
THE APPLICATION OF SPECIAL COMPUTING TECHNIQUES TO SPEED-UP IMA--ETCIU)
DEC A1 R W MCLAREN. W D MCFARLAND F30602 80 C 9032

UNCLASSIFIED RADCTR8 "3 L

13mmewmo fllllllffffff

1.JI25 flIf1*4 Lf.6

I, - '! N '

HM TedumkW tnW
Sssunbw 1961

STHE APPLICATION OF SPECIAL
. COMPUTING TECHNIQUES TO SPEED-UP
.: IMAGE FEATURE EXTRACTION AND

PROCESSING TECHNIQUES
Uniwsty of Mismurl-Columbia

a bet W. MdLWmw
Willim D. Medr0lud

AI9SOVED FOR PUBLIC RELEASE; DISTIRIBUTION UNUMITED

ROME AIR DEVELOPMENT CENTER DTIC
Air Force Systems Command

M Griffiss Air Force Base, Now York 1344!1 fELECTE

lip, A

This report has been reviewed by the RADC Public Affairs Office (FA) and

is releasable to the National Technical Information Service (NTIS). At NTIS
it will be relessable to the general public, Including foreign nations.

RADC-TR-81-230 has been reviewed and is approved for publication.

APPROVED:

FREDERICK W. RAHRIG
Project Engineer

APPROVED:

OWEN R. LAWTER, Colonel, USAF
Chief, Intelligence and Reconnaissance Division

FOR THE COHMANDER: ,P.

Acting Chief, Plans Office

If your address has changed or if you wish to be removeA from the. ADC

amiling list, or If the addressee is no longer employed by your orenisatim,

please notify RADC. mRRE) riffiss A£1 NY 13441. This will assist .us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

I OMEN"

UNCLASSI FIED

SECURITY CLASSIFICATION O THIS PAGE (hm So".,e ,u.ed), R

REPORT DOUENTA.TION PAGE BEFORE COMPLETING FORM
1 N2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-81-230A
4. TITLE (mod .oe S. TYPE OF REPORT A PERIOD COVERED
THE APPLICATION OF SPECIAL COMPUTING TECHNIQUES Final Technical Report
TO SPEED-UP IMAGE FEATURE, EXTRACTION AND 9 Jan 80 - 1 June 81
PROCESSING TECHNIQUES S. PERFORMING 0. REPORT NUMUER, N/A
7. AUTNOR(s) S. CONTRACT OR GRANT NUM8ER(e)

Robert W. .MLaren
William D. 'McFarland F30602-80-C-0032

9. PIRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKANRTA S WORK UNiT NMEIRS

University of Missouri-Columbia 62702F

Department of Electrical Engineering 45541836
Columbia MO 65201
I I. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE

Rome Air Development Center (IRRE) 9ecember 1981
Griffiss AFB NY 13441 ,*.UUOIPA01S208
14. MONITORING AGENCY NAME A AOCREStS(i different from Controlllnd Office) I . SECURITY CLASS. (o this report)

UNCLASSIFIED
Same So. DECL ASSIFI CATION/DOWNGRADING

_N/A SCHEDULE
I. DISTRIBUTION STATEMENT (of thio Report)

Approved for public release; distribution unlimited

I1. OISTRIBUTION STATEMENT (of the sbetrect entered i.n Block 20, it different from Report)

Same

1,. SUPPLEMENTARY NOTES

RADC Project Engineer: Frederick W. Rahrig (IRRE)

le. KEY WORDS (Contlnue on levela. side if necoseary and Identity bybock nunbe)

Digital Image Processing
Feature Extraction
gh Speed Processors

10. ABSTRACT (Contiete an reverse aide It neseeoem md Identify' by block numbe)

Advances in solid state technology have created vast amounts of digital
information for image processing. It has become evident that conventional
serial type processors are no longer sufficient to handle and manipulate
these vast amounts of data for feature extraction and other image process-
ing routines in general. The results of this report indicate that reduc-
tions in processing times of one to two orders of magnitude can be obtained
for certain algorithms when implemented on special machine architectures.

DD 1473 EoITON OF I Nov 65 Is OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wheni Doa anee

UNCLASSIFIED

SECURI1TY CLASSIFICATION OF THIS PAGI~tWI Dae AlNISE)tThe increasing capability of specialized digital k.:ocessors has led to the
possibility of implementing a large number of image processing functions
in near real time.

~CC~ jnro _

j:%

UNLSSFE

(b-.YC ASIIAINO T1 AIM enDt RP4

TABLE OF CONTENTS

SECTION Page

I. INTRODUCTION 4

1.1 Digital Image Feature Extraction and
Processing 4

1.2 Project Objectives 7

1.3 Project Resources 8

1.4 Project Overview 8

II. PROBLEM FORMULATION 9

2.1 Image Processing and the Need for Faster
Computation 9

2.2 Justification for the Selected Algorithms . .10

2.3 Justification and Need for Special Computer
Architectures 12

III, REVIEW OF SPECIAL COMPUTING ARCHITECTURES 13

3.1 General Overview13

IV. HIGH-SPEED PROCESSORS17

4.1 ILLIAC IV 17

4.1.1 Architecture17
4.1.2 Applications to Image Processing . . .22
4.1.3 Advantages/Disadvantages for

Image Processing 23

4.2 AP-120B 24

4.2.1 Architecture24
4.2.2 Applications to Image Processing . . .28
4.2.3 Advantages/Disadvantages for

Image Processing29

4.3 Other Architectures30

4.4 The STARAN32

4.4.1 Introduction32
4.4.2 Architecture32
4.4.3 Applications to Image Processing . . .35

11

SECTION Page

4.4.4 Advantages/Disadvantages for
Image Processing '

V. STARAN ASSOCIATIVE PROCESSOR

5.1 Architecture i

5.2 Instruction Set

5.3 Comparison with Sequential Computer
Instruction Set 4

VI. PROJECT DESCRIPTION AND PROCEDURES.. 48

6.1 Achieving the Required Background and
Experience 48

6.2 Selection of Algorithms.. 4Q

6.3 Role of UMC Computing Facility49

6.4 Use of the STARAN Computer at Goodyear
Aerospace 52

6.5 Image Description 5

6.6 Procedures for Software Development and
Testing53

6.7 Basis of Comparisons 3

VII. PRESENTATION OF RESULTS: IMAGE NOISE REDUCTION, .54

7.1 Modal Technique 5

7.1.1 Description S
7.1.2 STARAN Implementation 55
7.1.3 Results and Evaluation. ('2

7.2 Odd Pixel 64

7.2.1 Description
7.2.2 STARAN Implementation o4
7.3.3 Results and Evaluation

7.3 Similar Neighbors Technique 0

7.3.1 Description
7.3.2 STARAN Implementation 70

7.3.3 Results and Evaluation 7

7.4 Comparisons and Conclusions

2

SECTION Page

VIII. PRESENTATION OF RESULTS: EDGE DETECTION. 77

8.1 Description 77

8.2 Algorithm 77

8.3 STARAN Implementation 79

8.4 Memory Map and User Options. 81

8.5 Program Descriptions. 84

8.6 Results and Evaluation 85

8.7 Time Efficiency 89

IX. CONCLUSIONS/FUTURE WORK. 90

REFERENCES 91

APPENDIX A. STARAN INSTRUCTION SET. Al

APPENDIX B. MODAL PROGRAM. BI

APPENDIX C. ODDPX PROGRAM. Cl

APPENDIX D. SIMNB PROGRAM. Dl

APPENDIX E. PTEDGE PROGRAM El

i 3

I. Introduction

1.1 Digital Image Feature Extraction and Processing

Digital image processing, the manipulation of images by com-

puter, is a relatively recent development which has received an

ever increasing amount of attention in terms of techniques ap-

plied, special processors, and the range of applications. Exam-

ples of this include medical diagnosis (x-rays or computer-aided

tomography), aerial surveillance (agriculture, forestry, and

land-use planning), such as LANDSAT, and military (navigation,
target evaluation, mapping, and the like). Digital imagery con-
tains a great amount of information or features whose extraction

and processing can be useful in serving many different applica-

tions including those indicated above. The high-speed automated
processing of imagery by computer is a crucial factor in the

effective implementation of an advanced computer image exploita-

tion facility. The increasing capability of digital computers

has led to the possibility of implementing a large number of
image processing functions in near "real-time," a result which is

essential to establishing a near-production type facility. Digi-

tal image processing hardware and software are being developed

and used by the government, industry, and universities. A signi-

ficant government application is found in the military- surveil-

lance, terrain identification, and defense mapping.

Digital image processing refers to any process or procedure

which is applied by a digital computer to an image in digital

form (sampled and quantitized),, regardless of the source. A

basic system example is illustrated in Fig. 1.1 below:

The overall exploitation procedure consists of image prepTocessi-ng,

information extraction, and image decision making. Image pre-
processing in a narrower interpretation consists of techniques

4

for improving or enhancing the image for information extraction

or for the display of an image to a human observer. These tech-

niques include the use of transforms for filtering, restoration

of images, and image segmentation that precede further proces-

sing. Preprocessing can also include image "normalization" such

as histogram modification, geometric corrections, control of

scale and resolution, and image combining (e.g., subtraction or

correlation) , as well as techniques for noise supression and

data clustering.

Another significant step or stage in image processing and

exploitation is feature extraction. The objectives and particu-

lar techniques applied in this stage often overlap those of pre-

processing, depending upon the information extracted. Feature

extraction can be viewed as an interpretation of the image in

terms of specified features. These features include shapes,

boundaries, edges, textures, and the like [1] - [17]. The

extraction or detection of such features is often considered to

be a part of an image preprocessing stage in image processing

which leads to another image preprocessing step called segmenta-

tion [18] - [21]1. The relative predominance and subsequent

interpretation Or significance of given features is highly depen-

dent on the type of imagery. This imagery arises from such

sources as LANDSAT, aerial photography, FLIR, and RADAR, some of

which can be black and white or color. There has been a great

deal of work done on the feature extraction problem as a part of

the preprocessing stage [22] - 124] . This work includes that on

thresholding [25], [261, edge or boundary following [3] , [27],
shape detection [161, [28], relaxation labeling [291 - [31], and

other approaches to segmentation [321, [331. Other preproces-

sing techniques include "averaging" and the application of

various transforms [34] , [35].

In an overall automated image exploitation facility, there

is an emphasis on factors in addition to those illustrated in

Fig. 1.1, which are significant to the efficiency and effective-

ness of the overall system. These factors consist of image

storage and retrieval, image representation and display, image

information manipulation, user interaction, and image generation;

Fig. 1.2 illustrates these additional factors.

I MAGE

FI LE MEMORY/ PROCESSOR
IILE

PRE- INFOR- DATA DECISION
PROCES- MAITION MANIP-
SING EXTRACTION ULATION

DISPLAY/CONTROL

USER

Fig. 1.2 Illustration of a More Complete Image Processing System

Particular configurations of such a system, including hard-

ware, software, displays, information extraction and the decision

scheme or process are application dependent. The algorithms and

procedures that are applied to implement various image processing

techniques are a function of the objectives of the image proces-

sing system user.

In particular, there has been a set of algorithms developed

under the OLPARS program at RADC, although other projects or

systems at RADC were using algorithms similar to these (in the

AFES system, for example). These algorithms include histogram

modification, averaging, boundary inclosure, enhancement and

other feature extraction and processing techniques. These tech-

niques are well-developed and have proven useful as applied to

various types of Imagery. These software techniques serve as

6

a basis for more sophisticated image processing built around a

PDP 11/70. This system represents a near production system which

handles a higher throughput for various types of imagery. This

system has increased speed, memory size and terminal sophistica-

tion than previous systems. Of interest here is the processing

speed of image feature extraction and processing techniques and

its sensitivity to certain computer architectures. The capabili-

ties of the basic AFES configuration to handle higher throughput

rates can be significantly expanded by reducing the computation

times associated with the implementation of image feature extrac-

tion and processing techniques.

1.2 Project Objectives

The objective of this project is to demonstrate the increased

computational capability of special computer architectures with

application to selected algorithms that would demonstrate a speed-

up that would hopefully imply increased throughput. In particu-

lar, the machine to demonstrate the proposed speed-up is a STARAN

array processor. This machine was chosen becaase: 1) RADC has

one that is operational and thus has an interest in it, and 2)

the accessibility of a STARAN to the UMC researchers at Goodyear

Aerospace along with expert help in its use from consultants at

Goodyear. The idea is to increase computational efficiency and

effectiveness through the use of this special image processing

architecture. In particular, the STARAN serves as a representa-

tive of a special architecture amenable to speeding-up certain

image feature extraction and processing techniques. The main

thrust of this project is to provide results to support the

decision to add or utilize a special architecture in an image

processing facility. That is, rather than proposing a specific

system configuration, the results of this project serve as a

demonstration that a special computer architecture can effect a

significant increase in computational speed and thus throughput

when applied to selected algorithms for image feature extraction

and processing.

7

1.3 Project Resources

The successful completion of the objectives of this project

has depended upon the availability of specific resources. One of

these resources is represented by computers; the project employed

the use of a PDP 11/50 and a PDP 11/34 located at UMC and the

STARAN facility, including the PDP 11/20 host computer located at

Goodyear Aerospace in Akron, Ohio. Both computer systems at UMC

are RKO5 disc-based systems as was the system at Goodyear. All

facilities had provision for hard-copy output and a high-resolu-

tion display unit (Comtal or Ramtek). Another resource has been

manpower. This project has involved the part-time efforts of two

faculty members and the part-time help of one to two research

assistants (graduate students), depending on their availability

over the span of the project. Finally, there was a subcontract

with Goodyear Aerospace to provide us with two resources: 1) use

of the STARAN facility for program debugging, testing and valida-I

tion, and 2) personnel or consultants to provide help with the

use of the STARAN facility and the actual set-up and demonstra-

tion of STARAN operation using programs developed at MIC.

1.4 Project Overview

The objective in seeking to speed-up image feature extraction

and processing techniques, rather than just establishing faster

processing (especially by sacrificing information content or

accuracy), emphasizes techniques to significantly increase the

throughput in a total image processing system, especially for a

near production system for image interpretation and evaluation.

The STARAN array processor represents the means for implementing

such a speed-up.

The software to implement selected image processing algo-

rithms on the STARAN array processor were developed by the UMC

research team. Two computers at UMC were used for this purpose.

Software was developed but could not be debugged or tested at

IMC. The role of Goodyear Aerospace was to provide expertise on

8

the use of the STARAN and provide us time on the STARAN for de-

bugging, testing, and evaluation of programs, along with a hard

copy of the results and the display of appropriate images. The

research team at UMC and colleagues at Goodyear Aerospace cooper-

ated closely to achieve the goals of this project. This cooper-

ation assumed several forms: 1) several visits of the UMC re-

search team to Goodyear for discussion and use of the STARAN, 2)

telephone conversations with colleagues at Goodyear, and 3) a

remote terminal hook-up from the STARAN facility at Goodyear to

a terminal at UNIC via a phone line. After debugging and testing

the software for selected algorithms, the results of run times,

including the input/output, and display results were obtained

with the use of the STARAN facility. Original images and images

processed at the RAPC STARAN facility would be used for a demon-

stration of part of the results obtained on this project.

For the most part, software for implementation on the STARAN

was developed by research assistants at UMC supervised by faculty

members. one of the longer-term or expected outcomes of the work

described here is a more general one than using a particular

computer architecture and applying or utilizing its speed for

application to selected algorithms. Although the processor is a

particular one, and the degree of computational speed-up depends

on the amenability of the chosen algorithms to speed-up by that

processor, the objective is to use the results obtained as a

basis for predicting or recommending a more thorough study of

special processors for increased throughput (at least an order of
magnitude).

II. Problem Formulation

2.1 Image Processing and the Need for Faster Computation

The effective and efficient operation of a near production

or image processing facility involves a number of overlapping

or interdependent tasks. These tasks include image storage and

9

retrieval, image enhancement, feature extraction, image recogni-

tion, and user display functions (interactive mode). The problem

is compoundedbythe following factors: 1) increased resolution

or picture size, say 1024 x 10214 or larger, 2) increased gray-

level quantization, 3) complex algorithms involving large image

segments, 4) multiple images of the same target- MSS or color,

for example, and S) rapid image handling for near real-time in-

teraction by a user at a display. For example, for a large

resolution image, say 4000 x 4000 pixels and 8 bits/pixel, the

storage requirements are almost 108 bits/image. Then, for say

1000 images, one is considering about 10 11bits, which exceeds

the capacity range of most current mass storage facilities, at

least for near real-time access. This project addresses only a

segment of the overall throughput problem- the processing of

images, image by image by high-speed image feature extraction and

processing techniques. If the compIuter architecture that pro-

vides the speed-up in computation time is coupled or matched with

fast 1/0 transfeis along with image compression techniques, the

system throughput will significantly improve. At the image

feature extraction and processing level, it is expected that these

methods will speed-up processing time by at least an order of

magnitude. The first problem is to select the image feature

extraction and processing techniques to match the chosen computer

architecture in order to realize its full capacity.

2.2 Justification for the Selected Algorithms

The variety of image feature extraction and processing

techniques covers a wide range. Examples include segmentation,

texture identification, noise reduction, thresholding, edge en-

hancement, image transformation, and the like. Among the choices

of algorithms are ones with the common characteristics of being

"useful" and at the same time amenable to speed-up through the

use of special computer architectures. One can classify the

techniques of interest here into two broad categories: 1) fea-

ture extraction, and 2) image processing (enhancement). Feature

10

extraction techniques are concerned with the extraction of speci-

fic information from the entire image or from particular sections

of it, such as edges, particular shaped objects, lines, pixel

statistics (mean, variance, or texture). The main purpose for

feature extraction is usually preparation for image recognition.

Techniques associated with image preprocessing, in contrast, are

applied so as to improve the image, preparing it for feature

extraction. Examples of this include histogram modification,

noise reduction or elimination, and edge sharpening. Another

purpose of such preprocessing is to enhance the user display,

such as on-line image manipulation (preprocessing techniques can

be called-up), manuscript generation, and image compression and

storage. Often the distinction of these two types of processing

is not clear, such as with the application of transforms (Fourier,
A Walsch, etc.), which could precede filtering and then enhancement,

or the spectrum could be used to generate a set of features.

Essentially, there were two algorithms which were chosen for

implementation on the STARAN array processor. These are: 1) an

edge detection (gradient) method, PTEDGE, for detecting or out-

lining edbes, and 2) several techniques designed for image noise

reduction or removal: a) MODAL, a technique for pixel replace-

ment, b) ODDPX, another pixel replacement technique, and c) STMNB,
a noise removal technique. Each of these techniques itself in-

volves several subroutines in the implementation. These tech-

niqueswere developed and executed on a conventional (serial)

machine (PDP 11/45); this is reported on in 136]. However, in

that study, it appears that the actual application of the tech-

niques to sample imagery was not done, or at least no "before

and after" imagery were presented. Thus, the two selected tech-

niques involve: 1) an edge detection or sharpening method, and

2) several variations of noise reduction or removal methods.

Available software for these programs already existed in assembly

language.

All of these computer-oriented techniques are local tech-

niques; that it, the operations performed on or applied to indivi-

dual pixels depend on the gray levels of adjacent or immediate

surrounding (neighborhood) pixels. Thus, the identification and

modification of the gray level of a pixel are made on the basis

of the gray levels of neighboring pixels. Being "local" tech-

niques, they are highly amenable to parallel processing; this

means that each small area of an entire image can be assigned to

a separate processing element foi computation. Then, the entire

image ca.. be processed in a time close to that what a single area

might require for processing. Some computing architectures, such

as an array processor, handle the parallel processing in a line-

by-line format.

2..3 Justification and Need for Special Computer Architecture

In various places in this report, the term "conventional"

or serial machine will be used. This refers to what later is a

class of computers called SISD (single instruction stream, single

data strezunf . A "conventional" machine executes the instructions

in sequence (serial) and in an image processing application, the

processing is implemented pixel-by-pixel, area-by-area, or line-

by-line. Thus, depeniding upon the computations applied to each

pixel, area, or line, the total processing time is proportional

to the number of pixels, areas or lines to process. This repre-

sents a very efficient approach to image processing. Then, the

image throughput depends on or is limited by, for a given image

(size and number of gray levels), the total sum of computation

times associated with a given algorithm. Thus, it is proposed

that the parallelism of special computer architectures be takenI

advantage of for the processing of the image sections. The main
advantage of special architectures can occur when it is matched

to the algorithm; then, the algorithm can be broken-down and

restructured so as to take advantage of the special architecture-

parallel tasking, vector operations, and the like. Thus, the key

element here is the ability to restructure an existing, chosen

algorithm to match a giveni architecture.

12

III. Review of Special Computing Architectures

3.1 General Overview

Advances in computer architecture, matching software, cir-

cuit design, device fabrication, as well as storage and retrieval

techniques have resulted in an increased processing speed in

modern digital computers. This, in turn, has provided the basis

for a corresponding increase in image processing speeds. Hard-

ware and software architectures are intimately related and

difficult to separate. Hardware/software system design to bring

about increased image processing speed and improved throughput

involves a number of trade-offs, including speed, precision,

reliability, flexibility for expansion, modes of operation, ease

of use and interactive capabilities. The relative weights and/or

constraints imposed on these factors is strongly application

dependent. Here, the application is digital image processing, an

image being represented by an array of pixels, whose gray levels

have been quantitized. The need for high speed is readily appar-

ent when real-time or near real-time image processing is required,

especially in a near production environment. One example of near

real-time image processing is in digital television [37]. A

frame rate of 30/sec. and a horizontal line scan of 63.5 microsec.

(with the remaining 13.5 microsec. being used for retrace). With

a minimum horizontal resolution of about 500 pixels/line, there

would be S0/500 = 100 nanosec. processing time/pixel. This im-

poses a sever constraint or requirement on the computing archi-

tecture.

Many applications do not require the extraordinarily high

processing speeds referred to previously. Digital images from

weather or reconnaissance satellites may not require 30 processed

images/sec. However, time-delays, even for a single frame, may

not be acceptable due to rapid movement of storm systems or tar-

gets. Short processing times are important even for objects that

do not appear to be changing. Image processing requirements

13

depend on image information content. For example, a single frame

of LANDSAT imagery containes 30 x 106 bytes of information. The

storage of 1000 such images would require some 3 x 1011 bits of

storage. To handle a high throughput with such a data base,

memories could be arranged in a hierarchical or functional manner,

a buffer memory could be used (108 bytes, say) along with a

temporary working space (memory) and a high-speed data transfer

rate.

In order to implement digital image processing techniques

and satisfy reasonable goals regarding throughput, while being

able to manipulate images and implement various sophisticated

algorithms in near real-time, it is proposed to utilize advanced

computer architectures and organization. These architectures

include parallel processing, associative (array) processing, and

multiprocessing. Computer architectures can be classified based

on the properties of the data and instruction streams. This has

led to 4 categories of computer architectures. These are sum-

marized below.

SD: Single Da a MD: Multiple
DataStream Stream

Para1el Process.
SI: Single Unit MP

Inst ruci onAnIStru n Processor Associative Proc.
St ream

MI: Multiple Pipeline Multi-
Instruction Processor processor/
Stream Multicomputer

Table 3.1 A Classification of Generic Processor Architectures

Using this table, one can consider the following architectures:

1) SISD (Single Instruction stream/Single Data stream); unipro-
cessor (example: IBM 370).

2) MISD (Multiple Instruction stream/Single Data stream); pipe-
line (example: CDC Star 100).

3) SIMD (Single Instruction stream/Multiple Data stream); paral-

14

lel or array processor (examples: ILLIAC IV or STARAN).

4. MIMD (Multiple Instruction stream/Multiple Data stream);
multiprocessor (example: UNIVAC 1108).

5. SIMD and MIMD combined.

The architecture for a "typical" array or parallel processor

is shown in Fig. 3.1 below, (SIMD).

I I

SControl Program

-C it Memory

Processing(~

Il e nec iona
ProcessingN

I Element
2 Data

i Memory

F. .Processing re o or

Element
P Data

Memory

i g 3. lc igamo aallProcessor

15

II

The diagram ini Fig. 3.2 shows a typical associative proces-

sor configuration (SJMD).

Data Re'gister

Ma sk Regitr

I- U
G4)

4J 0

UU

Fig. 3.2 Block Diagram of Associative Processor

Next, three different types of high-speed processors that

vary significantly in architecture will be discussed. The ILLIAC

IV and AP-120B are introduced in relatively brief form, while the

main emphasis is on the STARAN associative processor.

16

IV. High-Speed Processors

4.1 ILLIAC IV

4.1.1 Architecture

The first high speed processor to be examined is the ILLIAC

*IV. Its SIMI) architecture and topological relationship between

* processing units result in the ILLIAC IV being classified as an

array processor [38]. The design follows that of the SOLOMON

computer which was one of the earliest processors designed with a

high degree of parallelism [39].

Four types of units make up the ILLIAC IV system configura-

tion as seen in Figure 4.1. The first unit, a Burroughs B6700,
functions as a host computer. It provides for user interfacing

and program assembly. An 1/O controller is the next unit. it

provides for data and instruction transfers between mass storage

and the arrays. Mass storage is provided by the third unit, a

disk file. The disk file allows storage of large amounts of data

and instructions. Such storage is particularly useful when the

system is supporting many users. The final unit is the array

which consists of a control unit (CU)) and 64 processing units

(PU). Data storage, instruction storage, arithmetic and logic

operations are all performed by this unit.

The ILLIAC IV contains four arrays. Each of the arrays is

designed to operate independently or in conjunction with each

other. This is accomplished by having a controller for each

array and also providing a system of interconnections between the

control units and the processing units. The result i~s a varia-
tion of all four arrays acting independently, two sets of two

arrays acting together or all four arrays acting as one large

17

CU CU

64 64B6700

PU'S PU'S

18/

Controller

S64 64•
iPU'S PU'S

Disk
CU CU File

Figure 4.1 ILLIAC IV System Configuration

O 0

o O0

(a) Adjacent PU's (b) Nonadjacent PU's

Figure 4.2 PU Connections

18

Sixty-four processing units (PU) are connected together to

make up an array. Each PU is connected to four neighbors. This

allows the results of one calculation to be used in another cal-
culation without lengthy data transfers. The interconnections

can be seen in Figures 4.2 (a) and 4.2 (b). Each processing unit

is represented by a small circle and its interconnection with

other processing units by a line. Connections shown in both

figures exist simultaneously; however, they are shown in separate

figures to avoid confusion.

Instructions are both transferred to and in some instances

executed by the control unit (CU), Figure 4.3. The instruction,,

32 bits long, are read from the processing element memory (PEM),
Figure 4.4, in blocks of eight words (16 instructions). They are

stored in the instruction buffer which holds up to 128 instruc-

tions. Each instruction is then transferred to the advanced

instruction station (ADVAST), where it is decoded. This station

determines whether the instruction is to be executed in the CU

or the PU.

Control unit instructions are executed immediately without

being transferred to the final queue (FTNQ). A typical example

of a control unit instruction would be a jump instruction. This

would require a change in the program counter, part of the CU, and

would not interfere with the processing units.

If an instruction is to be executed by the processing units,

it is transferred from the advance instruction station (ADVAST)

to the final queue (FINQ). Here the instruction awaits transmis-

sion to the final station (FINST) or the broadcast data and

address register. Data intended for use by all or many of the

processing units is transferred to each PU from the broadcast

* data and address register. This is useful for adding a constant

value to several or all PU's at the same time. Instructions

entering the final station are decoded further and transmitted

* to the processing units as control signals.

19

From PEM's

Instruction Local Data

Memory Access
FINQ Control

FINST and Address

Control Data and Data, Address and
Bus Address Bus Control Bus

Figure 4.3 ILLIAC IV Control Unit

20

The control unit has a limited arithmetic capability. This

provides for such operations as address indexing. An index value

stored in a processing element memory (PEM) location could be

transferred to the local data buffer of the CU. The data would

then go to the advanced instruction station which contains the

arithmetic unit. After this data is added to an address previ-

ously sent to the ADVAST from the instruction buffer, the result

is transferred to the memory access control. The address is then

transferred to the broadcast data and address register where it

is used to address a processing element memory.

Each of the processing units (PU) which have been mentioned

so far, consists of a processing element (PE) and a processing

element memory (PEM) shown in Figure 4.4 [38], [40]. Data and

control signals enter the register block (RB) of the PE. Data

zan be stored in the RB, which contains three storage registers

and an accumulator, for use in arithmetic instructions which use

the arithmetic logic unit (ALU). Transfers are made between the

ALU and the RB to provide the needed feedback for operations

such as shifting.

Addressing the PEM is accomplished by transferring the ad-

dress from the CU or the PEM into the register block. The PU

can then take advantage of the ALU to perform address modifica-

tion. The address can be indexed, if desired, and then transfer-

red to the address register. From there, it is used to address

the processing element memory.

Arithmetic operations are performed in the ALU of the pro-

cessing units. The ALU operates on a 64-bit word which can be

divided into two 32-bit or eight 8-bit segments. The 64-bit

word and 32-bit segments all have flags which can be used to

determine if an operation is to take place. This flag is not

operable for the 8-bit segments, which prevents these segments

from participating in simultaneous conditional operations. Each

ALU can operate independently or in conjunction with neighboring

processing units. Since each PU has its own memory, PEM,

21

simultaneous memory accesses by all PU's can occur.

The ILLIAC IV is capable of performing up to 256 simultane-

ous arithmetic operations involving 64-bit words. Its architec-

ture results in a machine capable of greatly surpassing sequen-

tial computers in a wide variety of operations.

4.1.2 Applications to Image Processing

The ILLIAC IV can be used in a wide variety of image proces-

sing applications. The discussion in this section, however, will

be limited to three areas. They are table lookup, convolution,

and Fourier analysis (411.

Neighboring
CU PU's

I Register Address PE
,Block Register

I

ALU I

IP E

Figure 4.4 ILLIAC IV Processing Unit

22

Table lookup can be used to threshold an image. This process
changes a pixel gray level to a predetermined value when the

pixel gray level falls within certain limits [42] . Pixel gray

level values can be stored ini the processing element memory.

Then up to 512 pixels can simultaneously be assigned gray level

values based on the limits they fall between.

Convolution can be used for smoothing, filtering, and edge

detection [42] . Smoothing results when high frequencies are

removed from the image. This will yield an image with high fre-

quency noise filtered out; however, it may also result in blurring.

Filtering can be used to enhance high frequencies and produce

sharper images. Edge detection may be used to enhance the edges

in an image. The convolution of a slowly changing gray level

with an impulse results in a faster changing gray level with some

overshoot. The result is edge enhancement.

Fourier analysis involves converting signals from the time

domain or spatial domain to the frequency domain and back again.

This conversion frequently requires complex operations in which

the calculated conversion value of one pixel is required to cal-

culate the next pixel. Once the conversion is accomplished,
filtering in the frequency domain can result in edge emphasis

(high pass) or noise removed (low pass).

4.1.3 Advantages/Disadvantages for Image Processing

The architecture of the ILLIAC IV is highly suited for image

processing. Each of the four arrays consists of 64 processing

units which yield a total of 256 PU's. Each processing unit uses

a 64-bit word which can be separated into two 32-bit or eight

8-bit segments. The segments can each be treated separately,
resulting in a total configuration of up to 2,048 eight-bit

pixels. This in combination with indexing, high speed memory

(250 nanoseconds), high speed processing (400 nanoseconds multi-

ply) and the topological nature of the arrays, are the main

advantages in using this computer for image processing.

23

Disadvantages of the ILLIAC IV include its expense and the

flag bits used by the PU's. The large cost, apprcDiatcly 30

million dollars, is caused by the massive amount of electronics

required to perform complex calculations in each processing unit

[45]. Every processing unit requires around 104 ECL gates and

2,048 words of 250 nanoseconds memory which results in over 2.5

million ECL gates and over 4 M bytes of memory [39]. The ILLIAC

IV was constructed in the mid-1960's, using the technology of the

1960's. The result was an extremely costly and large machine.

The flag bits mentioned earlier are a disadvantage because

they have limited application. These bits can be used to deter-

mine if an operation is to take place in a processing unit. For

example, an array may contain some data which must have a con-

stant added to it, while the other data cannot be changed. This

can be done by broadcasting data to all processing units in an

array and setting the flag bit only on those data words which

should have the constant added to them. The flag bit can be set

for each 64-bit word in the processing element memory (PEM) or

the two 32-bit segments. The flag cannot be set for the eight

8-bit segments which change a possible 2,048 simultaneous opera-

tions to 512.

In summary, the ILLIAC IV is a high speed array processor

consisting of four arrays. Each array consists of 64 processing

units which can be combined to give up to 256 64-bit computations

simultaneously. Due to the high cost and mid-1960's technology,

few ILLIAC IV's have been constructed. Access to an ILLIAC IV

is limited primarily to users of the ARPA network.

4.2 AP-120B

4.2.1 Architecture

The AP-120B is a parallel pipelined processor [43]. Figure

4.5 illustrates the parallel pipelined concept. Processes A, B,

and C can take place simultaneously, hence they are called paral-

24

lel processes. Processes D and E can also occur simultaneously;

however, data entering E must first be processed by D. The pipe-

lined concept implies that when data enters E to be processed,

new data may also enter D.

Figure 4.6 is a diagram of a typical AP-120B system. Unlike

the other computers discussed in this thesis, the AP-120B must

have a host computer. The host is a general purpose sequential

computer. Its main functions are handling operating system over-

* head, user interfacing, and performing data manipulation required

* in preparation for the AP-120B. Data is transferred between

computers via DMA cycle stealing and control signals are passed

along through the I/0 interface.

The architecture of the parallel pipelined processor is

shown in Figure 4.7 [441. Data, instructions, and control signal

are received from the host through the I/0 interface. Instruc-

tions are then stored in the program memory. Data can be stored

in the table memory, data pad X, data pad Y, main data memory,
or the integer block.

When instructions in the program memory are ready for exe-

cution, they are transferred to the control buffer which generates

control signals used in the AP-120B. The result can be a com-

bination of up to all ten of the following operations: [431

1. Floating-point add

2. Floating-point multiply

3. Fetch or store from main data memoryV
4. Read accumulator

5. Read accumulator

6. Store accumulator

7. Store accumulator

8. Conditional branching

9. Fetch from table memory

10. Integer block

25

Process A

Figure 4.5 Parallel Pipeline Concept

ComputerStrg

Data Control

AP-120B

Figure 4.6 Typical AP-120B Configuration4

26

4J
u

0 V

41-

<-27

The program memory is constructed with bipolar semiconductor

memories. It is available in 1K word increments and expandable

up to 4K words. The instructi'-n word size is 64 bits, which per-

mits up to 10 different operations ~o be executed concurrently.

The table memory uses bipolar technology for both RAM's and

ROM's. The ROM's occupy up to 4K words and are used to store

constants and sine/cosine tables. The RAM's are available in 1K

increments, bringing the total table memory capacity to 64K words.

Each data word is 38 bits long to provide increased accuracy in

floating-point operations. The table memory can be used to store

frequently used constants.

Data pad X and data pad Y are floating-point accumulators.

Each pad has 32 floating-point accumulators which are 38 bits

long. Data pad X and Y may be concurrently used for source and

destination registers. The result is four accumulators (two

source and two destination) capable of being accessed in one

instruction.

The main data memory consists of up to S12K words of MOS
memory. Direct addressing is limited to 64K; however, paging

techniques will result in 512K addressable words. This memory

is designed to store floating-point numbers which result in its

38-bit word length.

The integer block uontains sixteen 16-bit integer registers

and an integer arithmetic logic unit. This unit is used for

addressing functions and integer arithmetic.

4.2.2 Applications to Image Processing

The AP-120B parallel pipelined processor performs efficiently

on calculations. Its high speed floating-point adder and multi-

plier yield rapid calculations required for such processes as

Fourier Analysis, Convolution and Correlation.

The parallel pipelined architecture used by the AP-120B is

ideal for many image processing applications. One example is

28

Fourier Analysis, which can be accomplished with the use of the

Fast Fourier Transform. This transform requires many variables

to be multiplied. This can be done in parallel. The results of

the multiplications must also be added. This must also be done

to the next group of variables which results in a pipeline move-

ment of data.

4.2.3 Advantages/Disadvantages for Image Processing

The parallel pipelined architecture provides a large speed

increase over traditional sequential machines. Fourier Analysis

is accomplished in less time with the AP-120B than with general

purpose computers. Performing a 512 x 512 Fast Fourier Transform

of an image can be accomplished in 1.55 seconds on the AP-120B

whereas a general purpose computer may require in excess of 30

minutes [43].

The AP-120B was designed to be a high speed processor for

scientific use. To accomplish this, floating-point hardware be-

came the basis for the processor. Many image processing applica-

tions, however, do not require floating-point hardware. Large

arrays with primitive arithmetic units would fit these applica-

tions better. Thresholding an image could be dome much more

rapidly on a computer capable of operating on a large number of

pixels at one time than it could be done on the AP-120B.

The AP-120B appears to be the most cost-effective of the

three processors discussed in this thesis. Its price is in the

one hundred thousand dollar range and its speed is around 3.5

million floating-point operations per second [45].

In summary, the AP-120B is a high-performance, relatively

low-cost parallel pipeline processor. It is designed to be con-

nected to a host computer which controls the overall system. The

AP-120B became commercially available in the mid-1970's. As a

result of the use of newer technology, MSI, LSI and higher speed

memories, and the AP-120 architecture, its price and performance

have resulted in many units being sold commercially.

29

Another variation on the AP-120B is a later model by the same

manufacturer, the FP-lOO. This machine does not have the same

capabilities, but is more cost-effective and is well matched to

host machines such as a PDP 11/23.

4.3 Other Architecture

Other examples of special machines for picture processing

which are much faster than conventional machines are the CLIP

series, PPM and PICAP. The CDC Flexible Processor and the TOSPICS
are two additional examples of more powerful machines, which are

similar in their treatment of image processing tasks. A feature

of some of these more powerful machines is having a special type

of memory, CAM (content addressable memory [51]).

Special purpose computer architecture for digital image

processing can be partitioned into two broad classes, bit-plane

processing and distributed processing. The bit-plane approach

uses Boolean operators as processors on primarily binary images.

The distributed computing approach appears to have more computa-

tional capability. Most of the existing machines designed for

parallel and array processing have the disadvantage of not being

"reconfigurable," whereas a variety of digital image processing

tasks would greatly benefit from this feature. A multi-processor

configuration should be considered; it may be useful to combine

the capabilities of both parallelism and array processing. Four

principal areas where system performance can be improved for

specific applications are: 1) devices and circuits, 2) system

architecture, 3) system organization, and 4) system software.

Performance characteristics include throughput, flexibility,
availability, and reliability. The essential characteristics of

a multiprocessor are as follows:

1) contains two or more processors of approximately
comparable capabilities

2) all processors share access to common memory

3) all processors share access to input/output channels,
control units and devices

30

4) entire system is controlled by one operating system
providing interaction among processors and their
programs at the job, task, step, and data set element
levels

A key to classifying such structures is the interconnection

subsystem- its topology and operations. Three organizations of

this subsystem are common: 1) time-shared on common bus, 2)

cross-bar switch matrix, and 3) multiport memories. A cross-bar

configuration must be capable of resolving conflict situations.

The essential structure of a multi-processor system consists of a

host computer such as a PDP 11/70 or 11/780, multiple processors,

shared memory, local memories, a mass storage memory, inter-pro-

cessor connections to link processors, memory and I/O, and multi-

port memories. A basic, but general multi-processor organization

is illustrated in Fig. 4.8.

The RCA 215 is an example of a cross-bar multiprocessor, while

the Univac 1108 is an example of a multiport memory multiproces-

sor. The concept and use of multiport memories are represented

at the chip level by special processors, such as the Intel 2920

and the AMD S2811.

Memory 1/0

System

Processor
Units

Fig. 4.8 Basic Multiprocessor Organization

31

Another approach to special architecture for high-speed image

processing is the use of bit-slice architecture. Here, the com-

putational tasks are separated from the control and memory tasks.

Special chips are designed as the computational units 2-bit,

4-bit, or 8-bit (one byte) slices; they are designed with high-

speed technology devices (bipolar Schotky or ECL). These high-

speed computational units are then coupled together for form

n-bits (8, 12, 16, 32, as required). Computational tasks are

performed by special programs (microprogrammed) stored in a ROM

(Control ROM). A fast, common memory is used for storing the

image processing algorithms. Register to register transfer times

of data within these devices are in the nanosec. range. Byte

slice devices are now available. The advances of this approach

include the high speed characteristics of the bit or byte slice

devices and the ease of combining the basic units to form larger

combinations as required.

4.4 The STARAN

4.4.1 Introduction

One of the special computer architectures emphasized here in

regard to speeding-up image feature extraction and processing

techniques is the STARAN. It is emphasized here because this

machine was used to demonstrate the speed-up possible with an

array-type computer architecture.

4.4.2 Architecture

The STARAN associateive processor (AP) is a parallel processor

designed to provide efficient computations of parallel operations.

Its associative architecture is derived from the content addres-

sable arrays. In its normal configuration, Figure 4.9, STARAN

is connected to a sequential controller. This controller provides

a method to load AP programs, a user interface with the AP, a

program assembly and debug capability, and control over the AP

[46]. The host computer can provide overall system control for

time sharing operation.

32

The STARAN, on which the work for this project was implemen-

ted, is located at the Goodyear Aerospace Corporation (GAC) in

Akron, Ohio. A PDP 11/20 is used as the sequential controller or

host computer at GAC. Mass storage is provided by two DEC RKOS

disk drives and two tape drives. The user interface is a DEC-

writer. A tape drive is employed for the imagery input, while a

COMTAL display is used for the imagery output. Later on in the

project period, a remote link was established from the STARAN

facility at GAC to a remote terminal at the University via a

telephone link.

STARAN architecture consists of a control memory unit (CMU)

and associative arrays, Fig. 4.10. The minimum configuration

requires the CMU and one array. The maximum configuration would

consist of up to 32 arrays; however, the STARAN at Goodyear Aero-

space Corporation, consists of only two arrays.

The control memory unit interfaces the sequential controller

to the associative arrays. Data and instructions are normally

transferred from the sequential controller storage devices to the

CMU where they are stored. Data can be moved through a 32-bit

common register in the CMU to the associative arrays for proces-

sing and then back to the CMU. Instructions are executed in the

CMU.

The associative arrays consist of a multidimensional access

(MDA) memory, response store registers, and a shift network.

These units are used for storage of the 256 256-bit words, arith-

metic and logic operations, and flags to allow content addressa-

bility. Parallel I/O directly into and out of the arrays is also

available in some STARAN associative processors.

A more detailed description of the STARAN architecture is

presented in Section 5.1.

33

Display

TaeSequentialDerir
Tape Controller

Host IESTARAN

Figure 4.9 STARAN System Configuration~

Sequential
Controller

ExternalControl Memory > Function
Unit Commands

1 Parallel 1/0O

Figure 4.10 STARAN Architecture

34

4.4.3 Applicatio-ns to Image Processing

The STARAN associative processor has proven to be a powerful

computer capable of handling many applications. It has been used

extensively by the Rome Air Development Center to investigate its

usefulness in such areas as Advanced Warning and Control Systems

(AWACS) tracking systems and Air Traffic Control systems [501.
For image processing application, STARAN is particularly useful

in areas requiring manipulations of pixels. Examples would be

histograms, convolution, noise removal, and thresholding. Such

techniques can be carried out without the use of floating-point

numbers for which the STARAN is not ideally suited.

Examining the application of STARAN to producing a histrogram

will demonstrate the power of the associative arrays. Since an

array consists of 256 words, it can hold up to 256 pixels, storing

only one pixel per word. Two arrays will hold up to 512 pixels

which allows simultaneous comparisons of all 512 pixels with a

specific pixel. The number of matches can be determined, which

results in a pixel count for the histogram. Only 512 such opera-

tions are required to complete the histogram of a 512 x 512 image.

On a sequential computer, 262, 144 such operations would be

required.

4.4.4 Advantages/Disadvantages for Image Processing

The two greatest advantages of the STARAN are the large ar-

rays and the powerful associative instruction set. The arrays,

256 x 256 bits, can provide arithmetic operations on at least

256 pixels at the same time. A system which has 32 arrays could,

for example, check 8,192 pixels for a particular gray level value

all at one time with the execution of one instruction. The asso-

ciative instruction set allows complex manipulation of data in

the MDA memory, response store registers and the common registers.

The disadvantages of STARAN include that of most high perfor-

mance processors, cost- approximately 3/4 of a million dollars.

Several other areas need improvement, also. Data transfers from

35

the control memory unit to the associative arrays must go through

the common register. This is a 32-bit register which forms a

bottleneck when trying to transfer large amounts of data to the

arrays. An attempt to overcome this was made by providing for

parallel 1/0 directly to into the arrays. This method, however,

is not available on all STARAN associative processors.

Associative arrays are constructed with 2S6 words of memory

per array. Each word can perform a primitive arithmetic and

logic operation. These operations are not efficient for multi-

plication and division, requiring additional execution time.

Floating-point arithmetic requires additional software which

results in a further slowing of execution speeds. This disadvan-

tage could prove significant for algorithms such as the Past

Fourier Transform.

In summary, the STARAN's associative arrays provide a power-

ful means of processing parallel integer oriented operations.

The lack of floating-point hardware does significantly reduce the

speed of this machine for many-scientific applications.

36

V. STARAN Associative Processor

5.1 Architecture

A brief discussion of the STARAN architecture was given in

Section 4.4.2. This section will expand on that introduction by

examining more closely the control memory unit and the associa-

tive arrays.

The control memory unit can be divided into 10 areas, Figure

5.1, as follows:

Page 0. This is a memory that uses bipolar technology to

achieve fast access. It contains 512 32-bit words. Page memory

is used for instruction storage only. This page is used primari-

ly for a library of microprograms that are frequently required in

STARAN programs. Page 0 contains hexadecimal addresses 000

through 1FF.

Page 1. This page has the same amount and type of memory as

page 0; however, it is intended for STARAN programs about to be

executed. It contains hexadecimal addresses 200 through 3FF.

Page 2. This page is functionally identical to Page 1. Its

address space is hexadecimal 400 through 5FF.

HSDB. The high speed data buffer is a 512 32-bit word bipolar

memory. It is intended for data storage requiring frequent ac-

cess. Its address space is hexadecimal 600 through 7FF.

Bulk Core Memory. This memory is nonvolatile core which is

intended for program and data storage. The standard configura-

tion contains 16K 32-bit words occupying hexadecimai addresses

8,000 through BFFF.

Port Switch Logic. This unit acts as a switch to connect the

program pager to page 0, 1, or 2 for a memory write operation.

It also can connect page 0, 1, or 2 to the AP control or sequen-

tial controller for a memory read.

37

Lin

0

W,,- 4 c

U, CU

0

I--

oA 0
0 0.

c ,
0. C 4

0 -41

QJ &044

0i -

0

CUU

00 00

p 044

P644

0 "4

0.
--4- - -- h

Port Priority Switch Logic. This unit determines the priori-

ty of the port switches and sends out control signals to allow

port activation. It also provides switched paths for the high

speed data buffer to the AP control and sequential controller.

Switched paths also exist from the bulk core memory to the AP

control, program pager and the sequential controller.

AP Control. The associative processor control is designed to

control the STARAN arrays. Instructions which are fetched from

bulk core memory, page memory, or external logic are decoded and

executed in the AP control or the associative arrays, Figure 5.2.

Program Pager. The program pager is connected to the bulk

core memory and page memories via port switches. Its function is

to load the high speed page memory with programs stored in the

lower speed bulk core memory. This allows for large program

storage in bulk core and fast program access in page memory.

Programs should be written to require a sufficient amount of

execution time in page memory to allow one of the unused page

memories to be loaded by the program pager.

External Function Logic. This unit transfers.-control and

status lines of some STARAN elements for external use. Resetting

and clearing various registers and flags can be accomplished ex-

ternally. AP control status is also monitored. The AP control

unit, Figure 5.2, will be discussed in detail to allow a better

understanding of the programs found later in this thesis.

Data enters the AP control from the memory in the control

memory unit. Jt is transferred to one or more of the following

registers:

1. Common Register (C)

2. Array Select Register (AS)

3. Field Length Counter (FLI or FL2)

4. Field Pointer (FPl, FP2, of FP3)

S. Field Pointer Extra (FPE)

6. Block Length Counter (BL)

39

7. Data Pointer (DP)

8. Program Counter (PC)

9. Interrupt Mask (IMASK)

10. Instruction Register

Data can also be written back to memory from these registers.

Instructions from the page or bulk core memory are transferred

to the instruction register (IR). In the IR instructions can be

modified by data entering the adder. For example, address modi-

fication by a register is possible in the instruction, LR C,O(DP)

which loads register C with the contents of the memory location

in the CMU addressed by register DP. After any necessary instruc-

tion modifications are made, the IR outputs control signals for

use within the AP control unit.

The following is a brief description of the functional blocks

shown in Figure 5.2.

Bus Logic. This unit provides logic to interface the AP con-

trol to the CMU memory.

Instruction Register. It modifies, if necessary, and then

decodes the 32-bit instruction words received from CMU memory.

It also outputs control signals for use within the AP control

unit.

Common Register. It provides a transfer path for 32-bit

words between memory and associative arrays.

Array Select Register. Each bit in this register is an

associative array enable bit.

FLI, F12. These field length counters are 8-bit registers

that can be decremented and checked for a zero value with a

branch instruction.

FPl, FP2, FP3, FPE. The field pointers are 8-bit registers

which can be incremented or decremented. They are frequently

used to point to a location in the associative array.

40

i "!

4 M 0 Z

w ua

4k&4

-4 -4

00

M 4)J

0 41 0

U)U

r4'

R41

BL. The block length counter is a 16-bit register which can

be decremented.

DP. The data pointer is a 16-bit register which is frequent-

ly used in combination with the BL counter to step through a

block of data. It can be incremented or decremented.

PC. The program counter is a 16-bit register used to address

the next instruction in the CMU memory.

IMASK. This register is four bits long and used to enable

interrupts.

Array. Select. This register uses either the array select

register (AS) or the field pointer FPl, to select which array or

arrays are active.

Final Resolver. This register determines the first responder

set (Y response store register) and returns the array address to

FPI and the word address to FP2.

Control Line Conditioner. The conditioner generates control

signals required to obtain addresses in the final resolver.

Array Address. This unit generates the address mode used in

each array, bit column or word.

Flip/Shift Control. This unit generates control signals used

to provide multidimensional access of the arrays.

Loop Counter, Two 16-bit registers and a comparator make up

this unit. One register holds the starting address of the loop.

The other register holds the final address of the loop. When the

comparator indicates the PC and the final address register ate

the same, the starting address is loaded in the PC to continue

the loop. The loop is repeated as many times as specified in the

instruction.

The STARAN contains from one to 32 arrays. Each of these

arrays contains a multidimensional access memory which has 256

words that are 256 bits long. The major units in the arrays are

42

shown in Figure 5.3.

Control signals, data, and addresses are transferred from the

control memory unit to the array control in the associative array.
The control signals are used for the resolver (Y response store),
the response store registers, the shift network, and the multi-

dimensional access (MDA) memory. Addresses are used to locate

words, bit columns, or fields in the array.

The response store registers are 256 words long and one bit

wide. The M response store register is used for temporary

storage and also as a mask to enable array words to participate

in an arithmetic, logic, or move instructions. The X register

is used for temporary storage. The Y register is used for tem-

porary storage, but it also functions as a resolver. When

op'-rating in this mode, the Y register has a bit set correspon-

ding to each word in the MDA memory which meets conditions re-

quired by the instruction. For example, the instruction EQC sets

each bit in the Y response store register if the specified fields

in the common register (C) and the array field are equal. The

response store registers are also used to perform arithmetic and

logic operations in the array.

The shift network allows the data in a response store register

to be shifted and loaded to another response store register or

into the MDA memory.

The MDA memory is 256 x 256 bits. It is segmented into

fields, words, and bit column addresses as shown in Figure 5.4.

The field address shown in this figure is not fixed in length,

but can range from one to 256 bits long. STARAN instructions use

three types of addresses in performing data manipulations in the

array.

5.2 Instruction Set

The STARAN instruction set can be grouped into three areas.

The first area is the control memory unit instructions. These

instructions correspond to sequential computer instructions in

43

CHU

Array Control

C
So0
h n iiA Memory M X Y
it
fr
t o

II

Figure 5.3 Associative Array

25
> 0

KASIdress

Word
Address

>255
Bit Column Address

Figure 5.4 Associative Array Addresses

44

II0[i I I . . . i - - - " , . . . ,

most cases. Branching, register manipulation, and control in-*1 structions are included in this group. The second area is the
associative array instructions. They are uniquely STARAN instruc-

tions which takes advantage of the multidimensional access memory.

The final area is the parallel input and output instructions.

This area is designed to take advantage of facilities which sup-

port high speed parallel 1/0 to and from the arrays. Parallel

1/0 instructions were not used in the research for this thesis.

They are not supported by the STARAN for which this research has

been done and will not be discussed further.

Control memory unit instructions can be grouped into three

types. The first type is branch instructions, the second type

is register instructions, and the third type is control instruc-

tions. The instructions required for the associative array are

grouped into six types. These types are branch, load, store,

move, searches, and arithmetic.

A brief description is given in Appendix A of most of the

instructions used in Appendices B, C, and D [471. They include

both control memory unit instructions and associative array

instructions.

The use of several instructions will follow. They are store,
arithmetic, search, and load instructions and are listed in

Appendix A.

A store instruction moves data from one location in the array

to another or from the CMU to the array. If it is desired to
move data from the CMU memory to the associative array memory,

the SC c,d instruction can be used. First, data must be moved

from the CMU memory to the common registe- via a load register

instruction. Next, the SC c,d instruction can be executed.

The SC c,d instruction affects only those arrays that are

enabled by the array select register and only those array words

which have their mask bit (M response store register) set. The

parameter 'c' is used to specify a field in the common register.

45

This register is 32 bits long and the field can be from 1 to 32

bits long. A field designation of (4,20) indicates that starting

at bit number 4, the fifth bit, 20 bits in the common register

are used. The parameter 'd' is used to specify a field in the

associative array.

An example of this instruction is SC (0,8),(249,8). This

instruction moves the first byte of the common register to the

last byte in each array word which has its mask bit set.

The arithmetic instruction, ADC a,b,c, will be considered

next. If data from the CMvU memory is to be added to a field in

the array, this instruction can be used. Data will first have to

be moved from the CMU memory to the common register. Then the

instruction ADC a,b,c will add field 'b' of the common register

to field 'a' of the array and store the result in field 'c' of

the array. Again the array and array words must be enabled to

participate in this instruction.

A search instruction can be used to determine if fields in

an array meet certain conditions. The instruction GEC a,b can

be used to determine if the contents of field 'a' is greater than
field 'b'. Field 'a' is in the common register and field 'b' is

in the array. Only arrays that are enabled and words that have

their mask bit set participate in the instruction. If the con-

ditions are met, then a bit is set in the Y response store regi-

ster corresponding to the word in which the conditions were met.

It may be desired to move the contents of the array fields

which met the above criteria, back into the CMU. This can be
done with the load instruction LCM c,d. First, the link pointer

(FPl2) is set equal to the array field location which has a Y

response store register bit set. This can be done with the STEP

instruction [47]). Then instruction LCM is executed which moves

field 'd' of the array to field 'c' in the common register. The

array field is determined by the contents of FP12 which was

determined by the contents of the Y response store register.

46

5.3 Comparison with Sequential Computer Instruction Set

STARAN has instructions which are both parallel and sequen-

tial in nature. The instructions for the control memory unit are

sequential and very similar to those found in a typical sequen-

tial computer such as the PDP 11/45. The instructions for the

associative arrays are parallel in nature and bear little resem-

blance to those of a sequential computer.

The control memory unit has been seen to have branch instruc-

tions and register instructions. These instructions provide

little more than the minimum necessary to carry out elementary

data manipulation. While the STARAN can use direct, register,

and autoindexing address modes, it lacks the power of indirect

addressing which is found in many sequential computers. This

adds to the weakness of the STARAN instruction set.

An almost total lack of arithmetic and logic instructions

further weakens the control memory unit's usefulness. Comple-

menting, both l's and 2's, incrementing and decrementing is the

extent of these instructions. Sequential computers have a wide

variety of arithmetic and logic instructions. The PDP 11/45 uses

instructions such as ADD, SUB, MUL, and DIV, which result in

addition, subtraction, multiplication, and division, respectively

[48]. Such functions are not always of a parallel nature and to

process them on the STARAN requires the additional step of moving

them into the associate array.

The reasons for selecting and using the STARAN for implemen-

ting the speed-up of image feature extraction and processing

techniques are two-fold. 1) The STARAN is an excellent example

of a particular type of high-speed architecture- associative

arrays that are content addressable. 2) The STARAN has been

available to RADC in either a stand-along mode or through MULTICS

and this can be viewed as providing motivation for the interest

at RADC in using special architectures for speed-up. At the

same time, a preestablished contact with a colleague at Goodyear

47

Aerospace led to a joint working relationship between the research
team at UMC and colleagues at Goodyear. This relationship in-

cluded the use of their STARAN computer for programming, debug-

ging, testing, and evaluation, as well as help regarding its use.

Thus, the selection of the STARAN to establish the advantages of

special computer architectures for speeding-up image processing

was a very practical one from the point of view of availability

as well as its potential use by RADC. At the same time, however,
this project can be viewed as a demonstration project in which

techoice of the STARAN is not as important as demonstrating
that a special computer architecture can provide a significant

speed-up of image feature extraction and processing techniques.

This is exactly what this project has established.

VI. Project Description and Procedures

6.1 Achieving the Required Background and Experience

This section briefly describes the preparation and general

approach by the 1,MG research team on this project in order to

achieve its objectives. The original research team (who also

completed most of the programming work) consisted of two faculty

members and two research assistants. All have had experience in

image processing and recognition. The two faculty members had

worked with other image processing projects involving the proces-

sing of medical imagery and LANDSAT imagery, while the research

assistants have had a very practical background in software

development for image processing as well as in the use of image

processing and analysis equipment at U.MG. However, this project

has presented some special challenges in terms of using a special

computer and taking advantage of its architecture for speeding-up

image extraction and processing techniques. Therefore, it was

necessary to learn the basic structure and programming language

(APPLE and MAPLE) so as to be able to restructure programs pre-

pared for conventional or serial machines for execution on the

STARAN as well as test and evaluate the programs developed.

48

Material obtained from Goodyear Aerospace provided background on

the STARAN, including history, structure, and operation (pro-

gramming). With this material and direct help from colleagues at

Goodyear Aerospace during a visit there, we were able to prepare

programs that would eventually run successfully on the STARAN.

For the most part, throughout the project, programs that were

developed at IJMC were debugged, tested, and evaluated during

visits to Goodyear Aerospace by two or more of the UMC research

team.

6.2 Selection of Algorithms

As experience was gained in the operation of the STARAN, the

UMC project team was also evaluating and reviewing various exis-

ting algorithms in order to select two or three that would have a

high potential for speed-up when executed on the STARAN. One

source of material describes some programs developed for PDP 11/

45, but not actually demonstrated with displayed imagery; another

source was the OLPAR programs which were successfully used by

RADC. The criteria for selection of algorithms were two-fold:

1) to select "useful" algorithms in the sense of commonly used or

significant algorithms, and 2) select algorithms that would be

amenable to significant speed-up when executed on the STARAN.

Two such algorithms were then selected: a) an edge gradient

technique, and b) a noice reduction or elimination technique.

The next step was to change the form of these algorithms by

breaking them down into elemental operations.

6.3 Role of UMC Computing Facility

The University of Missouri-Columbia Image Analysis Laborato-

ry provided one of the main facilities to implement the goals of

the project. The equipment essentially consisted of a PDP 11/50

minicomputer with 88 k words of memory and operates under RSX-11M.

On-line computer peripherals include a RP03 disk drive, two

cartridge disk drives, nine track, 800 bpi tape drive, card

reader, line printer, and four CRT terminals. on-line image

analysis peripherals include a Spatial Data Computer Eye 108

49

television digitizer, a Dicommed SOB image dissector scanner, a

Ramtex color display, (250 :: 256 x 12) and a Ramtex black and white

display (512 x 512 x 8), a joystick interfaced through the com-

puter eye and a Graf Pen x-y tablet. Also used was a black and

white di'splay built around a Data Disc fixed-head per track disk

drive, a second Computer EYE, and a Hewlet-Packard x-y plotter.

In addition, a PDP 11/34 minicomputer was available for use, with

one fixed head and one removable head disk (RKO5). Also, the

University Computer Network (Amdahl 470/V7 and IBM 3031) was

available for larger data processing needs such as measurement

selection on large data bases. Images and data can be transfer-

red via a 9-track magnetic tape from the image analysis laborato-

ry to the Computer Network. Fig. 6.1 illu.3trates the essential

equipment available to the UMC research team for carrying out the

objectives of this project.

The initial role of the UMC computing facilities was to sim-

ply test and display the results of the selected algorithms on

particular imagery. This initial study helped to provide a basis

for selecting the algorishms by demonstrating their effectiveness

and efficiency in achieving their objective on selected imagery.

This was-accomplished using the original, available form of the

selected algorithms- assembly language level. The effectiveness

was measured by "before and after" displays, and at the same time,

algorithm parameters were varied to determine and optimize their

effect. Then, with the algorithms selected, the effect of sensi-

tivity, thresholding, amount and type of noise removed, and the

like, could be studied. Another purpose was to prepare (but un-

able to test) programs in APPLE (or MAPLE) for execution at the

Goodyear Aerospace STARAN facility. A related task or function

using equipment at UMC was to prepare the developed software in

the correct format and media for direct use at Goodyear and even-

tually at RADC for program execution. At a later point in the

project, the sample imagery used for illustrating the selected

algorithms included -n example image provided by RADC.

5o

32K Words 56K Words JOYSTICK
Bipolar Core
Memory Memory

L RKOS RAMTEK 93S0
Cartridge 512 x 512 x8

Disk Drive UNIBUS B/W Display

I Computer Labs RAMTEK GX200

Cartridge/Fixed 256 x 256 x 12

Disk Drive Color Disulay

RP0 3 Spatial Data

Disk Drive Computer Eve 108
DiDitizer

9 Track,800 bpi CPU Digitizer

Tape Drive Tablet

DHIllI DICOMED B
16 Serial line Image Dissector
Multiplexer _

1)ICO'IED 30CR11 Storage

Card Reader PSola

[LP11 X Table

Line Printer H

Fig. 6.1 The Image Analysis Laboratory at TIC

51

Another purpose of the UMC facilities was to evaluate re-

sults obtained during visits to Goodyear Aerospace in terms of

processed imagery ("before and after") to verify that the required

processing and effects of design parameters had taken place, and

so that the next visit for using the STARAN could be made more

effective. Finally, another purpose of using the facilities at

UMC was to take photographs of the selected "before and after"

imagery from the display equipment to provide a more viewable

and permanent record of results.

6.4 Use of the STARAN Computer at Goodyear Aerospace

Part of the work completed on this project in achieving its

objectives was implemented through a subcontract with Goodyear

Aerospace Corporation at Akron, Ohio. Frequent contact was main-

tained between the research team at UMC and colleagues at Good-

year during the development of the programs to be executed on

the STARAN. The major purpose in establishing this working rela-

tionship with Goodyear Aerospace (regarding the project) was, of

course, to learn how to use the STARAN and use the facility for

program modifications, testing and evaluation. They provided

background material on the STARAN for study early in the project

period and prior to the first visit by the UMC research team to

the STARAN facility at Goodyear. During the first visit to Good-

year, the research team was provided with further background "lec

tures" on the STARAN and was given a demonstration of the use of

the STARAN facility. Frequent consultation with colleagues at

Goodyear was necessary in regard to basic questions, programming

problems, arranging for visits, and setting-up a remote terminal.

The second segment of the joint effort concerned the actual use

of the STARAN facility. This facility was used extensively

during subsequent visits by the UMC research team for program

modification, testing, and evaluation. In addition, the facility

was also used when a terminal was set up at UMC as a remote ter-

minal with access to the STARAN. Thus, the cooperation of Good-

year Aerospace in providing consulting help and availability of

52

the STARAN facility was essential for successful achievement of

the project goals.

6.5 Image Description

Basically, the imagery used in this project is represented

by a 512 x 512 pixel black and white image, each pixel defined by

an 8-bit gray-level. Essentially, three types or topics were

used for the imagery in order to illustrate the effects of the

applied image feature extraction and processing techniques.

These were: 1) an example of LANDSAT imagery, 2) a camera lens

cap, and 3) an aerial image of a runway provided by RADC. For

different purposes, it was necessary that the imagery be avail-

able on different media. For processing and for transfer to and

from UMC and the STARAN facility, it was most useful to use the

RKOS disc system (RLOL and RLO2 are now replacing this system).

However, for longer-term storage and availability/transfer from

one machine or image processing to another not having a common

disk system,. it is useful to store programs on a nine-track un-

formatted magnetic tape. The STARAN facility and the UMC compu-

ter facility used different displays.

6.6 Procedures for Software Development and Testing

In order to achieve the objectives of this project, the

following sequence of steps or procedures was followed:

1) Select algorithms for analysis.
2) Analyze the selected algorithms in detail using flow-

charts.
3) Test the selected algorithms on particular images.
4) Vary the design parameters to provide a basis to select

usable values.
5) Translate the selected algorithms into assembly level

programs for execution on the STARAN (APPLE/MAPLE).
6) Debug and modify, test, and evalue programs on STARAN.
7) Display and document results.

6.7 Basis of Comparison

One of the central objectives of this project is to estab-

lish the speed advantage of a special computer architecture over

a conventional or serial machine in terms of image feature extrac-

53

tion and processing. Thus, essentially one can simply consider

the "run" times for a given algorithm on the serial machine and

on the STARAN. This project shows a significant speed-up of run-

times for the STARAN. In general, the run times include 1/0 time

and actual execution time directly associated with the algorithm.

With the STARAN, the I/0 transfers were relatively slow because

the host machine was a serial machine. Thus, it may be more

meaningful to separate the 1/0 times from the algorithm execution

times. In this way, the speed advantage of a special architec-

ture in executing a given algorithm would be more apparent. The

1/0, in fact, if handled by a conventional machine, would cer-

tainly slow-down the through-put of a "near" production system.

In general, the solution to this problem would be to use a spe-

cial host machine to handle the I/0 operations campatible with the

special processor. For the STARAN, this would require a 256 bit

1/0 transfer register as an interface. As the results indicate,

there is a significant speed-up for implementing or executing the

selected algorithms for image feature extraction and processing

techniques as compared with conventional machines.

VII. Presentation of Results: Image Noise Reduction

7.1 Modal Technique

7.1.1 Description

The modal technique is a method for removing noise from an

image [36]. The process works by examining neighbors of eachI

pixel to determine if the pixel should be replaced.A3x3
neighborhood is used, resulting in eight neighboring pixels and

the pixel being considered for replacement, the center pixel.
Any pixels that do not have eight neighbors are not replaced.

This prevents the edge points of an image from being changed.

When a pixel is being considered for replacement, all

neighbors and the center pixel are compared. If two or more

pixels have the same gray level value, they are grouped into a

mode. The mode contains the gray level value and a frequency

54

I

count to indicate how many pixels are in the mode. After all

comparisons have been made, the center pixel is replaced with

the gray level of the mode with the highest frequency count.

When more than one mode has the same frequency count, the

mode is selected by priority. A mode is prio-'tized according

to which pixels are in it. The priorities ne 3 x 3 neighbor-

hood from highest to lowest are the center, top left, top middle,

top right, middle left, middle right, bottom left, and bottom

middle.

If no mode occurs in a neighborhood, the center point is not

changed.

7.1.2 STARAN Implementation

A STARAN implementation of the modal technique appears in

Appendix B. The following discussion is based on this program.

Figure 7.1 is a flowchart of this program and should be referred

to when reading this section.

The processing discussed in Section 7.1.1 takes place in the

associative arrays. Buffers are set up in arrays 0 and 1 to al-

low for storage and comparisons. Since the image being processed

is 512 x 512, and an array is 256 x 256, two arrays are used to

store an image line.

Each pixel is in a separate word of the array as shown in

Appendix B. This allows load, store, search, move, or arithmetic

instructions to perform simultaneously on an entire line of the

image.

Arrays 0 and 1 are loaded with the first, second, and third

image lines. Each line has 8-bit pixels so they occupy a field

of eight bits. For line one, the field is (0,8) which means the

field's most significant bit is in bit column zero, and the field

is eight bits long. Line two has a field of (8,8) and line three

has a field of (16,8). Since all the instructions requiring in-

puts from these fields are logical and not arithmetic, a sign bit

is not required.

55

Another buffer used in the array is the compare buffer.

This buffer contains all the pixels in the neighborhood and the

center pixel. The center pixel is the one from the second line

stored in the array. Nine pixels are in the compare buffer which

is in field (24,72).

The frequency count buffer is composed of two types of en-

tries. The first entry is the frequency count discussed in

Section 7.1.1 and the next is the pixel gray level value. All

pixels in the neighborhood except the bottom right pixel are in

this buffer, including the center pixel. The buffer contains

eight pixels, 64 bits, and frequency count tags, 32 bits, which

are in field (96,96).

The final buffer is the output line. It is eight bits long

and is in field (192,8).

The first segment in the modal program initialized the input

and output devices. This is done by setting up the tran block

for the input, mag tape, and the output, COMTAL display.

Image data is read in from the magnetic tape on the PDP 1i/

20. The data on tape has had every 16-bit half word swapped and

every byte swapped from the original image. This results in a

byte sequence of 43218765... when 12345678... was the original

sequence. The swapping is necessary if STARAN instructions are

not used to swap the data input. The STARAN interfaces are con-

figured in such a way that they swap the data; this requires the

program swap the data or the input data be swapped to compensate.

The amount of data input to the STARAN memory depends on the

record size of the magnetic tape. The value used for this pro-

gram was 16,384 bytes.

After 16,384 bytes of the image has been input, 32 image

lines, buffer pointers are initialized. These pointers indicate

when the input buffer, IBUFF, is empty, when the output buffer,

OBUFF, is full, and when the last image line has been input, LIF.

Data input from the mag tape is stored in the IBUFF and data to

56

START

INITIALIZE] :SET UP TRAN BLOCKS
:FOR MAG TAPE AND

I/O :COMTAL

TRAN IN :MOVE A RECORD FROM

32' LINES :MAG TAPE TO STARTAN
INTO :BULK CORE MEMORY
IBUFF

MOVE FIRST :DON'T PROCESS
LINE IN :FIRST LINE OF
IBUFF TO :IMAGE
OBUFF

MOVE FIRST :TWO OF THE THREE LINES
2 LINES IN :REQUIRED FOR PROCESSI.G;

IBUFF TO :LINE 2 IS PROCESSED
ARRAY S

MOVE LINE :THIRD LINE REQUIRED
FROM IBUFF :FOR PROCESSING
TO ARRAYS

SET UP
PIXEL :USED TO COMPARE CENTER

COMPARISON :PIXEL WITH NEIGHBORS
BUFFER

ZERO BIT :CLEARS PREVIOUS
COLUMNS :RESULTS FROM ARRAYS
IN ARRAYS

©
Figure 7.1 MODAL Flowchart

57

0

SET UP :BUFFER HAS A 4 BIT FREQ
PIXEL :COUNT TAG FOLLOWED BY AN

FREQ COUNT :8 BIT GRAY LEVEL VALUE
BUFFER :FOR EACH PIXELI

DETERMINE :INCREMENT CORRESPONDING
PIXEL :TAG BITS OF FREQ COUNT

FREQUENCY :BUFFER WHEN PIXEL GRAY
COUNT :LEVEL OCCURS IN NEIGHBORSI

SORT PIXELS :DETERMINE PIXEL WITH MOST
BY FREQ :FREQUENTLY OCCURING GRAY
COUNT :LEVEL IN NEIGHBORHOOD;

:THIS IS THE MODE PIXEL

., 1
MOVE :MOVE PIXEL MODE TO OUTPUT

PROCESSED :LINE; IF NO MODES OCCUR
PIXEL TO :LEAVE THE CENTER PIXEL

OUTPUT LINE :UNCHNAGED; DON'T CHANGE

I :END POINTS
OF THE LINE

MOVE OUTPUT :MOVE PROCESSED LINE
LINE TO :FROM ARRAY TO BULK
OBUFF :CORE MEMORY

SHIFT 2 1:SIFT LINES OVER SO
LINES OVER :THE NEXT LINE CAN
A FIELD IN :BE PROCESSED
TIlE ARRAYS

OFigure 7.1 MODAL Flowchart (Cont'd)

58

Ft YES :CHECK FLAG TO
FUL l:DETERMINE IF

:OBUFF IS FULL

NO TRAN OUT/

32 LINES :OUTPUT 32 LINES
FROM :TO COMTAL DISPLAY

OBUFF/

INITIALIZE

OBUFF :SET POINTER AND
POINTER :FLAG SO OBUFF CAN
AND FLAG :BE USED AGAIX'

NO IBF> :CHECK FLAG TO
-:DETERMINE IF

:IBUFF IS EMPTYYES

INITIALIZE I

IBUFF I:SET POINTER AND
POINTER]:FLAG SO IBUFF CAN

AND FLAG [:BE USED AGAIN

TRAN IN :INPUT ANOTHER
32 LINES/ :RrCORD FROM

INTO / :MAG TAPEI BUFF

:CHECK FLAG TO
YES A:DETERMINE IF TLEE

D:BEEN INPUT

O Figure 7.1 MODAL Flowchart (Cont'd)

59

MOVE LAST :DON'T PROCESS
LINE TO :LAST LINE OF
OBUFF :IMAGE

/RNOUT :OUTPUT THE FINAL

32 LINES :32 LINES TO THE
FROM :COMTAL DISPLAY

OBUFF

RELEASE
I/O DEVICES :RELEASE MAG TAPE

:AND COMTAL DRIVERS

STOP ;EXECUJTE WAIT

C TPD IN STRUCT ION

Figure 7.1 MODAL Flowchart (Gont'd)

60

be output to the COMTAL display is stored in the OBUFF.

The first image line is moved from IBUFF to OBUFF. Since

the edge pixels of the image do not have complete neighborhoods,

these pixels are not processed. Next, the first two lines from

the IBUFF are moved into the associative arrays.

The following step marks the beginning of a program loop

which is continued until all image lines have been loaded into

the arrays.

Another line from IBUFF is moved into the arrays. This line

occupies field (16,8) in the arrays, and is the final line re-

quired before processing the second line in the arrays.

Buffers are set up in the arrays to prepare for processing.

The comparison buffer is set up in field (24,72). Field (96,96)

is then cleared and the frequency count buffer is set up in it.

Pixels in the comparison buffer are now compared with each

other, and the frequency counts are stored in the frequency count

tag. After this is complete, the frequency count tags are sorted

along with their corresponding pixel values. The most frequently

occurring gray levels are moved to the output line in the arrays.

The output line is moved to the OBUFF with a pixel swap

taking place to ensure proper display on the COMTAL. After the

move, image lines 2 and 3 in the array are moved over one field

to occupy lines 1 and 2. This allows a new line to be read into

the arrays.

The OBUFF is checked next to determine if it is full. If it

is, the OBUFF will have its data output to the COMTAL display.

The IBUFF will be checked to determine if it is empty. If

it is, more data will be read in, if available; if not, a new

line will be moved into the array. When the IBUFF is empty, a

flag will be checked to determine if the last image line has been

read from the mag tape. If it has, the final line will be output

to the COMTAL display and the program will halt. If it has not,

61

a new record will be read from the mag tape into the array.

Processing will start over when a new line is moved into the

arrays.

7.1.3 Results and Evaluation

A digitized image of a photograph was used to test the MODAL

program. The digitized image, Figure 4.2 (a), had random noise

added to it. Five percent of the pixels had a random gray level,

-100 to 100, added to them. Values over 255 were set equal to

255. Values under 0 were set to 0. Figure 7.2 (b) is a photo-

graph of the noisy image.

The MODAL program was run with the noisy image for input.

After processing, the output, Figure 7.2 (c), had a significantly

lower noise level. The river, left to right on the photograph,

is almost entirely free of noise. The tree line, top to bottom,

has much less noise in it; however, the improvements were not as

great as that seen for the river. Significant improvements are

seen in the fields, also, which appear to have undergone about

the same amount of noise removal as the tree line.

Noise removal was seen to be greater in the river than any-

where else on the image. Examination of this image shows the

main difference in this area is a uniform gray level. The modal

technique uses the most frequently occurring gray level. One,

two, three, or four noisy pixels in a neighborhood and the uni-

form gray level, the river, would be in five pixels and, there-

fore be chosen as the correct value. If the noisy pixels are not

the same value, which would be expected for random noise but not

for some types of noise, up to seven noise pixels could be in a

neighborhood, and the correct pixel value would be chosen.

The reason noise was not removed from the tree line and

fields as well as it was from the river, is the variation in gray

levels. Two or more gray levels must be exactly the same to be

a mode. Since the gray levels can vary from 0 to 255, there are

many times when adjacent gray levels are not equal.

62

o

(a) Digitized Image (b) Noise Added

(c) Modal Technique Used on Noisy Image

Figure 7.2 Images with 512 x 512 Resolution

63

7.2 Odd Pixel

7.2.1 Description

Odd pixel noise reduction uses a 3 x 3 neighborhood to deter-

mine if the center pixel is to be replaced [361 . Two different

replacement modes are used. In mode 0, the 8 neighboring pixels

are added together and divided by 8 to get their average. If

this average differs from the center pixel by more than a user

specified threshold (THRES), the center point is replaced by the

average, otherwise the center point is not changed. In mode 1,

the user specifies an additional parameter, the number of neigh-

bors (NON). The number of neighbors varies from 1 to 8. This

parameter is the number of neighbors that must differ from the

threshold if the center pixel is to be replaced. The number of

neighbors actually differing by the threshold amount may be

greater than NON, but if it is less, the center point will not

change.

7.2.2 STARAN Implementation

The input and output of image data along with the data

transfers to and from the arrays are the same as for the MODAL

program. The processing is different, as can be seen in Figure

7.3, and will be presented in this section.

Array buffers are different in the ODDPX program, Appendix

C, than in the MODAL program. A description of these buffers is

in Appendix C.

Mode 0 is implemented on the STARANby adding all the neigh-

bors together at one time. Each array word has a center pixel in

it and the sum of the eight neighbors. The sum is stored in SUM-

BUF. A comparison is made between the average, sum shifted 3

bits, and the center pixel. If the difference exceeds the user

specified threshold (THRES), the average is moved to OUTBUF in

place of the center pixel.

If the difference is equal or less than the threshold, the

64

center pixel is moved to OUTBUF. OUTBUF is used the same way in

the ODDPX program as output line is in the MODAL program.

Mode 1 is implemented by adding together all the neighbors

that differ from the center pixel by more than the threshold.

The sum is stored in SUMBUF and the number of neighbors that ex-

ceed the threshold is stored in CNTBUF. if CNTBUF equals or

exceeds the user specified parameter NON, then the average of the

value in SUMBUF is stored in OUTBUF. If this condition is not

met, the center pixel is moved to the OUTBUF.

7.2.3 Results and Evaluation

The ODDPX program processed the same image used by the MODAL

program, Figure 4.2 (b).

Processing in mode 0 with a threshold of 25, produced the

image seen in Figure 7.4 (a). Noise appears to be almost totally

absent in this photograph. The photograph also appears slightly

blurred.

Absence of noise in the processed photograph is due to the

averaging nature of the processing. The center pixel will tend

to blend in more with its neighbors. This also results in blur-

ring of edges. One white spot in the lower right corner of this

photograph appears to be caused by the film processing since it

is irregular shaped and does not appear in the original or noisy

photograph.

When mode 1 was used for processing several different values

of NON, some interesting results occurred. With a threshold of

25 and NON=I, the program resulted in the images in Figure 7.4

(b) and (c). The result of trying to choose a new center pixel

based on any one pixel, is noise amplification. For each noisy

pixel, the surrounding eight neighbors are made equal to it and

the noise point is changed to the previous value of its neighbors.

This is evident in the Figure 7.4 (c) which is an enlargement of

Figure 7.4 (b). The process involved in amplifying the noise is

seen in Figure 7.5 The value 1 is the noisy pixel and c is the

65

0

NO MODE> :MODE 0 IF AVERAGING ALL
, 0 y:NEIGHBORS IS DESIRED

:DETERMINE WHICH PIXELS
COMPARE :DIFFER FROM THE CENTER
CIELT :PIXEL BY MORE THAN THE

PIXEL* TTHRESHOLDNEIGHBORS :HEHL

AVERAGE :ADD ALL 8 NEIGHBORS
EIGHT :TOGETHER AND DIVIDE

NEIGHIBORS :BY 8

DETERMINE :DETERMINE HOW MANY
NUMBER :PIXELS HAVE DIFFERENCES

EXCEEDING :EXCEEDING THRESHOLD AND
THRESHOLD :CALCULATE THEIR AVERAGE

COMPARE :DETERMINE IF AVERAGE

AVERAGE :DIFFERS FROM CENTER

TO CENTER :PIXEL BY MORE THAN

PIXEL :THE THRESHOLD

MOVE AVG :IF NO. OF PX EXCEEDING
OR CENTER :THRESHOLD IS EQ. OR CT.
PIXEL TO :THAN USER SPECIFIED NO.
OUTBUF :MOVE AVERAGE OTHERWISE

:MOVE CENTER PIXEL
MOVE AVG

OR CENTER :IF DIFFERENCE EXCEEDS

PIXEL TO :THRESHOLD MOVE AVERAGE

OUTBUF :OTHERWISE MOVE CENTER

:PIXEL

:NEW PROCESSED LINE MOVE SHIFT 2 :SHIFT LINES OVER SO
:FROM ARRAY TO BULK OUT BUF LINES OVER :THE NEXT LINE CAN

U A FIELD INCORE MEMORY TO OBUFF :BE PROCESSEDTtt£ ARRAYS

FIGURE 7.3 ODDPX FLOWCHART

66

(a) ODDPX THRES=25, Averaging (b) ODDPX THRES=25, NONl1

(c) ODDPX THRES=25, NONl, Enlarged

Figure 7.4 Images with 512 x 512 Resolutionj

67

center point. In Figure 7.5 (a) the center point does not have

any noise points as neighbors. The result is no change in the

center pixel. In Figure 7.5 (b), the neighborhood has one noisy

pixel which differs from the center pixel and other neighbors.

The result is a center pixel which is the average of those pixels

differing, 1. As we move around the noisy pixel, we make the

value of all its neighbors equal to it. In Figure 7.5 (c), all

eight neighbors differ, and their average is 0, which results in

the noisy pixel being replaced by the neighbor's without noise.

Using mode 1 with NON=3 and THRES=25 results in the image in

Figure 7.6 (a). This image is absent of most of the noisy pix-

els. The areas where noisy pixels are appear to be larger than

the original pixels. This is caused by the low value of NON

which enlarges those areas with many adjacent noisy pixels. The

edge of this image is rough for the same reason.

When NON=S, Figure 7.6 (b), the noisy pixels are absent and

the edges are not pitted. When NON=8, Figure 7.6 (c), noisy

pixels appear again in the image. This is caused by more than

one noisy pixel in the neighborhood or by neighbors whose dif-

ferences exceed the threshold.

00 C 0 UOC 0000

0 C00 0 O 000 0

0 00 10 0 01 0000

0 0 0 010 0

(a) No Change (b) Neighbor Changed (c) Noise
to Noise Changed to

Neighbor

Figure 7.5 Noise Amplification

68

()ODDPX THRES=25, N0N=3 (b) ODDPX THRES=25, N0N=5

(c) ODDPX THRES=25, NON=8

Figure 7.6 Images with 512 x 512 Resolution

69

7.3 Similar Neighbors Technique

7.3.1 Description

Similar neighbor noise removal uses a 3 x 3 neighborhood.

Each neighbor is compared to the center pixel. If the center

pixel minus the neighbor is greater than the user specified

threshold, the neighbor will be similar if high noise is to be

removed. If the neighbor minus the center pixel is greater than

the threshold, the neighbor will be similar if low noise is to be

removed.

The user must specify whether low or high noise is to be re-

moved. When similar neighbors are determined, there must be at

least two of them adjacent for the center point to remain un-

changed. If at least two are not adjacent, the center pixel will

be replaced with the average of the dissimilar neighbors.

7.3.2- STARAN Implementation

The input and output of data into the STARAN in this pro-

gram is identical to the previous programs.

A description of the array buffers for the program SIMNB is

in Appendix D.

The piocessing, as seen in Figure 7.7, begins similar to

mode 1 of OLDPX. The number of pixels whose difference exceeds

the threshold is determined. Actual calculations depend on

whether low or high noise is to be removed. When similar neigh-

bors are determined, a comparison is made to determine if any are

adjacent. If any are, the center pixel is moved to OUTBIJF. If

two or more adjacent similar pixels are not found, the average of

the dissimlar neighbors is moved to OUTBUF.

7.3.3 Results and Evaluation

With the image of Figure 7.2 (b) as the input, the program

SIMNB was run. A threshold of 25 and low noise set for removal

gave the result seen in Figure 7.8 (a). Removal of low noise

appears to be complete with this technique. The image is clear

70

0

COMPARE
CENTER :FIND NEIGHBORS WHICH

PIXEL TO :ARE SIMILAR HIGH OR

NEIGHBORS :LOW AS SPECIFIED

DETERMINE - :CHECK EACH SIMILAR PIXEL

IF ADJACENT :TO'DETERMINE IF IT IS

NEIGHBORS :ADJACENT TO ANOTHER

SIMILAR :SIMILAR PIXEL IN THE
SI :NEIGHBOR

MOVE AVG :IF NO SIMILAR NEIGHBORS

OR CENTER :ARE ADJACENT MOVE THE

PIXEL TO :AVG OF THE DISSIMILAR
OUTBUF :NEIGHBORS OTHERWISE

:MOVE CENTER PIXEL

MOVE :MOVE PROCESSED LINE

OUTBUF :FROM ARRAY TO BULK

TO OBUFF :CORE MEMORY

SHIFT 2 :SHIFT LINES OVER SO

LINES OVER :THE NEXT LINE CAN

A FIELD IN :BE PROCESSED
THE ARRAYS

0

Figure 7.7 SIMNB Flowchart

71

and sharp.

Using a threshold of 25 and specifying high noise remox

results in Figure 7.2 (b). The rivers, tree line and fields

appear to be absent of noisy pixels and blurring.

Combining the two operations yields a picture with both high

and low noise removed, Figure 7.8 (c). This image is clear and

has sharp edges.

Requiring two adjacent pixels to be similar, as this tech-

nique does, results in excellent noise removal characteristics.

When two adjacent neighbors do not contain noise, the gray level

difference between them is usually small, except at the edges.

This small difference is usually within the user specified

threshold if a reasonable value is chosen. If an edge exists in

the 3 x 3 neighborhood, it will usually cause at least two adja-

cent edge points in the neighborhood. The result of this would

be to make no changes to the center pixel.

The similar neighbors technique efficiently removed the

noisy pixels from the image. When combined with the sharpness of

the image, this appears to be a valuable noise removal technique.

The method of requiring two or more adjacent similar neighbors-is

especially good for preserving edges.

72

(a) SIMNB THRES=25, Low Noise kb) STA4NB THRES=25, High Noise
Removed Removed

(c) SIMNB THRES=25, Low and High Noise Removed

Figure 7.8 Images with 512 x 512 Resolution

73

7.4 Comparisons and Conclusions

Execution of image processing algorithms has been done on a PDP

11/45 in the U.S. Air Force's On-Line Pattern Analysis and Recog-

nition System (OLPARS). This system uses two 9-track 800 bpi

tape drives for image input and output. Three algorithms, writ-

ten in assembly language, in OLPARS (MODREP, ODDOT, AND ODDLIN),

were run, using the image shown in Figure 4.2 (b). The total run

time was measured and based on a worst case tape drive speed, 25

inches per second, execution and I/O times were calculated. The

time required to read or write an image to tape is approximately

512 x 512/(800x25)=13 seconds.

NAME TIME

Program OLPARS Execution I/O Total

MODAL MODREP 4 min, 34 sec 26 sec S min, 0 sec
ODDPX ODDDOT 2 min, 1 sec 26 sec 2 min, 27 sec

SIMNB ODDLIN 2 min, 22 sec 26 sec 2 min, 48 sec

Programs were also written in FORTRAN that performed the

,ame functions. A multi-platter moving head disk was used for

storing image data which resulted in an insignificant amount of

I/O time when compared to the execution time. The programs were

run in the Electrical Engineering Image Analysis Laboratory at

the University of Missouri on a PDP 11/50. The processing times

are as follows:

Program Name Total Time

MODAL 30 min

ODDPX 15 min

SIMNB 15 min

Appendices B, C, and D contain listings of programs executed

at Goodyear Aerospace Corporation on the STARAN associative pro-

cessor. These programs performed the same functions as those

mentioned in OLPARS. Each STARAN program contained less than

512 words, which allowed them to be placed in page memory to in-

crease execution speed. The times listed below were measured for

74

each program: TIME

Program Name Execution I/O Total

MODAL .998 sec 15.6 sec 16.6 sec

ODDPX 1.08 sec 15.6 sec 16.7 sec

SIMNB 1.12 sec 15.6 sec 16.7 sec

A sizable difference in execution time is seen between the

OLPARS programs and the STARAN programs. The execution time

ranges from (2x60+l)/1.08=112 to (4x60+34)/.998=275 times faster

when the STARAN is used. The total times, however, do not re-

flect this large speed difference due to the slow I/O devices,

the tape drives. Approximately (l5.6/l6.6)xl00%=94% of the

STARAN's time is spent waiting on I/O in the MODAL program. This

compares to (26/Sx60) xlOO%=8.7% of the PDP 11/45's time. The

resulting total time speed up is only (2x6O+l)/16.7=7 to

(4x60+34)/16.6=17 times faster with the STARAN.

While a speed up of 275 times is impressive, the STARAN

still falls short of real-time processing when parallel I/O faci-

lities are not used. Processing times of 16 seconds do, however,

offer help for those bogged down with numerous images to process.

Adding additional arrays to the STARAN would further decrease

the execution time of the programs. If a full 32 arrays were

available, an increase in speed of approximately 32/2=16 times

would be made. This would, however, require considerable expense

Using parallel I/O would increase throughput to the arrays.

This would allow 256 input and 256 output lines for each array.

Data could be input directly into the STARAN arrays without

being stored in the control memory unit memory. Parallel I/O

along with the STARAN's submicrosecond execution time would lend

itself to some applications in real-time processing.

When considering the STARAN's cost versus performance, the

750 thousand dollar price tag may well prevent many commercial

users from examining it closer. While this computer may cost 10

to 20 times as much as a PDP 11/45, it can deliver over 200 times

75

ka__

the processing speed. This factor alone may not be enough to

compensate for the high price.

76

I!

VIII. Presentation of Results: Edge Detection

8.1 Description

The edge detection (PTEDGE) technique is a method for deter-

mining or defining edge points in a digital image. The first

step is to determine gradients within the image which exceed a

threshold specified by the user. A gradient test is made within

a 3 x 3 neighborhood about each point. If the gray-level differ-

ence between the center point and any user-specified neighbors is

greater than the threshold, the point corresponding in position

to the center point is defined as an edge point.

8.2 Algorithm

The original image to be processed for edge detection has a

resolution of 512 x 512; this means 512 pixels/line and 512 lines/

image. Any particular pixel can be specified by line number and

element. A 3 x 3 neighborhood is used to implement the edge de-

tection procedure. In order to establish a comparison between

the center point and its neighbors, the neighbors are numbered as

shown in Fig. 8.1. The neighbor number, k, must be specified if

6 5 4 line i

7 x 3 line i+l x = center point

8 1 2 line i+2

j j+l j+2

Fig. 8.1 Assighment of Neighbors for Center Point x

a comparison is to be made x and neighbor k. The resultant edge

detected image would have pixels that satisfy the criterion,

g(x) - g(k) a& Threshold

77

where g(x) and g(k) are the gray levels of the center point and

the neighbor k, respectively. For this application, the assoc-

iative processor of the STARAN has the control memory arranged

as shown in Fig. 8.2.

0

PAGE 0

PAGE 1 PAGE MEMORY

PAGE 2
5FF
600

HIGH-SPEED DATA BUFFER

7FF
8O0

DMA

7FFF
8000 AP CONTRAL INSTRUCTIONS
800F AND INTERRUPTS

PROGRAM SECTION BULK CORE MEMORY

A 00

INPUT DATA BUFFER

AFFF

OUTPUT DATA BUFFER

BFFF

Fig. 8.2 Associative Processor (AP) Control Memory Arrangement

78

I II ililli~ll .Jl --is

8.3 STARAN Implementation

The next several Figures illustrate the data paths, the

arrangement of data and the sequence of tasks which the STARAN

would carry out in the implementation of this algorithm. The

data paths followed are shown in Fig. 8.3.

AP
CONTRAL

IMAGE

DISPLAY -- SEQUENTIAL

CONTROL

REiSULTANT

I -MAGE

Fig. 8.3 Data Paths in the STARAN

79

Fig. 8.4 shows the arrangement of array modules in the

STARAN as set-up for the execution of the PTEDGE program. The

required arrangment of image data on the (input) tape is shown in

Fig. 8.5.

BIT BIT

0 L 1 L2 L 3 P 2 P7 P8 8 255

" D0 6 7 8 0° •

S X 1 2 o 7 8 0 0 0

00 0
4 3 2 coo

Oa 0 * 0 *O0

*00 0 0 0

WD
255 9 ,, 0 0 0 0 1

WD 0 0 0 0 0

000 0 00 0

ae o • 0 • • 0

*00 0 0 60a0

a0C00 0 60

•0 0 00.

WD
2II 0 0 6 1 00 0 0 1

Lit L2 , L 3 :Store 3 consecutive image lines; each field is 8 bits long

L1, L, L3 (bits 8 - 31).

Pit P2, ... P8: Store the neighbors of each center point (bits 24 - 87).

Temp. Store temporary result of comparison (bits 88 - 95).

Result Store result of overall comparison (bits 96 - 103).

Fig. 8.4 Arrangement of array modules in the STARAN

80

Record 1

2 Image I

Record 16

EOF

Record 1

Record 2 Image

EOF

Each record has 16,384 bytes; this is equivalent to 32
512-pixel image lines; 16 records are needed to store a
512 x 512 image.

Fig. 8.5 Data Structure on the Tape (Input Data)

A flow-chart for the point edge detection program to be

executed on the STARAN is shown in Fig. 8.6. A program listing

for the PTEDGE technique is given in Appendix E.

8.4 Memory Map and User Options

For the PTEDGE algorithm, program execution relative to

bulk core uses the following locations:

a. Locations 608 - 616 (in high-speed data buffer): all

variables and constants.

81

START

FIG. 8.6 FLOW-CHART FOR

INITIALIZE PTEDGE
COUNTERS

SET-UP
TRAN BLOCK

TRAN IN

ONE BLOCK
OF DATA *: INBUF STARTS AT
FROM TAPE LOCATION A000 IN
TO BC (INBUF) BC AND HAS 4096

4-BYTE WORDS.

SUPDATE
NUMBER OF

BLOCKS LEFT

*" BC - BULK COR_

AM - ARRAY MEMORY

MOVE TWO* OUTBUF STARTS AT
IMAGE LINES LOCATION B000 IN BC
FROM BC TO AND HAS 4096 4-BYTE

AM WORDS.

OUTPUT TWOBLOCK LINES[NEPT

TO OUTBUF E T Y S F

RA0

82

FA FB

SHIFT: REORDER)
L2 L1 BYTES IN BC

L3 L2
IN AM

TRAN OUT[MOVE A NEW 32 IMAGE
LINE FROM LINES TO
BC TO L3 DISPLAY

UPDATE

DISPLAY

FORMAT A LINE
3 x 3 NUMBER
NEIGHBOR-
HOOD INTO
A LINEAR
ARRANGEMT. 1 NO
EDGE DE-
TECTION FOR
EACH ARRAY
WORDYE

MOVE A
RESULTANT
IMAGE LINE
FROM AM TO
BC

Fig. 8.6 Flow-chart for PTEDGE (Cont'd)

83II

b. Locations 9000 - 9280: store program.

c. Locations A000 - AFFF: store input data (from tape).

d. Locations B000 - BFFF: store processed data (ready for
Comtal display).

Program execution relative to page memory uses the following lo-

cat ions:

a. Locations 0000 - 028D): store programs.

b. Other locations are retained.

Contents to be changed use the following locations:

a. Location 60C contains the threshold value.

b. Locations 60F - 616 contain the selected neighbors; the
selected neighbors are declared-by loading the value 1
into its corresponding locations.

8.5 Program Descriptions

The overall program which implements the execution of the

PTEDGE technique can be described in terms of the following

subprograms:

a. PTEDGE: This is the main program which controls the
logical flow during implementation of the
Point Edge Detection procedure.

b. EDGE: This subroutine tests the gradient between any
selected neighbor and the center point. If the
gradients are greater than the threshold, a value
of 255 is assigned to the corresponding position
in the RESULT field. otherwise, a value of 0 is
assigned.

C. MOVE: This subroutine moves field L2 to Ll and L3 to L2
after one image line has been processed.

d. LINEIN: This subroutine packs an image line from Bulk
Core memory and loads it into the Array memory.

e. LINEBOUT: This subroutine packs the contents of the
Array memory, which represents an image line,
and moves them to Bulk Core.

f. FORMAT: This subroutine formats a 3 x 3 neighborhood
into a linear arrangement in order to provide
the Subroutine EDGE with workable data.

84

g. STORAGE: This subroutine defines all the variables
and constants. The addresses of input buffer
are also specified.

h. ALLIO: This subroutine defines the parameter blocks
which are involved in TRAN 1/0.

8.6 Results and Evaluation

A digitized image was used to test the PTEDGE program. The

original image, Fig. 8.7 (a), is the digitized image of a "'lense

cap." The outline or shape of the lense cap as well as the let-

tering on the cap represent potential edges (to the viewer) for

detection. The next four figures, Fig. 8.7 (b), 8.7 (c), 8.7

(d), and 8.7 (e), show the results of applying the PTEDGE tech-

nique to the image of Fig. 8.7 (a). Each of these four figures,

Figs. 8.7 (b) - 8.7 (e), represents a variation in the applica-

tion of the PTEDGE program. Fig. 8.7 (b) shows the result of

detecting horizontal edges, Fig. 8.7 (c) shows vertical edges,

Fig. 8.7 (d) shows edges at 45 degrees (to the right), and Fig.

8.7 (e) shows edges in all directions. The white, straight,

almost horizontal line near the top of the images shown in Figs.

8.7 (b) - 8.7 (e) is an artifact. By examining the results of

applying the PTEDGE program, one would conclude that the program

is working. Note, for example, that for a given direction of

edge detection, edges that are parallel to that direction almost

disappear, while edges that are at right angles to that direction

show a definite sharpening. The PTEDGE program was also applied

to the digital image of a runway (provided by RADC); the original

is shown in Fig. 8.8 (a). Fig. 8.8 (b) shows the result of

applying this program in the vertical direction, Fig. 8.8 (c)

shows similar results for edges along a 45 degree angle (to the

left), and Fig. 8.8 (d) shows similar results for applying the

program in all directions. Fig. 8.8 (c) also shows a horizontal

artifact structure near the middle of the image.

85

8 (

(d) 450 Edges (e) Edges in All Directions

Fig. 8.7 Results of Applying the PTEDGE Program

(a) Original Image

Fig. 8,.8 Results of Applying the PTEI C Program to Puina\

87

Ver 7l~ L5 (tc, the left)

I~~~~ I - I 1I [i ti ~

twl- tI to R n

8.7 Time Efficiency

The table shown below, Table 8.1, shows the execution times

associated with each one of a number of tasks that are necessary

for the implementation of the PTEDGE program by the STARAN com-

puter. From an examination of this table, several conclusions

can be made. 1) By comparing these results with similar ones ob-

tained for the programs associated with the nosie reduction pro-

grams discussed in Section VII, there is a definite speed advan-

tage in using the STARAN by one to two orders of magnitude. 2)

The most time consuming tasks are TRANIN and TRANOUT, which are

associated with getting the data in and out of the processor;

this reinforces the need for a parallel I/O port (256 bits long)

to take advantage of the associative processor. 3) There is a

definite speed advantage in loading the program into page memory

instead of bulk core; this was an expected result. 4) An 8-point

edge detection scheme requires more execution time than for a

one point edge detection scheme, but the difference is only about

Page Memory Bulk Memory
Program Sect. (sec) (sec)

Overall 18 points 17.88.09219 21.8283354
Efficiencyl

11 point 17.5888866 21.3121987

18 points 0.1392855 0.623975
EDGE

1 point 0.0509124 0.1654172

TRANIN 7.89336855 6.609249

TRANOUT 8.5948942 8.2893537

LINEIN 0.4318520 2.1508331

LINEOUT 0.3844740 1.5908665

FORMAT 0.0342776 0.1977352

MOVE 0.0053604 0.029P251

Table 8.1 Time Efficiency for Tasks Associated with the Imple-

mentation of the PTEDGE Program.

89

IX. Conclusions/Future Work

As emphasized earlier, the STARAN was chosen for 1) its

special architecture to speed-up image feature extraction and

processing, and 2) accessibility and interest to the Air Force.

The results obtained in this project clearly demonstrate that a

special computer architecture does have a speed advantage. How-

ever, the STARAN itself does not take advantage of current tech-

nology, and, of course, a host computer more closely matched to

the capability of the STARAN would increase the throughput. In

particular, if the host of "control" computer had a 256 bit I/O

register, the data transfers in and out of storage would be more

efficient, and throughput would be improved. The results indi-

cate that with the use of a special computer architecture such as

the STARAN, the speed-up in execution time is on the order of

two orders of magnitude. When I/O time is included, however, the

speed advantage is only about one order of magnitude. In both

cases, the basis for comparison is a PDP 11/45, using assembly-

level programming.

The emphasis in thi's project has been on the use of the

STARAN to demonstrate the speed advantage of special computei

architectures. Also, several structures other than that of the
STARAN were investigated with the objective to determine theirI
amenability to speed-up image feature extraction and processing.

As a result, it is recommended that three additional structures

be studied further to determine their advantages and disadvan-

tages in an image processing environment and that they be applied

to specific algorithms. One of these structures is a pipeline

structure; when this is coupled with a multiport memory, theie is

a definite indication that it can result in a speed-up of image

processing. Another structure which has a strong potential for

the speed-up of image processing is a multiprocessor structure,

where multiple processors operate in parallel on the same image.

The interprocessor connections can vary considerably.

90

References

1 E.S. Deutsch and J.R. Fram, "A Quantitative Study of the
Orientation Bias of Some Edge Detection Schemes," IEEE Trans.
on Computers, vol. C-27, no. 3, March, 1978.

2. S.D. Shapiro, "Transform Method of Curve Detection for Tex-
tured Image Data," IEEE Trans. on Computers, vol. C-27, no.
3, March, 1978.

3. L.S. Davis, et al., "On Models for Line Detection," Univer-
sity of Maryland Computer Science Center Report, TR-258,
August, 1973.

4. R. Nevatia, "Locating Object Boundaries in Textured Environ-
ments," IEEE Trans. on Computers, vol. C-25, no. 11, Novem-
ber, 1976.

5. L.S. Davis, S. Johns, and T.K. Aggarwal, "Texture Analysis
Using Generalized Co-Occurrence Matrices," IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. PAMI-I, no.
3, July, 1979.

6. T. Pavlidis, "The Use of a Syntactic Shape Analyzer for Con-
tour Matching," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-l, no. 3, July, 1979.

7. H. Wechslet and M. Kodode, "A New Edge Detection Technique
and its Implementation," IEEE Trans. on Systems, Man, and
Cybernetics, vol. SMC-7, no. 12, 1977.

8. H. Wechsler and M. Kodode, "A Random Walk Procedure for Tex-
ture Discrimination," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-I, no. 3, July, 1979.

9. J. Birk, R. Kelley, N. Chen, and L. Wilson, "Image Feature
Extraction Using Diameter Limited Gradient Direction Histo-
grams," IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-1, no. 2, April, 1979.

10. O.D. Faugeras and W.K. Pratt, "Decorrelation Methods for
Texture Feature Extraction," IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. PAMF7, no. 4, July, 1980.

11. R.W. Conners and C.A. Harlow, "A Theoretical Comparison of
Texture Algorithms," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-2, no. 3, May, 1980.

12. K. Deguchi and I. Morishita, "Texture Characterization and
Texture-Based Image Partitioning Using Two-Dimensional Linear
Estimation Techniques," IEEE Trans/Computers, August, 1978.j 91

13. :. . hi cu nd and T. Pavlidis, "Global Shape :'ralysis by k-
Syntactic Similarity," IEEE Trans. on Pattern Analysis and
Machine Intelligence, volTPMI-3, no. 2,Marc, if.

14. T.H. Hong, C.R. Dyer, and A. Rosenfeld, "Texture Primitive
Extraction Using an Edge-based Approach, IEEE Trans. on
Systems, Man, and Cybernetics, vol. SMC-10, no. 11, November
1980.

15. T. Ichikawa, "A Pyramidal Representation of Images and its
Feature Extraction Facility," IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. PAMI-3, no. 3, May, 1981.

16. L.G. Shapiro, "A Structural Model of Shape," IEEE Trans. on
Pattern AnalIsis and Machine Intelligence, vol. PAMI-2, no.
2, 2a-7, 1980.

17. T. Pavlidis and F. Ali, "A Hierarchical Syntactic Shape
Analyzer,' !FEE Trans. on Pattern Analysis and Machine Intel-
lii-ence, \o1• AMI-1, no. 1, Jan., 1979.

18. J. Sklansky, "Image Segmentation and Feature Extraction,"
ifTE' Trans. on Systems, Man, and Cybernetics, vol. SMC-8,
no. e, April, 1978.

19. P.M. Narendra and M. Goldberg, "Image Segmentation with Di-
rected 'frees," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-2, no. 2, March, 1980.

20. w.A. Perkins, "Area Segmentation of Images Using Edge Points;'
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMI-2, no. 1, 1980.

21. K. Price and R. Reddy, "Matching Segments of Images," IEEE
trans. on Pattern Analysis and Machine Intelligence, vol.
PAMI-I, no. 1, Jan., 1979.

22, L. P,:-rsoon and K.S. Fu, "Shape Discrimination Using Fourier
Descriptors," IEEE Trans. on Systems, Man, and Cybernetics,
vol. SMC-7, no. 3, March, 1977.

23. K.S. Shanmugam, F.M. Dickey, and J.A. Green, "A Optimal
Prequency Domain Filter for Edge Detection in Digital Pic-
tures," lULL Trans. on Pattern Analysis and Machine Intelli-
gcnc,_e, vol PAMI-I, no. 1, Jan., 19'-

24. R. Machua and A.1. Gil bert, "Finding Edges and Noisy Scenes,"
ItiTI Trans. on Pattern Anal is and Machine Intelligence,

-P .\li- , no. I , Jan. , 1979.

AD-AlSI 882 M ISSISSIPPI STATE UNIV MISSISSIPPI STATE DEPT OF ELEC--ETC F/ 5 /1,
THE APPLICATION OF SPCIALCCOMPUTING TECHNIQUES TO SPEED-UP IMA--ETC(U)
DEC Al R W MCLAREN!,E D M MFA RLAND F30602-80-C 0032

UNCLASSIFIED RADC-TR-81-230 ML

1.20 U .

Mj~ H~' liQ

25. J.S. Weszka and A. Rosenfeld, "Threshold Evaluation Tech-
niques," IEEE Trans. on Systems, Man, and Cybernetics, vol.
SMC-8, no. 8, Aug., 1978.

26. C.R. Dyer and A. Rosenfeld, "Thinning Algorithms for Gray-
Scale Pictures," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-1, no. 1, Jan., 1979.

27. J.M. Prager, "Extracting and Labeling Boundary Segments in
Natural Scenes," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-2, no. 1, Jan., 1980.

28. L.S. Davis and T.C. Henderson, "Hierarchical Constraint
Processes for Shape Analysis," IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, vol. PAMI-3, no. 3, May, 1981.

29. L.S. Davis, "Shape Matching Using Relaxation Techniques,"

IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. Pami-1, no. 1, Jan., 1979.

30. J.A. Richards, D.A. Landgrebe, and P.H. Swain, "Pixel Label-
ing by Supervised Probabilistic Relaxation," IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. PAMI-3, no.2, March, 1981.

31. A.J. Danker and A. Rosenfeld, "Blob Detection by Relaxation,"
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMI-3, no. 1, Jan., 1981.

32. N. Ahuja and A. Rosenfeld, "Mosaic Models for Textures,"
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMI-3, no. 1, Jan., 1981.

33. L.G. Shapiro and R.M. Haralick, "Decomposition of Two-
Dimensional Shapes by Graph Theoretic Clustering," IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. PAMI-1,
no. 1, Jan., 1979.

34. P.M. Narendra, "A Separable Median Filter for Image Noise
Smoothing," IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. PAMI-3, no. 1, Jan., 1981.

35. A.K. Jain, "A Sinusoidal Family of Unitary Transforms,"
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMI-1, no. 4, Oct., 1979.

36. "Image Processing System Software- User's Manual," RADC
Technical Report, TR-79-52, vol. 1, June, 1979.

37. R.H. Stafford, Digital Television, John Wiley, 1980.

93

38. K.J. Thurber, Large Scale Computer Architecture, Hayden, New
Jersey, 1976.

39. G.H. Barnes, "The ILLIAC IV Computer," IEEE Trans. on Compu-
ters, vol. C-17, no. 8, Aug., 1968.

40. R.L. Davis, "The ILLIAC IV Processing Element," IEEE Trans.
on Computers, vol. C-18, no. 9, Sept., 1969.

41. D.J. Kuck, "ILLIAC IV Software and Application Programming,"
IEEE Trans. on Computers, vol. C-17, no. 8, Aug., 1968.

42. A. Rosenfeld, Digital Picture Processing, Academic Press,
New York, 1976.

43. "AP-120B Array Processor," Floating Point Systems, Inc.,
Form 7244, Rev. 1, March, 1978.

44. "Array Processor Math Library- Part I," Floating Point Systems
Inc., 1978.

45. J.N. Palasco, Floating Point Systems, Inc., "Slide Presenta-
tion," June, 1979.

46. Reference Manual, Goodyear Aerospace Corp., GER-15636B, Sept.,
1974.

47. APPLE Programming Manual, Goodyear Aerospace Corp., Akron,
Ohio, GER-15637B, Sept., 1974.

48. PDP 11 Processor Handbook, Digital Equipment Corp., Maynard,
Mass., 1978.

49. D.J. Kuck, High-Speed Computer and Algorithm Organization,
Academic Press, New York, 1977.

50. G. Goos, Parallel Processing, Springer-Verlag, New York, 1975.

51. C.C. Foster, Content Addressable Parallel Processors, Van
Nostrand, 1976.

Additional References on Special Computer Architecture

I. J. Weglarz, "Multiprocessor Scheduling with Memory Allocation-
A Deterministic Approach," IEEE Trans. on Computers, vol.
C-29, no. 8, Aug., 1978.

2. C.L. Wu, and T.Y. Feng, "On a Class of Multistage Intercon-
nection Networks," IEEE Trans. on Computers, vol. C-29, no.
8, Aug., 1980.

94

.4

3. D. Nassimi and S. Sahni, "Data Broadcasting in SIMD Compu-
ters," IEEE Trans. on Computers, vol. C-30, no. s, Feb.,
1981.

4. J.A. Arulpragasam, R.A. Giggi, R.F. Lary, D.T. Sullivan, and
C.C. Wu, "Modular Minicomputers Using Microprocessors,"
IEEE Trans. on Computers, vol. C-29, no. 2, Feb., 1980.

5. R.W. Holgate and R.N. Ibbett, "An Analysis of Instruction-
Fetching Strategies in Pipelined Computers," IEEE Trans. on
Computers, vol. C-29, no. 4, April, 1980.

6. J. Bruno, J.W. Jones, III, and K. So, "Deterministic Schedu-
ling with Pipelined Processors," IEEE Trans. on Computers,
vol. C-29, no. 4, April, 1980.

7. A.P. Reeves, "A Systematically Designed Binary Array Proces-
sor," IEEE Trans. on Computers, vol. C-29, no. 4, April,
1980.

8. D.D. Gajski, "Parallel Compressors," IEEE Trans. on Computers,
vol. C-29, no. 5, May, 1980.

9. R.A. Finkel and M.H. Solomon, "Processor Interconnection
Strategies," IEEE Trans. on Computers, vol. C-29, no. 5,
May, 1980.

10. D.A. Padua, D.J. Kuck, and D.H. Lawie, "High-Speed Multi-
processors and Compilation Techniques," IEEE Trans. on Com-
puters, vol. C-29, no. 9, Sept., 1980.

11. F.T. Fung and H.C. Torng, "On the Analysis of Memory Con-
flicts and Bus Contentions in Multiple-Microprocessor Sys-
tems," IEEE Trans. on Computers, vol. C-28, no. 1, Jan., 1979.

12. S.B. Wu and M.T. Liu, "A Cluster Structure as an Intercon-
nection Network for Large Multimicrocomputer Systems," IEEr
Trans. on Computers, vol. C-30, no. 4, April, 1981.

95

APPENDIX A

STARAN INSTRUCTION SET

Control Memory Unit Instructions

Branch

B a(r)*k,c

This instruction is an unconditional branch. Entry

'a' is either a symbol or a constant. Entry 'r' is

optional and may be register RO through R7 or DP.

Entry 'k' is optional and is a simple expression

modifying a(r). Entry 'c' is a control digit which

modifies BL or DP registers as follows:

c Function

1 Decrement BL

2 Decrement DP

3 Decrement BL and increment DP

4 Decrement DP

5 Decrement BL and DP

BAL,r I a(r)±k,c

This is a branch and link instruction. The program

branches to a location determined by a(r)±k. When

the instruction B 0(rl) is encountered, a branch to

the address in rI is executed. This address is that

of the instruction immediately following the BAL,r 1

instruction.

BNZ,r 1 a(r)±k,c

This instruction executes a branch if the value of

register r I is not equal to zero.

BZ,r 1 a(r)±k,c

This instruction executes a branch is the value of

register rI is equal to zero.

A-1

LOOP,a1 a(r)±k

This instruction will loop through a program segment

starting with the instruction LOOP and ending at

address a(r)±k. The number of loops is 'a1' which

can be a simple address expression.

RPT,a

The repeat instruction executes the instruction fol-

lowing it 'a' times.

Register

DECR b

The contents of register 'b' is decremented by 1.

INCR b

The contents of register 'b' is incremented by 1.

LI,s b,a

The immediate data 'a' is loaded into register 'b'.

Entry 's' is optional and specifies the number of

left end-around byte shifts before loading.

LR,s b,a(r)tk,c

Register 'b' is loaded with the contents of memory

location a(r)±k.

SR,s b,a(r)*k,c

The contents of register 'b' is stored at location

a(r)±k.

Control

WAIT

This instruction sets the processor to an inactive

state.

A-2

Associative Array Instructions

Load

CLR a

This instruction changes all bits in response store

register 'a' to zero.

L,w a,b

This instruction loads the response store register

'a' with the source 'b'. Entry 'a' can be response

store register X, Y, or M. Entry 'b' can be response

store register X, Y, or M, a simple address expres-

sion, an associative field expression, a field poin-

ter, a link pointer or a resolver value. When an

address, associative field expression or a field

pointer is used, a bit column or word is loaded into

the response store register 'a' depending on entry

'w'. Entry 'w' is optional and is used to indicate

word mode access of the array. When a link pointer

(FP12) is used for entry 'b' FPl points to the array

and FP2 to the word or bit column.

LN,w a,b

This isntruction operates the same way the L,w a,b

does except the data loaded in 'a' is complemented.

LCM c,d

This instruction loads field 'c' in the common regi-

ster with field 'd' in the array. The link pointer

(FPl2) points to the word which will be used in the

associative array.

LCW e

This instruction will load the common register with

one of eight 32-bit blocks from response store

register X or Y. Entry 'e' designates the register

A-3

and block number, for example, X(l) is the X response

store register bits 32 through 63.

ROT a,b,c

This instruction will rotate the selected response

store register or common register, entry 'a'. Entry

'b' indicates the number of end-around bit positions

to be rotated. If 'b' is negative, the rotation is

left, otherwise it is right. Entry 'c' is optional

and indicates the modulus to be rotated.

SET a

This instruction changes all bits in response store

register 'a' to one.

Store

S,w a,b

This instruction stores response store register 'a'

into destination 'b'. Entries 'a', 'b', and 'w'

are the same as those used in instruction L,w a,b.

SC c,d

This instruction will store field 'c' of the common

register into field 'd' of the associative memory or

response store register 'd'. If the associative

memory is used, response store register M is used as

a mask register. Only array words with mask bits

set participate in the operation.

SCW c,d
This instruction is the same as SC c,d except the

associative memory word is pointed to by the link

pointer (FP12).

A-4I

Searches

EQF a,b

This instruction sets bits in the Y response store

register if corresponding mask bits (M response

store) are set and the contents of the array field

'a' is equal to the contents of array field 'b'.

GEC a,b

This instruction sets bits in the Y response store

register if corresponding mask bits (M response

store) are set and the contents of array field 'a'

is greater than or equal to the contents of common

register field 'b'.

GTC a,b

This instruction is the same as GEC except field 'a'

must be greater than field 'b'

LEC a,b

This instruction is the same as GEC except field 'a'

must be less than or equal to field tbt.

LTC a,b

This instruction is the same as GEC except field 'a'

must be less than field 'bt.

LTF a,b

This instruction sets bits in the Y response sto,'e

register if corresponding mask bits (M resopnse

store) are set and the contents of array field 'a'

is less than the contents of array field 'bt.

Move

MVF a,b

This instruction moves the contents of array field

A-S

Va' to array field 'b' in each word of the array

which has its mask (M resonse store) bit set.

MVNF a,b

This instruction operates the same as MVF except the

two's complement of field 'a' is moved.

Arithmetic

ADC a,b,c

This instruction adds field 'a' in the common regis-

ter to field 'b' in the array and stores the result in

field 'c' of the array. This operation takes place

in each word that has its mask bit set.

ADF a,b,c

This instruction is the same as ADC except all the

fields 'a', 'b' and 'c' are in the array.

DVF a,b,c

This instruction divides field 'a' by field 'b' and

stores the result in field 'c'. All fields are in

the array. Each word with a mask bit set partici-

pates.

SBF a,b,c

This instruction subtracts field 'b' from field 'a'

and stores the results in field 'c'. All fields are

in the array. Each word with a mask bit set

participates.

A-6

It

APPENDIX B

MODAL PROGRAM

MODAL APPLE V04-00 24-JUL-60 20:17:30 PAGE 00001 V
1
2
3

4 MODAL START
5 EXTRN LrINBKl oLZNKBK2,TRAN1,TRAN2
6 EXTRN LINKWO1,LINKWD2
7 ENTRY ERRTN1,ERRTN2,ERRTN3
8 ENTRY ERRTN4,ERRTNS
9
10
11
12 DAVID M. CRAWFORD
13 RESEARCH ASSISTANT
14 ELECTRICAL ENGINEERING DEPT.
is UNIVERSITY OF MISSOURI - COLUJMIA
16 ; 16 MAY 1980
17 REVISION: 16 JULY 1980
18 ; REVISION: 22 JULY 1980
19
20
21 THIS PROGRAM IS DESIGNED TO PERFORM NOISE
22 ; REDUCTION ON IMAGES BY USING A MODAL RE-
23 ; PLACEMENT TECHNIQUE. THE IMAGE, 512 X 512
24 PIXELS, IS READ FROM MAGNETIC TAPE AND PRO-
25 , CESSED BY STARAN. THE NEW IMAGE IS THEN
26 ; OUTPUT TO THE COMTAL DISPLAY.
27
28 ; MODAL REPLACEMENT-
29
30 , THIS TECHNIQUE USES A 3X3 NEIGHBORHOOD. ANY
31 ; GRAY LEVELS IN THE NEIGHBORHOOD THAT OCCUR
32 ; MORE THAN ONCE ARE GROUPED INTO MODES. THE

33 ; MORE OFTEN THE GRAY LEVEL OCCURS THE HIGHER
34 ; THE FREQUENCY COUNT OF THE MODE. THE HIGH-
35 ; EST FREQUENCY COUNT CORRESPONDS TO THE
36 ; SELECTED MODE. IF SEVERAL MODES HAVE THE

;1 SAME FREQUENCY COUNT A PRIORITY SYSTEM
38 I IS USED AS FOLLOWS;
39 ; CENTER, TOP LEFT, TOP CENTER, TOP RIGHT,
40 MIDDLE LEFT, ETC. THIS IS ILLUSTRATED
41 ; BELOW.
42
43 12 3 FIRST LINE
44 4 S 6. . . . SECOND LINE
45 7 8 9. . . . THIRD LINE
46
47 ; PRIORITY - 5,12,3,*4,6,7,8
48
49 IF NO MODES OCCUR THE CENTER PIXEL IS
50 ; CHOSEN AS THE MODAL VALUE.
51

B-1

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00002 V
1

2 ; THE PROGRAM OPERATES WITH THREE LINES STORED
3 ; IN ARRAYS 0 AND 1, FIELDS 10,8), 18,8), 116,8).
4 ; THE FIRST PIXEL OF THE FIRST LINE IS STORED IN
5 , FIELD (0,B) OF WORD 0 IN ARRAY 0. THE LAST

6 ; PIXEL OF THE FIRST LINE IS IN FIELD (0,8) OF
7 W WORD 255 IN ARRAY 1. THE SECOND LINE IS IN
8 FIELD (8,8) AND THE THIRD IN FIELD (16,8).
9 , THE MODAL REPLACEMENT VALUE IS DETERMINED FOR

10 , THE LINE IN FIELD (8,8). A COMPARISON BUFFER

11 ; (24,72) IS SET UP IN THE ARRAYS IN THE SAME
12 W WORD WHICH CONTAINS THE PIXEL BEING CHECKED
13 ; FOR REPLACEMENT. COMPARISON BUFFER IS USED TO
14 ; DETERMINE FREQUENCY COUNT. THIS COUNT IS STORE
15 , IN A TAG NEXT TO ITS GRAY LEVEL VALUE IN THE
16 , FREQUENCY COUNT BUFFER (96,96). SORTING THE
17 ; TAG VALUES RESULTS IN THE MODAL REPLACEMENT
1 , VALUE WHICH IS STORED IN THE OUTPUT LINE FIELD
19 , (192,8) AND OUTPUT TO THE COMTAL. ALL EDGE
20 ; POINTS OF THE IMAGE ARE OUTPUT UNALTERED.
21
22
23
24
25 , THE ILLUSTRATION BELOW SHOWS WHERE THE
26 ; BUFFERS ARE IN THE ARRAYS. ARRAY 0 IS
27 ; SHOWN WHICH CONTAINS THE FIRST HALF OF
28 ; THE IMAGE LINE. ARRAY 1 IS SIMILAR.
29
30
31 NNNNNNN*N**NN*N**N*NN***nn**NN*NN*nN*N****

32 N1N4N7N

34 N 2 * 5 8 *147258369*51234678*
35 NNNNNNNNNNNNNMN NNNMNN* *

36 *3*6*9* N N
37 NNNNNNN COMPARE N FREQ N
38 N N N N BUFFER COUNT N
39 N N N N BUFFER *
40 N N N N N
41 N F NS T O

42 NI*ENH* NUN*
43 NRNCNIN TN*

44 *NSN* N*RN PN*

45 NT*NND N U*

46 N NO N N T

so N N N N N N

51 N E E N E E
52 N N N N N N

5453
B-

B-2

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00003 V
1 0388 ERRTHI EQU ERR ERROR RETURN
2 0388 ERRTN2 EQU ERR ERROR RETURN
3 038B ERRTN3 EQU ERR ERROR RETURN
4 0388 ERRTN4 EQU ERR ERROR RETURN
S 038B ERRThS EQU ERR ERROR RETURN
6 0000 BLKI1U EQU 0 1/O BLc:K NUIMBER
7 AO00 ISUFF ECRU X'AO00' IBUFF ADDRESS
8 O00 OSUFF EQU XIBOOO OBUFF ADDRESS
9 1000 IBSIZE EQU 4096 INPUT BUFFER SIZE

10 1000 OBSIZE EQU 4096 OUTPUT BUFFER SIZE
11 0020 LIS EQU IBSIZE/128 IMAGE LINES IN IBUFF
12 0020 LOB EQU OSZZE/128 IMAGE LINES IN OBUFF
13 0010 BLKS EQU SIE/LIB NO. OF INPUT BLOCKS
14 0080 SP EQU 128 32 BIT SEGMENTS PER LIN
15 1000 MXOBOP EQU OBSIZE MAX OBUFF OP VALUE
16 1000 MXIBOP EQU IBSIZE MAX IBUFF OP VALUE
17 0000 MODAL EQU $
18 0000 0000 3660C000 L1,2 AS,X'CO00 SELECT ARRAYS 0 AND 1
19
20 INITIALIZE INPUT -- HAS TAPE
21

22 0001 0001 74201000 LI CHIBSIZE
23 0002 0002 32000000 LI CLBLKNUII

24 0003 0003 30010001 SR CTRAN2+1
25 0004 0004 74200000 LI CNO
26 0005 O00S 3200A000 LI CLIBUFF
27 0006 0006 30010003 SR C,TRAN2+3
28 INIT LINKBK2

0007 0007 72800000
0008 0008 34A00014
0009 0009 30C18010

30
31 INITIALIZE OUTPUT -- COITAL
32
33 O00A OOOA 74201000 LI CH,OSZZE
34 0008 OOB 32000000 LI CLBLKNII
35 OO0C OOOC 30010001 SR CTRAN1*l
36 0000 0000 74200000 LI CHO
37 OOOE OOOE 3200BO00 LI CL,OBUFF
38 GOOF GOOF 30010003 SR C,TRANZ.3
39 INIT LINKbIK

0010 0010 72800000
0011 0011 34A00014
0012 0012 30C18010

41
42 INPUT LINES TO BUFF (NO. L 1IB)
43
44 TRAM TRANI

0013 0013 72800000
0014 0014 34A00016
0015 0015 30C18010

46 IONAIT LINKWD2
0016 0016 72800000
0017 0017 74A00000
0018 0018 37200000
0019 0019 30C18010

B-3

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00004 V
1
2 INITIALIZE BUFFER POINTERS
3
4 O01A O01A 34A01000 LI BLMXIBDP INIT IBUFF EMPTY FLAG

W S colB 0015 30810613 SR BL,IBEF
6 001C 001C 34A01000 LI BLMXOBDP INIT OBUFF EMPTY FLAG

W 7 0010 0010 30810612 SR BL,OBEF
8 O01E O01E 34A00010 LI BLBLKS INIT LAST IBUFF FLAG

W 9 O01F OO1F 30810614 SR BL,LIF
10
11 ; MOVE FIRST LINE IN IBUFF TO OBUFF
12
13 0020 0020 73C00000 LI FP12,0
14 0021 0021 32800000 LI DP,0
1S 0022 0022 34810612 LR BL,OBEF
16 0023 0023 3F7FO02C LOOPSP LINE1 LINE ONE TO IBUFF
17 0024 0024 3602A000 LR C,IBUFF(DP) LOAD 4 PX IN C REG
18 0025 0025 400077A1 CLR X PIXEL SWAP
19 0026 0026 420099A0 SC X(O) 1,2,3,4 TO 4,3,2,1
20 0027 0027 40088858 ROT X,-8,16

0028 0028 40008858
21 0029 0029 40108858 ROT X,-16,32

002A 002A 4000888
22 0025 0028 21COAOFB LCW X(0)
23 002C 002C 3005000 LINE1 SR COBUFF(OP),3 STORE 4 PX IN OBUFF

W 24 0020 0020 30810610 SR DPOBDP
W 25 002E 002E 30810612 SR BLOBEF

26
27 ; MOVE FIRST TWO LINES IN
28 ; IBUFF TO THE ARRAYS
29
30 002F 002F 32800000 LI DP,o
31 0030 0030 34810613 LR BLIBEF
32 0031 0031 33C00000 LI FP12,0 ARRAY WORD POINTER
33 0032 0032 3F7FOO50 LOOPSP L1 FIRST LINE IN ARRAY
34 0033 0033 360A000 LR C#IBUFF(OP),3 LOAD 4 PX IN C REG

35 0034 0034 400088A1 SC (0,8),(0,8) PX TO ARRAY
0035 0035 4FCOAO3F
0036 0036 57C00000
0037 0037 08000003

36 0038 0038 O1E00001 INCR FP12 NEXT WORD
37 0039 0039 400088A1 SCw (8,8),(0,8) PX TO ARRAY

003A 003A 4FCOAO3F
003B 0038 42008840
003C 003C 40F8885A
0030 0030 4000885A

003E 003E 57C00002
003F 003F 08000003

38 0040 0040 O1E00001 INCR FP12 NEXT WORD
39 0041 0041 400088A1 SCM (16,81,(0,8) PX TO ARRAY

0042 0042 4FCOAO3F
0043 0043 42008840
0044 0044 40F0885A
0045 0045 4000885A
0046 0046 57C00002
0047 0047 08000003

B-4

I1

IJI

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00005 V
1 0048 0048 O1EO0001 INCR FP12 NEXT WORD
2 0049 0049 400088A1 SCW (24,8),(0,8) PX TO ARRAY

004A 004A 4FCOAO3F
004B 004B 42008840
004C 004C 40EO885A
0040 004D 40F8885A
004E 004E 57C00002
004F 004F 08000003

3 0050 0050 01E00001 Li INCR FP12 NEXT WORD
4 0051 0051 33C00000 LI FP12,0 ARRAY WORD POINTER

5 0052 0052 3F7FO06F LOOP,SP L2 2ND LINE IN ARRAY
6 0053 0053 3605A000 LR C,IBUFFDP),3 LOAD 4 PX IN C REG

7 0054 0054 400088A1 SCW (0,8),18,8) PX TO ARRAY
0055 0055 4FCOA87F
0056 0056 42008840
0057 0057 40F83852
0058 0058 57C00002
0059 0059 08000003

8 005A O05A 01E00001 INCR FP12 NEXT WORD
9 005B 0055 400088A1 SCW (8,8),(8,8) PX TO ARRAY

005 005C 4FCOA$7F
0050 005D 57C00000
005E 005E 08000003

10 005F 00SF 01E00001 INCR FP12 NEXT WORD
11 0060 0060 400088A1 SCW (16,8),(8,8) PX TO ARRAY

0061 0061 4FCOA87F
0062 0062 42008840
0063 0063 40F8885A
0064 0064 4000855A
0065 0065 57C00002
0066 0066 08000003

12 0067 0067 OlE00001 INCR FP12 NEXT WORD
13 0068 0068 40008SA1 SCW (24,8),(8,8) PX TO ARRAY

0069 0069 4FCOA87F
006A 006A 42008840
006B 006B 40FOO85A
006C 006C 4000885A
0060 006D 57C00002
006E 006E 08000003

14 006F 006F 01E00001 L2 INCR FP12 NEXT WORD
W 15 0070 0070 30810611 SR OP.BDP
W 16 0071 0071 30810613 SR BL,IBEF

B-5

Unii iiiii i lHi llllmll mlliill l| 'I

IOOAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00006 V
1

2 MOVE ANOTHER LINE FROM IUFF TO THE ARRAY
3
4 0072 0072 32810611 NXLZNE LR oP,IBDP
5 0073 0073 34810613 LR BLIBEF
6 0074 0074 33C00000 LI FP22,0 ARRAY WORD POINTER
7 0075 0075 3F7FO091 LOOP,SP LINE MOVE LINE IN APRAY
8 0076 0076 3605A000 LR C,ISUFF(OP),3 LOAD 4 PX IN C REG

9 0077 0077 400088A1 SCM (0,8),(16,6) PX TO ARRAY
0078 0078 4FCOSOBF
0079 0079 42008840
007A 007A 40F088E
0075 0078 57C00002
007C 007C 08000003

10 0070 0070 01E00001 INCR FP12 NEXT WORD

11 007E 007E 400088AI SCM (8,8),116,8) PX TO ARRAY
007F 007F 4FCOBOBF
0080 0080 42008840
0081 0081 40F888SZ
0082 0082 57CO000Z
0083 0083 08000003

12 0084 0084 01E00001 INCR FP12 NEXT WORD
13 0085 0085 400088A1 SCM (16.8).(16,8) PX TO ARRAY

0086 0086 4FCOSOBF
0087 0087 5700000
0088 0088 08000003

14 0089 0089 O1EOOOO1 INCR FP12 NEXT WORD
15 008A 008A 400088A1 SCW (24,8)o(16,8) PX TO.ARRAY

0085 0088 4FCOBOBF
008C 008C 42008840

0080 0080 40F8885A
008E 008E 4000885A
O0SF 008F S7CO0002
0090 0090 08000003

16 0091 0091 01E00001 LINE INCR FPI2 NEXT WORD
W 17 0092 0092 30810611 SR OPZaOP

W 18 0093 0093 30810613 SR e' ,ZBEF

B-6

MODAL APPLE V04-O0 24-JUL-60 20:17:30 PAGE 00007 V
1
2 ; SET UP PIXEL COMPARISON BUFFER(24,72) IN THE
3 ; ARRAY FIELDS (24,243,(48,24) AND (72t24)
4
5 0094 0094 73900000 LI FPI,0
6 0095 0095 73400018 LI FP2,24
7 0096 0096 35A00048 LI FP3,72
8 0097 0097 3F17009F LOOP,24 SHFT MOVE FIELD (0,24)

9 0098 0098 430088A5 L XFP1

10 0099 0099 40FF88W3 ROT X,1 DOWN A WORD TO

11 009A 009A 58400003 S XFP2 FIELD (24,24) AND
12 0098 0098 40FE8888 ROT X,-E UP A WORD TO

009C 009C 40008888
13 0090 009D 18800003 S XFP3 FIELD (72,24)
14 009E 009E 01700001 11CR FP1,FP2 NEXT BIT COLUMN

15 009F 009F 01A00001 SHFT INCR FP3
16 OOAO OOAO 73C00000 LI FP12,0 ARRAY 0 WORD 0

17 OOA O0Al 47C088A5 LCH (0,24),(24,24) TO
0OA2 00A2 40F88883
0OA3 00A3 65CIA068

18 OOA4 00A4 73C00100 LI FP129X'0100' ARRAY I WORD 0
19 OOAS OOAS 400088A1 SCi (0,24),(24,24)

00A6 00A6 4FCOAOSF
0OA7 00A7 40008841
OOAS 0OA8 40F886A
0OA9 00A9 40EO88SA
OOAA 0AA 48000002
OOAS 008A 48C00001
OOAC OOAC 42008840
OOAD OAD 40F888SA
OOAE OOAE 40EO88SA
OOAF OOAF 57C00002
0080 OOBO 48000003

20 0081 00B 73COG1FF LI FP12,X'OFF' ARRAY I MORO 2SS

21 0082 0082 47C088A5 LCH (0,24),(72,24) TO
0083 0083 40188883
0054 0084 65C280B

22 OOBS OOBS 73COOOFF LI FP12,X'OOFF' ARRAY 0 WORD 2SS

23 0086 0086 400088A1 SCM (0,24),(72,24)
0057 0007 4FC2A8FF
00B8 0088 42408840
0089 0089 40F888S2

OBA OOBA 57C00002
008B 005B 48000003

24 OBC 008C 400088A1 SET H
0080 0080 48000003

25 OBE OSE 37901717 YVF (0,24),(48,241
008F 006F 3F1700C2
OOCO OOCO 433488A5
00CI 0OCI 45800001
00C2 00C2 13A40003

B-7

M1ODAL APPLE V04.-00 24-JUL-60 20:17:30 PAGE 00008 V

2 , CLEAR FIELD (96996) FOR USE BY
3 , THE FREQUENCY COUNT BUFFER
4
S 00C3 00C3 74200000 LI 04,0
6 00C4 00C4 72000000 LI CLs0
7 00C5 OOCS 33C01F7F SC (0,323,(96,323
00C6 0OC6 3F1F00ca
00C7 00C7 4.B4057AI
00CS 00CS 13740003

8 00C9 00C9 33C01F9F SC (0,32)9(128#32)
OOCA OOCA 3F1FOOCC
00CR 00CS 454057AI
00CC 00CC 13740003

9 OOCD GOCO 33COIFBSF SC (0,323.(160,32)
OOCE OOCE 3F1FOOO
0OCF OOCF 4B40B7A1
0000 0000 13740003

B-8

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00009 V
1
2 SET UP FREQUENCY COUNT BUFFER
3
4 0001 0001 3790683F MVF (56,8),(100,8) PX S TO POSITION 1

0002 0002 3F070005
0003 0003 433488A5
0004 0004 48800001
0005 0005 13A40003

5 0006 0006 3790771F IVF (Z4,8)9(112,8) PX I TO POSITION 2

0007 0007 3FO7000A
0008 0008 433488A5
0009 0009 4800001
CODA CODA 13A40003

6 00B 0008 37908337 "VF (48#8),(129,8) PX 2 TO POSITION 3
OOC OOC 3FO700OF
0000 0000 433488AS
CODE CODE 4B800001
OOOF OODF 13A40003

7 OOEO OOEO 37908F4F MVF (72,8),(136,8) PX 3 TO POSITION 4
OOEI OOE1 3F0700E4
OOE2 OE2 433488A5
OOE3 OE3 4B800001
OOE4 00E4 13A40003

8 OOE5 GOES 37909827 VF (32,8),(148,8) PX 4 TO POSITION S
OOE6 COE6 3F07COE9
OOE7 0GE7 433488AS
OOES GOES 48800001
OOE9 00E9 13A40003

9 OOEA OOEA 3790A7S7 "VF (80,8),1160,8) PX 6 TO POSITION 6
OOEB OOEB 3FO700EE
OOEC OOEC 433488AS
COED COED 4B800001
OOEE OOEE 13A40003

10 OOEF OOEF 3790B32F VF (40,),(172,8) PX 7 TO POSITION 7
OOFO OOFO 3FO700F3
0OF1 OOF1 433488A$
OOF2 00F2 4B800001
OOF3 OF3 13A40003

11 OOF4 0F4 37908F47 "VF (64,8)v(1S4,S) PX 8 TO POSITION S
OOF5 COPS 3FG7OOF8
OOF6 00F6 433488A5
OOF7 00F7 45800001
OOFS OFS 13A40003

B-9

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00010 V
1
2 ; DETERMINE THE PIXEL FREQUENCY COUNT
3 AND STORE IT IN THE TAG
4
5 00F9 00F9 72000001 LI CL,1 COUNT INCREMENTER
6 OOFA OOFA 77906877 EQF (100.8),(112,8) COMPARE PX S TO PX 1

OOFB OOFB 00008841
OOFC OOFC 3FO70OFF

OOFO OOFO 43A488A5
OOFE OOFE 433400A5
OOFF OFF 00002243

7 0100 0100 48000002 L MY
8 0101 0101 7SE00363 ADC (96,4),(28,4),(9f,4) IN R TAG?

0102 0102 73C01F63
0103 0103 37200303
0104 0104 2C000000

9 0105 0105 4000BBAI SET i
0106 0106 48000003

10 0107 0107 77906583 EQF (1009819(124,8) COMPARE PX S TO PX 2
0108 0108 00008841
0109 0109 3FO7010C
010A 010A 43A488AS
010B 010B 433400A5
010C 010C 00002243

11 0100 0100 48000002 L m,Y
12 010E OOE 7SE00363 AOC (96,4,1(28o4),(96,4) INCR TAG?

010F 01OF 73C01F63

0110 0110 37200303
0111 0111 2CO00000

13 0112 0112 40008SA1 SET N
0113 0113 48000003

14 0114 0114 7790688F EQF 1100.b)#1136.8) COIPARE PX 5 TO PX 3
0115 0115 00008841
0116 0116 3F070119
0117 0117 43A488A3
0118 0118 433400AS
0119 0119 00002243

15 011A 011A 48000002 L NOY
16 0118 011B 75E00363 ADC (96,4),(28,4),(96,4) INCR TAG?

011C 011C 73C01F63
0110 0110 37200303
011E 011E 2C000000

17 011F 011F 4000B8A1 SET M
0120 0120 48000003

18 0121 0121 7790689B EQF (100,8)9(148,8) COIPARE PX 5 TO PX 4
0122 0122 00008841
0123 0123 3F070126
0124 0124 43A488AS
0125 012S 433400A5
0126 0126 00002243

19 0127 0127 48000002 L M,Y
20 0128 0128 75E00363 AOC (96,4),(28,4),(96,4) INCR TAG?

0129 0129 73C01F63
012A 012A 37200303
0128 0128 2CoooO

21 012C 012C 4000BBA1 SET N
0120 0120 08000003

B-10

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00011 V
1 012E 012E 779068A7 EQF (100,8),(160,8) COMPARE PX 5 TO PX 6

012F 012F 00008841
0130 0130 3F070133
0131 0131 43A488A5
0132 0132 433400A5
0133 0133 00002243

2 0134 0134 48000002 L t1Y
3 0135 0135 75E00363 ADC (96,4)(28,4),(96,41 INCR TAG?

0136 0136 73C01F63
0137 0137 37200303
0138 0138 2C000000

4 0139 0139 40006AI SET M
013A 013A 48000003

5 0135 0138 77906883 EQF (100,S),(172,8) C"PARE PX 5 TO PX 7
013C 013C 00008841
0130 0130 3F070140
013E 013E 43A488A5
013F 013F 433400A5
0140 0140 00002243

6 0141 0141 48000002 L MY
7 0142 0142 75E00363 ADC 96,4),(28,4)p(96,4) INCR TAG?

0143 0143 73C01F63
0144 0144 37200303
0145 0145 2C000000

8 0146 0146 4000BOA1 SET M
0147 0147 48000003

9 0148 0148 7790668F EQF (100,8),(184,8) COMPARE PX 5 TO PX a
0149 0149 00008841
014A 014A 3F070140
0148 0148 43A488A5
014C 014C 433400A5
0140 0140 00002243

10 014E 014E 48000002 L MY
11 014F 014F 75E00363 ADC (96,4),(28,4)*,(96,4) N TAG?

0150 0150 73C01F63
0151 0151 37200303
0152 0152 2C000000

12 0153 0153 40006SA1 SET P
0154 0154 48000003

13 0155 0155 77906BSF EQF (100,8),(88,8) COMPARE PX 5 TO PX 9
0156 0156 00008841
0157 0157 3FO7015A
0158 0158 43A488AS
0159 0159 433400AS
015A OlSA 00002243

14 0158 0136 48000002 L HOY
15 O1SC O1SC 75E00363 ADC 196,4)P(28,4),(96,4) INCR TAG?

0150 0150 73C01F63
OISE OISE 37200303
015F 01SF 2C000000

16 0160 0160 4000BSAI SET M
0161 0161 48000003

17 0162 0162 77907783 EQF (112,8),(124,81 COMPARE PX 1 TO PX 2
0163 0163 00008841
0164 d164 3F070167
016S 0165 43A488A5
0166 0166 433400A5
0167 0167 00002243

B-I1

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00012 V
1 0168 0168 48000002 L M.Y
2 0169 0169 75E0036F ABC (108,4),(28*4),(108,41 INCR TAG?
016A 016A 73C01F6F
0168 0168 37200303
016C 016C 2C000000

3 0160 0160 400088A1 SET M
016! 016E 48000003

4 016F 016F 7790778F EQF (112,8),(136,8) COMPARE PX I TO PX 3

0170 0170 00008841
0171 0171 3F070174
0172 0172 43A488A5
0173 0173 433400A5
0174 0174 00002243

5 017S 0175 48000002 L mY
6 0176 0176 750036F AOC (108,4),(28,4),(108,4) INCR TAG?

0177 0177 73C01F6F
0178 0178 37200303
0179 0179 2CO00000

7 017A 017A 4000BSA1 SET M
0178 0178 48000003

8 017C 017C 77907798 EQF (112,8),(14898) COMPARE PX 1 TO PX 4
0170 0170 00008841
017E 017E 3F070181
017F 017F 43A488A5
0180 0180 433400A5
0181 0181 00002243

9 0182 0182 48000002 L MY

10 0183 0183 75E0036F ABC (108p4J,(28,4),(108,4) ZNCR TAG?
0184 0184 73C01F6F
0185 0185 37200303
0186 0186 2C000000

11 0187 0187 400088A1 SET M
0188 0188 48000003

12 0189 0189 779077A7 EQF (112,81,(160,8) COMPARE PX 1 TO PX 6
018A 018A 00008841
0188 0188 3F07018E
018C 018C 43A488A5
0180 0180 433400A5
018E 018! 00002243

13 01SF 018F 48000002 L 1,Y
14 0190 0190 75E0036F ADC (108p4),(28,4),108,4) rNCR TAG?

0191 0191 73C01F6F
0192 0192 37200303
0193 0193 2CO00000

15 0194 0194 4000SBA1 SET M
0195 0195 48000003

16 0196 0196 77907713 EQF f112,8,(172,8) COMPARE PX I TO PX 7

0197 0197 00008841
0198 0198 3F070195
0199 0199 43A488AS
019A 019A 433400AS
0198 0198 00002243

17 019C 019C 48000002 L mY

18 0190 0190 75E0036F AOC (108,4),(28,4),(108,4) INCR TAG?
019E 019E 73COF6F
019F 019F 37200303
D14A O1AO 2C000000

B-12

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00013 V
1 OlAl OlAl 40008BA1 SET M

01A2 01A2 48000003
2 01A3 01A3 779077BF EQF 112,8),(184,8) COMPARE PX 1 TO PX 8

0IA4 01A4 00008841
01A5 01A5 3F0701A8
01A6 01A6 43A488A5
0IA7 0IA7 433400AS

01A8 01A8 00002243
3 01A9 01A9 48000002 L mY
4 01AA O1AA 75E0036F ADC (108,4)t(28,4),(108,4) INCR TAG?

DlAB 0lAB 73C01F6F
01AC 01AC 37200303

ClAD 0lAD 2C000000
5 01AE O1AE 4000BBA1 SET N

OlAF OlAF 48000003
6 0180 0180 779077SF EQF (112,8J.(88,8J COMPARE PX I TO PX 9

OB11 0181 00008841

0182 0182 3F070185
01B3 0153 43A488AS
0184 0184 433400A$
01BS 0185 00002243

7 0186 0186 48000002 L mY

8 01B7 0187 75E0036F ADC (108,43,(28,4)v(108,4) rNCR TAG?
0188 0188 73C01F6F
0189 0189 37200303
015A O1SA 2C000000

9 0188 01BB 40005SA1 SET M
D1BC 01BC 48000003

10 0180 0180 7790838F EQF (124,8)P(136,81 COMPARE PX 2 TO PX 3
OIBE OISE 00008841
01SF O1SF 3F0701CZ
01C0 01C0 43A488A5
OCI 01CI 433400A5
01C2 01C2 00002243

11 01C3 01C3 48000002 L mY
12 01C4 01C4 75E00378 ADC (1Z0,4),(28p4),(IZ04) INCR TAG?

0ICS OICS 73C01F78
01C6 01C6 37200303
01C7 01C7 2C0000

13 01C8 01C8 40005SA1 SET M
01C9 01C9 48000003

14 OCA 01CA 77908398 EQF (124,8),(148,83 COMPARE PX 2 TO PX 4
O1CB 01CS 00008841
01CC 01CC 3FO7O1CF
OCD 01CO 43A488A5

DICE DICE 433400A5
O1CF O1CF 00002243

15 0100 0100 48000002 L MY
16 0101 0101 75E00378 ADC (120,4),(28,4),(120,4) INCR TAG?

012D 0102 73C01F78
0103 0103 37200303
0104 0104 2C000000

17 0105 0105 40008BA1 SET M
0106 0106 08000003

B-13

IIODAL APPLE V04-00 24-JUL-80 Z0:17:30 PAGE 00014 V
1 0107 0107 779083A7 EQF (124,8),(160,8) COIPARE PX 2 TO PX 6

0108 0108 00008841
0109 0109 3F07010C
0DIA OlDA 43A488A5
0105 0105 433400AS
01DC 010C 00002243

2 0100 0100 48000002 L N,Y
3 010E 010E 75E0037B ADC (120,4),(28,4)o(120,4) ZNCR TAG?

Ol1F ODF 73C01FTB
OEO OEO 37200303
01E1 01E1 2C000000

4 01E2 01E2 40008SA1 SET N
01E3 01E3 48000003

5 01E4 01E4 77908383 EQF (124,8),(172,8 COMPARE PX 2 TO PX 7
01ES OIES 00008841
01E6 01E6 3F0701E9
01E7 01E7 43A488A5
01E8 01E8 433400A5
01E9 01E9 00002243

6 0lEA 0lEA 48000002 L N,Y
7 01EB 01EB 75E00378 ADC (120,4)(28,4),(120,4) INCR TAG?

OlEC OEC 73C01F7B
01ED 01ED 37200303
01EE 0EE 2C000000

8 01EF 01EF 400068A1 SET M

01FO OlFO 48000003
9 01FI 01F1 7790835F EQF (124,8),(184,8) COIPARE PX 2 TO PX 8

01F2 01F2 00008841
01F3 01F3 3FO701F6
01F4 01F4 43A488A5
O1FS O1F5 433400AS
01F6 01F6 00002243

10 01F7 01F7 48000002 L M,Y
11 01F8 01F8 75E0037B ADC (120,4),(28,4),(120,4) INCR TAG?

01F9 01F9 73C01F78
OFA O1FA 37200303
01FB 01F5 2C000000

12 O1FC 01FC 4000BBA1 SET N
01FO OFO 48000003

13 OlFE O0FE 779083SF EQF (124p8),188,8) COMPARE PX 2 TO PX 9
01FF 01FF 00008841
0200 0200 3F070203
0201 0201 43A488A5
0202 0202 433400AS
0203 0203 00002243

14 0204 0204 48000002 L NY
15 0205 0205 75E0037B ADC (120,4)p(2

8
,4),(

12
0,4) INCR TAG?

0206 0206 73C01F7B
0207 0207 37200303
0208 0208 2C000000

16 0209 0209 4000BBA1 SET N
020A 020A 48000003

17 0205 0208 7790SF9B EQF (136,8),(148,8) COMP'JE PX 3 TO PX 4

020C 020C 00008841
020D 020D 3F070210
020E 020E 43A488A5
020F 020F 433400A5
0210 0210 00002243

B-14

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00015 V
1 0211 0211 48000002 L MY
Z 0212 0212 75E00387 ADC (132p4),(28,4),(132,41 INCR TAG?

0213 0213 73C01F87
0214 0214 37200303
0215 0215 2C000000

3 0216 0216 4000BBA1 SET M
0217 0217 48000003

4 0218 0218 77908FA7 EQF (136,8),(160,8) COMPARE PX 3 fO PX 6
0219 0219 00008841
021A 02A 3F070210
021B 0218 43A488A5
021C 021C 433400A5
0210 0210 00002243

S 021E 021E 48000002 L MY
6 021F 021F 75E00387 ADC (132,4)o(28,4),(132,4) INCR TAG?

0220 0220 73C01F87
0221 0221 37200303
0222 0222 2C000000

7 0223 0223 4000BBA1 SET H
0224 0224 48000003

8 0225 0225 77908F83 EQF (136,8),(172,8) COMPARE PX 3 TO PX 7
0226 0226 00008841
0227 0227 3F07022A
0228 0228 43A488A5
0229 0229 433400A5
022A 022A 00002243

9 0228 0228 48000002 L MY
10 022C 022C 75E00387 ADC (132,4),(28,4),(132,4) INCR TAG?

0220 022D 73C01F87
022E 022E 37200303
022F 022F 2C000000

11 0230 0230 4000B8A1 SET M
0231 0231 48000003

12 0232 0232 77908FBF EQF (136,8I,(184,8) COMPARE PX 3 TO PX 8
0233 0233 00008841
0234 0234 3F070237
0235 0235 43A488A5
0236 0236 433400A5
0237 0237 00002243

13 0238 0238 48000002 L MY
14 0239 0239 75E00387 ADC (132,4),(28,4),(132,4) INCR TAG?

023A 023A 73C01F87

0238 023B 37200303
023C 023C 2C000000

15 023D 023D 40008BA1 SET M
023E 023E 48000003

16 023F 023F 77908FSF EQF (136,8)P(88,8) COMPARE PX 3 TO PX 9
0240 0240 00008841
0241 0241 3F070244
0242 0242 43A488A5
0243 0243 433400AS
0244 0244 00002243

17 0245 0245 48000002 L NY
18 0246 0246 75E00387 AOC (132v4)p(28,4),(132,4) INCR TAG?

0247 0247 73C01F87
0248 0248 37200303
0249 0249 2C000000

B-1 5

tIOOAL APPLE V04-00 24-JUL-80 20!17:30 PAGE 00016 V

1 024A 024A 40008BA1 SET M

0248 0248 48000003
2 024C 024C 779098A7 EQF (148,8),(160,81 COMPARE PX 4 TO PX 6

024D 0240 00008841
024E 024E 3F070251

024F 024F 43A488A5
0250 0250 433400A5
0251 0251 00002243

3 0252 0252 48000002 L 1,Y

4 0253 0253 75E00393 ADC (144s4),(28,4),(144,4) INCR TAG?

0254 0254 73C01F93
0255 0255 37200303
0256 0256 2C000000

5 0257 0257 400088A1 SET M

0258 0258 48000003
6 0259 0259 779098B3 EQF (148,8),(172,81 COMPARE PX 4 TO PX 7

025A 025A 00008841
025B 0258 3F07025E
025C 025C 43A488AS

0250 0250 433400A5
025E 025E 00002243

7 0ZSF 025F 48000002 L M,(

8 0260 0260 75E00393 ADC (144,4),(28,4),(144,41 INCR TAG?

0261 0261 73C01F93
0262 0262 37200303
0263 0263 2C000000

9 0264 0264 4000BBA1 SET H

0265 0265 4b000003
10 0266 0266 779098F EQF (148,8),(184,8) COMPARE PX 4 TO PX 8

0267 0267 00008841
0268 0268 3F070265
0269 0269 43A488AS
026A 026A 433400A5
026B 0268 00002243

11 026C 026C 48000002 L IY

12 0260 0260 75E00393 ADC (144,4),(28,4),(144,4) INCR TAG?

026E 026E 73C01F93
026F 026F 37200303
0270 0270 2C000000

13 0271 0271 4000BBA1 SET H

0272 0272 48000003

14 0273 0273 779098SF EQF (148,8),(88,8) COMPARE PX 4 TO PX 9

0274 0274 00008841
0275 027S 3F070278
0276 0276 43A488A5
0277 0277 433400A5
0278 0278 00002243

15 0279 0279 48000002 L mY

16 027A 027A 75E00393 AOC (144,4),(28,4),(14494) INCR TAG?
0278 0278 73C01F93

027C 027C 37200303
0270 0270 2C000000

17 027E 027E 4000BBA1 SET H

027F 027F 08000003

B-16

*

MOOAL APPLE V04-O0 24-JUL-80 20:17:30 PAGE 0'i017 V
1 0280 0280 7790A783 EQF (160,8) (172,81 COMPARE PX 6 TO PX 7

0281 0281 00008841

028Z 0282 3F070285
0283 0283 43A488AS
0284 0284 433400A5
0285 0285 00002243

2 0286 0286 48000002 L M,'
3 0287 0287 7SE0039F ADC (156,4),(28.4),(156,41 INCR TAG?

0288 0288 73C01F9F
0289 0289 37200303
028A 028A 2C000000

4 0288 0288 4000BBA1 SET M
028C 028C 48000003

5 0280 0280 7790A78F EQF (160,8),(184.8) COMPARE PX 6 TO PX 8
028E 028E 00008841
0Z8F 028F 3F070292

0290 0290 43A488AS
0291 0291 433400A5
0292 0292 00002243

6 0293 0293 48000002 L M,Y
7 0294 0294 75E0039F AOC (156,4),(28,4),(156,4) INCR TAG?

0295 0295 73C01F9F
0296 0296 37200303
0297 0297 2C000000

8 0298 0298 4000SBA1 SET M
0299 0299 48000003

9 029A 029A 7790A75F EQF (160,8),(88,8) COMPARE PX 6 TO PX 9
0298 029B 00008841
029C 029C 3F07029F
0290 0290 43A488AS
029E 029E 433400A5
029F 029F 00002243

10 02AO 02AO 48000002 L MY

11 02AI 02A1 75E0039F ADC (156,4),(28,4),(156,.) INCR TAG?
02A2 02A2 73C01F9F
02A3 02A3 37200303
02A4 02A4 2CO00000

12 02A5 02A5 400088A1 SET m
02A6 02A6 48000003

13 02A7 02A7 7790838F EQF (172,83,(184,8) COMPARE PX 7 TO PX 8
02A8 02A8 00008841
02A9 02A9 3FO702AC
02AA 02AA 43A488AS
02A8 02A8 433400A5
O2AC 02AC 00002243

14 02AD 02A0 48000002 L MI
15 02AE 02AE 75E003A8 AOC (168,4),(28,4),(168,4) INCR TAG?

02AF 02AF 73CO1FAB
0280 0280 37200303
0281 0281 2C000000

16 0282 0282 4000BBA1 SET m
0253 0253 48000003

17 02B4 0284 7790835F EQF (172,8),(88,8) COMPARE PX 7 TO PX 9
0285 0285 00008841
02B6 0286 3F070289
02B7 0287 43A488A5
0288 0288 433400AS
0289 0289 00002243

B-17

t00#L APPLE V04-O0 24-JUL-80 20:17:30 PAGE 00018 V
1 02BA 02SA 48000002 L MY

2 028B 02BB 7SEOO3AB ADC (168,4),(28,4),(168,4) INCR TAG?
02BC 02BC 73C01FA8
02BO 020 37200303
02BE 026E 2C000000

3 02SF 02BF 4000B8A1 SET M.
02C0 02C0 48000003

4 02C1 02C1 7790BFSF EQF (184,8),(88,6) COMPARE PX 8 TO PX 9

02C2 02C2 00008841
02C3 02C3 3F0702CS
02C4 02C4 43A488A5
02C5 02C5 433400AS
02C6 02C6 00002243

5 02C7 02C7 48000002 L M,Y
6 02C8 02C8 75E00357 AOC (180,4),(28,4),(180o4) INCR TAG?

02C9 02C9 73CO1FB7

02CA 02CA 37200303
02C 02CB ZCO00000

B-18

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00019 V
1
2 SORT PIXELS BY FREQUENCY COUNT TAG
3
4 02CC 02CC 4000BBA1 SET H

02C0 02CO 48000003
5 OZCE 02CE 77907B6F LTF (106,4),(120,4) PX 1 TAG < PX 2 TAG

O2CF 0CF 35700001
0200 0200 2CO10000

6 0201 0201 48000002 L mlY
0202 0202 37907783 MVF (120,12),(108,12) IF SO, SWAP
02D3 0203 3F080206
0204 02D4 433488A5
02E0 0205 4B800001
0206 02E6 13A40003

8 0207 0207 4000BBA1 SET M
0208 0208 48000003

9 0209 0209 7790876F LTF (108,4|,(13*,41 PX I TAG < PX 3 TAG
02EA 02EA 35700001
020 02EB 2C010000

10 02EC 020C 48000002 L HY
11 02DD 020D 3790778F MVF (132,12),(108,12) IF SO, SNAP

02DE 02BE 3FOB02EI
020F 02EF 433488A5
02E0 02EB 4B800001
O2EI 02E1 13A40003

12 02E2 02E2 4000BBA1 SET M
02E3 02E3 48000003

13 02E4 02E4 7790936F LTF (108,4),(144,4) PX 1 TAG < PX 4 TAG
02ES 02E 35700001
02E6 02E6 2C010000

14 OZE7 02E7 48000002 L my
15 02E 02E8 3790779B MVF (144,12),(108,12) IF SO, SWAP

02E9 02E9 3FOB02EC
02EA 02EA 433488A5
02E 02EB 48800001
02EC 02EC 13A40003

20 02ED 02E8 4000BBA1 SET H
02EE 02EE 48000003

17 02EF 02EF 77909F6F LTF (108,4),(156,4) PX I TAG < PX 6 TAG
02FO 02FO 35700001
02FC 02FC 2C010000

18 02F2 02FZ 48000002 L ,Y9
19 02F3 0ZF3 379077A7 MVF (156,12)9(108,12) IF $0, SWAP

02F40OZF4 3FOSO2F7
02F5 02FS 433488A5
02F6 02F6 48800001
02F7 02F7 13A40003

20 02F8 02F8 40008BA1 SET
02F9 02F9 48000003

f21 02FA 02FA 7790AB6F LTF (108#4)P(168941 PX I TAG <PX 7 TAG

0 2FB 02F8 35700001
0ZFC 02FC 2CO10000

B-19

MODAL APPLE V04-00 24-JUL-80 20:11:30 PAGE 00020 V
I 02FO 02FO 48000002 L m,Y
2 OZFE O2FE 37907763 tIVF (168,12),(108,12) ZF SO, SWAP

02FF 02FF 3FOB0302
0300 0300 433488A5
0301 0301 48800001
0302 0302 13A40003

3 0303 0303 4000BBA SET H
0304 030 48000003

4 0305 0305 7790B76F LTF (108,A).(180,4) PX I TAG < PX 8 TAG
0306 0306 35700001
0307 0307 2C010000

5 0308 0308 48000002 L mY
6 0309 0309 379077SF MVF (180,12),(108,12) IF SO, SNAP

030A 030A 3FOB0300
0308 0308 433488A5
030C 030C 48800001
0300 0300 13A40003

B-20

MOOAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00021 V
1

2 SET UP OUTPUT LINE IN ARRAY
3
4 030E 030E 4000BBA1 SET M LOAD ARRAY OUTPUT

030F 030F 48000003
5 0310 0310 3790C768 MVF (100,S),(192,8) LINE MITh PX S

0311 0311 3F070314
0312 0312 433488A5
0313 0313 4B800001
0314 0314 13A40003

6 0315 0315 77906F63 LTF (96,4)p(108,4) PX 5 TAG < PX I TAG
0316 0316 35700001
0317 0317 2C010000

7 0318 0318 48000002 L NY
8 0319 0319 3790C777 MVF (112,8),(192,8) IF SO, NEW PIXEL

031A 031A 3F070310
0318 0318 433488A5
031C 031C 4B800001
0310 0310 13A40003

9 031E 031E 73C00000 LI FP12,0 ARRAY WORD POINTER
10 031F 031F 47C088A5 LCM (0,8)P(100,8) DO NOT ALTER

0320 0320 401C88BB
0321 0321 40108888
0322 0322 65C38038

11 0323 0323 400088A1 SCM (0,8),(192,8) FIRST PX
0324 0324 4FC6AO3F
0325 0325 57C60000
0326 0326 48000003

12 0327 0327 73COO1FF LI FP12,X*OIFF' AND
13 0328 0328 47C088A5 LCM (0,8)(100,8)

0329 0329 401C88BB
032A 032A 40108888
0328 0328 6SC38038

14 032C 032C 400088A1 SCM (0,8),(192,8) LAST PX OF LINE
0320 0320 4FC6AO3F
032E 032E 57C60000
032F 032F 08000003

B-21

MODAL APPLE V04-O0 24-JUL-80 20:17:30 PAGE 00022 V

2 M HOVE PROCESSED LINE TO OBUFF WITH
3 ; PIXEL SNAP (1,3,3,4 TO 4,3,2,1)
4
5 0330 0330 33C00000 LI FP12.0 ARRAY WORD POINTER
6 0331 0331 32810610 LR DPOBOP
7 0332 0332 34810612 Lp BLOBEF
8 0333 0333 3F7FO33E LOOPSP LNOUT HOVE LINE TO OBUFF
9 0334 0334 47C088A5 LC" (24,8),(192,0) LOAD C REG WITH PX

0335 0335 4018883
0336 0336 25C698Ft

10 0337 0337 01E00001 INCR FP12 NEXT WORD
11 0338 0338 27C690BD LC" (16,83,(192,8) LOAD C REG WITH PX
12 0339 0339 01E00001 INCR FP12 NEXT WORD
13 033A 033A 27C66870 LCH (8,S),(192,6) LOAD C REG WITH PX
14 0336 0338 01E00001 INCR FP12 NEXT WORD
15 033C 033C 27C6AO30 LCH (0,8),(192,8) LOAD C REG WITH PX
16 0330 033D O1E00001 INCR FP12 NEXT WORD
17 033E 033E 30056000 LHOUT SR C,OBUFFIDP),3 STORE 4 PX IN OBUFF

W 18 033F 033F 30810610 SR OP,OSOP
W 19 0340 0340 30810612 SR BLOBEF

20
21 ; SHIFT TWO IMAGE LINES OVER A FIELD IN
22 ; THE ARRAYS TO PREPARE FOR A NEW LINE.
23
24 0341 0341 40008A1 SET M

0342 0342 48000003
25 0343 0343 3790070F IVF 18,0),t0,S) wo FIELD TO 1ST

0344 0344 3F070347
0345 0345 433488A5
0346 0346 48800001
0347 0347 13A40003

26 0348 0348 37900F17 MVF (16,8),(8,8) 3RD FIELD TO 2ND
0349 0349 3F07034C
034A 034A 433488A5
034B 0348 48800001
034C 034C 13A40003

B-22

MQOAL APPLE Y04-O0 24-JUL-GO 20:17:30 PAGE 00023 V
1

2 I IF OBUFF IS FULL OUTPUT TO COMTAL
3

4 0340 0340 34810612 LR BL,OBEF IS OBUFF FULL?

5 034E 034E 2911035E BNZBL OBNF IF HOT CHECK IBUFF
6 TRAN TRANI IF SO, OUTPUT

034F 034F 72800000
0350 0350 34A00016
0351 0351 30C18010

8 ZONAIT LINKI40
0352 0352 72800000

0353 0353 74AO0000
0354 0354 37200000
0355 0355 30C18010

9 0356 0356 36810001 LR (BLDP),TRANI4 UPDATE TRAN OUT

10 0357 0357 3E1F0358 RPTPLOB
11 0356 0358 28140001 IN'R OP
12 0359 0359 30810001 SR (BLOP),TRAMI1
13 035A 035A 32800000 LI DPO RE-IHITIALIZE

W 14 0358 0358 30810610 SR DP,ODOP OUIFF DATA POINTER
15 035C 035C 34A01000 LI BLMXObDP ND

W 16 0350 0350 30810612 SR BLOSEF OBUFF EMPTY FLAG
17
18 IF ZBUFF IS NOT EMPTY GET NEXT LINE
19
20 035E 035! 34810613 04F LR BL,ZBEF IS ISUFF EMPTY?
21 035F 035F 29110072 BNZ)bL NXLINE IF NOTs NEXT LINE
22
23 I IF ENTIRE IMAGE HAS NOT BEEN INPUT

24 M MOVE MORE DATA INTO ISUFF
25
26 0360 0360 34810614 LR BLtIF HAS ENTIRE IMAGE
27 0361 0361 01030001 DECR BL BEEN INPUT

W 28 0362 0362 30810614 SR BL,LIF

29 0363 0363 29010370 SZ,8L DOE IF SO, 60 TO OONE
30 TRAN TRANZ IF NOT, INPUT

0364 0364 72800000
0365 0365 34A00016
0366 0366 30C18010

32 ZObIIT LINKNO2 MORE IMAGE

0367 0367 72800000
0368 0368 74A00000
0369 0369 37200000
036A 036A 30C18010

33 0368 0365 32600000 LI OP,O RE-INITIALIZE

W 34 036C 036C 30810611 SR DP,iOP - IUFF DATA POINTER

35 0360 0340 34A01000 LI BLMXIBDP Ave
W 36 036E 036E 30810613 SR BL,IBEF IBUFF EMPTY FLAG

37 036F 036F 28010072 B t4XLINE PROCESS NEXT LINE

B-23

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00024 V
1

2 MOVE LAST LINE TO OBUFF AND
3 OUTPUT OBUFF TO COITAL
4
5 0370 0370 3F7F0370 DONE LOOPSP LTLINE MOVE LINE TO OBUFF
6 0371 0371 32810611 LR OPZBOP
7 0372 0372 3604A000 L CPIUFF(DP),2 LOAD 4 PX IN C REG

N 8 0373 0373 30810611 SR DP,1BOP
9 0374 0374 400077A1 CLR X PIXEL SWAP

10 0375 0375 420099A0 SC X(O) 1,2,34 TO 4,3p2.1

11 0376 0376 4008888 ROT X,-8,16
0377 0377 40008836

12 0378 0376 4010888 ROT X,-16,32
0379 0379 4000866

13 037A 037A 21COAOFB LCW X(O)
14 0376 0378 32810610 LR DPOOoP
15 037C 037C 30046000 SR COUJFF(DP),2 STORE 4 PX IN OBUFF

N 16 0370 0370 30810610 LTLINE SR OPOBOP
17 TRAN TRANI OUTPUT FINAL OBUFF

037E 037E 72800000
037F 037F 34A00016
0380 0380 30C18010

19 IOMAIT LIIIKWD1
0381 0381 72800000

0382 0382 74A00000
0363 0383 37200000
0384 0384 30C18010

20 RLSE LIIKlDI
0385 0385 72800000

0386 0386 34A00018
0387 0387 30C18010

22 RLSE LINKWD2
0388 0388 72800000
0389 0389 34A00018
038A 036A 30C18010

24 0386 0386 38002000 ERR WAIT
25 0610 ORG X'0610',A HIGH SPEED DATA BUFFER
26 0610 OBOP 0S OBUFF POINTER STORAGE
27 0611 IBOP 0S IBUFF POINTER STORAGE
28 0612 OBEF DS OBUFF EMPTY FLAG
29 0613 IBEF OS IBUFF EMPTY FLAG
30 0614 LIF OS LAST IBUFF FLAG
31 0000 END MODAL

B-24

MODAL APPLE V04-00 24-JUL-80 20:17:30 PAGE 00025 V
ERRORS DETECTED: 00000
WARNINGS DETECTED: 00018

B-2 5

APPENDIX C

ODDPX PROGRAM

OVDPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00001 V

I
2
3
4 ODOPX START
5 EXTRN LINKBK1, LINKBK2, TRAN1, TRAN2
6 EXTRN LINKWOILINKWD2
7 ENTRY ERRTN1,ERRTN2,ERRTN3
8 ENTRY ERRTN4,ERRTNS
9

10
11
le DAVID Mt. CRAWFORD
13 ; RESEARCH ASSISTANT
14 ELECTRICAL ENGINEERING DEPT.
1 UNIVERSITY OF MISSOURI - COLUMBIA
16 16 MAY 1980
17 REVISION: 16 JULY 1980
18 ; REVISION: 22 JULY 1980
19
20
21 ; THIS PROGRAM IS DESIGNED TO PERFORM NOISE
22 REDUCTION ON IMAGE$ BY USING AN ODD PIXEL

23 ; REPLACEMENT TECHNIQUE. THE IMAGE, 512 X 512
24 ; PIXELS, IS READ FROM MAGNETIC TAPE AND PRO-
25 ; CESSED BY STARAN. THE NEW IMAGE IS THEN
26 ; OUTPUT TO THE COTTAL DISPLAY.
27
28 , ODD PIXEL REPLACEMENT-
29
30 ; THIS TECHNIQUE USES A 3X3 NEIGHBORHOOD.
31 TWO MODES OF OPERATION ARE USED:
32 MODE 0 - THE NEIGHBORS IN THE NEIGHBORHOOD
33 ; ARE AVERAGED BY ADDING THEM TOGETHER
34 ; AND DIVIDING BY EIGHT. IF THIS
35 ; AVERAGE DIFFERS FROM THE CENTER
36 ; PIXEL OF THE NEIGHBORHOOD BY MORE
37 ; THAN A USER SPECIFIED THRESHOLD
38 ; (THRES) THE CENTER PIXEL IS REPLACED
39 BY THE AVERAGE.
40 ; MODE 1 - EIGHT NEIGHBORING PIXELS ARE EACH
41 ; COMPARED TO THE CENTER PIXEL. THE
42 ; NUMBER OF NEIGHBORS THAT EXCEED
43 A USER SPECIFIED THRESHOLD(THRES)
.4 ARE DETERMINED. IF THIS NUMBER
4S ; EQUALS OR EXCEEDS THE AMOUNT
46 SPECIFIED SY THE USER (NON) THE
47 , CENTER PIXEL WILL BE REPLACED BY
48 ; THE AVERAGE OF THOSE NEIGHBORS
49 ; EXCEEDING THE THRESHOLD.
50
51

c-i

. W Ii .. . -...

I
OODPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00002 V

2 , THE PROGRAM OPERATES WITH THREE LINES STORED
3 , IN ARRAYS 0 AND 1, FIELDS (099)p (9,9), (18t9).
4 ; THE FIRST PIXEL OF THE FIRST LINE IS STORED IN
5 ; FIELD (0,9) OF WORD 0 IN ARRAY 0. THE LAST

6 , PIXEL OF THE FIRST LINE IS IN FIELD (0,9) OF
7 W WORD 25 IN ARRAY 1. THE SECOND LINE IS IN
8 FIELD (9,9) AND THE THIRD IN FIELD (18,9).

9 , THE ODD PIXEL VALUE IS DETERMINED FOR THE
10 LINE IN FIELD(9,9).
11
12
13 THE FOLLOWING BUFFERS ARE SET UP IN THE
14 ARRAYS IN THE SAME WORD WHICH CONTAINS
15 THE PIXEL BEING CHECK TO DETERMINE IF
16 1 IT IS NOISE.
17
18
19 , COMPARISON BUFFER CtPBUF (27,S4)
20 ; SUM BUFFER SU"UF (81,12)
21 ; DIFFERENCE BUFFER DIFBUF (93,9)
22 , COUNT BUFFER CNTSUF (102,5)
23 ; OUTPUT BUFFER OUTBUF (107,8)
24
25
26 ; CIPSUF - USED TO STORE NEIGHBORS IN THE
27 ; SAME ARRAY WORD AS THE CENTER
28 PIXEL FOR COMPARISON IN MODE 0
29 ; AND MODE 1.
30 ; SJRBUF - USED TO STORE THE SUM OF ALL
31 , EIGHT NEIGHBORS FOR HODE 0 OR
32 ; THE SUM OF ALL NEIGHBORS WHICH
33 ; DIFFER FROM THE CENTER PIXEL
34 ; BY MORE THAN THE THRESHOLD
35 ; FOR MODE 1.
36 ; DIFSUF - USED TO STORE THE DIFFERENCE
37 ; BETWEEN THE AVERAGE AND THE
38 ; CENTER PIXEL FOR MODE 0 OR
39 ; THE DIFFERENCE BETWEEN A NEIGH-
40 , BORING PIXEL AND THE CENTER
41 , PIXEL FOR MODE 1.
42 ; CNTBUF - USED TO STORE THE NUMBER OF
43 ; NEIGHBORS THAT DIFFER FROM THE
44 ; CENTER PIXEL BY MORE THAN THE
45 ; USER SPECIFIED THRESHOLD(THRES)
46 ; FOR MODE 1.
47 ; OUTBUF - USED TO STORE THE PROCESSED
48 , PIXEL TO BE OUTPUT FOR MODE 0
49 ; AND MODE 1.
50

51 ; ALL EDGE POINTS ARE OUTPUT UNALTERED.
52

C-2

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00003 V
1 024C ERRTN1 EQU ERR ERROR RETURN
2 024C ERRTN2 EQU ERR ERROR RETURN
3 024C ERRTN3 EQU ERR ERROR RETURN
4 024C ERRTN4 EQU ERR ERROR RETURN
5 024C ERRTN5 EQU ERR ERROR RETURN
6 0000 BLKNUM EQU 0 1/O BLOCK NIUMBER
7 AOOO IBUFF EQU X'AOOO' IBUFF ADDRESS
8 BOO00 OBUFF EQU X1BO00 OBUFF ADDRESS
9 1000 IBSIZE EQU 4096 INPUT BUFFER SIZE

10 1000 OBSIZE EQU 4096 OUTPUT BUFFER SIZE
11 0020 LIB EQU IBSIZE/128 IMAGE LINES IN IBUFF
12 0020 LOB EQU OBSIZE/128 IMAGE LINES IN OBUFF
13 0010 BLKS EQU 512/LIB NO. OF INPUT BLOCKS
14 0080 SP EQU 128 32 BIT SEGMiENTS PEP LIN
15 0003 NON EQU 3 NUMBER OF NEIGHEOr5
16 0001 MODE EQU 1 MODE 0 = 0, MODE I = 1
17 0019 THRES EQU 25 THRESHOLD
18 1000 MXOBOP EQU OBSIZE MAX OBUFF OP VALUE
19 1000 MXIBOP EQU IBSIZE MAX IBUFF DP VALUE
20 0000 OODPX EQU $
21 0000 0000 3660C000 L1,2 AS,X'COO0* SELECT ARRAYS 0 AND 1
22
23 INITIALIZE INPUT -- HAG TAPE
24
25 0001 0001 74201000 LI CH,IBSIZE
26 0002 0002 32000000 LI CLBLKNUtI
27 0003 0003 30010001 SR C,TRAN2+1
28 0004 0004 74200000 LI CH,0
29 0005 0005 3200A000 LI CLIBUFF
30 0006 0006 30010003 SR CTRAN2+3
31 INIT LItIBK2

0007 0007 72800000
0008 0008 34A00014
0009 0009 30C18010

33
34 INITIALIZE OUTPUT -- COMTAL
35
36 OOOA OOOA 74201000 LI CHOBSIZE
37 000B 000B 32000000 LI CLBLKNUM
38 O00C 0OOC 30010001 SR C,TRAN11
39 0000 O00D 74200000 LI CH,0
40 OOOE OOOE 3200B000 LI CLOBUFF
41 OOOF OOOF 30010003 SR C,TRAN1.3
42 INIT LINKBK1

0010 0010 72800000
0011 0011 34A00014
0012 0012 30C18010

C-3

ODOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 0000. V
1

2 INPUT LINES TO IBUFF (NO. = LIS)
3
4 TRAN TRAN2

0013 0013 72800000
0014 0014 34A00016
0015 0015 30C18010

6 IOWAIT LINKWO2
0016 0016 72800000
0017 0017 74A00000
0018 0018 37200000
0019 0019 30C18010

7
8 INITIALIZE BUFFER POINTERS
9

10 001A O01A 34AOO00 LI BLMXIBDP INIT IBUFF EMPTY FLAG
W 11 0015 0015 30810613 SR BLIBEF

12 OO1C OO1C 34A01000 LI BL,MXO6DP INIT OBUFF EMPTY FLAG
W 13 0010 0010 30810612 SR BL,OBEF

14 O01E O01E 34A00010 LI BLBLKS INIT LAST IBUFF FLAG
W 15 O0IF OO1F 30810614 SR BLLIF

16
17 MOVE FIRST LINE IN IBUFF TO OBUFF
18
19 0020 0020 73C00000 LI FP1E90
20 0021 0021 32800000 LI DP,O
21 0022 0022 34810612 LR BLOSEF
22 0023 0023 3F7FO02C LOOPSP LINE1 LINE ONE TO IBUFF
23 0024 0024 3602A000 LR C,IBUFF(DP) LOAD 4 PX IN C REG
24 0025 0025 400077A1 CLR X PIXEL SWAP
25 0026 0026 420099A0 SC X(0) 1,2,3,4 TO 4,3,2,1
26 0027 0027 400888B8 ROT X,-8,16

0028 0028 4000888B
27 0029 0029 4010888B ROT X,-16,32

002A 002A 400088BB
28 OOZB 0028 21COAOFB LCW X(O)
29 002C 002C 30058000 LINEl SR C,OSUFF(DP),3 STORE 4 PX IN OBUFF

W 30 002D 002D 30810610 SR DP,OSOP
W 31 O02E OOZE 30810612 SR BLOBEF

32

33 CLEAR FIELD (0,32) FOR USE
34 BY THE INPUT DATA
35
36 002F OOZF 74200000 LI CHO
37 0030 0030 72000000 LI CL,O

38 0031 0031 33CO1F1F Sc (0,32),,0,32)
0032 0032 3F1FO034
0033 0033 4B40B7A1
0034 0034 13740003

C-4

OODPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00005 V
1

2 MOVE FIRST TWO LINES IN
3 IBUFF TO THE ARRAYS
4
5 0035 0035 32800000 LI oPO
6 0036 0036 34810613 LR BL,IBEF
7 0037 0037 33C00000 LI FP12,0 ARRAY WORD POINTER
8 0038 0038 3F7FO059 LOOP,SP Li FIRST LINE IN ARPAY
9 0039 0039 3605A000 LR CIBUFF(OP)p3 LOAC 4 PX IN C REG

10 003A 003A 400088A1 SCW (0,8)0(198) PX TO ARRAY
0038 0038 4FCOA147
003C 003C 42008840
0030 0030 40FF8852
003E 003E 57C00002
003F 003F 08000003

11 0040 0040 O1E00001 INCR FP1Z NEXT WORO
12 0041 0"41 400088A1 SCm (8,83,(1,8J PX TO ARRAY

0042 0042 4FCOA147
0043 0043 42008840
0044 0044 40F8885A
0045 0045 40FF885A
0046 0046 57C00002

0047 0047 08000003
13 0048 0048 OE00001 INCR FP1Z NEXT WORD
14 0049 0049 400088A1 SCu f16,8),(1,S) PX TO ARRAY

004A 004A 4FCOA147
0048 0048 42008840
004C 004C 40F0885A
0040 004D 40FF885A
004E 004E S7C00002
004F 004F 08000003

15 0050 0050 O1E00001 INCR FPIZ NEXT WORD
16 0051 0051 400088A1 SCM (24s8)p(1,8) PX TO ARRAY

0052 0052 4FCOA147
0053 0053 42008840
0054 0054 40E0885A
0055 0055 40FF88SA
0056 0056 40F88852
0057 0057 57C00002
0058 0058 08000003

17 0059 0059 O1EO0001 Li INCR FP12 NEXT WORD

C-5

ODDPX APPLE VO4-O0 24-JUL-80 21:05:11 PAGE 00006 V
1 005A 005A 33C00000 LI FP12,0 ARRAY WORD POINTER
2 0058 005B 3F7FO075 LOOPSP L2 2NO LINE IN ARRAY
3 005C 005C 3605A000 LR CIBUFF(OP),3 LOAD 4 PX IN C REG
4 005D 0050 400088A1 SCM (0,8),(10,8) PX TO ARRAY

005E 005E 4FCOAA8F
005F 005F 42008840
0060 0060 40FE8852
0061 0061 40F88852
0062 0062 57C00002
0063 0063 08000003

5 0064 0064 O1E00001 INCR MPPE NEXT WORD
6 0065 0065 400088A1 SCM (8,8),(10.8) PX TO ARRAY

0066 0066 4FCOAA8F
0067 0067 42008840
0068 0068 40FE8852
0069 0069 57C00002
006A 006A 08000003

7 0068 0068 01E00001 INCR FP12 NEXT NORD
8 006C 006C 400088A1 SCM (16,8),(10,8) PX TO ARRAY

0060 0060 4FCOAA8F
006E 006E 42008840
006F 006F 40FOS85A
0070 0070 40FE885A
0071 0071 57C00002
0072 0072 08000003

9 0073 0073 OlEO0001 INCR FP12 NEXT WORD
10 0074 0074 400088A1 SCM (24,8),(10,8) PX TO ARRAY

0075 0075 4FCOAA8F
0076 0076 42008840
0077 0077 40F0885A
0078 0078 40FE88SA
0079 0079 57CO0002Z

007A 007A 08000003
11 0078 0078 OlEO0001 L2 INCR FP12 NEXT WORD

W 12 007C 007C 30810611 SR DP,IBOP

W 13 0070 0070 30810613 SR BL,IBEF

C-6

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00007 V
1
2 MOVE ANOTHER LINE FROM IBUFF TO THE ARRAY
3
4 007E 007E 32810611 NXLINE LR oPIBDP
5 O07F 007F 34810613 LR SLISEF
6 0080 0080 33C00000 LI FP1Z,0 ARRAY WORD POINTER
7 0081 0081 3F7F00A5 LOOPSP LINE HOVE LINE IN ARRAY
8 0082 0082 3605A000 LR C,IBUFF(OP)*3 LOAD 4 PX IN C REG
9 0083 0083 400088A3 sCN t0,8),t1%98) PX TO ARRAY

0084 0084 4FCOB307
0085 0085 42008840
0086 0086 40FC8852
0087 0087 40FF885A
0088 0088 40FO885A
0089 0089 57C00002
008A 008A 08000003

10 0088 0088 OE00001 ICR FP12 NEXT WORD

11 006C 008C 400088A1 sCM (8,8)#(19,8) PX TO ARRAY
0080 0080 4FC08307
008E 008E 42008840
008F 008F 40FC845A
0090 0090 40FF8852
0091 0091 40F0885A
0092 0092 57C00002
0093 0093 08000003

IZ 0094 0094 O1EO0001 INCR FP12 NEXT WORD
13 0095 0095 400088A1 SCw (16,8),(19,8) PX TO ARRAY

0096 0096 4FC08307
0097 0097 42008840
0098 0098 40FF885A
0099 0099 40FC885A
009A 009A 57C00002
0098 0098 08000003

14 009C 009C OlEO0001 INCR FP1z NEXT WORD

15 0090 009D 400088A1 SCM (24,8)P(198) PX TO ARRAY
009E 009E 4FC0307
009F 009F 42008840
OOAO OOAO 40FC885A
00A1 00A1 40FF8852
0OA2 0OA2 4000885A
0OA3 00A3 57C00002
00A 0OA4 08000003

16 OOAS OOAS 1E00001 LINE INCR FP12 NEXT WORD
W 17 00A6 00A6 30810611 SR oP,IBP
W 18 00A7 00A7 30810613 SR BLwBEF

C-7

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PASE 00908 V
1
2 SET UP PIXEL COIIPARISON BIFFER(T,54) IN
3 THE ARRAY FIELDS (27,27) AND (54,27).
4
5 OOA8 OA 73900000 LI FP1,0
6 00A9 00A9 73400018 LI FP227
7 OOAA OOAA 3SA00036 LI FP3v54
6 OOAR OOAS 3F1A0083 LOOP,t? SiFT "MVE FIELD IOM17)
9 OAC OOAC 430088AS L XFP1

10 OOAD OOAD 40FF8883 ROT X92 DOWH A WORO TO
11 0OAE GOAE 58400003 S XFP2 FIELD (27.27) AND12 OOAF OOAF 40FE8WB8 ROT X,-t UP ANWORD TO

0050 008O 40008855

13 0051 00S1 18800003 3 XvFP3 FIELD (54 271
14 005I 0082 01700001 INCA FPIFPE NEXT BIT CO.I
IS 0053 0083 1A00001 SNFT INCR FP3
16 0054 0084 73CO0000 LI FPI2O ARRAY S MONO 0
17 0085 0085 47CO88AS LOS (0,|7),137,t7) TO

0056 0056 40F88063
0087 0057 401C88M
0050 008 401F666M
0089 0059 65CIA003

18 C0A COSA 73C00100 LI FPlXSl10 ARRAY 1 UM 0
19 00N 005 400068A1 9CM (O917)|t,1877)

OOBC GOBC 4FCOAOO7
0030 OOB 40008841
O01E OGRE 40FC885A
0OBF OF 40FF832
COCO COCO 40EOSSA
OCL OC1 48000002

OOCI 0Ce 46C00001
0OCI 00C3 42008840
00C4 00C4 40FC8&SA
OOCS OOCS 40FF852
0OC6 00C6 4010885A
00C7 00C7 57C00Ot
00Co 00C 46000003

t0 OCO 00C9 73COO1F Il FPFP 'OIFF' AEAT I MONO 355
21 COCA OOCA 47C068A5 LCH (0927)(544371 TO

OCB 00CR 40FI&S83
OOCC 0OCC 40FGM6R3
OC0O00CO 65C2A0D3

I2 OOCE OOCE 73COOOFF LI FP12,X'OFF' MERAY 0 MNO 2M5
23 OOCF OOCF 40006A1 Scm (0,47)(54,47)

0000 0000 4FCIAOD7
0001 0001 40008841
0002 OE 40F888SA
0003 0003 40FE8652
0004 0004 400683A
0005 0005 48000002
0006 0006 49C00001
0007 0007 4220840
0006 00 40FUSSA
0009 0009 40FESE2
OA O00A 40066SA

O003 0008 57CO000E

OOC OOC 08000003

C-8

OODPX APPLE V04-O0 24-JUL-80 21:05:11 PAGE 00009 V
1 0000 0000 4000BBA1 SET m

OODE OODE 08000003
2
3 ; CLEAR FIELD (81,32) FOR
4 ; USE BY BUFFER FIELDS
5

6 OODF OODF 74200000 LI CH,O
7 OOEO OOEO 72000000 LI CL,O
8 OOE1 OE1 33C01F70 SC (0,32),(81,32)

OOEZ OOE2 3FIFOOE4
00E3 00E3 4B4087A1
OOE4 OOE4 13740003

9

10 ; CHECK MODE OF OPERATION
11
12 00E5 00E5 32800001 LI DPvMOOE
13 00E6 00E6 2951012F BNZDP METHZ
14
15 ; ADO 8 NEIGHBORS AND STORE IN SUMBUF(81,12)
16
17 00E7 00E7 4000BBA1 SET H

00E8 DOES 48000003
18 00E9 00E9 75E0085C ADF (0,9)(81,12),(81,12) ADO PX2

OOEA OOEA 73C0085C
OOEB OOEB 37200808
OOEC OOEC 2C000000

19 OOED OOED 75E0085C ADF (18,9),(81,12),(81,12) ADD PX8
OOEE OOEE 73CO1ASC
OOEF OOEF 37200BOB
OOFO OOFO 2C00000

20 OOF1 OOF1 75E0085C AOF (27,9),(81,12),(81,121 ADD PX1
OOF2 OOF2 73C0235C
OOF3 00F3 37200B08
OOF4 OOF4 2CO00000

21 OOF5 00F5 75E0085C ADF (36,9),(81,12),(81,12) ADD PX4
OOF6 00F6 73C02C5C
OOF7 00F7 37200BOB
OOF8 OOF8 2C000000

22 OOF9 00F9 75E0085C ADF (45,9),(81,".),(81,21) ADD PX7
OOFA OOFA 73C0355C
OOFB OOFB 37200B0B
OOFC OOFC 2C000000

23 OOFD OOFO 75E0085C ADF (54,9),(81,12),(81,12) ADD PX3
OOFE OOFE 73C03E5C
OFF OFF 37200BOB
0100 0100 2C000000

24 0101 0101 75E0085C ADF (63,9),(81,12),(81,12) ADD PX6
0102 0102 73C0475C
0103 0103 37200805
0104 0104 2C000000

25 0105 0105 75E0085C ADF (72,9)t(81,12),(81,12) ADD PX9
0106 0106 73C0505C
0107 0107 37200505
0108 0108 2C000000

C-9

I-

t CALCULATE THE NeRSE OP PIXELS DIPERI4S Flai
3 1 THE CENTER PIXEL BY "ORE1 THAN THE THRESHOLD.
4 STORE VALUEI X CNT9UU(I02S). ADO MMOE GRAY
5 LEVELS TOGETHER THAT DIFFER BY "ORE! THAN THE

6 THRESHOLD AM~ STORE THEM IN SIRSU(S1,12).
7 1 SET SZNPL(I115,U) FOR ThOSE NEIGNUORS THAT
a M AE DISSIMILAR.

10 DOE9 0019 74200001 LI 00,1 ADD I
It OGEA OEA 72000019 LI CL,TkRES TIIREIIOLD
12 0015 0015 40008BAI SET

OOC GOEC 48000003
13 0010 00ES 75100000 36P 1499)A1909)1("191 W2t-PX5

0011 OOEE 73C01165
00fF OOEF 3720080
OP, 00P0 2C000000

14 OOFI 0OI ZCZI02C7 BALoRt LIMTS
is WSE COpt 7BEOO6SC ASPD,)(1,2sAt ADD TO SUUF

04F3 0@P3 73C0085C
00K4 004 37200608
@0FS 00P5 ZCO00000

16 @0,4 COPN 7§EO046A ADC t12I,1,),125 1CR CI4TSUP
Off? 007? 7SCOOFOA
00P8 COPS 37200404
SOPS S0P9 MC000000

17 SOFA 0OPA 75100174 ADC S~52,1,)(1~ I ST 511471.
ONP SOP 73C00P74
SOC OPC 37200101
GOPO dOPO IcooGOOS

16 GGP! SOP! 400036*1 SET
00FF @OFF 400003

19 01040@100 75E@OO1A o67 116093,199103,9 PXs-PX5
0101 @101 73C21645
010t 0102 3720006
0103 0103 ICIOSOSO

20 0104 0104 MOW02C OALoR2 LVMITS
21 0105 0105 7HOO&W5 AOP (161S 9(81*121101912) ADD TO SOJSUP

0106 0106 73SOASC
@107 0107 37*0050
0106 0106 teSsocoo

ft 0109 0109 7590066A MOC 112S)11,)10,) 10 CNTDIJ
010*. O1A 73CO~f6A
0106 010B 37200644
oIoc oloc ECOOSOSO

23 0100 0100 75100176 ARC (172.1,J(1.l SET 511171
0101 01 73CO0P76
@107 0? 37100101
Cli0 0110 ICOSOOSO

24 @111 0111 400036*1 SET
0112 0112 48006003

25 @113 @111 7SE00023 SP 2p)bS9,(3 PX1-PX5
@114 0114 73CO1165
oi15 0115 3720000
0114 @116 2C000000

*6 0117 @117 tCtlSEC7 DALPRt LINITS

C40D

01I);,4 AtIPL 104-00 Z4-JUL-dO 21:05.11 PAGE 00011 V

z CALCULATE THE NIUriBEp OF NEIGHBORING i
3 OIFFERING FPOM THE CENTER PIXEL BY tOPt TMOPE
4 THE THRESHOLD. STOqE VALUE IN CNTLIUF(1O,',51.
5 ADD THOSE NEIGHBORS TOGETHER THAT DIFFEP R(
6 MORE THAN THE THRESHOLD AND STORE THEM IN
7 SUMBUF(81,12).
8
9 012F 012F 74200001 METHZ LI CH,1 ADD 1

10 0130 0130 72000019 LI CLTHRES THRESHOLD
11 0131 0131 40008A1 SET M

0132 0132 48000003
12 0133 0133 75E00808 SSF (0,9),(9,9),(93,9) PX2-P45

0134 0134 73C01165
0135 0135 37200808
0136 0136 2CO00000

13 0137 0137 2C21024D BAL,R2 LIMITS
14 0138 0138 75E0085C AOF (0,9),(81,12),(81,1I) ADD TO SUIIBUF

0139 0139 73C0085C
013A 013A 37200808
0138 013B 2C000000

15 013C 013C 75E0046A ADC (102,5),(11,5j,(102,5 INCR CHTBUF
0130 0130 73COOF6A
013E 013E 37200404
013F 013F 2C000000

16 0140 0140 40008BA1 SET H
0141 0141 48000003

17 0142 0142 75E0081A 58F (18,9),(9,9),t93,9) PX8-PX5
0143 0143 73C01165
0144 0144 37200808
0145 0145 2C000000

18 0146 0146 2C210240 BAL,RZ LIMITS
19 0147 0147 75E0085C ADF (18,9),(81,12),(81,12] ADD TO SU:EUF

0148 0148 73CO1ASC
0149 0149 37200BO8
014A 014A 2C000000

20 014B 0148 75E0046A ADC (102,5),(11,8),(102,5) INCR CNTBUF
014C 014C 73COOF6A
014D 0140 37200404
014E 014E 2CO00000

21 014F 014F 4000BBA1 SET H
0150 0150 48000003

22 0151 0151 75E00823 SBF (27,9),(9,9),(93,9) PXI-PX5
0152 0152 73C01165
0153 0153 37200808
0154 0154 2CO00000

23 0155 0155 2C21024D BALR2 LIMITS
24 0156 0156 75E0085C AOF (27,9),E8112),t81,12) ADD 70 SULMEtf

0157 0157 73C0235C
0158 0158 37200808
0159 0159 2C000000

25 OSA 015A 75E0046A AOC (102,5),(11,5),1102,5) INCR CKIIBUF
0158 0158 73COOF6A
015C 015C 37200404
0150 0150 2C000000

26 OISE 015E 4000BBA1 SET M
015F O1SF 08000003

C-11

OO0PX APPLE VO4-O0 24-JUL-80 21:05:11 PAGE 00012 V
1 0160 0160 75E0082C 5SBF (36,9),(9.9),(93,9) PX4-PX5

0161 0161 73C01165
0162 0162 37200808
0163 0163 2CO00000

2 0164 0164 2C210240 BALR LIMITS
3 0165 0165 75E0085C ADF (36,9),(81,12),(81,12) ADO TO SUt1BUF

0166 0166 73C02C5C
0167 0167 372000B
0168 0168 2C000000

4 0169 0169 75EO046A ADC (1025)y(llS)(OZoS) INCR CNTBUF
016A 016A 73COOF6A
016B 0168 37200404
016C 016C 2CC00000

5 0160 0160 40008SA1 5ET M
016E 016E 48000003

6 016F 016F 75E00835 SBF (45,9),(9p9),(93,91 PX7-PX5
0170 0170 73C01165
0171 0171 37200808
0172 0172 2C000000

7 0173 0173 2C210240 BALR LIMITS
8 0174 0174 75E0085C ADF (45,9),(81,12),(81,12) ADD TO SUMBUF

0175 0175 73C0355C
0176 0176 3720080
0177 0177 2C000000

9 0178 0178 75EO46A ADC (102,5),(11,5),(102,5) INCR CNTBUF
0179 0179 73COOF6A
017A 017A 37200404
0178 0178 2C000000

10 017C 017C 4000BBA1 SET M
0170 0170 48000003

11 017E 017E 75E0083E SBF (54,9),(9,9),(93,9) PX3-PXS
017F 017F 73C01165
0180 0180 37200808
0181 0181 2C000000

12 0182 0182 2C210240 BAL,RZ LIMITS
13 0183 0183 75E0085C ADF (54,9),(81,12),(81,12) ADD TO SLIIlUF

0184 0184 73C03E5C
0185 0185 37200808
0186 0186 2C000000

14 0187 0187 75EO046A ADC (102,5),(11,3),(102,S) INCR CNTBUF
0188 0188 73COOF6A
0189 0189 37200404
018A 018A 2C000000

15 0188 018B 4000BBA1 SET M
018C 018C 48000003

16 0180 0180 75E00847 SBF (63,9),(9,9),(93,9) PX6-PXS
018E 018E 73C01165
018F 018F 37200808
0190 0190 2C000000

17 0191 0191 2C21024D BAL,R2 LIMITS
18 0192 0192 75E0085C AOF (63,9),(81,12),(81,12) ADD TO SUtUF

0193 0193 73C0475C
0194 0194 37200B08
0195 0195 ZCOOOOOO

C-12

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00013 V
1 0196 0196 7SE0046A ADC (102,5),(11,5),(102,5) INCR CNTBUF

0197 0197 73COOF6A
0198 0198 37200404
0199 0199 2C000000

2 019A 019A 4000B8A1 SET M
0198 0198 48000003

3 019C 019C 75E00850 SBF (72,9),(9,9),(93,9) PX9-PX5
0190 0190 73C01165
019E 019E 37200808
019F 019F 2C000000

4 01A0 01A0 2C210240 BALR2 LIMITS
5 OlAl OlAl 75E0085C ADF (72s9),(81,12),(81,12) ADD TO SUMBUF

01A2 01A2 73C0505C
01A3 01A3 372000B
01A4 01A4 2C000000

6 O1AS DIAS 75E0046A ADC (102,5),(11,5)(102,5) INCR CNTBUF
01A6 01A6 73COOF6A
01A7 01A7 37200404
01A8 01A8 2C000000

C-13

OOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00014 V
1 I

2 1 IF ENOUGH PIXELS DIFFERED BY MORE THEN THE
3 THRESHOLD REPLACE CENTER PIXEL WITH THE
4 AVERAGE OF THOSE PIXELS DIFFERING.
s
6 01A9 01A9 400058A1 SET m

01AA 01AA 48000003
7 01AB OAB 74200003 LI CHNON NO. OF NEIGHBORS
8 01AC 01AC 40007741 CLR Y
9 01AD 0lAD 77906AOF GEC t102,5),(11,5)

01AE 01AE 03848845
OlAF OlAF 3EO201B0
0180 01BO 03B42945
0181 0181 43801645
01B2 01B2 40002241

10 0183 01B3 48000002 L m,Y
11 01B4 01B4 37905051 DVF (81t12),(102,5),(79,14) AVERAGE

0155 0185 030088A5
0186 01B6 3F0001B8
01B7 01B7 08800001
01B8 01B8 13A40003
01B9 0189 75E00350
01BA 01BA 73C04F66
01BB 01BB 77200855
OIBC 01BC 34AO6A04
0180 01BO 2CO0000
01BE 01BE 4A4FO001
018F 01BF 424F4445
01CO 01CO 524F0002

12 01C 01CI 37907257 MVF (80,8),(107,8) AVERAGE TO OUTBUF
01C2 01C2 3F0701C5
01C3 01C3 433488A5
01C4 O1C4 48800001
O1CS 01C5 13A40003

13 01C6 01C6 40008841 L YO
14 01C7 01C7 400044A2 LN MY

01C8 01CB 48000003
15 01C9 01C9 37907211 MVF (10,8),(107,8) CENTER PX TO OUTBUF

01CA OlCA 3F0701C0
01CB 01CB 433488A5
01CC 01CC 48800001
olCo olCO 13A40003

C-14

.UO- AP 'L' vu.-J) ?4-JUL-80 Z1:05:11 PAGE 0011S V

2 MOVE FIRST PIXEL AND LAST PIXEL
3 U UNALTERED TO OUTBUF(107,8)4
5 O1CE OCE 73C00000 LN LI FP12,0 ARRAY 0 WORD 0
6 O1CF 01CF 47C088A5 LCM (0,8),(10,8)

0100 0100 401E8888
0101 01D1 40188888
0102 0102 65C08038

7 0103 0103 400088A1 SCW (0,8),1107,8) FIRST PX OF LitE
0104 0104 4FC3AB97
0106 0105 4Z608840
0106 0106 40FC885A
0107 0107 40FF8852
0108 0108 40F0885A
0109 0109 57C00002
ODA OIDA 48000003

8 0108 0108 73CO01FF LI FP12,X'OIFF' APRAY I WORD P S
9 010C 010C 47C088A5 LCM (0,81,t10,8)

0100 0100 401E888B
01DE O1DE 4018888B
01OF 010F 65C08038

10 OlEO OlFO 400088A1 SCM (0,8),(107,8) LAST PX OF LIbeL
OlEl OlEl 4FC3AB97
01EZ 01E2 42608840
01E3 01E3 40FC885A
OlE4 O1E4 40FF8852
01ES 01ES 40F0885A
01E6 01E6 57C00002
01E7 01E7 08000003

11
12 MOVE PROCESSED LINE TO OBUFF WITH
13 PIXEL SWAP (1,2,3,4 TO 4,3,2,1)
14
15 OlE8 OIES 33C00000 LI FP12,0 ARRAY WORD FOINE)p
16 O1E9 O1E9 32810610 LR OP,OBOP
17 O1EA O1EA 34810612 LR BL,OBEF
18 OIEB O1EB 3F7FO1FF LOOPSP LNOUT MOVE LINE TO OBUFF19 O1EC O1EC 47C088A5 LCM (24,8),(107,8) LOAD C REG WITH PX

OED OlEO 401F88B3
0lEE 0lEE 401C88B3
O1EF O1EF 25C378FB

20 O1FO O1FO OLEO0001 XNCR FP12 NEXT WORD
21 01F1 01F1 47C088A5 LCM (16,8),(107,B) I.OAD C PEG WITH P t

01F2 01F2 401F88B3
01F3 01F3 25C350B8

22 01F4 D1F4 O1EO0001 INCR FP12 NEXT WORD
23 O1FS 01F5 47C088A5 LCM (a,8),(107,8) LOAD C REG WITH PX

01F6 01F6 401C88BB8
01F7 01F7 401F88BB
01F8 01F8 25C3A878

24 01F9 01F9 O1EO0001 INCR FP12 NEXT WORD25 O1FA OlFA 47C088A5 LCM (0,81,(107,8) LOAD C REG WITH P×
OtFB O1FB 401F88B3
01FC 01FC 401C88B3
01FO 0lFO 25C3803B

26 OlFE O1FE O1EOOOO1 INCR FP12 NEXT WORD
27 01FF O1FF 30058000 LHOUT SR C,08UFF(OP),3 STORE 4 PX IN OBir

C-15

ODPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00016 V

W 1 0200 0200 30810610 SR DPOBDP

W 2 0201 0201 30810612 SR BL,OBEF
3

4 SHIFT TWO IMAGE LINES OVER A FIELD IN

5 THE ARRAYS TO PREPARE FOR A NEW LINE.

6
7 0202 020Z 4000BBA1 SET M

0203 0203 48000003

8 0204 0204 37900811 MVF (9,9),(0,9) 2ND FIELD TO 1ST

0205 0205 3F080208
0206 0206 433488A5
0207 0207 40800001
0208 0205 13A40003

9 0209 0209 3790111A MVF 118,9),(9,9) 3RD FIELD TO 2ND

020A 020A 3FO80200
0208 020B 433488A5

020C 020C 48800001
0200 0200 13A40003

10

11 IF OBUFF IS FULL OUTPUT TO COMTAL

12
13 020E 020E 34810612 LR BL,OBEF IS OBUFF FULL?

14 020F 020F ?911021F BNZ,5L OBNF IF NOT CHECK IBUFF

15 TRAN TRANI IF SO, OUTPUT

0210 0210 72800000
0211 0211 34A00016
0212 0212 30C18010

17 IOWAIT LINKUDI

0213 0213 72800000
0214 0214 74A00000
0215 0215 37200000
0216 0216 30C18010

18 0217 0217 36810001 LR (BLDPI,TRANI+I UPDATE TRAN OUT

19 0218 0218 3EIF0219 RPT,LOB

20 0219 0219 28140001 INCR DP

21 021A 021A 30810001 SR (BL,DP),TRAN11

22 0218 0218 32800000 LI oP,O RE-INITIALIZE

W 23 021C 021C 30810610 SR DP,OBDP OBUFF DATA POINTER

24 021D 021D 34AO1000 LI BLsXOBOP AND

W 25 021E 021E 30810612 SR BLOBEF OBUFF EMPTY FLAG

26
27 IF IBUFF IS NOT EMPTY GET NEXT LINE

28
29 021F 021F 34810613 OBNF LR BLPIBEF IS IBUFF EMPTY?

30 0220 0220 2911007E BNZ,BL NXLINE IF NOT, NEXT LINE

C-16

I
A

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00017 V
1

2 ; IF ENTIRE IMAGE HAS NOT BEEN INPUT
3 MOVE MORE DATA INTO IBUFF

4
5 0221 0221 34810614 LR BL,LIF HAS ENTIRE IMAGE
6 0222 022 01030001 DECR BL BEEN INPUT

W 7 0223 0223 30810614 SR BL,LIF

8 0224 0224 29010231 BZBL DONE IF SO, GO TO DONE
9 TRAN TRAN2 IF NOT, INPUT

0225 0225 72800000

0226 0226 34A00016
0227 0227 30C18010

11 IOWAIT LINKWD2 MORE IMAGE
0228 0228 72800000
0229 0229 74A00000
022A 022A 37200000
022B 022B 30C18010

12 022C 022C 32800000 LI oPO RE-INITIALIZE
W 13 022D 022D 30810611 SR OP,IBDP IBUFF DATA POINTER

14 022E 022E 34A01000 LI BL,MXIBDP AND

W 15 022F 022F 30810613 SR BL,IBEF IBUFF EMPTY FLAG
16 0230 0230 2801007E B NXLINE PROCESS NEXT LINE
17
18 MOVE LAST LINE TO OBUFF AND
19 OUTPUT OBUFF TO COMTAL
20
21 0231 0231 3F7FO23E DONE LOOPSP LTLINE MOVE LINE TO OBUFF
22 0232 0232 32810611 LR DPIBDP
23 0233 0233 3604A000 LR CIBUFF(DP),2 LOAD 4 PX IN C REG

W 24 0234 0234 30810611 Sr OP, IBOp
25 0235 0235 400077A1 CLR X PIXEL SWAP
26 0236 0236 420099A0 SC X(O) 1,2,3,4 TO 4,3,2,1
27 0237 0237 40088888 ROT X,-8,16

0238 0238 4000888
28 0239 0239 401088B8 ROT X,-16,32

023A 023A 40008888
29 0238 023B 21COAOFB LCW X(O)
30 023C 023C 32810610 LR OP,OBDP
31 0230 0230 30048000 SR C,OBUFF(OPJ,2 STORE 4 PX IN OBUFF

W 32 023E 023E 30810610 LTLINE SR DP,OBDP
33 TRAN TRAN1 OUTPUT FINAL OBUFF

023F 023F 72800000
0240 0240 34A00016

0241 0241 30C18010
35 IOWAIT IINKWO1

0242 0242 72800000
0243 0243 74A00000
0244 0244 37200000
0245 0245 30C18010

36 RLSE LINKWO1
0246 0246 72800000
0247 0247 34A00018
0248 0248 30C18010

38 RLSE LINKWD2
0249 0249 72800000
024A 024A 34A00018
024B 024B 30C18010

40 024C 024C 38002000 ERR WAIT

C-17

OODPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00018 V
1

2 CHECK DIFBUF(93,9) TO DETERMINE IF
3 THE 71RESHOLD HAS BEEN EXCEEDED
4
5 0240 0240 40007741 LIMITS CLR Y
6 024E 024E 7790651F LEC (93,9),(23,9) OIFBUF<THRES

024F 024F 03B48445
0250 0250 3E060251
0251 0251 03841645
0252 0252 43802945
0253 0253 40002241

7 0254 0254 48000002 L IY
8 0255 0255 75E00865 MVNF (93,9),(93,9) DIFBUF:-DIFBUF

0256 0256 33400065
0257 0257 2C010000

9 0258 0258 40007741 CLR Y
10 0259 0259 7790651F LEC (93,9},(23,9) -DIFBUF<THRES

025A 025A 03B4B445
025B 025B 3E06025C
025C 025C 03B41645

0250 0250 43802945
025E 025E 40002241

11 025F 025F 400044A2 LN M,Y
0260 0260 08000003

12 0261 0261 280A0000 B O(R2)
13 0610 ORG X'D610',A HIGH SPEED DATA BUFFER
14 0610 OBOP DS OBUFF POINTER STORAGE
15 0611 IBDP DS' IBUFF POINTER STORAGE
16 0612 OBEF DS OBUFF EMPTY FLAG
17 0613 ISEF OS IBUFF EMPTY FLAG
18 0614 LIF OS LAST IBUFF FLAG
19 0000 END OODPX

C-18

OOOPX APPLE V04-00 24-JUL-80 21:05:11 PAGE 00019 V
ERRORS DETECTED: 00000
WARNI14GS DETECTED: 00018

C-19

APPENDIX D

SIMNB PROGRAM

It

S .~' -. i JJL-830 2147:54 PACE V

-$SIMNB START
5 EYTRN ~INK, L8O,: PAI ,PAN:

I E XT;Z. LIN D FI Ll ' ;
7 ETTY L F - 11E C' -1 I ur-

8ENTRY Epo I- N1. .: ~5
10

* DAVID M1. CvJ'QlO7
13 P! ' , PCH 'rt!

14E E~ .. I.: ;

17 - IS 7CP 4' JJ~ jL I
18
19

-- ... v T. 'c . - F;. I T

7 &AI'A Pr'7Es,£F cl. e r C T e"4 I m 1o

27 1 V111 L P NF TI.'! 1 C' 'L

33 , FrY PTIYEL TI THE I;.
31 -0 THE CEPITEP Pl'tt T:7 OFTEV: F. IF *-

51 ml 8IMPJL . I F I T I7TH NC A E IVI', A' 3
33 11 1 ', I IS T ITr

3. 1, PtPEJ TO DET7'1I.EC ADJA-04I N:3 'G"~F -c!
35 , ADE nltlIL. P Ir n' p" Cr'ITEr- PI' %IS "

36 Cfirr'7F0 OTHF ~IJIFE THE C T'' ~S
37 PLtCED WTIU THE A~ E ' JEIer

.0FIECJ PAOAMTILcS. IF Hlirid ';7)T'F "1 -

4.1 F PEMVEO ALL N'J TP'l0 WIN P2 ELS rC-' W4
4. 2 CENlTEO POINT - Nf.1IFtT- ING PIXFI 1
4.3 , IS TRINL WIlL. TE I1II R. -r L'C WJS

4.4 IS TO FE PUr:CVEO ALL NEIN 7 '''I
4.5 WHICH

'.6NFIGHt'OPING PI>'EL - Cr4$'F.P PIX<EL ;TirF
4.7 15I TRUE WI LL BE SIM4ILAR. NOI~t zkO THPES AR
148 THE IWO USER 5PECIF, "P1
4.9 1hIE PP"CCAtl CrEQATL5 WITH !HP~l 1WJ, 5C'
50 IN AcQAYS 0 Al:7 1. FT~t7IT 20.'7)1 1 e. !t-
51 T HE FIQST T'IYEL OF Ii'r F'VST ITNE lSlrY I l

F IE LD 1)10, O'F WC r 1 I FA~ 0. lfhE LA'T
53 * Pl' EL (If '4E F S L:',- 1' IL ~ ,,,
54. OF V-P'5"5 1IN ~A' i ,. lwK 2EC7Ii

f55 * IN FIFLO t9,0) ANO THE T14!CJ 114 'I t7

55 , THE STIMILAR tIN7 VAILE IS ('TEP!-,,
57 THE LINE Ill FIELD (9,Q).

D-~ I

iSPIN APPLE V04-00 24-JUL-80 21:47:S4 PAGE 00002 V
1
2 THE FOLLOWING BUFFERS ARE SET UP IN THE
3 ARRAYS IN THE SAME WORD WHICH CONTAINS

4 THE PIXEL BEING CHECKED TO DETERMINE IF
5 IT IS NOISE.

6
7
8 COMPARISON BUFFER CMPBUF (27,54)
9 SUM BUFFER SUMBUF (81l12)

10 DIFFERENCE BUFFER DIFBUF (93,9)
11 COUNT BUFFER CNTBUF (102,5)
12 OUTPUT BUFFER OUTBUF (107,8)
13 SIMILAR FLAG SIMFLG (115,16)
14 CHANGE FLAG CHGFLG (131,5)
15
16
17 CMPBUF - USED TO STORE NEIGHBORS IN THE
18 SAME ARRAY WORD AS THE CENTER
19 ; PIXEL FOR COMPARISON.
20 SUMBUF - USED TO STORE THE SUM OF THOSE
21 ; NEIGHBORS WHICH ARE NOT SIMILAR.
22 DIFBUF - USED TO STORE THE DIFFERENCE
23 ; BETWEEN EACH NEIGHBOR AND THE
24 , CENTER PIXEL.
25 CNTBUF - USED TO STORE THE NUMBER OF
26 ; DISSIMILAR NEIGHBORS.
27 OUTBUF - USED TO STORE THE PROCESSED
28 ; PIXEL TO BE OUTPUT.
29 SIMFLG - A FLAG FOR EACH NEIGHBOR WHICH
30 ; IS EQUAL TO 0 IF SIMILAR AND
31 ; 1 IF DISSIMILAR.
32 CHGFLG - A FLAG WHOSE VALUE IS GREATER
33 ; THAN ZERO IF THE CEmH!E PIXEL

34 I IS TO BE REPLACED BY THE AVER-
35 ; AGE OF THE DISSIMILAR NEIGHE19S.
36
37 ALL EDGE POINTS ARE OUTPUT UNALTEREJ.
38

D-2

sI

SIMNB APPLE V04-00 24-JUL-80 21:47:54 rAGE 00003 V
1 O2C6 ERRTN1 EQU ERR ERROR RETURN
2 02C6 ERRTN2 EQU ERR ERROR RETURN
3 02C6 ERRTN3 EQU ERR ERROR RETURN
4 02C6 ERRTN4 EQU ERR ERROR RETURN
5 02C6 ERRTNS EQU ERR ERROR RETURN
6 0000 BLKNUM EQU 0 I/O BLOCK NUMBER
7 AOOO IBUFF EQU X'AO00' IBUFF ADDRESS
8 BOO00 OBUFF EQU XIBOOO' OBUFF ADDRESS
9 1000 IBSIZE EQU 4096 INPUT BUFFER SIZE

10 1000 OBSIZE EQU 4096 OUTPUT BUFFER SIZE
11 0020 LIS EQU IBSIZE/128 IMAGE LINES IN IBUFF
12 0020 LOB EQU OBSIZE/128 IMAGE LINES IN OBUFF
13 0010 BLKS EQU 512/L8 NO. OF INPUT BLOCKS
14 0080 SP EQU 128 32 BIT SEGMENTS PER LIN
15 0000 NOISE EQU 0 LOW=O HIGH=I
16 0019 THRES EQU 25 THRESHOLD
17 1000 MXOBDP EQU OBSIZE MAX OBUFF DP VALUE
18 1000 MXIBDP EQU IBSIZE MAX IBUFF OP VALUE
19 0000 SIMNB EQU $
20 0000 0000 3660C000 LI,2 AS,X'C000' SELECT ARRAYS 0 AND 1
21
22 INITIALIZE INPUT-- MAG TAPE
23
24 0001 0001 74201000 LI CHIBSIZE
25 0002 0002 32000000 LI CLBLKNUM
26 0003 0003 30010001 SR C,TRAN2+1
27 0004 0004 74200000 LI CHO
28 0005 0005 3200A000 LI CLIBUFF
29 0006 0006 30010003 SR CTRAN2+3
30 INIT LINKBK2

0007 0007 72800000
0008 0008 34A00014
0009 0009 30C18010

32
33 INITIALIZE OUTPUT -- CONTAL
34
35 00A O0CA 74201000 LI CH,OBSIZE
36 O00B 000B 32000000 LI CL,BLKNUM
37 O00C O00C 30010001 SR C,TRAH1+1
38 0000 O00D 74200000 LI CHO
39 O00E OOE 32008000 LI CLOBUFF
40 OOF OO0F 30010003 SR C,TRAN1+3
41 INIT LINKBK1

0010 0010 72800000

0011 0011 34A00014
0012 0012 30C18010

43

44 INPUT LINES TO IBUFF (NO. LIB)

45
46 TRAN TRAN2

0013 0013 72800000
0014 0014 34A00016
0015 0015 30C18010

48 IONAIT LINKWD2
0016 0016 72800000
0017 0017 74AO0000
0018 0018 37200000
0019 0019 30C18010

L- 3

. I

SimNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00004 V
1
2 INITIALIZE BUFFER POINTERS
3
4 O01A O01A 34A01000 LI BLMXIBOP INIT IBUFF EMPTY FLAG

W 5 001B 001B 30810613 SR BL,IBEF
6 001C 001C 34A01000 LI BLsXOBOP INIT OBUFF EMPTY FLAG

W 7 0010 0010 30810612 SR BLOBEF
8 001E 001E 34A00010 LI BL,BLKS INIT LAST IBUFF FLAG

W 9 O01F O01F 30810614 SR BLLIF
10
11 MOVE FIRST LINE IN IBUFF TO OBUFF
12
13 0020 0020 73C00000 LI FP12,0
14 0021 0021 32800000 LI OPO
15 0022 0022 34810612 LR BL,OSEF
16 0023 0023 3F7FO02C LOOPSP LINE1 LINE ONE TO IBUFF
17 0024 0024 3602A000 LR C,IBUFF(DP) LOAD 4 PX IN C REG
18 0025 0025 400077A1 CLR X PIXEL SWAP
19 0026 0026 420099A0 SC X(O) 1,2,3,4 TO 4,3.2,1
20 0027 0027 4008885B ROT X,-8,16

0028 0028 4000885
21 0029 0029 4010888B ROT X,-16,32

002A 002A 40008888
22 0028 002B 21COAOFB LCW X(O)
23 002C 002C 30058000 LINE1 SR C,OBUFF(DP),3 STORE 4 PX IN OBUFF

W 24 0020 0020 30810610 SR DPOBDP
W 25 OOZE OOZE 30810612 SR BL,OBEF

26
27 CLEAR FIELD (0,32) FOR USE
28 BY THE INPUT DATA
29
30 002F 002F 74200000 LI CH,O
31 0030 0030 72000000 LI CL,0
32 0031 0031 33COIFIF SC (0,321(0,321

0032 0032 3F1FO034
0033 0033 4B4OB7A1
0034 0034 13740003

D-4

5rN5 APPLE V04-00 24-JUL-80 21.47:54 PAGE 00005 V
I

2 MOVE FIRST TWO LINES IN
3 IBUFF TO THE ARRAYS
4
5 0035 0035 32800000 LI OPO
6 0036 0036 34810613 LR BLIBEF
7 0037 0037 33C00000 LI FP12,0 ARRAY WORD POINTEP
8 0038 0038 3F7FO059 LOOPSP Li FIRST LINE IN AlFAY
9 0039 0039 3605A000 LR CIBUFF(DP),3 LOAD 4 PX IN C PEG

10 003A 003A 400088A1 sCW (0,8),(1,8) PX TO ARRAY
003B 0038 4FCOA147
003C 003C 42008840
0030 0030 40FF8852
003E 003E 57C00002

003F 003F 08000003
11 0040 0040 OIEO0001 It4CR FP12 NEXT WOD
12 0041 0041 400088A1 SCW (8.8).tl,8) PX TO APPAY

0042 0042 4FCOA147
0043 0043 42008840
0044 0044 40F8885A
0045 0045 40FF855A
0046 0046 57C00002
0047 0047 08000003

13 0048 0048 OlEO0001 INCR FPI2 NEXT WORL
14 0049 0049 400088A1 SCW (16,8].(1,8) PX TO ARRAY

004A 004A 4FCOA147
0045 0048 42008840
004C 004C 40F0885A
0040 0040 40FF885A
004E 004E 57CO0002
004F 004F 08000003

15 0050 0050 OE00001 INCR FP12 NEXT WORD
16 0051 0051 400088A1 SCW (24,8),(1,8) PX TO ARRAY

0052 0052 4FC0A147
0053 0053 42008540
0054 0054 40EO885A
0055 0055 40FF885A
0056 0056 40F88852
0057 0057 57C00002
0058 0058 08000003

17 0059 0059 OlEOOOl LI INCR FP12 NEXT WORD

D-5

SItIS APPLE V04-00 24-JUL-80 21:47:54 PAGE 00006 V
I 005A 005A 33C00000 LI FP12,0 ARRAY WORD POINTER
2 0055 005B 3F7FO07B LOOP,SP L2 ZND LINE IN ARRAY
3 005C 005C 3605A000 LR CIBUFF(OP)93 LOAD 4 PX IN C REG
4 0050 0050 400088A1 SCW (0,8)(10,8) PX TO ARRAY

005E OOSE 4FCOAA8F
005F 005F 42008840
0060 0060 40FE8852
0061 0061 40F88852
0062 0062 57C00002
0063 0063 08000003

5 0064 0064 01E00001 INCR FP12 NEXT WORD
6 0065 0065 400088A1 SCM (8,8),(10,8) PX TO ARRAY

0066 0066 4FCOAA8F
0067 0067 42008840
0068 0068 40FE8852
0069 0069 57C00002
006A 006A 08000003

7 0068 0068 O1EO0001 INCR FP12 NEXT WORD
8 006C 006C 400088A1 SCM (16,8),(10,8) PX TO ARRAY

0060 0060 4FCOAA8F
006E 006E 42008840
006F 006F 40F8885A

0070 0070 40FE885A
0071 0071 57C00002

0072 0072 08000003
9 0073 0073 O1E00001 INCR FPi2 NEXT WORD

10 0074 0074 400088A1 SCN (24,8),(10,8) PX TO ARRAY
0075 0075 4FCOAA8F
0076 0076 42008840
0077 0077 40F0885A
0078 0078 40FE885A
0079 0079 57C00002
007A 007A 08000003

11 0078 0078 O1E0OO01 L2 INCR FP12 NEXT WORD
W 12 007C 007C 30810611 SR DP,1BDP
W 13 0070 0070 30810613 SR BLIBEF

D-6

SIMNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00007 V
1
2 MOVE ANOTHER LINE FROM ISUFF TO THE ARRAY
3
4 007E 007E 32810611 NXLINE LR DP,IBDP
5 007F 007F 34810613 LR BLIBEF
6 0080 0080 33C00000 LI FP12,0 ARRAY WORD POINTER
7 0081 0081 3F7FOOAS LOOPSP LINE MOVE LINE IN ARRAY
8 0082 0082 3605A000 LR C,IBUFF(DP),3 LOAD 4 PX IN C REG
9 0083 0083 400088A1 SCM (0,8),(19,8) PX TO ARRAY

0084 0084 4FC03D7
0085 0085 42008840

0086 0086 40FC8852
0087 0087 40FF885A
0088 0088 40F0885A
0089 0089 57C00002
008A O08A 08000003

10 008B 008B 01E00001 INCR FP12 NEXT WORD
11 008C 008C 400088A1 SCN (8,8),(19,8) PX TO ARRAY

0080 0080 4FC0B307
008E 008E 42008840
008F 008F 40FC885A
0090 0090 40FF8852
0091 0091 40F085A
0092 0092 57C00002
0093 0093 08000003

12 0094 0094 OlEO0001 INCR FP12 NEXT WORD
13 0095 0095 40008SA1 SCM (16,8),(19,8) PX TO ARRAY

0096 0096 4FCOB307
0097 0097 42008840
0098 0098 40FF885A
0099 0099 40FC885A
009A 009A 57C00002

0098 0095 08000003
14 009C 009C OIE00001 INCR FP12 NEXT WORD
15 0090 009D 400088A1 SCW (24,8),(19,8) PX TO ARRAY

009E 009E 4FCOB307
009F 009F 42008840
OOAO OOAO 40FC885A
OOAl OA1 40FF8852
0OA2 0OA2 4000885A
0OA3 00A3 57C00002
0OA4 00A4 08000003

16 OOAS OAS OE00001 LINE INCR FP12 NEXT WORD
W 17 O0A6 00A6 30810611 SR DPVIBDP
W 18 0OA7 00A7 30810613 SR BL,IBEF

D-7

SIMN APPLE V04-00 24-JUL-80 21:47:54 PAGE 00008 V
1

2 SET UP PIXEL COMPARISON BUFFER(27,54i IN

3 THE ARRAY FIELDS (27,271 AND (54,27).

4

5 00A8 O0AS 73900000 LI FP1,0

6 00A9 00A9 73400018 LI FP2,27

7 OOAA OOAA 35A00036 LI FP3,S4
8 0OAB OOAB 3FIA0083 LOOP,27 SHFT MOVE FIELD (0,271

9 OAC OOAC 430088A5 L XFP1

10 OOAD OOAD 40FF8883 ROT X01 DOWN A WORD TO

11 OOAE OOAE 58400003 5 X,FPZ FIELD (27,27) AND

12 OOAF OOAF 40FE888 ROT X,-2 UP A WORD TO

0080 0080 4000888

13 0081 0081 18800003 S X,FP3 FIELD (54,27)

14 OOB2 0082 01700001 INCR FP1,FP2 NEXT SIT CO.UMN

15 OOB3 0083 O1AOO001 SHFT INCR FP3

16 0084 00B4 73C00000 LI FP12,0 ARRAY 0 WORD 0

17 0085 0085 47C088A5 LCM (0,27),(27,27) TO

00B6 0086 40F888B3
0087 0087 401C8888
0088 0088 401F8888
0089 0089 65CIA003

18 OOBA OOBA 73C00100 LI FP12,X*O100' ARRAY I WORD 0

19 0OBB OOeB 400088A1 SCM (0,27),(27,27)

OOBC 00BC 4FCOAO7
OOB OOBD 40008841
OOBE 008E 40FC885A
OOBF OOBF 40FF8852
OOCO OOCO 40E0885A
OOCI OCI 48000002
OOC2 00C2 48C00001
00C3 00C3 42008840
00C4 00C4 40FC885A
00C5 00C5 40FF8852
00C6 00C6 40E0885A
00C7 00C7 57C00002
00C8 00C8 48000003

20 00C9 00C9 73COO1FF LI FPI2,X'O1FF* ARRAY 1 WORD 255

21 OOCA OOCA 47C088A5 LCM (0,27),(54t,271 TO

OOCB OOCB 40FE8883
OOCC OCC 40F888B3
OCO COCO 65C2A003

22 OOCE OOCE 73COOOFF LI FP12,X'OOFF' ARRAY 0 WORD 255

23 OOCF OOCF 400088A1 SCW (0,27),(54,27)

OODO 0000 4FClAO07
0001 0001 40008841
0002 0002 40F8885A
0003 0003 40FE8852
OOD4 0004 40E0885A
0005 0005 48000002
0006 0006 48C00001
00D7 00D7 42208840
0008 0008 40F8885A
0009 00D9 40FE8852
COCA ODOA 40E088A
OODB 0008 57C00002
OOC OODC 08000003

D-8

SIIB APPLE V04-Q0 24-JUL-ao 21:47:54 PAGE 00009 V
1 0000 OD4000 8S0BA1 SET P1

000E 000E 08000003
2
3 , CLEAR FIELD (81,32) AND (113,32)
4 , FOR USE BY BUFFER FIELDS
5
6 ODF OOF 74200000 LI CHv0
7 OOEO OOEO 72000000 LI CL90
8 OOEI OOEI 33C0IF70 Sc (0,3),(81,32)

O0E2 00E2 3FIFOOE4
00E3 00E3 4840B7AI
00E4 00E4 13740003

9 O0E5 OOES 33C01F90 sc (0,32),(113.32)
00E6 00E6 3F1FOOE8
00E7 00E7 4B4087A1
ooEa DOES 13740003

D-9

SImNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00010 V
1

2 CALCULATE THE NUMBER OF PIXELS DIFFERING FROM
3 THE CENTER PIXEL BY MORE THAN THE THRESHOLD.
4 STORE VALUE IN CNTBUF(102,51. ADD THOSE GRAY

5 LEVELS TOGETHER THAT DIFFER BY MORE THAN THE
6 THRESHOLD AND STORE THEM IN SUMBUF(81,12).
7 SET SIMFLG(115,16) FOR THOSE NEIGHBORS THAT
8 ARE DISSIMILAR.
9

10 OOE9 00E9 74200001 LI CH,1 ADD 1
11 OOEA OOEA 72000019 LI CLTHRES THRESHOLD
12 OOEB OOEB 4000BBA1 SET M

OOEC O0EC 48000003
13 OOED OCED 75E00808 SBF (0,9),(9,9),(93,91 PXZ-PX5

OOEE OOEE 73C01165
OOEF OOEF 37200808

OOFO OOFO 2C000000
14 OOF1 00F1 2C2102C7 BAL,R2 LIMITS
15 0OF2 0OF2 75E0085C ADF (0,9),(81,1

2
),(

8
1,12) ADD TO SUMBUF

00F3 00F3 73C0085C
00F4 00F4 37200808
0OF5 0OFS 2C000000

16 00F6 00F6 75E0046A ADC (102,5),(11,5,(102,5) INCR CNTBUF
0OF7 00F7 73COOF6A
0OF8 00F8 37200404
0OF9 00F9 2C000000

17 OOFA OOFA 7SE00174 ADC (115,2),(14,2),(115,2) SET SIMFLG
OOFB OOFB 73C00F74
OOFC OOFC 37200101
OOFD OOFO 2C000000

18 OOFE OOFE 400OBBA1 SET m
OOFF OOFF 48000003

19 0100 0100 75EO081A SBF (1819),(9,9),(93,9) PX8-PX5
0101 0101 73C01165
0102 0102 37200808
0103 0103 2C000000

20 0104 0104 2C2102C7 BAL,R2 LIMITS
21 0105 0105 75E0085C ADF (18,9),(81,12)9(81,12) ADD TO SUMBUF

0106 0106 73CO1A5C
0107 0107 37200B0B
0108 0108 2C000000

22 0109 0109 75E0046A ADC (102,5),(11,5P,(102,5) INCR CNTBUF
010A 010A 73COOF6A

0108 010B 37200404
010C OlOC 2CO00000

23 0100 0100 75E00176 ADC (117,2),(1,2)#(117,2) SET SIMFLG
010E 010E 73C00F76
010F 010F 37200101
0110 0110 2C000000

24 0111 0111 40008BA1 SET M
0112 0112 48000003

25 0113 0113 75E00823 SBF (27,9),(9,9),(939) PX1-PX5
0114 0114 73C01165
0115 0115 37200808
0116 0116 2C000000

26 0117 0117 ZC2102C7 BAL,R2 LIMITS

D-10

SIMNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00011 V
1 0118 0118 75E0085C ADF (27,9)p(81,12)p(8ll2) ADD TO SUMBUF

0119 0119 73C0235C
011A 011A 3720050B
0118 0118 2C000000

2 011C 011C 75E00464 ADC (102,5),(11.5),(102,5) INCR CNTBUF
0110 0110 73COOF6A
011E 011E 37200404
011F 011F 2C000000

3 0120 0120 75E00178 ADC (119,2),(14,2),(119,2) SET SIMFLG
0121 0121 73C00F78
0122 0122 37200101
0123 0123 2C000000

4 0124 0124 4000BBA1 SET h
0125 0125 48000003

5 0126 0126 75E0082C SBF (36,9),(9,9),(93,9) PX4-PX5
0127 0127 73C01165
0128 0128 37200808
0129 0129 2C000000

6 012A 012A 2C2102C7 BAL,R2 LIMITS
7 0128 012B 75E0085C ADF (36,9)o(81,12),(81,12) ADD TO SUtIBUF

012C 012C 73C02C5C
0120 0120 372000B8
012E 012E 2C000000

8 012F 012F 75E0046A ADC (102,5),(11,5),(102,5) INCR CNTBUF
0130 0130 73COOF6A
0131 0131 37200404
0132 0132 2C000000

9 0133 0133 75EO017A ADC (121,2),C14,2),(121,2) SET SIMFLG
0134 0134 73COOF7A
0135 0135 37200101
0136 0136 2C000000

10 0137 0137 4000BBA1 SET M
0138 0138 48000003

11 0135 0139 75E00835 SBF (45,9),(9,9),(93,9) PX7-PX5
013A 013A 73C01165
013B 013B 37200808
013C 013C 2C000000

12 0130 0130 2C2102C7 BAL,R2 LIMITS
13 013E 013E 75E0085C ADF (45,9),(81,12),(81,12) ADD TO SUMBUF

013F 013F 73C0355C
0140 0140 37200BOB
0141 0141 2C000000

14 0142 0142 75E0046A AOC (102,5),(11,5),(102,5) INCR CNTBUF
0143 0143 73COOF6A
0144 0144 37200404
0145 0145 2C000000

15 0146 0146 75E0017C AOC (123,2),(14,2),(123,2) SET SIMFLG
0147 0147 73C00F7C
0148 0148 37200101
0149 0149 2C000000

16 014A 014A 40008SAI SET H
0148 0148 48000003

17 014C 014C 75E0083E SBF (54,9),(9,9),(93,9) PX3-PXS
0140 0140 73C01165
014E 014E 37200808
014F 014F 2C000000

18 0150 0150 2C2102C7 BALR LIMITS

D-11

SIMN* APPLE V04-00 24-JUL-80 21:47:54 PAGE 00012 V
1 0151 0151 75E0085C AOF (54,9),(81,12),(81,12) ADO TO SUMIBUF

0152 0152 73C03E5C
0153 0153 37200808
0154 0154 2C000000

2 0155 0155 75E0046A ADC 1102,5),111,5),(102,5) INCR CNTBUF
0156 0156 73COOF6A
0157 0157 37200404
0158 0158 2C000000

3 0159 0159 75E0017E ADC (125,2),(14,2),(125,2) SET SIMFLG
OlSA OISA 73C00F7E
0158 0158 37200101
015C 015C 2C000000

4 0150 0150 4000BBA1 SET M
015E OISE 48000003

S 01SF 015F 75E00847 SBF (63,9),(9,9),(93,9) PX6-PXS
0160 0160 73C01165
0161 0161 37200808
0162 0162 2C000000

6 0163 0163 2C2102C7 BAL,R2 LIMITS
7 0164 0164 75E0085C ADF (63,9),(81,12),(81,12) ADD TO SUtIBUF
0165 0165 73C0475C
0166 0166 37200808
0167 0167 2C000000

8 0168 0168 75E0046A ADC (102,5),(11,5),102,5) INCR CNTBUF
0169 0169 73COOFbA
016A 016A 37200404
0168 016B 2CO00000

9 016C 016C 75E00180 ADC (127,2),(14,2),(127,2) SET SIKFLG
0160 0160 73C00F80
016E 016E 37200101
016F 016F 2C000000

10 0170 0170 4000BBA1 SET H
0171 0171 48000003

11 0172 0172 75E00850 58F (72,),(9,9),(93,9) PX9-PX5
0173 0173 73C01165
0174 0174 37200808
0175 0175 2C000000

12 0176 0176 2C2102C7 BAL,R LIMITS
13 0177 0177 75E0085C AOF (72,9),(81,12),(81,12) ADO TO SUMIBUF

0178 0178 73C0505C
0179 0179 37200808
017A 017A 2CO00000

14 0178 0178 75E0046A AOC (102,5),(11,5),(102,5) INCR CNTBUF
017C 017C 73COOF6A
0170 0170 37200404
017E 017E 2C000000

15 017F 017F 75E00182 AOC (129,2),(14,2),(129,2) SET SIMFLG
0180 0180 73C00F82
0181 0181 37200101
0182 0182 2C000000

D-12

s11t APPLE VO4-00 24-JUL-80 21:47:54 PAGE 00013 V

2 ; MAKE CHANGE FLAG GREATER THAN ZERO
s IF ADJACENT SIMILAR NEIGHBORS EXIST
4p
5 0183 0183 74200001 LI CH,1 ADD 1
6 0184 0184 72000000 LI CLO
7 0185 0185 40005BAl SET M

0186 0186 48000003

8 0187 0187 40007741 CLR Y
9 0188 0188 77907478 EQF (115,2),(119,22 PX 2 AND 1 SIMFLG EQ
0159 0189 00008841
018A 018A 3F010180
0188 0188 43A488A5
018C 018C 433400A5
0180 0180 00002243

10 018E 018E 48000002 L TY
11 018F 018F 40007741 CLR Y
12 0190 0190 40008841 EQC (115,2),(30,2) PX 2 SIMILAR?

0191 0191 3790741F
0192 0192 3E010193
0193 0193 03B42645

13 0194 0194 48000002 L MOT
14 0195 0195 75E00487 ADC (131,S),(11S),(131,5) INCR CHGFLG

0196 0196 73C00F87
0197 0197 37200404
0198 0198 2CO00000

15 0199 0199 400088A1 SET N
019A 019A 48000003

16 0198 0198 40007741 CLR T
17 019C 019C 7790747E EQF (I1S,2),E12S,2) PX 2 AND 3 SIMFLG EQ

0190 0190 00008841
019E 019E 3FO101A1
019F 019F 43A488AS

01A0 OIAo 433400A5
01A1 OAl 00002243

18 O1A2 01A2 48000002 L MNY
19 01A3 01A3 40007741 CLR Y
20 01A4 O1A4 40008841 EQC (115,2),(30,2) PX 2 SIMILAR?

OAS OAS 3790741F
01A6 01A6 3E0101A7
01A7 OIA7 03842645

21 01A8 O1A8 48000002 L NY
22 O1A9 O1A9 75E00487 AOC (131,51.(11,5),(131,5) INCR CHGFLG

O1AA O1AA 73C00F87
OlAB 01A8 37200404
01AC O1AC 2C000000

23 O1AD OIAD 400088A1 SET N
O1AE OIAE 48000003

24 OlAF OlAF 40007741 CLR Y
25 01B0 O010 77907682 EQF (117,2),(129,2) PX 8 AND 9 SIMFLG EQ

0181 0181 00008841
0182 0182 3F010I5
0153 0183 43A4685
0184 0184 433400A5
O18S 0185 00002243

26 0186 0186 48000002 L N,Y
27 0187 0187 00007741 CLR Y

D-13

SIMNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00014 V
1 0188 0188 40008841 EQC (11792)p(30s2) PX 8 SIMILAR?

0189 0189 3790761F
018A 01BA 3EO1O1BB
01BB 018 03842645

2 018C DISC 48000002 L IY
3 0180"0180 75E00487 ADC (131,5),(11,5),(131,5) INCR CHGFLG

OISE 018E 73C00F87
01SF 01BF 37200404
olCO OlCO 2C000000

4 01CI OC1 4000BBA1 SET M
01C2 01C2 48000003

S 01C3 01C3 40007741 CLR Y
6 01C4 01C4 7790767C EQF (117,2)9(123,2) PX 8 AND 7 SIMFLG EQ

0ICS O1CS 00008841
01C6 01C6 3F0101C9

01C7 01C7 43A488A5
01C8 01C8 433400A5
01C9 01C9 00002243

7 01CA OCA 48000002 L m,Y
8 01CB 01CB 40007741 CLR Y
9 O1CC O1CC 40008841 EQC (117,2),(30,2) PX 8 SIMILAR?
OCO OCO 3790761F
DICE 01CE 3E0101CF
01CF 01CF 03842645

10 0100 01DO 48000002 L M,Y
11 0101 01D1 75E00487 ADC (131,5),(11,5),(131,5) INCR CHGFLG

0102 0102 73C00F87
0103 0103 37200404
0104 0104 2C000000

12 0105 0105 400088A1 SET M
0106 0106 48000003

13 0107 0107 40007741 CLR Y
14 0108 0108 7790787A EQF (119,2),(121,2) PX 1 AND 4 SIMFLG EQ

0109 0109 00008841
O1DA 01DA 3F010100

0108 0108 43A488A5
010C Ol1C 433400A5
0100 0100 00002243

15 010E 010E 48000002 L MY
16 O1DF OOF 40007741 CLR Y
17 DIE OlEO 40008841 EQC (119,2)#(30,2) PX I SIMILAR?

OlEl OlEl 3790781F
01E2 01E2 3E0101E3
01E3 01E3 03842645

18 O1E4 O1E4 48000002 L M,Y
19 DIES OE5 75E00487 ADC (131,51(11,5),(131,5) IHCR CHGFLG

01E6 01E6 73C00F87
01E7 01E7 37200404
01ES DIES 2CO00000

20 01E9 01E9 4000BBA1 SET M
OlEA OlEA 48000003

21 DIEB O1EB 40007741 CLR Y
22 OEC 01EC 77907A7C EQF (121,2),(123,2) PX 4 AND 7 SIMFLG EQ

DIED DIED 00008841
OlEE OlEE 3FO1OIF1
OlEF OEF 43A488A5

O1FO 01FO 433400A5

OlFi OlFi 00002243

D-14

SIMNB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00015 V
1 01F2 01F2 48000002 L MY
2 01F3 01F3 40007741 CLR y
3 01F4 01F4 40008841 EQC (121,2),(30,2) PX 4 SIMILAR?
01F5 01F5 37907AIF
01F6 01F6 3EO101F7
01F7 01F7 03842645

4 01F8 01F8 48000002 L M,Y
5 01F9 01F9 75E00487 ADC (131,I),(11,5),(131,5) INCR CHGFLG

01FA 01FA 73C00F87
O1FB O1FB 37200404
O1FC O1FC 2C000000

6 OFD 01FO 4000B8A1 SET M
OFE 01FE 48000003

7 01FF 01FF 40007741 CLR Y
8 0200 0200 77907E80 EQF (125,2),(127,2) PX 3 AND 6 SIMFLG EQ

0201 0201 00008841
0202 0202 3F010205
0203 0203 43A488A5
0204 0204 433400A5
0205 0205 00002243

9 0206 0206 48000002 L MY
10 0207 0207 40007741 CLR Y
11 0208 0208 40008841 EQC (125,2),(30,2) PX 3 SIMILAR?

0209 0209 37907E1F
020A 020A 3EO1020B
020B 0208 03842645

12 020C 020C 48000002 L 1,Y
13 0200 0200 75E00487 ADC (L31,h5t(ll,5),(131,5) INCR CHGFLG

020E 020E 73C00F87
020F 020F 37200404
0210 0210 2C000000

14 0211 0211 4000881 SET M
0212 0212 48000003

15 0213 C213 40007741 CLR Y
16 0214 0214 77908082 EQF (127,2),(129,2) PX 6 AND 9 SIMFLG EQ

0215 0215 00008841
0216 0216 3F010219
0217 0217 43A488A5
0218 0218 433400A5
0219 0219 00002243

17 021A 021A 48000002 L M,Y
18 0218 021B 40007741 CLR Y
19 021C 021C 40008841 EQC (127,2),(30,2) PX 6 SIMILAR?

021D 02iD 3790801F
021E 021E 3E01021F
021F 021F 03842645

20 0220 0220 48000002 L M,Y
21 0221 0221 75E00487 ADC (131,5),(11,5,(131,5) INCR CHGFL6

0222 0222 73C00F87
0223 0223 37200404
0224 0224 2C000000

D-15

SIftm APPLE V04-00 24-JUL-80 21:47:54 PAGE 00016 V

2 IF ADJACENT SIMILAR NEIGHBORS DO NOT
3 EXIST REPLACE CENTER PIXEL WITH THE

4 AVERAGE OF THOSE PIXELS DIFFERING.
5
6 0225 0225 74200000 LI CHO
7 0226 0226 400088A1 SET M

0227 0227 48000003
8 0228 0228 40007741 CLR Y
9 0229 0229 40008841 EQC (131,5,t11,5) ANY SIMILAR NEIGHBORS?

022A 022A 3790870F
022B 0228 3E04022C
022C 022C 03542645

10 0220 022D 48000002 L M,Y
11 022E 022E 37905051 DVF (81,12),(102,5),(79,14) AVERAGE

022F 022F 030088A5
0230 0230 3F000232
0231 0231 08800001
0232 0232 13A40003
0233 0233 75E00350
0234 0234 73C04F66
0235 0235 77200855
0236 0236 34AO6A04
0237 0237 2C000000
0238 0238 4A4F0001
0239 0239 424F4445
023A 023A 524F0002

12 0238 0238 37907257 NVF (80,8),(107,8) AVERAGE TO OUTBUF
023C 023C 3FO7023F
0230 0230 433488A5
023E 023E 48800001
023F 023F 13A40003

13 0240 0240 40008841 L YM
14 0241 0241 400044A2 LN m,Y

0242 0242 48000003
15 0243 0243 37907211 "VF (10,8),(107,8) CENTER PX TO OUTBUF

0244 0244 3F070247
0245 0245 433488A5
0246 0246 48800001
0247 0247 13A40003

D-16

+ I 1 - --

SiMtIB APPLE V04-00 24-JUL-80 21:47:54 P4GE 00017 V
1
2 ; OVE FIRST PIXEL AND LAST PIXEL
3 UNALTEREO TO OUTBUF(107,8)
4
5 0248 0248 73C00000 LI FP1200 ARRAY 0 WORO 0
6 0249 0249 47C088AS LCM (0,8),(10,8)

024A 04A 401E8888
0248 0248 4018883B
024C 024C 65C08035

7 0240 0240 4O0088A1 SCa (0,8),(107,8) FIRST PX OF LINE
024E 024E 4FC3AB97
024F 024F 42608840
0250 0250 40FC885A
0251 0251 40FF8852
0252 0252 40F0885A
0253 0253 57C00002
0254 0254 48000003

8 0255 02S5 73COO1FF LI FP12.X'OIFF' ARRAY 1 WORO 255
9 0256 0256 47CO88A5 LCM (0,8),(10,8)

0257 0257 401E88B
0258 0258 40188888
0259 0259 65C08038

10 025A 025A 400088A1 SCM (0,81,(107,6) LAST PX OF LIT
0258 025B 4FC3AB97
025C 025C 42608840
0250 0250 40FC885A
025E 02SE 40FF8852
025F 025F 40F0885A
0260 0260 57C00002
0261 0261 08000003

D-17

SIIS APPLE V04-00 24-JUL-80 21:47:54 PAGE 00018 V

2 HOVE PROCESSED LINE TO OBUFF WITH
3 PIXEL SWAP (1,2,3,4 TO 4,3,2,1)
4
S 0262 0262 33C00000 LI FP12,0 ARRAY WORD POINTER
6 0263 0263 32810610 LR DP,O8DP
7 0264 0264 34810612 LR BLOBEF
8 0265 0265 3F7FO279 LOOPSP LNOUT MOVE LINE TO 0BUFF
9 0266 0266 47C088A5 LCM (24,8),o107,8) LOAD C REG WITH PX

0267 0267 401F88B3
0268 0268 401C8853
0269 0269 25C378FB

10 026A 026A OlEO0001 INCR FP12 NEXT WORD
11 0268 0266 47C088A5 LCM (16,8),(107,8) LOAD C REG WITH PX

026C 026C 401F8853
026D 026D 25C35088

12 026E 026E O1EO0001 INCR FP12 NEXT WORD
13 026F 026F 47C088A5 LCM (8,8),(107,81 LOAO C REG WITH PX

0270 0270 401C8888
0271 0271 401F8858
0272 0272 25C3A87B

14 0273 0273 OIE00001 INCR FP12 NEXT WORD
15 0274 0274 47C088A5 LCM (0,8),(107,8) LOAD C REG WITH PX

0275 0275 401F8883
0276 0276 401C8853
0277 0277 25C3803B

16 0278 0278 O1E00001 INCR FP12 NEXT WORD
17 0279 0279 30058000 LNOUT SR C,OBUFF(OP),3 STORE 4 PX IN OSUFF

N 18 027A 027A 30810610 SR OPOBDP
N 19 027B 0278 30810612 SR BLOBEF

20
21 SHIFT TWO IMAGE LINES OVER A FIELD IN
22 , THE ARRAYS TO PREPARE FOR A NEW LINE.
23
24 027C 027C 400088A1 SET H

0270 0270 48000003
25 027E 027E 37900811 HVF (9,9),(0,9) 2ND FIELD TO 1ST

027F 027F 3F080282
0280 0280 433488A5
0281 0281 48800001
0282 0282 13A40003

26 0283 0283 3790111A MVF (18,9),(9,9) 3RD FIELD TO 2ND
0284 0284 3F080287
0285 0285 433488A5
0286 0286 4800001
0287 0287 13A40003

D-18

j.

SIMNB APPLE V04-00 24-JUL-80 21:47:S4 PAGE 00019 V
I

2 IF OSUFF IS FULL OUTPUT TO COMTAL
3
4 0288 0288 34810612 LR BLOBEF IS OBUFF FULL?

S 0289 0289 29110299 BNZBL OBNF IF NOT CHECK ISUFF

6 TRAN TRANI IF SO, OUTPUT

028A 028A 72800000
0288 0285 34A00016
028C 028C 30C18010

IOAIT LIK7 0
0280 0280 72800000
028E 028E 74A00000

028F 028F 37200000
0290 0290 30C18010

9 0291 0291 36810001 LR (BL,OPJTRANI4I UPDATE TRAN OUT

10 0292 0292 3EIF0293 RPTLOB
11 0293 0293 28140001 INCR OP
12 0294 0294 30810001 SR (BLDP),TRANI+l
13 029S 0295 32800000 LI OP,o RE-INITIALIZE

W 14 0296 0296 30810610 SR DPOBOP OBUFF DATA POINTER

15 0297 0297 34A01000 LI BL,XOBOP AND

W 16 0298 0298 30810612 SR 8LOBEF OBUFF EMPTY FLAG

17
18 IF IBUFF IS NOT EMPTY GET NEXT LINE

19
20 0299 0299 34810613 OBNF LR BLIBEF IS IBUFF EMPTY?

21 029A 029A 2911007E BNZBL NXLINE IF NOT, NEXT LINE

22
23 IF ENTIRE IMAGE HAS NOT BEEN INPUT

24 MOVE MORE DATA INTO IBUFF

25
26 0295 0298 34810614 LR BLLIF HAS ENTIRE IMAGE

27 029C 029C 01030001 DECR BL BEEN INPUT

W 28 0290 029D 30810614 SR BL,LIF
29 029E 029E 290102AB BZ9BL DONE IF 50, GO TO DONE

30 TRAN TRAN2 IF NOT, INPUT

029F 029F 72800000
02AO 02AO 34A00016
02A1 02Al 30C18010

32 ZOWAIT LINKWD2 MORE IMAGE

02A2 02A2 72800000
02A3 02A3 74A00000
02A4 02A4 37200000
02AS 02A5 30C18010

33 02A6 02A6 32800000 LI DPO RE-INITIALIZE

W 34 02A7 02A7 30810611 SR DPIBOP IBUFF DATA POINTER

35 02A8 02A8 34A01000 LI BLtXISOP AND

W 36 02A9 02A9 30810613 SR BLIBEF IBUFF EMPTY FLAG

37 02AA 02AA 2801007E B NXLINE PROCESS NEXT LINE

D-19

SItNS APPLE V04-00 24-JUL-80 21:47:54 PAGE 00020 V
1

2 MOVE LAST LINE TO OBUFF AND
3 OUTPUT OBUFF TO COMTAL
4

S 02AS 02AB 3F7F0288 DONE LOOPSP LTLINE MOVE LINE TO OBUFF
6 02AC 02AC 32810611 LR DP.IBDP
7 02AD 02AD 3604A000 LR C,IBUFF(DP)oZ LOAD 4 PX IN C REG

N 8 O2AE 02AE 30810611 SR DPIBDP
9 02AF CAF 400077A1 CLR X PIXEL SWAP

10 0280 0280 420099A0 Sc X(O) 1,2,3,4 TO 4,3,2,1
11 0251 0281 4008888B ROT X,-8,16

02B2 02B2 400088B5
12 02B3 02B3 401088B8 ROT X,-16,32

0254 0284 400088BB
13 0285 0285 21COAOFB LCW X(O)
14 0256 0286 32810610 LR OPOBDP
15 02B7 0287 30045000 SR C,OSUFF(DPI,2 STORE 4 PX IN OBUFF

W 16 0288 0258 30810610 LTLINE SR DP,O8DP
17 TRAN TRANI OUTPUT FINAL OBUFF

0289 0289 72800000
02BA 028A 34A00026
0288 02BB 30C18010

19 IOWAIT LINKNO1
028C 02BC 72800000
02BD 02BD 74A00000
028E 02BE 37200000
02BF 02BF 30C18010

20 RLSE LINKlOl
02C0 02C0 72800000
02C1 02C1 34A00018
02C2 02C2 30C18010

22 RLSE LINKWD2
02C3 02C3 72800000
02C4 02C4 34A00018
02C5 02C5 30C18010

24 02C6 02C6 38002000 ERR WAIT

D-20

SIMtJB APPLE V04-00 24-JUL-80 21:47:54 PAGE 00021 V
1
2 CHECK DIFBUF(93.9) TO DETERMINE IF THE
3 THRESHOLD HAS BEEN EXCEEDED CHECK
4 ; FOR LOW OR HIGH NOISE AS SPECIFIED.
S

6 02C7 02C7 40007741 LIMITS CLR T
7 02C8 02C8 32800000 L op2NO4SE
8 02C9 02C9 29510201 NZOP HIGH
9 02CA 02CA 77906SIF GTC (93,9)t(23,9) DIFOUF>THRES

02C 02C 03847845
02CC 02CC 3E0602CD
02C0 02C0 03842945
02CE 02CE 43801645
02CF 02CF 00002241

10 0200 0200 2801020A B Al
11 0201 02DI 7SE0086S HIGH ttYNF (93,9),(93,9) orFBUF:-OZFBUF

0202 02D2 33400065

0203 0203 2C010000
12 0204 0204 7790651F GTC (93,9)(23,9) OIFEUF>THRES

0205 020S 0364784S
0206 0206 3E060207

0207 0207 03642945
0208 0208 4380164S
0209 0209 40002241

13 020A 020A 08000002 Al L NOY
14 020B 0205 280A0000 a O(R2)
is 0610 ORG X'O610',A HIGH SPEED DATA BUFFER
16 0610 COOP OS OBUFF POINTER STORAGE
17 0611 IBOP DS IBUFF POINER STORAGE

18 0612 OBEF DS OBUFF EMPTY FLAG
19 0613 IBEF 0S IBUFF EMPTY FLAG
20 0614 LIF OS LAST IBUFF FLAG
21 0000 END SZMNB

D-21

SPIN APPLE V04-00 24-JUL-80 21:47:54 PAGE 00022 V
ERRORS DETECTED: 00000
WARNINGS DETECTED: 00018

D-22

APPENDIX E

PTEDGE PROGRAM

LA x . a.

:- - Z - .

4- -6

Z. -. a.z

L6 X. '.l J,

4Li--- - - -'

z zz z~

x c x A2

N Md IDN Z Nr =>C

T, C~ -CL

z- 7

vn.4 a.(- 's ;r a 3 C*

(N C% N .

2.4.~~a.3 L)~ ~ . 2

p-lii 2.ll legibl re io uc-

~ ~ ~ E-1

4.3

4, T, 4
- - --- -

- - - - - -

a c

ka -r- -,
rp IV t.L~ J nXLAX P

p l. -' E

.

n .n, tn ,r ,..,,, . , r , . ,r 4 ,' L. t', .u, .- au,

.. 13

Ir

C= :) C.

'ID Z - =

N :- -. 0. c a x -. 7zX L
T- N -0~

-4 in LJJ . - xJ -Z. *.).j'. 4
4% N

c CI

-r X. r- nC

0 -3 E-30

- ~4 c

X X

A. -.

'n L7

:J6 IL D ~

", .U " ." z, . " " - " " a .

Vl ,r _ ac X, V, Z _

"3 ' ,.1. ."- ." - - -&"' -
'

NLI p L -UZA)J

4 -

c C

-1 07 0 C, = L) OZ = :. 9 I0r i 7 - = =V i~ .

er tw ~%., o, v, v nt w n9 rt j. t.9 m t.% nI nf x.' PP j

* E-4

C.. ;

- -.

I .3-- -- .--

. 'S i. X . L1. S ," 2.. 1 r"z

.i- . , . .t
+

,£ . - - £ 8.

* .-
,

- -t 2nY-- .+ I I'I

.z xx

mL tozPuC

-" . - . . i. - -

- A. L J-

Ic

Ix ~ ~ r L -

. . .E-6

-,-."-

,. .. ,

SZ

U, -Z Y

z r
D D-

.. 0 . "..;0 . z z. -. . -", .- - a

- ~ ~ --~ ~ 1 U - -- a0

.. .- ... * - ".~-

"z -.

a..

P C L 4 c

tz: Iq -

E-7

I.

EO(;t. APPt,r. V04-.10 I h- '(,-WO u4 :.41 :14 PA(, O()1)Ou

I 4)n I h tu1. 7'79uobOIF GoC
W)I7 u I1 0 3r4471,45
OI S 0it) 1 H 40i60k) 14
0010 0019 o3144.945

001 O00 4J3 1 ,45
0(0 1R OU1,4 4000.).241

2 O IC O'JIC 4000#4 iO A! I, (iW m y
0011 OuIU 4UuUCCA2
001 010 1. U80U003

3 0UI." (1011 /.()1U E ,',9E U IH)A T .
4

: ,k.C .UIJi) W L, N' W ,i1

I 0020 0. uo1) 7lt.uiU 717 I: EC S' S. ld I., I p , Vp
0)21 "021 73C0Oi7hu
)IQ2 0t,7"7 37)070H
1)0)3 01023 .Ct0OUOuU

13 00 14 (,0 4 1 3((Ii,) M II 'IEMP, lfr.vl
009S 0 025 3 1 4 t, 0(

9 00)27 0() 4 I o k)1 O t ' C, T P H L.(I
0) 209. 0t), 779 u11 (1"t) t)o,(,I

00,9 u Ii'I 03147 4t

00 h tAkW A i, 0 s o 0?+
0fd (13it H g4 2 9,4 5
0(UZC 0 0?.C 43k1) 16 ,4')
I) lP t)'0 ') '40008 A I

1 | 00?'. ')(',?r. 40 ,.dsA I r,XIIp N. , Y

)(JF 0 l2 p 4 k',)i CCA)
O st) o 'o 1 0 Uh) O uIIJ

12 0031 00 3 1 .IUt' I. li oT+
13

I 0032 0 01/ A O, 71 7 P :. . .,
)03 V 0'33 7.C02Fi0

(134 J03 4 3 1)7U i .
003% o oI dCooOOo

17 0 03 h o 4. 13t0h()54 MVAF I .k' P,' .P.

0037 (u37 PE.0' e),O
)3) 0 0 0 Ab :?CO 1 U0)o

I H 1)03 9 ou 34 J(sOl UO I, C, ' HP.IlIJ,
11) 00J 3A Oo 4A "7'1 0bO IF" m;J('k/p,(23,9)

'.j),4 O3 I- 8130 P47,I45

00) U IC 4,0-o. o, 3F)
00 401 00 1) tPJ 4 144)

003. Oll 1- 4 3HO 1645
0'' F U031 401104 il41

n~t
- p'iE-8

.......

1) 004 sL , '4 0)(,,'A i0 11 4') 1 li 4 / ot 4(U) %1)
1 00 4 3 O ki o I j)j.k 1 All.

7' T74 H' NH ;:M 1

26 0,4 U04 I 15l0U, 71 ' 'tS4 ,$1 I.2,FP4,'i .,
110d% dtB4' l3Ct, 4JI

.P CF: 1APPI r.' V04-00 I " * 0..O ,4:3 : 4 l' -(,r 110C0 ,

10,147 00O17 C u 0 to0 1 1)

1 ('4 H '0 4 M I JC0 6U 0 H (V 1" lh' PF, I' K p I
0 , 4) 00 i9 4 .oon

UI04A 41)4) A 4.0) 1 0o

2 1))4P0 1i)4 h 3bu01U(L0CR,

3 1)04C ttj4C '1 uou1' 'IC I, V, 3'+)

004i) U)4o 0 03 b4 7 m i s
0 0 410' OU4T .0h.0htl),1 .

J04F 0 41 i4 24945
0(1SU U0u 4H01 fh45
o), I ') Sl it 'u0 2241

4 O 05%2o 0.5 1() A1 Ix UJH HIm
OU53 00'J 4UOCCA.
0054ia OU')4 0 ti 0U00j

5 0 Q S 5) 0)09. 0 I'PI'i

7 IF III F~,fl
'o 0 11 C Ftl E., , S, s ,

0 05 7 U 0It' 7 3 C .F.hOlnH (t.'5N "/$ JJ's
O0 0 m o0.," i l2o0"vii

10 0 0')5A 0I)S, 13C(bO')SH "4/A V F" 'J. I, t.I -
JOSH 1) US 35 -:Gu, O m

O1)bc (C O'C 4(.'01 00u
0i (1I '00, -4o JU J4 3 0 0 0I~ C T , l l .tI'

1"2 u0t) e. I10bh 77 9uh(0 1' (;I C 'I r +)

O) F woibi 0 .447H4b
00Oh0 0 Jb 0) 3 P. Q b U Vl f ,

OOhl o0fi1 0 134 194'
00a2 O0h) 43bt i1 @
OO00o3 0063 , 44000 1 4

E-9

14 0" 4 1)f% 4 4 1)4(0 i Uh '4 1 IAX U k

, a u~t o('P f HO)Owu i

Is
I h i x r H 1:.1, Ki. 1

1. i jj hJ~I ')eti ~r. 1 / P ('(* Sh l,''~,I

0 0n A U(i t)bA i/0 7 t

0O0eti u ordh ~C o 0 u)t0
I q 00hC 1) 0t C I 4C0Eht)', js F It kA 'Of,

u t)b Iu 06KI e C 0 V1)0 0I, H tf

vI ot 00) tv7 u 7790e'U11I Ic AF(i)

0071 0071 0304784h

00723)t 07 23 uJR'2'73
007?3 t)o7 3 UFrO4aO07
U074 (1074 4 3N(', i t,45
0)075 007b 40002241

22 0 07 6 007h 4U00bAl XiiW ,Y

0077 00j77 4Uv1(CCAi
0 0 '1b Ilo7k Otiv1000J

23 .0 74 %)/ t i 9 01 UU'JW R UVDId~

E1)G) A PI.- V o4-00l 1 t,-JIII- 19 : 14 VAGd OOUO'4

4 0 WI A iJ) 75P.007 17 PRO-CI I S HF 2 P7'I,1 P

0J070 007 7$ 73C04~bO
nO/C 7 oC 3771,(J7I

04() 'd0L) I D ~C 0 0)00 0

0 0 w 0 00 80 It C) 0 0)0 UN toriP N I

(1083 4 ivi3 03h4lh4b

)0 li 4 o 4) e 1 3 k.0 0 9
OOHS o 4) m :) u.413 4 294 t
0 f) bh ()00 16 £3 s)16 4 S
fl08) U () 97 4000?2*41

Ai 1)04$1 00%4 h 400?JHOA) I.,x H 1" ,Y

0 $4A 0 li A 0 4 0 0 V()13
h 01.1odMov P 6Ah I)(I0' t4(A T

E-10

10
I I -.. I ':,-, r F L. P M ,, 1U

12
13 _)0I4 ' (Ii(M) . 17 o A C o oRC.. o- ,1, , , -'

0 0t(() Ri b 3()Ub'I bu

0 0H F 0()A .1 CO 00 0(W

14 0040 004"1 '1 4'Ubu'b ,,IVAP i P .

0041 vow I 3t)E00Iomtl
o0')(J 0 u 4 d)i.) o 0uI !) 0093 00,94 .IUOJU (l 0904 H. 1' H

1 .
I

16 0044 (1094 "1 106u IF Gi JC 4P, (9 ,)
o045 tS)p4 U3P-. 47 45
()Oj h tI'.14h jt.AbO0 7
0041 0)97 o3.4294b

uO9' 0 (49 4Uu0224)1
17 0O)4A 004A 4 0 Uj] r y

0 0U4 009 A 40(0CCAI
fo09C OuC 0mu00(tO3

1 () UqI) oo4) '))o I vU oI [) Q to

19

21
22 U o)4. . i..' s I. ,
13J qo)q. 9) q[Kt l.tJ O Iu 4 'i,,$4 1) 0 IlAl

U4 (109 1 1H F 0 4H IIUJ]C, i -

77 1) 0 A2) A1 2, 1 ? 1U',))1 11104 M,

",A 00A I U Q)A 3 .U10 I '(' 0 '1 (iIe t.' *
1 19 r1 .

?94 oU0A 4 0 UA')4 JUUI'f I(A (j

31 : . KIt.0I' r'i it, ;LIL' l , r, I 1

32
3 3 0)1A OSk 0 At 4o o 6A A I P ,t I

(i) At 0,IAeh t0)4(0003

E-11

APP(L. vJ4-OU 16h- !1 -8U i4:39'114 - lA(,h UOOOb

1 OOA7 0dA 7 SrnU I UUI) Ip C,T' , 1 M ,i)
0 A d~ OtDM II90bu1 - L F I 3%

),) A OOA'0 t 174 'I

0 A A 0 A A .()U A
0 "A 1 00A0 1 Lj4 1 b4 5

()OAC UOAC #,3ti0294 '

00A1) uOAD 4u00224t
3 OVAl. A oA0. ; 0u'J) 0 0, Y
40041. JUA. "ai'OO0Uu TA CO
5 () 1UO (ti1) 33C) 1i.'n " Sc {24,8) * l..S'tl

1 H') I 0 00"1 J.P07001-13
Ou P2 v 0 tj? -'t4 u 61A I
() l i i (10 iA 3 131 I'uU u 3

b 004i4 U) 4,U044ON
OU05 (4hi5 '0 0 0 3I

7 00fb 00Kb 7tU0OOu{ [t"f C, 25'1
h, 0(1:47 UO7 4sCO1Fh SC (24,1 .),CIS l[,

00t,' A'3s .WhO700hA

0014 49 0 0 0 4 b4 hI 7 AI

O00 A 4.)0 tiA 1.374())0J
) 0.b U0t14M t4OF'1t)Juo(1 Ht. 7)

lv
' ; 'H ,1 I) R FSsW S T ' d ,l PK.I 'I'll

12

1 4 ('&, C UuC L)80I UUtO1 CAS" R 0.
14 OUH) 0UI'm) d'01 02 C t4 LI C 1- S

1 S 00I. U0t10. e80u O032 14 t%'CKS j
I h 0 0 0-(. U r5 100 .44 PIMCI(S4
I, I W) CO 0 U rI U U !J)o F I Ml r..%b
II OO)IC| 1 1)t} -j]d 0 1u ub .,1 04 C r,; 6

1 1 OC' * 00(2 2 h01 to/) 7 &kheCh 57
2'' , CC3)O C 8i /.H OI UHC f C M S k

121,

Frfl(;F 0P.I. vr3-0u i) b-L,4(a - I I* 'A(,- o tp)

IFpP(i.s oi I I-x-I k) u v 0t)
dA 4 1 LN 4 (;.S [K I r I (I Ouu(l(I

Copy , to 1772 ' not

E-12

I

-

*
C

,-D -. OC C. ,. M r- C :.

D
0

-
2. , : " -"r - .:.

;r c

"D r L "- C 0 4 j .Z

permit t;"" '' ' " '

E-13

- J2J

x 4

0 -

7- I. p S
-- ~~w V%*~ ~ J N .

-.VI vl E 1

33
34 ; MOi : A TbJ t £3

3n (6 UOU 00W) 3h04 0U 0 .0 C AS t. I L, Iilt. (C),
31 OuuV (,60t. 4)U0ihAI SC L 1,I, 3

U) 0$ 0 (r 0 ' 0 , P* e' CJ 0' o F V"
0L 1 0O I4 Fkuip4U

)Ol1 C U 1'i 4t O sNhtA

0013 0(13 57CU0V'U
)014, 0U04 Uao0OU03

18 00 1 03' jIK0000 It k1- 12
:39 uo0Io QUor 4000ekA 1L v, 42(,

0(;1 ()01 7 4,e C01ib V
0o1H 0018 ,iOOoH4u
6019 UJO 19 4 0 'O 4mb 2

OUIA O01A b7CUUUU?

o00)1 f4 001 S 0140000(03
40 OO UOIC u1- O0)It I e p I id

S41 00 Ill, OO 1 ,uIOo SA1 - C3 ,1, 1
001 001 K 4CiO8}FF

002u U020 4U Vb.?)

o!1'2 1 (t? J 17COOU ('/
o02) 0 02,e ueoo oiU')3

LTNE IN A PPI,E V04-0U I -,JIL-Pk) 04: 1:1 , PALE 00' 07

I 0023 00231 P. 0 UO 1 T P 12

2 0024 0)024 '4O0OHA1 S- C ,.3
()1)2.3 0025 4k Cvtoi'-
()02h 0026 t")C O U U
0027 OU" 'HCOOUUO

3 0O;p o02H 'l 1,0)Uv I lI" 11 -12

4 O ;19 0019 0 ul luO01 fp:, L.1

S 002A 0 1) 7 A I) J L) 1Ut'9 I, I) CA.s e I
b 13(i2b Q 02t'1 /.' Uj3 O oM H) Ie I')HN
00I (0HM I0o

H ; Mrcv, A b N' '1' I,

10 (: 02 0' C oi,10 4 0 0 CAS5E2 C , 1 II' (I" P) 2
r1 ,)')?) 0,o)2) ,iuUOtHA I .C, ' , 1 i

o021 O)02'. -41CUA147I
ou2t' on~, 4 2(i H 40

0030 Ou30 4018'HH8b2
0 o1 tO3 o /1:00(1)2
00 3? 0042 1,00(0U3

17 0033 u03.4 I .JOJU ICR pI' 12

13 U034 u n0034 4U0UkdAI Cw L2,1i

0035)U' 4 COAtM71"

o1317 0037 uou00003
14 00314)0)I (00 ,)u0J CHP)Ul

E-15

m I mmimllli wmmmmmlml il

15 0)39 01)49 400688A I2' c3,LI
003A 1103A ,it COA b7
C03 () 3 C 0'. 4/u i45fO
003C Uo3C 3 t 5 h7C0)u

1r))o3 F U01)000 H
O}Ojr. ,i04. '7C0(j'uu'
')03. 0u31'" UbUUOO'U.3

It 0040 4J04) 0 1 ,Au.Oul FP 12
17 OU41 V04) 4U0088A I S' C4, Il

0042 0042 4"COA'IF"

()043 0043 '1iUO4?,4U
0U44 UU44 UIVOHH5A

0u45 0 0J4> 0 oio0 hbA

00 47 U047 0)U 00003
18 0048 UU4H o)l-.OU001 INCI FV1?
19 0049 0049 u1(IO u1)C I F'1,
20 004A)04A .8 10)02C BN'Z, I I CASP.-2
21 00419 () 4MH 0 1006F i 1I .TIIRN
2?
23 ; MOVE A LNE I 2
24
25 U4C U04C 3b040OOO CANE3 rR .,]NHIIFF'(DP),2
2b (1)04C 0041) 40(0UdIA1 SCW ,1 L2

OT,) 4 ((41. 14. COMObF

044F U04" 41U(H"40
OUSO U0o 4WH885"?
0051 UOtl 57COOUtti
001)2 0052 uhU0001

27 0053 uOb (01.0U 0o I NCR F '1
2b 0054 0054 40008AI SCW C2, a,

0)55 00 t) 41cCutiOi
OObh 0056 420d H H4u

E-16

L

t, IN .N aPpI, V0i4-O4 0 lh-.Jll -40) 04:.'1 :1,4 ', (111) 4

0 1 0'0S7 4u[, ii

00OS54 0 vh(m7 C)UL0Co
0'.1 $ ')ri.34 *47')00tI3

O5I (1(,1) tlh7C)'b,0
t OobF S t5hl 0 1 L U U 01' I

4 1) O)C)f0 .S C 4,P ('(l4,Otil

.bl) (5(iS! t) / C))U 0
Ot)l-t' 0" 0O-; 10 U0 3

5 0'(F 0 (5 5i Fl .O~t))1 I0,0C e r 000)
4 1) ih 04 0li t)H kAI SC1(1 C L4, 7

0 6 1~ ot~ 1 01 O() 1 f1(I

() b:) 00 2 4 2() 0 m4 0)

OJU6 3 00l63: 4 1, 1't4 ~k', A
0064 0 si),),4 4 (J) 0(1 ti bl S A

Oo(hst 0 1 5 S1 C u 0 () ,*

0 () t7i 6, I(l U 1) 00 nJ h1 ,t0

5 00)67 1.) (F, 7 w I l..(0O 0 011 rP 1 2

i) Uh hk h u1 ()U ()I lDb .l ('1"KI

7 0069 Uh 9 'I'm 04u4C iit' 7, ,1, A S -. 3
1 b)OA OOhA) b() I Ut0 . ' E.,')i"

10
I1
12l) i I (. .I)UW) 3 ' OU A,1 V 1) 0) I

14 0 () '6' 0 (ihl) o1) U v 7)

1, NEIN API.. V 04-0 1 r)-,jllL-AU 1,4:41: 1 1 '4 A k 4.004

K H H 0 R S[1). KIK T 1) 0) ("

* ij : mov

E-17

AD-AXIS 882 MISSISSIPPI STATE UNIV MISSISSIPPI STATE DEPT OF ELEC--ETC F/6 5/8
THE APPLICATI ON OF SPECIAL COMPUTING TECHNIQUES TO SPEED-UP 1148 -ETC(U)
DEC al R A MCLAREN, A D MCFARLAND F30602-80-C 0032

UNCLASSIFIED RADC-TR-81-230 NL

~ ********

1111 125 1.4I~ 11116

V IKO, N kI,,, I! N

11 r 1 1 L I. ilJJLP Vu'.-(.0 1 eh-11Ij!)0 4 (: 42 :14 1, A G 't 101

1 . 1 I'tetiI I* S I'AIWT

R.IV Y ;SI. I~ P. I ''

.7

1 1 1 11jOl C I U1

12 1) 1 C3 fl 1

14 1 Is' i 4 ti A 4'
15~

17
1 $3)(i 0 1,T W E .1I1 Q WU

Ii '1) 00 10OtU A4 A 0110 tU biA ~ 12 H
?1 0 000 0 00I2 I i ;k O00(, 1IlPI 1 1' A)

22 VUO 4 () to0 3 4 7 C-4, b# K~P .A I r Cl I st Ltl

0 U 04 UvOb4 :1I 6elH

23 Moo07 U(, W vIt 0l 1) Q I 114tH ir P 12
'14 00Po U) ~oM (17C ON W i& C 2 1 0 K!, 0IA-

000Ai (100A 14 (11C d M$i rt
00ta o~t 15 bA 4 0 7 11

U' 0 C. C (I)C u I r.0U0(. 1 1 NCk Ft11

0e 01U1 (IjI11K 41 t ot. 1 (C-1.3 - u.

U!)I vU I" 10 1b5C 3 7 rI
21 ()Oil '.1ol wIr-(I NCH ~ p12

0014 01)14 '.uotlkbdI41A

29 00 1 t% 0016 1 1 E1J(bU)(, 1h ;1, 001 iri 1. 12W

i 1 00 1 h lo1 " .491 101003 wi4Z HL kk.PkAl

is 1.!1 oI. u143A~ow 1Is .I

COP! to notC E-18~O
CPYflolt1Ulc- ble leplo

dI
le

4c rp z

dC 14
2E 2.

x J I

-~ ~~~ r-l L~.u. .t ~

At 0% q * cr- C % -J a. '23 wP T

Cop
to -, IC dos o

lvwl le- IZ tij

E-194

~JU m01t;f' 9~'~ VeV 1,2,1 P31

(mwh houi h F 1)704j i
uU v C(14O' 4334btlAS

))(1 A V IhA) KPiv,(tI j
0o)U t UIIUH 3SA41IIIJ 4

31 OOOC Vh)4C j 1 O.t7ir" MVP (.1 ,P4
OuOU U t 11) .F'733q. 1 v

i 00t) i. u o o " 43.dht) I

)O01 I (j I 1) 1 A41hNou

33 ; Si 1,4l Jh*l I..Il'.r. V'b 2,.4, ANDP 4 toi.l- 1 [1 ,] n"

34
j5 Ul 0 11 1 1 13s C16IL' 1,Ijb to I ' (I toI I n7/L.,I AI"LM V IA (0.,1411,(37,241

37 013) 0 1 11 1 JCkUlOO0 11 VP 12,0

314 0%)1'4 's'1 4 -1)(I-. A 4 1 S q(0,24 *(32,il

o f) 1 ' ' o il I 4 I I l l u.I

4 0019 (119 4 (i1 f)I)'Z) i FP2 , 32

31 OOiA U(I It 3 1' 11)5It III JP,2, II ' H II!P

47 tiolh)U 1 33U5.i4 s Y ,rPl+

E-20ii
Ei

IOR MAT Aii|.,. Vv4-u i D r,,') u4 41: /4-1 P'A(.t. tIw)1I

t')|1m Uqj1C. ,iij~lllnhA
Of) I toI M 'I u . (mil ~IItijk t

7) o. OuI1 ,I 0 i'JJUd I. Tl' rl-' ,S I F-2+

4 * mivt-m V F t' .. 1'i t' ,/ I . p - "'l A.N
k

401 11; . QUl l ,-i '| '.IVl-" (oh,.o4) , (, 4 *,).i)

11i. 1 '(0 1 '4J1.4 t t A.-
00l ' 1 4) -*. I saI0 L It ' O U '3 4t+i~ '.

7
h, FH"T 0.I f - FI.t'.I- r .7 . .is is.,'. IIt,'E. '

ht) 00)'&Y 0''. l I 3CUUUP'P I,1 I" (",1 .'s

I1 00) OUb'h C' 2 A UI I- " M {0 ,24) (fe+'4

14)(U2b O0?I. /JC01:Ir 1,I j 1-'l tsII

13 U0)27 U0 .I -4idjH'IM1S

1029' 007$i' 1)'C 2()ou'

0I)0 A ,odeA -4j(,, hd 0) 4).,,

113 002C If if p C 13 4 o((I qa 1 P 2, s'.4
1! IJO/p + i) 3r1 i 1dui II4p 4 ' hIl"' 1 ir 1

I V4 L) I P 4'U 1 4 j) 4 . 1' 1 I I"f V I

14 U J 001) trJk U/ 1s k a) Y * n Iolor Y
19 0 1) 3V 00411 t brr i %) j / P'St l''~' I tj s y

;0 (I0U U / oJt I / el r ' mV' l. ,

U0 3' 0(4 "/ 3 t 1 i o it.3S
M - .J 0f, 3 I. .4 14 ki 4 i4

U0 4d till 4 .4 '40 %vb 0 U i

O .1 DU I 1314411006 1

2 1 W) I ('ll . '(4 7)

E-21

tr,

2 -
Z z

• , ...

.1 -,

. z.

- r

x3 -1. -

c C. . I

-. . . .1 -
IC %C D .0 -

pemtLii l g~ E-22

'-i f.~

IIL

IT D.- -4 r

cez~ - -> C.

30 012 2. X In l- v -c

4h

E-3pe mt u.

04) 1 o vo I v A0, I nl

00)1 1) 11 21 OCI 1 Ii
01iOu I 7 *4 AOU0)(t

01014 UUI 4 r1.Aw0Q

29* Oole' Out 6 kbFOV 0ioo U 0I
I 0
31
32 0017 14ELLASK.S EKoU S

0019 00t .4 4A0I0U 1

01) 1A (OOtA 7 ?T~b I M H

00 1ti (0 1 t' JA00)1 8

3$R 00 10 0011) (WO0000 ~ 0(F 7 3

3 *IIAO POINTIN 1 0Ut X'91A0'
4 lNINC IJNI MIT PA3U 181$I
5 HIA4 THANIllJN VOII X'PIA4@

6 0190 TRANOUT I,0t X181961
7 819~C L.NKWlfN EoIJ X''e9C,

8 t $IHsi [IVfd wDIIT EIJ x X'418
9EN

Pezmit fUlly lcgibla zp Dcu;toa

E-24

MISSION
Of

Rom Air Development Center
WC ptan6 and execu-teA 4ueach, deveopient, teAt and
Aheeted aeqUi~ition pAgWU in 6Uppt't 06 Comind, CotAwL
CouuwtatWoR6 and IntetUienee (C01) activite&. TedcaL
and enginem1 ing Auppoitt w~iithin ateau oj tedm.gt tp etee
i-6 Ptovded to ESP) P/tog/am O6j.iee (PO6) and otheA ESP
etemewa. The. pkipat tedrnieat miM,6on ateoA aote
com~UA&wiie~n6, etetwagne.tle guidance and conuto, 6U/t-
ueiUance oj(qkound and ae/toapace objecAa, intetgence data
cottestion and handti*ng, in6o~unotion 6~Apten' technotogy,
iOno,6PheAic pto pagaton, Aotid atate 6(2LenceA, mim/owe
phyaiaa and etettonic xtiabiItgt, minta.Lnabit and
comatbitV.

..

