

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A
 Copy avallabid io om

Wright -Patterson Air Force Base, Ohio

$$
83 \quad 12 _09 \quad 139
$$

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deliterious information are contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

SECURITV CLASSIFICATION OF TMIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMEER LSSR 118-83 2.GOVT ACCESSION NO r	3. Recibientis catalog numbea
4. TITLE (And Subtitle) Q-GERT MODEL OF TEE CONTRACTING CYCLE	3. TYPE OF REPORT A PERIOO COVERED Master's Thesis
	6. PERFORMING ORG. REPORT Number
7. AUTHOM(() Christopher D. Miller, GS-12	0. Contact or brant numberio
9. PERFORMING ORGAMIZATION NAME AND ADORESS School of Systems and Logistics Ais Force Institute of Technology, WPAFB OH	10. PROGAAMELEMENT. ROOJECT. TASK
11. CONTROLLING OFFICE NAME ANO AODRESS Department of Communcation AFIT/LSE, WPAFB OH 45433	12. REPORT OATE SOPHEmber 1983 13. NUMER OF PAGES 700
14. MONITORING AGENCY NAME A AOORESSIII difterme (rom Controline Ofllea)	15. SECURITY CLASS. (ol thie report) UNCLASSIFIED
	T3. OECLASSIFICATION/ OOWNGRADING
16. OISTEIBUTION STATEMENF (OI ThI E Report) Approved for public release; distribution unlf	ted
	Report)
10. SUPPLEMENTAAY NOTES \qquad oy e woLin Ar Foree inctitute af Proremetozed 	$15 \text { SEP } 1583$

Thesis Chairman: William C. Pursch

To improve the efficiency of a Government contracting organization, a manager must predict the consequences of decision alternatives. There are so many variables (workload, resources, experience levels, changing procedures) that predicting, or even measuring, the effect of various decision alternatives is very difficult. The research objective was to construct and test a Q-GERT model of the contracting cycle of an Air Force research and development contracting organization. Data was collected on the contracting proceJures used. Twenty-eight contract networks were developed, from the administrative notice to the ten miliion dollar competitive contract. Each network was divided into many small tasks. Experienced buying personnel provided estimates of a range of time to complete each task. The result was that the model successfully imitated the contracting cycle time from receipt of the purchase request to the contract award. A manager can use the model to test the effect of changes in resources or procedures on the contracting cycle time. The model should be a valuable management tool.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Q-GERT MODEL OF THE CONTRACTING CYCLE

A THESIS
Presented to the Faculty of the School of Systems and Loqistics of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the Requirements for the Degree of Master of Science in Logistics Management

By
Christopher D. Miller, AB
September 1983
Approved for public release; distribution unlimited

This thesis, written by

Mr. Christopher D. Miller

has been accepted by the undersigned on behalf of the faculty of the School of Systems and Logistics in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT (Contracting and Manufacturing Management Major)

DATE: 28 September 1983

COMMITTEE CHAIRMAN

ACRNOWLEDGMENTS
A note of thanks and appreciation to William C. Pursch, my thesis advisor, and Major James Coakley, my modeling instructor, for their guidance during the preparation of this thesis.

I also owe a great deal of thanks to the people of R\&D Contracting for their time and effort in providing data for this research. I would like to thank Waverly Glover who always provided support for this effort and my education.

Most of all, deepest gratitude is offered to Lois, and the two little ones, Carrie and Dustin. Without their suppori and understanding, completion of the program would not have been possible.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS iii
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER
I. INTRODUCTION 1
Problem Statement 3
Justification for Research. 4
Research Objective 8
Research Questions 8
Sources of Data 9
R\&D Organization 10
Assumptions and Limitations of the Research 12
Definitions of Key Terms 13
Summary 15
II. BACRGROUND 17
Measuring Change in Government Contracting 17
Time Standards 17
Indices 19
Productivity Trends 21
Background Factors 22
Decision-Making in R\&D Contracting 23
Shortcomings of Work Measurement Systems 24
Simulation: A Potential Solution 27
Background of Modeling 30
Applicable Data Collection Methods 32
Historical Records 33
Batching 34
Self-Logging 34
Work Sampling 35
Stopwatch Method 36
Synthetic Time System 37
Critical Evaluation of Work Measurement Methods 38
Delphi Procedure 43
Summary 45
III. METHODOLOGY 46
Constructing the Model 46
Collecting Arrival Times 47
Constructing Network Maps 47
Collecting Service Times 48
Universe 50
Population 50
Sample 50
Modeling a Funding: An Example 53
How Funding is Processed 54
How Funding is Modeled 57
Q-GERT Model Description 61
Arrival Routine 61
Traffic Node and Sink Node 64
Distribution Nodes 58
Servers 71
Assumptions and Limitations of the Model 74
Verification 77
Service Ristribution Type 78
Validation 79
Starting Conditions 80
Variance Reduction 81
Plan for Experimentation 81
Research Question 1 81
Research Question 2 82
Research Question 3 83
Research Question 4 83
Computer Programs 83
Summary 85
IV. DATA FINDINGS AND ANALYSIS 86
Interpretation of Data Collected 86
Verification 87
Validation 89
Analysis of Figure 8 97
Variance Reduction 100
Service Distribution Type 100
Starting Conditions 100
Results of Experimentation 102
Research Question 1 103
Research Question 2 105
Research Question 3 108
Research Question 4 112
Summary 115
V. SUMMARY, FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 116
Findings 117
Conclusions 120
Recommendations for Future Research 121
APPENDIX A: COMPUTER PROGRAM NET 125
APPENDIX B: Q-GERT MODEL OF R\&D CONTRACTING 132
APPENDIX C: FORTRAN SUBROUTINE 139
APPENDIX D: Q-GERT PROCEDURES (QGPROC) 34.
APPENDIX E: INTERVIEW 345
APPENDIX F: CLERK QUESTIONNAIRE 348
APPENDIX G: ANALYSIS OF CLERR ESTIMATES 424
APPENDIX H: BUYER QUESTIONNAIRE 448
APPENDIX I: ANALYSIS OF BUYER ESTIMATES 553
APPENDIX J: PCO QUESTIONNAIRE 505
APPENDIX K: ANALYSIS OF PCO ESTIMATES 551
APPENDIX L: LIST OF EXPERTS 580
SELECTED BIBLIOGRAPHY 682
A. REFERENCES CITED 583
B. RELATED SOURCES 586

LIST OF TABLES

Table Page
1 Actual Vs Modeled PRs and Cycle Times 91
2 Modeled Work Hours in Year 94
3 Starting Conditions 101
4 Buyer-to-Clerk Ratio 104
5 Buyer-to-Clerk T - Statistics 105
6 PCO Workload 106
7 PCO Workload T - Statistics 107
8 Effect of Workload on Contracting Cycle 111
9 Change in Funding Procedures 114

LIST OF FIGUEES

Figure Page
1 Organizational Chart 5
2 Funding Process 55
3 Simplified Model 58
4 Arrival Routine 62
5 Traffic and Sink Nodes 65
6 Distribution Nodes 59
7 Servers 72
8 Graph of Model \& Actual Cycle Times 96
9 Graph of Workload 110
10 Graph of Contracting Cycle with New Procedure 113

CHAPTER I

INTRODUCTION

One important aspect of a manager's job is to make decisions on the use of human, financial, and material resources (19:1). In order to make good decisions, a manager tries to forecast the effect of any decision he makes. He compares alternatives. For example, if an emplovee leaves the organization, the manager must decide whether to replace the individual. The manager tries to forecast the cost of hiring and training a replacement against the cost of redistributing the work among the remaining emplovees. The redistributed work may overburden the remaining employees and quality may suffer. A decision like this one is difficult to make in an organization which has clear goals (such as increasing profits). Decisions are even more difficult in organizations with varied goals (7:40).

A manager in a government purchasing organization has many objectives. Some of the more important objectives are:

1. to buy the right item at the right price with the right delivery date,
2. to remedy social and economic problems bv requiring Government contractors to comply with contract provisions such as the Davis-Bacon Act, the Buy American Act, and the

Service Contract Act,
3. to comply with rigid budgetary restrictions and public audit procedures,
4. to conduct business in full view of the public,
5. to comply with detailed purchasing procedures,
6. to avoid censure by the public and the press,
7. to prevent fraud, waste and abuse,
8. to operate efficiently, and
9. to operate effectively.

Many of these objectives are conflicting. To prevent noncompliance with laws and procedures, and to show full disclosure to the public, extensive documentation is required. This slows down the contracting process and increases costs. Management tries to balance efficiency and the public's right to know (18:1-9).

The Government shares in the problems of all non-profit institutions. Anthony and Herzlinger (7:40-41) recognize five major problems which arise from the lack of a profit measure in the non-profit organization:

1. No Single Criterion. A non-profit organization has multiple objectives which make the comparison of alternative courses of action difficult, which greatly complicates deci-sion-making.
2. Difficulty in Relating Costs and Benefits. What is
the dollar value of contract documentation? The cost of preventing overpayments for spare parts may be higher than the overpayments, but a Government manager may choose to prevent the overpayments because of fear of public censure. The cost of public censure is hard to quantify.
3. Difficulty in Measuring Performance. The principal goal of a non-profit organization is to render service. The measure of the benefit of that service is much less precise than the profit-making organization's measure of benefit.
4. Centralization of Decisions. An organization with many goals and vague measures of performance cannot delegate important decisions to lower-level managers. The paperwork which must be provided to the top decision-makers in order for them to make decisions, and in transmitting those decisions to the lower levels, is substantial.
5. Difficulty in Comparing Organizations. Profit is the measure of the success of most profit-making firms. Non-profit organizations must use a more subjective measurement. To measure efficiency, non-profit organizations often compare inputs (dollars or people), rather than outputs, because the inputs are easier to measure.

Problem Statement

Because non-profit organizations lack one overriding, easily measured objective, decision-making is very dif-

Abstract

ficult. The effects of alternative decisions are difficult to predict given the complexity, the detailed procedures, and the many objectives of the non-profit organization. The manager in a non-profit institution needs a method or tool to aid him in predicting the effects of change to his organization.

Justification For Research

An example of a complex, multi-goaled, non-profit organization is the Directorate of Research and Development (R\&D) Contracting, Aeronautical Systems Division (ASD), Air Force Systems Command (AFSC), located at Wright-Patterson Air Force Base, Ohio. The mission of R\&D Contracting is to procure, administer and manage contracts for research and development, support services, and specialized equipment for AFSC Laboratories at WPAFB, the Aerospace Medical Division, the Air Force Human Resources Laboratory, ASD and other activities as directed by ASD (5:124). Figure 1 is an organizational chart showing R\&D Contracting under the Deputy of Contracting \& Manufacturing for ASD.

Many changes have been introduced recently to the contracting procedures in R\&D Contracting to improve the contracting process: (1) a new solicitation package, (2) Fast Track contracting procedures, (3) Short Form Research contracting procedures, (4) Four-Step procurement proce-
dures, and (5) Draft Request for Proposal procedures. This is not a complete list, but is representative of management's desire to simplify and reduce the contracting cycle.

The purpose of the new solicitation package is to reduce solicitation preparation time. The package was developed and administered by the quail ty circle in R\&D Contracting. Despite the grassroots source of this change, many contracting personnel resisted the new procedures. Because the new procedures were just being tested, the old procedures were still in effect on many solicitations. The conflicting solicitation procedures upset many people, and may explain why the new package may be abandoned at the end of FY83 (34).

Fast Track contracting procedures were inaugurated by AFSC in September 1981. The purpose of Fast Track is to reduce the contracting cycle by reducing the number of contracting procedures. Standard buys with few problems are singled-out for Fast Track procedures. These standard buys are given priority status and rushed through the contracting cycle (32:1). Unfortunately, the procedures which AFSC reduced were not required in R\&D Contracting. If there is any saving to the contract cycle, it is from giving these low-dollar, simple buys priority-handing (31).

Short Form Research contracting procedures are for use
with non-profit organizations who submit unsolicited prodosals. . Contracts for the purchase of a unsolicited proposal from a non-profit institution can be accomplished with a onepage, one-signature document. If the submitter of the proposal follows the correct procedures, the contracting cvcle can be reduced considerably, but the procedure has a very limited application (20).

Four-Step procurement procedures separate the time of receipt of an offeror's technical proposal from the receipt of the cost proposal. The Government is permitted to neqotiate with only the apparent winner, instead of being required to negotiate with every offeror within the competitive range. This procedure was used only once in R\&D Contracting, because these procedures lengthen the contracting cycle (31).

The Draft Request for Proposal (DRFP) procedure was created by AFSC. The purpose of the procedure is to reduce the contracting cycle by giving the potential offerors an opportunity to review the solicitation package before it is formally released. The offerors are expected to sugqest improvements to clarify the solicitation, which would lead to better proposals, and shorten negotiations. Because of the expected benefits, the DRFP was made mandatory on all R\&D solicitations for one year. Instead of reducing the contracting cycle, the DRFP increased it. The buvers hat to
process DRFP's in addition to their normal duties. The offerors usually failed to suggest any improvements to the package, and most offerors alreadv received advanced notice of the Government's solicitation through other means. The DRFP is rarely used today (16).

The projected costs and benefits of many of these changes proved to be inexact. But even when a change appears to be beneficial, the full cost of the change may be hidden from the decision-maker. For example, if a procedure is fragmented into many different procedures, the worker has less opportunity to perform each procedure. The opportunity for learning the procedure well to perform the procedure quickly is reduced (14:132). The manager should weigh the inefficiency of numerous procedures against the benefit of more applicable procedures.

Research objective

The objective of this thesis is to develop a computer model of R\&D Contracting to aid the manager in making decisions which effect the contracting cycle. The model was tested for accuracy, then changes were introduced in the model to determine their effects and to demonstrate the value of the model.

Research Questions

The simulation model was used to answer the following
questions:

1. With a specified workload, what is the optimum ratio of buyers-to-clerk?
2. With a specified number of buyers, what is the optimum level of work for the Procuring Contracting Officer (PCO) ?
3. As the amount of workload increases, at what point does the contracting cycle increase significantly?
4. If certain administrative reviews were reduced or eliminated, how much shorter would the contracting cycle be?

The purpose of solving these research questions is to demonstrate the potential usefulness of a simulation model to the managers of contracting organizations.

Sources of Data

There are many Government organizations in the Dayton area which would be as convenient to study, but the R\&D Contracting Directorate at ASD is most appropriate for a number of reasons. First, they have demonstrated a willingness to apply student research to their operation. An Air Force Institute of Technology thesis (13) is the basis of the work measurement system which is in effect today in R\&D Contracting (25). A second reason is because the directorate is process-oriented. The management in R\&D

Contracting is concerned with the process of awarding contracts. Thousands of different programs go through the same procedures in this directorate, and an improvement in the process may have a lasting effect on the contracting cycle. In most of ASD, the contracting groups are projectoriented. Contracting procedures are tailored for each project. An improvement in contracting procedures in a Systems Program Office (SPO) may not have as big of an effect as a change in procedures in R\&D Contracting.

R\&D Contracting has been in the forefront of applying computerization to the management process (25). Modeling is another step in using computers to improve the organization. Computer simulation may be unknown in R\&D Contracting, but using the computers as an aid to management is very common.

Another reason for selecting R\&D Contracting is the researcher's familiarity with it (six years of experience), its sponsorship of his schooling, and his personal interest in improving the contracting process there. As will be shown later, a detailed knowledge of the practical side of the contracting process was essential in the development of of the computer model.

R\&D Organization

The R\&D Contracting Directorate writes contracts for concept exploration, exploratory development, advance deve-
lopment, and manufacturing technology. The size of the contracts range from less than $\$ 10,000$ to over $\$ 80$ million. The directorate supports five main lakaratories and several small ones (16).

The four buying divisions of the directorate each support a major laboratory. Each division has two or three branches, that support a specific laboratory or portion of a laboratory (see Figure 1). The directorate also has its own pricing division, contract review committee, small business office, and management operations division. A total of 162 personnel are authorized, including 24 military (4:135).

The function of the directorate is to solicit, negotiate, award, and administer development contracts. The individual buyer has more control over his contracts than the typical buyer in a SPO; the R\&D buyer writes the solicitation, usually performs the pricing, negotiates the contract, writes the contract, and administers it until final delivery. The predominent contract type is Cost-Plus-Fixed-Fee (CPFF), although Cost Reimbursement, Cost-Sharing, Time-and-Materials, Fixed Price Level-of-Effort, and Firm Fixed Price contracts are common. Each buyer is expected to be able to select and write any type of contract at any dollar level. Extensive training and high quality personnel are required (12).

1. The model only applies to R\&D Contracting. The procedures in other buying organizations may be different. A model of another organization could be made following the same methods used in this study.
2. Procedures change, so the model will become increasingly inaccurate in time, unless the model is updated.
3. The model does not forecast the quality of contractual actions. The model could be used to predict the reduction in the contracting cycle which would occur if certain administrative reviews were eliminated, but the model will not predict the reduction in quality. A manager would be required to forecast the change in quality and determine whether the reduction in the contracting cycle outweighed the reduction in quality.
4. The model is imprecise (29:13). Any model incorporates only some of the many variables which impact the output (in this case, the output is contracting cycle time). Some of the variables which were not incorporated in the model are:
(a) Trainees were not included. The buyers, clerks, and the PCO in the model are all journeymen. With additional research into how trainees differ from journeymen in their time to perform the contractual actions, the model could incorporate trainees, too.
(b) Contract types (fixed price, time-and-materials, etc.) are not differentiated in the model. The contracting cycle might be longer or shorter with different contract types.
(c) Buying personnel may work faster when work is heavv, or when work must be completed by a specific date. The model does not incorporate this feature.

Definitions of Rey Terms

Network map: R\&D Contracting's management information system (DATA-CEN) recognizes thirty-four different contract types, such as Fl - fundings or C2 - Competitive Contract $\$ 10,000$ to $\$ 100,000$. The model includes twenty-eight of the thirty-four contract types, called networks. A network is a list of tasks which must be performed in chronological order to process a Purchase Request (PR) into a contractual action (contract award or contract modification). Each network includes the service time for each task. The network map is the listing of the networks in the fortran subroutine of the model. Every $P R$ in the model will follow a path through the network map to be processed into a contractual action.

Service Time: The time associated with the work that a server performs on a $P R$, the activity duration, is the service time. Service time does not include waiting time (the
time that a PR waits to be served) (22:19).
Contracting Cycle: The length of time which a PR is in the contracting process, from the receipt of the $P R$ in R\&D Contracting to the mailing of the contractual document is the contracting cycle. The contracting cycle is measured in hours in the model.

Queue: The queue is the line in which a PR waits until a server (buyer, clerk, or PCO) can begin working on the PR. If there are many PR's waiting for service, then the queue is long. The waiting time is called 'queuing time'.

Purchase Request (PR): A purchase request is a manually prepared form (AFLC/AFSC Form 36) to request central procurement action on requirements for material and services (28:562). The PR authorizes the contracting organization to begin the contracting process.

Buyer: The buyer protects the Government's interests in all contracting matters. The principle duties are: solicitation, pricing, source selection, contract writing, contract documentation, and contract administration. The buyer must adhere to all acquisition regulations, policies and procedures. The buyer is not permitted to sign a contract as an agent for the Government, unless he is also a contracting officer. The branch chief is the direct supervisor of both the buyer and the contracting officer. The journeyman buyer is grade GS-12. Trainee buyers start at
grade GS-5. The buyer's official title is Contract Specialist (2).

Clerk: The clerk assists the PCO and the buyer in soliciting, awarding, and administering contracts. The clerk must be a qualified typist. Major duties include drafting and typing of solicitation and contract documents, and formating documents and correspondence going to higher echelons. The official title of the clerk is Procurement Clerk (Typing). The journeyman level is grade GS-5. Trainee clerks start at grade GS-3 (3).

Procuring Contracting officer (PCO): The PCO provides direction, guidance, and on-the-job training for the buyers. The PCO has review and approval responsibilities over work generated by the buyers. The PCO is the official contracting agent of the Government. In R\&D Contracting most PCO's also act as buyers, but in the model these two roles are separated. When the PCO in the model acts as a buyer, he is Buyer-D. The official title of the PCO in R\&D Contracting is Contract Negotiator. The grades for PCO's are GS-12 and GS-13.(1).

Summary

This study was designed to develop a model of the contracting cycle in R\&D Contracting. An accurate model would provide management with a tool to predict the effect
of change on the contracting cycle. Chapter II is a review of related research and theory on the management tools which are used to project or measure change in the Department of Defense (DoD) contracting organizations. A discussion of modeling and its uses as a management tool, and a review of the methods for collecting data for the model are also included. Chapter III incorporates a description of the contracting cycle in R\&D Contracting and its imitation in the model. The experimental design is presented. Chapter IV reviews the results of the experimentation with the model and offers an interpretation of the results. Chapter V summarizes the study and discusses findings, draws conclusions, and recommends topics for future research.

BACKGROUND
This chapter explores three issues: (I) how managers measure the effect of change in Government contracting organizations, (2) what modeling is, and its benefits, and (3) how data should be collected for the model.

Measuring Change in Government Contracting

In order to make effective decisions, managers need accurate and timely information on their organizations (6:659). A management information system and data base are essential to measurement systems (19:330). A management information system is any system designed to collect, organize, process, and analyze data to provide the manager with information to make decisions (6:659). Work measurement is a key requirement; without it, a manager cannot know how efficient or effective the organization is. Department of Defense (DOD) contracting managers have measured effectiveness and efficiency in three ways: (1) time standards, (2) indices, and (3) trend data (8:9).

Time Standards

Time standards, or productivity standards, are preestablished time intervals in which a specific task should be accomplished (8:12). A clearly related concept from
industry is the work standard. A work standard is defined as the time required by a qualified worker performing at a normal rate of speed, and experiencing normal fatique and delays, to produce one unit of output (11:7). Standards can be used for projecting the delivery date for the customer. They can also be used as a benchmark to judge a worker's efficiency. The manager uses standards for forecasting and planning, and to compare one organization with another (9:7).

Work measurement systems based on Frederick Taylor's scientific management techniques were used by the Army's Rock Island Arsenal and by the Navy's shipyards in Boston and Mare Island in the early 1900's (35:19). The use of standards in DOD contracting dates back to 1965 with the advent of the Defense Integrated Management Engineering System (8:13).

Hanscom Air Force Base has used procurement standards extensively. Separate standards were developed for each grade level of contracting personnel; higher paid personnel were expected to perform more work. Each employee's performance rating was largely based on a combination of the number of documents processed and the dollar value of the documents processed (8:20).

The Air Force Logistics Command at Warner-Robins Air Logistics Center developed the E-841 system of performance
standards with three goals: (1) to forecast personnel requirements based on workload fluctuations, and policy or procedural changes, (2) to provide a data base for evaluation of buying personnel, and (3) to provide a simple management tool (8:20).

Each contractual action was broken down into two components, variable and constant. The constant component consists of tasks which are always required for a specific type of contractual action. The variable component is composed of up to 53 different tasks which may be required on a specific contractual action. The applicable standards for the additional tasks are added to the constant component standard and a composite standard is developed for each contractual action (8:21). In implementing this system, some organizations require the buyers to \log all their activities as they perform them in order to produce an accurate composite standard for each action.

Standards have proven very useful in high volume, repetitive activities. Labor performance standards have been used within DOD in manpower determinations, workloading and scheduling, cost estimating, budgeting, and in evaluating labor performance. Productivity improvements as high as thirty percent have been recorded in DoD (21:37). Indices

The second measurement tool is the index. Indices
measure the change which has occurred to a specified variable over time (17:586). Indices are commonly used to compare the efficiency of an organization, or the efficiency of individuals in the organization. Indices must be compared over time to determine the effect of change. Managers try to find cause-and-effect relationships in indices. The major use of indices in DoD contracting are for pricing efficiency, labor efficiency, and performance efficiency (8:32).

Pricing efficiency is used to determine the effectiveness of the contract negotiator. Two pricing efficiency formulas are:
(1) Offeror's Proposed Cost - Negotiatied Price $=$ Pricing Offeror's Proposed Cost - Air Force Objective Efficiencv
(2) Historical Unit Cost $=$ Pricing Negotiated Unit Cost Efficiency

A second use for indices in DoD contracting is for determining labor efficiency. Organizations with labor standards can compare actual hours to standard hours earned to determine labor efficiency. In evaluating the productivity of the organization, the total time spent on training, staff meetings, and leave is compared to the labor hours spent on the primary mission ($8: 35$). These two formulas are:
(1)

$$
\begin{gathered}
\text { Actual Hours Expended } \\
\text { Standard Hours Earned }
\end{gathered}
$$

(2) $\frac{\text { Indirect Hours }}{\text { Direct Hours }}$

Labor Efficiency

The third common use for indices in DoD contracting is for measuring performance efficiency. Outputs of the organization are compared to inputs. Typical performance efficiency indices are cost-per-contracting action, and cost-per-contracting-dollar. The cost-per-contractingaction is appropriate to organizations with a stable workload. The cost-per-contracting-dollar is more appropriate to organizations with flexible workloads or a wide range of complexity in contractual actions (8:37).

Productivity Trends

The last major measurement technique used in DoD contracting is productivity trends. Productivity trends compare the present with the past to predict the future. It is a time series that describes the long-term movement of productivity. For example, if productivity has an upward trend, then productivity is increasing, but not necessarily In each time period. Trends dampen the effect of seasonality and cycles (17:597). DoD Instruction 5010.34 states that productivity trend data is important in budgeting, manpower planning, and operational management (10:3 of Encl.3).

Trends give the contracting manager an historical perspective on the efficiency of the organization.

Background Factors

When using standards, indices, and trends, DOD contracting managers must consider the following factors (34:18):

1. the education and skill of the labor force,
2. the level of technology available, including automation,
3. the extent of capital investment by the organization,
4. the resourcefulness and enterprise of the managers and workers,
5. the perceptions of the workforce,
6. the tenure of key personnel, and
7. environmental factors (social, psychological, and cultural influences on the organization).

If any of these factors change significantly, the output of the organization could change.

Workload must be analyzed to determine its effect on output. A change in workload can hide the effects of a change to the organization. The number of overaged contracts and contracting actions is a good indication of workload (8:61).

The experience level of personnel sometimes changes. Automation often changes the ratio of professionals to nonprofessionals in the organization. An increasing ratio of military-to-civilian personnel may indicate a reduction in experienced personnel (8:62). An uneven workload may distort the output in the organization. A manager must consider all these factors when evaluating the effect of change in the organization.

Decision-making in R\&D Contracting

R\&D Contracting has been using scientific management to improve productivity for a long time. This organization had a work measurement system as early as 1960. This system was automated in the late 1960's, and extensively improved since then (13:25).

The management information system, DATA-CEN, provides managers and buyers with many reports without requiring extensive data input. Some of the major reports are:

1. a weekly performance report generated at the directorate, division, branch, and buyer levels. This report contains a listing of:
a. purchase requests accepted by month,
b. contract awards by month,
c. standard versus actual output by month,
d. . current work by contract type,
e. current workload,
f. forecasted workload by month,
2. a monthly report of delinquent contracts, and
3. a report on the status of each active $P R$, whenever the status of the $P R$ is affected (25).

DATA-CEN keeps a running total of measurement points accumulated by each buyer and PCO, so individual productivity can be assessed. A forecast for the completion of the current work by buyer is reported each week. The DATA-CEN system is a time standard system. Today, there are standards for thirty-four types of contractual actions. These standards were developed in a 1974 Air Force Institute of rechnology thesis (13). The researcher of the thesis surveyed most of the buyers in R\&D Contracting. Each buyer surveyed was asked to provide average time estimates for each of 370 different activities which make-up the buyer's job. From these estimates, time standards were developed for each of the contract networks. These standards were later added to the management information system, so that the amount of work completed could be measured.

Shortcomings of Work Measurement Systems

Work measurement is an attempt to summarize and quantify work. It is necessarily a simplification of reality, so
inaccuracies are bound to occur. In addition to this basic problem with all work measurement systems, there are major problems with all the work measurement systems surveyed.

Time standards work better in high volume organizations than in organizations with one-of-a-kind actions (21:37). Time standards would be more appropriate to base contracting than to R\&D Contracting, but time standards would be more appropriate to R\&D Contracting than to contracting in a SPO.

The cost of administering a time standard system may outweigh the benefit of such a system. One implementation of time standards required 4800 engineered standards. Such a system requires extensive computer services and maintenance service (to run the system and update the standards), and places a heavy clerical workload on the workers whose work is measured (35:40).

Problems with indices and trend analysis stem from changes in the baselines and the definitions of inputs and outputs. For indices and trend analysis to function properly, changes to the system must be kept to a minimum. Since most contracting organizatio ss operate " a dynamic environment, the managers who use these techniques may be ignoring this basic requirement (35:19)

In R\&D Contracting, the DATA-CEN system lacks complexity factors; all actions of a network are projected to take the same standard amount of time. Standards cannot be custo-
mized for each PR. The system partially compensates for this by the proliferation of network types (thirty-four), and by permitting delay factors to be added to the standard time when appropriate (25).

Another feature that DATA-CEN lacks, is the ability to adjust the standard and forecasted completion dates for workload (25). The system forecasts that a PR will spend the standard amount of time to process through the contracting cycle whether the organization has no work-in-process, or is three months behind schedule. If the personnel in the contracting organization have no other work, then a PR will never have to wait in anyone's in-basket; the PR will receive service immediately. The PR should be processed in less than the standard time. Conversely, if the organization is overworked, the PR will encounter situations where it is waiting days for a server to finish other work before the $P R$ can be processed.

The cost of work-in-process has been overlooked by the work measurement tools. William Sandman, consultant on productivity, states that no one has been considering the cost of work-in-process. He calculates that most work sits in queues for eighty percent of its time in the shop (27:8). Excess work-in-process increases the completion time for most work. Sandman believes that there is an optimum quantity of work-in-process (27:9). Less than the optimum redu-
ces productivity through worker idleness. Too much work-in-process increases leadtimes and decreases productivity. In industry, excess work-in-process is excess inventory, so reducing work-in-process saves money. In R\&D Contracting, reducing work-in-process would reduce queueing time which would reduce the contract cycle.

By disregarding the effect of workload on the contracting cycle, a manager could easily misinterpret the effect of a change to the system. An improvement to the system could go unrecognized if workload increased. A new inefficiency could go unnoticed if workload decreased.

Simulation: A Potential Solution

Scientific management has been used in the manufacturing sector for years to increase productivity. The increases in the productivity of manufacturing and agriculture have outgained the increase in the productivity of the service industry. From 1950 tc 1970, productivity growth in the service sector was 1% lower than the national average (13:1). Increasing productivity is easier in manufacturing than in the service sector. With physical, repetitive tasks, small reductions in the work process create big savings. These reductions are the result of work measurement methods; work is divided into small tasks which are analyzed and simplified. But work measurement methods have
been less successful with mental tasks, so service organizations (like the Government) have been less productive than manufacturing firms (11:330).

Recently, scientific management has developed techniques to help managers improve their organizations. Organizational behaviorists have studied organizations in an attempt to improve communications and motivation. Computer science has automated many of the service activities. Operational researchers have applied queueing theory to determine the optimum number of tellers in banks and cashiers in stores. Service organizations have learned to enlist their customers to increase productivity. Salad bars in restaurants, direct-dial long distance telephone calls, and electronic bank tellers are all examples of this (15:81).

The science of systems analysis was developed to help managers study and understand the ramifications of changes to their organizations (29:1). The systems analysis technique which is particularly useful in comparing alternatives is simulation. Simulation is the process of designing and conducting experiments with a model of the real system (29:2). The purpose of the model is to draw conclusions about real situations by analyzing the model (6:7).

With the advent of the digital computer and high level simulation languages, it is possible for a manager to use a computer simulation to determine the likely effect of change
on his organization. The manager can test many alternatives on a model and chose the one with the best outcome. Another benefit of this tool is that a model will provide the manager with the ability to test previously 'unthinkable' changes. A manager could determine the effect on output from forming a word-processing pool, without risking the animosity of the secretaries. One could determine the effect of reduced inspection on output without shipping any untested items.

Modeling may provide the manager with a better picture of the results of a change than reality would. When the effect of change cannot be determined within a short period after the introduction of the change, other variables may obscure the results of the change. For example, the quality circle of R\&D Contracting introduced a procedure to reduce the solicitation preparation time. The new procedure was tested for one year (FY83). Then the effect of the new procedure on the contracting cycle was assessed. Workload in FY83 increased significantly over the workload in FY82. Many workers in R\&D Contracting retired, or left the organization during the year. Unlike a scientific experiment, the quality circle was unable to control all the variables, so drawing conclusions about the effect of the new solicitation procedure has proven to be difficult (34).

The new solicitation procedure could have been run on a model of the organization; all other variables could have
been controlled. If the model revealed that the new procedure had no effect on the contracting cycle, then the one year experiment could have been avoided. If the procedure made a significant reduction in the contracting cvele on the model, management might have instituted the new procedures and avoided the confusion that a one-year test entails. Success on the model might have lowered the resistance of the contracting personnel to the new procedure, which could improve the effect of the change. The model could be used today to predict the effect that the old procedure would have had on the contracting cycle in FY83 (the new procedure test period).

Background of Modeling

There are five major functions that modeling fulfils: 1. an aid to thought,
2. an aid to communication,
3. for training and instructing,
4. a prediction tool,
5. an aid to experimentation (29:5).

Modeling is used in business, economics, marketing, education, politics, social science, behavioral science, international relations, transportation, manpower, law enrorcement, urban studies, global systems, and many other areas (29:3).

Modeling in physical science can be very precise; the models are often based on scientific fact and theoretical laws. In fact, mathematics is a subset of modeling. But modeling is more of an art than a science for the industrial engineers, managers, and operations researchers, who deal with procedural systems. Procedural systems have few fundamental laws and are difficult to describe and represent. Policy is hard to quantify. There are considerable random components, and human decision-making is basic to the system. Procedural systems can be improved through procedural changes or design changes regarding scheduling, sequencing, distribution, allocation, or layout (22:1).

A computer language was developed over a ten year period by Purdue professor A. B. Pritsker to model procedural systems. The name of the language is Q-GERT, which is an acronymn for Graphical Evaluation and Review Technique with Queuing. Q-GERT is based on Program Evaluation and Review Techniques (PERT), but augments PERT with queuing and decision-making (22:vii).

Q-GERT models have been developed for various applications:

1. claims processing in an insurance company,
2. production lines,
3. planning for contract negotiations,
4. research and development planning (22:5).

In the first application, the model was used to predict the processing time of various types of claims in a large office. The following procedural changes were investigated:

1. Changes in the volume of each type of work handled by the regional service office;
2. Changes in the composition and requirements of the work input;
3. Changes in priority rules for the processing of work in the same operating unit;
4. Changes in the pathways of the work flow system;
5. Reallocation of personnel among the different departments; and
6. Changes in total processing times of customer requests due to training programs in specific areas (22:7).

This application is very similar to the application in R\&D Contracting, and confirms the appropriateness of the Q-GERT simulation language as the vehicle for a model of the contracting process.

Applicable Data Collection Methods

To construct a simulation model which accurately imitates the contracting cycle times in R\&D Contracting, the tasks which are involved in transforming a $P R$ into a contract award must be defined. After the tasks are defined, the service time for performing each task must be ascertained. The service times are of critical importance; if they are not accurate, the model will not imitate the system.

There are a number of methods to determine service
times. These methods are classed as work measurement techniques. Work measurement is a means of establishing an equitable relationship between the number of hours worked and the amount of work produced (11:7).

Historical Records

Historical records are the simplest type of work measurement. Output is correlated with labor hours. In procurement, contract line items awarded are frequently correlated with the number of employees in the organization. One year is compared to the last to determine productivity gains. For example, if 10,000 line items are awarded in 1980 with an organization of 100 people, and 10,800 line items are awarded in 1981 with an organization of 104 people, then these two years are compared as follows:

Lines Awarded/Employees $=10000 \frac{1980}{100}=100 \quad 1080 \frac{1981}{0 / 104}=103.8$
So productivity increased by 3.8\%.
The advantages of the historical records technique are:

1. It is easy to install and maintain.
2. :" is simple to understand.
3. It can be used and maintained at a minimum cost. 4. It can provide information relatively rapidly. 5. It can be used in a small office derforming varied functions, or it can be used in a large office performing only a single function (10:66).

Unfortunately, this technique has disadvantages:

1. Standards set by this technique automatically include all the inefficiencies of the past.
2. Standards set this way lack an absolute measure of effectiveness; consequently, it is impossible to compare performance between work centers.
3. It is impossible to change the standards when changes in operating methods or procedures are made.
4. The standards are only approximations and cannot be used where precision is required - for example, in the case of incentive wages (10:66).

Batching

A second measurement technique is batching; a technique of assigning an amount of work which is pre-measured to each employee. The size of the batch is changed until the batch can be performed by most employees in one hour. This becomes the standard for the job.

The advantages are that an employee's performance can be measured against the standard at an \bar{y} time, and the standard can be used for production scheduling.

The disadvantages are that unless the premeasured work is very uniform, the standards will not be precise. This technique cannot be used when there are many difrerent jobs that each employee performs (10:67).

Self-Logging

A third measurement technique is self-logging or the diary method. Self-logging requires that the employee maintain a record of what jobs he has performed, how long each job took to complete, and how many items he produced in a specified period. This technique requires the employee to

Abstract

keep records from one week to several months. The advantages are:

1. It is easy to install.
2. It is simple to understand.
3. It does not require elaborate training for usage.
4. It can be used to measure small work centers or isolated jobs that do not justify the use of more expensive or elaborate methods of measurement (10:68).

The disadvantages are that self-logging measures the actual time to perform a job, not the time that should be spent on the job. This technique depends on the cooperation of the people being measured. If they are careless or antithetical to the study, they can sabotage the results. Maintaining the log is fairly time-consuming; analyzing the logs takes longer. Precise standards cannot be set by this method (10:68).

Work Sampling

A fourth technique is work sampling. This technique requires that an observer record what workers are doing at random periods of time during the day. When a predetermined number of observations are completed, statistical methods are used to set-up time standards (11:335). For example, if 100 of the 500 observations found employees performing a certain task, the study would conclude that employees spend 20% of their time performing that task.

The advantages of work sampling are:

1. It is a relatively inexpensive technique to use.
2. It produces quick results in some situations.
3. It does not interfere with the normal routine of a work center.
4. It is less tedious, from the analyst's standpoint, than other techniques.
5. It can be used without technical training.
6. It produces results that are known to be reliable and accurate.
7. It can be used on small work centers that do not warrant the use of more elaborate techniques (10:70).

The disadvantages of work sampling are that it measures actual time, not the time the work should take. Emplovees do not understand or trust the technique. If procedures change, then the study must be repeated (10:70).

Stopwatch Method

The stopwatch technique of work measurement is the best known. An observer or camera watches the employee's every move. Each job is broken down into elements which are timed by the observer. The observer chooses a worker of average or better performance and notes the intensity of his effort. If the employee is working harder than normal, the employee's output will be discounted in setting the standard. If he is lackadaisical in his work, the standard will be set higher than his actual output.

The advantages of the stopwatch technique are:

1. It provides a highly accurate measurement of time.
2. It is a fast method for developing standards.
3. It provides a good record of methods, procedures, and working conditions.
4. It is easy to explain to employees.
5. It can be used in situations requiring a very precise standard - for example, in the case of incentive wages (10:71).

Stopwatch methods have been successfully used in factories, but less successfully in offices, because:

1. The stopwatch creates a morale problem, because employees do not like to be observed and timed.
2. The stopwatch connotes 'efficiency' and 'control' to the office worker; consequently, resentment may build up when the stopwatch is introduced in an office situation.
3. The stopwatch is unsatisfactory for measuring long cycle activities or work that is varied in nature.
4. The stopwatch is a costly way to measure low volume operations (10:71).

Synthetic Time System

A fifth work measurement technique is the predetermined time or synthetic time system. A job is broken down into specific bodily motions. The time for each motion is taken from a predetermined time table developed by a firm's own time study data or from industry standards. The times for each motion are added up and a precise time standard for each job is developed. The advantages are:

1. Standards developed through this approach are more precise and more objective than those developed through other techniques.
2. When methods change, the standards can easily be revised without restudying the entire job.
3. Standards can be established relatively rapidly.
4. The technique has a high degree of acceptance among employees and supervisors.
5. Standards can be maintained at low cost.
6. Predetermined times permit evaluation of proposed method changes prior to installation.
7. An organization's own personnel can be trained to use predetermined times effectively (10:73).

The disadvantages are that a highly skilled analyst is
required to segment a job into body motions. This type of work measurement only applies to repetitive, physical work.

Critical Evaluation of Work Measurement Methods

The historical method is a likely candidate to use in gathering data for a computer simulation model. This would certainly be the cheapest method of gathering data. The computerized management information system (MIS) in R\&D Contracting would readily provide the number of contracting actions and the completion time for each award. The problem is that the present MIS system does not breakdown the awards into the approximately 60 steps required by the simulation model. So the needed data is not available from present records. Historical data will be used to validate the model. The simulation model will provide estimated completion times which will be compared to the completion times shown in the historical records. The actual inputs (new starts, contract modifications, etc.) of previous vears will be input into the model to test whether the model will accurately replicate the output of the past.

Batching may be an effective measurement technique for measuring individual productivity and for scheduling production, but it will not provide the information needed for the model. A typical contract takes 150 days, and the contracts are not uniform (there is a range of complexity from
buy-to-buy), so batching appears to be infeasible.
Initially, self-logging appears be very feasible. The many different tasks require many observations. If fifty people would keep diaries for a few weeks, there would be thousands of observations. This method has several drawbacks. This technique requires the most cooperation of the employees being measured. There is a natural resistance to being measured by any technique. But a technique that demands your active cooperation may invite sabotage.

A second problem with self-logging is that the cooperation of management is essential. Management must be sold on the potential benefits of the computer simulation model, otherwise they would not approve the diary method of collecting data. To make the diary method acceptable, the data collection period must be relatively short (two-tothree weeks), and the forms must be simple to fill out. The question is whether enough data can be gathered in a short period to make this method statistically acceptable.

What is the probable sample size? Last year the R\&D Contracting made the following awards:

CONTRACT TYPES
Competitive New Starts 349 Sole Source New Starts Contract Modifications Delivery Orders Fundings

NUMBER OF AWARDS

1672
315
1238

The simulation model breaks these five categories into
twenty-eight (28) groups based on dollar amounts (less than $\$ 100,000, \$ 100,000$ to $\$ 250,000$, etc.). Examining the worst case, Sole Source New Starts, the model breaks this group into eignt categories. If the 179 Sole Source New Starts were divided evenly among the eight networks in the simulation model, then there would be 22 contracts in each group. Given the expected variance in the times to complete each activity (each contract type is composed of approximately 60 activities) it is unlikely that even twenty-two samples would be statistically significant. For example, if an activity takes an average of four hours to perform, and the variance is four hours, to achieve 90% confidence that the sample mean is within thirty (30) minutes of the population mean requires a sample of forty-three (43). projected data collection period - 2 years.

Asking an employee to keep a diary for one or two years is likely to result in gross inaccuracies in the data because the employee's motivation to make accurate records will flag long before the end of the data collection period. The self-logging method appears to be infeasible in this instance.

Work sampling suffers from the same problems - insufficient sample size. A lone observer (this specific situation) is unlikely to be able to make more observations than fifty employees keeping diaries.

Using the work sampling technique in contracting presents several problems. The first problem is in limiting the number of work categories to a reasonable number. Work categories are the different tasks performed by contracting personnel. The process of contracting involves so many different work categories that an excessive period of time would be required to collect a statistically significant sample in each work category. To solve this problem, a few general categories could replace the many work categories. Unfortunately, a few general categories would not provide the task information required by the model. Even when work sampling has been performed using general activities, the observer has not been unobtrusive. Unlike many forms of physical work, an observer cannot readily decide what job an individual is performing. In the past, observers tried to solve this problem by attaching a list of job activities to each work station and asking the buyers to mark the correct activity at all times. Despite the fact that the contracting activities being measured were much simpler than the contracting activities in $R \& D$ contracting, the buyers were unable to fit many of their activities into the general headings. The observers were constantly being asked by individuals to help them classify the particular job that they were doing (25). Work sampling will not garner the required information.

A modified form of work sampling was considered, called the Adcock method of work measurement (26:32). It is a cross between self-logging and work sampling. The person being measured fills out a diary of what h ? is doing at the moment when a telephone pocket pager (beeper) goes off. The beeper goes off at random intervals, approximately twice an hour. The work measurer spends his time making different beepers beep at random intervals to collect random samples from many employees. The advantage of this method is that the employee defines what he is doing, rather than an observer possibly misinterpreting what the employee is doing, and the emplovee is not required to record everything he does (26:32). This method is recommended for measuring the work of managers, because managers do so many different things every hour. This method is less appropriate with buyers and clerks because they are likely to spend longer on each work activity. Filling out a diary twice-an-hour is likely to require more diary-writing than recording everything (self-logging), because many jobs take longer than thirty minutes. In short, work sampling is less preferable than self-logging, and infeasible in this instance. The stopwatch technique does not appear to be a good technique for use in R\&D Contracting. Many repetitions of the same activity by one worker is a rarity. It is also unsatisfactory because of the long cycle times, the variety of
contracting actions, and the uneconomical expense of measuring over one thousand activities.

A predetermined time system is not appropriate to nonphysical work and there is no time study data or industry standards to construct synthetic times.

Since none of the work measurement techniques appear to be feasible in this case, a judgmental, or subjective technique must be used. A survey was used in 1974 to collect information needed by that study of R\&D Contracting (13). The information gleaned from that survey is not sufficiently detailed for use on this simulation model.

Delphi Procedure

The Delphi procedure is considered to be useful in
acquiring accurate data from a group of experts (29:88). A panel of experts is chosen, but the experts are interviewed individually. Each expert provides an estimate of the time to complete an activity. After the first round of interviews, the estimates are averaged and a second round of interviews take place. When an expert's estimate is beyond a range of the average (such as one standard deviation), he is asked to justify or revise his estimate. If the expert believes his estimate is correct, his justification for his estimate is communicated to all the participants, to permit them to revise their estimates. Revised estimates are received from everyone. If the data collector believes that
further consensus is likely, additional rounds of interviews are conducted.

The advantage of the Delphi method is that group opinion is not formed by only a few vocal or important people on the panel. When justifications for outlying estimates are circulated, the opinion-maker is not identified.

There are problems with the Delphi technique. The bandwagon effect may cause consensus instead of reasoned argument. But experiments have shown that the Delphi technique is more efficient than face-to-face confrontation, and the estimates improve with the number of participants (29:90).

Objective work measurement techniques would be preferred if the number of samples which could be taken were statistically significant. But given the many different work activities and the low volume of work in R\&D Contracting, subjective techniques must be used. The Delphi technique appears to be useful, practical, and preferable to other subjective techniques, so it was used to collect the data for the model.

The Delphi technique had to be modified in this study, because of time constraints. The number of estimates which each expert was asked to make was substantial (see appendices F, H, and J). Providing a justification for each estimate would have overburdened the experts. Only one round of questioning was conducted. The researcher planned on con-
ducting a second round on major elements of the modeled networks which significantly departed from historical data. Because of the breadth cf the study, the researcher was unable to conduct any subsequent rounds.

Summary

This chapter presented a review of work measurement systems used by DoD contracting organizations. Each system has problems which cause inaccuracies in results. One of the major inadequacies of these work measurement systems is that the effect of workload on the contracting cycle is ignored.

Modeling can be a solution to this problem, but modeling a contracting organization requires a large amount of information on the procedures, functions, and service times of the organization. Methods of collecting the information required for the model were also reviewed.

Chapter III explores in detail the collection of data, the construction of the model, and the plan for answering the research questions.

CHAPTER III

METHODOLOGY

This chapter is composed of three topics. The first topic is the construction of the model, which includes a description of the data that was required to build the model, how thet data was collected, an example of the modeling of a typical contractual action, and a detailed description of the model. The second topic is the experimentation plan. This includes the validation of the model, the limitations of the model, and the experimental design for answering the research questions. The third topic is a description of the computer programs developed, and the method of running the model at Wright-Patterson Air Force Base.

Constructing the Model
Constructing the model is the most time-consuming phase of the research. The researcher must learn how the system to be modeled functions by observing and participating in the system (29:46). After this research period, relevant data required to imitate the system must be ascertained. The three major sets of data which were required for this effort are: (1) the arrival times (schedule) of incoming work to the system, (2) a detailed step-bv-step description
(network map) of the contracting process, and (3) the service times (working times) associated with each contract activity.

Collecting Arrival Times

The DATA-CEN system has a record of the arrival time of each $P R$ received in the $R \& D$ Contracting directorate for the last three years (25). A list of these arrival times was provided by the Operations Management Division of $R \& D$ Contracting. Because the DATA-CEN system was revised at the beginning of $F Y 82$, the data before that period could not be used. FY82 was the only full fiscal year of data which followed the new system, so the arrival of P^{\prime} 's in the model imitates the $P R$ arrival of that year.

Constructing Network Maps
The network maps were constructed next. Experienced buyers, clerks, and PCO's in R\&D Contracting provided the chronological ordering of detailed tasks which compose the contracting process. Each network of the network map was based on the more-general networks defined in the DATA-CEN system (23). Twenty-eight networks were constructed:

NAME OF NETWORR DESCRIPTION
C2 Competitive contract between $\$ 10,000$ and $\$ 100,000$
C3 Competitive contract between $\$ 100,000$ and $\$ 250,000$
C4 Competitive contract between $\$ 250,000$ and $\$ 500,000$
C5 Competitive contract between $\$ 500,000$ and $\$ 750,000$
C6 Competitive contract between $\$ 750,000$ and $\$ 1,000,000$
C7 Competitive contract between $\$ 1$ and $\$ 3.5$ Million
C8 Competitive contract between $\$ 3.5$ and $\$ 10$ Miliion
C9 Dual award (contract)
S2 Sole source contract between $\$ 10,000$ and $\$ 100,000$
S3
S 4
S5 S6
Sole source contract between $\$ 250,000$ and $\$ 500,000$ Sole source contract between $\$ 500,000$ and $\$ 750,000$

S7 Sole source contract between $\$ 1$ and $\$ 3.5$ Miliion

S8 Sole source contract between $\$ 3.5$ and 10 Million

F3 Sole source Fast Track contract
F1 Funding (modification)
M2 Modification between $\$ 10,000$ and $\$ 100,000$
M3 Modification between $\$ 100,000$ and $\$ 250,000$
M4 Modification between $\$ 250,000$ and $\$ 500,000$
M5 Modification between $\$ 500,000$ and $\$ 750,000$
M6 Modification between $\$ 750,000$ and $\$ 1,000,000$
M7 Modification between $\$ 1$ and 3.5 Million
M8 Modification between $\$ 3.5$ and $\$ 10$ Million
F4 Fast Track modification
Al Administrative notice (unilateral)
MO No cost modification (bilateral)
Collecting Service Times
Each of the twenty-eight networks was subdivided into three groups: (1) the work performed by the $P C O$, (2) the work performed by the clerk, and (3) the work performed by the buyer and others. Based on information provided by several experienced personnel in R\&D Contracting, major activites of each element of each network were determined. A list of these activities was constructed for each group, for each network. Copies of these lists were distributed to five experienced buyers, five experienced clerks, and five experienced $\mathrm{PCO}^{\prime} s$ in R\&D Contracting for additions, dele-
tions, or corrections (see Appendix L).
The lists were revised as a result of the comments received from the fifteen experienced personnel. The revised lists are in Appendices F, H, and J. These lists were used to collect the third major set of data required, the service times for each activity. Before the service times were collected, the number of different service times required by the model had to be reduced. If every activity was estimated, each estimator would develop over 1500 estimates. The number of work activities was reduced by eliminating duplicates. For example, in twenty of the twenty-eight networks, the buyer carries the contract file to an office in another building for their review of the contract. The estimate of the time to walk there and back was asked once and used in all twenty networks.

Certain major activities were always estimated in each network in which they occurred. The major activities were:

1. PCO review of the new PR.
2. buyer's solicitation preparation.
3. clerk's solicitation preparation.
4. buyer's review of typed solicitation.
5. PCO's review of solicitation.
6. buyer's pricing of offers.
7. buyer's negotiation with offerors.
8. buyer's write-up of the award.
9. clerk's contract preparation.
10. buyer's review of the typed award.
11. PCO's review of the award.

In addition to estimating jobs which they performed, the buyers were asked to estimate times for work which is performed by individuals and groups (such as the Judge Advocate General [JAG] or Committee), which are not fully modeled. These groups are not modeled with queues and servers. Their service times are a combination of queue and service times. The processing of a $P R$ is usually delayed by these outside activities, so the buyer's estimates should be accurate.

Before starting the sampling process, the researcher should define the sources of the data in terms of universe and population from which the sample is to be drawn.

Universe

The universe of the sample is the 41,000 federal employees who compose the procurement occupations group (33:10-11).

Population

R\&D Contracting is authorized over 100 procurement positions. The personnel range in grade level from the clerk trainee (GS-3) to the R\&D Director (GS-15), the military rank spans from Airman to Lieutenant Colonel (4:1-4).

Sample
To select a sample to answer the questionnaire, a list of
all the personnel in the four buying divisions of R\&D Contracting was obtained. The workforce was divided into four groups: (1) buyers, (2) clerks, (3) PCO's, and (4) others. New employees do not have the background of experience in R\&D Contracting to make sound estimates, so clerks and PCO's with less than one year of experience in their jobs were eliminated from the sample. Because of the complexity of the job, buyers with less than two years of experience were eliminated from the sample. PCO's have several years of experience as buyers, so one year of PCO experience was acceptable.

The names of the buyers, clerks and PCO's who met the criteria were thrown in a hat and drawn at random without replacement until tweive PCO's, twenty-four buyers', and twelve clerks' names were chosen. Then extra names were drawn as substitutes.

Of the twelve PCO's, eleven agreed to complete the questionnaire. Several of the buyers and clerks were on leave, so the substitutes were used. All personnel in the sample were provided with instructions for completing the questionnaire. These guidelines are in Appendix E.

There were two different questionnaires for the buyers. The first surveyed the high-dollar networks (such as the C6, S7, or M8 network). The second surveyed the low-dollar networks. Each of the buyers selected was asked whether he/she
had experience with high-dollar contracts. If the buver did not have high-dollar experience, they were given a lowdollar questionnaire. The low-dollar questionnaires were completely distributed by the time the sixteenth buyer was asked to participate. All buyers, both selected and not selected in the sample, were asked to complete the highdollar questionnaire, if they had required experience. Many high-dollar questionnaires remained, so all the PCO's in R\&D Contracting with the required experience, who were not already selected to answer the PCO questionnaires, were asked to answer the high-dollar buyer questionnaires. Altogether, ten high-dollar questionnaires were distributed. The questionnaires for all three groups required six estimates for each activity (or task): (1) the normal or average time to complete the task, (2) the optimistic time or the time it would take to complete the task if there were few problems with the contracting action, (3) the pessimistic time or the time that it would take to complete a task if there were more problems than normal, (4) the percentage of the time that the normal situation occurs, (5) the percentage of the time that the optimistic situation occurs, and (6) the percentage of the time that the pessimistic situation occurs. The purpose of the last three estimates is to aid in determining the proper distribution type (normal, triangular, uniform, etc.).

All three groups were asked to estimate their nonworking time; the percentage of the day that they take breaks or socialize. They also provided estimates of the percentage of the day that is spent on non-DATA-CEN work; work that is not required in performing any of the twenty-eight networks. The estimate questionnaire is verv detailed, listing most of the activities that are usually performed. There is even a list of the non-DATA-CEN work. The concept of the detailed questionnaire is to ensure that the estimates were made on the same tasks. There are so many networks, that many elements of the job could be overlooked by the estimator. So the questionnaires both reminded the interviewees of most of the work involved in each task and focused their attention on making good estimates.

Modeling a Funding: An Example

To explain how the model imitates the contracting cycle in R\&D Contracting, a funding modification will be traceत through the contracting cycle. The funding network, Fl, is the most popular contract type, accounting for twenty-five percent of the contracting actions in R\&D Contracting (25). It is also one of the simplest networks with a short contracting cycle. First, the processing of a funding action will be examined, step-by-step, then the imitation by the model will be explained.

How Funding is Processed

The contracting cycle for awarding a funding is shown in Figure 2. The funding starts with Congress, but for our purposes the funding starts when a purchase request (PR) for the funded amount arrives in the R\&D Directorate. The PR is entered into the computer system, mailed to the Division Chief, who passes it to the Branch Chief, who assigns it to the appropriate buyer.

The buyer reviews the $P R$ to insure that it is correct and telephones the contractor asking him for a letter stating the amount of funds which are needed for the fiscal year. If there are any problems with the funding amount (with the contractor) or problems with the PR format, the buyer telephones the PR initiator lusually an engineer at a laboratory) to resolve the issue. If the problem is critical, the $P R$ may be rejected and returned to the initiator (this rarely occurs). The buyer accepts the PR, fills out a computer input card, sends the original PR to accounting, attaches the $P R$ to the applicable contract file, and gives the file to the procurement clerk (activity 1 on Figure 2). Fundings are so routine, that the buyer does not need to draft the funding modification for the clerk. The clerk drafts and types the funding document. The clerk also prepares the contract documentation, and returns the package to the buyer (activity 2).

The buyer reviews the file, usually makes a change, and returns it to the clerk (activity 3). The clerk types the change and gives it back to the buyer (activity 4). Accounting certifies the funds and returns the $P R$ to the buyer. The contractor sends a letter agreeing to the funding. These are added to the contract file and given to the PCO for review (activity 5). The PCO reviews and sends the contract file to Committee (activity 6). They review the file and return it to the buyer directly, or indirectly through the Division Chief who may also perform a review (activity 7). The buyer answers Committee's comments and asks the clerk to type-up any changes (activitv 8). The clerk types up the changes and returns the file to the buver (activity 9). The buyer reviews (activity 10), and tiat pCO reviews and signs the funding modifications (activitv ll). The clerk inputs the amendment into the computer and sends the amendment to reproduction (activity 12). Reproduction makes copies for all interested parties (activity 13). When the amendment returns, the clerk prepares copies of the supporting documentation and sends the package to distribution (activity 14). Distribution mails the funding modification to the contractor and distributes copies of the modification and supporting documentation to appropriate offices (activity 15), which ends the contracting cycle.

The model tries to imitate the contracting cycle, but the full model (Figure 3) does not resemble the contracting cycle of Figure 2. The oval shapes are nodes, and are numbered on the right inside corner. The funding cycle begins in Node 1 (it could also be started in Node 4 , but this will be ignored for now, for simplicity). The lines which connect the nodes to each other are called branches. Branches represent service activities. The funding $P R$ generated in Node 1 flows through the branch to Node 2, where it is assigned to a buyer. Assume that the PR is assigned to Buyer-A. The buyer's clerk is Clerk-A.

The $P R$ flows to the traffic node (Node 3) where it is distributed to Buyer-A for service. Since nodes 1,2, and 3 are administrative nodes (nodes for the convenience of the model), no time has accumulated on the total contracting cycle time of the funding PR. As the PR goes from Node 5 to Node 11, the time for the buyer to perform his activitv (accepting the $P R$, calling the contractor, preparing the file, etc.) is recorded as the total contracting cycle time for the PR. At Node 11, the PR is directed to Node 37, Clerk-A. The PR flows through nodes 38 and 39 in no time. As the PR flows from Node 39 to Node 40, the time that the clerk spends preparing the contract modification and file is added to the total contracting cycle time. The PR flows

6

,
through nodes 40,41 , and 49 , where it is distributed to Buyer-A. The time that Buyer-A spends reviewing the file is added to the total contracting time as the $P R$ flows from Node 5 to Node 11. The PR is distributed at node 11 to Clerk-A. As the PR flows through the clerk's nodes again, the time that the clerk spends making the buyer-directed changes is added to the total contracting time of the PR. The $P R$ is distributed back to the buyer, where the buyer's time in reviewing the changes is added to the total contracting cycle time. At Node 11, the PR is distributed to the PCO (Node 31). The PR flows through nodes 31, 26, 33, and 34. As the PR flows from Node 33 to Node 34, the time that the PCO spends reviewing the funding action is added to the total contracting cycle time. The PR flows through nodes 34, 35, and 24, where the $P R$ is distributed to Committee (Node 50). As the PR flows from Node 24 to Node 50, the time that Committee spends reviewing the funding is added to the total contracting cycle time of the PR. From Node 50, the PR is returned to Node 5, Buyer-A. The time for the buyer to make Committee-directed changes is added to the running total of contracting cvcle time as the $P R$ flows from Node 5 to Node ll. From Node 11 the PR goes to Clerk-A who makes the Committee-directed corrections. The time for making corrections is added to the contracting cycle time. The PR flows back to Node 5, the buver reviews
the corrections, the buyer's review time is recorded, and Node 11 distributes the $P R$ to the $P C O$. The time that the PCO takes to review and sign the funding modification is recorded between Node 33 and Node 34 . The $P R$ is distributed from Node 24 to Node 37, Clerk-A. The clerk's time for preparing the file for reproduction is added to the contracting cycle time. At Node 49, the $P R$ is distributed to Reproduction. On the way to Reproduction (Node 3 plays the part of reproduction), the amount of time that reproduction will take in performirg the required work on this funding action will be added to the total contracting cycle time. The $P R$ is distributed to Clerk-A, who prepares the document for distribution. Clerk-A's time is recorded. Node 49 distributes the $P R$ to Node 51, Distribution. On the way, the time that Distribution spends performing their tasks for the $P R$ are added to the total contracting cycle time of the PR. Node 51 is the last node for all PR's in the model. Node 51 records that total contracting cycle time for the $P R$ and averages the cycle time with other funding PR's that have been processed through the model.

This example of how a $P R$ flows through the model is a simplification of how the model functions. A more detailed description will be presented in the next section.

The model was constructed to imitate the contracting cycle in the Flight Dynamics branch (PMRNA) of R\&D Contracting. The model is composed of three buyers, two clerks, and a PCO, who also buys (the PCO's buving role is depicted as Buyer-D). The Flight Dynamics branch is composed of more buying personnel than are depicted in the model, but the model has the basic components of the branch, except for the branch chief. Conclusions that can be drawn from experimentation with the model should be directly applicable to the branch. With a little modification, the model could depict any buying branch in R\&D Contracting.

The model is composed of the following components: (1) the arrival routine, (2) the traffic node and sink node, (3) the distribution nodes, and (4) the servers (buyers, clerks, and PCO). Each component will be discussed separately.

Arrival Routine

Figure 4 depicts the section of the model classed as the arrival routine. Nodes 1, 4, and 6 are all source nodes. Source nodes generate PR's. Node 1 generates PR's of all twenty-eight network types. When a PR leaves the right side of Node 1 , it creates another $P R$ which is depicted as the curved line which arcs back to the left side of Node 1. This curved line, like all solid lines outside of nodes, represents activities. The basic function of the model is

(2)

Figure 4
ARRIVAL ROUTINE
to measure time. The service time for the activity indicated by the number in the square box is ' (NO, 30)'. ' (NO, 30)' is a distribution of numbers with a mean of 18.7735, and a standard deviation of 3.3175 hours. The computer will supply the model with the exact number. This number will be different for each PR which flows through this path, because the computer uses its random number generator to pick this number. The distribution of arrival times was determined by analyzing the arrival times of PR's to PMRNA in FY82 (25). Since there is no activity time indicated between Node 1 and Node 2, a PR would flow through this branch without adding time to its total contracting cycle time.

Node 2 is a regular node which assigns a specific buver and clerk t, each $P R$, and determines the $P R$ network type. Buyer-A, Buyer-B, and Buyer-C each have a thirty percent probability of being assigned any specific PR. Buyer-D, who is also the PCO, has a ten percent chance of being assigned a specific PR. The buyers are considered to be equally competent in their jobs. The branch chief of PMRNA stated that the PCO shoud have forty percent of the buying workload of a journeyman buyer (12). The probability of a specific PR being assigned to a specific network type was determined using the actual frequency of occurence of each network type in PMRNA in FY82 (25). After these assignments are made, the $P R$ flows to Node 3 , the traffic node.

In October 1982, 83 funding PR's were received in PMRNA. The rest of the fiscal year, an average of six funding PR's were received per month (25). Node 4 is a special source node that imitates this flood on fundings for one month of every year. The PR's from Node 4 must travel through Node 22, before going on to Node 2. Node 22 and Node 14 act as a switch which either permits the fundings to flow to Node 2, or derails the PR's. Node 14 has no path to Node 2 or to anywhere else. PR's which flow to Node 14 disappear. On November 1 of each simulated year, Node 22 is replaced by Node 14. Node 4 continues to generate PR's, but they never enter the contracting cycle.

Nodes 6, 7, and 8 compose the clock which sets the time for Node 22 and Node 14. When a $P R$ is generated by Node 6 , it flows to Node 7. The PR travels for 168 work hours to reach Node 8. As soon as the $P R$ reaches Node 8, Node 22 is replaced by Node 14. At Node 8, the PR travels for 1912 hours to reach Node 7. As soon as the $P R$ reaches Node 7, Node 14 is replaced with Node 22, and the contracting system receives another flood of funding PR's.

When Node 4 funding PR's reach Node 2, Node 2 assigns the buyers by the same method as described earlier, but all the PR's are assigned to the funding network.

Traffic Node and Sink Node

Node 3 is the traffic node (see Figure 5). It is one of

Figure 5

TRAFFIC AND SINK NODES
the only nodes which accesses the subroutine (3 UF 2). Whenever a PR flows through the traffic node, the map for the applicable network is consulted. Values are set in the attributes of each PR. In this model, each $P R$ has 64 attributes. The attributes contain information whicn guide the PR through the correct nodes, when the $P R$ has a choice of destinations. For example, if a $P R$ is at node 5 (see Figure 7 on page 72), it has no choice of destinations; it must flow to Node ll. But if a $P R$ is at Node 3, it has a choice of seven destinations. The subroutine will set the correct destination as "1" and the other six as "C", so the PR follows the proper course.

The subroutine sets the course of each contract in accordance with the map of the 28 types of contracts. But the subroutine is unable to set the path for a $P R$ from the beginning to the end. The path must be set piece-meal, one step at a time. So each network is divided into many steps. At the beginning of every step, the $P R$ flows through the traffic node for instructions. For example, the $C 2$ network (a competitive purchase estimated to cost between $\mathrm{S} 10,000$ and $\$ 100,000$ has seventeen (17) steps. The first step contains the following activities:

1. the $P R$ flows from the traffic node (3) to the PCO (node 31),
2. the $P C O$'s service time is computed for reviewing the new $P R$ (attribute 43 = service time),
3. the PR flows from the PCO (node 24) to the
assigned buyer's in-basket (nodes $5,12,18$, or 25),
4. the buyers's service time is computed for writing the RFP package (attribute 42 = service time),
5. the PR flows from the buyer to the clerk's inbasket (node 37 or 43),
6. the clerk's service time for typing the RFP and preparing the solicitation file is computed (attribute $44=$ service time),
7. the $P R$ flows to the traffic node(3) for the next step.

The reason that the clerk sends the $P R$ to the traffic node is that the PR must return to the buyer. The buyer's service time (attribute 42) is already set as the RFP writing time. If the $P R$ goes to the buyer twice in the same step, then the service time for doing two different activities would have to be the same. Since this rarely occurs, the $P R$ must go through the traffic node so that the service time can be altered. Going through the traffic node has no effect on the simulated contracting cycle time.

The last step of each contractual action is where the contract award is sent to node 51 , the distribution or sink node, where the time that each $P R$ spent traversing through the contracting cycle is computed. Statistical information is gathered at this point, concerning the contracting cycle time of all PR's by network type. The mean of each network time is computed as well as the standard deviation, and a 90% confidence interval of the mean and a 90% confidence interval of the prediction of a sample. Q-GERT also tabulates the percentage of time that each buyer, clerk and PCO is
working. The average time that a $P R$ sat in someone's inbasket is retai ied, as well as the maximum and minimum number of PR's that were in each person's in-basket at any one time. This information should be very helpful to a manager for spotting bottlenecks.

Distribution Nodes

The distribution nodes are Node 11, Node 24, Node 49, and Node 50 (see Figure 6). Their function is tc send the PR to the destination shown on the network map. The distribution node is shown as a combination of a conditional, take-first branching node and a table of the possible branching from the node. The distribution nodes are regular nodes in that no PR's wait for distribution. As soon as a $P R$ arrives at a distribution node, the $P R$ is distributed.

The tables of possible branching are not written in standard Q-GERT symbology. Because of the extensive branching, a ncn-standard format was required (see Figure 6). The first column (from the left) is the attribute numbers of the possible branching destinations. Attributes in Q-GERT are characteristics that are associated with a particular $P R$ (22:29). In this model, each $P R$ can carry up to 64 attributes at one time.

The next column in the table is the node number of the possible destinations. The third column is the name of the possible destinations. The fourth column is the service time
Bigr.

	29	5	Buyer-A	----
	30	12	Buyer-B	----
	31	18	Buyer-C	----
i	32	25	Buyer-D	----
$P \subset 0$	33	37	Clerk-A	----
PCO)	34	43	Clerk-B	---1
	35	3	Contractor	AT48
	36	3	Traffic	----
	37	3	Management	AT 54
	61	3	Committee	AT51

Figure 6
Distribution Nodes
that will be added to the contracting cycle time if the $P R$ choses the destination node in the same row. If there is no service time shown, then a $P R$ routed to the destination in this row flows there without adding to the PR's contracting cycle time.

When a PR arrives at a distribution node, only one of the attributes listed in column 1 will be set to 'l', all other attributes will be set to '0'. The setting of the attributes is performed when the PR flows through the traffic node (Node 3). So when a PR reaches a distribution node, its destination is predetermined. If the predetermined destination has a service time (column 4), then the service time was also set in the traffic node. For example, when a PR reaches Node 11, the $P R$ goes to one of the destinations identified in column 2 of the table, depending on which attribute between 12 and 20 , inclusive, is set to 'l', If attribute 15 is set to ' 1 ', then the $P R$ flows to Node 50 (Committee). The service time shown in attribute 51 would be added to the total contracting cycle time of the $P R$.

All the destination nodes function in the same manner, but the attribute numbers are different. Every time a PR is routed to the traffic node (Node 3), all the attributes of the $P R$ are reset in accordance with the network maps.

Servers

Three buyers, a buyer-PCO, and two clerks are modeled (see Figure 7). Nodes 5, 12, 18, 25, 31, 37, and 43 represent in-baskets for these workers. Each modeled person has one in-basket, except for the $P C O$, who has a separate inbasket (Node 25) for buying work, and another in-basket (Node 31) for PCO work. All the in-baskets have an unlimited capacity. The in-baskets are the queues which tend to build up if workload is heavy, and disappear if workload is light. Whenever a $P R$ is forced to wait in a queue because the server (buyer, clerk, or PCO) is busy working on another $P R$, that waiting time is added to the total contracting cycle time for the PR.

The service time for each server is carried by each $P R$ as attribute 42,43 , or 44 . These attributes are set in the traffic node (node 3) in accordance with the service times collected from the experienced personnel in R\&D Contracting who were sampled. Attributes 42, 43, and 44 are different for each $P R$ and are changed by the traffic node many times during the processing of the $P R$ in accordance with the networt maps.

All servers work on PR's one-at-a-time. They follow first-in, first-out (FIFO) procedures in selecting work from their in-baskets. The buyer-PCO has two in-baskets, so an allocation node (26) decides which PR the buyer/PCO will work

on. The work in the queues is ordered in the FIFO method. The allocation node determines which of the two baskets has the $P R$ which has been in either queue the longest. If that PR is in the buyer's queue, then the PR is moved to Node 27 and the service activity commences. When the service time has elapsed, the PR flows through Node 28, Node 29, and Node 11 to its new destinaion. When the PR passes through Node 29, the allocation node (26) is directed to pick another PR from either in-basket, and the process continues. Clerk-A and Clerk-B each have only one in-basket. Their allocation nodes serve a different purpose than the PCO's allocation node. The branch chief of PMRNA stated that the typical clerk in his branch performs clerical duties for two buyers and a buyer/PCO (12). This would result in one clerk in the model being underworked, if additional work were not added. Burden is added in the Q-GERT subroutine to ensure that both clerks have a full workload. When Clerk-B works for two buyers and the buyer-PCO, no burden is added. But a burden of 1.4 times Clerk-A's workload is added because Clerk-A only types for one buyer in the model. When Clerk-A is processing a PR, the PR flows from nodes 37 to 39 and the service times stored in attribute 44 and the burden is added to the total contract cycle time of the PR. The allocation node keeps Clerk-A working on the burden after completing the work time associated with attri-
bute 44. Clerk-A is not available to work on another $P R$ until the combined service time has passeत.

For a more detailed look at the model, the complete model and Fortran subroutine are listed in Appendix B and Appendix C.

Assumptions and Limitations of the Model

1. DATA-CEN recognizes thirty-four different contract networks. Six of the thirty-four contract types are not included in the model. Three of the six are sole source, competitive and contract modifications under $\$ 10,000$. The procedures for these actions are very different from the other networks, because they follow the regulations governing purchase orders. Based on discussion with R\&D personnel (12) these actions were considered to be relatively rare. Analysis of the data supported this assumption for two of the three; the small contract modifi-cation proved to be more popular. The other three nonmodeled actions are : (1) The Basic Ordering Agreement (BOA), (2) Undefinitized/Unpriced Action/Letter Contract, and (3) the definitization of an undefinitized action. The BOA is only used in a few of the eleven buving branches in the Directorate. The other two actions are equally rare. These actions are so uncommon that it is unlikely that the model could predict the occurrence of these events, and anv improvements suggested by the model for these actions would
not be worth the expense of including these networks in the model.
2. The model does not include exceptional contracting actions, such as any contract which takes a year-and-a-half to place on contract, or the buys which are cancelled before award.
3. The differences between fixed price contracts and Cost-Plus-Fixed-Fee Contracts (CPFF) are not recognized in the model. There may be some substantial differences in the contracting cycle among different contract types, but the experts who provided estimates did not mention this. If there are differences, the model was based on CPFF type contracts.
4. The model assumes that despite the unique nature of every contract, most contracts follow the same procedures (network map). The contracting procedures specified in the questionnaire were generally accepted by all the experts surveyed. There were minor differences. Some PCO's do not review PR's before their buyers review them. Some buyers perform their own filing.
5. There were some strong differences concerning the correct procedure for soliciting a small sole source buy. Many of the buyers assumed that a formal RFP would be required. The buyers' questionnaire was purposively vague on this point. But the clerk's questionnaire stated that a
letter RFP would be prepared. So the buyer's RFP preparation and review time is much longer than the clerical time. More research is required to clear up this issue.
6. Only the buyers, clerks, and PCO's are fully modeled. The other actors (Committee, JAG, contractors, etc.) lack queues (in-baskets). Instead, their service times include a standard or typical queuing time. So no conclusions can be drawn about the effect of workload, or any change in procedures, on these actors from the model.
7. The buyers, clerks, and PCO modeled are experienceत people. Each person is fully capable of performing his or her job. Overall, each buyer (or clerk) will receive the same amount of work as any other buyer (or clerk). This is both a limit and strength of the model. It is a limit because in real life each person has a different capability of performing work. The strength of this is that the actors in the model are composites of the experts who provided estimates. So the actors are more quick and efficient than half of the sample, and less slow and inefficient than the other half of the sample. These composite actors may be more representative of the directorate than any sinqle living person.
8. The first-in, first-out (FIFO) method of selecting work from a queue is not followed by all buying personnel in R\&D Contracting. Many of the people sampled stated that
they follow the FIFO method, but make exceptions for: (1) PR's which require only a small amount of work (service time), (2) Fast Track PR's are processed before any others, and (3) PR's which they judge to be of high priority. These exceptions were not modeled.

Verification

Verification is the process of determining whether the model is internally consistent - does the model perform as the modeler expects it to perform. A careful review of the simulation output can verify that many aspects of the model work correctly. Statistical nodes can be added to the model to measure the service or arrival times. The results of the statistical nodes can be compared with the theoretical distributions by the use of the Chi square test. Statistical nodes can also measure whether the probability nodes are working properly. By requesting a trace, the output of the model will include a step-by-step movement of each transaction, so that proper working of the model can be verified.

Replacing all distributions with constants (the means) will generate a completion time which should be very close to a completion time which can be computed on paper using the PERT network procedure. If the model is not working properly, there should be a big disparity. Another verification technique which can be used, is to change a critical
distribution to ensure that the model is sensitive to important parameters.

One of the critical tests of the model is whether the attributes are assigned in accordance with the network map. When the model is running correctly, with no apparent problems, this information is not available to the researcher. But when the model fails to run correctly (which happens quite often during the construction phase of the program), Q-GERT will list each PR in the system, specify the value of each attribute, and its location (node) in the model when the model 'bombed'. Each of these will be checked to insure that they are correct.

Service Distribution Type

Picking the correct distribution type (s) is a problem for the modeler. Because of the method of collecting the service times (expert opinion instead of actual measuring), the correct distribution types cannot be determined statistically. Receiving the normal, optimistic, and pessimistic times for each service activity is compatible with four different types of distributions:

1. Triangular, where the optimistic and pessimistic distributions are the mimimum and the maximum values and the normal value is the mode. The likelihood of anv service time increases linearily from 0 at the extreme values to the mode.
2. Beta-Pert is often used for service activity times in PERT networks, although the network can take many different shapes (22:205).
3. Discrete, in which the service times for each activity takes one of three values: the normal time, the optimistic time, or the pessimistic time. The likelihood of each of the three is based on the percentages that the experts estimated that each occurred.

The triangular distribution apnears to be most appropriate, but if this distribution fails in validation, then the others will be tested.

Model-building and testing are not go/no-go situations. Once the model works, the work is not over. The model can always be improved. Because the model is a simplification of reality, the model will never be true in all situations. The modeler attempts to make the model behave correctly for the tests which he or she wants to run.

Validation

Validation is to compare the output from the model with the real thing. One technique is to ask experts to distinguish the model results from historical or theoretical results. This is the Turing test. If the experts can not decide which results are from the model, then the model is considered valid.

A better test is to compare model predictions with
historical results. If the model is valid, the model should be able to duplicate the actuals of a previous year given that year's input. This test will be made on the model.

Starting Conditions

A buying organization does not start each year from idle conditions. Some contracts are carried over from one fiscal year to the next. So using a model which starts from idle conditions, could bias the output.

The modeler can determine an average amount of work-inprocess and start the model from this busy condition, or he can run the model for a long time to get the model up to equilibrium conditions (an average workload). This technique is similar to warming up an engine; the test does not begin until everything is warmed up. The warm-up technique will be used, unless the computer time wasted in the warm-up is considered to be excessive.

To determine when equilibrium conditions are reached, the warm-up period will be run for one-quarter year, onehalf year, three-quarters of a year, one year, and two years of simulation time. The service times, the completion times, and a few key queue node waiting times will be compared. The comparison should reveal when the equilibrium conditions are reached. Once the time to reach equilibrium is determined, each run of the model will include the warmup time before the test is started; statistics will not be
collected before the model has reached the equilibrium state.

Variance Reduction

Unless the full model proves unfeasible, variance reduction techniques will not be used to simplify the model. The model will be used for post-thesis work, so a full model is desirable. But variance reduction techniques can be used in controlling the pseudo-random numbers which are used to generate the arrival time of new work and the service times of work-in-process. By insuring that the same random number streams are used for the arrival and service activities in a comparison of two contracting processes, the random variance of the output can be reduced, resulting in better accuracy and a smalle sample size. This technique will be used in comparing the present contract procedures with modified contract procedures (fewer administrative reviews) to answer research question four.

Plan for Experimentation

Research Question 1

Research question 1 is to determine an optimum ratio of buyers-to-clerk for the Flight Dynamics Branch (PMRNA) of R\&D Contracting. The model will imitate the actual PR's that were received in FY82 by this branch. The three buyers, two clerks, and buyer/PCO in the model will be expected to
handle a percentage (estimated by the branch chief of PMRNA) of this workload. Initially, the first clerk will handle the clerical duties for Buyer-A only. The second clerk will perform the clerical duties for Buyer-B, Buyer-C and the buyer/PCO. The model will simulate a year of contracting. The year will be replicated ten times to reduce year-to-vear variation. The model will determine the service utilization percentages for the buyers, clerks, and PCO, which will show the percentage of time that each was working. If the buyers are busier than the clerks, then the clerks might be able to perform clerical duties fcr a larger number of buyers or buyer/PCO's. If the results of the model show that the clerks are busier, then there would be a case for reducing the buyer-to-clerk ratio. The contracting cycle times will be compared. The smaller the buyers-to-clerk ratio, the shorter the contracting cycle should be. The percentage change will be recorded, and may be more significant than the server utilization comparison. This will be riscusced in the next chapter.

Research Question 2

Research question 2 is to determine an optimum level of work for a PCO with three buyers. A process similar to the process used in answering research question 1 will be followed. The server utilization times of the three buyers will be compared with the combined server utilization time

MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-A
of Buyer-D and the PCO (Buyer-D and the PCO are the same server). The workload will be increased and decreased for comparison purposes. The effect on the contracting cycle will be documented.

Research Question 3

Research question 3 is to plot the contracting cycle time against the percentage of the PMRNA workload that the servers in the model are processing. The branch chief of PMRNA believes that forty percent of the branch's workload is the amount which he would expect the workers imitated in the model to perform (12). This percentage will be varied from twenty percent to sixty percent, in five percent intervals. There is expected to be a point where a slight increase in workload will cause a significant increase in the contracting cycle time.

Research Question 4

Research question 4 is to reduce or eliminate an administrative review to determine its effect on the contracting cycle. Network Fl, the funding network, will be remapped to eliminate the committee's review. This should demonstrate the effect that one change in one network has on the contracting cycles of all the networks.

Computer Programs

Four computer programs are listed in the appendix, as

Appendix A, Appendix B, Appendix C, and Appendix D. The first program, Net, is written in Fortran and was used to build the third program, the Fortran subroutine to the Q-GERT model. Net was used to build the twenty-eight network maps. Like all computer coding, any mistake (mental or clerical) can prevent a program from working properly. Finding a mistake in computer coding is often a timeconsuming activity. This program, Net, prevents clerical mistakes and guides a person who is familiar with the contracting process to build a network without learning to program a computer. This program will be needed in the future to update the model if procedures change and for testing new procedures in contracting.

The second program is the model written in the O-GERT simulation language. Changes in the number of runs, the time that the model should simulate (one year, two years, etc.), the start-up time, the workload, and the ratio of buyers-to-clerks can easily be adjusted in this program. To run the simulation requires this program, the subroutine (program three), and the Q-GERT procedures file (QGPROC).

The third program is the Fortran subroutine to the Q-GERr model which contains the network maps, assigns specific buyers and networks to each $P R$, and records the contracting cycle time for each PR by network.

The fourth program is the Q-GERT procedures file
(QGPROC), which runs the simulation on the ASD Computer Center's computer system at Wright-Patterson AFB. Batching this program to the ASD's Cyper computer will run the computer model. The model uses 300,000 units of core memory, so the program cannot be run interactively.

Summary

This chapter described the methods used to gather data for the construction of the model, and the plan for experimenting with the model after it was constructed. The next chapter will describe the results of the experimentation, and answer the research questions.

CHAPTER IV

DATA FINDINGS AND ANALYSIS
The purpose of this chapter is to report and analyze the results of the study. Interpretation of the results will permit the answering of the research questions. The objective of this study is to develop a computer model of R\&D Contracting which can be used to predict the effect of changes in policies, procedures, and organizational structure On the contracting cycle. The first part of this chapter describes the interpretation of data collected from the sample of expert opinion in R\&D Contracting, and the verification and validation of the model. The last part of the chapter describes and analyzes the research experimentation.

Interpretation of Data Collected

As described in Chapter III, data was neeतed on the service time for each activity in the contracting process. Data was collected by the subjective technique of asking experienced personnel to estimate the time required to perform each activity. The data was analyzed by determining the mean, the standard deviation, the median, and the number in the sample for each of the three estimates collected on each activity. An analysis of this data showed that the median was co sistently smaller than the mean. By putting
the data in histograms, it was observed that the majority of the estimates were situated in the lowest quartile. To determine when to use the median instead of the mean as the point of central tendency, McClave and Benson (17:61) present a similar situation in which the Delphi technique was used to collect estimates from experts. Based on the information and example provided by McClave and Benson, and the similarity to this situation, the median was chosen as the most representative point of central tendency. The normal estimate, as well as the pessimistic estimate and the optimistic estimate, are the median values of the estimates collected.

Verification

Verification is the process of determining whether a model performs as the modeler expects it to perform. The first step in verifying the model was to replace the variable service time distributions with constants. Each service time in the $C 2$ network was replaced with the median value of the normal estimate of that service time. The model was run with only one $P R$ flowing through this C2 network. The contracting cycle time from the model matched the hand-calculated total of the means of the service times. The second test was to run 100 PR's through a number of networks to ensure that the service distributions functioned
properly. The time between arrivals of the PR's was set at a large amount, so that there were few PR's in the contracting process at any one time. This reduced the queuing time to a minimum. The result of the test was that the average contracting cycle time was slightly above the total of the means of the service times (which was expected because of the small amount of queuing time), so the test was successful.

The third test was to examine whether the sixty-four attributes of each $P R$ flowing through the model were being assigned correctly, a critical feature of the model. Every attribute of over 100 PR's of various networks and in various stages in the contracting process was examined. Every attribute was correct.

The fourth test was to trace a PR through the Q-GERT model. This trace provided an output which listed, in chronological order, every node that the PR flowed through. The PR flowed through each node in accordance with the network map. This test was successful.

The percentage of PR's of each network type generated by the model were compared with the actual percentage of PR's of each network type processed by the branch of R\&D Contracting being modeled. The percentages were the same, proving that the pseudo-random generator in the Q-GERT model was working as expected.

The modeler concluded that the model was internally consistent; the model performed as it was expected to perform.

Validation

Verification is the process of proving that the model is internally consistent; validation is the process of showing that the model accurately simulates what its designed to imitate. This model was designed to simulate the contracting cycle time of the Flight Dynamics Branch (PMRNA) of R\&D Contracting. The model attempts to simulate the arrival and subsequent contracting cycle times of PR's received by PMRNA in FY82. This is a crucial test of the model. A model is designed to be used to predict events which are in the future. For example, the model might be used to predict the effect of the hiring of an additional worker on the contracting cycle time. But the decisionmaker must have faith in the model's ability to make accurate predictions. A test which can create faith in the decision-maker is to use the model to predict events which have already happened. The model is fed the inputs of the past to determine whether the model can accurately predict the events that have already occurred. This is a crucial test and a very demanding one. It is also a test that this model initially failed.

The actual numbers and average contracting cycle times of the PR's received in PMRNA in FY82 by network type are listed in Table I. There was a problem with some of the networks, because the DATA-CEN system was revised at the beginning of FY82, so there were some networks which were replaced by new networks. Network Fl includes PR's from obsolete network C4. Network MO includes PR's from obsolete network C5. These obsolete networks, C4 and C5, have exact counterparts in the new networks, Fl and MO. The row of Others are PR's which were processed under networks which are no longer used by the DATA-CEN system. These obsolete networks were broader than the new networks, so the results of these networks cannot be accurately converted into the contracting cycle times for the new networks. The hours spent on the Other networks are not included in the total average contracting cycle time. Other also contains networks MI and D1 because these networks were not modeled.

The number of PR's in each network is only 25% of the PR's actually processed through the model. The model processed PR's for ten years, instead of one year, to increase the accuracy of the sample. Since the model only processed 40\% of the workload of PMRNA each year, to compare the model with actuals the total from the ten years of $P R^{\prime} s$ must be reduced to 25% of its ten year value as follows:

1 Year of Actual PR's $=0.25$ times 10 Years of Modeled PR's (40\% Workload)

TABLE 1

Actual Vs Modeled PRs and Cycle Times

The model imitated the number of PR's by network type accurately. The model and actual number of $P R$'s in each network type were usually quite close. The contract cycle times were quite different. The contracting cvele times of the model were consistently higher than actual contracting cycle times. The average contracting cycle time of the PR's in the model was 84% higher than actuals (558 hours - modeled versus 304 hours - actuals).

The model overestimated the contracting cvcle times of almost every network, so the modeler searched for a problem which affected all networks. The problem was found in the model's adjustment to labor hours to account for holidays, leave, and non-DATA-CEN activities. The model imitates the yearly operation in PMRNA. Personnel in PMRNA work forty-hour weeks; there is very little overtime (11). With fifty-two weeks in the year, there are 2080 hours available for work. Holidays, vacation, sick leave, administrative leave, training, and other miscellaneous activities reduce the number of hours which each emplovee is available for performing the modeled work. Because much of this non-modeled activity occurs at different times for different employees, the model makes each worker unavailable for modeled work for small periods throughout the year, instead of merely reducing the work year by the time spent on non-modeled activity.

When buying personnel are on-the-job, they do not spend all their time working on activities which are included in the model. Clerks spend time sorting the mail, and performing computer validations. Buyers spend time attending meetings with engineers and contractors which do not result in contractual actions. PCO's process mar administrative documents which are required, but not incj od in the model. PCO's also train buyers and substitute for mationing personnel.

A list of the non-modeled work activities was provided in the questionnaire. The experts estimated the time spent on the non-modeled work. These estimates were analyzed in the same manner as the estimates of the service activities. The results are listed in appendices F, H, and J.

During the interview, each expert was asked for an estimate of the amount of the work day that he (or she) spends socializing or taking breaks. This data was analyzed in the same manner as the estimates on the service activities. The results of this survey of the amount of time which is spent On non-DATA-CEN work is presented in Table 2.

Since the model accounts for 2080 hours in a year, the buyers, clerks, and the PCO in the model must be made unavailable to perform work for the calculated percentage of the year that each worker spends on non-modeled activity. This was done in the model by adding non-modeled time to

TABLE 2
Modeled Work Hours in Year

	PCO	BUYER	CLERK
Total Hours in Year	2080	2080	2080
Total Leave, Holiday	540	540	540
Hours at Work	1540	1540	1540
Time Spent on Non-Modelea Work Time Spent Non-Productively Time Available For Modeled Work$\quad 647$	493	400	

each service time performed by the buyers, clerks, and the PCO. The non-modeled time is a percentage of the working time. The percentages used were:

PCO 169% of working time $\quad[(2080$ hours $/ 773$ hours $)-11$ Buyer 173% of working time [(2080 hours/761 hours) - 1】 Clerks 106\% of working time [(2080 hours/l009 hours) - 1〕

The model adds vacation, non-DATA-CEN work time, and nonproductive time to each service activity. Whenever one of the buyers, clerks, or the PCO works on a PR, time is added to the service time for these non-modeled activities. The problem with using this method for accounting for non-modeled time is that working activities and non-working
activities have equal priority in the model. Each server works on non-modeled activities without considering whether the non-modeled activities are as important as the modeled activities. Experienced personnel in R\&D Contracting $(11,15)$ stated that much of the non-modeled work has a lower priority than the modeled work, so the buyers and PCO's would not perform some of the non-modeled work until they were idle. They estimated that at least 25% of the nonmodeled time would be spent on this low priority work.

To more accurately simulate the contracting cycle time, the modeler deleted the accounting for the low-priority, non-modeled work in the model. This low-priority work makes up 17.5% of each of the buyer's and PCO's workload. So the model was modified to reduce the percentage of non-modeled activities which would be performed after each service activity. The non-modeled times which are added to the service times as a percentage of work time were changed to:

PCO 129\%
Buyer 132\%
Clerk 106\% (unchanged).

With this change, the contracting cycle times predicted by the model were much closer to the actual contracting cycle times (see figure 8).

$$
\begin{aligned}
& \text { MODFL } \\
& \text { AACTUALS }
\end{aligned}
$$

Analysis of Figure 8

The twenty-four networks are listed on the X -axis (four of the modeled networks received no PRs, so they are not plotted). The contracting cycle times (in hours) are listed on the Y-axis. The dotted line connects the discrete points of the average actual time that each network was completed in PMRNA in FY82. The solid line connects the discrete average contracting times projected by the model for each network.

The projected contracting cycle times for the competitive contracts (F2 through C9) for the model compare favorably with the actual contracting cycle times. Network C8 is the only anomaly. Actuals for the C8 network (competitive contract between $\$ 3.5$ million and $\$ 10$ million) for both PMRNA and for the Directorate (not shown) are lower than the actuals for network C7 (competitive contract between $\$ 1$ million and $\$ 3.5$ million). Network $C 8$ has all the procedures of network C7, and additional reviews, so it is logical to expect the C 8 network to have a longer contracting cycle time than the $C 7$ network. Since the $C 8$ network has a shorter contracting cycle time, another factor must be influencing the results. The branch chief of PMRNA suggested two possible factors (11):

1. better buying personnel are assigned to the larger, more complicated contracts,
2. the high dollar PR's have a higher priority than other contracting actions, so queuing times for these actions are reduced.

Another factor which might explain the anomaly, is an inadequate sample. Only 10 C8 networks were processed in FY8?. The model may be correct; the actuals may be unrepresentative of the population.

Networks F3 through S7 are the sole source contracts. The difference between the output of the model and the actual output is significant. The service times collected on the solicitation phase of these sole source PR's appear to be erroneous. The service times collected are very similar to the service times collected for the competitive PR's. The buyers apparently estimated the time for preparing a full solicitation package (including model contract) on the sole source PR's. The researcher expected the estimates to reflect the time required to prepare a letter solicitation. Instead, the estimates received reflect the time required to prepare a full solicitation package. The actual contracting cycle times are so short, that letter solicitations must have been used. So why did the sample of buyers make estimates on the full solicitation package? A former member of Committee (30) stated that letter solicitations are not authorized; the buyers are supposed to prepare full solicitation packages for all sole source solicitations. To
improve the model, a sample of the sole source contracts should be reviewed to determine whether letter solicitations are commonly used. If letter solicitations were used, new estimates on the service times for processing sole source PR's should be collected.

Networks F4 through M7 are the contract modifications. Although the actual contracting cycle times appear to be considerably smaller than the model's projections, the model's projections are probably more accurate. The experienced personnel in R\&D Contracting who took part in the survey stated that the $P R$ for any modification is not usually received at the beginning of the contracting cycle. The PR is usually received with the technical evaluation of the contractor's proposal. Sometimes the $P R$ is not received until after the completion of negotiations. So the contracting cycle times shown as 'actuals' do not include the entire contracting cycle time.

The administration networks (Al, Fl, and MO) are reasonably replicated by the model. The addition of a prioritv factor into the model could increase the accuracy of the model. Administrative notices (Al) usually have a low priority, so a longer contracting cycle would be expected. Fundings (F1) with a higher priority would have a shorter contracting cycle time.

In summary, the competitive networks (except network C8)
and the administrative networks are accurately modeled. The modification networks are probably accurate, but this cannot be proven. The sole source networks are inaccurate, but they contain the smallest number of PR's, so the effect on the total model is minimized.

Variance Reduction

Variance reduction was employed in the model by using the same seed for each experiment. This means that the model used the same random numbers in each experiment. Controlling the variance was also performed by running each experiment for a ten-year simulation period, which increased the sample to decrease the variation of the results.
Service Distribution Type
The triangular distribution was employed on all service times. Because the model appeared to perform properly with the triangular distribution, the alternative distributions (Beta-PERT or discrete) were not tested.

Starting Conditions

Starting the model from idle conditions would not be representative of the organization being modeled; some work is received one year and processed the next year. To determine the equilibrium state of the model (the point where a longer warm-up period has no effect on the workload in the
model) six different start-up periods were tested:

1. no starting conditions (0 hours),
2. three months (520 hours),
3. six months (1040 hours),
4. nine months (1560 hours),
5. one year (2080 hours),
6. two years (4160 hours). The results are shown in Table 3.

TABLE 3
Starting Conditions

Starting Conditions	0	520	1040	1560	2080	4160
Average Contract						
Server Utilization						
3 Buyers	59.5%	68.78	73.3\%	69.28	71.08	72.98
PCO	55.6%	58.58	65.48	62.78	65.5%	61.8%
Clerks	46.0\%	53.18	59.9\%	56.2\%	58.2%	59.0\%
Queue						
3 Buyers	1.08	2.04	2.62	1.56	2.19	2.66
PCO	. 99	1.49	2.55	1.95	3.00	1.84
Clerks	1.20	. 97	1.07	1.00	1.18	1.11

The table indicates that with starting conditions of 1040 hours (six months of warm-up time) or more, the model reaches equilibrium conditions. A starting time of 2080 hours was used throughout the experimentation.

Results of Experimentation

In analyzing the results of the experimentation, the following statistical tests were performed to compare the means of the average contracting cycle times:

1. T-Test

HO: $\mu_{1}-\mu_{2}=0$
Ha: $\mu_{1}-\mu_{2} \neq 0$ (i.e., either $\mu_{1}>\mu_{2}$ or $\left.\mu_{2}>\mu_{1}\right)$.

Assumptions: (1) both populations are normally distributed, (2) both population variances are equal (this is confirmed in the second test).

$$
\begin{aligned}
& \text { T-critical }(N=10, \alpha=.05)=1.833 \\
& \text { T-calculated }=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{S_{p}^{2}\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}\right)}} \text { where } S_{p}^{2}=\frac{\left(N_{1}-1\right) S_{1}^{2}+\left(N_{2}-1\right) S_{2}^{2}}{N_{1}+N_{2}-2}
\end{aligned}
$$

$$
\text { Decision Rule: If } T \text {-calculated }\rangle T \text {-critical then }
$$

reject Ho.
2. F-Test

Ho: $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1$
Ha: $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq 1$
F-critical $(N=10 . \alpha=.05)=3.18$
F-calculated $=\frac{5_{1}^{2}}{s_{2}^{2}}$
Decision Rule: if F-calculated $>$ F-critical
then reject Ho.
These tests will be used to answer the research questions.

Research Question 1

Research question 1 was to determine an optimum ratio of buyers-to-clerk for the Flight Dynamics Branch (PMRNA) of R\&D Contracting, assuming a workload similar to the actual workload of that branch in FY82. The three buyers, two clerks, and buyer/PCO were expected to perform 40% of the actual workload of the branch (11). The standard ratio of buyers-to-clerk is 2.4 to 1 . One clerk is expected to perform clerical duties for two buyers and one buyer/PCO. The model assumed that the PCO only generates clerical work when performing as a buyer.

The buyer/PCO carries 40% of the buying workload of a journeyman buyer. This ratio was varied to 2 to 1 and 3.4 to 1. The workload for the buyers and buyer/PCO was constant throughout the tests (given the normal random variations). Table 4 contains the significant results of the experiment.

A reduction from the standard 2.4:1 ratio decreases the average contracting cycle time by 7.3 percent. This difference is statistically significant (see Table 5). Increasing the buyer-to-clerk ratio does not make a statistically significant difference to the average contracting cycle time. The clerks' server utilization time increases as the clerks' workload increases. The number of PR's sitting in the clerks' in-basket increases and the time that

TABLE 4

Buyer-to-Clerk Ratio

Ratio	$2: 1$	$2.4: 1$	$3.4: 1$
Average Contracting Cycle Time (hours) Server Utilization	390.3	418.8	413.1
Clerks	46.8%	58.2%	81%
Average Number of PR's in Clerk's Queue	.68	1.18	4.53
Average Time of PR's in Clerk's Queue (hours)	3.03	6.00	9.77

the average $P R$ sits in the in-basket increases from three hours to almost ten hours.

The T-calculated values are shown in the top half of Table 5. The values which are greater than the T-critical value of 1.833 are designated with an ' X '. This designatinn means that in comparing the means of the average contracting cycle times, the differences are statistically siqnificant (i.e. the null hypothesis is rejected). When the $T-$ calculated value fails to exceed the T-critical value, this condition is designated with an ' 0 ' in the bottom half of Table 5. The ' O^{\prime} designation means that in comparing the means of the average contracting cycle times, the difference

TABLE 5
Buyer-to-Clerk T - Statistics

	2:1	2.4:1	$3.4: 1$
$2: 1$	---	4.18133	3.22125
2.4 : 1		-	0.70004
3.4 : 1			----
$2: 1$	--	X	X
2.4 : 1		----	0
3.4 : 1			--

T-calculated is shown in table.
T-critical $=1.833 n=10 . \alpha=.05$
$X=$ Difference (row and column) is statistically significant.
$0=$ No statistical difference. Null hypothesis cannot be rejected.
results in insufficient evidence to reject the null hypothesis. There is no statistical difference between the means.

Clerical workload can be increased from its present level up to 40% without significantly effecting the average contracting cycle time. A reduction in clerical workload reduces the average contracting cycle, slightly.

Research Question 2

Research question 2 was to determine an optimum level of work for the PCO who reviews and signs for 3 journeyman buyers. The branch chief of PMRNA (12) stated that he would expect this PCO to carry 40% of a journeyman buyer's workload in addition to his PCO duties. The PCO's buying workload was changed to 20\%, 30\%, 50\%, and 60\% of a journeyman buyer's workload. No work was added or subtracted from the total workload that was in the branch. The PCO merely performed more or less of the buying workload. When the PCO carried a larger workload, each of the buyers had a smaller workload. The results of this experiment are shown in Table 6.

TABLE 6

PCO Workload

PCO Workload	20\%	30\%	408	50%	608
Average Contract Cycle Time (hours)	405.4	410.8	418.8	493.4	453.7
Buyers utilization	74.8\%	74.7\%	71.0\%	73.6\%	73.08
PCO Utilization	48.5\%	59.4\%	67.5\%	79.78	77.08
Waiting Time in Queue					
Buyer's Queues	10.9	12.7	10.0	12.1	11.3
PCO's Queue	2.7	4.6	11.4	15.6	10.7

TABLE 7

	208	$30 \overline{7}$	40\%	508	60%
20\%	--	. 822707	1.77099	11.2084	5.85956
30%		--	1.14885	11.3586	5.57632
40%			--	9.11044	4.07487
50%				--	4.50248
60%					--
20\%	--	0	0	X	X
30\%		--	0	x	X
40\%			--	X	x
50\%				--	X
60\%					--
T-calculated is shown in table					
T-critical is 1.833. $\mathrm{N}=10 . \alpha=.05$					
$X=$ Difference (row to column) is statistically					
significant.					
$0=$ Difference (row to column) is not statistically					
significant. Null hypothesis is not rejected.					

The T-calculated values are shown in the top half of Table 7. The values which are greater than the T-critical value of 1.833 are designated with an ' X ' in the lower half
of the table. The ' X ' designates that the difference between the means of the average contract cycle time of the row and the column are statistically significant. For example, if the PCO's buying workload were increased from 30% of a buyer's workload to 40% of a buyer's workload, the increase in the average contract cycle time is not statistically significant. The T-calculated value of 1.14885 is less than the T-critical value of 1.833 , so the T-test states that the means should be considered to be the same. This conclusion results in an ' 0 ' being placed in the lower portion of the table. When the difference between the means is significant, as in the difference between a workload of 40% and a workload of 50%, the T-calculated value of 9.11044 is greater than the T-sritical value, so an ' X ' is placed in the lower part of the table.

Increasing the PCO's workload from 20\% has a negative effect on the average contracting cycle time. As the PCO increased his workload, the waiting time of contracting actions from the buyers increased from 2.7 hours to as high as 15.6 hours. The amount of work relief that the PCO could offer the buyers by the PCO shouldering more of the buyer's workload did not offset this loss of efficiency in the PCO reviewing cycle.

Research Question 3
Research question 3 was to plot the contracting cycle
time against the percentage of the PMRNA workload that the servers in the model are processing. Figure 9 is this plot.

If the servers in the model perform more than 35% of the branch's workload, the contracting cycle time increases rapidly with each increase in workload. At 55% and 60% of the branch's workload, the model failed to complete the simulation for ten years, because the amount of work-inprocess became too great for the simulation language (Q-GERT can process up to 100 PR's simultaneously). The plot points for both workload 55\% and 60\% are averages for one year instead of ten years, so they are much less reliable as statistical averages.

Table 8 is a comparison of the average contract cycle times for the specified workloads. The T-calculated values are shown in the top half of the table. In the lower half of the table, the T-calculated value is interpreted. An ' X ' means that the difference between the average contract cvcle time of models specified in the row and column headers is statistically significant. An ' 0 ' designs that, statistically, the two averages are the same. If there were no statistical differences between any of the averages, then workload would have no effect on contracting cycle time.

A designation of ' F ' in Table 8 means that the comparison of averages could not be performed by the T-test because the assumption of equal variances could not be sup-

TPABLE 8

Effect of Workload on Contracting Cycle

	20\%	258	308	35\%	408	45\%	50\%	55\%	60\%
20\%	--	4.2	5.3	5.6	14.2	16.3F	28.4	67.8	59.3
25\%		--	1.6	2.2	10.8	13.7F	25.4	64.8	55.9
30\%			--	0.5	8.2	21.7	21.8	47.9	41.1
35\%				--	7.4	11.0	20.6	43.6	27.2
40\%					--	5.1	13.9	34.6	28.0
45\%						--	6.5	17.8	13.2
50\%							--	12.2	13.2
55\%								--	5.8
60\%									--
20\%	--	x	X	X	X	F	X	X	X
25\%		--	0	X	X	F	X	X	X
30\%			--	0	X	X	X	X	X
35\%				--	X	X	X	X	X
40\%					--	X	X	X	X
45\%						--	X	X	X
50\%							--	X	X
55\%								--	X
60\%									--

T-calculated is shown in table
T-critical $=1.833 . \mathrm{N}=10 . \alpha=.05$
$X=$ Difference (row to column) is statistically significant.
$0=$ Difference (row to column) is not statistically significant. Null hypothesis cannot be rejected.

F $=$ Failed F test, assumption of equal variances is not supported, so result of T test is suspect for individual comparison.
ported. Other statistical tests could be used to determine whether the difference between the averages are statistically significant, but additional tests are not necessary in this situation. Since there is a statistically significant difference between the 40% workload and the 35% workload, and there is a statistically significant difference between the 35% workload and the 25% workload, then there must be a statistically significant difference between 40% and 25% (the average contracting cycle time consistently increases from 20\% to 40\%). The failure of the F-test is considered to be a Type II error (17:285).

Research Question 4

Research question 4 was to determine the effect on the contracting cycle of eliminating the Committee review of funding actions (network $F 1$) from the required procedures. The effect was very significant (see figure 10). The overall effect on the average contracting cycle time was to reduce
би!forazuoj fo ydeay
OI วan6!f

3
the average from 418.8 hours to $338: 5$ hours, a 19% reduction. Making a change in the funding process should have a big effect on all the work-in-process, because fundings make-up over one-quarter of the PR's received in PMRNA. The time saved from eliminating the Committee review is not just the time that the PR spends in Committee. The time saved is the preparation of the Committee sheet, the PCO review, two buyer reviews, and one clerical correction service time. This time-savings can be used productively for processing all work-in-process. So the change in one network can influence the completion times of all the networks. Table 9 is the T-test which verifies that the difference is statistically significant.

TABLE 9

Change in Funding Procedures

Conclusion: There is a statistically significant difference between these two means.

This experiment demonstrates the power of this management tool. Eliminating the Committee review of funding actions would obviously reduce the contracting cycle time for funding actions, but predicting the effect of this change on other actions is very difficult to forecast without a model.

Summary

This chapter reviewed and analyzed the results of the study. A review and analysis of the data collection, the verification and validation of the model, and a description and analysis of the research experimentation was presented. Chapter v summarizes the study, presents conclusions, and makes recommendations for future research.

SUMMARY, FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS
The purpose of the study was to develop a model of the contracting cycle of a contracting organization. The model can be used to predict the effect of changes to the organization, procedures, and workload on the contracting cycle time. The Directorate of R\&D Contracting, Aeronautical Systems Division, Air Force Systems Command, located at Wright-Patterson Air Force Base, Ohio was selected as the Contracting organization to model. R\&D Contracting was selected from the many contracting organizations at Wright-Patterson Air Force Base because they are processoriented; thousands of purchase requests (PR) follow the same procedures. An improvement in the contracting process in R\&D Contracting may have a permanent effect on the contracting cycle time.

To construct the model, data was collected on the contracting procedures used in R\&D Contracting. Detailed procedures were ascertained on twenty-eight different contracting networks. These networks ranged from the unilateral administrative notice to the ten million dollar competitive procurement. Service times for performing the activities required by the contracting procedures were
collected from estimates provided by experienced personnel in R\&D Contracting. Three estimates were provided by each expert on each activity. The first estimate was the normal or average time to perform the activity. The second estimate was the optimistic or shorter-than-average time that an activity would take to perform if there were less problems than usual. The last estimate of each activity was the pessimistic or longer-than-normal time that an activity would take to perform if there were many problems encountered. From these estimates a distribution, or range of times, was computed on each activity.

The model was constructed using the Q-GERT simulation language. Q-GERT is based on the PERT method of determining the time that a project will be completed. Q-GERT improves on PERT by using a distribution of service times instead of converting the estimated times into one service time. Q-GERT also incorporates queuing which permits a more realistic assessment of the completion times of work flowing through the system, because work can be stopped in queues, in-baskets, if a server in the system is busy performing other work. Q-GERT has been used to analyze systems similar to R\&D Contracting.

Findings
After the model was constructed, it was tested for
accuracy. The PR's received by a branch of R\&D Contracting in FY82 were replicated by the model to determine whether the output of the model would imitate the actual contracting cycle times. The management information system, DATA-CEN, of R\&D Contracting provided a list of the PR's received in FY82, and the contracting cycle time of those PR's. The model successfully imitated the contracting cycle time of the competitive PR's and the administrative PR's. The model appeared to overestimate the contracting cycle times for the sole source PR's and for the contract modifications. The DATA-CEN system underestimates the contracting cvcle times for contract modifications because most contract modification PR's are not received until the middle of the contracting cycle, so the modeled contracting cycle times for contract modifications may be accurate.

The modeled contracting cycle times for sole source PR's were definitely higher than actuals. Fortunately, this group has the smallest number of PR's, so the total effect on the model was minimized. The overestimation by the model is probably based on the difference between the method specified by the written procedures, and the method actually used in processing sole source PR's.

The model was used to perform four experiments to demonstrate the potential of the model as a management tool. Research question 1 was to determine the effect of varving
the buyer-to-clerk ratio on the contracting cycle time. Three tests were run using: (1) two buyers-per-clerk, (2) 2.4 buyers-per-clerk, and (3) 3.4 buyers-per-clerk. The results were that there was little change in the total contracting cycle time. Server utilization of the clerk increased from 47% to 81%. The model predicts that there would be little saving to the contracting cycle time if the workload for each clerk was reduced, and there would be no increase in the contracting cycle if the workload for each clerk were increased up to the tested maximum of three buyers and a PCO.

Research question 2 was to determine the optimum level of buying work for a PCO with three buyers to sign for. Five different worklevels were tested, 20\%, 30%, 40%, 50\%, and 60% of a journeyman buyer's workload. The result was that reducing the PCO's workload below the standard 40% did not change the average contracting cycle time significantly, but increasing the PCO's buying workload above the standard 40\% caused a significant lengthening to the contracting cycle time. Since the PCO performs services on every PR, a PCO with a big backlog of work delays all the PR's. The PCO is a potential bottleneck in the contracting process, so the PCO's workload should be monitored by management.

Research question 3 was to determine the point where a small increase in workload would lead to a large increase in the average contracting cycle time. That point is when the
modeled group attempts to perform more than 35% of the branch's workload. If the workload for this group was reduced from the standard 40% to 35%, the savings in the average contracting cycle time would be 16%.

Research question 4 was to demonstrate a powerful use for the model of answering 'what if' questions on the contracting procedures. The 'what if' question demonstrated was - what if committee reviews were eliminated on fundings. The result of this change in the model was a reduction in the average contracting cycle time of 19\%. Because there are so many fundings in PMRNA, this small change in procedures can lead to a big reduction in the average contracting cycle time for all networks.

Conclusions

Managers make many decisions which effect the contracting cycle time. Before making a decision, the manager should consider the cost or benefits which would accrue to the contracting cycle time. Predicting the effects of a decision is difficult because of the complexity of the contracting procedures. Measuring the effects of a change after the decision has been implemented is often difficult, if not impossible, because there is usually more than one change to the inputs, procedures, or resources in any time period; the workload changes, the experience level
of the buying personnel changes, and contracting procedures change frequently.

Modeling is a technique for predicting the effect of change. The model developed for this study attempted to incorporate many of the variables which compose the contracting process in R\&D Contracting. The model is very detailed (see Appendix C). The verification, validation, and research experimentation of this study, demonstrate that the model can imitate the contracting process and have many valuable uses as a management tool.

In the past, managers have either had to ignore a decision's impact on the contracting cycle, or gauge a decision's impact on the contracting cycle on their experience. The prediction of the effect of a decision has been an art. The use of a model introduces science into this area of decision-making. A model cannot replace the manager in decison-making, but a model can provide the manager with valuable information upon which to make good decisions on issues which effect the contracting cycle time.

Recommendations for Future asearch
This model can be improved with a relatively small
amount of additional work. Modeling is an iterative process. A system is examined, data collected, a model constructed and tested. The test reveals areas where the
model can be improved. The second iteration is where the system is re-examined in order to solve the deficiencies in the model. More iterations may be required. The modeler must decide when the model is sufficiently perfected to suit his needs.

The needs of the contracting manager is for a management tool which can be used to predict the effect of changes to procedures, organizational stucture, and workload on the contracting cycle. The model san do that now. The issue is whether the model's predictions are sufficiently accurate, and whether management has sufficient faith in the model's ability to predict the effect of change. Additional research could improve the accuracy of the model's predictions, and provide another demonstration of the model's ability to accurately predict the future by using the model to predict the past of another branch of R\&D Contracting.

Additional research should examine the discrepancy between the actual results and the modeled results of the sole source networks. The networks may need to be restructured to reflect the procedures actually used in R\&D Contracting if these procedures differ from the formal written procedures. This restructuring may require a limited amount of data collection on service times.

Data should be collected on the point in the contracting cycle of the contract modification when the $P R$ is received.

The model could be easily modified to collect statistics at that point to aid in the validation of the model. The first-In, first-Out queuing system of the model should be examined to determine whether a more sophisticated system using a complicated priority system would more realistically simulate the contracting process. During data collection, many buyers, clerks, and PCO's stated that they select items from their in-basket in the following order: (1) items requiring a small amount of work, (2) high priority items, (3) Fast Track PR's, (4) any other preaward work, (5) post-award administration. The model should be revalidated by modeling another branch of R\&D Contracting. A successful validation of a second branch should bolster any decision-maker's faitil in the accuracy and applicability of the model to his or her branch, division, or directorate.

The model is bumping against the limits of the $Q-G E R T$ language. The model failed to complete its simulation when workload exceeded 100 PR's in process. Another simulation language, such as SLAM, might be examined to determine whether another language might better accommodate this simulation.

Only twenty-eight of the thirty-four networks used in R\&D Contracting were modeled. Future researchers should consider adding the other six networks to the model.

Network Ml, contract modifications under $\$ 10,000$, should definitely be added.

Data on the service times was collected by the subjective technique of asking experienced personnel to estimate the time that is required to perform each service activitv. Now that a base as been built, some key service times can be more accurately determined by using an objective work measurement technique, such as self-logging.

APPENDIX A
 COMPUTER PROGRAM NET

```
PQUGRAM NET
IHTEGER·SEFYE(IE),HERE,STEP.CELAT,E:EEP(:O).AFFIEM
CHA!ACTER بETMK=2,NA:せES(12)-12
```



```
Cg4MOA FACTCR,NCAFA"
```


- © REPRODUCT:ON*••MANAGEMENT•/

C
STミニニ1
SELことこ=う

CJUxTニ:
OQENT*.OENTER VAME : FF VETHUOK EZ CHARACTEQSIO
- EAD-, VET甘K
OQIVT*.
PR:NT**NTWK, NETWCZK*
OPEN(1u)
HF! TE(:?,:ir) NET甘K

PR!VT•.•ENEEK L:NE iUMEER•
READ.OLINE
PQIVT••LINE SUMBEत = •LIルE

-LINE-ここっしこっぱころ, LIVE+24

C
C
C

-LINE+35.L!?! E-30

$$
\begin{aligned}
& \text { *", ", ころ, ", ") }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C } \\
& \text { WRITE(iO.2e4) \ÐK STE? } \\
& \text { PRIVI 1こム, AETHK, EJEF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C } \\
& 10 \text { इC(SELミCT.EG.1):HE!: } \\
& x=2 \\
& Y=5 \\
& V=7 \\
& \text { Wニコ } \\
& \text { E:D:F } \\
& \text { C } \\
& X=1 \\
& Y=5 \\
& V=10 \\
& W=: 1 \\
& \text { END:F } \\
& c \\
& \text { - IF(SELECT.EQ. こ) THEA } \\
& X=1 \\
& Y=6 \\
& v=2= \\
& H=12 \\
& \text { E } \because=\% \\
& \text { C }
\end{aligned}
$$

$$
\begin{aligned}
& x=\text { : } \\
& Y=5 \\
& V=i< \\
& \text { } \omega=:= \\
& \text { E: Di } \bar{F}
\end{aligned}
$$

$$
\begin{aligned}
& x=\text { ? } \\
& Y=\Xi \\
& \text { - } \quad \\
& \text { W= } \\
& \text { E:0:F } \\
& \text { C } \\
& \text { Gご: 2F } \\
& \text { FF: : : *, " }
\end{aligned}
$$

DEこう「．．．•
Dこ 27 $\mathfrak{U}=\mathrm{Y}$ ，Y

```
1- FR̃I:UT*.U.* viNA!ESS(U)=...
        27 CONTINUE
    C
        DO 2S I=V,W
```



```
        2#CO:TINNE
C
    PFEMT*." *
```



```
    ミこAD*,DEJこ
    IFCCOUMT.ET.LI-RE:N
        DJ ミ氵 }N=:,C(U!:
        ZF(DEST.EG.ELEK(?i))THEiA
        PGINT*, "DESTI:IATIOIGS ALREADY USED. GOTO TFAFEIC.*
        GGFO 10
        EP:DIF
        31 CONTIMUE
        ENDTF
        IF(JELECT.E゙タ.DEこTVFRET,
```



```
        GC-::
        EI.D:F
```



```
        とごご•4トFミー:
```



```
C
```



```
        ELEミ
        HEマこここごになくこ
        IF(HEFこ.G7.ミ)HE*ここう
```



```
        E:D:=
```



```
        WF: E(:, i.7) A AMES(DEST)
```



```
C
```



```
            つミA)*,ミビ比
            !F(MFF:-A.Or..:)-H:"
```



```
PEAD＊，FACTER，PAPAPAM
－RINT 2 こ5，EERVEイDESTI，FACTER，MIFARAW
```



```
OE：NT•．EK－rESCl！NOT2）
REAJP，AFFIFM
```



```
C
else
CALL QATE：
```



```
ENO：F
c
133 FFCOEST．EG－IUITHEN
UFITE（：3．1ま！）
LAST＝L！NE－STミア＊！
DQ 202 ：＝L：P．E＋ラTEF＋I，LI：U＋2ヨ
WRIIE（！！11：2）LAST
LAST＝LAS゙＊＊
202 COHIJUE
```



```
PQ！：i ：：：AETUK
```



```
PRINT＊．＇LAET LEAE USED＝，LINE－STEP
```



```
－FマクM GCTO STATEMENT AT ミTAFY OF AETVOFK＂
Pこ：MT．．．
PRINT＊．DC YCU WANT PAE LIST UNETIEN T：PAPEIS？．
PR．！HT•・イEE（J）ここ（2）•
READ．，AFF：＝
IFCAFFIRب．EG．I）THEY
```



```
chal oarye
PRIMT••仏F TARLE YOITTEN TO TAPEIJ．
EVOIF
ST．2P
ELSE
SELECT＝DEST
DEST：
C：IUNT＝CNUYT－1
IF！＝ELECT．ET．A）？HEN
PQINT••＂
ORI：TT••＂
PR：YT－，©END UF STEコ •STEP
STE゚ーラ゙ミ？•！
```

```
        WRITE(10,11i)
        - WFITE(i:,I13)
        PRINT 1G4,METWK.STE=
        Wन!TE(iJ,104) A, ETWK,STE,
            -HRITE(IO,113)
    113 FCRMAI('C')
    111 FCPMAT(6X,*GOTE F599*)
        COUNT=\hat{}
        ENDIF
C
    IF(COUNT,GT,O)THEA...
        ELEN(CSUNT)=SELECT
        PRIMT*:O --...
        03 115 I=:,COU!.
        PRINT*,"
        -HESTORY*
        TO *TAMES(ELEN(I))
    115 CONTINUE
        PRINT*,*
        EADIF
----... ENDIF
C
.-.---6OTG-1.- 
        END
        SUBROUTIME FATIO
        REAL E(3),A(11),C(IC),AFPLE(10),CAFRCY(5)
        INTEGEP AFFIPM
        COMPIN FACTCF,HIFAFAN
C
```



```
C
    10R PRENT*, *EMTER NGRMAL, OFTIMISTIC, PESSIMISTIC.
        REAO*,S(亡),日(2),日(こ)
        PRINT*:* ....H(I)., *,8(2),! *,H(3)
        IF(S(1).EQ.99)GCTS 1400
        IF(B(i).LT.G(2).OF.E(1).GT.B(J))THEN
        PPENT*,' *
        --..PFINT*,OUT.GF GNDEF. REINPUT.: -
        PEINT*,*
        GGT.3 1:%
        ENDIF
C
    PEINT*', '
    PRINT:," ik - YËS(1) &%(2):
    P方品*,',
    PEAD=, AFETFA;
    IF(AFF:;M.EG.E)*OTO 10%
C
    FAC:0:=!:(:)
```

c
B（こ）＝ $\mathrm{B}(2) / F A C T 心 ん$

C
kinunt＝i
＝1
122 IF（S（2）．LE－A（I）．AND．B（E）．GT．A（I－I））GCTC 2236
$I=!+1$
KEUMT＝KOUNT＋ 1

C

$1230 \mathrm{~J}=:$
－1240 IF（B（3）－EE．C（J）．AND．B（3）．LT．C（J＊1））GOTE 130 C
$J=J \bullet 1$
よごうごこも
C

－ET URA
C
140：00 ごら：J＝1，1i
a PPLE（J）＝（A（J）A A（J＋1））／2
30ヶE CJッT：Nした
C

3010 CENTINUE
c
； 25 303．K＝：．5．1

20．0 C：VTINUE
3030 CONTINLE
RETURN
ENO

1


```
GEN,MILLER,STAGE,E,24,1983,0.1,9999.4160.10,.2080.53*
SEE,10.43131766901101.
SOU.1,0,1*
VAS.1.5,C O.0*
REG,2.1,1*
REG.3.1,1,F*
SOU.4,0.1.
VAS,4.5,C:0.1*
REG,22.1,1*
SOU,6*
REG.14*
QUE,5/BUYER-A*
QUE.7*
QUE,8*
QUE,12/BUYER-B*
QUE .1B/BUYER-C*
QUE.25/BUYER-D,0.(10)こ6*
RES,1/RUYER-D,1,26*
ALL.2S,LNF,1,.25/27.31/33*
QUE,2T*
REG,28,1,1,A*
FPE,29.,1,1,26*
REG,11,1,1,F*
*
QUE,37/CLE?K-A,(1E)3&.
QUE.3シ*
QUE,40*
FQE,41,0,3,1.3:-
RES,3/CLERK-A,1,J!*
ALL,3S.,3,.37/3C*
ACT,39,40,AT,44,15/CLERK-A*
ACT,40.41,AT,63.16/CL-A-BFD*
ACT,41,49*
QUE,43/CL. ह..K-B,(1:0)44*
QUE,45*
REG,45,1,1,F*
ALL,44, 2,:43/45*
RES.2/CLE=K8.1.44*
FRE,47,C,2,1,44*
QUE,46*
ACT,45,45,AT,44,17/CL-B*
ACT.45,47.AT.S2.:E/CL-HFD:*
ACT,47,47*
*
OUE.31/PC:•(1J)2ら*
```

```
QUE.33*
REG:34,1,1,A*
FRE,35,.1,1,26*
REG,24,1,1,F*
*
REG,50.1,1,F
SIN.51/DI STRIB.1,1,D.I*
* ATTRIBUTE 6 ASSIGRIS BUYER-CLERK RATIC:
            6,CO.3 = 2 BUYERS + 1 PCO PER CLEPK
            ÓCJ,2 = 2 BUYERS PER CLERK
            6,CO,4 = CLERK B HAS 3 BUYERS & PCO
            7.CO.2JBI = START-UF TIPE OF 2OSJ HOURS
VAS.2,1,CO,1,Ó,CC,3,7,CC,2J60.,2,UF,1*
VAS,3.3,UF.2*
VAS,51,5,UF,3*
PAR 1 20, 0. .1.*
PAR.20,.1.,4.40.
- TO CHANGE HORKLOAD ARIJUNT CHAINTE PAF.,3O CARD AS FOLLOWS:
* PAR.3C.37.5451..01.0E.63261 ここ%
* PaR.30,30.7351..01,.5.3こ5099 25%
* PaR.30, 25.U301..C1..4.42174 3C%
* PAR.30,21.4544..C1..3.75000 35%
* PAQ.jC.!9.7725..01..3.3163 40z
- PaR.3C.16.5367,.01.02.74783 45%
* Par,3n,15.\151,.CI..2.ó5304 50%
* PaF.30.13.jこ25,.C1,.2.41186 55%
* PAF.3C.22.515..こ1..2.21:57 E%*
PAR,3n,13.7735,.0i,93.3175*
MOD,53,22,14*
MOD,54,14,22*
ACT.1.1,NO.3!.1/NEH-DE*
ACT,1,2*
ACT.2.3*
*
ACT,3,5.,( &)2,AG.r@.1*
ACT,3.12,(2)3,A7.EQ.1*
ACT,3.15,(3)4,A,.,FQ.1:
ACT,3,25,(3)5,AS.EG.1:
ACT,3,37,(9)5,A1C.EG.:.
ACT,3,43,(8)7,A11.EQ.I*
ACT,3,31,(9)=,A5=.EO.:*
*
* TO CHA`GE HORKLCAC CHAMGE ACT.4.4 AS FELIENE:
* 20%.AC「.4.4,CC.10.YCO1.E/CCIFUN.
* 25% ACT.4,4,Cこ.8.72T27, こ/こCTFU:*
* 3C& ACT.4,4,C7,7.27こ73,2/OCTFUN=
* 35% ACT,4,4,CJ.S.こうミ77,.?/こC`FU:.
* 40% ACT,4,4,CN,5.45455,:/JCTFU:.
```

```
* 45% ACT.4.4.C0.4.84248.2/OCTFUN:
    * 50% ACT,4.4,CO,4.36364,2/OCTFUN*
    * 55% ACT,4,4,C0,3.96E94.2/NCTFUN*
    * 60% ACT,4,4,C0,3.63636,2/OCTFUN*
    ACT.4.4,CO.5.45455,2/CCTFUN*
    ACT.4.22*
    ACT.22.2*
    ACT.6.7.
    ACT,7,8,C0,155,53/0CT=
    ACT,&,7,CJ,1C12,54/NOVSEP*
    *
    ACT:5.11,AT,42,3/BUY-A.
    *
    ACT,12,11,AT,42,S/BUY-B*
*
ACT,18,11,AT,42,11/BUY-C.
*
ACT,27,2E,AT,42,IZ/BUY-D*
ACT,28,29*
ACT,28,11*
*
ACT,11,37,(%)1,A12.EQ.1*
ACT,11,43,(8)2,A13.EO.1*
ACT,11,31,(%)3,A14.EN.1*
ACT,11,5:.AT,5i.2T/CMNTTEE,.4,A15.50.i=
ACT,11,3,(2)5,A1G.EG.I*
ACT,11,3,AT,45,5/CFTFCTF,,S,A:7.EQ.:*
ACT,11,3,AT,49,5/JAG,.7,ALE.EG.1*
ACT,11,3,AT,5こ,7/TECH-E,,H,A1Q.EQ.1*
ACT,11,3,AT,55,#/AUD:T,.足,A2こ.EQ.1*
*
*
*
ACT,49,5,(3)1,A21.EQ.i.
ACT,4Э,12,(E)2,A22.EO.1*
```



```
ACT,49,25,(3)4,A57.EQ.1*
ACT,49,31,(S)5,A23.EQ.1*
~ACT,4G,ET.AT,E1,25/CMMTTEE.,G.A24.EQ.L*
ACT,AC,51,AT,52.21/D:ST,.7,A2E.EO.1*
ACT,4S,3,AT,53,ここ/REPFC,:E,A2E.EQ.1*
ACT,4C,3,AT,40,5/CN:TFCTR,, E,Aこ7.EJ.1*
ACT,4O,3,(S)10, AZC.EQ.1.
*
ACT,33.34,AT,43.14/PC?*
ACT,34,35*
ACT.34.24.
*
```

```
ACT.24,5.(8)1, A25-EQ.1*
ACT,24,12,(8)2,A30.EQ.1.
ACT,24,18,(8)3,A31.EO.1*
ACT,24,25,(8)4,A32.EO.1*
ACT,24,37,(5)5,A33.EG.1*
ACT,24,43,(8)E,A34.EQ.2*
ACT,24,3,AT,43,5/CNTFCTP,.7,A35.EQ.1=
ACT,24,3,(8)3,A35.EQ.2*
ACT.24,3,AT,54,23/MGT.,S.A37.EG.1*
ACT,24,5J,AT,51,2C/CMMTTEE,,IO.A6:.EQ.1*
*
ACT,50,3,(8)12,A3O.EG.1*
ACT,50,3,AT,54,23/MGT,.2,A39.EO.1*
ACT,50,37,(8)3,A40.EG.1*
ACT,50,43,(8)4,A41.EQ.1*
ACT,50,5,(8)5,A4E.EQ.1*
ACT,50,12,(8)5,A46.EQ.1*
ACT,50,13,(3)7,A47.EQ.1*
ACT,5C,25,(3)E,A55.EO.1*
ACT,5C,3:,(3)O,AÉ=.5U.1*
PAR,1,1...75,2.C5*
PAR,2,1.,.35,1.1E*
PAR.3.1.,.#5,1.3*
PAR,4,1...75.1.5*
PAR.5.1...95.1.3*
PAR.E.1.,.F5,2.ここ*
PAP.7.1.,.5S.2.7E*
PAP.8.1...シ5.3.5*
PAR.9.1.,.05,0.*
PAR,1i,1...*5.1.25*
PAR.12.1...05.1.1E*
PAR,13.1...85.1.3*
PAR.14.1...85.1.5*
PAR.15,1...25.1.F*
PAR,16,1.,.85,2.こ5*
PAR.17.1...85.2.75*
PAR,18,1...65,3.5*
PAR:19,1.0.85,5.*
PAR.21,1...75.1.0.*
PAR,22,1...75.1.15=
PAR,23,1...75,1.j*
PAR,24,1...75,i.5*
PAR.25,1...75.1.E*
PAR.26.1...75.こ.こE*
PAR.27.1...T5.2.7E.
PAR,こR.之...7ラ,3.E*
PAR.29.1...7E.0.**
PAR,3i,1...05.1.-5.
```

```
PAR,32.1.,.65,1.15*
PAR,33.1...65,1.3*
PAR,34,1.,.65,1.5=
PAR.35,1.,.65,1.0.*
PAR,36.1...65,2.25*
PAR,37.1...55.2.7E*
PAR,38,1.,.65,3.5*
PAR.39.1...55.5.*
PAR.41.1...55.1.05*
PAR,42,1...55.1.15*
PAR,43,1..-55.1.3*
PAR,44,1...55.1.5.
PAR,45,1.,.55,1.f.
PAR,46,1.,.55.2.25*
PAR,07.1...55.2.75*
PAR,48,1.,.55,3.5.
PAR,45,1...55,5.*
PAR,51.1...45.1.ここ*
PAR,52,1...45.1.15*
PAR.53.1...45.1.E.
PAR.54,1.,-4E,1.E*
PAR,55,1...45,1.E=
PAR,55,1...45,2.25*
PAR,57.1...45.2.75*
PAR,58,1.,.45,3.5*
PAR,50.2.,.45.5.=
PAR,61,1...3ミ,1.ここ*
PAR.52.1...35.2.E5*
PAR,53,1.,.3ミ,1.J*
PAR,54,1...35.j.E*
PAR.65,1...35.1.E.
PAQ.50́,1...35.2.こ5.
PAR,E7,1...35.こ.TE*
PAR.58,1...35,3.5*
PAR.65.1...35.5.*
PAR,71,1...25,1.:5.
PAR,T2,1.,.こミ.1.!E*
PAR,73,1.,.25,1.j=
PAR,74,1.,.25,1.E=
PAR,75,1.,.25,1.E.
PAR.76.1...2ミ.2.こ5*
PAR,77.1.,.25.2.75.
PAR,78,1.,.2ち.3.E.
FAP.70.1.,.25.5..
PAQ,S1,1.,.15,1.^5*
PAR,E2,1.,.15,1.15*
PAR.83.1..-15.1.3*
```

\square


```
            FUNCIID4 UF(IFA)
            REAL ATT(B4), PA,ET(2y), STAÑT, KATIO
            REAL BURDA, BURDB
            INTESER STEP, PCTYPE, K, M, ASJIGN
            IITX() = COMPLETION TINE FCR CDVTRACTS
            :TTY() = NLMBER SF CSYPLETICNS PSR NETYOQK
            SUMSO() = SUM SOUARE OF CSMFLET:TN TIMES
            CTOTX() = CSMPLETIONS F:NR ALL RUNS
            NTOTCI = MUMBER GF COMPLETICNS FCR ALL QUNS
            CSSOR) = SUM SOUARE FCÉ ALL RU&S
                    CILP = CDMFIDENCE IMTERVAL - PREDICTION - LOMER
                CIHP = CSMFIDENCE IPITERVAL - PREDICTIJN - UPPER
                GILM = CCNF:DENCE INTERVAL - MEAN - LOVEQ
                    CIHP = CONFIDENCE IDTEPVAL - MEAN - UPPER
                    COM YON/GVAP/NDE,NFTYU(S=0),:RREL(SCO),NRCLP(500),NREL2(500).
INRUNONRUNS.NTC(SOO),PARAMIIUO.41.TBEG,THOW
                    COMMOR/CHRIS/TCYX(\Omegaa),ITT:i(\Sigmai),SUMSQ(2b), X,CTOTX(28),
INTJT(2३),CESQ(ミe)
DATA PNET/.0:0722..0 3249..05415..06137..06859..j9025..09747.
```



```
*.53124..5\550..8931*...77979.1.../f
call getat(att)
C
                            001107 K=9,6*.1
            AT:(K)=3.
    1105 CCVTINUE
C
E ###E#E#E## FCR ASSIGNMENT UF BUYER AND PR YYPE (UFI), OR
C FOR ASSIGNMENT CF ACTIVITIES (LF2), OP.
C FOR TABULATING :ETUCRK SINKS (UF3)
C GOTJ:(100J.ECOC.30こ%).IFN
```



```
C ASSIGNMENT OF EUYEP AND PR TYPE (UF1)
c
C ASSIGN BUTER
    1000 ASSISN= INT(UN(20))
            DO 1J15 M = 1.4
            IF (ASSIGN.EQ.M) ATF(Q) = M
    1015 CC:ITINUE
-C
    ***** ASS:GNMEA.T DF EUYEG-CLEÑK SATEC ****
    IFGINOU.EO-O.O.AND.ATT(S).AV.1, THEN
```

```
        IF(ATT(砬EG.ST THEN
        RATIO=2.
        BURDA=1.4
        BURDB=0.
        ENOIF
        IF(ATT(6).EQ.2) THEN
            QATIO=3.
            GUR DA=0.
            BURDE=0.4.29
        Evolf
        IF(ATT(6).EO.4) TMEN
            *at:C=0.
            BURDA=c.
            GURDB=0.
        END:F
C *** ASSIGN STARTING CONOITIONS **.*
    E:ID IF
C ****.* ASSIGN PR TYPE (UFI) ......
    PR=UN(1J)
    M=1
    1077 IF(PR.LE.PNET(N)) THEN
        UF=m
                GOTO 1079
            ENOIF
            M=*+1
            gor.9 1077
        1079 IF(ATT(5).E0.1) UF=17
c
    Eall puitatiatt;
    RETURN
c
```



```
C
c
2000 PRTYPE = NINT(ATT(2))
    STEP = VIVT(ATT(1))
    ATT(6)=0.
    ATT(T)=0.
C
    Gor 3(1,42,83,124,165,206,247,2d9,330,371,4i2,453,494,535,
        *576.618.559.705.729.75a,787.816.845,374.907.736.935.
    -96al,PRTYPE
c
```

```
        1 50T0( 2. 3. 4, 5, 6, 7, 8, 5, 10.11.12.13.
        * 14, 15.16. 17. 14. 19. 20. 21. 22. 23. 24. 25.
        * 26, 27, 28, 29, 30. 31, 32. 33. 34. 35. 36. 37.
        * 39, 35, 40, 41),STEP
            ** C2 STEP 1 ****
                *** FROM TFAFFIC TO PCC
        2 ATT(53)=1
                PCO SERVICE TIME
        ATT(43)= -3C.TR(35)
        *** FRCM PCi TO BUYER
        ATT(29)=1
                BUYER SERVICE TIME
    ATT(42)=1C.0U. Tr.(44)
        *** FRCM BUYER TO CLERK
    ATT(12)=1
    C
    C
        ATT(44)=6.00* TF(33)
        ***FRON CLERK TO TRAFFIC
        ATT(28)=1
        G0T0 9959
            ****C2 STEF 2 ****
            **** FRCM TFAFFIC TO BUYER
            3 ATT( E)=1
                BUYE: SEFYICE TIME
    ATT(42)=1.0C=TF(5E)
        ****FRCM RUYEF
                            yC Clefk
    ATT(12)=1
        CLEPK SERVICE TIME
    ATT(44)=1.00. TR(56)
        ***FFこN CLERK TE THAFFIC
        ATT (28)=1
        GOTO 9939
            CLSTEP 3****
            -4 ATT(G)=1
            BUYEF SEPVICE TIME
        ATY(42)= .50. TF(40)
        ** FAON BUYER TO PCO
        ATT(:4)=:
            FCJ SERVECE I:NE
        ATT(43)= 1.CCETF(EE)
        ***FANN FCC
                            TJ T#AFF:C
        ATT(35)=1
        GCT\ ミFy9
```


C
＊FROM TRAFFIC
TO BUYER
5 ATT（ 5）＝1
BUYEf
service time
ATT（42）＝1．0C＊TR（54）
＊＊＊＊FRCM BUYER
TV Clerk
ATT（12）＝1
CLERK SERVICE TIME
ATT（44）$=1.0 \mathrm{O} * \mathrm{TF}(58)$
＊＊＊＊FRCM CLERK
to traffic
ATT（28）＝1
6OTO 99？

c

```
            *** FROM TRAFFIC to buyER
        6 ATT ( E)=1
                BUYEF
                    SERVICE TIME
    ATT(42)= .50% TF(4E)
                            *** FSCM BUYER TO PCC
        ATT(14)=1
            PCO SERVICE TIME
    ATT(43)=.3C:TR(6)
            *... FROM FCC
        AT:(3こ)=1
            CLEPK SERVICE IIME
    ATT(44)= .3C*TF.(1)
        *** FROM CLERK
                            TO REPRCOUCTIEN
        ATT(25)=1
            FEPRCOUCTIC:& EERVICE TIME
        ATT(53)= 16.CC. TR(54)
        GO`0 999%
            **** Fp,CM repooducticN tC clefk
        7ATV(12)=1
            CLERK SERUICE TIME
    ATT(44)= 1.OC* TP(2E)
        *** F=CM CLEDK
                                    ic contpactca
    ATT(27)=1
                    coniphactcf sef.vice :
    ATF(45)=175.cí*TF(24)
    60:`与ョヲj
__..*.C2STEP 7 ....
```

C
c
c
c


```
ATT(44)= .80*TR(35)
    *** FROM CLERK TO CONTRACTOR
    ATT(27)=1
        CONTPACTOR SERVICE TIME
    ATT(48)= 80.00* TF(24)
    GOTO 9999
        *** C2 STEF 11 ****
        **** FROM CONTRACTCR TO BUYER
            12 ATT ( 6)=1
                BUYER SERVICE TIME
    ATT(42)= 1L.00* TR(25)
        *** FRCN BUYEP
                                    TO CLERK
    ATT(12)=1
                CLERK
                    SERVICE TIME
    ATT(44)= 5.00.TR(45)
        *** FRCM CLERK TC TRAFFIC
        ATT(29)=1
        GCTO 5999
            ****C2S*EP 12
            *** FRCM TOAFFIC TO BUYER
        12 ATT(S)=1
            BUYER SERVICE TIME
        ATT(42)= 1.OC=TR(5B)
        *** FRUN BUYEF.
                            TO CLE=K
    ATT(12)=1
            CLERK
                    SERVICE TIME
    ATT(44)= 1.0I* TR(4&)
        ****FRこM CLERK
                            TJ TRAFFIC
    ATT(2S)=1
    GOT O 95\geq0
        *** C2 STEP 13
        *** FRCM TPAFFIC
        TC BUYER
        14 AT:(5)=1
            HUYEF SERVICE TINE
        ATT(42)=1.00* TR(54)
        *** Fर̂OM BUYER
                                    TC PCC
    ATT(14)=1
            PCO SERVICE IIME
    ATY(43)= i.50. TK(33)
        *-. FRCM PCC
                            TO TA&FFIC
    ATT (36)=1
    GOTE ラッヲ9
```

```
C
C
C
.15 ATT( 6)=1
BUYER SERVICE TIME
    ATT(42)= 1.0C*TR(56)
        **** FRCM BUYER
        TO CLERK
        ATT(12)=1
                CLERK SERVICE TINE
        ATT (44)= 1.00* TR(46)
        **** FRCM CLERK
                            TO T&AFFIC
        AT: (28)=1
        GOT0 9999
            *** C2 STEP 15****
        *** FROM TFAFFIC TE BUYER
        16 AT: 6)=1
                RUYEF SERVICE TIME
        ATT(42)= .5C*TR(56)
        ****FEOM BUYEF TO PCC
        ATT(14)=1
                PC:% SERVICE TIME
        ATT(43)= -3C* rQ(ET)
```



```
        TCCLEOK
        ATT (33)=1
        CLERK
                                EEPVICE TIME
        ATT(44)= i.EC*TR(53)
        **** FREN ClERK
        TO CC:GRACTCR
        ATT (27)=1
            CONTFACTON SERVICE TINE
        ATT(4B)= a(.00*TR(54)
        GOTO 5%99
        ****C2sTEF 1も****
        *** Frこm cobitfactcár te buyef
        17 ATT(E)=1
            BUYEF SEFV:CE YIME
        ATT(42)= 1.GC*TR(54)
        ***FEこん RUYE? Tく PCO
        ATT(14)=1
                                SEFV:CE TINE
        ATF(43)= .3う.TN(?1)
        ** FRCN FCI
        IC CLEマK
        ATT(33)=1
            CLEマK SERV:CE YINE
```

```
ATT(44)=.30: TK(1)
```

TO REPRODUCTIOR：
ATT（26）＝1
REPRCOUCTION SERVICE TIME
ATT（53）＝16．00＊TR（54）
6 OTO 099
c
c

```
＊＊＊C2 STEP
```

＊＊＊＊FRCM REFRCDUCTICN TO CLEPK
$18 \mathrm{ATI}(10)=1$
C
CLERK
SERVICE TIME
ATT（44）＝2．00：TR（24）
C
＊＊＊＊FRCM CLERK
TO DISTRIBUTION
ATT（25）＝1
OISTRIBUTION SERVICE TIME
ATT（52）＝12．0C．TR（35）
GOTO 0990
195000939
2 C GOT： 0999
21 GJT：ㅇำ
22 GCiO эミ9ヨ
23 GCTJ 9．79ヨ
24 GCTJ 9くラヨ
25 6050 シラッチ
25 GOTJ $9=95$
27 GCTこ Sыs
28 GOTO 9：90
29 GOT：9530
30 GOTO OEOQ
31 GO：0 5ร39
32 GOTの चugc
33 601： 9799
34 GOTO 9099
35 G9T0 9993
36 GOTO 9：9．
37 GOTO 7099
38 GCTO 9ラヨヲ
－39 605C 9399
4 C GOT 9 9．990
41 GOTC و75ラ
c END JF Ce netucak
C＊＊＊C3 NETHCFK＊＊＊

－55，5j，57，5世，59，6C，61，62，63，64，85，60，
－57，5：－65，7C，71，72，73，74，75，76，77，70，
＊79，Sj，Y1．S2l．STEP
c \＃＊C3 sisf 1

$$
\begin{aligned}
& \text { C } \\
& \text { HUYER SEEVICE - ime }
\end{aligned}
$$

$$
\begin{aligned}
& \text {... FPoN BUYEF FO FCG } \\
& \text { ATT (14) =1 } \\
& \text { DES EEFVICE - ME }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A「(うう) = - }
\end{aligned}
$$

$$
\begin{aligned}
& \cdots=C_{5!}=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { かにこちミン } \\
& \text { •**C3 Siミス 6 ...** }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4: ATi (IS) =1 } \\
& \text { CLEスK EERVICE :IME }
\end{aligned}
$$

$$
\begin{aligned}
& 6: \because=\because 5 \\
& \cdots C J E T E=7 \cdots \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { ふひイニテ }
\end{aligned}
$$

TECH.EVAL EミこVECE こ:NE

Gごくショミタ
c
c
c
c
c
C3 StEf E
三2 $A i^{\top}($ (
BUYEE SEFVICE IINE

AT「(12)=:
CLミミK SERV:CE - : vミ
ATP(44) =. .

AT: 22) $=1$
はご: ジアミ
*** C3 ETEf
₹ ****
51 ATT(5) = :
BUYE=
seavice tine

い**FFご RUYミえ

A汇(14)=1
こと \quad ミEVV:CE $\because=$

-* FEこN FC:
: : - - xf:
$A^{-}{ }^{-}($Зう) $=$:
G0:~: =ias
*** C3 j"EP 11 .*.**

52 AT(ミ) =1
BUYミ币 EERVDCE i:ME

$A T^{-}(\mathrm{i} こ)=$?

AT ${ }^{\prime}(27)=:$

$$
\begin{aligned}
& \text { AT: (42) = } \because \therefore=:=(三 \leq) \\
& \text { C ***FFE: EVYET } \\
& \text { ATT(12)=1 } \\
& \text { C CLE:K EここVICE•TラNE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *** } \\
& T=T=A F F I C \\
& A T_{:}^{-}(2 c)=1 \\
& \text { いごこ ミミミヨ }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
C \\
C
\end{array} \quad+\text { FE:N T=LFFIC TE BLYEF. } \\
& \text { ऽTA… う) =1 } \\
& \text { c }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATI (14)=i } \\
& \text { FCO SERVICE TIME }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A: }(35)=1 \\
& \text { Gーごジラシ } \\
& \text { C }
\end{aligned}
$$

$$
\begin{aligned}
& 5 \vdots \Delta i^{-}(\equiv 1=i \\
& \text { C }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ATT(: } 2)=1 \\
& \text { JAG SEFV:CE :こ: YE } \\
& \text { ATT(4ミ)=24.r. } \\
& \text { ロゴこ タミラヨ }
\end{aligned}
$$

$$
\begin{aligned}
& 5 \equiv A T^{+}(5)=2 \\
& \text { C } \\
& \text { BUYE EEPV:CE ミINE } \\
& \text { ATi(42)= •E?~T=(S) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AT: (1こ) =: } \\
& \text { ぶごきこちシ } \\
& \begin{array}{l}
\mathrm{C} \\
\mathrm{C} \\
\mathrm{C}
\end{array}
\end{aligned}
$$

```
\(\stackrel{\rightharpoonup}{c}\)
        6C ATT(E)=1
```



```
        ATT(ヶこ) = こここ ア = (ミミ)
        ***Fこご Blyī̃ TごCLERK
        ATT(12)=1
            ぐミこん こごこV:CEーエトミ
        \(\operatorname{ATT}(44)=\quad . E:=\div\left(4 \begin{array}{l}\text { (4) }\end{array}\right.\)
        *** FFiz CiE=K Tこ TームFF:C
        ATi (25)=1
        Gこうう Э 999
            CJ ETEF 15
                                FF.: TVLFF:C Tこ BLYE®
        61 \(4 \square^{-}(S)=1\)
                RUYEF こEFViCE : M N
```



```
        ATT(14) = i
                                ミEVVCE 「i!e
        ATT(43) = •3? \(=\) ! 5 (ころ)
            -** FRGM PC
                            TこCLE®K
        \(\Delta T^{\top}(3 き)=1\)
            こしミご SERVICE IIME
```



```
        4… (ご) =1
```



```
        6う: ジラショ
            **** cjaiep \(2 r \ldots *\)
        **** FERA CEATFACTCO TO BUYEF
        52 ATT ( 5 ) =1
        BUYミィ こここV:CE ごッミ
```



```
            **. FEw RUYEF TO PC:
        Aㄱ(14)=:
            戸CJ SERVICE TiME
        \(A T:(43)=\) - Ji. FF(E: )
        A: (3) \(=1\)
```



```
        ATT \(\left.\operatorname{cta}^{5}\right)=1\)
```

```
C
    ATT(j3)= IE.0゙&*Th(54)
    Gごこミシミヨ
C
```



```
    j3 ATT(i,)=:
                            こL三テK SE&VICE IJME
        ATV(;4)=2.こここ一&(24)
        *** FFEN CLE?K TV DESTP:BUTICN
        AT「
C
                O:ミラ=こBLTIOR SENVZCE 「こNE
    AT-(52)=12.JC* : =(こう)
    Gこ:こ シココミ
    64 ज0:` ¢ララミ
    55 G0T0 5`ヨミ
    SS GET0 509%
    57 Gこ`う ヨミラ¢
    EF OGTこ ?ミミラ
    S9 GOT כ シミラヨ
    7CGミここミミシ
    71 6:`こ ¢うミミ
    72Gご! ジミラ
    73G心こシミミシ
    74 ふごこごぎ
    フミちここここっシミ
    75 3こ:こ,二?ニ
    77 Gごのコこっヲ
    7ミGミごこうこ
    7ミ 5だここうこうこ
    9C Gごこ シミミシ
    @1 GETこ ヨミSヲ
    &2 GOTこ シミシコ
        ミ\D OF CE NETWこRK
        ****C4 NETWUFK ****
```



```
        *127.12:.12こ.12?).STE゚P
            ***CC4 STSF i *...*
            #*FPこN T゙AFFEC T: PC:
            &4 ATT(ミこ)=!
C
        FC? SEEViCE - N:N
        ATT(43)= -35*Fごご
```



```
        ATT(こう)=2
```



```
        ATT(42)= :こ.C[*TE(J゙3)
        ****Fここ* FUUYEF. İじこそк
        ATT(12)=1
            CiEこK EEFVこCT T:ME
        4TT(44)= =.C(* TS(24)
        **** F?CK, CLEFK
            IC TFAFFIC
        ATT(28)=1
        Gこ「こ ヲララヨ
            C4 SrEP 2 ***
        ***F&ご こ=AFFIC - - RUYEF
        E5 ATT( 6)=i
```



```
        ATi(42)=2.5こ=iF(E4)
        *** FマCN BLYミF
        C!こEK
        AT- (12)=1
        CLERK SEFV:CE IINE
        ATT(44)= i.EC* TF(És)
        ***=FFEN CLEFK Tこ T`么FF:C
    ATV(2g)=1
    6C゙こうシミミ
        ****C4!T5F!
    ***FFこごこーAFF:C ! RUVEF
    3j 17-1 =1=1
        うUY:ー SE=V:CE i.将
```



```
        **FFi!: BUYE: i ? PCE
    AT:(:4)=1
        Eこ? ミこきV:CE !!ME
    ATT(4J)=:.0う*T=(25)
        *** FROM PCE TUTEAFFIC
    AT:(36)=:
    G0T 0 9.%95
        C4 STEP 4
        ****FZこV こ=AFFEC TこHしYEス
        87 ATT(6)=1
            BUYEF EEPV:CE:INE
    ATT(42)= &.OC*T=(ミq)
        ** FミこN BUYミF r-CL:OこK
        ATT (12)=1
            こLここK ミミニい:CE 『!いご
        AT-(4+)= -.OG*TF(S0)
            Fこ:%C:E=K
                        #r i= ArF:C
```

```
    ATi}(2\varepsilon)=
    GgTE 3Fs?
c
c
c
C ***FFCH:T=AFF:C TC RUYEス
5@ ATT( s)=1
                &UYES SEFいこCE こ:NE
    A?:(42)= .5?- Tf(4E)
        **fFご"fưEF : FFCS
        ATY(14)=1
                PC: jEfVICE TIME
        ATT(43)=.3E* TF(\leqslant)
        ***FFSGFC: i: T=AFF:C
        ATi}(35)=
        Gごこ ¢5シs
        C4 ETEF S ....
            ***FRご T=AFFこC T. AurE=
        354TT( S)=1
                BUYE: . SEPV:CE IIME
        ATI(42)= .5こ. TF( 6)
            **** FE:M BUYEf
        4Ti(1g)=1
                JAS SERUSCE IIMS
```



```
    なこここご年
                C4ごミ? 7 ..**
        90 ATH(#)=1
                RUYEE 泣VICE ijME
    ATF(42)=.50.TR( ミ)
        **** FRCN buyER !2 icaff:C
    4TT(!う)=1
    つ0:こ ?ことシ
        #.*C4:-ミF & ...**
        *** FÄrN T=AFFIC : : BuvE=
        91 AT: ( S)=:
            3UYミ: ミミテレこにミここ!ご
        ATT(42)=:.ここ, if(:!)
```



```
        Ar:(:2)=:
            C!ごくk こここv:C!
```

```
        AT(47)= -5C= i2(4j)
```



```
        TE TAGrf:C
        ATT(2S)=!
        Gこ-こ 700?
        **+C4 ETEF S***
```



```
        C2 4TT( S)=:
            BUYEF EミこV:CE-:NE
        ATT(42)= -5E. Tू(4E)
        **** FRSM BUYES TC PC:
        ATT(:4)=1
            !Cこ SEミV:CET:Vミ
    AT:(43)= •ミO.T5(4इ)
        *** FAON PCE < C!EFK
        ATT (33)=1
            CLERK SEOVECE TINE
        ATT(44)= .3C* TF(1)
        ***Fまこ心CLEOK Tこ RミF=こつUCT:ご.
        ATT(ここ)=1
        ジアミミOUCT:ON ミミミV:CE -IME
```



```
        G:T:コ: 涊
            #..C4ミ゙ミこ 1i***
```



```
    C3 ATi (1:)=1
        CこE=K ミミヶV:Cこ"こいこ
        ATT(44)= i.0゙し* TY(こう)
            ***F&こM CLEPK
                                    TGCEこ:NACTOF
        AT:(27)=1
            CJNTFACTCP. SE&V:CE TIME
        ATT(4ミ)=こ7E.0.!TE(24)
        GCTこ ララヨミ
        ***C4 E!EF 11 ****
```



```
        94 ATT ( 6)=1
            BUYミミ Eミ:V:CE - V:
        ATF(4そ)= z.こ「* :+(ここ)
            **FFg%FLYE二 ここ İCH.EVAL
        AT*(1ジニ!
            TECH.EVAL EEFV:CE ONS
```



```
        Gごこここジ
```

C
So ATT（ 6 ）＝1
ATT (42)=1:-โこ*T: SEAVVCE TIME

C－．．．Eここの PLYEF
$\operatorname{ATT}(12)=1$
C
CLEスK
señice izng
ATT（44）＝S．OC＊
C

$$
\because * F P: N \quad C 1 E \bar{K}
$$

Tこ TMAFF：C
$A T(2 \div)=1$
かごコミムラヨ
C
C＊＊＊＊C4 こTEP I
C
C

「こ RUYミ～
ge $A T(三)=1$
C
RUYミニ ミEこV：Cミーこロミ
ATT（42）＝ 2.0 S ＊ T （ 54 ）
C
ATi（12）＝1
C
CLERK こここV：CE—ロシ
AT：（44）＝i． 5 ：
C

$$
* * * * F R C N C L E ラ K
$$

$T こ T: A F F I C$
ATT（2s）＝1
Gご？ここラヨ
C
C $\quad+\pi+$ C4 STEF i7 \ldots ．
C

C
$10: 1 O^{-}(j)=1$
GUYEF E5Fり：CE $\quad=\cdots$

C＊＊＊FOこそ RUYEF－－DC：
$\operatorname{ATT}(14)=1$
C
OCO こミFV：CE TこNE
$\operatorname{ATT}(43)=.1 .40 * T K(\Xi 5)$
C

$$
* * F Q=: C C=\quad i: T=M F F: C
$$

ATT（ 5 こ）＝！
60ー：95シミ
$\begin{array}{ll}\mathrm{C} \\ \mathrm{C} & \ldots * * C 4 \leq-E F \quad 15 * * *\end{array}$
C

C
1：こ AT「（ こ ）＝：
HUYミ＝SEFV：CE ：：V

C

$$
\because: * \text { ニミ } \because \text { RUYE }
$$

$$
i: C l: a n
$$

AT：（12）＝1
C

$$
C_{i} \equiv r_{n}
$$

$$
\therefore=V: C E: \therefore
$$

C ** \quad *ここN TRAFFEC IC MUYER
1コニAT: (5) =:

*** F?CN BUYEF iD FC:
AT: (14)=1

ATT(43)=.36*: $=(67)$
ATT(35)=1
GOTO 979?
C
C \quad *** C4 JTEF $2 \mathrm{E} \quad \rightarrow \pi=*$
C **FOCN $\because=A F F: C \quad$ iCBLYĒ
103 AT ${ }^{-}(\dot{\prime})=1$
RUYEF こEEV:CE FIME

ゴー(: ミ) =1
JAG こここいこしミ こッこ

G:-
C

C ***F?こM JAG \quad に HUYEK
104 ATT(E)=1
RUYE= EEFVICE-IME

****Fこの* RUYEF
$\Delta T \operatorname{Tib})=1$
Gごうシアヲ9

1U三 \triangle TF (A) =


```
        \(\operatorname{ATT}(12)=1\)
C
C
    ATT(44)= •डご.TF(46)
    ****FPにN C!
    ATi (2 2\()=1\)
    GうTO乌ラร9
C
C ***C4 STEF \(23 \cdots *\)
C ***FFE』TEAFFIC \(\quad\) TALYES
106 ATT ( \()=\) :
    BしYミテ シEミVこCE T:ME
    AT: (42) = .3:~TF(23)
        ** = \(\boldsymbol{n}\) こi EUYE= : PC?
        AFT(14)=:
            つC? シミャVICE : ミN
```



```
    ATT (33)=:
C
C
\(C\)
    ATT(44) = 1.3:*TF(Eろ)
```



```
        \(A F T(27)=1\)
            CJMTEACTGF SEQVICE TIME
```



```
        いごうラミニラ
C
```



```
107 ATt(5) =1
            HUYEF EEEV:CE IINE
        ATi (42) = 1.0 C (TF(54)
            *** FEOR RUYEK TO =CC
        ATT(14)=1
            ECJ SEEVICE TINE
```



```
            *** 5 ? : FC? \(\quad \because C L E=K\)
    \(\operatorname{ATT}(シ 3)=1\)
            CここそK EここVこCE I: ME
    AT:(44) = •3C. ? ? (1)
```



```
    AT: (2う) =i
```



```
        Gご~ゴミラ
\(C\)
\(C\)
```

```
C
C ***FRSM FEFCCDLCTIENTECLEDK
    10# AT:(1-) =1
                                LこここK SEFVICETこME
    AT:(44)=2.CO.TE(24)
        ****FごN C!EマK TO DISTミミRUT:こN
        AT:(25)=1
```



```
        なごこここコミ
    1CミGこちこ ラララコ
    110 G0゙う ジララ
    111 G:5. अ595
    112 G%% ダミニ
    113G5T0 ミ゙ミミミ
    114 GこTう 9ミミラ
    11こGコTこ ミミミミ
    115 5ご0 55ミラ
    117 3こ「! シミヨシ
    11ミ60゙う5ヨミヨ
    11ミG心Tう Eミミラ
    1ここ 3ご シまロミ
    121Gご心ショミシ
```



```
    123G:ごミジ
```



```
        *151,152.15z,164),5`こ?
            ***C5S`EF i ****
```



```
                                    TO PCこ
        125 ATr(5う)}=\mathbf{i
        AT(4\Xi)= .SC*TF(45)
            **** F2こ: PC:
        A!-(2:)=1
            BUYミr EE&VICE Y:ME
        ATT(42)=15.0こ* F=(#3)
            C***FSEM BUYEFF
        A:- (12)=1
            CこE=x ご,V:こここ:ME
```



```
        4!-(25)=?
        GC:= =!氵3
C
```

```
C ****CSS`EP 2 ****
    12S 4TT(E)=1
                            EUYEF EERUICE TINE
    Aij(4と)= z.?!* ic(ミム)
    *** FC=" HUYEF.
    ATV(12)=1
            GiE=K EEOYSCE IIME
```



```
        **FEごCLEFK TO !-LFFIC
        ATT (2E)=1
        G0!0 ョミ95
c
C
127 ATT( Б)=1
            BUYEF SEFVICE F:UE
    ATT(42)= .50*TF(45)
            ***F\tilde{CHi BUYER - PCO}
    ATT(14)=1
            コCま SEFV!CE -IME
    ATT(43)= :.AC*TF(27)
```



```
    A!`(?う)=1
    Gこさ? ショゴ
C
            **Cうご5F 4 #.**
```



```
    12j AT
                                    BUYEF ESFVICE IIME
    ATT(42)= 1.0C=TE(E4)
            *** F&こん BUYEF.
                                    TO CLERK
    AT- (12)=1
C CLEFK JEFVICE IIME
    ATT(&4)= こ.心こと 「「(シう)
C**FFj* CLEFK TO i=AFF:に
    ATT(2こ)=1
    GOTこと「ヨう
C ****C5STEP S****
```



```
C
                HUYE% EEOVICE -iv.
    AT- (4こ)= ジ. T= (-5)
```

```
C ****FROM BUYER TE PCi
    ATT(14)=1
                                PCO EEZVICE TIME
    ATT(43)= .30*TF(E)
        *** FRE:M PCC
                                TC TOAFFIC
        ATT(ここ)=1
        50:う シミヨミ
C
        ****CEミ氵ミP É****
        **** FここM i= 4FFIC
                            Tg BCYEf
        130 ATT(5)=1
                                gUYE\hat{~}
    ATT(42)= .डOm FF(E)
        *** FFOM RUYE「
                            i:JEG
        AT'(15)=1
        JAG SERVICETこNE
        ATT(49)=24.00*TF(35)
        GOT0 ラミ59
C
    GuYE= SEFVICE TIME
        ATT(42)= ヒこここ下こ(5)
        **Fこご BUYE% TOTこAFF:C
        4ご(&こ)=1
```



```
C ***C5 JTEF & ***
    132 ATT(S)=1
        BUYEK EEF.VICE PME
        AT:(42)= 1.EC* F= (5: )
            **=* Fr.ご E!:YEF シこ CこここK
        ATT(12)=1
        CEESK SíNV:CE TENE
        A``(44)= EE: T=(4E)
***FここMCLSOK T:TinAFFIC
    AT:(2う)=1
    Gごこシジミ
C
```


$\operatorname{ATT}(42)=$－ED＊TF（4E）
ATi（14）＝1
SEf VICE ：IME
ATT（43）＝．こt＊if（45）

to conmitite
AT－$(\leq: 1)=1$

＊＊＊FEEN CEmirtEE Tこ TKAfFic
4丁「（ジ）＝1
Gうごこショ
c
$\stackrel{c}{c}$
C

$$
\cdots \cdots \text { cj = ef if } \cdots \times *
$$

$134 \mathrm{AT}^{\top}($ む）$=1$
RUYE：EEPVICE Tこ：

＊＊＊Fマ：
T：CLEEK
$4 T^{-}(12)=1$
C
c
c
c
C

135 AT：（ 5 ）$=1$
c

＊＊＊FACH BUYER
to pCe
ATi（14）＝1
acz SEPVECE TIME
ATT（43）＝•EV．TE（4E）
＋＊＊FOER PC：T：CLEFK
AT：（3J）＝
CLEFK SEFVICL IIME
$\Delta T^{-}(44)=$ •IC＊TE（i）
… FO：С
A1－（2ら）＝

4：－（ころ）＝$=$－C（
かごこ メショ

```
C *** CS STEP 12
```



```
    13E4TT(13)=1
                                    CLENK SE&vice tine
    ATT(44)= 1.0C=TF(?3)
        *** FPCA: CLENK TE BuyER
        AT「(2:)=1
                3uYミ= ミミスVこCE +jME
    A「(Hこ)= ミ.ご**E(:-4)
```



```
    AF(1自)=1
    Gご! ミショラ
        ***CE ミTEF iz ****
        ****FRCN T:AFFIC :こCLこマィ
    137 ATT(1])=1
        CLEがK SERVICE I:ME
    ATT(44)=1.0こ.TF(54)
    ***FFごCLミこK TU BUYEN
    ATT(2:)=!
        buyEf gevvicestime
    ATT(42)=.40*TF(E4)
        **** FE=C RUYEF ic fCC
    AT:(14)=?
        FCO SEFVICETME
```



```
    A?`(3ミ)=1
```



```
    か0゙こシミラヲ
        **** C5 STEP i4
```



```
    135 AT:( E)=1
        BuYE= SERV:CE TiME
    A「年(4)= ミ.ここ, F=(3う)
            ***FマE%furen TETECHEEVAL
    4``(.ミ)=1
        こここH.EVAL SEPVICE `:`S
    AT「(ここ)=17ミ.0ご沶(43)
    60゙こ 9%3.
        *** Cj s-Ef 15
```

C ****FYOM TECHEEVAL TO HUYER
SUYEス SENV:CETiVE

***FPON BUYER Tこ CLE5K
AT: (12)=1
SEEVICE IIME
AT (44) = •ECVTF(\rightarrow E)

ATT(2こ) =1
Gごうミラショ
C
C $\quad=*$ CS STEF $1 \in * * *$
C $\quad *=*$ FPSM TVAFF:C
14 C ATI (5) $=1$
C
BUYE「 SEスV:CE TIME
ATT(42)= E.OCNTC(57)
***F只ご RUYEス Tに PC
$A T:(14)=1$
PCO EEPVICE IIME

ATi(3う) =1
ふ0.0 ヨヨヨ5
****C5S55P $17 * * * *$
**-F末? TYAFFiC TESLY!
14: AT: (j) =1

*** Fまぜ GUYES Tこ CLEEK
$\Delta T^{\prime}(12)=1$
CLEテK こE天VECE TiME

AT:(27)=1

ATi(4S)= ac.
GこTこ 3ヲラ

****FREMCこSTとACTC: Iこ HuYE』
142 ATF (
QUYEF SEマUZCE こ: ARE
ATY(4こ) = 1こ. ミ「. TF (ころ)

c
c
CLERK
sefuice yime
ATT（44）＝1．CO．T：（53）

ATP（27）＝1
COATEACTEF SEFV：CE こINE

60 © シ ヨミロ
C

153 ATT（ 5 ）$=1$
buy
AT（4E）＝E．CC．TF（E4）

ATT（14）＝1
PCO SE币V：CETENE
ATT（43）＝．30＊TR（？1）
C $* *$ FRCMPCO TECLE＝K ATT（ミ3）＝i

CLEFK SEこV：CE ここいミ
ATP（44）＝－3E＝TF（i）
＊＊＊fRご CLERK TO REFRCDUCi：id
AT（25）$=1$
zEPECCUCTICA SEEVICE TIME

505： 3532
c

C

154 АTT（1）$=1$
C
c
ATT（44）＝2．CO～TF（24）
＊＊＊FRジ CLERK TC DISTRIBUTICN
$\operatorname{ATI}(25)=1$
DESTRIBUTEGN SERV：CE TIME
AT：（52）＝2こ．ここのTR（ミE）
GST：Эき39
155 GつT2 ヨゴロ
156 65？5ミラ

15ミ ふうこうラッチ
15シ 50゙つ シミラシ
16に Gごこ ヨコラタ
16：50： 9599
162 Gンロ シ ラヨヨ
163 60゙5 タミショ

```
    154 G5% 29999
C END OF CS IVE:WUFK
```



```
        *202,2こ?,204,2rE),S!EP
C ** CE =-EF 1****
```



```
                                    TG PCC
    16E AT`(5こ)=1
C PCV EEFVICE TIHE
    ATT(43)= .75*T=(24)
        AT:(2F)=1
            BUYEテ SEまVZCE :IME
        AT:(42)=14.5こ*TF(5j)
            ***FRE: EUYEF. TO ClEPK
        AT:(12)=1
            ClEZK SENVICE iENE
        AT*(44)= &-(2*Tf(22)
            **** F?「M CLERK
                            TO TNAFF:C
        A!-(2?)=1
        心づうシラシラ
C
C ***Csj`こF 2 ****
    #**FPSHTSFF:C TV RUYEF
    157 AT ( ) =1
        BUYES JE2VZCE TこME
        ATT(42)= 1.EO. FF(4E)
```



```
        AT; (12)=1
C CLERK EEPVICE IENE
        ATT(44)= &.EE# FF(55)
            ***FRCM CLEPK TO F=AFF:C
        AT-(2S)=1
        GUTこ ヒミミ゙
C
C **CjSréP 3
    16? ATT( 引)=1
                3UYこ: SEFVICE TINE
    AT-(42)= -5C.TF
        *** FESM BUYEF
        T: PC%
    ATT(14)=1
    AT:(43)= i.3(*in(Eミ)
```

C＊＊＊FRこん FCC TOTRAFFTC

> ATH $(35)=1$
> GCO $B \equiv 55$
c

C CLEPK EEPV：CE TIME

$A i^{-}(23)=1$
Gご」 9うヨミ
＊＊＊CE ミ「EF

17 A AT（ a ）＝1
RuyEf seavicetive
AT：（42）＝－5i．ic（40）

ATi（14）＝1
PCO EETVICE Tive
$\operatorname{ATr}(43)=.3 \mathrm{C} * \mathrm{y}=(\mathrm{E}$
C＊＊＊FACMPCE ic TAAFFiC
AT $\bar{T}(35)=1$
G0： 0 9．js
c
c
C＊＊＊F\＆こn tPaffic TO PlyEf

A！－（42）＝．EC＊TE（E）
＊＊FFO．blyer to jag
A： $\mathrm{T}^{+(13)=1}$
C

C
C
C
c ．．．．Cj SiEf $7 \ldots .$.


```
                                    BUYEE SERV:CE TIME
        AT(4E)= .5E* if( 5)
        **.FECN BUYEF
        ATT}(1E)=
        GC:2 3009
            *+** CS STEP & ***
            *** frem tFaffic i= 的E:
            173 2T「(5)=1
                RUYE= SENVECE T:VE
        ATr(42)= :.CE= TE(SE)
            **** FEC:% BUYEF
                                    TO ClEfk
        ATT(:2)=1
            CLEこK EEFVTCE TIME
        ATT(44)= .5i* i=(4=)
            *** FF:% ClEFK TO iaAFFIC
        ATT (28)=1
        GOT0 §9G?
            *** Có sicp g
            *** Fagr tFAFFic ic Bu`E&
        174 ATT( E)=1
            RUYE= SE叉VICE TEME
        ATT(42)= . Eこ. T= (- +)
            ***Fこご BUYEf iO PCE
        ATr(!4)=1
            OCJ SE=v:CE i:NE
        ATT(43)= .jn:TE(45)
```



```
        ATF(S1)=1
            committee sefvice jims
        ATT(5!)= 24.OC.TQ(ES)
            **** FREM COMM=TTEE TO T-AFFIC
        ATT(3F)=1
        GCT:cょう%
            ***Có ミ`こF 1C ....
            *** FF%M T=&FFFC
                                    ic blyef
            175 ATT( E)=1
                㿟: sefvice:こve
    ATT(42)= こ.ここ!TP(ES)
        *** frin buyer i: Cl:=k
        AT- (12)=1
            CLERK SERVICE -imE
        ATT(44)= i.j!. TF(Eこ)
```

```
C
                    ***FFごNCLミ\tilde{K}
                                    TG T=AFF:C
        ATT(23)=1
        Gゴこ ララ97
            *=**C5 s!EP 11 ****
            **** FROM TqAFFIC
                                    iC RUYEF
    17\leqslant ATT( S)=1
```



```
        AT「
            DCO SEPUZCE TEME
        A:T(4\Xi)= -5i* T:(-3)
            #*** FRこ^ PC:
                                    TOC:5EK
        A+P(33)=1
            CLE=K SEEVICE TEME
        ATF(44)= -3こ*TF(1)
            **** FRこ: CLこRK
                            テこ ミミ戸&こコUにす!こな
        ATi (20)=1
            ッミママミOUC?:ON こEこVICE TiME
        AT`(うろ)=1う.Cこ!T%(ミ4)
        60}? ジ%゙
        ***Cよ ミこご iこ ****
            1774「T(:`)=1
                CLESK EE=V:CE TINE
            AT-(44)= i.Cこ* i「(ごS)
            *** FRこM Cl⿺त人
                            TGBUYミ「
        AT
                BUYEF SESVICE :IME
        ATT(42)= ミ.JC if(E4)
            **** FRCN BUYER
                TO YFAFFIC
        AT!(1́g)=1
        Gごこのタミミ
            ***CGSTEF 13 ****
                                FRCM TFAFF:C TECLEFK
            17- A: : (i, )=1
```



```
        AT'(21)=1
        A7i(42)= .4(* i=(ミ4)
```

 \(\operatorname{ATT}(14)=1\)
 fCO SEAVICE : TE
 ATT(43) = -30* TF(3ミ)
 *** fRCM PCO TO CSitTACTCF
 ATi (3ミ) =1
 C
conteactcf sedvice itme
ATT(4E)=17ÉOE* FE(24)
GこTにシミます
*** Cら E?EF 14 ***
17シ ム「 (த) =1
BUYÉ ĖRV:CETINE

****FREM BUYES TO TECH.EVAL
$\operatorname{ATi}(19)=1$
tech.eval sepvice time

60゙に ョミヨシ
c
C C Eミご 15 ***
***F~こN TECH.EVAL Tコ BUYER
$180 \Delta T^{\top}(\dot{\prime})=1$
ふuysf Jefvece i=us

AT: $(12)=\mathrm{i}$
ATT $(44)=$ - E0. TF(-5)
...*FEON CLESK :J TEAFFIC
AT- $(2 \hat{0})=1$
Gびコアコラ
c
C

1e1 AT! (
C
UUYE: EE=VICE II:Aご

***FES EUYE: is PC.
ATT(:4)=:
PCJ SEVVICE - INS

***Fえご FCC
たご: AFFIC
ATT(きこ) =1

```
        G0TE 9ミ9.9
    C
    C
    ****FR.CM T二厶AFFiC
    192 ATT ( o)=1
                BUYER SEQV:CE T:ME
    ATT(42)=2.05* TF(56)
        ***F=ON RUYEN T, CLE:K
        AT:(i2)=1
        CLEPK SE&VICE TIME
    AT!(44)= -でこ* TF(ここ)
        **&FこN CLEラK TO CORTOACTOF
        A丁「(ぐ)=1
        CS!二:ACTC= こERVICE TIME
    AT:(4E)= j!.SE* T: (24)
    Gごこ ミミジ
        ****C5 ETFP 1E
    1&3 AT:(5)=1
        HuYg= SESVICE IENE
        4TT(42)=1:.CE* F:(45)
        **FFこN BUYEF. TこCLこEK
        AF-(!こ)=1
            CLE2x jETV:CE TIME
            AT-:4)= i.5:% +5(こ2)
        ***Fミ!*CLEFK
        ATT(2シ)=1
        GけTこ Эラララ
C
C
```



```
    1E4 AT'(6)=1
    AFT(4:)= SUYミF SENECE TIME
    ATT(4E)= こ.t!= TE(54)
    ***Fmi! HUYE= TOCLESK
    AT'(12)=1
        CLEマK EERVICE !:ME
```



```
        *** E=-*CLEFK Tこ I:Acf:C
        \DeltaTT(2\Xi)=1
        G0Tこ SO.95
C
        **** CG STEP 1! *****
                                Ć́:TEF 2C
                                Tこ I:Acf:C
```

```
C
    1!5 ATI( a)=1
                            BuYEf SENVICE TEME
        ATT(42)= 1.EE:TG(E4)
            **** FRCM PLYEF iJ PC=
        ATT(14)=1
C FCO JEEVICE TIME
        ATT(43)= こ.SC* 畆(ミ3)
            **** F只:N FC:
                                    IE inAFF:C
        ATT(35)=1
        03T心 ロヲミヲ
c
c
c
    135 ATT(弓)=1
                BUYES JERVICE IINE
        ATT(42)= :.こ5* T?(ミこ)
            ##* f=C: BLYET
                            ij CLEEK
        A!(iこ)=1
                C!ミミK SEこVVCE T:ME
        4:`(+4)= こ.ここ*TF(ぐこ)
            *** F?.** CLS=k
                                    TS TEAFFIC
        4TT(2j)=1
        Gここしコシミラ
C
        ***Cj STEF 22
    **** FPこM TEAFF:C
    187 ATT( ́{)=1
                        タuYミF SEFU:CE !INE
        ATT(42)= -56: FF(55)
            **** FȦこN BUYER Tこ PC:
        ATT(14)=1
            PCJ SEEVI-E IIGK
        ATF(43)= .ミこ: TF(ET)
            ****FSOYPC= iに TEAFFIC
        ATT (35)=1
        6こTC 5ミ¢`
c
c
c
12ミA:T(g)=こ
            BurE=
        AFi(4こ)= •シ, - i=(,
        AT-(1%)=:
```


C JAG SERVICE I：INE
 GOTニ ジミ日
C
SCこ Sミ5
C
C
C
190 ATT (S)=1
HUYEN SEニV:CE T: Y:
ATT(42)=1.00*TR(55)
*** FRJM BUYEf
Ti ClミティK
ATT (12) =1

***FREVCこEミK \quad 「こ TKAFF:C
$A \square^{-}(\operatorname{Le})=1$
G5i5 5ミシヲ
C5 S゙EF 2 6 ***
TC SしEq
191 AT: (S)=1
BUYER EERVICE ・ミNE
ATT(42)= -3R*TR(3ミ)
**** FROR BUYEP.
TE PC:
ATT(14)=1
PCI SESVICE IEME

***FACM FC: Tu Connittee
A:- (EI)=1
CこMMITTEE SERVICE TIME

- ** FOOM COMMitteE TE t=AFi:C
$4 T^{-}(3 \dot{O})=1$
69゙くシラララ

C
C
C
C

153 AT ${ }^{-}(6)=1$

RUYEK SERVICE TIME
AFr（42）＝1．0C＊TF（35）
＊－FENEM RUYEK TO PCC
$A T^{-}(14)=1$
＝C3 SENVICE TIME
$4 T$（43）$=\quad .5(17=(45)$
＊＊＊F只ご FCC－
$A^{T}(33)=1$
C

C

C

ATT

ATT（27）＝1
「ごなT－AC：うन EERV：CE T：4E

50゙た 9ヲララ
＊＊＊＊C5 STEF
29
C
C＊＊＊＊FRCN CORTEACTCR TE BUYER 194 ATY（S）$=1$

BUYEF ミEえV：CE TiME

＊＊＊FRCM BLYEA
TE PCE
AT：（：4）＝1
PCO SERVICE TIME

C
＊＊＊＊FR： M FCO
「こCに
ATT（33）＝1
CこEFK－うEスVICE I：ME
ATT（44）＝－3i＊T0（1）

ATT（2ら）＝1
C D:StFibution: SERVECE Time
4T: (5こ) = 1こ.こご TF(35)
65:0 $5=55$
10560゙コ ニニララ
197 GこT: 5 ミショ
195 ロゴ心

200 GJTJ シミミョ
201 60: 3 ラショ9
202 5950 3639
2C3 GOT: $3 ミ \ni \exists$

20う GつT:

T: PCC
207 ATT(5c)=1

*** FPSN EUYEF
ro Clefk
$A^{+-}(: 2)=1$
ATT(44) = =.jctif(13)
C＊＊＊FRENCLEPK TS TSAFF！C ATT 2 2』）$=1$ GOTOS599
c

```
C ***C7STEP 2
C
208 ATi(5)=1
                                    BUYER EEPVECE IIME
        ATT(42)= 2.CQ*TF(EJ) F
            ***FRON BUYEK TこCLEQK
        AT:(12)=1
            CLEPKK SEFVICE IIME
        ATT(44)=1.CO.TR(E6)
        ***FOGM CLERK TO T`AFFIC
        AT:(2E)=1
        S0:`y?j5
C
C
    C
    2C9 ATT(6)=1
        BUYEF SE=VICE IIME
        ATT(4E)= -5C= ?=(4E)
        *** FRCM BLYER Iこ PC=
        AT-(14)=1
            PCO SEFVICE TJME
        ATF(73)= 2.^C* TP(こ6)
    c
        MC* FRCM FCC TC TFAFFIC
        *** ご ごミP 4 ***
        ***FRC*T=AFF:C IV RUYE*
        210 ATT( S)=1
            BUYER SERVICE IMME
        ATT(42)= 1.OC. TF(E4)
            *** FROM BUYER
                                    TE ClEEK
        AT(`2)=1
C
                CLERK SERVICE TIME
        4F:(44)= i.IE= PF.(SE)
        **FFCMCLE=K TO TFAFFIC
        ATr(2O)=1
        60:こ 5ラ7%
C
C ***FFOM TEAFFiC 1? HUYEK
211 ATT (6)=1
    BUYEF SERVICF - :ME
        ATT(42)= 5R*TE(4E)
```



```
C *** CT STEF }1
C
C ****FECM REFNCDUCTIEN TE CLEEK
    216 ATT(10)=1
                            CLEFK SE?VICE EIME.
    ATT(44)=1.C[*TF(2.\)
C
C
C
C
C
C
219 ATT(1í)=1
CLERK SERVICE IIME
    ATT(44)=1.0C*T!(5#)
        *=* FNCM CLEFK TO BUYEN
        AT!(21)=1
            BUYEF ミERV:CE F:ME
        ATT(42)= -4C*TF(54)
        *** FミC? BUYEF -EFFこ
        ATT(14)=?
                OCO SEनिV:CE !:NE
        ATT(43)= .3E* iF(こう)
            ***FREN PCE
                    TE CC&TNACTCR
        AT`(3う)=1
                ここそTこACTご SERVECE TI足
        ATi(4%)=17E.C0* TG(24)
        GOTこЭ5ミヲ
            C7 STEF 14*****
    222 ATT(S)=1
                BUYEN SER.VICE -IME
        ATT(42)= 3.CQ:TF(EJ)
            ****FSN 8UYEF Tこ IECH.EVAL
        AT*(19)=1
            :ECH.EVAL Eミ戸りこCざごME
        ATT(5.) =17E.0C-TF(4う)
        Gのにこ シミヲ?
            ***CTSTEF :5
```

C FE＊FSCM IECHOEVAL TC RUYER
221 ATi（E）＝1
BUYER SERVICE IIME

ATT（42）＝4．OC：TF（E4）
＊＊＊FRO：BUYER
TO CLEFK
ATT（12）＝1
CLETK SERVICE TIME
ATT（44）＝－5こ＝TF（4）
＊＊＊FシCN CLEFK
TC TF\＆FFIC
AT：（2己）＝1
GOTC Sㅋ․
C
C $\quad * * * C 7 \leq: E F \quad 16 * * *$
C
C＊＊＊＊FSCM TFAFFIC TO BUYEえ 222 ATTK El＝1
C BUYEF SENV：CE IIFE
A：T（42）＝7．CC＊TE（55）
＊＊＊＊FKCM BUYEF
Tン吹
$A T T(14)=1$
C
PCO SEEVECE TINE

AT－（43）＝1－50＊FF（ころ）
＊＊＊：FFCN FCC
ここTAAFF：C
AT：$(3 \leq)=1$
Gゴ0 ヨミララ

K $* * * C 7 \leq T E F \quad i 7 * * *$
＊＊＊FZCM TFAFFIC TO RUYEF
223 ATi（ \quad ）$=1$
BUYEP SEKVICE TiME
ATT（42）＝ E －CCT TF（55）
＊＊＊FRON BUYEF
TO T＝AFFiC
ATT（IS）＝1
GJT：9：5s
C
C
C
C
＊＊＊C7 STEF 1 －＊＊＊
＊＊＊FRCN ？FAFFiC \because RUYEA
22^{6} AT「（5）＝1
BUYEP SENV：CE ：ME
ATT（42）＝2．AG＊TF（ES）
＊＊＊FRこM BLYEF．
TOCLERK
ATT（12）＝1
CLẼK うEnv：CE T：Ms

＊＊＊F只先 CLERK
TC CEDT：anctce
$A T V(27)=1$


```
C **** C7 SIEP 26
C
C
232 AT ( a)=1
                                B'JYE{ SEFVICE TIME
        ATT(42)= 2.OU*TF.(5E)
        *** FRGM RUYEF TO C:EFK
        AT:(12)=1
            CLERK SERVICE T:ME
        ATT(44)= -5`. IF(46)
        *** Fर゙GM CLEFK Tこ Tr゙AFFIC
        ATi(28)=1
        GごこF959
            ***CTETEF 27
        *** FPON TRAFFIC Ti BUYES
        233 ATT (S)=1
                RUYEF SERUICE IIME
        AT*(42)= -3C*TF(ここ)
        ****FRこ* BUYEK
                                    TこPCコ
        ATT(14)=1
            PCO SERVICE TIME
        ATT(43)= .GG* TF(E3)
            **** FRこN FCC
        AT?(5!)=1
            CJMN:TTEE SERVICE :inE
        AT:(う1)= 24.0C* T=(E末)
```



```
        AT-(?3)=1
        GCTO 9ジうミ
            ****C7STEF 2&****
            ** FSC:M TFAFFIC TC BUYER
        234 AT:(5)=1
            RUYEP SERVICE Y:ME
        ATT(42)= ミ.OC.TF(Eミ)
            ** FRGM BLYEN TC CLEKK
        ATT(12)=1
            CLERK SERVICE IIME
        ATT(44)= 2.00.TF(34)
            ***FRCHCLESK Iご#AFFjC
        ATT(2E)=1
        GCiC?OMF
            ごごこF こ与****
```

C *** FRCM ? PAFFIC TO BごYER

ATT(14)=1
service ilne
ATt(43)= . EO* TF(4E)
****FREM FCC
to elefk
ATP(33)=1
clefk sezvice time
AT: (44) = 1.00*TF(53)
c
**** FRCM CLE!K
TE Contiactar
А「(27)=1
CENTEACTUF BERVICE TENE
ATr (4E) = ar.0.4 TF(E4)
Gerに эきシs
C
C
C
C **** FREN COSTFACTCE TJ BUYEミ
23́ ATT(
BUYE= EERVICE TEME
ATT(42)= 1.2E*TR(2:)
*** Frit buyer TE FCC
$\operatorname{AIT}(14)=1$
pCJ sEavice time
AT(43)= •Eさ* TF(こう)
AT: (35) $=1$
5950 รээs
C
c
237 ATT (6)=1
BUYER SERVICE IIME
ATT(42) = 1.2C.T2(76)
*** Facm bur三?
! CLFFK
ATT(12)=:
Clepk SEAVICE time
ATT(44)=.3C•T=(1)
**** F天ご CLERK
i= fífociucticn
ATT(25)=1
aEPEGOUCT:ON SENVICE ine

G.JTG j?s.

```
C
C
239 AT'(10)=1
                    CLERK SERVICE I:ME
    ATT(44)=2.00. IR(24)
    **** FÃこM CLERK TO DiETNIRUT:ON
    ATT(25)=1
                    DISTRIBUTION SERVICE FIME
        ATT(52)= 12.LG* TP(35)
        GOT: #¢`ヨ
    239 GOTO 9!97
    24C GCTO 9999
    241 GOTつ Эミ95
    242 GOTO Sラゴ
    243 GCT2 5эコヲ
    244 GCT% 5597
    245 GOTS Э`Fヨ
    246 号O Sラシヲ
        E:O OF CT NETWEPK
        ****C3 {.ETWCFK ****
```



```
        *262,261,252,263,254,265.256,267,255,265,270.271.
        *272.273,274.275.275,277.275,27!.250,281.292.283.
        *234,285.2S5,263,2̇シ),STEP
C **** CG STEP 1 ****
C ****`FRCM TFAFFIC Tこ FCC
    24% ATT(5S)=1
                PC] SEFVICE -IVE
    ATT(43)=1.5(*TF(33)
        *** FPCM PCO T R RUYEか
        AT- (2ミ)=1
                BUYEF. SERVICE IIME
    AT:(42)=24.OC* TR(G3)
        *** FROM BUYER Tに CLEFK
        ATT(12)=1
            CLEFK SENUECE TEME
        ATT(44)= 1.00% TF(54)
            *** FFडM CLEÑK iC i`AFFiC
        AT- (25)=1
        GCTO FS99
            ***CB STEF 2****
            *** FPCM TRAFFIC TC RUYER
    249 ATT(5)=1
                BUYEN SERVICE IIME
    ATT(42)= 2.00.TF(ミ6)
```



```
C **** FROM TRAFFIC TS BUYER
    253 ATT(5)=1
                                    BUYEF. SEFVICE TIME
        ATT(42)= 1.CO*TF(E4)
        *** FRCM BUYER TO CLEFK
        ATT(12)=1
        CLEPK SERVICE TIME
    ATT(44)=1.@C*TF(ES)
        *** FRCN CLESK TC TEAFFIC
        ATT(28)=1
        GOTO 9559
            CG STEP 7 ****
    254 ATT(S)=1
                BUYEF SERVICE TIME
        ATT(42)= .5C*TS(46)
        ***FRON BUYER TO PCO
        ATT(14)=1
            PCO SERVICE IIME
        ATT(43)= -30*TR(6)
        ***FROF. FCO TO TEAFFIC
        ATT(36)=1
        GOT0 9599
            CB STEF 
            ****FPjN TNAFF!C TE BUYEF
        255 ATT( 6)=1
                BUYER SENVICE ILNE
    ATT(42)= -5E* TR(E)
        *** FRGM BUYER IO JAG
        ATT (18)=1
            JAG
                SERVICE TIME
        ATT(49)= 24.00* TF(35)
        60T0 5`9%%
            ***CBSTEP 9 -***
            *** FरूCM JAG
                                    to RuYER
    255 ATT (6)=1
                BUYEF SERVICE TIME
        ATT(42)= 50. TF( 5)
            *** FRCM RUYER
                                    TC THAFFIC
    ATT(15)=1
    GOTC #gS9
```

c
C
＊＊＊FZGM TRAFFIC TC BUYER
257 ATT（6）$=1$
C RUYEf．

SERUICE IIME
ATT（42）＝1．0G＊TR（ES）

C
C
C

C
C
C
C $\quad * *$ FREM TRAFF：C TE BLYER
258 ATY（6）＝1
BUYミス．ミ巨KV：CE TIME
ATi（42）＝－50＊TF（45）
＊＊＊FRCM GUYER IC PCO
$\operatorname{ATT}(14)=1$
PCO SERVICE TIME
$\operatorname{ATT}(43)=\quad .50 * T R(45)$

C

C

C

C

ATT（38）＝1
GOT0 9999
C
c
C
＊＊＊＊FRCM TRAFFIC
TC BUYER
25\％ATT（6）＝1

$\triangle T T(42)=3.00 . T F(=5)$
＊＊＊FRCM BUYÉ TE CLESK
ATT（i2）＝1
CLEFK SEPVICE TiME

＊＊＊FEこM CLEfK Tこ TFAFFiC
ATT（25）＝1
GUT 9 引ラ9
C
C
＊＊＊＊FROM PCC－O CCMMITTEE
AT：（51）$=1$
CCMMITTEE SERVICE TIME

TンTラAFF：C
（
C3 STEP 12

C
C
C
－
C8 ETEP 13

TO CLERK
AT：（12）＝1
CLERK SEス̃VICE TIME
$\operatorname{ATT}(44)=-50 * \operatorname{Tn}(46)$
$\operatorname{ATT}(23)=1$
6590 ヨミรラ

```
C *** FROY TPAFFIC TO BUYER
    260 ATT(6)=1
C BUYER SERVICE TIME
    ATT(42)= 1.0C* TF(34)
C ** FRCM BUYEF TC PCO.
    ATT(14)=1
                PCO SERVICE TIME
    ATT(43)= .5C* TM(45)
        ** FOCM PCS TC MA:AGEMENT
        AT-(37)=1
                MANAGEMERT SERVICE TIME
    ATT(54)= 32.CC*TE(55)
    Got0 9095
C
c **** C8 STEF }1
c **** fogn managemerit to bluyef
    261 ATT( b)=1
                buYE: SEFVICE TINE
    ATF(42)= .5E= TF( 6)
            **** F`JM buyEf to teAFFIC
        ATF(1\epsilon)=1
        60rc 5эコร
C
C
C
C
    262 ATT( 6)=1
                                BUYEA EEAVICE :INE
    AT:(42)= 1.0E* TS(E6)
            **** FRCN BUYER
                                    T= ClERK
    ATT(12)=1
                ClERK
                                    seavice iame
    ATT(44)= 2.0C:TF(54)
        **** FRCM CLERK
                            to ifaffic
        ATT(2g)=1
        G0T0 5505
            **** CB STEP le
            **** fror tagffic ro buyer
        263 ATT( 6)=1
                BUYEP SERV:CE TIME
        ATT(42)= .3C*TF(55)
            **. FRON BUYES ic fCC
        AT+(14)=1
            PCJ SEFVICE TIME
        ATI(43)= 1.OCNTE(26)
```

 CLEPKK SERVICE TIME
 ATT(44)= .3C*TF(1)
 *** FPON CLERK TO REFGODUCTIEN
 ATT(26)=1
 REPF.=DUCTION SERVICE YIME
    ```

```

 GN:こ.ラミ゚゚ヲ
 ***CO step 17
 *#** FRCN FEPPGDUCTEIN TE CLERK
 264 ATT(1U) =`
 CLERK SEZVICE IIME
 ATT(44)= 1.CC* TO(EE)
 *=** FRGM CLERK Tí RLYER
 ATT(21)=1
 BUYER SENVJCE TINE
 ATT(42)=3.00: TE(S4)
 *** FROM BUYEF TC TQAFFIC
 ATT(1E)=1
 GCTO9597
 C3 STEP 1E
 *** FRGM TFAFFIC TE CLEFK
 265 ATF(1))=1
 CLEOK SEPVICE TIME
 ATT(44)= E.CC*TE(54)
 **** FROM ClEミK. TO BUYEF
 ATI (21)=1
 BUYER SERVICE TINE
 ATT(42)= -4C*TP(54)
 **** FRCM BUYER TO PCC
 ATT(14)=1
 PCE SERVICE TIME
 ATT(43)=.3C*TF(35)
 ****FRCM PCC TE CCNTHACTCR
 ATT(35)=1
 CONTNACTOF SERVICE T:ME
 ATT(43)=17E.EC* TC(24)
 60:0 9355
 **** Cz =TEF 15****
 ***FRこM Cこ:TFACTCR Tこ BLYEF
 266 ATT(j)=1
    ```

C
BUYER ATT（42）＝3．0C：TF（33）
＊＊＊＊FRCM BUYER TO TECH．EVAL ATT（19）＝1

TEC．H．EVAL SERVICE TIME ATT（5）\(=1\) TE．US：TF（43） 60TO 5ララ5
c AT：（42）\(=4.0\) E．TF（54）
＊＊＊＊FRCH RUYEF．
「こCLこミK
\(A T^{\top}(1 え)=1\)
CLERK
SERV：CE Time
ATT（44）＝\(\quad 5\)（1＊TR（4E）
＊＊＊＊FRCM CLEPK
TO TFAFFIC ATi（28）＝i
GOTO \(5=99\)
c
```

C **** C3 STEF 21

```

C
C＊＊＊FRCM TRAFFIC ic BuYEf 268 AT：（ 6）＝i

BUYミミ SEZVICE iJME
ATF（42）＝IE．Ci－TF（E3）
＊＊＊＊Fマこと BUYEF
TE ALEI！
ATT（2こ）＝1
AUD：
SERVICE TIME
ATT（55）＝35̄．OC＊TE（E4）
60509505
＊＊＊CS STEF 22
＝＊＊F？OM AUOIT
T：BUYミR
265 ATT（ 6）＝1
BUYEF．SERVICE ：IME
ATT（42）＝2．OC：TF（E4）
＊＊＊＊FRON BUYCF
IO FCC
\(\operatorname{ATT}(14)=\) ？
PCN EEミV：CE TIME
ATF（43）＝2．í＊TP（E3）
＊＊＊F紀 FC：
tJ iraffic
ATT（36）＝1
GOTO \(959 \rightarrow\)
C ****FRG% TSAFFIC
    ATT(47)= .&う* TF(Jこ)
C *** FREM CLERK TO COATRACTCE
    ATT(27)=1
                CCAJFACTCR SERVICE TIME
    ATT(4E)= S4.CC*TF(3\cong)
    60TJ 5きラヨ
c
c
c
C *** F只M CÓt.TRACTCR TC RUYEK
    27! ATr( ङ)=1
                BUYEF. SEFVICE TIME
            ATT(4こ)= ここ.こん* - C(54)
                *** FRCM BUYEK Tこ CLEFK
        ATT(12)=1
                CLE?K EEFVICE TINE
    ATT(44)= 1i.LC*TF(21)
        *** FRこM CLEEK
                            TE TRAFFIC
        ATT(2E)=1
        GO-j 5097
C
C **** C& STEF 25***
C ***FUS TSAFFIC TE RUYER
272 ATT(6)=1
                                    BUYEL. SERVICE TIME
        ATT(42)=2.J(* TP(EE)
```



```
        ATT(12)=1
            CLEミK
                SERVICE TIME
            ATT(44)= 2.0C* PP(42)
                        *##FRGHC CLEFK TE T`,AFF!C
        ATT(2&)=:
        GOTC 9009
C
C
C *** FREN E=AFFZC TE BUYEK
    273 ATF(S)=:
```

C
C
$A T T(42)=1 . C 0 * T F(E E)$
＊＊＊＊FPCM BUYER
re ClEñK
AT；（12）＝1
CLEEK SERVICE TIME
ATT（44）＝i．CC＊TF（＊S）
－＊＊FRUM CLERK TC TRAFFIC
AT：$(2 \varepsilon)=1$
607 95953
c
c＊＊＊Cj SiEf 2δ ．＊＊＊
c
C
275 ATi（ 6）＝1
RUYER EERVICE TIME
ATT（42）＝－5C：TK（ES）
＊＊＊＊FRCM BUYER TO DCC
AT：（14）＝1
pCo EERVICE time
$A T T(45)=.30 \cdot T F(\leq 7)$
＊＊＊＊FROM PCC
to tinaffic
ATi（3́）$=1$
6070 93ラ9
${ }^{c}$
C
C

C
SUYEP
sefvice time
ATT（42）$=1.00$＊TR（54）
＊＊＊FRCH BLYEP．TC PCC
ATT（14）$=1$
－CO
SERVICE time
ATT（43）＝z．CC：TR（35）
AT：（3ヶ）＝1
GC\％ 03.37
ic taAFFic
＊＊＊C8 s：Ep
27
＊＊＊＊FR̃M TRAFFIC
TO RUYER
c

C
c
C
c

C
c
c

$$
\text { **** C3 STEP } 29
$$

＊＊＊FRこん TAAFF！C Tこ RUYER
276 ATT（ 6）＝1
BUYER．SEAVICE ：imE
$\operatorname{ATT}(42)=-5 i \cdot \operatorname{TR(E)}$
＊＊＊FROF BUYEN TE JAG
AT：（15）＝1
jag SEAV：CE ：EpE

ATT（4C）＝24．CC＊TR（35）

GUTO 9979


```
C
                                BUYE^ SEPVECE IIME
    ATT(42)= 3.CQ* TE(ES)
    **** FRCN BUYER IS CLERK
    ATT(12)=1
    CLE?K SERVICETIME
    ATT(44)=2.CO*TF(ミ4)
    **** FROM CLERK
    T` TRAFF!C
    AT:(28)=1
    60:0 359%
C
C
C
231 ATT( 6)=i
BUYEP SENVILE TJME
    ATT(42)= 1.COA TF(3E)
            *** FRO* BUYEF: IJ PC=
        ATT(14)=1
            PCJ SERVICETIME
        ATT(43)= Eこ* TF(45)
            *** FF5% FCこ
        AT:(36)=1
        GCTS 95?9
            ****CS STEP 35 .***
            *** FRUM TFAFFIC Tこ BUYER
    2&2ATT{5゙=1
                B'JYEF SETUV:CE TEME
        ATT(42)= - EO* FR(E)
            *** FRこM BUYER TO Cこ唯TEE
        AT:(15)=1
            CSMMITTEE SERVECE YEME
        ATT(5i)= 24.0こ* TR(35)
            **** FRCM CONMETTEE TO TFAFFIC
        ATT(3B)=1
        GOT: 9359
            CS STEP 36
            *** FRCM TRAFFIC
                                    TO RUYE&
        2&J ATT( \sigma)=1
            BUYEF SEFVICE IINE
        ATT(42)= -5i* -п゙( ミ)
        *** FOUM BUYEF
        AT- (25)=E
        GOTC 3ラジ
```

```
C ****CS STEP 37****
C =*** FRCN TSAFFIC TO RUYEF
    234 AT:(5)=1
                                    BUYER SERVICE IIME
    ATi(42)= 2.iこ*TR(57)
        ****FRご「 HUYEF re CLERK
        ATi(:2)=1
        CLEマK SE=VICE iINE
```



```
        ****FRGN CLEFK TO TRAFF:C
        ATT (23)=1
        GOTO 59S9
C
C F#** Ca Sicp 39
    **** FRこM TFAFFiCC TS BUYER
        285 ATT(6)=1
            BUYER
                SENVICE TIME
        A=7(42)= -5C*TF(4E)
        ****FEこN BUYER IO FCE
        ATT(14)=1
                PCS EENV:CE İVE
        ATT(43)= -SS*TF(4S)
            **** Fミ: \because دC: i= Cl上=K
        ATT(3ろ)=:
```



```
        ATT(44)= 1.0:* TP(53)
        ****FRJN CLERK
        TE COMTFACTCF -
        ATT(27)=1
            COVTEACTOG EEFVICE TIME
        ATT(4Z)= 3:.しだ行(54)
        6050 9395
            CE STEP 39
            *** FRON CこM,TFACTCR i= BUYER
        2S\leqqAT:(j)=1
            BUYE= SE#VICETIME
        ATT(42)= こ.Cl*TF.(三4)
        ***FRCN BUYE&
        i: PC=
        ATT(14)=1
            PCJ ミENVICE TIME
    ATT(43)= 2.0ご「号(こち)
        ***FRこM PCOOTOTNAFFiC
    AT:(36)=1
    G0709599
C
```

```
C
C
C
    237 ATT (5)=1
                BUYER SERVICE TIME
    ATT(42)= 1.00* TF(5S)
        **** FROM BUYER
        ATY(12)=1
            CLEfK SEOVICE TIME
        AT:(44)= .3E=TP(j)
            ***FROM CLEEK TCNFFスODUCTION
        ATT(2与)=1
                OEPRGOUCTICR: SERVICE TIME
        AT:(53)= 16.CU* TF(54)
        GOTO 5357
c
C
C **** F只CM FEFREDLCTEこNTE CLEFK
    28E AT! (12)=1
                CLERK JEரVTCE İNE
        ATT(44)= 2.CU*TF(24)
        *** FREN CSEEKK Yこ DISTEこBUTERN
        AT:(25)=1
            D:STRIGUTこCN EEZUSCETIME
        AT- (52)= 12.0氏%TF(35)
        Gここう ミミラ9
            E:DO OF CE NETMEFK
            *** F2 NETKCFK ****
```



```
        * 314,315,316,317,313,315.32ก.3こi.3ここ.こ2J,324,32ミ.
        * 325,327.326.325),5:EP
            ****'F2 STEP I ****
C ****'F2 STEP I I *
        250 ATT(53)=1
C
                PCO SEEVICE TIME
    ATT(43)= •シC*TF(4ミ)
    ****FごFFC=
                                TC BUYEF
    ATT(25)=1
            BUYER SERVICE TIME
        ATT(4こ)= E.OC*TF(ころ)
            **** FPUM SUYEE. TC CL5ZK
    AT+}(:2)=
            ClERK EERVICE TIME
        ATT(44)=4.IC.TR(23)
            *** FRCM CLEFK TC TPAFF:C
        ATT(25)=1
```

GOT0 9599
C
C
C
C
ATT(42)=2.EC. TF(ES)
***\& FミスN BUYEF TS CLEFK
ATi (: 2) =1
C CLEPK SERVICE İME
ATT(44)=1-0:TTE(5S)
**** FREM C!ERK T TRAFFこC
ATT(23)=1
Sごひ ラココロ
C
C
C

292 A $^{\circ}(\dot{y}$
BUYEF. こEラVICE-ミNE

*** FFCM BUYEF İ CC:
ATT (14) =1
PCO SERVICE TIME
ATT(45)=1.E?*TR(25)
*** FRE: PCO TO TEAFFIC
ATT (35) =1
GCTO 9ミヲラ
C
C
C **** FAOM TEAFFiC TE BUYEK
293 AT (${ }^{-}$) $=1$
buyef sefyice - ime
GTT(42) = 1.CC. TF(54)
*** + FPCM BUYEF ここCLEミK
ATi (12) =i
CLEこK SEスVICE iIME

**** Fミご CLERK
TE TinAFFIC
AT: (2e)=i
GOTこ ララ99
****F2 STEP E ****
**** FRC: TFAFFIC TS HUYEF
294 A ${ }^{+}(E)=1$
ATT (44) = i.CO* TP(25)
**** FÃM ClEEK TC CONTACTCF
$\operatorname{ATT}(27)=1$
CSNTFACTGF SERVICE FiME
ATT(4ミ)=i7ć.CC. TF(14)
60: ジヨラ9
C
C *n** F2 STEF 7
C *** FRCF CONTFACTCE TE HUYEF
$2 G 5 A T^{\circ}(5)=1$
BUYEF SEFVICE TIME

****FRE BUYER
TC TECHEEVAL
$\operatorname{ATT}(1 \geq)=1$
TECH.EVAS SERVICETINE
-TT(5¢)=1JE.Cご TF(25)
60: 3 ヲ 35
****F2
*** FñM TECH.EVAL TJ BUYEF
2c? ATT (う) =1
BUYEF SERVICE TIME
ATT(42)=4.CO* TP(E4)
*** Fここ? BUYEf
$T こ C L$ こnK
$\Delta T T(12)=1$

c		clefk Sefvice itime
		ATT（44）＝－50．TE（45）
C		＊＊＊FRE\％CLE只K TV Tfaffic
		ATT（23）＝1
		GこT0－ララララ
c		
c		＊＊＊F2 SiEp s＊＊＊＊
C		
c		＊＊＊ficn ffaffic ic buyen
	298	ATT（ s）$=1$
c		buyeff SEzVice time
		ATF（42）＝E．EC＊ip（z3）
c		＊＊＊fícu buyeŕ to pco
		ATT（14）＝1
C		peo service－ime
		ATT（43）＝i．EO＊TF（E4）
c		＊＊＊＊FROY FCC TO TEAFF：C
		ATf（35）＝1
		60T0 Sミ99
c		
c		＊＊＊F2 ミ゙EF ic＊＊＊＊
c		
c		＊＊＊fazminaffic ta blyer
	290	ATi（ ）＝1
c		Blyes eevice time
		ATP（42）＝2．CO． F （5（54）
c		＊＊＊＊Fこご BUYÉ
		ATT（12）＝1
C		ClẼK EEミV：Ce こing
		AT：（44）＝．88．TP（35）
c		＊＊＊＊FPCM CLEpK tece：ifactos
		ATi（27）＝1
c		contfactior service time
		ATP（43）＝ 5 2．C0＊ TP（34）
		G0T0 5999
C		
c		＊＊＊F2 E－EF $1:$＊＊＊
C		
C		＊＊＊feir coltafactef
	300	$A^{+-}(5)=1$
c		Buref．EERV：CE T：ME
		ATT（42）＝7．Er＊ip（12）
c		＊＊＊FPOM BuyEf \quad ：Clesk
		$A T^{-}(12)=1$
c		CLEQK SERVICE TIME
		ATT（4．4）＝3．0う．TF（33）
c		＊＊＊FRG\％ClERK
		ATT（25）$=1$

60r 37597

GOT09シ93
311 GこTJ $9 ミ シ 5$
312 63T5 5ヲ゚き
313 6075 ？？59
314 Goro 9与ヨヨ
315 GOTO 9ヲラヨ
316 GOTO 9753
317 EJTO 9099
312 6010 9799
319 G OTC 9559
32C G010 5393
321 ser 0 9759
322 Goro 9999
323 GCTC 9979
324 6OTJ ララヲ7
325 6OTO 9997
326 GOTO 9330
327 GOTJ 9ヲヨ9
328 SOT：99ラ9

325 GOTG | G5 |
| :---: |

C E：D OF FE \＆ETWOFK

＊＊＊＊SESTEP 1 ＝＊＊＊
＊＊＊＊FPC！TFAFFYC TC 「ここ
331 ATT（5人）$=1$
PCO SERVICE TIME
ATi（43）＝•5ご FR（5ラ）
C＊＊＊＊FPCA FCG TC BUYER
ATT（29）＝1
BUYEC SERVICE TIME
$\operatorname{ATT}(42)=8.00$（ TR（24）
C＊＊＊FROM BUYER TO CLERK ATP（12）＝1
C CLEZK SE\＆VICE ？IME
ATT（40）＝3．CL＝TF．（33）

ATP（2E）＝1
GOT 2 9599
C
C $\quad * * S 2$ STEP $2 * * *$
C
C＊＊＊FRM ifAFFiC TU RUYEF 332 ATT（5）$=1$
C
BUYEA
SEFVICE T：ME
$\operatorname{ATT}(42)=\quad$ SC：TF（33）
C ${ }^{+* * F P C Y B U Y E F}$ Tこ CLERK ATi（i2）＝1

CLEFK SEEVICE TIME
ATT（44）＝－SC：TF（1）
＊＊＊FRCR CLERK TO TĖAFIC
ATT（2 $\overline{\text { a }})=1$
G0：0 ロララチ
C
C
C
C
＊＊＊S2 STEP z

333 AT：（ \quad ）$=1$ BUYER ．SERVICE TIME
$\operatorname{ATT}(42)=$－5C．if（4́́）
＊＊＊FRJM BUYEF TO PCO
ATT（14）＝1
PCO SERVICE TIME
AT：（43）＝ 1.0 （ $=$ T（5S）

$\Delta T^{\top}(3$ ふ）$=1$
goto 3993
C
C
C
C
334 ATT（6）$=1$
BUYE：SESVICE ：：ME
ATT（42）＝1．EC＊TR（5E）
＊＊＊＊FROM KUYER
Tこ CLENK
ATT（12）＝1
CLERK SERVICE İME
AT：（44）＝1．OC．TF（E1）
＊＊＊FRCM CLERK
TO TRAFFIC
ATT（28）＝1
GOTC 3 ミ30
C
C
＊＊＊FRCN T＝AFF：C Tこ RUYEえ
335 ATT（S）＝1
RUYĒ SEFVICE ：IME
ATT（42）＝•5í＊TF（4E）
＊\rightarrow FROM BUYER TO PCC
ATi（14）＝i
PCO EERVICE TIME
$\operatorname{ATT}(43)=.3 C \cdot T C(5)$

```
        ATT(33)=1
                                CLE?K .SEPVICE IIN:E
        ATI(44)= 1.5C.TE(44)
        ** FRCM CLERK TO CO!TFACTCR
        ATT(27)=1
            CJITFACTER SEQVICE TIME
        ATT(48)=176.0C* TK(44)
```



```
C
C
C
    *** FREN CTI.TOACTCÃ TC BUYER
        335 ATT(5)=1
            BUYEF SENVICE TIME
        AT`(42)= 1.CC=TF(54)
        C **** FROM BUYER IC TECH.EVAL
        ATi(15)=1
                TECH.EVAL SEPVICE TIME
        ATT(50)=124.CC* TF(36)
        GC:% 9コ「%
c
C ***S2STEF 7****
C
    337 AT:(5)=
        C RUYEF
                                SEFVICE TIME
        ATT(42)=2.Di= TR(55)
        **** FREN BUYEF TO TSAFFIC
        ATT(16)=1
        60T3 9=55
C
C
C
**** FROM TEAFFIC
                                    to plyyef
    338 ATT ( 6)=1
    BUYEF EERVICE TIME
    ATT(42)= S.今C* TE(:24)
        **** F只N RUYEF. TCPCL
        ATV(14)=1
            DCO SEHVICE TIME
    ATT(43)= - O:# TF(55)
        ***FスrM FC
                                    TO TMAFFIC
        ATT(36)=1
        G0IO 55ジ
            S2 STEP C
            *** FRCM TRAFFIC
                                    T: RUVEE
```

```
    339 ATI( 5)=1
                BUYER .SEEVICE TIME
    ATF(42)= 2.00* TP(E6)
            *** FACR SLYER TO TFAFFIC
        ATT(15)=1
        GOTC 5s%O
            *=* S2STEP iこ
            *** FPCM TFAFF:C
                                    T0 huyEf
    34C ATT( a)=1
                BUYER SERV:CE TIME
            ATi(42)= E.GO* TP(53)
                *** FOBN BUYEF
                                    io ClEfK
        AT:(12)=1
                CLEPK SEFVICE TIME
    ATT(44)= 4.5C* TP(33)
        **** FRCP CLEFKK TO TRAFFIC
        ATT(23)=1
        GOTG 99Fラ
            S2 StEF 11
            *** FRご T=AFFIC
                            r= Bursm
    341 ATT( a)=1
                BUYEF SEPV:CE TIME
    ATT(4こ)= =.OC. TF(É)
    **** FRCN RUYEP TO CLEミK
    ATT(12)=1
                CLERK
                    sEiv!CE T:ME
    ATT(44)=.8C*TF(33)
            ****FRこM CLERK
                                    TO traff:C
        ATT(28)=1
        GOTO 905s
C
C **** S2 STEF 12
C ****FRCN F=AFF!C TJ Buref
    342 ATT( b)=1
                3uYEf SEsviCE TIME
        ATT(42)= .75* TR゙(ここ)
            **** FPCN HUYEF TO PCC
        AT:(14)=1
            FC2 SEPVICE IIME
        ATT(43)=1.E0*TF(ES)
            *** FROM PCC TO TCAFHIC
        ATT(36)=1
        GOT0 Oミラ`
```

```
C
C
C
C
    343 ATT(6)=1
                BUYEF SENV:CE F:ME
        ATT(42)= - 50̂*TK(4S)
        **** FREM BUYEF
        ATT(12)=1
        CLERK SENVICE YIMC
        ATT(44)= 1.0G*TR(43)
        *** FRCM CLERK
                            TC TRAFFIC
        ATT (23)=1
        Gごコ ロ¢5ヲ
            S2 STEP }1
            *** FRCN TFAFFIC TO BUYER
        344 ATT(G)=1
            BUYEF. SEFVECE TIME
        ATT(42)= - ミ&* TE(こち)
        ****FR̃* EUYER
        Tこ FCE
        AT: (14)=i
        FCJ SEPVICE TINE
        ATI(43)= •3C* !í(7)
        *** FFCN PCE
                            TこCLミミK
        ATT(33)=1
            CLEZK EEFV:CE TIME
    ATT(44)=1.CO=T:(13)
        ****FRC:M CLEFK
                            To Coritsactcr
        AT:(27)=1
            CONTPACTOR SEFVICE TIME
        ATT(4S)= 80.0G* TF(54)
        GコT@ジミ5
            *** S2 STEP 15
        **** FR.gN COMTFACTCR TE BUYEF.
        345 ATT( 6)=1
            BUYE\tilde{R}}\mathrm{ SEFVV:CE TIME
        ATT(42)=2.00-TF.(54)
        *** FqGM BUYEF TS PC%
        A「`(14)=1
            PCJ EERVICE-IME
        ATT(43)= .3C.FF(31)
        ***FESNC! TC CLEEK
        ATr(33)=i
            CLEPK SEFVICE IIME
```

$\operatorname{ATT}(44)=.30 \cdots \operatorname{TR}(5)$
C＊＊＊＊FROM CLEEK．TO REPRCOUCTICN
ATY（25）＝1
REPRUDUCTION SEFVICE TIME
ATT（53）$=16.0 \mathrm{C}$（TF（54）
GOTO 9399
C
$34 \in \operatorname{ATI}(10)=1$
C
CLEPK SEFVICE TIME
ATT（44）＝1．0C＊TR（4）
C＊＊＊FRON CLERKK TJ DJこTRERUTここん
ATH（25）$=1$
DISTKIBUTION SEPVICE TIME
ATH（52）＝12．20＊TK（35）
GOTO 9ラ97
347 6070 5ヨミヲ
348 GOTこ $5 \equiv 59$
$34960 \cdot 0$ 동
3506090979
351 GO： 0 5ララヲ
352 G9广 9599
353 ตう．ヨラミラ
354 60T ن 9539
355 60T2 0999
355 GCTO 9997
357 GOTO 955s
358 GOTD 9999
359 GOTO 9599
360 50：0 9799
361 60： 0 9959
362 GOT 0 9799
363 60T0 9799
364 GOTO 9ヨゴ
365 60T 5 ¥ラヨ9
こう5 651：อวコロ
367 －0゙0 0 ショヲ
36？Gごこ ラララヲ
365 60：3 9シヲ9
375 6012 9ラ55
C EN：D GF SE VETWOFK

 － $364,38=, 356,387,383,385,390,391,352,39,3.34,375$ ，
 ＊403，40シ，415，412），STEP


```
    375 ATI (5)=1
    C BUYEF
                                    genvice time
        ATT(42)= 1.OC*TF(56)
    C
                        **** FRCM BUYEP
                            TこCLERK
        ATT(12)=1
                CLENK ESOVICE TIME
        ATT(44)= 1.EC* TR(E1)
    C**F员苗 CLERK TG TOAFFIC
        AT:(2E)=1
        GぜこGミ39
        C
        C
        C
    C **FRDN TFAFFIC TO BUYEN
        375 ATT(. S)=1
                BUYEF.
                                SEEVICE TIME
        ATT(42)= . 50* TF(40)
        * * FRO* SUYER TO FCC
        ATT(14)=1
            FCJ SEZV:CE TIME
        ATI(43)= .jじ#Tf(E)
        ***FRCN FCC YO CL&FK
        AT- (33)=1
                CLERK SEPOMCE IENE
        ATT(44)= 1.50. TF.(44)
        ****Fミ゙ CLEEK IOCO:T:ムCTCF.
        ATr
            CこnTEACTCR SEFVECE iIME
        AT:(43)=17E.CC* TR(44)
        GMT: 5?##
            C
            C ** S3 STEP 6
        C***FRCN CCITFACTCR TE BUYEF
        377 ATT(5)=1
            BUYEF SEPVICE TIME
        AIT(42)-1.0C. TR(54)
            ****マにM BUYEF
                                    TこTECH.EVAL
        ATT(1ラ)=1
            TECH.EVAL SEhVICETIME
            ATT(ラO)=1こ4.CO*TF(3E)
            G0!コ こミ`7
        C
            c
                *** j3 sTEP 7 ****
            C ***Fここん TECH.EVAL TJ BUY
        372 ATT( 5)=1
            BUYES - SERV:CE T:ME
```

```
            ATT(42)=2.0U.TR(E5)
                                    *** FRCM BUYEF
                                    TO TRAFFIC
    ATT(15)=1
    G0T0 0.7.97
C
C ***SJSTEP & ****
C ** FROM TAAFFIC TO GUYER
379 ATT(6)=1
C GUYEF SERVICETIME
    ATT(42)= ミ.06*T\overline{F(24)}
        ***FFEM BUYER TO FCC
        ATT(14)=1
                PCO SERVICE IIME
            ATT(43)= .50. TF(44)
            **FREM PCC TE TEAFF:C
        ATT(35)=1
        G9T09999
C
C
C *** FRENTRAFFIC TC BLYEP
    3QS ATT (5)=1
C BUYEA ESQVICETIME
C
    ATT(4こ)= 2.3C* 「Fくこち)
            ***=FFC! RUYE& . TO T=AFFiC
    ATT(15)=1
    G970习ミッラ
        *** 33 STEP ic
            *** FRCN IEAFFIC
                                    to guyef
    381 ATT(S)=1
        BUYEF SEPVICE TINE
        ATT(42)= 6.00*TF(E5)
        *** F?O* BUYEF TO CLEマK
        AT:(12)=1
            CLE2K SEEVICE TIME
            ATT(44)= E.CO.TF(4?)
            ***FOE*CLETK TO := AFFiC
        AT:(2゙)=1
        GOT - 3%.79
C
C
C *** FA゙CM TFAFFIC Tこ BLYEF
382 ATT ( S)=1
                                    BUYEQ - ...SERVICE TIME
```

$\operatorname{ATT}(42)=1.50 * \operatorname{TR}(33)$
＊＊＝FRCN BUYER TO CLERK
$\operatorname{ATT}(12)=1$
C CLERK SERV：CE TIME
ATT（44）＝．8C＊TF．（33）
C
＊＊＊＊FRCM CLERK
TC TEAFEIC
$\operatorname{ATT}(28)=1$

C
c
12
＊＊＊FRON TFAFFIC
TO BUYEF．
383 ATT 6）$=1$
BUYEス SEPV：CETEME
$\operatorname{ATT}(42)=$ •75．TF（33）
＊＊＊FRC＊BUYEF TO FC
ATi（14）＝1
PCD SEFVVCE İME
ATT（43）＝1．10＊T戸（25）
＊＊＊FRCN PCO TOTIAFFIC
ATT（30）＝1
GO゙ニ シロッ9
C
c
c
S3 STEP 13
＊＊＊FEこM TRAFFIC Tこ BUYEF
324 ATI（ 6）$=1$
BUYEन EERV：CE TこNこ
ATT（42）＝－5C＊TF（45）
C＊＊＊Fズ＊BUYEF iこCleffk
ATT（12）＝1
CLERK SERVVCE TIME

＊＊＊FROF CLEFK iJ TFAFFIC
$A T T(23)=1$
GOTO 9959
C
C＊＊＊＊S3 5TEP $14 * * *$
C＊＊＊＊FRCM TFAFFEC TO HUYEP 385 ATT（ 6）＝1

RUYEF SEFVICE ：IME

C
＊＊＊＊FRJN RUVEF
T：PCC
ATT（14）＝1
PCJ SE＝VICE IJME
ATT（43）＝•3C＊TF（7）
C＊＊FRO＊PCC TOTAAFFIC
$\operatorname{ATT}(36)=1$
GOTS 5シ89

CTC BUYER

396 ATT（6）$=1$

BUYEF
SERU：CE TIME
ATT（42）＝．JC＊TF．（E）
＊＊＊＊Fス゚̃ buyEf．TJ JAu
$\operatorname{ATT}(1$（ $)=1$
AT：（49）＝24．00＊TF（3ミ）
GOT0 9098
C
C
C
C＊＊＊FRCM JAG TEBUYER
387 ATT（6）$=1$
GUYÉ SERV：CE TENE
$\operatorname{ATT}(42)=.50 * T \tilde{C}(6)$
C
$A T^{-}(16)=1$
GOT？？ $9=9$
C
C
C
C＊＊＊FEC＊＝ラAFF：C TO RUYEQ $385 \mathrm{AT}^{-}(5)=1$

BUYEK SERV：CE I：YE
$\operatorname{ATT}(42)=1.50$ ．Tr（ÉG）
＊＊＊FRGM BUYEF iJ CLEFK．
$A T i(12)=1$
CLERK SERVICE TIME
$\operatorname{ATT}(44)=-80 * \operatorname{TE}(33)$
＊＊＊FROM CLERK TO TRAFFIC
ATI（2ê）＝1
G0：うラロジ
C
C＊＊＊＊S3 EーEP $1 \varepsilon * * *$
C
C＊＊＊PこM TOAFFIC TC BUYEA 393 AT ${ }^{\top}(5)=2$

BUYEF．SENVICS—：ME
ATT（42）＝ 1.00 （TR（E4）
＊＊FOCN BUYEE．TC FCC
ATT（14）＝1
PCJ
sévice time

```
    AT\tilde{T}(43)= -3C*TE(37)
391 ATT (10)=1
                    CLERK SERVICE TIME
    ATT(44)= 2.00. TR(4)
        **** FFON CLEPK
                            Tこ D:ST&゙HUTIIM
    ATT(25)=1
                OこSTFIBUT:Oん, SENV:CE FiME
    ATT(52)= 12.CC*TR(35)
    G0T0 9950
    392 60T0 ショララ
    393 GOT = 9599
    394 G0T0 9595
    395 6OT0 95ショ
    306 6OT0 90;7
    397 GOT こ 9579
```

```
    398 GOTO 9999
    399 6010 9939
    400 GOTO 939%
```



```
    402 GGTO 9939
    403 GOTO シミアラ
    404 GOT0 95.97
    405 60!に シミヨヨ
    4C'S GO:0 9ミララ
    407 G0゙こ ゴラゴ
    403 GOTi シミラヲ
    409 5CrO 3%O5
    410 6or? 9% ジ 
    411 GOT こ シヲララ
            END EF SJ NETWCPK
            ****S4 NET:OSK ****
```



```
        *425,425,427,42E,425,430,431,432,433,434,435,435.
        *437,433,43E,442,441,442,443,444,445,445,447,44E,
        *44?.452,451,452),STEP
            ***S4 STEF 1 ****
C *** S4 STEF
            *** FFCMT:AFFIC
                TO FCC
    413 ATT(5E)=1
                    PCS SEFVICE TIME
        ATT(43)= - ?C* Th(j5)
            **** FFEM PC: TC BUYER
        ATT(2)
            BUYEE EEPV:CE i:ME
        ATI(42)= S.SC.TF(25)
        ** FRCM BUYEP TC CLEFK
        ATT(12)=2
            CLEFK JEPVICE TIME
        ATI(44)= 5.0C* iR(32)
            **** FRCM CLEFK TO TPAFFIC
        ATT(2S)=1
        60T0 93.35
C
C ****S4STEP 2 ****
C **FRON I=AFFIC T心 RUYEE
    414 ATT(5)=1
                    HUYER SENTVICE TIME
        ATT(42)= 1.00* T?(25)
C *** FROM BUYEC
                                    T0ClE=K
    ATT(12)=1
            CLミマK SETVICE TIME
        ATT(44)=.5C*TF(1)
C ***FPOM CLFRK TO TFAFFIC
```



```
    418 ATT( 6)=1
                BUYEF . SERVICE TIME
        ATT(42)= .50. iK(6)
        ***F和 BUYE^ IC JAG
        ATT (13)=1
            JAG SEEVICE TIME
        ATT(45)=24.OC*TF(35)
        GOTC 3ミラ9
C
C =**S4 STEP J ****
    419 ATT( 6)=1
                BUYER SERVICE TIME
        ATT(42)= -5C*TR(E)
            **** F2CM BUYER TO ThAFFIC
        ATT(16)=1
        GOTO 9999
C
C *** S4 STEP &
*** FRCM TRAFFIC TOGUYER
42C ATT(E)=1
                    BUYEF SESVICE TIME
    ATT(42)= :-U心.TF(EG)
            *** FRこN BUYEF
        ATY(12)=1
C CLEFNK EE=VICE IINE
    ATT(44)= - 己こ*TF(ころ)
        **** FREV CLEFK TC iNiffF:C
        ATT (28)=1
        GC+0 9990
            ****S4 STEP S ****
            *** FROM TRAFFIC TC BUYEF
        421 ATT( 6)=2
            RUYEF SEFVICE ここME
        ATT(42)= .50. Tr.(45)
            *** F尺OM BUYEF TO PCN
        ATT(14)=1
            PCO SEFVICE TINE
        ATT(43)= .EC*TF(45)
        ***FROM FCOT
        ATT(33)=1
            CLERK SERVICE IIME
    ATT(44)=1.5C= TF.(44)
        *** FRこM CLF&K
        TO CONTAACTCN
```


ATT（27）＝1

C ．CEVTRACTOP．SERVICE TIME ATT（43）＝176．0Uッ TR（44） G0T0 9759
C
ATi(42) = 1.0C*TE(E4)
**** FRCM BUYER.
TE TECH.EVAL
ATI(1シ)=1
TECH.EVAL EEFV:CE TiME
ATT(50)=104.C0*TF(ミ́́)
6015 9¢59

C
C ${ }^{* * *} 54$ STEP 11 ***
c
C *** FRCM TECH.EVAL : BUYEK
423 ATT (5) $=1$
BUYER SENVICE TINE
ATr(42)= 2.OC* TF(E5)
C *** FRCV BUYEF if TPGFFIC
ATT(1今)=1
GOTV Sミヨヨ

ATi（42）＝5．00．TR（44）
＊＊＊FRCM BUYER TO FCE

ATT（14）＝1
PCO SEPVICE TIME

ATT（43）＝－90＊TF（35）
＊＊＊FRCM FC：
TE ifaffic
AT「（35）$=1$
GOTC；559
c

AT：（42）＝2．5G＊TR（EE）
C \quad＊＊FOEN BUYER \quad I：tAAFFIC


```
    429 ATT( 6)=1
                BUYEF
                                    SERVICE TIME
    ATT(42)= -50.TF(4S)
    **** FミCM BUYEP.
                            TJ CLERK
    ATT (12)=1
        CLE&K
                                    SEPVICE TIME
    ATT(44)= 1.00^TR(43)
                            ***FFご CLERK TO TNAFFIC
        ATT(2品=1
        GOTO OFS9
C
C. ****S4 STEP 1S****
C ** FROM TPAFFIC T: HUYE=
    430 ATT(5)=1
                BUYEN SEPVZCE TIME
    ATT(42)=.50*TF(5Ǵ)
        *** FRCM RUYEF
        TO PCO
    ATT(14)=1
                PCJ EERVICE TIME
    ATi(43)= •3U*TF(7)
    ***FROM FCC TO TEAFFIC
    ATT(3S)=1
    GOTVジロミコ
C
C
C
****FRこM だAFF!C
                                I? Blyef
    431 ATT(E)=1
                BUYEN
    ATT(42)= -50*TF(E)
        *** FREM BUYEF
        ic JAG
    ATT(13)=1
                jAG SEEVICE TIME
    ATT(45)= 24.00* TF(35)
    GOTO 9:99
C
C
C
    432 ATT ( S)=1
                BUYER SEAV:CE TivE
    ATT(42)= .50. TF(%)
        *** FOCM BUYEF TU TEAFFIC
        ATT(15)=1
        G9:07999
C
C
```

ATT（42）＝1．5こ＊TP（E5）
＊＊＊FAC：BUYEス TO CLERK
ATT（12）＝1－
CLEGK SERVICE IIME

ATT（2S）＝1
Goic 9ヨ99
C
C
C
c
＊＊＊＊S4 sTEF 22 ＊＊＊
＊＊＊＊FNCM TRAFFIC TO BLYEK
434 ATT（ \leqslant ）$=1$
GUYE：SERVICE TIME
$\operatorname{ATY}(42)=.1 . C O=T E(E 4)$

C
c
c
c
c
＊＊．．fion buyer io pcc
AT－$(14)=1$
FCO SERVICE TIME
AT：（43）＝－50＊TR（37）
＊＊．．．FACM FCO TUCLEミK
ATT（3う）＝1
CLERK SERV：CE Fing
$A^{T}(44)=1.00 \times T F(13)$

AT：（27）＝1
covtsactur senvice itme
ATT（4き）＝SE．DJ＊TP（Eム）
6Cís．jョョ
c
c
c
c
54 S－EP 23

$43 \equiv$ ATT（ \quad（ $=1$
BUYEF－EEOV：CE ine
ATT（42）＝i．Oこ．TC（E4）
＊＊＊FRCH BUYEF T？PE：
ATT（14）＝1
PCO EERVICE IZME

AT：（42）＝
－30．TR（3ミ）
＊＊＊FECMPCO TこCL：天K
AT：$(33)=1$
CEEAK SERV：CE TINE
ATT（44）＝3E＝TE（5）
＊＊FRU日 CLEGK TJ REFE：DUCTicn

ATT（2́a）＝1
 PEPREDUCTJGN SERVICE TIME

ATY（53）＝ 16.00 （Tn（54）
GJTO 9590
C
C
C

```
****S4 STEP 24****
```

436 ATH $(10)=1$

> CLERK

SEQV：CE TIME
ATT（44）＝ 1.00 I IC（4）
＊＊＊FRCM CLEFK
TO DISTRIRUTION
$\operatorname{ATT}(25)=1$
Distr．ibution．SEスV：CE ijmf
ATT（52）＝12．0ごTE（35）
GOT？55S5
437 GOTJ 9399
438 GこT0 ヨヨ99
439 GOTD 3न59
440 G JTO $95 \exists 5$
4416009995
442 GOTつ ラシゴ
443 605 9：9쿵
444 Gごく ヨヲヨヨ
445 も「ここ タコラヲ
446 万0゙う ミ9ララ
447 GOT0 $3 \ni \exists \exists$
44日GこT：ヲヨコラ
$4496 J T$ 9ラ97
450 SOT． 7997
451 GJT0 9999
452 GOTO 9595
E：JD JF 54 ：UETHOPK
C $* *$ SS YETHCPK＊＊＊＊
453 EOTO $454,455,456,457,455,455,45 \mathrm{~J}, 461,462,4 \mathrm{n} 3,4 \mathrm{E} 4,465$, ＊465．457，46E，469，475，471．472．473．474．475，475．477，
 ＊ 470.49 ，432，4531，STEF

```
C ***S5 STEF 1***
```


454 ATT（5ッ）$=1$
PCO SEAVICE TIME
AT：（43）＝－EC．TF（ 3 J）
C＊＊＊＊FFEN FC：TE RUYEF
ATT（2ヨ）＝1
C
BUYE＝
sefvice ilvs
ATT（42）＝1こ．にごTF（25）
C＊＊＊FRこM BUYEF TCCLERK


```
C
C ****Sj s-EP 5
C ***FRON TFAFFI
    45E ATT(S)=1
                                    BUYEN SERVICE IIME
    ATT(42)= .SC*TF.(45)
C
    **** FREM BUYEF
                                    Tこ PCO
    ATT(14)=1
        PCO EERV:CE TME
        ATH(43)= -3L* T&(6)
        **** FRCM PCC
        TO TNAFF!C
        ATT(36)=1
        GOTコ ヨミヲ%
c
C ****S STEP 6 ****
c
C
        *** FRCM TSAFF:C
                                    TO BLYSR
        459 ATT( 5)=1
                BUYEF SEPVICE TIME
    ATT(42)= .50% TF:(E)
C *** FAO** RUYEK TO JAG
        ATY(12)=1
                JAG SEFVICE IIME
        ATT(49)= 24.C:# TC(35)
        Gの`こここララ
            **** S5 STEP 7 ****
            *** FROM JAG TD RLYEP
        460 ATI(É)=1
                BUYEF SERVICE TIME
    ATT(42)= .50* TR( 6)
        **** FPOM BUYER
                            TO TiAFFIC
        ATT (15)=1
        GOTO 9595
C
C
C
        *** FECM IFAFF:C
        Tこ BuYE=
        461 ATT(6)=1
            BUYER SERVICE FIME
        ATT(42)= 1.0゙心.TF(ES)
C *** FRCM GUYEF FこCLErK
    ATT(12)=1
            CLEOK SERV:CE IN
    AT*(44)= -5C*TF(33)
C ****FFCM CLEFK IS T-AFA:C
```

	ATT（28）＝1 GOTO $3 ミ ミ 0$
C	
C	＊＊＊S5 STEP ¢＊＊＊
C	
C	＊＊FROM TSAFFic in blyef
462 AT：（ 5）＝1	
C	BUYEP，SEPVECE TIME
	ATT（42）＝－50＊TF（4́）
C	－F＊FECM BUYEF－P PCC
	ATi（14）＝1
C	PCO SERVICE TINE
	ATT（43）＝．50＊TF（40）
C	＊＊＊FPCNFCO TC CCNMITTEE
C	COMMITTEE SERVICE TIME
	ATT（51）$=24.0 \mathrm{CH}$ TF（45）
C	＊＊＊＊FRSM CCMMITTES TO TRAFFIC
	ATT（3o）＝i
	G0：0 9\％99
C	
C	＊＊＊＊ 55 STEF 10 ＋＊＊＊
C	
C	＊＊＊FPC＊TFAFFIC TEFUYEF
	ATT（ 6 ）＝1
C	RUYES Esfyice iine
	ATT（42）＝2．OC：TF（57）
C	
	ATT（12）＝1
C	CLERK SERVICE IIME
	ATT（44）＝2．0゙ご TF（54）
C	＊＊＊FOSN Clefk TO TRAFFIC
	AT＋（25）$=1$
	GOT こ ごアヨ
C	
C	＊＊＊S5 STEP 11 ＊＊＊
C	＊＊＊＊FRCM TFAFFic TORUYER
C	RUYEf SEPVICE IIME
C C	$\cdots \neq F D C H \text { BUYEF }$ TCPC： ATV（i4）＝i
c	
C	$\begin{gathered} \text { OCO } \\ \text { ATT(43) }=\quad .80=T \text { SEPV:CE I:ME } \end{gathered}$
C	＊＊＊＊FこM PCO Tこ C＿EFK
	ATT（33）＝1
c	－CこEマK SEへ̃VICE TiNら

```
        ATT(44)= .50. YF.(41)
                        **** FRこM ClEFK.
                                    TO REpfCOUCTION
    ATT(26)=1
                                    EEPRCDUCTION SENVICE TINE
    ATT(53)=16.00*TF(54)
    Gor0 }9999
C
C
C
    465 ATT(1J)=1
                                    CLEPK SERVICE TIME
    ATT(44)= 1.5C* Tr(44)
        ***FPEN CLERKK - CここTf4C:ER
    ATT(27)=1
        CJNTFACTGF SERV:CE IこNE
    ATT(42)=1TE.C5* TE(44)
    GOTこ ヨラミ5
C
        **** Sj sTEP 13 ****
        **** FFGM CO:TPACTCP T: RUYEF
    4EG AT:( E)=1
                                BUYE& EEFV:CE -iNE
    AT:(42)= 2.JC* TF(こ4)
            ****FRCM BUYEF TOTECH.EVAL
    ATT(19)=1
            TECH.EVAL SEFVICE i:ME
    ATT (5С)=1:4.こう. TP(3́)
    G0T0 シэ`ラ
        ****5STEP i4 ****
        ****FQ?: fech.EVAL TU RUYER
        467 ATP (6)=1
            BUYEF SENVICE TIME
        ATP(42)= 2.00.TF(55)
        *** FGS* RUYEPS TO T=AFFiC
    AT:(1E)=1
    G0T0 930.
                S5 STEF
                15
            ****FPEM TPGFFIC Tl RUYER
        468 ATT( 弓)=1
            BUYE= SEFV:CE IIVE
    ATT(42)= 5.0C*TK(24)
        ****FRこH SUYEF
                                    P: PC:
```



```
    472 ATT (-6)=1
                BUYEF SERV:CE TIHE
    ATT(42)= .75* iK(33)
        ** FFCM RUYER TC PCO
        ATT(14)=1
                PCO SERVICE TIME
    ATT(43)= i.5C* TF(33)
        **** FRCN FCC TC !FAFFiC
    ATT(3́)=1
    GOT 0 9?ロシ
C
C
C
473 ATT(E)=1
                bưYÉ SEFVECE TIME
        ATT(42)= .SC*TF(4S)
        ***FRGM BUYEÁ TO CLEPK
        ATT(12)=1
            CLEFK SENVICE TEME
        ATT(44)= 2.00* TF.(43)
        **** FRON CLEFK.
                            TO TSMFFIC
    ATT(23)=1
    GOTこ 355S
c
C
C ****F?SMT=AFFIC I: BUYE&
C
                BUYEF
                    SERV:CE :IME
    ATT(42)= •S「* íN(ćE)
        **** FROM BUYES
                            T: FC=
    ATT(14)=1
                PCS EENVICE TIING
    ATT(43)= -3C:TF(J)
            *** FPCM PC:
                                    TC TEAFF!C
    ATT(35)=1
    G0`0 ミミミヨ
C
C **S5 S.EP 22***
C *** FRCM TAAFFIC TC RUYER
    475 ATT(S)=1
                                    JUYEF EEFVECE TINE
    ATT(42)= -50* Tरि(6)
    ATT(1S)=1
                                SERVICE IINE
C
```



```
BUYER
serv：CE T：ME
ATT（42）＝•ER＊if（EE）
ATT（14）＝1
PCO EERV：CE TIDE
ATi（43）＝．3C．TF（ 3 ）
ATi（35）＝1
GO゙0 5ミラ
\(\operatorname{ATT}(42)=.50 * \operatorname{Tr}(6)\)
ATT（1S）\(=1\) jas servicetine
```



```
    479 ATT(S)=1
                        BUYER
                                    SERVICE TINE
        ATT(42)= こ.こごTFR(57)
            **** FRこ! BUYこf.
                                    TOC!5凤K
        AT:(12)=1
                CLERK
                            SERVICE TIME
        ATI(44)= 1.0!*TF(54)
            ****F口こMCLミミK
                                    TOT#AFFIC
    ATI(2S)=1
    GこTJ5きミ%
                S5 STEP 27
            #*** FRGM TRAFFIC
                                    T^BUYミた
    4E@ ATT( S)=?
                gUYEF SERVICE TIME
        ATT(42)= i.OCOTF(E4)
        ***= FRCM SUYER IJ PCO
        ATI(14)=1
                PCS EERUICE TIME
        ATT(43)=.5C:TF(46)
        ****FミこM PC: 「こCLミコK
        ATT(3`)=1
                CLEスK . SERVICE TIME
    ATT(47)=1.SU*TR(13)
        ***F马EM CLERK TI CEATFACTCF
        ATT(27)=1
                CこVTFACTCF Eミ币V:CE il品
    ATT(4E)= QC.OC. TF(E4)
    G0T: รコS3
        *** S5 STEF 2E****
        *** FRCM CERTFACTCR Tこ HU心EH
    481 ATT( E)=1
                BUYミん こごV\CE-iME
    ATT(42)=1.SC.TF(E4)
        *** FRこM HUYEF
        T: DCO
    ATT(14)=1
        FCO EEWVICE IINE
    ATT(43)= .jごTN(こ0)
        ****FSEN PCC
        TaCLEOn
    AT:(33)=1
                CLENK SEQVICE IIME
    ATT(44)= 30. TF゙ う)
```



```
    AT (2G)=1
        マEPRIOUCTIGG SERV:CE TINE
```

```
        ATI(53)= 1E.CE* TR(54)
        GOT0 9959
C
C
C
C
    482 ATT(10)=1
                CLEPKKE=VICE TIME
    ATT(44)= j.0こ* YFi(4)
        ****FRON CLEFK ic OISTRミRUTIEN
    ATT(25)=1
                OIST底㑑ION SEミVICE TIME
            ATT(52)=12.00*TF.(35)
            6010 9009
    483 6U:0 8399
    484 GOTC @ラヨ习
    485 60TO 9790
    486 GOTO 9979
    487 GOTJ 5099
    4BE GSTC Эココᄏ
    489 G0Tこ 9フ99
    490 GOT0 シコロコ
```



```
    493 GO-C 9ミ59
        E•O 2F SS AETHOEK
        **** SE NETんこ「K ****
```



```
        *507.50S.5こ5,51C.511.512.51ミ, ミ14.5:5,51{.517,515.
```



```
        *531,532,533,534), STEP
            ***S5STEF 1 ****
                *** FRCM TRAFFiC ivFCG
        495 ATT (53)=1
                PCJ SERVICE TENE
            ATT(43)= - हC-TR(33)
        **=* FRCN FC: TE SLYEF
        ATT (20)=1
                BUYER SEFVICE Y!NE
            ATT(42)=12.00.TF(Eミ)
                *** FROY BUYEF
                Tj CL「{K
            ATT(12)=1
                CLEFK SERVICE IEME
        ATT(44)=4.5C*TF(23)
        ***FE?N CLEAK TET=AFF:C
        ATY (23)=1
        GC:C %O?.4
```


C
C

C

$\operatorname{ATT}(43)=.3 C 4$ TE（S）
$\operatorname{ATT}(14)=1$
PCO SERVICE TIME
＊＊＊FRUM FCC

TO PCO

TG isAFFic
$\operatorname{ATT}(36)=1$
GUTO $5: 97$
C
C
c
C
C $==\boldsymbol{*}=\mathrm{FRCM}$ TRAFF：C TI BLYEF
500 ATT（ 6）$=1$
GUYEF SERVICE TIME
ATT（42）＝－5C＊TF（E）
＊＊＊EREN BUYER TO jAG
$A T T(13)=1$
JAG SERVICE TiME
ATT（45）$=24.0$（TF（35）
607〕 $5: 97$
C C $\quad * *$ Sóstef $7 \ldots *$
c
＊＊＊FPEM JAG TO BUYEF．

C
－
C
BUYER
SERUICE TIME
ATT（42）＝．EO＊inc 6）
＊＊FaミN hlyes
$\operatorname{ATT}(15)=1$
GOTO ミces
c
C＊＊＊So STEF \＆＊＊＊＊
C＊＊＊FRCM TFAFFIC TERLYEA
502 ATT（ 6）＝1
BUYER SERVICE TIME
$\operatorname{ATT}(42)=1.0 C=$ TF（SG）
＊＊FECY HUYEF．TE CLENK
ATT（12）＝1
CLENK SERVICE IME
ATT（44）＝•89：TF（33）
＊＊＊FE：N CLEスK TO T＝AFFiC
A $T^{-}(23)=1$
6ゴコサニ゙ラ
$\begin{array}{ll}C \\ C & \cdots\end{array}$ So STEF $\quad \because \ldots$
C
C
＊＊＊FEOM TFAFFiC
TE BLYEス
503 ATT（S）＝1

```
                PCO
                    SEFVICE IINE
```

 \(\operatorname{ATY}(43)=-50 * T F(40\))
 C
** FACM PCO
TO C.gMmTTEE.
A「(5i) =1
CJMMETTEE SENVICE IIME
AT「(51) = 24.0C*TF(4玉)
***FFCM CENMITTEE TOTVAFFEC
ATT (33) =1
GこTコ ヨヨアヨ
C
C ****S6sTEP IC ****
C
504 AT: $(6)=1$
BUYEF SERVICE TIME
ATT (42) = 天.OCTTF(57)
****FRCM BUYEF TO CLEFK
ATT(12)=1
CLEGK SERVICE TIME

*** FRGNCLEFK
TJ T\&AFF:C
$A T T(2 \Delta)=1$
GJTうごきミ9
C
C
C
C **** FRON TFAFFIC T: BiYEn
505 ATT (S)=1
BUYEO SERVICE TINE
$\operatorname{ATT}(42)=$ - $5 C \operatorname{TR}(55)$
** * FRCM BUYER
TC PCC
ATT (14) $=1$
PC: SERVICE IINS

*** $\boldsymbol{\text { *RE* PC「 }}$ - TJ CLERK
AT ${ }^{T}(33)=1$
CLERK SERVICE TIME
ATT(44)= .5ご TR(3i)

ATT (26) $=1$
REPREDUCTEON SEFVICE TIME
ATT (53) = 15.7(* TF(三4)
GO:O 5シ97
C

```
C ** S6 S:EP 12
C *** FROM FL!GCDLCT:CNTO CIESK
    506 ATT(10)=1
                                CLERK SEPVICE IIME
    ATT(44)=1.50=TR(44)
C =*** FRCM CLEFKK TO CCAIRACTCR
        ATT (27)=1
            CENTEACTCF SEFVICE TIME
        ATT(4E)=176.CC.TR(34)
        GOTに S539
C
C ****ŚS STEP 13****
C ****FRGM CCNTFACTER TE BUYER
507 ATT( 6)=1
                    BUYEF SEEVICE TINE
    ATT(42)= i.GU*TF(E4)
C *** FRCM BUYER TO TECHEEVAL
    AT:(13)=1
                                TECH.EVAL EERVICE I:NE
    ATI(50)=134.00^TR(Eこ)
    60'0 5=97
C
C
C
C ***FRCM TECH.EVAL TE HUYER
    508 ATT ( 6)=1
                BUYER EEEVICE :INE
        ATT(42)= 2.OC*TC:(Eう)
        ***FSこM BUYEF TE TEAFFIC
        ATT(iち)=1
        G0iJ 3797
C
C
C ***FSSN TFAFFIC TO BUYEQ
        5CЭ AT:(S)=1
            BUYE? EERVICE IIME
        ATT(42)= 6.OC. T₹(36)
        ***FQO: BUYERK TO FCC
        ATr(14)=1
            PCS SEPVICE TIME
        ATT(43)=1.00. TF(EQ)
        ***FẼC* PC= Iこ - +AFFiC
        ATr(35)=1
        G0T0 9¢.3F
```

 ATi(42) = 1.00 . T (S(ミき)
    ```
            ***FFEON BLYER
TO tRAFFIC
``` ATT（1s）＝1 60TO 9503
c
```

C

```
c
C ***FRCN TFAFFIC TO BUYER
511 ATr (\(\subseteq\)) \(=1\)
 buYER SERVICE IIME
 \(\operatorname{ATT}(42)=E . J C=T E(z a)\)
 *** FROM buyEa ti clerk
 ATT (12) \(=1\)

 ***FFC CLENK TOTAAFFIC
 ATi \((29)=1\)
 GOTこ コ ミs.
c
C
c
C *** FRER TGAFFIC TO BUYEス
C ATir suref. sepvice itme

 *** FRC* BUYER TC CLEÑK
 ATT (12)=1
 CLEPK SERVICE TIME

 *** FRCN CLERK TO TRAFFIC
 ATT (28)=1
 GCT: 3959
C
C \(\quad * *\) SG STEF \(15 \cdots \cdots\)
C ***FRENTRAFFiC TO RUYEÁ
 513 ATT (6) \(=1\)
 buyef sefuice time
 ATT(42) = - JE. TF(ころ)
 ** FPON HLYEF TO PCC
 AT「(14)=:
 PCJ SEAV:CETTME
 ATT(43)=1.52. TF(35)

 GOTO Eミヨs
to BuyER
519 AT \({ }^{-}(5)=1\)
buyen
serv：ce time
ATT（42）＝1．5C．Th（SS）
C＊＊＊FRCM BUYEK TO CLERK
AT：（12）＝1
Clerk seavice time
ATi（44）＝．80：TF（33）
＊＊＊＊FREN CLEFK
TO TPAFFIC
\(\operatorname{ATT}(28)=1\)
GOTO \(3=99\)
C
c
\(4 T T(43)=.3 C: T F(37)\)
＊＊＊＊FREM PCC TC CGMMETTEE
\(\operatorname{ATT}(61)=1\)
committee senvice itime
ATT（51）\(=24 . C 0 * T R(35)\)
＊＊＊＊FRCM CCMMittee TC TRAFFIC
\(\operatorname{ATT}(38)=1\)
6UT（ Sミッチ
\(C\)
\(c\)
\(c\)
\(c\)
\[
\text { \#\#* } 35 \text { STEP } 26
\]

520 ATT（ 6）＝1
c
c
ATT（42）＝2．0ヶ・TE（57）
＊＊＊＊FRCM BUYEK
ti Clifk
\(A \Gamma^{\top}(12)=1\)
CLERK
service time
ATT（44）＝1．CC：TP（54）
\[
\operatorname{ATT}(28)=1
\]

GUTO 9ララヨ
C
c
C
C＊＊FRGM TKAFFIC TO BUYER ＊＊＊＊Ś STEP 27 ＊＊＊＊

521 ATT（E）＝1
C BUYEF

SERVICE TIME
AT（42）＝2．こう～TC（54）
C
＊＊＊＊FRON BUYEK
TO PCD
\(\operatorname{ArT}(14)=1\)
PCO SERVICE TIME
\(\operatorname{ATT}(43)=.50 * T P(45)\)
C

C
＊＊＊＊FROM PCC
\(T\) © CLEFK
ATT（33）＝1
CLEマK SERVICE TINE
ATT（44）＝1．0C．TF（13）
C
＊＊＊＊FRこ心 CLE？K
TC CONTAACTCH
ATT（27）＝1
CE：UTFACTOF SERVICE TEME

GET：シラ90
C
\(C\)
C
C
C

TC RUYER
BUYミq
SERV：CE IIME
ATT（42）\(=1.5 C \cdot T F(\leq 5)\)

TC PC：
\(A T^{-}(14)=1\)
PCO SEÑVICE TIME
ATT（43）＝－3C＊TC（ a）
＊＊＊FRCM PCC
TJ Cleミk
ATT（33）＝1

> CLERK SERVICE TIME
\(\triangle T T(44)=\)－ZODTH（5）
＊＊＊F巨CR CLEスK
TO REFEODUCTION
ATT（26）＝1
PEPPROUCTEOP SEKVICE TIME
ATT（53）\(=16 . C C * T F(54)\)
60T 9999
\(C\)
C
C
C＊＊＊FRCF REFRCJLCTIこNTシ CLEご 523 ATP（1E）＝1
```

C
C
C JISTFIBUTIOA SERUICE TINE
ATT(52)=12.0C*TF(35)
GOTO 9?97
524 GOT: 9コ93
525 G0T? @ロ90
526 GOT0 シラS`     527 GO:C 5ミ99     528 GOT0 9`ヲ5
529 GCTO 5997
530 GCTJ Es¢s
531 G0T0 ¢S¢今
532 6OT` 9599
533 GOT0 シ999
534 G0iG 5999
C END UF SG NETHCRK
C **** ST NETHCPK ****
535 GOTO\535.537,53\&,535,54こ,54:,542,543.544,545.546,547.
* 543,549,550,551,552,5ミ3,554,555.55E.557,558,555,
-567,551,552,563, Е64,565,566,567,566,565,57J,571,
*572,573,574,575), STEP
C *** S7 STEP 2 ****
C **** FEこM i=AFFIC
Tこ PCC
5354TT(5ふ)=1
PC? EEPVICE TIME
ATT(43)= i.ES* TE(33)
C ***FRCN FCE TC BLYER
AT:(25)=1
C BUYEF SERVICE TIME
AT:(42)= 12.00* TK(35)
C
*** FRCM BUYER
TG CLERK
ATT(12)=1
CLERK SERVICE TIME
ATT(44)= 5.OC*TR(22)
*** FREM CLERK TO TRAFFIC
ATi (20)=1
GOT999ショ
C
C ***S7STEP 2***
C
*** FOCM TFAFFIC
TJ HUYEF
537 ATT(\mp@code{́)=1}
BUYEF SESVICE IIME
ATT(42)= J.OC(.TF(?5)
C
** FRCM BUYEF.
TO CLEFK

```
\(d r\)
```

$\operatorname{ATP}(12)=1$

```
```

CLESK
SEPVICE TIME

```
```

ATT（44）＝．55＊TF（1）
＊＊＊FRGM CLESK TO TतAFFIC
ATT（2ら）＝1
601 35999
c
$\operatorname{ATT}(42)=-50 * T E(45)$
＊＊＊FREM BUYEF TC PCE
ATT（19）＝1

```
```

                PCO SERVICE TINE
    ```
 PCO SERVICE TINE
ATT（43）＝2．50＊TR（44）
＊＊＊FRCM PCC TJ ：PAFF：C
ATT（35）\(=1\)
60： 3 9ラヨ9
c
c
c
C
C
C
c
C
C
539 ATT(S)=1
 BUYEQ SEPV:CETIME
 ATT(42)= 1.CO*TF(ÉG)
 ***FACN BUYEF TLCLEEK
 ATH(12)=1
 CIERK SERVECE TIME
 ATT(44)= 1.0ご IR(5!)
 *** FROH CLEAK TC PFAFFjC
 AT:(28)=1
 GOT: .993
 S7 STEP S ****
C
C
540 AT+(G)=1
C
c
C
C
```

```
C
C
**** FRON TFAFFIC
BUYER SEF.VICE TIME
 ATT(42)= .50*TF(6)
 *** F{UM buyEk
 TO JAG
 ATT(1S)=1
 jag SERVICE tImE
 ATT(49)= 24.00* TE(35)
 GOTO S999
C
C =** FROM JAG TO BUYER
 542 ATT(5)=1
 HUYEF SEQVICE TIME
 ATT(4\hat{)}= .SC* TR(6)
 **=* Fr.SN BUYEF
 TE TFiAFFEC
 ATF(16)=1
 GOTC 9999
C
c
c
C
 543 ATT (6)=1
 BuYEO SEFVICE time
 ATT(42)= 1.OC* TF(5Ó)
 *** FAEN buyEP. to ClERK
 ATT(12)=1
 CLERK SERVICE TIME
 ATT(44)= •8こ*TF(33)
 **** FROM CLERK
 TE TAAFFIC
 ATT(28)=1
 GOTJ 9999
C
C
c
 544 ATT(6)=
 BUYE? SERVICE TIME
 ATT(42)= .50* TR(4E)
 **** FROM BUYER TO PC=
 ATT(14)=1
 PCO SERVICE :IME
 ATH(43)= .50.TF(45)
 *** FREM PC?
 ta Comm:TtEE
```

```
 A is(61)=1
 COMMITTEE SERVICE IINE
 ATS(51)=24.CC* TF(45)
 **** FREM CEMMITTEE TO TEAFFIC
 ATI (3\varepsilon)=1
 GOTO 9899
C
c
 545 AT:(自)=
 BUYEf SERVICE TIME
 ArT(42)= 2.0&*TR(ET)
 ** FKC: RUYER TE ClEAK
 ATT(12)=1
 CLEAK SERVICE YIME
 ATS(44)= 2.00*TF(54)
 ***FRGM CLEEK TO TRAFFIC
 ATT(29)=1
 GOT0 cgog
 ** S7 STEF 11
 ** FRON IRAFFIC TS BUYER
 54S ATr(6)=1
 BUYEF SEOVICE TSME
```



```
 **** FRCM BUYER TE PCC
 ATT(14)=1
 AT:(43)= -SO* TE(ES)
 * FROM PCE
 :0 ClvFK
 AT: (ここ:=1
 CLEPK
 50. TF(41)
 50. T&(41)
 ATT(44)= -50* TF(41)
 *** FREN ClEZK TC REPRCDUCTION
 AT(26)=1
 FEPFODUCTION SERVICE IIME
 ATT(j3)= l&.0こ. TR(54)
 GOia gegg
C
C
C **** FROM REFEGOUCTIEN: IE CLEF.K
547 ATT (10)=1
C CLEOK SERUICE IEME
 ATY(44)= 1.5(*TR(44)
 ****FRこN ClEDX
 TO BUYE=
```

AT：（21）＝1
C BUYER－SERVICE TIME
ATT（42）＝E．DC＊TF（E4）
C
＊＊＊＊FNON RUYEF
TO TRAFFIC
ATT（16）＝1

C
C
C
C
＊＊＊＊FRCM TEAFFIC
TO ClEfK
542 ATT（20）＝1
CLERK
sERVICE TIME

C
C
＊＊FRCR BUYEF TG PCO
ATT（14）＝1
DCO SERVICE TIME
$\operatorname{ATT}(43)=.50 . \operatorname{TE}(46)$
C $* * *$ FRON PCE TO CEATFACTEK
$\operatorname{ATT}(35)=1$
C COOTSACTOÃ SERVICE TIME
ATT（4．3）＝17E．CC TF（Z4）
GCIO 90cs
C
C $\quad * * * S 7 \leq T E F \quad 14 * * *$
C
C＊＊FRCH CCATRACTCR TO RUYEス
549 ATT（6）＝1
BUYEF
sepuice time
ATT（42）＝ 1.0 C （FT（54）
C $\rightarrow$ FRGM BUYEN̂ TO TECH．EVAL
$A \operatorname{TY}(19)=1$
TECH．EVAL SERVICE TIME
ATT（50）＝104．00．TP（こ6）
GOT： 9 ミS
C
C
C＊＊＊＊FREM TECHEEVAL TERUYEF
550 ATT（5）$=1$
BUYEF
SERVICE TIME
$\operatorname{ATT}(42)=2.00$ © $\operatorname{TF}(55)$
＊＊＊FRJM BUYEF TE AUDIT
$A T T(20)=1$
AUDIT SEFVICE TIME



HUYER SERVICE T:ME
ATT(42)=1.00*TR(54)
C ***FQCM RUYER TO PCC
$\operatorname{ATT}(14)=1$
$\operatorname{ATT}(43)=-30 \cdot \operatorname{TF}(37)$
** FRCF PCC TC CUVMITEE
$\operatorname{ATT}(61)=1$
COMMITTEE SERVICE TIME
ATT(5:) $=24.0 \mathrm{C}$ (TF(35)
** FRCM CORMITEE TC TPAFFIC
ATT (39) =1
GOTO 9コロ9
C
C
C
C **FRCMTRAFFEC TC GUYER
563 ATT (a)=1
BUYEर́ SERV:CE TIME
ATT(42)=2.CO.TG(ミ7)
*** F₹EM BUYEP
TJ CLEFK
ATT (12)=1
CLERK SEPVICE - IME
ATY(44) = :.20.TF(ミ4)
*** FPGNCLEFK TETFAFF:C
ATT (2E)=1
GOTO 9995
C

| C |
| :--- |
| C |

C
C
564 ATT ( 5 ) $=1$
BUYER SERVICE TIME

*** CRCN RUYEF TO PCO
$\operatorname{ATT}(14)=1$
PCO SEOVICETEME
$\operatorname{ATT}(43)=-5 i \cdot \operatorname{TR}(4 E)$
** FRCM PCC
TO CLERK
ATT (33) =1
CLEEK SERV:CE TIME
ATT(44) = 1.0 (TP(13)
C ***FEM CLERK Tク CCNTKACTGR
$\operatorname{ATT}(27)=1$
CUNTPAC-CO SERVICE TIME
$\operatorname{ATT}(43)=a C .00 * \operatorname{Tr}(E 6)$
GOTO O999
c
c
c
C
565 ATi ( 6) $=1$
BUYE!
$\operatorname{ATT}(42)=1$ : Tif(TE)
*** FRGM BUYEF
eEfvice time
C
c

C

C
c
c
C
566 ATT ( 6) $=1$
C
C
c
C

C
c
c
c
567 ATT (10) $=1$
C
c

C

- ATT(44) = 1.OC*TK(4)
**- FRCN CLEK TC DISTFIBUT:CN
ATT (25)=1
DISTE:BUTiCA: SEfiVICE TiME
ATT(52)= 12.CC*TR(Z5)
G0: 0 9.

560 6070 9599
57069509499
571 6970 9599

```
 572 GCTO 5399
 573 GOTO 9997
 574.G0T0 9799
 575 60iO 57ラ9
 END OF ST NETWCRK
 **** S& IUETHORK ****
 576 G0:) (577,57%,579,580,561,5à2,5%3,554,505,556,587,5a9,
```




```
 *S13,514,Ó15,E15,E17),STEP
C ***SS STEP 1 ****
C ***FROM TFAFFIC TO FCC
 577 ATT (53)=1
 PCD SEFVICE TIME
 ATT(43)=1.3C*TE(33)
 *** FRCM PCC TO HUYEP
 ATT(29)=1
 RUYER SERVICE TIME
 ATT(42)=15.00*TR(45)
 ****FRCN RUYEF. TO CLERK
 ATT(i2)=i
 CLERK SERVICE TIME
 ATT(44)= - 8C*TF(35)
 **** FR&M CLERK TO TPAFFIC
 ATT(2b)=1
 GJT` Sシ59
C
C
C **** FRCM TFAFFIC TこRUYEN
 578 ATT(6)=1.
 BUYEF SERVICE TINE
 ATT(42)= i.50* TR(33)
 **** F呩㐿 BUFF
 TO TPAFFIC
 ATT(15)=1
 GOTO 9499
 S3 STEP 3
 579 ATT(5)=1
 BUYES SERVICE TIME
 ATT(42)=12.OC* TR(J5)
 ****FRこN BUYER
 TE CLEPK
 ATT (12)=1
 CLEAK SERVICE TIME
 ATT(44)= 5.OC. TS(22)
 ***FECM Clerk te tPAFFIC
```

```
 ATT (2E)=1
 GOT U 9999
C
C
C
C
 58C ATT (6)=1
 BUYEF SEFVICE TEME
 ATT(42)=2.[{-FF(56)
 *** FRCM BLYER
 TO CLERK
 ATT(12)=1
 CLERK SERVICE TIME
 ATT(44)= .50*TP(1)
 *** FRCH CLERK TC TFAFFIC
 ATT (28)=1
 G0T0 7599
 S8 STEFS
 **** FRCM TPAFFEC TO BUYEF
 5&1 ATT(5)=1
 BUYEF SERUICE TIME
 ATT(42)=.50*TP(4E)
 **** FRCP BUYEF
 Tこ PCC
 ATY(14)=1
 PCO SEPVICE TINE
 AT:(4う)= 2.SC.TF(23)
 **** EOSN PCU
 Tこ T=AFF:C
 ATT(35)=1
 GOTO 9¢9%
 ****S8 STEP 6
 *** FRCM TFAFFIC
 Tこ BUYER
 582 ATT (б)=1
 BUYEF: SENVICE TINE
 AT:(42)= 1.0!.TR(EE)
 *** FRON BLYEF iGCLE&K
 ATT(i2)=1
 CLERK SEQV:CE TIME
 ATT(44)= 1.ES* TF(51)
 *** FRCN CiE=K
 Tこ TSAFFIC
 AT'(29)=:
 GOTg9979
 *** S8STEF 7 ****
 *** FROM TFAFFIC TC RUYEO
```

```
 583 ATT(5)=1
 BUYER - SE&VICE TIME
 ATT(42)= .5u: TD(4\epsilon)
 **** FRCM BUYER TO PCE
 ATT(14)=1
C PCO
 SERVICE TIME
 ATT(43)= .30:TP(6)
C **** FRCM PCC TO TFAFF:C
 ATT(36)=1
 GOT0 ¢970
 *** S8 STEP 8
 ****FRCM TFAFFIC j:BUYEP
 584 &TT (6)=1
 BUYEF. SERVICE TIME
 ATT(42)= .5^* TF(6)
 **** FRGM BUYER TC JAG
 ATT(13)=1
 JAG SEFVICE -iME
 ATT(4O)= 24.CC* !F.(ここ)
 G0T.0 955?
C
C **** 38 STEP S****
c
C **** FEiN JAG TC BUYP:F
585 ATT(5)=1
 BUYEN
 SERVICE TIME
 ATF(42)= .ST* FF(6)
 *** FRC* BUYEF TU T=AFF:C
 ATT(16)=1
 G气T! 9599
C
C **SESTEP 10***
C **** FRCN TFAFFIC TC BUYEF
 596 ATT(G)=1
 HUYEF SERVICE TIPE
 ATT(42)= 1.0C:TH(56)
 *** FRCM BUYEF TC CLERK
 ATI(12)=1
c
 CLEPK
 SEGVICE TIME
 ATY(44)= -8G*TF(33)
 ****FRON CLEOK TE TFAFF:こ
 ATT (2E)=1
 GOTこ シ5ヲ7
C
```

```
C
C ****FRCM IFAFFIC TO BUYEH
 587 ATT(6)=1
 BUYER
 SERV:CE IIME
 ATT(42)= -5C*TR(46)
 *** FRCM BUYER TS PCC
 ATT(14)=1
 PCC SEKVICE TIME
 ATT(43)= .5u* TF(45)
 *** FRCM PCC TO CCMMITTEE
 ATT
 COMMITTEE SERVICE TIME
 ATT(51)= 24.OC*TR(45)
 *** FRGM CGAMITTEE TO TRAFFEC
 ATT(38)=1
 GOTO 9539
c
c
 *** FFOM TFAFFIC TG BUYEF
 588 ATT (6)=1
 BUYEF SEFVICE TIME
 ATT(42)= 2.OC= Tर्N(57)
 **** FPOM RUYER TO CLERK
 ATT(12)=1
 CLEFK SEPVICE TIME
 ATT(44)=2.UC* TF.(E4)
 **** FREF CLEPK
 TO TFAFFIC
 ATT(23)=1
 G0:0 5`こ9
 S8 STEP 13 *
 ***FROM TRAFFIC TO HUYER
 599 ATT (6)=1
 BUYER SENV:CE tIME
 ATT(42)= -0̃= TP(E5)
 ***FREM RUYEF TO PCO
 NTi(14)=1
 PCO SERVICE TIME
 ATT(43)= - &C*TF(E5)
 **-FROM PCO TO MA:!AGENER:
 ATT(37)=1
 MANAGEMEIVT SENVICE I:ME
 ATT (54)= 24.0?* TF(36)
 GOT0 9799
C
C_***SSSIEP 14 ***
```

```
C
C **** FRCM MAF,GGENELit TC HUYER
 590 ATT (6)=1
C BUYER SEPVICE IIME
 ATT(42)= -5C.TF(6)
C **** FROM BUYER TO TRAFFIC
 ATT(16)=1
 GCTO 9599
C
C
C
591 ATT(G)=
BUYEP SERV:CE T:ME
 ATT(42)= i.50*TF(EG)
C **** FREM BUYEF. TC CIEFK
 ATT(12)=1
 CLERK SERVICE TIME
 ArT(44)= 1.5[*TP(45)
 **** FPSH CLERK TO TFAFFIC
 A TT (29)=1
 GGTJ 9099
C
c
C **** FPCM TEAFF:C TC RUYEP
 592 ATI' (, E)=1
 BUYEF EEFVECE T:ME
 ATT(42)=1.CC*TF(E自)
 **** FRCM BUYEF Tこ PCC
 ATT(14)=1
 PCO
 SENVICE T:ME
 ATT(45)=.90*TF(44)
 *** FRON PCE TE CLERK
 ATH(33)=1
 CLEPK SERVICE IIME
 ATT(44)= .50* TR(41)
 ****Fi.iM CLEqK yn &EFRCDUCT:CO:
 ATT(26)=?
 REPRODUCTICN SERVICE :IME
 ATT(53)= 1E.0C*TE(54)
 00T0 9599
C
C **** FRGM REfFUDUCTIEA tO CLEFK
 593. ATY(10)=1
CLERK SERVICE TIME
```



```
 ATT (20)=1
 AUDIT
 SERVICE TIME
 ATT(55)=352.00* TR(54)
 GOT0 9999
 SS STEP 21*
 *** FRCM AUDIT
 TC BUYER
 597 ATY(5)=1
 BUYER SEPVICE TIME
 ATT(42)= 8.0C*TP(34)
 *** FROM BUYER TO PCC
 ATT (14)=1
 PCO SERVICE TIMS
 ATT(43)=2.00* TF(34)
 *** FRDM PCE. TO CLERK
 ATT(33)=1
 CLERK SERVICE TIME
 ATT(44)= 1.C0* TR(53)
 **** FROM CLEスK
 TO TPAFFIC
 ATT (28)=1
 GOT0 9799
C
C
 598 ATT (G)=1
 BUYER SEPVICE TIME
 ATT(42)=1.50* TF(36)
 **** FRCM BUYEF
 TO T&AFFIC
 ATT(16)=1
 GOT0 9399
 ** S8 STEP }2
 **** FRCM TRAFFIC
 TO RUYER
 599 ATT (5)=1
 RUYER SERVICE TIME
 ATT(42)= 0.00**TF(E5)
 **** FPOM BUYEP TO TRAFFIC
 ATT(15)=1
 GOT0 9999
 S8 STEP 24 ****
 **** FRON TRAFFIC TO BUYER
 600 ATT (E)=1
 BUYER
 SERVICE TIME
```

```
 ATT(42)= 5.CO.TR(35)
 *** FROM BUYER
 R(
 SERVICE TIME
 ATT(44)=4.50.TK(23)
 *** FRCM CLERK TO TRAFFIC
 ATT(2\partial)=1
 GOT] 9599
C ***SESTEP 25***
 601 ATT(5)=1
 RUYER
 service time
 ATT(42)=2.00* TR(54)
 *** FROM BUYER
 TO CLERK
 ATT(12)=1
 CLEZK SERVICE TIME
 ATT(44)= .80= TR(33)
 *** FROM CLERK TO tRAFFIC
 ATY(28)=1
 Gor099ョヨ
 **** S* STEP 26****
 *** FROM TRAFFIC TO BUYER
 602 ATT (5)=1
 BUYEP SERVICE TIME
 ATT(42)= .75* TR(33)
 *** FROM BUYER TO PCO
 ATr(14)=1
 PCO
 SERVICE TIME
 ATT(43)= 2.50* TR(23)
 *** FROM PCC TO TRAFFIC
 ATr(36)=1
 GOTO }099
C *** FROM TRAFFIC TO BUYEK
 603 ATT(S)=1
 BUYER SERVICE :IME
 ATT(42)=.50.TF(49)
 ****FROM BUYEF TO CLTRK
 ATr(12)=1
C CLERK SERVICE TIME
 ATT(44)= 1.00* TR(43)
C ***FROCLERK TO TFAFFIC
```

C
C
C
C
C

```
 ATT(28)=1
 GOTO 9999
c
c
C
C
 604 ATT(6)=1
 buyer sefvice time
 ATT(42)= .50. TR(E6)
 ** FROM BUYER
 ATT(14)=1
 PCO SERVICE TIME
 ATT(43)= .50* TR(7)
 *** FROM PCO
 To tanfFic
 ATT (36)=1
 goro 9999
c
c
C
C **** FRGS: TRAFFIC TO BLYER
 605 ATT (6)=1
 buyER sefivice time
 ATF(42)= -50* TP(6)
C *** FRCR BUYER TO JAG
 ATT (16)=1
C , JAG
 SEfvice time
 ATT(4F)= 24.00- TR(35)
 GCTO 97ョ日
c
c
c
C
 606 ATT (S)=1
 buyek service time
 ATT(42)= .5C* TR(6)
 *** FPCM BUYEF TO TRAFFiIC
 ATT (16)=1
 GOT0 9599
c
C **** S3 STEP 31 ****
c
 **** FRON TKAFFIC
 to huyen
 607 ATT (S)=1
 BUYER SEPVICE TIME
 ATT(42)= 1.50*TP(56)
 *** FROM HUYER
 ATT (12)=1
c
 CLERK
 service time
```

        ATr(44)= -80. TR(33)
                *** FROM CLERK TO TRAFFIC
        ATT(28)=1
        GOT09999
    c
C *** S8 Step 32****
**** FRCM TFAFFIC TO BUYER
608 ATT (6)=1
RUYER SERVICE TIME
ATT(42)= I.GC= TR(J4)
**** FRCM BUYER TJ PCO
ATT(14)=1
PCO SERVICE TIME
ATT(43)= .30% TR(37)
**** FRCM PCE TU CONMITTEE
ATT(51)=1
committee sepvice time
ATT(51)= 24.CC* TR゙(35)
**** F口CM CJMMITTEE TJ TOAFFIC
ATT(33)=1
60509539
c
C ****SSSTEP 33****
C **** FREM TPAFFIR TC BUYER
609 ATT (`E)=1
BUYER SERVICE TIME
ATT(42)= 2.0G* TF(67)
**** FRGM BUYEF . TO CLERK
ATT (12)=1
c cleRK SERVICE TIME
ATT(44)= 2.00= TF.(54)
ATT (2E)=1
g<tO 9999
C
C **** FROMTOAFFIC TE BUYEF
610 ATT(G)=1
BUYER SERVICE TIME
ATT(42)= 1.SC*TF{54)
**** FFCM BUYES TC PCO
ATT (14)=1
PCO SERVICE TIMF.
ATT(43)=.50*TF(46)
C TO**F俋PCC TEAFFIC

```
\(\operatorname{ATT}(36)=1\)
GOT0 9999

C

C
C
611 ATT（ 6 ）\(=1\)
GUYEG SERVICE TIME
\(\operatorname{ATT}(42)=.5 \mathrm{C} * \operatorname{TR}(6)\)
＊＊＊FROM BUYEF TO COMMITTEE
\(\operatorname{ATT}(15)=1\)
COMMITTEE SERUICE TIME
ATT（51）＝32．00＊TR（ES）
＊＊＊＊FROM CCMMITTEE TO TPAFFIC
ATT（38）＝1
G0T0 9599
c
C
C
C \(\quad * * * * R C N T E A F F I C\) TS BUYER
612 AT： 6 ）\(=1\)
BUYEF SEEVICE TIME
ATi（42）＝－SC＊TF（6）
C
\[
= F R C M \text { RUYER }
\]

TO TRAFFIC
ATY（15）＝2
GOT O S 999
C
C
C
C
613 ATi（ 6 ）\(=1\)
RUYEP SERVICE＋Ime
ATT（42）＝I．SC＊ \(\operatorname{CO}(45)\)
＊＊＊FRCM BUYEF TO CLEFK
ATT（12）＝1
ATT（44）＝1．OE TP（44）
＊＊＊FRCY CLEPK TO TRAFFIC
\(\operatorname{ATT}(28)=1\)
GETO 9999
C
C＊＊＊S
C
C
C
614 ATT（ 6 ）\(=1\)
RUYEG SERVICE TIME
ATT（42）＝－5C．TR（46）
C
＊＊ 38 STEP 37
＊＊＊＊FRCM TFAFFIC TU BUYER
C
C＊＊＊FRCM BUYEF
SERVICE TIME
CLERK

Tコ TアムFFIC
＊＊＊＊FPEMTFAFFIC Tう BUYER
614 ATY（ BUYES
＊＊＊FPCM BUYEF TEPCC
```

        ATT(14)=1
                PCO . SERVICE TIPIE
        AYT(43)=1.00*TF(54)
        **** FRCN PCE TE ClERK
        ATT(33)=1
            ClERK SERUICE IImE
        ATT(44)= 1.(0. TP(13)
        ***FRCM CLERK TC CENTFACTER*
        ATT(27)=1
            CONTPACTOF SENिVICE TIME
        ATT (48)= 80.00*TR(56)
        GOT0 9095
    C C** j2 StEp 39 ****
C *** FRGM CCNTRACTCR TG BUYER
615 ATT(6)=1
BUYEF SERVICE TINE
ATY(42)= .70*TF(27)
*** FPGM BUYEF TC PCO
ATT(14)=1
PCD SEFVICE TIME
AYT(43)=1.00* TE(55)
** FROM FCS TO TRAFFIC
\DeltaT:(36)=1
GOT0 9`95
*** SA STEP 4 u
*** FROM TPAFFIC TO BUYEF
616 ATT( 6)=1
BUYEF SEFVICE TIME
ATT(42)= 3.00. TE(83)
**** FRCM EUYER TO CLESK
ATT(12)=1
CLERK SERVICE TIME
ATT(44)= *30*TE(5)
****FRCT CLERK TJ aEpRCDUCT:OR
ATT{26}=1
REPRCDUCTICN SERVICE TIME
ATT(53)=16.CO* TF(54)
G0%0.9999
*** S8 STEP 42****
****FRCM FEFFCDLCTIEAN TU CLENK
617 ATT(1L)こ1
CLERK SEQVICE TIME

```
```

        ATT(44)= 1.DC=TF(4)
    C **** FROM CLERK TO DISTRIBUTION
ATT(25)=1
C DISTFIBUTION SEFVICE TINE
ATT(52)= 12.00* TF.(35)
GOT0 9.7%
C END OF SE NETHOKK
C ****CG NETHCOK ****
613 G0t.0(619,620,621,622,523,524,625,626,527,E28,62ミ,530,
*631,632,633,634,635,535,637,638,639,64C,541,542,
*643,544,645,646,647,04S,649,650,651,052,653,E54,
*555,656,657,652),STEP
****C马 STEP 1 ****
C ****** FRCM TRAFF:C
619 AT:(5)=1
BUYEN SEFVICETTME
ATT(42)= 12.0!*TF(55)
**** FPOMM BUYER TC CLEOK
ATT(12)=1
CLEPK SERVECE TIME
ATT(44)= 11.00* TR(22)
*** FRG:M CLEFK TU TQAFFIC
ATT(29)=1
G2T3 5009
c
C
C **** FRC! TPAFFIC TS BLYEP.
62L ATT( 6)=1
BUYEF SEPVICETIME
ATT(42)=2.OC*TF(57)
C **** FRCM BUYER TOC!EPK
ATT(12)=1
CLERK SERVICE IIME
ATT(44)=1.09. TF(43)
*** FRuM CLERK TO TPAFFIC
ATT (23)=:
60T0 9799
C
C
C
C ***FOEM TPAFFPC TO BUYEG
621 ATT( う)=1
BUYEF SERVICE TIME
ATP(42)= 1.0.E*TR(54)
****FK\N RUYEP TJ PC:
ATT(14)=1
PCO SERVICE TIME

```

```

    625 ATT (6)=1
    C BUYER SERVICE TIME
ATT(42)= .SO. TR(6)
*** FOOM BUYER TO TRAFF:C
ATT(16)=1
g0T0 9999
C
C
626 ATT ( 6)=1
BUYER SERVICE TIME
ATT(42)= 1.CO* TP(5S.)
*** FPQM BUYEF TE CLSPK
ATT(12)=1
CLERK SERVICE TIME
ATT(44)= .50= TF.(45)
*** FRCM CLEPK TO TEAFFIC
ATT (28)=1
GOT0 9999
C9 STEP G
*** FAOON TRAFFIC TO BUYER
627 ATT (E)=1
BUYEN SERVICE TIME
ATT(42)= -3Û- iF(33)
C**** FFGM BUYEF TCFCL
ATT(14)=1
PCO
señyice t:me
ATT(43)= .SG* PP(33)
*** FRCM FCC . IC CONHITTEE
ATT(61)=1
COMMITTEE SERVICE TINE
ATT(51)=24.00* TR(5E)
*** FRCM CCNMITTEE TO TRAFFIC
ATT(3ठ)=1
G070 9?5タ
C
C
C ***FRON TFAFFICC TO BUYER
628 ATT ( S)=1
BUYEF SEPVICE TIME
ATT(42)= 3.00% TF(ES)
*** FRON BUYEF
ATT(12)=1
clerk STAVICE time

```
```

        ATV(44)=2.0C=TF(34)
    C
*** FPOM CLERK.
ATT(28)=1
GCTO 9399
C
C
C
C
*** FRCM TFAFFIC TO BUYFR
629 ATT( ङ)=1
C BUYEF. EEFVICETIME
ATT(42)= 1.00*TR(3E)
C *** FRCM BUYER
TO PCC
ATT (14)=1
PCO SERVICE TIME
ATT(43)= -50*TR(4ミ)
****FRC*FF
SEANVICE TIME
ATT(44)= 1.CT.TE(E3)
C *** FRCMC:EFKK TGCONTAACTCK
ATT (2J)=1
C
COIdTFACTOF SERVICE TEME
ATT(4E)= \&C.CO* TF(54)
GOT0 9999
c
C
C ***FREN COMTFACTCF TE AUYER
63\ ATT(S)=1
C BUYE?
EEPVICE TIME
ATT(42)= 1.OC=TF(54)
C **** FR:M BUYEF
ATT (14)=1
PCJ SERVICE TIME
ATT(43)= 1.CC*TH(27)
C****FここMPCO TOTP\&FFIC
ATT (36)=1
G0rこ3999
C
C ****C9 STEF 13 ****
C
**FRCM TFAFFICC TS BUYEP
631 ATT(S)=1 SUYEC SERVICE TIME
ATT(42)= \.0J.TF(I6)
**** FREN BUYEF
ATT(12)=1
CLE\tilde{K SEFVICE TIME}

```
```

        ATI(44)=.30.TF(1)
        ****FロJN CLERK
        TC REPRCDUCTIGN
        ATT(25)=1
            EEPRCOUCTION SENVICE IIME
        ATY(53)=16.0C=TF(54)
        Gur0 c%S9
    C
C
C
C **** FRCN REPF
C
C
C
532 ATT (10)=1
CLERK SERVICE TIME
ATT(44)=2.00% TR(24)
**** FRGM CLEPK TO DISTRIGUTIEP
AT:(25)=1
O:STFIBUTION SERVICE TIME
ATT(52)=12.C(.TE(35)
GOTO 3939
633 GCi0 シララ9
634 GOT0 Fコラ9
635 GCT0 9?9%
635 30`0 5эyヲ
637 GOT0 gうう9
635 G0゙C 9059
635 6050 5949
640 62TC 5999
641 GOTJ 5S \$0
642 G050 5575
643 fotU 5599
644 GJTG 5599
645 6070 9999
646 G970 3989
647 GCTC 9959
545 GOTC 97ЭЭ
6 4 9 ~ G O F C ~ 9 \% 9 5 ~
650 GOTj 9:50
651 GC:0 9%0%
652 50T: 5995
65J GJ-0 5ララ9
654 GCTJ 995ラ
655 GOTC 9995
656 GOT U 与ミ97
657 6070 3959
65E GCTS 9979
C
END OF CE RETHCRK
*** FL NETHCFK ****

```

```

        ,67!,673,074,675,676,677,57c,679,680.6E1,652.563.
    ```
```

    *6&4,675,6?6,6e7,6EE,549,650,69:,652,693,654,655.
    *6OS,557.59E .EGS),STEP
    C
660 ATT(6)=1
BUYEF
-5G* TA(46)
*** FRCM BUYER TO CLEFK
ATT(12)=1
CLE\&K SENVICE TIME
ATT(44)= .GO* TR(34)
*** FREM CLERK TO TPAFFIC
ATT(28)=1
GC-0 9: 9%
F1 STEP 2
*** FRGM TEAFFIC TO bUYER
6E1 ATT (6)=1
BUYER SERVICE TIME
ATT(42)= .50* TF(46)
*** FOOM BUYEF TC CLERK
ATT(22)=1
CLEqK SEQVICE TIME
ATT(44)= .2「.TE(ミ4)
****FRC" CLERK TG TFAFFIC
AT:(25)=1
GOT0 5.9%
****FI STEP 3***
** fker teaffic tc buyep
562 ATY( 5)=1
BUYE= EERU:CE TIME
ATT(42)= -2S* T^ि(O)
*** FROP HUYES TC FCN
ATT(14)=1
PCD SERV:CE TIME
ATT(43)= .3C*TR(3う)
*** FFOM PCC TG CONMITTEE
ATT(51)=1
COMMITTEE : PVICE IIME
ATT(51)= 1G.OL* TP(E7)
****FROM COMNITTEE TC CLFOK
ATT(40)=1
CLEZK SEÑVICE TiME
ATT(44)= .1C* TR( 1)
*** FRCH' CLEFK
TこTPAFFIC

```


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
\(\operatorname{ATT}(28)=1\)
60T0 7999
C
C＊＊＊＊I STEP 4
C
C
＊＊＊＊FRCM TFAFFIC
TO BuYEf．
663 ATT（6）\(=1\)
GUYEP．
SERVICE TIME
ATT（42）＝－50．TF（4E）
＊＊＊＊F？ON BUYER TC FCC
ATT（14）＝1
C
PCO SERVICE TIME
ATT（43）＝－20．TR（54）
＊＊＊FROM PCO TO CLERK
ATT（33）＝1
CLERK SERVICE TIME
ATT（44）＝－2』＊Tミ（玉4）
＊＊＊＊FRSM•CLERK TC REPRGDUCTION
ATT（26）＝1
REPRODUCTION SEQVJCE TEME
ATT（53）＝15．OC＊TR（54）
GOTO 9999
C
C
C
664 ATT（10）\(=1\)
C
CLERK
SENV：CE ：：ME
ATT（44）＝－2（．＊TC（54）
＊＊FRCM CLEFK TO OISTEJBUTION
ATT（25）＝1
DISTFIBUTION SEPVICE TIME
\(\operatorname{ATT}(52)=12.00 \%\) TF（35）
GOTO 9599
665 GOTO 9959
666 GOTO 0．j97
667 GOT：Sシツシ
668 GUTJ 9939
669 G 9 ： 09737
670 651 29759
671 6JTC 9995
\(6726 c^{\top} 0\) 9790
673 GOTO 9993
674 GOT 99999
675 G0：0 9379
676 60：0 9ㅋㅋㅇ
677 GगT0 ヨรラs
678 GTij gㅋํ
```

    679 60i0 9799
    680 6CTO 9999
    681 60T0.9909
    682 60%0 9599
    693 GOTG 9997
    6846010 9959
    685 6OTO 9999
    686 GOT0 9799
    687 60%0 9599
    689 6050 9999
    68% 60:0 9599
    690 GOTO 9999
    651 GOT0 9799
    692 G0TJ 9`93
    ```

```

    694 60T0 9797
    695 GOTO 9999
    596 GOTC 9595
    697 G0iO 9999
    699 GOTO 9999
    69960T0 9975
    C ENO JF F1 HETHCRK
C *** ME NETHOFK ***

```

```

        *713,7i4,715,715,717,71&,71%,72j,721,722,723,724,
        *725,725,727,72&),ETEP
    C ****% STEP 1 *****
C **** FRCM TPAFFIC ic BUYER
701 ATT( 6)=1
BUYES SERVICE TIME
ATT(42)=4.00* TR(56)
**** FPOM BUYEK TJ CLERK
ATT(12)=1
CLERK SEZVICE -IME
AT:(44)= .80* TR(35)
**** FROM CLERK TO TRAFFIC
ATT(20)=1
6070 0999
C
C **** M2 STEP 2
C
C **** FRNM TRAFFiC TO BUYER
702 ATT( G)=1
BUYER
Service time
ATT(42.)= 1.CO.TR(E1)
*** FRCM BUYER TO CLERK
ATT(12)=1
CLENK SEPVICE TIME

```

\section*{ATT(44)= .50*TR(46)}

C **** FROM CLERK.
TO tsAFFIC
ATT (28) =1 GOTO 9597
\(c\)
C **** M2 STEP 3
```

C **** FRCM TRAFFIC TC BUYER

```
703 ATT (6)=1
 BUYEF. SEKV:CE T:ME
\(\operatorname{ATT}(42)=\quad .50 * T R(45)\)
c
**** FRGM BUYEf
10 PCC
ATT(14)=1
PCO
service time
\(A T T(43)=.50 * T R(46)\)
*** FROM PCG
TO TRAFF! C
\(\operatorname{ATT}(35)=1\)
G010 9979
C
C
C
C
*** FR̃OM TRAFFIC
TO BUYER
704 ATT (6) \(=1\)
bUYER SERVICE IIME
\(A T T(42)=1.00=\) TR(56)
=** FROM BUYER TC CLEEK
ATT (12) \(=1\)
CLEEK : SERVICE TIME
\(\operatorname{ATT}(44)=.3 C=\) Tri(35)
*** FRCM CLERK TO TRAFFIC
ATT(28)=1
60739999
C
C ****M2 STEP \(5 * * *\)
c
C *** FRCM TPAFFIC TO BUYER 705 ATT (6) \(=1\)
buyef service time
ATT (42) = .5E* TR(46)
*** FROM BUYER TO PCS
ATT(14)=1
PCO SEPVICE TIME
ATT(43)=.3C*TR(35)
*** FFOM PCi TO CJintpacica
\(\operatorname{ATT}(35)=1\)
contractur sezvice time
\(A T T(48)=176.0 L=T R(34)\)
GOTJ 9 999

```

C F*** FRCM COI:TRACTCR TO BUYER
706 ATT(6)=1
BUYER SERVICE TIHE
ATT(42)= \&.OE* TP(E4)
****FRCM BUYER TO TECH.EVAL
ATT(13)=:
TECH.EVAL SEPVICE IIME
ATT(50)=104.00* TR(36)
G0iO }999
C \# \#** M2 STEP % 7 \#.*
707 ATT (6)=1
BUYER SERVICE TIME
ATT(42)= 2.00% TR(55)
**** FROM RUYER
TO TFAFFIC
ATT(16)=1
60T0 9799
C
C
C
C **** FRUM:TRAFFIC
BUYEF SERVICE IIME
RUYEF
**** FRCM RUYEF
TO PCC
ATT(14)=1
PCD SERVICE TIME
ATT(43)=. .50n TR(45)
*** FROM PCC
TO TFAFFIC
ATT(36)=1
GGTO 9799
C
***M2 STEP \& ****
*** FROM TQAFF:C TS BUYER
709 ATT(G)=1
BUYER SEQVICE TIME
ATT(42)= \&.50: TE(37)
*** FRON BUYEF
TO TRAFFIC
ATT(16)=1
60T0 9399

```
```

C
C **** FROM TPAFFIIC TO BUYER
710 ATT( 5)=1
BUYER SERVICE TIME
ATT(42)= 3.0C.TF(35)
*** FRCM BUYER
ATT(12)=1
CLERK : SERVICE TIME
ATT(44)=2.00* TR(54)
*** FRCM CLERK TO TRAFFIC
ATT(2仑)=1
GOT }0999
**** M2 STEP 11
*** FROM TFAFFIC TO BUYEF
711 ATT( 6)=1
BUYEF SERVICE TIME
ATT(42)= 1.00\# TF(56)
*** FFON BUYEN TO CLERK
ATT(12)=1
CLERK SERVICE TIME
ATY(44)= S0. TF(45)
*** FRCM CLEEK TC TRAFF:C
ATT(29)=1
GCTO 9:39
C ***M2 STEP 12 ****
C
****FROM TFAFFIC TO BUYER
712 ATT( 6)=1
BUYER SEPVICE TIME
ATT(42)= .75* TR(33)
*** FRCM GUYER TO PCC
ATT (14)=1
PCO SERVICE TIME
ATJ(43)= i.00* TR(26)
***FRCM PCO IO TRAFFIC
ATT (36)=1
60T0 3595
*** M2 STEF 13 ****
** FROM TNAFFIC TO RLYEF
713 ATT(6)=1
BUYEF SEPVICE TIME
ATT(42)= -50*TR(45)
*** FROM BUYER TO CLERK

```

\section*{ATT(12)=1}
c

C

C
c
C
C

C

C

C
C
C
C
c
C
c
715 ATT (6)=1
BUYER SERVICE T:ME
ATT(42)= i.UC. TF(53)
*** FRGM BUYEP TC PCC
ATT(14)=1
PCO SERVICE TIME
AT:(43) = .3c*TF(3i)
*** FROM PCG TC CLERK
ATT(33)=1
CLERK SERUICE Tive
ATT(44) = .20*TE(4)
*** FRCM CLERK
TJ REPRCDUCTIEN
ATT (26)=1
REPREOUCTIOA SERVICE TIME
ATT(53)= 1E.OC* TR(E4)
GOT0 9377
c
C ．＊＊＊FRGM FEPRCDLCTION TC CLERK
715 ATT（10）＝1
C CLERK SERVICE TIME
ATT（44）＝－3C：TR（3）
c
＊＊＊＊FRCY CLERK
to OIStaiRUTICN
ATT（25）＝1
c DISTF：BUTICM SERVICE T：ME
ATT（52）＝12．00＊TF（35）
GOT 29993
717 GOT J 93ss
718 GGTJ 5399
715 GOTO 9798
72060129995
72160705599
722 GOTC 9359
723 GOTO \(9 ミ 99\)
724 6050 9999
725 GCIO 5599
726 GGTC． 9999
727 GOTS 3559
72960159093
C EJO OF M2 NETHOFK
C \(\quad\)＊＊＊m
 ＊742，743，744，745．745，747．743，745，75：．751，75：，753． ＊754，75ラ．75E．757），STEP
C \({ }^{*+*}\) M3 STEP 1 ＋＊＊
C \(\quad\)＊＊＊FROM TRAFFiC TC BUYER

\section*{730 ATT（ 6 ）\(=1\)}

BUYER
service time
ATT（42）＝E．OC＊TR（53）
C A＊＊＊FROM BUYER TO CLEPK \(\operatorname{ATT}(12)=1\)

CLERK SERVICE TIME
\(A \operatorname{Tr}(44)=.50\)－TR（45）
C＊＊＊＊FRCN CLEFK TO TFAFFIC
ATT（23）＝1
Got：ヨラヨs
C
C＊＊＊＊43 STEP 2 ＊＊＊＊
C＊＊＊FPaM ifAFF：C TE RUYEF
732 ATI（ 6）＝1
buyer service time
\(\operatorname{ATT}(42)=\) ：OCETR（51）

\section*{＊＊＊FRCN RLYER}

C AT：（12）＝1
tc clerk

\section*{c clerk service time}

ATT(44)=. 5 (5*TK(45)
**** FRCMCLERK Ti iraffic
ATT (25) \(=1\)
G0T0 9999

\section*{\(c\)}
c

732 ATI (6) \(=1\)
BUYER SERVICE TIME
ATT(42) \(=.50\) - TE(4E)
**** FREM BUYER
TO fCC
\(\operatorname{ATT}(14)=1\)
PCO
SEñvice time
\(A T^{T}(+3)=.40 * T R(25)\)
**** FRGM PCC TO TRAFF:C
ATT (36) \(=1\)
60t 09999
c
c
**** frọ iffaffic to buyer

733 ATT(S) \(=1\)
huyef. SERVICE time
ATi(42)₹ \(1 .\{0\) TR(ES)
*** FRJM HUYER TO CLERK
ATT(12)=1
clerk service time
\(\operatorname{ATT}(44)=.30\) : 5 (3(35)
**** FRCM CLEPK TO THAFFIC
ATT(23)=1
Gor \(0 \mathbf{9 9 , 3 9}\)
c

734 ATT (5)=1
BUYEK SEEVICE TIME
ATi (42) = .50. TF(40)
*** FRCM BUYER iJ PCC
\(\operatorname{ATT}(14)=1\)
oc
SEf VICE -: ME
ATT(43) = .3C*TE(35)
*** FROM PC:
tu conthactce
ATT(35)=1
CONTFACTC: SERVICE TIME
ATT(48)=17e.00*TE(34)

```

C ****M3 STEP 10 ****
C
739 ATT( 5)=1
BUYEF.
TRAFFIC
TO BUYER
SERVICE TIME
ATT(42)= 3.JC*TR.35)
*** FRCM BUYER
TC CLERK
ATT(12)=1
CLEミK
SEÑUICE :IME
ATI(44)=2.0C.TR(54)
**** FROM CLERK
TC TNAFFIC
ATT (23)=1
GOTO 3095
****M3 STEP 11 ****
*** FFにM TRAFFIC
TO RUYER
74C ATT(S)=1
BUYEF SERVICE TIME
ATT(42)= i.30. TF(36)
*** FRCM BUYER TO CLEFK
ATT(12)=1
CIERK SERVICE IIME
ATT(44)= .5i*TF(45)

```

```

        ATT(23)=1
        Gごこ シララヨ
            M3 STEP 12
            **** FRCM TRAFF!C TC BUYER
        741 ATT( 5)=1
            BUYEF SERVICE TIME
        ATT(42)= .75* TF(33)
        *** FROM BUYER
        TC PCE
        ATT(:4)=1
                PCJ SEMVICE TIME
        ATT(43)= -.OC. TO(45)
        *** FRLM PC: TG TAAFFiC
        ATT(35)=1
        GOT0 ヨララヲ
        ***M3 STEP 13
        *** FZr.m ikAFFIC Tj buyEN
        742 ATT(6)=1
            BUYER SERVICE TIME
        4TT(42)= -5C.TF(40)
    ```
```

C -\#\#* FRCM BUYER TO CLFRK
ATT (12)=1
CLERK SERVICE TIME
ATT(44)= .35*TR(36)
**** FPOMM CLEPRK
ATT (28)=1
GOTO 9995
C
C . ****M3 STEP 14 ****
C
c
**** FRCN BUYER TC
ATY(14)=1
PCO SEQVICE TIME
ATT(43)= .50. TP(4%)
**** FRCM PCC
ATT (36)=1
GOT0 9959.
C **** M3 STEP 15
744 ATT( 6)=1
BUYEK SERY:CE TIME
ATT(42)= - E\&*TP(ころ)
**** FRJjR BUYÉa to JAG
ATT(18)=1
JAG SEFV:CE TIME
ATT(47)= 24.00. TR(55)
GOT0 9509
**** M3 STEP 16 ****
\#*** FROM JAG , TC RUYER
745 ATT( 6)=1
RUYEF SERVICE TjME
AT;(42)= .bot TF(33)
**** FRCM BUYER TG TRAFFIC
ATT(15)=1
G070 与ララ9
**** M3 SiEP i7 ****
**** FRCM TiAFFIC TV RUYER
745 ATT( ́́)=1

```
c
C
c

C

BUYER SERVICE TIME ATT（42）\(=1.00\)＊TP（56）
＊＊＊＊FPCM BUYER TJ CLEFK
\(\operatorname{ATT}(12)=1\)
CLERK SERVICE TIME
AT：（44）＝．30＊TR（3）
＊＊＊＊FRCM CLERK
TO TRAFFIC
ATT（2a）＝1
GOTこ Sミラヨ
M3 STEP 16
＊＊＊＊FRCY TRAFFIC
TC BUYER
747 ATT（ 6）＝1
buyer service time

＊＊＊FREM BUYER TV PCC
\(\operatorname{ATT}(14)=1\)
PCO SERVICE TIME
\(A T T(43)=.4 E * T R(56)\)
＊＊＊＊FF．CM PCR
TO ClERK
Air（33）＝1

＊＊＊＊FREM CLEPK TE CEDTEACTCK
ATT（27）＝1
contractof service impe
ATT（43）\(=3 \dot{C} .00 * T R(54)\)
GOTO 9ヲ99
.43 STEP 19
＊＊＊FROM COATRACTCf TO BuyER
748 ATI（ 6\()=1\)
BUYER SERVICE TIME
ATT（42）＝1．00．TR（E3）
＊＊＊FROM BUYÉ ．to fCe
\(4 T^{-}(14)=1\)
PCO SERViCE ：IME
ATT（43）＝．30＊TF（31）
＊＊＊FKC！PCO TO CLIFK
ATT（33）＝1．
CLEPK SERVICE IIME
ATT（44）＝－ह́S＊TR（4）
＊＊＊FPCN CLEPK TC REFKOUUCTION
AT－（26）\(=1\)
REPRCOUCTICN SERV：CE TIME
ATT（53）＝15．fC．TR（54）

GOTJ 9999

C

C

761 ATT（6）\(=1\) BUYER

SERVICE TIME ATT（42）＝－50．TR（46） ＊＊＊FRCM BUYEF．TC PCO \(\operatorname{ATT}(14)=1\)

\section*{PCO}

ATT（43）＝ 50 ．TE（44）
＊＊＊＊FRCR：PCO
SEFVICE TIME

ATT（36）＝1
GOTO 9999
C
C
C
C
C
c
C
C
\(C\)
C
C
C
763 ATT（ G）＝1
BUYEr．SENVICE iIME

＊＊FROV BUYER
TE PCC
ATT（14）＝1
PC？SEAVICE TIME．
ATT（43）＝－3C．TF（35） ＊FRCM PCE TO CENTRACTOR
AT：（35）＝1
CONTPACTOR SERVICE IIME
ATT（4S）＝176．0じ・TR（34）
GOTO 9yきg

\(\begin{array}{ll}C \\ C & * * * M 4 S T E P \quad 6 * * * ~\end{array}\)
C *** FRCM COITTAACTCA TC BUYER
764 ATT (6)=1
C
BUYER SERVICE TIME
ATT (42) = 1.OC*TR(54)
AT: (19) =1
\(\operatorname{ATT}(50)=104.0 \mathrm{C} * \operatorname{TK}(36)\)
GOTO 9799
C
C
C
765 ATT (6) \(=1\)
\[
\operatorname{ATT}(42)=2.00 * \operatorname{TR}(55)
\]

C
ATT(16)=1
60io 9995
C
C
C
C
765 ATT (ó) \(=1\)
C

\(\operatorname{ATT}(14)=1\)
ATT (43) = .5C* Tf(4E)
ATT (36) \(=1\)
60TO 9599
C
C
C
C
767 AT:(6) \(=1\)
ATT(42) = 2.0C*TR(55)
C
ATT (16)=1
Gor C 9939
C
c


```

C ****MS STEP 6****
C **** FRCM CCNTRACTCR TO BUYER
793 ATT(6)=1
C BUYER
SERVICE TIME
ATT(42)=1.00*TR(54)
**** FREN BUYER
TC TECHEEVAL
ATT(19)=1
TECH.EVAL SENVICE TIME
AT:(53)=104.CO* TK(36)
6070 950%
c
C C***MS STEP 7 ****
C **** FRCM TECHEEVAL TO BUYER
794 ATY( 6)=1
RUYER
SERVICE T:ME
ATT(42)=2.0C*TP(55)
*-* FROM BUYER TC IRAFFIC
ATr(15)=1
GOT0 9999
*** MS STEP E
**FRCMTEAFFIC TO BUYER
795 ATY(S)=1
HUYEF SERVICE TIME
ATT(42)= 5.20. TF(22)
* FRCM RUYER TO PCO
ATH(14)=1
PCO SERVICE TIME
ATT(43)= .5N*TR(45)
*** FAOM FCO TD TFAFFIC
ATT(3E)=1
GOT0 9399
c
C
C ** FROM TRAFFICC TU RUYEA
BUYEF. SERVICE TIME
ATT(42)=2.5C*TR(E4)
**** FRCN BUYEF. TG TAAFF:C
ATT(16)=1
GOT3 9¢99
*..* MS STEP 10

```


ATT (36)=1
6070999
C
c
c
C
302 ATI (6) \(=1\)
ATT(42)= •EO*T~(33)
C *** FRCM RUYEF TO JAG
\(A T T(18)=1\)
Já Eミñice :Ime
ATT(49) \(=24.00\) (TR(S5)
GCTO 9939
\(C\)
\(c\)
\(c\)
\(c\)
C *** FP.SM JAG TO BUYER 803 ATT (b) \(=1\)
buYEf
service time
ATT(42)= .8C.TR(33)
**** FRUA: BUYES
r: TRAFF:C
ATT (15)=1
60109995
\(C\)
\(c\)
\(c\)
\(c\)
**** M5 SiEP i7 …*
**...FROM traff:C
To RUYEK
804 AT: (6)=1
c
BUYES
sepvice iime
ATT(42) = 1.00. TR(E6)

\title{
ATT（12）＝1
} ATi（23）＝1 GOTO 9999
 ATT(42) = 1.CA* \(\mathrm{CH}(54)\)
 *** FR=M RUYEF - \(C\) PCO
 ATT (14) =1
 PCO SERVICE TIME
 \(\operatorname{ATT}(43)=.40\) - TF(56)
 *** FRJM PCC 10 COMMETTEE
 \(\operatorname{ATT}(51)=1\)
 CCMMITTEE SERVICE TIME
 ATT(51) \(=24 . C\) C*TC(35)
 *** Fマご CCMMITTEE TJ TñAFFIC
 ATJ (33) =1
 G070 9099
CLERK SEFV:CE IIME

ATF（44）＝－30．TR（3）
＊＊＊FROM CLERK
TO TRAFFIC
TE CLERK
＊＊＊FRCM TRAFFIC
TC BUYER

ATT（42）＝ 1 •CN＊TF（E4）
＊＊＊FREM RUYEF
：C PCO
ATT（14）＝1
PCO SERVICE TIME
ATT（43）\(=.40\)－TF（56）
＊＊＊FRJM PCG 10 COMMETTEE
\(\operatorname{ATT}(51)=1\)
COMMITTEE SERVICE TIME
ATT（51）＝24．CC＊TC（35）
＊＊＊Fマご CCMMITTEE TJ TñAFFIC
ATH（33）＝1
G070 9099
\(C\)
\(C\)
\(C\)
C
C
＊＊＊Mj sTEF 15
＊＊＊FPCM TRAFFIC
TU BUYER
806 ATT（6）＝1
BUYEÑ
SERVICE TIME
ATT（42）＝2．00．TR（74）
＊＊＊FRCM BUYER TO CLERK
\(\operatorname{ATT}(12)=1\)
CLERK SERVICE TIME
ATT（44）＝－8C．TF（33）
＊＊＊FRCM CLERK
TO TRAFFIC
ATT（28）＝1
Gotces；
C
C
C
C＊＊＊FRCM TRAFFIC TEBUYER 807 ATT（6）＝？

RUYER SERVICE TIME
ATT（42）＝1．0U－TK（51）
＊．．FROM BUYER TO PCO
ATT（14）＝1
```

CSERVICE TIME$\operatorname{ATT}(43)=.55: \operatorname{TR}(4 \epsilon)$＊＊＊＊FROM PCE TC CLERK$\operatorname{ATT}(33)=1$

```
C CLERK
EERVICE TIME．
ATT（44）＝．5C＊TR（25）
C ＊＊＊＊FRCM CLERK to contfactca
```ATT（27）＝1
```

CONTनACTO゚ SERVICE iJME

```ATT（48）＝80．CO＊TR（E4）GOTO 5尹ᄏg
```

```c＊＊＊frce contáactcr tc buyer
808 ATT( 6)=1
                    BUYEF SERVICE TIME
    ATT(42)= .SC=TF(33)
        **** frju glyEf TO PCe
        A丁口(14)=1
C
                PCO SERVICE TIME
            ATT(43):= . SC* TF(35)
C *** FRCM FCO TC CLERK
        ATT(33)=1
            CLEPK SEFVICE TIME
    ATT(44)=.2(*TF(4)
            ***FPCM CLEOK TO FEFFODUCT:OR
        ATT(25)=1
                    REPRCDUCIICN SERVICE TIME
    ATT(53)=16.CC= TF(54)
    GCTE 9999
C
C **** FRCM REPREOUCTIUN TC CLERK
809 ATT(10)=1
                    CLEPK SERV:CE TIME
            ATT(44)= .30.TF(3)
                        **** FA゙NC CLERK TC DISTRIBUTICN
        ATT(25)=1
            OISTRIBUTION EERVICE TIME
        ATT (52)= 12.0C* TP(35)
        GOT0 9097
    810 GOTJ 9990
    811 GOTO 9590
    812 GOTO 9399
    813 GOTO 9ээ9
    814 GOTO 9939
```

```
    815 GOTO 9795
C END GF MJ HEYWCRK
                            **** MS :NETACRK ****
```



```
        * 841,342.343,344), STEP
            *** MS STEP 1
            **** FROM TFAFFIC
                TJ BUYER
    817 ATT(6)=1
                BUYER SERVECE T:ME
                            TO CLERK
            (42)= 4.0U* TE
                            (35)
        (12)=1
                CLERK SSFVICE TIME
    ATT(44)= .6Ü*TR(14)
        *** FROM CLERK
                            TO TPAFFIC
        AT:(2S)=1
        GOTO 5ヲ79
                Mó STEF 2 ****
                *** FREM IFAFFIC TE RUYER
    918 ATT(5)=1
                HUYEF. SEFVICE TINE
        ATY(42)= &C* TF(E3)
        ** FPCN RUYEF TO CLEFK
        ATT(12)=1
            CLEPK SESVICE TIME
        ATT(44)= .50* TE(45)
            *** FP.GM CLE?K TE TFAFFIC
        ATT(23)=1
        GOTC Эᄏ97
            **** MS STEP 3
            **FRCN taAFFIC TO BUYER
        817 ATT( ́́)=1
                BUYE: SEFVICE TIME
        ATT(42)=.5%.TS(46)
            ****FQこい fiUYEF
        ATT(14)=1
            PCJ SERVICE TINE
        ATT(43)= .8G*TN゙(35)
            ** FRCM PCC TO TFAFFIC
        ATT(30)=1
        GCTO 9797
        MS STEF
```


ATT（20）＝1
C A UDIT SERVICE TIME ATT（55）＝352．OC＊TF（54） GCTO 9599

C
C
C＊＊＊FFOM AUDIT TC BUYER
824 ATT（E）＝1
BUYER SERVICE TIME
$\operatorname{ATT}(42)=6.0[$ TF（56）
＊＊＊FRCM BUYER TC PCC
$A T T(14)=1$
PCO SERVICE TIME
ATT（43）＝－EE＊TF（35）
＊＊＊FRCM FC ？
TO TCAFFIC
ATT（3E）＝1
GOTO Sシ9！
C
C＊＊＊MS STEF S
C FRCM TFAFFIC TC BUYER

825 ATT（5）$=1$
RUYEP
SERVICE TiME
ATT（42）＝2．JE T5（5
＊＊＊FREN BUYEF．
TC TRAFFIC
ATT（1ら）＝1
GOTO 3595
c
C
826 ATT（5）$=1$
BUYẼ SERVICE TIME
$\operatorname{ATT}(42)=$ E．OL＊TF（35）
＊＊＊＊FSGM BUYER
TE CLEAK
ATT（12）＝1
CLERK SERVICE TIME
ATT（44）＝2．3：JF（44）
－＊＊FRこM CLEFK
T：TQAFF：C
$\operatorname{ATT}(29)=1$
GOT：syss
C
C
C
C
827 ATT（ 6）＝1
HUYER．SERVICE TIME

ATT（42）$=2.00$（TR（5s）

ATI（42）＝．75＊TR（33） ＊＊＊＊FRCM BUYEF． SERVICE TINE
$A T T(12)=1$
ATT（44）＝－5C•TF．（45）
＊＊＊＊FRCM CLEFK TO TRAFFIC
ATT（2 2$)=1$
GOTO 9 ？ 9 ？
＊ $2 * *$ MG STEF 12

C
C
C
C
ATT（14）＝1
ATT（43）＝1．00＊TF（26）
＊＊＊＊FRCM PCC
TO TRAFFIC
$\operatorname{ATT}(36)=1$
60： 0 5ラ59
C
C
C
C

C
C
C

C
C
C
C
C
C
C
C

829 ATT＊＊＊F天ミ：TKAFF：C TO BUYER

$\operatorname{ATT}(23)=1$
GOTO 9999
M6 STEF $13 * * *$

BUYEF SEPVICE T：ME
$A T T(42)=-5 C * T R(45)$
＊＊＊＊FROM BUYEF TOC！5下K
ATr（12）＝1
CLERK SERVICE TIME
ATT（44）＝－3气 TF（36）

MS STEF 14
＊＊＊＊FRCM TEAFFiC
TC RUYER
830 ATT（6）$=1$
BUYER
$A T T(42)=-5 C \& T R(E \in)$
＊＊＊FRCM BUYEF ATT（14）＝1

PCO SERVICE TIME
$\operatorname{ATT}(43)=.50 \cdot \operatorname{TR}(45)$
＊＊＊FRCF DCC
TETFAFFIC

ATT（3a）＝1
GCTO 9579

C
ATT（42）＝－RC＊TR（33）
C
＊＊＊FROM RUYER
TJ JAG
\because
ATT（13）＝1
C
JAG SERVICE TIME
ATT（49）＝24．0C＊TR（55）
GOFJ 9999
C
C＊＊＊M6STED 1E＊＝＊＊
C
C＊＊＊＊FRCMJAG TC BUYEス
832 ATT（5）$=1$
C
BUYEP SERVICE IIN：
$\operatorname{ATT}(42)=.50=T R(33)$
C
＊＊＊＊FREM BUYEF
TO thaffic
AT：（15）＝1
6す！ 9979
C
C＊＊＊＊M6 ごEF $17 \ldots * *$
C
C $\quad *$ FROM TEAFF：C TO BUYEA
833 ATF（6）＝1
C．BUYEF．SERVICE TIME
$\operatorname{ATT}(42)=1.00 * \operatorname{TF}(56)$
C
TO CLEEK ATT（12）＝1
C
CLERK
SERVICE TIME
ATT（44）＝－3C＊TR（3）
C
＊＊＊FRCM CLERK
TO TAAFFIC
ATT（2R）＝1
50Tう 9797
C
C＊＊＊MS STEF $18 * * *$
C
C＊＊＊＊ROM TFAFFIC •TC RUYEK
834 ATT（6）＝1
C
ATT（42）＝ 1.0 （t．TR（54）
C
＊＊＊FP．OM RUYEF
TO PCC
$\operatorname{ATT}(14)=1$
C PCJ

SERVICE TIME
ATT(43) = .40. TF(56)
to compittee $A T T(S 1)=1$
cummeite service time
ATT（51）＝24．0C．TR（35）
＊＊＊FREM COMMITTEE TO TPAFFIC
ATT（38）＝1
GOTO 9999
c
C＊＊＊＊M6 STEP 19
c
835 ATT（ 6）＝1
buYER SERVICE TIME
ATT（42）＝2．0C．TK（74）
＝＊＊＊FRUM BUYER TO CLERK
ATT（：2）＝1
$\operatorname{ATT}(44)=.80$ TR（33）
＊＊＊＊F只品 CLERK TO TSAFFIC
ATT（2a）＝1
60TO y93s
c
C
C＊＊＊＊FRJ：T～AFF：C TC RUYÉ
836 ATT（ 6）$=1$
huyEf SERVICE tiME
ATT（42）＝1．0．：TK（51）
C＊＊＊FROM BUYER TE PCこ
ATT（14）＝1
PCO SERVICE TEME
$\operatorname{ATT}(43)=.50 \cdot \operatorname{TR}(46)$
C $\quad * *$ FROM PCE TC CLEFK
$\operatorname{ATT}(33)=1$
CLERK SERVICE TIME
ATI（44）＝．5E＊TP（25）
＊＊＊＊FRCN CLEPK TU CCNTAACTER
$A T \bar{T}(27)=1$
C contractor service itme

G9： 9 999？
C
C
C
C

$$
\text { -** MÉ STEF } 21
$$

C＊＊＊fRCM COntractca to huyer
B37 ATT（5）＝1
c
bure：
SEPV：CE T：ME
$\operatorname{ATT}(42)=1.0 C$（TR（56）
C＊＊＊FRJM MUYER．
TO PCC
ATY（14）＝1
C
ATT（43）＝•3C＊TR（37）
C

C

C

C ATT（26）＝1

REPRCDUCTION SERVICE TIME ATT（53）＝ 16.0 C （TR（54）
GOT コ 9ミ5ヲ
C
C
C

$$
\cdots \text { MÉ STEP } 22
$$

＊＊＊＊FRCM PEPRODUCIJON TC CLERK

C
）
CLERK SERVICE TIME
ATT（44）＝－30＊TE（3）
C
C
ATT（25）＝1
OISTAIBUIION SERVICE TIME
ATT（52）＝12．uC＊TF（35）
60TJ 855：
837 GCTに 9759
340 GOTJ 90．9
841 GC：： 9797
842 60！ 05393
843 GOTO 9959
$844 \mathrm{CO}^{\top} \mathrm{O} 5999$
END OF MG HETWORK
＊＊＊MT NETHORK＊＊＊＊

－ $370.871,872.8731, S T E P$
C \quad＊＊M7 STEP 1 ＊＊
C＊＊＊FROM TFAFFIC TO BUYER 846 ATY（6）$=1$

BUYER
SERVICE TIME
$\Delta \operatorname{Tr}(42)=5 . C \mathrm{O}$ • TF（44）
＊＊＊FREM BUYEK TO CLERK
ATT（12）＝1
C
CLERK
SERVICE TIME

C
＊＊＊FROM CLERK
TO TRAFFIC
$A T_{T}(29)=1$

6070 9999
$\begin{array}{ll}C & \ldots . . M T S T E P \quad i\end{array}$
c
C＊＊＊＊FRCM ifaffic
to blyer
847 ATT（ 6）＝1
BUYER SERVICE TIME
$A T i(42)=.50=T F(4 E)$
．．．．FRUN BUYER
ic ClERK
ATT（12）＝1
CLERK
sefivice ilime
ATT（44）＝．5C＝TR（45）
＊＊＊FROM CLERK TO TPAFFIC ATT（28）＝1
GOTO 9939
C
C＊＊＊＊M7 STEF 3
c
C
．．．．FRGM TPAFFIC TO BUYER
848 ATT（ 6）$=1$
BUYER
sefvice time
ATT（42）＝－50．TF（4E）
＊．．．FRON GUYER TO PCC
$\operatorname{ATT}(14)=1$
C
C \quad ．＊＊FFOR PCO TVAFFIC
ATT（36）＝1
GOTO 9999
C
c
C
C
840 ATT（ 6）＝1
BUYER SERVICE TIME
ATT（42）＝1．0C＝TF（56）
＊＊＊FRCM BUYER TC CLE＝K
$\operatorname{ATT}(12)=1$
CLERK SERV：CE TIME
ATT（44）＝．30．TR（35）
＊＊＊FRON CLE？K TV TEAFFIC
AT：（2．3）$=1$
cotc 9ヨラョ
C
c
c

C		CLERK SERVICE TImE
		ATT(44) = -5i. Tk(45)
C		**** FRCM CLERK TO TRAFFIC
		$\operatorname{ATT}(28)=1$
		GOTO 9599
c		
C		**** MJ STEP 13 ****
c		
C		**** FROM TRAFFIC TO BUYER
858 ATT (${ }^{\text {a }}$) $=1$		
c		SUYER SERVICE TIME
		ATE(42)= .75* TR(33)
C		*** FRこM EUYEF TJ PCC
		$\operatorname{ATT}(14)=1$
C		PCO SEFVICE TIME
		$\operatorname{ATT}(43)=1.00 \cdot T P(26)$
C		*** fíur pCS Tこ traffic
		$\operatorname{ATT}(36)=1$
		G0T0 9599
c		
c		**** M7 STEP 14 ****
C		
c		*** FROM TRAFFIC to buyer.
	859	ATT (6) $=1$
C		buy n an SEfvice time
		ATT (42) = .50- TR(49)
c		**: From burek TO CLENK
		ATT(12)=1
C		CLERK SERUICE TIME
		ATT(44) = .3C= TF(3E)
c		*** FRCM ClERK TO TRAFFiC
		ATT (23)=1
		G0T0 9999
C		
C		****M7 STEP 15 ****
C		
c		*** FROM TRAFFIC TC BUYER
	860	ATT (6) =1
C		buyer Service iime
		ATt(42) = -5C*TR(ÉG)
c		*** FRCM EUYEP
		$\operatorname{ATT}(14)=1$
c		pCo SEPVICE time
		ATT (43)= -50*TP(45)
C		*** FROM PCC TC inaffic
		ATT (36)=1
		GOT0 0997

C
ATT(18)=1

C
JAG
sEfvice time

ATT (45) = 24.0C. TR(55)
GOTO S939
c
c
c
C **** M7 STEP 17
**** FROM JAG
tc Ruy=e.
c
ATT(42)= .80*TR(33)
**** FROM BUYER
TO TRAFFIC
$\operatorname{ATT}(16)=1$
G0TO gegu
c
C
C **** FRCM TRAFFIC TQ BUYER 863 ATT (6) $=1$
'buyer service time
ATT(42) = 1.0C*TO(5S)
**** FRGM BUYER
T: CLERK
ATT(12)=1
Clefk service time
ATT(44)= -30*TF(3)
C *** FROM CLERK TO TRAFFIC
AT: (28) =1
GOTO 9ヲき9

```
C
C #**MT STEF is
```



```
864 ATT( 5)=1
buyer seqvice time
    ATT(42)= 1.00. TF(54)
    C **** FRCM BUYEF TC OCC
        ATT (14)=1
        pCO SERVICE TIME
        ATT(43)=.4C.*TF(5S)
    *** FRDM FCO TG COMMITTEE
        ATT(51)=1
```

COMMETTEE SEPVICE TIME

AT：（51）$=24.0$ CE TF（35）

＊＊＊FRCM CCMMITTEE
TE TEAFFIC
ATT（3B）＝1
6070 5979
C
C＊＊＊＊M7 STEF 20
C
C $\quad *$ FRGM TRAFFIC
TO BUYER
865 ATT（6）$=1$
BUYER SERVICE TIME
ATT（42）＝2．SC．TR（74）
C F＊＊FREM BUYER TO CLERK
$\operatorname{ATT}(12)=1$
CLERK SERVICE TIME
ATT（44）＝－ठC．TR（33）
＊＊＊＊FRCM CLERK
TUT＝AFFIC
ATT（23）＝1
GOTO 9797
C
C＊＊＊＊M7STEP 21
C
＊＊＊＊FRCM TRAFF！C
865 ATT（ E）$=1$
BUYER SERUICE TIME
ATT（42）＝i．CC．TF（51）
＊＊＊FRCN BUYEF
TU PCC
ATT（14）＝？
C PCO SERVICE TIME
ATT（43）＝－5ごTR（4́）
＊＊＊＊FRしM PCO
TU CLERK
ATT（33）＝1
C CLEEKK SERVICE TIME ATT（44）＝ 50 ．TR（25）
＊＊＊FRGN CLERK TO CONTRACTCR
$\operatorname{ATT}(27)=1$
CONTRACTOR SERVICE IIME
ATT（48）＝8C．00＊ik（54）
G0iJ 9995
C
C
C

$$
* * * \# M T \text { STEF } 22
$$

＊＊FR̃OR CC：ITFACTEN TO BUYEF．
857 AT：（6）$=1$
HUYER SERVICE TIME
ATT（42）＝1－OC＊TK（EE）
＊＊＊FREM BUYER
TO PCC
ATT（14）＝1

C SERVO SEICE TIME
ATT（43）＝・ヨ0＊TR（35）
C＊＊＊FPMPCC TDTFAFFIC
ATT（36）＝1
GOTO ヨヨショ
C
C＊＊＊＊M7 STEP 23
C
C
＊＊FRON TEAFFIC
TG BUYER
868 ATT（6）$=1$
BUYE？
SERVICE TIME
AT？（42）＝ 1.00 ＊TF（ 56 ）
C＊＊＊FROM BUYER TO CLE？K
ATi（i2）＝1
C CLERK SERVICE IIME
ATT（44）＝－2（in TR（4）
C $\quad * *$ FREM CLERK TO REFNODUCTION
ATT（26）＝1
C ？PEPPEDUCTEこA SEPVICE TIME

GOT」 35ショ
C
C
C
C＊＊＊FRUM REFRODUCTIこN TC CLERK
869 ATT 12 ）＝1
CLEス̃K SEKVICE IIME
$\operatorname{ATT}(44)=$－30＊T！T 3）
C
＊＊＊＊FROM CLERK
3）
C

AT：（25）＝1
C
DISティIBUTION ミミス̃VICE TIME
ATT（52）＝12．00＊？P（35）
60： 0 9ラ99
870 GCT 0 99ラ9
871 G0T0 9759
872 6ロ：？ 9959
873 Gごこ タッララ
C E：ID JF M7 ：5THUFK
C＊＊＊ME iNET．＊K＊＊＊

C
C＊＊＊FRCM TRAFFIC TJ BUYEK
875 ATT（5）$=1$
C
BUYE币
EEGVICE TIME
ATT（42）＝E．CC．TF（55）
C ＊＊＊FRCA BUYEF

TO CiEffK


```
    879 ATT( 6)=1
                    BUYER
                            seqvice time
        ATT(42)= 50ं*TF(46)
            **** FRCM BUYEP
                    TC PCO
        ATT (14)=1
C
C
    ATT(43)=1.80* TR(33)
        ****FRCM PCC
        ATT (35)=1
        GOT3 9999
C
C
C
    *** FiNM TFAFFiC iO BLYE只
    830 ATT( O)=1
                HUYED SERVICE TIME
        ATT(42)= 1.LC*TF(56)
        *** FRCM BUYEF
                                    TO CLEFK
        ATT(12)=1
            CLERK SERVICE TIME
        ATT(44)= -30* TF(35)
        *** FROM CLERK TO TPAFF:C
        ATT (26) =1
        GOTJ 35%9
            ****& ETEP }
            *** FRJM teaffic te buyER
        861 ATT ( S)=1
            BUYEA SERVICE TIME
        ATT(42)=.50*TF(45)
        ** ** FRON BUYER
                                TO PCO
        ATT (14)=1
                PCD SERVICE TIME
        ArT(43)= . 30* TR(55)
            *** FRCM PCC
                                    TO COMMITTEE
        ATT(G1)=1
            COMMETTEE SERVICE TIME
        ATY(71)=24.00* TF(45)
        *** FF!M CJMMITTEE TO TミAFFIC
        ATT (39)=1
        GOT J 9?%9
C
C ***FRこM TEAFF:C T C RLYEF
    882 ATT ( O)=1
                BUYER SERVICE TIME
```

```
        ATT(42)=2.0C*TR(57)
    **** FRGM BUYER
        ATT(12)=1
                                CLERK SEPVICE TIME
        ATT(44)=.40* T3(54)
    **** FP.OM CLEPKK TS TRAFFIC
        ATj(23)=1
        S0T0 7999
    C
    C ****MBSTEF S
    C
    C *** FRCM TFAFFIC TC BUYER
        883 ATT(5)=1
                        BUYER
            SERVICE TIME
        ATT(42)= .Eこ* TP.(E5)
        **** FRJM 9UYEK TO PC心
        ATT (14)=1
                PCO SERVICE TIME
        AT(43)= -Eड* TF(35)
        **** FROM PCC
                            TE Cこ:TRACTCR
        ATT (35)=1
            CONTRAC:CF SERVICE TIME
        ATT(43)=17E.00* TR(34)
        GOTC 9599
    C
    C
C
C ***FRSM CORTRACTCF TO BUYER
834 ATT (6)=1
                    BUYEF SERV:CE TIME
        ATT(42)=1.00* TF.(54)
    *** FROM BUYER TO TECH.EVAL
        AT:(19)=1
            TECH.EVAL SEFVICE TIME
        ATT (50)=104.00.TF(36)
        GOTO 5099
        C
    C ***FRCMTECH.EVAL TE RUYEN
        885 ATT(6)=1
            BUYEF. SERVICE TIME
        ATT(42)=2.0C*TF(Eう)
        *** FRCM BUYER TO ALDIT
        ATi'(2L)=1
                AUDIT SERVICE TIME
        ATT(55)=352.02* TR(54)
        GOTO O99%
```

```
nのnの
                    *** M8 STEP
                12
                        **** FROM AUDIT
        886 ATT ( 6)=1
                BUYER
                    SERVICE TIME
    ATT(42)= 5.00* TR(42)
    **** FROM BUYEP TO CLEPK
    ATT(12)=1
                ClERK SERUICE TIME
    ATT(44)= 1.5C* TR(45)
    ***FROM CLEFK TO PCO
        ATT (23)=1
                PCO SERVICE TIME
                            TO TRAFFIC
        ATT (36)=1
        GOTO 9999
            C *** MB STEP 13
        C O*** FROM TRAFFIC
        867 ATT ( 5)=1
            BUYER SERVICE TIME
        ATT(42)= 1.00* TR(56)
            *** FROM BUYEF TO TPAFFIC
        ATT(15)=1
        60%0 ロッチョ
            C
                C **** M8 STEP 14
C **** FROM TFAFFIC TO BUYER
        888 ATT( 6)=1
            RUYEP SERUICE TIME
            ATT(42)= 8.00* TR(54)
            **** FROM BUYEF TO TRAFFIC
        ATT (16)=1
        GOTO S999
            C
            C **** Mg STEP 15
            C #... FROM IHAFFIC
        889 ATT (6)=1
            BUYER
                            SERVICE TIME
        ATT(42)= 8.C0: TR(25)
            **** FRCM BUYEF.
        ATi(12)=1
C
                CLERK
                    SERVICE TIME
```


CcC **** FROM TRAFFIC
897. ATT (6)=1
BUYER SEPVICE TIME
.... ATT (42) = 1.0C* TR(54)
**** FROM BUYERTC PCO
$\operatorname{ATT}(14)=1$
PCO service time$A T T(43)=.40 * T R(50 ́)$**** FROM PCO TO COMMITTEEATT (61)=1
committee SERVICE TIME
$A T T(51)=24.00 \cdot T R(35)$
*** FRCM rgMMITIEE TC TFAFFIC ATT(38)=1 6OTO 9999
*** MB STEP 24
*** FRQM TRAFFIC TC BUYER
893 ATT(6)=1BUYERservice timeATT(42)=2.00*.FF(74)
C **** FRUM BLYEF TC Cliak
ATT(12)=:
C SERVICE t:ME
ATT (44) = . 90 (TR(33)
**** FREM CLERK to traffic
ATT(23)=1
6OTO 9799
**** M9 STEP 25
**** FROM TRAFFIC TO BUYER
899 ATT (6) $=1$
BUYEF SERVICE TIME
ATT(42) = : -UC. TR(51)
**** FRGM BUYEK TO PCGATT (14) $=1$PCO SERVICE TIME
ATT(43)= .50. TR(46)
*** FRON FC: to traffic
ATT(35)=1GOTG 9999
C
C 48 STEF 26


```
-c
C **** FRCM TRAAFFIC
900 ATT( 6)=1
                    BUYER SEFVICE TIME
        ATT(42)= -80.TF(33)
            *** FRCM BUYER
                    tG Comrittee
C
                    COMMITTEE SERVECE TIME
                    COMMITTEE SERVECE TIME
        ATT(51)=24.00* TR(36)
                            *** FROM COMMITTEE TO TRAFFIC
C
C
C
C *.** Me stef 27
C
C **** F员M thaffic to buyEf
901 ATT( ó)=1
            BUYER SERVICE TIME
        ATT(42)=.00.TR(ミ3)
            *** FROM BUYER TO TFAFFIC
        ATT(16)=1
        GOTE S799
TO BUYER
C
                BUYER
                MB STEP
                28
            *** FPGN TFAFFIC TE BUYER
        902 AT: ( 6)=1
            BUYES SERV:CE TEME
        ATT(42)= -.C0*TF(Es)
            *** FRGM BUYER
                                    TO CLEFK
        ATT (12)=1
            CLERK SERVICE TIME
        ATT(44)= .60*TF(14)
        *** FRCM CLEFK TO TFAFFIC
        ATT (23)=1
        GCTO 9099
                MR STEP 2C
            *** FRCM TFAFFIC TO HUYEF.
        903 ATT(S)=1
            BUYER SERVICE TIME
        ATT(42)= -5C*TP(4E)
            ***FDCM BUYEス́ TO FCこ
        ATT (14)=1
                PCO SERVICE TIME
    ATT(43)= 1.OC.TF(54)
C **FROM PCE TO CLERK
```


.5
AT்(52)=12-00 TK(35) GOTO 9599
C -END-JF MR NETHGRK
C **** F4 NETHOFK ***

 -932.533, 534,535), STEP
C $\quad * * * * 4$ STEP $1 * * * *$
C FROM TRAFFIC. TO BUYEN
908 ATT (5) $=1$
BUYEf
SERVICE TIME
$\operatorname{ATT}(42)=3.3(\operatorname{TR}(33)$
C. - **** FROM BUYER
TO CLERK
ATT(12)=1
C - CLERK -... SERVICE TIME
ATT(44) = 50 *TR(25)
**** FZCM CLERK :... TC TRAFFIC
$\operatorname{ATT}(28)=1$
GOTS 7959
C
C $\quad * * * *$ F4 STEP $2 * * * *$
C
C $* * *$ FROM TRAFFEC
TC BUYEA
909 ATT (6)=1
BUYEF SERVICE TIME
$A T T(42)=$ - © TF (33)
*** FRGM BUYER TV CLERK ATT(12)=1
C
CIERK SERVICE TIME

ATT $(44)=-50$ TR(46)
**** F只CM CLERK TO TRAFFIC
$\operatorname{ATT}(28)=1$
60T0 9799
C
C
C
c
C
912 aTT (S)=1
BUYE? SEPVICE TIME
$A T(42)=-50$ TR(45)
*** FRCM BUYEF
TO PCE
$\operatorname{ATT}(14)=1$
PCO SERVICE TIME
ATT(43)= -50*TR(45)
C
*** FRCM PCC
ATT (35) =1
GOT0 939?
c

911 ATT（ 6）＝1
BUYER
SERVICE
TIME

ATT（42）＝1．0C＊TR（56）
C ．．．．．．．＊＊FRCM BUYER．
to clenk
ATT（：2）＝1
SERVICE TIME
$\operatorname{ATT}(44)=.30 * T \operatorname{Tin}(35)$
＊＊＊＊FROM CLERK
TO TRAFFIC
ATT（28）＝1
GOTO 9799
c

ATT（42）＝．50＊TF．（46）

ATT（43）＝－30＊TP（37）
＊＊＊FOCN PCC TO CE：TRACTE？
$\operatorname{ATT}(35)=1$
contfactor senv：ce itme
ATT（43）＝144．00＊Tत人（43）
GCTJ 9999
${ }^{c}$
C
C $\because * *$ FRGM CCNTRACTCR TO BLYES
913 ATT（ \quad ）$=1$
buyef SEPVICE TIME $A T T(42)=1.00 *$ TF．（54）
＊＊＊．FRCM BUYEF．
Tこ TECH．EVAL
ATT（19）＝1
TECH．EVAL EERVICE TIME
ATr（50）＝30．0：－TR（ 5$)$
GOT 2 gヨョヨ

```
C **** E4 STEP 7
            *** FROM TECM.EVAL TG BUYEK
        914 ATT( 6)=1
            buyer SEnvice time
        ATT(42)= 1.3(. TF(56)
```

$$
\begin{aligned}
& \text { C } \\
& \text { ATT (16)=1 } \\
& \text { GOTO } 9997 \\
& \text { C } \\
& \text { C.......** F4. STEP } \\
& \text { C } \\
& \text { C } \\
& \text { **** FROM TRAFFIC } \\
& \begin{array}{l}
\text { TO TRAFFIC } \\
\text { TO BUYER } \\
\text { TIME }
\end{array} \\
& 915 \text { ATT (S)=1 } \\
& \text { C } \\
& \text { BUYEF SERVICE TIME. } \\
& \text { ATr(42) = 3.Cn* TK(54) } \\
& \text { C } \\
& \text { TO FCG } \\
& \operatorname{ATT}(14)=1 \\
& \text { C : }: \text { PCO SERVICE TIME } \\
& \text { ATT (43) = . 50* TR(45) } \\
& \text { C....... **** FR̃M PCO } \\
& \operatorname{ATT}(36)=1 \\
& \text {...GOTO } 9999 \\
& \text { c } \\
& \text { C } \\
& \text { C } \\
& \text { C } \\
& \text { F4 STEF } \\
& 5 \\
& \text { ATT(42)= 3.CO~TF(54) } \\
& \text { ATT (14) }=1 \\
& \text { C } \because \text { PCO SERVICE TIME } \\
& \text { ATT(43)= } 50 * T R(45) \\
& \text { TO TRAFF:C } \\
& \text { C........**** } \\
& \square 5 \\
& \text { C } \\
& \text { C *** FRCM TKAFFIC TO BUYER } \\
& 916 \text { ATI (5) }=1 \\
& \text { C BUYEF SERVICE TIME } \\
& \text { ATT (42) }=1.50 \text {. TR(46) } \\
& \text { C } \\
& \text { **** FRCM buyEf. } \\
& \text { TE TRAFFIC } \\
& \text { ATT (16) }=1 \\
& \text { GOT0.9979 } \\
& c \\
& \text { c **** F4 STEP } 10 \text { **** } \\
& \text { C } \\
& \text { C **** FRCM TRAFFIC } \\
& \text { TO BUYEA } \\
& 917 \text { ATT (6)=1 } \\
& \text { C SUYER SERVICE TIME } \\
& \text { ATT (42) = 2.30: TRि(44) } \\
& \text { C } \\
& \text { **** FROM BUYER } \\
& \text { to cieak } \\
& \operatorname{ATT}(12)=1 \\
& \text { C CLERK SEFVICE TIME } \\
& \operatorname{ATT}(44)=2.00 \text { - Pri(24) } \\
& \text { C *** FREN CLEFK } \\
& \text { TC TRAFFIC } \\
& \operatorname{ATT}(2 b)=1 \\
& \text { GOT } 3 \text { 959. } \\
& \begin{array}{ll}
C \\
C & * * * F 4 \\
\text { STEP } 11 * * * * ~
\end{array} \\
& \text { C } \\
& \text { C *** FROM TFAFFIC TV BUYER } \\
& 918 \text { ATT (S)=1 } \\
& \text { C - } \\
& \text { ATT(42) BUYEF }-90 \text { (TF (ESR) }
\end{aligned}
$$


```
        GOTJ @`90
C ***F4 STEP 15****
    *** FRUN t?AFFIC TO RUYEF
    922 ATT(6)=1
                                    BUYER SERVICE TINE
            ATE(42)= .5n*TR(33)
            ***F只年 EUYER TE JAG
        ATT(1も)=1
                JAG SERVICE TEME
        ATT(4:j= 16.30* TK(55)
        GOT0 ララ#9
C ****F4 STEF 1E****
            *** FRCN JAG
                                    T= BUYER
    923 ATT ( 6)=1
                BUYES SERVICE TIME
        AT:(q2)= Er-TF(33)
            *** frer hluyef te tfaff:C
        ATT(16)=1
        G&T: ショミシ
C
C #..*F4 ミTEP 17...*
C *** FRCM T{AFFIC TO BUYER
    S24 ATT ( \epsilon)=1
                GUYEN EEPVICETIME
            ATT(42)= i.00. TE(ES)
            ***FRCF BUYER Ti CLENK
        ATT(12)=1
            CLERK SERिVICE TIME
    ATT(44)=.30.T&(3)
            ****FRCM CLEFK TO TPAFFEC
        ATr(23)=1
        Gごこきショ9
C
C ***F4 STEF le****
            ***FFUN TEAFF!C TJ BuYgF
        925 AT:(5)=1
                BUYEP SEZV:CE T:NE
        ATB(42)= ?-E:4 TO(54)
            ***FRCM BLYEF TV PCE
        ATr(14)=1
                PCO JERVICE TIME
    ATT(43)= .3C.TE(5)
```

C

C926 ATT（ 6）＝1
BUYEN SEかV：CETごいこ
ATI（42）＝1．00＊TR（E4）＊＊＊FROM BUYERre．PCC
ATT（14）＝1
PC． SERVICE TIME
ATT（43）＝．30．Tn（こ5）
＊＊＊FRCM PCCTo Clepkclefkservice i：me
$\operatorname{ATT}(44)=$－20．TR（4）
＊＊＊FACN CLERK to reffaductyonaEPRCDUCTidh service time
AT：（5j）＝lt．0C．TF（54）
GOTこ 〇〇ヨら9
F6 STEP 20 ＊＊＊
FRCM FEFRCDUCTİH 「こ CLEスK
CLERK SEPVICE TIME
$\operatorname{ATT}(44)=.30=T R(3)$＊＊＊FRCN CLERKtu oistaibution
ATY（25）＝1distaibution service ijme

G0： 6 935j
92ट GOTO 5999929 6050 9799
930 GOT：9ร59
931 GOTO 5ラ39
932 G0゙は 9550933 GOTC ¢ララ5

$$
934 \text { GOT? ? } 399
$$

```
    935 cuT0 %c%9
C EOO SF FL NETWOFK
    936 GC「こ(5j7,53ミ).こったP
```



```
    937 ATT( 6)=1
                BUYER SERVICE MIME
    ATT(42)= 1.0in TF(E7)
        **:FFOM BUYEF. TJ CLERK
        ATT(12)=1
                ClERK SEfvicE iImE
    ATT(44)=.60:TR(33)
        ***FaCN ClE=K in tPaFFIC
        AT:(25)=1
        6ご: gess
c
C
C
C **** FRCM ifAFFIC iç buyEF
    93f ATT( S)=1
                                BlyEf SERVICE TIME
    ATT(42)= .30* i= (E3)
        *** FGこN BUYEF TE PC心
        ATT(14)=1
            FC2 SEFV:CE TINE
        AT:(45)=.3(*TF(1)
```



```
        AT+(33)=1
            SE=vICE SIME
        ATP(44)= .3E* IF( 3)
            **** FRCN CLEFK -: D:ETMiRUT:ご.
        ATT(25)=1
            DISTA:BUT:OA: SERV:CE -:ME
        AT:(うこ)= 12.CE* Tr.(35)
        GOTO 5ミ9%
        EYD OF Ai NEThCFK
        **** FE i.5THC=K ..**
```



```
C ***FSSTEF 1 ****
C n***FREM TFAFFIC TV FCこ
    94U AT:(5こ)=1
                                    pCo SERVICE TIME
        ATT(43)= .En:T=(45)
            *** FREM FCR . Tこ MUYEK
        AT-(2ミ)=1
```

HUYEQ
SERVICE TIME
ATY（42）＝S．O！．TF（36）
＊＊＊FPSN BUYEF
TJ CLERK
AT：（12）＝1
CLEマK
sEfVICE TIME
ATT（44）＝4．0气．TR（23）
＊＊＊FRC＂CLESK
「こ T゙AFFiC
ATT（こき）＝1
Gゴこ 9シミヲ

F3 STEP 2

＊＊＊＊FRCN TRAFFIC
te BuYEn
941 ATT（ 6 ）$=:$
BUYEP EEFVECE TEME
ATT（42）＝1．C（：TF（Ee）
＊＊＊FREN BUYEF．
TO CLEnK
ATT（12）＝1
CLEEK SEPVICE．TIME
AT：（4 A）＝－5C．TF（1）
＊＊＊F？iッ CLERK
TE TこACFiC
$A T+(2 三)=1$
जCTこヨジロ
＊＊＊Fうミ゙こF 3＊＊＊＊
＊＊＊FAOM TFAFF！C Tう BUYEス
942 ATT（5）＝1 BUYER EERVECE TiME
ATF（42）＝•5「•TF（46）
＊＊＊FRCN BUYEF TC PC＝
ATT（14）＝1
PCJ SERVICE TIME
$\operatorname{ATT}(43)=1.2 ? T P(44)$
＊＊＊FREM PCC
TこTスAFFIC
$\operatorname{ATT}(36)=1$
GOTこ ミゴヨヲ
＊．F3 E．EP
4 －＊＊

943 AT＊（S）＝1
BUYER SERV：CE TIME
$A T^{T}(42)=1.00$ © F （E5）
＊＊＊＊FP：BUYEF．
TことにこえK
AT：（12）＝1
CLERK こミスVICE Ti4E
ATT（44）＝：．UC．TR（51）

c
c
c
c

$$
A T{ }^{* * * *}(3 \leq)=1
$$

$$
50: 09579
$$

c
ATT(42)= Z.Gこ: TF(E4)
*** FREM BUYES TC ifaffic
ATT(16)=1
f.JTO ¢O99
c
C ***F3 STEP 20.***
C
*** FRON tSAFFic to buyef
940 ATT(5)=1
BUYEP SERV:CE IIME
$\operatorname{ATT}(42)=$ E.OC. TF(Ei)
*** FRON BUyER te CLE: K
ATT(12)=1
CLERK SERVICE TIME
ATT(44) = z.OC.TP(天3)
*** FROM CLEAK tC TEAFFIC
$\operatorname{ATT}(2 A)=1$
G050 9939
c
C ****F3 STEF 11 ****
C **** FRCM TRAFFIC TC BuYER.
95j AT: (5) $=1$
buyef service itme
$A T Y(42)=1.00 * T P(54)$
c
c
ATr (23) $=1$
GJTO 9979
c

ATT（18）＝1

JAĞ JERVICE TIME

ATT（49）＝16．00＊TF（55） GOTO 5399
＊＊＊＊F3 STEP 16

＊＊＊＊FROM BUYER
to traffic
ATr（15）＝1
GOTE 9559
c
c

ATi（28）＝1
Gゴう コラショ

$$
* * * F 3 \text { STEP } 18
$$

＊＊＊FRCN TFAFFIC
to buyer
957 ATT（ 6）＝1
BUYER SERVICE TIME

ATT（42）＝1．0日＊TF（E4）
＊＊＊FFON BUY5F
TO PCE
$A \operatorname{Ti}(14)=1$
PC＇
senvice time
ATT（43）＝．3E＊1R（35）
＊＊＊Fãr PCo
T2 CLERK
AT：（33）$=1$
CLERK SERVICE TIME

ATT（44）＝1．CC＊TR（：3）
＊＊＊＊FREM CLERK
to contãactck
ATT（27）＝1
contiactof service time
ATT（4E）＝ 54.00 （TR（44）

COT O ヨラヲ9

C
C
C
959＊＊FRCM COATFACTCA TO BUYER，
959 ATT（6）$=1$
RUYEF SERVICE TIME
$\operatorname{ATT}(42)=$－PO＊TR（33）
＊＊＊＊FFOM RUYER TO PCC
ATT（14）＝1
PCO SEEVICE TIME
$\operatorname{ATT}(43)=\quad-30 * \operatorname{TF}(35)$
C＊＊＊FROMPCO TO CLERK
$A T T(33)=1$
CLEPK EERVICE TIME
$\operatorname{ATT}(44)=.30 * \operatorname{TF}(5)$
＊＊＊FRCM CLERK
TO REPRCDUCT：JN
$A T T(26)=1$
FEPRADUCTICP SEFVICE TIME
$A T T(53)=1 E . O E$ TP（E4）
G0゙う 5599
C
c
C
C＊＊＊＊FCM REFPEDLCTミこNTこCLECK
95？ATT（2） $2=1$
CLEスK SEfVICE TIME
ATI（44）＝1．CC＊TF（4）
＋＊＊＊FRCA CLERK
TC DISTEIRUTICA
AT： 25$)=1$
C
OISTFIBUTION SEFUICE TINE

ATT（52）＝12．00＊TF（35）

950 6JT0 9999
961 GOTO 9ร9\％
962 GOTC 3 SS9
963 GOTO Oэ9ラ
964 GCTこ 3ショ9
965 G0－ 0 のショs
950 GE：C 9799
967 60T0 5395

＊993．994，995．906），STEP
C＊＊＊MUSTEP 1 ＊＊＊＊
C
TO BLYER

```
    965 ATT( 6)=1
    C HUYER SERVICE TIME
        ATT(42)=1.00* TP(5S)
            *** Físr. BUYER TO CLERK
        ATT(12)=1
                CLERK SERVICE IIME
        ATT(44)= -3C*T只(61)
            ***FRCN CLSFKK TC T=AFFIC
        ATT(25)=1
        GOTO 9ミ99
            Mg STEP 2 ****
            *** FRCM TFAFFIC TC BUYEP
    970 ATY( 6)=1
                GUYER SERVICE TIME
        ATT(42)= .30*TF(E5)
            *** FKOM BUYEK TC TECH.EVAL
        ATT(1S)=1
            TECH.EVAL SERVICE IINE
        ATY(50)=4E.0C*TR(45)
        G3T:9955
C
C
C
C
    971 ATT( 6)=1
                QUYEF SERVICE IIME
        ATT(42:= 3.0C*TF(こう)
        *** FRGN BUYER
                                TこC!ERK
        ATT(12)=1
            CLERK SERVICE TIME
        AT.(44)= .80.TF(33)
        ** FRJN CLERK TC TEAFFEC
        ATi(20.)=1
        GJTO 9999
C
C
C
972 ATF(6)=1
                            BUYEF SERV:CE IIME
        ATT(42)= . डこ* TR(45)
        *** FNらM RUYER iこ PCO
        ATT(14)=1
            PC? EERVICE TIME
        ATT(43)= .5C. TR(45)
        ***FROM PCC
        Tこ COATSACTCQ
```

```
        ATT(35)=1
                                    CONTFACTOR SERVICE TIME
    ATT(43)= RC.CC* TR(54)
    GOTO 9.975
C
C
C
C
    973 ATr(É)=i
                BUYEF SEFVICE IIME
    ATT(42)= . 5C. TF(4́́)
C *=EFFOM BUYEF TO FCC
    ATi (14)=1
                PCO SERVICE T:ME
    ATT(43)= -3C# T^(Él)
        =** FACM PCS TOCLERK
        ATT(33)=1
            CLEFK SERVICE TIME
    ATT(44)=.30.TR(31)
        *** FRCM CLERK TC EEPRCDUCTIEN
        ATT(25)=1
            &EPPEOUCTISN SEKUECE IIME
        ATT(53)=16.C0* TR(54)
        G0「J ¢7#9
            C
                C ****MQ ETEP 5 ****
C ****FREN REFRCDUCTICNTE CLEFK
974 ATT(1:)=1
                    CLERK EEPVICETINE
    ATT(44)= - 20* TR(E1)
            *** FQEM CLESK TO DISTF:RUTION
        ATT(25)=1
C
            ,OIST:IBUTION SEPVICE TIME
        ATT(52)= 12.00* TR(35)
        GCT: \ 9379
    975 GCT: 9990
    075 62Tに %009
```



```
    97E GごC 9%%ミ
    97% GUT0 ジヨヨ
    980 GOTJ 9ミョヲ
    981 GCTC 9799
    S@2 GCT^Gショヲ
    983 GOTJ 97Э7
    984 GOTJ 90.99
    985 60TJ 9797
    986 GOT0 9799
```

```
    987 GCT0シミミヲ
    98尺 GOTO タヨラ习
    989 G0! & 9#¢尹
    - 900 GOTG 999#
    991 GOTJ 9%90
    992 GOTO SミラS
    993 GOT0 9.ラ9
    9&4 GOT0 9539
    995 GこTC 5ミヲ9
    995 GC-0 25シ5
C E':D OF MG NETVLRK
C
C
TARULATE FESULTS CF EACH S:I:K
    3OOG XXXX = TMAFK(IDUN)
    IF(T:SOW.ST.START) 「HE%:
    X = TI:SH-XXXX
    00 1083 K=1,28
C *** TOTALS FOS THIS RLN***
    IF (ATT(2).EQ.K) THEN
    TOTX(K) = TETX(K) + X
    ITTH(K) = ITTP!(K) + 1
    SLMSQ(K) = SUMSG(K) * X**2
C ** TITAIS FCF ALL RU:SS***
    CTこTX(K) = CTCTX(K) + X
    MTOT(K) = NTOT(K) +1
    CSEG(K)=CSSO(K) + X=*2
    E:DIF
10s8 CONTI::US
    ENDIF
    UF=3
    NETUQM
C
C ****************FETUFミ..
    S999 ATT(1) = STEP + 1.
c
C
C TETAL WJPK TIME IS AUJNENTED WETH ACA-FROEUCTIVE TIME
C COMPこEED 2F R.EWーDATACEA WIRK, IDLENESS. ANC LEAVE.
    AT:(42) = ATT(42) * こ.こ=
    ATT(43) = ATT(43) 2.32
    ATT(44) = ATT(44) * 2.EE
C
    ATY(52)=ATT(44) * BUEDR
    ATT(63) = ATT(44)}\mathrm{ (4URDA
        BUYミF B
C
```

 IF(ATY(4).F日.2) THEN
    ```
    ATT(7) = ATT(G)
    ATT(S) = C
    ATT(22) = ATT(21)
    ATT(21)= C
    ATT(3) = ATT(2`)
    ATT(2F) = C
    ATT(45) = ATT(45)
    ATT(45)=E
〔`D iF
C
C BUYER C
C
    IF(ATT(4) OEQ.3) THEA,
    ATT(\hat{O})=ATT(G)
    ATT(G) = 0
    ATT(55) = ATT(2:)
    ATT(21) = C
    ATT(31) = ATT(2G)
    ATT(2Э) = C
    ATT(47) = ATT(45)
    ATT(45) = 0
    E:ODIF
C
c BUYE? D
c
IF(ATT(4), EN.4) THEP.
    ATT(5) = ATT(6)
    ATT(S)= C
    AT:(57) = ATi(21)
    ATT(21) = C
    ATT(32) = ATT(25)
    AT:(2?) = C
    ATT(EF) = ATT(45)
    ATT(4.5)=?
ENDIF
C
C HITHOUT THE VEXT FEG LI:NES GLL mこAK WEJLO GO TO CLEFK-A.
IF(ATT(4).GE.FATIC) THEG
    ATT(11) = ATT(1:)
    ATT(1J) = C
    ATT(13) = ATT(12)
    ATT(i2) = &
    ATT(34) = ATT(33)
    ATT(33) = 人
    ATT(41) = ATT(4T)
    ATT(4.J) = C
EiOIF
```


c c

c
call putat（att）
$U F=1$
RETURN
EvD
C $000000030300000 \operatorname{coccose3} 0000000000002000000=2000 \approx$ slaruvitne ui
COMMON／QVAF／NDE－NFTRU（SCO），NREL（SJG），NRELP（SOD），NREL2（SJC），
INRUM，NPUNS．ATC（SOC），PATAM（120．4），TBEG．T＇OW

1NT）T（こき？，CSこの（2も）
INTEGE i ：J．K
DO 1TK $=1.28$
TOTX（K）$=0$
IJTy（x）＝
$\operatorname{sUm} Q(K)=$ ：
IF（：JPUN．EG．I）THEN
CTOTX $(x)=0$
V YOT（K）$=0$
むうso（k）＝J
ENOIF
17 C JiATINUE
IF（IRUV．EO．1）TMEN
$J=10$
00 adaa ！$=:, 55$
1F（I．EO．」）THE：
$J=J+13$
GOTO a．s 33
EVD：F
CALL CPTR（I）
G888 CONTIVUE
ENDIF
$x=0$
RETURN
ED
c
SUBzOUT：ije vo
REAL STDOEV．aVEX
INTEGEAK
CHARACTER LIST（29）． 2
CCMMON＇OVAR／NDE，NFTEU（5：O），AGEL（5こO），NRELP（SCO），NREL2（5CO）， INRUN，NRUNS，NTC（SOCI，PARAMCIES．＋1，TBEG，TYOY
COMMON／C4RIS／TOTX（2马），JTTN（2A）．SUPSO（2E），X，CTOTX（28），
1NTOT（28），CSSG（2E）


```
            URITE(G.*) * *
            GRITE(S.1DU) I.FUN
            HR!T((0.1:2)
            DO 19K=1.2%
            IF(!TT:G(K).GT.U) IHEN
            AvEx = Tכix(K) / :こ:`(K)
```



```
            STDOEV=S.R?((EGYSQ(K)-((TニTX(K)**2)/ITFY(K)))/(ITYN(K)-1))
            ELSE
            STOOEV = J
            Evoif
            ELSE
            AVEX = 0
            STODEV = 0
            ENOIF
            WRITE(S.104) LIET(K),STTH(K),AVEX,STDOEV
    10J FCQMAT(jx,*P U N N U M B ER !.I3)
```



```
    j"STつ OEVIAT:ON')
```



```
    20 covitNuE
        IF(:ZVMS.EQ_::RUA) - NEY
C****.* PRI:AT jUT &FTER ALL RUNS .......
    UR:こE(S.120)
    UR:TE(S.112)
    DU 709S K = i.EG
    IF(.0IDT(K).GT.C) THEN
            AVEX = CTETX(K) , VTET(K)
            IF(inio:(K).GT.:) YHEA
```



```
        IF(VTOT(K).GE.Jこ) THEK
        CILP = AVEX - (1.64S STCDEV)
        CIMP = AVEX * (1.0.45 STODEV)
        X= = REAL(:GTET(K))
        CILY = AVEX - (1.E4E * (STJDEV/SORT(X)))
        CIM* = AVEX + 11.GAE * (STODEVISGAT(X)))
        ELJE
        CILS = J
        C140}=
        CILM=0
        CIHM= ?
        ENOIF
        ELSE
        STODEV = 0
        CILM=2
        CInM=0
        CILO=2
```

```
    CIHD}=
    EP.J;F
```



```
1CILF,CIHP
    EMD:F
110 FOZMAT(ix,///,ix,"GSA:D TこTAL FER ALL FUNS*)
```



```
    1F7.1,:X,FP.1,1X,'-',1X,FT.1)
g909 CONIIPUE
    E:DIF
    PETUR,
    END
```

APPENDIX D
Q-GERT PROCEDURES (QGPROC)


```
ATTACH,DEECFIL.ID=AEI(17:,J!=ASDAD.
BEGI^.NCSFILE.
ATTACH,PP:ECF:L,QGEPTPFCC,:D=AFIT.
SET,SUQ,TD=MELLEF.
GET,STAGF,ID=^TLLSF.
FTNS(I= SJ|.Lつ=?,&^ミ:=!)
```



```
FEPLACE,J口JUT1,IS=MILLEF.
ROUTE,DPJUT1,ZこJ=AF,DC=PF,FID=CDM,ST=CSA.
```


I am gathering data for a thesis which I am doing for AFIT. The purpose of my thesis is to develop a model of R\&D Contracting. A model which will imitate the time it takes to award a contract. For example, if it takes your branch an average of 45 days to process a funding action, I want my model to come up with 45 days, also.

In order to get my model to do this, I need accurate estimates of the time to complete each step of the contracting process. This is where you come in. I would like you to provide me with your best estimate of the time it takes you to complete each step of the contracting process.

The questionaire is very lengthy, and will take some time to fill out. Please think carefully about each step. Because only twelve experts are filling out this questionaire, your estimates will have a large influence on the group average. Be as precise as you can. If one of your estimates is 10 minutes, don't round it to 'one-half hour', write it as 'lo minutes'. Of course for long time periods (such as the RFP solicitation time), being precise may be specifying 35 days, rather than rounding it to one month. If any step is ambiguous, mark it, and ask me about it. I will try to check with you several times during the day.

Your estimates and answers to my questions will be kept anonymous and confidential.

If you find any step or anything in the step which you do not usually do, or if an important item has been left out, please let me know.

I would like you to make three estimates for each contract step. The first estimate is for the normal, or average, time to complete the step. The second estimate is for the optimistic, or short time that the step can be performed if there are few problems, and most things go smoothly. The third estimate is the pessimistic time, the long time that this step would take if there are many problems on this buy. Your estimates should be based on the time that you start working on that step to when you finish the step. Assume that you have nothing else to do and there are no interruptions.

On some of the steps, three extra estimates must be made: (1) the percentage of time the normal situation occurs, (2) the percentage of time the second situation occurs, and (3) the percentage of time the third situation occurs.

No one expects anyone to work 8 hours without taking breaks and socializing. Not counting your lunch time, what percentage of your day do you think you spend not working?

Thank you for your cooperation in this study.

get RFP from Buyer

```
STEP 1: RFP
    Prepare:
        RFP
        DD254 corrections
        Acquisition Plan
        Source List (FI 5)
        TPP (FI 8)
        Contract Type D&F (FI 9)
```

 Set-up RFP File
 to buyer
 STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes
to buyer, PCO
STEP 3: Make RFP Corrections (PCO)
to buyer, PCO
STEP 4: RFP to Repro
Prepare document for Repro
Type DD 843 (Repro form)
to Repro
STEP 5: Mail RFPCheck Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer
STEP 6: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer
STEP 7: Type BAFO Request Letters
to Buyer who writes contract award
STEP 8: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's siqnature on contract)with envelope
Get contractor's Administrative data (code, ACO, fina-nace office, etc.)
to Buyer
STEP 9: Make corrections to contract (buyer)
to Buyer, PCO
STEP 10: Make corrections to contract (PCO)
to Buyer, PCO
STEP 1l: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO
STEP 12: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 13: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CRO1, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals to Staging

```
C3 COMPETITIVE BUY $ 100,000 to $ 250,000. Clerk's Steds
```


get RFP from Buyer

STEP 1: RFP
Prepare:

RFP

DD254 corrections
Acquisition Plan
Source List (FI 5)
TPP (FI 8)
Contract Type D\&F (FI 9)
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO)
to buyer, PCO

STEP 4: RFP to Repro
Prepare document for Repro Type DD 843 (Repro form)
to Repro

STEP 5: Mail RFP

Check Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer

STEP 6: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer

STEP 7: Type BAFO Request Letters
to Buyer who writes contract award

STEP 8: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 9: Make corrections to contract (buver's)
to Buyer, PCO

STEP 10: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 11: Make corrections to contract (JAG's)

STEP 12: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 13: Send Contract to Repro
Type DD 643, send contract to Bidg 5

STEP 14: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CROl, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals te staging

C4 COMPETITIVE BUY \$ 250,000 to $\$ 500,000$. Clerk's Steps

get RFP from Buyer

STEP 1: RFP

Prepare:

RFP
DD254 corrections
Acquisition Plan
Source List (FI 5)
TPP (FI 8)
Contract Type D\&F (FI 9)
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 4: Make RFP Corrections (JAG's)
to buyer, PCO

STEP 5: RFP to Repro

Prepare document for Repro
Type DD 843 (Repro form)

STEP 6: Mail RFP
Check Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer

STEP 7: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer

STEP 8: Type BAFO Request Letters
to Buyer who writes contract award

STEP 9: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 10: Make corrections to contract (buyer's)
to Buyer, PCO

STEP 11: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 12: Make corrections to contract (JAG's)

STEP 13: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 14: Send Contract to Repro
Type DD 843, send contract to Bldg 5

STEP 15: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CROI, DD350, contract, ROCA

Type Sorry Letters
Type Form Letters 12, 13, 87 for vCO signature
Send proposals to Staging

get RFP from Buver

STEP 1: RFP
Prepare:
RFP
DD254 corrections
Acquisition Plan
Source List (FI 5)
TPP (FI 8)
Contract Type D\&F (FI 9)
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buver's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 4: Make RFP Corrections (JAG's)
to buyer, PCO

STEP 5: Make RFP Corrections (PMRC's)
to buyer, PCO
STEP 6: RFP to Repro
Prepare document for Repro
Type DD 843 (Repro form)
to Repro
STEP 7: Mail RFP
Check Reproduction
Type envelopes, date stamp RFP
Put RFP in Mail
to offerors, request RFP Amendment
STEP 8: Type RFP Amendment and envelopes, mail
to offerors, buyer, Lab, buver
STEP 9: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer
STEP 10: Type BAFO Request Letters
to Buyer who writes contract award
STEP 11: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type DD1499

Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)

to Buyer

STEP 12: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation

> to Buyer, PCO

STEP 13: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 14: Make corrections to contract (JAG's)

STEP 15: Make corrections to contract (PMRC's)

STEP 16: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 17: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 18: Send Contract to DistributionXerox 4 copies of ROCA
Type ASD 258 (distribution)attach BV2 validation, CR01, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals to Staging

| get RFP from Buver | |
| :---: | :---: |
| STEP 1: RFP | |
| Prepare: | |
| RFP | |
| DD254 corrections | |
| Acquisition Plan | |
| Source List (FI 5) | |
| TPP (FI 8) | |
| Contract Type D\&F (FI 9) | |
| Set-up RFP File | |
| to huyer | |
| STEP 2: Make RFP Corrections (Buyer's) | |
| Type buyer's changes | |
| to buyer, PCO | |
| STEP 3: Make RFP Corrections (PCO's) | |
| to buyer, PCO, JAG | |
| STEP 4: Make RFP Corrections (JAG's) | |
| to buyer, PCO | |
| STEP 5: Make RFP Corrections (PMRC's) | |
| to buyer, PCO | |

STEP 6: RFP to Repro
Prepare document for Repro
Type DD 843 (Repro form)
to Repro
STEP 7: Mail RFP
Check Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail
to offeror, request RFP Amendment
STEP 8: Type RFP Amendment and envelopes, mail
to offerors, buyer, Lab, buyer
STEP 9: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer
STEP 10: Type BAFO Request Letters
to Buyer who writes contract award
STEP 11: Type Contract Award
Type Contract
Type ROCA
Type DD 350, DD1499, JAG sheet, Committee sheet

Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)

STEP 18: Send Contract to DistributionXerox 4 copies of ROCA
Type ASD 258 (distribution)attach BV2 validation, CRO1, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals to Staging

```
STEP 1: RFP
```


Prepare:

RFP

DD254 corrections
Acquisition Plan
Source List (FI 5)
TPP (FI 8)
Contract Type D\&F (FI 9)
FI 59 - JAG review sheet
FI 66 - Committee review sheet
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO's)

| to buyer, PCO. JAG |
| :---: |
| to buyer, PCO |
| 4: Make RFP Corrections (JAG's) |

STEP 6: RFP to Repro

> Prepare document for Repro Type DD 843 (Repro form)
to Repro

STEP 7: Mail RFP

Check Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail

```
to offerors, request RFP Amenतment
```

STEP 8: Type RFP Amendment and envelopes, mail
to offerors, buyer, Lab, buver

STEP 9: Type Technically Unacceptable Letters and/or Single source justification (if required)
and type pre-negotiation presentation documents

> to Buyer

STEP 10: Type BAFO Request Letters
to Buyer who writes contract award

STEP 11: Type Contract Award

EEO TWX
Type Contract
Type ROCA (pricing is typing PNM)
Type DDI499
Type DD350
Type FI 39 - Patent Rights

FI 59 - JAG review sheet
FI 66 - Committee review sheet
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)

to Buyer

STEP 12: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation
to Buyer, PCO

STEP 13: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 14: Make corrections to contract (JAG's)

STEP 15: Make corrections to contract (PMRC's)
STEP 16: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO
STEP 17: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 18: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)attach BV2 validation, CRO1, DD350, contract, ROCA
Tyr ミ Sorry Letters
type Form Letters $12,13,87$ for PCO signature
Send proposals to Staging

STEP 1: Type-up BSP Minutes Agenda
get RFP from Buyer

STEP 2: RFP
Type BSP Minutes for ASD/PMR signature
Prepare:
RFP
DD254 corrections
Acquisition Plan
Source List (FI 5)
D\&F (FI 8)
Contract Type D\&F (FI 9)
FI 59 - JAG review sheet
FI 66 - Committee review sheet
ASD/PMC review sheet
Set-up Contract File
to buyer

STEP 3: Make RFP Corrections (Buyer's)
Type buyer's changes
to birer, PCO

STEP 4: Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 5: Make RFP Corrections (JAG's)
to buyer, PCO

MICROCOPY RESOLUTION TEST CHART national bureau of standaros-1963-A

STEP 12: Type BAFO Request Letters

to Buyer who writes contract award

STEP 13: Type Contract Award

EEO TWX

Type Contract
Type ROCA (pricing is typing PNM)
Type DD1499
Type DD350
Type FI 39 - Patent Rights
FI 59 - JAG review sheet
FI 66 - Committee review sheet
ASD/PMC review sheet and file
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 14: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation

> to Buyer, PCO

STEP 15: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 16: Make corrections to contract (JAG's)

STEP 17: Make corrections to contract (PMRC's)

STEP 18: Make corrections to contract (ASD/PMC)

STEP 19: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

```
STEP 20: Send Contract to Repro
Type DD 843, send contract to Bldg 5
```

STEP 21: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CRO1, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals to Staging

get RFP from Buyer

STEP 1: RFP

Prepare:
RFP (letter or full)
DD254 corrections
Acquisition Plan
D\&F (FI 8)
Contract Type D\&F (FI 9)
Sole Source Justification (FI 2)
Set-up Contract File
to buyer

STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO)
to buyer, PCO

STEP 4: Mail RPP
Xerox RFP
Type envelope
Date stamp RPP
Put RFP in Mail

STEP 5: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract)
with envelope
Get contractor's Administrative data (code, ACO, finanace office, etc.)

to Buyer

STEP 6: Make corrections to contract (buyer)
to Buyer, PCO

STEP 7: Make corrections to contract (PCO)
to Buyer, PCO

STEP 8: Mail Contract to Contractor
Input 67X, 70E, 70H, 69R (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor

```
to contractor, buyer, PCO
```

```
STEP 9: Send Contract to Repro
    Type DD 843, send contract to Bldq 5
STEP 10: Send Contract to Distribution
    Xerox 4 copies of ROCA
    Type ASD 258 (distribution)
        attach BV2 validation, CRO1, DD350, contract, ROCA
    Type Form Letters 12, 13, 87 for PCO signature
```


get RFP from Buyer

STEP 1: RFP

Prepare:

RFP
DD254 corrections
Acquisition Plan
D\&F (FI 8)
Contract Type D\&F (FI 9)
Sole Source Justification (FI 2)
Set-up Contract File
to buyer

STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes
STo buyer, PCO
to buyer, PCO

STEP 4: Mail RFP
Xerox RFP
Type envelope
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer
STEP 5: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope
Get contractor's Administrative data (code, ACO, fina-nace office, etc.)
to Buyer
STEP 6: Make corrections to contract (buyer's)
to Buyer, PCO
STEP 7: Make corrections to contract (PCO's)
to Buyer, PCO
STEP 8: Make corrections to contract (JAG's)
STEP 9: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

```
STEP 10: Send Contract to Repro
Type DD 843, send contract to Bldg 5
```

STEP 11: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD350, contract, ROCA Type Form Letters 12, 13, 87 for PCO signature
get RFP from Buyer

STEP 1: RFP
Prepare:
RFP
DD254 corrections
Acquisition Plan
Sole Source Justification (FI 2)
D\&F (FI 8)
Contract Type D\&F (FI 9)
Set-up Contract File

> to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO
STEP 3: Make RFP Corrections (PCO's)
to buyer, PCO, JAG
STED 4: Make RFP Corrections (JAG's)
to buyer, PCO
STEP 5: Mail RFP
Xerox RFP
Type envelope

Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer

STEP 6: Type Contract Award

Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)

to Buyer

STEP 7: Make corrections to contract (buyer's)
to Buyer, PCO

STEP 8: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 9: Make corrections to contract (JAG's)

STEP 10: Mail Contract to Contractor
Input 67X, 70E, 70H, 69R (BV2)
Xerox contract, attach to Form Letter 8

Mail to Contractor

to contractor, buyer, PCO

STEP 11: Send Contract to Repro
Type DD 843, send contract to Bldg 5

STEP 12: Send Contract to Distribution

Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD350, contract, ROCA

Type Form Letters 12, 13, 87 for PCO signature

get RFP from Buyer

STEP 1: RFP

Prepare:
RFP
DD254 corrections
Acquisition Plan
Sole Source Justification (FI 2) TPP (FI 8)
Contract Type D\&F (FI 9)
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 4: Make RFP Corrections (JAG's)
to buyer, PCO

STEP 5: Make RFP Corrections (PMRC's)
to buyer, PCO

Prepare document for Repro Type DD 843 (Repro form)
to Repro

STEP 7: Mail RFP
Check Reproduction
Type envelope
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer

STEP 8: Type Contract Award
Type Contract
Type ROCA
Type DD350, DD1499, JAG sheet, Committee sheet
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 9: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation
to Buyer, PCO

STEP 10: Make corrections to contract (PCO's)

to Buyer, PCO

STEP 11: Make corrections to contract (JAG's)

STEP 12: Make corrections to contract (PMRC's)

STEP 13: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 14: Send Contract to Repro
Type DD 843, send contract to Bldg 5

STEP 15: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD350, contract, ROCA Type Form Letters 12, 13, 87 for PCO siqnature

STEP 1: RFP
Prepare:
RFP
DD254 corrections
Acquisition Plan
Sole Source Justification (FI 2)
TPP (FI 8)
Contract Type D\&F (FI 9)
Set-up RFP File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 4: Make RFP Corrections (JAG's)
to buyer, PCO

STEP 5: Make RFP Corrections (PMRC's)
to buyer, PCO

Prepare document for Repro
Type DD 843 (Repro form)

to Repro

STEP 7: Mail RFP
Check Reproduction
Type envelope
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buver

STEP 8: Type Contract Award

Type Contract
Type ROCA
Type DD350, DD1499, JAG sheet, Committee sheet
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 9: Make corrections to contract (buver's)
and Type-up Small Business Contracting Plan evaluation
to Buyer, PCO

387
STEP 10: Make corrections to contruct (PCO's)
to Buyer, PCO
STEP 11: Make corrections to contract (JAG's)
STEP 12: Make corrections to contract (PMRC's)
STEP 13: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO
STEP 14: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 15: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)attach BV2 validation, CRO1, DD350, contract, ROCA
Type Form Letters 12, 13, 87 for PCO signature

S7 SOLE SOURCE BUY $\$ 1,000,000$ to $\$ 3,500,000$. Clerk's Steps get RFP from Buyer

STEP 1: RFP
Prepare:
RFP
DD254 corrections
Acquisition Plan
Sole Source justification (FI 2)
D\&F (FI 8)
Contract Type D\&F (FI 9)
FI 59 - JAG review sheet
FI 66 - Committee review sheet
Set-up Contract File
to buyer

STEP 2: Make RFP Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3:-Make RFP Corrections (PCO's)
to buyer, PCO, JAG

STEP 4: Make RFP Corrections (JAG's)
to buyer, PCO

STEP 5: Make RFP Corrections (PMRC's)
to buyer, PCO

STEP 6: RFP to Repro
Prepare sucurant for nearo
Type 00 S 43 (Repro forin)

STEP 7: Mail RFP
Check Reproduction
Type envelope
Date stamp RFP
Put RFP in Mail
to offeror, request RFP Amendment

STEP 8: Type RFP Amendment and envelope, mail
to offeror, buyer, Lab, buyer

STEP 9: Type Contract Award
EEO TWX
Type Contràct
Type ROCA (pricing is typing PNM)
Type DD1499
Type DD350,
Type FI 39 - Patent Rights
FI 59 - JAG review sheet
FI 66 - Committee review sheet
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 10: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation
to Buyer, PCO

STEP 11: Make corrections to contract (PCO's)
to Buyer, PCO

STEP 12: Make corrections to contract (JAG's)

STEP 13: Make corrections to contract (PMRC's)

STEP 14: Mail Contract to Contractor
Input $67 \mathrm{X}, 70 \mathrm{E}, 70 \mathrm{H}, 69 \mathrm{~K}$ (BV2)
Xerox contract, attach to form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 15: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 16: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DO350, contract, ROCA
Type Form Letters $12,13,87$ for PCO signature

STEP 1：Type－up BSP Minutes Agenda

get RFP from Buyer

STEP 2：RFP
Type BSP Minutes for ASD／PMR signature
Prepare：
RFP
DD254 corrections
Acquisition Plan
Sole Source Justification（FI 2）
D\＆F（FI 8）
Contract Type D\＆F（FI 9）
FI 59 －JAG review sheet
FI 66 －Committee review sheet
ASD／PMC review sheet
Set－up Contract File
to buyer

STEP 3：Make RFP Corrections（Buyer＇s）
Type buyer＇s changes
to buyer，PCO

STEP 4：Make RFP Corrections（PCO＇s）
to buyer，PCO，JAG

STEP 5：Make RFP Corrections（JAG＇s）
to buyer，PCO

STEP 6：Make RFP Corrections（PMRC＇s）

```
to こん:モ", Fここ
```

STEP 7: Make RFP Corrections (ASO/PMC)

> to buyer, PCO

STEP 8: RFP to Repro
Prepare document for Repro
Type DD 843 (Repro form)
to Repro

STEP 9: Mail RFP
Check Reproduction
Type envelope
Date stamp RFP
Put RFP in Mail
to offeror, request RFP Amendment

STEP 10: Type RFP Amendment and envelope, mail
to offeror, buyer, Lab, buyer

STEP 11: Type pre-negotiation presentation documents
to Buyer who writes contract award

STEP 12: Type Contract Award
EEO TWX
Type Contract
Type ROCA (pricing is typing PNM)
Type DD1499
T:Fe 50350
Type FI 39 - Patent Rights

FI 59 - JAG review sheet
Fl 66 - Committee review sheet
ASD/PMC review sheet and file
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)

> to Buyer

```
STEP 13: Make corrections to contract (buyer's)
    and Type-up Small Business Contracting Plan evaluation
```

 to Buyer, PCO
 STEP 14: Make corrections to contract (PCCO's)
 to Buyer, PCO
 STEP 15: Make corrections to contract (JAG's)
STEP 16: Make corrections to contract (PMRC's)
STEP 17: Make corrections to contract (ASD/PMC)
STEP 18: Mail Contract to Contractor
Input 67X, $70 \mathrm{E}, 70 \mathrm{H}, 69 \mathrm{~K}$ (BV2)
Xerox contract, attach to. Form Letter δ
Mail to Contractor
to contractor, buyer, PCO

STEP 19: Send Contract to Repro
Type DD 843, send contract to Bldg 5

STEP 20: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CROI, DO350, contract, ROCA
Type Form Letters $12,13,87$ for PCO signature
M2 CONTRACT MOD $\$ 10,000$ to $\$ 100,000$. Clerk's Steps

get letter from Buyer

STEP 1: TYpe letter to contractor with Statement of work changes. Envelope. Carbons.
to buyer
-
STEP 2: Make Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO)
to buyer, PCO
to offeror, buyer, Lab, buyer

STEP 4: Type Modification

Type Modification
Type ROCA
Type DD350
FI 53
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Set-up contract file
to Buyer
STEP 5: Make corrections to Mod (buyer)
to Buyer, PCO
STEP 6: Make corrections to Mod (PCO)
to Buyer, PCO
STEP 7: Mail Mod to ContractorInput $68 \mathrm{X}, 70 \mathrm{E}, 70 \mathrm{H}, 69 \mathrm{~K}$ (BV2)Xerox mod, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO
STEP 8: Send Modification to Repro
Type DD 843, send contract to Bldg 5
STEP 9: Send Modification to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CR01, DD 350 , contract, ROCA$\stackrel{\square}{4}$
get letter from Buyer

STEP 1: Tyoe letter to contractor with Statement of work changes. Envelope. Carbons.
to buyer

STEP 2: Make Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO)
to buyer, PCO
to offerors, buyer, Lab, buyer

STEP 4: Type Contract Modification

Type modification
Type ROCA
Type DD350
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Set-up Contract File
to Buyer

STEP 5: Make corrections to modification (buyer's)
to Ruyer. PCo
STEP 6: Make corrections to modification (PCO's
to Buyer, PCO
STEP 7: Make corrections to modification (JAG's)
STEP 8: Mail modification to Contractor
Input 68X, 70E, ${ }^{9} 70 \mathrm{H}, 69 \mathrm{~K}$ (BV2)
Xerox modification, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO
STEP 9: Send modification to Repro
Type DD 843, send modification to Bldg 5
STEP 10: Send to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
get letter from Buyer

STEP 1: TYpe letter to contractor with Statement of work changes. Envelope. Carbons.
to buyer

STEP 2: Make Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO's)
to buyer, PCO

STEP 4: Type Modification
Type Modification
Type ROCA
Type DD350
Type Form Letter 8 (For Contractor's signature on contract) with envelope
Set-up Contract File
to Buyer

STEP 5: Make corrections to Modification (buyer's)
to Buyer, PCO

STEP 6: Make corrections to Modification (PCO's)
to Buyer, PCO

STEP 7: Make corrections to Modification (JAG's)

STEP 8: Mail Modification to Contractor
Input 68X, $70 \mathrm{E}, 70 \mathrm{H}, 69 \mathrm{~K}$ (BV2)
Xerox Modification, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 9: Send Modification to Repro
Type DD 843, send Modification to Bldg 5

STEP 10: Send Modification to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CROi, DD 350 , contract, ROCA

get letter from Buyer

STEP 1: Type letter to contractor with Statement of Work changes. Envelope. Carbons.
to buyer

STEP 2: Make Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO's)
to buyer, PCO
to offerors, buyer, Lab, buyer

STEP 4: Type Modification

Type Modification
Type ROCA
Type DD350
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Set-up Contract File
to Buyer

STEP 5: Make corrections to Modification (buyer's)
and Type-up Small Business Contracting Plan evaluation

STEP 6: Make corrections to Modification (PCO's)
to Buyer, PCO

STEP 8: Make corrections (PMRC's)

STEP 9: Mail Modification to Contractor
Input 68X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 10: Send Modification to Repro
Type DD 843, send Modification to Bldg 5

STEP 11: Send Modification to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD 350, contract, ROCA

get letter from Buyer

```
STEP 1: TYpe letter to contractor with Statement of work Changes. Envelope. Carbons.
```

to buyer
STEP 2: Make Corrections (Buyer's)

Type buyer's changes
\qquad
to buyer, PCO

STEP 3: Make Corrections (PCO's)
to buyer, PCO
to offerors, buyer, Lab, buyer

STEP 4: Type Modification Award
Type Modification
Type ROCA
Type DD350, DD1499
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Set-up Contract File
to Buyer

STEP 5: Make corrections to Modification (buyer's)
and Type-ip Small Business Contracting Plan evaluation
404

```
to Buyer, PCO
```

STEP 6: Make corrections to Modification (PCO's)
to Buyer, PCO

STEP 7: Make corrections to Modification (JAG's)

STEP 8: Make corrections to Modification 'JMRC's)

STEP 9: Mail Modification to Contractor
Input 68X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 10: Send Modification to Repro
Type DD 843, send Modification to Bldg 5

STEP Il: Send Modification to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD350, contract, ROCA

```
get Letter from Buyer
```

STEP 1: Type letter to contractor with statement of work. changes. Envelope. Carbons.
to buyer

STEP 2: Make Corrections (Buyer's)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO's)

STEP 4: Type pre-negotiation presentation documents
to Buyer

STEF 5: Type Modification

Type Modification
Type ROCA (pricing is typing PNM)
Type DD1499
Type DD350
FI 59 - JAG review sheet
FI 66 - Committee review sheet
Set-up Contract File
to buyer

STEP 6: Rake corrections to modificitjon (wumi's)
STEP 7: Make corrections to Modification (PCO's)
to Buyer, PCO
STEP 8: Make corrections to Modification (JAG's)
STEP 9: Make corrections to Modification (PMRC's)
STEP 10: Mail Modification to Contractor
Input 68X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8Mail to Contractor
to contractor, buyer, PCO
STEP 11: Send Modification to Repro
Type DD 843, send Modification to Bldg 5
STEP 12: Send Modification to DistributionXerox 4 copies of ROCAType ASD 258 (distribution)attach BV2 validation, CRO1, DD350, contract, ROCA
STEP 1: Type-up BSP Minutes Agenda

get RFP letter from Buyer

STEP 2: RFP Letter
Type BSP Minutes for ASD/PMR signature
Prepare:
RFP letter
to buyer
STEP 3: Make Corrections (Buyer's)
Type buyer's changes
to buyer, PCO
STEP 4: Make Corrections (PCO's)
STEP 5: Make Corrections to BSP Minutes (PMRC's)
to buyer, PCO
STEP 6: TYpe pre-negotiation presentation documents
to Buyer who writes contract award
STEP 7: Type Contract Mod
Type Modification
Type ROCA (pricing is typing PNM)
Type DDl499.
Type DD350 408

FI 59 - JAG review sheet
FI 66 - Committee review sheet
ASD/PMC review sheet and file
Type Form Letter 8 (For Contractor's signature on contract) with envelope
to Buyer

STEP 8: Make corrections to modification (buyer's)
and Type-up Small Business Contracting Plan evaluation
to Buyer, PCO

STEP 9: Make corrections to modification (PCO's)
to Buyer, PCO

STEP 10: Make corrections to modification (JAG's)

STEP 11: Make corrections to modification (PMRC's)

STEP 12: Make corrections to modification (ASD/PMC)

STEP 13: Mail Modification to Contractor
Input $55 \mathrm{X}, 70 \mathrm{E}, 70 \mathrm{H}, ~ 69 \mathrm{~K}$ (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 14: Send modification to Repro
Type DD 843, send mod. to Bldg 5

```
STEP 15: Send Modification to Distribution
    Xerox 4 copies of ROCA
    Type ASD 258 (distribution)
        attach BV2 validation, CROl, DD350, contract, ROCA
```

```
STEP 1: Type Contract Award
    Xerox entire file, set-up file
    EEO TWX
    Type Contract
    Type ROCA (pricing is typing PNM)
    Type DDl499
    Type DD350
    Type FI 39 - Patent Rights
    FI 59 - JAG review sheet
    FI 66 - Committee review sheet
    Type Form Letter 8 (For Contractor's signature on contract)
        with envelope
    Get contractor's Administrative data (code, ACO, fina-
    nace office, etc.)
```

to Buyer
STEP 2: Make corrections to contract (buyer's)
and Type-up Small Business Contracting Plan evaluation

```
to Buyer, PCO
```

STEP 3: Make corrections to contract (PCO's)
to Buyer, PCO
STEP 4: Make corrections to contract (JAG's)

STEP 5: Make corrections to contract (PMRC's)
STEP 6: Mail Contract to ContractorInput 67X, 70E, $70 \mathrm{H}, 59 \mathrm{~K}$ (BV2)Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, DCO
STEP 7: Send Contract to ReproType DD 843, send contract to Bldg 5
STEP 8: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CROl, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters $12,13,87$ for $P C O$ signature
Send proposals to Staging

Receive PR from buyer

STEP 1: Type-up Funding. DD350. FI 53. FI 66. Set-up File.

> to buyer

STEP 2: Make corrections (buyer)
to buyer, PCO, PMRC

STEP 3: Make corrections (PMRC)
\qquad
to buyer, PCO

STEP 4: Send to REPRO
DD843 (Repro)
Input 68 X and 69 K (BV2)

STEP 5: Send to Distribution
Type ASD258, attach BV2, CROI, DD350

get RFP from Buyer

STEP 1: RFP

Prepare:
RFP
DD254 corrections
Acquisition Plan
Source List (FI 5)
D\&F (FI 8)
Contract Type D\&F (FI 9)
Set-up Contract File

> to buyer

STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes

| to buyer, DCO |
| :---: |
| to buyer, PCO $3:$ Make RFP Corrections (PCO) |
| STEP 4: RFP to Repro |
| Prepare document for Repro
 TyPe DD 843 (Repro form) |
| to Repro |

STEP 5: Mail RFP
Check Reproduction
Type envelopes
Date stamp RFP
Put RFP in Mail
to offerors, buyer, Lab, buyer
STEP 6: Type Technically Unacceptable Letters and/or single source justification (if required)
to Buyer
STEP 7: Type BAFO Request Letters
to Buyer who writes contract award
STEP 8: Type Contract Award
Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract)with envelope
Get contractor's Administrative data (code, ACO, fina-nace office, etc.)
to Buyer
STEP 9: Make corrections to contract (buyer's)
to Buyer, PCO
STEP 10: Make corrections to contract (PCO's)
to Buyer, PCO
STEP 11: Make corrections to contract (JAG's)
STEP 12: Mail Contract to ContractorInput $67 \mathrm{X}, 70 \mathrm{E}, 70 \mathrm{H}, 59 \mathrm{~K}$ (BV2)Xerox contract, attach to Form Letter 8Mail to Contractor
to contractor, buyer, PCO
STEP 13: Send Contract to Repro
Type DD 843, send contract to Bldg 5
STEP 14: Send Contract to Distribution
Xerox 4 copies of ROCA
Type ASD 258 (distribution) attach BV2 validation, CRO1, DD350, contract, ROCA
Type Sorry Letters
Type Form Letters 12, 13, 87 for PCO signature
Send proposals to Staging

get RFP from Buyer

STEP l: RFP

Prepare:

RFP
DD254 corrections
Acquisition Plan
D\&F (FI 8)
Contract Type D\&F (FI 9)
Sole Source Justification (FI 2)
Set-up Contract File
to buyer

STEP 2: Make RFP Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make RFP Corrections (PCO)
to buyer, PCO

STEP 4: Mail RFP
Xerox RFP
Type envelope
Date stamp RFP
put RFP in Mail
to offerors, buyer, Lab, buyer

STEP 5: Type Contract Award

Type Contract
Type ROCA
Type DD350
Type FI 39 - Patent Rights
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Get contractor's Administrative data (code, ACO, finanace office, etc.)
to Buyer

STEP 6: Make corrections to contract (buyer's)
to Buyer, DCO

STEP 7: Make corrections to contract (PCO's)
to Buyer, DCO

STEP 8: Make corrections to contract (JAG's)

STEP 9: Mail Contract to Contractor
Input 67X, 70E, 70H, 69K (BV2)
Xerox contract, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, pCO

STEP 10: Send Contract to Repro
Type DD 843, send contract to Bldg 5

Xerox 4 copies of ROCA
Type ASD 258 (distribution)
attach BV2 validation, CROl, DD 350°, contract, ROCA Type Form Letters 12, 13, 87 for PCO signature

get letter from Buyer

STEP 1: Type letter to contractor with Statement of Work changes. Envelope. Carbons.

to buyer

STEP 2: Make Corrections (Buyer)
Type buyer's changes
to buyer, PCO

STEP 3: Make Corrections (PCO)
to buyer, pCO
to offerors, buyer, Lab, buyer

STEP 4: Type Contract Modification

Type modification
Type ROCA
Type DD350
Type Form Letter 8 (For Contractor's signature on contract) with envelope

Set-up Contract File
to Buyer

STEP 5: Make corrections to modification (buyer's)
to Buyer, PCO

STEP 6: Make corrections to modification (PCO's)
to Buyer, DCO

STEP 7: Make corrections to modification (JAG's)

STEP 8: Mail modification to Contractor
Input 55X, 70E, 70H, 59K (BV2)
Xerox modification, attach to Form Letter 8
Mail to Contractor
to contractor, buyer, PCO

STEP 9: Send modification to Repro
Type DD 843, send modification to Bldg 5

```
STEP l: Type letter to lab with attachment (Xerox)
```

to buyer, Lab, buyer

STEP 2: Type up Modification
Type Mod
Type 1 page ROCA (FI 53)
Type form letter 8 with envelope to contractor Set-up File

```
to buyer, PCO, contractor, buyer, PCO
```


STEP 3: Send to Repro

Type DD843
Input 68X (BV2)

STEP 4: Send to Distribution
Type ASD 258, attach BV2, CRO1, DD350
receive change from buyer

STEP 1: Type up change and set-up file.
to buyer, PCO

STEP 2: Xerox change.
Input BV2 ($68 \mathrm{X}, 70 \mathrm{E}, 70 \mathrm{H}$, or 69 K)
Attach BV2, CROl, Xeroxed Mod, with ASD 258 to DIST.

OTHER DUTIES AS ASSIGNED
Mail - distribute
Timecards, morning report
Datacen Input
Validation
Manual records (PR's, others)
Post DIDS/AMSDL, DAR \& SUPPS, Local Regs
Type for Branch Chief
Type letters for buyer (not connected with pending network)
Office supplies, forms
Sit-in for Divisional or Directorate Secretary
Filing
DD350 Input
Manhour Accounting (ASD 18)

APPENDIX G

ANALYSIS OF CLERK ESTIMATES
NETWORK C2

| Step | Normal | | Optimistic | $\frac{\text { Pessimistic }}{8.4}$ |
| :--- | :--- | :--- | :--- | :--- |
| Mean | $\frac{6.1}{8.8}$ | | 3.4 | 3.4 |
| Std. Dev. | 2.7 | | 2.4 | 8 |
| Median | 6 | | 4 | 8 |
| Percent | 54 | 26 | 20 | |

Sample Size 11 Step 2 Mean Std. Dev. Median Percent11
Norma

$$
1.4
$$ 1.3

1
62
Sample Size 11
Std. Dev. Median Percent11

Step
Step
Mean
Std. Dev
Median
Percent
Sample Size 11
Step 4

| 4 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 3 | . 2 - 4 |
| Std. Dev. | . 1 | .1 . 3 |
| Median | . 3 | .3 . 3 |
| Percent | 78 | 157 |

Sample Size 11
Stef 5
5
Mean
Std. Dev.
Median
Percent
Normal
1.2
. 4
Opt

.2 . 6 Median l Percent
74
.8
2 $15 \quad 11$

CLERK'S STEPS
NETWORK C2
Step 6
Mean
Std. Dev.
Median
Percent
Sample Size 10

| Step | 7 | Normal | | Optimistic |
| :--- | :--- | :--- | :--- | :--- |
| Mean | $\frac{\text { Pessimistic }}{1.2}$ | | .8 | 1.8 |
| Std. Dev. | .9 | | .8 | 1.3 |
| | Median | .8 | | .5 |
| Percent | 80 | | 9 | 1.5 |

Sample Size 10

Step 8
Mean
Std. Dev.
Median
Percent
Sample Size 10

Step 9
Normal
Mean
Std. Dev.
Median
Percent
Sample Size

Step 10
Normal
Mean
Std. Dev.
Median
Percent
Sample Size 10

Step 1
Mean
Std. Dev.
Normal
1.3

1 54

Normal
5.1 2.8 5 63

Normal - 6 . 3 .5 75

PAGE
$\frac{\text { Optimistic }}{.4} \frac{\text { Pessimistic }}{1.1}$.3 . 6 .31 12

1 13

| Step 10 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.4 | I | 2.3 |
| Std. Dev. | 1.1 | 1.2 | 1.4 |
| Median | 1 | . 5 | 2 |
| Percent | 69 | 16 | 15 |
| Sample Size 10 | | | |
| Step 11 | Normal | Optimistic | Pessimistic |
| Mean | 1.3 | 1 | 2 |
| Std. Dev. | 1.3 | . 9 | 1.7 |
| Median | 1 | . 5 | 1.3 |
| Percent | 54 | 17 | 19 |
| Sample Size 10 | | | |

| Step 12 | Normal | | | Optimistic Pessimistic |
| :--- | :--- | :--- | :--- | :--- |
| Mean | .3 | | .2 | .4 |
| Std. Dev. | .1 | | .1 | .3 |
| Median | .3 | | .3 | \mathbf{B}^{3} |
| Percent | 89 | | 5 | 6 | Number in Sample 10

Step 13
Normal Optimistic Pessimistic

| Mean | 2.1 | 1.7 | 2.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .9 | 1.1 | .9 |
| Median | 2 | 1.5 | 3 |
| Percent | 73 | 15 | 12 |

Number in Sample 10

| REPRO TIME | Normal | | Optimistic | Pessimistic |
| :---: | :--- | :--- | :--- | :--- |
| Mean | 19 | | 11 | 27 |
| Std. Dev. | 4.1 | | 4.1 | 4.1 |
| Median | 16 | | 8 | 24 |
| Percent | 77 | | 18 | 5 |

Number in Sample 8

| DISTRIBUTION | Normal | | Ontimistic | |
| :---: | :--- | :--- | :--- | :--- |
| | | | Pessimistic | |
| Mean | 12 | | 8 | 19 |
| Std. Dev. | 4 | | 0 | 1 |
| Median | 12 | | 8 | 20 |
| Percent | 85 | | 5 | 10 |

NETWORK C3

| Step l | Normal | | Optimistic Pessimistic | |
| :--- | :--- | :--- | :--- | :--- |
| | Mean | 6.5 | | 4.8 |
| Std. Dev. | 2.9 | | 2.2 | 9.2 |
| Median | 6 | | 4 | 3.8 |
| Percent | - | - | 9 | |

Number in Sample 9

Clerks' STEPS NETWORK C3
Step 8 Normal Optimistic Pessimistic

| Mean | 5.7 | 4.5 | 8.7 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.6 | 2.7 | 4.2 |
| Median | 6 | 4 | 9 |
| Percent | - | - | - |

Number in Sample 9

| Step 11 | No nal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| Mean. | .9 | | .5 | 1.3 |
| Std. Dev. | I^{9} | | .6 | 1.1 |
| Median | .5 | -3 | 1 | |
| Percent | - | - | - | |
| Number in Sample 9 | | | | |

NETWORR C4
Step 1
Normal
Optimistic Pessimistic

| Mean | 6. |
| :--- | :--- |
| Std. Dev. | 2. |

4.

9.3

Std. Dev. 2.6
Median
6
2
3.6

Percent
Number in Sample 10

| Step 4 | Normal | | Optimistic | Pessimistic |
| :--- | :--- | :--- | :--- | :--- |
| Mean | .9 | | .7 | 1.5 |
| Std. Dev. | .9 | 1 | 1.2 | |
| Median | .5 | | .3 | 1 |

Number in Sample 10
Step 9 Normal Optimistic Pessimistic

| Mean | 5.6 | 4.5 | 8.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.5 | 2.7 | 4.3 |
| Median | 6 | 4.5 | 10 |

Number in Sample 10

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 6.8 | $5.5 \quad 9.7$ |
| Std. Dev. | 2.6 | 2.23 .5 |
| Median | 7 | $6 \quad 9.5$ |
| Percent | - | - - |
| Number in Sample | 10 | |
| Step 5 | Normal | Optimistic Pessimistic |
| Mean | 2.7 | 1.74 |
| Std. Dev. | 3.1 | $1.8 \quad 4.5$ |
| Median | 1 | . $5 \quad 2$ |
| Percent | - | - - |
| Number in Sample | 10 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | .9 1.9 |
| Std. Dev. | . 7 | . 81 |
| Median | 1 | .51 .5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 6 | 4.8 8.4 |
| Std. Dev. | 2.7 | 2.8 3.4 |
| Median | 7 | 610 |
| Percent | - | - - |
| Number in Sample | 10 | |
| Step 15 | Normal | Optimistic Pessimistic |
| Mean | 2.5 | 1.63 .5 |
| d. Dev. | 2.4 | 1.5 3.1 |
| Median | 2 | 1.3 2.8 |
| Percent | | |
| Number in Sample | 8 | |

Clerks' STEPS
NETWORK C6

| Step 1 | Normal | | Optimistic Pessimistic. |
| :---: | :---: | :---: | :---: |
| | | | |
| Mean | 7.8 | 5.8 | 10 |
| Std. Dev. | 3.7 | 2.6 | 4.6 |
| Median | 8 | 6 | 9.5 |
| Percent | - | - | - |
| Number in Sample | 10 | | |

| Step 11 | Normal | | Cptimistic Pessimistic |
| :---: | :---: | :---: | :---: |
| | Mean | 6.9 | 5.3 |
| Std. Dev. | 3.4 | 3.4 | 9.5 |
| Median | 7 | 5 | 6 |
| Percent | - | - | 8 |
| Number in Sample | 10 | | |

NETWORK C7
Step 1 Normal Optimistic Pessimistic

| Mean | 8.5 | 6.3 | 10.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.9 | 3.1 | 4.9 |
| Median | 8.5 | 7 | 11 |
| Percent | - | - | - |

Number in Sample 10
Step 11 Normal Optimistic Pessimistic

Mean
Std. Dev.
Median
Percent
Number in Sample 10

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.7 | $1.5 \quad 2.2$ |
| Std. Dev. | 2.4 | $2.5 \quad 2.6$ |
| Median | 1 | . 51.5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 9.3 | 7.312 .3 |
| Std. Dev. | 4 | 2.96 |
| Median | 10 | 812 |
| Percent | - | - - |
| Number in Sample | 8 | |

Step 7 Normal Optimistic Pessimistic

| Mean | 2.6 | 2.2 | 3.2 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.5 | 2.5 | 3.6 |
| Median | 2 | 1 | 3 |
| Percent | - | - | - |

Number in Sample 9
Step 13 Normal Optimistic Pessimistic

| Mean | 9.6 | 7.7 | 12.7 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5 | 4.3 | 7.7^{7} |
| Median | 10 | 8 | 11.5 |
| Percent | - | - | - |

Number in Sample 8

| Step 18 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 2 | $1.8 \quad 2.6$ |
| Std. Dev. | 3 | 3.12 .9 |
| Median | 1 | . 50 |
| Percent | - | - - |
| Number in Sample | 8 | |

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 5.1 | $3.5 \quad 7.2$ |
| Std. Dev. | 4.6 | 2.7 |
| Median | 3 | 2 |
| Percent | 60 | 2218 |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.1 | .6 1.4 |
| Std. Dev. | 1.2 | .6 . 1.5 |
| Median | . 5 | .5 . 5 |
| Percent | 54 | 3214 |
| Number in Sample | 9 | |
| Step 3 | Normal | Optimistic Pessimistic |
| Mean | . 9 | . 61.2 |
| Std. Dev. | . 7 | . $5 \quad 1.1$ |
| Median | 1 | .51 |
| Percent | 40 | $41 \quad 19$ |
| Number in Sample | 9 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | 1.4 | 11.9 |
| Std. Dev. | 1 | . $8 \quad 1.2$ |
| Median | 1.5 | $.8 \quad 2.3$ |
| Percent | 65 | 2312 |
| Number in Sample | 8 | |
| Step 5 | Normal | Optimistic Pessimistic |
| Mean | 4.9 | 3.87 .1 |
| Std. Dev. | 2.9 | 2.9 4.9 |
| Median | 4.5 | 36 |
| Percent | 64 | $19 \quad 17$ |
| Number in Sample | 8 | |
| Step 6 | Normal | Optimistic Pessimistic |
| Mean | 1.1 | .8 1.5 |
| Std. Dev. | 1 | .9 1.2 |
| Median | . 8 | . 51 |
| Percent | 49 | $32 \quad 19$ |
| Number in Sample | 8 | |

Clerks' STEPS

| Step 7 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| Mean | .9 | | .7 | 1.4 |
| Std. Dev. | .6 | | .5 | .9 |
| Median | 1 | | .6 | 1.3 |
| Percent | 51 | | 31 | 18 |

Number in Sample 8

| Step 8 | Normal | | | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | | .9 | 1.7 |
| Std. Dev. | .9 | | .9 | 1.3 |
| Median | i^{2} | | .9 | 1.3 |
| Percent | 63 | | 21 | 16 |

Number in Sample 8

| Step 9 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .4 | | .3 | .5 |
| Std. Dev. | .2 | | .2 | .2 |
| Median | .3 | | .3 | .5 |
| Percent | 75 | | 17 | 8 |

Number in Sample 8

| Step 10 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | | .8 | 1.5 |
| Std. Dev. | .6 | | .4 | .8 |
| Median | 1 | | 1 | 1.5 |
| Percent | 50 | | 31 | 19 |

NETWORR S3

Step 1
Normal
Optimistic Pessimistic
Mean 5.8
Std. Dev. 3.4
Median 5
Percent -
Number in Sample 8

| Step 5 | Normal | Optimistic pessimistic |
| :---: | :---: | :---: |
| Mean | 5.1 | 3.6 |
| Std. Dev. | 2.6 | 2.4 4.5 |
| Median | 5 | $3 \quad 6.5$ |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 1.2 | .8 1.7 |
| Std. Dev. | 1 | $.7 \quad 1.4$ |
| Median | . 8 | .51 .1 |
| Percent | - | - - |
| Number in Sample | 8 | |

NETWORK S4

| Step 1 | Normal | | Optimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 5.7 | | 4.5 | 7.6 |
| Std. Dev. | 3.1 | | 3.4 | 4.9 |
| Median | 5 | | 3.5 | 6 |
| Percent | - | - | - | |
| Number in Sample | 8 | | | |

Step 4
Normal Optimistic Pessimistic
Mean 1.9
Std. Dev. 2.3
Median
Percent
.8
-
Number in Sample 8
Step 6
Normal Optimistic Pessimistic
Mean 5.6
Std. Dev. 3.3
Median 5
Percent -
Number in Sample 8
$4.4 \quad 7.7$
3.5
3.5

- 6
Clerks' STEPS
NETWORK S5
Step 1 Normal Optimistic Pessimistic

| Mean | 5.8 | 4.4 | 7.1 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.6 | 2.9 | 4.5 |
| Median | 4 | 3 | 5 |
| Percent | - | - | - |Number in Sample7

Step 5 Normal Optimistic Pessimistic

| Mean | 1.7 |
| :--- | :--- |
| Std. Dev. | 1.1 |

Median 2
Percent
7
Number in Sample
Step 6 Normal Optimistic Pessimistic

| Mean | .4 | .3 | .5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .2 | .2 | -3 |
| Median | .5 | .3 | .5 |
| Percent | - | - | - |Number in Sample7

Step 8 Normal Optimistic Pessimistic
Mean 5.6

$$
\text { Std. Dev. } 3.9
$$

Median 4 Percent
Number in Sample 74.3

$$
8.1
$$

Step 12 NormalMean 1.21.2
3 7.6
3 5

- -

Std. Dev. 1
Median 1
Percent -
Number in Sample7

Step 1
 Normal Optimistic Pessimistic

| Mean | 6.1 | 4.6 | 7.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.7 | 3.1 | 4.7 |
| Median | 4.5 | 3.5 | 5.5 |
| Percent | - | - | - |

Number in Sample 7

Step 8
Normal
Optimistic Pessimistic

| Mean | 6 | 4.6 | 7.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 4.3 | 3.4 | 5.4 |
| Median | 4 | 3 | 5 |

Median 4
Percent -
Number in Sample 7

NETWORK 57

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 6.6 | 5.28 .1 |
| Std. Dev. | 3.8 | 3.1 4.7 |
| Median | 5 | 4 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | .9 1.7 |
| Std. Dev. | 1.2 | .91 .5 |
| Median | 1 | .81 .3 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 6.9 | 5.28 .9 |
| Std. Dev. | 4.4 | 3.65 |
| Median | 5.5 | 4.56 .5 |
| Percent | - | - - |
| Number in Sample | 7 | |

| NETWORK S8 Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 2.3 | 1.9 | 2.9 |
| Std. Dev. | 3.8 | 3.5 | 4.5 |
| Median | . 8 | . 5 | 1.3 |
| Percent | | - | - |
| Number in Sample | 6 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 5.3 | 4.3 | 6.6 |
| Std. Dev. | 2.8 | 2.2 | 3 |
| Median | 5 | 4 | 6 |
| Percent | - | - | - |
| Number in Sample | 6 | | |
| Step 7 | Normal | Optimistic | Pessimistic |
| Mean | 1.7 | 1.1 | 2.6 |
| Std. Dev. | 1.2 | . 8 | 1.7 |
| Median | 1.5 | . 9 | 2.5 |
| Percent | - | - | - |
| Number in Sample | 6 | | |
| Step 11 | Normal | Optimistic | Pessimistic |
| Mean | 1.2 | . 7 | 1.5 |
| Std. Dev. | . 7 | . 5 | . 8 |
| Median | 1 | . 5 | 1.3 |
| Percent | - | - | - |
| Number in Sample | 6 | | |
| Step 12 | Normal | Optimistic | Pessimistic |
| Mean | 4.9 | 4 | 5.9 |
| Std. Dev. | 3 | 2.4 | 3.6 |
| Median | 4.5 | 3.5 | 5.5 |
| Percent | - | - | - |
| Number in Sample | 6 | | |
| Step 17 | Normal | Optimistic | Pessimistic |
| Mean | 1 | . 8 | 1.6 |
| Std. Dev. | . 6 | . 7 | 1 |
| Median | 1 | . 6 | 1.5 |
| Percent | - | - | - |
| Number in Sample | 5 | | |

NETWORK M2

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 9 | .71 .5 |
| Std. Dev. | . 6 | .7 . 9 |
| Median | . 8 | . 51.3 |
| Percent | 71 | 1415 |
| Number in Sample | 6 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | . 8 | . 61.1 |
| Std. Dev. | . 7 | . 8 . 8 |
| Median | . 5 | . 31 |
| Percent | 63 | 1423 |
| Number in Sample | 6 | |
| Step 3 | Normal | Optimistic Pessimistic |
| Mean | . 9 | .8 1.2 |
| Std. Dev. | . 7 | .8 . 8 |
| Median | . 3 | .2 . 5 |
| Percent | 69 | 13 28 |
| Number in Sample | 5 | |

| Step 4 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.9 | | 1.3 | 2.5 |
| Std. Dev. | 1.2 | | 1.3 | 1.2 |
| Median | 2 | | 1. | 3 |
| Percent | 76 | | 18 | 6 |

Step 5 Normal Optimistic Pessimistic

| Mean | .9 | .5 | 1.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | $\mathbf{1 . 1}^{-1}$ | .7 | 1.4 |
| Median | .5 | .3 | .8 |
| Percent | 59 | 28 | 13 |

Number in Sample 6

Clerks' STEPS

| Step 6 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| Mean | .5 | | .3 | .9 |
| Std. Dev. | .4 | | .4 | .6 |
| Median | .3 | | .2 | .7 |
| Percent | 64 | | 26 | 10 |

Number in Sample 6

| Step 7 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 8 | . 5 | 1.1 |
| Std. Dev. | . 7 | . 4 | 1.0 |
| Median | . 5 | . 4 | . 8 |
| Percent | 80 | 13 | 7 |

Number in Sample 6

| Step 8 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| Mean | .3 | | .2 | .4 |
| Std. Dev. | .1 | | .1 | .2 |
| Median | .2 | | .2 | .3 |
| Percent | 67 | | 28 | 5 |

Number in Sample 6

| Step 9 | Normal | | Optimistic | Pessimistic |
| :--- | :---: | :---: | :---: | :---: |
| Mean | .4 | | .3 | .6 |
| Std. Dev. | .3 | | .2 | .5 |
| Median | .3 | | .3 | .5 |
| Percent | 69 | | 28 | 3 |

Number in Sample 6

NETWORK M3

| Step 1 | Normal | | | |
| :--- | :---: | :---: | :---: | :---: |
| | Ontimistic Pessimistic | | | |
| Mean | .8 | | .6 | 1.2 |
| Std. Dev. | .6 | | .7 | .9 |
| Median | .5 | | .3 | .9 |
| Percent | - | - | -9 | |

Number in Sample 6
Clerks' STEPS

Step 4
Mean Std. Dev Median Percent Normal

2 1.1 2 Number in Sample 6

Step $7 \quad$ Normal Optimistic Pessimistic

Optimistic Pessimistic
$1.4 \quad 2.8$
1.31 .3

3

Mean Dev. 4 Median . 3 Percent
Number in Sample 6
.4
.3
-
6

NETWORK M4

Step 1
Normal
. 8
. 6
.5
-
Number in Sample
Step 4
Normal
2.3
1.5
2.3
Percent -
Number in Sample 6

NETWORK M5

| Step 1 | Normal | | | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .8 | | .6 | 1.1 |
| Std. Dev. | .6 | | .7 | .6 |
| Median | .5 | | .3 | .3 |
| Percent | - | - | -9 | |6

Step 4 Normal Optimistic Pessimistic

| Mean | 2.6 | 1.9 | 3.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.8 | 2.0 | 2.0 |
| Median | 2.3 | 1.3 | 3.3 |
| Percent | - | - | - |

Percent - - -

Number in Sample 6
Step $8 \quad$ Normal Optimistic Pessimistic
Mean $\quad .7$. 4.1
Std. Dev. . 3
.3
. 2
.6
Median . 8
.51 .0
Percent -
Number in Sample

NETWORK M6

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 8 | .71 .1 |
| Std. Dev. | . 6 | .7 . 7 |
| Median | . 6 | . 5 .9 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | 2.6 | $2.0 \quad 3.6$ |
| Std. Dev. | 1.8 | 2.0 2.3 |
| Median | 2.3 | 1.3 3.3 |
| Percent | - | - - |
| Number in Sample | 6 | |

NETWORK M7
Step 1 Normal Optimistic Pessimistic

| Mean | 1.1 | .9 | 1.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.0 | 1.0 | 1.3 |
| Median | .9 | -5 | 1.3 |
| Percent | - | - | - |

Number in Sample 6

Clerks' STEPS

| Step 4. | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | | .9 | 1.6 |
| Std. Dev. | 1.0 | | 1.0 | 1.3 |
| Median | .9 | | .5 | 1.3 |
| Percent | -9 | | - | |

| Step 4 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.8 | | 1.4 | 2.6 |
| Std Dev. | 1.4 | | 1.4 | 1.7 |
| Median | 1.5 | | .8 | 2.5 |
| Percent | - | - | - | |
| Number in Sample | 6 | | | |

| Step 5 | Normal | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 3.5 | | 2.7 | 4.3 |
| Std. Dev. | 3.2 | | 3.0 | 3.4 |
| Median | 3 | | 2 | 4 |
| Percent | - | | - | - |

NETWORK M8

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.4 | 1.21 .9 |
| Std. Dev. | 1.8 | $\bigcirc \quad 2$ |
| Median | . 8 | 1 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 2 | Normai | Optimistic Pessimistic |
| Mean | 2.1 | $1.8 \quad 2.6$ |
| Std. Dev. | 3.0 | $3.0 \quad 2.7$ |
| Median | 1.0 | . 61.8 |
| Percent | - | - - |
| Number in Sample | 6 | |

| Step 5 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 9 | . 61.1 |
| Std. Dev. | 1.5 | 1.2 l.4 |
| Median | . 4 | . 2 . 6 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 6 | Normal | Optimistic Pessimistic |
| Mean | 1.8 | 1.42 .5 |
| Std. Dev. | 1.3 | 1.41 .5 |
| Median | 1.5 | .8 2.5 |
| Percent | - | - - |
| Number in Sample | 6 | |

Step 7
Mean 3.6
Std. Dev.
Median 3.5
Percent
Number in Sample
Step 12
Mean
Std. Dev.
Median
Percent
Number in Sample
Mean
Std Dev.
Median
Percent
Number in Sample
2.5

Normal Optimistic Pessimistic
-
6

Normal Optimistic Pessimistic

NETWORK C9

| Step 1 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| Mean | 9.1 | | 6.3 | 11.4 |
| Std. Dev. | 5.6 | | 3.6 | 7.7 |
| Median | 11 | 8 | 12.5 | |
| Percent | 70 | | 18 | 12 |

Number in Sample 6
Clerks'. STEPS
NETWORK F1
Step 1 Normal 7
. 5 1.1
Std. Dev. 3
Median 6
Percent 78
. 4 9
15 7
Number in Sample 6
Step 2Normal
3
Mean
3
Std. Dev.
2
Median62
Number in Sample 6
Step 3 Normal 2
$\begin{array}{ll}\text { Mean } & .2 \\ \text { Std. Dev. } & 2\end{array}$ Median 1
Percent 47
Number in Sample 6
Step 4 Normal Optimistic Pessimistic
Mean 3
Std. Dev. 4 2 5
Median 2
Percent 75 75
Number in Sample 6
Step 5 Normal Optimistic PessimisticMeanStd. Dev. 33

Optimistic Pessimistic
. 2 5
.2 . 4

$$
.^{3}
$$

.1 .3

$$
31
$$

$$
7
$$

$$
.2
$$

$$
.5
$$

sca: Deve
Median2
Percent666

Step 1
Normal

| Mean | 5 |
| :--- | :--- |
| Std. Dev. | 2 |
| Median | 4 |
| Percent | 75 |

Number in Sample 5
Step 8
Normal

Mean
Std. Dev.
Median
Percent
Number in Sample
4.6
2.7

3
64

Optimistic Pessimistic
4.2
5.8
2.4

3
16
1.6

5
9

Optimistic Pessimistic

| 3.8 | 5.6 |
| :--- | :--- |
| 3.0 | 2.7 |
| 2 | 4 |
| 19 | 17 |

NETWORK F3
Step 1
Normal Optimistic Pessimistic

| Mean | 4.8 | 4 | 5.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.3 | 2.6 | 1.9 |
| Median | 4 | 3 | 5 |
| Percent | 79 | 15 | 6 |

Number in Sample 5
Step 5

| Mean | 4.5 | 3.6 | 5.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.8 | 2.9 | 3 |
| Median | 3 | 2.9 | 4 |
| Percent | 65 | 20 | 15 |

Number in Sample 5

NETWORK F4

Step 1
Normal
Optimistic Pessimistic

Mean
1.5

Std. Dev.
Median Percent
Number in Sample

| 1.1 | 1.7 |
| :--- | :--- |
| 1.6 | 1.9 |
| .4 | .8 |
| 20 | 15 |

| $\text { Step } 4$ | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 2.4 | 1.93 .3 |
| Std. Dev. | 1.1 | $1.3 \quad 1.7$ |
| Median | 2 | 1.53 |
| Percent | 66 | 21 . 13 |
| Number in Sample | 5 | |
| NETWORK MO | | |
| Step 1 | Normal | Optimistic Pessimistic |
| Mean | . 3 | .2 . 4 |
| Std. Dev. | . 2 | . 2 . 2 |
| Median | . 3 | . 1 . 3 |
| Percent | 81 | 145 |
| Number in Sample | 6 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | . 9 | . 61.1 |
| Std. Dev. | . 6 | .3 . 8 |
| Median | . 8 | .51 .0 |
| Percent | 59 | 2912 |
| Number in Sample | 6 | |
| Step 3 | Normal | Optimistic Pessimistic |
| Mean | . 3 | . 2 . 3 |
| Std. Dev. | . 1 | .1 . 2 |
| Median | . 3 | .2 |
| Percent | 46 | 4014 |
| Number in Sample | 6 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | . 3 | . 2.4 |
| Std. Dev. | . 2 | .1 . 4 |
| Median | . 2 | .1 . 2 |
| Percent | 40 | 53 7 |
| Number in Sample | 6 | |

NETWORR A1

| Step 1 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .6 | | .4 | .8 |
| Std. Dev. | .3 | .2 | .4 | |
| Median | .6 | | .4 | .8 |
| Percent | 75 | 18 | 7 | |

| Step 2 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .6 | | .3 | .8 |
| Std Dev. | .7 | | .1 | $1 .{ }^{1}$ |
| Median | .3 | | .3 | .4 |
| Percent | 60 | | 34 | 6 |

OTHER DUTIES 2.1 hours or 26% of day.
\square

```
STEP 1: Review PR and Write-up RFP
    Review PR
        Review SOW
        Review Contract Data Requirements List (DDl423)
        Review Evaluation Criteria
        Review Notes to Buyer
        Compare SOW with TPP
Discuss PR problems with Engineer
```

Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan

```
to Clerk
```

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

$$
\text { to } \mathrm{PCO}
$$

STEP 4: Make PCO required Corrections

to Clerk

STEP 5: Review of Corrections
to PCO, Clerk, Repro, Clerk, and Contractor

STEP 6: Receive Proposals

Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer
Write letter (s), to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ dir uss/ resolve

STEP 8: Price Proposals

For Each Proposal in the Competitive Range
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO
Set-up Negotiation schedule with Engineer and Offerors
Draft Request for BAFO's

STEP 9: Negotiations (telephone)
For Each Proposal in the Competitive Range
Resolve technical issues
Discuss AF Objective
Mail Request for BAFO's

STEP 10: Write-up Award

Review BAFO's / discuss with Engineer/ Source Select with PCO

Write Contract
Write ROCA and file items
to Clerk

STEP 11: Review typed Award
Review contract
Review file
Write correction instructions to Clerk
to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO, Clerk, Contractor

STEP 15: Back from Contractor

Review / to PCO for Award

```
STEP 1: Review PR and Write-up RFP
    Review PR
        Review SOW
        Review Contract Data Requirements List (DDl423)
        Review Evaluation Criteria
        Review Notes to Buyer
        Compare SOW with TPP
    Discuss PR problems with Engineer
    Check Sources Sought Synopsis / DD254
    Accept in Data-Cen, get RFP number
    Write Small Business Coordination form
    Informal BSP with PCO / Division Chief
    Write RFP
    Write Acquisition Plan
```

 to Clerk
 STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections
$\frac{\text { to Clerk }}{\text { STEP 5: Review of Corrections }}$

STEP 6: Receive Proposals
Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer
Write letter (s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

STEP 8: Price Proposals
For Each Proposal in the Competitive Range
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief.
Set-up Negotiation schedule with Engineer and Offerors
Draft BAFO's

STEP 14: Review typed corrections (PCO's)
to PCO
STEP 15: Take Contract to JAG
STEP 16: Make JAG required corrections
to clerkSTEP 17: Review typed corrections (JAG's)to PCO, clerk, out-for-signature
STEP 18: Back from ContractorReview / to PCO for Award

```
STEP 1: Review PR and Write-up RFP
    Review PR
        Review SOW
        Review Contract Data Requirements List (DDl423)
        Review Evaluation Criteria
        Review Notes to Buyer
        Compare SOW with TPP
    Discuss PR problems with Engineer
    Check Sources Sought Synopsis / DD254
    Accept in Data-Cen, get RFP number
    Write Small Business Coordination form
    Informal BSP with PCO / Division Chief
    Write RFP
    Write Acquisition Plan
```

 to Clerk
 STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

to PCO

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of typed Corrections (PCO's)
to PCO

STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections
to clerk

STEP 8: Review of type Corrections (JAG's)
to PCO, Clerk, Repro, Clerk, and Contractor

STEP 9: Receive Proposals
Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation

STEP 10: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer
Write letter(s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

STEP 11: Price Proposals

> For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
> Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offerors Draft Request for BAFO's

STEP 12: Negotiations (telephone)

For Each Proposal in the Competitive Range
Resolve technical issues
Discuss AF Objective
Mail Request for BAFO's

STEP 13: Write-up Award

Review BAFO's / discuss with Engineer/ Source Select with PCO

Write Contract
Write ROCA and file items

to Clerk

STEP 14: Review typed Award
Review contract
Review file
Write correction instructions to Clerk

```
to Clerk
```

| STEP 15: Review Corrections (buyer's) |
| :--- |
| Review corrections |
| Sign ROCA and other file items |
| STEP 16: Make PCO required Corrections |
| STEP 17: Review typed corrections (PCO's) |

STEP 1: Review PR and Write-up RFP

Review PR
Review SOW
Review Contract Data Requirements List (DDI423)
Review Evaluation Criteria
Review Notes to Buyer
Compare sow with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of typed Corrections (PCO's)
to PCO

STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections

> to clerk

STEP 8: Review of typed Corrections (JAG's)
(include time to carry to Committee)
to PCO, Committee

STEP 9: Make PMRC required Corrections
to clerk

STEP 10: Review of type corrections (PMRC's)
to PCO, Clerk, Repro, Clerk, and offerors

STEP 11: RFP Amendment

Evaluate offeror's request/ discuss with engineer/ PCO Get changes from engineer/ Write up amendment

STEP 12: Review amendment

```
to PCO , clerk, offerors
```

STEP 13: Receive Proposals
Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up proposals

to Technical Evaluation

STEP 14: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer
Write letter (s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

STEP 15: Price Proposals

For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and offerors
Draft Request for BAFO's

```
STEP 16: Negotiations (telephone)
For Each Proposal in the Competitive Range Resolve technical issues Discuss AF Objective
```

Mail Request for BAFO's

STEP 17: Write-up Award
Review BAFO's / discuss with Engineer/ Source Select with PCO

Write Contract
Write ROCA and file items

to Clerk

STEP 18: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk to Clerk

STEP 19: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 20: Make PCO required Corrections
to clerk

STEP 21: Review typed corrections (PCO's)

STEP 22: Take Contriut to JAG

STEP 23: Make JAG required corrections to Award
to clerk

STEP 24: Review typed corrections (JAG's) (include time to carry to PMRC)
to PCO, PMRC

STEP 25: Make PMRC required corrections to Award
to clerk

STEP 26: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature

STEP 27: Back from Contractor
Review / to PCO for Award
CW COMPETITIVE BUY $\$ 750,000$ to $\$ 1,000,000$. Buyer's Steps
STEP 1: Review $P R$ and Write-up RFP
Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Review Evaluation Criteria
Review Notes to BuyerCompare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections

| to Clerk |
| :---: |
| STEP 5: Review of typed Corrections (PCO's) |
| STEP 6: Take RFP to JAG |
| STEP 7: Make JAG required Corrections |
| STEP 8: Review of typed Corrections (JAG's) |
| STEP 9: Make PMRC required corrections | Get changes from engineer/ Write up amendment


```
to clerk
```

STEP 12: Review amendment
to PCO , clerk, offerors

STEP 13: Receive Proposals
Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation

STEP 14: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer
Write letter (s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

STEP 15: Price Proposals

For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Division Chief
Set-up Negotiation schedule with Engineer and Offerors
Draft BAFO's

[^0]
Discuss AF Objective

Mail BAFO's

STEP 17: Write-up Award

Review BAFO's / discuss with Engineer/ Source Select with PCO

Request Small Business Subcontracting Plan
Write Contract
Write ROCA and file items
to Clerk

STEP 18: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk

```
to Clerk
```

STEP 19: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items

```
to PCO
```

STEP 20: Make PCO required Corrections

```
to clerk
```

STEP 21: Review typed corrections (PCO's)
to PCO
STEP 22: Take Contract to JAG
STEP 23: Make JAG required corrections to Award
to clerk
STEP 24: Review typed corrections (JAG's)
(include time to carry to PMRC)
to PCO, PMRC
STEP 25: Make PMRC required corrections to Award

```
to clerk
```

STEP 26: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature
STEP 27: Back from Contractor
Review / to PCO for Award
C7 COMPETITIVE BUY $\$ 1,000,000$ to $\$ 3,500,000$. Buyer's Steds
STEP 1: Review PR and Write-up RFP
Review PR
Review SOW
Review Contract Data Requirements List (DD1423)
Review Evaluation Criteria
Review Notes to Buyer
Compare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Ẅrite Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan
to PCO

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of typed Corrections (PCO's)
to PCO

STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections
to clerk

STEP 8: Review of typed Corrections (JAG's)
(include time to carry to Committee)
to PCO, Committee

STEP 9: Make PMRC required Corrections
to clerk

STEP 10: Review of type corrections (PMRC's)
to PCO, Clerk, Repro, Clerk, and offerors

STEP 11: RFP Amendment

Evaluate offeror's request/ discuss with engineer/ PCO Get changes from engineer/ Write up amendment

STEP 12: Review amendment

```
to PCO , clerk, offerors
```

STEP 13: Receive Proposals
Review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation

STEP 14: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer
Write letter (s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

Request PMRP perform Pricing

STEP 15: Price Proposals
For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
(PMRP performs pricing)
Set-up Negotiation schedule with Engineer and Offerors
Draft BAFO's
Draft documents for pre-negotiation meeting
clerk types pre-neq documents
STEP 16: Conduct Pre-negotiation Presentation for Director
STEP 17: Negotiations (telephone or face-to-face)
For Each Proposal in the Competitive RangeResolve technical issuesDiscuss AF Objective
Mail BAFO's
STEP 18: Write-up Award
Review BAFO's / discuss with Engineer/ discuss withprice analyst/ Source Select with PCO
Request Small Business Subcontracting Plan
Write Contract
Write ROCA (Pricing is writing the PNM) and file items(including DD1499)
Request EEO clearance
to Clerk
STEP 19: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, preparedocumentation
Write correction instructions to Clerk
to Clerk
STEP 20: Review Corrections (buyer's)
Review corrections

```
Sign ROCA and other file items
```

to PCO

STEP 21: Make PCO required Corrections
to clerk

STEP 22: Review typed corrections (PCO's)
to PCO

STEP 23: Take Contract to JAG

STEP 24: Make JAG required corrections to Award
to clerk

| to PCO |
| :---: |
| STEP 21: Make PCO required Corrections |
| to clerk |
| STEP 22: Review typed corrections (PCO's) |
| STEP 23: Take Contract to JAG |
| STEP 24: Make JAG required corrections to Award |
| STEP 25: Review typed corrections (JAG's) |
| (include time to carry to PMRC) |
| STEP 26: Make PMRC required corrections to Award |

STEP 28: Back from Contractor
Review / to PCO and PMRC for Final ReviewSTEP 29: Final Corrections for PMRC or Director/ to dist.

STEP 1: Review PR and Write-up RFP

Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Review Evaluation Criteria
Review Notes to Buyer
Draft D\&F
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Prepare for BSP with Director / draft minutes
to clerk

STEP 2: Conduct BSP with Director

STEP 3: Write Solicitation
Rewrite BSP Minutes
Write RFP
Write Acquisition Plan
to Clerk

STEP 4: RFP back from Clerk
Review BSP Minutes
Review RFP
Review File

STEP 5: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 6: Make PCO required Corrections
to Clerk

STEP 7: Review of typed Corrections (PCO's)
to PCO

STEP 8: Take RFP to JAG

STEP 9: Make JAG required Corrections

| STEP 10:Review of typed Corrections (JAG's)
 (include time to carry to Committee) |
| :--- |
| to PCO, Committee |
| STEP 11: Make PMRC required Corrections |
| to $12:$ Review of type corrections (PMRC's) |

STEP 13: Make ASD/PMC required Corrections
to clerk
STEP 14: Review of typed Corrections (ASD/PMC)
to PCO, Clerk, Repro, Clerk, and offerors
STEP 15: RFP Amendment
Evaluate offeror's request/ discuss with engineer/ PCO
Get changes from engineer/ Write up amendment
to clerk
STEP 16: Review amendment
to PCO , clerk, offerors
STEP 17: Receive Proposals
Review of ProposalsWrite Request for Technical Evaluation/ ask Engineer topick-up
to Tecnnical Evaluation
STEP 18: Receive Technical Evaluation
Review Tech Eval/ resolve problems with EngineerWrite letter (s) to unacceptable(s) (if any)Write letter to PMR if only one acceptable/ discuss/resolve

Request PMRP perform Pricing

wait for audit

STEP 19: Price Proposals

For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
(PMRP performs pricing)
Set-up Negotiation schedule with Engineer and Offerors
Draft BAFO's
Draft documents for pre-negotiation meeting
clerk types pre-neg documents

STEP 20: Conduct Pre-negotiation Presentation for Director
and ASD/PM

STEP 21: Negotiations (telephone or face-to-face)
For Each Proposal in the Competitive Range Resolve technical issues Discuss AF Objective

Mail BAFO's

STEP 22: Write-up Award

Review BAFO's / discuss with Engineer/ discuss with price analyst/ Source select with PCO

Request Small Business Subcontracting Plan
Write Contract
Write ROCA (Pricing is writing the PNM) and file items (including DD1499)

Request EEO clearance
to Clerk

STEP 23: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk to Clerk

STEP 24: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 25: Make PCO required Corrections
to clerk

STEP 26: Review typed corrections (PCO's)
to PCO

STEP 27: Take Contract to JAG

STEP 28: Make JAG required corrections to Award

to clerk

| STEP 29: Review typed corrections (JAG's) |
| :---: |
| (include time to carry to PMRC) |
| STE PCO, PMRC |
| to clerk |
| STEP 31: Review of typed corrections (PMRC's) |
| to PCO, ASD/PMC |

STEP 32: Make ASD/PMC required Corrections to Award
Prepare 3 day hold TWX

to clerk

STEP 33: Review of typed corrections (ASD/PMC)
to PCO, clerk, out-for-signature

STEP 34: Back from Contractor
Review / to PCO, PMRC, PMC for Final Review

STEP 35: Final Corrections for PMRC, PMC, PM / to dist.

S2 SOLE SOURCE BUY $\$ 10,000$ to $\$ 100,000$. Buyer's steps

STEP 1: Review PR and Write-up RFP
Review PR
Review SOW
Review Contract Data Requirements List (DD1423)
Review Notes to Buyer
Sole Source Justification
Compare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of Corrections

to PCO, Clerk, Repro, Clerk, and Contractor

STEP 6: Receive Proposal
Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)
Resolve technical issues Negotiate a reasonable price

STEP 10: Write-up Award
Write Contract
Write ROCA and file items
to Clerk
STEP 1l: Review.typed Award
Review contract
Review file
Write correction instructions to Clerk
to Clerk
STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO
STEP 13: Make PCO required Corrections
to clerk
STEP 14: Review typed corrections (PCO's)
to PCO, Clerk, Contractor
STEP 15: Back from Contractor
Review / to PCO for Award
S3 SOLE SOURCE BUY $\$ 100,000$ to $\$ 250,000$. Buyer's Steps
STEP 1: Review PR and Write-up RFP
Review PR
Review SOWReview Contract Data Requirements List (DD1423)Review Notes to BuyerReview Sole Source JustificationCompare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of Corrections
t. PCO, Clerk, Repro, Clerk, and Contractor

STEP 6: Receive Proposal
Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)
Resolve technical issues Negotiate a reasonable price

STEP 10: Write-up Award

Write Contract
Write ROCA and file items
to clerk
STEP 11: Review typed Award
Review contract
Review file
Write correction instructions to Clerk to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take Contract to JAG

STEP 16: Make JAG required corrections
to clerk

STEP 17: Review.typed corrections (JAG's)

to PCO, clerk, out-for-signature

STEP 18: Back from Contractor Review / to PCO for Award

STEP 1: Review PR and Write-up RFP

Review Sole Source Justification
Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Review Notes to Buyer
Compare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan

```
to Clerk
```

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections
So clerk

STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections

```
to clerk
```

STEP 8: Review of type Corrections (JAG's)
to PCO, Clerk, Repro, Clerk, and Contractor

STEP 9: Receive Proposal

Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 10: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 11: Price Proposals
Review Exceptions to Terms and Conditions/ discuss
with PCO/JAG
Review Historical files/ call. DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 12: Negotiations (telephone)
Resolve technical issues
Discuss AF Objective and negotiate agreement

STEP 13: Write-up Award
Write Contract
Write ROCA and file items
to Clerk

STEP 14: Review typed Award
Review contract
Review file
Write correction instructions to Clerk

to Clerk

STEP 15: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items

```
to PCO
```

STEP 16: Make PCO required Corrections

STEP 17: Review typed corrections (PCO's)

to PCO

STEP 18: Take Contract to JAG

STEP 19: Make JAG required corrections
to clerk

STEP 20: Review typed corrections (JAG's)
to PCO, clerk, out-for-signature

STEP 21: Back from Contractor Review / to PCO for Award

```
STEP 1: Review PR and Write-up RFP
    Review Sole Source Justification
    Review PR
        Review SOW
        Review Contract Data Requirements List (DDl423)
        Review Notes to Buyer
        Compare SOW with TPP
    Discuss PR problems with Engineer
    Check Sources Sought Synopsis / DD254
    Accept in Data-Cen, get RFP number
    Write Small Business Coordination form
    Informal BSP with PCO / Division Chief
    Write RFP
    Write Acquisition Plan
```

 to Clerk
 STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections

to Technical Evaluation

STEP 12: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer

STEP 13: Price Proposals
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 14: Negotiations (telephone)
Resolve technical issues Discuss AF Objective and negotiate price

STEP 15: Write-up Award
Request Small Business Subcontracting Plan
Write Contract
Write ROCA and file items
to Clerk

STEP 16: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk

to Clerk

STEP 17: Review Corrections (buyer's)

Review corrections Sign ROCA and other file items
to PCO

STEP 18: Make PCO required Corrections
to clerk

STEP 19: Review typed corrections (PCO's)
to PCO

STEP 20: Take Contract to JAG

STEP 21: Make JAG required corrections to Award
to clerk

STEP 22: Review typed corrections (JAG's)
(include time to carry to PMRC)
to PCO, PMRC

STEP 23: Make PMRC required corrections to Award
to clerk

STEP 24: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature

STEP 25: Back from Contractor
Review / to PCO for Award
STEP 1: Review PR and Write-up RFP
Review Sole Source Justification
Review PR
Review SOWReview Contract Data Requirements (DD1423)Review Notes to BuyerCompare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

STEP 4: Make PCO required Corrections

> to Clerk

STEP 5: Review of typed Corrections (PCO's)
to PCO

STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections

```
to clerk
```

STEP 8: Review of typed Corrections (JAG's)
(include time to carry to Committee)
to PCO, Committee

STEP 9: Make PMRC required Corrections
to clerk

STEP 10: Review of type corrections (PMRC's)
to PCO, Clerk, Repro, Clerk, and offerors

STEP 11: Receive Proposal
Review of Proposal
Ask Engineer to pick-up

to Technical Evaluation

STEP 12: Receive Technical Evaluation
 Review Tech Eval/ resolve problems with Engineer

STEP 13: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Division Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 14: Negotiations (telephone)
Resolve technical issues Discuss AF Objective and negotiate price

STEP 15: Write-up Award
Request Small Business Subcontracting Plan
Write Contract
Write ROCA and file items
to Clerk

STEP 16: Review typed Award

Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

| Write correction instructions to Clerk |
| :--- |
| STEP 17: Review Corrections (buyer's) |
| Review corrections |
| Sign ROCA and other file items |
| STEP 18: Make PCO required Corrections |
| STEP 19: Review typed corrections (PCO's) |
| |
| STEP 20: Take Contract to JAG |

STEP 24: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature
STEP 25: Back from Contractor Review / to PCO for Award

STEP 1: Review PR and Write-up RFP
Review Sole Source Justification
Review PR
Review SOW
Review Contract Data Requiremerts List (DD1423)
Review Notes to Buyer
Compare SOW with TPP
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan
to PCO

STEP 4: Make PCO required Corrections

\qquad
STEP 6: Take RFP to JAG

STEP 7: Make JAG required Corrections
to clerk

STEP 8: Review of typed Corrections (JAG's) (include time to carry to Committee)
to PCO, Committee

STEP 9: Make PMRC required Corrections
to clerk

STEP 10: Review of type corrections (PMRC's)
to PCO, Clerk, Repro, Clerk, and offerors

STEP 11: RFP Amendment
Evaluate offeror's request/ discuss with engineer/ PCO Get changes from engineer/ Write up amendment

> to clerk

STEP 12: Revièw amendment

```
to PCO , clerk, offerors
```

STEP 13: Receive Proposal
Review of Proposal
Write Request for Technical Evaluation/ ask Éngineer to pick-up
to Technical Evaluation

STEP 14: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer
Request PMRP perform Pricing

STEP 15: Price Proposals
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
(PMRP performs pricing)
Set-up Negotiation schedule with Engineer and Offeror
Draft documents for pre-negotiation meeting
clerk types pre-neg documents

STEP 16: Cunduct Pre-negotiation Presentation for Director

STEP 17: Negotiations (telephone or face-to-face)
Resolve tech.incal iss :
Negotiate and reach ag..erent

STEP 18: Write-up Award

Request Small Business Subcontracting Plan
Write Contract
Write ROCA (Pricing is writing the PNM) and file items (including DD1499)

Request EEO clearance

to Clerk

STEP 19: Review typed Award
Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk
to Clerk

STEP 20: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items

```
to PCO
```

STEP 21: Make PCO required Corrections

> to clerk

STEP 22: Review typed corrections (PCO's)

STEP 23: Take Contract to JAG

STEP 24: Make JAG required corrections to Award
to clerk

STEP 25: Review typed corrections (JAG's) (include time to carry to PMRC)
to PCO, PMRC

STEP 26: Make PMRC required corrections to Award
to clerk

STEP 27: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature

STEP 28: Back from Contractor
Review / to PCO and PMRC for Final Review

STEP 29: Final Corrections for PMRC or Director/ to dist.
STEP 1: Review PR and Write-up RFP
Review Sole Source Justification
Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Draft D\&F
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get RFP number
Write Small Business Coordination form
Prepare for BSP with Director / draft minutes
to clerk

STEP 2: Conduct BSP with Director

STEP 3: Write Solicitation
Rewrite BSP Minutes
Write RFP
Write Acquisition Plan
to Clerk

STEP 4: RFP back from Clerk
Review BSP Minutes
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 5: RFP Corrections back from Clerk

Review corrections
Sigrı Acquisition Plan

STEP 6: Make PCO required Corrections
\qquad
to Clerk

STEP 7: Review of typed Corrections (PCO's)
to PCO

STEP 8: Take RFP to JAG

STEP 9: Make JAG required Corrections
to clerk

STEP 10: Review of typed Corrections (JAG's) (include time to carry to Committee)
to PCO, Committee

STEP 11: Make PMRC required Corrections
to clerk

STEP 12: Review of typed Corrections (PMRC's)
to PCO, ASL, PMC

STEP 13: Make ASD/PMC required Corrections
to clerk
STEP 14: Review of typed Corrections (ASD/PMC)
to PCO, Clerk, Repro, Clerk, and offerors
STEP 15: RFP Amendment
Evaluate offeror's request/ discuss with engineer/ PCO
Get changes from engineer/ Write up amendment
to clerk
STEP 16: Review amendment
to PCO , clerk, offeror
STEP 17: Receive Proposal
Review of Proposal
Write Request for Technical Evaluation/ ask Engineer to pick-up
to Technical Evaluation
STEP 18: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer
Request PMRP perform Pricing
wait for audit
STEP 19: Price Proposal
Review Exceptions to Terms and Conditions/ discuss
with PCO/JAG
(PMRP performs pricing)

Set-up Negotiation schedule with Engineer and Offerors Draft documents for pre-negotiation meeting
clerk types pre-neg documents

STEP 20: Conduct Pre-negotiation Presentation for Director and $A S D / P M$

STEP 21: Negotiations (telephone or face-to-face)
Negotiate a Fair and Reasonable Price

STEP 22: Write-up Award
Request Small Business Subcontracting Plan
Write Contract
Write ROCA (Pricing is writing the PNM) and file items (including DDl499)

Request EEO clearance
to Clerk

STEP 23: Review typed Award

Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk
to Clerk

STEP 24: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
STEP 25: Make PCO required Corrections
to clerk
STEP 26: Review typed corrections (PCO's)
to PCO
STEP 27: Take Contract to JAG
STEP 28: Make JAG required corrections to Award
to clerk
STEP 29: Review typed corrections (JAG's)
(include time to carry to PMRC)
to PCO, PMRC
STEP 30: Make PMRC required corrections to Award
to clerk
STEP 31: Review of typed corrections (PMRC's)
to PCO, ASD/PMC
STEP 32: Make ASD/PMC required Corrections to Award
Prepare 3 day hold TWX
to clerk
STEP 33: Review of typed corrections (ASD/PMC)512°

```
STEP 34: Back from Contractor
Review / to PCO, PMRC, PMC for Final'Review
```

STEP 35: Final Corrections for PMRC, PMC, PM / to dist.
STEP 1: Review PR and Write-up RFP
Review PR
Review SOWReview Contract Data Requirements List (DD1423)Review Notes to BuyerMod Justification
Discuss PR problems with Engineer
Accept in Data-Cen
Write RFP
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
to PCO
STEP 4: Make PCO required Corrections
to Clerk
STEP 5: Review of Corrections
to $\mathrm{PCO}, \mathrm{Clerk}$, Repro, Clerk, and Contractor
STEP 6: Receive Proposal
Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation
STEP 7: Receive Technical EvaluationReview Tech Eval/ resolve problems with Engineer
STEP 8: Price ProposalsReview Exceptions to Terms and Conditions/ discusswith PCO/JAGReview Historical files/ call DCAA for ratesCompute AF Cost Objective and Profit Objective
Pre-negotiation with PCO
Set-up Negotiation schedule with Engineer and Offeror
STEP 9: Negotiations (telephone)
Resolve technical issuesNegotiate a reasonable price
STEP 10: Write-up Award
Write Contract Modification
Write ROCA and file items
to Clerk
STEP 11: Review typed Award
Review contract
Review file
Write correction instructions to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO, Clerk, Contractor

STEP 15: Back from Contractor
Review / to PCO for Award
M3 CONTRACT MOD $\$ 100,000$ to $\$ 250,000$.
Buyer's Steps
STEP 1: Review PR and Write-up RFP
Review PR
Review SOWReview Contract Data Requirements List (DDl423)Review Notes to Buyer
Discuss PR problems with Engineer
Accept in Data-Cen
Write RFP letter
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Write Correction Instructions to Clerk
to Clerk
STEP 3: Review corrections
to PCO
STEP 4: Make PCO required Corrections
to Clerk
STEP 5: Review of Corrections / Mail
to PCO and Contractor
STEP 6: Receive Proposal
Ask Engineer to pick-up
STEP 7: Receive Technical EvaluationReview Tech Eval/ resolve problems with Engineer
STEP 8: Price ProposalsReview Exceptions to Terms and Conditions/ discusswith PCO/JAGReview Historical files/ call DCAA for ratesCompute AF Cost Objective and Profit Objective
Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offerors
STEP 9: Negotiations (telephone)Resolve technical issues
Negotiate modification
STEP 10: Write-up Award
Write modification
Write ROCA and file items
to Clerk
STEP 11: Review typed Award
Review modification
Review file
Write correction instructions to Clerk
to Clerk
STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items 518

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take modification to JAG

STEP 16: Make JAG required corrections
to clerk

STEP 17: Review typed corrections (JAG's)
to PCO, clerk, out-for-signature

STEP 18: Back from Contractor
Review / to PCO for Award

STEP 1: Review PR and Write-up RFP

Review Sole Source Justification
Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Review Notes to Buyer
Disnuss PR problems with Engineer
Accept in Data-Cen
Write RFP letter
to Clerk

STEP 2: Letter back from Clerk
Review letter to contractor with changes
Write Correction Instructions to Clerk

> to Clerk

STEP 3: Corrections back from Clerk
Review corrections

to PCO

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of typed Corrections (PCO's) / Mail
to PCO and Contractor

STEP 6: Receive Proposal
Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)
Resolve technical issues Discuss AF Objective and negotiate agreement

STEP 10: Write-up Award
Write Modification
Write ROCA and file items
to Clerk

STEP 11: Review typed Award
Review Modification
Review file
Write correction instructions to Clerk

| to Clerk |
| :---: |
| STEP 12: Review Corrections (buyer's) |
| Review corrections ROCA and other file items |
| STEP 13: Make PCO required Corrections |
| STEP 14: Review typed corrections (PCO's) |
| STEP 15: Take Contract to JAG |
| STEP 16: Make JAG required corrections |

M5 MODIFICATION $\$ 500,000$ to $\$ 750,000$. Buyer's Steps

STEP 1: Review PR and Write-up RFP

Review PR
Review sow
Review Contract Data Requirements List (DDl423)
Review Notes to Buyer
Discuss PR problems with Engineer
Accept in Data-Cen
Write RFP letter

> to Clerk

STEP 2: Letter back from Clerk
Review RFP letter
Write Correction Instructions to Clerk
to Clerk

STEP 3: Letter Corrections back from Clerk
Review corrections
to PCO

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Review of typed Corrections (PCO's)
to PCO and offeror

STEP 6: Receive Proposal

Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposal

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)

Resolve technical issues Discuss AF Objective and negotiate price

STEP 10: Write-up Award
Request Small Business Subcontracting Plan
Write Modification
Write ROCA and file items
to Clerk

STEP 11: Review typed Award
Review Modification
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation 524

Write correction instructions to Clerk
to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take Contract to JAG

STEP 16: Make JAG required corrections to Award
to clerk

STEP 17: Review typed corrections (JAG's)
___ (include time to carry to PMRC)
to PCO, PMRC

STEP 18: Make PMRC required corrections to Award
to clerk

STEP 19: Review of typed corrections (PMRC's)

```
to PCO, clerk, out-for-signature
```

STEP 20: Back from Contractor Review / to PCO for Award

```
STEP 1: Review PR and Write-up RFP
    Review PR
        Review SOW
        Review Contract Data Requirements (DD1423)
        Review Notes to Buyer
    Discuss PR problems with Engineer
    Accept in Data-Cen
    Write RFP letter
```

 to Clerk
 STEP 2: RFP back from Clerk
Review RFP letter
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
to PCO
STEP 4: Make PCO required Corrections
to Clerk
STEP 5: Review of typed Corrections (PCO's)/Mail
to PCO and contractor

Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO /. Division Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)
Resolve technical issues Discuss AF Objective and negotiate price

STEP 10: Wi ite-up Award
Request Small Business Subcontracting Plan
Write Modification
Write ROCA and file items
to Clerk

STEP 11: Revir.i typed Award
Review Modification
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation 528

Write correction instructions to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13. Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take Contract to JAG

STEP 16: Make JAG required corrections to Award

| to clerk |
| :---: |
| STEP 17:Review typed corrections (JAG's)
 (include time to carry to PMRC) |
| to PCO, PMRC |

STEP 18: Make PMRC required corrections to Aivard
to clerk

STEP 19: Review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature

STEP 20: Back from Contractor Review / to PCO for Award

```
STEP 1: Review PR and Write-up RFP
    Review PR
        Review SOW
        Review Contract Data Requirements List (DD1423)
        Review Notes to Buyer
    Discuss PR problems with Engineer
    Accept in Data-Cen
    Write RFP letter
```

 to Clerk
 STEP 2: RFP letter back from Clerk
Review RFF letter
Write Correction Instructions to Clerk
to Clerk
STEP 3: Corrections back from Clerk
Review corrections
to PCO
STEP 4: Make PCO required Corrections
to Clerk
STEP 5: Review of typed Corrections (PCO's)
to PCO and contractor

STEP 6: Receive Proposal

Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer
Request PMRP perform Pricing

STEP 8: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
(PMRP performs pricing)
Set-up Negotiation schedule with Engineer and Offeror
Draft documents for pre-negotiation meeting
clerk types pre-neg documents

STEP 9: Conduct Pre-negotiation Presentation for Director

STEP 10: Negotiations (telephone or face-to-face)
Resolve technical issues
Negotiate and reach agreement

STEP Il: Write-up Award

Request Small Business Subcontracting Plan
Write Modification
Write ROCA (Pricing is writing the PNM) and file items (including DDl499)
to Clerk
STEP 12: Review typed Award
Review Modification
Review file
Evaluate contractor's Subcontracting Plan, preparedocumentation
Write correction instructions to Clerk
to Clerk
STEP 13: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO
STEP 14: Make PCO required Corrections
to clerk
STEP 15: Review typed corrections (PCO's)
to PCO
STEP 16: Take Contract to JAG
STEP 17: Make JAG required corrections to Award
to clerk
STEP 18: Review typed corrections (JAG's)(include time to carry to PMRC)
to PCO, PMRC532

```
STEP 19: Make PMRC required corrections to Award
```

```
to clerk
```

STEP 20: Review of typed corrections (PMRC's)
to PCO , clerk, out-for-signature

STEP 21: Back from Contractor
Review / to PCO and PMRC for Final Review

STEP 22: Final Corrections for PMRC or Director/ to dist.

STEP 1: Review PR and Write-up RFP

Review PR
Review Sow
Review Contract Data Requirements List (DDI423)
Discuss PR problems with Engineer
Accept in Data-Cen
Prepare for BSP with Director / draft minutes
to clerk

STEP 2: Conduct BSP with Director

STEP 3: Write Solicitation

Rewrite BSP Minutes
Write RFP letter

to Clerk

STEP 4: RFP back from Clerk
Review BSP Minutes
Review RFP
Write Correction Instructions to Clerk
to Clerk

STEP 5: RFP Corrections back from Clerk
Review corrections
Sign BSP Minutes

STEP 6: Make PCO required Corrections
STEP 7: Review of typed Corrections (PCO's)
to PCO, Committee (BSP Minutes)
STEP 8: Make PMRC required Corrections to BSP Minutes
to clerk
STEP 9: Review of typed Corrections (PMRC's)
to PCO, ASD/PMC (BSP Minutes)
to PCO and offerors
STEP 10: Receive Proposal
Review of Proposal
Ask Engineer to pick-up
to Technical Evaluation
STEP 11: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Enginee:
Request PMRP perform Pricing
wait for audit
STEP 12: Price ProposalReview Exceptions to Terms and Conditions/ discusswith PCO/JAG
(PMRP performs pricing)
Set-up Negotiation schedule with k. gineer and OfferorsDraft documents for pre-negotiation meetins

```
clerk types pre-neg documents
```

STEP 13: Conduct Pre-negotiation Presentation for Director and ASD/PM

STEP 14: Negotiations (telephone or face-to-face)
Negotiate a Fair and Reasonable Price

STEP 15: Write-up Award
Request Small Business Subcontracting Plan
Write Contract Modification
Write ROCA (Pricing is writing the PNM) and file items (including DDl499)
to Clerk

STEP 16: Review typed Award
Review contract modification
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to Clerk

```
to Clerk
```

STEP 17: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 18: Make PCO required Corrections

> to clerk

STEP 19: Review typed corrections (PCO's)
\qquad
to PCO

STEP 20: Take Contract to JAG

STEP 21: Make JAG required corrections to Award
to clerk

STEP 22: Review typed corrections (JAG's) (include time to carry to PMRC)
to PCO, PMRC

STEP 23: Make PMRC required corrections to Award
to clerk

STEP 24: Review of typed corrections (PMRC's)
to PCO, ASD/PMC

STEP 25: Make ASD/PMC required Corrections to Award
to clerk

STEP 26: Review of typed corrections (ASD/PMC)
to PCO , clerk, out-for-signature

STEP 27: Back from Contractor
Review / to PCO, PMRC, PMC for Final Review

STEP 28: Final Corrections for PMRC, PMC, PM / to dist. 537

STEP l: Write-up Award

Review BAFO's / discuss with Engineer/ discuss with price analyst/ Source Select with PCO

Request Small Business Subcontracting Plan
Write Contract
Write ROCA (Pricing is writing the PNM) and file items (including DDl499)

Request EEO clearance

> to Clerk

STEP 2: Review typed Award

Review contract
Review file
Evaluate contractor's Subcontracting Plan, prepare documentation

Write correction instructions to clerk to Clerk

STEP 3: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items

> to PCO

STEP 4: Make PCO required Corrections

> to clerk

STEP 5: Review typed corrections (PCO':)
to PCO

STEP 6: Take Contract to JAG

STEP 7: Make JAG required corrections to Award
to clerk

STEP 8: Review typed corrections (JAG's)
(include time to carry to PMRC)
to PCO, PMRC

STEP 9: Make PMRC required corrections to Award
to clerk

STEP 10: Quick review of typed corrections (PMRC's)
to PCO, clerk, out-for-signature

STEP 11: Back from Contractor
Quick review / to PCO and PMRC for Final Review

STEP 12: Final Corrections for PMRC or Director/ to dist.
STEP 1: Review PR and Write-up RFP
Review PR
Review SOWReview Contract Data Requirements List (DDl423)Review Evaluation CriteriaReview Notes to Buyer
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254Accept in Data-Cen, get RFP numberWrite Small Business Coordination formInformal BSP with PCO / Division ChiefWrite RFP
Write Acquisition Plan
to Clerk
STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk
STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan
to PCO
STEP 4: Make PCO required Corrections540

STEP 5: Quick Review of Corrections
to PCO, Clerk, Repro, Clerk, and Contractor

STEP 6: Receive Proposals

Quick review of Proposals
Write Request for Technical Evaluation/ ask Engineer to pick-up

to Technical Evaluation

STEP 7: Receive Technical Evaluation

Review Tech Eval/ resolve problems with Engineer
Write letter (s) to unacceptable(s) (if any)
Write letter to PMR if only one acceptable/ discuss/ resolve

STEP 8: Price Proposals

For Each Proposal in the Competitive Range Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offerors
Draft BAFO's

STEP 9: Negotiations (telephone)
For Each Proposal in the Competitive Range
Resolve technical issues Discuss AF Objective

Mail BAFO's

STEP 10: Write-up Award

Review BAFO's / discuss with Engineer/ Source Select with PCO

Write Contract
Write POCA and file items
to Clerk

STEP 11: Review typed Award
Review contract
Review file
Write correction instructions to clerk
to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take Contract to JAG

STEP 16: Make JAG required corrections
$\frac{\text { to clerk }}{\text { STEP 17: Review typed corrections (JAG's) }}$ (to PCO, clerk, out-for-signature

STEP 1: Review PR and. Write-up RFP

Review PR
Review SOW
Review Contract Data Requirements List (DDl423)
Review Notes to Buyer
Review Sole Source Justification
Discuss PR problems with Engineer
Check Sources Sought Synopsis / DD254
Accept in Data-Cen, get $R F P$ number
Write Small Business Coordina¿ion form
Informal BSP with PCO / Division Chief
Write RFP
Write Acquisition Plan
to Clerk

STEP 2: RFP back from Clerk
Review RFP
Review File
Write Correction Instructions to Clerk
to Clerk

STEP 3: RFP Corrections back from Clerk
Review corrections
Sign Acquisition Plan

$$
\text { to } \mathrm{PCO}
$$

to Clerk

STEP 5: Quick Review of Corrections
to PCO, Clerk, Repro, Clerk, and Contractor

STEP 6: Receive Proposal
Quick review of Proposal
Ask Engineer to pick-up
to Technical Evaluation

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals
Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offeror

STEP 9: Negotiations (telephone)
Resolve technical issues Discuss AF Objective and negotiate price

STEP 10: Write-up Award
Write Contract
Write ROCA and file items

STEP 11: Review typed Award

Review contract

Review file
Write correction instructions to Clerk
to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections
to clerk

STEP 14: Review typed corrections (PCO's)
to PCO

STEP 15: Take Contract to JAG

STEP 16: Make JAG required corrections
to clerk

STEP 17: Review typed corrections (JAG's)
to PCO, clerk, out-for-signature

STEP 18: Back. from Contractor
Quick review / to PCO for Award 546

STEP 1: Review PR and Write-up RFP

Review PR
Review SOW
Review Contract Data Requirements List (DD1423) Review Notes to Buyer

Discuss $P R$ problems with Engineer
Accept in Data-Cen
Write RFP letter
to Clerk

STEP 2: RFP back from Clerk
Review RFP
Write Correction Instructions to Clerk

```
to Clerk
```

STEP 3: Review corrections
to PCO

STEP 4: Make PCO required Corrections
to Clerk

STEP 5: Quick Review of Corrections / Mail
to PCO and Contractor

STEP 6: Receive Proposal
Ask Engineer to pick-up

STEP 7: Receive Technical Evaluation
Review Tech Eval/ resolve problems with Engineer

STEP 8: Price Proposals

Review Exceptions to Terms and Conditions/ discuss with PCO/JAG
Review Historical files/ call DCAA for rates Compute AF Cost Objective and Profit Objective

Pre-negotiation with PCO / Branch Chief
Set-up Negotiation schedule with Engineer and Offerors

STEP 9: Negotiations (telephone)
Resolve technical issues
Negotiate modification

STEP 10: Write-up Award
Write modification
Write ROCA and file items
to Clerk

STEP 11: Review typed Award
Review modification
Review file
Write correction instructions to Clerk
to Clerk

STEP 12: Review Corrections (buyer's)
Review corrections
Sign ROCA and other file items
to PCO

STEP 13: Make PCO required Corrections

| to clerk |
| :---: |
| STEP 14: Review typed corrections (PCO's) |
| STEP 15: Take modification to JAG |
| STEP 16: Make JAG required corrections |
| STEP 17: Review typed corrections (JAG's) |
| to PCO, clerk, out-for-signature |
| STEP l8: Back from Contractor |
| Quick review / to PCo for Award |

STEP 1: Ask Contractor for letter. Accept in Data-Cen
to clerk
STEP 2: Review Fundings and send back for corrections
to clerk
STEP 3: Review corrections. Sign FI 53.
to PCO, PMRC, clerk
STEP 4: Review corrections (PMRC). To PCO for award.

STEP 1: Write up change
Receive request for correction or change.
Write up change.
Input DATA-CEN
to typing

STEP 2: Review change
to PCO, award

OTHER DUTIES AS ASSIGNED

Security Check
Administer contracts
Write letters on awarded contracts
Go to Meetings
Go to training classes/ PMR meetings/ Security meetings
Branch or Division meetings
Terminate contracts
Participate in reviews ($C / S S R$, technical, etc.)
Delinquent Contract Reports
Management Reviews / reports
Answer Freedom of Information requests
Keep-up on new regulations, policy letters, etc.
Update Daṭa-Cen
Fill-out travel vouchers / TDY forms for trips
Draft RFPs

| Step 1 | Normal | | Optimistic Pessimistic. | |
| :--- | :---: | :--- | :--- | :--- |
| | | | | |
| Mean | 10.9 | | 7.44 | 18.88 |
| Std. Dev. | 6.7 | 4.44 | 12.96 | |
| Median | $\div 0$ | 6 | 16 | |
| Percent | 45 | 19 | 36 | | Number in Sa.ple 9

Step 2 Normal Optimistic Pessimistic

| Mean | 2 | 1.32 | 3.57 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.8 | 1.37 | 3.56 |
| Median | 1 | .5 | 2 |
| Percent | 52 | 16 | 32 |

Number in Sample 9

Step 3
 Normal
 Optimistic Pessimistic

Mean 1.07
. 589
1.78

Std. Dev. 1.02
Median
Percent
. 5
50
Number in Sample
9

Step 4

.644
1.37
$.3 \quad 1.5$

2030

Normal
Optimistic Pessimistic

| Mean | 1.38 | .657 | 2.42 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.14 | .655 | 1.7 |
| Median | 1 | .5 | 1.5 |
| Percent | 54 | 20 | 26 |

Step 5 Normal Optimistic Pessimistic

Mean

Std. Dev. .94
.97
$\begin{array}{lr}\text { Median } & .5 \\ \text { Percent } & 55\end{array}$
Number in Sample

$$
.51
$$

$$
1.44
$$

$$
1.19
$$

. 3
18127

Solicitation Period
Mean Std. Dev. Median Percent
Number in Sample 8

| Step 6 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 2.5 | 1.52 | 5.3 |
| Std. Dev. | 1.22 | . 9 | 4.4 |
| Median | 3 | 2 | 4 |
| Percent | 51 | 22 | 27 |
| Number in Sample | 9 | | |
| Technical Eval. | Normal | Optimistic | Pessimistic |
| Mean | 164.5 | 116 | 247.7 |
| Std. Dev. | 47.5 | 37.8 | 68 |
| Median | 176 | 100 | 240 |
| Percent | 54 | 18 | 28 |
| Number in Sample | 8 | | |
| Step 7 | Normal | Optimistic | Pessimistic |
| Mean | 4.94 | 3.05 | 8.55 |
| Std. Dev. | 4.3 | 2.8 | 8.95 |
| Median | 4 | 2 | 6 |
| Percent | 52 | 22 | 26 |
| Number in Sample | 9 | | |
| Step 8 | Normal | Ontimistic | Pessimistic |
| Mean | 12.4 | 8.55 | 17.9 |
| Std. Dev. | 18.4 | 12.3 | 24 |
| Median | 6 | 4 | 12 |
| Percent | 52 | 21 | 27 |
| Number in Sample | 9 | | |
| Step 9 | Normal | Optimistic | Pessimistic |
| Mean | 3.25 | 1.83 | 5.67 |
| Std. Dev. | 1.86 | 1.12 | 3.7 |
| Median | 3 | 2 | 4 |
| Percent | 52 | 21 | 27 |
| Number in Sample | | | |
| Out BAFO | Normal | Optimistic | Pessimistic |
| Mean | 87.5 | 60 | 125 |
| Std. Dev. | 31.95 | 18.5 | 50 |
| Median | 80 | 60 | 120 |
| Percent | 53 | 19 | 28 |
| Number in Sample | 8 | | |

| Step 10 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 11.67 | 6.6719 |
| Std. Dev. | 9.56 | $4.27 \quad 15.95$ |
| Median | 10 | 818 |
| Percent | 48 | 2032 |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 2.1 | 1.34 .1 |
| Std. Dev. | 1.9 | 1.43 3.6 |
| Median | 1 | . 50 |
| Percent | 60 | 18 22 |
| Number in Sample | 9 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | . 86 | . $46 \quad 1.7$ |
| Std. Dev. | . 62 | . 41.2 |
| Median | 1 | . $5 \quad 1.5$ |
| Percent | 46 | 17 27 |
| Number in Sample | 9 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | 1 | . 571.97 |
| Std. Dev. | . 9 | . 631.32 |
| Median | 1 | . 502 |
| Percent | 54 | 1927 |
| Number in Sample | 9 | |
| Step 14 | Normal | Optimistic Pessimistic |
| Mean | . 72 | . 571.97 |
| Std. Dev. | . 65 | . 4 .91 |
| Median | . 5 | . 251 |
| Percent | 55 | 17 28 |
| Number in Sample | 9 | |
| Contractor Sign | Normal | Optimistic Pessimistic |
| Mean | 75 | 42.5122 |
| Std. Dev. | 9.25 | 8.3 33.6 |
| Median | 80 | $40 \quad 120$ |
| Percent | 50 | 2030 |
| Number in Sample | 8 | |

| Step 15 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | | .4 | 2 |
| Std. Dev. | .9 | | .3 | 1.9 |
| Median | 1 | | .5 | 1.5 |
| Percent | 55 | | 21 | 24 |

NETWORK C3

| Step l | Normal | | Optimistic | Pessimistic |
| :--- | :---: | :---: | :---: | :---: |
| Mean | 14.7 | | 9.4 | 22.4 |
| Std. Dev. | 11.8 | | 7.6 | 20.3 |
| Median | 10 | | 6 | 16 |
| Percent | - | - | - | |

Number in Sample 9

| Step 2 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :--- | :--- | :--- |
| | | | | |
| Mean | 1.9 | | 1.2 | 3.4 |
| Std. Dev. | 1.9 | | 1.4 | 3.6 |
| Median | 1 | -5 | 2 | |
| Percent | - | - | - | |

Number in Sample 9

| Step 8 | Normal | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: |
| Mean | 13.5 | 9.1 | 21 |
| Std. Dev. | 18.2 | 12.3 | 24.3 |
| Median | 8 | 4 | 16 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 9 | | | |
| Normal | Optimistic Pessimistic | | |
| Mean | 3.5 | 1.8 | 6.5 |
| Std. Dev. | 2.6 | 1.5 | 5.6 |
| Median | 3 | 1 | 4 |
| Percent | - | - | - |

| Step 10 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 12.1 | 7 | 18.9 |
| Std. Dev. | 9.8 | 4.9 | 15.1 |
| Median | 1 | . 5 | 3 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 11 | Normal | Optimistic | Pessimistic |
| Mean | 2 | 1.2 | 4 |
| Std. Dev. | 1.8 | 1.4 | 3.5 |
| Median | 1 | . 5 | 3 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 15 | Normal | Optimistic | Pessimistic |
| Mean | . 7 | . 5 | 1 |
| Std. Dev. | . 2 | . 2 | . 4 |
| Median | . 5 | . 5 | 1 |
| Percent | 46 | 27 | 27 |
| Number in Sample | 9 | | |
| JAG Review | Normal | Optimistic | Pessimistic |
| Mean | 28 | 14 | 49.5 |
| Std. Dev. | 8.6 | 5.7 | 12.8 |
| Median | 24 | 16 | 48 |
| Percent | 47 | 19 | 34 |
| Number in Sample | 8 | | |
| Step 16 | Normal | Optimistic | Pessimistic |
| Mean | 1.4 | . 6 | 3.4 |
| Std. Dev. | . 9 | . 4 | 2.4 |
| Median | 1 | . 5 | 3.5 |
| Percent | 52 | 24 | 24 |
| Number in Sample | 9 | | |
| Step 17 | Normal | Optimistic | Pessimistic |
| Mean | . 8 | . 4 | 1.6 |
| Std. Dev. | . 6 | . 3 | 1.4 |
| Median | . 8 | . 5 | 1 |
| Percent | 49 | 24 | 27 |
| Number in Sample | 9 | | |

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 15 | 10.623 |
| Std. Dev. | 11.6 | $8 \quad 20.5$ |
| Median | 12 | $8 \quad 16$ |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 2 | 1.23 .2 |
| Std Dev. | $\frac{1}{2} \cdot 3$ | $i^{9} \quad 3.5$ |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 6 | Normal | Optimistic Pessimistic |
| Mean | . 7 | .5 . 5 |
| Std. Dev. | . 3 | .2 . 4 |
| Median | . 5 | .5 . 8 |
| Percent | 50 | 24 26 |
| Number in Sample | 9 | |
| JAG RFP Review | Normal | Optimistic Pessimistic |
| Mean | 31 | 1549.5 |
| Std. Dev. | 13.3 | $5.1 \quad 14.2$ |
| Median | 24 | 16 年 44 |
| Percent | 47 | 18 35 |
| Number in Sample | 8 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 1.5 | . $5 \quad 3.4$ |
| Std. Dev. | 1.2 | . $4 \quad 2.4$ |
| Median | 1 | . 5 3.5 |
| Percent | 51 | 2128 |
| Number in Sample | 9 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | . 7 | .31 .4 |
| Std. Dev. | . 6 | . 31.1 |
| Median | . 5 | . 31 |
| Percent | 51 | 22 27 |
| Number in Sample | 9 | |

| Step 11 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 11.7 | | 7.3 | 19.7 |
| Std. Dev. | 11.7 | | 7.2 | 23.8 |
| Median | 10 | 4 | 15 | |
| Percent | - | - | - | | Number in Sample9

Step 12
Normal Optimistic Pessimistic

| Mean | 4 | 2.1 | 7.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.1 | 1.7 | 6.3 |
| Median | 4 | 2 | 5 |
| Percent | - | - | - | Number in Sample 9

| Step 13 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 15.4 | 9.626 .2 |
| Std. Dev. | 12.5 | 6.3 25.6 |
| Median | 10 | 814 |
| Percent | - | - - |

Number in Sample 9

| Step 14 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| Mean | 1.9 | | 1.2 | 3.3 |
| Std. Dev. | 1.3 | | .9 | 2.3 |
| Median | 2 | | 1 | 3 |
| Percent | - | - | - | |

NETWORK C5

Step 1 Normal Ootimistic Pessimistic

| Mean | 16.4 | 11.5 | 25 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 12.2 | 8.8 | 20.5 |
| Median | 16 | 8 | 22 |
| Percent | - | - | - |

Number in Sample 9

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 2.1 | 1.23 .4 |
| Std. Dev. | 1.3 | . $85 \quad 2.4$ |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 9 | |
| PMRC RFP Review | Normal | Optimistic Pessimistic |
| Mean | 26 | 13.546 .5 |
| Std. Dev. | 10.3 | $7 \quad 14.5$ |
| Median | 24 | 1048 |
| Percent | 49 | 1932 |
| Number in Sample | 8 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 2.7 | 1.3 4.9 |
| Std. Dev. | 1.8 | 1.23 .8 |
| Median | 3 | 15 |
| Percent | 47 | 1934 |
| Number in Sample | 9 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | . 9 | . $4 \quad 1.5$ |
| Std. -v. | . 5 | . 3 . 3 |
| Med : . | 1 | . 51.5 |
| Percent | 53 | 1928 |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 2.6 | 1.3 4.9 |
| Std. Dev. | 1.2 | . 6 3.2 |
| Median | 3 | $1 \quad 4.5$ |
| Percent | 52 | 22.26 |
| Number in Sample | 8 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | . 5 | . 3 .7 |
| Std. Dev. | . 3 | . 3 . 3 |
| Median | . 4 | . 2 . 6 |
| Percent | 55 | 23 22 |
| Number in Sample | 8 | |

| Step 15 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 9.4 | $6.1 \quad 17.3$ |
| Std. Dev. | 7.2 | 5.317 .6 |
| Median | 6 | 316 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 16 | Normal | Optimistic Pessimistic |
| Mean | 4.4 | 2.67 |
| Std. Dev. | 3.8 | 2.67 |
| Median | 3 | 1.55 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 17 | Normal | Optimistic Pessimistic |
| Mean | 14.75 | $9.75 \quad 21.2$ |
| Std. Dev. | 12.7 | 7.75 19.2 |
| Median | 12.5 | $8 \quad 16.5$ |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 18 | Normal | Optimistic Pessimistic |
| Mean | 3 | 1.85 .1 |
| Std. Dev. | 2.4 | 1.23 .9 |
| Median | 3 | 26 |
| Percent | - | - - |
| Number in Sample | 9 | |
| PMRC Contract | Normal | Optimistic Pessimistic |
| Mean | 27 | $14 \quad 47.5$ |
| Std. Dev. | 9.5 | 7.- 13.6 |
| Median | 24 | 1248 |
| Percent | 50 | 1931 |
| Number in Sample | 8 | |
| Step 25 | Normal | Optimistic Pessimistic |
| Mean | 3.4 | $1.8 \quad 6.8$ |
| Std. Dev. | 2.5 | 1.95 |
| Median | 3 | 15 |
| Percent | 46 | 2034 |
| Number in Sample | 9 | |

MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-A

Buyers' STEPS
Step 26 Normal Optimistic pessimistic

| Mean | 1.1 | .6 | 1.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .6 | .3 | 1.1 |
| Median | 1 | .7 | 2 |
| Percent | 48 | 23 | 29 |

Number in Sample 9

| NETWORK C6 | | | |
| :---: | :---: | :---: | :---: |
| Step 1 | Normal | Optimistic | Pessimistic |
| Mean | 14.6 | 7.8 | 25.4 |
| Std. Dev. | 8.1 | 9.4 | 13.9 |
| Median | 14.5 | 7 | 24 |
| Percent | 51 | 17 | 32 |
| Number in Sample 8 | | | |
| Step 2 | Normal | Optimistic Pessimistic | |
| Mean | 2.1 | . 8 | 3.6 |
| Std. Dev. | 1.8 | . 5 | 2.1 |
| Median | 1.5 | . 8 | 3 |
| Percent | 58 | 18 | 24 |
| Number in Sample | | | |
| Audit | Normal | Optimistic Pessimistic | |
| Mean | 317.7 | 216 | 535.7 |
| Std. Dev. | 60.7 | 80.3 | 245.2 |
| Median | 352 | 176 | 528 |
| Percent | 60 | 20 | 20 |
| Number in Sample \$ Level | 8 | | |
| | Competitive 2M Sole Source 1.75M Modification 500R | | |
| | | | |
| | | | |
| Step 15 | Normal | Optimistic Pessimistic | |
| Mean | 11.6 | 7.8 | 25.1 |
| Std. Dev. | 10.2 | 7.7 | 26 |
| Median | 10 | 5.5 | 17 |
| Percent | 56 | 18 | 26 |
| Number in Sample | 8 | | |

| Step 16 | Normal | | | Optimistic Pessimi |
| :--- | :---: | :--- | :--- | :--- |
| | | | | |
| Mean | 13.8 | | 8.2 | 21.4 |
| Std. Dev. | 27.3 | | 16.4 | 40.1 |
| Median | 2 | 1 | 4.5 | |
| Percent | 61 | | 18 | 21 |

Number in Sample
8
Step 17
Normal Optimistic Pessimistic

| Mean | 13.1 | 6.9 | 20.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 12.3 | 5.0 | 19.0 |
| Median | 11 | 6.5 | 18 |
| Percent | 60 | 19 | 21 | Number in Sample 8

Out BAFO Normal Optimistic Pessimistic

| Mean | 61.6 | 38.8 | 103 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 18.4 | 12.6 | 21.1 |
| Median | 64 | 40 | 108 |
| Percent | 58 | 22 | 20 |

Number in Sample 8

| Step 27 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.3 | | .5 | 4.4 |
| Std. Dev. | 1.3 | | .4 | 5.4 |
| Median | .5 | | .3 | 3 |
| Percent | 62 | | 19 | 19 |
| Number in Sample | 7 | | | |

NETWORK C7
Step 1 Normal Optimistic Pessimistic

| Mean | 17.9 | 10.3 | 34.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 10 | 7.2 | 23.1 |
| Median | 17 | 7.5 | 27 |
| Percent | - | - | - |

Step 2 Normal Optimistic Pessimistic

| Mean | 4.4 | 2.0 | 8.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5.1 | 2.5 | 12.8 |
| Median | 3 | 1.5 | 5 |
| Percent | - | - | - | Number in Sample 8

Step 15
15
Normal
Mean
Mean 12.9
Std. Dev. 15.3
Median
7
Percent Number in Sample 8

Step 16
Normal
Mean 1.1 -
Mean
Std. Dev.
Median
. 4 1
-
Number in Sample 7
Step 17
Norma
Mean
Std. Dev.
Median
Percent
8.2
11.8
2
-
Number in Sample 7

| Step 18 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 10.4 | 6.818 .4 |
| Std. Dev. | 9.8 | 6.518 .2 |
| Median | 6 | 512 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 19 | Normal | Optimistic Pessimistic |
| Mean | 3.6 | 2.56 .5 |
| Std. Dev. | 3.4 | 2.6 5.6 |
| Median | 2 | $1 \quad 4.5$ |
| Percent | - | - - |
| Number in Sample | 7 | |

| Step 4 N | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 3.4 | 2.25 .2 |
| Std. Dev. | 2.4 | 1.8 3 |
| Median | 3 | 5 |
| Percent | - | - - |
| Number in Sample | 7 | |
| ASD/PMC RFP Review | W Normal | Optimistic Pessimistic |
| Mean | 29.1 | 13.758 .3 |
| Std. Dev. | . 9.4 | 622.5 |
| Median | 32 | 1656 |
| Percent | 51 | 15 34 |
| Number in Sample | 7 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | 2.3 | 1.44 .3 |
| Std. Dev. | 2.6 | 2.1 3.8 |
| Median | 2 | 13 |
| Percent | 65 | 1916 |
| Number in Sample | 7 | |
| Step 14 | Normal | Optimistic Pessimistic |
| Mean | . 8 | . 42.3 |
| Std. Dev. | . 6 | . $3 \quad 2.6$ |
| Median | . 8 | . 41.4 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 19 | Normal | Optimistic Pessimistic |
| Mean | 13.2 | 5.422 |
| Std. Dev. | 11.2 | 3.617 .7 |
| Median | 15 | 720 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 20 | Normal | Optimistic Pessimistic |
| Mean | 2.1 | .94 |
| Std. Dev. | 1.4 | $.5 \quad 2.8$ |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 7 | |

| Step 21 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 11.8 | 6.4 23.4 |
| Std. Dev. | 16.8 | 9.6 33.6 |
| Median | 3 | 24 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 22 | Normal | Optimistic Pessimistic |
| Mean | 9 | 5.615 .1 |
| Std. Dev. | 5.9 | $4 \quad 11$ |
| Median | 10 | $5 \quad 15$ |
| Percent | - | - - |
| Number in Sample | 7 | |
| ASD/PMC K Review | Normal | Optimistic Pessimistic |
| Mean | 24.9 | 13.9 51.4 |
| Std. Dev. | 10.6 | 8.6 21.6 |
| Median | 24 | 1640 |
| Percent | 57 | 1132 |
| Number in Sample | 7 | |
| Step 32 | Normal | Optimistic Pessimistic |
| Mean | 2.5 | 1.4 4.6 |
| Std. Dev. | 2 | 1.3 2.2 |
| Median | 2 | 15 |
| Percent | 65 | $19 \quad 16$ |
| Number in Sample | 7 | |
| Step 33 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | . $5 \quad 2.2$ |
| Std. Dev. | 1.1 | . $5 \quad 1.7$ |
| Median | . 5 | .31 |
| Percent | 60 | 2218 |
| Number in Sample | 7 | |
| Step 34 | Normal | Optimistic Pessimistic |
| Mean | 4.2 | $1.9 \quad 7.1$ |
| Std. Dev. | 5.5 | 2.8 8.1 |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 7 | |

Step 35

| Mean | 8.1 | 3.8 | 13.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 11 | 6.1 | 16.7 |
| Median | 1 | .5 | 7 |

Normal
8.1 1 $\overline{7}$

Optimistic Pessimistic
3.8
13.9
16.7

7

Number in Sample 7

NETWORK 52

Solicitation Time Normal

| Mean | 160.8 | 105 | 253.3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 32 | 41.8 | 34 |
| Median | 176 | 104 | 264 |
| Percent | 52 | 21 | 27 |

Optimistic Pessimistic
$105 \quad 253.3$
$104 \quad 264$
21 27

Step 6
Normal
1.4

Std. Dev. . 6
Median . 5
Percent
Number in Sample 9
Technical Eval. Normal Optimistic Pessimistic

| Mean | 117 | 82 | 185.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 53.4 | 43.3 | 78.1 |
| Median | 104 | 70 | 208 |
| Percent | 45 | 22 | 33 |

Optimistic Pessimistic
.41 .1
.31
.31
1
1
-
Mean
Std. Dev.
Median
Percent
Number in Sample

Number in Sample 8
Step 7 Normal Optimistic Pessimistic

| Mean | 2.8 | 1.7 | 5.2 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.7 | 1.1 | 3.6 |
| Median | 2 | 1 | 3.5 |
| Percent | - | - | - |

Number in Sample 9

| Step 8 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 5.2 | | 3.7 | 13.3 |
| Std. Dev. | 4.1 | | 3.4 | 16.5 |
| Median | 5 | | 4 | 8 |
| Percent | - | - | - | |
| Number in Sample | 9 | | | |

Step 10
Norma
Optimistic Pessimistic
Mean 6.9
Std. Dev. 4.9
Median 8 Percent -
Number in Sample 9
Number in Sample 8

| Step 11 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.6 | 12.6 |
| Std. Dev. | 1.2 | .9 2.1 |
| Median | 1 | . 50 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | . 8 | .41 .4 |
| Std. Dev. | . 6 | .4 . 9 |
| Median | . 5 | . 32 |
| Percent | | - - |
| Number in Sample | 9 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | . 76 | . 411.54 |
| Std. Dev. | . 65 | .4 . 9 |
| Median | . 5 | . 17 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Contractor Sign | Normal | Optimistic Pessimistic |
| Mean | 71.5 | 38120 |
| Std. Dev. | 11.8 | 10.3 21.4 |
| Median | 80 | 40120 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 15 | Normal | Optimistic Pessimistic |
| Mean | 1 | .451 .8 |
| Std. Dev. | . 64 | . 261.4 |
| Median | 1 | .51 .5 |
| Percent | - | - - |
| Number in Sample | 9 | |

| Step 1 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 10.3 | | 7.5 | 19.8 |
| Std. Dev. | 7.3 | | 5.3 | 17.6 |
| Median | 8.5 | | 6.5 | 16 |
| Percent | - | - | - | |

Number in Sample 9

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.7 | 12.5 |
| Std. Dev. | 1.2 | .9 1.8 |
| Median | 1 | .51 |
| Percent | - | - - |

Number in Sample 9
Step 8 Normal Optimistic Pessimistic

| Mean | 6.1 | 4.2 | 12.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5.2 | 3.7 | 1.3 .6 |
| Median | 5 | 4 | 8 |
| Percent | - | - | - |

Number in Sample 9
Step 9 Normal Optimistic Pessimistic

| Mean | 3. |
| :--- | :--- |
| Std. Dev. | 3. |
| Median | 2 |
| Percent | - |
| $e r$ in Sample | 9 |

| Step 10 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 7 | 4.710 .6 |
| Std. Dev. | 4.8 | 3.6 |
| Median | 6 | 410 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 1.8 | 1.13 |
| Std. Dev. | 1.2 | .9 2.2 |
| Median | 1.5 | 12 |
| Percent | - | - - |
| Number in Sample | 9 | |

| Step 16 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.3 | . $6 \quad 3.2$ |
| Std. Dev. | . 7 | .42 .3 |
| Median | 1.5 | . 5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| JAG Review | Normal | Optimistic Pessimistic |
| Mean | 28 | 14 ! 5 |
| Std. Dev. | 6 | 5.7 . 4 |
| Median | 24 | 16 |
| Percent | - | - . |
| Number in Sample | 8 | |
| Step 17 | Normal | Optimistic Pes . .nistic |
| Mean | 1 | .51 .7 |
| Std. Dev. | . 7 | .41 .2 |
| Median | 1 | .51 .5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 18 | Normal | Optimistic Pessimistic |
| Mean | 1 | . $5 \quad 1.8$ |
| Std. Dev. | . 5 | . 31.2 |
| Median | i | .5 |
| Percent | | - |
| Number in Sample | 9 | |

NETWORR S4

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 11.4 | 8.318 .9 |
| Std. Dev. | 8 | 6.214 .8 |
| Median | 9.5 | 715 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.7 | 1.12 .6 |
| Std. Dev. | 1.2 | .9 1.8 |
| Median | 1 | . 82 |
| Percent | - | - - |
| Number in Sample | 9 | |

| Step 6 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 7 | .5 . 9 |
| Std. Dev. | . 3 | . 3 . 4 |
| Median | . 5 | . 5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| JAG RFP Review | Normal | Optimistic Pessimistic |
| Mean | 26 | 1446 |
| Std. Dev. | 7.1 | 5.710 .9 |
| Median | 24 | 1640 |
| Percent | | - - |
| Number in Sample | 8 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 1.2 | . $5 \quad 2.2$ |
| Std. Dev. | . 6 | .41 .1 |
| Median | 1 | .5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | . 7 | .41 .2 |
| Std. Dev. | . 6 | .3 . 9 |
| Median | . 5 | .31 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 5 | 3.3 8.7 |
| Std. Dev. | 2.5 | 2.6 .6 |
| Median | 5 | 38 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | 2.8 | 1.66 .1 |
| Std. Dev. | 1.7 | .9 5.6 |
| Median | 2.5 | 15 |
| Percent | - | - - |
| Number in Sample | 9 | |

Buyers' STEPS

| Step 13 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 8 | | 5.1 | 14.1 |
| Std. Dev. | 6.8 | | 4.7 | 13.9 |
| Median | 6 | | 4 | 12 |
| Percent | - | - | - | |
| Number in Sample | 9 | | | |

Step 14 Normal Optimistic Pessimistic

| Mean | 1.7 | 1.1 | 2.9 |
| :--- | :--- | :--- | :--- |
| Std Dev. | 1.2 | \mathbf{i}^{9} | 2.4 |
| Median | 1.5 | - | 2 |
| Percent | - | - | - |

Number in Sample 9
Step 21 Normal Optimistic Pessimistic

| Mean | 1 | .6 | 1.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | i 6 | .3 | 1.8 |
| Median | - | -5 | 1.5 |
| Percent | - | - | - |

Number in Sample 9

| NETWORK S5 | | | |
| :---: | :---: | :---: | :---: |
| Step 1 | Normal | Optimistic | Pessimistic |
| Mean | 12.8 | 9.4 | 20.7 |
| Std. Dev. | 9.6 | 7 | 17.3 |
| Median | 10 | 7.5 | 18 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 2 | 1.2 | 3 |
| Std. Dev. | 1.3 | . 9 | 1.8 |
| Median | 2 | 1 | 4 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

| PMRC RFP Review | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 27 | 14.543 |
| Std. Dev. | 9.5 | 6.713 .3 |
| Median | 24 | 14 44 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 2.6 | 1.35 .1 |
| Std. Dev. | 1.8 | 1.23 .8 |
| Median | 2 | 15 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | . 8 | . 31.6 |
| Std. Dev. | . 5 | .3 . 9 |
| Median | . 8 | .31 .5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | 5.6 | 3.688 |
| Std. Dev. | 3.6 | 2.3 5.1 |
| Median | 5 | 48 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 14 | Normal | Optimistic Pessimistic |
| Mean | 3 | 1.86 .3 |
| Std. Dev. | 1.8 | 1.15 |
| Median | 3 | 15 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 15 | Normal | Optimistic Pessimistic |
| Mean | 7.9 | 5.611 .6 |
| Std. Dev. | 5.1 | 4.48 |
| Median | 8 | 412 |
| Percent | - | - - |
| Number in Sample | 9 | |

Step 16 Normal Optimistic Pessimistic

| Mean | 2.1 | 1.3 | 3.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.5 | 1.1 | 2.5 |
| Median | 2 | 1 | 3 |
| Percent | - | - | - |

Number in Sample 9
PMRC K Review Normal Optimistic Pessimistic

| Mean | 29 | 15 | 46.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 10.4 | 6.7 | 17.4 |
| Median | 24 | 16 | 44 |
| Percent | - | - | - |8

Step 23 Normal Optimistic Pessimistic
Mean 2.8

Std. Dev. 2.3
2

$$
2
$$ -

Number in Sample 9

$$
5.6
$$

$$
1.2
$$

$$
4.8
$$

Step 24 Normal 24
Mean 1
Std. Dev. 6
1
Median 1
Percent9
Step 25 Normal1.3
Number in SampleMean 1Std. Dev. . 6
Median 11 6
Percent-
Number in Sample 9
NETWORK S6
Step 1
Mean 15
Std. Dev. 15.4 Median 12 Percent -
Number in Sample 7

| Step 1 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 15 | | 9.3 | 25.4 |
| Std. Dev. | 15.4 | | 10.6 | 25.1 |
| Median | 12 | 5 | 20 | |
| Percent | - | - | - | |
| Number in Sample | 7 | | | |

Buyers' STEPS

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 5 | 2.510 .1 |
| Std. Dev. | 8.6 | 4.317 .1 |
| Median | 1 | . 5 3 |
| Percent | - | - |
| Number in Sample | 7 | |
| Solicitation Time | Normal | Optimistic Pessimistic |
| Mean | 154.3 | 104264 |
| Std. Dev. | 38.9 | $41.8 \quad 71.9$ |
| Median | 176 | 112264 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | 7.6 | 5.115 |
| Std. Dev. | 4.9 | 4.2 -2.5 |
| Median | 6 | 412 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 14 | Normal | Optimistic Pessimistic |
| Mean | 8.3 | 5.613 |
| Std. Dev. | 6.3 | $5 \quad 10.5$ |
| Median | 6 | 49 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 15 | Normal | Optimistic Pessimistic |
| Mean | 8.3 | 5.613 |
| Std. Dev. | 6.3 | $5 \quad 10.5$ |
| Median | 6 | 49 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 16 | Normal | Optimistic Pessimistic |
| Mean | 3.3 | 1.96 .1 |
| Std. Dev. | 3.9 | $2.7 \quad 7.9$ |
| Median | 2 | 13.5 |
| Percent | - | - - |
| Number in Sample | 7 | |

Out for KR Sign Normal

| Mean | 86.7 | 41.3 | 165.3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 12.8 | 7.9 | 44.6^{3} |
| Median | 80 | 40 | 168 |
| Percent | - | - | - |

Step 29 Normal Optimistic Pessimistic

| Mean | 2.1 | 1 | 3.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.7 | 1.4 | 3.8 |
| Median | 1 | -5 | 2 |
| Percent | - | - | - |

Number in Sample 7

NETWORK S8

| Step I | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 18.9 | 12.1 | 31.3 |
| Std. Dev. | 15.3 | 10.4 | 24.3 |
| Median | 15 | 8 | 25 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 1.6 | . 9 | 2.7 |
| Std. Dev. | . 7 | . ${ }^{6}$ | 1 |
| Median | 1.5 | 1 | 2 |
| Percent | | - | - |
| Number in Sample | 7 | | |
| Step 3 | Normal | Optimistic | Pessimistic |
| Mean | 15.1 | 10 | 26.7 |
| Sta. Dev. | 12 | 6.9 | 24.7 |
| Median | 12 | 8 | 24 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step | Normal | Optimistic | Pessimistic |
| Mean | 2.6 | 1.5 | 5.2 |
| Std. Dev. | 1.9 | 1.3 | 5 |
| Median | 2 | | 4 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step 13 | Normal | Optimistic | Pessimistic |
| Mean | 1.8 | . 9 | 3.9 |
| Std. Dev. | 1.3 | . 8 | 2.5 |
| Median | 1.5 | . 5 | 3 |
| Percent | - | - | - |
| Number in Sample | 7 | | |

ASD/PMC RFP Review Normal

| Mean | 27.4 | 14.3 | 58.3 |
| :--- | :--- | :--- | :--- |
| Std. Lev. | 10.2 | 5.5 | 21.5 |
| Median | 24 | 16 | 56 |
| Percent | - | - | - |

Number in Sample 7

Step 14
Mean 1.6
Std. Nev. 1.6
Median 1 Percent Number in Sample 7

Step 15 Normal
Mean 5.2
Std. Lev. 3.6
Median 4.0 Percent
Number in Sample
Step 16
Mean -9 Std. Nev. . 5 Median 1 Percent
Number in Sample
Step 19
Number in Sample 7

| Mean | 7.6 |
| :--- | :--- |
| Std. Lev. | 4.9 |
| Median | 8 |
| Percent | - |
| in Sample | 7 |

Median 8 Percent -
Number in Sample 7
Step 20
Mean
Std. Lev.
Median

Norma
$\begin{array}{ll}\text { Mean } & 1.9 \\ \text { Std. Lev. } & 1.4 \\ \text { Median } & 1.5\end{array}$
$\begin{array}{ll}\text { Mean } & 1.9 \\ \text { Std. Lev. } & 1.4 \\ \text { Median } & 1.5\end{array}$
$\begin{array}{ll}\text { Mean } & 1.9 \\ \text { Std. Lev. } & 1.4 \\ \text { Median } & 1.5\end{array}$ Percent
Number in Sample
7
-
Number in sap7

Optimistic Pessimistic

Optimistic Pessimistic
$.9 \quad 2.8$
12.3
.5
3
-

Optimistic Pessimistic
2.9
11.1
2.5
10.2

2
8

- -

Optimistic Pessimistic
.51 .9
.3
1.2
$.5 \quad 1.5$
-

Optimistic Pessimistic
4.3
11.7
2.8

7
512

Buyers' STEPS

| Step 21 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 9.1 | 418.4 |
| Std. Dev. | 8.8 | 3.416 .7 |
| Median | 8 | 415 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 22 | Normal | Optimistic Pessimistic |
| Mean | 9.9 | 6.315 .2 |
| Std. Dev. | 6.7 | 5.1 9.9 |
| Median | 9 | 616 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 23 | Normal | Optimistic Pessimistic |
| Mean | 3.1 | 1.5 |
| Std. Dev. | 2.8 | 1.45 |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 7 | |
| ASD/PMC K Review | Normal | Optimistic Pessimistic |
| Mean | 29.7 | 14.3 59.4 |
| Std. Dev. | 8.9 | 7.3 20 |
| Median | 32 | 1256 |
| Percent | 46 | 1638 |

Number in Sample 7
Step 32 Normal Optimistic Pessimistic

| Mean | 3.1 | 1.8 | 5.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.4 | 2.3 | 5.9 |
| Median | 1.5 | .8 | 3 |
| Percent | 54 | 23 | 23 |

Number in Sample 7

| Step 33 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | .5 | 2 | |
| Std. Dev. | .9 | .5 | 1.6 | |
| Median | .5 | .3 | 1 | |
| Percent | 54 | 18 | 28 | |

Buyers' STEPS

Step 34
Normal Optimistic Pessimistic

| Mean | 3.3 | 1.6 | 5.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5.7 | 2.9 | 8.4 |
| Median | .7 | -5 | 2 |
| Percent | - | - | - |

Number in Sample 7
Step 35 Normal Optimistic Pessimistic

| Mean | 3.1 | 1.4 | 5.7 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.8 | 1.6 | 5.5 |
| Median | 3 | .5 | 4 |
| Percent | - | - | - |

NETWORR M2
Step 1
Normal
Optimistic Pessimistic

| Mean | 6.3 | 3.6 | 10.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5.7 | 3.9 | 10.3 |
| Median | 4 | 2 | 8 |
| Percent | 55 | 19 | 26 |

Number in Sample 9
Step 2
Normal
Optimistic Pessimistic
Mean 1.2
.7
1.8

Std. Dev. 1.1
.6
5
Median
1
Percent
54
Number in Sample
9
Step 8
Mean
Std. Dev.
Median Percent

Normal
4.5 4.2 3 49
Number in Sample 9

| Step 9 | Normal | | Optimistic | Pessimistic |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 2.7 | | 1.7 | 5.9 |
| Std. Dev. | 3.5 | | 2.4 | 7 |
| Median | 1.5 | | 1 | 4 |
| Percent | 51 | | 20 | 29 | Number in Sample

Step 10 Normal Optimistic Pessimistic
Mean 4.1
Std. Dev. 3
Median 3
Percent 51
Number in Sample
9
2.9
2.5

2
21
6.8
5.7

5
28

Step 11 Normal Optimistic Pessimistic
Mean 1.3
Std. Dev. . 9 Median 1 Percent 56
Number in Sample
Step 15 Normal Optimistic Pessimistic

Mean . 9
Std. Dev. . 5
Median 1 Percent
Number in Sample

54 9
\square

Step 15 Normal Optimistic Pessimistic 1 9
$.4 \quad 1.3$
. 3
.5
22
. 9
1.3

24

NETWORK M3
Step 1 Normal Optimistic Pessimistic

| Mean | 7.6 | 4.5 | 12 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 7.5 | 4.9 | 12.3 |
| Median | 6 | 3 | 8 |
| Percent | - | - | - |

Number in Sample 9
Step 2 Normal Optimistic Pessimistic

| Mean | 1.4 | .8 | 2 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.1 | .5 | 1.7 |
| Median | 1 | .5 | 1 |

Number in Sample 9

| Step | 8 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | Mean | 5.5 | 3.2 | 10.1 |
| | Std. Dev. | 7 | 4.8 | 14.3 |
| | Median | 3 | 2 | 6 |
| | Percent | - | - | |
| Numbe | r in Sample | 9 | | |
| Step | 9 | Normal | Optimistic | Pessimistic |
| | Mean | 3.5 | 2.3 | 7.4 |
| | Std. Dev. | 5.5 | 3.7 | 10.9 |
| | Median | 2 | 1 | 4 |
| | Percent | - | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 10 | Normal | Optimistic | Pessimistic |
| | Mean | 4.4 | 3.3 | 7.2 |
| | Std. Dev. | 3.5 | 3 | 7 |
| | Median | 3 | 2 | 5 |
| | Percent | - | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 11 | Normal | Optimistic | Pessimistic |
| | Mean | 1.4 | . 8 | 2.6 |
| | Std. Dev. | . 8 | . 5 | 1.7 |
| | Median | 1.3 | . 8 | 3 |
| | Percent | - | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 15 | Normal | Optimistic | Pessimistic |
| | Mean | . 7 | . 5 | 1 |
| | Std. Dev. | . 3 | . 2 | . 5 |
| | Median | . 8 | . 5 | 1 |
| | Percent | - | - | |
| Numbe | er in Sample | 9 | | |
| JAG A | Award Review | Normal | Optimistic | Pessimistic |
| | Mean | 27 | 13.5 | 43.5 |
| | Std. Dev. | 9.5 | 7.1 | 18.1 |
| | Median | 24 | 10 | 40 |
| | Percent | - | - | - |
| Numbe | er in Sample | 8 | | |

Buyers' STEPS

| Step 16 | Normal | | | |
| :--- | :---: | :---: | :---: | :---: |
| | Optimistic | | | |
| Mean | $\therefore, 2$ | | .6 | 2.5 |
| Std. Dev. | .6 | .4 | 2.2 | |
| Median | 1 | .5 | 2 | |
| Percent | - | - | - | |

Number in Sample 9

| Step 17 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1 | | .4 | 1.6 |
| Std Dev. | i^{7} | | .4 | 1.3 |
| Median | 1^{7} | -5 | 1.5 | |
| Percent | - | - | - | |

| Step 18 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .9 | | .4 | 1.6 |
| Std. Dev. | .5 | | .3 | 1.2 |
| Median | 1 | -5 | 1.3 | |
| Percent | - | - | - | |

NETWORK M4

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 9.1 | 6.313 .8 |
| Std. Dev. | 9.1 | 6.313 .4 |
| Median | 4 | 38 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.1 | . 61.7 |
| Std. Dev. | . 6 | . 3 -9 |
| Median | 1 | .51 .3 |
| Percent | - | - - |
| Number in Sample | 9 | |

| Step 8 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean. | 7.3 | | 5.2 | 10.9 |
| Std. Dev. | 9.5 | | 7.2 | 14.1 |
| Median | 4 | | 2.5 | 6 |
| Percent | - | | - | - |

Step 9 Normal Optimistic Pessimistic
Mean 3.2Std. Dev. 3.43.4$2.1 \quad 7$$2.3 \quad 9.6$
2
Median-
Number in Sample 9
Step 10 Normal Optimistic Pessimistic

| Mean | 5.2 | 3.8 | 8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.6 | 3.2 | 6.7 |
| Median | 5 | 4 | 6 |
| Percent | - | - | - |

Number in Sample0
Step 11 Normal Optimistic Pessimistic
Mean 1.8 1.3
Median 1.5 Percent $-$
Number in Sample 9
Step 18 Normal
Mean 9Std. Dev. . 5
Median 1
Percent-
Number in Sample 9
NETWORK M5
Step 1 Normal Optimistic Pessimistic

| Mean | 10. |
| :--- | :--- |
| Std. Dev. | 10. | 7.8

15.7
Median 7
6 8
Percent
9
Number in Sample

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.4 | .8 ? 1 |
| Std. Dev. | . 6 | .41 |
| Median | 1.5 | . 8 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 6.9 | 4.710 .4 |
| Std. Dev. | 5.5 | $3 \quad 8.4$ |
| Median | 5 | 46 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 4.8 | $2.5 \quad 7.9$ |
| Std. Dev. | 7.3 | 3.612 .2 |
| Median | 2.5 | $1 \quad 3.5$ |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | 5.8 | 3.988 .9 |
| Std. Dev. | 4 | $2.9 \quad 6.9$ |
| Median | 5 | 46 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 1.9 | 13.2 |
| Std. Dev. | 1.2 | . $7 \quad 2$ |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 18 | Normal | Optimistic Pessimistic |
| Mean | 2.3 | 1.14 .5 |
| Std. Dev. | 2.3 | 1.3 4.9 |
| Median | 2 | 0.53 |
| Percent | - | - - |
| Number in Sample | 9 | |

Buyers' STEPS

| Step 19 | Normal | | | Optimistic Pessimistic |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| Mean | 1 | | .5 | 1.8 |
| Std. Dev. | .7 | | .4 | 1.7 |
| Median | 1 | -5 | 1 | |
| Percent | - | - | - | |

Number in Sample 9

Step 20 Normal Optimistic Pessimistic

Mean .7
.7
. 5
1.4

Std. Dev. . 3
Median . 8
Percent -
Number in Sample 9

NETWORK M6

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 4.1 | 2.710 .3 |
| Std. Dev. | 2.2 | 1.97 |
| Median | 4 | 2.58 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.8 | 1.13 .4 |
| Std. Dev. | 2.8 | 2.25 .6 |
| Median | . 8 | . 31 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 6.3 | $4.1 \quad 13.1$ |
| Std. Dev. | 5.2 | 4.1 |
| Median | 6 | 2.512 |
| Percent | - | - - |
| Number in Sample | 7 | |

| Mean | 6.1 | 3 | 11.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 11.5 | 5.7 | 19.7 |
| Median | 2 | 1 | 4 |
| Percent | - | - | - |

Number in Sample 7
Step 10 Normal Optimistic Pessimistic

| Mean | 6.3 | 4.3 | 10.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 4.2 | 3.1 | 8 |
| Median | 6 | 4 | 10 |
| Percent | - | - | - |

Number in Sample 7
Step 11 Normal Optimistic Pessimistic
Mean 2.7
Std. Dev. 2.5
Median 2
2
Percent
1.4
5.3
1.2

5
1
4
Number in Sample
7
Step 20
Normal Optimistic Pessimistic
Mean .
Std. Dev. . 6
Median 1
Percent
. 3
. 5
2.1

1
Number in Sample 7

NETWORK M7
Step 1
Normal
Optimistic Pessimistic
Mean
Std. Dev. 2.2
Median 5
Percent
-
Number in Sample 7
Step 2
Normal
Optimistic Pessimistic
Mean 1.7
Std. Dev. 2.8
Median . 5
Percent
1.1
3.2
2.2
5.7
.31
Number in Sample 7

| Step 8 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 7.5 | 3.412 .9 |
| Std. Dev. | 7.8 | 213.2 |
| Median | 6 | 48 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 1.1 | . $6 \quad 2.2$ |
| Std. Dev. | . 4 | .2 . 8 |
| Median | 1 | . 50 |
| Percent | | - - |
| Number in Sample | 7 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | 6.7 | 3.212 |
| Std. Dev. | 8.3 | $3 \quad 13.9$ |
| Median | 4 | 36 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 5.9 | 3.38 8.9 |
| Std. Dev. | 5.1 | 2.7 7.5 |
| Median | 6 | 48 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | 1.9 | 1.23 .7 |
| Std. Dev. | 1.1 | .9 2.3 |
| Median | 2 | 14 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 21 | Normal | Optimistic Pessimistic |
| Mean | 2.6 | 1.74 .8 |
| Std. Dev. | 2.9 | 2.15 |
| Median | 1 | . 5 2 |
| Percent | | - - |
| Number in Sample | 7 | |

Buyers' STEPS

Step 22
Mean
Std. Dev. Median Percent
Number in Sample

Normal Optimistic Pessimistic
1.5
5.3
2.9
. 5
8.4

2

- -

NETWORR M8
Step 1
Normal
Optimistic Pessimistic

Mean
Std. Dev.
Median
Percent
Number in Sample
Step 2
Normal
$\begin{array}{ll}\text { Mean } & 1.2 \\ \text { Std. Dev. } & .4\end{array}$
Median
Percent
Number in Sample
Step 3
$\begin{array}{ll}\text { Mean } & 3.3 \\ \text { Std. Dev. } & 2.7\end{array}$
Median 2
Percent
Number in Sample 7
Step 4
4
$\begin{array}{ll}\text { Mean } & 1.3 \\ \text { Std. Dev. } & .6\end{array}$
Median
Percent
Number in Sample 7

```
4.3
2.4
    4 14
    16.6
    12.2
-
```

Optimistic Pessimistic
.6
2.3
.2
. 8
. 5
2
-

| Step 12 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 6.4 | $4 \quad 9.9$ |
| Std. Dev. | 5.1 | $3.8 \quad 7.5$ |
| Median | 5 | 36 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 13 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | . 62.4 |
| Std. Dev. | . 5 | .2 . 8 |
| Median | 1 | . $5 \quad 2$ |
| Percent | | - - |
| Number in Sample | 7 | |
| Step 14 | Normal | Optimistic Pessimistic |
| Mean | 7.4 | 3.714 .4 |
| Std. Dev. | 8.1 | 3.113 .9 |
| Median | 8 | 412 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 15 | Normal | Optimistic Pessimistic |
| Mean | 7.3 | 4.812 .5 |
| Std. Dev. | 4.5 | 3.47 |
| Median | 8 | 614 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 16 | Normal | Optimistic Pessimistic |
| Mean | 2.5 | 1.44 .4 |
| Std. Dev. | 1.1 | . 62.3 |
| Median | 3 | 1.5 |
| Percent | - | - - |
| Number in Sample | 7 | |
| ASD/PMC K Review | Normal | Optimistic Pessimistic |
| Mean | 28.6 | 14.961 .7 |
| Std. Dev. | 9.1 | $5.5 \quad 23.4$ |
| Median | 24 | 16 56 |
| Percent | - | - - |
| Number in Sample | 7 | |

| Mean | 2.1 | 1.4 | 3.7 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.7 | 2.1 | 3.3 |
| Median | 1 | .5 | 2 | Number in Sample 7

Step 26 Normal Optimistic Pessimistic
Mean 1
Std. Dev. . 8 .42

Median . 5 . 4 1.6

Percent
7
Number in Sample
Step 27 Normal Optimistic Pessimistic
Mean 3
3
1.7
5.5

Std. Dev. 3.1
Median 2
2.1
5.5

1
3
Percent -
Number in Sample
7
Step 28 Normal Optimistic Pessimistic

| Mean | 2.4 | 1.4 | 4.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.9 | 2.1 | 5.8 |
| Median | 1 | .5 | 2 |

Number in Sample 7

NETWORR C9
Step 1
Normal Optimistic Pessimistic

| Mean | 12 | 7 | 18.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 7.4 | 5.3 | 12.3 |
| Median | 12 | 5 | 20 |
| Percent | 55 | 20 | 25 |

Number in Sample 7

| Step 2 | Normal | | Optimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 4 | | 2.5 | 7.2 |
| Std. Dev. | 3.8 | | 2.7 | 7.7 |
| Median | 2 | 1 | 5 | |
| Percent | 58 | | 15 | 27 |
| Number in Sample | 7 | | | |

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 6 | .31 .4 |
| Std. Dev. | . 3 | .1 . 9 |
| Median | . 5 | . 31 |
| Percent | 60 | 23 17 |
| Number in Sample | 7 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | . 5 | .2 . 2 |
| Std. Dev. | . 3 | . 1 . 6 |
| Median | . 5 | . 3 1 |
| Percent | 53 | 22 25 |
| Number in Sample | 7 | |
| Step 3 | Normal | Optimistic Pessimistic |
| Mean | 1 | .41 .9 |
| Sta. Dev. | 1.8 | . $7 \quad 2.8$ |
| Median | . 25 | . 251 |
| Percent | 57 | 1429 |
| Number in Sample | 7 | |
| PMRC Review, | Normal | Optimistic Pessimistic |
| Mean | 13.4 | 629 |
| Std. Dev. | 4.7 | 2.814 .6 |
| Median | 16. | 8 40 |
| Percent | 54 | 1630 |
| Number in Sample | 7 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | . 6 | . 31.3 |
| Std. Dev. | . 6 | . 31.2 |
| Median | . 5 | . 31 |
| Percent | 55 | 23 22 |
| Number in Sample | | |

Normal 9.8
7.2
7.9 4.5

21
10.5 6 50
13.1
12.9

Std. Dev.
Median
Percent

7
 Number in Sample 7

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.5 | 12.1 |
| Std. Dev. | 1.2 | . $9 \quad 1.5$ |
| Median | 1 | . $5 \sim 2$ |
| Percent | 53 | 2918 |
| Number in Sample | 7 | |
| Solicitation | Normal | Optimistic Pessimistic |
| Mean | 180 | 148 237.3 |
| Std. Dev. | 9.8 | 27.6 35.7 |
| Median | 176 | 152 252 |
| Percent | 50 | 27 23 |
| Number in Sample | 7 | |

Step 6
Normal
Optimistic Pessimistic
Mean 1.6
Std. Dev.
1.2

Median
Percent
1
53
Number in Sample 7

| Tech. Eval. | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 137.7 | $94 \quad 227.7$ |
| Std. Dev. | 83.6 | 47.689 .4 |
| Median | 100 | 80195 |
| Percent | 50 | 18 32 |
| Number in Sample | 6 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 3.9 | 2.45 |
| Std. Dev. | 1.8 | 1.3 2.4 |
| Median | 4 | 26 |
| Percent | 50 | 25 25 |
| Number in Sample | 7 | |

| Step 8 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 6.9 | 4.611 |
| Std. Dev. | 5 | 3.69 .1 |
| Median | 6 | 48 |
| Percent | 49 | 2823 |
| Number in Sample | 7 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 2.9 | 1.54 .9 |
| Std. Dev. | 2.5 | 15.1 |
| Median | 2 | 13 |
| Percent | 54 | 1927 |
| Number in Sample | 7 | |
| BAFO Time | Normal | Optimistic Pessimistic |
| Mean | 66.7 | 5096 |
| Std. Dev. | 10.6 | 16.719 .6 |
| Median | 62 | 4088 |
| Percent | 48 | $18 \quad 34$ |
| Number in Sample | 7 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | 11.5 | 5.915 |
| Std. Dev. | 11.9 | 5.215 |
| Median | 7 | 68 |
| Percent | 47 | 1934 |
| Number in Sample | 7 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 1.5 | .9 2.4 |
| Std. Dev. | 1 | . 61.2 |
| Median | 2 | 13 |
| Percent | 54 | 2026 |
| Number in Sample | 7 | |
| JAG K Review | Normal | Optimistic Pessimistic |
| Mean | 20.5 | 9.3 38.7 |
| Std. Dev. | 10.4 | 3.3 21.1 |
| Median | 16 | 8 32 |
| Percent | 52 | 1731 |
| Number in Sample | 7 | |

Buyers' STEPS

Contractor Sign Normal Optimistic Pessimistic

| Mean | 58 | 28 | 102.7 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 18.5 | 14.1 | 39.3^{3} |
| Median | 54 | 32 | 80 |
| Percent | 59 | 13 | 28 |

Number in Sample 6
Step 18 Normal Optimistic Pessimistic

| Mean | .7 | .4 | 1.1 |
| :--- | :--- | :--- | :--- |
| Std Dev. | .3 | .3 | .5 |
| Median | .8 | .5 | 1 |
| Percent | 48 | 28 | 24 |

Number in Sample 7

| NETWORK F3 | | |
| :---: | :---: | :---: |
| Step 1 | Normal | Optimistic Pessimistic |
| Mean | 9.7 | 6.913 .8 |
| Std. Dev. | 10.4 | 7.912 .6 |
| Median | 6 | 412 |
| Percent | - | - - |
| Number in Sample 7 | | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.4 | . 92 |
| Std. Dev. | 1.2 | .9 $\quad 1.5$ |
| Median | 1 | . 50 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Solicitation Time | Normal | Optimistic Pessimistic |
| Mean | 162.7 | 105.3216 |
| Std. Dev. | 12 | 19.9 27.2 |
| Median | 160 | 116220 |
| Percent | - | - - |
| Number in Sample | 6 | |

| Tech. Eval. | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 108.7 | 73.3172 |
| Std. Dev. | 40.4 | 35.6 49.3 |
| Median | 108 | 72168 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 2.1 | 1.3 3.3 |
| Std. Dev. | . 7 | . 61.3 |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 4.5 | 3.16 .1 |
| Std. Dev. | 2.3 | 2.13 |
| Median | 4 | 36 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 9 | Normal | Optimistic Pessimistic |
| Mean | 2.3 | 1.45 .4 |
| Std. Dev. | 1.2 | .8 5.2 |
| Median | 2 | 13 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 10 | Normal | Optimistic Pessimistic |
| Mean | 7.9 | 5.110 .1 |
| Std. Dev. | 7.7 | 5.110 .4 |
| Median | 8 | 48 |
| Percent | - | - - |
| Number in Sample | 7 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | . 72 |
| Std. Dev. | 1 | .6 1.4 |
| Median | 1 | . 51.5 |
| Percent | - | - - |
| Number in Sample | 7 | |

| Step 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 6.2 | 4.19 .3 |
| Sta. Dev. | 8.8 | $5.9 \quad 11.5$ |
| Median | 3.3 | 24.5 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 1.3 | .8 1.8 |
| Std. Dev. | 1.4 | $1.1 \quad 1.6$ |
| Median | . 8 | . 51 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Solicitation | Normal | Optimistic Pessimistic |
| Mean | 136 | 81.6204 .8 |
| Std. Dev. | 37.5 | 28.5 46.9 |
| Median | 144 | 80200 |
| Percent | - | - - |
| Number in Sample | 5 | |
| Tech. Eval. | Normal | Optimistic Pessimistic |
| Mean | 103.2 | 75.2182 .4 |
| Std. Dev. | 46.2 | 30.4 47.1 |
| Median | 80 | 80 176 |
| Percent | - | - - |
| Number in Sample | 5 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 1.4 | . $7 \quad 2.5$ |
| Std. Dev. | . 5 | .2 . 8 |
| Median | 1.3 | . 63 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 8 | Normal | Oprimistic Pessimistic |
| Mean | 2.8 | 1.84 |
| Std. Dev. | 1.3 | 12.1 |
| Median | 3 | 1.54 .5 |
| Percent | - | - - |
| Number in Sample | 6 | |

Buyers' STEPS
Step 9 Normal Optimistic Pessimistic

| Mean | 1.8 | 1.1 | 3.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.1 | .9 | 2.5 |
| Median | 1.5 | .9 | 3 |
| Percent | - | - | - |

Number in Sample 6

| Step 10 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 3.3 | 2.24 .8 |
| Std. Dev. | 2.5 | 23.9 |
| Median | 2.3 | 1.3 3.5 |
| Percent | - | - - |
| Number in Sample | 6 | |
| Step 11 | Normal | Optimistic Pessimistic |
| Mean | . 8 | . 41.2 |
| Std. Dev. | . 2 | .2 . 5 |
| Median | . 8 | .41 .3 |
| Percent | - | - - |
| Number in Sample | 6 | |

NETWORK MO
Step 1
Normal Optimistic Pessimictic
Mean . 9
Std. Dev. . 6
Median 1
Percent 58
Number in Sample

| Step 2 | Normal | | | Optimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | Pessimistic | |
| Mean | .4 | | .2 | 1 |
| Std. Dev. | .3 | | .2 | 1.3 |
| Median | .3 | | .1 | .5 |
| Percent | 58 | | 16 | 26 |

| Lab Review | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 50 | 24 109.3 |
| Std. Dev. | 28.8 | 18.252 .3 |
| Median | 48 | 28100 |
| Percent | 54 | 13 33 |
| Number in Sample | 6 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | 1.7 | . $7 \quad 2.9$ |
| Std. Dev. | 2 | .9 3.2 |
| Median | . 5 | . 31 |
| Percent | 58 | 16 26 |
| Number in Sample | 7 | |
| Contractor Sign | Normal | Optimistic Pessimistic |
| Mean | 80 | 43.3138 .7 |
| Std. Dev. | 0 | 8.228 .9 |
| Median | 80 | 40120 |
| Percent | 59 | 15 26 |
| Number in Sample | 6 | |
| Step 5 | Normal | Optimistic Pessimistic |
| Mean | . 6 | . 31.3 |
| Std. Dev. | . 4 | .2 . 8 |
| Median | . 5 | . 31 |
| Percent | 60 | 2020 |
| Number in Sample | 7 | |

NETWORK AI

| Step l | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.3 | | .8 | 2.5 |
| Std. Dev. | .9 | | .6 | 1.5 |
| Median | i^{9} | | .5 | 2.5 |
| Percent | 62 | | 22 | 16 |

Buyers' STEPS

| Step | 2 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | Mean | . 5 | . 2 | 1.3 |
| | Std. Dev. | . 4 | . 2 | 1.3 |
| | Median | . 3 | . 1 | 1.0 |
| | Percent | 63 | 19 | 18 |
| Numbe | er in Sampl | 7 | | |

OTHER DUTIES AS ASSIGNED $=32 \%$ or 2.55 hours/day

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)

```
receive typed RFP for review
```


STEP 2: Review RFP

Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer

STEP 4: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk tvpes

STEP 5: Review Contract

Review contract
Review file

Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file
to contractor, buyer, clerk

STEP 7: Sign Contract

Sign Contract
Sign Sorry letters
Sign form letters ($12,13,87$)

C3 COMPETITIVE BUY $\$ 100,000$ to $\$ 250,000$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)
receive typed RFP for review

STEP 2: Review RFP

Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer

STEP 4: Pre-negotiation review

Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk types

STEP 5: Review Contract
Review contract
Review file
Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file to JAG

STEP 7: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 8: Sign Contract
Sign Contract
Sign Sorry letters
Sign form letters (12,13,87)

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)
receive typed RFP for review

STEP 2: Review RFP
Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign JAG sheet
to JAG

STEP 4: Review corrections (JAG) and sign RFP
to clerk,repro, contractor, buyer

STEP 5: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk types
STEP 6: Review Contract
Review contract
Review file
Send back for corrections
Buyer corrects
STEP 7: Review corrections, sign file
to JAG
STEP 8: Review JAG corrections, sign
to contractor, buyer, clerk
STEP 9: Sign Contract
Sign Contract
Sign Sorry letters
Sign form letters (12,13,87)
C5 COMPETITIVE BUY $\$ 500,000$ to $\$ 750,000$ PCO Steps
STEP 1: Review PR before Buyer receives it (include time fordiscussions with buyer, informal BSP)
receive typed RFP for review
STEP 2: Review RFP
Review RFP
Review File and sign

Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file
to JAG

STEP 4: Review corrections (JAG), sign file
to PMRC

STEP 5: Review corrections (PMRC), sign RFP
to clerk,repro, offerors ask for RFP Amd.

STEP 6: Sign RFP Amendment
to offerors, buver, lab, buyer

STEP 7: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk types

STEP 8: Review Contract

Review contract
Review file

Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 9: Review corrections, sign file
to JAG

STEP 10: Review JAG corrections, sign file
to PMRC

STEP 11: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk

STEP 12: Sign Contract
Sign Contract
Sign Sorry letters
Sign form letters (12,13,87)

C6 COMPETITIVE BUY $\$ 750,000$ to $\$ 1,000,000$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP with Div. Chief)
receive typed RFP for review

STEP 2: Review RFP
Review RFP

Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file
to JAG

STEP 4: Review corrections (JAG), sign file
to PMRC

STEP 5: Review corrections (PMRC), sign RFP
to clerk,repro, offerors ask for RFP Amd.

STEP 6: Sign RFP Amendment
to offerors, buyer, lab, buyer

STEP 7: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk tyoes

STEP 8: Review Contract

Review contract

Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 9: Review corrections, sign file
to JAG

STEP 10: Review JAG corrections, sign file
to PMRC

STEP 11: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk

STEP 12: Sign Contract
Sign Contract
Sign Sorry letters
Sign form letters (12,13,87)

C7 COMPETITIVE BUY $\$ 1,000,000$ to $\$ 3,500,000$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP with Div. Chief)
receive typed RFP for review

STEP 2: Review RFP

Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file
to JAG

STEP 4: Review corrections (JAG), sign file to PMRC

STEP 5: Review corrections (PMRC), sign RFP
to clerk,repro, offerors ask for RFP Amd.

STEP 6: Sign RFP Amendment
to offerors, buver, lab, buyer

STEP 7: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise /
Sign BAFO request letters
buyer negotiates, writes award, clerk types
STEP 8: Review Contract
Review contractReview file
Review and sign Subcontracting PlanSend back for corrections
Buyer corrects
STEP 9: Review corrections, sign file
to JAG
STEP 10: Review JAG corrections, sign file
to PMRC
STEP 11: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk
STEP 12: Sign Contract
Sign Contract
Help resolve final review problems with PMRC or PMR
Sign Sorry letters
Sign form letters $(12,13,87)$
C8 COMPETITIVE BUY $\$ 3,500,000$ to $\$ 10,000,000$ PCO Steds
STEP 1: Review PR before Buyer receives it (include time fordiscussions with buyer)

```
receive typed RFP for review
```

```
STEP 2: Review RFP
    Review RFP
    Review File and sign
    Send back for corrections
```

to buyer, clerk, buyer
STEP 3: Review corrections, sign file
to JAG

STEP 4: Review corrections (JAG), sign file
STEP 5: Review corrections (PMRC), sign file
to ASD/PMC

STEP 6: Review corrections (ASD/PMC), sign RFP
to clerk,repro, offerors ask for RFP Amd.

STEP 7: Sign RFP Amendment
to offerors, buver, lab, buver

STEP 8: Pre-negotiation review
Sign technically unacceptable letters (if any)

Review single source determination (if any)
Review buyer's negotiation position / advise /
Sign BAFO request letters
buyer holds pre-neg, negotiates, writes award, clerk types

STEP 9: Review Contract

Review contract
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 10: Review corrections, sign file
to JAG

STEP 11: Review JAG corrections, sign file to PMRC

STEP 12: Review PMRC corrections, sign file
to ASD/PMC

STEP 13: Review ASD/PMC corrections, send out for signature to contractor, buyer, clerk

STEP 14: Sign Contract

Sign Contract
Help resolve final review problems with PMRC, PMR, PM
Sign Sorry letters
Sign form letters $(12,13,87)$

S2 SOLE SOURCE BUY $\$ 10,000$ to $\$ 100,000$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)

Review and sign Sole Source Justification

receive typed RFP for review

STEP 2: Review RFP
Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer

STEP 4: Pre-negotiation review

Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer

STEP 4: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 5: Review Contract
Review contract
Review file
Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file
to JAG

STEP 7: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 8: Sign Contract
Sign Contract
Sign form letters $(12,13,87)$

S4 SOLE SOURCE BUY $\$ 250,000$ to $\$ 500,000$ PCO Steps
STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)

Review and sign Sole Source Justification

receive typed $R F P$ for review
STEP 2: Review RFP
Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buver

STEP 3: Review corrections, sign JAG sheet
to JAG

STEP 4: Review corrections (JAG) and sign RFP
to clerk,repro, contractor, buyer

STEP 5: Pre-negotiation review

Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 6: Review Contract
Review contract
Review file
Send back for corrections

Buyer corrects

STEP 7: Review corrections, sign file
to JAG

STEP 8: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 9: Sign Contract
Sign Contract
Sign form letters (12,13,87)

S5 SOLE SOURCE BUY $\$ 500,000$ to $\$ 750,000$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP)

Review and Sign Sole Source Justification
receive typed RFP for review

STEP 2: Review RFP

Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file

> to JAG
STEP 4: Review corrections (JAG), sign file

to PMRC

STEP 5: Review corrections (PMRC), sign RFP
to clerk,repro, offerors

STEP 6: Pre-negotiation review

Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk tvpes

STEP 7: Review Contract

Review contract
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 8: Review corrections, sign file
to JAG

STEP 9: Review JAG corrections, sign file
to PMRC

STEP 10: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk

STEP 11: Sign Contract
Sign Contract
Sign form letters (12,13,87)

S6 SOLE SOURCE BUY $\$ 750,000$ to $\$ 1,000,000$ PCO Steps

STEP l: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP with Div. Chief)

Review and Sign the Sole Source Justification
receive typed RFP for review

STEP 2: Review RFP
Review RFP
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file

```
to JAG
```

STEP 4: Review corrections (JAG), sign file

```
to PMRC
```

STEP 5: Review corrections (PMRC), sign RFP
to clerk,repro, offerors

STEP 6: Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 7: Review Contract

Review contract
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 8: Review corrections, sign file
to JAG

STEP 9: Review JAG corrections, sign file
to PMRC

STEP 10: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk

STEP 11: Sign Contract
Sign Contract
Sign form letters (12,13,87)

S7 SOLE SOURCE BUY $\$ 1,000,000$ to $\$ 3,500,000^{\circ}$ PCO Steps

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, informal BSP with Div.. Chief) Re:sw and Sign Sole Source Justification receive typed RFP for review

STEP 2: Review RFP
Review RFP
Revie:: File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections, sign file

> to JAG

STEP 4: Review corrections (JAG), sign file
to PMRC

STEP 5: Review corrections (PMRC), sign RFP
to clerk, repro, offeror ask for RFP Amd.

STEP 6: Sign RFP Amendment
to offeror, buyer, lab, buyer

STEP 7: Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

```
STEP 8: Review Contract
    Review contract
    Review file
    Review and sign Subcontracting Plan
    Send back for corrections
```

 Buyer corrects
 STEP 9: Review corrections, sign file
to JAG
STEP 10: Review JAG corrections, sign file
to PMRC
STEP 11: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk
STEP 12: Sign Contract
Sign Contract
Help resolve final review problems with PMRC or PMR
Sign form letters (12,13,87)

STEP 8: Review buyer's negotiation position / advise /
buyer holds pre-neg, negotiates, writes award, clerk types

STEP 9: Review Contract
Review contract
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 10: Review corrections, sign file
to JAG

STEP 11: Review JAG corrections, sign file
to PMRC

STEP 12: Review PMRC corrections, sign file
to ASD/PMC

STEP 13: Review ASD/PMC corrections, send out for signature
to contractor, buyer, clerk

STEP 14: Sign Contract

Sign Contract
Help resolve final review problems with PMRC, PMR, PM
Sign form letters (12,13,87)

receive letter for review

STEP 1: Review letter to contractor for proposal
Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections and sign letter
to clerk,repro, contractor, buyer

STEP 3: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Contract Modification
Review contract modification
Review file
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to contractor, buyer, clerk

STEP 6: Sign Contract
M3 MODIFICATION $\$ 100,000$ to $\$ 250,000$ PCO SĖeps
receive typed letter for review

STEP 1: Review letter to contractor for proposal
Send back for corrections
to buyer, clerk, buyer

STEF 2: Review corrections and sign letter
to clerk,repro, contractor, buyer

STEP 3: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification

Review Modification
Review file
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to JAG

STEP 6: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 7: Sign Modification
receive typed Letter for review

STEP I: Review letter to contractor for proposal Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections, sign letter
to clerk, repro, contractor, buyer

STEP 3: Pre-negotiation review

Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification
Review Modification
Review file
Send back for corrections

Buyer corrects
\square
STEP 5: Review corrections, sign file
to JAG

STEP 6: Review JAG corrections, sign
to contractor, buyer, clerk
receive typed letter for review

STEP 1: Review letter to contractor for proposal •
Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections, sign letter
to contractor

STEP 3: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification
Review Modification
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to JAG
STEP 6: Review JAG corrections, sign file
to PMRC
STEP 7: Review PMRC corrections, send out-for-signatureto contractor, buyer, clerk
STEP 8: Sign Modification

STEP 1: Review letter to contractor for proposal Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections, sign letter
to contractor

STEP 3: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification
Review Modification
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to JAG
STEP 6: Review JAG corrections, sign file
to PMRC
STEP 7: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk
STEP 8: Sign Modification

```
receive typed Letter for review
```

STEP 1: Review letter to contractor for proposal on changes. Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections, sign letter

STEP 3: Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification
Review Modification
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to JAG

STEP 6: Review JAG corrections, sign file
to PMRC

STEP 7: Review PMRC corrections, send out-for-signature to contractor, buyer, clerk

STEP 8: Sign Modification
Help resolve final review problems with PMRC or PMR

1

STEP I: Review RFP
Review RFP letter
Review BSP Minutes
Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections, sign file
to PMRC

STEP 3: Review corrections (PMRC), sign BSP Minutes
to ASD/PMC

STEP 4: Review buyer's negotiation position / ađvise /
buyer holds pre-neg, negotiates, writes award, clerk types

STEP 5: Review Contract Modification

Review contract modification
Review file
Review and sign Subcontracting Plan
Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file

to JAG

STEP 7: Review JAG corrections, sign file
to PMRC

STEP 8: Review PMRC corrections, sign file
to ASD/PMC

STEP 9: Review ASD/PMC corrections, send out for signature
to contractor, buyer, clerk

STEP 10: Sign Contract Modification
Sign Contract Modification
Help resolve final review problems with PMRC, PMR, PM
C9 COMPETITIVE BUY
buyer negotiates, writes award, clerk types

STEP l: Review Contract

Review contract
Review file
Review and sign Subcontracting Plan
Send back for corrections
Buyer corrects
STEP 2: Review corrections, sign file
to JAG
STEP 3: Review JAG corrections, sign file
to PMRC
STEP 4: Review PMRC corrections, send out-for-signature
to contractor, buyer, clerk

```
STEP 5: Sign Contract
    Sign Contract
    Help resolve final review problems with PMRC or PMR
    Sign Sorry letters
    Sign form letters (12,13,87)
```


receive typed funding

STEP 1: Review typed funding, sign FI 66.
to PMRC, clerk,buyer

STEP 2: Sign funding.

STEP 1: Review type change, sign $F I$ 53, sign letter to contractor.

STEP 2: Sign contract Modification

STEP 1: Review PR before Buyer receives it (include time for discussions with buyer, irformal BSP)
receive typed RFP for review

STEP 2: Review RFP
Review RFp
Review File and sign
Send back for corrections
to buyer, clerk, buyer

STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer

STEP 4: Pre-negotiation review
Sign technically unacceptable letters (if any)
Review single source determination (if any)
Review buyer's negotiation position / advise
Sign BAFO request letters
buyer negotiates, writes award, clerk types

STEP 5: Review Contract
Review contract
Review file
Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file
to JAG

STEP 7: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 8: Sign Contract
Sign Contract
Sign Sorry letters
Sign form letters $(12,13,87)$
STEP l: Review PR before Buyer receives it (include time fordiscussions with buyer, informal BSP)Review and sign Sole Source Justification
receive typed RFP for review
STEP 2: Review RFP
Review RFPReview File and signSend back for corrections
to buyer, clerk, buyer
STEP 3: Review corrections and sign RFP
to clerk,repro, contractor, buyer
STEP 4: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types
STEP 5: Review Contract
Review contract
Review file
Send back for corrections

Buyer corrects

STEP 6: Review corrections, sign file
to JAG

STEP 7: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 8: Sign Contract
Sign Contract
Sign form letters (12,13,87)

```
receive typed letter for review
```

STEP 1: Review letter to contractor for proposal. Send back for corrections
to buyer, clerk, buyer

STEP 2: Review corrections and sign letter
to clerk,repro, contractor, buyer

STEP 3: Pre-negotiation review
Review buyer's negotiation position / advise
buyer negotiates, writes award, clerk types

STEP 4: Review Modification

Review Modification
Review file
Send back for corrections

Buyer corrects

STEP 5: Review corrections, sign file
to JAG

STEP 6: Review JAG corrections, sign
to contractor, buyer, clerk

STEP 7: Sign Modification

Receive typed change from buver

STEP: Sign Modification

OTHER DUTIES AS ASSIGNED

Write and process D\&F's over \$ 5M
Train new buyers
Substitute for Branch Chief
Attend meetings for buyers (buyer's negotiation, BSP, Pre-Neg's, meetings with Lab,etc.)

Review draft PRs
Help gather data for management
Sign correspondence for contract administration functions (transfer of GFP, retention of classified, etc.)

Answer telephone calls for absent buyers
Step Normal Optimistic Pessimistic

| Mean | .4 | .3 | 1.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .4 | .3 | 2.2 |
| Median | .3 | .2 | .5 |
| Percent | 55 | 23 | 22 |

Number in Sample 9

| Step 2 | Normal | | Optimistic Pessimistic |
| :--- | :--- | :--- | :--- |
| Mean | 1.4 | .7 | 2.4 |
| Std. Dev. | 1.1 | .3 | 2 |
| Median | 1 | .5 | 2 |
| Percent | 72 | 12 | 16 |

Number in Sample 9
Step 3 Normal Optimistic Pessimistic

Mean
Std Dev 3
Median 3
Percent $\quad 76$
Number in Sample
9

Step 4
Normal
Mean
sta. Dev.
Median Percent

2
3 .8 70
Number in Sample 9

Step 5
Mean 1.6

Std. Dev.
Median
Percent
Number in Sample
Step 6
Mean
. 4
Std. Dev. . 3
Median . 3
Percent 74
Number in Sample
. 3
.9
. 3
.7
.3
.7
11
13

PCO's STEPS

| Step 7 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | | .2 | .6 |
| Std. Dev. | .3 | | .3 | .6 |
| Median | .3 | | .2 | .3 |
| Percent | 77 | | 13 | 10 |

Number in Sample 9

NETWORR C3
Step 1
Normal
Optimistic Pessimistic
Mean . 5
Std. Dev.
.6
. 4
. 6
2
Median
.3
.2
2.5

Percent
Number in Sample 9
Step 2
Norma
Optimistic Pessimistic
Mean 1.4
Std. Dev. 1.2
Median
1
Percent
-
Number in Sample
Step 4
Normal
Optimistic Pessimistic
Mean
1.7

Std. Dev.
Median
3.2

Percent
.5
-
Number in Sample 9
Step 5
Norma
Optimistic Pessimistic
Mean $\quad 1.6$
Std. Dev. 1.2

Median
1.3

Percent
-

[^1]
PCO's STEPS

| Step 7 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 4 | . 4 | . 9 |
| Std. Dev. | . 6 | . 7 | 1.0 |
| Median | . 3 | . 2 | . 4 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 8 | Normal | Optimistic | Pessimistic |
| Mean | . 3 | . 2 | . 6 |
| Std. Dev. | . 3 | . 3 | . 6 |
| Median | . 3 | . 2 | . 3 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 7 | . 4 | 1.8 |
| Std. Dev. | . 9 | . 6 | 2.3 |
| Median | . 3 | . 3 | . 7 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 1.6 | . 9 | 2.6 |
| Std. Dev. | 1.4 | . 8 | 2.1 |
| Median | 1 | . 8 | 2 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 4 | Normal | Optimistic | Pessimistic |
| Mean | . 6 | . 3 | 1.1 |
| Std. Dev. | . 6 | . 3 | . 9 |
| Median | . 5 | . 3 | . 8 |
| Percent | - | | - |
| Number in Sample | 8 | | |

| Step 5 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 2.1 | | .8 | 2.8 |
| Std. Dev. | 3.3 | | .7 | 3.9 |
| Median | .8 | | .5 | 1.3 |
| Percent | - | | - | |

| Step 6 | Normal | | | Optimistic |
| :--- | :---: | :---: | :---: | :---: |
| Mean | 1.7 | | 1.0 | 2.9 |
| Std. Dev. | 1.2 | | .7 | 2.4 |
| Median | 1.4 | | .9 | 2.3 |
| Percent | - | - | - | | Number in Sample 8

| Step 9 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | | .2 | .7 |
| Std. Dev. | .3 | | .3 | .6 |
| Median | .3 | | .2 | .3 |
| Percent | - | - | - | |
| Number in Sample | 8 | | | |

NETWORK C5
Step 1 Normal Optimistic Pessimistic

| Mean | .6 | .5 | 1.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .6 | .6 | 2.1 |
| Median | .5 | .3 | 1 |
| Percent | - | - | - |

Number in Sample 9

| Step 2 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.6 | 1 | 2.8 |
| Std. Dev. | 1.2 | . 6 | 2 |
| Median | 1 | . 8 | 2.5 |
| Percent | | - | - |
| Number in Sample | 9 | | |
| Step 5 | Normal | Optimistic | Pessimistic |
| Mean | . 8 | . 4 | 1.7 |
| Std. Dev. | . 5 | . 3 | 1.2 |
| Median | . 5 | . 3 | 1.5 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

| Step 6 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | .2 | .7 | |
| Std. Dev. | .3 | .3 | .6 | |
| Median | .3 | -2 | .5 | |
| Percent | - | - | - | |
| Number in Sample | 9 | | | |

Step 7 Normal Optimistic Pessimistic

| Mean | 2.2 | .9 | 3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 3.1 | .7 | 3.6 |
| Median | 1 | .8 | 2 |
| Percent | - | - | - |

Number in Sample 9

| Step 8 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :--- | :--- | :--- |
| Mean | 1.8 | | 1.1 | 3.2 |
| Stu. Dev. | 1.1 | | .6 | 2.3 |
| Median | 1.5 | | 1.0 | 3 |
| Percent | - | | - | - |

Number in Sample 9
Step 11 Normal Optimistic Pessimistic

Mean 7
Std. Dev. . 9
Median . 5
Percent -
Number in Sample 9
Step 12 Normal Optimistic Pessimistic
Mean . 6
Std. Dev. . 7
Median . 3
Percent -
Number in Sample 9

```
PCO's STEPS
```

NETWORK C6

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 8 | . 5 | 1.9 |
| Std. Dev. | . 8 | . 6 | 2.2 |
| Median | . 7 | . 5 | 1 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 1.9 | 1.1 | 3.1 |
| Std. Dev. | 1.2 | . 6 | 2 |
| Median | 1.3 | . 8 | 2.5 |

Number in Sample 9

| Step 7 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 2.4 | | 1 | 3.6 |
| Std. Dev. | 3 | | .7 | 3.9 |
| Median | 1.5 | | .8 | 2 |
| Percert | - | - | - | |

Number ir mple 9

| Step 8 | Normal | | Optimistic | |
| :--- | :---: | :--- | :--- | :--- |
| | | | | |
| Mean | 1.9 | | 1.2 | 3.3 |
| Std. Dev. | 1.2 | | .6 | 2.4 |
| Median | 1.5 | 1 | 2 | |
| Percent | - | - | - | |

Number in Sample 9

| Step 12 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .6 | | .3 | 1.2 |
| Std. Dev. | .6 | | .3 | 1.1 |
| Median | .3 | | .2 | .3 |
| Percent | - | - | - | |

| NETWORK C7 | | |
| :---: | :---: | :---: |
| Step 1 | Normal | Optimistic Pessimistic |
| Mean | 1.6 | 13 |
| Std. Dev. | 1.4 | . $8 \quad 3$ |
| Median | 1 | .81 .5 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 2 | Normal | Optimistic Pessimistic |
| Mean | 2.6 | 1.74 .3 |
| Std. Dev. | 1.5 | .9 2.6 |
| Median | 2 | 1.54 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 7 | Normal | Optimistic Pessimistic |
| Mean | 3.2 | 1.64 .4 |
| Std. Dev. | 3.7 | 1.24 .8 |
| Median | 1.5 | 12 |
| Percent | - | - - |
| Number in Sample | 9 | |
| Step 8 | Normal | Optimistic Pessimistic |
| Mean | 2.3 | 1.54 |
| Std. Dev. | 1 | . 5 2.5 |
| Median | 2 | 1.54 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 12 | Normal | Optimistic Pessimistic |
| Mean | 1 | . 61.9 |
| Std. Dev. | . 9 | .6 1.6 |
| Median | . 8 | . $5 \quad 2$ |
| Percent | - | - |
| Number in Sample | 9 | |

MICROCOPY RESOLUTION TEST CHART national bureau of stanoards-1963-A

| Step 1 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 3.1 | | 1.9 | |
| Std. Dev. | 3.6 | | 5.9 | |
| Median | 1.5 | 1 | 7.5 | |
| Percent | - | - | 2 | |
| Number in Sample | 9 | | | |

| Step 2 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 3.3 | 2.55 .1 |
| Std. Dev. | 1.7 | 1.3 2.6 |
| Median | 3 | 26 |
| Percent | - | - - |

Number in Sample 9

Step 6 Normal Optimistic Pessimistic

| Mean | 1.4 | .9 | 2.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .8 | .5 | 2.3 |
| Median | 1 | .8 | 2 |

Number in Sample 9
Step 8 Normal Optimistic Pessimistic

| Mean | 4.1 | 2.3 | 6.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5 | 2.5 | 8.1 |
| Median | 2 | 1 | 2.5 |
| Percent | - | - | - |

Number in Sample 9

| Step 9 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 3.1 | | 2.2 | 5.4 |
| Std. Dev. | 1.5 | | 1.1 | 3.5 |
| Median | 3 | | 2 | 5 |
| Percent | - | | - | |

Step 13
Normal
Optimistic Pessimistic

| Mean | 1.3 |
| :--- | :--- |
| Std. Dev. | .9 |
| Median | .9 |
| Percent | - |
| er in Sample | 8 |

| Step 14 | Normal | Optin | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.8 | 1.1 | 3.1 |
| Std. Dev. | 1.2 | . 7 | 2.3 |
| Median | 2 | 1 | 3 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

NETWORK S2

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 8 | . 5 | 1.8 |
| Std. Dev. | . 9 | . 6 | 2.5 |
| Median | . 5 | . 25 | . 8 |
| Percent | 70 | 15 | 15 |
| Number in Sample | 9 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 1.1 | . 6 | 1.8 |
| Std. Dev. | . 6 | . 3 | 1 |
| Median | 1 | . 5 | 2 |
| Percent | 70 | 14 | 16 |

Number in Sample 9
Step 3 Normal Optimistic Pessimistic

| Mean | .4 | .3 | .8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .2 | .3 | .5 |
| Median | .3 | .3 | .7 |
| Percent | 71 | 15 | 14 |

Number in Sample 9

| Step | 4 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | Mean | . 9 | . 5 | 1.6 |
| | Std. Dev. | . 6 | . 3 | 1.3 |
| | Median | . 8 | . 4 | 1.3 |
| | Percent | 70 | 13 | 17 |
| Numbe | er in Sample | 9 | | |
| Step | 5 | Normal | Optimistic | Pessimistic |
| | Mean | 1.4 | . 8 | 2.3 |
| | Std. Dev. | . 8 | . 5 | 1.6 |
| | Median | 1 | . 5 | 2 |
| | Percent | 70 | 15 | 15 |
| Numbe | er in Sample | 9 | | |

| Step 6 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 4 | . 3 | . 8 |
| Std. Dev. | . 3 | . 3 | . 5 |
| Median | . 3 | . 3 | . 8 |
| Percent | 70 | 15 | 15 |
| Number in Sample | 9 | | |
| Step 7 | Normal | Optimistic | Pessimistic |
| Mean | . 4 | . 3 | . 8 |
| Std. Dev. | . 3 | . 3 | . 7 |
| Median | .3 | . 2 | \cdot^{3} |
| Percent | 75 | 16 | 9 |
| Number in Sample | 9 | | |

NETWORR S3

| Step 1 | Normal | | Optimistic | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| Mean | 1.0 | | .7 | 2.1 |
| Std. Dev. | 1.0 | | .8 | 2.7 |
| Median | .8 | | .5 | 1 |
| Percent | - | - | - | |

Number in Sample 9
Step 2 Normal Optimistic Pessimistic

| Mean | 1.2 | .8 | 2 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .8 | .5 | 1.1 |
| Median | 1 | -5 | 2 |
| Percent | - | - | - |

Number in Sample 8
Step 4
Normal Optimistic Pessimistic
Mean I
Std. Dev. . 8
Median . 5
Percent -
Number in Sample 8

Step 5 Normal Optimistic Pessimistic

| Mean | 1.5 | 1.0 | 2.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.0 | 0.7 | 1.8 |
| Median | 1.1 | 0.8 | 1.8 |
| Percent | - | - | - |

Number in Sample 8

| Step 7 | Normal | | Optimistic Pessimistic |
| :---: | :---: | :---: | :---: |
| | | | |
| Mean | .5 | | .4 |
| Std. Dev. | .6 | .6 | .9 |
| Median | .3 | .3 | .8 |
| Percent | - | -2 | .8 |
| Number in Sample | 9 | | |

| Step 8 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .4 | | .3 | .8 |
| Std. Dev. | .3 | .3 | .6 | |
| Median | .3 | | .2 | .5 |
| Percent | - | - | - | |

NETWORR S4

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.2 | . 8 | 2.2 |
| Std. Dev. | 1 | . 6 | 1.9 |
| Median | . 9 | . 6 | 1.5 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | 1.6 | . 8 | 2.5 |
| Std. Dev. | 1.3 | . 5 | 2.1 |
| Median | 1 | . 6 | 2.1 |
| Percent | - | - | - |
| Number in Sample | 8 | | |

| Step 4 | Normal | | Optimistic Pessimistic | |
| :--- | :--- | :--- | :--- | :--- |
| Mean | .7 | | .5 | 1.5 |
| Std. Dev. | .9 | | .6 | 1.5 |
| Median | .5 | | .3 | 1 |
| Percent | - | - | | |

Number in Sample 9

| Step 5 | Normal | | Optimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.3 | | .7 | 2.6 |
| Std. Dev. | .9 | | .3 | 2.5 |
| Median | .9 | | .6 | 1.5 |
| Percent | -9 | - | - | |

| Step 6 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.4 | | .9 | 2.6 |
| Std. Dev. | .8 | | .5 | 1.7 |
| Median | 1.3 | | .8 | 2.3 |
| Percent | - | - | - | |
| Number in Sample | 8 | | | |

| Step 9 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | | .2 | .7 |
| Std. Dev. | .3 | | .3 | .6 |
| Median | .3 | | .2 | .4 |
| Percent | - | - | - | |

NETWORR S5

| Step 1 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.1 | | .7 | 1.9 |
| Std. Dev. | 1 | | .6 | 1.7 |
| Median | .8 | | .5 | 1 |
| Percent | - | - | - | |

Number in Sample 9
Step 2
Normal Optimistic Pessimistic
$\begin{array}{ll}\text { Mean } & 1.8 \\ \text { Std. Dev. } & 1.3\end{array}$
Median
Percent
1.0
2.8
.8
2
.8
2.5

Number in Sample 9


```
PCO's STEPS
NETWORR S6
Step 1 Normal Optimistic Pessimistic
\begin{tabular}{llll} 
Mean & 1.4 & .8 & 2.1 \\
Std. Dev. & 1.1 & .6 & 1.7 \\
Median & .8 & .5 & 1 \\
Percent & - & - & -
\end{tabular}
Number in Sample 9
Step 2 Normal Optimistic Pessimistic
    Mean 1.8 1 3
    Std. Dev. 1.2 .5 2.1
    Median 1.3 .8 2.5
    Percent - - -
Number in Sample 9
Step }6\mathrm{ Normal Optimistic Pessimistic
\begin{tabular}{llll} 
Mean & 1.4 & .8 & 2.5 \\
Std. Dev. & 1.3 & .7 & 2.4 \\
Median & 1 & .5 & 1.5
\end{tabular}
Number in Sample 9
Step 7
Normal Optimistic Pessimistic
\begin{tabular}{llll} 
Mean & 2 & 1.2 & 3.3 \\
Std. Dev. & 1.1 & .5 & 1.9 \\
Median & 1.5 & 1 & 3
\end{tabular}
    Percent -
    - - -
Number in Sample 9
Step 11 Normal Optimistic Pessimistic
\begin{tabular}{llll} 
Mean & .5 & .3 & 1.1 \\
Std. Dev. & .4 & .3 & .8 \\
Median & .3 & .3 & 1
\end{tabular}
Number in Sample 9
```

NETWORR S7

Step 1

| Mean | 2.4 | 1.4 | 4.3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.4 | 1.2 | 4.9 |
| Median | 1.5 | 1 | 2 |
| Percent | - | - | - |

Number in Sample 9
Step 2 Normal Optimistic Pessimistic

| Mean | 2.6 | 1.5 | 4.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.6 | 8.6 | 3.1 |
| Median | 2.5 | 1.5 | 3.5 |
| Percent | - | - | - |

Number in Sample 9
Step 6 Normal Optimistic Pessimistic

| Mean | .7 | .4 | 1.5 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | .6 | .3 | 1.3 |
| Median | .5 | .3 | 1 |

Percent - - -

Number in Sample 9
Step 7 Normal Optimistic Pessimistic

| Mean | 2.7 | 1.6 | 4.4 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.7 | 1.6 | 5 |
| Median | 1 | .8 | 2 |
| Percent | - | - | - |

Number in Sample 9
Step 8 Normal Optimistic Pessimistic

| Mean | 2.8 | 1.9 | 4.9 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.3 | 1.4 | 4.7 |
| Median | 2 | 1.5 | 2.5 |
| Percent | - | - | - |

Number in Sample 9
Step 12 Normal Optimistic Pessimistic
Mean $1.5 \quad .9$ 2.2
Std. Dev. 1.4 .8 1.9
Median
1.1 Percent
Number in Sample 8

| Mean | 4 | 2.2 | 5.8 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 5.3 | 2.6 | 7.9 |
| Median | 1.3 | .9 | 1.8 |
| Percent | - | - | - |
| er in Sample | 8 | | |

Number in Sample 8
Step 2 Normal Optimistic Pessimistic

| Mean | 3.1 | 2.1 | 5.3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.2 | 1.6 | 4.8 |
| Median | 2.5 | 1.8 | 3.3 |

Percent - - -
Number in Sample 8

| Step | 6 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | Mean | 1.3 | . 7 | 2.7 |
| | Std. Dev. | 1.0 | . 5 | 2.3 |
| | Median | . 9 | . 5 | 1.3 |
| | Percent | - | - . | - |
| Numbe | er in Sample | 8 | | |
| Step | 8 | Normal | Optimistic | Pessimistic |
| | Mean | 3 | 1.5 | 5.4 |
| | Std. Dev. | 2.8 | 1.2 | 5.7 |
| | Median | 2 | 1.4 | 3 |
| | Percent | - | - | - |

Number in Sample 8
Step 9
Normal Optimistic Pessimistic

| Mean | 3.5 | 2.1 | 5.6 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 2.5 | 1.1 | 5.1 |
| Median | 2.5 | 1.8 | 3.3 |

Number in Sample 8
Step 13 Normal Optimistic Pessimistic

| Mean | 1.3 | .7 | 2.3 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.1 | .5 | 1.8 |
| Median | 1 | .5 | 1.5 |
| Percent | - | - | - |

| Step 14 | Normal | | Optimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 2 | | .8 | 3.7 |
| Std. Dev. | 2.6 | | .8 | 5.2 |
| Median | 1 | | .5 | 1.8 |
| Percent | - | - | - | |

NETWORK M2

| Step 6 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | | .2 | .9 |
| Std. Dev. | .3 | | .3 | 1.0 |
| Median | .3 | | .2 | .3 |
| Percent | 76 | | 14 | 10 | Number in Sample 9

NETWORK M3

| Step. 1 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | . 7 | . 41.4 |
| Std. Dev. | . 6 | .31 |
| Median | . 4 | . 3 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 3 | Normal | Optimistic Pe istic |
| Mean | . 8 | . 41.3 |
| Std. Dev. | . 8 | . 41.2 |
| Median | . 5 | .3 . 7 |
| Percent | - | . ${ }^{\text {- }}$ |
| Number in Sample | 8 | |
| Step 4 | Normal | Optimistic Pessimistic |
| Mean | 1.1 | .7 1.7 |
| Std. Dev. | . 6 | .31 .0 |
| Median | 1 | .61 .6 |
| Percent | - | - - |
| Number in Sample | 8 | |
| Step 6 | Normal | Optimistic Pessimistic |
| Mean | . 6 | . 31.2 |
| Std. Dev. | . 6 | .3 . 9 |
| Median | . 4 | .2 . 9 |
| Percent | - | - - |
| Number in Sample | 8 | |

Step 7
Normal
Optimistic Pessimistic
Mean
Std. Dev
. 3
Median .3

Percent
Number in Sample 8
PCO's STEPS
NETWORK M4
Step 1 Normal Optimistic Pessimistic
Mean 7
. 4

$$
1.5
$$

$$
\text { Std. Dev. . } 6
$$

$$
.3
$$

$$
1.4
$$

$$
\text { Median } \quad .5
$$

Percent

$$
.3
$$

Number in Sample
Step 3 Normal Optimistic PessimisticMean 9. 5

$$
1.4
$$

Std. Dev. 73
.

$$
\text { Median } \quad .5
$$

$$
.3
$$

Percent
8
Number in Sample
Step 4 Normal Optimistic Pessimistic
Mean 1.3Std. Dev. 9
Median 1
Percent-
Number in Sample 8
Step 7 Normal Optimistic Pessimistic
Mean 3
.2 8
Std. Dev. 3
.3 8
Median 3
.2 . 4Percent-
Number in Sample 8
NETWORR M5

| Step 1 | Normal | | Optimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.0 | | .5 | 1.8 |
| Std. Dev. | 1.0 | | .6 | 2.0 |
| Median | .5 | | .3 | 1 |
| Percent | - | | - | |
| Number in Sample | 9 | | | |

NETWORK M6

| Step 1 | Normal | | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | 1.3 | | .7 | 2.2 |
| Std. Dev. | 1.0 | | .6 | 2.0 |
| Median | .8 | | .5 | 1.5 |
| Percent | - | - | - | |

Step 3
Normal
Optimistic Pessimistic
Mean
1.4
.7
1.9

Std. Dev. 1.1
. 8
.6
1.5

Median
Percent
Number in Sample 8

| Step 4 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.4 | . 9 | 2.6 |
| Std. Dev. | . 8 | . 5 | 1.6 |
| Median | 1 | . 8 | 2.1 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 8 | Normal | Optimistic | Pessimistic |
| Mean | . 4 | . 3 | 1.1 |
| Std. Dev. | . 3 | . 3 | . 8 |
| Median | . 3 | . 2 | . 8 |
| Percent | - | - | - |
| Number in Sample | 8 | | |

NETWORK M7

| Step 1 | Normal | | Optimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | Pessimistic | |
| Mean | 1.5 | | 1.0 | 2.7 |
| Std. Dev. | 1.0 | | .6 | 2.0 |
| Median | 1.0 | | .8 | 2 |
| Percent | - | - | - | |

Number in Sample 9
Step 3
Mean
Normal
1.5
.9
2.4

Std. Dev.
1.0
.5 1.4

Median
1
Percent
-
Number in Sample 9

| Step 4 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 1.7 | 1.1 | 3.1 |
| Std. Dev. | 1.0 | . 8 | 2.4 |
| Median | 1.0 | 0.8 | 2.0 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 8 | Normal | Optimistic | Pessimistic |
| Mean | 1.1 | . 6 | 2.4 |
| Std. Dev. | 1.0 | . 6 | 2.6 |
| Median | . 8 | . 5 | 1.5 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | 2.1 | 1.3 | 3.3 |
| Std. Dev. | 1.4 | . 9 | 2.6 |
| Median | 1.8 | 1.1 | 2.5 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 3 | Normal | Optimistic | Pessimistic |
| Mean | 1.1 | . 6 | 2 |
| Std. Dev. | . 9 | . 6 | 1.5 |
| Median | . 8 | . 5 | 1.3 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 4 | Normal | Optimistic | Pessimistic |
| Mean | 1.8 | 1.1 | 3.1 |
| Std. Dev. | 1.2 | . 6 | 2.4 |
| Median | 1.5 | 1 | 2 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 5 | Normal | Optimistic | Pessimistic |
| Mean | 1.8 | 1.3 | 2.9 |
| Std. Dev. | 1.0 | . 7 | 1.6 |
| Median | 1.8 | 1 | 2.5 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 9 | Normal | Optimistic | Pessimistic |
| Mean | 1 | . 7 | 1.9 |
| Std. Dev. | . 8 | . 6 | 1.4 |
| Median | 1 | . 5 | 1.5 |
| Percent | - | - | - |
| Number in Sample | 8 | | |
| Step 10 | Normal | Optimistic | Pessimistic |
| Mean | 1.1 | . 6 | 2.2 |
| Std. Dev. | 1.0 | . 4 | 2.6 |
| Median | . 8 | . 5 | 1.1 |
| Percent | - | - | - |
| Number in Sample | 8 | | |

NETWORR C9

Step 1

| Mean | 2.5 |
| :--- | :--- |
| Std. Dev. | 1.2 |
| Median | 3 |
| Percent | - |
| $e r ~ i n ~ S a m p l e ~$ | 9 |

Number in Sample 9
Step 5 Normal Optimistic Pessimistic

| Mean | 1.4 | .7 | 3.0 |
| :--- | :--- | :--- | :--- |
| Std. Dev. | 1.2 | .6 | 2.7 |
| Median | 1.0 | .8 | 2.5 |
| Percent | - | - | - |

NETWORK FI

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 4 | . 3 | . 8 |
| Std. Dev. | . 2 | . 3 | . 9 |
| Median | . 3 | . 2 | . 5 |
| Percent | - | - | - |
| Number in Sample | 9 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | . 3 | . 3 | . 5 |
| Std. Dev. | . 3 | . 3 | . 6 |
| Median | . 2 | . 1 | . 3 |
| Percent | - | - | - |
| Number in Sample | 9 | | |

NETWORK MO
Step 1 Normal Optimistic Pessimistic

| Mean | .7 |
| :--- | :--- |
| Std. Dev. | .5 |
| Median | .5 |
| Percent | - |
| in Sample | 9 |

Number in Sample 9

PCO's STEPS

| Step 2 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .3 | .2 | .7 | |
| Std. Dev. | .3 | .3 | .7 | |
| Median | .3 | .3 | .3 | |
| Percent | 70 | 15 | 15 | |

Number in Sample 9

NETWORK F2

| Step 1 | Normal | | Optimistic Pessimistic | |
| :--- | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .6 | | .4 | 1.2 |
| Std. Dev. | .4 | .3 | .8 | |
| Median | .5 | | .3 | 1 |
| Percent | 74 | | 11 | 15 |

Number in Sample 9

| Step 2 | Normal | | | Optimistic Pessimistic |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| Mean Dev. | 1.2 | | .7 | 2 |
| Std. Dev. | .6 | | .3 | 1.3 |
| Median | 1 | .8 | 2 | |
| Percent | 72 | | 13 | 15 |

Number in Sample 9

| Step 4 | Normal | Optimistic Pessimistic |
| :---: | :---: | :---: |
| Mean | 1.3 | . 72.1 |
| Std. Dev. | 1.1 | .51 .6 |
| Median | 1 | . 51.5 |
| Percent | 72 | 12 16 |
| Number in Sample | 9 | |

Step 5
Mean 1. Median 1 73

Norma .5 \cdot 9

| Step 2 | | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: | :---: |
| - | Mean ${ }^{\text {- }}$ | 1 | . 6 | 1.7 |
| | Std. Dev. | . 6 | . 3 | 1.3 |
| | Median | 1 | . 6 | 1.4 |
| | Percent | - | - | - |
| Number | r in Sample | 9 | | |
| Step | 3 | Normal | Optimistic | Pessimistic |
| | Mean | . 5 | . 5 | 1.4 |
| | Std. Dev. | . 3 | . 3 | . 7 |
| | Median | . 3 | . 3 | . 7 |
| | Percent | 9 | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 4 | Normal | Optimistic | Pessimistic |
| | Mean | . 8 | . 5 | 1.4 |
| | Std. Dev. | . 5 | . 5 | 1.1 |
| | Median | . 5 | . 3 | 1 |
| | Percent | - | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 5 | Normal | Optimistic | Pessimistic |
| | Mean | 1.2 | . 7 | 1.9 |
| | Std. Dev. | . 6 | . 3 | 1.1 |
| | Median | 1 | . 8 | 1.5 |
| | Percent | - | - | - |
| Numbe | er in Sample | 9 | | |
| Step | 6 | Normal | Optimistic | Pessimistic |
| | Mean | . 5 | . 3 | 1 |
| | Std. Dev. | . 3 | . 3 | . 8 |
| | Median | . 5 | . 3 | . 8 |
| | Percent | - | - | - |
| Number | er in Sample | 9 | | |
| Step | 7 | Normal | Optimistic | Pessimistic |
| | Mean | . 4 | . 3 | - 9 |
| | Std. Dev. | . 3 | . 3 | . 7 |
| | Median | . 3 | . 2 | . 5 |
| | Percent | - | - | - |
| Numbe | er in Sample | - 9 | | |

PCO's STEPS

| Step 8 | Normal | | Optimistic Pessimistic | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Mean | .4 | | .3 | .7 |
| Std. Dev. | .3 | | .3 | .6 |
| Median | .3 | | .2 | .5 |
| Percent | - | - | - | |
| Number in Sample | 9 | | | |

NETWORK F4

| Step 1 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 5 | . 3 | 1.3 |
| Std. Dev. | . 3 | . 1 | 1.2 |
| Median | . 5 | . 3 | . 8 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step 2 | Normal | Optimistic | Pessimistic |
| Mean | . 3 | . 2 | . 7 |
| Std. Dev. | . 2 | . 1 | . 3 |
| Median | . 3 | . 2 | . 8 |
| Percent | | - | - |
| Number in Sample | 7 | | |
| Step 3 | Normal | Optimistic | Pessimistic |
| Mean | . 9 | . 5 | 1.3 |
| Std. Dev. | . 8 | . 3 | 1.1 |
| Median | . 5 | . 3 | . 8 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step 4 | Normal | Optimistic | Pessimistic |
| Mean | 1 | . 6 | 1.5 |
| Std. Dev. | . 5 | . 2 | . 8 |
| Median | 1 | . 5 | 1.3 |
| Percent | - | - | - |
| Number in Sample | 7 | | |

| Step 5 | Normal | Optimistic | Pessimistic |
| :---: | :---: | :---: | :---: |
| Mean | . 4 | . 2 | . 6 |
| Std. Dev. | . 1 | . 1 | . 3 |
| Median | . 3 | . 3 | . 5 |
| Percent | - | - | - |
| Number in Sample | 7 | | |
| Step 6 | Normal | Optimistic | Pessimistic |
| Mean | . 3 | . 2 | . 6 |
| Std. Dev. | . 1 | . 1 | . 3 |
| Median | . 3 | . 3 | . 5 |
| Percent | $\overline{7}$ | - | - |
| Number in Sample | 7 | | |
| Step 7 | Normal | Optimistic | Pessimistic |
| Mean | . 3 | . 2 | . 7 |
| Std. Dev. | . 1 | . 1 | . 6 |
| Median | . 3 | . 2 | . 5 |
| Percent | - | - | - |
| Number in Sample | 7 | | |

\square

LIST OF EXPERTS

The following people in the R\&D Contracting Directorate helped to define the major activities which compose the steps in the contracting process:

| Lawrence Kopa | PCO/Buyer | PMRSA |
| :--- | :--- | :--- |
| Lynn A Warner | PCO/Buyer | PMRSA |
| Judith Lindsey | PCO/Buyer | PMRNA |
| Rick Benge | PCO/Buyer | PMREB |
| Michael Szczepanek | PCO/Buyer | PMREA |
| Todd Eisenhut | PCO/Buyer | PMREC |
| Mary Ann Sharits | Buyer | PMREA |
| Cindy Larck | Clerk | PMRNB |
| Janice George | Clerk | PMREA |
| Annette Atha | Clerk | PMRRA |
| James McBride | Buyer | PMREA |
| Daniel Schaetzle | PCO/Buyer | PMRNA |
| Michael Weaver | Clerk | PMREA |
| Phyllis Jones | Clerk | PMRRB |
| Marion Wood | | |

A. REFERENCES CITED

1. Aeronautical Systems Division, Air Force Systems Command. AF Form 1378, Civilian Personnel Position Description: Contract Negotiator, GS-1102-13, Wright-Patterson AFB OH, 16 October 1980.
2. Aeronautical Systems Division, Air Force Systems Command. AF r'orm 1378, Civilian Personnel Position Desicription: Contract Specialist, GS-1102-12, Wright-Patterson AFB OH, 12 April 1979.
3. Aeronautical Systems Division, Air Force Systems Command. AF Form 1378, Civilian Personnel Position Description: Procurement Clerk (Typing), GS-1102-5, Wright-Patterson AFB OH, 23 November 1979.
4. Aeronautical Systems Division, Air Force Systems Command. Management Data Book, Wright-Patterson AFB OH, February 1983.
5. Aeronautical Systems Division, Air Force Systems Command. Manpower, Organization and Function Chart Book, Wright-Patterson AFB OH, 2 June 1983.
6. Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. An Introduction to Management Science. 3त eत. St Paul: West Publishing Company, 1982.
7. Anthony, Robert N., and Regina E. Herzlinger. Management Control in Nonprofit Organizations. Homewood IL: Richard D. Irwin, Inc., I980.
8. Auffrey, Lawrence A. "Contracting Productivity Measurement System," unpublished research studv, Air University, Maxwell AFB AL, 1979.
9. Caruth, Donald L. Planning for Clerical Measurement. New York: American Management Association, Inc., 1970.
10. Department of Defense. Productivity Enhancement, Measurement, and Evaluation - Operating Guidelines and Reporting Instructions. DODI 5010.34. Washington: Government Printing Office, 4 Auqust 1975.
11. Dervitsiotis, Kosta N. Operations Management. New York: McGraw-Hill Book Co., 1981.
12. Glover, Waverly. Chief, Flight Dynamics Branch, Flight Dynamics Division, Directorate of RaD Contracting, Aeronautical Systems Command, Air Force Systems Command. Personal interview. April-August 1983.
13. Kennah, Major Richard B. "The Measurement of Procurement Workload," unpublished masters thesis, GSM/SM/74S-10, AFIT/EN, Wright-Patterson AFB OH, 1974. AD A787213.
14. Lee, Lamar, Jr.. and Donald w. Dobler. Purchasing and Materials Management. 3d ed. New York: McGraw-Hill Book Company, 1977.
15. Lovelock, Christopher H. and Robert F. Young. "Look to Consumers to Increase Productivity," Harvard Business Review, May-June 1979, pp. 168-179.
16. McBride, Captain James. Chief, Management Operation Division, Directorate of R\&D Contracting, Aeronautical Systems Division, Air Force Systems Command. Personal interview. 19 August 1983.
17. McClave, James T. and P. George Benson. Statistics for Business and Economics. 2d ed. Santa Clara CA: Dellen Publishing Company, 1982.
18. McConnell, Campbell R. "Why is U.S. Productivitv Slowing Down," Harvard Business Review, March-April 1979, pp. 36-60.
19. Page, Harry Robert. Public Purchasing and Materials Management. Lexington MA: Lexington Books, 1980.
20. Plowman, Kathy. Procurement Analyst, Contract Review Division, Directorate of R\&D Contracting, Aeronautical Systems Division, Air Force Systems Command. Personal interview. 19 August 1983.
21. Poulos, Pete G. "Challenging DoD Managers to Improve
Internal Productivity," Defense Management Journal, 13 Internal Productivity,
(April 1977), pp. 34-40.
22. Pritsker, A. Alan B. Modeling and Analysis Using Q-GERT Networks. New York: John Wiley \& Sons, 1979.
23. R\&D Contracting Directorate, Aeronautical Systems
Division, Air Force Systems Command. Operating
Instruction $171-2$, Automated Data Processing Systems
and Procedures: DATA-CEN Documentation.
Wright-Patterson AFB OH, 17 March 1982.
24. R\&D Contracting Directorate, Aeronautical Systems Division, Air Force Systems Command. Research and Development Contracting Overview. Wright-Patterson AFB OH, 10 November 1982.
25. Rackliff, Kenneth. Procurement Analysis, Management Operations Division, Directorate of R\&D Contracting, Aeronautical Systems Division, Air Force Systems Command. Personal interview. April-August 1983.
26. Rastetter, Arthur L., III. "Managerial Activity Analysis via Mintzberg's Role Theory: the Fffects of Person and Organization Variables," unpublished doctoral dissertation proposal, school of Management, Florida State University, 1982.
27. Sandman, William E. and John P. Hayes. How to Win Productivity in Manufacturing. Dresher PA: Yellow Books of PA, Inc., 1979.
28. School of Systems and Logistics, Air Force Institute of Technology (ATC). Compendium of Authenticated Systems and Logistics Terms, Definitions and Acronyms. Wright-Patterson AFB OH, 1 April 1981.
29. Shannon, Robert E. System Simulation: the Art and Science. Englewood Cliffs NJ: Prentice-Hall, Inc. 1979.
30. Tuttle, Thomas C., "Productivity Measurement Methods: Classification, Critique, and Implications for the Air Force," unpublished research report, unnumbered, Human Resource Laboratory, Air Force System Command, Brooks AFB TX, 1981.
31. Walter, George. Chief, Development Branch, Avionics Division, Directorate of R\&D Contracting, Aeronautical Systems Division, Air Force Systems Command. Personal interview. 22 August 1983.
32. Weiss, Colonel Bernard L., USAF. DCS/Contracting and Manufacturing, Air Force Systems Command. DCS/Contracting and Manufacturing Policy Letter: Implementation of Fast Track Contracting Method and Contract Lead Time Reporting, to ASD/PM. Andrews AFB DC, 15 September 1981.
33. "Where Are the Jobs?" Contract Management. 20 (April 1980). pp. 10-11.
34. White, Dick. Chief, Metals Branch, Materials Division, Directorate of R\&D Contracting, Aeronautical Svstems Division, Air Force Systems Command. Personal interview. 19 August 1983.
35. Wright, Donald L. and Patrick W. Cummings. "Purchasing Productivity Measurement Systems," unpublished master's thesis. Naval Post-Graduate School, Monterey CA, September 1980.
B. RELATED SOURCES

Heaton, Herbert. Productivity in Service Organizations. New York: McGraw-Hill Book Co., 1977.

Malkiel, Burton G. "Productivity - The Problem Behind the Headiines," Harvard Business Review, May-June 1979, pp. 81-91.

r
d
$?$ p

FILMED

DTIC

$x+2$
2
2

1-84

[^0]: STEP 15: Negotiations (telephone)
 For Each Proposal in the Competitive Range Resolve technical issues

[^1]: Number in Sample9

