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Abstract

This thesis compares two modified maximum likelihood

(ML) estimation techniques against three minimum distance

(MD) estimation techniques in application to the three para-

meter lognormal distribution. The three parameter lognormal

distribution has a location parameter (t) and two other

parameters associated with the mean (j) and standard devia-

tion (q) of its parent normal population. The first modified

ML technique uses linear interpolation on order statistics

to estimate location while the second ML technique uses the

first order statistic as the location estimate. The remaining

two parameters are calculated by using the location estimate

in their respective censored or uncensored ML equations and

solving for the parameters. Three MD techniques are used:

Kolmogrov Distance, Cramer-von Mises Statistic, and the

Anderson-Darling Statistic. The MD techniques refine the

location estimates which are then used. in the ML equations

4 of the other two parameters to obtain their refined estimates.

Monte Carlo analysis is used to accomplish the

comparison of estimation techniques. Sample sizes of 6, 8,

10, 12, and 16 are generated using tee parameter sets

41
(0.0, 1.0, 10.0), (1.0, 1.0,'10.0), and (1.0, 2.0,

vii
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S 10.0) Eadh estimation technique is applied to one-thousand

replications for every combination of sample size and para-

meter set. _Three measures of effectiveness are used to

facilitate comparisons: mean square error, relative

efficiency, and the Cramer-von Mises Statistic. Comparisons

of these effectiveness measures across all cases reveal a

clear superiority of the MD techniques over the modified ML

techniques.

viii



ROBUST MINIMUM DISTANCE ESTIMATION OF

THE THREE PARAMETER LOGNORMAL

DISTRIBUTION

I. Introduction

Statistical analysis is continuousl Laying an ever-

increasing role in all branches of the pre. -lay military

Eervices. Being of such diverse application, statistical

analysis is being used for optimally operating under con-

strained budgets, determining manpower and equipment require-

ments, and increasing the level of operational readiness and

* availability. Procurement of multi-million dollar weapon

systems, desired increases in the prediction of system and

component reliabilities, and logistics planning all usually

involve statistical analysis before the decision-making

process begins. The application of more efficient and

accurate statistics to these and other areas leads to better

informed decision makers and more effective decisions being

made, thereby strengthening our military forces while

simultaneously operating under the imposed constraints.

One very important aspect of statistical analysis is

that of parameter estimation of distributions. Often times

an analyst can look at a histogram of some data and determine

which density function belongs to the data set. However, in

1
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most cases, simply identifying the data's density function

will not yield vital information such as the mean, variance,

and standard deviation. If an analyst had some reliability

data on a piece of operational equipment and was asked to

determine some statistics such as the mean time between

failures (MTBF) or the mean time to repair (MTTR), simply

fitting a density function by graphical methods and estimating

its parameters would most surely yield inaccurate estimates

at best. The military services recognize the importance of

accurately determining these parameter estimates and have

devoted much time and money to pursue this end. For example,

a commander of an F-16 squadron would certainly like to know,

as accurately as possible, how often the aircraft breaks down

and how much time is needed to repair or replace the faulty

component(s). These and other factors bear directly on the

survivability and operational capability of the squadron, not

to mention national defense. In order to obtain these vital

statistics, the parameters of an assumed distribution must

be estimated from sample data. Of course, better estimation

procedures result in more ac-urate parameter estimates and

yield more accurate information about the data. With the

importance of statistical analysis and parameter estimation

in mind, this thesis effort focuses on parameter estimation

as applied to the three parameter lognormal (3-LN) distribu-

tion.
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The method of moments and maximum likelihood are

two classical parameter estimation techniques with the method

of maximum likelihood usually outperforming the method of

moments. However, a recent technique called the minimum

distance method developed by J. Wolfowitz in the 1950s, seems

to yield better parameter estimates than those from the method

of maximum likelihood (3; 18; 25). This thesis applies

both the minimum distance method and the method of maximum

likelihood to the three parameter lognormal distribution and

compares the estimates from both methods. A Monte Carlo

analysis conducts the investigation. Both methods are dis-

cussed extensively in Chapters IV and V respectively.

Dr Albert H. Moore, professor of statistics at the

Air Force Institute of Technology, and his past thesis

students have devoted much time and study to the area of

parameter estimation. Over the past several years, he and

his thesis students have been extensively involved with the

application of robust minimum distance estimation techniques

to a variety of distributions. Some of the distributions

considered so far are the three parameter weibull, the three

and four parameter gamma, the four parameter beta, the

generalized t, and the generalized exponential power distribu-

tion. Parameter estimates from the robust minimum distance

estimation technique usually outperform the more classical

techniques.

3



The objective of this thesis effort is to estimate

and compare the parameters of the 3-LN distribution via the

method of maximum likelihood and the minimum distance method.

As the name implies, the 3-LN distribution has three para-

meters: a location parameter and two other parameters

associated with the mean and standard deviation of its parent

normal distribution. Two "modified" maximum likelihood

estimation techniques are developed and compared against

three minimum distance estimation techniques. The procedure

is straightforward and briefly stated here. Estimates

obtained by the "modified" method of maximum likelihood are

used by the minimum distance method to obtain a new estimate

of the location parameter. This new location parameter

estimate is then used by the method of maximum likelihood to

obtain new e3timates for the remaining two parameters.

Lastly, three measures of effectiveness are applied to the

parameter estimates to determine which estimation method

gives the most accurate estimates. Emphasis is placed on

small sample sizes since moderately large sample sizes

(n > 20) are easier to handle due to the asymptotic properties.

It is anticipated that the minimum distance estimates

will be more accurate than those of the "modified" maximum

likelihood method for the 3-LN distribution.

The next chapter introduces the 3-LN distribution by

reporting its genesis and history, derivation and development,

and some important statistics. Chapter III is a short

4



literature review consisting of some classical and newer

estimation techniques that have been applied to the 3-LN

distribution. Chapter IV discusses the method of maximum

likelihood revealing its history, properties, and some

methods used by statisticians and mathematicians in solving

the maximum likelihood equations. Chapter V presents the

minimum distance theory and method. Chapter VI describes

the Monte Carlo analysis procedure and computerization of

the estimation methods. The final chapter, Chapter VII,

reports the results and conclusions obtained from the Monte

Carlo analysis.

5
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II. Three-Parameter Lognormal Distribution

History

The normal distribution has played a dominant role

in the field of theoretical and applied statistics ever since

its development by Guass in 1809. However, the normal curve

could not provide an adequate representation of the many

different distributions found in statistical practice so, by

the end of the nineteenth century, some statisticians

attempted to construct systems of frequency curves represent-

ing a variety of distributions. These were commonly referred

to as "skew frequency curves" (13:149). Among the most

successful of these systems were those developed by K. Pearson

in 1895, F. Y. Edgeworth in 1898, and C. V. L. Charlier in

1905 (13:149). Pearson's system of frequency curves was

defined as the solution to a differential equation involving

four parameters and Charlier's system was defined by coeffi-

cients from the expansion of derivatives from the normal

distribution (13:152). Edgeworth called his system the

"method of translation" in which a function of the observed

random variable was sought which closely approximated the

normal random variable. Normal theory was then applied to

the transformed variables. Although the "method of transla-

tion" was not widely accepted due to the limited variety of

possible shapes, it was this system that greatly aided in

the advancement of the lognormal distribution.
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The genesis of the lognormal distribution arises

from a theory of elementary errors combined by a multiplicative

process instead of an additive process as in the case of the

normal distribution (2:2). In 1879, Galton pointed out that

many situations in nature such as growth, change, or even

death follow this multiplicative process and laid the founda-

tion for the development of the lognormal distribution.

Galton stated that if Xl,X 2 ,...,x n are positive and inde-

pendent random variables and

n
T = IT x (2.1)n i=1

then

n
log(Tn = Z log(x i ) (2.2)

i=l

* and application of the central limit theorem to the random

variables, log(x i) would result in the distribution of

log(Tn) being approximated by the unit normal distribution

as the sample size went to infinity. Thus, the distribution

of Tn was called lognormal (12:Ch 14, 113). D. McAlister

was the first to explicity develop some theory on the log-

normal distribution in 1879 by deriving its mean, median,

mode, and second moment (2:3). In 1903, Kapteyn further

established the genesis of the distribution and also developed

a crude machine for generating lognormal samples from a log-

normal population. Wicksel was first to estimate the parameterS

7
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of the distribution by employing the method of moments and

was also the first to consider the case where a simple

displacement of the variate rather than the variate itself

was lognormally distributed. The parameter which assigned

a value to the displacement of the variate from the origin

was referred to as the threshold parameter and established

the 3-LN distribution.

Since the 1930s applications of the lognormal distribu-

tion have steadily increased. It has been applied in such

fields as agriculture, entomology, metallurgy, biology,

economics, and reliability with much success. An extensive

list of applications can be found at the end of Chapter

Thirteen in Johnson (14).

Probability Density Function

By using Edgeworth's "method of translation" in

which a function of the observed random variable is sought

which closely approximates the normal random variable,

Johnson states that the transformation of a variable, say

x, to normality can be accomplished by a function, say

f(x), which has a specialized form and is made to depend only

on a certain number of parameters. His transformation is

(13:152):

z - 7+t'f[x- i] (2.3)

where:

8



f is a monotonic function of x and does not depend on any

parameter

6 and y are shape parameters

X is a scale parameter

is a location parameter

z is unit normal

The 3-LN probability density function (pdf) is explicity

derived by allowing the logarithmic function to represent

the function of the transformation in Eq (2.3). When natural

logarithms are used, as in this thesis, the scale parameter

can be removed (2:6). Therefore, Eq (2.3) becomes

z = y+S.ln(x-&) (2.4)

Application of Eq (2.4) to the general form of a normal pdf

yields the pdf of the displaced lognormal variates.

6 r y+61n(x-&)2
flx) = /- (X-&) exp" 2  if x > (2.5)

= 0 if x < &

Another, more common, expression of lognormal pdf

uses the mean (P) and the standard deviation(a) of its parent

normal distribution and is obtained by allowing w =-y/S and

a = 1/6 The pdf becomes:

9



f(x) = 1 exp-(x-e)-p 2 if x > (2.6)
av" m 2(x-0 2a 2

= 0 if x <

Figure 1 contains two 3-LN plots with different

values of U and a

Distribution Function

The distribution function, commonly referred to as

the cumulative distribution function (cdf), of a continuous

random variable is found by integrating its respective pdf

over a given range. Unfortunately, the cdf for the 3-LN

distribution does not have a closed form solution so it must

be integrated by numerical means. The cdf, F(x), for the

3-LN distribution is defined as (32:47) :
xi

.,~~ ( I ( n u )  ,g
F(x) = 1 1 exp2du (2.7)

where u = x-&

Important Statistics

Using the 3-LN pdf defined by Eq (2.6), a list of some

important statistics are given below. The measures of central

tendency are the mean, the median, and the mode defined

respectively as:

10
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mean = exp lP+1/2( 2) +E (2.8)

median = exp[1]+C (2.9)

mode = exp[112]+E (2.10)

Note that mean > median > mode.

The rth moment about is:

E [(X-o r] = exp[11.r+1/2(r2. a2)]1 (2.11)

The measures of dispersion are the variance (02), skewness

(K) and kurtosis (K) defined respectively by:

02 =expJ.a1* [exp~a)1 (2.12)

' 1

K3 = (w+2)'(w-1) (2.13)

K4 = w +2W3+3w2-3 (2.14)

where w - exp[oz ]  .

The standardized 100 a% deviate is

xa Xa-E [X (2.15)

where

Xa - exp[Ua +I]+

E[X] - mean

12
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4<

a(x) = 0

U = a- percentile from unit normal distribution

An interesting and easily verified fact is that as a goes to

zero, the standardized lognormal distribution approaches the

unit normal distribution (see Figure 1).

13
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III. Literature Review

In searching through the literature for different

estimation techniques that have been applied to the 3-LN

distribution, several estimation techniques applicable only

to the two parameter lognormal distribution were encountered.

It was interesting to note that the estimation techniques

for the two parameter lognormal distribution were usually

straightforward and the estimates computed with relative

ease. However, with the introduction of the single location

parameter, resulting in the 3-LN distribution, the estimation

techniques become quite complicated and inaccurate. This

finding is due to the fact that estimation of the location

parameter is extremely difficult.

Classical Estimation Techniques

The most popular classical estimation techniques,

as applied to the 3-LN distribution, are described in the

following paragraphs.

The method of moments was formulated by K. Pearson

in 1894 and is extremely simple in concept. Suppose that

the pdf of a random variable, say x, is a function of h

unknown parameters, say 01, e2, ... , 0,. then by equating as

many sample moments to population moments as there are

unknown parameters, the equations can be solved for

O1, 02, ... , eh, thereby yielding the parameter estimates

(7:130). To avoid any ambiguity, the definition of a moment

14



is pursued. There are two types of moments related to both

the sample and population: a moment about the origin called

a moment and a moment about the mean called the central

moment. The kth sample moment, m'k, is computed from the

sample as follows:

1 1 n k
m - X (3.1)mk n i7-1l

where n is the sample size and x. denotes the i th observation.

The kth population moment, il'k ' is derived from the population

as

11k= E[IXk] (3.2)

The kth sample central moment, mk , is -alculated from the

sample by

1 n
EZ (x.-x)k (3.3)

n i=l

where x is the sample mean. Finally, the kth population

central moment, Uk, is derived from the population as

k= E[(x-p)k] (3.4)

where U = E[XI is the mean of the distribution. Since the

population moment is a function of the population parameters

setting up the equations

= mk k = l,...,p (3.5)

IA M
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where p is the number of parameters being estimated,

establishes a system of p equations and p unknowns. These p

unknowns may be solved for yielding the method of moments

estimators:

=r Anlu )  (3.6)

= ln(m2 )-ln( u
2 (l+u')) (3.7)

A 1

m'1 - e (l+u2)2 (3.8)

where u is the solution to

1
u 3 + 3u (w-l)2(w+2) (3.9)

and w exp[a2]

From the sample and population central moments skewness and

kurtosis, two very useful statistics, denoted by K3 and K4

respectively, may be obtained by

K3 m3  (3.10)13-(m2)

K(3 = (3.11)

- m4  (3.12)
(rn2) 2

K4 = P (3.13)
(12) 2

16



The 'hat' (1 is used to identify the sample statistics.

In the case of the 3-LN distribution, Eqs (3.11) and (3.13)

yield Eqs (2.13) and (2.14) respectively. Equations (3.10)

and (3.11) are used later in the thesis to provide an

initial estimate for the a parameter. Wicksell, Gumble,

Yuan, and Aithcison and Brown have all applied the method of

moments to the 3-LN distribution. The latter found that the

method of moments is very inefficient when compared to other

estimation methods (14:Ch 14,124). This may be due to the

fact that the moment sequence,{fi' k },of the lognormal distribu-

tion is not unique to the distribution and, therefore, cannot

be defined by its moments (14:Ch 14, 115). Thus, the method

of moments is presented but not employed in this thesis.

The method of quantiles was also applied to the 3-LN

distribution to estimate the parameters. This method results

in three quantiles, say q, 1/2, l-q, where 0 < q < 1/2.

It is clear from Eq (2.4) that the value of x such that

P(x < Xq] = q is related to the corresponding percentile,

l/q, of the unit normal distribution by Xq = E+exp[p+v a]
q q

and that the median of the lognormal sample (corresponding

to q = 1/2 is &+exp[i] . Denoting the sample quantile

of order q by xq and the quantiles of order q from the unit

normal population by vq such that v (l-q) = -v q = v and

after some rearranging, results in the following set of

estimators:

17



^ i= ~ (lXl q-X-in(xy.-Xq) ]  (3.14)

= ln(xi-x )-ln(l-exp[-va]) (3.15)
Tq

= xj-exp[] (3.16)
T

and explicit estimates for p, a, and are obtained (2:58).

Aitchison states that as a general rule, q should be set

at 0.05 (2:58).

A final and very interesting method of parameter

estimation was developed by W. F. F. Kemsley in 1952 which

uses a mixture of the method of moments and quantiles. He

equates the sample mean R to the population mean which is

equivalent to replacing x in Eqs (3.14), (3.15), and (3.16)

by x and derives the function:

. 1x-x
f(a 2) = q (3.17)Xl-q

from which a is determined. The estimates for p and are

then easily found by inserting the value of a in Eq (3.15),

solving for p, then solving for E using Ii in Eq (3.16).

Again, a general rule is to let q = 0.05

In 1957, Aitchison and Brown (2) compared these three

estimation methods and reached the conclusion that, with

q = 0.05 , the method of quantiles was better than Kemsley's

method, and that both were considerably better than the

f 18



method of moments (2:62-63). Unfortunately, Aitchison and

Brown did not apply the method of maximum likelihood to the

3-LN distribution, but they did apply it to the two para-

meter lognormal distribution and found that the maximum

likelihood estimates were far more accurate than the

estimates obtained by the method of moments or quantiles

(2:53). With this in mind, it is anticipated that the

method of maximum likelihood should also perform better than

the method of quantiles for the 3-LN distribution. Thus,

the method of maximum likelihood is used in this thesis

and is extensively discussed in Chapter IV.

New Estimation Techniques

In searching through the recent literature, several

articles pertaining to parameter estimation of the 3-LN

distribution were discovered. Dallas R. Wingo (28) estimated

the parameters by taking the conditional log-likelihood func-

tion of an ordered random sample of n independent observa-

tions, subject to several linear constraints and applied a

nonlinear program to obtain the estimates. Using these

estimates in a series of penalty functions and maximizing

these functions for a sequence of decreasing values of the

penalty parameter, he asserts that the corresponding solu-

tion sequences converges to the solutions of the nonlinear

program. Thus, estimates of u, a, and & are obtained. This

estimation technique was applied to several lognormal data

sets which suggested that the algorithm is quite practical and

19



easy to implement. However, a major problem with Wingo's

approach is that the control parameter is arbitrarily chosen

which presents several difficulties. If the control para-

meter is initially too large, the penalty function will be

easy to maximize, but the algorithm may converge to a point

that is not the solution to the constrained problem (28:58).

On the other hand, if the control parameter is too small, the

penalty function becomes very difficult to maximize (28:59).

In 1970, Munro and Wixley (21) estimated the para-

meters based on order statistics. In their approach, they

take the expectations of the order statistics and express them

as functions which are linear in a location and scale para-

meter but nonlinear in a shape parameter of the distribution.

Regressing the order statistics on their expectations and

implementing an iterative technique results in weighted least

squares estimates of all three parameters (21:212). A Monte

Carlo analysis of this methodology revealed that the iterative

procedure always converges, nearly unbiased estimates are

obtained, and the variances for the location and scale para-

meter compare favorably with those of the order statistic

estimates of the standard normal distribution (21:222).

A variant on Wingo's method was developed by Gibbons

and McDonald (9) in 1975. Using the expected values and

covariance matrix of the standardized 2-LN distribution,

they obtain the best linear unbiased estimators (BLUEs) for

and a. The BLUEs fair well against the maximum likelihood

estimates for sample sizes of five and under. However, their

20



method is severely limited as it can only be applied when

the shape parameter is fixed at unity (9:290).

In addition to these parameter estimation techniques,

several variations of the method of maximum likelihood have

been applied to the 3-LN distribution. As such, these

variations are discussed in the chapter describing the

method of maximum likelihood.

2
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IV. Method of Maximum Likelihood

By far the most popular method of parameter estima-

tion has been and still is the method of maximum likelihood.

The concept of maximum likelihood was proposed by Daniel

Bernoulli in 1778 and was later used by Guass in his develop-

ment of the theory of least squares in 1796 (7:135). Gauss

had used the method of maximum likelihood and felt that such

estimation was inferior to least squares estimation. As a

result, the development of the maximum likelihood method was

overlooked until R. A. Fisher reintroduced the method in 1912.

Since that time, the maximum likelihood method has been applied

to numerous distributions and has enjoyed widespread success.

As will be discussed later, the maximum likelihood estimators

(MLEs) possess several desirable properties such as

asymptotic unbiasedness, asymptotic efficiency, consistency,

sufficiency, and invariancy. It is mostly due to these

properties that the maximum likelihood method is used in

this thesis.

The principle of maximum likelihood consists in
accepting as the best estimate of the parameters, say
el, 62, ..., e] those values of the parameters which
maximize the likelihood for a given set of observa-
tions say, x1, x2, ..., Xn (24:150].

Understanding what is meant by ". . . maximize the likelihood

for a given set of observations [24:150]" requires the intro-

duction of the likelihood function and its definition.
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Let xj, X 2 , ... , xn be a set of independent random

samples taken from a population described by the density

function fn(xi, x2, ..., xn/01, 02, ... , ek ) where

Ol, 62, "'', 9k are unknown parameters of the density

function. The likelihood function, L, is then defined by:

L = L(xi, X 2 , ... , Xn/01, 62, .--# ' k )

= fn(xi, X2, ... , Xn/01, 02, ... ,

= f(xl/e 1 , 02, ... , 6k).f(X2/01, 62, . k),

.... f(xn/61, 02, ... , 6k) (4.1)

n
= 11 fi(xi/e1 , 62, -...
i=l11

(20:278).

The likelihood function gives the "likelihood" that the

random variables assume a particular value of xj, x 2, ... , Xn -

In other words, it is a means of determining from which

density function a set of values would most likely have come

from. Maximization of the likelihood function yields the

estimated values 01, e2, .... 9k for the unknown parameters

and are called the maximum likelihood estimators of

01, 02, ..., k respectively. The maximization process is

accomplished by taking the partial derivatives of the likeli-

hood function with respect to each unknown parameter, setting

the equations equal to zero and then solving for the para-

meters.
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DL = 0 i = l,2,3,...,k (4.2)
1

Since L and log(L) attain their maximum at the same value of

oi l it is usually computationally more efficient to transform

L into log(L) as this transforms the product into a sum which

facilitates differentiation.

Properties

The widespread use of the method of maximum likeli-

hood is attributed to the resulting estimators being

asymptotically unbiased, asymptotically efficient, consistent,

sufficient, and invariant. The estimator, 8, is said to be

unbiased if

E(6I = 6 (4.3)

* Ithe expected value of the estimator is equal to the estimate.

Or simply stated, 6 is unbiased if the mean of its distribution

equals, f(8), the function of the parameter being estimated

(20:293). Efficiency, mainly a large sample concept, is

linked with the smallest asymptotic variance among a class of

estimators which yields rapid convergence for the estimator

(20:155). An alternate definition is due to the Cramer-Roa

Inequality which sets a lower bound on the variance of the

estimate. If equality at the lowest bound holds, then the

estimator is said to be an efficient estimator (7:139). The

property of consistency implies that the accuracy of the
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estimate increases as the sample size increases (24:151).

Sufficiency merely indicates that the maximum likelihood

estimates contain all the information about the unknown

parameters that is contained in the sample and that the

conditional distribution of the sample given the value of

the statistic does not depend on the parameters (20:301).

A final and important property of the MLEs is the invariance

property defined as "Let 9 be the MLE of e in the density

function f(x1 , x2, ... , xn). If T(-) is a function with a

single valued inverse, then the MLE of T(e) is T(6) [20:2841."

For example, it is well known that the MLE of the variance

of a normal density function is

n

a2( = niE (xi- 0)2  (4.4)

* i

where VO is the mean of the distribution. Then by the

invariance property, the MLE of a is

a A E (Xi-lo) 2  (4.5)

or similarly, the MLE of log(a2 ) is

n
log(a 2) = log ( (Xi-10)2 (4.6)

This property is extremely convenient when transformations are

required.
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Three-Parameter Lognormal Estimation

In searching through the literature, only five

articles dealing with maximum likelihood estimation of the

3-LN distribution were uncovered. The first attempt was

by E. Wilson and J. Worchester in 1945, followed by A. C.

Cohen in 1951, B. M. Hill in 1963, J. A. Lambert in 1964,

and finally H. Harter and A. Moore in 1966. The following

paragraphs present a short summary of each methodology along

with the maximum likelihood equations.

Employing the method of maximum likelihood, as

previously described, results in the maximum likelihood

equation for each parameter being:

^ n [in(xij)]

1= 7 (4.7)-i=l n

[inlxi ) _ 1 (4.8)
n

n 1 n ln(xi-E)
(a-_) Z_-E+ Z =0 (4.9)

i=l xi-

(6:207). It is clear that if any of these equations are

solved for E, the remaining parameters could be easily

obtained by algebraic manipulation. Urfortunately, Eq (4.9)

cannot be solved explicity for E; thus, herein lies the

difficulty of parameter estimation for the 3-LN distribution.
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Wilson and Worchester attempted to solve the maximum

likelihood equations by a trial and error method. This

resulted in computational inefficiency and extremely poor

parameter estimates as could be expected.

A. C. Cohen (6) presented a more feasible and

efficient technique for solving the maximum likelihood

equations. He substituted Eqs (4.7) and (4.8) into Eq (4.9)

yielding a function, f(E) of the location parameter. The

solution of this function is found by inverse interpolation

on a small interval say (Ei, 2) where f( 1 )< 0 . The

estimated value, , is then substituted into Eqs (4.7) and

(4.8) resulting in and G. He also uses a technique based

on the least sample value to estimate E. This technique

* , summarized below requires:

xo-E = exp[i+a-to] (4.10)

where x0 = x, +_ . with x, being the least sample observation,
2

8 the interval of precision, and to determined from the

relationship

k 1 t
k= - exp [ dt (4.11)

-w-

in which k is the number of times the least observed value

occurs in the sample (6:209). Taking the natural logarithms

on both sides of Eq (4.10) and substituting Eqs (4.7) and

27
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(4.8) into the logarithm of Eq (4.10) gives a function,

f(&) of the location parameter equivalent to the maximum

likelihood equation for E. A Monte Carlo analysis of these

techniques showed that the method based on the least observed

sample values performs better than the inverse interpolation

method.

A significant fact with respect to the maximum likeli-

hood estimation of the 3-LN distribution was reported by

B. M. Hill in 1963. He proved that there exists a path,

henceforth referred to as the "path of no return," along which

the likelihood function, L(,( ), a2 ()) goes to - as C goes

to xI, the least observed sample value, and goes to a positive

constant as goes to -- (11:73). This leads to the

ridiculous statement that the maximum likelihood estimates of

, , and a2 are x 1 , -- , and +- respectively (11:75). To

overcome this difficulty, he introduces a joint prior

distribution for &, p, and a then applies Bayes Theorem.

This approach leads to the conclusion that the solution to

the formal likelihood equations should be used with E

satisfying

-a(xi)= 0 (4.12)

where

(ln(xi- 0 - (,)M
Z'. = (4.13)
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and a1(1, a(1) satisfying Eqs (4.7) and (4.8) respectively

with being replaced by Z (14:Ch 14, 132).

In 1964, Lambert (16) conducted an empirical investiga-

tion of Hill's proposed estimation methodology. Using

twenty-three different samples, each with different values

for the parameters ( was always zero), he found the

estimates fairly inaccurate in a majority of the samples.

Also, when G 2 was less than 0.04 or larger than 4.0, the pro-

cedure had a tendency to diverge.

The final article found on maximum likelihood estima-

tion of the 3-LN distribution was coauthoried by Drs H.

Harter and A. Moore (10) in 1966. Recognizing that an

algebraic solution to the maximum likelihood equations is

impossible and that the likelihood function may take the

"path of no return" which yields ridiculous estimates, as

proven by Hill, they develop an iterative technique to solve

the maximum likelihood equations. When the likelihood func-

tion gets on the "path of no return," a modification of the

technique is employed which circumvents this problem. Their

technique is very flexible in that it allows for samples

censored both from above and/or below. A Monte Carlo analysis

was conducted with various parameter values, sample sizes, and

censorings. In cases of no censoring, and all parameters

unknown, the mean of each estimator is very close to the true

parameter values with the corresponding variances being very

small. These values indicate that the iterative technique
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II

provides good estimates of the parameters. Since this tech-

nique has been validated, verified, and yields accurate

estimates of the parameters, a modification of this method

is used in this thesis as one of the bases for determining

the parameter estimates by the method of maximum likelihood.

The iterative procedure is straightfirward and

involves estimating the three parameters, one at a time in

the cyclical order U, a, and assuming all parameters

unknown. First, the observations are ordered and initial

estimates chosen. The initial estimate of is chosen as

the first order statistic. Secondly, the iterative technique

procedure begins where, at each step, the rule of false

position (iterative linear interpolation) is employed to

determine if the value of the parameter being currently

estimated satisfies its respective maximum likelihood equation,

given the latest and/or known values of the other parameters

(10:848). The possibility of encountering the "path of no

return" occurs when no value of in the permissible interval

< x, satisfies Eq (4.9). In these cases, the likelihood

function is monotonically increasing so that = xi ,

and 3+ (10:848). Fortunately, the modified

procedure alleviates this problem by censoring the smallest

observation and all those equal to it. The initial estimate

of & is then equated to the smallest uncensored observation

and the iterative procedure is reapplied. The censored

observation(s) is subsequently not considered in the
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estimation procedure, but it does become an upper bound on

. With the likelihood function bounded, finite estimates

of the remaining two parameters can be calculated. Harter

and Moore suggest the iteration continue until either the

results from successive steps agree with some assigned

tolerances or a specified number of steps is reached.

3

- 31



V. The Minimum Distance Method

Minimum distance (MD) estimation is a relatively new

development in the field of statistical parameter estimation.

It was first introduced in the 1950s by J. Wofowitz as a

method which ". . . in a wide variety of cases, will furnish

super consistent estimators even when classical methods . . .

fail to give consistent estimators [30:9]." In 1957, he

published a fundamental paper proving the consistency of the

estimator along with several examples of its use. Basically,

Wolfowitz's technique was to let 6(F1 ,F2) = sU([FI(x)-F 2 (x)]

be a measure of the discrepancy between two distribution

functions, and emphasized the applicability of this method

for a broad range of distance techniques. From that time on,

the minimum distance method slowly evolved. Working with

absolutely continuous distributions, Blackman (4) proved

consistency and asymptotic normality for an estimator of

location via the MD-method. In 1969, Knusel (15) investigated

the "robustness" of MD estimators and showed that they

exhibit the same properties as the class of maximum likeli-

hood type estimators (M-estimators). the term "robustness"

refers to the ability of an estimator to adopt to deviations

in the underlying model while remaining efficient (23:3).

Then, in 1970, Sahler contributed a major piece of work in

the area of minimum distance estimation. As Parr described it:
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Sahler systematically defines D-estimators
[minimum distance type estimators] and outlines
conditions for their existence and consistency.
In particular, he considers discrepancies of
integral type, and proves an asymptotic normality
result for the general (unidimensional) parameter
estimation [22:9].

It has not been until recently that statisticians

began applying minimum distance techniques for the estimation

of distribution parameters. In particular, Parr and Schucany

(23) applied the MD method to estimate the location parameters

of several symmetric distributions with emphasis placed on

the normal distribution. They concluded that the method

yielded ". . . strongly consistent estimators with excellent

robustness properties [23:51." The MD-method has also been

applied, via Monte Carlo analysis, to a variety of symmetrical

and nonsymmetrical distributions at the Air Force Institute

of Technology as theses research under the supervision of

Dr Albert H. Moore. Most of the theses have concluded that

the MD-estimators provide more accurate parameter estimates

than classical estimation methods, even the method of maximum

likelihood. This thesis is yet another application of the

MD-method to another distribution: the 3-LN distribution.

Results from the Monte Carlo analysis should prove quite

interesting in this case. Most --'the other applications

involved symmetrical or near-symmetrical distributions, of

which the 3-LN distribution is usually neither. The shape

of this distribution may take on a variety of forms ranging

from positively to negatively skewed and very peaked to not
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very peaked depending on the parameter values. It will be

interesting to investigate how well the MD-estimators react

under the variety of distribution shapes. Nevertheless, it

is anticipated that the MD-estimators will provide more

accurate parameter estimates than the maximum likelihood

estimates.

The minimum distance technique is an extension of

the goodness-of-fit tests used in hypothesis testing. In

goodness-of-fit testing, the analyst is concerned with

determining whether or not a random variable follows a

particular distribution given certain values of the parameters.

This testing is accomplished by constructing a distribution

function, call it F(x:O) where 0 represents known parameter

values, and then determining how well it fits the sample

distribution function referred to as-the empirical distribu-

tion function or EDF. The common measure of fit is usually

the distance between F(x:O) and the EDF. The most popular

EDF is a nondecreasing step function of size 1/n, where n

is the sample size, corresponding to the ordered sample

points. This EDF convention is employed in this thesis.

The minimum distance method is somewhat a reverse of the

goodness-of-fit philosophy in that the analyst assumes the

probability density function of a random variable and attempts

to estimate its parameters. Minimum distance estimation

merely takes as its estimates of 0 those values which minimize
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the discrepancy between F(x:O) and the EDF. See Figure 2

for a plot of an estimated cdf against its EDF.

Further discussion of MD concepts necessitates the

use of some notation which will be utilized throughout this

chapter. Let r = {Fa(.),0 c } represent the parametric

family of three parameter lognormal distributions. F6 ()

defines the estimated 3-LN distribution using the parameter

estimates found by the maximum likelihood method and Q

corresponds to the parameter space. Let Gn () denote the

EDF based on a random sample from the true but unknown

distribution function G(). The EDF is a nondecreasing step

function of size 1/n at each point xj, x 2 , ..., xn as pre-

viously defined and has a value of one at infinity (30:10).

* Finally, 6 (Gn, Fe) denotes the discrepancy between the two

distribution functions. Thus, the "D-estimators" mentioned

* I in Parr's quote on page 33 is the ". . . value in Q

minimizing (Gn, Fe) over 0 [22:61."

Since the distance between two distribution functions

is used in determining the parameter estimates, the distance

measure is of utmost importance. In their paper, Parr and

Schucany (23) describe the most commonly applied distance

measures, and it is from this paper that most of the following

definitions are taken (23:4-5).
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Weighted Kolmogrov Distance

The weighted Kolmogrov distance is defined as:

D (Gn,Fe) = supxIGn(x)-Fe(x)I(Fe(x)) (5.1)

This is one of the most popular distance measures as a result

of its use in the Kolmogrov-Smirnov goodness-of-fit tests.

The discrepancy measure minimizes the maximum distance

between Gn(x) and Fe(x) when evaluated at each of the sample

points. 4(Fa(x)) is a weighting function which allows the

user to assign a weight to each observation. In this thesis,

uniform weights of 1.0 are assigned to each observation.

Weighted Cramer-von Mises Distance

The weighted Cramer-von Mises distance is defined as:

+CO
W (GnF( ) = -(Gn(xlFe(X))2P(F (x))dFe(x) (5.2)

This technique minimizes the discrepancy between the theoretical

and empirical distribution function, whereas the Kolmogrov

distance only finds the absolute differences between the two.

The weighting function is set equal to one resulting in the

Cramer-von Mises statistic (CVM).

Anderson-Darling Statistic

The Anderson-Darling statistic is defined as

+ 00 1

A (Gn,Fe) = f(Gn(x )-F o(x))u(l-u) dFe(x) (5.3)
- c0

37



Careful observation should reveal that this statistic is a

special case of the Cramer-von Mises distance where

1
(Fe(x)) = u(l-u) and u = Fe(x) . This weighting places

more emphasis on the tails of the distribution. The process

also minimizes the area between the theoretical and empirical

distribution functions.

Kupier's Maximal Interval Probability Statistic

The Kupier statistic is defined as:

V(Gn,F0 ) = supco<a<b<+coIGn(b) -Gn(a)-(F0 (b)

-F(a)) (5.4)

This statistic is closely related to the Kolmogrov distance

where the parameters a and b define the maximal probability

interval. The method yields more accurate estimates for a

distribution scale parameter than for a location parameter.

Watson Statistic

The Watson statistic is defined as:

U2(Gn,F 1 = !(Gn(x)-Fe(x)) 2 dF (x) + (Gn(x)

-F0 (x)df(x) (5.5)

and is related to the Cramer-von Mises distance. As with the

Kupier statistic, this technique is more appropriate for

estimating the distribution scale parameter than the location

parameter.
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The discrepancy measures listed represent some of the

more popular D-estimators. The popularity of these estimators

is attributed to their invariance property, similar to that

of the maximum likelihood estimators.

This invariance is a result of the estimator
not taking advantage of the function g(e) of the
point 6 e 0 to be estimated, instead it simply
selects a best approximating distribution [18:27].

Or as Parr stated it:

It may well be inquired as to why an estimator
obtained by minimization of a discrepancy measure
which is useful in goodness-of-fit purposes (and,
hence in many cases, extremely sensitive to out-
liers or general discrepancies from the model)
should be hoped to possess any desirable "robustness"
properties. It turns out that, in most cases
(although no for, say, A2 while the discrepancy
measure itself may be fairly sensitive to the pre-
sence of outliers, the value e which minimizes the
discrepancy 6 (Gn, Fe) is much less so [23].

Since this thesis is concerned with the application

of minimum distance estimation to determine the location para-

meter for the 3-LN distribution, the Kolmogrov distance, the

Cramer-von Mises statistic, and the Anderson-Darling

statistic are employed.
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VI. Monte Carlo Analysis

This chapter deals extensively with the procedures

used in conducting the empirical investigation and comparison

of the interpolative and iterative modified maximum likeli-

hood (ML) estimators (described later) along with each of

the minimum distance (MD) estimators. Specifically, data

generation, computerization of estimation techniques, and

evaluation criteria are covered in detail. In this research,

Monte Carlo analysis is used to evaluate the properties of

the estimators. Basically, Monte Carlo analysis of estima-

tion methods consists of the following three steps:

1. Generate independent random variables from a

* specific distribution (the 3-LN distribution in this case)

to form random samples of a given size.

2. Apply the estimation method(s) to the random

samples to obtain the parameter estimates.

3. Compare the estimates from each estimation

method(s) using one or more evaluation criteria.

Since Monte Carlo analysis requires a vast amount of data and

many computations, a high speed computer is a necessity. For

the purposes of this analysis, the Control Data Corporation

(CDC) 6600 computer located at the Aeronautical Systems

Division, Wright-Patterson Air Force Base, Ohio is used.

Three programs are developed to carry out this research. Each

program is written in FORTRAN V and makes use of several
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subroutines from the International Mathematical and Statistics

Library (IMSL) (12). The first program generates samples of

size n from a 3-LN distribution and calculates the inter-

polative and iterative modified ML-estimators. The second

program calculates the MD-estimators. And the third program

evaluates the estimates from each estimation technique.

Before proceeding further, some notation and comments are

noted:

1. Let p0, c0 , and Co represent initial estimates for

, , and C.

2. Let , a, and 4 represent the ML-estimates of

11, a, and .

3. Let i, a, and represent the MD-estimates of

, , and .

4. Let X(W represent the i th order statistic from

a sample.

5. All estimates are calculated to three significant

digits, except for the Kolmogrov estimates which are to two

significant digits.

6. Recall that in the 3-LN pdf and cdf (Eqs (2.6)

and (2.7)) there is an ln (X-E) term; therefore, no estimate

of E can be greater than or equal to the first order

statistic (X M ), otherwise the term goes to minus infinity

and the pdf and cdf are undefined.

7. Evaluation of the 3-LN cdf at point X' is always

computed by evaluating its respective standard normal cdf
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with appropriate limits. The percentile points are identical.

A proof follows:

Let the transformation be

t= ln(x-E)-Ii (6.1)a

then

dt = -'x_-)dx (6.2)

Now since the 3-LN cdf is defined by

F~x) 1 ex (In (x-,r-) 2"F = -exp dx i<x'< (6.3)

(x- a 20 2

application of the transforme.tion yields

Fi') = -1 exp t dt -0<t' <O (6.4)
- L 2j

F(t') is easily recognized as a standard normal cdf and

F(x) = F(t') .

Generation of Data

As previously mentioned, the objective of this

research is parameter estimation of the 3-LN distribution

with emphasis on small samples sizes. As such, sample sizes

of 6, 8, 10, 12, and 16 are generated. For each of these

sample sizes, three combinations of p (the mean of the parent
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normal distribution) and a (the standard deviation of the

parent normal distribution) are used: (0.0, 1.0), (1.0,

1.0), and (1.0, 2.0). The location parameter is always

equal to 10.0 since different values of F only result in a

translation along the x-axis and does not affect the estima-

tion of the other two parameters. The combinations of sample

sizes and parameters result in a total of fifteen different

cases.

For each case, 1,000 replications of sample size n

are generated for use in the analysis. Caso's study of

Monte Carlo validity recommended 2,000 replications; however,

he also stated that 1,000 replications would be sufficient

(5:37). Since runs of 2,000 iterations are very prohibitive

in terms of computer CPU time, 1,000 replications are used.

Generation of the 3-LN deviates is accomplished using the

IMSL routine GGLNG and adding the value of the location para-

meter to each deviate. GGLNG generates 2-LN deviates, given

the values of U and a as input; the addition of the location

parameter forms the 3-LN random deviates. Each sample is

then sorted in ascending order by the IMSL subroutine VSRTA.

With the desired samples in hand, the next step is to

calculate the interpolative and iterative modified ML-

estimators.
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Computerization of Maximum

Likelihood Estimators

Interpolative Maximum Likelihood Estimators. It was

mentioned in Chapter IV that if the location parameter is

known, then i and S are easily computed using Eqs (4.7) and

(4.8) respectively. In this thesis, however, - is assumed

to be unknown and, therefore, must be estimated. Unfortunately,

it is very difficult to estimate T. As stated in Chapter IV,

iterative procedures must be applied if all three parameters

are to be estimated via the ML-method. It certainly would

be very convenient if a simple method existed where an

accurate estimate of could be found; thus, with this

estimate, ' and could be easily computed. In searching

through the literature, one such method was discovered. This

method involves calculating the median ranks (Yi, i = 1, 2)

of the first two order statistics (X(1 ), X(2 )). Then the

slope of the line connecting the first two points (i.e.,

(X(1 ), Y1
) , (X(2 ), Y2 ) is derived and interpolated down to

the x-axis. The point at which the slope intersects the

x-axis is taken as the value for . Now, with known,

Eqs (4.7) and (4.8) are used to obtain the estimates for

and a.

This method of linear interpolation for estimation

of location parameters was originally developed in a masters

thesis by Second Lieutenant D. E. Bertrand (3). He used this

procedure on the four parameter Beta distribution to locate

the upper and lower location parameters and obtained
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excellent results. This method is extremely desirable for

the estimation of since the interpolation will always result

in a Z being less than the first order statistic. Further-

more, it appears intuitively obvious that when the pdf is

skewed to the left, as in the 3-LN pdf, the interpolation

approximation of location should be very close to its true

value. Although consistency of the interpolative estimate

was not proven by Bertrand, it seems apparent that as the

sample size increases, the first two order statistics would

get closer to the true value of the location parameter,

thereby making the interpolation approximation a better fit

to the tail of the true cdf (3:19).

The interpolative ML-estimator methodology is given

below:

1. Arrange the sample deviates in ascending order.

2. Calculate the median ranks of the first two

order statistics using the formula (3:31):

Y. MR(X )= i = 1,2 (6.5)
S (i) n+0.4

3. Find the slope (m) of the line between (X(1),

y.) and (X(2 ), Y2) by

m = (Y2 -Y1 )/(X( 2 )-X(I)) (6.6)

4. The estimate is the point at which the slope

(m) intersects the x-axis and is given by
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= X (1 ) -Yl/m (6.7)

The method is preserted graphically in Figure 3.

Although the estimators from this method are not

"strict" ML-estimators in the statistical sense, they are

believed to yield extremely good estimates. Appendix B

contains a computer listing of the interpolative ML-estimator

algorithm.

Iterative Maximum Likelihood Estimators. As stated

previously, the interpolative ML-estimators are not "strict"

ML-estimators in the statistical sense, so an algorithm

designed to calculate the "true" ML-estimators was sought.

At first, the iterative ML-estimator algorithm developed by

Drs Harter and Moore was used. The purpose of their algorithm

was to study the asymptotic properties of ML-estimators and,

therefore, used sample sizes of 50, 100, and 200. They con-

stantly warn throughout their paper (10) that with small

sample sizes: (1) the likelihood function may have no clearly

defined local maximum, (2) the first order statistic might

have to be used as Z to prevent the likelihood function from

going to infinity, and (3) the iteration procedure might be

slow. Their suppositions were confirmed. Using sample

sizes of 12 and smaller along with different combinations of

the values for p and a, their algorithm set equal to X (1)

over 99 percent of the time and convergence was extremely

slow; in some cases the estimates diverged.
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These problems led to the development of a new

iterative ML-estimator algorithm designed to combat the

difficulties associated with the Harter and Moore algorithm.

This new algorithm follows along the same lines as the Hart

and Moore algorithm except that only p and a are estimated

one at a time in cyclical order while is equated to X

The IMSL subroutine ZSCNT which solves a series on nonlinear

equations by a variation of the secant method is used to

obtain j and a. The ML-equations for p and a are put in

separate ZSCNT subroutines. When i is being estimated, the

latest estimate of a is held constant and vice-versa until

both estimates converge. Initially, the ML-equations were

combined in one ZSCNT subroutine but convergence could not

reached to three significant digits in 1,000 iterations so

the ML-equations were put into separate subroutines. The

choice of initial estimates for input into the ML-equations

is crucial. Good initial values, especially for a is vital

to this algorithm if accurate estimates are desired. The

following initial values were investigated ( always equals

X (1)): (1) U0 = sample mean, a0 = sample standard deviati

(2) Po = In (sample mean), co = in (sample standard deviat

(3) pO = In (sample median), ao = a derived by equating

sample and population skewness and solving for a. Results

from these runs showed that a is very sensitive to co while

U is relatively insensitive to VO. In this thesis, the thir

set of initial values is used as input to the modified itervi
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ML-estimator algorithm since they give the most accurate

estimates.

Although this algorithm does not produce "strict"

MLEs in a statistical sense (since = X(1 ) the resulting

estimators from this procedure ". . . appear to possess most

of the desirable properties usually associated with maximum-

likelihood estimates [10:843]." Since the constraint

= X is imposed when calculating V and a, the censored

(from below) ML-equations must be used; they are (10:844):

z3 = n f(zz -) = 0 (6.8)
=r+l 1 [r+l)

n Zr+ f(Zr~aL =-(n-r) + Z z2 r r l =+ 0
a i=r+l F\ r+l 0

where

in (xi-&) -j
1

f(zi) = exp -z 2/2

zi

F(z i ) = f f(t)dt

with n as the sample size and r as the number of observations

censored from below.

The iterative methodology is presented below:

1. Arrange sample deviates in ascending order.
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2. Calculate the initial estimates: Po = ln (sample

median), co = a derived by equating sample and population

skewness, =

3. Given the initial estimates and = X as

input, recursively estimate U and a, using censored ML-

equations, until the estimates agree within a certain

tolerance or a maximum number of iterations is reached.

Appendix B contains a computer listing of this algorithm.

Attention is now turned to the computerization of the MD-

estimators.

Computerization of Minimum

Distance Estimators

The main thrust of this research is to estimate

the location parameter of the 3-LN distribution by minimum

distance (MD) estimation and then use the estimate to obtain

refined estimates of p and a via their ML-equations. It is

anticipated that these refined estimates are more accurate

than the estimates from the modified methods of maximum

likelihood. As described in Chapter V, the MD-estimators

are obtained by finding values for the parameters which

minimize the discrepancy between an empirical and an

estimated distribution function. In this thesis, only the

location parameter is minimized, while the other two para-

meter estimates, determined from the modified ML-methods,

are held fixed. The empirical distribution function is the

1/n- step function and the estimated distribution is obtained
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by using j and a along with the most recent MD-estimate of

. Once is determined, it is used in the censored or

uncensored (depending on whether or not = X(I) ML-

equations of p and a which yields 1A and a. This procedure

is done using the estimates from the interpolative and

iterative modified ML-methods. Three minimum distance

estimators are investigated: the Kolmogrov Distance, the

Cramer-von Mises Statistic, and the Anderson-Darling Statistic.

Kolmogrov Distance Estimators. The computational

formula which allows for calculation of the Kolmogrov

Distance is defined by Stephens as (26:731):

D = max(l < i < n) [(i/n) - zi]

D = max(l < i < n) [z i - (i-l)/n]

D = max(D+ ,D - ) (6.9)

where zi is the estimated standard normal cdf evaluated at

the ith sample point. To calculate the Kolmogrov Distance,

Sis shifted two units to the right and left of itself. The

original shift is to the left and is moved at .01 steps.

With each iteration, the maximum distance between the

theoretical and empirical distribution functions are recorded.

Of course, location estimates are not allowed to go within

.001 of X(I) since this implies divergence of the estimate.

Also, if the final estimate is constrained by the highest or

lowest incremental value (i.e., F = +2.0 or =-2.0),
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a new initial estimate, which eliminates this constraint,

is provided and the iterations begin anew. The final result

is to choose the incremental value which minimizes the maximum

distance bet- ween the two distribution functions. The actual

recalculation of the new minimum distance location parameter

is calculated by:

= + (-2.0-+ .01 -COUNT) (6.10)

where COUNT is a counter which locates the point at which the

maximum distance between the estimates and empirical distribu-

tion functions is minimized. The Kolmogrov MD-estimators

of p and a are calculated by using in the censored/

uncensored ML-equations of u and a, thus yielding p and a.

Cramer-von Mises Estimators. Next, the program

calculates tae Cramer-von Mises MD-estimators. Recall that

* this distance measure finds the discrepancy between the

estimated and empirical distribution functions. The computa-

tional formula for this measure is given by (26:731):

n
W2 =i=I - (2i_1)/2n] 2 + (1/12n) (6.11)

where zi is the estimated standard normal cdf evaluated at

the ith sample point and n is the sample size. The minimiza-

tion of the location parameter is accomplished via the IMSL sub-

routine ZXMIN. The subroutine uses a Quasi-Newton method to

minimize a function of one or more variables and is identical

to the one used by Parr in his PhD dissertation. With this
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method, i and a are held constant while is being minimized

by ZXMIN. If the last estimate of C is within 0.001 of X(1)

(implying divergence), a new initial estimate of is provided.

If the estimate of C is again within 0.001 of X(1 ), then

X (1 is censored along with any other sample points equal to

it and is set to the last censored observation. The CVM

MD-estimators for V and a are then calculated by using in

the uncensored/censored ML-equations of p and a thereby

yielding i and C.

Anderson-Darling Estimators. The final distance

measure investigated in this research is the Anderson-Darling

Statistic. This distance measure is similar to the CVM

measure in that it finds the discrepancy between two distribu-

tion functions but with more emphasis being placed on the

tails of the distribution. Stephens gives the computational

formula as (26:731):

nA 2 E - i = (2i-l)ln(zi+ln(l-zn - /n  -n (6.12)
A2 = 1 n+l-i 3 n(.2

Again, zi is the estimated standard normal cdf evaluated at

the i sample point and n is the sample size. The minimiza-

tion process is identical to that of the CVM distance calcula-

tion just described. Again, once is obtained, p and a are

calculated via their uncensored/censored ML-equations.

Appendix C contains a listing of the computer program

used to calculate each MD-estimator. The approximate CPU
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time required for one run of 1,000 replications varied from

250 to 300 seconds depending on the sample size.

Evaluation Criteria

The final step in this Monte Carlo analysis is to

evaluate and compare all of the estimates obtained from each

estimation technique. This thesis uses two modified maximum

likelihood techniques along with three minimum distance tech-

niques for each yielding a total of eight sets of parameter

estimates (vi, o, £) or twenty-four different parameter estimates

for each sample. To make any relevant conclusions out of all

the different parameters and parameter sets, certain criteria

for evaluation are needed. Three approaches are used for

this evaluation: mean square error (MSE), relative efficiency

(REFF), and the Cramer-von Mises Statistic.

The MSE is a measure of how close each estimated para-

meter is to its true value and is useful for investigating

the strength of each estimator. MSEs are calculated by

1000
MSE Z (a (0 - 6)2/1000

i=l

where 6 is the true parameter value and 0i is the parameter

estimate from the ith sample and particular estimation tech-

nique. The smaller the MSE, the better the estimator. The

REFF is another tool, similar to MSE, which aids in the compari-

sons of individual estimators. Calculation of REFFs are

accomplished by:
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MSE
REFF = m/MSEi

where MSEm is the mean square error of a reference estimator

and MSEI is the mean square error of the estimator being

tested. For this analysis, MSEm is taken as the estimators

from the interpolative modified ML-method. Values of REFF

greater than unity imply that the estimator is performing

better than the interpolative modified maximum likelihood

estimator. The third evaluator is a distance measure which

provides an overall measure of how well the estimated

distribution fits the true distribution. An appropriate

measure of this type is the Cramer-von Mises statistic,

defined by Eq (5.2). In this application, however, Gn is

replaced by P- the estimated cdf (see Figure 4). The integral

must then be multiplied by the sample size to form the actual
3F

distance measure (3:32). Since 3F(x) = '-dx = f(x)dx

the formula used to compute the distance between the

estimated cdf, F, and true cdf, F, is:

W2 (P,F) = n f (x:0)-F(x: 6) f(x:O)dx (6.13)

where 6 represents the parameter estimates and e represents

the true parameter values. The limits of the integral are

from & to - as the 3-LN distribution is not defined outside

this range. This integral is evaluated using 15-point

Laguerre integration. A function g(x) with limits ranging
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from 0 to may be numerically integrated by Laguerre integra-

tion using the relationship (1:923):

Cn xi
f 0g(x)dx - Z W.e g(xi ) (6.14)

i=l1

th
where Wi and xi are the i weights and abscissa of the

Laguerre polynomials and n is the number of quadrature points--

in this case n = 15 . Before applying Laguerre integration,

however, the lower limit is increased to by adding the

true value of I to each abcissa. The weights and abcissa

are taken from the Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables (1).

The CVM statistic just described is calculated for

each of the 1,000 replications of a given sample size and

estimation technique. The sample mean (MCVM) and sample

standard deviation (SDCVM) are calculated by:

1000
MCVM = E W.2/1000

i=l 1

/1000
SDCVM = / Z (Wi2- MCVM) 2/1000

i=l1

where W.2 is the CVM distance of the i th replication. MCVM

and SDCVM are the overall measures of how well the estimated

distribution fits the true distribution. The smaller the

MCVM and SDCVM the better the fit.
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Much can be learned from investigating the three

evaluation criteria just described. The MSEs are extremely

useful in determining which estimation method worked best on

a particular parameter. Unfortunately, however, the MSEs are

not scale invariant; the same size MSE may be highly signifi-

cant for a small valued parameter but insignificant for a

larger one (2:32). The relative efficiencies yield approximately

the same type of information about a particular parameter

except that a base estimator is used which facilitates

comparisons across all estimators. The CVM distance has the

advantages over the MSE and REFF in that it is a single measure

of fit for all three parameters and is also scale invariant

with respect to the magnitude of the parameter estimates.

Unfortunately, information concerning the individual parameters

is not provided. A closing comment on the CVM distance

measure is that no bias is introduced by using the CVM

statistic, both for the MD-method and as an evaluation

criteria. This should be apparent since during minimization

the discrepancy between the estimated distribution function

and 1/n step function is calculated, whereas during evaluation

the discrepancy between the true and estimated cdfs is found.

Investigation of these three criteria provides more than

enough information to draw valid inferences about each modi-

fied maximum likelihood and minimum distance estimator. A

computer listing of the program used to compute these three

evaluation criteria is given in Appendix D.
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VII. Results and Conclusions

Results and Comparisons

Numerical results pertaining to each of the estima-

tion methods are listed in Appendix A. For each of the

fifteen different cases (i.e., combination of parameter

set (ia, ) and sample size), there corresponds a page in

Appendix A containing a table of the mean square errors

(MSEs) relative efficiencies (REFFs) and the means (MCVMs)

and standard deviations (SDCVMs) of the Cramer-von Mises

statistics. The eight different estimation methods:

modified interpolative maximum-likelihood (INT) estimation,

modified iterative maximum-likelihood (ITR) estimation, and

combinations of the INT and ITR estimates with Kolmogrov

minimum distance (KOL) estimation,Cramer-von Mises minimum

distance (CVM) estimation, and Anderson-Darling minimum

distance (A-D) estimation are listed down the side of each

table. The minimum distance estimators obtained by the INT

estimates are listed directly under INT, and the minimum

distance estimators obtained by the ITR estimates are listed

directly under ITR. At the top of each table the sample

size and true parameter values are given. In the following

row, "MU," "SIG," and "XI" denote the parameters ji, a, and

respectively. The entries in the "DIV" column are the

number of times the location parameter estimate is equated to

the last censored observation, usually the first order
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statistic. In the "CVM statistics" table, "MCVM" is the

mean of the Cramer-von Mises statistic and "SDCVM" is the

estimate of the standard deviation. When reference is made

about a specific combination of a modified maximum likelihood

estimates with a minimum distance estimator, the notation

ML/MD is used where ML is either INT or ITR, and MD is

either KOL, CVM, or A-D depending on the estimation technique

applied. It should be noted that in some cases, the MSEs

and the MCVM appear to contradict each other. In other words,

one method may have larger MSEs for each parameter but a

smaller overall MCVM when compared to another method. This

situation arises in the case of N = 10 , = 0.0 , a 1.0 ,

10.0 ; ITR/KOL has larger MSEs for each parameter but

a smaller overall MCVM than the INT/CVM estimates. This

apparent dichotomy occurs because a set of values further

away from the true values in a MSE sense may be closer in a

distance sense. Results obtained from the MSE, REFF, and

CVM Statistics tables are summa. ized in the following para-

graphs.

As previously stated, the MSE provides a measure of

how close each estimated parameter is to its true value, while

the REFF provides for comparisons across all estimators by

the use of a base estimator. The MSEs from all estimation

methods considered in this thesis are extremely good in that,

except for cases where N = 6 , no MSE of any parameter is

ever greater than unity! In support of the asymptotic ML
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properties, the MSEs of each parameter decrease as the sample

size increases for the INT and ITR estimators with the

exception of the location estimator via ITR estimation.

This exception seems reasonable since the location estimate

is equated to the first order statistic in this method. Also,

the decreasing MSEs of the interpolation estimate for the

location parameter as the sample size increases lends strong

support for the consistency assumption of the interpolative

location estimator. When the term "best" or "better" is

mentioned in the following text, it refers to best or better

in the MSE sense. It should also be remembered that in every

case = 10.0 When looking at a particular sample size,

the MSEs for all methods have a tendency to increase as the

parameter values increase; however, this is not unexpected

since the MSE is not scale invariant. In comparing the INT

and ITR estimators, the REFFs reveal that, in each case, the

INT estimator yields better estimates than the ITR estimators

except for the location parameter when p = 1 , a = 1

The REFFs also show that the INT/CVM and INT/A-D estimators are

better than their respective ITR/CVM and ITR/A-D estimators

for cases of U =0 , a = 1 and p = 1 , a = ; in

cases of i = 1 , a = 2 , the reverse is true. It is also

interesting to note which estimators perform the best for

each parameter across all possible cases.

For cases of p = 0.0 , a = 1.0 ,the best

estimator for U is the ITR/KOL estimator when N = 6,8,10 ;
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for N = 12,16 the best estimators for ' are the CVM and

A-D estimators using the INT or ITR estimates. The best

estimator for a is the INT/A-D estimator except when N = 16

where the INT/CVM estimator is best. The best estimator

for is INT/A-D estimator except for N = 6 in which case

the INT/CVM estimator is best.

For cases of U = 1.0 , a = 1.0 ,the best

estimator of each parameter across all sample sizes is the

ITR/KOL estimator.

For cases of = 1.0 , a = 2.0 ,the best

estimator for p when N = 6,8,10 is the ITR/KOL estimator;

however, when N = 12,16 the best estimator varies between

the combinations of INT and ITR estimates with the CVM and

A-D methods. The best estimator of a is the ITR/CVM estimator

followed closely by the ITR/A-D, INT/CVM, and INT/A-D

estimators. The best estimator of varies between the ITR/CVM

and ITR/A-D estimators; the INT/CVM and INT/A-D estimators

are much worse.

The MCVM measure also reveals some important informa-

tion regarding the estimators. Results from this measure are

usually interesting since it provides an overall measure of

how well the estimated distribution function fits the true

distribution function. The term "best" or "better" is now

changed to mean best or better in the minimum distance sense.

When the sample sizes are fixed and the parameter sets are

investigated in the order (p = 0.0 , a = 1.0),

(1.( = 1.0 , a = 1.0), and (G = 1.0 , a = 2.0), the results
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show that (1) the MCVM for the INT estimator gets larger,

(2) the MCVM for the ITR estimator gets smaller, and (3)

the MCVM for the MD-estimators are always smaller than

either the INT or ITR estimators, except for one case where

N = 16 , and remain fairly constant. This indicates that

in choosing between the INT and ITR estimators, the INT

estimator should be used for values of p and a less than

unity, whereas for values of p and a greater than unity, the

ITR estimator is the correct choice.

For cases of p = 0.0 , a = 1.0 , the best over-

all estimator is the ITR/KOL estimator except for N = 16

where the INT/CVM estimator is best.

For cases of p = 1.0 , a = 1.0 , the best estimator

is the ITR/KOL estimator except for N = 16 in which case

the INT/A-D estimator is best.

For cases of p = 1.0 , a = 2.0 , the best estimator

for N = 6,8,10 is the ITR/CVM estimator; for N = 12 is

the ITR/KOL estimator; and for N = 16 is the INT/CVM

estimator. The estimators are closely followed by other

combinations of INT and ITR estimates with the CVM and A-D

methods.

The MCVM results clearly show that the minimum dis-

tance estimators using the modified maximum likelihood

estimates are far more superior than the modified maximum

likelihood estimators. The dominant estimator appears to be

the ITR/KOL estimator followed closely by the ITR/CVM,
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ITR/A-D, INT/CVM, and INT/A-D estimators. As a final note,

the SDCVM value for each estimator is extremely small

indicating the stability of each estimator.

Conclusions

The objective of this thesis is the comparison of

ML-estimators against MD-estimators given small samples of

3-LN deviates. It was anticipated that the MD-estimators

would yield much more accurate estimates than those from

the MD-estimators. Due to the small sample sizes, "strict"

ML-estimators could not be obtained so two modified ML-

estimation techniques are developed and compared against

three MD-estimation methods. The results of the Monte Carlo

analysis clearly demonstrates the superiority of the MD-

estimators over both modified ML-estimators.

Considering the eight estimators tested (given the

ranges of parameter values and sample sizes) in the Monte

Carlo analysis, several conclusions are made. The MD-

estimators are always superior to both modified ML-estimators.

Of the modified ML-estimators, the interpolative method gives

the best estimates. Of the MD-estimators, it appears that

the ITR/KOL estimator gives the best estimates, but the

INT/KOL estimator gives the worst estimates. The result may

be partly due to the location parameter never being set to

the last censored order statistic by the ITR/KOL estimator.

The CVM and A-D estimators yield approximately equivalent
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estimates regardless of whether the INT or ITR estimates are

used. This fact lends further support to the robustness

property of the MD-estimators.

Although the estimators are rated as the "best" or

"worst" estimators in the above paragraphs, it should be

noted that no estimator gives extremely poor estimates. For

the MD-estimators, the MSEs are rarely greater than 0.5 and

the MCVM are usually less than 0.2. For the modified ML-

estimators, the greatest MSE is 1.360707 while the MCVM is

usually much less than 0.5. Furthermore, if great accuracy

of the estimates is not required, or if a computer is not

available, then the interpolative ML-method becomes a very

viable estimation technique since the estimates can be

easily computed using a desk or hand-held calculator; all

other estimation methods require computerization due to more

involved computations.

Recommendations for Further Study

Several possibilities exist for further research in

parameter estimation techniques for the 3-LN distribution.

First and foremost would be the development of an iterative

estimation methodology allowing for thd solution of the ML-

equations for each parameter when working with small sample

sizes. As it stands now, the MLE of the location parameter

is equated to the first order statistic, while p and a are

iteratively estimated. Perhaps using the interpolation

estimate of as an initial guess, an iterative procedure
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could be developed. In this procedure, could be shifted

around itself in small step lengths (i.e., 0.001) with i and

a being calculated at each step. At each step the likelihood

function would also be calculated to determine the direction

of the next step for the location estimate. In this way,

the location estimates are independent of the steps and may

yield strict ML estimators.

In this thesis, only the location parameter is

refined by the MD-methods. The remaining two parameters

could be similarly estimated. An iterative procedure could

be developed where all three parameters are found via MD-

methods. For example, a could be estimated using Kupier's

Maximal Interval Probability Statistic and/or Watson's

Statistic, while p and are estimated by the Kolmogrov

Distance, Cramer-von Mises Statistic and/or the Anderson-

Darling Statistic. It is anticipated that this procedure

would provide much more accurate estimators than those

obtained in this thesis. As such, this topic would be an

excellent research area for an adventurous statistician.
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Appendix A

Tables of Mean Square Errors,
Relative Efficiencies and

CVM Statistics

Notation

MU.........Estimate of j

SIG........Estimate of a

xi.........Estimate of~

DIV.... ..... Number of Times X

INT........Interpolative ML-Method

KOL........Kolmogrov MD-Method Using INT Estimates

CVM.........CVM MD-Method Using INT Estimates

A-D........A-D MD-Method Using INT Estimates

ITR........Iterative ML-Method

KOL........Kolmogrov MD-Method Using ITR Estimates

CVM.......... CVM MD-Method Using ITR Estimates

A-D......... A-D MD-Method Using ITR Estimates

MCVM .. .. . .Mean of the CVM Distance

SDCVM. ...... Standard Deviation of CVM Distance
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TABLE A.1

SAMPLE SIZE 6
TRUE MU 0.00
TrlLE SIGMA 1.00
TRUE XI 10.00

MU 1310 X I DIV

MEAN S.LIAR- ER.ORG

INT : 65 5310 .2136817 .105316
KOL : 1.360707 1.103962 .1434,-9 3
CVM : .549699 *1713744 •0913908 14

A-i1 : .546901 .195549 .100976 5

ITR : .044692 .497264 .493105
KOL : *329764 .244997 .346987 0
CYM : •604417 .292290 127459 181
A-El : .669653 .279103 .119645 280

R17LAI IVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .4131595 .2t91307 •733966
CVM : 1.192124 1.604626 1.064791
A-l : 1.19U223 1.466725 1.042980

ITR : .775797 .576791 .213578
KOL : 1.907085 1.170695 •303516
CVM : .957472 .981278 0326280

A-D : .978581 1.027640 .880239

CVM STATISTICS

MCVM SDCVM

INT : .366810 .000491
KOL : .108283 .000189
CVM : .055743 .000056
A-D : o0586713 .000059

ITR : .707892 .000710
KOL : .030761 .000031
CVM : .062547 .000063
A-Il .062547 .000063
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TABLE A.2

SAMPLE SIZE 6
TRUE MI.) 1.00
FI.E S3IGMA 1 .00
TRUE XI 10.00

M!( x I DIV

MEAN S1A1.)HRE [.;j.:$ ;S

INl : .6,57- . 287204 .77Y41":
KOL : 1 *332993 1 .03375 94,3:0* 0
CVM 5 ' 53 413 . 18024'? 727'6 0
A-11 : .555660 .190898 .745718 0

ITR : 864145 .... 5 . 359428
KOL .08441.9 .071938 .364376
CVM : .753766 .385351 .9"26 2 -3 67
A-1 : .6 b6059 .236989 .834891 184

RELATIVE EFFICIENCIES

INT : 1.000000 16000000 1.000000
KOL : .491952 .276590 .026256
CVM : 1.180826 1.593375 1.070677
A- : 1.180162 1.443979 1.045183

ITR : .758865 .546415 2.168476
KOL : 7.768037 3.992364 2.139032
CVM : .869990 .745306 .841495
A-i : .955849 1.000751 .933549

CVM STATISTICS

MCVM SIIVM

IN' : .482803 .003600
KOL : .146933 .000032
CVM : .056385 .000021
A- : .o059234 .000025

ITR : .342977 .000025
KOL : .037457 .000041
CVM : .062233 .000009
A-D ? .062650 .000022
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TABLE A.3

SAMPLE SIZE 6
TRUE MU 1.00
"RUE SIGMA 2.00
TRUE XI 10$00

MU SI G xI DIV

MEAN ""ERRU "'-"

INr : .943638 .521600 1.035676
KUL : 1 .3757249 .742137 .982229 2
CVM : . 08678 .503325 1 .200742 4
A-'D : .893-/50 .5261.95 1.259358 11

ITR : .964483 .628586 829 2"
KOL .442460 .670193 .689556 0
CVM ..861398 .379846 ,545'713,8 60
A-ti : .8,900, .470960 .596845 49

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL .695258 .702834 1.053878
CVM : 1.061844 1.036308 .862530
A-El : 1.055818 .991267 .822384

ITR * .978387 .829798 1.247920
KOL : 2.132709 .778283 1.501946
CVM : 1.095472 1.373186 1.897579
A-D : 1.098528 1.107523 1.735251

CVM STATISTICS

MCVM SDCVM

INT : .617581 .021080
KOL : .118615 .000612
CVM : .059271 .000850
A-D : .063324 .000845

ITR ..272654 .000792
KOL : .060480 .000959
CVM : .057036 .000737
A-D : .058148 .000770
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TABLE A.4

SAMPLE SIZE 9
TFUE Mi.) 0*00

TRUE SIlMA 1.00
IRUE XI 10.00

MO S I XI D I V

Mr-AN S(UAINL [f Fl;fRS

INT : . 4768T7 ..28 07121

KOL : .91. 11" ,3 .10061.4 3

(VM : , 406065 . 176720 607).':.40 12.

tV-li : *393464 I. .6, 79 .0672'9) 5

IT : * -197139 .416" 04 * 549..,/ 1

KOL : * 373430 " 23 ""- ,40501 0

CVM : '.50 11,32 .257267 .084231 268

A--D : .1' 221 3 . 2495 -) 7 .084408 290

RELA"IIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000

KOL : .513093 .290442 .707708

CVM : 1.17430*7 1.544111 1.013837

A- : ."21199 1.638100 1.058307

ITR : .770662 .655657 .129653

KOL : 1.277021 1.163414 .175828

CVM : .951505 1.077469 .8454.54

A-l " .968843 1.093573 .843676

CVM STATISTICS

MCVM SDCVM

INT : .488003 .000641

KOL : .171784 .000172

CVM : .040006 .000040

A-D : .038105 .000038

I'R : ,952907 .000953

KOL : .020390 .000020
CVM : o041624 .000042

A-D : .041624 .000042
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TABLE A.5

SAMFLE.f SIZE 8
TR,UE M U 1.00
TRUE SI0MA 1.00
TRUE XI 10.00

m U 810'l Xl DIV

MEAN SOLJARE 'RRORS

INT : 476934 . 273'.82:3 • 526903
KOL. : 953368 .93649 .668776 1
CVm " .426717 .191437 .523154 3
A-ti : .398836 .17225 .497591 2

ITF " .626356 .431749 .282776
KOL : .071923 .063611 .8 2 72 0
CVM .3, 1 .352480 .635454 92
A-El : .49979' .255873 .593109 226

R-LATiVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .500263 .292077 .707861
CVM : 1,117684 1.427528 1.007167
A-i : 1.195815 1.581258 1 .0538903

IIR : .761443 .632964 1.863320
KOL : 6.631136 4.296162 2.308229
CVM : .8846 J5 .775310 .829176
A-D : .954254 1.068013 .836374

CVM STATISTICS

MCVM SDCVM

INT : .639525 .004718
KOL : .121675 .000079
CVM : .039762 .000046
A-[ : .037338 .000003

ITR : .386990 .000008
KOL : .020569 .000016
CVM " .169935 .000030
A-'l : .040439 .000004
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TABLE A.6

SAMI:IE SIZE 8
T''I.E MU 1.00
l'l1UJF" SIGMA 2.00
TRUE XI 10.00

Ms 5IG XI DIV

MF AN SLLJARE ERFORS

'NI : .6 6236 .413293 *2f337 98

KOL. o . 9.435j7 587913 .269736 3

CVM : .,637344 .3653132 6 '5726

A-D : .637233 .396803 .33391.5 20

ITR : .692687 .480513 .660948

KOL : .440742 .614440 .497359 0

CVM : .621100 .305793 . I 5932 62

A-El : .6.23585 .366783 .176682 52

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000

KOL : .731628 .702977 1.052133

CVM : 1.061100 14131126 .775985

A-El : 1.057955 1.041556 .849910

ITR : .976319 o860108 .429380

KOL : 1.,534424 672634 .582318

CVM : 1.088851 1,351547 1.526353

A-I : 1.084512 1.126805 1.606268

CVM STATISTICS

MCVM SDCVM

INT " .816757 .028034

KOL : .096663 .000887

CVM : .035378 .000723

A-P : .036698 .000713

ITR : 291.249 .000808

KOL : .041684 .000747
CVM : .035354 .000707
A- : .035622 .000713
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TABLE A.7

SAMPLE 1ZE 10
TRUE MU O 00
ImiEs STOGMA 1 .00
TIRI)E XI 10.00

MJ SIG X I El I V

MEAN SL)JAiE E:RRORS

I NT : *383317 .2 0480 I. 05 1 I
KL : 681.101. 772202 .075254 3
CVM : • 3.359157 . 1 J'593 . 050492 10
A-I : .31.5620 * 7262 .047732 9

ITR : .496913 .379719 .590799
K01 : .402003 .227906 .461629 0
(VM : .403179 •244989 .064706 295
A-1 : .3Y4851 .241653 .062153 277

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .562790 .324371 .685348
CVM , 1.140972 1.347152 1.021448
A-DE 1.214488 1.592757 1.079382

ITR : .771396 .659646 .087298
KOL. t .953519 1.098664 .111725
CVm : .9,50736 1.022444 .797073
A-l : .970790 1.036528 .829809

CVM STATISTICS

MCVM SE'CVM

INT : .612318 .000539
KOL : .276212 .000003

CVM : .126936 .000000
A-D : .130615 .000000

ITR : 1.565242 .000001
KOL .051737 .000000
CVM : .168352 .000001
A-D .168352 .000001
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TABLE A.8

SA M r:'.. SI[Z E 10

TRUE MU 1.00

Tr~uF ;,I 1, *.00

MFU U 1" (3 XI i I V

MEAN S(UAIE IE.RROS

INT ,3 39'27 .250430 .31,25
KCIL : . 7 0273 . c,, 16 4 5 .50 733, 0
CVM : .3,63 75 .22091. 2 .381:1.12 0
A-ln : .31796 t. 1573 87 .352664 0

ITF: : 0 5 1 1. .301544 .261686
KOL : .0610L9 .057130 .17860 t 0
CiM : .417473 ."083 .474617 12-

A-D : 402 JO 1 .246345 .452670 245

1:EI. AT IV FIZIFF T C IENC I ES

INT : 1.000000 1.000000 1.000000
KOL : .1171. 6 .230863 .757586
CVm : 1.055138 1.133620 1.000296
f;-D : 1.207451. 1.591178 1.082120

ITR : .760024 .639597 1.45832?
KOL : 6.286779 4.383520 2.136742
CVM : .919647 .832456 .804068
A-D : .953854 1.016586 .843054

CVM STATISTICS

MCVM SEICVM

INT : .806153 .006031
KOL. : 0226466 .000202
CvM : .124742 .000030
A-Di : .127688 .000021

ITR : .749610 .000051
KOL : .086Y(08 .000019
CVM : .159530 .000035
A-ri : .159530 .000035
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TABLE A.9

SAMPL- SIZE I0
TIf"E MO 1.00
TRUE 3IGMv 2.0(0
tRUE X1 10.00

MlU (IG XI DIV

Mr N SQUREI . FROF',.;

I NT : .32 332. .310910 .117524
KOL : 683067 .472942 . 112:87 3
CVM : *. j)0, ")9 .768 . 15-2260 6
A-[i ..49794'1 .292731 .331133 29

ITR : .547307 .374777 .68460,0
KOL : .424192 .574206 .517111 0
CVII * •48,7 .23521( .085660 71
A-D : .505876 .277305 •082215 59

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .778415 .657395 1.041999
CVm : 1.060234 1.140207 .771963

A-D : 1.068974 1.062102 .882425

ITR .972640 •829585 .171666
KOL : 1.254932 .541461 •227270
CVM : 1.092424 1.321796 1.371976

A-l : 1.052298a 1.121184 1.429475

CVM STATISTICS

MCVM SE'CVM

INT ? 1.035208 .034789
KOL .194634 .000954
CVM : .112736 .000801
A-l .123434 .000811

ITR : .581777 •000956
KOL : .079166 .000870
CVM : .112724 .000805
A-D : .112901 .000813
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TABLE A.10

SAMPI..E SIZE 12
TFRIjE MU 0.00
'TRUE~ SIG~MA 1 *.00(
TRUE Xl 10.00

Mi.) S I1G X '. l ')

MFAN S Ut-JAkIl '.f'F',[F'%,,S

INT 7326100 39326 .0434:34
KfO. . 46634 .65J'9,909 .060620 6

CVM : 220527 , 18 455"S0 .04342 '

A-2I : ' 6-76 6 1 ]40 o . 040502 .5

IIR : .417943 33422 3 .622391
KOL : .42 -3 7..29? .22359 .501794 0
CVM : .343t"48 .2265557 .052435 337
A-D : .337610 .220576 .051215 309

RELATIVE EF*FICIENCIE.

INT : 1.000000 1.000000 1 1 00000(0
KOL : .59-6560 .364f-177 .716413

CVM 1 .1221,44 1.296811 1.000201
A- .2..020 1.697397 1.072407

ITR : .780250 .714785 .069786
KOL : .769595 1,057287 .086'.,58
CVM : .949211 1.056364 .828350

A-D : .965908 1.085007 .848074

CVM STATISTICS

MCVM SEICVM

INT : .735408 .000703

KOL : .210019 .000004
CVM t .064878 .000000
A-El : .065139 .0000000

ITR : 1.624189 .000000
KOL : .023369 .000000

CVM : .091958 .000000
A-D : .091758 .000000
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TABLE A.11

SAMPLE SIZE 12
TRU[- MU 1.00
TRUE SIGMA 1.00
TRUE XI 10.00

MU SIG X I D V

MEAN SUIJARE E"FT)S h'

INT : .326100 .239326 *320933
KOL : .620869 .007474 .421894 0
CVM : .323856 .246831 .331687 3
A-D : .269186 .1474'3 .297023 2

ITR : .427455 .35828 .7 7"?0
KOL : .062410 .056860 .169423 0
CVM : .355350 .272643 .384187 169
A-D : .347895 .236927 .374251 287

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .525231 ,.296389 .760697
CVM : 1.006?30 *969595 .967577
A-LI : 1.211430 1.623070 1.080500

ITR : .762887 .667970 1.176527
KOL 5.225145 4.209080 1.894276
CVM : .917687 .877801 .835358
A- : .937351 1.010128 .857536

CVM STATISTICS

MCVM SDCVM

INT : .975852 .007515
KOL : 150207 .000098
CVM : .063786 .000029
A-D : .063633 .000022

ITR : .657586 .000051
KOL : .036542 .000013
CVM : .088608 .000033
A-D .088597 .000033
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TABLE A.12

SA MPILE SIZE 12
TRUE MU 1.00
TRUE SIGMA 1, () 0
TRUE XI 10.00

M u S6 xi I) 1 V

MEA3N SOUARE EI"ROF:S

INT : .449044 .2701369 * 086651

KOL : .539179 .379041 .082294 7

(&VM : 42 19 6 .226249 .119563 1
A-V : .416589 .240181 .099595 30

ITR : .459219 .309192 .725196

KOL #422344 .e56705 .565643

CVM : .411279 .207014 .054377 67

A-, : .426530 .237099 .057158 67

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000

KOL : .832327 .714616 1.05,2942

CVM : 1.064167 1.197219 .724734

A'-D : 1.077905 1.127772 .670033

ITR : .977841 .876056 .117486

KOL : 1.063217 .486558 .153190

CVM : 1.091821 1.308461 1.593510

A-D : 1.052784 1.142431 1.515996

CVM STATISTICS

MCVM SDCVM

INT : 1.233838 .041781

KOL : .114867 .000514

CVM : .049472 .000486

A-D : .051923 .00050>8

ITR : .486826 .000562

KOL : .046033 .0005135

CVM : .051311 .000472

A-D : .051267 .000469
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TABLE A.13

SAMF'L.E SI2E 16
TRUE MU 0.00
TFE SIGMA 1. O0

TRLE X1 10.00

MU S I G X D I V

MEAN SOIUARE ERRORS

INT : .2323$3 .2302 *299.7..

KOIL : .3774.3 .509347 .043096 4

CVM : ....2- 3 .179S1.6 .0306134 51

A-E" .194003 .126010 ,027965 30

ITR ; ,08175 .281351. .667245

KOL : .456919 .221362 .569259 0
CVM : .,25065 O .193066 .036964 336

A--D : .249732 .194706 .036456 309

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000

KOL : .61:;i565 .398651 .695501

CVM : 1.04547 I. • I92 .976829

A-P : 1.197831 1.611390 1.071822

ITR : .754063 .721702 .044921

iSOI : .508587 .917202 .052653
cYM .9271215 1.051723 9310873

A-D : .930532 1.042865 *822172

CVM STATISTICS

MCVM SDCVM

INT : .058370 .000001

KOL : .202583 .000010

CVM : .052597 .000001

A-11 : .056141 .000001

ITR : 2.048071 .000002

KOL : 1,690798 .000008

CVM : .083688 .000001

A-D : .083688 .000001
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TABLE A.14

SAMPL.E SIZE 16
TRUE MU 1.00
TRUE SIGMA 1 *00

TRUE XI 10.00

MUs S103 X I IIV

MEAN SQUARE ERRORS

I I : . ( 3.3 . 203052 221497

KOL : .432193 .656473 .307171. 2

CVM : .242403 22 801" . 237409 3
"-I' : .190384 .119146 .20.699 3

ITR .308?562 ."82413 .307384

KOL : .061023 .054438 .1',PE56 0

CVM : ... . 761022 .270062 204

A-D : .250442 .194406 ,268905 302

RELATIVFH EFFICIENCIES

INT : 1.000000 1.000000 1.000000

KOL .537M35 .309307 .7210813

CVM : .958667 .890274 .932978

A-D : 1.220607 1.704219 1.092739

ITR : .753118 .718989 .720507

KOL : 3.758 850 3.729951 1.172838

CVM : .907668 .919982 .820171

A-D : .927893 1.044473 .823699

CVM STATISTICS

MCVM SriCVM

INT : .059919 .000106

KOL : .152448 .000483

CVM : .0763B7 .000794

A-D : .056961 .000078

ITR : .772859 .000093

KOL : .640381 .000413

CVM : .080935 .000253

A-D : .084114 .000106
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TABLE A.15

SAMPLE SIZE 16
TRUE MU 1.00
TUlE SIGMA . O0
TRUE XI 10,00

MU 3IG XI DIV

MEAN SQUARE ERRORS

INT : .303700 .200303 .030553
KOL : .350235 .259372 .033354 5
CVM : .291445 .165668 .0422t53 11
A-l : .287489 .177657 .032471 38

ITR : .322491 .23587 .787416
KOL : .414454 .519659 .659067 0
CVM : .293632 .162336 .024263 77
A-D : .301267 .186689 .024930 61

RELATIVE EFFICIENCIES

INT : 1.000000 1.000000 1.000000
KOL : .867134 .772261 .916034
CVM : 1.042050 1.209059 .723105
A-D : 1.056387 1.127467 .940942

ITR : .941733 .849399 .038802
KOL : .732771 .385450 .046359
CVM : 1.034290 1.233879 1.259276
A-D : 1.008075 1.072922 1.225547

CVM STATISTICS

MCVM SEICVM

INT : .059835 .000964
KOL : .121674 .001103
CVM : .057521 .001007
A-D : *072231 .001043

ITR : .585003 .000941
KOL : .653962 ,001038
CVm : .073151 .000925
A-D : .059473 .000954
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Appendix B

Computer Listing of Data Generation and
Maximum Likelihood Techniques

PROGRAM BEGLND
c

C * *

C * WRITTEN BY 21..T JIM H kLFF:R AF IT/GOR-8311 I--OR M- rHESIS *
C * DECEMBFHI 1983
C * *

C * FURPOSE: (1) GENERATE SAMPLES OF 3-L.ND r'EVIATES
C * (2) CALCI II.ATE THE MEAN AND' sri. [EUV. OF- ;f'I:' -
C * (3) CALCULATE THE MLE'S USING THE INTERPOLATION
C * MEITHOD *
C * (4) CALCUL.ATE THE MLE'S USING THE ITERATI-I *
C * METHOD *
C * *

C * VARIABLES: DSEED - SEED FOR RANDOM NUMBER cIENERATOR *
C * TMU - TRUE MEAN OF PARENT NORMAL *
C * TSIG - TRUE STD'. Dl,.). OF PAFRENT NorMAI *
C * TXI - TRUE LOCAT!Oi4 VALUE *
C * BMU - INTER-OLA11VE MLE OF TMU *
C * BSIG - INTERPOLATIVE MLE OF TSIG *
C * BXI - INTERPOLATIVE MLE OF TXI *
C * HMU - ITERATIVE MLE OF THU *
C * HSIG - ITERATIVE MLE OF TSIG *
C * HXI - ITERATIVE MLE OF TXI *
C * N - DESIRED SAMPLE SIZE *
C * NC - # OF DEVIATES CENSORED FROM BELOW *
C * NREPS - NUMBER OF REPLICATIONS *
C * MLE - SUBROUTINE TO COMPUTE ITERATIVE MLE'S *
C * GGLNG - IMSL ROUTINE WHICH GENERATES 2-LNri DEVIATE*
C * VSRTA - IMSL ROUTINE WHICH ORDERS DATA *
C * SUM - DUMMY VARIABLE USED 10 COMPUTE SAMPLE ,
C * MEANS AND STD. DEVS. *
C * SUMR - DUMMY V. IABLE USED FOR SUMS *
C * SUMRI - DUMMY VARIABLE USED FOR SUMS *
C * X - VECTOR OF 3-LNE' DEVIATES *
C * MEAN - SAMPLE ARITHMATIC MEAN *
C * SD - SAMPLE STANDARD DEVIATION *
C * Yl - MEDIAN RANK OF FIRST ORDER STATISTIC *
C * Y2 - MEDIAN RANK OF SECOND ORTER STATISTIC *
C * SLOPE - SLOPE OF INTERPOLATION LINE *
C * *
C * I/O FILES: INPUT - UNFORMATTED INPUT OF T RUE PARAMETERS *
C * TAPE5 - OUTPUT OF TRUE PARAMETERS, SAMPLES, *
C * MEANS, SID, AND ALL MLE ESTIMATES *
C * *
C * IMPORTANT: IMSL LIBRARY MUST BE ATTACHED BEFORE THE PROGRAM *
C * IS HUN. REVIEW IMSL MANUAL ON GGNLG AND VSRTA *
C **
C

C
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COMMON N, NC, X (50) 1 (MU, H5, HXI,,J, SIG, NN
EXTERNAL c3ONLG,')S-RA,MLE
D'OUB4LE FIECISION IaSEEL'
PEAL TMlUTS[CL ,T*Xl,IMtI,DSIG,BXl
REAL MEAN, SUM, Sri.':.L.OIE, Y 1,Y2
IN-,EGER N
rl5EED= 18917'2. 11

C *** READ' P rIMETFJIRS AND' WRFITE THEM TO FILE**
F'RINT*, 'EN11T R 'TriJ,JEC.I,r,'XI ,N,Nl-FEPS'
REALII,11uJ.,TS.i3,rxI,N,NREF-S
61IITE(5, 100) NriEF 3,N,TmuOBI,)(-,TXI

100 FORdAT(14/13/3(F15.6!))
C B~*K EGIN 110-L-10P FOR GENERATIO0N OF SAMPL1-ES **

DIO 999 J=i.,NREPS
103 FOERMAT(I4)

C *,** GENERAF*E AN)' SORT S3AMPLES FROM 2-LN DIIIITRIDtli ION I/"
CALL C3NGUiSEE,N4'IMU,TSIG,X)
WRITE(5J,103) J
CALL VSRTA(X,N)

c * ADD LOCATION PARAMETE-:R TO 2-LN DEVIA'TES**
C** WRITE THE 3-..N DEVIATES TO FILE *
C** CALCULATE SAMPLE MEAN**

s?hi=0 *0
DO0 10 I=1,N
X( I)=X( I)+TXI
WRITE(5,101) X(I)

101 FORMfiT(FtS.6)
SItm=stJM + X(I)

10 CONTINUE
M LA N =SUM /N

C *A* CALCULATE SAMPLE STANDARD DEVIATIONS**
SUM=0 *0
110 20 T=1,N

SLIM=SUM+(X(lI)-MEAN)*(X( 1)-MEAN)
20 CONmrTUE

SD=(BLM/N)**O.S
c** CALCUILATE MEDIAN RANKS **K

-* C *** INTEROLAl E IT) FmST r-A FE BXI**
Y1=( 1.0-0.:3)/(N+0.4)

SLOVPF=(Y2-YI)/(X(2)-X( 1))

C * CALCULATE iL-E OF I*MU AND TGJG USING THlE INTERF'OIATK.
C * VALUE FOR THlE LOCATION PARAMr2 ER, XI *
C** USE F IFST ONDER STATISTIC IF THE INTE:RPOLATE;D VA~i.l.R-
C * OF THE IlOCA'T*(ON PARAMETER [S CLOSE TOC X( 1)**

IF (FtXI *GT* X(l)) rXI=Xul
:Ijm=o. 0
DO0 30 I1,lN

SUM=SUM4fLO0(X( I)-BXI)
30 CONTINUE

P'MU=SUM /N
SUM=0.0
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DO 40 I=1,N
SUM =SUM + (LOG(X(I)-BXI) -BMU)**2.

40 CONT INUE
BSIG;=S.;QT0(-lJM/N)

C *** CfiLCULAFfE THE tILE'S USING3 THE CENSORED MAXfIMUM LI.KELIHOOD
C 'K'K'EnItlAr :I ONS AND' THE :IT'RAF iTVj: FROCE11JHE

CALL MLF(61')
C *'K*WF'TTE THE MI.E'S,. SAM'LE MEAN AN') STANDARD' DEVIATION***
C **TO FILF FOR EACH SAMPLE *'

WRITF(5,102) FOI! BV(, 8IXT, HMU. VSIf,HXl ,MEAN, Si
102 FOrMAT(F5.3/F5.3/F15 .3/F1I .3/Fl5.3/Fl,.3/Fl3 ,6/Fl5.6)

C ******* END, DO-LOOP****
999 CONTINUE

STO0P
END

C

SUB'EROU.T INE MLE(SDI)
C
C *
C P URPOSE: (1) CALCULATE THE ITERATIVE MLE'S FOR TMU AND
c * ISIG WHI1LE TXI=X(1)*
C **
C *VARIABLES: StJMN - DUMMY USED FOR SUMS
c SUMPI - DUMMY USED FOR SUMS*
c * PARIL - INITTAL & FINtAL EST*IMA'TE OF ISIG VIA '
C * EQUATING SAMPLE AND POPULATION SKEWNESS*
c XPAR - !SAMPLE MEDIIAN*
C ' SIG - FINAL. ESTIMATE OF TSIG FROM SAMPLE '
C *S KE WNE S S
C *Cl - ARRA'. OF CONSTANTS FOR USE BlY ZSCNT*
C *FCNO - FUNCTION USED' TO CALCULATE EXPESIO3**2]
C ' FCNI - FUNCTION USEDE'TO CALCULATE MLE OF 1MU '

*C *FCN2 - FUNCTION USED TO CALCULATE MLE OF TSIG *
C '
C * NOTE:6 UNDEFINED VARIAPLES IN THIqS. EU (UTINE ARE*

* C 'KEEFINEII IN 'THE MAIN PROGR'AM*

COMMON N,NC, X(50) , HM1.,SI3Gr-XIJ SIG 9.NN
E~XTEANAL FCNO,FCNi ,FCN2
NhEAL WK.(5.4) ,FNL)iM,FPAR( 1) ,C(l)y:,I*I,F'A1i( 1),(Cl( 1)
INTEGER J
INrErE.RNN~IPRTTA~~,AF~

C* CHFCK IF ANY OF THE :iAMF.I r POINTS AR'NE CLOSE TO THE *
*C **t FIRsTr ORDER !3rA'TI!Tlf. - CEN!COR' THEM IF THEY ARE **

NC=1
Do 10 I=2,N

IF ( (X( I)-X(l1)) .I-Eo 0.001) NC>NC,+l
10 CONTINUE

* C *** CITT ZCC;N' PARAMt 'Ti k F01 1 ElKUCNISS ANiD MLE rALCULATIONS *
NPAR- I

* NSIG=3
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NPAVi. =1
I TMAX= 1000
NN=0
C( 1 )='0.0

C *** CALCULATE SAMPLE SKEWANESS ANDI STGMA FROM 'THE Sl\kEWNESS**
c *k EQUATION -RESULTi ARE USED1 AS INITTAL E:;TIMATES

XlAAR=Xu.N((N-NC)/'2))
SUMN=O0 C
StJMP.1=) * 0
DO 8 I=NCPN

SIJMN=SI IMN+ (X ( I ) -XE'AR) **3
S)UMiI=SUMtI+ ( X ( I) -XBAV) **2

8 CONTINUE
5lJMN=SU.MN / (N-NC)
SUMr'= ( UMPI(N,-NC) *1 #5
Cl (1 )=SlMN/SUMD
PAR I ( 1) =LU'l (S10)
IF7 (PAR1(l) *LT. 0.001) PARIl)---.0
CALL ZSCN'T(FC.NO,N:[G~j,NF'A~r1,!ETMiAX,C1,FAR1,FN,1M,WK,lEf:)
SIG=SQRT(LGG(ABS(PAR1 (1))))

c **V. SET INrIAL VALUJF 7S FOR 'THE IrERArIVE MLE P'ROCEDIURE ANDI lk**
C *** CALCULATE THE tILE OF TMU AND TSIG

HMU=1-0G( Xl-AR)
HSI6=~SIO
IF (SIG .LT. 1.001) HSIG=PAR1(1)
PAR( I)=HM'J
CALL ZSCN r(FCN1 ,NSIG,NPAR, ITMAX,C,PAR,FNU'RM,W4K, TER)
HMU-F'AR( 1)
FAR(l1)=HSIG
CALL ZSCNT (FCN-,NST G,NPAR, ITMAX,C,FAR,FN(1RM,WKN4ER)
HSIG=r:AR( 1)
RET URN
ENDE

SUBIEROUTINE FCNI(FPAR,F,NF*,C)
C *** CALCULATE THE CENSORED vilE OF TilU**

DIMENSION 'AR(NF),F(NF),C(l)
COMMON N, NC, X (~,0) ,HMU, H'31G, HX T, J, S1G,NN
SUM=0.0
HXI=X( NC)

(LG(U N( 1 -1 3992* X (-PA I /HS C*2

CAI.L MIINOF:(Y,Z)
R=NC*(FU/Z)
11O 10 1=1+NCII

10 CONTINIJIL.
F ( I ) =SUM-F:
RET U PJ N
ENDE

C,;
*~c.

LIUiROUTINE FCN2 (FPAR, F,NP, C)
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2K*CALCULATE THE CENSORED MLE OF TSIG$*
DIMENS:ION FAR(NP),F(NP),C(l).
COMMON N,NC1.X(50) ,HMU,HS:'IG,HXI,J,S-IG,,NN

C *** THE PAP( 1) ESTIMATE IS INFEASIB~LE, CHANGE THE INITIAL**
C **ESTIMATE TO THE SIGMA OBTAINED FROM THE SKEWNESS EQN.

IF (PARUl) .E. SIG .AND, NN .EO* 0) THEN
PAR( 1)=SIG
Ni4= 1

END IF
SUM0.0
HXI=X(NC)
Y=(LOG(X(NC+1 )-HAXI)-HMU)/PAR(1)
FU=.3989423*EXP(-(Y**2)/2)
CALL MDNOR(Y,Z)
R=NC*( Y*FU) /Z
DO 10 I=1+fNCN

SLM=SUM+(LOG(X(I)-HXI)-HMU)/PAR(l))**2
10 CONTINUE

F(1)=SUM-(N-NC)-R
RETURN
END

* C
C

SUB4ROUTINE FCN0(PARI,F,NP,C-1)
C *** CALCULATE SIGMA FROM THE SKEWNESS EON - PAR1(1)=W *

* REAL F(NP),C.1(NIP)vPAri(NP)
F(1)=( (PAR1(1)+2l)**2)*(PAR1(i)-l)- (CI(l))**2
RETURN
END

*EOR
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Appendix C

Computer Listing of Minimum
Distance Techniques

PROGRAM MLEMD
C
C *
C * WRITTEN BY 2LT JIM H KEFFER AFIT/GOR-83D FOR MS THESIS
C DECEMPER 1983

C PURFOSE* MINIMUM DISTANCE ESTIMATION OF THE LOCATION
C * PARAMETER FOR THE 3-LN DISTRIBUTION USING THE
C * INTERPOLATIVE ANI ITERATIVE MLE'S, THE MINIMUM
C * DISTANCE ESTIMATORS ARE THE KOLMOGROV DISTANCE,
C * CRAMER-VON MlSES DISIANCE, AND THE ANDERSON-
C * DARLING STATISTICS
C *
C * VARIABLES: NREPS - NUMBER OF REPLICATIONS
C * N - SAMPLE SIZE (INPUT) *
C * TMU - TRUE MEAN OF PARENT NORMAL (INPUT)
C * TSIG - TRUE STANDARD DEVIATION OF PARENT NORMAL
C * TXI - TRUE VALUE OF THE LOCATION PARAMETER
C * BMU - INTERPOLATIVE MLE OF TMU
C * BSIG - INTERPOLATIVE MLE OF TSIG
C * BSIG - INTERPOLATIVE MLE OF TSIG
c $ BXI - INTERPOLATIVE MLE OF TXI
C * HMU - ITERATIVE MLE OF TMU
C * HSIG - ITERATIVE MLE OF TSIG
C HXI -- ITERATIVE MLE OF TXI
C K - SAMPLE INDEX *
C N@B - DIVERGENCE COUNTER OF INTERPOLATIVE MLE'S
C WHERE @ IS INITIAL OF MD' METHOD
C NL@H -DIVERGENCE COUNTER OF ITERATIVE MLE'S
C WHERE @ IS INITIAL OF MD METHOD

C NC -# OF DEVIATES C-NSORED FROM BELOW
c NN CHECK FOR DIVERGENCE OF KOLMOGROV ES T IMATE*
C EXIC - NEW INITIAL ESTIMATE - USED WHEN FIRST
C INITIAL ESTIMATE DIVERGES *
C X - ARRAY OF 3-LN DEVIATES
C MEAN - SAMPLE MEAN
C SD - SAMPLE STANDARD DEVIATION
C * PAR - ARRAY CONTAINING MLE OF XI FOR MD
C * KXI - KOLMOGROV MI ESTIMATE OF' XI
C * CVMXI - CRAMER-VON MISES MD ESTIMATE or XI
C * A2XI - ANDERSON-DARLING MD ESTIMATE OF XI
C * HONOR - IMSL ROUTINE FOR NORMAL CEIF VALUES
C * ZXMIN - IMSL ROUTINE TO MINIMIZE THE DISTANCE
C * NPAR - NUMBER OF VARIABLES INPUTTED BY ZXMIN
C M MAXFN - MAXIMUM # OF ITERATIONS BY ZXMIN
C * NSIG - # OF SIGNIFICANT DIGITS ZXMIN SLOVES FOR
C * IOPT - ZXM1N OPTION (SEE IMSL MANUAL)
c * DKSXI - SUBFiOUTINE TO FIND DISTANCE VIA KOLMOGROV
C * DCVXI - SUBROUTINE TO FIND DISTANCE VIA CVM
C * DA2XI - SUBROUTINE TO FIND DISTANCE VIA A-D
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* F - DISTANCE VALUE IN SUBROUTINES
C H,GW - ARRAYS USED BY ZXMIN (SEE IMSL MANUAL) *
C * IER - IMSL ERROR MESSAGE *
C *
C * I/O FILES: TAPE5 - INPUT,CONTATNS TRUE PARAMETER VALUES,
C * SAMPLE DEVIATES,SAMPLE MEAN AND STDo DEV°
C * AND MLE AND MV ESTIMATES
C *
C * TAPE6 - OUTPUT, CONTAINS TRUE PARAMETER VALUES AND*
C * ESTIMATED PARAMETER VALUES FOR EACH
C * MINIMUM DISTANCE METHOD
C
C * IMPORTANT: IMSL LIBRARY MUST BE ArrACHED BEFORE RUNNING THE
C * PROGRAM. REVIEW IMSL MANUAL ON ZXMIN°
C * ** $C

COMMON X(50),NC,NBMU,BSIG,FBXI,BXICNN
EXTERNAL ZXMINDCVXI ,DA2XI,IIKSXIMLE,MIINOR
DIMENSION PAR(1),H(1),G(1),W(3)
INTEGER N,K
REAL MEAN,KXI,CVMXI,A2XI,MU,SIG,XISD

C *** INITIALIZE DIVERGENCE COUNTERS *
NKB=O
NCB=O
NAB=O
NKH=O
NCH=O
NAH=O

C *** INPUT TRUE PARAMETERS *
READ(5,100) NREPSN,TMU,TSIGTXI

100 FORMAT(14/13/3(F15°6/))
WRITE(7,106) NREPS

106 FORMAT(14)
WRITE(7,l0l) N

101 FORMAT(13)
WRITE(7,102) TMU,TSIG,TXI

102 FORMAT(F15.6/F15.6/F15°6/)
C ******* BEGIN DO-LOOP FOR NREPS SAMPLES * *

DO 99 J=lNREPS
C *** INPUT SAMPLE INDEX *

RFAD(5,106) K
C *** INPUT SAMPLE DEVIATES *

DO 10 I=I,N
READ(5,103) X(I)

103 FORMAT(F1bo6)
10 CONTINUE

DO 40 I=1,N
40 CONTINUE

C * INPUT ESTIMATE OF XI, SAMPLE MEAN AND STD. DEV.***
READ(5,104) BNUBSIOBXIHMUHSIG,HXI,MEAN,3D

104 FORMAT(F15.6/F15.6/F15.6/F15.6/F15.6/F15.6/F15.6/F15.6)
OXIC-HXI-1.0

C BEGIN MD ESTIMATION USING INTERPOLATIVE MLE'S **
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DIO 888 L=1,?
C *** BiEGIN MDl ESTIMATION USING ITERATIVE MLE'S**

IF ( L .EQ. 2 ) THEN
LBM(U=HMtJ
[SIG=HSIG
BXIC=BXI
E4XI--HXI-1 .0
ENEIIF

WRITE(7,105i) tMIJ,ESI(3,EIXI
105 FORMAT(3CF156/ )

* C *** SET ZXMIN PARAMETERS**
NPAR= 1
NSIG=3
MAXFN=3000
IOPT=0

* C *** MINIMIZE DISTANCE VIA KOLMOGROY DISTANCE**
PAR( 1)=EtXI
NP1l
NC=O
NN=O
CALL DKSXI(NPPAR)
KXI=PARC 1)
IF CKXI .LT* XC1)) THEN
CALL MLE(KXI)

ELSE
* IF (L .EQ. 1) NKB=NKB+1

IF (L .EO. 2) NKH=NI\H+1
WRITE(7,107) HMUHSIGHXI

ENDIF
C *** MINIMIZE DISTANCE VIA CRAMER VON-MISES**

PARC 1 )BXI
NC0O
NN=O
CALL ZYl(CXPPRNIPAF*,CTPRHGFWIR
CVMXI=PARC 1)
IF CCVMXI .LT, XC1)) THEN

CALL MLECCVMXI)
ELSE

IF (L .EO. 2) NCH=NCH+l
IF CL #EQ* 1) NCE4=NCB+1
WRITEC7,107) HMt.J,HSIG;,HXI

107 FORMATC3CF1S,6/))
END IF

C *** MINIMIZE DISTANCE VIA ANDERSON-DARLING STATISTIC**
PARC 1)-BXI
NC=O
NN=0
CALL ZXMIN(DA2XINPARNSIG,MAXFN,IOT,PARH,,F,WIIER)
A2XI=PARC 1)
IF CA2XI .LT. X(1)) THEN

CALL MLECA2XI)
EL SE

IF (L .EO* 1) NABsNAB+1
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IF (L .EG. 2) NAH=NAi+1
WRITE(7,107) HMU,HSIG,HXI

ENDIF
NC=O

888 CONTINUE
C *******END DO-LOOP FOR NREPS ****
999 CONTINUE

WRITE(7,108) NKB.NCB,NAB,NKH,NCH,NAH
108 FORMAT(14,14,I4,14,I4,14)

STOP
END

C
C

SUBROUTINE MILE(XI)
C
C
C * PURPOSE: CALCULATE THE MLE OF MU AND SIG GIVEN THE VALUE *
C * OF THE LOCATION PARAMETZR (XI)
C *
C * VARIABLES: N - SAMPLE SIZE
C X - ARRAY OF 3-LN DEVIATES
C * MU - MLE ESTIMATE OF PARENT NORMAL MEAN
C * SIG - MLE ESTIMATE OF PARENT NORMAL ST. DEV.
C * XI - ESTIMATE OF LOCATION PARAMETER (INPUT)
C * SUM - DUMMY VARIABLE USED FOR SUMS
C *

r C
COMMON X(50),NC,N,BMU,BSIGBXI,BXICNN

REAL XI,MU,SIG,SLUM,Y,Z
INTEGER N

C *** INITIALIZE PARAMETERS *
SUM=00
MU=0.0
SI8=00

C *** CALCULATE THE MLE OF MU *
DO 10 I=1,N

SUM=SUM+LOG(X(I)-XI)
10 CONTINUE

MU=SUM/N
C *** CALCULATE THE MLE OF SIG *

SUM=00
DO 20 I=I,N

SUM a ( LOG(X(I)-XI) - MU )**2 + SUM
20 CONTINUE

SIG=SQRT(SUM/N)
WRITE(7,102) MUSIGXI

102 FORMAT(3(F15*6/))
RETURN
END

C
C

SUBROUTINE DKSXI (NPPAR)
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C

C * PJRPOSE: FIND DISTANCE BEIWEEN ESTIMATED CrIF AND 1/N *
C * STEP FUNCTION FOR XI VIA KOLMOGROV DISTANCE *
C *
C* ' VARIABLES: NP - NUMBER OF PARAMETERS (ALWAYS 1) *
C * PAR - ARRAY OF PARAMETER VALUES *
C * PLUS - DUMMY VARIABLE FOR D+
C * MINUS - DUMMY VARIABLE FOR D-
C 'K MAX - VALUE OF 0+f STATISTIC*
C * DMIN - VALUE OF D- STATISTIC *
C * COUNT - LOCATION OF POINT WHERE MINEMAX DISTANCE] *
C * M - # OF DEVIATES REMAINING AFTER NC CENSORED *
C * FROM BELOW *
C ' Z - PERCENTILE POINT FROM STD NORMAL CDF COR- *
C ' RESPONDING TO THE 3-LN CDF PERCENTILE PT. *
C ' *
c 'K NOTE: UNDEFINED VARIABLES ARE DEFINED IN THE MAIN PGM

ac C

COMMON X(50),NC,N,BMU,BSIG,BXI,BXIC,NN
INTEGER NPPCOUNT,M
REAL PAR(NP),MAXI,PLUS,MINUS,DMAX,Y,Z
*** USE FIRST ORDER STATISTIC IF ESTIMATED VALUE OF XI IS **
*** CLOSE TO THE FIRST ORDER STATISTIC ***
IF ((X(1)-PAR(1)) .LT. 0.001) THEN

NC=1
DO 3 I=2,N

IF((X(I)-X(1)) .LT. 0.001) NC=NC+I
3 CONTINUE

PAR(1)=X(NC)
ENDIF
MAXI=99999.
M=N-NC

C *** CALCULATE KOLMOGROV STATISTICS ***
2 DO 5 J=1,400

XII=PAR(1)+(-2.0+*OI*J)

IF (X(1+NC) .LT. XII + 0.001) GOTO 5
DO 10 I=I,M

Y=(LOG(X(NC+I)-XII)-BMU)/BSIG
CALL MDNOR(Y,Z)
FLUS=ABS( I/M - Z)
MINUS=ABS( Z-(I-1)/M)
DMAX=MAX(PLUS,MINUS)
IF (PMAX *LT. MAXI) THEN

MAXI=DMAX
COUNT=J

ENDIF
10 CONTINUE
5 CONTINUE

C *** USE NEW INITIAL ESTIMATE FOR XI IF AT BOUNDARY ***
IF (COUNT .EO. 400 .AND. NN .EQ. 0) THEN
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PAR(I)=BX1C
NN= I
GO IO 2

ENDIF
C *** USE NEW INITIAL ESTIMATE FOR XI IF AT BOUNDARY *

IF (COUNT .EQ. 1 .AND. NN .EO. 0) 'THEN
PAR(I =BXIC
NN=1
GO TO 2

ENDIF
PAR(1)=BXI+(-2.0+.sl*COUNT)
RETURN
END

C
C

SUBROUTINE DCVXI(NPPARF)
C
C
C *
C * PURPOSE: FIND DISTANCE BETWEEN ESTIMATED CLF AND 1/N
C * EDF FOR THE LOCATION PARAMETER, XI, VIA CRAMER
C * VON-MISES DISTANCE
C *
C * VARIABLES* NP - NUMBER OF PARAMETERS (ALWAYS 1)

* -PAR - ARRAY OF PARAMETER VALUES
C * SUM - DUMMY VARIABLE USED FOR SUMS
C * F - DISTANCE VALUE AT THIS XI
C * Z - PERCENTILE PT FROM STD NORMAl. CORRESPOND-
C * ING TO THE 3-LN CDF PERCENTILE PT.
C *
C * NOTE: UNDEFINED VARIABLES IN THIS SUBROUTINE ARE
C * DEFINED IN THE MAIN PROGRAM

CC
C

COMMON X(50),NCN,BMtJBSIGBXI,BXIC,NN
INTEGER NP
REAL PAR(NP),F,SUM,Y,Z

C *** USE FIRST ORDER STATISTIC IF ESTIMATE OF XI LIES *
C *** CLOSE "TO THE FIRST ORDER STATISTIC ***

IF ((X(1)-PAR(1)) *LT. 0.001 .AND. NN ofQ. 0) THEN
NN=1
PAR(1)=BXIC

ENDIF
C * IF MD ESTIMATE DIVERGED FOR XI USE A NEW INITIAL ESTIMATE t**

IF ((X(1)-PAR(1)) .LT. 0.001 .AND. NN .EQ. 1) THEN
NC-I
DO 3 I=2,N

IF((X(I)-X(1)) .LT.O.001) NC=NCi1
3 CONTINUE

PAR(1)=X(NC)
ENDIF
IF (NC *GT.-0) PAR(1)=X(NC)
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*** CALCULATE CRAMER-VON MISES DISTANCE ***
SUM=0.0
M=N-NC
DO 10 I=l,M
Y= (LOG(X(I.+NC)-PAR(1) )-BMU)/BSIG
CALL MDNOR(YZ)

SUM= (Z - (2*I--1.0)/(2.0*M))**2 +1/12*M + SUM
10 CONTINUE

C *** SET F EQUAL TO CRAMER VON MISES DISIANCE **
F=SUM
RETURN
END

C
C

SUBROUTINE DA2XI(NPPARF)
C
C
C * *
C * PURPOSE: FIND DISTANCE BEIWEEN ESTIMATED CDF AND 1/N *
C * EDF FOR LOCATION PARAMETER, XI, VIA ANDERSON-
C * DARLING DISTANCE
C *
C * VARIABLES: NP - NUMBER OF PARAMETERS (ALWAYS 1) *
C * PAR - ARRAY OF PARAMETER VALUES FOR XI -.

c SUM - DUMMY VARIABLE USED FOR SUMS
C $ F - DISTANCE AT THIS XI
C * Y1 - VALUE FOR A-D STATISTIC
C * Y2 - VALUE FOR A-D STATISTIC
C * Zl - PERCENTILE PT FROM STD NnRMAL CORRESPONDING
C * TO Yl
C * Z2 - PERCENTILE PT FROM STI NORMAL CORRESPONDING
C * TO Y2
C *
C * NOTE: VARIABLES NOT DEFINED IN THIS SUBROUTINE ARE $
C * DEFINED IN THE MAIN PROGRAM
C *
C
C

COMMON X(50)NCNYBMUBSIGBXIBXICNN
INTEGER NP
REAL PARTNITISTFSTEMXYLY2,ZSZ2

C *$ USE FIRST ORRDER STATISTICS IF ESTIMATE OF XI LIES
C CLOSE TO THE FIRST ORDER STATISTIC ***

IF ((X()-PAR(1)) LT. 0.001 *AND* NN EQo 0) THEN
NN= X
PAREI)=XIC

END IF
C *** IF FIRST INITIAL ESTIMATE DIVERGES USE A NEW INITIAL ESTIMATE

IFC(X(I)-PAR(1)) LT, 0.001 .AND* NN EQ* 1) THEN
NC= I
DO 3 1=2,N

IF ((X(I)-X(1)) .LTo 0.001) NC=NC+1l
3 CONTINUE
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F*AR(1 )=X(NC)
ENEIIF
IF (NC .GT. 0) PAR(i)=X(NC)

C *** CALCULATE ANI:ERSON-DARLING STATISTICS**
SUM=0 .0
M=N-NC
DoJ 10 '(=1vm
Y1=(LOG(X(I+NC:)-PAR(1) )-BMU)/EISIG
CALL MDNOR(Y1,Zl)

CALL ME'NOR(Y2,Z2)
SU.M=(2*1-1)*(LOO(Z71)+LOG(1--Z2)) + SUM

10 CONTINUE
SUJM=(-1*SUM) /M-M

C **SET F EQ~UAL TO ANDERSON-DARLING DISTANCE *
F= SUM
PETURN
END

*EOR
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Appendix D

Computer Listing of
Evaluation Criter-a

PROGRAM EVAL
C

C * WRITTEN BY 2LT JIM H. KEFFER AFIT/GOR-83D FOR MS THESIS
C * DECEMBER 1983
C **
C * PURPOSE: EVALUATE THE MLE AND MDi PARAMETER ESTIMATES BY:
C * (1) MEAN SQUARE ERROR (MSE)
C * (2) RELATIVE EFFICIENCY (REFF)
C * (3) CRAMER-VON MISES DISTANCE (CVM)
C *
C * VARIABLES: NREPS - NUMBER OF REPLICATIONS
C * N - SAMPLE SIZE
C * SUM - DLIMMY USED FOR SLIMS
C $ SUM1 - DUMMY USED FOR SLIMS
C * X - ARRAY CONTINING LAGUERRE ABCISSA
C * W - ARRAY CONIAINING LAGUERRE WEIGHTS
C * CVM - MATRIX CONTAINING CVM DISTANCE FOR EVERY*
C * SAMPLE AND ESTIMATOR
C * MCVM - ARRAY CONTAINING MEANS OF CVM DISTANCE
C * FOR EVERY ESTINATOR TYPE
C 2 SDCVM - ARRAY CONTAINING SD OF CVM DISTANCE FOR

* 2 EVERY ESTIMATOR TYPE
C * F - VALUE OF TRUE PDF
C TMU - TRUE VALUE OF MU
C TSIG - TRUE VALUE OF SIGMA
C TXI - TRUE VALUE OF XI
C * BMBS,BX - INTERPOLATIVE MLE'S FOR TMU,TSIG,TXI
C * HMHSHX - ITERATIVE MLE'S FOR TMU,TSIG,TXI
C S B@# - MSE OF ESTIMATES FROM INTERPOLATIVE MLE
C * WHERE @= INITIAL OF' MD ESTIMATOR
C * AND # = M FOR MU; S FOR SIGMA; X FOR XI *
C * H@# - MSSE OF ESTIMATES FROM ITERATIVE MLE'S
C * WHERE @ = INITIAL [IF MD ESTIMATOR
C * AND # = M FOR MU1; S FOR SIGMA; X rOR XI
C * RB/H@$ - RELATIVE EFFICIENCIES FOR BP# AND H@#
C $ YI - ADJUSTED LAGUERRE AICISSA FOR 1=0,8
C $ ZI - PERCENTILE PT FROM STD NORMAL CDF USING
C 2 A SET OF PARAMETER ESTIMATES
C * MDNOR - IMSL ROUTINE WHICH CALCULATES THE CDF
C * OF A STD NORMAL DISTRIBUTION AT PT. X
C *
C I/0 FILES: TAPE7 - FORMATTED INPUT OF TRUE PARAMETERS AND

C * ESTIMATES
C * TAPES - FORMATTED OUTPUT OF MSE'S, REFF'S AND
C S MCVM,SDCVM
C **
C S IMPORTANT$ IMSL LIBRARY MUST BE ATTACHED BEFORE THE PROGRAM
C * IS RUN. REVIEW IMSL ZUBROUTINE MINOR *
C *
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c4

REAL SUJM(8) ,J:UM1 (83)CVM(O, 1000) ,MCVM(8) ,SECVM(13)
REAL X(15),W(15)
DATA BMBv~BMPSBXB',(SBXBMP!,A/200
r'ATA HMHS,HIX,HK\MI4KS,FIKXH[Ct,HCS,HiCX,HIAM,1-iAS,HAX/12*0.0/
['ATA SUM,SUM I1*0 .0 8*0 .0/
E'AlA(X(K),K=1,1-)/0.0933,0.49269,1.?1lr)"*.9 ,2:.26994 ,:3. 6c.662,.4t133,

+f7.*56591, 10. 12022)c.., 13.130281, 16. 6540, 210. 77647 ,25. 62 319, 31. 40751,
+313. 53068,48.*02608/
DATrA(W(K) ,K=1 ,15)/10.23957,0.5-601 ,0.887, 1.22366,1 .S744-4 1.94475,

+2.3415,2.77404,3.25-',t564,3.8O0631,4.45847,5.'2'700i ,6.359-. 3 03178,
+11.52777/
PI=3.1415927

C *** INPUT TRUE PARAMEIER E57-I M ATFS**
REAE'17,1Q0) NREFSN,rM,rSIG,rTXI

100 FORMATI( 14/13/F15.6/F1S.6/F1S.6/)
C ******* BEGIN DO-LOOP FOR NREPS SAMF*LE:.S***

DeO 99? J=1,NREF'S
READ(7,101) BMU,F3S16,PXI,FAKMLJ,rKSIG,BIKXI,IRCMU,BCSIG,BCXI,
+BAMU,BASIGBAXI ,HIMU,HSIG,IIXI,HKMUHK SIG,HKXI ,HCMU,HICSIG3,
+HCXI ,HAMU,HAGIG,HAXI

101 FORMATrFl5,6,Fl5,6/F1S.6//F15.6/F1S.6;rFI5.6,FI5.6,FlS.6/
+F15.6//Fl5.6/F15.6/Fl5.*6//FI5*6/FI5.6/f-'15,6//FI5,6/Fls,16/
+Fl5.6//F1S.6/Fl1S.6/F15.6//FlS.6/Fl5.6/Fl5.6/)

C ** CALCULATE THE SQUARED ERRORS FOR ALL PARAMETERS**
BM=BM+ (TMU-BMU )*~*2
14S=IIS+( TSIG-EfSIG )**2
BX=BX+(TXI-B.<I ) *2
BKII=BKM+ (TMU- BKMU) **2
E4KS=EKS+(TSIG- BKSIGi)**K2
BKX=BKX+(TXI-LeKXI )**2
BCM=BC;M+ ( TMU-EiCMU )**2
BCS=E'CS+( TSIO-BCS16)**2
BCX=BCX+(TXI-B('X1 )**2
BAM=EtAM+(CTiMU-FtAMU) **2
IAS=PAS+(TSlG-BASIG) **2
IAX=BAX+(TXI-BAXI )**2
HM1=HM+ ( TMt.I-HMIJ) **'-
HS=HS+ (TS IG-HSI3 G) **2
HX=HX+(TXI-HX)I )**2
HKM=HKM+(TMU-HKMLJ)**2
HKS=HKS+ (TSIG-HKSIG )**2
HIX=HKX+(TXI-HI<XI)**2
HCM=HCM+(cTMJ- HCMtJ )**2
HCS=HFCS+( TSIG-HCSIG)**2
HCX=HCX+(Trxi*-HCXT )**2
HIAM=HAM+ C TMLJ-HAMJ) **2
HAS=HAS+(CTSIG-HASIG )**2
HAX=HAX+(rXI-HAXI )**2
*** CALCULATE T14E CRAMER VON-MISES DISTANCE USING NUMERI(CAL**

C *** IlUADRATLIRE**
DO 10 1=1,15
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** fDD~ L..(;ATION TO PUADRATURE POTNTS *
X( I)=x( i)+Trxi

c C* (ALCUL.ATE EST CEIF FROM :tNTFRPOLAT ION**
IF ( (X(I)--BXI) L. 0,00001) THEN

21=0.0
(30T( 11

ENEIIF
Yl=(LrJG(X( I)-3XI )-IMtJ) /BXI
CALL ME'NOR(Y1.,ZI)

C C* ALCUJLATE EST CEIF FROM IN*TEr-,POLATrION X KOL**
11 IF ( (X(l)-BKXI) .LT* 0.00001) THEN

Z2=0.0
GOTO 12

EN EtIF
Y2=(LOG(X(I)--B'KXI)-BKMU)/'KSIG
CALL MEENOR(Y2,Z2)

C *** CALCULATE ES1 CEIF FROM INTERPOLATION SCVii**
12 IF ( (X(I)-BCXI) .L.0.00001) THEN

Z3=0.0
GOTO 13

E NDIF
Y3=(LOG(X(l)-4CXI)--B'CMIJ)/BCSIG
CALL MENORkY3,Z3)

C *** CALCULATE EST CEIF FROM INTERPOLATION AND A-1l**
13 IF ( (X(I)-BAXI) .LT, 0.00001) THEN

Z4=0,0
GOTO 14

END IF
Y4=(LOG(X(I )-BAXI )-EAMU)/BASIG

CALL MEINOR(Y4,Z4)
* C **CALCULATE EST CDF FROM ITERATION**

14 IF' ( (X(I)-HXI) *LT. 0.00001) THEN
Z5=0.0
GOTO 16

ENEIIF
Y5=(LOG(X( I)-HXI)-HMU)/-ISIG
CALL MrIN0R(Y5,,Th)

C *** CALCULATE EsTr CEIF FROM ITERATI(ON I KOL**
16 IF( (X(I)-HKXI) .LT* 0.00001) THEN

Z6=000
GOTD 17

ENE'IF
Y6=(LOG(X(I)-HIKXI)-HKMU)/HKSIG
CALL MEN0R(Y6,Z6)

C *** CALCULATE EST (21W FROM ITERATIflN X CVM *~
17 IF ( (X(I)-HCXI) *LT. 0.00001) THEN

Z7=0.0
GOTO 18

ENDIF
Y7=(LOG(X(I)-HCXI)-HC.MU)/H-CSIG
CALL MENOR(Y7,Z7)

C *** CALCUL-ATE E13T CrlF FROM ITERATION & A-El**
18 IF C(X(1)-VIAXI) .LTo 0.00001) 'THEN
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ZB=0.(0
GOTO 19

END IF

CALL MI:NOR (Y8, ZS)
* ~C *** CALCULATE TRUE CEIF**

19 Y=(LOG(X(lD-]*Xl)-'MU)/TSIG
CALL MEINOR(Y,Z)

* C *** EVALUATE TRUE PF *
F= (I/ (X (I )-TXI )*TS IGf3S(JRT(2*PI))*EXP((-I .0/".)0)*Y**2)

C** ADD TO SUMS FOR EVALUATrION OF INTEGRAL**
SUM( 1)=SUM( 1 )+W( I)*(Zl-Z)**2*F
SUM(2)=SUM(2)+W(I)*(Z2-Z)**2*F
SUM (3) =St.IM 3) +WI)* (z3-Z) **2*F
SUM(4)=SUM(4)+W(I)*(Z4-Z)**2*F
SUM(5)=SUM(5)+ W(I)*(7rj-Z)**2*F
SUM(6)=SUM(6+W(I)*(Z6-Z)**~2*F
SLIM(7)=SUM(7)-+W(I)*(Z7-Z)**2*1F
SUM(8)=SUM(B)+W(I)*(ZB-Z)**2*F

10 CONTINUE
C ** CALCULATE CYM STATISTIC FOR EACH METHOD**

DO 8 I=1,8
CVM( I J)=N*SUM( I)

8 CONTINUE
**ADD TO SUMS FOR CYM *

DO0 9 1=1,8
SUM1(I)=SJM1 ( )+C'VM(I ,J)

*9 CONTINUE
C ****KEND DO-LOOP FOR N13EPS SAMPLES****

999 CONTINUE
C * CALCULATE MSE'S FOR EACH PARAMETER *

BM=BIM /NRE PS
BS=E4S/14REPS
BX=BX/NREP S
E'KM=BKM/NREPS
BKS=B[KS /NRE PS
BKX=E'KX/N REPS
E4CM=B[CM /NRE PS
BCS=B1CS/ NREP S
['CX =BCX /NREF'S
EIAM=BEAM/ NRE PS
E4AS =BAS /NR EPS
['AX =BAX /NREPFS
HM=HM/ NRE PS
HS=HS/NREPS
HX =HX/ NRE PS
HKM=HKM/NREPS
HK S=HK5/ NREPFS
HKX=HKXIN REPS
HCM= HCM/ NREPFS
HCS= HC S / NIFE 'S
HCX =HCX /NREPS
HAM=HAM/ NREF'S
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HAS=HAS /NRE PS
HA X =HAX/N REP S

c *** CALCULA7L. TH-E RIELATIVE E:r-IC:1fE.NtIE~f***

RXH-=BX/LiX

RB ICM= M /B \M

RBCS=BS / FCS
R14CX=BX/BCX
REIAM= El /LiAM
RPASHS/B6S
REAX= B X /BA X
RHM =BM/ HM
RHS=Pr53/ H5
RHX=BX/HX
RHK M= Btl/ HKM
RHKS=EIS/HKS
RHK X =FX /HI X
RHCM=14M/VCM
RHCS=E4SHCS
RHCX =BX / 1CX
RHAM=BM/HAM

* RHAS=E'S/HAS
RHAX=BX/HAX

C ** CALCULATE MEAN CYM**
DlO 35 I=1,8

MCVM( I)=SUM1 (I )/NREPS
35 CONTINUE

C *** CALCULATE THE SiTE, DEE OF CYM STATISTICS**
EDO 37 1=1,8

SUM(I)=0.0
37 CONTINUE

DOG 45 I=1,8
EDa 46 L=l,NREPS

SUM(I)=SUM(I)-+(CVM(I,L)--MCVM(I))**2
46 CONTINUE
45 CONTINUJE

110 55 1=1,8
S1:CVM (I )(SUM (I ) /NRES) *0. 5

55 COJNrJINUE
c *** READi IN THE D:IVERGENCE COUNTERS FOR THE MD' METHODIS**

REAE(7P102) N~xl,,'N(;EIB,NAlLINKHNCHI,NAti
102 FORMAT( 14,14,14,14,I4,14)

L *** WRITE ALL RESULTS TO FILE**
WRITE(B,'(21X,SAM-'LE SIZE 4,15)-) N
WRITE(0v'(21Xr,'rwE MU e,r5.2)') TMIJ
WRITIE(S*'(21X,*'rRUE SIGMA *,F5.2)') TSIG
tRITE(0,'(21X,T~tE XT 8,F5.2,/)') TXI
WR[TE(8, '(l 12X, 'MUI, 13X, '810' ,14X, 'XT' ,S-X, t' ,I) ' )
bRIlE(8,'(20X,'MEAN SflIARE ErHS',/)')
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WFRITE(8, ' ( *KOVM *"9,rii 6,Fl6.-6,F16.6, 16)') ERPCM,EfKS,ElCX,NCIB

WRI*TE(8,'0I'TR :0,ril.6,F16.6rF16#6) ) H;4,HS fJX
WRITE(fl,'("KUL :",FX1.6,Fl6.6,F16.6,16)') 1IKM,HiKS,HK'X,NKH
WRITE(B,'(OCVM :,9Fll.,F1l6.6.F:16.6,16)') HCMHUS,HC;X,NCH
bRITE(8,'(-A- :-,Fll.6,F16.6,F16.6,16,/)') HAM,H-AS,HAX,NAIA
WRITE(B,'(18XORELATIVE EFFICIENCIES',7/)')
kRITE(8,' (9INT :m,F11 .6,Fl6.6,F16.6)') RBM,RDS,RBtX

bRITECO, '(OKVM :' ,F11.6,Fl6.6,F16.6) ') RBKM,RE:CS,REPCX

WRITE(8,'(OCVTR ?',F11.6,Fl6.6,F16.6)') RBIM,Rr.sC,RCX
WRITE(8,' t<OL :0,F11 .6,F16.6,F16.6?)') FBM,RVSRKX
WRITE(8, '(*IVM :'*,F11 .6,Fl6.6,Fl6.6) ') RHCM,RHS,Ri-X

WRITE(8,' C A-El :',F1I. 6,Fl6.6,Fl6.6,/)'/) RHfAM,RHAS,RHAX
WRITE(8r'(21X,'CYM STrArISTICSmv/)')
WRITE(8,' (18X, 'MCVM' ,11X, 'SICYM' ,/)')
WRITE(8,' (oN * *r:',2X,F16.6,Fl6.6)') ,ICVM(1) ,SE'CVMC 1)
WRITE(8, ' C KOL : * 2X.F16*6,F16*6)**) MCVM(2) ,SI.CVM2
WRITE(8, '(O CYM :"*,.2X,F16.6,F16.6)' ) MCVM(3),SEICVM(3)
WRITE'B,' (*A-I :*,2X,F16.6,Fl6.6,/)' ) MCVM(4) ,SIICVM(4)
WRITE(e,' C 'hR :' ,2X,F16.6,Fl6.6) ') MCYM(5),SE'CVM(5)
WRITE(8,'(OKOFL :',2X,F16v6,Fl6.6)') MCVM(6),GE'CVM(6)
wRIT *E (8, (CVM :m,2X,F16.6,F16.6)') MCVM(7),SriCVM(7)
I'RITE(,'(*A-D *#,2X,F16*6,Fl6.6)') MCVM(B),SEICVM(B)
STOP
END

*EOR
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