

Roy Pietsch

William A. Rasco Sr.
Applied Research Laboratories
The University of Texas at Austin
P.O. Box 8029

Austin, Texas $787 / 2$

February 1980

Final Report for Period August 1977 to September 1978

Approved for public release; distribution unlimited.

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regadded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Elonuend D. Kelnio

EDMUND G. ZELNIO؛ Project Engineer
Technology Development Group
Radar Branch
Mission Avionics Division
Avionics Laboratory
$\frac{\text { Siret }}{\text { FLOYD P }}$ JOHNSON
FLOYD P. JOHNSON
Actg Chief, Technology Development Gp Radar Branch Mission Avionics Division Avionics Laboratory

FOR THE COMMANDER

GEORGE L. MCFARLAND, JR.
Chief, Radar Branch
Mission Avionics Division
Avionics Laboratory
"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/AARM-1, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
sECuRity classification of this page (When dete Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER AFWAL-TR-80-1058	3. RECtPIENT'S CATALOG Number
4. Title (and Subetite) Synthetic Aperture Radar Data Variance Analysis	5. TYPE OF REPORT A PERIOD CGVEREO Final Report for period Aug 77 - Sep 78 6. PERFORMING ORG. REPORT NUMEER ARL-TR-80-16
7. AUTMOR(θ) Roy Pietsch William A. Rasco, Sr.	B. CONTRACT OR GRANT NUMBER(O) F33615-77-C-1169
9. Performing organization name ano adoress Applied Research Laboratories The University of Texas at Austin Austin, TX 78712	10. PROGRAMELEMENTPRODECT. TASK Project 7622
11. CONTROLLING OFFICE NAME AND ADDRESS Avionics Laboratory Air Force Wright Aeronautical Laboratories Air Force Systems Command, W-PAFB, Ohio 45433	12. REPORT OATE February 1980 13. NUMEER OF PAGES 273
14. MONITORING AGENCY NAME A ADORESS(ll dillorent from Conirolline Office)	15. SECURITY CLASS. (of the toport) Unclassified i5a. DEELASSIFICATIONTOONNGRADING SCHEDLE

Approved for public release, distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abotract entered in Black 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continus on reverae side if neceanary and ldentliy by block number)
synthetic aperture radar
ground target radar return
target discrimination

20 ABSTRACT (Continue on reverte sitte II noceseary and identlfy by block number)

- Analysis and investigations in the area of target classification hased upon four-look synthetic aperture radar return were conducted using FIAMR data, to determine the extent to which four-look image plane radar returns may be used to discriminate between tactical targets and natural features.

$$
\therefore-1
$$

DD $\underset{\text { fiAn } 13}{\text { FORM }} 1473$ Edition of 1 nov 65 is obsolete
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Daid Enterec)

FOREWORD

This final report is submitted in accordance with the requirements of Contract F33615-77-C-1169. The work documented herein was accomplished under Project 7622, during the period July 1977 to October 1978 under the cognizance of Mr. E. Zelnio, Project Engineer, AFWAL/AARM-1, Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

The study reported he ein was performed by the Aerospace Technology Division, Applied Research Laboratories, The University of Texas at Austin, Austin, Texas.

This report is assigned originator's report number UT/ARL-TR-80-16.

Section Page
I INTRODUCTION 1
II DATA ORIGINS AND CHARACTERISTICS 4
Origin of Data 4
The FLAMR System 4
The FLAMR/FLAP System 11
SAR Filter Magnitude Relations 17
I II DATA SELECTION 21
Scene Selection 21
Target Selection 22
Data Retrieval 22
Ground Truth 24
DBS Radar Maps 39
IV DISCUSSION OF DISCRIMINANTS 43
Filter Magnitude Relations 43
Discriminant Functions 44
VDISCRIMINATION MODELS49
Parametric Model 51
Sample Variants 51
Distributions Investigated 52for the Variants
Description of Model 53
Test Results 54
Nonparametric Models 56
Nearest Neighbor Classifier 57
Unnormalized Power 58
Normalized Power 58
Minimum Distance Model 59
Eigen Vector Four Variant Model 61
Theory 61
Results 65
VI KOLMOGOROV-SMIRNOV TWO-SAMPLE TESTS 87
Theory 87
Numerical Procedures 9]
VII SUMMARY AND CONCLUSIONS 118
SUMMARY OF RESULTS 118

TABLE OF CONTENTS (CONT'D)

Page

Parametric Modeling 118
Nonparametric Modeling 120
Two-Target Model Using PDF Histo- grams From Sample Data 120
Nearest Neighbor Classifier - Unnormalized Power 120
Nearest Neighbor Classifier - Normalized Power 121
Minimum Distance Model - Unnormalized Data 121
Minimum Distance Mode1 - Normalized Data 122
Comparison of Target Classes via"Relative Match" of Four-Eigen-Vector Groups123
Kolmogorov-Smirnov Two-Sample Tests 123
CONCLUSIONS 126
APPENDIX A - TABLES OF FOUR-LOOK FILTER MAGNITUDE DATA 127
APPENDIX B - PROBABILITY DISTRIBUTION HISTOGRAMS 207
APPENDIX C - SUMMARY MEDIAN TABLES 233
APPENDIX D - STATISTICAL PARAMETERS 240

Figure

Page
1

2

3
4
5

6

7
8

9
FLAMR System Simplified Block Diagram
FLAMR Angle Processor (FLAP) Subsystem Simplified Block Diagram

DBS Scan Pattern 15

SAR Data Bank Flight Data Retrieval Equipment 18

Aerial View of Reedley, CA, Showing Area in SAR DBS Maps: Scenes 1, 2, and 3

Ground Truth for Reedley, CA, Showing Young Fruit Trees, River Bank Trees, and Mobile Homes28

USGS Topographic Map: Reedley Quadrangle
Ground Truth, Reedley, CA, Showing Two Views of the Atchison, Topeka, and Santa Fe Railroad Bridge over the Kings River

Vertical Photography of the Nebo Static Array of Vehicles and Equipment near Barstow, CA, Showing Area in SAR DBS Maps: Scenes 4, 5, 6, and 7

SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop On, Scene 4

> SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop On, Scene 5
SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop Off, Scene 6 34
SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop Off, Scene 7

Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Three Views of the M109A Shop Van and the M151 $\frac{1}{4}$ Ton Jeep36

Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Three Views of the M48 Tank

Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Desert Sand and the M62 12 $\frac{1}{2}$ Ton Truck Mounted Crane38

17 SAR DBS 4:1 Overlay Map of Reedley, CA, Hop On, Scene 1

SAR DBS 4:1 Overlay Map of Reedley, CA, Hop On, Scene 2

SAR DBS 4:1 Overlay Map of Reedley, CA, Hop Off, Scene 3
TableI
II-AII
Comparison of Eigen Vectors Between Tanks (Set 1,H5TANK1) and Trees (Set 2, H3TREE3) Hop Off,

- Scenes 3 and 5
Comparison of Eigen Vectors Between Tanks (Set 1,H5TANK) and Grass (Set 2, H3GRAS2) Hop Off,Scenes 3 and 5
Comparison of Eigen Vectors Between a Class of Natural Features (Set 1, H2NAT) and a Class of Tactical Vehicles (Set 2, H4TACT2) Hop On, Scenes 2 and 4
Comparison of Eigen Vectors Between a Class of

Natural Features (Set 1, H3NAT) and a Class of Tactical Vehicles (Set 2, H5TACT2) Hop Off, Scenes 3 and 5Page25FM Printout for 35 Pixel Sections of the FourSingle-Frequency and Composite 4:1 Maps
Target List and File Designation67
Comparison of Eigen Vectors Between Tanks (Set 1, H5TANK) and Mobile Homes (Set 2, H3MHl) Hop Off, Scenes 3 and 5IIIIVv
Comparison of Eigen Vectors Between a Class of Clutter (Set 1, H3CLUT) and a Class of Tactical Vehicles (H5TACT2) Hop Off, Scenes 3 and 5
Comparison of Eigen Vectors Between a Class ofC1utter (Set 1, H2CLUT) and a Class of TacticalVehicles (Set 2, H4TACT2) Hop On, Scenes 2 and 4
Comparison of the Four Eigen Vectors Between Target 86Classes Based Upon RM
Values of $d_{n \alpha}$ such that $P\left(D_{n m}>d_{n \alpha}\right)=\alpha$ 90
File Numbers Indicating Target Groups Considered for 92the Kolmogorov-Smirnov Two-Sample Test
Comparison of Covariance Matrices Before and After 98Application of the Eigen Transformation forVariant Set 1
XIII Comparison of Covariance Matrices Before and After Application of the Eigen Transformation forVariant Set 2
Prot ability that the Two Target Sets Came From the 101Same Population
Probability that the Two Target Sets Came From the 102 Same Population
Probability that the Two Target Sets Came From the 103 Same Population
Probability that the Two Target Sets Came From the 105 Same Population
Probability that the Two Target Sets Came From the 107 Same Population
Probability that the Two Target Sets Came From the 109 Same Population
Probability that the Two Target Sets Came From the 110 Same Population
Probability that the Two Target Sets Came From the 111 Same Population
Probability that the Two Target Sets Came From the 113Same Population
Probability that the Two Target Sets Came From the 115 Same Population
Probability that the Two Target Sets Came From the 117 Same Population
Percentages of Correct and Incorrect Classifications 118for Each Pixel versus Each Target Class
Percentages of Correct and Incorrect Classifications 119 for Each Pixel versus Each Target Class
Percentages of Correct and Incorrect Classifications 119for Each Pixel versus Each Target Class
Percentages of Correct and Incorrect Classifications, 120Ties, and Unclassifiables for Each Pixel versusEach Target Class
XXIX Percentages of Correct and Incorrect Classifications 121 for Each Pixel versus Each Target Class
XXX Percentages of Correct and Incorrect Classifications 121for Each Pixel versus Each Target Class
XXXI

Percentages of Correct and Incorrect Classifications, 122XXXII
XXXIII
XXXIV Ties, and Unclassifiables for Each Pixel versus Each Target Class
Percentages of Correct and Incorrect Classifications, 122 Ties, and Unclassifiables for Each Pixel versus Each Target Class
Comparison of the Four Eigen Vectors Between Target 124 Classes Based Upon RM
Correct Target Discrimination by the Kolmogorov125 Smirnov Two-Sample Test

I. INTRODUCTION

The image-plane data derived from a ground scene by an airborne, imaging Synthetic Aperture Radar (SAR) often exhibit significant look-to-look variations in the returns from a single resolution element. Examination of various resolution elements, or pixels (picture elements) from a number of doppler beam sharpening (DBS) scans, recorded in flight with the Forward Looking Advanced Multimode Radar (FLAMR) experimental flight test radar system, appeared to show that the returns from some types of man-made objects vary over a greater dynamic range than do the returns from other types of objects.

The wavelength of FLAMR was such (. 018 meters) that a FLAMR "high resolytion ${ }^{\prime \prime}$ (20 ft) pixel could contain many prominent scatterers. This, with the overlay ratio ($4: 1$) frequently employed, together with the look-to-look change in aspect angle at the target, lead to the expectation that a noticeable variation in the composite return from a given pixel might occur. This variation could be greater for some types of targets than for other types of a more diffuse nature,

To explore this phenomenon, the Avionics Laboratory, Air Force Wright Aeronautical Laboratories (AFWAL) W-PAFB, contracted with Applied Research Laboratories, The University of Texas at Austin (ARL:UT), to undertake an investigation of FLAMR Image Plane data to determine whether the observed variations contain unique information that would permit discrimination between specific vehicle types and specific natural features, and between specific vehicle types of man-made clutter.

To meet the criteria established for the investigation two geographical areas mapped with the FLAMR system were selected: the NEBO radar target array
near Barstow, California; and the urban area of Reedley, California. All scenes chosen were mapped in the DBS mode employing $4: 1$ overlay with $20-\mathrm{ft}$ resolution. Target area selection is discussed in Section III of this report. Ground truth imagery and samples of the radar imagery are also presented. The FLAMR system and the nature of the data gathered with the system are discussed in Section II. The four-look filter magnitude tabulations derived from the wideband tape recordings for the selected scans are presented in Appendix A. The initial phases of the inquiry were devoted to an analysis of the dispersion characteristics of radar target returns from the various target classes. This effort was stimulated by the need to identify characteristics of the scene statistics of potential value for target discrimination. For the purpose of the investigation the filter magnitude data tabulated in Appendix A was converted to power in arbitrary units. These data in turn were processed to determine the nature and characteristics of target variance. Appendices B through D present the results of the statistical investigations in the form of figures and tables.

The next stage of the research was devoted to the development of parametric discriminant functions and non-parametric discrimination methods based on variants (features) calculated from the four looks (samples) per each pixel on the potential target. The derivation and development of the variants and discriminant functions are delineated in Sections IV and V, respectively.

Due to the result that class separability was due primarily to relative target power rather than look-to-look variation as was initially hoped, the Kolmogorov-Smirnov statistical test was employed to compare the distribution of the total class population for several two class cases to infer whether
or not discrimination information exists in the look-to-look variation. The theory and results of the Kolmogorov-Smirnov test are covered in Section VI of the report.

Summary observations are outlined in Section VII.

II. DATA ORIGINS AND CHARACTERISTICS

Abstract

Origin of Data The SAR data utilized by ARL:UT in the Data Variance Study for AFWAL was acquired during the FLAMR flight test program. This program consisted of a series of 72 flights during the period August 1972 to March 1976. The following provides brief descriptions of the radar system and the radar mapping modes so that the reader may better understand the nature of the basic radar returns data presented elsewhere in this report.

The FLAMR System

The FLAMR project was sponsored and directed by the Avionics Laboratory (AARM/698DF). The radar was designed, built and operated by Hughes Aircraft Company (HAD). The electronically scanned phased array antenna was designed and built by Emerson Electric Company (EEC). The radar was flown in a modified $\mathrm{RB}-47 \mathrm{H}$ aircraft which was maintained and operated by Rockwell International Corporation (RIC). RIC also was responsible for system instrumentation. The job of ARL:UT was data analysis and evaluation, experiment design, and flight test support during the flight test program. ARL:UT is now maintaining and operating the FLAMR/SAR Data Bank for the Avionics Laboratory.

The FLAMR system was a very flexible and well instrumented state-of-theart brassboard system for investigating digital control and digital processing techniques for generating realtime, high-resolution synthetic aperture ground maps.

The system was designed for a high degree of flexibility and was thoroughly instrumented. A six-man flight crew consisted of a pilot, copilot,
drift-sight and vertical camera operator, two radar system operators, and an instrumentation operator.

The instrumentation operator was responsible for operation of the phased array antenna, various oscilloscope recording cameras, the FM tape recorder, the oscillograph, the forward pointing cameras and serviced the wide-band Genisco tape recorder in-flight. The drift-sight operator obtained navigationupdate fixes on ground points whose coordinates were precisely known, and also operated the vertical camera as called for by mission plans. The radar system operators monitored system performance, selected operating modes such as stabilized or unstabilized, DBS, SASM, PPI, RBGM, special scan, etc., and system control parameters such as IF Gain, pulse compression gain, map overlay ratio, display threshold, real beam shape, and $d B$ per gray shade assignment to improve the inflight imagery. In addition, system operators used manual override of the autocursor to center the map on a desired terrain point whenever inertial navigator drift resulted in the need for a correction.

The list below contains some of the more important FLAMR parameters.
Transmitter Peak Power - 100 kW
Pulse Repetition Rate - 1.7 - 2.3 kHz
Antenna Beamwidth (AZ) - 1.9°
Wavelength $\quad-0.018 \mathrm{~m}$

* SAR Resolutions $\quad-7.5,20,40,80 \mathrm{ft}$

[^0]\[

$$
\begin{aligned}
& \text { Radar Modes } \\
& \text { (a) Synthetic Array Strip Map (SASM) } \\
& \text { (b) Doppler Beam Sharpened (DBS) } \\
& \text { (c) Plan-Position Indicator (PPI) } \\
& \text { (d) Real Beam Ground Map (RBGM) }
\end{aligned}
$$
\]

** Frequency Diversity - 4 frequencies available
Map overlay options - 1, 2, or 4

A simplified functional block diagram of the FLAMR is shown in Fig. 1. The antenna pointing angle and beam shape were specified by a general-purpose computer (the ALERT GPC) through the Beam Steering Computer (BSC) which controlled the antenna. The coverage was approximately a 65° (half-angle) cone about the aircraft velocity vector. The system incorporated an Inertial Navigation Unit (INU), the LTN-51, modified to provide position, velocity, acceleration, and attitude data for accurate motion compensation.

The RF section of the system had a high-average-power, Ku-band transmitter, used a binary phase coded waveform at a low Pulse Repetition Frequency (PRF), and had a coherent, frequency-agile, radar master oscillator (RMO). The receiver was a double-conversion superheterodyne system with a wideband firstIF section followed by a matched bandpass filter and in-phase and quadrature second detectors. The local oscillator for the latter was offset by the system synthesizer ($\mathrm{HP}-5100 \mathrm{~B}$). From the output of the receiver to the final map presentation, FLAMR was a completely digital system. The wideband in-phase and Quadrature (I/Q or $I P Q$) video from the second detector went to two fast

[^1]

Figure 1. FLAMR System Simplified Block Diagram

Analog-to-Digital Converters ($A D C^{\prime}$ s) where it was range gated and digitized. The buffered outputs were in a 6-bit, 2^{\prime} s-complement format. The range gate delay was controlled by the start range and the rate of range closure on the mapping point. Immediately following the buffered ADC's was the first major instrumentation pickoff. Up to 512 range bins, depending on the pulse compression ratio, were recorded on W.B.T. (wideband magnetic tape) for each pulse and for each component of digital video.

This feature makes FLAMR nearly unique. All range bins and all pulses of the raw I / Q video were recorded on the W.B.T.'s. Also, these band-limited I/Q video data were processed only by introducing a constant frequency off-set to remove the gross doppler shift.

Thus, the I / Q data available on wideband magnetic tapes are uncontaminated by extensive processing and are particularly useful for many current SAR study requirements.

The next step was pulse compression in range, during which the digitized video was correlated with the binary phase code sequence. This process involved adding or subtracting the contents of successive range bins over a span equal to the compression ratio to obtain each range bin of compressed data. The gain could be adjusted by a left-shift operation at this point. The six most-significant bits (MSB's) of each shifted sum were used as a $2^{\prime} s$ complement representation of the compressed in-phase or quadrature radar return in a particular range bin. There were always 384 range bins for each component of pulse compressed data.

The pulse compressed video was tapped off for recording on the W.B.T. at the second major instrumentation point. However, the capacity of the
recording system was insufficient for both compressed and uncompressed I/Q digital video; and only one type could be recorded during a particular flight. The digital video from the pulse compressor, still in separate components, was rounded to 6 bits and sent to the Digital Doppler Signal Processor (DDSP), which operated on the range-compressed I / Q video data from a specified number of pulses to form 16 overlapping, weighted, complex pre-sums followed by a 16-point discrete Fourier transform for each range bin. Fine phase motion compensation, i.e., synthetic array pointing and focusing, were accomplished during the pre-summing operation. The pre-sum number NP specified the number of pulses used to form each of the 16 complex pre-sums. This controlled the length of a synthetic array for a given PRF and therefore the doppler resolution. The data were uniformly rescaled during pre-summing to adjust the gain. The 16 -point discrete Fourier transform was similar to a bank of 16 filters, each tuned to a specific doppler phase rate and correlating all complex pre-sum data with that phase rate. This served to establish 16 discrete focus points or 16 synthetic beams similar in shape and centered about the array center (focus) point. Calculation of the Fourier components completed the coherent processing and gave an image in complex form -- a pair of 12-bit words for each range-bin/doppler-filter combination.

The magnitude of each of the 16 complex Fourier components (filters) was generated next as $0.5 \log _{2}\left(I^{2}+Q^{2}\right)$, and the resulting values were referred to as "filter magnitude" data.

The 16 log magnitude values, each an 8-bit word, were recorded on the W.B.T. for all 384 range bins. All 16 filters were always formed; but, depending on the mapping mode, less than 16 were actually used. In the "snapshot"
or Doppler Beam Sharpened (DBS) mode, eight filters were used, centered about the designated array center line. From 2 to 12 filters were used in the Synthetic Array Strip Map (SASM) mode.

The \log magnitude filter data were next thresholded by subtraction of a 6-bit level. Individual thresholds were used for each filter. Each word of the array was then multiplied by a constant to adjust post processor gamma, and the four MSB's of the result were sent to the digital scan converter where data from successive arrays were overlaid (averaged) as required by the overlay ratio (KOL). The resulting 4-bit display video, with line code and mode information, was tapped off to the instrmen system and recorded on the W.B.T. and also sent to the Post Processrar (PPD) and the PPD Repeater in the aircraft, where the resulting map displayed for viewing and photography.

Almost all system functions were under contre: of the ALERT GPC. This computer also used operator inputs, INU inputs, etc., and controlled other system functions having to do with timing (e.g., the IPP value to the system synchronizer), velocity measurement, target tracking, and general housekeeping. All traffic on the computer Input/Output (I/O) bus, also called the Radar Input/Output Terminal (RIOT), was recorded on the W.B.T.

The Digital Recorded Interface Unit (DRIU) buffered the FLAMR digital data and put it in Miller-coded Pulse Code Modulation (PCM) format for recording by the Wideband (tape) Recorder (WBR) in the RB-47H aircraft. The wideband tapes recorded in flight were played back on the Digital Recorder Interface Equipment (DRIE) maintained in the ground station.

Eight tracks of the 16 -track wideband tape were used for recording compressed or uncompressed I / Q video data; while filter magnitude, RIOT, and PPD data were each recorded on separate tracks, voice and IRIG-B time code were frequency multiplexed and redundantly recorded on the two outer tracks as a safeguard against loss of information due to edge damage. These two tracks also contained a $200-\mathrm{kHz}$ reference signal. The remaining track was later used for recording FLAP Daisychain data.

The FLAMR system has high-, medium-, and low-resolution mapping modes with respective nominal resolutions of 20,40 and 80 ft . The addition of the FLAP system, described below, added a fourth super-high-resolution mapping mode with a nominal resolution of about 7.5 ft .

The FLAMR/FLAP System

The FLAMR Angle Processor (FLAP) (see diagram in Fig. 2) was operated parallel with the FLAMR system and derived timing and control signals from it. FLAP was a very high-speed, high-capacity data processing system and was incapable of operating alone; so it is proper to refer to the combination with FLAMR as the FLAMR/FLAP system. This equipment was used on FLAMR flights beginning with Flight 49 on 28 May 1975 to provide three-channel monopulse processing capability as well as to improve the mapping resolution by a factor of three and to increase processing capacity and flexibility.

All FLAP units were under the control of a separate (Datacraft) minicomputer via a Daisychain hookup. Programmable Signal Processor (PSP) output data went to the Datacraft via the same bus. This computer exchanged information with the FLAMR ALERT GPC via direct memory access and with the FLAP control panel via the Daisychain.

The wideband tape recording system was modified so that FLAP I/Q video data could be recorded after pulse compression. The choice of recording FLAMR or FLAP I / Q data was made by the operator in flight, but the selection of compressed or uncompressed FLAMR I / Q data was still made by a cable change on the ground. The one remaining unused channel on the 14 -channel wideband recorder was used to record FLAP controller I/O traffic (FLAP Daisychain data) in the same way as RIOT data, but there was no way of recording the FLAP/FLAMR data exchanges via direct memory access. Retrieval of RIOT or Daisychain data on 9-track computer tape during playback of a wideband tape on the DRIE was made switch selectable on the DRIE control panel.

The two major FLAMR mapping modes (DBS and SASM) differed mainly in their scan patterns and in their sequencing with the auxiliary time-shared Clutter Error Detection (CED) mode for doppler supervision of the INU velocity outputs. Within the main mapping modes there were submodes which differed in the detalls of map scan geographic stabilization. Specialpurpose submodes, e.g., reduced scan width for rapid mapping of a series of targets, and PPI scan for low-resolution, short-range mapping, were also programmed.

The basic process of synthetic array formation was the same in all SAR mapping modes. Each synthetic array flown mapped a narrow patch on the ground that was 2 to 12 azimuth elements wide and 384 range bins long. A complete map (frame, scan, or strip) was made up of many of these patches laid side-by-side on the display with varying amounts of overlap (noncoherent
integration to reduce "speckle" or radar echo scintillation).
As the mapping aircraft flew from the start (S) to the end (E) of a trajectory segment as shown in Fig. 3, the radar mapped the area corresponding to a scan frame (snapshot) in the DBS mode. The interval ES was divided into a succession of $(44 * K O L+1)$ synthetic array lengths corresponding to the same number of long narrow patches on the map. Thus the array centered at A mapped the patch centered at PC. For the DBS scan pattern shown in the figure, the patches were 8 azimuth elements wide by 384 range bins long on a square sampling grid and were overlapped in azimuth by a factor of KOL:1, KOL=1 (no overlap). Regardless of the overlay ratio, a complete DBS map contains 360 azimuth lines, each consisting of 384 range cells.

Between each complete map frame the system interleaved a velocity measurement (CED) mode with a duty factor of about 0.1 for full-width maps. If desired, the scan width could be reduced to obtain faster map and velocity update rates. The minimum useful map width was three patches, and this gave an update rate somewhat greater than $0.5 \mathrm{maps} / \mathrm{sec}$ (somewhat less than $2 \mathrm{sec} /$ map) in the high-resolution mode.

Succeeding scans could be centered about the same point C, or about any point on the map designated by the operator by use of a cursor. Other options included centering successive scans at the same range and azimuth values, or at a specified latitude and longitude in the so-called Autocursor mode. The Special Scan mode repeatedly mapped four targets in sequence, given their locations with respect to an initial target acquired and designated in the Autocursor mode, and was capable of dropping targets as they passed out of range and adding new targets from a list stored in memory.

The Synthetic Array Strip Map (SASM) mode provided continuous strip maps at forward left or right squint angles of 45° (the value usually selected) or 63.4° (arctan 2) with the same overlay and resolution options as the DBS mode. The line of successive patch centers was nominally parallel to the ground track of the aircraft. Short periods of the velocity measurement (CED) mode alternated with the map arrays with a duty factor of about 0.1 , since there were no definite frame or scan divisions in this mode.

There were two stabilization options. In the unstabilized SASM mode, the squint angle and slant range with respect to the aircraft were constant; while in the edge-stabilized submode, the line of patch centers on the ground was a straight line despite small aircraft heading changes.

The FLAP could operate on sum data and exactly duplicate the operation of the FLAMR signal processor. In addition, an extra-high-resolution mode was available. The formats, scan generation, etc., were exactly as in the FLAMR DBS mode except that the FLAP PSP could generate more than 8 filters for each synthetic array (patch) to provide faster scans. A small amount of data at 40 lines/patch was obtained during the flight test program.

Most of the recorded FLAP data were obtained the CFD mode as arrays of 160 pulses of three-channel monopulse data. These arrays were taken at the special CED scan beam pointing positions of 0° and $\pm 60^{\circ}$ in azimuth and 6° and 12° depression (positions). Three-channel monopulse data were also recorded while FLAMR was operating in the DBS mode and covered a swath 128 range bins wide through the center of the FLAMR maps. The data available are the FLAP I / Q video data and Daisychain words giving the doppler error
(difference between predicted and measured frequency) for the ground return at the intersection of the antenna monopulse surfaces, together with monopulse difference slopes in azimuth and elevation.

SAR Filter Magnitude Relations

The SAR data presented in this report, and used in the Data Variance Study, are digital filter magnitudes recorded in flight. The data are obtained in computer-compatible form using the FLAMR ground playback equipment shown in Fig. 4.

An idealization of the recorded FLAMR filter magnitude data is

$$
\begin{aligned}
F M & =16 \log _{2} \sqrt{F_{I}^{2}+F_{Q}^{2}} \\
& =16 \log _{2} F
\end{aligned}
$$

where F_{I} and F_{Q} are amplitudes from the I and Q filter banks. The above expression is considered to be an idealization because the logarithm to the base 2 and the root-sum-square functions were not computed exactly but evaluated using relations that give approximate results. The error due to the approximation is small and can be neglected.

The maximum filter magnitude has a value of 199. The filter magnitude in decibels is given by

$$
\begin{aligned}
\mathrm{FM}_{\mathrm{dB}} & =20 \log _{10} \sqrt{\mathrm{~F}_{\mathrm{I}}^{2}+\mathrm{F}_{\mathrm{Q}}^{2}} \\
& =\frac{20}{16}\left(\log _{10} 2\right) \mathrm{FM} \\
& =0.376 \mathrm{FM} .
\end{aligned}
$$

FIGURE 4
SAR DATA BANK FLIGHT DATA RETRIEVAL EQUIPMENT

The maximum dynamic range obtained by placing $F M=199$ is 75 dB .
Assuming that the radar is linear, the square of the filter magnitude will be proportional to the received echo power, P_{r},

$$
\begin{aligned}
F^{2} & =F_{I}^{2}+F_{Q}^{2} \\
& =K P_{r}
\end{aligned}
$$

where K is a constant. From the radar equation

$$
P_{r}=\frac{P_{t} G^{2} \lambda^{2} \sigma}{(4 \pi)^{3} R^{4} L}
$$

where P_{t} is the transmitted power, G is che antenna gain, λ is the transmitted wavelength, σ is the target radar cross section (RCS), R is the range to the target, and L is the system loss. We find then'

$$
\mathbf{F}^{2}=\mathrm{K}_{1} \sigma,
$$

which relates the square of the filter magnitude to target RCS.
From the relation involving F and P_{r} and those involving $F M$ and F, we find

$$
\begin{aligned}
\mathrm{FM} & =8 \log _{2} \mathrm{~F}^{2} \\
& =8 \log _{2} \mathrm{~K} \mathrm{P}
\end{aligned}
$$

so that

$$
P_{r}=2^{F M / 8} K^{-1}
$$

This equation gives the return power in terms of the \log filter magnitude
times a calibration constant. Power is in arbitrary units widely used during the data variance study and is given by

$$
\mathrm{P}=2^{\mathrm{FM} / 8}
$$

Target return echo amplitude, A, can also be expressed in arbitrary units as $A=2^{F M / 16}$.

Scene Selection

Scenes used for the data variance study were selected on the basis of the variety of terrain, vegetation, cultural features or tactical vehicles within the scene, the number of pixels available from similar objects, and the availability of ground truth. All scenes selected were mapped in DBS employing 4:1 overlay with $20-\mathrm{ft}$ resolution. The $4: 1$ overlay implies that four 1:1 DBS maps have been formed and, except for resolution elements contained in the azimuth lines on either side of the map, each resolution element has been mapped four times. Thus, the four maps are the source of the four-look data.

The two scenes selected were: (1) the NEBO radar target array near Barstow, California, and (2) the urban area of Reedley, California. Data were selected from seven DBS scans. Scans 1 through 3 are from the Reedley area and scans 4 through 7 from the NEBO array. Scans 1, 2, 4, 6, and 7 were formed with frequency diversity (i.e., frequency hop on); scans 3 and 5 were formed without frequency diversity (i.e., frequency hop off). The terms hop on and hop off will appear on the tables of filter magnitude data in Appendix A. One scan of Reedley and one scan of the NEBO array without frequency hop were located during the study, and were added to the original set of scans for purposes of obtaining a preliminary indication of the effects of frequency hop on the data variants under investigation.

Target Selection

Filter magnitude data were extracted from DBS FLAMR imagery for which valid ground truth existed. The scenes selecter were the urban area of Reedley, California and the NEBO array at Barstow, California. The original target groupings from these scenes are tactical vehicles, natural features, tanks, $2 \frac{1}{2}$ ton trucks, other tactical vehicles, man-made clutter, trees, sand, grass, and shadows. This list was later expanded and in some instances made more specific. The tactical vehicles included tanks, $2 \frac{1}{2}$ ton trucks, jeeps, $2 \frac{1}{2}$ ton shop vans, and $12 \frac{1}{2}$ ton truck cranes. Tanks, trucks, vans, jeeps, and cranes selected were as follows: M-48 tank, M-35 $2 \frac{1}{2}$ ton cargo truck, M-109A3 $2 \frac{1}{2}$ ton shop van truck, M-151 $\frac{1}{4}$ ton jeep and M-62 12 $\frac{1}{2}$ ton truck mounted crane. Trees were grouped as large river bank trees and as young fruit trees. Grass data were selected from a rough grass and weedy area from the Reedley scene. The natural feature group included the river bank trees, young fruit trees, and rough grass, but did not include any of the sand data. The reason for not including the sand along with the trees and grass was that pixels containing the sand data did not appear on the same radar map as the trees and grass and some uncertainty exists as to how gains are to be adjusted when combining unnormalized data from different scenes. Man-made clutter included pixels from a railroad bridge, from a four lane highway bridge, and from a mobile home park.

Data Retrieval

The filter magnitude data used in the data variance study were obtained from the SAR data digitally recorded in flight on wideband magnetic tapes
during the FLAMR program. In order to locate suitable scans, it was first necessary to review flight documentation to select such scans and to determine flight number and reel number containing the scans.

The next step in retrieving the data was to replay the appropriate wideband flight tape. This replay is accomplished by means of the wideband tape drive shown on the right in the photograph in Fig. 4, Section II of this report. The recorded imagery is reviewed on the Monitor Display (center) in 16 grey level format. The DBS imagery used in the study is shown on the display in 360 vertical lines comprised of 384 range bins each. When the desired map is painted on the display, the image is then "frozen" and the tape drive halted. The desired objects or features to be sampled are then located on the display.

To locate the brightest pixel in the case of small discrete objects, the set of grey scale emphasis or deletion switches below the monitor are used. To obtain the azimuth line and range bin numbers of the selected pixels, the manual controls below the display are used to position a local cursor over the pixel. The desired coordinates are then read directly from the cursor controls.

After all desired sample pixels on the scan have been identified and coordinates noted, a CCT (Computer-Compatible Tape) is placed on the small tape drive visible at the left in Fig. 4, Section II. The data select/dump controls on the panel to the right of the display are then set to dump the desired data.

The practice in the study was to dump the full scan of FM data (Filter Magnitudes recorded in flight at the output of the Doppler Processor) and a
file of the associated RIOT data (Radar Input-Output data recorded from the radar-computer $I / 0$ bus). The flight data thus obtained are in computer-compatible format and are processed on a general purpose computer. The FM data are next reformatted and five arrays of FM data, similar to those appearing in Table I, are printed for each selected pixel for use in checking and finalizing the selection and coordinates for the sample pixels. The FM values appearing in Map 1234, the composite 4:1 overlaid map, are examined to verify that the selected coordinates of the center point of the printout array represent, for the case of a small target, the brightest return from the target. If an immediately adjacent pixel has a higher FM value, then the coordinates are changed to the coordinates of the brighter pixel.

No further effort to correct for range/doppler straddling has been made. After the coordinates are finalized, they are used with computer programs and the two data tapes, $F M$ and $R I O T$, to combine the radar return data and other required information for each sample pixel.

Early in the program, the CDC 3200 digital computer was used to extract these data, and the FM data for each pixel were punched on cards. When the CDC Cyber 171 was installed at ARL:UT (Jan. 78), it was decided that it would be more cost effective and more expedient to use the Cyber to retrieve and store data; consequently manipulations with punched cards was, in general, no longer employed.

Ground Truth

An aerial view of Reedley, CA, taken with a forward looking camera, is shown in Fig. 5. Two types of trees, two types of bridges, mobile

TABLE I
FM PRINTOUT FOR 35 PIXEL SECTIONS OF THE FOUR SINGLE-FREQUENCY AND COMPOSITE 4:1 MAPS

[^2]homes, and rough grass and weeds were selected as features from this area. The group of targets represented by TREES was divided into tall river bank trees and young fruit trees. The pixels selected for tall river bank trees were selected along the Kings River while the young fruit trees came from an orchard near the center of the photograph. The two groups of trees are also shown in Fig. 6. The two bridge types, highway and railroad, appear together near the top of Fig. 5. Figure 7, a US Geological Survey map of Reedley (Reedley Quadrangle) shows two railroad bridges in this region. At the time the FLAMR flight was made only one railroad bridge existed - the Atchison, Topeka, and Santa Fe. Two views of this bridge are shown in Fig. 8. The mobile home group was selected from the mobile home park shown near the center of Fig. 5 and also in Fig. 6. The group designated as rough grass and weeds was selected from an area just below the Reedley College.

An alrborne vertical camera photograph of a static target array consisting of tactical vehicles, howitzers, Honest John rockets, etc. is shown in Fig. 9. This array will be referred to as the NEBO static array. It is located on the Mojave River, at a Marine Corps Supply Center designated as the NEBO Area near Barstow, CA. The positions of the vehicles in Fig. 9 represent their locations at the time the DBS radar maps, Figs. 10, 11,12 , and 13 , were made. Figures 14,15 , and 16 show different views of tactical vehicles selected for study targets from this array. Two samples of desert sand are also shown in Fig. 16. These sand regions do not necessarily correspond to the precise regions from which the return radar echos were extracted for desert sand.

FIGURE 7 USGS Topographic Map: Reedley quadrangle

FIGURE 8. Ground Truth, Reedley, CA, Showing Two Views of the Atchison, Topeka, and Santa Fe Railroaa Bridge Over the Kings River

FICURE 9. Vertical photography of the Nebo static array of vehicles and equipment near Barstow, CA, showing area in SAR DBS maps: Scenes 4, 5, 6, and

FIGURE 10. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop on, Scene 4

FIGURE 11, SAR DBS 4:1 overlay map of the Nebo static array of vehicles
and equipment, Barstow, CA, hop of f, Scene 5

FIGURE 12. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop off, Scene 6

FIGURE 13. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop off, Scene 7

FIGURE 16. Ground truth for the Nebo static array of vehicles and equipment, showing desert sand and the M62 12 $\frac{1}{2}$ ton truck mounted crane

Three DBS radar maps of the Reedley area are shown in Figs. 17, 18, and 19. These should be compared with the area photography (Fig. 5) and the Reed ley Quadrangle (Fig. 7). The DBS radar maps shown in Figs. 17 and 18 were made with frequency hop on. The map in Fig. 19 was made without frequency hop.

Four DBS radar maps of the NEBO array are shown in Figs. 10 through 13. All maps with the exception of scene 4 (Fig. 10) were formed with frequency hop off. The maps shown are inverted, left to right, from that shown in the vertical photography.

FIGURE 17. SAR DBS 4:1 overlay map of Reedley, CA, hop on, Scene 1

FIGURE 18. SAR DBS 4:1 overlay map of Reedley, CA, hop on, Scene 2

FIGURE 19. SAR DBS 4:1 overlay map of Reedley, CA, hop off, Scene 3

IV. DISCUSSION OF DISCRIMINANTS

Filter Magnitude Relations

The four single-look data extracted from the FLAMR data for various targets tabulated in Appendix A are in the form of integer ing filter magnitudes where the logarithm is to the base 2 . The log filter magnitudes used in this study were computed and rounded to integer form inflight, and then recorded, together with the $I P Q$ data, on the wideband magnetic flight tapes. The radar was uncalibrated for the DBS scans of Reedley, CA, and the NEBO static array of vehicles and equipment. In this form the \log filter magnitudes, FM, may be written as

$$
\mathrm{FM}=\log _{2} \mathrm{C}|\mathrm{E}|
$$

where E is the electric field strength of the return target echo at the FLAMR antenna and C is an unknown calibration factor. This factor is neariy constant for the four looks but may vary from scene to scene. The magnitude of the $I P Q$ video may also be expressed in terms of E as

$$
\begin{aligned}
F & =\left[F_{I}^{2}+F_{Q}^{2}\right]^{1 / 2} \\
& =K E
\end{aligned}
$$

where K is constant for each map. Linear amplitudes, A, and power, P, may be expressed in terms of E and F as $A=C|E|=(C / K) F$ and $P=C^{2} E^{2}=(C / K)^{2} F^{2}$. The \log filter magnitude is related to the IFQ filter amplitude by

$$
\mathrm{FM}=16 \log _{2} \mathrm{~F}
$$

and to power by

$$
\mathrm{FM}=8 \log _{2} \mathrm{P}
$$

Power can then be expressed in arbitrary units as

$$
\mathrm{P}=2^{\mathrm{FM} / 8}
$$

A characteristic of digital maps such as those obtained by the FLAMR system, is the use of 1 'iscrete pixels (picture elements) to form the map. All power returned ty a given "resolution cell" on the surface being mapped is summed and use to represent that resolution cell, or pixel. The return from a discrete scatterer located on or near the boundary of a resolution element will be divided between the adjacent pixels according to the proportion of the return detected in each cell. Such "bin straddling" was not corrected-for in the target data used in this study.

Discriminant Functions

In target discrimination we wish to extract features or discriminants which display the maximum difference between one target class and another, especially between tactical targets and natural features. Furthermore, the discriminants should be as simple as possible from the standpoint of signal processing hardware. The features used in target discrimination may not necessarily coincide with the principal features used to represent the pattern classes.

The discriminant functions employed here, calculated in arbitrary power units are: (1) mean power $\overline{\mathrm{P}}$, (2) standard deviation S , (3) average deviation from the mean $\bar{\delta}$, (4) average deviation from the best straight line fit $\bar{\delta}_{B}$, (5) fast variation V_{f}, (6) slow variation V_{S}, (7) major spread r_{1}, and (8) minor spread r_{2}. These were computed for each pixel from the four-look data.

These measures of dispersion will now be discussed briefly, with the summation running over the four looks.
(1) Mean power, \bar{p}

$$
\bar{P}=\frac{1}{4} \sum_{i=1}^{4} P_{i}
$$

This power is in arbitrary units and is not normalized between DBS scenes.
(2) Standard deviation, S

$$
S=\left[\frac{1}{3} \sum_{i=1}^{4}\left(P_{i}-\bar{P}\right)^{2}\right]^{1 / 2}
$$

The standard deviation as given here is an unbiased estimate for most distributions.
(3) Average deviation from the mean, $\bar{\delta}$

$$
\bar{\delta}=\frac{1}{4} \sum_{i=1}^{4}\left|P_{i}-\bar{P}\right|
$$

This is less efficient that S but is easier to calculate.
(4) Average deviation from the best straight line fit, δ_{B}

A best straight line curve fit is first obtained from the
four-look data in the proper time sequence by the method of least squares. The resulting equation is of the form $A i+B$. The average deviation of P_{i} from this line is given by

$$
\delta_{B}=\frac{1}{4} \sum_{i=1}^{4}\left|P_{i}-(A i+B)\right|
$$

Ai meaning A times the index i Employing the best straight line fit to the four-look data has a greater tendency to remove the trend from the data than computations involving the mean, such as those for S and $\bar{\delta}$. Coefficients of the least squares fit to

$$
A i+B
$$

are given by

$$
\begin{aligned}
& A=\frac{\frac{1}{4}\left\{\sum i p_{i}-\sum i \sum P_{i}\right\}}{\frac{1}{4}\left\{\sum i^{2}-\left(\sum i\right)^{2}\right\}} \\
& B=\frac{1}{4}\left\{\sum P_{i}-A \sum i\right\}
\end{aligned}
$$

where $i=1,2,3,4$.
(5) Fast variation, V_{f}

$$
v_{F}^{2}=\frac{1}{3}\left(P_{1}-P_{2}\right)^{2}+\left(P_{2}-P_{3}\right)^{2}+\left(P_{3}-P_{4}\right)^{2}
$$

The subscripts appearing in this relation, that for slow variation, and the relation for average deviation from best straight line fit refer to time sequence and not map number.
(6) Slow variation, V_{s}

$$
v_{s}^{2}=\frac{1}{3}\left\{\left(P_{1}-P_{3}\right)^{2}+\left(P_{2}-P_{4}\right)^{2}+\left(P_{1}-P_{4}\right)^{2}\right\}
$$

It should be noted that fast variation involves power differences between successive looks and responds to the more rapid part of the variation. Slow variation involves differences in more widely separated looks and is more sensitive to slower fluctuations.
(7) Major spread, r_{1}

Major spread is the maximum deviation in power and is
given by

$$
r_{1}=P_{\text {MAX }}-P_{\text {MIN }}
$$

(8) Minor spread, r_{2}

If the four-look power data are ordered as $P_{M I N} \leqq P_{2} \leqq P_{3} \leqq P_{M A X}$, minor spread is obtained by

$$
r_{2}=P_{3}-P_{2}
$$

After deleting two of the four-look data appearing in the major spread, minor spread is the absolute value of the difference between the remaining two data points.

Normalized discriminant functions based upon pixel mean are obtained by dividing the discriminant function by $\overline{\mathrm{P}}$, for example, the normalized discriminant function for standard deviation $S_{N}=S / \bar{P}$. It follows from

$$
\begin{aligned}
\mathrm{S}_{\mathrm{N}} & =\frac{1}{\bar{P}} \frac{1}{3} \sum\left(\mathrm{P}_{\mathrm{i}}-\widehat{\mathrm{P}}^{2}\right)^{1 / 2} \\
& =\left[\frac{1}{3}\left(\mathrm{P}_{\mathrm{i}} / \overline{\mathrm{P}}-1\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

that the normalized discriminant function is equal to the discriminant of the normalized power. This process removes the calibration factor and permits comparison of target classes between scences.

The above set of discriminant functions are used in Section v primarily with the parametric models, but these same functions are not used exclusively throughout this report. In the section involving the Kolmogorov-Smirncv test and the test employing the Eigen vectors, a different set of discriminant functions than those above are used in the analyses. This set is more generalized than the former and, consequently, is referred to as generalized relations. The generalized relations for the discrimination functions are given below; a distinct set of discriminant functions is generated for each value of N. The two sets commonly used are those given by $N=1$ and by $N=2$. Note that N need not be an integer.
(9) Unnormalized generalized discriminant functions

$$
\begin{aligned}
& X_{1}=\bar{P}=\frac{1}{4} \sum P_{i} \\
& x_{2}^{N}=\frac{1}{4}\left\{\left|P_{-} \bar{P}\right|^{N}+\left|P_{2}-\bar{P}\right|^{N}+\left|P_{3}-\bar{P}_{1} N+\left|P_{4}-\bar{P}\right|^{N}\right\}\right. \\
& x_{3}^{N}=\frac{1}{3}\left\{\left|P_{1}-P_{2}\right|^{N}+\left|P_{2}-P_{3}\right|^{N}+\left|P_{3}-P_{4}\right|^{N}\right\} \\
& x_{4}^{N}=\frac{1}{3}\left\{\left|P_{1}-P_{4}\right|^{N}+\left|P_{1}-P_{3}\right|^{N}+\left|P_{2}-P_{4}\right|^{N}\right\}
\end{aligned}
$$

For $N=1, X_{2}$ becomes the average deviation from the mean, \bar{P}. For $N=2, X_{2}$ becomes a biased standard deviation and X_{3} and X_{4} become the fast and slow variation previously defined.
(10) Normalized Generalized Discriminant Functions

$$
\begin{aligned}
& \mathrm{Z}_{1}=\mathrm{P}_{\max } / \overline{\mathrm{P}}-\mathrm{P}_{\min } / \overline{\mathrm{P}} \\
& \mathrm{Z}_{2}^{\mathrm{N}}=\frac{1}{4}\left\{\left|\mathrm{Y}_{\mathrm{i}}-1\right|^{\mathrm{N}}\right\} \\
& \mathrm{Z}_{3}^{\mathrm{N}}=\frac{1}{3}\left\{\left|\mathrm{Y}_{1}-\mathrm{Y}_{2}\right|^{\mathrm{N}}+\left|\mathrm{Y}_{2}-\mathrm{Y}_{3}\right|^{\mathrm{N}}+\left|\mathrm{Y}_{3}-\mathrm{Y}_{4}\right|^{\mathrm{N}}\right\} \\
& \mathrm{Z}_{4}^{N}=\frac{1}{3}\left\{\left|\mathrm{Y}_{1}-\mathrm{Y}_{4}\right|^{\mathrm{N}}+\left|\mathrm{Y}_{1}-\mathrm{Y}_{3}\right|^{\mathrm{N}}+\left|\mathrm{Y}_{2}-\mathrm{Y}_{4}\right|^{\mathrm{N}}\right\}
\end{aligned}
$$

where $Y_{i}=P_{i} / \bar{P}$. These relations are obtained by dividing X_{2}, X_{3}, X_{4} by \vec{P} and by dividing the major spread, r_{1} by \bar{P}. Note that in the special case for $N=1$ and $Y_{1}>Y_{2}>Y_{3}>Y_{4}$, that $Z_{3}=\left(Y_{1}-Y_{4}\right) / 3$ and a similar result is obtained for X_{3}. The effect of this ordering of returns is to make the discriminant function fast variation insensitive to all but the extreme values of the measured power.

V. DISCRIMINATION MODELS

Several models were developed at ARL:UT for target discrimination and classification based upon selected discriminant functions as originally proposed by ARL:UT and AFWAL/AA and later modified.

Using the FLAMR filter magnitude data taken with 4.1 overlay (four-look model), data for the individual looks or maps were separated and presented, tor selected tactical and non-tactical targets, in Appendix A of this report. If frequency hop were on during the map formation, then each map was recorded at a different radar frequency. Each point of the scene occurs a maximum of four times in the FLAMR filter magnitude data because of the scan pattern and processor capacity.

The look-to-look fluctuation of the radar return from known targets serves as the basis upon which various models are to be constructed. Since variation in target aspect angle with respect to the illuminating radar is a major contribution to the variation in target racer cross section (RCS), several models required that the observed target return be placed in the proper time sequence. Map sequence and time sequence for a given resolution element are not necessarily equal. For further discussions on this matter see Section II.

The measures of dispersion originally proposed were sample variance, average deviation, range of deviation, color, and deviation of color. Color and deviation of color were dropped from the list of discriminants early in the study. Discriminants added to the list included fast variation, slow variation, deviation from the mean, deviation from the best straight line fit to the four-look return in proper time sequence, and the major and minor spread.

Various combinations of these measures of dispersion were employed in the various models. Neither a consistent set of dispersion measures nor a common data set were used to compare the relative discrimination capability of each of the models. The different models were utilized to attempt different ways of characterizing the discriminant distributions for the purpose of separating target classes based on the dispersion measures, but no attempt was made to quantify the relative merit of the different models for this specific problem.

Two early models from which some success was realized when dealing with non-normalized data were based upon parametric statistics involving four target classes. Valid conclusions about the non-normalized data can only be drawn when the target classes being compared are taken from the same scene. As stated previously, calibrated corner reflectors were not in the various scenes; therefore, no way existed to relate the mean intensity values of the scenes. Thus, care must be taken when reading this and subsequent sections so that one does not draw erroneous conclusions about class separability based on non-nomalized data when the classes are taken from different scenes. When non-normalized data is compared between scenes, only conclusions as to the relative merit of discriminant functions or, perhaps, the reliance of the class separability on mean power (e.g., normalized vs, non-normalized comparison) can be made. A brief discussion of these models is presented below. Later in the study, all efforts on the four-class parametric models were dropped in favor of two-class non-pa:ametric models. The non-parametric models included a maximum likelihoud model based upon histograms constructed from selected
variants, the K-nearest neighbor, the minimum distance model and the Eigen vector model (EVM). These models are discussed briefly, following the discussion of parametric models.

Parametric Model

Sample Variants. Four variants were generated from the four-look FM data discussed previously. The four sequential values representing each pixel, converted to power units, were used to generate four variants employed in the classification model. The FM values are related to power by ($M=8 \log _{2} P$) plus a constant so the conversion to power from the $10 g$ filter magnitudes is given by

$$
P=K\left(2^{M / 8}\right)
$$

where K is a calibration factor which may change. from scan to scan or within a single scan. To illustrate the classification model, data were selected from regions within a scan over which K remained constant.

Four target variants used in the model based upon measurement were selected from the mean, Z_{1}, sample variance Z_{2}, fast variation, Z_{3}, slow variation Z_{4}, RMS, deviation from the mean δ, and the difference between fast and slow variation, $D_{f s}$. These functions are defined:

$$
\begin{aligned}
& z_{1}=\frac{1}{4} \sum^{4} P_{i} \\
& z_{2}^{2}=\frac{1}{3} \sum^{4}\left(P_{i}-z_{1}\right)^{2} \\
& z_{3}=\frac{1}{3}\left\{\left|P_{1}-P_{2}\right|+\left|P_{2}-P_{3}\right|+\left|P_{3}-P_{4}\right|\right\} \\
& z_{4}=\frac{1}{3}\left\{\left|P_{1}-P_{3}\right|+\left|P_{2}-P_{4}\right|+\left|P_{1}-P_{4}\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RMS} & =\sqrt{\sum \mathrm{P}_{\mathrm{i}}^{2} / 4} \\
& =\frac{1}{4} \sum\left|\mathrm{P}_{\mathrm{i}}-\mathrm{z}_{1}\right| \\
\mathrm{D}_{\mathrm{fs}} & =\left|\mathrm{z}_{3}-\mathrm{z}_{4}\right|
\end{aligned}
$$

It should be noted in the above relation variants Z_{1}, Z_{2}, RMS and δ do not involve time sequence of the data whereas fast variation, slow variation and $D_{f_{S}}$ do involve the time sequence of the return.

Distributions Investigated for the Variants. Since the probability distribution function (PDF) of the measured data or variants derived from the measured data was required in the formulation of the classification model, histograms of the distributions of the various variants were constructed from the sample data sets. Four standard probability distribution functions, which included the Lognormal, the Weibull, the Chi-Square, and the Rayleigh PDF's, were fitted to the data. It was found that the Lognormal and Weibull PDF's generally fitted the test data well with the Weibull PDF giving a better fit than the Lognormal PDF. The Lognormal and the Weibull distributions are written as:

$$
p(X)=\frac{1}{\sqrt{2 \pi} X \sigma_{L N}} \exp \left\{-\left(\ln (X / M)^{2} / 2 \sigma_{L N}^{2}\right\}\right.
$$

and

$$
\mathrm{p}(\mathrm{X})=\frac{\mathrm{n}}{\sigma_{\mathrm{w}}}\left(\mathrm{X} / \sigma_{\mathrm{w}}\right)^{\mathrm{n}-1} \exp \left\{-\left(\mathrm{X} / \sigma_{\mathrm{w}}\right)^{\mathrm{n}}\right\}
$$

respectively, where M is the median of $X, \sigma_{L N}$ is the standard deviation of $n(X / M), \sigma_{W}$ is a scale factor, and n is a shape parametier.

Description of Model. To demonstrate the utility of several of the variants studied for ${ }^{\text {discrimination, }}$ a classification model based on the statistics of selected variants derived from the SAR return data was formulated and applied to the test sample. Four variants and four classes of objects were used to demonstrate the effectiveness of the discriminant model; however, it should be noted here that the model is by no means limited to these dimensions. Although the Weibull PDF (Probability Distribution Function) fitted the variants for all four classes comprising the test sample, the vector form at the Weibull PDF was not developed. Consequently, the Lognormal distribution was chosen for constructing the classification model. The variants, $\left(Z_{1}, Z_{2}\right.$, Z_{3}, Z_{4}), derived from one set of measurements are assumed to belong to one of four sample classes comprising the test sample. Since these qualities have a Lognormal distribution, the PDF of Z, when Z belongs to class T_{i}, is represented by $p\left(Z \mid T_{i}\right)$ and is given as follows:

$$
p\left(Z \mid T_{i}\right)=\frac{1}{(2 \pi)^{2}\left|c_{i}\right|^{1 / 2} Z_{p i}} \exp \left\{-\frac{1}{2}\left(Z^{\prime} \mid c_{i}^{-1} Z\right)\right\}
$$

where

$$
Z=\left[\ln \left(Z_{1} / M_{i 1}\right), \quad \ln \left(Z_{2} / M_{i 2}\right), \quad \cdots \ln \left(Z_{4} / M_{i 4}\right)\right]
$$

Z^{\prime} is the transpose of Z, and

$$
Z_{p i}=\Pi\left(Z_{r} / M_{i r}\right)
$$

$M_{i r}$, for $r=1,2,3,4$, are the medians of Z_{r} when Z_{r} belongs to T_{i}. C_{i} is the covariance matrix of Z. A decision function is formed that assigns each
vector Z to one of the sample classes. This function will assign Z to class T_{i} if the following condition

$$
p\left(Z \mid T_{i}\right)>p\left(Z \mid T_{j}\right)
$$

is met for all j not including i. Inserting the expression

$$
r_{i j}=\ln \frac{p\left(Z \mid T_{i}\right)}{p\left(Z \mid T_{j}\right)}
$$

into the ratio of two probability density functions, one obtains a decision function as follows

$$
\begin{aligned}
r_{i j}= & -\frac{1}{2}\left[\left(\ln \frac{Z_{i}}{M_{i}}\right)^{\prime} c_{i}^{-1}\left(\ln \frac{Z_{i}}{M_{i}}\right)-\left(\ln \frac{Z_{j}}{M_{j}}\right)^{\prime} C_{j}^{-1}\left(\ln \frac{Z_{j}}{M_{j}}\right)\right] \\
& +\frac{1}{2} \ln \frac{C_{j}}{C_{i}}+\sum_{r}\left(\ln \frac{M_{j r}}{M_{i r}}\right)
\end{aligned}
$$

A decision is now made, based on the above equation, as to which class Z belongs. By the assignment criterion noted above, Z is assigned to Class T_{i} if $r_{i j}>0$, and is not assigned to T_{i} if $r_{i j}<0$. For the selected example given here, only the diagonal terms in the covariance matrices were retained. The off-diagonal terms were set to zero. Al; combinations for $r_{i j}$ were computed and Z was placed in class k when the condition $r_{k j}>0$ was met for all j.

Test Results. Employing data representing four sample classes, the model was tested against each data point for several combinations of the measurement vector Z. In these cases, the data set used as a test set was also used as a test set. The results of one test are shown below when the
four variants, mean power, o, fast variation and slow variation were employed in the model.

TUNER OE CORRECT NU INCORRECT CLACEIETCAMIO:S FOR OM PIXEL VERSUS EACH CLASS

An example when the covariances are included in the model is shown below for a different set of targets and variants. The variants for this model are mean power, σ, RMS and δ. Target classes 1, 2, 3, and 4 correspond to fruit trees, smooth grass, rough grass and citrus trees.

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	45	0	1	4
2	4	7	37	1
3	12	0	37	6
4	36	0	0	37

Use of other variants gave varied results. The model failed when applied to data normalized with respect to the four-look mean.

The model was modified to include the Eigen transformation to form a new set of decorrelated variants. The results are shown below for a model employing power mean, average deviation from the mean, slow variation and fast variation. Target class $1,2,3$, and 4 correspond to grass, young fruit trees, citrus trees and a vineyard.

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	38	11	0	0
2	0	45	1	4
3	0	0	52	21
4	0	1	0	83

Nonparametric Models

A model similar to the parametric model was developed using four variants. However instead of employing parametric curve fits to the uistograms of target PDF, the probability densities were obtained from a table look up from histograms generated from measurement data. Variants employed in the model were mean power, deviation from the mean, slow variation and fast variation. The model was reduced from a four target class model to two target class model. Besides making a decision as to which class the target may be assigned, two other groups were included in the model group 3 and 4. In group 3 the target may be assigned to either target class and in group 4 the target is not assigned to any target class. When applied to target classes of fruit trees and mobile homes the model produced results shown below.

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	40	0	0	10
2	0	94	0	7

This particular model was not pursued further.

Nearest Neighbur Classifier. A two class nearest neighbor (K-NN)
classifier assigns a pattern X of unknown classification to the class of its nearest neighbor. For $K=1$, we have the 1 -NN classifier which employs only classification based upon the nearest neighbor. In this program, K was variable. The classification determines the K nearest neighbor, from data contained in the two classes, to X and used the majority rule to determine which class to arsign to X .

The two classes chosen as a test case were tanks and mobile homes (taken from scenes 3 and 5 without hop). The number of pixels for the two classes were 44 and 50, respectively. Variants employed were mean power, deviation from the mean, fast and slow variation for the unnormalized data, and the difference between slow and fast variation was added to this graph of variants for the normalized data. Test results are shown below employing both unnormalized and normalized return power from four look data placed in proper time sequence. Targets 1 and 2 refer to target classes of tanks and mobile homes, respectively.

Unnormalized Power
$K=1$ Nearest Neighbor Classifier Summary

Target	No. 1	No. ${ }^{2}$
1	31	13
2	17	33

K = 3 Nearest Neighbor Classifier Summary

Target	No. ${ }^{1}$	No. ${ }^{2}$
1	28	16
2	17	33

K = 5 Nearest Neighbor CLassifier Summary

Target	No. 1	No. 2
1	24	20
2	18	32

K = 11 Nearest Neighbor Classifier Summary

Target	No. ${ }^{1}$	No. ${ }^{2}$
1	18	26
2	15	35

K = 21 Nearest Neighbor Classifier Summary

Target	No. 1	No. 2
1	15	29
2	14	36

Normalized Power
K = 1 Nearest Neighbor Classifier Summary

Target	No 1	No. ${ }^{2}$
1	23	21
2	21	23

K = 3 Nearest Neighbor Classifier Summary

Target	No. 1	No. ${ }^{2}$
1	21	23
2	22	28

$K=5$ Nearest Neighbor Classifier Summary

Target	No. ${ }^{1}$	No. ${ }^{2}$
1	16	28
2	20	30

$K=11$ Nearest Neighbor Classifier Summary

Target	No. 1	No. ${ }^{2}$
1	24	20
2	24	26

K = 21 Nearest Neighbor Classifier Summary

Target	No. 1	No. 2
1	31	13
2	24	26

The number of errors made in classification employing normalized data appeared to increase for both target classes, again pointing to the fact that class separability was due to mean power return rather than a measure of look-to-look dispersion.

Minimum Distance Model

The use of distance functions is one of the earliest concepts in pattern classification. The motivation for using distance functions as a classification tool is that the most obvious way of establishing a measure of similarity between pattern vectors is by their proximity to one another. We say that X, a pattern vector, belongs to class C_{j} on the basis that it is closer to patterns belonging to this class.

In this classifier the Euclidean distance, $D_{j 1}$, between the pattern vector X_{i} and a known set of pattern vectors \bar{X}_{j} defined by

$$
D_{j i}=x_{i}-\bar{x}_{j}
$$

is computed for each class. For the two class problem j $=2$. Components of the pattern vector are the various discriminant functions discussed elsewhere. Dimensions of the pattern vector have been selected on four with no attempt to reduce the dimensionality of the vector.

The pattern vectors \vec{X}_{j} are taken to be the means and/or medians of the set of discriminanis derived from measurements from class j. The classifier computes the distance from the pattern X_{1} of unknown classification and assigns it to the class to which it is closest, $i . e ., X_{i}$ is assigned to class C_{j}, if $D_{j i}<D_{s i}$ for all $j \neq s$.

Since the discriminants computed from measurements for each class were highly correlated, Eigen transformations were applied to the pattern vectors. During this process a new set of pattern vectors \tilde{X}_{i} was created for each pixel within each class. Means and medians of the transformed vectors $\overline{X_{i}}$ were taken as being characteristic of the target classes containing these vectors. The minimum-distance classifier was then applied to the transformed data.

An example of the results of applying this classifier to a class of tanks and river trees for unnormalized and normalized data is shown below. The variants were selected from the generalized set of variants for $N=1$. Targets 1 and 2 refer to the class of tanks and river trees respectively.

CLASSIFIER BASED ON RECEIVED POWER

Minimum Distance Classifier 1
Minimum Distance Classifier Based on Class Median

Target	No. 1	No. 2	No. 3	No. 4
1	45	0	0	0
2	3	50	0	0

Minimum Distance Classifier Based Upon Class Means

Target	No. 1	No. 2	No. 3	No. ${ }^{4}$
1	45	0	0	0
2	5	44	4	0

CLASSIFIER BASED ON NORMALIZED TARGET RETURN

| Minimum Distance | Classifier | Based Upon Class Mean | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Target | No. 1 | No. 2 | No. 3 | No. 4 |
| 1 | 13 | 10 | 22 | 0 |
| 2 | 10 | 14 | 29 | 0 |

It should be noticed that the classifier performed well when operating on received power but performed rather poorly on the normalized data.

Eigen Vector Four Variant Model

Theory. The probability density functions (PDF) were computed for eight unnormalized and seven normalized discriminants derived from FLAMR four look data. Because of the manner by which the discriminant functions were established, it seemed reasonable to assume that the PDF's of any combination of four descriminants selected from the unnormalized set or any combination of four discriminants selected from the normalized set would be representative of the pattern class. We find, however, that the assumption may not be entirely justified since selected sets of discriminants taken from the target classes appear to be highly correlated requiring as few as six and perhaps as many as twelve addition functions to completely describe the pattern. For example, if the discriminant PDF's for a target class are Gaussian random variables with zero mean, four variances and six correlation coefficients would describe the four dimensional PDF.

The discriminants PDS's, however, are not Gaussian and are correlated; by de-correlating the data through appropriate linear transformations, it is possible to arrive at a new set of discriminants whose PDF's statistically describe the class pattern. Furthermore, this new set will contain only four discriminants. We shall now show that this is the case.

Let X be a vector $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ where X_{1} is discriminant i with zero mean, then the expected value of the matrix XX^{T} is called the covariance matrix of the random variables X_{1}, X_{2}, X_{3}, and X_{4}, and we have

$$
\begin{aligned}
x^{T} & =\left[\begin{array}{c}
x_{1} \\
\cdot \\
x_{4}
\end{array}\right]\left[\begin{array}{lll}
x_{1} & \ldots & x_{4}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
x_{1}^{2} & x_{1} & x_{2} & \cdots \\
x_{2} x_{1} & & \\
\vdots &
\end{array}\right.
\end{aligned}
$$

The covariance matrix, B, is given by

$$
\begin{equation*}
B=E\left[X X^{T}\right]=\left[E\left[X_{1}^{2}\right] \ldots E\left[X_{1} X_{4}\right]\right] \tag{1}
\end{equation*}
$$

we would like to find an orthogonal transformation $X=R Y$ such that the nondiagonal terms of $E\left[Y^{T}\right]$ vanish. Note that any matrix R with real elements, such that

$$
\begin{align*}
R^{T} & =I \\
R^{T} & =R^{-1} \tag{2}
\end{align*}
$$

is an orthogonal matrix.
It follows from the covariance matrix, B (equation 1 above) and the orthogonal matrix equation that

$$
\begin{align*}
B & =E\left[R Y Y^{T} R^{-1}\right] \\
& =R E\left[Y Y^{T}\right] R^{-1} \\
& =R \Lambda R^{-1} \tag{3}
\end{align*}
$$

since we require the off diagonal terms to vanish.

$$
\Lambda=\left[\begin{array}{llll}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 \\
0 & 0 & 0 & \lambda_{4}
\end{array}\right]
$$

From the matrix relation (3) we find that

$$
B R=R \Lambda
$$

where R is a 4×4 matrix. This matrix may be portioned into a matrix of the form

$$
R=\left[R_{1}, R_{2}, R_{3}, R_{4}\right]
$$

with each element R_{i} being a column matrix.
It follows then, that

$$
B R_{i}=R_{i} \lambda_{i}
$$

for $i=1,2,3,4$. Since λ_{i} is a scalar, the right side of the above may be permuted giving

$$
B R_{i}=\lambda_{i} R_{i}
$$

which can be written as

$$
(B-\lambda I) R_{1}=0
$$

for $\lambda=\lambda_{i}$. This matrix equation represents four linear equations with four unknown variables contained as elements of the column matrix R_{i} and for this equation to have a nontrivial solution, the determinant of the matrix of the coefficients of R_{i} must vanish, it.,

$$
|B-\lambda I|=0
$$

or

$$
\left|B_{r s}-\lambda \delta_{r s}\right|=0
$$

This equation is called the characteristic equation of the matrix B. It is a polynomial of degree four in λ and has four roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4} which are called Eigen values or characteristic roots of B.

Placing the solution of the last equation for λI in the equation $(B-\lambda I) R_{i}=0$, the equation can be solved for the components for R_{i}. In addition, since

$$
\begin{aligned}
K B R_{i} & =B\left(K R_{i}\right) \\
& =\lambda\left(K R_{i}\right)
\end{aligned}
$$

a number K can be found such that

$$
R_{i}^{*}=K R_{i}
$$

is a unit vector. Vectors R_{i}^{*} are called Eigen vectors; these vectors satisfy the relation

$$
\left(B-\lambda_{i} I\right) R_{i}^{*}=0
$$

since B is symmetric, it follows for $\lambda_{i} \neq \lambda_{j}$, that

$$
R_{i}^{*} T R_{j}^{*}=\delta_{i j}
$$

which states that the Eigen vectors are orthogonal vectors. The matrix R^{*} in partition form is given by

$$
\mathrm{R}^{*}=\left[\mathrm{R}_{1}^{*}, \mathrm{R}_{2}^{*}, \mathrm{R}_{3}^{*}, \mathrm{R}_{4}^{*}\right]
$$

The new set of uncorrelated variants, Y, in terms of the correlated discriminants, X, is given by

$$
\begin{aligned}
Y & =R^{*-1} X \\
& =R^{* T} X
\end{aligned}
$$

Briefly, to calculate a set of uncorrelated variants in terms of a set of correlated discriminants, one first calculates the covariance matrix for the correlated discriminants, solves the characteristic equation for the Eigen values, find the Eigen vectors and then computes the uncorrelated variants from a product of the matrix formed from the Eigen vectors, and the correlated discriminants.

Results. Eigen values and Eigen vectors were computed for the target classes (listed later in Table XI of Section VI) that were processed for the Kolmogorov-Smirnov (K-S) two-sample test for four groups of discriminant functions. These functions can be divided as follows:

1. Unnormalized, discriminant set 1 ($\mathrm{N}=1$)
2. Normalized, discriminant set $1(N=1)$
3. Unnormalized, discriminant set $2(N=2)$
4. Normalized, discriminant set $2(N=2)$

The discriminant functions, which will be restated here only, are

1. Unnormalized

$$
\begin{aligned}
& X_{1}=\bar{P}=\frac{1}{4}\left\{\Sigma P_{i}\right\} \\
& X_{2}^{N}=\frac{1}{4}\left\{\left|P_{1}-\bar{P}\right|^{N}+\left|P_{2}-\bar{P}\right|^{N}+\left|P_{3}+\bar{P}\right|^{N}+\left|P_{4}-\bar{P}\right|^{N}\right\} \\
& x_{3}^{N}=1 / 3\left\{\left|P_{1}-P_{2}\right|^{N}+\left|P_{2}-P_{3}\right|^{N}+\left|P_{3}-P_{4}\right|^{N}\right\} \\
& x_{4}^{N}=1 / 3\left\{\left|P_{1}-P_{4}\right|^{N}+\left|P_{1}-P_{3}\right|^{N}+\left|P_{2}-P_{4}\right|^{N}\right\}
\end{aligned}
$$

2. Normalized

$$
\begin{aligned}
& \mathrm{X}_{5}=\text { Major Spread } \\
& \mathrm{Z}_{1}=\mathrm{X}_{5} / \overline{\mathrm{P}} \\
& \mathrm{z}_{2}=\mathrm{x}_{2} / \overline{\mathrm{P}} \\
& \mathrm{Z}_{3}=\mathrm{X}_{3} / \overline{\mathrm{P}} \\
& \mathrm{Z}_{4}=\mathrm{x}^{4} / \overline{\mathrm{P}}
\end{aligned}
$$

These relations are equivalent to those on page 48. The unnormalized discriminants have units of power while the normalized discriminants are dimensionless.

Sample sets of the Eigen vectors obtained in the process of decorrelating the covariance are given in Tables II-VIII. There are four Eigen vectors for each target class; the components of these vectors appear as elements of column matrices in the tables. Target classes by corresponding Eigen vectors for the two target classes are aligned vertically for ease of comparison. Note that the sum of the squares of the elements is unity. Set 1 and Set 2 appearing in the table refers to the set of Eigen vectors for the first and second target classes, respectively. The four Eigen values given for each set of Eigen vectors are presented as elements of a row matrix. These elements also appear as the diagonal elements of the covariance matrix of the set of discriminants formed after the Eigen transformation has been performed. The first Eigen value is equal to $\sigma_{11}{ }^{2}$, the second Eigen value is equal to $\sigma_{22}{ }^{2}$ and so forth. The Eigen vectors between the two target classes are compared by applying the following relation
TABLE II-A
target list and file designation

	Scene						
TARGET CLASS	1	2		3		4	5
Man-made clutter	H1CLUT (111)	H2CLUT	(108)	H3CLUT	(105)		
Natural features	H1NAT (110)	H2NAT	(109)	H3NAT	(111)		
Rough grass and weeds				$\begin{aligned} & \text { H3GRAS } 1 \\ & \text { H3GRAS } 2 \end{aligned}$	$\begin{aligned} & (57) \\ & (55) \end{aligned}$		
River bank trees		H2TREE1	(55)	H3TREE1	(52)		
Young fruit trees		H2TREE2	(53)	H3TREE2	(50)		
Railroad bridge		H2RRB1	(50)				
Highway bridge		H2HWB1	(43)	H3HWB1	(35)		
Bridges		H2BRIDG	(53)	H3BRIDG	(55)		
Mobile homes		H2MH1	(57)	H3MH1	(50)		
Shadows						H4DARK (56)	
Sand						H4SAND1 (56)	$\begin{aligned} & \text { H5SAND1 }(56) \\ & \text { H5SAND2 (111) } \end{aligned}$
Other Tactical vehicles						H4TACT1 (71)	H5TACT1 (71)
Tactical vehicles						H4TACT2 (88)	H5TACT2 (169)
Tanks						H4TANK1 (48)	H5TANK1 (44)
Trucks, 2 1/2 ton						H4TR251 (56)	H5TR251 (55)

TABLE II
COMPARI: ON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND MORILE HOMES (SET 2, H3MH1) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

```
EIGEN VALUES FOR SET I FILE 30 GROUP 1
    .5317E+08 . 2133E*07 .4058E*06 .4173E*05
EIGEN VECTORS FROM SET I FILE 30 GROUP 1
            .4758 .5236 -.6998 .0987 Tanks
```



```
    .4630 -.5237 -.6512 -.0802 
EIGEN VALUES FOR SET 2 FILE 30 GROUP 1
        .1501E&08 .2937E*07 .6388E+06 .1927E+05
EIGEN VECTORS FROM SET 2 FILE 30 GROUP 1
            .3551 .0248 .9175 . .1774 Mobile
    .4063 -.0192 -.3221 .8549 Homes
    .5682 -.7384 -. 1347 -. 3374
    .6212 .6737 -. 1905 -.3520
;U BETWEEN VARIANT EIGEN VECTORS
```

1	.09178	1
2	.95114	1
3	.94623	1
4	.06526	1

RELATIVE MATCH FOR FILE 30 IS 1.34637

Normalized Discriminants

TABLE II (CONTINUED)
COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND MOBILE HOMFS (SET 2, H3MH1) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

1	.10932	3
2	.89377	3
3	.88874	3
4	.01029	3

rELATIVE MATCH FOR FILE 30 IS 1.26520
Normalized Discriminants

EIGEN VALUES FOR SET 2 FILE 30 gROUP 4
-8765E•00 . 1774 E *00 $\$ 5569 \mathrm{E}-02$-1320E-03
EIGEN VECTORS FROM SET 2 FILE 30 GROUP 4
Mobile
$.6674 \quad .0471 \quad-.7429 \quad$ Homes $.2953 \quad .0304 \quad .2384 \quad .9247$ $.5194 \quad-.6930 \quad .4307 \quad . .2541$ $.4445 \quad .7188 \quad .4539 \quad .2826$
U BETWEEN VARIANT EIGEN VECTORS

1	.05169	4
2	.06066	4
3	.04117	4
4	.01072	4

rELATIVE MATCH FOR FILE 30 IS .n9028

TABLE III
COMPARISON CF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANKI) AND TREES (SET 2, H3TREF3) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

1	.16569	1
2	.26576	1
3	.23422	1
4	.05125	1

RELATIVE MATCH FOR FILE 21 IS
.79442

Normalized Discriminants

TABLE III (CONTINUEC)

COMPARISON CF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK1) AND TREES (SET 2, H3TREE3) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

```
EIGEN VALUES FOR SET 1 FILE 21 GROUP 3
    .1034E+09 . 2152E*07 . 1364E+07 .1249E+04
ミIGEN VECTORS FROM SET 1 FILE 21 GROUP 3
                .4219 .5526 -.7187 .0110
                        .3614 -.0953 . . . .91423 
        .4856 .5040 . .6687 -.2511
        .6750 -.6569 -. 1137 -.3161
EIGEN VALUES FOR SET 2 FILE 21 GROUP 3
        .2209E*08 .1983E*07 -1514E+07 .2652E+04
EIGEN VECTORS FROM SET 2 FILE 2I GROUP 3
            .3168 .8697 .3784 ..0056 Trees
    .3760 -. 1287 -.0054 .9176
    .0976 .0297 -.6565 -.2855
    .5212 -.4755 .6525 -.2764
D BETWEEN VARIANT EIGEN VECTORS
```

1	.14130	3
2	.29981	3
3	.94499	3
4	.02758	3

RELATIVE MATCH FOR FILE 21 IS 1.nOIBI

Normalized Discriminants

1	.06388	4
2	.07587	4
3	.04722	4
4	.02599	4

RELATIVE MATCH FOR FILE 21 IS . 11289

TABLE IV
COMPARISOH OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND GRASS (SET 2, H3GRAS2) HOP OFF, SCENES 3 AND 5,

DISCRIMINANT SET 1

Unnormalized Discriminants

1	.33559	1
2	.93720	1
3	.92692	1
4	.06743	1
ELATIVE MATCH FOR	FIL	

KELATIVE MATCH FOR FILE 34 IS 1.36187

Normalized Discriminants

TABLE IV (CONTINUED)
COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND GRASS (SET 2, H3GRAS2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

1	.26861	3
2	.90222	3
3	.87849	3
4	.02684	3

RELATIVE MATCH FOR FILE 34 IS 1.28787

Normalized Discriminants

1	.11837	4
2	.13335	4
3	.06100	4
4	.00956	4

[^3]TABLE V
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H2NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 1

Unnormalized Discriminants

```
EIGEN VALUES FOR SET 1 FILE }55\mathrm{ gROUP 1
    .6387E+09 .7014E*08 . 1967E& j8 . 6298E$06
EIGEN VECTORS FROM SET I FILE 55 GROUP 1 Natural
                .4560 -.0224 .0853 .0887 Features
        .3646 .0123 -. 2766 . 8890
        .5679 -.7095 -. 2794 -. 3100
        .5802 .7043 -.2485 ..3250
EIGEN VALUES FOR SET 2 FILE 55 GROUP I
    .7173E+10 .6508E.08 .3963E+08 . 1349E+07
EIGEN VECTORS FROM SET 2 FILE 55 GROIJP l
\begin{tabular}{lrrrl}
.4220 & .9015 & -.0877 & .0387 & Tactical \\
.3856 & -.2203 & -.0143 & .8959 & Vehicles
\end{tabular}
    .3616 -.0734 % .9157 -.1591
    .7366 -.3651 -. 3919 -.4130
iO gETWEEN VARIANT EIGEN VECTORS
```

1	.13097	1
2	.78358	1
3	.78492	1
4	.09091	1

RELATIVE MÄCH FOR FILE 55 IS 1.12050

Normalized Discriminants

1	.02496	2
2	.02907	2
3	.01871	2
4	.01987	2

TABLE V (CONTINUED)
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES
(SET 1, H2NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 2

Unnormalized Discriminants

1	.07237	3
2	.74988	3
3	.75083	3
4	.01168	3

RELATIVE MATCH FOR FILE 55 IS
1.06369

Normalized Discriminants

1	.01248	4	
2	.01028	4	
3	. 02423	4	
4	. 02226	4	
RELATIVE	MATCH FOR	FILE 55 IS	. 3666

TABLE VI
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H3NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2 , H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

1	.07904	1
2	.44805	1
3	.89385	1
4	.04102	1

RELATIVE MATCH FOR FILE 56 IS 1.nJ382

Normalized Discriminants

TABLE VI (CONTINUTED)
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF : A ATURAL FEATURES (SET 1, H3NAT) AND A. CLASS OF TACTICAL VEHICLES (SET 2, H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

```
EIgEN VALUES FOR SET 1 FILE 56 GROUP 3
    1653E+11 . 6830E*09 . 5308E 09 . . 842IE+06
EIGEN VECTORS FROM SET I FILE 56 GROUP 3 Natural
            .4054 .9104 -.0826 -.0082 Features
            .3664 -. .1516 .0351 .9174
    .6322 -. 3416 -.6345 -. .2846
        .5494 -.1775 .7677 -.7781
figen values for Set 2 File 56 gROUp 3
        .2663E+11 .1948E*10 . 2581E+09 .2091E+07
EIGEN VECTORS FROM SET 2 FILE }56\mathrm{ GROUP 3
            .4760 -.6637 . .5762 -.0306
            .3555 . . . .1001 .9208 Vehicles
D BETWEEN VARIANT EIGEN VECTORS
```

 1.06656
 \(2.90935 \quad 3\)
 \(3 \quad .42080 \quad 3\)
 \(4 \quad .021703\)
 RELATIVE MATCH FOR FILE 56 IS 1.0n443

Normalized Discriminants

1	.13846	4
2	.14214	4
3	.03214	4
4	.01586	4

RELATIVE MATCH FOR FILE 56 IS . 20165

TABLE VII
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H3CLUT) AND A CLASS OF TACTICAL VEHICLES (H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

```
EIGEN VALUES FOR SET 1 FILE 58 GROUP 1
    .2129E.13 .1799E*1? .5417E+11 .1629E+09
EIGEN VECTORS FROM SET 1 FILE 58 GROUP 1 Clutter
        .7623 -.5903 -. 2626 . 0372
        .2539 . 3296 . 1237 .9009
        .4226 .1514 . .4451 ..2905
        .4193 .7211 -.4490 -.3203
eIgen values for Set 2 file 58 group 1
    .9780E+12 .8729E*11 .9873E+10 .4874E+09
EIGEN VECTORS FROM SET 2 FILE 58 GROUP 1
\begin{tabular}{rrrrr}
.5399 & -.5522 & -.6352 & -.0160 & .9194 \\
3356 & .1469 & .1431 & .919
\end{tabular}\(\quad\) Vehicles
        .9194
        .5060 -..3585 . .7457 -. 2435
        .5829 .7382 -.1414 -.3U87
SD BETWEEN VARIANT EIGEN VECTORS
```

1	.14988	1
2	.27163	1
3	.24683	1
4	.03504	1

RELATIVE MATCH FOR FILE 58 IS . 79799

Normalized Discriminant

```
EIGEN VALUES FOR SET 1 FILE 58 GROUP 2
    .8690E*00 . 2434E*00 . 8316E-C̃2 . 2343E-02
EIGEN VECTORS FROM SET I FILE 5S GROUP 2
                .7&10 -.1035 -.6081 .0979
        .2835 -.0130 .4982 .8193
        .3101 -.7316 .4587 -.3978
        .4621 .6737 .4143 -.4011
EIgEN VALUES FOR SET 2 FILE 58 GROUP 2
        .7164E+00 .1404E*00 .7592E-022 .1757E-02
EIGEN VECTORS FROM SET 2 FILE 58 GROUP 2
                .7541 -. 2430 -.5866 -. 1679
        .2634 -.0126 . .5672 -.7862 Vehicles
        .2066 -.7566 .4599 .4163
        .5650 .6069 . 3503 .4356
SO BETWEEN VARIANT EIGEN VECTORS
\begin{tabular}{lll}
1 & .07488 & 2 \\
2 & .07834 & 2 \\
3 & .04877 & 2 \\
4 & .99898 & 2
\end{tabular}
RELATIVE MATCH FOR FILE SB IS 1.00600
```

TABLE VII (CONTINUED)
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H3CLUT) AND A CLASS OF TACTICAL VEHICLES (H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

```
EIGEN VALUES FOR SET 1 FILE 58 gROUP 3
    . 2437E+13 -1973E*12 . 7194E+11 .4070E+08
EIGEN VECTORS FROM SET I FILE 5S GROUP 3
        .7034 -.7016 .1142 .0074
        .2881 . 2936 ..0299 .9110
        .4649 -3380 -.7685 -. %812
        .4541 .5544 .6289 ..3016
eIgEN VALUES FOR SET 2 FILE 58 GROUP 3
        .1205E+13 - 8816E*11 .1168E+11 .9464E+08
EIGEN VECTORS FROM SET 2 FILE 5S GROUP 3
        .4760 -.6637 .5762 -.0306 Tactical
        .3555 . . . .1001 .956 Venicles
SU BETWE:6023NIANT*6871 VECTORS -.2961
```

 \(1 \quad .14393 \quad 3\)
 \(2 \quad .32172 \quad 3\)
 \(3 \quad .29218 \quad 3\)
 \(4 \quad .02454 \quad 3\)
 RELATIVE MATCH FOR FILE 58 IS
.45847

Normalized Discriminants

```
EIGEN VALUES FOR SET l FILE 58 gROUP 4
    .1139E+01 . 1704E*00 . 6591E-02 .1562E-03
EIGEN VECTORS FROM SET 1 FILE 5B GROUP }
        .6834 -.0272 -.7292 -.023
        .2928 -.0008 . .2443 .9245
        .4321 -.7445 .4410 -.2540
        .5105 .6670 .4628 -. 2834
EIGEN VALUES FOR SET 2 FILE 58 GROUP 4
    .8795E+00 .1144E*00 .6174E-02 .1803E-03
EIGEN VECTORS FROM SET 2 FILE 5B GROUP 4
        .6853 -.1375 -.7145 -.0295 Tactical
        .2857 -.0242 .2404 .9273 Vehicles
.5749 .6318 .4412 -.2750
SO BETWEEN VARIANT EIGEN VECTORS
```

1	.05481	4
2	.05975	4
3	.02644	4
4	.00536	4
RELATIVE MATCH FOR FILE		
SB		
IS		

.118545

TABLE VIII
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H2CLUT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 1

Unnormalized Discriminants

```
EIGEN VALUES FOR SET 1 FILE 57 GROUP 1
    .2072E+13 .9384E+11 . 2143E+11 . 8813E+09
EIGEN VECTORS FROM SET 1 FILE 57 GROUP
    .3457 .1969 -.1452 .9059
    .6386 -. . }0334\quad-.6849 -.324
    .4343 .7684 . .3838 -. 2713
EIGEN Values for SET 2 FILE 57 GROUP 1
    .4368E+13 -3962E*11 -2413E+11 . 8217E+09
EIGEN VECTORS FROM SET 2 FILE 57 GROUP 1
                4220 .9015 -.0877 .0387
                        3856-0203 -0143 - 0959 Vehicles
                        .3616 -.0734 . .9157 -.1591
        .7366 -.3651 -.3919 ..4130
D BETWEEN VARIANT EIGEN VECTORS
```

1	.21331	1
2	.96168	1
3	.95611	1
4	.10932	1

RELATIVE MATCH FOR FILE 57 IS 1.37711

Normalized Discriminants

1	.02912	2
2	.03551	2
3	.03026	2
4	.99972	2

RELATIVE MATCH FOR FILE 57 IS 1.nOI23

TABLE VIII (CONTINUED)
COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, (H2CLUT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 2

Unnormalized Discriminants
EIGEN VALUES FOR SET 1 FILE 57 GROUP 3 $.2412 E+13$. $1137 E 12$. $1311 E+11$. $2337 E+08$
EIGEN VECTORS FROM SET 1 FILE 57 GROUP 3
Clutter

.4854	-.7125	.5063	-.0197
.3509	.1479	-.0926	.9200
.6363	-.0601	-.7064	-.3042
.4862	.6832	.4859	-.2463

EIGEN VALUES FOR SET 2 FILE 57 GROUP 3
$.5531 E+13 \quad .6055 E+11 \quad .1310 E+11 \quad .1222 E+08$
EIGEN VECTORS FROM SET 2 FILE 57 GROUP 3
Tactical $\begin{array}{rrrrr}.3701 & .9287 & -.0240 & .0040 & \text { Vehicles }\end{array}$ $.4834 \quad-.1727 \quad .8182 \quad-.2588$.7021 -. 2959 -. 5729 . 3022
SO BETWEEN VARIANT EIGEN VECTORS

1	.14459	3
2	.96811	3
3	.96757	3
4	.03687	3

RELATIVE MATCH FOR FILE 57 IS 1.37684

Normalized Discriminants

1	.01368	4
2	.01203	4
3	.02517	4
4	.02318	4

RELATIVE MATCH FOR FILE 57 IS .n3876

$$
S_{i}=\left[\frac{1}{4}\left\{\sum_{r=1}^{4}\left(1_{i r}-{ }_{2} E_{i r}\right)^{2}\right\}\right]^{1 / 2}
$$

where ${ }_{s}{ }_{i r}$ is the roth element of the $i-t h$ Eigen vector ($i=1,2,3,4$) for Set S. These values are tabulated and listed in a column labeled "SD Between Variant Eigen Vectors." The numbers 1, 2, 3, 4 refer to the i-th Eigen vector and the 3rd column is the discriminant group number.

The maximum value of $S D_{i}$ can be found by expanding $\sum\left(E_{i r}-{ }_{2} E_{i r}\right)^{2}$. When this is done,

$$
\begin{aligned}
4 \mathrm{SD}_{\mathrm{i}}^{2} & =\sum_{1} E_{i r}^{2}+\sum_{2} E_{2 r}^{2}-2 \sum_{1} E_{i r} \cdot{ }_{2} E_{i r} \\
& =2\left[1-\sum_{1} E_{i r} \cdot{ }_{2} E_{i r}\right]
\end{aligned}
$$

Now ${ }_{1} \mathrm{E}$ and ${ }_{2} \mathrm{E}$ are unit vectors, so that

$$
\sum 1_{i r} \cdot 2_{i r}
$$

is the dot product of two unit vectors which can vary between +1 and -1 . When the dot product of the two Eigen vectors is $+1, S D_{i}=0$; but when the dot product of the two vectors is $-1, S D_{i}=1$, from which we conclude that

$$
\left|S D_{i}\right| \leq 1
$$

If the Eigen vectors from two sets are alike, they will have the same direction and $S D_{i}$ will be zero. If the Eigen vectors are nearly alike, S_{i} will be close to zero. As the dissimilarity between the two sets of Eigen vectors increases, the more $S D_{1}$ will depart from zero until it
reaches its maximum value of 1 -- the value of SD_{i} denoting the greatest dissimilarity. S_{i} is, therefore, a measure of similarity between two Eigen vectors and provides a method for assigning the similarity or dissimilarity for two target classes.

Since the number of Eigen vectors is equal to the number of discriminants contained in the set, there are four Eigen vectors per set. Two sets of Eigen vectors may be compared by examining each SD_{i} a total of four numbers in this case. If one or more $S D_{i}$ out of the set of four deviated from zero by a number greater than a yet to be determined threshold, the two target classes would be considered as being dissimilar.

Now instead of examining each SD_{i}, it would be more convenient to combine the four numbers SD_{i} such that a single number could be used for testing target similarity. One such number used here, RM, is defined to be the root sum square of $S D_{i}$, a number which varies from $0 t$. $\quad \mathrm{RM}$ close to zero would indicate great similarity between two target classes and RM approaching the number two would indicate great dissimilarity between the two classes.

RM appears as the number labeled "RELATIVE MATCH" for the file numbers shown. Eigen vectors for selected target classes such as tanks, tactical vehicles, and natural features are given in Tables II-VIII.

Target classes and file designation which appear in these tables are listed in Table II-A. Numbers in the parentheses indicate the number of pixels (data points) contained in each file.

Four sets of Eigen vectors were generated for selected target classes and discriminants. A set of Eigen vectors were computed for each set of discriminants -- one for the generalized set of discriminants
$N=1$, unnormalized; one for the generalized set of discriminants
$\mathrm{N}=1$, normalized; one for the generalized set of discriminants $\mathrm{N}=2$, unnormalized; and one for the generalized set of discriminants $\mathrm{N}=2$, normalized. As an example the four sets of Eigen vectors appear in each of the Tables II-VIII. The terms Set 1 and Set 2 appearing in these tables refer to target classes 1 and 2 . The corresponding four Eigen vectors appear as a column matrix under the set designation. The $S D_{i}$ between the two sets of Eigen vectors appear below the listing of Eigen vectors adjacent to the vector number $1,2,3$, and 4 . $R M$ is the last number in the table.

The group number corresponds to the discriminant set

Group	Discriminant Set	
1	$\mathrm{~N}=1$	Unnormalized
2	$\mathrm{~N}=1$	Normalized
3	$\mathrm{~N}=2$	Unnormalized
4	$\mathrm{~N}=2$	Normalized

Specifically these tables contain Eigen vectors for the following target classes.

Table II	Tanks and Mobile Homes, hop off
Table III	Tanks and Trees, hop off
Table IV	Tanks and Grass, hop off
Table V	Natural Features and Tactical Vehicles, hop on
Table VI	Natural Features and Tactical Vehicles, hop off
Table VII Clutter and Tactical Vehicles, hop off	
Table VIII Clutter and Tactical Vehicles, hop on	

RM data taken from these tables and from other such tables not appearing in this report are listed in Table IX. This table provides some indication as to the classification potential of the Eigen vectors for the four groups of discriminant functions.

Employing a fixed threshold, RMT, two target classes will be assumed to be taken from the same population if $R M \leq R M T$ and from different populations if $R M>R M T$. The type error can be assigned to a control set of data, such as the data in Table IX, according to whether a correct or incorrect classification has been made. For example, the trucks had a high RM (RM>2) indicating that the two sets of trucks were dissimilar when in reality they were not.

Taking RMT $=0.2$, a hit or miss is assigned to nach $R M$ in Table IX. A hit is assigned for a correct classification and a miss is assigned for an incorrect classification. It is found that groups 1, 2, 3, and 4 made 3, 7, 3, and 12 errors out of 14 possible errors, respectively. From this limited data, fewer errors are made with the unnormalized data than with the normalized data confirming earlier results indicating that class separability, when it exists, is primarily due to a difference in mean power.

TABLE IX
COMPARISON OF THE FOUR EIGEN VECTORS BETWEEN TARGET CLASSES BASED UPON RM

DISCRM SET 1
DISCRM SET 2

VI. KOLMOGOROV-SMIRNOV TWO-SMAPLE TESTS

Theory

The Kolmogorov-Smirnov test is a nonparametric statistical test used to compare two distributions. These distributions may be either a sample distribution and a theoretical distribution or two sample distributions. Since the theoretical distributions for the selected data and the variants constructed from these data are now known, we shall be concerned with applying this test to two sample distributions for purposes of testing the hypothesis whether or not the two sample distributions are the same, i.e., whether or not the distributions are representative of the same class. This test will not give the classification of a 4 look ensemble on a per sample (pixel) basis, but will rather determine whether or not two distributions of variants (features) based on the 4 look ensembles are similar hence determining the existence of discrimination information.

The chi-squared test is often used in the goodness-of-fit problems when the data can be grouped into categories to form frequer y distributions such as those often used in the form of a histogram to show probability density functions. The Kolmogorov-Smirnov test, unlike the chi-squared test, is based upon the cumulative distribution function ($C D F$) rather than on frequencies in the two samples.

The test involves the null hypothesis (H_{0}) that two samples come from populations with the same distribution function versus the alternate hypothesis $\left(H_{a}\right)$ that the two samples do not come from populations with identical distribution functions.

Consider the statistic X_{i} from sample $\underline{\bar{X}}$ to be ordered such that

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

where n is the sample size. The sample CDF will be defined by the proportion of the measurement that does not exceed X so that if $S_{n}(X)$ is the CDF for one sample; then,

$$
\begin{aligned}
S_{n}(X) & =0 & & X<X_{i} \\
& =r / n & & X_{r} \leq X<X_{r+1} \\
& =1 & & X_{n}<x
\end{aligned}
$$

If the sample \bar{X} comes from a completely specified distribution $F(X)$, then

$$
\operatorname{Limit}\left(S_{n}(X)-F(X)\right)=0
$$

$n \rightarrow \infty$
for all X.
A test for goodness-of-fit to $F(X)$ can be constructed out of any suitable measure of deviation between the two functions. A test function employed by Kolmogorov, D_{n}, known as the Kolmogorov test statistic is the maximum absolute difference between $S_{n}(X)$ and $F(X)$ when $F(X)$ represents the CDF of the second sample, then $F(X)$ is replaced with $F_{m}(X)$ where m is the sample size for the second sample and the Kolmogorov test statistic becomes

$$
D_{n m}=\operatorname{MAX}\left|S_{n}(X)-F_{m}(X)\right|
$$

It was proved by Kolmogorov and Feller that for any given number $\lambda>0$

$$
\operatorname{Limit}_{n \rightarrow \infty} P\left(D_{n} \geq \lambda / \sqrt{n}\right)=L(\lambda)
$$

where

$$
L(\lambda)=2 \sum_{n=1}^{\infty}(-1)^{n+1} \exp \left(-2 n^{2} \lambda^{2}\right)
$$

and it was shown by Smirnov for the two sample case that

$$
\text { Limit } P\left(D_{n m} \geq \lambda / \sqrt{N}\right)=L(\lambda)
$$

where

$$
\mathrm{N}=\mathrm{nm} /(\mathrm{n}+\mathrm{m}) .
$$

Given D_{nm}, confidence limits can be constructed within which either sample distribution can be expected to lie with a confidence level of 1 - α. From the distribution of $D_{n m}$, we have that

$$
P\left(D_{n m}>d_{n \alpha}\right)=\alpha
$$

for all X where $d_{n \alpha}$ for five values of α are listed in Table X and the asymptotic relation for $d_{n \alpha}$ is λ / \sqrt{n}. It follows from this relation that

$$
P\left(D_{n m} \leq d_{n \alpha}\right)=1-\alpha
$$

and from the definition of $D_{n m}$, it also follows that

$$
P\left[S_{n}(x)-d_{n \alpha} \leq F_{m}(x) \leq S_{n}(x)+d_{n \alpha}\right]=1-\alpha
$$

and

$$
P\left[F_{m}(x)-d_{n \alpha} \leq S_{n}(x) \leq F_{m}(x)+d_{n \alpha}\right]=1-\alpha
$$

When comparing two sample distributions, $d_{n \alpha}$, the last three equations become the confidence statements, and the confidence band of $\pm d_{n \alpha}$ is expected to bracket the entire distribution of S_{n} or F_{m} at a confidence level of $1-\alpha$.

TABLE X
VALUES OF $d_{n \alpha}$ SUCH THAT $P\left(D_{n m}>d_{n \alpha}\right)=\alpha$

n	α				
	0.20	0.15	0.10	0.05	0.01
1	0.900	0.925	0.950	0.975	0.995
2	0.684	0.726	0.776	0.842	0.829
3	0.565	0.597	0.642	0.708	0.829
4	0.494	0.525	0.564	0.624	0.734
5	0.446	0.474	0.510	0.563	0.669
6	0.410	0.436	0.470	0.521	0.618
7	0.381	0.405	0.438	0.486	0.577
8	0.358	0.381	0.411	0.457	0.543^{\prime}
9	0.339	0.360	0.388	0.432	0.514
10	0.322	0.342	0.368	0.409	0.486
11	0.307	0.326	0.352	0.391	0.468
12	0.295	0.313	0.338	0.375	0.450
13	0.284	0.302	0.325	0.361	0.433
14	0.274	0.292	0.314	0.349	0.418
25	0.266	0.283	0.304	0.338	0.404
16	0.258	0.274	0.295	0.328	0.392
17	0.250	0.266	0.286	0.318	0.381
18	0.244	0.259	0.278	0.309	0.371
19	0.237	0.252	0.272	0.301	0.363
20	0.231	0.246	0.264	0.294	0.352
25	0.21	0.22	0.24	0.26	0.32
30	0.19	0.20	0.22	0.24	0.29
35	0.18	0.19	0.21	0.23	0.27
over 35	$1.07 / \sqrt{n}$	$1.14 / \sqrt{n}$	$1.22 / \sqrt{n}$	1.36/rn	$1.63 / \sqrt{n}$

The distribution of a test statistic, when the null hypothesis is true, is usually continuous for classical tests and discrete for distribution free tests. This means one may choose any significance level one wishes for parametric distributions; where as when employing distribution free tests, this is not the case. Either one of the discrete cumulative probabilities of the test statistic must be accepted as the significance level or a significance level must be chosen which is not one of the discretes. If the significance level is not one of the discrete levels of the $C P$, then a number, the significance level, has been chosen which the test statistic cannot assume and the test will be applied inexactly.

Numerical Procedures

One method for comparing the statistics between two target classes such as those listed in Table XI is to perform the two-sample KolmogorovSmirnov test on computed discriminants. A Fortran Program was written to perform this test on eight sets of discriminants computed in power (4 discriminants per set) for selected targets. The input to the program consists of special files (HD XX) containing two header cards plus the filter
 target files are listed in Appendix A of this report. The S and V files were preliminary files used in preparing the H files. A list of target classes tested with this program is given in Table XI; the corresponding $H D$ file number which appears will serve as a key for identifying specific data sets being compared. The discriminants employed in the program are listed in Section IV as generalized discriminants for $N=1$ and $N=2$.

TABLE XI
FILE NUMBERS INDICATING TARGET GROUPS CONSIDERED FOR THE KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

FILE No.	TARGETS	HOP	TARGET GROUPS by file No.
HD 1	Tanks	-	H5TANK + H4TANKI
** 2	Trucks	-	H5TR251 + H4TR251
3	Tactical Vehicles	-	HSTACTI + HC,IACTI
4	Sand from Two Different Scenes	-	H5SANDI + H4SANDI
5	Tanks	ON	H4TAiVK1 + H6TANK1
++6	Trucks	ON	H4TR251 + H6TR251
7	Tanks	ON	H4TANKI + V7TANK1
8	Trucks	ON	H4TR251 + V7TRUCK
9	Mobile Homes from two Scenes	ON	H2MH1 + H1MH1
10	Mobile Homes from two Scenes	-	$\mathrm{H} 2 \mathrm{MHI}+\mathrm{H} 3 \mathrm{MHI}$
**11	Bridges from two scenes	ON	H2BRIDG + HIBRIDG
**12	Bridges from two scenes	ON	H2BRIDG + H3BRIDG
13	Tanks and River Trees Sample size 13	ON	H4TANK1 + H2TREE1
14	Tanks and River Trees Sample size 25	ON	H4TANKI + H2TREE1
++15	Tanks and River Trees Sample size 50	ON	H4TANK1 + H2TREE 1
**16	Trucks and River Trees Sample size 12	ON	H4TR251 + H2TREE1
**17	Trucks and Trees Sample size 24	ON	H4TR251 + H2TREET
** Not Processed			
++ Eigen Value Comparison Appears in this Report			

TABLE XI (CONTINUED)

$\begin{aligned} & \text { FILE } \\ & \text { Ho. } \end{aligned}$	TARGETS	HOP	TARGET GROUPS by File No.
** 18	Trucks and River Trees Sample size 50	ON	H4TR251 + H2TREE1
HD 19	Tanks and River Trees Sample size 12	OFF	H5TANK1 + H3TREE3
20	Tanks and River Trees Sample size 24	OFF	H5TANK1 + H3TREE3
++21	Tanks and River Trees Sample size 50	OFF	H5TANK1 + H3TREE3
22	River Trees from two Scenes	-	P2TREE + P3TREE 1
23	Tanks and Mobile Homes	OiN	H4TANK1 + H2MH1
++24	Tanks and Bridges	ON	H4TANKI + H2BRIDG
25	Tanks and Unsorted River Trees	ON	H4TANK1 + H2TREE4
++26	Tanks and Bridges	OFF	H5TANK + H3BRIDG
** 27	Trucks and Mobile Homes	ON	H4TR251 + H2MH1
** 28	Trucks and Bridges	ON	H4TR251 + H2BRIDG
** 29	Trucks and Unsorted River Trees	ON	H4TR251 + H2TREE4
++30	Tanks and Mobile Homes	OFF	H5TANK + H3MH1
++31	Tanks and Mobile Homes	ON	H4TANKI + H2MHI
32	Tanks and Grass	ON	H4TANK1 + H2GRAS3
++33	Tanks and Grass	OFF	H5TANK + H3GRAS3
++ 34	Tanks and Grass	OFF	H5TANK + H3GRAS2
** 35	Two groups of Sand Sample Size 100	OFF	S5SANDI + S5SANDI Two groups of 100
++36	Two groups of Sand Sample Size 50	OFF	First group of 100 from HD 35
37	Two groups of Sand Sample Size 25	OFF	From first group of 50 from HD 36
38	River Trees and River Trees Sample Size 100	OFF	Two groups first 200 Samples from P300101
** Not Processed			
$++E i g \epsilon_{p}$	or Comparison in this Report		

table xi (CONTINUED)

File No.	TARGETS	HOP	TARGET GROUPS by File No.
HD 39	River Trees and River Trees Sample Size 50	OFF	Two groups from HD 38 first group
40	River Trees and River Trees Sample Size 25	OFF	Two groups from HD 39 first group
41	Two groups of Tanks Sample Size 25	OFF	H5 Tank divided into two groups
42	Two groups of Tanks Sample Size 12	OFF	First group from HD41 divided into two groups
43	Two groups of Trucks Sample Size 25	OFF	H5 TR251 divided irito two groups
44	Two groups of Trucks Sample Size 12	OFF	First group of HD43 divided into two groups
45	Two halves of a Fruit Orchard	ON	V21A102 + V21B102
46	Weeds and Mowed Grass	OFF	$V 300202+V 300201$
47	Railroad Bridge and Highway Bridge	OFF	$\mathrm{H} 3 \mathrm{RRB1} 1+\mathrm{H} 3 \mathrm{HWB1}$
48	Mobile Homes and Bridges	0FF	H3MH1 + H3BRIDG
49	Mobile Homes and River Trees	OFF	$\mathrm{H} 37 \mathrm{HI}+\mathrm{H} 3$ TREE3
50	Weed Field and River Trees	OFF	V300202 + P300101
51	Orchard and River Trees	-	V21A102 + P300101
52	Sand and Weeds	OFF	S5SAND + V300202
53	$\begin{aligned} & \text { Tactical Vehicles (two } \\ & \text { groups) Sample size } 36 \end{aligned}$	OFF	From H5TACT1
54	```Tactical Vehicles (two groups) Sample size 18```	OFF	From HD 53
++55	Tactical Vehicles and Natural features	ON	H2NAT + H4TACT2
++56	Tactical Vehicles and Natural features	OFF	H3NAT + H5TACT2
++ Eigen Vector Comparison Appears in this Report			

TABLE XI (CONTINUED)

File No.	TARGETS	HOP	TARGET GROUPS by File No.
HD 57++	Tactical Vehicles and Clutter	ON	H2CLUT + H4TACT2
++58	Tactical Vehicles and Clutter	OFF	H3CLUT + H5TACT2
59	Tanks and Clutter	ON	H2CLUT + H4TANK1
60	Tanks and Clutter	OFF	H3CLUT + H5TANKI
61	Tanks and Natural Features	OFF	H3NAT + H5TANKI
62	Tanks and Natural Features	ON	H2NAT + H4TANK
63	Tactical Vehicles and Trees	ON	H4TACT2 + H2TREE3
64	Tactical Vehicles and Trees	OFF	H5TACT2 + H3TREE3
65	Tactical Vehicles and Desert Sand	ON	H4TACT2 + H4SANDI
66	Tactical Vehicles and Desert Sand	OFF	H5TACT2 + H5SAND1
67			
68			
69			
70	Tactical Vehicles* and Natural Features	OFF	P5TACT1 + H3NAT2
71	Tactical Vehicles* and Clutter	OFF	P5TACTI + H3CLUT
72	```Tactical Vehicles* and Desert Sand```	OFF	P5TACTI + H5SANDI
** 73	```Tactical Vehicles* and Desert Sand*```	OFF	P5TACTI + PT5SAND
74	Tanks* and Tanks*	-	P5TANK1 + P4TANK
75	Tanks* and Desert Sand	OFF	P5TANK1 + H5SAND1
76	Tactical Vehicles* and Natural Features	ON	P4TACTI + H2NAT
77	```Tactical Vehicles* and Clutter```	ON	P4TACTI + H2CLUT
	e pixel per target rocessed Vector Comparison ears in this report		

TABLE XI (CONTINUED)

File No.	TARGETS	HOP	TARGET GROUr'S by File No.
** 78	Tactical Vehicles* and Sand	ON	P4TACTI + H4SANDI
79	Tanks* and River Trees	OFF	P5TANK + P3T101
80	Tanks* and River Trees	ON	P4TANK + P2TREE 1
81	Tanks* and Desert Sand	ON	P4TANK + H4SAND 1
82	Tanks* and River Trees	OFF	P5TANK1 + P3TREE2
83	Tactical Vehicles ${ }^{+}$and Natural Features	OFF	H5TACT2 + H3NAT2
84	Tactical Vehicles ${ }^{+}$and Clutter	OFF	H5TACT2 + H3CLUT2
85	Tanks+ and Clutter	OFF	H5TANK + H3CLUT2
86	Mobile Homes and Bridges+	OFF	H3MH1 + H3BRIDG
87	Tanks ${ }^{+}$and Bridges ${ }^{+}$	OFF	H5TANK + H3BRIDG
88	Railroad Bridge and Highway Bridge ${ }^{+}$	OFF	H3RRB1 + H3HWB1
89	Tanks ${ }^{+}$and Natural Features	OFF	H5TANK + H3NAT2
90	Tanks* and Cranes*	OFF	P5TANK1 + P5CRAN1
$\begin{aligned} & * \\ & + \\ & * \end{aligned}$	Pixel per Target te Pixels Removed from File cessed		

The program uses a sort subroutine and a nonparametric statistic subroutine from the IMSL (International Mathematical and Statistics Libraries, Inc.) Library 3 for Cyber $70 / 170$ class and an Eigen value subroutine from the IBM Library.

A two tailed test is then performed to compute the probability of making an error in rejecting the null hypothesis, H_{o}, that the two target classes come from the same population versus an alternate hypothesis that the two target classes do not come from the same population. This probability is the probability that the two target sets came from the same population.

Results of the test for four sets of discriminants are listed in Tables XIV to XIX. The sets derived from the generalized set of discriminants are labeled variant set 1 and variant set 2 which corresponds to $\mathrm{N}=1$ and 2 for the generalized discriminants. Results of the test appear in the columns labeled $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ and $\mathrm{Zl}, \mathrm{Z2}, \mathrm{Z3}, \mathrm{Z} 4$ which are the discriminant functions appearing on p. 48.

Tests were performed on both the unnormalized and normalized sets thus resulting in the four sets of discriminants. Probabilities listed in the tables have units of percent and are rounded to the nearest integer.

The Eigen values and Eigen vectors were computed for each of the four sets of discriminants and the resulting Eigen vectors were used to transform each set of discriminants to a new set which has the property that the covariances for each set vanishes. Since the covariances are zero, we are assured that discriminants within each set transferred are uncorrelated.

COMPARISON OF COVARIANCE MATRICES BEFORE AND AFTER APPLICATION OF THE EIGEN TRANSFORMATION FOR VARIANT SET I

UNNORMALIZED DISCRIMINANTS

COVARIANCE	MATRIX 1				
1	.131E+13	. $354 \mathrm{E}+12$.662E+12	. $548 \mathrm{~F}+12$	Clutter
2	. $354 \mathrm{E}+12$. $143 \mathrm{E}+12$	- $237 \mathrm{~F}+12$	-529F* 12	Clutter
13	. $662 \mathrm{E}+12$. $237 E+12$	- $432 \mathrm{E}+12$		
4	- $548 \mathrm{E}+12$	-229E+12	. $351 \mathrm{E}+12$. $38 / F+12$	
COVARIANCE	MATRIX 2				
21	- $210 E+12$	-133E+12	- $198 E+12$	- 266F+12	Tanks
22	-133E+12	.975E+11	-131E+12	-197F+12	
23	-198E+12	-131E+12	-199E+12	-258F-12	
24	- $266 \mathrm{E}+12$	-197E+12	. $258 \mathrm{E}+12$	-407F+12	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS
こOVARIANCE MATRIX 1

1	1	$.206 E+13$	$-.156 E+03$	$-.420 E+01$	$.929 F-0 ̃ 2$
1	2	$-.156 E+03$	$.169 E+12$	$-.142 E+06$	$-.250 F-002$
1	3	$-.470 E+01$	$-.142 E+06$	$.456 E+11$	$.134 F+0.3$
1	4	$.999 E-02$	$-.250 E-02$	$.134 E+03$	$.146 F+09$

$\underset{2}{\text { COVARIANCE }}$	$\begin{aligned} & \text { MATRIX } \\ & .871 E+12 \end{aligned}$	-.166E-02	-. $404 E+00$	-.386F+n4
22	-.166E-02	. $349 \mathrm{E}+11$	-. 1 168E+04	. $169 \mathrm{~F}+0$
23	-. 404 4 E+00	-. $168 \mathrm{E}+04$. $665 \mathrm{E}+10$	-.411F-54
24	-. $386 \mathrm{E}+04$.169E+00	-. 411 E-04	. $684 \mathrm{~F}+09$

NORMALIZED DISCRIMINANTS

COVARIANCE	MATRIX 1				
11	. $443 \mathrm{E}+00$	-158E+00	. $156 E+00$.275F.00	Clutter
12	. $158 \mathrm{E}+00$.613E-01	. $579 \mathrm{E}-01$	$.102 F+0^{0}$	
13	$.156 E+00$. 579E-01	. $165 \mathrm{E}+60$	-. $483 \mathrm{~F}-02$	
14	. $275 E+00$.102E400	-.483E-02	$.2825+70$	
COVARIANCE	MATRIX 2				
21	. $257 \mathrm{E}+00$	-832E-01	. $119 \mathrm{E}+00$. $136 F+0_{0}$	Tanks
22	.8325-01	-327E-01	. $340 \mathrm{E}-01$. 567 F -íl	
23	-119E+00	. 34 OE-01	-135E+00	-. $135 \mathrm{~F}-01$	
24	-136E+00	-567E-01	-. $135 \mathrm{E}-01$	-163F+00	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS

covariance	$\begin{aligned} & \text { MATRIX } 1 \\ & .736 E+00 \end{aligned}$	582E-14	8		Clutter
12	-. $582 \mathrm{~F}-14$	$.205 \mathrm{E}+00$	-276E-11	-. 478 F-08	
13	-.211E-08	.276E-11	.727E-02	.298F-16	
14	-. $710 \mathrm{E}-08$	-. $478 \mathrm{~F}-08$. 298E-16	-192F-0゙2	
COVARIANCE	MATPIX 2				
$\begin{array}{ll}2 & 1 \\ 2 & \end{array}$	$\begin{aligned} & .417 E+00 \\ & .339 E-14 \end{aligned}$	$.339 E-14$ $.162 E+00$	$\begin{array}{r} =315 E-08 \\ =.123 E-14 \end{array}$	$\begin{aligned} & =.605+=10 \\ & -.663 F=07 \end{aligned}$	Tanks
$\begin{array}{ll}2 & 2 \\ 2\end{array}$	-.315E-08	-.123E-14	. 74 OE-02	-.651F-13	
24	-. $665 \mathrm{E}-10$	-. 663E-07	-.651E-13	-108F-02	

TABLE XIII
COMPARISON OF COVARIANCE MATRICES BEFORE AND AFTER APPLICATION OF THE EIGEN TRANSFORMATION TO THE UNNORMALIZED AND NORMALIZED SET OF OISCRIMINANTS, DISCRIMINANT SET 2

UNNORMALIZED DISCRIMINANTS

COVARIANCE	MATRIX $.1315+13$.431E+12	.743E+12	. $644 F+12$	Clutter
2	.431E.12	. $201 \mathrm{E}+12$. $337 \mathrm{E}+12$. $304 \mathrm{~F}+12$	
13	. $743 \mathrm{E}+12$	$.337 E+12$. $596 \mathrm{E}+12$. $482 \mathrm{~F}+12$	
1	. $644 \mathrm{E}+12$. $304 \mathrm{E}+12$. $482 E+12$.487F. 12	
$\underset{2}{\operatorname{COVARIANCE}}$	$\begin{aligned} & \text { MATRIX } 2 \\ & .210 E+12 \end{aligned}$	$.165 E+12$. $218 \mathrm{E}+12$. 312F+12	Tanks
22	-165E+12	. $145 \mathrm{E}+12$. $186 E+12$. $279 \mathrm{~F}+12$	
23	. $218 E+12$	-186E+12	. $246 E+12$. $349 F+12$	
$2 \quad 4$. $312 \mathrm{~L}+12$.279E+12	. $349 \mathrm{E}+12$. $542 \mathrm{~F}+12$	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS

COVARIANCE	$\begin{aligned} & \text { MATRIX } \\ & .234 E+13 \end{aligned}$.161F-01	-.771E-01	.251F+75
12	. 161 E-01	. $196 \mathrm{E}+12$	-. $396 E+04$	-. $500 \mathrm{~F}+00$
3	-.771E-01	-.396E+04	. 559 E -11	. $343 \mathrm{~F} \cdot \mathrm{ij} 6$
14	.251E+05	$-.500 E+00$. $343 \mathrm{E}+06$	-176F- ${ }^{\text {a }}$ 8
COVARIANCE	MATRIX 2			
21	. $111 E+13$	-957E+05	.619E403	-.442F+i3
22	. 957E+05	.251E+11	. $126 E+64$	-. 131F+00
23	.619E+03	. $126 E+04$. $850 \mathrm{E}+10$	-.390F-0゙3
24	-. $442 E+03$	-.131E+00	-.390E-03	.185F+ ${ }^{\text {n }} 8$

NORMALIZED DISCRIMINANTS

COVARIANCE	MATRIX 1				
11	.443E+00	.187E 00	. 252E+00	. $348 \mathrm{~F}+00$	Clutter
12	-. P ($\mathrm{E}+00$.811E-01	. $110 \mathrm{E}+00$.150F+00	
13	$.252 E+00$	$.110 \mathrm{E}+00$	- $232 \mathrm{E}+00$.129F+00	
14	$.348 \mathrm{E}+00$	-150E+00	-12¢E+00	. $344 F+00$	
$\underset{2}{\operatorname{COVARIANCE}}$	$\begin{aligned} & \text { MATRIX } \\ & .257 E+00 \end{aligned}$. $103 \mathrm{E}+00$. $163 \mathrm{E}+00$	-172F-00	Tanks
$2 \quad 2$. $103 \mathrm{E}+00$.435E-01	.657E-Ul	. 757 F - ${ }^{\text {I }}$	
23	. $163 \mathrm{E}+00$.657E-01	$.168 E+00$.470F-01	
24	. $172 \mathrm{E}+00$.757E-01	$.470 \mathrm{E}-\mathrm{Ul}$	-200F-00	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS

COVARIANCE	$\begin{aligned} & \text { MATRIX } \quad 1 \\ & .946 E+00 \end{aligned}$.) 88E-14	-.315E-14	-.236F-11	Clutter
2	-188E-14	.149E+00	. $344 \mathrm{E}-11$. 133F-08	
13	-. 315 E-14	. $344 \mathrm{E}-11$. $548 \mathrm{E}-02$	-447F-15	
4	-. 236 E-11	-133E-OB	.447E-15	-115F-n3	
COVARIANCE	$\begin{aligned} & \text { MATRIX } \\ & .5 \geqslant 5 E+00 \end{aligned}$	-.133E-11	. 305E-13	.198F-14	Tanks
22	-. $133 \mathrm{E}-11$	-136E+00	. $744 \mathrm{E}-08$	-.187F-15	
23	. 305E-13	. $748 \mathrm{E}-08$. $507 \mathrm{E}-02$	-.101F-10	
24	.198E-14	-.187E-15	-.101E-10	.208F-03	

TABLE XIV
PROBABILITY THAT TIfF: TWO TARGET SETS CAME FROM TILE SAME POPULATION
Table entries are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov
two sample test for manmade structures vs other manmade structures, processed without Eigen transforms.

* HOP was on for one scene and off for the other.
ax GTgVI.
PROBABILITY THat the two target sets came from the same population
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION
Table entries are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov processed without Eigen transforms.

Target Groups	$\begin{aligned} & \text { HD } \\ & \text { File } \end{aligned}$	HOP	Variant Set 1															
			Power				Normalized				Power				Normalized			
			X1	X 2	X3	X4	21	22	23	24	X1.	X 2	X3	X4	2.1	Z2	Z3	24
Tanks From Scene 4 \& 6	5	On	71	81	75	83	82	17	56	95	71	82	56	75	82	63	79	56
Trucks From Scene 4 \& 6	6	On	0	01	02	06	40	61	56	73	0	01	0	06	40	54	55	86
Tanks From Scene 4 \& 7	7	On	06	12	27	19	3 J	11	88	42	07	12	27	18	30	24	76	07
Trucks From Scene 4 \& 7	8	On	0	23	21	06	16	06	22	55	0	24	30	10	16	16	11	15
Tanks \& Trees Scenes 4 \& 2	13	On	0	13	30	30	05	13	30	30	0	13	30	13	05	13	05	13
Tanks \& Trees Scenes 4 \& 2	14	On	0	03	01	03	65	64	67	90	0	01	01	03	66	66	97	68
Tanks \& Trees	15	On	0	0	0	0	31	27	29	31	0	0	0	0	31	47	55	29
Tanks \& Mobile Homes	23	On	0	0	0	0	45	45	06	74	0	0	0	0	45	45	23	65
Tanks \& Bridges	24	On	0	0	0	0	75.	91	20	16	0	0	0	0	75	91	48	56
Tactical Vehicles Natural Featires	55	On	0	0	0	0	74	40	36	54	0	0	0	0	74	68	79	69

(panu!zuos) : $A X$ GTgVL
probability that the two target sets came from the same population
Table entries are the result of a nonparamstric test between two target cla ses employing the Kolmogorov-Smirnov cal vehicles and tanks vs other features with frequency hop on,

			Variant Set 1								Variant Set 2							
			Power				Normalized				Power				Normalized			
			X1	X2	X3	X4	Z1	Z2	23	24	X1	X 2	X3	X4	21	Z2	23	74
Tactical Vehicles Clutter	57	On	39	57	87	84	56	53	04	29	39	37	82	76	56	48	07	48
Tanks Clutter	59	On	19	59	75	48	87	71	06	27	19	71	84	78	87	71	25	47
Tanks Natural Features	62	On	0	02	06	07	43	14	32	37	0	04	34	04	43	25	38	17
Tanks Sand	81	On	0	0	0	0	26	24	55	72	0	0	0	0	26	19	87	40

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop off,

(panu!fuos) I!^x JTGVL
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov
two-sample test for tactical vehicles and tanks vs other features with frequency hop off,

Target Groups	$\begin{aligned} & \text { HD } \\ & \text { File } \end{aligned}$	HOP	Variant Set 1								Variant Set 2							
			Power				Normalized				Power				Normalized			
			X1	X2	X3	X4	21	Z2	Z3	Z4	X1	X2	X3	X4	21	Z2	23	Z4
Tanks and Natural Features	61	Off	0	0	03	0	02	04	21	0	0	0	05	0	02	02	21	01
Tactical Vehicles Trees	64	Off	0	0	0	0	90	65	20	19	0	0	0	0	90	91	45	52
Tactical Vehicles Sand	66	Off	0	0	0	0	16	53	20	0	0	0	0	0	16	23	34	06
Tanks and Grass	32	Off	0	0	0	0	52	37	41	56	0	0	0	0	52	33	75	33

TABLE XVIII
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov for tacessed without Eigen Transforms.

Target Groups	HD	HOP	Variant Set 1								Variant Set 2							
			Power				Normalized				Power				Normalized			
			X1	X 2	X3	X4	Z1	22	23	24	X1	X 2	X3	X4	21	22	23	24
Tactical Vehicles*: Natural Features	70	Off	0	0	0	0	53	27	13	14	0	0	01	0	53	29	19	45
Tactical Vehicles* and Clutter	71	Off	0	0	0	0	0	0	24	0	0	0	0	0	0	0	03	0
Tactical Vehicles* and Desert Sand	72	Off	0	42	14	57	34	37	16	02	0	32	16	30	34	34	33	26
Tanks* and Tanks:	74	--	03	09	03	08	87	96	49	75	03	09	03	09	87	80	54	83
Tactical Vehicles: \& Natural Features	76	On	0	02	06	02	22	40	-9	46	0	02	07	03	22	43	88	63
Tactical Vehicles: Clutter	77	On	49	55	23	58	25	27	1.4	56	49	4	43	55	25	27	26	90
Tanks: and River Trees	79	Off	87	49	58	47	92	62	97	27	d.	\cdots	5%	55	94	99	87	58
Tanks* and River Trees	80	On	0	0	0	0	05	12	37	≥ 1	0	.	\therefore	01	05	14	32	07
$\begin{aligned} & \text { Tanks\% } \\ & \text { \& Desert Sand } \end{aligned}$	81	On	0	0	0	0	26	24	55	73	0	J	0	0	26	19	87	40

TABLE XVIII (continued)
probability that the two target sets came from the same population
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed without Eigen transforms.

TABLE XIX
PROBABILITY THAT TWO TARGET SETS CAME FROM THE SAME POPULATION
The figures are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for natural features vs other natural features.

The Kolmogorov-Smirnov test was then repeated performing the two sample test on the transformed discriminants. Results of the test on these discriminants are given in Tables XX to XXIV.

The covariance matrix was generated for each set of four discriminants before and after the transformation with the Eigen vectors. By examining the Eigen values, it was possible to determine that the rank of the covariance matrix was at least four. If the rank was less than four, the Eigen vectors were discarded. A sample listing of the covariance matrix for clutter and tanks is shown in Tables XII and XIII for four sets of discriminants as indicated. The listings are for the matrices computed before and after the application of the Eigen transformation. Notice that after the Eigen transformation, the off diagonal elements in the matrices are small compared with the diagonal elements. By making this comparison for each set of Eigen vectors computed, we are assured that the Eigen vectors have been properly computed and are correct for the given set of discriminants.
TABLE XX

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for various targets with frequency hop off processed with Eigen transforms.

Target Groups	$\begin{aligned} & \text { nd } \\ & \text { Fite } \end{aligned}$	HOP	Variant Set 1								Variant Set 2							
			X1 power				Normalized				Power				Normalized			
			X1	X2	X3	X4	21	22	Z3	24	X1	X2	X3	X4	21	Z2	23	24
Tactical vehicles \& Natural Features	83	Off	0	09	00	37	09	0	0	21	01	02	0	21	12	0	77	17
ractical Vehicles \& Clutter	84	Off	0	0	0	0	0	0	29	0	0	0	03	0	0	0	0	0
Tanks \& Cliatter	85	Off	0	0	0	0	0	0	40	0	0	0	25	0	0	17	06	0
Mobile Homes \& Bridges	87	Off	01	0	20	0	0	01	01	0	01	01	0	0	0	27	81	0
Mobile flomes \& Bridges	86	Off	0	0	0	0	88	0	0	0	0	0	0	0	94	0	0	05
Railroad Bridge \& Highway Bridge	88	Off	0	59	56	16	0	0	0	59	0	34	16	31	0	0	0	42
Tanks and Natural Features	89	Off	03	35	10	0	0	0	07	38	03	21	32	09	0	03	08	52

TABLE XXI

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Sminov processed with Eigen transforms.

TABLE XXI (continued)
probability that the two target sets came from the same population
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov tactical vehicles and tanks vs other features with frequency hop on,

Target Groups	$\begin{aligned} & \text { HD } \\ & \text { File } \end{aligned}$	Hop	Variant Set 1											Variant Set 2				
			Power				Normalized				Power				Nornalize			
			X1	X 2	$\times 3$	X4	21	22	23	24	X1	X2	X3	X 4				24
Tactical Vehicles Natural Features	55	On	0	0	03	94	74	41	¢1	0	0	0	50	0	86	57	0	15
Tactical Vehicles Clatter	57	On	71	26	01	80	36	40	01	0	90	48	34	67	36	88	0	03
Tanks Clutter	59	On	73	0	01	30	87	58	0	24	71	0	01	50	71	81	22	0
Tanks Natural Features	62	On	0	0	0	12	24	02	15	0	03	0	0	0	38	22	08	05
Tanks Sand	81	On	0	19		16	26		53	25	0	31	0	56	19	31	08	00

IIXX G7qVI

Table entries are the result of a nonparametric comparison between two target classes employing the kolmogorov-Smirnov vehicles and tanks vs other features with frequency hop off, processed with Eigen transforms.

TABLE XXII (continued)
PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE two-sample test for tactical vehicles and tanks vs other farget classes employing the Kolmogorov-Smirnov processed with Eigen transforms.

22	23	$Z 4$	$X 1$	$X 2$	X3	X4	Z1	Z2	Z3	Z4

IIIXX G7gVI
probability that the two target sets came from the same popllation
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed with Eigen transforms.

*Single pixel per target
TABLE XXIII (continued)
Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed with Eigen transforms.

Target Groups	$\begin{aligned} & \text { HD } \\ & \text { File } \end{aligned}$	HOP	Variant Set 1 Variant Set															
			X1		er X 3	X4	21	N20	lized	24	X1	$\times 2$	¢ ${ }_{\text {er }}$	X4	21	Norn 22	$\overline{\mathrm{alized}}$	24
Tactical Vehicles \& Trees	63	On	0	0	0	0	60	45	12	0	0	0	0	0	78	15	0	0
Tactical Vehicles \& Desert Sand	65	On	0	04	16	10	20	29	92	29	0	02	0	13	20	52	75	0

תIXX atavist
probability that two target sets came from the same population
The figures are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for natural features vs other natural features

VII. SUMMARY AND CONCLUSIONS

SUMMARY OF RESULTS

Parametric Modeling

Employing the Lognormal Probability Distribution Function as the basis for a classification model, the model was tested with data representing four sample target classes. The model was tested against each data point for severai combinations of the measurement vector.

An example of applying the model to unnormalized power data from four sample target classes when four varlants, mean power, standard deviation, fast variation and slow variation were employed yielded typical results shown in the following table.

TABLE XXY
PERCENTAGES OF CORRECT A: ID IMCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

Class Classifications per Class					
Description	liumber of Samples	Fruit Trees	Mowed Grass	Unmowed Grass/Weeds	Metal Mobile Homes
Fruit Trees	50	68\%	10\%	22\%	0
Mowed Grass Field	49	0	90\%	10\%	0
Unmowed Grass \& : Seed Field	54	2\%	74\%	24\%	0
Metal Mobile Homes	37	0	0	0	100\%

An example when the covariances are included in the model is shown below for a different set of variants and with citrus trees substituted for the mobile homes used in the preceding example. The variants employed in this model were mean power, σ, RMS, and δ.

TABLE XXVI

Use of other variants gave varied results. The model failed when applied to data normalized with respect to the four-look mean power.

However, modification of the model to include the Eigen transformation to form a new set of decorrelated variants yielded results such as those shown in the table below. These results are for the model employing the variants, power mean, average deviation from the mean, slow variation and fast variation.

TABLE XXVII
PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

Class					
Description	Classifications per Class Samples				
	Fruit Trees	Mowed Grass	Citrus Trees	Vineyard	
Fruit Trees	50	90%	0	2%	8%
Mowed Grass Field	49	22%	78%	0	0
Citrus Trees	73	0	0	71%	29%
Vineyard	84	1%	0	0	99%

Nomparametric Modeling

Two-Target Model Using PDF Histograms From Sample Data. This nonparametric model substituted probability densities obtained from a table look up, based upon histograms generated from sample data for parametric curve fits to the histograms of sample data used with the four variant parametric model discussed previously. Variants employed in the model were mean power, deviation from the mean, slow variation and fast variation. Only two target classes at a time were compared by this model. Note that this model includes ties and unclassifiables as well as incorrect classifications as illustrated by the sample set of results in the following table.

TAGLE XXVIII
PERCFITAGSES OF CORPECT AND INCORRECT CLASSIFICATIONS, TIES, AND
UNCLASSIFIABLES FOR EACH PIXEL VERSUS EACH TARGET CLASS

Nearest Neighbor Classifier - Unnormalized Power. The table below presents two examples of the results obtained with the two-target, fourvariant nearest-neighbor model when used with unnormalized power and the variants mean power, deviation from the mean, fast and slow variation. The target classes for these examples were tanks and mobile homes.

FOR EACH PIXEL VERSUS EACH TARGET CLASS

For $k=1$ and Linom:al:25D PCSE

Class		
Description	Namer of Samples	Classifications per Class rants
Ranks	44	$70 ;$

For $K=21$ and UNOFMALIZED PONER

Tanks	44	34%	66%
Mobile Homes	50	28%	72%

Nearest Neighbor Classifier - Normalized Power. The following table presents two examples of the results obtained with the preceding model but with sample data return powers normalized with respect to the sample mean power for each pixel.

TABLE XXX
PERCENTAGES OF CORRECT AMD INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

For $k=1$ and NORYALIZED POIER
Class
Description

$\begin{gathered}\text { Number of } \\ \text { Samples }\end{gathered}$ $\begin{gathered}\text { Classifications } \\ \text { Tanks }\end{gathered} \quad \begin{aligned} & \text { Per Class }\end{aligned}$

Tanks	44	70%	30%
Mobile Homes	50	48%	52%

For $K=21$ and YORMALIZED POMER
Tank: 44 70\% 30\%
Mobile Homes $50 \quad 48: \%$ 52.

Minimum Distance Model - Unnormalized Data. Pattern vectors were taken to be the means and/or medians of a set of discriminants derived from sample data. Eigen transformations of these vectors created a new set of pattern
vectors for each pixel. Means and medians of these transformed vectors were then taken as being characteristic of the target classes. Examples of applying this classifier to tanks and river trees are shown below where the original sample data was in the form of unnormalized power.

TABLE XXX:
PERCE:TAGES OF CORRECT AND CORRECT CLASSIFICATIOnS, TIES, A: 0 U:ICLASSIFIABLES FOR EACH PIXEL VERSUS EACH TARGET CLASS

Minimum Distance Model - Normalized Data. The following table presents examples of results when the preceding model was used with sample data normalized with respect to the pixel mean power.

TABLE XXXII
PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS, TIES, AND
UNCLASSIFIABLE FOR EACH PIXEL VERSUS EACH TARGET CLASS

Comparison of Target Classes via "Relative Match" of Four-Eigen-Vector

Groups. The results of comparing target classes by means of the "Relative Match" (RM) of their Eigen vectors is presented in Table XXXIIT (same as Table IX, page 86).

Kolmogorov-Smirnov Two-Sample Tests. A summary table was made from Tables XIV - XXIV to determine the number of errors made by the KolmogorovSmirnov two-sample test. The criteria for determination that an error has been made is as follows: Let P be the probability that the two target classes came from the same population or computed by the Kolmogorov-Smirnov two sample test, then

1. If $P \geq 80$ and the two target samples are known to be from the same population, no error has been made
2. If $P \geq 80$ and the two target samples are known to be from different populations, an error has been made
3. If $P \leq 20$ and the two target samples are known to be from the same population, an error has been made
4. If $P \leq 20$ and the two target samples are known to be from different population, no error has been made.

Due to sponsor interest, the data pertaining to tactical target vs. clutter or natural terrain discrimination was extracted from the tables and analyzed based on criteria 4 above. The decision rule utilized to determine whether or not the two distributions were dissimilar and hence potentially having discrimination information was as follows:

The two distributions are considered dissimilar if five out of eight variants or features pass test 4 above.

TABLE XXXIII
COMPARISON OF THE FOUR EIGEN VECTORS BETWEEN TARGET CLASSES BASED UPON RM

Based on the stated decision rule, results of the discrimination test as a function of normalized vs. non-normalized, frequency hop on vs. frequency hop off, and features vs. Eigen-transformed features are shown in Table XXXIV.

TABLE XXXIV
CORRECT TARCET DISCRIMINATION BY THE KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

EIGEN TRANSFORMATION
Power
Normalized
OFF
$17 / 20=.85$
$12 / 14=.86$
$17 / 20=.85$
$6 / 14=.3$

NO EIGEN TRANSFORMATION
Power
Normalized
CFF $16 / 20=.8$
$12 / 20=.6$
ON $\quad 11 / 14=.5$
$3 / 14=.21$

In the interpretation of TABLE XXXIV, one must remember that valid conclusions about discriminants (features) based on power cannot be made in these data since the targets and clutter came from different scenes and therefore the power differences are not calibrated. It is valid, however, to draw conclusions on the relative performance of distribution discrimination between Eigen vs. no Eigen transformation and between frequency hop on and frequency hop off assuming, of course, that the differences are statistically significant over the small sample size.

Based on the analysis performed in this study, the look-to-look variation of 4 look data does not provide sufficient information to perform target vs. clutter discrimination. It is believed that the data for performing this analysis was not optimal in that the radar system was undersampled at the display causing "bin straddling" effects. These effects introduced a degree of uncertainty into the analysis; however, it is also believed that sufficient data was analyzed to justify the above conclusion,

On the positive side however, the Kolmogorov-Smirnov test did show that discrimination information based on the look-to-look variation does exist in the data without frequency hop, but does not exist in the data with frequency hop. This test indicates that future research in this area should investigate data without frequency hop; however, it is clear that data with more than 4 samples should be investigated.

APPENDIX A

TABLES OF FOUR-LOOK FILTER MAGNITUDE DATA

This section contains tables of filter magnitude data by file name for selected features appearing in seven DBS scenes. The tables are divided into eight groups. The first seven groups mainly contain target data selected from adjacent pixels; for example, if the radar return from a vehicle appeared to cover more than one resolution element, all values of filter magnitudes above some mean threshold were listed for that vehicle. Samples of grass, sand, and shadows were selected from a region with no attempt to screen the data as to individual pixel location. Target data appearing in the last group have no adjacent data. Only one pixel per vehicle appears in the tables.

Target designations with possible adjacent pixel data contain the prefix H, while those with a single pixel per target contain the prefix P.

The H tables contain nine unlabeled columns. The first four columns of three digits each are filter magnitude data corresponding to DBS maps 1, 2, 3, and 4. The next column contains the sequence number $1,2,3$, or 4 that is used to place the FM data in the proper time sequence. Columns six and seven are pixel coordinates--azimuth line number and range bin number. The eight column contains the four-look mean, computed in power and converted to FM units. The last column gives the number of pixels in the table adjacent to the set of coordinates appearing on that row. The number of adjacent pixels may vary from zero to eight. The number zero, however, does not appear in the column; instead, where there are no adjacent pixels, a flag // is used in place of the zero.

Targets H1GRASI, H2GRAS3, H3GRAS1, and H3GRAS2 are rough grass with weeds from an area close to and just south of Reedley College. File HIGRAS1 had been sorted on the mean FM value, and all mean FM values are less than 100. File HIGRAS3 was sorted on aximuth line number and range bin number. This file has only two mean $F M$ values greater than 99. File H3GRAS1 and H3GRAS2 have been sorted on mean FM values and the largest mean $F M$ value for each file is 99 and 106 , respectively.

Files H1NAT, H2NAT, and H3NAT are natural features from scenes 1, 2, and 3. These files are defined as

$$
\text { H1NAT }=\text { H1GRAS1 }+ \text { H1TREE1 }
$$

$$
\text { H2NAT }=\text { H2GRAS } 3+\text { H2TREE } 3
$$

$$
\text { H3NAT }=\text { H3GRAS } 2+\text { H3TREE } 3
$$

Tall river bank trees appear in files H1TREEl, H2TREEl, H2TREE3, H3TREE1, and H3TREE3. The trees in target group H2TREE1 have a higher average FM value than those in group HITREE3. The average FM value for group H1TREE1 \leq 122. Group H2TREE2 contains no adjacent pixels and appears to be from a different region along the river bank than H3TREEl.

The tree groups H1TREE2, H2TREE2, and H3TREE2 contain young fruit trees from an area between the Kings River and the town of Reedley.

Targets H1RR1, H2RR1, and H3RR1 are from the Atchison, Topeka, and Santa Fe railroad bridge and targets H1HWB1, H2, HWB1, and H3HWB1 are from a six-lane highway bridge over the Kings River. The BRIDG files are defined as

$$
\begin{aligned}
& \text { H1BRIDG }=\mathrm{H} 1 \text { RRB1 }+1 \mathrm{HWB} 1 \\
& \text { H2BRIDG }=\mathrm{H} 2 \mathrm{RRB} 1+\mathrm{H} 2 \mathrm{HWB} 1 \\
& \text { H3BRIDG }=\mathrm{H} 3 \mathrm{RRB} 1+\mathrm{H} 3 \mathrm{HWB} 1
\end{aligned}
$$

Targets H1MH1, H2MH2, and H3MH3 are from a mobile home park along the Kings River.

The man-made clutter targets are defined as

$$
\begin{aligned}
& \text { H1CLUT }=\mathrm{H} 1 \mathrm{BRIDG}+\mathrm{H} 1 \mathrm{MHI} \\
& \mathrm{H} 2 \mathrm{CLUT}=\mathrm{H} 1 \mathrm{BRIDG}+\mathrm{H} 2 \mathrm{MH} 1 \\
& \text { H3CLUT }=\mathrm{H} 3 \mathrm{BRIDG}+\mathrm{H} 3 \mathrm{MH1}
\end{aligned}
$$

and file H3CLUT2 contains very even row from file H3CLUT. Files of the type H--TANK1, P--TANK, H--TR251 and P--TR251 contain the M48 tank and M35 $2 \frac{1}{2}$ ton cargo gruck. Target files H4TACT1 and H5TACT1 (other tactical vehicle files) contain jeeps, van, and truck mounted cranes. File H4TACT2, H5TACT2, and P5TACT are considered as "tactical vehicle files" since they contain pixels from all tactical vehicles in the NEBO array. H5TACT3 contains every odd row from H5TACT2, and H6TACT1 is given by

$$
\text { H6TACTl }=\text { H6TANK1 }+ \text { H6TR251 }
$$

P5TACT1 contains all tactical vehicles except jeeps. Shadows are contained in H4DARK1 and H5DARK. H5SAND1 and H5SAND2 are two samples of sand. H5SAND1 is contained in file H5SAND2 and is approximately half the size of H5SAND2. File P3T101 contains river bank trees with no adjacent pixels listed. Furthermore, only one pixel per tree appears in the file.

Reedley, CA:
Scenc 1, hop on
TARGET CLASS AND CORRESPONDING TABLE NUMBER

HlGRASl	TABLE 1
HINAT	TABLE 2
HlTREE1	TABLE 3
HlTREE2	TABLE 4
HlRRBl	TABLE 5
HlHWBl	TABLE 6
H1BRIDG	TABLE 7
HlMHl	TABLE 8
HlCLUT	TABLE 9

 MNMNNホMN\&mNNMNNNNNmホN

$\underset{\sim}{M} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{\infty}$	
のunmo	
	くーコーNNNNーONm
いのーいつ	，
トヘにーに	
$0-N$	ーNーツNヘNONNーー
	いへo○－Nounnun

m
되
$\stackrel{\square}{4}$
H Reedley，CA，hop on

$$
\begin{aligned}
& \text { Four look SAR filter magnitude data, large river trees, } \\
& \text { Scene } 1 \text {. }
\end{aligned}
$$

76	56	86	84	3	126	367	H0	11	134 113	133 75	$\begin{aligned} & 137 \\ & 143 \end{aligned}$	132 137	3 2	70 69	$\begin{aligned} & 366 \\ & 364 \end{aligned}$	$\begin{aligned} & 134 \\ & 133 \end{aligned}$
119	127	119	114	4	81	363	121	3	155	153	166	169	2	69	365	163
110	115	131	128	4	81	364	124	3	163	143	161	157	2	69	366	158
116	131	113	128	4	80	363	124	5	114	118	109	115	2	69	367	114
105	101	134	143	4	80	364	137	6	114	56	128	126	2	68	364	121
100	$11 ?$	103	131	3	79	363	118	5								
129	115	132	154	3	79	364	141	7	129	151	157	167	2	68	365	157
10 H	49	91	119	3	79	365	109	5	153	154	152	144	2	68	366	151
106	45	117	116	3	78	363	111	5	91	127	56	112	$?$	68	367	111
151	136	129	149	3	78	364	144	8	$13 R$	127	107	164	1	67	365	150
130	118	142	147	3	78	365	139	6	146	139	99	150	1	67	366	143
9 9	96	91	112	3	78	366	10%	3	145	99	125	159	1	66	365	147
113	63	120	140	2	77	367	127	5	149	139	136	145	1	66	366	143
155	145	154	162	2	77	364	155	8	106	97	122	114	1	66	367	113
140	143	155	159	2	77	365	$15 ?$	6								113
109	90	114	126	$?$	76	363	116	4								
144	155	148	163	2	76	364	155	7								
140	167	156	158	2	76	365	156	6								
111	154	115	145	1	75	364	143	6								
142	167	141	144	1	75	365	151	7								
60	105	127	96	1	75	366	113	4								
133	144	136	109	1	74	364	136	5								
127	150	117	143	1	74	365	140	8								
110	111	121	127	1	74	366	119	5								
13 H	134	104	95	4	73	364	129	5								
151	163	126	129	4	73	365	151	8								
107	118	118	127	4	73	366	120	6								
125	141	127	91	4	72	364	13%	5								
139	172	128	145	4	72	365	157	8								
96	124	86	146	4	72	366	13 ?	7								
R6	118	104	115	4	72	367	111	4								
${ }^{83}$	131	126	95	3	71	364	121									
126	143	147	132	3	71	365	140	8								
138	119	94	118	3	71	366	126	7								
109	99	99	118	3	71	367	109	4								
67	128	142	105	3	70	364	129	5								
141	140	141	130	3	70	365	139	B								

\qquad
N－NーMーNか－ปNNNーNさり

 mмmmmmmmmmmmmmmmm

- N~NNNが $\underset{\sim}{\infty} \infty \times \infty \times \infty$

H2GRAS3	TABLE 10
H2NAT	TABLE 11
H2TREE1	TABLE 12
H2TREE2	TABLE 13
H2TREE3	TABLE 14
H2RRB1	TABLE 15
H2HWB1	TABLE 16
H2BRIDG	TABLE 17
H2MH1	TABLE 18
H2CLUT	TABLE 19
H2CLUT	TABLE 20

\qquad

 NヘNNNNNNNNさNNN

mo	
＊－nへのn	－
nNへNへN コーローペー	
	$\infty \infty \sim N a \backsim ว \infty \sim N \infty \infty$
－	
$\stackrel{\sim}{N} \rightarrow \underset{\sim}{\sim}=0$	

mmmsmmotatun

 $N N N N N N N N N N N$
$M M M M M M M M M M$

へべース
ミロッmn がッヂッチ

NNnーm

 NNNNNNNMNNNNNNNNMN

ーmmmnñーがotmmm

 mmmmmmm мलmmmmmmmmmm

moanmo mmRNNOt	－ง－minNamann
－	
Moomono	
MN世N以NO	
$\cdots \rightarrow 0 \mathrm{~nm}$	$\wedge N \rightarrow+\infty$ ¢ $N+\sigma 0$
ナmmomN	4
のーのがm	
$4 c+r * \pi a$	
MNMホOホN	N－tMmo

＇Z ouass＇uo doy＇VD＇Kofpasy 																	
＊	1 El	SIE	$\varepsilon 5$	\downarrow	101	28	Iヶl	YE！	$1 /$	LE！	Uごし	9ヵを	†	己EI	LEI	1ヵl	ヵモ
＂	82！	YlE	ゅS	2	Eट1	66	$\rightarrow 8$	$\boldsymbol{l} \downarrow$ l	1	LEI	－II		，	LEI	カカ1	621	ヶ ¢ T
9	191	らlع	75	2	191	ISI	IカI	811	2	LEI	$\rightarrow 01$	らちを	ε	OこI	E6	$\rightarrow 21$	ISt
\dagger	くし！	ヶ¢	\＄5	2	921	てゅ！	9EI	E४I	E	LEI	ヶで1	らヵを 0 0	c	Oとl	E6 ¢ I	721 801	L己t
5	ちट1	918	SS	Σ	DEI	001	SR	カモ！	\％$/ 1$	GEI	76	をカを	2	EटI	SEI	8 $\dagger 1$	621
8	Lyl	¢1E	SS	c	\rightarrow LI	SSI	891	191	，	ВE 1	921	らヵを	ε	811	2EI	86	2St
5	1\％1	¢ 9 ¢	SS	2	981	9LI	\％ 81	2LT	$1 /$	HEI	90	てヵを	＜	$0 \varepsilon 1$	てEI	L ${ }_{\text {I }}$	SEI
S	UटI	91E ¢18	95	ε	911	88	LOI	CEI	I	$8 \varepsilon[$	甘टI	Lヵ¢	\square	SEI	カッI	\rightarrow ！	EヶT
8	191	¢1E	95	ε	12	EEI	191	E9I	I	6EI	9く1	9カを	\rangle	ことI	921	0ヶl	くもけ
S	121	サし	95	ε	とカI	SSI	SLI	0४I	I	6EI	821	S力E	ε	しモ1	己EI	9ヵ1	6ET
5	EII	91ε	$L 5$	ε	E2I	εL	8L 1	HII	1	6EI	－＇1	1EE	\dagger	9EI	9EI	！+1	ヒヶ！
8	191	பlE	LS	ε	691	2SI	L91	2LI	1	OEI	COI	15E	－	621	！\dagger	9ヵ1	を ¢ I
5	くをI	サ「と	LS	ε	EL	Sll	SこI	9サ「	2	しカI	४II	をカを	2	6 II	己ヶ！	EEI	OSt
5	しこ！	Y！	8 S	\dagger	OEI	こし1	901	12「	1	をわ1	901	$1 ヵ$ ¢	I	$6 \rightarrow 1$	151	621	8II
9	\rightarrow ¢ 1	勺IE	85	\dagger	$\rightarrow 91$	9と1	0SI	8ャワ	$1 /$	Eャt	911	6EE	\dagger	しと1	$6 \rightarrow 1$	$9 \rightarrow 1$	LEI
ε	LEI	けし	85	\dagger	0 SI	LOI	91I	1EI	2	¢ヶI	$\forall 21$	$9 \rightarrow$ ¢	¢	951	己カI	621	IEI
†	911	LlE	65	†	I2I	021	$\angle 01$	くし！	2	$9 カ 1$	くटI	らゅを	ε	611	टSI	621	ヶ¢
5	して！	91 ¢	65	†	III	611	601	1عT	l	9 ¢	く0：	258	\dagger	011	CGI	＋ 51	921
5	GEl	Llを	U9	I	ゅて！	己！	0ヵI	こヶ！	ε	9カI	とटI	6ヶ¢	1	9＋1	$8 \rightarrow 1$	051	SEI
\dagger	［II	91E	09	$\underline{1}$	601	901	19	ここ！	ε	9力1	ャレI	128	ε	LEI	BS 1	\rightarrow－ 1	GET
2	611	४IE	19	1	SII	＋6	8？ 1	LII	己		，						6E1
［	1EI	92I	6EE	\％	S2I	DEI	921	1ET	\rangle	87	11	とカを	C	201	E9	して1	¢EI
／／		901	9己を	2	こヶI	$8!$	601	UEI	己	I	401	9ヵを	－	LヵI	801	Sカ1	LSI
ε	しと	サこ！	6クを	l	66	9ヵ1	611	68		$8+1$	401	てカを	＋	\＃St	8ヵ1	6 Cl	くわI
／／	1ع	76	92を	己	EII	2EI	621	6EI	2	6＋1	と	9ヵを	I	621	111	L己	\＄96
1	しعt	ЧटI	8EE	7	6EI	911	てこ1	EとI	2	6\％1	と 11	タカを	L	251	151		66
1	くとし	カ0	0こを	ε	LOI	0ヶ1	LII	४と 1	ε	151	66	と $\begin{aligned} & \text { ¢ } \\ & \text { 2 }\end{aligned}$	I	Ctt	791	EGI	
\}	とを！	70	己己E	\dagger	StI	－$\dagger 1$	S6	EOI	1	Est	221	وャを	\checkmark	Lヵ1	951	くカI	651
［	£ ¢ ！	サて！	lSE	2	とゅ】	62I	801	ટと1			66	－2	I	851		GFI	
／／		$\forall 9$	ちटع	I	OEI	BOI	カッ！	UE！	1	とら1	66	－टE	\％	851	6S	9Fl	くヵ1
I	¢£ 1	¢II	lSE	c	カモI	0¢I	1EI	lヵT	5	ऽS	l1	カッを	寿	$8{ }^{81}$	691	く	9E1
2	SEl	cll	とヶ¢	e	\rightarrow II	リを！	くわI	\＆II		L I	011	1ヵを	（	281	＋91	くを1	9ヶ！
1	SEl	C己「	2SE	\dagger	ゅこI	カ】	くわ1	821	$\stackrel{7}{7}$	QS	ULI	切を	（	291	－91	¢ \rightarrow l	4ヵ1
$1 /$	CEI	Y它I	8ヵ¢	1	6ヶ1	ャ01	S 2	6こI	＋	191	－11	2ヶ¢	2	SEI	1 11	く91	SSt
$1 /$	SEI	¢ II		$\stackrel{ }{7}$	ャ01	621	$\varepsilon I I$	6ヶ1	\dagger	¢9：	611	こちを	c	$1 \rightarrow 1$	991		2E1
2	บع1	Ul1	SカE	ε	L2I	0SI	SOI	ヶ01	2	$\rightarrow 91$	01 i	Uヵ号	1	ヶ¢1	2L1	\rightarrow ¢ 1	891
2	¢E1	$\forall 11$	OSE	${ }^{2}$	S己l	EटI	9EI	らヵ！	\％	591	HII	$1 ヵ$ ¢	l	पટ1	¢ 41	$0 \rightarrow 1$	691
11	9EI	ヶで1	UヵE	L	62	9ヵ1	l¢	サとT	ε	$1:+1$	$\angle 18$	19	1	しヶし	961	$0 \rightarrow 1$	$r+1$

H3GRAS1
H3GRAS2
H3NAT
H3TREE1
H3TREE2
H3TREE3
H3RRB1
H3HWB1
H3BRIDG
H3MH1
H3CLUT

TABLE 21
TABLE 22
TABLE 23
TABLE 24
TABLE 24A
TABLE 25
TABLE 26
TABLE 27
TABLE 28
TABLE 29
TABLE 30
ヘ～～ーさー～ーーさー～NーーーさーN

 －		

mmmmmmmmmmmnnññ ćccooccoococcccco

[^4]

 m

 OGEOEGOOGO

ー～Nさー～ーいささささい

 ～NNNヘNNNNNNN

 x

TABLE 30 HBCLET: Four look SAR filter magnitude data, man-made clutter,
Reedley, CA, hop off, Scene 3.

Nebo Static Array of Vehicles and Equipment:
Scene 4, hop on
TARGET CLASS AND CORRESPONDING TABLE NUMBER

H4DARK	TABLE 31
H4TANK1	TABLE 32
H4TR251	TABLE 33
H4TACT1	TABLE 34
H4TACT2	TABLE 35
H4SAND1	TABLE 36

nusunn nonnomming ni ns

にNーNーmmmm

$$
\begin{aligned}
& \text { ニ ニニ~~N~N~N~N } \\
& \text { ヘーNーのmmmm }
\end{aligned}
$$

和

 のペ

 NNホNNNNNNNNNMNNNNN

5 Nebo Static Array of Vehicles and Equipment:
 Scene 5, hop off
 TARGET CLASS AND CORRESPONDING TABLE NUMBER

H5TANK1	TABLE 37
H5TR25l	TABLE 38
H5TACT1	TABLE 39
H5TACT2	TABLE 40
H5TACT3	TABLE 41
H5SAND1	TABLE 42
H5SAND2	TABLE 43
H5DARK	TABLE 44

[^5]

tactical vehicles.

mmmnnのt tmmtmmv

ここさーさこさこーーさー

 ～ペき゚のヘヘ～N゙が

tactical vehicles．

$\rightarrow m m m \rightarrow N m m さ さ さ m \rightarrow N+ \pm m$

 NNNNNNNNNNNNNNNNN

TABLE 42 H5SANDl：Four look SAR
filter magnitude data，desert sand
（short list），Nebo array，Barstow，CA，
hop of，Scene 5 ．

 ANANANANNANANNNNR

ט納

6 Nebo Static Array of Vehicles and Equipment:
Scene 6, hop on
TARGET CLASS AND CORRESPONDING TABLE NUMBER

H6TANK1
H6TR251
H6TACT1

TABLE 45
TABLE 46
TABLE 47

$$
\begin{aligned}
& \text { जた }
\end{aligned}
$$

TABLE 45 H6TANKl：Four look SAR
filter magnitude data，M48 tanks，Nebo
array，Barstow，CA，hop on，Scene 6.
mmatnmmitommminmmmminmmmmnnmmさーmNさmmnー

 №○

TABIE 47 HGTACII: Four look SAR filter magnitude data, tactical vehicles, Nebo array, Barstow, CA, hop on, Scene 6.

[^6]7 Nebo Static Array of Vehicles and Equipment: Scene 7, hop on
TARGET CLASS AND CORRESPONDING TABLE NUMBER

TABLE 48

9 Single Pixel Target Files:
Scenes 3, 4, and 5 TARGET CLASS AND CORRESPONDING TABLE NUMBER

P5TANK1	TABLE 49
P5TR251	TABLE 50
P5JEEP1	TABLE 1
P5VAN1	TABLE 52
P5CRAN1	TABLE 53
P5TACT1	TABLE 4
P4TANK	TABLE 55
P4TR25	TABLE 56
P4JEEP	TABLE
P4VAN	TABLE
P4CRAN	TABLE 59
P4TACT	TABLE 60
P3T101	TABLE 61

TABLE 49 P5TANK1: Four look SAR filter magnitude data, M48 tanks, one
pixel per tank, Nebo array, Barstow, CA, hop off, Scene 5 .

98	86	77	89	3	152	166	90
69	64	90	51	4	158	161	77
$R 1$	99	64	85	1	164	187	88
100	80	71	75	2	170	151	88
$R 6$	78	77	60	2	170	166	78
90	47	92	104	4	175	187	94
106	99	58	77	3	185	197	96
74	83	84	53	4	191	178	79
61	75	89	70	1	212	180	78
86	63	35	59	3	216	180	73
TABLE 51	P5JEEPl: Four look SA						

$\begin{array}{llll}3 & 161 & 18 n & 111 \\ 1 & 164 & 157 & 133 \\ 2 & 171 & 161 & 118 \\ 1 & 173 & 147 & 112 \\ 4 & 175 & 175 & 121 \\ 4 & 182 & 185 & 111 \\ 1 & 189 & 149 & 116 \\ 3 & 192 & 184 & 117 \\ 1 & 196 & 198 & 113 \\ 4 & 199 & 170 & 99 \\ 4 & 206 & 158 & 114 \\ 4 & 207 & 164 & 121 \\ 4 & 207 & 174 & 132 \\ 4 & 214 & 184 & 113\end{array}$
TABLE 53 PSCRAN1: Four look SAR filter magnitude data, M62 $12 \frac{1}{2}$ ton
truck mounted crane, one pixel per crane, Nebo array, Barstow, CA, hop off, Scene 5.

 TABLE 56 P4TR25: ton trucks, one pixel per truck, Nebo array, Barstow, CA, hop on, Scene 4.

501
$E 8$
$\angle 8$
$E 6$
801
$6 L$
08
$\angle 8$
51
901
78

TABLE 58 P4VAN: Four look SAR filter magnitude data, M109A3 $2 \frac{1}{2}$ ton shop van truck, one pixel per van, Nebo array, Barstow, CA, hop on, Scene 4.

 Níncioctoco

[^7]

APPENDIX B

PROBABILITY nISTRIBUTION HISTOGRAMS

PDF Equations

Probability distribution functions and frequency functions presented as count ratios have been constructed in the form of histograms for eight unnormalized and seven normalized discriminants for selected target classes from data given in Appendix A of this report. The discriminant was computed for each pixel listed in the target class from the four-look filter magnitude data after the four-look data were placed in the proper time sequence.

Data are tabulated in Appendix A for the target classes in the form ui \log filter magnitudes according to map number. The fifth column in those lables is a frequency sequence or map sequence number as explained in Section 11 of this report. All pixels along a given azimuth line have the Sdme ilequency number.

Target classes for which the distribution histograms have been plotted are listed in Table B-1. Only a sample set of histograms is included in this report. A set of histograms consists of five pages of histograms per target class. Median data extracted from these graphs are summarized later in sppendix C.

Since all unnormalized power functions contain arbitrary units, the abscissas for the distribution curves are labeled relative power in decibels. All histograms were formed with unequal bin size in power. Early in the study it was found that using equal bin size in power produced histograms where most of the data were contained in a few bins, with a few

TABLE B-1
PDF TARGET LIST AND FILE DESIGNATION

	Scene				
Target Class	1	2	3	4	5
Man-made clutter	HlCLUT	H2CLUT	H3CLUT		
Natural features	HINAT	H2NAT	H3NAT		
Rough grass and weeds			H3GRAS1 H3GRAS2		
River bank trees		H2TREE1	H3TREE]		
Young fruit trees		H2TREE2	H3TREE2		
Railroad bridge		H2RR1			
Highway bridge		H2HWB1	H3HWBl		
Bridges		H2BRIDG	H3BRIDG		
Mobile homes		H2MH1	H3MH1		
Shadows				H4DARK	
Sand				H4SAND	H5SAND1 H5SAND2
O-Tactical vehicles				H4TACT1	H5TACT1
Tactical vehicles				H4TACT2	H5TACT2
Tanks				H4TANK1	H5TANK1
Trucks, $21 / 2$ ton				H4TR251	H5TR251

a count as low as one or two. Such histograms give no indication as to the nature of the distribution. To avoid this problem, the bin size: was allowed to vary in power by maintaining a constant bin size in decibels. The discriminant was then plotted on a logarithmic scale. Bin size in power is given by

$$
\Delta P(I)=10^{M(I+1) / 10}-10^{M(I) / 10}
$$

where I is bin number and $M(I)$ is the logarithm of the bin lower boundary in decibels. For a 0.2 dB bin width

$$
\Delta P(I)=0.585 \times 10^{M(I)}
$$

from which it should be noted that the bin width is greater than half the sum of all preceding bins. Ordinates of the count ratio histograms are formed for the discriminant by counting all pixels whose discriminant value is contained with the region ($10^{\mathrm{M}(\mathrm{I}) / 10}, 10^{\mathrm{M}(\mathrm{I}+1) / 10}$) and dividing by the total number of pixels forming the distribution.

The probability density function is formed from the count ratio histograms by dividing each bin by ΔP.

Suppose that the number of counts per bin is $B(I)$, then the count ratio for bin $F(I)$ is $B(I) / N$ where N is the total number of counts. The probability density function, $\operatorname{PDF}(\mathrm{I})$, is related to $F(I)$ by

$$
F(I)=P D F(I) \Delta P(I)
$$

so that

$$
\operatorname{PDF}(I)=\frac{B(I)}{N \Delta(I)}
$$

The cumulative probability function, $\operatorname{CPD}(I)$, is given by

$$
\begin{aligned}
\operatorname{CPD}(\mathrm{I}) & =\operatorname{PDF}(\mathrm{J}) \Delta P(\mathrm{~J}) \\
& =\frac{B(\mathrm{~J})}{N \Delta P(J)} \Delta P(J)
\end{aligned}
$$

which equals unity when summed over all bins. When all bin sizes are equal, the frequency functions (count ratios) and the probability density functions appear similar, which is not the case for the functions presented here.

Sample Histograms

Four sets of probability distribution distograms are given here for target classes involving no hop when the SAR maps were formed. "No hop" histograms are shown since it was pre-supposed before reducing the data that a greater statistical difference would be apparent between dissimilar target classes when frequency diversity was not employed. Frequency diversity was included in the design of the FLAMR system to reduce the effects of target scintillation and thereby produce maps with less granularity than one might expect without hop.

It appears that the spread in the standard deviation, average deviation from the mean, and average deviation from the best straight line fit is greater for natural features without hop than with ho p while the inverse is the case for man-made objects. This effect is readily apparent by comparing the histograms from target classes from scene 2 to those from scene 3 (Reedley) and those from scene 4 (NEBO) to those from scene 5 .

Histograms presented here are for target classes H3CLUT (Man-made Clutter), H3NAT (natural features), H5TACT2 (tactical vehicles) and H5TANK (tanks).

The first set of histograms, set 2 , shows the PDF's and count ratios for target power for each of the four maps. Since the sum of $\operatorname{PDF}(\mathrm{I}) \Delta \mathrm{P}(\mathrm{I})$ over all bins is equal to I , and $\Delta \mathrm{P}(\mathrm{I})$ is a large number for large I, the ordinate on the PDF cufves has been multiplied by the median in power for each distribution to avoid small numbers on the ordinate axis. The median in decibels is printed above each distribution. The bins for this set were 1 dB wide. This set is labeled "Four-Map NonParametric Power Distributions for Target Class xxxxx." The power distributions for the four maps are presented to determine the general characteristic of the power distribution for each map, and to determine whether the power distribution remains relatively unchanged between maps.

Sets b and c show $P D F$ and count ratio histograms for mean power, standard deviation, average deviation from the mean, average deviation from the best straight line fit to the four-look data, fast variation, slow variation, major spread, and minor spread. The bins for these histograms are 2 dB wide. The histograms in set b and c are labeled "Non-Parametric Probability Density Functions for Eight Variants Calculated in Power From Target Class xxxxx" and "Non-Parametric Count Ratio Distributions per 2 dB Bin for Eight Variants Calculated in Power from Target Class xxxxx," respectively. Variants here are the discriminant functions.

Histogram sets d and e are similar to those in sets b and c except that the discriminant has been normalized by dividing by the mean pixel power. The histogram for the distribution in mean power has not been normalized and it is presented with the normalized distributions merely for reference. Notice that the medians in decibels are much smailer for
for the normalized distributions than for the unnormalized distributions. The bin width for the normalized distributions has been reduced to 1 dB .

A list of targets for which the PDF and count ratio histograms have been included in this report is given in Table $B-1$. The graphs are idemtiffed by target file number traceable back to tables of filter magnitude data by the same file number. More tables of filter magnitude data exist than have been processed and presented here. What has been presented is thought to be representative.

FIGURE BI (b)
NON-PARAMETR!C PROBABILITY DENS! TY FUNCTIONS
FOR EIGHT VARIANTS CALCULATED IN POWER FROM TARGET CLASS H3CLUT

FIGURE B1 (c)
MTV-PGFGMETRIC COUNT RATIO DISTRIBUTIONS PER A DE BIN GK UGIT UFRIGNTS CALCULATED IN PONER FROM TAFGET CIASS HZCLUT

FIGURE RI (d)
NON-PAFAMETRIC PRCBASILITY DENS! TY FUNCTIONS
FOR SEVEN VARIFNTS CGLCULATED IN POWER FRIM TARGET CLASS H3CLUT NORMALIZED WITH RESPECT TO INDIVIDUAL PIXEL MEAN FOWER

FIGURE BI (e)
NON-FARAMETRIC COUNT RATIO DISTRIBUTIONS FER : DE EIN
 ra: : 3, , NGMAI IZED WITH RESFECT TO INDIVICUAL FIXEL MEAN FOWEF

FIGURE B2 (a)
FOUR MAP NON-FGRAMETRIC POWER DISTRIBUTIONS FOR TARGET CLASS H3NAT

FIGURE B2 (c)
WKN PARFMETRIC COUNT RHTIO DISTRIEUTIONS FER E JB EIN FOE EIGHT VARIANTS CGLCULATED IN FDWER FROM TPRGET ELHES H3NAT ThPE 534t 3 ,

FIGURE B2 (a)
MN-FGRMETRIC PROSABIIITY DENSITY FLNCTICNS

FIGURE 32 (e)
NON-FGRAMETRIC COUNT RATIO DISTRIBUTIONS PEP I DB SIN
FOR SEVEN VGRIANTS CALCULATED IN POWER FROM TRRGET CLAES H3NAT NORMAIIZED WITH RESPECT TO INDIVIDURL FIXEL MEGN POWER
1FPOE 33443 .

FIGURE B3 (a)
FOL MAF NGN-FGRAMETRIC POWEK DISTRIBUTIONS
FOR TARGET CLASS HSTACT2

FIGURE B3 (b)
NON-FARAMETRIC PROBABILITY DENSITY FUNCTIONS FOR EIGHT VARIANTS CALCULATED IN POWER FROM TARGE CLASS HSTACT2

> FIGURE B3 (c)

NON-FARAME IRIC COUNT RATIO DISTRIBUTIONS PER 2 LE BIN
FOR EIGIT VARIANTS CFLCULATED IN PCWER FROM TARGET CLASS H5TACT2

FIGURE R3 (d)
NON-PARAMETRIC PROGABILITY DE VSITY FUNCTIONS
FOR SEVFN VARIANTS CALCULATED IN POWER FROM TAFGET [LASS H5TACT2 NORMGLIEED WITH RESFECT TO INDIVIDUHL FIXEL MEAN FOWER

FIGURE B3 (e)
NGNAGGMETRIC COUNT RATIO DISTR!GUTIONS PER I DB BIN FME GEES UARIONTS CALCULATED IN FOWER FROM TRRGET CLASS H5TACT2 UGVLIELE WITH RESPECT TO INDIVIOUR FIXEL MEAN POWER

FIGURE BA (c)
NON-FARAMETRIC CCUNT RATIO DISTRIGUTIONS FER 2 DE BIN FOR EIGHT VARIANTS CALCULATED IN FCWER FROM TAFGET CLASS H5TANK Thas cint s

FIGURE B4 (d)
NON-FARAMETRIC FROBASILITY DENSITY FUNCTICNS GOR GEVEN UARIANTS CGLCULATED IN PEWER FROM TRRGET CLASS HSTANK NJFMGLIEES WITH RESPECT TO INDIVIDUAL F!XEL MEAN FOWER

FIGURE B4 (e)
NIN-FGRAMETRIC COUNT RATIO DISTRIBUIICNS FFR ! DE EIN FOR SEVEN VARIGNTS CALCLLATED IN PDWER FROM TGRGET CLASS HSTANK NORMQLIZES WITH RESPECT TO INDIVIGUAL FIXEL MEAN FOWER

APPENDIX C

SUMMARY MEDIAN TABLES

This section contains three tables of summary median data extracted from the five sets of histograms for each target class. Table C-l contains the power median for each of the four maps for the indicated target class. The median as listed has units of $10 g$ power (arbitrary units) in decibels. The four map medians should be nearly constant for each target class, since the gain of the four maps were set equal. The gain equalization, however, involved the sum of the return power from all pixels within the map and not just those for a selected target class; consequently, a variation in the median from map-to-map can occur over a selection of pixels comprising a class of targets. A large change in any of the medians implies a change in target statistics between maps. Since there is not a priority reason why the statistics should change from map-to-map, an observed change in the power median would be reason to question the validity of the observed filter magnitude data for that target class.

It should be noticed that the man of the medians for a single target class varies between scenes. This occurs because the map gain varied between the scenes.

Table $C-2$ contains the median for eight unnormalized discriminants. These quantities computed in log power (in arbitrary units), are listed in decibels. A comparison of the medians can be made between target classes from the same scene but not between those from different scenes because of possible map gain changes between scenes. In order to form some basis for comparing target discriminants from different scenes, the discriminants
were normalized pixel-by-pixel before computing the medians, and these data are presented in Table C-3. Discriminant medians computed from different scenes can then be compared. However, it is not apparent from these data that target classes can be separated based upon the medians for this set of normalized discriminants.

TABLE C-I

MAP - TO-MAP MEDIAN POWER VARIATION

TABLE C-II
CLASS VARIATION IN UNNORMALIZED DISCRIMINANT MEDIANS

Target Class	File	Scene	Median in dB			
			Mean Power	Std Dev	Avg Dev from Mean	Avg Dev from BSL
Man Made Clutter	H1CL'T	1	46.3	45.3	44.0	42.2
	H2CLUT	2	50.7	50.3	49.1	48.3
	H3CLU1	3	47.6	48.5	47.1	45.7
Natural Features	HlNAT	1	37.4	38.7	37.5	37.0
	H2NAT	2	38.4	38.7	37.2	36.5
	H3NAT	3	46.3	42.7	41.2	40.0
Rough Grass \& Weeds	H3GRAS1	3	36.7	34.6	33. 3	32.0
	H3GRAS2	3	39.1	38.2	36.7	36.4
River Bank Trees	H2TREE1	2	47.0	45.9	44.9	4.4.1
	H3TREEl	3	49.3	48.7	47.5	46.3
Young Fruit Trees	H2TREE2	2	37.1	36.0	34.8	33.7
	H3TREE2	3	35.6	35.2	33.7	32.7
Railroad Brídge	H2RR1	2	44.8	43.5	42.7	41.1
Highway Bridge	H2HWB1	2	48.0	47.5	46.6	46.2
	H3HWB1	3	51.7	48.5	47.2	46.3
Bridges	H2BRIDG	2	44.8	43.5	42.7	41.1
	H3BRIDG	3	52.9	51.5	50.3	48.8
Mobile Homes	H 2 MHI	2	52.3	52.6	51.2	50.2
	H3MH1	3	46.5	46.3	45.3	42.9
Shadows	H4DARK	4	8.1	9.2	8.0	5.7
Sand	H5SAND1	5	23.7	22.6	21.4	19.7
	H5SAND2	5	23.7	22.9	21.7	20.3
O-Tactical Vehicles	H4TACTI	4	38.7	39.4	41.1	34.6
	H5TACT1	5	36.9	36.5	35.2	33.8
Tactical Vehicles	H4TACT2	4	36.8	35.9	34.7	33.6
	H5TACT2	5	36.0	34.8	33.4	32.4
Tanks	H4TANKI	4	35.1	34.8	33.5	32.2
	H5TANK	5	31.9	32.5	31.5	29.3
Trucks	H4TR251	4	34.5	33.4	32. ${ }^{2}$	31.3
	H5TR251	5	35.5	34.6	33.3	32.1

TABLE C-II (continued)
CLASS VARIATION IN UNNORMALIZED DISCRIMINANT MEDIANS

TABLE C-III
CLASS VARIATION IN NORMALIZED DISCRIMINANT MEDIANS

TABLE C-III (continued)
CLASS VARIATION IN NORMALIZED DISCRIMINANT MEDIANS

APPENDIX D

 STATISTICAL PARAMETERSThe class mean, standard deviation (sigma), mean to sigma ratio, and median of the eight discriminants (variants) appearing in Table $\mathrm{C}-2$ of Appendix C computed in power are given in this section for all target classes listed in Table B-l of Appendix B. These parameters are listed in Tables $D-1$ through D-8. Entries in the tables are in logarithms times 10. Since table entries are in logarithms, negative numbers indicate that the value of the parameter to the base ten is less than one.

Upon examination of the mean of the four-pixel mean for all pixels, members of a single class indicate that the gain of scene 1 may be lower than that of scenes 2 and 3 ; likewise, the gain of scene 5 may be lower than that of scenes 4 or 6 .

It should be noted that in general the median of the pixel means is nearly equal to the mean of the pixel means for natural targets, while for man-made targets the equality does not appear to hold, the median is lower than the mean. These tables also show that the mean-to-sigma rate for the unnormalized data is generally positive for natural features and negative for man-made features, an effect which might be attributed to a greater variation in radar return from man-made objects than from natural features within the four map looks.

TABLE D-I
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 1
HIBRIDG
UN-NORMALIZEU VARIANTS

NORMALIZED VARIANTS

HICLUT
UN-NORMALIZED VARIANTS

```
VARIANY I MEAN = 47.6 SIGMA = 48.9 MEAN/SIGMA = -1.4 MEDIAN = 46.3
VARIANT 2 MEAN = 47.3 SIGMA = 49.4 MEAN/SIGMA = -2.1 MEDIAN = 45.3
VARIANT 3 MEAN = 46.1 SIGMA = 48.1 MEAN/SIGMA = -2.0 MEDIAN = 44.0
VARIANT 4 MEAN = 44.6 SIGMA = 46.2 MEAN/SIGMA = -1.6 MEDIAN = 42.2
VARIANT 5 MEAN = 48.3 SIGMA = 49.7 MEAN/SIGMA = -1.3 MEDIAN = 46.3
VARIANT 6 MEAN = 49.1 SIGMA = 51.7 MEAN/SIGMA = -7.6 MEDIAN = 47.1
VARIANT 7 MEAN = 50.7 SIGMA = 52.7 NEAN/SIGMA = -7.0 MEOIAN = 48.8
VARIANT A MEAN = 43.9 SIGMA = 45.8 MEAN/SIGMA = -1.9 MEDIAN = 40.9
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 47.6 SIGMA = 48.9 MEAN/SIGMA = -1.4 MEDIAN = 46.3
VARIANT 2 MEAN = -.3 SIGMA = -4.2 NEAN/SIGMA = 3.9 MEDIAN = -.3
VARIANT 3 MEAN = -1.6 SIGMA = -5.5 MEAN/SIGMA = 3.9 MEOIAN = -1.6
VARIANT 4 MEAN = -2.9 SIGMA = -3.9 MEAN/SIGMA = 7.1 MEDIAN = - 2.8
VARIANT 5 MEAN = .9 SIGMA = -2.6 MEAN/SIGMA = 3.5 MEDIAN = . 7
VARIANT & MEAN = 1.4 SIGMA = -1.9 MEAN/SIGMA = 7.3 MEDIAN = 1.2
VARIANT 7 MEAN = 3.1 SIGMA = 1.1 MEAN/SIGMA = 4.2 MEDIAN = 3.1
VARIANT A MEAN = -3.3 SIGMA = 4.4. MEAN/SIGMA = .9 MEDIAN = -4.4
```

TABLE D-I (CONTINUED)
statistical parameters for targets selected from reedley scene l

HIGRAS1
UN-NORMALIZED VARIANTS

								7.6		
VARIANT	2	ME	34.8	SIGMA	30	MEAN/SIGMA		3.	MEDIAN	
RIANT	3	MEAN	33	SIGMA	29	EAN/SIGMA		3.	N	33.3
VARIANT	4	MEAN	32.	SIGMA	29	MEAN/SIGNA		2.7	MEDIAN	32.0
NT	5	MEAN	36.1	SIGMA	33.0	IGMA		7.0	MEDIAN	35.8
VARIANT	6	MEAN		SIGMA	32	GMA		3.	EDIAN	
NT	7	MEAN	38.2	SIGMA	34	MA		4.0	EDIAN	
VARIANT	R	ME	3	IG	32.5	AN/SIGMA			MEDIAN	

NORMALIZED VARIANTS

	1	MEAN =					7.		
VARIANT	2	MEAN	SIGMA		MEAN/SIGMA		4.5	IAN	$=-2.0$
VARIANT	3	MEAN $=-3.0$	SIGMA	-7	GMA		. 3	EDIAN	$=-3.2$
VARIANT	4	MEAN	SIGMA	$=-7.2$	MEAN/SIGMA		. 2	MEDIAN	
VARIANT	5	EAN	SIGMA		MEAN/SIGMA		7.6	EDIAN	
VARIANT	6	MEAN	SIGMA	= 4	IGMA		4.1	IAN	
VARIAINT	7	MEAN $=1.6$	SIGMA		MEAN/SIGMA		4.7	EDIAN	
VARIANT	R	MEA	IGM		MEAN/SIGMA			EDIAN	

1974, 67
UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

		AN			S			MEDIAN	
VARIANT	2	MEAN		A	-4.2	MEAN/SIGMA	3.		
ANT	3	MEAN	-1	SIGMA		MEAN/SIGMA	3.7	MEOIAN	
IANT	4	MEAN	$=-3.4$	SIGMA	-	IGMA	7.	EDIAN	
RIANT	5	EAN		SIGMA	-3.1	EAN/SIGMA	3.6	EDIAN	
T		EAN		SIGMA		EAN/SIGMA	2.	MEDIAN	
T		MEAH		IGMA	-1.0	IGMA	3.	EDIAN	
ARIANT		MEAN		SIG	4	1		MEDIAN	

table di (CONtinued)
statistical parameters for tarGets selected from medley solid 1
[lIP! 1
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=48.3$ SIGMA $=50.3$ MEAN/SIGMA $=-2.0$ MEDIAN $=46.6$
VARIANT 2 MEAN $=47.9$ SIGMA $=50.7$ MEAN/SIGMA $=-2.8$ MEDIAN $=45.5$
VARIANT 3 MEAN $=46.6$ SIGMA $=49.4$ MEAN/SIGMA $=-2.8$ MEDIAN $=44.0$
VARIANT 4 MEAN $=45.1$ SIGMA $=47.4$ MEAN/SIGMA $=-7.3$ MEDIAN $=43.0$
VARIANT 5 MEAN $=48.8$ SIGMA $=50.8$ MEAN/SIGMA $=-7.0$ MEDIAN $=46.9$
VARIANT 6 MEAN $=49.8$ SIGMA $=53.1$ MEAN/SIGMA $=-3.3$ MEDIAN $=47.0$
VARIANT 7 MEAN $=51.3$ SIGMA $=54.1$ MEAN/SIGMA $=-7.7$ MEDIAN $=48.9$
VARIANT A MEAN $=44.1$ SIGMA $=46.4$ MEAN/SIGMA $=-7.3$ MEDIAN $=40.6$

NORMALIZED VARIANTS

HTNAT

UN-NORMALILED VARIANTS

```
VARIANT 1 MEAN = 44.6 SIGMA = 44.6 MEAN/SIGMA = .0 MEDIAN = 37.4
VARIANT 2 MEAN = 44.4 SIGMA = 45.0 MEAN/SIGMA = -.6 MEDIAN = 3. .7
VARIANT 3 MEAFI = 43.2. SIGMA = 43.8 MEAN/SIGMA = -.6 MEUIAN = 37.5
VAQIANT 4 MEAN = 41.7 SIGMA = 42.3 MEAN/SIGMA = -.7 MEDIAN = 37.0
VARIANT 5 MEAN = 45.5 SIGMA = 46.1 MEAN/SIGMA = -.7 MEDIAN = 4n.6
VARIANT 6 MEAN = 46.1 SIGMA = 46.9 NEAN/SIGMA = -.9 MEDIAN = 39.6
VARIANT 7 MEAN = 47.7 SIGMA = 48.3 MEAN/SIGMA = -.6 MEDIAN = 41.8
VARIANT A MEAN = 41.2 SIGMA = 43.0 MEAN/SIGMA = -1.8 NEDIAN = 36.4
```

NORMALIZED VARIANTS

TABLE D-1 (CONTINUED)

GATISTICAL PARAMETERS FOR TARGETS SELECTED fROM REEOLEY SGE:I I
(1) RRRBI

UN-NORMALILEO VARIANTS

NOPMALIZED VARIANTS

HIURFi

UN-NORMALIZED VARIANTS

NT	1	MEAN	47.3	SIGMA	43.3	MEAN/SIGMA	$=$	4	MEDIAN	6
VARIANT	2	MEAN	47.2	SIGMA	44.5	MEAN/SIGMA		2.6	MEUIAN	46.7
VARIANT	3	MEAN	46.0	SIGmA	43.3	MEAN/SIGMA		2.7	MEDIAN	45.4
VARIANT	4	MEAN	44.4	SIGMA	42.0	MEAN/SIGMA		2.	MEDIAN	43.9
VARIANT	5	MEAN	48.	SIGMA	45.7	MEAN/SIGMA		2.5	MEDIAN	47.9
VARIANT	6	MEAN	48.9	SIGMA	46.9	NEAN/SIGMA		2.1	MEDIAN	4 A .0
VARIANT	7	MEAN	$=50.5$	SIGMA	$=47.8$	NEAN/SIGMA		3.7	MEDIAN	$=49.9$
VARIANT	R	MEAN	$=43.9$	SIGMA	$=43.7$	MEAN/SIGMA		,	MEDIAN	$=4 ? .5$

NORMAI_ILED VARIANTS

TABLE D-I (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE I

HITRFF?

UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=44.7$ SIGMA $=38.3$ MEAN/SIGMA $=4.3$ MEDIAN $=44.1$
VARIANT 2 MEAN $=44.1$ SIGMA $=40.6$ MEAN/SIGMA $=3.5$ MEDIAN $=43.8$
VARIANT 3 MEAN $=42.9$ SIGMA $=39.3$ MEAN/SIGMA $=3.5$ MEDIAN $=42.6$
VARIANT 4 MEAN $=41.7$ SIGMA $=38.6$ MEAN/SIGMA $=3.1$ MEDIAN $=41.2$
VARIANT 5 MEAN $=45.3$ SIGMA $=41.8$ MEAN/SIGMA $=3.5$ MEDIAN $=44.9$
VARIANT 6 MEAN $=45.7$ SIGMA $=42.8$ MEAN/SIGMA $=3.9$ MEDIAN $=45.4$
VARIANT 7 MEAN $=47.5$ SIGMA $=43.7$ MEAN/SIGMA $=3.8$ MEDIAN $=47.3$
VARIANT R MEAN $=41.9$ SIGMA $=40.6$ MEAN/SIGMA $=3.3$ MEDIAN $=41.4$

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 44.7 SIGMA = 34.3 MEAN/SIGMA = 6.3 MEDIAN = 44.1
VARIANT 2 MEAN = -.6 SIGMA = -5.2 MEAN/SIGMA = 4.7 MEDIAN = -.06
VARIANT 3 MEAN = -1.8 SIGMA = -6.4 MEAN/SIGMA = 4.6 MEDIAN = -2.0
VARIANT 4 MEAN = -2.9 SIGMA = -6.6 MEAN/SIGMA = 7.6 MEDIAN = -3.2
VARIANT 5 MEAN = .7 SIGMA = -3.4 MEAN/SIGMA = 4.2 MEDIAN = . 5
VARIANT 6 MEAN = 1.0 SIGMA = -3.0 MEAN/SIGMA = 4.0 MEDIAN = . }
VARIANT 7 MEAN = 2.8 SIGMA = -2.1 MEAN/SIGMA = 4.9 MEDIAN = 2.7
VARIANT & HEAN = -2.7 SIGMA = -3.9 MEAN/SIGMA = 1.2 MEDIAN = -3.6
```

TABLE D-II
Statistical parameters for targets selected from reedy scene?

H2BRIDG
UN-NORMALI IED VARIANTS

NORMALIZED VARIANTS

Hoc!!!

UN-NGRIAALIZED VARIANTS

NORMALIZED VARIANTS

table d-II (CONTINUED)
statistical parameters for targets selected from reedley scene 2
h2GRAS3
UN-NORMALIZED VARIANTS

VARIANT	1	MEAN	34.2	SIGMA		MEAN/SIGMA		2.9		
VARIANT	2	MEAN	33.7	SIGMA	31.	MEAN/SIGMA		2.1	MEDIAN	$=33 \cdot 1$
VARIANT	3	MEAN	32.5	SIGMA	30.3	MEAN/SIGMA		3.2	MEDIAN	
VARIANT	4	MEAN	31.6	SIGMA		MEAN/SIGMA		1.7	MEDIAN	
VARIANT	5	MEAN	35.2	SIGMA	33.5	MEAN/SIGMA		1.7	MEDIAN	34
VARIANT	6	MEAN	35.2	SIGMA	33.1	MEAN/SIGMA		2.	MEDIAN	34.7
VARIANT	7	MEAN	37.1	SIGMA	34.9	I GMA		2.2	MEDIAN	36.7
VARIANT	ค	MEAN	31.4	SIGMA	30.8	MEAN/SIGMA		7	MEDIAN	30.4

NORMALIZED VARIANTS

H2HWB7
UN-NORMALIZED VARIANTS

IANT	1	MEAN		SIGMA	$=55.5$	MEAN/SIGMA		MEDIAN		4
VARIANT	2	MEAN	59.6	SIGMA	52.4	MEAN/SIGMA	8	MEDIAN		47.5
VARIANT	3	MEAN	58.4	SIGMA	51.?	MEAN/SIGMA	- ${ }^{\text {a }}$	MEDIAN		46.6
VARIANT	4	MEAN	58.2	SIGMA	51.2	MEAN/SIGMA	,	MEDIAN		46.2
VARIANT	5	MEAN	61.2	SIGMA	63.9	MEAN/SIGMA	$=-3.7$	MEDIAN		48.9
VARIANT	6	MEAN	60.9	SIGMA	53.9	MEAN/SIGMA	$=-7.1$	MEDIAN		49
VARIANT	7	MEAN	63.0	SIGMA	55.8	MEAN/SIGMA	$=-7.9$	MEDIAN		50.7
VARIANT	8	MEAN	58.7	SIGMA	52.1	MEAN/SIGMA		MEDIAN		7

NOPMALIZED VARIANTS

TABLE D-II (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED fROM REEDLEY SCENE 2

H2MH1

UN-NORMALIZED VARIANTS

NT	1	MEAN	55.3	SIGMA	55	MEAN/SIGMA		MEUIAN	3
VARIANT	2	MEAN	55.4	SIGMA	56.0	MEAN/SIGMA	6	MECIAN	52.6
VARIANT	3	MEAN	54.3	SIGMA	55.0	MEAN/SIGMA	$=-.7$	MEDIAN	51.2
VARIANT	4	MEAN	53.5	SIGMA	54.3	MEAN/SIGMA	. 8	MEDIAN	50.2
VARIANT	5	MEAN	56.9	SIGMA	$=57.7$	MEAN/SIGMA	$=-.8$	MEDIAN	53.8
VARIANT	0	MEAN	56.9	SIGMA	57.4	MEAN/SIGMA	$=-.5$	MEDIAN	54.0
VARIANT	7	MEAN	58.7	SIGMA	$=59.3$	MEAN/SIGMA	$=-.6$	MEDIAN	56.0
VARIANT	8	MEAN	53.5	SIGMA	$=56.0$	MEAN/SIGMA	$=-2.5$	MEDIAN	49.2

NORMALIZED VARIANTS

UKIMT
UN-NORMALIZED VARIANTS

ARIANT	1	MEAN	41	SIGMA		MEAN/SIGMA			MEDIAN	$=37.6$
VARIANT	2	MEAN	41.0	SIGMA	41.	MEAN/SIGMA		. 0	MEDIAN	$=37.9$
VARIANT	3	MEAN	39.8	SIGMA	39	MEAN/SIGMA		. 0	MEDIAN	$3 \mathrm{H} \cdot \mathrm{t}$
VARIANT	4	MEAN	38.7	SIGMA	38.9	MEAN/SIGMA		2	MEOIAN	36.3
VARIANT	5	MEAN	42.4	SIGMA	42.	MEAN/SIGMA			MEDIAN	40.0
VARIANT	6	MEAN	42.5	SIGMA	42.	MEAN/SIGMA		. 2	MEDIAN	$3 \mathrm{H.6}$
VARIANT	7	MEAN	44.5	SIGMA	44.4	MEAN/SIGMA		. 1	MEDIAN	41.0
VARIANT	9	MEAN	38.7	SIGMA	39.5	MEAN/SIGMA			MEDIAN	$=34.5$

NORIALIZED VARIANTS

VARIANT	1	MEAIJ	41.5	SIGMA	40.9	MEAN/SIGMA		. 6	CIA		
VARIANT	2	MEATJ	. 5	SIGMA	-5.2	MEAN/SIGMA		4.7	MECIAN		
VARIANT	3	MEAN	-1.7	SIGMA	-6.5	MEAN/SIGMA		4.8	MEDIAN		-1.7
VARIANT	4	MEAN	-2.7	SIGMA	-6.3	MEAN/SIGMA	$=$	3.6	MEDIAN	=	7
VARIANT	5	MEAN	, 9	SIGMA	-3.	MEAN/SIGMA		4.0	MEUIAN	=	
VARIANT	6	MEAN	$=.9$	SIGMA	-3.	MEAN/SIGMA	=	4.2	MEUIAN		
VARIANT	7	MEAN	2.9	SIGMA	-2.0	MEAN/SIGMA		4.9	MECIAN		?.9
VARIANT	R	MEAN	-2.8	SIGMA	$=-4.5$	MEAN/SIGMA	$=$	1.7	MEUIAN	$=$	-3.3

TABLE H-II (CONTIN!Ti)

STATIGTICAL PARAMETEPS FOR TARGETS SEIECTED GROP PEEDLY "Gide z

H2RR:
UN-NORMALIZED VARIANTS

NORMGLIZEO VARIANTS

H2TREE 1

UN-NORMALIZED VARIANTS

NORMALILED VAPIANTS

TABLE D-III
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENL 3

H3GRASI
UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

$1139 \operatorname{sis} 2$

UN-NORMALIZED VARIANTS

NORMALILED VARIANTS

VARIANT	1	MEAN $=39.2$	SIGMA $=29.8$	MEAN/SIGMA	0.4	MEDIAN	39.1
VARIANT	2	MEAN $=-.8$	SIGMA $=-5.0$	MEAN/SIGMA	4.2	MEDIAN	9
VARIANT	3	MEAM $=-2.1$	SIGMA $=-6.2$	MEAN/SIGMA	4.2	MEUIAN	5
VARIANT	4	MEAIV $=-2.7$	SIGMA $=-5.8$	MEAN/SIGMA	7.1	MEOIAN	2.8
VARIANT	5	MEAN $=.9$	SIGMA $=-2.3$	MEAN/SIGMA	3.2	MEDIAN	
VARIANT	6	MEAN $=.4$	SIGMA $=-4.3$	MEAN/SIGMA	4.6	MEDIAN	3
VARIANT	7	MEAN $=2.7$	SIGMA $=-1.9$	MEAN/SIGMA	4.6	MEUIAN	2.5
VARIANT	ค	MEAN $=-3.6$	SIGMA $=04.7$	MEAN/SIGMA	1.1	MEDIAN	. 1

TABLE D-III (CONTINUED)
STATISTICAL PARAMETERS FOP TARGETS SELECTED FROM PEEDLEY SCEME 3

H3SRIDG

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 57.1 SIGMA = 60.7 MEAN/SIGMA = -7.6 MEDIAN = 52.7
VARIANT 2 MEAN = 56.1 SIGMA = 57.8 MEAN/SIGMA = -1.7 MEDIAN = 51.5
VARIANT 3 MEAN = 54.9 SIGMA = 56.5 MEAN/SIGMA = -1.6 MEDIAN = 50.3
VARIANT 4 MEAN = 52.8 SIGMA = 55.3 MEAN/SIGMA = -2.5 MEDIAN = 4R.8
VARIANT 5 MEAN = 56.8 SIGMA = 59.n MEAN/SIGMA = - 2.2 MEDIAN = 52.4
VARIANT 6 MEAN = 58.0 SIGMA = 59.6 MEAN/SIGMA = -1.5 MEDIAN = 53.3
VARIANT 7 MEAN = 59.5 SIGMA = 51.3 MEAN/SIGMA = -1.8 MEDIAN = 55.1
VARIANT R MEAN = 53.5 SIGMA = 56.1 MEAN/SIGMA = -2.6 MEDIAN = 46.9
```

NORMALIZED VARIANTS

H3CLUT
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=54.6$ SIGMA $=59.4$ MEAN/SIGMA $=-4.8$ MEDIAN $=47.2$
VARIANT 2 MEAN $=53.8$ SIGMA $=56.7$ MEAN/SIGMA $=-7.9$ MEDIAN $=47.7$
VARIANT 3 MEAN $=52.5$ SIGMA $=55.4$ MEAN/SIGMA $=-7.9$ MEDIAN $=46.4$
VARIANT 4 MEAN $=50.6$ SIGMA $=54.1$ MEAN/SIGMA $=-3.5$ MEDIAN $=45.5$
VARIANT 5 MEAN $=54.6$ SIGMA $=57.9$ MEAN/SIGMA $=-7.3$ MEDIAN $=48.8$
VARIANT 6 MEAN $=55.7$ SIGMA $=58.5$ MEAN/SIGMA $=-7.8$ MEDIAN $=49.4$
VARIANT 7 MEAN $=57.2$ SIGMA $=60.2$ MEAN/SIGMA $=-3.0$ MEDIAN $=51.3$
VARIANT R MEAN $=51.1 ~ S I G M A ~$

NORMALILED VARIANTS

table d-hil (CONTLHLCD)
statistical parameters for targets selected from reecley selele 3

H3MAT

UN-NORMALIZED VARIANTS

NORMALIZEO VARIANTS

h3RROT
UN-NORMALIZED VARIANTS

VARIANT	1	:AEAN		SIGMA	54.3	MEAN/SIGMA		N	
VARIANT	2	MEAN	55.3	SIGMA	55.3	MEAN/SIGMA		AN	= 53.9
VARIANT	3	MEAN	54.1	SIGMA	54.3	MEAN/SIGMA	2	MEDIAN	52.4
VARIANT	4	MEAN	51.7	SIGMA	51.2	MEAN/SIGMA	$=.5$	MEDIAN	51
VARIANT	5	MEAN	55.	SIGMA	55.4	MEAN/SIGMA	$=.4$	MEDIAN	= 54.4
VARIANT	6	MEAN	57.4	SIGMA	57.8	MEAN/SIGMA		MEOIAN	55
VARIANT	7	MEAN	58.5	SIGMA	58.5	MEAN/SIGMA	0	EDIAN	57.5
VARIANT	R	MEAN	53.	SIGMA	55.7	MEAN/SIGMA	$=-7.0$	MEDIAN	4

NORMALIZED VARIANTS

VARIANT	1	MEAN	54.3	SIGMA	$=54.3$	MEAN/SIGMA			MEUIAN		53.5
VARIANT	2	MEAN	1.0	SIGMA	$=-5.7$	MEAN/SIGMA	=	6.2	MEDIAN	$=$	9
VARIANT	3	MEAN	-. 2	SIGMA	-6.6	MEAN/SIGMA		6.4	MEDIAN	$=$	3
VARIANT	4	MEAN	-1.9	SIGMA	-6.9	MEAN/SIGMA	=	5.0	MEDIAN	=	-2.0
VARIANT	5	MEAN	1.8	SIGMA	$=-3.6$	PEAN/SIGMA	$=$	5.4	MEDIAN	$=$	6
VARIANT	6	MEAN	2.9	SIGMA	$=-2.3$	MEAN/SIGMA	=	5.2	MEDIAN	$=$	2.7
VARIANT	7	MEAN	4.2	SIGMA	$=-1.9$	MEAN/SIGMA	$=$	6. 2	MEDIAN	$=$	4.2
VARIANT	ค	MEAN	-1.8	SIGMA	-3.0	MEAN/SIGMA		1.2	MEDIAN		-2.0

TABLE D-III (CONTINULD)
statistical parameters for targets selected from reedley scenl 3

H3HWBI
UN-NORMALIZED VARIANTS

VARIANT	1	MEAN	$=57.5$	A	$=61.4$			N	$=47.8$
VARIANT	2	MEAN	55.6	SIGMA	58.3	MEAN/SIGMA		YEDIAN	8
VARIANT	3	MEAN	54.3	SIGMA	57.	MEAN/SIGMA	6	MEDIAN	46.8
VARIANT	4	MEAN	52.7	SIGMA	56.0	NEAN/SIGMA	$=-7.3$	MEDIAN	45.9
VARIANT	5	MEAN	56.6	SIGMA	59.7	MEAN/SIGMA	$=-3.1$	MEUIAN	$=49.3$
VARIANT	6	MEAN	57.4	SIGMA	59.9	MEAN/SIGMA	$=-2.6$	MEDIAN	49.2
VARIANT	7	MEAN	59.1	SIGMA	51.8	MEAN/SIGMA	$=-2.7$	MEDIAN	51.5
VARIANT	R	MEAN	$=52.0$	SIGMA	55.7	MEAN/SIGMA	$=-3.7$	MEDIAN	45.6

NORMALIZED VARIANTS

H3ith
UN-NORMALIZED VARIANTS

T	1	MEAN	46.8	SIGMA		N		2.9	ME		
VARIANT	2	MEAN	47.	SIGMA	45.4	MEAN/SIGMA	=	?	MEDIAN		3
VARIANT	3	MEAN	46.2	SIGMA	44.1	MEAN/SIGMA		2.1	MEDIAN		$45 \cdot 3$
VARIANT	4	MEAN	44.8	SIGMA	43.5	MEAN/SIGMA		1.	MEOIAN		4
VARIANT	5	MEAN	48.7	SIGMA	47	MEA../SIGMA		1.7	MECIAN		47.5
VARIANT	6	MEAN	49.	SIGMA	47	MEAN/SIGMA		2.0	MEOIAN		48.7
VARIANT	7	MEAN	50	SIGMA	48.6	NEAN/SIGMA		2.3	MEUIAN		7
VAPIANT	R	MEAN	43	SIGMA		MEAN/SIGMA		1.4	ME		42.7

NORMALIZED VARIANTS

ANT	1	MEAN	46.	SIGMA		A			MECIAN		
VARIANT	2	MEAN		SIGMA		MEAN/SIGMA		5.6	MEDIAN		5
VARIANT	3	MEAN	- -.6	SIGMA	$=-6$. ?	MEAN/SIGMA		5.5	MEUIAN		
VARIANT	4	MEAN	-2.1	SIGMA	5	MEAN/SIGMA	=	7.3	MEUIAN		2.5
VARIANT	5	MEAN	1.8	SIGMA	2	MEAN/SIGMA		4.2	MEDIAN		1.6
VARIANT	6	MEAN	2.3	SIGMA	2.9	MEAN/SIGMA		5.	MEDIAN		2.3
VARIANT	7	MEAN		SIGMA	-2.0	MEAN/SIGMA		R. 1	MEDIAN		3.7
VARIANT	¢	MEAN	-3.0	SIGMA	-4.	NEAN/SIGMA	$=$	1.4	MEDIAN		-3.7

table doll (CONTINUED)
statistical parameters for targets selected from reedley scene 3

Abstract

H3TREEI UN-NORMALIZEU VARIANTS

NORMALIZED VARIANTS

H3TREE 3

UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

TABLE D-IV
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 4

H4DARKI
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=14.5$ SIGMA $=25.4$ MEAN/SIGMA $=-6.9$ MEUIAN $=10.2$
VARIANT 2 MEAN $=18.3$ SIGMA $=24.2$ MEAN/SIGMA $=-5.9$ MEDIAN $=11.4$
VARIANT 3 MEAN $=16.9$ SIGMA $=22.8$ MEAN/SIGMA $=-5.9$ MEDIAN $=9.9$
VARIANT 4 MEAN $=16.1$ SIGMA $=22.5$ MEAN/SIGMA $=-6.3$ MEOIAN $=9.1$
VARIANT 5 MEAN $=19.9$ SIGMA $=26.3$ MEAN/SIGMA $=-6.4$ MEDIAN $=12.8$
VARIANT 6 MEAN $=19.5$ SIGMA $=24.9$ MEAN/SIGMA $=-5.4$ MEDIAN $=12.2$
VARIANT 7 MEAN $=21.8$ SIGMA $=28.0$ MEAN/SIGMA $=-6.2$ MEDIAN $=14.7$
VARIANT A MEAN $=13.4$ SIGMA $=20.9$ MEAN/SIGMA $=-7.5$ MEDIAN $=-2.0$

NORMALIZED VARIANTS

HADARY.

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 18.6 SIGMA = 25.8 MEAN/SIGMA = -7.2 MEDIAN = 8.1
VARIANT 2 MEAN = 17.5 SIGMA = 24.4 MEAN/SIGMA = -6.8 MEUIAN = 9.2
VARIANT 3 MEAN = 16.5 SICMA = 23.4 MEAN/SIGMA = -6.9 MEDIAN = 8.0
VARIANT 4 MEAN = 16.1 EIGMA = 23.2 MEAN/SIGMA = -7.1 MEDIAN = 5.7
VARIANT 5 MEAN = 19.7 SIGMA = 27.0 MEAN/SIGMA = -7.3 MEDIAN = 10.9
VARIANT 6 MEAN = 17.6 SIGMA = 23.3 MEAN/SIGMA = -5.7 MEDIAN = 10.5
VARIANT 7 MEAN = 20.9 SIGMA = 27.9 MEAN/SIGMA = -K.9 MEDIAN = 12.3
VARIANT R MEAN = 17.1 SIGMA = 24.6 MEAN/SIGMA =-7.5 MEOIAN = -1.9
```


NORMALIZED VARIANTS

TABLE D-IV (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOIN SCENE 4

H4SANDI
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=25.3$ SIGMA $=22.7$ MEAN/SIGMA $=2.6$ MEDIAN $=24.8$
VARIANT 2 MEAN $=24.8$ SIGMA $=23.2$ MEAN/SIGMA $=1.7$ MEDIAN $=23.9$
VARIANT 3 MEAN $=23.6$ SIGMA $=22.0$ MEAN/SIGMA $=1.7$ MEDIAN $=22.9$
VARIANT 4 MEAN $=22.7$ SIGMA $=21.6$ MEAN/SIGMA $=1.1$ MEOIAN $=21.7$
VARIANT 5 MEAN $=26.2$ SIGMA $=24.9$ MEAN/SIGMA $=1.3$ MEOIAN $=25.2$
VARIANT 6 MEAN $=26.3$ SIGMA $=24.7$ MEAN/SIGMA $=1.6$ MEDIAN $=25.5$
VARIANT $7 M E A N ~$

NORMALIZED VARIANTS

H4TACTI

UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=46.2$ SIGMA $=52.4$ MEAN/SIGMA $=-6.3$ MEDIAN $=38.6$
VARIANT 2 MEAN $=44.5$ SIGMA $=49.0$ MEAN/SIGMA $=-4.5$ MEDIAN $=37.8$
VARIANT 3 MEAN $=43.3$ SIGMA $=47.7$ MEAN/SIGMA $=-4.4$ MEDIAN $=36.6$
VARIANT 4 MEAN $=42.2$ SIGMA $=46.9$ MEAN/SIGMA $=-4.7$ MEDIAN $=35.0$
VARIANT 5 MEAN $=45.6$ SIGMA $=50.0$ MEAN/SIGMA $=-4.4$ MEDIAN $=38.7$
VARIANT 6 MEAN $=46.2$ SIGMA $=50.9$ MEAN/SIGMA $=-4.6$ MEDIAN $=39.4$
VARIANT 7 MEAN $=47.8$ SIGMA $=52.3$ MEAN/SIGMA $=-4.5$ MEDIAN $=41.1$
VARIANT R MEAN $=42.4$ SIGMA $=48.1$ MEAN/SIGMA $=-5.6$ MEDIAN $=34.6$

NORMALIZED VARIANTS

TABLE D-IV (CONTINUED)
statistical parameters for targets selected from barstow scene 4

HATACT?
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=42.2$ SIGMA $=46.0$ MEAN/SIGMA $=-3.8$ MEDIAN $=36.8$
VARIANT 2 MEAN $=42.2$ SIGMA $=46.5$ MEAN/SIGMA $=-4.3$ MEDIAN $=35.9$
VARIANT 3 MEAN $=41.0$ SIGMA $=45.5$ MEAN/SIGMA $=-4.5$ MEDIAN $=34.7$
VARIANT 4 MEAN $=39.6$ SIGMA $=43.1$ MEAN/SIGMA $=-7.5$ MEDIAN $=33.6$
VARIANT 5 MEAN $=43.1$ SIGMA $=47.0$ MEAN/SIGMA $=-3.9$ MEDIAN $=37.0$
VARIANT 6 MEAN $=44.1$ SIGMA $=48.6$ MEAN/SIGMA $=-4.6$ MEDIAN $=37.8$
VARIANT 7 MEAN $=45.4$ SIGMA $=49.5$ MEAN/SIGMA $=-4.1$ MEDIAN $=39.3$
VARIANT A MEAN $=40.4$ SIGMA $=47.1$ MEAN/SIGMA $=-6.6$ MEDIAN $=29.7$

NORMALIZED VARIANTS

ANT	1	MEAN $=42.2$	SIGMA	Mean/SIGMA		N	
VARIANT	2	MEAN $=-.4$	SIGMA $=-4$	MEAN/SIGMA	4.3	MEDIAN	
VARIANT	3	MEAN $=-1.7$	SIGMA $=-6$.	MEAN/SIGMA		MEDIAN	
VARIANT	4	MEAN $=-2.5$	SIGMA $=-6.4$	MEAN/SIGMA	7.	MEDIAN	. 7
VAPIANT	5	MEAN $=.9$	SIGMA $=-2$.	MEAN/SIGMA	3.	MEUIAN	
VARIANT	6	MEAN $=1.2$	SIGMA $=-2.6$	NEAN/SIGMA	3.8	MEUIAN	
VARIANT	7	MEATS $=3.0$	SIGMA $=-1.5$	NEAN/SIGMA	4.4	MEDIAN	
VARIANT	R	MEAN $=-3.6$	SIGMA $=-4.0$	MEAN/SIGMA		MEDIAN	-4.8

HATAINKI
UN-NORMALILED VARIANTS

```
VARIANT 1 MEAN = 40.4 SIGMA = 43.9 MEAN/SIGMA = - . . 6 MEDIAN = 35.1
VARIANT 2 MEAN = 40.3 SIGMA = 44.5 MEAN/SIGMA = -4.2 MEDIAN = 34.8
VARIANT 3 MEAN = 39.2 SIGMA = 43.5 NEAN/SIGMA = -4.3 MEDIAN = 33.5
VARIANT 4 MEAN = 36.6 SIGMA = 39.0 MEAN/SIGMA = -2.3 MEDIAN = 32.2
VARIANT 5 MEAN = 40.7 SIGMA = 44.0 NEAN/SIGMA = -7.2 MEDIAN = 36.2
VARIANT 6 MEAN = 42.4 SIGMA = 47.0 MEAN/SIGMA = -4.6 MEOIAN = 36.2
VARIANT 7 MEAN = 43.6 SIGMA = 47.7 MEAN/SIGMA = -4.1 MEDIAN = 37.9
VARIANT R MEAN = 39.6 SIGMA = 44.8 NEAN/SIGMA = -5.2 MEDIAN = 29.3
```


NORMALIZED VARIANTS

TABLE DIV (CONTINUED)
Statistical parameters for targets selected from barstow scene 4

H4TR251

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 40.3 SIGMA = 43.6 MEAN/SIGMA = -3.3 MEDIAN = 34.5
VARIANT 2 MEAN = 40.0 SIGMA = 42.9 MEAN/SIGMA =-3.0 MEDIAN = 33.4
VARIANT 3 MEAN = 38.9 SIGMA = 41.9 MEAN/SIGMA = -3.1 MEDIAN = 32.3
VARIANT 4 MEAN = 37.7 SIGMA = 40.8 MEAN/SIGMA = -3.1 MEDIAN = 31.3
VARIANT 5 MEAN = 41.2 SIGMA = 44.? MEAN/SIGMA = -7.9 MEDIAN = 34.7
VARIANT 6 MEAN = 41.6 SIGMA = 44.7 MEAN/SIGMA = -7.1 MEDIAN = 34.9
VARIANT 7 MEAN = 43.3 SIGMA = 46.3 MEAN/SIGMA = -7.0 MEDIAN = 36.8
VARIANT A MEAN = 38.7 SIGMA = 42.9 MEAN/SIGMA = -4.1 MEDIAN = 31.2
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 40.3 SIGMA = 43.6 MEAN/SIGMA = -7.3 MEDIAN = 34.5
VARIANT 2 MEAN = -.7 SIGMA = -5.1 MEAN/SIGMA = 4.4 MEDIAN = -.5
VARIANT 3 MEAN = -1.9 SIGMA = 6.6.5 MEAN/SIGMA = 4.5 MEDIAN = - i.8
VARIANT 4 MEAN = -3.1 SIGMA = -6.3 MEAN/SIGMA = 3.2 MEDIAN = -3.4
VARIANT 5MEAN = .7 SIGMA = -3.0 MEAN/SIGMA = 7.6 MEDIAN = . . 
VARIANT 6 MEAN = .8 SIGMA = -3.1 MEAN/SIGMA = 3.9 MEDIAN = . 5
VARIANT 7 MEAN = 2.7 SIGMA = 1.1.7 MEAN/SIGMA = 4.3 MEDIAN = 2.9
VARIANT A MEAN = -3.0 SIGMA = 44.7 MEAN/SIGMA = 1.8 MEDIAN = -3.7
```

TABLE D-V
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTON SCENE 5

H5DARK
UN-NORMALIZEU VARIANTS

VARIANT	1	MEAN	21.5	SIGMA	$=21.5$	MEAN/SIGMA	. 0	MEDIAN	
VARIANT	2	MEAN	$=21.8$	SIGMA	22.6	MEAN/SIGMA			
VARIANT	3	MEAN	$=20.6$	SIGMA	21.3	MEAN/SIGMA		MEDIAN	$=17.8$ $=16.2$
VARIANT	4	MEAN	$=19.4$	SIGMA	20.7	MEAN/SIGMA	2	MEOIAN	$=16.2$
VARIANT	5	MEAN	23.0	SIGMA	24.2	MEAN/SIGMA	2	MEDIAN	$\begin{aligned} & =19.8 \\ & =21.1 \end{aligned}$
VARIANT	6	MEAN	23.5	SIGMA	24.1	MEAN/SIGMA		MEDIAN	
VARIANT	7	MEAN	25.1	SIGMA	25.9	MEAN/SIGMA			
VARIANT	8	MEAN	$=19.5$	SIGMA	20.6	MEAN/SIGMA			8

NORMALIZED VARIANTS
VARIANT 1 MEAN $=21.5$ SIGMA $=21.5$ MEAN/SIGMA $=$
VARIANT 2 MEAN $=1.1$ SIGMA $=-4.6$ MEAN/SIGMA $=$
VARIANT 3 MEAN $=-1.1$ SIGMA $=-6.1$ MEAN/SIGMA $=$
VARIANT 4 MEAN $=-2.5$ SIGMA $=-6.0$ MEAN/SIGMA $=$
VARIANT SMEAN $=1.2$ SIGMA $=-3.0$ MEAN/SIGMA $=$
VARIANT 6 MEAN $=1.9$ SIGMA $=-2.4$ MEAN/SIGMA $=$
VARIANT 7 MEAN $=3.5$ SIGMA $=-1.5$ MEAN/SIGMA $=$
VARIANT AMEAN $=-2.0 ~ S I G M A ~$

1155 FiND
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=23.7$ SIGMA $=19.4$ MEAN/SIGMA $=$
VARIANT 2 MEAN $=23.0$ SIGMA $=21.0$ MEAN/SIGMA $=$
VARIANT 3 MEAN $=21.9$ SIGMA $=19.9$ MEAN/SIGMA $=$
VARIAIT 4 MEAN $=20.6$ SIGMA $=1 B .6$ MEAN/SIGMA $=$
VARIUNT 5 MEAN $=24.3$ SIGMA $=22.2$ MEAN/SIGMA $=$
VARIANT 6 MEAN $=24.6$ SIGMA $=23.1$ MEAN/SIGMA $=$
VARIANT 7 MEAN $=26.3$ SIGMA $=24.2$ MEAN/SIGMA $=$
VARIANTA MEAN $=20.9$ SIGMA $=21.1$ MEAN/SIGMA $=$
4.3 MEDIAN $=23.7$
?.0 MEDIAN $=22.6$
?.0 MEDIAN $=21.4$
?.0 MEDIAN $=19.7$
?.1 MEDIAN $=23.9$
1.5 MEDIAN $=23.6$
2.2 MEDIAN $=25.7$
. .2 MEDIAN $=18.4$

NORMALIZED VARIANTS

VARIANT	1	MEAN	23.7	SIGMA	$コ$	MEAN/SIGMA		4.3	MEDIAN		
VARIANT	2	MEAN	9	SIGMA	7	MEAN/S IGMA		3.8	MEDIAN		
VARIANT	3	MEAN	$=-2.1$	SIGMA	-5.9	MEAN/SIGMA		7.9	MEDIAN		
VARIANT	4	MEAN	$=-3.2$	SIGMA	-6.5	MEAN/SIGMA		7.3	MEDIAN		
VARIANT	5	MEAN	5	SIGMA	-3.2	MEAN/SIGMA		3.6	MEDIAN	=	
VARIANT	6	MEAN	. 6	SIGMA	-2.5	MEAN/SIGMA		3.1	MEDIAR!		
VARIANT	7	MEAN	$=2.4$	SIGMA	$=-1.6$	MEAN/SIGMA		4.0	MEDIAN		3
VARIANT	ค	MEAN	$=-3.1$	SIGMA	-3.9	NEAN/SIGMA		. 8	MEDIAN		

TABLE D-V (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SRE'JE 5

115 TACT

UN-NORMALIZEU VARIANTS

VARIANT 1 MEAN $=39.0$ SIGMA $=41.0$ MEAN/SIGMA $=-7.0$ MEDIAN $=35.9$
VARIANT 2 MEAN $=38.5$ SIGMA $=40.0$ MEAN/SIGMA $=-1.5$ MEDIAN $=34.7$
VARIANT 3 MEAN $=37.3$ SIGMA $=38.7$ MEAN/SIGMA $=-1.4$ MEDIAN $=33.4$
VARIANT 4 MEAN $=35.8$ SIGMA $=37.5$ MEAN/SIGMA $=-1.7$ MEDIAN $=32.4$
VARIANT S MEAN $=39.5$ SIGMA $=41.2$ MEAN/SIGMA $=-1.7$ MEDIAN $=36.2$
VARIANT 6 MEAN $=40.3$ SIGMA $=41.8$ MEAN/SIGMA $=-1.5$ MEDIAN $=36.5$
VARIANT 7 MEAN $=41.8$ SIGMA $=43.3$ MEAN/SIGMA $=-1.5$ MEDIAN $=38.1$
VARIANT R MEAN $=36.8$ SIGMA $=38.8$ MEAN/SIGMA $=-1.9$ MEDIAN $=32.3$

NORMALIZE O VARIANTS

H5TACT3
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=39.1$ SIGMA $=41.1$ MEAN/SIGMA $=-2.1$ MEDIAN $=35.5$
VARIANT 2 MEAN $=38.5$ SIGMA $=39.9$ MEAN/SIGMA $=-1.4$ MEDIAN $=34.3$
VARIANT 3 MEAN $=37.3$ SIGMA $=34.6$ NEAN/SIGMA $=-1.4$ MEDIAN $=33.0$
VARIANT 4 MEAN $=35.8$ SIGMA $=37.4$ MEAN/SIGMA $=-1.6$ MEDIAN $=31.9$
VARIANT 5 MEAN $=39.5$ SIGMA $=41.1$ MEAN/SIGMA $=-1.6$ MEDIAN $=36.0$
VARIANT 6 MEAN $=40.3$ SIGMA $=41.7$ NEAN/SIGMA $=-1.5$ MEDIAN $=35.7$
VARIANT 7 MEAN $=41.9$ SIGMA $=43.2$ MEAN/SIGMA $=-1.4$ MEDIAN $=3 R .0$
VARIANT A MEAN $=36.7$ SIGMA $=38.5$ MEAN/SIGMA $=-1.8$ MEDIAN $=33.4$

NORMALIZED VARIANTS

TABLE D-V (CONTINUED)
statistical parameters for targets selected from barstow sceme 5

HSTANKI

UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

H5Tridis

UN-HORMALIZED VARIANTS

T	1	MEAN	$=34.5$	SIGMA	= 35.	MEAN/SIGMA	-1	MEOIAN	
NT	2	MEAN	$34 \cdot 3$	SIGMA	35.4	MEAN/SIGMA		EDIAN	
VARIANT	3	MEAN	32.9	SIGMA	33.	MEAN/SIGMA		MEDIAN	31.2
VARIANT	4	MEAN	31.7	SIGMA	33.	MEAN/SIGMA		MEUIAN	29.3
VARIANT	5	MEAN	35.1	SIGMA	35	MEAN/SIGMA		MEDIAN	$=33.3$
VARIANT	6	MEAN	36.2	SIGMA	37.6	MEAN/SIGMA	-1.4	MEDIAN	$=34.3$
IANT	7	MEAN	37.7	SIGMA	38.9	MEAN/SIGMA		MEDIAN	
I	8	ME		SI		MEAN/SIGMA		ME	

NORMALILED VARIANTS

TABLE D-V (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCE:UF 5

H5SAND2

UN-NOKMALIZED VARIANTS
VARIANT 1 MEAN $=23.9$ SIGMA $=19.7$ MEAN/SIGMA $=4.1$ MEDIAN $=23.7$
VARIANT 2 MEAN $=23.2$ SIGMA $=20.9$ MEAN/SIGMA $=2.3$ MEDIAN $=22.9$
VARIANT 3 MEAN $=22.0$ SIGMA $=19 . R$ MEAN/SIGMA $=2.2$ MEOIAN $=21.7$
VARIANT 4 MEAN $=20.8$ SIGMA $=18.8$ MEAN/SIGMA $=2.0$ MEDIAN $=20.3$
VARIANT 5 MEAN $=24.5$ SIGMA $=22.4$ MEAN/SIGMA $=2.1$ MEDIAN $=24.0$
VARIANT 6 MEAN $=24.7$ SIGMA $=22.9$ MEAN/SIGMA $=1.9$ MEDIAN $=23.9$
VARIANT $7 M E A N ~$

NORMALIZEO VARIANTS

HSTACTI

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 40.6 SIGMA = 42.3 MEAN/SIGMA = -1.7 MEOIAN = 37.0
VARIANT 2 MEAN = 39.7 SIGMA = 40.R MEAN/SIGMA = 1.1 MEDIAN = 36.5
VARIANT 3 MEAN = 38.4 SIGMA = 39.5 NEAN/SIGMA = -1.1 MEDIAN = 35.3
VARIANT 4 MEAN = 37.2 SIGMA = 38.F MEAN/SIGMA = -1.4 MEDIAN = 34.2
VARIANT 5 MEAN = 40.9 SIGMA = 42.4 MEAN/SIGMA = 1.4 MEDIAN = 3R.0
VARIANT 6 MEAN = 41.3 SIGMA = 42.4 MEAN/SIGMA = -1.1 MEDIAN = 3&.0
VARIANT 7 MEAN = 43.1 SIGMA = 44.3 MEAN/SIGMA = -1.2 MEDIAN = 39.8
VARIANT & MEAN = 38.2 SIGMA = 39.7 MEAN/SIGMA = -1.5 MEDIAN = 34.8
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 40.6 SIGMA = 42.3 MEAN/SIGMA = -1.7 MEDIAN = 37.0
VARIANI 2 MEAN = -.4 SIGMA = -5.1 NEAN/SIGMA = 4.7 MEDIAN = -.7%
VARIANT 3 MEAN = -1.7 SIGMA = -6.3 MEAN/SIGMA = 4.6 MEDIAN = - 1.9
VARIANT 4 MEAN =-2.8 SIGMA = -7.3 MEAN/SIGMA = 4.4 MEDIAN = -3.1
VARIANT 5 MEAN = .8 SIGMA = 4.3 MEAN/SIGMA = 5.1 MEOIAN = . . 7
VARIANT 6 MEAN = 1.2 SIGMA = -2.3 MEAN/SIGMA = 3.5 MEDIAN = . .7
VARIANT 7 MEAN = 3.0 SIGMA = 1.1.9 MEAN/SIGMA = 4.9 MEDIAN = 2.8
VARIANT R MEAN = -2.6 SIGMA = 4.4.1 MEAN/SIGMA = 1.5 MEOIAN = -3.5
```

TABLE D-V (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENF 5

H5TR251
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=38.8$ SIGMA $=39.3$ MEAN/SIGMA $=-.6$ MEDIAN $=35.5$
VARIANT 2 MEAN $=38.9$ SIGMA $=40.0$ MEAN/SIGMA $=-1.2$ MEDIAN $=34.6$
VARIANT 3 MEAN $=37.7$ SIGMA $=38.8$ MEAN/SIGMA $=-1.1$ MEDIAN $=33.3$
VARIANT 4 MEAN $=35.6$ SIGMA $=36.6$ MEAN/SIGMA $=-1.1$ MEDIAN $=32.1$
VARIANT SMEAN $=39.4$ SIGMA $=40.4$ MEAN/SIGMA $=-1.0$ MEDIAN $=36.3$
VARIANT GMEAN $=40.9$ SIGMA $=42.3$ MEAN/SIGMA $=-1.4$ MEDIAN $=36.5$
VARIANT 7MEAN $=42.1$ SIGMA $=43.3$ MEAN/SIGMA $=-1.2$ MEDIAN $=39.0$
VARIANT R MEAN $=36.9$ SIGMA $=38.4$ MEAN/SIGMA $=-1.6$ MEDIAN $=32.2$

NORMALIZED VARIANTS

ANT	1	MEAN	38.8	SIGMA	39.3	MEAN/SIGMA			MEUIAN		
VARIANT	2	MEAN		SIGMA	-4.5	MEAN/SIGMA		4.5	MEDIAN		
VARIANT	3	MEAN	$=-1.2$	SIGMA	-5.9	MEAN/SIGMA		4.7	MEDIAN		1.0
VARIANT	4	MEAN	-2.8	SIGMA	-6.2	MEAN/SIGMA		3.3	MEDIAN		2.7
VARIANT	5	MEAN	9	SIGMA	-3.2	MEAN/SIGMA		1	MEDIAN		
VARIANT	6	MEAN	8	SIGMA	-1.9	MEAN/SIGMA		3.7	MEDIAN		1.8
VARIANT	7	MEAN	3.3	SIGMA	-1.3	MEAN/SIGMA		4.6	MEOIAN		3.2
VARIANT	R	MEAN	2.1	SIGMA	-3.6	NEAN/SIGMA		1.5	DIAN		2

TABLE D-VI
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 6

H6TAIJK 1
UIN-NORMALILEU VARIANTS
VARIAINT 1 MEAN $=50.9$ SIGMA $=53.6$ MEAN/SIGMA $=-2.6$ MEDIAN $=45.4$
VARIANT 2 MEAN $=50.4$ SIGMA $=53.1$ MEAN/SIGMA $=-2.7$ MEDIAN $=45.6$
VARIANT 3 MEAN $=49.1$ SIGMA $=51.7$ MEAN/SIGMA $=-7.7$ MEOIAN $=44.3$
VARIANT 4 MEAN $=47.5$ SIGMA $=49.9$ MEAN/SIGMA $=-2.4$ MEDIAN $=42.8$
VARIANT 5 MEAN $=51.3$ SIGMA $=53.7$ MEAN/SIGMA $=-7.4$ MEDIAN $=.6 .6$
VARIAINT 6 MEAN $=52.7$ SIGMA $=55.7$ MEAN/SIGMA $=-7.0$ MEDIAN $=46.7$
VARIANT 7 MEAN $=53.9$ SIGMA $=56.6$ MEAN/SIGMA $=-2.7$ MEDIAN $=49.0$
VARIANT R MEAN $=47.7$ SIGMA $=51.3$ MEAN/SIGMA $=-7.6$ MEOIAN $=41.0$

NOPMALIZEO VARIANTS

RIANT	1	MEAN $=50.9$	SIGMA $=53$	MEAN/SIGMA		MEOIAN	45.4
VARIANT	2	MEAN	SIGMA $=-5$. ?	MiEAN/SIGMA	4.8	MEOIAN	
VARIANT	3	MEAIN $=-1$.	SIGMA $=-6.6$	MEAN/SIGMA	9	MEUIAN	
VARIANT	4	MEAN $=-2.9$	SIGMA $=-7.3$	MEAN/SIGMA		MEDIAN	9
VARIANT	5	MEAN	SIGMA $=-4.7$	MEAN/SIGMA	4.8	MEDIAN	$=.6$
VARIANT	6	MEAN $=1.3$	SIGMA $=-2.7$	MEAN/SIGMA	7.9	MEDIAN	- .8
VARIANT	7	MEAIT $=3.0$	SIGMA $=-2.1$	MEAN/SIGMA	5.2	MEDIAN	. 8
VARIANT	8	MEAII $=-3.3$	SIGMA $=-5.3$	MEAN/SIGMA		MEDIAN	

H6TR251
UN-NORMALIZED VARIANTS

NORMALILED VARIANTS

```
VARIANT I MEAN = 57.1 SIGMA = 58.6 MEAN, SIGMA = -1.5 MEDIAN = 53.7
VA2IANT 2 MEAN = -.5 SIGMA = -4.9 MEAN/SIGMA = 4.4 MEDIAN = -.7
VAZIANT 3 MEAN = -1.7 SIGMA = 6.6.1 MEAN/SIGMA = 4.4 MEDIAN = -2.1
-LINOT 4 MEAN = -2.8 SIGMA = -6.5 MEAN/SIGMA = 3.7 MEDIAN = -3.2
.AJIA.4T 5 MFAN = .8 SIGMA = -2.9 MEAN/SIGMA = 3.7 MEDIAN = . .4
\therefore:A.,T b MEAN = 1.0 SIGMA = -2.8 MEAN/SIGMA = 1.9 MEDIAN = . &
...U.'MEAH = 2.8 SIGMA = -1.8 MEAN/SIGMA = 4.7 MEDIAN = 2.7
    .!\ddots' MFAN = -3.2 SIGMA = -3.8 MEAN/SIGMA = . 5 MEDIAN = -4.0
```

TABLE D-VII
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 7

H7TAiNK 1

UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=53.6$ SIGMA $=54.5$ MEAN/SIGMA $=-.9$ MEDIAN $=50.5$
VARIANT 2 MEAN $=52.8$ SIGMA $=53.8$ MEAN/SIGMA $=-1.0$ MEDIAN $=49.8$
VARIANT 3 MEAN $=51.7$ SIGMA $=52.7$ MEAN/SIGMA $=-1.0$ MEDIAN $=48.9$
VARIANT 4 MEAN $=50.5$ SIGMA $=51.9$ MEAN/SIGMA $=-1.4$ MEDIAN $=46.9$
VARIANT SMEAN $=54.1$ SIGMA $=55.0$ MEAN/SIGMA $=-1.0$ MEDIAN $=50.2$
VARIANT 6 MEAN $=54.3$ SIGMA $=55.6$ MEAN/SIGMA $=-1.2$ MEDIAN $=51.7$
VARIANT 7 MEAN $=56.1$ SIGMA $=57.1$ MEAN/SIGMA $=-1.0$ MEDIAN $=53.0$
VARIANT RMEAN $=51.6$ SIGMA $=53.7$ MEAN/SIGMA $=-7.1$ MEDIAN $=47.2$

NORMALIZED VARIANTS

TABLE D-VIII
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P4TR25

UN-NORMALIZED VARIANTS

NT	1	MEAN	46.9	SIGMA	47.0	MEAN/SIGMA		MEDIAN		
VARIANT	2	MEAN	46.5	SIGMA	47.?	MEAN/SIGMA		MEDIAN		44.7
VARIANT	3	MEAN	45.4	SIGMA	45.9	MEAN/SIGMA		MEDIAN		44.1
VARIANT	4	MEAN	44.6	SIGMA	45.6	MEAN/SIGMA	-1	MEDIAN		41
VARIANT	5	MEAN	48.2	SIGMA	49.5	MEAN/SIGMA	-1.3	MEOIAN	=	6
VARIANT	6	MEAN	47.8	SIGMA	47.6	MEAN/SIGMA	2	MEDIAN		46.2
VARIANT	7	MEAN	49.9	SIGMA	50.6	MEAN/SIGMA	7	MEDIAN		
VARIANT	8	MEAN	45.2	SIGMA	45.5	MEAN/SIGMA		MEDIAN		40.

NORMALIZEO VARIANTS

PAVAN
UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 51.6 SIGMA = 55.6 MEAN/SIGMA = -3.9 MEDIAN = 43.4
VARIANT 2 MEAN = 48.9 SIGMA = 51.5 MEAN/SIGMA = -7.7 MEDIAN = 44.9
VARIANT 3 MEAN = 47.7 SIGMA = 50.3 MEAN/SIGMA = -7.6 MEDIAN = 43.4
VARIANT 4 MEAN = 46.7 SIGMA = 49.7 MEAN/SIGMA = -3.0 MEDIAN = 4.3.4
VARIANT 5 MEAN = 50.1 SIGMA = 52.7 MEAN/SIGMA = -7.6 MEUIAN = 46.0
VARIANT 6 MEAN = 50.7 SIGMA = 53.5 MEAN/SIGMA = - >.8 MEDIAN = 45.7
VARIANT 7 MEAN = 52.3 SIGMA = 55.0 MEAN/SIGMA = -2.7 MEDIAN = 48.2
VARIANT R MEAN = 46.0 SIGMA = 51.1 MEAN/SIGMA = -3.1 MEDIAN = 41.0
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 51.6 SIGMA = 55.6 MEAN/SIGMA = -3.9 MEUIAN = 43.4
VARIANT 2 MEAN = -.2 SIGMA = -4.4 MEAN/SIGMA = 4.2 MEDIAN = -.06
VARIANT 3 MEAN = - 1.5 SIGMA = -5.9 MEAN/SIGMA = 4.3 MEDIAN = - 1.9
VARIANT 4 MEAN = -2.8 SIGMA = -6.? MEAN/SIGMA = 7.4 MEDIAN = -3.2
VARIANT 5 MEAN = .9 SIGMA = -3.6 NEAN/SIGMA = 4.4 MEOIAN = . .8
VARIANT 6 MEAN = 1.6 SIGMA = -1.R MEAN/SIGMA = 3.3 MEDIAN = 2.0
VARIANT 7 MEAN = 3.1 SIGMA = -1.2 MEAN/SIGMA = 4.4 MEDIAN = 2.6
VARIANT R MEAN = -2.6 SIGMA = -4.0 MEAN/SIGMA = 1.4 MEDIAN = -2.8
```


TABLE D-VIII (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

PATACT

UN-NORMALIZED VARIANTS

VARIANT I MEAN $=47.6$ SIGMA $=52.7$ MEAN/SIGMA $=-5.0$ MEDIAN $=41.8$
VARIANT 2 MEAN $=46.4$ SIGMA $=49.4$ MEAN/SIGMA $=-7.0$ MEDIAN $=40.9$
VARIANT 3 MEAN $=45.2$ SIGMA $=48.1$ MEAN/SIGMA $=-3.0$ MEDIAN $=39.3$
VARIANT 4 MEAN $=43.9$ SIGMA $=47.3$ MEAN/SIGMA $=-3.3$ MEDIAN $=3 R .0$
VARIANT 5 MEAN $=47.5$ SIGMA $=50.5$ MEAN/SIGMA $=-7.0$ MEDIAN $=41.5$
VARIANT 6 MEAN $=48.1$ SIGMA $=51.3$ MEAN/SIGMA $=-7.2$ MEDIAN $=42.1$
VARIANT 7 MEAN $=49.7$ SIGMA $=52.8$ MEAN/SIGMA $=-3.1$ MEDIAN $=44.4$
VARIANT A MEAN $=44.7$ SIGMA $=48.6$ MEAN/SIGMA $=-3.9$ MEDIAN $=36.9$

NORMALIZEO VARIANTS

PATANK
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=44.7$ SIGMA $=4 \epsilon .4$ MEAN/SIGMA $=-1.8$ MEDIAN $=38.1$
VARIANT 2 MEAN $=44.9$ SIGMA $=47.1$ MEAN/SIGMA $=-2.2$ MEDIAN $=3 A .4$
VARIANT 3 MEAN $=43.8$ SIGMA $=46.1$ MEAN/SIGMA $=-7.3$ MEDIAN $=37.2$
VARIANT 4 MEAN $=40.7$ SIGMA $=41.3$ MEAN/SIGMA $=-6$ MEDIAN $=35.4$
VARIANT 5 MEAN $=45.1$ SIGMA $=46.5$ MEAN/SIGMA $=-1.4$ MEDIAN $=38.6$
VARIANT G MEAN $=47.2$ SIGMA $=49.7$ MEAN/SIGMA $=-2.5$ MEOIAN $=40.0$
VARIANT 7 MEAN $=48.3$ SIGMA $=50.4$ MEAN/SIGMA $=-2.1$ MEDIAN $=41.9$
VARIANT R MEAN $=43.7$ SIGMA $=47.3$ MEAN/SIGMA $=-3.6$ MEDIAN $=29.7$

NORMALIZED VARIANTS

	2	MEAN		I		MA			MEDIAN		
	3	MEAN		SIGMA	6	IGMA			MEDIAN		
IANT	4	MEAN		SIGMA	$=-6.4$	EAN/SIGMA			MED		
T	5	MEAN		SIGM					MEDIAN		
variant	6	ME		SIGma		A			EDIA		
VARIANT	7	ME		SIGMA	6	IGMA			MEDIAN		
ANT	ค	ME		SIG							

table o-vill (continued)
statistical parameters for targets selected from the p-rilfs

P4CRAN

UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=46.0$ SIGMA $=46.3$ MEAN/SIGMA $=-.3$ MEDIAN $=43.4$
VARIANT 2 MEAN $=46.8$ SIGMA $=48.5$ MEAN/SIGMA $=-1.7$ MEDIAN $=43.8$
VARIANT 3 MEAN $=45.5$ SIGMA $=47.3$ MEAN/SIGMA $=-1.7$ MEDIAN $=42.3$
VARIANT 4 MEAN $=44.4$ SIGMA $=45.2$ MEAN/SIGMA $=-.8$ MEDIAN $=42.1$
VARIANT S MEAN $=47.9$ SIGMA $=49.1$ MEAN/SIGMA $=-1.2$ MEDIAN $=44.9$
VARIANT 6 MEAN $=48.6$ SIGMA $=50.7$ MEAN/SIGMA $=-7.1$ MEDIAN $=44.7$
VARIANT 7 MEAN $=50.1$ SIGMA $=51.8$ MEAN/SIGMA $=-1.7$ MEDIAN $=46.5$
VARIANT R MEAN $=42.1$ SIGMA $=43.1$ MEAN/SIGMA $=-.9$ MEDIAN $=39.0$

NORMALIZED VARIANTS
VARIANT 1 MEAN $=46.0$ SIGMA $=46.3$ MEAN/SIGMA $=$
VARIANT 2 MEAN $=-.2$ SIGMA $=-4.1$ MEAN/SIGMA $=$
VARIANT 3 MEAN $=-1.4$ SIGMA $=-5.2$ MEAN/SIGMA $=$
VARIANT 4 MEAN $=-2.1$ SIGMA $=-5.4$ MEAN/SIGMA $=$
VARIANT 5 MEAN $=1.2$ SIGMA $=-2.2$ MEAN/SIGMA $=$
VARIANT 6 MEAN $=1.3$ SIGMA $=-2.2$ MEAN/SIGMA $=$
VARIANT 7 MEAN $=3.1$ SIGMA $=-1.0$ MEAN/SIGMA $=$
VARIANT A MEAN $=-3.2$ SIGMA $=-2.7$ MEAN/SIGMA $=$
-.3 MEDIAN $=43.4$
3.9 MEDIAN $=-3.3$
3.8 MEDIAN $=-1.0$
7.7 MEDIAN $=-1.5$
3.5 MEDIAN $=1.2$
7.6 MEDIAN $=1.2$
4.2 MEDIAN $=2.9$
. .5 MEDIAN $=-7.0$

P4JEE.

UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

TABLE D-VIII (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P5CRAN 1

UN-NORMALIZEU VARIANTS

NORMALIZED VARIANTS

P5JEEP 1
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=32.5$ SIGMA $=30.5$ MEAN/SIGMA $=2.0$ MEDIAN $=29.7$
VARIANT 2 MEAN $=32.7$ SIGMA $=31.0$ MEAN/SIGMA $=1.7$ MEDIAN $=30.4$
VARIANT 3 MEAN $=31.4$ SIGMA $=29.8$ MEAN/SIGMA $=1.5$ MEDIAN $=29.1$
VARIANT 4 MEAN $=30.9$ SIGMA $=29.7$ MEAN/SIGMA $=1.1$ MEDIAN $=29.0$
VARIANT 5 MEAN $=34.0$ SIGMA $=32.3$ MEAN/SIGMA $=1.7$ MEDIAN $=32.6$
VARIANT 6 MEAN $=34.2$ SIGMA $=32.9$ MEAN/SIGMA $=1.3$ MEDIAN $=32.0$
VARIANT 7 MEAN $=36.1$ SIGMA $=34.4$ MEAN/SIGMA $=1.7$ MEDIAN $=33.7$
VARIANT A MEAN $=28.6$ SIGMA $=31.1$ MEAN/SIGMA $=-2.4$ MEDIAN $=25.6$

NORMALIZED VARIANTS

VARIANT	1	MEAN	32.5	SIGMA	30.5	MEAN/SIGMA		2.0	MEDIAN		29.7
VARIANT	2	MEAN	- 2	SIGMA	-5.7	MEAN/SIGMA		5.9	MEDIAN	$=$	2
VARIANT	3	MEAN	-1.1	SIGMA	-6.6	MEAN/SIGMA	$=$	5.5	MEDIAN	$=$	-1.2
VARIANT	4	MEAN	-1.7	SIGMA	-6.9	MEAN/SIGMA	$=$	5.3	MEDIAN		. 5
VARIANT	5	MEAN	1.6	SIGMA	-3.0	MEAN/SIGMA	$=$	4.6	MEDIAN	$=$	8
VARIANT	6	MEAN	1.7	SIGMA	-3.4	MEAN/SIGMA	$=$	5.1	MEDIAN	$=$	1.8
VARIANT	7	MEAN	3.7	SIGMA	-2.8	MEAN/SIGMA		6.4	MEDIAN		3.8
VARIANT	ค	MEAN	-5.2	SIGMA	-5.	MEAN/SIGMA			MEDIAN		-7.4

table d-vill (COntinued)
Statistical parameters ror targets selected from the p-filfs

PSTACTI

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 42.7 SIGMA = 43.0 NEAN/SIGMA =
VARIANT 2 MEAN = 42.0 SIGMA = 41.8 MEAN/SIGMA =
VARIANT 3 MEAN = 40.8 SIGMA = 40.5 MEAN/SIGMA =
VARIANT 4 MEAN = 39.4 SIGMA = 39.4 MEAN/SIGMA =
VARIANT 5 MEAN = 43.1 SIGMA = 43.1 MEAN/SIGMA =
VARIANT 6 MEAN = 43.8 SIGMA = 43.7 MEAN/SIGMA =
VARIANT 7 MEAN = 45.4 SIGMA = 45.3 MEAN/SIGMA =
VARIANT A MEAN = 40.4 SIGMA = 40.7 MEAN/SIGMA =
```

-.3 MEDIAN $=41.7$

- 2 MEDIAN $=40.2$
.3 MEDIAN $=39.0$
-.1 MEDIAN $=37.7$
.0 MEDIAN $=41.1$
.1 MEUIAN $=41.7$
.1 MEDIAN $=43.5$
. .3 MEDIAN $=38.4$

TABLE D-VIII (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P5TR251

UN-NORMALIZED VARIANTS
VARIANT 1 MEAN $=43.8$ SIGMA $=42.2$ MEAN/SIGMA $=1.6$ MEDIAN $=43.0$
VARIANT 2 MEAN $=43.5$ SIGMA $=42.0$ MEAN/SIGMA $=1.5$ MEDIAN $=41.9$
VARIANT 3 MEAN $=42.3$ SIGMA $=40.6$ MEAN/SIGMA $=1.7$ MEDIAN $=49.9$
VARIANT 4 MEAN $=40.4$ SIGMA $=39.5$ MEAN/SIGMA $=4.9$ MEDIAN $=39.1$
VARIANT 5 MEAN $=44.1$ SIGMA $=42.7$ MEAN/SIGMA $=1.5$ MEDIAN $=42.1$
VARIANT 6 MEAN $=45.5$ SIGMA $=44.2$ MEAN/SIGMA $=1.4$ MEDIAN $=44.1$
VARIANT 7 MEAN $=46.8$ SIGMA $=45.5 M E A N / S I G M A ~$

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 43.8 SIGMA = 42.2 MEAN/SIGMA = 1.6 MEDIAN = 43.0
VARIANT 2 MEAN = -.2 SIGMA = -4.1 MEAN/SIGMA = 3.9 MEOIAN = -.4
VARIANT 3 MEAN = -1.4 SIGMA = -5.5 MEAN/SIGMA = 4.1 MEDIAN = - - . 8
VARIANT 4 MEAN = -3.0 SIGMA = -6.2 MEAN/SIGMA = 3.2 MEDIAN = -3.1
VARIANT 5 MEAN = .6 SIGMA = -2.9 MEAN/SIGMA = 3.5 MEOIAN = -.4
VARIANT 6 MEAN = 1.8 SIGMA = -1.9 MEAN/SIGMA = 3.7 MEDIAN = 1.1
VARIANT 7 MEAN = 3.1 SIGMA = -1.0 MEAN/SIGMA = 4.2 MEDIAN = 2.9
VARIANT A MEAN = -2.0 SIGMA = -5.0 MEAN/SIGMA = 3.0 MEDIAN = -2.4
```

P5VNirl

UN-NORMALIZED VARIANTS

NORMALIZED VARIANTS

```
VARIANT I MEAN = 40.2 SIGMA = 38.7 MEAN/SIGMA = 1.5 MEDIAN = 38.6
VARIANT 2 MEAN = -.4 SIGMA = -5.9 MEAN/SIGMA = 5.5 MEDIAN = -.6
VARIANT 3 MEAN = -1.8 SIGMA = -7.5 MEAN/SIGMA = 5.7 MEDIAN = - 1.9
VARIANT 4 MEAN = -2.9 SIGMA = -9.4 MEAN/SIGMA = 6.6 MEDIAN = -3.1
VARIANT 5 MEAN = .9 SIGMA = -5.R MEAN/SIGMA = 6.7 MEDIAN = . .9
VARIANT 6 MEAN = 1.1 SIGMA = -2.2 MEAN/SIGMA = 3.3 MEDIAN = .1
VARIANT 7 MEAN = 3.0 SIGMA = -2.6 MEAN/SIGMA = 5.6 MEDIAN = 3.0
VARIANT A MEAN = -2.5 SIGMA = -6.? MEAN/SIGMA = 3.7 MEOIAN = -3.0
```

TABLE D-VIII (CONTINUED)
STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

```
    P3T101
UN-NORMALIZED VARIANTS
VARIANT 1 MEAN \(=50.2\) SIGMA \(=48.4\) MEAN/SIGMA \(=1.8\) MEDIAN \(=49.3\)
VARIANT 2 MEAN \(=49.7\) SIGMA \(=47.7\) MEAN/SIGMA \(=2.0\) MEDIAN \(=48.7\)
VARIANT 3 MEAN \(=48.5\) SIGMA \(=46.7\) MEAN/SIGMA \(=1.7\) MEDIAN \(=47.5\)
VARIANT 4 MEAN \(=47.1\) SIGMA \(=45.0\) MEAN/SIGMA \(=2.1\) MEDIAN \(=46.3\)
VARIANT 5 MEAN \(=50.9\) SIGMA \(=48.9\) MEAN/SIGMA \(=2.1\) MEDIAN \(=50.3\)
VARIANT 6 MEAN \(=51.3\) SIGMA \(=49.8\) MUEAN/SIGMA \(=1.5\) MEDIAN \(=50.1\)
VARIANT 7 MEAN \(=53.0\) SIGMA \(=50.9\) MEAN/SIGMA \(=2.1\) MEDIAN \(=51.9\)
VARIANT R MEAN \(=46.9\) SIGMA \(=48.9\) MEAN/SIGMA \(=-7.0\) MEDIAN \(=44.0\)
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 50.2 SIGMA = 48.4 MEAN/SIGMA = 1.8 MEOIAN = 49.3
VARIANT 2 MEAN = 0.3 SIGMA = 04.6 MEAN/SIGMA = 4.4 MEDIAN = -. 3
VARIANT 3 MEAN = -1.5 SIGMA = -5.9 MEAN/SIGMA = 4.4 MEDIAN = -1.5
VARIANT 4 MEAN = -2.7 SIGMA = -6.2 MEAN/SIGMA = 3.5 MEDIAN = -2.7
VARIANT 5 MEAN = 1.1 SIGMA = -3.0 MEAN/SIGMA = 4.0 MEDIAN = . 9
VARIANT 6 MEAN = 1.2 SIGMA = .2.4 MEAN/SIGMA = 3.6 MEDIAN = 1.1
VARIANT 7 MEAN = 3.1 SIGMA = -1.4 MEAN/SIGMA = 4.5 MEDIAN = 3.0
VARIANT & MEAN = -3.6 SIGMA = -4.0 MEAN/SIGMA = . 4 MEDIAN = -5.3
```


[^0]: * The 7.5 ft resolution capability was added late in the program. The amount of imagery obtained, although significant, was substantially less than that obtained at 20,40 , and 80 ft .

[^1]: ** Substantial data is available without frequency diversity, although much of the imagery was made with frequency "Hop."

[^2]: and 3

[^3]: RELATIVE MATCH FOR FILE 34 IS .18870

[^4]:

[^5]: TABLE 38 H5TR251: Four look SAR filter magnitude data, M35 cargo 21.2

[^6]: TABLE 47 (Continued) H6TACTl: tactical vehicles

[^7]: TABLE 59 P4CRAN: truck mo 4.

