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GLOSSARY

ALIAS Effect that cannot be distinguished

from another effect.

ALPHA In a central composite design the

non-zero coded level value of a

factor at an axial point.

AXIAL POINTS OR STAR POINTS In a central composite design for

each factor there are two corre-

sponding axial points: The given

factor has coded level -ALPHA at one

point and +ALPHA at the other,

whereas all other factors have coded

level zero at these points.

CENTER POINT The point in a central composite

design where all N factors have coded

level zero.

CENTRAL COMPOSITE DESIGN A combination of a full or fractional

two-level factorial design and some

additional experimental points

selected in a particular manner to

allow the determination of the

quadratic one factor effects. It is

specifically intended to allow

determination of the constraints used

in defining a quadratic approximation

of the response surface.

CODED LEVEL The level of a factor translated from

the true quantitative level used for

simplifying calculations.
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CONFOUNDING An experimental arrangement in which

certain effects cannot be distin-

guished from others.

CORRELATION COEFFICIENT The square root of the proportion

(Pearson R) of total variation accounted for by

linear regression.

CORRELATION INDEX R The square root of the proportion of

total variation accounted for by the

regression equation of the degree

being fitted to the data.

DEFINING CONTRAST Selection of effects to be con-

founded.

DEGREES OF FREEDOM One less than the number of values

required to compute the sum of

squares.

EFFECT Change in response caused by a change

in the level of a factor.

* EXPERIMENT MODEL Hypothesized equation to describe the

response as a function of the treatment.

EXPERIMENTAL TRIAL One unit of a complete experiment,

conducted with factors at levels

defined by a single observation vector.

FACTORIAL EXPERIMENT An experiment in which all levels of

each factor in the experiment are

combined with all levels of every

other factor.
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FRACTIONAL FACTORIAL An experimental design in which only

a fraction of a complete factorial is

run.

INTERACTION An interaction between two factors

means that a change in response

between levels of one factor is not

the same for all levels of the other

factor.

MEAN SQUARE ERROR Sum of squares of the error divided

by the number of degrees of freedom

for the error term.

MIXED LEVEL DESIGN A full or fractional factorial design

where some factors of the design have

a different number of levels than

other factors of the design.

OBSERVATION VECTOR Planned level of each factor for a

single experimental trial.

REAL WORLD LEVEL The true quantitative level of a

factor that corresponds to a coded

level.

REGRESSION Linear - Response = A*XI+B*X2+C*X3+...
Z*XN; Quadratic - Response

-A*XI+B*X2+...+ C*X1X2+D*X1*X3+...

+E*XI**2+F*X2**2+...

REPLICATE Repetition of observation vectors
applied to multiple experimental

trials.

.6-



RESPONSE FUNCTION The function F or Y = F(X1,X2,...XN)

where the levels of the factors are X1,

X2,...XN and the response is Y.

RESPONSE SURFACE The surface in N+1 dimensional space

represented by the equation Y

F(XI,X2,...XN).

ROOT SUN SQUARE The square root of the sum of the

(RSS) squares represented by the formula:

N 2 1/2
E xl
i =1 I

ROTATABLE DESIGN A central composite design that leaves

the variance of the estimated response

to be approximately constant throughout

the sphere of radius one.

R-SQUARED Small r-Squared--refer to Correlation

Coefficient

Big R-Squared--refer to Correlation

Index.

TRIAL A single set of factor values applied

to the experimental subject for which

the response is measured.
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INTRODUCTION

The Air Force Aerospace 'etcal Research Labortory (AFAMRL) is engaged in the

use of human operators to perform critical systems evaluation. The size and

complexity of the various systems preclude the detailed analysis that would

enable ANRL to examine each aspect of every system. Large numbers of factors

(independent variables) are commonly encountered in real-world simulation or

field problems. Complete full factorial experimental designs for problems

involving large numbers of factors (20 factors are not uncommon) are very

costly in time, manpower, and other test resources.

The use of fractional factorial designs permits the experimenter to employ

sequential experimental design techniques. See Cochran and Cox (1957) and

other references for a complete discussion of fractional factorial experimental

designs. In this procedure, the various factors are examined and a potentially

significant subset is defined. By using the proper aliasing of effects, a

*small fractional factorial experiment can be conducted. If additional

effects/interactions are identified as being highly significant or if additional

interactions are required to be examined, a larger fractional factorial design

can be constructed by removing some of the aliasing requirements. This process

of designing an experiment, data analysis, and design refinement is the basis

of sequential experimental design.
-M

Examples of multivariable design problems can be found in many Air Force and

other R&D programs, e.g., Aume, Mills, et al., 1977. AMRL has been studying

these experimental design problems for a number of years, including the studies

performed by Simon (1973), Mills & Williges (1973), and Williges & Mills (1973,

1979) relating to human factors experimentation. This report represents an

effort to implement some of the design strategies previously proposed.

Human factors experimentation is an especially critical area of research

because the experimenter must consider the factors in the system being studied

and the variations introduced by the presence of a human subject. To overcome

these perturbations, the experimental procedure must be run many times with

several different subjects to remove effects caused by the subjects and to

-8-
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identify variations caused by the parameters being studied. Since this proce-

dure requires a large number of experimental trials (e.g., observations, tests,

etc.), it may not be feasible to conduct a study because of cost and time.

One way to overcome this problem is to employ a set o experimental designs

called fractional factorial experimental designs. Fractional factorial experi-

ments are a special class of reduced data collection designs that allow the

user to perform a smaller number of observations than would be required in the

usual experimental procedures.

This effort provides the reader with an automated tool to design fractional

factorial experiments. A tape of the User-Assisted Automated Experimental

(Test) Design Program (AE)): Version II source listing in FORTRAN 4-Plus can

be obtained from AFAMRL/HEF, Attn: Ir. Robert G. "lills, WPAFB, OH 45433. For

the purposes of this report, the authors assume that the reader possesses at

least a conceptual knowledge of symmetrical experimental design procedures

including fractional factorials. This assumption also holds true for the user

of the initial version of the computer program which is being described. However,

a long range objective of this effort is to eventually develop the program to the

extent that, via the interactive mode, the program's user need have only a mini-

mum knowledge of experimental design computational procedures. the primary intent

is to develop the computer program such that it can be readily applied by the

engineering, etc., community that is involved with performing simulator and

live testing of systems. It ihould also be noted that although the computer

program presented herein is designed to assist the sequential experimental de-

sign process (i.e., a series of experiments), it can also be used to create a
"one-shot" experimental design.

this report provides background on experimental designs and the mathematical

formulations implemented in the computer program. A discussion of how an ex-

periment should be conducted is contained in the Philosophy of Experimental

Design section. the class of experimental designs known as fractional factorial

designs is described along with the terminology involved, the concept of alias-

ing, the evaluation of designs, and means of defining basic experimental blocks.

Screening designs, response surface designs, polynomial approximations to the

response surface, central composite designs, and mixed level designs are also

-9-



discussed. Brief commentaries on data collections, redesign, and irregular frac-

tional factorial experiments are provided. Some predefined fractional factorial

designs including optional aliasing selection to reduce aliasing of main and

first-order effects are presented. A selected bibliography of booki and reports

that present more detailed information on these topics is given in the reference

section. An appendix provides a detailed step-by-step description of the com-

puter program.

this report is an update of a previous report and indicates the present status

of the automated experimental design program (AED). the AED program contains

adequate instructions and text to guide the user in its operation without the

assistance of this report. It is provided as an aid to understanding the

mathematical formulations and as a source of additional examples (Appendix).

For the current version of the program, the following is a summary of its

present capabilities.

1. Basic full or fractional designs where

(a) 2 level designs can have up to 20 factors with a maximum of 256

experimental trials.

(b) 3 level designs can have up to 12 factors with a maximum of 243

experimental trials.

(c) 5 level designs can have up to 8 factors with a maximum of 125

experimental trials.

2. 2K x 3L mixed level designs where

(a) the combined number of factors for both levels must be less than or

equal to 20 (K + L<20) with a maximum of 256 total experimental

trials.

(b) Experimental plans for combining the separate levels have been

developed for 1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12, 1/16, 1/18, and

1/24 fractionations.

-in-
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3. Rotatable and non-rotatable central composite designs.

4. 22 predefined stored designs for 2 levels.

19 predefined stored designs for 3 levels.

5. Assistance in generating realizable 2 level designs for 1/2, 1/4, 1/8,

and 1/16 fractionations.

THE PHILOSOPHY OF EXPERIMENTAL DESIGN

The basis for an experimental design philosophy consists of six steps:

1. Problem recognition and initial study

2. Preliminary model definition

3. Data collection plan development

4. Data collection

5. Data analysis

6. Analysis of results and model reformulation.

In the first step, the experimenter recognizes the existence of a problem.

He begins a nreliminary study to identify the problem bounds and its associated

parameters. This initial study provides a crude model of the system. In the

second step, the experimenter examines this preliminary model and identifies

those features that severely affect the performance of the system. He

designs a data collection plan that enables him to test the previously

hypothesized significant features. Without an adequate data collection plan,

the experimenter may arrive at erroneous conclusions.

Once the data collection plan (called the experimental design) is complete,

the experimenter "collects" the data. After the data are collected, data

analysis is performed. Data analysis consists of the standard analysis methods,

e.g., analysis of variance (ANOVA) techniques or regression analysis, if all

factors are quantitative. This analysis identifies those factors that account

for most of the system variation. According to Pareto's Principle, 80 percent

of the variation in a system can be attributed to 20 percent of the factors.

-11-



After the data analysis is performed, the experimenter redesigns or refines

his system model based on the results of the previous experimentation. This

cycle of redesign, data collection, and analysis continues until the experimenter

is satisfied with the accuracy of his results. At this point, he draws con-

clusions about the system based upon the experimentation.

THE NEED FOR DESIGNED EXPERIMENTS

An experiment is conducted to provide information. An experimenter needs

information to identify problem areas, to identify important factors, and to

quantify responses. He obtains this information by collecting data. After

problem definition is complete, the first step in an experiment is to define

questions that need to be answered. Once the questions are identified, an

experiment can be designed to aid in answering those questions. The key

issue is that an experimenter must design his experiment before any data are

collected.

The designer of an experiment must consider the statistical accuracy and the

cost of the experiment. Statistical accuracy involves the proper selection

of the response to be measured, determination of the number of factors that

influence the response, the selection of the subset of these factors to be
studied in the experiment being planned, the number of times the basic experi-
ment should be repeated, and the form of the analysis to be conducted.

The cost of an experiment includes, among many other factors, expense incurred

by running a single experimental condition (observation), analyzing the data,

failing to meet a deadline, availability of subjects, and most importantly,

perhaps drawing incorrect conclusions from the experiment. Although cost as

a factor is not often discussed in the literature, it is at least as important

as considerations of statistical accuracy. In an attempt to minimize the

cost of an experiment, the designer usually attempts to choose the simplest

experimental design possible, and to use the smallest sample size consistent

with satisfactory results. Fortunately, most simple experimental designs are

both statistically efficient and economical, so that the designer's efforts

to obtain statistical accuracy usually result in economy.

-12-



EXPERIMENTAL MODEL

The experiments being studied in a factorial experiment are called fixed effect

models. The term fixed effect is related to the predefined levels that the

various factors may assume. Consider two factors, A and 0, which are being

studied where there are NA levels for treatment A and NB levels for

treatment B. The response in a two-factor experiment may be described by the

model:

Xjj = + 0i + + 0B1j + £tjj
1 = 1, 2, ... , NA

j = 1, 2, ... , NB

where

p = overall mean effect

m - true effect of the ith level of factor A

B a true effect of the jth level of factor B

(aOB)ij effect of the interaction between at and Oj
E ij = ':perimental error

A similar model for three factors may be written as:

Xijk = V + i +B + Yk + (OB)ij + (ay)ik + (BY)jk + (QBY)ijk + ijk

The assumptions in a full factorial experiment allow for the examination of

each main effect and all interactions. A fractional factorial experiment

assumes that the high-order interactions are insignificant. For example, in

the three-factor model, if the assumption is made that the interactions (0y),

(By), and (QBy) are insignificant, the model becomes:

Xijk a +i + B + Yk + (cB)1 . + 'ijk

This permits fewer experimental observations to determine the relative signifi-

cance of the remaining terms in the model. The effects considered to be

insigniflcant are included in the model error term.

-13-
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This experimental model can be evaluated using the standard analysis of

variance (ANOVA) techniques or a regression analysis may be run, if all factors

are quantitative, to determine regression coefficients.

NOMENCLATURE--NOTATION AND TERMINOLOGY

The previous section showed that responses could be modeled as equations

involving true effects of each factor at the level involved, the effects of

the interactions among factors, the overall mean effect, and the true test

(experimental) error. The techniques for manipulating response data from

individual experimental trials to arrive at estimates of the values for each

of the terms in the mathematical model involve consideration of response values

for various combinations of factors and levels. Two standard means of notation

are used to represent these response values. These are illustrated in the

following example.

Consider an experiment involving three factors with each factor having two

possible levels. If the factors are represented by a, b, and c, and the levels,

by 0 and I, the possible trials and notations used to represent the responses

are shown in Table 1.

Table 1. Full Factorial, Three-Factor, Two-Level Experiment

EXPERIMENTAL TRIAL EFFECT OR
(FACTOR AND LEVEL) INTERACTION NOTATION

aoboc0  I 000

*e C 001

a 0 b 1 0  6 010

oble I  11C 011

alboo0  A 100

alboc 1  AC 101

aIb 11 AS 110

A C 111

-14-
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Main effects are represented by those trials whose notation has a nonzero

value in only one column of the notation. Two-factor, or first-order interac-

tions, are represented by those trials whose notation has a nonzero value in

two columns. Higher-order interactions are represented by those trials whose

notation has a nonzero value in more than two columns. In this example, main

effects are A, B, and C. First-order interactions are AB, AC, and BC. The

only higher-order interaction is ABC.

It is apparent from Table 1 that the notation consists simply of the subscripts

representing the levels of the factors in sequential order (thus, trial aoblci

has a response notation of 011). The effect or interaction response is repre-

sented by the sequence of the factors raised to the power of the level involved

(thus, trial aOblcl results in the interaction response AOB1C1 = BC).

In a similar manner, effects and notations can be defined for the three-level

case. Consider an experiment involving three factors with each factor having

three possible levels. If the factors are represented by a, b, and c, and

the levels by 0, 1, and 2, the possible trials and notations used to represent

the responses are shown in Table 2. Note that the main effects are C, C2 , B,

B2, A, and A2 because the notation for these trials has a nonzero value in

only one column of the notation.

FRACTIONAL FACTORIAL EXPERIMENTS

A full factorial experimental design involves an experiment in which every

level of each factor is combined with every level of every other factor. If

an experiment has N factors and each factor may assume one of P levels, there

is a total of pN combinations.

Table 3 is an example of an experiment with three factors at two levels. This

example is taken from an AMRL study of the MISVAL program. The term "MISVAL"

designates the Missile Launch Envelope Technology Development Program being

conducted by the Air Force Wright Aeronautical Laboratories at Wright-Patterson

Air Force Base, Ohio. The definitions of factors and levels used in the examples

are not considered necessary in order to convey the intent of the examples.

-15-



Table 2. Full Factorial, Three-Factor, Three-Level Experiment

EXPERIMENTAL TRIAL EFFECT OR
IFACTOR AND LEVEL) IN-ERACTON NOTATION

a0 b0 c0  1 000

0 b0 a C 001

ab 0 2  C2  002

b 010

a0bl¢1  IC 011

0 b2 0  9C2  012

a0 b2 01 B2C 021

%b2C2S2C2022'o ei2c2  =

slbO, A 100

alb0 c1  AC 101

AC2 10

8IbI% AS 111

siblelAC1 I

asbl' 2  ADO12 2

a1 12% A8 2  120

al 2 '1 A 2C 121

ab22A3 2C 122

a2bo%  A2  200

a2 b0c1  A2C 201

a~O2A 2C2  202

a2bl¢0  A28 210

2b1 1  A 29C 211

02blC2 A2 9C2  212

a2b2c0  A2B2  220

"*I A2 82C 221

"aC2b A2 32C2  222
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Table 3. MISVAL Example

LABL FACTOR LOW LEVEL 10 HIGH LEVEL (I

A MLE CONCEPT FAAC CONCEPT GD CONCEPT

a PILOT FUNCTION FUNCTION I FUNCTION 2

C MISSILE TYPE AIM-7F AIM-F

The 23 : 8 combinations of these factors that would comprise a full factorial

experiment for the MISVAL program are given in Table 4.

Table 4. Full Factorial Experiment

EXPERIMENTAL MLE PILOT MISSILE
UNIT LABEL NOTATION CONCEPT FUNCTION TYPE

1 i 000 FAAC 1 AIM-7F

2 c 001 FAAC 1 AIM-9P

3 3 010 FAAC 2 AIM-7F

4 9C 011 FAAC 2 AIM-F

S A 100 GO I AIM-7F

6 AC 101 GO I AIM-P

7 AS 110 GO 2 AIM-7F

8 ABC 111 GO 2 AIM-OF

Table 5 shows the number of observations required in a full factorial experiment

for experiments with 2 to 10 factors at 2 or 3 levels. Note that the number
of observations required rises drastically as the number of factors and/or

levels increases.

A full factorial experimental design provides an estimate of every possible

effect, i.e., one is able to estimate those effects caused by all combinations

of factors. In many experiments, interactions among factors may be insignificant.
Interactions involving two factors are called first-order interactions, and
interactions among three factors are called second-order interactions.

-17-
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Table 5. Full Factorial Experiment Size

N P-2 p,,$
NUMBER OF FACTORS LEVELS PER FACTORS LEVELS PER FACTORS

2 4 9

3 U 27

4 16 81

5 32 243

6 64 72

7 128 2187

8 256 61

9 512 19613

10 1024 59646

In many human factors experiments, the assumption that second and higher-order

interactions are insignificant is reasonable (Simon, 1973).

The total number of effects and interactions is given by pN - 1. The number

of main effects is given by (P - 1)N. The number of first-order interactions

is given by:

2
(P-i)

N(N-1)
2

Thus, the number of higher-order interactions is given by:

N _- (P- 1)N - (P- )2 1)

Table 6 shows the number of main, first-order, and higher-order effects for a

variety of factorial experiments.

Figure 1 shows examples of the groupings of main, first-order, and higher-order

effects for three factors at two and three levels.
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Tf
Table 6. Effect/Interaction Summary

Pa2 Pw3

N LEVELS PER FACTOR LEVELS PER FACTOR

NUMBER OF FACTORS MAIN 1ST HIGHER MAIN 1ST HIGHER
EFFECTS ORDER ORDER EFFECTS ORDER ORDER

2 2 1 0 4 4 0

3 3 3 1 6 12 8

4 4 6 5 8 24 48

5 5 10 16 10 40 192

6 6 15 42 12 60 656

7 7 21 99 14 84 2088

8 8 28 219 16 112 6432

9 9 36 466 16 144 19620

10 10 45 968 20 160 5848

A fractional factorial design, sometimes called a fractional replication, is

a portion or a fraction of a complete factorial experiment. In a fractional
replicate, certain interactions cannot be separated from other interactions.

This is the price that is paid for reducing the number of experimental trials.

Interactions or effects that cannot be separated are said to be aliased or

confounded.

The use of fractional factorial experiments is based on the assumption that
* higher-order interactions above first-order are insignificant and need not be

examined in detail. For example, consider an experiment in which main effect
* A is allased with interaction BCD. When data are collected, the experimenter

estimates the response caused by effect A and BCD together. There is no way
to know if the response is due only to A or if effect BCD plays a significant

part in the response. Thus, effects and BCD are not separable. The assump-

tion in a fractional factorial experiment is that the contribution caused by

BCD would be negligible.
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TWO LEVLS MER PACTOR

a} MAIN EFFECT

AC} 1ST-ORDER INTERACIONS

ADC) IGHER-ORDER INTERACTION

THREE LEVELS PE1R PACTOR

A
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A2  MAIN EFFECTS

32

AAB
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12 ST-ORDER INTERACTIONS A 2EC HIGHER-ORDER INTERACTIONS1J IC2 A2%C2
AIC A282C
A AY

A23A

3282

Figure 1. Main Effects and Interations
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A full factorial experiment is useful when an experimenter requires that:

1. Every main effect of every factor be estimated Independently of every

other one.

2. The dependence of the effect of every factor upon the levels of the

others (the interactions) be determined.

3. The effects be determined with maximum precision.

If an experimenter does not require this level of detail, or if faced with

time or budget limitations that prohibit a full factorial experiment, fractional

factorial designs are available. The primary assumption in the use of a frac-

tional factorial experiment is that higher-order interactions are insignificant.

If this assumption is not valid for a particular experiment, a fractional

factorial design should not be used. In most human factors experiments, however,

this is a reasonable assumption and can result in a significant reduction in

the number of experimental (test) trials or observations required.

Interactions that are assumed to be insignificant can be used to define the

allasing or confounding used in the fractional factorial design. The concept

of aliasing is discussed in the next section.

ALIASING

OVERVIEW

Each successive step in fractionating a full factorial design, or dividing it

into blocks, requires that an additional effect referred to as a defining

contrast be defined for the fractional factorial design. A defining contrast

is a selected observation vector whose factor combinations will not be important

to the experimentation. Defining contrasts are then used in generating the

alias set. The alias set is composed of all factor combinations of the defining

contrasts. Thus, a two-level, one-half design requires one defining contrast

to be defined by the experimenter; while a one-fourth design requires two

defining contrasts, and so on. The defining contrasts must be selected by

the experimenter to meet the requirements of the design.
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The selection of defi,,ing contrasts is important in the design of a fractional

factorial experiment. In & given experiment, the value of aliased terms cannot

be estimated; thus, no term of interest to the experimenter should be selected

as a defining contrast.

Defining contrasts are usually selected to avoid aliasing main effects with

other main effects. In a sequential design, however, it may be desirable to

alias two main effects. For example, if the experimenter suspects that two

factors, A and E, are not significant, he might design the first pilot experi-

ment so that A and E, are confounded. If the data from this pilot experiment

show that the estimated values of A and E are not significant, then the

experimenter's suspicions are confirmed. These two factors can be dropped,

thus reducing the experiment size for the next pilot experiment.

The defining contrasts can be described by identities that determine which

effects will be confounded. the experimenter does not have a completely free

hand in the selection of these defining contrasts. Defining contrasts are

linearly independent if one defining contrast is not a factor combination of

another. Unless the selected defininq contrasts are linearly independent,

some factor combination of one defining contrasts will be the same as a factor

combination of the nonindependent defining contrasts selected. This indicates

that the nunindependent defining contrasts is redundant, and the experimenter

has selected fewer defining contrasts than planned. This results in a larger

experiment block size than desired. In this case, it is necessary to redefine

the nonindependent defining contrast so that a set of independent defining

contrasts is selected.

The following paragraphs provide background for the generation of the alias

set and development of alias summaries. These operations are performed within

the computer proqram, and understanding of this material is not necessary to

use the program.

OPERATIONS WITH ALIASES

Assuming each of N factors will be varied over P levels, the set of fractional

factorial experiments considered here is the 1/ PM designs, where M is a
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positive integer. Thus two-level designs might be 1/2, 1/4, 1/8, 1/16, etc.

Three-level designs might be 1/3, 1/9, 1/27, 1/81, etc. In general, a 1/pM

design requires M defining contrasts. Specifying the defining contrasts is

an important problem in designing fractional factorial experiments. One way

to specify the defining contrasts is to describe which effects are to be

confounded.

Although confounding two factor interactions with other two factor interactions

is not always desirable in a good experimental design, this will be done in

the following examples for ease of calculation and demonstration. If effects

AB and CD are to be confounded, the user may specify the defining contrast as

AB = CD. Defining contrasts may also be described in terms of the identity

effect, I. This is accomplished by multiplying both sides of the equation in

this example by AB, yielding A2B2 = ABCD. Assuming a two-level problem, apply

modulo 2 arithmetic to the exponents of the factors A2B2 = AOBO = I = ABCD.

If the effects to be confounded are A2B = CD in a three-level problem, first

multiply both sides by A2B using module 3 arithmetic on the exponents. Modulo P

is merely the remainder when the number is divided by P (e.g., 4 modulo 3 = 1,

12 modulo 3 = 0, 13 modulo 3 = 1, etc.).

This gives

(A2B)(A 2B) = A2BCD

A4B2 = AB2 = A2BCD

Multiply both sides again by A2B, giving (AB2 )(A2B) : (A2BCD)(A 2B)

or A3B3 = I = A4B2CD = AB2CD

or I = AB2CD.

Each effectwill be aliased with (pM - 1) other effects. For 1/pM designs, M

must be less than or equal to (N - 1). As the number of defining contrasts

increases, the number of effects aliased with each effect increases rapidly

as shown in Table 7.
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Table 7. Number of Effects Aliases

NO. OF
P M DEFINING NO. OF EFFECTS

DESIGN NO. OF LEVELS M CONTRASTS ALIASED WITH EACH EFFECT

1/2 2 1 1 1

1/4 2 2 2 3

1/8 2 3 3 7

1/16 2 4 4 15

1/32 2 5 5 31

1/64 2 6 6 63

1/128 2 7 7 127

1/3 3 1 1 2

1/9 3 2 2 8

1/27 3 3 3 26

1/81 3 4 4 80

1/243 3 5 5 242

1/729 3 6 6 728

1/2187 3 7 7 2186

The number of effects aliased with each effect (such as a main effect) increases

rapidly as smaller fractional factorial designs are considered. Thus, as the

number of defining contrasts (M) increases without a corresponding increase in

the number of factors (N), it becomes difficult to select defining contrasts

that avoid aliasing main effects with other main effects in this case.

The total alias combination set may be generated by considering all combinations

of all powers of the individual defining contrasts from 1 to the (P - 1)th

power. Thus, if a two-level experiment is being considered (P = 2), only the

first power of the defining contrasts is considered in deriving the alias

set. For a three-level experiment (P = 3), both first and second powers of the

defining contrasts are considered in deriving the alias set.

For example, consider a three-level experiment involving four factors

(P = 3, N = 4). Suppose M is selected as a value of 3, resulting in a 1/27
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design. From the tabulation, we find that three defining contrasts are required

and each effect will be aliased with 26 effects or interactions. The alias

set may be derived by representing all the integers from 1 to (pM - 1) in

base p arithmetic representation (1 to 26 in this example expressed in base 3

arithmetic).

1= 001 10 = 101 19 = 201

2 = 002 11 = 102 20 = 202

3 = 010 12 = 110 21 = 210

4 = 011 13 = 111 22 = 211

5 = 012 14 = 112 23 = 212

6 = 020 15 = 120 24 = 220

7 = 021 16 = 121 25 = 221

8 = 022 17 = 122 26 = 222

9 = 100 18 = 200

Each digit of the base 3 representation is used as the power to which each of

the three defining contrasts is raised. For example, the combination 121

indicates that the first and third defining contrasts are raised to the first

power while the second defining contrast is squared.

From this list, only those combinations that are in standard form are used,

since the other combinations will result in duplications. A combination is

in standard form if the leading nonzero exponent is 1. Thus, 120 is in standard

form whereas 210 is not.

In our example (P = 3, N = 4, M = 3), let us specify the defining contrasts

selected as I = ABCD = B2C2D = A2B. The tabulation of combinations is shown

in Table 8. Note that the exponents are reduced modulo P to arrive at the

final alias combinations. Thus, (A2B)2 = A4B2 = AB2 modulo 3.

In our example for our experiment design, we assigned three defining contrasts.

The total alias set was then derived (26 in this case), which represents the

combinations applicable to this design. The experimenter must now be concerned

with how the individual effects and interactions are allased.
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Table 8. Total Alias Set

DEFINING CONTNAET TOTAL
POWIR SET COMUHIN ALIA8 SET

00 A22A2

002 (A2S12  A@2

GIG gaC2o 82C20

Oil 1112320A261 A2C2O

012 33020140312  AC2O

02 (.2C2012 *C02

021 (V 2 012 102 1 A28200

022 (R2C2DI11A2 gD2  ACD2

100 8OLC

101 IAUCOIIA 23) 32CO

102 fA8001UA 28)2  A2C0

110 AWCOHS*0201 A02

in(A@W)482COIIA2U1 302

112 (ASDoH320Z0I(A 2 9)2  A202

120 (ASCOHS
2C2 01

2  A@2C2

121 (AKICON.2020 2 1A23) C2

122 (AaCO)(f2C20I 2 fA23) 2  A2 9C2

200 (A8CO)2  A2gAC
202

21 IAIC) 2fA281 ACV0

N02 ASCO121A 8312

210 (AM1O2 (.2CkI1 £23

211 (AS00) 2(420201UA 2 81 A82C

212(AO 012 (@200A 2 S12  C

no0 (ADCDI 2(S0,01 Aa

w2 (AMC012(82Of02 (A2 @I ABC

222 fA3001 2 1g2 00 2 (AhgI2  
820
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ALIAS SET GENERATION IN TWO LEVEL DESIGNS

The alias set for a given fractional factorial design may be selected to meet

the objectives of the experimenter within certain constraints. For example,

if it is known that two factors, A and B, are not significant, the experimenter

may choose to deliberately confound these effects and select one defining

contrast as AB. Obviously, it is not possible to develop guidelines for every

case which might arise. Since a large portion of possible experimentation is

directed toward screening or the identification of significant factors, emphasis

has been placed on examining the selection of aliases for isolation designs

in which factors of interest are not confounded with other factors of interest

so their significance can be determined.

Generally, in a two-level experiment involving N factors, it is desired to

isolate all single factors and two factor interactions. This is under the

assumption that three factor and higher order interactions are insignificant.

For this situation to exist, all members of the alias set must contain a minimum

of five factors. There will be cases in which this cannot be achieved (e.g.,

an experiment which involves fewer than five factors).

To obtain the largest degree of isolation for a given experiment, all members

of the alias set should contain approximately the same number of factors that

are at their high level.

Given: N = number of factors

M = fractionation measure (fraction = 1

S = number of members of alias set 2

Then: S = 2M-1

Z = maximum number of factors which the summation of all members

of the alias set can contain

= 2M-1N.

To illustrate, consider a 1/8 fractionation of a 25 experiment.

Here N = 5, M= 3 (1

2

-27-
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S = 23 - 1 - 7 members of alias set

E = 22 x 5 - 4 x 5 - 20 factors

In this example, the seven members of the alias set will contain a maximum of

20 factors. The alias set can consist of either S members, each of which has

an even number of factors, or S+1 members containing an odd number of factors

and S-1 members containing an even number of factors. In our example, the

total alias set may thus consist of either:

(a) 7 members each containing an even number of factors. The summation

should equal 20. An example would be five members of 2 factors,

one member of 4 factors, and one member of 6 factors. This is

represented as:

5(2) + (4) + (6) = 20

A better example for this case, in terms of having all members of the alias

set with as close to the same number of factors as possible would be

4(2) + 3(4) = 20

(b) 4 members containing an odd number of terms, and 3 containing an

even number of terms. For our example, this would be

2(2) + 4(3) + 1(4) = 20.

For our sample case, the alias set design in (b) is better than that in (a)

in that (b) only has two 2 factor members while (a) has four 2 factor members.

The quality of an alias set design may be quantified by determining the root

sum square (RSS) of the departure from the mean:

Mean = 20 factors = 2.857 factors/member

S - 2 1/2
Quality = Z (x - x) , where x = number of factors for the ith case

1=- i
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= means, and S - number of members of the alias set.

Quality (a) - 4(2-2.857)2 + 3(4-2.857)2 1/2 * 6.856 1/2 2.619

Quality (b) - 2(2-2.857)2 + 4(3-2.857)2 + 1(4-2.857)2 1/2 * 2.856 1/2
= 1.690

Thus the members of alias set design (b) are clustered nearer the mean than

the members of (a) are.

THEORETICAL "BEST" ISOLATION DESIGNS

From the rules in the preceding section, it is possible to formulate the *best"

theoretical isolation designs. "Best," in this context, means that the members

of the alias set contain as close to the same number of high level factors as

possible. These theoretical designs are presented in Tables 9 through 20 for

the range of values of M and N which are included in the two level design

portion of the AED program.

Table 9. M = 1. 1 Member of Alias Set

N 2 3 4 a 9 10 i1 !

2 1

2-29

4

S

7 1
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Table 10. M a 2. 3 Members of Alias Set

N 2 3 4 5 4 7 6 11

4 1 2

5 2 1

* 3

7 1 2

2 1

10 1 2

Table 11. M = 3. 7 Members of Alias Set

N 2 3 4 5 6 7 6 g 10 11

4 6 1

S 2 4 1

* 4 3

7 7

I 3 4

1 4 2

1O 3 3

Table 12. M = 4. 15 Members of Alias Set

N 2 3 4 S 6 7 9 3 10 11

I 6 6 1

* 2 I S

7 S 7 2

* I I 2

10 1 a a
I1 S 7 3

i12 1 7 7
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Table 13. N = 5. 31 Members of Alias Set

oN 2 3 4 5 6 7 6 9 10 11

7 14 1

6 3 2
6 12 f6 2

Ios to 2o
10 6 16 10

11 13 is 3

12 3 Is 11

13 12 16 3

Table 14. M = 6. 63 Members of Alias Set

N 2 3 4 S 6 7 6 9 10 11

? 30 31 2

814 31 Is

9 9 32 2

10 13 32 16

11 2 31 3
12 13 31 1s

13 31

14 12 32 1

Table 15. M = 7. 127 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11

8 30 63 35

9 61 64 2

10 29 64 34

11 61 63 3

12 29 63 35

13 60 84 3

14 28 64 35

1 60 63 4
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Table 16. M = 8. 255 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11

9 2 125 126 2

10 61 128 66

11 125 127 3

12 61 127 67

13 124 128 3

14 60 128 67

1s 124 127 4

16 60 127 68

Table 17. N = 9. 511 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11

10 125 256 130

11 253 255 3

12 125 255 131

13 252 256 3

14 124 256 131

15 252 255 4

16 124 255 132
k17 251 26 4

Table 18. M =10. 1023 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11

11 48 462 462 50 1

12 253 511 259

13 508 512 3

14 252 512 259

15 508 511 4

16 252 511 260

17 507 512 4

18 251 512 260
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Table 19. M - 11. 2047 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11
12 909 1023 515

13 1020 1024 3

14 608 1024 515

15 1020 1023 4

16 508 1023 516

17 1019 1024 4

18 507 1024 516

19 1019 1023 5

Table 20. M = 12. 4095 Members of Alias Set

N 2 3 4 5 6 7 8 9 10 11

13 2044 2048 3

14 1020 2048 1027

15 2044 2047 4

16 1020 2047 1028
17 2043 2048 4

Is 1019 2048 1028

19 2043 2047 5

20 1019 2047 1029

To illustrate the use of the tables, consider the previous example with M = 3

and N = 5. In Table 11 headed M = 3, in the row for N = 5, we find the number

2 under the column headed "2," the number 4 under the column headed "3," and

the number 1 under the column headed "4." This is read as

2(2) = 4(3) + 1(4)

The optimum Isolation design for this case would result in an alias set conaining

two members consisting of two factors, four members consisting of three factors,
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and one member consisting of four factors. Since the alias set contains two

factor terms, it is not possible to isolate main effects.

From inspection of Tables 9 through 20, it can be seen that within the constraints

of the AED program (number of trials 1 256) and realizability, for a given

value of M, the number of factors must equal or exceed the number shown in

the following table to permit isolating all main and two factor effects:

M N

1 5

2 8

3 10

4 11

5 11

6 11

7 11

8 11

9 11

10 12

11 12

12 13

Alternatively, for a given value of N (number of factors), the allowable values

of M are shown in the following table to permit complete isolation of main

and two factor interactions:

N M

2 Not possible

3 Not possible

4 Not possible

5 M=1

6 M=1

7 M=1

8 M -1,2
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9 M - 1,2

10 M = 2,3

11 M = 3,4,5,6,7.8,9,10

12 M = 4,5,6,7,8,9,10,11

13 M = 5,6,7,8,9,10,11,12

14 N = 6,7,8,9,10,11,12

15 M = 7,8,9,10,11,12

16 N = 8,9,10,11,12

17 M - 9,10,11,12

18 M = 10,11,12

19 M = 11,12

20 M = 12

Similar tables could be constructed for isolation of main effects only (all

members of alias set contain at least four factors), isolation of main, two

factor, and three factor interactions (all members of the alias set contain

at least six factors), etc.

REALIZABLE DESIGNS

All of the designs presented in the Tables 9 through 20 are not realizable,

particularly in those cases in which M approaches N. However, inspection of

the theoretically best isolation designs will show if the desired results in

terms of isolation could be obtained if the design can be found. If the design

is not adequate, perhaps more trials should be added (reduce M) to improve

the isolation. If the table design is adequate, the next step is to determine

if the design is stored in the AED program. The designs stored in the AED

program are the best realizable isolation designs that have been found to

date.

If the desired design does not reside in the AED program, a realizable design

can be constructed following the procedure described in the next section.

Variants of this procedure can also be used to modify stored designs to meet

special needs of the experimenter.
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ALIAS SET MODIFICATIONS AND THE GENERATION OF NEW DESIGNS

The alias set is generated by developing all of the possible combinations of

the defining contrasts. As an example, if three defining contrasts, (M - 3),

say AB, BC, and CD are used in a four factor problem (N a 4), the resulting

alias set is generated as follows:

1 Defining Contrast No. 1 = AB 1100 2 factors

2 Defining Contrast No. 2 = BC 0110 2 factors

1x2 Product of l and 2 = AC 1010 2 factors

3 Defining Contrast No. 3 = CD 0011 2 factors

1x3 Product of 1 and 3 = ABCD 1111 4 factors

2x3 Product of 2 and 3 = BD 0101 2 factors

1x2x3 Product of 1,2, and 3 = AD 1001 2 factors

This is a 6(2) + 1(4) design

A new design for N = 5 can be built from this design by adding another column.

The goal should be to increase the two factor terms and not increase the four

factor (I x 3) term.

This can be done as follows:

Contrast Original Added
Product Design Column

1 1100 1 3 factors

2 0110 1 3 factors

Contrast Original Added
Product Design Column

12 1010 0 2 factors

3 0011 1 3 factors

13 1111 0 4 factors

23 0101 0 2 factors

123 1001 1 3 factors

This results in a 2(2) + 4(3) + 1(4) design for N = 5 which means the best

theoretical design from Table 11 for N = 5 and M 3.
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The defining contrasts for this design are:

11001 a ABE

01101 = BCE

00111 = CDE

Now assume we wish to build a design for N = 6. This can done by generating

another new column. The new column should increase the two factor terms (1 x 2

and 2 x 3) and not increase the four factor term (1 x 3). This will result

in the following design:

Contrast 5 Factor Added
Product Design Column

1 11001 0 3 factors

2 01101 1 4 factors

12 10100 1 3 factors

3 00111 0 3 factors

13 11110 0 4 factors
23 01010 1 3 factors

123 10011 1 4 factors

This results in 4(3) + 3(4) design, which again is a best isolation design.
In general, as M increases, this procedure will not result in best isolation

designs, but all designs will be achievable.

The process can be used in reverse by removing columns. In fact, a poor design

can be improved by removing columns, then adding columns by paying attention

to the numbers of factors in the rows. To illustrate, assume the following

ten factor design is available:

Contrast 10 Factor
Product Design

1 1111110000 6 factors

2 0001111100 5 factors

12 1110001100 5 factors

3 1101010011 6 factors

13 0010100011 4 factors
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23 1100101111 7 factors

1 23 0011011111 7 factors

this is a 1(4) + 2(5) + 2(6) + 2(7) design. the first step is to reduce this

to a nine factor design by removing a column. Columns 3,5,9, and 10 should

not be removed since this would reduce the four factor member (1 x 3). In the

same manner, columns 3,4, and 6 should not be removed since the seven factor

term (2 x 3) would not be reduced. Also columns 1, 2, and 5 should not be re-

moved since this would not reduce the seven factor term 1 x 2 x 3. this leaves

columns 7 and 8 as candidates for removal. Removing column 7, we are left with

a nine factor design. A new column can then be added as shown, which now results

in a best ten factor design.

Contrast Resulting 9 Factor Added
Product Design Factors Column Factors

1 111111000 6 0 6

2 000111100 4 1 5

12 111000100 4 1 5

3 110101011 6 1 7

13 001010011 4 1 5

23 110010111 6 0 6

123 001101111 6 0 6

the nine factor desigr is a 3(4) + 4(6) design. the new ten factor design is

a 3(5) + 3(6) + 1(7) design as compared with our starting point of a 1(4) +

2(5) + 2(6) + 2(7) design. thus, we have arrived at a mu6h improved design.
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ALIAS SUMMARY

the primary concern of the experimenter is directed toward examining how all main

effects and first-order interactions are aliased. the aliasing for any effect can

be found by multiplying the effect by the total alias set (applying modulo P arith-

metic to the factor exponents).

For example, consider a design consisting of 6 factors each at 2 levels with an

M of 2. this is a one-fourth design, and two defining contrasts must be specified

by the experimenter. Assume that the identities selected are I = ABCE = ABnF.

Following the rules given in the previous sections, we find that each effect is

aliased with three effects; and the complete alias set consists of ABCE, ABDF, and

CDEF. the main effects and first-order interactions and'how they are aliased are

illustrated in Table 21.

Individual effects or interactions can be examined by multiplying the particular

effect by each member of the alias set. For example, with I = ABCE = ABOF =

CDEF, the interaction EF can be found to be aliased as:

(I)(EF) = (ABCD)(EF) = (ABDF)(EF) = (CfEF)(EF)

EF = ABCE2F = ABDEF
2 = CDE 2F2

EF = ABCF = ABDE = CD

when all exponents are reduced modulo 2.
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If the experiment becomes large, it may be difficult to read the alias summary

as shown in Table 21. Therefore, an abbreviated summary (Table 22) is provided

to show how much main effect and first-order interaction is aliased with main

effects and first- and higher-order interactions. An exmaination of this

table shows that all main effects are aliased only with higher-order interactions.

This is an acceptable design for a fractional factorial experiment. Refer to

Table 9 to find the specific aliased terms. The particular design acceptability

criteria depend upon the problem being studied.

DESIGN EVALUATION

Once the alias summary has been generated, the experimenter must determine if

the design is acceptable. The acceptability of a design depends upon the

aliasing of those effects assumed to be significant by the experimenter. If

an insignificant effect is aliased with a significant effect, the design is

considered to be a good design. If a few significant effects are aliased,

however, the user may define another design or he might use the current design

and let the data analysis indicate if an effect that consists of the

combination of two potentially significant effects is significant. If a

combined effect is significant, the design can be refined to perform the

required effect separation (refer to Section 8, Refining Designs).

Once an acceptable design has been generated, the specific observation

vectors used to collect data must be found. This collection of observation

vectors is called the basic experimental block.

BASIC BLOCK DEFINITION

Once the total alias set has been defined, the specific treatment combinations

used to collect data must be found. The details of the construction of this

block may be skipped by the novice user.

The M members of the defining contrast set are used to generate the block of

treatments and are consequently called generators. If the generators are

denoted by
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Table 21. Alias Example

EFFECT ALIASED MITN:

A acE SOF ACOEF

a ACE AOF SCOIF

C ANS ASCOF DIF

o ASCDE ASP CEF

* ABC ASDElF COP

F ASCEF AID COE

AS CIE OF ABCDEF

AC BE SCOF ADEF

AD SCI OF ACEF

AS IC SOUP ACDF

AF UCEF so ACOK

01C AS ACDF SOEP

SO ACDE AF SCEF

BE AC ADEP SCOF

OF ACEP AD UCDK

CO AIDE ABCF IF

VCU AS ASCDEF OF

eCF ABEP AICO DE

D BOASEF CF

OF AGCOEF AS CE

EF AUCP AIDE Co
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Table 22. Abbreviated Alias Summary

EFFECT MAIN 1ST ORDER HIGHER ORDER

A 0 0 3

* 0 0 3

C 0 0 3

D 0 0 3

E 0 0 3

F 0 0 3

AS 0 2 1

AC 0 1 2

AD 0 1 2

AE 0 1 2

AF 0 1 2

SC 0 1 2

so 0 1 2

BE 0 1 2

OP 0 1 2
CO 0 2

CE 0 2 1

CF 0 1 2

DE 0 1 2

OF 0 2 1

EF 0 1 2
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Gi= AaiBbiCci... 1 1 1, 2, ... , M,

then the levels in the factorial combination xlx2x3 ... selected for the block

satisfy simultaneously the M equations

aixi + bix2 + cix3 + ... 3 0 (modulo P)

i = 1,2, ..., M

Similar equations in which 1, ..., (P - 1) is used in place of 0 are equally

valid; however, the set of treatments defined using the 0, called the Basic

Block or the principal block, will be used here.

Consider the one-fourth replicate of an experiment with six factors at two

levels, where the defining contrasts are I = ABCD = ABDF. (The total alias

set is I = ABCD = ABDF = CDEF.) The defining contrasts define two generating

equations:

G1 = A1B1C1DOE1FO

G2 = AIB 1COD1EOF 1

The simultaneous equations to be solved are:

x1 + x2 + x3 + x5 = 0 modulo 2

X1 + x2 + X4 + x6 = 0 modulo 2

Each of the 26 = 64 factor combinations is evaluated using this system of

equations, and those combinations satisfying the equations form the basic

experimental block. Table 23 shows all 26 treatment combinations, and the 16

that form the basic block are shown with an asterisk.

The basic block (or observation vector) for the example is given in Table 24.

Note that 0 indicates the factor is at its low level whereas a I indicates a

factor is at its highest level. Once the basic block is defined, the experi-

menter must collect the experimental data. Data collection procedures are

discussed in the next section.
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Table 24. Basic Block Susmmary

PACTOR LIEVEL

WKPRIMENTAL
UNIT A a C 0 a F

10 0 0 0 0 0

2 0 0 0 1 0 1

3 0 0 1 0 1 0

4 0 0 I I I I

5 0 1 0 0 1 1

* 0 1 0 1 1 0

7 0 1 1 0 0 1

* 0 1 1 1 0 0

9 1 0 0 0 1 1

10 1 0 0 1 1 0

11 1 0 1 0 0 1

12 1 0 1 1 0 0

13 1 1 0 0 0 0

V15 1 1 1 0 0 0

is 1 I 1 1 1 0Is1
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DATA COLLECTION

Using the observation vectors defined in the basic experimental block, the

data collection process is relatively straightforward. The different combina-

tions in the basic block are tested, and the response value is measured.

No consideration has been given to the specific order in which the observation

vectors are to be run. The general procedure is to select random combinations

until each of the observation vectors in the basic block has been run. This

is acceptable unless the experimenter considers a change in the system over

time. A system change can be overcome by dividing the basic block into smaller

blocks. The assumption is made that the system is relatively homogeneous

within each block. Techniques for the construction of blocks are identical

to those used to build the alias set. An effect is selected, and the effect

equation is generated. For example, consider effect AC. The value of the

effect equation for AC equals 0 modulo 2 goes into one block, and the effect

equation for AC equals 1 modulo 2 goes into a second block. This causes effect

AC to be no longer measurable, i.e., the experimenter cannot know if a response

is due to the interaction AC or to a change between blocks.

Blocking procedures are not included in this program. This capability will

be added at a later date. The inclusion of this feature, however, requires a

trained, experienced user.

Once the data have been collected, they must be analyzed to identify significant

effects. This analysis consists of an analysis of variance (ANOVA) or of a

regression analysis. Because details concerning ANOVA and regression analysis

methods may be found in any statistical analysis text, they have not been

included here.

REFINING DESIGNS

When data have been collected and analyzed from a fractional factorial experi-

ment, the experimenter may determine that he wishes to further examine certain

effects or interactions that were confounded in the original design. Finding
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a new design in which these effects are separated is called refining the design.

This is accomplished by dividing one of the effects to be separated by the

other to yield a member of the alias set. This division is defined as a sub-

traction of corresponding exponents where an exponent is increased by P when-

ever the subtrahend would have been larger than the minuend. For example, if

P = 3,

201/102 201 104

-102 -102

102

The member of the power set that was used to generate this member of the alias

set is examined for non-zero columns. Removal of any one of the defining

contrasts represented by these columns results in separating the two effects,

(i.e., if the member of the power series was found to be 210, removal of either

the first or the second defining contrast would accomplish the desired separa-

tion).

V. Removal of a defining contrast results in doubling the total number of trials

in a two-level experiment, and tripling the total number of trials in a

three-level experiment, although the first portion of the experiment may have

already been completed before removal of the defining contrast. This is the

price paid for reducing the confounding.

IRREGULAR FRACTIONAL FACTORIAL EXPERIMENTS

The generation of fractional experiments uses a 1/PN design, i.e., a 1/8, a

1/27, or a 1/64 design. Although any fraction such as k/pN may be constructed,

these designs have many problems. Consider the case with five factors at two

levels, but with only 24 observation vectors available. One possibility would

be a 3/4 design based on using a 1/2 and 1/4 replicate design. If this is

used, the total design will have highly correlated estimates that could lead

to extremely difficult tests of significance.
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Another approach would be to use a 1/2 replicate and a 112 replicate of the

unused portion of the larger design. Because of confounding, however, this

design provides less information to the experimenter than the 1/2 replicate

alone. For these reasons, fractional designs other than a 1/PN are not

advantageous.

SCREENING DESIGNS

One of the common information objectives of human factors engineering research

(and indeed of many experiments in general) is to determine the factors that

produce a certain result and the relative importance of these factors.

Before a formal experiment can ever be conducted, an investigator is generally

required to cull the list of possibly hundreds of potential factors by con-

sidering such criteria as:

Information gained from related research

Practical constraints of time and money
Customer interest

Rational analysis.

Once the least interesting factors have been pared from the list of potentials,

fractional factorial designs used as sequential experiments can be of real

value.

The term sequential design is generally used to describe experiments in which

the yield or response on any unit is known before the experimenter treats the

next unit. When an experiment is sequential, the experimenter can stop after

every observation or group of observations and examine the results to date

before deciding how or whether to continue the experiment.

The term screening design is generally used to describe experiments where an

investigator starts with a relatively large number of factors, and by performing

a small number of trials, (using a highly fractionated design) can determine

that some of the factors are of little significance. These factors can then
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be eliminated or screened from further consideration, and another experiment

can be designed from the remaining factors. Once the factors that are of

importance relative to a given error of prediction have been identified, it

may be necessary to perform detailed work on these factors, perhaps using

more levels per factor, or creating a mixed level design, or using a central

composite design.

RESPONSE SURFACE DESIGNS

In many investigations, the final goal is to study how the response varies in

an experimental region and perhaps to determine the factor combination yielding

an optimum response (if an optimum response is suspected to exist). If the N

significant factors are all quantitative with their levels denoted X1, X2,

... , XN and the response is quantitative with its level denoted Y, then Y is

a function 0 of the X1, X2, ... , XN; i.e., Y = 0 (X1, X2 .... XN). The function

0 is called the response function or response surface. Then the final goal

of the investigation is to determine the behavior of the function 0 in the

experimental region.

APPROXIMATIONS OF RESPONSE SURFACES BY POLYNOMIALS

THE RESPONSE SURFACE

Suppose all N factors and the response are quantitative and continuous. Denote

the levels of the factors by X1, K2, ... , XN and denote the level of the response

by Y. Then Y is a function 0 of X1, X2, ..., XN and we can write Y = 0(X1,
X2 , ..., XN). The function 0 is called the response function. We can also

interpret Y a 0 (X1, X2, ..., XN) as the equation of a surface in N+1 dimensional

space, called the response surface. The terms response surface and response

function will be used interchangeably.

Note that we have restricted the concept of a response surface to the case

where the response and all factors are quantitative. If only some of the

factors are quantitative, say the first K, then one could fix the levels of

the qualitative factors, so that they become constants instead of factors.

One could then talk about the response function Y 0 (X, X2, ...XK). Whether
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or not consideration of this restricted response function is worthwhile, and

if so, at which levels the qualitative factors should be fixed, must be deter-

mined by the investigator.

POLYNOMIAL APPROXIMATIONS

In most investigations the nature of the response surface (i.e., the form of

the response function) is unknown, so a goal of actually determining the true

response function is unattainable. Consequently, we will be satisfied if we

can find an approximating function such that the value of the approximating

function, in the experimental region under investigation, is sufficiently

close to the observed response for our purposes.

The only approximating functions we will consider will be polynomials in the

levels of the factors. Polynomials are relatively easy to work with, and in

a given region any continuous function can be approximated to any desired

degree of accuracy by a polynomial of sufficiently high degree.

For example, suppose an investigation involves three factors. Then some of

the possible polynomial approximations are as follows:

1. A linear approximation is a polynomial of degree one and is of the

form:

Y = Bo + 8IX1 + B2X2 + B3X3

2. A quadratic approximation is a polynomial of degree two and is of

the form:

Y = +8 X2 + B22+ B3X30 11 1 22X2 3

+BX2 +BX2 +8X+ B11X1 +B 22X 33X

+B12X1X 2 + B13X1X3 + B23X2X3
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3. A cubic approximatiQn is a polynomial of degree three apd is of the
form: .. ..

Y aB+ BiX1 +"B2X2  B 3 + '11X +B22X

3 3~ 2 2 B3 X

11 1 B222X 2 8333X3 + 112X1 +122 1 2

+ XX2 2 + B + 8 XKX
+ 3 3 + B133X1X3 + B223X2 X3  2332X3 123 123

A polynomial of degree greater than three is a straightforward extension of

the above cases. However, such polynomials are relatively unlikely to be

used for approximating response surfaces.

Note that each of the above polynomials is a complete polynomial in that it

contains all possible terms of degree less than or equal to the degree of the

polynomial. Also, in the above polynomials each term can be interpreted as a

contribution to the response level Y due to a certain one-factor effect or to

a factor interaction. For instance, in the quadratic case

Bo is the base level of the response (the response level when all factors

are at level zero)

B. is the linear effect of the i-th factor

BiiX? is the quadratic effect of the i-th factor

BijXiX j is the two-factor interaction effect of the i-th and j-th factors.

When we choose the degree of the approximating polynomial, we make certain

implicit assumptions about the significance of certain effects. If we choose

a linear approximation, we are assuming that all two-factor interactions and
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all quadratic one-factor effects are not significant; if we choose a quadratic

approximation, we are assuming that all three-factor interactions and all

cubic one-factor effects are not significant. If these implicit assumptions

are incorrect, the approximating polynomial is likely to fit the observed

responses poorly.

The polynomial degree chosen may also vary with the purpose of the approximation

and may be different at different phases of a sequential design. For instance,

in an investigation whose goal is to determine an optimum response we would

normally use linear approximations at each step where we use the method of

steepest ascent (see Cochran & Cox, 1957) but then go to a quadratic approxi-

mation at the point where the method of steepest ascent finally breaks down.

DATA REQUIREMENTS

Having decided what degree of polynomial approximation to use, we must design

an experiment that will yield data sufficient to allow a determination of the

coefficients of the polynomial. In particular, the following restrictions

apply.

1. The number of levels at which the i-th factor occurs must be at least

one greater than the hightest power of Xi in the polynomial.

2. The total number of distinct factor combinations (experimental trials)

must be at least as large as the number of polynomial coefficients

to be determined.

3. The design of the experiment should not allow any two terms in the

polynomial to have their corresponding factor combinations aliased

with one another.

Even these three conditions do not guarantee that the experimental data are

sufficient to allow determination of all polynomial coefficients. However,

an appropriate central composite design (discussed later) will always be

sufficient to determine all coefficients of the desired quadratic polynomial.
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USE OF INCOMPLETE POLYNOMIALS

To this point it has been assumed that the approximating polynomial is a complete

polynomial, i.e., that It contains all possible terms of degree less than or

equal to the degree of the polynomial. This need not be the case. From a

complete polynomial we could omit those terms corresponding to effects that

are known to be not significant.

For example, suppose there are 6 factors A,B,C,D,E, and F but that it is known

that the only significant interactions are the two-factor interactions between

A,B, and C. Then instead of the complete quadratic polynomial, which contains

28 terms, one could use the following as an approximating polynomial:

Y=B + BX + B X 2

0 i=1 i i i=1 ii

+ B X x +B X X +B X X
12 1 2 13 1 3 23 2 3

This incomplete polynomial contains only 16 terms; twelve two-factor interaction

terms have been omitted. The possible advantage of an incomplete polynomial

is that one may be able to generate sufficient data (to determine the poly-

nomial coefficients) from a smaller experiment than is required for the complete

polynomial. The notation pN-M where P is the number of levels, N is the number

of factors, and M is the number of defining contrasts will be used in the

following examples to describe the factorial case under consideration. In

the above example, a 26-1 factorial (e.g., with I = ABCDEF) would be required

to determine all two-factor interactions in the complete polynomial, but a

26-2 factorial (e.g., with I = ABCD - ABEF) would allow determination of all

necessary two-factor interactions in the complete polynomial.

THE CENTRAL COMPOSITE DESIGN

The central composite design is specifically intended to allow determination

of a quadratic approximation of the response surface. It is a composite or
combination of a full or fractional two-level factorial design and some addi-

tional experimental points selected in a particular manner so as to allow a

good determination of the quadratic one factor effects. Thus the central
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composite design is often appropriate when one suspects that the relationship

between the response and the level of a factor is non-linear. In addition,

the central composite design should give a good estimate of the response mean

and provide an estimate of the precision of the mean.

The central composite design is often especially suitable in a sequential

design process. It is sometimes a less costly alternative to three or five-

level factorial designs. Some examples of situations where the central com-

posite design might be used are as follows:

1. One has already run a full or fractional factorial experiment and

now wants information about possible non-linearity and the shape of

the response surface, plus a better estimate of the mean, with a

minimum number of additional trials.

2. An investigation involves a small number of continuous quantitative

factors and one wants as much information as possible quickly and at

low cost.

3. One has already run a full or fractional two-level experiment and

wants to expand the experimental region at low cost.

DEFINITION OF THE CENTRAL COMPOSITE DESIGN

An N-factor central composite design consists of three components.

1. A full or 1/2- replicate of a 2N factorial design, where for each

factor the two coded levels are -l and 1.

2. 2N star or axial points. For each factor there are two corresponding

axial points; the given factor has coded level -a at one point and +a

at the other, whereas all other factors have coded level zero at

both points.

3. The center point, where all N factors have coded level zero.
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EXPERIMENTAL DATA CENTER
COLLECTION POINTS

Figure 2. Central Composite Design

For example, a three-factor central composite design would be as

follows, where the experimental point with first factor at coded
level X1 , second factor at coded level X2, and third factor at coded

level X3 is represented by the vector (Xj, X2, X3).

1. A full 23 factorial: (-1,-I,-1), (-1,-1,1), (-1,1,-i), (-1,1,1).
(1,-1,-1), (1,-1,-1), (1,1,-i), (1,1,1)

2. 6 axial points: (0,0,0), (0,0,0), (0,a ,O), (0,c 0).

(0,0.-a), (0,0,ci)

3. The center point: (0,0,0)

CODED VS. REAL WORLD LEVELS

In the central composite design the coded or formal levels of each factor are
-0, -1, 0, 1, and a . The real world levels of a factor (i.e., the true

quantitative levels of the factor that correspond to the coded levels) must

be determined by the researcher. In determining the real world experimental

range of levels for a factor, whether for a central composite design or some

other design, the following should be considered.
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1. If the chosen range is too small, the researcher may erroneously conclude

that the factor is not significant (e.g., in a pilot study to determine

significant factors), that the one-factor effect of that factor is linear,

or that the factor does not interact with other factors.

2. If the chosen range is too large, effects of order higher than the degree

of the approximating polynomial may become significant. This could result

in a poor fit between the approximating polynomial and the observed data.

Having decided upon the real world experimental range to be used for a parti-

cular factor, we can use the following linear transformation to determine the

real world level corresponding to any formal level.

= (ru-rL) f+ (ru+r L)

Here r is the real world level, f is the formal or coded level, and rLand rU

are the lower and upper value in the chosen real world range.

If a full or fractional 2 level factorial experiment has already been completed,

we can use the following linear transformation to determine the real world

level corresponding to any formal level.

r (r+ -r .) f + (r+ +r 1 )
r- 2

Here r is the real world level, f is the formal or coded level, and r_1 and

r+i are the real world levels rf the previously defined 2 level factorial

experiment.

In certain instances one might replace the real world levels of a factor by a

function of the levels. For instance, if one is using the real world range

.001 to .1 but wishes to consider .01 as the midpoint of the range, then one

could replace the raw values by their logarithms. This would give rL a log

(.001) -- 3, rU log (.1) - -1, and log (.01) -- 2 is midway between rL and

rU•
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The linear transformation would then be:

f
r - -2 +

The 5 levels of that factor occurring in the central composite design would

be:

coded or formal level -1 0 1

real world level (log) -3 -2-1/c - 2 -2+1/a -1

real world raw value .001 10-2-1/c .01 10-2+1/0 .1

CHOICE OF THE LEVEL 2

A rotatable design is one that leaves the variance of the estimated response

unchanged when the design is rotated about the center. This means that the

variance of the estimated response is the same at all points equidistant from

the center (0,0, ...,0) of the design. Rotatable designs are desirable in

situations where the researcher has no advance knowledge of the response surface

or how it is oriented relative to the factor axes and thus has no knowledge

of how the variance of the estimated response will vary along the surface.

Box and Hunter (1957) have shown that if the factorial part of the central

composite design is a 2N-M factorial in which one-factor effects and two-

factor interactions are aliased only with higher order effects, then

choosing a=2 (N-M)/4 will make the design rotatable. Although rotatability

is not critical, unless we have a reason for doing otherwise we would normally

place all 2N axial points at the distance a=2(N-M)/4 from the center point so

that the central composite design is rotatable.

In certain situations, such as in a sequential design process where a 1/2M

fractionation resulted from a prior experiment, there may be one or more

factors for which the levels ±2 (N-M)/4 are not feasible. In such situations

we might choose a value of 0 different from 2(N-M)/4. Alternatively, the

axial points for those factors only could be chosen at a distance other than C

from the center; in fact the two axial points for a factor could be at unequal

distances from the center point.
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The purpose of each pair of axial points is to increase the precision of the

estimate of the corresponding quadratic term BiAX. Increasing the distances

of these axial points from the center will decrease the variance of this

estimated one-factor quadratic effect but will also increase its correlation

with other such effects and will increase the danger of bias from higher order

effects. On the other hand, if these axial points are within or very near

the range from -1 to 1 then they may not significantly increase the precision

of the estimate of the quadratic effect BiAX .

USE OF MULTIPLE OBSERVATIONS AT THE CENTER POINT

Using multiple regression techniques on the experimental data resulting from

the central composite design or some other appropriate design, we can derive

a polynomial least squares approximation to the response surface. From this

process we would also like estimates of the lack of fit and of the experimental

error.

1. The lack of fit estimate should indicate the significance of the

totality of all effects without corresponding terms in the polynomial.

If the approximation is a complete quadratic polynomial these would

be the effects represented by terms of degree 3 or greater; e.g.,

BiiiX 3
1 , Biij X

2Xj, BijkXiXJXk, etc.

2. The experimental error estimate is just an estimate of the experimental

error variance, i.e., of the standard error of the estimated response.

In the central composite design we can provide for an estimate of the experi-

mental error by repeating observations at the center point. If there are no

replications of the center point, they provide no -1 degrees of freedom for

estimating the experimental error. Box and Hunter (1957) determined values

of no for which the variance of the estimated response is approximately the

same at the center and at unity distance from the center of a rotatable central

composite design. In this case the standard error is roughly the same at all

points within the sphere of radius one and can be approximated by the standard

error at the center point; the graph in Box and Hunter indicates that the
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standard error increases fairly rapidly outside the sphere of radius one.

From Box and Hunter's results it follows that the formula for such a value of
no is

2
no = (2

N-M + 4 + 4 .2(N-M1/2) ( N + 3 + 9N + 14N-7 ) -2N-M_2N
4N + 8

Table 25 gives such values of no (rounded to the nearest integer) for rotatable

central composite designs.

Table 25. Replicates of Center Point for Nearly Uniform Variance.

N M-0 M0I Ma2 M-3

2 5

3 6

4 7

5 10 6

6 15 9

7 21 14

8 28 20 13

9 37 25 Is

10 43 38 29 18

After deriving an approximate polynomial, one can do an analysis of variance.

By partitioning the total sum of squares into a number of parts, each the

contribution due to a source of interest, one can get a lack of fit estimate.

For instance, for a quadratic approximation resulting from a central composite

design one could partition the sum of squares into four parts:

(a) sum of squares due to first order terms

(b) sum of squares due to second order terms

(c) sum of squares due to experimental error (from the no replications

of the center point)

(d) sum of squares due to lack of fit.
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The sum of squares in (d) is found by subtracting from the total sum of squares

the sum ov squares in (a), (b) and (c). By comparing the mean squares for

the various parts in the partition, one can determine the relative significance

of each part of the partition.

RESTRICTIONS ON A CENTRAL COMPOSITE DESIGN

The following comments are appropriate to a discussion of the restrictions

which must be placed on a central composite design in order to allow determina-

tion of a quadratic approximation of a response surface.

1. In that part of the central composite design consisting only of the

axial and center points, each factor must appear at three separate

levels -a , 0, and a , with the levels of all other factors fixed at
0. Thus the basic level B0 , the linear one-factor terms BiXI, and

the quadratic one-factor terms B. X? could be estimated from these

points alone.

2. The two-factor interaction terms BJXiXi must be estimated from theij i

factorial part of the central composite design, since in the center

and axial points portion of the central composite design only one

factor at a time is being varied.

From these two comments one can see that when using a central composite design

to fit a quadratic polynomial to a response surface, the basic restriction on

the central composite design is imposed by the requirement that the factorial

part of the central composite design allow estimation of all two-factor inter-
action terms in the polynomial. In particular, when fitting a complete qua-

dratic polynomial this requirement is that no two-factor effect be aliased

with I or any other two-factor effect. In practice, we strengthen this require-

ment to "no one-factor effect or two-factor interaction can be aliased with

I, a one-factor effect, or a two-factor interaction."

When fitting an incomplete quadratic polynomial this restriction can be relaxed.

Then we usually require that each of the main effects and two-factor interaction

effects with a corresponding term in the polynomial not be allased with another

of these effects.
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To have one-factor effects and two-factor interactions aliased only with higher

order effects it is necessary and sufficient that the non-I terms of the total

alias set all involve at least five factors. For a given number of factors,

Table 26 gives the smallest possible fractional factorial with this property.

Table 26. Minimum Fractionation Confounding Only Higher Order Effects

NUMBER N OF MINIMUM FRACTIONATION NUMBER OF OBSERVATION

FACTORS VECTORS IN THE FRACTIONATION

2 FULL 4

3 FULL 8

4 FULL 16

5 1/2 16

6 1/2 32

7 1/2 64

8 1/4 64

9 1/4 128

10 1/8 128

11 1/16 128

12 1/16 256

13 1/32 256

14 1/64 256

15 1/12B 256

16 1/128 512

17 1/256 512

As can be seen from the above table, when six or more factors are involved

the central composite design requires a fairly large number of factor combi-

nations even for a minimum fractional factorial. Thus, when feasible, it may

be worthwhile to use an incomplete quadratic polynomial. For instance, if

the only significant interactions are two-factor interactions among Just four

of the factors, then a 16 unit fractional factorial will suffice for 6, 7, or

8 factors and a 32 unit fractional factorial will suffice for 9 or 10 factors.

Predefined Designs 2.6.16, 2.7.16, 2.8.16, and 2.9.32 (see section 15, Prede-
fined Designs) are examples of such fractional factorials if the only signifi-

cant interactions are taken to be two-factor interactions among A,C,D, and E.
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V

COMPARISON WITH THE THREE-LEVEL FACTORIAL

The central composite design is specifically designed to allow a quadratic

approximation of a response surface. Other designs can also be used for this

purpose. The most obvious alternate design is the three-level factorial.

For example, if we want a complete quadratic approximation of a five-factor

response surface, then we could either use a central composite design involving

a 25-1 factorial or use a 35-1 factorial. The central composite design will

often have a number of advantages over the three level factorial.

1. The central composite design is often more economical than alternate

designs. In the above example the central composite design requires

only 27 points whereas the 35-1 design requires 81 points, where

neither count includes multiple replicates of the center point.

2. The central composite design is often appropriate in a sequential

design process. If one has already run a 2N-M factorial experiment

from which one has determined the desirability of finding a quadratic

approximation of the response surface, then it may be sufficient to

collect additional observations on the axial and central points to

complete the central composite design.

3. In the central composite design every factor appears at five levels

whereas in the 3N factorial every factor appears at only three levels.

Thus the central composite design should give better relative precision

of the one-factor quadratic terms 8ii X?

If it turns out that a quadratic approximation yields a poor fit, then the 3-

level factorial may be more advantageous. A complete 3N factorial allows

determination of third degree terms with each factor exponent < 2, whereas

the central composite design involving a complete 2N factorial allows deter-

mination of third and fourth degree one-factor terms and third degree inter-

action terms with all factor exponents < 1. Thus if we want to go to a cubic

approximation without additional experimental points, whether or not the terms

BiliiX are more significant than the terms BiijXjXj determines whether or not

the central composite design allows a better fit than the 3N factorial. In

-62-

1.I



any case, as N increases, the 3N factorial becomes much more expensive than

the central composite design.

DATA ANALYSIS

Once the experimental data have been collected according to the central com-

posite design, the data must be analyzed. The first step in the analysis

process is to use multiple regression techniques to derive the polynomial (of

the chosen form) which provides a least squares best fit to the experimental

data; that is, the polynomial which minimizes the sum of the squares of the

differences between the observed response level and the response level predicted

by the polynomial. The details of this derivation are documented in many of

the references and in most statistics texts and are not presented here. From

this derivation process we can also get estimates of a2 (the variance of the

estimated response) and of the variances and covariances of the estimates of

the coefficients of the derived polynomial.

The second step in the analysis process is an analysis of variance. Here we

tabulate the degrees of freedom, the sum of squares, and the mean square for

each part of the partition of sum of squares. A comparison of the mean squares

indicates the relative significance of each part. In particular, a mean square

corresponding to lack of fit that is substantially larger than the mean square

corresponding to experimental error indicates that the derived polynomial

does not fit the true response surface very well.

If one is satisfied that the derived polynomial provides an adequate fit,

then there are several additional analysis steps one might consider.

1. One could try to find a stationary point of the qjadratic surface;

i.e., a point where the partial derivatives of the polynomial with

respect to the factor levels are all zero.

2. If one does find a stationary point, one could perform a translation

of axes and a rotation of axes to transform the quadratic function

to its canonical form Y -yfo +
' + ... +YNZ • In this

canonical form the origin is at the stationary point and the principal
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axes of the quadratic surface are also coordinate axes, so it is

relatively easy to determine the shape of the surface.

3. One can determine whether the stationary point is a maximum point or

a saddle point.

4. If the stationary point is a saddle point, one can determine the

directions of most promise for a further search for an optimum point.

These steps are appropriate mainly in those situations where one might suspect

the existence of an optimum response. In particular these steps depend on

the existence of a stationary point, which in many situations may not exist.

In any analysis of the derived polynomial, it should be kept in mind that

even if the polynomial provides a good fit the polynomial should be considered

to be a good approximation only within the region bounded by the experimental

ranges of the factors. If one extrapolates beyond that region then any con-

clusions drawn may be suspect. For instance, if the analysis of the quadratic

function indicates a stationary point is a maximum point, but the stationary

point is outside the experimental region, then the stationary point may not

be very close to a real maximum. In this situation it might be best to do

further investigation by moving toward this calculated maximum point and running

additional observations.

MIXED LEVEL DESIGNS

COMBINED QUALITATIVE AND QUANTITATIVE FACTORS

The simplest form of combined level design involves an experiment which includes

both qualitative and quantitative factors with all factors involving the same
number of levels. As an example, consider an experiment involving five factors.

Factors A,B, and C are quantitative and D and E are qualitative. A two level

design is to be used. This may be expressed as a 2322 design. Fractionation

should not be applied to qualitative variables, so only the 23 portion of

this design can be fractionated. Possible fractionations for this design are

as shown in Table 27.
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Table 27. 5 Factor, 2 Level, Mixed Qualitative and Quantitative Designs

FRACTIONATION NO. OF TRIALS DEFINING CONTRASTS ALIAS SET

NONE 32 NONE NONE

1/2 16 I- ABC ABC

1/4 8 I-AB.I-BC ABBCAC

As another example, consider the same five factor problem in which a three

level design is to be used. This is shown in Table 28.

Table 28. 5 Factor, 3 Level, Mixed Qualitative and Quantitative Designs

FRACTIONATION NO. OF TRIALS DEFINING CONTRASTS ALIAS SET

NONE 243 NONE NONE

1/3 81 I - ABC ABCA282C2

1/9 27 I - AS, I - BC AB,A282,BC,B2C2

ACAC2,A2CA2BC2

Thus any grouping of factors at a given level which consists of both qualitative

and quantitative factors should be expressed as

pQpR where P = no of levels

Q = no of quantitative factors
R = no of qualitative factors

Fractionation should only be applied to the PQ portion of this expression.

2 l3 DESIGNS

If an experiment involves only quantitative factors, some at one set of levels

(two levels for example) and the other at a different number of levels (e.g.,

three levels) it requires a mixed level design. A mixed level design of this
type is most simply approached by considering each portion of the design

separately, assigning defining contrasts for each portion of the design, and
performing an optimum fractionation for each portion of the design followed

by a cross multiplication of the resultants for each portion of the design.
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As an example, a 2K3L design could be defined for a 1/2 fraction by defining

the basic block for a 1/2 fraction of the 2K which would be assembled with

the complete 3L to arrive at the design.

If K = 3 and L = 2, the resultant component would be as follows:

2 Level 3 Level Design

000 00 00000 01100 10100 11000

011 01 00001 01101 10101 11001

101 02 00002 01102 10102 11002

110 10 00010 01110 10110 11010

11 00011 01111 10111 11011

12 00012 01112 10112 11012

20 00020 01120 10120 11020

21 00021 01120 10121 11021

22 00022 01122 10122 11022

Upon examining the resulting design, we find that the levels are not "mixed"

as well as they might be. As an example, when the first two (2) level factors

are at the same level (either both low or both high), although the three level

term is exercised at all levels, the third 2 level term is always at its low

level.

An approach to improving the "mixing" of levels in the design is to perform a

fractionation upon all portions of the design and assemble the resulting fractions

to arrive at the desired fraction. In our sample case this would be done as

follows:

If a 1/2 fraction is desired, the two level portion is divided into two parts

SI and S2. S1 is the basic block and S2 is the remaining block. The three

level term is divided into Sj, S2, and S; where Si = 0 (mod 3), S = 1 (mod

3) and S = 2 (mod 3). The treatment combinations are then:
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2 Level 3 Level

000 001 00 01 02

011 010 12 10 11

101 100 21 22 20

110 111

The experimental plan can then be formulated as:

S1I + $2S3 + SIS; or fractionally = + +

'2 '2 + 7 73+ 7 7

The resulting design is now:

00000 00101 00002

01100 01001 01102

10100 10001 10102

11000 11101 11002

00012 00110 00011

01112 01010 01111

10112 10010 10111

11012 11110 11011

00021 00122 00020

01121 01022 01120

10121 10022 10120

11021 11122 11020

This design results in a better mixing than the original design. A symmetrical

design, in which each fraction for a portion of the design is used the same

number of times as every other fraction for that portion of the experimental

design, would provide the optimum level of mixing. However, this cannot be

achieved except in a few cases.
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The first step in the process of formulating a mixed level design is to determine

the number of components in the experimental plan. This will be illustrated

for the 2K3L design, 1/2 fractionation.

The experimental plan will consist of:

1 13 P 2-
1/2= G  1 . p where G =32M

and P * L
M5K

If K = 3, L = 2 (2332), the possibilities are:

11 1 6 1 12 1 1
12 3o

Experimental plans corresponding to these are:

So S1+$2S2+$153

or 5151+$252+5 5+$515+525355+ ~or 41 2 63 7 82

S1S1+S 2S2+S3S3+$4SI+$5S2+$6S3+57SI+S2

+S 1s s+si+s3s 4s

For simplicity, the 3 element plan would be selected since the more complex

plans do not offer significant advantages.

PREDEFINED DESIGNS

An experimenter frequently requires a design for which he is unable to find

the appropriate aliasing. This section includes a set of predefined designs

that allow for all main effects to be measurable. Main effects are aliased

with only high-order interactions. Also, most two-factor interactions are

measurable.
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To aid the user, the different experimental designs are identified by the

notation L.F.S., where L is the number of levels per factor, 2 or 3; F is the

number of factors; and S is the number of observation vectors in the fractional

design (e.g., 2.4.8 = 2 levels, 4 factors, and 8 units). the sources of these

predefined designs are C&C (Cochran and Cox, 1957) NBS #48 and NBS #54. Some

predefined designs were developed as a result of this study.

Design 2.4.8 Design 2.6.8

24 factorial in 8 units 26 factorial in 8 units

1/2 replicate 1/8 replicate

I = ABCD I = ACE = ADF = BCF

C&C, p. 276 C&C, p. 278

Design 2.5.8 nesign 2.6.16

25 factorial in 8 units 26 factorial in 16 units

1/4 replicate 1/4 replicate

I = ABE = CDE I = ABCE = ABDF

C&C, p. 277 C&C, p. 278

Design 2.5.16 Design 2.6.3?

25 factorial in 16 units 26 factorial in 32 units

1/2 replicate 1/2 replicate

I = ABCDE I = ABCDEF

C&C, p. 277 C&C, p. 279

Design 2.7.8 Design 2.8.32

27 factorial in 8 units 28factorial in 32 units

1/16 replicate 1/8 replicate

I = ABG = ACE = ADF = BCF I = BCOH = BDFG = ABCEF

C&C, p. 280 C&C, p. 286

Design 2.7.26 Design 2.8.64

27 factorial in 16 units 28 factorial in 64 units

1/8 replicate 1/4 replicate

I = ABCD = ABEF = ACEG I = ABCEG = ABnFH

C&C, p. 280 C&C, p. 287
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Design 2.7.32 Design 2.8.128

27 factorial in 32 units 28 factorial in 128 units

1/4 replicate 1/2 replicate

I = ABCDE = ABCFG I = ABCDEFGH

C&C, p. 281 C&C, p. 288

Design 2.7.64 Design 2.9.32

27 factorial in 64 units 29 factorial in 32 units

1/2 replicate 1/16 replicate

I = ABCDEFG I = ABCD = ABEF = BCEG = EFGHJ

C&C, p. 283 NBS #48, p. 43

Design 2.8.16 Design 2.9.64

28 factorial in 16 units 29 factorial in 64 units

1/16 replicate 1/8 replicate

I = ABCD = ABEF = ABGH = ACEH I = ABEGHJ = ACFGJ = ABCD

C&C, p. 285 NBS #48, p. 33

Design 2.9.128 Design 2.10.512

29 factorial in 128 units 210 factorial in 512 units

1/4 replicate 112 replicate

* I = ABCEG, = ABDFHJ I = ABCDEFGHJK

NBS #48, p. 24

Design 2.9.256 Design 3.3.9

29 factorial in 256 units 33 factorial in 9 units

1/2 replicate 1/3 replicate

I = ABDEFGHJ I = ABC

NBS #48, p. 17 Developed Design

Design 2.10.64 Design 3.4.9

210 factorial in 64 units 34 factorial in 9 units

1/16 replicate 1/9 replicate

I - ABCDJK = ABEFJ - BCEGJK = ABCDEFGH I = ABC = BC2D

NBS #48, p. 44 Developed Design
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Design 2.10.128 Design 3.4.27

210 factorial in 128 units 34 factorial in 27 units

1/8 replicate 1/3 replicate

I a ABEGIIJ z ACFGJK *ABCDK I - ABCD

NBS #48, p. 36 NBS #54, p. 11

*Design 2.10.256 Design 3.5.27

*210 factorial in 256 units 35 factorial in 27 units

1/4 replicate 1/9 replicate

I = ABCDEFG - ABCDHJK I = ABCDE = ABC2

N8S #48, p. 29 Developed Design

Design 3.5.81 Design 3.7.243

35 factorial in 81 units 37 factorial in 243 units

1/3 replicate 1/9 replicate

I = ABCDE I = ABCDE = CD2EF2G2

NBS #54, p. 11 NBS #54, p. 20

Design 3.6.27 Design 3.7.729

36 factorial in 27 units 37 factorial in 729 units

1/27 replicate 1/3 replicate

I -ABCDEF 2 = BC2EF2 = ABCE I = AB2CDE2FG

Developed Design NBS #54, p. 17

Design 3.6.81 Design 3.8.81

36 factorial in 81 units 38 factorial in 81 units

1/9 replicate 1/81 replicate

I - ACDE = BC2DE2F I = BCDEFG = ACDE2F2H =AC 2D2FG

NBS #54, p. 19 BC2F2C

Developed Design
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Design 3.6.243 Design 3.8.243
36 factorial in 243 units 38 factorial in 243 units

1/3 replicate 1/27 replicate

I . AB2CDE2F I = BCDEFG ACDE2F2H - ABD2E2F

NBS #54, p. 14 NBS #54, p. 25

Design 3.7.27 Design 3.8.729

37 factorial in 27 units 38 factorial in 729 units

1/81 replicate 1/9 replicate

I = ACDEF2 = BC2EF2G = I = ABCDEH 2 = CD2EF2G2

ABC E G2 = AB2CD2E2F2G2  NBS #54, p. 23

Developed Design

Design 3.7.81 Design 3.9.81

37 factorial in 81 units 39 factorial in 81 units

1/27 replicate 1/243 replicate

I = ACDEF2G = BC2EF2G = ABCEG 2  I = BCDEFG = ACDE2F2H = ABD2E2FJ =

NBS #54, p. 23 AB2C2DF = ABC2EF2

NBS #54, p. 36

Design 3.9.243 Design 3.9.729

39 factorial in 243 units 39 factorial in 729 units

1/81 replicate 1/27 replicate

I = BCDEFG = ACDE2F2H I = BCDEFG = ACDE2F2H = ABD2E2FJ

ABD2E2FJ = ABC2EF2  NBS #54, p. 26

NBS #54, p. 31

Design 3.10.243
310 factorial in 243 units

1/243 replicate

I = BCDEFG = ACDE2F2H =

ABD2E2FJ = ABC2EF2

AB2C2DFK

Developed Design
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USER'S APPENDIX GUIDE WITH EXAMPLES

INTRODUCTION

This appendix describes the procedures for using the AED computer program. the

"conversational mode" of the program operation is illustrated, the functions

of each of the program segments are explained, and a listing is included of

the program input and output for an example from each segment.

SYSTEM STRUCTURE

The automated experimental design program is divided into five program segments.

Upon execution of the program, a display menu is presented. The user may select

one of the five by inputting the number of the segment he wishes. The program

echoes the input and requests the user to input an identification label to identify

the run. The I.D. label may be any alphanumberic string.

the menu, entry request, and I.D. label request occur whenever a segment is

completed and the program is ready to enter another segment. The actual test

displayed and a system "walk-through" will be included with the explanation of

the use of each segment in the following sections.

F! BASIC TERMINOLOGY

Segment 1--Basic Terminology--provides the user with a basic introduction to the

process of experimental design. A description of the program assumptions, vocabu-

lary, and a discussion of the rationale behind experimental designs are provided.

This material is essentially a tutorial for the user who is unfamiliar with ex-

perimental design. Once the user is acquainted with the design process, there

should be no need to enter this seqment except for an occasional review session.

User input is explained in this segment.
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PROBLEM DEFINITION

Segment 2--Problem Definition--is used by the experimenter to define the parti-

cular problem being studied. A new menu is displayed allowing the user to

select one of four options.

BASIC FACTORIAL DESIGNS

Option 1--Basic Factorial Designs--allows the user to define full or frac-

tional factorial designs for 2, 3, or 5 levels. This definition includes:

(1) the number of factors, (2) the number of levels per each factor, (3) the

number of experimental trials available, and (4) aliasing information.

Since the process of specifying the defining contrasts that determine the

aliasing is critical, the user is offered assistance in the definition of

these aliases. In this help section, the program can provide certain prede-

fined designs (see example 1). These designs are described in Volume I of

this report.

If the predefined alias set is unacceptable or if one is not available, the

user is given help (for 2 level designs only) in developing a "good" alias

set by taking the predefined design and either by deleting factors (see

example 2) or by adding factors (see example 3) arrives at a new option design.

If the user is still not satisfied with the design, the defining contrasts

can be specified as input values.

Care should be taken that the members of the alias set are linearly independent,

since if any member of the alias set is a linear combination of the other

members, the experimental block will contain more than the desired number of

observations. The program will check for independence of the alias set, and

give the user an opportunity to redefine the set.

The user may also have the total alias set displayed. (The total alias set

is constructed by forming all possible combinations of the original defining

contrasts specified by the user.) The alias set may be redefined until the

design is acceptable to the user.
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The user may also have the total alias set displayed. (The total alias set
is constructed by forming all possible combinations of the original defining
contrasts specified by the user.) The alias set may be redefined until the

design is acceptable to the user.
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MIXED LEVEL DESIGNS

Option 2--Mixed Level Designs allow the user to define full or fractional

factorial designs where some factors of the design have a different number of

levels than other factors of the design. A menu is displayed, but at this

time only the 2 level crossed with the 3 level case has been developed (see

the following example). The mixed level design is treated like two separate

designs, one for the factors at 2 levels and one for the factors at 3 levels.

Then the resulting obeservation blocks from the two separate designs are

combined to produce a mixed level observation block.

The displayed menu also allows the user to exit if the 2 x 3 mixed level is

not desired.
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CENTRAL COMPOSITE DESIGNS

Option 3--Central Composite Designs allow the user to add more observation

vectors to the basic factorial experiments in order that a quadratic

approximation to the response surface of the experimental region can be made.

The user can choose a rotatable or non-rotatable central composite design.

There are also two methods for specifying the real world levels. One is to

specify the real world range for each factor. The other is to specify the

real world levels of each factor in the basic factorial design.

Central composite designs can be defined in one of two ways. The user may

use program segment 2 - option 1 and program segment 3 to define the basic

factorial portion of the central composite design, then enter segment 2 -

option 3 to complete the additional experiments (see example 1).

Or the user may enter directly into segment 2 - option 3 in which case, the

program will prompt the user for the basic factorial definition (see example 2).

EXIT

Option 4--Exit allows the user to exit from the problem definition segment.
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ACTUAL EXPERIMENTAL DESIGN

Segment 3--Actual Experimental Design--uses the previously specified experi-

mental definition (Segment 2 - Option 1) to construct the set of experimental

treatments to be run. This set is called the basic experimental block/obser-

vation vectors. To aid the experimenter in deciding if the experiment has an

acceptable structure, an alias summary is displayed that shows how main effects

and first-order interactions are aliased. The user may also have the aliasing

of any specific effect displayed.

If the design is unacceptable, the experimenter can rerun the problem defini-

tion phase.

The following is an example of the experimental design of the problem defined

in Segment 2 -Option 1 - Example 1.
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DATA ANALYSIS

Once the data have been collected, it must be analyzed to identify significant

effects. This analysis could consist of an analysis of variance (ANOVA) or

of a regression analysis.

The capability to perform the data analysis has not been included in the AED

program at this time since a program to analyze a fractional factorial experi-

ment with both regression analysis and ANOVA techniques would be a full-time

project in itself. The program user should analyze his data with existing

routines available at AMRL or other computer facilities.

EXPERIMENTAL REFINEMENT

Once the experimenter has conducted a fraction of a full factorial experiment,

an analysis of the basic block data may provide sufficient information to

preclude additional data collection. If one or more factors produce signifi-

cant results, all further work may be confined to studying these factors in

detail. the experiment may be redesigned with fewer factors or with other

factors added. Additional work is required if:

1. the main effects are not given with sufficient precision.

2. Some main effects may be confounded with two-factor interactions and may

require separation.

3. Some two-factor interactions may require separation.

4. Additional factors may need to be included in the design.

SEPARATION OF ALIASES

Separation of aliases assumes that a fractional design has been executed and

that we wish to collect additional data in order to obtain a higher degree of

precision and/or to separate the main effects from two-factor interactions.

A 1/2 factorial or a 1/3 factorial will require a full factorial to separate

aliases, thus, this assumes that a 1/4 or 1/9 (etc.) fractional factorial
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has been performed and the problem is to separate effect X from effect Y,

i.e., X and Y are in the same aliasing group, X=Y.

The user will define the aliased terms and the program will tell the user

which of his original alias terms may be deleted to remove this aliasing.

The following is an example of the separation of alias feature.

The problem can be defined in one of two ways. The user may use program

segments 2 - options 1 and 3 to define the problem, then enter segment 4 to

perform the refinement (see example 1).

Or the user may enter directly into segment 4 in which case, the program will

prompt him for the program definition (see example 2).
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EXIT
Segment 5--Exit is the segment to enter from the AED program.

The following is an example of its use.
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