87:000       87:       7ND       7ND         87:000       70       7ND       7ND         87:000       70       7ND       7ND         87:000       70       7ND       7ND         71.000       7ND       7ND       7ND         72.000       710       7ND       7ND         72.000       70       7ND       7ND         72.000       7D       7ND       7ND         72.000       7D       7ND       7ND         72.000       7D       7ND       7ND     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NG POSITICNS AND SPACINGS CF THE 5<br>Cked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54.000       54:       7ND IF       FEINING THE STAPTING POSITICNS         55.000       55:       C       > DEFINING THE STAPTING POSITICNS         66.000       55:       C       > DEFINING THE STAPTING POSITICNS         67.000       56:       C       > DEFINING THE STAPTING POSITICNS         67.000       66:       C       > DEFINING THE STAPTING POSITICNS         67.000       87:       C       > COS(GAMMA)         67.000       87:       ZINC=(RADTAF/5, C) * COS(GAMMA)       > COS(GAMMA)         67.000       90:       200       90:       > SINC         67.000       90:       200       90:       > SINC       > SINC         90:       2000       90:       200       > SINC       > SINC         91:       20=5:       0 + RADTAF/5:       C) + SINC       > SINC         92:       2000       91:       2000       91:       C       SINC         92:       2000       93:       C       SINC       SINC       SINC         93:       C       SEZCH?       SINC       SINC       SINC       SINC         93:       C       SINC       SINC       SINC       SINC       SINC <t< td=""><td>NG POSITICNS AND SPACINGS CF THE 9<br/>Cked</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NG POSITICNS AND SPACINGS CF THE 9<br>Cked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E5.000       25:0       > DEFINING THE STAPTING POSITICNS         E6.000       26:0       > PARTICLES TC SE TRACKED.         E7.000       27:00       > PARTICLES TC SE TRACKED.         E7.000       26:00       > PARTICLES TC SE TRACKED.         E7.000       27:00       > PARTICLES TC SE TRACKED.         E2.000       27:00       > PARTICLES TC SE TRACKED.         50.000       26:00       > PARTINC         90.000       27:00       > PARTINC         90.000       27:00       > PARTINC         90.000       27:00       > PARTINC         91.000       20:00       > PARTINC         52:000       97:00       20:00         93:00       97:00       PARTINC         93:00       97:00       PARTINC         97:00       97:00       PARTINC         97:00       20:00       PARTINC         97:00       20:00       PARTINC         97:00       20:00       PARTINC         97:00       PARTINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NG POSITICNS AND SPACINGS CF THE 9<br>Pred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E       CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7.050       57       6AMMA=ATAN(NINDSP/(-1.0+VZ0))         62.050       87       XINC=(RADTAF/3.C)+CCS(GAMMA)         59.050       90.       XINC=(RADTAF/3.C)+SIN(GAMMA)         51.050       90.       2000         90.050       91.       20=5.0+RADTAF/3.C)+CCS(GAMMA)         51.050       92.       20=5.0+RADTAF*SIN(GAMMA)         92.050       92.       20=5.0+RADTAF*CCS(GAMMA)         92.050       93.       2         93.050       93.       2         93.050       95.       FRSTVX=ANINT(10C.0+(XC+(X2/10.0)))/100.0         55.050       95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E3.000       E3. XINC= (RADTAF/3.0)+CCS (GAMMA)         E9.000       39.         Synce       Sin(GAMMA)         Synce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 69.000       90.000       90.000       90.000       90.000         90.000       90.000       90.000       90.000       90.000         91.000       91.000       20=5.0+RADTAP*SIN(GAMMA)-4.0*XINC         92.000       91.000       20=5.0+RADTAP*CCS(GAMMA)-4.0*XINC         92.000       91.000       20=5.0+RADTAP*CCS(GAMMA)-4.0*XINC         92.000       92:       20=5.0+RADTAP*CCS(GAMMA)-4.0*XINC         93.000       93:       2         93.000       93:       2         93.000       93:       2         93.000       95:       FRSTVX=ANINT(100.0*(XC+(X0/10.0)))/100.0         95:       60.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cytucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| YU. UUC>       YU. UUC> <th< td=""><td>1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 51.000       91:       Z0=5.0*RADTA9*CCS(GAMMA)-4.C*ZINC         52.000       92:       ZE=ZC+9.C*ZINC         53.000       93:       C       SEALING         54.000       94:       FRSTVX=ANINT(100.0*(XC+(X2/10.0)))/100.0*C         55.000       95:       FSTVZ=2.0+RADTAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0*XINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92.00C>       92:       2E=ZC+9.C*ZINC         93.00O>       93:       C       > SCALING THE GRAPH AND SETTING OR         94.00C>       94:       FRSTVX=ANINT(10C.0*(XC+(X2/10.0)))/100.C         95.00C>       95:       FRSTV2=2.0+FADTAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 2*21NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 53.030>       93: C       > SCALING THE GRAPH AND SETTING OR         94:       FRSTVX=ANINT(10C_0*(XC+(X2/10_0)))/100.C         55.000       95:       FRSTVZ=-2.0*FADTAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 54.00C> 94: FRSTVX=ANINT(10C.0*(X0+(X0/10.0)))/100.0<br>55.00C> 95: FRSTVZ=-2.0*FADTAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND SETTING ORIGIN VALUES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 55.CCC> 95: FPSTVZ=-2.0+FADTAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0))/100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96. CCC2 96: DELIAVENINI (100.0*(+5.5*RADIAR)/24.C2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DTAR)/24.C)/100.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

•

·- ·-

•
| ««                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000                      | CALL PLCTS (C,0,6)<br>CALL PLCT (C,5C,5,")<br>CALL PLCT (C,5C,5,")<br>CALL AXIS (C,0C,0,"Z-AXIS',-6,24,0,50.0,FRSTVX,0ELTAV)<br>CALL AXIS (C,0C,0,"Z-AXIS',-6,24,0,50.0,FRSTVZ,0ELTAV)<br>CALL AXIS (C,0C,0,"Z-AXIS',-6,24,0,50.0,FRSTVZ,0ELTAV)<br>> TRAJECTCRY.<br>REPEAT60 WHILE Z0.LE.ZE<br>> TRAJECTCRY.<br>REPEAT60 WHILE Z0.LE.ZE<br>> ASSIGNING AND PAINTING THE INITIAL CONDITIONS.<br>WRIT5(2,20)<br>FCD = 20<br>FCD = 20<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| « 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | <ul> <li>Solution</li> <li>Solution&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000000000000000000000000000000000000                      | CALL FACTOR (1.C)<br>CALL FLCT (C.S.C.G., "X-XIS', -6,24, C.C.O, FRSTVX, DELTAV)<br>CALL AXIS (C.G.C.G., 'X-XXIS', -6,24, C.C.O, FRSTVX, DELTAV)<br>CALL AXIS (C.G.C.G., 'X-AXIS', -6,24, C.C.O, FRSTVX, DELAV)<br>> WAIN LOOP<br>> TRAJECTCRY<br>REPEATED, WHILE ZO.LE.ZE<br>> TRAJECTCRY<br>REPEATED, WHILE ZO.LE.ZE<br>> ASSIGNING AND PRINTING THE INITIAL CONDITIONS.<br>WRITE(*,2C)<br>WRITE(*,2C)<br>FG10 = 100<br>FG10 = 100<br>FG20 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10111111111111111111111111111111111111                      | CALL FLCT (C.S.C.S3)<br>CALL FLCT (C.S.C.S3)<br>CALL AXIS (C.C.C.O.'Z-AXIS'6,24.C.C.O.FRSTVZ.DELTAV)<br>CALL AXIS (C.C.C.O.'Z-AXIS'.+6,24.0.590.0.FRSTVZ.DELTAV)<br>> wains (C.C.C.O.'Z-AXIS'.+6,24.0.590.0.FRSTVZ.DELTAV)<br>> YRAJECTCRY<br>> TRAJECTCRY<br>REPEAT60. WHILE ZOLLE.ZE<br>> ASSIGNING AND PRINTING THE INITIAL CONDITIONS.<br>WEITE(*.2C)<br>FORMAT(''.TT3,'T'TT3,'RE'TT31,'R',T37,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',T77,'UX',UX',T77,'UX',T77,'UX'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | CALL AXIS (C.O.C.O.'X-AXIS', -6/24.0.50.0.FRSTVX.05LTAV)<br>> *AIS (C.C.C.O.'Z-4XIS', +6/24.0.59.0.0.FRSTVZ.05LTAV)<br>> TRAJECTER<br>> TRAJECTER<br>> TRAJECTER<br>> SIGNING AND PRINTING THE INITIAL CONDITIONS.<br>WEITE(*,2C)<br>FORMAT('',T3,'T',T13,'RE',T23,'C0',T31,'R',T39,'Y',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'T53,'C0',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T55,'Z',T53,'C0',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T55,'Z',T53,'C0',T71,'VY',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T55,'Z',T53,'C0',T71,'V',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T53,'C0',T71,'Y',T79,'VZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T53,'C0',T71,'Y',T79,'UZ',T87,'UX','<br>+ T47,'Y',T55,'Z',T53,'C0',T71,'Y',T79,'Z',T87,'UZ','<br>+ T47,'Y',T55,'Z',T53,'C0',T71,'Y',T79,'Z',T87,'UZ','<br>+ T47,'Y',T55,'Z',T53,'C0',T71,'Y',T79,'Z',T87,'UZ','T77,'Z','Z','<br>+ T47,'Y',T55,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z',T53,'Z'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6666666666                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000<br>0000<br>0000<br>0000<br>000<br>000<br>000           | <pre>&gt; WAIN LOCP. EACH ITERATE IS A COMPLETE PARTICLE<br/>&gt; TRAJECTCRY.<br/>&gt; Sasigning and printing the initial conditions.<br/>weite(*.20)<br/>#FITE(*.20)<br/>FORMAT(' '.T3,'T',T13,'RE',T33,'CD',T31,'R',T39,'X',<br/>* T47,'Y',T55,'Z',T63,'VY',T77,'VY',T79,'VZ',T87,'UX',<br/>* T47,'Y',T55,'Z',T63,'VY',T77,'VY',T79,'VZ',T87,'UX',<br/>* T55,'UY',T103,'UZ','Y','T71,'VY',T79,'VZ',T87,'UX',<br/>* T61)=XVAL(1)=X0<br/>F(1)=XVAL(1)=X0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu0<br/>F(2)=Cu</pre>                                                            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000                      | <pre>&gt; TRAJECTCRY.<br/>&gt; TRAJECTCRY.<br/>#ETTE(&gt;, 20.LE.2E<br/>&gt; ASSIGNING AND PRINTING THE INITIAL CONDITIONS.<br/>WEITE(*,2C)<br/>FORMAT('',T3,'T',T15,'RE',T39,'Y.',T39,'Y.',T39,'Y.',T39,'Y.',T79,'V.',T79,'V.',T87,'UX',<br/>FORMAT('',T3,'T',T71,'V'',T77,'V.',T77,'UX',<br/>FORMAT('',T35,'Z',T63,'VX',T771,'V'',T77,'V'',T77,'UX',<br/>FORMAT('',T35,'Z',T63,'VX',T771,'V'',T77,'V'',T77,'UX',<br/>FORMAT('',T35,'Z',T63,'VX',T771,'V'',T77,'V'',T77,'UX',<br/>FORMAT('',T35,'Z',T63,'VX',T771,'V'',T79,'VZ',T87,'UX',<br/>FORMAT('',T55,'Z',T63,'VX',T771,'V'',T79,'VZ',T87,'UX',<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX',<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX','<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX','<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX','<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX','<br/>FORMAT('',T55,'Z',T63,'V'',T771,'V'',T79,'VZ',T87,'UX','<br/>FORMAT('',T55,'Z',T63,'V'',T771,''',V'',T79,'VZ',T87,'UX','''''''''''''''''''''''''''''''''</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5555 <u>6555</u>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000                      | REPEATEON WHILE ZOLLE.ZE         > ASSIGNING AND PRINTING THE INITIAL CONDITIONS.         WEITE(*,ZC)         FORMAT('',T3,'T',T13,'RE',T33,'C0',T31,'R',T39,'X',         FORMAT('',T33,'T',T13,'RE',T33,'C0',T31,'R',T39,'X',         * T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',         * T47,'Y',T1C3,'UZ',Y','T71,'VY',T79,'VZ',T87,'UX',         * T6(1)=XVAL(1)=XC         F(1)=XVAL(1)=XC         F(2)=C,0         F(2)=LVAL(1)=ZC         F(5)=C,0         F(1)=F(1)+F(2)+F(2)+F(3)+F(3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2226225                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | <pre>&gt; ASSIGNING AND PRINTING THE INITIAL CONDITIONS.<br/>WEITE(*,2C)<br/>FORMAT(' ',T3,'T',T3,'T',T3,'Y',T33,'X',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T33,'Y',T3</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20011111111111111111111111111111111111                      | <pre>WFITE(*,2C)<br/>WFITE(*,2C)<br/>F9RMT(' ',T3,'T',T13,'aE',T23,'C0',T31,'R',T39,'X',<br/>* T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br/>* T95,'UY',T1C3,'UZ','/' ')<br/>F(1)=XVAL(1)=XQ<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=L1NDSF<br/>F(2)=L1NDSF<br/>F(2)=L1NDSF<br/>F(2)=L1NDSF<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=L1NDSF<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C,0<br/>F(2)=C</pre> |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 800<br>800<br>100<br>100<br>100<br>100<br>100<br>100        | <pre>F9RMAT(' ',T3,'T',T13,'aE',T23,'C0',T31,'R',T39,'X',<br/>* T47,'Y',T55,'Z',T63,'VX',T71,'VY',T79,'VZ',T87,'UX',<br/>* T95,'UY',T1C3,'UZ','' ')<br/>F(1)=XVAL(1)=X0<br/>F(2)=C.0<br/>F(2)=C.0<br/>F(2)=C.0<br/>F(2)=CL0<br/>F(2)=CL0<br/>F(2)=C10<br/>ACC = C10<br/>ACC = C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(2)=C10<br/>F(</pre>                                                                                                                                                                                    |
|                                         | 12 - C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07777777777777777777777777777777777777                      | <pre>* T47.Y.T55.Z.T63.VX.T71.VY.T79.VZ.T87.UX.<br/>* T55.UY.T163.UZ'./'')<br/>F(1)=XVAL(1)=X0<br/>F(2)=C.0<br/>F(2)=ZVAL(1)=ZC<br/>F(4)=WINDSP<br/>F(5)=C.0<br/>F(5)=C.0<br/>ACC = 2<br/>CD = CDC<br/>CD = CDC<br/>F(1)+F(1)+F(2)+F(3)+F(3))<br/>TCL=.C10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | <pre>* Type UV TTLS UV</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | F(1)=XVAL(1)=X0<br>F(2)=C.0<br>F(2)=C.0<br>F(4)=kINDSF<br>F(4)=kINDSF<br>F(6)=V20<br>AE=AEC<br>CD=CDC<br>F(6)=V20<br>AE=AEC<br>CD=CDC<br>F=S2FT(F(1)+F(2)+F(3)+F(3))<br>F(2)=C10<br>F=C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 12 • 0000<br>13 • 0000<br>15 • 0000<br>16 • 0000<br>17 • 0000<br>18 • 00000<br>18 • 000000<br>18 • 000000<br>18 • 000000<br>18 • 000000<br>18 • 00000000000000000000000000000000000                                                                                                                                                                                                                                                                        |                                                             | F(2)=C.0<br>F(2)=VAL(1)=2C<br>F(4)=kINDSF<br>F(5)=C.0<br>F(6)=V20<br>a==aEC<br>CD=CDC<br>F=S2F(F(1)+F(2)+F(3)+F(3))<br>F(2)=C10<br>F=S2F(F(1)+F(2)+F(3)+F(3))<br>F=S2F(F(1)+F(2)+F(3)+F(3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                       | 13.000<br>14.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.0000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.00000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.0000<br>15.00000<br>15.00000<br>15.00000<br>15.00000<br>15.00000<br>15.00000<br>15.00000<br>15.000000<br>15.0000000<br>15.000000000000000000000000000000000000                                                                                                                                                                                                                                                       |                                                             | F(3)=2VAL(1)=2C<br>F(4)=kINDSF<br>F(5)=C.0<br>F(6)=V20<br>assafe<br>CD=CDC<br>F=S2RT(F(1)+F(2)+F(3)+F(3))<br>FcL=.C10<br>TcL=.C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 14.000><br>15.000><br>16.000><br>17.000><br>18.000>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21111111111111111111111111111111111111                      | F(4)=hINDSP<br>F(5)=C.0<br>F(6)=V20<br>R= RC<br>CD=CDC<br>F= S2FT(F(1)+F(2)+F(3)+F(3))<br>F= S2FT(F(1)+F(2)+F(3)+F(3))<br>F= S2FT(F(1)+F(2)+F(2)+F(3))<br>F= S2FT(F(1)+F(2)+F(3)+F(3))<br>F= S2FT(F(1)+F(2)+F(3)+F(3))<br>F= S2FT(F(1)+F(2)+F(3)+F(3))<br>F= S2FT(F(1)+F(3)+F(3)+F(3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                       | 15.000<br>16.000<br>17.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>16.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.0000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.0000<br>17.00000<br>17.00000<br>17.00000<br>17.0000<br>17.000000<br>17.000000<br>17.000 |                                                             | F(5)=C.0<br>F(6)=VZO<br>R=REC<br>CD=CDC<br>F=S2RT(F(1)+F(2)+F(2)+F(3)+F(3))<br>FCL=.C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | F(6)=V20<br>36=36C<br>CD=CDC<br>F=S2RT(F(1)+F(2)+F(2)+F(3)+F(3))<br>TCL=+C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11                                      | 17.000<br>16.000<br>16.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117:                                                        | ag = 4EC<br>CD = CDC<br>E = SQRT(F(1)+F(2)+F(2)+F(3)+F(3))<br>TCL = +C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UN                                      | <0000 - 01<br>- 0000 - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | CD=CDC<br>E=S2RT(F(1)+F(1)+F(2)+F(2)+F(3)+F(3))<br>TCL=+C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ۲<br>۱C                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                                         | F=S2FT(F(1)+F(1)+F(2)+F(2)+F(3)+F(3))<br>TCL=+C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ξ :<br>:L/                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115:                                                        | TCL=.C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4S                                      | <ul><li>COC&gt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12C:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SI                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121:                                                        | DT=(0.1*PADTAP)/SGRT(WINDSP*WINDSP+VZC*VZC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FI                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :22:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| )                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | ICCUMINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | A FRUTTO OF THE LEVEL CONCLUSION ON THE CAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21                                      | <0000 - 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120:                                                        | WALTE (*/30) T/RE/CD/A/(F(I)/I=1/6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | V SECCUDARY LOOP. EACH ITERATE EMPLOYS AN IMSL ROUTINE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9<br>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | V STER SCLVE THE DE STSTEM GVER A SMALL DISTANCE WHICH IS<br>V detervited ov nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | V AFLAGEO FRANCETATE THE CALCULATION TO CONTELED.<br>V tetaget yearn teat the calculation contruier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) (/<br>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | 010 0 4 4 10 70 1 0 10 20 - 10 1 7 1 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | <000.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | 14 - 000>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134                                                         | I COLNT = I COUNT + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                                      | 35.000>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135: C                                                      | > DETERMINING THE INVISCID FLUID FLOW VELCCITY AT THE PARTICLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | <000 • • 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136:                                                        | UX=WINDSP+(1.0-(RADTAR+FADTAR)+(F(1)+F(1)-F(3)+F(3))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 37.0CC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | * (Participation (Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | <000.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.                                      | 5 • C00>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 139:                                                        | UZ=WINDSP*((-2.C*F(1)*F(3)*RADTAR*RADTAR)/(4*R*F.A)) 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                      | 4C.CCC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140:                                                        | UV=SGRT((UX-F(4))*(UX-F(4))+(UY-F(5))*(UY-F(5))+(U2-F(6))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 71                                      | .1.COC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141:                                                        | <pre>* *(U2-F(ć)))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                                      | <pre>.2.00c&gt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142: C                                                      | > UPDATING THE REYNOLD'S NUMBER AND DRAG COEFFICIENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14                                      | 43.CCC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 143:                                                        | RE=(2.C+PADFAR+CENAIR+UV)/VISAIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14                                      | 4 • OCC>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144:                                                        | IF(PE.GT.S.C) THEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                        |                                   |       |     | !       |                      |                                                            |                                       |             |           |                                                   |                                    |                                                  |          |          |          |          | ι                                                     | UN        | ICI                                                             | LA                                                                                                                        | <br>SS:<br>                                               | IFI       | EĽ       | )        |                                                                              |                    |                                                    |          |          |                                                     |                                       |                    | SN                | 11                                           | 10                                                                                                                                        | 2                                                                                             |                                                                         |     |                                  |                                    |                                                      |
|------------------------|-----------------------------------|-------|-----|---------|----------------------|------------------------------------------------------------|---------------------------------------|-------------|-----------|---------------------------------------------------|------------------------------------|--------------------------------------------------|----------|----------|----------|----------|-------------------------------------------------------|-----------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|----------|----------|------------------------------------------------------------------------------|--------------------|----------------------------------------------------|----------|----------|-----------------------------------------------------|---------------------------------------|--------------------|-------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|----------------------------------|------------------------------------|------------------------------------------------------|
| FA=CD+4.0<br>FE=Ch-4.0 | TE-CV-4.0<br>TECFA.TT.D.1) F9=0.1 |       |     |         | IF (RE.GT.1E-3) THEN | S TWSI SIN TEALST IS LEED TO SELVE THE NON-LINEAS EDUATION | <pre>&gt; (FS/R SEEDEE) FOR CD.</pre> | T C D = C D | ITWAX=1CO | CALL ZFALSE (SEEDEE/1.02-4/4/FE/FA/TCD/ITMAX/IER) | IF (IER.EG.129.CP.IER.EG.130) THEN | WAITE(*,*) 'FAILURE TO SOLVE FOR CD. IER= ', IER | STOP     | END IF   | CC=TCC   | ELSE     | > IF RETO.O THEN CD IS SET TO A DUMMY VALUE OF 1000.0 | CD=10C0.0 | END IF<br>V this story solver the set of discretizing countries | V PALS PECCIVE) WHICH DESCRIBE THE WOLLON' ASING THE AVELOUS<br>V (S/B DESCLVE) WHICH DESCRIBE THE WOLLON' ASING THE IMSC | > S/R DVEFK. UPON CUTFUT WE GET NEW FCSITION AND VELCCITY | > VALUES. | N=6      |          | TENDETFET<br>Fait Dyredy / M. Dersolyre, t. R. Tend, tcl. IND. C. K. H. TEDV | IF (IME.NE.3) THEN | WAITE(+,+) "FAILURE TO SOLVE DE SYSTEM, IND= ",IND | STCP     | EXO NF   | STICETAR THE NEW POSITION COCEDINATES FOR FULLING - | F=SGPT(F(1)+F(1)+F(2)+F(2)+F(3)+F(3)) | XVAL (ICCUNT)=F(1) | ZVAL(ICCUNT)=F(3) | > WRITE TRAJECTOPY INFORMATION IF REQUESTED. | IF (IWRITE.EG.1) THEN<br>Total (100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 | WPITE(*/SU) T/KE/CD/K/(F(T)/I=1/0)/UX/UT/UZ<br>commat/i 1 cc / t10 c7 3 t30 c0 2 t30 c/ 7 t74 | FURBAL (* * * * FUS-44/110/FT-46/160/FG-50/100/F4+5/150/<br>D/FF-3/24/2 |     | > HAS THE PARTICLE IMPACTED YET? | IF (PLE.(RADTAP+RACPAR+15-4)) THEN | WOTTE(*, C) & A A O ( E ( 3 ) , E ( 1 ) ) *57 , 2957 |
|                        |                                   |       |     |         |                      | <u>ر</u>                                                   | ں د<br>• • •                          |             |           |                                                   | ••                                 | ••                                               | ••       | ••       |          | ••       | U<br>                                                 | ••        |                                                                 | ا                                                                                                                         | ,                                                         | ں<br>• •  | ••       |          | •• ,                                                                         |                    |                                                    | ••       | ••       | ი.                                                  |                                       |                    | ••                | ს<br>                                        | ••                                                                                                                                        |                                                                                               | •                                                                       | • • |                                  | ,                                  | •                                                    |
| 145                    | - 4 4                             | 1 7 1 | 140 |         | - 1                  | 4 I<br>4 I<br>7 T                                          | 101                                   |             |           | 157                                               | 155                                | 159                                              | 16C      | 161      | 162      | 163      | 154                                                   | 165       | 9 I<br>9 V<br>1 V                                               | 101<br>102                                                                                                                | 165                                                       | 170       | 171      | 172      |                                                                              | 175                | 176                                                | 177      | 178      | 5 - F<br>5 - F                                      | 151                                   | 14                 | 133               | 134                                          | ()<br>()<br>()                                                                                                                            | 130                                                                                           |                                                                         |     | 100                              | 101                                | 101                                                  |
| 45.000>                |                                   |       |     | 51.000> |                      |                                                            | 154.000>                              | 155.000>    |           | 157.000>                                          | 156.000>                           | 159.000>                                         | 160.000> | 161.000> | 162.000> | 163.600> | 164.000>                                              | 165.000>  | 16c.CC>                                                         |                                                                                                                           | 169.000>                                                  | 170.000>  | 171.000> | 172.000> |                                                                              | 175.000>           | 176.000>                                           | 177.000> | 178.000> |                                                     | 151.000>                              | 152.000>           | 163.000>          | 184.000>                                     | 155.000>                                                                                                                                  | 186.6002                                                                                      | 187.UCU>                                                                |     | 190-000>                         | 191.000>                           | 102 010                                              |

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                        | •<br>•••<br>•••<br>•••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                 | 1/2                                                                                       |                       | ι                                              | JNC                    | CLA                                               | SS         | IFI               | ED                                                                       |                                              |                                                       |          |                                      |                                       |                 | :                                                                          | SM                                                 | 11             | 102                                 | 2                                                        |                                         |                        |                                                   |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|-------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|------------------------|---------------------------------------------------|------------|-------------------|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------|--------------------------------------|---------------------------------------|-----------------|----------------------------------------------------------------------------|----------------------------------------------------|----------------|-------------------------------------|----------------------------------------------------------|-----------------------------------------|------------------------|---------------------------------------------------|------------|
| FORMAT("', THE PARTICLE HAS IMPAGTED OV THE TADGET,',/'<br>, 'THE IMPACT DOSITION IS',/' ',5X,'THETAH ',FD,2/<br>, DEGREES.')<br>IFLAGEC<br>, SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>IF NOT, DT IS SELECTED SC AS TO GROVIDE THE DESIRED</li> <li>TRAVEL DISTANCE ON THE NEXT STEP. (1 MM)</li> <li>TO FLANDIASY AND AND AND AND AND AND AND AND AND AND</li></ul> | <ul> <li>I. VALLANCE JATAVIATAVIATAVIA VILLE OUTVORTAVIA VILLEVILLAVIA VILLEVIL<br/>VILLEVILLAVIA VILLEVILLEVILLEVILLAVIA VILLEVILLAVIA VILLEVIL<br/>VILLEVILLAVIA VILLEVILLAVIA VILLEVI<br/>VILLEVILLAVIA VILLEVILLAVIA VILLEVIL<br/>VILLEVILLAVIAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVI<br/>VILLEVILLEVILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVI VILLEVILLAVI VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVIAVI VILLEVILLAVIAVIA VILLEVILLAVIA VILLEVILLAVIA VILLEVILLAVI</li></ul> | IF (F.GT. (F.DTAP+1.5).AND.P.GT.FLAST) THEN | CONTINUE        | > FLOTTING THE TPAJECTCRY. SEE CALCOMP MANUAL FCP DETAIL<br>> CN THE PLOTTING PROCEDURES. | XV#L(ICOUNT+1)=FPSTVX | XVAL(100UNT+2)=JELTAV<br>2VAL(100UNT+4)=FRSTV2 | ZVAL (ICOUNT+2)=DELTAV | CALL LINE (XVAL/ZVAL/ICCUNT/1/C/11)<br>ZC=ZO+ZI%C | JNIX+GX=CX | WeITE(+/+)        | <pre>&gt;&gt; ADDING THE TARGET IMAGE (CIRCLE), TITLES AND BOADER.</pre> | CC /C I=1/41<br>Avele= (4.C*fcb1(1))/57.2953 | ZVAL(I)=SIR(ARGLE)*RADTAR<br>VVAL(T)=Crstard=5+5257AP | CONTINUE | XVAL (92)=FRSTVX<br>XVAL (93)=551TAV | ZVAL(92)=FRSTVZ                       | ZVAL(93)=DELTAV | CALL LINE (XVAL/2VAL/91/1/0/1)<br>rait avvact vo rija si circude intid rij | CALL SYVEOL (4.C/24.5/0.3/PARTICLE SIZE= '/C.5/15) | FFN=FAD-A3+1E6 | CALL NUMPER(9.0/24.5/5.3/FPN/0.0/0) | CALL SYMBOL (10.6/24.5/6.3/"MICEONS MINDSFEEDE '/C.6/21) | CALL SYMECL (18.0.24.570.37"M/S"/0.0.5] | CALL PLCT (C.0,24.0,3) | CALL PLCT (24.0/24.5/2)<br>Call Plct (74.0/5.6/2) |            |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 70                                        | <br>0<br>14<br> | 0 0 0<br>1 0 0<br>1 0 0                                                                   | 1                     |                                                | 14:                    | - <del>-</del> -                                  | 17:        | 101<br>101<br>101 | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                           | د ] :<br>د :                                 |                                                       | 24 - 2C  | 24:                                  | • • • • • • • • • • • • • • • • • • • | 5 ÷ 2           |                                                                            | - 1V                                               | · ••           | : 7:                                | ••••••<br>••••••                                         |                                         | ••                     |                                                   | , <b>4</b> |
| 1955.000<br>1965.000<br>1965.000<br>1965.000<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00<br>1965.00 |                                                                                                                                                                                        | 2011-0000<br>2011-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000<br>2021-0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 204-0002                                    |                 | 2000-505<br>210-600> 2                                                                    | 211.500> 2            | 212.CCC> 2<br>213.JUO> 2                       | 214.000>               | 215.000 2<br>216.000 2                            | 217.000> 2 | 21c.55C> 5        | 220.000                                                                  | 222.5000 522                                 | 223.000> 2<br>224.000> 2                              | 225.000> | 224.600> 2<br>227.000> 2             | 226.000                               | 229.000> 2      |                                                                            | 272.000                                            | 233.000>       | 234.000> 3                          | 215-CCC>                                                 |                                         | 238.600>               |                                                   |            |

| 2241<br>2241<br>5421<br>5421<br>5421<br>5421<br>5421<br>5421 | CALL FLCT (3C.0.C.0.999)<br>STOP<br>END<br>E is declared but rever used. No storage allocatec.<br>TOTAL ERRORS FOUND: 3 No storage allocatec. | UNCLASSIFIED | SM 1102 |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
|                                                              | 241:<br>242:<br>243:<br>FPRIVE<br>: 0<br>: 0                                                                                                  |              |         |

| ₽-                                                                                                                                              |                                                            |                     |                                  |                       |                                                       |                              |                                    |          |                        |          |                |                         | UNCLAS | <br>SSIFIE | ED |  |  | SM | 1 1102 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|----------------------------------|-----------------------|-------------------------------------------------------|------------------------------|------------------------------------|----------|------------------------|----------|----------------|-------------------------|--------|------------|----|--|--|----|--------|
| > FUNCTION SUERCUTINE SEEDEE<br>> THIS ROUTINE DEFINES AND CALCULATES THE DRAG COEFFICIEA<br>> EASED ON THE EMPIPICAL FORMULAE.<br>> IMPUT : PE | > CUTFLT: CD<br>> USAGE : THIS ROUTINE IS CALLED 2Y ZFALSE | FUNCTION SEEDEE(CD) | GLOGAL RE<br>Te foe ge j dy then | TEMPHALOGIC(CC+RE+RE) | SEEDEE=-1.29536+9.86E-1*TEMP-4.6677E-2*TEMP+1.1235E-3 | * *TEMP*TEMP*TEMP-ALCG1C(RE) | 11 - 01<br>                        |          | * 6.9105E-9*TEMP**4-PE | END IF   | ALIURIY FALING | 1 TOTAL EARCAS FOUND: 0 |        |            |    |  |  |    |        |
| 0000                                                                                                                                            | ບບ                                                         |                     |                                  |                       |                                                       |                              |                                    |          |                        |          |                | 0<br>                   |        |            |    |  |  |    |        |
| ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                           | 5 12<br>11 12                                              | 2:                  | υ<br>ωυ                          | 10                    |                                                       | 12:                          | - 2 - 2                            | - «-     | 16:                    |          |                | •                       |        |            |    |  |  |    |        |
| 244.CCC><br>245.CCC><br>246.00C><br>247.GCC>                                                                                                    | 245.00C><br>249.000>                                       | 250.000>            | 251.000>                         | 253.000>              | 254.000>                                              | 255.CCO>                     | <pre><pre>&gt;&gt;&gt;</pre></pre> | 258.000> | 259 - 600>             | 26C.00C> |                | RECES FOUND             |        |            |    |  |  |    |        |

| RENTIAL<br>E SYSTEK.<br>NS HAVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNCLASSIFIED                 | SM 1102 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|
| <ul> <li>&gt; THIS ROUTINE DEFINES AND CALCULATES THE DIFFE</li> <li>&gt; FOUTIONS CF MOTION. FRAME 1 IS THE COOPDINATIONS</li> <li>&gt; SOUTE THAT THE ORIGINAL 3 SECOND CRDER EQUATIONS.</li> <li>&gt; NOTE THAT EPRIME IS THE FIRST DERIVATIVE OF E</li> <li>&gt; NOTE THAT EPRIME IS THE FIRST DERIVATIVE OF E</li> <li>&gt; NOTE THAT EPRIME IS THE FIRST DERIVATIVE OF E</li> <li>&gt; NOTE THAT EPRIME IS THE FIRST DERIVATIVE OF E</li> <li>&gt; NOTE THAT EPRIME IS THE FIRST DERIVATIVE OF E</li> <li>&gt; USAGE 1 THIS ROUTINE IS CALLED BY DVERK.</li> <li>SUBROUTINE DESOLVE(N, T, F, FPPIME)</li> <li>&gt; USAGE 1 THIS ROUTINE IS CALLED BY DVERK.</li> <li>SUBROUTINE DESOLVE(N, T, F, FPPIME)</li> <li>&gt; USAGE 1 THIS ROUTINE IS CALLED BY DVERK.</li> <li>SUBROUTINE DESOLVE(N, T, F, FPPIME)</li> <li>SUBROUTINE DESOLVE(N, T, F, F, FPPIME)</li> <li>SUBROUTINE DESOLVE(N, T, F, FPPIME)</li> <li>SUBROUTINE DESOLVE(N</li></ul> | END<br>TCTAL ERRORS FCUND: 0 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |         |
| 265.000<br>265.000<br>265.000<br>265.000<br>265.000<br>265.000<br>271.000<br>271.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>275.000<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERCRS FOUND                  |         |

. . .

|     |                      |          |                      | •           | ļ                    | JNC      | LASSI                | FIED    | •                               |            |     |                      |            | SM                   | 1102     |                |        |
|-----|----------------------|----------|----------------------|-------------|----------------------|----------|----------------------|---------|---------------------------------|------------|-----|----------------------|------------|----------------------|----------|----------------|--------|
| C.2 |                      | C.2      |                      | Ω           |                      | C 7      |                      | C 2     |                                 |            | C Z |                      | רז         |                      | 20       |                | C 2    |
| ۲U  |                      | ۲U       |                      | ۲U          |                      | ٦        |                      | ۲U      |                                 |            | υY  |                      | ۲U         |                      | ٨U       |                | ۲IJ    |
| СX  |                      | nχ       |                      | C X         |                      | הא       |                      | CX      |                                 |            | CX  |                      | ñX         |                      | הא       | -              | כא     |
| ٧2  | 250                  | ΣΛ       | 250                  | 27          | 250                  | V 2      | 250                  | 27      | - 250                           |            | 27  | 250                  | 2 7        | 250                  | 77       | 250            | 2 7    |
| ٧٢  | 000.                 | ۲Y       | • 000                | ΥΫ́         | • 000                | 77       | 000.                 | ۲۷      | 000                             |            | ΥΥ  | • 000                | ۲Y         | . COD                | ٢٧       | .000           | 77     |
| ٨X  | 1.500                | ×        | 1.500                | XN          | 1.500                | X۷       | 1.500                | XV      | 1.500                           |            | ΥN  | 1.500                | ۸X         | 1.500                | XX       | 1.500          | ۸X     |
| 2   | ó70°-                | 7        | 016                  | 2           | .017                 | 7        | • 6 4 9              | 2       | • 082                           |            | ч   | .115                 | 2          | .148                 | 2        | .181           | 7      |
| ۲   | 000 •                | 7        | • 000                | ~           | • 000                | ~        | 000-                 | ۲       |                                 |            | Υ.  | 000.                 | ۲          | 000.                 | <b> </b> | .000           | 7      |
| ×   | 515                  | ×        | 510                  | ×           | - 504                | ×        | 499                  | ×       | - 493<br>Arget                  |            | ×   | 834 <b>-</b> -       | ×          | - 482                | ×        | - 477          | ×      |
| 4   | .517<br>Target       | Ľ.       | .510<br>TASGET       | Œ           | - 504<br>TAPGET      | u.       | .501<br>Target       | ŧ۲.     | - 5CO                           |            | ur. | -501<br>Tapget       | œ          | - 504<br>Target      | a        | -510<br>TARGET | UK.    |
| CD  | 17.337<br>MISSED THE | CD       | 17.337<br>MISSED THE | CD          | 17.337<br>MISSED THE | CD       | 17.337<br>Missed the | CD      | 17.337<br>IVPACTED 01<br>CN IS  | 4 DEGPEES. | CD  | 17.337<br>MISSED THE | CD         | 17.337<br>MISSED THE | 6        | MISSED THE     | ۵<br>۲ |
| RE  | 1.67<br>FICLE HAS    | ui<br>Az | 1.69<br>TICLE HAS    | u)<br>. 0.' | 1.69<br>TICLE HAS    | RE       | 1.69<br>IICLE HAS    | UI<br>L | 1.69<br>FICLE HAS<br>ACT PCSITI | ETA= 150.1 | R   | 1.69<br>IICLE HAS    | <b>0</b> : | 1.69<br>Ticle Has    | RE       | TICLE HAS      | ц<br>Ч |
| T   | .000C<br>THE FAR     | F        | .000C<br>THE FART    | -           | .0000<br>THE PAR     | <b>9</b> | .000C<br>THE PART    | ►       | -000C<br>THE PART               | THI        | -   | -000C<br>THE FAR     | ⊢          | .000C<br>THE PAR1    | F        | THE FART       | +      |

UNCLASSIFIED

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNCLASSIFIED | SM 1102 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| ()<br>v.<br>€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |         |
| 1<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |         |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |
| 214 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |         |
| 17 4<br>3657 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |         |
| 337 .5<br>74E 74E<br>15/33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |         |
| 3.05 C8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |
| ти п с и п с и п с и п с и п с и п с и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и п с и и и и |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNCLASSIFIED |         |

(E++4/0X) (Ficacis) 50. PARTICLE DENSITY= Particle gadius= Target radius= =C334SONIA

SM 1102

| This Sheet Security Classification         DOCUMENT CONTROL DATA - R & D         ISecurity classification must be entered when the overall document is classified         ORIGINATING ACTIVITY         20       DOCUMENT STATEMENT       20         DEFENCE RESEARCH ESTABLISHMENT SUFFIELD       20       DOCUMENT SERVENTY CLASSIFICATION         DEFENCE RESEARCH ESTABLISHMENT SUFFIELD       20       GROUP         DOCUMENT TITLE       20       GROUP         AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)       20         DESCRIPTIVE NOTES ITYDE OF report and inclusive dates)       SUFFIELD. MEMORANDIM         SUFFIELD MEMORANDIM       40       76. TOTAL NO. OF PAGES       70. NO. OF REFS         AUTHORIST Lear news, inside initial)       JEFFREY L. HALL AND STANLEY B. MELLSEN       30       ORIGINATOR'S DOCUMENT NUMBERIS)         SUFFIELD MEMORANDUM NO.       40. ORIGINATOR'S DOCUMENT NUMBERIS)       13210       50. ORIGINATOR'S DOCUMENT NUMBERIS)         B CONTRACT NO.       50. ORIGINATOR'S DOCUMENT NO.'S) (Any other numbers that may be assigned this document)       1402.         's UPPLEMENTARY NOTES       12. SPONSORING ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  | В -                                                                                                                                                                    | . 4                                                                                    | UNCLASS                                                                              | IFIED                                                    |                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
| DOCUMENT CONTROL DATA - R & D         ISecurity classification must be entered when the overall document is classified         ORIGINATING ACTIVITY         20       DOCUMENT SUFFIELD         20       DOCUMENT TILE         AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)         DESCRIPTIVE NOTES ITYDE OF report and inclusive deteal         SUFFIELD MEMORADIUM         SUFFIELD MEMORADIUM         JUNC. OF PAGES         DOCUMENT DATE         AUGUST 1984         Joint and inclusive deteal         SUFFIELD MEMORADIUM         JUNC. OF PAGES         DOCUMENT DATE         AUGUST 1984         JUNC. OF PAGES         JUNC. OF REFS         JUNC. OF REFS         JUNC. OF REFS         JUNC. OF REFS         JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        | Tì                                                                                     | is Sheet Se                                                                          | curity                                                   | Classification                                                  |
| ORIGINATING ACTIVITY       20. DOCUMENT SECURITY SECURITY CLASSIFICATION         DEFENCE RESEARCH ESTABLISHMENT SUFFIELD       20. GROUP         DOCUMENT TITLE       20. GROUP         AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)         DESCRIPTIVE NOTES (Type of report and inclusive deter)         SUFFIELD MEMORANDUM         AUTHORIS: (Lear neme, circledie initial)         JEFREY L. HALL AND STANLEY B. MELLSEN         DOCUMENT DATE       August 1984         PROJECT OR GRANT NO.         13E10         DCONTRACT NO.         90. OTHER DOCUMENT NUMBER(S)         SUFFIELD MEMORANDUM NO.         13E10         DCONTRACT NO.         90. OTHER DOCUMENT NO(S) (Any other number that may be assigned this document)         0 OISTRIBUTION STATEMENT         UNLIMITED         1 SUPPLEMENTARY NOTES         1 SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Security classification e                                                                                                        | DOCUMENT CONT<br>of title, body of abstract and indexing                                                                                                               | annotation must be                                                                     | R & D<br>entered when th                                                             | e overali da                                             | cument is classified)                                           |
| DEFENCE RESEARCH ESTABLISHMENT SUFFIELD       2b. GROUP         DOCUMENT TITLE       2b. GROUP         AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)         DESCRIPTIVE NOTES (Type of report and inclusive dates)         SUFFIELD MEMORANDIM         AUTORIS (Lear new, crist new, middle initial)         JEFFREY L. HALL AND STANLEY B. MELLSEN         ADOCUMENT DATE         AUGUNES (Lear new, crist new, middle initial)         JEFFREY L. HALL AND STANLEY B. MELLSEN         B DOCUMENT DATE         AUGUNES (Lear new, crist new, cri | ORIGINATING ACTIVIT                                                                                                              | Υ                                                                                                                                                                      |                                                                                        | 20. DOCUME                                                                           | T SECURI                                                 | TY CLASSIFICATION                                               |
| DOCUMENT TITLE         AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)         DESCRIPTIVE MOTES (Type of report and inclusive dates)         SUFFIELD_MEMORANDUM         AUTHORIS (Less near, circles and inclusive dates)         SUFFIELD_MEMORANDUM         AUTHORIS (Less near, circles and inclusive dates)         SUFFIELD_MEMORANDUM         AUTHORIS (Less near, circles and inclusive dates)         SUFFREY L. HALL AND STANLEY B. MELLSEN         A DOCUMENT DATE         August 1984         74. TOTAL NO. OF PAGES         75. NO. OF REFS         76. OTHER DOCUMENT NUMBER(S)         13E10         5. ONTRACT NO.         6. OTHER DOCUMENT NO.(S) (Any other numbers that mey be seigned this document)         13E10         5. OTHER DOCUMENT NO.(S) (Any other numbers that mey be seigned this document)         13. OUTHOR STATEMENT         UNLIMITED         1         1       SUPPLEMENTARY NOTES         12. SPONBORING ACTIVITY         3. ABSTRACT         (U)       This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, am an simulation was conducted. This                                                                                                                                                                                                                                                                                                                                                                                                        | DEFENCE RESEARCH E                                                                                                               | ESTABLISHMENT SUFFIELD                                                                                                                                                 |                                                                                        | 26. GROUP                                                                            |                                                          |                                                                 |
| DESCRIPTIVE NOTES (Type of report and inclusive dates)         SUFFIELD_MEMORANDUM         AUTHOR(S) (Lest name, first name, middle initial)         JEFFREY L. HALL AND STANLEY B. MELLSEN         DOCUMENT DATE       August 1984         7a       ToTAL NO. OF PAGES         7b       PROJECT OR GRANT NO.         9c       ORIGINATOR'S DOCUMENT NUMBER(S)         13E10       SUFFIELD MEMORANDUM NO.         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         9c       OTHER DOCUMENT NO.(S) (An                                                                                                                                                                                                                                                                                                                                               | DOCUMENT TITLE<br>AN INVESTIGATION (                                                                                             | OF PARTICULATE IMPACTION                                                                                                                                               | ON SPHERICA                                                                            | _ AND CYLIN                                                                          | DRICAL 1                                                 | TARGETS (U)                                                     |
| SUPFIELD PROMOMULUUT         AUTHORS (Less neme, instaneme, middle initial)         JEFFREY L. HALL AND STANLEY B. MELLSEN         DOCUMENT DATE       August 1984         78       70         PROJECT ON GRANT NO.         13E10         B. CONTRACT NO.         90. OTHER DOCUMENT NUMBER(S)         13E10         SUFFIELD MEMORANDUM NO.         100. OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         0. OISTRIBUTION STATEMENT         UNLIMITED         1. SUPPLEMENTARY NOTES         12. SPONSORING ACTIVITY         3. ABSTRACT         (U)       This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESCRIPTIVE NOTES (T                                                                                                             | Type of report and inclusive dates)                                                                                                                                    |                                                                                        |                                                                                      |                                                          |                                                                 |
| August 1984       7. TOTAL NO. OF PAGES       7b. NO. OF REFS         PROJECT OR GRANT NO.       96. ORIGINATOR'S DOCUMENT NUMBER(S)         13E10       SUFFIELD MEMORANDUM NO.       1102.         Bb. CONTRACT NO.       9b. OTHER DOCUMENT NO.IS) (Any other numbers that may be assigned this document)         10. OISTRIBUTION STATEMENT       UNLIMITED         11. SUPPLEMENTARY NOTES       12. SPONSORING ACTIVITY         13. ABSTRACT       (U) This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JEFFREY L. HALL /                                                                                                                | first name, middle initial)<br>AND STANLEY B. MELLSEN                                                                                                                  |                                                                                        |                                                                                      |                                                          |                                                                 |
| PROJECT OR GRANT NO.     13E10     SUFFIELD MEMORANDUM NO.     1102     SUFFIELD MEMORANDUM NO.     1102     OOSTRIGUTION STATEMENT     UNLIMITED     12. SPONSORING ACTIVITY     13. ABSTRACT     (U) This project was a theoretical investigation of particulate impaction on     spheres and cylinders. The motion model developed was implemented on a computer     and yielded results focused on two main goals: first, the net effect of gravity     on particulate impaction was determined; and second, a man simulation was con-     ducted. This simulation calculated to a first approximation the amount of chem-     ical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOCUMENT DATE                                                                                                                    | August 1984                                                                                                                                                            | 70. TOTAL N                                                                            | D. OF PAGES                                                                          | 76. NO.                                                  | OF REFS                                                         |
| 13E10       SUFFIELD MEMORANDUM NO.       1102         ab CONTRACT NO.       9b. OTHER DOCUMENT NO.(S) (Any other numbers that may be assigned this document)         10. DISTRIBUTION STATEMENT         UNLIMITED         11. SUPPLEMENTARY NOTES         12. SPONSORING ACTIVITY         13. ABSTRACT         (U)       This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . PROJECT OR GRANT N                                                                                                             | ю.                                                                                                                                                                     | 9. ORIGINA                                                                             | TOR'S DOCUMEN                                                                        | T NUMBER                                                 | R(S)                                                            |
| Bb. CONTRACT NO.       9b. OTHER DOCUMENT NO.IS) (Any other numbers that may be assigned this document)         10. DISTRIBUTION STATEMENT       UNLIMITED         11. SUPPLEMENTARY NOTES       12. SPONSORING ACTIVITY         13. ABSTRACT       (U) This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13E10                                                                                                                            |                                                                                                                                                                        | SUFFIELD                                                                               | MEMORANDUM                                                                           | NO.                                                      | 1102                                                            |
| IO. DISTRIBUTION STATEMENT         UNLIMITED         II. SUPPLEMENTARY NOTES         I2. SPONSORING ACTIVITY         I3. ABSTRACT         (U)       This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D. CONTRACT NO.                                                                                                                  |                                                                                                                                                                        | 9b. OTHER C<br>assigned th                                                             | OCUMENT NO.1<br>is document)                                                         | S) (Any oth                                              | ter numbers that may be                                         |
| UNLIMITED<br>11. SUPPLEMENTARY NOTES<br>12. SPONSORING ACTIVITY<br>13. ABSTRACT<br>(U) This project was a theoretical investigation of particulate impaction on<br>spheres and cylinders. The motion model developed was implemented on a computer<br>and yielded results focused on two main goals: first, the net effect of gravity<br>on particulate impaction was determined; and second, a man simulation was con-<br>ducted. This simulation calculated to a first approximation the amount of chem-<br>ical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DISTRIBUTION STATEN                                                                                                              | IENT                                                                                                                                                                   |                                                                                        |                                                                                      | ······································                   |                                                                 |
| II. SUPPLEMENTARY NOTES       12. SPONSORING ACTIVITY         II. SUPPLEMENTARY       13. SUPPLEMENTARY         II. SUPPLEMENTARY       14. SUPPLEMENTARY         II. SUPPLEMENTARY       13. SUPPLEMENTARY         II. SUPPLEMENTARY       14. SUPPLEMENTARY         II. SUPPLEMENTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
| 12. SPONSORING ACTIVITY<br>13. ABSTRACT<br>(U) This project was a theoretical investigation of particulate impaction on<br>spheres and cylinders. The motion model developed was implemented on a computer<br>and yielded results focused on two main goals: first, the net effect of gravity<br>on particulate impaction was determined; and second, a man simulation was con-<br>ducted. This simulation calculated to a first approximation the amount of chem-<br>ical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
| (U) This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. SUPPLEMENTARY NOT                                                                                                             | ES                                                                                                                                                                     | 12. SPONSOR                                                                            | ING ACTIVITY                                                                         |                                                          |                                                                 |
| (U) This project was a theoretical investigation of particulate impaction on spheres and cylinders. The motion model developed was implemented on a computer and yielded results focused on two main goals: first, the net effect of gravity on particulate impaction was determined; and second, a man simulation was conducted. This simulation calculated to a first approximation the amount of chemical that would impact on a man subjected to a chemical attack.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ABSTRACT<br>(U) This prop<br>spheres and cylin<br>and yielded result<br>on particulate in<br>ducted. This sin<br>ical that would | ject was a theoretical in<br>nders. The motion model<br>lts focused on two main o<br>mpaction was determined;<br>mulation calculated to a<br>impact on a man subjected | vestigation<br>developed w<br>goals: first<br>and second,<br>first appro<br>to a chemi | of particu<br>as implemen<br>, the net e<br>a man simu<br>ximation th<br>cal attack. | late imp<br>ted on a<br>ffect of<br>lation v<br>e amount | paction on<br>a computer<br>f gravity<br>was con-<br>t of chem- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                                                                        |                                                                                      |                                                          |                                                                 |

٢,

h

.

## UNCLASSIFIED This Sheet Security Classification

KEY WORDS

Aerosol Chemical Defence Particulate Impaction

## INSTRUCTIONS

- ORIGINATING ACTIVITY. Entwit the name and address of the organization issuing the document.
- 2n DOCUMENT SECURITY CLASSIFICATION Enter the overall security classification of the document including special warning terms whenever applicable.
- 2b. GROUP. Enter security reclassification group number. The three groups are defined in Appendix 'M'of the DRB Security Regulations.
- 3 DOCUMENT TITLE Foreign the complete document title in all capital letters. Tables in of cases should be unclassified. If a sufficiently descriptive trifle cannot be selected without classifiition, show the classification with the usual one capital-letter abhievation or parentheses immediately following the title.
- 4 DESCRIPTIVE NOTES conter the category of document, e.g. technical report, technical note or technical letter. If appropriate enter the type of document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covined.
- 5 AUTHOR(S) Enter the numeral of author(s) as shown on or in the document Enter last name, first name, incide initial. It initiary, show rank. The name of the principal author is an absolute minimum requirement.
- 6 DOCUMENT DATE Enset the date (month, year) of Establishment approval for publication of the document.
- 75 NUMBER OF HEFERER. TES Enter the total number of inferences stretum the document.
- 8e PROJECT OR GRANT SUMBER. If appropriate, enter the applicable research and development project or grant number order which the documest was written.
- Hb. CONTRACT NUMBER appropriate, instant the applicable is instant under which the focument was written.
- See ORIGINATORS DOCUMENT NUMBER(S) Enter the officient document member by which the document will be interstitued and controlled by the originating activity. This member must be unique in this document.

- 9b. OTHER DOCUMENT NUMBER(S). If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).
- DISTRIBUTION STATEMENT. Enter any limitations on further dissemination of the document, other than those imposed by security classification, using standard statements such as.
  - (1) "Qualified requesters may obtain copies of this document from their defence documentation center."
  - (2) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."
- 11. SUPPLEMENTARY NOTES Use for additional explanatory notes.
- 12. SPONSORING ACTIVITY Enter the name of the departmental project office or laboratory sponsoring the research and development. Include undress.
- 13 ABSTRACT Enter an abstract giving a brief and factual summery of the document, even though it may also appear elsewhere in the body of the document itself. It is highly desirable that thi abstract of classified documents be unclassified. Each peragraph of the abstract shall end with an indication of the security classification of the information in the paragraph funias the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).

The length of the abstract should be fimited to 20 single-spaced standard typewritten lines. 7% inches tong.

14 KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a clocument and could be helpful in cateloging the disrumont. Key words should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.

