	A112 93	SYN' PEB	THETIC	APERTUR PIETSCH	TIN APP E RADAR	LIED RE Data V Asco	ARTANCE	LABS ANALYS	F33	615-77-	F/6 1 C-1169 NL	7/9	
		•											
		Ĩ.											
м. М				1			- 1						

L

AFWAL-TR-80-1058

MAIZUL

SYNTHETIC APERTURE RADAR DATA VARIANCE ANALYSIS

Roy Pietsch William A. Rasco Sr. Applied Research Laboratories The University of Texas at Austin P.O. Box 8029 Austin, Texas 78712

February 1980

Final Report for Period August 1977 to September 1978

Approved for public release; distribution unlimited.

FILE COPY E

AVIONICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

ſ

82

"En

APR

H

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Elmund D. Zelnis EDMUND G. ZELNIOS Project Engineer

EDMUND G. ZELNIOV Project Engineer Technology Development Group Radar Branch Mission Avionics Division Avionics Laboratory

Flinget P for house, 1

FLOYD P. JOHNSON Actg Chief, Technology Development Gp Radar Branch Mission Avionics Division Avionics Laboratory

and a diversion of the same state

FOR THE COMMANDER

Deorar L. M. Darlas

GEORGE L. MCFARLAND, JR. Chief, Radar Branch Mission Avionics Division Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/AARM-1, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/2 April 1982 - 50

Sandara and

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-80-1058	[]
TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
	Final Report for period
Synthetic Aperture Radar Data Variance Analysis	Aug 77 - Sep 78
	6. PERFORMING ORG. REPORT NUMBER
	ARL-TR-80-16
AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
Roy Pietsch	F33615-77-C-1169
William A. Rasco, Sr.	F33015-77-C-1109
william A. Rasco, Sr.	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Applied Research Laboratories	
The University of Texas at Austin	Project 7622
Austin, TX 78712	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Avionics Laboratory	February 1980
Air Force Wright Aeronautical Laboratories	13. NUMBER OF PAGES
Air Force Systems Command, W-PAFB, Ohio 45433	273
MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION DOWN GRADING SCHEDULE
Approved for public release, distribution un Distribution STATEMENT (of the abstract entered in Block 20, If different free	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free Supplementary notes	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number synthetic aperture radar	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number synthetic aperture radar ground target radar return	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number synthetic aperture radar	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number synthetic aperture radar ground target radar return	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aide if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse alde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse alde II necessary and identify by block number)	om Report)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse alde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse aide II necessary and identify by block number) in Analysis and investigations in the area of	target classification
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse side II necessary and identify by block number) ~ Analysis and investigations in the area of based upon four-look synthetic aperture radar re	target classification eturn were conducted using
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse alde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse aide II necessary and identify by block number) im Analysis and investigations in the area of based upon four-look synthetic aperture radar re FLAMR data, to determine the extent to which four	target classification eturn were conducted using ur-look image plane radar
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse elde II necessary and identify by block number) Analysis and investigations in the area of hased upon four-look synthetic aperture radar re FILAMR data, to determine the extent to which fou returns may be used to discriminate between tact	target classification eturn were conducted using ur-look image plane radar
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse elde II necessary and identify by block number) Analysis and investigations in the area of hased upon four-look synthetic aperture radar re FILAMR data, to determine the extent to which fou returns may be used to discriminate between tact	target classification eturn were conducted using ur-look image plane radar
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse elde II necessary and identify by block number) Analysis and investigations in the area of hased upon four-look synthetic aperture radar re FILAMR data, to determine the extent to which fou returns may be used to discriminate between tact	target classification eturn were conducted using ur-look image plane radar
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse alde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse alde II necessary and identify by block number) ABSTRACT (Continue on reverse alde II necessary and identify by block number) ABSTRACT (Continue on reverse alde II necessary and identify by block number) ABSTRACT (Continue on reverse alde II necessary and identify by block number) ABSTRACT (Continue on reverse alde II necessary and identify by block number) FIAMR data, to determine the extent to which four returns may be used to discriminate between tact	target classification eturn were conducted using ur-look image plane radar
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse alde if necessary and identify by block number synthetic aperture radar ground target radar return target discrimination ABSTRACT (Continue on reverse alde II necessary and identify by block number) Analysis and investigations in the area of hased upon four-look synthetic aperture radar re FLAMR data, to determine the extent to which fou returns may be used to discriminate between tact features.	target classification eturn were conducted using ur-look image plane radar

· 0 -

FOREWORD

. - . 1

This final report is submitted in accordance with the requirements of Contract F33615-77-C-1169. The work documented herein was accomplished under Project 7622, during the period July 1977 to October 1978 under the cognizance of Mr. E. Zelnio, Project Engineer, AFWAL/AARM-1, Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

The study reported hegein was performed by the Aerospace Technology Division, Applied Research Laboratories, The University of Texas at Austin, Austin, Texas.

This report is assigned originator's report number UT/ARL-TR-80-16.

"En "

TABLE OF CONTENTS

1,

Section		Page
Ι	INTRODUCTION	1
11	DATA ORIGINS AND CHARACTERISTICS	4
	Origin of Data	4
	The FLAMR System	4
	The FLAMR/FLAP System SAR Filter Magnitude Relations	11 17
111		
III	DATA SELECTION	21
	Scene Selection	21
	Target Selection Data Retrieval	22 22
	Ground Truth	24
	DBS Radar Maps	39
IV	DISCUSSION OF DISCRIMINANTS	43
	Filter Magnitude Relations	43
	Discriminant Functions	44
V	DISCRIMINATION MODELS	49
	Parametric Model	51
	Sample Variants Distributions Investigated	51 52
	for the Variants Description of Model	53
	Test Results	54
	Nonparametric Models	56
	Nearest Neighbor Classifier	57
	Unnormalized Power	58
	Normalized Power	58
	Minimum Distance Model Eigen Vector Four Variant Model	59 61
	Theory	61
	Results	65
IV	KOLMOGOROV-SMIRNOV TWO-SAMPLE TESTS	87
	Theory	87
	Numerical Procedures	91
VII	SUMMARY AND CONCLUSIONS	118
	SUMMARY OF RESULTS	118

v

ALC: NO.

ŀ

The second s

TABLE OF CONTENTS (CONT'D)

Section

Minute and an and an

فنحد منبق الدير ومكملات ومحمد المشاهلة

Search and the property of the second

7

.

Page

Parametric Modeling	118
Nonparametric Modeling Two-Target Model Using PDF Histo-	120
grams From Sample Data	120
Nearest Neighbor Classifier - Unnormalized Power	120
Nearest Neighbor Classifier - Normalized Power	121
Minimum Distance Model -	
Unnormalized Data Minimum Distance Model -	121
Normalized Data	122
Comparison of Target Classes via "Relative Match" of Four-Eigen-	
Vector Groups	123
Kolmogorov-Smirnov Two-Sample Tests	123
CONCLUSIONS	126
APPENDIX A - TABLES OF FOUR-LOOK FILTER MAGNITUDE DATA	127
APPENDIX B - PROBABILITY DISTRIBUTION HISTOGRAMS	207
APPENDIX C - SUMMARY MEDIAN TABLES	233
APPENDIX D - STATISTICAL PARAMETERS	240

vi

"En

4. . .

LIST OF ILLUSTRATIONS

Figure		Page
1	FLAMR System Simplified Block Diagram	7
2	FLAMR Angle Processor (FLAP) Subsystem Simplified Block Diagram	12
3	DBS Scan Pattern	15
4	SAR Data Bank Flight Data Retrieval Equipment	18
5	Aerial View of Reedley, CA, Showing Area in SAR DBS Maps: Scenes 1, 2, and 3	26
6	Ground Truth for Reedley, CA, Showing Young Fruit Trees, River Bank Trees, and Mobile Homes	28
7	USGS Topographic Map: Reedley Quadrangle	29
8	Ground Truth, Reedley, CA, Showing Two Views of the Atchison, Topeka, and Santa Fe Railroad Bridge over the Kings River	30
9	Vertical Photography of the Nebo Static Array of Vehicles and Equipment near Barstow, CA, Showing Area in SAR DBS Maps: Scenes 4, 5, 6, and 7	31
10	SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop On, Scene 4	32
11	SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop On, Scene 5	33
12	SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop Off, Scene 6	34
13	SAR DBS 4:1 Overlay Map of the Nebo Static Array of Vehicles and Equipment, Barstow, CA, Hop Off, Scene 7	35
14	Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Three Views of the M109A Shop Van and the M151 ½ Ton Jeep	36

vii

LIST OF ILLUSTRATIONS (CONT'D)

15	Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Three Views of the M48 Tank	37
16	Ground Truth for the Nebo Static Array of Vehicles and Equipment, Showing Desert Sand and the M62 12½ Ton Truck Mounted Crane	38
17	SAR DBS 4:1 Overlay Map of Reedley, CA, Hop On, Scene 1	40
18	SAR DBS 4:1 Overlay Map of Reedley, CA, Hop On, Scene 2	41
19	SAR DBS 4:1 Overlay Map of Reedley, CA, Hop Off, Scene 3	42

.

1.1.1

LIST OF TABLES

1

Table		Page
I	FM Printout for 35 Pixel Sections of the Four Single-Frequency and Composite 4:1 Maps	25
II-A	Target List and File Designation	67
II	Comparison of Eigen Vectors Between Tanks (Set 1, H5TANK) and Mobile Homes (Set 2, H3MH1) Hop Off, Scenes 3 and 5	68
III	Comparison of Eigen Vectors Between Tanks (Set 1, H5TANK1) and Trees (Set 2, H3TREE3) Hop Off, Scenes 3 and 5	70
IV	Comparison of Eigen Vectors Between Tanks (Set 1, H5TANK) and Grass (Set 2, H3GRAS2) Hop Off, Scenes 3 and 5	72
V	Comparison of Eigen Vectors Between a Class of Natural Features (Set 1, H2NAT) and a Class of Tactical Vehicles (Set 2, H4TACT2) Hop On, Scenes 2 and 4	74
VI	Comparison of Eigen Vectors Between a Class of Natural Features (Set 1, H3NAT) and a Class of Tactical Vehicles (Set 2, H5TACT2) Hop Off, Scenes 3 and 5	76
VII	Comparison of Eigen Vectors Between a Class of Clutter (Set 1, H3CLUT) and a Class of Tactical Vehicles (H5TACT2) Hop Off, Scenes 3 and 5	78
VIII	Comparison of Eigen Vectors Between a Class of Clutter (Set 1, H2CLUT) and a Class of Tactical Vehicles (Set 2, H4TACT2) Hop On, Scenes 2 and 4	80
IX	Comparison of the Four Eigen Vectors Between Target Classes Based Upon RM	86
х	Values of $d_{n\alpha}$ such that $P(D_{nm} > d_{n\alpha}) = \alpha$	90
XI	File Numbers Indicating Target Groups Considered for the Kolmogorov-Smirnov Two-Sample Test	92
XII	Comparison of Covariance Matrices Before and After Application of the Eigen Transformation for Variant Set 1	98

Ì

ix

"En "....

LIST OF TABLES (CONT'D)

1

XIII	Comparison of Covariance Matrices Before and After Application of the Eigen Transformation for Variant Set 2	99
XIV	Prolability that the Two Target Sets Came From the Same Population	101
xv	Probability that the Two Target Sets Came From the Same Population	102
XVI	Probability that the Two Target Sets Came From the Same Population	103
XVII	Probability that the Two Target Sets Came From the Same Population	105
XVIII	Probability that the Two Target Sets Came From the Same Population	107
XIX	Probability that the Two Target Sets Came From the Same Population	109
XX	Probability that the Two Target Sets Came From the Same Population	110
XXI	Probability that the Two Target Sets Came From the Same Population	111
XXII	Probability that the Two Target Sets Came From the Same Population	113
XXIII	Probability that the Two Target Sets Came From the Same Population	115
XXIV	Probability that the Two Target Sets Came From the Same Population	117
XXV	Percentages of Correct and Incorrect Classifications for Each Pixel versus Each Target Class	118
XXVI	Porcentages of Correct and Incorrect Classifications for Each Pixel versus Each Target Class	119
XXVII	Percentages of Correct and Incorrect Classifications for Each Pixel versus Each Target Class	119
XXVIII	Percentages of Correct and Incorrect Classifications, Ties, and Unclassifiables for Each Pixel versus Each Target Class	120

- |

х

LIST OF TABLES (CONT'D)

1

XXIX	Percentages of Correct and Incorrect Classifications for Each Pixel versus Each Target Class	121
XXX	Percentages of Correct and Incorrect Classifications for Each Pixel versus Each Target Class	121
XXXI	Percentages of Correct and Incorrect Classifications, Ties, and Unclassifiables for Each Pixel versus Each Target Class	122
XXXII	Percentages of Correct and Incorrect Classifications, Ties, and Unclassifiables for Each Pixel versus Each Target Class	122
XXXIII	Comparison of the Four Eigen Vectors Between Target Classes Based Upon RM	124
XXXIV	Correct Target Discrimination by the Kolmogorov- Smirnov Two-Sample Test	125

"E'i

. . .

.!'

1

The subscription of the su

I. INTRODUCTION

1

The image-plane data derived from a ground scene by an airborne, imaging Synthetic Aperture Radar (SAR) often exhibit significant look-to-look variations in the returns from a single resolution element. Examination of various resolution elements, or pixels (picture elements) from a number of doppler beam sharpening (DBS) scans, recorded in flight with the Forward Looking Advanced Multimode Radar (FLAMR) experimental flight test radar system, appeared to show that the returns from some types of man-made objects vary over a greater dynamic range than do the returns from other types of objects.

The wavelength of FLAMR was such (.018 meters) that a FLAMR "high resolution" (20 ft) pixel could contain many prominent scatterers. This, with the overlay ratio (4:1) frequently employed, together with the look-to-look change in aspect angle at the target, lead to the expectation that a noticeable variation in the composite return from a given pixel might occur. This variation could be greater for some types of targets than for other types of a more diffuse nature.

To explore this phenomenon, the Avionics Laboratory, Air Force Wright Aeronautical Laboratories (AFWAL) W-PAFB, contracted with Applied Research Laboratories, The University of Texas at Austin (ARL:UT), to undertake an investigation of FLAMR Image Plane data to determine whether the observed variations contain unique information that would permit discrimination between specific vehicle types and specific natural features, and between specific vehicle types of man-made clutter.

To meet the criteria established for the investigation two geographical areas mapped with the FLAMR system were selected: the NEBO radar target array

near Barstow, California; and the urban area of Reedley, California. All scenes chosen were mapped in the DBS mode employing 4:1 overlay with 20-ft resolution. Target area selection is discussed in Section IJI of this report. Ground truth imagery and samples of the radar imagery are also presented. The FLAMR system and the nature of the data gathered with the system are discussed in Section II. The four-look filter magnitude tabulations derived from the wideband tape recordings for the selected scans are presented in Appendix A.

The initial phases of the inquiry were devoted to an analysis of the dispersion characteristics of radar target returns from the various target classes. This effort was stimulated by the need to identify characteristics of the scene statistics of potential value for target discrimination. For the purpose of the investigation the filter magnitude data tabulated in Appendix A was converted to power in arbitrary units. These data in turn were processed to determine the nature and characteristics of target variance. Appendices B through D present the results of the statistical investigations in the form of figures and tables.

The next stage of the research was devoted to the development of parametric discriminant functions and non-parametric discrimination methods based on variants (features) calculated from the four looks (samples) per each pixel on the potential target. The derivation and development of the variants and discriminant functions are delineated in Sections IV and V, respectively.

Due to the result that class separability was due primarily to relative target power rather than look-to-look variation as was initially hoped, the Kolmogorov-Smirnov statistical test was employed to compare the distribution of the total class population for several two class cases to infer whether

2

"É 11

or not discrimination information exists in the look-to-look variation. The theory and results of the Kolmogorov-Smirnov test are covered in Section VI of the report.

- 1

Summary observations are outlined in Section VII.

E. I.

II. DATA ORIGINS AND CHARACTERISTICS

Origin of Data

The SAR data utilized by ARL:UT in the Data Variance Study for AFWAL was acquired during the FLAMR flight test program. This program consisted of a series of 72 flights during the period August 1972 to March 1976. The following provides brief descriptions of the radar system and the radar mapping modes so that the reader may better understand the nature of the basic radar returns data presented elsewhere in this report.

The FLAMR System

The FLAMR project was sponsored and directed by the Avionics Laboratory (AARM/698DF). The radar was designed, built and operated by Hughes Aircraft Company (HAD). The electronically scanned phased array antenna was designed and built by Emerson Electric Company (EEC). The radar was flown in a modified RB-47H aircraft which was maintained and operated by Rockwell International Corporation (RIC). RIC also was responsible for system instrumentation. The job of ARL:UT was data analysis and evaluation, experiment design, and flight test support during the flight test program. ARL:UT is now maintaining and operating the FLAMR/SAR Data Bank for the Avionico Laboratory.

The FLAMR system was a very flexible and well instrumented state-of-theart brassboard system for investigating digital control and digital processing techniques for generating realtime, high-resolution synthetic aperture ground maps.

The system was designed for a high degree of flexibility and was thoroughly instrumented. A six-man flight crew consisted of a pilot, co-pilot,

·E,

drift-sight and vertical camera operator, two radar system operators, and an instrumentation operator.

The instrumentation operator was responsible for operation of the phased array antenna, various oscilloscope recording cameras, the FM tape recorder, the oscillograph, the forward pointing cameras and serviced the wide-band Genisco tape recorder in-flight. The drift-sight operator obtained navigationupdate fixes on ground points whose coordinates were precisely known, and also operated the vertical camera as called for by mission plans. The radar system operators monitored system performance, selected operating modes such as stabilized or unstabilized, DBS, SASM, PPI, RBGM, special scan, etc., and system control parameters such as IF Gain, pulse compression gain, map overlay ratio, display threshold, real beam shape, and dB per gray shade assignment to improve the inflight imagery. In addition, system operators used manual override of the autocursor to center the map on a desired terrain point whenever inertial navigator drift resulted in the need for a correction.

The list below contains some of the more important FLAMR parameters.

Transmitter Peak Power - 100 kW Pulse Repetition Rate - 1.7 - 2.3 kHz Antenna Beamwidth (AZ) - 1.9° Wavelength - 0.018 m * SAR Resolutions - 7.5, 20, 40, 80 ft

·E. . . .

^{*} The 7.5 ft resolution capability was added late in the program. The amount of imagery obtained, although significant, was substantially less than that obtained at 20, 40, and 80 ft.

Map overlay options - 1, 2, or 4

A STATE AND A STAT

A simplified functional block diagram of the FLAMR is shown in Fig. 1. The antenna pointing angle and beam shape were specified by a general-purpose computer (the ALERT GPC) through the Beam Steering Computer (BSC) which controlled the antenna. The coverage was approximately a 65° (half-angle) cone about the aircraft velocity vector. The system incorporated an Inertial Navigation Unit (INU), the LTN-51, modified to provide position, velocity, acceleration, and attitude data for accurate motion compensation.

The RF section of the system had a high-average-power, Ku-band transmitter, used a binary phase coded waveform at a low Pulse Repetition Frequency (PRF), and had a coherent, frequency-agile, radar master oscillator (RMO). The receiver was a double-conversion superheterodyne system with a wideband first-IF section followed by a matched bandpass filter and in-phase and quadrature second detectors. The local oscillator for the latter was offset by the system synthesizer (HP-5100B). From the output of the receiver to the final map presentation, FLAMR was a completely digital system. The wideband in-phase and Quadrature (I/Q or IPQ) video from the second detector went to two fast

** Substantial data is available without frequency diversity, although much of the imagery was made with frequency "Hop."

·Ein in in

Ficure 1. FLAMR System Simplified Block Diagram

1

7

·E.

Analog-to-Digital Converters (ADC's) where it was range gated and digitized. The buffered outputs were in a 6-bit, 2's-complement format. The range gate delay was controlled by the start range and the rate of range closure on the mapping point. Immediately following the buffered ADC's was the first major instrumentation pickoff. Up to 512 range bins, depending on the pulse compression ratio, were recorded on W.B.T. (wideband magnetic tape) for each pulse and for each component of digital video.

This feature makes FLAMR nearly unique. All range bins and all pulses of the raw I/Q video were recorded on the W.B.T.'s. Also, these band-limited I/Q video data were processed only by introducing a constant frequency off-set to remove the gross doppler shift.

Thus, the I/Q data available on wideband magnetic tapes are uncontaminated by extensive processing and are particularly useful for many current SAR study requirements.

The next step was pulse compression in range, during which the digitized video was correlated with the binary phase code sequence. This process involved adding or subtracting the contents of successive range bins over a span equal to the compression ratio to obtain each range bin of compressed data. The gain could be adjusted by a left-shift operation at this point. The six most-significant bits (MSB's) of each shifted sum were used as a 2's complement representation of the compressed in-phase or quadrature radar return in a particular range bin. There were always 384 range bins for each component of pulse compressed data.

The pulse compressed video was tapped off for recording on the W.B.T. at the second major instrumentation point. However, the capacity of the

recording system was insufficient for both compressed and uncompressed I/Q digital video; and only one type could be recorded during a particular flight.

The digital video from the pulse compressor, still in separate components, was rounded to 6 bits and sent to the Digital Doppler Signal Processor (DDSP), which operated on the range-compressed I/Q video data from a specified number of pulses to form 16 overlapping, weighted, complex pre-sums followed by a 16-point discrete Fourier transform for each range bin. Fine phase motion compensation, i.e., synthetic array pointing and focusing, were accomplished during the pre-summing operation. The pre-sum number NP specified the number of pulses used to form each of the 16 complex pre-sums. This controlled the length of a synthetic array for a given PRF and therefore the doppler resolution. The data were uniformly rescaled during pre-summing to adjust the gain.

The 16-point discrete Fourier transform was similar to a bank of 16 filters, each tuned to a specific doppler phase rate and correlating all complex pre-sum data with that phase rate. This served to establish 16 discrete focus points or 16 synthetic beams similar in shape and centered about the array center (focus) point. Calculation of the Fourier components completed the coherent processing and gave an image in complex form -- a pair of 12-bit words for each range-bin/doppler-filter combination.

The magnitude of each of the 16 complex Fourier components (filters) was generated next as 0.5 $\log_2 (I^2 + Q^2)$, and the resulting values were referred to as "filter magnitude" data.

The 16 log magnitude values, each an 8-bit word, were recorded on the W.B.T. for all 384 range bins. All 16 filters were always formed; but, depending on the mapping mode, less than 16 were actually used. In the "snapshot"

9

or Doppler Beam Sharpened (DBS) mode, eight filters were used, centered about the designated array center line. From 2 to 12 filters were used in the Synthetic Array Strip Map (SASM) mode.

The log magnitude filter data were next thresholded by subtraction of a 6-bit level. Individual thresholds were used for each filter. Each word of the array was then multiplied by a constant to adjust post processor gamma, and the four MSB's of the result were sent to the digital scan converter where data from successive arrays were overlaid (averaged) as required by the overlay ratio (KOL). The resulting 4-bit display video, with line code and mode information, was tapped off to the instrumer of the system and recorded on the W.B.T. and also sent to the Post Processor for the field of the PPD Repeater in the aircraft, where the resulting map() and the PPD and photography.

Almost all system functions were under control of the ALERT GPC. This computer also used operator inputs, INU inputs, etc., and controlled other system functions having to do with timing (e.g., the IPP value to the system synchronizer), velocity measurement, target tracking, and general housekeeping. All traffic on the computer Input/Output (I/O) bus, also called the Radar Input/Output Terminal (RIOT), was recorded on the W.B.T.

The Digital Recorded Interface Unit (DRIU) buffered the FLAMR digital data and put it in Miller-coded Pulse Code Modulation (PCM) format for recording by the Wideband (tape) Recorder (WBR) in the RB-47H aircraft. The wideband tapes recorded in flight were played back on the Digital Recorder Interface Equipment (DRIE) maintained in the ground station.

10

·Ei Jahr.

Eight tracks of the 16-track wideband tape were used for recording compressed or uncompressed I/Q video data; while filter magnitude, RIOT, and PPD data were each recorded on separate tracks, voice and IRIG-B time code were frequency multiplexed and redundantly recorded on the two outer tracks as a safeguard against loss of information due to edge damage. These two tracks also contained a 200-kHz reference signal. The remaining track was later used for recording FLAP Daisychain data.

The FLAMR system has high-, medium-, and low-resolution mapping modes with respective nominal resolutions of 20, 40 and 80 ft. The addition of the FLAP system, described below, added a fourth super-high-resolution mapping mode with a nominal resolution of about 7.5 ft.

The FLAMR/FLAP System

1

The FLAMR Angle Processor (FLAP) (see diagram in Fig. 2) was operated parallel with the FLAMR system and derived timing and control signals from it. FLAP was a very high-speed, high-capacity data processing system and was incapable of operating alone; so it is proper to refer to the combination with FLAMR as the FLAMR/FLAP system. This equipment was used on FLAMR flights beginning with Flight 49 on 28 May 1975 to provide three-channel monopulse processing capability as well as to improve the mapping resolution by a factor of three and to increase processing capacity and flexibility.

All FLAP units were under the control of a separate (Datacraft) minicomputer via a Daisychain hookup. Programmable Signal Processor (PSP) output data went to the Datacraft via the same bus. This computer exchanged information with the FLAMR ALERT GPC via direct memory access and with the FLAP control panel via the Daisychain.

Figure 2 FLAMR Angle Processor (FLAP) Subsystem Simplified Block Diagram

12

·E.

The wideband tape recording system was modified so that FLAP I/Q video data could be recorded after pulse compression. The choice of recording FLAMR or FLAP I/Q data was made by the operator in flight, but the selection of compressed or uncompressed FLAMR I/Q data was still made by a cable change on the ground. The one remaining unused channel on the 14-channel wideband recorder was used to record FLAP controller I/O traffic (FLAP Daisychain data) in the same way as RIOT data, but there was no way of recording the FLAP/FLAMR data exchanges via direct memory access. Retrieval of RIOT or Daisychain data on 9-track computer tape during playback of a wideband tape on the DRIE was made switch selectable on the DRIE control panel.

The two major FLAMR mapping modes (DBS and SASM) differed mainly in their scan patterns and in their sequencing with the auxiliary time-shared Clutter Error Detection (CED) mode for doppler supervision of the INU velocity outputs. Within the main mapping modes there were submodes which differed in the details of map scan geographic stabilization. Specialpurpose submodes, e.g., reduced scan width for rapid mapping of a series of targets, and PPI scan for low-resolution, short-range mapping, were also programmed.

The basic process of synthetic array formation was the same in all SAR mapping modes. Each synthetic array flown mapped a narrow <u>patch</u> on the ground that was 2 to 12 azimuth elements wide and 384 range bins long. A complete map (frame, scan, or strip) was made up of many of these patches laid side-by-side on the display with varying amounts of overlap (noncoherent

13

"En 1

integration to reduce "speckle" or radar echo scintillation).

As the mapping aircraft flew from the start (S) to the end (E) of a trajectory segment as shown in Fig. 3, the radar mapped the area corresponding to a scan frame (snapshot) in the DBS mode. The interval ES was divided into a succession of (44*KOL + 1) synthetic array lengths corresponding to the same number of long narrow patches on the map. Thus the array centered at A mapped the patch centered at PC. For the DBS scan pattern shown in the figure, the patches were 8 azimuth elements wide by 384 range bins long on a square sampling grid and were overlapped in azimuth by a factor of KOL:1, KOL=1 (no overlap). Regardless of the overlay ratio, a complete DBS map contains 360 azimuth lines, each consisting of 384 range cells.

Between each complete map frame the system interleaved a velocity measurement (CED) mode with a duty factor of about 0.1 for full-width maps. If desired, the scan width could be reduced to obtain faster map and velocity update rates. The minimum useful map width was three patches, and this gave an update rate somewhat greater than 0.5 maps/sec (somewhat less than 2 sec/ map) in the high-resolution mode.

Succeeding scans could be centered about the same point C, or about any point on the map designated by the operator by use of a cursor. Other options included centering successive scans at the same range and azimuth values, or at a specified latitude and longitude in the so-called Autocursor mode. The Special Scan mode repeatedly mapped four targets in sequence, given their locations with respect to an initial target acquired and designated in the Autocursor mode, and was capable of dropping targets as they passed out of range and adding new targets from a list stored in memory.

14

·E

15

·E,

The Synthetic Array Strip Map (SASM) mode provided continuous strip maps at forward left or right squint angles of 45° (the value usually selected) or 63.4° (arctan 2) with the same overlay and resolution options as the DBS mode. The line of successive patch centers was nominally parallel to the ground track of the aircraft. Short periods of the velocity measurement (CED) mode alternated with the map <u>arrays</u> with a duty factor of about 0.1, since there were no definite frame or scan divisions in this mode.

There were two stabilization options. In the unstabilized SASM mode, the squint angle and slant range with respect to the aircraft were constant; while in the edge-stabilized submode, the line of patch centers on the ground was a straight line despite small aircraft heading changes.

The FLAP could operate on sum data and exactly duplicate the operation of the FLAMR signal processor. In addition, an extra-high-resolution mode was available. The formats, scan generation, etc., were exactly as in the FLAMR DBS mode except that the FLAP PSP could generate more than 8 filters for each synthetic array (patch) to provide faster scans. A small amount of data at 40 lines/patch was obtained during the flight test program.

Most of the recorded FLAP data were obtained in the CED mode as arrays of 160 pulses of three-channel monopulse data. These arrays were taken at the special CED scan beam pointing positions of 0° and $\pm 60°$ in azimuth and 6° and 12° depression (positions). Three-channel monopulse data were also recorded while FLAMR was operating in the DBS mode and covered a swath 128 range bins wide through the center of the FLAMR maps. The data available are the FLAP I/Q video data and Daisychain words giving the doppler error

(difference between predicted and measured frequency) for the ground return at the intersection of the antenna monopulse surfaces, together with monopulse difference slopes in azimuth and elevation.

SAR Filter Magnitude Relations

The SAR data presented in this report, and used in the Data Variance Study, are digital filter magnitudes recorded in flight. The data are obtained in computer-compatible form using the FLAMR ground playback equipment shown in Fig. 4.

An idealization of the recorded FLAMR filter magnitude data is

$$FM = 16 \log_2 \sqrt{F_1^2 + F_Q^2}$$
$$= 16 \log_2 F$$

where F_I and F_Q are amplitudes from the I and Q filter banks. The above expression is considered to be an idealization because the logarithm to the base 2 and the root-sum-square functions were not computed exactly but evaluated using relations that give approximate results. The error due to the approximation is small and can be neglected.

The maximum filter magnitude has a value of 199. The filter magnitude in decibels is given by

$$FM_{dB} = 20 \log_{10} \sqrt{F_{I}^{2} + F_{Q}^{2}}$$
$$= \frac{20}{16} (\log_{10}^{2}) FM$$
$$= 0.376 FM.$$

17

·E. P. Y

.

.

3342

No wind Survey

FIGURE 4 SAR DATA BANK FLIGHT DATA RETRIEVAL EQUIPMENT

·E;

The maximum dynamic range obtained by placing FM = 199 is 75 dB.

Assuming that the radar is linear, the square of the filter magnitude will be proportional to the received echo power, P_r ,

$$F^{2} = F_{I}^{2} + F_{Q}^{2}$$
$$= K P_{r}$$

where K is a constant. From the radar equation

$$P_{r} = \frac{P_{t}G^{2} \lambda^{2}\sigma}{(4\pi)^{3}R^{4}L}$$

where P_t is the transmitted power, C is the antenna gain, λ is the transmitted wavelength, σ is the target radar cross section (RCS), R is the range to the target, and L is the system loss. We find then '

$$\mathbf{F}^2 = \mathbf{K}_1 \sigma ,$$

which relates the square of the filter magnitude to target RCS.

From the relation involving F and P $_{\rm r}$ and those involving FM and F, we find

$$FM = 8 \log_2 F^2$$
$$= 8 \log_2 K P_r$$

so that

$$P_r = 2^{FM/8} \kappa^{-1}$$
.

This equation gives the return power in terms of the log filter magnitude

"Ein all

times a calibration constant. Power is in arbitrary units widely used during the data variance study and is given by

$$P = 2^{FM/8} .$$

Target return echo amplitude, A, can also be expressed in arbitrary units as

1

$$A = 2^{FM/16}$$

- 1

·E. J. T.

III. DATA SELECTION

Scene Selection

Scenes used for the data variance study were selected on the basis of the variety of terrain, vegetation, cultural features or tactical vehicles within the scene, the number of pixels available from similar objects, and the availability of ground truth. All scenes selected were mapped in DBS employing 4:1 overlay with 20-ft resolution. The 4:1 overlay implies that four 1:1 DBS maps have been formed and, except for resolution elements contained in the azimuth lines on either side of the map, each resolution element has been mapped four times. Thus, the four maps are the source of the four-look data.

The two scenes selected were: (1) the NEBO radar target array near Barstow, California, and (2) the urban area of Reedley, California. Data were selected from seven DBS scans. Scans 1 through 3 are from the Reedley area and scans 4 through 7 from the NEBO array. Scans 1, 2, 4, 6, and 7 were formed with frequency diversity (i.e., frequency hop on); scans 3 and 5 were formed without frequency diversity (i.e., frequency hop off). The terms hop on and hop off will appear on the tables of filter magnitude data in Appendix A. One scan of Reedley and one scan of the NEBO array without frequency hop were located during the study, and were added to the original set of scans for purposes of obtaining a preliminary indication of the effects of frequency hop on the data variants under investigation.

21

"Ein_"

Target Selection

Filter magnitude data were extracted from DBS FLAMR imagery for which valid ground truth existed. The scenes selected were the urban area of Reedley, California and the NEBO array at Barstow, California. The original target groupings from these scenes are tactical vehicles, natural features, tanks, 2¹/₂ ton trucks, other tactical vehicles, man-made clutter, trees, sand, grass, and shadows. This list was later expanded and in some instances made more specific. The tactical vehicles included tanks, $2\frac{1}{2}$ ton trucks, jeeps, $2\frac{1}{2}$ ton shop vans, and $12\frac{1}{2}$ ton truck cranes. Tanks, trucks, vans, jeeps, and cranes selected were as follows: M-48 tank, M-35 $2\frac{1}{2}$ ton cargo truck, M-109A3 $2\frac{1}{2}$ ton shop van truck, M-151 $\frac{1}{4}$ ton jeep and M-62 $12\frac{1}{2}$ ton truck mounted crane. Trees were grouped as large river bank trees and as young fruit trees. Grass data were selected from a rough grass and weedy area from the Reedley scene. The natural feature group included the river bank trees, young fruit trees, and rough grass, but did not include any of the sand data. The reason for not including the sand along with the trees and grass was that pixels containing the sand data did not appear on the same radar map as the trees and grass and some uncertainty exists as to how gains are to be adjusted when combining unnormalized data from different scenes. Man-made clutter included pixels from a railroad bridge, from a four lane highway bridge, and from a mobile home park.

Data Retrieval

The filter magnitude data used in the data variance study were obtained from the SAR data digitally recorded in flight on wideband magnetic tapes

during the FLAMR program. In order to locate suitable scans, it was first necessary to review flight documentation to select such scans and to determine flight number and reel number containing the scans.

The next step in retrieving the data was to replay the appropriate wideband flight tape. This replay is accomplished by means of the wideband tape drive shown on the right in the photograph in Fig. 4, Section II of this report. The recorded imagery is reviewed on the Monitor Display (center) in 16 grey level format. The DBS imagery used in the study is shown on the display in 360 vertical lines comprised of 384 range bins each. When the desired map is painted on the display, the image is then "frozen" and the tape drive halted. The desired objects or features to be sampled are then located on the display.

To locate the brightest pixel in the case of small discrete objects, the set of grey scale emphasis or deletion switches below the monitor are used. To obtain the azimuth line and range bin numbers of the selected pixels, the manual controls below the display are used to position a local cursor over the pixel. The desired coordinates are then read directly from the cursor controls.

After all desired sample pixels on the scan have been identified and coordinates noted, a CCT (Computer-Compatible Tape) is placed on the small tape drive visible at the left in Fig. 4, Section II. The data select/dump controls on the panel to the right of the display are then set to dump the desired data.

The practice in the study was to dump the full scan of FM data (Filter Magnitudes recorded in flight at the output of the Doppler Processor) and a

file of the associated RIOT data (Radar Input-Output data recorded from the radar-computer I/O bus). The flight data thus obtained are in computer-compatible format and are processed on a general purpose computer. The FM data are next reformatted and five arrays of FM data, similar to those appearing in Table I, are printed for each selected pixel for use in checking and finalizing the selection and coordinates for the sample pixels. The FM values appearing in Map 1234, the composite 4:1 overlaid map, are examined to verify that the selected coordinates of the center point of the printout array represent, for the case of a small target, the brightest return from the target. If an immediately adjacent pixel has a higher FM value, then the coordinates are changed to the coordinates of the brighter pixel.

No further effort to correct for range/doppler straddling has been made. After the coordinates are finalized, they are used with computer programs and the two data tapes, FM and RIOT, to combine the radar return data and other required information for each sample pixel.

Early in the program, the CDC 3200 digital computer was used to extract these data, and the FM data for each pixel were punched on cards. When the CDC Cyber 171 was installed at ARL:UT (Jan. 78), it was decided that it would be more cost effective and more expedient to use the Cyber to retrieve and store data; consequently manipulations with punched cards was, in general, no longer employed.

Ground Truth

An aerial view of Reedley, CA, taken with a forward looking camera, is shown in Fig. 5. Two types of trees, two types of bridges, mobile

24

"En de "

TABLE I

4

FM PRINTOUT FOR 35 PIXEL SECTIONS OF THE FOUR SINGLE-FREQUENCY AND COMPOSITE 4:1 MAPS

			MAP L	INE NUMBE	ER				
R.B.	281	282	283	284	285	286	287		
NO.									
								MAP 1	FRQ.=4
58	97	107	79	128	118	90	73		
57	94	77	144	174	161	111	82		
56	106	106	144	176	165	113	99		
55	89	105	108	90	85	82	66		
54	96	105	59	93	80	93	78		
•								MAP 2	FRQ.=3
58	99	96	120	127	124	73	81		-
57	117	81	122	152	161	89	80		
56	115	89	124	174	174	73	95		
55	125	117	115	114	107	65	80		
54	163	145	121	86	78	59	91		
								MAP 3	FRQ.=2
58	93	101	124	81	79	67	72		
57	70	99	112	140	89	99	93		
56	123	81	116	130	80	88	111		
55	95	90	99	75	77	74	92		
54	155	146	108	56	74	81	81		
								MAP 4	FRQ.=1
58	75	125	120	118	111	82	84		
57	80	99	123	131	102	97	73		
56	85	107	152	150	119	105	82		
55	119	110	106	76	63	88	63		
54	143	84	86	45	97	98	90		
								MAP 12	:34
58	93	113	118	121	115	81	78		
57	103	92	131	160	153	101	84		
56	113	100	141	167	162	102	101		
55	115	108	108	100	93	80	80		
54	148	137	108	82	86	89	86		

25

·E,

The second se

1

ίι

ł

homes, and rough grass and weeds were selected as features from this area. The group of targets represented by TREES was divided into tall river bank trees and young fruit trees. The pixels selected for tall river bank trees were selected along the Kings River while the young fruit trees came from an orchard near the center of the photograph. The two groups of trees are also shown in Fig. 6. The two bridge types, highway and railroad, appear together near the top of Fig. 5. Figure 7, a US Geological Survey map of Reedley (Reedley Quadrangle) shows two railroad bridges in this region. At the time the FLAMR flight was made only one railroad bridge existed - the Atchison, Topeka, and Santa Fe. Two views of this bridge are shown in Fig. 8. The mobile home group was selected from the mobile home park shown near the center of Fig. 5 and also in Fig. 6. The group designated as rough grass and weeds was selected from an area just below the Reedley College.

An airborne vertical camera photograph of a static target array consisting of tactical vehicles, howitzers, Honest John rockets, etc. is shown in Fig. 9. This array will be referred to as the NEBO static array. It is located on the Mojave River, at a Marine Corps Supply Center designated as the NEBO Area near Barstow, CA. The positions of the vehicles in Fig. 9 represent their locations at the time the DBS radar maps, Figs. 10, 11, 12, and 13, were made. Figures 14, 15, and 16 show different views of tactical vehicles selected for study targets from this array. Two samples of desert sand are also shown in Fig. 16. These sand regions do not necessarily correspond to the precise regions from which the return radar echos were extracted for desert sand.

27

"t ..

I,

29

°î.

FIGURE 10. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop on, Scene 4

"É 11

FIGURE ||. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop off, Scene 5

·E

Carden Providence

4

FIGURE 12. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop off, Scene 6

,

a shares

·E ...

FIGURE 13. SAR DBS 4:1 overlay map of the Nebo static array of vehicles and equipment, Barstow, CA, hop off, Scene 7

·E,

4.

ALL NO

10 11

1

1

ŧ

;

. .

ł

ł

ł

1.....

ł

DBS Radar Maps

Three DBS radar maps of the Reedley area are shown in Figs. 17, 18, and 19. These should be compared with the area photography (Fig. 5) and the Reedley Quadrangle (Fig. 7). The DBS radar maps shown in Figs. 17 and 18 were made with frequency hop on. The map in Fig. 19 was made without frequency hop.

Four DBS radar maps of the NEBO array are shown in Figs. 10 through 13. All maps with the exception of scene 4 (Fig. 10) were formed with frequency hop off. The maps shown are inverted, left to right, from that shown in the vertical photography.

·E.

FIGURE 17. SAR DBS 4:1 overlay map of Reedley, CA, hop on, Scene 1

Ei.

ď.,

FIGURE 18. SAR DBS 4:1 overlay map of Reedley, CA, hop on, Scene 2

and the second second second

FIGURE 19. SAR DBS 4:1 overlay map of Reedley, CA, hop off, Scene 3

1.

. Sam.

.

"Ê ji

IV. DISCUSSION OF DISCRIMINANTS

Filter Magnitude Relations

The four single-look data extracted from the FLAMR data for various targets tabulated in Appendix A are in the form of integer log filter magnitudes where the logarithm is to the base 2. The log filter magnitudes used in this study were computed and rounded to integer form inflight, and then recorded, together with the IPQ data, on the wideband magnetic flight tapes. The radar was uncalibrated for the DBS scans of Reedley, CA, and the NEBO static array of vehicles and equipment. In this form the log filter magnitudes, FM, may be written as

$$FM = \log_2 C |E|$$

where E is the electric field strength of the return target echo at the FLAMR antenna and C is an unknown calibration factor. This factor is nearly constant for the four looks but may vary from scene to scene. The magnitude of the IPQ video may also be expressed in terms of E as

$$F = \left[F_{I}^{2} + F_{Q}^{2}\right]^{1/2}$$
$$= KE$$

where K is constant for each map. Linear amplitudes, A, and power, P, may be expressed in terms of E and F as A=C|E|=(C/K)F and $P=C^2E^2=(C/K)^2F^2$. The log filter magnitude is related to the IPQ filter amplitude by

$$FM = 16 \log_2 F$$

and to power by

t,

É.

1

$$FM = 8 \log_2 P$$

Power can then be expressed in arbitrary units as

 $P = 2^{FM/8}$

A characteristic of digital maps such as those obtained by the FLAMR system, is the use of 'fscrete pixels (picture elements) to form the map. All power returned ty a given "resolution cell" on the surface being mapped is summed and use to represent that resolution cell, or pixel. The return from a discrete scatterer located on or near the boundary of a resolution element will be divided between the adjacent pixels according to the proportion of the return detected in each cell. Such "bin straddling" was not corrected-for in the target data used in this study.

Discriminant Functions

In target discrimination we wish to extract features or discriminants which display the maximum difference between one target class and another, especially between tactical targets and natural features. Furthermore, the discriminants should be as simple as possible from the standpoint of signal processing nardware. The features used in target discrimination may not necessarily coincide with the principal features used to represent the pattern classes.

The discriminant functions employed here, calculated in arbitrary power units are: (1) mean power \overline{P} , (2) standard deviation S, (3) average deviation from the mean $\overline{\delta}$, (4) average deviation from the best straight line fit $\overline{\delta}_{B}$, (5) fast variation V_{f} , (6) slow variation V_{s} , (7) major spread r_{1} , and (8) minor spread r_{2} . These were computed for each pixel from the four-look data.

44

*t .

These measures of dispersion will now be discussed briefly, with the summation running over the four looks.

(1) Mean power, \overline{P}

$$\bar{\mathbf{P}} = \frac{1}{4} \sum_{i=1}^{4} \mathbf{P}_{i}$$

This power is in arbitrary units and is not normalized between DBS scenes.

(2) Standard deviation, S

$$S = \left[\frac{1}{3} \sum_{i=1}^{4} (P_i - \bar{P})^2\right]^{1/2}$$

The standard deviation as given here is an unbiased estimate for most distributions.

(3) Average deviation from the mean, $\overline{\delta}$

$$\overline{S} = \frac{1}{4} \sum_{i=1}^{4} |P_i - \overline{P}|$$

This is less efficient that S but is easier to calculate.

(4) Average deviation from the best straight line fit, $\delta_{\mathbf{p}}$

A best straight line curve fit is first obtained from the four-look data in the proper time sequence by the method of least squares. The resulting equation is of the form Ai+B. The average deviation of P_i from this line is given by

$$\delta_{B} = \frac{1}{4} \sum_{i=1}^{4} |P_{i} - (Ai+B)|$$

Ai meaning A times the index i

Employing the best straight line fit to the four-look data has a greater tendency to remove the trend from the data than computations involving the mean, such as those for S and $\overline{\delta}$. Coefficients of the least squares fit to

Ai + B

"En

are given by

$$A = \frac{\frac{1}{4} \left\{ \sum_{i} P_{i} - \sum_{i} \sum_{j} P_{i} \right\}}{\frac{1}{4} \left\{ \sum_{i} P_{i} - \left(\sum_{i} P_{i}\right)^{2} \right\}}$$
$$B = \frac{1}{4} \left\{ \sum_{i} P_{i} - A \sum_{i} P_{i} \right\}$$

4

where i = 1, 2, 3, 4.

(5) Fast variation, V_f

$$V_{\rm F}^2 = \frac{1}{3} \left({}^{\rm P}{}_1 - {}^{\rm P}{}_2 \right)^2 + \left({}^{\rm P}{}_2 - {}^{\rm P}{}_3 \right)^2 + \left({}^{\rm P}{}_3 - {}^{\rm P}{}_4 \right)^2$$

The subscripts appearing in this relation, that for slow variation, and the relation for average deviation from best straight line fit refer to time sequence and not map number.

(6) Slow variation, V_{s}

$$V_{s}^{2} = \frac{1}{3} \left\{ \left(P_{1}^{-P_{3}} \right)^{2} + \left(P_{2}^{-P_{4}} \right)^{2} + \left(P_{1}^{-P_{4}} \right)^{2} \right\}$$

It should be noted that fast variation involves power differences between successive looks and responds to the more rapid part of the variation. Slow variation involves differences in more widely separated looks and is more sensitive to slower fluctuations.

(7) Major spread, r₁

ľ

Major spread is the maximum deviation in power and is given by

$$r_1 = P_{MAX} - P_{MIN}$$

(8) Minor spread, r₂

46

·E ,. .

If the four-look power data are ordered as $P_{MIN} \stackrel{\leq}{=} P_2 \stackrel{\leq}{=} P_3 \stackrel{\leq}{=} P_{MAX}$, minor spread is obtained by

$$r_2 \approx P_3 - P_2$$

After deleting two of the four-look data appearing in the major spread, minor spread is the absolute value of the difference between the remaining two data points.

Normalized discriminant functions based upon pixel mean are obtained by dividing the discriminant function by \overline{P} , for example, the normalized discriminant function for standard deviation $S_N = S/\overline{P}$. It follows from

$$S_{N} = \frac{1}{P} \frac{1}{3} \sum \left(P_{i} - \overline{P}^{2} \right)^{1/2}$$
$$= \left[\frac{1}{3} \left(P_{i} / \overline{P} - 1 \right)^{2} \right]^{1/2}$$

that the normalized discriminant function is equal to the discriminant of the normalized power. This process removes the calibration factor and permits comparison of target classes between scences.

The above set of discriminant functions are used in Section V primarily with the parametric models, but these same functions are not used exclusively throughout this report. In the section involving the Kolmogorov-Smirnev test and the test employing the Eigen vectors, a different set of discriminant functions than those above are used in the analyses. This set is more generalized than the former and, consequently, is referred to as generalized relations. The generalized relations for the discrimination functions are given below; a distinct set of discriminant functions is generated for each value of N. The two sets commonly used are those given by N=1 and by N=2. Note that N need not be an integer.

(9) Unnormalized generalized discriminant functions

$$x_{1} = \overline{P} = \frac{1}{4} \sum P_{1}$$

$$x_{2}^{N} = \frac{1}{4} \left\{ |P - \overline{P}|^{N} + |P_{2} - \overline{P}|^{N} + |P_{3} - \overline{P}|^{N} + |P_{4} - \overline{P}|^{N} \right\}$$

$$x_{3}^{N} = \frac{1}{3} \left\{ |P_{1} - P_{2}|^{N} + |P_{2} - P_{3}|^{N} + |P_{3} - P_{4}|^{N} \right\}$$

$$x_{4}^{N} = \frac{1}{3} \left\{ |P_{1} - P_{4}|^{N} + |P_{1} - P_{3}|^{N} + |P_{2} - P_{4}|^{N} \right\}$$

For N = 1, X_2 becomes the average deviation from the mean, \overline{P} . For N = 2, X_2 becomes a biased standard deviation and X_3 and X_4 become the fast and slow variation previously defined.

(10) Normalized Generalized Discriminant Functions

$$Z_{1} = P_{max}/P - P_{min}/P$$

$$Z_{2}^{N} = \frac{1}{4} \left\{ |Y_{1}-1|^{N} \right\}$$

$$Z_{3}^{N} = \frac{1}{3} \left\{ |Y_{1}-Y_{2}|^{N} + |Y_{2}-Y_{3}|^{N} + |Y_{3}-Y_{4}|^{N} \right\}$$

$$Z_{4}^{N} = \frac{1}{3} \left\{ |Y_{1}-Y_{4}|^{N} + |Y_{1}-Y_{3}|^{N} + |Y_{2}-Y_{4}|^{N} \right\}$$

where $Y_1 = P_1/\overline{P}$. These relations are obtained by dividing X_2 , X_3 , X_4 by \overline{P} and by dividing the major spread, r_1 by \overline{P} . Note that in the special case for N = 1 and $Y_1 > Y_2 > Y_3 > Y_4$, that $Z_3 = (Y_1 - Y_4)/3$ and a similar result is obtained for X_3 . The effect of this ordering of returns is to make the discriminant function fast variation insensitive to all but the extreme values of the measured power.

48

V. DISCRIMINATION MODELS

Several models were developed at ARL:UT for target discrimination and classification based upon selected discriminant functions as originally proposed by ARL:UT and AFWAL/AA and later modified.

Using the FLAMR filter magnitude data taken with 4.1 overlay (four-look model), data for the individual looks or maps were separated and presented, for selected tactical and non-tactical targets, in Appendix A of this report. If frequency hop were on during the map formation, then each map was recorded at a different radar frequency. Each point of the scene occurs a maximum of four times in the FLAMR filter magnitude data because of the scan pattern and processor capacity.

The look-to-look fluctuation of the radar return from known targets serves as the basis upon which various models are to be constructed. Since variation in target aspect angle with respect to the illuminating radar is a major contribution to the variation in target radar cross section (RCS), several models required that the observed target return be placed in the proper time sequence. Map sequence and time sequence for a given resolution element are not necessarily equal. For further discussions on this matter see Section II.

The measures of dispersion originally proposed were sample variance, average deviation, range of deviation, color, and deviation of color. Color and deviation of color were dropped from the list of discriminants early in the study. Discriminants added to the list included fast variation, slow variation, deviation from the mean, deviation from the best straight line fit to the four-look return in proper time sequence, and the major and minor spread.

49

"En "

Various combinations of these measures of dispersion were employed in the various models. Neither a consistent set of dispersion measures nor a common data set were used to compare the relative discrimination capability of each of the models. The different models were utilized to attempt different ways of characterizing the discriminant distributions for the purpose of separating target classes based on the dispersion measures, but no attempt was made to quantify the relative merit of the different models for this specific problem.

Two early models from which some success was realized when dealing with non-normalized data were based upon parametric statistics involving four target classes. Valid conclusions about the non-normalized data can only be drawn when the target classes being compared are taken from the same scene. As stated previously, calibrated corner reflectors were not in the various scenes; therefore, no way existed to relate the mean intensity values of the scenes. Thus, care must be taken when reading this and subsequent sections so that one does not draw erroneous conclusions about class separability based on non-normalized data when the classes are taken from different scenes. When non-normalized data is compared between scenes, only conclusions as to the relative merit of discriminant functions or, perhaps, the reliance of the class separability on mean power (e.g., normalized vs. non-normalized comparison) can be made. A brief discussion of these models is presented below. Later in the study, all efforts on the four-class parametric models were dropped in favor of two-class non-parametric models. The non-parametric models included a maximum likelihood model based upon histograms constructed from selected

50

"En entry

variants, the K-nearest neighbor, the minimum distance model and the Eigen vector model (EVM). These models are discussed briefly, following the discussion of parametric models.

Parametric Model

<u>Sample Variants</u>. Four variants were generated from the four-look FM data discussed previously. The four sequential values representing each pixel, converted to power units, were used to generate four variants employed in the classification model. The FM values are related to power by (M=8 $\log_2 P$) plus a constant so the conversion to power from the log filter magnitudes is given by

$$P = K(2^{M/8})$$

where K is a calibration factor which may change from scan to scan or within a single scan. To illustrate the classification model, data were selected from regions within a scan over which K remained constant.

Four target variants used in the model based upon measurement were selected from the mean, Z_1 , sample variance Z_2 , fast variation, Z_3 , slow variation Z_4 , RMS, deviation from the mean δ , and the difference between fast and slow variation, D_{fs} . These functions are defined:

$$Z_{1} = \frac{1}{4} \sum_{i=1}^{4} P_{i}$$

$$Z_{2}^{2} = \frac{1}{3} \sum_{i=1}^{4} (P_{i} - Z_{1})^{2}$$

$$Z_{3} = \frac{1}{3} \left\{ |P_{1} - P_{2}| + |P_{2} - P_{3}| + |P_{3} - P_{4}| \right\}$$

$$Z_{4} = \frac{1}{3} \left\{ |P_{1} - P_{3}| + |P_{2} - P_{4}| + |P_{1} - P_{4}| \right\}$$

51

$$RMS = \sqrt{\Sigma P_i^2/4}$$
$$= \frac{1}{4} \sum |P_i - Z_1|$$
$$D_{fs} = |Z_3 - Z_4|$$

It should be noted in the above relation variants Z_1 , Z_2 , RMS and δ do not involve time sequence of the data whereas fast variation, slow variation and D_{fs} do involve the time sequence of the return.

4

Distributions Investigated for the Variants. Since the probability distribution function (PDF) of the measured data or variants derived from the measured data was required in the formulation of the classification model, histograms of the distributions of the various variants were constructed from the sample data sets. Four standard probability distribution functions, which included the Lognormal, the Weibull, the Chi-Square, and the Rayleigh PDF's, were fitted to the data. It was found that the Lognormal and Weibull PDF's generally fitted the test data well with the Weibull PDF giving a better fit than the Lognormal PDF. The Lognormal and the Weibull distributions are written as:

$$p(X) = \frac{1}{\sqrt{2\pi} X \sigma_{LN}} \exp \left\{ - (\ell n (X/M)^2 / 2 \sigma_{LN}^2) \right\}$$

and

$$p(X) = \frac{n}{\sigma_{w}} (X/\sigma_{w})^{n-1} \exp\left\{-(X/\sigma_{w})^{n}\right\}$$

respectively, where M is the median of X, σ_{LN} is the standard deviation of n(X/M), σ_w is a scale factor, and n is a shape parameter.

Ei in

Description of Model. To demonstrate the utility of several of the variants studied for discrimination, a classification model based on the statistics of selected variants derived from the SAR return data was formulated and applied to the test sample. Four variants and four classes of objects were used to demonstrate the effectiveness of the discriminant model; however, it should be noted here that the model is by no means limited to these dimensions. Although the Weibull PDF (Probability Distribution Function) fitted the variants for all four classes comprising the test sample, the vector form at the Weibull PDF was not developed. Consequently, the Lognormal distribution was chosen for constructing the classification model. The variants, (Z_1, Z_2, Z_3, Z_4) , derived from one set of measurements are assumed to belong to one of four sample classes comprising the test sample. Since these qualities have a Lognormal distribution, the PDF of Z, when Z belongs to class T_i , is represented by $p(Z|T_4)$ and is given as follows:

$$p(Z|T_{i}) = \frac{1}{(2\pi)^{2}|C_{i}|^{1/2}Z_{pi}} \exp\left\{-\frac{1}{2}(Z'|C_{i}^{-1}Z)\right\}$$

where

$$Z = [ln(Z_1/M_{11}), ln(Z_2/M_{12}), ...ln(Z_4/M_{14})]$$

Z' is the transpose of Z, and

$$Z_{pi} = \Pi(Z_r/M_{ir})$$
.

 M_{ir} , for r=1,2,3,4, are the medians of Z_r when Z_r belongs to T_i . C_i is the covariance matrix of Z. A decision function is formed that assigns each

53

"En 11" ".

vector Z to one of the sample classes. This function will assign Z to class T_i if the following condition

$$p(Z|T_i) > p(Z|T_j)$$

is met for all j not including i. Inserting the expression

$$\mathbf{r}_{ij} = \ln \frac{\mathbf{p}(Z | T_i)}{\mathbf{p}(Z | T_j)}$$

into the ratio of two probability density functions, one obtains a decision function as follows

$$r_{ij} = -\frac{1}{2} \left[\left(\ln \frac{Z_i}{M_i} \right)' C_i^{-1} \left(\ln \frac{Z_i}{M_i} \right) - \left(\ln \frac{Z_j}{M_j} \right)' C_j^{-1} \left(\ln \frac{Z_j}{M_j} \right) \right] + \frac{1}{2} \ln \frac{C_j}{C_i} + \sum_{r} \left(\ln \frac{M_j r}{M_i r} \right)$$

A decision is now made, based on the above equation, as to which class Z belongs. By the assignment criterion noted above, Z is assigned to Class T_i if $r_{ij} > 0$, and is not assigned to T_i if $r_{ij} < 0$. For the selected example given here, only the diagonal terms in the covariance matrices were retained. The off-diagonal terms were set to zero. Al; combinations for r_{ij} were computed and Z was placed in class k when the condition $r_{kj} > 0$ was met for all j.

<u>Test Results</u>. Employing data representing four sample classes, the model was tested against each data point for several combinations of the measurement vector Z. In these cases, the data set used as a test set was also used as a test set. The results of one test are shown below when the

\$

54

"En all'

four variants, mean power, σ , fast variation and slow variation were employed in the model.

4

Class	Number of	Number of C	lassific	ations p	er Class
Description	Crumples	102	201	202	9000
Fruit Trees	50	324	5	11	С
Moved Grass Field	49	0	14.24	5	0
Unmowed Grass 2 Weed Field	54	l	40	ר _ו ד	0
Metal Mobile Homes	37	0	0	0	37

NUMBER OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH CLASS

An example when the covariances are included in the model is shown below for a different set of targets and variants. The variants for this model are mean power, σ , RMS and δ . Target classes 1, 2, 3, and 4 correspond to fruit trees, smooth grass, rough grass and citrus trees.

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	45	0	1	4
2	4	7	37	1
3	12	0	37	6
4	36	0	0	37

Use of other variants gave varied results. The model failed when applied to data normalized with respect to the four-look mean.

55

·E.

The model was modified to include the Eigen transformation to form a new set of decorrelated variants. The results are shown below for a model employing power mean, average deviation from the mean, slow variation and fast variation. Target class 1, 2, 3, and 4 correspond to grass, young fruit trees, citrus trees and a vineyard.

1

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	38	11	0	0
2	0	45	1	4
3	0	0	52	21
4	0	1	0	83

Nonparametric Models

A model similar to the parametric model was developed using four variants. However instead of employing parametric curve fits to the mistograms of target PDF, the probability densities were obtained from a table look up from histograms generated from measurement data. Variants employed in the model were mean power, deviation from the mean, slow variation and fast variation. The model was reduced from a four target class model to two target class model. Besides making a decision as to which class the target may be assigned, two other groups were included in the model group 3 and 4. In group 3 the target may be assigned to either target class and in group 4 the target is not assigned to any target class. When applied to target classes of fruit trees and mobile homes the model produced results shown below.

TARGET CLASSIFICATION TEST

Target	No. 1	No. 2	No. 3	No. 4
1	40	0	0	10
2	0	94	0	7

This particular model was not pursued further.

56

<u>Nearest Neighbor Classifier</u>. A two class nearest neighbor (K-NN) classifier assigns a pattern X of unknown classification to the class of its nearest neighbor. For K = 1, we have the l-NN classifier which employs only classification based upon the nearest neighbor. In this program, K was variable. The classification determines the K nearest neighbor, from data contained in the two classes, to X and used the majority rule to determine which class to assign to X.

L

The two classes chosen as a test case were tanks and mobile homes (taken from scenes 3 and 5 without hop). The number of pixels for the two classes were 44 and 50, respectively. Variants employed were mean power, deviation from the mean, fast and slow variation for the unnormalized data, and the difference between slow and fast variation was added to this graph of variants for the normalized data. Test results are shown below employing both unnormalized and normalized return power from four look data placed in proper time sequence. Targets 1 and 2 refer to target classes of tanks and mobile homes, respectively.

57

"É ,,

5	UMMARY O	F THE K-N	EAREST NEI	GHBOR CL	ASSIFIER
Unnormalized Pc	wer				
	K = 1	Nearest N	eighbor Cl	assifier	Summary
		Target	No. 1	No. 2	
		1	31	13	
		2	17	33	
	K = 3 1	Nearest N	eighbor Cl	assifier	Summary
		Target	No. 1	No. 2	
		1	28	16	
		2	17	33	
	K = 5 1	Nearest N	eighbor CL	assifier	Summary
		Target	No. 1	No. 2	
		1	24	20	
		2	18	32	
	K = 11 1	Nearest N	eighbor Cl	assifier	Summary
		Target		No. 2	
		1	18	26	
		2	15	35	
	K = 21 1	Nearest N	eighbor Cl	assifier	Summary
		Target	No. 1	No. 2	
		1	15	29	
		2	14	36	
Normalized Powe	er				
	K = 1 N	learest Ne	ighbor Cla	assifier	Summary
		Target	No. 1	No. 2	
		1	23	21	
		2	21	29	
	K = 3 N	learest Ne	eighbor Cla	assifier	Summary
		Target	No. 1	No. 2	
		1	21	23	
		2	22	28	
	K = 5 N	learest Ne	eighbor Cla	assifier	Summary
		Target	No. 1	No. 2	
		1	16	28	
		2	20	30	
	K = 11 N	learest Ne	eighbor Cla	assifier	Summary
		Target	No. 1	No. 2	
		1	24	20	
		2	24	26	
	K = 21 N		eighbor Cla		Summary
		Target	No. 1	No. 2	
		1	21	12	
		1 2	31 24	13 26	

58

·E,

The number of errors made in classification employing normalized data appeared to increase for both target classes, again pointing to the fact that class separability was due to mean power return rather than a measure of look-to-look dispersion.

Minimum Distance Model

The use of distance functions is one of the earliest concepts in pattern classification. The motivation for using distance functions as a classification tool is that the most obvious way of establishing a measure of similarity between pattern vectors is by their proximity to one another. We say that X, a pattern vector, belongs to class C_j on the basis that it is closer to patterns belonging to this class.

In this classifier the Euclidean distance, D_{ji} , between the pattern vector X_i and a known set of pattern vectors \overline{X}_i defined by

$$D_{ji} = X_i - \overline{X}_j$$

is computed for each class. For the two class problem j = 2. Components of the pattern vector are the various discriminant functions discussed elsewhere. Dimensions of the pattern vector have been selected on four with no attempt to reduce the dimensionality of the vector.

The pattern vectors \overline{X}_{j} are taken to be the means and/or medians of the set of discriminants derived from measurements from class j. The classifier computes the distance from the pattern X_{i} of unknown classification and assigns it to the class to which it is closest, i.e., X_{i} is assigned to class C_{j} , if $D_{ji} < D_{si}$ for all $j \neq s$.

Since the discriminants computed from measurements for each class were highly correlated, Eigen transformations were applied to the pattern vectors. During this process a new set of pattern vectors $\widetilde{X_i}$ was created for each pixel within each class. Means and medians of the transformed vectors $\overline{X_i}$ were taken as being characteristic of the target classes containing these vectors. The minimum-distance classifier was then applied to the transformed data.

An example of the results of applying this classifier to a class of tanks and river trees for unnormalized and normalized data is shown below. The variants were selected from the generalized set of variants for N = 1. Targets 1 and 2 refer to the class of tanks and river trees respectively.

CLASSIFIER BASED ON RECEIVED POWER

Minimum Distance Classifier 1 Minimum Distance Classifier Based on Class Median No. 1 No. 2 No. 3 No. 4 Target 1 45 0 0 0 3 2 50 0 0 Minimum Distance Classifier Based Upon Class Means No. 2 No. 3 No. 4 Target No. 1 1 45 0 0

2 5 44 4 0

CLASSIFIER BASED ON NORMALIZED TARGET RETURN

Minimum Distance Classifier 1 Minimum Distance Classifier Based on Class Median Target No. 1 No. 2 No. 3 No. 4 1 9 8 28 0 2 4 11 38 0 Minimum Distance Classifier Based Upon Class Means

Target	No. 1	No. 2	No. 3	No. 4
1	13	10	22	0
2	10	14	29	0

60

"Én de

It should be noticed that the classifier performed well when operating on received power but performed rather poorly on the normalized data.

. 1

Eigen Vector Four Variant Model

Theory. The probability density functions (PDF) were computed for eight unnormalized and seven normalized discriminants derived from FLAMR four look data. Because of the manner by which the discriminant functions were established, it seemed reasonable to assume that the PDF's of any combination of four descriminants selected from the unnormalized set or any combination of four discriminants selected from the normalized set would be representative of the pattern class. We find, however, that the assumption may not be entirely justified since selected sets of discriminants taken from the target classes appear to be highly correlated requiring as few as six and perhaps as many as twelve addition functions to completely describe the pattern. For example, if the discriminant PDF's for a target class are Gaussian random variables with zero mean, four variances and six correlation coefficients would describe the four dimensional PDF.

The discriminants PDS's, however, are not Gaussian and are correlated; by de-correlating the data through appropriate linear transformations, it is possible to arrive at a new set of discriminants whose PDF's statistically describe the class pattern. Furthermore, this new set will contain only four discriminants. We shall now show that this is the case.

Let X be a vector (X_1, X_2, X_3, X_4) where X_1 is discriminant i with zero mean, then the expected value of the matrix XX^T is called the covariance matrix of the random variables X_1, X_2, X_3 , and X_4 , and we have

61

"E'.

$$\mathbf{x}\mathbf{x}^{\mathrm{T}} = \begin{bmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} & \dots & \mathbf{x}_{4} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_{1}^{2} & \mathbf{x}_{1} & \mathbf{x}_{2} & \dots \\ \mathbf{x}_{2}\mathbf{x}_{1} & & \\ \vdots & & \end{bmatrix}$$

The covariance matrix, B, is given by

$$B = E \left[XX^{T} \right] = \left[E \left[X_{1}^{2} \right] \dots E \left[X_{1}X_{4} \right] \right]$$
(1)

we would like to find an orthogonal transformation X = RY such that the nondiagonal terms of $E[YY^T]$ vanish. Note that any matrix R with real elements, such that

$$RR^{T} = I,$$

$$R^{T} = R^{-1}$$
(2)

is an orthogonal matrix.

It follows from the covariance matrix, B (equation 1 above) and the orthogonal matrix equation that

$$B = E \left[RYY^{T} R^{-1} \right]$$
$$= RE \left[YY^{T} \right] R^{-1}$$
$$= R \wedge R^{-1}$$
(3)

since we require the off diagonal terms to vanish.

·E.

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix}$$

1

From the matrix relation (3) we find that

$BR = R\Lambda$

where R is a 4 x 4 matrix. This matrix may be partioned into a matrix of the form

$$\mathbf{R} = \left[\begin{array}{ccc} \mathbf{R}_1, & \mathbf{R}_2, & \mathbf{R}_3, & \mathbf{R}_4 \end{array} \right]$$

with each element R_{i} being a column matrix.

It follows then, that

$$BR_i = R_i \lambda_i$$

for i = 1, 2, 3, 4. Since λ_i is a scalar, the right side of the above may be permuted giving

$$B R_i = \lambda_i R_i$$

which can be written as

$$(\mathbf{B} - \lambda \mathbf{I})\mathbf{R}_{\mathbf{i}} = \mathbf{0}$$

for $\lambda = \lambda_i$. This matrix equation represents four linear equations with four unknown variables contained as elements of the column matrix R_i and for this equation to have a non-trivial solution, the determinant of the matrix of the coefficients of R_i must vanish, i.e.,

$$|\mathbf{B} - \lambda \mathbf{I}| = 0$$

or

 $|\mathbf{B}_{rs} - \lambda \delta_{rs}| = 0$

· Ê ...

This equation is called the characteristic equation of the matrix B. It is a polynomial of degree four in λ and has four roots λ_1 , λ_2 , λ_3 , and λ_4 which are called Eigen values or characteristic roots of B.

Placing the solution of the last equation for λI in the equation $(B-\lambda I)R_{i} = 0$, the equation can be solved for the components for R_{i} . In addition, since

$$KBR_{i} = B(KR_{i})$$
$$= \lambda (KR_{i})$$

a number K can be found such that

A NUMBER OF STREET, ST

$$R_{i}^{\star} = KR_{i}$$

is a unit vector. Vectors R_{i}^{*} are called Eigen vectors; these vectors satisfy the relation

$$(B - \lambda_{i} I) R_{i}^{\star} = 0$$

since B is symmetric, it follows for $\lambda_i \neq \lambda_j$, that

$$R_{i}^{*T} R_{j}^{*} = \delta_{ij}$$

which states that the Eigen vectors are orthogonal vectors. The matrix R^{\star} in partition form is given by

$$R^* = [R_1^*, R_2^*, R_3^*, R_4^*]$$

The new set of uncorrelated variants, Y, in terms of the correlated discriminants, X, is given by

$$Y = R^{*-1} X$$
$$= R^{*T} X$$

64

·Ei III

Briefly, to calculate a set of uncorrelated variants in terms of a set of correlated discriminants, one first calculates the covariance matrix for the correlated discriminants, solves the characteristic equation for the Eigen values, find the Eigen vectors and then computes the uncorrelated variants from a product of the matrix formed from the Eigen vectors, and the correlated discriminants.

<u>Results</u>. Eigen values and Eigen vectors were computed for the target classes (listed later in Table XI of Section VI) that were processed for the Kolmogorov-Smirnov (K-S) two-sample test for four groups of discriminant functions. These functions can be divided as follows:

- 1. Unnormalized, discriminant set 1 (N=1)
- 2. Normalized, discriminant set 1 (N=1)
- 3. Unnormalized, discriminant set 2 (N=2)
- 4. Normalized, discriminant set 2 (N=2)

The discriminant functions, which will be restated here only, are

1. Unnormalized

$$\begin{aligned} x_{1} &= \bar{P} = \frac{1}{4} \left\{ \Sigma P_{1} \right\} \\ x_{2}^{N} &= \frac{1}{4} \left\{ |P_{1} - \bar{P}|^{N} + |P_{2} - \bar{P}|^{N} + |P_{3} + \bar{P}|^{N} + |P_{4} - \bar{P}|^{N} \right\} \\ x_{3}^{N} &= \frac{1}{3} \left\{ |P_{1} - P_{2}|^{N} + |P_{2} - P_{3}|^{N} + |P_{3} - P_{4}|^{N} \right\} \\ x_{4}^{N} &= \frac{1}{3} \left\{ |P_{1} - P_{4}|^{N} + |P_{1} - P_{3}|^{N} + |P_{2} - P_{4}|^{N} \right\} \end{aligned}$$

65

"En all'

2. Normalized

 $X_{5} = Major Spread$ $Z_{1} = X_{5}/\overline{P}$ $Z_{2} = X_{2}/\overline{P}$ $Z_{3} = X_{3}/\overline{P}$ $Z_{4} = X^{4}/\overline{P}$

These relations are equivalent to those on page 48. The unnormalized discriminants have units of power while the normalized discriminants are dimensionless.

Sample sets of the Eigen vectors obtained in the process of decorrelating the covariance are given in Tables II-VIII. There are four Eigen vectors for each target class; the components of these vectors appear as elements of column matrices in the tables. Target classes by corresponding Eigen vectors for the two target classes are aligned vertically for ease of comparison. Note that the sum of the squares of the elements is unity. Set 1 and Set 2 appearing in the table refers to the set of Eigen vectors for the first and second target classes, respectively. The four Eigen values given for each set of Eigen vectors are presented as elements of a row matrix. These elements also appear as the diagonal elements of the covariance matrix of the set of discriminants formed after the Eigen transformation has been performed. The first Eigen value is equal to σ_{11}^2 , the second Eigen value is equal to σ_{22}^2 and so forth.

The Eigen vectors between the two target classes are compared by applying the following relation

66

"E ..

TABLE II-A

1

				Sc	Scene				
TARGET CLASS		2		E C		4		2	
Man-made clutter	H1CLUT (111)	H2CLUT (108)	(108)	H3CLUT	(105)				
Natural features	H1NAT (110)	HZNAT	(109)	H3NAT	(111)				
Rough grass and weeds				H3GRAS 1 H3GRAS 2	(57)				
River bank trees		H2TREE1	(22)	H3TREE1	(22)				
Young fruit trees		H2TREE2	(23)	H3TREE2	(20)				
Railroad bridge		H2RRB1	(20)						
Highway bridge		H2HWB1	(43)	H3HWB1	(32)				
Bridges		H2BRIDG	(23)	H3BRIDG	(22)				
Mobile homes		HZMH1	(22)	LHMEH	(20)				
Shadows						H4DARK (56)	(99)		
Sand						H4SAND1 (56)	(99)	H5SAND1 H5SAND2	(56) (111)
Other Tactical vehicles						H4TACT1 (71)	(11)	H5TACT1	(11)
Tactical vehicles						H4TACT2 (88)	(88)	H5TACT2	(169)
Tanks						H4TANK1 (48)	(48)	H5TANK1	(44)
Trucks, 2 1/2 ton						H4TR251 (56)	(26)	H5TR251	(22)

67

Ei Juite

"F"

TABLE II

4

COMPARI: ON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND MORILE HOMES (SET 2, H3MH1) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 30 GROUP 1 •5317E+08 •2133E+07 •4058E+06 EIGEN VECTORS FROM SET 1 FILE 30 GROUP 1 .4173E+05 .4758 .0987 Tanks •5236 -,6998 .9004 .2279 -.1661 .3313 .5237 .6722 -.2439 •4630 -.0802 -.6512 -.3465 .6705 EIGEN VALUES FOR SET 2 FILE 30 GROUP 1 •1501E+08 •2937E+07 •6388E+06 •1927E+05 EIGEN VECTORS FROM SET 2 FILE 30 GROUP 1 Mobile •917Š .0248 •1774 **3551** -.0192 .8549 -,3221 Homes •4063 -.1347 -.7384 -.3374 .5682 .6737 -.3520 -.1905 **•**6212 30 BETWEEN VARIANT EIGEN VECTORS .09178 1 1 ,95114 1 2 ,94623 1 3 1 .06526 4 1.34637 RELATIVE MATCH FOR FILE 30 IS

Normalized Discriminants

LIGEN VALUES FOR SET 1 FILE 30 SROUP 2 .1079E-02 _4175E+00 _1617E+00 _7401E-02 LIGEN VECTORS FROM SET 1 FILE 30 GROUP 2 -,5983 -.0983 -.1660 .7777 Tanks .2656 .0437 .5563 -.7862 .4507 .3930 -.7264 .3388 •6788 .3599 .4471 .4580 EIGEN VALUES FOR SET 2 FILE 30 GROUP 2 .6271E+00 •2549E*00 •6735E-02 •1320E-02 LIGEN VECTORS FROM SET 2 FILE 30 GROUP 2 .0574 -,5895 Mobile .7893 -.1605 .0380 -.7413 Homes .6013 .2958 .3931 .4584 -.6676 •4355 .4632 ,3159 •7414 .3688 J BETWEEN VARIANT EIGEN VECTORS .08745 2 1 .08891 2 S .03706 2 3 .04057 2 4 RELATIVE MATCH FOR FILE 30 IS .13628

·En derte

TABLE II (CONTINUED)

COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND MOBILE HOMES (SET 2, H3MH1) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 30 GROUP 3 .1534E*07 .5186E+06 .6775E+08 .1127E+04 EIGEN VECTORS FROM SET 1 FILE 30 GROUP 3 Tanks .4188 .7072 -,5695 .0122 -.1157 .3613 .1416 .9143 .3516 .4630 .7716 -.2580 .6926 -.6024 -.2453 -.3119 EIGEN VALUES FOR SET 2 FILE 30 GROUP 3 •1995E•07 EIGEN VECTORS FROM SET 2 FILE 30 GROUP 3 .2346E+08 .2690 •0913 .9588 .0028 Mobile .3864 -.0003 -.1111 •9156 Homes -.7381 .6102 -.1001 -.2699 •6685 .6372 -.2415 -.2980 D BETWEEN VARIANT EIGEN VECTORS .10932 1 3 2 3 .89377 3 .88874 3 4 .01029 З RELATIVE MATCH FOR FILE 30 IS 1.26520

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 30 GROUP 4 .5251E+00 .1364E+00 .6067E-02 .2075E-03 LIGEN VECTORS FROM SET 1 FILE 30 GROUP 4 Tanks .6941 -.0707 -,7158 -.0308 .2373 .2862 .0043 .9283 .4350 -.7009 -.2593 .5022 •4971 •7097 .4232 -.2647 EIGEN VALUES FOR SET 2 FILE 30 GROUP 4 •1774E±00 45569E+02 •8765E+00 •1320E-03 EIGEN VECTORS FROM SET 2 FILE 30 GROUP 4 Mobile .6674 •0471 -.7429 Homes -.0232 .2953 .0304 .2384 .9247 .5194 -.6930 .4307 -.2541 .4445 •7188 .4539 -.2826 D BETWEEN VARIANT EIGEN VECTORS 1 .05169 4 .06066 2 4 .04117 3 4 .010?2 RELATIVE MATCH FOR FILE 30 IS .n9028

69

TABLE III

COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK1) AND TREES (SET 2, H3TREE3) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

. !

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 21 GROUP 1 .8196E+08 .3194E+07 .8993E+06 EIGEN VECTORS FROM SET 1 FILE 21 GROUP 1 •7164E+05 Tanks .4765 -.4476 ,7477 .1162 .3327 .1685 -,2501 .8935 .4824 -.2430 -.5754 -.6141 .6554 .6634 .0353 -.3593 EIGEN VALUES FOR SET 2 FILE 21 GROUP 1 .3965 •0534 •914B .0557 Trees •0794 .3626 -,2169 .9029 •7194 -.5691 -.2603 -.3014 .4401 .8167 -.2201 -.3015 SD BETWEEN VARIANT EIGEN VECTORS 1 .16569 1 2 .26576 1 ,23422 З 1 .05125 4 1 RELATIVE MATCH FOR FILE 21 IS . 39442

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 21 GROUP 2 .4646E+00 .1364E+00 .7331E-02 .1027E EIGEN VECTORS FROM SET 1 FILE 21 GROUP 2 .7744138759041800 .2630 .0600 .56797776 .32117206 .4698 .3961 .4774 .6767 .3288 .4539 EIGEN VALUES FOR SET 2 FILE 21 GROUP 2 .7646E+00 .1788E+00 .6736E-02 .1720E EIGEN VECTORS FROM SET 2 FILE 21 GROUP 2 .7833 .052959291789 .2634 .0328 .58277681 .45236634 .4069 .4355 .3353 .7456 .3785 .4340	Tanks
D BETWEEN VARIANT EIGEN VECTORS	
1 .09681 2 2 .10663 2 3 .04078 2 4 .02258 2	
RELATIVE MATCH FOR FILE 21 IS	.15137

·Ei

·Ľ .

TABLE III (CONTINUED)

COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK1) AND TREES (SET 2, H3TREE3) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 21 GROUP 3	
.1034E+09 .2152E+07 .1364E+07 .12	49E+04
EIGEN VECTORS FROM SET 1 FILE 21 GROUP 3	Tanks
•4219 •5526 - •7187 •0110	
•3614 - •0953 •1528 •9148	
•4856 •5040 •6687 • •2511	
.67 50 6 569 1137 3161	
EIGEN VALUES FOR SET 2 FILE 21 GROUP 3 .2209E+08 .1983E+07 .1514E+07 .26	
	52E+04
EIGEN VECTORS FROM SET 2 FILE 21 GROUP 3	Turne
, 3168 , 8697 , 3784 ≠ ,0056	Trees
.376012870054 .9176	
•6976 •0297 • •6565 • •2855	
.52124755 .65262764	
D BETWEEN VARIANT EIGEN VECTORS	
1	
1 .14130 3	
2 ,29981 3	
2 29981 3 3 94499 3 4 02758 3	
RELATIVE MATCH FOR FILE 21 IS	1.00181

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 21 GROUP 4 .5808E+00 .1121E+00 .6058E-02 .1636E-03 EIGEN VECTORS FROM SET 1 FILE 21 GROUP 4 .6939100971200382 .2855 .0109 .2268 .9311 .41337092 .51642442 .5159 .6977 .41842683 EIGEN VALUES FOR SET 2 FILE 21 GROUP 4	Tanks
•9587E+00 •1242E+00 •4803E-02 •1870E-03 EIGEN VECTORS FROM SET 2 FILE 21 GROUP 4 •6997 •046171290049 •2853 •0126 •2745 •9182 •50046854 •44872802 •4226 •7266 •46382799 D BETWEEN VARIANT EIGEN VECTORS	Trees
1 .06388 4 2 .07587 4 3 .04722 4 4 .02599 4 RELATIVE MATCH FOR FILE 21 IS	1]289

71

TABLE IV

Ļ

COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND GRASS (SET 2, H3GRAS2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 34 GROUP 1 .4173E+05 .5317E+08 .2133E+07 .4058E+06 EIGEN VECTORS FROM SET 1 FILE 34 GROUP 1 Tanks .4758 .0987 •5236 -.6998 .2279 .9004 .3313 ~.1661 .4630 .6722 .5237 -.2439 -.0802 .6705 -.6512 -.3465 EIGEN VALUES FOR SET 2 FILE 34 GROUP 1 .1954E+05 •8203E±06 •7530E+05 •3663E+07 EJGEN VECTORS FROM SET 2 FILE 34 GROUP 1 .9893 Grass .0260 .0916 .1107 .9001 .1327 -.0762 .4078 .8589 -.3870 -.0274 -.3344 .2960 .9058 -,1215 -.2779 D BETWEEN VARIANT EIGEN VECTORS .33559 1 1 2 .93720 1 .92692 1 3 4 06743 1 RELATIVE MATCH FOR FILE 34 IS 1.36187

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 34 GROUP 2 1617E#00 •7401E-02 .1079E-02 .4175E+00 EIGEN VECTORS FROM SET 1 FILE 34 GROUP 2 Tanks -.1660 -.0983 -.5983 ,7777 .5563 .2656 •0437 -.7862 .3930 .4507 .3388 -.7264 .3599 .4580 .6788 .4471 EIGEN VALUES FOR SET 2 FILE 34 GROUP 2 .7246E+00 +1024E#00 •6204E-02 .1614E-02 EIGEN VECTORS FROM SET 2 FILE 34 GROUP 2 Grass -.5762 -.2311 .7489 .2318 .2701 •0154 .6441 -.7155 .4844 .5709 -•5846 .3126 .3941 .7774 .4473 1005 D BETWEEN VARIANT EIGEN VECTORS .17387 2 1 .18679 2 2 .08432 3 2 .06631 2 ELATIVE MATCH FOR FILE 34 IS .27682

·C 11

4.

TABLE IV (CONTINUED)

1,

COMPARISON OF EIGEN VECTORS BETWEEN TANKS (SET 1, H5TANK) AND GRASS (SET 2, H3GRAS2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 34 GROUP 3 .6775E+08 .1534E+07 .5196E+06 •1127E+04 EIGEN VECTORS FROM SET 1 FILE 34 GROUP 3 Tanks .4188 .7072 -,5695 .0122 ,1416 .3613 -.1157 .9143 .3516 .7716 .4630 -.2580 -,2453 -.6024 .6926 •.3119 EIGEN VALUES FOR SET 2 FILE 34 GROUP 3 •9281E+03 •6759E=06 •7862E+05 .5464E+07 EIGEN VECTORS FROM SET 2 FILE 34 GROUP 3 ,9916 Grass .0742 .1027 .0276 .3910 .0804 -.0630 •9147 .7974 -.5268 -.2943 .0031 .4536 .8400 -.1132 -.2755 D BETWEEN VARIANT EIGEN VECTORS 3 1 .26861 3 2 .90222 .87849 3 3 .02684 3 4 RELATIVE MATCH FOR FILE 34 IS 1.28787

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 34 GROUP 4 .5251E+00 .1364E*00 .6067E-02 .2075E-03 EIGEN VECTORS FROM SET 1 FILE 34 GROUP 4 Tanks -,7158 -.0707 -.0308 .6941 .2373 .0043 .9283 -586S -.2593 -.7009 .5022 .4350 -.2647 .4971 •7097 .4232 EIGEN VALUES FOR SET 2 FILE 34 GROUP 4 .1109E-03 .8922E+00 .8099E+01 .5953E-02 EIGEN VECTORS FROM SET 2 FILE 34 GROUP 4 -.0301 Grass .1812 -.7132 .6765 .9261 .2415 .2886 •0267 -.2759 .5952 -.6295 .4163 .3237 .7551 .5097 D BETWEEN VARIANT EIGEN VECTORS -.2555 .5097 .11837 4 1 .13335 4 2 .06100 4 3 .00956 4 RELATIVE MATCH FOR FILE 34 IS .18870

73

TABLE V

4

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H2NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 1

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 55 GROUP 1 .6387E+09 .7014E+08 .1967E+08 .6298E+06 EIGEN VECTORS FROM SET 1 FILE 55 GROUP 1 Natural .8853 .0887 -.0224 .4560 Features .8890 .3646 -,2766 .0123 -.2794 .5679 -.3100 -.7095 -.3250 -.2485 .5802 .7043 EIGEN VALUES FOR SET 2 FILE 55 GROUP 1 .1349E+07 .7173E+10 •3963E+08 .6508E#08 EIGEN VECTORS FROM SET 2 FILE 55 GROUP 1 **Tactical** .0387 .4220 .9015 -.0877 Vehicles .8959 -.2203 -.0143 .3856 -.1591 .3616 .9157 -.0734 -.4130 -,3919 -.3651 7366 10 BETWEEN VARIANT EIGEN VECTORS 1 .13097 1 .78358 2 1 .78492 3 1 .09091 4 1 RELATIVE MATCH FOR FILE 55 IS 1.12050

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 55 GROUP 2 .7723E+00 .1705E+00 .5955E-02 .2117E-02 EIGEN VECTORS FROM SET 1 FILE 55 GROUP 2 Natural -,5988 -,1559 .7853 -.0203 Features .5699 .2816 .0093 -.7719 .3779 .4077 .4303 -.7112 .4413 •4015 .7026 ,3878 EIGEN VALUES FOR SET 2 FILE 55 GROUP 2 .2107E-02 .8221E+00 •1587E*00 •7427E-02 EIGEN VECTORS FROM SET 2 FILE 55 GROUP 2 Tactical .7803 -.0754 -.6031 -.1474 Vehicles .5465 -.7920 .2719 -.0093 .4363 .4294 .3498 -.7091 .3839 .4081 .701.0 .4413 D BETWEEN VARIANT EIGEN VECTORS .02496 2 1 .02907 2 2 2 З .01871 .01987 2 4 RELATIVE MATCH FOR FILE 55 IS . n4704

·E

TABLE V (CONTINUED)

1

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H2NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 55 GROUP 3 •5501E+08 •2575E+08 .8328E+09 .8440E+05 Natural EIGEN VECTORS FROM SET 1 FILE 55 GROUP 3 Features .3895 ,9202 -.0388 -.0075 .3730 .9156 .0090 -.1501 -,2807 -.2784 .5874 -.7061 .7070 -.2279 -.2901 .6034 EIGEN VALUES FOR SET 2 FILE 55 GROUP 3 •9084E+10 •9945E*08 •2152E+u8 +2007E+05 EIGEN VECTORS FROM SET 2 FILE 55 GROUP 3 Tactical •9287 .3701 -.0240 -.0040 Vehicles .3693 -.1421 .0420 •9174 .4834 -.1727 -.2588 **.**8182 .7021 -.2959 -.5729 SD BETWEEN VARIANT EIGEN VECTORS -,5729 -.3022 .07237 3 1 2 .74988 3 3 .75083 3 3 .01168 RELATIVE MATCH FOR FILE 55 IS 1.06369

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 55 GROUP 4 .1839E-03 •201E-02 .1017E+01 .1228E+00 EIGEN VECTORS FROM SET 1 FILE 55 GROUP 4 Natural -.0371 .6840 -.0210 -,7283 Features .2271 .9290 .0028 .2922 -.7088 .4672 -.2573 •4617 -.2635 .4470 .7051 .4833 EIGEN VALUES FOR SET 2 FILE 55 GROUP 4 .1059E-03 •1108E±00 •5786E-02 .1035E+01 EIGEN VECTORS FROM SET 2 FILE 55 GROUP 4 -,7177 -.0061 -.0268 Tactical .6958 .2730 .9174 -.0071 .2844 Vehicles .4562 -,2803 -.7206 .4404 •6928 .4497 -.2824 .4880 3D BETWEEN VARIANT EIGEN VECTORS 4 .01248 1 .01028 4 2 .02423 4 3 .02226 RELATIVE MATCH FOR FILE 55 IS .13666

TABLE VI

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H3NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

{

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 56 GROUP 1 1259E+11 .7826E+09 .5396E+09 .1538E+08 EIGEN VECTORS FROM SET 1 FILE 56 GROUP 1 .4760 .2509 .8416 .0471 .355302402443 .9019 .62627086 .12622997 .5050 .659146493074 EIGEN VALUES FOR SET 2 FILE 56 GROUP 1 .2161E+11 .1929E+10 .2182E+09 .1077E+08 EIGEN VECTORS FROM SET 2 FILE 56 GROUP 1 .5399552263520100 .3356 .1469 .1431 .9194 .50603585 .74572435 .5829 .738214143087 D BETWEEN VARIANT EIGEN VECTORS	Natural Features Tactical Vehicles
1 .07904 1 2 .44805 1 3 .89385 1 4 .04102 1 RELATIVE MATCH FOR FILE 56 IS 1.0	n j 382

Normalized Discriminants

.7483E+00 EIGEN VECTURS FRO .7705 .2685 .5073 .2772 EIGEN VALUES FOR .7164E+00 EIGEN VECTORS FRO .7541 .2634 .2066	6300 .3591 .4 .7652 .3674 .4 SET 2 FILE 56 GROUP 2 .1404E*00 .7592E-02 OM SET 2 FILE 56 GROUP 2430 .5866 .1 0126 .5672 .7 7566 .4599 .4 .6069 .3503 .4	2 Natural 135 Features 315 Features 655 501 •1757E-02 Z 2 Tactical 679 Vehicles
1 .20829 2 .21266 3 .05895 4 .04208 RELATIVE MATCH F	2	•30636

TABLE VI (CONTINUTED)

4

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF NATURAL FEATURES (SET 1, H3NAT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 56 GROUP 3 .1653E+11 .6830E+09 .5308E+09 EIGEN VECTORS FROM SET 1 FILE 56 GROUP 3 .8421E+06 Natural .4054 -.0825 •.0082 **•9104** Features .0351 .9174 .3664 -.1516 .6322 -.3416 -.6345 -.2846 •5494 -.1775 -.2781 .7677 EIGEN VALUES FOR SET 2 FILE 56 GROUP 3 •2663E+11 •1948E#10 •2581E+09 +2091E+07 EIGEN VECTORS FROM SET 2 FILE 56 GROUP 3 Tactical .5762 •4760 -.6637 -.0306 Vehicles •1256 .3555 -.1001 .9208 .5331 -.2076 -.7620 -.2522 .6023 .6871 .2781 -.2961 D BETWEEN VARIANT EIGEN VECTORS 1 .06656 3 .90935 2 3 .42080 3 3 .02170 3 RELATIVE MATCH FOR FILE 56 IS 1.00443

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 56 GROUP 4 .1579E=03 .5627E-02 .9348E+00 .1107E+00 EIGEN VECTORS FROM SET 1 FILE 56 GROUP 4 Natural -.0151 .6901 .0990 **-.**716B Features •2881 .9212 •0198 .2607 **.**5427 -.6605 .4372 -.2792 .3824 •7440 .4766 -.2704 EIGEN VALUES FOR SET 2 FILE 56 GROUP 4 .16u3E-03 .8795E+00 •1144E+00 •6174E-02 EIGEN VECTORS FROM SET 2 FILE 56 GROUP 4 Tactical -.0295 **6**853 -.1375 -.7145 Vehicles .9273 .2857 -.0242 .2404 .4868 -.7624 -.2520 .3437 .6318 -.2750 .4412 .5749 D BETWEEN VARIANT EIGEN VECTORS .13846 4 1 .14214 4 2 .03214 4 3 .01586 RELATIVE MATCH FOR FILE 56 IS .20165

TABLE VII

4

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H3CLUT) AND A CLASS OF TACTICAL VEHICLES (H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 1

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 58 GROUP 1 .1629E+09 .2129E+13 .1799E+12 .5417E+11 EIGEN VECTORS FROM SET 1 FILE 58 GROUP 1 Clutter .0372 -.5903 -,2626 .7623 .1237 .9009 .2539 .3296 -.2905 .1514 .8451 .4226 •7211 -. 4490 •4193 -.3203 EIGEN VALUES FOR SET 2 FILE 58 GROUP 1 +4874E+09 •8729E •11 •9873E+10 •9780E+12 EIGEN VECTORS FROM SET 2 FILE 58 GROUP 1 Tactical .5399 -.5522 ~.6352 -.0100 Vehicles .3356 •1469 .1431 .9194 .5060 -.3585 .7457 -.2435 .7382 -.3087 .5829 -.1414 SD BETWEEN VARIANT EIGEN VECTORS .14988 1 1 .27163 1 2 .24683 1 3 .03504 1 4 RELATIVE MATCH FOR FILE 58 IS . 39799

Normalized Discriminant

EIGEN VECTORS .7810 .2835 .3101 .4621 EIGEN VALUES	-2434E+0 FROM SET 1035 0130 7316 .6737 FOR SET 2 1	00 .8316E L FILE 58 G 6081 .4982 .4587 .4143 FILE 58 GRO	:-ĉ2 .2343E ;ROUP 2 .0979 .8193 3978 4011	Clutter
EIGEN VECTORS •7541 •2634 •2066	5 FROM SET ; 2430 0126 7566 .6069	2 FILE 58 G 5866 .5672 .4599 .3503	000P 2 1679 7802 .4163	Tactical Vehicles
2 .07 3 .04	7488 2 7834 2 8877 2 9898 2 21 FOR FILE	58 IS		1.03600

TABLE VII (CONTINUED)

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H3CLUT) AND A CLASS OF TACTICAL VEHICLES (H5TACT2) HOP OFF, SCENES 3 AND 5, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 58 GROUP 3 .4070E+08 .2437E+13 .1973E+12 .7194E+11 EIGEN VECTORS FROM SET 1 FILE 58 GROUP 3 Clutter .0074 .7034 -.7016 .1142 .2881 •2936 -.0299 .9110 .4649 .3380 -,7685 -.2812 .6289 .4541 •5544 -.3016 EIGEN VALUES FOR SET 2 FILE 58 GROUP 3 .1205E+13 •8816E+11 •1168E+11 •9464E+08 EIGEN VECTORS FROM SET 2 FILE 58 GROUP 3 Tactical .4760 -.6637 .5762 -.0306 Vehicles .9208 .3555 .1256 -.1001 -.2522 •5331 -.2676 -,7620 •6871 .2781 -.2961 .6023 SD BETWEEN VARIANT EIGEN VECTORS .14393 3 1 .32172 3 2 ,29218 3 3 .02454 З 4 RELATIVE MATCH FOR FILE 58 IS .45847 Normalized Discriminants EIGEN VALUES FOR SET 1 FILE 58 GROUP 4 .1562E-03 •1139E+01 •1704E±00 •6591E=02 EIGEN VECTORS FROM SET 1 FILE 58 GROUP 4 Clutter -.0272 -.7292 -.0238 .6834 .9245 .2443 .2928 -.0008 -.2540 -.7445 .4410 .4321 -.2834 .4628 .6670 .5105 EIGEN VALUES FOR SET 2 FILE 58 GROUP 4 .1803E-03 •1144E#00 .6174E-02 8795E+00 EIGEN VECTORS FROM SET 2 FILE 58 GROUP 4 Tactical -.1375 -.0295 .6853 -.7145 Vehicles .2404 .9273 -.0242 .2857 .4868 -.2520 .3437 -.7624

•5749 •6318 •4412 •.2750 SD BETWEEN VARIANT EIGEN VECTORS 1 •05481 4 2 •05975 4 3 •02644 4

A 00536 4 RELATIVE MATCH FOR FILE 58 IS . 18545

79

TABLE VIII

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, H2CLUT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 1

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 57 GROUP 1 .8813E+09 .2072E+13 .9384E+11 •2143E+11 EIGEN VECTORS FROM SET 1 FILE 57 GROUP 1 Clutter -.5941 .5329 .6021 .0222 .3457 .1969 -.1452 .9059 .6386 -.1334 -.6849 -.3245 .3838 .4343 .7684 -.2713 EIGEN VALUES FOR SET 2 FILE 57 GROUP 1 +8217E+09 •4368E+13 •3962E#11 •2413E+11 EIGEN VECTORS FROM SET 2 FILE 57 GROUP 1 Tactical .0387 .4220 -.0877 •9015 Vehicles .8959 .3856 -.0143 **-.**2203 •9157 -.1591 -.0734 .3616 -.3651 -.3919 -.4130 •7366 D BETWEEN VARIANT EIGEN VECTORS .21331 1 1 2 .96168 1 3 ,95611 1 .10932 ۵. 1 RELATIVE MATCH FOR FILE 57 IS 1.37711

Normalized Discriminants

EIGEN VALUES FOR SET 1 FILE 57 GROUP 2 .1810E-02 .9483E+00 .1724E+00 .8188E-02 EIGEN VECTORS FROM SET 1 FILE 57 GROUP 2 Clutter .1086 .7871 -.0044 -.6071 .2844 .5135 .8096 -.0097 .3802 -.7113 .4246 -.4113 -.4045 .7028 .4330 .3937 EIGEN VALUES FOR SET 2 FILE 57 GROUP 2 .2107E-02 .8221E+00 1587E+00 •7427E-02 EIGEN VECTORS FROM SET 2 FILE 57 GROUP 2 Tactical -.0754 -.1474 .7803 -.6031 **Vehicles** .5465 -.7920 -.0093 .2719 .4363 .4294 .3498 -.7091 .7010 .4413 .3838 .4081 SD BETWEEN VARIANT EIGEN VECTORS .02912 2 1 2 .03551 2 3 2 .03026 ,99972 2 RELATIVE MATCH FOR FILE 57 IS 1.00123

"En it it

TABLE VIII (CONTINUED)

COMPARISON OF EIGEN VECTORS BETWEEN A CLASS OF CLUTTER (SET 1, (H2CLUT) AND A CLASS OF TACTICAL VEHICLES (SET 2, H4TACT2) HOP ON, SCENES 2 AND 4, DISCRIMINANT SET 2

Unnormalized Discriminants

EIGEN VALUES FOR SET 1 FILE 57 GROUP 3 .2412E+13 .1137E+12 .1311E+11 . EIGEN VECTORS FROM SET 1 FILE 57 GROUP 3 .48547125 .5063019 .3509 .14790926 .920 .636306017064304 .4862 .6832 .4859246 EIGEN VALUES FOR SET 2 FILE 57 GROUP 3	Clutter 7 0 2 3
•5531E+13 •6055E+11 •1310E+11 • EIGEN VECTORS FROM SET 2 FILE 57 GROUP 3 •3701 •9287 -•0240 ••004 •3693 -•1421 •0420 •917 •4834 -•1727 •8182 -•258 •7021 -•2959 -•5729 -•302 SD BETWEEN VARIANT EIGEN VECTORS	Tactical Vehicles 8
1 .14459 3 2 .96811 3 3 .96757 3 4 .03687 3 RELATIVE MATCH F ^O R FILE 57 IS	1.37684

Normalized Discriminants

1256E+01 .11 EIGEN VECTORS FROM .68400 .29150 .46417 .4814 .6 EIGEN VALUES FOR SE .1035E+01 .11	T 1 FILE 57 GROUP 4 42E±00 .5439E=02 .1346E=03 SET 1 FILE 57 GROUP 4 04072840379 050 .2254 .9296 156 .45322592 985 .46172591 T 2 FILE 57 GROUP 4 08E≠00 .5786E=02 .1059E=03	Clutter 3
EIGEN VECTORS FROM	SET 2 FILE 57 GROUP 4	
	26871770061	Vehicle s
	.2730 .9174	venicies
•4404 -•7	206 .45622803	
•4880 •6	928 .44972824	
D BETWEEN VARIANT E	IGEN VECTORS	
1 .01368 2 .01203	4	
2 .01203 3 .02517	4	
	4	
RELATIVE MATCH FOR	FILE 57 IS	.n3876

A. 26.3

S D
$$_{i} = \left[\frac{1}{4} \left\{ \sum_{r=1}^{4} \left({}_{1}E_{ir} - {}_{2}E_{ir} \right)^{2} \right\} \right]^{1/2}$$

where ${}_{sir}^{E}$ is the r-th element of the i-th Eigen vector (i = 1, 2, 3, 4) for Set S. These values are tabulated and listed in a column labeled "SD Between Variant Eigen Vectors." The numbers 1, 2, 3, 4 refer to the i-th Eigen vector and the 3rd column is the discriminant group number.

The maximum value of SD_i can be found by expanding $\sum ({}_{1}^{E} {}_{ir} - {}_{2}^{E} {}_{ir})^{2}$. When this is done,

$$4 \text{ SD}_{i}^{2} = \sum_{1} E_{ir}^{2} + \sum_{2} E_{2r}^{2} - 2 \sum_{1} E_{ir} \cdot 2^{E_{ir}}$$
$$= 2 \left[1 - \sum_{1} E_{ir} \cdot 2^{E_{ir}} \right]$$

Now ${}_{1}E$ and ${}_{2}E$ are unit vectors, so that

$$\sum_{i} 1^{E} ir \cdot 2^{E} ir$$

is the dot product of two unit vectors which can vary between +1 and -1. When the dot product of the two Eigen vectors is +1, $SD_i = 0$; but when the dot product of the two vectors is -1, $SD_i = 1$, from which we conclude that

$$SD_{\downarrow} \leq 1$$

If the Eigen vectors from two sets are alike, they will have the same direction and SD_i will be zero. If the Eigen vectors are nearly alike, SD_i will be close to zero. As the dissimilarity between the two sets of Eigen vectors increases, the more SD_i will depart from zero until it

"1 11

reaches its maximum value of 1 -- the value of SD_i denoting the greatest dissimilarity. SD_i is, therefore, a measure of similarity between two Eigen vectors and provides a method for assigning the similarity or dissimilarity for two target classes.

Since the number of Eigen vectors is equal to the number of discriminants contained in the set, there are four Eigen vectors per set. Two sets of Eigen vectors may be compared by examining each SD_i a total of four numbers in this case. If one or more SD_i out of the set of four deviated from zero by a number greater than a yet to be determined threshold, the two target classes would be considered as being dissimilar.

Now instead of examining each SD_i , it would be more convenient to combine the four numbers SD_i such that a single number could be used for testing target similarity. One such number used here, RM, is defined to be the root sum square of SD_i , a number which varies from 0 t. [?]. RM close to zero would indicate great similarity between two target classes and RM approaching the number two would indicate great dissimilarity between the two classes.

RM appears as the number labeled "RELATIVE MATCH" for the file numbers shown. Eigen vectors for selected target classes such as tanks, tactical vehicles, and natural features are given in Tables II-VIII.

Target classes and file designation which appear in these tables are listed in Table II-A. Numbers in the parentheses indicate the number of pixels (data points) contained in each file.

Four sets of Eigen vectors were generated for selected target classes and discriminants. A set of Eigen vectors were computed for each set of discriminants -- one for the generalized set of discriminants

83

N = 1, unnormalized; one for the generalized set of discriminants N = 1, normalized; one for the generalized set of discriminants N = 2, unnormalized; and one for the generalized set of discriminants N = 2, normalized. As an example the four sets of Eigen vectors appear in each of the Tables II-VIII. The terms Set 1 and Set 2 appearing in these tables refer to target classes 1 and 2. The corresponding four Eigen vectors appear as a column matrix under the set designation. The SD₁ between the two sets of Eigen vectors appear below the listing of Eigen vectors adjacent to the vector number 1, 2, 3, and 4. RM is the last number in the table.

4

The group number corresponds to the discriminant set

Group	Discriminant Set
1	N = 1 Unnormalized
2	N = 1 Normalized
3	N = 2 Unnormalized
4	N = 2 Normalized

Specifically these tables contain Eigen vectors for the following target classes.

Table II	Tanks and Mobile Homes, hop off
Table III	Tanks and Trees, hop off
Table IV	Tanks and Grass, hop off
Table V	Natural Features and Tactical Vehicles, hop on
Table VI	Natural Features and Tactical Vehicles, hop off
Table VII	Clutter and Tactical Vehicles, hop off
Table VIII	Clutter and Tactical Vehicles, hop on

84

۰É "

RM data taken from these tables and from other such tables not appearing in this report are listed in Table IX. This table provides some indication as to the classification potential of the Eigen vectors for the four groups of discriminant functions.

4

Employing a fixed threshold, RMT, two target classes will be assumed to be taken from the same population if RM \leq RMT and from different populations if RM > RMT. The type error can be assigned to a control set of data, such as the data in Table IX, according to whether a correct or incorrect classification has been made. For example, the trucks had a high RM (RM>2) indicating that the two sets of trucks were dissimilar when in reality they were not.

Taking RMT = 0.2, a hit or miss is assigned to each RM in Table IX. A hit is assigned for a correct classification and a miss is assigned for an incorrect classification. It is found that groups 1, 2, 3, and 4 made 3, 7, 3, and 12 errors out of 14 possible errors, respectively. From this limited data, fewer errors are made with the unnormalized data than with the normalized data confirming earlier results indicating that class separability, when it exists, is primarily due to a difference in mean power.

AD-A112 931 UNCLASSIFIED	TEXAS UNIV AT A SYNTHETIC APERT PEB 80 R PIETE ARL-TR-80-16	URE RADAR DATA	ESEARCH LABS Variance analy: Afwal-tr-80	F33615-77-	F/8 17/9 ¢-1169 NL	
20+3 A. 245						

Target Classes	No. of Data Pts.	File No.	DISCRM Unnormalized Group 1 (RM)	SET 1 Normalized Group 2 (RM)	DISCRM S Unnormalized Group 3 (RM)	SET 2 Normalized Group 4 (RM)
H4TR251 H6TR251	56 55	6	0.800†	1.000†	0.547†	0.057
H4 TANK1 H2TREE2	48 53	15	0.179+	0.062†	0.152†	0.047†
H5TANK1 H3TREE3	44 56	21	0.394	0.151†	1.002	0,113†
H4 TANK1 H2BRIDG	48 53	24	1.006	0.124†	1.005	0.082+
H5TANK H3BRIDG	* 55	26	1.005	1.003	1.343	0.076†
H5TANK H3MH1	* 50	30	1.346	0.136†	1.265	0.090+
H4TANK1 H1MH1	48 56	31	1.001	1.000	1.001	0.030+
H5TANK H3GRAS3	* *	33	1,302	0.300	1.195	0.193+
H5TANK H3GRAS2	* 55	34	1.362	0.277	1.288	0.189†
H2NAT H4TACT2	109 88	55	1.120	0.047†	1.064	0.037†
H3NAT H5TACT2	111 169	56	1.004	0.306	1.004	0.201
H2CLUT H4TACT2	108 105	57	1.377	1.001	1.377	0.038+
H3CLUT H5TACT2	105 169	58	0.398	1.006	0.458	0.085†
S5SAND1 50/50	50 50	36	0.128	0.071	1.000†	0.033

COMPARISON OF THE FOUR EIGEN VECTORS BETWEEN TARGET CLASSES BASED UPON RM

TABLE IX

- . 1

,

* Not Available

† Represents an Error

86

VI. KOLMOGOROV-SMIRNOV TWO-SMAPLE TESTS

- 1

Theory

The Kolmogorov-Smirnov test is a nonparametric statistical test used to compare two distributions. These distributions may be either a sample distribution and a theoretical distribution or two sample distributions. Since the theoretical distributions for the selected data and the variants constructed from these data are now known, we shall be concerned with applying this test to two sample distributions for purposes of testing the hypothesis whether or not the two sample distributions are the same, i.e., whether or not the distributions are representative of the same class. This test will not give the classification of a 4 look ensemble on a per sample (pixel) basis, but will rather determine whether or not two distributions of variants (features) based on the 4 look ensembles are similar hence determining the existence of discrimination information.

The chi-squared test is often used in the goodness-of-fit problems when the data can be grouped into categories to form frequer y distributions such as those often used in the form of a histogram to show probability density functions. The Kolmogorov-Smirnov test, unlike the chi-squared test, is based upon the cumulative distribution function (CDF) rather than on frequencies in the two samples.

The test involves the null hypothesis (H_0) that two samples come from populations with the same distribution function versus the alternate hypothesis (H_a) that the two samples do not come from populations with identical distribution functions.

"Ein state

Consider the statistic X_i from sample \overline{X} to be ordered such that

$$X_1 \leq X_2 \leq \dots \leq X_n$$

where n is the sample size. The sample CDF will be defined by the proportion of the measurement that does not exceed X so that if $S_n(X)$ is the CDF for one sample; then,

$$S_{n}(X) = 0 \qquad X < X_{1}$$
$$= r/n \qquad X_{r} \leq X < X_{r+1}$$
$$= 1 \qquad X_{n} < X$$

If the sample \overline{X} comes from a completely specified distribution F(X), then

$$\operatorname{Limit}_{n \to \infty} \left(S_n(X) - F(X) \right) = 0$$

for all X.

A test for goodness-of-fit to F(X) can be constructed out of any suitable measure of deviation between the two functions. A test function employed by Kolmogorov, D_n , known as the Kolmogorov test statistic is the maximum absolute difference between $S_n(X)$ and F(X) when F(X) represents the CDF of the second sample, then F(X) is replaced with $F_m(X)$ where m is the sample size for the second sample and the Kolmogorov test statistic becomes

$$D_{nm} = MAX | S_n(X) - F_m(X) |$$

It was proved by Kolmogorov and Feller that for any given number $\lambda > 0$

$$\underset{n \to \infty}{\text{Limit } P(D_n \ge \lambda / \sqrt{n}) = L(\lambda)}$$

88

·Ei di

where

$$L(\lambda) = 2\sum_{n=1}^{\infty} (-1)^{n+1} \exp(-2n^2 \lambda^2)$$

and it was shown by Smirnov for the two sample case that

Limit
$$P(D_{nm} \ge \lambda / \sqrt{N}) = L(\lambda)$$

where

N = nm/(n + m).

Given D_{nm} , confidence limits can be constructed within which either sample distribution can be expected to lie with a confidence level of 1 - α . From the distribution of D_{nm} , we have that

$$P(D_{nm} > d_{n\alpha}) = \alpha$$

for all X where $d_{n\alpha}$ for five values of α are listed in Table X and the asymptotic relation for $d_{n\alpha}$ is λ/\sqrt{n} . It follows from this relation that

$$P(D_{nm} \leq d_{n\alpha}) = 1 - \alpha$$

and from the definition of D_{nm} , it also follows that

$$\mathbb{P}[S_n(x) - d_{n\alpha} \leq F_m(x) \leq S_n(x) + d_{n\alpha}] = 1 - \alpha$$

and

and the set of the set of the set of the

$$P[F_{m}(x) - d_{n\alpha} \leq S_{n}(x) \leq F_{m}(x) + d_{n\alpha}] = 1 - \alpha$$

When comparing two sample distributions, $d_{n\alpha}$, the last three equations become the confidence statements, and the confidence band of $\pm d_{n\alpha}$ is expected to bracket the entire distribution of S_n or F_m at a confidence level of $1 - \alpha$.

89

·E.

<u></u>					
			α		
n	0.20	0.15	0.10	0.05	0.01
1	0.900	0.925	0.950	0.975	0.995
2	0.684	0.726	0.776	0.842	0.829
3	0.565	0.597	0.642	0.708	0.829
4	0.494	0.525	0.564	0.624	0.734
5	0.446	0.474	0.510	0.563	0.669
6	0.410	0.436	0.470	0.521	0.618
7	0.381	0.405	0.438	0.486	0.577
8	0.358	0.381	0.411	0.457	0.543'
9	0.339	0.360	0.388	0.432	0.514
10	0.322	0.342	0.368	0.409	0.486
11	0.307	0.326	0.352	0.391	0.468
12	0.295	0.313	0.338	0.375	0.450
13	0.284	0.302	0.325	0.361	0.433
14	0.274	0.292	0.314	0.349	0.418
15	0.266	0.283	0.304	0.338	0.404
16	0.258	0.274	0.295	0.328	0.392
17	0.250	0.266	0.286	0.318	0.381
18	0.244	0.259	0.278	0.309	0.371
19	0.237	0.252	0.272	0.301	0.363
20	0.231	0.246	0.264	0.294	0.352
25	0.21	0.22	0.24	0.26	0.32
30	0.19	0.20	0.22	0.24	0.29
35	0.18	0.19	0.21	0.23	0.27
over 35	1.07/√n	1.14/√n	1.22/√ n	1.36/√ n	1.63/√ n

			TABLI	ΞX			
VALUES	0F	d _{na}	SUCH	THAT	$P(D_{nm} > d_{n\alpha})$	z	α

-

- 1

90

·E.

The distribution of a test statistic, when the null hypothesis is true, is usually continuous for classical tests and discrete for distribution free tests. This means one may choose any significance level one wishes for parametric distributions; where as when employing distribution free tests, this is not the case. Either one of the discrete cumulative probabilities of the test statistic must be accepted as the significance level or a significance level must be chosen which is not one of the discretes. If the significance level is not one of the discrete levels of the CP, then a number, the significance level, has been chosen which the test statistic cannot assume and the test will be applied inexactly.

Numerical Procedures

One method for comparing the statistics between two target classes such as those listed in Table XI is to perform the two-sample Kolmogorov-Smirnov test on computed discriminants. A Fortran Program was written to perform this test on eight sets of discriminants computed in power (4 discriminants per set) for selected targets. The input to the program consists of special files (HD XX) containing two header cards plus the filter magnitude data from target files H---, P---, S---, and V---. The H and P target files are listed in Appendix A of this report. The S and V files were preliminary files used in preparing the H files. A list of target classes tested with this program is given in Table XI; the corresponding HD file number which appears will serve as a key for identifying specific data sets being compared. The discriminants for N = 1 and N = 2.

91

Ei .

TABLE XI
FILE NUMBERS INDICATING TARGET GROUPS CONSIDERED FOR THE KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

- 6

FILE No.	TARGETS	НОР	TARGET GROUPS by File No.
HD 1	Tanks		H5TANK + H4TANKI
** 2	Trucks		H5TR251 + H4TR251
3	Tactical Vehicles		H5TACT1 + H4TACT1
4	Sand from Two Different Scenes		H5SAND1 + H4SAND1
5	Tanks	ON	H4TANK1 + H6TANK1
++6	Trucks	ON	H4TR251 + H6TR251
7	Tanks	ON	H4TANK1 + V7TANK1
8	Trucks	ON	H4TR251 + V7TRUCK
9	Mobile Homes from two Scenes	ON	H2MH] + H]MH]
10	Mobile Homes from two Scenes		H2MH1 + H3MH1
**]]	Bridges from two scenes	ON	H2BRIDG + H1BRIDG
**12	Bridges from two scenes	ON	H2BRIDG + H3BRIDG
13	Tanks and River Trees Sample size 13	ON	H4TANK1 + H2TREE1
14	Tanks and River Trees Sample size 25	ON	H4TANK1 + H2TREE1
++15	Tanks and River Trees Sample size 50	ON	H4TANK1 + H2TREE1
**16	Trucks and River Trees Sample size 12	ON	H4TR251 + H2TREE1
**17	Trucks and Trees Sample size 24	ON	H4TR251 + H2TREE1

** Not Processed

++ Eigen Value Comparison Appears in this Report

92

TABLE XI (CONTINU	NUE	V)
-------------------	-----	----

1

FILE No.	TARGETS	нор	TARGET GROUPS by File No.
** 18	Trucks and River Trees Sample size 50	ON	H4TR251 + H2TREE1
HD 19	Tanks and River Trees Sample size 12	OFF	H5TANK1 + H3TREE3
20	Tanks and River Trees Sample size 24	OFF	H5TANK1 + H3TREE3
++21	Tanks and River Trees Sample size 50	OFF	H5TANK1 + H3TREE3
22	River Trees from two Scenes		P2TREE1 + P3TREE1
23	Tanks and Mobile Homes	ON	H4TANK1 + H2MH1
++24	Tanks and Bridges	ON	H4TANK1 + H2BRIDG
25	Tanks and Unsorted River Trees	ON	H4TANK1 + H2TREE4
++26	Tanks and Bridges	OFF	H5TANK + H3BRIDG
** 27	Trucks and Mobile Homes	ON	H4TR251 + H2MH1
** 28	Trucks and Bridges	ON	H4TR251 + H2BRIDG
** 29	Trucks and Unsorted River Trees	ON	H4TR251 + H2TREE4
++30	Tanks and Mobile Homes	OFF	H5TANK + H3MH1
++31	Tanks and Mobile Homes	ON	H4TANK1 + H2MH1
32	Tanks and Grass	ON	H4TANK1 + H2GRAS3
++ 33	Tanks and Grass	OFF	H5TANK + H3GRAS3
++ 34	Tanks and Grass	OFF	H5TANK + H3GRAS2
** 35	Two groups of Sand Sample Size 100	OFF	S5SAND1 + S5SAND1 Two groups of 100
++36	Two groups of Sand Sample Size 50	OFF	First group of 100 from HD 35
37	Two groups of Sand Sample Size 25	OFF	From first group o 50 from HD 36
38	River Trees and River Tree Sample Size 100	^s OFF	Two groups first 2 Samples from P3001
** Not Pro	cessed		1
	ector Comparison rs in this Report		

"En all' ".

A STREET BALLER

TABLE XI (CONTINUED)

- 4

File No.	TARGETS	нор	TARGET GROUPS by File No.
HD 39	River Trees and River Trees Sample Size 50	OFF	Two groups from HD 38 first group
40	River Trees and River Trees Sample Size 25	OFF	Two groups from HD 39 first group
41	Two groups of Tanks Sample Size 25	OFF	H5 Tank divided into two groups
42	Two groups of Tanks Sample Size 12	OFF	First group from HD41 divided into two groups
43	Two groups of Trucks Sample Size 25	OFF	H5 TR251 divided into two groups
44	Two groups of Trucks Sample Size 12	OFF	First group of HD43 divided into two groups
45	Two halves of a Fruit Orchard	ON	V21A102 + V21B102
46	Weeds and Mowed Grass	OFF	V300202 + V300201
47	Railroad Bridge and Highway Bridge	OFF	H3RRB1 + H3HWB1
48	Mobile Homes and Bridges	OFF	H3MH1 + H3BRIDG
49	Mobile Homes and River Trees	OFF	H37H1 + H3TREE3
50	Weed Field and River Trees	OFF	V300202 + P300101
51	Orchard and River Trees		V21A102 + P300101
52	Sand and Weeds	OFF	S5SAND + V300202
53	Tactical Vehicles (two groups) Sample size 36	OFF	From H5TACT1
54	Tactical Vehicles (two groups) Sample size 18	OFF	From HD 53
++55	Tactical Vehicles and Natural features	ON	H2NAT + H4TACT2
++56	Tactical Vehicles and Natural features	OFF	H3NAT + H5TACT2
	Vector Comparison		

Appears in this Report

TABLE XI (C	CONTINUED)
-------------	------------

File No.	TARGETS	НОР	TARGET GROUPS by File No.
HD 57+	+ Tactical Vehicles and Clutter	ON	H2CLUT + H4TACT2
++58	Tactical Vehicles and Clutter	0FF	H3CLUT + H5TACT2
59	Tanks and Clutter	ON	H2CLUT + H4TANK1
60	Tanks and Clutter	OFF	H3CLUT + H5TANK1
61	• Tanks and Natural Features	OFF	H3NAT + H5TANK1
62	Tanks and Natural Features	ON	H2NAT + H4TANK1
63	Tactical Vehicles and Trees	ON	H4TACT2 + H2TREE3
64	Tactical Vehicles and Trees	OFF	H5TACT2 + H3TREE3
65	Tactical Vehicles and Desert Sand	ON	H4TACT2 + H4SAND1
66	Tactical Vehicles and Desert Sand	OFF	H5TACT2 + H5SAND1
67			
68			
69			
70	Tactical Vehicles* and Natural Features	OFF	P5TACT1 + H3NAT2
71	Tactical Vehicles* and Clutter	OFF	P5TACT1 + H3CLUT
72	Tactical Vehicles* and Desert Sand	OFF	P5TACT1 + H5SAND1
** 73	Tactical Vehicles* and Desert Sand*	OFF	P5TACT1 + PT5SAND
74	Tanks* and Tanks*		P5TANK1 + P4TANK
75	Tanks* and Desert Sand	OFF	P5TANK1 + H5SAND1
76	Tactical Vehicles* and Natural Features	ON	P4TACT1 + H2NAT
77	Tactical Vehicles* and Clutter	ON	P4TACT1 + H2CLUT
*	Single pixel per target		
** ++	Not Processed Eigen Vector Comparison		

Appears in this report

كالمحد كمشير فللمات

ومردعا كالأكر فكالملاكل

AND AN AN AN AN AN AN AN AN AN AN

95

·En il i

File No.	TARGETS	нор	TARGET GROUrS by File No.
** 78	Tactical Vehicles* and Sand	ON	P4TACT1 + H4SAND1
79	Tanks* and River Trees	OFF	P5TANK + P3T101
80	Tanks* and River Trees	ON	P4TANK + P2TREE1
81	Tanks* and Desert Sand	ON	P4TANK + H4SAND1
82	Tanks* and River Trees	OFF	P5TANK1 + P3TREE2
83	Tactical Vehicles ⁺ and Natural Features	OFF	H5TACT2 + H3NAT2
84	Tactical Vehicles ⁺ and Clutter	OFF	H5TACT2 + H3CLUT2
85	Tanks+ and Clutter	OFF	H5TANK + H3CLUT2
86	Mobile Homes and Bridges+	OFF	H3MH1 + H3BRIDG
87	Tanks ⁺ and Bridges ⁺	OFF	H5TANK + H3BRIDG
88	Railroad Bridge and Highway Bridge ⁺	OFF	H3RRB1 + H3HWB1
89	Tanks ⁺ and Natural Features	OFF	H5TANK + H3NAT2
90	Tanks* and Cranes*	OFF	P5TANK1 + P5CRAN1

TABLE XI (CONTINUED)

....gle Pixel per Target Duplicate Pixels Removed from File Not Processed +

**

فمقر الأردادات ويترافي ويرا

and the second s

96

<u>"En , " " " . .</u>

The program uses a sort subroutine and a nonparametric statistic subroutine from the IMSL (International Mathematical and Statistics Libraries, Inc.) Library 3 for Cyber 70/170 class and an Eigen value subroutine from the IBM Library.

A two tailed test is then performed to compute the probability of making an error in rejecting the null hypothesis, H_0 , that the two target classes come from the same population versus an alternate hypothesis that the two target classes do not come from the same population. This probability is the probability that the two target sets came from the same population.

Results of the test for four sets of discriminants are listed in Tables XIV to XIX. The sets derived from the generalized set of discriminants are labeled variant set 1 and variant set 2 which corresponds to N = 1 and 2 for the generalized discriminants. Results of the test appear in the columns labeled X1, X2, X3, X4 and Z1, Z2, Z3, Z4 which are the discriminant functions appearing on p. 48.

Tests were performed on both the unnormalized and normalized sets thus resulting in the four sets of discriminants. Probabilities listed in the tables have units of percent and are rounded to the nearest integer.

The Eigen values and Eigen vectors were computed for each of the four sets of discriminants and the resulting Eigen vectors were used to transform each set of discriminants to a new set which has the property that the covariances for each set vanishes. Since the covariances are zero, we are assured that discriminants within each set transferred are uncorrelated.

TABLE XII

4

COMPARISON OF COVARIANCE MATRICES BEFORE AND AFTER APPLICATION OF THE EIGEN TRANSFORMATION FOR VARIANT SET 1

UNNORMALIZED DISCRIMINANTS

	UNINUKIMA	LIZED DISCRIMI	INAN I S		
COVARIANCE	MATRIX 1				
1 1	•131E+13	•354E+12	.662E+12	•548F+12	Clutter
1 2	.354E+12	+143E+12	.237E+12	•229F+12	010000
1 3	.662E+12	•237E+12	432E+12	•351F+12	
1 4	.548E+12	•229E+12	.351E+12		
			+351C+12	•38/F+12	
COVARIANCE					Tanka
21	•510E+15	•133E+15	.198E+12	•266F+12	Tanks
22	•133E+12	+975E+11	•131E+12	.197F+12	
23	•198E+12	•13 <u>1</u> E+12	•199E+12	.258F+12	
2 4	•266E+12	•197E+12	.258E+12	.407F+12	
DISCI	RIMINANTS FOR	MED WITH EIGEN	TRANSFORMATI	ONS	
COVARIANCE	MATRIX 1				
1 1	•206E+13	156E+03	420E+01	.929F-ñ2	Clutter
12	156E+03	•169E+12	142E+06	250F-02	
1 3		142E+06	456E+11	.134F+ñ3	
1 4	929E-02	250E-02	134E+03	.146F+09	
			•••		
COVARIANCE	MATRIX 2				
2 1	.871E+12	166E-02	404E+00	386F+ñ4	Tanks
5 2	-	•349E+11	168E+04	.169F+00	
2 3		168E+04	665E+10	411F-04	
2 4	386E+04	.169E+00	411E-04	.684F+09	
			-	••••	
	NURMAL	IZED DISCRIMIN	ANTS		
COVARIANCE					
	.443E+00	1505+00		0755 I.	Clutter
1 2	+158E+00	•158E+00	.156E+00	.275F+00	CTUCUCI
		.613E-01	.579E-01	.102F+00	
1 3 1 4	.156E+00 .275E+00	.579E-01	-165E+v0	483F-02	
	• Z / 3L + UV	+102E+00	483E-02	.282F+ñ0	
COVARIANCE	MATRIX 2				
2 1	.257E+00	.832E-01	.ī19E+00	+136F+00	Tanks
2 2	.8325-01	.327E-01	.340E-01	.567F-01	Turrito
2 3	.119E+00	•340E-01	.135E+00	135F-01	
2 4	.136E+00	-567E-01	135E-01	.163F+00	
	*100c+ 00	- 5676 01	-•1325 01	• 100F + () ()	
					
DISCI	RIMINANTS FOR	MED WITH EIGEN	IRANSFORMATI	UNS	
COVARIANCE	MATRIX 1				
1 1		582E-14	211E-08	710E-08	Clutter
	=.582F=14		2765-11	478F-08	

						~
1	1	.736E+00	582E-14	211E-08	710E-U8	Clutter
1	2	582E-14	•205E+00	.276E-11	-,478F- <u>0</u> 8	
1	3	211E-08	•276E-11	.727E-02	.298F-16	
1	4	710E-08	478E-08	.298E-16	.192F-Ö2	
COVARIA	NCE	MATRIX 2				
2	1	.417E+00	•339E-14	315E-08	665F-10	Tanks
ž	2	.339E-14	•162E+00	123E-14	663F-07	
2	3	-,315E-08	123E-14	.740E-02	651F-13	
ž	4	665E-10	663E-07	651E-13	.108F-02	
-	•	•••				

È

98

·E, 1.

- State Same

TABLE XIII

COMPARISON OF COVARIANCE MATRICES BEFORE AND AFTER APPLICATION OF THE EIGEN TRANSFORMATION TO THE UNNORMALIZED AND NORMALIZED SET OF DISCRIMINANTS, DISCRIMINANT SET 2

UNNORMALIZED DISCRIMINANTS

COVARIA	NCE	MATRIX 1	_			_
1	1	•131E+13	•43 <u>1</u> E+12	.743E+12	•644F+12	Clutter
1	2	.431E+12	•201E+12	.337E+12	.304F+12	
1	3	.743E+12	•337E+12	*200E+15	.482F+12	
1	4	.644E+12	•304E+15	.482E+12	.487F+12	
COVARIA	NCE	MATRIX 2			-	T (
2	1	.210E+12	•165E+12	_218E+12	.312F+12	Tanks
2	2	•165E+12	•145E+12	•186E+12	•279F+12	
2	3	.218E+12	•186E+12	.246E+12	.349F+12	
2	4	•312E+12	•279E+12	.349E+12	•542F+12	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS

COVARIA	ANCE	MATRIX 1				
1	1	.234E+13	.161E-01	771E-01	.251F+05	Clutter
1	2	.161E-01	•196E+12	396E+04	500F+00	
1	3	771E-01	396E+04	.559E+11	•343F+16	
1	4	•251E+05	500E+00	.343E+06	.176F+18	
COVARIA	NCE	MATRIX 2				
2	1	+111E+13	•957E+05	.619E+03	442F+ñ3	Tanks
5	2	•957E+05	•51E+11	.126E+04	131F+00	
2	3	.619E+03	•126E+04	.850E+10	390F-03	
2	4	442E+03	- •131€+00	390E-03	•185F+ñ8	

NORMALIZED DISCRIMINANTS

COVARI	ANCE	MATRIX 1				
1	1	.443E+00	.187E+00	.252E+00	,348F+0D	Clutter
1	2	.187E+00	.811E-01	,110E+00	,150F+n0	
ī	3	.252E+00	.110E+00	232E+00	.129F+n0	
ī	4	.348E+00	.150E+00	129E+00	.344F+00	
COVAR		MATRIX 2				
5	1	.257E+00	103E+00	.163E+00	.172F+00	Tanks
2	2	.103E+00	.435E-01	.657E-Ul	.757F-ŋ]	
ž	3	.163E+00	.657E-01	.168E+00	.470F-01	
_	-					
2	4	.172E+00	•757E≁0l	.470E-Ul	.200F+00	

DISCRIMINANTS FORMED WITH EIGEN TRANSFORMATIONS

COVARIA 1 1 1 1	1 2 3	.946E+00	.]88E-14 .149E+00 .344E-11 .133E-08	315E-14 .344E-11 .548E-02 .447E-15	236F-11 .133F-08 .447F-15 .115F-n3	Clutter
COVARIA 2 2 2 2 2	1	.575E+00 133E-11	133E-11 .136E+00 .748E-08 187E-15	.305E-13 .748E-08 .607E-02 101E-10	•198F-14 -•187F-15 -•101F-10 •208F-03	Tanks

99

·E. . . .

-

Table entries are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for man-made structures vs other man-made structures vs other man-made structures. Processed without Eigen transforms. PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

TABLE XIV

فسيعمد والمتكر والمتكر

- 1

* HOP was on for one scene and off for the other.

100

TABLE XV

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for various targets with frequency hop off, processed without Eigen transforms.

	q	24	01	0	10	0	65	10	90
	alize	Z3	07	0	07	27	64	16	06
	Normalized	22	04	0	0	0	80	C	0
Set 2		Z1	14	0	0	0	85	10	0
Variant Set 2		X4	03	0	0	04	0	0	02
>	Power	Х3	06	0	0	02	0	0	10
	Ы	X2	01	0	0	01	0	0	02
		Х1	0	0	0	0	0	0	0
		24	00	0	03	0	27	01	0
	lized	Z3	17	07	89	87	16	26	04
	Normalized	Z2	10	0	0	0	71	0	0
Set 1		Z1	14	0	0	0	86	01	0
Varíant Set 1		X4	02	0	0	03	0	0	02
Va		Х3	06	0	0	10	0	10	14
	Power	Х2	01	0	0	02	0	0	02
		XI	0	0	0	0	0	0	0
ЧОР			Off	Off	JJO	Off	JJO	JJO	JJO
П	File		83	84	85	87	86	88	89
Target Groups)		Tactical Vehicles & Natural Features	Tactical Vehicles & Clutter	Tanks & Clutter	Mobile Homes & Bridges	Mobile Homes & Bridges	Railroad Bridge & Highway Bridge	Tanks & Natural Features

·Ein der T.

TABLE XVI PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Belleville, J. Ballaria

Table entries are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop on, processed without Eigen transforms.

Variant Set 1 Power Variant Set 1 X1 X2 X3 X4 Z1 71 81 75 83 82 0 01 02 06 40
19
06
30 05
03 65
0 31
0 45
0 75-
0 74

ί. .

102

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

TABLE XVI (continued)

فترجعه فالتحدث ألابك

Table entries are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop on, processed without Eigen transforms.

		-			Vai	Variant Set 1	iet 1						Var	Variant Set 2	et 2			
			:	Power	er			Normalized	alized			Power	er	Γ	4	Normalized	lized	}
			TX	X.2	X3	X4	Z1	22	Z3	24	Xl	Х2	X3 X4 Z1 Z2 Z3 Z4 X1 X2 X3 X4 Z1 Z2 Z3 Z4	77	7.1	22	73	71
Tactical Vehicles Clutter	57	57 On	39	57	87	84	56	53	56 53 04 29	29	39	37	82	76	56 48	48	07 48	48
Tanks Clutter	59	ő	19	59	75	48	87	71	06	27	19	11	84	78	87	11	25	47
Tanks Natural Features	62	on	0	02	06 07	07	43	14	43 14 32	37	0	04	J 4	04	43	25 38	38	17
Tanks Sand	81	ő	0	0	0	0	26	24	0 0 26 24 55	72	0	0	0	0	26 19	19	87	40

4

-

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

TABLE XVII

!

فسيعتفض حيوك فأرجد لأعاقت ف

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop off, processed without Eigen transforms.

Target Groups	НD	НОР			1	Variant Set	Set 1						٧٤	Variant Set 2	st 2			
	File			Po	Power			Norn	Normalized			Power	6			Norm	Normalized	ļ
			X1	X2	Х3	X4	Z 1	22	Z3	Z4	XI	X2	X3	X4	Z1	22	Ζ3	24
Tanks & Trees Scenes 3 & 5	19	Off	9 2 8	68	58	30	13	13	58	0	58	68	58	58	13	30	29	05
Tanks & Trees	20	Off	02	08	04	48	16	29	73	04	02	08	16	48	16	48	73	16
Tanks & Trees	21	Off	0	0	0	07	29	27	99	13	0	0	٥	03	29	44	40	62
Tanks & Bridges	26	Off	0	0	0	0	02	0	49	10	0	0	01	0	02	0	46	0
Tanks & Mobile Homes	30	Off	02	0	0	0	01	0	27	24	02	0	02	0	01	01	06	01
Tanks & Gráss	33	Off	0	02	0	02	0	0	10	0	0	10	10	22	0	0	90	0
Tanks & Tanks	41	Off	01	01	0	01	42	72	76	55	01	01	0	01	42	50	50	50
Tactical Vehicles Natural Features	56	Off	0	0	07	0	33	07	05	0	0	0	05	0	33	12	15	0
Tactical Vehicles Clutter	58	Off	0	0	0	0	0	0	60	0	0	0	0	0	0	0	05	0
Tanks and Clutter	60	Off	0	0	0	0	0	0	42	03	0	0	0	0	0	0	03	0

104

·Ei

Clutter

TABLE XVII (continued)

.

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop off, processed without Eigen transforms.

Variant Set 1 Variant Set 2	Power Normalized Power Normalized	X1 X2 X3 X4 Z1 Z2 Z3 Z4 X1 X2 X3 X4 Z1 Z2 Z3 Z4		17 70 70	Off 0 0 0 0 90 65 20 19 0 0 0 0 90 91 45 52	Off 0 0 0 0 16 53 20 0 0 0 0 0 16 23 34 06	•
Val	ower	Х3		03	0	0	0
	Ă	X1 X2		0	0	0	0
НОР	 _		T			Эff	Uet
ЦН				19	64	66	22
Target Groups			Tanks and	Natural Features	Tactical Vehicles Trees	Tactical Vehicles Sand	

. - 1

-

E.

TABLE XVIII

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed without Eigen Transforms.

Target Groups	QН	НОР			-	Variant Set]	t Set 1	,					٨	Variant Set 2	Set 2			
	File			Po	Power			Norm	Normalized			Power	ver			Norn	Normalized	_
			Хl	X2	Х3	X4	Z1	Z2	Z3	24	Хl	X2	Х3	X4	$\mathbf{Z1}$	Z.2	Z3	Z4
Tactical Vehicles* Natural Features	70	JJO	0	0	0	0	53	27	13	14	0	0	01	0	53	29	19	45
Tactical Vehicles* and Clutter	11	Off	0	0	0	0	0	0	24	0	0	0	0	0	0	0	03	0
Tactical Vehicles* and Desert Sand	72	Off	0	42	14	57	34	37	16	02	0	32	16	30	34	34	33	26
Tanks* and Tanks*	74	!	03	60	03	08	87	96	49	75	03	60	03	60	87	80	54	83
Tactical Vehicles* & Natural Features	16	ę	0	02	06	02	22	40	6 ۲	46	0	02	07	03	22	43	88	63
Tactical Vehicles* Clutter	77	ő	49	55	23	58	25	27	1.	56	46	4	43	55	25	27	26	06
Tanks* and River Trees	62	JJO	87	49	58	47	62	62	26	27		<u>.</u>	ц.	55	94	66	87	58
Tanks* and River Trees	80	ő	0	0	0	0	05	12	37	5	0	•	-	01	05	14	32	07
Tanks* & Desert Sand	81	ð	0	0	0	0	26	24	55	73	0	C	0	0	26	19	87	40

111

106

 \mathcal{L}^{*}

TABLE XVIII (continued)

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed without Eigen transforms.

Normalized <u>2</u>2 Variant Set 2 X4 X3 Power X2 XI Normalized Z3 Variant Set 1 X4 хз Power X2 X HOP ర్ Off Off HD File Tactical Vehicles Tactical Vehicles & Desert Sand & River Trees Target Groups and Cranes* and Trees Tanks* Tanks*

_

б

·E.

TABLE XIX

1

PROBABILITY THAT TWO TARGET SETS CAME FROM THE SAME POPULATION (processed without Eigen transforms).

The figures are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for natural features vs other natural features.

Target Groups	ЦЦ	НОР				Variant Set 1	t Set 1						2	Variant Set 2	t Set 2	0		1
	File		L	Å	Power			Norn	Normalized			Po	Power				Normalized	P
			XI	X2	X3	X4	Zl	Z2	Z3	Z4	хı	X2	Х3	X4	[Z1	Z2	Z3	Z4
River Trees Scenes 2 & 3	22	4	10	01	25	10	23	15	34	23	10	0	04	06	23	90	63	10
Sand	36	!	93	49	52	54	56	28	55	07	93	72	66	73	56	30	57	12
Sand	37	ł	17	14	44	41	02	17	04	02	26	14	25	25	02	04	04	04
River Trees & River Trees	39	Off	58	89	49	19	60	12	63	13	58	17	81	27	40	28	70	13
River Trees & River Trees	40	Off	66	23	87	78	92	89	47	89	66	40	40	53	92	66	62	49
Two halves of a Fruit Orchard	45	uO	37	59	81	37	21	21	11	55	37	16	59	21	21	29	16	11
Weeds and Mowed Grass	46	JJO	0	02	01	0	38	03	59	38	0	10	04	03	38	12	82	22
Weed Field and River Trees	50	Off	0	08	48	11	•	0	03	0	0	16	22	04	0	0	0	0
Orchard & River Trees	51	l i	0	0	01	11	11	21	37	21	0	02	04	62	11	08	47	11
Sand & Weeds	52	Off	17	02	59	11	37	0	16	04	16	90	16	11	37	02	37	90

- 1

1

·E.

The Kolmogorov-Smirnov test was then repeated performing the two sample test on the transformed discriminants. Results of the test on these discriminants are given in Tables XX to XXIV.

The covariance matrix was generated for each set of four discriminants before and after the transformation with the Eigen vectors. By examining the Eigen values, it was possible to determine that the rank of the covariance matrix was at least four. If the rank was less than four, the Eigen vectors were discarded. A sample listing of the covariance matrix for clutter and tanks is shown in Tables XII and XIII for four sets of discriminants as indicated. The listings are for the matrices computed before and after the application of the Eigen transformation. Notice that after the Eigen transformation, the off diagonal elements in the matrices are small compared with the diagonal elements. By making this comparison for each set of Eigen vectors computed, we are assured that the Eigen vectors have been properly computed and are correct for the given set of discriminants.

109

·Ei

Ę

a strange and a

TABLE XX

P

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for various targets with frequency hop off, processed with Eigen transforms.

		•				0		• CHI + C + CHI + C	•									
Target Groups	DII	нор	Į			Variant Set 1	t Set]						2	Variant Sat 2	Cat			
	File		х1	X2	Power 2 X3	74 X4	Z1	Norm Z2	Normalized Z2 Z3	Z4		Por X2	Power 2 X3	7X	71		Normalized	
Tactical Vehicles & Natural Features	83	off	0	60	00	37	60	0	0	21	10		•	51	12	1 0	1 12	1 1
Tactical Vehicles & Clutter	84	Off	0	0	0	0	0	0	29	0	0	0	03	0	0	0	0	0
Tanks & Clutter	85	Off	o	0	0	0	0	0	40	0	0	0	25	0	0	17	96	0
Mobile Homes & Bridges	87	Off	01	o	20	0	0	01	10	0	01	01	0	0	0	27	81	0
Mobile Homes & Bridges	86	Off	0	0	0	0	88	0	0	0	0	0	o	0	94	0	0	05
Railroad Bridge & Highway Bridge	88	JJO	0	59	56	16	0	0	0	59	0	34	16	31	0	0	0	42
Tanks and Natural Features	89	Off	03	35	10	0	0	0	07	38	03	12	32	60	0	03	30	25

TABLE XXI

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop on,

c

 \mathcal{O}

ő

Tar.ks and Bridges

TABLE XXI (continued)

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop on, processed with Eigen transforms.

. !

1

"E. . . .

TABLE XXII

Same and the second second

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop off,

transforms.
Eigen
with
processed

Target Groups	ЦЦ	HOF				Variant Sct 1	t Set 1						>	Variant Set 2	Set 2			
	File			оd	Power			Norm	Normalized	Γ		Power		Γ			Normalized	
			XI	X2	X3	X4	Z1	Z2	23	Z4	X1	Х2	ХЗ	X4	21	Z2	23	Z4
Tanks and Trees Scene 3 & 5	19	Off	68	0	02	58	13	05	02	0	68	0	05	30	13	30	05	0
Tanks and Trees	20	Off	16	0	0	48	08	02	02	0	16	0	0	16	16	96	48	2 ġ
Tanks and Trees	21	JJO	0	0	0	02	12	0	86	07	0	14	0	04	27	03	01	04
Tanks and Bridges	26	Off	0	0	0	0	0	04	57	0	0	10	28	0	0	15	56	0
Tanks and Mobile Homes	30	Off	01	06	0	0	01	0	48	0	0	08	0	45	01	0	0	06
Tanks and Grass	33	Off	04	0	0	0	0	0	07	47	04	0	0	0	0	0	73	0
Tanks and Tanks	41	Off	01	0	05	60	14	38	12	0	10	02	0	08	25	59	64	35
Tactical Vehicles Natural Features	56	Off	0	19	26	92	19	0	0	08	0	0	17	02	23	0	16	0
Tactical Vehicles Clutter	58	JJO	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	01
Tanks and Clutter	60	Off	0	0	23	0	0	23	52	0	0	0	31	0	0	07	0	0

113

·E,

TABLE XXII (continued)

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features with frequency hop off, processed with Eigen transforms.

Variant Set !	No wood i cod	 XI X2 X3 X4 Z1 Z2 Z3 Z4 X1 V2 V3 V/ Z2 Z2		0 02 03 0 0 0 03 0 0 23 17 0 01 0 68 0	0 0 0 89 0 52 66 0 0 0 0 0 0 0 0		0 0 0 0 18 0 0 0 0 0 0 0 21 24 02 46 05	0 17 0 20 36 0 04 0 0 18 0 0 20 20
	Power	 T XZ X3		0 02 03	0		0	0 17 0
ЧОР		 ×		Off	Off			Off
ΠН	File			61	64	44	2	32
Target Groups			Tarks and	ranks and Natural Features	Tactical Vehicles Trees	Tactical Vehicles	Sand	Tanks and Grass

1

·E.

TABLE XXIII

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed with Eigen transforms.

*Single pixel per target

.....

TABLE XXIII (continued)

PROBABILITY THAT THE TWO TARGET SETS CAME FROM THE SAME POPULATION

Table entries are the result of a nonparametric comparison between two target classes employing the Kolmogorov-Smirnov two-sample test for tactical vehicles and tanks vs other features processed with Eigen transforms.

Variant Set 2	Power Normalized	Z2 Z3 Z4 X1 X2 X3 X4 Z1 Z2 Z3 Z4	n 0 0 78 15 0 0	02 0 13 20 52 75 0	
		X	0	0	
	q	24	0 60 45 12 0	10 20 29 92 29	
	nalize	23	12	92	
	Norr	Z2	45	29	
Set 1		21	60	20	
Variant Set 1	TIALL	X1 X2 X3 X4 Z1	0	10	
Va	Power	X3	0	04 16	
	юd	бd	X2	0	04
				0	
нор			63 On	e S	
ΗD	File		63	65	
Target Groups			Tactical Vehicles & Trees	Tactical Vehicles & Desert Sand	

·e,

TABLE XXIV

PROBABILITY THAT TWO TARGET SETS CAME FROM THE SAME POPULATION

The figures are the result of a nonparametric test between two target classes employing the Kolmogorov-Smirnov two-sample test for natural features vs other natural features processed with Eigen transforms.

		aon			, >	- Variant Set 1	Set 1						٧٤	Variant Set 2	Set 2			1
Target Groups	нU File			Power	1			Norm	Normalized	Γ		Power	ver			Norm	Normalized	
	1111		XI	X2	X3	X4	12	Z2		Z4	X1	X2	X3	X4	Z1	22	Z3	24
River Trees	22	:	=	23	10	0	15	0	0	0	0	0	47	15	23	0	06	0
Scenes c & J Sand	36	:	76	02	28	55	28	02	64	96	87	06	28	0	40	04	49	44
Sand	37	1	41	72	75	03	04	0	0	0	25	83	0	0	0	0	Ð	Ð
River Trees & River Trees	39	Off	66	66	0	0	40	0	11	0	77	07	2	11	28	0	20	0
River Trees & River Trees	40	JJO	40	53	46	0	66	04	48	0	24	0	08	0	98	02	31	0
Two Halves of a Fruit Orchard	45	ර්	47	13	0	58	29	29	02	0	47	15	0	0	21	2.9	0	16
Weeds and Mowed Grass	46	Off	96	0	0	10	16	0	12	0	90	0	0	10	11	0	48	0
Weed field and River Trees	50	Off	03	0	0	0	0	0	16	0	08	72	0	02	0	0	0	2 4
Orchard and River	51	ł	01	0	0	0	16	16	01	0	02	0	0	02	16	90	0	10
Lrees Sand and Weeds	52	Off	06	0	01	59	08	C	11	0	02	0	02	0		0	29	16

VII. SUMMARY AND CONCLUSIONS SUMMARY OF RESULTS

Parametric Modeling

Employing the Lognormal Probability Distribution Function as the basis for a classification model, the model was tested with data representing four sample target classes. The model was tested against each data point for several combinations of the measurement vector.

An example of applying the model to unnormalized power data from four sample target classes when four variants, mean power, standard deviation, fast variation and slow variation were employed yielded typical results shown in the following table.

TABLE XXV

Ρ			INCORRECT CLAS		
Class Description	Number of Samples	Classifica Fruit Trees	ations per Clas Mowed Grass	Unmowed	Metal
Fruit Trees	50	68%	10%	Grass/Weeds 22%	Mobile Homes O
Mowed Grass Field	49	0	90%	10%	0
Unmowed Grass & Weed Field	54	2%	74%	24%	0
Metal Mobile Homes	37	0	0	0	100%

An example when the covariances are included in the model is shown below for a different set of variants and with citrus trees substituted for the mobile homes used in the preceding example. The variants employed in this model were mean power, σ , RMS, and δ .

118

e .

TABLE XXVI

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

1

Class		Classific	ations per Clas	ŝS	
Description	Number of Samples	Fruit Trees	Mowed Grass	Unmowed Grass/Weeds	Citrus Trees
Fruit Trees	50	90%	0	2%	8%
Mowed Grass Field	49	8%	14%	76%	2%
Unmowed Grass & Weed Field	55	22%	0	67%	11%
Citrus Trees	73	49%	0	0	51%

Use of other variants gave varied results. The model failed when applied to data normalized with respect to the four-look mean power.

However, modification of the model to include the Eigen transformation to form a new set of decorrelated variants yielded results such as those shown in the table below. These results are for the model employing the variants, power mean, average deviation from the mean, slow variation and fast variation.

TABLE XXVII

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

Class Description	Number of Samples	Classific Fruit Trees	ations per Cl Mowed Grass	ass Citrus Trees	Vineyard
Fruit Trees	50	90%	0	2%	8%
Mowed Grass Field	49	22%	78 <u>%</u>	0	0
Citrus Trees	73	0	0	71%	29%
Vineyard	84	1%	0	0	99%

119

Nonparametric Modeling

<u>Two-Target Model Using PDF Histograms From Sample Data</u>. This nonparametric model substituted probability densities obtained from a table look up, based upon histograms generated from sample data for parametric curve fits to the histograms of sample data used with the four variant parametric model discussed previously. Variants employed in the model were mean power, deviation from the mean, slow variation and fast variation. Only two target classes at a time were compared by this model. Note that this model includes ties and unclassifiables as well as incorrect classifications as illustrated by the sample set of results in the following table.

TABLE XXVIII

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS, TIES, AND UNCLASSIFIABLES FOR EACH PIXEL VERSUS EACH TARGET CLASS

	lass scription	Number of Samples		ons per Class Mobile Homes		Classified Unclassifiables
Fr	ruit Trees	50	801	0	0	20%
tte	obile Homes	101	0	93:	0	73

<u>Nearest Neighbor Classifier - Unnormalized Power</u>. The table below presents two examples of the results obtained with the two-target, fourvariant nearest-neighbor model when used with unnormalized power and the variants mean power, deviation from the mean, fast and slow variation. The target classes for these examples were tanks and mobile homes.

120

TABLE XXIX

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACH PIXEL VERSUS EACH TARGET CLASS

For K = 1 and UNNORMALIZED POWER

Class Description	Number of Samples	Classifications per Cla Tanks	Nobile Homes
Tanks	44	70 5	30.0
Mobile Homes	50	34.0	66
	For K = 21	and UNNORMALIZED POWER	
Tanks	44	34%	66%
Mobile Homes	50	28%	72:5

<u>Nearest Neighbor Classifier - Normalized Power</u>. The following table presents two examples of the results obtained with the preceding model but with sample data return powers normalized with respect to the sample mean power for each pixel.

TABLE XXX

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS FOR EACP PIXEL VERSUS EACH TARGET CLASS

For $\kappa = 1$ and NORMALIZED POWER

Class Description	Number of Samples	Classifications per Cl Tanks	ass Nobile Homes
Tanks	44	70 <i>%</i>	30%
Mobile Homes	50	48%	52%
	For K = 21	and NORMALIZED POWER	
Tanks	44	70%	30%
Mobile Homes	50	48.0	525

.

Minimum Distance Model - Unnormalized Data. Pattern vectors were taken to be the means and/or medians of a set of discriminants derived from sample data. Eigen transformations of these vectors created a new set of pattern

vectors for each pixel. Means and medians of these transformed vectors were then taken as being characteristic of the target classes. Examples of applying this classifier to tanks and river trees are shown below where the original sample data was in the form of unnormalized power.

. 1

TABLE XXXI

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS, TIES, AND UNCLASSIFIABLES FOR EACH PIXEL VERSUS EACH TARGET CLASS

Class Description	Number of Samples		lassifier Based on cations per Class River Trees	1	
Tanks	45	1005	0	0	0
River Trees	53	6%	94.,	0	0
		CI	assifier Based on	Class M	leans
Tanks	45	100%	0	0	0
River Trees	53	9%	835	83	0

Minimum Distance Model - Normalized Data. The following table presents

examples of results when the preceding model was used with sample data normalized with respect to the pixel mean power.

TABLE XXXII

PERCENTAGES OF CORRECT AND INCORRECT CLASSIFICATIONS, TIES, AND UNCLASSIFIABLES FOR EACH PIXEL VERSUS EACH TARGET CLASS

	Clas	sifier Bas	ed on Class Media	า	
Class Description	Number of Samples	Classific Tanks	ations per Class River Trees	Not Ties	Classified Unclassifiables
Tanks	45	20%	185	62 ° .	0
River Trèes	53	8%	21%	/ ¹ %	0
	Clas	sifier Bas	ed on Class Means		
Tanks	45	29::	225	49.	0
River Trees	53	190	260	550	0

122

·E,

<u>Comparison of Target Classes via "Relative Match" of Four-Eigen-Vector</u> <u>Groups</u>. The results of comparing target classes by means of the "Relative Match" (RM) of their Eigen vectors is presented in Table XXXIII (same as Table IX, page 86).

Kolmogorov-Smirnov Two-Sample Tests. A summary table was made from Tables XIV - XXIV to determine the number of errors made by the Kolmogorov-Smirnov two-sample test. The criteria for determination that an error has been made is as follows: Let P be the probability that the two target classes came from the same population or computed by the Kolmogorov-Smirnov two sample test, then

- 1. If $P \ge 80$ and the two target samples are known to be from the same population, no error has been made
- 2. If $P \ge 80$ and the two target samples are known to be from different populations, an error has been made
- 3. If $P \le 20$ and the two target samples are known to be from the same population, an error has been made
- 4. If $P \le 20$ and the two target samples are known to be from different population, no error has been made.

Due to sponsor interest, the data pertaining to tactical target vs. clutter or natural terrain discrimination was extracted from the tables and analyzed based on criteria 4 above. The decision rule utilized to determine whether or not the two distributions were dissimilar and hence potentially having discrimination information was as follows:

The two distributions are considered dissimilar if five out of eight variants or features pass test 4 above.

123

·En all all

TABLE XXXIII

COMPARISON OF THE FOUR EIGEN VECTORS BETWEEN TARGET CLASSES BASED UPON RM

6

			DISCRM	SET 1	DISCRM	SET 2
Target Classes	No. of Data Pts.	File No.	Unnormalized Group l (RM)	Normalized Group 2 (RM)	Unnormalized Group 3 (RM)	Normalized Group 4 (RM)
H4TR251 H6TR251	56 55	6	0.800†	1.000†	0.547†	0.057
H4TANK1 H2TREE2	48 53	15	0.179†	0.062†	0.152†	0.047†
H5TANK1 H3TREE3	44 56	21	0.394	0.151+	1.002	0.113+
H4TANK1 H2BRIDG	48 53	24	1.006	0.124+	1.005	0.082+
H5TANK H3BRIDG	* 55	26	1.005	1.003	1.343	0.076+
H5TANK H3MH1	* 50	30	1.346	0,136+	1.265	0.090+
H4TANK1 H1MH1	48 56	31	1.001	1,000	1.001	0.030+
H5TANK H3GRAS3	* *	33	1.302	0.300	1.195	0.193+
H5TANK H3GRAS2	* 55	34	1.362	0.277	1.288	0.189†
H2NAT H4TACT2	109 88	55	1.120	0.047†	1.064	0.037+
H3NAT H5TACT2	111 169	56	1.004	0.306	1.004	0.201
H2CLUT H4TACT2	108 105	57	1.377	1.001	1.377	0.038+
H3CLUT H5TACT2	105 169	58	0.398	1.006	0.458	0.085+
555AND1 50/50	50 50	36	0.128	0.071	1.000	0.033

* Not Available

† Represents an Error

Based on the stated decision rule, results of the discrimination test as a function of normalized vs. non-normalized, frequency hop on vs. frequency hop off, and features vs. Eigen-transformed features are shown in Table XXXIV.

TABLE XXXIV CORRECT TARGET DISCRIMINATION BY THE KOLMOGOROV-SMIRNOV

TWO-SAMPLE TEST

	EIGEN TRANSFO	ORMATION		NO EIGEN TRANSF	ORMATION
	Power	Normalized		Power	Normalized
OFF	17/20 = .85	17/20 = .85	OFF	16/20 = .8	12/20 = .6
ON	12/14 = .86	6/14 = .3	ON	11/14 = .5	3/14 = .21

In the interpretation of TABLE XXXIV, one must remember that valid conclusions about discriminants (features) based on power cannot be made in these data since the targets and clutter came from different scenes and therefore the power differences are not calibrated. It is valid, however, to draw conclusions on the relative performance of distribution discrimination between Eigen vs. no Eigen transformation and between frequency hop on and frequency hop off assuming, of course, that the differences are statistically significant over the small sample size.

CONCLUSIONS

Based on the analysis performed in this study, the look-to-look variation of 4 look data does not provide sufficient information to perform target vs. clutter discrimination. It is believed that the data for performing this analysis was not optimal in that the radar system was undersampled at the display causing "bin straddling" effects. These effects introduced a degree of uncertainty into the analysis; however, it is also believed that sufficient data was analyzed to justify the above conclusion.

On the positive side however, the Kolmogorov-Smirnov test did show that discrimination information based on the look-to-look variation does exist in the data without frequency hop, but does not exist in the data with frequency hop. This test indicates that future research in this area should investigate data without frequency hop; however, it is clear that data with more than 4 samples should be investigated.

·E ii

APPENDIX A

TABLES OF FOUR-LOOK FILTER MAGNITUDE DATA

This section contains tables of filter magnitude data by file name for selected features appearing in seven DBS scenes. The tables are divided into eight groups. The first seven groups mainly contain target data selected from adjacent pixels; for example, if the radar return from a vehicle appeared to cover more than one resolution element, all values of filter magnitudes above some mean threshold were listed for that vehicle. Samples of grass, sand, and shadows were selected from a region with no attempt to screen the data as to individual pixel location. Target data appearing in the last group have no adjacent data. Only one pixel per vehicle appears in the tables.

Target designations with possible adjacent pixel data contain the prefix H, while those with a single pixel per target contain the prefix P.

The H tables contain nine unlabeled columns. The first four columns of three digits each are filter magnitude data corresponding to DBS maps 1, 2, 3, and 4. The next column contains the sequence number 1, 2, 3, or 4 that is used to place the FM data in the proper time sequence. Columns six and seven are pixel coordinates--azimuth line number and range bin number. The eight column contains the four-look mean, computed in power and converted to FM units. The last column gives the number of pixels in the table adjacent to the set of coordinates appearing on that row. The number of adjacent pixels may vary from zero to eight. The number zero, however, does not appear in the column; instead, where there are no adjacent pixels, a flag // is used in place of the zero.

Targets HIGRAS1, H2GRAS3, H3GRAS1, and H3GRAS2 are rough grass with weeds from an area close to and just south of Reedley College. File HIGRAS1 had been sorted on the mean FM value, and all mean FM values are less than 100. File HIGRAS3 was sorted on aximuth line number and range bin number. This file has only two mean FM values greater than 99. File H3GRAS1 and H3GRAS2 have been sorted on mean FM values and the largest mean FM value for each file is 99 and 106, respectively.

. {

Files H1NAT, H2NAT, and H3NAT are natural features from scenes 1, 2, and 3. These files are defined as

H1NAT = H1GRAS1 + H1TREE1 H2NAT = H2GRAS3 + H2TREE 3 H3NAT = H3GRAS2 + H3TREE 3

Tall river bank trees appear in files HITREE1, H2TREE1, H2TREE3, H3TREE1, and H3TREE3. The trees in target group H2TREE1 have a higher average FM value than those in group H1TREE3. The average FM value for group H1TREE1 \leq 122. Group H2TREE2 contains no adjacent pixels and appears to be from a different region along the river bank than H3TREE1.

The tree groups H1TREE2, H2TREE2, and H3TREE2 contain young fruit trees from an area between the Kings River and the town of Reedley.

Targets H1RR1, H2RR1, and H3RR1 are from the Atchison, Topeka, and Santa Fe railroad bridge and targets H1HWB1, H2, HWB1, and H3HWB1 are from a six-lane highway bridge over the Kings River. The BRIDG files are defined as

H1BRIDG = H1RRB1 + 1HWB1 H2BRIDG = H2RRB1 + H2HWB1 H3BRIDG = H3RRB1 + H3HWB1

Targets H1MH1, H2MH2, and H3MH3 are from a mobile home park along the Kings River.

The man-made clutter targets are defined as H1CLUT = H1BRIDG + H1MH1 H2CLUT = H1BRIDG + H2MH1

H3CLUT = H3BRIDG + H3MH1

and file H3CLUT2 contains very even row from file H3CLUT. Files of the type H--TANK1, P--TANK, H--TR251 and P--TR251 contain the M48 tank and M35 2¹/₂ ton cargo gruck. Target files H4TACT1 and H5TACT1 (other tactical vehicle files) contain jeeps, van, and truck mounted cranes. File H4TACT2, H5TACT2, and P5TACT are considered as "tactical vehicle files" since they contain pixels from all tactical vehicles in the NEBO array. H5TACT3 contains every odd row from H5TACT2, and H6TACT1 is given by

H6TACT1 = H6TANK1 + H6TR251

P5TACT1 contains all tactical vehicles except jeeps. Shadows are contained in H4DARK1 and H5DARK. H5SAND1 and H5SAND2 are two samples of sand. H5SAND1 is contained in file H5SAND2 and is approximately half the size of H5SAND2. File P3T101 contains river bank trees with no adjacent pixels listed. Furthermore, only one pixel per tree appears in the file.

129

"E 11

1 <u>Reedley, CA</u>:

Scene 1, hop on TARGET CLASS AND CORRESPONDING TABLE NUMBER

. .

- 1

H IGRASI	TABLE 1
HINAT	TABLE 2
HITREE1	TABLE 3
H1TREE2	TABLE 4
H1RRB1	TABLE 5
HIHWBI	TABLE 6
HIBRIDG	TABLE 7
HIMHI	TABLE 8
HICLUT	TABLE 9

~~~~~/~~~/~~~~/~~~~
00000000000000000000000000000000000000
99999999999999999999999999999999999999
「 「 「 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 し の の つ こ つ の の つ つ つ つ つ つ つ つ つ つ つ つ つ
うちうううゅう ゆううううううう ゆう
94 94 95 95 95 95 95 95 95 95 95 95 95 95 95
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 104 104 104 104 104 104 104 104 104 104
8 1 1 1 1 1 1 1 1 1 1 1 1 1
<b>~~~~//~/~~~~~~~~~~~~~~~~~~~~</b>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 1 1
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
8 9 9 9 9 9 9 9 9 9 9 9 9 9
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
° < < < @ < < < < < < < < < < < < < < <

TABLE 1 HIGRAS1: Four look SAR filter magnitude data, weedy grass field, Reedley, CA, hop on, Scene 1.

1

131

<u>.</u>

•E]

a sub- and a sub- and a sub-

1

į

TABLE 2H1NAT: Four look SAR filter magnitude data, natural features,Reedley, CA, hop on, Scene 1.

and white the

ę.

132

TABLE 2 (Continued) HINAT: natural features.

÷

/ と っ - / - ト っ - / - ろ っ っ - っ - っ / / - / - / - / .	- ~
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	~ ~ _
<u>๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>	4 (C
000 0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0011 1 1 00000000000000000000000000000	
C 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

وليتكافأ المعادمين والمتلافية

133

·Ei .

6 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
10000000000000000000000000000000000000	
	ies,
[[]]]」」 4 4 4 4 4 4 4 7 10 10	r tree
1000 1000 1000 1000 1000 1000 1000 100	river
00000000000000000000000000000000000000	la rge
11151155418835 111556418835 111556418835	data, l
10000000000000000000000000000000000000	
	l filter magnitude
	r ma
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
/ / / // // // // // / / / / / // // //	പ്
。	39 1 3 look
CONOCNOOLNOOOCO40MNCNCF F 44-440M4N00	1 5 3 Four]
ってし ちょう	— н _й
「	Е1: В
500 500 500 500 500 500 500 500 500 500	N E
1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2 C
12 4 1 0 1 8 0 4 4 5 1 1 1 1 1 1 1 0 4 6 0 1 8 0 0 1 1 0 4 1 0 1 0 4 1 0 1 0 4 1 0 1 0	LE 3 Lev.
	32 [A] 366

......

1

Reedley, CA, hop on, Scene 1.

يتدأجر فالداني تغا

134

•€,<u>, , , , , .</u>

///// /////////////////////////////////	
ee constant	
B free by the second se	
Voun Voun Voun Voun Voun Voun Voun Voun	
Image: Second system Image: Second system Image: Second system Ima	
inde o	
a gnit)
L E	
1 115 114 124 75 22 1 116 117 126 101 3 26 1 1 122 116 117 126 101 3 23 1 1 122 116 117 126 101 3 21 1 1 122 116 117 106 121 126 2 29 1 1 1 100 115 127 109 126 127 109 23 26 1 1 1 114 109 126 112 12	
L 100K	1e 1.
Partial State Partial State <td< td=""><td>Scene</td></td<>	Scene
	3 0
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	ho h
H H H H H H H H H H H H H H H H H H H	u u
11002222 1002222 1002222 1002222 1002222 1002222 1002222 10022 1002 1000 1002 1000000	ley
	Ree

Ŀ

A service of the serv

135

·En .

4. .

2 3 70 366 134 7 2 69 364 133 9 2 69 365 163 7 2 69 365 163 7 2 69 365 158 5 2 69 367 114 5 2 68 364 121	7 2 68 365 157 2 5 68 365 151 4 1 67 365 151 9 1 67 365 147 9 1 66 365 143 6 365 143 66 365 143 6 365 143 66 365 143 6 365 143 66 365 143 1 66 367 113 13 1 66 367 113 143 1 1 66 367 113 1 1 66 367 113 1 1 66 367 113	2
33 137 130 75 143 137 53 166 160 43 161 15 18 109 119 56 128 120	51 157 167 54 152 144 27 107 154 39 99 150 99 125 159 39 136 145 97 122 114 122 114 railroad bridg	
136 13 135 15 155 15 163 16 11 4 11	129 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200	•
<pre>/ ოოა აა</pre>	װ װ נ נ נ נ	
1 2 2 2 1 F	SAR 9996011240000000000000000000000000000000000	
364 364 364 364 364		-
126 81 81 80 80 79	100k 504100 100 100 100 100 100 100 100 100 10	C 7 0 7 0
m 4 4 4 4 m	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ ^{(丘}	
0 = N N 4 M	RRB1: RRB1: RRB1: RRB1: RRB1: RRB1: RRB1:	hon
86 119 131 134 103	H 10040100010101101101100000000000000000	V C
56 127 115 1115 1101	"" 在上 正正正正正正正正正正正正 王上 " 正" "	lour
O O	TAB	D and

Ļ

ഗമ ~

4

Ó

1 5 ٠ N

1

Reedley, CA, hop on, Scene 1.

i 36

·E,

,

.....

39 133 144 157 4 65 353 1 20 109 115 62 4 64 351 1 62 168 181 177 4 64 353 1 80 111 152 160 4 64 353 1 80 112 120 132 4 64 354 1 84 123 95 108 3 63 352 1 19 129 148 125 3 63 352 1	9 148 125 3 53 53 13 16 127 3 63 354 109 15 127 3 63 354 109 15 127 3 63 354 109 15 117 2 61 353 127 1 19 113 121 1 59 352 118 / 19 113 121 1 59 352 118 / 19 113 121 1 59 352 118 / 10 113 121 1 59 352 118 /	
126 353 98 / 80 352 125 79 351 119 79 352 137 78 352 136 78 352 136 77 351 120	R S A S S S S S S S S S S S S S S S S S	10000 (110
5 100 62 1 5 100 62 1 5 109 127 4 136 135 1 5 111 120 1 3 98 133 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dout two thomas

· ť.

1 142 104 117 4 64 365 13 8 134 104 95 4 73 364 12 0 131 126 124 4 65 367 12 8 119 94 118 3 71 366 12 9 119 94 118 3 71 366 12 9 110 141 127 3 63 353 13 9 110 144 114 2 76 351 12 9 137 126 130 4 64 367 12 9 137 126 130 4 64 367 12 9 137 126 130 4 64 367 12	<pre>132 120 120 110 3 71 353 127 100 121 136 124 1 75 353 126 95 136 130 115 3 63 365 127 112 107 144 125 3 76 353 131 125 141 127 91 4 72 364 130 67 128 142 105 3 70 364 129 143 122 132 60 1 58 366 132 143 105 120 144 3 78 353 136 135 138 135 134 1 67 353 136 udd data, bridges,</pre>
115 111 2 111 2 113 2 113 1 113 1 111 111 111 111111	
~ ~ ~ ~ ~ ~ ~ ~ ~	For the second secon
6 111 120 1 6 123 95 1 6 123 95 1 7 109 115 95 1 7 109 127 1 1 127 56 1	79 111

u-u---u+-/uuu-u+/

I,

138

ιć ji

·1 .

2 109 90 109 1 78 283 112 0 117 119 108 1 80 283 115 3 127 120 130 1 81 283 127 4 127 136 135 1 81 283 127 6 130 120 142 1 83 284 134 6 130 120 142 1 72 282 134 8 134 103 109 1 75 282 122	117 137 113 96 127 105 137 114 102 139 135 135 118 107 78 118 107 78 118 107 78 118 107 78 118 107 78 118 107 78 122 111 115 123 140 107 140 133 132 140 133 132 140 133 132 140 133 132	
3 75 287 130 3 77 287 130 3 78 287 127 3 81 287 108 3 82 287 106 3 82 287 106 3 71 286 113	3 75 286 133 4 3 77 286 133 4 3 77 286 133 4 3 80 235 107 4 6 3 81 286 106 5 6 3 81 286 106 5 3 3 5 71 285 139 3 3 3 7 70 285 139 3 3 3 3 7 70 285 129 5 <td< td=""><td></td></td<>	
36 112 104 13 34 128 126 11 12 111 106 10 10 110 109 12 11 97 77 10 18 97 77 10 14 105 121 10	124 114 140 121 124 125 134 128 121 99 82 91 121 99 82 91 121 99 82 91 121 128 108 105 102 121 128 134 128 121 123 138 147 127 121 120 101 115 117 127 128 128 147 127 131 131 131 133 142 110 133 124 103 147 127 131 131 123 142 110 133 124 103 127 131 134 123 123 133 133 135 123 123 133 133 136 128 91 107 121 137 133 123 133 133 137 131 128 107	an tra thanan

Ļ

139

"É 11

4

Sec. Sec.

ti tini

.

R6 130 90 77 1 77 283 1 22 108 90 109 1 78 283 1 22 109 109 1 78 283 1	CI 12 12 1 10 1 0 1 20 28 12 12 12 12 13 12 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	44 127 136 135 1 83 283 137	36 130 120 142 1 72 282 334 18 134 103 109 1 75 282 122	17 137 113 92 1 76 287 120	96 122 105 112 1 77 282 112	18 117 122 134 1 81 282 125	37 114 102 133 1 83 282 12H	39 135 135 132 4 74 281 135	18 102 78 93 4 75 281 105	16 79 109 93 4 76 281 106	22 111 115 120 4 81 281 117	23 140 107 115 4 82 281 127	98 91 124 136 4 83 281 124	68 153 140 146 4 52 28n 156	40 133 132 95 4 53 280 132	4 123 95 108 3 63 351 J	R6 I18 104 115 4 72 367 11	20 109 115 62 4 64 35, 112	06 95 117 116 3 78 363 111	06 92 122 114 1 66 367 113	0 105 127 96 1 75 366 113	91 122 56 112 2 68 367 111				71 166 61 6 91 171 60 67 261 76 37 9 201 061 66	121 505 50 % 511 51 71 51 72 50 50 50 50 50 50 50 50 50 50 50 50 50		1 11 11 11 12 1 1 2 20 27 1 18 00 112 103 131 2 70 362 118				09 90 114 126 2 76 363 116 67 118 118 127 5 72 26 120	U/ 110 110 12/ 4 /3 366 120 15 127 01 110 / 72 35: 117	111 CC 2/ 4 011 16 /21 C1	data, man-made clutter,	·
15 3 30 1 1	r 8	ი 4	6 3 3	ب ر <u>ہ</u> ج لیے	+ •C	• •	4	6 . 2	6 3	. n	. 4	55	4 U	6	8 5	4	۲ ^۲	~	0 7	5 6	6	8 5	£ 4	96	4 7	17	_	4 O	8	4	9 2	0 2	_	3 4	f:1t =	K Illter magnitude	
~ ~	77 287 1 78 287 1	81 287 1	82 287 1	75 202 1	1 286 1	78 286 1	80 286 1	81 286 1	82 286 1	70 285 1	71 285 1	72 285 1	73 285 1	74 285 1	75 285 1	76 285 1	77 285 1	78 285 1	79 285 1	80 285 1	71 284 1	72 284 1	74 284 1	76 284 1	77 284 1	78 284 1	79 284 1	80 284 1	81 284 1	82 284 1	83 284 1	70 283 1	71 283 1	75 283 1	Hour loof	r our	1, Scene I.
6 111 1 6 112 1		0 110 109 12	н 97 77 10 10 17 10	01 121 COI 01 01 071 210 70	4 114 140 14 x 125 136 12	13 66 117 12	21 99 82 9	08 108 105 10	16 82 109 11	23 138 148 13	20 104 147 12	28 84 126 13	00 101 115 11	75 82 118 11	18 103 142 11	35 124 100 11	26 119 107 12	9 105 127 13	31 131 123 13	38 120 89 11	23 123 150 14	32 143 137 13	09 120 83 12	07 143 115 12	4 128 91 10	2 89 105 13	1 118 13	7 103 122 9	7 121 120 12	0 132 11	7 129 109 11	9 113 108 14	6 119 12	9 118 109 10	TABLE 9 HICLIT	adlaw CA han	

ЧĽ.

TABLE 9 (Continued) HICLUT: man-made clutter.

- N - N N N / / N N N N - N N N N	-/000-04/
4 6 6 6 1 6 7 7 7 8 1 5 6 1 5	งงงงตุดงตั้งต่าง
9.411.40.40.40.40.40.40.40.40.40.40.40.40.40.	່າທິບໍດີບໍ່ດີບໍ່ດີບໍ່ດີ
989798979 8998779579797979797979797979797979797979	
ちゅうしちゃややす しろうかんこう かっしん やっし	う うこし う う み うこし うしし
20473845370110 308678 20 800 800 800 800 800 800 800 800 800	-NN-NO-DO-4M
- Sun	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	21 141 21 136 21 136 36 136 36 136 36 136 27 144 127 127 38 137 38 135 38 135 38 137 38 135

141

11 .

•E]1

k

Reedley, CA: Scene 2, hop on. TARGET CLASS AND CORRESPONDING TABLE NUMBER

- 4

H2GRAS3	TABLE 10
H2NAT	TABLE 11
H2TREE1	TABLE 12
H2TREE2	TABLE 13
H2TREE3	TABLE 14
H2RRB1	TABLE 15
H2HWB1	TABLE 16
H2BRIDG	TABLE 17
H2MH1	TABLE 18
H2CLUT	TABLE 19
H2CLUT 2	TABLE 20

·E,

- -----

r	- 1	D U	n ư	ט ר	ם ר	ា ៤	ע ו	ט ה	ĥu	กม	กม	n n	יי ר	ט ר	ם מ	n u	ר א ר	r																				
30		0 0	0 0 E 1	L LC D 30) (ם ס פ		5 0 5 0			7 0) (+ 0 - a		5																				
_					- - -		ភ្លៃ ភ្លៃ	ត ភ្ន		151	- - -		- c	່			200	>																				ld.
ſ	U n	(' n	u n	u n	u r	l n	. 0	0 0	u (vr	u n	u n	u n	u n	u n		2 0	U																				s field.
101	- 0	, 7	- 6	9.4	107	b Qu	108	9 A A		00	, A		86	16	5.8	0	67	•																				gras
5	0	90	85	89	60	, i	88	83	9 Q	906	98	6	88	94	80	00	83																					eedy
98		105		86	88	0.0	105	σ	3.8	500	- 46	06	101	- 30	78	5	80																					ta, w
ē	101	~	72	A l	6	у. Г	101	~	74	- 6	103	e e	57	69	69	82	78																					da
																																						nituc
																																						สิยเน
~			.0	.0			.0	.0	10	ۍ ا			.0	.0	.0	~	.0	~	~	~	~	~	•	~	~	~	~	•	~	•	~	~	.0		•	~	•	filter magnitude
- 6 - 6	_	œ	۰.	c	~	9	۵.	m	c	6	30	\$	æ	_	~	ഗ	_	ŝ	_	ເ ເ	m	_	30	0	'n	<u>с</u>	0	4	m	9 [6	_	s	4	•		σ	ហ	ÅR
œ.	6	c	_	<u>م</u>	m	4	ഹ	ç	~	69	σ	c	-	n.	ŝ	4	œ	6	c	ـــ	م	e	4	5 1	9	2	α		с	71	٨	m	4	œ	•	c	, 	ook
ŝ	ē		e	ň	'n	ň	n	Э	m	3 9 6	Ċ	Ċ	e	m	ო	'n	'n	Ċ	Ć	ო	ო	Ś		e	Ś	'n	ň	ň	'n	e	m	'n	m		1 35	1 36	1 36	
15.										15																									15	j L	15	щ
(77)	m	n	m	e	e	ŝ	m	- m	•	n m	i m	i m	e	m	m	ŝ	e	e M	m	e	(L)	•••	m	m	m	e	m	E	m	'n	m	e	ŝ			2		AS 3 :
95	0	102	36	78	69	77	94	79	87	85	85	69	69	101	78	95	68	94	101	83	101	76	60	77	16	101	70	52	85	E 6	66	84	109	76	60	69 93	0	2GR
100	90	104	9¢	16	92	75	96	9 4	83	83	65	87	94	92	95 95	76	83	79	73	73	73	85	77	112	89	66	48	80	6,0	66	81	95	70	86	95	85	90	0
6 4	61									103		~				30								0								106	Ŷ	100	~	90	C R	Ľ
47	70	16	8 9	92	Яĥ	98	62	64	62	52	62	4 1	79	8 8	79	59	82	85	73	56	61	Вŋ	82	64	۲ ۲	105	69	8 9	86	86	ი ი	A6	72	104	l B	66	e B B B B	

143

·E_1

·i'_•_-

a contro ana

,

	17 152 107 3 44 176 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 117 116 117 </th <th>·</th>	·
11 611 11 611 11 62 11 62 11 62 11 62 11 62 11 62 11 62 11 62 11 62 11 61 11 6	r magnitude data,	
	AR file	
358 167 299 170 234	0 0 k S 0 k S	2.
3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		, Scene
100 9 133 10 120 13 122 12 122 12	8 124 96 9 107 92 9 107 96 9 109 112 9 109 112 9 105 119 9 105 119 9 112 65 9 125 86 9 126 128 9 127 126 9 113 112 9 113 199 9 113 99 9 113 99 9 113 99 9 113 99 10 126 127 11 105 127 11 104 133 11 105 127 11 105 127 11 105 127 11 105 127 11 105 127 11 105 127 11 120 127 11 <t< td=""><td>, CA, hop on</td></t<>	, CA, hop on
4 3 9 9 4		edley

- 1

144

T - - -

,

1.

·E,

TABLE 11 (Continued) H2NAT: natural features.

a strate for

Ø	Ø	Ø	60	80	8	30	æ	8	æ	œ	ŝ	ŝ	60	Ø	æ	~	9	ഗ	ഹ	ß	ŋ	Ŋ	ហ	ഗ	ഗ	ŝ	ŝ	m	ო	ഗ	ഗ	ഹ	4	
	88																																	
୍ତ	364	Ŷ	Ŷ	Ś	Ŷ	9	~	~	~	~	~	S	ŝ	Ŷ	Ŷ	Ŷ	Ŷ	Ó	9	Ŷ	Ŷ	Ŷ	9	~	~	~	~	~	ŝ	ŝ	ō	Ŷ	9	
ں ا	152	ທີ	ິທ	Ś	ŝ	ŝ	ŝ	ŝ	ŝ	ທີ	ŝ	ഗ	S	S	ហ	ഗ	S	ŝ	ហ	S	S	ŝ	ഗ	ŝ	ഗ	ហ	ហ	ŝ	ŝ	ົດ	ົທ	ົພ	ທົ	
"	ካ	m	m	m	m	m	m	m	m	m	n	€ i	N	٨	¢.	N	N i	N	N	2	2	r.	N	N	n	N	N	ſ,	2	N	ſ.	∧ ∶	ſ,	
	60									8						0						Ô,												
	77																																	
	101					σ					9							0																
	8 2 8																																	

4

. .

145

·E,

>

4

146

·E,

че че че че че че че че че че	Z35 185 99 // Z63 190 99 // Z51 179 99 // Z51 179 99 // Z51 194 99 // Z51 194 99 // Z51 192 99 // Z51 197 99 // Z63 197 99 // Z64 197 99 // Z64 197 99 // Z65 211 99 // Z64 197 99 // Z65 211 99 // Z65 211 99 // Z64 186 99 // Z65 211 99 // Z65 211 99 // Z65 213 99 // Z65 214 94 // Z65 218 99 // Z66 211 99 // <th></th> <th>04 65 95 103 1 244 191 9</th> <th>3 105 104 84 2 262 213 98 /</th> <th>3 94 93 106 4 251 15n 9</th> <th>86 8/1 CC2 C 08 06 /01 8</th> <th>95 106 87 97 2 254 179 98</th> <th>09 20 100 8/ 2 200 187 96 /</th> <th>07 97 81 167 4 16 18 18 16 10 10 10 10 10 10 10 10 10 10 10 10 10</th> <th>9 107 97 86 3 256 204 9H</th> <th>6 69 111 70 2 254 202 9</th> <th>9 83 98 109 1 260 203 98</th> <th>3 65 111 96 4 251 211 98</th> <th>02 104 77 67 2 255 170 9H</th> <th></th> <th>04 103 78 93 1 cou cut 9 00 : 10 0/ /r - 25/ 2: 0</th> <th>06 017 0C7 E CO 96 801 2</th> <th></th> <th>de data usuna fanit taree.</th> <th></th>		04 65 95 103 1 244 191 9	3 105 104 84 2 262 213 98 /	3 94 93 106 4 251 15n 9	86 8/1 CC2 C 08 06 /01 8	95 106 87 97 2 254 179 98	09 20 100 8/ 2 200 187 96 /	07 97 81 167 4 16 18 18 16 10 10 10 10 10 10 10 10 10 10 10 10 10	9 107 97 86 3 256 204 9H	6 69 111 70 2 254 202 9	9 83 98 109 1 260 203 98	3 65 111 96 4 251 211 98	02 104 77 67 2 255 170 9H		04 103 78 93 1 cou cut 9 00 : 10 0/ /r - 25/ 2: 0	06 017 0C7 E CO 96 801 2																							de data usuna fanit taree.	
		Hornov Contraction (Contraction) (Contractio	235 185	263 19n	231 179	279 184	228 178	254 194	284 172	258 211	272 103	240 100	241 042 202 192	281 176	259 18n	269 204	252 213	256 211	287 177	242 184	257 180	254 203	255 176	250 211	255 196	255 20A	241 181	280 184	232 185	246 196	239 193	211 282	C31 1/6	002 002		254 211	238 192	279 192	256 190		

- -

147

· E ...

¥.

trees (mainly non-adjacent pixels), Reedley, CA, hop on, Scene 2.

والمناكرة الموالي

125 104 111 115 4 35 331 116 // 113 117 120 125 1 348 169 120 2 124 128 85 107 2 103 167 119 // 119 117 121 107 2 238 135 117 // 120 104 106 127 1 52 281 118 // 99 118 114 127 2 335 171 116 //	123 106 98 120 1 76 236 115 7 93 126 118 100 3 144 145 115 7 93 126 118 100 3 3 44 176 115 7 122 117 122 107 3 3 44 176 115 7 122 117 122 98 16 1 77 154 114 7 118 125 95 104 1 277 154 119 7 109 126 95 104 1 277 154 119 7 111 96 120 126 109 287 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 7 119 117 119 111 119 111 111
20 // 20 1 21 // 15 1	ilter ma
40 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	359 169 106 165 250 111 250 111 344 151 345 151 344 151 345 151 344 151 344 151 344 151 344 151 344 151 345 155 355 344 355 344 355 344 355 344 357 185 357 165 357 165 357 165 357 165 357 165 357 165 362 134 138 165 138 165 160 165 192 136 192 136 192 165 192 165 192 165 192 165 192 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	оккекововаереенее часта с по по по по с на по
15 9 09 10 94 11 75 11 16 10	「 し し し し し し し し し し し し し

1 1 1

148

·E;

3 96 133 114 4 34 324 121 7 114 129 113 3 33 323 120 4 127 122 112 3 33 324 119 4 127 122 112 3 33 324 119 4 134 64 105 3 32 323 121 7 126 98 117 2 31 323 121 7 111 106 111 2 31 324 112	data data data data data data data data	
6 330 112 / 4 329 125 4 331 112 / 3 329 132 2 329 120 1 329 106	See and a constraints See and a constraints See and a constraints See a constraints See a constraints See a constraints	
15 92 12 20 137 11 45 101 10 14 140 13 24 118 12 26 100 9	on 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

- 4

-.

· C ...

.

Ψ.

$\alpha \alpha \sim -$	'
	ridg
1101135174	, p
4 10 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	filter magnitude data, highway bridg
	hig
	ıta,
4 T T T T T T T T T T T T T T T T T T T	c qi
	itud
	agn
	r B
ຑຉຑຑຉຑຑຉຑຑຉຑຎ຺ຌຑ຺ຌຑຑຑຌຑຑຑຌຑຉຑຑຉຑຑຉຑຑຉ ຺	ilte
ら り う ら こ ひ け チ て て ら オ オ チ チ ー ト り う ら ー ム ア タ ー ご ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア ろ ー ろ ア	SAR f
	t SA
90999999999999999999999999999999999999	look 2.
~ < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Four Scene
	S S
	B1: on,
128013930201150215830323200000000000000000000000000000000	H2HWB1 , hop on,
	H2 A, I
	C 16
88671599456967907800666667998871222	ABLE eedley,
4120300 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 412030 4120300 4120300 4120300 4120300 4120300 41203000 41203000 412000000000000000000000000000000000000	TAB. Reed

- 1

172	167	124	131	121
314	315	316	315	314
54	54	54	53	50
∿ i	2	n.		-
176	167	123	101	135
45	-		82 101	5
6 142	1 151	4 99	2	8 11 U

S ÷

_

5 - 5
できるのののののののののののののののののののののののののののののののののののの
0444444444444 0000400400400-C
120 1226 1226 1227 101 1226 1226 1226 1226 1226 1226 1226
bridges
gnit
filter magnitude data,
$\stackrel{\sim}{{\overset{\sim}{{\overset{\sim}{}{$
S S R S S S S S S S S S S S S S S S S S
$^{-1}$
- W W W W W W W W W W W W W W W W W W W
$\sum_{c=1\\c=1\\c=1\\c=1\\c=1\\c=1\\c=1\\c=1\\c=1\\c=1\\$
$\sim \frac{1}{2}$
(a) A (b) A (c) A (c

Ι.

·E.

ارت کان

346 120 137 351 122 136 351 124 126 351 124 136 351 124 136 351 124 136 351 124 136 352 126 135 351 126 136 352 126 133 351 126 133 351 126 133 352 126 133 353 126 133 356 126 133 357 126 133 358 126 133 359 126 133 350 126 133 356 126 131 357 126 133	
141 137 132 4 131 146 79 13 135 128 130 132 4 135 150 150 127 3 2 105 150 127 3 125 3 3 113 126 131 124 131 127 3<	
134 134 134 145 129 129 130 130 133 133 133 133 133 133 134 134 134 134	
анбиболовоновоновоновоновоновоновоновоновонов	Scene 2.
MHH: 1327423332666717667766776677667766776767676767676	top on,
H + + + + + + + + + + + + +	ey, CA, h
A B C C C C C C C C C C C C C C C C C C	Keedle

CA, hop on, Scene

Reedley,

-	٦	:	2	~	N	N	m	m	m	4	4	4	4	4	2	:	2	2	m	ო	4	4	4	4	.m	ŝ	ŝ	ო	2	٦
Ň	N	-	m	Ñ	ō	-	-	124	m	4	~	-	N)	~	2	-	-	_	m	2	N	2	N	-	N	-	-	N	-	-
, in the second s	Ň	ð	Ň	Ñ	Ň	Ň	Ñ	328	Ñ	Ň	N	N.	N	N	N	N	N	2	N	2	Ň	2	Ñ	^N	N	Ñ	Ñ	Ñ	Ñ	N
								58																						
-	. ന	- m	~	N	-	, न	4	4	4	m	m	m	~	ſ,	N	-	m	m	ო	~	N	<u>ر،</u>		, -	14	4	4	m	m	m
ື້	ō	Ň	-	õ	÷.	ō	ò	133	2	Ô,	-	σ	0	-	-	Ĉ,	ω	-	2	N)	m	m	Ň	N.	σ	0				
	-	ō	m	Ň	ð.	0	-	114	e	4	F	e	2	0	2		-		2	2	-	0	Jane	O	2		~	-	2	
õ	Ċ	0	4	1	ā	m	Ň	124	3	ñ,	Ó	ō	-	~	m.	-	Ĩ.	õ	ē.	ō	Ň	0	5	Ñ	Ñ	Ň	Ň	e	-	-
	Ň	ā	-	Ñ	õ	õ	, in	113	e	E.	-	Œ	Ń.	-	-	N.	-	2	m.	-	0	~	Ň	÷.	Ñ	0	õ	Ň	0	-

TABLE 19 (Centinuea) H2CLUT: man-made clutter.

ni c

4.

·En

í.

108 110 135 1 52 314 12	5 101 106 125 3 64 331 112 /	18 124 106 2 62 329 120	5 131 103 94 1 60 329 117	3 124 114 133 4 58 328 124	3 139 149 134 3 57 329 141	7 96 134 94 3 56 329 119	8 76 103 119 2 55 329 112	3 115 114 120 1 52 328 119 /	22 106 110 118 3 49 327 116	117 109 126 124 2 47 327 121 3	10 103 105 136 2 46 327 122	14 120 101 122 1 45 327 117	07 129 112 101 4 43 326 117	22 131 112 91 3 41 325 121	15 116 118 102 3 40 324 114																							filter magnitude data, man-made clutter	
5	4	~	-							,					1	-	7 2				`		// *			ا ع		4		7 3					7 8			SAR filte	
16		158					148			146				13	138	13	13	13	13(13	135	135	13	5	13	e					121	16	17]	12(12	look 2	
llя	119			99						122	~	-				94	104	120	124	110	126	112	8 A	104	126	2	2		-		-	_	-	-	315	-		our lo	
341	4	Ċ	4	N.	N	4	4	4	4	4	3	4	m	4	4	4	345	4	4	4	4	4	N	2	m	4	3	60	56	58	с С	57	56	56	52	54	54	FOI	
-	-			-													m											-	4	4	4	m	m	m	¢.	ر	٨.	T2:	1
128	14	16	13	15	14	5	15	10	14	11	13	11	13	13	13	12		13	2	12	14	11	13	11	13	σ	12	10	11	្រា	13	16	~	11	17	~	12	112 C L U	
175	166			159	e		148	163		5	4	4	136	126	132	135	69	e	4	S	C	m	0	4	-	4	e		-						155			20	
149	174		127	136	S	147	139	121	S	129	146	133	141	140	147	149	2	141	131	105	75	147	4	95	121	-	126	9	0	116	0	9	175	107	168	136	84		
169	132		m	147	ú		4	С	ŝ	154	e	S	4	4	135	N	151	e	134	0	N)	pred	e	103	e	œ	e	122	e	m	121	~	œ	e		ĮRJ	141	TABLE	

(every other (even) line from H2CLUT), Reedley, CA, hop on, Scene 2.

155

· · ·

·E ,1

3 <u>Reedley, CA</u>: Scene 3, hop off TARGET CLASS AND CORRESPONDING TABLE NUMBER

.

- 4

H3GRAS1	TABLE 21
H3GRAS2	TABLE 22
H3NAT	TABLE 23
H3TREE1	TABLE 24
H3TREE2	TABLE 24A
H3TREE3	TABLE 25
H3RRB1	TABLE 26
H3HWB1	TABLE 27
H3BRIDG	TABLE 28
H3MH1	TABLE 29
H3CLUT	TABLE 30

النكري ف

~~~~~~		νσσσσαα	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
66 78 76 76 76 76 76	100 85 99 100	200 200 200 200 200 200 200 200 200 200	
96 103 94 96	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1040 1040 1034 1034 1034	101 99 99 99 99 99 99 99 99 99 99 99 90 101	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
100 100 104 104 104	104 104 104 104 104 104 104 104 104 104	- 4 8 6 6 6 9 9 6 7 8 5 9 7 8 7 8 5 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	:
~~~~~; ~~~;		こと/しょう/しょ/ンシント/ノノンショント	
66 66 1 1 66 66 66 66 66	\\ \ \ \\ \\ \\	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>// // // // // // // // // // // // //</pre>	
8 31 4 6 7 6 7 6 9 1 4 6 7 7 6 7 7 7 6 7 7 7 7 6 7 7 7 7 7 7	74 313 99 / 52 312 99 / 76 324 99 / 73 328 99 / 63 319 99 / 77 316 99 /	22225525555577777777777777777777777777	
170 317 9 178 327 9 156 318 9 186 318 9 166 325 9	174 313 99 / 152 312 99 / 176 324 99 / 168 328 99 / 173 322 99 177 316 99 / 177 316 99 /	69 317 99 74 321 99 74 321 99 74 321 99 667 317 99 673 317 99 673 317 99 673 317 99 673 317 99 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 74 315 94 75 315 94 75 315 94 75 315 94 75 315 94 75 323 94 75 323 94 75	
3 1 170 317 9 4 1 178 327 9 4 2 156 318 9 7 2 186 318 9 166 325 9	03 3 174 313 99 / 98 4 152 312 99 / 93 4 176 324 99 / 98 2 173 322 99 / 80 1 163 312 99 / 03 4 177 316 99 /	01 4 169 317 99 06 3 174 321 99 07 3 174 321 99 07 3 174 321 99 93 1 167 317 99 93 1 167 317 99 96 3 166 317 99 96 3 166 317 99 96 3 166 317 99 97 31 167 317 99 98 1 74 317 98 98 1 71 373 98 99 1 171 317 98 91 171 316 98 98 91 177 323 98 98 91 171 316 98 98 91 166 316 98 98 91 166 316 98 98 91 166	
94 83 1 170 317 9 03 74 1 178 322 9 77 84 2 156 318 9 72 97 2 186 316 9 83 112 3 166 325 9	* 103 3 174 313 99 / 2 98 4 152 312 99 / 0 93 4 176 324 99 / 4 93 4 176 324 99 / 4 93 4 164 378 99 / 0 98 7 173 327 99 / 6 80 1 163 319 99 / 99 / 7 98 7 173 327 99 99 / 2 103 4 177 316 99 99 /	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4 94 83 1 17.0 31.7 9 7 103 74 1 17.8 32.7 9 7 77 84 2 156 31.8 9 4 72 97 2 18.6 31.6 9 9 83 112 3 16.6 32.5 9	4 104 103 3 174 3 99 / 7 110 93 4 176 324 99 / 3 104 93 4 176 324 99 / 3 104 93 4 176 324 99 / 5 100 98 7 173 378 99 / 5 100 98 7 173 372 99 / 5 100 98 7 173 372 99 / 6 105 103 1 163 319 99 / 7 106 80 1 163 319 99 / 7 102 103 4 177 316 99 /	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

F i

1

وسندكر مراجعه والم

TABLE 21 H3GRAS1: Four look SAR filter magnitude data, rough grass and weeds, filter magnitudes less than 100, Reedley, CA, hop off, Scene 3.

-

157

·E,

1 **.** .

01 416 91 4 86 4169 314 17				1 110 90 101 104 2 164 318 10	// 104 95 102 107 1 154 30A 10	// R3 88 116 91 4 168 320 10		З А5 104 97 112 3 166 308 10	// 99 88 113 95 4 152 304 10	1 104 108 102 91 1 170 308 10		// 77 103 69 114 3 158 313 10	1 92 109 104 92 1 178 317 10	// 104 102 100 92 2 164 311 10	I 96 105 109 90 1 179 322 10	1 106 93 105 99 2 156 301 10				//	11	1				-	4		11	1	11	11	1	1	//	//
- C	: <	> <	001		$\sim c$	0	C	0	0		0		, c	0	0	0	0	0	0	0	0	C	0	C	\mathbf{c}	> <	; C	Ö	0	c	104	0	C	0	103	103
	- 0	0 -		- n	J N	0	-	i N		· C	ò	-	• -	• •	. –	N	O	~	2	-	-	-	-		N ·	- r	J N	!	0	N	-	0	2	2	C	2
		- 4	201	- 1-	~	ŝ	~	ୁତ	ŝ	ഹ	9	9	9	~	9	1	ŝ	2	9	~	~	Q	~	s I	~ u		- 9	~	ഗ	7	9	Ŷ	9	~	S	~
ſ	.	(N O	u -	4 4	╘╏╺══	4	4	- m) 4	4	• •	• 4	r m	• m	n n	-	N	4	m	m	,	-	~	∾ 1	י) ר	n ⊲	- m	. N	m	m	m	m	-	4	4
911			0 ° 7 C		101	8	A3	16	100	114	96	0	-	0	0	103	C	σ	0	-	, 10	0	112	0	0	1 1 2	•	-	Ð	108	112	106	116	111	104	87
													_		•	2	<u>م</u>	0		4	s	~	ო	4	00	r -	• 0	2	_	N.	æ	_	~			ۍ ا
17	- 3	D U	00	C	`	-	-	-	-	O) –	C	5	0	-	œ	00	σ	σ	2	2	2	2	or ∘		DC		o o	0	10	~	Ξ	9	5	501	2
r v	- 0 - 0	r 9 r 0	00 001		06 11	3 11	65 11	13 11	3 11	63 10	08 11	1 10	94 94	2 10	79 11	4	ہ 8	55	~	01 1	0	06 1	6	96 9	07 /1	ם פ - ו ה	93 10	6 00	12 10	03 10	11 7	01 11	00 6	3 6	07 10	87 11

10--11-1-1-01

- -

4

Four look SAR filter magnitude data, rough grass and weeds, filter magnitudes greater than 100, Reedley, CA, hop off, Scene 3. TABLE 22 H3GRAS2:

Į

158

· E ,1

d'

,

-

m ::v~:: :::: $\left(\right) \left(\right) \left(\right)$:: 05 05 06 06 06 6 0 0 0 4 M 4 319 326 301 316 304 316 167 SAR filter magnitude data, natural features, 138 137 149 $\left\langle \cdot \right\rangle$ 33 **30034035 300340** Four look c + - - c * - - + + +
c + - - c * - + + + + H3NAT: 25 97 11 02 123 143 .18 148 132 TABLE Rest and a second secon

'n Scene CA, hop off. Reedley,

·E ..

TABLE 23 (Continued) H3NAT: matural features

00044444444444444444444444444444444444	0000
90000000000000000000000000000000000000	ONF
11111111111111111111111111111111111111	2020
ちちょうこうろう かうこうしょ かかりてき ちょう うかうちょう うちょう うちょう うちょう うちょう ちょう うちょう う	またまで
1111 1010 1001 100 1001 1	
40000000000000000000000000000000000000	0000
1001 1001 1002 100 100	0000
898 100 100 100 100 100 100 100 10	0000

160

·E,

4.

13 4 128 84 131 38 2 92 83 132 26 4 129 83 133 37 1 91 83 133 36 3 127 83 132 36 3 127 83 132 28 4 128 83 133	21 2 108 80 33 4 96 80 31 2 125 3 126 80 34 3 127 79 79 3 126 79 79 127 79
132 141 161 129 129	112 101 103 103 136 136 1arge 136
39 12 24 12 95 13 95 13 28 32 12 32 12 11 13	<pre>128 104 113 139 132 113 137 138 137 133 137 133 137 133 137 133 137 133 137 134 138 134 137 134 138 134 1</pre>
126 129 129 129	NK SA
66 66 86 86 86 86 86 86 86 86 86 86 86 8	
116 115 115	Poundary Contraction 100 100 100 100 100 100 100 100 100 10
C: C	は、 日、100000000000~~~~~~~~~~~~~~~~~~~~~~~~~~
	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $
30 1 2 2 2	$\begin{array}{c} \mathbf{H} \\ \mathbf{F} \\ \mathbf{V} \\ $
133 1129 1117 1136 1136	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
131 132 126 121 121	→ B → B

TABLE 24 H3TREE1: Four look SAR filter magnitude data, large r. trees, Reedley, CA, hop off, Scene 3.

161

·E,

		93 85 101 99 4 2/4 380 96 95 55 55 55 55 55 55 55 55 55 55 55 55	2 10 73 00 4 214 181 93 2 105 43 101 5 274 195 05 7	78 105 86 95 4 274 187 95 1	7 75 97 106 4 274 188 96	2 89 92 91 4 274 191 9	1 85 91 102 4 274 192 94 /	6 90 84 49 3 272 173 94 /	97 107 90 97 3 272 192 9	1 77 83 109 3 272 196 97 /	6 86 102 86 3 272 198 95 /																	-										filter magnitude deta vound	i magininue uara, young
	-	• •		2			`													1	1		1										m			-		look SAR filte	
96	0	6	0	96	96	88	26 2	6	4 6	Е6	16	95	26	6	6	6	6 6	6	4 6	6	6	9 6	6	96	<u> </u>	96	6	6	6	6	96	6	96	96	64	96	89	ook	
176				172							176					176	189	173	180	189			192					182					183					Four 1	
68	2	ົ) œ	85	æ	30	30	æ	- 20	œ	30	œ	30	Ð	30	60	Ð	œ	81	3	Ð	30	280	~	~	~	~	~	~	~	~	~	:76	~	~	~	~	Ц Ц	
∩ r				S T				رب س	ري 	10 • 4	4	4	4	4	4	4	4						n N		_	-				. –	~	:	-	4	4	4	- 41 - 10	:E2:	ł
9					0	-	9	8	9	4	-	8	1	-	8	4		9	1				8			1		8	-	0	4	8			ŝ			TRE	
6	-	•	~	-)															3 10		-	æ				-		-	4	-	-		H3	
76	0	5 6	6	80	6	9	66	86	86	80	96	106	61	96	72	6	94	74	103	0	6	45	6	6	š	6	8	7	6	4	,-	ທີ	105	1	8	8	66	44A	
105	1			104	ŝ	25			9			83	97	100	05	75	103	Ŷ	69	66	16	0	102	5	112	0	16	104	96	101	96	66	56	104	ŝ		101	LE 2	
06	00	<pre>\ c</pre>	106	96	67	67	103	82	66	106	66	ა ი	102	~	104	0	78	107	. 6	17	66	100	72	6 3	70	87	66	8	82	101	16	102	σ	97	105	6	8.8	TAB	-

32 130 149 146 1 170 64 142 /	3 149 126 139 3 166 66 13	42 129 147 141 4 160 66 141 /	17 133 139 120 3 159 64 131 /	1/ 123 142 117 3 158 39 130 / 10 127 145 127 6 157 2/ 132 /	1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1 14 1 70 131 2 130 66 130 / 100 130 / 130	/ 32 120 121 4 0 4 123 6/ 131 7 / 22 120 135 2 151 2 151 7 135	7 121 20 121 2 121 7 101 101 101 101 101 101 101 101 101	7 151 (1) 141 1 111 22 21 00 20 124 121 138 1 146 22 120 2	20 121 120 1 140 42 120 1 20 132 143 143 2 149 2 149 4	02 104 143 143 0 143 70 144 / 05 106 137 133 2 160 30 100 /	20 11 103 03 2 120 12 2 120 1 20 2 2 2 2 2 2 2 2 2 2		15 85 140 141 5 150 7 150 7 150 7 150 7 150 150 150 150 150 150 150 150 150 150																							nitude data. Jarge river bank
14	3 139 /	- - -	7 132 /	3 133 /	7 134 /		R 138 /	0 132 /	3 127 /	4 123 /	7 129 /	4 132 /	7 137 /	7 125 /	3 126 /	7 124 /	3 126 /	2 133 /	3 126 /	0 126 /	7 124 /	8 125 /	5 135 /	0 136 /	n 133 /	2 130 /	4 132 /	/ #2[]	1 021 1	7 133 / 7 7 7 / 7 7 7 /	7 128 /	7 125 /	4 136 /	4 126 /	127 /	5 141 /	r look SAR filter magn
43 4 32	49 3 318	4C Z J1	23 4 31	41 3 31	33 3 31	11 3 31	52 Z 30	12 I 30	32 1 30	21 4 30	29 3 30	34 2 30	46 1 29	30 4 29	21 3 27	38 2 27	37 4 27	30 2 26	17 4 26	13 3 26	17 1 25	37 2 25	22 <u>1</u> 22	27 l 21	41 4 2 <u>0</u>	32 3 19	23 4 19	61 m 60	1 A A A A A A A A A A A A A A A A A A A	23 1 18 22 × 18	20 4 10 29 4 10	27 3 18	37 2 18	36 1 17	22 3 17	36 2 17	3TREF3: Fou
42 116 150	126 128 137 1	101 139 107 36 143 123	38 129 132	37 124 96	37 133 133	25 116 134	15 78 128	38 128 136	33 118 112	09 119 132	22 126 135	15 124 140	22 135 130	R7 122 130	16 139 7	90 105 115	18 72 123	28 120 143	30 132 118	25 137 100	20 134 111	01 125 102	34 146 116	34 50 148	10 133 132	26 136 115	23 135 139	121 161 96	CH 130 113	96 145 126	14 138 112	16 128 125	47 116 97	02 125 117	4 121 137	45 138 142	TABLE 25 H

4

TABLE 25 H3TREF3: Four look SAR filter magnitude data, large river bank trees (all non-adjacent pixels), Reedley, CA, hop off, Scone 3.

18 16 16

163

"En

· 1

. . *

1 116 131 112 2 69 24 121	6 106 85 128 2 69 277 120	5 120 83 137 2 69 27A 126	2 133 111 125 2 68 274 123	1 138 102 85 2 68 275 123	8 130 130 166 2 68 278 152	5 98 131 136 1 67 274 127	1 136 105 164 1 67 278 155	4 151 130 146 1 66 278 153	8 112 86 109 4 65 274 116	5 152 137 123 4 65 27A 140	5 129 115 102 4 64 274 117	0 103 103 76 4 54 277 116	8 138 125 133 4 64 278 139	7 122 133 111 4 64 292 124 /	9 113 88 123 3 63 274 116	5 143 145 144 3 63 278 14]	5 59 83 125 3 62 274 117	4 147 120 139 3 62 278 137	0 50 137 105 2 61 277 122	5 127 152 145 2 61 278 143	1 92 169 156 2 60 277 156	5 181 178 182 2 60 278 182	2 178 153 161 2 60 279 167	175 176 169 1 59 278 178	4 174 179 161 1 59 279 172	2 120 131 86 1 59 280 120	5 106 155 129 1 58 278 142	3 115 95 133 4 57 274 1	4 141 143 130 4 57 278 141	7 98 112 129 4 56 274 117	6 136 141 134 4 56 278 140	6 91 122 71 3 55 274 117	140 146 145 3 55 278 144	6 130 137 123 3 54 278 130		:19 M	filter magnitude data, highway bridge,	
41 0	90 140 /	3 116 /	1157 /	91 150 /	92 152 /	90 144 /	90 119 /	9n 126 /	93 121 /	91 143 /	92 153 /	92 142 /	94 135 /	92 147 /	9 116	9n 113	95 115	91 119 /	92 148 /	94 144 /	92 148	94 126 /	> 158	92 147	4 12	4 12	93 15	look SAR	d bridge	97112	3.				R 120 2	4 120	119	-

. !

	0 - 4 4
ridge, SAR	120 120 119 129
, b b a k k v v k v k v k v k v k v k v k v k	278 274 274 278
۲ م ۲ م Scene Scene Scene Scene	12 07 07 07
)	ന ന ന ന
A B B B B B B B B B B B B B B B B B	102 113 125 139
IS3 153 153 166 166 158 168 158 168 168 168 168 168 168 168 168 168 16	134 128 128 129
1588 1588 1588 1588 1588 1588 1588 1588	96 124 120 121
日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	98 75 116 114

164

·E'

1

- 4 Vintes Fran

NW~W4		Я
116 117 117 137 122	4111 100 100 100 100 100 100 100	ok SA
274 278 274 274 278 277 277	278 277 277 277 277 278 278 278 278 278	r lo
63 62 62 62 62	00000000000000000000000000000000000000	Fou
	くこうしーーーネルルル	DG:
123 144 125 139	145 165 161 161 161 129 129 133 134	3BRI
88 145 83 120 120	155 169 178 153 153 155 155 141	8 H
1113 143 147 50	127 97 1181 1178 1178 1176 1176 141 141 141 136	LE 2
119 125 124 124	135 111 111 165 165 1135 1135 104 1135 104 1135 104 104 104 104 104 104 104 104 104 104	TAB

10--- N - M N M M / ~ 150 150 150 95 95 158 147 121 159 293 293 293 291 291 293 291 27A 4 1 0 4 63 ហ្វ 5 th C ŝ 5) Ξ 0 N -m A A 163 144 164 159 113 164 164 164 164 109 109 102 102 102 102 111 149 136 130 130 130 103 125 133 124 151

*E

filter magnitude data, bridges, Reedley, CA, hop off, Scene 3.

~ \ \ \ \ ~ \ ~ \ ~ \ / \ / \ / \ ~ ~ ~ \ / \ /	
1100 1000 1000 1000 1000 1000 1000 100	
4 M 4 C C 4 M 4 4 4 4 7	1111 104 104 104 104 104 104 104 104 104
380 G 2 6 7 4 2 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	01001111010
ゆううう ちょう ちょう しょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう	$\mathbf{C} = \mathbf{C} + $
1000 1000 1000 1000 1000 1000 1000 100	
000490020000000000000440000000000000000	N00000N

-/	:::::	SA
112 116 117 117	4 4 M 5 4 90	look
400-	00 m r o 4 a T	Four
286 258 285 285 281	260 256 256 265 265 268 268	1:
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	こうゆうゆうく	H3MH
91 125 82 121	130 124 117 45 86 127 119	6
1110 111 87 85	106 64 124 105 112 120	LE 2
124 43 113 113	80 105 103 103 103 86	TAB

1

فكالمتحدث والمتحد المحاري والمحاري

TABLE 29 H3MH1: Four look SAR filter magnitude data, mobile homes, keedley, CA, hop oft, Scene 3.

166

·ľ

•

٨		1			1				:	-	-	:	1	:	:	1	1	1	:	:	:	1	1	:	1	1	1	1	-		1				
~	117		-	-	_	-	-	_	-	_	_	~	~	• •	4	_	ŝ	ഗ	ഹ	4	-	2	2	4	ഗ	4	ŝ	4	_	-	_	-	4	4	4
٢	- (*	, 4 , 4		4	n,	r	~	s	V .	ſ	2	¢] 4		σ	σ	σ	σ	6	9	Q,	σ	9	5	9	σ	9	σ	œ	σ	σ	5	9	σ	σ
~	27	~	~	œ	ഹ	30	30	Q	1	ഹ	~	9	~	68	ო	_	σ	2	~	ഗ	m	_	0	~	4	_	σ	-	9	ស	ഗ	m		41 2	~
	יה הר														4	m	2	7	~	4	m	n.	N	4	m	~	4	e	m	N	~	~	4	4	~
-	` _	_			. ~	<u>.</u> .		~		~		.0	~	~	~	~		•	•	~	~	~		_	•	~	••	•				~	~		
4			66	6	12	8	\sim	n	124	•	4	8	2	11	2	6	ŝ	9	134	0	C	σ	2	100	S	-	-	4	6	6	6	ሮ	0	15	4
C	26	0	129	-	-	87	æ	106	64	N	105		ഗ	120	Ţ	σ	1	100	9	9	113	4	-	154	ĉ	4	73	158	0	49	1	0	4	145	9
1	119	ŝ	0		4	-		Ð		9	0	~	0	30	ഹ	2	∩ y	4		ŝ	e	ŝ	2	2	0	N	N	2	N	~1	c	Э	ŝ		9
20	5 L 5 L	32	15	4	x	~	6	c	2	60	30	21	60	07	20	16	2 <i>8</i>	30	28	49	N	Q	25	44	65	50	4 0	53	11	26	00	~	ວິດ	14	14
I		-	~		~	7	٦	-	-		-	-	~	-	7	-	-	-	-	٦			٦	-	-	-4	-	7	-	-	~		-	٦	7
						1		2	7	-1								1	//			1	1	 1							//				
4 2	2	۔ بہ ر	N	_	c	E	53	31	[3]	32	29	130	_	x	0	2	S	ŝ	4	ഗ	S	e	2	2	2	2	2	2	2	-		-	2	122	_
0		יע ו ע ו	4	۔ ح	17		4	e			14		4	11				9		s		17	م			c	s		c				- 4		c
76 2		284	~	30	~	æ	S	œ	30	8	Q	θ	ഗ	9	ഗ	Ð	~	÷	ഗ	8	30	30	ŝ	1	1	2	~	œ	9	2	୍ତ	~	୍ତ	œ	~
0																																			-
74	66	ŝ	136	76	80	146	~	58	101	6 6	138	σ	87	0	100	ŝ	ŝ	0	17	0	B	73	ŝ	119	9		115	ഗ	130	ഹ	2	N	108	~	132
Ś	124	; ;	e	σ	102	σ	N	2	2	132	σ	n	_	142	σ	0	138	ŝ	06	Э	r n	2	2	102		æ	66	114	σ	ŝ	113	6	2	107	60
3.8	•	0	00	16	4	σ	-	ŝ	N	ന	N	ന	N		- 4	2) m	117	: N	2	-	0	ഹ	ന	m.	2	m	ം	117	୍ତ୍	H 7	61	୍ୟ	112
~	201	N CI	m (*	N	-	4	e	4	ന	N	2	-4	-4	-	2	-	ŝ	. M	N	N	പ	-	ല	_	2	(m	0	N	-	2	_∧	1 m	ŝ	107

- -

TABLE 30H3C:LUT:Four look SAR filter magnitude data, man-made clutter,Reedley, CA, hop off, Scene 3.

167

·C ,

·<u>···</u>·

TABLE 30 (Continued) H3CLUT: man-made clutter.

/ w - ~ - / / / - w - w o	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ ∿ ທ ຈ N N ທ N N N ທ m m → ຈ ,	······································
~~~~~~~~~	<pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>
	4 4 4 4 M M M M – – C C C C C C C C M M M M M M
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	み み み み ろ ろ ろ ろ ろ ろ ろ ろ ろ ー ー・ー・ー・ み み み み
- K U N U N O A U V O N	102 133 156 111 161 161 161 161 161 161 161 133 133
	1110 103 133 133 188 188 188 178 178 178 178 178 178 178
	11123 1103 11123 11123 11123 11123 11123 11123 11123 11123 11123 11123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123
1 - 1 T.S. - 2 2 NO	6 4 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

•

.

168

1

ί. -

4 <u>Nebo Static Array of Vehicles and Equipment:</u> Scene 4, hop on TARGET CLASS AND CORRESPONDING TABLE NUMBER

H4DARK	TABLE 31
H4TANK1	TABLE 32
H4TR251	TABLE 33
H4TACT1	TABLE 34
H4TACT2	TABLE 35
H4SAND1	TABLE 36

·E, .......

ระการ สาย	
ろ~ m m m m m m m m m m m m m m m m m m m	6 H 6 J J H 8 J J H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2
4 4 N N N N N N N N N N N O O O C O C O O O O	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч 	• • • • • • • • • • • • • • • • • • • •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20000000000000000000000000000000000000
4 τα-αααρταταύατο ταταοαττα	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩	
4 N 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M 4 M	

~~~~~	* ๚๚๚๛ – ๛ ๗ ๗ ๗ ๗ ๗ ๗	R'd
20 - 20 20 - 20 20 - 20	111444149050 111444149050 1114441490 111441490000000000	look SAR s, Nebo hop on,
1 4 8 8 6 7 7 8 6 6	00000044000000 	Four look nadows, CA, hop
0 0 0 0 0		
44444	44444444444444	
00000 11111	22223000000000000000000000000000000000	2 ~ ~
ααιατ	22220000000000000000000000000000000000	E 31 H4D magnitude le array, E 4.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3 LE 3 Pr ma icle a ne 4.
4 N N A C C	40000000000000000000000000000000000000	TABLE filter m vehicle Scene 4

* MANAN NANANA MANANA

170

·E, . . .

	filter magn
* ~ ~ *	$\square \land \land$
103 40 85 86	00k       00k       00k       00k       00k       00k       00k         00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       00k       0
163 163 173 174	Burston 2000 2000 2000 2000 2000 2000 2000 20
162 163 173 173	× × × × × × × × × × × × × × × × × × ×
<u>n n</u>	a ころろろろろろろろろろろとししてくろうしててしてしてしてしてしてしてしていいい。 とろろどとをとるをもももかかかをしかっともををしましてしたかしかか。 の X C X
88 98 98 0 98 0	933 933 933 933 935 935 935 935 935 935
	· ^{· · ·} · · · · · · · · · · · · · · ·
116 103 75 99	<u>ованосововочавово чавае с поверионо с п</u>
100 71 84 71	TABI 1000 1000 1000 1000 1000 1000 1000 10

M4.8	
ANK1: Four look SAR filter magnitude data. M48	anks, Nebo vehicle array, Barstow, CA, hop on. Scene 4.
Four look SAR	, Barstow, CA
H4TANK1:	vehicle array
<b>FABLE 32</b>	anks, Nebo

111	18	6	a6	16	46	118	9 C	105
Ŷ	9	5	9	σ	1	176	~	~
			-	<b>,</b>	N	224	N	ŝ
U.	٦	N N	, –	-	m	en	m	"
117	16	83	66	87	92	124	~	112
66	83	0	0	0	C	122	5	****
0.8	4	75	86	9 B	06	78	57	66

~~~~~~~~~~

171

٠É

Υ.

| , , , , , , , , , , , , , , , , , , , | 104000 |
|---|------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1100
86
86
86
86 |
| | |
| 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | |
| \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | n n N n n |
| 88
10
10
10
10
10
10
10
10
10
10 | 105
96
84
7 2 |
| 8
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1 | |
| 1
1
1
1
1
1
1
1
1
1
1
1
1
1 | |
| а 96 0 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |

| ๛๚๎๛๛๛ | 404M44N44M | с
un
Un |
|---|--|----------------------------|
| 118
84
75
96
103 | 91111111111111111111111111111111111111 | k SA
2 <sup>1</sup> 2 t |
| | 181115555
1821155555
1925555555555555555555555555555 | ır loo
cargo |
| | 1888
1888
1888
1889
1889
1889
1889
1889 | Fou
M35 c |
| ~~~~ | '''''''' '''''' '''' '''' ''' '''''''' | 251:
ata, |
| 78
68
45
100
100
79 | | H4TR2
ude da |
| 0000 | 800 1 8 8 8 7 1 7 8 8 8 8 7 1 7 8 8 8 8 8 7 1 7 8 8 8 8 | E
nitu |
| 1 1 | | $\sim \omega$ |
| 137 1
84
70
86 1
103
111 | 86
1105
11105
11105
1255
1115
1115
1115
11 | |

State of the state

trucks, Nebo vehicle array, Barstow, CA, hop on, Scene 4.

- 1.

1

. .

CA, hop on, Scene and M62 12<sup>1</sup>2 ton truck mounted (Bay City) cranes. magnitude data, other tactical vehicles, Ni151 Four look SAR filter $\frac{1}{4}$ ton jeeps, M109A3 2 $\frac{1}{2}$ ton shop van trucks, 89 162 175 175 178 185 202 169 169 155 155 159 159 Nebo vehicle array, Barstow, 202 202 206 208 208 69 88 88 88 92 92 92 92 93 93 93 195 195 TABLE 34 114TACT1: 95 13 98 74 101 137 66 97 92 106 81 85 90 ЯS С 4 4 6 8 6 9 8 в0 80 8 7 9 8

:: $\left\langle \cdot \right\rangle$ 1115 1119 1119 1116 1115 1115 1115 98 169 201 16() 170 176 196 196 199 203 203 171 171 177 179 1790 190 91 102 88 88 88 88 129 451 124 95 95 124 126 153 110 137 133 128 107 102 99 84 77 72 85 85 85 102 102 123 124 124

a balance and

"En

| 184 17 | 5 З 185 171 В | 4 2 186 172 8 | 6 3 200 172 A | 2 4 198 157 H | 9 4 199 157 11 | 7 3 200 157 A | 7 3 208 182 | 4 3 209 1H3 101 | 93 3 209 162 85 1 | 5 2 210 162 96 | 5 2 210 164 84 | 7 2 211 163 111 | 3 2 2 1 1 9 3 | 7 j 213 193 | 4 3 224 176 1 | 2 3 225 176 1 | 5 2 178 15n 1 | 9 4 .02 160 1 | 4 1 189 147 1 | 6 <u>2</u> 145 169 1 | B 1 205 180 1 | 3 3 216 170 1 | 3 2 162 178 1 | 2 3 176 193 1 | 0 3 185 144 | 1 2 195 194 1 | 2 1 196 206 1 | 2 2 203 169 1 | 5 1 213 173 1 | 8 2 171 150 1 | 6 3 177 186 | 4 2 179 195 | 0 Ž 195 182 | 9 3 209 169 | 5 3 160 17A | tactical vehicles (H4TACT1 plus |
|--------|---------------|---------------|---------------|---------------|----------------|---------------|-------------|-----------------|-------------------|----------------|----------------|-----------------|---------------|-------------|---------------|---------------|---------------|---------------|---------------|----------------------|---------------|---------------|---------------|---------------|-------------|---------------|----------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------|
| 61 | | | | | 109 | 90 | 102 | 87 | 70 | 96 | 72 | ٤ċ | Ċ | 0 | 122 | | 115 | 102 | 84 | 95 | 0 | 126 | ហ | 19 | 84 | ~ | | 137 | N | - | 82 | 85 | 102 | 76 | 82 | actic |
| 68 | | 4 | | 63 | 6 S | 56 | 85 | 68 | 4 9 | 66 | 18 | 108 | 75 | 98 | 78 | 66 | 123 | σ | N | 116 | 0 | 98 | ന | 118 | 76 | 88 | N, | 132 | S | 55 | 79 | ۲B | 16 | 98 | 87 | |
| 06 | 72 | A 7 | ۹۱
۹ | 56 | 104 | 59 | 06 | R 9 | 6 8 | 86 | 96 | 114 | 11 | 96 | 114 | 92 | 123 | 142 | 06 | 120 | 16 | 153 | 101 | 131 | 96 | 75 | 138 | 130 | 50 | 112 | A3 | 73 | R | 86 | 64 | Four look SAR filter magnitude data, |
| : | - | 2 | ٦ | ٦ | | 1 | - | 2 | 2 | -1 | - | - | - | - | 2 | - | - | - | - | 1 | 2 | ٦ | ~ | 2 | , 1 | ~ | : | : | : | - | N | - | : | L | l | ∧R fi |
| 84 | 60 | 08 | 90 | 105 | 104 | 73 | 85 | 128 | 109 | 68 | 104 | 100 | ረ
6 | 69 | 106 | 83 | 89 | 66 | 118 | 75 | 103 | 96 | 111 | 119 | 42 | 122 | 8 4 | 1.6 | 90 | 86 | 94 | 81 | 1691 | 78 | 80 | ok S, |
| 182 | 166 | 166 | 166 | 167 | 167 | 167 | 161 | 160 | 160 | 161 | 182 | 182 | 161 | 161 | 165 | 164 | 166 | 195 | 195 | 196 | 182 | 181 | 183 | 154 | 153 | 155 | 157 | 175 | 163 | 174 | 174 | 174 | 146 | θ | 18 8 | ur lo |
| 166 | 160 | 161 | 162 | 166 | 167 | 169 | 166 | 167 | 168 | 169 | 173 | 174 | 174 | 175 | 184 | 185 | 185 | 185 | 186 | 196 | 187 | 188 | 188 | 188 | 189 | B | 189 | 0 | 163 | 173 | 174 | 175 | ~ | 18n | 181 | Fо |
| 4 | " | Ē | N | 4 | 4 | e
E | 4 | 4 | m | m | • • | 4 | 4 | 4 | m | m | m) | m | N | - | N | - | | ٦ | | l | - | m | N | • | 4 | 4 | 4 | . – | ٦ | CT2: |
| 53 | 83 | 16 | 76 | 107 | 102 | ~ | œ | m | 120 | ~ | 66 | 88 | 84 | 69 | 108 | 79 | 96 | 84 | 78 | 4
10 | 79 | 110 | 103 | 107 | 102 | 134 | 89 | 66 | 84 | 60 | 80 | 19 | 88 | 85 | 92 | H4TA(|
| 85 | 82 | 73 | 81 | £6 | 96 | 52 | 80 | 103 | 0 | Ð | 116 | _ | 0 | œ | 111 | 78 | 87 | σ | 111 | 85 | 69 | ~ | 107 | N | œ | 113 | 0 6 | 92 | 73 | 76 | 88 | θ | 122 | 78 | 70 | 5 |
| 16 | 68 | 17 | 84 | | 114 | un. | <i>U</i> | 108 | 5 | 56 | 75 | 9 4 | 68 | 30 | 102 | 30 | Ð | 101 | ന | ~ | 0 | 30 | 113 | N) | Ð | 115 | 68 | σ | 103 | σ | 104 | 30 | 102 | 9 | 61 | LE 3 |
| ٩ | 67 | 56 | 75 | вз | 74 | ЯŊ | σ | 132 | 98 | 69 | 16 | 96 | α | 0 | 101 | α | Œ | 101 | σ | ~ | 113 | ው | 116 | 0 | А 7 | 5
C | ~ | 101 | 11 | 11 | ВIJ | 4 | 16 | 76 | 73 | TAB |

M48 tanks and 2<sup>1</sup>; ton trucks), Nebo array, Barstow, CA, hop on, Scene 4.

a second

174

·Ei ...

| ~~~~~~ | |
|--|------------------------|
| 99
85
108
108
108
108
108
108
108
108
108
108 | r = co |
| 174
174
161
161
161
160
1160
1160
1160
1150
115 | - 0 F - E |
| 167
167
181
188
198
198
198
198
198
198
208
208
208
208
208 | - ~ ~ ` |
| \$ M M H M M M M M M M M M M M M M M M M | * * - * |
| | |
| 100
100
101
101
101
72
93
93
93
93
100
108
108
108
108 | 2 |
| 001000000000 | 95 11
95 11
74 7 |
| 07 10
884 77
889 10
899 10
999 99
99 99
99 99
99 99
99 99
99 10
99 99
99 10
99 99
99 10
99 99
99 10
99 99
99 10
99 10
90 100
90 10
90 10
1 | |

TABLE 35 (Continued) H4TACT2: tactical vehicles.

- 6

· \_

·E,

| ຉຑຑຬຬຉຉຬຉຎຑຬຬຨຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏຏ | SAK
Nebo
e 4. |
|--|------------------------------|
| 0000 4 m 8 8 m 4 9 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | en k |
| 2222
2222
2222
2222
2222
2222
2222
2222
2222 | our loo
ert san
on, Sc |
| 000000 0000000000000000000000000000000 | des
hop |
| ᲝᲝᲝᲝᲝ ᲝᲝᲝᲝᲝᲝᲝ Ო ᲐᲐ Ა Ა Ა Ა Ა | ANDI:
data,
CA, |
| 887787989898999
8878879797979998999
88799899999999 | S. S. |
| 90477 787 97 97 97 97 97 97 97 97 97 97 97 97 97 | 36 H4
agnitud
Barsto |
| 9 M 4 M 7 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 M 8 | , m
V, |
| 9 - C S S S S S S S S S S S S S S S S S S | TAB
tilte
a rra |

| | ασυησασσασασ |
|--|---|
| \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 22222222222222222222222222222222222222 | |
| <pre> Control Contro Control Control Control Control Control Control Control Contr</pre> | 00000000000 |
| | 44400000000 |
| | |
| うしいのしのしのでをしてころろろののです。
うらしの中にの中の「中によく」
うららしのしのしのでで、
うっているのでの」ののでで、
うっているのでの」ののでで、
うっているのでの」のので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
うっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているので、
つっているのでのでのでので、
つっているのでのでのでのでのでのでのでので、
つっているのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでので | |
| | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7 7 7 7 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |

5 <u>Nebo Static Array of Vehicles and Equipment:</u> Scene 5, hop off TARGET CLASS AND CORRESPONDING TABLE NUMBER

| LE 37 |
|-------|
| LE 38 |
| LE 39 |
| LE 40 |
| LE 41 |
| JE 42 |
| LE 43 |
| LE 44 |
| |

177

| - > | 4 | ო | N | N | 4 | ო | ~ | | m | : | - | m | ~ | 2 | 'n | - | - | ~ | N | 4 | 4 | m | - | 2 | 2 | - | m | m | m | N | Ċ | N | ო | ო | 4 | ٨ |
|------------|------------|----|---|----|---|----------|---|---|---|---|----|---|---|---|----|---|---|---|----------|---|---|---|----|---|---|---|---|---|---|-----|---|---|---|---|---|---|
| 100
99 | | | | | - | | | 0 | | 0 | | | | | | | | | | | | | | | | | | | | | | | | | σ | |
| 160
160 | ں (| ŝ | â | ō. | ~ | œ | ~ | ഗ | 9 | 9 | σ | ~ | 1 | 2 | 2 | σ | σ | ~ | ഹ | ŝ | 9 | 9 | 80 | 8 | œ | ŝ | ഹ | ŝ | ហ | ō | õ | Ō | 1 | ~ | | |
| 179
154 | ົທ | \$ | 6 | 0 | 0 | С | ~ | Θ | Φ | _ | 2 | Ó | 9 | 9 | 9 | 0 | 0 | ~ | S | 9 | Ō | Ó | 0 | - | Ē | ŝ | ñ | Ó | Ó | άO | õ | σ | Ö | 0 | 0 | c |
| n n | 14 | 4 | - | ٨ | N | e | m | N | 4 | 4 | r. | m | m | m | e | m | N | م | -1 | 4 | 4 | 4 | m | 2 | ٨ | 4 | 4 | m | e | · – | 4 | 4 | ~ | ŝ | N | • |
| 96
16 | | | | | | | | | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 66
90 | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 105 | | | | | | | 0 | | | | | | | | | 7 | | | | | | | | | | | | | | | | | | | σ | |
| 103 | 0 | | œ | | - | <u> </u> | | | ~ | | | | | | | | | | | | | | | | | | | | | | | | | | σ | |

| 2 | 4 | ო | N | N | 2 | |
|----|-----|----|------------|-----|-----|--|
| 65 | 97 | 52 | 62 | 61 | 95 | |
| ഗ | S | ŝ | ŝ | 155 | ິ | |
| œ | æ | œ | œ | 197 | σ | |
| m | 2 | N | ~ : | - | 4 | |
| 46 | 78 | 19 | 24 | 53 | 98 | |
| 32 | 56 | 38 | 66 | 67 | 101 | |
| 54 | 105 | 54 | 11 | 62 | 67 | |
| 79 | εo | 62 | 54 | 57 | 96 | |

TABLE 37 H5TANK1: Four look SAR filter magnitude data, M48 tanks, Nebo array, Barstow, CA, hop off, Scene 5.

| | 91 93 112 12
21 366 02 5 | 0 24 401
0 10 1 10 1 0 1 | A3 101 A3 7 | - 101 00 - 101 - 1 | 1 05 07 B | 0 14 07 10
0 07 05 4 | 0 02 7 7 70 0 | 0 22 00 34 0 | 2 77 11 7
2 84 78 2 | | | 11 66 111 67
02 80 03 10 | 01 76 70 70 70 70 70 70 70 70 70 70 70 70 70 | | 2 7 57 B | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | | | | filter magnitude data. M35 cargo | | if, Scene 5. |
|--------|-----------------------------|-----------------------------|-------------|--|-----------|-------------------------|--------------------------|--------------|------------------------|-----------|-----|-----------------------------|--|----------|----------|---|-----|-----|-----|------------|-----|-----|-----|--|-----|--------|-----|-----|------------|-----|-----|--------|------|------|-----|-----|----------------------------------|-----|--------------|
| | 1 4 | 4
0 | 5
4 | • | 7 7 | | - | | | 4 | - | | - | 2 | | | | | | | | | | s
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | | 4
0 | | 2 | | | | 8
0 | | 4 4 | | | SAR filter | | CA, hop off |
| 80 | œ | ġ. | ā | Đ | æ | 80 | 10 | 30 | 30 | 10 | 10 | 5 | 1 | 80 | 8 | 11 | 10 | 11 | 10 | 8 | ð | 10 | Ξ | 10 | 10 | 10 | 2 | 30 | œ | 10 | 60 | σ | 1 | 30 | 30 | Ĵ | look S | 4 | |
| 175 | 174 | | | 174 | 175 | | 175 | | | 185 | 185 | | 184 | 184 | | 193 | 194 | 193 | | | | 173 | | 166 | 167 | 166 | 167 | 168 | | 180 | 181 | | 180 | | 179 | | our le | | rstow |
| | | 152 | | | | | | | | | | | | 172 | | | 186 | 187 | 187 | 188 | 157 | 157 | 158 | 156 | 156 | 157 | 157 | 157 | 183 | 183 | 183 | 184 | 184 | | 185 | | Fо | , P | , Ba |
| 4 | - m | . (77) | m | e | m | m | N | ~ | e m | <u></u> ∿ | 2 | n. | ~ | , | m | n; | ∾ | N | 2 | · – | ٦ | - | 4 | - | ٦ | : | | - | 4 | 4 | 4 | • | e en | n en | Ē | i m | 251: | | rray |
| | | 106 | | | | | | | | | | | | 68 | | | 84 | | 72 | | 101 | 110 | 131 | | 110 | | | 98 | | | | | | 101 | Ø | | H5TR | 2 0 | Nebo a |
| 4
5 | | 58 | 82 | 49 | 42 | 77 | ດ
ເ | 75 | | 79 | | 113 | 133 | 68 | 63 | 109 | 88 | 114 | - | 16 | | 119 | | 108 | | | 16 | | | 68 | 58 | | | | 49 | 76 | 38 F | | |
| 54 | | 37 | | | | | 77 | | | 110 | | | | 88 | | | 118 | 123 | | 16 | 96 | 10? | 16 | 110 | 96 | 111 | 69 | | | 61 | 74 | 109 | N | 81 | | | ы
ГЕ | | trucks |
| 11 | 69 | 94 | 63 | ۱۶ | | | 56 | | | 0 | | | | 69 | | N | 103 | 2 | | 49 | 40 | 72 | ВJ | 70 | 105 | 70 | 104 | 61 | В 0 | Яę | 6] | | | 13 | | | TAB | | ton |

4 m m m N

4

'n vcene cH, don

 2^{1}_{2}

179

·E,

115 TACT1: Four look SAR 2^{1}_{2} ton shop van trucks, and M62 12^{1}_{2} on truck mounted cranes, Nebo array, 9 0 0 0 101 116 91 91 filter magnitude data, other tactical vehicles, M151 <sup>1</sup><sup>4</sup> ton jeeps, M109A3 3arstow, CA, hop off, Scene 5. 208 209 215 4 76 81 83 83 87 87 92 86 95 ABLE 39 118 99 97 96 96 101 81 97

::: $\left\langle \cdot \right\rangle$:: 112 113 132 113 77 88 95 88 113 113 108 108 108 108 108 1133 1118 1118 1121 1 n 4 ЯΒ 9,8 []] 174 184 181 181 181 7 9 7 9 7 8 9 8 9 204 173 184 200 99 29 88 131 900 100 100 100 100 100 100 92 92 53 53 53 53 75 63 87 87 87 87 89 89 98 98 98 98 98 98 98 98 98 98 98

| - | 112 931 | TEXA
SYNT
PEB
ARL- | S UNIV
HETIC
80 R I
TR-80-2 | TIN APP
E RADAR
/ W A R | LIED RE | LABS
ANALY | SIS.(U)
F33
-1058 | 615-77- | F/8 :
-Ç-1169
NL | |
|---|--------------|-----------------------------|--------------------------------------|-------------------------------|---------|---------------|-------------------------|---------|------------------------|--|
| | 30-3
30-3 | | | | | | | | | |
| | | | | | i | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | ntic | | | |

| 1 135 1 164 152 13 7 106 2 171 161 11 9 106 1 173 147 11 8 130 4 175 175 12 4 98 4 182 185 11 4 128 1 189 184 11 8 117 3 192 184 11 8 117 3 192 184 11 | $\begin{array}{c} 002\\ 002\\ 002\\ 003\\ 003\\ 003\\ 003\\ 003\\$ | 7 89 3 192 152 9 |
|---|--|--|
| 55 138
66 109
74 100
74 100
74 100
76
71 109
72 100
72 100
70 100
700
700
700
700
700
700
700
700
700 | 00 ~ N 4 ~ 9 & 0 & 0 ~ 9 & 0 & 0 & 0 & 0 ~ 0 & 0 & 0 & 0 & 0 & 0 | 0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 |
| 4 166 159 85 4
4 166 159 85 4
4 167 165 88 4
208 182 84 1
2 210 182 92 2
2 210 182 93 2
4 158 152 75 1
4 158 152 75 1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | H5TACT2: tactical |
| 6 7 7 7 6 7 7 9 7 6 7 7 9 9 6 7 7 9 9 6 7 9 9 9 6 7 9 9 9 6 7 9 9 9 6 7 9 9 9 6 7 9 9 9 6 7 9 9 9 6 7 9 9 9 6 8 9 9 9 6 7 9 9 9 | 11
10
10
10
10
10
10
10
10
10 | TABLE 40 (Continued) |

- 4

| ٦ | 2 | - | - | | | | - | - | - | - | ٦ | - | , | |
|------|---------|--------|--------|---------|---------|----------|---------|--------|---------|---------|---------|--------|----------|--|
| 87 | 109 | 83 | 97 | σ | 11(| 94 | 88 | 16 | 96 | C | 116 | 16 | 67 | |
| ÷ | ~ | 30 | 188 | œ | σ | ~ | C | 6 | ŝ | ÷. | ~ | Ŷ | œ | |
| 9 | σ | σ | 195 | σ | σ | σ | 9 | 0 | 0 | C | 0 | 0 | | |
| m | e | e | ~ | N | - | 4 | 4 | - | :1 | 4 | m | 'n | 4 | |
| N | | | | _ | | | | | | | | | | |
| 80 | | | 64 | | | | | | | | | 56 | | |
| 5 | 6 | 4 | | 0 | 17 8 | 8
8 | 61 7 | 95 4 | 4 | 07 9 | 111 | 6
9 | 6 | |
| 9 89 | 9 109 9 | 7 44 7 | ې
9 | 1 06 66 | 4 117 8 | 74 102 9 | 65 61 7 | 1 95 4 | 7 104 9 | 6 107 9 | 11 16 6 | 1 66 9 | 7 95 9 | |

ł

TABLE 40 (Continued) H5TACT2: tactical vehicles.

·E.

4

1

-

ery other line from H5TACT1),

ഹ്

Scene

hop off,

CA,

Nebo array, Barstow,

"E'

| ~ ~ | ~ | | :: | | ~ | |
|-----------------------|----------------|-----------|-------------------|--------------------|-------------------|--|
| 9
9
9
9
9 | 111 | 104
93 | 19 | 87
83 | 97
94 | |
| 00 41 | · ト ょ | 175 | 4 00 | ଦ୍ୟ | 189 | |
| ଦଦ | アフ | 176 | າວວ | 00 | 00 | |
| С 4 | • • • | • (T) • 4 | ~ ~ ~ | ; (") (" | 0.4 | |
| | | | | | | |
| 35
99 | 60
87 | 110 | B C | 3 0 | 77
95 | |
| n o
N n | 4 00
4 | - 0 | 1 8
8 10 | 8 4 | 01 | |
| 5 95 3
3 93 9 | 3 84 6
98 8 | 5 10 | 1 91 8
2 98 10 | 79 89 8
47 44 7 | 9 90 7
4 102 9 | |

;

TABLE 41 (Continued) H5TACT3; tactical vehicles.

185

Ei Hit.

| 4 | m | m | m | - | 2 | e | ო | | | 1 | | - | N | 4 | 4 | e | AR |
|--------------|---|-------------|--------|---|----|-------------|-----|---|---|---|---|---|---|---|---|---|---------------|
| | | | 65 | | | | | | | | | | | | | | Υ
ν |
| e | ŝ | m |] 4 0 | 4 | 4 | ñ | ŝ | Ó | ~ | ~ | 1 | ~ | Ň | N | Ñ | Ň | ur loo |
| N | 2 | 2 | 220 | Ñ | N. | N | 2 | 2 | N | N | 2 | N | N | 2 | N | 2 | Fou |
| - and | |) 1 | • •••• | - | 4 | ' 1 | , न | - | - | - | 1 | ٦ | - | ٦ | - | | ND1: |
| | | | 0 | | | | | | | | | | | | | | 5SA) |
| | | | 53 | | | | | | | | | | | | | | 2 H
anitur |
| | | | 11 | | | | | | | | | | | | | | LE 4 |
| | | | 58 | | | | | | | | | | | | | | 'AB
ilter |

| • | - | 2 | 4 | 4 | ო | ŝ | ហ | Ś | - | ŝ | m | 4 | 4 | 4 | 1 | ო | e | - | Q | ഗ | ŋ | m | 9 | ~ | Ś | 4 | e | n | 4 | ŋ | 'n | ß | ហ | 4 | ŋ | 4 | n | 4 | 4 | |
|---|----|--------|----|----|----|----|--------|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|--------|--------|-------------|----|--------|-----|-------|--|
| | 00 | С
4 | 60 | 66 | 65 | 5 | ت
9 | 50 | 56 | 62 | 63 | 95 | 57 | 53 | 66 | 69 | 63 | 69 | 60 | 57 | 67 | 68 | 64 | 56 | 59 | 67 | 54 | 69 | 63 | 65 | 62 | 59 | 47 | 66 | 63 | 64 | 67 | 6) | 61 | |
| | Ñ. | N | Ñ: | m | m | m | m | e | 4 | 4 | ৰ | 4 | 4 | 4 | ហ | ŵ | ū | Ň | Ň | e | Э | ŝ | ŝ | ٣, | m | m | m | 4 | 4 | 4 | 4 | ŝ | ŝ | Ň | N | ŝ | Ē | 133 | ê. | |
| | - | _ | - | _ | - | - | - | _ | - | - | - | - | 1 | - | - | - | - | _ | - | | _ | ~ | _ | | ~ | _ | _ | ~ | - | _ | - | - | - | 2 | N) | Ň | N. | 220 | Ň | |
| | N | N | ¢. | N | N | N | N | N | n: | N | ~ | N | N | N | N | N | N | N | N | N | ~ | N | N | N | N | ∩ ; | N | N | N | N | N | N | N | | ' 1 | - | i pang | · | اسو ، | |
| ŝ | 5 | 51 | 60 | 58 | 60 | 60 | 60 | 58 | 63 | 60 | 71 | 56 | 58 | 4
N | 76 | 45 | 44 | 41 | 66 | 58 | 50 | 40 | 57 | 42 | 66 | 65 | 32 | 65 | 48 | 57 | 57 | 49 | 48 | 5
9 | 4
0 | 58 | 47 | 62 | 67 | |
| (| 50 | 63 | 38 | 67 | 54 | 56 | 56 | 63 | 59 | 59 | 30 | 59 | 48 | 59 | 56 | 59 | 48 | 78 | 53 | 53 | 70 | 53 | 53 | 53 | 53 | 53 | 61 | 79 | 62 | 66 | 62 | 53 | e
S | 76 | 76 | 73 | 80 | 59 | 59 | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 61 | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 62 | | |

filter magnitude data, desert sand (short list), Nebo array, Barstow, CA, hop off, Scene 5.

۲ -

186

| 4 | 4 | ო | m | 4 | 2 | m | ഗ | 4 | 7 | - | 2 | 2 | 2 | N | ഗ | Q | ~ | 4 | ო | 4 | m | - | 2 | 4 | N | m | 4 | 4 | ß | ഗ | ~ | 4 | e | m | m | 4 | 4 | 4 |
|----------|---------|-------------|----------|---------------|------------|---------|---------------|--------------|---------|----------------|---------|------------|--------------|---------------------|--------------|---------|---------|----------|-----------|---------|--------|----------|----------|----------|-------------|--|----------|------------|----------|---------|----------|---------|--------|----------|----------|------------|------------|-----------|
| 61 | ເມ | 50 | 69 | 65 | 57 | 62 | 61 | 63 | 68 | 58 | 63 | 6 4 | 67 | 66 | 66 | 66 | 57 | 51 | 61 | 58 | 57 | 66 | 64 | 69 | 60 | 61 | ນ
ເ | 40 | 63 | 10
4 | 61 | 67 | 66 | 63 | 68 | 65 | 69 | 62 |
| | 144 | 138 | 1.1 | 4 | - 4 | 4 | ഹ | ഗ | JO. | ~ | ~ | ~ | ~ | N | N | 2 | S | m | ന | ৰ | 4 | - ক | S. | ഗ | S. | ~ | ~ | ~ | ~ | N. | ຸ | m | ന | ື | 4 | - 4 | 4 | 4 |
| - n | , U | 220 | N | n, | 2 | N. | N. | 2 | 2 | \sim | N. | 2 | N. | 2 | 2 | N. | 2 | N | 2 | 2 | 2 | N. | 2 | N. | 2 | 2 | 2 | S I | 2 | 2 | 2 | N | ŝ, | N | N | N. | N. | N N |
| ~ | - | | | i pret | , | - | | | | - | - | 1 | | | - | ٦ | - | - | - | L | | - | - | ~ | - | T | -1 | - | ~ | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 67 | - m | 5
2
2 | 4
Տ | 70 | 29 | 5
G | ខ្ម | 66 | 53 | 4
0 | 70 | 61 | 72 | 61 | 61 | 53 | 53 | 53 | 53 | 11 | 61 | 53 | 11 | 71 | 11 | 53 | 61 | 22 | 53 | 64 | 64 | 60 | 61 | 74 | 72 | 53 | 77 | 5.3 |
| 0
5 | 49 | 6 | 83 | 53 | 68 | е
G | 74 | 4 J | 72 | 53 | 53 | 64 | 4
9 | 11 | 78 | 75 | 59 | 59 | 57 | 49 | 41 | 67 | 57 | 58 | 49 | 67 | 58 | 41 | 41 | 51 | 67 | 80 | 71 | 49 | 66 | 66 | 74 | 57 |
| 48 |)
C | 0
0
0 | 57 | 11 | 56 | 73 | З2 | 74 | 74 | 40 | 66 | 6 | 73 | 72 | 52 | 11 | 54 | 46 | 22 | 46 | 55 | 63 | 62 | 59 | 2
2
2 | 40 | 54 | 4 0 | 77 | 44 | 51 | ŝ | 68 | 35 | 62 | 27 | 6 4 | 60 |
| Ģ | | 4 | 5
G | 58 | 46 | 5
G | 49 | 28 | 62 | 70 | 5¢ | 65 | 19 | 32 | 4
10 | 42 | 61 | 32 | 24 | 40 | 61 | 79 | 63 | 11 | 45 | 65 | 32 | 42 | 45
10 | 48 | 5
S | с
С | 59 | 63 | 69 | 75 | 52 | 5 |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| _ | ~ | 4 | ÷ | e | ю I | ŝ | e | | e | e | ÷ | 4 | 4 | | ო | e | 1 | Q | ഗ | ۍ
۵ | e | v | ~ | J. | 4 | m | m | đ | ın. | m | ហ | ۍ
۱۵ | 4 | S | ъ | 4 | ۍ
ا | ų
V |
| æ | t. | | s | ເຄ | an: | 5 | ጉ | s | ٩ | m | م | ~ | e | 9 | 6 | m | • | 0 | 2 | ~ | 30 | 4 | . | с | ~ | 4 | о | ო | ۍ
۱ | 2 | с | ~ | 9 | e | 4 | 2 | ~ | +000 |
| | | 0
0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ^ | , n | 120 | 3 | m | e | m | ŝ | 4 | 4 | 4 | 4 | 4 | 4 | ഹ | ഗ | ŝ | 3 | 2 | e | ŝ | m | e | e | Ĵ | ŝ | s an | 4 | 4 | 4 | 4 | ហ | ŝ | 2 | 2 | m | 132 | Е Т | linchudae |
| ~ | - | 218 | - | - | — , | - | - | - | - | | - | - | - | - | - | ~ | - | - | - | _ | - | يسر | - | ~ | _ | _ | - | _ | | | _ | - | N | 2 | 2 | N | 2 | |
| ٩ | | | | | | | | | | | | | _ | | <u>.</u> | | ~ | • | • | • | N | N | 2 | N | N | N | N | e. | N | N | N | N | | | - | , <u></u> | | 2 |
| | . ^ | u u | <u>م</u> | N | N | 2 | N | 2 | 2 | ر . | r | N | ٨ | 0 | | 0 | · · · | | 10 | | | | | | | | | | | | | | | | | | | 2 |
| 53 | | 60 | 60 | 0 | c | 0 | æ | m | 0 | | ۍ
د | 30 | 5
LO | s | ហ | 4 | - | s | 80 | 0 | 40 | 57 | 42 | 66 | 65 | 32 | 65 | 48 | 57 | 57 | 6 | 48 | 53 | 4
0 | 58 | 47 | 62 | 115SAND2 |
| с
С | 51 | . 0 | 7 58 | 4 60 | 6
60 | 6 60 | 3 58 | 9 63 | 9 60 | 0 71 | 9 56 | 8 58 | 9 4 5 | 6 76 | 9 4 5 | 8 44 | 8 41 | 3 66 | 3 58
8 | 0 50 | 4 | ທ
ອ | м
Ф | ю
9 | 9 | 1 | е
Ф | *
~ | ъ
С | ຍ
2 | 3 49 | 4 | ۍ
۲ | 6
4 | n
m | 4 | 9 | . v |
| 5 63 5 | 0 63 51 | 09 | 4 67 58 | 2 54 60 | 4 56 60 | 4 56 60 | 2 63 58
28 | 2 59 63
2 | 4 59 60 | 6 30 71 | 5 59 56 | 1 48 58 | 6 59 45 | 2 56 76 | 7 59 45 | 7 48 44 | 9 78 41 | 7 53 66 | 9 53 58 | 6 70 50 | 0 53 4 | 7 53 5 | 7 53 4 | 9 53 6 | 0536 | 1 61 3 | 2 79 6 | 4 62 4 | 2 66 5 | 6 62 5 | 5 53 49 | 9 53 4 | 7 76 5 | 8 76 4 | 5 73 5 | 8 80 4 | 1 59 6 | 3 H5S |

TABLE 43 H5SAND2: (includes most of H5SAND1), Nebo array, Barstow, CA, hop off, Scene 5.

der die

187

·E

TABLE 43 (Continued) H5SAND2: desert sand.

| S | 4 | 4 | ~ | - | 2 | S | ð | ស | ഗ | 4 | m | : | N | 2 | N | 4 | m | m | - | 1 | ∩ ı | e | 4 | 4 | ŝ | | - | 2 | 4 | 4 | 4 | 2 | m | |
|------------|----|-----|-------|----|------|--------|---------|-----|----|----|----|----------|----------|----|-----|----------|----|-----|------------|----|-------------|------|------|------------------|----------|----|-----|--------|----|----------|----------|--------|----|---|
| 64 | 57 | 68 | 65 | 68 | 64 | С
С | 69 | 66 | 63 | 69 | 5] | 67 | 54 | 69 | 65 | 64 | 68 | 69 | 66 | 67 | 5
2
2 | 62 | 67 | 66 | 62 | 67 | 67 | 5
6 | 65 | 62 | 59 | 50 | 62 | |
| ্ৰ | ব | 4 | LLD I | ÷ | ÷ | - | ~ | 173 | ~ | ~ | ~ | N | N | ന | ົ | ົ | ŝ | m | - m | ന | - 🛧 | - ২০ | - ৩প | - - - | 4 | ŝ | LC. | S | ~ | ~ | ~ | ~ | ~ | |
| - N | N | (V) | n | n, | SU I | Ω. | (U | 222 | N. | N. | N. | N | N. | N. | 2 | N | 2 | S I | 2 | N. | 2 | 2 | C I | 2 | M | S | 2 | 2 | ົ | N | ∩ | - NJ | N | |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| 53 | 35 | 64 | 68 | 77 | 61 | њ4 | SC
D | 53 | 68 | 73 | 59 | 79 | 48 | 17 | 56 | 64 | 79 | 56 | 40 | 73 | 40 | 58 | 64 | 65 | 61 | 73 | 73 | 40 | 70 | 73 | 58 | 40 | 56 | |
| 59 | 62 | 80 | 11 | 67 | 74 | ee | 74 | 80 | 62 | 78 | 41 | 58 | տ
4 | 74 | 11 | 63 | 61 | 72 | 58 | 72 | 54 | 58 | 74 | 11 | 58 | 58 | 74 | 70 | 5¢ | 62 | 58 | ቀ
በ | 72 | |
| 4 8 | 48 | 4 X | 59 | 35 | 56 | 27 | 70 | 35 | 61 | 59 | 27 | 57 | 50 | 4 | ¢ 0 | 63 | 40 | 40 | 61 | 24 | 57 | 57 | 40 | 24 | 50 | 65 | 4 | 24 | 65 | 32 | 40 | 4
4 | 53 | 1 |
| 75 | 53 | 59 | 55 | 64 | 5 | 69 | 2 | 46 | 69 | Ş. | ŝ | ŝ | 5 | 33 | 20 | 90 | Ş | 6 | 78 | 90 | 5 | 6 | 2 | 2 | 2 | 69 | ñ | 5 | 99 | ŝ | 99 | 5 | E | |

1.11

1

188

een and rea

| m | ហ | ഗ | ŝ | ហ | ഗ | m | m | 4 | 4 | 4 | ഗ | ო | ო | ო | | 2 | | بہ | ~ | 5. | | | | |
|---|------|------------|------|-----|-----|---|---|---|------|------|------|------|-----|--------|---|---|---|---------------|------------------|--------|------|---|---|-----|
| | | | | 68 | | | | | | | | | | | | | | Four look SAR | Nebo | ene | | | | |
| | | | | | | | | | | | | | | | | | | ы, | | Scene | | | | |
| | | | | 70 | | | | | | | | | | | | | | r lo | swc | off, | | | | |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | ~ | 2 | 2 | 2 | ~ | 2 | 2 | 1 | ~ | 2 | | ,
OUI | shadows | о
д | • | | | |
| | | | | | | | | | | | | | | | | | | | | hop (| | | | |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | H5DARK: | data, | CA, | • | | | |
| | | | | 69 | | | | | | | | | | 17 | | | | DA | e di | | | | | |
| - | | _ | - | | | | | | | | | | | | - | - | 1 | H | tud | rstow, | | | | |
| | | | | 72 | | | | | | | | | | 4
U | | | | 44 | filter magnitude | 6 | | | | |
| | | | | 57 | | | | | | | | | | | | | | | ma | р
П | | | | |
| | | - | | | | | | | | | | | | | | | ţ | IABLE | ter | rray | • | | | |
| | | 5
G | | 69 | 61 | | | | | | | | | | | | E | J T | fil | аг | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | r (* | <u>ה</u> נ | יי ר |) - | • m | ഗ | S | ഹ | i IC |) (r |) (* |) (" |) 4 | • 4 | ŝ | ŝ | 2 | m | ۳ - | - | יי ע | 2 | - | - 0 |
| | | | | | | | | | | | | | | | | | | | | | | | | |

and Without a strength of the

| ************************************** | • • • • - |
|---|-----------|
| 4 m 0 m n 0 0 n 0 0 0 n h n 4 n h 0 4 4 m 4 0 0 4 n 4 4 h 0 4 n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | |
| 5 5 7 4 5 7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 | |
| 1 | ・トァァ |
| | 1 4 4 4 |
| - 31-4 4 6 8 4 4 4 9 4 6 9 4 9 9 9 9 9 9 9 9 9 9 9 9 | |
| 1 3 7 1 今 7 3 2 7 0 3 9 3 9 2 9 2 9 2 9 0 0 7 9 0 0 7 9 0 0 0 0 0 0 0 0 0 0 0 | |
| てて きちくちゅう うち うして うち | |
| ー ゔー キャー キョッシン チャ fl チョック アー ちょう チャー ちょうしゅう しょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ち | |

189

een start.

6 <u>Nebo Static Array of Vehicles and Equipment:</u> Scene 6, hop on TARGET CLASS AND CORRESPONDING TABLE NUMBER

| H6TANK1 | TABLE 45 |
|---------|----------|
| H6TR251 | TABLE 46 |
| H6TACT1 | TABLE 47 |

·E.

and the strategy and the strategy and

| 175 241 151 2 176 241 127 1 168 216 126 2 169 215 121 3 169 215 121 3 170 216 124 3 170 216 124 3 180 222 138 2 181 222 162 3 145 201 100 3 145 201 126 5 145 201 126 3 145 201 126 3 145 201 126 3 145 201 126 3 147 201 128 3 152 226 115 7 | Four look SAR |
|--|---------------|
| NONNO-FNONAVANNN | Ś |
| 44 | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| クヨミミミーム 4 つうう 1 4 4 4 1 m | A NK 1: |
| 1363
1364
1378
1384
1384
1384
1384
1384
1384
1384
138 | 6 T. |
| 133
133
133
133
133
133
133
133
133
133 | 45 H |
| 11351
947
112054
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
112074
110074
110074
110074
110074
110074
110074
110074
110074
110074
110070 | LE 4 |
| 11120
121120
121120
12120
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12020
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
12000
10000
1000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
1000000 | TAB |

2 9 сυ - 5 G ~ 153 136 158 []] 108 118 1]4 6 178 228 229 230 16 77 S 4] A. d 151 142 88 115 120 120 125 125 87 112 112 118 160 1124 113 113 151 163 120 138 1138 1138 lól 125 125 135 1118 1112 122 122 122 95 97 119 125 104 145 105 93 88 123 105 105 109 87 155 104 120 94 35 105 113 118 88 Эв

Barstow, CA, hop on, Scene 6.

array,

filter magnitude data, M48 tanks, Nebo

"E ..

| wwwwwwww///w-ww- | op
op |
|---|-----------------------------|
| 11441111111111111111111111111111111111 | h C SA |
| の
、
、
、
、
、
、
、
、
、
、
、
、
、 | r lc
rgo
v, . |
| 150
152
152
155
155
155
155
155
155
155
155 | Four
M35 car
arstow, |
| ここここままます ゆゆゆゆう ろうろう | 51:
, B |
| 156
157
169
1693
1693
1693
1691
1675
1155
1155
1155
1155
1155 | TR
e da
rra |
| 155
137
137
137
137
133
120
133
121
171
171
171
171
171
171
171
173 | 46 H6
agnitude
Nebo a |
| 123
125
1253
1253
100
100
100
100
100
100
100
100
100
10 | LE
r m |
| 100
1100
1101
1001
1001
1001
1001
1001 | TAB
filte
truck |

í

| ///-0-000-000/0-44 | //mm/-/-/-0/0-m |
|--|---|
| 11111111111111111111111111111111111111 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 00000000000000000000000000000000000000 | WW4NCNNN~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9 | 44444444444444 |
| 4 4 3 3 3 3 3 2 2 2 1 1 1 1 4 7 3 3 2 ろ ろ ろ ス ス | I'mi'm m mi'mi'mi'm 4 4 4 0 0 0 0 0 0 0 0 |
| 125
125
125
125
125
125
125
125
125
125 | |
| *
*
*
*
*
*
*
* | NW4-4444W40NN4040 |
| | N49004000000000000 |
| 04200000000000000000000000000000000000 | |

on, Scene 6.

192

1

·Ei

TABLE 47 H6TACT1: Four look SAR filter magnitude data, tactical vehicles, Nebo array, Barstow, CA, hop on, Scene 6.

- disti fiamis 's

| 35 169 162 129 3 149 24 | 27 161 141 143 2 150 205 149 | 49 176 181 164 2 150 241 173 | 09 i23 155 156 2 150 242 148 | 29 141 132 133 2 151 216 135 | 41 125 133 149 2 151 217 140 | 21 123 147 109 2 151 241 134 | 3H 139 12H 127 1 152 21h 134 | 25 126 120 142 1 152 255 132 | 53 100 87 163 1 152 256 151 | 46 96 92 143 1 153 256 137 | 7A 77 100 79 4 154 175 88 / | 28 153 133 151 4 154 254 146 / | 29 102 121 141 4 155 213 130 / | 24 127 132 156 4 155 242 143 | 44 143 171 115 4 155 259 157 | A9 138 85 155 3 156 241 141 | 4] 162 157 177 3 156 242 166 | 60 162 143 147 3 156 259 156 | 25 118 91 112 1 145 243 117 | 26 116 141 120 Ĵ 145 244 130 | 21 105 111 80 4 146 243 111 | 2A 113 145 138 4 146 244 136 | 9H 111 105 113 4 147 244 108 | 16 121 93 124 3 140 228 118 | 05 124 110 106 3 141 227 114 | 98 118 130 124 3 141 228 122 | 01 123 131 113 3 141 229 122 | 03 106 125 119 2 142 228 117 | 47 106 124 103 2 142 229 112 | 18 109 135 151 4 162 261 13P | 06 87 97 108 4 162 261 102 | 28 159 161 163 4 163 260 158 | 12 102 107 113 4 163 261 109 | 9 155 147 142 3 164 26n 146 | R2 104 112 88 3 164 261 102 | |
|------------------------------|--------------------------------|-------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|---------------------------------|------------------------------|--|
| 15 145 125 141 1 137 231 137 | 38 132 150 145 4 123 211 143 / | 0 143 131 123 4 130 231 133 / | 34 141 126 136 3 132 211 135 / | R3 62 83 87 3 132 233 82 | 35 141 131 91 3 132 234 133 | 43 137 141 98 3 132 235 137 | 60 169 126 157 2 134 219 160 | 67 176 149 173 2 135 219 170 | 28 131 149 131 2 135 220 138 | 34 134 160 123 2 135 221 147 | 03 148 122 132 1 136 231 136 | 46 144 153 160 1 136 232 153 | 63 141 151 164 1 137 232 158 | 39 128 125 135 4 138 225 133 / | 26 148 132 103 3 140 246 136 | 47 134 106 113 3 141 247 135 | 53 145 137 147 2 142 204 147 | 35 152 150 129 2 142 249 145 | 54 148 131 134 2 143 204 145 | 75 178 172 161 2 143 249 173 | 60 156 144 150 2 143 250 154 | 14 153 127 119 1 144 231 139 / | 45 142 139 120 1 144 233 139 / | 51 159 145 148 1 144 249 152 | 36 138 119 136 1 144 25n 134 | 44 131 140 136 1 145 208 139 / | 53 147 149 136 1 145 226 147 | 35 125 143 138 1 145 253 137 / | 57 125 143 146 4 146 226 147 | 31 109 136 139 4 147 219 133 / | 52 111 144 150 4 147 230 146 | 73 136 169 175 3 148 230 169 | 34 149 123 134 3 148 247 139 / | 147 168 150 158 3 149 205 159 2 | 49 135 148 152 3 149 230 147 | |

. .

1.

·E 11

San States

ABLE 47 (Continued) H6TACT1: tactical vehicles

a dia i Na

| 1-10 | | :::: | |
|---------|-----------|---------|--|
| - 0 + m | ~ ~ ~ ~ ~ | 4044 | 199
199
199
199
199
199
199 |
| | | | 233
233
233
233
233
233
233
233
233
233 |
| 2811 | 6005 | 4665 | 175
175
179
181
181
181
183
184
187 |
| | | | |
| IO IO | ~~~ ~ ~ ~ | | 1123
1123
1123
1123
1123
1123
1126
1123
1126 |
| | | | 130
136
156
136
136
136
136 |
| | | | 1120
1120
1120
1120
120
120
120
120
120 |
| | | 4 0 0 4 | 128
128
128
128
128
128
128 |
| | | | |

| നനഗഹന ന | |
|---------------------------------------|--|
| 0-22-0 | |
| 000000 | L L L L L L L L L L L L L L L L L L L |
| | H 111111111111111111111111111111111111 |
| エームムム |
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
0
0
0
0
0
0
0
0 |
| | 118
1110
1112
1112
1112
1112
1112
1112
1 |
| 1118
1122
122
96
87
87 | Contemporation (Contemporation) (Contemp |
| 60
60
123
123
120
120 | $ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\$ |
| | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ |

. 1

"E ,1

7 <u>Nebo Static Array of Vehicles and Equipment:</u> Scene 7, hop on TARGET CLASS AND CORRESPONDING TABLE NUMBER

H7TANK1

TABLE 48

۷

TABLE 48 H7TANK1: Four look SAR filter magnitude data, M48 tanks, Nebo array, Barstow, CA, hop on, Scene 7. 1

| 0144MI | ~~~~~ | . N N N N M M | 44004 | * ~ ~ ~ ~ ~ ~ ~ ~ | <sub>ฏ</sub> เภ <i>เ</i> ภิติติติด
< |
|-----------------------|------------------------------------|---|-------------|---|--|
| momu | m 4 N m m | $\mathcal{N} \cap \mathcal{N} \cap \mathcal{N}$ | SONO | 146
138
138
138
138
138
138
138
138
138
138 | 0000000 V |
| | $\sim \infty \infty \infty \alpha$ | 0 0 0 0 0 0 | 00000 | <pre>641
660
660
660
660
660
660
660
660
660
66</pre> | |
| | ۵ – – – ۲ | 9944400 | 000 | 116
116
138
138
138
124
124 | ነ ዓ ዓ ዓ ዓ ዓ በ በ በ 🗠 |
| له امر امر امر | 4 4 4 4 (| しょしかかかご | . - | | 14444000 - XX |
| N404 | - 4 N 4 N | -NWNO | 44 0000 | 105 | 1150
1150
1162
162
162
92
92
92
92
92
92
77
77 |
| ต้อังอัต | n n - | - m + m m - | Sere. | 141
1641
1641
1641 | 666666 |
| NOTO | 44004 | N N M M N | 40000 | 155
155
155
155
155 | 11121
1121
1121
1121
1121 |
| 0 0 0 4 | o m m N r | N + m m + n | 5 | 150
165
165
165
165
165
165
165
165
165
165 | - 400 POP 5 |

1

·E. . .

Single Pixel Target Files:
 Scenes 3, 4, and 5
 TARGET CLASS AND CORRESPONDING TABLE NUMBER

| P5TANKI | TABLE 49 |
|---------|----------|
| P5TR251 | TABLE 50 |
| P5JEEP1 | TABLE 51 |
| P5VAN1 | TABLE 52 |
| P5CRAN1 | TABLE 53 |
| P5TACT1 | TABLE 54 |
| P4TANK | TABLE 55 |
| P4TR25 | TABLE 56 |
| P4JEEP | TABLE 57 |
| P4VAN | TABLE 58 |
| P4CRAN | TABLE 59 |
| P4TACT | TABLE 60 |
| P3T101 | TABLE 61 |

| ton | |
|--|---|
| 5_{1}^{3} | ۍ
• |
| cargo | Scene |
| M35 | off, |
| da ta, | hop |
| itude | CA, |
| .: Four look SAR filter magnitude data, M35 cargo 2½ ton | trucks, one pixel per truck, Nebo array, Barstow, CA, hop off, Scene 5. |
| SAR fi | array, |
| r look | Nebo |
| Fou | truck, |
| R251: | per |
| P5T] | pixel |
| 50 | one |
| TABLE 50 P5TR251: | trucks, |

| Ó. | 114 | - | - | - | - | σ | σ | - | | - | N | N | - | - | - | |
|---------|------|-----------|----------|--------------|----------|---------|---------|--------------|-----------|----------|-------------|-----------|-----------|----------|----------|--|
| ~ | 167 | ~ | Ó | œ | ഗ | Ó | Ó | Ð | σ | σ | Ŷ | Ŷ | Ó | œ | 9 | |
| ທີ | 157 | ŝ | Q | 2 | ~ | ~ | 7 | 80 | œ | œ | œ | σ | 0 | o | - | |
| m | - | 4 | - | 2 | 4 | 4 | 4 | m | N | N | ' 1 | n
N | m | 4 | 4 | |
| | | | | | | | | | | | | | | | | |
| ō | 128 | - | 0 | - | Ň | 0 | 0 | n | - | 0 | - | 2 | N | - | C | |
| 8 10 | 2 | 26 11 | 15 10 | 33 11 | 91 12 | 4 10 | 93 10 | 61 13 | 09 11 | 14 10 | 32 11 | 06 12 | 12 12 | 9 II | 8 10 | |
| 7 58 10 | 1 12 | 95 126 11 | 3 115 10 | 5 133 11 | 8 91 12 | 9 54 10 | 5 93 10 | 6 91 I3 | 19 109 11 | 3 114 10 | 29 132 11 | 30 106 12 | 08 112 12 | 11 66 11 | 12 98 10 | |

"Ei

Four look SAR filter magnitude data, M48 tanks, one

85 89

159 167

N

98 115 103 103 105 105 105

190 214

r. N

151 151 155 155 173 182 183 167 153 167 167

202 203 203 209 209 177 177

83 48 91 91 91 91 96 91 108 108 108

87 90 109 77 93 93 93 93 93 1119

491 91 95 1123 1123 1105 1105 81 81 81 81

93 101 84 108 108 111 91 111 111 111 111 110 94

pixel per tank, Nebo array, Barstow, CA, hop off, Scene 5.

TABLE 49 P5TANK1:

| 96 | 77 | 86 | 88 | 78 | 44 | 96 | 79 | 78 | 73 |
|----|----|-----|-----|----------------|------|----|----|----|----|
| Ŷ | 9 | θ | 151 | 9 | 8 | σ | ~ | ω | œ |
| ŝ | ŝ | Ŷ | 17C | ~ | ~ | œ | 9 | - | - |
| m | 4 | - | n | ر ، | 4 | m | 4 | - | m |
| 6 | - | ហ្គ | 75 | 0 | 4 | 2 | m | 0 | 6 |
| æ | ហ | 30 | ~ | Φ | 10 | ~ | U) | ~ | 61 |
| | | | 717 | | Т | | | | |
| 77 | 06 | 64 | | 77 | 92 1 | 58 | 84 | 68 | 35 |

San Street of Street

ومناطقة والمراجع والمراجع والمستنب والمستعر والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد

Four look SAR filter magnitude data, M151 $^{\rm k}_{\rm x}$ ton jeeps, one pixel per jeep, Nebo array, Barstow, CA, hop off, Scene 5. P5JEEP1: TABLE 51

| | | œ | 113 | 0 | - | | ē | o | 0 | | | | 0 | |
|----------|--------|--------|------|----------|-----------|-----------|----------|-----------|---------|----------|----------|--------|----------|---------|
| ~ | āĊ. | 00 | 145 | σ | œ | ~ | S | ÷ | ~ | J. | ō | ~ | ŵ | ō |
| ŵ | ŝ | Ŷ | 168 | ~ | œ | 9 | 0 | 9 | 9 | ò | - | ~ | Ō | 0 |
| 4 | 4 | 4 | m | m | | m | m | m | m | · 🛏 | 2 | N | m | e |
| | | | | | | | | | | | | | | |
| | | ~ | 113 | - | Ē | o | - | 0 | ÷. | ō | | | | |
| 8 13 | 2 | 6 7 | - | 11 16 | 17 11 | 15 10 | 04 11 | 07 10 | 4 | 01 20 | 01 9 | 4
9 | 5 7 | 9 10 |
| 1 118 13 | 6 87 9 | 8 76 7 | 5 11 | 11 16 10 | 07 117 11 | 97 115 10 | 0 104 11 | 98 107 10 | 97 94 4 | 6 102 10 | 07 101 9 | 3 84 6 | 02 105 7 | 9 89 10 |

shop van truck, one pixel per van, Nebo array, Barstow, CA, hop off, Scene 5. TABLE 52 P5VAN1: Four look SAR filter magnitude data, M109A3 2^{l_2} ton

199

| 111
133
118 | - N | <u> </u> | | 0 C | N | m~ | • |
|-------------------------|------------------------|-----------------------|--------------------------|----------------------|-----------|-------------------------|---|
| 180
152
161 | 4 1- | 00 4 | 60 | P 5 | Ó | r a | > |
| 161
164
171 | アア | 00 00 | 00 | 00 | 0 | 0 | |
| m ~ N | | 4. | {*7 }, *** | 4 4 | 4 | 4 4 | • |
| | | | | | | | |
| 117
135
106 | ōΜ | O N | - 0 | 66 | Ň | | |
| 91 19
31 13
27 10 | 9 10
8 13 | 14
14
12
9 | 98 11
15 10 | 00
00
00
00 | 15 12 | 33 12
24 11 | |
| 91 19
31 13
27 10 | 10 119 10
06 108 13 | 09 114 9
64 114 12 | 19 98 11
21 115 10 | 88 109 9
85 105 9 | 15 115 12 | 20 133 120
05 124 11 | |

TABLE 53 P5CRAN1: Four look SAR filter magnitude data, M62 12<sup>1/2</sup> ton truck mounted crane, one pixel per crane, Nebo array, Barstow, CA, hop off, Scene 5.

200

·E; 1.

119 181 193 161 168 161 P5TACT1: m 91 1109 11132 999 987 87 87 119 109 115 115 93 93 87 **FABLE 54** 103 111 94

TABLE 54 P5TACT1: Four look SAR filter magnitude data, tactical vehicles from P5TANK1, P5TR251, P5VAN1, and P5CRAN1) (no jeeps), one pixel per vehicle, Nebo array, Barstow, CA, hop off, Scene 5.

4

| | | | | | | | | | | | | | - 1 |
|----|---|---|---|----|---|---|-----|----|---|----|---|----|-----|
| | 0 | | | - | C | e | 95 | N | C | N | σ | - | 1 |
| 4 | 9 | ~ | ഗ | œ | ~ | ហ | 172 | 0 | Ø | 9 | σ | ~ | |
| ~ | ř | ~ | ~ | 30 | ā | ō | 199 | õ | 0 | _ | - | Ň | ļ |
| 4 | 4 | 4 | ~ | 1 | m | 4 | 4 | m | m | N | l | ŝ | |
| | | | | - | σ | 4 | 95 | 2 | ~ | - | σ | | |
| N | | œ | σ | - | Э | 4 | 92 | - | Ø | o | Ó | N. | |
| 0 | | 0 | 0 | - | ~ | - | 88 | | | | | | |
| 97 | ~ | 8 | ŝ | 0 | 2 | 4 | 00 | 0, | 6 | 37 | 4 | 4 | |

2

1

P4TANK: Four look SAR filter magnitude data, M48 tanks, one pixel per tank, Nebo array, Barstow, CA, hop on, Scene 4. **TABLE 55**

| | m | Ň | 104 | 9 | - | - | - | C | 2 | e | - | 2 | c SAR |
|----|----|----------|-----|---|-----|---|-----------|----------|---|---|---|---|------------|
| Ó | õ | 9 | 182 | Ŷ | Ŷ | σ | 30 | ŝ | Ŷ | 9 | σ | œ | . look |
| Ō | õ | O | 173 | ~ | ΞĐ. | 8 | œ | 80 | σ | 0 | C | 2 | Four |
| m | 4 | 4 | | 4 | m | N | 1 | , ,,,,,, | 4 | m | m | 4 | 25: |
| | Ñ | | 66 | | ō | 1 | | ñ | - | - | - | N | P4TR |
| | 0 | 0 | 116 | Ø | | - | O | 4 | 2 | ŝ | 0 | 0 | Ŷ |
| 3 | | 0 | 75 | Э | | ß | _ | 4 | 2 | N | - | σ | ר ד
ביד |
| 96 | 'n | m | 6 | 0 | 0 | σ | - | 0 | B | n | - | N | ТАВ |
| | | | | | | | | | | | | | |

ton trucks, one pixel per truck, Nebo array, Barstow, CA, hop on, Scene 4. Four look SAR filter magnitude data, M35 cargo 2^{1}_{2} P41.K23: TABLE 56

202

| 84 | 108 | 75 | 87 | 9 J | 79 | 108 | 63 | 87 | θ3 | 105 |
|--------|----------|--------|-------|--------|--------|----------|---------|--------|--------|---------|
| œ | ഹ | ហ | 186 | 9 | 6 | σ | œ | Ŷ | ÷ | 0 |
| Ŷ | 2 | ~ | 177 | 2 | 1 | S | σ | Ċ | 0 | _ |
| 4 | n; | r | m | r | 2 | 4 | n' | N | m | - |
| - | | | | | | | | | | |
| 53 | 108 | 64 | 96 | 86 | 6 4 | 102 | 90 | 72 | 79 | 96 |
| 5 | 1 10 | 7 6 | 82 96 | 2 8 | ې
د | 3 10 | 2 | 4 7 | 67 | 6
0 |
| 1 85 5 | 7 111 10 | 4 77 6 | 2 9 | 2 72 8 | 2 85 6 | 1 113 10 | 1 102 9 | 3 94 7 | 6 76 7 | 7 110 9 |

TABLE 57 P4JEEP: Four look SAR filter magnitude data, M151 ¼ ton jeep, one pixel per jeep, Nebo array, Barstow, CA, hop on, Scene 4.

| | 146 | _ | - | Ň | σ | 0 | C | 9 | | ~ | e | N | - | 0 | |
|----|-----|----------|----|---|-----|---|---|---|-----|---|---|---|----|----|--|
| 9 | 178 | ~ | Ô, | ~ | 4 | Ø | σ | Ŷ | 0 | ~ | Ŷ | ഹ | ~ | ~ | |
| Ŷ | 162 | ~ | ~ | ~ | ΞC. | σ | σ | • | σ | 9 | 0 | 0 | _ | 2 | |
| n | ~ | 2 | m | N | n | 4 | ~ | - | | 4 | 2 | 4 | - | - | |
| | 153 | - | 0 | - | - | - | σ | Ŷ | | C | 2 | - | - | 0 | |
| 79 | 153 | 70 | ~ | n | Ø | 9 | - | S | 114 | N | m | B | N | 16 | |
| 65 | 133 | N | - | 2 | 2 | 9 | 8 | Ŷ | 126 | - | e | 3 | 56 | 85 | |
| 95 | 101 | o | m | m | δ | Ŷ | ~ | Ŷ | 138 | | ŝ | 2 | ŝ | 0 | |

. 4

shop van truck, one pixel per van, Nebo array, Barstow, CA, hop on, Scene 4. TABLE 58 P4VAN: Four look SAR filter magnitude data, M109A3 2^{1}_{3} ton

203

Ei .

 $\cdot t'$

| 115
1152
1119
1116
1116
1115
1115
1115
1115
1115 |
|---|
| 175
1175
1175
1160
1260
1263
1263
1263
1263
1263
1263
1263
1263 |
| 166
178
178
181
181
193
193
203
203
205
205
205
205
205
205
205
205 |
| ゆ こ m ゆ ろ m ろ こ こ m m m |
| 102
125
125
126
126
126
126
126
123
123 |
| 127
1115
102
99
100
1100
1105
1126 |
| 114
125
125
125
1123
1124
1124
1123
1124
1123
1123
1123 |
| 87
1123
1142
1125
1125
1125
1120
1120
1120
1120
112 |

truck mounted crane, one pixel per crane, Nebo array, Barstow, CA, hop on, P4CRAN: Four look SAR filter magnitude data, M62 12^{k_2} ton TABLE 59 Scene 4.

TABLE 60 P4TACT: Four look SAR filter magnitude data, tactical vehicles (all tactical vehicles including jeeps), one pixel per vehicle, Nebo array, Barstow, CA, hop on, Scene 4.

-

-

| | 136 | 126 | 139 | 112 | 120 | 109 | 66 | 40 | 98 | 111 | 101 | 138 | 95 | 126 | 101 | 128 | 96 | 118 | 108 | 75 | 87 | 80 | 79 | 108 | £6 | 87 | 83 | 105 | | | | | | |
|--------------|---------|------|-----|------|-----|-----|--------|-----|------|------------|----------|-----|----------|------------|------------|-------|--------------------|------------|-----|-------------------|--------|------------|------------|------|-----|--------|----------|------------|-----|-----|-----|-----|-----|-----|
| 183 | ഹ | Q. | 6 | or i | Ø | 4 | 9 | ~ | S | 30 | ~ | ŝ | ~ | 0 | 30 | Ŷ. | ¢. | ~ | ŝ | ഹ | œ | Ŷ | σ | 192 | œ | Ś | <u>م</u> | C | | | | | | |
| 188 | æ, | ው | 0 | 0 | N. | ~ | ~ | ~ | ~ | CO. | œ | ው | ው | 0 | 0 | - | _ | N. | ~ | ~ | ~ | ~ | ~ | 190 | S. | C | 0 | ~ | | | | | | |
| , 1 , | -1 | 4 | m | m | 4 | 4 | 4 | 4 | N | | m | 4 | 4 | F D | ŝ | N | - | m | ᠬ | ~ | m | N | N | 4 | N | ~ | m | · | | | | | | |
| 103 | 134 | 117 | 111 | 114 | 126 | 88 | 8
4 | 80 | 68 | 110 | ው - | 149 | ን ነ | 2 | - | - | S. | 124 | 0 | 64 | 96 | 86 | 64 | 102 | 90 | 72 | 79 | 98 | | | | | | |
| 107 | 142 | 124 | 150 | 105 | 107 | 122 | 100 | 88 | 06 | 110 | е
6 | 142 | 26 | 118 | 87 | 100 | 108 | 122 | 111 | 77 | 82 | 72 | 85 | 113 | 102 | 94 | 76 | 110 | | | | | | |
| 113 | 141 | 121 | 127 | 110 | 16 | 102 | 89 | 104 | 109 | 114 | 11 | 112 | 88 | 96 | 68 | 130 | 86 | 78 | 97 | 48 | 61 | 82 | د 9 | 111 | 16 | 73 | 86 | 107 | | | | | | |
| 116 | 109 | 134 | 137 | 117 | 127 | 16 | А7 | 88 | αc – | | | 104 | 0 | 4 | 8 6 | 137 | CC - | 114 | - | 63 | 83 | 76 | 73 | 66 | ۱۶ | Ю
6 | 8
8 | 103 | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 84 | 86 | 146 | 111 | 119 | 129 | 86 | 105 | 102 | 164 | 130 | 115 | 131 | 125 | | 100 |)
 | 1 2 2 | 110 | | | 201 | | | | 104 | | | 40 | 132 | 128 | 104 | 66 | 110 | 118 |
| 182 | 161 | 179 | 178 | 193 | 171 | 144 | 185 | 194 | 161 | 206 | 179 | 169 | 159 | 27 | 173 | 175 | ר ה
ה
ה
ה | 176 | | | | - 0 | 2 4 4 | 104 | | | | 167 | 166 | 160 | 182 | 161 | 165 | 195 |
| 166 | 160 | 162 | 170 | 176 | 178 | 185 | 191 | 195 | 196 | 196 | 199 | 203 | 207 | 213 | 220 | 166 | 178 | 181 | | 184 | | | 1051 | | | | 215 | 160 | 166 | 167 | 173 | 175 | 185 | 186 |
| 4 | m |) (L | n | . " | 2 | i 🗂 | 4 | م | | - | - 4 | · ~ | 4 | - | 4: gan | - 4 | r (1 | | - | t (| י
ה | - 6 | הר | U C | V - | | - ~ | י ר |) 4 | 4 | ~ | 4 | e | r. |
| 53 | 88 | 153 | 111 | 102 | EII | 110 | 119 | 16 | ୍ତ |) m | C | 122 | _ | - | C | | 2 | ι α | 000 |) (
) (
) (| 401 | | | | | | 101 | 66 | 122 | 138 | 66 | 69 | 105 | 78 |
| 85 | 79 | 153 | 70 | 79 | 135 | 84 | 63 | 115 | 155 | 114 | 122 | 137 | 133 | 128 | 16 | 5 |
 | • • | | > 0 | 4 | | | | | 401 | 126 | , 6
, 6 | 107 | 103 | 116 | 88 | 112 | 111 |
| 16 | 65 | 133 | 123 | 118 | 124 | 76 | 94 | 88 | 9 | | | 132 | N | ת ו | 85 | | - m
- 0 | 1 0 | 10 | ° C | n c | J - | • • | | | | • 0 | 001 | 140 | 108 | 75 | 18 | 115 | 132 |
| 82 | 95
0 | 101 | 06 | m | 134 | S | 64 | 75 | - • | . m | | 130 | N | ւտ | \sim | α | n : | 121 | | | < 0 | | | 132T | | ð | 10.1 | | 135 | 132 | Q. | 105 | 0 | 90 |

ľ

r.

205

trees (high return targets only), one pixel per tree, Reedley, CA, hop off, Scene 3. TABLE 61 P3T101: Four look SAR filter magnitude data, large river bank

| | 140 124 | 124 132 113 4 124 44 1 | 154 26 C 821 111 921 | 137 141 126 4 124 43 | 116 108 137 1 91 91 83 1 | 1 EN 121 E 921 621 621 | 1 2 1 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 104 124 146 3 4A | 139 112 121 2 121 911 91 | 138 131 133 4 40 81 | 113 133 135 3 120 20 | 125 153 131 2 12 2 12 2 1 | 107 126 134 3 127 70 | 134 138 143 2 124 70 | 133 136 79 3 126 79 | | | | | | | | | | | | | | | | | | | | | |
|---------|----------------|------------------------|----------------------|----------------------|--------------------------|------------------------|---|------------------|--------------------------|---------------------|----------------------|---------------------------|----------------------|----------------------|---------------------|----------|---------|----------|---------|---------|-----------|----------|-----------|-------------|----------|---------|----------|----------|---------|---------|---------|-----------|--------|----------|----------|--------------------|
| | f 21 66 66 1 | 6.5 | > | 1 76 | - 27 | 46.1 | 1 'st | 07 46 IC | 94 36 1 | 1 36 16 | 41 45 1 | 1 66 111 | 1 21. 11 | 1 45 911 | 111 92 1 | 1.1 42 1 | 1 6 7 1 | l cf G.I | | 1.12 41 | 1 LE F:] | 1 65 611 | 1 95 / 11 | 1 68 831 | 1 08 401 | | 1 6K 5-1 | 121 39 1 | 1.4.44 | 12 34 | 1.5 3.1 | 11 4 47 1 | ي
ت | 9.1 Ac 1 | 129 44 1 | |
| 411 (FL | 131 164 129 77 | 117 119 | 211 761 | 221 981 | 138 851 | 116 13, | 126 122 | 111 RB | 151 141 | 155 152 | 144 15, | 119 128 | ISI IFI | 114 117 | 621 HR | 114 114 | 104 127 | 126 92 | 121 125 | 136 134 | 125 135 | 101 251 | 139 136 | 140 96
1 | 128 119 | 144 11, | 4H 135 | 135 133 | 133 131 | 144 124 | 131 133 | 143 125 | 127 96 | 124 141 | 137 117 | TABIE 61 D3T101: E |

206

APPENDIX B

PROBABILITY DISTRIBUTION HISTOGRAMS

PDF Equations

Probability distribution functions and frequency functions presented as count ratios have been constructed in the form of histograms for eight unnormalized and seven normalized discriminants for selected target classes from data given in Appendix A of this report. The discriminant was computed for each pixel listed in the target class from the four-look filter magnitude data after the four-look data were placed in the proper time sequence.

Data are tabulated in Appendix A for the target classes in the form of log filter magnitudes according to map number. The fifth column in those tables is a frequency sequence or map sequence number as explained in Section 11 of this report. All pixels along a given azimuth line have the same frequency number.

Target classes for which the distribution histograms have been plotted are listed in Table B-1. Only a sample set of histograms is included in this report. A set of histograms consists of five pages of histograms per target class. Median data extracted from these graphs are summarized later in Appendix C.

Since all unnormalized power functions contain arbitrary units, the abscissas for the distribution curves are labeled relative power in decibels. All histograms were formed with unequal bin size in power. Early in the study it was found that using equal bin size in power produced histograms where most of the data were contained in a few bins, with a few

TABLE B-1

Scene 2 Target Class 1 4 5 3 Man-made clutter HICLUT H2CLUT H3CLUT Natural features HINAT H2NAT H3NAT Rough grass and weeds H3GRAS1 H3GRAS2 H2TREE1 H3TREEJ River bank trees Young fruit trees H2TREE2 H3TREE2 Railroad bridge H2RR1 Highway bridge H2HWB1 H3HWB1 H3BRIDG Bridges H2BRIDG Mobile homes H2MH1 H3MH1 Shadows H4DARK Sand H4SAND H5SAND1 H5SAND2 H4TACT1 **O-Tactical** vehicles H5TACT1 Tactical vehicles H4TACT2 H5TACT2 H4TANK1 H5TANK1 Tanks Trucks, 2 1/2 ton H4TR251 H5TR251

PDF TARGET LIST AND FILE DESIGNATION

208

a count as low as one or two. Such histograms give no indication as to the nature of the distribution. To avoid this problem, the bin siz, was allowed to vary in power by maintaining a constant bin size in decibels. The discriminant was then plotted on a logarithmic scale. Bin size in power is given by

$$\Delta P(I) = 10^{M(I+1)/10} - 10^{M(I)/10}$$

where I is bin number and M(I) is the logarithm of the bin lower boundary in decibels. For a 0.2 dB bin width

$$\Delta P(I) = 0.585 \times 10^{M(I)}$$

from which it should be noted that the bin width is greater than half the sum of all preceding bins. Ordinates of the count ratio histograms are formed for the discriminant by counting all pixels whose discriminant value is contained with the region $(10^{M(I)/10}, 10^{M(I+1)/10})$ and dividing by the total number of pixels forming the distribution.

The probability density function is formed from the count ratio histograms by dividing each bin by ΔP .

Suppose that the number of counts per bin is B(I), then the count ratio for bin F(I) is B(I)/N where N is the total number of counts. The probability density function, PDF(I), is related to F(I) by

$$F(I) = PDF(I) \Delta P(I)$$

so that

and the second

$$PDF(I) = \frac{B(I)}{N\Delta(I)}$$

The cumulative probability function, CPD(I), is given by

$$CPD(I) = PDF(J) \Delta P(J)$$

$$= \frac{B(J)}{N\Delta P(J)} \Delta P(J)$$

- 1

which equals unity when summed over all bins. When all bin sizes are equal, the frequency functions (count ratios) and the probability density functions appear similar, which is not the case for the functions presented here.

Sample Histograms

Four sets of probability distribution distograms are given here for target classes involving no hop when the SAR maps were formed. "No hop" histograms are shown since it was pre-supposed before reducing the data that a greater statistical difference would be apparent between dissimilar target classes when frequency diversity was not employed. Frequency diversity was included in the design of the FLAMR system to reduce the effects of target scintillation and thereby produce maps with less granularity than one might expect without hop.

It appears that the spread in the standard deviation, average deviation from the mean, and average deviation from the best straight line fit is greater for natural features without hop than with hop while the inverse is the case for man-made objects. This effect is readily apparent by comparing the histograms from target classes from scene 2 to those from scene 3 (Reedley) and those from scene 4 (NEBO) to those from scene 5.

Histograms presented here are for target classes H3CLUT (Man-made Clutter), H3NAT (natural features), H5TACT2 (tactical vehicles) and H5TANK (tanks).

210

·Ei in

The first set of histograms, set a, shows the PDF's and count ratios for target power for each of the four maps. Since the sum of PDF(I) Δ P(1) over all bins is equal to 1, and Δ P(I) is a large number for large I, the ordinate on the PDF cufves has been multiplied by the median in power for each distribution to avoid small numbers on the ordinate axis. The median in decibels is printed above each distribution. The bins for this set were 1 dB wide. This set is labeled "Four-Map Non-Parametric Power Distributions for Target Class xxxxx." The power distributions for the four maps are presented to determine the general characteristic of the power distribution for each map, and to determine whether the power distribution remains relatively unchanged between maps.

Sets b and c show PDF and count ratio histograms for mean power, standard deviation, average deviation from the mean, average deviation from the best straight line fit to the four-look data, fast variation, slow variation, major spread, and minor spread. The bins for these histograms are 2 dB wide. The histograms in set b and c are labeled "Non-Parametric Probability Density Functions for Eight Variants Calculated in Power From Target Class xxxxx" and "Non-Parametric Count Ratio Distributions per 2 dB Bin for Eight Variants Calculated in Power from Target Class xxxxx," respectively. Variants here are the discriminant functions.

Histogram sets d and e are similar to those in sets b and c except that the discriminant has been normalized by dividing by the mean pixel power. The histogram for the distribution in mean power has not been normalized and it is presented with the normalized distributions merely for reference. Notice that the medians in decibels are much smaller for

211

for the normalized distributions than for the unnormalized distributions. The bin width for the normalized distributions has been reduced to 1 dB.

A list of targets for which the PDF and count ratio histograms have been included in this report is given in Table B-1. The graphs are identified by target file number traceable back to tables of filter magnitude data by the same file number. More tables of filter magnitude data exist than have been processed and presented here. What has been presented is thought to be representative.

THPE S34E 3 H

FOR EIGHT VARIANTS CALCULATED IN POWER FROM TARGET CLASS H3CLUT

TAPE 5344 3/;

·E ..

.

-

"Ein all all

TAPE 5344 3 -

1405 1344 3

with applied to the state of the

A COLORED IN COLORED IN COLORED

221

"Én l'Att

222

·É.

and adaptificants ! wat

160F 8344 5 4

A Stationer

223

"É'i

NON-PARAMETRIC PROBABILITY DENSITY FUNCTIONS FOR EIGHT VARIANTS CALCULATED IN POWER FROM TARGET CLASS H5TACT2

· 11.

TAPE 0344 5

224

"E'

l

·E. .

TAPE 5344 5

228

"E'.

TARE 5344 S

229

·En d'it.

·E.

NORMALIZED WITH RESPECT TO INDIVIDUAL FIXEL MEAN POWER

231

·Ei "

"E ..

APPENDIX C

SUMMARY MEDIAN TABLES

This section contains three tables of summary median data extracted from the five sets of histograms for each target class. Table C-1 contains the power median for each of the four maps for the indicated target class. The median as listed has units of log power (arbitrary units) in decibels. The four map medians should be nearly constant for each target class, since the gain of the four maps were set equal. The gain equalization, however, involved the sum of the return power from all pixels within the map and not just those for a selected target class; consequently, a variation in the median from map-to-map can occur over a selection of pixels comprising a class of targets. A large change in any of the medians implies a change in target statistics between maps. Since there is not a priority reason why the statistics should change from map-to-map, an observed change in the power median would be reason to question the validity of the observed filter magnitude data for that target class.

It should be noticed that the man of the medians for a single target class varies between scenes. This occurs because the map gain varied between the scenes.

Table C-2 contains the median for eight unnormalized discriminants. These quantities computed in log power (in arbitrary units), are listed in decibels. A comparison of the medians can be made between target classes from the same scene but not between those from different scenes because of possible map gain changes between scenes. In order to form some basis for comparing target discriminants from different scenes, the discriminants

233

"E ...

were normalized pixel-by-pixel before computing the medians, and these data are presented in Table C-3. Discriminant medians computed from different scenes can then be compared. However, it is not apparent from these data that target classes can be separated based upon the medians for this set of normalized discriminants.

234

En Prin

TABLE C-I

| | | |] | Power Me | dian in dE | 3 |
|----------------------------|--------------------|--------|-----------------|--------------------------|------------|------|
| Target Class | File | Scene | Map 1 | Map 2 | | Map4 |
| Man Made Clutter | HICLUT | 1 | 44.4 | 44.8 | 44.0 | 44.0 |
| | H2CLUT | 2 | 48.9 | 48.5 | 48.5 | 49.7 |
| | H3CLUT | 3 | 46.7 | 47.0 | 47.0 | |
| | | | | 11.0 | 47.0 | 44.8 |
| Natural Features | HINAT | 1 | 37.4 | 37.5 | 40.6 | 41.8 |
| | H2NAT | 2 | 37.6 | 37.3 | 37.6 | 35.4 |
| | H3NAT | 3 | 41.4 | 41.0 | 43.3 | 41.4 |
| | | | | | 43.5 | 41.4 |
| Rough Grass & Weeds | H3GRAS1 | 3 | 35.4 | 35.7 | 37.6 | 35.7 |
| | H3GRAS2 | 3 | 38.0 | 37.3 | 40.6 | |
| | | | | 511.5 | 40.0 | 36.1 |
| River Bank Trees | H2TREE1 | 2 | 44.1 | 47.4 | 48.2 | |
| | H3TREE1 | 3 | 47.0 | 48.5 | 48.5 | 44.4 |
| | | - | | 40.5 | 40.0 | 47.8 |
| Young Fruit Trees | H2TREE2 | 2 | 36.9 | 36.5 | 36.5 | 25 4 |
| | H3TREE2 | 3 | 34.2 | 36.1 | | 35.4 |
| | | • | 5100 | 50.1 | 35.7 | 33.9 |
| Railroad Bridge | H2RR1 | 2 | 43.6 | 43.6 | 12.2 | |
| - | | - | | 4 3.0 | 43.3 | 42.9 |
| Highway Bridge | H2HWB1 | 2 | 45.5 | 49.3 | 40.3 | |
| - | H3HWB1 | 3 | 48.9 | 4 9.3
51.2 | 48.2 | 45.5 |
| | | • | | 51.4 | 47.0 | 47.4 |
| Bridges | H2BRIDG | 2 | 45.2 | 45 0 | | |
| | H3BRIDG | 3 | 51.6 | 45.9 | 44.8 | 43.3 |
| | 11021424 | 3 | 51.0 | 50.4 | 47.8 | 46.3 |
| Mobile Homes | H2MH1 | 2 | 51.6 | 50 4 | . | |
| | H3MH1 | 3 | 41.0 | 50 4 | 50.4 | 52.3 |
| | | 5 | 41.0 | 42.9 | 46.7 | 43.3 |
| Shadows | H4DARK | 4 | 2 4 | | | |
| | | т | 3.4 | 1.1 | 3.0 | 4.5 |
| Sand | H5SAND1 | 5 | 21.1 | | _ | |
| | H5SAND2 | 5 | | 21.1 | 23.3 | 23.3 |
| | TIDONNDZ | 5 | 22.2 | 19.6 | 23.3 | 22.6 |
| O-Tactical Vehicles | H4TACT1 | 4 | 37.6 | 26.1 | | |
| | H5TACT1 | 5 | | 36.1 | 37.6 | 38.0 |
| | H) INC I I | 9 | 36.5 | 31.6 | 37.6 | 37.6 |
| Tactical Vehicles | H4TACT2 | 4 | | | | |
| | H5TACT2 | 4
5 | | | | |
| | HJIACI2 | 5 | 33.9 | 29.0 | 35.7 | 36.1 |
| Tanks | H4TANK1 | 4 | 2 .2. .7 | | | |
| | H5TANK | 4
5 | 32.7 | 32.7 | 34.6 | 33.5 |
| | TINTUR | 5 | 30.5 | 32.6 | 32.4 | 33.5 |
| Trucks | H4TR251 | 4 | 24 3 | | | |
| | H41R251
H5TR251 | | 34.2 | 32.0 | 33.9 | 33.5 |
| | *** * ***** | 5 | 33.1 | 29.0 | 35.0 | 35.4 |

MAP - TO - MAP MEDIAN POWER VARIATION

25

TABLE C-II

CLASS VARIATION IN UNNORMALIZED DISCRIMINANT MEDIANS

| CLASS VARIATION | | | | Madi | an in dB | |
|----------------------------|------------------|--------|---------------|-------|-----------|----------|
| | | | Maam | Std | Avg Dev | Avg Dev |
| The set Class | File | Scene | Mean
Power | Dev | from Mean | from BSL |
| Target Class | r ite | Ocene | | | | |
| Man Made Clutter | HICLUT | 1 | 46.3 | 45.3 | 44.0 | 42.2 |
| | H2CLUT | 2 | 50.7 | 50.3 | 49.1 | 48.3 |
| | H3CLU1 | 3 | 47.6 | 48.5 | 47.1 | 45.7 |
| Natural Features | HINAT | 1 | 37.4 | 38.7 | 37.5 | 37.0 |
| | H2NAT | 2 | 38.4 | 38.7 | 37.2 | 36.5 |
| | H3NAT | 3 | 46.3 | 42.7 | 41.2 | 40.0 |
| Rough Grass & Weeds | H3GRAS1 | 3 | 36.7 | 34.6 | 33.3 | 32.0 |
| | H3GRAS2 | 3 | 39.1 | 38.2 | 36.7 | 36.4 |
| | **2 *** ** ** ** | | 47.0 | 45.9 | 44.9 | 4.1 |
| River Bank Trees | H2TREE1 | 2 | 47.0 | 48.7 | 47.5 | 46. 3 |
| | H3TREE1 | 3 | | 40.1 | 11.00 | |
| Young Fruit Trees | H2TREE2 | 2 | 37.1 | 36.0 | 34.8 | 33.7 |
| | H3TREE2 | 3 | 35.6 | 35.2 | 33.7 | 32.7 |
| Railroad Brídge | H2RR1 | 2 | 44.8 | 43.5 | 42.7 | 41.1 |
| - | | 2 | 40.0 | 47.5 | 46.6 | 46.2 |
| Highway Bridge | H2HWB1 | 2 | 48.0 | 48.5 | 47.2 | 46.3 |
| | нзнув1 | 3 | 51.7 | ±0. J | 71.5 | |
| Bridges | H2BRIDG | 2 | 44.8 | 43.5 | 42.7 | 41.1 |
| 2 | H3BRIDG | 3 | 52.9 | 51.5 | 50.3 | 48.8 |
| Mobile Homes | H2MH1 | 2 | 52.3 | 52.6 | 51.2 | 50.2 |
| | H3MH1 | 3 | 46.5 | 46.3 | 45.3 | 42.9 |
| Shadows | H4DARK | 4 | 8.1 | 9.2 | 8.0 | 5.7 |
| | | e | 23.7 | 22.6 | 21.4 | 19.7 |
| Sand | H5SAND1 | 5
5 | 23.7 | 22.9 | | 20.3 |
| | H5SAND2 | 5 | 23.1 | 66.7 | | |
| O-Tactical Vehicles | H4TACT1 | 4 | 38.7 | 39.4 | 41.1 | 34.6 |
| 0 1000000 0000000 | H5TACT1 | 5 | 36.9 | 36.5 | 35.2 | 33.8 |
| Tactical Vehicles | H4TACT2 | 4 | 36.8 | 35.9 | 34.7 | 33.6 |
| factical Venicics | H5TACT2 | 5 | 36.0 | 34.8 | 33.4 | 32.4 |
| | | | | | | 22.2 |
| Tanks | H4TANK1 | 4 | 35.1 | 34.8 | | 32.2 |
| | H5TANK | 5 | 31.9 | 32.5 | 31.5 | 29.3 |
| Trucks | H4TR251 | 4 | 34.5 | 33.4 | 32.3 | 31.3 |
| | H5TR251 | 5 | 35.5 | 34.6 | 33.3 | 32.1 |
| | | | | | | |

236

LA LALAS # "

TABLE C-II (continued)

CLASS VARIATION IN UNNORMALIZED DISCRIMINANT MEDIANS

| | | | | Median | in dB | |
|---------------------|---------|-------|------|--------------|--------|--------------|
| | | | Fast | Slow | Major | Minor |
| Target Class | File | Scene | Var | Var | Spread | Spread |
| Man Made Clutter | HICLUT | 1 | 46.3 | 47.1 | 48.8 | 40.9 |
| | H2CLUT | 2 | 51.5 | 51.6 | 53.8 | 45.7 |
| | H3CLUT | 3 | 49.5 | 49.7 | 51.8 | 44.1 |
| Natural Features | HINAT | 1 | 40.6 | 39.6 | 41.8 | 36.4 |
| | H2NAT | 2 | 40.4 | 40.1 | 42.1 | 34.4 |
| | H3NAT | 3 | 43.8 | 44.7 | 46.2 | 38.8 |
| Rough Grass & Weeds | H3GRAS1 | 3 | 35.8 | 36.3 | 38.2 | 30.8 |
| | H3GRAS2 | 3 | 39.6 | 39.5 | 41.8 | 35.3 |
| River Bank Trees | H2TREE1 | 2 | 47.8 | 47.3 | 49.2 | 43.6 |
| | H3TREE1 | 3 | 50.3 | 50.1 | 51.9 | 44.0 |
| Young Fruit Trees | H2TREE2 | 2 | 37.1 | 37.5 | 39.5 | 32.7 |
| | H3TREE2 | 3 | 36.6 | 36.2 | 38.5 | 32.2 |
| Railroad Bridge | H2RR1 | 2 | 45.2 | 44.8 | 47.0 | 41,0 |
| Highway Bridge | H2HWB1 | 2 | 48.9 | 49.4 | 50.7 | 45.7 |
| | H3HWB1 | 3 | 49.9 | 50.7 | 51.8 | 45.8 |
| Bridges | H2BRIDG | 2 | 45.2 | 44. 8 | 47.0 | 41.0 |
| | H3BRIDG | 3 | 52.4 | 53.3 | 55.1 | 46. 9 |
| Mobile Homes | H2MH1 | 2 | 53.8 | 54.0 | 56.0 | 48.2 |
| | Н3МН1 | 3 | 47.5 | 48.7 | 49.7 | 42.7 |
| Shadows | H4DARK | 4 | 10.9 | 10.5 | 12.3 | - 1.9 |
| Sand | H5SAND1 | 5 | 23.9 | 23.6 | 25.7 | 18.4 |
| | H5SAND2 | 5 | 24.0 | 23.9 | 26.2 | 18.4 |
| O-Tactical Vehicles | H4TACT1 | 4 | 38.6 | 37.8 | 36.6 | 35.0 |
| | H5TACT1 | 5 | 37.8 | 38.0 | 39.7 | 34.6 |
| Tactical Vehicles | H4TACT2 | 4 | 37.0 | 37.8 | 39.3 | 29.7 |
| | H5TACT2 | 5 | 36.2 | 36.6 | 38.1 | 32.3 |
| Tanks | H4TANK1 | 4 | 36.2 | 36.2 | 37.9 | 29.3 |
| | H5TANK | 5 | 33.3 | 34. 3 | 36.0 | 29.3 |
| Trucks | H4TR251 | 4 | 34.7 | 34.9 | 36.8 | 31.2 |
| | H5TR251 | 5 | 36.3 | 36.5 | 38.0 | 32.2 |

Ļ

237

| TABLE C-III | |
|-------------|--|
|-------------|--|

- 4

CLASS VARIATION IN NORMALIZED DISCRIMINANT MEDIANS

| | | | | Median in dB | |
|----------------------------|---------|-------|-----------|--------------|----------|
| | | | Std | Avg Dev | Avg Dev |
| Target Class | File | Scene | Deviation | from Mean | from BSL |
| Man Made Clutter | HICLUT | 1 | -0.3 | -1.6 | -2.8 |
| | H2CLUT | 2 | -0.4 | -1.4 | -2.2 |
| | H3CLUT | 3 | 0.5 | -0.5 | -2.5 |
| Natural Features | HINAT | 1 | -1.3 | -2.5 | -3.8 |
| | H2NAT | 2 | -0.5 | -1.7 | -2.7 |
| | H3NAT | 3 | -0.8 | -2.0 | -2.7 |
| Rough Grass & Weeds | H3GRAS1 | 3 | -2.0 | -3.2 | -4.2 |
| | H3GRAS2 | 3 | -0.9 | -2.5 | -2.8 |
| River Bank Trees | H2TREE1 | 2 | -0.9 | -2.5 | -3.2 |
| | H3TREE1 | 3 | -0.3 | -1.5 | -2.7 |
| Young Fruit Trees | H2TREE2 | 2 | -0.8 | -2.2 | -3.4 |
| Ū | H3TREE2 | 3 | -0.5 | -1.8 | -2.9 |
| Railroad Bridge | H2RR1 | 2 | -1.3 | -2.5 | -3.0 |
| Highway Bridge | H2HWB1 | 2 | 0.2 | -1.2 | -1.9 |
| | H3HWB1 | 3 | -0.2 | -1.4 | -3.3 |
| Bridges | H2BRIDG | 2 | -1.3 | -2.5 | -3.0 |
| 5 | H3BRIDG | 3 | 0.6 | -0.5 | -2.5 |
| Mobile Homes | H2MH1 | 2 | -0.3 | -1.4 | -2.1 |
| | H3MH1 | 3 | 0.5 | -0.6 | -2.5 |
| Shadows | H4DARK | 4 | -1.0 | -2.3 | -3.8 |
| Sand | H5SAND1 | 5 | -1.1 | -2.1 | -3.5 |
| | H5SAND2 | 5 | -1.0 | -1.9 | -3.3 |
| O-Tactical Vehicles | Η4ΤΑΟΓΙ | 4 | -0.8 | -2.0 | -2.7 |
| | H5TACT1 | 5 | -0.7 | -1.9 | -3.1 |
| Tactical Vehicles | H4TACT2 | 4 | -0.4 | -1.8 | -2.7 |
| | H5TACT2 | 5 | -0.3 | -1.5 | -2.9 |
| Tanks | H4TANK1 | 4 | -0.3 | -1.4 | -2.9 |
| | H5TANK | 5 | -0.2 | -1.4 | -2.4 |
| Trucks | H4TR251 | 4 | -0.5 | -1.8 | -3.4 |
| | H5TR251 | 5 | 0.1 | -1.0 | -2.7 |

1

238

-

خة <u>محم</u>

TABLE C-III (continued)

CLASS VARIATION IN NORMALIZED DISCRIMINANT MEDIANS

| | | | | Media | n in dB | |
|---------------------|---------|-------|------|-------|-------------|--------|
| | | | Fast | Slow | Major | Minor |
| Target Class | File | Scene | Var | Var | Spread | Spread |
| Man Made Clutter | HICLUT | 1 | 0.7 | 1.2 | 3.1 | -4.4 |
| | H2CLUT | 2 | 1.1 | 1.2 | 2.9 | -3.5 |
| | H3CLUT | 3 | 1.4 | 2.4 | 3.9 | -4.2 |
| Natural Features | HINAT | 1 | -0.2 | 0.3 | 2.1 | -4.5 |
| | H2NAT | 2 | 0.9 | 1.0 | 2.9 | -3.6 |
| | H3NAT | 3 | 0.7 | 0.8 | 2.8 | -3.8 |
| Rough Grass & Weeds | H3GRAS1 | 3 | -0.7 | -0.3 | 1.4 | -5.7 |
| | H3GRAS2 | 3 | 0.1 | 0.3 | 2. 5 | -4.1 |
| River Bank Trees | H2TREEI | 2 | 0.8 | 0.0 | 2.1 | -3.8 |
| | H3TREE1 | 3 | 0.9 | 1.1 | 3.0 | -5.3 |
| Young Fruit Trees | H2TREE2 | 2 | 0.1 | 0.4 | 2.4 | -4.1 |
| - | H3TREE2 | 3 | 0.9 | 0.6 | 2.7 | -3.6 |
| Railroad Bridge | H2RR1 | 2 | 0.0 | 0.4 | 2.3 | -3.4 |
| · · | | | | | | |
| Highway Bridge | H2HWB1 | 2 | 1.6 | C.9 | 3.3 | -2.9 |
| | H3HWB1 | 3 | 0.5 | 1.3 | 3.0 | -5.4 |
| Bridges | H2BRIDG | 2 | 0.0 | 0.4 | 2.3 | -3.4 |
| | H3BRIDG | 3 | 1.1 | 2.4 | 3.9 | -4.9 |
| Mobile Homes | H2MH1 | 2 | 1.1 | 1.2 | 3.0 | -3.9 |
| | H3MH1 | 3 | 1.6 | 2.3 | 3.7 | -3.7 |
| Shadows | H4DARK | 4 | -0.5 | 0.0 | 2.4 | -10.6 |
| Sand | H5SAND1 | 5 | 0.1 | 0.1 | 2.3 | -4.9 |
| Danu | H5SAND2 | 5 | 0.2 | 0.5 | 2.3 | -5.4 |
| | | | | | | |
| O-Tactical Vehicles | H4TACT1 | 4 | 0.3 | 0.8 | 2.7 | -3.7 |
| | H5TACT1 | 5 | 0.7 | 0.7 | 2.8 | -3.5 |
| Tactical Vehicles | H4TACT2 | 4 | 0.3 | 0.7 | 2.8 | -4.8 |
| | H5TACT2 | 5 | 0.8 | 1.2 | 3.0 | -2.9 |
| Tanks | H4TANK1 | 4 | 0.4 | 1.4 | 3.1 | -4.5 |
| | H5TANK | 5 | 1.0 | 1.4 | 3.2 | -2.7 |
| Trucks | H4TR251 | 4 | 0.1 | 0.5 | 2.9 | -3.7 |
| | H5TR251 | 5 | 0.9 | 1.8 | 3.2 | -2.6 |

r i

C

239

·E

APPENDIX D

STATISTICAL PARAMETERS

The class mean, standard deviation (sigma), mean to sigma ratio, and median of the eight discriminants (variants) appearing in Table C-2 of Appendix C computed in power are given in this section for all target classes listed in Table B-1 of Appendix B. These parameters are listed in Tables D-1 through D-8. Entries in the tables are in logarithms times 10. Since table entries are in logarithms, negative numbers indicate that the value of the parameter to the base ten is less than one.

Upon examination of the mean of the four-pixel mean for all pixels, members of a single class indicate that the gain of scene 1 may be lower than that of scenes 2 and 3; likewise, the gain of scene 5 may be lower than that of scenes 4 or 6.

It should be noted that in general the median of the pixel means is nearly equal to the mean of the pixel means for natural targets, while for man-made targets the equality does not appear to hold, the median is lower than the mean. These tables also show that the mean-to-sigma rate for the unnormalized data is generally positive for natural features and negative for man-made features, an effect which might be attributed to a greater variation in radar return from man-made objects than from natural features within the four map looks.

240

·E

TABLE D-I

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 1

HIBRIDG

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.7 SIGMA = 44.2 MEAN/SIGMA = 7.5 MEDIAN = 46.1VARIANT 2 MEAN = 46.7 SIGMA = 45.3 MEAN/SIGMA = 1.4 MEDIAN = 45.1VARIANT 3 MEAN = 45.4 SIGMA = 44.1 MEAN/SIGMA = 1.3 MEDIAN = 44.0VARIANT 4 MEAN = 43.9 SIGMA = 43.2 MEAN/SIGMA = 1.3 MEDIAN = 42.2VARIANT 5 MEAN = 47.8 SIGMA = 46.8 MEAN/SIGMA = 1.0 MEDIAN = 46.1VARIANT 6 MEAN = 48.3 SIGMA = 47.1 MEAN/SIGMA = 1.2 MEDIAN = 47.1VARIANT 7 MEAN = 50.0 SIGMA = 48.5 MEAN/SIGMA = 1.5 MEDIAN = 48.4VARIANT 8 MEAN = 43.7 SIGMA = 45.9 MEAN/SIGMA = -1.2 MEDIAN = 41.2

NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.7 SIGMA = 44.2 MEAN/SIGMA = 2.5 MEDIAN = 46.1 VARIANT 2 MEAN = -2.2 SIGMA = -4.2 MEAN/SIGMA = 4.0 MEDIAN = -1.1VARIANT 3 MEAN = -1.4 SIGMA = -5.4 MEAN/SIGMA = 4.0 MEDIAN = -1.4VARIANT 4 MEAN = -2.9 SIGMA = -5.7 MEAN/SIGMA = 2.8 MEDIAN = -2.8VARIANT 5 MEAN = 1.0 SIGMA = -2.6 MEAN/SIGMA = 3.5 MEDIAN = -7VARIANT 6 MEAN = 1.5 SIGMA = -1.8 MEAN/SIGMA = 3.3 MEDIAN = 1.3VARIANT 7 MEAN = 3.2 SIGMA = -1.1 MEAN/SIGMA = 4.3 MEDIAN = 3.4VARIANT 8 MEAN = -3.0 SIGMA = -4.2 MEAN/SIGMA = 1.2 MEDIAN = -4.2

HICLUT

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 47.6 SIGMA = 48.9 MEAN/SIGMA = -1.4 MEDIAN = 46.3 VARIANT 2 MEAN = 47.3 SIGMA = 49.4 MEAN/SIGMA = -2.1 MEDIAN = 45.3 VARIANT 3 MEAN = 46.1 SIGMA = 48.1 MEAN/SIGMA = -2.0 MEDIAN = 44.0 VARIANT 4 MEAN = 44.6 SIGMA = 46.2 MEAN/SIGMA = -1.6 MEDIAN = 42.2 VARIANT 5 MEAN = 48.3 SIGMA = 49.7 MEAN/SIGMA = -1.3 MEDIAN = 46.3 VARIANT 6 MEAN = 49.1 SIGMA = 31.7 MEAN/SIGMA = -2.6 MEDIAN = 47.1 VARIANT 7 MEAN = 50.7 SIGMA = 52.7 MEAN/SIGMA = -2.0 MEDIAN = 48.8VARIANT 8 MEAN = 43.9 SIGMA = 45.8 MEAN/SIGMA = -1.9 MEDIAN = 40.9

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 47.6 | SIGMA | = | 48.9 | MEAN/SIGMA | = | -1.4 | MEDIAN | = | 46.3 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 3 | SIGMA | E | -4.2 | MEAN/SIGMA | Ξ | 3.9 | MEDIAN | = | 3 |
| VARIANT | 3 | MEAN | = | -1.6 | SIGMA | = | -5.5 | MEAN/SIGMA | = | 3.9 | MEDIAN | Ξ | -1.6 |
| VARIANT | 4 | MEAN | = | -2.9 | SIGMA | Ξ | -5.9 | MEAN/SIGMA | = | 3.1 | MEDIAN | = | -2.8 |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | = | -2.6 | MEAN/SIGMA | = | 3.5 | MEDIAN | = | •7 |
| VARIANT | 6 | MEAN | = | 1.4 | SIGMA | = | -1.9 | MEAN/SIGMA | 2 | 3.3 | MEDIAN | ⊒ | 1.2 |
| VARIANT | 7 | MEAN | = | 3.1 | SIGMA | = | -1.1 | MEAN/SIGMA | = | 4.2 | MEDIAN | = | 3.1 |
| VARIANT | 8 | MEAN | = | -3.3 | SIGMA | 2 | -4.2 | MEAN/SIGMA | 5 | .9 | MEDIAN | = | -4.4 |

TABLE D-I (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 1

H1GRAS1

UN-NORMALIZED VARIANTS

 VARIANT 1
 MEAN = 36.6
 SIGMA = 29.0
 MEAN/SIGMA = 7.6
 MEDIAN = 36.7

 VARIANT 2
 MEAN = 34.8
 SIGMA = 30.9
 MEAN/SIGMA = 3.9
 MEDIAN = 34.6

 VARIANT 3
 MEAN = 33.6
 SIGMA = 29.9
 MEAN/SIGMA = 3.6
 MEDIAN = 33.3

 VARIANT 4
 MEAN = 32.6
 SIGMA = 29.8
 MEAN/SIGMA = 7.7
 MEDIAN = 32.0

 VARIANT 5
 MEAN = 36.1
 SIGMA = 33.0
 MEAN/SIGMA = 3.0
 MEDIAN = 32.0

 VARIANT 6
 MEAN = 36.3
 SIGMA = 32.7
 MEAN/SIGMA = 3.0
 MEDIAN = 35.8

 VARIANT 6
 MEAN = 38.2
 SIGMA = 34.2
 MEAN/SIGMA = 3.6
 MEDIAN = 36.3

 VARIANT 7
 MEAN = 38.2
 SIGMA = 34.2
 MEAN/SIGMA = 4.0
 MEDIAN = 38.2

 VARIANT 7
 MEAN = 32.9
 SIGMA = 32.5
 MEAN/SIGMA = 4.0
 MEDIAN = 38.2

NORMALIZED VARIANTS

VARIANT 1 MEAN = 36.6 SIGMA = 29.0 MEAN/SIGMA = 7.6 MEDIAN = 36.7VARIANT 2 MEAN = -1.8 SIGMA = -6.4 MEAN/SIGMA = 4.5 MEDIAN = -2.0VARIANT 3 MEAN = -3.0 SIGMA = -7.4 MEAN/SIGMA = 4.3 MEDIAN = -3.2VARIANT 4 MEAN = -4.0 SIGMA = -7.2 MEAN/SIGMA = 3.2 MEDIAN = -4.2VARIANT 5 MEAN = -.5 SIGMA = -4.2 MEAN/SIGMA = 3.6 MEDIAN = -.7VARIANT 6 MEAN = -.3 SIGMA = -4.4 MEAN/SIGMA = 4.1 MEDIAN = -.3VARIANT 7 MEAN = 1.6 SIGMA = -3.1 MEAN/SIGMA = 4.7 MEDIAN = 1.4VARIANT 8 MEAN = -3.7 SIGMA = -4.3 MEAN/SIGMA = -.7 MEDIAN = -.3

11111181

UN-NORMALIZED VARIANTS

| | | | | | | | | MEAN/SIGMA | | | | | | |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|--|
| VARIANT | 2 | MEAN | = | 54.6 | SIGMA | = | 57.5 | MEAN/SIGMA | Ξ | -2.9 | MEDIAN | = | 49.3 | |
| | | | | | | | | MEAN/SIGMA | | | | | | |
| | | | | | | | | MEAN/SIGMA | | | | | | |
| VARIANT | 5 | MEAN | = | 55.8 | SIGMA | = | 59.0 | MEAN/SIGMA | = | -7.2 | MEDIAN | z | 50.4 | |
| VARIANT | 6 | MEAN | = | 56.3 | SIGMA | Ξ | 59.1 | MEAN/SIGMA | Ξ | -2.8 | MEDIAN | Ŧ | 51.1 | |
| VARIANT | 7 | MEAN | = | 58.2 | SIGMA | Ξ | 51.3 | MEAN/SIGMA | = | -7.1 | MEDIAN | = | 52.7 | |
| VARIANT | 8 | MEAN | = | 52.1 | SIGMA | = | 55.7 | MEAN/SIGMA | = | -7.7 | MEDIAN | Ξ | 44.8 | |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 56.8 SIGMA = 51.0 MEAN/SIGMA = +4.2 MEDIAN = 50.4 VARIANT 2 MEAN = -.5 SIGMA = -4.2 MEAN/SIGMA = 3.7 MEDIAN = -.5 VARIANT 3 MEAN = -1.7 SIGMA = -5.4 MEAN/SIGMA = 3.7 MEDIAN = -1.7 VARIANT 4 MEAN = -3.4 SIGMA = -6.5 MEAN/SIGMA = 3.0 MEDIAN = -3.9VARIANT 5 MEAN = .5 SIGMA = -3.1 MEAN/SIGMA = 3.6 MEDIAN =•5 VARIANT 6 MEAN = 1.3 SIGMA = -1.5 MEAN/SIGMA = 2.8 MEDIAN = .9 VARIANT 7 MEAN = 2.9 SIGMA = -1.0 MEAN/SIGMA = 3.9 MEDIAN = 2.7VARIANT A MEAN = -3.1 SIGMA = -4.4 MEAN/SIGMA = 1.3 MEDIAN = -4.1

242

·É 11\_

TABLE D-I (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 48.3 | SIGMA | = | 50.3 | MEAN/SIGMA | = | -2.0 | MEDIAN | Ξ | 46.6 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 47.9 | SIGMA | = | 50.7 | MEAN/SIGMA | = | -2.8 | MEDIAN | = | 45.5 |
| VARIANT | З | MEAN | = | 46.6 | SIGMA | 3 | 49.4 | MEAN/SIGMA | = | -2.8 | MEDIAN | Ξ | 44.0 |
| VARIANT | 4 | MEAN | Ξ | 45.1 | SIGMA | 2 | 47.4 | MEAN/SIGMA | = | -2.3 | MEDIAN | = | 43.0 |
| VARIANT | 5 | MEAN | Ξ | 48.8 | SIGMA | 3 | 50.8 | MEAN/SIGMA | Ξ | -2.0 | MEDIAN | = | 46.9 |
| VARIANT | 6 | MEAN | = | 49.8 | SIGMA | 3 | 53.1 | MEAN/SIGMA | = | -3.3 | MEDIAN | = | 47.0 |
| VARIANT | 7 | MEAN | Ξ | 51.3 | SIGMA | 2 | 54.1 | MEAN/SIGMA | = | -2.7 | MEDIAN | = | 48.9 |
| VARIANT | 8 | MEAN | = | 44.1 | SIGMA | z | 46.4 | MEAN/SIGMA | = | -2.3 | MEDIAN | = | 40.6 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 48.3 SIGMA = 50.3 MEAN/SIGMA = -2.0 MEDIAN = 46.6VARIANT 2 MEAN = -.4 SIGMA = -4.3 MEAN/SIGMA = 3.9 MEDIAN = -.4VARIANT 3 MEAN = -1.7 SIGMA = -5.5 MEAN/SIGMA = 3.9 MEDIAN = -1.7VARIANT 4 MEAN = -2.9 SIGMA = -6.2 MEAN/SIGMA = 3.3 MEDIAN = -2.9VARIANT 5 MEAN = .8 SIGMA = -2.6 MEAN/SIGMA = 3.4 MEDIAN = -2.9VARIANT 6 MEAN = 1.2 SIGMA = -2.1 MEAN/SIGMA = 3.3 MEDIAN = 1.1VARIANT 7 MEAN = 3.0 SIGMA = -1.1 MEAN/SIGMA = 4.1 MEDIAN = 3.0VARIANT 7 MEAN = -3.7 SIGMA = -4.3 MEAN/SIGMA = -7 MEDIAN = -4.8

HIMAT

UN-NORMALIZED VARIANTS

| VARIANT | ł | MEAN | = | 44.6 | SIGMA | 2 | 44.6 | MEAN/SIGMA | = | • 0 | MEDIAN | = | 37.4 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 44.4 | SIGMA | × | 45.0 | MEAN/SIGMA | = | 6 | MEDIAN | = | 38.7 |
| VARIANT | 3 | MEAN | = | 43.2 | SIGMA | = | 43.8 | MEAN/SIGMA | Ξ | 6 | MEDIAN | = | 37.5 |
| VARIANT | 4 | MEAN | = | 41.7 | SIGMA | = | 42.3 | MEAN/SIGMA | Ŧ | 7 | MEDIAN | = | 37.0 |
| VARIANT | 5 | MEAN | = | 45.5 | SIGMA | 2 | 46.1 | MEAN/SIGMA | = | 7 | MEDIAN | = | 40.6 |
| VARIANT | 6 | MEAN | = | 46.1 | SIGMA | Ξ | 46.9 | MEAN/SIGMA | Ξ | 9 | MEDIAN | = | 39.6 |
| VARIANT | 7 | MEAN | = | 47.7 | SIGMA | = | 48.3 | MEAN/SIGMA | = | 6 | MEDIAN | = | 41.8 |
| VARIANT | A | MEAN | Ξ | 41.2 | SIGMA | Ξ | 43.0 | MEAN/SIGMA | = | -1.8 | MEDIAN | 2 | 36.4 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 44.6 | SIGMA | = | 44.6 | MEAN/SIGMA | = | • 0 | MEDIAN | × | 37.4 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 9 | SIGMA | Ξ | -4.6 | MEAN/SIGMA | Ξ | 3.7 | MEDIAN | 2 | -1.3 |
| VARIANT | 3 | MEAN | = | -2.1 | SIGMA | з | -5.8 | MEAN/SIGMA | = | 3.7 | MEDIAN | 3 | -2.5 |
| VARIANT | 4 | MEAN | Ξ | -3.4 | SIGMA | = | =6.4 | MEAN/SIGMA | = | 3.1 | MEDIAN | = | -3.8 |
| VARIANT | 5 | MEAN | = | •3 | SIGMA | = | -3.0 | MEAN/SIGMA | = | ٦.3 | MEDIAN | = | 2 |
| VARIANT | 6 | MEAN | = | •8 | SIGMA | 2 | -2.3 | MEAN/SIGMA | = | 3.1 | MEDIAN | Ŧ | • 3 |
| VARIANT | 7 | MEAN | = | 2.5 | SIGMA | 3 | -1.5 | MEAN/SIGMA | 2 | 3.9 | MEDIAN | × | 2.1 |
| VARIANT | 8 | MEAN | Ħ | -3.5 | SIGMA | 3 | =4.2 | MEAN/SIGMA | = | .7 | MEDIAN | 3 | -4.5 |

243

"E ...

TABLE D-1 (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE I

. 1

HIRRBI

UN-NORMALIZED VARIANTS

| | | | | | | | | MEAN/SIGMA | | | | | |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 53.1 | SIGMA | Ξ | 54.2 | MEAN/SIGMA | Ξ | -1.1 | MEDIAN | Ξ | 50.1 |
| VARIANT | 3 | MEAN | = | 51.8 | SIGMA | 3 | 53.0 | MEAN/SIGMA | = | -1+1 | MEDIAN | Ξ | 48+4 |
| VARIANT | 4 | MEAN | = | 50.7 | SIGMA | = | 52.3 | MEAN/SIGMA | = | -1.6 | MEDIAN | = | 46.3 |
| VARIANT | 5 | MEAN | = | 54.6 | SIGMA | 2 | 56.1 | MEAN/SIGMA | Ŧ | -1.5 | MEDIAN | Ħ | 50.9 |
| VARIANT | 6 | MEAN | Ξ | 54.4 | SIGMA | = | 55.4 | MEAN/SIGMA | = | -1.0 | MEDIAN | Ξ | 51.4 |
| VARIANT | 7 | MEAN | = | 56.5 | SIGMA | z | 57.5 | MEAN/SIGMA | = | -1.1 | MEDIAN | Ξ | 53.4 |
| VARIANT | R | MEAN | Ξ | 50.5 | SIGMA | 2 | 52.5 | MEAN/SIGMA | = | -2.0 | MEDIAN | = | 46.5 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 53.7 SIGMA = 54.7 MEAN/SIGMA = -1.0 MEDIAN = 49.6 VARIANT 2 MEAN = -.3 SIGMA = -4.5 MEAN/SIGMA = 4.1 MEDIAN = -.6VARIANT 3 MEAN = -1.5 SIGMA = -5.8 MEAN/SIGMA = 4.2 MEDIAN = -1.7VARIANT 4 MEAN = -2.9 SIGMA = -5.9 MEAN/SIGMA = 3.0 MEDIAN = -2.7VARIANT 5 MEAN = .9 SIGMA = -2.6 MEAN/SIGMA = 3.6 MEDIAN = .8VARIANT 6 MEAN = 1.2 SIGMA = -2.2 MEAN/SIGMA = 3.4 MEDIAN = .8VARIANT 7 MEAN = 3.0 SIGMA = -1.3 MEAN/SIGMA = 4.3 MEDIAN = 2.9VARIANT 7 MEAN = -2.6 SIGMA = -4.7 MEAN/SIGMA = 1.4 MEDIAN = -3.0

HTTREET

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 47.3 | SIGMA | Ŧ | 43.3 | MEAN/SIGMA | = | 4.0 | MEDIAN | = | 46.6 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 47.2 | SIGMA | = | 44.5 | MEAN/SIGMA | = | 2.6 | MEUIAN | Ξ | 46.7 |
| VARIANT | 3 | MEAN | = | 46.0 | SIGMA | = | 43.3 | MEAN/SIGMA | = | 2.7 | MEDIAN | = | 45.4 |
| VARIANT | 4 | MEAN | = | 44.4 | SIGMA | Ħ | 42.0 | MEAN/SIGMA | = | 2.4 | MEDIAN | = | 43.9 |
| VARIANT | 5 | MEAN | = | 48.3 | SIGMA | = | 45.7 | MEAN/SIGMA | = | 2.5 | MEDIAN | z | 47.9 |
| VARIANT | 6 | MEAN | = | 48.9 | SIGMA | I | 46.8 | MEAN/SIGMA | Ξ | 2.1 | MEDIAN | = | 49.0 |
| VARIANT | 7 | MEAN | 2 | 50.5 | SIGMA | E | 47.8 | MEAN/SIGMA | = | 2.7 | MEDIAN | 2 | 49.9 |
| VARIANT | R | MEAN | = | 43.9 | SIGMA | 3 | 43.7 | MEAN/SIGMA | = | •3 | MEDIAN | = | 42.5 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 47.3 | SIGMA | = | 43.3 | MEAN/SIGMA | = | 4.0 | MEDIAN | z | 46.6 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | æ | -•1 | SIGMA | 2 | -4.3 | MEAN/SIGMA | 2 | 4.2 | MEDIAN | = | 3 |
| VARIANT | 3 | MEAN | = | -1.3 | SIGMA | = | -5.6 | MEAN/SIGMA | z | 4.3 | MEDIAN | ¥ | -1.4 |
| VARIANT | 4 | MEAN | = | -2.8 | SIGMA | Ħ | -6.1 | MEAN/SIGMA | Ξ | ٦.3 | MEDIAN | | -2.8 |
| VARIANT | 5 | MEAN | Ξ | 1.0 | SIGMA | = | -2.A | MEAN/SIGMA | Ξ | 3.8 | MEDIAN | 3 | •8 |
| VARIANT | 6 | MEAN | Ξ | 1.6 | SIGMA | 5 | -1,9 | MEAN/SIGMA | = | ٦.5 | MEDIAN | = | 1.2 |
| VARIANT | 7 | MEAN | Ξ | 3.2 | SIGMA | = | -1.2 | MEAN/SIGMA | = | 4.5 | MEDIAN | 3 | 3.0 |
| VARIANT | A | MEAN | Ξ | -3.3 | SIGMA | = | =4.0 | MEAN/SIGMA | = | •7 | MEDIAN | - | -3.7 |

244

"E'

TABLE D-I (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 1

HITRFF2

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 44.7 | SIGMA | = | 38.3 | MEAN/SIGMA | z | 6.3 | MEDIAN | = | 44.1 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 44•1 | SIGMA | 2 | 40.6 | MEAN/SIGMA | = | 3.5 | MEDIAN | = | 43•8 |
| VARIANT | З | MEAN | = | 42.9 | SIGMA | = | 39.3 | MEAN/SIGMA | ¥ | 3.5 | MEDIAN | = | 42.6 |
| VARIANT | 4 | MEAN | = | 41.7 | SIGMA | 2 | 38.6 | MEAN/SIGMA | 2 | 3.1 | MEDIAN | = | 41.2 |
| VARIANT | 5 | MEAN | = | 45.3 | SIGMA | = | 41.8 | MEAN/SIGMA | = | 3,5 | MEDIAN | = | 44.9 |
| VARIANT | 6 | MEAN | = | 45.7 | SIGMA | z | 42.8 | MEAN/SIGMA | ¥ | 2.9 | MEDIAN | = | 45.4 |
| VARIANT | 7 | MEAN | = | 47.5 | SIGMA | = | 43.7 | MEAN/SIGMA | = | 3.8 | MEDIAN | = | 47.3 |
| VARIANT | 8 | MEAN | = | 41.9 | SIGMA | ¥ | 40.6 | MEAN/SIGMA | 2 | 1.3 | MEDIAN | = | 41.4 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 44.7 | SIGMA | = | 38.3 | MEAN/SIGMA | = | 6.3 MEDIAN = 44.1 |
|---------|---|------|---|------|-------|---|------|------------|---|---------------------|
| VARIANT | 2 | MEAN | Ξ | 6 | SIGMA | = | -5.2 | MEAN/SIGMA | Ξ | 4.7 MEDIAN =6 |
| VARIANT | 3 | MEAN | = | -1.8 | SIGMA | 3 | -6.4 | MEAN/SIGMA | = | 4.6 MEDIAN = -2.0 |
| VARIANT | 4 | MEAN | = | -2.9 | SIGMA | = | -6.6 | MEAN/SIGMA | = | 3.6 MEDIAN = -3.2 |
| VARIANT | 5 | MEAN | = | •7 | SIGMA | = | -3.4 | MEAN/SIGMA | = | 4.2 MEDIAN = .5 |
| VARIANT | 6 | MEAN | = | 1.0 | SIGMA | Ξ | -3.0 | MEAN/SIGMA | Ξ | 4.0 MEDIAN = .9 |
| VARIANT | 7 | MEAN | = | 2.8 | SIGMA | Ŧ | -2-1 | MEAN/SIGMA | = | 4.9 MEDIAN = 2.7 |
| VARIANT | 8 | MEAN | = | -2.7 | SIGMA | = | =3.9 | MEAN/SIGMA | = | 1.2 MEDIAN = -3.6 |

 TABLE D-II

 STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 2

- 1

H2BR1DG

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 56.2 | SIGMA | 2 | 60.3 | MEAN/SIGMA | 3 | -4.1 | MEDIAN | = | 45.5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 55.3 | SIGMA | = | 59.1 | MEAN/SIGMA | = | -3.8 | MEDIAN | Ξ | 45.8 |
| VARIANT | 3 | MEAN | = | 54.1 | SIGMA | = | 58.1 | MEAN/SIGMA | = | -4.0 | MEDIAN | Ξ | 44.4 |
| VARIANT | 4 | MEAN | = | 53.9 | SIGMA | = | 58.0 | MEAN/SIGMA | Ξ | -4.1 | MEDIAN | = | 43.6 |
| VARIANT | 5 | MEAN | Ξ | 57.2 | SIGMA | Ŧ | 61.1 | MEAN/SIGMA | = | -3.9 | MEDIAN | = | 46.8 |
| VARIANT | 6 | MEAN | = | 56.2 | SIGMA | z | 59.9 | MEAN/SIGMA | = | -7.8 | MEDIAN | Ξ | 47.4 |
| VARIANT | 7 | MEAN | = | 58.6 | SIGMA | Ξ | 52.4 | MEAN/SIGMA | = | -3.7 | MEDIAN | = | 49.2 |
| VARIANT | A | MEAN | = | 54.7 | SIGMA | Ξ | 59.5 | MEAN/SIGMA | = | -4.8 | MEDIAN | 2 | 43.2 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 56.2 | SIGMA | Ξ | 60.3 | MEAN/SIGMA | = | -4.1 | MEDIAN | 1 | 45.5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|----|-----------------|
| VARIANT | 2 | MEAN | 3 | 4 | SIGMA | Ξ | -4.5 | MEAN/SIGMA | Ξ | 4•1 | MEDIAN | 2 | • •5 |
| VARIANT | 3 | MEAN | Ξ | -1.6 | SIGMA | Ξ | -5.8 | MEAN/SIGMA | Ξ | 4.2 | MEDIAN | 11 | -1.6 |
| VARIANT | 4 | MEAN | = | -2.3 | SIGMA | = | -5.4 | MEAN/SIGMA | = | 3.1 | MEDIAN | = | -2.4 |
| VARIANT | 5 | MEAN | = | 1.1 | SIGMA | Ξ | -2.4 | MEAN/SIGMA | = | 3.6 | MEDIAN | Ξ | 1.0 |
| VARIANT | 6 | MEAN | = | 1.0 | SIGMA | Ξ | -2.9 | MEAN/SIGMA | Ξ | 3.9 | MEDIAN | = | 1.0 |
| VARIANT | 7 | MEAN | = | 3.0 | SIGMA | = | -1.4 | MEAN/SIGMA | = | 4.3 | MEDIAN | = | 2.9 |
| VARIANT | Ŕ | MEAN | = | -2.6 | SIGMA | = | -3.8 | MEAN/SIGMA | Ξ | 1.2 | MEDIAN | = | -5.0 |

R2CLUT

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 55.8 | SIGMA | = | 59.0 | MEAN/SIGMA | = | -3.2 | MEDIAN | - | 50.7 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 55.4 | SIGMA | = | 58.0 | MEAN/SIGMA | = | -2.7 | MEDIAN | 2 | 50.3 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 5 | MEAN | = | 57.0 | SIGMA | = | 50.0 | MEAN/SIGMA | = | -2.9 | MEDIAN | 2 | 51.5 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| | | | | | | | | MEAN/SIGMA | | | | | |
| | | | | | | | | MEAN/SIGMA | | | | | |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 55.8 | SIGMA | = | 59.0 | MEAN/SIGMA | = | -3.2 | MEDIAN | z | 50.7 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 2 | SIGMA | = | -4.2 | MEAN/SIGMA | Ξ | 4.0 | MEDIAN | = | 4 |
| VARIANT | 3 | MEAN | = | -1.4 | SIGMA | Ŧ | -5.5 | MEAN/SIGMA | = | 4.1 | MEDIAN | Ħ | -1.5 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 5 | MEAN | Ξ | 1.3 | SIGMA | Ξ | -2.4 | MEAN/SIGMA | = | 3.7 | MEDIAN | z | 1.1 |
| VARIANT | 6 | MEAN | Ξ | 1.3 | SIGMA | = | -2.3 | MEAN/SIGMA | Ξ | 3.6 | MEDIAN | = | 1.2 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | R | MEAN | = | -2.8 | SIGMA | = | -3.9 | MEAN/SIGMA | = | 1.1 | MEDIAN | = | -3.6 |

246

TABLE D-II (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 2

H2GRAS3

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 34.2 | SIGMA | = | 31.3 | MEAN/SIGMA | = | 2.9 | MEDIAN | Ξ | 33.9 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | S | MEAN | = | 33.7 | SIGMA | Ξ | 31+6 | MEAN/SIGMA | = | 2.1 | MEDIAN | = | 33•1 |
| VARIANT | 3 | MEAN | = | 32.5 | SIGMA | = | 30.3 | MEAN/SIGMA | = | 2.2 | MEDIAN | = | 32.1 |
| VARIANT | 4 | MEAN | = | 31.6 | SIGMA | = | 29.9 | MEAN/SIGMA | = | 1.7 | MEDIAN | Ξ | 30.6 |
| VARIANT | 5 | MEAN | = | 35.2 | SIGMA | = | 33.5 | MEAN/SIGMA | = | 1.7 | MEDIAN | = | 34.4 |
| VARIANT | 6 | MEAN | = | 35.2 | SIGMA | = | 33.1 | MEAN/SIGMA | = | 2.1 | MEDIAN | = | 34.7 |
| VARIANT | 7 | MEAN | = | 37.1 | SIGMA | = | 34.9 | MEAN/SIGMA | = | 2.2 | MEDIAN | = | 36.7 |
| VARIANT | я | MEAN | = | 31.4 | SIGMA | = | 30.8 | MEAN/SIGMA | = | •7 | MEDIAN | = | 30.4 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 34.2 | SIGMA | 3 | 31.3 | MEAN/SIGMA | = | 2.9 | MEDIAN | = | 33.9 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 5 | SIGMA | Ξ | +5+1 | MEAN/SIGMA | = | 4.6 | MEDIAN | = | 7 |
| VARIANT | 3 | MEAN | = | -1.7 | SIGMA | # | -6.4 | MEAN/SIGMA | = | 4.7 | MEDIAN | = | -1.8 |
| VARIANT | 4 | MEAN | ≆ | -2.5 | SIGMA | = | -6.3 | MEAN/SIGMA | = | 3.7 | MEDIAN | = | -2.7 |
| VARIANT | 5 | MEAN | = | 1.0 | SIGMA | 3 | -3.0 | MEAN/SIGMA | = | 4.0 | MEDIAN | = | •8 |
| VARIANT | 6 | MEAN | = | •9 | SIGMA | 3 | -3.3 | MEAN/SIGMA | Ξ | 4.2 | MEDIAN | Ξ | •5 |
| VARIANT | 7 | MEAN | 3 | 2.9 | SIGMA | = | -1.9 | MEAN/SIGMA | = | 4.8 | MEDIAN | = | 5.6 |
| VARIANT | 8 | MEAN | = | -2.8 | SIGMA | Ξ | -4.3 | MEAN/SIGMA | = | 1.5 | MEDIAN | = | -3.2 |

H2HWB1

میں ہے۔ محکوم کر کے

No. of Lot of Lo

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 61.5 SIGMA = 55.5 MEAN/SIGMA = -4.0 MEDIAN = 48.0VARIANT 2 MEAN = 59.6 SIGMA = 52.4 MEAN/SIGMA = -2.8 MEDIAN = 47.5VARIANT 3 MEAN = 58.4 SIGMA = 51.2 MEAN/SIGMA = -2.8 MEDIAN = 46.6VARIANT 4 MEAN = 58.2 SIGMA = 51.2 MEAN/SIGMA = -2.9 MEDIAN = 46.2VARIANT 5 MEAN = 61.2 SIGMA = 63.9 MEAN/SIGMA = -2.7 MEDIAN = 48.9VARIANT 6 MEAN = 60.9 SIGMA = 53.9 MEAN/SIGMA = -3.1 MEDIAN = 49.4VARIANT 7 MEAN = 63.0 SIGMA = 55.8 MEAN/SIGMA = -2.9 MEDIAN = 50.7VARIANT 8 MEAN = 58.7 SIGMA = 52.1 MEAN/SIGMA = -3.4 MEDIAN = 45.7

NORMALIZED VARIANTS

| VARIANT | ι | MEAN | = | 61.5 | SIGMA | Ξ | 55.5 | MEAN/SIGMA | = | -4.0 | MEDIAN | = | 48.0 |
|---------|---|------|---|------|-------|---|-------|-------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | -•2 | SIGMA | = | -4.7 | NEAN/SIGMA | = | 4.5 | MEDIAN | = | • 0 |
| VARIANT | 3 | MEAN | = | -1.4 | SIGMA | 3 | -5.8 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | -1.3 |
| VARIANT | 4 | MEAN | Ξ | -1.9 | SIGMA | Ξ | +6 .1 | MEAN/SIGMA | Ŧ | 4.2 | MEDIAN | = | -1.9 |
| VARIANT | 5 | MEAN | = | 1.4 | SIGMA | = | -2.9 | MEAN/SIGMA | = | 4.3 | MEDIAN | = | 1.5 |
| VARIANT | 6 | MEAN | = | 1.1 | SIGMA | = | -2.7 | MEAN/SIGMA | = | 3.8 | MEDIAN | = | •9 |
| VARIANT | 7 | MEAN | = | 3.2 | SIGMA | = | -1.5 | N'EAN/SIGMA | = | 4.7 | MEDIAN | = | 3.3 |
| VARIANT | я | MEAN | 3 | -2.3 | SIGMA | = | -3.3 | MEAN/SIGMA | = | 1.1 | MEDIAN | = | -3.5 |

247

"É 11

N.

TABLE D-II (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 2

H2MH1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 55.3 | SIGMA | = | 55.6 | MEAN/SIGMA | = | 2 | MEDIAN | = | 52.3 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 55•4 | SIGMA | = | 56+0 | MEAN/SIGMA | = | 6 | MEDIAN | = | 52+6 |
| VARIANT | 3 | MEAN | = | 54.3 | SIGMA | Ξ | 55.0 | MEAN/SIGMA | = | 7 | MEDIAN | z | 51.2 |
| VARIANT | 4 | MEAN | = | 53,5 | SIGMA | = | 54.3 | MEAN/SIGMA | = | - 8 | MEDIAN | = | 50.2 |
| VARIANT | 5 | MEAN | = | 56.9 | SIGMA | Ξ | 57.7 | MEAN/SIGMA | = | - 8 | MEDIAN | = | 53.8 |
| VARIANT | 6 | MEAN | = | 56.9 | SIGMA | = | 57.4 | MEAN/SIGMA | = | - 5 | MEDIAN | = | 54.0 |
| VARIANT | 7 | MEAN | = | 58.7 | SIGMA | = | 59.3 | MEAN/SIGMA | Ŧ | 6 | MEDIAN | = | 56.0 |
| VARIANT | 8 | MEAN | = | 53.5 | SIGMA | 2 | 56.0 | MEAN/SIGMA | = | -2.5 | MEDIAN | = | 49.2 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 55.3 | SIGMA | = | 55.6 | MEAN/SIGMA | = | 2 | MEDIAN | 2 | 52.3 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | • 0 | SIGMA | = | -4.0 | MEAN/SIGMA | = | 4.0 | MEDIAN | = | 3 |
| VARIANT | 3 | MEAN | = | -1.2 | SIGMA | = | -5.3 | MEAN/SIGMA | # | 4.1 | MEDIAN | = | -1.4 |
| VARIANT | 4 | MEAN | = | -2.1 | SIGMA | = | -5.9 | MEAN/SIGMA | = | 3.8 | MEDIAN | Ξ | -2.1 |
| VARIANT | 5 | MEAN | Ξ | 1.4 | SIGMA | = | -2.4 | MEAN/SIGMA | Ξ | 3 8 | MEDIAN | = | 1.1 |
| VARIANT | 6 | MEAN | = | 1.5 | SIGMA | æ | -1.9 | MEAN/SIGMA | = | 4 | MEDIAN | = | 1.2 |
| VARIANT | 7 | MEAN | = | 3.3 | SIGMA | = | -1.0 | MEAN/SIGMA | 3 | 4.3 | MEDIAN | = | 3.0 |
| VARIANT | 8 | MEAN | = | -2.9 | SIGMA | = | -4.0 | MEAN/SIGMA | Ξ | 1.0 | MEDIAN | = | ~3.9 |

HZNAT

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 41.5 | SIGMA | = | 40.9 | MEAN/SIGMA | = | •6 | MEDIAN | æ | 37.6 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 41.0 | SIGMA | Ξ | 41.0 | NEAN/SIGMA | = | .0 | MEDIAN | = | 37.9 |
| VARIANT | 3 | MEAN | Ξ | 39.8 | SIGMA | = | 39.8 | MEAN/SIGMA | = | • 0 | MEDIAN | = | 36.6 |
| VARIANT | 4 | MEAN | Ξ | 38.7 | SIGMA | = | 38.9 | MEAN/SIGMA | = | 2 | MEDIAN | = | 36.3 |
| VARIANT | 5 | MEAN | Ξ | 42.4 | SIGMA | = | 42.6 | MEAN/SIGMA | Ξ | 2 | MEDIAN | = | 40.0 |
| VARIANT | 6 | MEAN | = | 42.5 | SIGMA | = | 42.7 | MEAN/SIGMA | Ξ | 2 | MEDIAN | Ξ | 38.6 |
| VARIANT | 7 | MEAN | = | 44.5 | SIGMA | Ħ | 44.4 | MEAN/SIGMA | = | .1 | MEDIAN | = | 41.0 |
| VARIANT | 8 | MEAN | = | 38.7 | SIGMA | Ξ | 39.5 | MEAN/SIGMA | = | 8 | MEDIAN | = | 34.5 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 41.5 SIGMA = 40.9 MEAN/SIGMA = .6 MEDIAN = 57.6 VARIANT 2 MEAN = -55 SIGMA = -52 MEAN/SIGMA = 4.7 MEDIAN = -55VARIANT 3 MEAN = -1.7 SIGMA = -6.5 MEAN/SIGMA = 4.8 MEDIAN = -1.7VARIANT 4 MEAN = -2.7 SIGMA = -6.3 MEAN/SIGMA = -3.6 MEDIAN = -2.7VARIANT 5 MEAN = -9 SIGMA = -3.1 MEAN/SIGMA = 4.0 MEDIAN = -3.3VARIANT 6 MEAN = -9 SIGMA = -3.2 MEAN/SIGMA = 4.2 MEDIAN = -9VARIANT 7 MEAN = 2.9 SIGMA = -3.2 MEAN/SIGMA = 4.2 MEDIAN = -9VARIANT 7 MEAN = 2.9 SIGMA = -2.0 MEAN/SIGMA = 4.9 MEDIAN = 2.9VARIANT 8 MEAN = -2.8 SIGMA = -4.5 MEAN/SIGMA = 1.7 MEDIAN = -3.3

248

Υ'.

TABLE D-II (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SHERE 2

H2RRB1

UN-NORMALIZED VARIANTS

 VARIANT 1 MEAN = 45.6 SIGMA = 44.6 MEAN/SIGMA = 1.0 MEUIAN = 44.8

 VARIANT 2 MEAN = 44.7 SIGMA = 43.7 MEAN/SIGMA = 1.1 MEDIAN = 43.5

 VARIANT 3 MEAN = 43.5 SIGMA = 42.4 MEAN/SIGMA = 1.1 MEDIAN = 43.7

 VARIANT 4 MEAN = 42.8 SIGMA = 42.3 MEAN/SIGMA = 1.1 MEDIAN = 42.7

 VARIANT 5 MEAN = 42.8 SIGMA = 42.3 MEAN/SIGMA = .5 MEDIAN = 41.1

 VARIANT 6 MEAN = 46.3 SIGMA = 45.5 MEAN/SIGMA = .7 MEDIAN = 45.2

 VARIANT 6 MEAN = 46.1 SIGMA = 45.0 MEAN/SIGMA = 1.1 MEDIAN = 44.8

 VARIANT 7 MEAN = 48.1 SIGMA = 46.9 MEAN/SIGMA = 1.2 MEDIAN = 47.0

 VARIANT 8 MEAN = 42.4 SIGMA = 43.0 MEAN/SIGMA = .6 MEDIAN = 41.0

NORMALIZED VARIANTS

1.0 MEDIAN = 44.8 VARIANT 1 MEAN = 45.6 SIGMA = 44.6 MEAN/SIGMA = VARIANT 2 MEAN = -.8 SIGMA = -4.8 MEAN/SIGMA = 4.0 MEDIAN = -1.3 4.1 MEDIAN = -2.5 VARIANT 3 MEAN = -2.0 SIGMA = -6.1 MEAN/SIGMA = VARIANT 4 MEAN = -2.8 SIGMA = -5.5 MEAN/SIGMA = 2.7 MEUIAN = -3.0 -.0 VARIANT 5 MEAN = •7 SIGMA = +2.4 MEAN/SIGMA = 3.1 MEDIAN = VARIANT 6 MEAN = •6 SIGMA = •3.3 MEAN/SIGMA = 3.9 MEDIAN = •4 VARIANT 7 MEAN = 2.6 SIGMA = -1.6 MEAN/SIGMA = 4.2 MEDIAN = 5.3 VARIANT 8 MEAN = -3.2 SIGMA = -4.5 MEAN/SIGMA = 1.3 MEDIAN = -3.4

H2TREE1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 47.2 | SIGMA | = | 40.0 | MEAN/SIGMA | Ξ | 7.2 | MEDIAN | = | 47.1 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 46•3 | SIGMA | = | 42.2 | MEAN/SIGMA | = | 4.0 | MEDIAN | = | 45+9 |
| VARIANT | 3 | MEAN | = | 45.0 | SIGMA | = | 40.9 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | 44.9 |
| VARIANT | 4 | MEAN | = | 44.2 | SIGMA | = | 41.1 | MEAN/SIGMA | = | 3.1 | MEDIAN | z | 44.1 |
| VARIANT | 5 | MEAN | = | 47.8 | SIGMA | = | 44.4 | MEAN/SIGMA | = | 3.4 | MEDIAN | z | 47.8 |
| VARIANT | 6 | MEAN | = | 47.5 | SIGMA | Ξ | 43.9 | MEAN/SIGMA | = | 3.6 | MEDIAN | z | 47.3 |
| VARIANT | 7 | MEAN | = | 49.6 | SIGMA | Ŧ | 45.5 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | 49.2 |
| VARIANT | A | MEAN | = | 43.9 | SIGMA | = | 42.3 | MEAN/SIGMA | Ξ | 1.5 | MEDIAN | 2 | 43.6 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 47.2 | SIGMA | = | 40.0 | MEAN/SIGMA | = | 7.2 | MEDIAN | ~ | 47.1 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|-------------|
| VARIANT | 2 | MEAN | = | 9 | SIGMA | Ξ | •5.? | MEAN/SIGMA | = | 4.4 | MEDIAN | = | ~ •9 |
| VARIANT | 3 | MEAN | = | -2.1 | SIGMA | Ξ | -6.4 | MEAN/SIGMA | = | 4.3 | MEDIAN | = | -2.5 |
| VARIANT | 4 | MEAN | = | -2.9 | SIGMA | = | -6.1 | MEAN/SIGMA | Ξ | 3.2 | MEDIAN | z | -3.2 |
| VARIANT | 5 | MEAN | = | •7 | SIGMA | z | -2.9 | MEAN/SIGMA | = | 3.6 | MEDIAN | Ξ | •8 |
| VARIANT | 6 | MEAN | Ξ | • 4 | SIGMA | Ξ | -3.7 | MEAN/SIGMA | = | 4.1 | MEDIAN | Ξ | •0 |
| VARIANT | 7 | MEAN | = | 2.5 | SIGMA | = | +2.n | MEAN/SIGMA | = | 4.5 | MEDIAN | = | 5,1 |
| VARIANT | A | MEAN | = | -3.1 | SIGMA | Ξ | -4.5 | MEAN/SIGMA | Ξ | 1.3 | MEDIAN | 2 | -3.8 |

TABLE D-III

I,

1

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 3

H3GRAS1

UN-NORMALIZED VARIANTS

```
      VARIANT 1
      MEAN = 36.6
      SIGMA = 29.0
      MEAN/SIGMA = 7.6
      MEDIAN = 36.7

      VARIANT 2
      MEAN = 34.8
      SIGMA = 30.9
      MEAN/SIGMA = 3.9
      MEDIAN = 34.6

      VARIANT 3
      MEAN = 33.6
      SIGMA = 29.9
      MEAN/SIGMA = 3.6
      MEDIAN = 33.3

      VARIANT 4
      MEAN = 32.6
      SIGMA = 29.8
      MEAN/SIGMA = 2.7
      MEDIAN = 32.0

      VARIANT 5
      MEAN = 36.1
      SIGMA = 33.0
      MEAN/SIGMA = 3.0
      MEDIAN = 32.0

      VARIANT 6
      MEAN = 36.3
      SIGMA = 32.7
      MEAN/SIGMA = 3.0
      MEDIAN = 35.8

      VARIANT 6
      MEAN = 38.2
      SIGMA = 34.2
      MEAN/SIGMA = 3.6
      MEDIAN = 36.3

      VARIANT 7
      MEAN = 38.2
      SIGMA = 34.2
      MEAN/SIGMA = 4.0
      MEDIAN = 38.2

      VARIANT 7
      MEAN = 32.9
      SIGMA = 32.5
      MEAN/SIGMA = 4.0
      MEDIAN = 30.8
```

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 36.6 | SIGMA | = | 29.0 | MEAN/SIGMA | = | 7.6 | MEDIAN | Ξ | 36.7 |
|---------|---|------|---|------|-------|---|--------------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | -1.8 | SIGMA | Ξ | -6.4 | MEAN/SIGMA | = | 4.5 | MEDIAN | = | -2•0 |
| VARIANT | 3 | MEAN | Ŧ | -3.0 | SIGMA | = | -7.4 | MEAN/SIGMA | 2 | 4.3 | MEDIAN | Ξ | -3.2 |
| VARIANT | 4 | MEAN | = | -4.0 | SIGMA | = | -7.2 | MEAN/SIGMA | = | 3.2 | MEDIAN | = | -4.2 |
| VARIANT | 5 | MEAN | = | 5 | SIGMA | = | +4.2 | MEAN/SIGMA | = | 3.6 | MEDIAN | = | 7 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 7 | MEAN | = | 1.6 | SIGMA | = | -3. 1 | MEAN/SIGMA | = | 4.7 | MEDIAN | = | 1.4 |
| VARIANT | R | MEAN | = | -3.7 | SIGMA | = | -4.3 | MEAN/SIGMA | = | •7 | MEDIAN | = | -5.7 |

H3GRAS2

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 39.2 | SIGMA | = | 29.8 | MEAN/SIGMA | = | 9.4 | MEDIAN | = | 39.1 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 38.5 | SIGMA | = | 34.8 | MEAN/SIGMA | = | | MEDIAN | | |
| VARIANT | 3 | MEAN | = | 37.2 | SIGMA | = | 33.5 | MEAN/SIGMA | Ξ | 3.6 | MEDIAN | Ξ | 36.7 |
| VARIANT | 4 | MEAN | = | 36.6 | SIGMA | Ξ | 33.9 | MEAN/SIGMA | = | 2.7 | MEDIAN | = | 36.4 |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | = | 39.6 |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | Ξ | 39.5 |
| | | | | | | | | MEAN/SIGMA | | 4.1 | MEDIAN | = | 41.8 |
| VARIANT | 8 | MEAN | Ξ | 35.7 | SIGMA | = | 34.8 | MEAN/SIGMA | = | •9 | MEDIAN | = | 35.3 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | 2 | 39.2 | SIGMA | 2 | 29.8 | MEAN/SIGMA | = | 9.4 | MEDIAN | 2 | 39.1 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 8 | SIGMA | = | -5.0 | MEAN/SIGMA | = | 4.2 | MEDIAN | = | 9 |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | | |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | | |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | = | -5.3 | MEAN/SIGMA | = | 3.2 | MEDIAN | z | .1 |
| VARIANT | | | | | | | | MEAN/SIGMA | | | MEDIAN | | |
| VARIANT | | | | 2.7 | SIGMA | = | -1.9 | MEAN/SIGMA | = | | MEDIAN | | |
| VARIANT | 8 | MEAN | = | -3.6 | SIGMA | = | -4.7 | MEAN/SIGMA | = | 1.1 | MEDIAN | = | -4.1 |

11

`i

and all at the second

TABLE D-III (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 3

H3BRIDG

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 57.1 SIGMA = 60.7 MEAN/SIGMA = -3.6 MEDIAN = 52.7VARIANT 2 MEAN = 56.1 SIGMA = 57.8 MEAN/SIGMA = -1.7 MEDIAN = 51.5VARIANT 3 MEAN = 54.9 SIGMA = 56.5 MEAN/SIGMA = -1.6 MEDIAN = 50.3VARIANT 4 MEAN = 52.8 SIGMA = 55.3 MEAN/SIGMA = -2.5 MEDIAN = 48.8VARIANT 5 MEAN = 56.8 SIGMA = 59.0 MEAN/SIGMA = -2.2 MEDIAN = 52.4VARIANT 6 MEAN = 58.0 SIGMA = 59.6 MEAN/SIGMA = -1.5 MEDIAN = 53.3VARIANT 7 MEAN = 59.5 SIGMA = 61.3 MEAN/SIGMA = -1.8 MEDIAN = 55.1VARIANT 8 MEAN = 53.5 SIGMA = 56.1 MEAN/SIGMA = -2.6 MEDIAN = 46.9

NORMALIZED VARIANTS

VARIANT 1 MEAN = 57.1 SIGMA = 60.7 MEAN/SIGMA = -3.6 MEDIAN = 52.7 VARIANT 2 MEAN = .6 SIGMA = -4.4 MEAN/SIGMA = 5.0 MEDIAN = .7VARIANT 3 MEAN = -.7 SIGMA = -5.7 MEAN/SIGMA = 5.1 MEDIAN = -.5VARIANT 4 MEAN = -2.4 SIGMA = -6.2 MEAN/SIGMA = 3.8 MEDIAN = -2.4VARIANT 5 MEAN = 1.4 SIGMA = -2.9 MEAN/SIGMA = 4.3 MEDIAN = 1.4VARIANT 6 MEAN = 2.5 SIGMA = -2.0 MEAN/SIGMA = 4.4 MEDIAN = 2.5VARIANT 7 MEAN = 3.9 SIGMA = -1.4 MEAN/SIGMA = 5.2 MEDIAN = 4.0VARIANT 7 MEAN = -2.5 SIGMA = -3.1 MEAN/SIGMA = .6 MEDIAN = -4.2

H3CLUT

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 54.6 SIGMA = 59.4 MEAN/SIGMA = -4.8 MEDIAN = 47.2 VARIANT 2 MEAN = 53.8 SIGMA = 56.7 MEAN/SIGMA = -2.9 MEDIAN = 47.7 VARIANT 3 MEAN = 52.5 SIGMA = 55.4 MEAN/SIGMA = -2.9 MEDIAN = 46.4 VARIANT 4 MEAN = 50.6 SIGMA = 54.1 MEAN/SIGMA = -3.5 MEDIAN = 46.4 VARIANT 5 MEAN = 54.6 SIGMA = 57.9 MEAN/SIGMA = -3.3 MEDIAN = 48.8 VARIANT 6 MEAN = 55.7 SIGMA = 58.5 MEAN/SIGMA = -2.8 MEDIAN = 49.4 VARIANT 7 MEAN = 57.2 SIGMA = 60.2 MEAN/SIGMA = -3.0 MEDIAN = 51.3 VARIANT 8 MEAN = 51.1 SIGMA = 54.9 MEAN/SIGMA = -3.8 MEDIAN = 44.0

NORMALIZED VARIANTS

VARIANT 1 MEAN = 54.6 SIGMA = 59.4 MEAN/SIGMA = -4.8 MEDIAN = 47.2 VARIANT 2 MEAN = .6 SIGMA = -4.7 MEAN/SIGMA = 5.3 MEDIAN = .7VARIANT 3 MEAN = -.6 SIGMA = -5.9 MEAN/SIGMA = 5.3 MEDIAN = -.5VARIANT 4 MEAN = -2.3 SIGMA = -5.8 MEAN/SIGMA = 3.5 MEDIAN = -2.4VARIANT 5 MEAN = 1.6 SIGMA = -2.7 MEAN/SIGMA = 4.2 MEDIAN = 1.4VARIANT 6 MEAN = 2.4 SIGMA = -2.3 MEAN/SIGMA = 4.8 MEDIAN = 2.4VARIANT 7 MEAN = 3.9 SIGMA = -1.6 MEAN/SIGMA = 5.6 MEDIAN = 4.0VARIANT 8 MEAN = -2.7 SIGMA = -3.6 MEAN/SIGMA = .9 MEDIAN = -3.7

TABLE D-III (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 3

H3NAT

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 47.3 | SIGMA | Ξ | 47.6 | MEAN/SIGMA | = | 2 | MEDIAN | = | 46.3 |
|---------|---|------|---|------|-------|---|------|------------|---|-------------|--------|---|------|
| VARIANT | 2 | MEAN | = | 46.9 | SIGMA | = | 47.4 | MEAN/SIGMA | = | 5 | MEDIAN | = | 42.7 |
| VARIANT | 3 | MEAN | = | 45.6 | SIGMA | = | 46.1 | MEAN/SIGMA | = | 5 | MEDIAN | = | 41.2 |
| VARIANT | 4 | MEAN | = | 44.6 | SIGMA | Ξ | 45.6 | MEAN/SIGMA | = | 9 | MEDIAN | = | 40.0 |
| VARIANT | 5 | MEAN | = | 48.4 | SIGMA | = | 49.2 | MEAN/SIGMA | = | 8 | MEDIAN | = | 43.8 |
| VARIANT | 6 | MEAN | = | 48.2 | SIGMA | 3 | 48.6 | MEAN/SIGMA | = | ~ •5 | MEDIAN | = | 44.7 |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | | |
| VARIANT | A | MEAN | = | 44.4 | SIGMA | = | 46.0 | MEAN/SIGMA | = | -1.6 | MEDIAN | * | 38.8 |

NORMALIZED VARIANTS

 VARIANT 1
 MEAN = 47.3
 SIGMA = 47.6
 MEAN/SIGMA = -2 MEDIAN = 46.3

 VARIANT 2
 MEAN = -5 SIGMA = -4.9 MEAN/SIGMA = -2.2 MEDIAN = -8

 VARIANT 3
 MEAN = -1.8 SIGMA = -6.2 MEAN/SIGMA = -2.0 MEDIAN = -2.0

 VARIANT 4
 MEAN = -2.7 SIGMA = -5.9 MEAN/SIGMA = -3.2 MEDIAN = -2.7

 VARIANT 5
 MEAN = -2.7 SIGMA = -2.4 MEAN/SIGMA = -3.5 MEDIAN = -7.7

 VARIANT 5
 MEAN = 1.0 SIGMA = -2.4 MEAN/SIGMA = -3.5 MEDIAN = -7.7

 VARIANT 6
 MEAN = -3.5 SIGMA = -3.5 MEAN/SIGMA = -3.5 MEDIAN = -7.7

 VARIANT 7
 MEAN = -3.2 SIGMA = -1.7 MEAN/SIGMA = 4.6 MEDIAN = -3.8

 VARIANT 7
 MEAN = -3.2 SIGMA = -4.5 MEAN/SIGMA = 1.3 MEDIAN = -3.8

H3RCC1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 54.3 | SIGMA | = | 54.3 | MEAN/SIGMA | = | 0 | MEDIAN | = | 53•5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 55•3 | SIGMA | = | 55+3 | MEAN/SIGMA | = | -•1 | MEDIAN | = | 53+9 |
| VARIANT | 3 | MEAN | Ξ | 54.1 | SIGMA | = | 54.3 | MEAN/SIGMA | = | ~,2 | MEDIAN | = | 52.4 |
| VARIANT | 4 | MEAN | = | 51.7 | SIGMA | = | 51.2 | MEAN/SIGMA | Ξ | .5 | MEDIAN | = | 51.2 |
| VARIANT | 5 | MEAN | Ξ | 55.8 | SIGMA | = | 55.4 | MEAN/SIGMA | = | • 4 | MEDIAN | z | 54.4 |
| VARIANT | 6 | MEAN | = | 57.4 | SIGMA | = | 57.8 | MEAN/SIGMA | Ξ | 4 | MEDIAN | = | 55.1 |
| VARIANT | 7 | MEAN | Ξ | 58.5 | SIGMA | = | 58.5 | MEAN/SIGMA | = | .0 | MEDIAN | Ŧ | 57.5 |
| VARIANT | 8 | MEAN | = | 53.7 | SIGMA | = | 55.7 | MEAN/SIGMA | Ξ | -2.0 | MEDIAN | z | 48.4 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 54.3 SIGMA = 54.3 MEAN/SIGMA = -0 MEDIAN = 53.5 VARIANT 2 MEAN = 1.0 SIGMA = -5.2 MEAN/SIGMA = 6.2 MEDIAN = -9VARIANT 3 MEAN = -.2 SIGMA = -6.6 MEAN/SIGMA = 6.4 MEDIAN = -.3VARIANT 4 MEAN = -1.9 SIGMA = -6.9 MEAN/SIGMA = 5.0 MEDIAN = -2.0VARIANT 5 MEAN = 1.8 SIGMA = -3.6 MEAN/SIGMA = 5.4 MEDIAN = 1.6VARIANT 6 MEAN = 2.9 SIGMA = -2.3 MEAN/SIGMA = 5.2 MEDIAN = 2.7VARIANT 7 MEAN = 4.2 SIGMA = -1.9 MEAN/SIGMA = 6.2 MEDIAN = 4.2VARIANT 7 MEAN = -1.8 SIGMA = -3.0 MEAN/SIGMA = 1.2 MEDIAN = 2.0

TABLE D-III (CONTINUED)

4

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 3

H3HWB1

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 57.5 SIGMA = 61.4 MEAN/SIGMA = -3.9 MEDIAN = 47.8VARIANT 2 MEAN = 55.6 SIGMA = 58.3 MEAN/SIGMA = -2.7 MEDIAN = 47.8VARIANT 3 MEAN = 54.3 SIGMA = 57.0 MEAN/SIGMA = -2.6 MEDIAN = 46.8VARIANT 4 MEAN = 52.7 SIGMA = 56.0 MEAN/SIGMA = -3.3 MEDIAN = 45.9VARIANT 5 MEAN = 56.6 SIGMA = 59.7 MEAN/SIGMA = -3.1 MEDIAN = 49.3VARIANT 6 MEAN = 57.4 SIGMA = 59.9 MEAN/SIGMA = -2.6 MEDIAN = 49.3VARIANT 6 MEAN = 57.4 SIGMA = 59.9 MEAN/SIGMA = -2.6 MEDIAN = 49.2VARIANT 7 MEAN = 59.1 SIGMA = 51.8 MEAN/SIGMA = -2.7 MEDIAN = 51.5VARIANT 8 MEAN = 52.0 SIGMA = 55.7 MEAN/SIGMA = -3.7 MEDIAN = 45.6

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 57.5 SIGMA = 51.4 MEAN/SIGMA = -3.9 MEDIAN = 47.8
VARIANT 2 MEAN = .0 SIGMA = -4.1 MEAN/SIGMA = 4.2 MEDIAN = -.1
VARIANT 3 MEAN = -1.2 SIGMA = -5.3 MEAN/SIGMA =
                                                 4.2 \text{ MEDIAN} = -1.2
VARIANT 4 MEAN = -2.6 SIGMA = -5.8 MEAN/SIGMA =
                                                  3.2 \text{ MEDIAN} = -2.6
VARIANT 5 MEAN = 1.1 SIGMA = -2.5 MEAN/SIGMA =
                                                  3.7 MEDIAN =
                                                               1.0
                                                  3.6 MEDIAN =
VARIANT 6 MEAN =
                 1.8 SIGMA = -1.9 MEAN/SIGMA =
                                                                1.6
VARIANT 7 MEAN = 3.4 SIGMA = -1.1 MEAN/SIGMA =
                                                 4.5 MEDIAN = 3.2
                                                 .3 MEDIAN = -5.1
VARIANT & MEAN = -3.1 SIGMA = -3.4 MEAN/SIGMA =
```

H3FH1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 46.8 | SIGMA | = | 44.0 | MEAN/SIGMA | = | 2.9 | MEDIAN | = | 46.5 |
|---------|---|------|---|------|-------|---|--------|-------------|---|-----|--------|---|------|
| VARIANT | S | MEAN | Ξ | 47.5 | SIGMA | = | 45.4 | MEAN/SIGMA | = | 2.1 | MEDIAN | = | 46.3 |
| VARIANT | 3 | MEAN | = | 46+2 | SIGMA | = | 44 • 1 | MEAN/SIGMA | = | 2.1 | MEDIAN | = | 45•3 |
| VARIANT | 4 | MEAN | Ξ | 44.8 | SIGMA | 2 | 43.5 | MEAN/SIGMA | = | 1.3 | MEDIAN | = | 42.9 |
| VARIANT | 5 | MEAN | = | 48.7 | SIGMA | = | 47.n | MEA.,/SIGMA | = | 1.7 | MEDIAN | = | 47.5 |
| VARIANT | 6 | MEAN | Ξ | 49.2 | SIGMA | = | 47.1 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 48.7 |
| VARIANT | 7 | MEAN | Ξ | 50.9 | SIGMA | = | 48.6 | MEAN/SIGMA | = | 2.3 | MEDIAN | = | 49.7 |
| VARIANT | R | MEAN | = | 43.5 | SIGMA | = | 42.1 | MEAN/SIGMA | = | 1.4 | MEDIAN | = | 42.7 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 46.8 | SIGMA | = | 44.0 | MEAN/SIGMA | = | 2.9 | MEDIAN | = | 46.5 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | •6 | SIGMA | = | -4.9 | MEAN/SIGMA | Ξ | 5.6 | MEDIAN | Ŧ | •5 |
| VARIANT | 3 | MEAN | = | 6 | SIGMA | = | -6.2 | MEAN/SIGMA | = | 5.5 | MEUIAN | = | 6 |
| VARIANT | 4 | MEAN | = | -2.1 | SIGMA | = | -5.4 | MEAN/SIGMA | = | ٦.3 | MEDIAN | = | -2.5 |
| VARIANT | 5 | MEAN | = | 1.8 | SIGMA | Ξ | -2.5 | MEAN/SIGMA | = | 4.2 | MEDIAN | = | 1.6 |
| VARIANT | 6 | MEAN | = | 2.3 | SIGMA | = | -2.9 | MEAN/SIGMA | Ξ | 5.2 | MEDIAN | Ξ | 2.3 |
| VARIANT | 7 | MEAN | = | 4.0 | SIGMA | = | -2.0 | MEAN/SIGMA | = | 6.1 | MEDIAN | z | 3.7 |
| VARIANT | я | MEAN | = | -3.0 | SIGMA | = | -4.4 | MEAN/SIGMA | = | 1.4 | MEDIAN | = | -3.7 |

TABLE D-III (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM REEDLEY SCENE 3

H3TREET

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 50.2 SIGMA = 48.4 MEAN/SIGMA = 1.8 MEDIAN = 49.3VARIANT 2 MEAN = 49.7 SIGMA = 47.7 MEAN/SIGMA = 2.0 MEDIAN = 48.7VARIANT 3 MEAN = 48.5 SIGMA = 46.7 MEAN/SIGMA = 1.7 MEDIAN = 47.5VARIANT 4 MEAN = 47.1 SIGMA = 45.0 MEAN/SIGMA = 2.1 MEDIAN = 46.3VARIANT 5 MEAN = 50.9 SIGMA = 48.8 MEAN/SIGMA = 2.1 MEDIAN = 50.3VARIANT 6 MEAN = 51.3 SIGMA = 49.8 MEAN/SIGMA = 1.5 MEDIAN = 50.1VARIANT 7 MEAN = 53.0 SIGMA = 50.9 MEAN/SIGMA = 2.1 MEDIAN = 50.1VARIANT 7 MEAN = 53.0 SIGMA = 50.9 MEAN/SIGMA = 2.1 MEDIAN = 51.9VARIANT 7 MEAN = 46.9 SIGMA = 48.9 MEAN/SIGMA = -2.0 MEDIAN = 44.0

NORMALIZED VARIANTS

VARIANT 1 MEAN = 50.2 SIGMA = 48.4 MEAN/SIGMA = 1.8 MEDIAN = 49.3VARIANT 2 MEAN = -3 SIGMA = -4.6 MEAN/SIGMA = 4.4 MEDIAN = -3VARIANT 3 MEAN = -1.5 SIGMA = -5.9 MEAN/SIGMA = 4.4 MEDIAN = -1.5VARIANT 4 MEAN = -2.7 SIGMA = -6.2 MEAN/SIGMA = 3.5 MEDIAN = -2.7VARIANT 5 MEAN = 1.1 SIGMA = -3.0 MEAN/SIGMA = 4.0 MEDIAN = -9VARIANT 6 MEAN = 1.2 SIGMA = -2.4 MEAN/SIGMA = 3.6 MEDIAN = 1.1VARIANT 7 MEAN = 3.1 SIGMA = -1.4 MEAN/SIGMA = 4.5 MEDIAN = 1.1VARIANT 7 MEAN = -3.6 SIGMA = -4.0 MEAN/SIGMA = 4.5 MEDIAN = 3.0VARIANT 8 MEAN = -3.6 SIGMA = -4.0 MEAN/SIGMA = -4 MEDIAN = -5.3

H3TREE3

UN-NORMALIZED VARIANTS

 VARIANT 1
 MEAN = 50.0
 SIGMA = 46.9
 MEAN/SIGMA = 3.1
 MEDIAN = 49.6

 VARIANT 2
 MEAN = 49.5
 SIGMA = 47.0
 MEAN/SIGMA = 2.5
 MEDIAN = 48.3

 VARIANT 3
 MEAN = 48.2
 SIGMA = 45.7
 MEAN/SIGMA = 2.5
 MEDIAN = 47.3

 VARIANT 4
 MEAN = 47.3
 SIGMA = 45.8
 MEAN/SIGMA = 1.5
 MEDIAN = 45.9

 VARIANT 5
 MEAN = 51.0
 SIGMA = 49.2
 MEAN/SIGMA = 1.8
 MEDIAN = 49.8

 VARIANT 6
 MEAN = 50.8
 SIGMA = 48.2
 MEAN/SIGMA = 2.7
 MEDIAN = 49.8

 VARIANT 6
 MEAN = 52.9
 SIGMA = 50.4
 MEAN/SIGMA = 2.5
 MEDIAN = 51.6

 VARIANT 7
 MEAN = 47.1
 SIGMA = 46.5
 MEAN/SIGMA = 5.5
 MEDIAN = 51.6

NORMALIZED VARIANTS

VARIANT 1 MEAN = 50.0 SIGMA = 46.9 MEAN/SIGMA = 3.1 MEDIAN = 49.6VARIANT 2 MEAN = -3 SIGMA = -4.9 MEAN/SIGMA = 4.6 MEDIAN = -.5VARIANT 3 MEAN = -1.6 SIGMA = -6.2 MEAN/SIGMA = 4.6 MEDIAN = -1.8VARIANT 4 MEAN = -2.7 SIGMA = -6.0 MEAN/SIGMA = 3.3 MEDIAN = -2.7VARIANT 5 MEAN = 1.1 SIGMA = -2.6 MEAN/SIGMA = 3.7 MEDIAN = -7VARIANT 6 MEAN = 1.1 SIGMA = -3.1 MEAN/SIGMA = 4.2 MEDIAN = 1.1VARIANT 7 MEAN = 3.0 SIGMA = -1.6 MEAN/SIGMA = 4.7 MEDIAN = 1.1VARIANT 7 MEAN = -2.9 SIGMA = -4.4 MEAN/SIGMA = 1.5 MEDIAN = -3.3

254

"E ,1

TABLE D-IV

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 4

H4DARK1

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 18.5 SIGMA = 25.4 MEAN/SIGMA = -6.9 MEDIAN = 10.2VARIANT 2 MEAN = 18.3 SIGMA = 24.2 MEAN/SIGMA = -5.9 MEDIAN = 11.4VARIANT 3 MEAN = 16.9 SIGMA = 22.8 MEAN/SIGMA = -5.9 MEDIAN = 9.9VARIANT 4 MEAN = 16.1 SIGMA = 22.5 MEAN/SIGMA = -6.3 MEDIAN = 9.1VARIANT 5 MEAN = 19.9 SIGMA = 26.3 MEAN/SIGMA = -6.4 MEDIAN = 12.8VARIANT 6 MEAN = 19.5 SIGMA = 24.9 MEAN/SIGMA = -5.4 MEDIAN = 12.8VARIANT 6 MEAN = 21.8 SIGMA = 28.0 MEAN/SIGMA = -6.2 MEDIAN = 14.7VARIANT 8 MEAN = 13.4 SIGMA = 20.9 MEAN/SIGMA = -7.5 MEDIAN = +2.0

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 18.5 SIGMA = 25.4 MEAN/SIGMA = -6.9 MEDIAN = 10.2
VARIANT 2 MEAN = -.3 SIGMA = -2.6 MEAN/SIGMA = 2.3 MEDIAN = -3.1
VARIANT 3 MEAN = -1.6 SIGMA = -3.7 MEAN/SIGMA = 2.1 MEDIAN = -4.7
VARIANT 4 MEAN = -2.7 SIGMA = -5.0 MEAN/SIGMA = 2.3 MEDIAN = -4.7
VARIANT 5 MEAN = 1.0 SIGMA = -1.4 MEAN/SIGMA = 2.4 MEDIAN = -1.2
VARIANT 6 MEAN = 1.3 SIGMA = -5.5 MEAN/SIGMA = 1.8 MEDIAN = -2.1
VARIANT 7 MEAN = 3.0 SIGMA = .3 MEAN/SIGMA = 2.7 MEDIAN = -7.5
VARIANT 8 MEAN = -5.9 SIGMA = -5.3 MEAN/SIGMA = -6.6 MEDIAN = -7.5
```

H4DARK

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 18.6 | SIGMA | = | 25.8 | MEAN/SIGMA | = | -7.2 | MEDIAN | = | 8.1 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|----|------|
| VARIANT | 2 | MEAN | Ξ | 17.5 | SIGMA | 2 | 24.4 | MEAN/SIGMA | = | -6.8 | MEDIAN | = | 9.2 |
| VARIANT | 3 | MEAN | = | 16.5 | SIGMA | = | 23.4 | MEAN/SIGMA | = | -6.9 | MEDIAN | = | 8.0 |
| VARIANT | 4 | MEAN | = | 16.1 | SIGMA | Ξ | 23.2 | MEAN/SIGMA | Ξ | -7.1 | MEDIAN | 2 | 5.7 |
| VARIANT | 5 | MEAN | = | 19.7 | SIGMA | = | 27.0 | MEAN/SIGMA | = | -7.3 | MEDIAN | = | 10.9 |
| VARIANT | 6 | MEAN | = | 17.6 | SIGMA | ₽ | 23.3 | MEAN/SIGMA | = | -5.7 | MEDIAN | 2 | 10.5 |
| VARIANT | 7 | MEAN | Ξ | 20.9 | SIGMA | = | 27.8 | MEAN/SIGMA | Ξ | -6.9 | MEDIAN | = | 12.3 |
| VARIANT | 8 | MEAN | = | 17.1 | SIGMA | = | 24.6 | MEAN/SIGMA | = | -7.5 | MEDIAN | \$ | -1.9 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 18.6 | SIGMA | I | 25.8 | MEAN/SIGMA | = | -7.2 | MEDIAN | 2 | 8.1 |
|---------|---|------|---|------|-------|---|-------------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | 3 | 7 | SIGMA | = | -2.7 | MEAN/SIGMA | Ξ | 2.1 | MEDIAN | = | -1.0 |
| VARIANT | 3 | MEAN | = | -1.9 | SIGMA | Ħ | -3.8 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | -2.3 |
| VARIANT | 4 | MEAN | = | -3.0 | SIGMA | = | -5.1 | MEAN/SIGMA | Ħ | 2.1 | MEDIAN | = | -3.8 |
| VARIANT | 5 | MEAN | = | •5 | SIGMA | = | -1.4 | MEAN/SIGMA | Ξ | 2.0 | MEDIAN | × | 5 |
| VARIANT | 6 | MEAN | = | 1.0 | SIGMA | Ξ | ~. 8 | MEAN/SIGMA | = | 1.8 | MEDIAN | = | -,0 |
| VARIANT | 7 | MEAN | = | 2.6 | SIGMA | Ξ | • Ì | MEAN/SIGMA | = | 2.4 | MEDIAN | z | 2.4 |
| | | | | | | | | MEAN/SIGMA | | | | | |

 TABLE D-IV (CONTINUED)

 STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 4

4

H4SAND1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 25.3 | SIGMA | = | 22.7 | MEAN/SIGMA | Ξ | 2.6 | MEDIAN | Ξ | 24.8 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARTANT | 2 | ΜΕΔΝ | = | 24.8 | SIGMA | = | 23.2 | MEAN/SIGMA | 3 | 1.7 | MEDIAN | = | 23•9 |
| VARTANT | З | MFAN | = | 23.6 | SIGMA | 5 | 22.0 | MEAN/SIGMA | Ξ | 1.7 | MEDIAN | = | 22.9 |
| VARTANT | 4 | MEAN | = | 22.7 | SIGMA | = | 21.6 | MEAN/SIGMA | = | 1.1 | MEDIAN | Ξ | 21+7 |
| VARIANT | 5 | MEAN | = | 26.2 | SIGMA | 5 | 24.9 | MEAN/SIGMA | = | 1.3 | MEDIAN | = | 25+2 |
| VARIANT | 6 | MEAN | z | 26.3 | SIGMA | = | 24.7 | MEAN/SIGMA | = | 1.6 | MEDIAN | = | 25.5 |
| VARIANT | 7 | MEAN | = | 28.2 | SIGMA | # | 26.5 | MEAN/SIGMA | = | | MEDIAN | | |
| VARIANT | 8 | MEAN | = | 22.9 | SIGMA | = | 55.8 | MEAN/SIGMA | = | .1 | MEDIAN | = | 20.3 |

NORMALIZED VARIANTS

VARIANT 1MEAN = 25.3SIGMA = 22.7MEAN/SIGMA = 2.6MEDIAN = 24.8VARIANT 2MEAN = -.5SIGMA = -5.9MEAN/SIGMA = 5.3MEDIAN = -.5VARIANT 3MEAN = -1.7SIGMA = -7.0MEAN/SIGMA = 5.3MEDIAN = -1.5VARIANT 4MEAN = -2.8SIGMA = -6.8MEAN/SIGMA = 4.0MEDIAN = -2.7VARIANT 5MEAN = -8SIGMA = -3.7MEAN/SIGMA = 4.5MEDIAN = -7.7VARIANT 6MEAN = 1.0S.GMA = -3.6MEAN/SIGMA = 4.6MEDIAN = 1.0VARIANT 7MEAN = 2.8SIGMA = -2.6MEAN/SIGMA = 5.4MEDIAN = 2.8VARIANT 7MEAN = -2.3SIGMA = -3.6MEAN/SIGMA = 1.4MEDIAN = -3.8

H4TACT1

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.2 SIGMA = 52.4 MEAN/SIGMA = -6.3 MEDIAN = 38.6VARIANT 2 MEAN = 44.5 SIGMA = 49.0 MEAN/SIGMA = -4.5 MEDIAN = 37.8VARIANT 3 MEAN = 43.3 SIGMA = 47.7 MEAN/SIGMA = -4.4 MEDIAN = 36.6VARIANT 4 MEAN = 42.2 SIGMA = 46.9 MEAN/SIGMA = -4.7 MEDIAN = 35.0VARIANT 5 MEAN = 45.6 SIGMA = 50.0 MEAN/SIGMA = -4.4 MEDIAN = 38.7VARIANT 6 MEAN = 46.2 SIGMA = 50.9 MEAN/SIGMA = -4.6 MEDIAN = 39.4VARIANT 7 MEAN = 47.8 SIGMA = 52.3 MEAN/SIGMA = -4.5 MEDIAN = 41.1VARIANT 7 MEAN = 42.4 SIGMA = 48.1 MEAN/SIGMA = -5.6 MEDIAN = 34.6

NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.2 SIGMA = 52.4 MEAN/SIGMA = -4.3 MEDIAN = 38.6VARIANT 2 MEAN = -.5 SIGMA = -4.8 MEAN/SIGMA = 4.3 MEDIAN = -.8VARIANT 3 MEAN = -1.7 SIGMA = -6.1 MEAN/SIGMA = 4.4 MEDIAN = -2.0VARIANT 4 MEAN = -2.7 SIGMA = -6.3 MEAN/SIGMA = 3.6 MEDIAN = -2.7VARIANT 5 MEAN = .8 SIGMA = -3.0 MEAN/SIGMA = 3.8 MEDIAN = -3.7VARIANT 6 MEAN = 1.1 SIGMA = -2.6 MEAN/SIGMA = 3.7 MEDIAN = .8VARIANT 7 MEAN = 2.9 SIGMA = -1.6 MEAN/SIGMA = 4.4 MEDIAN = 2.7VARIANT 7 MEAN = 2.9 SIGMA = -1.6 MEAN/SIGMA = 4.4 MEDIAN = 2.7VARIANT 8 MEAN = -3.2 SIGMA = -3.9 MEAN/SIGMA = .7 MEDIAN = -3.7

256

·E,

TABLE D-IV (CONTINUED)

1

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 4

H4TACT?

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 42.2 | SIGMA | = | 46.0 | MEAN/SIGMA | Ξ | -7.8 | MEDIAN | = | 36.8 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | 2 | 42.2 | SIGMA | = | 46.5 | MEAN/SIGMA | = | -4.3 | MEDIAN | = | 35+9 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 4 | MEAN | 2 | 39.6 | SIGMA | = | 43.1 | MEAN/SIGMA | = | -7.5 | MEDIAN | = | 33.6 |
| VARIANT | 5 | MEAN | 2 | 43.1 | SIGMA | = | 47.0 | MEAN/SIGMA | = | -7.9 | MEDIAN | = | 37.0 |
| VARIANT | 6 | MEAN | = | 44.1 | SIGMA | Ŧ | 48.6 | MEAN/SIGMA | = | -4.6 | MEDIAN | = | 37.8 |
| VARIANT | 7 | MEAN | = | 45.4 | SIGMA | Ξ | 49.5 | MEAN/SIGMA | = | -4.1 | MEDIAN | Ξ | 39.3 |
| VARIANT | A | MEAN | z | 40.4 | SIGMA | = | 47.1 | MEAN/SIGMA | = | -6.6 | MEDIAN | Ξ | 29.7 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 42.2 SIGMA = 46.0 MEAN/SIGMA = -3.8 MEDIAN = 36.8 VARIANT 2 MEAN = -.4 SIGMA = -4.7 MEAN/SIGMA = 4.3 MEDIAN = -.4 VARIANT 3 MEAN = -1.7 SIGMA = -6.0 MEAN/SIGMA = 4.3 MEDIAN = -1.8VARIANT 4 MEAN = -2.5 SIGMA = -6.4 MEAN/SIGMA = 3.8 MEDIAN = -2.7VARIANT 5 MEAN = •9 SIGMA = -2.9 MEAN/SIGMA = 3.9 MEDIAN = •3 VARIANT 6 MEAN = 1.2 SIGMA = -2.6 MEAN/SIGMA = 3.8 MEDIAN = •7 VARIANT 7 MEAN = 3.0 SIGMA = -1.5 MEAN/SIGMA = 4.4 MEDIAN = 2.8VARIANT & MEAN = -3.6 SIGMA = -4.0 MEAN/SIGMA = .4 MEDIAN = -4.8

H4TANK1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 40.4 | SIGMA | z | 43.9 | MEAN/SIGMA | = | -7.6 | MEDIAN | = | 35.1 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 40.3 | SIGMA | = | 44.5 | MEAN/SIGMA | = | -4.2 | MEDIAN | = | 34•8 |
| VARIANT | 3 | MEAN | = | 39.2 | SIGMA | = | 43.5 | MEAN/SIGMA | 8 | -4.3 | MEDIAN | 2 | 33.5 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 5 | MEAN | = | 40.7 | SIGMA | Ŧ | 44.0 | MEAN/SIGMA | = | -3.2 | MEDIAN | 2 | 36.2 |
| VARIANT | 6 | MEAN | = | 42.4 | SIGMA | = | 47.0 | MEAN/SIGMA | = | -4.6 | MEDIAN | = | 36.2 |
| VARIANT | 7 | MEAN | = | 43.6 | SIGMA | z | 47.7 | MEAN/SIGMA | = | -4.1 | MEDIAN | z | 37.9 |
| VARIANT | A | MEAN | = | 39.6 | SIGMA | = | 44.8 | NEAN/SIGMA | = | -5.2 | MEDIAN | æ | 29.3 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 40.4 | SIGMA | = | 43.9 | MEAN/SIGMA | Ξ | -3.6 | MEDIAN | = | 35.1 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | 2 | SIGMA | Ξ | -4.7 | MEAN/SIGMA | = | 4.5 | MEDIAN | Ħ | -,3 |
| VARIANT | 3 | MEAN | = | -1.5 | SIGMA | = | -5.9 | MEAN/SIGMA | = | 4.4 | MEDIAN | z | -1•4 |
| VARIANT | 4 | MEAN | = | -2.7 | SIGMA | = | +6.3 | MEAN/SIGMA | = | 3.5 | MEDIAN | = | -2.9 |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | = | -2.9 | MEAN/SIGMA | = | 3.8 | MEDIAN | Ξ | •4 |
| VARIANT | 6 | MEAN | = | 1.5 | SIGMA | = | +2.5 | MEAN/SIGMA | = | 3.9 | MEDIAN | Ξ | 1.4 |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | | |
| | | | | | | | | MEAN/SIGMA | | | MEDIAN | Ξ | -4.5 |

257

"E

TABLE D-IV (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 4

H4TR251

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 40.3 | SIGMA | = | 43.6 | MEAN/SIGMA | Ξ | -3.3 | MEDIAN | Ξ | 34.5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|----|------|
| VARIANT | 2 | MEAN | = | 40•0 | SIGMA | = | 42.9 | MEAN/SIGMA | = | -3.0 | MEDIAN | Ξ. | 33•4 |
| VARIANT | 3 | MEAN | = | 38.9 | SIGMA | 2 | 41.9 | MEAN/SIGMA | Ξ | -3.1 | MEDIAN | Ξ | 32.3 |
| VARIANT | 4 | MEAN | = | 37.7 | SIGMA | = | 40.8 | MEAN/SIGMA | Ξ | -3.1 | MEDIAN | = | 31.3 |
| VARIANT | 5 | MEAN | = | 41.2 | SIGMA | 2 | 44.2 | MEAN/SIGMA | = | -2.9 | MEDIAN | Ξ | 34.7 |
| VARIANT | 6 | MEAN | Ŧ | 41.6 | SIGMA | = | 44.7 | MEAN/SIGMA | = | -3.1 | MEDIAN | = | 34.9 |
| VARIANT | 7 | MEAN | = | 43.3 | SIGMA | 3 | 46.3 | MEAN/SIGMA | = | -7.0 | MEDIAN | Ξ | 36.8 |
| VARIANT | 8 | MEAN | Ŧ | 38.7 | SIGMA | 3 | 42.9 | MEAN/SIGMA | = | -4.1 | MEDIAN | Ξ | 31.2 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 40.3 | SIGMA | Ξ | 43.6 | MEAN/SIGMA | = | -7.3 | MEDIAN | = | 34.5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 7 | SIGMA | 2 | -5.1 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | 5 |
| VARIANT | 3 | MEAN | = | -1.9 | SIGMA | 2 | -6.5 | MEAN/SIGMA | = | 4.5 | MEDIAN | = | -i.8 |
| VARIANT | 4 | MEAN | Ξ | -3.1 | SIGMA | 2 | -6.3 | MEAN/SIGMA | Ξ | 3.2 | MEDIAN | Ŧ | -3.4 |
| VARIANT | 5 | MEAN | Ξ | •7 | SIGMA | = | -3.0 | MEAN/SIGMA | = | 3.6 | MEDIAN | = | .1 |
| VARIANT | 6 | MEAN | = | •8 | SIGMA | 3 | -3.1 | MEAN/SIGMA | Ξ | 3.9 | MEDIAN | Ξ | •5 |
| VARIANT | 7 | MEAN | Ξ | 2.7 | SIGMA | = | -1.7 | MEAN/SIGMA | = | 4.3 | MEDIAN | ŧ | 2.9 |
| VARIANT | 8 | MEAN | = | -3.0 | SIGMA | ¥ | -4.7 | MEAN/SIGMA | Ξ | 1,8 | MEDIAN | Ξ | -3.7 |

E. T.

| | | | TABLE D- | - V | | | | |
|-------------|------------|-----|----------|----------|------|---------|-------|---|
| STATISTICAL | PARAMETERS | FOR | TARGETS | SELECTED | FROM | BARSTON | SCENE | 5 |

1

H5DARK

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 21.5 SIGMA = 21.5 MEAN/SIGMA = .0 MEDIAN = 19.2
VARIANT 2 MEAN = 21.8 SIGMA = 22.6 MEAN/SIGMA = .8 MEDIAN = 19.0
VARIANT 3 MEAN = 20.6 SIGMA = 21.3 MEAN/SIGMA = .7 MEDIAN = 17.8
VARIANT 4 MEAN = 19.4 SIGMA = 20.7 MEAN/SIGMA = .1.2 MEDIAN = 16.2
VARIANT 5 MEAN = 23.0 SIGMA = 24.2 MEAN/SIGMA = .1.2 MEDIAN = 19.8
VARIANT 6 MEAN = 23.5 SIGMA = 24.1 MEAN/SIGMA = .6 MEDIAN = 21.1
VARIANT 7 MEAN = 25.1 SIGMA = 25.9 MEAN/SIGMA = .8 MEDIAN = 22.4
VARIANT 8 MEAN = 19.5 SIGMA = 20.6 MEAN/SIGMA = .1.1 MEDIAN = 16.8
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 21.5 SIGMA = 21.5 MEAN/SIGMA = .0 MEDIAN = 19.2
VARIANT 2 MEAN = .1 SIGMA = .4.6 MEAN/SIGMA = .0
VARIANT 3 MEAN = -1.1 SIGMA = .6.1 MEAN/SIGMA = .0
VARIANT 4 MEAN = .2.5 SIGMA = .6.1 MEAN/SIGMA = .3.6 MEDIAN = .1.2
VARIANT 5 MEAN = 1.2 SIGMA = .3.0 MEAN/SIGMA = .4.2 MEDIAN = .2.9
VARIANT 6 MEAN = 1.9 SIGMA = .2.4 MEAN/SIGMA = .4.4 MEDIAN = 1.1
VARIANT 7 MEAN = .3.5 SIGMA = .1.5 MEAN/SIGMA = .5.0 MEDIAN = .3.4
VARIANT 7 MEAN = .2.0 SIGMA = .4.7 MEAN/SIGMA = .2.7 MEDIAN = .2.1
```

H5SAND1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 23.7 | SIGMA | Ξ | 19,4 | MEAN/SIGMA | = | 4.3 | MEDIAN | Ξ | 23.1 |
|----------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VADTANT | 2 | MEAN | = | 23.0 | SIGMA | 3 | 21+0 | MEAN/SIGMA | - | 2.0 | MEDIWN | - | 2200 |
| | 5 | MEAN | - | 21.0 | STGMA | Ħ | 19.0 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 21.4 |
| VAR LONI | 3 | MEAN | _ | 20 6 | SIGNA | _ | 18 4 | MEAN/SIGMA | = | 2.0 | MEDIAN | Ξ | 19.7 |
| VARIANT | 4 | MEAN | - | 24.0 | SIGMA | - | 32 3 | MEANISTOMA | = | 2.1 | MEDIAN | = | 23.9 |
| VARIANT | 5 | MEAN | Ξ | 24.3 | SIGMA | - | 66.6 | MEAN/SIGMA | - | | MEDIAN | - | 27.6 |
| VARIANT | 6 | MEAN | Ξ | 24.6 | SIGMA | 2 | 23.1 | MEAN/SIGMA | - | | NEDIAN | Ξ | 25 7 |
| VARIANT | 7 | MEAN | Ξ | 26.3 | SIGMA | 3 | 24.2 | MEAN/SIGMA | = | 2.2 | MEDIMN | - | 23.1 |
| VARIANT | A | MEAN | = | 20.9 | SIGMA | 3 | 51.1 | MEAN/SIGMA | Ξ | -,2 | MEDIAN | = | 18.4 |

NORMALIZED VARIANTS

| VARTANT | 1 | MFAN | = | 23.7 | SIGMA | 2 | 19.4 | MEAN/SIGMA | z | | MEDIAN | | |
|---------|---|------|---|------|-------|---|------|------------|---|----|--------|---|------|
| VARTANT | 2 | MFAN | = | 9 | SIGMA | 2 | -4.7 | MEAN/SIGMA | = | | MEDIAN | | |
| VARTANT | 3 | MFAN | Ξ | -2.1 | SIGMA | = | -5.9 | MEAN/SIGMA | 2 | | MEDIAN | | |
| VARIANT | 4 | MEAN | = | -3.2 | SIGMA | Ξ | =6.5 | MEAN/SIGMA | = | | MEDIAN | | |
| VARIANT | 5 | MEAN | Ξ | .5 | SIGMA | × | -3.2 | MEAN/SIGMA | 2 | | MEDIAN | | |
| VARIANT | 6 | MEAN | Ħ | .6 | SIGMA | | -2.5 | MEAN/SIGMA | 2 | | MEDIAN | | |
| VARIANT | | | | 2.4 | SIGMA | Ħ | -1.6 | MEAN/SIGMA | H | | MEDIAN | | |
| VARIANT | Å | MEAN | 3 | -3.1 | SIGMA | I | -3.9 | MEAN/SIGMA | = | •8 | MEDIAN | 2 | -4.9 |

259

1. 1

·e

TABLE D-V (CONTINUED)

- 1

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 5

H5TACT2

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 39.0 | SIGMA | = | 41.0 | MEAN/SIGMA | = | -2.0 | MEDIAN | = | 35.9 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 38.5 | SIGMA | = | 40.0 | MEAN/SIGMA | = | -1.5 | MEDIAN | = | 34•7 |
| VARIANT | 3 | MEAN | 3 | 37.3 | SIGMA | 2 | 38.7 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | = | 33.4 |
| VARIANT | 4 | MEAN | = | 35.8 | SIGMA | 2 | 37.5 | MEAN/SIGMA | Ξ | -1.7 | MEDIAN | = | 32.4 |
| VARIANT | 5 | MEAN | * | 39.5 | SIGMA | = | 41.2 | MEAN/SIGMA | Ξ | -1.7 | MEDIAN | = | 36.2 |
| VARIANT | 6 | MEAN | = | 40.3 | SIGMA | = | 41.8 | MEAN/SIGMA | Ξ | -1.5 | MEDIAN | = | 36.5 |
| VARIANT | 7 | MEAN | 8 | 41.8 | SIGMA | 3 | 43.3 | MEAN/SIGMA | = | -1.5 | MEDIAN | = | 38.1 |
| VARIANT | R | MEAN | z | 36.8 | SIGMA | 2 | 38.A | MEAN/SIGMA | = | -1.9 | MEDIAN | = | 32.3 |

NORMALIZED VARIANTS

VARIANT 1 MEAN = 39.0 SIGMA = 41.0 MEAN/SIGMA = -2.0 MEDIAN = 35.9VARIANT 2 MEAN = -2 SIGMA = -5.1 MEAN/SIGMA = 4.8 MEDIAN = -3VARIANT 3 MEAN = -1.5 SIGMA = -6.4 MEAN/SIGMA = 4.9 MEDIAN = -1.5VARIANT 4 MEAN = -2.8 SIGMA = -6.6 MEAN/SIGMA = 3.8 MEDIAN = -2.9VARIANT 5 MEAN = -9 SIGMA = -3.8 MEAN/SIGMA = 4.7 MEDIAN = -2.9VARIANT 6 MEAN = 1.5 SIGMA = -2.3 MEAN/SIGMA = 3.8 MEDIAN = -2.9VARIANT 6 MEAN = 1.5 SIGMA = -2.3 MEAN/SIGMA = 3.8 MEDIAN = 1.2VARIANT 7 MEAN = 3.1 SIGMA = -1.9 MEAN/SIGMA = 5.0 MEDIAN = 3.0VARIANT 7 MEAN = -2.3 SIGMA = -3.9 MEAN/SIGMA = 1.6 MEDIAN = -2.9

Н5ТАСТЗ

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 39.1 | SIGMA | = | 41.1 | MEAN/SIGMA | Ξ | -2.1 | MEDIAN | = | 35.5 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | 38•5 | SIGMA | Ξ | 39.9 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | = | 34•3 |
| VARIANT | 3 | MEAN | Ξ | 37.3 | SIGMA | Ξ | 38.6 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | = | 33.0 |
| VARIANT | 4 | MEAN | Ξ | 35.8 | SIGMA | 2 | 37.4 | MEAN/SIGMA | = | -1.6 | MEDIAN | Ξ | 31.9 |
| VARIANT | 5 | MEAN | = | 39.5 | SIGMA | Ξ | 41.1 | MEAN/SIGMA | Ξ | -1.6 | MEDIAN | = | 36.0 |
| VARIANT | 6 | MEAN | = | 40.3 | SIGMA | = | 41.7 | MEAN/SIGMA | Ŧ | -1.5 | MEDIAN | = | 35.7 |
| VARIANT | 7 | MEAN | Ξ | 41.9 | SIGMA | = | 43.2 | MEAN/SIGMA | = | -1.4 | MEDIAN | = | 38.0 |
| VARIANT | A | MEAN | × | 36.7 | SIGMA | Ξ | 38.5 | MEAN/SIGMA | = | -1.8 | MEDIAN | = | 33.4 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 39.1 | SIGMA | = | 41.1 | MEAN/SIGMA | Ξ | -2.1 | MEDIAN | = | 35.5 |
|---------|---|------|---|-------------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | ~ •4 | SIGMA | 2 | -5.0 | MEAN/SIGMA | = | 4.7 | MEDIAN | = | -•5 |
| VARIANT | З | MEAN | = | -1.6 | SIGMA | з | -6.3 | MEAN/SIGMA | 2 | 4.7 | MEDIAN | = | -1.6 |
| VARIANT | 4 | MEAN | Ħ | -3.0 | SIGMA | = | -6.7 | MEAN/SIGMA | = | 3.7 | MEDIAN | = | -2.9 |
| VARIANT | 5 | MEAN | = | •7 | SIGMA | = | -3.8 | MEAN/SIGMA | = | 4.5 | MEDIAN | = | •8 |
| VARIANT | 6 | MEAN | Ξ | 1.4 | SIGMA | s | -2.4 | MEAN/SIGMA | = | 3.8 | MEDIAN | = | •9 |
| VARIANT | 7 | MEAN | = | З.О | SIGMA | | -1.9 | MEAN/SIGMA | = | 4.9 | MEDIAN | = | 2.8 |
| VARIANT | A | MEAN | Ξ | -2.5 | SIGMA | Ħ | -4.0 | MEAN/SIGMA | Ξ | 1.5 | MEDIAN | = | -3.5 |

260

"Ein it it

TABLE D-V (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 5

H5TANK1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 35.4 | SIGMA | = | 36.0 | MEAN/SIGMA | = | 5 | MEDIAN | = | 33.3 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | 35•3 | SIGMA | æ | 36.0 | MEAN/SIGMA | = | 7 | MEDIAN | = | 32+8 |
| VARIANT | 3 | MEAN | = | 34.0 | SIGMA | Ξ | 34.6 | MEAN/SIGMA | = | 6 | MEDIAN | = | 31.4 |
| VARIANT | 4 | MEAN | = | 32.6 | SIGMA | Ξ | 33.6 | MEAN/SIGMA | Ξ | -1.0 | MEDIAN | Ξ | 29.5 |
| VARIANT | 5 | MEAN | Ξ | 36.2 | SIGMA | 3 | 36.8 | MEAN/SIGMA | = | 6 | MEDIAN | = | 33.7 |
| VARIANT | 6 | MEAN | Ξ | 37.2 | SIGMA | Ŧ | 38.1 | MEAN/SIGMA | = | 9 | MEDIAN | = | 34.7 |
| VARIANT | 7 | MEAN | Ξ | 38.7 | SIGMA | = | 39.5 | MEAN/SIGMA | Ξ | -,8 | MEDIAN | = | 36.3 |
| VARIANT | 8 | MEAN | Ξ | 33.5 | SIGMA | = | 34.9 | MEAN/SIGMA | = | -1.4 | MEDIAN | = | 29.7 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 35.4 | SIGMA | Ŧ | 36.0 | MEAN/SIGMA | Ξ | 5 | MEDIAN | Ξ | 33.3 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | -•2 | SIGMA | = | •6.2 | MEAN/SIGMA | = | 6.0 | MEDIAN | = | -•2 |
| VARIANT | 3 | MEAN | 2 | -1.4 | SIGMA | = | -7.4 | MEAN/SIGMA | = | 6.0 | MEDIAN | = | -1.3 |
| VARIANT | 4 | MEAN | = | -2.7 | SIGMA | = | -6.5 | MEAN/SIGMA | = | 3.8 | MEDIAN | = | -2.5 |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | Ξ | -4.1 | MEAN/SIGMA | = | 5.0 | MEDIAN | Ξ | •9 |
| VARIANT | 6 | MEAN | Ξ | 1.6 | SIGMA | = | -3.5 | MEAN/SIGMA | = | 5.1 | MEDIAN | Ξ | 1•4 |
| VARIANT | 7 | MEAN | Ξ | 3.3 | SIGMA | = | -3.0 | MEAN/SIGMA | = | 6.2 | MEDIAN | ⊐ | 3.2 |
| VARIANT | A | MEAN | = | -2.1 | SIGMA | = | -4.1 | MEAN/SIGMA | = | 2.0 | MEDIAN | Ξ | -2•6 |

н5талк

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 34.5 | SIGMA | Ξ | 35.5 | MEAN/SIGMA | = | -1.1 | MEDIAN | 2 | 31.9 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 34•3 | SIGMA | 2 | 35•4 | MEAN/SIGMA | = | -1.1 | MEDIAN | = | 32+5 |
| VARIANT | 3 | MEAN | Ξ | 32.9 | SIGMA | Ξ | 33.9 | MEAN/SIGMA | = | 9 | MEDIAN | = | 31.2 |
| VARIANT | 4 | MEAN | = | 31.7 | SIGMA | Ξ | 33.1 | MEAN/SIGMA | = | -1.4 | MEDIAN | = | 29.3 |
| VARIANT | 5 | MEAN | = | 35.1 | SIGMA | Ξ | 35.9 | MEAN/SIGMA | = | 7 | MEDIAN | = | 33.3 |
| VARIANT | 6 | MEAN | = | 36.2 | SIGMA | # | 37.6 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | Ξ | 34.3 |
| VARIANT | 7 | MEAN | Ξ | 37.7 | SIGMA | 3 | 38.9 | MEAN/SIGMA | = | -1.2 | MEDIAN | = | 36.0 |
| VARIANT | 8 | MEAN | = | 32.0 | SIGMA | = | 33.1 | MEAN/SIGMA | = | -1.1 | MEDIAN | = | 29.3 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 34.5 | SIGMA | = | 35.5 | MEAN/SIGMA | = | -1.1 | MEDIAN | = | 31.9 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 1 | SIGMA | = | -6.2 | MEAN/SIGMA | = | 6.0 | MEDIAN | = | 2 |
| VARIANT | 3 | MEAN | = | -1.4 | SIGMA | 2 | -7.4 | MEAN/SIGMA | = | 6.0 | MEDIAN | = | -1.4 |
| VARIANT | 4 | MEAN | = | -2.6 | SIGMA | z | -6.5 | MEAN/SIGMA | = | 3.9 | MEDIAN | = | -2.4 |
| VARIANT | 5 | MEAN | Ξ | 1.0 | SIGMA | 3 | -3.9 | MEAN/SIGMA | = | 4.9 | MEDIAN | = | 1.0 |
| VARIANT | 6 | MEAN | = | 1.6 | SIGMA | 3 | -3.5 | MEAN/SIGMA | = | 5.0 | MEDIAN | Ξ | 1.4 |
| VARIANT | 7 | MEAN | Ξ | 3.3 | SIGMA | = | -3.0 | MEAN/SIGMA | = | 6.2 | MEDIAN | = | 3.2 |
| VARIANT | A | MEAN | = | -2.3 | SIGMA | = | -4.2 | MEAN/SIGMA | = | 1.8 | MEDIAN | 3 | -2.7 |

TABLE D-V (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 5

. .

H5SAND2

UN-NORMALIZED VARIANTS

| | | | | | | | | MEAN/SIGMA | | 4.1 | MEDIAN | = | 23.7 |
|---------|---|------|---|--------------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | 53•5 | SIGMA | 3 | 20+9 | MEAN/SIGMA | = | 2.3 | MEDIAN | = | 22.9 |
| VARIANT | 3 | MEAN | Ξ | 55.0 | SIGMA | 3 | 19.A | MEAN/SIGMA | Ξ | 2.2 | MEDIAN | = | 21.7 |
| VARIANT | 4 | MEAN | = | 20. 8 | SIGMA | = | 18.8 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 20.3 |
| VARIANT | 5 | MEAN | = | 24.5 | SIGMA | 2 | 22.4 | MEAN/SIGMA | = | 2.1 | MEDIAN | = | 24.0 |
| VARIANT | 6 | MEAN | = | 24.7 | SIGMA | = | 22.9 | MEAN/SIGMA | = | 1.9 | MEDIAN | = | 23.9 |
| VARIANT | 7 | MEAN | Ŧ | 26.5 | SIGMA | z | 24.2 | MEAN/SIGMA | = | 2.4 | MEDIAN | = | 26.2 |
| VARIANT | 8 | MEAN | = | 50°8 | SIGMA | = | 51.1 | MEAN/SIGMA | = | 2 | MEDIAN | = | 18.4 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 23.9 | SIGMA | = | 19.7 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | 23.7 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 8 | SIGMA | Ξ | -4.9 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | -1.0 |
| VARIANT | 3 | MEAN | = | -2.0 | SIGMA | Ħ | -6-1 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | -1.9 |
| VARIANT | 4 | MEAN | = | -3.1 | SIGMA | з | -6.4 | MEAN/SIGMA | = | 3.3 | MEDIAN | = | -3.3 |
| VARIANT | 5 | MEAN | = | •6 | SIGMA | ₽ | -3.0 | MEAN/SIGMA | = | 3.6 | MEDIAN | Ξ | .2 |
| VARIANT | 6 | MEAN | = | •8 | SIGMA | Ξ | -2.8 | MEAN/SIGMA | = | 3.5 | MEDIAN | = | •5 |
| VARIANT | 7 | MEAN | = | 2.6 | SIGMA | = | -1.7 | MEAN/SIGMA | z | 4.3 | MEDIAN | = | 2.4 |
| VARIANT | 8 | MEAN | = | -3.3 | SIGMA | Ξ | -4.0 | MEAN/SIGMA | = | .8 | MEDIAN | Ξ | -5.4 |

H5TACT1

R

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 40.6 | SIGMA | = | 42.3 | MEAN/SIGMA | = | -1.7 | MEDIAN | = | 37.0 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 39•7 | SIGMA | = | 40.8 | MEAN/SIGMA | = | -1.1 | MEDIAN | Ξ | 36.5 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 4 | MEAN | Ħ | 37.2 | SIGMA | Ξ | 38.6 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | = | 34.2 |
| VARIANT | 5 | MEAN | = | 40.9 | SIGMA | = | 42.4 | MEAN/SIGMA | Ξ | -1.4 | MEDIAN | Ξ | 38.0 |
| VARIANT | 6 | MEAN | 2 | 41.3 | SIGMA | з | 42.4 | MEAN/SIGMA | = | -1.1 | MEDIAN | = | 39.0 |
| VARIANT | 7 | MEAN | = | 43.1 | SIGMA | Ξ | 44.3 | MEAN/SIGMA | = | -1.2 | MEDIAN | = | 39.8 |
| VARIANT | 8 | MEAN | = | 38.2 | SIGMA | Э | 39.7 | MEAN/SIGMA | = | -1.5 | MEDIAN | = | 34.8 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 40.6 | SIGMA | = | 42.3 | MEAN/SIGMA | = | -1.7 | MEDIAN | = | 37.0 |
|---------|---|------|---|------|-------|---|--------|------------|---|------|--------|---|------|
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 3 | MEAN | 2 | -1.7 | SIGMA | 3 | -6.3 | MEAN/SIGMA | = | 4.6 | MEDIAN | ₽ | -1.9 |
| VARIANT | 4 | MEAN | = | -2.8 | SIGMA | Ξ | +7.3 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | -3.1 |
| VARIANT | 5 | MEAN | 2 | •8 | SIGMA | = | -4.3 | MEAN/SIGMA | Ξ | 5.1 | MEDIAN | Ξ | .7 |
| | | | | | | | | MEAN/SIGMA | | | | | |
| VARIANT | 7 | MEAN | 2 | 3.0 | SIGMA | = | -1.9 | MEAN/SIGMA | = | 4.9 | MEDIAN | Ξ | 5.8 |
| VARIANT | 8 | MEAN | z | -2.6 | SIGMA | 3 | •4 • 1 | MEAN/SIGMA | Ξ | 1.5 | MEDIAN | Ξ | -3.5 |

262

TABLE D-V (CONTINUED)STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 5

4

H5TR251

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 38.8 SIGMA = 39.3 MEAN/SIGMA = -.6 MEDIAN = 35.5VARIANT 2 MEAN = 38.9 SIGMA = 40.0 MEAN/SIGMA = -1.2 MEDIAN = 34.6VARIANT 3 MEAN = 37.7 SIGMA = 38.8 MEAN/SIGMA = -1.1 MEDIAN = 33.3VARIANT 4 MEAN = 35.6 SIGMA = 36.6 MEAN/SIGMA = -1.1 MEDIAN = 32.1VARIANT 5 MEAN = 39.4 SIGMA = 40.4 MEAN/SIGMA = -1.0 MEDIAN = 36.3VARIANT 6 MEAN = 40.9 SIGMA = 42.3 MEAN/SIGMA = -1.4 MEDIAN = 36.5VARIANT 7 MEAN = 42.1 SIGMA = 43.3 MEAN/SIGMA = -1.2 MEDIAN = 38.0VARIANT 8 MEAN = 36.9 SIGMA = 38.4 MEAN/SIGMA = -1.6 MEDIAN = 32.2

NORMALIZED VARIANTS

VARIANT 1 MEAN = 38.8 SIGMA = 39.3 MEAN/SIGMA = -.6 MEDIAN = 35.5VARIANT 2 MEAN = .0 SIGMA = -4.5 MEAN/SIGMA = 4.5 MEDIAN = .1VARIANT 3 MEAN = -1.2 SIGMA = -5.9 MEAN/SIGMA = 4.7 MEDIAN = -1.0VARIANT 4 MEAN = -2.8 SIGMA = -6.2 MEAN/SIGMA = 3.3 MEDIAN = -2.7VARIANT 5 MEAN = .9 SIGMA = -3.2 MEAN/SIGMA = 4.1 MEDIAN = .9VARIANT 6 MEAN = 1.8 SIGMA = -1.9 MEAN/SIGMA = 3.7 MEDIAN = 1.8VARIANT 7 MEAN = 3.3 SIGMA = -1.3 MEAN/SIGMA = 3.7 MEDIAN = 1.8VARIANT 7 MEAN = 3.3 SIGMA = -1.3 MEAN/SIGMA = 4.6 MEDIAN = 3.2VARIANT 7 MEAN = -2.1 SIGMA = -3.6 MEAN/SIGMA = 1.5 MEDIAN = -2.6

263

"E.,

TABLE D-VI

- i

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 6

H6TANK1

. . .

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 50.9 SIGMA = 53.6 MEAN/SIGMA = -2.6 MEDIAN = 45.4
VARIANT 2 MEAN = 50.4 SIGMA = 53.1 MEAN/SIGMA = -2.7 MEDIAN = 45.6
VARIANT 3 MEAN = 49.1 SIGMA = 51.7 MEAN/SIGMA = -2.7 MEDIAN = 44.3
VARIANT 4 MEAN = 47.5 SIGMA = 49.9 MEAN/SIGMA = -2.4 MEDIAN = 42.8
VARIANT 5 MEAN = 51.3 SIGMA = 53.7 MEAN/SIGMA = -2.4 MEDIAN = 42.8
VARIANT 6 MEAN = 52.2 SIGMA = 55.7 MEAN/SIGMA = -3.0 MEDIAN = 46.7
VARIANT 7 MEAN = 53.9 SIGMA = 56.6 MEAN/SIGMA = -2.7 MEDIAN = 49.0
VARIANT 8 MEAN = 47.7 SIGMA = 51.3 MEAN/SIGMA = -3.6 MEDIAN = 49.0
```

NORMALIZED VARIANTS

VARIANT] MEAN = 50.9 SIGMA = 53.6 MEAN/SIGMA = -7.6 MEDIAN = 45.4 VARIANT 2 MEAN = -.4 SIGMA = -5.2 MEAN/SIGMA = 4.8 MEDIAN = -.7 VARIANT 3 MEAN = -1.7 SIGMA = -6.6 MEAN/SIGMA = 4.9 MEDIAN = -1.8VARIANT 4 MEAN = -2.9 SIGMA = -7.3 MEAN/SIGMA = 4.4 MEDIAN = -2.9 .8 SIGMA = -4.1 MEAN/SIGMA = •6 VARIANT 5 MEAN = 4.8 MEDIAN = VARIANT 6 MEAN = 1.3 SIGMA = -2.7 MEAN/SIGMA = 3.9 MEDIAN = • 8 VARIANT 7 MEAN = 3.0 SIGMA = -2.1 MEAN/SIGMA = 5.2 MEDIAN = 2.8 VARIANT & MEAN = -3.3 SIGMA = -5.3 MEAN/SIGMA = 1.9 MEDIAN = -3.4

H6TR251

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 57 \cdot 1 SIGMA = 58 \cdot 6 MEAN/SIGMA = -1 \cdot 5 MEDIAN = 53 \cdot 7
VARIANT 2 MEAN = 56 \cdot 3 SIGMA = 57 \cdot 4 MEAN/SIGMA = -1 \cdot 2 MEDIAN = 52 \cdot 5
VARIANT 3 MEAN = 55 \cdot 0 SIGMA = 56 \cdot 3 MEAN/SIGMA = -1 \cdot 2 MEDIAN = 51 \cdot 3
VARIANT 4 MEAN = 53 \cdot 8 SIGMA = 55 \cdot 7 MEAN/SIGMA = -1 \cdot 8 MEDIAN = 50 \cdot 8
VARIANT 5 MEAN = 57 \cdot 4 SIGMA = 58 \cdot 8 MEAN/SIGMA = -1 \cdot 4 MEDIAN = 54 \cdot 6
VARIANT 6 MEAN = 57 \cdot 9 SIGMA = 59 \cdot 2 MEAN/SIGMA = -1 \cdot 2 MEDIAN = 54 \cdot 6
VARIANT 7 MEAN = 59 \cdot 7 SIGMA = 61 \cdot 0 MEAN/SIGMA = -1 \cdot 3 MEDIAN = 56 \cdot 3
VARIANT 8 MEAN = 54 \cdot 3 SIGMA = 56 \cdot 6 MEAN/SIGMA = -2 \cdot 3 MEDIAN = 48 \cdot 5
```

NORMALIZED VARIANTS

| | | | | | | | | MEAN, SIGMA | | | | | |
|--------------------|---|------|---|------|-------|---|------|-------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | Ξ | 5 | SIGMA | 3 | =4.9 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | -•7 |
| VAPIANT | 3 | MEAN | = | -1.7 | SIGMA | 3 | +6+1 | MEAN/SIGMA | = | 4.4 | MEDIAN | # | -2.1 |
| VERTANT | 4 | MEAN | = | -2.8 | SIGMA | 3 | -6.5 | MEAN/SIGMA | = | 3.7 | MEDIAN | = | -3.2 |
| . A 7 1 A 41 | 5 | MEAN | = | •8 | SIGMA | z | -2.9 | MEAN/SIGMA | Ŧ | 3.7 | MEDIAN | = | • 4 |
| VE PLANT | 6 | MEAN | = | 1.0 | SIGMA | = | -2.8 | MEAN/SIGMA | = | ٦.9 | MEDIAN | = | •8 |
| | 7 | MEAN | = | 2.8 | SIGMA | 3 | -1.8 | MEAN/SIGMA | - | 4.7 | MEDIAN | = | 2.7 |
| 5 - 5 4 4 5 | 8 | MEAN | 2 | -3.2 | SIGMA | 3 | -3.8 | MEAN/SIGMA | Ξ | •5 | MEDIAN | = | -4.0 |

264

+ With Faring

'C.

TABLE D-VII

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM BARSTOW SCENE 7

H7TANK1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 53.6 | SIGMA | = | 54.5 | MEAN/SIGMA | = | -,9 | MEDIAN | 2 | 50.5 |
|---------|---|------|---|------|-------|---|------|-------------|---|------|--------|---|------|
| VARTANT | 2 | MEAN | Ξ | 52.8 | STGMA | = | 53.8 | MEAN/DIGMA | = | -1.0 | MEDIAN | = | 49.8 |
| VARTANT | 3 | MFAN | = | 51.7 | SIGMA | 2 | 52.7 | MEAN' SIGMA | = | -1.0 | MEDIAN | - | 48.9 |
| VARTANT | 4 | MEAN | = | 50.5 | SIGMA | 2 | 51.9 | MEAN/SIGMA | = | -1.4 | MEDIAN | Ŧ | 46.9 |
| VARTANT | 5 | ΜΕΔΝ | = | 54.1 | SIGMA | z | 55.0 | MEAN/SIGMA | = | -1.0 | MEDIAN | = | 50.2 |
| VARTANT | 6 | ΜΕΔΝ | = | 54.3 | SIGMA | 2 | 55.6 | MEAN/SIGMA | 2 | -1,2 | MEDIAN | = | 51.1 |
| VARTANT | 7 | MEAN | Ξ | 56.1 | SIGMA | 2 | 57.1 | MEAN/SIGMA | = | -1,0 | MEDIAN | Ξ | 53.V |
| VARIANT | Ŕ | MEAN | = | 51.6 | SIGMA | = | 53.7 | MEAN/SIGMA | 2 | -2,1 | MEDIAN | = | 47.2 |

NORMALIZED VARIANTS

| VARTANT 1 M | AEAN = | 53.6 | SIGMA | z | 54.5 | MEAN/SIGMA | = | | EDIAN | | |
|-------------|--------|------|-------|---|------|------------|---|-------|-------|---|------|
| VARIANT 2 M | MFAN = | 6 | SIGMA | 2 | -5.9 | MEAN/SIGMA | 2 | | EDIAN | | |
| VARIANT 3 M | HEAN = | -1.8 | SIGMA | Ħ | -7.2 | MEAN/SIGMA | 2 | 5.4 M | EDIAN | = | -1.9 |
| VARTANT 4 M | VEAN = | -2.9 | SIGMA | = | -6.0 | MEAN/SIGMA | = | 3.1 M | EDIAN | = | -3.0 |
| VARIANT 5 | WEAN = | .7 | SIGMA | = | -3.3 | MEAN/SIGMA | = | 4,1 1 | EDIAN | Ξ | •5 |
| VARIANT 6 | VEAN = | 1.0 | STGMA | z | -4.2 | MEAN/SIGMA | z | 5.2 M | EDIAN | = | •8 |
| VARIANT 7 | MEAN = | 2.8 | SIGMA | 3 | -2.7 | MEAN/SIGMA | 2 | 5.5 | EDIAN | = | 2.8 |
| VARIANT A | MEAN = | -2.6 | SIGMA | = | -4-3 | MEAN/SIGMA | Ŀ | 1.7 1 | EDIAN | = | -3.8 |

·E,

TABLE D-VIII

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P4TR25

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.9 SIGMA = 47.0 MEAN/SIGMA = -.2 MEDIAN = 44.4 VARIANT 2 MEAN = 46.5 SIGMA = 47.2 MEAN/SIGMA = -.6 MEDIAN = 44.7 VARIANT 3 MEAN = 45.4 SIGMA = 45.9 MEAN/SIGMA = -.5 MEDIAN = 44.1 VARIANT 4 MEAN = 44.6 SIGMA = 45.6 MEAN/SIGMA = -1.0 MEDIAN = 41.9 VARIANT 5 MEAN = 48.2 SIGMA = 49.5 MEAN/SIGMA = -1.3 MEDIAN = 46.3 VARIANT 6 MEAN = 47.8 SIGMA = 47.6 MEAN/SIGMA = -.7 MEDIAN = 46.2 VARIANT 7 MEAN = 49.9 SIGMA = 50.6 MEAN/SIGMA = -.7 MEDIAN = 47.6 VARIANT 7 MEAN = 45.2 SIGMA = 45.5 MEAN/SIGMA = -.3 MEDIAN = 47.6 VARIANT 8 MEAN = 45.2 SIGMA = 45.5 MEAN/SIGMA = -.3 MEDIAN = 40.3

NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.9 SIGMA = 47.0 MEAN/SIGMA = -.2 MEDIAN = 44.4 3.9 MEDIAN = -.5 VARIANT 2 MEAN = -.6 SIGMA = -4.4 MEAN/SIGMA = 4.1 MEDIAN = -1.4 VARIANT 3 MEAN = -1.7 SIGMA = -5.8 MEAN/SIGMA = VARIANT 4 MEAN = -2.8 SIGMA = -5.7 MEAN/SIGMA = 2.9 MEDIAN = -3.0VARIANT 5 MEAN = •6 SIGMA = •2.8 MEAN/SIGMA = 3.5 MEDIAN = •9 VARIANT 6 MEAN = 1.1 SIGMA = -2.5 MEAN/SIGMA = 3.6 MEDIAN = •5 VARIANT 7 MEAN = 2.8 SIGMA = -1.2 MEAN/SIGMA = 4.0 MEDIAN = 2.5 VARIANT & MEAN = -2.3 SIGMA = -4.5 MEAN/SIGMA = 2.2 MEDIAN = -3.1

P4VAN

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 51.6 SIGMA = 55.6 MEAN/SIGMA = -3.9 MEDIAN = 43.4 VARIANT 2 MEAN = 48.9 SIGMA = 51.6 MEAN/SIGMA = -2.7 MEDIAN = 44.9 VARIANT 3 MEAN = 47.7 SIGMA = 50.3 MEAN/SIGMA = -2.6 MEDIAN = 43.4 VARIANT 4 MEAN = 46.7 SIGMA = 49.7 MEAN/SIGMA = -3.0 MEDIAN = 43.4 VARIANT 5 MEAN = 50.1 SIGMA = 52.7 MEAN/SIGMA = -2.6 MEDIAN = 43.4 VARIANT 6 MEAN = 50.7 SIGMA = 53.5 MEAN/SIGMA = -2.6 MEDIAN = 46.0 VARIANT 6 MEAN = 52.3 SIGMA = 53.5 MEAN/SIGMA = -2.8 MEDIAN = 45.7 VARIANT 7 MEAN = 52.3 SIGMA = 55.0 MEAN/SIGMA = -2.7 MEDIAN = 48.2 VARIANT 8 MEAN = 48.0 SIGMA = 51.1 MEAN/SIGMA = -3.1 MEDIAN = 41.0

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 51.6 | SIGMA | 3 | 55.6 | MEAN/SIGMA | Ξ | -7.9 | MEDIAN | Ξ | 43.4 |
|---------|---|------|---|-------------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | - •2 | SIGMA | Ξ | -4.4 | MEAN/SIGMA | = | 4.2 | MEDIAN | Ξ | -+6 |
| VARIANT | 3 | MEAN | = | -1.5 | SIGMA | Ŧ | -5.8 | MEAN/SIGMA | Ŧ | 4.3 | MEDIAN | = | -1.9 |
| VARIANT | 4 | MEAN | Ξ | -2.8 | SIGMA | = | +6.2 | MEAN/SIGMA | = | 3.4 | MEDIAN | 3 | -3.2 |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | = | -3.6 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | .8 |
| VARIANT | 6 | MEAN | = | 1.6 | SIGMA | = | -1.8 | MEAN/SIGMA | = | 3.3 | MEDIAN | = | 2.0 |
| VARIANT | 7 | MEAN | = | 3.1 | SIGMA | g | -1.2 | MEAN/SIGMA | = | 4.4 | MEDIAN | = | 5.6 |
| VARIANT | R | MEAN | 2 | -2.6 | SIGMA | 2 | -4.0 | MEAN/SIGMA | = | 1.4 | MEDIAN | = | -2.8 |

266

·Ei

TABLE D-VIII (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P4TACT

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 47.6 SIGMA = 52.7 MEAN/SIGMA = -5.0 MEDIAN = 41.8
VARIANT 2 MEAN = 46.4 SIGMA = 49.4 MEAN/SIGMA = -3.0 MEDIAN = 40.9
VARIANT 3 MEAN = 45.2 SIGMA = 48.1 MEAN/SIGMA = -3.0 MEDIAN = 39.3
VARIANT 4 MEAN = 43.9 SIGMA = 47.3 MEAN/SIGMA = -3.3 MEDIAN = 38.0
VARIANT 5 MEAN = 47.5 SIGMA = 50.5 MEAN/SIGMA = -3.0 MEDIAN = 41.5
VARIANT 6 MEAN = 48.1 SIGMA = 51.3 MEAN/SIGMA = -3.2 MEDIAN = 42.1
VARIANT 7 MEAN = 49.7 SIGMA = 52.8 MEAN/SIGMA = -3.1 MEDIAN = 44.4
VARIANT 8 MEAN = 44.7 SIGMA = 48.6 MEAN/SIGMA = -3.9 MEDIAN = 36.9
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 47.6 SIGMA = 52.7 MEAN/SIGMA = -5.0 MEDIAN = 41.8
VARIANT 2 MEAN = -.5 SIGMA = -4.5 MEAN/SIGMA = 4.0 MEDIAN = -.8
VARIANT 3 MEAN = -1.7 SIGMA = -5.8 MEAN/SIGMA = 4.1 MEDIAN = -1.9
VARIANT 4 MEAN = -2.8 SIGMA = -6.1 MEAN/SIGMA = 3.4 MEDIAN = -3.0
VARIANT 5 MEAN = .7 SIGMA = -3.0 MEAN/SIGMA = 3.7 MEDIAN = -3.0
VARIANT 6 MEAN = 1.1 SIGMA = -2.3 MEAN/SIGMA = 3.4 MEDIAN = 1.0
VARIANT 7 MEAN = 2.8 SIGMA = -1.3 MEAN/SIGMA = 3.4 MEDIAN = 1.0
VARIANT 7 MEAN = 2.8 SIGMA = -1.3 MEAN/SIGMA = 4.1 MEDIAN = 2.5
VARIANT 8 MEAN = -3.0 SIGMA = -3.8 MEAN/SIGMA = .8 MEDIAN = -3.4
```

P4TANK

UN-NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 44.7 SIGMA = 46.4 MEAN/SIGMA = -1.8 MEDIAN = 38.1
VARIANT 2 MEAN = 44.9 SIGMA = 47.1 MEAN/SIGMA = -2.2 MEDIAN = 37.1
VARIANT 3 MEAN = 43.8 SIGMA = 46.1 MEAN/SIGMA = -2.3 MEDIAN = 37.1
VARIANT 4 MEAN = 40.7 SIGMA = 41.3 MEAN/SIGMA = -6 MEDIAN = 35.4
VARIANT 5 MEAN = 45.1 SIGMA = 46.5 MEAN/SIGMA = -1.4 MEDIAN = 38.6
VARIANT 6 MEAN = 47.2 SIGMA = 49.7 MEAN/SIGMA = -2.5 MEDIAN = 40.0
VARIANT 7 MEAN = 48.3 SIGMA = 50.4 MEAN/SIGMA = -2.1 MEDIAN = 41.9
VARIANT 7 MEAN = 43.7 SIGMA = 47.3 MEAN/SIGMA = -3.6 MEDIAN = 29.7
```

NORMALIZED VARIANTS

```
VARIANT 1 MEAN = 44.7 SIGMA = 46.4 MEAN/SIGMA = -1.8 MEDIAN = 38.1
VARIANT 2 MEAN = -2 SIGMA = -4.8 MEAN/SIGMA = 4.6 MEDIAN = -1.3
VARIANT 3 MEAN = -1.5 SIGMA = -6.1 MEAN/SIGMA = 4.6 MEDIAN = -1.3
VARIANT 4 MEAN = -2.7 SIGMA = -6.4 MEAN/SIGMA = 3.7 MEDIAN = -3.0
VARIANT 5 MEAN = .9 SIGMA = -3.0 MEAN/SIGMA = 4.0 MEDIAN = -3.0
VARIANT 6 MEAN = 1.4 SIGMA = -2.6 MEAN/SIGMA = 4.0 MEDIAN = 1.7
VARIANT 7 MEAN = 3.1 SIGMA = -1.6 MEAN/SIGMA = 4.7 MEDIAN = 3.3
VARIANT 7 MEAN = -4.5 SIGMA = -4.2 MEAN/SIGMA = -3 MEDIAN = -3.3
```

267

"E 11\_

TABLE D-VIII (CONTINUED)

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

4

P4CRAN

UN-NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.0 SIGMA = 46.3 MEAN/SIGMA = -.3 MEDIAN = 43.4VARIANT 2 MEAN = 46.8 SIGMA = 48.5 MEAN/SIGMA = -1.7 MEDIAN = 43.8VARIANT 3 MEAN = 45.5 SIGMA = 47.3 MEAN/SIGMA = -1.7 MEDIAN = 42.3VARIANT 4 MEAN = 44.4 SIGMA = 45.2 MEAN/SIGMA = -.8 MEDIAN = 42.1VARIANT 5 MEAN = 47.9 SIGMA = 49.1 MEAN/SIGMA = -1.2 MEDIAN = 44.9VARIANT 6 MEAN = 48.6 SIGMA = 50.7 MEAN/SIGMA = -2.1 MEDIAN = 44.7VARIANT 7 MEAN = 50.1 SIGMA = 51.8 MEAN/SIGMA = -1.7 MEDIAN = 46.5VARIANT 8 MEAN = 42.1 SIGMA = 43.0 MEAN/SIGMA = -9 MEDIAN = 39.0

NORMALIZED VARIANTS

VARIANT 1 MEAN = 46.0 SIGMA = 46.3 MEAN/SIGMA = -.3 MEDIAN = 43.4 VARIANT 2 MEAN = -.2 SIGMA = -4.1 MEAN/SIGMA = 3.9 MEDIAN = -.3VARIANT 3 MEAN = -1.4 SIGMA = -5.2 MEAN/SIGMA = 3.8 MEDIAN = -1.0VARIANT 4 MEAN = -2.1 SIGMA = -5.8 MEAN/SIGMA = 3.7 MEDIAN = -1.5VARIANT 5 MEAN = 1.2 SIGMA = -2.2 MEAN/SIGMA = 3.5 MEDIAN = 1.2VARIANT 6 MEAN = 1.3 SIGMA = -2.2 MEAN/SIGMA = 3.6 MEDIAN = 1.2VARIANT 6 MEAN = 1.3 SIGMA = -2.2 MEAN/SIGMA = 3.6 MEDIAN = 1.2VARIANT 7 MEAN = 3.1 SIGMA = -1.0 MEAN/SIGMA = 4.2 MEDIAN = 2.9VARIANT 8 MEAN = -3.2 SIGMA = -2.7 MEAN/SIGMA = -5 MEDIAN = -7.0

P4JEE?

UN-NORMALIZED VARIANTS

 VARIANT 1
 MEAN = 36.0
 SIGMA = 36.2
 MEAN/SIGMA = -.1
 MEDIAN = 32.8

 VARIANT 2
 MEAN = 33.5
 SIGMA = 32.9
 MEAN/SIGMA = -.1
 MEDIAN = 31.7

 VARIANT 3
 MEAN = 32.4
 SIGMA = 32.0
 MEAN/SIGMA = -.1
 MEDIAN = 30.4

 VARIANT 4
 MEAN = 31.3
 SIGMA = 31.5
 MEAN/SIGMA = -.1
 MEDIAN = 28.6

 VARIANT 5
 MEAN = 34.7
 SIGMA = 34.2
 MEAN/SIGMA = -.1
 MEDIAN = 33.6

 VARIANT 6
 MEAN = 35.1
 SIGMA = 34.7
 MEAN/SIGMA = -.4
 MEDIAN = 32.2

 VARIANT 7
 MEAN = 36.8
 SIGMA = 36.2
 MEAN/SIGMA = -.6
 MEDIAN = 32.2

 VARIANT 7
 MEAN = 36.8
 SIGMA = 33.9
 MEAN/SIGMA = -.8
 MEDIAN = 34.7

 VARIANT 7
 MEAN = 33.0
 SIGMA = 33.9
 MEAN/SIGMA = -.8
 MEDIAN = 34.7

NORMALIZED VARIANTS

VARIANT 1 MEAN = 36.0 SIGMA = 36.2 MEAN/SIGMA = -1 MEDIAN = 32.8VARIANT 2 MEAN = -1.9 SIGMA = -8.1 MEAN/SIGMA = 6.1 MEDIAN = -1.7VARIANT 3 MEAN = -3.0 SIGMA = -9.2 MEAN/SIGMA = 6.2 MEDIAN = -2.8VARIANT 4 MEAN = -3.6 SIGMA = -8.1 MEAN/SIGMA = 4.4 MEDIAN = -3.4VARIANT 5 MEAN = -5.5 SIGMA = -5.5 MEAN/SIGMA = 5.0 MEDIAN = -3.4VARIANT 6 MEAN = -5.5 SIGMA = -6.0 MEAN/SIGMA = 5.5 MEDIAN = -.6VARIANT 7 MEAN = 1.4 SIGMA = -4.5 MEAN/SIGMA = 5.9 MEDIAN = 1.7VARIANT 8 MEAN = -2.7 SIGMA = -4.5 MEAN/SIGMA = 1.8 MEDIAN = -2.6

268

·Ei

TABLE D-VIII (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P5CRAN1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 44.9 | SIGMA | H | 44.6 | MEAN/SIGMA | = | •2 | MEDIAN | = | 42.4 |
|---------|---|------|---|------|-------|---|------|------------|---|----|--------|----|------|
| VARIANT | 2 | MEAN | = | 43.4 | SIGMA | 3 | 42.7 | MEAN/SIGMA | Ξ | •7 | MEDIAN | = | 41.5 |
| VARIANT | 3 | MEAN | = | 42.2 | SIGMA | Ξ | 41.4 | MEAN/SIGMA | = | .8 | MEDIAN | 71 | 40.4 |
| VARIANT | 4 | MEAN | = | 41.5 | SIGMA | 3 | 40.7 | MEAN/SIGMA | = | .8 | MEDIAN | Ξ | 39.3 |
| VARIANT | 5 | MEAN | = | 45.1 | SIGMA | 3 | 44.6 | MEAN/SIGMA | = | •5 | MEDIAN | = | 43.4 |
| VARIANT | 6 | MEAN | = | 44.7 | SIGMA | Ξ | 44.0 | MEAN/SIGMA | = | •7 | MEDIAN | ŧ | 43.1 |
| | | | | | | | | MEAN/SIGMA | | •6 | MEDIAN | = | 44.7 |
| VARIANT | 8 | MEAN | = | 42.1 | SIGMA | z | 41.7 | MEAN/SIGMA | = | .4 | MEDIAN | = | 40.2 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 44.9 | SIGMA | 2 | 44.6 | MEAN/SIGMA | = | •2 | MEDIAN | = | 42.4 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | -1.1 | SIGMA | = | -6.3 | MEAN/SIGMA | = | 5.2 | MEDIAN | = | 9 |
| VARIANT | 3 | MEAN | = | -2.3 | SIGMA | Ħ | -7.8 | MEAN/SIGMA | Ξ | 5.5 | MEDIAN | = | -2.3 |
| VARIANT | 4 | MEAN | Ξ | -3.1 | SIGMA | = | -7.7 | MEAN/SIGMA | = | 4.6 | MEDIAN | Ξ | -3.6 |
| VARIANT | 5 | MEAN | = | •5 | SIGMA | Ξ | -5.1 | MEAN/SIGMA | = | 5.6 | MEDIAN | = | •6 |
| VARIANT | 6 | MEAN | = | •3 | SIGMA | = | -3.8 | MEAN/SIGMA | = | 4.2 | MEDIAN | = | •4 |
| VARIANT | 7 | MEAN | Ŧ | 2.3 | SIGMA | z | -2.8 | MEAN/SIGMA | = | 5.1 | MEDIAN | = | 2.4 |
| VARIANT | A | MEAN | Ξ | -2.7 | SIGMA | = | -5.6 | MEAN/SIGMA | = | 2.9 | MEDIAN | = | -3.6 |

P5JEEP1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 32.5 | SIGMA | Ξ | 30.5 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 29.7 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 32.7 | SIGMA | = | 31.0 | MEAN/SIGMA | 2 | 1.7 | MEDIAN | = | 30.4 |
| VARIANT | 3 | MEAN | = | 31.4 | SIGMA | = | 29.8 | MEAN/SIGMA | = | 1.5 | MEDIAN | = | 29.1 |
| VARIANT | 4 | MEAN | = | 30.9 | SIGMA | = | 29.7 | MEAN/SIGMA | = | 1.1 | MEDIAN | Ξ | 29.0 |
| VARIANT | 5 | MEAN | = | 34.0 | SIGMA | = | 32.3 | MEAN/SIGMA | = | 1.7 | MEDIAN | = | 32.6 |
| VARIANT | 6 | MEAN | = | 34.2 | SIGMA | 2 | 32.9 | MEAN/SIGMA | = | 1.3 | MEDIAN | Ξ | 32.0 |
| VARIANT | 7 | MEAN | = | 36.1 | SIGMA | z | 34.4 | MEAN/SIGMA | Ξ | 1.7 | MEDIAN | = | 33.7 |
| VARIANT | A | MEAN | = | 28.6 | SIGMA | Ξ | 31.1 | MEAN/SIGMA | = | -2.4 | MEDIAN | = | 25.6 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 32.5 | SIGMA | Ξ | 30.5 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 29.7 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | •2 | SIGMA | 3 | -5.7 | MEAN/SIGMA | Ξ | 5.9 | MEDIAN | Ħ | •2 |
| VARIANT | 3 | MEAN | = | -1.1 | SIGMA | = | -6.6 | MEAN/SIGMA | = | 5.5 | MEDIAN | = | -1.2 |
| VARIANT | 4 | MEAN | = | -1.7 | SIGMA | 3 | -6.9 | MEAN/SIGMA | = | 5.3 | MEDIAN | = | -2.5 |
| VARIANT | 5 | MEAN | Ξ | 1.6 | SIGMA | = | -3.0 | MEAN/SIGMA | = | 4.6 | MEDIAN | Ŧ | .8 |
| VARIANT | 6 | MEAN | Ξ | 1.7 | SIGMA | 3 | -3.4 | MEAN/SIGMA | = | 5.1 | MEDIAN | = | 1.8 |
| VARIANT | 7 | MEAN | 3 | 3.7 | SIGMA | 2 | -2.8 | MEAN/SIGMA | = | 6.4 | MEDIAN | 3 | 3.8 |
| VARIANT | 8 | MEAN | = | -5.2 | SIGMA | 2 | -5.3 | MEAN/SIGMA | = | .1 | MEDIAN | = | -7.4 |

269

·E,

TABLE D-VIII (CONTINUED)

- 4

STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

P5TACT1

UN-NORMALIZED VARIANTS

 VARIANT 1 MEAN = 42.7 SIGMA = 43.0 MEAN/SIGMA = -.3 MEDIAN = 41.7

 VARIANT 2 MEAN = 42.0 SIGMA = 41.8 MEAN/SIGMA = .2 MEDIAN = 40.2

 VARIANT 3 MEAN = 40.8 SIGMA = 40.5 MEAN/SIGMA = .3 MEDIAN = 39.0

 VARIANT 4 MEAN = 39.4 SIGMA = 39.4 MEAN/SIGMA = .1 MEDIAN = 37.7

 VARIANT 5 MEAN = 43.1 SIGMA = 43.1 MEAN/SIGMA = .0 MEDIAN = 41.1

 VARIANT 6 MEAN = 43.8 SIGMA = 43.7 MEAN/SIGMA = .1 MEDIAN = 41.1

 VARIANT 7 MEAN = 45.4 SIGMA = 45.3 MEAN/SIGMA = .1 MEDIAN = 41.7

 VARIANT 7 MEAN = 45.4 SIGMA = 45.3 MEAN/SIGMA = .3 MEDIAN = 43.5

 VARIANT 8 MEAN = 40.4 SIGMA = 40.7 MEAN/SIGMA = .3 MEDIAN = 38.4

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 42.7 | SIGMA | Ħ | 43.0 | MEAN/SIGMA | = | 3 | MEDIAN | = | 41+7 |
|---------|---|------|---|------|-------|---|------------------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 4 | SIGMA | = | - 5•1 | MEAN/SIGMA | = | 4.7 | MEDIAN | 3 | -•6 |
| VARIANT | 3 | MEAN | # | -1.7 | SIGMA | Ξ | -6.6 | MEAN/SIGMA | Ξ | 4.8 | MEDIAN | = | -1.9 |
| VARIANT | 4 | MEAN | 2 | -3.0 | SIGMA | 3 | -7.3 | MEAN/SIGMA | = | 4.3 | MEDIAN | = | -3.0 |
| VARIANT | 5 | MEAN | = | •7 | SIGMA | Ξ | =4 • l | MEAN/SIGMA | = | 4.8 | MEDIAN | = | •8 |
| VARIANT | 6 | MEAN | = | 1.2 | SIGMA | = | #2.5 | MEAN/SIGMA | = | 3.7 | MEDIAN | = | •8 |
| VARIANT | 7 | MEAN | Ξ | 2.9 | SIGMA | s | -1.9 | MEAN/SIGMA | = | 4.8 | MEDIAN | Ξ | 2.8 |
| VARIANT | A | MEAN | = | -2.2 | SIGMA | Ħ | -5.0 | MEAN/SIGMA | = | 2.8 | MEDIAN | = | +2.7 |

P5TANK1

and the second second

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 38.7 | SIGMA | = | 36.9 | MEAN/SIGMA | = | 1.8 | MEDIAN | = | 37.5 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 38.5 | SIGMA | = | 36.6 | MEAN/SIGMA | = | 1.9 | MEDIAN | = | 37+6 |
| VARIANT | 3 | MEAN | = | 37.3 | SIGMA | з | 35.1 | MEAN/SIGMA | Ξ | 2.2 | MEDIAN | = | 36.3 |
| VARIANT | 4 | MEAN | 2 | 36.0 | SIGMA | z | 34.7 | MEAN/SIGMA | = | 1.2 | MEDIAN | = | 34.7 |
| VARIANT | 5 | MEAN | = | 39.5 | SIGMA | = | 37.6 | MEAN/SIGMA | = | 1.9 | MEDIAN | Ξ | 39.7 |
| VARIANT | 6 | MEAN | # | 40.4 | SIGMA | = | 38.7 | MEAN/SIGMA | = | 1.6 | MEDIAN | = | 38.4 |
| VARIANT | 7 | MEAN | = | 41.9 | SIGMA | = | 40.3 | MEAN/SIGMA | = | 1.6 | MEDIAN | = | 41.1 |
| VARIANT | 8 | MEAN | = | 37.1 | SIGMA | = | 36.1 | MEAN/SIGMA | = | .9 | MEDIAN | = | 35.3 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 38.7 | SIGMA | 3 | 36.9 | MEAN/SIGMA | = | 1.8 | MEDIAN | з | 37.5 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | ÷ | -•2 | SIGMA | = | -5.7 | MEAN/SIGMA | Ħ | 5.5 | MEDIAN | 3 | -•5 |
| VARIANT | 3 | MEAN | 2 | -1.4 | SIGMA | Ξ | -7.0 | MEAN/SIGMA | = | 5.6 | MEDIAN | = | =1+3 |
| VARIANT | 4 | MEAN | Ħ | -2.8 | SIGMA | Ξ | -7.0 | MEAN/SIGMA | = | 4.2 | MEDIAN | 3 | -2.7 |
| VARIANT | 5 | MEAN | z | .9 | SIGMA | 3 | -3.8 | MEAN/SIGMA | = | 4.7 | MEDIAN | = | •9 |
| VARIANT | 6 | MEAN | = | 1.5 | SIGMA | 2 | -3.5 | MEAN/SIGMA | = | 5.0 | MEDIAN | = | 1.1 |
| VARIANT | 7 | MEAN | 2 | 3.2 | SIGMA | Ξ | -2.4 | MEAN/SIGMA | = | 5.6 | MEDIAN | = | 2.8 |
| VARIANT | A | MEAN | = | -1.6 | SIGMA | 2 | -3.A | MEAN/SIGMA | = | 2.2 | MEDIAN | = | -2.7 |

270

En Printe

TABLE D-VIII (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

.

P5TR251

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 43.8 | SIGMA | 3 | 42.2 | MEAN/SIGMA | z | 1.6 | MEDIAN | = | 43.0 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 43.5 | SIGMA | = | 42.0 | MEAN/SIGMA | = | 1.5 | MEDIAN | Ξ | 41.9 |
| VARIANT | 3 | MEAN | = | 42.3 | SIGMA | = | 40.6 | MEAN/SIGMA | 2 | 1.7 | MEDIAN | 2 | 40.9 |
| VARIANT | 4 | MEAN | = | 40.4 | SIGMA | Ξ | 39.5 | MEAN/SIGMA | z | .9 | MEDIAN | = | 39•1 |
| VARIANT | 5 | MEAN | = | 44.1 | SIGMA | = | 42.7 | MEAN/SIGMA | 2 | 1.5 | MEDIAN | = | 42.1 |
| VARIANT | 6 | MEAN | = | 45.5 | SIGMA | 3 | 44.2 | MEAN/SIGMA | 2 | 1.4 | MEDIAN | = | 44.1 |
| VARIANT | 7 | MEAN | = | 46.8 | SIGMA | Ξ | 45.5 | MEAN/SIGMA | = | 1.4 | MEDIAN | = | 45.3 |
| VARIANT | 8 | MEAN | = | 41.5 | SIGMA | = | 41.1 | MEAN/SIGMA | = | •4 | MEDIAN | = | 40.6 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 43.8 | SIGMA | Ξ | 42.2 | MEAN/SIGMA | Ξ | 1.6 | MEDIAN | = | 43.0 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|-------|
| VARIANT | 2 | MEAN | z | -•2 | SIGMA | Ξ | -4.1 | MEAN/SIGMA | = | 3.9 | MEDIAN | = | -•4 |
| VARIANT | 3 | MEAN | = | -1.4 | SIGMA | = | -5.5 | MEAN/SIGMA | = | 4.1 | MEDIAN | = | -1.8 |
| VARIANT | 4 | MEAN | Ξ | -3.0 | SIGMA | Ξ | -6.2 | MEAN/SIGMA | = | 3.2 | MEDIAN | = | -3.1 |
| VARIANT | 5 | MEAN | = | •6 | SIGMA | 2 | -2.9 | MEAN/SIGMA | Ξ | 3.5 | MEDIAN | Ξ | 4 |
| VARIANT | 6 | MEAN | = | 1.8 | SIGMA | = | -1.9 | MEAN/SIGMA | = | 3.7 | MEDIAN | = | 1.1 |
| VARIANT | 7 | MEAN | = | 3.1 | SIGMA | = | -1.0 | MEAN/SIGMA | = | 4.2 | MEDIAN | = | 2.9 |
| VARIANT | R | MEAN | Ξ | -2.0 | SIGMA | = | -5.0 | MEAN/SIGMA | = | 3.0 | MEDIAN | Ξ | -2 •4 |

P5VAN1

- 1

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | Ξ | 40.2 | SIGMA | Ξ | 38.7 | MEAN/SIGMA | = | 1.5 | MEDIAN | = | 38.6 |
|---------|---|------|---|------|-------|---|------|------------|---|-----|--------|---|------|
| VARIANT | 2 | MEAN | = | 40.2 | SIGMA | 2 | 40.0 | MEAN/SIGMA | = | •2 | MEDIAN | Ξ | 38.6 |
| VARIANT | 3 | MEAN | = | 38.8 | SIGMA | = | 38.5 | MEAN/SIGMA | = | •3 | MEDIAN | Ξ | 37.1 |
| VARIANT | 4 | MEAN | = | 37.1 | SIGMA | = | 35.3 | MEAN/SIGMA | = | 1.8 | MEDIAN | = | 35.3 |
| VARIANT | 5 | MEAN | = | 40.9 | SIGMA | = | 39.5 | MEAN/SIGMA | = | 1.5 | MEDIAN | = | 39.4 |
| VARIANT | 6 | MEAN | = | 42.1 | SIGMA | z | 42.6 | MEAN/SIGMA | = | 6 | MEDIAN | = | 38.5 |
| VARIANT | 7 | MEAN | = | 43.5 | SIGMA | Ξ | 43.3 | MEAN/SIGMA | = | .3 | MEDIAN | Ξ | 41.9 |
| VARIANT | R | MEAN | = | 38.5 | SIGMA | = | 38.5 | MEAN/SIGMA | = | .0 | MEDIAN | = | 35.3 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 40.2 | SIGMA | Ξ | 38.7 | MEAN/SIGMA | = | 1.5 MEDIAN = 38.6 |
|---------|---|------|---|------|-------|---|------|------------|---|--------------------|
| VARIANT | 2 | MEAN | = | 4 | SIGMA | 2 | -5.9 | MEAN/SIGMA | = | 5.5 MEDIAN =6 |
| VARIANT | 3 | MEAN | 2 | -1.8 | SIGMA | 3 | -7.5 | MEAN/SIGMA | = | 5.7 MEDIAN = -1.9 |
| VARIANT | 4 | MEAN | = | -2.9 | SIGMA | 3 | =9.4 | MEAN/SIGMA | = | 6.6 MEDIAN = -3.1 |
| VARIANT | 5 | MEAN | = | •9 | SIGMA | = | -5.8 | MEAN/SIGMA | = | 6.7 MEDIAN = .9 |
| VARIANT | 6 | MEAN | Ξ | 1.1 | SIGMA | = | -2.5 | MEAN/SIGMA | = | 3.3 MEDIAN = .1 |
| VARIANT | 7 | MEAN | = | 3.0 | SIGMA | 3 | -2.6 | MEAN/SIGMA | Ħ | 5.6 MEDIAN = 3.0 |
| VARIANT | A | MEAN | = | -2.5 | SIGMA | Ξ | -6.2 | MEAN/SIGMA | Ξ | 3.7 MEDIAN = -3.0 |

271

TABLE D-VIII (CONTINUED) STATISTICAL PARAMETERS FOR TARGETS SELECTED FROM THE P-FILES

4

P3T101

ţ.

E.

and the state of the family of

UN-NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 50.2 | SIGMA | Ξ | 48.4 | MEAN/SIGMA | Ξ | 1.8 | MEDIAN | # | 49.3 |
|---------|---|------|---|------|-------|---|------|------------|---|------|--------|---|------|
| VARIANT | 2 | MEAN | = | 49.7 | SIGMA | 3 | 47.7 | MEAN/SIGMA | = | 2.0 | MEDIAN | = | 48.7 |
| VARIANT | 3 | MEAN | = | 48.5 | SIGMA | Ξ | 46.7 | MEAN/SIGMA | = | 1.7 | MEDIAN | = | 47.5 |
| VARIANT | 4 | MEAN | Ξ | 47.1 | SIGMA | Ξ | 45.0 | MEAN/SIGMA | Ξ | 2.1 | MEDIAN | = | 46.3 |
| | | | | | | | | HEAN/SIGMA | | | | | |
| VARIANT | 6 | MEAN | = | 51.3 | SIGMA | = | 49.8 | MEAN/SIGMA | = | 1.5 | MEDIAN | = | 50.1 |
| VARIANT | 7 | MEAN | = | 53.0 | SIGMA | = | 50.9 | MEAN/SIGMA | = | 2.1 | MEDIAN | Ξ | 51.9 |
| VARIANT | 8 | MEAN | = | 46.9 | SIGMA | 2 | 48.9 | MEAN/SIGMA | = | -2.0 | MEDIAN | = | 44.0 |

NORMALIZED VARIANTS

| VARIANT | 1 | MEAN | = | 50.2 | SIGMA | = | 48.4 | MEAN/SIGMA | = | 1.8 M | EDIAN | = | 49.3 |
|---------|---|------|---|------|-------|---|------|------------|---|-------|-------|---|------|
| VARIANT | 2 | MEAN | = | 3 | SIGMA | = | -4.6 | MEAN/SIGMA | = | 4.4 M | EDIAN | = | 3 |
| VARIANT | 3 | MEAN | Ξ | -1.5 | SIGMA | э | -5,9 | MEAN/SIGMA | = | 4.4 M | EDIAN | = | -1.5 |
| VARIANT | 4 | MEAN | = | -2.7 | SIGMA | = | -6.2 | MEAN/SIGMA | = | 3.5 4 | EDIAN | = | -2.7 |
| VARIANT | 5 | MEAN | Ξ | 1.1 | SIGMA | = | -3.0 | MEAN/SIGMA | ± | 4.0 M | EDIAN | = | •9 |
| VARIANT | 6 | MEAN | = | 1.2 | SIGMA | = | -2.4 | MEAN/SIGMA | z | 3.6 M | EDIAN | = | 1.1 |
| VARIANT | 7 | MEAN | = | 3.1 | SIGMA | = | -1,4 | MEAN/SIGMA | = | 4.5 M | EDIAN | = | 3.0 |
| VARIANT | я | MEAN | = | -3.6 | SIGMA | Ξ | -4.0 | MEAN/SIGMA | = | .4 N | EDIAN | Ξ | -5.3 |

